This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25589.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 9898.80 298.84 5
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12698.76 395.61 48
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30189.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 29888.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30488.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12198.69 998.95 4
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23284.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19198.66 1097.69 9
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 22882.21 22290.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20198.65 1197.61 10
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
FC-MVSNet-test85.93 10687.05 9082.58 19892.25 10056.44 31985.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 16898.58 1397.88 7
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 30888.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19283.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 16998.53 1596.99 24
Baseline_NR-MVSNet84.00 14685.90 10978.29 26491.47 13253.44 33882.29 21887.00 22479.06 10289.55 11495.72 2877.20 15386.14 28872.30 20298.51 1695.28 56
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20482.55 21091.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17498.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20483.16 19492.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17498.35 2197.61 10
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17589.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 10998.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25195.90 1585.01 5898.23 2797.49 13
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
WR-MVS83.56 15584.40 14181.06 22393.43 6854.88 33078.67 27185.02 25181.24 7590.74 8991.56 16972.85 20791.08 18968.00 24398.04 3697.23 18
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8298.04 3693.64 124
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11386.27 10282.60 19791.86 11457.31 31285.10 14893.05 7775.83 13991.02 8293.97 9373.57 19592.91 14273.97 17998.02 3997.58 12
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22188.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15097.99 4096.88 25
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14790.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15190.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14190.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
IU-MVS94.18 4672.64 14390.82 14456.98 32889.67 10885.78 5097.92 4693.28 137
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20077.93 27992.52 9468.33 23385.07 19781.54 33682.06 10392.96 13869.35 22597.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20791.21 3988.64 19386.30 2889.60 11392.59 13869.22 23194.91 6673.89 18097.89 4996.72 26
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24795.59 3786.02 4897.78 5397.24 17
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20694.85 6785.07 5597.78 5397.26 16
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23189.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20097.65 6097.34 15
v7n90.13 3690.96 3887.65 8991.95 11071.06 16989.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39586.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
Anonymous2024052180.18 21481.25 19376.95 28383.15 29560.84 27682.46 21385.99 23668.76 22986.78 16293.73 10859.13 28777.44 34073.71 18497.55 6792.56 166
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
MIMVSNet183.63 15384.59 13480.74 22794.06 5362.77 24882.72 20484.53 25977.57 12190.34 9295.92 2476.88 16585.83 29561.88 29297.42 7293.62 125
ACMMP++97.35 73
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
nrg03087.85 8088.49 7085.91 11990.07 16469.73 17987.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11397.32 7596.50 31
pmmvs686.52 9588.06 7481.90 20792.22 10262.28 25884.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27570.43 21797.30 7696.62 28
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 26779.30 22062.63 36175.56 36275.18 12480.89 23973.10 34275.06 15094.76 1295.32 3587.73 4052.85 39134.16 39197.11 8059.85 388
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28270.44 21091.28 7795.18 4256.62 30489.28 24385.15 5497.09 8193.99 103
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14097.07 8283.13 330
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13697.03 8395.52 49
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11696.97 84
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18391.63 3687.98 20681.51 7287.05 15991.83 16066.18 24695.29 5370.75 21296.89 8595.64 46
VDDNet84.35 13385.39 12081.25 21895.13 3159.32 29185.42 14281.11 28786.41 2787.41 15096.21 1973.61 19490.61 20666.33 25396.85 8693.81 116
VPNet80.25 21181.68 18275.94 29692.46 9347.98 36876.70 29781.67 28473.45 16784.87 20392.82 13174.66 18586.51 27961.66 29596.85 8693.33 135
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 18887.84 10488.05 20481.66 7094.64 1496.53 1465.94 24894.75 6983.02 7796.83 8895.41 51
VPA-MVSNet83.47 15884.73 12979.69 24390.29 15857.52 31181.30 23488.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25296.82 8994.34 89
Gipumacopyleft84.44 13186.33 10178.78 25384.20 28473.57 13289.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 32976.14 15796.80 9082.36 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9196.75 91
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14396.71 9293.73 119
KD-MVS_self_test81.93 18483.14 16078.30 26384.75 27452.75 34280.37 24489.42 18470.24 21690.26 9493.39 11474.55 18786.77 27668.61 23896.64 9395.38 52
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 13896.62 9490.70 225
TransMVSNet (Re)84.02 14585.74 11478.85 25291.00 14455.20 32982.29 21887.26 21279.65 9388.38 13495.52 3383.00 8586.88 27367.97 24496.60 9594.45 82
ambc82.98 18790.55 15464.86 22588.20 9789.15 18689.40 11793.96 9671.67 22191.38 18278.83 12296.55 9692.71 161
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9596.54 9790.88 219
VDD-MVS84.23 13984.58 13583.20 18391.17 14065.16 22483.25 19084.97 25479.79 9087.18 15294.27 7574.77 18390.89 19669.24 22696.54 9793.55 131
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 13888.40 9683.63 26681.27 7480.87 27594.12 8771.49 22295.71 3287.79 1296.50 9994.11 100
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26587.25 26182.43 9394.53 7977.65 13896.46 10294.14 98
test111178.53 23278.85 22577.56 27692.22 10247.49 37082.61 20669.24 36272.43 18785.28 19494.20 8151.91 32590.07 22365.36 26496.45 10395.11 62
test9_res80.83 10096.45 10390.57 229
Anonymous2024052986.20 10187.13 8783.42 17790.19 16064.55 22984.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 22996.40 10595.31 55
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25278.87 13694.18 9080.67 10396.29 10792.73 158
