This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6474.51 4696.15 292.88 7
Effi-MVS+-dtu75.43 8972.28 14084.91 277.05 17683.58 178.47 9277.70 17257.68 14674.89 18178.13 26364.80 12684.26 7256.46 18185.32 20286.88 62
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4778.11 2394.46 3684.89 92
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5679.45 1294.91 2488.15 47
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8581.05 10488.38 11157.10 19687.10 779.75 783.87 22184.31 118
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6179.30 1694.63 3382.35 166
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11090.18 7459.80 16987.58 473.06 5591.34 9489.01 34
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 101
X-MVStestdata76.81 7774.79 9982.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 37473.86 5286.31 1878.84 1994.03 5384.64 101
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 121
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4166.91 9895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 125
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 126
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 11984.05 6756.66 15980.27 11485.31 17168.56 8987.03 967.39 9391.26 9583.50 133
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4079.37 1595.17 1684.62 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3377.77 2693.58 6183.09 147
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6578.41 2194.78 2782.74 159
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11281.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11484.80 3287.77 986.18 196.26 196.06 190.32 184.49 6768.08 8397.05 196.93 1
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12680.91 10790.53 5372.19 6088.56 173.67 5294.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3379.58 1094.23 5182.82 156
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 106
LS3D80.99 4180.85 4981.41 2578.37 16171.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8585.26 5266.15 9991.24 9687.61 52
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 83
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 120
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6877.73 2794.34 4785.93 74
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10881.77 9486.65 14171.46 6683.53 8167.95 8792.44 7689.60 24
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12272.08 3684.93 5690.79 4574.65 4684.42 7080.98 494.75 2880.82 192
anonymousdsp78.60 6177.80 7281.00 3178.01 16774.34 3380.09 7576.12 18750.51 23489.19 1090.88 4271.45 6777.78 18773.38 5390.60 11990.90 18
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10688.52 10772.00 6382.39 9874.80 4293.04 6881.14 182
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19252.27 21087.37 2692.25 1668.04 9680.56 13272.28 6291.15 9990.32 22
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9884.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6286.70 3089.99 7681.64 685.95 3274.35 4796.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ITE_SJBPF80.35 3876.94 18173.60 3880.48 12566.87 6183.64 7486.18 15570.25 7779.90 14561.12 14388.95 15387.56 53
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13364.71 8778.11 13588.39 11065.46 12083.14 8777.64 2991.20 9778.94 222
RPSCF75.76 8474.37 10479.93 4074.81 20977.53 1677.53 10379.30 14659.44 13078.88 12589.80 8071.26 6973.09 23357.45 17280.89 25389.17 31
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10485.38 5291.26 3376.33 3084.67 6683.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10451.71 21877.15 14691.42 3265.49 11987.20 579.44 1387.17 18184.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18551.98 21587.40 2391.86 2176.09 3378.53 16568.58 7890.20 12386.69 66
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7783.75 7056.73 15874.88 18285.32 17065.54 11887.79 265.61 10491.14 10083.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12680.58 6582.12 9153.54 20183.93 7091.03 3749.49 23485.97 3173.26 5493.08 6791.59 12
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 12883.29 4880.34 13157.43 15186.65 3191.79 2350.52 22886.01 2971.36 6594.65 3291.62 11
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18751.33 22487.19 2791.51 2973.79 5478.44 16968.27 8190.13 12786.49 68
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8683.97 6991.02 3875.53 3985.93 3582.00 294.36 4583.35 142
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13675.34 1579.80 11794.91 269.79 8280.25 13972.63 5894.46 3688.78 42
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 5992.95 6981.14 182
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
F-COLMAP75.29 9073.99 11079.18 5181.73 12171.90 4681.86 5882.98 7959.86 12772.27 21884.00 18564.56 12883.07 9051.48 21987.19 18082.56 163
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 137
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8284.00 6965.64 7085.54 4989.28 8776.32 3183.47 8274.03 4993.57 6284.35 117
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
No_MVS79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6585.64 4589.57 8369.12 8680.55 13472.51 6093.37 6383.48 136
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4594.02 5582.62 161
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 7980.99 11565.77 6975.55 17486.25 15467.42 9985.42 4870.10 7190.88 11281.81 175
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 9982.74 5185.49 2965.45 7378.23 13289.11 9460.83 15986.15 2671.09 6690.94 10684.82 96
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10880.24 7382.06 9261.89 11288.77 1293.32 457.15 19482.60 9670.08 7292.80 7189.25 28
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 15966.82 10586.01 2961.72 13689.79 13583.08 148
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12184.95 4366.89 6082.75 8588.99 9866.82 10578.37 17374.80 4290.76 11782.40 165
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 10985.39 3466.73 6380.39 11388.85 10174.43 5078.33 17574.73 4485.79 19582.35 166
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6687.45 2289.16 9381.02 880.52 13574.27 4895.73 780.98 188
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest77.66 7077.43 7578.35 6579.19 14970.81 5578.60 9088.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
TestCases78.35 6579.19 14970.81 5588.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9881.50 10063.92 9277.51 14386.56 14568.43 9284.82 6373.83 5091.61 8882.26 169
