This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
Effi-MVS+-dtu75.43 9172.28 14584.91 277.05 17883.58 178.47 9377.70 17957.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21087.10 879.75 783.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8372.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18187.58 573.06 5991.34 9389.01 34
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40373.86 5286.31 1978.84 1994.03 5384.64 103
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 122
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 126
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 128
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9087.03 1067.39 9991.26 9483.50 136
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 153
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 162
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8685.26 5466.15 10991.24 9587.61 52
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 121
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6683.53 8267.95 9292.44 7689.60 24
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12472.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19550.51 23889.19 1090.88 4271.45 6777.78 19073.38 5690.60 11890.90 18
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9468.80 5380.92 10788.52 10972.00 6382.39 10174.80 4493.04 6881.14 193
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20052.27 21487.37 2692.25 1668.04 9780.56 13572.28 6791.15 9890.32 22
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12766.87 6483.64 7486.18 15870.25 7879.90 14861.12 15488.95 15587.56 53
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13564.71 9178.11 13688.39 11265.46 12583.14 8977.64 2991.20 9678.94 235
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15059.44 13378.88 12689.80 7971.26 6973.09 23957.45 18380.89 26089.17 31
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10651.71 22177.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19351.98 21987.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18685.32 17365.54 12387.79 265.61 11691.14 9983.35 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9253.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13357.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19551.33 22987.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16171.22 4072.40 22588.70 10460.51 17287.70 377.40 3289.13 15185.48 84
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 146
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13875.34 1579.80 11894.91 269.79 8380.25 14272.63 6394.46 3688.78 42
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8059.86 13172.27 22684.00 18964.56 13383.07 9251.48 23487.19 18382.56 172
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 140
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
No_MVS79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8780.55 13772.51 6593.37 6383.48 139
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11765.77 7275.55 17786.25 15767.42 10185.42 5070.10 7590.88 11181.81 185
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17086.15 2771.09 7190.94 10584.82 98
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9361.89 11688.77 1293.32 457.15 20882.60 9970.08 7692.80 7189.25 28
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10886.01 3161.72 14789.79 13483.08 154
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10878.37 17674.80 4490.76 11682.40 174
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20082.35 175
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10263.92 9677.51 14486.56 14868.43 9384.82 6573.83 5391.61 8882.26 179
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19377.68 14387.18 12569.98 8085.37 5168.01 9092.72 7485.08 91
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14553.48 20686.29 3692.43 1562.39 14980.25 14267.90 9390.61 11787.77 49
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8660.39 12674.15 19983.30 20369.65 8482.07 10869.27 8186.75 19087.36 55
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17383.39 19766.91 10680.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.73.08 12471.60 15577.54 7378.99 15770.73 5774.96 13669.38 25860.73 12474.39 19678.44 27157.72 20582.78 9660.16 16389.60 13779.11 233
h-mvs3373.08 12471.61 15477.48 7483.89 8872.89 4470.47 19871.12 24654.28 18977.89 13783.41 19649.04 25680.98 12863.62 13390.77 11578.58 239
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20766.93 6269.11 26488.95 10057.84 20486.12 2976.63 3789.77 13585.28 86
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15174.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
hse-mvs272.32 14370.66 16677.31 7983.10 10071.77 4769.19 21571.45 23654.28 18977.89 13778.26 27349.04 25679.23 15663.62 13389.13 15180.92 200
AUN-MVS70.22 16267.88 19977.22 8082.96 10471.61 4869.08 21671.39 23749.17 25371.70 23278.07 27837.62 32579.21 15761.81 14489.15 14980.82 203
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25480.80 23366.74 11281.96 10961.74 14689.40 14585.69 81
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11383.49 137
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 154
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7854.16 19573.23 21480.75 23462.19 15283.86 7668.02 8990.92 10883.65 134
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 148
test1276.51 8682.28 11360.94 14381.64 10173.60 20764.88 13085.19 5990.42 12083.38 144
CANet73.00 12971.84 14976.48 8775.82 20161.28 13674.81 13980.37 13163.17 10862.43 32480.50 23861.10 16785.16 6064.00 12784.34 22483.01 157
