| DPM-MVS | | | 90.70 3 | 90.52 8 | 91.24 1 | 89.68 152 | 76.68 2 | 97.29 2 | 95.35 15 | 82.87 22 | 91.58 13 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 96 | 97.64 2 | 97.94 1 |
|
| MVS | | | 84.66 75 | 82.86 102 | 90.06 2 | 90.93 128 | 74.56 6 | 87.91 277 | 95.54 13 | 68.55 265 | 72.35 199 | 94.71 76 | 59.78 141 | 98.90 19 | 81.29 112 | 94.69 32 | 96.74 16 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 6 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 5 | 97.63 3 | 97.62 2 |
|
| MCST-MVS | | | 91.08 1 | 91.46 3 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 3 | 95.58 11 | 89.33 2 | 85.77 53 | 96.26 32 | 72.84 26 | 99.38 1 | 92.64 19 | 95.93 9 | 97.08 12 |
|
| DELS-MVS | | | 90.05 7 | 90.09 11 | 89.94 4 | 93.14 71 | 73.88 7 | 97.01 5 | 94.40 50 | 88.32 4 | 85.71 54 | 94.91 71 | 74.11 19 | 98.91 17 | 87.26 62 | 95.94 8 | 97.03 13 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| PS-MVSNAJ | | | 88.14 17 | 87.61 28 | 89.71 6 | 92.06 97 | 76.72 1 | 95.75 21 | 93.26 90 | 83.86 16 | 89.55 30 | 96.06 38 | 53.55 212 | 97.89 43 | 91.10 33 | 93.31 52 | 94.54 104 |
|
| MG-MVS | | | 87.11 33 | 86.27 43 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 44 | 94.49 44 | 78.74 87 | 83.87 74 | 92.94 120 | 64.34 85 | 96.94 105 | 75.19 153 | 94.09 37 | 95.66 50 |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 26 | 94.77 26 | 96.51 24 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 26 | | | | | 99.07 13 | 92.01 26 | 94.77 26 | 96.51 24 |
|
| CHOSEN 1792x2688 | | | 84.98 71 | 83.45 87 | 89.57 10 | 89.94 147 | 75.14 5 | 92.07 155 | 92.32 124 | 81.87 33 | 75.68 156 | 88.27 202 | 60.18 135 | 98.60 27 | 80.46 117 | 90.27 92 | 94.96 82 |
|
| xiu_mvs_v2_base | | | 87.92 22 | 87.38 32 | 89.55 11 | 91.41 121 | 76.43 3 | 95.74 22 | 93.12 98 | 83.53 19 | 89.55 30 | 95.95 40 | 53.45 216 | 97.68 50 | 91.07 34 | 92.62 59 | 94.54 104 |
|
| LFMVS | | | 84.34 80 | 82.73 104 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 43 | 91.89 144 | 71.90 201 | 82.16 85 | 93.49 111 | 47.98 263 | 97.05 91 | 82.55 100 | 84.82 138 | 97.25 9 |
|
| iter_conf05_11 | | | 86.99 35 | 86.27 43 | 89.15 13 | 93.74 52 | 72.45 13 | 97.56 1 | 87.04 308 | 88.32 4 | 92.60 5 | 96.57 23 | 32.61 347 | 97.45 66 | 92.21 24 | 95.80 10 | 97.53 6 |
|
| bld_raw_dy_0_64 | | | 82.84 111 | 80.75 131 | 89.09 14 | 93.74 52 | 72.16 15 | 93.16 110 | 77.36 359 | 89.69 1 | 74.55 169 | 96.48 27 | 32.35 349 | 97.56 62 | 92.21 24 | 77.24 211 | 97.53 6 |
|
| MM | | | 90.87 2 | 91.52 2 | 88.92 15 | 92.12 96 | 71.10 28 | 97.02 4 | 96.04 6 | 88.70 3 | 91.57 14 | 96.19 35 | 70.12 40 | 98.91 17 | 96.83 1 | 95.06 17 | 96.76 15 |
|
| DVP-MVS++ | | | 90.53 4 | 91.09 5 | 88.87 16 | 97.31 4 | 69.91 43 | 93.96 71 | 94.37 52 | 72.48 183 | 92.07 9 | 96.85 16 | 83.82 2 | 99.15 2 | 91.53 31 | 97.42 4 | 97.55 4 |
|
| CSCG | | | 86.87 36 | 86.26 45 | 88.72 17 | 95.05 31 | 70.79 31 | 93.83 83 | 95.33 16 | 68.48 267 | 77.63 137 | 94.35 89 | 73.04 24 | 98.45 30 | 84.92 83 | 93.71 46 | 96.92 14 |
|
| SED-MVS | | | 89.94 9 | 90.36 10 | 88.70 18 | 96.45 12 | 69.38 54 | 96.89 6 | 94.44 46 | 71.65 213 | 92.11 7 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 21 | 95.36 14 | 97.62 2 |
|
| test_0728_SECOND | | | | | 88.70 18 | 96.45 12 | 70.43 35 | 96.64 10 | 94.37 52 | | | | | 99.15 2 | 91.91 29 | 94.90 22 | 96.51 24 |
|
| MGCFI-Net | | | 86.85 37 | 86.25 46 | 88.66 20 | 91.80 108 | 71.92 16 | 93.54 96 | 91.71 154 | 80.26 56 | 87.55 38 | 95.25 60 | 63.59 98 | 96.93 107 | 88.18 51 | 84.34 142 | 97.11 10 |
|
| canonicalmvs | | | 86.85 37 | 86.25 46 | 88.66 20 | 91.80 108 | 71.92 16 | 93.54 96 | 91.71 154 | 80.26 56 | 87.55 38 | 95.25 60 | 63.59 98 | 96.93 107 | 88.18 51 | 84.34 142 | 97.11 10 |
|
| CNVR-MVS | | | 90.32 6 | 90.89 7 | 88.61 22 | 96.76 8 | 70.65 32 | 96.47 14 | 94.83 30 | 84.83 13 | 89.07 32 | 96.80 19 | 70.86 36 | 99.06 15 | 92.64 19 | 95.71 11 | 96.12 38 |
|
| MVS_0304 | | | 90.01 8 | 90.50 9 | 88.53 23 | 90.14 143 | 70.94 29 | 96.47 14 | 95.72 10 | 87.33 6 | 89.60 29 | 96.26 32 | 68.44 45 | 98.74 24 | 95.82 4 | 94.72 31 | 95.90 45 |
|
| CANet | | | 89.61 12 | 89.99 12 | 88.46 24 | 94.39 39 | 69.71 50 | 96.53 13 | 93.78 66 | 86.89 8 | 89.68 28 | 95.78 42 | 65.94 66 | 99.10 9 | 92.99 16 | 93.91 41 | 96.58 21 |
|
| DVP-MVS |  | | 89.41 13 | 89.73 14 | 88.45 25 | 96.40 15 | 69.99 39 | 96.64 10 | 94.52 42 | 71.92 199 | 90.55 20 | 96.93 11 | 73.77 21 | 99.08 11 | 91.91 29 | 94.90 22 | 96.29 33 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| 3Dnovator | | 73.91 6 | 82.69 116 | 80.82 130 | 88.31 26 | 89.57 154 | 71.26 23 | 92.60 134 | 94.39 51 | 78.84 84 | 67.89 256 | 92.48 132 | 48.42 258 | 98.52 28 | 68.80 212 | 94.40 35 | 95.15 75 |
|
| alignmvs | | | 87.28 31 | 86.97 36 | 88.24 27 | 91.30 122 | 71.14 27 | 95.61 26 | 93.56 78 | 79.30 73 | 87.07 43 | 95.25 60 | 68.43 46 | 96.93 107 | 87.87 54 | 84.33 144 | 96.65 17 |
|
| NCCC | | | 89.07 15 | 89.46 15 | 87.91 28 | 96.60 10 | 69.05 62 | 96.38 16 | 94.64 39 | 84.42 14 | 86.74 45 | 96.20 34 | 66.56 62 | 98.76 23 | 89.03 48 | 94.56 33 | 95.92 44 |
|
| WTY-MVS | | | 86.32 46 | 85.81 55 | 87.85 29 | 92.82 79 | 69.37 56 | 95.20 35 | 95.25 17 | 82.71 24 | 81.91 86 | 94.73 75 | 67.93 52 | 97.63 56 | 79.55 123 | 82.25 161 | 96.54 22 |
|
| VNet | | | 86.20 48 | 85.65 58 | 87.84 30 | 93.92 46 | 69.99 39 | 95.73 24 | 95.94 7 | 78.43 89 | 86.00 51 | 93.07 117 | 58.22 156 | 97.00 96 | 85.22 77 | 84.33 144 | 96.52 23 |
|
| DeepC-MVS_fast | | 79.48 2 | 87.95 21 | 88.00 24 | 87.79 31 | 95.86 27 | 68.32 78 | 95.74 22 | 94.11 60 | 83.82 17 | 83.49 75 | 96.19 35 | 64.53 84 | 98.44 31 | 83.42 95 | 94.88 25 | 96.61 18 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| testing91 | | | 85.93 54 | 85.31 62 | 87.78 32 | 93.59 57 | 71.47 20 | 93.50 99 | 95.08 25 | 80.26 56 | 80.53 102 | 91.93 145 | 70.43 38 | 96.51 123 | 80.32 118 | 82.13 164 | 95.37 60 |
|
| SMA-MVS |  | | 88.14 17 | 88.29 21 | 87.67 33 | 93.21 68 | 68.72 70 | 93.85 78 | 94.03 62 | 74.18 146 | 91.74 12 | 96.67 21 | 65.61 70 | 98.42 33 | 89.24 45 | 96.08 7 | 95.88 46 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_yl | | | 84.28 81 | 83.16 95 | 87.64 34 | 94.52 37 | 69.24 58 | 95.78 19 | 95.09 23 | 69.19 257 | 81.09 93 | 92.88 123 | 57.00 169 | 97.44 68 | 81.11 113 | 81.76 168 | 96.23 36 |
|
| DCV-MVSNet | | | 84.28 81 | 83.16 95 | 87.64 34 | 94.52 37 | 69.24 58 | 95.78 19 | 95.09 23 | 69.19 257 | 81.09 93 | 92.88 123 | 57.00 169 | 97.44 68 | 81.11 113 | 81.76 168 | 96.23 36 |
|
| HPM-MVS++ |  | | 89.37 14 | 89.95 13 | 87.64 34 | 95.10 30 | 68.23 84 | 95.24 34 | 94.49 44 | 82.43 27 | 88.90 33 | 96.35 29 | 71.89 34 | 98.63 26 | 88.76 49 | 96.40 6 | 96.06 39 |
|
| QAPM | | | 79.95 162 | 77.39 188 | 87.64 34 | 89.63 153 | 71.41 21 | 93.30 106 | 93.70 73 | 65.34 290 | 67.39 264 | 91.75 149 | 47.83 265 | 98.96 16 | 57.71 293 | 89.81 94 | 92.54 169 |
|
| testing99 | | | 86.01 52 | 85.47 59 | 87.63 38 | 93.62 55 | 71.25 24 | 93.47 102 | 95.23 18 | 80.42 54 | 80.60 101 | 91.95 144 | 71.73 35 | 96.50 124 | 80.02 120 | 82.22 162 | 95.13 76 |
|
| lupinMVS | | | 87.74 24 | 87.77 26 | 87.63 38 | 89.24 167 | 71.18 25 | 96.57 12 | 92.90 106 | 82.70 25 | 87.13 41 | 95.27 58 | 64.99 75 | 95.80 146 | 89.34 43 | 91.80 71 | 95.93 43 |
|
| testing11 | | | 86.71 42 | 86.44 42 | 87.55 40 | 93.54 59 | 71.35 22 | 93.65 90 | 95.58 11 | 81.36 43 | 80.69 99 | 92.21 140 | 72.30 30 | 96.46 126 | 85.18 79 | 83.43 150 | 94.82 91 |
|
| API-MVS | | | 82.28 120 | 80.53 138 | 87.54 41 | 96.13 22 | 70.59 33 | 93.63 92 | 91.04 188 | 65.72 287 | 75.45 161 | 92.83 125 | 56.11 183 | 98.89 20 | 64.10 256 | 89.75 97 | 93.15 151 |
|
| SD-MVS | | | 87.49 27 | 87.49 30 | 87.50 42 | 93.60 56 | 68.82 68 | 93.90 75 | 92.63 117 | 76.86 111 | 87.90 36 | 95.76 43 | 66.17 63 | 97.63 56 | 89.06 47 | 91.48 77 | 96.05 40 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DPE-MVS |  | | 88.77 16 | 89.21 16 | 87.45 43 | 96.26 20 | 67.56 100 | 94.17 58 | 94.15 59 | 68.77 263 | 90.74 18 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 39 | 94.91 21 | 96.30 32 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MVS_111021_HR | | | 86.19 49 | 85.80 56 | 87.37 44 | 93.17 70 | 69.79 47 | 93.99 70 | 93.76 69 | 79.08 80 | 78.88 125 | 93.99 100 | 62.25 116 | 98.15 36 | 85.93 74 | 91.15 83 | 94.15 118 |
|
| MSLP-MVS++ | | | 86.27 47 | 85.91 54 | 87.35 45 | 92.01 100 | 68.97 65 | 95.04 41 | 92.70 111 | 79.04 82 | 81.50 89 | 96.50 26 | 58.98 151 | 96.78 113 | 83.49 94 | 93.93 40 | 96.29 33 |
|
| IB-MVS | | 77.80 4 | 82.18 121 | 80.46 140 | 87.35 45 | 89.14 169 | 70.28 37 | 95.59 27 | 95.17 21 | 78.85 83 | 70.19 223 | 85.82 240 | 70.66 37 | 97.67 51 | 72.19 180 | 66.52 285 | 94.09 121 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| VDDNet | | | 80.50 149 | 78.26 171 | 87.21 47 | 86.19 237 | 69.79 47 | 94.48 51 | 91.31 171 | 60.42 328 | 79.34 117 | 90.91 163 | 38.48 314 | 96.56 120 | 82.16 101 | 81.05 174 | 95.27 70 |
|
| PAPR | | | 85.15 68 | 84.47 73 | 87.18 48 | 96.02 25 | 68.29 79 | 91.85 168 | 93.00 103 | 76.59 118 | 79.03 121 | 95.00 66 | 61.59 122 | 97.61 58 | 78.16 136 | 89.00 101 | 95.63 51 |
|
| PAPM | | | 85.89 56 | 85.46 60 | 87.18 48 | 88.20 195 | 72.42 14 | 92.41 142 | 92.77 109 | 82.11 31 | 80.34 105 | 93.07 117 | 68.27 47 | 95.02 179 | 78.39 135 | 93.59 48 | 94.09 121 |
|
| jason | | | 86.40 44 | 86.17 48 | 87.11 50 | 86.16 239 | 70.54 34 | 95.71 25 | 92.19 132 | 82.00 32 | 84.58 66 | 94.34 90 | 61.86 119 | 95.53 166 | 87.76 55 | 90.89 85 | 95.27 70 |
| jason: jason. |
| test12 | | | | | 87.09 51 | 94.60 36 | 68.86 66 | | 92.91 105 | | 82.67 83 | | 65.44 71 | 97.55 63 | | 93.69 47 | 94.84 88 |
|
| casdiffmvs_mvg |  | | 85.66 61 | 85.18 64 | 87.09 51 | 88.22 194 | 69.35 57 | 93.74 87 | 91.89 144 | 81.47 37 | 80.10 107 | 91.45 154 | 64.80 80 | 96.35 127 | 87.23 63 | 87.69 112 | 95.58 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_Test | | | 84.16 87 | 83.20 94 | 87.05 53 | 91.56 115 | 69.82 46 | 89.99 240 | 92.05 135 | 77.77 98 | 82.84 79 | 86.57 230 | 63.93 90 | 96.09 135 | 74.91 158 | 89.18 100 | 95.25 73 |
|
| HY-MVS | | 76.49 5 | 84.28 81 | 83.36 93 | 87.02 54 | 92.22 93 | 67.74 95 | 84.65 302 | 94.50 43 | 79.15 77 | 82.23 84 | 87.93 211 | 66.88 58 | 96.94 105 | 80.53 116 | 82.20 163 | 96.39 31 |
|
| Effi-MVS+ | | | 83.82 93 | 82.76 103 | 86.99 55 | 89.56 155 | 69.40 53 | 91.35 192 | 86.12 319 | 72.59 180 | 83.22 77 | 92.81 126 | 59.60 143 | 96.01 143 | 81.76 105 | 87.80 111 | 95.56 54 |
|
| dcpmvs_2 | | | 87.37 30 | 87.55 29 | 86.85 56 | 95.04 32 | 68.20 85 | 90.36 226 | 90.66 196 | 79.37 72 | 81.20 91 | 93.67 106 | 74.73 15 | 96.55 121 | 90.88 36 | 92.00 68 | 95.82 47 |
|
