This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8797.89 1499.47 399.32 1199.08 1097.87 14499.67 296.47 9099.92 597.88 2599.98 299.85 3
abl_698.42 2398.19 3299.09 399.16 7498.10 697.73 8099.11 3197.76 5398.62 5698.27 10997.88 1999.80 4495.67 11299.50 12299.38 92
zzz-MVS98.01 4697.66 7299.06 499.44 3597.90 1295.66 19198.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
MTAPA98.14 3597.84 5499.06 499.44 3597.90 1297.25 10698.73 13297.69 6197.90 13897.96 14795.81 11499.82 3596.13 8599.61 8299.45 73
test117298.08 4197.76 6499.05 698.78 11998.07 797.41 10198.85 9797.57 6598.15 10997.96 14796.60 8299.76 6395.30 13899.18 20299.33 104
mPP-MVS97.91 6297.53 8999.04 799.22 6297.87 1597.74 7898.78 12396.04 12997.10 18197.73 17796.53 8599.78 4995.16 14899.50 12299.46 68
MSP-MVS97.45 10096.92 13099.03 899.26 5397.70 1997.66 8198.89 8295.65 15198.51 6696.46 27192.15 21799.81 3895.14 15198.58 26899.58 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SR-MVS-dyc-post98.14 3597.84 5499.02 998.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.60 8299.76 6395.49 12399.20 19899.26 124
TDRefinement98.90 598.86 899.02 999.54 2298.06 899.34 499.44 1098.85 2099.00 3899.20 2497.42 3299.59 16497.21 5099.76 4799.40 88
SR-MVS98.00 4797.66 7299.01 1198.77 12197.93 1197.38 10298.83 10997.32 8098.06 12197.85 16496.65 7799.77 5895.00 16099.11 21299.32 105
MP-MVScopyleft97.64 8597.18 11399.00 1299.32 5097.77 1897.49 9598.73 13296.27 11595.59 26497.75 17496.30 9899.78 4993.70 21499.48 13099.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Effi-MVS+-dtu96.81 13996.09 17198.99 1396.90 30798.69 296.42 14698.09 22695.86 14295.15 27395.54 30994.26 16899.81 3894.06 19898.51 27298.47 241
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 1899.19 2095.62 15399.35 1999.37 1297.38 3399.90 1498.59 1299.91 1799.77 9
CP-MVS97.92 5997.56 8898.99 1398.99 10197.82 1697.93 6498.96 7396.11 12496.89 20197.45 19996.85 6999.78 4995.19 14499.63 7599.38 92
PGM-MVS97.88 6697.52 9098.96 1699.20 7097.62 2297.09 11699.06 4395.45 16097.55 15497.94 15297.11 4499.78 4994.77 17099.46 13599.48 63
RPSCF97.87 6797.51 9198.95 1799.15 7798.43 397.56 8899.06 4396.19 12198.48 7098.70 6594.72 15199.24 26594.37 18599.33 18099.17 142
XVS97.96 4897.63 7998.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23097.64 18396.49 8899.72 9095.66 11499.37 16299.45 73
X-MVStestdata92.86 28790.83 31198.94 1899.15 7797.66 2097.77 7398.83 10997.42 7396.32 23036.50 37796.49 8899.72 9095.66 11499.37 16299.45 73
ACMMPR97.95 5297.62 8198.94 1899.20 7097.56 2697.59 8698.83 10996.05 12797.46 16597.63 18496.77 7399.76 6395.61 11899.46 13599.49 57
ACMMPcopyleft98.05 4397.75 6698.93 2199.23 5997.60 2398.09 5698.96 7395.75 14997.91 13798.06 13796.89 6499.76 6395.32 13799.57 9399.43 84
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
region2R97.92 5997.59 8598.92 2299.22 6297.55 2797.60 8598.84 10296.00 13297.22 17197.62 18596.87 6899.76 6395.48 12699.43 14899.46 68
HPM-MVScopyleft98.11 3997.83 5798.92 2299.42 3997.46 3398.57 1999.05 4595.43 16297.41 16797.50 19597.98 1599.79 4595.58 12199.57 9399.50 49
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2297.48 3298.35 3499.03 5295.88 14097.88 14198.22 11698.15 1299.74 8096.50 7399.62 7699.42 85
ACMM93.33 1198.05 4397.79 5998.85 2599.15 7797.55 2796.68 13998.83 10995.21 16898.36 8398.13 12498.13 1499.62 15696.04 9099.54 10599.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 5997.62 8198.83 2699.32 5097.24 4197.45 9698.84 10295.76 14796.93 19897.43 20197.26 4099.79 4596.06 8799.53 10899.45 73
HFP-MVS97.94 5597.64 7798.83 2699.15 7797.50 3097.59 8698.84 10296.05 12797.49 15997.54 19097.07 4899.70 11595.61 11899.46 13599.30 111
#test#97.62 8797.22 11198.83 2699.15 7797.50 3096.81 12898.84 10294.25 20397.49 15997.54 19097.07 4899.70 11594.37 18599.46 13599.30 111
GST-MVS97.82 7397.49 9498.81 2999.23 5997.25 4097.16 11098.79 11995.96 13497.53 15597.40 20396.93 6099.77 5895.04 15799.35 17099.42 85
HPM-MVS++copyleft96.99 12396.38 15998.81 2998.64 13597.59 2495.97 17498.20 20895.51 15895.06 27496.53 26794.10 17299.70 11594.29 18999.15 20499.13 151
APD-MVS_3200maxsize98.13 3897.90 4898.79 3198.79 11797.31 3897.55 8998.92 7997.72 5798.25 9898.13 12497.10 4599.75 7095.44 13099.24 19699.32 105
SteuartSystems-ACMMP98.02 4597.76 6498.79 3199.43 3797.21 4397.15 11198.90 8196.58 10298.08 11997.87 16397.02 5399.76 6395.25 14199.59 8899.40 88
Skip Steuart: Steuart Systems R&D Blog.
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2299.22 1596.23 11899.71 499.48 798.77 699.93 398.89 399.95 599.84 5
WR-MVS_H98.65 1598.62 2198.75 3399.51 2796.61 5898.55 2199.17 2199.05 1399.17 2998.79 5895.47 12899.89 1897.95 2499.91 1799.75 14
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3099.12 3095.83 14599.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
LPG-MVS_test97.94 5597.67 7198.74 3599.15 7797.02 4497.09 11699.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
LGP-MVS_train98.74 3599.15 7797.02 4499.02 5495.15 17298.34 8698.23 11397.91 1799.70 11594.41 18299.73 5499.50 49
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18698.58 1399.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss97.69 8297.36 10098.70 3999.50 3096.84 4995.38 20898.99 6592.45 25698.11 11398.31 9697.25 4199.77 5896.60 6799.62 7699.48 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1599.02 5496.50 10699.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
ACMMP_NAP97.89 6597.63 7998.67 4199.35 4696.84 4996.36 15098.79 11995.07 17697.88 14198.35 9297.24 4299.72 9096.05 8999.58 9099.45 73
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5298.76 1298.89 8298.49 2899.38 1799.14 3495.44 13099.84 3096.47 7499.80 4099.47 66
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1899.67 299.73 399.65 499.15 399.86 2497.22 4999.92 1499.77 9
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6997.35 3797.96 6299.16 2298.34 3298.78 4998.52 7997.32 3599.45 20794.08 19799.67 6899.13 151
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4598.05 4399.61 1199.52 593.72 18299.88 2098.72 999.88 2699.65 24
