| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 37 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 58 | 99.27 1 | 99.54 1 |
|
| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 46 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 6 | 80.16 133 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| WR-MVS_H | | | 89.91 50 | 91.31 33 | 85.71 128 | 96.32 9 | 62.39 264 | 89.54 79 | 93.31 70 | 90.21 12 | 95.57 11 | 95.66 33 | 81.42 119 | 95.90 17 | 80.94 103 | 98.80 3 | 98.84 5 |
|
| ACMP | | 79.16 10 | 90.54 35 | 90.60 49 | 90.35 45 | 94.36 46 | 80.98 69 | 89.16 86 | 94.05 41 | 79.03 108 | 92.87 49 | 93.74 111 | 90.60 11 | 95.21 61 | 82.87 82 | 98.76 4 | 94.87 68 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMH+ | | 77.89 11 | 90.73 31 | 91.50 25 | 88.44 78 | 93.00 81 | 76.26 119 | 89.65 75 | 95.55 8 | 87.72 26 | 93.89 30 | 94.94 52 | 91.62 3 | 93.44 128 | 78.35 133 | 98.76 4 | 95.61 48 |
|
| PS-CasMVS | | | 90.06 43 | 91.92 15 | 84.47 151 | 96.56 6 | 58.83 311 | 89.04 88 | 92.74 97 | 91.40 6 | 96.12 5 | 96.06 26 | 87.23 48 | 95.57 41 | 79.42 123 | 98.74 6 | 99.00 2 |
|
| LPG-MVS_test | | | 91.47 21 | 91.68 20 | 90.82 37 | 94.75 41 | 81.69 63 | 90.00 62 | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 59 |
|
| LGP-MVS_train | | | | | 90.82 37 | 94.75 41 | 81.69 63 | | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 59 |
|
| PEN-MVS | | | 90.03 45 | 91.88 18 | 84.48 150 | 96.57 5 | 58.88 308 | 88.95 89 | 93.19 75 | 91.62 5 | 96.01 7 | 96.16 24 | 87.02 50 | 95.60 40 | 78.69 129 | 98.72 9 | 98.97 3 |
|
| CP-MVSNet | | | 89.27 62 | 90.91 44 | 84.37 152 | 96.34 8 | 58.61 314 | 88.66 97 | 92.06 115 | 90.78 7 | 95.67 8 | 95.17 47 | 81.80 115 | 95.54 44 | 79.00 127 | 98.69 10 | 98.95 4 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 81 | 88.76 74 | 85.18 136 | 94.02 58 | 64.13 240 | 84.38 172 | 91.29 139 | 84.88 44 | 92.06 65 | 93.84 105 | 86.45 58 | 93.73 111 | 73.22 202 | 98.66 11 | 97.69 9 |
|
| NR-MVSNet | | | 86.00 107 | 86.22 107 | 85.34 134 | 93.24 76 | 64.56 236 | 82.21 234 | 90.46 161 | 80.99 82 | 88.42 137 | 91.97 163 | 77.56 155 | 93.85 107 | 72.46 212 | 98.65 12 | 97.61 10 |
|
| UA-Net | | | 91.49 19 | 91.53 24 | 91.39 27 | 94.98 35 | 82.95 58 | 93.52 7 | 92.79 95 | 88.22 22 | 88.53 133 | 97.64 3 | 83.45 86 | 94.55 83 | 86.02 51 | 98.60 13 | 96.67 25 |
|
| FC-MVSNet-test | | | 85.93 109 | 87.05 94 | 82.58 206 | 92.25 101 | 56.44 330 | 85.75 146 | 93.09 81 | 77.33 130 | 91.94 68 | 94.65 61 | 74.78 189 | 93.41 130 | 75.11 178 | 98.58 14 | 97.88 7 |
|
| DTE-MVSNet | | | 89.98 47 | 91.91 17 | 84.21 160 | 96.51 7 | 57.84 319 | 88.93 90 | 92.84 94 | 91.92 4 | 96.16 4 | 96.23 21 | 86.95 51 | 95.99 12 | 79.05 126 | 98.57 15 | 98.80 6 |
|
| UniMVSNet (Re) | | | 86.87 91 | 86.98 96 | 86.55 106 | 93.11 79 | 68.48 199 | 83.80 187 | 92.87 92 | 80.37 87 | 89.61 113 | 91.81 170 | 77.72 153 | 94.18 95 | 75.00 179 | 98.53 16 | 96.99 22 |
|
| Baseline_NR-MVSNet | | | 84.00 153 | 85.90 114 | 78.29 275 | 91.47 134 | 53.44 353 | 82.29 230 | 87.00 233 | 79.06 107 | 89.55 115 | 95.72 32 | 77.20 160 | 86.14 297 | 72.30 213 | 98.51 17 | 95.28 56 |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 50 | 96.29 19 | 88.16 35 | 94.17 97 | 86.07 48 | 98.48 18 | 97.22 17 |
|
| ACMM | | 79.39 9 | 90.65 32 | 90.99 41 | 89.63 57 | 95.03 34 | 83.53 51 | 89.62 76 | 93.35 66 | 79.20 105 | 93.83 31 | 93.60 116 | 90.81 7 | 92.96 144 | 85.02 60 | 98.45 19 | 92.41 177 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MP-MVS-pluss | | | 90.81 30 | 91.08 37 | 89.99 50 | 95.97 14 | 79.88 75 | 88.13 102 | 94.51 18 | 75.79 147 | 92.94 47 | 94.96 51 | 88.36 30 | 95.01 68 | 90.70 3 | 98.40 20 | 95.09 64 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| CP-MVS | | | 91.67 16 | 91.58 23 | 91.96 14 | 95.29 31 | 87.62 13 | 93.38 9 | 93.36 65 | 83.16 60 | 91.06 82 | 94.00 95 | 88.26 32 | 95.71 37 | 87.28 30 | 98.39 21 | 92.55 170 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 93 | 87.06 93 | 86.17 118 | 92.86 86 | 67.02 213 | 82.55 222 | 91.56 129 | 83.08 62 | 90.92 84 | 91.82 169 | 78.25 147 | 93.99 102 | 74.16 184 | 98.35 22 | 97.49 13 |
|
| DU-MVS | | | 86.80 94 | 86.99 95 | 86.21 116 | 93.24 76 | 67.02 213 | 83.16 205 | 92.21 110 | 81.73 74 | 90.92 84 | 91.97 163 | 77.20 160 | 93.99 102 | 74.16 184 | 98.35 22 | 97.61 10 |
|
| MTAPA | | | 91.52 18 | 91.60 22 | 91.29 30 | 96.59 4 | 86.29 21 | 92.02 33 | 91.81 126 | 84.07 49 | 92.00 66 | 94.40 76 | 86.63 54 | 95.28 58 | 88.59 9 | 98.31 24 | 92.30 184 |
|
| ACMH | | 76.49 14 | 89.34 59 | 91.14 35 | 83.96 165 | 92.50 94 | 70.36 179 | 89.55 77 | 93.84 52 | 81.89 73 | 94.70 17 | 95.44 40 | 90.69 8 | 88.31 264 | 83.33 74 | 98.30 25 | 93.20 143 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| reproduce_model | | | 92.89 5 | 93.18 7 | 92.01 13 | 94.20 49 | 88.23 9 | 92.87 13 | 94.32 21 | 90.25 11 | 95.65 9 | 95.74 30 | 87.75 41 | 95.72 36 | 89.60 4 | 98.27 26 | 92.08 195 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 13 | 91.95 14 | 92.04 11 | 93.68 65 | 86.15 24 | 93.37 10 | 95.10 13 | 90.28 10 | 92.11 63 | 95.03 50 | 89.75 20 | 94.93 70 | 79.95 114 | 98.27 26 | 95.04 65 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| reproduce-ours | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 206 |
|
| our_new_method | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 206 |
|
| ACMMP |  | | 91.91 14 | 91.87 19 | 92.03 12 | 95.53 27 | 85.91 28 | 93.35 11 | 94.16 32 | 82.52 67 | 92.39 61 | 94.14 89 | 89.15 25 | 95.62 39 | 87.35 27 | 98.24 30 | 94.56 78 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| HPM-MVS |  | | 92.13 11 | 92.20 13 | 91.91 17 | 95.58 26 | 84.67 46 | 93.51 8 | 94.85 15 | 82.88 64 | 91.77 70 | 93.94 102 | 90.55 12 | 95.73 35 | 88.50 10 | 98.23 31 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| test_0728_THIRD | | | | | | | | | | 85.33 38 | 93.75 34 | 94.65 61 | 87.44 46 | 95.78 32 | 87.41 25 | 98.21 32 | 92.98 154 |
|
| MP-MVS |  | | 91.14 28 | 90.91 44 | 91.83 20 | 96.18 11 | 86.88 17 | 92.20 30 | 93.03 86 | 82.59 66 | 88.52 134 | 94.37 78 | 86.74 53 | 95.41 53 | 86.32 42 | 98.21 32 | 93.19 144 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| SteuartSystems-ACMMP | | | 91.16 27 | 91.36 28 | 90.55 41 | 93.91 60 | 80.97 70 | 91.49 40 | 93.48 63 | 82.82 65 | 92.60 57 | 93.97 96 | 88.19 33 | 96.29 6 | 87.61 20 | 98.20 34 | 94.39 89 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MSC_two_6792asdad | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 147 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 179 |
|
| No_MVS | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 147 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 179 |
|
| HPM-MVS_fast | | | 92.50 8 | 92.54 9 | 92.37 6 | 95.93 16 | 85.81 33 | 92.99 12 | 94.23 27 | 85.21 40 | 92.51 58 | 95.13 48 | 90.65 9 | 95.34 55 | 88.06 12 | 98.15 37 | 95.95 40 |
|
| mPP-MVS | | | 91.69 15 | 91.47 26 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 18 | 92.60 101 | 83.09 61 | 91.54 72 | 94.25 83 | 87.67 44 | 95.51 47 | 87.21 31 | 98.11 38 | 93.12 148 |
|
| WR-MVS | | | 83.56 163 | 84.40 149 | 81.06 234 | 93.43 70 | 54.88 343 | 78.67 283 | 85.02 263 | 81.24 79 | 90.74 90 | 91.56 177 | 72.85 215 | 91.08 195 | 68.00 255 | 98.04 39 | 97.23 16 |
|
| XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 43 | 94.91 37 | 84.50 48 | 89.49 81 | 93.98 43 | 79.68 97 | 92.09 64 | 93.89 104 | 83.80 81 | 93.10 140 | 82.67 86 | 98.04 39 | 93.64 125 |
|
| DeepC-MVS | | 82.31 4 | 89.15 64 | 89.08 66 | 89.37 62 | 93.64 66 | 79.07 83 | 88.54 98 | 94.20 30 | 73.53 174 | 89.71 107 | 94.82 56 | 85.09 68 | 95.77 34 | 84.17 69 | 98.03 41 | 93.26 141 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| FIs | | | 85.35 118 | 86.27 106 | 82.60 205 | 91.86 116 | 57.31 323 | 85.10 159 | 93.05 83 | 75.83 146 | 91.02 83 | 93.97 96 | 73.57 203 | 92.91 148 | 73.97 190 | 98.02 42 | 97.58 12 |
|
| Anonymous20231211 | | | 88.40 71 | 89.62 59 | 84.73 144 | 90.46 157 | 65.27 229 | 88.86 91 | 93.02 87 | 87.15 28 | 93.05 46 | 97.10 8 | 82.28 105 | 92.02 170 | 76.70 157 | 97.99 43 | 96.88 23 |
|
| PGM-MVS | | | 91.20 26 | 90.95 43 | 91.93 15 | 95.67 23 | 85.85 31 | 90.00 62 | 93.90 48 | 80.32 89 | 91.74 71 | 94.41 75 | 88.17 34 | 95.98 13 | 86.37 41 | 97.99 43 | 93.96 106 |
|
| APDe-MVS |  | | 91.22 25 | 91.92 15 | 89.14 66 | 92.97 82 | 78.04 93 | 92.84 16 | 94.14 36 | 83.33 58 | 93.90 28 | 95.73 31 | 88.77 27 | 96.41 3 | 87.60 21 | 97.98 45 | 92.98 154 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DVP-MVS |  | | 90.06 43 | 91.32 32 | 86.29 111 | 94.16 53 | 72.56 151 | 90.54 52 | 91.01 147 | 83.61 55 | 93.75 34 | 94.65 61 | 89.76 18 | 95.78 32 | 86.42 39 | 97.97 46 | 90.55 242 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 86.79 102 | 94.25 48 | 72.45 155 | 90.54 52 | 94.10 39 | | | | | 95.88 18 | 86.42 39 | 97.97 46 | 92.02 198 |
|
| ZNCC-MVS | | | 91.26 24 | 91.34 31 | 91.01 34 | 95.73 21 | 83.05 56 | 92.18 31 | 94.22 29 | 80.14 92 | 91.29 78 | 93.97 96 | 87.93 40 | 95.87 20 | 88.65 8 | 97.96 48 | 94.12 101 |
|
| SED-MVS | | | 90.46 37 | 91.64 21 | 86.93 99 | 94.18 50 | 72.65 145 | 90.47 55 | 93.69 56 | 83.77 52 | 94.11 26 | 94.27 79 | 90.28 14 | 95.84 24 | 86.03 49 | 97.92 49 | 92.29 185 |
|
| IU-MVS | | | | | | 94.18 50 | 72.64 147 | | 90.82 152 | 56.98 348 | 89.67 109 | | | | 85.78 52 | 97.92 49 | 93.28 139 |
|
| CLD-MVS | | | 83.18 170 | 82.64 178 | 84.79 142 | 89.05 184 | 67.82 207 | 77.93 291 | 92.52 102 | 68.33 244 | 85.07 208 | 81.54 352 | 82.06 108 | 92.96 144 | 69.35 237 | 97.91 51 | 93.57 130 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| IS-MVSNet | | | 86.66 97 | 86.82 100 | 86.17 118 | 92.05 109 | 66.87 216 | 91.21 43 | 88.64 203 | 86.30 33 | 89.60 114 | 92.59 145 | 69.22 242 | 94.91 71 | 73.89 191 | 97.89 52 | 96.72 24 |
|
| ACMMP_NAP | | | 90.65 32 | 91.07 39 | 89.42 61 | 95.93 16 | 79.54 80 | 89.95 66 | 93.68 58 | 77.65 126 | 91.97 67 | 94.89 53 | 88.38 29 | 95.45 51 | 89.27 5 | 97.87 53 | 93.27 140 |
|
| test_241102_TWO | | | | | | | | | 93.71 55 | 83.77 52 | 93.49 39 | 94.27 79 | 89.27 23 | 95.84 24 | 86.03 49 | 97.82 54 | 92.04 197 |
|
| DPE-MVS |  | | 90.53 36 | 91.08 37 | 88.88 69 | 93.38 71 | 78.65 87 | 89.15 87 | 94.05 41 | 84.68 45 | 93.90 28 | 94.11 91 | 88.13 36 | 96.30 5 | 84.51 66 | 97.81 55 | 91.70 210 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| OurMVSNet-221017-0 | | | 90.01 46 | 89.74 56 | 90.83 36 | 93.16 78 | 80.37 72 | 91.91 36 | 93.11 79 | 81.10 81 | 95.32 14 | 97.24 7 | 72.94 214 | 94.85 72 | 85.07 58 | 97.78 56 | 97.26 15 |
|
| SMA-MVS |  | | 90.31 38 | 90.48 50 | 89.83 54 | 95.31 30 | 79.52 81 | 90.98 47 | 93.24 74 | 75.37 155 | 92.84 51 | 95.28 44 | 85.58 67 | 96.09 8 | 87.92 14 | 97.76 57 | 93.88 110 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMMPR | | | 91.49 19 | 91.35 30 | 91.92 16 | 95.74 20 | 85.88 30 | 92.58 22 | 93.25 73 | 81.99 70 | 91.40 74 | 94.17 88 | 87.51 45 | 95.87 20 | 87.74 16 | 97.76 57 | 93.99 104 |
