This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5899.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26489.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10398.80 398.84 5
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8298.76 494.87 68
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13398.76 495.61 48
PS-CasMVS90.06 4391.92 1584.47 15196.56 658.83 31189.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12398.74 699.00 2
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 59
PEN-MVS90.03 4591.88 1884.48 15096.57 558.88 30888.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12998.72 998.97 3
CP-MVSNet89.27 6290.91 4484.37 15296.34 858.61 31488.66 9792.06 11590.78 795.67 895.17 4781.80 11595.54 4479.00 12798.69 1098.95 4
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24084.38 17291.29 13984.88 4492.06 6593.84 10586.45 5893.73 11173.22 20298.66 1197.69 9
NR-MVSNet86.00 10786.22 10785.34 13493.24 7664.56 23682.21 23490.46 16180.99 8288.42 13791.97 16377.56 15593.85 10772.46 21298.65 1297.61 10
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
FC-MVSNet-test85.93 10987.05 9482.58 20692.25 10156.44 33085.75 14693.09 8177.33 13091.94 6894.65 6174.78 18993.41 13075.11 17898.58 1497.88 7
DTE-MVSNet89.98 4791.91 1784.21 16096.51 757.84 31988.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12698.57 1598.80 6
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19983.80 18792.87 9280.37 8789.61 11391.81 17077.72 15394.18 9575.00 17998.53 1696.99 22
Baseline_NR-MVSNet84.00 15385.90 11478.29 27591.47 13453.44 35382.29 23087.00 23379.06 10789.55 11595.72 3277.20 16086.14 29772.30 21398.51 1795.28 56
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4898.48 1897.22 17
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6098.45 1992.41 177
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 170
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11892.86 8667.02 21382.55 22291.56 12983.08 6290.92 8491.82 16978.25 14793.99 10274.16 18498.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11693.24 7667.02 21383.16 20592.21 11081.73 7490.92 8491.97 16377.20 16093.99 10274.16 18498.35 2297.61 10
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12684.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 184
ACMH76.49 1489.34 5991.14 3583.96 16592.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26483.33 7498.30 2593.20 143
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 195
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11498.27 2695.04 65
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 206
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 154
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 144
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 89
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
No_MVS88.81 7191.55 12977.99 9491.01 14796.05 987.45 2398.17 3592.40 179
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10183.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 148
WR-MVS83.56 16384.40 14981.06 23493.43 7054.88 34378.67 28385.02 26381.24 7990.74 9091.56 17772.85 21591.08 19568.00 25598.04 3997.23 16
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8698.04 3993.64 125
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17489.71 10794.82 5685.09 6895.77 3484.17 6998.03 4193.26 141
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11886.27 10682.60 20591.86 11657.31 32385.10 15993.05 8375.83 14691.02 8393.97 9673.57 20392.91 14873.97 19098.02 4297.58 12
Anonymous2023121188.40 7189.62 5984.73 14490.46 15765.27 22988.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 15797.99 4396.88 23
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 106
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 154
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14783.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 242
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 198
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 101
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 185
IU-MVS94.18 5072.64 14790.82 15256.98 34889.67 10985.78 5297.92 4993.28 139
CLD-MVS83.18 17082.64 17884.79 14289.05 18467.82 20777.93 29192.52 10268.33 24485.07 20881.54 35282.06 10892.96 14469.35 23797.91 5193.57 130
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9786.82 10086.17 11892.05 10966.87 21691.21 4388.64 20386.30 3389.60 11492.59 14569.22 24294.91 7173.89 19197.89 5296.72 24
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 140
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 197
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6697.81 5591.70 210
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5897.78 5697.26 15
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15592.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 104
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 157
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 113
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 107
UniMVSNet_ETH3D89.12 6590.72 4784.31 15897.00 264.33 23989.67 7488.38 20688.84 1794.29 2297.57 490.48 1391.26 18972.57 21197.65 6297.34 14
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4597.63 6397.82 8
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 94
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42186.57 5595.80 2887.35 2797.62 6494.20 94
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 160
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 160
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 97
Anonymous2024052180.18 22781.25 20476.95 29483.15 31660.84 28782.46 22585.99 24668.76 23986.78 17093.73 11259.13 29977.44 36173.71 19597.55 6992.56 169
9.1489.29 6291.84 11988.80 9395.32 1275.14 15791.07 8192.89 13687.27 4793.78 11083.69 7397.55 69
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6397.55 6994.10 102
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 93
MIMVSNet183.63 16184.59 14180.74 23894.06 5762.77 25782.72 21684.53 27277.57 12890.34 9395.92 2876.88 17285.83 30561.88 30697.42 7493.62 126
ACMMP++97.35 75
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 191
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18387.86 10694.20 3074.04 16692.70 5694.66 6085.88 6691.50 18179.72 11797.32 7796.50 29
pmmvs686.52 9988.06 7981.90 21692.22 10362.28 26784.66 16589.15 19783.54 5789.85 10497.32 588.08 3886.80 28370.43 22897.30 7896.62 26
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22286.24 4697.24 7991.36 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10979.74 9687.50 15792.38 15281.42 11993.28 13383.07 7897.24 7991.67 211
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9297.18 8190.45 244
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 28079.30 23362.63 38575.56 38575.18 12680.89 25173.10 35675.06 15894.76 1695.32 4187.73 4352.85 41634.16 41597.11 8259.85 412
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19288.51 2190.11 9695.12 4990.98 688.92 25477.55 14797.07 8383.13 353
