This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9586.07 4898.48 1897.22 17
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5799.27 199.54 1
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23291.15 387.70 10888.42 20474.57 16183.56 24385.65 29778.49 14594.21 9172.04 21292.88 22394.05 101
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 158
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 146
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22895.06 1596.14 2584.28 7793.07 13987.68 1896.34 10697.09 19
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 92
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 41986.57 5595.80 2887.35 2797.62 6494.20 92
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11398.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 193
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 168
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 104
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 102
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 189
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 111
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26292.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13591.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 95
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20794.28 2496.54 1681.57 11794.27 8786.26 4396.49 10097.09 19
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10395.50 14594.53 79
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22794.55 1996.67 1487.94 3993.59 11884.27 6795.97 12495.52 48
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 182
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26676.54 15788.74 29796.61 27
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23194.39 2096.38 1886.02 6593.52 12283.96 6995.92 13095.34 52
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 155
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 99
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6095.87 13295.24 57
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5797.78 5697.26 15
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 105
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13183.07 7797.24 7991.67 209
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 87
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19492.38 10570.25 22489.35 11990.68 20882.85 9294.57 8179.55 11895.95 12792.00 197
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13882.67 8598.04 3993.64 123
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 246
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8198.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19884.60 6490.75 26993.97 103
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14093.60 6180.16 9189.13 12393.44 11883.82 8090.98 19683.86 7195.30 15393.60 126
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 12977.97 14197.03 8495.52 48
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20573.58 19594.66 17894.56 76
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24873.75 19294.81 17393.70 119
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15492.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18580.18 30089.15 24077.04 16493.28 13165.82 27192.28 23492.21 188
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14285.02 5998.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21894.19 2596.67 1476.94 16694.57 8183.07 7796.28 10896.15 32
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22589.33 23683.87 7994.53 8482.45 8794.89 16994.90 64
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 138
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17389.71 10794.82 5685.09 6895.77 3484.17 6898.03 4193.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10784.83 6297.55 6994.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9197.18 8190.45 242
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EGC-MVSNET74.79 28569.99 32789.19 6594.89 3887.00 1591.89 3786.28 2371.09 4202.23 42295.98 2781.87 11489.48 24079.76 11595.96 12591.10 221
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24293.78 10873.36 21096.48 287.98 1396.21 11294.41 86
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25186.63 17694.84 5579.58 13895.96 1587.62 1994.50 18194.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6597.81 5591.70 208
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21490.89 19980.85 12595.29 5681.14 10095.32 15092.34 180
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17784.98 26471.27 21086.70 17390.55 21363.04 27793.92 10378.26 13494.20 19089.63 257
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27887.25 27382.43 9894.53 8477.65 14396.46 10294.14 98
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10595.83 13494.46 80
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 91
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21683.69 27671.27 21086.70 17386.05 29363.04 27792.41 15678.26 13493.62 20890.71 233
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12678.35 13198.76 495.61 47
AUN-MVS81.18 20478.78 23788.39 7990.93 14782.14 6282.51 22283.67 27764.69 28280.29 29685.91 29651.07 34192.38 15776.29 16293.63 20790.65 237
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23285.80 19589.56 23380.76 12692.13 16473.21 20595.51 14493.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25277.55 14597.07 8383.13 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 17995.35 14892.29 183
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15391.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6396.27 11092.62 165
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18684.76 21587.70 26378.87 14294.18 9380.67 10796.29 10792.73 158
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17890.32 16765.79 26784.49 21990.97 19481.93 11193.63 11381.21 9996.54 9890.88 228
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18292.01 11565.91 26586.19 18691.75 17383.77 8294.98 6977.43 14896.71 9393.73 118
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 21984.96 21090.69 20780.01 13595.14 6478.37 13095.78 13891.82 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_030485.37 11784.58 14287.75 8885.28 27173.36 13686.54 13385.71 24877.56 12981.78 27692.47 15070.29 23696.02 1185.59 5395.96 12593.87 109
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18781.58 29674.73 15985.66 19686.06 29272.56 22092.69 15075.44 17295.21 15489.01 273
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23094.05 9278.35 14693.65 11180.54 10991.58 25092.08 193
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9886.25 4597.63 6397.82 8
PLCcopyleft73.85 1682.09 18980.31 21687.45 9290.86 15080.29 7385.88 14190.65 15568.17 24576.32 33186.33 28773.12 21392.61 15261.40 30990.02 28089.44 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10477.65 14396.62 9590.70 234
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26378.30 8986.93 12092.20 11065.94 26389.16 12193.16 12483.10 8989.89 23387.81 1594.43 18493.35 133
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20689.67 23284.47 7595.46 5082.56 8696.26 11193.77 117
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27278.25 9085.82 14491.82 12365.33 27788.55 13292.35 15682.62 9689.80 23586.87 3594.32 18793.18 143
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 171
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28078.21 9185.40 15291.39 13565.32 27887.72 15391.81 17082.33 10189.78 23686.68 3794.20 19092.99 151
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 183
