This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9097.89 1399.47 399.32 2099.08 1097.87 15199.67 296.47 9599.92 597.88 3399.98 299.85 3
MTAPA98.14 3697.84 6099.06 399.44 3997.90 1297.25 10898.73 13997.69 6097.90 14697.96 16595.81 11999.82 3596.13 9699.61 8999.45 76
mPP-MVS97.91 6697.53 9699.04 499.22 6797.87 1497.74 7998.78 13196.04 12997.10 18997.73 19096.53 9099.78 4795.16 15799.50 12999.46 72
MSP-MVS97.45 10396.92 13299.03 599.26 5897.70 1897.66 8398.89 9395.65 15198.51 7496.46 27692.15 21799.81 3795.14 16098.58 26799.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post98.14 3697.84 6099.02 698.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.60 8899.76 6195.49 13299.20 19899.26 121
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1698.85 2099.00 4199.20 3197.42 3799.59 15497.21 5999.76 5199.40 90
SR-MVS98.00 4897.66 7899.01 898.77 12597.93 1197.38 10498.83 11797.32 7998.06 13097.85 17796.65 8399.77 5695.00 16999.11 21199.32 104
MP-MVScopyleft97.64 9097.18 11699.00 999.32 5597.77 1797.49 9898.73 13996.27 11595.59 27197.75 18796.30 10299.78 4793.70 22199.48 13699.45 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu96.81 14096.09 17398.99 1096.90 31098.69 496.42 15298.09 23095.86 14295.15 28195.54 31294.26 16699.81 3794.06 20698.51 27198.47 239
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 3195.62 15399.35 2299.37 1897.38 3899.90 1498.59 1899.91 1799.77 11
CP-MVS97.92 6397.56 9398.99 1098.99 10597.82 1597.93 6698.96 8496.11 12496.89 20997.45 20896.85 7599.78 4795.19 15399.63 8299.38 95
PGM-MVS97.88 7097.52 9798.96 1399.20 7597.62 2197.09 11999.06 5495.45 16197.55 16197.94 16897.11 5099.78 4794.77 18099.46 14199.48 67
RPSCF97.87 7197.51 9898.95 1499.15 8198.43 697.56 9199.06 5496.19 12198.48 7998.70 7994.72 15099.24 25494.37 19499.33 18099.17 138
XVS97.96 5197.63 8498.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23897.64 19596.49 9399.72 8695.66 12399.37 16499.45 76
X-MVStestdata92.86 29090.83 31598.94 1599.15 8197.66 1997.77 7498.83 11797.42 7296.32 23836.50 38296.49 9399.72 8695.66 12399.37 16499.45 76
ACMMPR97.95 5597.62 8698.94 1599.20 7597.56 2597.59 8998.83 11796.05 12797.46 17197.63 19696.77 7999.76 6195.61 12799.46 14199.49 61
testf198.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
APD_test298.57 1798.45 2798.93 1899.79 398.78 297.69 8199.42 1897.69 6098.92 4598.77 7297.80 2299.25 25196.27 9099.69 6998.76 209
ACMMPcopyleft98.05 4597.75 7198.93 1899.23 6497.60 2298.09 5798.96 8495.75 14897.91 14598.06 15596.89 7099.76 6195.32 14799.57 9999.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R97.92 6397.59 9098.92 2199.22 6797.55 2697.60 8798.84 11196.00 13297.22 17897.62 19796.87 7499.76 6195.48 13599.43 15399.46 72
HPM-MVScopyleft98.11 4097.83 6398.92 2199.42 4297.46 3198.57 2099.05 5695.43 16397.41 17397.50 20697.98 1699.79 4495.58 13099.57 9999.50 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.32 2898.13 3798.88 2399.54 2697.48 3098.35 3599.03 6395.88 14097.88 14898.22 13498.15 1399.74 7696.50 8299.62 8399.42 87
ACMM93.33 1198.05 4597.79 6598.85 2499.15 8197.55 2696.68 14598.83 11795.21 16998.36 9398.13 14298.13 1599.62 14496.04 10099.54 11199.39 93
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6397.62 8698.83 2599.32 5597.24 3997.45 9998.84 11195.76 14696.93 20697.43 21097.26 4599.79 4496.06 9799.53 11599.45 76
HFP-MVS97.94 5997.64 8298.83 2599.15 8197.50 2997.59 8998.84 11196.05 12797.49 16697.54 20297.07 5499.70 10895.61 12799.46 14199.30 109
GST-MVS97.82 7897.49 10198.81 2799.23 6497.25 3897.16 11398.79 12795.96 13497.53 16297.40 21296.93 6699.77 5695.04 16699.35 17299.42 87
HPM-MVS++copyleft96.99 12596.38 16298.81 2798.64 13997.59 2395.97 18298.20 21295.51 15995.06 28296.53 27294.10 16999.70 10894.29 19799.15 20499.13 146
APD-MVS_3200maxsize98.13 3997.90 5498.79 2998.79 12297.31 3697.55 9298.92 9097.72 5698.25 10798.13 14297.10 5199.75 6795.44 13999.24 19699.32 104
SteuartSystems-ACMMP98.02 4797.76 7098.79 2999.43 4097.21 4197.15 11498.90 9296.58 10198.08 12797.87 17697.02 5999.76 6195.25 15099.59 9499.40 90
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 5597.68 7698.75 3199.60 1798.60 597.21 11299.08 5096.57 10498.07 12998.38 10896.22 10599.14 26794.71 18399.31 18598.52 234
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2696.23 11899.71 499.48 998.77 699.93 398.89 799.95 599.84 5
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3399.05 1399.17 3298.79 6995.47 13099.89 1897.95 3299.91 1799.75 16
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4295.83 14499.67 799.37 1898.25 1099.92 598.77 1099.94 899.82 6
LPG-MVS_test97.94 5997.67 7798.74 3499.15 8197.02 4297.09 11999.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
LGP-MVS_train98.74 3499.15 8197.02 4299.02 6595.15 17398.34 9698.23 13197.91 1899.70 10894.41 19199.73 5899.50 53
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1199.02 1599.62 1199.36 2098.53 799.52 17598.58 1999.95 599.66 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss97.69 8797.36 10698.70 3899.50 3496.84 4795.38 21998.99 7792.45 25498.11 12298.31 11497.25 4699.77 5696.60 7899.62 8399.48 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6596.50 10699.32 2399.44 1397.43 3699.92 598.73 1299.95 599.86 2
ACMMP_NAP97.89 6997.63 8498.67 4099.35 5196.84 4796.36 15698.79 12795.07 17797.88 14898.35 11097.24 4799.72 8696.05 9999.58 9699.45 76
MIMVSNet198.51 2298.45 2798.67 4099.72 896.71 5098.76 1298.89 9398.49 2999.38 1999.14 4195.44 13299.84 3096.47 8399.80 4499.47 70
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2999.67 299.73 399.65 599.15 399.86 2497.22 5899.92 1499.77 11
COLMAP_ROBcopyleft94.48 698.25 3298.11 3998.64 4399.21 7497.35 3597.96 6399.16 3498.34 3398.78 5598.52 9497.32 4099.45 19694.08 20599.67 7599.13 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5698.05 4599.61 1299.52 793.72 18099.88 2098.72 1499.88 2699.65 26
SMA-MVScopyleft97.48 10197.11 11898.60 4598.83 11896.67 5396.74 13998.73 13991.61 26698.48 7998.36 10996.53 9099.68 12095.17 15599.54 11199.45 76
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4499.36 499.29 2599.06 4797.27 4399.93 397.71 4399.91 1799.70 22
LS3D97.77 8297.50 10098.57 4796.24 32297.58 2498.45 3198.85 10898.58 2697.51 16497.94 16895.74 12299.63 13995.19 15398.97 22598.51 235
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2199.01 1699.63 1099.66 399.27 299.68 12097.75 4199.89 2599.62 29
ACMP92.54 1397.47 10297.10 11998.55 4999.04 10196.70 5196.24 16598.89 9393.71 21697.97 14097.75 18797.44 3599.63 13993.22 23299.70 6899.32 104
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EGC-MVSNET83.08 34877.93 35198.53 5099.57 2097.55 2698.33 3898.57 1704.71 38410.38 38598.90 6395.60 12799.50 18095.69 12099.61 8998.55 232
DPE-MVScopyleft97.64 9097.35 10798.50 5198.85 11796.18 6995.21 23298.99 7795.84 14398.78 5598.08 14896.84 7699.81 3793.98 21199.57 9999.52 49
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-ACMP-BASELINE97.58 9597.28 11198.49 5299.16 7996.90 4696.39 15398.98 8095.05 17898.06 13098.02 15995.86 11199.56 16394.37 19499.64 8099.00 170
