This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
NR-MVSNet86.00 10586.22 10485.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
FC-MVSNet-test85.93 10787.05 9182.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
Baseline_NR-MVSNet84.00 14785.90 11078.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9186.99 9286.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25495.90 1585.01 5898.23 2797.49 13
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
WR-MVS83.56 15684.40 14281.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11486.27 10382.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
IU-MVS94.18 4672.64 14590.82 14456.98 33289.67 10885.78 5097.92 4693.28 137
CLD-MVS83.18 16382.64 17084.79 13989.05 18367.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9486.82 9786.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12082.70 16892.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 40086.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
Anonymous2024052180.18 21781.25 19576.95 28583.15 30160.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 29077.44 34473.71 18697.55 6792.56 166
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
MIMVSNet183.63 15484.59 13580.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
ACMMP++97.35 73
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
pmmvs686.52 9688.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 27079.30 22362.63 36675.56 36875.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39634.16 39697.11 8059.85 393
bld_raw_dy_0_6484.85 12484.44 13986.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30789.28 24385.15 5497.09 8193.99 103
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 335
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
EPP-MVSNet85.47 11285.04 12686.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
VDDNet84.35 13485.39 12181.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
VPNet80.25 21481.68 18375.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
VPA-MVSNet83.47 15984.73 13079.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
Gipumacopyleft84.44 13286.33 10278.78 25584.20 28573.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33276.14 15996.80 9082.36 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
CDPH-MVS86.17 10485.54 11888.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
KD-MVS_self_test81.93 18683.14 16178.30 26584.75 27552.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
TransMVSNet (Re)84.02 14685.74 11578.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
train_agg85.98 10685.28 12388.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
VDD-MVS84.23 14084.58 13683.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
MVS_030486.35 9885.92 10987.66 8889.21 18173.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
CS-MVS-test87.00 8786.43 10188.71 7289.46 17477.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
test111178.53 23578.85 22877.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32890.07 22365.36 26696.45 10395.11 62
test9_res80.83 10296.45 10390.57 229
Anonymous2024052986.20 10287.13 8883.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
PHI-MVS86.38 9785.81 11388.08 8288.44 20177.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
v1086.54 9587.10 8984.84 13788.16 20763.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
EC-MVSNet88.01 7588.32 7287.09 9389.28 17872.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
MM87.64 8387.15 8789.09 6589.51 17276.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
114514_t83.10 16682.54 17384.77 14192.90 8169.10 19286.65 12490.62 15054.66 34181.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
agg_prior279.68 11696.16 11490.22 237
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
EPNet80.37 21078.41 23686.23 11176.75 35873.28 13687.18 11177.45 30976.24 13168.14 36888.93 23665.41 25393.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testf189.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19385.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
pm-mvs183.69 15284.95 12879.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
test250674.12 28273.39 28276.28 29591.85 11544.20 38384.06 16748.20 40172.30 19381.90 25994.20 8127.22 40289.77 23164.81 27196.02 12194.87 67
ECVR-MVScopyleft78.44 23678.63 23277.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32989.82 22863.58 28096.02 12194.87 67
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2291.09 4012.23 40395.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
PC_three_145258.96 31790.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
ANet_high83.17 16485.68 11675.65 30081.24 31845.26 38079.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
iter_conf0578.81 23077.35 24583.21 18482.98 30460.75 28084.09 16688.34 19863.12 27784.25 22289.48 22531.41 39394.51 8176.64 15395.83 13294.38 88