|
| HFP-MVS | | | 91.30 23 | 91.39 27 | 91.02 33 | 95.43 29 | 84.66 47 | 92.58 22 | 93.29 72 | 81.99 70 | 91.47 73 | 93.96 99 | 88.35 31 | 95.56 42 | 87.74 16 | 97.74 59 | 92.85 157 |
|
| region2R | | | 91.44 22 | 91.30 34 | 91.87 19 | 95.75 19 | 85.90 29 | 92.63 21 | 93.30 71 | 81.91 72 | 90.88 88 | 94.21 84 | 87.75 41 | 95.87 20 | 87.60 21 | 97.71 60 | 93.83 113 |
|
| GST-MVS | | | 90.96 29 | 91.01 40 | 90.82 37 | 95.45 28 | 82.73 59 | 91.75 38 | 93.74 54 | 80.98 83 | 91.38 75 | 93.80 106 | 87.20 49 | 95.80 28 | 87.10 34 | 97.69 61 | 93.93 107 |
|
| UniMVSNet_ETH3D | | | 89.12 65 | 90.72 47 | 84.31 158 | 97.00 2 | 64.33 239 | 89.67 74 | 88.38 206 | 88.84 17 | 94.29 22 | 97.57 4 | 90.48 13 | 91.26 189 | 72.57 211 | 97.65 62 | 97.34 14 |
|
| v7n | | | 90.13 40 | 90.96 42 | 87.65 91 | 91.95 112 | 71.06 173 | 89.99 64 | 93.05 83 | 86.53 31 | 94.29 22 | 96.27 20 | 82.69 93 | 94.08 100 | 86.25 45 | 97.63 63 | 97.82 8 |
|
| XVS | | | 91.54 17 | 91.36 28 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 94.03 93 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 94 |
|
| X-MVStestdata | | | 85.04 125 | 82.70 176 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 16.05 421 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 94 |
|
| SR-MVS-dyc-post | | | 92.41 9 | 92.41 10 | 92.39 5 | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 88.83 26 | 95.51 47 | 87.16 32 | 97.60 66 | 92.73 160 |
|
| RE-MVS-def | | | | 92.61 8 | | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 90.64 10 | | 87.16 32 | 97.60 66 | 92.73 160 |
|
| APD-MVS_3200maxsize | | | 92.05 12 | 92.24 12 | 91.48 25 | 93.02 80 | 85.17 39 | 92.47 26 | 95.05 14 | 87.65 27 | 93.21 43 | 94.39 77 | 90.09 17 | 95.08 66 | 86.67 38 | 97.60 66 | 94.18 97 |
|
| Anonymous20240521 | | | 80.18 227 | 81.25 204 | 76.95 294 | 83.15 316 | 60.84 287 | 82.46 225 | 85.99 246 | 68.76 239 | 86.78 170 | 93.73 112 | 59.13 299 | 77.44 361 | 73.71 195 | 97.55 69 | 92.56 169 |
|
| 9.14 | | | | 89.29 62 | | 91.84 119 | | 88.80 93 | 95.32 12 | 75.14 157 | 91.07 81 | 92.89 136 | 87.27 47 | 93.78 110 | 83.69 73 | 97.55 69 | |
|
| OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 76 | 86.76 127 | 92.78 96 | 78.78 111 | 92.51 58 | 93.64 115 | 88.13 36 | 93.84 109 | 84.83 63 | 97.55 69 | 94.10 102 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 22 | 93.73 64 | 85.72 34 | 96.79 1 | 95.51 9 | 88.86 16 | 95.63 10 | 96.99 10 | 84.81 72 | 93.16 137 | 91.10 2 | 97.53 72 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| SF-MVS | | | 90.27 39 | 90.80 46 | 88.68 76 | 92.86 86 | 77.09 108 | 91.19 44 | 95.74 6 | 81.38 78 | 92.28 62 | 93.80 106 | 86.89 52 | 94.64 78 | 85.52 54 | 97.51 73 | 94.30 93 |
|
| MIMVSNet1 | | | 83.63 161 | 84.59 141 | 80.74 238 | 94.06 57 | 62.77 257 | 82.72 216 | 84.53 272 | 77.57 128 | 90.34 93 | 95.92 28 | 76.88 172 | 85.83 305 | 61.88 306 | 97.42 74 | 93.62 126 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
| SR-MVS | | | 92.23 10 | 92.34 11 | 91.91 17 | 94.89 38 | 87.85 10 | 92.51 24 | 93.87 51 | 88.20 23 | 93.24 42 | 94.02 94 | 90.15 16 | 95.67 38 | 86.82 36 | 97.34 76 | 92.19 191 |
|
| nrg030 | | | 87.85 82 | 88.49 75 | 85.91 122 | 90.07 166 | 69.73 183 | 87.86 106 | 94.20 30 | 74.04 166 | 92.70 56 | 94.66 60 | 85.88 66 | 91.50 181 | 79.72 117 | 97.32 77 | 96.50 29 |
|
| pmmvs6 | | | 86.52 99 | 88.06 79 | 81.90 216 | 92.22 103 | 62.28 267 | 84.66 165 | 89.15 197 | 83.54 57 | 89.85 104 | 97.32 5 | 88.08 38 | 86.80 283 | 70.43 228 | 97.30 78 | 96.62 26 |
|
| SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 115 | 91.63 123 | 77.07 109 | 89.82 69 | 93.77 53 | 78.90 109 | 92.88 48 | 92.29 157 | 86.11 63 | 90.22 222 | 86.24 46 | 97.24 79 | 91.36 218 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CPTT-MVS | | | 89.39 58 | 88.98 69 | 90.63 40 | 95.09 33 | 86.95 16 | 92.09 32 | 92.30 109 | 79.74 96 | 87.50 157 | 92.38 152 | 81.42 119 | 93.28 133 | 83.07 78 | 97.24 79 | 91.67 211 |
|
| APD-MVS |  | | 89.54 56 | 89.63 58 | 89.26 64 | 92.57 91 | 81.34 68 | 90.19 61 | 93.08 82 | 80.87 85 | 91.13 80 | 93.19 122 | 86.22 62 | 95.97 14 | 82.23 92 | 97.18 81 | 90.45 244 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| wuyk23d | | | 75.13 280 | 79.30 233 | 62.63 385 | 75.56 385 | 75.18 126 | 80.89 251 | 73.10 356 | 75.06 158 | 94.76 16 | 95.32 41 | 87.73 43 | 52.85 416 | 34.16 415 | 97.11 82 | 59.85 412 |
|
| PMVS |  | 80.48 6 | 90.08 41 | 90.66 48 | 88.34 81 | 96.71 3 | 92.97 2 | 90.31 59 | 89.57 192 | 88.51 21 | 90.11 96 | 95.12 49 | 90.98 6 | 88.92 254 | 77.55 147 | 97.07 83 | 83.13 353 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| OMC-MVS | | | 88.19 74 | 87.52 85 | 90.19 48 | 91.94 114 | 81.68 65 | 87.49 112 | 93.17 76 | 76.02 141 | 88.64 130 | 91.22 185 | 84.24 78 | 93.37 131 | 77.97 143 | 97.03 84 | 95.52 49 |
|
| test_prior2 | | | | | | | | 83.37 197 | | 75.43 153 | 84.58 218 | 91.57 176 | 81.92 113 | | 79.54 121 | 96.97 85 | |
|
| EPP-MVSNet | | | 85.47 115 | 85.04 132 | 86.77 103 | 91.52 132 | 69.37 187 | 91.63 39 | 87.98 215 | 81.51 77 | 87.05 167 | 91.83 168 | 66.18 257 | 95.29 56 | 70.75 223 | 96.89 86 | 95.64 46 |
|
| VDDNet | | | 84.35 140 | 85.39 127 | 81.25 229 | 95.13 32 | 59.32 301 | 85.42 153 | 81.11 300 | 86.41 32 | 87.41 158 | 96.21 22 | 73.61 202 | 90.61 214 | 66.33 266 | 96.85 87 | 93.81 117 |
|
| VPNet | | | 80.25 224 | 81.68 191 | 75.94 308 | 92.46 95 | 47.98 383 | 76.70 311 | 81.67 296 | 73.45 176 | 84.87 214 | 92.82 138 | 74.66 192 | 86.51 288 | 61.66 309 | 96.85 87 | 93.33 136 |
|
| SixPastTwentyTwo | | | 87.20 89 | 87.45 87 | 86.45 108 | 92.52 93 | 69.19 192 | 87.84 107 | 88.05 213 | 81.66 75 | 94.64 18 | 96.53 17 | 65.94 258 | 94.75 74 | 83.02 80 | 96.83 89 | 95.41 51 |
|
| VPA-MVSNet | | | 83.47 166 | 84.73 136 | 79.69 254 | 90.29 160 | 57.52 322 | 81.30 246 | 88.69 202 | 76.29 137 | 87.58 156 | 94.44 71 | 80.60 129 | 87.20 275 | 66.60 264 | 96.82 90 | 94.34 91 |
|
| Gipuma |  | | 84.44 138 | 86.33 105 | 78.78 264 | 84.20 294 | 73.57 135 | 89.55 77 | 90.44 162 | 84.24 48 | 84.38 223 | 94.89 53 | 76.35 177 | 80.40 347 | 76.14 166 | 96.80 91 | 82.36 363 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| ZD-MVS | | | | | | 92.22 103 | 80.48 71 | | 91.85 122 | 71.22 214 | 90.38 92 | 92.98 131 | 86.06 64 | 96.11 7 | 81.99 95 | 96.75 92 | |
|
| CDPH-MVS | | | 86.17 106 | 85.54 123 | 88.05 86 | 92.25 101 | 75.45 124 | 83.85 184 | 92.01 116 | 65.91 267 | 86.19 186 | 91.75 173 | 83.77 82 | 94.98 69 | 77.43 150 | 96.71 93 | 93.73 120 |
|
| KD-MVS_self_test | | | 81.93 196 | 83.14 169 | 78.30 274 | 84.75 283 | 52.75 357 | 80.37 256 | 89.42 195 | 70.24 226 | 90.26 95 | 93.39 119 | 74.55 194 | 86.77 284 | 68.61 250 | 96.64 94 | 95.38 52 |
|
| DP-MVS | | | 88.60 70 | 89.01 67 | 87.36 93 | 91.30 136 | 77.50 101 | 87.55 109 | 92.97 90 | 87.95 25 | 89.62 111 | 92.87 137 | 84.56 73 | 93.89 106 | 77.65 145 | 96.62 95 | 90.70 236 |
|
| TransMVSNet (Re) | | | 84.02 152 | 85.74 120 | 78.85 263 | 91.00 146 | 55.20 342 | 82.29 230 | 87.26 221 | 79.65 98 | 88.38 139 | 95.52 37 | 83.00 90 | 86.88 281 | 67.97 256 | 96.60 96 | 94.45 84 |
|
| ambc | | | | | 82.98 195 | 90.55 156 | 64.86 233 | 88.20 100 | 89.15 197 | | 89.40 118 | 93.96 99 | 71.67 231 | 91.38 188 | 78.83 128 | 96.55 97 | 92.71 163 |
|
| train_agg | | | 85.98 108 | 85.28 129 | 88.07 85 | 92.34 98 | 79.70 78 | 83.94 180 | 90.32 168 | 65.79 269 | 84.49 220 | 90.97 194 | 81.93 111 | 93.63 115 | 81.21 100 | 96.54 98 | 90.88 230 |
|
| VDD-MVS | | | 84.23 146 | 84.58 142 | 83.20 189 | 91.17 142 | 65.16 232 | 83.25 201 | 84.97 266 | 79.79 95 | 87.18 160 | 94.27 79 | 74.77 190 | 90.89 203 | 69.24 238 | 96.54 98 | 93.55 133 |
|
| HPM-MVS++ |  | | 88.93 68 | 88.45 76 | 90.38 44 | 94.92 36 | 85.85 31 | 89.70 71 | 91.27 140 | 78.20 118 | 86.69 175 | 92.28 158 | 80.36 131 | 95.06 67 | 86.17 47 | 96.49 100 | 90.22 248 |
|
| test_djsdf | | | 89.62 54 | 89.01 67 | 91.45 26 | 92.36 97 | 82.98 57 | 91.98 34 | 90.08 179 | 71.54 208 | 94.28 24 | 96.54 16 | 81.57 117 | 94.27 89 | 86.26 43 | 96.49 100 | 97.09 19 |
|
| SPE-MVS-test | | | 87.00 90 | 86.43 104 | 88.71 74 | 89.46 176 | 77.46 102 | 89.42 84 | 95.73 7 | 77.87 124 | 81.64 280 | 87.25 275 | 82.43 98 | 94.53 84 | 77.65 145 | 96.46 102 | 94.14 100 |
|
| test1111 | | | 78.53 244 | 78.85 238 | 77.56 287 | 92.22 103 | 47.49 385 | 82.61 218 | 69.24 380 | 72.43 196 | 85.28 204 | 94.20 85 | 51.91 337 | 90.07 231 | 65.36 277 | 96.45 103 | 95.11 63 |
|
| test9_res | | | | | | | | | | | | | | | 80.83 105 | 96.45 103 | 90.57 240 |
|
| Anonymous20240529 | | | 86.20 104 | 87.13 91 | 83.42 183 | 90.19 162 | 64.55 237 | 84.55 167 | 90.71 154 | 85.85 36 | 89.94 103 | 95.24 46 | 82.13 107 | 90.40 218 | 69.19 241 | 96.40 105 | 95.31 55 |
|
| anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 8 | 89.82 171 | 86.67 18 | 90.51 54 | 90.20 176 | 69.87 229 | 95.06 15 | 96.14 25 | 84.28 77 | 93.07 141 | 87.68 18 | 96.34 106 | 97.09 19 |
|
| PHI-MVS | | | 86.38 100 | 85.81 117 | 88.08 84 | 88.44 204 | 77.34 105 | 89.35 85 | 93.05 83 | 73.15 187 | 84.76 216 | 87.70 265 | 78.87 142 | 94.18 95 | 80.67 108 | 96.29 107 | 92.73 160 |
|
| PS-MVSNAJss | | | 88.31 73 | 87.90 81 | 89.56 59 | 93.31 73 | 77.96 96 | 87.94 105 | 91.97 118 | 70.73 219 | 94.19 25 | 96.67 14 | 76.94 166 | 94.57 81 | 83.07 78 | 96.28 108 | 96.15 32 |
|
| v10 | | | 86.54 98 | 87.10 92 | 84.84 140 | 88.16 210 | 63.28 250 | 86.64 130 | 92.20 111 | 75.42 154 | 92.81 53 | 94.50 68 | 74.05 198 | 94.06 101 | 83.88 71 | 96.28 108 | 97.17 18 |
|
| CNVR-MVS | | | 87.81 83 | 87.68 83 | 88.21 83 | 92.87 84 | 77.30 107 | 85.25 155 | 91.23 141 | 77.31 131 | 87.07 166 | 91.47 179 | 82.94 91 | 94.71 75 | 84.67 64 | 96.27 110 | 92.62 167 |
|
| EC-MVSNet | | | 88.01 78 | 88.32 77 | 87.09 95 | 89.28 180 | 72.03 161 | 90.31 59 | 96.31 4 | 80.88 84 | 85.12 207 | 89.67 233 | 84.47 75 | 95.46 50 | 82.56 87 | 96.26 111 | 93.77 119 |
|
| mmtdpeth | | | 85.13 123 | 85.78 119 | 83.17 191 | 84.65 284 | 74.71 127 | 85.87 143 | 90.35 167 | 77.94 121 | 83.82 238 | 96.96 12 | 77.75 151 | 80.03 350 | 78.44 130 | 96.21 112 | 94.79 74 |
|
| MM | | | 87.64 85 | 87.15 90 | 89.09 67 | 89.51 174 | 76.39 118 | 88.68 96 | 86.76 234 | 84.54 46 | 83.58 244 | 93.78 108 | 73.36 210 | 96.48 2 | 87.98 13 | 96.21 112 | 94.41 88 |
|
| 114514_t | | | 83.10 173 | 82.54 181 | 84.77 143 | 92.90 83 | 69.10 194 | 86.65 129 | 90.62 158 | 54.66 360 | 81.46 282 | 90.81 204 | 76.98 165 | 94.38 87 | 72.62 210 | 96.18 114 | 90.82 232 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 118 | 96.16 115 | 90.22 248 |
|
| AllTest | | | 87.97 80 | 87.40 89 | 89.68 55 | 91.59 124 | 83.40 52 | 89.50 80 | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 182 | 70.81 220 | 96.14 116 | 94.16 98 |
|
| TestCases | | | | | 89.68 55 | 91.59 124 | 83.40 52 | | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 182 | 70.81 220 | 96.14 116 | 94.16 98 |
|