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 13177.97 14397.03 8495.52 49
test_prior283.37 19775.43 15384.58 21891.57 17681.92 11379.54 12196.97 85
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21581.51 7787.05 16791.83 16866.18 25795.29 5670.75 22396.89 8695.64 46
VDDNet84.35 14085.39 12781.25 22995.13 3259.32 30185.42 15381.11 30086.41 3287.41 15896.21 2273.61 20290.61 21466.33 26696.85 8793.81 117
VPNet80.25 22481.68 19175.94 30892.46 9547.98 38376.70 31181.67 29673.45 17684.87 21492.82 13874.66 19286.51 28861.66 30996.85 8793.33 136
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21381.66 7594.64 1896.53 1765.94 25894.75 7483.02 8096.83 8995.41 51
VPA-MVSNet83.47 16684.73 13679.69 25490.29 16057.52 32281.30 24688.69 20276.29 13787.58 15694.44 7180.60 12987.20 27566.60 26496.82 9094.34 91
Gipumacopyleft84.44 13886.33 10578.78 26484.20 29473.57 13589.55 7790.44 16284.24 4884.38 22394.89 5376.35 17780.40 34776.14 16696.80 9182.36 363
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10380.48 7191.85 12271.22 21490.38 9292.98 13186.06 6496.11 781.99 9596.75 92
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18492.01 11665.91 26786.19 18691.75 17383.77 8294.98 6977.43 15096.71 9393.73 120
KD-MVS_self_test81.93 19683.14 16978.30 27484.75 28352.75 35780.37 25689.42 19570.24 22690.26 9593.39 11974.55 19486.77 28468.61 25096.64 9495.38 52
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14596.62 9590.70 236
TransMVSNet (Re)84.02 15285.74 12078.85 26391.00 14655.20 34282.29 23087.26 22179.65 9888.38 13995.52 3783.00 9086.88 28167.97 25696.60 9694.45 84
ambc82.98 19590.55 15664.86 23388.20 10089.15 19789.40 11893.96 9971.67 23191.38 18878.83 12896.55 9792.71 163
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 18090.32 16865.79 26984.49 22090.97 19481.93 11193.63 11581.21 10096.54 9890.88 230
VDD-MVS84.23 14684.58 14283.20 18991.17 14265.16 23283.25 20184.97 26679.79 9587.18 16094.27 7974.77 19090.89 20369.24 23896.54 9893.55 133
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14078.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 248
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17971.54 20894.28 2496.54 1681.57 11794.27 8986.26 4396.49 10097.09 19
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28087.25 27582.43 9894.53 8477.65 14596.46 10294.14 100
test111178.53 24478.85 23877.56 28792.22 10347.49 38582.61 21869.24 38072.43 19685.28 20494.20 8551.91 33790.07 23165.36 27796.45 10395.11 63
test9_res80.83 10596.45 10390.57 240
Anonymous2024052986.20 10487.13 9183.42 18390.19 16264.55 23784.55 16790.71 15485.85 3689.94 10395.24 4682.13 10790.40 21869.19 24196.40 10595.31 55
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17669.87 22995.06 1596.14 2584.28 7793.07 14187.68 1896.34 10697.09 19
PHI-MVS86.38 10085.81 11788.08 8488.44 20477.34 10589.35 8593.05 8373.15 18784.76 21687.70 26578.87 14294.18 9580.67 10896.29 10792.73 160
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11870.73 21994.19 2596.67 1476.94 16694.57 8183.07 7896.28 10896.15 32
v1086.54 9887.10 9284.84 14088.16 21063.28 25086.64 13092.20 11175.42 15492.81 5394.50 6874.05 19894.06 10183.88 7196.28 10897.17 18
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15591.23 14177.31 13187.07 16691.47 17982.94 9194.71 7584.67 6496.27 11092.62 167
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20789.67 23384.47 7595.46 5082.56 8796.26 11193.77 119
mmtdpeth85.13 12385.78 11983.17 19184.65 28474.71 12785.87 14390.35 16777.94 12183.82 23896.96 1277.75 15180.03 35078.44 13096.21 11294.79 74
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23484.54 4683.58 24493.78 10873.36 21096.48 287.98 1396.21 11294.41 88
114514_t83.10 17382.54 18184.77 14392.90 8369.10 19486.65 12990.62 15854.66 36081.46 28290.81 20476.98 16594.38 8772.62 21096.18 11490.82 232
agg_prior279.68 11896.16 11590.22 248
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18270.81 22096.14 11694.16 98
EPNet80.37 22078.41 24686.23 11376.75 37473.28 13987.18 11677.45 32076.24 13868.14 38588.93 24565.41 26193.85 10769.47 23696.12 11891.55 215
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18696.10 11994.45 84
pm-mvs183.69 15984.95 13479.91 25090.04 16859.66 29882.43 22687.44 21875.52 15287.85 15095.26 4581.25 12185.65 30768.74 24896.04 12194.42 87
test250674.12 29273.39 29276.28 30591.85 11744.20 39984.06 17748.20 42072.30 20281.90 27194.20 8527.22 42089.77 23964.81 28296.02 12294.87 68
ECVR-MVScopyleft78.44 24578.63 24277.88 28391.85 11748.95 37983.68 19069.91 37672.30 20284.26 23294.20 8551.89 33889.82 23663.58 29296.02 12294.87 68
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15770.00 22894.55 1996.67 1487.94 3993.59 12084.27 6895.97 12495.52 49
EGC-MVSNET74.79 28769.99 32989.19 6594.89 3887.00 1591.89 3786.28 2381.09 4222.23 42495.98 2781.87 11489.48 24279.76 11695.96 12591.10 223
MVS_030485.37 11784.58 14287.75 8885.28 27373.36 13686.54 13385.71 24977.56 12981.78 27892.47 15070.29 23696.02 1185.59 5395.96 12593.87 111
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19692.38 10670.25 22589.35 11990.68 20882.85 9294.57 8179.55 12095.95 12792.00 199
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 173
PC_three_145258.96 33190.06 9791.33 18280.66 12893.03 14375.78 16995.94 12892.48 173
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17369.27 23294.39 2096.38 1886.02 6593.52 12483.96 7095.92 13095.34 53
ANet_high83.17 17185.68 12175.65 31081.24 33345.26 39679.94 26192.91 9183.83 5191.33 7696.88 1380.25 13285.92 30068.89 24595.89 13195.76 42
tt080588.09 7789.79 5582.98 19593.26 7563.94 24391.10 4589.64 18985.07 4190.91 8691.09 19089.16 2491.87 17582.03 9395.87 13293.13 146
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6195.87 13295.24 58
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10695.83 13494.46 82
plane_prior593.61 5995.22 5980.78 10695.83 13494.46 82
cl____80.42 21880.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.37 25686.18 18889.21 24063.08 27690.16 22476.31 16395.80 13693.65 124
DIV-MVS_self_test80.43 21780.23 22081.02 23579.99 34759.25 30277.07 30687.02 23067.38 25586.19 18689.22 23963.09 27590.16 22476.32 16295.80 13693.66 122
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11770.56 22084.96 21190.69 20780.01 13595.14 6478.37 13295.78 13891.82 204
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 22880.56 21478.89 26289.19 18355.93 33285.22 15673.78 34982.96 6384.28 23092.72 14357.38 31190.07 23163.80 29195.75 13990.68 237
ACMMP++_ref95.74 140
原ACMM184.60 14792.81 8974.01 13291.50 13162.59 29382.73 26090.67 21076.53 17394.25 9169.24 23895.69 14185.55 316
tfpnnormal81.79 19982.95 17278.31 27388.93 18955.40 33880.83 25382.85 28676.81 13485.90 19494.14 8974.58 19386.51 28866.82 26295.68 14293.01 152
mvs5depth83.82 15784.54 14481.68 22382.23 32168.65 19786.89 12189.90 18380.02 9487.74 15297.86 264.19 26782.02 33576.37 16195.63 14394.35 90