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 10976.07 12583.45 7454.20 18977.68 14287.18 12269.98 7985.37 4968.01 8592.72 7485.08 89
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9179.59 14253.48 20286.29 3692.43 1562.39 14180.25 13967.90 8890.61 11887.77 49
CS-MVS76.51 7976.00 8978.06 7077.02 17864.77 10480.78 6382.66 8560.39 12274.15 19383.30 19869.65 8382.07 10569.27 7686.75 18687.36 55
TAPA-MVS65.27 1275.16 9374.29 10677.77 7174.86 20868.08 7777.89 9984.04 6855.15 17276.19 17083.39 19266.91 10380.11 14360.04 15590.14 12685.13 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.73.08 12071.60 15077.54 7278.99 15670.73 5774.96 13469.38 24860.73 12074.39 19178.44 25757.72 19182.78 9360.16 15289.60 13779.11 221
h-mvs3373.08 12071.61 14977.48 7383.89 8972.89 4470.47 18871.12 23754.28 18577.89 13683.41 19149.04 23880.98 12563.62 12290.77 11678.58 226
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10783.41 4688.46 565.28 7884.29 6589.18 9173.73 5583.22 8676.01 3693.77 5884.81 98
PMVScopyleft70.70 681.70 3283.15 3177.36 7590.35 582.82 282.15 5479.22 14774.08 2087.16 2891.97 1984.80 276.97 19464.98 10893.61 6072.28 281
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH+66.64 1081.20 3682.48 3977.35 7681.16 12962.39 11980.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9764.82 10996.10 487.21 57
hse-mvs272.32 13870.66 16177.31 7783.10 10171.77 4769.19 20371.45 22854.28 18577.89 13678.26 25949.04 23879.23 15363.62 12289.13 15080.92 189
AUN-MVS70.22 15767.88 19277.22 7882.96 10571.61 4869.08 20471.39 22949.17 24771.70 22478.07 26437.62 30479.21 15461.81 13389.15 14880.82 192
CS-MVS-test74.89 10174.23 10776.86 7977.01 17962.94 11778.98 8684.61 5558.62 13870.17 24580.80 22466.74 10881.96 10661.74 13589.40 14485.69 81
DVP-MVS++81.24 3582.74 3776.76 8083.14 9660.90 13591.64 185.49 2974.03 2184.93 5690.38 6466.82 10585.90 3677.43 3090.78 11483.49 134
SED-MVS81.78 3183.48 2476.67 8186.12 5361.06 13183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3875.29 4094.39 4183.08 148
PHI-MVS74.92 9874.36 10576.61 8276.40 18862.32 12080.38 6983.15 7754.16 19173.23 20780.75 22562.19 14483.86 7468.02 8490.92 10983.65 132
test_0728_SECOND76.57 8386.20 4860.57 14083.77 4085.49 2985.90 3675.86 3794.39 4183.25 144
test1276.51 8482.28 11460.94 13481.64 9973.60 20064.88 12585.19 5790.42 12183.38 140
CANet73.00 12571.84 14476.48 8575.82 19761.28 12974.81 13780.37 12963.17 10462.43 30480.50 22961.10 15785.16 5864.00 11684.34 21783.01 151
SD-MVS80.28 4981.55 4776.47 8683.57 9067.83 8083.39 4785.35 3564.42 8886.14 3987.07 12674.02 5180.97 12677.70 2892.32 8080.62 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft62.01 1671.79 14370.28 16376.33 8780.31 13668.63 7578.18 9781.24 10754.57 18267.09 27580.63 22759.44 17081.74 11146.91 25984.17 21878.63 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n79.37 5680.41 5276.28 8878.67 16055.81 17079.22 8482.51 8870.72 4387.54 2192.44 1468.00 9781.34 11472.84 5691.72 8491.69 10
DP-MVS Recon73.57 11172.69 13476.23 8982.85 10663.39 11274.32 14682.96 8057.75 14570.35 24281.98 21264.34 13084.41 7149.69 23389.95 13080.89 190
DROMVSNet77.08 7677.39 7676.14 9076.86 18556.87 16480.32 7287.52 1163.45 10074.66 18784.52 17869.87 8184.94 5969.76 7489.59 13886.60 67
HQP-MVS75.24 9275.01 9875.94 9182.37 11158.80 15477.32 10584.12 6559.08 13171.58 22685.96 16458.09 18485.30 5167.38 9489.16 14683.73 131
DP-MVS78.44 6679.29 6075.90 9281.86 12065.33 9779.05 8584.63 5474.83 1880.41 11286.27 15271.68 6483.45 8362.45 13292.40 7778.92 223
train_agg76.38 8076.55 8375.86 9385.47 6369.32 7076.42 11778.69 15654.00 19476.97 14886.74 13566.60 10981.10 12072.50 6191.56 9077.15 242
Vis-MVSNetpermissive74.85 10374.56 10175.72 9481.63 12364.64 10576.35 11979.06 14962.85 10673.33 20588.41 10962.54 13979.59 15063.94 11982.92 23082.94 152
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS63.80 1372.70 13371.69 14675.72 9478.10 16460.01 14473.04 15381.50 10045.34 27479.66 11884.35 18165.15 12382.65 9548.70 24289.38 14584.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EGC-MVSNET64.77 22061.17 25175.60 9686.90 4274.47 3084.04 3568.62 2530.60 3761.13 37891.61 2865.32 12274.15 22864.01 11588.28 15878.17 232
EI-MVSNet-Vis-set72.78 13171.87 14375.54 9774.77 21059.02 15272.24 15771.56 22563.92 9278.59 12771.59 31366.22 11378.60 16467.58 8980.32 25989.00 35
EI-MVSNet-UG-set72.63 13471.68 14775.47 9874.67 21258.64 15772.02 16171.50 22663.53 9878.58 12971.39 31665.98 11478.53 16567.30 9680.18 26189.23 29
EPP-MVSNet73.86 10873.38 12075.31 9978.19 16353.35 18780.45 6777.32 17765.11 8176.47 16586.80 13149.47 23583.77 7553.89 20692.72 7488.81 41
test_prior75.27 10082.15 11659.85 14584.33 5983.39 8482.58 162
DVP-MVScopyleft81.15 3783.12 3275.24 10186.16 5160.78 13783.77 4080.58 12472.48 3285.83 4390.41 5978.57 1785.69 4375.86 3794.39 4179.24 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
CNLPA73.44 11273.03 12974.66 10278.27 16275.29 2675.99 12678.49 16065.39 7575.67 17283.22 20261.23 15566.77 29153.70 20885.33 20181.92 174
tttt051769.46 16867.79 19374.46 10375.34 20052.72 18975.05 13363.27 28854.69 17978.87 12684.37 18026.63 35681.15 11863.95 11787.93 16689.51 25
EPNet69.10 17467.32 19874.46 10368.33 27961.27 13077.56 10163.57 28660.95 11856.62 33282.75 20551.53 22381.24 11754.36 20290.20 12380.88 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS72.88 12972.36 13974.43 10577.03 17754.30 17968.77 21183.43 7552.12 21276.79 15774.44 29169.54 8483.91 7355.88 18693.25 6685.09 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
WR-MVS_H80.22 5082.17 4174.39 10689.46 1442.69 28078.24 9582.24 8978.21 989.57 992.10 1868.05 9585.59 4666.04 10195.62 994.88 5
ETV-MVS72.72 13272.16 14274.38 10776.90 18355.95 16773.34 15284.67 5162.04 11172.19 22170.81 31765.90 11685.24 5458.64 16584.96 20981.95 173
test_040278.17 6979.48 5974.24 10883.50 9159.15 15172.52 15574.60 20175.34 1588.69 1391.81 2275.06 4282.37 9965.10 10688.68 15581.20 180
v1075.69 8576.20 8774.16 10974.44 21848.69 22175.84 12982.93 8159.02 13585.92 4189.17 9258.56 17982.74 9470.73 6889.14 14991.05 15
IS-MVSNet75.10 9475.42 9674.15 11079.23 14748.05 23179.43 8078.04 16870.09 4879.17 12388.02 11953.04 21483.60 7958.05 17093.76 5990.79 19
SixPastTwentyTwo75.77 8376.34 8574.06 11181.69 12254.84 17576.47 11475.49 19464.10 9187.73 1792.24 1750.45 23081.30 11667.41 9191.46 9286.04 73
APD_test175.04 9675.38 9774.02 11269.89 26670.15 6276.46 11579.71 13865.50 7282.99 8088.60 10666.94 10272.35 24459.77 15888.54 15679.56 213