| EPNet | | | 80.37 220 | 78.41 246 | 86.23 113 | 76.75 374 | 73.28 139 | 87.18 116 | 77.45 320 | 76.24 138 | 68.14 385 | 88.93 245 | 65.41 261 | 93.85 107 | 69.47 236 | 96.12 118 | 91.55 215 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| testf1 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 246 | 74.12 186 | 96.10 119 | 94.45 84 |
|
| APD_test2 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 246 | 74.12 186 | 96.10 119 | 94.45 84 |
|
| pm-mvs1 | | | 83.69 159 | 84.95 134 | 79.91 250 | 90.04 168 | 59.66 298 | 82.43 226 | 87.44 218 | 75.52 152 | 87.85 150 | 95.26 45 | 81.25 121 | 85.65 307 | 68.74 248 | 96.04 121 | 94.42 87 |
|
| test2506 | | | 74.12 292 | 73.39 292 | 76.28 305 | 91.85 117 | 44.20 399 | 84.06 177 | 48.20 420 | 72.30 202 | 81.90 271 | 94.20 85 | 27.22 420 | 89.77 239 | 64.81 282 | 96.02 122 | 94.87 68 |
|
| ECVR-MVS |  | | 78.44 245 | 78.63 242 | 77.88 283 | 91.85 117 | 48.95 379 | 83.68 190 | 69.91 376 | 72.30 202 | 84.26 232 | 94.20 85 | 51.89 338 | 89.82 236 | 63.58 292 | 96.02 122 | 94.87 68 |
|
| mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 29 | 93.51 67 | 84.79 44 | 89.89 68 | 90.63 157 | 70.00 228 | 94.55 19 | 96.67 14 | 87.94 39 | 93.59 120 | 84.27 68 | 95.97 124 | 95.52 49 |
|
| EGC-MVSNET | | | 74.79 287 | 69.99 329 | 89.19 65 | 94.89 38 | 87.00 15 | 91.89 37 | 86.28 238 | 1.09 422 | 2.23 424 | 95.98 27 | 81.87 114 | 89.48 242 | 79.76 116 | 95.96 125 | 91.10 223 |
|
| MVS_0304 | | | 85.37 117 | 84.58 142 | 87.75 88 | 85.28 273 | 73.36 136 | 86.54 133 | 85.71 249 | 77.56 129 | 81.78 278 | 92.47 150 | 70.29 236 | 96.02 11 | 85.59 53 | 95.96 125 | 93.87 111 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 88 | 86.21 108 | 90.49 42 | 91.48 133 | 84.90 42 | 83.41 196 | 92.38 106 | 70.25 225 | 89.35 119 | 90.68 208 | 82.85 92 | 94.57 81 | 79.55 120 | 95.95 127 | 92.00 199 |
|
| DVP-MVS++ | | | 90.07 42 | 91.09 36 | 87.00 97 | 91.55 129 | 72.64 147 | 96.19 2 | 94.10 39 | 85.33 38 | 93.49 39 | 94.64 64 | 81.12 122 | 95.88 18 | 87.41 25 | 95.94 128 | 92.48 173 |
|
| PC_three_1452 | | | | | | | | | | 58.96 331 | 90.06 97 | 91.33 182 | 80.66 128 | 93.03 143 | 75.78 169 | 95.94 128 | 92.48 173 |
|
| jajsoiax | | | 89.41 57 | 88.81 73 | 91.19 32 | 93.38 71 | 84.72 45 | 89.70 71 | 90.29 173 | 69.27 232 | 94.39 20 | 96.38 18 | 86.02 65 | 93.52 124 | 83.96 70 | 95.92 130 | 95.34 53 |
|
| ANet_high | | | 83.17 171 | 85.68 121 | 75.65 310 | 81.24 333 | 45.26 396 | 79.94 261 | 92.91 91 | 83.83 51 | 91.33 76 | 96.88 13 | 80.25 132 | 85.92 300 | 68.89 245 | 95.89 131 | 95.76 42 |
|
| tt0805 | | | 88.09 77 | 89.79 55 | 82.98 195 | 93.26 75 | 63.94 243 | 91.10 45 | 89.64 189 | 85.07 41 | 90.91 86 | 91.09 190 | 89.16 24 | 91.87 175 | 82.03 93 | 95.87 132 | 93.13 146 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 57 | 90.92 35 | 91.27 138 | 81.66 66 | 91.25 42 | 94.13 37 | 88.89 15 | 88.83 126 | 94.26 82 | 77.55 156 | 95.86 23 | 84.88 61 | 95.87 132 | 95.24 58 |
|
| HQP_MVS | | | 87.75 84 | 87.43 88 | 88.70 75 | 93.45 68 | 76.42 116 | 89.45 82 | 93.61 59 | 79.44 101 | 86.55 177 | 92.95 134 | 74.84 187 | 95.22 59 | 80.78 106 | 95.83 134 | 94.46 82 |
|
| plane_prior5 | | | | | | | | | 93.61 59 | | | | | 95.22 59 | 80.78 106 | 95.83 134 | 94.46 82 |
|
| cl____ | | | 80.42 218 | 80.23 220 | 81.02 235 | 79.99 347 | 59.25 302 | 77.07 306 | 87.02 230 | 67.37 256 | 86.18 188 | 89.21 240 | 63.08 276 | 90.16 224 | 76.31 163 | 95.80 136 | 93.65 124 |
|
| DIV-MVS_self_test | | | 80.43 217 | 80.23 220 | 81.02 235 | 79.99 347 | 59.25 302 | 77.07 306 | 87.02 230 | 67.38 255 | 86.19 186 | 89.22 239 | 63.09 275 | 90.16 224 | 76.32 162 | 95.80 136 | 93.66 122 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 102 | 85.65 122 | 87.96 87 | 91.30 136 | 76.92 110 | 87.19 115 | 91.99 117 | 70.56 220 | 84.96 211 | 90.69 207 | 80.01 135 | 95.14 64 | 78.37 132 | 95.78 138 | 91.82 204 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| LFMVS | | | 80.15 228 | 80.56 214 | 78.89 262 | 89.19 183 | 55.93 332 | 85.22 156 | 73.78 349 | 82.96 63 | 84.28 230 | 92.72 143 | 57.38 311 | 90.07 231 | 63.80 291 | 95.75 139 | 90.68 237 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 140 | |
|
| 原ACMM1 | | | | | 84.60 147 | 92.81 89 | 74.01 132 | | 91.50 131 | 62.59 293 | 82.73 260 | 90.67 210 | 76.53 173 | 94.25 91 | 69.24 238 | 95.69 141 | 85.55 316 |
|
| tfpnnormal | | | 81.79 199 | 82.95 172 | 78.31 273 | 88.93 189 | 55.40 338 | 80.83 253 | 82.85 286 | 76.81 134 | 85.90 194 | 94.14 89 | 74.58 193 | 86.51 288 | 66.82 262 | 95.68 142 | 93.01 152 |
|
| mvs5depth | | | 83.82 157 | 84.54 144 | 81.68 223 | 82.23 321 | 68.65 197 | 86.89 121 | 89.90 183 | 80.02 94 | 87.74 152 | 97.86 2 | 64.19 267 | 82.02 335 | 76.37 161 | 95.63 143 | 94.35 90 |
|
| TAPA-MVS | | 77.73 12 | 85.71 112 | 84.83 135 | 88.37 80 | 88.78 194 | 79.72 77 | 87.15 117 | 93.50 62 | 69.17 233 | 85.80 195 | 89.56 234 | 80.76 126 | 92.13 166 | 73.21 207 | 95.51 144 | 93.25 142 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| LS3D | | | 90.60 34 | 90.34 51 | 91.38 28 | 89.03 185 | 84.23 49 | 93.58 6 | 94.68 17 | 90.65 8 | 90.33 94 | 93.95 101 | 84.50 74 | 95.37 54 | 80.87 104 | 95.50 145 | 94.53 81 |
|
| v8 | | | 86.22 103 | 86.83 99 | 84.36 154 | 87.82 217 | 62.35 266 | 86.42 134 | 91.33 138 | 76.78 135 | 92.73 55 | 94.48 70 | 73.41 207 | 93.72 112 | 83.10 77 | 95.41 146 | 97.01 21 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 250 | 77.79 251 | 77.92 282 | 88.82 191 | 51.29 370 | 83.28 199 | 71.97 364 | 74.04 166 | 82.23 266 | 89.78 231 | 57.38 311 | 89.41 248 | 57.22 333 | 95.41 146 | 93.05 150 |
|
| OPU-MVS | | | | | 88.27 82 | 91.89 115 | 77.83 97 | 90.47 55 | | | | 91.22 185 | 81.12 122 | 94.68 76 | 74.48 181 | 95.35 148 | 92.29 185 |
|
| FMVSNet1 | | | 84.55 136 | 85.45 125 | 81.85 218 | 90.27 161 | 61.05 282 | 86.83 124 | 88.27 210 | 78.57 115 | 89.66 110 | 95.64 34 | 75.43 180 | 90.68 211 | 69.09 242 | 95.33 149 | 93.82 114 |
|
| test12 | | | | | 86.57 105 | 90.74 151 | 72.63 149 | | 90.69 155 | | 82.76 259 | | 79.20 139 | 94.80 73 | | 95.32 150 | 92.27 187 |
|
| NCCC | | | 87.36 87 | 86.87 98 | 88.83 70 | 92.32 100 | 78.84 86 | 86.58 131 | 91.09 145 | 78.77 112 | 84.85 215 | 90.89 199 | 80.85 125 | 95.29 56 | 81.14 101 | 95.32 150 | 92.34 182 |
|
| Patchmtry | | | 76.56 267 | 77.46 252 | 73.83 322 | 79.37 356 | 46.60 389 | 82.41 227 | 76.90 326 | 73.81 169 | 85.56 200 | 92.38 152 | 48.07 353 | 83.98 324 | 63.36 295 | 95.31 152 | 90.92 228 |
|
| XVG-OURS | | | 89.18 63 | 88.83 72 | 90.23 47 | 94.28 47 | 86.11 26 | 85.91 141 | 93.60 61 | 80.16 91 | 89.13 123 | 93.44 118 | 83.82 80 | 90.98 198 | 83.86 72 | 95.30 153 | 93.60 128 |
|
| TSAR-MVS + GP. | | | 83.95 154 | 82.69 177 | 87.72 89 | 89.27 181 | 81.45 67 | 83.72 189 | 81.58 298 | 74.73 160 | 85.66 196 | 86.06 294 | 72.56 220 | 92.69 152 | 75.44 174 | 95.21 154 | 89.01 275 |
|
| test_0402 | | | 88.65 69 | 89.58 60 | 85.88 124 | 92.55 92 | 72.22 159 | 84.01 178 | 89.44 194 | 88.63 20 | 94.38 21 | 95.77 29 | 86.38 61 | 93.59 120 | 79.84 115 | 95.21 154 | 91.82 204 |
|
| TinyColmap | | | 81.25 205 | 82.34 184 | 77.99 281 | 85.33 272 | 60.68 289 | 82.32 229 | 88.33 208 | 71.26 213 | 86.97 168 | 92.22 161 | 77.10 163 | 86.98 279 | 62.37 300 | 95.17 156 | 86.31 308 |
|
| Anonymous202405211 | | | 80.51 216 | 81.19 207 | 78.49 270 | 88.48 202 | 57.26 324 | 76.63 313 | 82.49 289 | 81.21 80 | 84.30 229 | 92.24 160 | 67.99 248 | 86.24 292 | 62.22 301 | 95.13 157 | 91.98 201 |
|
| tttt0517 | | | 81.07 207 | 79.58 230 | 85.52 131 | 88.99 187 | 66.45 220 | 87.03 119 | 75.51 337 | 73.76 170 | 88.32 141 | 90.20 221 | 37.96 398 | 94.16 99 | 79.36 124 | 95.13 157 | 95.93 41 |
|
| DP-MVS Recon | | | 84.05 151 | 83.22 165 | 86.52 107 | 91.73 122 | 75.27 125 | 83.23 203 | 92.40 104 | 72.04 205 | 82.04 269 | 88.33 253 | 77.91 150 | 93.95 104 | 66.17 267 | 95.12 159 | 90.34 247 |
|
| PCF-MVS | | 74.62 15 | 82.15 190 | 80.92 210 | 85.84 125 | 89.43 177 | 72.30 157 | 80.53 254 | 91.82 124 | 57.36 344 | 87.81 151 | 89.92 229 | 77.67 154 | 93.63 115 | 58.69 324 | 95.08 160 | 91.58 214 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| CSCG | | | 86.26 101 | 86.47 103 | 85.60 130 | 90.87 149 | 74.26 131 | 87.98 104 | 91.85 122 | 80.35 88 | 89.54 117 | 88.01 257 | 79.09 140 | 92.13 166 | 75.51 172 | 95.06 161 | 90.41 245 |
|
| SDMVSNet | | | 81.90 198 | 83.17 168 | 78.10 278 | 88.81 192 | 62.45 263 | 76.08 324 | 86.05 244 | 73.67 171 | 83.41 247 | 93.04 127 | 82.35 100 | 80.65 344 | 70.06 232 | 95.03 162 | 91.21 220 |
|
| sd_testset | | | 79.95 232 | 81.39 202 | 75.64 311 | 88.81 192 | 58.07 316 | 76.16 323 | 82.81 287 | 73.67 171 | 83.41 247 | 93.04 127 | 80.96 124 | 77.65 360 | 58.62 325 | 95.03 162 | 91.21 220 |
|
| plane_prior | | | | | | | 76.42 116 | 87.15 117 | | 75.94 145 | | | | | | 95.03 162 | |
|
| new-patchmatchnet | | | 70.10 328 | 73.37 293 | 60.29 392 | 81.23 334 | 16.95 427 | 59.54 403 | 74.62 340 | 62.93 291 | 80.97 286 | 87.93 260 | 62.83 279 | 71.90 376 | 55.24 347 | 95.01 165 | 92.00 199 |
|
| v1192 | | | 84.57 135 | 84.69 140 | 84.21 160 | 87.75 219 | 62.88 254 | 83.02 208 | 91.43 133 | 69.08 235 | 89.98 102 | 90.89 199 | 72.70 218 | 93.62 118 | 82.41 89 | 94.97 166 | 96.13 33 |
|
| v1921920 | | | 84.23 146 | 84.37 150 | 83.79 169 | 87.64 224 | 61.71 273 | 82.91 212 | 91.20 142 | 67.94 251 | 90.06 97 | 90.34 217 | 72.04 227 | 93.59 120 | 82.32 90 | 94.91 167 | 96.07 35 |
|
| CL-MVSNet_self_test | | | 76.81 262 | 77.38 254 | 75.12 314 | 86.90 242 | 51.34 368 | 73.20 352 | 80.63 305 | 68.30 245 | 81.80 276 | 88.40 252 | 66.92 253 | 80.90 341 | 55.35 346 | 94.90 168 | 93.12 148 |
|
| CS-MVS | | | 88.14 75 | 87.67 84 | 89.54 60 | 89.56 173 | 79.18 82 | 90.47 55 | 94.77 16 | 79.37 103 | 84.32 226 | 89.33 238 | 83.87 79 | 94.53 84 | 82.45 88 | 94.89 169 | 94.90 66 |
|
| v144192 | | | 84.24 145 | 84.41 148 | 83.71 173 | 87.59 225 | 61.57 274 | 82.95 211 | 91.03 146 | 67.82 254 | 89.80 105 | 90.49 214 | 73.28 211 | 93.51 125 | 81.88 98 | 94.89 169 | 96.04 37 |
|
| LCM-MVSNet-Re | | | 83.48 165 | 85.06 131 | 78.75 265 | 85.94 265 | 55.75 336 | 80.05 259 | 94.27 24 | 76.47 136 | 96.09 6 | 94.54 67 | 83.31 88 | 89.75 241 | 59.95 319 | 94.89 169 | 90.75 233 |
|
| casdiffmvs_mvg |  | | 86.72 95 | 87.51 86 | 84.36 154 | 87.09 238 | 65.22 230 | 84.16 174 | 94.23 27 | 77.89 122 | 91.28 79 | 93.66 114 | 84.35 76 | 92.71 150 | 80.07 111 | 94.87 172 | 95.16 62 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD_test1 | | | 88.40 71 | 87.91 80 | 89.88 51 | 89.50 175 | 86.65 20 | 89.98 65 | 91.91 121 | 84.26 47 | 90.87 89 | 93.92 103 | 82.18 106 | 89.29 250 | 73.75 194 | 94.81 173 | 93.70 121 |
|
| v1240 | | | 84.30 142 | 84.51 146 | 83.65 174 | 87.65 223 | 61.26 279 | 82.85 214 | 91.54 130 | 67.94 251 | 90.68 91 | 90.65 211 | 71.71 230 | 93.64 114 | 82.84 83 | 94.78 174 | 96.07 35 |
|
| MSLP-MVS++ | | | 85.00 128 | 86.03 111 | 81.90 216 | 91.84 119 | 71.56 170 | 86.75 128 | 93.02 87 | 75.95 144 | 87.12 161 | 89.39 236 | 77.98 148 | 89.40 249 | 77.46 148 | 94.78 174 | 84.75 325 |
