This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS90.70 390.52 891.24 189.68 15276.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9697.64 297.94 1
MVS84.66 7582.86 10290.06 290.93 12874.56 687.91 27795.54 1368.55 26572.35 19994.71 7659.78 14198.90 1981.29 11294.69 3296.74 16
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5396.26 3272.84 2699.38 192.64 1995.93 997.08 12
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5494.91 7174.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21297.89 4391.10 3393.31 5294.54 104
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8783.87 7492.94 12064.34 8596.94 10575.19 15394.09 3795.66 50
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
CHOSEN 1792x268884.98 7183.45 8789.57 1089.94 14775.14 592.07 15592.32 12481.87 3375.68 15688.27 20260.18 13598.60 2780.46 11790.27 9294.96 82
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21697.68 5091.07 3492.62 5994.54 104
LFMVS84.34 8082.73 10489.18 1294.76 3373.25 994.99 4391.89 14471.90 20182.16 8593.49 11147.98 26397.05 9182.55 10084.82 13897.25 9
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30888.32 492.60 596.57 2332.61 34797.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11180.75 13189.09 1493.74 5272.16 1593.16 11077.36 35989.69 174.55 16996.48 2732.35 34997.56 6292.21 2477.24 21197.53 6
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 15
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18392.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26777.63 13794.35 8973.04 2498.45 3084.92 8393.71 4696.92 14
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21392.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 24
MGCFI-Net86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 38
MVS_030490.01 890.50 988.53 2390.14 14370.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 45
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 21
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 19990.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
3Dnovator73.91 682.69 11680.82 13088.31 2689.57 15471.26 2392.60 13494.39 5178.84 8467.89 25692.48 13248.42 25898.52 2868.80 21294.40 3595.15 75
alignmvs87.28 3186.97 3688.24 2791.30 12271.14 2795.61 2693.56 7879.30 7387.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 17
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4596.20 3466.56 6298.76 2389.03 4894.56 3395.92 44
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8694.73 7567.93 5297.63 5679.55 12382.25 16196.54 22
VNet86.20 4885.65 5887.84 3093.92 4669.99 3995.73 2495.94 778.43 8986.00 5193.07 11758.22 15697.00 9685.22 7784.33 14496.52 23
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7596.19 3564.53 8498.44 3183.42 9594.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9185.93 5485.31 6287.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10291.93 14570.43 3896.51 12380.32 11882.13 16495.37 60
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14691.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_yl84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
DCV-MVSNet84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 39
QAPM79.95 16277.39 18887.64 3489.63 15371.41 2193.30 10693.70 7365.34 29067.39 26491.75 14947.83 26598.96 1657.71 29389.81 9492.54 169
testing9986.01 5285.47 5987.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10191.95 14471.73 3596.50 12480.02 12082.22 16295.13 76
lupinMVS87.74 2487.77 2687.63 3889.24 16771.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14689.34 4391.80 7195.93 43
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 9992.21 14072.30 3096.46 12685.18 7983.43 15094.82 91
API-MVS82.28 12080.53 13887.54 4196.13 2270.59 3393.63 9291.04 18865.72 28775.45 16192.83 12556.11 18398.89 2064.10 25689.75 9793.15 151
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11187.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 40
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26390.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 32
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8078.88 12593.99 10062.25 11698.15 3685.93 7491.15 8394.15 118
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8281.50 8996.50 2658.98 15196.78 11383.49 9493.93 4096.29 33
IB-MVS77.80 482.18 12180.46 14087.35 4589.14 16970.28 3795.59 2795.17 2178.85 8370.19 22385.82 24070.66 3797.67 5172.19 18066.52 28594.09 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet80.50 14978.26 17187.21 4786.19 23769.79 4794.48 5191.31 17160.42 32879.34 11790.91 16338.48 31496.56 12082.16 10181.05 17495.27 70
PAPR85.15 6884.47 7387.18 4896.02 2568.29 7991.85 16893.00 10376.59 11879.03 12195.00 6661.59 12297.61 5878.16 13689.00 10195.63 51
PAPM85.89 5685.46 6087.18 4888.20 19572.42 1492.41 14292.77 10982.11 3180.34 10593.07 11768.27 4795.02 17978.39 13593.59 4894.09 121
jason86.40 4486.17 4887.11 5086.16 23970.54 3495.71 2592.19 13282.00 3284.58 6694.34 9061.86 11995.53 16687.76 5590.89 8595.27 70
jason: jason.
test1287.09 5194.60 3668.86 6692.91 10582.67 8365.44 7197.55 6393.69 4794.84 88
casdiffmvs_mvgpermissive85.66 6185.18 6487.09 5188.22 19469.35 5793.74 8791.89 14481.47 3780.10 10791.45 15464.80 8096.35 12787.23 6387.69 11295.58 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test84.16 8783.20 9487.05 5391.56 11569.82 4689.99 24092.05 13577.77 9882.84 7986.57 23063.93 9096.09 13574.91 15889.18 10095.25 73
HY-MVS76.49 584.28 8183.36 9387.02 5492.22 9367.74 9584.65 30294.50 4379.15 7782.23 8487.93 21166.88 5896.94 10580.53 11682.20 16396.39 31
Effi-MVS+83.82 9382.76 10386.99 5589.56 15569.40 5391.35 19286.12 31972.59 18083.22 7792.81 12659.60 14396.01 14381.76 10587.80 11195.56 54
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22690.66 19679.37 7281.20 9193.67 10674.73 1596.55 12190.88 3692.00 6895.82 47
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23786.25 4796.44 2866.98 5797.79 4788.68 5094.56 3395.28 69
casdiffmvspermissive85.37 6484.87 7086.84 5788.25 19269.07 6193.04 11591.76 15181.27 4480.84 9892.07 14264.23 8696.06 13984.98 8287.43 11695.39 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS83.06 10781.81 11886.81 5990.86 13167.70 9695.40 3091.50 16575.46 12981.78 8792.34 13640.09 30597.13 8986.85 6782.04 16595.60 52
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17093.49 8374.93 13784.61 6595.30 5559.42 14597.92 4186.13 7194.92 2094.94 84
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 20985.69 5596.52 2462.07 11798.77 2286.06 7395.60 1296.03 41
baseline85.01 7084.44 7486.71 6288.33 18968.73 6990.24 23191.82 15081.05 4781.18 9292.50 12963.69 9496.08 13884.45 8786.71 12695.32 65
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9285.93 5294.80 7475.80 1398.21 3489.38 4288.78 10296.59 19
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25488.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testing22285.18 6784.69 7286.63 6592.91 7669.91 4392.61 13395.80 980.31 5580.38 10492.27 13768.73 4495.19 17675.94 14883.27 15294.81 92
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20485.52 5695.33 5368.19 4897.27 8289.09 4694.90 2295.25 73
3Dnovator+73.60 782.10 12580.60 13786.60 6690.89 13066.80 12195.20 3593.44 8574.05 14867.42 26292.49 13149.46 24897.65 5570.80 19091.68 7395.33 63
ET-MVSNet_ETH3D84.01 8983.15 9786.58 6890.78 13370.89 3094.74 4894.62 4081.44 4058.19 32893.64 10773.64 2392.35 28182.66 9878.66 19696.50 27
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13766.38 13096.09 1893.87 6477.73 9984.01 7395.66 4563.39 10197.94 4087.40 6093.55 4995.42 56
Skip Steuart: Steuart Systems R&D Blog.