| SF-MVS | | | 87.03 34 | 87.09 34 | 86.84 57 | 92.70 83 | 67.45 105 | 93.64 91 | 93.76 69 | 70.78 237 | 86.25 47 | 96.44 28 | 66.98 57 | 97.79 47 | 88.68 50 | 94.56 33 | 95.28 69 |
|
| casdiffmvs |  | | 85.37 64 | 84.87 70 | 86.84 57 | 88.25 192 | 69.07 61 | 93.04 115 | 91.76 151 | 81.27 44 | 80.84 98 | 92.07 142 | 64.23 86 | 96.06 139 | 84.98 82 | 87.43 116 | 95.39 58 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| VDD-MVS | | | 83.06 107 | 81.81 118 | 86.81 59 | 90.86 131 | 67.70 96 | 95.40 30 | 91.50 165 | 75.46 129 | 81.78 87 | 92.34 136 | 40.09 305 | 97.13 89 | 86.85 67 | 82.04 165 | 95.60 52 |
|
| ACMMP_NAP | | | 86.05 51 | 85.80 56 | 86.80 60 | 91.58 114 | 67.53 102 | 91.79 170 | 93.49 83 | 74.93 137 | 84.61 65 | 95.30 55 | 59.42 145 | 97.92 41 | 86.13 71 | 94.92 20 | 94.94 84 |
|
| PHI-MVS | | | 86.83 39 | 86.85 40 | 86.78 61 | 93.47 62 | 65.55 151 | 95.39 31 | 95.10 22 | 71.77 209 | 85.69 55 | 96.52 24 | 62.07 117 | 98.77 22 | 86.06 73 | 95.60 12 | 96.03 41 |
|
| baseline | | | 85.01 70 | 84.44 74 | 86.71 62 | 88.33 189 | 68.73 69 | 90.24 231 | 91.82 150 | 81.05 47 | 81.18 92 | 92.50 129 | 63.69 94 | 96.08 138 | 84.45 87 | 86.71 126 | 95.32 65 |
|
| TSAR-MVS + GP. | | | 87.96 20 | 88.37 20 | 86.70 63 | 93.51 61 | 65.32 155 | 95.15 37 | 93.84 65 | 78.17 92 | 85.93 52 | 94.80 74 | 75.80 13 | 98.21 34 | 89.38 42 | 88.78 102 | 96.59 19 |
|
| APDe-MVS |  | | 87.54 26 | 87.84 25 | 86.65 64 | 96.07 23 | 66.30 133 | 94.84 46 | 93.78 66 | 69.35 254 | 88.39 34 | 96.34 30 | 67.74 53 | 97.66 54 | 90.62 38 | 93.44 50 | 96.01 42 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| testing222 | | | 85.18 67 | 84.69 72 | 86.63 65 | 92.91 76 | 69.91 43 | 92.61 133 | 95.80 9 | 80.31 55 | 80.38 104 | 92.27 137 | 68.73 44 | 95.19 176 | 75.94 148 | 83.27 152 | 94.81 92 |
|
| train_agg | | | 87.21 32 | 87.42 31 | 86.60 66 | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.87 204 | 85.52 56 | 95.33 53 | 68.19 48 | 97.27 82 | 89.09 46 | 94.90 22 | 95.25 73 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 125 | 80.60 137 | 86.60 66 | 90.89 130 | 66.80 121 | 95.20 35 | 93.44 85 | 74.05 148 | 67.42 262 | 92.49 131 | 49.46 248 | 97.65 55 | 70.80 190 | 91.68 73 | 95.33 63 |
|
| ET-MVSNet_ETH3D | | | 84.01 89 | 83.15 97 | 86.58 68 | 90.78 133 | 70.89 30 | 94.74 48 | 94.62 40 | 81.44 40 | 58.19 328 | 93.64 107 | 73.64 23 | 92.35 281 | 82.66 98 | 78.66 196 | 96.50 27 |
|
| SteuartSystems-ACMMP | | | 86.82 40 | 86.90 38 | 86.58 68 | 90.42 137 | 66.38 130 | 96.09 18 | 93.87 64 | 77.73 99 | 84.01 73 | 95.66 45 | 63.39 101 | 97.94 40 | 87.40 60 | 93.55 49 | 95.42 56 |
| Skip Steuart: Steuart Systems R&D Blog. |
| TSAR-MVS + MP. | | | 88.11 19 | 88.64 17 | 86.54 70 | 91.73 110 | 68.04 88 | 90.36 226 | 93.55 79 | 82.89 21 | 91.29 16 | 92.89 122 | 72.27 31 | 96.03 141 | 87.99 53 | 94.77 26 | 95.54 55 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| GG-mvs-BLEND | | | | | 86.53 71 | 91.91 105 | 69.67 52 | 75.02 364 | 94.75 33 | | 78.67 129 | 90.85 164 | 77.91 7 | 94.56 200 | 72.25 177 | 93.74 44 | 95.36 62 |
|
| CDPH-MVS | | | 85.71 59 | 85.46 60 | 86.46 72 | 94.75 34 | 67.19 109 | 93.89 76 | 92.83 108 | 70.90 233 | 83.09 78 | 95.28 56 | 63.62 96 | 97.36 73 | 80.63 115 | 94.18 36 | 94.84 88 |
|
| MAR-MVS | | | 84.18 86 | 83.43 88 | 86.44 73 | 96.25 21 | 65.93 142 | 94.28 56 | 94.27 56 | 74.41 141 | 79.16 120 | 95.61 47 | 53.99 207 | 98.88 21 | 69.62 201 | 93.26 53 | 94.50 108 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_prior | | | | | 86.42 74 | 94.71 35 | 67.35 106 | | 93.10 99 | | | | | 96.84 111 | | | 95.05 79 |
|
| OpenMVS |  | 70.45 11 | 78.54 189 | 75.92 208 | 86.41 75 | 85.93 245 | 71.68 19 | 92.74 124 | 92.51 121 | 66.49 281 | 64.56 286 | 91.96 143 | 43.88 292 | 98.10 37 | 54.61 303 | 90.65 88 | 89.44 227 |
|
| MVSFormer | | | 83.75 96 | 82.88 101 | 86.37 76 | 89.24 167 | 71.18 25 | 89.07 259 | 90.69 193 | 65.80 285 | 87.13 41 | 94.34 90 | 64.99 75 | 92.67 267 | 72.83 169 | 91.80 71 | 95.27 70 |
|
| PAPM_NR | | | 82.97 109 | 81.84 117 | 86.37 76 | 94.10 44 | 66.76 122 | 87.66 281 | 92.84 107 | 69.96 247 | 74.07 176 | 93.57 109 | 63.10 108 | 97.50 65 | 70.66 193 | 90.58 89 | 94.85 85 |
|
| DeepC-MVS | | 77.85 3 | 85.52 63 | 85.24 63 | 86.37 76 | 88.80 177 | 66.64 124 | 92.15 149 | 93.68 74 | 81.07 46 | 76.91 147 | 93.64 107 | 62.59 112 | 98.44 31 | 85.50 75 | 92.84 58 | 94.03 125 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PVSNet_Blended | | | 86.73 41 | 86.86 39 | 86.31 79 | 93.76 49 | 67.53 102 | 96.33 17 | 93.61 76 | 82.34 29 | 81.00 96 | 93.08 116 | 63.19 105 | 97.29 78 | 87.08 64 | 91.38 79 | 94.13 119 |
|
| EPNet | | | 87.84 23 | 88.38 19 | 86.23 80 | 93.30 65 | 66.05 137 | 95.26 33 | 94.84 29 | 87.09 7 | 88.06 35 | 94.53 80 | 66.79 59 | 97.34 75 | 83.89 92 | 91.68 73 | 95.29 67 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thisisatest0515 | | | 83.41 100 | 82.49 109 | 86.16 81 | 89.46 158 | 68.26 81 | 93.54 96 | 94.70 36 | 74.31 144 | 75.75 154 | 90.92 162 | 72.62 28 | 96.52 122 | 69.64 199 | 81.50 171 | 93.71 136 |
|
| ZNCC-MVS | | | 85.33 65 | 85.08 66 | 86.06 82 | 93.09 73 | 65.65 147 | 93.89 76 | 93.41 87 | 73.75 157 | 79.94 109 | 94.68 77 | 60.61 132 | 98.03 38 | 82.63 99 | 93.72 45 | 94.52 106 |
|
| EPMVS | | | 78.49 190 | 75.98 207 | 86.02 83 | 91.21 124 | 69.68 51 | 80.23 340 | 91.20 175 | 75.25 133 | 72.48 195 | 78.11 327 | 54.65 198 | 93.69 238 | 57.66 294 | 83.04 153 | 94.69 94 |
|
| DP-MVS Recon | | | 82.73 113 | 81.65 119 | 85.98 84 | 97.31 4 | 67.06 113 | 95.15 37 | 91.99 138 | 69.08 260 | 76.50 151 | 93.89 102 | 54.48 202 | 98.20 35 | 70.76 191 | 85.66 134 | 92.69 164 |
|
| PatchmatchNet |  | | 77.46 205 | 74.63 223 | 85.96 85 | 89.55 156 | 70.35 36 | 79.97 345 | 89.55 239 | 72.23 192 | 70.94 212 | 76.91 338 | 57.03 167 | 92.79 262 | 54.27 305 | 81.17 173 | 94.74 93 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| 1314 | | | 80.70 146 | 78.95 163 | 85.94 86 | 87.77 208 | 67.56 100 | 87.91 277 | 92.55 120 | 72.17 195 | 67.44 261 | 93.09 115 | 50.27 241 | 97.04 94 | 71.68 185 | 87.64 113 | 93.23 149 |
|
| MSP-MVS | | | 90.38 5 | 91.87 1 | 85.88 87 | 92.83 77 | 64.03 190 | 93.06 113 | 94.33 54 | 82.19 30 | 93.65 3 | 96.15 37 | 85.89 1 | 97.19 84 | 91.02 35 | 97.75 1 | 96.43 29 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| Anonymous202405211 | | | 77.96 198 | 75.33 217 | 85.87 88 | 93.73 54 | 64.52 170 | 94.85 45 | 85.36 325 | 62.52 313 | 76.11 152 | 90.18 177 | 29.43 361 | 97.29 78 | 68.51 214 | 77.24 211 | 95.81 48 |
|
| CostFormer | | | 82.33 119 | 81.15 123 | 85.86 89 | 89.01 172 | 68.46 75 | 82.39 322 | 93.01 101 | 75.59 127 | 80.25 106 | 81.57 287 | 72.03 33 | 94.96 182 | 79.06 128 | 77.48 207 | 94.16 117 |
|
| patch_mono-2 | | | 89.71 11 | 90.99 6 | 85.85 90 | 96.04 24 | 63.70 200 | 95.04 41 | 95.19 19 | 86.74 9 | 91.53 15 | 95.15 65 | 73.86 20 | 97.58 59 | 93.38 14 | 92.00 68 | 96.28 35 |
|
| CANet_DTU | | | 84.09 88 | 83.52 82 | 85.81 91 | 90.30 140 | 66.82 119 | 91.87 166 | 89.01 264 | 85.27 11 | 86.09 50 | 93.74 104 | 47.71 267 | 96.98 100 | 77.90 138 | 89.78 96 | 93.65 138 |
|
| gg-mvs-nofinetune | | | 77.18 209 | 74.31 230 | 85.80 92 | 91.42 119 | 68.36 77 | 71.78 367 | 94.72 34 | 49.61 368 | 77.12 144 | 45.92 391 | 77.41 8 | 93.98 229 | 67.62 222 | 93.16 54 | 95.05 79 |
|
| ab-mvs | | | 80.18 156 | 78.31 170 | 85.80 92 | 88.44 184 | 65.49 154 | 83.00 319 | 92.67 113 | 71.82 207 | 77.36 141 | 85.01 246 | 54.50 199 | 96.59 117 | 76.35 146 | 75.63 221 | 95.32 65 |
|
| ETVMVS | | | 84.22 85 | 83.71 80 | 85.76 94 | 92.58 87 | 68.25 83 | 92.45 141 | 95.53 14 | 79.54 68 | 79.46 115 | 91.64 152 | 70.29 39 | 94.18 216 | 69.16 207 | 82.76 158 | 94.84 88 |
|
| APD-MVS |  | | 85.93 54 | 85.99 52 | 85.76 94 | 95.98 26 | 65.21 158 | 93.59 94 | 92.58 119 | 66.54 280 | 86.17 49 | 95.88 41 | 63.83 91 | 97.00 96 | 86.39 70 | 92.94 56 | 95.06 78 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| HFP-MVS | | | 84.73 74 | 84.40 75 | 85.72 96 | 93.75 51 | 65.01 164 | 93.50 99 | 93.19 94 | 72.19 193 | 79.22 119 | 94.93 69 | 59.04 150 | 97.67 51 | 81.55 106 | 92.21 63 | 94.49 109 |
|
| ETV-MVS | | | 86.01 52 | 86.11 49 | 85.70 97 | 90.21 142 | 67.02 116 | 93.43 104 | 91.92 141 | 81.21 45 | 84.13 72 | 94.07 99 | 60.93 129 | 95.63 157 | 89.28 44 | 89.81 94 | 94.46 110 |
|
| GST-MVS | | | 84.63 76 | 84.29 76 | 85.66 98 | 92.82 79 | 65.27 156 | 93.04 115 | 93.13 97 | 73.20 166 | 78.89 122 | 94.18 96 | 59.41 146 | 97.85 45 | 81.45 108 | 92.48 62 | 93.86 133 |
|
| diffmvs |  | | 84.28 81 | 83.83 79 | 85.61 99 | 87.40 214 | 68.02 89 | 90.88 210 | 89.24 250 | 80.54 50 | 81.64 88 | 92.52 128 | 59.83 140 | 94.52 203 | 87.32 61 | 85.11 136 | 94.29 111 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MP-MVS-pluss | | | 85.24 66 | 85.13 65 | 85.56 100 | 91.42 119 | 65.59 149 | 91.54 180 | 92.51 121 | 74.56 140 | 80.62 100 | 95.64 46 | 59.15 149 | 97.00 96 | 86.94 66 | 93.80 42 | 94.07 123 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MTAPA | | | 83.91 91 | 83.38 92 | 85.50 101 | 91.89 106 | 65.16 160 | 81.75 325 | 92.23 127 | 75.32 132 | 80.53 102 | 95.21 63 | 56.06 184 | 97.16 87 | 84.86 84 | 92.55 61 | 94.18 115 |
|
| mvs_anonymous | | | 81.36 134 | 79.99 145 | 85.46 102 | 90.39 139 | 68.40 76 | 86.88 292 | 90.61 198 | 74.41 141 | 70.31 222 | 84.67 251 | 63.79 92 | 92.32 282 | 73.13 166 | 85.70 133 | 95.67 49 |
|
| HyFIR lowres test | | | 81.03 141 | 79.56 152 | 85.43 103 | 87.81 206 | 68.11 87 | 90.18 232 | 90.01 224 | 70.65 239 | 72.95 186 | 86.06 238 | 63.61 97 | 94.50 204 | 75.01 156 | 79.75 185 | 93.67 137 |
|
| cascas | | | 78.18 194 | 75.77 210 | 85.41 104 | 87.14 220 | 69.11 60 | 92.96 118 | 91.15 179 | 66.71 279 | 70.47 217 | 86.07 237 | 37.49 325 | 96.48 125 | 70.15 196 | 79.80 184 | 90.65 207 |
|
| fmvsm_l_conf0.5_n | | | 87.49 27 | 88.19 22 | 85.39 105 | 86.95 224 | 64.37 180 | 94.30 55 | 88.45 285 | 80.51 51 | 92.70 4 | 96.86 15 | 69.98 41 | 97.15 88 | 95.83 3 | 88.08 109 | 94.65 98 |
|
| PVSNet_Blended_VisFu | | | 83.97 90 | 83.50 84 | 85.39 105 | 90.02 145 | 66.59 127 | 93.77 85 | 91.73 152 | 77.43 107 | 77.08 146 | 89.81 184 | 63.77 93 | 96.97 102 | 79.67 122 | 88.21 107 | 92.60 167 |
|
| region2R | | | 84.36 79 | 84.03 78 | 85.36 107 | 93.54 59 | 64.31 183 | 93.43 104 | 92.95 104 | 72.16 196 | 78.86 126 | 94.84 73 | 56.97 171 | 97.53 64 | 81.38 110 | 92.11 66 | 94.24 113 |
|
| tpm2 | | | 79.80 164 | 77.95 177 | 85.34 108 | 88.28 190 | 68.26 81 | 81.56 328 | 91.42 168 | 70.11 245 | 77.59 139 | 80.50 305 | 67.40 55 | 94.26 213 | 67.34 224 | 77.35 208 | 93.51 141 |
|
| fmvsm_l_conf0.5_n_a | | | 87.44 29 | 88.15 23 | 85.30 109 | 87.10 221 | 64.19 187 | 94.41 53 | 88.14 294 | 80.24 59 | 92.54 6 | 96.97 10 | 69.52 43 | 97.17 85 | 95.89 2 | 88.51 105 | 94.56 101 |