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23385.80 19589.56 23480.76 12692.13 16673.21 20795.51 14493.25 142
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10495.50 14594.53 81
v886.22 10386.83 9984.36 15487.82 21762.35 26686.42 13491.33 13876.78 13592.73 5594.48 7073.41 20793.72 11283.10 7795.41 14697.01 21
Vis-MVSNet (Re-imp)77.82 25077.79 25177.92 28288.82 19151.29 37083.28 19971.97 36474.04 16682.23 26689.78 23157.38 31189.41 24857.22 33395.41 14693.05 150
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 18195.35 14892.29 185
FMVSNet184.55 13685.45 12581.85 21890.27 16161.05 28286.83 12488.27 21078.57 11589.66 11095.64 3475.43 18090.68 21169.09 24295.33 14993.82 114
test1286.57 10590.74 15172.63 14990.69 15582.76 25979.20 13994.80 7395.32 15092.27 187
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14578.77 11284.85 21590.89 19980.85 12595.29 5681.14 10195.32 15092.34 182
Patchmtry76.56 26777.46 25273.83 32279.37 35646.60 38982.41 22776.90 32673.81 16985.56 20092.38 15248.07 35383.98 32463.36 29595.31 15290.92 228
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7295.30 15393.60 128
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18981.58 29874.73 16085.66 19686.06 29472.56 22092.69 15275.44 17495.21 15489.01 275
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17889.44 19488.63 2094.38 2195.77 2986.38 6193.59 12079.84 11595.21 15491.82 204
TinyColmap81.25 20582.34 18477.99 28185.33 27260.68 28982.32 22988.33 20871.26 21386.97 16892.22 16177.10 16386.98 27962.37 30095.17 15686.31 308
Anonymous20240521180.51 21681.19 20778.49 27088.48 20257.26 32476.63 31382.49 28981.21 8084.30 22992.24 16067.99 24886.24 29262.22 30195.13 15791.98 201
tttt051781.07 20779.58 23085.52 13188.99 18766.45 22087.03 11975.51 33773.76 17088.32 14190.20 22137.96 39894.16 9979.36 12495.13 15795.93 41
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20392.40 10472.04 20582.04 26988.33 25377.91 15093.95 10466.17 26795.12 15990.34 247
PCF-MVS74.62 1582.15 19080.92 21085.84 12589.43 17772.30 15780.53 25491.82 12457.36 34487.81 15189.92 22977.67 15493.63 11558.69 32495.08 16091.58 214
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 10186.47 10385.60 13090.87 14974.26 13187.98 10491.85 12280.35 8889.54 11788.01 25779.09 14092.13 16675.51 17295.06 16190.41 245
SDMVSNet81.90 19883.17 16878.10 27888.81 19262.45 26376.08 32486.05 24473.67 17183.41 24793.04 12782.35 10080.65 34470.06 23295.03 16291.21 220
sd_testset79.95 23281.39 20275.64 31188.81 19258.07 31676.16 32382.81 28773.67 17183.41 24793.04 12780.96 12477.65 36058.62 32595.03 16291.21 220
plane_prior76.42 11687.15 11775.94 14595.03 162
new-patchmatchnet70.10 32873.37 29360.29 39281.23 33416.95 42759.54 40374.62 34062.93 29180.97 28687.93 26062.83 27971.90 37655.24 34795.01 16592.00 199
v119284.57 13584.69 14084.21 16087.75 21962.88 25483.02 20891.43 13369.08 23589.98 10290.89 19972.70 21893.62 11882.41 8994.97 16696.13 33
v192192084.23 14684.37 15083.79 16987.64 22461.71 27382.91 21291.20 14267.94 25190.06 9790.34 21772.04 22793.59 12082.32 9094.91 16796.07 35
CL-MVSNet_self_test76.81 26277.38 25475.12 31486.90 24251.34 36873.20 35280.63 30568.30 24581.80 27688.40 25266.92 25380.90 34155.35 34694.90 16893.12 148
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22689.33 23883.87 7994.53 8482.45 8894.89 16994.90 66
v14419284.24 14584.41 14883.71 17387.59 22561.57 27482.95 21191.03 14667.82 25489.80 10590.49 21473.28 21193.51 12581.88 9894.89 16996.04 37
LCM-MVSNet-Re83.48 16585.06 13178.75 26585.94 26555.75 33680.05 25994.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 31994.89 16990.75 233
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15487.09 23865.22 23084.16 17494.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11194.87 17295.16 62
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12184.26 4790.87 8993.92 10382.18 10689.29 25073.75 19494.81 17393.70 121
v124084.30 14284.51 14683.65 17487.65 22361.26 27982.85 21491.54 13067.94 25190.68 9190.65 21171.71 23093.64 11482.84 8394.78 17496.07 35
MSLP-MVS++85.00 12886.03 11181.90 21691.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23677.98 14889.40 24977.46 14894.78 17484.75 325
IterMVS-LS84.73 13284.98 13383.96 16587.35 22963.66 24483.25 20189.88 18476.06 13989.62 11192.37 15573.40 20992.52 15578.16 13894.77 17695.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 16083.69 16083.57 17990.05 16772.26 15886.29 13690.00 18178.19 11981.65 27987.16 27783.40 8794.24 9261.69 30894.76 17784.21 335
BP-MVS182.81 17581.67 19286.23 11387.88 21668.53 19886.06 14084.36 27375.65 14985.14 20690.19 22245.84 36694.42 8685.18 5794.72 17895.75 43
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17181.56 7690.02 9991.20 18782.40 9990.81 20773.58 19794.66 17994.56 78
v114484.54 13784.72 13884.00 16387.67 22262.55 26182.97 21090.93 15070.32 22489.80 10590.99 19373.50 20493.48 12681.69 9994.65 18095.97 38
test20.0373.75 29674.59 28171.22 34381.11 33551.12 37270.15 37372.10 36370.42 22180.28 30091.50 17864.21 26674.72 37246.96 39194.58 18187.82 293
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14367.85 25386.63 17694.84 5579.58 13895.96 1587.62 1994.50 18294.56 78
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 16092.68 9873.30 18280.55 29490.17 22572.10 22494.61 7977.30 15294.47 18393.56 131
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26578.30 8986.93 12092.20 11165.94 26589.16 12193.16 12483.10 8989.89 23587.81 1594.43 18593.35 135
c3_l81.64 20081.59 19681.79 22280.86 33959.15 30578.61 28490.18 17768.36 24387.20 15987.11 27969.39 24091.62 17978.16 13894.43 18594.60 77
MCST-MVS84.36 13983.93 15785.63 12991.59 12471.58 16883.52 19392.13 11361.82 30283.96 23689.75 23279.93 13793.46 12778.33 13494.34 18791.87 203
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27478.25 9085.82 14591.82 12465.33 27988.55 13292.35 15682.62 9689.80 23786.87 3594.32 18893.18 145
thisisatest053079.07 23577.33 25584.26 15987.13 23464.58 23583.66 19175.95 33268.86 23885.22 20587.36 27338.10 39593.57 12375.47 17394.28 18994.62 76
baseline85.20 12185.93 11383.02 19386.30 25562.37 26584.55 16793.96 4474.48 16387.12 16192.03 16282.30 10391.94 17178.39 13194.21 19094.74 75
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28278.21 9185.40 15491.39 13665.32 28087.72 15391.81 17082.33 10189.78 23886.68 3794.20 19192.99 153
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17984.98 26571.27 21186.70 17390.55 21363.04 27793.92 10578.26 13694.20 19189.63 259
MVSMamba_PlusPlus87.53 8688.86 7183.54 18192.03 11062.26 26891.49 4092.62 10088.07 2488.07 14596.17 2372.24 22395.79 3184.85 6294.16 19392.58 168
balanced_conf0384.80 13085.40 12683.00 19488.95 18861.44 27590.42 5892.37 10771.48 21088.72 12993.13 12570.16 23895.15 6379.26 12594.11 19492.41 177
alignmvs83.94 15583.98 15683.80 16887.80 21867.88 20684.54 16991.42 13573.27 18588.41 13887.96 25872.33 22190.83 20676.02 16894.11 19492.69 164