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
v1086.54 9487.10 8884.84 13788.16 20663.28 24186.64 12592.20 10275.42 14692.81 5094.50 6474.05 19094.06 9683.88 6896.28 10897.17 20
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15790.31 5496.31 380.88 8085.12 19689.67 22184.47 7095.46 4782.56 8396.26 11193.77 118
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23193.78 10573.36 20296.48 187.98 996.21 11294.41 86
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19086.65 12490.62 15054.66 33681.46 26790.81 19576.98 15894.38 8372.62 19996.18 11390.82 221
agg_prior279.68 11496.16 11490.22 237
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
EPNet80.37 20778.41 23386.23 11176.75 35273.28 13587.18 11177.45 30776.24 13168.14 36388.93 23465.41 25093.85 10269.47 22496.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
pm-mvs183.69 15184.95 12779.91 23990.04 16659.66 28882.43 21487.44 20975.52 14487.85 14395.26 3981.25 11685.65 29768.74 23696.04 12094.42 85
test250674.12 27973.39 27976.28 29391.85 11544.20 38084.06 16748.20 39672.30 19381.90 25794.20 8127.22 39789.77 23164.81 26996.02 12194.87 67
ECVR-MVScopyleft78.44 23378.63 22977.88 27291.85 11548.95 36483.68 18069.91 36072.30 19384.26 22194.20 8151.89 32689.82 22863.58 27896.02 12194.87 67
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
EGC-MVSNET74.79 27469.99 31489.19 6394.89 3787.00 1191.89 3486.28 2291.09 3962.23 39895.98 2381.87 10989.48 23479.76 11295.96 12491.10 214
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11595.95 12592.00 192
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14396.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
PC_three_145258.96 31490.06 9691.33 17480.66 12393.03 13775.78 16095.94 12692.48 169
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
ANet_high83.17 16385.68 11575.65 29881.24 31245.26 37779.94 24992.91 8483.83 4691.33 7496.88 1080.25 12785.92 29068.89 23395.89 12995.76 43
tt080588.09 7489.79 5182.98 18793.26 7363.94 23591.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 8995.87 13093.13 144
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
iter_conf0578.81 22777.35 24283.21 18282.98 29860.75 27884.09 16688.34 19863.12 27684.25 22289.48 22331.41 39094.51 8176.64 15195.83 13294.38 88
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10195.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10195.83 13294.46 80
cl____80.42 20580.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.37 24586.18 18089.21 22963.08 26490.16 21676.31 15595.80 13593.65 123
DIV-MVS_self_test80.43 20480.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.38 24486.19 17889.22 22863.09 26390.16 21676.32 15495.80 13593.66 121
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 21580.56 20178.89 25189.19 18155.93 32185.22 14573.78 33682.96 5884.28 21992.72 13657.38 29990.07 22363.80 27795.75 13890.68 226
ACMMP++_ref95.74 139
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24590.67 20176.53 16694.25 8669.24 22695.69 14085.55 296
tfpnnormal81.79 18782.95 16378.31 26288.93 18655.40 32580.83 24182.85 27376.81 12785.90 18694.14 8574.58 18686.51 27966.82 25095.68 14193.01 150
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22280.76 12192.13 16073.21 19695.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 9995.50 14394.53 79
v886.22 10086.83 9584.36 15187.82 21062.35 25786.42 12891.33 13076.78 12892.73 5294.48 6673.41 19993.72 10783.10 7495.41 14497.01 23
Vis-MVSNet (Re-imp)77.82 23877.79 23877.92 27188.82 18851.29 35583.28 18871.97 34974.04 15882.23 25189.78 21957.38 29989.41 24057.22 31895.41 14493.05 148
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17195.35 14692.29 179
FMVSNet184.55 12985.45 11981.85 20990.27 15961.05 27186.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23095.33 14793.82 113
test1286.57 10390.74 14972.63 14590.69 14782.76 24479.20 13394.80 6895.32 14892.27 181
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9695.32 14892.34 176
Patchmtry76.56 25477.46 23973.83 30879.37 33446.60 37482.41 21576.90 31373.81 16185.56 19192.38 14448.07 34083.98 31063.36 28195.31 15090.92 218
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28674.73 15285.66 18886.06 27972.56 21292.69 14675.44 16495.21 15289.01 261
test_040288.65 6589.58 5685.88 12192.55 9072.22 15584.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11095.21 15291.82 197
TinyColmap81.25 19282.34 17577.99 27085.33 26560.68 27982.32 21788.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28695.17 15486.31 289
Anonymous20240521180.51 20381.19 19678.49 25988.48 19857.26 31376.63 29982.49 27681.21 7684.30 21892.24 15267.99 23786.24 28362.22 28795.13 15591.98 194
tttt051781.07 19479.58 21785.52 12888.99 18566.45 21187.03 11475.51 32473.76 16288.32 13690.20 21137.96 38294.16 9479.36 11995.13 15595.93 42
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19292.40 9672.04 19682.04 25588.33 24177.91 14493.95 9966.17 25495.12 15790.34 236
PCF-MVS74.62 1582.15 17980.92 19985.84 12289.43 17472.30 15380.53 24291.82 11657.36 32687.81 14489.92 21777.67 14793.63 11058.69 30995.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24579.09 13492.13 16075.51 16295.06 15990.41 234
SDMVSNet81.90 18683.17 15978.10 26788.81 18962.45 25476.08 30986.05 23473.67 16383.41 23493.04 12082.35 9580.65 32870.06 22095.03 16091.21 211
sd_testset79.95 21981.39 19175.64 29988.81 18958.07 30676.16 30882.81 27473.67 16383.41 23493.04 12080.96 11977.65 33958.62 31095.03 16091.21 211
plane_prior76.42 11387.15 11275.94 13895.03 160
new-patchmatchnet70.10 31373.37 28060.29 36881.23 31316.95 40159.54 37874.62 32762.93 27780.97 27187.93 24862.83 26771.90 35455.24 33295.01 16392.00 192
v119284.57 12884.69 13384.21 15787.75 21262.88 24583.02 19791.43 12569.08 22589.98 10190.89 19072.70 21093.62 11382.41 8594.97 16496.13 34
v192192084.23 13984.37 14283.79 16687.64 21761.71 26382.91 20091.20 13467.94 24090.06 9690.34 20772.04 21793.59 11582.32 8694.91 16596.07 36
CL-MVSNet_self_test76.81 25077.38 24175.12 30286.90 23451.34 35373.20 33680.63 29268.30 23481.80 26288.40 24066.92 24280.90 32555.35 33194.90 16693.12 146
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
v14419284.24 13884.41 14083.71 17087.59 21861.57 26482.95 19991.03 13867.82 24389.80 10490.49 20573.28 20393.51 12081.88 9394.89 16796.04 38
LCM-MVSNet-Re83.48 15785.06 12478.75 25485.94 25855.75 32480.05 24794.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30494.89 16790.75 222
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22284.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10694.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18394.81 17193.70 120
v124084.30 13584.51 13783.65 17187.65 21661.26 26882.85 20291.54 12267.94 24090.68 9090.65 20271.71 22093.64 10982.84 7994.78 17296.07 36
MSLP-MVS++85.00 12186.03 10681.90 20791.84 11771.56 16686.75 12393.02 8175.95 13787.12 15389.39 22577.98 14289.40 24177.46 14194.78 17284.75 305