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22693.55 7982.89 2191.29 1692.89 12272.27 3196.03 14187.99 5394.77 2695.54 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36494.75 3378.67 12990.85 16477.91 794.56 20072.25 17793.74 4495.36 62
CDPH-MVS85.71 5985.46 6086.46 7294.75 3467.19 10993.89 7692.83 10870.90 23383.09 7895.28 5663.62 9697.36 7380.63 11594.18 3694.84 88
MAR-MVS84.18 8683.43 8886.44 7396.25 2165.93 14294.28 5694.27 5674.41 14179.16 12095.61 4753.99 20798.88 2169.62 20193.26 5394.50 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 79
OpenMVScopyleft70.45 1178.54 18975.92 20886.41 7585.93 24571.68 1992.74 12492.51 12166.49 28164.56 28691.96 14343.88 29298.10 3754.61 30390.65 8889.44 227
MVSFormer83.75 9682.88 10186.37 7689.24 16771.18 2589.07 25990.69 19365.80 28587.13 4194.34 9064.99 7592.67 26772.83 16991.80 7195.27 70
PAPM_NR82.97 10981.84 11786.37 7694.10 4466.76 12287.66 28192.84 10769.96 24774.07 17693.57 10963.10 10897.50 6570.66 19390.58 8994.85 85
DeepC-MVS77.85 385.52 6385.24 6386.37 7688.80 17766.64 12492.15 14993.68 7481.07 4676.91 14793.64 10762.59 11298.44 3185.50 7592.84 5894.03 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9693.08 11663.19 10597.29 7887.08 6491.38 7994.13 119
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8066.79 5997.34 7583.89 9291.68 7395.29 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest051583.41 10082.49 10986.16 8189.46 15868.26 8193.54 9694.70 3674.31 14475.75 15490.92 16272.62 2896.52 12269.64 19981.50 17193.71 136
ZNCC-MVS85.33 6585.08 6686.06 8293.09 7365.65 14793.89 7693.41 8773.75 15779.94 10994.68 7760.61 13298.03 3882.63 9993.72 4594.52 106
EPMVS78.49 19075.98 20786.02 8391.21 12469.68 5180.23 34091.20 17575.25 13372.48 19578.11 32754.65 19893.69 23857.66 29483.04 15394.69 94
DP-MVS Recon82.73 11381.65 11985.98 8497.31 467.06 11395.15 3791.99 13869.08 26076.50 15193.89 10254.48 20298.20 3570.76 19185.66 13492.69 164
PatchmatchNetpermissive77.46 20574.63 22385.96 8589.55 15670.35 3679.97 34589.55 23972.23 19270.94 21276.91 33857.03 16792.79 26254.27 30581.17 17394.74 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131480.70 14678.95 16385.94 8687.77 20867.56 10087.91 27792.55 12072.17 19567.44 26193.09 11550.27 24197.04 9471.68 18587.64 11393.23 149
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521177.96 19875.33 21785.87 8893.73 5464.52 17094.85 4585.36 32562.52 31376.11 15290.18 17729.43 36197.29 7868.51 21477.24 21195.81 48
CostFormer82.33 11981.15 12385.86 8989.01 17268.46 7582.39 32293.01 10175.59 12780.25 10681.57 28772.03 3394.96 18279.06 12877.48 20794.16 117
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 35
CANet_DTU84.09 8883.52 8285.81 9190.30 14066.82 11991.87 16689.01 26485.27 1186.09 5093.74 10447.71 26796.98 10077.90 13889.78 9693.65 138
gg-mvs-nofinetune77.18 20974.31 23085.80 9291.42 11968.36 7771.78 36794.72 3449.61 36877.12 14445.92 39177.41 893.98 22967.62 22293.16 5495.05 79
ab-mvs80.18 15678.31 17085.80 9288.44 18465.49 15483.00 31992.67 11371.82 20777.36 14185.01 24654.50 19996.59 11776.35 14675.63 22195.32 65
ETVMVS84.22 8583.71 8085.76 9492.58 8768.25 8392.45 14195.53 1479.54 6879.46 11591.64 15270.29 3994.18 21669.16 20782.76 15894.84 88
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28086.17 4995.88 4163.83 9197.00 9686.39 7092.94 5695.06 78
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS84.73 7484.40 7585.72 9693.75 5165.01 16493.50 9993.19 9472.19 19379.22 11994.93 6959.04 15097.67 5181.55 10692.21 6394.49 109
ETV-MVS86.01 5286.11 4985.70 9790.21 14267.02 11693.43 10491.92 14181.21 4584.13 7294.07 9960.93 12995.63 15789.28 4489.81 9494.46 110
GST-MVS84.63 7684.29 7685.66 9892.82 7965.27 15693.04 11593.13 9773.20 16678.89 12294.18 9659.41 14697.85 4581.45 10892.48 6293.86 133
diffmvspermissive84.28 8183.83 7985.61 9987.40 21468.02 8990.88 21089.24 25080.54 5081.64 8892.52 12859.83 14094.52 20387.32 6185.11 13694.29 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6685.13 6585.56 10091.42 11965.59 14991.54 18092.51 12174.56 14080.62 10095.64 4659.15 14997.00 9686.94 6693.80 4294.07 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA83.91 9183.38 9285.50 10191.89 10665.16 16081.75 32592.23 12775.32 13280.53 10295.21 6356.06 18497.16 8784.86 8492.55 6194.18 115
mvs_anonymous81.36 13479.99 14585.46 10290.39 13968.40 7686.88 29290.61 19874.41 14170.31 22284.67 25163.79 9292.32 28273.13 16685.70 13395.67 49
HyFIR lowres test81.03 14179.56 15285.43 10387.81 20668.11 8790.18 23290.01 22470.65 23972.95 18686.06 23863.61 9794.50 20475.01 15679.75 18593.67 137
cascas78.18 19475.77 21085.41 10487.14 22069.11 6092.96 11891.15 17966.71 27970.47 21786.07 23737.49 32596.48 12570.15 19679.80 18490.65 207
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22464.37 18094.30 5588.45 28580.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 98
PVSNet_Blended_VisFu83.97 9083.50 8485.39 10590.02 14566.59 12793.77 8591.73 15277.43 10777.08 14689.81 18463.77 9396.97 10279.67 12288.21 10792.60 167
region2R84.36 7984.03 7885.36 10793.54 5964.31 18393.43 10492.95 10472.16 19678.86 12694.84 7356.97 17197.53 6481.38 11092.11 6694.24 113
tpm279.80 16477.95 17785.34 10888.28 19068.26 8181.56 32891.42 16870.11 24577.59 13980.50 30567.40 5594.26 21367.34 22477.35 20893.51 141
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22164.19 18794.41 5388.14 29480.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 101
ACMMPR84.37 7884.06 7785.28 11093.56 5864.37 18093.50 9993.15 9672.19 19378.85 12794.86 7256.69 17697.45 6681.55 10692.20 6494.02 126
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22363.55 20793.69 8891.08 18484.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 112
xiu_mvs_v1_base_debu82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base_debi82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
MP-MVScopyleft85.02 6984.97 6885.17 11592.60 8664.27 18593.24 10792.27 12673.13 16879.63 11394.43 8361.90 11897.17 8585.00 8192.56 6094.06 124
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
XVS83.87 9283.47 8685.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13194.31 9255.25 19097.41 7079.16 12691.58 7593.95 128
X-MVStestdata76.86 21474.13 23485.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13110.19 40655.25 19097.41 7079.16 12691.58 7593.95 128
SCA75.82 23472.76 25185.01 11886.63 22970.08 3881.06 33389.19 25371.60 21870.01 22577.09 33645.53 28390.25 31260.43 28073.27 23794.68 95
iter_conf0583.27 10382.70 10584.98 11993.32 6471.84 1894.16 5981.76 34982.74 2373.83 17988.40 19972.77 2794.61 19582.10 10275.21 22388.48 237
PGM-MVS83.25 10482.70 10584.92 12092.81 8164.07 18990.44 22292.20 13171.28 22577.23 14394.43 8355.17 19497.31 7779.33 12591.38 7993.37 144
BH-RMVSNet79.46 17077.65 18084.89 12191.68 11265.66 14693.55 9588.09 29672.93 17373.37 18291.12 16146.20 27996.12 13456.28 29885.61 13592.91 160
Anonymous2024052976.84 21774.15 23384.88 12291.02 12664.95 16693.84 8191.09 18253.57 35773.00 18487.42 21935.91 33597.32 7669.14 20872.41 24792.36 173
