This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8988.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23189.67 6988.38 19788.84 1394.29 1897.57 390.48 1391.26 18472.57 20097.65 6097.34 15
pmmvs686.52 9688.06 7481.90 20792.22 10162.28 25884.66 15389.15 18783.54 5289.85 10397.32 488.08 3686.80 27670.43 21797.30 7696.62 28
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7481.10 7795.32 1097.24 572.94 20794.85 6785.07 5497.78 5397.26 16
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22188.86 8693.02 8287.15 2393.05 4397.10 682.28 10092.02 16576.70 15097.99 4096.88 25
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18155.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
K. test v385.14 11884.73 13086.37 10791.13 14069.63 18285.45 14076.68 31884.06 4592.44 5796.99 862.03 27394.65 7280.58 10593.24 20994.83 72
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high83.17 16385.68 11675.65 30081.24 32245.26 38379.94 25092.91 8583.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11070.73 20894.19 2196.67 1176.94 15994.57 7683.07 7496.28 10896.15 33
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15070.00 21794.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17071.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 9997.09 21
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20581.66 7094.64 1496.53 1465.94 25094.75 6983.02 7696.83 8795.41 51
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16469.27 22194.39 1696.38 1586.02 6093.52 12083.96 6695.92 12895.34 53
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7886.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31088.93 8592.84 8891.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
VDDNet84.35 13385.39 12181.25 22095.13 3159.32 29385.42 14181.11 28986.41 2787.41 15096.21 1973.61 19590.61 20766.33 25596.85 8593.81 115
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30088.95 8493.19 7091.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16769.87 21895.06 1196.14 2184.28 7293.07 13787.68 1596.34 10597.09 21
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30389.04 8392.74 9191.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2311.09 4052.23 40795.98 2381.87 10989.48 23579.76 11295.96 12491.10 212
MIMVSNet183.63 15384.59 13580.74 22994.06 5362.77 24882.72 20584.53 26277.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 124
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 18977.34 12293.63 3595.83 2565.40 25595.90 1585.01 5798.23 2797.49 13
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16789.44 18488.63 1694.38 1795.77 2686.38 5693.59 11679.84 11195.21 15291.82 195
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Baseline_NR-MVSNet84.00 14685.90 11078.29 26691.47 13153.44 34082.29 21987.00 22579.06 10289.55 11495.72 2877.20 15386.14 29072.30 20298.51 1695.28 56
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25589.54 7493.31 6590.21 1095.57 995.66 2981.42 11495.90 1580.94 9998.80 298.84 5
GBi-Net82.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
test182.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
FMVSNet184.55 12985.45 12081.85 20990.27 15861.05 27186.83 11788.27 20278.57 11089.66 10995.64 3075.43 17390.68 20469.09 23295.33 14793.82 112
TransMVSNet (Re)84.02 14585.74 11578.85 25491.00 14355.20 33182.29 21987.26 21379.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9494.45 82
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4781.89 6894.70 1395.44 3490.69 888.31 25783.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24073.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6975.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs183.69 15184.95 12879.91 24190.04 16559.66 29082.43 21587.44 21075.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
Anonymous2024052986.20 10287.13 8883.42 17690.19 15964.55 22984.55 15590.71 14785.85 3189.94 10295.24 4082.13 10290.40 21169.19 23196.40 10495.31 55
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11472.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30688.66 9292.06 10790.78 695.67 795.17 4281.80 11095.54 4179.00 12198.69 998.95 4
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18288.51 1790.11 9595.12 4490.98 688.92 24777.55 14097.07 8183.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5377.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
Gipumacopyleft84.44 13186.33 10278.78 25584.20 28573.57 13289.55 7290.44 15584.24 4384.38 21294.89 4876.35 17080.40 33676.14 15796.80 8982.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13667.85 24186.63 16894.84 5079.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10694.82 5185.09 6395.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13779.26 9989.68 10794.81 5482.44 9287.74 26176.54 15388.74 28896.61 29
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6191.50 17679.72 11397.32 7596.50 31
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14083.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 229
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
FC-MVSNet-test85.93 10787.05 9182.58 19892.25 9956.44 32185.75 13593.09 7677.33 12391.94 6694.65 5674.78 18293.41 12675.11 16898.58 1397.88 7
SSC-MVS77.55 24481.64 18365.29 36490.46 15420.33 40973.56 33568.28 36985.44 3288.18 13994.64 5970.93 22681.33 32971.25 20692.03 23494.20 92
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11795.88 1787.41 2295.94 12692.48 167
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
LCM-MVSNet-Re83.48 15785.06 12578.75 25685.94 25755.75 32680.05 24894.27 2076.47 12996.09 594.54 6283.31 8389.75 23459.95 30694.89 16790.75 220
v1086.54 9587.10 8984.84 13688.16 20663.28 24186.64 12392.20 10375.42 14692.81 5094.50 6374.05 19194.06 9683.88 6796.28 10897.17 20
test072694.16 4972.56 14890.63 4593.90 4383.61 5093.75 3094.49 6489.76 18