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23683.25 19089.88 17376.06 13289.62 11092.37 14773.40 20192.52 14978.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 15283.69 15283.57 17490.05 16572.26 15486.29 13090.00 17178.19 11481.65 26487.16 26383.40 8294.24 8761.69 29494.76 17584.21 312
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18694.66 17694.56 76
v114484.54 13084.72 13184.00 16087.67 21562.55 25282.97 19890.93 14270.32 21489.80 10490.99 18573.50 19693.48 12181.69 9494.65 17795.97 39
test20.0373.75 28274.59 26871.22 32481.11 31451.12 35770.15 35272.10 34870.42 21180.28 28691.50 17064.21 25674.72 35046.96 37294.58 17887.82 276
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9194.47 180
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17184.77 14992.68 9173.30 17280.55 28090.17 21472.10 21494.61 7477.30 14594.47 18093.56 129
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
c3_l81.64 18881.59 18681.79 21380.86 31859.15 29578.61 27290.18 16768.36 23287.20 15187.11 26569.39 22991.62 17378.16 13194.43 18294.60 75
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16483.52 18392.13 10461.82 28783.96 22689.75 22079.93 13193.46 12278.33 12794.34 18491.87 196
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
iter_conf_final80.36 20878.88 22384.79 13986.29 24866.36 21386.95 11586.25 23068.16 23682.09 25489.48 22336.59 38594.51 8179.83 11194.30 18693.50 132
thisisatest053079.07 22277.33 24384.26 15687.13 22664.58 22783.66 18175.95 31968.86 22885.22 19587.36 25938.10 38093.57 11875.47 16394.28 18794.62 74
baseline85.20 11685.93 10783.02 18686.30 24762.37 25684.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12494.21 18894.74 73
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25371.27 20186.70 16590.55 20463.04 26593.92 10078.26 12994.20 18989.63 245
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 19984.54 15891.42 12773.27 17588.41 13387.96 24672.33 21390.83 19876.02 15994.11 19192.69 162
USDC76.63 25276.73 24976.34 29283.46 29057.20 31480.02 24888.04 20552.14 35083.65 22991.25 17663.24 26286.65 27854.66 33694.11 19185.17 300
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26387.13 21673.35 16985.56 19189.34 22683.60 8090.50 20876.64 15194.05 19390.09 242
VNet79.31 22180.27 20676.44 29087.92 20953.95 33475.58 31584.35 26074.39 15682.23 25190.72 19772.84 20884.39 30760.38 30393.98 19490.97 216
FMVSNet281.31 19181.61 18580.41 23386.38 24258.75 30283.93 17286.58 22772.43 18787.65 14692.98 12463.78 25990.22 21466.86 24793.92 19592.27 181
LF4IMVS82.75 16781.93 17985.19 13282.08 30180.15 7085.53 13988.76 19168.01 23785.58 19087.75 25171.80 21986.85 27474.02 17893.87 19688.58 264
canonicalmvs85.50 11086.14 10583.58 17387.97 20767.13 20287.55 10694.32 1873.44 16888.47 13187.54 25586.45 5491.06 19075.76 16193.76 19792.54 168
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26582.71 20589.71 17672.19 19589.55 11491.41 17270.70 22693.20 13081.02 9793.76 19796.25 32
casdiffmvspermissive85.21 11585.85 11183.31 18086.17 25362.77 24883.03 19693.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 23977.07 12673.76 33992.82 13169.64 22891.82 17169.04 23293.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 10971.77 15981.78 28391.84 15973.92 19193.65 20183.61 320
AUN-MVS81.18 19378.78 22688.39 7790.93 14582.14 5882.51 21283.67 26564.69 27180.29 28485.91 28351.07 32992.38 15376.29 15693.63 20290.65 228
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20683.69 26471.27 20186.70 16586.05 28063.04 26592.41 15278.26 12993.62 20390.71 224
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 23883.56 26772.71 18486.07 18189.07 23281.75 11186.19 28677.11 14793.36 20488.24 266
GBi-Net82.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
test182.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
FMVSNet378.80 22878.55 23079.57 24582.89 29956.89 31781.76 22685.77 23869.04 22686.00 18290.44 20651.75 32790.09 22265.95 25693.34 20591.72 199
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28784.31 6493.28 20892.15 187
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18185.45 14176.68 31684.06 4592.44 5796.99 862.03 26894.65 7280.58 10493.24 20994.83 72
Anonymous2023120671.38 30371.88 29569.88 33186.31 24654.37 33170.39 35074.62 32752.57 34676.73 31388.76 23559.94 28072.06 35344.35 37993.23 21083.23 328
D2MVS76.84 24975.67 25980.34 23480.48 32462.16 26173.50 33384.80 25757.61 32482.24 25087.54 25551.31 32887.65 26270.40 21893.19 21191.23 210
miper_lstm_enhance76.45 25676.10 25477.51 27776.72 35360.97 27564.69 36985.04 25063.98 27383.20 23888.22 24256.67 30378.79 33773.22 19193.12 21292.78 157
新几何182.95 18993.96 5578.56 8480.24 29355.45 33383.93 22791.08 18371.19 22388.33 25665.84 25993.07 21381.95 343
lessismore_v085.95 11891.10 14270.99 17070.91 35691.79 6794.42 7061.76 26992.93 14079.52 11793.03 21493.93 107
TAMVS78.08 23676.36 25183.23 18190.62 15272.87 13979.08 26480.01 29561.72 29081.35 26986.92 26863.96 25888.78 25150.61 35593.01 21588.04 270
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17484.50 16093.37 5878.76 10884.07 22478.72 35880.39 12595.13 6073.82 18292.98 21691.04 215
EPNet_dtu72.87 29071.33 30277.49 27877.72 34360.55 28082.35 21675.79 32066.49 25258.39 39181.06 33953.68 31885.98 28953.55 34092.97 21785.95 292
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23285.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
CANet83.79 15082.85 16586.63 10286.17 25372.21 15683.76 17891.43 12577.24 12574.39 33687.45 25775.36 17495.42 4977.03 14892.83 21992.25 183
API-MVS82.28 17482.61 17081.30 21786.29 24869.79 17788.71 9087.67 20878.42 11282.15 25384.15 30877.98 14291.59 17465.39 26392.75 22082.51 338
test_yl78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
DCV-MVSNet78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
testgi72.36 29374.61 26665.59 35280.56 32342.82 38468.29 35773.35 33966.87 24981.84 25989.93 21672.08 21666.92 37446.05 37592.54 22387.01 283
FMVSNet572.10 29671.69 29673.32 31181.57 30853.02 34176.77 29678.37 30263.31 27476.37 31591.85 15836.68 38478.98 33447.87 36892.45 22487.95 272
CDS-MVSNet77.32 24475.40 26083.06 18589.00 18472.48 15077.90 28082.17 27960.81 30278.94 29983.49 31359.30 28588.76 25254.64 33792.37 22587.93 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 22479.39 21977.41 27984.78 27268.11 19675.60 31383.11 27060.96 30179.36 29489.89 21875.18 17672.97 35173.32 19092.30 22691.15 213
dcpmvs_284.23 13985.14 12381.50 21588.61 19561.98 26282.90 20193.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 14992.30 22694.90 65
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23388.66 23874.87 17981.73 32166.84 24992.29 22889.11 255
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 28889.15 23177.04 15793.28 12865.82 26092.28 22992.21 184