CPTT-MVS96.69 14996.08 17498.49 5298.89 11396.64 5597.25 10898.77 13292.89 24596.01 25597.13 23392.23 21699.67 12592.24 24599.34 17599.17 138
APDe-MVS98.14 3698.03 4798.47 5498.72 12996.04 7598.07 5899.10 4495.96 13498.59 6998.69 8096.94 6499.81 3796.64 7699.58 9699.57 38
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3899.33 599.30 2499.00 5097.27 4399.92 597.64 4799.92 1499.75 16
mvsmamba98.16 3498.06 4498.44 5599.53 2995.87 8198.70 1398.94 8797.71 5898.85 4999.10 4391.35 23299.83 3398.47 2099.90 2399.64 28
RRT_MVS97.95 5597.79 6598.43 5799.67 1295.56 9398.86 1096.73 29597.99 4799.15 3399.35 2289.84 25499.90 1498.64 1699.90 2399.82 6
TranMVSNet+NR-MVSNet98.33 2798.30 3498.43 5799.07 9595.87 8196.73 14399.05 5698.67 2398.84 5198.45 10197.58 3399.88 2096.45 8499.86 2999.54 45
OPM-MVS97.54 9797.25 11298.41 5999.11 9096.61 5695.24 23098.46 17894.58 19398.10 12498.07 15097.09 5399.39 21795.16 15799.44 14599.21 129
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft97.00 12496.53 15498.41 5998.55 15496.31 6696.32 15998.77 13292.96 24497.44 17297.58 20195.84 11299.74 7691.96 24899.35 17299.19 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4199.22 899.22 3098.96 5497.35 3999.92 597.79 3999.93 1099.79 9
UniMVSNet_NR-MVSNet97.83 7597.65 7998.37 6298.72 12995.78 8495.66 20099.02 6598.11 4298.31 10297.69 19394.65 15599.85 2797.02 6899.71 6599.48 67
DU-MVS97.79 8097.60 8998.36 6398.73 12795.78 8495.65 20298.87 10197.57 6498.31 10297.83 17894.69 15199.85 2797.02 6899.71 6599.46 72
UniMVSNet (Re)97.83 7597.65 7998.35 6498.80 12195.86 8395.92 18899.04 6297.51 6998.22 11097.81 18294.68 15399.78 4797.14 6399.75 5699.41 89
CS-MVS98.09 4198.01 4898.32 6598.45 16996.69 5298.52 2699.69 398.07 4496.07 25297.19 23196.88 7299.86 2497.50 5199.73 5898.41 242
nrg03098.54 2098.62 2198.32 6599.22 6795.66 9197.90 6899.08 5098.31 3499.02 3998.74 7597.68 2799.61 15197.77 4099.85 3499.70 22
DeepPCF-MVS94.58 596.90 13396.43 15998.31 6797.48 27697.23 4092.56 32198.60 16492.84 24698.54 7297.40 21296.64 8598.78 30594.40 19399.41 16098.93 183
CP-MVSNet98.42 2598.46 2598.30 6899.46 3795.22 11898.27 4498.84 11199.05 1399.01 4098.65 8495.37 13399.90 1497.57 4899.91 1799.77 11
XVG-OURS-SEG-HR97.38 10897.07 12298.30 6899.01 10497.41 3494.66 25699.02 6595.20 17098.15 11997.52 20498.83 498.43 33694.87 17396.41 33899.07 161
h-mvs3396.29 16795.63 19598.26 7098.50 16396.11 7396.90 12897.09 27996.58 10197.21 18098.19 13684.14 30599.78 4795.89 11196.17 34298.89 191
NR-MVSNet97.96 5197.86 5998.26 7098.73 12795.54 9598.14 5498.73 13997.79 5099.42 1797.83 17894.40 16399.78 4795.91 11099.76 5199.46 72
XVG-OURS97.12 11996.74 14198.26 7098.99 10597.45 3293.82 29199.05 5695.19 17198.32 10097.70 19295.22 13898.41 33794.27 19898.13 28598.93 183
test_0728_SECOND98.25 7399.23 6495.49 10196.74 13998.89 9399.75 6795.48 13599.52 12099.53 48
PHI-MVS96.96 12996.53 15498.25 7397.48 27696.50 5996.76 13898.85 10893.52 21996.19 24896.85 25295.94 10999.42 20293.79 21799.43 15398.83 200
MSC_two_6792asdad98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
No_MVS98.22 7597.75 25395.34 11098.16 22299.75 6795.87 11399.51 12599.57 38
SF-MVS97.60 9397.39 10498.22 7598.93 11095.69 8897.05 12199.10 4495.32 16697.83 15497.88 17596.44 9799.72 8694.59 18899.39 16299.25 125
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2796.91 8999.75 299.45 1295.82 11599.92 598.80 999.96 499.89 1
DVP-MVScopyleft97.78 8197.65 7998.16 7999.24 6295.51 9796.74 13998.23 20795.92 13798.40 8798.28 12397.06 5599.71 10195.48 13599.52 12099.26 121
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS95.41 497.82 7897.70 7298.16 7998.78 12495.72 8696.23 16699.02 6593.92 21198.62 6598.99 5197.69 2699.62 14496.18 9599.87 2799.15 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 8497.59 9098.15 8198.11 20995.60 9298.04 6098.70 14898.13 4196.93 20698.45 10195.30 13699.62 14495.64 12598.96 22699.24 126
CS-MVS-test97.91 6697.84 6098.14 8298.52 15896.03 7798.38 3499.67 498.11 4295.50 27396.92 24996.81 7899.87 2296.87 7399.76 5198.51 235
PM-MVS97.36 11297.10 11998.14 8298.91 11296.77 4996.20 16798.63 16293.82 21398.54 7298.33 11293.98 17299.05 28095.99 10599.45 14498.61 227
DVP-MVS++97.96 5197.90 5498.12 8497.75 25395.40 10399.03 798.89 9396.62 9698.62 6598.30 11896.97 6299.75 6795.70 11899.25 19399.21 129
NCCC96.52 15895.99 17898.10 8597.81 23795.68 8995.00 24498.20 21295.39 16495.40 27696.36 28293.81 17799.45 19693.55 22498.42 27499.17 138
SED-MVS97.94 5997.90 5498.07 8699.22 6795.35 10896.79 13698.83 11796.11 12499.08 3698.24 12997.87 2099.72 8695.44 13999.51 12599.14 144
Vis-MVSNetpermissive98.27 3098.34 3198.07 8699.33 5395.21 12098.04 6099.46 1497.32 7997.82 15599.11 4296.75 8099.86 2497.84 3699.36 16799.15 141
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 11896.92 13298.06 8899.08 9396.16 7097.14 11699.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
TestCases98.06 8899.08 9396.16 7099.16 3494.35 19897.78 15698.07 15095.84 11299.12 27091.41 25899.42 15698.91 187
N_pmnet95.18 21394.23 24998.06 8897.85 22896.55 5892.49 32291.63 35589.34 29398.09 12597.41 21190.33 24599.06 27991.58 25799.31 18598.56 230
F-COLMAP95.30 20894.38 24698.05 9198.64 13996.04 7595.61 20698.66 15689.00 29993.22 33196.40 28092.90 19699.35 22887.45 33197.53 31398.77 208
CNVR-MVS96.92 13196.55 15198.03 9298.00 21895.54 9594.87 24898.17 21894.60 19096.38 23597.05 23995.67 12499.36 22595.12 16399.08 21599.19 134
TSAR-MVS + MP.97.42 10697.23 11498.00 9399.38 4895.00 12597.63 8698.20 21293.00 23998.16 11798.06 15595.89 11099.72 8695.67 12299.10 21399.28 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+93.58 1098.23 3398.31 3297.98 9499.39 4795.22 11897.55 9299.20 2998.21 3999.25 2898.51 9698.21 1199.40 21394.79 17799.72 6299.32 104
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 4099.08 1099.42 1799.23 2996.53 9099.91 1399.27 499.93 1099.73 19
Anonymous2023121198.55 1998.76 1397.94 9698.79 12294.37 14498.84 1199.15 3899.37 399.67 799.43 1495.61 12699.72 8698.12 2599.86 2999.73 19
bld_raw_dy_0_6497.69 8797.61 8897.91 9799.54 2694.27 15198.06 5998.60 16496.60 9898.79 5498.95 5689.62 25599.84 3098.43 2299.91 1799.62 29
OMC-MVS96.48 16096.00 17797.91 9798.30 17996.01 7894.86 24998.60 16491.88 26397.18 18397.21 23096.11 10699.04 28190.49 28899.34 17598.69 218
GeoE97.75 8397.70 7297.89 9998.88 11494.53 13797.10 11898.98 8095.75 14897.62 15997.59 19997.61 3299.77 5696.34 8899.44 14599.36 101
train_agg95.46 20194.66 22897.88 10097.84 23395.23 11593.62 29798.39 18987.04 31993.78 31295.99 29794.58 15799.52 17591.76 25598.90 23398.89 191
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7497.57 6499.27 2699.22 3098.32 999.50 18097.09 6599.75 5699.50 53
ITE_SJBPF97.85 10298.64 13996.66 5498.51 17595.63 15297.22 17897.30 22595.52 12898.55 32990.97 26898.90 23398.34 253
CDPH-MVS95.45 20294.65 22997.84 10398.28 18294.96 12693.73 29598.33 19785.03 34295.44 27496.60 26895.31 13599.44 19990.01 29499.13 20799.11 154
DP-MVS97.87 7197.89 5797.81 10498.62 14594.82 12997.13 11798.79 12798.98 1798.74 6198.49 9795.80 12099.49 18495.04 16699.44 14599.11 154
hse-mvs295.77 18795.09 20797.79 10597.84 23395.51 9795.66 20095.43 31996.58 10197.21 18096.16 28984.14 30599.54 17095.89 11196.92 32598.32 254
