This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5499.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4597.23 295.32 299.01 297.26 580.16 13098.99 195.15 199.14 296.47 30
WR-MVS_H89.91 4791.31 3085.71 12396.32 962.39 25789.54 7893.31 6890.21 1195.57 1095.66 3181.42 11695.90 1780.94 10098.80 398.84 5
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8594.05 3979.03 10592.87 4793.74 10690.60 1195.21 6082.87 7998.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2891.50 2288.44 7593.00 7876.26 11689.65 7495.55 987.72 2493.89 2894.94 4891.62 393.44 12578.35 12898.76 495.61 48
PS-CasMVS90.06 4091.92 1284.47 14696.56 658.83 30689.04 8792.74 9491.40 696.12 596.06 2587.23 4595.57 3979.42 11998.74 699.00 2
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 6194.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
PEN-MVS90.03 4291.88 1584.48 14596.57 558.88 30388.95 8893.19 7391.62 596.01 796.16 2387.02 4795.60 3878.69 12598.72 998.97 3
CP-MVSNet89.27 5990.91 4184.37 14796.34 858.61 30988.66 9692.06 11390.78 795.67 895.17 4381.80 11295.54 4279.00 12398.69 1098.95 4
TranMVSNet+NR-MVSNet87.86 7988.76 7285.18 13194.02 5564.13 23384.38 16591.29 13784.88 4292.06 6393.84 10186.45 5593.73 10873.22 19598.66 1197.69 9
NR-MVSNet86.00 10586.22 10585.34 12993.24 7364.56 22982.21 22790.46 15980.99 8088.42 13391.97 15777.56 15193.85 10472.46 20598.65 1297.61 10
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9288.22 1988.53 12997.64 283.45 8394.55 8286.02 4898.60 1396.67 25
FC-MVSNet-test85.93 10787.05 9282.58 20292.25 9856.44 32485.75 14093.09 7977.33 12591.94 6694.65 5774.78 18593.41 12775.11 17198.58 1497.88 7
DTE-MVSNet89.98 4491.91 1484.21 15696.51 757.84 31388.93 8992.84 9191.92 496.16 496.23 1986.95 4895.99 1279.05 12298.57 1598.80 6
UniMVSNet (Re)86.87 8986.98 9486.55 10393.11 7668.48 19283.80 18092.87 8980.37 8589.61 11191.81 16477.72 14994.18 9275.00 17298.53 1696.99 22
Baseline_NR-MVSNet84.00 15085.90 11278.29 26991.47 13253.44 34382.29 22387.00 22879.06 10489.55 11395.72 3077.20 15686.14 29372.30 20698.51 1795.28 56
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4896.29 1788.16 3394.17 9486.07 4598.48 1897.22 17
ACMM79.39 990.65 2990.99 3889.63 5495.03 3483.53 4889.62 7593.35 6479.20 10293.83 2993.60 11090.81 792.96 14085.02 5698.45 1992.41 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 10194.51 1975.79 14292.94 4594.96 4788.36 2895.01 6790.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6383.16 5891.06 8094.00 9188.26 3095.71 3587.28 2798.39 2192.55 166
UniMVSNet_NR-MVSNet86.84 9187.06 9186.17 11492.86 8367.02 20682.55 21591.56 12783.08 6090.92 8291.82 16378.25 14493.99 9974.16 17898.35 2297.49 13
DU-MVS86.80 9286.99 9386.21 11293.24 7367.02 20683.16 19892.21 10881.73 7290.92 8291.97 15777.20 15693.99 9974.16 17898.35 2297.61 10
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12484.07 4792.00 6494.40 7286.63 5195.28 5788.59 698.31 2492.30 180
ACMH76.49 1489.34 5691.14 3283.96 16192.50 9170.36 17589.55 7693.84 5081.89 7194.70 1495.44 3690.69 888.31 26083.33 7198.30 2593.20 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1490.28 1092.11 6195.03 4689.75 2094.93 6979.95 11198.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 3082.52 6592.39 5994.14 8589.15 2395.62 3787.35 2498.24 2794.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1682.88 6291.77 6893.94 9890.55 1295.73 3488.50 798.23 2895.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3693.75 3294.65 5787.44 4395.78 3187.41 2298.21 2992.98 149
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8482.59 6488.52 13094.37 7486.74 5095.41 5286.32 3998.21 2993.19 139
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6182.82 6392.60 5593.97 9288.19 3196.29 687.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
No_MVS88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2585.21 3892.51 5695.13 4490.65 995.34 5488.06 998.15 3495.95 41
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1792.60 9983.09 5991.54 7094.25 7987.67 4195.51 4587.21 2898.11 3593.12 143
WR-MVS83.56 16084.40 14581.06 22893.43 6754.88 33578.67 27685.02 25781.24 7790.74 8891.56 17172.85 21191.08 19168.00 24798.04 3697.23 16
XVG-ACMP-BASELINE89.98 4489.84 5290.41 4094.91 3784.50 4589.49 8093.98 4179.68 9492.09 6293.89 10083.80 7893.10 13782.67 8398.04 3693.64 122