|
| IterMVS-LS | | | 84.73 132 | 84.98 133 | 83.96 165 | 87.35 229 | 63.66 244 | 83.25 201 | 89.88 184 | 76.06 139 | 89.62 111 | 92.37 155 | 73.40 209 | 92.52 155 | 78.16 138 | 94.77 176 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| AdaColmap |  | | 83.66 160 | 83.69 160 | 83.57 179 | 90.05 167 | 72.26 158 | 86.29 136 | 90.00 181 | 78.19 119 | 81.65 279 | 87.16 277 | 83.40 87 | 94.24 92 | 61.69 308 | 94.76 177 | 84.21 335 |
|
| BP-MVS1 | | | 82.81 175 | 81.67 192 | 86.23 113 | 87.88 216 | 68.53 198 | 86.06 140 | 84.36 273 | 75.65 149 | 85.14 206 | 90.19 222 | 45.84 366 | 94.42 86 | 85.18 57 | 94.72 178 | 95.75 43 |
|
| ITE_SJBPF | | | | | 90.11 49 | 90.72 152 | 84.97 41 | | 90.30 171 | 81.56 76 | 90.02 99 | 91.20 187 | 82.40 99 | 90.81 207 | 73.58 197 | 94.66 179 | 94.56 78 |
|
| v1144 | | | 84.54 137 | 84.72 138 | 84.00 163 | 87.67 222 | 62.55 261 | 82.97 210 | 90.93 150 | 70.32 224 | 89.80 105 | 90.99 193 | 73.50 204 | 93.48 126 | 81.69 99 | 94.65 180 | 95.97 38 |
|
| test20.03 | | | 73.75 296 | 74.59 281 | 71.22 343 | 81.11 335 | 51.12 372 | 70.15 373 | 72.10 363 | 70.42 221 | 80.28 300 | 91.50 178 | 64.21 266 | 74.72 372 | 46.96 391 | 94.58 181 | 87.82 293 |
|
| TSAR-MVS + MP. | | | 88.14 75 | 87.82 82 | 89.09 67 | 95.72 22 | 76.74 112 | 92.49 25 | 91.19 143 | 67.85 253 | 86.63 176 | 94.84 55 | 79.58 138 | 95.96 15 | 87.62 19 | 94.50 182 | 94.56 78 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| HQP3-MVS | | | | | | | | | 92.68 98 | | | | | | | 94.47 183 | |
|
| HQP-MVS | | | 84.61 134 | 84.06 154 | 86.27 112 | 91.19 139 | 70.66 175 | 84.77 160 | 92.68 98 | 73.30 182 | 80.55 294 | 90.17 225 | 72.10 224 | 94.61 79 | 77.30 152 | 94.47 183 | 93.56 131 |
|
| test_fmvsmconf0.01_n | | | 86.68 96 | 86.52 102 | 87.18 94 | 85.94 265 | 78.30 89 | 86.93 120 | 92.20 111 | 65.94 265 | 89.16 121 | 93.16 124 | 83.10 89 | 89.89 235 | 87.81 15 | 94.43 185 | 93.35 135 |
|
| c3_l | | | 81.64 200 | 81.59 196 | 81.79 222 | 80.86 339 | 59.15 305 | 78.61 284 | 90.18 177 | 68.36 243 | 87.20 159 | 87.11 279 | 69.39 240 | 91.62 179 | 78.16 138 | 94.43 185 | 94.60 77 |
|
| MCST-MVS | | | 84.36 139 | 83.93 157 | 85.63 129 | 91.59 124 | 71.58 168 | 83.52 193 | 92.13 113 | 61.82 302 | 83.96 236 | 89.75 232 | 79.93 137 | 93.46 127 | 78.33 134 | 94.34 187 | 91.87 203 |
|
| test_fmvsmconf0.1_n | | | 86.18 105 | 85.88 115 | 87.08 96 | 85.26 274 | 78.25 90 | 85.82 145 | 91.82 124 | 65.33 279 | 88.55 132 | 92.35 156 | 82.62 96 | 89.80 237 | 86.87 35 | 94.32 188 | 93.18 145 |
|
| thisisatest0530 | | | 79.07 235 | 77.33 255 | 84.26 159 | 87.13 234 | 64.58 235 | 83.66 191 | 75.95 332 | 68.86 238 | 85.22 205 | 87.36 273 | 38.10 395 | 93.57 123 | 75.47 173 | 94.28 189 | 94.62 76 |
|
| baseline | | | 85.20 121 | 85.93 113 | 83.02 193 | 86.30 255 | 62.37 265 | 84.55 167 | 93.96 44 | 74.48 163 | 87.12 161 | 92.03 162 | 82.30 103 | 91.94 171 | 78.39 131 | 94.21 190 | 94.74 75 |
|
| test_fmvsmconf_n | | | 85.88 110 | 85.51 124 | 86.99 98 | 84.77 282 | 78.21 91 | 85.40 154 | 91.39 136 | 65.32 280 | 87.72 153 | 91.81 170 | 82.33 101 | 89.78 238 | 86.68 37 | 94.20 191 | 92.99 153 |
|
| h-mvs33 | | | 84.25 144 | 82.76 175 | 88.72 73 | 91.82 121 | 82.60 60 | 84.00 179 | 84.98 265 | 71.27 211 | 86.70 173 | 90.55 213 | 63.04 277 | 93.92 105 | 78.26 136 | 94.20 191 | 89.63 259 |
|
| MVSMamba_PlusPlus | | | 87.53 86 | 88.86 71 | 83.54 181 | 92.03 110 | 62.26 268 | 91.49 40 | 92.62 100 | 88.07 24 | 88.07 145 | 96.17 23 | 72.24 223 | 95.79 31 | 84.85 62 | 94.16 193 | 92.58 168 |
|
| balanced_conf03 | | | 84.80 130 | 85.40 126 | 83.00 194 | 88.95 188 | 61.44 275 | 90.42 58 | 92.37 107 | 71.48 210 | 88.72 129 | 93.13 125 | 70.16 238 | 95.15 63 | 79.26 125 | 94.11 194 | 92.41 177 |
|
| alignmvs | | | 83.94 155 | 83.98 156 | 83.80 168 | 87.80 218 | 67.88 206 | 84.54 169 | 91.42 135 | 73.27 185 | 88.41 138 | 87.96 258 | 72.33 221 | 90.83 206 | 76.02 168 | 94.11 194 | 92.69 164 |
|
| USDC | | | 76.63 265 | 76.73 262 | 76.34 304 | 83.46 305 | 57.20 325 | 80.02 260 | 88.04 214 | 52.14 375 | 83.65 242 | 91.25 184 | 63.24 273 | 86.65 286 | 54.66 351 | 94.11 194 | 85.17 320 |
|
| MVS_111021_HR | | | 84.63 133 | 84.34 151 | 85.49 133 | 90.18 163 | 75.86 123 | 79.23 275 | 87.13 225 | 73.35 179 | 85.56 200 | 89.34 237 | 83.60 85 | 90.50 216 | 76.64 158 | 94.05 197 | 90.09 254 |
|
| VNet | | | 79.31 234 | 80.27 219 | 76.44 302 | 87.92 215 | 53.95 349 | 75.58 330 | 84.35 274 | 74.39 164 | 82.23 266 | 90.72 206 | 72.84 216 | 84.39 319 | 60.38 317 | 93.98 198 | 90.97 226 |
|
| FMVSNet2 | | | 81.31 204 | 81.61 195 | 80.41 244 | 86.38 250 | 58.75 312 | 83.93 182 | 86.58 236 | 72.43 196 | 87.65 154 | 92.98 131 | 63.78 270 | 90.22 222 | 66.86 259 | 93.92 199 | 92.27 187 |
|
| MGCFI-Net | | | 85.04 125 | 85.95 112 | 82.31 212 | 87.52 226 | 63.59 246 | 86.23 138 | 93.96 44 | 73.46 175 | 88.07 145 | 87.83 263 | 86.46 57 | 90.87 205 | 76.17 165 | 93.89 200 | 92.47 175 |
|
| GDP-MVS | | | 82.17 188 | 80.85 212 | 86.15 120 | 88.65 197 | 68.95 195 | 85.65 149 | 93.02 87 | 68.42 242 | 83.73 240 | 89.54 235 | 45.07 377 | 94.31 88 | 79.66 119 | 93.87 201 | 95.19 61 |
|
| LF4IMVS | | | 82.75 177 | 81.93 188 | 85.19 135 | 82.08 322 | 80.15 74 | 85.53 150 | 88.76 201 | 68.01 248 | 85.58 199 | 87.75 264 | 71.80 229 | 86.85 282 | 74.02 189 | 93.87 201 | 88.58 278 |
|
| sasdasda | | | 85.50 113 | 86.14 109 | 83.58 177 | 87.97 212 | 67.13 210 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 268 | 86.45 58 | 91.06 196 | 75.76 170 | 93.76 203 | 92.54 171 |
|
| canonicalmvs | | | 85.50 113 | 86.14 109 | 83.58 177 | 87.97 212 | 67.13 210 | 87.55 109 | 94.32 21 | 73.44 177 | 88.47 135 | 87.54 268 | 86.45 58 | 91.06 196 | 75.76 170 | 93.76 203 | 92.54 171 |
|
| v2v482 | | | 84.09 149 | 84.24 152 | 83.62 175 | 87.13 234 | 61.40 276 | 82.71 217 | 89.71 187 | 72.19 204 | 89.55 115 | 91.41 180 | 70.70 235 | 93.20 135 | 81.02 102 | 93.76 203 | 96.25 31 |
|
| casdiffmvs |  | | 85.21 120 | 85.85 116 | 83.31 186 | 86.17 260 | 62.77 257 | 83.03 207 | 93.93 46 | 74.69 161 | 88.21 142 | 92.68 144 | 82.29 104 | 91.89 174 | 77.87 144 | 93.75 206 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UGNet | | | 82.78 176 | 81.64 193 | 86.21 116 | 86.20 259 | 76.24 120 | 86.86 122 | 85.68 250 | 77.07 133 | 73.76 357 | 92.82 138 | 69.64 239 | 91.82 177 | 69.04 244 | 93.69 207 | 90.56 241 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| 旧先验1 | | | | | | 91.97 111 | 71.77 163 | | 81.78 295 | | | 91.84 167 | 73.92 199 | | | 93.65 208 | 83.61 343 |
|
| AUN-MVS | | | 81.18 206 | 78.78 239 | 88.39 79 | 90.93 147 | 82.14 62 | 82.51 224 | 83.67 279 | 64.69 284 | 80.29 298 | 85.91 298 | 51.07 341 | 92.38 159 | 76.29 164 | 93.63 209 | 90.65 239 |
|
| hse-mvs2 | | | 83.47 166 | 81.81 190 | 88.47 77 | 91.03 145 | 82.27 61 | 82.61 218 | 83.69 278 | 71.27 211 | 86.70 173 | 86.05 295 | 63.04 277 | 92.41 158 | 78.26 136 | 93.62 210 | 90.71 235 |
|
| MVS_111021_LR | | | 84.28 143 | 83.76 159 | 85.83 126 | 89.23 182 | 83.07 55 | 80.99 250 | 83.56 280 | 72.71 194 | 86.07 189 | 89.07 243 | 81.75 116 | 86.19 295 | 77.11 154 | 93.36 211 | 88.24 281 |
|
| GBi-Net | | | 82.02 193 | 82.07 185 | 81.85 218 | 86.38 250 | 61.05 282 | 86.83 124 | 88.27 210 | 72.43 196 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 211 | 65.95 269 | 93.34 212 | 93.82 114 |
|
| test1 | | | 82.02 193 | 82.07 185 | 81.85 218 | 86.38 250 | 61.05 282 | 86.83 124 | 88.27 210 | 72.43 196 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 211 | 65.95 269 | 93.34 212 | 93.82 114 |
|
| FMVSNet3 | | | 78.80 240 | 78.55 243 | 79.57 256 | 82.89 319 | 56.89 328 | 81.76 238 | 85.77 248 | 69.04 236 | 86.00 190 | 90.44 215 | 51.75 339 | 90.09 230 | 65.95 269 | 93.34 212 | 91.72 208 |
|
| test_fmvsmvis_n_1920 | | | 85.22 119 | 85.36 128 | 84.81 141 | 85.80 267 | 76.13 122 | 85.15 158 | 92.32 108 | 61.40 309 | 91.33 76 | 90.85 202 | 83.76 83 | 86.16 296 | 84.31 67 | 93.28 215 | 92.15 193 |
|
| K. test v3 | | | 85.14 122 | 84.73 136 | 86.37 109 | 91.13 143 | 69.63 185 | 85.45 152 | 76.68 329 | 84.06 50 | 92.44 60 | 96.99 10 | 62.03 280 | 94.65 77 | 80.58 109 | 93.24 216 | 94.83 73 |
|
| Anonymous20231206 | | | 71.38 318 | 71.88 309 | 69.88 350 | 86.31 254 | 54.37 345 | 70.39 371 | 74.62 340 | 52.57 371 | 76.73 329 | 88.76 246 | 59.94 292 | 72.06 375 | 44.35 398 | 93.23 217 | 83.23 351 |
|
| D2MVS | | | 76.84 261 | 75.67 272 | 80.34 245 | 80.48 345 | 62.16 271 | 73.50 349 | 84.80 270 | 57.61 342 | 82.24 265 | 87.54 268 | 51.31 340 | 87.65 269 | 70.40 229 | 93.19 218 | 91.23 219 |
|
| miper_lstm_enhance | | | 76.45 269 | 76.10 267 | 77.51 288 | 76.72 375 | 60.97 286 | 64.69 393 | 85.04 262 | 63.98 287 | 83.20 251 | 88.22 254 | 56.67 315 | 78.79 357 | 73.22 202 | 93.12 219 | 92.78 159 |
|
| 新几何1 | | | | | 82.95 197 | 93.96 59 | 78.56 88 | | 80.24 306 | 55.45 354 | 83.93 237 | 91.08 191 | 71.19 232 | 88.33 263 | 65.84 272 | 93.07 220 | 81.95 367 |
|
| lessismore_v0 | | | | | 85.95 121 | 91.10 144 | 70.99 174 | | 70.91 372 | | 91.79 69 | 94.42 74 | 61.76 281 | 92.93 146 | 79.52 122 | 93.03 221 | 93.93 107 |
|
| TAMVS | | | 78.08 248 | 76.36 264 | 83.23 188 | 90.62 154 | 72.87 143 | 79.08 276 | 80.01 308 | 61.72 305 | 81.35 284 | 86.92 282 | 63.96 269 | 88.78 258 | 50.61 372 | 93.01 222 | 88.04 287 |
|
| ETV-MVS | | | 84.31 141 | 83.91 158 | 85.52 131 | 88.58 200 | 70.40 178 | 84.50 171 | 93.37 64 | 78.76 113 | 84.07 234 | 78.72 376 | 80.39 130 | 95.13 65 | 73.82 193 | 92.98 223 | 91.04 224 |
|
| EPNet_dtu | | | 72.87 304 | 71.33 316 | 77.49 289 | 77.72 365 | 60.55 290 | 82.35 228 | 75.79 333 | 66.49 264 | 58.39 415 | 81.06 355 | 53.68 330 | 85.98 298 | 53.55 357 | 92.97 224 | 85.95 311 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| Effi-MVS+-dtu | | | 85.82 111 | 83.38 163 | 93.14 4 | 87.13 234 | 91.15 3 | 87.70 108 | 88.42 205 | 74.57 162 | 83.56 245 | 85.65 299 | 78.49 145 | 94.21 93 | 72.04 214 | 92.88 225 | 94.05 103 |
|
| CANet | | | 83.79 158 | 82.85 174 | 86.63 104 | 86.17 260 | 72.21 160 | 83.76 188 | 91.43 133 | 77.24 132 | 74.39 353 | 87.45 271 | 75.36 181 | 95.42 52 | 77.03 155 | 92.83 226 | 92.25 189 |
|
| API-MVS | | | 82.28 184 | 82.61 179 | 81.30 228 | 86.29 256 | 69.79 181 | 88.71 95 | 87.67 217 | 78.42 117 | 82.15 268 | 84.15 324 | 77.98 148 | 91.59 180 | 65.39 276 | 92.75 227 | 82.51 362 |
|
| test_yl | | | 78.71 242 | 78.51 244 | 79.32 259 | 84.32 291 | 58.84 309 | 78.38 285 | 85.33 255 | 75.99 142 | 82.49 261 | 86.57 285 | 58.01 305 | 90.02 233 | 62.74 298 | 92.73 228 | 89.10 270 |
|
| DCV-MVSNet | | | 78.71 242 | 78.51 244 | 79.32 259 | 84.32 291 | 58.84 309 | 78.38 285 | 85.33 255 | 75.99 142 | 82.49 261 | 86.57 285 | 58.01 305 | 90.02 233 | 62.74 298 | 92.73 228 | 89.10 270 |
|
| testgi | | | 72.36 307 | 74.61 279 | 65.59 376 | 80.56 344 | 42.82 404 | 68.29 379 | 73.35 353 | 66.87 261 | 81.84 273 | 89.93 228 | 72.08 226 | 66.92 398 | 46.05 394 | 92.54 230 | 87.01 301 |
|