EC-MVSNet97.90 6897.94 5397.79 10598.66 13895.14 12198.31 3999.66 697.57 6495.95 25697.01 24396.99 6199.82 3597.66 4699.64 8098.39 245
MAR-MVS94.21 25693.03 27597.76 10796.94 30897.44 3396.97 12597.15 27687.89 31492.00 35192.73 35492.14 21899.12 27083.92 35497.51 31496.73 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS93.95 26792.69 28697.74 10897.80 24195.38 10595.57 20995.46 31891.26 27292.64 34496.10 29574.67 35299.55 16793.72 22096.97 32498.30 258
VDD-MVS97.37 11097.25 11297.74 10898.69 13694.50 14097.04 12295.61 31498.59 2598.51 7498.72 7692.54 20999.58 15696.02 10299.49 13299.12 151
Anonymous2024052997.96 5198.04 4697.71 11098.69 13694.28 15097.86 7098.31 20198.79 2199.23 2998.86 6795.76 12199.61 15195.49 13299.36 16799.23 127
VPA-MVSNet98.27 3098.46 2597.70 11199.06 9693.80 16697.76 7699.00 7498.40 3199.07 3898.98 5296.89 7099.75 6797.19 6299.79 4599.55 44
IS-MVSNet96.93 13096.68 14497.70 11199.25 6194.00 15998.57 2096.74 29398.36 3298.14 12097.98 16488.23 27399.71 10193.10 23599.72 6299.38 95
CSCG97.40 10797.30 10997.69 11398.95 10794.83 12897.28 10798.99 7796.35 11498.13 12195.95 30195.99 10899.66 13194.36 19699.73 5898.59 228
HQP_MVS96.66 15196.33 16597.68 11498.70 13494.29 14796.50 14998.75 13696.36 11296.16 24996.77 25991.91 22799.46 19292.59 24199.20 19899.28 116
EPP-MVSNet96.84 13596.58 14897.65 11599.18 7893.78 16898.68 1496.34 29897.91 4997.30 17598.06 15588.46 27099.85 2793.85 21599.40 16199.32 104
OPU-MVS97.64 11698.01 21495.27 11396.79 13697.35 22196.97 6298.51 33291.21 26499.25 19399.14 144
MVS_111021_LR96.82 13996.55 15197.62 11798.27 18495.34 11093.81 29398.33 19794.59 19296.56 22796.63 26796.61 8698.73 31094.80 17699.34 17598.78 205
UGNet96.81 14096.56 15097.58 11896.64 31393.84 16597.75 7797.12 27896.47 10993.62 31998.88 6593.22 18999.53 17295.61 12799.69 6999.36 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test98.16 3498.37 3097.56 11999.49 3593.10 18898.35 3599.21 2798.43 3098.89 4798.83 6894.30 16599.81 3797.87 3499.91 1799.77 11
MCST-MVS96.24 16995.80 18897.56 11998.75 12694.13 15594.66 25698.17 21890.17 28696.21 24696.10 29595.14 14099.43 20194.13 20498.85 24099.13 146
GBi-Net96.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
test196.99 12596.80 13897.56 11997.96 22093.67 17098.23 4698.66 15695.59 15597.99 13699.19 3289.51 26199.73 8194.60 18599.44 14599.30 109
FMVSNet197.95 5598.08 4197.56 11999.14 8893.67 17098.23 4698.66 15697.41 7599.00 4199.19 3295.47 13099.73 8195.83 11599.76 5199.30 109
sd_testset97.97 4998.12 3897.51 12499.41 4393.44 17997.96 6398.25 20498.58 2698.78 5599.39 1598.21 1199.56 16392.65 23999.86 2999.52 49
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18298.20 5198.87 10198.23 3899.48 1499.27 2798.47 899.55 16796.52 8199.53 11599.60 31
PLCcopyleft91.02 1694.05 26392.90 27897.51 12498.00 21895.12 12394.25 26898.25 20486.17 32891.48 35495.25 31791.01 23599.19 25985.02 34996.69 33398.22 266
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17698.23 4699.05 5697.40 7699.37 2099.08 4698.79 599.47 18997.74 4299.71 6599.50 53
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
alignmvs96.01 17995.52 19897.50 12897.77 25094.71 13196.07 17496.84 28797.48 7096.78 21694.28 33785.50 29699.40 21396.22 9298.73 25498.40 243
Baseline_NR-MVSNet97.72 8597.79 6597.50 12899.56 2193.29 18395.44 21298.86 10498.20 4098.37 9099.24 2894.69 15199.55 16795.98 10699.79 4599.65 26
3Dnovator96.53 297.61 9297.64 8297.50 12897.74 25693.65 17498.49 2898.88 9996.86 9197.11 18898.55 9295.82 11599.73 8195.94 10899.42 15699.13 146
TSAR-MVS + GP.96.47 16196.12 17197.49 13197.74 25695.23 11594.15 27596.90 28693.26 22798.04 13396.70 26394.41 16298.89 29694.77 18099.14 20598.37 247
FIs97.93 6298.07 4297.48 13299.38 4892.95 19198.03 6299.11 4398.04 4698.62 6598.66 8293.75 17999.78 4797.23 5799.84 3599.73 19
test_040297.84 7497.97 5097.47 13399.19 7794.07 15696.71 14498.73 13998.66 2498.56 7198.41 10496.84 7699.69 11594.82 17599.81 4198.64 222
test_prior97.46 13497.79 24694.26 15298.42 18599.34 23098.79 204
test1297.46 13497.61 26794.07 15697.78 25093.57 32293.31 18799.42 20298.78 24798.89 191
DeepC-MVS_fast94.34 796.74 14396.51 15697.44 13697.69 25994.15 15496.02 17898.43 18293.17 23497.30 17597.38 21895.48 12999.28 24593.74 21899.34 17598.88 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsm_n_192098.08 4298.29 3597.43 13798.88 11493.95 16196.17 17199.57 1195.66 15099.52 1398.71 7897.04 5799.64 13699.21 699.87 2798.69 218
Anonymous20240521196.34 16695.98 17997.43 13798.25 18693.85 16496.74 13994.41 32897.72 5698.37 9098.03 15887.15 28599.53 17294.06 20699.07 21798.92 186
pmmvs-eth3d96.49 15996.18 17097.42 13998.25 18694.29 14794.77 25298.07 23589.81 29097.97 14098.33 11293.11 19099.08 27795.46 13899.84 3598.89 191
VDDNet96.98 12896.84 13597.41 14099.40 4693.26 18597.94 6595.31 32099.26 798.39 8999.18 3587.85 28099.62 14495.13 16299.09 21499.35 103
EG-PatchMatch MVS97.69 8797.79 6597.40 14199.06 9693.52 17795.96 18498.97 8394.55 19498.82 5298.76 7497.31 4199.29 24397.20 6199.44 14599.38 95
Fast-Effi-MVS+-dtu96.44 16296.12 17197.39 14297.18 29894.39 14295.46 21198.73 13996.03 13194.72 29094.92 32596.28 10499.69 11593.81 21697.98 29098.09 272
LF4IMVS96.07 17595.63 19597.36 14398.19 19395.55 9495.44 21298.82 12592.29 25795.70 26996.55 27092.63 20598.69 31591.75 25699.33 18097.85 296
Gipumacopyleft98.07 4498.31 3297.36 14399.76 796.28 6898.51 2799.10 4498.76 2296.79 21299.34 2496.61 8698.82 30196.38 8699.50 12996.98 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re97.33 11397.33 10897.32 14598.13 20893.79 16796.99 12499.65 796.74 9499.47 1598.93 5896.91 6999.84 3090.11 29299.06 22098.32 254
canonicalmvs97.23 11797.21 11597.30 14697.65 26494.39 14297.84 7199.05 5697.42 7296.68 21993.85 34097.63 3199.33 23296.29 8998.47 27298.18 270
MVS_030496.62 15396.40 16197.28 14797.91 22492.30 20396.47 15189.74 36997.52 6895.38 27798.63 8592.76 19999.81 3799.28 399.93 1099.75 16
MVS_111021_HR96.73 14596.54 15397.27 14898.35 17793.66 17393.42 30398.36 19394.74 18596.58 22596.76 26196.54 8998.99 28794.87 17399.27 19199.15 141
SixPastTwentyTwo97.49 10097.57 9297.26 14999.56 2192.33 20298.28 4296.97 28498.30 3699.45 1699.35 2288.43 27199.89 1898.01 3099.76 5199.54 45
KD-MVS_self_test97.86 7398.07 4297.25 15099.22 6792.81 19397.55 9298.94 8797.10 8598.85 4998.88 6595.03 14399.67 12597.39 5599.65 7899.26 121
新几何197.25 15098.29 18094.70 13397.73 25277.98 37294.83 28996.67 26592.08 22199.45 19688.17 32198.65 26197.61 306
test_vis3_rt97.04 12296.98 12697.23 15298.44 17095.88 8096.82 13299.67 490.30 28399.27 2699.33 2594.04 17096.03 37397.14 6397.83 29699.78 10
WR-MVS96.90 13396.81 13797.16 15398.56 15392.20 20994.33 26498.12 22797.34 7898.20 11197.33 22392.81 19799.75 6794.79 17799.81 4199.54 45
TAMVS95.49 19794.94 21297.16 15398.31 17893.41 18195.07 23996.82 28991.09 27497.51 16497.82 18189.96 25199.42 20288.42 31799.44 14598.64 222
CDS-MVSNet94.88 22694.12 25497.14 15597.64 26593.57 17593.96 28797.06 28190.05 28796.30 24196.55 27086.10 29199.47 18990.10 29399.31 18598.40 243
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