SMA-MVScopyleft97.48 9897.11 11698.60 4698.83 11396.67 5596.74 13398.73 13291.61 26898.48 7098.36 9196.53 8599.68 13095.17 14699.54 10599.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DTE-MVSNet98.79 898.86 898.59 4799.55 2096.12 7398.48 2999.10 3399.36 499.29 2399.06 4197.27 3899.93 397.71 3499.91 1799.70 19
LS3D97.77 7797.50 9398.57 4896.24 32097.58 2598.45 3098.85 9798.58 2797.51 15797.94 15295.74 11899.63 14895.19 14498.97 22698.51 237
pmmvs699.07 499.24 498.56 4999.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13097.75 3299.89 2599.62 27
ACMP92.54 1397.47 9997.10 11798.55 5099.04 9896.70 5396.24 15898.89 8293.71 21997.97 13297.75 17497.44 3099.63 14893.22 22499.70 6499.32 105
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
EGC-MVSNET83.08 34377.93 34698.53 5199.57 1797.55 2798.33 3798.57 1654.71 37910.38 38098.90 5395.60 12399.50 19195.69 11099.61 8298.55 235
DPE-MVScopyleft97.64 8597.35 10198.50 5298.85 11296.18 7095.21 22298.99 6595.84 14498.78 4998.08 13096.84 7099.81 3893.98 20499.57 9399.52 46
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-ACMP-BASELINE97.58 9197.28 10698.49 5399.16 7496.90 4896.39 14798.98 6895.05 17798.06 12198.02 14195.86 10699.56 17394.37 18599.64 7399.00 175
CPTT-MVS96.69 14996.08 17298.49 5398.89 10996.64 5797.25 10698.77 12492.89 24996.01 24897.13 22592.23 21699.67 13592.24 23699.34 17399.17 142
APDe-MVS98.14 3598.03 4198.47 5598.72 12596.04 7698.07 5799.10 3395.96 13498.59 6198.69 6696.94 5899.81 3896.64 6599.58 9099.57 36
PEN-MVS98.75 1098.85 1098.44 5699.58 1695.67 9298.45 3099.15 2699.33 599.30 2199.00 4397.27 3899.92 597.64 3699.92 1499.75 14
mvsmamba98.16 3398.06 3898.44 5699.53 2595.87 8298.70 1398.94 7697.71 5998.85 4399.10 3691.35 23499.83 3398.47 1499.90 2399.64 26
RRT_MVS97.95 5297.79 5998.43 5899.67 1095.56 9698.86 1096.73 29597.99 4599.15 3099.35 1689.84 25699.90 1498.64 1099.90 2399.82 6
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5899.07 9295.87 8296.73 13799.05 4598.67 2498.84 4598.45 8497.58 2899.88 2096.45 7599.86 2899.54 42
OPM-MVS97.54 9397.25 10798.41 6099.11 8796.61 5895.24 22098.46 17394.58 19498.10 11698.07 13297.09 4799.39 22995.16 14899.44 14099.21 133
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft97.00 12296.53 15298.41 6098.55 14996.31 6796.32 15398.77 12492.96 24897.44 16697.58 18995.84 10799.74 8091.96 23999.35 17099.19 138
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PS-CasMVS98.73 1198.85 1098.39 6299.55 2095.47 10598.49 2799.13 2999.22 899.22 2798.96 4797.35 3499.92 597.79 3099.93 1099.79 8
UniMVSNet_NR-MVSNet97.83 7197.65 7498.37 6398.72 12595.78 8595.66 19199.02 5498.11 4098.31 9397.69 18194.65 15699.85 2797.02 5999.71 6199.48 63
testtj96.69 14996.13 16898.36 6498.46 16496.02 7996.44 14598.70 14294.26 20296.79 20497.13 22594.07 17399.75 7090.53 27998.80 24799.31 110
DU-MVS97.79 7597.60 8498.36 6498.73 12395.78 8595.65 19498.87 9097.57 6598.31 9397.83 16594.69 15299.85 2797.02 5999.71 6199.46 68
UniMVSNet (Re)97.83 7197.65 7498.35 6698.80 11695.86 8495.92 18099.04 5197.51 7098.22 10197.81 16994.68 15499.78 4997.14 5599.75 5299.41 87
CS-MVS98.09 4098.01 4298.32 6798.45 16596.69 5498.52 2599.69 298.07 4296.07 24497.19 22396.88 6699.86 2497.50 4199.73 5498.41 244
mvs-test196.20 17095.50 19498.32 6796.90 30798.16 595.07 22998.09 22695.86 14293.63 31494.32 33394.26 16899.71 10694.06 19897.27 32297.07 319
nrg03098.54 1898.62 2198.32 6799.22 6295.66 9397.90 6799.08 3998.31 3399.02 3698.74 6297.68 2499.61 16297.77 3199.85 3199.70 19
DeepPCF-MVS94.58 596.90 13196.43 15898.31 7097.48 27197.23 4292.56 31798.60 16092.84 25098.54 6497.40 20396.64 7998.78 31594.40 18499.41 15798.93 187
CP-MVSNet98.42 2398.46 2498.30 7199.46 3395.22 12198.27 4398.84 10299.05 1399.01 3798.65 7095.37 13199.90 1497.57 3899.91 1799.77 9
XVG-OURS-SEG-HR97.38 10597.07 12098.30 7199.01 10097.41 3694.66 24999.02 5495.20 16998.15 10997.52 19398.83 498.43 34494.87 16396.41 33799.07 166
h-mvs3396.29 16695.63 18998.26 7398.50 15796.11 7496.90 12497.09 27996.58 10297.21 17398.19 11884.14 30299.78 4995.89 10196.17 34198.89 196
NR-MVSNet97.96 4897.86 5398.26 7398.73 12395.54 9898.14 5398.73 13297.79 4999.42 1597.83 16594.40 16599.78 4995.91 10099.76 4799.46 68
XVG-OURS97.12 11896.74 13998.26 7398.99 10197.45 3493.82 28599.05 4595.19 17098.32 9197.70 17995.22 13798.41 34594.27 19098.13 28598.93 187
test_0728_SECOND98.25 7699.23 5995.49 10496.74 13398.89 8299.75 7095.48 12699.52 11399.53 45
PHI-MVS96.96 12796.53 15298.25 7697.48 27196.50 6196.76 13298.85 9793.52 22296.19 24096.85 24695.94 10499.42 21393.79 21099.43 14898.83 205
MSC_two_6792asdad98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
No_MVS98.22 7897.75 24995.34 11398.16 21799.75 7095.87 10399.51 11899.57 36
SF-MVS97.60 8997.39 9898.22 7898.93 10695.69 8997.05 11899.10 3395.32 16597.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
PS-MVSNAJss98.53 1998.63 1998.21 8199.68 994.82 13398.10 5599.21 1696.91 9099.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
ETH3D-3000-0.196.89 13396.46 15798.16 8298.62 14095.69 8995.96 17598.98 6893.36 22797.04 18897.31 21694.93 14899.63 14892.60 23199.34 17399.17 142
DVP-MVScopyleft97.78 7697.65 7498.16 8299.24 5795.51 10096.74 13398.23 20395.92 13798.40 7798.28 10597.06 5099.71 10695.48 12699.52 11399.26 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DeepC-MVS95.41 497.82 7397.70 6798.16 8298.78 11995.72 8796.23 15999.02 5493.92 21498.62 5698.99 4497.69 2399.62 15696.18 8499.87 2799.15 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 7997.59 8598.15 8598.11 20395.60 9598.04 5998.70 14298.13 3996.93 19898.45 8495.30 13599.62 15695.64 11698.96 22799.24 130
CS-MVS-test97.91 6297.84 5498.14 8698.52 15296.03 7898.38 3399.67 398.11 4095.50 26696.92 24396.81 7299.87 2296.87 6399.76 4798.51 237
PM-MVS97.36 10897.10 11798.14 8698.91 10896.77 5196.20 16098.63 15893.82 21698.54 6498.33 9493.98 17599.05 29095.99 9599.45 13998.61 230
DVP-MVS++97.96 4897.90 4898.12 8897.75 24995.40 10699.03 798.89 8296.62 9798.62 5698.30 10096.97 5699.75 7095.70 10899.25 19399.21 133