|
| ACMMPR | | | 84.37 78 | 84.06 77 | 85.28 110 | 93.56 58 | 64.37 180 | 93.50 99 | 93.15 96 | 72.19 193 | 78.85 127 | 94.86 72 | 56.69 176 | 97.45 66 | 81.55 106 | 92.20 64 | 94.02 126 |
|
| test_fmvsm_n_1920 | | | 87.69 25 | 88.50 18 | 85.27 111 | 87.05 223 | 63.55 207 | 93.69 88 | 91.08 184 | 84.18 15 | 90.17 24 | 97.04 8 | 67.58 54 | 97.99 39 | 95.72 5 | 90.03 93 | 94.26 112 |
|
| xiu_mvs_v1_base_debu | | | 82.16 122 | 81.12 124 | 85.26 112 | 86.42 232 | 68.72 70 | 92.59 136 | 90.44 203 | 73.12 169 | 84.20 69 | 94.36 85 | 38.04 319 | 95.73 151 | 84.12 89 | 86.81 121 | 91.33 195 |
|
| xiu_mvs_v1_base | | | 82.16 122 | 81.12 124 | 85.26 112 | 86.42 232 | 68.72 70 | 92.59 136 | 90.44 203 | 73.12 169 | 84.20 69 | 94.36 85 | 38.04 319 | 95.73 151 | 84.12 89 | 86.81 121 | 91.33 195 |
|
| xiu_mvs_v1_base_debi | | | 82.16 122 | 81.12 124 | 85.26 112 | 86.42 232 | 68.72 70 | 92.59 136 | 90.44 203 | 73.12 169 | 84.20 69 | 94.36 85 | 38.04 319 | 95.73 151 | 84.12 89 | 86.81 121 | 91.33 195 |
|
| MP-MVS |  | | 85.02 69 | 84.97 68 | 85.17 115 | 92.60 86 | 64.27 185 | 93.24 107 | 92.27 126 | 73.13 168 | 79.63 113 | 94.43 83 | 61.90 118 | 97.17 85 | 85.00 81 | 92.56 60 | 94.06 124 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| XVS | | | 83.87 92 | 83.47 86 | 85.05 116 | 93.22 66 | 63.78 194 | 92.92 119 | 92.66 114 | 73.99 149 | 78.18 131 | 94.31 92 | 55.25 190 | 97.41 70 | 79.16 126 | 91.58 75 | 93.95 128 |
|
| X-MVStestdata | | | 76.86 214 | 74.13 234 | 85.05 116 | 93.22 66 | 63.78 194 | 92.92 119 | 92.66 114 | 73.99 149 | 78.18 131 | 10.19 406 | 55.25 190 | 97.41 70 | 79.16 126 | 91.58 75 | 93.95 128 |
|
| SCA | | | 75.82 234 | 72.76 251 | 85.01 118 | 86.63 229 | 70.08 38 | 81.06 333 | 89.19 253 | 71.60 218 | 70.01 225 | 77.09 336 | 45.53 283 | 90.25 312 | 60.43 280 | 73.27 237 | 94.68 95 |
|
| iter_conf05 | | | 83.27 103 | 82.70 105 | 84.98 119 | 93.32 64 | 71.84 18 | 94.16 59 | 81.76 349 | 82.74 23 | 73.83 179 | 88.40 199 | 72.77 27 | 94.61 195 | 82.10 102 | 75.21 223 | 88.48 237 |
|
| PGM-MVS | | | 83.25 104 | 82.70 105 | 84.92 120 | 92.81 81 | 64.07 189 | 90.44 222 | 92.20 131 | 71.28 225 | 77.23 143 | 94.43 83 | 55.17 194 | 97.31 77 | 79.33 125 | 91.38 79 | 93.37 144 |
|
| BH-RMVSNet | | | 79.46 170 | 77.65 180 | 84.89 121 | 91.68 112 | 65.66 146 | 93.55 95 | 88.09 296 | 72.93 173 | 73.37 182 | 91.12 161 | 46.20 279 | 96.12 134 | 56.28 298 | 85.61 135 | 92.91 160 |
|
| Anonymous20240529 | | | 76.84 217 | 74.15 233 | 84.88 122 | 91.02 126 | 64.95 166 | 93.84 81 | 91.09 182 | 53.57 357 | 73.00 184 | 87.42 219 | 35.91 335 | 97.32 76 | 69.14 208 | 72.41 247 | 92.36 173 |
|
| tpmrst | | | 80.57 147 | 79.14 162 | 84.84 123 | 90.10 144 | 68.28 80 | 81.70 326 | 89.72 236 | 77.63 103 | 75.96 153 | 79.54 319 | 64.94 77 | 92.71 264 | 75.43 151 | 77.28 210 | 93.55 140 |
|
| fmvsm_s_conf0.5_n | | | 86.39 45 | 86.91 37 | 84.82 124 | 87.36 216 | 63.54 208 | 94.74 48 | 90.02 223 | 82.52 26 | 90.14 25 | 96.92 13 | 62.93 110 | 97.84 46 | 95.28 8 | 82.26 160 | 93.07 155 |
|
| test_fmvsmconf_n | | | 86.58 43 | 87.17 33 | 84.82 124 | 85.28 254 | 62.55 231 | 94.26 57 | 89.78 229 | 83.81 18 | 87.78 37 | 96.33 31 | 65.33 72 | 96.98 100 | 94.40 11 | 87.55 114 | 94.95 83 |
|
| FE-MVS | | | 75.97 231 | 73.02 247 | 84.82 124 | 89.78 149 | 65.56 150 | 77.44 356 | 91.07 185 | 64.55 293 | 72.66 189 | 79.85 315 | 46.05 281 | 96.69 115 | 54.97 302 | 80.82 177 | 92.21 182 |
|
| FA-MVS(test-final) | | | 79.12 174 | 77.23 190 | 84.81 127 | 90.54 135 | 63.98 191 | 81.35 331 | 91.71 154 | 71.09 230 | 74.85 167 | 82.94 268 | 52.85 219 | 97.05 91 | 67.97 217 | 81.73 170 | 93.41 143 |
|
| test_fmvsmvis_n_1920 | | | 83.80 94 | 83.48 85 | 84.77 128 | 82.51 293 | 63.72 198 | 91.37 190 | 83.99 339 | 81.42 41 | 77.68 136 | 95.74 44 | 58.37 154 | 97.58 59 | 93.38 14 | 86.87 120 | 93.00 158 |
|
| AdaColmap |  | | 78.94 178 | 77.00 194 | 84.76 129 | 96.34 17 | 65.86 143 | 92.66 131 | 87.97 300 | 62.18 315 | 70.56 216 | 92.37 135 | 43.53 293 | 97.35 74 | 64.50 254 | 82.86 154 | 91.05 204 |
|
| æ–°å‡ ä½•1 | | | | | 84.73 130 | 92.32 90 | 64.28 184 | | 91.46 167 | 59.56 335 | 79.77 111 | 92.90 121 | 56.95 172 | 96.57 119 | 63.40 260 | 92.91 57 | 93.34 145 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 58 | 86.09 50 | 84.72 131 | 85.73 248 | 63.58 205 | 93.79 84 | 89.32 247 | 81.42 41 | 90.21 23 | 96.91 14 | 62.41 114 | 97.67 51 | 94.48 10 | 80.56 179 | 92.90 161 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 10 | 91.38 4 | 84.72 131 | 93.00 74 | 58.16 303 | 96.72 9 | 94.41 48 | 86.50 10 | 90.25 22 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 18 | 95.49 13 | 97.32 8 |
|
| EIA-MVS | | | 84.84 72 | 84.88 69 | 84.69 133 | 91.30 122 | 62.36 234 | 93.85 78 | 92.04 136 | 79.45 69 | 79.33 118 | 94.28 93 | 62.42 113 | 96.35 127 | 80.05 119 | 91.25 82 | 95.38 59 |
|
| fmvsm_s_conf0.1_n | | | 85.61 62 | 85.93 53 | 84.68 134 | 82.95 291 | 63.48 210 | 94.03 69 | 89.46 241 | 81.69 35 | 89.86 26 | 96.74 20 | 61.85 120 | 97.75 49 | 94.74 9 | 82.01 166 | 92.81 163 |
|
| GA-MVS | | | 78.33 193 | 76.23 203 | 84.65 135 | 83.65 281 | 66.30 133 | 91.44 181 | 90.14 217 | 76.01 123 | 70.32 221 | 84.02 258 | 42.50 297 | 94.72 190 | 70.98 188 | 77.00 213 | 92.94 159 |
|
| CP-MVS | | | 83.71 97 | 83.40 91 | 84.65 135 | 93.14 71 | 63.84 192 | 94.59 50 | 92.28 125 | 71.03 231 | 77.41 140 | 94.92 70 | 55.21 193 | 96.19 131 | 81.32 111 | 90.70 87 | 93.91 130 |
|
| RPMNet | | | 70.42 285 | 65.68 304 | 84.63 137 | 83.15 286 | 67.96 90 | 70.25 370 | 90.45 200 | 46.83 376 | 69.97 227 | 65.10 375 | 56.48 180 | 95.30 174 | 35.79 373 | 73.13 238 | 90.64 208 |
|
| test_fmvsmconf0.1_n | | | 85.71 59 | 86.08 51 | 84.62 138 | 80.83 307 | 62.33 235 | 93.84 81 | 88.81 272 | 83.50 20 | 87.00 44 | 96.01 39 | 63.36 102 | 96.93 107 | 94.04 12 | 87.29 117 | 94.61 100 |
|
| tpm cat1 | | | 75.30 241 | 72.21 260 | 84.58 139 | 88.52 180 | 67.77 94 | 78.16 354 | 88.02 297 | 61.88 320 | 68.45 248 | 76.37 342 | 60.65 130 | 94.03 227 | 53.77 308 | 74.11 231 | 91.93 187 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 73 | 84.84 71 | 84.53 140 | 80.23 317 | 63.50 209 | 92.79 122 | 88.73 276 | 80.46 52 | 89.84 27 | 96.65 22 | 60.96 128 | 97.57 61 | 93.80 13 | 80.14 181 | 92.53 170 |
|
| mPP-MVS | | | 82.96 110 | 82.44 110 | 84.52 141 | 92.83 77 | 62.92 224 | 92.76 123 | 91.85 148 | 71.52 221 | 75.61 159 | 94.24 94 | 53.48 215 | 96.99 99 | 78.97 129 | 90.73 86 | 93.64 139 |
|
| Fast-Effi-MVS+ | | | 81.14 137 | 80.01 144 | 84.51 142 | 90.24 141 | 65.86 143 | 94.12 63 | 89.15 256 | 73.81 156 | 75.37 162 | 88.26 203 | 57.26 164 | 94.53 202 | 66.97 230 | 84.92 137 | 93.15 151 |
|
| baseline2 | | | 83.68 99 | 83.42 90 | 84.48 143 | 87.37 215 | 66.00 139 | 90.06 235 | 95.93 8 | 79.71 66 | 69.08 235 | 90.39 172 | 77.92 6 | 96.28 129 | 78.91 130 | 81.38 172 | 91.16 202 |
|
| 原ACMM1 | | | | | 84.42 144 | 93.21 68 | 64.27 185 | | 93.40 88 | 65.39 288 | 79.51 114 | 92.50 129 | 58.11 158 | 96.69 115 | 65.27 250 | 93.96 39 | 92.32 175 |
|
| SDMVSNet | | | 80.26 154 | 78.88 164 | 84.40 145 | 89.25 164 | 67.63 99 | 85.35 298 | 93.02 100 | 76.77 115 | 70.84 214 | 87.12 224 | 47.95 264 | 96.09 135 | 85.04 80 | 74.55 225 | 89.48 225 |
|
| thisisatest0530 | | | 81.15 136 | 80.07 142 | 84.39 146 | 88.26 191 | 65.63 148 | 91.40 185 | 94.62 40 | 71.27 226 | 70.93 213 | 89.18 190 | 72.47 29 | 96.04 140 | 65.62 245 | 76.89 214 | 91.49 191 |
|
| test2506 | | | 83.29 102 | 82.92 100 | 84.37 147 | 88.39 187 | 63.18 217 | 92.01 158 | 91.35 170 | 77.66 101 | 78.49 130 | 91.42 155 | 64.58 83 | 95.09 178 | 73.19 165 | 89.23 98 | 94.85 85 |
|
| h-mvs33 | | | 83.01 108 | 82.56 108 | 84.35 148 | 89.34 159 | 62.02 241 | 92.72 125 | 93.76 69 | 81.45 38 | 82.73 81 | 92.25 139 | 60.11 136 | 97.13 89 | 87.69 56 | 62.96 312 | 93.91 130 |
|
| PVSNet | | 73.49 8 | 80.05 159 | 78.63 166 | 84.31 149 | 90.92 129 | 64.97 165 | 92.47 140 | 91.05 187 | 79.18 76 | 72.43 197 | 90.51 169 | 37.05 331 | 94.06 222 | 68.06 216 | 86.00 131 | 93.90 132 |
|
| PCF-MVS | | 73.15 9 | 79.29 171 | 77.63 181 | 84.29 150 | 86.06 240 | 65.96 141 | 87.03 288 | 91.10 181 | 69.86 249 | 69.79 230 | 90.64 165 | 57.54 163 | 96.59 117 | 64.37 255 | 82.29 159 | 90.32 211 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| baseline1 | | | 81.84 128 | 81.03 128 | 84.28 151 | 91.60 113 | 66.62 125 | 91.08 204 | 91.66 159 | 81.87 33 | 74.86 166 | 91.67 151 | 69.98 41 | 94.92 185 | 71.76 183 | 64.75 300 | 91.29 200 |
|
| test_fmvsmconf0.01_n | | | 83.70 98 | 83.52 82 | 84.25 152 | 75.26 358 | 61.72 249 | 92.17 148 | 87.24 307 | 82.36 28 | 84.91 63 | 95.41 50 | 55.60 188 | 96.83 112 | 92.85 17 | 85.87 132 | 94.21 114 |
|
| HPM-MVS |  | | 83.25 104 | 82.95 99 | 84.17 153 | 92.25 92 | 62.88 226 | 90.91 207 | 91.86 146 | 70.30 243 | 77.12 144 | 93.96 101 | 56.75 174 | 96.28 129 | 82.04 103 | 91.34 81 | 93.34 145 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| nrg030 | | | 80.93 142 | 79.86 147 | 84.13 154 | 83.69 280 | 68.83 67 | 93.23 108 | 91.20 175 | 75.55 128 | 75.06 164 | 88.22 206 | 63.04 109 | 94.74 189 | 81.88 104 | 66.88 282 | 88.82 231 |
|
| EI-MVSNet-Vis-set | | | 83.77 95 | 83.67 81 | 84.06 155 | 92.79 82 | 63.56 206 | 91.76 173 | 94.81 31 | 79.65 67 | 77.87 134 | 94.09 97 | 63.35 103 | 97.90 42 | 79.35 124 | 79.36 188 | 90.74 206 |
|
| BH-w/o | | | 80.49 150 | 79.30 159 | 84.05 156 | 90.83 132 | 64.36 182 | 93.60 93 | 89.42 244 | 74.35 143 | 69.09 234 | 90.15 179 | 55.23 192 | 95.61 159 | 64.61 253 | 86.43 130 | 92.17 183 |
|
| ECVR-MVS |  | | 81.29 135 | 80.38 141 | 84.01 157 | 88.39 187 | 61.96 243 | 92.56 139 | 86.79 312 | 77.66 101 | 76.63 148 | 91.42 155 | 46.34 276 | 95.24 175 | 74.36 162 | 89.23 98 | 94.85 85 |
|
| ACMMP |  | | 81.49 132 | 80.67 134 | 83.93 158 | 91.71 111 | 62.90 225 | 92.13 150 | 92.22 130 | 71.79 208 | 71.68 207 | 93.49 111 | 50.32 239 | 96.96 103 | 78.47 134 | 84.22 148 | 91.93 187 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CLD-MVS | | | 82.73 113 | 82.35 112 | 83.86 159 | 87.90 202 | 67.65 98 | 95.45 29 | 92.18 133 | 85.06 12 | 72.58 192 | 92.27 137 | 52.46 223 | 95.78 147 | 84.18 88 | 79.06 191 | 88.16 243 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| dp | | | 75.01 245 | 72.09 261 | 83.76 160 | 89.28 163 | 66.22 136 | 79.96 346 | 89.75 231 | 71.16 227 | 67.80 258 | 77.19 335 | 51.81 227 | 92.54 273 | 50.39 316 | 71.44 254 | 92.51 171 |
|
| MVSTER | | | 82.47 117 | 82.05 113 | 83.74 161 | 92.68 84 | 69.01 63 | 91.90 165 | 93.21 91 | 79.83 62 | 72.14 200 | 85.71 242 | 74.72 16 | 94.72 190 | 75.72 149 | 72.49 245 | 87.50 248 |