USDC76.63 26576.73 26276.34 30483.46 30557.20 32580.02 26088.04 21452.14 37583.65 24291.25 18463.24 27386.65 28654.66 35194.11 19485.17 320
MVS_111021_HR84.63 13384.34 15185.49 13390.18 16375.86 12379.23 27587.13 22573.35 17985.56 20089.34 23783.60 8590.50 21676.64 15894.05 19790.09 254
VNet79.31 23480.27 21976.44 30287.92 21553.95 34975.58 33084.35 27474.39 16482.23 26690.72 20672.84 21684.39 31960.38 31793.98 19890.97 226
FMVSNet281.31 20481.61 19580.41 24486.38 25058.75 31283.93 18286.58 23672.43 19687.65 15492.98 13163.78 27090.22 22266.86 25993.92 19992.27 187
MGCFI-Net85.04 12585.95 11282.31 21287.52 22663.59 24686.23 13893.96 4473.46 17588.07 14587.83 26386.46 5790.87 20576.17 16593.89 20092.47 175
GDP-MVS82.17 18880.85 21286.15 12088.65 19768.95 19585.65 14993.02 8768.42 24283.73 24089.54 23545.07 37794.31 8879.66 11993.87 20195.19 61
LF4IMVS82.75 17781.93 18885.19 13582.08 32280.15 7485.53 15088.76 20168.01 24885.58 19987.75 26471.80 22986.85 28274.02 18993.87 20188.58 278
sasdasda85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
canonicalmvs85.50 11386.14 10983.58 17787.97 21267.13 21087.55 10994.32 2173.44 17788.47 13587.54 26886.45 5891.06 19675.76 17093.76 20392.54 171
v2v48284.09 14984.24 15283.62 17587.13 23461.40 27682.71 21789.71 18772.19 20489.55 11591.41 18070.70 23593.20 13581.02 10293.76 20396.25 31
casdiffmvspermissive85.21 12085.85 11683.31 18686.17 26062.77 25783.03 20793.93 4674.69 16188.21 14292.68 14482.29 10491.89 17477.87 14493.75 20695.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet82.78 17681.64 19386.21 11686.20 25976.24 12086.86 12285.68 25077.07 13373.76 35792.82 13869.64 23991.82 17769.04 24493.69 20790.56 241
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 11171.77 16381.78 29591.84 16773.92 19993.65 20883.61 343
AUN-MVS81.18 20678.78 23988.39 7990.93 14782.14 6282.51 22483.67 27964.69 28480.29 29885.91 29851.07 34192.38 15976.29 16493.63 20990.65 239
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21883.69 27871.27 21186.70 17386.05 29563.04 27792.41 15878.26 13693.62 21090.71 235
MVS_111021_LR84.28 14383.76 15985.83 12689.23 18283.07 5580.99 25083.56 28072.71 19486.07 18989.07 24381.75 11686.19 29577.11 15493.36 21188.24 281
GBi-Net82.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
test182.02 19382.07 18581.85 21886.38 25061.05 28286.83 12488.27 21072.43 19686.00 19095.64 3463.78 27090.68 21165.95 26993.34 21293.82 114
FMVSNet378.80 24078.55 24379.57 25682.89 31956.89 32881.76 23885.77 24869.04 23686.00 19090.44 21551.75 33990.09 23065.95 26993.34 21291.72 208
test_fmvsmvis_n_192085.22 11985.36 12884.81 14185.80 26776.13 12285.15 15892.32 10861.40 30991.33 7690.85 20283.76 8386.16 29684.31 6793.28 21592.15 193
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15276.68 32984.06 5092.44 6096.99 1062.03 28094.65 7780.58 10993.24 21694.83 73
Anonymous2023120671.38 31871.88 30969.88 35086.31 25454.37 34570.39 37174.62 34052.57 37176.73 32988.76 24659.94 29272.06 37544.35 39893.23 21783.23 351
D2MVS76.84 26175.67 27280.34 24580.48 34562.16 27173.50 34984.80 27057.61 34282.24 26587.54 26851.31 34087.65 26970.40 22993.19 21891.23 219
miper_lstm_enhance76.45 26976.10 26777.51 28876.72 37560.97 28664.69 39385.04 26263.98 28783.20 25188.22 25456.67 31578.79 35773.22 20293.12 21992.78 159
新几何182.95 19793.96 5978.56 8880.24 30655.45 35483.93 23791.08 19171.19 23288.33 26365.84 27293.07 22081.95 367
lessismore_v085.95 12191.10 14470.99 17470.91 37291.79 6994.42 7461.76 28192.93 14679.52 12293.03 22193.93 107
TAMVS78.08 24876.36 26483.23 18890.62 15472.87 14379.08 27680.01 30861.72 30581.35 28486.92 28263.96 26988.78 25850.61 37293.01 22288.04 287
ETV-MVS84.31 14183.91 15885.52 13188.58 20070.40 17884.50 17193.37 6478.76 11384.07 23478.72 37680.39 13095.13 6573.82 19392.98 22391.04 224
EPNet_dtu72.87 30471.33 31677.49 28977.72 36560.55 29082.35 22875.79 33366.49 26458.39 41581.06 35553.68 33085.98 29853.55 35792.97 22485.95 311
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23491.15 387.70 10888.42 20574.57 16283.56 24585.65 29978.49 14594.21 9372.04 21492.88 22594.05 103
CANet83.79 15882.85 17486.63 10486.17 26072.21 16083.76 18891.43 13377.24 13274.39 35387.45 27175.36 18195.42 5277.03 15592.83 22692.25 189
API-MVS82.28 18482.61 17981.30 22886.29 25669.79 18188.71 9587.67 21778.42 11782.15 26884.15 32477.98 14891.59 18065.39 27692.75 22782.51 362
test_yl78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
DCV-MVSNet78.71 24278.51 24479.32 25984.32 29158.84 30978.38 28585.33 25575.99 14282.49 26186.57 28558.01 30590.02 23362.74 29892.73 22889.10 270
testgi72.36 30774.61 27965.59 37680.56 34442.82 40468.29 37973.35 35366.87 26181.84 27389.93 22872.08 22666.92 39846.05 39492.54 23087.01 301
FMVSNet572.10 31071.69 31073.32 32581.57 32953.02 35676.77 31078.37 31563.31 28876.37 33191.85 16636.68 40078.98 35447.87 38792.45 23187.95 289
CDS-MVSNet77.32 25675.40 27383.06 19289.00 18672.48 15477.90 29282.17 29260.81 31878.94 31383.49 32959.30 29788.76 25954.64 35292.37 23287.93 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 23779.39 23277.41 29084.78 28168.11 20375.60 32883.11 28360.96 31779.36 30889.89 23075.18 18372.97 37373.32 20192.30 23391.15 222
dcpmvs_284.23 14685.14 13081.50 22688.61 19961.98 27282.90 21393.11 7968.66 24192.77 5492.39 15178.50 14487.63 27076.99 15692.30 23394.90 66
CNLPA83.55 16483.10 17084.90 13989.34 17983.87 5084.54 16988.77 20079.09 10683.54 24688.66 25074.87 18681.73 33766.84 26192.29 23589.11 269
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 12073.19 18680.18 30289.15 24277.04 16493.28 13365.82 27392.28 23692.21 190
thres600view775.97 27375.35 27577.85 28587.01 24051.84 36680.45 25573.26 35475.20 15683.10 25386.31 29145.54 36889.05 25155.03 34992.24 23792.66 165
PVSNet_BlendedMVS78.80 24077.84 25081.65 22484.43 28763.41 24779.49 26990.44 16261.70 30675.43 34487.07 28069.11 24391.44 18460.68 31592.24 23790.11 253
DELS-MVS81.44 20381.25 20482.03 21484.27 29362.87 25576.47 31892.49 10370.97 21781.64 28083.83 32575.03 18492.70 15174.29 18292.22 23990.51 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 25792.87 8472.34 15680.14 30759.91 32785.47 20291.75 17367.96 24985.24 30968.57 25292.18 24081.06 380
SSC-MVS77.55 25381.64 19365.29 37990.46 15720.33 42573.56 34868.28 38285.44 3788.18 14494.64 6470.93 23381.33 33971.25 21792.03 24194.20 94
cl2278.97 23678.21 24881.24 23177.74 36459.01 30677.46 30287.13 22565.79 26984.32 22685.10 31058.96 30190.88 20475.36 17592.03 24193.84 112
miper_ehance_all_eth80.34 22180.04 22781.24 23179.82 35058.95 30777.66 29589.66 18865.75 27285.99 19385.11 30968.29 24791.42 18676.03 16792.03 24193.33 136
miper_enhance_ethall77.83 24976.93 25980.51 24276.15 38158.01 31875.47 33288.82 19958.05 33883.59 24380.69 35664.41 26491.20 19073.16 20892.03 24192.33 183
GeoE85.45 11685.81 11784.37 15290.08 16467.07 21285.86 14491.39 13672.33 20187.59 15590.25 22084.85 7192.37 16078.00 14191.94 24593.66 122
DPM-MVS80.10 22979.18 23482.88 20190.71 15369.74 18278.87 28090.84 15160.29 32475.64 34385.92 29767.28 25093.11 13971.24 21891.79 24685.77 314