DeepC-MVS82.31 489.15 6189.08 6489.37 5993.64 6379.07 8088.54 9794.20 2873.53 16889.71 10594.82 5285.09 6595.77 3384.17 6698.03 3893.26 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11686.27 10482.60 20191.86 11457.31 31785.10 15293.05 8175.83 14191.02 8193.97 9273.57 19992.91 14473.97 18398.02 3997.58 12
Anonymous2023121188.40 6989.62 5784.73 13990.46 15565.27 22288.86 9093.02 8587.15 2693.05 4497.10 782.28 10292.02 16676.70 15297.99 4096.88 23
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 6193.90 4680.32 8791.74 6994.41 7188.17 3295.98 1386.37 3897.99 4093.96 103
APDe-MVScopyleft91.22 2291.92 1289.14 6392.97 7978.04 9092.84 1594.14 3483.33 5693.90 2695.73 2988.77 2596.41 387.60 1897.98 4292.98 149
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft90.06 4091.32 2986.29 10894.16 5072.56 14790.54 5191.01 14583.61 5393.75 3294.65 5789.76 1895.78 3186.42 3697.97 4390.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 9994.25 4672.45 15190.54 5194.10 3795.88 1886.42 3697.97 4392.02 193
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2780.14 9091.29 7693.97 9287.93 3895.87 2088.65 597.96 4594.12 98
SED-MVS90.46 3491.64 1886.93 9694.18 4772.65 14190.47 5493.69 5483.77 5094.11 2494.27 7590.28 1495.84 2486.03 4697.92 4692.29 181
IU-MVS94.18 4772.64 14390.82 15056.98 33989.67 10785.78 4997.92 4693.28 134
CLD-MVS83.18 16782.64 17484.79 13789.05 18267.82 20077.93 28492.52 10068.33 23685.07 20281.54 34182.06 10592.96 14069.35 22997.91 4893.57 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9586.82 9886.17 11492.05 10666.87 20991.21 4288.64 19886.30 3189.60 11292.59 13869.22 23994.91 7073.89 18497.89 4996.72 24
ACMMP_NAP90.65 2991.07 3689.42 5895.93 1679.54 7789.95 6593.68 5677.65 12191.97 6594.89 4988.38 2795.45 5089.27 497.87 5093.27 135
test_241102_TWO93.71 5383.77 5093.49 3794.27 7589.27 2195.84 2486.03 4697.82 5192.04 192
DPE-MVScopyleft90.53 3391.08 3488.88 6693.38 6878.65 8489.15 8694.05 3984.68 4393.90 2694.11 8788.13 3496.30 584.51 6397.81 5291.70 203
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OurMVSNet-221017-090.01 4389.74 5490.83 3393.16 7580.37 6991.91 3393.11 7781.10 7995.32 1197.24 672.94 21094.85 7185.07 5497.78 5397.26 15
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4693.24 7275.37 14992.84 4995.28 4085.58 6496.09 887.92 1197.76 5493.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2193.25 7181.99 6891.40 7294.17 8487.51 4295.87 2087.74 1397.76 5493.99 101
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2193.29 7081.99 6891.47 7193.96 9588.35 2995.56 4087.74 1397.74 5692.85 152
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2093.30 6981.91 7090.88 8694.21 8087.75 3995.87 2087.60 1897.71 5793.83 110
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5280.98 8191.38 7393.80 10287.20 4695.80 2687.10 3197.69 5893.93 104
UniMVSNet_ETH3D89.12 6290.72 4484.31 15397.00 264.33 23289.67 7388.38 20188.84 1494.29 2097.57 390.48 1391.26 18572.57 20497.65 5997.34 14
v7n90.13 3790.96 3987.65 8891.95 11071.06 16989.99 6393.05 8186.53 2994.29 2096.27 1882.69 9094.08 9786.25 4297.63 6097.82 8
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9894.03 8986.57 5295.80 2687.35 2497.62 6194.20 91
X-MVStestdata85.04 12282.70 17292.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9816.05 40986.57 5295.80 2687.35 2497.62 6194.20 91
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6888.83 2495.51 4587.16 2997.60 6392.73 155
RE-MVS-def92.61 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6890.64 1087.16 2997.60 6392.73 155
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2595.05 1587.65 2593.21 4194.39 7390.09 1795.08 6586.67 3597.60 6394.18 94
Anonymous2024052180.18 22181.25 19976.95 28883.15 30960.84 28182.46 21885.99 24068.76 23286.78 16693.73 10759.13 29577.44 35173.71 18897.55 6692.56 165
9.1489.29 6091.84 11788.80 9295.32 1375.14 15191.07 7992.89 12987.27 4493.78 10783.69 7097.55 66
OPM-MVS89.80 4889.97 5089.27 6094.76 4079.86 7386.76 12492.78 9378.78 10892.51 5693.64 10988.13 3493.84 10684.83 6097.55 6694.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 1088.86 1395.63 996.99 984.81 6993.16 13491.10 297.53 6996.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SF-MVS90.27 3690.80 4388.68 7392.86 8377.09 10591.19 4395.74 781.38 7692.28 6093.80 10286.89 4994.64 7785.52 5197.51 7094.30 90
