This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mamv499.05 598.91 899.46 298.94 11599.62 297.98 6599.70 599.49 399.78 299.22 3495.92 12199.95 399.31 499.83 4298.83 209
UA-Net98.88 898.76 1499.22 399.11 9497.89 1499.47 399.32 2699.08 1497.87 16399.67 296.47 10099.92 797.88 4599.98 299.85 3
MTAPA98.14 4097.84 7099.06 499.44 3797.90 1397.25 11398.73 15597.69 6697.90 15897.96 18095.81 13199.82 3796.13 10999.61 9999.45 85
mPP-MVS97.91 7097.53 10799.04 599.22 6897.87 1597.74 8498.78 14796.04 13697.10 20197.73 20396.53 9599.78 5095.16 17099.50 14099.46 81
MSP-MVS97.45 11396.92 14699.03 699.26 5997.70 1997.66 8898.89 10895.65 15898.51 8696.46 28992.15 23399.81 3995.14 17398.58 28099.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post98.14 4097.84 7099.02 798.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.60 9399.76 6495.49 14599.20 20999.26 132
TDRefinement98.90 698.86 999.02 799.54 2598.06 999.34 499.44 2098.85 2599.00 4899.20 3697.42 4299.59 16297.21 7199.76 5899.40 100
SR-MVS98.00 5397.66 9099.01 998.77 13897.93 1297.38 10998.83 13397.32 8798.06 14297.85 19096.65 8899.77 5995.00 18299.11 22399.32 115
MP-MVScopyleft97.64 9897.18 12999.00 1099.32 5597.77 1897.49 10398.73 15596.27 12295.59 28697.75 20096.30 11099.78 5093.70 23699.48 14799.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu96.81 15596.09 19098.99 1196.90 32798.69 596.42 15998.09 24395.86 14995.15 29695.54 32594.26 17899.81 3994.06 22198.51 28498.47 251
anonymousdsp98.72 1598.63 2198.99 1199.62 1597.29 3898.65 2099.19 3995.62 16099.35 2899.37 1997.38 4399.90 1898.59 2899.91 1899.77 11
CP-MVS97.92 6797.56 10498.99 1198.99 11097.82 1697.93 6998.96 9996.11 13196.89 22097.45 22196.85 8099.78 5095.19 16699.63 9199.38 106
PGM-MVS97.88 7497.52 10898.96 1499.20 7797.62 2297.09 12499.06 6595.45 16897.55 17397.94 18397.11 5599.78 5094.77 19499.46 15299.48 76
RPSCF97.87 7597.51 10998.95 1599.15 8598.43 797.56 9699.06 6596.19 12898.48 9198.70 8894.72 16299.24 27194.37 20999.33 19199.17 147
XVS97.96 5697.63 9698.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25397.64 20896.49 9899.72 9095.66 13699.37 17599.45 85
X-MVStestdata92.86 30590.83 33298.94 1699.15 8597.66 2097.77 7998.83 13397.42 7896.32 25336.50 40996.49 9899.72 9095.66 13699.37 17599.45 85
ACMMPR97.95 6097.62 9898.94 1699.20 7797.56 2697.59 9498.83 13396.05 13497.46 18397.63 20996.77 8499.76 6495.61 14099.46 15299.49 70
testf198.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
APD_test298.57 1898.45 3298.93 1999.79 398.78 397.69 8699.42 2297.69 6698.92 5398.77 8197.80 2599.25 26796.27 10499.69 7898.76 219
ACMMPcopyleft98.05 4997.75 8398.93 1999.23 6597.60 2398.09 5898.96 9995.75 15597.91 15798.06 17096.89 7599.76 6495.32 16099.57 10999.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R97.92 6797.59 10198.92 2299.22 6897.55 2797.60 9298.84 12796.00 13997.22 19097.62 21096.87 7999.76 6495.48 14899.43 16499.46 81
HPM-MVScopyleft98.11 4497.83 7398.92 2299.42 4097.46 3298.57 2199.05 6995.43 17197.41 18597.50 21997.98 1999.79 4795.58 14399.57 10999.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.32 3198.13 4398.88 2499.54 2597.48 3198.35 3699.03 7795.88 14797.88 16098.22 14998.15 1699.74 7996.50 9499.62 9399.42 97
ACMM93.33 1198.05 4997.79 7798.85 2599.15 8597.55 2796.68 15098.83 13395.21 17798.36 10598.13 15798.13 1899.62 15296.04 11399.54 12299.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6797.62 9898.83 2699.32 5597.24 4097.45 10498.84 12795.76 15396.93 21797.43 22397.26 5099.79 4796.06 11099.53 12699.45 85
HFP-MVS97.94 6397.64 9498.83 2699.15 8597.50 3097.59 9498.84 12796.05 13497.49 17897.54 21597.07 5999.70 11295.61 14099.46 15299.30 120
GST-MVS97.82 8397.49 11298.81 2899.23 6597.25 3997.16 11898.79 14395.96 14197.53 17497.40 22596.93 7199.77 5995.04 17999.35 18399.42 97
HPM-MVS++copyleft96.99 13896.38 17998.81 2898.64 15297.59 2495.97 19698.20 22695.51 16695.06 29896.53 28594.10 18199.70 11294.29 21299.15 21699.13 155
APD-MVS_3200maxsize98.13 4397.90 6398.79 3098.79 13497.31 3797.55 9798.92 10597.72 6298.25 11998.13 15797.10 5699.75 7095.44 15299.24 20799.32 115
SteuartSystems-ACMMP98.02 5297.76 8198.79 3099.43 3897.21 4297.15 11998.90 10796.58 10898.08 13997.87 18997.02 6499.76 6495.25 16399.59 10499.40 100
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 6097.68 8898.75 3299.60 1698.60 697.21 11799.08 6196.57 11198.07 14198.38 12296.22 11599.14 28594.71 19899.31 19698.52 246
mvs_tets98.90 698.94 698.75 3299.69 1096.48 6198.54 2499.22 3496.23 12599.71 799.48 1098.77 799.93 498.89 1899.95 599.84 5
WR-MVS_H98.65 1698.62 2398.75 3299.51 2996.61 5798.55 2399.17 4199.05 1799.17 3898.79 7895.47 14299.89 2197.95 4499.91 1899.75 18
jajsoiax98.77 1098.79 1398.74 3599.66 1296.48 6198.45 3299.12 5195.83 15199.67 1099.37 1998.25 1399.92 798.77 2199.94 899.82 6
LPG-MVS_test97.94 6397.67 8998.74 3599.15 8597.02 4397.09 12499.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
LGP-MVS_train98.74 3599.15 8597.02 4399.02 8095.15 18198.34 10898.23 14697.91 2199.70 11294.41 20699.73 6799.50 62
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 996.99 4599.69 299.57 1599.02 1999.62 1599.36 2198.53 999.52 18398.58 2999.95 599.66 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss97.69 9497.36 11798.70 3999.50 3296.84 4895.38 23498.99 9292.45 27398.11 13498.31 12897.25 5199.77 5996.60 9099.62 9399.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_djsdf98.73 1298.74 1798.69 4099.63 1496.30 6898.67 1699.02 8096.50 11399.32 2999.44 1497.43 4199.92 798.73 2399.95 599.86 2
ACMMP_NAP97.89 7397.63 9698.67 4199.35 5096.84 4896.36 16598.79 14395.07 18597.88 16098.35 12497.24 5299.72 9096.05 11299.58 10699.45 85
MIMVSNet198.51 2498.45 3298.67 4199.72 896.71 5198.76 1398.89 10898.49 3599.38 2599.14 4795.44 14499.84 3396.47 9599.80 5099.47 79
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 596.34 6699.18 699.20 3799.67 299.73 599.65 599.15 399.86 2797.22 7099.92 1599.77 11
COLMAP_ROBcopyleft94.48 698.25 3698.11 4598.64 4499.21 7597.35 3697.96 6699.16 4298.34 3998.78 6698.52 10597.32 4599.45 20594.08 22099.67 8499.13 155
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-098.61 1798.61 2598.63 4599.77 596.35 6599.17 799.05 6998.05 5199.61 1699.52 793.72 19299.88 2398.72 2599.88 2599.65 32
SMA-MVScopyleft97.48 11197.11 13198.60 4698.83 12996.67 5496.74 14398.73 15591.61 28698.48 9198.36 12396.53 9599.68 12495.17 16899.54 12299.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DTE-MVSNet98.79 998.86 998.59 4799.55 2296.12 7398.48 3199.10 5499.36 599.29 3199.06 5597.27 4899.93 497.71 5599.91 1899.70 25
LS3D97.77 8897.50 11198.57 4896.24 33997.58 2598.45 3298.85 12398.58 3297.51 17697.94 18395.74 13499.63 14795.19 16698.97 23798.51 247
pmmvs699.07 499.24 498.56 4999.81 296.38 6398.87 1099.30 2899.01 2099.63 1499.66 399.27 299.68 12497.75 5399.89 2499.62 35
ACMP92.54 1397.47 11297.10 13298.55 5099.04 10696.70 5296.24 17598.89 10893.71 22997.97 15297.75 20097.44 4099.63 14793.22 24899.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EGC-MVSNET83.08 37377.93 37698.53 5199.57 1997.55 2798.33 3998.57 1854.71 41110.38 41298.90 7295.60 13999.50 18895.69 13399.61 9998.55 243
DPE-MVScopyleft97.64 9897.35 11898.50 5298.85 12896.18 7095.21 24798.99 9295.84 15098.78 6698.08 16396.84 8199.81 3993.98 22699.57 10999.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-ACMP-BASELINE97.58 10597.28 12298.49 5399.16 8296.90 4796.39 16098.98 9595.05 18698.06 14298.02 17495.86 12399.56 17194.37 20999.64 8999.00 179
CPTT-MVS96.69 16496.08 19198.49 5398.89 12296.64 5697.25 11398.77 14892.89 26496.01 27097.13 24692.23 23299.67 13092.24 26199.34 18699.17 147