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
cl____80.42 20880.23 21081.02 22679.99 33259.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26790.16 21676.31 15795.80 13593.65 123
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33259.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26690.16 21676.32 15695.80 13593.66 121
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 21880.56 20478.89 25389.19 18255.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30290.07 22363.80 27995.75 13890.68 226
ACMMP++_ref95.74 139
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 28082.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 300
tfpnnormal81.79 18982.95 16478.31 26488.93 18755.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19279.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3090.34 4791.38 2489.03 18484.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
v886.22 10186.83 9684.36 15187.82 21162.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
Vis-MVSNet (Re-imp)77.82 24177.79 24177.92 27388.82 18951.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30289.41 24057.22 32095.41 14493.05 148
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
FMVSNet184.55 13085.45 12081.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
NCCC87.36 8486.87 9588.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
Patchmtry76.56 25777.46 24273.83 31079.37 34046.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34383.98 31263.36 28395.31 15090.92 218
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17981.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
TinyColmap81.25 19582.34 17677.99 27285.33 26660.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 293
Anonymous20240521180.51 20681.19 19878.49 26188.48 19957.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
tttt051781.07 19779.58 22085.52 12888.99 18666.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38594.16 9479.36 12195.13 15595.93 42
DP-MVS Recon84.05 14583.22 15786.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
PCF-MVS74.62 1582.15 18080.92 20185.84 12289.43 17572.30 15580.53 24491.82 11657.36 33087.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 9986.47 10085.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
SDMVSNet81.90 18883.17 16078.10 26988.81 19062.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33170.06 22295.03 16091.21 211
sd_testset79.95 22281.39 19375.64 30188.81 19058.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34358.62 31295.03 16091.21 211
plane_prior76.42 11387.15 11275.94 13895.03 160
new-patchmatchnet70.10 31673.37 28360.29 37381.23 31916.95 40659.54 38374.62 32962.93 27880.97 27387.93 25062.83 27071.90 35855.24 33495.01 16392.00 192
v119284.57 12984.69 13484.21 15787.75 21362.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
v192192084.23 14084.37 14383.79 16687.64 21861.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
CL-MVSNet_self_test76.81 25377.38 24475.12 30486.90 23551.34 35573.20 33980.63 29468.30 23481.80 26488.40 24266.92 24480.90 32855.35 33394.90 16693.12 146
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
v14419284.24 13984.41 14183.71 17087.59 21961.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
LCM-MVSNet-Re83.48 15885.06 12578.75 25685.94 25955.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 15187.09 23165.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test188.40 6787.91 7589.88 4789.50 17386.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
v124084.30 13684.51 13883.65 17187.65 21761.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
MSLP-MVS++85.00 12286.03 10781.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 309
IterMVS-LS84.73 12684.98 12783.96 16287.35 22263.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 15383.69 15383.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 317
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
v114484.54 13184.72 13284.00 16087.67 21662.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
test20.0373.75 28574.59 27171.22 32781.11 32051.12 35970.15 35672.10 35070.42 21180.28 28891.50 17064.21 25974.72 35446.96 37494.58 17887.82 278
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9194.47 180
HQP-MVS84.61 12884.06 14786.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
c3_l81.64 19081.59 18781.79 21580.86 32459.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
MCST-MVS84.36 13383.93 15085.63 12691.59 12271.58 16683.52 18392.13 10461.82 28883.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
iter_conf_final80.36 21178.88 22684.79 13986.29 24966.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38894.51 8179.83 11394.30 18693.50 132
thisisatest053079.07 22577.33 24684.26 15687.13 22764.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38393.57 11875.47 16594.28 18794.62 74
baseline85.20 11785.93 10883.02 18886.30 24862.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