tpmrst80.57 14779.14 16284.84 12390.10 14468.28 8081.70 32689.72 23677.63 10375.96 15379.54 31964.94 7792.71 26475.43 15177.28 21093.55 140
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12487.36 21663.54 20894.74 4890.02 22382.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16093.07 155
test_fmvsmconf_n86.58 4387.17 3384.82 12485.28 25462.55 23194.26 5789.78 22983.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 83
FE-MVS75.97 23173.02 24784.82 12489.78 14965.56 15077.44 35691.07 18564.55 29372.66 18979.85 31546.05 28196.69 11554.97 30280.82 17792.21 182
FA-MVS(test-final)79.12 17477.23 19084.81 12790.54 13563.98 19181.35 33191.71 15471.09 23074.85 16782.94 26852.85 21997.05 9167.97 21781.73 17093.41 143
test_fmvsmvis_n_192083.80 9483.48 8584.77 12882.51 29363.72 19891.37 19083.99 33981.42 4177.68 13695.74 4458.37 15497.58 5993.38 1486.87 12093.00 158
AdaColmapbinary78.94 17877.00 19484.76 12996.34 1765.86 14392.66 13187.97 30062.18 31570.56 21692.37 13543.53 29397.35 7464.50 25482.86 15491.05 204
新几何184.73 13092.32 9064.28 18491.46 16759.56 33579.77 11192.90 12156.95 17296.57 11963.40 26092.91 5793.34 145
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13185.73 24863.58 20593.79 8489.32 24781.42 4190.21 2396.91 1462.41 11497.67 5194.48 1080.56 17992.90 161
DeepPCF-MVS81.17 189.72 1091.38 484.72 13193.00 7458.16 30396.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
EIA-MVS84.84 7284.88 6984.69 13391.30 12262.36 23493.85 7892.04 13679.45 6979.33 11894.28 9362.42 11396.35 12780.05 11991.25 8295.38 59
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13482.95 29163.48 21094.03 6989.46 24181.69 3589.86 2696.74 2061.85 12097.75 4994.74 982.01 16692.81 163
GA-MVS78.33 19376.23 20384.65 13583.65 28166.30 13391.44 18190.14 21776.01 12370.32 22184.02 25842.50 29794.72 19070.98 18877.00 21392.94 159
CP-MVS83.71 9783.40 9184.65 13593.14 7163.84 19294.59 5092.28 12571.03 23177.41 14094.92 7055.21 19396.19 13181.32 11190.70 8793.91 130
RPMNet70.42 28565.68 30484.63 13783.15 28667.96 9070.25 37090.45 20046.83 37669.97 22765.10 37556.48 18095.30 17435.79 37373.13 23890.64 208
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13880.83 30762.33 23593.84 8188.81 27283.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 100
tpm cat175.30 24172.21 26084.58 13988.52 18067.77 9478.16 35488.02 29761.88 32068.45 24876.37 34260.65 13094.03 22753.77 30874.11 23191.93 187
fmvsm_s_conf0.1_n_a84.76 7384.84 7184.53 14080.23 31763.50 20992.79 12288.73 27680.46 5289.84 2796.65 2260.96 12897.57 6193.80 1380.14 18192.53 170
mPP-MVS82.96 11082.44 11084.52 14192.83 7762.92 22492.76 12391.85 14871.52 22175.61 15994.24 9453.48 21596.99 9978.97 12990.73 8693.64 139
Fast-Effi-MVS+81.14 13780.01 14484.51 14290.24 14165.86 14394.12 6389.15 25673.81 15675.37 16288.26 20357.26 16494.53 20266.97 23084.92 13793.15 151
baseline283.68 9983.42 9084.48 14387.37 21566.00 13990.06 23595.93 879.71 6669.08 23590.39 17277.92 696.28 12978.91 13081.38 17291.16 202
原ACMM184.42 14493.21 6864.27 18593.40 8865.39 28879.51 11492.50 12958.11 15896.69 11565.27 25093.96 3992.32 175
SDMVSNet80.26 15478.88 16484.40 14589.25 16467.63 9985.35 29893.02 10076.77 11570.84 21487.12 22447.95 26496.09 13585.04 8074.55 22589.48 225
thisisatest053081.15 13680.07 14284.39 14688.26 19165.63 14891.40 18594.62 4071.27 22670.93 21389.18 19072.47 2996.04 14065.62 24576.89 21491.49 191
test250683.29 10282.92 10084.37 14788.39 18763.18 21792.01 15891.35 17077.66 10178.49 13091.42 15564.58 8395.09 17873.19 16589.23 9894.85 85
h-mvs3383.01 10882.56 10884.35 14889.34 15962.02 24192.72 12593.76 6981.45 3882.73 8192.25 13960.11 13697.13 8987.69 5662.96 31293.91 130
PVSNet73.49 880.05 15978.63 16684.31 14990.92 12964.97 16592.47 14091.05 18779.18 7672.43 19790.51 16937.05 33194.06 22268.06 21686.00 13193.90 132
PCF-MVS73.15 979.29 17177.63 18184.29 15086.06 24065.96 14187.03 28891.10 18169.86 24969.79 23090.64 16557.54 16396.59 11764.37 25582.29 15990.32 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline181.84 12881.03 12884.28 15191.60 11366.62 12591.08 20491.66 15981.87 3374.86 16691.67 15169.98 4194.92 18571.76 18364.75 30091.29 200
test_fmvsmconf0.01_n83.70 9883.52 8284.25 15275.26 35861.72 24992.17 14887.24 30782.36 2884.91 6395.41 5055.60 18896.83 11292.85 1785.87 13294.21 114
HPM-MVScopyleft83.25 10482.95 9984.17 15392.25 9262.88 22690.91 20791.86 14670.30 24377.12 14493.96 10156.75 17496.28 12982.04 10391.34 8193.34 145
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
nrg03080.93 14279.86 14784.13 15483.69 28068.83 6793.23 10891.20 17575.55 12875.06 16488.22 20663.04 10994.74 18981.88 10466.88 28288.82 231
EI-MVSNet-Vis-set83.77 9583.67 8184.06 15592.79 8263.56 20691.76 17394.81 3179.65 6777.87 13494.09 9763.35 10397.90 4279.35 12479.36 18890.74 206
BH-w/o80.49 15079.30 15984.05 15690.83 13264.36 18293.60 9389.42 24474.35 14369.09 23490.15 17955.23 19295.61 15964.61 25386.43 13092.17 183
ECVR-MVScopyleft81.29 13580.38 14184.01 15788.39 18761.96 24392.56 13986.79 31277.66 10176.63 14891.42 15546.34 27695.24 17574.36 16289.23 9894.85 85
ACMMPcopyleft81.49 13280.67 13483.93 15891.71 11162.90 22592.13 15092.22 13071.79 20871.68 20793.49 11150.32 23996.96 10378.47 13484.22 14891.93 187
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CLD-MVS82.73 11382.35 11283.86 15987.90 20267.65 9895.45 2992.18 13385.06 1272.58 19292.27 13752.46 22395.78 14784.18 8879.06 19188.16 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
dp75.01 24572.09 26183.76 16089.28 16366.22 13679.96 34689.75 23171.16 22767.80 25877.19 33551.81 22792.54 27350.39 31671.44 25492.51 171
MVSTER82.47 11782.05 11383.74 16192.68 8469.01 6391.90 16593.21 9179.83 6272.14 20085.71 24274.72 1694.72 19075.72 14972.49 24587.50 248
Vis-MVSNetpermissive80.92 14379.98 14683.74 16188.48 18261.80 24593.44 10388.26 29373.96 15277.73 13591.76 14849.94 24494.76 18765.84 24290.37 9194.65 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sss82.71 11582.38 11183.73 16389.25 16459.58 28692.24 14694.89 2877.96 9479.86 11092.38 13456.70 17597.05 9177.26 14180.86 17694.55 102
TESTMET0.1,182.41 11881.98 11683.72 16488.08 19663.74 19692.70 12793.77 6879.30 7377.61 13887.57 21758.19 15794.08 22073.91 16486.68 12793.33 147
114514_t79.17 17377.67 17983.68 16595.32 2965.53 15292.85 12191.60 16163.49 30167.92 25390.63 16746.65 27295.72 15567.01 22983.54 14989.79 219
EI-MVSNet-UG-set83.14 10682.96 9883.67 16692.28 9163.19 21691.38 18994.68 3779.22 7576.60 14993.75 10362.64 11197.76 4878.07 13778.01 19990.05 215
thres20079.66 16578.33 16983.66 16792.54 8865.82 14593.06 11396.31 374.90 13873.30 18388.66 19459.67 14295.61 15947.84 33178.67 19589.56 224
CS-MVS-test86.14 5087.01 3583.52 16892.63 8559.36 29195.49 2891.92 14180.09 6085.46 5895.53 4961.82 12195.77 14986.77 6893.37 5195.41 57
CDS-MVSNet81.43 13380.74 13283.52 16886.26 23664.45 17492.09 15390.65 19775.83 12573.95 17889.81 18463.97 8992.91 25771.27 18682.82 15593.20 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR82.02 12681.52 12083.51 17088.42 18562.88 22689.77 24488.93 26876.78 11475.55 16093.10 11450.31 24095.38 17083.82 9387.02 11992.26 181
