LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 1 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 82 | 97.89 13 | 99.47 3 | 99.32 8 | 99.08 10 | 97.87 135 | 99.67 2 | 96.47 84 | 99.92 4 | 97.88 23 | 99.98 2 | 99.85 3 |
|
abl_6 | | | 98.42 23 | 98.19 32 | 99.09 3 | 99.16 69 | 98.10 5 | 97.73 65 | 99.11 26 | 97.76 49 | 98.62 51 | 98.27 97 | 97.88 19 | 99.80 37 | 95.67 100 | 99.50 108 | 99.38 85 |
|
zzz-MVS | | | 98.01 44 | 97.66 65 | 99.06 4 | 99.44 30 | 97.90 11 | 95.66 176 | 98.73 124 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 109 | 99.82 29 | 96.13 79 | 99.61 71 | 99.45 66 |
|
MTAPA | | | 98.14 34 | 97.84 49 | 99.06 4 | 99.44 30 | 97.90 11 | 97.25 92 | 98.73 124 | 97.69 56 | 97.90 129 | 97.96 134 | 95.81 109 | 99.82 29 | 96.13 79 | 99.61 71 | 99.45 66 |
|
test1172 | | | 98.08 39 | 97.76 57 | 99.05 6 | 98.78 108 | 98.07 6 | 97.41 86 | 98.85 89 | 97.57 60 | 98.15 101 | 97.96 134 | 96.60 76 | 99.76 57 | 95.30 125 | 99.18 187 | 99.33 95 |
|
mPP-MVS | | | 97.91 58 | 97.53 81 | 99.04 7 | 99.22 57 | 97.87 14 | 97.74 63 | 98.78 115 | 96.04 116 | 97.10 174 | 97.73 163 | 96.53 79 | 99.78 42 | 95.16 135 | 99.50 108 | 99.46 61 |
|
MSP-MVS | | | 97.45 93 | 96.92 122 | 99.03 8 | 99.26 48 | 97.70 18 | 97.66 66 | 98.89 76 | 95.65 139 | 98.51 60 | 96.46 254 | 92.15 209 | 99.81 31 | 95.14 138 | 98.58 254 | 99.58 28 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
SR-MVS-dyc-post | | | 98.14 34 | 97.84 49 | 99.02 9 | 98.81 103 | 98.05 8 | 97.55 74 | 98.86 85 | 97.77 46 | 98.20 94 | 98.07 119 | 96.60 76 | 99.76 57 | 95.49 110 | 99.20 183 | 99.26 115 |
|
TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 9 | 99.54 19 | 98.06 7 | 99.34 4 | 99.44 7 | 98.85 19 | 99.00 36 | 99.20 23 | 97.42 32 | 99.59 152 | 97.21 47 | 99.76 39 | 99.40 81 |
|
SR-MVS | | | 98.00 45 | 97.66 65 | 99.01 11 | 98.77 110 | 97.93 10 | 97.38 87 | 98.83 101 | 97.32 73 | 98.06 113 | 97.85 149 | 96.65 71 | 99.77 52 | 95.00 147 | 99.11 198 | 99.32 96 |
|
MP-MVS |  | | 97.64 78 | 97.18 105 | 99.00 12 | 99.32 45 | 97.77 17 | 97.49 80 | 98.73 124 | 96.27 104 | 95.59 249 | 97.75 160 | 96.30 92 | 99.78 42 | 93.70 201 | 99.48 116 | 99.45 66 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
Effi-MVS+-dtu | | | 96.81 132 | 96.09 163 | 98.99 13 | 96.90 289 | 98.69 2 | 96.42 131 | 98.09 213 | 95.86 130 | 95.15 257 | 95.54 294 | 94.26 160 | 99.81 31 | 94.06 185 | 98.51 257 | 98.47 228 |
|
anonymousdsp | | | 98.72 14 | 98.63 19 | 98.99 13 | 99.62 13 | 97.29 37 | 98.65 14 | 99.19 15 | 95.62 141 | 99.35 19 | 99.37 12 | 97.38 33 | 99.90 13 | 98.59 11 | 99.91 17 | 99.77 8 |
|
CP-MVS | | | 97.92 55 | 97.56 80 | 98.99 13 | 98.99 93 | 97.82 15 | 97.93 50 | 98.96 68 | 96.11 111 | 96.89 192 | 97.45 186 | 96.85 64 | 99.78 42 | 95.19 131 | 99.63 64 | 99.38 85 |
|
PGM-MVS | | | 97.88 60 | 97.52 82 | 98.96 16 | 99.20 65 | 97.62 21 | 97.09 102 | 99.06 38 | 95.45 148 | 97.55 145 | 97.94 139 | 97.11 44 | 99.78 42 | 94.77 157 | 99.46 121 | 99.48 56 |
|
RPSCF | | | 97.87 61 | 97.51 83 | 98.95 17 | 99.15 72 | 98.43 3 | 97.56 73 | 99.06 38 | 96.19 108 | 98.48 63 | 98.70 58 | 94.72 143 | 99.24 250 | 94.37 172 | 99.33 167 | 99.17 129 |
|
XVS | | | 97.96 46 | 97.63 72 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 59 | 98.83 101 | 97.42 67 | 96.32 218 | 97.64 170 | 96.49 82 | 99.72 82 | 95.66 102 | 99.37 149 | 99.45 66 |
|
X-MVStestdata | | | 92.86 275 | 90.83 300 | 98.94 18 | 99.15 72 | 97.66 19 | 97.77 59 | 98.83 101 | 97.42 67 | 96.32 218 | 36.50 363 | 96.49 82 | 99.72 82 | 95.66 102 | 99.37 149 | 99.45 66 |
|
ACMMPR | | | 97.95 49 | 97.62 74 | 98.94 18 | 99.20 65 | 97.56 25 | 97.59 71 | 98.83 101 | 96.05 114 | 97.46 157 | 97.63 171 | 96.77 67 | 99.76 57 | 95.61 106 | 99.46 121 | 99.49 51 |
|
ACMMP |  | | 98.05 41 | 97.75 59 | 98.93 21 | 99.23 54 | 97.60 22 | 98.09 43 | 98.96 68 | 95.75 137 | 97.91 128 | 98.06 124 | 96.89 60 | 99.76 57 | 95.32 124 | 99.57 81 | 99.43 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
region2R | | | 97.92 55 | 97.59 77 | 98.92 22 | 99.22 57 | 97.55 26 | 97.60 70 | 98.84 94 | 96.00 119 | 97.22 164 | 97.62 172 | 96.87 63 | 99.76 57 | 95.48 113 | 99.43 134 | 99.46 61 |
|
HPM-MVS |  | | 98.11 38 | 97.83 51 | 98.92 22 | 99.42 34 | 97.46 31 | 98.57 15 | 99.05 40 | 95.43 150 | 97.41 160 | 97.50 182 | 97.98 15 | 99.79 38 | 95.58 109 | 99.57 81 | 99.50 43 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HPM-MVS_fast | | | 98.32 27 | 98.13 33 | 98.88 24 | 99.54 19 | 97.48 30 | 98.35 26 | 99.03 47 | 95.88 128 | 97.88 132 | 98.22 104 | 98.15 12 | 99.74 72 | 96.50 69 | 99.62 65 | 99.42 78 |
|
ACMM | | 93.33 11 | 98.05 41 | 97.79 53 | 98.85 25 | 99.15 72 | 97.55 26 | 96.68 124 | 98.83 101 | 95.21 156 | 98.36 75 | 98.13 111 | 98.13 14 | 99.62 144 | 96.04 84 | 99.54 93 | 99.39 83 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
ZNCC-MVS | | | 97.92 55 | 97.62 74 | 98.83 26 | 99.32 45 | 97.24 39 | 97.45 81 | 98.84 94 | 95.76 135 | 96.93 189 | 97.43 187 | 97.26 40 | 99.79 38 | 96.06 81 | 99.53 96 | 99.45 66 |
|
HFP-MVS | | | 97.94 51 | 97.64 70 | 98.83 26 | 99.15 72 | 97.50 28 | 97.59 71 | 98.84 94 | 96.05 114 | 97.49 151 | 97.54 177 | 97.07 48 | 99.70 105 | 95.61 106 | 99.46 121 | 99.30 102 |
|
#test# | | | 97.62 80 | 97.22 103 | 98.83 26 | 99.15 72 | 97.50 28 | 96.81 114 | 98.84 94 | 94.25 193 | 97.49 151 | 97.54 177 | 97.07 48 | 99.70 105 | 94.37 172 | 99.46 121 | 99.30 102 |
|
GST-MVS | | | 97.82 67 | 97.49 86 | 98.81 29 | 99.23 54 | 97.25 38 | 97.16 96 | 98.79 111 | 95.96 122 | 97.53 146 | 97.40 189 | 96.93 57 | 99.77 52 | 95.04 144 | 99.35 157 | 99.42 78 |
|
HPM-MVS++ |  | | 96.99 115 | 96.38 151 | 98.81 29 | 98.64 123 | 97.59 23 | 95.97 159 | 98.20 198 | 95.51 146 | 95.06 258 | 96.53 250 | 94.10 164 | 99.70 105 | 94.29 176 | 99.15 189 | 99.13 139 |
|
APD-MVS_3200maxsize | | | 98.13 37 | 97.90 44 | 98.79 31 | 98.79 106 | 97.31 36 | 97.55 74 | 98.92 73 | 97.72 53 | 98.25 90 | 98.13 111 | 97.10 45 | 99.75 65 | 95.44 117 | 99.24 181 | 99.32 96 |
|
SteuartSystems-ACMMP | | | 98.02 43 | 97.76 57 | 98.79 31 | 99.43 32 | 97.21 41 | 97.15 97 | 98.90 75 | 96.58 92 | 98.08 111 | 97.87 148 | 97.02 53 | 99.76 57 | 95.25 128 | 99.59 76 | 99.40 81 |
Skip Steuart: Steuart Systems R&D Blog. |
mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 33 | 99.69 8 | 96.48 59 | 98.54 18 | 99.22 10 | 96.23 107 | 99.71 4 | 99.48 7 | 98.77 6 | 99.93 2 | 98.89 3 | 99.95 5 | 99.84 5 |
|
WR-MVS_H | | | 98.65 15 | 98.62 21 | 98.75 33 | 99.51 22 | 96.61 55 | 98.55 17 | 99.17 16 | 99.05 13 | 99.17 29 | 98.79 51 | 95.47 122 | 99.89 16 | 97.95 21 | 99.91 17 | 99.75 13 |
|
jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 35 | 99.66 10 | 96.48 59 | 98.45 23 | 99.12 25 | 95.83 133 | 99.67 6 | 99.37 12 | 98.25 10 | 99.92 4 | 98.77 5 | 99.94 8 | 99.82 6 |
|
LPG-MVS_test | | | 97.94 51 | 97.67 64 | 98.74 35 | 99.15 72 | 97.02 42 | 97.09 102 | 99.02 49 | 95.15 160 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 105 | 94.41 169 | 99.73 45 | 99.50 43 |
|
LGP-MVS_train | | | | | 98.74 35 | 99.15 72 | 97.02 42 | | 99.02 49 | 95.15 160 | 98.34 78 | 98.23 101 | 97.91 17 | 99.70 105 | 94.41 169 | 99.73 45 | 99.50 43 |
|
LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 38 | 99.71 7 | 96.99 44 | 99.69 2 | 99.57 3 | 99.02 15 | 99.62 10 | 99.36 14 | 98.53 7 | 99.52 174 | 98.58 12 | 99.95 5 | 99.66 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MP-MVS-pluss | | | 97.69 76 | 97.36 92 | 98.70 39 | 99.50 25 | 96.84 47 | 95.38 193 | 98.99 60 | 92.45 244 | 98.11 105 | 98.31 86 | 97.25 41 | 99.77 52 | 96.60 63 | 99.62 65 | 99.48 56 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 40 | 99.63 12 | 96.30 65 | 98.67 11 | 99.02 49 | 96.50 96 | 99.32 20 | 99.44 10 | 97.43 31 | 99.92 4 | 98.73 7 | 99.95 5 | 99.86 2 |
|
ACMMP_NAP | | | 97.89 59 | 97.63 72 | 98.67 41 | 99.35 41 | 96.84 47 | 96.36 135 | 98.79 111 | 95.07 164 | 97.88 132 | 98.35 82 | 97.24 42 | 99.72 82 | 96.05 83 | 99.58 78 | 99.45 66 |
|
MIMVSNet1 | | | 98.51 20 | 98.45 26 | 98.67 41 | 99.72 6 | 96.71 50 | 98.76 9 | 98.89 76 | 98.49 27 | 99.38 17 | 99.14 30 | 95.44 124 | 99.84 25 | 96.47 70 | 99.80 33 | 99.47 59 |
|
UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 43 | 99.77 3 | 96.34 63 | 99.18 5 | 99.20 13 | 99.67 2 | 99.73 3 | 99.65 4 | 99.15 3 | 99.86 20 | 97.22 45 | 99.92 14 | 99.77 8 |
|
COLMAP_ROB |  | 94.48 6 | 98.25 31 | 98.11 34 | 98.64 44 | 99.21 64 | 97.35 35 | 97.96 48 | 99.16 17 | 98.34 31 | 98.78 44 | 98.52 71 | 97.32 35 | 99.45 193 | 94.08 184 | 99.67 58 | 99.13 139 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
OurMVSNet-221017-0 | | | 98.61 16 | 98.61 23 | 98.63 45 | 99.77 3 | 96.35 62 | 99.17 6 | 99.05 40 | 98.05 40 | 99.61 11 | 99.52 5 | 93.72 174 | 99.88 18 | 98.72 9 | 99.88 23 | 99.65 23 |
|
SMA-MVS |  | | 97.48 91 | 97.11 108 | 98.60 46 | 98.83 102 | 96.67 52 | 96.74 118 | 98.73 124 | 91.61 255 | 98.48 63 | 98.36 81 | 96.53 79 | 99.68 119 | 95.17 133 | 99.54 93 | 99.45 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 47 | 99.55 17 | 96.12 70 | 98.48 22 | 99.10 28 | 99.36 4 | 99.29 23 | 99.06 36 | 97.27 38 | 99.93 2 | 97.71 32 | 99.91 17 | 99.70 18 |
|
LS3D | | | 97.77 71 | 97.50 85 | 98.57 48 | 96.24 302 | 97.58 24 | 98.45 23 | 98.85 89 | 98.58 26 | 97.51 148 | 97.94 139 | 95.74 113 | 99.63 136 | 95.19 131 | 98.97 212 | 98.51 225 |
|
pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 49 | 99.81 2 | 96.38 61 | 98.87 7 | 99.30 9 | 99.01 16 | 99.63 9 | 99.66 3 | 99.27 2 | 99.68 119 | 97.75 30 | 99.89 22 | 99.62 25 |