NCCC96.52 15895.99 17698.10 8997.81 23195.68 9195.00 23598.20 20895.39 16395.40 26996.36 27793.81 17999.45 20793.55 21798.42 27499.17 142
ETH3D cwj APD-0.1696.23 16995.61 19198.09 9097.91 21995.65 9494.94 23798.74 13091.31 27496.02 24797.08 23094.05 17499.69 12391.51 25198.94 23198.93 187
SED-MVS97.94 5597.90 4898.07 9199.22 6295.35 11196.79 13098.83 10996.11 12499.08 3398.24 11197.87 2099.72 9095.44 13099.51 11899.14 149
Vis-MVSNetpermissive98.27 2998.34 2898.07 9199.33 4895.21 12398.04 5999.46 997.32 8097.82 14999.11 3596.75 7499.86 2497.84 2799.36 16599.15 146
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 11796.92 13098.06 9399.08 9096.16 7197.14 11399.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
TestCases98.06 9399.08 9096.16 7199.16 2294.35 19997.78 15098.07 13295.84 10799.12 28091.41 25299.42 15198.91 192
N_pmnet95.18 21194.23 24698.06 9397.85 22396.55 6092.49 31891.63 35389.34 29398.09 11797.41 20290.33 24699.06 28991.58 25099.31 18498.56 233
F-COLMAP95.30 20794.38 24398.05 9698.64 13596.04 7695.61 19798.66 15289.00 29793.22 32896.40 27592.90 19899.35 24087.45 32797.53 31298.77 214
CNVR-MVS96.92 12996.55 14998.03 9798.00 21395.54 9894.87 24098.17 21494.60 19196.38 22797.05 23395.67 12099.36 23795.12 15499.08 21699.19 138
TSAR-MVS + MP.97.42 10297.23 11098.00 9899.38 4395.00 12897.63 8498.20 20893.00 24398.16 10798.06 13795.89 10599.72 9095.67 11299.10 21499.28 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMH+93.58 1098.23 3298.31 2997.98 9999.39 4295.22 12197.55 8999.20 1898.21 3799.25 2598.51 8098.21 1199.40 22494.79 16799.72 5899.32 105
v7n98.73 1198.99 597.95 10099.64 1294.20 16098.67 1599.14 2899.08 1099.42 1599.23 2296.53 8599.91 1399.27 299.93 1099.73 16
Anonymous2023121198.55 1798.76 1397.94 10198.79 11794.37 15198.84 1199.15 2699.37 399.67 699.43 1195.61 12299.72 9098.12 1999.86 2899.73 16
Regformer-297.41 10397.24 10997.93 10297.21 29394.72 13694.85 24298.27 19897.74 5498.11 11397.50 19595.58 12499.69 12396.57 7099.31 18499.37 99
bld_raw_dy_0_6497.69 8297.61 8397.91 10399.54 2294.27 15798.06 5898.60 16096.60 9998.79 4898.95 4889.62 25799.84 3098.43 1699.91 1799.62 27
OMC-MVS96.48 16096.00 17597.91 10398.30 17496.01 8094.86 24198.60 16091.88 26597.18 17597.21 22296.11 10199.04 29190.49 28399.34 17398.69 222
GeoE97.75 7897.70 6797.89 10598.88 11094.53 14497.10 11598.98 6895.75 14997.62 15297.59 18797.61 2799.77 5896.34 7999.44 14099.36 100
xxxxxxxxxxxxxcwj97.24 11597.03 12397.89 10598.48 16094.71 13794.53 25499.07 4295.02 17997.83 14797.88 16196.44 9299.72 9094.59 17799.39 15999.25 128
train_agg95.46 20094.66 22597.88 10797.84 22795.23 11893.62 29198.39 18587.04 31793.78 30795.99 29394.58 15999.52 18691.76 24798.90 23598.89 196
pm-mvs198.47 2198.67 1797.86 10899.52 2694.58 14398.28 4199.00 6297.57 6599.27 2499.22 2398.32 999.50 19197.09 5699.75 5299.50 49
ITE_SJBPF97.85 10998.64 13596.66 5698.51 17095.63 15297.22 17197.30 21795.52 12598.55 33890.97 26298.90 23598.34 255
CDPH-MVS95.45 20194.65 22697.84 11098.28 17794.96 12993.73 28998.33 19485.03 33895.44 26796.60 26395.31 13499.44 21090.01 28999.13 20899.11 159
DP-MVS97.87 6797.89 5197.81 11198.62 14094.82 13397.13 11498.79 11998.98 1798.74 5298.49 8195.80 11699.49 19495.04 15799.44 14099.11 159
hse-mvs295.77 18795.09 20397.79 11297.84 22795.51 10095.66 19195.43 31996.58 10297.21 17396.16 28584.14 30299.54 18095.89 10196.92 32498.32 256
DROMVSNet97.90 6497.94 4797.79 11298.66 13495.14 12498.31 3899.66 497.57 6595.95 24997.01 23796.99 5599.82 3597.66 3599.64 7398.39 247
MAR-MVS94.21 25593.03 27397.76 11496.94 30597.44 3596.97 12397.15 27687.89 31192.00 34692.73 35192.14 21899.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
agg_prior195.39 20394.60 23197.75 11597.80 23594.96 12993.39 29998.36 18987.20 31593.49 32095.97 29694.65 15699.53 18291.69 24998.86 24198.77 214
AUN-MVS93.95 26592.69 28397.74 11697.80 23595.38 10895.57 19895.46 31891.26 27592.64 33996.10 29174.67 34799.55 17793.72 21396.97 32398.30 260
VDD-MVS97.37 10697.25 10797.74 11698.69 13294.50 14797.04 11995.61 31498.59 2698.51 6698.72 6392.54 21099.58 16696.02 9299.49 12699.12 156
Anonymous2024052997.96 4898.04 4097.71 11898.69 13294.28 15697.86 6998.31 19798.79 2299.23 2698.86 5695.76 11799.61 16295.49 12399.36 16599.23 131
Regformer-497.53 9597.47 9697.71 11897.35 28193.91 16895.26 21898.14 22097.97 4698.34 8697.89 15795.49 12699.71 10697.41 4499.42 15199.51 48
VPA-MVSNet98.27 2998.46 2497.70 12099.06 9393.80 17497.76 7599.00 6298.40 3099.07 3598.98 4596.89 6499.75 7097.19 5399.79 4199.55 41
IS-MVSNet96.93 12896.68 14297.70 12099.25 5694.00 16698.57 1996.74 29398.36 3198.14 11197.98 14688.23 27499.71 10693.10 22799.72 5899.38 92
CSCG97.40 10497.30 10397.69 12298.95 10394.83 13297.28 10598.99 6596.35 11498.13 11295.95 29895.99 10399.66 14194.36 18899.73 5498.59 231
HQP_MVS96.66 15296.33 16297.68 12398.70 13094.29 15396.50 14398.75 12896.36 11296.16 24196.77 25391.91 22899.46 20392.59 23399.20 19899.28 119
EPP-MVSNet96.84 13496.58 14697.65 12499.18 7393.78 17698.68 1496.34 29897.91 4897.30 16998.06 13788.46 27199.85 2793.85 20899.40 15899.32 105
OPU-MVS97.64 12598.01 20995.27 11696.79 13097.35 21296.97 5698.51 34191.21 25899.25 19399.14 149
MVS_111021_LR96.82 13896.55 14997.62 12698.27 17995.34 11393.81 28798.33 19494.59 19396.56 21996.63 26296.61 8098.73 32094.80 16699.34 17398.78 211
Regformer-197.27 11297.16 11497.61 12797.21 29393.86 17194.85 24298.04 23597.62 6498.03 12597.50 19595.34 13299.63 14896.52 7199.31 18499.35 102
UGNet96.81 13996.56 14897.58 12896.64 31093.84 17397.75 7697.12 27896.47 10993.62 31598.88 5493.22 19199.53 18295.61 11899.69 6599.36 100
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FC-MVSNet-test98.16 3398.37 2797.56 12999.49 3193.10 19498.35 3499.21 1698.43 2998.89 4198.83 5794.30 16799.81 3897.87 2699.91 1799.77 9
MCST-MVS96.24 16895.80 18397.56 12998.75 12294.13 16294.66 24998.17 21490.17 28696.21 23896.10 29195.14 13999.43 21294.13 19698.85 24399.13 151
GBi-Net96.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