SR-MVS82.81 11282.58 10783.50 17193.35 6361.16 25892.23 14791.28 17464.48 29481.27 9095.28 5653.71 21195.86 14582.87 9788.77 10393.49 142
BH-untuned78.68 18577.08 19183.48 17289.84 14863.74 19692.70 12788.59 28271.57 21966.83 27188.65 19551.75 22895.39 16959.03 28884.77 13991.32 198
UGNet79.87 16378.68 16583.45 17389.96 14661.51 25292.13 15090.79 19176.83 11378.85 12786.33 23438.16 31796.17 13267.93 21987.17 11892.67 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test111180.84 14480.02 14383.33 17487.87 20360.76 26692.62 13286.86 31177.86 9775.73 15591.39 15746.35 27594.70 19372.79 17188.68 10494.52 106
GeoE78.90 17977.43 18483.29 17588.95 17362.02 24192.31 14386.23 31770.24 24471.34 21189.27 18954.43 20394.04 22563.31 26280.81 17893.81 135
CS-MVS85.80 5786.65 4183.27 17692.00 10158.92 29695.31 3291.86 14679.97 6184.82 6495.40 5162.26 11595.51 16786.11 7292.08 6795.37 60
tpm78.58 18877.03 19283.22 17785.94 24464.56 16983.21 31691.14 18078.31 9073.67 18079.68 31764.01 8892.09 28766.07 24071.26 25593.03 156
PVSNet_BlendedMVS83.38 10183.43 8883.22 17793.76 4967.53 10294.06 6493.61 7679.13 7881.00 9685.14 24563.19 10597.29 7887.08 6473.91 23484.83 303
TAMVS80.37 15279.45 15583.13 17985.14 25763.37 21191.23 19890.76 19274.81 13972.65 19088.49 19660.63 13192.95 25269.41 20381.95 16793.08 154
EC-MVSNet84.53 7785.04 6783.01 18089.34 15961.37 25594.42 5291.09 18277.91 9683.24 7694.20 9558.37 15495.40 16885.35 7691.41 7892.27 180
TR-MVS78.77 18477.37 18982.95 18190.49 13660.88 26293.67 8990.07 21970.08 24674.51 17091.37 15845.69 28295.70 15660.12 28380.32 18092.29 176
tfpn200view978.79 18377.43 18482.88 18292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20488.83 229
FMVSNet377.73 20276.04 20682.80 18391.20 12568.99 6491.87 16691.99 13873.35 16567.04 26783.19 26756.62 17792.14 28459.80 28569.34 26287.28 256
1112_ss80.56 14879.83 14882.77 18488.65 17960.78 26492.29 14488.36 28772.58 18172.46 19694.95 6765.09 7493.42 24466.38 23677.71 20194.10 120
v2v48277.42 20675.65 21382.73 18580.38 31367.13 11291.85 16890.23 21475.09 13569.37 23183.39 26553.79 21094.44 20571.77 18265.00 29786.63 268
VPNet78.82 18177.53 18382.70 18684.52 26766.44 12993.93 7392.23 12780.46 5272.60 19188.38 20049.18 25293.13 24772.47 17663.97 30988.55 236
CR-MVSNet73.79 25870.82 27382.70 18683.15 28667.96 9070.25 37084.00 33773.67 16169.97 22772.41 35657.82 16089.48 32352.99 31173.13 23890.64 208
HQP-MVS81.14 13780.64 13582.64 18887.54 21063.66 20394.06 6491.70 15779.80 6374.18 17290.30 17451.63 23095.61 15977.63 13978.90 19288.63 233
EPP-MVSNet81.79 12981.52 12082.61 18988.77 17860.21 27893.02 11793.66 7568.52 26672.90 18790.39 17272.19 3294.96 18274.93 15779.29 19092.67 165
APD-MVS_3200maxsize81.64 13181.32 12282.59 19092.36 8958.74 29891.39 18791.01 18963.35 30379.72 11294.62 7951.82 22696.14 13379.71 12187.93 11092.89 162
thres100view90078.37 19177.01 19382.46 19191.89 10663.21 21591.19 20296.33 172.28 19170.45 21987.89 21260.31 13395.32 17145.16 34277.58 20488.83 229
thres40078.68 18577.43 18482.43 19292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20487.48 249
XXY-MVS77.94 19976.44 20082.43 19282.60 29264.44 17592.01 15891.83 14973.59 16270.00 22685.82 24054.43 20394.76 18769.63 20068.02 27588.10 244
Test_1112_low_res79.56 16778.60 16782.43 19288.24 19360.39 27592.09 15387.99 29872.10 19771.84 20387.42 21964.62 8293.04 24865.80 24377.30 20993.85 134
tttt051779.50 16878.53 16882.41 19587.22 21861.43 25489.75 24594.76 3269.29 25567.91 25488.06 21072.92 2595.63 15762.91 26673.90 23590.16 213
HPM-MVS_fast80.25 15579.55 15482.33 19691.55 11659.95 28191.32 19489.16 25565.23 29174.71 16893.07 11747.81 26695.74 15074.87 16088.23 10691.31 199
IS-MVSNet80.14 15779.41 15682.33 19687.91 20160.08 28091.97 16288.27 29172.90 17671.44 21091.73 15061.44 12393.66 23962.47 27086.53 12893.24 148
v114476.73 22074.88 22082.27 19880.23 31766.60 12691.68 17790.21 21673.69 15969.06 23681.89 28052.73 22194.40 20669.21 20665.23 29485.80 287
PVSNet_068.08 1571.81 27668.32 29282.27 19884.68 26362.31 23788.68 26590.31 20975.84 12457.93 33380.65 30437.85 32294.19 21569.94 19829.05 39690.31 212
FMVSNet276.07 22574.01 23682.26 20088.85 17467.66 9791.33 19391.61 16070.84 23465.98 27482.25 27648.03 26092.00 28958.46 29068.73 27087.10 259
tpmvs72.88 26769.76 28382.22 20190.98 12767.05 11478.22 35388.30 28963.10 30864.35 29174.98 34955.09 19594.27 21143.25 34869.57 26185.34 298
sd_testset77.08 21275.37 21582.20 20289.25 16462.11 24082.06 32389.09 26076.77 11570.84 21487.12 22441.43 30195.01 18067.23 22674.55 22589.48 225
V4276.46 22274.55 22682.19 20379.14 33167.82 9390.26 23089.42 24473.75 15768.63 24581.89 28051.31 23394.09 21971.69 18464.84 29884.66 304
SR-MVS-dyc-post81.06 14080.70 13382.15 20492.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8151.26 23495.61 15978.77 13286.77 12492.28 177
v119275.98 23073.92 23782.15 20479.73 32166.24 13591.22 19989.75 23172.67 17968.49 24781.42 29049.86 24594.27 21167.08 22865.02 29685.95 284
MS-PatchMatch77.90 20176.50 19982.12 20685.99 24169.95 4291.75 17592.70 11173.97 15162.58 30784.44 25541.11 30295.78 14763.76 25992.17 6580.62 350
v14419276.05 22874.03 23582.12 20679.50 32566.55 12891.39 18789.71 23772.30 19068.17 24981.33 29251.75 22894.03 22767.94 21864.19 30485.77 288
HQP_MVS80.34 15379.75 14982.12 20686.94 22562.42 23293.13 11191.31 17178.81 8572.53 19389.14 19250.66 23795.55 16476.74 14278.53 19788.39 240
VPA-MVSNet79.03 17578.00 17582.11 20985.95 24264.48 17393.22 10994.66 3875.05 13674.04 17784.95 24752.17 22593.52 24174.90 15967.04 28188.32 242
v192192075.63 23873.49 24382.06 21079.38 32666.35 13191.07 20689.48 24071.98 19867.99 25081.22 29549.16 25493.90 23366.56 23264.56 30385.92 286
thres600view778.00 19676.66 19882.03 21191.93 10363.69 20191.30 19596.33 172.43 18670.46 21887.89 21260.31 13394.92 18542.64 35476.64 21587.48 249
v124075.21 24372.98 24881.88 21279.20 32866.00 13990.75 21589.11 25971.63 21767.41 26381.22 29547.36 26893.87 23465.46 24864.72 30185.77 288
PMMVS81.98 12782.04 11481.78 21389.76 15156.17 32391.13 20390.69 19377.96 9480.09 10893.57 10946.33 27794.99 18181.41 10987.46 11594.17 116
OPM-MVS79.00 17678.09 17381.73 21483.52 28363.83 19391.64 17990.30 21076.36 12171.97 20289.93 18346.30 27895.17 17775.10 15477.70 20286.19 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test-LLR80.10 15879.56 15281.72 21586.93 22761.17 25692.70 12791.54 16271.51 22275.62 15786.94 22653.83 20892.38 27872.21 17884.76 14091.60 189
test-mter79.96 16179.38 15881.72 21586.93 22761.17 25692.70 12791.54 16273.85 15475.62 15786.94 22649.84 24692.38 27872.21 17884.76 14091.60 189
dmvs_re76.93 21375.36 21681.61 21787.78 20760.71 26980.00 34487.99 29879.42 7069.02 23789.47 18746.77 27094.32 20763.38 26174.45 22889.81 218
v875.35 24073.26 24581.61 21780.67 31066.82 11989.54 24889.27 24971.65 21363.30 29980.30 30954.99 19694.06 22267.33 22562.33 31983.94 309
miper_enhance_ethall78.86 18077.97 17681.54 21988.00 20065.17 15991.41 18389.15 25675.19 13468.79 24283.98 25967.17 5692.82 25972.73 17265.30 29186.62 269