| FMVSNet5 | | | 72.10 310 | 71.69 310 | 73.32 325 | 81.57 329 | 53.02 356 | 76.77 310 | 78.37 315 | 63.31 288 | 76.37 331 | 91.85 166 | 36.68 400 | 78.98 354 | 47.87 387 | 92.45 231 | 87.95 289 |
|
| CDS-MVSNet | | | 77.32 256 | 75.40 273 | 83.06 192 | 89.00 186 | 72.48 154 | 77.90 292 | 82.17 292 | 60.81 318 | 78.94 313 | 83.49 329 | 59.30 297 | 88.76 259 | 54.64 352 | 92.37 232 | 87.93 290 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| patch_mono-2 | | | 78.89 237 | 79.39 232 | 77.41 290 | 84.78 281 | 68.11 203 | 75.60 328 | 83.11 283 | 60.96 317 | 79.36 308 | 89.89 230 | 75.18 183 | 72.97 373 | 73.32 201 | 92.30 233 | 91.15 222 |
|
| dcpmvs_2 | | | 84.23 146 | 85.14 130 | 81.50 226 | 88.61 199 | 61.98 272 | 82.90 213 | 93.11 79 | 68.66 241 | 92.77 54 | 92.39 151 | 78.50 144 | 87.63 270 | 76.99 156 | 92.30 233 | 94.90 66 |
|
| CNLPA | | | 83.55 164 | 83.10 170 | 84.90 139 | 89.34 179 | 83.87 50 | 84.54 169 | 88.77 200 | 79.09 106 | 83.54 246 | 88.66 250 | 74.87 186 | 81.73 337 | 66.84 261 | 92.29 235 | 89.11 269 |
|
| F-COLMAP | | | 84.97 129 | 83.42 162 | 89.63 57 | 92.39 96 | 83.40 52 | 88.83 92 | 91.92 120 | 73.19 186 | 80.18 302 | 89.15 242 | 77.04 164 | 93.28 133 | 65.82 273 | 92.28 236 | 92.21 190 |
|
| thres600view7 | | | 75.97 273 | 75.35 275 | 77.85 285 | 87.01 240 | 51.84 366 | 80.45 255 | 73.26 354 | 75.20 156 | 83.10 253 | 86.31 291 | 45.54 368 | 89.05 251 | 55.03 349 | 92.24 237 | 92.66 165 |
|
| PVSNet_BlendedMVS | | | 78.80 240 | 77.84 250 | 81.65 224 | 84.43 287 | 63.41 247 | 79.49 269 | 90.44 162 | 61.70 306 | 75.43 344 | 87.07 280 | 69.11 243 | 91.44 184 | 60.68 315 | 92.24 237 | 90.11 253 |
|
| DELS-MVS | | | 81.44 203 | 81.25 204 | 82.03 214 | 84.27 293 | 62.87 255 | 76.47 318 | 92.49 103 | 70.97 217 | 81.64 280 | 83.83 325 | 75.03 184 | 92.70 151 | 74.29 182 | 92.22 239 | 90.51 243 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| testdata | | | | | 79.54 257 | 92.87 84 | 72.34 156 | | 80.14 307 | 59.91 327 | 85.47 202 | 91.75 173 | 67.96 249 | 85.24 309 | 68.57 252 | 92.18 240 | 81.06 380 |
|
| SSC-MVS | | | 77.55 253 | 81.64 193 | 65.29 379 | 90.46 157 | 20.33 425 | 73.56 348 | 68.28 382 | 85.44 37 | 88.18 144 | 94.64 64 | 70.93 233 | 81.33 339 | 71.25 217 | 92.03 241 | 94.20 94 |
|
| cl22 | | | 78.97 236 | 78.21 248 | 81.24 231 | 77.74 364 | 59.01 306 | 77.46 302 | 87.13 225 | 65.79 269 | 84.32 226 | 85.10 310 | 58.96 301 | 90.88 204 | 75.36 175 | 92.03 241 | 93.84 112 |
|
| miper_ehance_all_eth | | | 80.34 221 | 80.04 227 | 81.24 231 | 79.82 350 | 58.95 307 | 77.66 295 | 89.66 188 | 65.75 272 | 85.99 193 | 85.11 309 | 68.29 247 | 91.42 186 | 76.03 167 | 92.03 241 | 93.33 136 |
|
| miper_enhance_ethall | | | 77.83 249 | 76.93 259 | 80.51 242 | 76.15 381 | 58.01 318 | 75.47 332 | 88.82 199 | 58.05 338 | 83.59 243 | 80.69 356 | 64.41 264 | 91.20 190 | 73.16 208 | 92.03 241 | 92.33 183 |
|
| GeoE | | | 85.45 116 | 85.81 117 | 84.37 152 | 90.08 164 | 67.07 212 | 85.86 144 | 91.39 136 | 72.33 201 | 87.59 155 | 90.25 220 | 84.85 71 | 92.37 160 | 78.00 141 | 91.94 245 | 93.66 122 |
|
| DPM-MVS | | | 80.10 229 | 79.18 234 | 82.88 201 | 90.71 153 | 69.74 182 | 78.87 280 | 90.84 151 | 60.29 324 | 75.64 343 | 85.92 297 | 67.28 250 | 93.11 139 | 71.24 218 | 91.79 246 | 85.77 314 |
|
| v148 | | | 82.31 183 | 82.48 182 | 81.81 221 | 85.59 269 | 59.66 298 | 81.47 243 | 86.02 245 | 72.85 190 | 88.05 147 | 90.65 211 | 70.73 234 | 90.91 202 | 75.15 177 | 91.79 246 | 94.87 68 |
|
| test222 | | | | | | 93.31 73 | 76.54 113 | 79.38 270 | 77.79 317 | 52.59 370 | 82.36 264 | 90.84 203 | 66.83 254 | | | 91.69 248 | 81.25 375 |
|
| testing3 | | | 71.53 316 | 70.79 317 | 73.77 323 | 88.89 190 | 41.86 406 | 76.60 316 | 59.12 410 | 72.83 191 | 80.97 286 | 82.08 346 | 19.80 426 | 87.33 274 | 65.12 279 | 91.68 249 | 92.13 194 |
|
| eth_miper_zixun_eth | | | 80.84 210 | 80.22 222 | 82.71 203 | 81.41 331 | 60.98 285 | 77.81 293 | 90.14 178 | 67.31 258 | 86.95 169 | 87.24 276 | 64.26 265 | 92.31 162 | 75.23 176 | 91.61 250 | 94.85 72 |
|
| pmmvs-eth3d | | | 78.42 246 | 77.04 258 | 82.57 208 | 87.44 228 | 74.41 130 | 80.86 252 | 79.67 309 | 55.68 353 | 84.69 217 | 90.31 219 | 60.91 285 | 85.42 308 | 62.20 302 | 91.59 251 | 87.88 291 |
|
| Vis-MVSNet |  | | 86.86 92 | 86.58 101 | 87.72 89 | 92.09 107 | 77.43 104 | 87.35 113 | 92.09 114 | 78.87 110 | 84.27 231 | 94.05 92 | 78.35 146 | 93.65 113 | 80.54 110 | 91.58 252 | 92.08 195 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| FE-MVS | | | 79.98 231 | 78.86 237 | 83.36 184 | 86.47 247 | 66.45 220 | 89.73 70 | 84.74 271 | 72.80 192 | 84.22 233 | 91.38 181 | 44.95 378 | 93.60 119 | 63.93 289 | 91.50 253 | 90.04 255 |
|
| thisisatest0515 | | | 73.00 303 | 70.52 321 | 80.46 243 | 81.45 330 | 59.90 296 | 73.16 353 | 74.31 344 | 57.86 339 | 76.08 338 | 77.78 381 | 37.60 399 | 92.12 168 | 65.00 280 | 91.45 254 | 89.35 264 |
|
| ppachtmachnet_test | | | 74.73 288 | 74.00 286 | 76.90 296 | 80.71 342 | 56.89 328 | 71.53 363 | 78.42 314 | 58.24 335 | 79.32 310 | 82.92 337 | 57.91 308 | 84.26 321 | 65.60 275 | 91.36 255 | 89.56 260 |
|
| FA-MVS(test-final) | | | 83.13 172 | 83.02 171 | 83.43 182 | 86.16 262 | 66.08 223 | 88.00 103 | 88.36 207 | 75.55 151 | 85.02 209 | 92.75 142 | 65.12 262 | 92.50 156 | 74.94 180 | 91.30 256 | 91.72 208 |
|
| OpenMVS |  | 76.72 13 | 81.98 195 | 82.00 187 | 81.93 215 | 84.42 289 | 68.22 201 | 88.50 99 | 89.48 193 | 66.92 260 | 81.80 276 | 91.86 165 | 72.59 219 | 90.16 224 | 71.19 219 | 91.25 257 | 87.40 297 |
|
| EG-PatchMatch MVS | | | 84.08 150 | 84.11 153 | 83.98 164 | 92.22 103 | 72.61 150 | 82.20 236 | 87.02 230 | 72.63 195 | 88.86 124 | 91.02 192 | 78.52 143 | 91.11 194 | 73.41 199 | 91.09 258 | 88.21 282 |
|
| 3Dnovator | | 80.37 7 | 84.80 130 | 84.71 139 | 85.06 138 | 86.36 253 | 74.71 127 | 88.77 94 | 90.00 181 | 75.65 149 | 84.96 211 | 93.17 123 | 74.06 197 | 91.19 191 | 78.28 135 | 91.09 258 | 89.29 267 |
|
| thres100view900 | | | 75.45 277 | 75.05 277 | 76.66 300 | 87.27 230 | 51.88 365 | 81.07 249 | 73.26 354 | 75.68 148 | 83.25 250 | 86.37 288 | 45.54 368 | 88.80 255 | 51.98 367 | 90.99 260 | 89.31 265 |
|
| tfpn200view9 | | | 74.86 285 | 74.23 284 | 76.74 299 | 86.24 257 | 52.12 362 | 79.24 273 | 73.87 347 | 73.34 180 | 81.82 274 | 84.60 319 | 46.02 361 | 88.80 255 | 51.98 367 | 90.99 260 | 89.31 265 |
|
| thres400 | | | 75.14 279 | 74.23 284 | 77.86 284 | 86.24 257 | 52.12 362 | 79.24 273 | 73.87 347 | 73.34 180 | 81.82 274 | 84.60 319 | 46.02 361 | 88.80 255 | 51.98 367 | 90.99 260 | 92.66 165 |
|
| cascas | | | 76.29 271 | 74.81 278 | 80.72 240 | 84.47 286 | 62.94 253 | 73.89 346 | 87.34 219 | 55.94 351 | 75.16 349 | 76.53 393 | 63.97 268 | 91.16 192 | 65.00 280 | 90.97 263 | 88.06 286 |
|
| MSP-MVS | | | 89.08 66 | 88.16 78 | 91.83 20 | 95.76 18 | 86.14 25 | 92.75 17 | 93.90 48 | 78.43 116 | 89.16 121 | 92.25 159 | 72.03 228 | 96.36 4 | 88.21 11 | 90.93 264 | 92.98 154 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| WBMVS | | | 68.76 343 | 68.43 343 | 69.75 352 | 83.29 310 | 40.30 409 | 67.36 385 | 72.21 362 | 57.09 347 | 77.05 328 | 85.53 301 | 33.68 405 | 80.51 345 | 48.79 382 | 90.90 265 | 88.45 280 |
|
| ab-mvs | | | 79.67 233 | 80.56 214 | 76.99 293 | 88.48 202 | 56.93 326 | 84.70 164 | 86.06 243 | 68.95 237 | 80.78 291 | 93.08 126 | 75.30 182 | 84.62 315 | 56.78 334 | 90.90 265 | 89.43 263 |
|
| test_fmvsm_n_1920 | | | 83.60 162 | 82.89 173 | 85.74 127 | 85.22 275 | 77.74 99 | 84.12 176 | 90.48 160 | 59.87 328 | 86.45 185 | 91.12 189 | 75.65 178 | 85.89 303 | 82.28 91 | 90.87 267 | 93.58 129 |
|
| MAR-MVS | | | 80.24 225 | 78.74 241 | 84.73 144 | 86.87 244 | 78.18 92 | 85.75 146 | 87.81 216 | 65.67 274 | 77.84 321 | 78.50 377 | 73.79 201 | 90.53 215 | 61.59 310 | 90.87 267 | 85.49 318 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 145 | 86.88 100 | 84.01 296 | 72.76 144 | 83.91 183 | 85.18 258 | 80.44 86 | 88.75 127 | 85.49 302 | 80.08 134 | 91.92 172 | 82.02 94 | 90.85 269 | 95.97 38 |
|
| EI-MVSNet-UG-set | | | 85.04 125 | 84.44 147 | 86.85 101 | 83.87 300 | 72.52 153 | 83.82 185 | 85.15 259 | 80.27 90 | 88.75 127 | 85.45 304 | 79.95 136 | 91.90 173 | 81.92 97 | 90.80 270 | 96.13 33 |
|
| XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 46 | 94.47 43 | 85.95 27 | 86.84 123 | 93.91 47 | 80.07 93 | 86.75 172 | 93.26 121 | 93.64 2 | 90.93 200 | 84.60 65 | 90.75 271 | 93.97 105 |
|
| ET-MVSNet_ETH3D | | | 75.28 278 | 72.77 300 | 82.81 202 | 83.03 318 | 68.11 203 | 77.09 305 | 76.51 330 | 60.67 321 | 77.60 326 | 80.52 360 | 38.04 396 | 91.15 193 | 70.78 222 | 90.68 272 | 89.17 268 |
|
| EI-MVSNet | | | 82.61 178 | 82.42 183 | 83.20 189 | 83.25 312 | 63.66 244 | 83.50 194 | 85.07 260 | 76.06 139 | 86.55 177 | 85.10 310 | 73.41 207 | 90.25 219 | 78.15 140 | 90.67 273 | 95.68 45 |
|
| MVSTER | | | 77.09 258 | 75.70 271 | 81.25 229 | 75.27 389 | 61.08 281 | 77.49 301 | 85.07 260 | 60.78 319 | 86.55 177 | 88.68 248 | 43.14 387 | 90.25 219 | 73.69 196 | 90.67 273 | 92.42 176 |
|
| reproduce_monomvs | | | 74.09 293 | 73.23 294 | 76.65 301 | 76.52 376 | 54.54 344 | 77.50 300 | 81.40 299 | 65.85 268 | 82.86 258 | 86.67 284 | 27.38 418 | 84.53 316 | 70.24 230 | 90.66 275 | 90.89 229 |
|
| Patchmatch-RL test | | | 74.48 289 | 73.68 288 | 76.89 297 | 84.83 280 | 66.54 218 | 72.29 356 | 69.16 381 | 57.70 340 | 86.76 171 | 86.33 289 | 45.79 367 | 82.59 331 | 69.63 235 | 90.65 276 | 81.54 371 |
|
| CMPMVS |  | 59.41 20 | 75.12 281 | 73.57 289 | 79.77 251 | 75.84 384 | 67.22 209 | 81.21 247 | 82.18 291 | 50.78 384 | 76.50 330 | 87.66 266 | 55.20 325 | 82.99 330 | 62.17 304 | 90.64 277 | 89.09 272 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| WB-MVS | | | 76.06 272 | 80.01 228 | 64.19 382 | 89.96 170 | 20.58 424 | 72.18 357 | 68.19 383 | 83.21 59 | 86.46 184 | 93.49 117 | 70.19 237 | 78.97 355 | 65.96 268 | 90.46 278 | 93.02 151 |
|
| fmvsm_l_conf0.5_n | | | 82.06 192 | 81.54 199 | 83.60 176 | 83.94 297 | 73.90 133 | 83.35 198 | 86.10 241 | 58.97 330 | 83.80 239 | 90.36 216 | 74.23 195 | 86.94 280 | 82.90 81 | 90.22 279 | 89.94 256 |
|
| V42 | | | 83.47 166 | 83.37 164 | 83.75 171 | 83.16 315 | 63.33 249 | 81.31 244 | 90.23 175 | 69.51 231 | 90.91 86 | 90.81 204 | 74.16 196 | 92.29 164 | 80.06 112 | 90.22 279 | 95.62 47 |
|
| PM-MVS | | | 80.20 226 | 79.00 235 | 83.78 170 | 88.17 209 | 86.66 19 | 81.31 244 | 66.81 391 | 69.64 230 | 88.33 140 | 90.19 222 | 64.58 263 | 83.63 327 | 71.99 215 | 90.03 281 | 81.06 380 |
|
| PLC |  | 73.85 16 | 82.09 191 | 80.31 218 | 87.45 92 | 90.86 150 | 80.29 73 | 85.88 142 | 90.65 156 | 68.17 247 | 76.32 333 | 86.33 289 | 73.12 213 | 92.61 154 | 61.40 311 | 90.02 282 | 89.44 262 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| fmvsm_l_conf0.5_n_a | | | 81.46 202 | 80.87 211 | 83.25 187 | 83.73 302 | 73.21 142 | 83.00 209 | 85.59 252 | 58.22 336 | 82.96 255 | 90.09 227 | 72.30 222 | 86.65 286 | 81.97 96 | 89.95 283 | 89.88 257 |
|
