This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22799.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu96.81 15096.09 18598.99 1096.90 32398.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26894.37 20699.33 19099.17 150
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
X-MVStestdata92.86 30290.83 32998.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 40496.49 9699.72 8895.66 13399.37 17499.45 86
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
HPM-MVS++copyleft96.99 13496.38 17498.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28294.71 19599.31 19598.52 247
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 27098.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 28398.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
LS3D97.77 8697.50 10998.57 4796.24 33597.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EGC-MVSNET83.08 37077.93 37398.53 5099.57 2097.55 2698.33 3898.57 1794.71 40610.38 40798.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
CPTT-MVS96.69 15996.08 18698.49 5298.89 12296.64 5597.25 10898.77 14192.89 26096.01 26797.13 24592.23 22699.67 13092.24 25899.34 18599.17 150
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24399.83 3398.47 3099.90 2499.64 35
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26799.90 1498.64 2699.90 2499.82 6
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft97.00 13396.53 16698.41 5998.55 16596.31 6696.32 16498.77 14192.96 25997.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
DeepPCF-MVS94.58 596.90 14296.43 17198.31 6797.48 28997.23 4092.56 33898.60 17392.84 26198.54 8397.40 22496.64 8898.78 32294.40 20599.41 17098.93 195
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35794.87 18496.41 35699.07 173
h-mvs3396.29 17795.63 20798.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31999.78 4895.89 12196.17 36398.89 203
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35894.27 21098.13 29898.93 195
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
PHI-MVS96.96 13896.53 16698.25 7397.48 28996.50 5996.76 13898.85 11793.52 23196.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29795.99 11599.45 15498.61 239
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
NCCC96.52 16895.99 19098.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28691.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28691.41 27299.42 16698.91 199
N_pmnet95.18 22594.23 26198.06 8897.85 23996.55 5892.49 33991.63 36989.34 31398.09 13697.41 22390.33 25899.06 29691.58 27199.31 19598.56 242
F-COLMAP95.30 22094.38 25898.05 9298.64 15096.04 7595.61 21898.66 16589.00 31993.22 34596.40 29292.90 20599.35 24187.45 34697.53 32798.77 220
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
CNVR-MVS96.92 14096.55 16398.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25498.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26899.84 3098.43 3299.91 1899.62 36
OMC-MVS96.48 17096.00 18997.91 10098.30 19096.01 7894.86 26198.60 17391.88 27997.18 19497.21 24296.11 11599.04 29890.49 30299.34 18598.69 230
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
train_agg95.46 21394.66 24097.88 10397.84 24495.23 11593.62 31098.39 19887.04 34193.78 32695.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34890.97 28298.90 24498.34 266
CDPH-MVS95.45 21494.65 24197.84 10698.28 19394.96 12693.73 30898.33 20685.03 36495.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
hse-mvs295.77 19895.09 21997.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31999.54 17795.89 12196.92 34098.32 267
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
MAR-MVS94.21 26893.03 28797.76 11096.94 32197.44 3396.97 12597.15 28587.89 33692.00 36692.73 36792.14 22899.12 28683.92 37297.51 32896.73 359
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS93.95 27992.69 29897.74 11197.80 25295.38 10595.57 22195.46 32791.26 29092.64 35996.10 30774.67 36699.55 17493.72 23296.97 33998.30 271
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21999.58 16396.02 11299.49 14299.12 163
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28699.71 10493.10 24899.72 7299.38 107
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
HQP_MVS96.66 16196.33 17797.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23799.46 20092.59 25499.20 20899.28 128
EPP-MVSNet96.84 14596.58 16097.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28399.85 2793.85 22799.40 17199.32 116
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 35191.21 27899.25 20399.14 156
MM96.87 14496.62 15697.62 12097.72 26993.30 18696.39 15692.61 36197.90 5296.76 22898.64 9390.46 25599.81 3799.16 999.94 899.76 17
MVS_111021_LR96.82 14996.55 16397.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32794.80 18799.34 18598.78 217
UGNet96.81 15096.56 16297.58 12296.64 32693.84 16897.75 7797.12 28796.47 11293.62 33398.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
MCST-MVS96.24 17995.80 20097.56 12398.75 13794.13 15894.66 26998.17 22790.17 30696.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27499.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27499.73 8394.60 19799.44 15599.30 121
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
PLCcopyleft91.02 1694.05 27592.90 29097.51 12898.00 22995.12 12394.25 28198.25 21386.17 35091.48 37195.25 32991.01 24799.19 27485.02 36796.69 35198.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
alignmvs96.01 18995.52 21097.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 31099.40 22296.22 10298.73 26598.40 256
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
TSAR-MVS + GP.96.47 17196.12 18397.49 13597.74 26795.23 11594.15 28896.90 29593.26 24098.04 14496.70 27594.41 17198.89 31394.77 19199.14 21698.37 260
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
test1297.46 13897.61 28094.07 15997.78 25993.57 33693.31 19699.42 21198.78 25898.89 203
DeepC-MVS_fast94.34 796.74 15396.51 16897.44 14097.69 27194.15 15796.02 18798.43 19193.17 24997.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
Anonymous20240521196.34 17695.98 19197.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29899.53 17994.06 21899.07 22898.92 198
pmmvs-eth3d96.49 16996.18 18297.42 14398.25 19794.29 15094.77 26598.07 24489.81 31097.97 15198.33 12393.11 19999.08 29495.46 14899.84 4098.89 203
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29399.62 15195.13 17299.09 22599.35 115
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
Fast-Effi-MVS+-dtu96.44 17296.12 18397.39 14697.18 31194.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 286