MIMVSNet183.63 15884.59 13880.74 23294.06 5462.77 25082.72 20984.53 26677.57 12390.34 9195.92 2776.88 16885.83 30061.88 29797.42 7193.62 123
ACMMP++97.35 72
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2393.87 4988.20 2093.24 4094.02 9090.15 1695.67 3686.82 3397.34 7392.19 187
nrg03087.85 8088.49 7385.91 11790.07 16469.73 17987.86 10594.20 2874.04 16092.70 5494.66 5685.88 6391.50 17779.72 11497.32 7496.50 29
pmmvs686.52 9788.06 7781.90 21292.22 10062.28 26084.66 15889.15 19283.54 5589.85 10297.32 488.08 3686.80 27970.43 22197.30 7596.62 26
SD-MVS88.96 6489.88 5186.22 11191.63 12177.07 10689.82 6893.77 5178.90 10692.88 4692.29 15086.11 6090.22 21886.24 4397.24 7691.36 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5588.98 6790.63 3795.09 3386.95 1392.09 2992.30 10779.74 9387.50 15392.38 14581.42 11693.28 13083.07 7597.24 7691.67 204
APD-MVScopyleft89.54 5389.63 5689.26 6192.57 8881.34 6590.19 6093.08 8080.87 8391.13 7893.19 11586.22 5995.97 1482.23 8997.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 27379.30 22762.63 37375.56 37575.18 12380.89 24473.10 34875.06 15294.76 1395.32 3787.73 4052.85 40434.16 40397.11 7959.85 400
PMVScopyleft80.48 690.08 3890.66 4588.34 7896.71 392.97 290.31 5889.57 18788.51 1890.11 9495.12 4590.98 688.92 25077.55 14297.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7287.52 8390.19 4591.94 11281.68 6287.49 11193.17 7476.02 13688.64 12791.22 17984.24 7593.37 12877.97 13897.03 8195.52 49
test_prior283.37 19075.43 14784.58 21291.57 17081.92 11079.54 11796.97 82
EPP-MVSNet85.47 11385.04 12986.77 10091.52 13069.37 18391.63 3687.98 21081.51 7587.05 16391.83 16266.18 25595.29 5570.75 21696.89 8395.64 46
VDDNet84.35 13785.39 12481.25 22395.13 3259.32 29685.42 14681.11 29286.41 3087.41 15496.21 2073.61 19890.61 21066.33 25896.85 8493.81 114
VPNet80.25 21881.68 18775.94 30192.46 9247.98 37376.70 30281.67 28973.45 17084.87 20892.82 13174.66 18886.51 28461.66 30096.85 8493.33 132
SixPastTwentyTwo87.20 8787.45 8586.45 10592.52 9069.19 18887.84 10688.05 20881.66 7394.64 1596.53 1565.94 25694.75 7383.02 7796.83 8695.41 51
VPA-MVSNet83.47 16384.73 13379.69 24890.29 15857.52 31681.30 23988.69 19776.29 13287.58 15294.44 6780.60 12687.20 27166.60 25696.82 8794.34 88
Gipumacopyleft84.44 13586.33 10378.78 25884.20 28973.57 13189.55 7690.44 16084.24 4684.38 21794.89 4976.35 17380.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10080.48 6891.85 12071.22 20890.38 9092.98 12486.06 6196.11 781.99 9296.75 89
CDPH-MVS86.17 10485.54 12088.05 8392.25 9875.45 12183.85 17792.01 11465.91 25986.19 18291.75 16783.77 7994.98 6877.43 14596.71 9093.73 117
KD-MVS_self_test81.93 19083.14 16578.30 26884.75 27952.75 34780.37 24989.42 19070.24 21990.26 9393.39 11374.55 19086.77 28068.61 24296.64 9195.38 52
DP-MVS88.60 6789.01 6587.36 9091.30 13477.50 9887.55 10892.97 8787.95 2389.62 10992.87 13084.56 7093.89 10377.65 14096.62 9290.70 228
TransMVSNet (Re)84.02 14985.74 11778.85 25791.00 14455.20 33482.29 22387.26 21679.65 9588.38 13595.52 3583.00 8786.88 27767.97 24896.60 9394.45 82
ambc82.98 19190.55 15464.86 22688.20 9989.15 19289.40 11693.96 9571.67 22891.38 18478.83 12496.55 9492.71 158
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7583.94 17390.32 16465.79 26084.49 21490.97 18881.93 10893.63 11281.21 9796.54 9590.88 222
VDD-MVS84.23 14384.58 13983.20 18691.17 14065.16 22583.25 19484.97 26079.79 9287.18 15694.27 7574.77 18690.89 19969.24 23096.54 9593.55 129
HPM-MVS++copyleft88.93 6588.45 7490.38 4194.92 3685.85 2889.70 7091.27 13878.20 11586.69 17192.28 15180.36 12895.06 6686.17 4496.49 9790.22 240
test_djsdf89.62 5189.01 6591.45 2392.36 9482.98 5491.98 3190.08 17571.54 20294.28 2296.54 1481.57 11494.27 8686.26 4096.49 9797.09 19
CS-MVS-test87.00 8886.43 10288.71 7189.46 17477.46 9989.42 8395.73 877.87 11981.64 27187.25 26682.43 9594.53 8377.65 14096.46 9994.14 97
test111178.53 23878.85 23277.56 28192.22 10047.49 37582.61 21169.24 37072.43 19085.28 19994.20 8151.91 33290.07 22765.36 26996.45 10095.11 62
test9_res80.83 10296.45 10090.57 232
Anonymous2024052986.20 10287.13 8983.42 18090.19 16064.55 23084.55 16090.71 15285.85 3489.94 10195.24 4282.13 10490.40 21469.19 23396.40 10295.31 55
anonymousdsp89.73 5088.88 6892.27 889.82 16986.67 1590.51 5390.20 17269.87 22295.06 1296.14 2484.28 7493.07 13887.68 1596.34 10397.09 19