h-mvs3384.25 13882.76 16788.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26893.92 10078.26 13194.20 18989.63 247
alignmvs83.94 14983.98 14983.80 16587.80 21267.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
USDC76.63 25576.73 25276.34 29483.46 29357.20 31680.02 25088.04 20552.14 35583.65 23091.25 17663.24 26586.65 27954.66 33894.11 19185.17 304
MVS_111021_HR84.63 12784.34 14485.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
VNet79.31 22480.27 20976.44 29287.92 21053.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
FMVSNet281.31 19481.61 18680.41 23586.38 24358.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26290.22 21466.86 24993.92 19592.27 181
LF4IMVS82.75 16881.93 18085.19 13282.08 30780.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
canonicalmvs85.50 11186.14 10683.58 17487.97 20867.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
v2v48284.09 14384.24 14583.62 17287.13 22761.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
casdiffmvspermissive85.21 11685.85 11283.31 18186.17 25462.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet82.78 16781.64 18486.21 11386.20 25376.24 11786.86 11785.68 24077.07 12673.76 34292.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 325
AUN-MVS81.18 19678.78 22988.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33292.38 15376.29 15893.63 20290.65 228
hse-mvs283.47 15981.81 18288.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26892.41 15278.26 13193.62 20390.71 224
MVS_111021_LR84.28 13783.76 15285.83 12389.23 18083.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
GBi-Net82.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
test182.02 18382.07 17781.85 21186.38 24361.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26290.68 20365.95 25893.34 20593.82 113
FMVSNet378.80 23178.55 23379.57 24782.89 30556.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 33090.09 22265.95 25893.34 20591.72 199
test_fmvsmvis_n_192085.22 11585.36 12284.81 13885.80 26176.13 11985.15 14792.32 9961.40 29591.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
K. test v385.14 11884.73 13086.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27194.65 7280.58 10693.24 20994.83 72
Anonymous2023120671.38 30671.88 29869.88 33486.31 24754.37 33370.39 35474.62 32952.57 35176.73 31588.76 23759.94 28372.06 35744.35 38193.23 21083.23 333
D2MVS76.84 25275.67 26280.34 23680.48 33062.16 26373.50 33684.80 25957.61 32882.24 25287.54 25751.31 33187.65 26270.40 22093.19 21191.23 210
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 35960.97 27764.69 37485.04 25263.98 27483.20 23988.22 24456.67 30678.79 34173.22 19393.12 21292.78 157
新几何182.95 19193.96 5578.56 8480.24 29555.45 33783.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 348
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27292.93 14079.52 11993.03 21493.93 107
TAMVS78.08 23976.36 25483.23 18390.62 15272.87 14179.08 26680.01 29761.72 29181.35 27186.92 27063.96 26188.78 25150.61 35793.01 21588.04 272
ETV-MVS84.31 13583.91 15185.52 12888.58 19770.40 17684.50 16093.37 5878.76 10884.07 22478.72 36180.39 12595.13 6073.82 18492.98 21691.04 215
EPNet_dtu72.87 29371.33 30577.49 28077.72 34960.55 28282.35 21875.79 32266.49 25258.39 39681.06 34153.68 32185.98 29153.55 34292.97 21785.95 296
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
CANet83.79 15182.85 16686.63 10286.17 25472.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
API-MVS82.28 17582.61 17181.30 21986.29 24969.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 343
test_yl78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23378.51 23479.32 25084.32 28258.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29690.02 22562.74 28692.73 22189.10 258
testgi72.36 29674.61 26965.59 35780.56 32942.82 38868.29 36273.35 34166.87 24981.84 26189.93 21872.08 21866.92 37946.05 37792.54 22387.01 286
FMVSNet572.10 29971.69 29973.32 31381.57 31453.02 34376.77 29878.37 30463.31 27576.37 31791.85 15836.68 38778.98 33847.87 37092.45 22487.95 274
CDS-MVSNet77.32 24775.40 26383.06 18789.00 18572.48 15277.90 28282.17 28160.81 30478.94 30183.49 31559.30 28888.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 22779.39 22277.41 28184.78 27368.11 19875.60 31583.11 27260.96 30379.36 29689.89 22075.18 17672.97 35573.32 19292.30 22691.15 213
dcpmvs_284.23 14085.14 12481.50 21788.61 19661.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
CNLPA83.55 15783.10 16284.90 13689.34 17783.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32466.84 25192.29 22889.11 257
F-COLMAP84.97 12383.42 15489.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
thres600view775.97 26375.35 26577.85 27687.01 23351.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35789.05 24455.03 33692.24 23092.66 163
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27863.41 24079.49 25990.44 15461.70 29275.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