test196.99 12396.80 13697.56 12997.96 21593.67 17998.23 4598.66 15295.59 15597.99 12899.19 2589.51 26399.73 8594.60 17499.44 14099.30 111
FMVSNet197.95 5298.08 3597.56 12999.14 8593.67 17998.23 4598.66 15297.41 7699.00 3899.19 2595.47 12899.73 8595.83 10599.76 4799.30 111
TransMVSNet (Re)98.38 2598.67 1797.51 13499.51 2793.39 18998.20 5098.87 9098.23 3699.48 1299.27 2098.47 899.55 17796.52 7199.53 10899.60 29
PLCcopyleft91.02 1694.05 26292.90 27597.51 13498.00 21395.12 12694.25 26398.25 20186.17 32391.48 34995.25 31391.01 23799.19 27085.02 34696.69 33298.22 268
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ACMH93.61 998.44 2298.76 1397.51 13499.43 3793.54 18598.23 4599.05 4597.40 7799.37 1899.08 3998.79 599.47 20097.74 3399.71 6199.50 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
alignmvs96.01 17995.52 19397.50 13797.77 24694.71 13796.07 16696.84 28797.48 7196.78 20894.28 33485.50 29499.40 22496.22 8198.73 25698.40 245
Baseline_NR-MVSNet97.72 8097.79 5997.50 13799.56 1893.29 19095.44 20198.86 9398.20 3898.37 8099.24 2194.69 15299.55 17795.98 9699.79 4199.65 24
3Dnovator96.53 297.61 8897.64 7797.50 13797.74 25293.65 18398.49 2798.88 8896.86 9297.11 18098.55 7795.82 11099.73 8595.94 9899.42 15199.13 151
TSAR-MVS + GP.96.47 16196.12 16997.49 14097.74 25295.23 11894.15 27096.90 28693.26 23198.04 12496.70 25894.41 16498.89 30694.77 17099.14 20598.37 249
FIs97.93 5898.07 3697.48 14199.38 4392.95 19798.03 6199.11 3198.04 4498.62 5698.66 6893.75 18199.78 4997.23 4899.84 3299.73 16
ETH3 D test640094.77 22893.87 25997.47 14298.12 20293.73 17794.56 25398.70 14285.45 33394.70 28495.93 30091.77 23099.63 14886.45 33399.14 20599.05 170
test_part196.77 14296.53 15297.47 14298.04 20592.92 19897.93 6498.85 9798.83 2199.30 2199.07 4079.25 32399.79 4597.59 3799.93 1099.69 21
test_040297.84 7097.97 4497.47 14299.19 7294.07 16396.71 13898.73 13298.66 2598.56 6398.41 8796.84 7099.69 12394.82 16599.81 3798.64 225
test_prior395.91 18295.39 19597.46 14597.79 24194.26 15893.33 30298.42 18094.21 20494.02 30296.25 28193.64 18399.34 24291.90 24198.96 22798.79 209
test_prior97.46 14597.79 24194.26 15898.42 18099.34 24298.79 209
test1297.46 14597.61 26394.07 16397.78 24893.57 31893.31 18999.42 21398.78 24998.89 196
DeepC-MVS_fast94.34 796.74 14396.51 15597.44 14897.69 25594.15 16196.02 17098.43 17793.17 23897.30 16997.38 20995.48 12799.28 25893.74 21199.34 17398.88 200
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous20240521196.34 16595.98 17797.43 14998.25 18293.85 17296.74 13394.41 32897.72 5798.37 8098.03 14087.15 28599.53 18294.06 19899.07 21898.92 191
pmmvs-eth3d96.49 15996.18 16797.42 15098.25 18294.29 15394.77 24698.07 23289.81 29097.97 13298.33 9493.11 19299.08 28795.46 12999.84 3298.89 196
VDDNet96.98 12696.84 13397.41 15199.40 4193.26 19197.94 6395.31 32099.26 798.39 7999.18 2887.85 28199.62 15695.13 15399.09 21599.35 102
EG-PatchMatch MVS97.69 8297.79 5997.40 15299.06 9393.52 18695.96 17598.97 7294.55 19598.82 4698.76 6197.31 3699.29 25697.20 5299.44 14099.38 92
Fast-Effi-MVS+-dtu96.44 16296.12 16997.39 15397.18 29694.39 14995.46 20098.73 13296.03 13194.72 28294.92 32196.28 10099.69 12393.81 20997.98 29098.09 274
LF4IMVS96.07 17595.63 18997.36 15498.19 18895.55 9795.44 20198.82 11792.29 25995.70 26296.55 26592.63 20698.69 32491.75 24899.33 18097.85 294
Gipumacopyleft98.07 4298.31 2997.36 15499.76 596.28 6998.51 2699.10 3398.76 2396.79 20499.34 1896.61 8098.82 31196.38 7799.50 12296.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re97.33 10997.33 10297.32 15698.13 20193.79 17596.99 12299.65 596.74 9599.47 1398.93 5096.91 6399.84 3090.11 28799.06 22198.32 256
canonicalmvs97.23 11697.21 11297.30 15797.65 26094.39 14997.84 7099.05 4597.42 7396.68 21193.85 33797.63 2699.33 24596.29 8098.47 27398.18 272
112194.26 25193.26 26897.27 15898.26 18194.73 13595.86 18197.71 25277.96 36794.53 28896.71 25791.93 22699.40 22487.71 31998.64 26397.69 302
MVS_111021_HR96.73 14596.54 15197.27 15898.35 17293.66 18293.42 29798.36 18994.74 18696.58 21796.76 25596.54 8498.99 29794.87 16399.27 19199.15 146
SixPastTwentyTwo97.49 9797.57 8797.26 16099.56 1892.33 20798.28 4196.97 28498.30 3499.45 1499.35 1688.43 27299.89 1898.01 2399.76 4799.54 42
KD-MVS_self_test97.86 6998.07 3697.25 16199.22 6292.81 20097.55 8998.94 7697.10 8698.85 4398.88 5495.03 14399.67 13597.39 4699.65 7199.26 124
新几何197.25 16198.29 17594.70 14097.73 25077.98 36694.83 28196.67 26092.08 22199.45 20788.17 31698.65 26297.61 305
WR-MVS96.90 13196.81 13597.16 16398.56 14892.20 21394.33 25998.12 22397.34 7998.20 10297.33 21492.81 19999.75 7094.79 16799.81 3799.54 42
TAMVS95.49 19694.94 20997.16 16398.31 17393.41 18895.07 22996.82 28991.09 27797.51 15797.82 16889.96 25399.42 21388.42 31299.44 14098.64 225
CDS-MVSNet94.88 22494.12 25197.14 16597.64 26193.57 18493.96 28197.06 28190.05 28796.30 23396.55 26586.10 29099.47 20090.10 28899.31 18498.40 245
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EI-MVSNet-Vis-set97.32 11097.39 9897.11 16697.36 28092.08 21795.34 21197.65 25897.74 5498.29 9698.11 12895.05 14099.68 13097.50 4199.50 12299.56 39
Regformer-397.25 11497.29 10497.11 16697.35 28192.32 20895.26 21897.62 26397.67 6398.17 10697.89 15795.05 14099.56 17397.16 5499.42 15199.46 68
EI-MVSNet-UG-set97.32 11097.40 9797.09 16897.34 28592.01 21995.33 21297.65 25897.74 5498.30 9598.14 12295.04 14299.69 12397.55 3999.52 11399.58 31
XXY-MVS97.54 9397.70 6797.07 16999.46 3392.21 21197.22 10999.00 6294.93 18398.58 6298.92 5197.31 3699.41 22294.44 18099.43 14899.59 30
lessismore_v097.05 17099.36 4592.12 21584.07 37598.77 5198.98 4585.36 29599.74 8097.34 4799.37 16299.30 111
TAPA-MVS93.32 1294.93 22194.23 24697.04 17198.18 19194.51 14595.22 22198.73 13281.22 35596.25 23695.95 29893.80 18098.98 29989.89 29198.87 23997.62 304
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EPNet93.72 26892.62 28697.03 17287.61 38292.25 20996.27 15491.28 35496.74 9587.65 36897.39 20785.00 29799.64 14692.14 23799.48 13099.20 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL94.61 24093.81 26097.02 17398.19 18895.72 8793.66 29097.23 27288.17 30794.94 27995.62 30791.43 23298.57 33587.36 32897.68 30596.76 335