v1074.77 24772.54 25781.46 22080.33 31566.71 12389.15 25889.08 26170.94 23263.08 30279.86 31452.52 22294.04 22565.70 24462.17 32083.64 312
cl2277.94 19976.78 19681.42 22187.57 20964.93 16790.67 21788.86 27172.45 18567.63 26082.68 27264.07 8792.91 25771.79 18165.30 29186.44 270
v14876.19 22374.47 22881.36 22280.05 31964.44 17591.75 17590.23 21473.68 16067.13 26680.84 30055.92 18693.86 23668.95 21061.73 32785.76 290
testdata81.34 22389.02 17157.72 30789.84 22858.65 33985.32 6094.09 9757.03 16793.28 24569.34 20490.56 9093.03 156
EI-MVSNet78.97 17778.22 17281.25 22485.33 25262.73 22989.53 24993.21 9172.39 18872.14 20090.13 18060.99 12694.72 19067.73 22172.49 24586.29 272
MIMVSNet71.64 27768.44 29081.23 22581.97 30064.44 17573.05 36688.80 27369.67 25164.59 28474.79 35032.79 34587.82 33553.99 30676.35 21791.42 193
AUN-MVS78.37 19177.43 18481.17 22686.60 23057.45 31389.46 25191.16 17774.11 14774.40 17190.49 17055.52 18994.57 19874.73 16160.43 33891.48 192
hse-mvs281.12 13981.11 12781.16 22786.52 23157.48 31289.40 25291.16 17781.45 3882.73 8190.49 17060.11 13694.58 19687.69 5660.41 33991.41 194
Anonymous2023121173.08 26170.39 27781.13 22890.62 13463.33 21291.40 18590.06 22151.84 36264.46 28980.67 30336.49 33394.07 22163.83 25864.17 30585.98 283
UA-Net80.02 16079.65 15081.11 22989.33 16157.72 30786.33 29589.00 26777.44 10681.01 9589.15 19159.33 14795.90 14461.01 27784.28 14689.73 221
GBi-Net75.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
test175.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
FMVSNet172.71 27069.91 28181.10 23083.60 28265.11 16190.01 23790.32 20663.92 29763.56 29680.25 31036.35 33491.54 29954.46 30466.75 28386.64 265
miper_ehance_all_eth77.60 20376.44 20081.09 23385.70 24964.41 17890.65 21888.64 28172.31 18967.37 26582.52 27364.77 8192.64 27170.67 19265.30 29186.24 274
ADS-MVSNet68.54 30264.38 31781.03 23488.06 19766.90 11868.01 37784.02 33657.57 34164.48 28769.87 36638.68 30989.21 32540.87 35967.89 27686.97 260
MSDG69.54 29365.73 30380.96 23585.11 25963.71 19984.19 30483.28 34556.95 34654.50 34384.03 25731.50 35396.03 14142.87 35269.13 26783.14 323
OMC-MVS78.67 18777.91 17880.95 23685.76 24757.40 31488.49 26888.67 27973.85 15472.43 19792.10 14149.29 25194.55 20172.73 17277.89 20090.91 205
c3_l76.83 21875.47 21480.93 23785.02 26064.18 18890.39 22588.11 29571.66 21266.65 27381.64 28563.58 10092.56 27269.31 20562.86 31386.04 281
CPTT-MVS79.59 16679.16 16180.89 23891.54 11759.80 28392.10 15288.54 28460.42 32872.96 18593.28 11348.27 25992.80 26178.89 13186.50 12990.06 214
eth_miper_zixun_eth75.96 23274.40 22980.66 23984.66 26463.02 21989.28 25488.27 29171.88 20365.73 27581.65 28459.45 14492.81 26068.13 21560.53 33686.14 277
test_vis1_n_192081.66 13082.01 11580.64 24082.24 29655.09 33194.76 4786.87 31081.67 3684.40 6894.63 7838.17 31694.67 19491.98 2883.34 15192.16 184
Patchmatch-test65.86 31960.94 33380.62 24183.75 27958.83 29758.91 39175.26 36844.50 38150.95 35977.09 33658.81 15287.90 33335.13 37464.03 30795.12 77
NR-MVSNet76.05 22874.59 22480.44 24282.96 28962.18 23990.83 21291.73 15277.12 10960.96 31386.35 23259.28 14891.80 29260.74 27861.34 33187.35 254
IterMVS-LS76.49 22175.18 21980.43 24384.49 26862.74 22890.64 21988.80 27372.40 18765.16 28081.72 28360.98 12792.27 28367.74 22064.65 30286.29 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PatchT69.11 29665.37 30880.32 24482.07 29963.68 20267.96 37987.62 30250.86 36569.37 23165.18 37457.09 16688.53 32941.59 35766.60 28488.74 232
CNLPA74.31 25172.30 25980.32 24491.49 11861.66 25090.85 21180.72 35356.67 34963.85 29490.64 16546.75 27190.84 30753.79 30775.99 22088.47 239
cl____76.07 22574.67 22180.28 24685.15 25661.76 24790.12 23388.73 27671.16 22765.43 27781.57 28761.15 12492.95 25266.54 23362.17 32086.13 279
DIV-MVS_self_test76.07 22574.67 22180.28 24685.14 25761.75 24890.12 23388.73 27671.16 22765.42 27881.60 28661.15 12492.94 25666.54 23362.16 32286.14 277
pmmvs473.92 25671.81 26580.25 24879.17 32965.24 15787.43 28487.26 30667.64 27363.46 29783.91 26048.96 25691.53 30262.94 26565.49 29083.96 308
mvsmamba76.85 21675.71 21280.25 24883.07 28859.16 29391.44 18180.64 35476.84 11267.95 25286.33 23446.17 28094.24 21476.06 14772.92 24187.36 253
UWE-MVS80.81 14581.01 12980.20 25089.33 16157.05 31791.91 16494.71 3575.67 12675.01 16589.37 18863.13 10791.44 30467.19 22782.80 15792.12 185
DP-MVS69.90 29066.48 29780.14 25195.36 2862.93 22289.56 24676.11 36250.27 36757.69 33485.23 24439.68 30695.73 15133.35 37871.05 25681.78 340
PS-MVSNAJss77.26 20876.31 20280.13 25280.64 31159.16 29390.63 22191.06 18672.80 17768.58 24684.57 25353.55 21293.96 23072.97 16771.96 24987.27 257
tt080573.07 26270.73 27480.07 25378.37 34257.05 31787.78 27992.18 13361.23 32467.04 26786.49 23131.35 35594.58 19665.06 25167.12 28088.57 235
Fast-Effi-MVS+-dtu75.04 24473.37 24480.07 25380.86 30659.52 28791.20 20185.38 32471.90 20165.20 27984.84 24941.46 30092.97 25166.50 23572.96 24087.73 246
ACMH63.93 1768.62 30064.81 31080.03 25585.22 25563.25 21387.72 28084.66 33160.83 32651.57 35579.43 32027.29 36694.96 18241.76 35564.84 29881.88 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVSnew77.14 21076.18 20580.01 25686.18 23863.24 21491.26 19694.11 6071.72 21173.52 18187.29 22245.14 28793.00 25056.98 29579.42 18683.80 311
UniMVSNet_NR-MVSNet78.15 19577.55 18279.98 25784.46 26960.26 27692.25 14593.20 9377.50 10568.88 24086.61 22966.10 6492.13 28566.38 23662.55 31687.54 247
UniMVSNet (Re)77.58 20476.78 19679.98 25784.11 27560.80 26391.76 17393.17 9576.56 11969.93 22984.78 25063.32 10492.36 28064.89 25262.51 31886.78 264
test_cas_vis1_n_192080.45 15180.61 13679.97 25978.25 34357.01 31994.04 6888.33 28879.06 8182.81 8093.70 10538.65 31191.63 29690.82 3779.81 18391.27 201
DU-MVS76.86 21475.84 20979.91 26082.96 28960.26 27691.26 19691.54 16276.46 12068.88 24086.35 23256.16 18192.13 28566.38 23662.55 31687.35 254
TranMVSNet+NR-MVSNet75.86 23374.52 22779.89 26182.44 29460.64 27291.37 19091.37 16976.63 11767.65 25986.21 23652.37 22491.55 29861.84 27360.81 33487.48 249
PLCcopyleft68.80 1475.23 24273.68 24179.86 26292.93 7558.68 29990.64 21988.30 28960.90 32564.43 29090.53 16842.38 29894.57 19856.52 29676.54 21686.33 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS76.76 21975.74 21179.82 26384.60 26562.27 23892.60 13492.51 12176.06 12267.87 25785.34 24356.76 17390.24 31562.20 27163.69 31186.94 262
MVP-Stereo77.12 21176.23 20379.79 26481.72 30166.34 13289.29 25390.88 19070.56 24162.01 31082.88 26949.34 24994.13 21765.55 24793.80 4278.88 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test67.72 30863.70 31979.77 26578.92 33366.04 13888.68 26582.90 34760.11 33255.45 34075.96 34539.19 30890.55 30839.53 36352.55 36282.71 329
FIs79.47 16979.41 15679.67 26685.95 24259.40 28891.68 17793.94 6378.06 9368.96 23988.28 20166.61 6191.77 29366.20 23974.99 22487.82 245
XVG-OURS74.25 25272.46 25879.63 26778.45 34157.59 31180.33 33887.39 30363.86 29868.76 24389.62 18640.50 30491.72 29469.00 20974.25 23089.58 222
ACMP71.68 1075.58 23974.23 23279.62 26884.97 26159.64 28490.80 21389.07 26270.39 24262.95 30387.30 22138.28 31593.87 23472.89 16871.45 25385.36 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR74.70 24873.08 24679.57 26978.25 34357.33 31580.49 33687.32 30463.22 30568.76 24390.12 18244.89 28991.59 29770.55 19474.09 23289.79 219