LF4IMVS96.07 18595.63 20797.36 14798.19 20495.55 9495.44 22498.82 13492.29 27395.70 28196.55 28292.63 21498.69 33391.75 27099.33 19097.85 311
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31896.38 9699.50 13996.98 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
canonicalmvs97.23 12697.21 12497.30 15097.65 27794.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
MVS_030496.62 16396.40 17397.28 15197.91 23592.30 21096.47 15489.74 38897.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23699.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
MVS_111021_HR96.73 15596.54 16597.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30494.87 18499.27 20199.15 153
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28499.89 1898.01 4099.76 5999.54 54
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
新几何197.25 15598.29 19194.70 13397.73 26177.98 39494.83 30296.67 27792.08 23199.45 20488.17 33598.65 27397.61 326
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 30399.27 2999.33 2794.04 17996.03 39597.14 7397.83 31099.78 11
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22898.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
TAMVS95.49 20994.94 22497.16 15998.31 18993.41 18495.07 25196.82 29891.09 29297.51 17597.82 19389.96 26499.42 21188.42 33199.44 15598.64 234
CDS-MVSNet94.88 23894.12 26697.14 16197.64 27893.57 17893.96 30097.06 29090.05 30796.30 25396.55 28286.10 30499.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22998.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24298.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 35298.67 2597.45 33296.48 365
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29992.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30292.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
mvsany_test396.21 18095.93 19597.05 16997.40 29794.33 14995.76 20694.20 34189.10 31699.36 2499.60 693.97 18297.85 37795.40 15698.63 27498.99 185
lessismore_v097.05 16999.36 5192.12 21984.07 40198.77 6998.98 5885.36 31199.74 7797.34 6699.37 17499.30 121
TAPA-MVS93.32 1294.93 23594.23 26197.04 17198.18 20794.51 14195.22 24398.73 14881.22 38396.25 25695.95 31393.80 18798.98 30689.89 31098.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet93.72 28292.62 30197.03 17287.61 40992.25 21296.27 16691.28 37396.74 9787.65 39597.39 22885.00 31399.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.61 25393.81 27497.02 17398.19 20495.72 8693.66 30997.23 28188.17 33294.94 30095.62 32291.43 24098.57 34587.36 34797.68 32096.76 358
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v396.44 17296.28 17896.95 17599.41 4391.53 23397.65 8490.31 38398.89 2098.93 5099.36 2184.57 31799.92 597.81 4799.56 11299.39 105
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 307
MVP-Stereo95.69 20095.28 21296.92 17898.15 21493.03 19395.64 21798.20 22190.39 30296.63 23697.73 20291.63 23999.10 29291.84 26697.31 33698.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP-MVS95.17 22794.58 24996.92 17897.85 23992.47 20794.26 27898.43 19193.18 24692.86 35295.08 33190.33 25899.23 27090.51 30098.74 26299.05 177
HyFIR lowres test93.72 28292.65 29996.91 18098.93 11791.81 23091.23 36798.52 18282.69 37696.46 24496.52 28680.38 34099.90 1490.36 30498.79 25799.03 178
VNet96.84 14596.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22499.54 17794.73 19398.96 23799.08 171
FMVSNet296.72 15696.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27499.65 13894.99 18199.60 10299.07 173
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
EIA-MVS96.04 18795.77 20296.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32891.69 38095.68 13299.67 13094.18 21398.85 25197.91 306
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 29498.76 7099.66 394.03 18097.90 37699.24 699.68 8399.81 8
ETV-MVS96.13 18495.90 19696.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38696.36 10699.72 8893.36 23998.83 25496.85 352
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
DP-MVS Recon95.55 20795.13 21796.80 18798.51 17193.99 16394.60 27198.69 15890.20 30595.78 27796.21 30092.73 21098.98 30690.58 29898.86 25097.42 335
QAPM95.88 19495.57 20996.80 18797.90 23791.84 22998.18 5398.73 14888.41 32796.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
CMPMVSbinary73.10 2392.74 30491.39 31696.77 19093.57 39594.67 13494.21 28597.67 26480.36 38793.61 33496.60 28082.85 32897.35 38384.86 36898.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Fast-Effi-MVS+95.49 20995.07 22096.75 19197.67 27592.82 19694.22 28498.60 17391.61 28393.42 34292.90 36296.73 8499.70 11292.60 25397.89 30997.74 319
CNLPA95.04 23194.47 25496.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26198.35 36486.72 35398.76 26096.64 360
Effi-MVS+96.19 18196.01 18896.71 19397.43 29592.19 21896.12 18099.10 5195.45 16493.33 34494.71 34097.23 5199.56 17093.21 24697.54 32698.37 260
pmmvs494.82 24094.19 26496.70 19497.42 29692.75 20192.09 35296.76 30086.80 34695.73 28097.22 24189.28 27798.89 31393.28 24399.14 21698.46 254
CLD-MVS95.47 21295.07 22096.69 19598.27 19592.53 20491.36 36198.67 16391.22 29195.78 27794.12 35095.65 13498.98 30690.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
LFMVS95.32 21994.88 23096.62 19798.03 22291.47 23597.65 8490.72 37999.11 997.89 15898.31 12579.20 34399.48 19593.91 22699.12 22198.93 195
ab-mvs96.59 16496.59 15996.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 287
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 35493.49 33896.43 28992.47 22399.38 22987.66 34098.62 27598.23 278
AdaColmapbinary95.11 22894.62 24596.58 20097.33 30494.45 14494.92 25898.08 24093.15 25093.98 32495.53 32594.34 17399.10 29285.69 35898.61 27696.20 370
PCF-MVS89.43 1892.12 31590.64 33296.57 20297.80 25293.48 18189.88 38698.45 18874.46 39996.04 26695.68 31990.71 25299.31 24973.73 39899.01 23596.91 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29894.05 22099.35 18298.95 189
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet593.39 29392.35 30396.50 20595.83 35590.81 24897.31 10598.27 21192.74 26396.27 25498.28 13462.23 39599.67 13090.86 28599.36 17799.03 178
CANet95.86 19595.65 20696.49 20696.41 33290.82 24694.36 27698.41 19594.94 18692.62 36196.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
test20.0396.58 16696.61 15896.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 33090.78 28999.66 8799.00 182
UnsupCasMVSNet_eth95.91 19395.73 20396.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27398.69 33394.43 20294.61 38199.13 158