APDe-MVScopyleft98.14 4098.03 5398.47 5598.72 14296.04 7698.07 5999.10 5495.96 14198.59 8198.69 8996.94 6999.81 3996.64 8899.58 10699.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PEN-MVS98.75 1198.85 1198.44 5699.58 1895.67 9198.45 3299.15 4699.33 699.30 3099.00 5897.27 4899.92 797.64 5999.92 1599.75 18
mvsmamba98.16 3898.06 5098.44 5699.53 2795.87 8298.70 1498.94 10297.71 6498.85 5999.10 5191.35 25099.83 3598.47 3099.90 2399.64 34
TranMVSNet+NR-MVSNet98.33 3098.30 4098.43 5899.07 10095.87 8296.73 14799.05 6998.67 2898.84 6198.45 11397.58 3899.88 2396.45 9699.86 3099.54 53
OPM-MVS97.54 10797.25 12398.41 5999.11 9496.61 5795.24 24598.46 19394.58 20498.10 13698.07 16597.09 5899.39 22795.16 17099.44 15699.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft97.00 13796.53 17198.41 5998.55 16796.31 6796.32 16898.77 14892.96 26397.44 18497.58 21495.84 12499.74 7991.96 26499.35 18399.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS98.73 1298.85 1198.39 6199.55 2295.47 10298.49 2999.13 5099.22 1099.22 3698.96 6497.35 4499.92 797.79 5199.93 1199.79 9
UniMVSNet_NR-MVSNet97.83 7997.65 9198.37 6298.72 14295.78 8595.66 21599.02 8098.11 4898.31 11497.69 20694.65 16799.85 3097.02 8099.71 7499.48 76
DU-MVS97.79 8697.60 10098.36 6398.73 14095.78 8595.65 21798.87 11697.57 7098.31 11497.83 19194.69 16399.85 3097.02 8099.71 7499.46 81
UniMVSNet (Re)97.83 7997.65 9198.35 6498.80 13295.86 8495.92 20199.04 7697.51 7598.22 12297.81 19594.68 16599.78 5097.14 7599.75 6599.41 99
CS-MVS98.09 4598.01 5598.32 6598.45 18296.69 5398.52 2799.69 698.07 5096.07 26797.19 24496.88 7799.86 2797.50 6399.73 6798.41 254
nrg03098.54 2298.62 2398.32 6599.22 6895.66 9297.90 7199.08 6198.31 4099.02 4598.74 8497.68 3099.61 15997.77 5299.85 3799.70 25
DeepPCF-MVS94.58 596.90 14696.43 17698.31 6797.48 29497.23 4192.56 34198.60 18092.84 26598.54 8497.40 22596.64 9098.78 32594.40 20899.41 17198.93 192
CP-MVSNet98.42 2798.46 3098.30 6899.46 3595.22 11898.27 4598.84 12799.05 1799.01 4698.65 9495.37 14599.90 1897.57 6099.91 1899.77 11
XVG-OURS-SEG-HR97.38 11997.07 13598.30 6899.01 10997.41 3594.66 27299.02 8095.20 17898.15 13197.52 21798.83 598.43 36094.87 18796.41 35999.07 170
h-mvs3396.29 18295.63 21298.26 7098.50 17696.11 7496.90 13397.09 29296.58 10897.21 19298.19 15184.14 32499.78 5095.89 12496.17 36698.89 200
NR-MVSNet97.96 5697.86 6998.26 7098.73 14095.54 9598.14 5598.73 15597.79 5699.42 2397.83 19194.40 17599.78 5095.91 12399.76 5899.46 81
XVG-OURS97.12 13296.74 15698.26 7098.99 11097.45 3393.82 30799.05 6995.19 17998.32 11297.70 20595.22 15098.41 36194.27 21398.13 30198.93 192
test_0728_SECOND98.25 7399.23 6595.49 10196.74 14398.89 10899.75 7095.48 14899.52 13199.53 56
PHI-MVS96.96 14296.53 17198.25 7397.48 29496.50 6096.76 14298.85 12393.52 23596.19 26396.85 26595.94 12099.42 21293.79 23299.43 16498.83 209
MSC_two_6792asdad98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
No_MVS98.22 7597.75 26695.34 11098.16 23699.75 7095.87 12699.51 13699.57 46
SF-MVS97.60 10297.39 11598.22 7598.93 11795.69 8997.05 12699.10 5495.32 17497.83 16697.88 18896.44 10399.72 9094.59 20399.39 17399.25 136
PS-MVSNAJss98.53 2398.63 2198.21 7899.68 1194.82 12998.10 5799.21 3596.91 9799.75 399.45 1395.82 12799.92 798.80 2099.96 499.89 1
DVP-MVScopyleft97.78 8797.65 9198.16 7999.24 6395.51 9796.74 14398.23 22295.92 14498.40 9998.28 13797.06 6099.71 10495.48 14899.52 13199.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS95.41 497.82 8397.70 8498.16 7998.78 13795.72 8796.23 17699.02 8093.92 22598.62 7798.99 6097.69 2999.62 15296.18 10899.87 2799.15 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 9097.59 10198.15 8198.11 22295.60 9398.04 6098.70 16498.13 4796.93 21798.45 11395.30 14899.62 15295.64 13898.96 23899.24 137
CS-MVS-test97.91 7097.84 7098.14 8298.52 17196.03 7898.38 3599.67 798.11 4895.50 28896.92 26296.81 8399.87 2596.87 8599.76 5898.51 247
PM-MVS97.36 12397.10 13298.14 8298.91 12196.77 5096.20 17798.63 17893.82 22698.54 8498.33 12693.98 18499.05 30095.99 11899.45 15598.61 237
DVP-MVS++97.96 5697.90 6398.12 8497.75 26695.40 10399.03 898.89 10896.62 10498.62 7798.30 13296.97 6799.75 7095.70 13199.25 20499.21 140
NCCC96.52 17395.99 19598.10 8597.81 25095.68 9095.00 25998.20 22695.39 17295.40 29196.36 29593.81 18999.45 20593.55 23998.42 29099.17 147
SED-MVS97.94 6397.90 6398.07 8699.22 6895.35 10896.79 14098.83 13396.11 13199.08 4298.24 14497.87 2399.72 9095.44 15299.51 13699.14 153
Vis-MVSNetpermissive98.27 3498.34 3798.07 8699.33 5395.21 12098.04 6099.46 1897.32 8797.82 16799.11 5096.75 8599.86 2797.84 4899.36 17899.15 150
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n98.57 1898.74 1798.06 8899.39 4594.63 13696.70 14999.82 195.44 17099.64 1399.52 798.96 499.74 7999.38 399.86 3099.81 7
AllTest97.20 13096.92 14698.06 8899.08 9896.16 7197.14 12199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
TestCases98.06 8899.08 9896.16 7199.16 4294.35 20997.78 16898.07 16595.84 12499.12 28991.41 27599.42 16798.91 196
N_pmnet95.18 23094.23 26698.06 8897.85 24196.55 5992.49 34291.63 37289.34 31698.09 13797.41 22490.33 26599.06 29991.58 27499.31 19698.56 241
F-COLMAP95.30 22594.38 26398.05 9298.64 15296.04 7695.61 22198.66 17289.00 32293.22 34896.40 29392.90 21099.35 24287.45 34997.53 33098.77 218
test_fmvsmconf0.1_n98.41 2898.54 2798.03 9399.16 8294.61 13796.18 17899.73 395.05 18699.60 1799.34 2498.68 899.72 9099.21 899.85 3799.76 16
CNVR-MVS96.92 14496.55 16898.03 9398.00 23195.54 9594.87 26398.17 23294.60 20196.38 25097.05 25295.67 13699.36 23895.12 17699.08 22799.19 144
TSAR-MVS + MP.97.42 11797.23 12598.00 9599.38 4795.00 12597.63 9198.20 22693.00 25898.16 12998.06 17095.89 12299.72 9095.67 13599.10 22599.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsmconf_n98.30 3398.41 3597.99 9698.94 11594.60 13896.00 19399.64 1394.99 18999.43 2299.18 4098.51 1099.71 10499.13 1199.84 3999.67 27
ACMH+93.58 1098.23 3798.31 3897.98 9799.39 4595.22 11897.55 9799.20 3798.21 4599.25 3498.51 10798.21 1499.40 22394.79 19199.72 7199.32 115
v7n98.73 1298.99 597.95 9899.64 1394.20 15698.67 1699.14 4999.08 1499.42 2399.23 3396.53 9599.91 1599.27 699.93 1199.73 21
Anonymous2023121198.55 2198.76 1497.94 9998.79 13494.37 14898.84 1299.15 4699.37 499.67 1099.43 1595.61 13899.72 9098.12 3799.86 3099.73 21
OMC-MVS96.48 17596.00 19497.91 10098.30 19296.01 7994.86 26498.60 18091.88 28297.18 19597.21 24396.11 11799.04 30190.49 30599.34 18698.69 228
GeoE97.75 8997.70 8497.89 10198.88 12394.53 14097.10 12398.98 9595.75 15597.62 17197.59 21297.61 3799.77 5996.34 10199.44 15699.36 112
train_agg95.46 21894.66 24597.88 10297.84 24695.23 11593.62 31398.39 20487.04 34493.78 32995.99 31094.58 16999.52 18391.76 27298.90 24598.89 200
pm-mvs198.47 2598.67 1997.86 10399.52 2894.58 13998.28 4399.00 8997.57 7099.27 3299.22 3498.32 1299.50 18897.09 7799.75 6599.50 62
ITE_SJBPF97.85 10498.64 15296.66 5598.51 19095.63 15997.22 19097.30 23895.52 14098.55 35190.97 28598.90 24598.34 265
CDPH-MVS95.45 21994.65 24697.84 10598.28 19594.96 12693.73 31198.33 21285.03 36795.44 28996.60 28195.31 14799.44 20890.01 31199.13 21999.11 163
DP-MVS97.87 7597.89 6697.81 10698.62 15894.82 12997.13 12298.79 14398.98 2198.74 7298.49 10895.80 13299.49 19395.04 17999.44 15699.11 163
hse-mvs295.77 20395.09 22497.79 10797.84 24695.51 9795.66 21595.43 33196.58 10897.21 19296.16 30284.14 32499.54 17895.89 12496.92 34398.32 266
EC-MVSNet97.90 7297.94 6297.79 10798.66 15195.14 12198.31 4099.66 997.57 7095.95 27197.01 25696.99 6699.82 3797.66 5899.64 8998.39 257