K. test v396.44 16296.28 16396.95 17499.41 4091.53 22797.65 8290.31 36398.89 1998.93 4099.36 1484.57 30199.92 597.81 2899.56 9699.39 90
tfpnnormal97.72 8097.97 4496.94 17599.26 5392.23 21097.83 7198.45 17498.25 3599.13 3298.66 6896.65 7799.69 12393.92 20699.62 7698.91 192
MVP-Stereo95.69 18895.28 19796.92 17698.15 19793.03 19595.64 19698.20 20890.39 28396.63 21697.73 17791.63 23199.10 28591.84 24597.31 32098.63 227
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP-MVS95.17 21394.58 23496.92 17697.85 22392.47 20594.26 26098.43 17793.18 23592.86 33395.08 31590.33 24699.23 26790.51 28198.74 25399.05 170
HyFIR lowres test93.72 26892.65 28496.91 17898.93 10691.81 22491.23 34198.52 16882.69 34896.46 22496.52 26980.38 32099.90 1490.36 28598.79 24899.03 172
VNet96.84 13496.83 13496.88 17998.06 20492.02 21896.35 15197.57 26597.70 6097.88 14197.80 17092.40 21499.54 18094.73 17298.96 22799.08 164
FMVSNet296.72 14696.67 14396.87 18097.96 21591.88 22197.15 11198.06 23395.59 15598.50 6898.62 7189.51 26399.65 14394.99 16199.60 8699.07 166
EIA-MVS96.04 17795.77 18596.85 18197.80 23592.98 19696.12 16499.16 2294.65 18993.77 30991.69 36295.68 11999.67 13594.18 19398.85 24397.91 292
MVS_030495.50 19595.05 20796.84 18296.28 31993.12 19397.00 12196.16 30095.03 17889.22 36397.70 17990.16 25299.48 19794.51 17999.34 17397.93 291
ETV-MVS96.13 17495.90 18196.82 18397.76 24793.89 16995.40 20698.95 7595.87 14195.58 26591.00 36896.36 9799.72 9093.36 21898.83 24596.85 329
DP-MVS Recon95.55 19495.13 20196.80 18498.51 15493.99 16794.60 25198.69 14590.20 28595.78 25896.21 28492.73 20298.98 29990.58 27898.86 24197.42 313
QAPM95.88 18495.57 19296.80 18497.90 22191.84 22398.18 5298.73 13288.41 30396.42 22598.13 12494.73 15099.75 7088.72 30798.94 23198.81 207
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18693.57 36894.67 14194.21 26797.67 25480.36 35993.61 31696.60 26382.85 30997.35 36584.86 34798.78 24998.29 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Fast-Effi-MVS+95.49 19695.07 20496.75 18797.67 25992.82 19994.22 26698.60 16091.61 26893.42 32592.90 34796.73 7599.70 11592.60 23197.89 29597.74 299
CNLPA95.04 21794.47 23996.75 18797.81 23195.25 11794.12 27497.89 24094.41 19794.57 28695.69 30390.30 24998.35 35186.72 33298.76 25196.64 337
Effi-MVS+96.19 17196.01 17496.71 18997.43 27792.19 21496.12 16499.10 3395.45 16093.33 32794.71 32497.23 4399.56 17393.21 22597.54 31198.37 249
pmmvs494.82 22694.19 24996.70 19097.42 27892.75 20292.09 32796.76 29186.80 32095.73 26197.22 22189.28 26698.89 30693.28 22299.14 20598.46 243
CLD-MVS95.47 19995.07 20496.69 19198.27 17992.53 20491.36 33598.67 15091.22 27695.78 25894.12 33595.65 12198.98 29990.81 26799.72 5898.57 232
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
V4297.04 12197.16 11496.68 19298.59 14591.05 23296.33 15298.36 18994.60 19197.99 12898.30 10093.32 18899.62 15697.40 4599.53 10899.38 92
LFMVS95.32 20694.88 21596.62 19398.03 20691.47 22997.65 8290.72 36099.11 997.89 14098.31 9679.20 32499.48 19793.91 20799.12 21198.93 187
ab-mvs96.59 15496.59 14596.60 19498.64 13592.21 21198.35 3497.67 25494.45 19696.99 19398.79 5894.96 14799.49 19490.39 28499.07 21898.08 275
VPNet97.26 11397.49 9496.59 19599.47 3290.58 24296.27 15498.53 16797.77 5098.46 7398.41 8794.59 15899.68 13094.61 17399.29 18899.52 46
原ACMM196.58 19698.16 19592.12 21598.15 21985.90 32793.49 32096.43 27292.47 21399.38 23287.66 32298.62 26498.23 267
AdaColmapbinary95.11 21494.62 23096.58 19697.33 28794.45 14894.92 23898.08 22893.15 23993.98 30595.53 31094.34 16699.10 28585.69 33898.61 26596.20 345
PCF-MVS89.43 1892.12 30090.64 31496.57 19897.80 23593.48 18789.88 35998.45 17474.46 37296.04 24695.68 30490.71 24299.31 24973.73 37199.01 22596.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ambc96.56 19998.23 18591.68 22697.88 6898.13 22298.42 7698.56 7694.22 17099.04 29194.05 20199.35 17098.95 181
casdiffmvs97.50 9697.81 5896.56 19998.51 15491.04 23395.83 18499.09 3897.23 8398.33 9098.30 10097.03 5299.37 23596.58 6999.38 16199.28 119
FMVSNet593.39 27892.35 28896.50 20195.83 33690.81 23997.31 10398.27 19892.74 25196.27 23498.28 10562.23 37699.67 13590.86 26599.36 16599.03 172
CANet95.86 18595.65 18896.49 20296.41 31690.82 23794.36 25898.41 18294.94 18192.62 34196.73 25692.68 20399.71 10695.12 15499.60 8698.94 183
test20.0396.58 15696.61 14496.48 20398.49 15891.72 22595.68 19097.69 25396.81 9398.27 9797.92 15594.18 17198.71 32290.78 26999.66 7099.00 175
UnsupCasMVSNet_eth95.91 18295.73 18696.44 20498.48 16091.52 22895.31 21498.45 17495.76 14797.48 16297.54 19089.53 26298.69 32494.43 18194.61 35699.13 151
iter_conf_final94.54 24493.91 25896.43 20597.23 29290.41 24696.81 12898.10 22493.87 21596.80 20397.89 15768.02 36999.72 9096.73 6499.77 4699.18 141
baseline97.44 10197.78 6396.43 20598.52 15290.75 24096.84 12699.03 5296.51 10597.86 14598.02 14196.67 7699.36 23797.09 5699.47 13299.19 138
DPM-MVS93.68 27092.77 28296.42 20797.91 21992.54 20391.17 34297.47 26884.99 33993.08 33094.74 32389.90 25499.00 29587.54 32598.09 28797.72 300
PVSNet_Blended_VisFu95.95 18195.80 18396.42 20799.28 5290.62 24195.31 21499.08 3988.40 30496.97 19698.17 12192.11 21999.78 4993.64 21599.21 19798.86 203
ANet_high98.31 2898.94 696.41 20999.33 4889.64 25397.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3397.55 3999.98 299.77 9
SD-MVS97.37 10697.70 6796.35 21098.14 19895.13 12596.54 14298.92 7995.94 13699.19 2898.08 13097.74 2295.06 37395.24 14299.54 10598.87 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Patchmtry95.03 21994.59 23396.33 21194.83 35290.82 23796.38 14997.20 27396.59 10197.49 15998.57 7477.67 33199.38 23292.95 23099.62 7698.80 208
OpenMVScopyleft94.22 895.48 19895.20 19896.32 21297.16 29791.96 22097.74 7898.84 10287.26 31394.36 29398.01 14393.95 17699.67 13590.70 27598.75 25297.35 316
v1097.55 9297.97 4496.31 21398.60 14389.64 25397.44 9799.02 5496.60 9998.72 5499.16 3193.48 18699.72 9098.76 699.92 1499.58 31