v14882.31 18382.48 18281.81 22185.59 26959.66 29881.47 24386.02 24572.85 19088.05 14790.65 21170.73 23490.91 20275.15 17791.79 24694.87 68
test22293.31 7376.54 11379.38 27077.79 31752.59 37082.36 26490.84 20366.83 25491.69 24881.25 375
testing371.53 31670.79 31773.77 32388.89 19041.86 40676.60 31659.12 41072.83 19180.97 28682.08 34619.80 42687.33 27465.12 27991.68 24992.13 194
eth_miper_zixun_eth80.84 21080.22 22282.71 20381.41 33160.98 28577.81 29390.14 17867.31 25886.95 16987.24 27664.26 26592.31 16275.23 17691.61 25094.85 72
pmmvs-eth3d78.42 24677.04 25882.57 20887.44 22874.41 13080.86 25279.67 30955.68 35384.69 21790.31 21960.91 28585.42 30862.20 30291.59 25187.88 291
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11478.87 11084.27 23194.05 9278.35 14693.65 11380.54 11091.58 25292.08 195
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FE-MVS79.98 23178.86 23783.36 18486.47 24766.45 22089.73 7084.74 27172.80 19284.22 23391.38 18144.95 37893.60 11963.93 28991.50 25390.04 255
thisisatest051573.00 30370.52 32180.46 24381.45 33059.90 29673.16 35374.31 34457.86 33976.08 33877.78 38137.60 39992.12 16865.00 28091.45 25489.35 264
ppachtmachnet_test74.73 28874.00 28676.90 29680.71 34256.89 32871.53 36378.42 31458.24 33579.32 31082.92 33757.91 30884.26 32165.60 27591.36 25589.56 260
FA-MVS(test-final)83.13 17283.02 17183.43 18286.16 26266.08 22388.00 10388.36 20775.55 15185.02 20992.75 14265.12 26292.50 15674.94 18091.30 25691.72 208
OpenMVScopyleft76.72 1381.98 19582.00 18781.93 21584.42 28968.22 20188.50 9989.48 19366.92 26081.80 27691.86 16572.59 21990.16 22471.19 21991.25 25787.40 297
EG-PatchMatch MVS84.08 15084.11 15383.98 16492.22 10372.61 15082.20 23687.02 23072.63 19588.86 12491.02 19278.52 14391.11 19473.41 19991.09 25888.21 282
3Dnovator80.37 784.80 13084.71 13985.06 13886.36 25374.71 12788.77 9490.00 18175.65 14984.96 21193.17 12374.06 19791.19 19178.28 13591.09 25889.29 267
thres100view90075.45 27775.05 27776.66 30087.27 23051.88 36581.07 24973.26 35475.68 14883.25 25086.37 28845.54 36888.80 25551.98 36790.99 26089.31 265
tfpn200view974.86 28574.23 28476.74 29986.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26089.31 265
thres40075.14 27974.23 28477.86 28486.24 25752.12 36279.24 27373.87 34773.34 18081.82 27484.60 31946.02 36188.80 25551.98 36790.99 26092.66 165
cascas76.29 27174.81 27880.72 24084.47 28662.94 25373.89 34687.34 21955.94 35175.16 34976.53 39363.97 26891.16 19265.00 28090.97 26388.06 286
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26492.98 154
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WBMVS68.76 34368.43 34369.75 35283.29 31040.30 40967.36 38572.21 36257.09 34777.05 32885.53 30133.68 40580.51 34548.79 38290.90 26588.45 280
ab-mvs79.67 23380.56 21476.99 29388.48 20256.93 32684.70 16486.06 24368.95 23780.78 29193.08 12675.30 18284.62 31556.78 33490.90 26589.43 263
test_fmvsm_n_192083.60 16282.89 17385.74 12785.22 27577.74 9984.12 17690.48 16059.87 32886.45 18591.12 18975.65 17885.89 30382.28 9190.87 26793.58 129
MAR-MVS80.24 22578.74 24184.73 14486.87 24478.18 9285.75 14687.81 21665.67 27477.84 32178.50 37773.79 20190.53 21561.59 31090.87 26785.49 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29672.76 14483.91 18385.18 25880.44 8688.75 12785.49 30280.08 13491.92 17282.02 9490.85 26995.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 30072.52 15383.82 18585.15 25980.27 9088.75 12785.45 30479.95 13691.90 17381.92 9790.80 27096.13 33
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 20084.60 6590.75 27193.97 105
ET-MVSNet_ETH3D75.28 27872.77 30082.81 20283.03 31868.11 20377.09 30576.51 33060.67 32177.60 32680.52 36038.04 39691.15 19370.78 22290.68 27289.17 268
EI-MVSNet82.61 17882.42 18383.20 18983.25 31263.66 24483.50 19485.07 26076.06 13986.55 17785.10 31073.41 20790.25 21978.15 14090.67 27395.68 45
MVSTER77.09 25875.70 27181.25 22975.27 38961.08 28177.49 30185.07 26060.78 31986.55 17788.68 24843.14 38790.25 21973.69 19690.67 27392.42 176
reproduce_monomvs74.09 29373.23 29476.65 30176.52 37654.54 34477.50 30081.40 29965.85 26882.86 25886.67 28427.38 41884.53 31670.24 23090.66 27590.89 229
Patchmatch-RL test74.48 28973.68 28876.89 29784.83 28066.54 21872.29 35669.16 38157.70 34086.76 17186.33 28945.79 36782.59 33169.63 23590.65 27681.54 371
CMPMVSbinary59.41 2075.12 28173.57 28979.77 25175.84 38467.22 20981.21 24782.18 29150.78 38476.50 33087.66 26655.20 32582.99 33062.17 30490.64 27789.09 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.06 27280.01 22864.19 38289.96 17020.58 42472.18 35768.19 38383.21 5986.46 18493.49 11770.19 23778.97 35565.96 26890.46 27893.02 151
fmvsm_l_conf0.5_n82.06 19281.54 19983.60 17683.94 29773.90 13383.35 19886.10 24158.97 33083.80 23990.36 21674.23 19586.94 28082.90 8190.22 27989.94 256
V4283.47 16683.37 16483.75 17183.16 31563.33 24981.31 24490.23 17569.51 23190.91 8690.81 20474.16 19692.29 16480.06 11290.22 27995.62 47
PM-MVS80.20 22679.00 23583.78 17088.17 20986.66 1981.31 24466.81 39169.64 23088.33 14090.19 22264.58 26383.63 32771.99 21590.03 28181.06 380
PLCcopyleft73.85 1682.09 19180.31 21887.45 9290.86 15080.29 7385.88 14290.65 15668.17 24776.32 33386.33 28973.12 21392.61 15461.40 31190.02 28289.44 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n_a81.46 20280.87 21183.25 18783.73 30273.21 14283.00 20985.59 25258.22 33682.96 25590.09 22772.30 22286.65 28681.97 9689.95 28389.88 257
ttmdpeth71.72 31370.67 31874.86 31673.08 40255.88 33377.41 30369.27 37955.86 35278.66 31593.77 11038.01 39775.39 36960.12 31889.87 28493.31 138
UWE-MVS66.43 35665.56 36169.05 35784.15 29540.98 40773.06 35464.71 39754.84 35876.18 33679.62 36929.21 41380.50 34638.54 41089.75 28585.66 315
CANet_DTU77.81 25177.05 25780.09 24981.37 33259.90 29683.26 20088.29 20969.16 23467.83 38883.72 32660.93 28489.47 24369.22 24089.70 28690.88 230
diffmvspermissive80.40 21980.48 21780.17 24879.02 36060.04 29377.54 29890.28 17466.65 26382.40 26387.33 27473.50 20487.35 27377.98 14289.62 28793.13 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVStest170.05 33069.26 33372.41 33758.62 42455.59 33776.61 31565.58 39353.44 36589.28 12093.32 12022.91 42471.44 38074.08 18889.52 28890.21 252
PMMVS255.64 38459.27 38344.74 40064.30 42212.32 42840.60 41549.79 41953.19 36765.06 40284.81 31553.60 33149.76 41832.68 41789.41 28972.15 399
Fast-Effi-MVS+-dtu82.54 18181.41 20185.90 12385.60 26876.53 11583.07 20689.62 19173.02 18979.11 31283.51 32880.74 12790.24 22168.76 24789.29 29090.94 227
thres20072.34 30871.55 31474.70 31983.48 30451.60 36775.02 33573.71 35070.14 22778.56 31780.57 35946.20 35988.20 26546.99 39089.29 29084.32 331
jason77.42 25575.75 27082.43 21187.10 23769.27 18877.99 29081.94 29451.47 37977.84 32185.07 31360.32 28989.00 25270.74 22489.27 29289.03 273
jason: jason.
MG-MVS80.32 22280.94 20978.47 27188.18 20852.62 36082.29 23085.01 26472.01 20679.24 31192.54 14869.36 24193.36 13270.65 22589.19 29389.45 261