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13568.63 7578.18 9881.24 10954.57 18667.09 29280.63 23659.44 18281.74 11446.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 8970.72 4487.54 2192.44 1468.00 9881.34 11772.84 6191.72 8491.69 10
DP-MVS Recon73.57 11472.69 13776.23 9182.85 10563.39 11774.32 14982.96 8157.75 14870.35 25081.98 21964.34 13584.41 7349.69 24889.95 12980.89 201
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19184.52 18269.87 8284.94 6169.76 7889.59 13886.60 67
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23485.96 16758.09 19785.30 5367.38 10189.16 14783.73 133
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6483.45 8462.45 14392.40 7778.92 236
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16254.00 19876.97 14986.74 13866.60 11381.10 12372.50 6691.56 8977.15 258
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15362.85 11073.33 21288.41 11162.54 14779.59 15363.94 13082.92 23882.94 158
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15473.04 15981.50 10245.34 28479.66 11984.35 18565.15 12882.65 9848.70 25889.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2640.60 4051.13 40791.61 2865.32 12774.15 23164.01 12688.28 16078.17 245
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16472.24 16471.56 23363.92 9678.59 12871.59 33066.22 11778.60 16767.58 9480.32 26789.00 35
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16972.02 16971.50 23463.53 10278.58 13071.39 33465.98 11878.53 16867.30 10480.18 26989.23 29
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18465.11 8576.47 16886.80 13449.47 25283.77 7753.89 22192.72 7488.81 41
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 171
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12672.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 12879.90 13946.03 27776.48 16785.02 17767.96 9973.97 23274.47 4987.22 18183.90 127
CNLPA73.44 11573.03 13274.66 10578.27 16375.29 2675.99 12778.49 16665.39 7875.67 17583.22 20861.23 16366.77 30553.70 22385.33 20681.92 184
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14779.34 14945.58 27975.54 17883.91 19067.19 10373.88 23573.26 5786.86 18683.63 135
test_fmvsmconf_n72.91 13372.40 14374.46 10768.62 29866.12 9674.21 15278.80 15945.64 27874.62 19283.25 20566.80 11173.86 23672.97 6086.66 19283.39 143
tttt051769.46 17567.79 20174.46 10775.34 20452.72 20175.05 13563.27 29954.69 18378.87 12784.37 18426.63 37881.15 12163.95 12887.93 16889.51 25
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13777.56 10263.57 29760.95 12256.62 35882.75 21051.53 24081.24 12054.36 21790.20 12280.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS72.88 13472.36 14474.43 11077.03 17954.30 19168.77 22383.43 7652.12 21676.79 15874.44 30769.54 8583.91 7555.88 19993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9682.24 9078.21 989.57 992.10 1868.05 9685.59 4866.04 11295.62 994.88 5
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17973.34 15784.67 5262.04 11572.19 22970.81 33565.90 12085.24 5658.64 17684.96 21481.95 183
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16274.60 21075.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 191
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8259.02 13885.92 4189.17 9258.56 19182.74 9770.73 7389.14 15091.05 15
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17570.09 4979.17 12488.02 12153.04 23183.60 8058.05 18193.76 5990.79 19
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20264.10 9587.73 1792.24 1750.45 24781.30 11967.41 9791.46 9186.04 73
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11679.71 14165.50 7582.99 7988.60 10866.94 10572.35 25059.77 16988.54 15879.56 225
原ACMM173.90 11885.90 5765.15 10681.67 10050.97 23374.25 19886.16 16061.60 15783.54 8156.75 18791.08 10373.00 293
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30666.16 7184.76 6093.23 549.47 25280.97 12965.66 11586.67 19185.02 93
Fast-Effi-MVS+-dtu70.00 16568.74 18673.77 12073.47 23464.53 11071.36 18478.14 17455.81 17168.84 27474.71 30465.36 12675.75 20952.00 23179.00 28181.03 196
UGNet70.20 16369.05 17973.65 12176.24 19363.64 11575.87 12972.53 22561.48 11860.93 33486.14 16152.37 23477.12 19650.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t73.40 11773.33 12673.64 12284.15 8557.11 17478.20 9780.02 13743.76 29772.55 22286.07 16564.00 13683.35 8660.14 16491.03 10480.45 214
MCST-MVS73.42 11673.34 12573.63 12381.28 12659.17 16074.80 14183.13 7945.50 28072.84 21883.78 19365.15 12880.99 12764.54 12189.09 15380.73 207
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20081.04 11663.67 10079.54 12086.37 15362.83 14381.82 11157.10 18695.25 1490.94 17
PVSNet_Blended_VisFu70.04 16468.88 18273.53 12582.71 10763.62 11674.81 13981.95 9648.53 25867.16 29179.18 26251.42 24178.38 17554.39 21679.72 27678.60 238
v875.07 9775.64 9573.35 12673.42 23547.46 25175.20 13481.45 10460.05 12885.64 4589.26 8758.08 19981.80 11269.71 8087.97 16790.79 19
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9562.47 11479.06 12580.19 24461.83 15478.79 16559.83 16887.35 17679.54 228
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16581.73 9952.76 21181.85 9184.56 18157.12 20982.24 10668.58 8387.33 17789.06 33
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11865.57 7472.54 22381.76 22370.98 7385.26 5447.88 26990.00 12773.37 289
test_fmvsm_n_192069.63 17168.45 18973.16 13070.56 27265.86 9870.26 20178.35 16837.69 34574.29 19778.89 26761.10 16768.10 28765.87 11479.07 28085.53 83
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10566.17 7073.30 21383.31 20259.96 17783.10 9158.45 17881.66 25582.87 160