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29472.76 14483.91 18185.18 25780.44 8688.75 12785.49 30080.08 13491.92 17082.02 9390.85 26795.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29872.52 15383.82 18385.15 25880.27 9088.75 12785.45 30279.95 13691.90 17181.92 9690.80 26896.13 33
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 196
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22196.89 8695.64 45
CANet83.79 15882.85 17486.63 10486.17 25872.21 16083.76 18691.43 13277.24 13274.39 35187.45 26975.36 18195.42 5277.03 15392.83 22492.25 187
test1286.57 10590.74 15172.63 14990.69 15482.76 25779.20 13994.80 7395.32 15092.27 185
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19783.80 18592.87 9180.37 8789.61 11391.81 17077.72 15394.18 9375.00 17798.53 1696.99 22
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20192.40 10372.04 20482.04 26788.33 25177.91 15093.95 10266.17 26595.12 15990.34 245
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 7996.83 8995.41 50
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15076.68 32784.06 5092.44 6096.99 1062.03 28094.65 7780.58 10893.24 21494.83 71
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9592.80 156
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 240
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15892.68 9773.30 18180.55 29290.17 22472.10 22494.61 7977.30 15094.47 18293.56 129
EPNet80.37 21878.41 24486.23 11376.75 37273.28 13987.18 11677.45 31876.24 13868.14 38388.93 24365.41 26193.85 10569.47 23496.12 11891.55 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS88.96 6789.88 5386.22 11491.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22086.24 4697.24 7991.36 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS86.80 9486.99 9586.21 11593.24 7667.02 21183.16 20392.21 10981.73 7490.92 8491.97 16377.20 16093.99 10074.16 18298.35 2297.61 10
UGNet82.78 17581.64 19286.21 11586.20 25776.24 12086.86 12285.68 24977.07 13373.76 35592.82 13869.64 23991.82 17569.04 24293.69 20590.56 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11792.86 8667.02 21182.55 22091.56 12883.08 6290.92 8491.82 16978.25 14793.99 10074.16 18298.35 2297.49 13
IS-MVSNet86.66 9786.82 10086.17 11792.05 10966.87 21491.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 18997.89 5296.72 24
lessismore_v085.95 11991.10 14470.99 17470.91 37091.79 6994.42 7461.76 28192.93 14479.52 12093.03 21993.93 105
nrg03087.85 8288.49 7585.91 12090.07 16669.73 18387.86 10694.20 3074.04 16592.70 5694.66 6085.88 6691.50 17979.72 11697.32 7796.50 29
Fast-Effi-MVS+-dtu82.54 18081.41 20085.90 12185.60 26676.53 11583.07 20489.62 19073.02 18879.11 31083.51 32680.74 12790.24 21968.76 24589.29 28890.94 225
test_040288.65 6989.58 6085.88 12292.55 9272.22 15984.01 17689.44 19388.63 2094.38 2195.77 2986.38 6193.59 11879.84 11495.21 15491.82 202
PCF-MVS74.62 1582.15 18880.92 20985.84 12389.43 17772.30 15780.53 25291.82 12357.36 34287.81 15189.92 22877.67 15493.63 11358.69 32295.08 16091.58 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR84.28 14383.76 15985.83 12489.23 18283.07 5580.99 24883.56 27872.71 19386.07 18989.07 24181.75 11686.19 29377.11 15293.36 20988.24 279
test_fmvsm_n_192083.60 16282.89 17385.74 12585.22 27377.74 9984.12 17490.48 15959.87 32686.45 18591.12 18975.65 17885.89 30182.28 9090.87 26593.58 127
WR-MVS_H89.91 5091.31 3385.71 12696.32 962.39 26289.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10298.80 398.84 5
MCST-MVS84.36 13983.93 15785.63 12791.59 12471.58 16883.52 19192.13 11261.82 30083.96 23589.75 23179.93 13793.46 12578.33 13294.34 18691.87 201
CSCG86.26 10186.47 10385.60 12890.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25579.09 14092.13 16475.51 17095.06 16190.41 243
ETV-MVS84.31 14183.91 15885.52 12988.58 19970.40 17884.50 16993.37 6478.76 11384.07 23378.72 37480.39 13095.13 6573.82 19192.98 22191.04 222
tttt051781.07 20579.58 22885.52 12988.99 18766.45 21887.03 11975.51 33573.76 16988.32 14190.20 22137.96 39694.16 9779.36 12295.13 15795.93 41
MVS_111021_HR84.63 13384.34 15185.49 13190.18 16375.86 12379.23 27387.13 22473.35 17885.56 20089.34 23583.60 8590.50 21476.64 15694.05 19690.09 252
NR-MVSNet86.00 10786.22 10785.34 13293.24 7664.56 23482.21 23290.46 16080.99 8288.42 13791.97 16377.56 15593.85 10572.46 21098.65 1297.61 10
LF4IMVS82.75 17681.93 18885.19 13382.08 32080.15 7485.53 14888.76 20068.01 24685.58 19987.75 26271.80 22986.85 28074.02 18793.87 20088.58 276
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13494.02 5864.13 23884.38 17091.29 13884.88 4492.06 6593.84 10586.45 5893.73 10973.22 20098.66 1197.69 9
EIA-MVS82.19 18681.23 20585.10 13587.95 21369.17 19383.22 20293.33 6770.42 22078.58 31479.77 36677.29 15994.20 9271.51 21488.96 29391.93 200
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12788.77 9490.00 18075.65 14984.96 21093.17 12374.06 19791.19 18978.28 13391.09 25689.29 265
CNLPA83.55 16483.10 17084.90 13789.34 17983.87 5084.54 16788.77 19979.09 10683.54 24488.66 24874.87 18681.73 33566.84 25992.29 23389.11 267
v1086.54 9887.10 9284.84 13888.16 20963.28 24886.64 13092.20 11075.42 15392.81 5394.50 6874.05 19894.06 9983.88 7096.28 10897.17 18
test_fmvsmvis_n_192085.22 11985.36 12884.81 13985.80 26576.13 12285.15 15692.32 10761.40 30791.33 7690.85 20283.76 8386.16 29484.31 6693.28 21392.15 191
CLD-MVS83.18 17082.64 17884.79 14089.05 18467.82 20577.93 28992.52 10168.33 24285.07 20781.54 35082.06 10892.96 14269.35 23597.91 5193.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t83.10 17382.54 18184.77 14192.90 8369.10 19486.65 12990.62 15754.66 35881.46 28090.81 20476.98 16594.38 8672.62 20896.18 11490.82 230
Anonymous2023121188.40 7189.62 5984.73 14290.46 15765.27 22788.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16876.70 15597.99 4396.88 23
MAR-MVS80.24 22378.74 23984.73 14286.87 24278.18 9285.75 14587.81 21565.67 27277.84 31978.50 37573.79 20190.53 21361.59 30890.87 26585.49 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu81.55 19980.49 21484.70 14491.58 12773.24 14184.21 17191.67 12762.86 29080.94 28687.16 27567.27 25192.87 14769.82 23288.94 29487.99 286
原ACMM184.60 14592.81 8974.01 13291.50 13062.59 29182.73 25890.67 21076.53 17394.25 8969.24 23695.69 14185.55 314
mvsmamba80.30 22178.87 23484.58 14688.12 21067.55 20692.35 2984.88 26663.15 28885.33 20390.91 19850.71 34395.20 6266.36 26387.98 30990.99 223
fmvsm_s_conf0.1_n_a82.58 17981.93 18884.50 14787.68 21973.35 13786.14 13977.70 31661.64 30585.02 20891.62 17577.75 15186.24 29082.79 8387.07 32093.91 107
PEN-MVS90.03 4591.88 1884.48 14896.57 558.88 30688.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12798.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 14996.56 658.83 30989.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12198.74 699.00 2
GeoE85.45 11685.81 11784.37 15090.08 16467.07 21085.86 14391.39 13572.33 20087.59 15590.25 22084.85 7192.37 15878.00 13991.94 24393.66 120
CP-MVSNet89.27 6290.91 4484.37 15096.34 858.61 31288.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12598.69 1098.95 4
v886.22 10386.83 9984.36 15287.82 21562.35 26486.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11083.10 7695.41 14697.01 21
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15287.09 23665.22 22884.16 17294.23 2777.89 12291.28 7993.66 11484.35 7692.71 14880.07 11094.87 17295.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT80.64 21279.41 22984.34 15483.93 29669.66 18476.28 31881.09 29972.43 19586.47 18390.19 22260.46 28793.15 13677.45 14786.39 33190.22 246