SDMVSNet97.97 4998.26 3697.11 15699.41 4392.21 20696.92 12798.60 16498.58 2698.78 5599.39 1597.80 2299.62 14494.98 17199.86 2999.52 49
tt080597.44 10497.56 9397.11 15699.55 2396.36 6398.66 1895.66 31098.31 3497.09 19495.45 31597.17 4998.50 33398.67 1597.45 31896.48 343
EI-MVSNet-Vis-set97.32 11497.39 10497.11 15697.36 28692.08 21595.34 22397.65 25997.74 5498.29 10598.11 14695.05 14199.68 12097.50 5199.50 12999.56 42
EI-MVSNet-UG-set97.32 11497.40 10397.09 15997.34 28992.01 21795.33 22497.65 25997.74 5498.30 10498.14 14095.04 14299.69 11597.55 4999.52 12099.58 33
XXY-MVS97.54 9797.70 7297.07 16099.46 3792.21 20697.22 11199.00 7494.93 18298.58 7098.92 5997.31 4199.41 21194.44 18999.43 15399.59 32
mvsany_test396.21 17095.93 18397.05 16197.40 28494.33 14695.76 19494.20 33089.10 29699.36 2199.60 693.97 17397.85 35595.40 14698.63 26298.99 173
lessismore_v097.05 16199.36 5092.12 21184.07 38098.77 5998.98 5285.36 29799.74 7697.34 5699.37 16499.30 109
TAPA-MVS93.32 1294.93 22394.23 24997.04 16398.18 19694.51 13895.22 23198.73 13981.22 36196.25 24495.95 30193.80 17898.98 28989.89 29698.87 23797.62 305
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet93.72 27092.62 28997.03 16487.61 38792.25 20496.27 16191.28 35696.74 9487.65 37397.39 21685.00 29999.64 13692.14 24699.48 13699.20 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.61 24193.81 26297.02 16598.19 19395.72 8693.66 29697.23 27288.17 31094.94 28795.62 31091.43 23098.57 32687.36 33297.68 30696.76 336
casdiffmvs_mvgpermissive97.83 7598.11 3997.00 16698.57 15192.10 21495.97 18299.18 3297.67 6399.00 4198.48 10097.64 3099.50 18096.96 7099.54 11199.40 90
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
K. test v396.44 16296.28 16696.95 16799.41 4391.53 22597.65 8490.31 36598.89 1998.93 4499.36 2084.57 30399.92 597.81 3799.56 10299.39 93
tfpnnormal97.72 8597.97 5096.94 16899.26 5892.23 20597.83 7298.45 17998.25 3799.13 3598.66 8296.65 8399.69 11593.92 21399.62 8398.91 187
test_fmvsmvis_n_192098.08 4298.47 2496.93 16999.03 10293.29 18396.32 15999.65 795.59 15599.71 499.01 4997.66 2999.60 15399.44 299.83 3797.90 292
MVP-Stereo95.69 18995.28 20096.92 17098.15 20393.03 18995.64 20598.20 21290.39 28296.63 22497.73 19091.63 22999.10 27591.84 25397.31 32298.63 224
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP-MVS95.17 21594.58 23796.92 17097.85 22892.47 20094.26 26598.43 18293.18 23192.86 33795.08 31990.33 24599.23 25690.51 28698.74 25199.05 165
HyFIR lowres test93.72 27092.65 28796.91 17298.93 11091.81 22291.23 34598.52 17382.69 35496.46 23296.52 27480.38 32699.90 1490.36 29098.79 24699.03 166
VNet96.84 13596.83 13696.88 17398.06 21092.02 21696.35 15797.57 26597.70 5997.88 14897.80 18392.40 21499.54 17094.73 18298.96 22699.08 159
FMVSNet296.72 14696.67 14596.87 17497.96 22091.88 21997.15 11498.06 23695.59 15598.50 7698.62 8689.51 26199.65 13394.99 17099.60 9299.07 161
EIA-MVS96.04 17795.77 19096.85 17597.80 24192.98 19096.12 17299.16 3494.65 18893.77 31491.69 36595.68 12399.67 12594.18 20198.85 24097.91 291
test_fmvs397.38 10897.56 9396.84 17698.63 14392.81 19397.60 8799.61 1090.87 27698.76 6099.66 394.03 17197.90 35499.24 599.68 7399.81 8
ETV-MVS96.13 17495.90 18496.82 17797.76 25193.89 16295.40 21798.95 8695.87 14195.58 27291.00 37196.36 10199.72 8693.36 22698.83 24396.85 330
DP-MVS Recon95.55 19695.13 20596.80 17898.51 16093.99 16094.60 25898.69 14990.20 28595.78 26596.21 28892.73 20198.98 28990.58 28498.86 23997.42 314
QAPM95.88 18395.57 19796.80 17897.90 22691.84 22198.18 5398.73 13988.41 30596.42 23398.13 14294.73 14999.75 6788.72 31298.94 22998.81 202
CMPMVSbinary73.10 2392.74 29291.39 30396.77 18093.57 37394.67 13494.21 27297.67 25580.36 36593.61 32096.60 26882.85 31497.35 36184.86 35098.78 24798.29 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Fast-Effi-MVS+95.49 19795.07 20896.75 18197.67 26392.82 19294.22 27198.60 16491.61 26693.42 32892.90 35096.73 8199.70 10892.60 24097.89 29597.74 301
CNLPA95.04 21994.47 24296.75 18197.81 23795.25 11494.12 27997.89 24294.41 19694.57 29395.69 30690.30 24898.35 34386.72 33698.76 24996.64 338
Effi-MVS+96.19 17196.01 17696.71 18397.43 28292.19 21096.12 17299.10 4495.45 16193.33 33094.71 32897.23 4899.56 16393.21 23397.54 31298.37 247
pmmvs494.82 22894.19 25296.70 18497.42 28392.75 19792.09 33196.76 29186.80 32495.73 26897.22 22989.28 26498.89 29693.28 23099.14 20598.46 241
CLD-MVS95.47 20095.07 20896.69 18598.27 18492.53 19991.36 33998.67 15491.22 27395.78 26594.12 33895.65 12598.98 28990.81 27399.72 6298.57 229
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4297.04 12297.16 11796.68 18698.59 14991.05 23196.33 15898.36 19394.60 19097.99 13698.30 11893.32 18699.62 14497.40 5499.53 11599.38 95
LFMVS95.32 20794.88 21896.62 18798.03 21191.47 22797.65 8490.72 36299.11 997.89 14798.31 11479.20 32999.48 18793.91 21499.12 21098.93 183
ab-mvs96.59 15496.59 14796.60 18898.64 13992.21 20698.35 3597.67 25594.45 19596.99 20198.79 6994.96 14799.49 18490.39 28999.07 21798.08 273
VPNet97.26 11697.49 10196.59 18999.47 3690.58 24196.27 16198.53 17297.77 5198.46 8298.41 10494.59 15699.68 12094.61 18499.29 18899.52 49
原ACMM196.58 19098.16 20192.12 21198.15 22485.90 33293.49 32496.43 27792.47 21399.38 22087.66 32698.62 26398.23 265
AdaColmapbinary95.11 21694.62 23396.58 19097.33 29194.45 14194.92 24698.08 23193.15 23593.98 31095.53 31394.34 16499.10 27585.69 34198.61 26496.20 348
PCF-MVS89.43 1892.12 30390.64 31896.57 19297.80 24193.48 17889.88 36498.45 17974.46 37796.04 25495.68 30790.71 24099.31 23673.73 37599.01 22496.91 327
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ambc96.56 19398.23 18991.68 22497.88 6998.13 22698.42 8598.56 9194.22 16799.04 28194.05 20899.35 17298.95 177
casdiffmvspermissive97.50 9997.81 6496.56 19398.51 16091.04 23295.83 19299.09 4997.23 8298.33 9998.30 11897.03 5899.37 22396.58 8099.38 16399.28 116
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet593.39 28192.35 29196.50 19595.83 33990.81 23897.31 10598.27 20292.74 24796.27 24298.28 12362.23 38199.67 12590.86 27199.36 16799.03 166
CANet95.86 18495.65 19496.49 19696.41 31990.82 23694.36 26398.41 18694.94 18092.62 34696.73 26292.68 20299.71 10195.12 16399.60 9298.94 179
test20.0396.58 15696.61 14696.48 19798.49 16491.72 22395.68 19997.69 25496.81 9298.27 10697.92 17194.18 16898.71 31390.78 27599.66 7799.00 170
UnsupCasMVSNet_eth95.91 18295.73 19196.44 19898.48 16691.52 22695.31 22698.45 17995.76 14697.48 16897.54 20289.53 26098.69 31594.43 19094.61 35999.13 146
iter_conf_final94.54 24593.91 26196.43 19997.23 29690.41 24596.81 13398.10 22893.87 21296.80 21197.89 17368.02 37499.72 8696.73 7599.77 5099.18 137
baseline97.44 10497.78 6996.43 19998.52 15890.75 23996.84 13099.03 6396.51 10597.86 15298.02 15996.67 8299.36 22597.09 6599.47 13899.19 134
DPM-MVS93.68 27292.77 28596.42 20197.91 22492.54 19891.17 34697.47 26884.99 34493.08 33494.74 32789.90 25299.00 28587.54 32998.09 28797.72 302
PVSNet_Blended_VisFu95.95 18195.80 18896.42 20199.28 5790.62 24095.31 22699.08 5088.40 30696.97 20498.17 13992.11 21999.78 4793.64 22299.21 19798.86 198
ANet_high98.31 2998.94 696.41 20399.33 5389.64 25397.92 6799.56 1399.27 699.66 999.50 897.67 2899.83 3397.55 4999.98 299.77 11