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32077.06 11282.61 8780.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31777.15 11081.28 10879.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
v114473.29 12073.39 12273.01 13474.12 22748.11 23972.01 17081.08 11553.83 20281.77 9384.68 17958.07 20081.91 11068.10 8786.86 18688.99 36
MVS_111021_HR72.98 13172.97 13472.99 13580.82 12965.47 10068.81 22072.77 22257.67 15075.76 17482.38 21671.01 7277.17 19561.38 14986.15 19576.32 264
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 31976.76 11380.46 12878.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
testf175.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD_test275.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
MVS_111021_LR72.10 14571.82 15072.95 13779.53 14273.90 3670.45 19966.64 27256.87 15876.81 15781.76 22368.78 8871.76 25861.81 14483.74 23073.18 291
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26869.47 21080.14 13665.22 8281.74 9587.08 12761.82 15581.07 12556.21 19694.98 2091.93 8
EIA-MVS68.59 18867.16 20872.90 14175.18 20755.64 18469.39 21181.29 10752.44 21364.53 30470.69 33660.33 17482.30 10454.27 21876.31 30380.75 206
v192192072.96 13272.98 13372.89 14274.67 21647.58 24971.92 17580.69 12151.70 22281.69 9783.89 19156.58 21582.25 10568.34 8587.36 17588.82 40
v124073.06 12673.14 12872.84 14374.74 21547.27 25471.88 17781.11 11251.80 22082.28 8884.21 18656.22 21882.34 10368.82 8287.17 18488.91 38
v14419272.99 13073.06 13172.77 14474.58 22047.48 25071.90 17680.44 12951.57 22381.46 9984.11 18858.04 20182.12 10767.98 9187.47 17388.70 43
lessismore_v072.75 14579.60 14156.83 17757.37 32183.80 7289.01 9747.45 26878.74 16664.39 12386.49 19482.69 166
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33777.16 10981.81 9880.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
thisisatest053067.05 21265.16 23272.73 14773.10 24550.55 21271.26 18863.91 29550.22 24274.46 19580.75 23426.81 37780.25 14259.43 17286.50 19387.37 54
IterMVS-LS73.01 12873.12 13072.66 14873.79 23149.90 22271.63 18078.44 16758.22 14380.51 11286.63 14558.15 19579.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26869.26 21378.81 15766.66 6781.74 9586.88 13363.26 13981.07 12556.21 19694.98 2091.05 15
MVSFormer69.93 16869.03 18072.63 15074.93 20959.19 15883.98 3675.72 20052.27 21463.53 31876.74 28843.19 28980.56 13572.28 6778.67 28578.14 246
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25149.47 22772.94 16084.71 5159.49 13280.90 10988.81 10370.07 7979.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
iter_conf0567.34 20865.62 22472.50 15269.82 28447.06 25672.19 16676.86 18945.32 28572.86 21782.85 20920.53 39683.73 7861.13 15389.02 15486.70 65
IterMVS-SCA-FT67.68 20166.07 22072.49 15373.34 23758.20 17163.80 28765.55 28148.10 26076.91 15282.64 21345.20 27678.84 16361.20 15177.89 29480.44 215
v2v48272.55 14172.58 13972.43 15472.92 25046.72 26071.41 18379.13 15255.27 17481.17 10485.25 17555.41 22081.13 12267.25 10585.46 20289.43 26
MAR-MVS67.72 20066.16 21872.40 15574.45 22164.99 10774.87 13777.50 18248.67 25765.78 29868.58 36057.01 21277.79 18946.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
3Dnovator65.95 1171.50 15071.22 16072.34 15673.16 24163.09 12078.37 9478.32 16957.67 15072.22 22884.61 18054.77 22178.47 17060.82 15781.07 25975.45 270
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28365.65 26777.32 18464.32 9375.59 17687.08 12762.45 14881.34 11754.90 20795.63 891.93 8
FE-MVS68.29 19366.96 21272.26 15874.16 22654.24 19277.55 10373.42 21657.65 15272.66 22084.91 17832.02 35181.49 11648.43 26281.85 24881.04 195
DPM-MVS69.98 16669.22 17872.26 15882.69 10858.82 16570.53 19781.23 11047.79 26564.16 30880.21 24251.32 24283.12 9060.14 16484.95 21574.83 276
test_fmvsmvis_n_192072.36 14272.49 14071.96 16071.29 26364.06 11372.79 16181.82 9740.23 32981.25 10381.04 23070.62 7568.69 28169.74 7983.60 23483.14 152
FA-MVS(test-final)71.27 15171.06 16171.92 16173.96 22852.32 20476.45 11776.12 19559.07 13774.04 20486.18 15852.18 23579.43 15559.75 17081.76 25084.03 124
V4271.06 15370.83 16471.72 16267.25 31447.14 25565.94 26180.35 13251.35 22883.40 7683.23 20659.25 18578.80 16465.91 11380.81 26389.23 29
Effi-MVS+72.10 14572.28 14571.58 16374.21 22550.33 21574.72 14482.73 8462.62 11170.77 24676.83 28769.96 8180.97 12960.20 16178.43 28783.45 142
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29670.98 19178.29 17168.67 5683.04 7789.26 8772.99 5880.75 13455.58 20495.47 1091.35 13
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8854.55 18783.50 7589.21 8971.51 6575.74 21061.24 15092.34 7988.94 37
eth_miper_zixun_eth69.42 17668.73 18771.50 16667.99 30646.42 26367.58 23778.81 15750.72 23678.13 13580.34 24150.15 24980.34 14060.18 16284.65 21887.74 50
EI-MVSNet69.61 17369.01 18171.41 16773.94 22949.90 22271.31 18671.32 23958.22 14375.40 18170.44 33758.16 19475.85 20662.51 14179.81 27388.48 44
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14656.32 16576.35 17183.36 20170.76 7477.96 18663.32 13781.84 24983.18 151
ET-MVSNet_ETH3D63.32 25060.69 27371.20 16970.15 28155.66 18365.02 27564.32 29243.28 30768.99 26772.05 32825.46 38478.19 18354.16 22082.80 23979.74 224
iter_conf05_1166.64 21565.20 23070.94 17073.28 23846.89 25766.09 25977.03 18843.44 30263.43 32074.09 31547.19 27083.26 8756.25 19486.01 19882.66 167
bld_raw_dy_0_6469.94 16769.64 17270.84 17173.28 23846.85 25875.82 13186.52 1640.43 32881.41 10074.77 30148.70 26283.01 9356.25 19489.59 13882.66 167