fmvsm_s_conf0.5_n_a82.21 18581.51 19984.32 15586.56 24473.35 13785.46 14977.30 32061.81 30184.51 21890.88 20177.36 15886.21 29282.72 8486.97 32593.38 132
UniMVSNet_ETH3D89.12 6590.72 4784.31 15697.00 264.33 23789.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18772.57 20997.65 6297.34 14
thisisatest053079.07 23377.33 25384.26 15787.13 23264.58 23383.66 18975.95 33068.86 23785.22 20587.36 27138.10 39393.57 12175.47 17194.28 18894.62 74
v119284.57 13584.69 14084.21 15887.75 21762.88 25283.02 20691.43 13269.08 23489.98 10290.89 19972.70 21893.62 11682.41 8894.97 16696.13 33
DTE-MVSNet89.98 4791.91 1784.21 15896.51 757.84 31788.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12498.57 1598.80 6
MVSFormer82.23 18481.57 19784.19 16085.54 26869.26 18991.98 3490.08 17871.54 20776.23 33285.07 31158.69 30294.27 8786.26 4388.77 29589.03 271
v114484.54 13784.72 13884.00 16187.67 22062.55 25982.97 20890.93 14970.32 22389.80 10590.99 19373.50 20493.48 12481.69 9894.65 17995.97 38
EG-PatchMatch MVS84.08 15084.11 15383.98 16292.22 10372.61 15082.20 23487.02 22972.63 19488.86 12491.02 19278.52 14391.11 19273.41 19791.09 25688.21 280
IterMVS-LS84.73 13284.98 13383.96 16387.35 22763.66 24283.25 19989.88 18376.06 13989.62 11192.37 15573.40 20992.52 15378.16 13694.77 17695.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH76.49 1489.34 5991.14 3583.96 16392.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26283.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 18781.59 19583.94 16586.87 24271.57 16985.19 15577.42 31962.27 29984.47 22191.33 18276.43 17485.91 29983.14 7487.14 31894.33 90
alignmvs83.94 15583.98 15683.80 16687.80 21667.88 20484.54 16791.42 13473.27 18488.41 13887.96 25672.33 22190.83 20476.02 16694.11 19392.69 162
v192192084.23 14684.37 15083.79 16787.64 22261.71 27182.91 21091.20 14167.94 24990.06 9790.34 21772.04 22793.59 11882.32 8994.91 16796.07 35
PM-MVS80.20 22479.00 23383.78 16888.17 20886.66 1981.31 24266.81 38969.64 22988.33 14090.19 22264.58 26383.63 32571.99 21390.03 27981.06 378
fmvsm_s_conf0.5_n81.91 19581.30 20283.75 16986.02 26271.56 17084.73 16177.11 32362.44 29684.00 23490.68 20876.42 17585.89 30183.14 7487.11 31993.81 115
V4283.47 16683.37 16483.75 16983.16 31363.33 24781.31 24290.23 17469.51 23090.91 8690.81 20474.16 19692.29 16280.06 11190.22 27795.62 46
v14419284.24 14584.41 14883.71 17187.59 22361.57 27282.95 20991.03 14567.82 25289.80 10590.49 21473.28 21193.51 12381.88 9794.89 16996.04 37
v124084.30 14284.51 14683.65 17287.65 22161.26 27782.85 21291.54 12967.94 24990.68 9190.65 21171.71 23093.64 11282.84 8294.78 17496.07 35
v2v48284.09 14984.24 15283.62 17387.13 23261.40 27482.71 21589.71 18672.19 20389.55 11591.41 18070.70 23593.20 13381.02 10193.76 20196.25 31
fmvsm_l_conf0.5_n82.06 19081.54 19883.60 17483.94 29573.90 13383.35 19686.10 24058.97 32883.80 23890.36 21674.23 19586.94 27882.90 8090.22 27789.94 254
sasdasda85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
canonicalmvs85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
Effi-MVS+83.90 15684.01 15583.57 17787.22 23065.61 22686.55 13292.40 10378.64 11481.34 28384.18 32183.65 8492.93 14474.22 18187.87 31192.17 190
AdaColmapbinary83.66 16083.69 16083.57 17790.05 16772.26 15886.29 13690.00 18078.19 11981.65 27787.16 27583.40 8794.24 9061.69 30694.76 17784.21 333
MVSMamba_PlusPlus87.53 8688.86 7183.54 17992.03 11062.26 26691.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6194.16 19292.58 166
FA-MVS(test-final)83.13 17283.02 17183.43 18086.16 26066.08 22188.00 10388.36 20675.55 15085.02 20892.75 14265.12 26292.50 15474.94 17891.30 25491.72 206
Anonymous2024052986.20 10487.13 9183.42 18190.19 16264.55 23584.55 16590.71 15385.85 3689.94 10395.24 4682.13 10790.40 21669.19 23996.40 10595.31 54
FE-MVS79.98 22978.86 23583.36 18286.47 24566.45 21889.73 7084.74 27072.80 19184.22 23291.38 18144.95 37693.60 11763.93 28791.50 25190.04 253
PAPM_NR83.23 16983.19 16783.33 18390.90 14865.98 22288.19 10190.78 15278.13 12080.87 28887.92 25973.49 20692.42 15570.07 22988.40 30091.60 211
casdiffmvspermissive85.21 12085.85 11683.31 18486.17 25862.77 25583.03 20593.93 4674.69 16088.21 14292.68 14482.29 10491.89 17277.87 14293.75 20495.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a81.46 20080.87 21083.25 18583.73 30073.21 14283.00 20785.59 25158.22 33482.96 25390.09 22672.30 22286.65 28481.97 9589.95 28189.88 255
TAMVS78.08 24676.36 26283.23 18690.62 15472.87 14379.08 27480.01 30661.72 30381.35 28286.92 28063.96 26988.78 25650.61 37093.01 22088.04 285
VDD-MVS84.23 14684.58 14283.20 18791.17 14265.16 23083.25 19984.97 26579.79 9587.18 16094.27 7974.77 19090.89 20169.24 23696.54 9893.55 131
EI-MVSNet82.61 17782.42 18383.20 18783.25 31063.66 24283.50 19285.07 25976.06 13986.55 17785.10 30873.41 20790.25 21778.15 13890.67 27195.68 44
mmtdpeth85.13 12385.78 11983.17 18984.65 28274.71 12785.87 14290.35 16677.94 12183.82 23796.96 1277.75 15180.03 34878.44 12896.21 11294.79 72
CDS-MVSNet77.32 25475.40 27183.06 19089.00 18672.48 15477.90 29082.17 29060.81 31678.94 31183.49 32759.30 29788.76 25754.64 35092.37 23087.93 288
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline85.20 12185.93 11383.02 19186.30 25362.37 26384.55 16593.96 4474.48 16287.12 16192.03 16282.30 10391.94 16978.39 12994.21 18994.74 73
balanced_conf0384.80 13085.40 12683.00 19288.95 18861.44 27390.42 5892.37 10671.48 20988.72 12993.13 12570.16 23895.15 6379.26 12394.11 19392.41 175
tt080588.09 7789.79 5582.98 19393.26 7563.94 24191.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17382.03 9295.87 13293.13 144
ambc82.98 19390.55 15664.86 23188.20 10089.15 19689.40 11893.96 9971.67 23191.38 18678.83 12696.55 9792.71 161
新几何182.95 19593.96 5978.56 8880.24 30455.45 35283.93 23691.08 19171.19 23288.33 26165.84 27093.07 21881.95 365
xiu_mvs_v1_base_debu80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base_debi80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
DPM-MVS80.10 22779.18 23282.88 19990.71 15369.74 18278.87 27890.84 15060.29 32275.64 34185.92 29567.28 25093.11 13771.24 21691.79 24485.77 312
ET-MVSNet_ETH3D75.28 27672.77 29882.81 20083.03 31668.11 20177.09 30376.51 32860.67 31977.60 32480.52 35838.04 39491.15 19170.78 22090.68 27089.17 266
eth_miper_zixun_eth80.84 20880.22 22082.71 20181.41 32960.98 28377.81 29190.14 17767.31 25686.95 16987.24 27464.26 26592.31 16075.23 17491.61 24894.85 70
MVP-Stereo75.81 27373.51 28982.71 20189.35 17873.62 13480.06 25685.20 25660.30 32173.96 35387.94 25757.89 30989.45 24352.02 36474.87 40085.06 320
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FIs85.35 11886.27 10682.60 20391.86 11657.31 32185.10 15793.05 8375.83 14691.02 8393.97 9673.57 20392.91 14673.97 18898.02 4297.58 12
FC-MVSNet-test85.93 10987.05 9482.58 20492.25 10156.44 32885.75 14593.09 8177.33 13091.94 6894.65 6174.78 18993.41 12875.11 17698.58 1497.88 7
QAPM82.59 17882.59 18082.58 20486.44 24666.69 21589.94 6790.36 16567.97 24884.94 21292.58 14772.71 21792.18 16370.63 22487.73 31388.85 274
pmmvs-eth3d78.42 24477.04 25682.57 20687.44 22674.41 13080.86 25079.67 30755.68 35184.69 21690.31 21960.91 28585.42 30662.20 30091.59 24987.88 289
HyFIR lowres test75.12 27972.66 30082.50 20791.44 13565.19 22972.47 35387.31 21946.79 39080.29 29684.30 31952.70 33492.10 16751.88 36986.73 32690.22 246
Fast-Effi-MVS+81.04 20680.57 21182.46 20887.50 22563.22 24978.37 28589.63 18968.01 24681.87 27082.08 34482.31 10292.65 15167.10 25688.30 30691.51 214
jason77.42 25375.75 26882.43 20987.10 23569.27 18877.99 28881.94 29251.47 37777.84 31985.07 31160.32 28989.00 25070.74 22289.27 29089.03 271
jason: jason.