thres600view775.97 26075.35 26277.85 27487.01 23251.84 35180.45 24373.26 34075.20 14883.10 24086.31 27645.54 35489.05 24455.03 33492.24 23092.66 163
PVSNet_BlendedMVS78.80 22877.84 23781.65 21484.43 27763.41 23879.49 25790.44 15461.70 29175.43 32787.07 26669.11 23291.44 17860.68 30192.24 23090.11 241
DELS-MVS81.44 19081.25 19382.03 20584.27 28362.87 24676.47 30392.49 9570.97 20681.64 26583.83 30975.03 17792.70 14574.29 17292.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 24692.87 8272.34 15280.14 29459.91 31185.47 19391.75 16567.96 23885.24 29968.57 24092.18 23381.06 356
SSC-MVS77.55 24181.64 18365.29 35590.46 15520.33 40073.56 33268.28 36485.44 3288.18 13994.64 6070.93 22481.33 32371.25 20692.03 23494.20 92
cl2278.97 22378.21 23581.24 22077.74 34259.01 29677.46 28987.13 21665.79 25684.32 21585.10 29458.96 28990.88 19775.36 16592.03 23493.84 111
miper_ehance_all_eth80.34 20980.04 21481.24 22079.82 32858.95 29777.66 28389.66 17765.75 25985.99 18585.11 29368.29 23691.42 18076.03 15892.03 23493.33 135
miper_enhance_ethall77.83 23776.93 24680.51 23176.15 35858.01 30775.47 31788.82 18958.05 32083.59 23080.69 34064.41 25491.20 18473.16 19792.03 23492.33 177
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20385.86 13491.39 12872.33 19287.59 14790.25 21084.85 6692.37 15478.00 13491.94 23893.66 121
DPM-MVS80.10 21679.18 22182.88 19390.71 15169.74 17878.87 26890.84 14360.29 30875.64 32685.92 28267.28 23993.11 13471.24 20791.79 23985.77 295
v14882.31 17382.48 17381.81 21285.59 26259.66 28881.47 23186.02 23572.85 18088.05 14090.65 20270.73 22590.91 19575.15 16791.79 23994.87 67
test22293.31 7176.54 10979.38 25877.79 30452.59 34582.36 24990.84 19466.83 24391.69 24181.25 351
testing371.53 30170.79 30373.77 30988.89 18741.86 38576.60 30159.12 38672.83 18180.97 27182.08 33019.80 40287.33 26765.12 26691.68 24292.13 188
eth_miper_zixun_eth80.84 19780.22 20982.71 19581.41 31060.98 27477.81 28190.14 16867.31 24686.95 16187.24 26264.26 25592.31 15675.23 16691.61 24394.85 71
pmmvs-eth3d78.42 23477.04 24582.57 20087.44 22074.41 12880.86 24079.67 29655.68 33284.69 20690.31 20960.91 27385.42 29862.20 28891.59 24487.88 274
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10591.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FE-MVS79.98 21878.86 22483.36 17886.47 23966.45 21189.73 6584.74 25872.80 18284.22 22391.38 17344.95 36393.60 11463.93 27691.50 24690.04 243
thisisatest051573.00 28970.52 30680.46 23281.45 30959.90 28673.16 33774.31 33157.86 32176.08 32177.78 36237.60 38392.12 16265.00 26791.45 24789.35 250
ppachtmachnet_test74.73 27574.00 27376.90 28580.71 32156.89 31771.53 34478.42 30158.24 31879.32 29682.92 32157.91 29684.26 30865.60 26291.36 24889.56 246
FA-MVS(test-final)83.13 16483.02 16283.43 17686.16 25566.08 21588.00 10088.36 19775.55 14385.02 19892.75 13565.12 25292.50 15074.94 17091.30 24991.72 199
OpenMVScopyleft76.72 1381.98 18382.00 17881.93 20684.42 27968.22 19488.50 9589.48 18266.92 24881.80 26291.86 15772.59 21190.16 21671.19 20891.25 25087.40 279
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14682.20 22487.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 18891.09 25188.21 267
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 18991.19 18578.28 12891.09 25189.29 253
thres100view90075.45 26475.05 26476.66 28987.27 22251.88 35081.07 23773.26 34075.68 14183.25 23786.37 27345.54 35488.80 24851.98 35090.99 25389.31 251
tfpn200view974.86 27274.23 27176.74 28886.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25389.31 251
thres40075.14 26674.23 27177.86 27386.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25392.66 163
cascas76.29 25874.81 26580.72 22984.47 27662.94 24473.89 33087.34 21055.94 33175.16 33276.53 37263.97 25791.16 18665.00 26790.97 25688.06 269
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 21896.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ab-mvs79.67 22080.56 20176.99 28288.48 19856.93 31584.70 15386.06 23368.95 22780.78 27793.08 11975.30 17584.62 30556.78 31990.90 25889.43 249
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29382.28 8790.87 25993.58 127
MAR-MVS80.24 21278.74 22884.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30678.50 35973.79 19390.53 20761.59 29690.87 25985.49 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14083.91 17385.18 24680.44 8288.75 12585.49 28680.08 12891.92 16682.02 9090.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28872.52 14983.82 17585.15 24780.27 8688.75 12585.45 28879.95 13091.90 16781.92 9290.80 26296.13 34
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
ET-MVSNet_ETH3D75.28 26572.77 28682.81 19483.03 29768.11 19677.09 29176.51 31760.67 30577.60 31180.52 34438.04 38191.15 18770.78 21190.68 26489.17 254
EI-MVSNet82.61 16882.42 17483.20 18383.25 29263.66 23683.50 18485.07 24876.06 13286.55 16985.10 29473.41 19990.25 21178.15 13390.67 26595.68 45
MVSTER77.09 24675.70 25881.25 21875.27 36661.08 27077.49 28885.07 24860.78 30386.55 16988.68 23743.14 37290.25 21173.69 18590.67 26592.42 171
Patchmatch-RL test74.48 27673.68 27576.89 28684.83 27166.54 20972.29 33969.16 36357.70 32286.76 16386.33 27445.79 35382.59 31669.63 22390.65 26781.54 347
CMPMVSbinary59.41 2075.12 26873.57 27679.77 24075.84 36167.22 20181.21 23582.18 27850.78 35976.50 31487.66 25355.20 31482.99 31562.17 29090.64 26889.09 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.06 25980.01 21564.19 35889.96 16820.58 39972.18 34068.19 36583.21 5486.46 17693.49 11270.19 22778.97 33565.96 25590.46 26993.02 149
V4283.47 15883.37 15583.75 16883.16 29463.33 24081.31 23290.23 16569.51 22190.91 8590.81 19574.16 18892.29 15880.06 10790.22 27095.62 47
PM-MVS80.20 21379.00 22283.78 16788.17 20586.66 1581.31 23266.81 37269.64 22088.33 13590.19 21264.58 25383.63 31371.99 20490.03 27181.06 356
PLCcopyleft73.85 1682.09 18080.31 20587.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31786.33 27473.12 20592.61 14861.40 29790.02 27289.44 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CANet_DTU77.81 23977.05 24480.09 23881.37 31159.90 28683.26 18988.29 20069.16 22467.83 36683.72 31060.93 27289.47 23569.22 22889.70 27390.88 219
diffmvspermissive80.40 20680.48 20480.17 23779.02 33860.04 28377.54 28690.28 16466.65 25182.40 24887.33 26073.50 19687.35 26677.98 13589.62 27493.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS255.64 35959.27 35844.74 37664.30 39712.32 40240.60 38949.79 39553.19 34265.06 37884.81 29953.60 31949.76 39332.68 39389.41 27572.15 375
Fast-Effi-MVS+-dtu82.54 17181.41 19085.90 12085.60 26176.53 11183.07 19589.62 18073.02 17979.11 29883.51 31280.74 12290.24 21368.76 23589.29 27690.94 217
thres20072.34 29471.55 30074.70 30583.48 28951.60 35275.02 32073.71 33770.14 21778.56 30280.57 34346.20 34688.20 25846.99 37189.29 27684.32 309
jason77.42 24375.75 25782.43 20387.10 22969.27 18477.99 27881.94 28151.47 35477.84 30685.07 29760.32 27789.00 24570.74 21389.27 27889.03 259
jason: jason.