BH-untuned80.96 20980.99 20880.84 23788.55 20168.23 20080.33 25788.46 20472.79 19386.55 17786.76 28374.72 19191.77 17861.79 30788.99 29482.52 361
EIA-MVS82.19 18781.23 20685.10 13787.95 21469.17 19383.22 20493.33 6770.42 22178.58 31679.77 36877.29 15994.20 9471.51 21688.96 29591.93 202
PVSNet_Blended_VisFu81.55 20180.49 21684.70 14691.58 12773.24 14184.21 17391.67 12862.86 29280.94 28887.16 27767.27 25192.87 14969.82 23488.94 29687.99 288
MVSFormer82.23 18581.57 19884.19 16285.54 27069.26 18991.98 3490.08 17971.54 20876.23 33485.07 31358.69 30294.27 8986.26 4388.77 29789.03 273
lupinMVS76.37 27074.46 28282.09 21385.54 27069.26 18976.79 30980.77 30450.68 38676.23 33482.82 33858.69 30288.94 25369.85 23388.77 29788.07 284
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14479.26 10489.68 10894.81 5982.44 9787.74 26876.54 15988.74 29996.61 27
test_fmvs375.72 27675.20 27677.27 29175.01 39269.47 18678.93 27784.88 26746.67 39387.08 16587.84 26250.44 34671.62 37877.42 15188.53 30090.72 234
RRT-MVS82.97 17483.44 16181.57 22585.06 27758.04 31787.20 11490.37 16577.88 12388.59 13193.70 11363.17 27493.05 14276.49 16088.47 30193.62 126
PAPM_NR83.23 16983.19 16783.33 18590.90 14865.98 22488.19 10190.78 15378.13 12080.87 29087.92 26173.49 20692.42 15770.07 23188.40 30291.60 213
testing22266.93 35065.30 36271.81 34083.38 30745.83 39372.06 35867.50 38464.12 28669.68 37976.37 39427.34 41983.00 32938.88 40788.38 30386.62 305
xiu_mvs_v1_base_debu80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
xiu_mvs_v1_base_debi80.84 21080.14 22482.93 19888.31 20571.73 16479.53 26687.17 22265.43 27579.59 30482.73 34076.94 16690.14 22773.22 20288.33 30486.90 302
XXY-MVS74.44 29176.19 26669.21 35684.61 28552.43 36171.70 36077.18 32460.73 32080.60 29290.96 19675.44 17969.35 38556.13 33988.33 30485.86 313
Fast-Effi-MVS+81.04 20880.57 21382.46 21087.50 22763.22 25178.37 28789.63 19068.01 24881.87 27282.08 34682.31 10292.65 15367.10 25888.30 30891.51 216
MDA-MVSNet-bldmvs77.47 25476.90 26079.16 26179.03 35964.59 23466.58 38975.67 33573.15 18788.86 12488.99 24466.94 25281.23 34064.71 28388.22 30991.64 212
PAPR78.84 23978.10 24981.07 23385.17 27660.22 29282.21 23490.57 15962.51 29475.32 34784.61 31874.99 18592.30 16359.48 32288.04 31090.68 237
mvsmamba80.30 22378.87 23684.58 14888.12 21167.55 20892.35 2984.88 26763.15 29085.33 20390.91 19850.71 34395.20 6266.36 26587.98 31190.99 225
BH-RMVSNet80.53 21580.22 22281.49 22787.19 23366.21 22277.79 29486.23 23974.21 16583.69 24188.50 25173.25 21290.75 20863.18 29787.90 31287.52 295
Effi-MVS+83.90 15684.01 15583.57 17987.22 23265.61 22886.55 13292.40 10478.64 11481.34 28584.18 32383.65 8492.93 14674.22 18387.87 31392.17 192
MVS_Test82.47 18283.22 16580.22 24782.62 32057.75 32182.54 22391.96 11971.16 21582.89 25692.52 14977.41 15790.50 21680.04 11387.84 31492.40 179
QAPM82.59 17982.59 18082.58 20686.44 24866.69 21789.94 6790.36 16667.97 25084.94 21392.58 14772.71 21792.18 16570.63 22687.73 31588.85 276
PVSNet_Blended76.49 26875.40 27379.76 25284.43 28763.41 24775.14 33490.44 16257.36 34475.43 34478.30 37869.11 24391.44 18460.68 31587.70 31684.42 330
pmmvs570.73 32370.07 32672.72 33177.03 37252.73 35874.14 34175.65 33650.36 38872.17 36585.37 30755.42 32480.67 34352.86 36387.59 31784.77 324
IB-MVS62.13 1971.64 31468.97 33979.66 25580.80 34162.26 26873.94 34576.90 32663.27 28968.63 38476.79 39033.83 40491.84 17659.28 32387.26 31884.88 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 32668.80 34174.38 32080.91 33784.81 4359.12 40576.45 33155.06 35675.31 34882.36 34355.74 32154.82 41547.02 38987.24 31983.52 344
fmvsm_s_conf0.1_n82.17 18881.59 19683.94 16786.87 24471.57 16985.19 15777.42 32162.27 30184.47 22291.33 18276.43 17485.91 30183.14 7587.14 32094.33 92
fmvsm_s_conf0.5_n81.91 19781.30 20383.75 17186.02 26471.56 17084.73 16377.11 32562.44 29884.00 23590.68 20876.42 17585.89 30383.14 7587.11 32193.81 117
fmvsm_s_conf0.1_n_a82.58 18081.93 18884.50 14987.68 22173.35 13786.14 13977.70 31861.64 30785.02 20991.62 17577.75 15186.24 29282.79 8487.07 32293.91 109
pmmvs474.92 28472.98 29880.73 23984.95 27871.71 16776.23 32177.59 31952.83 36977.73 32586.38 28756.35 31884.97 31257.72 33287.05 32385.51 317
test_fmvs273.57 29772.80 29975.90 30972.74 40568.84 19677.07 30684.32 27545.14 39982.89 25684.22 32248.37 35170.36 38273.40 20087.03 32488.52 279
MIMVSNet71.09 32071.59 31169.57 35487.23 23150.07 37778.91 27871.83 36560.20 32671.26 36891.76 17255.08 32776.09 36541.06 40387.02 32582.54 360
testing9169.94 33368.99 33872.80 33083.81 30145.89 39271.57 36273.64 35268.24 24670.77 37477.82 38034.37 40384.44 31853.64 35687.00 32688.07 284
fmvsm_s_conf0.5_n_a82.21 18681.51 20084.32 15786.56 24673.35 13785.46 15177.30 32261.81 30384.51 21990.88 20177.36 15886.21 29482.72 8586.97 32793.38 134
HyFIR lowres test75.12 28172.66 30282.50 20991.44 13565.19 23172.47 35587.31 22046.79 39280.29 29884.30 32152.70 33492.10 16951.88 37186.73 32890.22 248
test_vis3_rt71.42 31770.67 31873.64 32469.66 41270.46 17766.97 38889.73 18542.68 40988.20 14383.04 33343.77 38260.07 41065.35 27886.66 32990.39 246
MSDG80.06 23079.99 22980.25 24683.91 29968.04 20577.51 29989.19 19677.65 12681.94 27083.45 33076.37 17686.31 29163.31 29686.59 33086.41 306
Patchmatch-test65.91 35967.38 34861.48 39075.51 38643.21 40368.84 37763.79 39962.48 29572.80 36283.42 33144.89 37959.52 41248.27 38686.45 33181.70 368
mvs_anonymous78.13 24778.76 24076.23 30779.24 35750.31 37678.69 28284.82 26961.60 30883.09 25492.82 13873.89 20087.01 27668.33 25486.41 33291.37 217
IterMVS-SCA-FT80.64 21479.41 23184.34 15683.93 29869.66 18476.28 32081.09 30172.43 19686.47 18390.19 22260.46 28793.15 13877.45 14986.39 33390.22 248
testing9969.27 33968.15 34672.63 33283.29 31045.45 39471.15 36471.08 37067.34 25770.43 37577.77 38232.24 40884.35 32053.72 35586.33 33488.10 283
E-PMN61.59 37361.62 37661.49 38966.81 41655.40 33853.77 41260.34 40966.80 26258.90 41365.50 41240.48 39266.12 40155.72 34186.25 33562.95 410
EMVS61.10 37660.81 37861.99 38765.96 41955.86 33453.10 41358.97 41267.06 25956.89 41763.33 41340.98 39067.03 39754.79 35086.18 33663.08 409
ETVMVS64.67 36463.34 37068.64 36183.44 30641.89 40569.56 37661.70 40661.33 31268.74 38275.76 39628.76 41479.35 35134.65 41486.16 33784.67 326
our_test_371.85 31171.59 31172.62 33380.71 34253.78 35069.72 37571.71 36858.80 33278.03 31880.51 36156.61 31678.84 35662.20 30286.04 33885.23 319
EU-MVSNet75.12 28174.43 28377.18 29283.11 31759.48 30085.71 14882.43 29039.76 41385.64 19788.76 24644.71 38087.88 26773.86 19285.88 33984.16 336
GA-MVS75.83 27474.61 27979.48 25881.87 32459.25 30273.42 35082.88 28568.68 24079.75 30381.80 34950.62 34489.46 24466.85 26085.64 34089.72 258
MVS73.21 30172.59 30375.06 31580.97 33660.81 28881.64 24185.92 24746.03 39771.68 36777.54 38368.47 24689.77 23955.70 34285.39 34174.60 397
PatchT70.52 32472.76 30163.79 38479.38 35533.53 41877.63 29665.37 39573.61 17371.77 36692.79 14144.38 38175.65 36864.53 28785.37 34282.18 364