LPG-MVS_test75.82 23474.58 22579.56 27084.31 27259.37 28990.44 22289.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
LGP-MVS_train79.56 27084.31 27259.37 28989.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
UniMVSNet_ETH3D72.74 26970.53 27679.36 27278.62 34056.64 32185.01 30089.20 25263.77 29964.84 28384.44 25534.05 34291.86 29163.94 25770.89 25789.57 223
v7n71.31 28068.65 28779.28 27376.40 35460.77 26586.71 29389.45 24264.17 29658.77 32778.24 32544.59 29093.54 24057.76 29261.75 32683.52 315
Patchmatch-RL test68.17 30564.49 31579.19 27471.22 37053.93 33670.07 37271.54 37869.22 25656.79 33762.89 37856.58 17888.61 32669.53 20252.61 36195.03 81
TAPA-MVS70.22 1274.94 24673.53 24279.17 27590.40 13852.07 34389.19 25789.61 23862.69 31270.07 22492.67 12748.89 25794.32 20738.26 36879.97 18291.12 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 25072.73 25379.17 27584.25 27457.87 30590.36 22689.93 22563.17 30765.64 27686.04 23937.79 32394.10 21865.89 24171.52 25285.55 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS73.80 25772.02 26279.15 27779.15 33062.97 22088.58 26790.07 21972.94 17259.22 32278.30 32442.31 29992.70 26665.59 24672.00 24881.79 339
our_test_368.29 30464.69 31279.11 27878.92 33364.85 16888.40 27085.06 32760.32 33052.68 35076.12 34440.81 30389.80 32244.25 34755.65 35282.67 332
pmmvs573.35 26071.52 26778.86 27978.64 33960.61 27391.08 20486.90 30967.69 27063.32 29883.64 26144.33 29190.53 30962.04 27266.02 28885.46 295
RRT_MVS74.44 24972.97 24978.84 28082.36 29557.66 30989.83 24388.79 27570.61 24064.58 28584.89 24839.24 30792.65 27070.11 19766.34 28686.21 275
Effi-MVS+-dtu76.14 22475.28 21878.72 28183.22 28555.17 33089.87 24187.78 30175.42 13067.98 25181.43 28945.08 28892.52 27475.08 15571.63 25088.48 237
CHOSEN 280x42077.35 20776.95 19578.55 28287.07 22262.68 23069.71 37382.95 34668.80 26271.48 20987.27 22366.03 6584.00 36076.47 14582.81 15688.95 228
Patchmtry67.53 31163.93 31878.34 28382.12 29864.38 17968.72 37484.00 33748.23 37359.24 32172.41 35657.82 16089.27 32446.10 33956.68 35181.36 341
tfpnnormal70.10 28767.36 29578.32 28483.45 28460.97 26188.85 26292.77 10964.85 29260.83 31478.53 32343.52 29493.48 24231.73 38561.70 32880.52 351
PatchMatch-RL72.06 27569.98 27878.28 28589.51 15755.70 32783.49 30983.39 34461.24 32363.72 29582.76 27034.77 33993.03 24953.37 31077.59 20386.12 280
pm-mvs172.89 26671.09 27078.26 28679.10 33257.62 31090.80 21389.30 24867.66 27162.91 30481.78 28249.11 25592.95 25260.29 28258.89 34484.22 307
Vis-MVSNet (Re-imp)79.24 17279.57 15178.24 28788.46 18352.29 34290.41 22489.12 25874.24 14569.13 23391.91 14665.77 6890.09 31959.00 28988.09 10892.33 174
IterMVS72.65 27370.83 27178.09 28882.17 29762.96 22187.64 28286.28 31571.56 22060.44 31578.85 32245.42 28586.66 34563.30 26361.83 32484.65 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EG-PatchMatch MVS68.55 30165.41 30777.96 28978.69 33862.93 22289.86 24289.17 25460.55 32750.27 36077.73 33022.60 37594.06 22247.18 33472.65 24476.88 372
FC-MVSNet-test77.99 19778.08 17477.70 29084.89 26255.51 32890.27 22993.75 7276.87 11066.80 27287.59 21665.71 6990.23 31662.89 26773.94 23387.37 252
jajsoiax73.05 26371.51 26877.67 29177.46 34954.83 33288.81 26390.04 22269.13 25962.85 30583.51 26331.16 35692.75 26370.83 18969.80 25885.43 296
mvs_tets72.71 27071.11 26977.52 29277.41 35054.52 33488.45 26989.76 23068.76 26462.70 30683.26 26629.49 36092.71 26470.51 19569.62 26085.34 298
LS3D69.17 29566.40 29977.50 29391.92 10456.12 32485.12 29980.37 35546.96 37456.50 33887.51 21837.25 32693.71 23732.52 38479.40 18782.68 331
Baseline_NR-MVSNet73.99 25572.83 25077.48 29480.78 30859.29 29291.79 17084.55 33268.85 26168.99 23880.70 30156.16 18192.04 28862.67 26860.98 33381.11 344
EPNet_dtu78.80 18279.26 16077.43 29588.06 19749.71 35591.96 16391.95 14077.67 10076.56 15091.28 15958.51 15390.20 31756.37 29780.95 17592.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_djsdf73.76 25972.56 25677.39 29677.00 35253.93 33689.07 25990.69 19365.80 28563.92 29282.03 27943.14 29692.67 26772.83 16968.53 27185.57 292
F-COLMAP70.66 28268.44 29077.32 29786.37 23555.91 32588.00 27586.32 31456.94 34757.28 33688.07 20933.58 34392.49 27551.02 31468.37 27283.55 313
TransMVSNet (Re)70.07 28867.66 29477.31 29880.62 31259.13 29591.78 17284.94 32965.97 28460.08 31880.44 30650.78 23691.87 29048.84 32445.46 37480.94 346
ADS-MVSNet266.90 31463.44 32177.26 29988.06 19760.70 27068.01 37775.56 36657.57 34164.48 28769.87 36638.68 30984.10 35740.87 35967.89 27686.97 260
miper_lstm_enhance73.05 26371.73 26677.03 30083.80 27858.32 30281.76 32488.88 26969.80 25061.01 31278.23 32657.19 16587.51 34165.34 24959.53 34185.27 300
KD-MVS_2432*160069.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
miper_refine_blended69.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
ACMH+65.35 1667.65 30964.55 31376.96 30384.59 26657.10 31688.08 27280.79 35258.59 34053.00 34981.09 29926.63 36892.95 25246.51 33661.69 32980.82 347
JIA-IIPM66.06 31862.45 32776.88 30481.42 30454.45 33557.49 39288.67 27949.36 36963.86 29346.86 39056.06 18490.25 31249.53 32168.83 26885.95 284
OpenMVS_ROBcopyleft61.12 1866.39 31662.92 32476.80 30576.51 35357.77 30689.22 25583.41 34355.48 35353.86 34777.84 32926.28 36993.95 23134.90 37568.76 26978.68 366
anonymousdsp71.14 28169.37 28576.45 30672.95 36654.71 33384.19 30488.88 26961.92 31962.15 30979.77 31638.14 31891.44 30468.90 21167.45 27983.21 321
IterMVS-SCA-FT71.55 27969.97 27976.32 30781.48 30260.67 27187.64 28285.99 32066.17 28359.50 32078.88 32145.53 28383.65 36262.58 26961.93 32384.63 306
USDC67.43 31364.51 31476.19 30877.94 34755.29 32978.38 35185.00 32873.17 16748.36 36780.37 30721.23 37792.48 27652.15 31264.02 30880.81 348
LCM-MVSNet-Re72.93 26571.84 26476.18 30988.49 18148.02 36280.07 34370.17 37973.96 15252.25 35280.09 31349.98 24388.24 33167.35 22384.23 14792.28 177
pmmvs667.57 31064.76 31176.00 31072.82 36853.37 33888.71 26486.78 31353.19 35857.58 33578.03 32835.33 33892.41 27755.56 30054.88 35682.21 336
XVG-ACMP-BASELINE68.04 30665.53 30675.56 31174.06 36352.37 34178.43 35085.88 32162.03 31758.91 32681.21 29720.38 38091.15 30660.69 27968.18 27383.16 322
CL-MVSNet_self_test69.92 28968.09 29375.41 31273.25 36555.90 32690.05 23689.90 22669.96 24761.96 31176.54 33951.05 23587.64 33849.51 32250.59 36682.70 330
test_fmvs174.07 25373.69 24075.22 31378.91 33547.34 36789.06 26174.69 36963.68 30079.41 11691.59 15324.36 37087.77 33785.22 7776.26 21890.55 210
pmmvs-eth3d65.53 32362.32 32875.19 31469.39 37859.59 28582.80 32083.43 34262.52 31351.30 35772.49 35432.86 34487.16 34455.32 30150.73 36578.83 365
FMVSNet568.04 30665.66 30575.18 31584.43 27057.89 30483.54 30886.26 31661.83 32153.64 34873.30 35337.15 32985.08 35348.99 32361.77 32582.56 333
test_fmvs1_n72.69 27271.92 26374.99 31671.15 37147.08 36987.34 28675.67 36463.48 30278.08 13391.17 16020.16 38187.87 33484.65 8575.57 22290.01 216
test_040264.54 32661.09 33274.92 31784.10 27660.75 26787.95 27679.71 35752.03 36052.41 35177.20 33432.21 35191.64 29523.14 39161.03 33272.36 380