iter_conf_final94.54 25793.91 27396.43 20997.23 30990.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38899.72 8896.73 8599.77 5899.18 149
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
DPM-MVS93.68 28492.77 29796.42 21197.91 23592.54 20391.17 36897.47 27784.99 36693.08 34894.74 33989.90 26599.00 30287.54 34398.09 30097.72 320
PVSNet_Blended_VisFu95.95 19195.80 20096.42 21199.28 5890.62 25095.31 23899.08 5788.40 32896.97 21598.17 15192.11 22999.78 4893.64 23499.21 20798.86 210
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 39695.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Patchmtry95.03 23394.59 24896.33 21594.83 37890.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 35099.38 22992.95 25199.62 9398.80 215
OpenMVScopyleft94.22 895.48 21195.20 21496.32 21697.16 31291.96 22697.74 7998.84 12087.26 33894.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 338
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
PMMVS92.39 30891.08 32396.30 21893.12 39792.81 19790.58 37795.96 31479.17 39191.85 36892.27 37290.29 26298.66 33889.85 31196.68 35297.43 334
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
1112_ss94.12 27193.42 28096.23 21998.59 16090.85 24594.24 28298.85 11785.49 35792.97 35094.94 33586.01 30599.64 14291.78 26897.92 30698.20 281
FMVSNet395.26 22294.94 22496.22 22196.53 32990.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34199.63 14694.60 19799.44 15598.96 188
114514_t93.96 27793.22 28496.19 22299.06 10290.97 24495.99 19098.94 9673.88 40093.43 34196.93 25992.38 22599.37 23489.09 32199.28 19998.25 277
CHOSEN 1792x268894.10 27293.41 28196.18 22399.16 8390.04 25792.15 34998.68 16079.90 38896.22 25797.83 19087.92 29299.42 21189.18 32099.65 8899.08 171
test_fmvs296.38 17596.45 17096.16 22497.85 23991.30 23896.81 13399.45 1889.24 31598.49 8899.38 1888.68 28197.62 38198.83 1899.32 19299.57 47
v119296.83 14897.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
v114496.84 14597.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
UnsupCasMVSNet_bld94.72 24694.26 26096.08 22798.62 15690.54 25493.38 31898.05 24690.30 30397.02 21096.80 27089.54 27199.16 28088.44 33096.18 36298.56 242
v14419296.69 15996.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25298.09 13698.29 13392.51 22299.70 11298.11 3699.56 11299.47 80
v192192096.72 15696.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24298.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
DELS-MVS96.17 18296.23 17995.99 22997.55 28590.04 25792.38 34798.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU94.65 25194.21 26395.96 23195.90 35089.68 26293.92 30197.83 25793.19 24590.12 38295.64 32188.52 28299.57 16993.27 24499.47 14898.62 237
PAPM_NR94.61 25394.17 26595.96 23198.36 18791.23 23995.93 19797.95 24792.98 25593.42 34294.43 34790.53 25398.38 36187.60 34196.29 36098.27 275
v2v48296.78 15297.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
PMVScopyleft89.60 1796.71 15896.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38989.59 31499.36 17793.12 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSDG95.33 21895.13 21795.94 23597.40 29791.85 22891.02 37298.37 20195.30 17196.31 25295.99 30994.51 16998.38 36189.59 31497.65 32397.60 327
v124096.74 15397.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 25098.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
Anonymous2023120695.27 22195.06 22295.88 23798.72 14089.37 26895.70 20897.85 25388.00 33496.98 21497.62 20991.95 23499.34 24389.21 31999.53 12598.94 191
Vis-MVSNet (Re-imp)95.11 22894.85 23195.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32399.48 19588.42 33199.67 8598.97 187
CL-MVSNet_self_test95.04 23194.79 23795.82 23997.51 28789.79 26191.14 36996.82 29893.05 25296.72 22996.40 29290.82 25099.16 28091.95 26298.66 27198.50 250
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21799.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 27099.79 4598.09 3799.93 1199.30 121
EI-MVSNet96.63 16296.93 14095.74 24297.26 30788.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21799.58 16396.91 8199.56 11299.50 63
MDA-MVSNet-bldmvs95.69 20095.67 20495.74 24298.48 17788.76 28292.84 32897.25 28096.00 13597.59 17197.95 17991.38 24199.46 20093.16 24796.35 35898.99 185
sss94.22 26693.72 27595.74 24297.71 27089.95 25993.84 30396.98 29288.38 32993.75 32995.74 31787.94 28898.89 31391.02 28198.10 29998.37 260
testdata95.70 24598.16 21290.58 25197.72 26280.38 38695.62 28297.02 25392.06 23298.98 30689.06 32398.52 28197.54 330
test_f95.82 19795.88 19895.66 24697.61 28093.21 19195.61 21898.17 22786.98 34398.42 9699.47 1190.46 25594.74 39897.71 5398.45 28599.03 178
test_yl94.40 26194.00 26995.59 24796.95 31989.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33699.18 27590.75 29097.77 31198.07 289
DCV-MVSNet94.40 26194.00 26995.59 24796.95 31989.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33699.18 27590.75 29097.77 31198.07 289
tttt051793.31 29592.56 30295.57 24998.71 14387.86 30097.44 10087.17 39695.79 14897.47 18196.84 26564.12 39299.81 3796.20 10399.32 19299.02 181
MSLP-MVS++96.42 17496.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 37495.28 15899.02 23398.05 296
thisisatest053092.71 30591.76 31395.56 25198.42 18388.23 28996.03 18687.35 39594.04 21796.56 23995.47 32664.03 39399.77 5794.78 19099.11 22298.68 233
patch_mono-296.59 16496.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
Test_1112_low_res93.53 29092.86 29195.54 25398.60 15888.86 27892.75 33198.69 15882.66 37792.65 35896.92 26184.75 31599.56 17090.94 28397.76 31398.19 282
pmmvs594.63 25294.34 25995.50 25497.63 27988.34 28794.02 29497.13 28687.15 34095.22 29297.15 24487.50 29499.27 26193.99 22299.26 20298.88 207
MVSFormer96.14 18396.36 17595.49 25597.68 27287.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29999.92 598.73 2299.13 21898.74 223
ET-MVSNet_ETH3D91.12 32889.67 34095.47 25696.41 33289.15 27391.54 35990.23 38489.07 31786.78 39992.84 36469.39 38699.44 20794.16 21496.61 35397.82 313
iter_conf0593.65 28693.05 28595.46 25796.13 34687.45 31095.95 19698.22 21792.66 26597.04 20897.89 18563.52 39499.72 8896.19 10499.82 4799.21 141
diffmvspermissive96.04 18796.23 17995.46 25797.35 30088.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.58 16696.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
OpenMVS_ROBcopyleft91.80 1493.64 28793.05 28595.42 25997.31 30691.21 24095.08 25096.68 30581.56 38096.88 22196.41 29090.44 25799.25 26485.39 36397.67 32195.80 374
jason94.39 26394.04 26895.41 26198.29 19187.85 30292.74 33396.75 30185.38 36195.29 29096.15 30288.21 28799.65 13894.24 21199.34 18598.74 223
jason: jason.