MGCFI-Net85.04 12585.95 11282.31 21087.52 22463.59 24486.23 13893.96 4473.46 17488.07 14587.83 26186.46 5790.87 20376.17 16393.89 19992.47 173
lupinMVS76.37 26874.46 28082.09 21185.54 26869.26 18976.79 30780.77 30250.68 38476.23 33282.82 33658.69 30288.94 25169.85 23188.77 29588.07 282
DELS-MVS81.44 20181.25 20382.03 21284.27 29162.87 25376.47 31692.49 10270.97 21681.64 27883.83 32375.03 18492.70 14974.29 18092.22 23790.51 241
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft76.72 1381.98 19382.00 18781.93 21384.42 28768.22 19988.50 9989.48 19266.92 25881.80 27491.86 16572.59 21990.16 22271.19 21791.25 25587.40 295
pmmvs686.52 9988.06 7981.90 21492.22 10362.28 26584.66 16389.15 19683.54 5789.85 10497.32 588.08 3886.80 28170.43 22697.30 7896.62 26
MSLP-MVS++85.00 12886.03 11181.90 21491.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23477.98 14889.40 24777.46 14694.78 17484.75 323
GBi-Net82.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
test182.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
FMVSNet184.55 13685.45 12581.85 21690.27 16161.05 28086.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 20969.09 24095.33 14993.82 112
v14882.31 18282.48 18281.81 21985.59 26759.66 29681.47 24186.02 24472.85 18988.05 14790.65 21170.73 23490.91 20075.15 17591.79 24494.87 66
c3_l81.64 19881.59 19581.79 22080.86 33759.15 30378.61 28290.18 17668.36 24187.20 15987.11 27769.39 24091.62 17778.16 13694.43 18494.60 75
mvs5depth83.82 15784.54 14481.68 22182.23 31968.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33376.37 15995.63 14394.35 88
PVSNet_BlendedMVS78.80 23877.84 24881.65 22284.43 28563.41 24579.49 26790.44 16161.70 30475.43 34287.07 27869.11 24391.44 18260.68 31392.24 23590.11 251
RRT-MVS82.97 17483.44 16181.57 22385.06 27558.04 31587.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14076.49 15888.47 29993.62 124
dcpmvs_284.23 14685.14 13081.50 22488.61 19861.98 27082.90 21193.11 7968.66 24092.77 5492.39 15178.50 14487.63 26876.99 15492.30 23194.90 64
BH-RMVSNet80.53 21380.22 22081.49 22587.19 23166.21 22077.79 29286.23 23874.21 16483.69 23988.50 24973.25 21290.75 20663.18 29587.90 31087.52 293
API-MVS82.28 18382.61 17981.30 22686.29 25469.79 18188.71 9587.67 21678.42 11782.15 26684.15 32277.98 14891.59 17865.39 27492.75 22582.51 360
VDDNet84.35 14085.39 12781.25 22795.13 3259.32 29985.42 15181.11 29886.41 3287.41 15896.21 2273.61 20290.61 21266.33 26496.85 8793.81 115
MVSTER77.09 25675.70 26981.25 22775.27 38761.08 27977.49 29985.07 25960.78 31786.55 17788.68 24643.14 38590.25 21773.69 19490.67 27192.42 174
cl2278.97 23478.21 24681.24 22977.74 36259.01 30477.46 30087.13 22465.79 26784.32 22585.10 30858.96 30190.88 20275.36 17392.03 23993.84 110
miper_ehance_all_eth80.34 21980.04 22581.24 22979.82 34858.95 30577.66 29389.66 18765.75 27085.99 19385.11 30768.29 24791.42 18476.03 16592.03 23993.33 134
PAPR78.84 23778.10 24781.07 23185.17 27460.22 29082.21 23290.57 15862.51 29275.32 34584.61 31674.99 18592.30 16159.48 32088.04 30890.68 235
WR-MVS83.56 16384.40 14981.06 23293.43 7054.88 34178.67 28185.02 26281.24 7990.74 9091.56 17772.85 21591.08 19368.00 25398.04 3997.23 16
cl____80.42 21680.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.37 25486.18 18889.21 23863.08 27690.16 22276.31 16195.80 13693.65 122
DIV-MVS_self_test80.43 21580.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.38 25386.19 18689.22 23763.09 27590.16 22276.32 16095.80 13693.66 120
BH-untuned80.96 20780.99 20780.84 23588.55 20068.23 19880.33 25588.46 20372.79 19286.55 17786.76 28174.72 19191.77 17661.79 30588.99 29282.52 359
MIMVSNet183.63 16184.59 14180.74 23694.06 5762.77 25582.72 21484.53 27177.57 12890.34 9395.92 2876.88 17285.83 30361.88 30497.42 7493.62 124
pmmvs474.92 28272.98 29680.73 23784.95 27671.71 16776.23 31977.59 31752.83 36777.73 32386.38 28556.35 31884.97 31057.72 33087.05 32185.51 315
cascas76.29 26974.81 27680.72 23884.47 28462.94 25173.89 34487.34 21855.94 34975.16 34776.53 39163.97 26891.16 19065.00 27890.97 26188.06 284
RPMNet78.88 23678.28 24580.68 23979.58 34962.64 25782.58 21894.16 3274.80 15875.72 33992.59 14548.69 35095.56 4273.48 19682.91 36783.85 338
miper_enhance_ethall77.83 24776.93 25780.51 24076.15 37958.01 31675.47 33088.82 19858.05 33683.59 24180.69 35464.41 26491.20 18873.16 20692.03 23992.33 181
thisisatest051573.00 30170.52 31980.46 24181.45 32859.90 29473.16 35174.31 34257.86 33776.08 33677.78 37937.60 39792.12 16665.00 27891.45 25289.35 262
FMVSNet281.31 20281.61 19480.41 24286.38 24858.75 31083.93 18086.58 23572.43 19587.65 15492.98 13163.78 27090.22 22066.86 25793.92 19892.27 185
D2MVS76.84 25975.67 27080.34 24380.48 34362.16 26973.50 34784.80 26957.61 34082.24 26387.54 26651.31 34087.65 26770.40 22793.19 21691.23 217
MSDG80.06 22879.99 22780.25 24483.91 29768.04 20377.51 29789.19 19577.65 12681.94 26883.45 32876.37 17686.31 28963.31 29486.59 32886.41 304
MVS_Test82.47 18183.22 16580.22 24582.62 31857.75 31982.54 22191.96 11871.16 21482.89 25492.52 14977.41 15790.50 21480.04 11287.84 31292.40 177
diffmvspermissive80.40 21780.48 21580.17 24679.02 35860.04 29177.54 29690.28 17366.65 26182.40 26187.33 27273.50 20487.35 27177.98 14089.62 28593.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet_DTU77.81 24977.05 25580.09 24781.37 33059.90 29483.26 19888.29 20869.16 23367.83 38683.72 32460.93 28489.47 24169.22 23889.70 28490.88 228
pm-mvs183.69 15984.95 13479.91 24890.04 16859.66 29682.43 22487.44 21775.52 15187.85 15095.26 4581.25 12185.65 30568.74 24696.04 12194.42 85
CMPMVSbinary59.41 2075.12 27973.57 28779.77 24975.84 38267.22 20781.21 24582.18 28950.78 38276.50 32887.66 26455.20 32582.99 32862.17 30290.64 27589.09 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_Blended76.49 26675.40 27179.76 25084.43 28563.41 24575.14 33290.44 16157.36 34275.43 34278.30 37669.11 24391.44 18260.68 31387.70 31484.42 328
TR-MVS76.77 26175.79 26779.72 25186.10 26165.79 22477.14 30283.02 28265.20 27981.40 28182.10 34266.30 25590.73 20855.57 34185.27 34182.65 354
VPA-MVSNet83.47 16684.73 13679.69 25290.29 16057.52 32081.30 24488.69 20176.29 13787.58 15694.44 7180.60 12987.20 27366.60 26296.82 9094.34 89
IB-MVS62.13 1971.64 31268.97 33779.66 25380.80 33962.26 26673.94 34376.90 32463.27 28768.63 38276.79 38833.83 40291.84 17459.28 32187.26 31684.88 321