PHI-MVS86.38 9885.81 11588.08 8188.44 20277.34 10289.35 8493.05 8173.15 18184.76 21087.70 25678.87 13994.18 9280.67 10596.29 10492.73 155
PS-MVSNAJss88.31 7187.90 7989.56 5693.31 7077.96 9387.94 10491.97 11670.73 21294.19 2396.67 1276.94 16294.57 8083.07 7596.28 10596.15 33
v1086.54 9687.10 9084.84 13588.16 20863.28 24386.64 12792.20 10975.42 14892.81 5194.50 6474.05 19494.06 9883.88 6896.28 10597.17 18
CNVR-MVS87.81 8187.68 8188.21 8092.87 8177.30 10485.25 14891.23 13977.31 12687.07 16291.47 17382.94 8894.71 7484.67 6196.27 10792.62 162
EC-MVSNet88.01 7688.32 7587.09 9289.28 17872.03 15790.31 5896.31 480.88 8285.12 20189.67 22684.47 7295.46 4982.56 8496.26 10893.77 116
MM87.64 8387.15 8889.09 6489.51 17276.39 11588.68 9586.76 22984.54 4483.58 23693.78 10473.36 20696.48 287.98 1096.21 10994.41 86
114514_t83.10 17082.54 17784.77 13892.90 8069.10 19086.65 12690.62 15654.66 34981.46 27390.81 19876.98 16194.38 8572.62 20396.18 11090.82 224
agg_prior279.68 11596.16 11190.22 240
AllTest87.97 7887.40 8789.68 5291.59 12283.40 4989.50 7995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
TestCases89.68 5291.59 12283.40 4995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
EPNet80.37 21478.41 24086.23 11076.75 36573.28 13587.18 11477.45 31276.24 13368.14 37488.93 23765.41 25993.85 10469.47 22896.12 11491.55 208
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testf189.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
APD_test289.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
pm-mvs183.69 15684.95 13179.91 24490.04 16659.66 29382.43 21987.44 21375.52 14687.85 14795.26 4181.25 11885.65 30268.74 24096.04 11794.42 85
test250674.12 28573.39 28576.28 29891.85 11544.20 38984.06 17048.20 40872.30 19681.90 26294.20 8127.22 40989.77 23564.81 27496.02 11894.87 67
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11548.95 36983.68 18369.91 36772.30 19684.26 22694.20 8151.89 33389.82 23263.58 28396.02 11894.87 67
mvs_tets89.78 4989.27 6191.30 2693.51 6484.79 4189.89 6790.63 15570.00 22194.55 1796.67 1287.94 3793.59 11784.27 6595.97 12095.52 49
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3887.00 1291.89 3486.28 2331.09 4102.23 41295.98 2681.87 11189.48 23879.76 11395.96 12191.10 216
MVS_030485.37 11584.58 13987.75 8585.28 27073.36 13286.54 13085.71 24377.56 12481.78 26992.47 14370.29 23396.02 1185.59 5095.96 12193.87 108
DeepPCF-MVS81.24 587.28 8686.21 10690.49 3991.48 13184.90 3983.41 18992.38 10470.25 21889.35 11790.68 20282.85 8994.57 8079.55 11695.95 12392.00 194
DVP-MVS++90.07 3991.09 3387.00 9491.55 12772.64 14396.19 294.10 3785.33 3693.49 3794.64 6081.12 11995.88 1887.41 2295.94 12492.48 169
PC_three_145258.96 32390.06 9591.33 17680.66 12593.03 13975.78 16295.94 12492.48 169
jajsoiax89.41 5488.81 7191.19 2993.38 6884.72 4289.70 7090.29 16969.27 22594.39 1896.38 1686.02 6293.52 12183.96 6795.92 12695.34 53
ANet_high83.17 16885.68 11875.65 30381.24 32545.26 38679.94 25492.91 8883.83 4991.33 7496.88 1180.25 12985.92 29568.89 23795.89 12795.76 43
tt080588.09 7589.79 5382.98 19193.26 7263.94 23691.10 4489.64 18485.07 3990.91 8491.09 18489.16 2291.87 17182.03 9095.87 12893.13 141
3Dnovator+83.92 289.97 4689.66 5590.92 3291.27 13681.66 6391.25 4194.13 3588.89 1288.83 12394.26 7877.55 15295.86 2384.88 5795.87 12895.24 58
HQP_MVS87.75 8287.43 8688.70 7293.45 6576.42 11389.45 8193.61 5779.44 9886.55 17392.95 12774.84 18395.22 5880.78 10395.83 13094.46 80
plane_prior593.61 5795.22 5880.78 10395.83 13094.46 80
cl____80.42 21280.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.37 24886.18 18489.21 23263.08 27290.16 22076.31 15695.80 13293.65 121
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.38 24786.19 18289.22 23163.09 27190.16 22076.32 15595.80 13293.66 119
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8491.30 13476.92 10787.19 11391.99 11570.56 21384.96 20590.69 20180.01 13295.14 6378.37 12795.78 13491.82 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 22280.56 20878.89 25689.19 18155.93 32685.22 14973.78 34182.96 6184.28 22492.72 13657.38 30790.07 22763.80 28295.75 13590.68 229
ACMMP++_ref95.74 136
原ACMM184.60 14292.81 8674.01 12891.50 12962.59 28582.73 25190.67 20476.53 16994.25 8869.24 23095.69 13785.55 306
tfpnnormal81.79 19382.95 16878.31 26788.93 18755.40 33080.83 24682.85 27976.81 12985.90 19094.14 8574.58 18986.51 28466.82 25495.68 13893.01 147