|
ACMP | | 92.54 13 | 97.47 92 | 97.10 109 | 98.55 50 | 99.04 90 | 96.70 51 | 96.24 143 | 98.89 76 | 93.71 208 | 97.97 123 | 97.75 160 | 97.44 30 | 99.63 136 | 93.22 210 | 99.70 54 | 99.32 96 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
DPE-MVS |  | | 97.64 78 | 97.35 93 | 98.50 51 | 98.85 101 | 96.18 67 | 95.21 208 | 98.99 60 | 95.84 132 | 98.78 44 | 98.08 117 | 96.84 65 | 99.81 31 | 93.98 191 | 99.57 81 | 99.52 40 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
XVG-ACMP-BASELINE | | | 97.58 84 | 97.28 98 | 98.49 52 | 99.16 69 | 96.90 46 | 96.39 132 | 98.98 63 | 95.05 165 | 98.06 113 | 98.02 128 | 95.86 101 | 99.56 161 | 94.37 172 | 99.64 63 | 99.00 164 |
|
CPTT-MVS | | | 96.69 142 | 96.08 164 | 98.49 52 | 98.89 99 | 96.64 54 | 97.25 92 | 98.77 116 | 92.89 238 | 96.01 234 | 97.13 210 | 92.23 208 | 99.67 124 | 92.24 222 | 99.34 160 | 99.17 129 |
|
APDe-MVS | | | 98.14 34 | 98.03 40 | 98.47 54 | 98.72 114 | 96.04 73 | 98.07 44 | 99.10 28 | 95.96 122 | 98.59 55 | 98.69 59 | 96.94 55 | 99.81 31 | 96.64 62 | 99.58 78 | 99.57 32 |
|
PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 14 | 95.67 87 | 98.45 23 | 99.15 21 | 99.33 5 | 99.30 21 | 99.00 38 | 97.27 38 | 99.92 4 | 97.64 33 | 99.92 14 | 99.75 13 |
|
TranMVSNet+NR-MVSNet | | | 98.33 26 | 98.30 31 | 98.43 56 | 99.07 86 | 95.87 78 | 96.73 122 | 99.05 40 | 98.67 23 | 98.84 41 | 98.45 76 | 97.58 28 | 99.88 18 | 96.45 71 | 99.86 25 | 99.54 36 |
|
OPM-MVS | | | 97.54 86 | 97.25 99 | 98.41 57 | 99.11 82 | 96.61 55 | 95.24 206 | 98.46 164 | 94.58 183 | 98.10 108 | 98.07 119 | 97.09 47 | 99.39 215 | 95.16 135 | 99.44 126 | 99.21 124 |
|
APD-MVS |  | | 97.00 114 | 96.53 144 | 98.41 57 | 98.55 137 | 96.31 64 | 96.32 138 | 98.77 116 | 92.96 237 | 97.44 159 | 97.58 176 | 95.84 102 | 99.74 72 | 91.96 224 | 99.35 157 | 99.19 126 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 59 | 99.55 17 | 95.47 98 | 98.49 20 | 99.13 24 | 99.22 8 | 99.22 27 | 98.96 42 | 97.35 34 | 99.92 4 | 97.79 28 | 99.93 10 | 99.79 7 |
|
UniMVSNet_NR-MVSNet | | | 97.83 65 | 97.65 67 | 98.37 60 | 98.72 114 | 95.78 80 | 95.66 176 | 99.02 49 | 98.11 39 | 98.31 85 | 97.69 168 | 94.65 148 | 99.85 22 | 97.02 56 | 99.71 51 | 99.48 56 |
|
testtj | | | 96.69 142 | 96.13 160 | 98.36 61 | 98.46 151 | 96.02 75 | 96.44 130 | 98.70 134 | 94.26 192 | 96.79 194 | 97.13 210 | 94.07 165 | 99.75 65 | 90.53 265 | 98.80 233 | 99.31 101 |
|
DU-MVS | | | 97.79 69 | 97.60 76 | 98.36 61 | 98.73 112 | 95.78 80 | 95.65 179 | 98.87 83 | 97.57 60 | 98.31 85 | 97.83 151 | 94.69 144 | 99.85 22 | 97.02 56 | 99.71 51 | 99.46 61 |
|
UniMVSNet (Re) | | | 97.83 65 | 97.65 67 | 98.35 63 | 98.80 105 | 95.86 79 | 95.92 164 | 99.04 46 | 97.51 64 | 98.22 93 | 97.81 155 | 94.68 146 | 99.78 42 | 97.14 52 | 99.75 43 | 99.41 80 |
|
mvs-test1 | | | 96.20 162 | 95.50 186 | 98.32 64 | 96.90 289 | 98.16 4 | 95.07 216 | 98.09 213 | 95.86 130 | 93.63 299 | 94.32 318 | 94.26 160 | 99.71 96 | 94.06 185 | 97.27 306 | 97.07 303 |
|
nrg030 | | | 98.54 18 | 98.62 21 | 98.32 64 | 99.22 57 | 95.66 88 | 97.90 53 | 99.08 34 | 98.31 32 | 99.02 34 | 98.74 55 | 97.68 24 | 99.61 150 | 97.77 29 | 99.85 27 | 99.70 18 |
|
DeepPCF-MVS | | 94.58 5 | 96.90 124 | 96.43 150 | 98.31 66 | 97.48 255 | 97.23 40 | 92.56 303 | 98.60 152 | 92.84 239 | 98.54 58 | 97.40 189 | 96.64 73 | 98.78 301 | 94.40 171 | 99.41 144 | 98.93 176 |
|
CP-MVSNet | | | 98.42 23 | 98.46 24 | 98.30 67 | 99.46 28 | 95.22 111 | 98.27 31 | 98.84 94 | 99.05 13 | 99.01 35 | 98.65 63 | 95.37 125 | 99.90 13 | 97.57 35 | 99.91 17 | 99.77 8 |
|
XVG-OURS-SEG-HR | | | 97.38 98 | 97.07 112 | 98.30 67 | 99.01 92 | 97.41 34 | 94.66 236 | 99.02 49 | 95.20 157 | 98.15 101 | 97.52 180 | 98.83 4 | 98.43 330 | 94.87 150 | 96.41 321 | 99.07 155 |
|
hse-mvs3 | | | 96.29 158 | 95.63 181 | 98.26 69 | 98.50 144 | 96.11 71 | 96.90 110 | 97.09 267 | 96.58 92 | 97.21 166 | 98.19 106 | 84.14 291 | 99.78 42 | 95.89 94 | 96.17 325 | 98.89 185 |
|
NR-MVSNet | | | 97.96 46 | 97.86 48 | 98.26 69 | 98.73 112 | 95.54 92 | 98.14 40 | 98.73 124 | 97.79 45 | 99.42 15 | 97.83 151 | 94.40 157 | 99.78 42 | 95.91 93 | 99.76 39 | 99.46 61 |
|
XVG-OURS | | | 97.12 111 | 96.74 131 | 98.26 69 | 98.99 93 | 97.45 32 | 93.82 271 | 99.05 40 | 95.19 158 | 98.32 83 | 97.70 166 | 95.22 131 | 98.41 331 | 94.27 177 | 98.13 269 | 98.93 176 |
|
test_0728_SECOND | | | | | 98.25 72 | 99.23 54 | 95.49 97 | 96.74 118 | 98.89 76 | | | | | 99.75 65 | 95.48 113 | 99.52 101 | 99.53 39 |
|
PHI-MVS | | | 96.96 119 | 96.53 144 | 98.25 72 | 97.48 255 | 96.50 58 | 96.76 117 | 98.85 89 | 93.52 211 | 96.19 227 | 96.85 229 | 95.94 99 | 99.42 199 | 93.79 197 | 99.43 134 | 98.83 194 |
|
SF-MVS | | | 97.60 82 | 97.39 90 | 98.22 74 | 98.93 96 | 95.69 84 | 97.05 104 | 99.10 28 | 95.32 153 | 97.83 138 | 97.88 146 | 96.44 86 | 99.72 82 | 94.59 164 | 99.39 146 | 99.25 119 |
|
PS-MVSNAJss | | | 98.53 19 | 98.63 19 | 98.21 75 | 99.68 9 | 94.82 122 | 98.10 42 | 99.21 11 | 96.91 82 | 99.75 2 | 99.45 9 | 95.82 105 | 99.92 4 | 98.80 4 | 99.96 4 | 99.89 1 |
|
ETH3D-3000-0.1 | | | 96.89 126 | 96.46 149 | 98.16 76 | 98.62 128 | 95.69 84 | 95.96 160 | 98.98 63 | 93.36 216 | 97.04 180 | 97.31 202 | 94.93 140 | 99.63 136 | 92.60 217 | 99.34 160 | 99.17 129 |
|
DVP-MVS | | | 97.78 70 | 97.65 67 | 98.16 76 | 99.24 52 | 95.51 94 | 96.74 118 | 98.23 194 | 95.92 125 | 98.40 70 | 98.28 93 | 97.06 50 | 99.71 96 | 95.48 113 | 99.52 101 | 99.26 115 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DeepC-MVS | | 95.41 4 | 97.82 67 | 97.70 60 | 98.16 76 | 98.78 108 | 95.72 82 | 96.23 144 | 99.02 49 | 93.92 204 | 98.62 51 | 98.99 39 | 97.69 23 | 99.62 144 | 96.18 78 | 99.87 24 | 99.15 133 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
3Dnovator+ | | 96.13 3 | 97.73 73 | 97.59 77 | 98.15 79 | 98.11 189 | 95.60 90 | 98.04 45 | 98.70 134 | 98.13 38 | 96.93 189 | 98.45 76 | 95.30 129 | 99.62 144 | 95.64 104 | 98.96 213 | 99.24 121 |
|
PM-MVS | | | 97.36 101 | 97.10 109 | 98.14 80 | 98.91 98 | 96.77 49 | 96.20 145 | 98.63 150 | 93.82 205 | 98.54 58 | 98.33 84 | 93.98 167 | 99.05 275 | 95.99 89 | 99.45 125 | 98.61 219 |
|
NCCC | | | 96.52 150 | 95.99 168 | 98.10 81 | 97.81 218 | 95.68 86 | 95.00 222 | 98.20 198 | 95.39 151 | 95.40 253 | 96.36 261 | 93.81 171 | 99.45 193 | 93.55 204 | 98.42 259 | 99.17 129 |
|
ETH3D cwj APD-0.16 | | | 96.23 161 | 95.61 183 | 98.09 82 | 97.91 205 | 95.65 89 | 94.94 224 | 98.74 122 | 91.31 261 | 96.02 233 | 97.08 215 | 94.05 166 | 99.69 113 | 91.51 236 | 98.94 217 | 98.93 176 |
|
SED-MVS | | | 97.94 51 | 97.90 44 | 98.07 83 | 99.22 57 | 95.35 103 | 96.79 115 | 98.83 101 | 96.11 111 | 99.08 31 | 98.24 99 | 97.87 20 | 99.72 82 | 95.44 117 | 99.51 106 | 99.14 136 |
|
Vis-MVSNet |  | | 98.27 29 | 98.34 28 | 98.07 83 | 99.33 43 | 95.21 113 | 98.04 45 | 99.46 6 | 97.32 73 | 97.82 140 | 99.11 31 | 96.75 68 | 99.86 20 | 97.84 25 | 99.36 152 | 99.15 133 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
AllTest | | | 97.20 110 | 96.92 122 | 98.06 85 | 99.08 84 | 96.16 68 | 97.14 99 | 99.16 17 | 94.35 189 | 97.78 141 | 98.07 119 | 95.84 102 | 99.12 265 | 91.41 237 | 99.42 137 | 98.91 181 |
|
TestCases | | | | | 98.06 85 | 99.08 84 | 96.16 68 | | 99.16 17 | 94.35 189 | 97.78 141 | 98.07 119 | 95.84 102 | 99.12 265 | 91.41 237 | 99.42 137 | 98.91 181 |
|
N_pmnet | | | 95.18 203 | 94.23 235 | 98.06 85 | 97.85 210 | 96.55 57 | 92.49 304 | 91.63 338 | 89.34 279 | 98.09 109 | 97.41 188 | 90.33 237 | 99.06 274 | 91.58 235 | 99.31 171 | 98.56 222 |
|
F-COLMAP | | | 95.30 199 | 94.38 232 | 98.05 88 | 98.64 123 | 96.04 73 | 95.61 182 | 98.66 144 | 89.00 283 | 93.22 313 | 96.40 258 | 92.90 190 | 99.35 226 | 87.45 312 | 97.53 296 | 98.77 203 |
|
CNVR-MVS | | | 96.92 122 | 96.55 141 | 98.03 89 | 98.00 199 | 95.54 92 | 94.87 227 | 98.17 204 | 94.60 180 | 96.38 215 | 97.05 218 | 95.67 115 | 99.36 223 | 95.12 141 | 99.08 202 | 99.19 126 |
|
TSAR-MVS + MP. | | | 97.42 95 | 97.23 102 | 98.00 90 | 99.38 38 | 95.00 117 | 97.63 69 | 98.20 198 | 93.00 232 | 98.16 99 | 98.06 124 | 95.89 100 | 99.72 82 | 95.67 100 | 99.10 200 | 99.28 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMH+ | | 93.58 10 | 98.23 32 | 98.31 29 | 97.98 91 | 99.39 37 | 95.22 111 | 97.55 74 | 99.20 13 | 98.21 36 | 99.25 25 | 98.51 72 | 98.21 11 | 99.40 210 | 94.79 154 | 99.72 48 | 99.32 96 |
|
v7n | | | 98.73 11 | 98.99 5 | 97.95 92 | 99.64 11 | 94.20 148 | 98.67 11 | 99.14 23 | 99.08 10 | 99.42 15 | 99.23 21 | 96.53 79 | 99.91 12 | 99.27 2 | 99.93 10 | 99.73 15 |
|
Anonymous20231211 | | | 98.55 17 | 98.76 13 | 97.94 93 | 98.79 106 | 94.37 140 | 98.84 8 | 99.15 21 | 99.37 3 | 99.67 6 | 99.43 11 | 95.61 117 | 99.72 82 | 98.12 16 | 99.86 25 | 99.73 15 |
|
Regformer-2 | | | 97.41 96 | 97.24 101 | 97.93 94 | 97.21 276 | 94.72 125 | 94.85 229 | 98.27 189 | 97.74 50 | 98.11 105 | 97.50 182 | 95.58 118 | 99.69 113 | 96.57 66 | 99.31 171 | 99.37 90 |
|
OMC-MVS | | | 96.48 152 | 96.00 167 | 97.91 95 | 98.30 160 | 96.01 76 | 94.86 228 | 98.60 152 | 91.88 252 | 97.18 168 | 97.21 208 | 96.11 95 | 99.04 276 | 90.49 269 | 99.34 160 | 98.69 211 |
|
GeoE | | | 97.75 72 | 97.70 60 | 97.89 96 | 98.88 100 | 94.53 133 | 97.10 101 | 98.98 63 | 95.75 137 | 97.62 143 | 97.59 174 | 97.61 27 | 99.77 52 | 96.34 74 | 99.44 126 | 99.36 91 |
|
xxxxxxxxxxxxxcwj | | | 97.24 108 | 97.03 116 | 97.89 96 | 98.48 147 | 94.71 126 | 94.53 241 | 99.07 37 | 95.02 167 | 97.83 138 | 97.88 146 | 96.44 86 | 99.72 82 | 94.59 164 | 99.39 146 | 99.25 119 |
|