PAPR69.20 17968.66 18870.82 17275.15 20847.77 24675.31 13381.11 11249.62 24966.33 29479.27 25961.53 15882.96 9448.12 26681.50 25781.74 187
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19284.26 6255.62 17277.46 14587.10 12667.09 10477.81 18863.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10154.10 19359.93 31572.24 22933.67 36669.00 26675.63 29438.69 31776.93 19836.60 34475.45 31180.81 205
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27174.73 14380.19 13468.80 5382.95 8092.91 866.26 11676.76 20258.41 17992.77 7289.30 27
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14077.64 19262.95 14088.14 16271.73 308
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16884.40 5955.95 16976.62 16186.46 15167.20 10278.03 18564.22 12587.27 18087.11 61
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23563.78 28882.13 9154.00 19868.96 26875.17 29958.95 18880.06 14758.55 17782.74 24082.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26561.17 13874.00 15457.18 32540.77 32368.83 27580.88 23263.11 14167.61 29266.94 10674.72 31682.33 178
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21848.61 23466.06 26078.32 16950.62 23771.48 24075.54 29568.75 8979.59 15350.55 24378.73 28482.86 161
xiu_mvs_v1_base_debu67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28961.16 13973.34 15756.83 32840.96 32068.36 27880.08 24762.84 14267.57 29366.90 10874.50 32081.78 186
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 10958.80 16671.48 18173.64 21454.98 17776.55 16481.77 22261.10 16778.94 16254.87 20880.84 26272.74 298
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19153.90 19664.62 27973.48 21558.01 14573.91 20681.78 22159.09 18678.22 18048.59 25977.96 29378.31 242
ambc70.10 18777.74 17250.21 21774.28 15177.93 17879.26 12388.29 11554.11 22779.77 14964.43 12291.10 10280.30 216
cascas64.59 23662.77 25770.05 18875.27 20550.02 21961.79 30171.61 23142.46 30963.68 31568.89 35649.33 25480.35 13947.82 27084.05 22779.78 223
新几何169.99 18988.37 3471.34 5162.08 30443.85 29474.99 18486.11 16352.85 23270.57 26850.99 23983.23 23768.05 339
TAMVS65.31 22763.75 24669.97 19082.23 11459.76 15666.78 25363.37 29845.20 28669.79 25879.37 25847.42 26972.17 25134.48 35785.15 21077.99 250
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14871.70 23072.33 3585.50 5093.65 377.98 2176.88 20054.60 21291.64 8689.08 32
fmvsm_s_conf0.1_n66.60 21665.54 22569.77 19268.99 29559.15 16172.12 16756.74 33040.72 32568.25 28180.14 24661.18 16666.92 29967.34 10374.40 32183.23 150
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23767.58 9494.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l69.82 17069.89 17069.61 19466.24 32443.48 28668.12 23279.61 14451.43 22577.72 14180.18 24554.61 22478.15 18463.62 13387.50 17287.20 58
fmvsm_s_conf0.5_n66.34 22165.27 22869.57 19568.20 30359.14 16371.66 17956.48 33140.92 32167.78 28379.46 25561.23 16366.90 30067.39 9974.32 32482.66 167
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18080.99 6176.84 19062.48 11371.24 24277.51 28361.51 15980.96 13252.04 23085.76 20171.22 313
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 21972.70 22354.79 18178.59 12884.12 18754.69 22276.74 20359.40 17382.20 24386.79 63
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13358.28 17065.26 27265.66 27944.36 29267.30 29075.54 29543.27 28871.77 25737.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
jason64.47 23962.84 25669.34 19976.91 18459.20 15767.15 24665.67 27835.29 35665.16 30176.74 28844.67 28070.68 26654.74 21079.28 27978.14 246
jason: jason.
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 31362.04 12670.69 19669.85 25539.46 33269.59 26081.09 22958.15 19568.73 28067.51 9678.16 29277.07 262
tt080576.12 8478.43 6869.20 20181.32 12541.37 30276.72 11477.64 18063.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
BH-untuned69.39 17769.46 17369.18 20277.96 16956.88 17568.47 22977.53 18156.77 16077.79 14079.63 25360.30 17580.20 14546.04 28380.65 26470.47 319
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24269.85 20779.62 14253.94 20176.54 16582.00 21859.00 18774.68 22357.32 18487.21 18284.72 101
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
cl2267.14 20966.51 21569.03 20563.20 34543.46 28766.88 25276.25 19449.22 25274.48 19477.88 27945.49 27577.40 19460.64 15884.59 22086.24 69
miper_ehance_all_eth68.36 19068.16 19668.98 20665.14 33543.34 28867.07 24778.92 15649.11 25476.21 17277.72 28053.48 22977.92 18761.16 15284.59 22085.68 82
lupinMVS63.36 24961.49 26568.97 20774.93 20959.19 15865.80 26564.52 29134.68 36163.53 31874.25 31043.19 28970.62 26753.88 22278.67 28577.10 259
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20380.37 7178.79 16049.63 24873.51 20885.14 17653.66 22879.12 15855.11 20675.54 30975.11 275
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 14936.57 33971.82 17879.54 14757.63 15382.57 8690.38 6459.38 18478.99 16157.91 18294.56 3491.23 14
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23570.83 25061.23 11974.07 20288.69 10559.86 17975.62 21151.11 23790.28 12184.61 106
Anonymous2024052972.56 13973.79 11668.86 21176.89 18745.21 27368.80 22277.25 18667.16 6176.89 15390.44 5665.95 11974.19 23050.75 24090.00 12787.18 59
FIs72.56 13973.80 11568.84 21278.74 16037.74 33371.02 19079.83 14056.12 16680.88 11089.45 8458.18 19378.28 17956.63 18893.36 6490.51 21
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19578.29 9577.35 18348.85 25670.22 25283.52 19552.65 23376.93 19855.31 20581.99 24575.49 269
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31661.38 13470.03 20369.15 26038.59 33968.41 27780.36 24056.56 21668.32 28566.10 11077.45 29676.46 263