v886.22 10186.83 9684.36 14987.82 21062.35 25786.42 12691.33 13176.78 12892.73 5294.48 6573.41 20093.72 10883.10 7395.41 14497.01 23
VPA-MVSNet83.47 15884.73 13079.69 24590.29 15757.52 31381.30 23588.69 19376.29 13087.58 14894.44 6680.60 12487.20 26866.60 25496.82 8894.34 89
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
lessismore_v085.95 11791.10 14170.99 17170.91 36091.79 6794.42 6961.76 27492.93 14179.52 11793.03 21493.93 106
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4380.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11984.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 176
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8182.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5183.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 177
test_241102_TWO93.71 5083.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 188
VDD-MVS84.23 13984.58 13683.20 18391.17 13965.16 22483.25 19084.97 25779.79 9087.18 15294.27 7474.77 18390.89 19769.24 22896.54 9693.55 130
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12494.26 7777.55 14995.86 2284.88 5895.87 13095.24 58
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9483.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6681.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
test250674.12 28273.39 28276.28 29591.85 11444.20 38684.06 16648.20 40572.30 19381.90 25894.20 8027.22 40689.77 23264.81 27196.02 12194.87 67
test111178.53 23478.85 22777.56 27892.22 10147.49 37282.61 20769.24 36772.43 18785.28 19494.20 8051.91 32990.07 22465.36 26696.45 10295.11 62
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11448.95 36683.68 17969.91 36472.30 19384.26 22194.20 8051.89 33089.82 22963.58 28096.02 12194.87 67
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6881.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24282.85 27676.81 12785.90 18694.14 8474.58 18686.51 28166.82 25295.68 14193.01 148
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030486.35 9885.92 10987.66 8889.21 18073.16 13988.40 9583.63 26981.27 7480.87 27694.12 8671.49 22495.71 3287.79 1296.50 9894.11 100
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 199
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10892.09 10678.87 10584.27 22094.05 8878.35 14093.65 10980.54 10691.58 24592.08 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4688.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 183
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6083.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
FIs85.35 11486.27 10382.60 19791.86 11357.31 31485.10 14793.05 7875.83 13991.02 8193.97 9273.57 19692.91 14373.97 17998.02 3997.58 12
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5882.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ambc82.98 18790.55 15364.86 22588.20 9689.15 18789.40 11793.96 9571.67 22391.38 18378.83 12296.55 9592.71 159
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6781.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 6995.37 5180.87 10095.50 14394.53 79
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11384.26 4290.87 8793.92 9982.18 10189.29 24373.75 18394.81 17193.70 119
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7693.10 13682.67 8298.04 3693.64 123
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23284.38 16091.29 13284.88 3992.06 6393.84 10186.45 5493.73 10773.22 19198.66 1097.69 9
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4980.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22784.54 4183.58 23293.78 10473.36 20396.48 187.98 996.21 11294.41 86
test_241102_ONE94.18 4672.65 14293.69 5183.62 4994.11 2293.78 10490.28 1495.50 46
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052180.18 21681.25 19476.95 28583.15 30560.84 27882.46 21485.99 23868.76 22886.78 16293.73 10759.13 29277.44 34873.71 18497.55 6792.56 164
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23065.22 22284.16 16294.23 2377.89 11691.28 7793.66 10884.35 7192.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 9078.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6179.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 170
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVS76.06 26280.01 21864.19 36789.96 16720.58 40872.18 34468.19 37083.21 5486.46 17693.49 11170.19 22978.97 34365.96 25790.46 26993.02 147
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13193.60 5680.16 8789.13 12193.44 11283.82 7590.98 19283.86 6895.30 15193.60 125
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27552.75 34480.37 24589.42 18570.24 21590.26 9493.39 11374.55 18786.77 27768.61 24096.64 9295.38 52
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4280.07 8986.75 16493.26 11493.64 290.93 19484.60 6190.75 26393.97 104
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7780.87 8191.13 7893.19 11586.22 5795.97 1282.23 8897.18 7990.45 231
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator80.37 784.80 12484.71 13385.06 13486.36 24574.71 12588.77 8990.00 17275.65 14284.96 20093.17 11674.06 19091.19 18678.28 12891.09 25189.29 255
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25778.30 8586.93 11492.20 10365.94 25389.16 11993.16 11783.10 8489.89 22887.81 1194.43 18293.35 132
ab-mvs79.67 22280.56 20476.99 28488.48 19856.93 31784.70 15286.06 23568.95 22680.78 27893.08 11875.30 17584.62 30756.78 32190.90 25889.43 251
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25476.08 31186.05 23673.67 16383.41 23593.04 11982.35 9580.65 33470.06 22295.03 16091.21 209
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27773.67 16383.41 23593.04 11980.96 11977.65 34758.62 31295.03 16091.21 209
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
ZD-MVS92.22 10180.48 6791.85 11571.22 20490.38 9192.98 12386.06 5996.11 681.99 9196.75 90