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FMVSNet378.80 23878.55 24179.57 25482.89 31756.89 32681.76 23685.77 24769.04 23586.00 19090.44 21551.75 33990.09 22865.95 26793.34 21091.72 206
testdata79.54 25592.87 8472.34 15680.14 30559.91 32585.47 20291.75 17367.96 24985.24 30768.57 25092.18 23881.06 378
GA-MVS75.83 27274.61 27779.48 25681.87 32259.25 30073.42 34882.88 28368.68 23979.75 30181.80 34750.62 34489.46 24266.85 25885.64 33889.72 256
test_yl78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
DCV-MVSNet78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
MDA-MVSNet-bldmvs77.47 25276.90 25879.16 25979.03 35764.59 23266.58 38775.67 33373.15 18688.86 12488.99 24266.94 25281.23 33864.71 28188.22 30791.64 210
LFMVS80.15 22680.56 21278.89 26089.19 18355.93 33085.22 15473.78 34782.96 6384.28 22992.72 14357.38 31190.07 22963.80 28995.75 13990.68 235
TransMVSNet (Re)84.02 15285.74 12078.85 26191.00 14655.20 34082.29 22887.26 22079.65 9888.38 13995.52 3783.00 9086.88 27967.97 25496.60 9694.45 82
Gipumacopyleft84.44 13886.33 10578.78 26284.20 29273.57 13589.55 7790.44 16184.24 4884.38 22294.89 5376.35 17780.40 34576.14 16496.80 9182.36 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re83.48 16585.06 13178.75 26385.94 26355.75 33480.05 25794.27 2476.47 13696.09 694.54 6783.31 8889.75 23959.95 31794.89 16990.75 231
OpenMVS_ROBcopyleft70.19 1777.77 25077.46 25078.71 26484.39 28861.15 27881.18 24682.52 28662.45 29583.34 24787.37 27066.20 25688.66 25864.69 28285.02 34786.32 305
IterMVS76.91 25876.34 26378.64 26580.91 33564.03 23976.30 31779.03 31064.88 28183.11 25089.16 23959.90 29384.46 31568.61 24885.15 34587.42 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJ77.04 25776.53 26178.56 26687.09 23661.40 27475.26 33187.13 22461.25 31174.38 35277.22 38676.94 16690.94 19764.63 28384.83 35383.35 346
xiu_mvs_v2_base77.19 25576.75 25978.52 26787.01 23861.30 27675.55 32987.12 22761.24 31274.45 35078.79 37377.20 16090.93 19864.62 28484.80 35483.32 347
Anonymous20240521180.51 21481.19 20678.49 26888.48 20157.26 32276.63 31182.49 28781.21 8084.30 22892.24 16067.99 24886.24 29062.22 29995.13 15791.98 199
MG-MVS80.32 22080.94 20878.47 26988.18 20752.62 35882.29 22885.01 26372.01 20579.24 30992.54 14869.36 24193.36 13070.65 22389.19 29189.45 259
baseline269.77 33266.89 34978.41 27079.51 35158.09 31376.23 31969.57 37557.50 34164.82 40177.45 38346.02 36188.44 25953.08 35777.83 39188.70 275
tfpnnormal81.79 19782.95 17278.31 27188.93 18955.40 33680.83 25182.85 28476.81 13485.90 19494.14 8974.58 19386.51 28666.82 26095.68 14293.01 150
KD-MVS_self_test81.93 19483.14 16978.30 27284.75 28152.75 35580.37 25489.42 19470.24 22590.26 9593.39 11974.55 19486.77 28268.61 24896.64 9495.38 51
Baseline_NR-MVSNet84.00 15385.90 11478.29 27391.47 13453.44 35182.29 22887.00 23279.06 10789.55 11595.72 3277.20 16086.14 29572.30 21198.51 1795.28 55
PatchMatch-RL74.48 28773.22 29378.27 27487.70 21885.26 3875.92 32470.09 37264.34 28376.09 33581.25 35265.87 25978.07 35753.86 35283.82 36071.48 398
CHOSEN 1792x268872.45 30470.56 31878.13 27590.02 16963.08 25068.72 37683.16 28042.99 40575.92 33785.46 30157.22 31385.18 30949.87 37481.67 37486.14 307
SDMVSNet81.90 19683.17 16878.10 27688.81 19262.45 26176.08 32286.05 24373.67 17083.41 24593.04 12782.35 10080.65 34270.06 23095.03 16291.21 218
BH-w/o76.57 26476.07 26678.10 27686.88 24165.92 22377.63 29486.33 23665.69 27180.89 28779.95 36368.97 24590.74 20753.01 36085.25 34277.62 389
1112_ss74.82 28473.74 28578.04 27889.57 17260.04 29176.49 31587.09 22854.31 35973.66 35679.80 36460.25 29086.76 28358.37 32484.15 35887.32 296
TinyColmap81.25 20382.34 18477.99 27985.33 27060.68 28782.32 22788.33 20771.26 21286.97 16892.22 16177.10 16386.98 27762.37 29895.17 15686.31 306
Vis-MVSNet (Re-imp)77.82 24877.79 24977.92 28088.82 19151.29 36883.28 19771.97 36274.04 16582.23 26489.78 23057.38 31189.41 24657.22 33195.41 14693.05 148
ECVR-MVScopyleft78.44 24378.63 24077.88 28191.85 11748.95 37783.68 18869.91 37472.30 20184.26 23194.20 8551.89 33889.82 23463.58 29096.02 12294.87 66
thres40075.14 27774.23 28277.86 28286.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25892.66 163
thres600view775.97 27175.35 27377.85 28387.01 23851.84 36480.45 25373.26 35275.20 15583.10 25186.31 28945.54 36789.05 24955.03 34792.24 23592.66 163
JIA-IIPM69.41 33566.64 35377.70 28473.19 39771.24 17275.67 32565.56 39270.42 22065.18 39792.97 13333.64 40483.06 32653.52 35669.61 40978.79 387
test111178.53 24278.85 23677.56 28592.22 10347.49 38382.61 21669.24 37872.43 19585.28 20494.20 8551.91 33790.07 22965.36 27596.45 10395.11 61
miper_lstm_enhance76.45 26776.10 26577.51 28676.72 37360.97 28464.69 39185.04 26163.98 28583.20 24988.22 25256.67 31578.79 35573.22 20093.12 21792.78 157
EPNet_dtu72.87 30271.33 31477.49 28777.72 36360.55 28882.35 22675.79 33166.49 26258.39 41381.06 35353.68 33085.98 29653.55 35592.97 22285.95 309
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-278.89 23579.39 23077.41 28884.78 27968.11 20175.60 32683.11 28160.96 31579.36 30689.89 22975.18 18372.97 37173.32 19992.30 23191.15 220
test_fmvs375.72 27475.20 27477.27 28975.01 39069.47 18678.93 27584.88 26646.67 39187.08 16587.84 26050.44 34671.62 37677.42 14988.53 29890.72 232
EU-MVSNet75.12 27974.43 28177.18 29083.11 31559.48 29885.71 14782.43 28839.76 41185.64 19788.76 24444.71 37887.88 26573.86 19085.88 33784.16 334
ab-mvs79.67 23180.56 21276.99 29188.48 20156.93 32484.70 16286.06 24268.95 23680.78 28993.08 12675.30 18284.62 31356.78 33290.90 26389.43 261
Anonymous2024052180.18 22581.25 20376.95 29283.15 31460.84 28582.46 22385.99 24568.76 23886.78 17093.73 11259.13 29977.44 35973.71 19397.55 6992.56 167
PAPM71.77 31070.06 32576.92 29386.39 24753.97 34676.62 31286.62 23453.44 36363.97 40384.73 31557.79 31092.34 15939.65 40481.33 37884.45 327
ppachtmachnet_test74.73 28674.00 28476.90 29480.71 34056.89 32671.53 36178.42 31258.24 33379.32 30882.92 33557.91 30884.26 31965.60 27391.36 25389.56 258
Patchmatch-RL test74.48 28773.68 28676.89 29584.83 27866.54 21672.29 35469.16 37957.70 33886.76 17186.33 28745.79 36682.59 32969.63 23390.65 27481.54 369
CR-MVSNet74.00 29273.04 29576.85 29679.58 34962.64 25782.58 21876.90 32450.50 38575.72 33992.38 15248.07 35384.07 32168.72 24782.91 36783.85 338