|
| Vis-MVSNet |  | | 80.92 143 | 79.98 146 | 83.74 161 | 88.48 182 | 61.80 245 | 93.44 103 | 88.26 293 | 73.96 152 | 77.73 135 | 91.76 148 | 49.94 244 | 94.76 187 | 65.84 242 | 90.37 91 | 94.65 98 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| sss | | | 82.71 115 | 82.38 111 | 83.73 163 | 89.25 164 | 59.58 286 | 92.24 146 | 94.89 28 | 77.96 94 | 79.86 110 | 92.38 134 | 56.70 175 | 97.05 91 | 77.26 141 | 80.86 176 | 94.55 102 |
|
| TESTMET0.1,1 | | | 82.41 118 | 81.98 116 | 83.72 164 | 88.08 196 | 63.74 196 | 92.70 127 | 93.77 68 | 79.30 73 | 77.61 138 | 87.57 217 | 58.19 157 | 94.08 220 | 73.91 164 | 86.68 127 | 93.33 147 |
|
| 114514_t | | | 79.17 173 | 77.67 179 | 83.68 165 | 95.32 29 | 65.53 152 | 92.85 121 | 91.60 161 | 63.49 301 | 67.92 253 | 90.63 167 | 46.65 272 | 95.72 155 | 67.01 229 | 83.54 149 | 89.79 219 |
|
| EI-MVSNet-UG-set | | | 83.14 106 | 82.96 98 | 83.67 166 | 92.28 91 | 63.19 216 | 91.38 189 | 94.68 37 | 79.22 75 | 76.60 149 | 93.75 103 | 62.64 111 | 97.76 48 | 78.07 137 | 78.01 199 | 90.05 215 |
|
| thres200 | | | 79.66 165 | 78.33 169 | 83.66 167 | 92.54 88 | 65.82 145 | 93.06 113 | 96.31 3 | 74.90 138 | 73.30 183 | 88.66 194 | 59.67 142 | 95.61 159 | 47.84 331 | 78.67 195 | 89.56 224 |
|
| CS-MVS-test | | | 86.14 50 | 87.01 35 | 83.52 168 | 92.63 85 | 59.36 291 | 95.49 28 | 91.92 141 | 80.09 60 | 85.46 58 | 95.53 49 | 61.82 121 | 95.77 149 | 86.77 68 | 93.37 51 | 95.41 57 |
|
| CDS-MVSNet | | | 81.43 133 | 80.74 132 | 83.52 168 | 86.26 236 | 64.45 174 | 92.09 153 | 90.65 197 | 75.83 125 | 73.95 178 | 89.81 184 | 63.97 89 | 92.91 257 | 71.27 186 | 82.82 155 | 93.20 150 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVS_111021_LR | | | 82.02 126 | 81.52 120 | 83.51 170 | 88.42 185 | 62.88 226 | 89.77 244 | 88.93 268 | 76.78 114 | 75.55 160 | 93.10 114 | 50.31 240 | 95.38 170 | 83.82 93 | 87.02 119 | 92.26 181 |
|
| SR-MVS | | | 82.81 112 | 82.58 107 | 83.50 171 | 93.35 63 | 61.16 258 | 92.23 147 | 91.28 174 | 64.48 294 | 81.27 90 | 95.28 56 | 53.71 211 | 95.86 145 | 82.87 97 | 88.77 103 | 93.49 142 |
|
| BH-untuned | | | 78.68 185 | 77.08 191 | 83.48 172 | 89.84 148 | 63.74 196 | 92.70 127 | 88.59 282 | 71.57 219 | 66.83 271 | 88.65 195 | 51.75 228 | 95.39 169 | 59.03 288 | 84.77 139 | 91.32 198 |
|
| UGNet | | | 79.87 163 | 78.68 165 | 83.45 173 | 89.96 146 | 61.51 252 | 92.13 150 | 90.79 191 | 76.83 113 | 78.85 127 | 86.33 234 | 38.16 317 | 96.17 132 | 67.93 219 | 87.17 118 | 92.67 165 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| test1111 | | | 80.84 144 | 80.02 143 | 83.33 174 | 87.87 203 | 60.76 266 | 92.62 132 | 86.86 311 | 77.86 97 | 75.73 155 | 91.39 157 | 46.35 275 | 94.70 193 | 72.79 171 | 88.68 104 | 94.52 106 |
|
| GeoE | | | 78.90 179 | 77.43 184 | 83.29 175 | 88.95 173 | 62.02 241 | 92.31 143 | 86.23 317 | 70.24 244 | 71.34 211 | 89.27 189 | 54.43 203 | 94.04 225 | 63.31 262 | 80.81 178 | 93.81 135 |
|
| CS-MVS | | | 85.80 57 | 86.65 41 | 83.27 176 | 92.00 101 | 58.92 296 | 95.31 32 | 91.86 146 | 79.97 61 | 84.82 64 | 95.40 51 | 62.26 115 | 95.51 167 | 86.11 72 | 92.08 67 | 95.37 60 |
|
| tpm | | | 78.58 188 | 77.03 192 | 83.22 177 | 85.94 244 | 64.56 169 | 83.21 316 | 91.14 180 | 78.31 90 | 73.67 180 | 79.68 317 | 64.01 88 | 92.09 287 | 66.07 240 | 71.26 255 | 93.03 156 |
|
| PVSNet_BlendedMVS | | | 83.38 101 | 83.43 88 | 83.22 177 | 93.76 49 | 67.53 102 | 94.06 64 | 93.61 76 | 79.13 78 | 81.00 96 | 85.14 245 | 63.19 105 | 97.29 78 | 87.08 64 | 73.91 234 | 84.83 303 |
|
| TAMVS | | | 80.37 152 | 79.45 155 | 83.13 179 | 85.14 257 | 63.37 211 | 91.23 198 | 90.76 192 | 74.81 139 | 72.65 190 | 88.49 196 | 60.63 131 | 92.95 252 | 69.41 203 | 81.95 167 | 93.08 154 |
|
| EC-MVSNet | | | 84.53 77 | 85.04 67 | 83.01 180 | 89.34 159 | 61.37 255 | 94.42 52 | 91.09 182 | 77.91 96 | 83.24 76 | 94.20 95 | 58.37 154 | 95.40 168 | 85.35 76 | 91.41 78 | 92.27 180 |
|
| TR-MVS | | | 78.77 184 | 77.37 189 | 82.95 181 | 90.49 136 | 60.88 262 | 93.67 89 | 90.07 219 | 70.08 246 | 74.51 170 | 91.37 158 | 45.69 282 | 95.70 156 | 60.12 283 | 80.32 180 | 92.29 176 |
|
| tfpn200view9 | | | 78.79 183 | 77.43 184 | 82.88 182 | 92.21 94 | 64.49 171 | 92.05 156 | 96.28 4 | 73.48 163 | 71.75 205 | 88.26 203 | 60.07 138 | 95.32 171 | 45.16 342 | 77.58 204 | 88.83 229 |
|
| FMVSNet3 | | | 77.73 202 | 76.04 206 | 82.80 183 | 91.20 125 | 68.99 64 | 91.87 166 | 91.99 138 | 73.35 165 | 67.04 267 | 83.19 267 | 56.62 177 | 92.14 284 | 59.80 285 | 69.34 262 | 87.28 256 |
|
| 1112_ss | | | 80.56 148 | 79.83 148 | 82.77 184 | 88.65 179 | 60.78 264 | 92.29 144 | 88.36 287 | 72.58 181 | 72.46 196 | 94.95 67 | 65.09 74 | 93.42 244 | 66.38 236 | 77.71 201 | 94.10 120 |
|
| v2v482 | | | 77.42 206 | 75.65 213 | 82.73 185 | 80.38 313 | 67.13 112 | 91.85 168 | 90.23 214 | 75.09 135 | 69.37 231 | 83.39 265 | 53.79 210 | 94.44 205 | 71.77 182 | 65.00 297 | 86.63 268 |
|
| VPNet | | | 78.82 181 | 77.53 183 | 82.70 186 | 84.52 267 | 66.44 129 | 93.93 73 | 92.23 127 | 80.46 52 | 72.60 191 | 88.38 200 | 49.18 252 | 93.13 247 | 72.47 176 | 63.97 309 | 88.55 236 |
|
| CR-MVSNet | | | 73.79 258 | 70.82 273 | 82.70 186 | 83.15 286 | 67.96 90 | 70.25 370 | 84.00 337 | 73.67 161 | 69.97 227 | 72.41 356 | 57.82 160 | 89.48 323 | 52.99 311 | 73.13 238 | 90.64 208 |
|
| HQP-MVS | | | 81.14 137 | 80.64 135 | 82.64 188 | 87.54 210 | 63.66 203 | 94.06 64 | 91.70 157 | 79.80 63 | 74.18 172 | 90.30 174 | 51.63 230 | 95.61 159 | 77.63 139 | 78.90 192 | 88.63 233 |
|
| EPP-MVSNet | | | 81.79 129 | 81.52 120 | 82.61 189 | 88.77 178 | 60.21 278 | 93.02 117 | 93.66 75 | 68.52 266 | 72.90 187 | 90.39 172 | 72.19 32 | 94.96 182 | 74.93 157 | 79.29 190 | 92.67 165 |
|
| APD-MVS_3200maxsize | | | 81.64 131 | 81.32 122 | 82.59 190 | 92.36 89 | 58.74 298 | 91.39 187 | 91.01 189 | 63.35 303 | 79.72 112 | 94.62 79 | 51.82 226 | 96.14 133 | 79.71 121 | 87.93 110 | 92.89 162 |
|
| thres100view900 | | | 78.37 191 | 77.01 193 | 82.46 191 | 91.89 106 | 63.21 215 | 91.19 202 | 96.33 1 | 72.28 191 | 70.45 219 | 87.89 212 | 60.31 133 | 95.32 171 | 45.16 342 | 77.58 204 | 88.83 229 |
|
| thres400 | | | 78.68 185 | 77.43 184 | 82.43 192 | 92.21 94 | 64.49 171 | 92.05 156 | 96.28 4 | 73.48 163 | 71.75 205 | 88.26 203 | 60.07 138 | 95.32 171 | 45.16 342 | 77.58 204 | 87.48 249 |
|
| XXY-MVS | | | 77.94 199 | 76.44 200 | 82.43 192 | 82.60 292 | 64.44 175 | 92.01 158 | 91.83 149 | 73.59 162 | 70.00 226 | 85.82 240 | 54.43 203 | 94.76 187 | 69.63 200 | 68.02 275 | 88.10 244 |
|
| Test_1112_low_res | | | 79.56 167 | 78.60 167 | 82.43 192 | 88.24 193 | 60.39 275 | 92.09 153 | 87.99 298 | 72.10 197 | 71.84 203 | 87.42 219 | 64.62 82 | 93.04 248 | 65.80 243 | 77.30 209 | 93.85 134 |
|
| tttt0517 | | | 79.50 168 | 78.53 168 | 82.41 195 | 87.22 218 | 61.43 254 | 89.75 245 | 94.76 32 | 69.29 255 | 67.91 254 | 88.06 210 | 72.92 25 | 95.63 157 | 62.91 266 | 73.90 235 | 90.16 213 |
|
| HPM-MVS_fast | | | 80.25 155 | 79.55 154 | 82.33 196 | 91.55 116 | 59.95 281 | 91.32 194 | 89.16 255 | 65.23 291 | 74.71 168 | 93.07 117 | 47.81 266 | 95.74 150 | 74.87 160 | 88.23 106 | 91.31 199 |
|
| IS-MVSNet | | | 80.14 157 | 79.41 156 | 82.33 196 | 87.91 201 | 60.08 280 | 91.97 162 | 88.27 291 | 72.90 176 | 71.44 210 | 91.73 150 | 61.44 123 | 93.66 239 | 62.47 270 | 86.53 128 | 93.24 148 |
|
| v1144 | | | 76.73 220 | 74.88 220 | 82.27 198 | 80.23 317 | 66.60 126 | 91.68 177 | 90.21 216 | 73.69 159 | 69.06 236 | 81.89 280 | 52.73 221 | 94.40 206 | 69.21 206 | 65.23 294 | 85.80 287 |
|
| PVSNet_0 | | 68.08 15 | 71.81 276 | 68.32 292 | 82.27 198 | 84.68 263 | 62.31 237 | 88.68 265 | 90.31 209 | 75.84 124 | 57.93 333 | 80.65 304 | 37.85 322 | 94.19 215 | 69.94 198 | 29.05 396 | 90.31 212 |
|
| FMVSNet2 | | | 76.07 225 | 74.01 236 | 82.26 200 | 88.85 174 | 67.66 97 | 91.33 193 | 91.61 160 | 70.84 234 | 65.98 274 | 82.25 276 | 48.03 260 | 92.00 289 | 58.46 290 | 68.73 270 | 87.10 259 |
|
| tpmvs | | | 72.88 267 | 69.76 283 | 82.22 201 | 90.98 127 | 67.05 114 | 78.22 353 | 88.30 289 | 63.10 308 | 64.35 291 | 74.98 349 | 55.09 195 | 94.27 211 | 43.25 348 | 69.57 261 | 85.34 298 |
|
| sd_testset | | | 77.08 212 | 75.37 215 | 82.20 202 | 89.25 164 | 62.11 240 | 82.06 323 | 89.09 260 | 76.77 115 | 70.84 214 | 87.12 224 | 41.43 301 | 95.01 180 | 67.23 226 | 74.55 225 | 89.48 225 |
|
| V42 | | | 76.46 222 | 74.55 226 | 82.19 203 | 79.14 331 | 67.82 93 | 90.26 230 | 89.42 244 | 73.75 157 | 68.63 245 | 81.89 280 | 51.31 233 | 94.09 219 | 71.69 184 | 64.84 298 | 84.66 304 |
|
| SR-MVS-dyc-post | | | 81.06 140 | 80.70 133 | 82.15 204 | 92.02 98 | 58.56 300 | 90.90 208 | 90.45 200 | 62.76 310 | 78.89 122 | 94.46 81 | 51.26 234 | 95.61 159 | 78.77 132 | 86.77 124 | 92.28 177 |
|
| v1192 | | | 75.98 230 | 73.92 237 | 82.15 204 | 79.73 321 | 66.24 135 | 91.22 199 | 89.75 231 | 72.67 179 | 68.49 247 | 81.42 290 | 49.86 245 | 94.27 211 | 67.08 228 | 65.02 296 | 85.95 284 |
|
| MS-PatchMatch | | | 77.90 201 | 76.50 199 | 82.12 206 | 85.99 241 | 69.95 42 | 91.75 175 | 92.70 111 | 73.97 151 | 62.58 307 | 84.44 255 | 41.11 302 | 95.78 147 | 63.76 259 | 92.17 65 | 80.62 350 |
|
| v144192 | | | 76.05 228 | 74.03 235 | 82.12 206 | 79.50 325 | 66.55 128 | 91.39 187 | 89.71 237 | 72.30 190 | 68.17 249 | 81.33 292 | 51.75 228 | 94.03 227 | 67.94 218 | 64.19 304 | 85.77 288 |
|
| HQP_MVS | | | 80.34 153 | 79.75 149 | 82.12 206 | 86.94 225 | 62.42 232 | 93.13 111 | 91.31 171 | 78.81 85 | 72.53 193 | 89.14 192 | 50.66 237 | 95.55 164 | 76.74 142 | 78.53 197 | 88.39 240 |
|
| VPA-MVSNet | | | 79.03 175 | 78.00 175 | 82.11 209 | 85.95 242 | 64.48 173 | 93.22 109 | 94.66 38 | 75.05 136 | 74.04 177 | 84.95 247 | 52.17 225 | 93.52 241 | 74.90 159 | 67.04 281 | 88.32 242 |
|
| v1921920 | | | 75.63 238 | 73.49 243 | 82.06 210 | 79.38 326 | 66.35 131 | 91.07 206 | 89.48 240 | 71.98 198 | 67.99 250 | 81.22 295 | 49.16 254 | 93.90 233 | 66.56 232 | 64.56 303 | 85.92 286 |
|
| thres600view7 | | | 78.00 196 | 76.66 198 | 82.03 211 | 91.93 103 | 63.69 201 | 91.30 195 | 96.33 1 | 72.43 186 | 70.46 218 | 87.89 212 | 60.31 133 | 94.92 185 | 42.64 354 | 76.64 215 | 87.48 249 |
|
| v1240 | | | 75.21 243 | 72.98 248 | 81.88 212 | 79.20 328 | 66.00 139 | 90.75 215 | 89.11 259 | 71.63 217 | 67.41 263 | 81.22 295 | 47.36 268 | 93.87 234 | 65.46 248 | 64.72 301 | 85.77 288 |
|
| PMMVS | | | 81.98 127 | 82.04 114 | 81.78 213 | 89.76 151 | 56.17 323 | 91.13 203 | 90.69 193 | 77.96 94 | 80.09 108 | 93.57 109 | 46.33 277 | 94.99 181 | 81.41 109 | 87.46 115 | 94.17 116 |
|