TAPA-MVS77.73 1285.71 11084.83 13288.37 7788.78 19279.72 7487.15 11593.50 6069.17 22685.80 19189.56 22780.76 12392.13 16273.21 20095.51 13993.25 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3190.34 4891.38 2589.03 18384.23 4693.58 694.68 1890.65 890.33 9293.95 9784.50 7195.37 5380.87 10195.50 14094.53 79
v886.22 10186.83 9784.36 14987.82 21462.35 25986.42 13191.33 13676.78 13092.73 5394.48 6673.41 20393.72 10983.10 7495.41 14197.01 21
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 19271.97 35574.04 16082.23 25789.78 22457.38 30789.41 24457.22 32395.41 14193.05 145
OPU-MVS88.27 7991.89 11377.83 9490.47 5491.22 17981.12 11994.68 7574.48 17595.35 14392.29 181
FMVSNet184.55 13385.45 12281.85 21490.27 15961.05 27686.83 12188.27 20578.57 11289.66 10895.64 3275.43 17690.68 20769.09 23495.33 14493.82 111
test1286.57 10290.74 14972.63 14590.69 15382.76 25079.20 13694.80 7295.32 14592.27 183
NCCC87.36 8586.87 9688.83 6792.32 9778.84 8386.58 12891.09 14378.77 10984.85 20990.89 19380.85 12295.29 5581.14 9895.32 14592.34 178
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 22076.90 31873.81 16385.56 19592.38 14548.07 34883.98 31863.36 28695.31 14790.92 221
XVG-OURS89.18 6088.83 7090.23 4494.28 4586.11 2385.91 13693.60 5980.16 8989.13 12093.44 11283.82 7790.98 19483.86 6995.30 14893.60 124
iter_conf0588.59 6890.04 4984.23 15592.03 10760.51 28591.36 4095.81 688.07 2194.56 1696.17 2172.24 21995.79 2984.85 5895.27 14996.38 31
TSAR-MVS + GP.83.95 15182.69 17387.72 8689.27 17981.45 6483.72 18281.58 29174.73 15485.66 19286.06 28472.56 21692.69 14875.44 16795.21 15089.01 266
test_040288.65 6689.58 5885.88 11992.55 8972.22 15584.01 17189.44 18988.63 1794.38 1995.77 2886.38 5893.59 11779.84 11295.21 15091.82 199
TinyColmap81.25 19982.34 18077.99 27585.33 26960.68 28382.32 22288.33 20371.26 20786.97 16492.22 15477.10 15986.98 27562.37 29195.17 15286.31 298
Anonymous20240521180.51 21081.19 20278.49 26488.48 20057.26 31876.63 30482.49 28281.21 7884.30 22392.24 15367.99 24686.24 28862.22 29295.13 15391.98 196
tttt051781.07 20179.58 22485.52 12688.99 18566.45 21387.03 11775.51 32973.76 16488.32 13790.20 21537.96 39094.16 9679.36 12095.13 15395.93 42
DP-MVS Recon84.05 14883.22 16186.52 10491.73 12075.27 12283.23 19692.40 10272.04 19982.04 26088.33 24477.91 14793.95 10166.17 25995.12 15590.34 239
PCF-MVS74.62 1582.15 18480.92 20585.84 12089.43 17572.30 15380.53 24791.82 12257.36 33687.81 14889.92 22277.67 15093.63 11258.69 31495.08 15691.58 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 9986.47 10185.60 12590.87 14774.26 12787.98 10391.85 12080.35 8689.54 11588.01 24879.09 13792.13 16275.51 16595.06 15790.41 237
SDMVSNet81.90 19283.17 16478.10 27288.81 19062.45 25676.08 31486.05 23873.67 16583.41 23993.04 12082.35 9780.65 33770.06 22495.03 15891.21 213
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16583.41 23993.04 12080.96 12177.65 35058.62 31595.03 15891.21 213
plane_prior76.42 11387.15 11575.94 14095.03 158
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28380.97 27787.93 25162.83 27571.90 36555.24 33795.01 16192.00 194
v119284.57 13284.69 13784.21 15687.75 21662.88 24783.02 20191.43 13169.08 22889.98 10090.89 19372.70 21493.62 11582.41 8694.97 16296.13 34
v192192084.23 14384.37 14683.79 16587.64 22161.71 26782.91 20591.20 14067.94 24390.06 9590.34 21172.04 22493.59 11782.32 8794.91 16396.07 36
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23951.34 35873.20 34280.63 29768.30 23781.80 26788.40 24366.92 25180.90 33455.35 33694.90 16493.12 143
CS-MVS88.14 7387.67 8289.54 5789.56 17179.18 7990.47 5494.77 1779.37 10084.32 22089.33 23083.87 7694.53 8382.45 8594.89 16594.90 65
v14419284.24 14284.41 14483.71 16987.59 22261.57 26882.95 20491.03 14467.82 24689.80 10390.49 20873.28 20793.51 12281.88 9594.89 16596.04 38
LCM-MVSNet-Re83.48 16285.06 12878.75 25985.94 26255.75 32980.05 25294.27 2276.47 13196.09 694.54 6383.31 8589.75 23759.95 30994.89 16590.75 225
casdiffmvs_mvgpermissive86.72 9387.51 8484.36 14987.09 23565.22 22384.16 16794.23 2577.89 11891.28 7793.66 10884.35 7392.71 14680.07 10894.87 16895.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test188.40 6987.91 7889.88 4889.50 17386.65 1789.98 6491.91 11984.26 4590.87 8793.92 9982.18 10389.29 24673.75 18794.81 16993.70 118