MDA-MVSNet_test_wron63.78 33160.16 33474.64 31878.15 34560.41 27483.49 30984.03 33556.17 35239.17 38671.59 36237.22 32783.24 36742.87 35248.73 36880.26 354
YYNet163.76 33260.14 33574.62 31978.06 34660.19 27983.46 31183.99 33956.18 35139.25 38571.56 36337.18 32883.34 36542.90 35148.70 36980.32 353
LTVRE_ROB59.60 1966.27 31763.54 32074.45 32084.00 27751.55 34567.08 38083.53 34158.78 33854.94 34280.31 30834.54 34093.23 24640.64 36168.03 27478.58 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVS-HIRNet60.25 34155.55 34874.35 32184.37 27156.57 32271.64 36874.11 37034.44 38945.54 37542.24 39631.11 35789.81 32040.36 36276.10 21976.67 373
SixPastTwentyTwo64.92 32461.78 33174.34 32278.74 33749.76 35483.42 31279.51 35862.86 30950.27 36077.35 33130.92 35890.49 31045.89 34047.06 37182.78 325
test_vis1_n71.63 27870.73 27474.31 32369.63 37747.29 36886.91 29072.11 37463.21 30675.18 16390.17 17820.40 37985.76 34984.59 8674.42 22989.87 217
UnsupCasMVSNet_eth65.79 32063.10 32273.88 32470.71 37350.29 35381.09 33289.88 22772.58 18149.25 36574.77 35132.57 34887.43 34255.96 29941.04 38183.90 310
CMPMVSbinary48.56 2166.77 31564.41 31673.84 32570.65 37450.31 35277.79 35585.73 32345.54 37844.76 37782.14 27835.40 33790.14 31863.18 26474.54 22781.07 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lessismore_v073.72 32672.93 36747.83 36461.72 39145.86 37373.76 35228.63 36489.81 32047.75 33331.37 39383.53 314
K. test v363.09 33359.61 33773.53 32776.26 35549.38 35983.27 31377.15 36164.35 29547.77 36972.32 35828.73 36287.79 33649.93 32036.69 38783.41 318
CVMVSNet74.04 25474.27 23173.33 32885.33 25243.94 37889.53 24988.39 28654.33 35670.37 22090.13 18049.17 25384.05 35861.83 27479.36 18891.99 186
UnsupCasMVSNet_bld61.60 33757.71 34173.29 32968.73 37951.64 34478.61 34989.05 26357.20 34546.11 37061.96 38128.70 36388.60 32750.08 31938.90 38579.63 358
MDA-MVSNet-bldmvs61.54 33857.70 34273.05 33079.53 32457.00 32083.08 31781.23 35057.57 34134.91 38972.45 35532.79 34586.26 34835.81 37241.95 37975.89 374
COLMAP_ROBcopyleft57.96 2062.98 33459.65 33672.98 33181.44 30353.00 34083.75 30775.53 36748.34 37248.81 36681.40 29124.14 37190.30 31132.95 38060.52 33775.65 375
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test0.0.03 172.76 26872.71 25472.88 33280.25 31647.99 36391.22 19989.45 24271.51 22262.51 30887.66 21553.83 20885.06 35450.16 31867.84 27885.58 291
Anonymous2023120667.53 31165.78 30272.79 33374.95 35947.59 36588.23 27187.32 30461.75 32258.07 33077.29 33337.79 32387.29 34342.91 35063.71 31083.48 316
WR-MVS_H70.59 28369.94 28072.53 33481.03 30551.43 34687.35 28592.03 13767.38 27460.23 31780.70 30155.84 18783.45 36446.33 33858.58 34682.72 328
AllTest61.66 33658.06 34072.46 33579.57 32251.42 34780.17 34168.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
TestCases72.46 33579.57 32251.42 34768.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
CP-MVSNet70.50 28469.91 28172.26 33780.71 30951.00 34987.23 28790.30 21067.84 26959.64 31982.69 27150.23 24282.30 37251.28 31359.28 34283.46 317
OurMVSNet-221017-064.68 32562.17 32972.21 33876.08 35747.35 36680.67 33581.02 35156.19 35051.60 35479.66 31827.05 36788.56 32853.60 30953.63 35980.71 349
PEN-MVS69.46 29468.56 28872.17 33979.27 32749.71 35586.90 29189.24 25067.24 27859.08 32482.51 27447.23 26983.54 36348.42 32657.12 34783.25 320
myMVS_eth3d72.58 27472.74 25272.10 34087.87 20349.45 35788.07 27389.01 26472.91 17463.11 30088.10 20763.63 9585.54 35032.73 38269.23 26581.32 342
PS-CasMVS69.86 29169.13 28672.07 34180.35 31450.57 35187.02 28989.75 23167.27 27559.19 32382.28 27546.58 27382.24 37350.69 31559.02 34383.39 319
TinyColmap60.32 34056.42 34772.00 34278.78 33653.18 33978.36 35275.64 36552.30 35941.59 38475.82 34714.76 38988.35 33035.84 37154.71 35774.46 376
DTE-MVSNet68.46 30367.33 29671.87 34377.94 34749.00 36086.16 29688.58 28366.36 28258.19 32882.21 27746.36 27483.87 36144.97 34555.17 35482.73 327
Anonymous2024052162.09 33559.08 33871.10 34467.19 38148.72 36183.91 30685.23 32650.38 36647.84 36871.22 36520.74 37885.51 35246.47 33758.75 34579.06 362
RPSCF64.24 32861.98 33071.01 34576.10 35645.00 37575.83 36275.94 36346.94 37558.96 32584.59 25231.40 35482.00 37447.76 33260.33 34086.04 281
ITE_SJBPF70.43 34674.44 36147.06 37077.32 36060.16 33154.04 34683.53 26223.30 37484.01 35943.07 34961.58 33080.21 356
Syy-MVS69.65 29269.52 28470.03 34787.87 20343.21 38088.07 27389.01 26472.91 17463.11 30088.10 20745.28 28685.54 35022.07 39369.23 26581.32 342
ambc69.61 34861.38 39041.35 38349.07 39785.86 32250.18 36266.40 37210.16 39488.14 33245.73 34144.20 37579.32 361
mvsany_test168.77 29968.56 28869.39 34973.57 36445.88 37480.93 33460.88 39259.65 33471.56 20890.26 17643.22 29575.05 38274.26 16362.70 31587.25 258
testgi64.48 32762.87 32569.31 35071.24 36940.62 38585.49 29779.92 35665.36 28954.18 34583.49 26423.74 37384.55 35541.60 35660.79 33582.77 326
testing370.38 28670.83 27169.03 35185.82 24643.93 37990.72 21690.56 19968.06 26860.24 31686.82 22864.83 7984.12 35626.33 38964.10 30679.04 363
MIMVSNet160.16 34257.33 34368.67 35269.71 37644.13 37778.92 34884.21 33355.05 35444.63 37871.85 36023.91 37281.54 37632.63 38355.03 35580.35 352
test_fmvs265.78 32164.84 30968.60 35366.54 38241.71 38283.27 31369.81 38054.38 35567.91 25484.54 25415.35 38681.22 37775.65 15066.16 28782.88 324
PM-MVS59.40 34356.59 34567.84 35463.63 38541.86 38176.76 35763.22 38959.01 33751.07 35872.27 35911.72 39283.25 36661.34 27550.28 36778.39 368
new-patchmatchnet59.30 34456.48 34667.79 35565.86 38444.19 37682.47 32181.77 34859.94 33343.65 38166.20 37327.67 36581.68 37539.34 36441.40 38077.50 371
KD-MVS_self_test60.87 33958.60 33967.68 35666.13 38339.93 38775.63 36384.70 33057.32 34449.57 36368.45 36929.55 35982.87 36848.09 32747.94 37080.25 355
pmmvs355.51 34851.50 35367.53 35757.90 39350.93 35080.37 33773.66 37140.63 38744.15 38064.75 37616.30 38478.97 38144.77 34640.98 38372.69 378
test20.0363.83 33062.65 32667.38 35870.58 37539.94 38686.57 29484.17 33463.29 30451.86 35377.30 33237.09 33082.47 37038.87 36754.13 35879.73 357
EU-MVSNet64.01 32963.01 32367.02 35974.40 36238.86 39083.27 31386.19 31845.11 37954.27 34481.15 29836.91 33280.01 38048.79 32557.02 34882.19 337
TDRefinement55.28 34951.58 35266.39 36059.53 39246.15 37276.23 36072.80 37244.60 38042.49 38276.28 34315.29 38782.39 37133.20 37943.75 37670.62 382
test_vis1_rt59.09 34557.31 34464.43 36168.44 38046.02 37383.05 31848.63 40151.96 36149.57 36363.86 37716.30 38480.20 37971.21 18762.79 31467.07 386
DSMNet-mixed56.78 34754.44 35063.79 36263.21 38629.44 40164.43 38364.10 38842.12 38651.32 35671.60 36131.76 35275.04 38336.23 37065.20 29586.87 263
dmvs_testset65.55 32266.45 29862.86 36379.87 32022.35 40676.55 35871.74 37677.42 10855.85 33987.77 21451.39 23280.69 37831.51 38865.92 28985.55 293
test_fmvs356.82 34654.86 34962.69 36453.59 39535.47 39275.87 36165.64 38743.91 38255.10 34171.43 3646.91 40074.40 38568.64 21352.63 36078.20 369
LF4IMVS54.01 35052.12 35159.69 36562.41 38839.91 38868.59 37568.28 38442.96 38544.55 37975.18 34814.09 39168.39 39141.36 35851.68 36370.78 381