tfpn200view974.86 28374.23 28276.74 29786.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25889.31 263
thres100view90075.45 27575.05 27576.66 29887.27 22851.88 36381.07 24773.26 35275.68 14883.25 24886.37 28645.54 36788.80 25351.98 36590.99 25889.31 263
reproduce_monomvs74.09 29173.23 29276.65 29976.52 37454.54 34277.50 29881.40 29765.85 26682.86 25686.67 28227.38 41684.53 31470.24 22890.66 27390.89 227
VNet79.31 23280.27 21776.44 30087.92 21453.95 34775.58 32884.35 27274.39 16382.23 26490.72 20672.84 21684.39 31760.38 31593.98 19790.97 224
Test_1112_low_res73.90 29373.08 29476.35 30190.35 15955.95 32973.40 34986.17 23950.70 38373.14 35785.94 29458.31 30485.90 30056.51 33483.22 36487.20 297
USDC76.63 26376.73 26076.34 30283.46 30357.20 32380.02 25888.04 21352.14 37383.65 24091.25 18463.24 27386.65 28454.66 34994.11 19385.17 318
test250674.12 29073.39 29076.28 30391.85 11744.20 39784.06 17548.20 41872.30 20181.90 26994.20 8527.22 41889.77 23764.81 28096.02 12294.87 66
CVMVSNet72.62 30371.41 31376.28 30383.25 31060.34 28983.50 19279.02 31137.77 41576.33 33085.10 30849.60 34987.41 27070.54 22577.54 39581.08 376
mvs_anonymous78.13 24578.76 23876.23 30579.24 35550.31 37478.69 28084.82 26861.60 30683.09 25292.82 13873.89 20087.01 27468.33 25286.41 33091.37 215
VPNet80.25 22281.68 19175.94 30692.46 9547.98 38176.70 30981.67 29473.45 17584.87 21392.82 13874.66 19286.51 28661.66 30796.85 8793.33 134
test_fmvs273.57 29572.80 29775.90 30772.74 40368.84 19577.07 30484.32 27345.14 39782.89 25484.22 32048.37 35170.36 38073.40 19887.03 32288.52 277
ANet_high83.17 17185.68 12175.65 30881.24 33145.26 39479.94 25992.91 9083.83 5191.33 7696.88 1380.25 13285.92 29868.89 24395.89 13195.76 42
sd_testset79.95 23081.39 20175.64 30988.81 19258.07 31476.16 32182.81 28573.67 17083.41 24593.04 12780.96 12477.65 35858.62 32395.03 16291.21 218
SCA73.32 29672.57 30275.58 31081.62 32655.86 33278.89 27771.37 36761.73 30274.93 34883.42 32960.46 28787.01 27458.11 32882.63 37283.88 335
131473.22 29872.56 30375.20 31180.41 34457.84 31781.64 23985.36 25351.68 37673.10 35876.65 39061.45 28285.19 30863.54 29179.21 38782.59 355
CL-MVSNet_self_test76.81 26077.38 25275.12 31286.90 24051.34 36673.20 35080.63 30368.30 24381.80 27488.40 25066.92 25380.90 33955.35 34494.90 16893.12 146
MVS73.21 29972.59 30175.06 31380.97 33460.81 28681.64 23985.92 24646.03 39571.68 36577.54 38168.47 24689.77 23755.70 34085.39 33974.60 395
ttmdpeth71.72 31170.67 31674.86 31473.08 40055.88 33177.41 30169.27 37755.86 35078.66 31393.77 11038.01 39575.39 36760.12 31689.87 28293.31 136
MonoMVSNet76.66 26277.26 25474.86 31479.86 34754.34 34486.26 13786.08 24171.08 21585.59 19888.68 24653.95 32985.93 29763.86 28880.02 38284.32 329
HY-MVS64.64 1873.03 30072.47 30474.71 31683.36 30754.19 34582.14 23581.96 29156.76 34869.57 37886.21 29160.03 29184.83 31249.58 37682.65 37085.11 319
thres20072.34 30671.55 31274.70 31783.48 30251.60 36575.02 33373.71 34870.14 22678.56 31580.57 35746.20 35988.20 26346.99 38889.29 28884.32 329
N_pmnet70.20 32468.80 33974.38 31880.91 33584.81 4359.12 40376.45 32955.06 35475.31 34682.36 34155.74 32154.82 41347.02 38787.24 31783.52 342
CostFormer69.98 33068.68 34073.87 31977.14 36850.72 37279.26 27074.51 34051.94 37570.97 36984.75 31445.16 37587.49 26955.16 34679.23 38683.40 345
Patchmtry76.56 26577.46 25073.83 32079.37 35446.60 38782.41 22576.90 32473.81 16885.56 20092.38 15248.07 35383.98 32263.36 29395.31 15290.92 226
testing371.53 31470.79 31573.77 32188.89 19041.86 40476.60 31459.12 40872.83 19080.97 28482.08 34419.80 42487.33 27265.12 27791.68 24792.13 192
test_vis3_rt71.42 31570.67 31673.64 32269.66 41070.46 17766.97 38689.73 18442.68 40788.20 14383.04 33143.77 38060.07 40865.35 27686.66 32790.39 244
FMVSNet572.10 30871.69 30873.32 32381.57 32753.02 35476.77 30878.37 31363.31 28676.37 32991.85 16636.68 39878.98 35247.87 38592.45 22987.95 287
tpm268.45 34366.83 35073.30 32478.93 35948.50 37879.76 26171.76 36447.50 38969.92 37683.60 32542.07 38788.40 26048.44 38379.51 38383.01 352
FPMVS72.29 30772.00 30673.14 32588.63 19785.00 4074.65 33767.39 38371.94 20677.80 32187.66 26450.48 34575.83 36549.95 37279.51 38358.58 412
MS-PatchMatch70.93 32070.22 32373.06 32681.85 32362.50 26073.82 34577.90 31452.44 37075.92 33781.27 35155.67 32281.75 33455.37 34377.70 39374.94 394
mvsany_test365.48 36062.97 36973.03 32769.99 40976.17 12164.83 38943.71 42043.68 40280.25 29987.05 27952.83 33363.09 40751.92 36872.44 40279.84 385
testing9169.94 33168.99 33672.80 32883.81 29945.89 39071.57 36073.64 35068.24 24470.77 37277.82 37834.37 40184.44 31653.64 35487.00 32488.07 282
pmmvs570.73 32170.07 32472.72 32977.03 37052.73 35674.14 33975.65 33450.36 38672.17 36385.37 30555.42 32480.67 34152.86 36187.59 31584.77 322
testing9969.27 33768.15 34472.63 33083.29 30845.45 39271.15 36271.08 36867.34 25570.43 37377.77 38032.24 40684.35 31853.72 35386.33 33288.10 281
our_test_371.85 30971.59 30972.62 33180.71 34053.78 34869.72 37371.71 36658.80 33078.03 31680.51 35956.61 31678.84 35462.20 30086.04 33685.23 317
ADS-MVSNet265.87 35863.64 36672.55 33273.16 39856.92 32567.10 38474.81 33749.74 38766.04 39282.97 33246.71 35677.26 36042.29 39869.96 40783.46 343
test_fmvs1_n70.94 31970.41 32272.53 33373.92 39266.93 21375.99 32384.21 27543.31 40479.40 30579.39 36843.47 38168.55 38869.05 24184.91 35082.10 363
baseline173.26 29773.54 28872.43 33484.92 27747.79 38279.89 26074.00 34365.93 26478.81 31286.28 29056.36 31781.63 33656.63 33379.04 38987.87 290
MVStest170.05 32869.26 33172.41 33558.62 42255.59 33576.61 31365.58 39153.44 36389.28 12093.32 12022.91 42271.44 37874.08 18689.52 28690.21 250
PatchmatchNetpermissive69.71 33368.83 33872.33 33677.66 36453.60 34979.29 26969.99 37357.66 33972.53 36182.93 33446.45 35880.08 34760.91 31272.09 40383.31 348
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs70.16 32569.56 33071.96 33774.71 39148.13 37979.63 26275.45 33665.02 28070.26 37481.88 34645.34 37285.68 30458.34 32575.39 39982.08 364
testing22266.93 34865.30 36071.81 33883.38 30545.83 39172.06 35667.50 38264.12 28469.68 37776.37 39227.34 41783.00 32738.88 40588.38 30186.62 303
testing1167.38 34665.93 35471.73 33983.37 30646.60 38770.95 36569.40 37662.47 29466.14 39076.66 38931.22 40784.10 32049.10 37884.10 35984.49 325