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17186.58 22972.43 18787.65 14692.98 12363.78 26490.22 21566.86 24993.92 19492.27 179
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 16975.67 31465.56 38070.42 21065.18 38492.97 12533.64 39383.06 31953.52 34569.61 39678.79 374
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5479.44 9686.55 16992.95 12674.84 18095.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8487.95 2089.62 11092.87 12984.56 6893.89 10277.65 13896.62 9390.70 223
VPNet80.25 21381.68 18275.94 29892.46 9247.98 37076.70 29981.67 28673.45 16784.87 20392.82 13074.66 18586.51 28161.66 29796.85 8593.33 133
mvs_anonymous78.13 23878.76 22976.23 29779.24 34550.31 36378.69 27184.82 25961.60 29583.09 24292.82 13073.89 19387.01 26968.33 24486.41 31991.37 206
UGNet82.78 16681.64 18386.21 11386.20 25176.24 11786.86 11585.68 24177.07 12673.76 34392.82 13069.64 23091.82 17269.04 23493.69 20090.56 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28565.37 38173.61 16571.77 35292.79 13344.38 37075.65 35564.53 27685.37 32982.18 349
FA-MVS(test-final)83.13 16483.02 16283.43 17586.16 25466.08 21588.00 9988.36 19875.55 14385.02 19892.75 13465.12 25692.50 15174.94 17091.30 24991.72 197
LFMVS80.15 21780.56 20478.89 25389.19 18155.93 32385.22 14473.78 33882.96 5884.28 21992.72 13557.38 30490.07 22463.80 27995.75 13890.68 224
casdiffmvspermissive85.21 11685.85 11283.31 17986.17 25262.77 24883.03 19693.93 4174.69 15388.21 13792.68 13682.29 9991.89 16977.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPMNet78.88 22778.28 23680.68 23279.58 33962.64 25082.58 20994.16 2874.80 15175.72 32792.59 13748.69 34195.56 3973.48 18782.91 35583.85 326
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20891.21 3988.64 19486.30 2889.60 11392.59 13769.22 23394.91 6673.89 18097.89 4996.72 26
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20989.94 6290.36 15867.97 23884.94 20292.58 13972.71 21092.18 16070.63 21587.73 30288.85 264
MG-MVS80.32 21280.94 20078.47 26288.18 20452.62 34782.29 21985.01 25572.01 19779.24 29892.54 14069.36 23293.36 12870.65 21489.19 28289.45 249
MVS_Test82.47 17283.22 15680.22 23882.62 31057.75 31282.54 21291.96 11171.16 20582.89 24492.52 14177.41 15090.50 20980.04 10987.84 30192.40 171
dcpmvs_284.23 13985.14 12481.50 21688.61 19561.98 26282.90 20293.11 7468.66 23092.77 5192.39 14278.50 13887.63 26376.99 14992.30 22694.90 65
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25082.58 20976.90 31550.50 37175.72 32792.38 14348.07 34484.07 31468.72 23982.91 35583.85 326
Patchmtry76.56 25777.46 24173.83 31079.37 34446.60 37682.41 21676.90 31573.81 16185.56 19192.38 14348.07 34483.98 31563.36 28395.31 15090.92 216
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10179.74 9187.50 14992.38 14381.42 11493.28 12983.07 7497.24 7791.67 200
IterMVS-LS84.73 12584.98 12783.96 16087.35 22163.66 23683.25 19089.88 17476.06 13289.62 11092.37 14673.40 20292.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13491.82 11765.33 26688.55 12892.35 14782.62 9189.80 23086.87 3294.32 18593.18 141
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4878.90 10492.88 4592.29 14886.11 5890.22 21586.24 4397.24 7791.36 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13378.20 11386.69 16792.28 14980.36 12695.06 6286.17 4496.49 9990.22 235
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4378.43 11189.16 11992.25 15072.03 22096.36 388.21 790.93 25792.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521180.51 20681.19 19778.49 26188.48 19857.26 31576.63 30182.49 27981.21 7684.30 21892.24 15167.99 23986.24 28562.22 28995.13 15591.98 192
TinyColmap81.25 19482.34 17577.99 27285.33 26660.68 28182.32 21888.33 20071.26 20386.97 16092.22 15277.10 15686.98 27262.37 28895.17 15486.31 295
baseline85.20 11785.93 10883.02 18686.30 24762.37 25684.55 15593.96 4074.48 15587.12 15392.03 15382.30 9891.94 16678.39 12494.21 18794.74 73
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20583.16 19492.21 10281.73 6990.92 8291.97 15477.20 15393.99 9774.16 17498.35 2197.61 10
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22882.21 22390.46 15480.99 7888.42 13291.97 15477.56 14893.85 10372.46 20198.65 1197.61 10
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20684.42 28068.22 19588.50 9489.48 18366.92 24881.80 26391.86 15672.59 21290.16 21771.19 20891.25 25087.40 284
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27576.37 31691.85 15736.68 38878.98 34247.87 37392.45 22487.95 276
旧先验191.97 10871.77 16081.78 28591.84 15873.92 19293.65 20183.61 329
EPP-MVSNet85.47 11285.04 12686.77 10191.52 12969.37 18491.63 3687.98 20781.51 7287.05 15991.83 15966.18 24895.29 5370.75 21296.89 8495.64 46
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20582.55 21191.56 12283.08 5790.92 8291.82 16078.25 14193.99 9774.16 17498.35 2197.49 13
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14291.39 12965.32 26787.72 14591.81 16182.33 9689.78 23186.68 3494.20 18892.99 149
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17692.87 8680.37 8389.61 11291.81 16177.72 14694.18 9075.00 16998.53 1596.99 24
MIMVSNet71.09 30871.59 30069.57 34087.23 22350.07 36478.91 26771.83 35360.20 31371.26 35491.76 16355.08 32076.09 35241.06 38987.02 31282.54 345
testdata79.54 24892.87 8172.34 15380.14 29659.91 31585.47 19391.75 16467.96 24085.24 30168.57 24292.18 23381.06 365
CDPH-MVS86.17 10485.54 11888.05 8492.25 9975.45 12283.85 17392.01 10865.91 25586.19 17891.75 16483.77 7794.98 6477.43 14396.71 9193.73 118
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14487.68 21473.35 13386.14 13077.70 30761.64 29485.02 19891.62 16677.75 14586.24 28582.79 8087.07 30993.91 108
test_prior283.37 18675.43 14584.58 20791.57 16781.92 10879.54 11696.97 83
WR-MVS83.56 15584.40 14181.06 22593.43 6754.88 33278.67 27285.02 25481.24 7590.74 8991.56 16872.85 20891.08 19068.00 24598.04 3697.23 18