DELS-MVS81.44 19381.25 19582.03 20784.27 28462.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 24892.87 8272.34 15480.14 29659.91 31385.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 361
SSC-MVS77.55 24481.64 18465.29 36090.46 15520.33 40573.56 33568.28 36685.44 3288.18 13994.64 6070.93 22681.33 32671.25 20892.03 23494.20 92
cl2278.97 22678.21 23881.24 22277.74 34859.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29290.88 19775.36 16792.03 23493.84 111
miper_ehance_all_eth80.34 21280.04 21781.24 22279.82 33458.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36458.01 30975.47 31988.82 18958.05 32483.59 23180.69 34264.41 25791.20 18473.16 19992.03 23492.33 177
GeoE85.45 11385.81 11384.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
DPM-MVS80.10 21979.18 22482.88 19590.71 15169.74 18078.87 27090.84 14360.29 31075.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 299
v14882.31 17482.48 17481.81 21485.59 26359.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
test22293.31 7176.54 10979.38 26077.79 30652.59 35082.36 25190.84 19466.83 24591.69 24181.25 356
testing371.53 30470.79 30673.77 31188.89 18841.86 39076.60 30359.12 39172.83 18180.97 27382.08 33219.80 40787.33 26765.12 26891.68 24292.13 188
eth_miper_zixun_eth80.84 20080.22 21282.71 19781.41 31660.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25892.31 15675.23 16891.61 24394.85 71
pmmvs-eth3d78.42 23777.04 24882.57 20287.44 22174.41 12880.86 24279.67 29855.68 33684.69 20690.31 21060.91 27685.42 30062.20 29091.59 24487.88 276
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FE-MVS79.98 22178.86 22783.36 17986.47 24066.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36693.60 11463.93 27891.50 24690.04 243
thisisatest051573.00 29270.52 30980.46 23481.45 31559.90 28873.16 34074.31 33357.86 32576.08 32377.78 36537.60 38692.12 16265.00 26991.45 24789.35 252
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 32756.89 31971.53 34878.42 30358.24 32179.32 29882.92 32357.91 29984.26 31065.60 26491.36 24889.56 248
FA-MVS(test-final)83.13 16583.02 16383.43 17786.16 25666.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25592.50 15074.94 17291.30 24991.72 199
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20884.42 28068.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 282
EG-PatchMatch MVS84.08 14484.11 14683.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
3Dnovator80.37 784.80 12584.71 13385.06 13586.36 24674.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
thres100view90075.45 26775.05 26776.66 29187.27 22351.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35788.80 24851.98 35290.99 25389.31 253
tfpn200view974.86 27574.23 27476.74 29086.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 25152.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35188.80 24851.98 35290.99 25392.66 163
cascas76.29 26174.81 26880.72 23184.47 27762.94 24673.89 33387.34 21055.94 33575.16 33476.53 37563.97 26091.16 18665.00 26990.97 25688.06 271
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ab-mvs79.67 22380.56 20476.99 28488.48 19956.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
test_fmvsm_n_192083.60 15582.89 16585.74 12485.22 26877.74 9584.12 16590.48 15259.87 31486.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
MAR-MVS80.24 21578.74 23184.73 14286.87 23778.18 8885.75 13687.81 20765.67 26177.84 30878.50 36273.79 19490.53 20761.59 29890.87 25985.49 302
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28672.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29072.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19683.03 30368.11 19877.09 29376.51 31960.67 30777.60 31380.52 34638.04 38491.15 18770.78 21390.68 26489.17 256
EI-MVSNet82.61 16982.42 17583.20 18583.25 29763.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
MVSTER77.09 24975.70 26181.25 22075.27 37261.08 27277.49 29085.07 25060.78 30586.55 16988.68 23943.14 37590.25 21173.69 18790.67 26592.42 171
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21172.29 34269.16 36557.70 32686.76 16386.33 27645.79 35682.59 31969.63 22590.65 26781.54 352
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 36767.22 20381.21 23782.18 28050.78 36476.50 31687.66 25555.20 31782.99 31862.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.06 26280.01 21864.19 36389.96 16820.58 40472.18 34368.19 36783.21 5486.46 17693.49 11270.19 22978.97 33965.96 25790.46 26993.02 149
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17383.94 28773.90 13183.35 18886.10 23358.97 31683.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
V4283.47 15983.37 15683.75 16883.16 30063.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
PM-MVS80.20 21679.00 22583.78 16788.17 20686.66 1581.31 23466.81 37569.64 22088.33 13590.19 21364.58 25683.63 31571.99 20690.03 27281.06 361