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 22865.60 26978.96 15445.50 28059.98 33778.61 26951.82 23778.20 18144.30 29284.11 22678.27 243
MVP-Stereo61.56 26859.22 28168.58 21679.28 14660.44 15169.20 21471.57 23243.58 30056.42 35978.37 27239.57 31376.46 20534.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23941.83 31175.40 18179.12 26330.25 36675.85 20656.30 19379.81 27383.03 156
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32263.58 31769.12 35126.28 38078.34 17748.83 25682.13 24480.26 217
cl____68.26 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.42 21548.74 26075.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19468.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.43 21448.74 26075.38 21260.94 15589.81 13285.81 76
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17642.52 30873.42 21172.79 32349.66 25077.68 19158.12 18084.59 22084.54 110
LF4IMVS67.50 20267.31 20768.08 22258.86 37061.93 12771.43 18275.90 19944.67 29172.42 22480.20 24357.16 20770.44 27058.99 17586.12 19671.88 306
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21661.42 30365.18 28447.57 26755.83 36267.15 36923.77 39079.60 15243.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14675.15 20658.41 14268.74 27688.14 12056.08 21983.69 7959.90 16781.71 25479.43 230
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23770.93 19286.27 2054.66 18461.35 32886.77 13733.29 33985.67 4755.93 19870.17 35369.62 328
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20260.18 15369.49 20962.05 30538.81 33874.13 20082.23 21743.76 28668.65 28242.53 30280.63 26674.63 277
TR-MVS64.59 23663.54 24967.73 22775.75 20350.83 21163.39 29170.29 25349.33 25171.55 23874.55 30550.94 24378.46 17140.43 31675.69 30773.89 286
MSDG67.47 20567.48 20567.46 22870.70 26854.69 18966.90 25178.17 17260.88 12370.41 24974.76 30261.22 16573.18 23847.38 27276.87 29974.49 280
WR-MVS71.20 15272.48 14167.36 22984.98 7035.70 34764.43 28268.66 26365.05 8681.49 9886.43 15257.57 20676.48 20450.36 24493.32 6589.90 23
MVS_Test69.84 16970.71 16567.24 23067.49 31243.25 29069.87 20681.22 11152.69 21271.57 23786.68 14162.09 15374.51 22566.05 11178.74 28383.96 125
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24356.29 33769.58 25739.32 33370.07 25578.19 27534.93 33472.68 24253.44 22683.74 23081.00 198
diffmvspermissive67.42 20667.50 20467.20 23162.26 34945.21 27364.87 27677.04 18748.21 25971.74 23179.70 25258.40 19271.17 26464.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS64.49 23863.61 24867.14 23376.68 18975.15 2768.49 22842.85 38751.17 23277.85 13980.51 23745.76 27266.31 30852.83 22976.35 30259.96 376
VDDNet71.60 14973.13 12967.02 23486.29 4741.11 30469.97 20466.50 27368.72 5574.74 18791.70 2559.90 17875.81 20848.58 26091.72 8484.15 123
GBi-Net68.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
test168.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17273.03 21761.14 12079.45 12290.36 6760.44 17375.20 21650.20 24588.05 16484.54 110
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 22861.23 30578.96 15442.04 31059.98 33768.86 35751.82 23778.20 18144.30 29277.77 29572.52 299
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25951.33 22969.33 26374.47 30636.83 32874.94 21950.60 24274.72 31680.57 213
BH-w/o64.81 23364.29 24166.36 24076.08 19854.71 18865.61 26875.23 20550.10 24471.05 24571.86 32954.33 22579.02 16038.20 33176.14 30465.36 354
pmmvs671.82 14773.66 11866.31 24175.94 20042.01 29866.99 24872.53 22563.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 11987.22 56
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21371.97 17179.36 14850.34 23982.81 8383.63 19464.38 13467.27 29661.54 14883.71 23280.71 209
PAPM61.79 26660.37 27566.05 24376.09 19641.87 29969.30 21276.79 19240.64 32653.80 37279.62 25444.38 28282.92 9529.64 37773.11 33273.36 290
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17364.53 28160.22 31136.91 35065.96 29577.27 28439.66 31268.54 28338.87 32474.89 31571.80 307
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17151.42 20763.33 29272.33 22745.09 28861.60 32668.04 36262.39 14973.95 23349.07 25473.87 32772.34 301
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17351.32 20863.63 28972.31 22845.06 28961.70 32569.66 34862.56 14573.93 23449.06 25573.91 32672.31 302
FMVSNet267.48 20368.21 19465.29 24773.14 24238.94 32168.81 22071.21 24554.81 17876.73 15986.48 15048.63 26374.60 22447.98 26886.11 19782.35 175
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20063.81 28662.25 30146.57 27371.51 23980.40 23944.60 28166.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15674.50 21152.05 21854.78 36775.44 29843.99 28470.42 27153.49 22578.41 28880.59 212
LFMVS67.06 21167.89 19864.56 25278.02 16738.25 32870.81 19559.60 31365.18 8371.06 24486.56 14843.85 28575.22 21546.35 28089.63 13680.21 218
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25470.38 25251.55 22474.72 18883.27 20437.89 32374.44 22647.12 27385.37 20381.57 189
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22248.11 37257.24 32453.31 20780.95 10679.39 25749.00 25861.55 33045.92 28480.05 27081.03 196
testdata64.13 25585.87 5963.34 11861.80 30747.83 26476.42 17086.60 14748.83 25962.31 32754.46 21481.26 25866.74 348
TinyColmap67.98 19669.28 17564.08 25667.98 30746.82 25970.04 20275.26 20453.05 20877.36 14686.79 13559.39 18372.59 24745.64 28688.01 16672.83 296
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33872.45 24837.14 33964.22 37475.60 268
pm-mvs168.40 18969.85 17164.04 25873.10 24539.94 31464.61 28070.50 25155.52 17373.97 20589.33 8563.91 13768.38 28449.68 24988.02 16583.81 129