原ACMM173.90 11385.90 5765.15 10181.67 9850.97 22874.25 19286.16 15761.60 14983.54 8056.75 17691.08 10473.00 272
K. test v373.67 10973.61 11773.87 11479.78 13855.62 17374.69 14362.04 29666.16 6884.76 6093.23 549.47 23580.97 12665.66 10386.67 18785.02 91
Fast-Effi-MVS+-dtu70.00 16068.74 18073.77 11573.47 23064.53 10671.36 17578.14 16755.81 16768.84 26274.71 28865.36 12175.75 20652.00 21679.00 27281.03 185
iter_conf_final68.69 18067.00 20473.76 11673.68 22852.33 19275.96 12773.54 20650.56 23369.90 24882.85 20324.76 36583.73 7665.40 10586.33 19085.22 84
UGNet70.20 15869.05 17373.65 11776.24 19063.64 11075.87 12872.53 21761.48 11460.93 31486.14 15852.37 21777.12 19350.67 22685.21 20380.17 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t73.40 11473.33 12373.64 11884.15 8657.11 16278.20 9680.02 13543.76 28472.55 21586.07 16264.00 13183.35 8560.14 15391.03 10580.45 202
MCST-MVS73.42 11373.34 12273.63 11981.28 12759.17 15074.80 13983.13 7845.50 27072.84 21183.78 18865.15 12380.99 12464.54 11089.09 15180.73 196
UniMVSNet (Re)75.00 9775.48 9573.56 12083.14 9647.92 23370.41 19081.04 11463.67 9679.54 11986.37 15062.83 13581.82 10857.10 17595.25 1490.94 17
PVSNet_Blended_VisFu70.04 15968.88 17673.53 12182.71 10863.62 11174.81 13781.95 9548.53 25267.16 27479.18 24951.42 22478.38 17254.39 20179.72 26878.60 225
v875.07 9575.64 9373.35 12273.42 23147.46 24075.20 13281.45 10260.05 12485.64 4589.26 8858.08 18681.80 10969.71 7587.97 16590.79 19
CSCG74.12 10674.39 10373.33 12379.35 14461.66 12577.45 10481.98 9462.47 11079.06 12480.19 23461.83 14678.79 16259.83 15787.35 17479.54 216
v119273.40 11473.42 11873.32 12474.65 21548.67 22272.21 15881.73 9752.76 20781.85 9284.56 17757.12 19582.24 10368.58 7887.33 17589.06 33
AdaColmapbinary74.22 10574.56 10173.20 12581.95 11860.97 13379.43 8080.90 11665.57 7172.54 21681.76 21670.98 7385.26 5247.88 25290.00 12873.37 269
PAPM_NR73.91 10774.16 10873.16 12681.90 11953.50 18581.28 6081.40 10366.17 6773.30 20683.31 19759.96 16583.10 8958.45 16781.66 24882.87 154
PEN-MVS80.46 4682.91 3473.11 12789.83 839.02 30677.06 11182.61 8680.04 490.60 692.85 974.93 4485.21 5563.15 12895.15 1795.09 2
bld_raw_dy_0_6472.85 13072.76 13373.09 12885.08 7064.80 10378.72 8864.22 28251.92 21683.13 7790.26 7039.21 29469.91 26770.73 6891.60 8984.56 108
PS-CasMVS80.41 4782.86 3673.07 12989.93 639.21 30377.15 10981.28 10679.74 590.87 492.73 1175.03 4384.93 6063.83 12095.19 1595.07 3
v114473.29 11773.39 11973.01 13074.12 22348.11 22972.01 16281.08 11353.83 19881.77 9484.68 17558.07 18781.91 10768.10 8286.86 18388.99 36
MVS_111021_HR72.98 12772.97 13172.99 13180.82 13065.47 9668.81 20872.77 21457.67 14775.76 17182.38 20971.01 7277.17 19261.38 13886.15 19176.32 246
CP-MVSNet79.48 5481.65 4572.98 13289.66 1239.06 30576.76 11280.46 12678.91 790.32 791.70 2568.49 9084.89 6163.40 12595.12 1895.01 4
testf175.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
APD_test275.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
MVS_111021_LR72.10 14071.82 14572.95 13379.53 14273.90 3670.45 18966.64 26156.87 15576.81 15681.76 21668.78 8771.76 25261.81 13383.74 22373.18 271
DU-MVS74.91 9975.57 9472.93 13683.50 9145.79 25469.47 19880.14 13465.22 7981.74 9687.08 12461.82 14781.07 12256.21 18394.98 2091.93 8
EIA-MVS68.59 18267.16 20072.90 13775.18 20355.64 17269.39 19981.29 10552.44 20964.53 28770.69 31860.33 16282.30 10154.27 20376.31 28980.75 195
v192192072.96 12872.98 13072.89 13874.67 21247.58 23871.92 16780.69 11951.70 21981.69 9883.89 18656.58 20182.25 10268.34 8087.36 17388.82 40
v124073.06 12273.14 12572.84 13974.74 21147.27 24371.88 16981.11 11051.80 21782.28 8984.21 18256.22 20382.34 10068.82 7787.17 18188.91 38
v14419272.99 12673.06 12872.77 14074.58 21647.48 23971.90 16880.44 12751.57 22081.46 10084.11 18458.04 18882.12 10467.98 8687.47 17188.70 43
lessismore_v072.75 14179.60 14156.83 16557.37 31183.80 7289.01 9747.45 24978.74 16364.39 11286.49 18982.69 160
DTE-MVSNet80.35 4882.89 3572.74 14289.84 737.34 32177.16 10881.81 9680.45 390.92 392.95 774.57 4786.12 2863.65 12194.68 3194.76 6
thisisatest053067.05 20465.16 21672.73 14373.10 23950.55 20171.26 17963.91 28450.22 23774.46 19080.75 22526.81 35580.25 13959.43 16186.50 18887.37 54
IterMVS-LS73.01 12473.12 12772.66 14473.79 22749.90 21171.63 17178.44 16158.22 14080.51 11186.63 14258.15 18379.62 14862.51 13088.20 15988.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet74.90 10075.65 9272.64 14583.04 10245.79 25469.26 20178.81 15366.66 6481.74 9686.88 13063.26 13381.07 12256.21 18394.98 2091.05 15
MVSFormer69.93 16269.03 17472.63 14674.93 20559.19 14883.98 3675.72 19252.27 21063.53 30076.74 27443.19 26980.56 13272.28 6278.67 27678.14 233
casdiffmvs_mvgpermissive75.26 9176.18 8872.52 14772.87 24349.47 21672.94 15484.71 5059.49 12980.90 10888.81 10270.07 7879.71 14767.40 9288.39 15788.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf0567.34 20065.62 21272.50 14869.82 26747.06 24572.19 15976.86 18145.32 27572.86 21082.85 20320.53 37283.73 7661.13 14289.02 15286.70 65
IterMVS-SCA-FT67.68 19566.07 21072.49 14973.34 23358.20 15963.80 27565.55 27048.10 25476.91 15182.64 20645.20 25678.84 16061.20 14077.89 28480.44 203
v2v48272.55 13772.58 13672.43 15072.92 24246.72 24771.41 17479.13 14855.27 17081.17 10385.25 17255.41 20581.13 11967.25 9785.46 19789.43 26
MAR-MVS67.72 19466.16 20972.40 15174.45 21764.99 10274.87 13577.50 17548.67 25165.78 28168.58 33857.01 19877.79 18646.68 26281.92 23974.42 262
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator65.95 1171.50 14571.22 15572.34 15273.16 23563.09 11578.37 9378.32 16257.67 14772.22 22084.61 17654.77 20678.47 16760.82 14681.07 25275.45 252
NR-MVSNet73.62 11074.05 10972.33 15383.50 9143.71 26965.65 25477.32 17764.32 8975.59 17387.08 12462.45 14081.34 11454.90 19495.63 891.93 8
FE-MVS68.29 18766.96 20572.26 15474.16 22254.24 18077.55 10273.42 20857.65 14972.66 21384.91 17432.02 32981.49 11348.43 24681.85 24181.04 184
DPM-MVS69.98 16169.22 17272.26 15482.69 10958.82 15370.53 18781.23 10847.79 25964.16 29180.21 23251.32 22583.12 8860.14 15384.95 21074.83 259
FA-MVS(test-final)71.27 14671.06 15671.92 15673.96 22452.32 19376.45 11676.12 18759.07 13474.04 19786.18 15552.18 21879.43 15259.75 15981.76 24384.03 123
V4271.06 14870.83 15971.72 15767.25 28947.14 24465.94 24880.35 13051.35 22383.40 7683.23 20059.25 17378.80 16165.91 10280.81 25589.23 29
Effi-MVS+72.10 14072.28 14071.58 15874.21 22150.33 20474.72 14282.73 8362.62 10770.77 23876.83 27369.96 8080.97 12660.20 15078.43 27883.45 139