train_agg | | | 95.46 192 | 94.66 215 | 97.88 98 | 97.84 214 | 95.23 108 | 93.62 277 | 98.39 176 | 87.04 302 | 93.78 292 | 95.99 277 | 94.58 151 | 99.52 174 | 91.76 232 | 98.90 221 | 98.89 185 |
|
pm-mvs1 | | | 98.47 21 | 98.67 17 | 97.86 99 | 99.52 21 | 94.58 132 | 98.28 29 | 99.00 57 | 97.57 60 | 99.27 24 | 99.22 22 | 98.32 9 | 99.50 179 | 97.09 53 | 99.75 43 | 99.50 43 |
|
ITE_SJBPF | | | | | 97.85 100 | 98.64 123 | 96.66 53 | | 98.51 161 | 95.63 140 | 97.22 164 | 97.30 203 | 95.52 119 | 98.55 324 | 90.97 247 | 98.90 221 | 98.34 240 |
|
CDPH-MVS | | | 95.45 193 | 94.65 216 | 97.84 101 | 98.28 163 | 94.96 118 | 93.73 275 | 98.33 185 | 85.03 324 | 95.44 251 | 96.60 246 | 95.31 128 | 99.44 196 | 90.01 275 | 99.13 194 | 99.11 148 |
|
DP-MVS | | | 97.87 61 | 97.89 46 | 97.81 102 | 98.62 128 | 94.82 122 | 97.13 100 | 98.79 111 | 98.98 17 | 98.74 47 | 98.49 73 | 95.80 111 | 99.49 180 | 95.04 144 | 99.44 126 | 99.11 148 |
|
hse-mvs2 | | | 95.77 179 | 95.09 195 | 97.79 103 | 97.84 214 | 95.51 94 | 95.66 176 | 95.43 306 | 96.58 92 | 97.21 166 | 96.16 269 | 84.14 291 | 99.54 168 | 95.89 94 | 96.92 308 | 98.32 241 |
|
MAR-MVS | | | 94.21 245 | 93.03 262 | 97.76 104 | 96.94 287 | 97.44 33 | 96.97 109 | 97.15 264 | 87.89 297 | 92.00 331 | 92.73 336 | 92.14 210 | 99.12 265 | 83.92 336 | 97.51 297 | 96.73 320 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
agg_prior1 | | | 95.39 195 | 94.60 221 | 97.75 105 | 97.80 222 | 94.96 118 | 93.39 285 | 98.36 180 | 87.20 300 | 93.49 305 | 95.97 280 | 94.65 148 | 99.53 170 | 91.69 234 | 98.86 227 | 98.77 203 |
|
AUN-MVS | | | 93.95 255 | 92.69 272 | 97.74 106 | 97.80 222 | 95.38 100 | 95.57 183 | 95.46 305 | 91.26 262 | 92.64 324 | 96.10 275 | 74.67 334 | 99.55 165 | 93.72 200 | 96.97 307 | 98.30 245 |
|
VDD-MVS | | | 97.37 99 | 97.25 99 | 97.74 106 | 98.69 121 | 94.50 136 | 97.04 105 | 95.61 301 | 98.59 25 | 98.51 60 | 98.72 56 | 92.54 202 | 99.58 154 | 96.02 86 | 99.49 112 | 99.12 144 |
|
Anonymous20240529 | | | 97.96 46 | 98.04 39 | 97.71 108 | 98.69 121 | 94.28 145 | 97.86 55 | 98.31 188 | 98.79 21 | 99.23 26 | 98.86 49 | 95.76 112 | 99.61 150 | 95.49 110 | 99.36 152 | 99.23 122 |
|
Regformer-4 | | | 97.53 88 | 97.47 88 | 97.71 108 | 97.35 265 | 93.91 156 | 95.26 203 | 98.14 208 | 97.97 42 | 98.34 78 | 97.89 144 | 95.49 120 | 99.71 96 | 97.41 40 | 99.42 137 | 99.51 42 |
|
VPA-MVSNet | | | 98.27 29 | 98.46 24 | 97.70 110 | 99.06 87 | 93.80 162 | 97.76 61 | 99.00 57 | 98.40 29 | 99.07 33 | 98.98 40 | 96.89 60 | 99.75 65 | 97.19 50 | 99.79 35 | 99.55 35 |
|
IS-MVSNet | | | 96.93 121 | 96.68 134 | 97.70 110 | 99.25 51 | 94.00 154 | 98.57 15 | 96.74 281 | 98.36 30 | 98.14 103 | 97.98 133 | 88.23 263 | 99.71 96 | 93.10 213 | 99.72 48 | 99.38 85 |
|
CSCG | | | 97.40 97 | 97.30 95 | 97.69 112 | 98.95 95 | 94.83 121 | 97.28 91 | 98.99 60 | 96.35 103 | 98.13 104 | 95.95 282 | 95.99 98 | 99.66 130 | 94.36 175 | 99.73 45 | 98.59 220 |
|
HQP_MVS | | | 96.66 145 | 96.33 154 | 97.68 113 | 98.70 119 | 94.29 142 | 96.50 128 | 98.75 120 | 96.36 101 | 96.16 228 | 96.77 236 | 91.91 220 | 99.46 189 | 92.59 219 | 99.20 183 | 99.28 110 |
|
EPP-MVSNet | | | 96.84 127 | 96.58 138 | 97.65 114 | 99.18 68 | 93.78 164 | 98.68 10 | 96.34 285 | 97.91 44 | 97.30 162 | 98.06 124 | 88.46 260 | 99.85 22 | 93.85 195 | 99.40 145 | 99.32 96 |
|
OPU-MVS | | | | | 97.64 115 | 98.01 195 | 95.27 106 | 96.79 115 | | | | 97.35 198 | 96.97 54 | 98.51 327 | 91.21 243 | 99.25 180 | 99.14 136 |
|
MVS_111021_LR | | | 96.82 131 | 96.55 141 | 97.62 116 | 98.27 165 | 95.34 105 | 93.81 273 | 98.33 185 | 94.59 182 | 96.56 207 | 96.63 245 | 96.61 74 | 98.73 306 | 94.80 153 | 99.34 160 | 98.78 200 |
|
Regformer-1 | | | 97.27 105 | 97.16 106 | 97.61 117 | 97.21 276 | 93.86 159 | 94.85 229 | 98.04 222 | 97.62 59 | 98.03 117 | 97.50 182 | 95.34 126 | 99.63 136 | 96.52 67 | 99.31 171 | 99.35 93 |
|
UGNet | | | 96.81 132 | 96.56 140 | 97.58 118 | 96.64 292 | 93.84 161 | 97.75 62 | 97.12 266 | 96.47 99 | 93.62 300 | 98.88 47 | 93.22 183 | 99.53 170 | 95.61 106 | 99.69 55 | 99.36 91 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
FC-MVSNet-test | | | 98.16 33 | 98.37 27 | 97.56 119 | 99.49 26 | 93.10 183 | 98.35 26 | 99.21 11 | 98.43 28 | 98.89 39 | 98.83 50 | 94.30 159 | 99.81 31 | 97.87 24 | 99.91 17 | 99.77 8 |
|
MCST-MVS | | | 96.24 160 | 95.80 175 | 97.56 119 | 98.75 111 | 94.13 150 | 94.66 236 | 98.17 204 | 90.17 273 | 96.21 226 | 96.10 275 | 95.14 132 | 99.43 198 | 94.13 183 | 98.85 229 | 99.13 139 |
|
GBi-Net | | | 96.99 115 | 96.80 128 | 97.56 119 | 97.96 201 | 93.67 167 | 98.23 32 | 98.66 144 | 95.59 143 | 97.99 119 | 99.19 24 | 89.51 252 | 99.73 78 | 94.60 161 | 99.44 126 | 99.30 102 |
|
test1 | | | 96.99 115 | 96.80 128 | 97.56 119 | 97.96 201 | 93.67 167 | 98.23 32 | 98.66 144 | 95.59 143 | 97.99 119 | 99.19 24 | 89.51 252 | 99.73 78 | 94.60 161 | 99.44 126 | 99.30 102 |
|
FMVSNet1 | | | 97.95 49 | 98.08 35 | 97.56 119 | 99.14 80 | 93.67 167 | 98.23 32 | 98.66 144 | 97.41 70 | 99.00 36 | 99.19 24 | 95.47 122 | 99.73 78 | 95.83 96 | 99.76 39 | 99.30 102 |
|
TransMVSNet (Re) | | | 98.38 25 | 98.67 17 | 97.51 124 | 99.51 22 | 93.39 177 | 98.20 37 | 98.87 83 | 98.23 35 | 99.48 12 | 99.27 19 | 98.47 8 | 99.55 165 | 96.52 67 | 99.53 96 | 99.60 26 |
|
PLC |  | 91.02 16 | 94.05 252 | 92.90 264 | 97.51 124 | 98.00 199 | 95.12 115 | 94.25 249 | 98.25 192 | 86.17 308 | 91.48 334 | 95.25 298 | 91.01 228 | 99.19 255 | 85.02 331 | 96.69 316 | 98.22 253 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ACMH | | 93.61 9 | 98.44 22 | 98.76 13 | 97.51 124 | 99.43 32 | 93.54 173 | 98.23 32 | 99.05 40 | 97.40 71 | 99.37 18 | 99.08 34 | 98.79 5 | 99.47 186 | 97.74 31 | 99.71 51 | 99.50 43 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
alignmvs | | | 96.01 171 | 95.52 185 | 97.50 127 | 97.77 233 | 94.71 126 | 96.07 151 | 96.84 275 | 97.48 65 | 96.78 198 | 94.28 319 | 85.50 283 | 99.40 210 | 96.22 76 | 98.73 242 | 98.40 231 |
|
Baseline_NR-MVSNet | | | 97.72 74 | 97.79 53 | 97.50 127 | 99.56 15 | 93.29 178 | 95.44 186 | 98.86 85 | 98.20 37 | 98.37 73 | 99.24 20 | 94.69 144 | 99.55 165 | 95.98 90 | 99.79 35 | 99.65 23 |
|
3Dnovator | | 96.53 2 | 97.61 81 | 97.64 70 | 97.50 127 | 97.74 236 | 93.65 171 | 98.49 20 | 98.88 81 | 96.86 84 | 97.11 173 | 98.55 69 | 95.82 105 | 99.73 78 | 95.94 91 | 99.42 137 | 99.13 139 |
|
TSAR-MVS + GP. | | | 96.47 153 | 96.12 161 | 97.49 130 | 97.74 236 | 95.23 108 | 94.15 256 | 96.90 274 | 93.26 220 | 98.04 116 | 96.70 241 | 94.41 156 | 98.89 292 | 94.77 157 | 99.14 190 | 98.37 234 |
|
FIs | | | 97.93 54 | 98.07 36 | 97.48 131 | 99.38 38 | 92.95 186 | 98.03 47 | 99.11 26 | 98.04 41 | 98.62 51 | 98.66 61 | 93.75 173 | 99.78 42 | 97.23 44 | 99.84 28 | 99.73 15 |
|
ETH3 D test6400 | | | 94.77 220 | 93.87 249 | 97.47 132 | 98.12 188 | 93.73 165 | 94.56 240 | 98.70 134 | 85.45 319 | 94.70 269 | 95.93 284 | 91.77 222 | 99.63 136 | 86.45 318 | 99.14 190 | 99.05 159 |
|
test_part1 | | | 96.77 135 | 96.53 144 | 97.47 132 | 98.04 191 | 92.92 187 | 97.93 50 | 98.85 89 | 98.83 20 | 99.30 21 | 99.07 35 | 79.25 310 | 99.79 38 | 97.59 34 | 99.93 10 | 99.69 20 |
|
test_0402 | | | 97.84 64 | 97.97 41 | 97.47 132 | 99.19 67 | 94.07 151 | 96.71 123 | 98.73 124 | 98.66 24 | 98.56 57 | 98.41 78 | 96.84 65 | 99.69 113 | 94.82 152 | 99.81 30 | 98.64 214 |
|
test_prior3 | | | 95.91 174 | 95.39 187 | 97.46 135 | 97.79 228 | 94.26 146 | 93.33 288 | 98.42 171 | 94.21 194 | 94.02 287 | 96.25 265 | 93.64 175 | 99.34 228 | 91.90 226 | 98.96 213 | 98.79 198 |
|
test_prior | | | | | 97.46 135 | 97.79 228 | 94.26 146 | | 98.42 171 | | | | | 99.34 228 | | | 98.79 198 |
|
test12 | | | | | 97.46 135 | 97.61 247 | 94.07 151 | | 97.78 235 | | 93.57 303 | | 93.31 181 | 99.42 199 | | 98.78 235 | 98.89 185 |
|
DeepC-MVS_fast | | 94.34 7 | 96.74 136 | 96.51 147 | 97.44 138 | 97.69 239 | 94.15 149 | 96.02 155 | 98.43 168 | 93.17 227 | 97.30 162 | 97.38 195 | 95.48 121 | 99.28 244 | 93.74 198 | 99.34 160 | 98.88 189 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Anonymous202405211 | | | 96.34 157 | 95.98 169 | 97.43 139 | 98.25 168 | 93.85 160 | 96.74 118 | 94.41 314 | 97.72 53 | 98.37 73 | 98.03 127 | 87.15 274 | 99.53 170 | 94.06 185 | 99.07 204 | 98.92 180 |
|
pmmvs-eth3d | | | 96.49 151 | 96.18 159 | 97.42 140 | 98.25 168 | 94.29 142 | 94.77 233 | 98.07 219 | 89.81 276 | 97.97 123 | 98.33 84 | 93.11 184 | 99.08 272 | 95.46 116 | 99.84 28 | 98.89 185 |
|
VDDNet | | | 96.98 118 | 96.84 125 | 97.41 141 | 99.40 36 | 93.26 179 | 97.94 49 | 95.31 307 | 99.26 7 | 98.39 72 | 99.18 27 | 87.85 270 | 99.62 144 | 95.13 140 | 99.09 201 | 99.35 93 |
|
EG-PatchMatch MVS | | | 97.69 76 | 97.79 53 | 97.40 142 | 99.06 87 | 93.52 174 | 95.96 160 | 98.97 67 | 94.55 184 | 98.82 42 | 98.76 54 | 97.31 36 | 99.29 242 | 97.20 49 | 99.44 126 | 99.38 85 |
|
Fast-Effi-MVS+-dtu | | | 96.44 154 | 96.12 161 | 97.39 143 | 97.18 278 | 94.39 138 | 95.46 185 | 98.73 124 | 96.03 118 | 94.72 267 | 94.92 306 | 96.28 94 | 99.69 113 | 93.81 196 | 97.98 274 | 98.09 259 |
|
RRT_MVS | | | 94.90 214 | 94.07 241 | 97.39 143 | 93.18 351 | 93.21 181 | 95.26 203 | 97.49 253 | 93.94 203 | 98.25 90 | 97.85 149 | 72.96 345 | 99.84 25 | 97.90 22 | 99.78 38 | 99.14 136 |
|
LF4IMVS | | | 96.07 167 | 95.63 181 | 97.36 145 | 98.19 174 | 95.55 91 | 95.44 186 | 98.82 109 | 92.29 246 | 95.70 247 | 96.55 248 | 92.63 198 | 98.69 310 | 91.75 233 | 99.33 167 | 97.85 279 |
|