mvs_anonymous65.08 23065.49 22663.83 25963.79 34237.60 33566.52 25669.82 25643.44 30273.46 21086.08 16458.79 19071.75 25951.90 23275.63 30882.15 180
VPA-MVSNet68.71 18670.37 16763.72 26076.13 19538.06 33164.10 28471.48 23556.60 16474.10 20188.31 11464.78 13269.72 27347.69 27190.15 12483.37 145
ECVR-MVScopyleft64.82 23265.22 22963.60 26178.80 15831.14 37266.97 24956.47 33254.23 19169.94 25688.68 10637.23 32674.81 22245.28 29189.41 14384.86 96
TransMVSNet (Re)69.62 17271.63 15363.57 26276.51 19035.93 34565.75 26671.29 24161.05 12175.02 18389.90 7865.88 12170.41 27249.79 24789.48 14184.38 117
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20668.07 23368.00 26733.88 36365.87 29681.25 22737.91 32267.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13750.93 21054.07 35465.59 28028.56 38261.53 32774.33 30841.09 30266.52 30733.91 36067.69 36772.92 294
Anonymous20240521166.02 22266.89 21363.43 26574.22 22438.14 32959.00 31966.13 27563.33 10769.76 25985.95 16851.88 23670.50 26944.23 29487.52 17181.64 188
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25182.02 181
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25132.07 34972.42 24938.61 32783.46 23582.02 181
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22767.14 26943.74 29870.61 24879.22 26047.90 26772.66 24348.75 25773.84 32871.21 314
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24744.04 29373.06 21578.84 26839.72 31160.33 33355.82 20084.64 21982.88 159
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20350.84 23577.12 14885.42 17256.84 21369.44 27551.07 23891.16 9785.08 91
test111164.62 23565.19 23162.93 27179.01 15629.91 37865.45 27054.41 34254.09 19671.47 24188.48 11037.02 32774.29 22946.83 27889.94 13084.58 109
Baseline_NR-MVSNet70.62 15973.19 12762.92 27276.97 18234.44 35568.84 21870.88 24960.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22572.63 22433.54 36861.05 33267.29 36843.62 28771.26 26349.49 25167.84 36672.19 304
MVS60.62 27659.97 27762.58 27468.13 30547.28 25368.59 22573.96 21332.19 37059.94 33968.86 35750.48 24677.64 19241.85 30775.74 30662.83 365
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19059.63 31647.51 37341.05 31974.58 19374.30 30931.06 36065.31 31351.61 23379.85 27267.39 341
test250661.23 27060.85 27162.38 27678.80 15827.88 38667.33 24437.42 40054.23 19167.55 28788.68 10617.87 40474.39 22746.33 28189.41 14384.86 96
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32465.80 29772.57 32441.23 29963.92 32046.87 27782.42 24278.33 241
tfpnnormal66.48 21867.93 19762.16 27873.40 23636.65 33863.45 29064.99 28555.97 16872.82 21987.80 12357.06 21169.10 27948.31 26487.54 17080.72 208
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24074.20 21235.80 35572.25 22784.48 18345.67 27371.95 25637.95 33384.97 21170.42 321
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23851.42 22668.93 27082.72 21165.62 12262.22 32854.41 21584.67 21677.28 255
LCM-MVSNet-Re69.10 18171.57 15661.70 28170.37 27734.30 35761.45 30279.62 14256.81 15989.59 888.16 11968.44 9272.94 24042.30 30387.33 17777.85 252
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19473.59 3961.83 30049.00 36847.30 26961.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25177.08 260
CVMVSNet59.21 28658.44 28961.51 28373.94 22947.76 24771.31 18664.56 29026.91 38860.34 33670.44 33736.24 33167.65 29053.57 22468.66 36169.12 333
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 24932.07 34972.09 25235.61 35281.73 25177.08 260
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24553.87 34453.60 20469.88 25783.37 19940.52 30670.98 26541.40 31086.78 18981.48 190
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18659.10 31847.72 37150.85 23450.31 38585.81 17020.10 39863.97 31936.16 34955.41 39564.55 361
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23668.79 26249.08 25565.32 30086.26 15658.02 20266.85 30339.33 32079.79 27578.27 243
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23860.22 31137.14 34959.12 34576.34 29032.78 34371.99 25539.12 32369.27 35872.47 300
1112_ss59.48 28458.99 28460.96 29077.84 17042.39 29761.42 30368.45 26537.96 34359.93 34067.46 36545.11 27865.07 31540.89 31471.81 34275.41 271
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16368.27 26626.96 38669.08 26575.71 29332.09 34867.44 29455.59 20378.90 28273.97 284
VNet64.01 24665.15 23460.57 29273.28 23835.61 34857.60 33067.08 27054.61 18566.76 29383.37 19956.28 21766.87 30142.19 30485.20 20979.23 232
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23156.77 32933.60 36758.25 34875.52 29730.25 36674.33 22833.27 36369.76 35771.32 311
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23770.93 19256.40 33332.87 36961.35 32886.66 14233.19 34063.22 32448.50 26170.17 35369.62 328
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30661.00 33373.48 31745.20 27669.38 27640.34 31770.31 35270.05 322
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 24869.97 20458.02 31749.73 24747.28 38973.02 32238.14 31962.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19480.08 7875.93 19864.24 9473.49 20988.93 10157.89 20362.46 32559.75 17091.55 9062.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VPNet65.58 22567.56 20259.65 29879.72 13930.17 37760.27 31362.14 30254.19 19471.24 24286.63 14558.80 18967.62 29144.17 29590.87 11281.18 192
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28751.21 23167.46 28881.01 23150.75 24463.51 32338.47 32988.12 16382.75 164
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24164.01 31071.46 33232.49 34571.39 26231.31 36979.57 27771.19 315