MAR-MVS94.21 27293.03 29097.76 10996.94 32597.44 3496.97 13097.15 28987.89 33992.00 36992.73 37092.14 23499.12 28983.92 37597.51 33196.73 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS93.95 28392.69 30197.74 11097.80 25495.38 10595.57 22495.46 33091.26 29392.64 36296.10 30874.67 37199.55 17593.72 23596.97 34298.30 270
VDD-MVS97.37 12197.25 12397.74 11098.69 14994.50 14397.04 12795.61 32698.59 3198.51 8698.72 8592.54 22599.58 16496.02 11599.49 14399.12 160
Anonymous2024052997.96 5698.04 5297.71 11298.69 14994.28 15497.86 7398.31 21698.79 2699.23 3598.86 7695.76 13399.61 15995.49 14599.36 17899.23 138
VPA-MVSNet98.27 3498.46 3097.70 11399.06 10193.80 16997.76 8199.00 8998.40 3799.07 4498.98 6196.89 7599.75 7097.19 7499.79 5299.55 52
IS-MVSNet96.93 14396.68 15997.70 11399.25 6294.00 16298.57 2196.74 30698.36 3898.14 13297.98 17988.23 29199.71 10493.10 25199.72 7199.38 106
CSCG97.40 11897.30 12097.69 11598.95 11294.83 12897.28 11298.99 9296.35 12198.13 13395.95 31495.99 11999.66 13694.36 21199.73 6798.59 238
HQP_MVS96.66 16696.33 18297.68 11698.70 14794.29 15196.50 15698.75 15296.36 11996.16 26496.77 27291.91 24399.46 20192.59 25799.20 20999.28 127
EPP-MVSNet96.84 15096.58 16597.65 11799.18 8093.78 17198.68 1596.34 31097.91 5497.30 18798.06 17088.46 28899.85 3093.85 23099.40 17299.32 115
OPU-MVS97.64 11898.01 22795.27 11396.79 14097.35 23496.97 6798.51 35491.21 28199.25 20499.14 153
MM96.87 14996.62 16197.62 11997.72 27193.30 18796.39 16092.61 36497.90 5596.76 22998.64 9590.46 26299.81 3999.16 1099.94 899.76 16
MVS_111021_LR96.82 15496.55 16897.62 11998.27 19795.34 11093.81 30998.33 21294.59 20396.56 24296.63 28096.61 9198.73 33094.80 19099.34 18698.78 215
UGNet96.81 15596.56 16797.58 12196.64 33093.84 16897.75 8297.12 29196.47 11693.62 33698.88 7493.22 20199.53 18095.61 14099.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test98.16 3898.37 3697.56 12299.49 3393.10 19398.35 3699.21 3598.43 3698.89 5698.83 7794.30 17799.81 3997.87 4699.91 1899.77 11
MCST-MVS96.24 18495.80 20597.56 12298.75 13994.13 15894.66 27298.17 23290.17 30996.21 26196.10 30895.14 15299.43 21094.13 21998.85 25299.13 155
GBi-Net96.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
test196.99 13896.80 15397.56 12297.96 23393.67 17498.23 4798.66 17295.59 16297.99 14899.19 3789.51 27999.73 8594.60 20099.44 15699.30 120
FMVSNet197.95 6098.08 4797.56 12299.14 9293.67 17498.23 4798.66 17297.41 8299.00 4899.19 3795.47 14299.73 8595.83 12899.76 5899.30 120
sd_testset97.97 5498.12 4497.51 12799.41 4193.44 18397.96 6698.25 21998.58 3298.78 6699.39 1698.21 1499.56 17192.65 25599.86 3099.52 58
TransMVSNet (Re)98.38 2998.67 1997.51 12799.51 2993.39 18698.20 5298.87 11698.23 4499.48 1999.27 3098.47 1199.55 17596.52 9399.53 12699.60 36
PLCcopyleft91.02 1694.05 27992.90 29397.51 12798.00 23195.12 12394.25 28498.25 21986.17 35391.48 37495.25 33091.01 25499.19 27785.02 37096.69 35498.22 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH93.61 998.44 2698.76 1497.51 12799.43 3893.54 18098.23 4799.05 6997.40 8399.37 2699.08 5498.79 699.47 19897.74 5499.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
alignmvs96.01 19495.52 21597.50 13197.77 26394.71 13196.07 18796.84 30097.48 7696.78 22894.28 35085.50 31599.40 22396.22 10698.73 26698.40 255
Baseline_NR-MVSNet97.72 9297.79 7797.50 13199.56 2093.29 18895.44 22798.86 11998.20 4698.37 10299.24 3294.69 16399.55 17595.98 11999.79 5299.65 32
3Dnovator96.53 297.61 10197.64 9497.50 13197.74 26993.65 17898.49 2998.88 11496.86 9997.11 20098.55 10395.82 12799.73 8595.94 12199.42 16799.13 155
TSAR-MVS + GP.96.47 17696.12 18897.49 13497.74 26995.23 11594.15 29196.90 29993.26 24498.04 14596.70 27694.41 17498.89 31694.77 19499.14 21798.37 259
FIs97.93 6698.07 4897.48 13599.38 4792.95 19698.03 6299.11 5298.04 5298.62 7798.66 9193.75 19199.78 5097.23 6999.84 3999.73 21
test_040297.84 7897.97 5997.47 13699.19 7994.07 15996.71 14898.73 15598.66 2998.56 8398.41 11896.84 8199.69 11994.82 18999.81 4798.64 232
test_prior97.46 13797.79 25994.26 15598.42 20099.34 24598.79 214
test1297.46 13797.61 28594.07 15997.78 26393.57 33993.31 19999.42 21298.78 25998.89 200
DeepC-MVS_fast94.34 796.74 15896.51 17397.44 13997.69 27494.15 15796.02 19198.43 19793.17 25397.30 18797.38 23195.48 14199.28 26193.74 23399.34 18698.88 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.08 4698.29 4197.43 14098.88 12393.95 16496.17 18299.57 1595.66 15799.52 1898.71 8797.04 6299.64 14399.21 899.87 2798.69 228
Anonymous20240521196.34 18195.98 19697.43 14098.25 19993.85 16796.74 14394.41 34297.72 6298.37 10298.03 17387.15 30399.53 18094.06 22199.07 22998.92 195
pmmvs-eth3d96.49 17496.18 18797.42 14298.25 19994.29 15194.77 26898.07 24889.81 31397.97 15298.33 12693.11 20299.08 29795.46 15199.84 3998.89 200
VDDNet96.98 14196.84 15097.41 14399.40 4493.26 19097.94 6895.31 33399.26 998.39 10199.18 4087.85 29899.62 15295.13 17599.09 22699.35 114
EG-PatchMatch MVS97.69 9497.79 7797.40 14499.06 10193.52 18195.96 19898.97 9894.55 20598.82 6398.76 8397.31 4699.29 25997.20 7399.44 15699.38 106
Fast-Effi-MVS+-dtu96.44 17796.12 18897.39 14597.18 31594.39 14595.46 22698.73 15596.03 13894.72 30694.92 33896.28 11399.69 11993.81 23197.98 30698.09 288
LF4IMVS96.07 19095.63 21297.36 14698.19 20695.55 9495.44 22798.82 14192.29 27695.70 28496.55 28392.63 22098.69 33691.75 27399.33 19197.85 313
Gipumacopyleft98.07 4898.31 3897.36 14699.76 796.28 6998.51 2899.10 5498.76 2796.79 22499.34 2496.61 9198.82 32196.38 9999.50 14096.98 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re97.33 12497.33 11997.32 14898.13 22193.79 17096.99 12999.65 1096.74 10299.47 2098.93 6796.91 7499.84 3390.11 30999.06 23298.32 266
sasdasda97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
canonicalmvs97.23 12897.21 12797.30 14997.65 28194.39 14597.84 7499.05 6997.42 7896.68 23293.85 35497.63 3599.33 24796.29 10298.47 28698.18 283
MVS_030496.62 16896.40 17897.28 15197.91 23792.30 21296.47 15889.74 39197.52 7495.38 29298.63 9692.76 21499.81 3999.28 599.93 1199.75 18
fmvsm_l_conf0.5_n97.68 9697.81 7597.27 15298.92 11992.71 20395.89 20399.41 2593.36 24099.00 4898.44 11596.46 10299.65 13899.09 1299.76 5899.45 85
MVS_111021_HR96.73 16096.54 17097.27 15298.35 19093.66 17793.42 31998.36 20894.74 19596.58 24096.76 27496.54 9498.99 30794.87 18799.27 20299.15 150
SixPastTwentyTwo97.49 11097.57 10397.26 15499.56 2092.33 21198.28 4396.97 29798.30 4299.45 2199.35 2388.43 28999.89 2198.01 4299.76 5899.54 53
KD-MVS_self_test97.86 7798.07 4897.25 15599.22 6892.81 19897.55 9798.94 10297.10 9398.85 5998.88 7495.03 15599.67 13097.39 6799.65 8799.26 132
新几何197.25 15598.29 19394.70 13397.73 26577.98 39794.83 30596.67 27892.08 23799.45 20588.17 33898.65 27497.61 329
test_vis3_rt97.04 13596.98 14097.23 15798.44 18395.88 8196.82 13799.67 790.30 30699.27 3299.33 2794.04 18296.03 39897.14 7597.83 31399.78 10
fmvsm_s_conf0.1_n_a97.80 8598.01 5597.18 15899.17 8192.51 20696.57 15399.15 4693.68 23298.89 5699.30 2896.42 10499.37 23599.03 1499.83 4299.66 29
WR-MVS96.90 14696.81 15297.16 15998.56 16692.20 21994.33 28098.12 24197.34 8698.20 12397.33 23692.81 21299.75 7094.79 19199.81 4799.54 53
TAMVS95.49 21494.94 22997.16 15998.31 19193.41 18595.07 25496.82 30291.09 29597.51 17697.82 19489.96 27199.42 21288.42 33499.44 15698.64 232
CDS-MVSNet94.88 24394.12 27197.14 16197.64 28393.57 17993.96 30397.06 29490.05 31096.30 25696.55 28386.10 30999.47 19890.10 31099.31 19698.40 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
fmvsm_s_conf0.5_n_a97.65 9797.83 7397.13 16298.80 13292.51 20696.25 17499.06 6593.67 23398.64 7599.00 5896.23 11499.36 23898.99 1699.80 5099.53 56