| OPM-MVS | | | 79.00 176 | 78.09 173 | 81.73 214 | 83.52 283 | 63.83 193 | 91.64 179 | 90.30 210 | 76.36 121 | 71.97 202 | 89.93 183 | 46.30 278 | 95.17 177 | 75.10 154 | 77.70 202 | 86.19 276 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| test-LLR | | | 80.10 158 | 79.56 152 | 81.72 215 | 86.93 227 | 61.17 256 | 92.70 127 | 91.54 162 | 71.51 222 | 75.62 157 | 86.94 226 | 53.83 208 | 92.38 278 | 72.21 178 | 84.76 140 | 91.60 189 |
|
| test-mter | | | 79.96 161 | 79.38 158 | 81.72 215 | 86.93 227 | 61.17 256 | 92.70 127 | 91.54 162 | 73.85 154 | 75.62 157 | 86.94 226 | 49.84 246 | 92.38 278 | 72.21 178 | 84.76 140 | 91.60 189 |
|
| dmvs_re | | | 76.93 213 | 75.36 216 | 81.61 217 | 87.78 207 | 60.71 269 | 80.00 344 | 87.99 298 | 79.42 70 | 69.02 237 | 89.47 187 | 46.77 270 | 94.32 207 | 63.38 261 | 74.45 228 | 89.81 218 |
|
| v8 | | | 75.35 240 | 73.26 245 | 81.61 217 | 80.67 310 | 66.82 119 | 89.54 248 | 89.27 249 | 71.65 213 | 63.30 299 | 80.30 309 | 54.99 196 | 94.06 222 | 67.33 225 | 62.33 319 | 83.94 309 |
|
| miper_enhance_ethall | | | 78.86 180 | 77.97 176 | 81.54 219 | 88.00 200 | 65.17 159 | 91.41 183 | 89.15 256 | 75.19 134 | 68.79 242 | 83.98 259 | 67.17 56 | 92.82 259 | 72.73 172 | 65.30 291 | 86.62 269 |
|
| v10 | | | 74.77 247 | 72.54 257 | 81.46 220 | 80.33 315 | 66.71 123 | 89.15 258 | 89.08 261 | 70.94 232 | 63.08 302 | 79.86 314 | 52.52 222 | 94.04 225 | 65.70 244 | 62.17 320 | 83.64 312 |
|
| cl22 | | | 77.94 199 | 76.78 196 | 81.42 221 | 87.57 209 | 64.93 167 | 90.67 217 | 88.86 271 | 72.45 185 | 67.63 260 | 82.68 272 | 64.07 87 | 92.91 257 | 71.79 181 | 65.30 291 | 86.44 270 |
|
| v148 | | | 76.19 223 | 74.47 228 | 81.36 222 | 80.05 319 | 64.44 175 | 91.75 175 | 90.23 214 | 73.68 160 | 67.13 266 | 80.84 300 | 55.92 186 | 93.86 236 | 68.95 210 | 61.73 327 | 85.76 290 |
|
| testdata | | | | | 81.34 223 | 89.02 171 | 57.72 307 | | 89.84 228 | 58.65 339 | 85.32 60 | 94.09 97 | 57.03 167 | 93.28 245 | 69.34 204 | 90.56 90 | 93.03 156 |
|
| EI-MVSNet | | | 78.97 177 | 78.22 172 | 81.25 224 | 85.33 252 | 62.73 229 | 89.53 249 | 93.21 91 | 72.39 188 | 72.14 200 | 90.13 180 | 60.99 126 | 94.72 190 | 67.73 221 | 72.49 245 | 86.29 272 |
|
| MIMVSNet | | | 71.64 277 | 68.44 290 | 81.23 225 | 81.97 300 | 64.44 175 | 73.05 366 | 88.80 273 | 69.67 251 | 64.59 284 | 74.79 350 | 32.79 345 | 87.82 335 | 53.99 306 | 76.35 217 | 91.42 193 |
|
| AUN-MVS | | | 78.37 191 | 77.43 184 | 81.17 226 | 86.60 230 | 57.45 313 | 89.46 251 | 91.16 177 | 74.11 147 | 74.40 171 | 90.49 170 | 55.52 189 | 94.57 198 | 74.73 161 | 60.43 338 | 91.48 192 |
|
| hse-mvs2 | | | 81.12 139 | 81.11 127 | 81.16 227 | 86.52 231 | 57.48 312 | 89.40 252 | 91.16 177 | 81.45 38 | 82.73 81 | 90.49 170 | 60.11 136 | 94.58 196 | 87.69 56 | 60.41 339 | 91.41 194 |
|
| Anonymous20231211 | | | 73.08 261 | 70.39 277 | 81.13 228 | 90.62 134 | 63.33 212 | 91.40 185 | 90.06 221 | 51.84 362 | 64.46 289 | 80.67 303 | 36.49 333 | 94.07 221 | 63.83 258 | 64.17 305 | 85.98 283 |
|
| UA-Net | | | 80.02 160 | 79.65 150 | 81.11 229 | 89.33 161 | 57.72 307 | 86.33 295 | 89.00 267 | 77.44 106 | 81.01 95 | 89.15 191 | 59.33 147 | 95.90 144 | 61.01 277 | 84.28 146 | 89.73 221 |
|
| GBi-Net | | | 75.65 236 | 73.83 238 | 81.10 230 | 88.85 174 | 65.11 161 | 90.01 237 | 90.32 206 | 70.84 234 | 67.04 267 | 80.25 310 | 48.03 260 | 91.54 299 | 59.80 285 | 69.34 262 | 86.64 265 |
|
| test1 | | | 75.65 236 | 73.83 238 | 81.10 230 | 88.85 174 | 65.11 161 | 90.01 237 | 90.32 206 | 70.84 234 | 67.04 267 | 80.25 310 | 48.03 260 | 91.54 299 | 59.80 285 | 69.34 262 | 86.64 265 |
|
| FMVSNet1 | | | 72.71 270 | 69.91 281 | 81.10 230 | 83.60 282 | 65.11 161 | 90.01 237 | 90.32 206 | 63.92 297 | 63.56 296 | 80.25 310 | 36.35 334 | 91.54 299 | 54.46 304 | 66.75 283 | 86.64 265 |
|
| miper_ehance_all_eth | | | 77.60 203 | 76.44 200 | 81.09 233 | 85.70 249 | 64.41 178 | 90.65 218 | 88.64 281 | 72.31 189 | 67.37 265 | 82.52 273 | 64.77 81 | 92.64 271 | 70.67 192 | 65.30 291 | 86.24 274 |
|
| ADS-MVSNet | | | 68.54 302 | 64.38 317 | 81.03 234 | 88.06 197 | 66.90 118 | 68.01 377 | 84.02 336 | 57.57 341 | 64.48 287 | 69.87 366 | 38.68 309 | 89.21 325 | 40.87 359 | 67.89 276 | 86.97 260 |
|
| MSDG | | | 69.54 293 | 65.73 303 | 80.96 235 | 85.11 259 | 63.71 199 | 84.19 304 | 83.28 345 | 56.95 346 | 54.50 343 | 84.03 257 | 31.50 353 | 96.03 141 | 42.87 352 | 69.13 267 | 83.14 323 |
|
| OMC-MVS | | | 78.67 187 | 77.91 178 | 80.95 236 | 85.76 247 | 57.40 314 | 88.49 268 | 88.67 279 | 73.85 154 | 72.43 197 | 92.10 141 | 49.29 251 | 94.55 201 | 72.73 172 | 77.89 200 | 90.91 205 |
|
| c3_l | | | 76.83 218 | 75.47 214 | 80.93 237 | 85.02 260 | 64.18 188 | 90.39 225 | 88.11 295 | 71.66 212 | 66.65 273 | 81.64 285 | 63.58 100 | 92.56 272 | 69.31 205 | 62.86 313 | 86.04 281 |
|
| CPTT-MVS | | | 79.59 166 | 79.16 161 | 80.89 238 | 91.54 117 | 59.80 283 | 92.10 152 | 88.54 284 | 60.42 328 | 72.96 185 | 93.28 113 | 48.27 259 | 92.80 261 | 78.89 131 | 86.50 129 | 90.06 214 |
|
| eth_miper_zixun_eth | | | 75.96 232 | 74.40 229 | 80.66 239 | 84.66 264 | 63.02 219 | 89.28 254 | 88.27 291 | 71.88 203 | 65.73 275 | 81.65 284 | 59.45 144 | 92.81 260 | 68.13 215 | 60.53 336 | 86.14 277 |
|
| test_vis1_n_1920 | | | 81.66 130 | 82.01 115 | 80.64 240 | 82.24 296 | 55.09 331 | 94.76 47 | 86.87 310 | 81.67 36 | 84.40 68 | 94.63 78 | 38.17 316 | 94.67 194 | 91.98 28 | 83.34 151 | 92.16 184 |
|
| Patchmatch-test | | | 65.86 319 | 60.94 333 | 80.62 241 | 83.75 279 | 58.83 297 | 58.91 391 | 75.26 368 | 44.50 381 | 50.95 359 | 77.09 336 | 58.81 152 | 87.90 333 | 35.13 374 | 64.03 307 | 95.12 77 |
|
| NR-MVSNet | | | 76.05 228 | 74.59 224 | 80.44 242 | 82.96 289 | 62.18 239 | 90.83 212 | 91.73 152 | 77.12 109 | 60.96 313 | 86.35 232 | 59.28 148 | 91.80 292 | 60.74 278 | 61.34 331 | 87.35 254 |
|
| IterMVS-LS | | | 76.49 221 | 75.18 219 | 80.43 243 | 84.49 268 | 62.74 228 | 90.64 219 | 88.80 273 | 72.40 187 | 65.16 280 | 81.72 283 | 60.98 127 | 92.27 283 | 67.74 220 | 64.65 302 | 86.29 272 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PatchT | | | 69.11 296 | 65.37 308 | 80.32 244 | 82.07 299 | 63.68 202 | 67.96 379 | 87.62 302 | 50.86 365 | 69.37 231 | 65.18 374 | 57.09 166 | 88.53 329 | 41.59 357 | 66.60 284 | 88.74 232 |
|
| CNLPA | | | 74.31 251 | 72.30 259 | 80.32 244 | 91.49 118 | 61.66 250 | 90.85 211 | 80.72 353 | 56.67 349 | 63.85 294 | 90.64 165 | 46.75 271 | 90.84 307 | 53.79 307 | 75.99 220 | 88.47 239 |
|
| cl____ | | | 76.07 225 | 74.67 221 | 80.28 246 | 85.15 256 | 61.76 247 | 90.12 233 | 88.73 276 | 71.16 227 | 65.43 277 | 81.57 287 | 61.15 124 | 92.95 252 | 66.54 233 | 62.17 320 | 86.13 279 |
|
| DIV-MVS_self_test | | | 76.07 225 | 74.67 221 | 80.28 246 | 85.14 257 | 61.75 248 | 90.12 233 | 88.73 276 | 71.16 227 | 65.42 278 | 81.60 286 | 61.15 124 | 92.94 256 | 66.54 233 | 62.16 322 | 86.14 277 |
|
| pmmvs4 | | | 73.92 256 | 71.81 265 | 80.25 248 | 79.17 329 | 65.24 157 | 87.43 284 | 87.26 306 | 67.64 273 | 63.46 297 | 83.91 260 | 48.96 256 | 91.53 302 | 62.94 265 | 65.49 290 | 83.96 308 |
|
| mvsmamba | | | 76.85 216 | 75.71 212 | 80.25 248 | 83.07 288 | 59.16 293 | 91.44 181 | 80.64 354 | 76.84 112 | 67.95 252 | 86.33 234 | 46.17 280 | 94.24 214 | 76.06 147 | 72.92 241 | 87.36 253 |
|
| UWE-MVS | | | 80.81 145 | 81.01 129 | 80.20 250 | 89.33 161 | 57.05 317 | 91.91 164 | 94.71 35 | 75.67 126 | 75.01 165 | 89.37 188 | 63.13 107 | 91.44 304 | 67.19 227 | 82.80 157 | 92.12 185 |
|
| DP-MVS | | | 69.90 290 | 66.48 297 | 80.14 251 | 95.36 28 | 62.93 222 | 89.56 246 | 76.11 362 | 50.27 367 | 57.69 334 | 85.23 244 | 39.68 306 | 95.73 151 | 33.35 378 | 71.05 256 | 81.78 340 |
|
| PS-MVSNAJss | | | 77.26 208 | 76.31 202 | 80.13 252 | 80.64 311 | 59.16 293 | 90.63 221 | 91.06 186 | 72.80 177 | 68.58 246 | 84.57 253 | 53.55 212 | 93.96 230 | 72.97 167 | 71.96 249 | 87.27 257 |
|
| tt0805 | | | 73.07 262 | 70.73 274 | 80.07 253 | 78.37 342 | 57.05 317 | 87.78 279 | 92.18 133 | 61.23 324 | 67.04 267 | 86.49 231 | 31.35 355 | 94.58 196 | 65.06 251 | 67.12 280 | 88.57 235 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 244 | 73.37 244 | 80.07 253 | 80.86 306 | 59.52 287 | 91.20 201 | 85.38 324 | 71.90 201 | 65.20 279 | 84.84 249 | 41.46 300 | 92.97 251 | 66.50 235 | 72.96 240 | 87.73 246 |
|
| ACMH | | 63.93 17 | 68.62 300 | 64.81 310 | 80.03 255 | 85.22 255 | 63.25 213 | 87.72 280 | 84.66 331 | 60.83 326 | 51.57 355 | 79.43 320 | 27.29 366 | 94.96 182 | 41.76 355 | 64.84 298 | 81.88 338 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| WB-MVSnew | | | 77.14 210 | 76.18 205 | 80.01 256 | 86.18 238 | 63.24 214 | 91.26 196 | 94.11 60 | 71.72 211 | 73.52 181 | 87.29 222 | 45.14 287 | 93.00 250 | 56.98 295 | 79.42 186 | 83.80 311 |
|
| UniMVSNet_NR-MVSNet | | | 78.15 195 | 77.55 182 | 79.98 257 | 84.46 269 | 60.26 276 | 92.25 145 | 93.20 93 | 77.50 105 | 68.88 240 | 86.61 229 | 66.10 64 | 92.13 285 | 66.38 236 | 62.55 316 | 87.54 247 |
|
| UniMVSNet (Re) | | | 77.58 204 | 76.78 196 | 79.98 257 | 84.11 275 | 60.80 263 | 91.76 173 | 93.17 95 | 76.56 119 | 69.93 229 | 84.78 250 | 63.32 104 | 92.36 280 | 64.89 252 | 62.51 318 | 86.78 264 |
|
| test_cas_vis1_n_1920 | | | 80.45 151 | 80.61 136 | 79.97 259 | 78.25 343 | 57.01 319 | 94.04 68 | 88.33 288 | 79.06 81 | 82.81 80 | 93.70 105 | 38.65 311 | 91.63 296 | 90.82 37 | 79.81 183 | 91.27 201 |
|
| DU-MVS | | | 76.86 214 | 75.84 209 | 79.91 260 | 82.96 289 | 60.26 276 | 91.26 196 | 91.54 162 | 76.46 120 | 68.88 240 | 86.35 232 | 56.16 181 | 92.13 285 | 66.38 236 | 62.55 316 | 87.35 254 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 233 | 74.52 227 | 79.89 261 | 82.44 294 | 60.64 272 | 91.37 190 | 91.37 169 | 76.63 117 | 67.65 259 | 86.21 236 | 52.37 224 | 91.55 298 | 61.84 273 | 60.81 334 | 87.48 249 |
|
| PLC |  | 68.80 14 | 75.23 242 | 73.68 241 | 79.86 262 | 92.93 75 | 58.68 299 | 90.64 219 | 88.30 289 | 60.90 325 | 64.43 290 | 90.53 168 | 42.38 298 | 94.57 198 | 56.52 296 | 76.54 216 | 86.33 271 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| WR-MVS | | | 76.76 219 | 75.74 211 | 79.82 263 | 84.60 265 | 62.27 238 | 92.60 134 | 92.51 121 | 76.06 122 | 67.87 257 | 85.34 243 | 56.76 173 | 90.24 315 | 62.20 271 | 63.69 311 | 86.94 262 |
|
| MVP-Stereo | | | 77.12 211 | 76.23 203 | 79.79 264 | 81.72 301 | 66.34 132 | 89.29 253 | 90.88 190 | 70.56 241 | 62.01 310 | 82.88 269 | 49.34 249 | 94.13 217 | 65.55 247 | 93.80 42 | 78.88 364 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| ppachtmachnet_test | | | 67.72 308 | 63.70 319 | 79.77 265 | 78.92 333 | 66.04 138 | 88.68 265 | 82.90 347 | 60.11 332 | 55.45 340 | 75.96 345 | 39.19 308 | 90.55 308 | 39.53 363 | 52.55 362 | 82.71 329 |
|
| FIs | | | 79.47 169 | 79.41 156 | 79.67 266 | 85.95 242 | 59.40 288 | 91.68 177 | 93.94 63 | 78.06 93 | 68.96 239 | 88.28 201 | 66.61 61 | 91.77 293 | 66.20 239 | 74.99 224 | 87.82 245 |