v124084.30 13984.51 14283.65 17087.65 22061.26 27382.85 20791.54 12867.94 24390.68 8990.65 20571.71 22793.64 11182.84 8094.78 17096.07 36
MSLP-MVS++85.00 12586.03 10981.90 21291.84 11771.56 16686.75 12593.02 8575.95 13987.12 15789.39 22877.98 14589.40 24577.46 14394.78 17084.75 315
IterMVS-LS84.73 12984.98 13083.96 16187.35 22663.66 23783.25 19489.88 17976.06 13489.62 10992.37 14873.40 20592.52 15178.16 13394.77 17295.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 15783.69 15783.57 17590.05 16572.26 15486.29 13390.00 17778.19 11681.65 27087.16 26883.40 8494.24 8961.69 29994.76 17384.21 324
ITE_SJBPF90.11 4690.72 15084.97 3890.30 16781.56 7490.02 9791.20 18182.40 9690.81 20373.58 19094.66 17494.56 76
v114484.54 13484.72 13584.00 15987.67 21962.55 25482.97 20390.93 14870.32 21789.80 10390.99 18773.50 20093.48 12381.69 9694.65 17595.97 39
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21480.28 29191.50 17264.21 26474.72 36146.96 38094.58 17687.82 283
TSAR-MVS + MP.88.14 7387.82 8089.09 6495.72 2276.74 10992.49 2491.19 14167.85 24586.63 17294.84 5179.58 13595.96 1587.62 1694.50 17794.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9594.47 178
HQP-MVS84.61 13184.06 15086.27 10991.19 13770.66 17184.77 15392.68 9573.30 17680.55 28590.17 21872.10 22194.61 7877.30 14794.47 17893.56 127
test_fmvsmconf0.01_n86.68 9486.52 10087.18 9185.94 26278.30 8686.93 11892.20 10965.94 25789.16 11893.16 11783.10 8689.89 23187.81 1294.43 18093.35 131
c3_l81.64 19481.59 19181.79 21880.86 33159.15 30078.61 27790.18 17368.36 23587.20 15587.11 27069.39 23791.62 17578.16 13394.43 18094.60 75
MCST-MVS84.36 13683.93 15485.63 12491.59 12271.58 16483.52 18692.13 11161.82 29483.96 23089.75 22579.93 13493.46 12478.33 12994.34 18291.87 198
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27178.25 8785.82 13991.82 12265.33 27188.55 12892.35 14982.62 9389.80 23386.87 3294.32 18393.18 140
thisisatest053079.07 22977.33 24984.26 15487.13 23164.58 22883.66 18475.95 32468.86 23185.22 20087.36 26438.10 38893.57 12075.47 16694.28 18494.62 74
baseline85.20 11985.93 11183.02 18986.30 25262.37 25884.55 16093.96 4274.48 15787.12 15792.03 15682.30 10091.94 16778.39 12694.21 18594.74 73
test_fmvsmconf_n85.88 10885.51 12186.99 9584.77 27878.21 8885.40 14791.39 13465.32 27287.72 14991.81 16482.33 9889.78 23486.68 3494.20 18692.99 148
h-mvs3384.25 14182.76 17188.72 7091.82 11982.60 5784.00 17284.98 25971.27 20586.70 16990.55 20763.04 27393.92 10278.26 13194.20 18689.63 250
MVSMamba_PlusPlus87.53 8488.86 6983.54 17792.03 10762.26 26191.49 3792.62 9788.07 2188.07 14196.17 2172.24 21995.79 2984.85 5894.16 18892.58 163
bld_raw_conf0383.86 15483.99 15283.45 17888.77 19362.26 26191.49 3792.62 9765.43 26688.07 14192.18 15568.44 24495.51 4574.78 17494.16 18892.58 163
balanced_conf0384.80 12785.40 12383.00 19088.95 18661.44 26990.42 5792.37 10571.48 20488.72 12693.13 11870.16 23595.15 6279.26 12194.11 19092.41 173
alignmvs83.94 15283.98 15383.80 16487.80 21567.88 19984.54 16291.42 13373.27 17988.41 13487.96 24972.33 21790.83 20276.02 16194.11 19092.69 159
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 20952.14 36383.65 23491.25 17863.24 27086.65 28254.66 34194.11 19085.17 310
MVS_111021_HR84.63 13084.34 14785.49 12890.18 16175.86 12079.23 26887.13 22073.35 17385.56 19589.34 22983.60 8290.50 21276.64 15394.05 19390.09 245
VNet79.31 22880.27 21376.44 29587.92 21353.95 33975.58 32084.35 26774.39 15882.23 25790.72 20072.84 21284.39 31360.38 30893.98 19490.97 219
FMVSNet281.31 19881.61 19080.41 23886.38 24758.75 30783.93 17586.58 23172.43 19087.65 15092.98 12463.78 26790.22 21866.86 25193.92 19592.27 183
MGCFI-Net85.04 12285.95 11082.31 20887.52 22363.59 23986.23 13493.96 4273.46 16988.07 14187.83 25486.46 5490.87 20176.17 15893.89 19692.47 171
LF4IMVS82.75 17281.93 18485.19 13082.08 31480.15 7185.53 14388.76 19668.01 24085.58 19487.75 25571.80 22686.85 27874.02 18293.87 19788.58 269
sasdasda85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
canonicalmvs85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
v2v48284.09 14684.24 14883.62 17187.13 23161.40 27082.71 21089.71 18272.19 19889.55 11391.41 17470.70 23293.20 13281.02 9993.76 19896.25 32