| ttmdpeth | | | 71.72 313 | 70.67 318 | 74.86 316 | 73.08 402 | 55.88 333 | 77.41 303 | 69.27 379 | 55.86 352 | 78.66 315 | 93.77 110 | 38.01 397 | 75.39 369 | 60.12 318 | 89.87 284 | 93.31 138 |
|
| UWE-MVS | | | 66.43 356 | 65.56 361 | 69.05 357 | 84.15 295 | 40.98 407 | 73.06 354 | 64.71 397 | 54.84 358 | 76.18 336 | 79.62 369 | 29.21 413 | 80.50 346 | 38.54 410 | 89.75 285 | 85.66 315 |
|
| CANet_DTU | | | 77.81 251 | 77.05 257 | 80.09 249 | 81.37 332 | 59.90 296 | 83.26 200 | 88.29 209 | 69.16 234 | 67.83 388 | 83.72 326 | 60.93 284 | 89.47 243 | 69.22 240 | 89.70 286 | 90.88 230 |
|
| diffmvs |  | | 80.40 219 | 80.48 217 | 80.17 248 | 79.02 360 | 60.04 293 | 77.54 298 | 90.28 174 | 66.65 263 | 82.40 263 | 87.33 274 | 73.50 204 | 87.35 273 | 77.98 142 | 89.62 287 | 93.13 146 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVStest1 | | | 70.05 330 | 69.26 333 | 72.41 337 | 58.62 424 | 55.59 337 | 76.61 315 | 65.58 393 | 53.44 365 | 89.28 120 | 93.32 120 | 22.91 424 | 71.44 380 | 74.08 188 | 89.52 288 | 90.21 252 |
|
| PMMVS2 | | | 55.64 384 | 59.27 383 | 44.74 400 | 64.30 422 | 12.32 428 | 40.60 415 | 49.79 419 | 53.19 367 | 65.06 402 | 84.81 315 | 53.60 331 | 49.76 418 | 32.68 417 | 89.41 289 | 72.15 399 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 181 | 81.41 201 | 85.90 123 | 85.60 268 | 76.53 115 | 83.07 206 | 89.62 191 | 73.02 189 | 79.11 312 | 83.51 328 | 80.74 127 | 90.24 221 | 68.76 247 | 89.29 290 | 90.94 227 |
|
| thres200 | | | 72.34 308 | 71.55 314 | 74.70 319 | 83.48 304 | 51.60 367 | 75.02 335 | 73.71 350 | 70.14 227 | 78.56 317 | 80.57 359 | 46.20 359 | 88.20 265 | 46.99 390 | 89.29 290 | 84.32 331 |
|
| jason | | | 77.42 255 | 75.75 270 | 82.43 211 | 87.10 237 | 69.27 188 | 77.99 290 | 81.94 294 | 51.47 379 | 77.84 321 | 85.07 313 | 60.32 289 | 89.00 252 | 70.74 224 | 89.27 292 | 89.03 273 |
| jason: jason. |
| MG-MVS | | | 80.32 222 | 80.94 209 | 78.47 271 | 88.18 208 | 52.62 360 | 82.29 230 | 85.01 264 | 72.01 206 | 79.24 311 | 92.54 148 | 69.36 241 | 93.36 132 | 70.65 225 | 89.19 293 | 89.45 261 |
|
| BH-untuned | | | 80.96 209 | 80.99 208 | 80.84 237 | 88.55 201 | 68.23 200 | 80.33 257 | 88.46 204 | 72.79 193 | 86.55 177 | 86.76 283 | 74.72 191 | 91.77 178 | 61.79 307 | 88.99 294 | 82.52 361 |
|
| EIA-MVS | | | 82.19 187 | 81.23 206 | 85.10 137 | 87.95 214 | 69.17 193 | 83.22 204 | 93.33 67 | 70.42 221 | 78.58 316 | 79.77 368 | 77.29 159 | 94.20 94 | 71.51 216 | 88.96 295 | 91.93 202 |
|
| PVSNet_Blended_VisFu | | | 81.55 201 | 80.49 216 | 84.70 146 | 91.58 127 | 73.24 141 | 84.21 173 | 91.67 128 | 62.86 292 | 80.94 288 | 87.16 277 | 67.27 251 | 92.87 149 | 69.82 234 | 88.94 296 | 87.99 288 |
|
| MVSFormer | | | 82.23 185 | 81.57 198 | 84.19 162 | 85.54 270 | 69.26 189 | 91.98 34 | 90.08 179 | 71.54 208 | 76.23 334 | 85.07 313 | 58.69 302 | 94.27 89 | 86.26 43 | 88.77 297 | 89.03 273 |
|
| lupinMVS | | | 76.37 270 | 74.46 282 | 82.09 213 | 85.54 270 | 69.26 189 | 76.79 309 | 80.77 304 | 50.68 386 | 76.23 334 | 82.82 338 | 58.69 302 | 88.94 253 | 69.85 233 | 88.77 297 | 88.07 284 |
|
| RPSCF | | | 88.00 79 | 86.93 97 | 91.22 31 | 90.08 164 | 89.30 5 | 89.68 73 | 91.11 144 | 79.26 104 | 89.68 108 | 94.81 59 | 82.44 97 | 87.74 268 | 76.54 159 | 88.74 299 | 96.61 27 |
|
| test_fmvs3 | | | 75.72 276 | 75.20 276 | 77.27 291 | 75.01 392 | 69.47 186 | 78.93 277 | 84.88 267 | 46.67 393 | 87.08 165 | 87.84 262 | 50.44 346 | 71.62 378 | 77.42 151 | 88.53 300 | 90.72 234 |
|
| RRT-MVS | | | 82.97 174 | 83.44 161 | 81.57 225 | 85.06 277 | 58.04 317 | 87.20 114 | 90.37 165 | 77.88 123 | 88.59 131 | 93.70 113 | 63.17 274 | 93.05 142 | 76.49 160 | 88.47 301 | 93.62 126 |
|
| PAPM_NR | | | 83.23 169 | 83.19 167 | 83.33 185 | 90.90 148 | 65.98 224 | 88.19 101 | 90.78 153 | 78.13 120 | 80.87 290 | 87.92 261 | 73.49 206 | 92.42 157 | 70.07 231 | 88.40 302 | 91.60 213 |
|
| testing222 | | | 66.93 350 | 65.30 362 | 71.81 340 | 83.38 307 | 45.83 393 | 72.06 358 | 67.50 384 | 64.12 286 | 69.68 379 | 76.37 394 | 27.34 419 | 83.00 329 | 38.88 407 | 88.38 303 | 86.62 305 |
|
| xiu_mvs_v1_base_debu | | | 80.84 210 | 80.14 224 | 82.93 198 | 88.31 205 | 71.73 164 | 79.53 266 | 87.17 222 | 65.43 275 | 79.59 304 | 82.73 340 | 76.94 166 | 90.14 227 | 73.22 202 | 88.33 304 | 86.90 302 |
|
| xiu_mvs_v1_base | | | 80.84 210 | 80.14 224 | 82.93 198 | 88.31 205 | 71.73 164 | 79.53 266 | 87.17 222 | 65.43 275 | 79.59 304 | 82.73 340 | 76.94 166 | 90.14 227 | 73.22 202 | 88.33 304 | 86.90 302 |
|
| xiu_mvs_v1_base_debi | | | 80.84 210 | 80.14 224 | 82.93 198 | 88.31 205 | 71.73 164 | 79.53 266 | 87.17 222 | 65.43 275 | 79.59 304 | 82.73 340 | 76.94 166 | 90.14 227 | 73.22 202 | 88.33 304 | 86.90 302 |
|
| XXY-MVS | | | 74.44 291 | 76.19 266 | 69.21 356 | 84.61 285 | 52.43 361 | 71.70 360 | 77.18 324 | 60.73 320 | 80.60 292 | 90.96 196 | 75.44 179 | 69.35 385 | 56.13 339 | 88.33 304 | 85.86 313 |
|
| Fast-Effi-MVS+ | | | 81.04 208 | 80.57 213 | 82.46 210 | 87.50 227 | 63.22 251 | 78.37 287 | 89.63 190 | 68.01 248 | 81.87 272 | 82.08 346 | 82.31 102 | 92.65 153 | 67.10 258 | 88.30 308 | 91.51 216 |
|
| MDA-MVSNet-bldmvs | | | 77.47 254 | 76.90 260 | 79.16 261 | 79.03 359 | 64.59 234 | 66.58 389 | 75.67 335 | 73.15 187 | 88.86 124 | 88.99 244 | 66.94 252 | 81.23 340 | 64.71 283 | 88.22 309 | 91.64 212 |
|
| PAPR | | | 78.84 239 | 78.10 249 | 81.07 233 | 85.17 276 | 60.22 292 | 82.21 234 | 90.57 159 | 62.51 294 | 75.32 347 | 84.61 318 | 74.99 185 | 92.30 163 | 59.48 322 | 88.04 310 | 90.68 237 |
|
| mvsmamba | | | 80.30 223 | 78.87 236 | 84.58 148 | 88.12 211 | 67.55 208 | 92.35 29 | 84.88 267 | 63.15 290 | 85.33 203 | 90.91 198 | 50.71 343 | 95.20 62 | 66.36 265 | 87.98 311 | 90.99 225 |
|
| BH-RMVSNet | | | 80.53 215 | 80.22 222 | 81.49 227 | 87.19 233 | 66.21 222 | 77.79 294 | 86.23 239 | 74.21 165 | 83.69 241 | 88.50 251 | 73.25 212 | 90.75 208 | 63.18 297 | 87.90 312 | 87.52 295 |
|
| Effi-MVS+ | | | 83.90 156 | 84.01 155 | 83.57 179 | 87.22 232 | 65.61 228 | 86.55 132 | 92.40 104 | 78.64 114 | 81.34 285 | 84.18 323 | 83.65 84 | 92.93 146 | 74.22 183 | 87.87 313 | 92.17 192 |
|
| MVS_Test | | | 82.47 182 | 83.22 165 | 80.22 247 | 82.62 320 | 57.75 321 | 82.54 223 | 91.96 119 | 71.16 215 | 82.89 256 | 92.52 149 | 77.41 157 | 90.50 216 | 80.04 113 | 87.84 314 | 92.40 179 |
|
| QAPM | | | 82.59 179 | 82.59 180 | 82.58 206 | 86.44 248 | 66.69 217 | 89.94 67 | 90.36 166 | 67.97 250 | 84.94 213 | 92.58 147 | 72.71 217 | 92.18 165 | 70.63 226 | 87.73 315 | 88.85 276 |
|
| PVSNet_Blended | | | 76.49 268 | 75.40 273 | 79.76 252 | 84.43 287 | 63.41 247 | 75.14 334 | 90.44 162 | 57.36 344 | 75.43 344 | 78.30 378 | 69.11 243 | 91.44 184 | 60.68 315 | 87.70 316 | 84.42 330 |
|
| pmmvs5 | | | 70.73 323 | 70.07 326 | 72.72 331 | 77.03 372 | 52.73 358 | 74.14 341 | 75.65 336 | 50.36 388 | 72.17 365 | 85.37 307 | 55.42 324 | 80.67 343 | 52.86 363 | 87.59 317 | 84.77 324 |
|
| IB-MVS | | 62.13 19 | 71.64 314 | 68.97 339 | 79.66 255 | 80.80 341 | 62.26 268 | 73.94 345 | 76.90 326 | 63.27 289 | 68.63 384 | 76.79 390 | 33.83 404 | 91.84 176 | 59.28 323 | 87.26 318 | 84.88 323 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| N_pmnet | | | 70.20 326 | 68.80 341 | 74.38 320 | 80.91 337 | 84.81 43 | 59.12 405 | 76.45 331 | 55.06 356 | 75.31 348 | 82.36 343 | 55.74 321 | 54.82 415 | 47.02 389 | 87.24 319 | 83.52 344 |
|
| fmvsm_s_conf0.1_n | | | 82.17 188 | 81.59 196 | 83.94 167 | 86.87 244 | 71.57 169 | 85.19 157 | 77.42 321 | 62.27 301 | 84.47 222 | 91.33 182 | 76.43 174 | 85.91 301 | 83.14 75 | 87.14 320 | 94.33 92 |
|
| fmvsm_s_conf0.5_n | | | 81.91 197 | 81.30 203 | 83.75 171 | 86.02 264 | 71.56 170 | 84.73 163 | 77.11 325 | 62.44 298 | 84.00 235 | 90.68 208 | 76.42 175 | 85.89 303 | 83.14 75 | 87.11 321 | 93.81 117 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 180 | 81.93 188 | 84.50 149 | 87.68 221 | 73.35 137 | 86.14 139 | 77.70 318 | 61.64 307 | 85.02 209 | 91.62 175 | 77.75 151 | 86.24 292 | 82.79 84 | 87.07 322 | 93.91 109 |
|
| pmmvs4 | | | 74.92 284 | 72.98 298 | 80.73 239 | 84.95 278 | 71.71 167 | 76.23 321 | 77.59 319 | 52.83 369 | 77.73 325 | 86.38 287 | 56.35 318 | 84.97 312 | 57.72 332 | 87.05 323 | 85.51 317 |
|
| test_fmvs2 | | | 73.57 297 | 72.80 299 | 75.90 309 | 72.74 405 | 68.84 196 | 77.07 306 | 84.32 275 | 45.14 399 | 82.89 256 | 84.22 322 | 48.37 351 | 70.36 382 | 73.40 200 | 87.03 324 | 88.52 279 |
|
| MIMVSNet | | | 71.09 320 | 71.59 311 | 69.57 354 | 87.23 231 | 50.07 377 | 78.91 278 | 71.83 365 | 60.20 326 | 71.26 368 | 91.76 172 | 55.08 327 | 76.09 365 | 41.06 403 | 87.02 325 | 82.54 360 |
|
| testing91 | | | 69.94 333 | 68.99 338 | 72.80 330 | 83.81 301 | 45.89 392 | 71.57 362 | 73.64 352 | 68.24 246 | 70.77 374 | 77.82 380 | 34.37 403 | 84.44 318 | 53.64 356 | 87.00 326 | 88.07 284 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 186 | 81.51 200 | 84.32 157 | 86.56 246 | 73.35 137 | 85.46 151 | 77.30 322 | 61.81 303 | 84.51 219 | 90.88 201 | 77.36 158 | 86.21 294 | 82.72 85 | 86.97 327 | 93.38 134 |
|
| HyFIR lowres test | | | 75.12 281 | 72.66 302 | 82.50 209 | 91.44 135 | 65.19 231 | 72.47 355 | 87.31 220 | 46.79 392 | 80.29 298 | 84.30 321 | 52.70 334 | 92.10 169 | 51.88 371 | 86.73 328 | 90.22 248 |
|
| test_vis3_rt | | | 71.42 317 | 70.67 318 | 73.64 324 | 69.66 412 | 70.46 177 | 66.97 388 | 89.73 185 | 42.68 409 | 88.20 143 | 83.04 333 | 43.77 382 | 60.07 410 | 65.35 278 | 86.66 329 | 90.39 246 |
|
| MSDG | | | 80.06 230 | 79.99 229 | 80.25 246 | 83.91 299 | 68.04 205 | 77.51 299 | 89.19 196 | 77.65 126 | 81.94 270 | 83.45 330 | 76.37 176 | 86.31 291 | 63.31 296 | 86.59 330 | 86.41 306 |
|
| Patchmatch-test | | | 65.91 359 | 67.38 348 | 61.48 390 | 75.51 386 | 43.21 403 | 68.84 377 | 63.79 399 | 62.48 295 | 72.80 362 | 83.42 331 | 44.89 379 | 59.52 412 | 48.27 386 | 86.45 331 | 81.70 368 |
|
| mvs_anonymous | | | 78.13 247 | 78.76 240 | 76.23 307 | 79.24 357 | 50.31 376 | 78.69 282 | 84.82 269 | 61.60 308 | 83.09 254 | 92.82 138 | 73.89 200 | 87.01 276 | 68.33 254 | 86.41 332 | 91.37 217 |
|
| IterMVS-SCA-FT | | | 80.64 214 | 79.41 231 | 84.34 156 | 83.93 298 | 69.66 184 | 76.28 320 | 81.09 301 | 72.43 196 | 86.47 183 | 90.19 222 | 60.46 287 | 93.15 138 | 77.45 149 | 86.39 333 | 90.22 248 |
|
| testing99 | | | 69.27 339 | 68.15 346 | 72.63 332 | 83.29 310 | 45.45 394 | 71.15 364 | 71.08 370 | 67.34 257 | 70.43 375 | 77.77 382 | 32.24 408 | 84.35 320 | 53.72 355 | 86.33 334 | 88.10 283 |
|
| E-PMN | | | 61.59 373 | 61.62 376 | 61.49 389 | 66.81 416 | 55.40 338 | 53.77 412 | 60.34 409 | 66.80 262 | 58.90 413 | 65.50 412 | 40.48 392 | 66.12 401 | 55.72 341 | 86.25 335 | 62.95 410 |
|
| EMVS | | | 61.10 376 | 60.81 378 | 61.99 387 | 65.96 419 | 55.86 334 | 53.10 413 | 58.97 412 | 67.06 259 | 56.89 417 | 63.33 413 | 40.98 390 | 67.03 397 | 54.79 350 | 86.18 336 | 63.08 409 |
|
| ETVMVS | | | 64.67 364 | 63.34 370 | 68.64 361 | 83.44 306 | 41.89 405 | 69.56 376 | 61.70 406 | 61.33 312 | 68.74 382 | 75.76 396 | 28.76 414 | 79.35 351 | 34.65 414 | 86.16 337 | 84.67 326 |