SD-MVS97.37 11097.70 7296.35 20498.14 20595.13 12296.54 14898.92 9095.94 13699.19 3198.08 14897.74 2595.06 37495.24 15199.54 11198.87 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Patchmtry95.03 22194.59 23696.33 20594.83 35690.82 23696.38 15597.20 27396.59 10097.49 16698.57 8977.67 33699.38 22092.95 23899.62 8398.80 203
OpenMVScopyleft94.22 895.48 19995.20 20296.32 20697.16 29991.96 21897.74 7998.84 11187.26 31694.36 29998.01 16193.95 17499.67 12590.70 28198.75 25097.35 317
v1097.55 9697.97 5096.31 20798.60 14789.64 25397.44 10099.02 6596.60 9898.72 6399.16 3893.48 18499.72 8698.76 1199.92 1499.58 33
PMMVS92.39 29691.08 30996.30 20893.12 37592.81 19390.58 35595.96 30579.17 36991.85 35392.27 35890.29 24998.66 32089.85 29796.68 33497.43 313
v897.60 9398.06 4496.23 20998.71 13289.44 25797.43 10298.82 12597.29 8198.74 6199.10 4393.86 17599.68 12098.61 1799.94 899.56 42
1112_ss94.12 25993.42 26896.23 20998.59 14990.85 23594.24 26998.85 10885.49 33592.97 33594.94 32386.01 29299.64 13691.78 25497.92 29298.20 268
FMVSNet395.26 21094.94 21296.22 21196.53 31690.06 24695.99 18097.66 25794.11 20597.99 13697.91 17280.22 32799.63 13994.60 18599.44 14598.96 176
114514_t93.96 26593.22 27296.19 21299.06 9690.97 23495.99 18098.94 8773.88 37893.43 32796.93 24792.38 21599.37 22389.09 30799.28 18998.25 264
CHOSEN 1792x268894.10 26093.41 26996.18 21399.16 7990.04 24792.15 32898.68 15179.90 36696.22 24597.83 17887.92 27999.42 20289.18 30699.65 7899.08 159
test_fmvs296.38 16596.45 15896.16 21497.85 22891.30 22896.81 13399.45 1589.24 29598.49 7799.38 1788.68 26897.62 35998.83 899.32 18299.57 38
v119296.83 13897.06 12396.15 21598.28 18289.29 25995.36 22098.77 13293.73 21598.11 12298.34 11193.02 19599.67 12598.35 2399.58 9699.50 53
v114496.84 13597.08 12196.13 21698.42 17289.28 26095.41 21698.67 15494.21 20197.97 14098.31 11493.06 19199.65 13398.06 2999.62 8399.45 76
UnsupCasMVSNet_bld94.72 23494.26 24896.08 21798.62 14590.54 24493.38 30598.05 23790.30 28397.02 19996.80 25889.54 25899.16 26588.44 31696.18 34198.56 230
v14419296.69 14996.90 13496.03 21898.25 18688.92 26595.49 21098.77 13293.05 23798.09 12598.29 12292.51 21299.70 10898.11 2699.56 10299.47 70
v192192096.72 14696.96 12995.99 21998.21 19088.79 27095.42 21498.79 12793.22 22998.19 11598.26 12892.68 20299.70 10898.34 2499.55 10899.49 61
DELS-MVS96.17 17296.23 16795.99 21997.55 27290.04 24792.38 32698.52 17394.13 20396.55 22997.06 23894.99 14599.58 15695.62 12699.28 18998.37 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU94.65 23994.21 25195.96 22195.90 33689.68 25293.92 28897.83 24893.19 23090.12 36395.64 30988.52 26999.57 16293.27 23199.47 13898.62 225
PAPM_NR94.61 24194.17 25395.96 22198.36 17691.23 22995.93 18797.95 23892.98 24093.42 32894.43 33590.53 24198.38 34087.60 32796.29 34098.27 262
v2v48296.78 14297.06 12395.95 22398.57 15188.77 27195.36 22098.26 20395.18 17297.85 15398.23 13192.58 20699.63 13997.80 3899.69 6999.45 76
PMVScopyleft89.60 1796.71 14896.97 12795.95 22399.51 3197.81 1697.42 10397.49 26697.93 4895.95 25698.58 8896.88 7296.91 36789.59 30099.36 16793.12 372
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSDG95.33 20695.13 20595.94 22597.40 28491.85 22091.02 35098.37 19295.30 16796.31 24095.99 29794.51 16098.38 34089.59 30097.65 30997.60 307
v124096.74 14397.02 12595.91 22698.18 19688.52 27395.39 21898.88 9993.15 23598.46 8298.40 10792.80 19899.71 10198.45 2199.49 13299.49 61
Anonymous2023120695.27 20995.06 21095.88 22798.72 12989.37 25895.70 19697.85 24488.00 31296.98 20397.62 19791.95 22499.34 23089.21 30599.53 11598.94 179
Vis-MVSNet (Re-imp)95.11 21694.85 21995.87 22899.12 8989.17 26197.54 9794.92 32396.50 10696.58 22597.27 22683.64 30999.48 18788.42 31799.67 7598.97 175
CL-MVSNet_self_test95.04 21994.79 22595.82 22997.51 27489.79 25191.14 34796.82 28993.05 23796.72 21796.40 28090.82 23899.16 26591.95 24998.66 25998.50 237
IterMVS-LS96.92 13197.29 11095.79 23098.51 16088.13 28495.10 23598.66 15696.99 8698.46 8298.68 8192.55 20799.74 7696.91 7199.79 4599.50 53
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052197.07 12197.51 9895.76 23199.35 5188.18 28197.78 7398.40 18897.11 8498.34 9699.04 4889.58 25799.79 4498.09 2799.93 1099.30 109
EI-MVSNet96.63 15296.93 13095.74 23297.26 29488.13 28495.29 22897.65 25996.99 8697.94 14398.19 13692.55 20799.58 15696.91 7199.56 10299.50 53
MDA-MVSNet-bldmvs95.69 18995.67 19295.74 23298.48 16688.76 27292.84 31397.25 27196.00 13297.59 16097.95 16791.38 23199.46 19293.16 23496.35 33998.99 173
sss94.22 25493.72 26395.74 23297.71 25889.95 24993.84 29096.98 28388.38 30793.75 31595.74 30587.94 27598.89 29691.02 26798.10 28698.37 247
testdata95.70 23598.16 20190.58 24197.72 25380.38 36495.62 27097.02 24192.06 22298.98 28989.06 30998.52 26997.54 309
test_f95.82 18695.88 18695.66 23697.61 26793.21 18795.61 20698.17 21886.98 32198.42 8599.47 1090.46 24394.74 37697.71 4398.45 27399.03 166
test_yl94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
DCV-MVSNet94.40 24994.00 25795.59 23796.95 30689.52 25594.75 25395.55 31696.18 12296.79 21296.14 29281.09 32299.18 26090.75 27697.77 29798.07 275
tttt051793.31 28392.56 29095.57 23998.71 13287.86 29097.44 10087.17 37595.79 14597.47 17096.84 25364.12 37899.81 3796.20 9399.32 18299.02 169
MSLP-MVS++96.42 16496.71 14295.57 23997.82 23690.56 24395.71 19598.84 11194.72 18696.71 21897.39 21694.91 14898.10 35295.28 14899.02 22298.05 282
thisisatest053092.71 29391.76 30095.56 24198.42 17288.23 27996.03 17787.35 37494.04 20896.56 22795.47 31464.03 37999.77 5694.78 17999.11 21198.68 221
patch_mono-296.59 15496.93 13095.55 24298.88 11487.12 30794.47 26199.30 2194.12 20496.65 22398.41 10494.98 14699.87 2295.81 11799.78 4899.66 24
Test_1112_low_res93.53 27892.86 27995.54 24398.60 14788.86 26892.75 31698.69 14982.66 35592.65 34396.92 24984.75 30199.56 16390.94 26997.76 29998.19 269
pmmvs594.63 24094.34 24795.50 24497.63 26688.34 27794.02 28197.13 27787.15 31895.22 28097.15 23287.50 28199.27 24893.99 21099.26 19298.88 195
MVSFormer96.14 17396.36 16395.49 24597.68 26087.81 29398.67 1599.02 6596.50 10694.48 29796.15 29086.90 28699.92 598.73 1299.13 20798.74 211
ET-MVSNet_ETH3D91.12 31489.67 32695.47 24696.41 31989.15 26391.54 33790.23 36689.07 29786.78 37792.84 35169.39 37299.44 19994.16 20296.61 33597.82 298
iter_conf0593.65 27493.05 27395.46 24796.13 33287.45 30095.95 18698.22 20892.66 24997.04 19797.89 17363.52 38099.72 8696.19 9499.82 4099.21 129
diffmvspermissive96.04 17796.23 16795.46 24797.35 28788.03 28793.42 30399.08 5094.09 20796.66 22196.93 24793.85 17699.29 24396.01 10498.67 25799.06 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14896.58 15696.97 12795.42 24998.63 14387.57 29795.09 23697.90 24195.91 13998.24 10897.96 16593.42 18599.39 21796.04 10099.52 12099.29 115
OpenMVS_ROBcopyleft91.80 1493.64 27593.05 27395.42 24997.31 29391.21 23095.08 23896.68 29681.56 35896.88 21096.41 27890.44 24499.25 25185.39 34597.67 30795.80 352
jason94.39 25194.04 25695.41 25198.29 18087.85 29292.74 31896.75 29285.38 33995.29 27896.15 29088.21 27499.65 13394.24 19999.34 17598.74 211
jason: jason.