fmvsm_l_conf0.5_n_a97.60 10297.76 8197.11 16398.92 11992.28 21395.83 20699.32 2693.22 24698.91 5598.49 10896.31 10999.64 14399.07 1399.76 5899.40 100
SDMVSNet97.97 5498.26 4297.11 16399.41 4192.21 21696.92 13298.60 18098.58 3298.78 6699.39 1697.80 2599.62 15294.98 18599.86 3099.52 58
tt080597.44 11497.56 10497.11 16399.55 2296.36 6498.66 1995.66 32298.31 4097.09 20695.45 32897.17 5498.50 35598.67 2697.45 33596.48 368
EI-MVSNet-Vis-set97.32 12597.39 11597.11 16397.36 30492.08 22595.34 23897.65 27297.74 6098.29 11798.11 16195.05 15399.68 12497.50 6399.50 14099.56 50
EI-MVSNet-UG-set97.32 12597.40 11497.09 16797.34 30792.01 22795.33 23997.65 27297.74 6098.30 11698.14 15595.04 15499.69 11997.55 6199.52 13199.58 39
MGCFI-Net97.20 13097.23 12597.08 16897.68 27593.71 17397.79 7799.09 5997.40 8396.59 23993.96 35297.67 3199.35 24296.43 9798.50 28598.17 285
XXY-MVS97.54 10797.70 8497.07 16999.46 3592.21 21697.22 11699.00 8994.93 19298.58 8298.92 6897.31 4699.41 22194.44 20499.43 16499.59 38
mvsany_test396.21 18595.93 20097.05 17097.40 30294.33 15095.76 20994.20 34489.10 31999.36 2799.60 693.97 18597.85 38095.40 15998.63 27598.99 182
lessismore_v097.05 17099.36 4992.12 22184.07 40498.77 7098.98 6185.36 31699.74 7997.34 6899.37 17599.30 120
TAPA-MVS93.32 1294.93 24094.23 26697.04 17298.18 20994.51 14195.22 24698.73 15581.22 38696.25 25995.95 31493.80 19098.98 30989.89 31398.87 24997.62 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet93.72 28692.62 30497.03 17387.61 41292.25 21496.27 17091.28 37696.74 10287.65 39897.39 22985.00 31899.64 14392.14 26299.48 14799.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.61 25893.81 27897.02 17498.19 20695.72 8793.66 31297.23 28588.17 33594.94 30395.62 32391.43 24798.57 34887.36 35097.68 32396.76 361
casdiffmvs_mvgpermissive97.83 7998.11 4597.00 17598.57 16492.10 22495.97 19699.18 4097.67 6999.00 4898.48 11297.64 3499.50 18896.96 8299.54 12299.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v396.44 17796.28 18396.95 17699.41 4191.53 23597.65 8990.31 38698.89 2498.93 5299.36 2184.57 32299.92 797.81 4999.56 11299.39 104
tfpnnormal97.72 9297.97 5996.94 17799.26 5992.23 21597.83 7698.45 19498.25 4399.13 4098.66 9196.65 8899.69 11993.92 22899.62 9398.91 196
test_fmvsmvis_n_192098.08 4698.47 2996.93 17899.03 10793.29 18896.32 16899.65 1095.59 16299.71 799.01 5797.66 3399.60 16199.44 299.83 4297.90 309
MVP-Stereo95.69 20595.28 21796.92 17998.15 21693.03 19495.64 22098.20 22690.39 30596.63 23897.73 20391.63 24699.10 29591.84 26997.31 33998.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP-MVS95.17 23294.58 25496.92 17997.85 24192.47 20894.26 28198.43 19793.18 25092.86 35595.08 33290.33 26599.23 27390.51 30398.74 26399.05 174
HyFIR lowres test93.72 28692.65 30296.91 18198.93 11791.81 23291.23 37098.52 18882.69 37996.46 24796.52 28780.38 34599.90 1890.36 30798.79 25899.03 175
VNet96.84 15096.83 15196.88 18298.06 22392.02 22696.35 16697.57 27897.70 6597.88 16097.80 19692.40 23099.54 17894.73 19698.96 23899.08 168
FMVSNet296.72 16196.67 16096.87 18397.96 23391.88 22997.15 11998.06 24995.59 16298.50 8898.62 9789.51 27999.65 13894.99 18499.60 10299.07 170
fmvsm_s_conf0.1_n97.73 9098.02 5496.85 18499.09 9791.43 23996.37 16499.11 5294.19 21599.01 4699.25 3196.30 11099.38 23099.00 1599.88 2599.73 21
EIA-MVS96.04 19295.77 20796.85 18497.80 25492.98 19596.12 18499.16 4294.65 19993.77 33191.69 38395.68 13599.67 13094.18 21698.85 25297.91 308
test_fmvs397.38 11997.56 10496.84 18698.63 15692.81 19897.60 9299.61 1490.87 29798.76 7199.66 394.03 18397.90 37999.24 799.68 8299.81 7
ETV-MVS96.13 18995.90 20196.82 18797.76 26493.89 16595.40 23298.95 10195.87 14895.58 28791.00 38996.36 10899.72 9093.36 24298.83 25596.85 355
fmvsm_s_conf0.5_n97.62 10097.89 6696.80 18898.79 13491.44 23896.14 18399.06 6594.19 21598.82 6398.98 6196.22 11599.38 23098.98 1799.86 3099.58 39
DP-MVS Recon95.55 21295.13 22296.80 18898.51 17393.99 16394.60 27498.69 16590.20 30895.78 28096.21 30192.73 21698.98 30990.58 30198.86 25197.42 338
QAPM95.88 19995.57 21496.80 18897.90 23991.84 23198.18 5498.73 15588.41 33096.42 24898.13 15794.73 16199.75 7088.72 32998.94 24198.81 212
CMPMVSbinary73.10 2392.74 30791.39 31996.77 19193.57 39894.67 13494.21 28897.67 26880.36 39093.61 33796.60 28182.85 33397.35 38684.86 37198.78 25998.29 273
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf05_1196.88 14896.92 14696.75 19297.70 27392.38 21098.03 6299.03 7794.26 21296.84 22298.43 11691.72 24599.65 13896.67 8799.63 9198.20 280
Fast-Effi-MVS+95.49 21495.07 22596.75 19297.67 27992.82 19794.22 28798.60 18091.61 28693.42 34592.90 36596.73 8699.70 11292.60 25697.89 31297.74 321
CNLPA95.04 23694.47 25996.75 19297.81 25095.25 11494.12 29597.89 25594.41 20794.57 30995.69 31990.30 26898.35 36786.72 35698.76 26196.64 363
Effi-MVS+96.19 18696.01 19396.71 19597.43 30092.19 22096.12 18499.10 5495.45 16893.33 34794.71 34197.23 5399.56 17193.21 24997.54 32998.37 259
pmmvs494.82 24594.19 26996.70 19697.42 30192.75 20292.09 35596.76 30486.80 34995.73 28397.22 24289.28 28298.89 31693.28 24699.14 21798.46 253
CLD-MVS95.47 21795.07 22596.69 19798.27 19792.53 20591.36 36498.67 17091.22 29495.78 28094.12 35195.65 13798.98 30990.81 29099.72 7198.57 240
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4297.04 13597.16 13096.68 19898.59 16291.05 24396.33 16798.36 20894.60 20197.99 14898.30 13293.32 19899.62 15297.40 6699.53 12699.38 106
LFMVS95.32 22494.88 23596.62 19998.03 22491.47 23797.65 8990.72 38299.11 1397.89 15998.31 12879.20 34899.48 19693.91 22999.12 22298.93 192
ab-mvs96.59 16996.59 16496.60 20098.64 15292.21 21698.35 3697.67 26894.45 20696.99 21298.79 7894.96 15999.49 19390.39 30699.07 22998.08 289
VPNet97.26 12797.49 11296.59 20199.47 3490.58 25396.27 17098.53 18797.77 5798.46 9498.41 11894.59 16899.68 12494.61 19999.29 19999.52 58
原ACMM196.58 20298.16 21492.12 22198.15 23885.90 35793.49 34196.43 29092.47 22999.38 23087.66 34398.62 27698.23 277
AdaColmapbinary95.11 23394.62 25096.58 20297.33 30994.45 14494.92 26198.08 24493.15 25493.98 32795.53 32694.34 17699.10 29585.69 36198.61 27796.20 373
PCF-MVS89.43 1892.12 31890.64 33596.57 20497.80 25493.48 18289.88 38998.45 19474.46 40396.04 26995.68 32090.71 25999.31 25273.73 40199.01 23696.91 352
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ambc96.56 20598.23 20291.68 23497.88 7298.13 24098.42 9798.56 10294.22 17999.04 30194.05 22399.35 18398.95 186
casdiffmvspermissive97.50 10997.81 7596.56 20598.51 17391.04 24495.83 20699.09 5997.23 9098.33 11198.30 13297.03 6399.37 23596.58 9299.38 17499.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet593.39 29692.35 30696.50 20795.83 35890.81 25097.31 11098.27 21792.74 26796.27 25798.28 13762.23 39899.67 13090.86 28899.36 17899.03 175
CANet95.86 20095.65 21196.49 20896.41 33690.82 24894.36 27998.41 20194.94 19092.62 36496.73 27592.68 21799.71 10495.12 17699.60 10298.94 188
test20.0396.58 17196.61 16396.48 20998.49 17791.72 23395.68 21497.69 26796.81 10098.27 11897.92 18694.18 18098.71 33390.78 29299.66 8699.00 179
UnsupCasMVSNet_eth95.91 19895.73 20896.44 21098.48 17991.52 23695.31 24198.45 19495.76 15397.48 18097.54 21589.53 27898.69 33694.43 20594.61 38499.13 155
baseline97.44 11497.78 8096.43 21198.52 17190.75 25196.84 13599.03 7796.51 11297.86 16498.02 17496.67 8799.36 23897.09 7799.47 14999.19 144
DPM-MVS93.68 28892.77 30096.42 21297.91 23792.54 20491.17 37197.47 28184.99 36993.08 35194.74 34089.90 27299.00 30587.54 34698.09 30397.72 323