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24058.76 32266.22 27427.54 38476.66 16068.69 35925.32 38651.31 35453.42 22773.38 33077.97 251
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28339.24 33554.69 36978.14 27644.28 28367.18 29833.75 36270.79 34873.95 285
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14338.13 33057.62 32966.98 27134.74 35959.62 34377.56 28242.92 29163.65 32238.66 32670.73 34975.35 273
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18160.84 30864.11 29441.23 31664.04 30978.22 27460.00 17648.80 36154.17 21983.71 23271.37 310
MIMVSNet166.57 21769.23 17758.59 30581.26 12737.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
ANet_high67.08 21069.94 16958.51 30657.55 37527.09 38858.43 32576.80 19163.56 10182.40 8791.93 2059.82 18064.98 31650.10 24688.86 15683.46 141
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25857.28 32232.16 37156.90 35470.39 33932.75 34465.30 31434.29 35858.79 38769.41 330
sd_testset63.55 24765.38 22758.07 30873.04 24838.83 32357.41 33165.44 28251.42 22668.93 27082.72 21163.76 13858.11 34341.05 31284.67 21677.28 255
testing358.28 29258.38 29058.00 30977.45 17726.12 39360.78 30943.00 38656.02 16770.18 25375.76 29213.27 41167.24 29748.02 26780.89 26080.65 210
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23161.00 30762.93 30035.98 35358.36 34768.93 35536.71 32966.59 30637.62 33663.30 37657.39 382
FPMVS59.43 28560.07 27657.51 31177.62 17671.52 4962.33 29950.92 35957.40 15569.40 26280.00 24839.14 31561.92 32937.47 33766.36 36939.09 399
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 23957.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 26856.04 36073.60 31631.05 36168.06 28840.64 31564.64 37269.77 326
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25056.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22156.70 33565.80 27726.22 38969.42 26165.25 37231.82 35249.98 35849.63 25070.36 35170.71 318
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32763.85 31269.91 34740.04 30958.22 34243.49 29975.29 31471.03 317
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27663.83 31378.47 27041.20 30063.68 32139.44 31968.99 35974.13 283
Anonymous2024052163.55 24766.07 22055.99 31866.18 32644.04 28168.77 22368.80 26146.99 27072.57 22185.84 16939.87 31050.22 35753.40 22892.23 8173.71 288
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27556.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29052.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25051.80 35839.89 33058.39 34673.12 32131.69 35458.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32131.03 40029.13 38371.35 34462.70 366
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21455.80 34265.90 27624.96 39265.39 29960.64 38627.69 37548.46 36345.88 28567.99 36465.46 353
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 21844.34 38378.17 17223.62 39668.95 26962.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 23956.40 33354.05 19772.04 23086.66 14233.19 34060.17 33443.69 29687.45 17477.42 253
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22056.75 33460.53 31025.68 39059.74 34257.86 39029.40 37147.41 36843.10 30063.66 37564.08 363
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 29961.06 33183.38 19825.46 38454.87 34930.11 37481.64 25672.75 297
UWE-MVS52.94 32352.70 32653.65 32873.56 23227.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23054.11 35364.96 28624.64 39463.66 31659.61 38928.33 37448.45 36445.38 29067.30 36862.66 368
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35754.26 35125.93 38855.93 39265.07 356
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33554.20 35230.34 37269.87 35565.71 352
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21741.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20842.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30038.08 32057.37 34634.02 35974.40 32166.88 345
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17242.47 38523.85 40923.30 39764.80 30362.17 38127.12 37640.59 39229.17 38148.11 39957.69 381
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30154.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23655.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29330.56 38059.87 34160.68 38540.16 30847.47 36748.25 26562.46 37861.58 373
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 20939.91 38967.56 26821.84 40051.94 37750.79 39833.83 33739.77 39335.25 35561.50 38162.38 370
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24551.44 36554.61 34026.95 38763.95 31160.85 38437.86 32444.97 37745.53 28762.97 37759.72 377
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24365.07 30283.23 20645.61 27448.11 36630.22 37383.82 22971.07 316
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29558.05 34964.07 37446.22 27158.83 33946.16 28272.36 33768.12 337
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29558.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30343.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30443.85 38440.98 31371.20 34669.10 334
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30449.41 38660.47 38729.22 37244.73 37942.09 30572.14 34062.33 371
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31255.94 36183.86 19241.19 30150.42 35626.05 38775.38 31266.27 349
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32074.75 30341.82 29745.83 37138.59 32859.42 38667.98 340
wuyk23d61.97 26366.25 21749.12 35358.19 37460.77 14966.32 25752.97 35255.93 17090.62 586.91 13273.07 5735.98 39820.63 40291.63 8750.62 388