|
| our_test_3 | | | 71.85 311 | 71.59 311 | 72.62 333 | 80.71 342 | 53.78 350 | 69.72 375 | 71.71 368 | 58.80 332 | 78.03 318 | 80.51 361 | 56.61 316 | 78.84 356 | 62.20 302 | 86.04 338 | 85.23 319 |
|
| EU-MVSNet | | | 75.12 281 | 74.43 283 | 77.18 292 | 83.11 317 | 59.48 300 | 85.71 148 | 82.43 290 | 39.76 413 | 85.64 197 | 88.76 246 | 44.71 380 | 87.88 267 | 73.86 192 | 85.88 339 | 84.16 336 |
|
| GA-MVS | | | 75.83 274 | 74.61 279 | 79.48 258 | 81.87 324 | 59.25 302 | 73.42 350 | 82.88 285 | 68.68 240 | 79.75 303 | 81.80 349 | 50.62 344 | 89.46 244 | 66.85 260 | 85.64 340 | 89.72 258 |
|
| MVS | | | 73.21 301 | 72.59 303 | 75.06 315 | 80.97 336 | 60.81 288 | 81.64 241 | 85.92 247 | 46.03 397 | 71.68 367 | 77.54 383 | 68.47 246 | 89.77 239 | 55.70 342 | 85.39 341 | 74.60 397 |
|
| PatchT | | | 70.52 324 | 72.76 301 | 63.79 384 | 79.38 355 | 33.53 418 | 77.63 296 | 65.37 395 | 73.61 173 | 71.77 366 | 92.79 141 | 44.38 381 | 75.65 368 | 64.53 287 | 85.37 342 | 82.18 364 |
|
| TR-MVS | | | 76.77 263 | 75.79 269 | 79.72 253 | 86.10 263 | 65.79 226 | 77.14 304 | 83.02 284 | 65.20 281 | 81.40 283 | 82.10 344 | 66.30 255 | 90.73 210 | 55.57 343 | 85.27 343 | 82.65 356 |
|
| BH-w/o | | | 76.57 266 | 76.07 268 | 78.10 278 | 86.88 243 | 65.92 225 | 77.63 296 | 86.33 237 | 65.69 273 | 80.89 289 | 79.95 365 | 68.97 245 | 90.74 209 | 53.01 362 | 85.25 344 | 77.62 391 |
|
| Syy-MVS | | | 69.40 338 | 70.03 328 | 67.49 368 | 81.72 326 | 38.94 411 | 71.00 365 | 61.99 401 | 61.38 310 | 70.81 372 | 72.36 404 | 61.37 283 | 79.30 352 | 64.50 288 | 85.18 345 | 84.22 333 |
|
| myMVS_eth3d | | | 64.66 365 | 63.89 366 | 66.97 371 | 81.72 326 | 37.39 414 | 71.00 365 | 61.99 401 | 61.38 310 | 70.81 372 | 72.36 404 | 20.96 425 | 79.30 352 | 49.59 377 | 85.18 345 | 84.22 333 |
|
| IterMVS | | | 76.91 260 | 76.34 265 | 78.64 267 | 80.91 337 | 64.03 241 | 76.30 319 | 79.03 312 | 64.88 283 | 83.11 252 | 89.16 241 | 59.90 293 | 84.46 317 | 68.61 250 | 85.15 347 | 87.42 296 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| WB-MVSnew | | | 68.72 344 | 69.01 337 | 67.85 365 | 83.22 314 | 43.98 400 | 74.93 336 | 65.98 392 | 55.09 355 | 73.83 356 | 79.11 371 | 65.63 260 | 71.89 377 | 38.21 411 | 85.04 348 | 87.69 294 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 252 | 77.46 252 | 78.71 266 | 84.39 290 | 61.15 280 | 81.18 248 | 82.52 288 | 62.45 297 | 83.34 249 | 87.37 272 | 66.20 256 | 88.66 260 | 64.69 284 | 85.02 349 | 86.32 307 |
|
| KD-MVS_2432*1600 | | | 66.87 352 | 65.81 358 | 70.04 348 | 67.50 414 | 47.49 385 | 62.56 397 | 79.16 310 | 61.21 315 | 77.98 319 | 80.61 357 | 25.29 422 | 82.48 332 | 53.02 360 | 84.92 350 | 80.16 384 |
|
| miper_refine_blended | | | 66.87 352 | 65.81 358 | 70.04 348 | 67.50 414 | 47.49 385 | 62.56 397 | 79.16 310 | 61.21 315 | 77.98 319 | 80.61 357 | 25.29 422 | 82.48 332 | 53.02 360 | 84.92 350 | 80.16 384 |
|
| test_fmvs1_n | | | 70.94 321 | 70.41 324 | 72.53 335 | 73.92 394 | 66.93 215 | 75.99 325 | 84.21 277 | 43.31 406 | 79.40 307 | 79.39 370 | 43.47 383 | 68.55 390 | 69.05 243 | 84.91 352 | 82.10 365 |
|
| test-LLR | | | 67.21 349 | 66.74 353 | 68.63 362 | 76.45 379 | 55.21 340 | 67.89 380 | 67.14 388 | 62.43 299 | 65.08 400 | 72.39 402 | 43.41 384 | 69.37 383 | 61.00 312 | 84.89 353 | 81.31 373 |
|
| test-mter | | | 65.00 363 | 63.79 367 | 68.63 362 | 76.45 379 | 55.21 340 | 67.89 380 | 67.14 388 | 50.98 383 | 65.08 400 | 72.39 402 | 28.27 416 | 69.37 383 | 61.00 312 | 84.89 353 | 81.31 373 |
|
| PS-MVSNAJ | | | 77.04 259 | 76.53 263 | 78.56 268 | 87.09 238 | 61.40 276 | 75.26 333 | 87.13 225 | 61.25 313 | 74.38 354 | 77.22 388 | 76.94 166 | 90.94 199 | 64.63 285 | 84.83 355 | 83.35 348 |
|
| xiu_mvs_v2_base | | | 77.19 257 | 76.75 261 | 78.52 269 | 87.01 240 | 61.30 278 | 75.55 331 | 87.12 228 | 61.24 314 | 74.45 352 | 78.79 375 | 77.20 160 | 90.93 200 | 64.62 286 | 84.80 356 | 83.32 349 |
|
| pmmvs3 | | | 62.47 369 | 60.02 382 | 69.80 351 | 71.58 408 | 64.00 242 | 70.52 370 | 58.44 413 | 39.77 412 | 66.05 393 | 75.84 395 | 27.10 421 | 72.28 374 | 46.15 393 | 84.77 357 | 73.11 398 |
|
| MDTV_nov1_ep13 | | | | 68.29 345 | | 78.03 363 | 43.87 401 | 74.12 342 | 72.22 361 | 52.17 373 | 67.02 391 | 85.54 300 | 45.36 372 | 80.85 342 | 55.73 340 | 84.42 358 | |
|
| test_fmvs1 | | | 69.57 336 | 69.05 336 | 71.14 345 | 69.15 413 | 65.77 227 | 73.98 344 | 83.32 281 | 42.83 408 | 77.77 324 | 78.27 379 | 43.39 386 | 68.50 391 | 68.39 253 | 84.38 359 | 79.15 388 |
|
| 1112_ss | | | 74.82 286 | 73.74 287 | 78.04 280 | 89.57 172 | 60.04 293 | 76.49 317 | 87.09 229 | 54.31 361 | 73.66 358 | 79.80 366 | 60.25 290 | 86.76 285 | 58.37 326 | 84.15 360 | 87.32 298 |
|
| testing11 | | | 67.38 348 | 65.93 356 | 71.73 341 | 83.37 308 | 46.60 389 | 70.95 367 | 69.40 378 | 62.47 296 | 66.14 392 | 76.66 391 | 31.22 409 | 84.10 322 | 49.10 380 | 84.10 361 | 84.49 327 |
|
| PatchMatch-RL | | | 74.48 289 | 73.22 295 | 78.27 276 | 87.70 220 | 85.26 38 | 75.92 326 | 70.09 374 | 64.34 285 | 76.09 337 | 81.25 354 | 65.87 259 | 78.07 359 | 53.86 354 | 83.82 362 | 71.48 400 |
|
| UBG | | | 64.34 367 | 63.35 369 | 67.30 369 | 83.50 303 | 40.53 408 | 67.46 384 | 65.02 396 | 54.77 359 | 67.54 390 | 74.47 400 | 32.99 407 | 78.50 358 | 40.82 404 | 83.58 363 | 82.88 355 |
|
| MDA-MVSNet_test_wron | | | 70.05 330 | 70.44 322 | 68.88 359 | 73.84 395 | 53.47 352 | 58.93 407 | 67.28 386 | 58.43 333 | 87.09 164 | 85.40 305 | 59.80 295 | 67.25 396 | 59.66 321 | 83.54 364 | 85.92 312 |
|
| YYNet1 | | | 70.06 329 | 70.44 322 | 68.90 358 | 73.76 396 | 53.42 354 | 58.99 406 | 67.20 387 | 58.42 334 | 87.10 163 | 85.39 306 | 59.82 294 | 67.32 395 | 59.79 320 | 83.50 365 | 85.96 310 |
|
| Test_1112_low_res | | | 73.90 295 | 73.08 296 | 76.35 303 | 90.35 159 | 55.95 331 | 73.40 351 | 86.17 240 | 50.70 385 | 73.14 359 | 85.94 296 | 58.31 304 | 85.90 302 | 56.51 336 | 83.22 366 | 87.20 299 |
|
| PVSNet | | 58.17 21 | 66.41 357 | 65.63 360 | 68.75 360 | 81.96 323 | 49.88 378 | 62.19 399 | 72.51 359 | 51.03 382 | 68.04 386 | 75.34 398 | 50.84 342 | 74.77 370 | 45.82 395 | 82.96 367 | 81.60 370 |
|
| gg-mvs-nofinetune | | | 68.96 342 | 69.11 335 | 68.52 364 | 76.12 382 | 45.32 395 | 83.59 192 | 55.88 415 | 86.68 29 | 64.62 404 | 97.01 9 | 30.36 411 | 83.97 325 | 44.78 397 | 82.94 368 | 76.26 393 |
|
| CR-MVSNet | | | 74.00 294 | 73.04 297 | 76.85 298 | 79.58 351 | 62.64 259 | 82.58 220 | 76.90 326 | 50.50 387 | 75.72 341 | 92.38 152 | 48.07 353 | 84.07 323 | 68.72 249 | 82.91 369 | 83.85 340 |
|
| RPMNet | | | 78.88 238 | 78.28 247 | 80.68 241 | 79.58 351 | 62.64 259 | 82.58 220 | 94.16 32 | 74.80 159 | 75.72 341 | 92.59 145 | 48.69 350 | 95.56 42 | 73.48 198 | 82.91 369 | 83.85 340 |
|
| test_vis1_n | | | 70.29 325 | 69.99 329 | 71.20 344 | 75.97 383 | 66.50 219 | 76.69 312 | 80.81 303 | 44.22 402 | 75.43 344 | 77.23 387 | 50.00 347 | 68.59 389 | 66.71 263 | 82.85 371 | 78.52 390 |
|
| test0.0.03 1 | | | 64.66 365 | 64.36 364 | 65.57 377 | 75.03 391 | 46.89 388 | 64.69 393 | 61.58 407 | 62.43 299 | 71.18 370 | 77.54 383 | 43.41 384 | 68.47 392 | 40.75 405 | 82.65 372 | 81.35 372 |
|
| HY-MVS | | 64.64 18 | 73.03 302 | 72.47 306 | 74.71 318 | 83.36 309 | 54.19 347 | 82.14 237 | 81.96 293 | 56.76 350 | 69.57 380 | 86.21 293 | 60.03 291 | 84.83 314 | 49.58 378 | 82.65 372 | 85.11 321 |
|
| SCA | | | 73.32 298 | 72.57 304 | 75.58 312 | 81.62 328 | 55.86 334 | 78.89 279 | 71.37 369 | 61.73 304 | 74.93 350 | 83.42 331 | 60.46 287 | 87.01 276 | 58.11 330 | 82.63 374 | 83.88 337 |
|
| test_f | | | 64.31 368 | 65.85 357 | 59.67 393 | 66.54 417 | 62.24 270 | 57.76 409 | 70.96 371 | 40.13 411 | 84.36 224 | 82.09 345 | 46.93 355 | 51.67 417 | 61.99 305 | 81.89 375 | 65.12 408 |
|
| CHOSEN 1792x2688 | | | 72.45 306 | 70.56 320 | 78.13 277 | 90.02 169 | 63.08 252 | 68.72 378 | 83.16 282 | 42.99 407 | 75.92 339 | 85.46 303 | 57.22 313 | 85.18 311 | 49.87 376 | 81.67 376 | 86.14 309 |
|
| WTY-MVS | | | 67.91 347 | 68.35 344 | 66.58 373 | 80.82 340 | 48.12 382 | 65.96 390 | 72.60 357 | 53.67 364 | 71.20 369 | 81.68 351 | 58.97 300 | 69.06 387 | 48.57 383 | 81.67 376 | 82.55 359 |
|
| TESTMET0.1,1 | | | 61.29 374 | 60.32 380 | 64.19 382 | 72.06 406 | 51.30 369 | 67.89 380 | 62.09 400 | 45.27 398 | 60.65 409 | 69.01 408 | 27.93 417 | 64.74 405 | 56.31 337 | 81.65 378 | 76.53 392 |
|
| dmvs_re | | | 66.81 354 | 66.98 350 | 66.28 374 | 76.87 373 | 58.68 313 | 71.66 361 | 72.24 360 | 60.29 324 | 69.52 381 | 73.53 401 | 52.38 335 | 64.40 406 | 44.90 396 | 81.44 379 | 75.76 394 |
|
| PAPM | | | 71.77 312 | 70.06 327 | 76.92 295 | 86.39 249 | 53.97 348 | 76.62 314 | 86.62 235 | 53.44 365 | 63.97 405 | 84.73 317 | 57.79 310 | 92.34 161 | 39.65 406 | 81.33 380 | 84.45 329 |
|
| DSMNet-mixed | | | 60.98 377 | 61.61 377 | 59.09 395 | 72.88 403 | 45.05 397 | 74.70 338 | 46.61 421 | 26.20 419 | 65.34 398 | 90.32 218 | 55.46 323 | 63.12 408 | 41.72 402 | 81.30 381 | 69.09 404 |
|
| sss | | | 66.92 351 | 67.26 349 | 65.90 375 | 77.23 369 | 51.10 373 | 64.79 392 | 71.72 367 | 52.12 376 | 70.13 377 | 80.18 363 | 57.96 307 | 65.36 404 | 50.21 373 | 81.01 382 | 81.25 375 |
|
| tpm | | | 67.95 346 | 68.08 347 | 67.55 367 | 78.74 362 | 43.53 402 | 75.60 328 | 67.10 390 | 54.92 357 | 72.23 364 | 88.10 256 | 42.87 388 | 75.97 366 | 52.21 365 | 80.95 383 | 83.15 352 |
|
| MonoMVSNet | | | 76.66 264 | 77.26 256 | 74.86 316 | 79.86 349 | 54.34 346 | 86.26 137 | 86.08 242 | 71.08 216 | 85.59 198 | 88.68 248 | 53.95 329 | 85.93 299 | 63.86 290 | 80.02 384 | 84.32 331 |
|
| tpm2 | | | 68.45 345 | 66.83 352 | 73.30 326 | 78.93 361 | 48.50 380 | 79.76 263 | 71.76 366 | 47.50 391 | 69.92 378 | 83.60 327 | 42.07 389 | 88.40 262 | 48.44 385 | 79.51 385 | 83.01 354 |
|
| FPMVS | | | 72.29 309 | 72.00 308 | 73.14 327 | 88.63 198 | 85.00 40 | 74.65 339 | 67.39 385 | 71.94 207 | 77.80 323 | 87.66 266 | 50.48 345 | 75.83 367 | 49.95 374 | 79.51 385 | 58.58 414 |
|
| UnsupCasMVSNet_bld | | | 69.21 340 | 69.68 331 | 67.82 366 | 79.42 354 | 51.15 371 | 67.82 383 | 75.79 333 | 54.15 362 | 77.47 327 | 85.36 308 | 59.26 298 | 70.64 381 | 48.46 384 | 79.35 387 | 81.66 369 |
|
| CostFormer | | | 69.98 332 | 68.68 342 | 73.87 321 | 77.14 370 | 50.72 374 | 79.26 272 | 74.51 342 | 51.94 377 | 70.97 371 | 84.75 316 | 45.16 376 | 87.49 271 | 55.16 348 | 79.23 388 | 83.40 347 |
|
| 1314 | | | 73.22 300 | 72.56 305 | 75.20 313 | 80.41 346 | 57.84 319 | 81.64 241 | 85.36 254 | 51.68 378 | 73.10 360 | 76.65 392 | 61.45 282 | 85.19 310 | 63.54 293 | 79.21 389 | 82.59 357 |
|
| test_vis1_n_1920 | | | 71.30 319 | 71.58 313 | 70.47 346 | 77.58 367 | 59.99 295 | 74.25 340 | 84.22 276 | 51.06 381 | 74.85 351 | 79.10 372 | 55.10 326 | 68.83 388 | 68.86 246 | 79.20 390 | 82.58 358 |
|
| baseline1 | | | 73.26 299 | 73.54 290 | 72.43 336 | 84.92 279 | 47.79 384 | 79.89 262 | 74.00 345 | 65.93 266 | 78.81 314 | 86.28 292 | 56.36 317 | 81.63 338 | 56.63 335 | 79.04 391 | 87.87 292 |
|