Gipuma |  | | 98.07 40 | 98.31 29 | 97.36 145 | 99.76 5 | 96.28 66 | 98.51 19 | 99.10 28 | 98.76 22 | 96.79 194 | 99.34 17 | 96.61 74 | 98.82 297 | 96.38 72 | 99.50 108 | 96.98 306 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
LCM-MVSNet-Re | | | 97.33 102 | 97.33 94 | 97.32 147 | 98.13 187 | 93.79 163 | 96.99 108 | 99.65 2 | 96.74 87 | 99.47 13 | 98.93 44 | 96.91 59 | 99.84 25 | 90.11 273 | 99.06 207 | 98.32 241 |
|
canonicalmvs | | | 97.23 109 | 97.21 104 | 97.30 148 | 97.65 244 | 94.39 138 | 97.84 56 | 99.05 40 | 97.42 67 | 96.68 201 | 93.85 322 | 97.63 26 | 99.33 231 | 96.29 75 | 98.47 258 | 98.18 257 |
|
1121 | | | 94.26 241 | 93.26 258 | 97.27 149 | 98.26 167 | 94.73 124 | 95.86 165 | 97.71 239 | 77.96 353 | 94.53 273 | 96.71 240 | 91.93 218 | 99.40 210 | 87.71 304 | 98.64 249 | 97.69 287 |
|
MVS_111021_HR | | | 96.73 138 | 96.54 143 | 97.27 149 | 98.35 158 | 93.66 170 | 93.42 283 | 98.36 180 | 94.74 175 | 96.58 205 | 96.76 238 | 96.54 78 | 98.99 282 | 94.87 150 | 99.27 178 | 99.15 133 |
|
SixPastTwentyTwo | | | 97.49 90 | 97.57 79 | 97.26 151 | 99.56 15 | 92.33 197 | 98.28 29 | 96.97 272 | 98.30 33 | 99.45 14 | 99.35 16 | 88.43 261 | 99.89 16 | 98.01 20 | 99.76 39 | 99.54 36 |
|
DIV-MVS_2432*1600 | | | 97.86 63 | 98.07 36 | 97.25 152 | 99.22 57 | 92.81 189 | 97.55 74 | 98.94 71 | 97.10 78 | 98.85 40 | 98.88 47 | 95.03 136 | 99.67 124 | 97.39 42 | 99.65 61 | 99.26 115 |
|
æ–°å‡ ä½•1 | | | | | 97.25 152 | 98.29 161 | 94.70 129 | | 97.73 237 | 77.98 352 | 94.83 266 | 96.67 243 | 92.08 213 | 99.45 193 | 88.17 302 | 98.65 248 | 97.61 290 |
|
WR-MVS | | | 96.90 124 | 96.81 127 | 97.16 154 | 98.56 136 | 92.20 203 | 94.33 245 | 98.12 211 | 97.34 72 | 98.20 94 | 97.33 200 | 92.81 191 | 99.75 65 | 94.79 154 | 99.81 30 | 99.54 36 |
|
TAMVS | | | 95.49 188 | 94.94 201 | 97.16 154 | 98.31 159 | 93.41 176 | 95.07 216 | 96.82 277 | 91.09 264 | 97.51 148 | 97.82 154 | 89.96 244 | 99.42 199 | 88.42 298 | 99.44 126 | 98.64 214 |
|
CDS-MVSNet | | | 94.88 216 | 94.12 240 | 97.14 156 | 97.64 245 | 93.57 172 | 93.96 267 | 97.06 269 | 90.05 274 | 96.30 221 | 96.55 248 | 86.10 279 | 99.47 186 | 90.10 274 | 99.31 171 | 98.40 231 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
EI-MVSNet-Vis-set | | | 97.32 103 | 97.39 90 | 97.11 157 | 97.36 264 | 92.08 207 | 95.34 196 | 97.65 245 | 97.74 50 | 98.29 88 | 98.11 115 | 95.05 133 | 99.68 119 | 97.50 38 | 99.50 108 | 99.56 33 |
|
Regformer-3 | | | 97.25 107 | 97.29 96 | 97.11 157 | 97.35 265 | 92.32 198 | 95.26 203 | 97.62 250 | 97.67 58 | 98.17 98 | 97.89 144 | 95.05 133 | 99.56 161 | 97.16 51 | 99.42 137 | 99.46 61 |
|
EI-MVSNet-UG-set | | | 97.32 103 | 97.40 89 | 97.09 159 | 97.34 269 | 92.01 209 | 95.33 197 | 97.65 245 | 97.74 50 | 98.30 87 | 98.14 110 | 95.04 135 | 99.69 113 | 97.55 36 | 99.52 101 | 99.58 28 |
|
XXY-MVS | | | 97.54 86 | 97.70 60 | 97.07 160 | 99.46 28 | 92.21 201 | 97.22 95 | 99.00 57 | 94.93 171 | 98.58 56 | 98.92 45 | 97.31 36 | 99.41 208 | 94.44 167 | 99.43 134 | 99.59 27 |
|
lessismore_v0 | | | | | 97.05 161 | 99.36 40 | 92.12 205 | | 84.07 362 | | 98.77 46 | 98.98 40 | 85.36 284 | 99.74 72 | 97.34 43 | 99.37 149 | 99.30 102 |
|
TAPA-MVS | | 93.32 12 | 94.93 213 | 94.23 235 | 97.04 162 | 98.18 177 | 94.51 134 | 95.22 207 | 98.73 124 | 81.22 341 | 96.25 224 | 95.95 282 | 93.80 172 | 98.98 284 | 89.89 277 | 98.87 225 | 97.62 289 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
EPNet | | | 93.72 258 | 92.62 275 | 97.03 163 | 87.61 366 | 92.25 199 | 96.27 139 | 91.28 341 | 96.74 87 | 87.65 354 | 97.39 193 | 85.00 286 | 99.64 134 | 92.14 223 | 99.48 116 | 99.20 125 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PatchMatch-RL | | | 94.61 232 | 93.81 250 | 97.02 164 | 98.19 174 | 95.72 82 | 93.66 276 | 97.23 260 | 88.17 293 | 94.94 263 | 95.62 292 | 91.43 224 | 98.57 321 | 87.36 313 | 97.68 289 | 96.76 319 |
|
K. test v3 | | | 96.44 154 | 96.28 155 | 96.95 165 | 99.41 35 | 91.53 217 | 97.65 67 | 90.31 350 | 98.89 18 | 98.93 38 | 99.36 14 | 84.57 290 | 99.92 4 | 97.81 26 | 99.56 84 | 99.39 83 |
|
tfpnnormal | | | 97.72 74 | 97.97 41 | 96.94 166 | 99.26 48 | 92.23 200 | 97.83 57 | 98.45 165 | 98.25 34 | 99.13 30 | 98.66 61 | 96.65 71 | 99.69 113 | 93.92 193 | 99.62 65 | 98.91 181 |
|
MVP-Stereo | | | 95.69 180 | 95.28 189 | 96.92 167 | 98.15 183 | 93.03 184 | 95.64 181 | 98.20 198 | 90.39 270 | 96.63 204 | 97.73 163 | 91.63 223 | 99.10 270 | 91.84 230 | 97.31 304 | 98.63 216 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
HQP-MVS | | | 95.17 205 | 94.58 224 | 96.92 167 | 97.85 210 | 92.47 195 | 94.26 246 | 98.43 168 | 93.18 224 | 92.86 318 | 95.08 300 | 90.33 237 | 99.23 252 | 90.51 267 | 98.74 239 | 99.05 159 |
|
HyFIR lowres test | | | 93.72 258 | 92.65 273 | 96.91 169 | 98.93 96 | 91.81 214 | 91.23 327 | 98.52 159 | 82.69 334 | 96.46 212 | 96.52 252 | 80.38 307 | 99.90 13 | 90.36 271 | 98.79 234 | 99.03 161 |
|
VNet | | | 96.84 127 | 96.83 126 | 96.88 170 | 98.06 190 | 92.02 208 | 96.35 136 | 97.57 252 | 97.70 55 | 97.88 132 | 97.80 156 | 92.40 206 | 99.54 168 | 94.73 159 | 98.96 213 | 99.08 153 |
|
FMVSNet2 | | | 96.72 139 | 96.67 135 | 96.87 171 | 97.96 201 | 91.88 211 | 97.15 97 | 98.06 220 | 95.59 143 | 98.50 62 | 98.62 64 | 89.51 252 | 99.65 131 | 94.99 148 | 99.60 74 | 99.07 155 |
|
EIA-MVS | | | 96.04 169 | 95.77 177 | 96.85 172 | 97.80 222 | 92.98 185 | 96.12 149 | 99.16 17 | 94.65 178 | 93.77 294 | 91.69 347 | 95.68 114 | 99.67 124 | 94.18 180 | 98.85 229 | 97.91 277 |
|
MVS_0304 | | | 95.50 187 | 95.05 199 | 96.84 173 | 96.28 301 | 93.12 182 | 97.00 107 | 96.16 287 | 95.03 166 | 89.22 348 | 97.70 166 | 90.16 243 | 99.48 183 | 94.51 166 | 99.34 160 | 97.93 276 |
|
ETV-MVS | | | 96.13 166 | 95.90 173 | 96.82 174 | 97.76 234 | 93.89 157 | 95.40 191 | 98.95 70 | 95.87 129 | 95.58 250 | 91.00 353 | 96.36 91 | 99.72 82 | 93.36 205 | 98.83 231 | 96.85 313 |
|
DP-MVS Recon | | | 95.55 186 | 95.13 193 | 96.80 175 | 98.51 141 | 93.99 155 | 94.60 238 | 98.69 137 | 90.20 272 | 95.78 243 | 96.21 268 | 92.73 194 | 98.98 284 | 90.58 264 | 98.86 227 | 97.42 296 |
|
QAPM | | | 95.88 176 | 95.57 184 | 96.80 175 | 97.90 207 | 91.84 213 | 98.18 39 | 98.73 124 | 88.41 289 | 96.42 213 | 98.13 111 | 94.73 142 | 99.75 65 | 88.72 293 | 98.94 217 | 98.81 196 |
|
CMPMVS |  | 73.10 23 | 92.74 277 | 91.39 289 | 96.77 177 | 93.57 350 | 94.67 130 | 94.21 253 | 97.67 241 | 80.36 345 | 93.61 301 | 96.60 246 | 82.85 297 | 97.35 351 | 84.86 332 | 98.78 235 | 98.29 248 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
Fast-Effi-MVS+ | | | 95.49 188 | 95.07 196 | 96.75 178 | 97.67 243 | 92.82 188 | 94.22 252 | 98.60 152 | 91.61 255 | 93.42 310 | 92.90 332 | 96.73 69 | 99.70 105 | 92.60 217 | 97.89 279 | 97.74 284 |
|
CNLPA | | | 95.04 209 | 94.47 228 | 96.75 178 | 97.81 218 | 95.25 107 | 94.12 260 | 97.89 227 | 94.41 186 | 94.57 271 | 95.69 288 | 90.30 240 | 98.35 337 | 86.72 317 | 98.76 237 | 96.64 322 |
|
Effi-MVS+ | | | 96.19 163 | 96.01 166 | 96.71 180 | 97.43 261 | 92.19 204 | 96.12 149 | 99.10 28 | 95.45 148 | 93.33 312 | 94.71 309 | 97.23 43 | 99.56 161 | 93.21 211 | 97.54 295 | 98.37 234 |
|
pmmvs4 | | | 94.82 218 | 94.19 238 | 96.70 181 | 97.42 262 | 92.75 191 | 92.09 313 | 96.76 279 | 86.80 305 | 95.73 246 | 97.22 207 | 89.28 255 | 98.89 292 | 93.28 208 | 99.14 190 | 98.46 230 |
|
CLD-MVS | | | 95.47 191 | 95.07 196 | 96.69 182 | 98.27 165 | 92.53 194 | 91.36 321 | 98.67 142 | 91.22 263 | 95.78 243 | 94.12 320 | 95.65 116 | 98.98 284 | 90.81 252 | 99.72 48 | 98.57 221 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
V42 | | | 97.04 113 | 97.16 106 | 96.68 183 | 98.59 133 | 91.05 222 | 96.33 137 | 98.36 180 | 94.60 180 | 97.99 119 | 98.30 90 | 93.32 180 | 99.62 144 | 97.40 41 | 99.53 96 | 99.38 85 |
|
LFMVS | | | 95.32 198 | 94.88 206 | 96.62 184 | 98.03 192 | 91.47 219 | 97.65 67 | 90.72 347 | 99.11 9 | 97.89 131 | 98.31 86 | 79.20 311 | 99.48 183 | 93.91 194 | 99.12 197 | 98.93 176 |
|
ab-mvs | | | 96.59 147 | 96.59 137 | 96.60 185 | 98.64 123 | 92.21 201 | 98.35 26 | 97.67 241 | 94.45 185 | 96.99 184 | 98.79 51 | 94.96 139 | 99.49 180 | 90.39 270 | 99.07 204 | 98.08 260 |
|
CS-MVS | | | 96.95 120 | 97.07 112 | 96.59 186 | 97.86 209 | 92.74 192 | 97.38 87 | 99.52 5 | 95.98 121 | 94.89 265 | 95.89 285 | 96.05 97 | 99.76 57 | 96.65 61 | 99.42 137 | 97.26 300 |
|
VPNet | | | 97.26 106 | 97.49 86 | 96.59 186 | 99.47 27 | 90.58 232 | 96.27 139 | 98.53 158 | 97.77 46 | 98.46 66 | 98.41 78 | 94.59 150 | 99.68 119 | 94.61 160 | 99.29 175 | 99.52 40 |
|
原ACMM1 | | | | | 96.58 188 | 98.16 181 | 92.12 205 | | 98.15 207 | 85.90 312 | 93.49 305 | 96.43 255 | 92.47 205 | 99.38 218 | 87.66 307 | 98.62 250 | 98.23 252 |
|
AdaColmap |  | | 95.11 206 | 94.62 220 | 96.58 188 | 97.33 271 | 94.45 137 | 94.92 225 | 98.08 215 | 93.15 228 | 93.98 290 | 95.53 295 | 94.34 158 | 99.10 270 | 85.69 323 | 98.61 251 | 96.20 330 |
|
PCF-MVS | | 89.43 18 | 92.12 289 | 90.64 303 | 96.57 190 | 97.80 222 | 93.48 175 | 89.88 345 | 98.45 165 | 74.46 358 | 96.04 232 | 95.68 289 | 90.71 233 | 99.31 235 | 73.73 356 | 99.01 211 | 96.91 310 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
ambc | | | | | 96.56 191 | 98.23 171 | 91.68 216 | 97.88 54 | 98.13 210 | | 98.42 69 | 98.56 68 | 94.22 162 | 99.04 276 | 94.05 188 | 99.35 157 | 98.95 170 |
|
casdiffmvs | | | 97.50 89 | 97.81 52 | 96.56 191 | 98.51 141 | 91.04 223 | 95.83 168 | 99.09 33 | 97.23 76 | 98.33 82 | 98.30 90 | 97.03 52 | 99.37 221 | 96.58 65 | 99.38 148 | 99.28 110 |
|