new_pmnet49.31 35246.44 35557.93 36662.84 38740.74 38468.47 37662.96 39036.48 38835.09 38857.81 38514.97 38872.18 38732.86 38146.44 37260.88 388
mvsany_test348.86 35346.35 35656.41 36746.00 40131.67 39762.26 38547.25 40243.71 38345.54 37568.15 37010.84 39364.44 39957.95 29135.44 39073.13 377
test_f46.58 35443.45 35855.96 36845.18 40232.05 39661.18 38649.49 40033.39 39042.05 38362.48 3807.00 39965.56 39547.08 33543.21 37870.27 383
ANet_high40.27 36235.20 36555.47 36934.74 40934.47 39463.84 38471.56 37748.42 37118.80 39841.08 3979.52 39664.45 39820.18 3948.66 40567.49 385
EGC-MVSNET42.35 35838.09 36155.11 37074.57 36046.62 37171.63 36955.77 3930.04 4070.24 40862.70 37914.24 39074.91 38417.59 39646.06 37343.80 393
N_pmnet50.55 35149.11 35454.88 37177.17 3514.02 41484.36 3032.00 41248.59 37045.86 37368.82 36832.22 35082.80 36931.58 38651.38 36477.81 370
LCM-MVSNet40.54 35935.79 36454.76 37236.92 40830.81 39851.41 39569.02 38122.07 39524.63 39545.37 3924.56 40465.81 39433.67 37734.50 39167.67 384
FPMVS45.64 35643.10 36053.23 37351.42 39836.46 39164.97 38271.91 37529.13 39327.53 39361.55 3829.83 39565.01 39716.00 39955.58 35358.22 389
PMMVS237.93 36433.61 36750.92 37446.31 40024.76 40460.55 38950.05 39828.94 39420.93 39647.59 3894.41 40665.13 39625.14 39018.55 40062.87 387
WB-MVS46.23 35544.94 35750.11 37562.13 38921.23 40876.48 35955.49 39445.89 37735.78 38761.44 38335.54 33672.83 3869.96 40221.75 39756.27 390
APD_test140.50 36037.31 36350.09 37651.88 39635.27 39359.45 39052.59 39721.64 39626.12 39457.80 3864.56 40466.56 39322.64 39239.09 38448.43 392
test_method38.59 36335.16 36648.89 37754.33 39421.35 40745.32 39853.71 3967.41 40428.74 39251.62 3888.70 39752.87 40233.73 37632.89 39272.47 379
test_vis3_rt40.46 36137.79 36248.47 37844.49 40333.35 39566.56 38132.84 40932.39 39129.65 39139.13 3993.91 40768.65 39050.17 31740.99 38243.40 394
SSC-MVS44.51 35743.35 35947.99 37961.01 39118.90 41074.12 36554.36 39543.42 38434.10 39060.02 38434.42 34170.39 3899.14 40419.57 39854.68 391
Gipumacopyleft34.91 36531.44 36845.30 38070.99 37239.64 38919.85 40272.56 37320.10 39816.16 40221.47 4035.08 40371.16 38813.07 40043.70 37725.08 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft26.43 2231.84 36828.16 37142.89 38125.87 41127.58 40250.92 39649.78 39921.37 39714.17 40340.81 3982.01 41066.62 3929.61 40338.88 38634.49 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testf132.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
APD_test232.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
MVEpermissive24.84 2324.35 37019.77 37638.09 38434.56 41026.92 40326.57 40038.87 40711.73 40311.37 40427.44 4001.37 41150.42 40311.41 40114.60 40136.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft34.71 38551.45 39724.73 40528.48 41131.46 39217.49 40152.75 3875.80 40242.60 40618.18 39519.42 39936.81 398
E-PMN24.61 36924.00 37326.45 38643.74 40418.44 41160.86 38739.66 40515.11 4019.53 40522.10 4026.52 40146.94 4048.31 40510.14 40213.98 402
EMVS23.76 37123.20 37525.46 38741.52 40716.90 41260.56 38838.79 40814.62 4028.99 40620.24 4057.35 39845.82 4057.25 4069.46 40313.64 403
tmp_tt22.26 37223.75 37417.80 3885.23 41212.06 41335.26 39939.48 4062.82 40618.94 39744.20 39522.23 37624.64 40736.30 3699.31 40416.69 401
wuyk23d11.30 37410.95 37712.33 38948.05 39919.89 40925.89 4011.92 4133.58 4053.12 4071.37 4070.64 41215.77 4086.23 4077.77 4061.35 404
test1236.92 3779.21 3800.08 3900.03 4140.05 41581.65 3270.01 4150.02 4090.14 4100.85 4090.03 4130.02 4090.12 4090.00 4080.16 405
testmvs7.23 3769.62 3790.06 3910.04 4130.02 41684.98 3010.02 4140.03 4080.18 4091.21 4080.01 4140.02 4090.14 4080.01 4070.13 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
cdsmvs_eth3d_5k19.86 37326.47 3720.00 3920.00 4150.00 4170.00 40393.45 840.00 4100.00 41195.27 5849.56 2470.00 4110.00 4100.00 4080.00 407
pcd_1.5k_mvsjas4.46 3785.95 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41053.55 2120.00 4110.00 4100.00 4080.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
ab-mvs-re7.91 37510.55 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.95 670.00 4150.00 4110.00 4100.00 4080.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
WAC-MVS49.45 35731.56 387
FOURS193.95 4561.77 24693.96 7191.92 14162.14 31686.57 46
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_one_060196.32 1869.74 4994.18 5771.42 22490.67 1996.85 1674.45 18
eth-test20.00 415
eth-test0.00 415
ZD-MVS96.63 965.50 15393.50 8270.74 23885.26 6195.19 6464.92 7897.29 7887.51 5893.01 55
RE-MVS-def80.48 13992.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8149.30 25078.77 13286.77 12492.28 177
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 28
test_241102_TWO94.41 4871.65 21392.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 19
test_241102_ONE96.45 1269.38 5494.44 4671.65 21392.11 797.05 776.79 999.11 6
9.1487.63 2793.86 4794.41 5394.18 5772.76 17886.21 4896.51 2566.64 6097.88 4490.08 4094.04 38
save fliter93.84 4867.89 9295.05 4092.66 11478.19 91
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 29
test072696.40 1569.99 3996.76 894.33 5471.92 19991.89 1197.11 673.77 21
GSMVS94.68 95
test_part296.29 1968.16 8690.78 17
sam_mvs157.85 15994.68 95
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34720.70 40453.05 21791.50 30360.43 280
test_post23.01 40156.49 17992.67 267
patchmatchnet-post67.62 37157.62 16290.25 312
MTMP93.77 8532.52 410
gm-plane-assit88.42 18567.04 11578.62 8891.83 14797.37 7276.57 144
test9_res89.41 4194.96 1995.29 67
TEST994.18 4167.28 10794.16 5993.51 8071.75 21085.52 5695.33 5368.01 5097.27 82
test_894.19 4067.19 10994.15 6293.42 8671.87 20485.38 5995.35 5268.19 4896.95 104
agg_prior286.41 6994.75 3095.33 63
agg_prior94.16 4366.97 11793.31 8984.49 6796.75 114
test_prior467.18 11193.92 74
test_prior295.10 3975.40 13185.25 6295.61 4767.94 5187.47 5994.77 26
旧先验292.00 16159.37 33687.54 4093.47 24375.39 152
新几何291.41 183
旧先验191.94 10260.74 26891.50 16594.36 8565.23 7391.84 7094.55 102
无先验92.71 12692.61 11862.03 31797.01 9566.63 23193.97 127
原ACMM292.01 158
test22289.77 15061.60 25189.55 24789.42 24456.83 34877.28 14292.43 13352.76 22091.14 8493.09 153
testdata296.09 13561.26 276
segment_acmp65.94 66
testdata189.21 25677.55 104
plane_prior786.94 22561.51 252
plane_prior687.23 21762.32 23650.66 237
plane_prior591.31 17195.55 16476.74 14278.53 19788.39 240
plane_prior489.14 192
plane_prior361.95 24479.09 7972.53 193
plane_prior293.13 11178.81 85
plane_prior187.15 219
plane_prior62.42 23293.85 7879.38 7178.80 194
n20.00 416
nn0.00 416
door-mid66.01 386
test1193.01 101
door66.57 385
HQP5-MVS63.66 203
HQP-NCC87.54 21094.06 6479.80 6374.18 172
ACMP_Plane87.54 21094.06 6479.80 6374.18 172
BP-MVS77.63 139
HQP4-MVS74.18 17295.61 15988.63 233
HQP3-MVS91.70 15778.90 192
HQP2-MVS51.63 230
NP-MVS87.41 21363.04 21890.30 174
MDTV_nov1_ep13_2view59.90 28280.13 34267.65 27272.79 18854.33 20559.83 28492.58 168
MDTV_nov1_ep1372.61 25589.06 17068.48 7480.33 33890.11 21871.84 20671.81 20475.92 34653.01 21893.92 23248.04 32873.38 236
ACMMP++_ref71.63 250
ACMMP++69.72 259
Test By Simon54.21 206