API-MVS95.09 23095.01 22395.31 26296.61 32794.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 36385.70 35798.52 28193.52 391
PVSNet_BlendedMVS95.02 23494.93 22695.27 26397.79 25787.40 31294.14 29098.68 16088.94 32094.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
lupinMVS93.77 28093.28 28295.24 26497.68 27287.81 30392.12 35096.05 31084.52 37094.48 31095.06 33386.90 29999.63 14693.62 23599.13 21898.27 275
D2MVS95.18 22595.17 21695.21 26597.76 26287.76 30594.15 28897.94 24889.77 31196.99 21297.68 20687.45 29599.14 28295.03 17899.81 4898.74 223
Patchmatch-RL test94.66 25094.49 25295.19 26698.54 16788.91 27692.57 33798.74 14791.46 28698.32 11197.75 19977.31 35598.81 32096.06 10799.61 9997.85 311
WTY-MVS93.55 28993.00 28995.19 26697.81 24887.86 30093.89 30296.00 31289.02 31894.07 31995.44 32886.27 30399.33 24587.69 33996.82 34698.39 258
test_vis1_rt94.03 27693.65 27695.17 26895.76 36093.42 18393.97 29998.33 20684.68 36893.17 34695.89 31592.53 22194.79 39793.50 23794.97 37797.31 339
FE-MVS92.95 30192.22 30595.11 26997.21 31088.33 28898.54 2393.66 34789.91 30996.21 25898.14 15270.33 38499.50 18787.79 33798.24 29497.51 331
JIA-IIPM91.79 32190.69 33195.11 26993.80 39290.98 24394.16 28791.78 36896.38 11390.30 38099.30 2872.02 37898.90 31288.28 33390.17 39495.45 380
MIMVSNet93.42 29292.86 29195.10 27198.17 21088.19 29098.13 5593.69 34492.07 27495.04 29898.21 14780.95 33899.03 30181.42 38298.06 30198.07 289
PAPR92.22 31291.27 32095.07 27295.73 36288.81 27991.97 35397.87 25285.80 35590.91 37392.73 36791.16 24498.33 36579.48 38795.76 37098.08 287
MVSTER94.21 26893.93 27295.05 27395.83 35586.46 32695.18 24597.65 26892.41 27197.94 15498.00 17572.39 37799.58 16396.36 9799.56 11299.12 163
test_vis1_n95.67 20295.89 19795.03 27498.18 20789.89 26096.94 12699.28 2888.25 33198.20 12298.92 6686.69 30297.19 38497.70 5598.82 25598.00 301
cl____94.73 24294.64 24295.01 27595.85 35487.00 31991.33 36398.08 24093.34 23797.10 20097.33 23584.01 32299.30 25295.14 17099.56 11298.71 229
DIV-MVS_self_test94.73 24294.64 24295.01 27595.86 35387.00 31991.33 36398.08 24093.34 23797.10 20097.34 23484.02 32199.31 24995.15 16999.55 11898.72 226
test_fmvs1_n95.21 22395.28 21294.99 27798.15 21489.13 27496.81 13399.43 2086.97 34497.21 19198.92 6683.00 32797.13 38598.09 3798.94 24098.72 226
FA-MVS(test-final)94.91 23694.89 22994.99 27797.51 28788.11 29698.27 4495.20 33192.40 27296.68 23198.60 9683.44 32499.28 25893.34 24098.53 28097.59 328
TinyColmap96.00 19096.34 17694.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33690.52 29999.42 16698.30 271
PVSNet_Blended93.96 27793.65 27694.91 28097.79 25787.40 31291.43 36098.68 16084.50 37194.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 299
BH-RMVSNet94.56 25594.44 25794.91 28097.57 28287.44 31193.78 30796.26 30893.69 22796.41 24696.50 28792.10 23099.00 30285.96 35597.71 31798.31 269
RPMNet94.68 24994.60 24694.90 28295.44 36788.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34299.76 6295.69 13095.81 36696.81 356
HY-MVS91.43 1592.58 30691.81 31194.90 28296.49 33088.87 27797.31 10594.62 33685.92 35390.50 37796.84 26585.05 31299.40 22283.77 37595.78 36996.43 366
GA-MVS92.83 30392.15 30794.87 28496.97 31887.27 31590.03 38196.12 30991.83 28094.05 32094.57 34176.01 36298.97 31092.46 25797.34 33598.36 265
miper_lstm_enhance94.81 24194.80 23694.85 28596.16 34186.45 32791.14 36998.20 22193.49 23297.03 20997.37 23284.97 31499.26 26295.28 15899.56 11298.83 212
IterMVS-SCA-FT95.86 19596.19 18194.85 28597.68 27285.53 33692.42 34497.63 27296.99 8998.36 10498.54 10287.94 28899.75 6897.07 7799.08 22699.27 132
c3_l95.20 22495.32 21194.83 28796.19 33986.43 32891.83 35698.35 20593.47 23397.36 18597.26 23988.69 28099.28 25895.41 15599.36 17798.78 217
testgi96.07 18596.50 16994.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 38288.68 32898.74 26299.11 166
mvsany_test193.47 29193.03 28794.79 28994.05 39092.12 21990.82 37490.01 38785.02 36597.26 18898.28 13493.57 19197.03 38692.51 25695.75 37195.23 382
CR-MVSNet93.29 29692.79 29494.78 29095.44 36788.15 29296.18 17497.20 28284.94 36794.10 31798.57 9877.67 35099.39 22695.17 16595.81 36696.81 356
eth_miper_zixun_eth94.89 23794.93 22694.75 29195.99 34886.12 33191.35 36298.49 18593.40 23497.12 19897.25 24086.87 30199.35 24195.08 17598.82 25598.78 217