PLCcopyleft73.85 1682.09 18180.31 20887.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n_a81.46 19280.87 20283.25 18283.73 29173.21 13983.00 19985.59 24258.22 32282.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
CANet_DTU77.81 24277.05 24780.09 24081.37 31759.90 28883.26 19088.29 20069.16 22467.83 37183.72 31260.93 27589.47 23569.22 23089.70 27590.88 219
diffmvspermissive80.40 20980.48 20780.17 23979.02 34460.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS255.64 36559.27 36444.74 38164.30 40312.32 40740.60 39449.79 40053.19 34765.06 38384.81 30153.60 32249.76 39832.68 39889.41 27772.15 380
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 12085.60 26276.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
thres20072.34 29771.55 30374.70 30783.48 29251.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34988.20 25846.99 37389.29 27884.32 314
jason77.42 24675.75 26082.43 20587.10 23069.27 18677.99 28081.94 28351.47 35977.84 30885.07 29960.32 28089.00 24570.74 21589.27 28089.03 261
jason: jason.
MG-MVS80.32 21380.94 20078.47 26288.18 20552.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
BH-untuned80.96 19980.99 19980.84 22888.55 19868.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 342
EIA-MVS82.19 17881.23 19785.10 13487.95 20969.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
PVSNet_Blended_VisFu81.55 19180.49 20684.70 14491.58 12573.24 13884.21 16291.67 12062.86 27980.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
MVSFormer82.23 17681.57 18984.19 15985.54 26469.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29394.27 8486.26 4088.77 28589.03 261
lupinMVS76.37 26074.46 27282.09 20685.54 26469.26 18776.79 29780.77 29350.68 36676.23 32082.82 32458.69 29388.94 24669.85 22388.77 28588.07 270
RPSCF88.00 7686.93 9491.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
test_fmvs375.72 26675.20 26677.27 28275.01 37569.47 18478.93 26784.88 25746.67 37387.08 15787.84 25250.44 33671.62 36077.42 14688.53 28890.72 223
PAPM_NR83.23 16283.19 15983.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
testing22266.93 33365.30 34471.81 32583.38 29545.83 37872.06 34467.50 36864.12 27369.68 36276.37 37627.34 40183.00 31738.88 38988.38 29086.62 290
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19288.31 20271.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29186.90 287
XXY-MVS74.44 28176.19 25669.21 33984.61 27652.43 34871.70 34677.18 31360.73 30680.60 28090.96 18875.44 17269.35 36656.13 32688.33 29185.86 298
Fast-Effi-MVS+81.04 19880.57 20382.46 20487.50 22063.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29591.51 207
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34364.59 22866.58 37075.67 32473.15 17788.86 12288.99 23566.94 24381.23 32764.71 27288.22 29691.64 203
PAPR78.84 22978.10 23981.07 22485.17 26960.22 28482.21 22490.57 15162.51 28175.32 33284.61 30474.99 17892.30 15759.48 30988.04 29790.68 226
BH-RMVSNet80.53 20580.22 21281.49 21887.19 22666.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29887.52 280
Effi-MVS+83.90 15084.01 14883.57 17587.22 22565.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29992.17 186
MVS_Test82.47 17383.22 15780.22 23882.62 30657.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 30092.40 173
QAPM82.59 17082.59 17282.58 20086.44 24166.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30188.85 264
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 24075.14 32190.44 15457.36 33075.43 32978.30 36369.11 23491.44 17860.68 30387.70 30284.42 313
pmmvs570.73 31170.07 31472.72 31877.03 35652.73 34574.14 32875.65 32550.36 36872.17 35085.37 29355.42 31680.67 33052.86 34887.59 30384.77 308
IB-MVS62.13 1971.64 30268.97 32579.66 24680.80 32662.26 26173.94 33276.90 31563.27 27668.63 36776.79 37333.83 39191.84 17059.28 31087.26 30484.88 307
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 31468.80 32774.38 30880.91 32284.81 3959.12 38576.45 32055.06 33975.31 33382.36 32955.74 31354.82 39547.02 37287.24 30583.52 326
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16486.87 23771.57 16785.19 14677.42 31062.27 28784.47 21191.33 17476.43 16785.91 29383.14 7287.14 30694.33 90
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16886.02 25871.56 16884.73 15277.11 31462.44 28484.00 22590.68 19976.42 16885.89 29583.14 7287.11 30793.81 116
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14687.68 21573.35 13486.14 13177.70 30761.64 29385.02 19891.62 16777.75 14586.24 28582.79 8187.07 30893.91 109
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16576.23 30877.59 30852.83 34977.73 31286.38 27456.35 31084.97 30457.72 31987.05 30985.51 301
test_fmvs273.57 28672.80 28875.90 29972.74 38768.84 19377.07 29484.32 26345.14 37982.89 24484.22 30848.37 34170.36 36373.40 19187.03 31088.52 267
MIMVSNet71.09 30871.59 30069.57 33787.23 22450.07 36478.91 26871.83 35260.20 31271.26 35391.76 16455.08 31976.09 34841.06 38687.02 31182.54 341