MG-MVS80.32 21080.94 19878.47 26088.18 20452.62 34582.29 21885.01 25272.01 19779.24 29792.54 14169.36 23093.36 12770.65 21489.19 27989.45 247
BH-untuned80.96 19680.99 19780.84 22688.55 19768.23 19380.33 24588.46 19472.79 18386.55 16986.76 26974.72 18491.77 17261.79 29388.99 28082.52 337
EIA-MVS82.19 17781.23 19585.10 13487.95 20869.17 18983.22 19393.33 6170.42 21178.58 30179.77 35277.29 15294.20 8971.51 20588.96 28191.93 195
PVSNet_Blended_VisFu81.55 18980.49 20384.70 14491.58 12573.24 13784.21 16291.67 12062.86 27880.94 27387.16 26367.27 24092.87 14369.82 22288.94 28287.99 271
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18591.98 3190.08 16971.54 19976.23 31885.07 29758.69 29094.27 8486.26 4088.77 28389.03 259
lupinMVS76.37 25774.46 26982.09 20485.54 26369.26 18576.79 29580.77 29150.68 36176.23 31882.82 32258.69 29088.94 24669.85 22188.77 28388.07 268
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15388.74 28596.61 29
test_fmvs375.72 26375.20 26377.27 28075.01 36969.47 18278.93 26584.88 25546.67 36887.08 15787.84 25050.44 33371.62 35577.42 14488.53 28690.72 223
PAPM_NR83.23 16183.19 15883.33 17990.90 14665.98 21688.19 9890.78 14578.13 11580.87 27587.92 24973.49 19892.42 15170.07 21988.40 28791.60 204
xiu_mvs_v1_base_debu80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base_debi80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
XXY-MVS74.44 27876.19 25369.21 33684.61 27552.43 34671.70 34277.18 31160.73 30480.60 27890.96 18875.44 17269.35 36156.13 32488.33 28885.86 294
Fast-Effi-MVS+81.04 19580.57 20082.46 20287.50 21963.22 24278.37 27589.63 17968.01 23781.87 25882.08 33082.31 9792.65 14767.10 24688.30 29291.51 207
MDA-MVSNet-bldmvs77.47 24276.90 24779.16 25079.03 33764.59 22666.58 36575.67 32273.15 17788.86 12288.99 23366.94 24181.23 32464.71 27088.22 29391.64 203
PAPR78.84 22678.10 23681.07 22285.17 26860.22 28282.21 22290.57 15162.51 28075.32 33084.61 30274.99 17892.30 15759.48 30788.04 29490.68 226
BH-RMVSNet80.53 20280.22 20981.49 21687.19 22566.21 21477.79 28286.23 23174.21 15783.69 22888.50 23973.25 20490.75 20063.18 28387.90 29587.52 277
Effi-MVS+83.90 14984.01 14783.57 17487.22 22465.61 22086.55 12792.40 9678.64 10981.34 27084.18 30783.65 7992.93 14074.22 17387.87 29692.17 186
MVS_Test82.47 17283.22 15680.22 23682.62 30057.75 31082.54 21191.96 11071.16 20582.89 24292.52 14277.41 15090.50 20880.04 10887.84 29792.40 173
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20889.94 6290.36 15767.97 23984.94 20292.58 14072.71 20992.18 15970.63 21587.73 29888.85 262
PVSNet_Blended76.49 25575.40 26079.76 24184.43 27763.41 23875.14 31990.44 15457.36 32675.43 32778.30 36069.11 23291.44 17860.68 30187.70 29984.42 308
pmmvs570.73 30870.07 31172.72 31677.03 35052.73 34374.14 32575.65 32350.36 36372.17 34785.37 29155.42 31380.67 32752.86 34687.59 30084.77 304
IB-MVS62.13 1971.64 29968.97 32179.66 24480.80 32062.26 25973.94 32976.90 31363.27 27568.63 36276.79 37033.83 38891.84 17059.28 30887.26 30184.88 303
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 31168.80 32374.38 30680.91 31684.81 3959.12 38076.45 31855.06 33475.31 33182.36 32755.74 31054.82 39047.02 37087.24 30283.52 321
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16585.19 14677.42 30862.27 28684.47 21191.33 17476.43 16785.91 29183.14 7287.14 30394.33 90
fmvsm_s_conf0.5_n81.91 18581.30 19283.75 16886.02 25771.56 16684.73 15277.11 31262.44 28384.00 22590.68 19976.42 16885.89 29383.14 7287.11 30493.81 116
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13386.14 13177.70 30561.64 29285.02 19891.62 16777.75 14586.24 28382.79 8087.07 30593.91 109
pmmvs474.92 27172.98 28480.73 22884.95 26971.71 16376.23 30677.59 30652.83 34477.73 31086.38 27256.35 30784.97 30257.72 31787.05 30685.51 297
test_fmvs273.57 28372.80 28575.90 29772.74 38168.84 19177.07 29284.32 26145.14 37482.89 24284.22 30648.37 33870.36 35873.40 18987.03 30788.52 265
MIMVSNet71.09 30571.59 29769.57 33487.23 22350.07 36278.91 26671.83 35060.20 31071.26 35091.76 16455.08 31676.09 34441.06 38487.02 30882.54 336
fmvsm_s_conf0.5_n_a82.21 17681.51 18984.32 15486.56 23873.35 13385.46 14077.30 30961.81 28884.51 20890.88 19277.36 15186.21 28582.72 8186.97 30993.38 133
HyFIR lowres test75.12 26872.66 28882.50 20191.44 13365.19 22372.47 33887.31 21146.79 36780.29 28484.30 30552.70 32292.10 16351.88 35486.73 31090.22 237
test_vis3_rt71.42 30270.67 30473.64 31069.66 38770.46 17366.97 36489.73 17442.68 38488.20 13883.04 31743.77 36760.07 38665.35 26586.66 31190.39 235
MSDG80.06 21779.99 21680.25 23583.91 28768.04 19877.51 28789.19 18577.65 11981.94 25683.45 31476.37 16986.31 28263.31 28286.59 31286.41 287
Patchmatch-test65.91 33667.38 32861.48 36675.51 36343.21 38368.84 35563.79 37662.48 28172.80 34483.42 31544.89 36459.52 38848.27 36786.45 31381.70 344