MVS_Test96.27 17896.79 15094.73 29296.94 32186.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30898.30 271
miper_ehance_all_eth94.69 24794.70 23994.64 29395.77 35986.22 33091.32 36598.24 21591.67 28197.05 20796.65 27888.39 28599.22 27294.88 18398.34 28998.49 251
Patchmatch-test93.60 28893.25 28394.63 29496.14 34587.47 30996.04 18594.50 33893.57 23096.47 24396.97 25676.50 35898.61 34290.67 29698.41 28897.81 315
baseline193.14 29992.64 30094.62 29597.34 30287.20 31696.67 14893.02 35394.71 19396.51 24295.83 31681.64 33198.60 34490.00 30988.06 39898.07 289
xiu_mvs_v1_base_debu95.62 20495.96 19294.60 29698.01 22588.42 28493.99 29698.21 21892.98 25595.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 376
xiu_mvs_v1_base95.62 20495.96 19294.60 29698.01 22588.42 28493.99 29698.21 21892.98 25595.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 376
xiu_mvs_v1_base_debi95.62 20495.96 19294.60 29698.01 22588.42 28493.99 29698.21 21892.98 25595.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 376
MS-PatchMatch94.83 23994.91 22894.57 29996.81 32487.10 31894.23 28397.34 27988.74 32397.14 19697.11 24791.94 23598.23 37092.99 24997.92 30698.37 260
USDC94.56 25594.57 25194.55 30097.78 26086.43 32892.75 33198.65 17085.96 35296.91 21997.93 18290.82 25098.74 32690.71 29499.59 10498.47 252
BH-untuned94.69 24794.75 23894.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 31187.60 34196.74 34997.09 342
dmvs_re92.08 31791.27 32094.51 30297.16 31292.79 20095.65 21492.64 36094.11 21492.74 35590.98 38783.41 32594.44 40080.72 38494.07 38496.29 368
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
cl2293.25 29792.84 29394.46 30494.30 38486.00 33291.09 37196.64 30690.74 29595.79 27596.31 29678.24 34798.77 32394.15 21598.34 28998.62 237
MDA-MVSNet_test_wron94.73 24294.83 23494.42 30597.48 28985.15 34390.28 38095.87 31692.52 26797.48 17997.76 19691.92 23699.17 27993.32 24196.80 34898.94 191
YYNet194.73 24294.84 23294.41 30697.47 29385.09 34590.29 37995.85 31792.52 26797.53 17397.76 19691.97 23399.18 27593.31 24296.86 34398.95 189
ADS-MVSNet291.47 32690.51 33494.36 30795.51 36585.63 33495.05 25395.70 31883.46 37492.69 35696.84 26579.15 34499.41 22085.66 35990.52 39298.04 297
test_cas_vis1_n_192095.34 21795.67 20494.35 30898.21 20186.83 32395.61 21899.26 2990.45 30198.17 12798.96 6184.43 31898.31 36696.74 8499.17 21397.90 307
new_pmnet92.34 31091.69 31494.32 30996.23 33789.16 27292.27 34892.88 35584.39 37395.29 29096.35 29585.66 30896.74 39384.53 37097.56 32597.05 343
MG-MVS94.08 27494.00 26994.32 30997.09 31585.89 33393.19 32495.96 31492.52 26794.93 30197.51 21789.54 27198.77 32387.52 34597.71 31798.31 269
PatchT93.75 28193.57 27894.29 31195.05 37587.32 31496.05 18492.98 35497.54 7094.25 31398.72 8375.79 36399.24 26895.92 11995.81 36696.32 367
test_fmvs194.51 25994.60 24694.26 31295.91 34987.92 29895.35 23499.02 7486.56 34896.79 22398.52 10382.64 32997.00 38897.87 4498.71 26697.88 309
miper_enhance_ethall93.14 29992.78 29694.20 31393.65 39385.29 34089.97 38297.85 25385.05 36396.15 26394.56 34285.74 30799.14 28293.74 23098.34 28998.17 284
IterMVS95.42 21595.83 19994.20 31397.52 28683.78 36092.41 34597.47 27795.49 16398.06 14198.49 10687.94 28899.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051590.43 33489.18 34694.17 31597.07 31685.44 33789.75 38787.58 39488.28 33093.69 33291.72 37965.27 39199.58 16390.59 29798.67 26997.50 333
testing389.72 34488.26 35394.10 31697.66 27684.30 35694.80 26288.25 39394.66 19495.07 29492.51 37041.15 41199.43 20991.81 26798.44 28698.55 244
ECVR-MVScopyleft94.37 26494.48 25394.05 31798.95 11383.10 36398.31 3982.48 40496.20 12298.23 12099.16 4381.18 33599.66 13695.95 11799.83 4399.38 107
test_vis1_n_192095.77 19896.41 17293.85 31898.55 16584.86 34895.91 19999.71 492.72 26497.67 16998.90 7087.44 29698.73 32797.96 4198.85 25197.96 303
thres600view792.03 31891.43 31593.82 31998.19 20484.61 35196.27 16690.39 38096.81 9596.37 24893.11 35573.44 37599.49 19280.32 38597.95 30597.36 336
FPMVS89.92 34188.63 34993.82 31998.37 18696.94 4591.58 35893.34 35188.00 33490.32 37997.10 24870.87 38291.13 40371.91 40196.16 36493.39 393
test111194.53 25894.81 23593.72 32199.06 10281.94 37398.31 3983.87 40296.37 11498.49 8899.17 4281.49 33299.73 8396.64 8699.86 3199.49 71