API-MVS95.09 21895.01 21195.31 25296.61 31494.02 15896.83 13197.18 27595.60 15495.79 26394.33 33694.54 15998.37 34285.70 34098.52 26993.52 369
PVSNet_BlendedMVS95.02 22294.93 21495.27 25397.79 24687.40 30294.14 27798.68 15188.94 30094.51 29598.01 16193.04 19299.30 23989.77 29899.49 13299.11 154
lupinMVS93.77 26893.28 27095.24 25497.68 26087.81 29392.12 32996.05 30184.52 34894.48 29795.06 32186.90 28699.63 13993.62 22399.13 20798.27 262
D2MVS95.18 21395.17 20495.21 25597.76 25187.76 29594.15 27597.94 23989.77 29196.99 20197.68 19487.45 28299.14 26795.03 16899.81 4198.74 211
Patchmatch-RL test94.66 23894.49 24095.19 25698.54 15688.91 26692.57 32098.74 13891.46 26998.32 10097.75 18777.31 34198.81 30396.06 9799.61 8997.85 296
WTY-MVS93.55 27793.00 27795.19 25697.81 23787.86 29093.89 28996.00 30389.02 29894.07 30695.44 31686.27 29099.33 23287.69 32596.82 32998.39 245
test_vis1_rt94.03 26493.65 26495.17 25895.76 34293.42 18093.97 28698.33 19784.68 34693.17 33295.89 30392.53 21194.79 37593.50 22594.97 35597.31 318
FE-MVS92.95 28992.22 29395.11 25997.21 29788.33 27898.54 2393.66 33589.91 28996.21 24698.14 14070.33 37099.50 18087.79 32398.24 28197.51 310
JIA-IIPM91.79 30890.69 31795.11 25993.80 37090.98 23394.16 27491.78 35496.38 11090.30 36299.30 2672.02 36498.90 29588.28 31990.17 37295.45 358
MIMVSNet93.42 28092.86 27995.10 26198.17 19988.19 28098.13 5593.69 33292.07 25895.04 28598.21 13580.95 32499.03 28481.42 36298.06 28898.07 275
PAPR92.22 30091.27 30695.07 26295.73 34488.81 26991.97 33297.87 24385.80 33390.91 35692.73 35491.16 23398.33 34479.48 36695.76 34898.08 273
MVSTER94.21 25693.93 26095.05 26395.83 33986.46 31695.18 23397.65 25992.41 25597.94 14398.00 16372.39 36399.58 15696.36 8799.56 10299.12 151
test_vis1_n95.67 19195.89 18595.03 26498.18 19689.89 25096.94 12699.28 2388.25 30998.20 11198.92 5986.69 28997.19 36297.70 4598.82 24498.00 287
cl____94.73 23094.64 23095.01 26595.85 33887.00 30991.33 34198.08 23193.34 22497.10 18997.33 22384.01 30899.30 23995.14 16099.56 10298.71 217
DIV-MVS_self_test94.73 23094.64 23095.01 26595.86 33787.00 30991.33 34198.08 23193.34 22497.10 18997.34 22284.02 30799.31 23695.15 15999.55 10898.72 214
test_fmvs1_n95.21 21195.28 20094.99 26798.15 20389.13 26496.81 13399.43 1786.97 32297.21 18098.92 5983.00 31397.13 36398.09 2798.94 22998.72 214
FA-MVS(test-final)94.91 22494.89 21794.99 26797.51 27488.11 28698.27 4495.20 32192.40 25696.68 21998.60 8783.44 31099.28 24593.34 22798.53 26897.59 308
TinyColmap96.00 18096.34 16494.96 26997.90 22687.91 28994.13 27898.49 17694.41 19698.16 11797.76 18496.29 10398.68 31890.52 28599.42 15698.30 258
PVSNet_Blended93.96 26593.65 26494.91 27097.79 24687.40 30291.43 33898.68 15184.50 34994.51 29594.48 33493.04 19299.30 23989.77 29898.61 26498.02 285
BH-RMVSNet94.56 24394.44 24594.91 27097.57 26987.44 30193.78 29496.26 29993.69 21796.41 23496.50 27592.10 22099.00 28585.96 33897.71 30398.31 256
RPMNet94.68 23794.60 23494.90 27295.44 34988.15 28296.18 16898.86 10497.43 7194.10 30498.49 9779.40 32899.76 6195.69 12095.81 34496.81 334
HY-MVS91.43 1592.58 29491.81 29994.90 27296.49 31788.87 26797.31 10594.62 32585.92 33190.50 36096.84 25385.05 29899.40 21383.77 35795.78 34796.43 344
GA-MVS92.83 29192.15 29594.87 27496.97 30587.27 30590.03 35996.12 30091.83 26494.05 30794.57 32976.01 34898.97 29392.46 24497.34 32198.36 252
miper_lstm_enhance94.81 22994.80 22494.85 27596.16 32886.45 31791.14 34798.20 21293.49 22097.03 19897.37 22084.97 30099.26 24995.28 14899.56 10298.83 200
IterMVS-SCA-FT95.86 18496.19 16994.85 27597.68 26085.53 32692.42 32497.63 26396.99 8698.36 9398.54 9387.94 27599.75 6797.07 6799.08 21599.27 120
c3_l95.20 21295.32 19994.83 27796.19 32686.43 31891.83 33498.35 19693.47 22197.36 17497.26 22788.69 26799.28 24595.41 14599.36 16798.78 205
testgi96.07 17596.50 15794.80 27899.26 5887.69 29695.96 18498.58 16995.08 17698.02 13596.25 28697.92 1797.60 36088.68 31498.74 25199.11 154
mvsany_test193.47 27993.03 27594.79 27994.05 36892.12 21190.82 35290.01 36885.02 34397.26 17798.28 12393.57 18297.03 36492.51 24395.75 34995.23 360
CR-MVSNet93.29 28492.79 28294.78 28095.44 34988.15 28296.18 16897.20 27384.94 34594.10 30498.57 8977.67 33699.39 21795.17 15595.81 34496.81 334
eth_miper_zixun_eth94.89 22594.93 21494.75 28195.99 33486.12 32191.35 34098.49 17693.40 22297.12 18797.25 22886.87 28899.35 22895.08 16598.82 24498.78 205
MVS_Test96.27 16896.79 14094.73 28296.94 30886.63 31596.18 16898.33 19794.94 18096.07 25298.28 12395.25 13799.26 24997.21 5997.90 29498.30 258
miper_ehance_all_eth94.69 23594.70 22794.64 28395.77 34186.22 32091.32 34398.24 20691.67 26597.05 19696.65 26688.39 27299.22 25894.88 17298.34 27698.49 238
Patchmatch-test93.60 27693.25 27194.63 28496.14 33187.47 29996.04 17694.50 32793.57 21896.47 23196.97 24476.50 34498.61 32390.67 28298.41 27597.81 300
baseline193.14 28792.64 28894.62 28597.34 28987.20 30696.67 14693.02 34194.71 18796.51 23095.83 30481.64 31798.60 32590.00 29588.06 37698.07 275
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21488.42 27493.99 28398.21 20992.98 24095.91 25894.53 33196.39 9899.72 8695.43 14298.19 28295.64 354
MS-PatchMatch94.83 22794.91 21694.57 28996.81 31187.10 30894.23 27097.34 27088.74 30397.14 18597.11 23591.94 22598.23 34892.99 23697.92 29298.37 247
USDC94.56 24394.57 23994.55 29097.78 24986.43 31892.75 31698.65 16185.96 33096.91 20897.93 17090.82 23898.74 30990.71 28099.59 9498.47 239
BH-untuned94.69 23594.75 22694.52 29197.95 22387.53 29894.07 28097.01 28293.99 20997.10 18995.65 30892.65 20498.95 29487.60 32796.74 33297.09 320
dmvs_re92.08 30491.27 30694.51 29297.16 29992.79 19695.65 20292.64 34894.11 20592.74 34090.98 37283.41 31194.44 37880.72 36494.07 36296.29 346
dcpmvs_297.12 11997.99 4994.51 29299.11 9084.00 34797.75 7799.65 797.38 7799.14 3498.42 10395.16 13999.96 295.52 13199.78 4899.58 33
cl2293.25 28592.84 28194.46 29494.30 36286.00 32291.09 34996.64 29790.74 27795.79 26396.31 28478.24 33398.77 30694.15 20398.34 27698.62 225
MDA-MVSNet_test_wron94.73 23094.83 22294.42 29597.48 27685.15 33390.28 35895.87 30792.52 25197.48 16897.76 18491.92 22699.17 26493.32 22896.80 33198.94 179
YYNet194.73 23094.84 22094.41 29697.47 28085.09 33590.29 35795.85 30892.52 25197.53 16297.76 18491.97 22399.18 26093.31 22996.86 32898.95 177
ADS-MVSNet291.47 31290.51 32094.36 29795.51 34785.63 32495.05 24195.70 30983.46 35292.69 34196.84 25379.15 33099.41 21185.66 34290.52 37098.04 283
test_cas_vis1_n_192095.34 20595.67 19294.35 29898.21 19086.83 31395.61 20699.26 2490.45 28198.17 11698.96 5484.43 30498.31 34596.74 7499.17 20397.90 292
new_pmnet92.34 29891.69 30194.32 29996.23 32489.16 26292.27 32792.88 34384.39 35195.29 27896.35 28385.66 29596.74 37184.53 35297.56 31197.05 321