|
| XVG-OURS | | | 74.25 252 | 72.46 258 | 79.63 267 | 78.45 341 | 57.59 311 | 80.33 338 | 87.39 303 | 63.86 298 | 68.76 243 | 89.62 186 | 40.50 304 | 91.72 294 | 69.00 209 | 74.25 230 | 89.58 222 |
|
| ACMP | | 71.68 10 | 75.58 239 | 74.23 232 | 79.62 268 | 84.97 261 | 59.64 284 | 90.80 213 | 89.07 262 | 70.39 242 | 62.95 303 | 87.30 221 | 38.28 315 | 93.87 234 | 72.89 168 | 71.45 253 | 85.36 297 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS-SEG-HR | | | 74.70 248 | 73.08 246 | 79.57 269 | 78.25 343 | 57.33 315 | 80.49 336 | 87.32 304 | 63.22 305 | 68.76 243 | 90.12 182 | 44.89 289 | 91.59 297 | 70.55 194 | 74.09 232 | 89.79 219 |
|
| LPG-MVS_test | | | 75.82 234 | 74.58 225 | 79.56 270 | 84.31 272 | 59.37 289 | 90.44 222 | 89.73 234 | 69.49 252 | 64.86 281 | 88.42 197 | 38.65 311 | 94.30 209 | 72.56 174 | 72.76 242 | 85.01 301 |
|
| LGP-MVS_train | | | | | 79.56 270 | 84.31 272 | 59.37 289 | | 89.73 234 | 69.49 252 | 64.86 281 | 88.42 197 | 38.65 311 | 94.30 209 | 72.56 174 | 72.76 242 | 85.01 301 |
|
| UniMVSNet_ETH3D | | | 72.74 269 | 70.53 276 | 79.36 272 | 78.62 340 | 56.64 321 | 85.01 300 | 89.20 252 | 63.77 299 | 64.84 283 | 84.44 255 | 34.05 342 | 91.86 291 | 63.94 257 | 70.89 257 | 89.57 223 |
|
| v7n | | | 71.31 280 | 68.65 287 | 79.28 273 | 76.40 354 | 60.77 265 | 86.71 293 | 89.45 242 | 64.17 296 | 58.77 327 | 78.24 325 | 44.59 290 | 93.54 240 | 57.76 292 | 61.75 326 | 83.52 315 |
|
| Patchmatch-RL test | | | 68.17 305 | 64.49 315 | 79.19 274 | 71.22 370 | 53.93 336 | 70.07 372 | 71.54 378 | 69.22 256 | 56.79 337 | 62.89 378 | 56.58 178 | 88.61 326 | 69.53 202 | 52.61 361 | 95.03 81 |
|
| TAPA-MVS | | 70.22 12 | 74.94 246 | 73.53 242 | 79.17 275 | 90.40 138 | 52.07 343 | 89.19 257 | 89.61 238 | 62.69 312 | 70.07 224 | 92.67 127 | 48.89 257 | 94.32 207 | 38.26 368 | 79.97 182 | 91.12 203 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMM | | 69.62 13 | 74.34 250 | 72.73 253 | 79.17 275 | 84.25 274 | 57.87 305 | 90.36 226 | 89.93 225 | 63.17 307 | 65.64 276 | 86.04 239 | 37.79 323 | 94.10 218 | 65.89 241 | 71.52 252 | 85.55 293 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| D2MVS | | | 73.80 257 | 72.02 262 | 79.15 277 | 79.15 330 | 62.97 220 | 88.58 267 | 90.07 219 | 72.94 172 | 59.22 322 | 78.30 324 | 42.31 299 | 92.70 266 | 65.59 246 | 72.00 248 | 81.79 339 |
|
| our_test_3 | | | 68.29 304 | 64.69 312 | 79.11 278 | 78.92 333 | 64.85 168 | 88.40 270 | 85.06 327 | 60.32 330 | 52.68 350 | 76.12 344 | 40.81 303 | 89.80 322 | 44.25 347 | 55.65 352 | 82.67 332 |
|
| pmmvs5 | | | 73.35 260 | 71.52 267 | 78.86 279 | 78.64 339 | 60.61 273 | 91.08 204 | 86.90 309 | 67.69 270 | 63.32 298 | 83.64 261 | 44.33 291 | 90.53 309 | 62.04 272 | 66.02 288 | 85.46 295 |
|
| RRT_MVS | | | 74.44 249 | 72.97 249 | 78.84 280 | 82.36 295 | 57.66 309 | 89.83 243 | 88.79 275 | 70.61 240 | 64.58 285 | 84.89 248 | 39.24 307 | 92.65 270 | 70.11 197 | 66.34 286 | 86.21 275 |
|
| Effi-MVS+-dtu | | | 76.14 224 | 75.28 218 | 78.72 281 | 83.22 285 | 55.17 330 | 89.87 241 | 87.78 301 | 75.42 130 | 67.98 251 | 81.43 289 | 45.08 288 | 92.52 274 | 75.08 155 | 71.63 250 | 88.48 237 |
|
| CHOSEN 280x420 | | | 77.35 207 | 76.95 195 | 78.55 282 | 87.07 222 | 62.68 230 | 69.71 373 | 82.95 346 | 68.80 262 | 71.48 209 | 87.27 223 | 66.03 65 | 84.00 360 | 76.47 145 | 82.81 156 | 88.95 228 |
|
| Patchmtry | | | 67.53 311 | 63.93 318 | 78.34 283 | 82.12 298 | 64.38 179 | 68.72 374 | 84.00 337 | 48.23 373 | 59.24 321 | 72.41 356 | 57.82 160 | 89.27 324 | 46.10 339 | 56.68 351 | 81.36 341 |
|
| tfpnnormal | | | 70.10 287 | 67.36 295 | 78.32 284 | 83.45 284 | 60.97 261 | 88.85 262 | 92.77 109 | 64.85 292 | 60.83 314 | 78.53 323 | 43.52 294 | 93.48 242 | 31.73 385 | 61.70 328 | 80.52 351 |
|
| PatchMatch-RL | | | 72.06 275 | 69.98 278 | 78.28 285 | 89.51 157 | 55.70 327 | 83.49 309 | 83.39 344 | 61.24 323 | 63.72 295 | 82.76 270 | 34.77 339 | 93.03 249 | 53.37 310 | 77.59 203 | 86.12 280 |
|
| pm-mvs1 | | | 72.89 266 | 71.09 270 | 78.26 286 | 79.10 332 | 57.62 310 | 90.80 213 | 89.30 248 | 67.66 271 | 62.91 304 | 81.78 282 | 49.11 255 | 92.95 252 | 60.29 282 | 58.89 344 | 84.22 307 |
|
| Vis-MVSNet (Re-imp) | | | 79.24 172 | 79.57 151 | 78.24 287 | 88.46 183 | 52.29 342 | 90.41 224 | 89.12 258 | 74.24 145 | 69.13 233 | 91.91 146 | 65.77 68 | 90.09 319 | 59.00 289 | 88.09 108 | 92.33 174 |
|
| IterMVS | | | 72.65 273 | 70.83 271 | 78.09 288 | 82.17 297 | 62.96 221 | 87.64 282 | 86.28 315 | 71.56 220 | 60.44 315 | 78.85 322 | 45.42 285 | 86.66 345 | 63.30 263 | 61.83 324 | 84.65 305 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EG-PatchMatch MVS | | | 68.55 301 | 65.41 307 | 77.96 289 | 78.69 338 | 62.93 222 | 89.86 242 | 89.17 254 | 60.55 327 | 50.27 360 | 77.73 330 | 22.60 375 | 94.06 222 | 47.18 334 | 72.65 244 | 76.88 372 |
|
| FC-MVSNet-test | | | 77.99 197 | 78.08 174 | 77.70 290 | 84.89 262 | 55.51 328 | 90.27 229 | 93.75 72 | 76.87 110 | 66.80 272 | 87.59 216 | 65.71 69 | 90.23 316 | 62.89 267 | 73.94 233 | 87.37 252 |
|
| jajsoiax | | | 73.05 263 | 71.51 268 | 77.67 291 | 77.46 349 | 54.83 332 | 88.81 263 | 90.04 222 | 69.13 259 | 62.85 305 | 83.51 263 | 31.16 356 | 92.75 263 | 70.83 189 | 69.80 258 | 85.43 296 |
|
| mvs_tets | | | 72.71 270 | 71.11 269 | 77.52 292 | 77.41 350 | 54.52 334 | 88.45 269 | 89.76 230 | 68.76 264 | 62.70 306 | 83.26 266 | 29.49 360 | 92.71 264 | 70.51 195 | 69.62 260 | 85.34 298 |
|
| LS3D | | | 69.17 295 | 66.40 299 | 77.50 293 | 91.92 104 | 56.12 324 | 85.12 299 | 80.37 355 | 46.96 374 | 56.50 338 | 87.51 218 | 37.25 326 | 93.71 237 | 32.52 384 | 79.40 187 | 82.68 331 |
|
| Baseline_NR-MVSNet | | | 73.99 255 | 72.83 250 | 77.48 294 | 80.78 308 | 59.29 292 | 91.79 170 | 84.55 332 | 68.85 261 | 68.99 238 | 80.70 301 | 56.16 181 | 92.04 288 | 62.67 268 | 60.98 333 | 81.11 344 |
|
| EPNet_dtu | | | 78.80 182 | 79.26 160 | 77.43 295 | 88.06 197 | 49.71 355 | 91.96 163 | 91.95 140 | 77.67 100 | 76.56 150 | 91.28 159 | 58.51 153 | 90.20 317 | 56.37 297 | 80.95 175 | 92.39 172 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_djsdf | | | 73.76 259 | 72.56 256 | 77.39 296 | 77.00 352 | 53.93 336 | 89.07 259 | 90.69 193 | 65.80 285 | 63.92 292 | 82.03 279 | 43.14 296 | 92.67 267 | 72.83 169 | 68.53 271 | 85.57 292 |
|
| F-COLMAP | | | 70.66 282 | 68.44 290 | 77.32 297 | 86.37 235 | 55.91 325 | 88.00 275 | 86.32 314 | 56.94 347 | 57.28 336 | 88.07 209 | 33.58 343 | 92.49 275 | 51.02 314 | 68.37 272 | 83.55 313 |
|
| TransMVSNet (Re) | | | 70.07 288 | 67.66 294 | 77.31 298 | 80.62 312 | 59.13 295 | 91.78 172 | 84.94 329 | 65.97 284 | 60.08 318 | 80.44 306 | 50.78 236 | 91.87 290 | 48.84 324 | 45.46 374 | 80.94 346 |
|
| ADS-MVSNet2 | | | 66.90 314 | 63.44 321 | 77.26 299 | 88.06 197 | 60.70 270 | 68.01 377 | 75.56 366 | 57.57 341 | 64.48 287 | 69.87 366 | 38.68 309 | 84.10 357 | 40.87 359 | 67.89 276 | 86.97 260 |
|
| miper_lstm_enhance | | | 73.05 263 | 71.73 266 | 77.03 300 | 83.80 278 | 58.32 302 | 81.76 324 | 88.88 269 | 69.80 250 | 61.01 312 | 78.23 326 | 57.19 165 | 87.51 341 | 65.34 249 | 59.53 341 | 85.27 300 |
|
| KD-MVS_2432*1600 | | | 69.03 297 | 66.37 300 | 77.01 301 | 85.56 250 | 61.06 259 | 81.44 329 | 90.25 212 | 67.27 275 | 58.00 331 | 76.53 340 | 54.49 200 | 87.63 339 | 48.04 328 | 35.77 388 | 82.34 334 |
|
| miper_refine_blended | | | 69.03 297 | 66.37 300 | 77.01 301 | 85.56 250 | 61.06 259 | 81.44 329 | 90.25 212 | 67.27 275 | 58.00 331 | 76.53 340 | 54.49 200 | 87.63 339 | 48.04 328 | 35.77 388 | 82.34 334 |
|
| ACMH+ | | 65.35 16 | 67.65 309 | 64.55 313 | 76.96 303 | 84.59 266 | 57.10 316 | 88.08 272 | 80.79 352 | 58.59 340 | 53.00 349 | 81.09 299 | 26.63 368 | 92.95 252 | 46.51 336 | 61.69 329 | 80.82 347 |
|
| JIA-IIPM | | | 66.06 318 | 62.45 327 | 76.88 304 | 81.42 304 | 54.45 335 | 57.49 392 | 88.67 279 | 49.36 369 | 63.86 293 | 46.86 390 | 56.06 184 | 90.25 312 | 49.53 321 | 68.83 268 | 85.95 284 |
|
| OpenMVS_ROB |  | 61.12 18 | 66.39 316 | 62.92 324 | 76.80 305 | 76.51 353 | 57.77 306 | 89.22 255 | 83.41 343 | 55.48 353 | 53.86 347 | 77.84 329 | 26.28 369 | 93.95 231 | 34.90 375 | 68.76 269 | 78.68 366 |
|
| anonymousdsp | | | 71.14 281 | 69.37 285 | 76.45 306 | 72.95 366 | 54.71 333 | 84.19 304 | 88.88 269 | 61.92 319 | 62.15 309 | 79.77 316 | 38.14 318 | 91.44 304 | 68.90 211 | 67.45 279 | 83.21 321 |
|
| IterMVS-SCA-FT | | | 71.55 279 | 69.97 279 | 76.32 307 | 81.48 302 | 60.67 271 | 87.64 282 | 85.99 320 | 66.17 283 | 59.50 320 | 78.88 321 | 45.53 283 | 83.65 362 | 62.58 269 | 61.93 323 | 84.63 306 |
|
| USDC | | | 67.43 313 | 64.51 314 | 76.19 308 | 77.94 347 | 55.29 329 | 78.38 351 | 85.00 328 | 73.17 167 | 48.36 367 | 80.37 307 | 21.23 377 | 92.48 276 | 52.15 312 | 64.02 308 | 80.81 348 |
|
| LCM-MVSNet-Re | | | 72.93 265 | 71.84 264 | 76.18 309 | 88.49 181 | 48.02 362 | 80.07 343 | 70.17 379 | 73.96 152 | 52.25 352 | 80.09 313 | 49.98 243 | 88.24 331 | 67.35 223 | 84.23 147 | 92.28 177 |
|
| pmmvs6 | | | 67.57 310 | 64.76 311 | 76.00 310 | 72.82 368 | 53.37 338 | 88.71 264 | 86.78 313 | 53.19 358 | 57.58 335 | 78.03 328 | 35.33 338 | 92.41 277 | 55.56 300 | 54.88 356 | 82.21 336 |
|
| XVG-ACMP-BASELINE | | | 68.04 306 | 65.53 306 | 75.56 311 | 74.06 363 | 52.37 341 | 78.43 350 | 85.88 321 | 62.03 317 | 58.91 326 | 81.21 297 | 20.38 380 | 91.15 306 | 60.69 279 | 68.18 273 | 83.16 322 |
|
| CL-MVSNet_self_test | | | 69.92 289 | 68.09 293 | 75.41 312 | 73.25 365 | 55.90 326 | 90.05 236 | 89.90 226 | 69.96 247 | 61.96 311 | 76.54 339 | 51.05 235 | 87.64 338 | 49.51 322 | 50.59 366 | 82.70 330 |
|
| test_fmvs1 | | | 74.07 253 | 73.69 240 | 75.22 313 | 78.91 335 | 47.34 367 | 89.06 261 | 74.69 369 | 63.68 300 | 79.41 116 | 91.59 153 | 24.36 370 | 87.77 337 | 85.22 77 | 76.26 218 | 90.55 210 |
|
| pmmvs-eth3d | | | 65.53 323 | 62.32 328 | 75.19 314 | 69.39 378 | 59.59 285 | 82.80 320 | 83.43 342 | 62.52 313 | 51.30 357 | 72.49 354 | 32.86 344 | 87.16 344 | 55.32 301 | 50.73 365 | 78.83 365 |
|
| FMVSNet5 | | | 68.04 306 | 65.66 305 | 75.18 315 | 84.43 270 | 57.89 304 | 83.54 308 | 86.26 316 | 61.83 321 | 53.64 348 | 73.30 353 | 37.15 329 | 85.08 353 | 48.99 323 | 61.77 325 | 82.56 333 |
|
| test_fmvs1_n | | | 72.69 272 | 71.92 263 | 74.99 316 | 71.15 371 | 47.08 369 | 87.34 286 | 75.67 364 | 63.48 302 | 78.08 133 | 91.17 160 | 20.16 381 | 87.87 334 | 84.65 85 | 75.57 222 | 90.01 216 |
|
| test_0402 | | | 64.54 326 | 61.09 332 | 74.92 317 | 84.10 276 | 60.75 267 | 87.95 276 | 79.71 357 | 52.03 360 | 52.41 351 | 77.20 334 | 32.21 351 | 91.64 295 | 23.14 391 | 61.03 332 | 72.36 380 |
|