TR-MVS76.77 26375.79 26979.72 25386.10 26365.79 22677.14 30483.02 28465.20 28181.40 28382.10 34466.30 25590.73 21055.57 34385.27 34382.65 356
BH-w/o76.57 26676.07 26878.10 27886.88 24365.92 22577.63 29686.33 23765.69 27380.89 28979.95 36568.97 24590.74 20953.01 36285.25 34477.62 391
Syy-MVS69.40 33870.03 32867.49 36881.72 32638.94 41171.00 36561.99 40161.38 31070.81 37272.36 40461.37 28379.30 35264.50 28885.18 34584.22 333
myMVS_eth3d64.66 36563.89 36666.97 37181.72 32637.39 41471.00 36561.99 40161.38 31070.81 37272.36 40420.96 42579.30 35249.59 37785.18 34584.22 333
IterMVS76.91 26076.34 26578.64 26780.91 33764.03 24176.30 31979.03 31264.88 28383.11 25289.16 24159.90 29384.46 31768.61 25085.15 34787.42 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVSnew68.72 34469.01 33767.85 36583.22 31443.98 40074.93 33665.98 39255.09 35573.83 35679.11 37165.63 26071.89 37738.21 41185.04 34887.69 294
OpenMVS_ROBcopyleft70.19 1777.77 25277.46 25278.71 26684.39 29061.15 28081.18 24882.52 28862.45 29783.34 24987.37 27266.20 25688.66 26064.69 28485.02 34986.32 307
KD-MVS_2432*160066.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
miper_refine_blended66.87 35265.81 35870.04 34867.50 41447.49 38562.56 39779.16 31061.21 31577.98 31980.61 35725.29 42282.48 33253.02 36084.92 35080.16 384
test_fmvs1_n70.94 32170.41 32472.53 33573.92 39466.93 21575.99 32584.21 27743.31 40679.40 30779.39 37043.47 38368.55 39069.05 24384.91 35282.10 365
test-LLR67.21 34966.74 35368.63 36276.45 37955.21 34067.89 38067.14 38862.43 29965.08 40072.39 40243.41 38469.37 38361.00 31284.89 35381.31 373
test-mter65.00 36363.79 36768.63 36276.45 37955.21 34067.89 38067.14 38850.98 38365.08 40072.39 40228.27 41669.37 38361.00 31284.89 35381.31 373
PS-MVSNAJ77.04 25976.53 26378.56 26887.09 23861.40 27675.26 33387.13 22561.25 31374.38 35477.22 38876.94 16690.94 19964.63 28584.83 35583.35 348
xiu_mvs_v2_base77.19 25776.75 26178.52 26987.01 24061.30 27875.55 33187.12 22861.24 31474.45 35278.79 37577.20 16090.93 20064.62 28684.80 35683.32 349
pmmvs362.47 36960.02 38269.80 35171.58 40864.00 24270.52 37058.44 41339.77 41266.05 39375.84 39527.10 42172.28 37446.15 39384.77 35773.11 398
MDTV_nov1_ep1368.29 34578.03 36343.87 40174.12 34272.22 36152.17 37367.02 39185.54 30045.36 37280.85 34255.73 34084.42 358
test_fmvs169.57 33669.05 33671.14 34569.15 41365.77 22773.98 34483.32 28142.83 40877.77 32478.27 37943.39 38668.50 39168.39 25384.38 35979.15 388
1112_ss74.82 28673.74 28778.04 28089.57 17260.04 29376.49 31787.09 22954.31 36173.66 35879.80 36660.25 29086.76 28558.37 32684.15 36087.32 298
testing1167.38 34865.93 35671.73 34183.37 30846.60 38970.95 36769.40 37862.47 29666.14 39276.66 39131.22 40984.10 32249.10 38084.10 36184.49 327
PatchMatch-RL74.48 28973.22 29578.27 27687.70 22085.26 3875.92 32670.09 37464.34 28576.09 33781.25 35465.87 25978.07 35953.86 35483.82 36271.48 400
UBG64.34 36763.35 36967.30 36983.50 30340.53 40867.46 38465.02 39654.77 35967.54 39074.47 40032.99 40778.50 35840.82 40483.58 36382.88 355
MDA-MVSNet_test_wron70.05 33070.44 32268.88 35973.84 39553.47 35258.93 40767.28 38658.43 33387.09 16485.40 30559.80 29567.25 39659.66 32183.54 36485.92 312
YYNet170.06 32970.44 32268.90 35873.76 39653.42 35458.99 40667.20 38758.42 33487.10 16385.39 30659.82 29467.32 39559.79 32083.50 36585.96 310
Test_1112_low_res73.90 29573.08 29676.35 30390.35 15955.95 33173.40 35186.17 24050.70 38573.14 35985.94 29658.31 30485.90 30256.51 33683.22 36687.20 299
PVSNet58.17 2166.41 35765.63 36068.75 36081.96 32349.88 37862.19 39972.51 35951.03 38268.04 38675.34 39850.84 34274.77 37045.82 39582.96 36781.60 370
gg-mvs-nofinetune68.96 34269.11 33568.52 36476.12 38245.32 39583.59 19255.88 41586.68 2964.62 40497.01 930.36 41183.97 32544.78 39782.94 36876.26 393
CR-MVSNet74.00 29473.04 29776.85 29879.58 35162.64 25982.58 22076.90 32650.50 38775.72 34192.38 15248.07 35384.07 32368.72 24982.91 36983.85 340
RPMNet78.88 23878.28 24780.68 24179.58 35162.64 25982.58 22094.16 3274.80 15975.72 34192.59 14548.69 35095.56 4273.48 19882.91 36983.85 340
test_vis1_n70.29 32569.99 32971.20 34475.97 38366.50 21976.69 31280.81 30344.22 40275.43 34477.23 38750.00 34768.59 38966.71 26382.85 37178.52 390
test0.0.03 164.66 36564.36 36465.57 37775.03 39146.89 38864.69 39361.58 40762.43 29971.18 37077.54 38343.41 38468.47 39240.75 40582.65 37281.35 372
HY-MVS64.64 1873.03 30272.47 30674.71 31883.36 30954.19 34782.14 23781.96 29356.76 35069.57 38086.21 29360.03 29184.83 31449.58 37882.65 37285.11 321
SCA73.32 29872.57 30475.58 31281.62 32855.86 33478.89 27971.37 36961.73 30474.93 35083.42 33160.46 28787.01 27658.11 33082.63 37483.88 337
test_f64.31 36865.85 35759.67 39366.54 41762.24 27057.76 40970.96 37140.13 41184.36 22482.09 34546.93 35551.67 41761.99 30581.89 37565.12 408
CHOSEN 1792x268872.45 30670.56 32078.13 27790.02 16963.08 25268.72 37883.16 28242.99 40775.92 33985.46 30357.22 31385.18 31149.87 37681.67 37686.14 309
WTY-MVS67.91 34768.35 34466.58 37380.82 34048.12 38265.96 39072.60 35753.67 36471.20 36981.68 35158.97 30069.06 38748.57 38381.67 37682.55 359
TESTMET0.1,161.29 37460.32 38064.19 38272.06 40651.30 36967.89 38062.09 40045.27 39860.65 40969.01 40827.93 41764.74 40556.31 33781.65 37876.53 392
dmvs_re66.81 35466.98 35066.28 37476.87 37358.68 31371.66 36172.24 36060.29 32469.52 38173.53 40152.38 33564.40 40644.90 39681.44 37975.76 394
PAPM71.77 31270.06 32776.92 29586.39 24953.97 34876.62 31486.62 23553.44 36563.97 40584.73 31757.79 31092.34 16139.65 40681.33 38084.45 329
DSMNet-mixed60.98 37761.61 37759.09 39572.88 40345.05 39774.70 33846.61 42126.20 41965.34 39890.32 21855.46 32363.12 40841.72 40281.30 38169.09 404
sss66.92 35167.26 34965.90 37577.23 36951.10 37364.79 39271.72 36752.12 37670.13 37780.18 36357.96 30765.36 40450.21 37381.01 38281.25 375
tpm67.95 34668.08 34767.55 36778.74 36243.53 40275.60 32867.10 39054.92 35772.23 36488.10 25642.87 38875.97 36652.21 36580.95 38383.15 352
MonoMVSNet76.66 26477.26 25674.86 31679.86 34954.34 34686.26 13786.08 24271.08 21685.59 19888.68 24853.95 32985.93 29963.86 29080.02 38484.32 331
tpm268.45 34566.83 35273.30 32678.93 36148.50 38079.76 26371.76 36647.50 39169.92 37883.60 32742.07 38988.40 26248.44 38579.51 38583.01 354
FPMVS72.29 30972.00 30873.14 32788.63 19885.00 4074.65 33967.39 38571.94 20777.80 32387.66 26650.48 34575.83 36749.95 37479.51 38558.58 414
UnsupCasMVSNet_bld69.21 34069.68 33167.82 36679.42 35451.15 37167.82 38375.79 33354.15 36277.47 32785.36 30859.26 29870.64 38148.46 38479.35 38781.66 369
CostFormer69.98 33268.68 34273.87 32177.14 37050.72 37479.26 27274.51 34251.94 37770.97 37184.75 31645.16 37687.49 27155.16 34879.23 38883.40 347
131473.22 30072.56 30575.20 31380.41 34657.84 31981.64 24185.36 25451.68 37873.10 36076.65 39261.45 28285.19 31063.54 29379.21 38982.59 357
test_vis1_n_192071.30 31971.58 31370.47 34677.58 36759.99 29574.25 34084.22 27651.06 38174.85 35179.10 37255.10 32668.83 38868.86 24679.20 39082.58 358
baseline173.26 29973.54 29072.43 33684.92 27947.79 38479.89 26274.00 34565.93 26678.81 31486.28 29256.36 31781.63 33856.63 33579.04 39187.87 292