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21080.28 28791.50 16964.21 26074.72 35846.96 37794.58 17887.82 280
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14391.23 13477.31 12487.07 15891.47 17082.94 8694.71 7084.67 6096.27 11092.62 163
v2v48284.09 14284.24 14483.62 17087.13 22661.40 26582.71 20689.71 17772.19 19589.55 11491.41 17170.70 22893.20 13181.02 9893.76 19796.25 32
FE-MVS79.98 22078.86 22683.36 17786.47 23966.45 21289.73 6584.74 26172.80 18284.22 22391.38 17244.95 36793.60 11563.93 27891.50 24690.04 241
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16286.87 23671.57 16685.19 14577.42 31062.27 28884.47 21191.33 17376.43 16785.91 29383.14 7187.14 30794.33 90
PC_three_145258.96 31990.06 9691.33 17380.66 12393.03 13875.78 16095.94 12692.48 167
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 24988.04 20652.14 35983.65 23091.25 17563.24 26786.65 27954.66 33894.11 19085.17 307
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11794.68 7174.48 17195.35 14692.29 177
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10793.17 7176.02 13488.64 12791.22 17684.24 7393.37 12777.97 13697.03 8295.52 49
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16281.56 7190.02 9891.20 17882.40 9490.81 20073.58 18694.66 17694.56 76
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 17949.95 33976.43 35138.74 39371.92 39155.84 400
test_fmvsm_n_192083.60 15482.89 16485.74 12385.22 26877.74 9584.12 16490.48 15359.87 31686.45 17791.12 18075.65 17185.89 29582.28 8790.87 25993.58 126
tt080588.09 7489.79 5182.98 18793.26 7263.94 23591.10 4189.64 17985.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
新几何182.95 18993.96 5578.56 8480.24 29555.45 34083.93 22791.08 18271.19 22588.33 25665.84 26193.07 21381.95 352
EG-PatchMatch MVS84.08 14384.11 14583.98 15992.22 10172.61 14782.20 22587.02 22272.63 18588.86 12291.02 18378.52 13791.11 18973.41 18891.09 25188.21 269
v114484.54 13084.72 13284.00 15887.67 21562.55 25282.97 19990.93 14370.32 21389.80 10490.99 18473.50 19793.48 12281.69 9594.65 17795.97 39
TEST992.34 9579.70 7483.94 16990.32 15965.41 26584.49 20990.97 18582.03 10493.63 111
train_agg85.98 10685.28 12388.07 8392.34 9579.70 7483.94 16990.32 15965.79 25684.49 20990.97 18581.93 10693.63 11181.21 9696.54 9690.88 217
test_892.09 10578.87 8183.82 17490.31 16165.79 25684.36 21390.96 18781.93 10693.44 124
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30780.60 27990.96 18775.44 17269.35 37056.13 32688.33 29285.86 300
v119284.57 12884.69 13484.21 15587.75 21262.88 24583.02 19791.43 12669.08 22489.98 10190.89 18972.70 21193.62 11482.41 8594.97 16496.13 34
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12491.09 13878.77 10784.85 20490.89 18980.85 12095.29 5381.14 9795.32 14892.34 174
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15286.56 23873.35 13385.46 13977.30 31161.81 29084.51 20890.88 19177.36 15186.21 28782.72 8186.97 31493.38 131
test_fmvsmvis_n_192085.22 11585.36 12284.81 13785.80 25976.13 11985.15 14692.32 10061.40 29691.33 7490.85 19283.76 7886.16 28984.31 6393.28 20892.15 185
test22293.31 7076.54 10979.38 25977.79 30652.59 35482.36 25190.84 19366.83 24591.69 24181.25 360
V4283.47 15883.37 15583.75 16683.16 30463.33 24081.31 23390.23 16669.51 22090.91 8490.81 19474.16 18992.29 15980.06 10890.22 27095.62 47
114514_t83.10 16582.54 17284.77 13992.90 8069.10 19186.65 12290.62 15154.66 34581.46 26890.81 19476.98 15894.38 8372.62 19996.18 11390.82 219
VNet79.31 22380.27 20976.44 29287.92 20953.95 33675.58 31784.35 26374.39 15682.23 25390.72 19672.84 20984.39 31060.38 30593.98 19390.97 214
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13376.92 10687.19 10991.99 10970.56 20984.96 20090.69 19780.01 12995.14 5978.37 12595.78 13791.82 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16686.02 25671.56 16784.73 15177.11 31462.44 28584.00 22590.68 19876.42 16885.89 29583.14 7187.11 30893.81 115
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18592.38 9970.25 21489.35 11890.68 19882.85 8794.57 7679.55 11595.95 12592.00 190
原ACMM184.60 14392.81 8674.01 12991.50 12462.59 28082.73 24790.67 20076.53 16694.25 8669.24 22895.69 14085.55 303
v14882.31 17382.48 17381.81 21285.59 26159.66 29081.47 23286.02 23772.85 18088.05 14090.65 20170.73 22790.91 19675.15 16791.79 23994.87 67
v124084.30 13584.51 13883.65 16987.65 21661.26 26882.85 20391.54 12367.94 23990.68 9090.65 20171.71 22293.64 11082.84 7994.78 17296.07 36
h-mvs3384.25 13782.76 16688.72 7191.82 11882.60 5684.00 16884.98 25671.27 20186.70 16590.55 20363.04 27093.92 10078.26 12994.20 18889.63 247
v14419284.24 13884.41 14083.71 16887.59 21861.57 26482.95 20091.03 13967.82 24289.80 10490.49 20473.28 20493.51 12181.88 9494.89 16796.04 38
FMVSNet378.80 23078.55 23279.57 24782.89 30956.89 31981.76 22785.77 24069.04 22586.00 18290.44 20551.75 33190.09 22365.95 25893.34 20591.72 197
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17183.94 28873.90 13083.35 18786.10 23458.97 31883.80 22890.36 20674.23 18886.94 27382.90 7790.22 27089.94 242
v192192084.23 13984.37 14283.79 16487.64 21761.71 26382.91 20191.20 13567.94 23990.06 9690.34 20772.04 21993.59 11682.32 8694.91 16596.07 36
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20855.46 31663.12 39341.72 38881.30 36769.09 389
pmmvs-eth3d78.42 23677.04 24882.57 20087.44 22074.41 12780.86 24179.67 29855.68 33984.69 20690.31 20960.91 27885.42 30062.20 29091.59 24487.88 278
GeoE85.45 11385.81 11384.37 14790.08 16167.07 20485.86 13391.39 12972.33 19287.59 14790.25 21084.85 6692.37 15578.00 13491.94 23893.66 120
tttt051781.07 19779.58 22085.52 12788.99 18566.45 21287.03 11375.51 32673.76 16288.32 13690.20 21137.96 38694.16 9479.36 11995.13 15595.93 42