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26042.52 29544.29 38227.95 38481.88 24766.88 345
SSC-MVS61.79 26666.08 21948.89 35576.91 18410.00 40953.56 35647.37 37468.20 5876.56 16389.21 8954.13 22657.59 34554.75 20974.07 32579.08 234
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31479.43 25656.59 21445.57 37236.92 34371.29 34565.25 355
WB-MVS60.04 28064.19 24247.59 35776.09 19610.22 40852.44 36146.74 37565.17 8474.07 20287.48 12453.48 22955.28 34849.36 25272.84 33377.28 255
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 33044.40 38129.15 38268.23 36258.75 379
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29847.07 36930.68 37160.78 38361.13 374
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19848.08 37342.40 38922.36 39844.01 39853.05 39542.60 29445.49 37331.69 36861.36 38241.79 397
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20533.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29645.40 37431.28 37064.42 37362.47 369
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33348.69 36239.24 32158.51 38965.89 350
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30455.81 36367.65 36429.22 37243.77 38525.73 39169.87 35564.62 360
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28367.84 28281.17 22851.81 23943.20 38629.30 37879.41 27867.34 343
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30741.91 39031.85 36761.97 38060.35 375
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26430.20 36842.32 38732.77 36566.36 36966.81 347
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27238.00 40248.43 40026.42 37946.27 37037.11 34075.38 31246.03 393
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27439.55 40051.15 39726.00 38145.37 37537.68 33476.41 30145.69 394
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22236.54 39524.37 40819.56 40145.76 39153.46 39432.99 34237.97 39726.17 38635.52 40144.99 396
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31764.28 30779.82 25044.77 27948.43 36536.24 34887.61 16978.03 248
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13129.97 36949.98 35843.62 29774.40 32164.53 362
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38242.04 38937.19 33855.50 39465.78 351
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30545.12 37623.15 39734.96 40241.16 398
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36533.87 39929.29 37972.61 33567.39 341
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35739.31 39425.93 38855.93 39265.07 356
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22633.96 33655.48 34724.46 39556.79 39138.43 400
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31827.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28138.83 31639.29 39525.32 39360.12 38548.08 390
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31551.79 37856.48 39139.44 31449.91 36021.42 40055.35 39650.85 387
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 28963.15 37731.82 35230.60 40139.19 32262.28 37945.53 395
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33229.51 40219.08 40367.85 36550.22 389
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3834.57 40711.61 40527.37 4031.96 403
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2540.00 4090.00 41074.25 31068.16 950.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
PC_three_145246.98 27181.83 9286.28 15466.55 11584.47 7163.31 13890.78 11383.49 137
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
ZD-MVS83.91 8669.36 6981.09 11458.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
IU-MVS86.12 5360.90 14480.38 13045.49 28281.31 10175.64 4194.39 4184.65 102
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 148
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
save fliter87.00 3967.23 8679.24 8577.94 17756.65 163
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 119
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
GSMVS70.05 322
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35570.05 322
sam_mvs31.21 359
MTGPAbinary80.63 124
test_post166.63 2542.08 40530.66 36459.33 33740.34 317
test_post1.99 40630.91 36254.76 350
patchmatchnet-post68.99 35231.32 35669.38 276
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24138.70 325
test9_res72.12 6991.37 9277.40 254
TEST985.47 6369.32 7076.42 11878.69 16253.73 20376.97 14986.74 13866.84 10781.10 123
test_885.09 6967.89 7976.26 12378.66 16454.00 19876.89 15386.72 14066.60 11380.89 133
agg_prior270.70 7490.93 10778.55 240
agg_prior84.44 8166.02 9778.62 16576.95 15180.34 140
test_prior470.14 6377.57 101
test_prior275.57 13258.92 13976.53 16686.78 13667.83 10069.81 7792.76 73
旧先验271.17 18945.11 28778.54 13161.28 33159.19 174
新几何271.33 185
旧先验184.55 7860.36 15263.69 29687.05 13054.65 22383.34 23669.66 327
无先验74.82 13870.94 24847.75 26676.85 20154.47 21372.09 305
原ACMM274.78 142
test22287.30 3769.15 7367.85 23459.59 31441.06 31873.05 21685.72 17148.03 26680.65 26466.92 344
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23057.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 170
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 415
nn0.00 415
door-mid55.02 338
test1182.71 85
door52.91 353
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 234
ACMP_Plane82.37 11077.32 10659.08 13471.58 234
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 132
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9463.07 12185.97 166
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 37032.93 36471.48 309
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29130.77 36359.62 33638.21 33073.33 331
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145