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15486.56 23973.35 13485.46 14077.30 31161.81 28984.51 20890.88 19277.36 15186.21 28782.72 8286.97 31293.38 133
HyFIR lowres test75.12 27172.66 29182.50 20391.44 13365.19 22572.47 34187.31 21146.79 37280.29 28684.30 30752.70 32592.10 16351.88 35686.73 31390.22 237
test_vis3_rt71.42 30570.67 30773.64 31269.66 39370.46 17566.97 36989.73 17442.68 38988.20 13883.04 31943.77 37060.07 39165.35 26786.66 31490.39 235
MSDG80.06 22079.99 21980.25 23783.91 28968.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31586.41 291
Patchmatch-test65.91 34167.38 33261.48 37175.51 36943.21 38768.84 36063.79 38062.48 28272.80 34783.42 31744.89 36759.52 39348.27 36986.45 31681.70 349
mvs_anonymous78.13 23878.76 23076.23 29779.24 34150.31 36378.69 27284.82 25861.60 29483.09 24292.82 13173.89 19387.01 26968.33 24486.41 31791.37 208
IterMVS-SCA-FT80.64 20479.41 22184.34 15383.93 28869.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27893.15 13377.45 14486.39 31890.22 237
E-PMN61.59 35461.62 35761.49 37066.81 39755.40 32753.77 39160.34 39066.80 25058.90 39465.50 39340.48 38066.12 38255.72 32886.25 31962.95 391
EMVS61.10 35760.81 35961.99 36865.96 40055.86 32453.10 39258.97 39367.06 24756.89 39763.33 39440.98 37867.03 37854.79 33786.18 32063.08 390
ETVMVS64.67 34663.34 35168.64 34383.44 29441.89 38969.56 35961.70 38761.33 29868.74 36575.76 37828.76 39779.35 33534.65 39586.16 32184.67 310
our_test_371.85 30071.59 30072.62 31980.71 32753.78 33769.72 35871.71 35558.80 31878.03 30580.51 34756.61 30878.84 34062.20 29086.04 32285.23 303
EU-MVSNet75.12 27174.43 27377.18 28383.11 30259.48 29285.71 13882.43 27939.76 39385.64 18988.76 23744.71 36887.88 26073.86 18385.88 32384.16 318
GA-MVS75.83 26474.61 26979.48 24981.87 30959.25 29473.42 33782.88 27468.68 23079.75 29181.80 33550.62 33489.46 23666.85 25085.64 32489.72 246
MVS73.21 29072.59 29275.06 30580.97 32160.81 27981.64 23185.92 23846.03 37771.68 35277.54 36668.47 23789.77 23155.70 32985.39 32574.60 378
PatchT70.52 31272.76 29063.79 36579.38 33933.53 39977.63 28665.37 37873.61 16571.77 35192.79 13444.38 36975.65 35164.53 27685.37 32682.18 345
TR-MVS76.77 25475.79 25979.72 24486.10 25765.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32782.65 337
BH-w/o76.57 25676.07 25878.10 26986.88 23665.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32877.62 372
Syy-MVS69.40 32470.03 31667.49 35081.72 31138.94 39271.00 34961.99 38261.38 29670.81 35772.36 38561.37 27479.30 33664.50 27785.18 32984.22 315
myMVS_eth3d64.66 34763.89 34866.97 35281.72 31137.39 39571.00 34961.99 38261.38 29670.81 35772.36 38520.96 40679.30 33649.59 36285.18 32984.22 315
IterMVS76.91 25176.34 25578.64 25880.91 32264.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28484.46 30868.61 24085.15 33187.42 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVSnew68.72 32869.01 32467.85 34783.22 29943.98 38474.93 32365.98 37655.09 33873.83 34179.11 35665.63 25271.89 35938.21 39285.04 33287.69 279
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24278.71 25784.39 28161.15 27181.18 23882.52 27762.45 28383.34 23787.37 26066.20 24788.66 25364.69 27385.02 33386.32 292
KD-MVS_2432*160066.87 33565.81 34170.04 33267.50 39547.49 37262.56 37879.16 29961.21 30177.98 30680.61 34325.29 40482.48 32053.02 34584.92 33480.16 365
miper_refine_blended66.87 33565.81 34170.04 33267.50 39547.49 37262.56 37879.16 29961.21 30177.98 30680.61 34325.29 40482.48 32053.02 34584.92 33480.16 365
test_fmvs1_n70.94 30970.41 31272.53 32173.92 37766.93 20875.99 31284.21 26543.31 38679.40 29579.39 35543.47 37168.55 37169.05 23384.91 33682.10 346
test-LLR67.21 33266.74 33768.63 34476.45 36255.21 32967.89 36367.14 37262.43 28565.08 38172.39 38343.41 37269.37 36461.00 30084.89 33781.31 354
test-mter65.00 34563.79 34968.63 34476.45 36255.21 32967.89 36367.14 37250.98 36365.08 38172.39 38328.27 39969.37 36461.00 30084.89 33781.31 354
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23161.40 26775.26 32087.13 21661.25 29974.38 33977.22 37176.94 15990.94 19264.63 27484.83 33983.35 330
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23361.30 26975.55 31887.12 21961.24 30074.45 33778.79 36077.20 15390.93 19364.62 27584.80 34083.32 331
pmmvs362.47 35060.02 36369.80 33571.58 39064.00 23670.52 35358.44 39439.77 39266.05 37475.84 37727.10 40372.28 35646.15 37684.77 34173.11 379
MDTV_nov1_ep1368.29 33078.03 34743.87 38574.12 32972.22 34952.17 35367.02 37385.54 28745.36 36180.85 32955.73 32784.42 342
test_fmvs169.57 32269.05 32371.14 32969.15 39465.77 22173.98 33183.32 27042.83 38877.77 31178.27 36443.39 37468.50 37268.39 24384.38 34379.15 369
1112_ss74.82 27673.74 27778.04 27189.57 17060.04 28576.49 30487.09 22054.31 34273.66 34379.80 35260.25 28186.76 27858.37 31384.15 34487.32 283
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21485.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34253.86 34183.82 34571.48 381