PMMVS61.65 37260.38 37965.47 37865.40 42169.26 18963.97 39561.73 40536.80 41860.11 41068.43 40959.42 29666.35 40048.97 38178.57 39260.81 411
baseline269.77 33466.89 35178.41 27279.51 35358.09 31576.23 32169.57 37757.50 34364.82 40377.45 38546.02 36188.44 26153.08 35977.83 39388.70 277
test_vis1_rt65.64 36164.09 36570.31 34766.09 41870.20 18061.16 40081.60 29738.65 41472.87 36169.66 40752.84 33260.04 41156.16 33877.77 39480.68 382
MS-PatchMatch70.93 32270.22 32573.06 32881.85 32562.50 26273.82 34777.90 31652.44 37275.92 33981.27 35355.67 32281.75 33655.37 34577.70 39574.94 396
UnsupCasMVSNet_eth71.63 31572.30 30769.62 35376.47 37852.70 35970.03 37480.97 30259.18 32979.36 30888.21 25560.50 28669.12 38658.33 32877.62 39687.04 300
CVMVSNet72.62 30571.41 31576.28 30583.25 31260.34 29183.50 19479.02 31337.77 41776.33 33285.10 31049.60 34987.41 27270.54 22777.54 39781.08 378
test_cas_vis1_n_192069.20 34169.12 33469.43 35573.68 39762.82 25670.38 37277.21 32346.18 39680.46 29778.95 37452.03 33665.53 40365.77 27477.45 39879.95 386
GG-mvs-BLEND67.16 37073.36 39846.54 39184.15 17555.04 41658.64 41461.95 41529.93 41283.87 32638.71 40976.92 39971.07 401
CHOSEN 280x42059.08 38056.52 38566.76 37276.51 37764.39 23849.62 41459.00 41143.86 40355.66 41868.41 41035.55 40268.21 39443.25 39976.78 40067.69 406
tpmvs70.16 32769.56 33271.96 33974.71 39348.13 38179.63 26475.45 33865.02 28270.26 37681.88 34845.34 37385.68 30658.34 32775.39 40182.08 366
MVP-Stereo75.81 27573.51 29182.71 20389.35 17873.62 13480.06 25885.20 25760.30 32373.96 35587.94 25957.89 30989.45 24552.02 36674.87 40285.06 322
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 38357.66 38449.76 39975.47 38730.59 41959.56 40251.45 41843.62 40562.49 40675.48 39740.96 39149.15 41937.39 41272.52 40369.55 403
mvsany_test365.48 36262.97 37173.03 32969.99 41176.17 12164.83 39143.71 42243.68 40480.25 30187.05 28152.83 33363.09 40951.92 37072.44 40479.84 387
PatchmatchNetpermissive69.71 33568.83 34072.33 33877.66 36653.60 35179.29 27169.99 37557.66 34172.53 36382.93 33646.45 35880.08 34960.91 31472.09 40583.31 350
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 37562.92 37255.87 39679.09 35835.34 41771.83 35957.98 41446.56 39459.05 41291.14 18849.95 34876.43 36438.74 40871.92 40655.84 415
tpmrst66.28 35866.69 35465.05 38072.82 40439.33 41078.20 28870.69 37353.16 36867.88 38780.36 36248.18 35274.75 37158.13 32970.79 40781.08 378
tpm cat166.76 35565.21 36371.42 34277.09 37150.62 37578.01 28973.68 35144.89 40068.64 38379.00 37345.51 37082.42 33449.91 37570.15 40881.23 377
ADS-MVSNet265.87 36063.64 36872.55 33473.16 40056.92 32767.10 38674.81 33949.74 38966.04 39482.97 33446.71 35677.26 36242.29 40069.96 40983.46 345
ADS-MVSNet61.90 37162.19 37561.03 39173.16 40036.42 41667.10 38661.75 40449.74 38966.04 39482.97 33446.71 35663.21 40742.29 40069.96 40983.46 345
JIA-IIPM69.41 33766.64 35577.70 28673.19 39971.24 17275.67 32765.56 39470.42 22165.18 39992.97 13333.64 40683.06 32853.52 35869.61 41178.79 389
dmvs_testset60.59 37962.54 37454.72 39877.26 36827.74 42174.05 34361.00 40860.48 32265.62 39767.03 41155.93 32068.23 39332.07 41869.46 41268.17 405
EPMVS62.47 36962.63 37362.01 38670.63 41038.74 41274.76 33752.86 41753.91 36367.71 38980.01 36439.40 39366.60 39955.54 34468.81 41380.68 382
MVEpermissive40.22 2351.82 38550.47 38855.87 39662.66 42351.91 36431.61 41739.28 42440.65 41050.76 41974.98 39956.24 31944.67 42033.94 41664.11 41471.04 402
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 37860.29 38161.92 38872.04 40738.67 41370.83 36864.08 39851.28 38060.75 40877.28 38636.59 40171.58 37947.41 38862.34 41575.52 395
mvsany_test158.48 38156.47 38664.50 38165.90 42068.21 20256.95 41042.11 42338.30 41565.69 39677.19 38956.96 31459.35 41346.16 39258.96 41665.93 407
PVSNet_051.08 2256.10 38254.97 38759.48 39475.12 39053.28 35555.16 41161.89 40344.30 40159.16 41162.48 41454.22 32865.91 40235.40 41347.01 41759.25 413
tmp_tt20.25 39024.50 3937.49 4054.47 4288.70 42934.17 41625.16 4261.00 42332.43 42218.49 42039.37 3949.21 42421.64 42043.75 4184.57 420
test_method30.46 38829.60 39133.06 40217.99 4273.84 43013.62 41873.92 3462.79 42118.29 42353.41 41628.53 41543.25 42122.56 41935.27 41952.11 416
DeepMVS_CXcopyleft24.13 40432.95 42629.49 42021.63 42712.07 42037.95 42145.07 41830.84 41019.21 42317.94 42233.06 42023.69 419
dongtai41.90 38642.65 38939.67 40170.86 40921.11 42361.01 40121.42 42857.36 34457.97 41650.06 41716.40 42758.73 41421.03 42127.69 42139.17 417
kuosan30.83 38732.17 39026.83 40353.36 42519.02 42657.90 40820.44 42938.29 41638.01 42037.82 41915.18 42833.45 4227.74 42320.76 42228.03 418
testmvs5.91 3947.65 3970.72 4071.20 4290.37 43259.14 4040.67 4310.49 4251.11 4252.76 4240.94 4300.24 4261.02 4251.47 4231.55 422
test1236.27 3938.08 3960.84 4061.11 4300.57 43162.90 3960.82 4300.54 4241.07 4262.75 4251.26 4290.30 4251.04 4241.26 4241.66 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k20.81 38927.75 3920.00 4080.00 4310.00 4330.00 41985.44 2530.00 4260.00 42782.82 33881.46 1180.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.41 3928.55 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42676.94 1660.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re6.65 3918.87 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42779.80 3660.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS37.39 41452.61 364
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 431
eth-test0.00 431
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
save fliter93.75 6377.44 10386.31 13589.72 18670.80 218
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 337
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 337
sam_mvs45.92 365
MTGPAbinary91.81 126
test_post178.85 2813.13 42245.19 37580.13 34858.11 330
test_post3.10 42345.43 37177.22 363
patchmatchnet-post81.71 35045.93 36487.01 276
MTMP90.66 4833.14 425
gm-plane-assit75.42 38844.97 39852.17 37372.36 40487.90 26654.10 353
TEST992.34 9879.70 7883.94 18090.32 16865.41 27884.49 22090.97 19482.03 10993.63 115
test_892.09 10778.87 8583.82 18590.31 17065.79 26984.36 22490.96 19681.93 11193.44 128
agg_prior91.58 12777.69 10090.30 17184.32 22693.18 136
test_prior478.97 8484.59 166
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 158
旧先验281.73 23956.88 34986.54 18284.90 31372.81 209
新几何281.72 240
无先验82.81 21585.62 25158.09 33791.41 18767.95 25784.48 328
原ACMM282.26 233
testdata286.43 29063.52 294
segment_acmp81.94 110
testdata179.62 26573.95 168
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
n20.00 432
nn0.00 432
door-mid74.45 343
test1191.46 132
door72.57 358
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16073.30 18280.55 294
ACMP_Plane91.19 13984.77 16073.30 18280.55 294
BP-MVS77.30 152
HQP4-MVS80.56 29394.61 7993.56 131
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 225
MDTV_nov1_ep13_2view27.60 42270.76 36946.47 39561.27 40745.20 37449.18 37983.75 342
Test By Simon79.09 140