mvs_anonymous78.13 23578.76 22776.23 29579.24 33550.31 36178.69 27084.82 25661.60 29383.09 24192.82 13173.89 19287.01 26968.33 24286.41 31491.37 208
IterMVS-SCA-FT80.64 20179.41 21884.34 15383.93 28669.66 18076.28 30581.09 28872.43 18786.47 17590.19 21260.46 27593.15 13377.45 14286.39 31590.22 237
E-PMN61.59 34861.62 35161.49 36566.81 39155.40 32553.77 38660.34 38566.80 25058.90 38965.50 38840.48 37766.12 37755.72 32686.25 31662.95 386
EMVS61.10 35160.81 35361.99 36365.96 39455.86 32253.10 38758.97 38867.06 24756.89 39263.33 38940.98 37567.03 37354.79 33586.18 31763.08 385
our_test_371.85 29771.59 29772.62 31780.71 32153.78 33569.72 35471.71 35358.80 31578.03 30380.51 34556.61 30578.84 33662.20 28886.04 31885.23 299
EU-MVSNet75.12 26874.43 27077.18 28183.11 29659.48 29085.71 13882.43 27739.76 38885.64 18988.76 23544.71 36587.88 26073.86 18185.88 31984.16 313
GA-MVS75.83 26174.61 26679.48 24781.87 30359.25 29273.42 33482.88 27268.68 23079.75 28981.80 33350.62 33189.46 23666.85 24885.64 32089.72 244
MVS73.21 28772.59 28975.06 30380.97 31560.81 27781.64 22985.92 23746.03 37271.68 34977.54 36368.47 23589.77 23155.70 32785.39 32174.60 373
PatchT70.52 30972.76 28763.79 36079.38 33333.53 39477.63 28465.37 37473.61 16571.77 34892.79 13444.38 36675.65 34764.53 27485.37 32282.18 340
TR-MVS76.77 25175.79 25679.72 24286.10 25665.79 21877.14 29083.02 27165.20 26881.40 26882.10 32866.30 24490.73 20255.57 32885.27 32382.65 332
BH-w/o76.57 25376.07 25578.10 26786.88 23565.92 21777.63 28486.33 22865.69 26080.89 27479.95 34968.97 23490.74 20153.01 34585.25 32477.62 367
Syy-MVS69.40 32170.03 31367.49 34581.72 30538.94 38771.00 34561.99 37861.38 29570.81 35472.36 38061.37 27179.30 33264.50 27585.18 32584.22 310
myMVS_eth3d64.66 34163.89 34366.97 34781.72 30537.39 39071.00 34561.99 37861.38 29570.81 35472.36 38020.96 40179.30 33249.59 36085.18 32584.22 310
IterMVS76.91 24876.34 25278.64 25680.91 31664.03 23376.30 30479.03 29964.88 27083.11 23989.16 23059.90 28184.46 30668.61 23885.15 32787.42 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23978.71 25584.39 28061.15 26981.18 23682.52 27562.45 28283.34 23687.37 25866.20 24588.66 25364.69 27185.02 32886.32 288
KD-MVS_2432*160066.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
miper_refine_blended66.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
test_fmvs1_n70.94 30670.41 30972.53 31973.92 37166.93 20675.99 31084.21 26343.31 38179.40 29379.39 35343.47 36868.55 36669.05 23184.91 33182.10 341
test-LLR67.21 32866.74 33368.63 34076.45 35655.21 32767.89 35867.14 36962.43 28465.08 37672.39 37843.41 36969.37 35961.00 29884.89 33281.31 349
test-mter65.00 34063.79 34468.63 34076.45 35655.21 32767.89 35867.14 36950.98 35865.08 37672.39 37828.27 39569.37 35961.00 29884.89 33281.31 349
PS-MVSNAJ77.04 24776.53 25078.56 25787.09 23061.40 26575.26 31887.13 21661.25 29774.38 33777.22 36876.94 15990.94 19264.63 27284.83 33483.35 325
xiu_mvs_v2_base77.19 24576.75 24878.52 25887.01 23261.30 26775.55 31687.12 21961.24 29874.45 33578.79 35777.20 15390.93 19364.62 27384.80 33583.32 326
pmmvs362.47 34460.02 35769.80 33271.58 38464.00 23470.52 34958.44 38939.77 38766.05 36975.84 37327.10 39872.28 35246.15 37484.77 33673.11 374
MDTV_nov1_ep1368.29 32678.03 34143.87 38174.12 32672.22 34752.17 34867.02 36885.54 28545.36 35880.85 32655.73 32584.42 337
test_fmvs169.57 31969.05 32071.14 32669.15 38865.77 21973.98 32883.32 26842.83 38377.77 30978.27 36143.39 37168.50 36768.39 24184.38 33879.15 364
1112_ss74.82 27373.74 27478.04 26989.57 17060.04 28376.49 30287.09 22054.31 33773.66 34079.80 35060.25 27886.76 27758.37 31184.15 33987.32 280
PatchMatch-RL74.48 27673.22 28178.27 26587.70 21385.26 3475.92 31170.09 35864.34 27276.09 32081.25 33865.87 24978.07 33853.86 33983.82 34071.48 376
MDA-MVSNet_test_wron70.05 31570.44 30768.88 33873.84 37253.47 33758.93 38267.28 36758.43 31687.09 15685.40 28959.80 28367.25 37259.66 30683.54 34185.92 293
YYNet170.06 31470.44 30768.90 33773.76 37353.42 33958.99 38167.20 36858.42 31787.10 15585.39 29059.82 28267.32 37159.79 30583.50 34285.96 291
Test_1112_low_res73.90 28173.08 28276.35 29190.35 15755.95 32073.40 33586.17 23250.70 36073.14 34185.94 28158.31 29285.90 29256.51 32183.22 34387.20 281
PVSNet58.17 2166.41 33465.63 33968.75 33981.96 30249.88 36362.19 37572.51 34551.03 35768.04 36475.34 37550.84 33074.77 34845.82 37682.96 34481.60 346
gg-mvs-nofinetune68.96 32469.11 31968.52 34276.12 35945.32 37683.59 18255.88 39186.68 2464.62 38097.01 730.36 39283.97 31144.78 37882.94 34576.26 369
CR-MVSNet74.00 28073.04 28376.85 28779.58 32962.64 25082.58 20876.90 31350.50 36275.72 32492.38 14448.07 34084.07 30968.72 23782.91 34683.85 317