FMVSNet5 | | | 93.39 267 | 92.35 278 | 96.50 193 | 95.83 317 | 90.81 229 | 97.31 89 | 98.27 189 | 92.74 240 | 96.27 222 | 98.28 93 | 62.23 361 | 99.67 124 | 90.86 250 | 99.36 152 | 99.03 161 |
|
CANet | | | 95.86 177 | 95.65 180 | 96.49 194 | 96.41 298 | 90.82 227 | 94.36 244 | 98.41 173 | 94.94 169 | 92.62 326 | 96.73 239 | 92.68 195 | 99.71 96 | 95.12 141 | 99.60 74 | 98.94 172 |
|
test20.03 | | | 96.58 148 | 96.61 136 | 96.48 195 | 98.49 145 | 91.72 215 | 95.68 175 | 97.69 240 | 96.81 85 | 98.27 89 | 97.92 142 | 94.18 163 | 98.71 308 | 90.78 254 | 99.66 60 | 99.00 164 |
|
UnsupCasMVSNet_eth | | | 95.91 174 | 95.73 178 | 96.44 196 | 98.48 147 | 91.52 218 | 95.31 199 | 98.45 165 | 95.76 135 | 97.48 154 | 97.54 177 | 89.53 251 | 98.69 310 | 94.43 168 | 94.61 340 | 99.13 139 |
|
baseline | | | 97.44 94 | 97.78 56 | 96.43 197 | 98.52 140 | 90.75 230 | 96.84 112 | 99.03 47 | 96.51 95 | 97.86 136 | 98.02 128 | 96.67 70 | 99.36 223 | 97.09 53 | 99.47 118 | 99.19 126 |
|
DPM-MVS | | | 93.68 260 | 92.77 271 | 96.42 198 | 97.91 205 | 92.54 193 | 91.17 328 | 97.47 256 | 84.99 325 | 93.08 315 | 94.74 308 | 89.90 245 | 99.00 280 | 87.54 310 | 98.09 271 | 97.72 285 |
|
PVSNet_Blended_VisFu | | | 95.95 173 | 95.80 175 | 96.42 198 | 99.28 47 | 90.62 231 | 95.31 199 | 99.08 34 | 88.40 290 | 96.97 187 | 98.17 109 | 92.11 211 | 99.78 42 | 93.64 202 | 99.21 182 | 98.86 192 |
|
ANet_high | | | 98.31 28 | 98.94 6 | 96.41 200 | 99.33 43 | 89.64 243 | 97.92 52 | 99.56 4 | 99.27 6 | 99.66 8 | 99.50 6 | 97.67 25 | 99.83 28 | 97.55 36 | 99.98 2 | 99.77 8 |
|
SD-MVS | | | 97.37 99 | 97.70 60 | 96.35 201 | 98.14 184 | 95.13 114 | 96.54 127 | 98.92 73 | 95.94 124 | 99.19 28 | 98.08 117 | 97.74 22 | 95.06 358 | 95.24 129 | 99.54 93 | 98.87 191 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
Patchmtry | | | 95.03 211 | 94.59 223 | 96.33 202 | 94.83 334 | 90.82 227 | 96.38 134 | 97.20 261 | 96.59 91 | 97.49 151 | 98.57 66 | 77.67 318 | 99.38 218 | 92.95 216 | 99.62 65 | 98.80 197 |
|
OpenMVS |  | 94.22 8 | 95.48 190 | 95.20 190 | 96.32 203 | 97.16 279 | 91.96 210 | 97.74 63 | 98.84 94 | 87.26 299 | 94.36 278 | 98.01 130 | 93.95 168 | 99.67 124 | 90.70 260 | 98.75 238 | 97.35 299 |
|
v10 | | | 97.55 85 | 97.97 41 | 96.31 204 | 98.60 131 | 89.64 243 | 97.44 82 | 99.02 49 | 96.60 90 | 98.72 49 | 99.16 29 | 93.48 178 | 99.72 82 | 98.76 6 | 99.92 14 | 99.58 28 |
|
PMMVS | | | 92.39 282 | 91.08 294 | 96.30 205 | 93.12 354 | 92.81 189 | 90.58 336 | 95.96 293 | 79.17 349 | 91.85 333 | 92.27 340 | 90.29 241 | 98.66 315 | 89.85 278 | 96.68 317 | 97.43 295 |
|
bset_n11_16_dypcd | | | 94.53 236 | 93.95 247 | 96.25 206 | 97.56 250 | 89.85 240 | 88.52 351 | 91.32 340 | 94.90 172 | 97.51 148 | 96.38 260 | 82.34 299 | 99.78 42 | 97.22 45 | 99.80 33 | 99.12 144 |
|
v8 | | | 97.60 82 | 98.06 38 | 96.23 207 | 98.71 117 | 89.44 247 | 97.43 84 | 98.82 109 | 97.29 75 | 98.74 47 | 99.10 32 | 93.86 169 | 99.68 119 | 98.61 10 | 99.94 8 | 99.56 33 |
|
1112_ss | | | 94.12 248 | 93.42 255 | 96.23 207 | 98.59 133 | 90.85 226 | 94.24 250 | 98.85 89 | 85.49 316 | 92.97 316 | 94.94 304 | 86.01 280 | 99.64 134 | 91.78 231 | 97.92 276 | 98.20 255 |
|
FMVSNet3 | | | 95.26 201 | 94.94 201 | 96.22 209 | 96.53 295 | 90.06 236 | 95.99 157 | 97.66 243 | 94.11 198 | 97.99 119 | 97.91 143 | 80.22 308 | 99.63 136 | 94.60 161 | 99.44 126 | 98.96 169 |
|
114514_t | | | 93.96 253 | 93.22 260 | 96.19 210 | 99.06 87 | 90.97 225 | 95.99 157 | 98.94 71 | 73.88 359 | 93.43 309 | 96.93 225 | 92.38 207 | 99.37 221 | 89.09 288 | 99.28 176 | 98.25 251 |
|
CHOSEN 1792x2688 | | | 94.10 249 | 93.41 256 | 96.18 211 | 99.16 69 | 90.04 237 | 92.15 310 | 98.68 139 | 79.90 346 | 96.22 225 | 97.83 151 | 87.92 269 | 99.42 199 | 89.18 287 | 99.65 61 | 99.08 153 |
|
v1192 | | | 96.83 130 | 97.06 114 | 96.15 212 | 98.28 163 | 89.29 249 | 95.36 194 | 98.77 116 | 93.73 207 | 98.11 105 | 98.34 83 | 93.02 189 | 99.67 124 | 98.35 14 | 99.58 78 | 99.50 43 |
|
v1144 | | | 96.84 127 | 97.08 111 | 96.13 213 | 98.42 153 | 89.28 250 | 95.41 190 | 98.67 142 | 94.21 194 | 97.97 123 | 98.31 86 | 93.06 185 | 99.65 131 | 98.06 19 | 99.62 65 | 99.45 66 |
|
UnsupCasMVSNet_bld | | | 94.72 225 | 94.26 234 | 96.08 214 | 98.62 128 | 90.54 235 | 93.38 286 | 98.05 221 | 90.30 271 | 97.02 182 | 96.80 235 | 89.54 249 | 99.16 261 | 88.44 297 | 96.18 324 | 98.56 222 |
|
v144192 | | | 96.69 142 | 96.90 124 | 96.03 215 | 98.25 168 | 88.92 254 | 95.49 184 | 98.77 116 | 93.05 230 | 98.09 109 | 98.29 92 | 92.51 204 | 99.70 105 | 98.11 17 | 99.56 84 | 99.47 59 |
|
v1921920 | | | 96.72 139 | 96.96 120 | 95.99 216 | 98.21 172 | 88.79 259 | 95.42 188 | 98.79 111 | 93.22 222 | 98.19 97 | 98.26 98 | 92.68 195 | 99.70 105 | 98.34 15 | 99.55 90 | 99.49 51 |
|
DELS-MVS | | | 96.17 164 | 96.23 156 | 95.99 216 | 97.55 252 | 90.04 237 | 92.38 308 | 98.52 159 | 94.13 197 | 96.55 209 | 97.06 217 | 94.99 138 | 99.58 154 | 95.62 105 | 99.28 176 | 98.37 234 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet_DTU | | | 94.65 230 | 94.21 237 | 95.96 218 | 95.90 314 | 89.68 242 | 93.92 268 | 97.83 233 | 93.19 223 | 90.12 343 | 95.64 291 | 88.52 259 | 99.57 160 | 93.27 209 | 99.47 118 | 98.62 217 |
|
PAPM_NR | | | 94.61 232 | 94.17 239 | 95.96 218 | 98.36 157 | 91.23 220 | 95.93 163 | 97.95 223 | 92.98 233 | 93.42 310 | 94.43 316 | 90.53 234 | 98.38 334 | 87.60 308 | 96.29 323 | 98.27 249 |
|
v2v482 | | | 96.78 134 | 97.06 114 | 95.95 220 | 98.57 135 | 88.77 260 | 95.36 194 | 98.26 191 | 95.18 159 | 97.85 137 | 98.23 101 | 92.58 199 | 99.63 136 | 97.80 27 | 99.69 55 | 99.45 66 |
|
PMVS |  | 89.60 17 | 96.71 141 | 96.97 118 | 95.95 220 | 99.51 22 | 97.81 16 | 97.42 85 | 97.49 253 | 97.93 43 | 95.95 235 | 98.58 65 | 96.88 62 | 96.91 353 | 89.59 281 | 99.36 152 | 93.12 352 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MSDG | | | 95.33 197 | 95.13 193 | 95.94 222 | 97.40 263 | 91.85 212 | 91.02 332 | 98.37 179 | 95.30 154 | 96.31 220 | 95.99 277 | 94.51 154 | 98.38 334 | 89.59 281 | 97.65 292 | 97.60 291 |
|
v1240 | | | 96.74 136 | 97.02 117 | 95.91 223 | 98.18 177 | 88.52 262 | 95.39 192 | 98.88 81 | 93.15 228 | 98.46 66 | 98.40 80 | 92.80 192 | 99.71 96 | 98.45 13 | 99.49 112 | 99.49 51 |
|
Anonymous20231206 | | | 95.27 200 | 95.06 198 | 95.88 224 | 98.72 114 | 89.37 248 | 95.70 172 | 97.85 229 | 88.00 295 | 96.98 186 | 97.62 172 | 91.95 216 | 99.34 228 | 89.21 286 | 99.53 96 | 98.94 172 |
|
Vis-MVSNet (Re-imp) | | | 95.11 206 | 94.85 207 | 95.87 225 | 99.12 81 | 89.17 251 | 97.54 79 | 94.92 309 | 96.50 96 | 96.58 205 | 97.27 204 | 83.64 295 | 99.48 183 | 88.42 298 | 99.67 58 | 98.97 168 |
|
CL-MVSNet_2432*1600 | | | 95.04 209 | 94.79 212 | 95.82 226 | 97.51 254 | 89.79 241 | 91.14 329 | 96.82 277 | 93.05 230 | 96.72 199 | 96.40 258 | 90.82 231 | 99.16 261 | 91.95 225 | 98.66 246 | 98.50 226 |
|
IterMVS-LS | | | 96.92 122 | 97.29 96 | 95.79 227 | 98.51 141 | 88.13 272 | 95.10 211 | 98.66 144 | 96.99 79 | 98.46 66 | 98.68 60 | 92.55 200 | 99.74 72 | 96.91 59 | 99.79 35 | 99.50 43 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Anonymous20240521 | | | 97.07 112 | 97.51 83 | 95.76 228 | 99.35 41 | 88.18 269 | 97.78 58 | 98.40 175 | 97.11 77 | 98.34 78 | 99.04 37 | 89.58 248 | 99.79 38 | 98.09 18 | 99.93 10 | 99.30 102 |
|
EI-MVSNet | | | 96.63 146 | 96.93 121 | 95.74 229 | 97.26 274 | 88.13 272 | 95.29 201 | 97.65 245 | 96.99 79 | 97.94 126 | 98.19 106 | 92.55 200 | 99.58 154 | 96.91 59 | 99.56 84 | 99.50 43 |
|
MDA-MVSNet-bldmvs | | | 95.69 180 | 95.67 179 | 95.74 229 | 98.48 147 | 88.76 261 | 92.84 295 | 97.25 259 | 96.00 119 | 97.59 144 | 97.95 138 | 91.38 225 | 99.46 189 | 93.16 212 | 96.35 322 | 98.99 167 |
|
sss | | | 94.22 243 | 93.72 251 | 95.74 229 | 97.71 238 | 89.95 239 | 93.84 270 | 96.98 271 | 88.38 291 | 93.75 295 | 95.74 287 | 87.94 265 | 98.89 292 | 91.02 246 | 98.10 270 | 98.37 234 |
|
testdata | | | | | 95.70 232 | 98.16 181 | 90.58 232 | | 97.72 238 | 80.38 344 | 95.62 248 | 97.02 220 | 92.06 214 | 98.98 284 | 89.06 290 | 98.52 255 | 97.54 292 |
|
test_yl | | | 94.40 238 | 94.00 244 | 95.59 233 | 96.95 285 | 89.52 245 | 94.75 234 | 95.55 303 | 96.18 109 | 96.79 194 | 96.14 272 | 81.09 303 | 99.18 256 | 90.75 255 | 97.77 280 | 98.07 262 |
|
DCV-MVSNet | | | 94.40 238 | 94.00 244 | 95.59 233 | 96.95 285 | 89.52 245 | 94.75 234 | 95.55 303 | 96.18 109 | 96.79 194 | 96.14 272 | 81.09 303 | 99.18 256 | 90.75 255 | 97.77 280 | 98.07 262 |
|
tttt0517 | | | 93.31 269 | 92.56 276 | 95.57 235 | 98.71 117 | 87.86 276 | 97.44 82 | 87.17 358 | 95.79 134 | 97.47 156 | 96.84 230 | 64.12 359 | 99.81 31 | 96.20 77 | 99.32 169 | 99.02 163 |
|
MSLP-MVS++ | | | 96.42 156 | 96.71 132 | 95.57 235 | 97.82 217 | 90.56 234 | 95.71 171 | 98.84 94 | 94.72 176 | 96.71 200 | 97.39 193 | 94.91 141 | 98.10 345 | 95.28 126 | 99.02 209 | 98.05 269 |
|
thisisatest0530 | | | 92.71 278 | 91.76 286 | 95.56 237 | 98.42 153 | 88.23 267 | 96.03 154 | 87.35 357 | 94.04 200 | 96.56 207 | 95.47 296 | 64.03 360 | 99.77 52 | 94.78 156 | 99.11 198 | 98.68 213 |
|
Test_1112_low_res | | | 93.53 265 | 92.86 265 | 95.54 238 | 98.60 131 | 88.86 257 | 92.75 298 | 98.69 137 | 82.66 335 | 92.65 323 | 96.92 227 | 84.75 288 | 99.56 161 | 90.94 248 | 97.76 282 | 98.19 256 |
|
pmmvs5 | | | 94.63 231 | 94.34 233 | 95.50 239 | 97.63 246 | 88.34 266 | 94.02 262 | 97.13 265 | 87.15 301 | 95.22 256 | 97.15 209 | 87.50 271 | 99.27 246 | 93.99 190 | 99.26 179 | 98.88 189 |
|
MVSFormer | | | 96.14 165 | 96.36 152 | 95.49 240 | 97.68 240 | 87.81 279 | 98.67 11 | 99.02 49 | 96.50 96 | 94.48 276 | 96.15 270 | 86.90 275 | 99.92 4 | 98.73 7 | 99.13 194 | 98.74 205 |