| MDA-MVSNet_test_wron | | | 63.78 331 | 60.16 334 | 74.64 318 | 78.15 345 | 60.41 274 | 83.49 309 | 84.03 335 | 56.17 352 | 39.17 386 | 71.59 362 | 37.22 327 | 83.24 367 | 42.87 352 | 48.73 368 | 80.26 354 |
|
| YYNet1 | | | 63.76 332 | 60.14 335 | 74.62 319 | 78.06 346 | 60.19 279 | 83.46 311 | 83.99 339 | 56.18 351 | 39.25 385 | 71.56 363 | 37.18 328 | 83.34 365 | 42.90 351 | 48.70 369 | 80.32 353 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 317 | 63.54 320 | 74.45 320 | 84.00 277 | 51.55 345 | 67.08 380 | 83.53 341 | 58.78 338 | 54.94 342 | 80.31 308 | 34.54 340 | 93.23 246 | 40.64 361 | 68.03 274 | 78.58 367 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVS-HIRNet | | | 60.25 341 | 55.55 348 | 74.35 321 | 84.37 271 | 56.57 322 | 71.64 368 | 74.11 370 | 34.44 389 | 45.54 375 | 42.24 396 | 31.11 357 | 89.81 320 | 40.36 362 | 76.10 219 | 76.67 373 |
|
| SixPastTwentyTwo | | | 64.92 324 | 61.78 331 | 74.34 322 | 78.74 337 | 49.76 354 | 83.42 312 | 79.51 358 | 62.86 309 | 50.27 360 | 77.35 331 | 30.92 358 | 90.49 310 | 45.89 340 | 47.06 371 | 82.78 325 |
|
| test_vis1_n | | | 71.63 278 | 70.73 274 | 74.31 323 | 69.63 377 | 47.29 368 | 86.91 290 | 72.11 374 | 63.21 306 | 75.18 163 | 90.17 178 | 20.40 379 | 85.76 349 | 84.59 86 | 74.42 229 | 89.87 217 |
|
| UnsupCasMVSNet_eth | | | 65.79 320 | 63.10 322 | 73.88 324 | 70.71 373 | 50.29 353 | 81.09 332 | 89.88 227 | 72.58 181 | 49.25 365 | 74.77 351 | 32.57 348 | 87.43 342 | 55.96 299 | 41.04 381 | 83.90 310 |
|
| CMPMVS |  | 48.56 21 | 66.77 315 | 64.41 316 | 73.84 325 | 70.65 374 | 50.31 352 | 77.79 355 | 85.73 323 | 45.54 378 | 44.76 377 | 82.14 278 | 35.40 337 | 90.14 318 | 63.18 264 | 74.54 227 | 81.07 345 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| lessismore_v0 | | | | | 73.72 326 | 72.93 367 | 47.83 364 | | 61.72 391 | | 45.86 373 | 73.76 352 | 28.63 364 | 89.81 320 | 47.75 333 | 31.37 393 | 83.53 314 |
|
| K. test v3 | | | 63.09 333 | 59.61 337 | 73.53 327 | 76.26 355 | 49.38 359 | 83.27 313 | 77.15 361 | 64.35 295 | 47.77 369 | 72.32 358 | 28.73 362 | 87.79 336 | 49.93 320 | 36.69 387 | 83.41 318 |
|
| CVMVSNet | | | 74.04 254 | 74.27 231 | 73.33 328 | 85.33 252 | 43.94 378 | 89.53 249 | 88.39 286 | 54.33 356 | 70.37 220 | 90.13 180 | 49.17 253 | 84.05 358 | 61.83 274 | 79.36 188 | 91.99 186 |
|
| UnsupCasMVSNet_bld | | | 61.60 337 | 57.71 341 | 73.29 329 | 68.73 379 | 51.64 344 | 78.61 349 | 89.05 263 | 57.20 345 | 46.11 370 | 61.96 381 | 28.70 363 | 88.60 327 | 50.08 319 | 38.90 385 | 79.63 358 |
|
| MDA-MVSNet-bldmvs | | | 61.54 338 | 57.70 342 | 73.05 330 | 79.53 324 | 57.00 320 | 83.08 317 | 81.23 350 | 57.57 341 | 34.91 389 | 72.45 355 | 32.79 345 | 86.26 348 | 35.81 372 | 41.95 379 | 75.89 374 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 334 | 59.65 336 | 72.98 331 | 81.44 303 | 53.00 340 | 83.75 307 | 75.53 367 | 48.34 372 | 48.81 366 | 81.40 291 | 24.14 371 | 90.30 311 | 32.95 380 | 60.52 337 | 75.65 375 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test0.0.03 1 | | | 72.76 268 | 72.71 254 | 72.88 332 | 80.25 316 | 47.99 363 | 91.22 199 | 89.45 242 | 71.51 222 | 62.51 308 | 87.66 215 | 53.83 208 | 85.06 354 | 50.16 318 | 67.84 278 | 85.58 291 |
|
| Anonymous20231206 | | | 67.53 311 | 65.78 302 | 72.79 333 | 74.95 359 | 47.59 365 | 88.23 271 | 87.32 304 | 61.75 322 | 58.07 330 | 77.29 333 | 37.79 323 | 87.29 343 | 42.91 350 | 63.71 310 | 83.48 316 |
|
| WR-MVS_H | | | 70.59 283 | 69.94 280 | 72.53 334 | 81.03 305 | 51.43 346 | 87.35 285 | 92.03 137 | 67.38 274 | 60.23 317 | 80.70 301 | 55.84 187 | 83.45 364 | 46.33 338 | 58.58 346 | 82.72 328 |
|
| AllTest | | | 61.66 336 | 58.06 340 | 72.46 335 | 79.57 322 | 51.42 347 | 80.17 341 | 68.61 382 | 51.25 363 | 45.88 371 | 81.23 293 | 19.86 382 | 86.58 346 | 38.98 365 | 57.01 349 | 79.39 359 |
|
| TestCases | | | | | 72.46 335 | 79.57 322 | 51.42 347 | | 68.61 382 | 51.25 363 | 45.88 371 | 81.23 293 | 19.86 382 | 86.58 346 | 38.98 365 | 57.01 349 | 79.39 359 |
|
| CP-MVSNet | | | 70.50 284 | 69.91 281 | 72.26 337 | 80.71 309 | 51.00 349 | 87.23 287 | 90.30 210 | 67.84 269 | 59.64 319 | 82.69 271 | 50.23 242 | 82.30 372 | 51.28 313 | 59.28 342 | 83.46 317 |
|
| OurMVSNet-221017-0 | | | 64.68 325 | 62.17 329 | 72.21 338 | 76.08 357 | 47.35 366 | 80.67 335 | 81.02 351 | 56.19 350 | 51.60 354 | 79.66 318 | 27.05 367 | 88.56 328 | 53.60 309 | 53.63 359 | 80.71 349 |
|
| PEN-MVS | | | 69.46 294 | 68.56 288 | 72.17 339 | 79.27 327 | 49.71 355 | 86.90 291 | 89.24 250 | 67.24 278 | 59.08 324 | 82.51 274 | 47.23 269 | 83.54 363 | 48.42 326 | 57.12 347 | 83.25 320 |
|
| myMVS_eth3d | | | 72.58 274 | 72.74 252 | 72.10 340 | 87.87 203 | 49.45 357 | 88.07 273 | 89.01 264 | 72.91 174 | 63.11 300 | 88.10 207 | 63.63 95 | 85.54 350 | 32.73 382 | 69.23 265 | 81.32 342 |
|
| PS-CasMVS | | | 69.86 291 | 69.13 286 | 72.07 341 | 80.35 314 | 50.57 351 | 87.02 289 | 89.75 231 | 67.27 275 | 59.19 323 | 82.28 275 | 46.58 273 | 82.24 373 | 50.69 315 | 59.02 343 | 83.39 319 |
|
| TinyColmap | | | 60.32 340 | 56.42 347 | 72.00 342 | 78.78 336 | 53.18 339 | 78.36 352 | 75.64 365 | 52.30 359 | 41.59 384 | 75.82 347 | 14.76 389 | 88.35 330 | 35.84 371 | 54.71 357 | 74.46 376 |
|
| DTE-MVSNet | | | 68.46 303 | 67.33 296 | 71.87 343 | 77.94 347 | 49.00 360 | 86.16 296 | 88.58 283 | 66.36 282 | 58.19 328 | 82.21 277 | 46.36 274 | 83.87 361 | 44.97 345 | 55.17 354 | 82.73 327 |
|
| Anonymous20240521 | | | 62.09 335 | 59.08 338 | 71.10 344 | 67.19 381 | 48.72 361 | 83.91 306 | 85.23 326 | 50.38 366 | 47.84 368 | 71.22 365 | 20.74 378 | 85.51 352 | 46.47 337 | 58.75 345 | 79.06 362 |
|
| RPSCF | | | 64.24 328 | 61.98 330 | 71.01 345 | 76.10 356 | 45.00 375 | 75.83 362 | 75.94 363 | 46.94 375 | 58.96 325 | 84.59 252 | 31.40 354 | 82.00 374 | 47.76 332 | 60.33 340 | 86.04 281 |
|
| ITE_SJBPF | | | | | 70.43 346 | 74.44 361 | 47.06 370 | | 77.32 360 | 60.16 331 | 54.04 346 | 83.53 262 | 23.30 374 | 84.01 359 | 43.07 349 | 61.58 330 | 80.21 356 |
|
| Syy-MVS | | | 69.65 292 | 69.52 284 | 70.03 347 | 87.87 203 | 43.21 380 | 88.07 273 | 89.01 264 | 72.91 174 | 63.11 300 | 88.10 207 | 45.28 286 | 85.54 350 | 22.07 393 | 69.23 265 | 81.32 342 |
|
| ambc | | | | | 69.61 348 | 61.38 390 | 41.35 383 | 49.07 397 | 85.86 322 | | 50.18 362 | 66.40 372 | 10.16 394 | 88.14 332 | 45.73 341 | 44.20 375 | 79.32 361 |
|
| mvsany_test1 | | | 68.77 299 | 68.56 288 | 69.39 349 | 73.57 364 | 45.88 374 | 80.93 334 | 60.88 392 | 59.65 334 | 71.56 208 | 90.26 176 | 43.22 295 | 75.05 382 | 74.26 163 | 62.70 315 | 87.25 258 |
|
| testgi | | | 64.48 327 | 62.87 325 | 69.31 350 | 71.24 369 | 40.62 385 | 85.49 297 | 79.92 356 | 65.36 289 | 54.18 345 | 83.49 264 | 23.74 373 | 84.55 355 | 41.60 356 | 60.79 335 | 82.77 326 |
|
| testing3 | | | 70.38 286 | 70.83 271 | 69.03 351 | 85.82 246 | 43.93 379 | 90.72 216 | 90.56 199 | 68.06 268 | 60.24 316 | 86.82 228 | 64.83 79 | 84.12 356 | 26.33 389 | 64.10 306 | 79.04 363 |
|
| MIMVSNet1 | | | 60.16 342 | 57.33 343 | 68.67 352 | 69.71 376 | 44.13 377 | 78.92 348 | 84.21 333 | 55.05 354 | 44.63 378 | 71.85 360 | 23.91 372 | 81.54 376 | 32.63 383 | 55.03 355 | 80.35 352 |
|
| test_fmvs2 | | | 65.78 321 | 64.84 309 | 68.60 353 | 66.54 382 | 41.71 382 | 83.27 313 | 69.81 380 | 54.38 355 | 67.91 254 | 84.54 254 | 15.35 386 | 81.22 377 | 75.65 150 | 66.16 287 | 82.88 324 |
|
| PM-MVS | | | 59.40 343 | 56.59 345 | 67.84 354 | 63.63 385 | 41.86 381 | 76.76 357 | 63.22 389 | 59.01 337 | 51.07 358 | 72.27 359 | 11.72 392 | 83.25 366 | 61.34 275 | 50.28 367 | 78.39 368 |
|
| new-patchmatchnet | | | 59.30 344 | 56.48 346 | 67.79 355 | 65.86 384 | 44.19 376 | 82.47 321 | 81.77 348 | 59.94 333 | 43.65 381 | 66.20 373 | 27.67 365 | 81.68 375 | 39.34 364 | 41.40 380 | 77.50 371 |
|
| KD-MVS_self_test | | | 60.87 339 | 58.60 339 | 67.68 356 | 66.13 383 | 39.93 387 | 75.63 363 | 84.70 330 | 57.32 344 | 49.57 363 | 68.45 369 | 29.55 359 | 82.87 368 | 48.09 327 | 47.94 370 | 80.25 355 |
|
| pmmvs3 | | | 55.51 348 | 51.50 353 | 67.53 357 | 57.90 393 | 50.93 350 | 80.37 337 | 73.66 371 | 40.63 387 | 44.15 380 | 64.75 376 | 16.30 384 | 78.97 381 | 44.77 346 | 40.98 383 | 72.69 378 |
|
| test20.03 | | | 63.83 330 | 62.65 326 | 67.38 358 | 70.58 375 | 39.94 386 | 86.57 294 | 84.17 334 | 63.29 304 | 51.86 353 | 77.30 332 | 37.09 330 | 82.47 370 | 38.87 367 | 54.13 358 | 79.73 357 |
|
| EU-MVSNet | | | 64.01 329 | 63.01 323 | 67.02 359 | 74.40 362 | 38.86 390 | 83.27 313 | 86.19 318 | 45.11 379 | 54.27 344 | 81.15 298 | 36.91 332 | 80.01 380 | 48.79 325 | 57.02 348 | 82.19 337 |
|
| TDRefinement | | | 55.28 349 | 51.58 352 | 66.39 360 | 59.53 392 | 46.15 372 | 76.23 360 | 72.80 372 | 44.60 380 | 42.49 382 | 76.28 343 | 15.29 387 | 82.39 371 | 33.20 379 | 43.75 376 | 70.62 382 |
|
| test_vis1_rt | | | 59.09 345 | 57.31 344 | 64.43 361 | 68.44 380 | 46.02 373 | 83.05 318 | 48.63 401 | 51.96 361 | 49.57 363 | 63.86 377 | 16.30 384 | 80.20 379 | 71.21 187 | 62.79 314 | 67.07 386 |
|
| DSMNet-mixed | | | 56.78 347 | 54.44 350 | 63.79 362 | 63.21 386 | 29.44 401 | 64.43 383 | 64.10 388 | 42.12 386 | 51.32 356 | 71.60 361 | 31.76 352 | 75.04 383 | 36.23 370 | 65.20 295 | 86.87 263 |
|
| dmvs_testset | | | 65.55 322 | 66.45 298 | 62.86 363 | 79.87 320 | 22.35 406 | 76.55 358 | 71.74 376 | 77.42 108 | 55.85 339 | 87.77 214 | 51.39 232 | 80.69 378 | 31.51 388 | 65.92 289 | 85.55 293 |
|
| test_fmvs3 | | | 56.82 346 | 54.86 349 | 62.69 364 | 53.59 395 | 35.47 392 | 75.87 361 | 65.64 387 | 43.91 382 | 55.10 341 | 71.43 364 | 6.91 400 | 74.40 385 | 68.64 213 | 52.63 360 | 78.20 369 |
|
| LF4IMVS | | | 54.01 350 | 52.12 351 | 59.69 365 | 62.41 388 | 39.91 388 | 68.59 375 | 68.28 384 | 42.96 385 | 44.55 379 | 75.18 348 | 14.09 391 | 68.39 391 | 41.36 358 | 51.68 363 | 70.78 381 |
|
| new_pmnet | | | 49.31 352 | 46.44 355 | 57.93 366 | 62.84 387 | 40.74 384 | 68.47 376 | 62.96 390 | 36.48 388 | 35.09 388 | 57.81 385 | 14.97 388 | 72.18 387 | 32.86 381 | 46.44 372 | 60.88 388 |
|
| mvsany_test3 | | | 48.86 353 | 46.35 356 | 56.41 367 | 46.00 401 | 31.67 397 | 62.26 385 | 47.25 402 | 43.71 383 | 45.54 375 | 68.15 370 | 10.84 393 | 64.44 399 | 57.95 291 | 35.44 390 | 73.13 377 |
|
| test_f | | | 46.58 354 | 43.45 358 | 55.96 368 | 45.18 402 | 32.05 396 | 61.18 386 | 49.49 400 | 33.39 390 | 42.05 383 | 62.48 380 | 7.00 399 | 65.56 395 | 47.08 335 | 43.21 378 | 70.27 383 |
|
| ANet_high | | | 40.27 362 | 35.20 365 | 55.47 369 | 34.74 409 | 34.47 394 | 63.84 384 | 71.56 377 | 48.42 371 | 18.80 398 | 41.08 397 | 9.52 396 | 64.45 398 | 20.18 394 | 8.66 405 | 67.49 385 |
|
| EGC-MVSNET | | | 42.35 358 | 38.09 361 | 55.11 370 | 74.57 360 | 46.62 371 | 71.63 369 | 55.77 393 | 0.04 407 | 0.24 408 | 62.70 379 | 14.24 390 | 74.91 384 | 17.59 396 | 46.06 373 | 43.80 393 |