RPMNet78.88 22578.28 23480.68 23079.58 32962.64 25082.58 20894.16 2774.80 15175.72 32492.59 13848.69 33795.56 3973.48 18782.91 34683.85 317
test_vis1_n70.29 31069.99 31471.20 32575.97 36066.50 21076.69 29880.81 29044.22 37775.43 32777.23 36750.00 33468.59 36566.71 25182.85 34878.52 366
test0.0.03 164.66 34164.36 34165.57 35375.03 36846.89 37364.69 36961.58 38362.43 28471.18 35277.54 36343.41 36968.47 36840.75 38582.65 34981.35 348
HY-MVS64.64 1873.03 28872.47 29274.71 30483.36 29154.19 33282.14 22581.96 28056.76 33069.57 35986.21 27860.03 27984.83 30449.58 36182.65 34985.11 301
SCA73.32 28472.57 29075.58 30081.62 30755.86 32278.89 26771.37 35461.73 28974.93 33383.42 31560.46 27587.01 26958.11 31582.63 35183.88 314
test_f64.31 34365.85 33659.67 36966.54 39262.24 26057.76 38370.96 35540.13 38684.36 21382.09 32946.93 34251.67 39261.99 29181.89 35265.12 384
CHOSEN 1792x268872.45 29270.56 30578.13 26690.02 16763.08 24368.72 35683.16 26942.99 38275.92 32285.46 28757.22 30185.18 30149.87 35981.67 35386.14 290
WTY-MVS67.91 32768.35 32566.58 34980.82 31948.12 36765.96 36672.60 34353.67 34071.20 35181.68 33558.97 28869.06 36348.57 36481.67 35382.55 335
TESTMET0.1,161.29 34960.32 35564.19 35872.06 38251.30 35467.89 35862.09 37745.27 37360.65 38569.01 38427.93 39664.74 38156.31 32281.65 35576.53 368
dmvs_re66.81 33266.98 33066.28 35076.87 35158.68 30371.66 34372.24 34660.29 30869.52 36073.53 37752.38 32364.40 38244.90 37781.44 35675.76 370
PAPM71.77 29870.06 31276.92 28486.39 24153.97 33376.62 30086.62 22653.44 34163.97 38184.73 30157.79 29892.34 15539.65 38681.33 35784.45 307
DSMNet-mixed60.98 35261.61 35259.09 37172.88 37945.05 37874.70 32246.61 39726.20 39365.34 37490.32 20855.46 31263.12 38441.72 38381.30 35869.09 380
sss66.92 32967.26 32965.90 35177.23 34751.10 35864.79 36871.72 35252.12 35170.13 35780.18 34757.96 29565.36 38050.21 35681.01 35981.25 351
tpm67.95 32668.08 32767.55 34478.74 34043.53 38275.60 31367.10 37154.92 33572.23 34688.10 24442.87 37375.97 34552.21 34880.95 36083.15 329
tpm268.45 32566.83 33273.30 31278.93 33948.50 36579.76 25171.76 35147.50 36669.92 35883.60 31142.07 37488.40 25548.44 36679.51 36183.01 331
FPMVS72.29 29572.00 29473.14 31388.63 19485.00 3674.65 32367.39 36671.94 19877.80 30887.66 25350.48 33275.83 34649.95 35779.51 36158.58 390
UnsupCasMVSNet_bld69.21 32269.68 31667.82 34379.42 33251.15 35667.82 36175.79 32054.15 33877.47 31285.36 29259.26 28670.64 35748.46 36579.35 36381.66 345
CostFormer69.98 31668.68 32473.87 30777.14 34850.72 35979.26 26074.51 32951.94 35270.97 35384.75 30045.16 36287.49 26455.16 33379.23 36483.40 324
131473.22 28672.56 29175.20 30180.41 32557.84 30881.64 22985.36 24251.68 35373.10 34276.65 37161.45 27085.19 30063.54 27979.21 36582.59 333
test_vis1_n_192071.30 30471.58 29970.47 32777.58 34559.99 28574.25 32484.22 26251.06 35674.85 33479.10 35455.10 31568.83 36468.86 23479.20 36682.58 334
baseline173.26 28573.54 27772.43 32084.92 27047.79 36979.89 25074.00 33265.93 25478.81 30086.28 27756.36 30681.63 32256.63 32079.04 36787.87 275
PMMVS61.65 34760.38 35465.47 35465.40 39669.26 18563.97 37161.73 38236.80 39260.11 38668.43 38559.42 28466.35 37648.97 36378.57 36860.81 387
baseline269.77 31766.89 33178.41 26179.51 33158.09 30576.23 30669.57 36157.50 32564.82 37977.45 36546.02 34888.44 25453.08 34277.83 36988.70 263
test_vis1_rt65.64 33864.09 34270.31 32866.09 39370.20 17661.16 37681.60 28538.65 38972.87 34369.66 38352.84 32060.04 38756.16 32377.77 37080.68 358
MS-PatchMatch70.93 30770.22 31073.06 31481.85 30462.50 25373.82 33177.90 30352.44 34775.92 32281.27 33755.67 31181.75 32055.37 33077.70 37174.94 372
UnsupCasMVSNet_eth71.63 30072.30 29369.62 33376.47 35552.70 34470.03 35380.97 28959.18 31379.36 29488.21 24360.50 27469.12 36258.33 31377.62 37287.04 282
CVMVSNet72.62 29171.41 30176.28 29383.25 29260.34 28183.50 18479.02 30037.77 39176.33 31685.10 29449.60 33687.41 26570.54 21677.54 37381.08 354
test_cas_vis1_n_192069.20 32369.12 31869.43 33573.68 37462.82 24770.38 35177.21 31046.18 37180.46 28378.95 35652.03 32465.53 37965.77 26177.45 37479.95 362
GG-mvs-BLEND67.16 34673.36 37546.54 37584.15 16455.04 39258.64 39061.95 39129.93 39383.87 31238.71 38876.92 37571.07 377
CHOSEN 280x42059.08 35556.52 36066.76 34876.51 35464.39 23049.62 38859.00 38743.86 37855.66 39368.41 38635.55 38768.21 37043.25 38076.78 37667.69 382
tpmvs70.16 31269.56 31771.96 32274.71 37048.13 36679.63 25275.45 32565.02 26970.26 35681.88 33245.34 35985.68 29658.34 31275.39 37782.08 342
MVP-Stereo75.81 26273.51 27882.71 19589.35 17573.62 13180.06 24685.20 24560.30 30773.96 33887.94 24757.89 29789.45 23752.02 34974.87 37885.06 302
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 35857.66 35949.76 37575.47 36430.59 39559.56 37751.45 39443.62 38062.49 38275.48 37440.96 37649.15 39437.39 38972.52 37969.55 379