TranMVSNet+NR-MVSNet76.13 8177.66 7471.56 15984.61 7842.57 28270.98 18278.29 16468.67 5583.04 7889.26 8872.99 5880.75 13155.58 19195.47 1091.35 13
nrg03074.87 10275.99 9071.52 16074.90 20749.88 21574.10 14982.58 8754.55 18383.50 7589.21 9071.51 6575.74 20761.24 13992.34 7988.94 37
eth_miper_zixun_eth69.42 16968.73 18171.50 16167.99 28246.42 25067.58 22578.81 15350.72 23178.13 13480.34 23150.15 23280.34 13760.18 15184.65 21187.74 50
EI-MVSNet69.61 16669.01 17571.41 16273.94 22549.90 21171.31 17771.32 23058.22 14075.40 17770.44 31958.16 18275.85 20362.51 13079.81 26588.48 44
GeoE73.14 11873.77 11571.26 16378.09 16552.64 19074.32 14679.56 14356.32 16276.35 16883.36 19670.76 7477.96 18363.32 12681.84 24283.18 146
ET-MVSNet_ETH3D63.32 23560.69 25771.20 16470.15 26555.66 17165.02 26264.32 28043.28 29268.99 25772.05 31125.46 36278.19 18054.16 20582.80 23179.74 212
PAPR69.20 17268.66 18270.82 16575.15 20447.77 23575.31 13181.11 11049.62 24466.33 27779.27 24661.53 15082.96 9148.12 25081.50 25081.74 176
casdiffmvspermissive73.06 12273.84 11270.72 16671.32 25346.71 24870.93 18384.26 6155.62 16877.46 14487.10 12367.09 10177.81 18563.95 11786.83 18487.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test63.01 23960.47 25870.61 16783.04 10254.10 18159.93 30272.24 22133.67 33869.00 25675.63 27938.69 29776.93 19536.60 32375.45 29680.81 194
Anonymous2023121175.54 8877.19 7870.59 16877.67 17345.70 25774.73 14180.19 13268.80 5282.95 8192.91 866.26 11276.76 19958.41 16892.77 7289.30 27
MSLP-MVS++74.48 10475.78 9170.59 16884.66 7662.40 11878.65 8984.24 6260.55 12177.71 14181.98 21263.12 13477.64 18962.95 12988.14 16071.73 286
baseline73.10 11973.96 11170.51 17071.46 25246.39 25272.08 16084.40 5855.95 16576.62 16086.46 14867.20 10078.03 18264.22 11487.27 17887.11 61
DELS-MVS68.83 17668.31 18370.38 17170.55 26148.31 22563.78 27682.13 9054.00 19468.96 25875.17 28458.95 17680.06 14458.55 16682.74 23282.76 157
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 17768.30 18470.35 17274.66 21448.61 22366.06 24778.32 16250.62 23271.48 23275.54 28068.75 8879.59 15050.55 22878.73 27582.86 155
xiu_mvs_v1_base_debu67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base_debi67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
EG-PatchMatch MVS70.70 15370.88 15870.16 17682.64 11058.80 15471.48 17273.64 20554.98 17376.55 16281.77 21561.10 15778.94 15954.87 19580.84 25472.74 276
BH-RMVSNet68.69 18068.20 18870.14 17776.40 18853.90 18464.62 26673.48 20758.01 14273.91 19981.78 21459.09 17478.22 17748.59 24377.96 28378.31 229
ambc70.10 17877.74 17150.21 20674.28 14877.93 17179.26 12288.29 11354.11 21179.77 14664.43 11191.10 10380.30 204
cascas64.59 22262.77 24070.05 17975.27 20150.02 20861.79 28971.61 22342.46 29463.68 29768.89 33449.33 23780.35 13647.82 25384.05 22079.78 211
新几何169.99 18088.37 3471.34 5162.08 29443.85 28374.99 18086.11 16052.85 21570.57 26250.99 22483.23 22968.05 313
TAMVS65.31 21363.75 22969.97 18182.23 11559.76 14666.78 24163.37 28745.20 27669.79 25079.37 24547.42 25072.17 24534.48 33585.15 20577.99 237
UniMVSNet_ETH3D76.74 7879.02 6169.92 18289.27 1943.81 26874.47 14571.70 22272.33 3585.50 5093.65 377.98 2176.88 19754.60 19891.64 8689.08 32
ACMH63.62 1477.50 7280.11 5469.68 18379.61 14056.28 16678.81 8783.62 7263.41 10287.14 2990.23 7276.11 3273.32 23167.58 8994.44 3979.44 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l69.82 16469.89 16569.61 18466.24 29843.48 27268.12 22079.61 14151.43 22277.72 14080.18 23554.61 20978.15 18163.62 12287.50 17087.20 58
API-MVS70.97 15171.51 15269.37 18575.20 20255.94 16880.99 6176.84 18262.48 10971.24 23477.51 26961.51 15180.96 12952.04 21585.76 19671.22 291
v14869.38 17169.39 16869.36 18669.14 27544.56 26368.83 20772.70 21554.79 17778.59 12784.12 18354.69 20776.74 20059.40 16282.20 23686.79 63
CDS-MVSNet64.33 22862.66 24169.35 18780.44 13458.28 15865.26 25965.66 26844.36 28167.30 27375.54 28043.27 26871.77 25137.68 31584.44 21678.01 236
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason64.47 22562.84 23969.34 18876.91 18259.20 14767.15 23465.67 26735.29 32865.16 28476.74 27444.67 26070.68 26054.74 19679.28 27178.14 233
jason: jason.
tt080576.12 8278.43 6869.20 18981.32 12641.37 28876.72 11377.64 17363.78 9582.06 9087.88 12079.78 1179.05 15664.33 11392.40 7787.17 60
BH-untuned69.39 17069.46 16769.18 19077.96 16856.88 16368.47 21777.53 17456.77 15777.79 13979.63 24160.30 16380.20 14246.04 26580.65 25670.47 297
alignmvs70.54 15571.00 15769.15 19173.50 22948.04 23269.85 19579.62 13953.94 19776.54 16382.00 21159.00 17574.68 22057.32 17387.21 17984.72 99
canonicalmvs72.29 13973.38 12069.04 19274.23 21947.37 24173.93 15083.18 7654.36 18476.61 16181.64 21872.03 6175.34 21157.12 17487.28 17784.40 115
cl2267.14 20166.51 20769.03 19363.20 31943.46 27366.88 24076.25 18649.22 24674.48 18977.88 26545.49 25577.40 19160.64 14784.59 21386.24 69
miper_ehance_all_eth68.36 18468.16 18968.98 19465.14 30943.34 27467.07 23578.92 15249.11 24876.21 16977.72 26653.48 21377.92 18461.16 14184.59 21385.68 82
lupinMVS63.36 23461.49 24968.97 19574.93 20559.19 14865.80 25264.52 27934.68 33363.53 30074.25 29443.19 26970.62 26153.88 20778.67 27677.10 243
QAPM69.18 17369.26 17068.94 19671.61 25152.58 19180.37 7078.79 15549.63 24373.51 20185.14 17353.66 21279.12 15555.11 19375.54 29475.11 257
FC-MVSNet-test73.32 11674.78 10068.93 19779.21 14836.57 32371.82 17079.54 14457.63 15082.57 8790.38 6459.38 17278.99 15857.91 17194.56 3491.23 14
VDD-MVS70.81 15271.44 15368.91 19879.07 15446.51 24967.82 22370.83 24161.23 11574.07 19688.69 10359.86 16775.62 20851.11 22290.28 12284.61 104
Anonymous2024052972.56 13573.79 11468.86 19976.89 18445.21 25968.80 21077.25 17967.16 5976.89 15290.44 5665.95 11574.19 22750.75 22590.00 12887.18 59
FIs72.56 13573.80 11368.84 20078.74 15937.74 31771.02 18179.83 13756.12 16380.88 10989.45 8558.18 18178.28 17656.63 17793.36 6490.51 21
OpenMVScopyleft62.51 1568.76 17868.75 17968.78 20170.56 26053.91 18378.29 9477.35 17648.85 25070.22 24483.52 19052.65 21676.93 19555.31 19281.99 23875.49 251
PVSNet_BlendedMVS65.38 21264.30 22468.61 20269.81 26849.36 21765.60 25678.96 15045.50 27059.98 31778.61 25551.82 22078.20 17844.30 27384.11 21978.27 230
MVP-Stereo61.56 25359.22 26568.58 20379.28 14560.44 14169.20 20271.57 22443.58 28756.42 33378.37 25839.57 29376.46 20234.86 33460.16 35668.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER63.29 23661.60 24868.36 20459.77 33846.21 25360.62 29771.32 23041.83 29675.40 17779.12 25030.25 34475.85 20356.30 18279.81 26583.03 150