IterMVS-SCA-FT80.64 20479.41 22184.34 15183.93 28969.66 18176.28 30781.09 29072.43 18786.47 17590.19 21260.46 28093.15 13477.45 14286.39 32090.22 235
PM-MVS80.20 21579.00 22583.78 16588.17 20586.66 1581.31 23366.81 37869.64 21988.33 13590.19 21264.58 25783.63 31871.99 20490.03 27281.06 365
NP-MVS91.95 10974.55 12690.17 214
HQP-MVS84.61 12784.06 14686.27 11091.19 13670.66 17284.77 14892.68 9273.30 17280.55 28190.17 21472.10 21694.61 7477.30 14594.47 18093.56 128
fmvsm_l_conf0.5_n_a81.46 19180.87 20283.25 18083.73 29373.21 13883.00 19885.59 24358.22 32482.96 24390.09 21672.30 21586.65 27981.97 9289.95 27489.88 243
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 24981.84 26089.93 21772.08 21866.92 38346.05 38092.54 22387.01 288
PCF-MVS74.62 1582.15 17980.92 20185.84 12189.43 17472.30 15480.53 24391.82 11757.36 33287.81 14489.92 21877.67 14793.63 11158.69 31195.08 15891.58 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
patch_mono-278.89 22679.39 22277.41 28184.78 27368.11 19775.60 31583.11 27360.96 30479.36 29589.89 21975.18 17672.97 35973.32 19092.30 22691.15 211
Vis-MVSNet (Re-imp)77.82 24177.79 24077.92 27388.82 18851.29 35783.28 18871.97 35274.04 15882.23 25389.78 22057.38 30489.41 24157.22 32095.41 14493.05 146
MCST-MVS84.36 13283.93 14985.63 12591.59 12171.58 16583.52 18292.13 10561.82 28983.96 22689.75 22179.93 13193.46 12378.33 12794.34 18491.87 194
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19689.67 22284.47 7095.46 4782.56 8396.26 11193.77 117
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19179.72 7387.15 11193.50 5769.17 22285.80 18789.56 22380.76 12192.13 16173.21 19695.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf0578.81 22977.35 24483.21 18282.98 30860.75 28084.09 16588.34 19963.12 27784.25 22289.48 22431.41 39594.51 8176.64 15195.83 13294.38 88
MSLP-MVS++85.00 12286.03 10781.90 20791.84 11671.56 16786.75 12193.02 8275.95 13787.12 15389.39 22577.98 14289.40 24277.46 14194.78 17284.75 312
MVS_111021_HR84.63 12684.34 14385.49 12990.18 16075.86 12079.23 26487.13 21773.35 16985.56 19189.34 22683.60 8090.50 20976.64 15194.05 19290.09 240
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.38 24386.19 17889.22 22863.09 26890.16 21776.32 15495.80 13593.66 120
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.37 24486.18 18089.21 22963.08 26990.16 21776.31 15595.80 13593.65 122
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23376.30 30679.03 30164.88 27083.11 24089.16 23059.90 28684.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP84.97 12383.42 15389.63 5592.39 9383.40 4888.83 8791.92 11273.19 17680.18 28989.15 23177.04 15793.28 12965.82 26292.28 22992.21 182
MVS_111021_LR84.28 13683.76 15185.83 12289.23 17983.07 5180.99 23983.56 27072.71 18486.07 18189.07 23281.75 11186.19 28877.11 14793.36 20488.24 268
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22666.58 37475.67 32473.15 17788.86 12288.99 23366.94 24381.23 33064.71 27288.22 29791.64 201
EPNet80.37 21078.41 23586.23 11176.75 36273.28 13587.18 11077.45 30976.24 13168.14 37188.93 23465.41 25493.85 10369.47 22696.12 11791.55 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120671.38 30671.88 29869.88 33786.31 24654.37 33370.39 35874.62 32952.57 35576.73 31488.76 23559.94 28572.06 36144.35 38493.23 21083.23 337
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13782.43 28039.76 39785.64 18988.76 23544.71 36987.88 26073.86 18185.88 32684.16 322
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27077.49 28985.07 25160.78 30686.55 16988.68 23743.14 37690.25 21273.69 18590.67 26592.42 169
CNLPA83.55 15683.10 16184.90 13589.34 17683.87 4684.54 15788.77 19179.09 10183.54 23488.66 23874.87 17981.73 32766.84 25192.29 22889.11 257
BH-RMVSNet80.53 20580.22 21281.49 21787.19 22566.21 21477.79 28386.23 23274.21 15783.69 22988.50 23973.25 20590.75 20163.18 28587.90 29987.52 282
CL-MVSNet_self_test76.81 25377.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23381.80 26388.40 24066.92 24480.90 33155.35 33394.90 16693.12 144
DP-MVS Recon84.05 14483.22 15686.52 10591.73 11975.27 12383.23 19292.40 9772.04 19682.04 25688.33 24177.91 14493.95 9966.17 25695.12 15790.34 234
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27564.69 37885.04 25363.98 27483.20 23988.22 24256.67 30878.79 34573.22 19193.12 21292.78 155
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31779.36 29588.21 24360.50 27969.12 37158.33 31577.62 38187.04 287
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24442.87 37775.97 35352.21 35280.95 36983.15 338
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11580.35 8489.54 11688.01 24579.09 13492.13 16175.51 16295.06 15990.41 232
alignmvs83.94 14883.98 14883.80 16387.80 21167.88 20084.54 15791.42 12873.27 17588.41 13387.96 24672.33 21490.83 19976.02 15994.11 19092.69 160
MVP-Stereo75.81 26573.51 28182.71 19589.35 17573.62 13180.06 24785.20 24860.30 31073.96 34187.94 24757.89 30289.45 23852.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 27880.97 27287.93 24862.83 27271.90 36255.24 33495.01 16392.00 190
PAPM_NR83.23 16183.19 15883.33 17890.90 14565.98 21688.19 9790.78 14678.13 11580.87 27687.92 24973.49 19992.42 15270.07 22188.40 29091.60 202
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18378.93 26684.88 25846.67 37787.08 15787.84 25050.44 33771.62 36477.42 14488.53 28990.72 221
LF4IMVS82.75 16781.93 17985.19 13182.08 31180.15 7085.53 13888.76 19268.01 23685.58 19087.75 25171.80 22186.85 27574.02 17893.87 19688.58 266
PHI-MVS86.38 9785.81 11388.08 8288.44 20077.34 10189.35 8093.05 7873.15 17784.76 20587.70 25278.87 13694.18 9080.67 10496.29 10792.73 156
FPMVS72.29 29872.00 29773.14 31588.63 19485.00 3674.65 32667.39 37271.94 19877.80 30987.66 25350.48 33675.83 35449.95 36179.51 37058.58 399