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34173.84 37853.47 33958.93 38767.28 37058.43 31987.09 15685.40 29159.80 28667.25 37759.66 30883.54 34685.92 297
YYNet170.06 31770.44 31068.90 34073.76 37953.42 34158.99 38667.20 37158.42 32087.10 15585.39 29259.82 28567.32 37659.79 30783.50 34785.96 295
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15755.95 32273.40 33886.17 23250.70 36573.14 34485.94 28358.31 29585.90 29456.51 32383.22 34887.20 284
PVSNet58.17 2166.41 33965.63 34368.75 34281.96 30849.88 36562.19 38072.51 34751.03 36268.04 36975.34 38050.84 33374.77 35245.82 37882.96 34981.60 351
gg-mvs-nofinetune68.96 32769.11 32268.52 34676.12 36545.32 37983.59 18255.88 39686.68 2464.62 38597.01 730.36 39583.97 31344.78 38082.94 35076.26 374
CR-MVSNet74.00 28373.04 28676.85 28979.58 33562.64 25282.58 21076.90 31550.50 36775.72 32692.38 14448.07 34384.07 31168.72 23982.91 35183.85 322
RPMNet78.88 22878.28 23780.68 23279.58 33562.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 34095.56 3973.48 18982.91 35183.85 322
test_vis1_n70.29 31369.99 31771.20 32875.97 36666.50 21276.69 30080.81 29244.22 38275.43 32977.23 37050.00 33768.59 37066.71 25382.85 35378.52 371
test0.0.03 164.66 34764.36 34665.57 35875.03 37446.89 37564.69 37461.58 38862.43 28571.18 35577.54 36643.41 37268.47 37340.75 38782.65 35481.35 353
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29654.19 33482.14 22781.96 28256.76 33469.57 36386.21 28060.03 28284.83 30649.58 36382.65 35485.11 305
SCA73.32 28772.57 29375.58 30281.62 31355.86 32478.89 26971.37 35661.73 29074.93 33583.42 31760.46 27887.01 26958.11 31782.63 35683.88 319
test_f64.31 34965.85 34059.67 37466.54 39862.24 26257.76 38870.96 35740.13 39184.36 21382.09 33146.93 34551.67 39761.99 29381.89 35765.12 389
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16763.08 24568.72 36183.16 27142.99 38775.92 32485.46 28957.22 30485.18 30349.87 36181.67 35886.14 294
WTY-MVS67.91 33168.35 32966.58 35480.82 32548.12 36965.96 37172.60 34553.67 34571.20 35481.68 33758.97 29169.06 36848.57 36681.67 35882.55 340
TESTMET0.1,161.29 35560.32 36164.19 36372.06 38851.30 35667.89 36362.09 38145.27 37860.65 39069.01 38927.93 40064.74 38656.31 32481.65 36076.53 373
dmvs_re66.81 33766.98 33466.28 35576.87 35758.68 30571.66 34772.24 34860.29 31069.52 36473.53 38252.38 32664.40 38744.90 37981.44 36175.76 375
PAPM71.77 30170.06 31576.92 28686.39 24253.97 33576.62 30286.62 22653.44 34663.97 38684.73 30357.79 30192.34 15539.65 38881.33 36284.45 312
DSMNet-mixed60.98 35861.61 35859.09 37672.88 38545.05 38174.70 32546.61 40226.20 39865.34 37990.32 20955.46 31563.12 38941.72 38581.30 36369.09 385
sss66.92 33467.26 33365.90 35677.23 35351.10 36064.79 37371.72 35452.12 35670.13 36080.18 34957.96 29865.36 38550.21 35881.01 36481.25 356
tpm67.95 33068.08 33167.55 34978.74 34643.53 38675.60 31567.10 37454.92 34072.23 34988.10 24642.87 37675.97 34952.21 35080.95 36583.15 334
tpm268.45 32966.83 33673.30 31478.93 34548.50 36779.76 25371.76 35347.50 37169.92 36183.60 31342.07 37788.40 25548.44 36879.51 36683.01 336
FPMVS72.29 29872.00 29773.14 31588.63 19585.00 3674.65 32667.39 36971.94 19877.80 31087.66 25550.48 33575.83 35049.95 35979.51 36658.58 395
UnsupCasMVSNet_bld69.21 32569.68 31967.82 34879.42 33851.15 35867.82 36675.79 32254.15 34377.47 31485.36 29459.26 28970.64 36248.46 36779.35 36881.66 350
CostFormer69.98 31968.68 32873.87 30977.14 35450.72 36179.26 26274.51 33151.94 35770.97 35684.75 30245.16 36587.49 26455.16 33579.23 36983.40 329
131473.22 28972.56 29475.20 30380.41 33157.84 31081.64 23185.36 24451.68 35873.10 34576.65 37461.45 27385.19 30263.54 28179.21 37082.59 338
test_vis1_n_192071.30 30771.58 30270.47 33077.58 35159.99 28774.25 32784.22 26451.06 36174.85 33679.10 35755.10 31868.83 36968.86 23679.20 37182.58 339
baseline173.26 28873.54 28072.43 32284.92 27147.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30981.63 32556.63 32279.04 37287.87 277
PMMVS61.65 35360.38 36065.47 35965.40 40269.26 18763.97 37661.73 38636.80 39760.11 39168.43 39059.42 28766.35 38148.97 36578.57 37360.81 392
baseline269.77 32066.89 33578.41 26379.51 33758.09 30776.23 30869.57 36357.50 32964.82 38477.45 36846.02 35188.44 25453.08 34477.83 37488.70 265
test_vis1_rt65.64 34364.09 34770.31 33166.09 39970.20 17861.16 38181.60 28738.65 39472.87 34669.66 38852.84 32360.04 39256.16 32577.77 37580.68 363
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31062.50 25573.82 33477.90 30552.44 35275.92 32481.27 33955.67 31481.75 32355.37 33277.70 37674.94 377
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33676.47 36152.70 34670.03 35780.97 29159.18 31579.36 29688.21 24560.50 27769.12 36758.33 31577.62 37787.04 285
CVMVSNet72.62 29471.41 30476.28 29583.25 29760.34 28383.50 18479.02 30237.77 39676.33 31885.10 29649.60 33987.41 26570.54 21877.54 37881.08 359
test_cas_vis1_n_192069.20 32669.12 32169.43 33873.68 38062.82 24970.38 35577.21 31246.18 37680.46 28578.95 35952.03 32765.53 38465.77 26377.45 37979.95 367