thisisatest051560.48 26257.86 27668.34 20567.25 28946.42 25060.58 29862.14 29240.82 30463.58 29969.12 33026.28 35878.34 17448.83 24082.13 23780.26 205
cl____68.26 18968.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.42 20848.74 24275.38 20960.92 14589.81 13385.80 80
DIV-MVS_self_test68.27 18868.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.43 20748.74 24275.38 20960.94 14489.81 13385.81 76
miper_enhance_ethall65.86 20965.05 22368.28 20861.62 32742.62 28164.74 26477.97 16942.52 29373.42 20472.79 30649.66 23377.68 18858.12 16984.59 21384.54 109
LF4IMVS67.50 19667.31 19968.08 20958.86 34261.93 12171.43 17375.90 19144.67 28072.42 21780.20 23357.16 19370.44 26458.99 16486.12 19271.88 284
IB-MVS49.67 1859.69 26756.96 28267.90 21068.19 28050.30 20561.42 29165.18 27247.57 26155.83 33667.15 34523.77 36879.60 14943.56 27979.97 26373.79 267
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS70.47 15671.34 15467.85 21179.26 14640.42 29874.67 14475.15 19858.41 13968.74 26388.14 11856.08 20483.69 7859.90 15681.71 24779.43 218
RPMNet65.77 21065.08 22267.84 21266.37 29548.24 22770.93 18386.27 1954.66 18061.35 30886.77 13433.29 31785.67 4555.93 18570.17 32769.62 305
pmmvs-eth3d64.41 22763.27 23567.82 21375.81 19860.18 14369.49 19762.05 29538.81 31474.13 19482.23 21043.76 26668.65 27542.53 28380.63 25874.63 260
TR-MVS64.59 22263.54 23267.73 21475.75 19950.83 20063.39 27970.29 24449.33 24571.55 23074.55 28950.94 22678.46 16840.43 29775.69 29273.89 266
MSDG67.47 19867.48 19767.46 21570.70 25754.69 17766.90 23978.17 16560.88 11970.41 24174.76 28661.22 15673.18 23247.38 25576.87 28674.49 261
WR-MVS71.20 14772.48 13767.36 21684.98 7135.70 33164.43 26968.66 25265.05 8281.49 9986.43 14957.57 19276.48 20150.36 22993.32 6589.90 23
MVS_Test69.84 16370.71 16067.24 21767.49 28843.25 27669.87 19481.22 10952.69 20871.57 22986.68 13862.09 14574.51 22266.05 10078.74 27483.96 124
D2MVS62.58 24561.05 25367.20 21863.85 31547.92 23356.29 31969.58 24739.32 30970.07 24678.19 26134.93 31272.68 23653.44 21183.74 22381.00 187
diffmvspermissive67.42 19967.50 19667.20 21862.26 32345.21 25964.87 26377.04 18048.21 25371.74 22379.70 24058.40 18071.17 25864.99 10780.27 26085.22 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS64.49 22463.61 23167.14 22076.68 18675.15 2768.49 21642.85 35851.17 22777.85 13880.51 22845.76 25166.31 29452.83 21476.35 28859.96 350
VDDNet71.60 14473.13 12667.02 22186.29 4741.11 29069.97 19266.50 26268.72 5474.74 18391.70 2559.90 16675.81 20548.58 24491.72 8484.15 122
GBi-Net68.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
test168.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
FMVSNet171.06 14872.48 13766.81 22277.65 17440.68 29471.96 16473.03 20961.14 11679.45 12190.36 6760.44 16175.20 21350.20 23088.05 16284.54 109
PVSNet_Blended62.90 24161.64 24666.69 22569.81 26849.36 21761.23 29378.96 15042.04 29559.98 31768.86 33551.82 22078.20 17844.30 27377.77 28572.52 277
GA-MVS62.91 24061.66 24566.66 22667.09 29144.49 26461.18 29469.36 24951.33 22469.33 25474.47 29036.83 30774.94 21650.60 22774.72 30180.57 201
BH-w/o64.81 21964.29 22566.36 22776.08 19454.71 17665.61 25575.23 19750.10 23971.05 23771.86 31254.33 21079.02 15738.20 31276.14 29065.36 328
pmmvs671.82 14273.66 11666.31 22875.94 19642.01 28466.99 23672.53 21763.45 10076.43 16692.78 1072.95 5969.69 26951.41 22090.46 12087.22 56
dcpmvs_271.02 15072.65 13566.16 22976.06 19550.49 20271.97 16379.36 14550.34 23582.81 8483.63 18964.38 12967.27 28561.54 13783.71 22580.71 198
PAPM61.79 25260.37 25966.05 23076.09 19341.87 28569.30 20076.79 18440.64 30653.80 34579.62 24244.38 26282.92 9229.64 35373.11 31173.36 270
pmmvs460.78 25959.04 26766.00 23173.06 24157.67 16164.53 26860.22 30136.91 32265.96 27877.27 27039.66 29268.54 27638.87 30574.89 30071.80 285
PS-MVSNAJ64.27 22963.73 23065.90 23277.82 17051.42 19663.33 28072.33 21945.09 27861.60 30668.04 33962.39 14173.95 22949.07 23873.87 30772.34 279
xiu_mvs_v2_base64.43 22663.96 22765.85 23377.72 17251.32 19763.63 27772.31 22045.06 27961.70 30569.66 32762.56 13773.93 23049.06 23973.91 30672.31 280
FMVSNet267.48 19768.21 18765.29 23473.14 23638.94 30768.81 20871.21 23654.81 17476.73 15886.48 14748.63 24474.60 22147.98 25186.11 19382.35 166
test_yl65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DCV-MVSNet65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
IterMVS63.12 23862.48 24265.02 23766.34 29752.86 18863.81 27462.25 29146.57 26771.51 23180.40 23044.60 26166.82 29051.38 22175.47 29575.38 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet_DTU64.04 23163.83 22864.66 23868.39 27642.97 27873.45 15174.50 20252.05 21454.78 33975.44 28343.99 26470.42 26553.49 21078.41 27980.59 200
LFMVS67.06 20367.89 19164.56 23978.02 16638.25 31270.81 18659.60 30365.18 8071.06 23686.56 14543.85 26575.22 21246.35 26389.63 13680.21 206
FMVSNet365.00 21765.16 21664.52 24069.47 27137.56 32066.63 24270.38 24351.55 22174.72 18483.27 19937.89 30374.44 22347.12 25685.37 19881.57 178
MDA-MVSNet-bldmvs62.34 24861.73 24464.16 24161.64 32649.90 21148.11 34357.24 31453.31 20380.95 10579.39 24449.00 24061.55 31245.92 26680.05 26281.03 185
testdata64.13 24285.87 5963.34 11361.80 29747.83 25876.42 16786.60 14448.83 24162.31 31054.46 20081.26 25166.74 322
TinyColmap67.98 19069.28 16964.08 24367.98 28346.82 24670.04 19175.26 19653.05 20477.36 14586.79 13259.39 17172.59 24145.64 26888.01 16472.83 274
baseline255.57 28852.74 30464.05 24465.26 30544.11 26662.38 28654.43 32539.03 31251.21 35067.35 34333.66 31672.45 24237.14 32064.22 34775.60 250
pm-mvs168.40 18369.85 16664.04 24573.10 23939.94 30064.61 26770.50 24255.52 16973.97 19889.33 8663.91 13268.38 27749.68 23488.02 16383.81 127
mvs_anonymous65.08 21665.49 21363.83 24663.79 31637.60 31966.52 24469.82 24643.44 28873.46 20386.08 16158.79 17871.75 25351.90 21775.63 29382.15 170
VPA-MVSNet68.71 17970.37 16263.72 24776.13 19238.06 31564.10 27171.48 22756.60 16174.10 19588.31 11264.78 12769.72 26847.69 25490.15 12583.37 141
ECVR-MVScopyleft64.82 21865.22 21463.60 24878.80 15731.14 35566.97 23756.47 31854.23 18769.94 24788.68 10437.23 30574.81 21945.28 27289.41 14284.86 94
TransMVSNet (Re)69.62 16571.63 14863.57 24976.51 18735.93 32965.75 25371.29 23261.05 11775.02 17989.90 7965.88 11770.41 26649.79 23289.48 14084.38 116