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20281.21 23682.18 28150.78 36876.50 31587.66 25355.20 31882.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26173.50 33684.80 26057.61 33082.24 25287.54 25551.31 33287.65 26270.40 21893.19 21191.23 208
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
CANet83.79 15082.85 16586.63 10286.17 25272.21 15783.76 17791.43 12677.24 12574.39 33987.45 25775.36 17495.42 4977.03 14892.83 21992.25 181
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24178.71 25784.39 28161.15 26981.18 23782.52 27862.45 28483.34 23787.37 25866.20 24788.66 25364.69 27385.02 33686.32 294
thisisatest053079.07 22477.33 24584.26 15487.13 22664.58 22783.66 18075.95 32168.86 22785.22 19587.36 25938.10 38493.57 11975.47 16394.28 18694.62 74
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28790.28 16566.65 25182.40 25087.33 26073.50 19787.35 26677.98 13589.62 27793.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26687.25 26182.43 9394.53 7977.65 13896.46 10194.14 98
eth_miper_zixun_eth80.84 20080.22 21282.71 19581.41 32060.98 27477.81 28290.14 16967.31 24686.95 16187.24 26264.26 25992.31 15775.23 16691.61 24394.85 71
PVSNet_Blended_VisFu81.55 19080.49 20684.70 14291.58 12473.24 13784.21 16191.67 12162.86 27980.94 27487.16 26367.27 24292.87 14469.82 22488.94 28587.99 275
AdaColmapbinary83.66 15283.69 15283.57 17390.05 16472.26 15586.29 12990.00 17278.19 11481.65 26587.16 26383.40 8294.24 8761.69 29694.76 17584.21 321
c3_l81.64 18981.59 18681.79 21380.86 32859.15 29778.61 27390.18 16868.36 23187.20 15187.11 26569.39 23191.62 17478.16 13194.43 18294.60 75
PVSNet_BlendedMVS78.80 23077.84 23981.65 21584.43 27863.41 23879.49 25890.44 15561.70 29375.43 33087.07 26669.11 23491.44 17960.68 30392.24 23090.11 239
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28887.05 26752.83 32563.09 39451.92 35772.44 38979.84 372
TAMVS78.08 23976.36 25483.23 18190.62 15172.87 14079.08 26580.01 29761.72 29281.35 27086.92 26863.96 26388.78 25150.61 35993.01 21588.04 274
BH-untuned80.96 19980.99 19980.84 22888.55 19768.23 19480.33 24688.46 19572.79 18386.55 16986.76 26974.72 18491.77 17361.79 29588.99 28382.52 346
test_yl78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16476.23 30877.59 30852.83 35377.73 31186.38 27256.35 31184.97 30457.72 31987.05 31085.51 304
thres100view90075.45 26775.05 26776.66 29187.27 22251.88 35281.07 23873.26 34375.68 14183.25 23886.37 27345.54 35888.80 24851.98 35490.99 25389.31 253
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21072.29 34369.16 36857.70 32886.76 16386.33 27445.79 35782.59 32269.63 22590.65 26781.54 356
PLCcopyleft73.85 1682.09 18080.31 20887.45 9090.86 14780.29 6985.88 13290.65 14968.17 23576.32 31886.33 27473.12 20692.61 14961.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres600view775.97 26375.35 26577.85 27687.01 23251.84 35380.45 24473.26 34375.20 14883.10 24186.31 27645.54 35889.05 24455.03 33692.24 23092.66 161
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25174.00 33465.93 25478.81 30186.28 27756.36 31081.63 32856.63 32279.04 37687.87 279
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22681.96 28356.76 33769.57 36686.21 27860.03 28484.83 30649.58 36582.65 35885.11 308
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17881.58 28874.73 15285.66 18886.06 27972.56 21392.69 14775.44 16495.21 15289.01 263
hse-mvs283.47 15881.81 18188.47 7591.03 14282.27 5782.61 20783.69 26771.27 20186.70 16586.05 28063.04 27092.41 15378.26 12993.62 20390.71 222
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15655.95 32273.40 33886.17 23350.70 36973.14 34585.94 28158.31 29785.90 29456.51 32383.22 35287.20 286
DPM-MVS80.10 21879.18 22482.88 19390.71 15069.74 17978.87 26990.84 14460.29 31175.64 32985.92 28267.28 24193.11 13571.24 20791.79 23985.77 301
AUN-MVS81.18 19678.78 22888.39 7790.93 14482.14 5882.51 21383.67 26864.69 27180.29 28585.91 28351.07 33392.38 15476.29 15693.63 20290.65 226
Effi-MVS+-dtu85.82 10983.38 15493.14 387.13 22691.15 287.70 10488.42 19674.57 15483.56 23385.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28545.36 36280.85 33255.73 32784.42 345
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14183.91 17285.18 24980.44 8288.75 12585.49 28680.08 12891.92 16782.02 9090.85 26195.97 39
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16663.08 24368.72 36583.16 27242.99 39175.92 32485.46 28757.22 30685.18 30349.87 36381.67 36286.14 296
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15083.82 17485.15 25080.27 8688.75 12585.45 28879.95 13091.90 16881.92 9390.80 26296.13 34
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32187.09 15685.40 28959.80 28867.25 38159.66 30883.54 35085.92 299
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32287.10 15585.39 29059.82 28767.32 38059.79 30783.50 35185.96 297
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29155.42 31780.67 33352.86 35087.59 30484.77 311
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31385.36 29259.26 29170.64 36648.46 37079.35 37281.66 354
miper_ehance_all_eth80.34 21180.04 21781.24 22279.82 33858.95 29977.66 28489.66 17865.75 25985.99 18585.11 29368.29 23891.42 18176.03 15892.03 23493.33 133
cl2278.97 22578.21 23781.24 22277.74 35259.01 29877.46 29087.13 21765.79 25684.32 21585.10 29458.96 29490.88 19875.36 16592.03 23493.84 110
EI-MVSNet82.61 16882.42 17483.20 18383.25 30163.66 23683.50 18385.07 25176.06 13286.55 16985.10 29473.41 20090.25 21278.15 13390.67 26595.68 45
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18379.02 30237.77 40076.33 31785.10 29449.60 34087.41 26570.54 21677.54 38281.08 363
MVSFormer82.23 17581.57 18884.19 15785.54 26469.26 18691.98 3190.08 17071.54 19976.23 31985.07 29758.69 29594.27 8486.26 4088.77 28689.03 261
jason77.42 24675.75 26082.43 20387.10 22969.27 18577.99 27981.94 28451.47 36377.84 30785.07 29760.32 28289.00 24570.74 21389.27 28189.03 261
jason: jason.