MG-MVS94.08 26294.00 25794.32 29997.09 30285.89 32393.19 31095.96 30592.52 25194.93 28897.51 20589.54 25898.77 30687.52 33097.71 30398.31 256
PatchT93.75 26993.57 26694.29 30195.05 35487.32 30496.05 17592.98 34297.54 6794.25 30098.72 7675.79 34999.24 25495.92 10995.81 34496.32 345
test_fmvs194.51 24794.60 23494.26 30295.91 33587.92 28895.35 22299.02 6586.56 32696.79 21298.52 9482.64 31597.00 36697.87 3498.71 25597.88 294
miper_enhance_ethall93.14 28792.78 28494.20 30393.65 37185.29 33089.97 36097.85 24485.05 34196.15 25194.56 33085.74 29499.14 26793.74 21898.34 27698.17 271
IterMVS95.42 20395.83 18794.20 30397.52 27383.78 34992.41 32597.47 26895.49 16098.06 13098.49 9787.94 27599.58 15696.02 10299.02 22299.23 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051590.43 32089.18 33294.17 30597.07 30385.44 32789.75 36587.58 37388.28 30893.69 31891.72 36465.27 37799.58 15690.59 28398.67 25797.50 312
ECVR-MVScopyleft94.37 25294.48 24194.05 30698.95 10783.10 35198.31 3982.48 38296.20 11998.23 10999.16 3881.18 32199.66 13195.95 10799.83 3799.38 95
test_vis1_n_192095.77 18796.41 16093.85 30798.55 15484.86 33895.91 18999.71 292.72 24897.67 15898.90 6387.44 28398.73 31097.96 3198.85 24097.96 288
thres600view792.03 30591.43 30293.82 30898.19 19384.61 34196.27 16190.39 36396.81 9296.37 23693.11 34373.44 36199.49 18480.32 36597.95 29197.36 315
FPMVS89.92 32788.63 33593.82 30898.37 17596.94 4591.58 33693.34 33988.00 31290.32 36197.10 23670.87 36891.13 38171.91 37896.16 34393.39 371
test111194.53 24694.81 22393.72 31099.06 9681.94 35998.31 3983.87 38196.37 11198.49 7799.17 3781.49 31899.73 8196.64 7699.86 2999.49 61
thres40091.68 31091.00 31093.71 31198.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30097.36 315
IB-MVS85.98 2088.63 33686.95 34693.68 31295.12 35384.82 34090.85 35190.17 36787.55 31588.48 37191.34 36858.01 38299.59 15487.24 33393.80 36496.63 340
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EU-MVSNet94.25 25394.47 24293.60 31398.14 20582.60 35497.24 11092.72 34685.08 34098.48 7998.94 5782.59 31698.76 30897.47 5399.53 11599.44 85
TR-MVS92.54 29592.20 29493.57 31496.49 31786.66 31493.51 30194.73 32489.96 28894.95 28693.87 33990.24 25098.61 32381.18 36394.88 35695.45 358
cascas91.89 30791.35 30493.51 31594.27 36385.60 32588.86 36998.61 16379.32 36892.16 35091.44 36789.22 26598.12 35190.80 27497.47 31796.82 333
ppachtmachnet_test94.49 24894.84 22093.46 31696.16 32882.10 35690.59 35497.48 26790.53 28097.01 20097.59 19991.01 23599.36 22593.97 21299.18 20298.94 179
pmmvs390.00 32488.90 33493.32 31794.20 36685.34 32891.25 34492.56 34978.59 37093.82 31195.17 31867.36 37698.69 31589.08 30898.03 28995.92 349
EPNet_dtu91.39 31390.75 31693.31 31890.48 38482.61 35394.80 25092.88 34393.39 22381.74 38194.90 32681.36 32099.11 27388.28 31998.87 23798.21 267
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90091.76 30991.26 30893.26 31998.21 19084.50 34296.39 15390.39 36396.87 9096.33 23793.08 34773.44 36199.42 20278.85 36997.74 30095.85 350
baseline289.65 33088.44 33793.25 32095.62 34582.71 35293.82 29185.94 37888.89 30187.35 37592.54 35671.23 36699.33 23286.01 33794.60 36097.72 302
DSMNet-mixed92.19 30191.83 29893.25 32096.18 32783.68 35096.27 16193.68 33476.97 37592.54 34799.18 3589.20 26698.55 32983.88 35598.60 26697.51 310
tfpn200view991.55 31191.00 31093.21 32298.02 21284.35 34495.70 19690.79 36096.26 11695.90 26192.13 36073.62 35899.42 20278.85 36997.74 30095.85 350
mvs_anonymous95.36 20496.07 17593.21 32296.29 32181.56 36094.60 25897.66 25793.30 22696.95 20598.91 6293.03 19499.38 22096.60 7897.30 32398.69 218
our_test_394.20 25894.58 23793.07 32496.16 32881.20 36290.42 35696.84 28790.72 27897.14 18597.13 23390.47 24299.11 27394.04 20998.25 28098.91 187
ADS-MVSNet90.95 31890.26 32293.04 32595.51 34782.37 35595.05 24193.41 33883.46 35292.69 34196.84 25379.15 33098.70 31485.66 34290.52 37098.04 283
PAPM87.64 34385.84 34993.04 32596.54 31584.99 33688.42 37095.57 31579.52 36783.82 37893.05 34980.57 32598.41 33762.29 38192.79 36695.71 353
PS-MVSNAJ94.10 26094.47 24293.00 32797.35 28784.88 33791.86 33397.84 24691.96 26194.17 30292.50 35795.82 11599.71 10191.27 26197.48 31594.40 365
xiu_mvs_v2_base94.22 25494.63 23292.99 32897.32 29284.84 33992.12 32997.84 24691.96 26194.17 30293.43 34196.07 10799.71 10191.27 26197.48 31594.42 364
SCA93.38 28293.52 26792.96 32996.24 32281.40 36193.24 30894.00 33191.58 26894.57 29396.97 24487.94 27599.42 20289.47 30297.66 30898.06 279
new-patchmatchnet95.67 19196.58 14892.94 33097.48 27680.21 36592.96 31298.19 21794.83 18398.82 5298.79 6993.31 18799.51 17995.83 11599.04 22199.12 151
test0.0.03 190.11 32289.21 32992.83 33193.89 36986.87 31291.74 33588.74 37292.02 25994.71 29191.14 37073.92 35594.48 37783.75 35892.94 36597.16 319
thres20091.00 31790.42 32192.77 33297.47 28083.98 34894.01 28291.18 35895.12 17595.44 27491.21 36973.93 35499.31 23677.76 37297.63 31095.01 361
BH-w/o92.14 30291.94 29692.73 33397.13 30185.30 32992.46 32395.64 31189.33 29494.21 30192.74 35389.60 25698.24 34781.68 36194.66 35894.66 363
131492.38 29792.30 29292.64 33495.42 35185.15 33395.86 19096.97 28485.40 33890.62 35793.06 34891.12 23497.80 35786.74 33595.49 35294.97 362
KD-MVS_2432*160088.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
miper_refine_blended88.93 33487.74 33992.49 33588.04 38581.99 35789.63 36695.62 31291.35 27095.06 28293.11 34356.58 38498.63 32185.19 34695.07 35396.85 330
MVS90.02 32389.20 33092.47 33794.71 35786.90 31195.86 19096.74 29364.72 38090.62 35792.77 35292.54 20998.39 33979.30 36795.56 35192.12 373
PMMVS293.66 27394.07 25592.45 33897.57 26980.67 36486.46 37296.00 30393.99 20997.10 18997.38 21889.90 25297.82 35688.76 31199.47 13898.86 198
CHOSEN 280x42089.98 32589.19 33192.37 33995.60 34681.13 36386.22 37397.09 27981.44 36087.44 37493.15 34273.99 35399.47 18988.69 31399.07 21796.52 342
PatchmatchNetpermissive91.98 30691.87 29792.30 34094.60 35979.71 36695.12 23493.59 33789.52 29293.61 32097.02 24177.94 33499.18 26090.84 27294.57 36198.01 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gg-mvs-nofinetune88.28 33986.96 34592.23 34192.84 37884.44 34398.19 5274.60 38599.08 1087.01 37699.47 1056.93 38398.23 34878.91 36895.61 35094.01 367
test250689.86 32889.16 33391.97 34298.95 10776.83 37598.54 2361.07 38996.20 11997.07 19599.16 3855.19 38899.69 11596.43 8599.83 3799.38 95
tpm91.08 31690.85 31491.75 34395.33 35278.09 36895.03 24391.27 35788.75 30293.53 32397.40 21271.24 36599.30 23991.25 26393.87 36397.87 295
PVSNet86.72 1991.10 31590.97 31291.49 34497.56 27178.04 36987.17 37194.60 32684.65 34792.34 34892.20 35987.37 28498.47 33485.17 34897.69 30597.96 288
EPMVS89.26 33288.55 33691.39 34592.36 38079.11 36795.65 20279.86 38388.60 30493.12 33396.53 27270.73 36998.10 35290.75 27689.32 37496.98 323