CMPMVSbinary48.73 2061.54 25460.89 25463.52 25061.08 32951.55 19568.07 22168.00 25633.88 33565.87 27981.25 22037.91 30267.71 28049.32 23782.60 23371.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268858.09 27656.30 28763.45 25179.95 13750.93 19954.07 33065.59 26928.56 35461.53 30774.33 29241.09 28266.52 29333.91 33867.69 34072.92 273
Anonymous20240521166.02 20866.89 20663.43 25274.22 22038.14 31359.00 30666.13 26463.33 10369.76 25185.95 16551.88 21970.50 26344.23 27587.52 16981.64 177
MVS_030462.51 24662.27 24363.25 25369.39 27248.47 22464.05 27362.48 29059.69 12854.10 34481.04 22245.71 25266.31 29441.38 29282.58 23474.96 258
thres40060.77 26059.97 26163.15 25470.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24482.02 171
thres600view761.82 25161.38 25063.12 25571.81 25034.93 33664.64 26556.99 31554.78 17870.33 24379.74 23932.07 32772.42 24338.61 30883.46 22782.02 171
OpenMVS_ROBcopyleft54.93 1763.23 23763.28 23463.07 25669.81 26845.34 25868.52 21567.14 25843.74 28570.61 24079.22 24747.90 24872.66 23748.75 24173.84 30871.21 292
miper_lstm_enhance61.97 24961.63 24762.98 25760.04 33445.74 25647.53 34570.95 23844.04 28273.06 20878.84 25439.72 29160.33 31455.82 18784.64 21282.88 153
KD-MVS_self_test66.38 20767.51 19562.97 25861.76 32534.39 34058.11 31275.30 19550.84 23077.12 14785.42 16956.84 19969.44 27051.07 22391.16 9885.08 89
test111164.62 22165.19 21562.93 25979.01 15529.91 35965.45 25754.41 32654.09 19271.47 23388.48 10837.02 30674.29 22646.83 26189.94 13184.58 107
Baseline_NR-MVSNet70.62 15473.19 12462.92 26076.97 18034.44 33968.84 20670.88 24060.25 12379.50 12090.53 5361.82 14769.11 27354.67 19795.27 1385.22 84
131459.83 26658.86 26962.74 26165.71 30344.78 26268.59 21372.63 21633.54 34061.05 31267.29 34443.62 26771.26 25749.49 23667.84 33972.19 282
MVS60.62 26159.97 26162.58 26268.13 28147.28 24268.59 21373.96 20432.19 34259.94 31968.86 33550.48 22977.64 18941.85 28875.74 29162.83 339
Patchmatch-RL test59.95 26559.12 26662.44 26372.46 24554.61 17859.63 30347.51 35141.05 30374.58 18874.30 29331.06 33865.31 29651.61 21879.85 26467.39 315
test250661.23 25560.85 25562.38 26478.80 15727.88 36567.33 23237.42 37154.23 18767.55 27088.68 10417.87 37774.39 22446.33 26489.41 14284.86 94
ppachtmachnet_test60.26 26459.61 26462.20 26567.70 28644.33 26558.18 31160.96 29940.75 30565.80 28072.57 30741.23 27963.92 30346.87 26082.42 23578.33 228
tfpnnormal66.48 20667.93 19062.16 26673.40 23236.65 32263.45 27864.99 27355.97 16472.82 21287.80 12157.06 19769.10 27448.31 24887.54 16880.72 197
USDC62.80 24263.10 23761.89 26765.19 30643.30 27567.42 22874.20 20335.80 32772.25 21984.48 17945.67 25371.95 25037.95 31484.97 20670.42 299
LCM-MVSNet-Re69.10 17471.57 15161.70 26870.37 26234.30 34161.45 29079.62 13956.81 15689.59 888.16 11768.44 9172.94 23442.30 28487.33 17577.85 239
PatchMatch-RL58.68 27457.72 27761.57 26976.21 19173.59 3961.83 28849.00 34647.30 26361.08 31068.97 33250.16 23159.01 31836.06 32968.84 33452.10 358
tfpn200view960.35 26359.97 26161.51 27070.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24477.08 244
CVMVSNet59.21 27058.44 27361.51 27073.94 22547.76 23671.31 17764.56 27826.91 35960.34 31670.44 31936.24 30967.65 28153.57 20968.66 33569.12 310
thres100view90061.17 25661.09 25261.39 27272.14 24835.01 33565.42 25856.99 31555.23 17170.71 23979.90 23732.07 32772.09 24635.61 33081.73 24477.08 244
Vis-MVSNet (Re-imp)62.74 24363.21 23661.34 27372.19 24731.56 35267.31 23353.87 32753.60 20069.88 24983.37 19440.52 28670.98 25941.40 29186.78 18581.48 179
JIA-IIPM54.03 29551.62 30961.25 27459.14 34155.21 17459.10 30547.72 34950.85 22950.31 35685.81 16720.10 37463.97 30236.16 32855.41 36764.55 335
ab-mvs64.11 23065.13 21961.05 27571.99 24938.03 31667.59 22468.79 25149.08 24965.32 28386.26 15358.02 18966.85 28939.33 30179.79 26778.27 230
CostFormer57.35 28056.14 28860.97 27663.76 31738.43 30967.50 22660.22 30137.14 32159.12 32476.34 27632.78 32171.99 24939.12 30469.27 33272.47 278
1112_ss59.48 26858.99 26860.96 27777.84 16942.39 28361.42 29168.45 25437.96 31759.93 32067.46 34145.11 25865.07 29840.89 29571.81 31775.41 253
EU-MVSNet60.82 25860.80 25660.86 27868.37 27741.16 28972.27 15668.27 25526.96 35869.08 25575.71 27832.09 32667.44 28355.59 19078.90 27373.97 264
VNet64.01 23265.15 21860.57 27973.28 23435.61 33257.60 31467.08 25954.61 18166.76 27683.37 19456.28 20266.87 28742.19 28585.20 20479.23 220
tpm256.12 28354.64 29660.55 28066.24 29836.01 32768.14 21956.77 31733.60 33958.25 32775.52 28230.25 34474.33 22533.27 34069.76 33171.32 289
CR-MVSNet58.96 27158.49 27260.36 28166.37 29548.24 22770.93 18356.40 31932.87 34161.35 30886.66 13933.19 31863.22 30748.50 24570.17 32769.62 305
SCA58.57 27558.04 27560.17 28270.17 26441.07 29165.19 26053.38 33243.34 29161.00 31373.48 30045.20 25669.38 27140.34 29870.31 32670.05 300
EPNet_dtu58.93 27258.52 27160.16 28367.91 28447.70 23769.97 19258.02 30749.73 24247.28 36073.02 30538.14 29962.34 30936.57 32485.99 19470.43 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Gipumacopyleft69.55 16772.83 13259.70 28463.63 31853.97 18280.08 7675.93 19064.24 9073.49 20288.93 10057.89 19062.46 30859.75 15991.55 9162.67 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VPNet65.58 21167.56 19459.65 28579.72 13930.17 35860.27 30062.14 29254.19 19071.24 23486.63 14258.80 17767.62 28244.17 27690.87 11381.18 181
CL-MVSNet_self_test62.44 24763.40 23359.55 28672.34 24632.38 34856.39 31864.84 27551.21 22667.46 27181.01 22350.75 22763.51 30638.47 31088.12 16182.75 158
thres20057.55 27957.02 28159.17 28767.89 28534.93 33658.91 30857.25 31350.24 23664.01 29371.46 31532.49 32371.39 25631.31 34579.57 26971.19 293
test_fmvs356.78 28155.99 29059.12 28853.96 36448.09 23058.76 30966.22 26327.54 35676.66 15968.69 33725.32 36451.31 32853.42 21273.38 30977.97 238
HY-MVS49.31 1957.96 27757.59 27859.10 28966.85 29436.17 32665.13 26165.39 27139.24 31154.69 34178.14 26244.28 26367.18 28633.75 33970.79 32273.95 265
Test_1112_low_res58.78 27358.69 27059.04 29079.41 14338.13 31457.62 31366.98 26034.74 33159.62 32377.56 26842.92 27163.65 30538.66 30770.73 32375.35 255
patch_mono-262.73 24464.08 22658.68 29170.36 26355.87 16960.84 29664.11 28341.23 30064.04 29278.22 26060.00 16448.80 33454.17 20483.71 22571.37 288
MIMVSNet166.57 20569.23 17158.59 29281.26 12837.73 31864.06 27257.62 30857.02 15478.40 13190.75 4662.65 13658.10 32141.77 28989.58 13979.95 208
ANet_high67.08 20269.94 16458.51 29357.55 34727.09 36658.43 31076.80 18363.56 9782.40 8891.93 2059.82 16864.98 29950.10 23188.86 15483.46 138
tpm cat154.02 29652.63 30558.19 29464.85 31239.86 30166.26 24657.28 31232.16 34356.90 33070.39 32132.75 32265.30 29734.29 33658.79 35969.41 307