|
| N_pmnet | | | 50.55 351 | 49.11 354 | 54.88 371 | 77.17 351 | 4.02 414 | 84.36 303 | 2.00 412 | 48.59 370 | 45.86 373 | 68.82 368 | 32.22 350 | 82.80 369 | 31.58 386 | 51.38 364 | 77.81 370 |
|
| LCM-MVSNet | | | 40.54 359 | 35.79 364 | 54.76 372 | 36.92 408 | 30.81 398 | 51.41 395 | 69.02 381 | 22.07 395 | 24.63 395 | 45.37 392 | 4.56 404 | 65.81 394 | 33.67 377 | 34.50 391 | 67.67 384 |
|
| FPMVS | | | 45.64 356 | 43.10 360 | 53.23 373 | 51.42 398 | 36.46 391 | 64.97 382 | 71.91 375 | 29.13 393 | 27.53 393 | 61.55 382 | 9.83 395 | 65.01 397 | 16.00 399 | 55.58 353 | 58.22 389 |
|
| PMMVS2 | | | 37.93 364 | 33.61 367 | 50.92 374 | 46.31 400 | 24.76 404 | 60.55 389 | 50.05 398 | 28.94 394 | 20.93 396 | 47.59 389 | 4.41 406 | 65.13 396 | 25.14 390 | 18.55 400 | 62.87 387 |
|
| WB-MVS | | | 46.23 355 | 44.94 357 | 50.11 375 | 62.13 389 | 21.23 408 | 76.48 359 | 55.49 394 | 45.89 377 | 35.78 387 | 61.44 383 | 35.54 336 | 72.83 386 | 9.96 402 | 21.75 397 | 56.27 390 |
|
| APD_test1 | | | 40.50 360 | 37.31 363 | 50.09 376 | 51.88 396 | 35.27 393 | 59.45 390 | 52.59 397 | 21.64 396 | 26.12 394 | 57.80 386 | 4.56 404 | 66.56 393 | 22.64 392 | 39.09 384 | 48.43 392 |
|
| test_method | | | 38.59 363 | 35.16 366 | 48.89 377 | 54.33 394 | 21.35 407 | 45.32 398 | 53.71 396 | 7.41 404 | 28.74 392 | 51.62 388 | 8.70 397 | 52.87 402 | 33.73 376 | 32.89 392 | 72.47 379 |
|
| test_vis3_rt | | | 40.46 361 | 37.79 362 | 48.47 378 | 44.49 403 | 33.35 395 | 66.56 381 | 32.84 409 | 32.39 391 | 29.65 391 | 39.13 399 | 3.91 407 | 68.65 390 | 50.17 317 | 40.99 382 | 43.40 394 |
|
| SSC-MVS | | | 44.51 357 | 43.35 359 | 47.99 379 | 61.01 391 | 18.90 410 | 74.12 365 | 54.36 395 | 43.42 384 | 34.10 390 | 60.02 384 | 34.42 341 | 70.39 389 | 9.14 404 | 19.57 398 | 54.68 391 |
|
| Gipuma |  | | 34.91 365 | 31.44 368 | 45.30 380 | 70.99 372 | 39.64 389 | 19.85 402 | 72.56 373 | 20.10 398 | 16.16 402 | 21.47 403 | 5.08 403 | 71.16 388 | 13.07 400 | 43.70 377 | 25.08 400 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 26.43 22 | 31.84 368 | 28.16 371 | 42.89 381 | 25.87 411 | 27.58 402 | 50.92 396 | 49.78 399 | 21.37 397 | 14.17 403 | 40.81 398 | 2.01 410 | 66.62 392 | 9.61 403 | 38.88 386 | 34.49 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| testf1 | | | 32.77 366 | 29.47 369 | 42.67 382 | 41.89 405 | 30.81 398 | 52.07 393 | 43.45 403 | 15.45 399 | 18.52 399 | 44.82 393 | 2.12 408 | 58.38 400 | 16.05 397 | 30.87 394 | 38.83 395 |
|
| APD_test2 | | | 32.77 366 | 29.47 369 | 42.67 382 | 41.89 405 | 30.81 398 | 52.07 393 | 43.45 403 | 15.45 399 | 18.52 399 | 44.82 393 | 2.12 408 | 58.38 400 | 16.05 397 | 30.87 394 | 38.83 395 |
|
| MVE |  | 24.84 23 | 24.35 370 | 19.77 376 | 38.09 384 | 34.56 410 | 26.92 403 | 26.57 400 | 38.87 407 | 11.73 403 | 11.37 404 | 27.44 400 | 1.37 411 | 50.42 403 | 11.41 401 | 14.60 401 | 36.93 397 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 34.71 385 | 51.45 397 | 24.73 405 | | 28.48 411 | 31.46 392 | 17.49 401 | 52.75 387 | 5.80 402 | 42.60 406 | 18.18 395 | 19.42 399 | 36.81 398 |
|
| E-PMN | | | 24.61 369 | 24.00 373 | 26.45 386 | 43.74 404 | 18.44 411 | 60.86 387 | 39.66 405 | 15.11 401 | 9.53 405 | 22.10 402 | 6.52 401 | 46.94 404 | 8.31 405 | 10.14 402 | 13.98 402 |
|
| EMVS | | | 23.76 371 | 23.20 375 | 25.46 387 | 41.52 407 | 16.90 412 | 60.56 388 | 38.79 408 | 14.62 402 | 8.99 406 | 20.24 405 | 7.35 398 | 45.82 405 | 7.25 406 | 9.46 403 | 13.64 403 |
|
| tmp_tt | | | 22.26 372 | 23.75 374 | 17.80 388 | 5.23 412 | 12.06 413 | 35.26 399 | 39.48 406 | 2.82 406 | 18.94 397 | 44.20 395 | 22.23 376 | 24.64 407 | 36.30 369 | 9.31 404 | 16.69 401 |
|
| wuyk23d | | | 11.30 374 | 10.95 377 | 12.33 389 | 48.05 399 | 19.89 409 | 25.89 401 | 1.92 413 | 3.58 405 | 3.12 407 | 1.37 407 | 0.64 412 | 15.77 408 | 6.23 407 | 7.77 406 | 1.35 404 |
|
| test123 | | | 6.92 377 | 9.21 380 | 0.08 390 | 0.03 414 | 0.05 415 | 81.65 327 | 0.01 415 | 0.02 409 | 0.14 410 | 0.85 409 | 0.03 413 | 0.02 409 | 0.12 409 | 0.00 408 | 0.16 405 |
|
| testmvs | | | 7.23 376 | 9.62 379 | 0.06 391 | 0.04 413 | 0.02 416 | 84.98 301 | 0.02 414 | 0.03 408 | 0.18 409 | 1.21 408 | 0.01 414 | 0.02 409 | 0.14 408 | 0.01 407 | 0.13 406 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 19.86 373 | 26.47 372 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 93.45 84 | 0.00 410 | 0.00 411 | 95.27 58 | 49.56 247 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 4.46 378 | 5.95 381 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 53.55 212 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| ab-mvs-re | | | 7.91 375 | 10.55 378 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 94.95 67 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 408 | 0.00 407 |
|
| WAC-MVS | | | | | | | 49.45 357 | | | | | | | | 31.56 387 | | |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 246 | 93.96 71 | 91.92 141 | 62.14 316 | 86.57 46 | | | | | | |
|
| PC_three_1452 | | | | | | | | | | 80.91 48 | 94.07 2 | 96.83 18 | 83.57 4 | 99.12 5 | 95.70 7 | 97.42 4 | 97.55 4 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 49 | | 94.18 57 | 71.42 224 | 90.67 19 | 96.85 16 | 74.45 18 | | | | |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 153 | | 93.50 82 | 70.74 238 | 85.26 61 | 95.19 64 | 64.92 78 | 97.29 78 | 87.51 58 | 93.01 55 | |
|
| RE-MVS-def | | | | 80.48 139 | | 92.02 98 | 58.56 300 | 90.90 208 | 90.45 200 | 62.76 310 | 78.89 122 | 94.46 81 | 49.30 250 | | 78.77 132 | 86.77 124 | 92.28 177 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 43 | | 95.18 20 | 80.75 49 | 95.28 1 | | | | 92.34 21 | 95.36 14 | 96.47 28 |
|
| test_241102_TWO | | | | | | | | | 94.41 48 | 71.65 213 | 92.07 9 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 21 | 95.36 14 | 96.59 19 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 54 | | 94.44 46 | 71.65 213 | 92.11 7 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| 9.14 | | | | 87.63 27 | | 93.86 47 | | 94.41 53 | 94.18 57 | 72.76 178 | 86.21 48 | 96.51 25 | 66.64 60 | 97.88 44 | 90.08 40 | 94.04 38 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 92 | 95.05 40 | 92.66 114 | 78.19 91 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 72.48 183 | 90.55 20 | 96.93 11 | 76.24 11 | 99.08 11 | 91.53 31 | 94.99 18 | 96.43 29 |
|
| test0726 | | | | | | 96.40 15 | 69.99 39 | 96.76 8 | 94.33 54 | 71.92 199 | 91.89 11 | 97.11 6 | 73.77 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 95 |
|
| test_part2 | | | | | | 96.29 19 | 68.16 86 | | | | 90.78 17 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 159 | | | | 94.68 95 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 197 | | | | |
|
| MTGPA |  | | | | | | | | 92.23 127 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 347 | | | | 20.70 404 | 53.05 217 | 91.50 303 | 60.43 280 | | |
|
| test_post | | | | | | | | | | | | 23.01 401 | 56.49 179 | 92.67 267 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 371 | 57.62 162 | 90.25 312 | | | |
|
| MTMP | | | | | | | | 93.77 85 | 32.52 410 | | | | | | | | |
|
| gm-plane-assit | | | | | | 88.42 185 | 67.04 115 | | | 78.62 88 | | 91.83 147 | | 97.37 72 | 76.57 144 | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 41 | 94.96 19 | 95.29 67 |
|
| TEST9 | | | | | | 94.18 41 | 67.28 107 | 94.16 59 | 93.51 80 | 71.75 210 | 85.52 56 | 95.33 53 | 68.01 50 | 97.27 82 | | | |
|
| test_8 | | | | | | 94.19 40 | 67.19 109 | 94.15 62 | 93.42 86 | 71.87 204 | 85.38 59 | 95.35 52 | 68.19 48 | 96.95 104 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 69 | 94.75 30 | 95.33 63 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 117 | | 93.31 89 | | 84.49 67 | | | 96.75 114 | | | |
|
| test_prior4 | | | | | | | 67.18 111 | 93.92 74 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 39 | | 75.40 131 | 85.25 62 | 95.61 47 | 67.94 51 | | 87.47 59 | 94.77 26 | |
|
| 旧先验2 | | | | | | | | 92.00 161 | | 59.37 336 | 87.54 40 | | | 93.47 243 | 75.39 152 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 91.41 183 | | | | | | | | | |
|
| 旧先验1 | | | | | | 91.94 102 | 60.74 268 | | 91.50 165 | | | 94.36 85 | 65.23 73 | | | 91.84 70 | 94.55 102 |
|
| æ— å…ˆéªŒ | | | | | | | | 92.71 126 | 92.61 118 | 62.03 317 | | | | 97.01 95 | 66.63 231 | | 93.97 127 |
|
| 原ACMM2 | | | | | | | | 92.01 158 | | | | | | | | | |
|
| test222 | | | | | | 89.77 150 | 61.60 251 | 89.55 247 | 89.42 244 | 56.83 348 | 77.28 142 | 92.43 133 | 52.76 220 | | | 91.14 84 | 93.09 153 |
|
| testdata2 | | | | | | | | | | | | | | 96.09 135 | 61.26 276 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 66 | | | | |
|
| testdata1 | | | | | | | | 89.21 256 | | 77.55 104 | | | | | | | |
|
| plane_prior7 | | | | | | 86.94 225 | 61.51 252 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 87.23 217 | 62.32 236 | | | | | | 50.66 237 | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 171 | | | | | 95.55 164 | 76.74 142 | 78.53 197 | 88.39 240 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 192 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 244 | | | 79.09 79 | 72.53 193 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 111 | | 78.81 85 | | | | | | | |
|
| plane_prior1 | | | | | | 87.15 219 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 62.42 232 | 93.85 78 | | 79.38 71 | | | | | | 78.80 194 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 386 | | | | | | | | |
|
| test11 | | | | | | | | | 93.01 101 | | | | | | | | |
|
| door | | | | | | | | | 66.57 385 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 203 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 87.54 210 | | 94.06 64 | | 79.80 63 | 74.18 172 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 210 | | 94.06 64 | | 79.80 63 | 74.18 172 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 139 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 172 | | | 95.61 159 | | | 88.63 233 |
|
| HQP3-MVS | | | | | | | | | 91.70 157 | | | | | | | 78.90 192 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 230 | | | | |
|
| NP-MVS | | | | | | 87.41 213 | 63.04 218 | | | | | 90.30 174 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 282 | 80.13 342 | | 67.65 272 | 72.79 188 | | 54.33 205 | | 59.83 284 | | 92.58 168 |
|
| MDTV_nov1_ep13 | | | | 72.61 255 | | 89.06 170 | 68.48 74 | 80.33 338 | 90.11 218 | 71.84 206 | 71.81 204 | 75.92 346 | 53.01 218 | 93.92 232 | 48.04 328 | 73.38 236 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 250 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 259 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 206 | | | | |
|