tpm cat166.76 35365.21 36171.42 34077.09 36950.62 37378.01 28773.68 34944.89 39868.64 38179.00 37145.51 36982.42 33249.91 37370.15 40681.23 375
test20.0373.75 29474.59 27971.22 34181.11 33351.12 37070.15 37172.10 36170.42 22080.28 29891.50 17864.21 26674.72 37046.96 38994.58 18087.82 291
test_vis1_n70.29 32369.99 32771.20 34275.97 38166.50 21776.69 31080.81 30144.22 40075.43 34277.23 38550.00 34768.59 38766.71 26182.85 36978.52 388
test_fmvs169.57 33469.05 33471.14 34369.15 41165.77 22573.98 34283.32 27942.83 40677.77 32278.27 37743.39 38468.50 38968.39 25184.38 35779.15 386
test_vis1_n_192071.30 31771.58 31170.47 34477.58 36559.99 29374.25 33884.22 27451.06 37974.85 34979.10 37055.10 32668.83 38668.86 24479.20 38882.58 356
test_vis1_rt65.64 35964.09 36370.31 34566.09 41670.20 18061.16 39881.60 29538.65 41272.87 35969.66 40552.84 33260.04 40956.16 33677.77 39280.68 380
KD-MVS_2432*160066.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
miper_refine_blended66.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
Anonymous2023120671.38 31671.88 30769.88 34886.31 25254.37 34370.39 36974.62 33852.57 36976.73 32788.76 24459.94 29272.06 37344.35 39693.23 21583.23 349
pmmvs362.47 36760.02 38069.80 34971.58 40664.00 24070.52 36858.44 41139.77 41066.05 39175.84 39327.10 41972.28 37246.15 39184.77 35573.11 396
WBMVS68.76 34168.43 34169.75 35083.29 30840.30 40767.36 38372.21 36057.09 34577.05 32685.53 29933.68 40380.51 34348.79 38090.90 26388.45 278
UnsupCasMVSNet_eth71.63 31372.30 30569.62 35176.47 37652.70 35770.03 37280.97 30059.18 32779.36 30688.21 25360.50 28669.12 38458.33 32677.62 39487.04 298
MIMVSNet71.09 31871.59 30969.57 35287.23 22950.07 37578.91 27671.83 36360.20 32471.26 36691.76 17255.08 32776.09 36341.06 40187.02 32382.54 358
test_cas_vis1_n_192069.20 33969.12 33269.43 35373.68 39562.82 25470.38 37077.21 32146.18 39480.46 29578.95 37252.03 33665.53 40165.77 27277.45 39679.95 384
XXY-MVS74.44 28976.19 26469.21 35484.61 28352.43 35971.70 35877.18 32260.73 31880.60 29090.96 19675.44 17969.35 38356.13 33788.33 30285.86 311
UWE-MVS66.43 35465.56 35969.05 35584.15 29340.98 40573.06 35264.71 39554.84 35676.18 33479.62 36729.21 41180.50 34438.54 40889.75 28385.66 313
YYNet170.06 32770.44 32068.90 35673.76 39453.42 35258.99 40467.20 38558.42 33287.10 16385.39 30459.82 29467.32 39359.79 31883.50 36385.96 308
MDA-MVSNet_test_wron70.05 32870.44 32068.88 35773.84 39353.47 35058.93 40567.28 38458.43 33187.09 16485.40 30359.80 29567.25 39459.66 31983.54 36285.92 310
PVSNet58.17 2166.41 35565.63 35868.75 35881.96 32149.88 37662.19 39772.51 35751.03 38068.04 38475.34 39650.84 34274.77 36845.82 39382.96 36581.60 368
ETVMVS64.67 36263.34 36868.64 35983.44 30441.89 40369.56 37461.70 40461.33 31068.74 38075.76 39428.76 41279.35 34934.65 41286.16 33584.67 324
test-LLR67.21 34766.74 35168.63 36076.45 37755.21 33867.89 37867.14 38662.43 29765.08 39872.39 40043.41 38269.37 38161.00 31084.89 35181.31 371
test-mter65.00 36163.79 36568.63 36076.45 37755.21 33867.89 37867.14 38650.98 38165.08 39872.39 40028.27 41469.37 38161.00 31084.89 35181.31 371
gg-mvs-nofinetune68.96 34069.11 33368.52 36276.12 38045.32 39383.59 19055.88 41386.68 2964.62 40297.01 930.36 40983.97 32344.78 39582.94 36676.26 391
WB-MVSnew68.72 34269.01 33567.85 36383.22 31243.98 39874.93 33465.98 39055.09 35373.83 35479.11 36965.63 26071.89 37538.21 40985.04 34687.69 292
UnsupCasMVSNet_bld69.21 33869.68 32967.82 36479.42 35251.15 36967.82 38175.79 33154.15 36077.47 32585.36 30659.26 29870.64 37948.46 38279.35 38581.66 367
tpm67.95 34468.08 34567.55 36578.74 36043.53 40075.60 32667.10 38854.92 35572.23 36288.10 25442.87 38675.97 36452.21 36380.95 38183.15 350
Syy-MVS69.40 33670.03 32667.49 36681.72 32438.94 40971.00 36361.99 39961.38 30870.81 37072.36 40261.37 28379.30 35064.50 28685.18 34384.22 331
UBG64.34 36563.35 36767.30 36783.50 30140.53 40667.46 38265.02 39454.77 35767.54 38874.47 39832.99 40578.50 35640.82 40283.58 36182.88 353
GG-mvs-BLEND67.16 36873.36 39646.54 38984.15 17355.04 41458.64 41261.95 41329.93 41083.87 32438.71 40776.92 39771.07 399
myMVS_eth3d64.66 36363.89 36466.97 36981.72 32437.39 41271.00 36361.99 39961.38 30870.81 37072.36 40220.96 42379.30 35049.59 37585.18 34384.22 331
CHOSEN 280x42059.08 37856.52 38366.76 37076.51 37564.39 23649.62 41259.00 40943.86 40155.66 41668.41 40835.55 40068.21 39243.25 39776.78 39867.69 404
WTY-MVS67.91 34568.35 34266.58 37180.82 33848.12 38065.96 38872.60 35553.67 36271.20 36781.68 34958.97 30069.06 38548.57 38181.67 37482.55 357
dmvs_re66.81 35266.98 34866.28 37276.87 37158.68 31171.66 35972.24 35860.29 32269.52 37973.53 39952.38 33564.40 40444.90 39481.44 37775.76 392
sss66.92 34967.26 34765.90 37377.23 36751.10 37164.79 39071.72 36552.12 37470.13 37580.18 36157.96 30765.36 40250.21 37181.01 38081.25 373
testgi72.36 30574.61 27765.59 37480.56 34242.82 40268.29 37773.35 35166.87 25981.84 27189.93 22772.08 22666.92 39646.05 39292.54 22887.01 299
test0.0.03 164.66 36364.36 36265.57 37575.03 38946.89 38664.69 39161.58 40562.43 29771.18 36877.54 38143.41 38268.47 39040.75 40382.65 37081.35 370
PMMVS61.65 37060.38 37765.47 37665.40 41969.26 18963.97 39361.73 40336.80 41660.11 40868.43 40759.42 29666.35 39848.97 37978.57 39060.81 409
SSC-MVS77.55 25181.64 19265.29 37790.46 15720.33 42373.56 34668.28 38085.44 3788.18 14494.64 6470.93 23381.33 33771.25 21592.03 23994.20 92
tpmrst66.28 35666.69 35265.05 37872.82 40239.33 40878.20 28670.69 37153.16 36667.88 38580.36 36048.18 35274.75 36958.13 32770.79 40581.08 376
mvsany_test158.48 37956.47 38464.50 37965.90 41868.21 20056.95 40842.11 42138.30 41365.69 39477.19 38756.96 31459.35 41146.16 39058.96 41465.93 405
WB-MVS76.06 27080.01 22664.19 38089.96 17020.58 42272.18 35568.19 38183.21 5986.46 18493.49 11770.19 23778.97 35365.96 26690.46 27693.02 149
TESTMET0.1,161.29 37260.32 37864.19 38072.06 40451.30 36767.89 37862.09 39845.27 39660.65 40769.01 40627.93 41564.74 40356.31 33581.65 37676.53 390
PatchT70.52 32272.76 29963.79 38279.38 35333.53 41677.63 29465.37 39373.61 17271.77 36492.79 14144.38 37975.65 36664.53 28585.37 34082.18 362
wuyk23d75.13 27879.30 23162.63 38375.56 38375.18 12680.89 24973.10 35475.06 15794.76 1695.32 4187.73 4352.85 41434.16 41397.11 8259.85 410