PMMVS92.39 29391.08 30596.30 21493.12 37092.81 20090.58 35095.96 30679.17 36391.85 34892.27 35590.29 25098.66 32989.85 29296.68 33397.43 312
v897.60 8998.06 3896.23 21598.71 12889.44 25797.43 9998.82 11797.29 8298.74 5299.10 3693.86 17799.68 13098.61 1199.94 899.56 39
1112_ss94.12 25893.42 26596.23 21598.59 14590.85 23694.24 26498.85 9785.49 33092.97 33194.94 31986.01 29199.64 14691.78 24697.92 29298.20 270
FMVSNet395.26 20994.94 20996.22 21796.53 31390.06 24795.99 17297.66 25694.11 20997.99 12897.91 15680.22 32199.63 14894.60 17499.44 14098.96 180
114514_t93.96 26393.22 27096.19 21899.06 9390.97 23595.99 17298.94 7673.88 37393.43 32496.93 24192.38 21599.37 23589.09 30299.28 18998.25 266
CHOSEN 1792x268894.10 25993.41 26696.18 21999.16 7490.04 24892.15 32498.68 14779.90 36096.22 23797.83 16587.92 28099.42 21389.18 30199.65 7199.08 164
v119296.83 13797.06 12196.15 22098.28 17789.29 25995.36 20998.77 12493.73 21898.11 11398.34 9393.02 19799.67 13598.35 1799.58 9099.50 49
v114496.84 13497.08 11996.13 22198.42 16789.28 26095.41 20598.67 15094.21 20497.97 13298.31 9693.06 19399.65 14398.06 2299.62 7699.45 73
UnsupCasMVSNet_bld94.72 23394.26 24596.08 22298.62 14090.54 24593.38 30098.05 23490.30 28497.02 19196.80 25289.54 26099.16 27688.44 31196.18 34098.56 233
v14419296.69 14996.90 13296.03 22398.25 18288.92 26495.49 19998.77 12493.05 24198.09 11798.29 10492.51 21299.70 11598.11 2099.56 9699.47 66
v192192096.72 14696.96 12795.99 22498.21 18688.79 26995.42 20398.79 11993.22 23398.19 10598.26 11092.68 20399.70 11598.34 1899.55 10299.49 57
DELS-MVS96.17 17296.23 16495.99 22497.55 26790.04 24892.38 32298.52 16894.13 20796.55 22197.06 23294.99 14599.58 16695.62 11799.28 18998.37 249
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU94.65 23894.21 24895.96 22695.90 33389.68 25293.92 28297.83 24693.19 23490.12 35895.64 30688.52 27099.57 17293.27 22399.47 13298.62 228
PAPM_NR94.61 24094.17 25095.96 22698.36 17191.23 23095.93 17997.95 23692.98 24493.42 32594.43 33190.53 24398.38 34887.60 32396.29 33998.27 264
v2v48296.78 14197.06 12195.95 22898.57 14788.77 27095.36 20998.26 20095.18 17197.85 14698.23 11392.58 20799.63 14897.80 2999.69 6599.45 73
PMVScopyleft89.60 1796.71 14896.97 12595.95 22899.51 2797.81 1797.42 10097.49 26697.93 4795.95 24998.58 7396.88 6696.91 36789.59 29599.36 16593.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSDG95.33 20595.13 20195.94 23097.40 27991.85 22291.02 34698.37 18895.30 16696.31 23295.99 29394.51 16298.38 34889.59 29597.65 30897.60 306
v124096.74 14397.02 12495.91 23198.18 19188.52 27295.39 20798.88 8893.15 23998.46 7398.40 9092.80 20099.71 10698.45 1599.49 12699.49 57
Anonymous2023120695.27 20895.06 20695.88 23298.72 12589.37 25895.70 18797.85 24288.00 30996.98 19597.62 18591.95 22499.34 24289.21 30099.53 10898.94 183
Vis-MVSNet (Re-imp)95.11 21494.85 21695.87 23399.12 8689.17 26197.54 9494.92 32396.50 10696.58 21797.27 21883.64 30699.48 19788.42 31299.67 6898.97 179
CL-MVSNet_self_test95.04 21794.79 22295.82 23497.51 26989.79 25191.14 34396.82 28993.05 24196.72 20996.40 27590.82 24099.16 27691.95 24098.66 26098.50 239
IterMVS-LS96.92 12997.29 10495.79 23598.51 15488.13 28395.10 22598.66 15296.99 8798.46 7398.68 6792.55 20899.74 8096.91 6199.79 4199.50 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052197.07 12097.51 9195.76 23699.35 4688.18 28097.78 7298.40 18497.11 8598.34 8699.04 4289.58 25999.79 4598.09 2199.93 1099.30 111
EI-MVSNet96.63 15396.93 12895.74 23797.26 29088.13 28395.29 21697.65 25896.99 8797.94 13598.19 11892.55 20899.58 16696.91 6199.56 9699.50 49
MDA-MVSNet-bldmvs95.69 18895.67 18795.74 23798.48 16088.76 27192.84 30997.25 27196.00 13297.59 15397.95 15191.38 23399.46 20393.16 22696.35 33898.99 178
sss94.22 25393.72 26195.74 23797.71 25489.95 25093.84 28496.98 28388.38 30593.75 31095.74 30287.94 27698.89 30691.02 26198.10 28698.37 249
testdata95.70 24098.16 19590.58 24297.72 25180.38 35895.62 26397.02 23592.06 22298.98 29989.06 30498.52 27097.54 308
test_yl94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
DCV-MVSNet94.40 24794.00 25495.59 24196.95 30389.52 25594.75 24795.55 31696.18 12296.79 20496.14 28881.09 31699.18 27190.75 27097.77 29698.07 277
tttt051793.31 28092.56 28795.57 24398.71 12887.86 28897.44 9787.17 37195.79 14697.47 16496.84 24764.12 37399.81 3896.20 8299.32 18299.02 174
MSLP-MVS++96.42 16496.71 14095.57 24397.82 23090.56 24495.71 18698.84 10294.72 18796.71 21097.39 20794.91 14998.10 35995.28 13999.02 22398.05 284
thisisatest053092.71 29091.76 29795.56 24598.42 16788.23 27896.03 16987.35 37094.04 21196.56 21995.47 31164.03 37499.77 5894.78 16999.11 21298.68 224
patch_mono-296.59 15496.93 12895.55 24698.88 11087.12 30594.47 25699.30 1294.12 20896.65 21598.41 8794.98 14699.87 2295.81 10799.78 4499.66 22
Test_1112_low_res93.53 27692.86 27695.54 24798.60 14388.86 26792.75 31298.69 14582.66 34992.65 33896.92 24384.75 29999.56 17390.94 26397.76 29898.19 271
pmmvs594.63 23994.34 24495.50 24897.63 26288.34 27694.02 27697.13 27787.15 31695.22 27297.15 22487.50 28299.27 26193.99 20399.26 19298.88 200
MVSFormer96.14 17396.36 16095.49 24997.68 25687.81 29198.67 1599.02 5496.50 10694.48 29196.15 28686.90 28699.92 598.73 799.13 20898.74 216
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25096.41 31689.15 26391.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21094.16 19496.61 33497.82 296
iter_conf0593.65 27293.05 27195.46 25196.13 33087.45 29895.95 17898.22 20492.66 25297.04 18897.89 15763.52 37599.72 9096.19 8399.82 3699.21 133
diffmvs96.04 17796.23 16495.46 25197.35 28188.03 28693.42 29799.08 3994.09 21096.66 21396.93 24193.85 17899.29 25696.01 9498.67 25899.06 168
v14896.58 15696.97 12595.42 25398.63 13987.57 29595.09 22697.90 23995.91 13998.24 9997.96 14793.42 18799.39 22996.04 9099.52 11399.29 118
OpenMVS_ROBcopyleft91.80 1493.64 27393.05 27195.42 25397.31 28991.21 23195.08 22896.68 29681.56 35296.88 20296.41 27390.44 24599.25 26485.39 34297.67 30695.80 349
jason94.39 24994.04 25395.41 25598.29 17587.85 29092.74 31496.75 29285.38 33595.29 27096.15 28688.21 27599.65 14394.24 19199.34 17398.74 216
jason: jason.