MS-PatchMatch55.59 28754.89 29557.68 29569.18 27349.05 22061.00 29562.93 28935.98 32558.36 32668.93 33336.71 30866.59 29237.62 31763.30 34957.39 354
FPMVS59.43 26960.07 26057.51 29677.62 17571.52 4962.33 28750.92 33957.40 15269.40 25380.00 23639.14 29561.92 31137.47 31866.36 34239.09 370
tpmvs55.84 28455.45 29457.01 29760.33 33333.20 34665.89 24959.29 30547.52 26256.04 33473.60 29931.05 33968.06 27940.64 29664.64 34569.77 303
test_fmvs254.80 29154.11 29856.88 29851.76 36849.95 21056.70 31765.80 26626.22 36069.42 25265.25 34831.82 33049.98 33249.63 23570.36 32570.71 296
our_test_356.46 28256.51 28556.30 29967.70 28639.66 30255.36 32652.34 33740.57 30763.85 29469.91 32640.04 28958.22 32043.49 28075.29 29971.03 295
baseline157.82 27858.36 27456.19 30069.17 27430.76 35762.94 28555.21 32246.04 26963.83 29578.47 25641.20 28063.68 30439.44 30068.99 33374.13 263
Anonymous2024052163.55 23366.07 21055.99 30166.18 30044.04 26768.77 21168.80 25046.99 26472.57 21485.84 16639.87 29050.22 33153.40 21392.23 8173.71 268
PatchmatchNetpermissive54.60 29254.27 29755.59 30265.17 30839.08 30466.92 23851.80 33839.89 30858.39 32573.12 30431.69 33258.33 31943.01 28258.38 36269.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet52.06 30651.11 31454.92 30359.64 33971.03 5337.42 36461.62 29833.68 33757.12 32872.10 30837.94 30131.03 37129.13 35871.35 31862.70 340
test_fmvs1_n52.70 30152.01 30854.76 30453.83 36550.36 20355.80 32365.90 26524.96 36365.39 28260.64 35827.69 35348.46 33645.88 26767.99 33765.46 327
test_vis3_rt51.94 30951.04 31554.65 30546.32 37550.13 20744.34 35478.17 16523.62 36768.95 25962.81 35221.41 37038.52 36741.49 29072.22 31475.30 256
Patchmtry60.91 25763.01 23854.62 30666.10 30126.27 36967.47 22756.40 31954.05 19372.04 22286.66 13933.19 31860.17 31543.69 27787.45 17277.42 240
test_vis1_n51.27 31250.41 31953.83 30756.99 34950.01 20956.75 31660.53 30025.68 36159.74 32257.86 36229.40 34947.41 34143.10 28163.66 34864.08 337
FMVSNet555.08 29055.54 29353.71 30865.80 30233.50 34556.22 32052.50 33643.72 28661.06 31183.38 19325.46 36254.87 32430.11 35081.64 24972.75 275
test_fmvs151.51 31150.86 31753.48 30949.72 37149.35 21954.11 32964.96 27424.64 36563.66 29859.61 36128.33 35248.45 33745.38 27167.30 34162.66 342
KD-MVS_2432*160052.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
miper_refine_blended52.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
ADS-MVSNet248.76 31847.25 32653.29 31255.90 35540.54 29747.34 34654.99 32431.41 34950.48 35372.06 30931.23 33554.26 32625.93 36355.93 36465.07 330
PVSNet43.83 2151.56 31051.17 31352.73 31368.34 27838.27 31148.22 34253.56 33036.41 32354.29 34264.94 34934.60 31354.20 32730.34 34869.87 32965.71 326
gg-mvs-nofinetune55.75 28556.75 28452.72 31462.87 32028.04 36468.92 20541.36 36671.09 4050.80 35292.63 1220.74 37166.86 28829.97 35172.41 31363.25 338
GG-mvs-BLEND52.24 31560.64 33229.21 36269.73 19642.41 35945.47 36352.33 36720.43 37368.16 27825.52 36665.42 34459.36 351
pmmvs552.49 30452.58 30652.21 31654.99 35932.38 34855.45 32553.84 32832.15 34455.49 33874.81 28538.08 30057.37 32234.02 33774.40 30466.88 319
mvsany_test343.76 33441.01 33852.01 31748.09 37357.74 16042.47 35623.85 38023.30 36864.80 28662.17 35527.12 35440.59 36329.17 35748.11 37057.69 353
pmmvs346.71 32345.09 33251.55 31856.76 35148.25 22655.78 32439.53 37024.13 36650.35 35563.40 35015.90 38051.08 32929.29 35570.69 32455.33 357
test_vis1_n_192052.96 29953.50 30051.32 31959.15 34044.90 26156.13 32164.29 28130.56 35259.87 32160.68 35740.16 28847.47 34048.25 24962.46 35061.58 347
test_vis1_rt46.70 32445.24 33151.06 32044.58 37651.04 19839.91 36067.56 25721.84 37151.94 34950.79 36933.83 31539.77 36435.25 33361.50 35362.38 344
test20.0355.74 28657.51 27950.42 32159.89 33732.09 35050.63 33749.01 34550.11 23865.07 28583.23 20045.61 25448.11 33930.22 34983.82 22271.07 294
YYNet152.58 30253.50 30049.85 32254.15 36236.45 32540.53 35846.55 35338.09 31675.52 17573.31 30341.08 28343.88 35441.10 29371.14 32169.21 309
MDA-MVSNet_test_wron52.57 30353.49 30249.81 32354.24 36136.47 32440.48 35946.58 35238.13 31575.47 17673.32 30241.05 28443.85 35540.98 29471.20 32069.10 311
test-LLR50.43 31450.69 31849.64 32460.76 33041.87 28553.18 33245.48 35443.41 28949.41 35760.47 35929.22 35044.73 35142.09 28672.14 31562.33 345
test-mter48.56 31948.20 32449.64 32460.76 33041.87 28553.18 33245.48 35431.91 34749.41 35760.47 35918.34 37544.73 35142.09 28672.14 31562.33 345
MIMVSNet54.39 29356.12 28949.20 32672.57 24430.91 35659.98 30148.43 34841.66 29755.94 33583.86 18741.19 28150.42 33026.05 36275.38 29766.27 323
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32755.08 35833.67 34450.03 33858.79 30637.67 31863.43 30274.75 28741.82 27745.83 34438.59 30959.42 35867.98 314
wuyk23d61.97 24966.25 20849.12 32858.19 34660.77 13966.32 24552.97 33455.93 16690.62 586.91 12973.07 5735.98 36920.63 37291.63 8750.62 359
Anonymous2023120654.13 29455.82 29149.04 32970.89 25435.96 32851.73 33550.87 34034.86 32962.49 30379.22 24742.52 27544.29 35327.95 35981.88 24066.88 319
XXY-MVS55.19 28957.40 28048.56 33064.45 31334.84 33851.54 33653.59 32938.99 31363.79 29679.43 24356.59 20045.57 34536.92 32271.29 31965.25 329
UnsupCasMVSNet_bld50.01 31651.03 31646.95 33158.61 34332.64 34748.31 34153.27 33334.27 33460.47 31571.53 31441.40 27847.07 34230.68 34760.78 35561.13 348
PMMVS44.69 32943.95 33746.92 33250.05 37053.47 18648.08 34442.40 36022.36 36944.01 36953.05 36642.60 27445.49 34631.69 34461.36 35441.79 368
CHOSEN 280x42041.62 33639.89 34146.80 33361.81 32451.59 19433.56 36835.74 37327.48 35737.64 37453.53 36423.24 36942.09 35927.39 36058.64 36046.72 363
WTY-MVS49.39 31750.31 32046.62 33461.22 32832.00 35146.61 34849.77 34333.87 33654.12 34369.55 32941.96 27645.40 34731.28 34664.42 34662.47 343
tpmrst50.15 31551.38 31246.45 33556.05 35324.77 37164.40 27049.98 34236.14 32453.32 34669.59 32835.16 31148.69 33539.24 30258.51 36165.89 324
test0.0.03 147.72 32148.31 32345.93 33655.53 35729.39 36046.40 34941.21 36743.41 28955.81 33767.65 34029.22 35043.77 35625.73 36569.87 32964.62 334
TESTMET0.1,145.17 32744.93 33345.89 33756.02 35438.31 31053.18 33241.94 36427.85 35544.86 36656.47 36317.93 37641.50 36238.08 31368.06 33657.85 352
testgi54.00 29756.86 28345.45 33858.20 34525.81 37049.05 33949.50 34445.43 27367.84 26681.17 22151.81 22243.20 35729.30 35479.41 27067.34 317
sss47.59 32248.32 32245.40 33956.73 35233.96 34245.17 35148.51 34732.11 34652.37 34865.79 34640.39 28741.91 36131.85 34361.97 35260.35 349