CostFormer89.75 32989.25 32791.26 34694.69 35878.00 37095.32 22591.98 35281.50 35990.55 35996.96 24671.06 36798.89 29688.59 31592.63 36796.87 328
CVMVSNet92.33 29992.79 28290.95 34797.26 29475.84 37895.29 22892.33 35081.86 35696.27 24298.19 13681.44 31998.46 33594.23 20098.29 27998.55 232
tpm288.47 33787.69 34190.79 34894.98 35577.34 37395.09 23691.83 35377.51 37489.40 36796.41 27867.83 37598.73 31083.58 35992.60 36896.29 346
GG-mvs-BLEND90.60 34991.00 38284.21 34698.23 4672.63 38882.76 37984.11 38056.14 38696.79 36972.20 37792.09 36990.78 377
tpmvs90.79 31990.87 31390.57 35092.75 37976.30 37695.79 19393.64 33691.04 27591.91 35296.26 28577.19 34298.86 30089.38 30489.85 37396.56 341
test-LLR89.97 32689.90 32490.16 35194.24 36474.98 37989.89 36189.06 37092.02 25989.97 36490.77 37373.92 35598.57 32691.88 25197.36 31996.92 325
test-mter87.92 34287.17 34390.16 35194.24 36474.98 37989.89 36189.06 37086.44 32789.97 36490.77 37354.96 38998.57 32691.88 25197.36 31996.92 325
tpm cat188.01 34187.33 34290.05 35394.48 36076.28 37794.47 26194.35 32973.84 37989.26 36895.61 31173.64 35798.30 34684.13 35386.20 37895.57 357
tpmrst90.31 32190.61 31989.41 35494.06 36772.37 38495.06 24093.69 33288.01 31192.32 34996.86 25177.45 33898.82 30191.04 26687.01 37797.04 322
TESTMET0.1,187.20 34586.57 34789.07 35593.62 37272.84 38389.89 36187.01 37685.46 33789.12 36990.20 37556.00 38797.72 35890.91 27096.92 32596.64 338
E-PMN89.52 33189.78 32588.73 35693.14 37477.61 37183.26 37692.02 35194.82 18493.71 31693.11 34375.31 35096.81 36885.81 33996.81 33091.77 375
EMVS89.06 33389.22 32888.61 35793.00 37677.34 37382.91 37790.92 35994.64 18992.63 34591.81 36376.30 34697.02 36583.83 35696.90 32791.48 376
PVSNet_081.89 2184.49 34783.21 35088.34 35895.76 34274.97 38183.49 37592.70 34778.47 37187.94 37286.90 37983.38 31296.63 37273.44 37666.86 38393.40 370
dmvs_testset87.30 34486.99 34488.24 35996.71 31277.48 37294.68 25586.81 37792.64 25089.61 36687.01 37885.91 29393.12 37961.04 38288.49 37594.13 366
MVEpermissive73.61 2286.48 34685.92 34888.18 36096.23 32485.28 33181.78 37875.79 38486.01 32982.53 38091.88 36292.74 20087.47 38371.42 37994.86 35791.78 374
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp88.08 34088.05 33888.16 36192.85 37768.81 38694.17 27392.88 34385.47 33691.38 35596.14 29268.87 37398.81 30386.88 33483.80 38096.87 328
wuyk23d93.25 28595.20 20287.40 36296.07 33395.38 10597.04 12294.97 32295.33 16599.70 698.11 14698.14 1491.94 38077.76 37299.68 7374.89 380
MVS-HIRNet88.40 33890.20 32382.99 36397.01 30460.04 38793.11 31185.61 37984.45 35088.72 37099.09 4584.72 30298.23 34882.52 36096.59 33690.69 378
DeepMVS_CXcopyleft77.17 36490.94 38385.28 33174.08 38752.51 38180.87 38288.03 37775.25 35170.63 38459.23 38384.94 37975.62 379
test_method66.88 34966.13 35269.11 36562.68 38825.73 39049.76 37996.04 30214.32 38364.27 38491.69 36573.45 36088.05 38276.06 37466.94 38293.54 368
tmp_tt57.23 35062.50 35341.44 36634.77 38949.21 38983.93 37460.22 39015.31 38271.11 38379.37 38170.09 37144.86 38564.76 38082.93 38130.25 381
test12312.59 35215.49 3553.87 3676.07 3902.55 39190.75 3532.59 3922.52 3855.20 38713.02 3844.96 3901.85 3875.20 3849.09 3847.23 382
testmvs12.33 35315.23 3563.64 3685.77 3912.23 39288.99 3683.62 3912.30 3865.29 38613.09 3834.52 3911.95 3865.16 3858.32 3856.75 383
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.22 35132.30 3540.00 3690.00 3920.00 3930.00 38098.10 2280.00 3870.00 38895.06 32197.54 340.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.98 35410.65 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38795.82 1150.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.91 35510.55 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38894.94 3230.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.59 1898.20 799.03 799.25 2598.96 1898.87 48
PC_three_145287.24 31798.37 9097.44 20997.00 6096.78 37092.01 24799.25 19399.21 129
test_one_060199.05 10095.50 10098.87 10197.21 8398.03 13498.30 11896.93 66
eth-test20.00 392
eth-test0.00 392
ZD-MVS98.43 17195.94 7998.56 17190.72 27896.66 22197.07 23795.02 14499.74 7691.08 26598.93 231
RE-MVS-def97.88 5898.81 11998.05 997.55 9298.86 10497.77 5198.20 11198.07 15096.94 6495.49 13299.20 19899.26 121
IU-MVS99.22 6795.40 10398.14 22585.77 33498.36 9395.23 15299.51 12599.49 61
test_241102_TWO98.83 11796.11 12498.62 6598.24 12996.92 6899.72 8695.44 13999.49 13299.49 61
test_241102_ONE99.22 6795.35 10898.83 11796.04 12999.08 3698.13 14297.87 2099.33 232
9.1496.69 14398.53 15796.02 17898.98 8093.23 22897.18 18397.46 20796.47 9599.62 14492.99 23699.32 182
save fliter98.48 16694.71 13194.53 26098.41 18695.02 179
test_0728_THIRD96.62 9698.40 8798.28 12397.10 5199.71 10195.70 11899.62 8399.58 33
test072699.24 6295.51 9796.89 12998.89 9395.92 13798.64 6498.31 11497.06 55
GSMVS98.06 279
test_part299.03 10296.07 7498.08 127
sam_mvs177.80 33598.06 279
sam_mvs77.38 339
MTGPAbinary98.73 139
test_post194.98 24510.37 38676.21 34799.04 28189.47 302
test_post10.87 38576.83 34399.07 278
patchmatchnet-post96.84 25377.36 34099.42 202
MTMP96.55 14774.60 385
gm-plane-assit91.79 38171.40 38581.67 35790.11 37698.99 28784.86 350
test9_res91.29 26098.89 23699.00 170
TEST997.84 23395.23 11593.62 29798.39 18986.81 32393.78 31295.99 29794.68 15399.52 175
test_897.81 23795.07 12493.54 30098.38 19187.04 31993.71 31695.96 30094.58 15799.52 175
agg_prior290.34 29198.90 23399.10 158
agg_prior97.80 24194.96 12698.36 19393.49 32499.53 172
test_prior495.38 10593.61 299
test_prior293.33 30794.21 20194.02 30896.25 28693.64 18191.90 25098.96 226
旧先验293.35 30677.95 37395.77 26798.67 31990.74 279
新几何293.43 302
旧先验197.80 24193.87 16397.75 25197.04 24093.57 18298.68 25698.72 214
无先验93.20 30997.91 24080.78 36299.40 21387.71 32497.94 290
原ACMM292.82 314
test22298.17 19993.24 18692.74 31897.61 26475.17 37694.65 29296.69 26490.96 23798.66 25997.66 304
testdata299.46 19287.84 322
segment_acmp95.34 134
testdata192.77 31593.78 214
plane_prior798.70 13494.67 134
plane_prior698.38 17494.37 14491.91 227
plane_prior598.75 13699.46 19292.59 24199.20 19899.28 116
plane_prior496.77 259
plane_prior394.51 13895.29 16896.16 249
plane_prior296.50 14996.36 112
plane_prior198.49 164
plane_prior94.29 14795.42 21494.31 20098.93 231
n20.00 393
nn0.00 393
door-mid98.17 218
test1198.08 231
door97.81 249
HQP5-MVS92.47 200
HQP-NCC97.85 22894.26 26593.18 23192.86 337
ACMP_Plane97.85 22894.26 26593.18 23192.86 337
BP-MVS90.51 286
HQP4-MVS92.87 33699.23 25699.06 163
HQP3-MVS98.43 18298.74 251
HQP2-MVS90.33 245
NP-MVS98.14 20593.72 16995.08 319
MDTV_nov1_ep13_2view57.28 38894.89 24780.59 36394.02 30878.66 33285.50 34497.82 298
MDTV_nov1_ep1391.28 30594.31 36173.51 38294.80 25093.16 34086.75 32593.45 32697.40 21276.37 34598.55 32988.85 31096.43 337
ACMMP++_ref99.52 120
ACMMP++99.55 108
Test By Simon94.51 160