|
ET-MVSNet_ETH3D | | | 91.12 299 | 89.67 311 | 95.47 241 | 96.41 298 | 89.15 253 | 91.54 319 | 90.23 351 | 89.07 281 | 86.78 358 | 92.84 333 | 69.39 354 | 99.44 196 | 94.16 181 | 96.61 318 | 97.82 281 |
|
diffmvs | | | 96.04 169 | 96.23 156 | 95.46 242 | 97.35 265 | 88.03 274 | 93.42 283 | 99.08 34 | 94.09 199 | 96.66 202 | 96.93 225 | 93.85 170 | 99.29 242 | 96.01 88 | 98.67 244 | 99.06 157 |
|
v148 | | | 96.58 148 | 96.97 118 | 95.42 243 | 98.63 127 | 87.57 283 | 95.09 213 | 97.90 226 | 95.91 127 | 98.24 92 | 97.96 134 | 93.42 179 | 99.39 215 | 96.04 84 | 99.52 101 | 99.29 109 |
|
OpenMVS_ROB |  | 91.80 14 | 93.64 262 | 93.05 261 | 95.42 243 | 97.31 273 | 91.21 221 | 95.08 215 | 96.68 283 | 81.56 338 | 96.88 193 | 96.41 256 | 90.44 236 | 99.25 249 | 85.39 327 | 97.67 290 | 95.80 334 |
|
jason | | | 94.39 240 | 94.04 243 | 95.41 245 | 98.29 161 | 87.85 278 | 92.74 300 | 96.75 280 | 85.38 321 | 95.29 254 | 96.15 270 | 88.21 264 | 99.65 131 | 94.24 178 | 99.34 160 | 98.74 205 |
jason: jason. |
API-MVS | | | 95.09 208 | 95.01 200 | 95.31 246 | 96.61 293 | 94.02 153 | 96.83 113 | 97.18 263 | 95.60 142 | 95.79 241 | 94.33 317 | 94.54 153 | 98.37 336 | 85.70 322 | 98.52 255 | 93.52 349 |
|
PVSNet_BlendedMVS | | | 95.02 212 | 94.93 203 | 95.27 247 | 97.79 228 | 87.40 287 | 94.14 258 | 98.68 139 | 88.94 284 | 94.51 274 | 98.01 130 | 93.04 186 | 99.30 238 | 89.77 279 | 99.49 112 | 99.11 148 |
|
lupinMVS | | | 93.77 256 | 93.28 257 | 95.24 248 | 97.68 240 | 87.81 279 | 92.12 311 | 96.05 289 | 84.52 328 | 94.48 276 | 95.06 302 | 86.90 275 | 99.63 136 | 93.62 203 | 99.13 194 | 98.27 249 |
|
D2MVS | | | 95.18 203 | 95.17 192 | 95.21 249 | 97.76 234 | 87.76 281 | 94.15 256 | 97.94 224 | 89.77 277 | 96.99 184 | 97.68 169 | 87.45 272 | 99.14 263 | 95.03 146 | 99.81 30 | 98.74 205 |
|
Patchmatch-RL test | | | 94.66 229 | 94.49 227 | 95.19 250 | 98.54 138 | 88.91 255 | 92.57 302 | 98.74 122 | 91.46 258 | 98.32 83 | 97.75 160 | 77.31 323 | 98.81 299 | 96.06 81 | 99.61 71 | 97.85 279 |
|
WTY-MVS | | | 93.55 264 | 93.00 263 | 95.19 250 | 97.81 218 | 87.86 276 | 93.89 269 | 96.00 291 | 89.02 282 | 94.07 285 | 95.44 297 | 86.27 278 | 99.33 231 | 87.69 306 | 96.82 312 | 98.39 233 |
|
JIA-IIPM | | | 91.79 293 | 90.69 302 | 95.11 252 | 93.80 347 | 90.98 224 | 94.16 255 | 91.78 337 | 96.38 100 | 90.30 342 | 99.30 18 | 72.02 347 | 98.90 290 | 88.28 300 | 90.17 352 | 95.45 340 |
|
MIMVSNet | | | 93.42 266 | 92.86 265 | 95.10 253 | 98.17 179 | 88.19 268 | 98.13 41 | 93.69 317 | 92.07 247 | 95.04 261 | 98.21 105 | 80.95 305 | 99.03 279 | 81.42 344 | 98.06 272 | 98.07 262 |
|
PAPR | | | 92.22 286 | 91.27 292 | 95.07 254 | 95.73 321 | 88.81 258 | 91.97 314 | 97.87 228 | 85.80 313 | 90.91 336 | 92.73 336 | 91.16 226 | 98.33 338 | 79.48 347 | 95.76 331 | 98.08 260 |
|
MVSTER | | | 94.21 245 | 93.93 248 | 95.05 255 | 95.83 317 | 86.46 299 | 95.18 209 | 97.65 245 | 92.41 245 | 97.94 126 | 98.00 132 | 72.39 346 | 99.58 154 | 96.36 73 | 99.56 84 | 99.12 144 |
|
cl-mvsnet____ | | | 94.73 221 | 94.64 217 | 95.01 256 | 95.85 316 | 87.00 293 | 91.33 323 | 98.08 215 | 93.34 217 | 97.10 174 | 97.33 200 | 84.01 294 | 99.30 238 | 95.14 138 | 99.56 84 | 98.71 210 |
|
cl-mvsnet1 | | | 94.73 221 | 94.64 217 | 95.01 256 | 95.86 315 | 87.00 293 | 91.33 323 | 98.08 215 | 93.34 217 | 97.10 174 | 97.34 199 | 84.02 293 | 99.31 235 | 95.15 137 | 99.55 90 | 98.72 208 |
|
TinyColmap | | | 96.00 172 | 96.34 153 | 94.96 258 | 97.90 207 | 87.91 275 | 94.13 259 | 98.49 162 | 94.41 186 | 98.16 99 | 97.76 157 | 96.29 93 | 98.68 313 | 90.52 266 | 99.42 137 | 98.30 245 |
|
PVSNet_Blended | | | 93.96 253 | 93.65 252 | 94.91 259 | 97.79 228 | 87.40 287 | 91.43 320 | 98.68 139 | 84.50 329 | 94.51 274 | 94.48 315 | 93.04 186 | 99.30 238 | 89.77 279 | 98.61 251 | 98.02 272 |
|
BH-RMVSNet | | | 94.56 234 | 94.44 231 | 94.91 259 | 97.57 248 | 87.44 286 | 93.78 274 | 96.26 286 | 93.69 209 | 96.41 214 | 96.50 253 | 92.10 212 | 99.00 280 | 85.96 320 | 97.71 286 | 98.31 243 |
|
RPMNet | | | 94.68 228 | 94.60 221 | 94.90 261 | 95.44 326 | 88.15 270 | 96.18 146 | 98.86 85 | 97.43 66 | 94.10 283 | 98.49 73 | 79.40 309 | 99.76 57 | 95.69 99 | 95.81 327 | 96.81 317 |
|
HY-MVS | | 91.43 15 | 92.58 279 | 91.81 285 | 94.90 261 | 96.49 296 | 88.87 256 | 97.31 89 | 94.62 311 | 85.92 311 | 90.50 340 | 96.84 230 | 85.05 285 | 99.40 210 | 83.77 339 | 95.78 330 | 96.43 327 |
|
GA-MVS | | | 92.83 276 | 92.15 281 | 94.87 263 | 96.97 284 | 87.27 290 | 90.03 340 | 96.12 288 | 91.83 253 | 94.05 286 | 94.57 310 | 76.01 330 | 98.97 288 | 92.46 221 | 97.34 303 | 98.36 239 |
|
miper_lstm_enhance | | | 94.81 219 | 94.80 211 | 94.85 264 | 96.16 308 | 86.45 300 | 91.14 329 | 98.20 198 | 93.49 212 | 97.03 181 | 97.37 197 | 84.97 287 | 99.26 247 | 95.28 126 | 99.56 84 | 98.83 194 |
|
IterMVS-SCA-FT | | | 95.86 177 | 96.19 158 | 94.85 264 | 97.68 240 | 85.53 309 | 92.42 306 | 97.63 249 | 96.99 79 | 98.36 75 | 98.54 70 | 87.94 265 | 99.75 65 | 97.07 55 | 99.08 202 | 99.27 114 |
|
cl_fuxian | | | 95.20 202 | 95.32 188 | 94.83 266 | 96.19 306 | 86.43 301 | 91.83 316 | 98.35 184 | 93.47 213 | 97.36 161 | 97.26 205 | 88.69 258 | 99.28 244 | 95.41 123 | 99.36 152 | 98.78 200 |
|
testgi | | | 96.07 167 | 96.50 148 | 94.80 267 | 99.26 48 | 87.69 282 | 95.96 160 | 98.58 155 | 95.08 163 | 98.02 118 | 96.25 265 | 97.92 16 | 97.60 350 | 88.68 295 | 98.74 239 | 99.11 148 |
|
CR-MVSNet | | | 93.29 270 | 92.79 268 | 94.78 268 | 95.44 326 | 88.15 270 | 96.18 146 | 97.20 261 | 84.94 326 | 94.10 283 | 98.57 66 | 77.67 318 | 99.39 215 | 95.17 133 | 95.81 327 | 96.81 317 |
|
eth_miper_zixun_eth | | | 94.89 215 | 94.93 203 | 94.75 269 | 95.99 313 | 86.12 304 | 91.35 322 | 98.49 162 | 93.40 214 | 97.12 172 | 97.25 206 | 86.87 277 | 99.35 226 | 95.08 143 | 98.82 232 | 98.78 200 |
|
MVS_Test | | | 96.27 159 | 96.79 130 | 94.73 270 | 96.94 287 | 86.63 298 | 96.18 146 | 98.33 185 | 94.94 169 | 96.07 231 | 98.28 93 | 95.25 130 | 99.26 247 | 97.21 47 | 97.90 278 | 98.30 245 |
|
miper_ehance_all_eth | | | 94.69 226 | 94.70 214 | 94.64 271 | 95.77 319 | 86.22 303 | 91.32 325 | 98.24 193 | 91.67 254 | 97.05 179 | 96.65 244 | 88.39 262 | 99.22 254 | 94.88 149 | 98.34 261 | 98.49 227 |
|
Patchmatch-test | | | 93.60 263 | 93.25 259 | 94.63 272 | 96.14 311 | 87.47 285 | 96.04 153 | 94.50 313 | 93.57 210 | 96.47 211 | 96.97 222 | 76.50 326 | 98.61 318 | 90.67 261 | 98.41 260 | 97.81 283 |
|
baseline1 | | | 93.14 273 | 92.64 274 | 94.62 273 | 97.34 269 | 87.20 291 | 96.67 125 | 93.02 325 | 94.71 177 | 96.51 210 | 95.83 286 | 81.64 300 | 98.60 320 | 90.00 276 | 88.06 355 | 98.07 262 |
|
xiu_mvs_v1_base_debu | | | 95.62 183 | 95.96 170 | 94.60 274 | 98.01 195 | 88.42 263 | 93.99 264 | 98.21 195 | 92.98 233 | 95.91 236 | 94.53 312 | 96.39 88 | 99.72 82 | 95.43 120 | 98.19 266 | 95.64 336 |
|
xiu_mvs_v1_base | | | 95.62 183 | 95.96 170 | 94.60 274 | 98.01 195 | 88.42 263 | 93.99 264 | 98.21 195 | 92.98 233 | 95.91 236 | 94.53 312 | 96.39 88 | 99.72 82 | 95.43 120 | 98.19 266 | 95.64 336 |
|
xiu_mvs_v1_base_debi | | | 95.62 183 | 95.96 170 | 94.60 274 | 98.01 195 | 88.42 263 | 93.99 264 | 98.21 195 | 92.98 233 | 95.91 236 | 94.53 312 | 96.39 88 | 99.72 82 | 95.43 120 | 98.19 266 | 95.64 336 |
|
MS-PatchMatch | | | 94.83 217 | 94.91 205 | 94.57 277 | 96.81 291 | 87.10 292 | 94.23 251 | 97.34 258 | 88.74 287 | 97.14 170 | 97.11 213 | 91.94 217 | 98.23 341 | 92.99 214 | 97.92 276 | 98.37 234 |
|
USDC | | | 94.56 234 | 94.57 226 | 94.55 278 | 97.78 232 | 86.43 301 | 92.75 298 | 98.65 149 | 85.96 310 | 96.91 191 | 97.93 141 | 90.82 231 | 98.74 305 | 90.71 259 | 99.59 76 | 98.47 228 |
|
BH-untuned | | | 94.69 226 | 94.75 213 | 94.52 279 | 97.95 204 | 87.53 284 | 94.07 261 | 97.01 270 | 93.99 201 | 97.10 174 | 95.65 290 | 92.65 197 | 98.95 289 | 87.60 308 | 96.74 315 | 97.09 302 |
|
cl-mvsnet2 | | | 93.25 271 | 92.84 267 | 94.46 280 | 94.30 340 | 86.00 305 | 91.09 331 | 96.64 284 | 90.74 266 | 95.79 241 | 96.31 263 | 78.24 315 | 98.77 302 | 94.15 182 | 98.34 261 | 98.62 217 |
|
MDA-MVSNet_test_wron | | | 94.73 221 | 94.83 210 | 94.42 281 | 97.48 255 | 85.15 316 | 90.28 339 | 95.87 295 | 92.52 241 | 97.48 154 | 97.76 157 | 91.92 219 | 99.17 260 | 93.32 206 | 96.80 314 | 98.94 172 |
|
YYNet1 | | | 94.73 221 | 94.84 208 | 94.41 282 | 97.47 259 | 85.09 318 | 90.29 338 | 95.85 296 | 92.52 241 | 97.53 146 | 97.76 157 | 91.97 215 | 99.18 256 | 93.31 207 | 96.86 311 | 98.95 170 |
|
ADS-MVSNet2 | | | 91.47 297 | 90.51 305 | 94.36 283 | 95.51 324 | 85.63 307 | 95.05 219 | 95.70 297 | 83.46 332 | 92.69 321 | 96.84 230 | 79.15 312 | 99.41 208 | 85.66 324 | 90.52 350 | 98.04 270 |
|
new_pmnet | | | 92.34 284 | 91.69 287 | 94.32 284 | 96.23 304 | 89.16 252 | 92.27 309 | 92.88 327 | 84.39 331 | 95.29 254 | 96.35 262 | 85.66 282 | 96.74 356 | 84.53 334 | 97.56 294 | 97.05 304 |
|
MG-MVS | | | 94.08 251 | 94.00 244 | 94.32 284 | 97.09 281 | 85.89 306 | 93.19 292 | 95.96 293 | 92.52 241 | 94.93 264 | 97.51 181 | 89.54 249 | 98.77 302 | 87.52 311 | 97.71 286 | 98.31 243 |
|
PatchT | | | 93.75 257 | 93.57 253 | 94.29 286 | 95.05 332 | 87.32 289 | 96.05 152 | 92.98 326 | 97.54 63 | 94.25 279 | 98.72 56 | 75.79 331 | 99.24 250 | 95.92 92 | 95.81 327 | 96.32 328 |
|
miper_enhance_ethall | | | 93.14 273 | 92.78 270 | 94.20 287 | 93.65 348 | 85.29 313 | 89.97 341 | 97.85 229 | 85.05 323 | 96.15 230 | 94.56 311 | 85.74 281 | 99.14 263 | 93.74 198 | 98.34 261 | 98.17 258 |