| PMMVS | | | 61.65 372 | 60.38 379 | 65.47 378 | 65.40 421 | 69.26 189 | 63.97 395 | 61.73 405 | 36.80 418 | 60.11 410 | 68.43 409 | 59.42 296 | 66.35 400 | 48.97 381 | 78.57 392 | 60.81 411 |
|
| baseline2 | | | 69.77 334 | 66.89 351 | 78.41 272 | 79.51 353 | 58.09 315 | 76.23 321 | 69.57 377 | 57.50 343 | 64.82 403 | 77.45 385 | 46.02 361 | 88.44 261 | 53.08 359 | 77.83 393 | 88.70 277 |
|
| test_vis1_rt | | | 65.64 361 | 64.09 365 | 70.31 347 | 66.09 418 | 70.20 180 | 61.16 400 | 81.60 297 | 38.65 414 | 72.87 361 | 69.66 407 | 52.84 332 | 60.04 411 | 56.16 338 | 77.77 394 | 80.68 382 |
|
| MS-PatchMatch | | | 70.93 322 | 70.22 325 | 73.06 328 | 81.85 325 | 62.50 262 | 73.82 347 | 77.90 316 | 52.44 372 | 75.92 339 | 81.27 353 | 55.67 322 | 81.75 336 | 55.37 345 | 77.70 395 | 74.94 396 |
|
| UnsupCasMVSNet_eth | | | 71.63 315 | 72.30 307 | 69.62 353 | 76.47 378 | 52.70 359 | 70.03 374 | 80.97 302 | 59.18 329 | 79.36 308 | 88.21 255 | 60.50 286 | 69.12 386 | 58.33 328 | 77.62 396 | 87.04 300 |
|
| CVMVSNet | | | 72.62 305 | 71.41 315 | 76.28 305 | 83.25 312 | 60.34 291 | 83.50 194 | 79.02 313 | 37.77 417 | 76.33 332 | 85.10 310 | 49.60 349 | 87.41 272 | 70.54 227 | 77.54 397 | 81.08 378 |
|
| test_cas_vis1_n_1920 | | | 69.20 341 | 69.12 334 | 69.43 355 | 73.68 397 | 62.82 256 | 70.38 372 | 77.21 323 | 46.18 396 | 80.46 297 | 78.95 374 | 52.03 336 | 65.53 403 | 65.77 274 | 77.45 398 | 79.95 386 |
|
| GG-mvs-BLEND | | | | | 67.16 370 | 73.36 398 | 46.54 391 | 84.15 175 | 55.04 416 | | 58.64 414 | 61.95 415 | 29.93 412 | 83.87 326 | 38.71 409 | 76.92 399 | 71.07 401 |
|
| CHOSEN 280x420 | | | 59.08 380 | 56.52 385 | 66.76 372 | 76.51 377 | 64.39 238 | 49.62 414 | 59.00 411 | 43.86 403 | 55.66 418 | 68.41 410 | 35.55 402 | 68.21 394 | 43.25 399 | 76.78 400 | 67.69 406 |
|
| tpmvs | | | 70.16 327 | 69.56 332 | 71.96 339 | 74.71 393 | 48.13 381 | 79.63 264 | 75.45 338 | 65.02 282 | 70.26 376 | 81.88 348 | 45.34 373 | 85.68 306 | 58.34 327 | 75.39 401 | 82.08 366 |
|
| MVP-Stereo | | | 75.81 275 | 73.51 291 | 82.71 203 | 89.35 178 | 73.62 134 | 80.06 258 | 85.20 257 | 60.30 323 | 73.96 355 | 87.94 259 | 57.89 309 | 89.45 245 | 52.02 366 | 74.87 402 | 85.06 322 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| new_pmnet | | | 55.69 383 | 57.66 384 | 49.76 399 | 75.47 387 | 30.59 419 | 59.56 402 | 51.45 418 | 43.62 405 | 62.49 406 | 75.48 397 | 40.96 391 | 49.15 419 | 37.39 412 | 72.52 403 | 69.55 403 |
|
| mvsany_test3 | | | 65.48 362 | 62.97 371 | 73.03 329 | 69.99 411 | 76.17 121 | 64.83 391 | 43.71 422 | 43.68 404 | 80.25 301 | 87.05 281 | 52.83 333 | 63.09 409 | 51.92 370 | 72.44 404 | 79.84 387 |
|
| PatchmatchNet |  | | 69.71 335 | 68.83 340 | 72.33 338 | 77.66 366 | 53.60 351 | 79.29 271 | 69.99 375 | 57.66 341 | 72.53 363 | 82.93 336 | 46.45 358 | 80.08 349 | 60.91 314 | 72.09 405 | 83.31 350 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MVS-HIRNet | | | 61.16 375 | 62.92 372 | 55.87 396 | 79.09 358 | 35.34 417 | 71.83 359 | 57.98 414 | 46.56 394 | 59.05 412 | 91.14 188 | 49.95 348 | 76.43 364 | 38.74 408 | 71.92 406 | 55.84 415 |
|
| tpmrst | | | 66.28 358 | 66.69 354 | 65.05 380 | 72.82 404 | 39.33 410 | 78.20 288 | 70.69 373 | 53.16 368 | 67.88 387 | 80.36 362 | 48.18 352 | 74.75 371 | 58.13 329 | 70.79 407 | 81.08 378 |
|
| tpm cat1 | | | 66.76 355 | 65.21 363 | 71.42 342 | 77.09 371 | 50.62 375 | 78.01 289 | 73.68 351 | 44.89 400 | 68.64 383 | 79.00 373 | 45.51 370 | 82.42 334 | 49.91 375 | 70.15 408 | 81.23 377 |
|
| ADS-MVSNet2 | | | 65.87 360 | 63.64 368 | 72.55 334 | 73.16 400 | 56.92 327 | 67.10 386 | 74.81 339 | 49.74 389 | 66.04 394 | 82.97 334 | 46.71 356 | 77.26 362 | 42.29 400 | 69.96 409 | 83.46 345 |
|
| ADS-MVSNet | | | 61.90 371 | 62.19 375 | 61.03 391 | 73.16 400 | 36.42 416 | 67.10 386 | 61.75 404 | 49.74 389 | 66.04 394 | 82.97 334 | 46.71 356 | 63.21 407 | 42.29 400 | 69.96 409 | 83.46 345 |
|
| JIA-IIPM | | | 69.41 337 | 66.64 355 | 77.70 286 | 73.19 399 | 71.24 172 | 75.67 327 | 65.56 394 | 70.42 221 | 65.18 399 | 92.97 133 | 33.64 406 | 83.06 328 | 53.52 358 | 69.61 411 | 78.79 389 |
|
| dmvs_testset | | | 60.59 379 | 62.54 374 | 54.72 398 | 77.26 368 | 27.74 421 | 74.05 343 | 61.00 408 | 60.48 322 | 65.62 397 | 67.03 411 | 55.93 320 | 68.23 393 | 32.07 418 | 69.46 412 | 68.17 405 |
|
| EPMVS | | | 62.47 369 | 62.63 373 | 62.01 386 | 70.63 410 | 38.74 412 | 74.76 337 | 52.86 417 | 53.91 363 | 67.71 389 | 80.01 364 | 39.40 393 | 66.60 399 | 55.54 344 | 68.81 413 | 80.68 382 |
|
| MVE |  | 40.22 23 | 51.82 385 | 50.47 388 | 55.87 396 | 62.66 423 | 51.91 364 | 31.61 417 | 39.28 424 | 40.65 410 | 50.76 419 | 74.98 399 | 56.24 319 | 44.67 420 | 33.94 416 | 64.11 414 | 71.04 402 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| dp | | | 60.70 378 | 60.29 381 | 61.92 388 | 72.04 407 | 38.67 413 | 70.83 368 | 64.08 398 | 51.28 380 | 60.75 408 | 77.28 386 | 36.59 401 | 71.58 379 | 47.41 388 | 62.34 415 | 75.52 395 |
|
| mvsany_test1 | | | 58.48 381 | 56.47 386 | 64.50 381 | 65.90 420 | 68.21 202 | 56.95 410 | 42.11 423 | 38.30 415 | 65.69 396 | 77.19 389 | 56.96 314 | 59.35 413 | 46.16 392 | 58.96 416 | 65.93 407 |
|
| PVSNet_0 | | 51.08 22 | 56.10 382 | 54.97 387 | 59.48 394 | 75.12 390 | 53.28 355 | 55.16 411 | 61.89 403 | 44.30 401 | 59.16 411 | 62.48 414 | 54.22 328 | 65.91 402 | 35.40 413 | 47.01 417 | 59.25 413 |
|
| tmp_tt | | | 20.25 390 | 24.50 393 | 7.49 405 | 4.47 428 | 8.70 429 | 34.17 416 | 25.16 426 | 1.00 423 | 32.43 422 | 18.49 420 | 39.37 394 | 9.21 424 | 21.64 420 | 43.75 418 | 4.57 420 |
|
| test_method | | | 30.46 388 | 29.60 391 | 33.06 402 | 17.99 427 | 3.84 430 | 13.62 418 | 73.92 346 | 2.79 421 | 18.29 423 | 53.41 416 | 28.53 415 | 43.25 421 | 22.56 419 | 35.27 419 | 52.11 416 |
|
| DeepMVS_CX |  | | | | 24.13 404 | 32.95 426 | 29.49 420 | | 21.63 427 | 12.07 420 | 37.95 421 | 45.07 418 | 30.84 410 | 19.21 423 | 17.94 422 | 33.06 420 | 23.69 419 |
|
| dongtai | | | 41.90 386 | 42.65 389 | 39.67 401 | 70.86 409 | 21.11 423 | 61.01 401 | 21.42 428 | 57.36 344 | 57.97 416 | 50.06 417 | 16.40 427 | 58.73 414 | 21.03 421 | 27.69 421 | 39.17 417 |
|
| kuosan | | | 30.83 387 | 32.17 390 | 26.83 403 | 53.36 425 | 19.02 426 | 57.90 408 | 20.44 429 | 38.29 416 | 38.01 420 | 37.82 419 | 15.18 428 | 33.45 422 | 7.74 423 | 20.76 422 | 28.03 418 |
|
| testmvs | | | 5.91 394 | 7.65 397 | 0.72 407 | 1.20 429 | 0.37 432 | 59.14 404 | 0.67 431 | 0.49 425 | 1.11 425 | 2.76 424 | 0.94 430 | 0.24 426 | 1.02 425 | 1.47 423 | 1.55 422 |
|
| test123 | | | 6.27 393 | 8.08 396 | 0.84 406 | 1.11 430 | 0.57 431 | 62.90 396 | 0.82 430 | 0.54 424 | 1.07 426 | 2.75 425 | 1.26 429 | 0.30 425 | 1.04 424 | 1.26 424 | 1.66 421 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 20.81 389 | 27.75 392 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 85.44 253 | 0.00 426 | 0.00 427 | 82.82 338 | 81.46 118 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 6.41 392 | 8.55 395 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 76.94 166 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 6.65 391 | 8.87 394 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 79.80 366 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 37.39 414 | | | | | | | | 52.61 364 | | |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 14 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| test_one_0601 | | | | | | 93.85 62 | 73.27 140 | | 94.11 38 | 86.57 30 | 93.47 41 | 94.64 64 | 88.42 28 | | | | |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 94.18 50 | 72.65 145 | | 93.69 56 | 83.62 54 | 94.11 26 | 93.78 108 | 90.28 14 | 95.50 49 | | | |
|
| save fliter | | | | | | 93.75 63 | 77.44 103 | 86.31 135 | 89.72 186 | 70.80 218 | | | | | | | |
|
| test0726 | | | | | | 94.16 53 | 72.56 151 | 90.63 49 | 93.90 48 | 83.61 55 | 93.75 34 | 94.49 69 | 89.76 18 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 337 |
|
| test_part2 | | | | | | 93.86 61 | 77.77 98 | | | | 92.84 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 360 | | | | 83.88 337 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 365 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 126 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 281 | | | | 3.13 422 | 45.19 375 | 80.13 348 | 58.11 330 | | |
|
| test_post | | | | | | | | | | | | 3.10 423 | 45.43 371 | 77.22 363 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 350 | 45.93 364 | 87.01 276 | | | |
|
| MTMP | | | | | | | | 90.66 48 | 33.14 425 | | | | | | | | |
|
| gm-plane-assit | | | | | | 75.42 388 | 44.97 398 | | | 52.17 373 | | 72.36 404 | | 87.90 266 | 54.10 353 | | |
|
| TEST9 | | | | | | 92.34 98 | 79.70 78 | 83.94 180 | 90.32 168 | 65.41 278 | 84.49 220 | 90.97 194 | 82.03 109 | 93.63 115 | | | |
|
| test_8 | | | | | | 92.09 107 | 78.87 85 | 83.82 185 | 90.31 170 | 65.79 269 | 84.36 224 | 90.96 196 | 81.93 111 | 93.44 128 | | | |
|
| agg_prior | | | | | | 91.58 127 | 77.69 100 | | 90.30 171 | | 84.32 226 | | | 93.18 136 | | | |
|
| test_prior4 | | | | | | | 78.97 84 | 84.59 166 | | | | | | | | | |
|
| test_prior | | | | | 86.32 110 | 90.59 155 | 71.99 162 | | 92.85 93 | | | | | 94.17 97 | | | 92.80 158 |
|
| 旧先验2 | | | | | | | | 81.73 239 | | 56.88 349 | 86.54 182 | | | 84.90 313 | 72.81 209 | | |
|
| 新几何2 | | | | | | | | 81.72 240 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 215 | 85.62 251 | 58.09 337 | | | | 91.41 187 | 67.95 257 | | 84.48 328 |
|
| 原ACMM2 | | | | | | | | 82.26 233 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 290 | 63.52 294 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 110 | | | | |
|
| testdata1 | | | | | | | | 79.62 265 | | 73.95 168 | | | | | | | |
|
| plane_prior7 | | | | | | 93.45 68 | 77.31 106 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 90 | 76.54 113 | | | | | | 74.84 187 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 92.95 134 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 111 | | | 77.79 125 | 86.55 177 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 82 | | 79.44 101 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 88 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 343 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 132 | | | | | | | | |
|
| door | | | | | | | | | 72.57 358 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 175 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 139 | | 84.77 160 | | 73.30 182 | 80.55 294 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 139 | | 84.77 160 | | 73.30 182 | 80.55 294 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 152 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 293 | | | 94.61 79 | | | 93.56 131 |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 224 | | | | |
|
| NP-MVS | | | | | | 91.95 112 | 74.55 129 | | | | | 90.17 225 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 422 | 70.76 369 | | 46.47 395 | 61.27 407 | | 45.20 374 | | 49.18 379 | | 83.75 342 |
|
| Test By Simon | | | | | | | | | | | | | 79.09 140 | | | | |
|