PVSNet_Blended_VisFu95.95 19695.80 20596.42 21299.28 5790.62 25295.31 24199.08 6188.40 33196.97 21598.17 15492.11 23599.78 5093.64 23799.21 20898.86 207
ANet_high98.31 3298.94 696.41 21499.33 5389.64 26597.92 7099.56 1799.27 799.66 1299.50 997.67 3199.83 3597.55 6199.98 299.77 11
bld_raw_dy_0_6498.03 5198.57 2696.38 21599.35 5089.63 26799.26 599.26 3199.27 799.74 499.34 2492.88 21199.93 498.20 3699.87 2799.60 36
SD-MVS97.37 12197.70 8496.35 21698.14 21895.13 12296.54 15598.92 10595.94 14399.19 3798.08 16397.74 2895.06 39995.24 16499.54 12298.87 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Patchmtry95.03 23894.59 25396.33 21794.83 38190.82 24896.38 16397.20 28696.59 10797.49 17898.57 10077.67 35599.38 23092.95 25499.62 9398.80 213
OpenMVScopyleft94.22 895.48 21695.20 21996.32 21897.16 31691.96 22897.74 8498.84 12787.26 34194.36 31598.01 17693.95 18699.67 13090.70 29898.75 26297.35 341
v1097.55 10697.97 5996.31 21998.60 16089.64 26597.44 10599.02 8096.60 10698.72 7499.16 4493.48 19699.72 9098.76 2299.92 1599.58 39
PMMVS92.39 31191.08 32696.30 22093.12 40092.81 19890.58 38095.96 31779.17 39491.85 37192.27 37590.29 26998.66 34189.85 31496.68 35597.43 337
v897.60 10298.06 5096.23 22198.71 14589.44 27097.43 10798.82 14197.29 8998.74 7299.10 5193.86 18799.68 12498.61 2799.94 899.56 50
1112_ss94.12 27593.42 28496.23 22198.59 16290.85 24794.24 28598.85 12385.49 36092.97 35394.94 33686.01 31099.64 14391.78 27197.92 30998.20 280
FMVSNet395.26 22794.94 22996.22 22396.53 33390.06 25795.99 19497.66 27094.11 21997.99 14897.91 18780.22 34699.63 14794.60 20099.44 15698.96 185
114514_t93.96 28193.22 28896.19 22499.06 10190.97 24695.99 19498.94 10273.88 40493.43 34496.93 26092.38 23199.37 23589.09 32499.28 20098.25 276
CHOSEN 1792x268894.10 27693.41 28596.18 22599.16 8290.04 25892.15 35298.68 16779.90 39196.22 26097.83 19187.92 29799.42 21289.18 32399.65 8799.08 168
test_fmvs296.38 18096.45 17596.16 22697.85 24191.30 24096.81 13899.45 1989.24 31898.49 8999.38 1888.68 28697.62 38498.83 1999.32 19399.57 46
v119296.83 15397.06 13696.15 22798.28 19589.29 27295.36 23598.77 14893.73 22898.11 13498.34 12593.02 20999.67 13098.35 3499.58 10699.50 62
v114496.84 15097.08 13496.13 22898.42 18589.28 27395.41 23198.67 17094.21 21397.97 15298.31 12893.06 20399.65 13898.06 4199.62 9399.45 85
UnsupCasMVSNet_bld94.72 25194.26 26596.08 22998.62 15890.54 25693.38 32198.05 25090.30 30697.02 21096.80 27189.54 27699.16 28388.44 33396.18 36598.56 241
v14419296.69 16496.90 14996.03 23098.25 19988.92 27995.49 22598.77 14893.05 25698.09 13798.29 13692.51 22899.70 11298.11 3899.56 11299.47 79
v192192096.72 16196.96 14395.99 23198.21 20388.79 28495.42 22998.79 14393.22 24698.19 12798.26 14292.68 21799.70 11298.34 3599.55 11899.49 70
DELS-MVS96.17 18796.23 18495.99 23197.55 29090.04 25892.38 35098.52 18894.13 21796.55 24497.06 25194.99 15799.58 16495.62 13999.28 20098.37 259
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU94.65 25694.21 26895.96 23395.90 35389.68 26493.92 30497.83 26193.19 24990.12 38595.64 32288.52 28799.57 17093.27 24799.47 14998.62 235
PAPM_NR94.61 25894.17 27095.96 23398.36 18991.23 24195.93 20097.95 25192.98 25993.42 34594.43 34890.53 26098.38 36487.60 34496.29 36398.27 274
v2v48296.78 15797.06 13695.95 23598.57 16488.77 28595.36 23598.26 21895.18 18097.85 16598.23 14692.58 22199.63 14797.80 5099.69 7899.45 85
PMVScopyleft89.60 1796.71 16396.97 14195.95 23599.51 2997.81 1797.42 10897.49 27997.93 5395.95 27198.58 9996.88 7796.91 39289.59 31799.36 17893.12 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSDG95.33 22395.13 22295.94 23797.40 30291.85 23091.02 37598.37 20795.30 17596.31 25595.99 31094.51 17298.38 36489.59 31797.65 32697.60 330
v124096.74 15897.02 13995.91 23898.18 20988.52 28795.39 23398.88 11493.15 25498.46 9498.40 12192.80 21399.71 10498.45 3199.49 14399.49 70
Anonymous2023120695.27 22695.06 22795.88 23998.72 14289.37 27195.70 21197.85 25788.00 33796.98 21497.62 21091.95 24099.34 24589.21 32299.53 12698.94 188
Vis-MVSNet (Re-imp)95.11 23394.85 23695.87 24099.12 9389.17 27497.54 10294.92 33796.50 11396.58 24097.27 23983.64 32899.48 19688.42 33499.67 8498.97 184
iter_conf0597.83 7998.49 2895.84 24198.88 12389.05 27898.87 1099.42 2299.18 1199.73 599.12 4893.04 20499.91 1598.38 3299.78 5598.58 239
CL-MVSNet_self_test95.04 23694.79 24295.82 24297.51 29289.79 26291.14 37296.82 30293.05 25696.72 23096.40 29390.82 25799.16 28391.95 26598.66 27298.50 249
IterMVS-LS96.92 14497.29 12195.79 24398.51 17388.13 29895.10 25098.66 17296.99 9498.46 9498.68 9092.55 22399.74 7996.91 8399.79 5299.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVSMamba_PlusPlus97.43 11697.98 5895.78 24498.88 12389.70 26398.03 6298.85 12399.18 1196.84 22299.12 4893.04 20499.91 1598.38 3299.55 11897.73 322
Anonymous2024052197.07 13497.51 10995.76 24599.35 5088.18 29597.78 7898.40 20397.11 9298.34 10899.04 5689.58 27599.79 4798.09 3999.93 1199.30 120
EI-MVSNet96.63 16796.93 14495.74 24697.26 31288.13 29895.29 24397.65 27296.99 9497.94 15598.19 15192.55 22399.58 16496.91 8399.56 11299.50 62
MDA-MVSNet-bldmvs95.69 20595.67 20995.74 24698.48 17988.76 28692.84 33197.25 28496.00 13997.59 17297.95 18291.38 24899.46 20193.16 25096.35 36198.99 182
sss94.22 27093.72 27995.74 24697.71 27289.95 26093.84 30696.98 29688.38 33293.75 33295.74 31887.94 29398.89 31691.02 28498.10 30298.37 259
testdata95.70 24998.16 21490.58 25397.72 26680.38 38995.62 28597.02 25492.06 23898.98 30989.06 32698.52 28297.54 333
test_f95.82 20295.88 20395.66 25097.61 28593.21 19295.61 22198.17 23286.98 34698.42 9799.47 1190.46 26294.74 40197.71 5598.45 28899.03 175
test_yl94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
DCV-MVSNet94.40 26594.00 27495.59 25196.95 32389.52 26894.75 26995.55 32896.18 12996.79 22496.14 30581.09 34199.18 27890.75 29397.77 31498.07 291
tttt051793.31 29892.56 30595.57 25398.71 14587.86 30497.44 10587.17 39995.79 15297.47 18296.84 26664.12 39699.81 3996.20 10799.32 19399.02 178
MSLP-MVS++96.42 17996.71 15795.57 25397.82 24990.56 25595.71 21098.84 12794.72 19696.71 23197.39 22994.91 16098.10 37795.28 16199.02 23498.05 298
thisisatest053092.71 30891.76 31695.56 25598.42 18588.23 29396.03 19087.35 39894.04 22296.56 24295.47 32764.03 39799.77 5994.78 19399.11 22398.68 231
patch_mono-296.59 16996.93 14495.55 25698.88 12387.12 32094.47 27799.30 2894.12 21896.65 23798.41 11894.98 15899.87 2595.81 13099.78 5599.66 29
Test_1112_low_res93.53 29392.86 29495.54 25798.60 16088.86 28292.75 33498.69 16582.66 38092.65 36196.92 26284.75 32099.56 17190.94 28697.76 31698.19 282
pmmvs594.63 25794.34 26495.50 25897.63 28488.34 29194.02 29797.13 29087.15 34395.22 29597.15 24587.50 29999.27 26493.99 22599.26 20398.88 204
MVSFormer96.14 18896.36 18095.49 25997.68 27587.81 30798.67 1699.02 8096.50 11394.48 31396.15 30386.90 30499.92 798.73 2399.13 21998.74 221
ET-MVSNet_ETH3D91.12 33189.67 34395.47 26096.41 33689.15 27691.54 36290.23 38789.07 32086.78 40292.84 36769.39 39199.44 20894.16 21796.61 35697.82 315
diffmvspermissive96.04 19296.23 18495.46 26197.35 30588.03 30193.42 31999.08 6194.09 22196.66 23596.93 26093.85 18899.29 25996.01 11798.67 27099.06 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.58 17196.97 14195.42 26298.63 15687.57 31195.09 25197.90 25495.91 14698.24 12097.96 18093.42 19799.39 22796.04 11399.52 13199.29 126
OpenMVS_ROBcopyleft91.80 1493.64 29093.05 28995.42 26297.31 31191.21 24295.08 25396.68 30881.56 38396.88 22196.41 29190.44 26499.25 26785.39 36697.67 32495.80 377
jason94.39 26794.04 27395.41 26498.29 19387.85 30692.74 33696.75 30585.38 36495.29 29396.15 30388.21 29299.65 13894.24 21499.34 18698.74 221
jason: jason.