thres40091.68 32391.00 32493.71 32298.02 22384.35 35495.70 20890.79 37796.26 11995.90 27392.13 37573.62 37299.42 21178.85 39097.74 31497.36 336
IB-MVS85.98 2088.63 35486.95 36493.68 32395.12 37484.82 35090.85 37390.17 38587.55 33788.48 39291.34 38358.01 39699.59 16187.24 34993.80 38696.63 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EU-MVSNet94.25 26594.47 25493.60 32498.14 21682.60 36897.24 11092.72 35885.08 36298.48 9098.94 6482.59 33098.76 32597.47 6399.53 12599.44 96
TR-MVS92.54 30792.20 30693.57 32596.49 33086.66 32493.51 31494.73 33589.96 30894.95 29993.87 35190.24 26398.61 34281.18 38394.88 37895.45 380
cascas91.89 32091.35 31793.51 32694.27 38585.60 33588.86 39198.61 17279.32 39092.16 36591.44 38289.22 27898.12 37390.80 28897.47 33196.82 355
ppachtmachnet_test94.49 26094.84 23293.46 32796.16 34182.10 37090.59 37697.48 27690.53 30097.01 21197.59 21191.01 24799.36 23793.97 22499.18 21298.94 191
pmmvs390.00 33888.90 34893.32 32894.20 38885.34 33891.25 36692.56 36278.59 39293.82 32595.17 33067.36 39098.69 33389.08 32298.03 30295.92 371
EPNet_dtu91.39 32790.75 33093.31 32990.48 40682.61 36794.80 26292.88 35593.39 23581.74 40394.90 33881.36 33499.11 28988.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90091.76 32291.26 32293.26 33098.21 20184.50 35296.39 15690.39 38096.87 9396.33 24993.08 35973.44 37599.42 21178.85 39097.74 31495.85 372
baseline289.65 34688.44 35293.25 33195.62 36382.71 36593.82 30485.94 39988.89 32187.35 39792.54 36971.23 38099.33 24586.01 35494.60 38297.72 320
DSMNet-mixed92.19 31391.83 31093.25 33196.18 34083.68 36196.27 16693.68 34676.97 39792.54 36299.18 3989.20 27998.55 34883.88 37398.60 27897.51 331
ETVMVS87.62 36285.75 36993.22 33396.15 34483.26 36292.94 32790.37 38291.39 28790.37 37888.45 39651.93 40898.64 33973.76 39796.38 35797.75 318
tfpn200view991.55 32491.00 32493.21 33498.02 22384.35 35495.70 20890.79 37796.26 11995.90 27392.13 37573.62 37299.42 21178.85 39097.74 31495.85 372
mvs_anonymous95.36 21696.07 18793.21 33496.29 33481.56 37594.60 27197.66 26693.30 23996.95 21698.91 6993.03 20399.38 22996.60 8897.30 33798.69 230
our_test_394.20 27094.58 24993.07 33696.16 34181.20 37890.42 37896.84 29690.72 29697.14 19697.13 24590.47 25499.11 28994.04 22198.25 29398.91 199
testing9189.67 34588.55 35093.04 33795.90 35081.80 37492.71 33593.71 34393.71 22590.18 38190.15 39257.11 39799.22 27287.17 35096.32 35998.12 285
ADS-MVSNet90.95 33290.26 33693.04 33795.51 36582.37 36995.05 25393.41 35083.46 37492.69 35696.84 26579.15 34498.70 33185.66 35990.52 39298.04 297
PAPM87.64 36185.84 36893.04 33796.54 32884.99 34688.42 39295.57 32479.52 38983.82 40093.05 36180.57 33998.41 35862.29 40492.79 38895.71 375
PS-MVSNAJ94.10 27294.47 25493.00 34097.35 30084.88 34791.86 35597.84 25591.96 27794.17 31592.50 37195.82 12499.71 10491.27 27597.48 32994.40 387
xiu_mvs_v2_base94.22 26694.63 24492.99 34197.32 30584.84 34992.12 35097.84 25591.96 27794.17 31593.43 35396.07 11699.71 10491.27 27597.48 32994.42 386
SCA93.38 29493.52 27992.96 34296.24 33581.40 37793.24 32294.00 34291.58 28594.57 30696.97 25687.94 28899.42 21189.47 31697.66 32298.06 293
new-patchmatchnet95.67 20296.58 16092.94 34397.48 28980.21 38392.96 32698.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
testing22287.35 36485.50 37192.93 34495.79 35782.83 36492.40 34690.10 38692.80 26288.87 39089.02 39548.34 40998.70 33175.40 39696.74 34997.27 340
Syy-MVS92.09 31691.80 31292.93 34495.19 37282.65 36692.46 34191.35 37190.67 29891.76 36987.61 39885.64 30998.50 35294.73 19396.84 34497.65 323
test0.0.03 190.11 33689.21 34392.83 34693.89 39186.87 32291.74 35788.74 39292.02 27594.71 30491.14 38573.92 36994.48 39983.75 37692.94 38797.16 341
testing1188.93 35187.63 35992.80 34795.87 35281.49 37692.48 34091.54 37091.62 28288.27 39390.24 39055.12 40699.11 28987.30 34896.28 36197.81 315
thres20091.00 33190.42 33592.77 34897.47 29383.98 35994.01 29591.18 37595.12 17995.44 28691.21 38473.93 36899.31 24977.76 39397.63 32495.01 383
BH-w/o92.14 31491.94 30892.73 34997.13 31485.30 33992.46 34195.64 32089.33 31494.21 31492.74 36689.60 26998.24 36981.68 38194.66 38094.66 385
testing9989.21 34988.04 35592.70 35095.78 35881.00 38092.65 33692.03 36493.20 24489.90 38590.08 39455.25 40399.14 28287.54 34395.95 36597.97 302
131492.38 30992.30 30492.64 35195.42 36985.15 34395.86 20196.97 29385.40 36090.62 37493.06 36091.12 24597.80 37986.74 35295.49 37494.97 384