API-MVS95.09 21695.01 20895.31 25696.61 31194.02 16596.83 12797.18 27595.60 15495.79 25694.33 33294.54 16198.37 35085.70 33798.52 27093.52 364
PVSNet_BlendedMVS95.02 22094.93 21195.27 25797.79 24187.40 30094.14 27298.68 14788.94 29894.51 28998.01 14393.04 19499.30 25289.77 29399.49 12699.11 159
lupinMVS93.77 26693.28 26795.24 25897.68 25687.81 29192.12 32596.05 30284.52 34294.48 29195.06 31786.90 28699.63 14893.62 21699.13 20898.27 264
D2MVS95.18 21195.17 20095.21 25997.76 24787.76 29394.15 27097.94 23789.77 29196.99 19397.68 18287.45 28399.14 27895.03 15999.81 3798.74 216
Patchmatch-RL test94.66 23794.49 23795.19 26098.54 15088.91 26592.57 31698.74 13091.46 27198.32 9197.75 17477.31 33698.81 31396.06 8799.61 8297.85 294
WTY-MVS93.55 27593.00 27495.19 26097.81 23187.86 28893.89 28396.00 30489.02 29694.07 30095.44 31286.27 28999.33 24587.69 32196.82 32898.39 247
FE-MVS92.95 28692.22 29095.11 26297.21 29388.33 27798.54 2293.66 33489.91 28996.21 23898.14 12270.33 36599.50 19187.79 31898.24 28197.51 309
JIA-IIPM91.79 30490.69 31395.11 26293.80 36590.98 23494.16 26991.78 35296.38 11090.30 35799.30 1972.02 35998.90 30588.28 31490.17 36895.45 355
MIMVSNet93.42 27792.86 27695.10 26498.17 19388.19 27998.13 5493.69 33192.07 26095.04 27798.21 11780.95 31899.03 29481.42 35998.06 28898.07 277
PAPR92.22 29791.27 30395.07 26595.73 34088.81 26891.97 32897.87 24185.80 32890.91 35192.73 35191.16 23598.33 35279.48 36295.76 34798.08 275
MVSTER94.21 25593.93 25795.05 26695.83 33686.46 31395.18 22397.65 25892.41 25797.94 13598.00 14572.39 35899.58 16696.36 7899.56 9699.12 156
cl____94.73 22994.64 22795.01 26795.85 33587.00 30791.33 33798.08 22893.34 22897.10 18197.33 21484.01 30599.30 25295.14 15199.56 9698.71 221
DIV-MVS_self_test94.73 22994.64 22795.01 26795.86 33487.00 30791.33 33798.08 22893.34 22897.10 18197.34 21384.02 30499.31 24995.15 15099.55 10298.72 219
FA-MVS(test-final)94.91 22294.89 21494.99 26997.51 26988.11 28598.27 4395.20 32192.40 25896.68 21198.60 7283.44 30799.28 25893.34 21998.53 26997.59 307
TinyColmap96.00 18096.34 16194.96 27097.90 22187.91 28794.13 27398.49 17194.41 19798.16 10797.76 17196.29 9998.68 32790.52 28099.42 15198.30 260
PVSNet_Blended93.96 26393.65 26294.91 27197.79 24187.40 30091.43 33498.68 14784.50 34394.51 28994.48 33093.04 19499.30 25289.77 29398.61 26598.02 287
BH-RMVSNet94.56 24294.44 24294.91 27197.57 26487.44 29993.78 28896.26 29993.69 22096.41 22696.50 27092.10 22099.00 29585.96 33597.71 30298.31 258
RPMNet94.68 23694.60 23194.90 27395.44 34588.15 28196.18 16198.86 9397.43 7294.10 29898.49 8179.40 32299.76 6395.69 11095.81 34396.81 333
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26697.31 10394.62 32585.92 32690.50 35596.84 24785.05 29699.40 22483.77 35495.78 34696.43 342
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30191.83 26694.05 30194.57 32576.01 34398.97 30392.46 23597.34 31998.36 254
miper_lstm_enhance94.81 22794.80 22194.85 27696.16 32686.45 31491.14 34398.20 20893.49 22397.03 19097.37 21184.97 29899.26 26295.28 13999.56 9698.83 205
IterMVS-SCA-FT95.86 18596.19 16694.85 27697.68 25685.53 32392.42 32097.63 26296.99 8798.36 8398.54 7887.94 27699.75 7097.07 5899.08 21699.27 123
c3_l95.20 21095.32 19694.83 27896.19 32486.43 31591.83 33098.35 19393.47 22497.36 16897.26 21988.69 26999.28 25895.41 13699.36 16598.78 211
testgi96.07 17596.50 15694.80 27999.26 5387.69 29495.96 17598.58 16495.08 17598.02 12796.25 28197.92 1697.60 36488.68 30998.74 25399.11 159
CR-MVSNet93.29 28192.79 27994.78 28095.44 34588.15 28196.18 16197.20 27384.94 34094.10 29898.57 7477.67 33199.39 22995.17 14695.81 34396.81 333
eth_miper_zixun_eth94.89 22394.93 21194.75 28195.99 33286.12 31891.35 33698.49 17193.40 22597.12 17997.25 22086.87 28899.35 24095.08 15698.82 24698.78 211
MVS_Test96.27 16796.79 13894.73 28296.94 30586.63 31296.18 16198.33 19494.94 18196.07 24498.28 10595.25 13699.26 26297.21 5097.90 29498.30 260
miper_ehance_all_eth94.69 23494.70 22494.64 28395.77 33886.22 31791.32 33998.24 20291.67 26797.05 18796.65 26188.39 27399.22 26994.88 16298.34 27698.49 240
Patchmatch-test93.60 27493.25 26994.63 28496.14 32987.47 29796.04 16894.50 32793.57 22196.47 22396.97 23876.50 33998.61 33290.67 27698.41 27597.81 298
baseline193.14 28492.64 28594.62 28597.34 28587.20 30496.67 14093.02 34094.71 18896.51 22295.83 30181.64 31198.60 33490.00 29088.06 37198.07 277
xiu_mvs_v1_base_debu95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19195.96 17894.60 28698.01 20988.42 27393.99 27898.21 20592.98 24495.91 25194.53 32796.39 9499.72 9095.43 13398.19 28295.64 351
MS-PatchMatch94.83 22594.91 21394.57 28996.81 30987.10 30694.23 26597.34 27088.74 30197.14 17797.11 22891.94 22598.23 35592.99 22897.92 29298.37 249
USDC94.56 24294.57 23694.55 29097.78 24586.43 31592.75 31298.65 15785.96 32596.91 20097.93 15490.82 24098.74 31990.71 27499.59 8898.47 241
BH-untuned94.69 23494.75 22394.52 29197.95 21887.53 29694.07 27597.01 28293.99 21297.10 18195.65 30592.65 20598.95 30487.60 32396.74 33197.09 318
dcpmvs_297.12 11897.99 4394.51 29299.11 8784.00 34397.75 7699.65 597.38 7899.14 3198.42 8695.16 13899.96 295.52 12299.78 4499.58 31
cl2293.25 28292.84 27894.46 29394.30 35886.00 31991.09 34596.64 29790.74 27995.79 25696.31 27978.24 32898.77 31694.15 19598.34 27698.62 228
MDA-MVSNet_test_wron94.73 22994.83 21994.42 29497.48 27185.15 33090.28 35395.87 30892.52 25397.48 16297.76 17191.92 22799.17 27593.32 22096.80 33098.94 183
YYNet194.73 22994.84 21794.41 29597.47 27585.09 33290.29 35295.85 30992.52 25397.53 15597.76 17191.97 22399.18 27193.31 22196.86 32798.95 181
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31083.46 34692.69 33696.84 24779.15 32599.41 22285.66 33990.52 36698.04 285
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26292.27 32392.88 34284.39 34595.29 27096.35 27885.66 29396.74 37184.53 34997.56 31097.05 320
MG-MVS94.08 26194.00 25494.32 29797.09 29985.89 32093.19 30695.96 30692.52 25394.93 28097.51 19489.54 26098.77 31687.52 32697.71 30298.31 258
PatchT93.75 26793.57 26394.29 29995.05 35087.32 30296.05 16792.98 34197.54 6994.25 29498.72 6375.79 34499.24 26595.92 9995.81 34396.32 343
miper_enhance_ethall93.14 28492.78 28194.20 30093.65 36685.29 32789.97 35597.85 24285.05 33796.15 24394.56 32685.74 29299.14 27893.74 21198.34 27698.17 273
IterMVS95.42 20295.83 18294.20 30097.52 26883.78 34592.41 32197.47 26895.49 15998.06 12198.49 8187.94 27699.58 16696.02 9299.02 22399.23 131
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16690.59 27798.67 25897.50 311
ECVR-MVScopyleft94.37 25094.48 23894.05 30398.95 10383.10 34798.31 3882.48 37796.20 11998.23 10099.16 3181.18 31599.66 14195.95 9799.83 3499.38 92
thres600view792.03 30191.43 29993.82 30498.19 18884.61 33796.27 15490.39 36196.81 9396.37 22893.11 34073.44 35699.49 19480.32 36197.95 29197.36 314
FPMVS89.92 32388.63 33193.82 30498.37 17096.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36391.13 37671.91 37496.16 34293.39 366
test111194.53 24594.81 22093.72 30699.06 9381.94 35598.31 3883.87 37696.37 11198.49 6999.17 3081.49 31299.73 8596.64 6599.86 2899.49 57
thres40091.68 30691.00 30693.71 30798.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29997.36 314
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16487.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EU-MVSNet94.25 25294.47 23993.60 30998.14 19882.60 35097.24 10892.72 34585.08 33698.48 7098.94 4982.59 31098.76 31897.47 4399.53 10899.44 83
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32489.96 28894.95 27893.87 33690.24 25198.61 33281.18 36094.88 35395.45 355
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 15979.32 36292.16 34591.44 36489.22 26798.12 35890.80 26897.47 31696.82 332
ppachtmachnet_test94.49 24694.84 21793.46 31296.16 32682.10 35290.59 34997.48 26790.53 28297.01 19297.59 18791.01 23799.36 23793.97 20599.18 20298.94 183
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30398.03 28995.92 346
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22681.74 37694.90 32281.36 31499.11 28388.28 31498.87 23998.21 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres100view90091.76 30591.26 30493.26 31598.21 18684.50 33896.39 14790.39 36196.87 9196.33 22993.08 34473.44 35699.42 21378.85 36597.74 29995.85 347