casdiffmvspermissive85.21 11885.85 11483.31 18386.17 25762.77 25083.03 20093.93 4474.69 15588.21 13892.68 13782.29 10191.89 17077.87 13993.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet82.78 17181.64 18886.21 11286.20 25676.24 11786.86 11985.68 24477.07 12873.76 34692.82 13169.64 23691.82 17369.04 23693.69 20290.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 10971.77 15981.78 28891.84 16173.92 19593.65 20383.61 332
AUN-MVS81.18 20078.78 23388.39 7690.93 14582.14 5982.51 21783.67 27264.69 27680.29 28985.91 28851.07 33692.38 15576.29 15793.63 20490.65 231
hse-mvs283.47 16381.81 18688.47 7491.03 14382.27 5882.61 21183.69 27171.27 20586.70 16986.05 28563.04 27392.41 15478.26 13193.62 20590.71 227
MVS_111021_LR84.28 14083.76 15685.83 12189.23 18083.07 5280.99 24383.56 27372.71 18886.07 18589.07 23581.75 11386.19 29177.11 14993.36 20688.24 271
GBi-Net82.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
test182.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24269.04 22986.00 18690.44 20951.75 33490.09 22665.95 26193.34 20791.72 201
test_fmvsmvis_n_192085.22 11785.36 12584.81 13685.80 26476.13 11985.15 15192.32 10661.40 30191.33 7490.85 19683.76 8086.16 29284.31 6493.28 21092.15 189
K. test v385.14 12084.73 13386.37 10691.13 14169.63 18185.45 14576.68 32184.06 4892.44 5896.99 962.03 27694.65 7680.58 10693.24 21194.83 72
Anonymous2023120671.38 30971.88 30169.88 34086.31 25154.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28872.06 36444.35 38793.23 21283.23 340
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26573.50 33984.80 26457.61 33482.24 25687.54 25951.31 33587.65 26570.40 22293.19 21391.23 212
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 27983.20 24388.22 24556.67 31178.79 34873.22 19593.12 21492.78 154
新几何182.95 19393.96 5678.56 8580.24 29855.45 34483.93 23191.08 18571.19 22988.33 25965.84 26493.07 21581.95 355
lessismore_v085.95 11691.10 14270.99 17070.91 36391.79 6794.42 7061.76 27792.93 14279.52 11893.03 21693.93 104
TAMVS78.08 24276.36 25783.23 18590.62 15272.87 13979.08 26980.01 30061.72 29781.35 27586.92 27363.96 26688.78 25450.61 36293.01 21788.04 277
ETV-MVS84.31 13883.91 15585.52 12688.58 19870.40 17484.50 16493.37 6278.76 11084.07 22878.72 36580.39 12795.13 6473.82 18692.98 21891.04 217
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22175.79 32566.49 25658.39 40381.06 34453.68 32585.98 29453.55 34792.97 21985.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 10983.38 15993.14 487.13 23191.15 387.70 10788.42 20074.57 15683.56 23785.65 28978.49 14294.21 9072.04 20792.88 22094.05 100
CANet83.79 15582.85 17086.63 10186.17 25772.21 15683.76 18191.43 13177.24 12774.39 34287.45 26275.36 17795.42 5177.03 15092.83 22192.25 185
API-MVS82.28 17982.61 17581.30 22286.29 25369.79 17788.71 9487.67 21278.42 11482.15 25984.15 31377.98 14591.59 17665.39 26892.75 22282.51 350
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25381.84 26489.93 22172.08 22366.92 38646.05 38392.54 22587.01 291
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 16036.68 39278.98 34547.87 37692.45 22687.95 279
CDS-MVSNet77.32 25075.40 26683.06 18889.00 18472.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29388.76 25554.64 34292.37 22787.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 23179.39 22677.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29989.89 22375.18 17972.97 36273.32 19492.30 22891.15 215
dcpmvs_284.23 14385.14 12781.50 22088.61 19761.98 26682.90 20693.11 7768.66 23492.77 5292.39 14478.50 14187.63 26676.99 15192.30 22894.90 65
CNLPA83.55 16183.10 16684.90 13489.34 17783.87 4784.54 16288.77 19579.09 10383.54 23888.66 24174.87 18281.73 33066.84 25392.29 23089.11 260
F-COLMAP84.97 12683.42 15889.63 5492.39 9383.40 4988.83 9191.92 11873.19 18080.18 29389.15 23477.04 16093.28 13065.82 26592.28 23192.21 186
thres600view775.97 26675.35 26877.85 27987.01 23751.84 35680.45 24873.26 34675.20 15083.10 24586.31 28145.54 36289.05 24755.03 33992.24 23292.66 160
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16061.70 29875.43 33387.07 27169.11 24091.44 18060.68 30692.24 23290.11 244
DELS-MVS81.44 19781.25 19982.03 21084.27 28862.87 24876.47 30892.49 10170.97 21081.64 27183.83 31475.03 18092.70 14774.29 17692.22 23490.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19791.75 16767.96 24785.24 30468.57 24492.18 23581.06 368
SSC-MVS77.55 24781.64 18865.29 36790.46 15520.33 41373.56 33868.28 37285.44 3588.18 14094.64 6070.93 23081.33 33271.25 21092.03 23694.20 91