SSC-MVS95.92 19297.03 13492.58 35299.28 5878.39 38896.68 14695.12 33298.90 1999.11 3998.66 8991.36 24299.68 12495.00 17999.16 21499.67 28
KD-MVS_2432*160088.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32191.35 28895.06 29593.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
miper_refine_blended88.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32191.35 28895.06 29593.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
MVS90.02 33789.20 34492.47 35594.71 37986.90 32195.86 20196.74 30264.72 40290.62 37492.77 36592.54 21998.39 36079.30 38895.56 37392.12 395
PMMVS293.66 28594.07 26792.45 35697.57 28280.67 38186.46 39496.00 31293.99 21897.10 20097.38 23089.90 26597.82 37888.76 32599.47 14898.86 210
CHOSEN 280x42089.98 33989.19 34592.37 35795.60 36481.13 37986.22 39597.09 28881.44 38287.44 39693.15 35473.99 36799.47 19788.69 32799.07 22896.52 364
PatchmatchNetpermissive91.98 31991.87 30992.30 35894.60 38179.71 38495.12 24693.59 34989.52 31293.61 33497.02 25377.94 34899.18 27590.84 28694.57 38398.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gg-mvs-nofinetune88.28 35786.96 36392.23 35992.84 40084.44 35398.19 5274.60 40799.08 1087.01 39899.47 1156.93 39898.23 37078.91 38995.61 37294.01 389
WB-MVSnew91.50 32591.29 31892.14 36094.85 37780.32 38293.29 32188.77 39188.57 32694.03 32192.21 37392.56 21698.28 36880.21 38697.08 33897.81 315
WB-MVS95.50 20896.62 15692.11 36199.21 7677.26 39696.12 18095.40 32998.62 2698.84 5998.26 13991.08 24699.50 18793.37 23898.70 26799.58 40
test250689.86 34289.16 34791.97 36298.95 11376.83 39798.54 2361.07 41196.20 12297.07 20699.16 4355.19 40599.69 11996.43 9599.83 4399.38 107
myMVS_eth3d87.16 36785.61 37091.82 36395.19 37279.32 38592.46 34191.35 37190.67 29891.76 36987.61 39841.96 41098.50 35282.66 37896.84 34497.65 323
tpm91.08 33090.85 32891.75 36495.33 37078.09 38995.03 25591.27 37488.75 32293.53 33797.40 22471.24 37999.30 25291.25 27793.87 38597.87 310
PVSNet86.72 1991.10 32990.97 32691.49 36597.56 28478.04 39087.17 39394.60 33784.65 36992.34 36392.20 37487.37 29798.47 35585.17 36697.69 31997.96 303
EPMVS89.26 34888.55 35091.39 36692.36 40279.11 38795.65 21479.86 40588.60 32593.12 34796.53 28470.73 38398.10 37490.75 29089.32 39696.98 345
CostFormer89.75 34389.25 34191.26 36794.69 38078.00 39195.32 23791.98 36681.50 38190.55 37696.96 25871.06 38198.89 31388.59 32992.63 38996.87 350
CVMVSNet92.33 31192.79 29490.95 36897.26 30775.84 40095.29 24092.33 36381.86 37896.27 25498.19 14881.44 33398.46 35694.23 21298.29 29298.55 244
tpm288.47 35587.69 35890.79 36994.98 37677.34 39495.09 24891.83 36777.51 39689.40 38796.41 29067.83 38998.73 32783.58 37792.60 39096.29 368
GG-mvs-BLEND90.60 37091.00 40484.21 35798.23 4672.63 41082.76 40184.11 40256.14 40196.79 39172.20 40092.09 39190.78 399
tpmvs90.79 33390.87 32790.57 37192.75 40176.30 39895.79 20593.64 34891.04 29391.91 36796.26 29777.19 35698.86 31789.38 31889.85 39596.56 363
test-LLR89.97 34089.90 33890.16 37294.24 38674.98 40189.89 38389.06 38992.02 27589.97 38390.77 38873.92 36998.57 34591.88 26497.36 33396.92 347
test-mter87.92 36087.17 36190.16 37294.24 38674.98 40189.89 38389.06 38986.44 34989.97 38390.77 38854.96 40798.57 34591.88 26497.36 33396.92 347
UWE-MVS87.57 36386.72 36590.13 37495.21 37173.56 40491.94 35483.78 40388.73 32493.00 34992.87 36355.22 40499.25 26481.74 38097.96 30497.59 328
tpm cat188.01 35987.33 36090.05 37594.48 38276.28 39994.47 27494.35 34073.84 40189.26 38895.61 32373.64 37198.30 36784.13 37186.20 40095.57 379
tpmrst90.31 33590.61 33389.41 37694.06 38972.37 40795.06 25293.69 34488.01 33392.32 36496.86 26377.45 35298.82 31891.04 28087.01 39997.04 344
TESTMET0.1,187.20 36686.57 36689.07 37793.62 39472.84 40689.89 38387.01 39785.46 35989.12 38990.20 39156.00 40297.72 38090.91 28496.92 34096.64 360
E-PMN89.52 34789.78 33988.73 37893.14 39677.61 39283.26 39892.02 36594.82 19093.71 33093.11 35575.31 36496.81 39085.81 35696.81 34791.77 397
EMVS89.06 35089.22 34288.61 37993.00 39877.34 39482.91 39990.92 37694.64 19692.63 36091.81 37876.30 36097.02 38783.83 37496.90 34291.48 398
PVSNet_081.89 2184.49 36983.21 37288.34 38095.76 36074.97 40383.49 39792.70 35978.47 39387.94 39486.90 40183.38 32696.63 39473.44 39966.86 40593.40 392