GG-mvs-BLEND67.16 35173.36 38146.54 37784.15 16455.04 39758.64 39561.95 39629.93 39683.87 31438.71 39176.92 38071.07 382
CHOSEN 280x42059.08 36156.52 36666.76 35376.51 36064.39 23249.62 39359.00 39243.86 38355.66 39868.41 39135.55 39068.21 37543.25 38276.78 38167.69 387
tpmvs70.16 31569.56 32071.96 32474.71 37648.13 36879.63 25475.45 32765.02 26970.26 35981.88 33445.34 36285.68 29858.34 31475.39 38282.08 347
MVP-Stereo75.81 26573.51 28182.71 19789.35 17673.62 13280.06 24885.20 24760.30 30973.96 34087.94 24957.89 30089.45 23752.02 35174.87 38385.06 306
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 36457.66 36549.76 38075.47 37030.59 40059.56 38251.45 39943.62 38562.49 38775.48 37940.96 37949.15 39937.39 39372.52 38469.55 384
mvsany_test365.48 34462.97 35273.03 31769.99 39276.17 11864.83 37243.71 40343.68 38480.25 28987.05 26952.83 32463.09 39051.92 35572.44 38579.84 368
PatchmatchNetpermissive69.71 32168.83 32672.33 32377.66 35053.60 33879.29 26169.99 36157.66 32772.53 34882.93 32246.45 34880.08 33460.91 30272.09 38683.31 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 35662.92 35355.87 37779.09 34235.34 39871.83 34557.98 39546.56 37459.05 39391.14 18049.95 33876.43 34738.74 39071.92 38755.84 396
tpmrst66.28 34066.69 33865.05 36172.82 38639.33 39178.20 27870.69 35953.16 34867.88 37080.36 34848.18 34274.75 35358.13 31670.79 38881.08 359
tpm cat166.76 33865.21 34571.42 32677.09 35550.62 36278.01 27973.68 34044.89 38068.64 36679.00 35845.51 35982.42 32249.91 36070.15 38981.23 358
ADS-MVSNet265.87 34263.64 35072.55 32073.16 38356.92 31867.10 36774.81 32849.74 36966.04 37582.97 32046.71 34677.26 34542.29 38369.96 39083.46 327
ADS-MVSNet61.90 35262.19 35661.03 37273.16 38336.42 39767.10 36761.75 38549.74 36966.04 37582.97 32046.71 34663.21 38842.29 38369.96 39083.46 327
JIA-IIPM69.41 32366.64 33977.70 27773.19 38271.24 17075.67 31465.56 37770.42 21165.18 38092.97 12633.64 39283.06 31653.52 34369.61 39278.79 370
dmvs_testset60.59 36062.54 35554.72 37977.26 35227.74 40274.05 33061.00 38960.48 30865.62 37867.03 39255.93 31268.23 37432.07 39969.46 39368.17 386
EPMVS62.47 35062.63 35462.01 36770.63 39138.74 39374.76 32452.86 39853.91 34467.71 37280.01 35039.40 38166.60 38055.54 33168.81 39480.68 363
MVEpermissive40.22 2351.82 36650.47 36955.87 37762.66 40451.91 35131.61 39639.28 40540.65 39050.76 39974.98 38156.24 31144.67 40033.94 39764.11 39571.04 383
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 35960.29 36261.92 36972.04 38938.67 39470.83 35164.08 37951.28 36060.75 38977.28 36936.59 38871.58 36147.41 37162.34 39675.52 376
mvsany_test158.48 36256.47 36764.50 36265.90 40168.21 19756.95 38942.11 40438.30 39565.69 37777.19 37256.96 30559.35 39446.16 37558.96 39765.93 388
PVSNet_051.08 2256.10 36354.97 36859.48 37575.12 37353.28 34255.16 39061.89 38444.30 38159.16 39262.48 39554.22 32065.91 38335.40 39447.01 39859.25 394
tmp_tt20.25 36924.50 3727.49 3844.47 4078.70 40834.17 39525.16 4071.00 40232.43 40118.49 39939.37 3829.21 40321.64 40143.75 3994.57 399
test_method30.46 36729.60 37033.06 38217.99 4063.84 40913.62 39773.92 3352.79 40018.29 40253.41 39728.53 39843.25 40122.56 40035.27 40052.11 397
DeepMVS_CXcopyleft24.13 38332.95 40529.49 40121.63 40812.07 39937.95 40045.07 39830.84 39419.21 40217.94 40233.06 40123.69 398
testmvs5.91 3737.65 3760.72 3861.20 4080.37 41159.14 3840.67 4100.49 4041.11 4042.76 4030.94 4090.24 4051.02 4041.47 4021.55 401
test1236.27 3728.08 3750.84 3851.11 4090.57 41062.90 3770.82 4090.54 4031.07 4052.75 4041.26 4080.30 4041.04 4031.26 4031.66 400
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k20.81 36827.75 3710.00 3870.00 4100.00 4120.00 39885.44 2430.00 4050.00 40682.82 32481.46 1130.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas6.41 3718.55 3740.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40576.94 1590.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re6.65 3708.87 3730.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40679.80 3520.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS37.39 39552.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 410
eth-test0.00 410
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 319
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35083.88 319
sam_mvs45.92 355
MTGPAbinary91.81 118
test_post178.85 2713.13 40145.19 36480.13 33358.11 317
test_post3.10 40245.43 36077.22 346
patchmatchnet-post81.71 33645.93 35487.01 269
MTMP90.66 4433.14 406
gm-plane-assit75.42 37144.97 38252.17 35372.36 38587.90 25954.10 340
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
旧先验281.73 22956.88 33386.54 17484.90 30572.81 200
新几何281.72 230
无先验82.81 20585.62 24158.09 32391.41 18167.95 24784.48 311
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
n20.00 411
nn0.00 411
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep13_2view27.60 40370.76 35246.47 37561.27 38845.20 36349.18 36483.75 324
Test By Simon79.09 134