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 29953.60 32349.76 40232.68 40289.41 27872.15 384
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26174.51 33151.94 36170.97 35784.75 30045.16 36687.49 26455.16 33579.23 37383.40 333
PAPM71.77 30170.06 31576.92 28686.39 24153.97 33576.62 30286.62 22853.44 35063.97 39084.73 30157.79 30392.34 15639.65 39181.33 36684.45 316
PAPR78.84 22878.10 23881.07 22485.17 26960.22 28482.21 22390.57 15262.51 28175.32 33384.61 30274.99 17892.30 15859.48 30988.04 29890.68 224
tfpn200view974.86 27574.23 27476.74 29086.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25392.66 161
HyFIR lowres test75.12 27172.66 29182.50 20191.44 13265.19 22372.47 34287.31 21246.79 37680.29 28584.30 30552.70 32692.10 16451.88 35886.73 31590.22 235
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19277.07 29484.32 26445.14 38382.89 24484.22 30648.37 34270.36 36773.40 18987.03 31188.52 267
Effi-MVS+83.90 14984.01 14783.57 17387.22 22465.61 22086.55 12592.40 9778.64 10981.34 27184.18 30783.65 7992.93 14174.22 17387.87 30092.17 184
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17888.71 9087.67 20978.42 11282.15 25584.15 30877.98 14291.59 17565.39 26592.75 22082.51 347
DELS-MVS81.44 19281.25 19482.03 20584.27 28462.87 24676.47 30592.49 9670.97 20681.64 26683.83 30975.03 17792.70 14674.29 17292.22 23290.51 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 18988.29 20169.16 22367.83 37483.72 31060.93 27789.47 23669.22 23089.70 27690.88 217
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25271.76 35447.50 37569.92 36483.60 31142.07 37888.40 25548.44 37179.51 37083.01 340
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 11985.60 26076.53 11183.07 19589.62 18173.02 17979.11 29983.51 31280.74 12290.24 21468.76 23789.29 27990.94 215
CDS-MVSNet77.32 24775.40 26383.06 18589.00 18472.48 15177.90 28182.17 28260.81 30578.94 30083.49 31359.30 29088.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG80.06 21979.99 21980.25 23783.91 29068.04 19977.51 28889.19 18677.65 11981.94 25783.45 31476.37 16986.31 28463.31 28486.59 31786.41 293
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26871.37 35761.73 29174.93 33683.42 31560.46 28087.01 26958.11 31782.63 36083.88 323
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28272.80 34883.42 31544.89 36859.52 39748.27 37286.45 31881.70 353
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17466.97 37389.73 17542.68 39388.20 13883.04 31743.77 37160.07 39565.35 26786.66 31690.39 233
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 31846.71 34777.26 34942.29 38669.96 39483.46 331
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 31846.71 34763.21 39242.29 38669.96 39483.46 331
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26069.99 36357.66 32972.53 34982.93 32046.45 34980.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32379.32 29782.92 32157.91 30184.26 31265.60 26491.36 24889.56 248
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2440.00 4090.00 41082.82 32281.46 1130.00 4100.00 4090.00 4080.00 406
lupinMVS76.37 26074.46 27282.09 20485.54 26469.26 18676.79 29780.77 29350.68 37076.23 31982.82 32258.69 29588.94 24669.85 22388.77 28688.07 271
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
bld_raw_dy_0_6481.25 19481.17 19881.49 21785.55 26260.85 27786.36 12795.45 957.08 33490.81 8882.69 32765.85 25293.91 10170.37 21996.34 10589.72 244
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32855.74 31454.82 39947.02 37587.24 30683.52 330
TR-MVS76.77 25475.79 25979.72 24486.10 25565.79 21877.14 29283.02 27465.20 26881.40 26982.10 32966.30 24690.73 20355.57 33085.27 33082.65 341
test_f64.31 35365.85 34359.67 37866.54 40262.24 26057.76 39270.96 35940.13 39584.36 21382.09 33046.93 34651.67 40161.99 29381.89 36165.12 393
testing371.53 30470.79 30673.77 31188.89 18741.86 39376.60 30359.12 39572.83 18180.97 27282.08 33119.80 41187.33 26765.12 26891.68 24292.13 186
Fast-Effi-MVS+81.04 19880.57 20382.46 20287.50 21963.22 24278.37 27689.63 18068.01 23681.87 25982.08 33182.31 9792.65 14867.10 24888.30 29691.51 205
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25375.45 32765.02 26970.26 36281.88 33345.34 36385.68 29858.34 31475.39 38682.08 351
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27568.68 22979.75 29081.80 33450.62 33589.46 23766.85 25085.64 32789.72 244
iter_conf05_1178.40 23777.29 24681.71 21485.55 26260.95 27677.22 29186.90 22660.10 31475.79 32681.73 33564.08 26194.47 8270.37 21993.92 19489.72 244
patchmatchnet-post81.71 33645.93 35587.01 269
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29369.06 37248.57 36981.67 36282.55 344
CLD-MVS83.18 16282.64 16984.79 13889.05 18267.82 20177.93 28092.52 9568.33 23285.07 19781.54 33882.06 10392.96 13969.35 22797.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25373.82 33477.90 30552.44 35675.92 32481.27 33955.67 31581.75 32655.37 33277.70 38074.94 381
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21385.26 3475.92 31370.09 36264.34 27276.09 32281.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21775.79 32266.49 25258.39 40081.06 34153.68 32285.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 19058.05 32683.59 23180.69 34264.41 25891.20 18573.16 19792.03 23492.33 175
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21678.56 30380.57 34546.20 35088.20 25846.99 37689.29 27984.32 318
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19483.03 30768.11 19777.09 29376.51 31960.67 30877.60 31280.52 34638.04 38591.15 18870.78 21190.68 26489.17 256
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32078.03 30480.51 34756.61 30978.84 34462.20 29086.04 32585.23 306
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27770.69 36153.16 35267.88 37380.36 34848.18 34374.75 35758.13 31670.79 39281.08 363
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 30065.36 38950.21 36081.01 36881.25 360
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38266.60 38455.54 33168.81 39880.68 367
BH-w/o76.57 25676.07 25878.10 26986.88 23565.92 21777.63 28586.33 23065.69 26080.89 27579.95 35168.97 23690.74 20253.01 34985.25 33177.62 376
1112_ss74.82 27673.74 27778.04 27189.57 16960.04 28576.49 30487.09 22154.31 34673.66 34479.80 35260.25 28386.76 27858.37 31384.15 34787.32 285
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
EIA-MVS82.19 17781.23 19685.10 13387.95 20869.17 19083.22 19393.33 6270.42 21078.58 30279.77 35477.29 15294.20 8971.51 20588.96 28491.93 193