dmvs_testset87.30 36586.99 36288.24 38196.71 32577.48 39394.68 26886.81 39892.64 26689.61 38687.01 40085.91 30693.12 40161.04 40588.49 39794.13 388
MVEpermissive73.61 2286.48 36885.92 36788.18 38296.23 33785.28 34181.78 40075.79 40686.01 35182.53 40291.88 37792.74 20987.47 40571.42 40294.86 37991.78 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp88.08 35888.05 35488.16 38392.85 39968.81 40994.17 28692.88 35585.47 35891.38 37296.14 30468.87 38798.81 32086.88 35183.80 40296.87 350
wuyk23d93.25 29795.20 21487.40 38496.07 34795.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 40277.76 39399.68 8374.89 402
MVS-HIRNet88.40 35690.20 33782.99 38597.01 31760.04 41093.11 32585.61 40084.45 37288.72 39199.09 5084.72 31698.23 37082.52 37996.59 35490.69 400
DeepMVS_CXcopyleft77.17 38690.94 40585.28 34174.08 40952.51 40380.87 40488.03 39775.25 36570.63 40659.23 40684.94 40175.62 401
test_method66.88 37166.13 37469.11 38762.68 41025.73 41349.76 40196.04 31114.32 40564.27 40691.69 38073.45 37488.05 40476.06 39566.94 40493.54 390
tmp_tt57.23 37262.50 37541.44 38834.77 41149.21 41283.93 39660.22 41215.31 40471.11 40579.37 40370.09 38544.86 40764.76 40382.93 40330.25 403
test12312.59 37415.49 3773.87 3896.07 4122.55 41490.75 3752.59 4142.52 4075.20 40913.02 4064.96 4121.85 4095.20 4079.09 4067.23 404
testmvs12.33 37515.23 3783.64 3905.77 4132.23 41588.99 3903.62 4132.30 4085.29 40813.09 4054.52 4131.95 4085.16 4088.32 4076.75 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.22 37332.30 3760.00 3910.00 4140.00 4160.00 40298.10 2370.00 4090.00 41095.06 33397.54 370.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.98 37610.65 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40995.82 1240.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.91 37710.55 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.94 3350.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.32 38585.41 362
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
PC_three_145287.24 33998.37 10197.44 22197.00 6396.78 39292.01 26099.25 20399.21 141
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.43 18295.94 7998.56 18090.72 29696.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
IU-MVS99.22 6995.40 10398.14 23485.77 35698.36 10495.23 16299.51 13599.49 71
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
9.1496.69 15398.53 16896.02 18798.98 8993.23 24197.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
GSMVS98.06 293
test_part299.03 10896.07 7498.08 138
sam_mvs177.80 34998.06 293
sam_mvs77.38 353
MTGPAbinary98.73 148
test_post194.98 25710.37 40876.21 36199.04 29889.47 316
test_post10.87 40776.83 35799.07 295
patchmatchnet-post96.84 26577.36 35499.42 211
MTMP96.55 15074.60 407
gm-plane-assit91.79 40371.40 40881.67 37990.11 39398.99 30484.86 368
test9_res91.29 27498.89 24799.00 182
TEST997.84 24495.23 11593.62 31098.39 19886.81 34593.78 32695.99 30994.68 16299.52 182
test_897.81 24895.07 12493.54 31398.38 20087.04 34193.71 33095.96 31294.58 16699.52 182
agg_prior290.34 30598.90 24499.10 170
agg_prior97.80 25294.96 12698.36 20293.49 33899.53 179
test_prior495.38 10593.61 312
test_prior293.33 32094.21 20894.02 32296.25 29893.64 19091.90 26398.96 237
旧先验293.35 31977.95 39595.77 27998.67 33790.74 293
新几何293.43 315
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
无先验93.20 32397.91 24980.78 38499.40 22287.71 33897.94 305
原ACMM292.82 329
test22298.17 21093.24 19092.74 33397.61 27375.17 39894.65 30596.69 27690.96 24998.66 27197.66 322
testdata299.46 20087.84 336
segment_acmp95.34 143
testdata192.77 33093.78 223
plane_prior798.70 14594.67 134
plane_prior698.38 18594.37 14791.91 237
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
plane_prior496.77 271
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
plane_prior94.29 15095.42 22694.31 20798.93 242
n20.00 415
nn0.00 415
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24692.86 352
ACMP_Plane97.85 23994.26 27893.18 24692.86 352
BP-MVS90.51 300
HQP4-MVS92.87 35199.23 27099.06 175
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 258
NP-MVS98.14 21693.72 17295.08 331
MDTV_nov1_ep13_2view57.28 41194.89 25980.59 38594.02 32278.66 34685.50 36197.82 313
MDTV_nov1_ep1391.28 31994.31 38373.51 40594.80 26293.16 35286.75 34793.45 34097.40 22476.37 35998.55 34888.85 32496.43 355
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169