API-MVS95.09 23595.01 22895.31 26596.61 33194.02 16196.83 13697.18 28895.60 16195.79 27894.33 34994.54 17198.37 36685.70 36098.52 28293.52 394
PVSNet_BlendedMVS95.02 23994.93 23195.27 26697.79 25987.40 31594.14 29398.68 16788.94 32394.51 31198.01 17693.04 20499.30 25589.77 31599.49 14399.11 163
lupinMVS93.77 28493.28 28695.24 26797.68 27587.81 30792.12 35396.05 31384.52 37394.48 31395.06 33486.90 30499.63 14793.62 23899.13 21998.27 274
D2MVS95.18 23095.17 22195.21 26897.76 26487.76 30994.15 29197.94 25289.77 31496.99 21297.68 20787.45 30099.14 28595.03 18199.81 4798.74 221
Patchmatch-RL test94.66 25594.49 25795.19 26998.54 16988.91 28092.57 34098.74 15491.46 28998.32 11297.75 20077.31 36098.81 32396.06 11099.61 9997.85 313
WTY-MVS93.55 29293.00 29295.19 26997.81 25087.86 30493.89 30596.00 31589.02 32194.07 32295.44 32986.27 30899.33 24787.69 34296.82 34998.39 257
test_vis1_rt94.03 28093.65 28095.17 27195.76 36393.42 18493.97 30298.33 21284.68 37193.17 34995.89 31692.53 22794.79 40093.50 24094.97 38097.31 342
FE-MVS92.95 30492.22 30895.11 27297.21 31488.33 29298.54 2493.66 35089.91 31296.21 26198.14 15570.33 38999.50 18887.79 34098.24 29797.51 334
JIA-IIPM91.79 32490.69 33495.11 27293.80 39590.98 24594.16 29091.78 37196.38 11790.30 38399.30 2872.02 38398.90 31588.28 33690.17 39795.45 383
MIMVSNet93.42 29592.86 29495.10 27498.17 21288.19 29498.13 5693.69 34792.07 27795.04 30198.21 15080.95 34399.03 30481.42 38598.06 30498.07 291
PAPR92.22 31591.27 32395.07 27595.73 36588.81 28391.97 35697.87 25685.80 35890.91 37692.73 37091.16 25198.33 36879.48 39095.76 37398.08 289
MVSTER94.21 27293.93 27795.05 27695.83 35886.46 32995.18 24897.65 27292.41 27497.94 15598.00 17872.39 38299.58 16496.36 10099.56 11299.12 160
test_vis1_n95.67 20795.89 20295.03 27798.18 20989.89 26196.94 13199.28 3088.25 33498.20 12398.92 6886.69 30797.19 38797.70 5798.82 25698.00 303
cl____94.73 24794.64 24795.01 27895.85 35787.00 32291.33 36698.08 24493.34 24197.10 20197.33 23684.01 32799.30 25595.14 17399.56 11298.71 227
DIV-MVS_self_test94.73 24794.64 24795.01 27895.86 35687.00 32291.33 36698.08 24493.34 24197.10 20197.34 23584.02 32699.31 25295.15 17299.55 11898.72 224
test_fmvs1_n95.21 22895.28 21794.99 28098.15 21689.13 27796.81 13899.43 2186.97 34797.21 19298.92 6883.00 33297.13 38898.09 3998.94 24198.72 224
FA-MVS(test-final)94.91 24194.89 23494.99 28097.51 29288.11 30098.27 4595.20 33492.40 27596.68 23298.60 9883.44 32999.28 26193.34 24398.53 28197.59 331
TinyColmap96.00 19596.34 18194.96 28297.90 23987.91 30394.13 29498.49 19194.41 20798.16 12997.76 19796.29 11298.68 33990.52 30299.42 16798.30 270
PVSNet_Blended93.96 28193.65 28094.91 28397.79 25987.40 31591.43 36398.68 16784.50 37494.51 31194.48 34793.04 20499.30 25589.77 31598.61 27798.02 301
BH-RMVSNet94.56 26094.44 26294.91 28397.57 28787.44 31493.78 31096.26 31193.69 23196.41 24996.50 28892.10 23699.00 30585.96 35897.71 32098.31 268
RPMNet94.68 25494.60 25194.90 28595.44 37088.15 29696.18 17898.86 11997.43 7794.10 32098.49 10879.40 34799.76 6495.69 13395.81 36996.81 359
HY-MVS91.43 1592.58 30991.81 31494.90 28596.49 33488.87 28197.31 11094.62 33985.92 35690.50 38096.84 26685.05 31799.40 22383.77 37895.78 37296.43 369
GA-MVS92.83 30692.15 31094.87 28796.97 32287.27 31890.03 38496.12 31291.83 28394.05 32394.57 34276.01 36798.97 31392.46 26097.34 33898.36 264
miper_lstm_enhance94.81 24694.80 24194.85 28896.16 34586.45 33091.14 37298.20 22693.49 23697.03 20997.37 23384.97 31999.26 26595.28 16199.56 11298.83 209
IterMVS-SCA-FT95.86 20096.19 18694.85 28897.68 27585.53 33992.42 34797.63 27696.99 9498.36 10598.54 10487.94 29399.75 7097.07 7999.08 22799.27 131
c3_l95.20 22995.32 21694.83 29096.19 34386.43 33191.83 35998.35 21193.47 23797.36 18697.26 24088.69 28599.28 26195.41 15899.36 17898.78 215
testgi96.07 19096.50 17494.80 29199.26 5987.69 31095.96 19898.58 18495.08 18498.02 14796.25 29997.92 2097.60 38588.68 33198.74 26399.11 163
mvsany_test193.47 29493.03 29094.79 29294.05 39392.12 22190.82 37790.01 39085.02 36897.26 18998.28 13793.57 19497.03 38992.51 25995.75 37495.23 385
CR-MVSNet93.29 29992.79 29794.78 29395.44 37088.15 29696.18 17897.20 28684.94 37094.10 32098.57 10077.67 35599.39 22795.17 16895.81 36996.81 359
eth_miper_zixun_eth94.89 24294.93 23194.75 29495.99 35186.12 33491.35 36598.49 19193.40 23897.12 19997.25 24186.87 30699.35 24295.08 17898.82 25698.78 215
MVS_Test96.27 18396.79 15594.73 29596.94 32586.63 32896.18 17898.33 21294.94 19096.07 26798.28 13795.25 14999.26 26597.21 7197.90 31198.30 270
miper_ehance_all_eth94.69 25294.70 24494.64 29695.77 36286.22 33391.32 36898.24 22191.67 28497.05 20896.65 27988.39 29099.22 27594.88 18698.34 29298.49 250
Patchmatch-test93.60 29193.25 28794.63 29796.14 34987.47 31396.04 18994.50 34193.57 23496.47 24696.97 25776.50 36398.61 34590.67 29998.41 29197.81 317
baseline193.14 30292.64 30394.62 29897.34 30787.20 31996.67 15293.02 35694.71 19796.51 24595.83 31781.64 33698.60 34790.00 31288.06 40198.07 291
xiu_mvs_v1_base_debu95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
xiu_mvs_v1_base_debi95.62 20995.96 19794.60 29998.01 22788.42 28893.99 29998.21 22392.98 25995.91 27394.53 34496.39 10599.72 9095.43 15598.19 29895.64 379
MS-PatchMatch94.83 24494.91 23394.57 30296.81 32887.10 32194.23 28697.34 28388.74 32697.14 19797.11 24891.94 24198.23 37392.99 25297.92 30998.37 259
USDC94.56 26094.57 25694.55 30397.78 26286.43 33192.75 33498.65 17785.96 35596.91 21997.93 18590.82 25798.74 32990.71 29799.59 10498.47 251
BH-untuned94.69 25294.75 24394.52 30497.95 23687.53 31294.07 29697.01 29593.99 22397.10 20195.65 32192.65 21998.95 31487.60 34496.74 35297.09 345
dmvs_re92.08 32091.27 32394.51 30597.16 31692.79 20195.65 21792.64 36394.11 21992.74 35890.98 39083.41 33094.44 40380.72 38794.07 38796.29 371
dcpmvs_297.12 13297.99 5794.51 30599.11 9484.00 36197.75 8299.65 1097.38 8599.14 3998.42 11795.16 15199.96 295.52 14499.78 5599.58 39
cl2293.25 30092.84 29694.46 30794.30 38786.00 33591.09 37496.64 30990.74 29895.79 27896.31 29778.24 35298.77 32694.15 21898.34 29298.62 235
MDA-MVSNet_test_wron94.73 24794.83 23994.42 30897.48 29485.15 34690.28 38395.87 31992.52 27097.48 18097.76 19791.92 24299.17 28293.32 24496.80 35198.94 188
YYNet194.73 24794.84 23794.41 30997.47 29885.09 34890.29 38295.85 32092.52 27097.53 17497.76 19791.97 23999.18 27893.31 24596.86 34698.95 186
ADS-MVSNet291.47 32990.51 33794.36 31095.51 36885.63 33795.05 25695.70 32183.46 37792.69 35996.84 26679.15 34999.41 22185.66 36290.52 39598.04 299
test_cas_vis1_n_192095.34 22295.67 20994.35 31198.21 20386.83 32695.61 22199.26 3190.45 30498.17 12898.96 6484.43 32398.31 36996.74 8699.17 21497.90 309
new_pmnet92.34 31391.69 31794.32 31296.23 34189.16 27592.27 35192.88 35884.39 37695.29 29396.35 29685.66 31396.74 39684.53 37397.56 32897.05 346
MG-MVS94.08 27894.00 27494.32 31297.09 31985.89 33693.19 32795.96 31792.52 27094.93 30497.51 21889.54 27698.77 32687.52 34897.71 32098.31 268
PatchT93.75 28593.57 28294.29 31495.05 37887.32 31796.05 18892.98 35797.54 7394.25 31698.72 8575.79 36899.24 27195.92 12295.81 36996.32 370
test_fmvs194.51 26394.60 25194.26 31595.91 35287.92 30295.35 23799.02 8086.56 35196.79 22498.52 10582.64 33497.00 39197.87 4698.71 26797.88 311
miper_enhance_ethall93.14 30292.78 29994.20 31693.65 39685.29 34389.97 38597.85 25785.05 36696.15 26694.56 34385.74 31299.14 28593.74 23398.34 29298.17 285