EPMVS62.47 36762.63 37162.01 38470.63 40838.74 41074.76 33552.86 41553.91 36167.71 38780.01 36239.40 39166.60 39755.54 34268.81 41180.68 380
EMVS61.10 37460.81 37661.99 38565.96 41755.86 33253.10 41158.97 41067.06 25756.89 41563.33 41140.98 38867.03 39554.79 34886.18 33463.08 407
dp60.70 37660.29 37961.92 38672.04 40538.67 41170.83 36664.08 39651.28 37860.75 40677.28 38436.59 39971.58 37747.41 38662.34 41375.52 393
E-PMN61.59 37161.62 37461.49 38766.81 41455.40 33653.77 41060.34 40766.80 26058.90 41165.50 41040.48 39066.12 39955.72 33986.25 33362.95 408
Patchmatch-test65.91 35767.38 34661.48 38875.51 38443.21 40168.84 37563.79 39762.48 29372.80 36083.42 32944.89 37759.52 41048.27 38486.45 32981.70 366
ADS-MVSNet61.90 36962.19 37361.03 38973.16 39836.42 41467.10 38461.75 40249.74 38766.04 39282.97 33246.71 35663.21 40542.29 39869.96 40783.46 343
new-patchmatchnet70.10 32673.37 29160.29 39081.23 33216.95 42559.54 40174.62 33862.93 28980.97 28487.93 25862.83 27971.90 37455.24 34595.01 16592.00 197
test_f64.31 36665.85 35559.67 39166.54 41562.24 26857.76 40770.96 36940.13 40984.36 22382.09 34346.93 35551.67 41561.99 30381.89 37365.12 406
PVSNet_051.08 2256.10 38054.97 38559.48 39275.12 38853.28 35355.16 40961.89 40144.30 39959.16 40962.48 41254.22 32865.91 40035.40 41147.01 41559.25 411
DSMNet-mixed60.98 37561.61 37559.09 39372.88 40145.05 39574.70 33646.61 41926.20 41765.34 39690.32 21855.46 32363.12 40641.72 40081.30 37969.09 402
MVS-HIRNet61.16 37362.92 37055.87 39479.09 35635.34 41571.83 35757.98 41246.56 39259.05 41091.14 18849.95 34876.43 36238.74 40671.92 40455.84 413
MVEpermissive40.22 2351.82 38350.47 38655.87 39462.66 42151.91 36231.61 41539.28 42240.65 40850.76 41774.98 39756.24 31944.67 41833.94 41464.11 41271.04 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 37762.54 37254.72 39677.26 36627.74 41974.05 34161.00 40660.48 32065.62 39567.03 40955.93 32068.23 39132.07 41669.46 41068.17 403
new_pmnet55.69 38157.66 38249.76 39775.47 38530.59 41759.56 40051.45 41643.62 40362.49 40475.48 39540.96 38949.15 41737.39 41072.52 40169.55 401
PMMVS255.64 38259.27 38144.74 39864.30 42012.32 42640.60 41349.79 41753.19 36565.06 40084.81 31353.60 33149.76 41632.68 41589.41 28772.15 397
dongtai41.90 38442.65 38739.67 39970.86 40721.11 42161.01 39921.42 42657.36 34257.97 41450.06 41516.40 42558.73 41221.03 41927.69 41939.17 415
test_method30.46 38629.60 38933.06 40017.99 4253.84 42813.62 41673.92 3442.79 41918.29 42153.41 41428.53 41343.25 41922.56 41735.27 41752.11 414
kuosan30.83 38532.17 38826.83 40153.36 42319.02 42457.90 40620.44 42738.29 41438.01 41837.82 41715.18 42633.45 4207.74 42120.76 42028.03 416
DeepMVS_CXcopyleft24.13 40232.95 42429.49 41821.63 42512.07 41837.95 41945.07 41630.84 40819.21 42117.94 42033.06 41823.69 417
tmp_tt20.25 38824.50 3917.49 4034.47 4268.70 42734.17 41425.16 4241.00 42132.43 42018.49 41839.37 3929.21 42221.64 41843.75 4164.57 418
test1236.27 3918.08 3940.84 4041.11 4280.57 42962.90 3940.82 4280.54 4221.07 4242.75 4231.26 4270.30 4231.04 4221.26 4221.66 419
testmvs5.91 3927.65 3950.72 4051.20 4270.37 43059.14 4020.67 4290.49 4231.11 4232.76 4220.94 4280.24 4241.02 4231.47 4211.55 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k20.81 38727.75 3900.00 4060.00 4290.00 4310.00 41785.44 2520.00 4240.00 42582.82 33681.46 1180.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.41 3908.55 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42476.94 1660.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re6.65 3898.87 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42579.80 3640.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS37.39 41252.61 362
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
PC_three_145258.96 32990.06 9791.33 18280.66 12893.03 14175.78 16795.94 12892.48 171
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 429
eth-test0.00 429
ZD-MVS92.22 10380.48 7191.85 12171.22 21390.38 9292.98 13186.06 6496.11 781.99 9496.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 158
IU-MVS94.18 5072.64 14790.82 15156.98 34689.67 10985.78 5297.92 4993.28 137
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 195
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15691.07 8192.89 13687.27 4793.78 10883.69 7297.55 69
save fliter93.75 6377.44 10386.31 13589.72 18570.80 217
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 152
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 335
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 335
sam_mvs45.92 365
MTGPAbinary91.81 125
test_post178.85 2793.13 42045.19 37480.13 34658.11 328
test_post3.10 42145.43 37077.22 361
patchmatchnet-post81.71 34845.93 36487.01 274
MTMP90.66 4833.14 423
gm-plane-assit75.42 38644.97 39652.17 37172.36 40287.90 26454.10 351
test9_res80.83 10496.45 10390.57 238
TEST992.34 9879.70 7883.94 17890.32 16765.41 27684.49 21990.97 19482.03 10993.63 113
test_892.09 10778.87 8583.82 18390.31 16965.79 26784.36 22390.96 19681.93 11193.44 126
agg_prior279.68 11796.16 11590.22 246
agg_prior91.58 12777.69 10090.30 17084.32 22593.18 134
test_prior478.97 8484.59 164
test_prior283.37 19575.43 15284.58 21791.57 17681.92 11379.54 11996.97 85
旧先验281.73 23756.88 34786.54 18284.90 31172.81 207
新几何281.72 238
旧先验191.97 11171.77 16381.78 29391.84 16773.92 19993.65 20683.61 341
无先验82.81 21385.62 25058.09 33591.41 18567.95 25584.48 326
原ACMM282.26 231
test22293.31 7376.54 11379.38 26877.79 31552.59 36882.36 26290.84 20366.83 25491.69 24681.25 373
testdata286.43 28863.52 292
segment_acmp81.94 110
testdata179.62 26373.95 167
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10595.83 13494.46 80
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 430
nn0.00 430
door-mid74.45 341
test1191.46 131
door72.57 356
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15873.30 18180.55 292
ACMP_Plane91.19 13984.77 15873.30 18180.55 292
BP-MVS77.30 150
HQP4-MVS80.56 29194.61 7993.56 129
HQP3-MVS92.68 9794.47 182
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 224
MDTV_nov1_ep13_2view27.60 42070.76 36746.47 39361.27 40545.20 37349.18 37783.75 340
MDTV_nov1_ep1368.29 34378.03 36143.87 39974.12 34072.22 35952.17 37167.02 38985.54 29845.36 37180.85 34055.73 33884.42 356
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140