|
IterMVS | | | 95.42 194 | 95.83 174 | 94.20 287 | 97.52 253 | 83.78 330 | 92.41 307 | 97.47 256 | 95.49 147 | 98.06 113 | 98.49 73 | 87.94 265 | 99.58 154 | 96.02 86 | 99.02 209 | 99.23 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
thisisatest0515 | | | 90.43 305 | 89.18 317 | 94.17 289 | 97.07 282 | 85.44 310 | 89.75 346 | 87.58 356 | 88.28 292 | 93.69 298 | 91.72 346 | 65.27 358 | 99.58 154 | 90.59 263 | 98.67 244 | 97.50 294 |
|
thres600view7 | | | 92.03 290 | 91.43 288 | 93.82 290 | 98.19 174 | 84.61 323 | 96.27 139 | 90.39 348 | 96.81 85 | 96.37 216 | 93.11 325 | 73.44 343 | 99.49 180 | 80.32 346 | 97.95 275 | 97.36 297 |
|
FPMVS | | | 89.92 312 | 88.63 319 | 93.82 290 | 98.37 156 | 96.94 45 | 91.58 318 | 93.34 323 | 88.00 295 | 90.32 341 | 97.10 214 | 70.87 351 | 91.13 361 | 71.91 359 | 96.16 326 | 93.39 351 |
|
thres400 | | | 91.68 295 | 91.00 295 | 93.71 292 | 98.02 193 | 84.35 326 | 95.70 172 | 90.79 345 | 96.26 105 | 95.90 239 | 92.13 342 | 73.62 340 | 99.42 199 | 78.85 350 | 97.74 283 | 97.36 297 |
|
IB-MVS | | 85.98 20 | 88.63 320 | 86.95 329 | 93.68 293 | 95.12 331 | 84.82 322 | 90.85 333 | 90.17 352 | 87.55 298 | 88.48 351 | 91.34 350 | 58.01 363 | 99.59 152 | 87.24 314 | 93.80 344 | 96.63 324 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
EU-MVSNet | | | 94.25 242 | 94.47 228 | 93.60 294 | 98.14 184 | 82.60 334 | 97.24 94 | 92.72 330 | 85.08 322 | 98.48 63 | 98.94 43 | 82.59 298 | 98.76 304 | 97.47 39 | 99.53 96 | 99.44 76 |
|
TR-MVS | | | 92.54 280 | 92.20 280 | 93.57 295 | 96.49 296 | 86.66 297 | 93.51 281 | 94.73 310 | 89.96 275 | 94.95 262 | 93.87 321 | 90.24 242 | 98.61 318 | 81.18 345 | 94.88 337 | 95.45 340 |
|
cascas | | | 91.89 292 | 91.35 290 | 93.51 296 | 94.27 341 | 85.60 308 | 88.86 350 | 98.61 151 | 79.32 348 | 92.16 330 | 91.44 349 | 89.22 256 | 98.12 344 | 90.80 253 | 97.47 300 | 96.82 316 |
|
ppachtmachnet_test | | | 94.49 237 | 94.84 208 | 93.46 297 | 96.16 308 | 82.10 336 | 90.59 335 | 97.48 255 | 90.53 269 | 97.01 183 | 97.59 174 | 91.01 228 | 99.36 223 | 93.97 192 | 99.18 187 | 98.94 172 |
|
pmmvs3 | | | 90.00 309 | 88.90 318 | 93.32 298 | 94.20 344 | 85.34 311 | 91.25 326 | 92.56 332 | 78.59 350 | 93.82 291 | 95.17 299 | 67.36 357 | 98.69 310 | 89.08 289 | 98.03 273 | 95.92 331 |
|
EPNet_dtu | | | 91.39 298 | 90.75 301 | 93.31 299 | 90.48 363 | 82.61 333 | 94.80 231 | 92.88 327 | 93.39 215 | 81.74 362 | 94.90 307 | 81.36 302 | 99.11 268 | 88.28 300 | 98.87 225 | 98.21 254 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
thres100view900 | | | 91.76 294 | 91.26 293 | 93.26 300 | 98.21 172 | 84.50 324 | 96.39 132 | 90.39 348 | 96.87 83 | 96.33 217 | 93.08 329 | 73.44 343 | 99.42 199 | 78.85 350 | 97.74 283 | 95.85 332 |
|
baseline2 | | | 89.65 314 | 88.44 321 | 93.25 301 | 95.62 322 | 82.71 332 | 93.82 271 | 85.94 360 | 88.89 285 | 87.35 356 | 92.54 338 | 71.23 349 | 99.33 231 | 86.01 319 | 94.60 341 | 97.72 285 |
|
DSMNet-mixed | | | 92.19 287 | 91.83 284 | 93.25 301 | 96.18 307 | 83.68 331 | 96.27 139 | 93.68 319 | 76.97 356 | 92.54 327 | 99.18 27 | 89.20 257 | 98.55 324 | 83.88 337 | 98.60 253 | 97.51 293 |
|
tfpn200view9 | | | 91.55 296 | 91.00 295 | 93.21 303 | 98.02 193 | 84.35 326 | 95.70 172 | 90.79 345 | 96.26 105 | 95.90 239 | 92.13 342 | 73.62 340 | 99.42 199 | 78.85 350 | 97.74 283 | 95.85 332 |
|
mvs_anonymous | | | 95.36 196 | 96.07 165 | 93.21 303 | 96.29 300 | 81.56 339 | 94.60 238 | 97.66 243 | 93.30 219 | 96.95 188 | 98.91 46 | 93.03 188 | 99.38 218 | 96.60 63 | 97.30 305 | 98.69 211 |
|
our_test_3 | | | 94.20 247 | 94.58 224 | 93.07 305 | 96.16 308 | 81.20 341 | 90.42 337 | 96.84 275 | 90.72 267 | 97.14 170 | 97.13 210 | 90.47 235 | 99.11 268 | 94.04 189 | 98.25 265 | 98.91 181 |
|
ADS-MVSNet | | | 90.95 303 | 90.26 307 | 93.04 306 | 95.51 324 | 82.37 335 | 95.05 219 | 93.41 322 | 83.46 332 | 92.69 321 | 96.84 230 | 79.15 312 | 98.70 309 | 85.66 324 | 90.52 350 | 98.04 270 |
|
PAPM | | | 87.64 328 | 85.84 333 | 93.04 306 | 96.54 294 | 84.99 319 | 88.42 352 | 95.57 302 | 79.52 347 | 83.82 359 | 93.05 331 | 80.57 306 | 98.41 331 | 62.29 362 | 92.79 346 | 95.71 335 |
|
PS-MVSNAJ | | | 94.10 249 | 94.47 228 | 93.00 308 | 97.35 265 | 84.88 320 | 91.86 315 | 97.84 231 | 91.96 250 | 94.17 281 | 92.50 339 | 95.82 105 | 99.71 96 | 91.27 240 | 97.48 298 | 94.40 346 |
|
xiu_mvs_v2_base | | | 94.22 243 | 94.63 219 | 92.99 309 | 97.32 272 | 84.84 321 | 92.12 311 | 97.84 231 | 91.96 250 | 94.17 281 | 93.43 323 | 96.07 96 | 99.71 96 | 91.27 240 | 97.48 298 | 94.42 345 |
|
SCA | | | 93.38 268 | 93.52 254 | 92.96 310 | 96.24 302 | 81.40 340 | 93.24 290 | 94.00 316 | 91.58 257 | 94.57 271 | 96.97 222 | 87.94 265 | 99.42 199 | 89.47 283 | 97.66 291 | 98.06 266 |
|
new-patchmatchnet | | | 95.67 182 | 96.58 138 | 92.94 311 | 97.48 255 | 80.21 344 | 92.96 294 | 98.19 203 | 94.83 173 | 98.82 42 | 98.79 51 | 93.31 181 | 99.51 178 | 95.83 96 | 99.04 208 | 99.12 144 |
|
test0.0.03 1 | | | 90.11 307 | 89.21 314 | 92.83 312 | 93.89 346 | 86.87 296 | 91.74 317 | 88.74 355 | 92.02 248 | 94.71 268 | 91.14 352 | 73.92 337 | 94.48 359 | 83.75 340 | 92.94 345 | 97.16 301 |
|
thres200 | | | 91.00 302 | 90.42 306 | 92.77 313 | 97.47 259 | 83.98 329 | 94.01 263 | 91.18 343 | 95.12 162 | 95.44 251 | 91.21 351 | 73.93 336 | 99.31 235 | 77.76 353 | 97.63 293 | 95.01 342 |
|
BH-w/o | | | 92.14 288 | 91.94 282 | 92.73 314 | 97.13 280 | 85.30 312 | 92.46 305 | 95.64 298 | 89.33 280 | 94.21 280 | 92.74 335 | 89.60 247 | 98.24 340 | 81.68 343 | 94.66 339 | 94.66 344 |
|
1314 | | | 92.38 283 | 92.30 279 | 92.64 315 | 95.42 328 | 85.15 316 | 95.86 165 | 96.97 272 | 85.40 320 | 90.62 337 | 93.06 330 | 91.12 227 | 97.80 348 | 86.74 316 | 95.49 334 | 94.97 343 |
|
KD-MVS_2432*1600 | | | 88.93 318 | 87.74 323 | 92.49 316 | 88.04 364 | 81.99 337 | 89.63 347 | 95.62 299 | 91.35 259 | 95.06 258 | 93.11 325 | 56.58 366 | 98.63 316 | 85.19 328 | 95.07 335 | 96.85 313 |
|
miper_refine_blended | | | 88.93 318 | 87.74 323 | 92.49 316 | 88.04 364 | 81.99 337 | 89.63 347 | 95.62 299 | 91.35 259 | 95.06 258 | 93.11 325 | 56.58 366 | 98.63 316 | 85.19 328 | 95.07 335 | 96.85 313 |
|
MVS | | | 90.02 308 | 89.20 315 | 92.47 318 | 94.71 335 | 86.90 295 | 95.86 165 | 96.74 281 | 64.72 361 | 90.62 337 | 92.77 334 | 92.54 202 | 98.39 333 | 79.30 348 | 95.56 333 | 92.12 353 |
|
PMMVS2 | | | 93.66 261 | 94.07 241 | 92.45 319 | 97.57 248 | 80.67 343 | 86.46 354 | 96.00 291 | 93.99 201 | 97.10 174 | 97.38 195 | 89.90 245 | 97.82 347 | 88.76 292 | 99.47 118 | 98.86 192 |
|
CHOSEN 280x420 | | | 89.98 310 | 89.19 316 | 92.37 320 | 95.60 323 | 81.13 342 | 86.22 355 | 97.09 267 | 81.44 340 | 87.44 355 | 93.15 324 | 73.99 335 | 99.47 186 | 88.69 294 | 99.07 204 | 96.52 326 |
|
PatchmatchNet |  | | 91.98 291 | 91.87 283 | 92.30 321 | 94.60 337 | 79.71 345 | 95.12 210 | 93.59 321 | 89.52 278 | 93.61 301 | 97.02 220 | 77.94 316 | 99.18 256 | 90.84 251 | 94.57 342 | 98.01 273 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
RRT_test8_iter05 | | | 92.46 281 | 92.52 277 | 92.29 322 | 95.33 329 | 77.43 352 | 95.73 170 | 98.55 157 | 94.41 186 | 97.46 157 | 97.72 165 | 57.44 364 | 99.74 72 | 96.92 58 | 99.14 190 | 99.69 20 |
|
gg-mvs-nofinetune | | | 88.28 323 | 86.96 328 | 92.23 323 | 92.84 357 | 84.44 325 | 98.19 38 | 74.60 365 | 99.08 10 | 87.01 357 | 99.47 8 | 56.93 365 | 98.23 341 | 78.91 349 | 95.61 332 | 94.01 347 |
|
tpm | | | 91.08 301 | 90.85 299 | 91.75 324 | 95.33 329 | 78.09 348 | 95.03 221 | 91.27 342 | 88.75 286 | 93.53 304 | 97.40 189 | 71.24 348 | 99.30 238 | 91.25 242 | 93.87 343 | 97.87 278 |
|
PVSNet | | 86.72 19 | 91.10 300 | 90.97 297 | 91.49 325 | 97.56 250 | 78.04 349 | 87.17 353 | 94.60 312 | 84.65 327 | 92.34 328 | 92.20 341 | 87.37 273 | 98.47 328 | 85.17 330 | 97.69 288 | 97.96 274 |
|
DWT-MVSNet_test | | | 87.92 326 | 86.77 330 | 91.39 326 | 93.18 351 | 78.62 347 | 95.10 211 | 91.42 339 | 85.58 315 | 88.00 352 | 88.73 358 | 60.60 362 | 98.90 290 | 90.60 262 | 87.70 356 | 96.65 321 |
|
EPMVS | | | 89.26 316 | 88.55 320 | 91.39 326 | 92.36 359 | 79.11 346 | 95.65 179 | 79.86 363 | 88.60 288 | 93.12 314 | 96.53 250 | 70.73 352 | 98.10 345 | 90.75 255 | 89.32 354 | 96.98 306 |
|
CostFormer | | | 89.75 313 | 89.25 312 | 91.26 328 | 94.69 336 | 78.00 350 | 95.32 198 | 91.98 335 | 81.50 339 | 90.55 339 | 96.96 224 | 71.06 350 | 98.89 292 | 88.59 296 | 92.63 347 | 96.87 311 |
|
CVMVSNet | | | 92.33 285 | 92.79 268 | 90.95 329 | 97.26 274 | 75.84 357 | 95.29 201 | 92.33 333 | 81.86 336 | 96.27 222 | 98.19 106 | 81.44 301 | 98.46 329 | 94.23 179 | 98.29 264 | 98.55 224 |
|
tpm2 | | | 88.47 321 | 87.69 325 | 90.79 330 | 94.98 333 | 77.34 353 | 95.09 213 | 91.83 336 | 77.51 355 | 89.40 346 | 96.41 256 | 67.83 356 | 98.73 306 | 83.58 341 | 92.60 348 | 96.29 329 |
|
GG-mvs-BLEND | | | | | 90.60 331 | 91.00 361 | 84.21 328 | 98.23 32 | 72.63 368 | | 82.76 360 | 84.11 361 | 56.14 368 | 96.79 355 | 72.20 358 | 92.09 349 | 90.78 357 |
|
tpmvs | | | 90.79 304 | 90.87 298 | 90.57 332 | 92.75 358 | 76.30 355 | 95.79 169 | 93.64 320 | 91.04 265 | 91.91 332 | 96.26 264 | 77.19 324 | 98.86 296 | 89.38 285 | 89.85 353 | 96.56 325 |
|
test-LLR | | | 89.97 311 | 89.90 309 | 90.16 333 | 94.24 342 | 74.98 358 | 89.89 342 | 89.06 353 | 92.02 248 | 89.97 344 | 90.77 354 | 73.92 337 | 98.57 321 | 91.88 228 | 97.36 301 | 96.92 308 |
|
test-mter | | | 87.92 326 | 87.17 327 | 90.16 333 | 94.24 342 | 74.98 358 | 89.89 342 | 89.06 353 | 86.44 307 | 89.97 344 | 90.77 354 | 54.96 370 | 98.57 321 | 91.88 228 | 97.36 301 | 96.92 308 |