mvsany_test365.48 33962.97 34673.03 31569.99 38676.17 11864.83 36743.71 39843.68 37980.25 28787.05 26752.83 32163.09 38551.92 35372.44 38079.84 363
PatchmatchNetpermissive69.71 31868.83 32272.33 32177.66 34453.60 33679.29 25969.99 35957.66 32372.53 34582.93 32046.45 34580.08 33160.91 30072.09 38183.31 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 35062.92 34755.87 37279.09 33635.34 39371.83 34157.98 39046.56 36959.05 38891.14 18049.95 33576.43 34338.74 38771.92 38255.84 391
tpmrst66.28 33566.69 33465.05 35672.82 38039.33 38678.20 27670.69 35753.16 34367.88 36580.36 34648.18 33974.75 34958.13 31470.79 38381.08 354
tpm cat166.76 33365.21 34071.42 32377.09 34950.62 36078.01 27773.68 33844.89 37568.64 36179.00 35545.51 35682.42 31949.91 35870.15 38481.23 353
ADS-MVSNet265.87 33763.64 34572.55 31873.16 37756.92 31667.10 36274.81 32649.74 36466.04 37082.97 31846.71 34377.26 34142.29 38169.96 38583.46 322
ADS-MVSNet61.90 34662.19 35061.03 36773.16 37736.42 39267.10 36261.75 38149.74 36466.04 37082.97 31846.71 34363.21 38342.29 38169.96 38583.46 322
JIA-IIPM69.41 32066.64 33577.70 27573.19 37671.24 16875.67 31265.56 37370.42 21165.18 37592.97 12633.64 38983.06 31453.52 34169.61 38778.79 365
dmvs_testset60.59 35462.54 34954.72 37477.26 34627.74 39774.05 32761.00 38460.48 30665.62 37367.03 38755.93 30968.23 36932.07 39469.46 38868.17 381
EPMVS62.47 34462.63 34862.01 36270.63 38538.74 38874.76 32152.86 39353.91 33967.71 36780.01 34839.40 37866.60 37555.54 32968.81 38980.68 358
MVEpermissive40.22 2351.82 36050.47 36355.87 37262.66 39851.91 34931.61 39139.28 40040.65 38550.76 39474.98 37656.24 30844.67 39533.94 39264.11 39071.04 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 35360.29 35661.92 36472.04 38338.67 38970.83 34764.08 37551.28 35560.75 38477.28 36636.59 38571.58 35647.41 36962.34 39175.52 371
mvsany_test158.48 35656.47 36164.50 35765.90 39568.21 19556.95 38442.11 39938.30 39065.69 37277.19 36956.96 30259.35 38946.16 37358.96 39265.93 383
PVSNet_051.08 2256.10 35754.97 36259.48 37075.12 36753.28 34055.16 38561.89 38044.30 37659.16 38762.48 39054.22 31765.91 37835.40 39047.01 39359.25 389
tmp_tt20.25 36324.50 3667.49 3794.47 4018.70 40334.17 39025.16 4021.00 39732.43 39618.49 39439.37 3799.21 39821.64 39643.75 3944.57 394
test_method30.46 36129.60 36433.06 37717.99 4003.84 40413.62 39273.92 3332.79 39518.29 39753.41 39228.53 39443.25 39622.56 39535.27 39552.11 392
DeepMVS_CXcopyleft24.13 37832.95 39929.49 39621.63 40312.07 39437.95 39545.07 39330.84 39119.21 39717.94 39733.06 39623.69 393
testmvs5.91 3677.65 3700.72 3811.20 4020.37 40659.14 3790.67 4050.49 3991.11 3992.76 3980.94 4040.24 4001.02 3991.47 3971.55 396
test1236.27 3668.08 3690.84 3801.11 4030.57 40562.90 3720.82 4040.54 3981.07 4002.75 3991.26 4030.30 3991.04 3981.26 3981.66 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k20.81 36227.75 3650.00 3820.00 4040.00 4070.00 39385.44 2410.00 4000.00 40182.82 32281.46 1130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.41 3658.55 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40076.94 1590.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re6.65 3648.87 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40179.80 3500.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS37.39 39052.61 347
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13694.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 404
eth-test0.00 404
test_241102_ONE94.18 4672.65 14193.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14790.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 314
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34783.88 314
sam_mvs45.92 352
MTGPAbinary91.81 118
test_post178.85 2693.13 39645.19 36180.13 33058.11 315
test_post3.10 39745.43 35777.22 342
patchmatchnet-post81.71 33445.93 35187.01 269
MTMP90.66 4433.14 401
gm-plane-assit75.42 36544.97 37952.17 34872.36 38087.90 25954.10 338
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 15892.85 8694.17 9292.80 156
旧先验281.73 22756.88 32986.54 17484.90 30372.81 198
新几何281.72 228
无先验82.81 20385.62 24058.09 31991.41 18167.95 24584.48 306
原ACMM282.26 221
testdata286.43 28163.52 280
segment_acmp81.94 105
testdata179.62 25373.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
n20.00 406
nn0.00 406
door-mid74.45 330
test1191.46 124
door72.57 344
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 14973.30 17280.55 280
ACMP_Plane91.19 13784.77 14973.30 17280.55 280
BP-MVS77.30 145
HQP4-MVS80.56 27994.61 7493.56 129
HQP2-MVS72.10 214
NP-MVS91.95 11074.55 12790.17 214
MDTV_nov1_ep13_2view27.60 39870.76 34846.47 37061.27 38345.20 36049.18 36283.75 319
Test By Simon79.09 134