tpm50.60 31352.42 30745.14 34065.18 30726.29 36860.30 29943.50 35637.41 31957.01 32979.09 25130.20 34642.32 35832.77 34266.36 34266.81 321
EMVS44.61 33144.45 33645.10 34148.91 37243.00 27737.92 36341.10 36846.75 26638.00 37348.43 37126.42 35746.27 34337.11 32175.38 29746.03 364
E-PMN45.17 32745.36 33044.60 34250.07 36942.75 27938.66 36242.29 36246.39 26839.55 37151.15 36826.00 35945.37 34837.68 31576.41 28745.69 365
mvsany_test137.88 33835.74 34344.28 34347.28 37449.90 21136.54 36624.37 37919.56 37245.76 36253.46 36532.99 32037.97 36826.17 36135.52 37244.99 367
new-patchmatchnet52.89 30055.76 29244.26 34459.94 3366.31 38037.36 36550.76 34141.10 30164.28 29079.82 23844.77 25948.43 33836.24 32787.61 16778.03 235
PatchT53.35 29856.47 28643.99 34564.19 31417.46 37759.15 30443.10 35752.11 21354.74 34086.95 12829.97 34749.98 33243.62 27874.40 30464.53 336
EPMVS45.74 32546.53 32743.39 34654.14 36322.33 37455.02 32735.00 37434.69 33251.09 35170.20 32325.92 36042.04 36037.19 31955.50 36665.78 325
PVSNet_036.71 2241.12 33740.78 34042.14 34759.97 33540.13 29940.97 35742.24 36330.81 35144.86 36649.41 37040.70 28545.12 34923.15 36934.96 37341.16 369
Patchmatch-test47.93 32049.96 32141.84 34857.42 34824.26 37248.75 34041.49 36539.30 31056.79 33173.48 30030.48 34333.87 37029.29 35572.61 31267.39 315
ADS-MVSNet44.62 33045.58 32941.73 34955.90 35520.83 37547.34 34639.94 36931.41 34950.48 35372.06 30931.23 33539.31 36525.93 36355.93 36465.07 330
dp44.09 33244.88 33441.72 35058.53 34423.18 37354.70 32842.38 36134.80 33044.25 36865.61 34724.48 36744.80 35029.77 35249.42 36957.18 355
MVS-HIRNet45.53 32647.29 32540.24 35162.29 32226.82 36756.02 32237.41 37229.74 35343.69 37081.27 21933.96 31455.48 32324.46 36856.79 36338.43 371
MVEpermissive27.91 2336.69 34135.64 34439.84 35243.37 37735.85 33019.49 37024.61 37824.68 36439.05 37262.63 35438.67 29827.10 37521.04 37147.25 37156.56 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DSMNet-mixed43.18 33544.66 33538.75 35354.75 36028.88 36357.06 31527.42 37713.47 37347.27 36177.67 26738.83 29639.29 36625.32 36760.12 35748.08 361
test_f43.79 33345.63 32838.24 35442.29 37938.58 30834.76 36747.68 35022.22 37067.34 27263.15 35131.82 33030.60 37239.19 30362.28 35145.53 366
new_pmnet37.55 34039.80 34230.79 35556.83 35016.46 37839.35 36130.65 37525.59 36245.26 36461.60 35624.54 36628.02 37421.60 37052.80 36847.90 362
PMMVS237.74 33940.87 33928.36 35642.41 3785.35 38124.61 36927.75 37632.15 34447.85 35970.27 32235.85 31029.51 37319.08 37367.85 33850.22 360
test_method19.26 34219.12 34619.71 3579.09 3811.91 3837.79 37253.44 3311.42 37510.27 37735.80 37217.42 37825.11 37612.44 37424.38 37532.10 372
DeepMVS_CXcopyleft11.83 35815.51 38013.86 37911.25 3835.76 37420.85 37626.46 37317.06 3799.22 3779.69 37613.82 37612.42 373
tmp_tt11.98 34414.73 3473.72 3592.28 3824.62 38219.44 37114.50 3820.47 37721.55 3759.58 37525.78 3614.57 37811.61 37527.37 3741.96 374
testmvs4.06 3485.28 3510.41 3600.64 3840.16 38542.54 3550.31 3850.26 3790.50 3801.40 3790.77 3830.17 3790.56 3770.55 3780.90 375
test1234.43 3475.78 3500.39 3610.97 3830.28 38446.33 3500.45 3840.31 3780.62 3791.50 3780.61 3840.11 3800.56 3770.63 3770.77 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k17.71 34323.62 3450.00 3620.00 3850.00 3860.00 37370.17 2450.00 3800.00 38174.25 29468.16 940.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.20 3466.93 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38062.39 1410.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re5.62 3457.50 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38167.46 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
PC_three_145246.98 26581.83 9386.28 15166.55 11184.47 6963.31 12790.78 11483.49 134
test_one_060185.84 6161.45 12785.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 385
eth-test0.00 385
ZD-MVS83.91 8769.36 6981.09 11258.91 13782.73 8689.11 9475.77 3586.63 1172.73 5792.93 70
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 92
IU-MVS86.12 5360.90 13580.38 12845.49 27281.31 10175.64 3994.39 4184.65 100
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3875.29 4094.22 5283.25 144
test_241102_ONE86.12 5361.06 13184.72 4872.64 2987.38 2489.47 8477.48 2385.74 42
9.1480.22 5380.68 13180.35 7187.69 1059.90 12583.00 7988.20 11474.57 4781.75 11073.75 5193.78 57
save fliter87.00 3967.23 8679.24 8377.94 17056.65 160
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4377.43 3094.74 2984.31 118
test072686.16 5160.78 13783.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 300
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
MTGPAbinary80.63 122
test_post166.63 2422.08 37630.66 34259.33 31740.34 298
test_post1.99 37730.91 34054.76 325
patchmatchnet-post68.99 33131.32 33469.38 271
MTMP84.83 3119.26 381
gm-plane-assit62.51 32133.91 34337.25 32062.71 35372.74 23538.70 306
test9_res72.12 6491.37 9377.40 241
TEST985.47 6369.32 7076.42 11778.69 15653.73 19976.97 14886.74 13566.84 10481.10 120
test_885.09 6967.89 7976.26 12278.66 15854.00 19476.89 15286.72 13766.60 10980.89 130
agg_prior270.70 7090.93 10878.55 227
agg_prior84.44 8266.02 9478.62 15976.95 15080.34 137
test_prior470.14 6377.57 100
test_prior275.57 13058.92 13676.53 16486.78 13367.83 9869.81 7392.76 73
旧先验271.17 18045.11 27778.54 13061.28 31359.19 163
新几何271.33 176
旧先验184.55 7960.36 14263.69 28587.05 12754.65 20883.34 22869.66 304
无先验74.82 13670.94 23947.75 26076.85 19854.47 19972.09 283
原ACMM274.78 140
test22287.30 3769.15 7367.85 22259.59 30441.06 30273.05 20985.72 16848.03 24780.65 25666.92 318
testdata267.30 28448.34 247
segment_acmp68.30 93
testdata168.34 21857.24 153
plane_prior785.18 6666.21 93
plane_prior684.18 8565.31 9860.83 159
plane_prior585.49 2986.15 2671.09 6690.94 10684.82 96
plane_prior489.11 94
plane_prior365.67 9563.82 9478.23 132
plane_prior282.74 5165.45 73
plane_prior184.46 81
plane_prior65.18 9980.06 7761.88 11389.91 132
n20.00 386
nn0.00 386
door-mid55.02 323
test1182.71 84
door52.91 335
HQP5-MVS58.80 154
HQP-NCC82.37 11177.32 10559.08 13171.58 226
ACMP_Plane82.37 11177.32 10559.08 13171.58 226
BP-MVS67.38 94
HQP4-MVS71.59 22585.31 5083.74 130
HQP3-MVS84.12 6589.16 146
HQP2-MVS58.09 184
NP-MVS83.34 9563.07 11685.97 163
MDTV_nov1_ep13_2view18.41 37653.74 33131.57 34844.89 36529.90 34832.93 34171.48 287
MDTV_nov1_ep1354.05 29965.54 30429.30 36159.00 30655.22 32135.96 32652.44 34775.98 27730.77 34159.62 31638.21 31173.33 310
ACMMP++_ref89.47 141
ACMMP++91.96 83
Test By Simon62.56 137