IterMVS95.42 22095.83 20494.20 31697.52 29183.78 36392.41 34897.47 28195.49 16798.06 14298.49 10887.94 29399.58 16496.02 11599.02 23499.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051590.43 33789.18 34994.17 31897.07 32085.44 34089.75 39087.58 39788.28 33393.69 33591.72 38265.27 39599.58 16490.59 30098.67 27097.50 336
testing389.72 34788.26 35694.10 31997.66 28084.30 35994.80 26588.25 39694.66 19895.07 29792.51 37341.15 41499.43 21091.81 27098.44 28998.55 243
ECVR-MVScopyleft94.37 26894.48 25894.05 32098.95 11283.10 36698.31 4082.48 40796.20 12698.23 12199.16 4481.18 34099.66 13695.95 12099.83 4299.38 106
test_vis1_n_192095.77 20396.41 17793.85 32198.55 16784.86 35195.91 20299.71 492.72 26897.67 17098.90 7287.44 30198.73 33097.96 4398.85 25297.96 305
thres600view792.03 32191.43 31893.82 32298.19 20684.61 35496.27 17090.39 38396.81 10096.37 25193.11 35873.44 38099.49 19380.32 38897.95 30897.36 339
FPMVS89.92 34488.63 35293.82 32298.37 18896.94 4691.58 36193.34 35488.00 33790.32 38297.10 24970.87 38791.13 40671.91 40496.16 36793.39 396
test111194.53 26294.81 24093.72 32499.06 10181.94 37698.31 4083.87 40596.37 11898.49 8999.17 4381.49 33799.73 8596.64 8899.86 3099.49 70
thres40091.68 32691.00 32793.71 32598.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31797.36 339
IB-MVS85.98 2088.63 35786.95 36793.68 32695.12 37784.82 35390.85 37690.17 38887.55 34088.48 39591.34 38658.01 39999.59 16287.24 35293.80 38996.63 365
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EU-MVSNet94.25 26994.47 25993.60 32798.14 21882.60 37197.24 11592.72 36185.08 36598.48 9198.94 6682.59 33598.76 32897.47 6599.53 12699.44 95
TR-MVS92.54 31092.20 30993.57 32896.49 33486.66 32793.51 31794.73 33889.96 31194.95 30293.87 35390.24 27098.61 34581.18 38694.88 38195.45 383
cascas91.89 32391.35 32093.51 32994.27 38885.60 33888.86 39498.61 17979.32 39392.16 36891.44 38589.22 28398.12 37690.80 29197.47 33496.82 358
ppachtmachnet_test94.49 26494.84 23793.46 33096.16 34582.10 37390.59 37997.48 28090.53 30397.01 21197.59 21291.01 25499.36 23893.97 22799.18 21398.94 188
pmmvs390.00 34188.90 35193.32 33194.20 39185.34 34191.25 36992.56 36578.59 39593.82 32895.17 33167.36 39498.69 33689.08 32598.03 30595.92 374
EPNet_dtu91.39 33090.75 33393.31 33290.48 40982.61 37094.80 26592.88 35893.39 23981.74 40694.90 33981.36 33999.11 29288.28 33698.87 24998.21 279
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90091.76 32591.26 32593.26 33398.21 20384.50 35596.39 16090.39 38396.87 9896.33 25293.08 36273.44 38099.42 21278.85 39397.74 31795.85 375
baseline289.65 34988.44 35593.25 33495.62 36682.71 36893.82 30785.94 40288.89 32487.35 40092.54 37271.23 38599.33 24786.01 35794.60 38597.72 323
DSMNet-mixed92.19 31691.83 31393.25 33496.18 34483.68 36496.27 17093.68 34976.97 40192.54 36599.18 4089.20 28498.55 35183.88 37698.60 27997.51 334
ETVMVS87.62 36585.75 37293.22 33696.15 34883.26 36592.94 33090.37 38591.39 29090.37 38188.45 39951.93 41198.64 34273.76 40096.38 36097.75 320
tfpn200view991.55 32791.00 32793.21 33798.02 22584.35 35795.70 21190.79 38096.26 12395.90 27692.13 37873.62 37799.42 21278.85 39397.74 31795.85 375
mvs_anonymous95.36 22196.07 19293.21 33796.29 33881.56 37894.60 27497.66 27093.30 24396.95 21698.91 7193.03 20899.38 23096.60 9097.30 34098.69 228
our_test_394.20 27494.58 25493.07 33996.16 34581.20 38190.42 38196.84 30090.72 29997.14 19797.13 24690.47 26199.11 29294.04 22498.25 29698.91 196
testing9189.67 34888.55 35393.04 34095.90 35381.80 37792.71 33893.71 34693.71 22990.18 38490.15 39557.11 40099.22 27587.17 35396.32 36298.12 287
ADS-MVSNet90.95 33590.26 33993.04 34095.51 36882.37 37295.05 25693.41 35383.46 37792.69 35996.84 26679.15 34998.70 33485.66 36290.52 39598.04 299
PAPM87.64 36485.84 37193.04 34096.54 33284.99 34988.42 39595.57 32779.52 39283.82 40393.05 36480.57 34498.41 36162.29 40792.79 39195.71 378
PS-MVSNAJ94.10 27694.47 25993.00 34397.35 30584.88 35091.86 35897.84 25991.96 28094.17 31892.50 37495.82 12799.71 10491.27 27897.48 33294.40 390
xiu_mvs_v2_base94.22 27094.63 24992.99 34497.32 31084.84 35292.12 35397.84 25991.96 28094.17 31893.43 35696.07 11899.71 10491.27 27897.48 33294.42 389
SCA93.38 29793.52 28392.96 34596.24 33981.40 38093.24 32594.00 34591.58 28894.57 30996.97 25787.94 29399.42 21289.47 31997.66 32598.06 295
new-patchmatchnet95.67 20796.58 16592.94 34697.48 29480.21 38692.96 32998.19 23194.83 19398.82 6398.79 7893.31 19999.51 18795.83 12899.04 23399.12 160
testing22287.35 36785.50 37492.93 34795.79 36082.83 36792.40 34990.10 38992.80 26688.87 39389.02 39848.34 41298.70 33475.40 39996.74 35297.27 343
Syy-MVS92.09 31991.80 31592.93 34795.19 37582.65 36992.46 34491.35 37490.67 30191.76 37287.61 40185.64 31498.50 35594.73 19696.84 34797.65 326
test0.0.03 190.11 33989.21 34692.83 34993.89 39486.87 32591.74 36088.74 39592.02 27894.71 30791.14 38873.92 37494.48 40283.75 37992.94 39097.16 344
testing1188.93 35487.63 36292.80 35095.87 35581.49 37992.48 34391.54 37391.62 28588.27 39690.24 39355.12 40999.11 29287.30 35196.28 36497.81 317
thres20091.00 33490.42 33892.77 35197.47 29883.98 36294.01 29891.18 37895.12 18395.44 28991.21 38773.93 37399.31 25277.76 39697.63 32795.01 386
BH-w/o92.14 31791.94 31192.73 35297.13 31885.30 34292.46 34495.64 32389.33 31794.21 31792.74 36989.60 27498.24 37281.68 38494.66 38394.66 388
testing9989.21 35288.04 35892.70 35395.78 36181.00 38392.65 33992.03 36793.20 24889.90 38890.08 39755.25 40699.14 28587.54 34695.95 36897.97 304
131492.38 31292.30 30792.64 35495.42 37285.15 34695.86 20496.97 29785.40 36390.62 37793.06 36391.12 25297.80 38286.74 35595.49 37794.97 387
SSC-MVS95.92 19797.03 13892.58 35599.28 5778.39 39196.68 15095.12 33598.90 2399.11 4198.66 9191.36 24999.68 12495.00 18299.16 21599.67 27
KD-MVS_2432*160088.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
miper_refine_blended88.93 35487.74 35992.49 35688.04 41081.99 37489.63 39195.62 32491.35 29195.06 29893.11 35856.58 40298.63 34385.19 36795.07 37896.85 355
MVS90.02 34089.20 34792.47 35894.71 38286.90 32495.86 20496.74 30664.72 40690.62 37792.77 36892.54 22598.39 36379.30 39195.56 37692.12 398
PMMVS293.66 28994.07 27292.45 35997.57 28780.67 38486.46 39796.00 31593.99 22397.10 20197.38 23189.90 27297.82 38188.76 32899.47 14998.86 207
CHOSEN 280x42089.98 34289.19 34892.37 36095.60 36781.13 38286.22 39897.09 29281.44 38587.44 39993.15 35773.99 37299.47 19888.69 33099.07 22996.52 367
PatchmatchNetpermissive91.98 32291.87 31292.30 36194.60 38479.71 38795.12 24993.59 35289.52 31593.61 33797.02 25477.94 35399.18 27890.84 28994.57 38698.01 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gg-mvs-nofinetune88.28 36086.96 36692.23 36292.84 40384.44 35698.19 5374.60 41099.08 1487.01 40199.47 1156.93 40198.23 37378.91 39295.61 37594.01 392
WB-MVSnew91.50 32891.29 32192.14 36394.85 38080.32 38593.29 32488.77 39488.57 32994.03 32492.21 37692.56 22298.28 37180.21 38997.08 34197.81 317
WB-MVS95.50 21396.62 16192.11 36499.21 7577.26 39996.12 18495.40 33298.62 3098.84 6198.26 14291.08 25399.50 18893.37 24198.70 26899.58 39
test250689.86 34589.16 35091.97 36598.95 11276.83 40098.54 2461.07 41496.20 12697.07 20799.16 4455.19 40899.69 11996.43 9799.83 4299.38 106
myMVS_eth3d87.16 37085.61 37391.82 36695.19 37579.32 38892.46 34491.35 37490.67 30191.76 37287.61 40141.96 41398.50 35582.66 38196.84 34797.65 326
tpm91.08 33390.85 33191.75 36795.33 37378.09 39295.03 25891.27 37788.75 32593.53 34097.40 22571.24 38499.30 25591.25 28093.87 38897.87 312
PVSNet86.72 1991.10 33290.97 32991.49 36897.56 28978.04 39387.17 39694.60 34084.65 37292.34 36692.20 37787.37 30298.47 35885.17 36997.69 32297.96 305