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32179.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20775.99 31284.21 26643.31 39079.40 29479.39 35643.47 37268.55 37569.05 23384.91 33982.10 350
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25371.89 36338.21 39685.04 33587.69 281
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26551.06 36574.85 33779.10 35855.10 31968.83 37368.86 23679.20 37582.58 343
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27873.68 34044.89 38468.64 36979.00 35945.51 36082.42 32549.91 36270.15 39381.23 362
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24770.38 35977.21 31246.18 38080.46 28478.95 36052.03 32865.53 38865.77 26377.45 38379.95 371
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23261.30 26775.55 31887.12 22061.24 30174.45 33878.79 36177.20 15390.93 19464.62 27584.80 34383.32 335
ETV-MVS84.31 13483.91 15085.52 12788.58 19670.40 17584.50 15993.37 5978.76 10884.07 22478.72 36280.39 12595.13 6073.82 18292.98 21691.04 213
MAR-MVS80.24 21478.74 23084.73 14086.87 23678.18 8885.75 13587.81 20865.67 26177.84 30778.50 36373.79 19490.53 20861.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 23875.14 32190.44 15557.36 33275.43 33078.30 36469.11 23491.44 17960.68 30387.70 30384.42 317
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 21973.98 33183.32 27142.83 39277.77 31078.27 36543.39 37568.50 37668.39 24384.38 34679.15 373
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23470.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32776.08 32377.78 36737.60 38792.12 16365.00 26991.45 24789.35 252
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24570.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23085.92 23946.03 38171.68 35377.54 36968.47 23789.77 23255.70 32985.39 32874.60 382
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28671.18 35677.54 36943.41 37368.47 37740.75 39082.65 35881.35 357
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33164.82 38877.45 37146.02 35288.44 25453.08 34677.83 37888.70 265
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38971.58 36547.41 37462.34 40075.52 380
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21176.69 30080.81 29244.22 38675.43 33077.23 37350.00 33868.59 37466.71 25382.85 35778.52 375
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23061.40 26575.26 32087.13 21761.25 30074.38 34077.22 37476.94 15990.94 19364.63 27484.83 34283.35 334
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19656.95 39342.11 40838.30 39965.69 38177.19 37556.96 30759.35 39846.16 37858.96 40165.93 392
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 25973.94 33276.90 31563.27 27668.63 37076.79 37633.83 39291.84 17159.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28366.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23085.36 24551.68 36273.10 34676.65 37861.45 27585.19 30263.54 28179.21 37482.59 342
cascas76.29 26174.81 26880.72 23184.47 27762.94 24473.89 33387.34 21155.94 33875.16 33576.53 37963.97 26291.16 18765.00 26990.97 25688.06 273
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27369.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23470.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 29968.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 38049.15 40337.39 39772.52 38869.55 388
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33474.77 35645.82 38182.96 35381.60 355
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31244.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31169.52 36773.53 38652.38 32764.40 39144.90 38281.44 36575.76 379
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28665.08 38572.39 38743.41 37369.37 36861.00 30084.89 34081.31 358
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29770.81 35872.36 38961.37 27679.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29770.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17761.16 38581.60 28738.65 39872.87 34769.66 39252.84 32460.04 39656.16 32577.77 37980.68 367
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18663.97 38061.73 39036.80 40160.11 39568.43 39459.42 28966.35 38548.97 36878.57 37760.81 396
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23049.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 30965.62 38267.03 39655.93 31368.23 37832.07 40369.46 39768.17 390
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25058.90 39865.50 39740.48 38166.12 38655.72 32886.25 32262.95 395
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24756.89 40163.33 39840.98 37967.03 38254.79 33786.18 32363.08 394
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32165.91 38735.40 39847.01 40259.25 398
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16355.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3839.21 40721.64 40543.75 4034.57 403
X-MVStestdata85.04 12082.70 16792.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
test_post178.85 2703.13 40545.19 36580.13 33758.11 317
test_post3.10 40645.43 36177.22 350
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
No_MVS88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
eth-test20.00 414
eth-test0.00 414
IU-MVS94.18 4672.64 14490.82 14556.98 33589.67 10885.78 5097.92 4693.28 135
save fliter93.75 5977.44 9986.31 12889.72 17670.80 207
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 189
GSMVS83.88 323
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35183.88 323
sam_mvs45.92 356
MTGPAbinary91.81 119
MTMP90.66 4433.14 410
test9_res80.83 10196.45 10290.57 227
agg_prior279.68 11496.16 11490.22 235
agg_prior91.58 12477.69 9690.30 16284.32 21593.18 132
test_prior478.97 8084.59 154
test_prior86.32 10890.59 15271.99 15992.85 8794.17 9292.80 154
旧先验281.73 22856.88 33686.54 17484.90 30572.81 198
新几何281.72 229
无先验82.81 20485.62 24258.09 32591.41 18267.95 24784.48 315
原ACMM282.26 222
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25473.95 160
test1286.57 10390.74 14872.63 14690.69 14882.76 24679.20 13394.80 6895.32 14892.27 179
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 180
plane_prior593.61 5495.22 5680.78 10295.83 13294.46 80
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11175.94 13895.03 160
n20.00 415
nn0.00 415
door-mid74.45 332
test1191.46 125
door72.57 347
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14873.30 17280.55 281
ACMP_Plane91.19 13684.77 14873.30 17280.55 281
BP-MVS77.30 145
HQP4-MVS80.56 28094.61 7493.56 128
HQP3-MVS92.68 9294.47 180
HQP2-MVS72.10 216
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36449.18 36683.75 328
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134