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36199.33 24586.01 33494.60 35797.72 300
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33376.97 37092.54 34299.18 2889.20 26898.55 33883.88 35298.60 26797.51 309
tfpn200view991.55 30791.00 30693.21 31898.02 20784.35 34095.70 18790.79 35896.26 11695.90 25492.13 35773.62 35399.42 21378.85 36597.74 29995.85 347
mvs_anonymous95.36 20496.07 17393.21 31896.29 31881.56 35694.60 25197.66 25693.30 23096.95 19798.91 5293.03 19699.38 23296.60 6797.30 32198.69 222
our_test_394.20 25794.58 23493.07 32096.16 32681.20 35890.42 35196.84 28790.72 28097.14 17797.13 22590.47 24499.11 28394.04 20298.25 28098.91 192
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32598.70 32385.66 33990.52 36698.04 285
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31579.52 36183.82 37393.05 34680.57 31998.41 34562.29 37792.79 36295.71 350
PS-MVSNAJ94.10 25994.47 23993.00 32397.35 28184.88 33491.86 32997.84 24491.96 26394.17 29692.50 35495.82 11099.71 10691.27 25597.48 31494.40 361
xiu_mvs_v2_base94.22 25394.63 22992.99 32497.32 28884.84 33592.12 32597.84 24491.96 26394.17 29693.43 33896.07 10299.71 10691.27 25597.48 31494.42 360
SCA93.38 27993.52 26492.96 32596.24 32081.40 35793.24 30494.00 33091.58 27094.57 28696.97 23887.94 27699.42 21389.47 29797.66 30798.06 281
new-patchmatchnet95.67 19096.58 14692.94 32697.48 27180.21 36192.96 30898.19 21394.83 18498.82 4698.79 5893.31 18999.51 19095.83 10599.04 22299.12 156
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26194.71 28391.14 36773.92 35094.48 37483.75 35592.94 36197.16 317
thres20091.00 31390.42 31792.77 32897.47 27583.98 34494.01 27791.18 35695.12 17495.44 26791.21 36673.93 34999.31 24977.76 36897.63 30995.01 357
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31189.33 29494.21 29592.74 35089.60 25898.24 35481.68 35894.66 35594.66 359
131492.38 29492.30 28992.64 33095.42 34785.15 33095.86 18196.97 28485.40 33490.62 35293.06 34591.12 23697.80 36286.74 33195.49 35094.97 358
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31291.35 27295.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29364.72 37590.62 35292.77 34992.54 21098.39 34779.30 36395.56 34992.12 368
PMMVS293.66 27194.07 25292.45 33497.57 26480.67 36086.46 36796.00 30493.99 21297.10 18197.38 20989.90 25497.82 36188.76 30699.47 13298.86 203
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 27981.44 35487.44 36993.15 33973.99 34899.47 20088.69 30899.07 21896.52 341
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 32999.18 27190.84 26694.57 35898.01 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
test250689.86 32489.16 32991.97 33898.95 10376.83 37098.54 2261.07 38496.20 11997.07 18699.16 3155.19 38399.69 12396.43 7699.83 3499.38 92
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36099.30 25291.25 25793.87 35997.87 293
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26678.04 36587.17 36694.60 32684.65 34192.34 34392.20 35687.37 28498.47 34285.17 34597.69 30497.96 289
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36498.10 35990.75 27089.32 37096.98 322
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36298.89 30688.59 31092.63 36396.87 327
CVMVSNet92.33 29692.79 27990.95 34397.26 29075.84 37395.29 21692.33 34881.86 35096.27 23498.19 11881.44 31398.46 34394.23 19298.29 27998.55 235
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27891.91 34796.26 28077.19 33798.86 31089.38 29989.85 36996.56 340
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26189.97 35990.77 36973.92 35098.57 33591.88 24397.36 31796.92 324
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24397.36 31796.92 324
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 32973.84 37489.26 36295.61 30873.64 35298.30 35384.13 35086.20 37395.57 354
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33188.01 30892.32 34496.86 24577.45 33398.82 31191.04 26087.01 37297.04 321
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26496.92 32496.64 337
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18593.71 31193.11 34075.31 34596.81 36885.81 33696.81 32991.77 370
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19092.63 34091.81 36076.30 34197.02 36683.83 35396.90 32691.48 371
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30896.63 37273.44 37266.86 37893.40 365
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20187.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
wuyk23d93.25 28295.20 19887.40 35796.07 33195.38 10897.04 11994.97 32295.33 16499.70 598.11 12898.14 1391.94 37577.76 36899.68 6774.89 375
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 3884.72 30098.23 35582.52 35796.59 33590.69 373
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34670.63 37959.23 37884.94 37475.62 374
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30314.32 37864.27 37991.69 36273.45 35588.05 37776.06 37066.94 37793.54 363
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2240.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1598.20 499.03 799.25 1498.96 1898.87 42
PC_three_145287.24 31498.37 8097.44 20097.00 5496.78 37092.01 23899.25 19399.21 133
test_one_060199.05 9795.50 10398.87 9097.21 8498.03 12598.30 10096.93 60
eth-test20.00 387
eth-test0.00 387
ZD-MVS98.43 16695.94 8198.56 16690.72 28096.66 21397.07 23195.02 14499.74 8091.08 25998.93 233
RE-MVS-def97.88 5298.81 11498.05 997.55 8998.86 9397.77 5098.20 10298.07 13296.94 5895.49 12399.20 19899.26 124
IU-MVS99.22 6295.40 10698.14 22085.77 32998.36 8395.23 14399.51 11899.49 57
test_241102_TWO98.83 10996.11 12498.62 5698.24 11196.92 6299.72 9095.44 13099.49 12699.49 57
test_241102_ONE99.22 6295.35 11198.83 10996.04 12999.08 3398.13 12497.87 2099.33 245
9.1496.69 14198.53 15196.02 17098.98 6893.23 23297.18 17597.46 19896.47 9099.62 15692.99 22899.32 182
save fliter98.48 16094.71 13794.53 25498.41 18295.02 179
test_0728_THIRD96.62 9798.40 7798.28 10597.10 4599.71 10695.70 10899.62 7699.58 31
test072699.24 5795.51 10096.89 12598.89 8295.92 13798.64 5598.31 9697.06 50
GSMVS98.06 281
test_part299.03 9996.07 7598.08 119
sam_mvs177.80 33098.06 281
sam_mvs77.38 334
MTGPAbinary98.73 132
test_post194.98 23610.37 38176.21 34299.04 29189.47 297
test_post10.87 38076.83 33899.07 288
patchmatchnet-post96.84 24777.36 33599.42 213
MTMP96.55 14174.60 380
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
test9_res91.29 25498.89 23899.00 175
TEST997.84 22795.23 11893.62 29198.39 18586.81 31993.78 30795.99 29394.68 15499.52 186
test_897.81 23195.07 12793.54 29498.38 18787.04 31793.71 31195.96 29794.58 15999.52 186
agg_prior290.34 28698.90 23599.10 163
agg_prior97.80 23594.96 12998.36 18993.49 32099.53 182
test_prior495.38 10893.61 293
test_prior293.33 30294.21 20494.02 30296.25 28193.64 18391.90 24198.96 227
旧先验293.35 30177.95 36895.77 26098.67 32890.74 273
新几何293.43 296
旧先验197.80 23593.87 17097.75 24997.04 23493.57 18598.68 25798.72 219
无先验93.20 30597.91 23880.78 35699.40 22487.71 31997.94 290
原ACMM292.82 310
test22298.17 19393.24 19292.74 31497.61 26475.17 37194.65 28596.69 25990.96 23998.66 26097.66 303
testdata299.46 20387.84 317
segment_acmp95.34 132
testdata192.77 31193.78 217
plane_prior798.70 13094.67 141
plane_prior698.38 16994.37 15191.91 228
plane_prior598.75 12899.46 20392.59 23399.20 19899.28 119
plane_prior496.77 253
plane_prior394.51 14595.29 16796.16 241
plane_prior296.50 14396.36 112
plane_prior198.49 158
plane_prior94.29 15395.42 20394.31 20198.93 233
n20.00 388
nn0.00 388
door-mid98.17 214
test1198.08 228
door97.81 247
HQP5-MVS92.47 205
HQP-NCC97.85 22394.26 26093.18 23592.86 333
ACMP_Plane97.85 22394.26 26093.18 23592.86 333
BP-MVS90.51 281
HQP4-MVS92.87 33299.23 26799.06 168
HQP3-MVS98.43 17798.74 253
HQP2-MVS90.33 246
NP-MVS98.14 19893.72 17895.08 315
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32785.50 34197.82 296
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34098.55 33888.85 30596.43 336
ACMMP++_ref99.52 113
ACMMP++99.55 102
Test By Simon94.51 162