EPMVS89.26 35188.55 35391.39 36992.36 40579.11 39095.65 21779.86 40888.60 32893.12 35096.53 28570.73 38898.10 37790.75 29389.32 39996.98 348
CostFormer89.75 34689.25 34491.26 37094.69 38378.00 39495.32 24091.98 36981.50 38490.55 37996.96 25971.06 38698.89 31688.59 33292.63 39296.87 353
CVMVSNet92.33 31492.79 29790.95 37197.26 31275.84 40395.29 24392.33 36681.86 38196.27 25798.19 15181.44 33898.46 35994.23 21598.29 29598.55 243
tpm288.47 35887.69 36190.79 37294.98 37977.34 39795.09 25191.83 37077.51 40089.40 39096.41 29167.83 39398.73 33083.58 38092.60 39396.29 371
GG-mvs-BLEND90.60 37391.00 40784.21 36098.23 4772.63 41382.76 40484.11 40556.14 40496.79 39472.20 40392.09 39490.78 402
tpmvs90.79 33690.87 33090.57 37492.75 40476.30 40195.79 20893.64 35191.04 29691.91 37096.26 29877.19 36198.86 32089.38 32189.85 39896.56 366
test-LLR89.97 34389.90 34190.16 37594.24 38974.98 40489.89 38689.06 39292.02 27889.97 38690.77 39173.92 37498.57 34891.88 26797.36 33696.92 350
test-mter87.92 36387.17 36490.16 37594.24 38974.98 40489.89 38689.06 39286.44 35289.97 38690.77 39154.96 41098.57 34891.88 26797.36 33696.92 350
UWE-MVS87.57 36686.72 36890.13 37795.21 37473.56 40791.94 35783.78 40688.73 32793.00 35292.87 36655.22 40799.25 26781.74 38397.96 30797.59 331
tpm cat188.01 36287.33 36390.05 37894.48 38576.28 40294.47 27794.35 34373.84 40589.26 39195.61 32473.64 37698.30 37084.13 37486.20 40395.57 382
tpmrst90.31 33890.61 33689.41 37994.06 39272.37 41095.06 25593.69 34788.01 33692.32 36796.86 26477.45 35798.82 32191.04 28387.01 40297.04 347
TESTMET0.1,187.20 36986.57 36989.07 38093.62 39772.84 40989.89 38687.01 40085.46 36289.12 39290.20 39456.00 40597.72 38390.91 28796.92 34396.64 363
E-PMN89.52 35089.78 34288.73 38193.14 39977.61 39583.26 40392.02 36894.82 19493.71 33393.11 35875.31 36996.81 39385.81 35996.81 35091.77 400
EMVS89.06 35389.22 34588.61 38293.00 40177.34 39782.91 40490.92 37994.64 20092.63 36391.81 38176.30 36597.02 39083.83 37796.90 34591.48 401
PVSNet_081.89 2184.49 37283.21 37588.34 38395.76 36374.97 40683.49 40292.70 36278.47 39687.94 39786.90 40483.38 33196.63 39773.44 40266.86 40893.40 395
dmvs_testset87.30 36886.99 36588.24 38496.71 32977.48 39694.68 27186.81 40192.64 26989.61 38987.01 40385.91 31193.12 40461.04 40888.49 40094.13 391
MVEpermissive73.61 2286.48 37185.92 37088.18 38596.23 34185.28 34481.78 40575.79 40986.01 35482.53 40591.88 38092.74 21587.47 40871.42 40594.86 38291.78 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp88.08 36188.05 35788.16 38692.85 40268.81 41294.17 28992.88 35885.47 36191.38 37596.14 30568.87 39298.81 32386.88 35483.80 40596.87 353
wuyk23d93.25 30095.20 21987.40 38796.07 35095.38 10597.04 12794.97 33695.33 17399.70 998.11 16198.14 1791.94 40577.76 39699.68 8274.89 405
MVS-HIRNet88.40 35990.20 34082.99 38897.01 32160.04 41393.11 32885.61 40384.45 37588.72 39499.09 5384.72 32198.23 37382.52 38296.59 35790.69 403
DeepMVS_CXcopyleft77.17 38990.94 40885.28 34474.08 41252.51 40880.87 40888.03 40075.25 37070.63 41059.23 40984.94 40475.62 404
test_method66.88 37466.13 37769.11 39062.68 41525.73 41849.76 40696.04 31414.32 41064.27 41091.69 38373.45 37988.05 40776.06 39866.94 40793.54 393
dongtai63.43 37563.37 37863.60 39183.91 41353.17 41585.14 39943.40 41777.91 39980.96 40779.17 40736.36 41577.10 40937.88 41045.63 40960.54 406
kuosan54.81 37754.94 38054.42 39274.43 41450.03 41684.98 40044.27 41661.80 40762.49 41170.43 40835.16 41658.04 41119.30 41141.61 41055.19 407
tmp_tt57.23 37662.50 37941.44 39334.77 41649.21 41783.93 40160.22 41515.31 40971.11 40979.37 40670.09 39044.86 41264.76 40682.93 40630.25 408
test12312.59 37915.49 3823.87 3946.07 4172.55 41990.75 3782.59 4192.52 4125.20 41413.02 4114.96 4171.85 4145.20 4129.09 4117.23 409
testmvs12.33 38015.23 3833.64 3955.77 4182.23 42088.99 3933.62 4182.30 4135.29 41313.09 4104.52 4181.95 4135.16 4138.32 4126.75 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.22 37832.30 3810.00 3960.00 4190.00 4210.00 40798.10 2420.00 4140.00 41595.06 33497.54 390.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.98 38110.65 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41495.82 1270.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.91 38210.55 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41594.94 3360.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS79.32 38885.41 365
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 58
PC_three_145287.24 34298.37 10297.44 22297.00 6596.78 39592.01 26399.25 20499.21 140
test_one_060199.05 10595.50 10098.87 11697.21 9198.03 14698.30 13296.93 71
eth-test20.00 419
eth-test0.00 419
ZD-MVS98.43 18495.94 8098.56 18690.72 29996.66 23597.07 25095.02 15699.74 7991.08 28298.93 243
RE-MVS-def97.88 6898.81 13098.05 1097.55 9798.86 11997.77 5798.20 12398.07 16596.94 6995.49 14599.20 20999.26 132
IU-MVS99.22 6895.40 10398.14 23985.77 35998.36 10595.23 16599.51 13699.49 70
test_241102_TWO98.83 13396.11 13198.62 7798.24 14496.92 7399.72 9095.44 15299.49 14399.49 70
test_241102_ONE99.22 6895.35 10898.83 13396.04 13699.08 4298.13 15797.87 2399.33 247
9.1496.69 15898.53 17096.02 19198.98 9593.23 24597.18 19597.46 22096.47 10099.62 15292.99 25299.32 193
save fliter98.48 17994.71 13194.53 27698.41 20195.02 188
test_0728_THIRD96.62 10498.40 9998.28 13797.10 5699.71 10495.70 13199.62 9399.58 39
test072699.24 6395.51 9796.89 13498.89 10895.92 14498.64 7598.31 12897.06 60
GSMVS98.06 295
test_part299.03 10796.07 7598.08 139
sam_mvs177.80 35498.06 295
sam_mvs77.38 358
MTGPAbinary98.73 155
test_post194.98 26010.37 41376.21 36699.04 30189.47 319
test_post10.87 41276.83 36299.07 298
patchmatchnet-post96.84 26677.36 35999.42 212
MTMP96.55 15474.60 410
gm-plane-assit91.79 40671.40 41181.67 38290.11 39698.99 30784.86 371
test9_res91.29 27798.89 24899.00 179
TEST997.84 24695.23 11593.62 31398.39 20486.81 34893.78 32995.99 31094.68 16599.52 183
test_897.81 25095.07 12493.54 31698.38 20687.04 34493.71 33395.96 31394.58 16999.52 183
agg_prior290.34 30898.90 24599.10 167
agg_prior97.80 25494.96 12698.36 20893.49 34199.53 180
test_prior495.38 10593.61 315
test_prior293.33 32394.21 21394.02 32596.25 29993.64 19391.90 26698.96 238
旧先验293.35 32277.95 39895.77 28298.67 34090.74 296
新几何293.43 318
旧先验197.80 25493.87 16697.75 26497.04 25393.57 19498.68 26998.72 224
无先验93.20 32697.91 25380.78 38799.40 22387.71 34197.94 307
原ACMM292.82 332
test22298.17 21293.24 19192.74 33697.61 27775.17 40294.65 30896.69 27790.96 25698.66 27297.66 325
testdata299.46 20187.84 339
segment_acmp95.34 146
testdata192.77 33393.78 227
plane_prior798.70 14794.67 134
plane_prior698.38 18794.37 14891.91 243
plane_prior598.75 15299.46 20192.59 25799.20 20999.28 127
plane_prior496.77 272
plane_prior394.51 14195.29 17696.16 264
plane_prior296.50 15696.36 119
plane_prior198.49 177
plane_prior94.29 15195.42 22994.31 21198.93 243
n20.00 420
nn0.00 420
door-mid98.17 232
test1198.08 244
door97.81 262
HQP5-MVS92.47 208
HQP-NCC97.85 24194.26 28193.18 25092.86 355
ACMP_Plane97.85 24194.26 28193.18 25092.86 355
BP-MVS90.51 303
HQP4-MVS92.87 35499.23 27399.06 172
HQP3-MVS98.43 19798.74 263
HQP2-MVS90.33 265
NP-MVS98.14 21893.72 17295.08 332
MDTV_nov1_ep13_2view57.28 41494.89 26280.59 38894.02 32578.66 35185.50 36497.82 315
MDTV_nov1_ep1391.28 32294.31 38673.51 40894.80 26593.16 35586.75 35093.45 34397.40 22576.37 36498.55 35188.85 32796.43 358
ACMMP++_ref99.52 131
ACMMP++99.55 118
Test By Simon94.51 172