|
tpm cat1 | | | 88.01 325 | 87.33 326 | 90.05 335 | 94.48 338 | 76.28 356 | 94.47 243 | 94.35 315 | 73.84 360 | 89.26 347 | 95.61 293 | 73.64 339 | 98.30 339 | 84.13 335 | 86.20 358 | 95.57 339 |
|
tpmrst | | | 90.31 306 | 90.61 304 | 89.41 336 | 94.06 345 | 72.37 363 | 95.06 218 | 93.69 317 | 88.01 294 | 92.32 329 | 96.86 228 | 77.45 320 | 98.82 297 | 91.04 245 | 87.01 357 | 97.04 305 |
|
TESTMET0.1,1 | | | 87.20 329 | 86.57 331 | 89.07 337 | 93.62 349 | 72.84 362 | 89.89 342 | 87.01 359 | 85.46 318 | 89.12 349 | 90.20 356 | 56.00 369 | 97.72 349 | 90.91 249 | 96.92 308 | 96.64 322 |
|
E-PMN | | | 89.52 315 | 89.78 310 | 88.73 338 | 93.14 353 | 77.61 351 | 83.26 358 | 92.02 334 | 94.82 174 | 93.71 296 | 93.11 325 | 75.31 332 | 96.81 354 | 85.81 321 | 96.81 313 | 91.77 355 |
|
EMVS | | | 89.06 317 | 89.22 313 | 88.61 339 | 93.00 355 | 77.34 353 | 82.91 359 | 90.92 344 | 94.64 179 | 92.63 325 | 91.81 345 | 76.30 328 | 97.02 352 | 83.83 338 | 96.90 310 | 91.48 356 |
|
PVSNet_0 | | 81.89 21 | 84.49 331 | 83.21 334 | 88.34 340 | 95.76 320 | 74.97 360 | 83.49 357 | 92.70 331 | 78.47 351 | 87.94 353 | 86.90 360 | 83.38 296 | 96.63 357 | 73.44 357 | 66.86 363 | 93.40 350 |
|
MVE |  | 73.61 22 | 86.48 330 | 85.92 332 | 88.18 341 | 96.23 304 | 85.28 314 | 81.78 360 | 75.79 364 | 86.01 309 | 82.53 361 | 91.88 344 | 92.74 193 | 87.47 363 | 71.42 360 | 94.86 338 | 91.78 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
dp | | | 88.08 324 | 88.05 322 | 88.16 342 | 92.85 356 | 68.81 365 | 94.17 254 | 92.88 327 | 85.47 317 | 91.38 335 | 96.14 272 | 68.87 355 | 98.81 299 | 86.88 315 | 83.80 360 | 96.87 311 |
|
wuyk23d | | | 93.25 271 | 95.20 190 | 87.40 343 | 96.07 312 | 95.38 100 | 97.04 105 | 94.97 308 | 95.33 152 | 99.70 5 | 98.11 115 | 98.14 13 | 91.94 360 | 77.76 353 | 99.68 57 | 74.89 360 |
|
MVS-HIRNet | | | 88.40 322 | 90.20 308 | 82.99 344 | 97.01 283 | 60.04 366 | 93.11 293 | 85.61 361 | 84.45 330 | 88.72 350 | 99.09 33 | 84.72 289 | 98.23 341 | 82.52 342 | 96.59 319 | 90.69 358 |
|
DeepMVS_CX |  | | | | 77.17 345 | 90.94 362 | 85.28 314 | | 74.08 367 | 52.51 362 | 80.87 363 | 88.03 359 | 75.25 333 | 70.63 364 | 59.23 363 | 84.94 359 | 75.62 359 |
|
test_method | | | 66.88 332 | 66.13 335 | 69.11 346 | 62.68 367 | 25.73 369 | 49.76 361 | 96.04 290 | 14.32 364 | 64.27 365 | 91.69 347 | 73.45 342 | 88.05 362 | 76.06 355 | 66.94 362 | 93.54 348 |
|
tmp_tt | | | 57.23 333 | 62.50 336 | 41.44 347 | 34.77 368 | 49.21 368 | 83.93 356 | 60.22 369 | 15.31 363 | 71.11 364 | 79.37 362 | 70.09 353 | 44.86 365 | 64.76 361 | 82.93 361 | 30.25 361 |
|
test123 | | | 12.59 335 | 15.49 338 | 3.87 348 | 6.07 369 | 2.55 370 | 90.75 334 | 2.59 371 | 2.52 365 | 5.20 367 | 13.02 365 | 4.96 371 | 1.85 367 | 5.20 364 | 9.09 364 | 7.23 362 |
|
testmvs | | | 12.33 336 | 15.23 339 | 3.64 349 | 5.77 370 | 2.23 371 | 88.99 349 | 3.62 370 | 2.30 366 | 5.29 366 | 13.09 364 | 4.52 372 | 1.95 366 | 5.16 365 | 8.32 365 | 6.75 363 |
|
uanet_test | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
cdsmvs_eth3d_5k | | | 24.22 334 | 32.30 337 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 98.10 212 | 0.00 367 | 0.00 368 | 95.06 302 | 97.54 29 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
pcd_1.5k_mvsjas | | | 7.98 337 | 10.65 340 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 95.82 105 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet-low-res | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
sosnet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uncertanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
Regformer | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ab-mvs-re | | | 7.91 338 | 10.55 341 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 94.94 304 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
uanet | | | 0.00 339 | 0.00 342 | 0.00 350 | 0.00 371 | 0.00 372 | 0.00 362 | 0.00 372 | 0.00 367 | 0.00 368 | 0.00 368 | 0.00 373 | 0.00 368 | 0.00 366 | 0.00 366 | 0.00 364 |
|
ZD-MVS | | | | | | 98.43 152 | 95.94 77 | | 98.56 156 | 90.72 267 | 96.66 202 | 97.07 216 | 95.02 137 | 99.74 72 | 91.08 244 | 98.93 219 | |
|
RE-MVS-def | | | | 97.88 47 | | 98.81 103 | 98.05 8 | 97.55 74 | 98.86 85 | 97.77 46 | 98.20 94 | 98.07 119 | 96.94 55 | | 95.49 110 | 99.20 183 | 99.26 115 |
|
IU-MVS | | | | | | 99.22 57 | 95.40 99 | | 98.14 208 | 85.77 314 | 98.36 75 | | | | 95.23 130 | 99.51 106 | 99.49 51 |
|
test_241102_TWO | | | | | | | | | 98.83 101 | 96.11 111 | 98.62 51 | 98.24 99 | 96.92 58 | 99.72 82 | 95.44 117 | 99.49 112 | 99.49 51 |
|
test_241102_ONE | | | | | | 99.22 57 | 95.35 103 | | 98.83 101 | 96.04 116 | 99.08 31 | 98.13 111 | 97.87 20 | 99.33 231 | | | |
|
9.14 | | | | 96.69 133 | | 98.53 139 | | 96.02 155 | 98.98 63 | 93.23 221 | 97.18 168 | 97.46 185 | 96.47 84 | 99.62 144 | 92.99 214 | 99.32 169 | |
|
save fliter | | | | | | 98.48 147 | 94.71 126 | 94.53 241 | 98.41 173 | 95.02 167 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 96.62 89 | 98.40 70 | 98.28 93 | 97.10 45 | 99.71 96 | 95.70 98 | 99.62 65 | 99.58 28 |
|
test0726 | | | | | | 99.24 52 | 95.51 94 | 96.89 111 | 98.89 76 | 95.92 125 | 98.64 50 | 98.31 86 | 97.06 50 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.06 266 |
|
test_part2 | | | | | | 99.03 91 | 96.07 72 | | | | 98.08 111 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 77.80 317 | | | | 98.06 266 |
|
sam_mvs | | | | | | | | | | | | | 77.38 321 | | | | |
|
MTGPA |  | | | | | | | | 98.73 124 | | | | | | | | |
|
test_post1 | | | | | | | | 94.98 223 | | | | 10.37 367 | 76.21 329 | 99.04 276 | 89.47 283 | | |
|
test_post | | | | | | | | | | | | 10.87 366 | 76.83 325 | 99.07 273 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 96.84 230 | 77.36 322 | 99.42 199 | | | |
|
MTMP | | | | | | | | 96.55 126 | 74.60 365 | | | | | | | | |
|
gm-plane-assit | | | | | | 91.79 360 | 71.40 364 | | | 81.67 337 | | 90.11 357 | | 98.99 282 | 84.86 332 | | |
|
test9_res | | | | | | | | | | | | | | | 91.29 239 | 98.89 224 | 99.00 164 |
|
TEST9 | | | | | | 97.84 214 | 95.23 108 | 93.62 277 | 98.39 176 | 86.81 304 | 93.78 292 | 95.99 277 | 94.68 146 | 99.52 174 | | | |
|
test_8 | | | | | | 97.81 218 | 95.07 116 | 93.54 280 | 98.38 178 | 87.04 302 | 93.71 296 | 95.96 281 | 94.58 151 | 99.52 174 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 90.34 272 | 98.90 221 | 99.10 152 |
|
agg_prior | | | | | | 97.80 222 | 94.96 118 | | 98.36 180 | | 93.49 305 | | | 99.53 170 | | | |
|
test_prior4 | | | | | | | 95.38 100 | 93.61 279 | | | | | | | | | |
|
test_prior2 | | | | | | | | 93.33 288 | | 94.21 194 | 94.02 287 | 96.25 265 | 93.64 175 | | 91.90 226 | 98.96 213 | |
|
旧先验2 | | | | | | | | 93.35 287 | | 77.95 354 | 95.77 245 | | | 98.67 314 | 90.74 258 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 93.43 282 | | | | | | | | | |
|
旧先验1 | | | | | | 97.80 222 | 93.87 158 | | 97.75 236 | | | 97.04 219 | 93.57 177 | | | 98.68 243 | 98.72 208 |
|
æ— å…ˆéªŒ | | | | | | | | 93.20 291 | 97.91 225 | 80.78 342 | | | | 99.40 210 | 87.71 304 | | 97.94 275 |
|
原ACMM2 | | | | | | | | 92.82 296 | | | | | | | | | |
|
test222 | | | | | | 98.17 179 | 93.24 180 | 92.74 300 | 97.61 251 | 75.17 357 | 94.65 270 | 96.69 242 | 90.96 230 | | | 98.66 246 | 97.66 288 |
|
testdata2 | | | | | | | | | | | | | | 99.46 189 | 87.84 303 | | |
|
segment_acmp | | | | | | | | | | | | | 95.34 126 | | | | |
|
testdata1 | | | | | | | | 92.77 297 | | 93.78 206 | | | | | | | |
|
plane_prior7 | | | | | | 98.70 119 | 94.67 130 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.38 155 | 94.37 140 | | | | | | 91.91 220 | | | | |
|
plane_prior5 | | | | | | | | | 98.75 120 | | | | | 99.46 189 | 92.59 219 | 99.20 183 | 99.28 110 |
|
plane_prior4 | | | | | | | | | | | | 96.77 236 | | | | | |
|
plane_prior3 | | | | | | | 94.51 134 | | | 95.29 155 | 96.16 228 | | | | | | |
|
plane_prior2 | | | | | | | | 96.50 128 | | 96.36 101 | | | | | | | |
|
plane_prior1 | | | | | | 98.49 145 | | | | | | | | | | | |
|
plane_prior | | | | | | | 94.29 142 | 95.42 188 | | 94.31 191 | | | | | | 98.93 219 | |
|
n2 | | | | | | | | | 0.00 372 | | | | | | | | |
|
nn | | | | | | | | | 0.00 372 | | | | | | | | |
|
door-mid | | | | | | | | | 98.17 204 | | | | | | | | |
|
test11 | | | | | | | | | 98.08 215 | | | | | | | | |
|
door | | | | | | | | | 97.81 234 | | | | | | | | |
|
HQP5-MVS | | | | | | | 92.47 195 | | | | | | | | | | |
|
HQP-NCC | | | | | | 97.85 210 | | 94.26 246 | | 93.18 224 | 92.86 318 | | | | | | |
|
ACMP_Plane | | | | | | 97.85 210 | | 94.26 246 | | 93.18 224 | 92.86 318 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 90.51 267 | | |
|
HQP4-MVS | | | | | | | | | | | 92.87 317 | | | 99.23 252 | | | 99.06 157 |
|
HQP3-MVS | | | | | | | | | 98.43 168 | | | | | | | 98.74 239 | |
|
HQP2-MVS | | | | | | | | | | | | | 90.33 237 | | | | |
|
NP-MVS | | | | | | 98.14 184 | 93.72 166 | | | | | 95.08 300 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 57.28 367 | 94.89 226 | | 80.59 343 | 94.02 287 | | 78.66 314 | | 85.50 326 | | 97.82 281 |
|
MDTV_nov1_ep13 | | | | 91.28 291 | | 94.31 339 | 73.51 361 | 94.80 231 | 93.16 324 | 86.75 306 | 93.45 308 | 97.40 189 | 76.37 327 | 98.55 324 | 88.85 291 | 96.43 320 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 101 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.55 90 | |
|
Test By Simon | | | | | | | | | | | | | 94.51 154 | | | | |
|