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22065.79 26084.32 22085.10 29958.96 29790.88 20075.36 16892.03 23693.84 109
miper_ehance_all_eth80.34 21580.04 22181.24 22579.82 34158.95 30277.66 28889.66 18365.75 26385.99 18985.11 29868.29 24591.42 18276.03 16092.03 23693.33 132
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19458.05 33083.59 23580.69 34564.41 26291.20 18673.16 20192.03 23692.33 179
GeoE85.45 11485.81 11584.37 14790.08 16267.07 20585.86 13891.39 13472.33 19587.59 15190.25 21484.85 6892.37 15678.00 13691.94 24093.66 119
DPM-MVS80.10 22379.18 22882.88 19790.71 15169.74 17878.87 27390.84 14960.29 31675.64 33285.92 28767.28 24893.11 13671.24 21191.79 24185.77 304
v14882.31 17882.48 17881.81 21785.59 26659.66 29381.47 23686.02 23972.85 18488.05 14490.65 20570.73 23190.91 19875.15 17091.79 24194.87 67
test22293.31 7076.54 11079.38 26377.79 30952.59 35882.36 25590.84 19766.83 25291.69 24381.25 363
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18580.97 27782.08 33519.80 41487.33 27065.12 27191.68 24492.13 190
eth_miper_zixun_eth80.84 20480.22 21682.71 19981.41 32360.98 27977.81 28690.14 17467.31 25086.95 16587.24 26764.26 26392.31 15875.23 16991.61 24594.85 71
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22574.41 12680.86 24579.67 30155.68 34384.69 21190.31 21360.91 28185.42 30362.20 29391.59 24687.88 281
Vis-MVSNetpermissive86.86 9086.58 9987.72 8692.09 10477.43 10187.35 11292.09 11278.87 10784.27 22594.05 8878.35 14393.65 11080.54 10791.58 24792.08 191
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FE-MVS79.98 22578.86 23183.36 18186.47 24466.45 21389.73 6984.74 26572.80 18684.22 22791.38 17544.95 37193.60 11663.93 28191.50 24890.04 246
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 24989.35 255
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30484.26 31565.60 26791.36 25089.56 251
FA-MVS(test-final)83.13 16983.02 16783.43 17986.16 25966.08 21688.00 10288.36 20275.55 14585.02 20392.75 13565.12 26092.50 15274.94 17391.30 25191.72 201
OpenMVScopyleft76.72 1381.98 18982.00 18381.93 21184.42 28468.22 19488.50 9889.48 18866.92 25281.80 26791.86 15972.59 21590.16 22071.19 21291.25 25287.40 287
EG-PatchMatch MVS84.08 14784.11 14983.98 16092.22 10072.61 14682.20 22987.02 22572.63 18988.86 12191.02 18678.52 14091.11 19073.41 19291.09 25388.21 272
3Dnovator80.37 784.80 12784.71 13685.06 13386.36 25074.71 12488.77 9390.00 17775.65 14484.96 20593.17 11674.06 19391.19 18778.28 13091.09 25389.29 258
thres100view90075.45 27075.05 27076.66 29487.27 22751.88 35581.07 24273.26 34675.68 14383.25 24286.37 27845.54 36288.80 25151.98 35790.99 25589.31 256
tfpn200view974.86 27874.23 27776.74 29386.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25589.31 256
thres40075.14 27274.23 27777.86 27886.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25592.66 160
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21455.94 34275.16 33876.53 38263.97 26591.16 18865.00 27290.97 25888.06 276
MSP-MVS89.08 6388.16 7691.83 1995.76 1886.14 2292.75 1693.90 4678.43 11389.16 11892.25 15272.03 22596.36 488.21 890.93 25992.98 149
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ab-mvs79.67 22780.56 20876.99 28788.48 20056.93 32084.70 15786.06 23768.95 23080.78 28293.08 11975.30 17884.62 31056.78 32490.90 26089.43 254
test_fmvsm_n_192083.60 15982.89 16985.74 12285.22 27277.74 9684.12 16990.48 15859.87 32086.45 18191.12 18375.65 17485.89 29882.28 8890.87 26193.58 125
MAR-MVS80.24 21978.74 23584.73 13986.87 24178.18 8985.75 14087.81 21165.67 26577.84 31178.50 36673.79 19790.53 21161.59 30190.87 26185.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 12184.53 14186.88 9784.01 29172.76 14083.91 17685.18 25280.44 8488.75 12485.49 29180.08 13191.92 16882.02 9190.85 26395.97 39
EI-MVSNet-UG-set85.04 12284.44 14386.85 9883.87 29572.52 14983.82 17885.15 25380.27 8888.75 12485.45 29379.95 13391.90 16981.92 9490.80 26496.13 34
XVG-OURS-SEG-HR89.59 5289.37 5990.28 4394.47 4385.95 2486.84 12093.91 4580.07 9186.75 16893.26 11493.64 290.93 19684.60 6290.75 26593.97 102
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19883.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21590.68 26689.17 259
EI-MVSNet82.61 17382.42 17983.20 18683.25 30563.66 23783.50 18785.07 25476.06 13486.55 17385.10 29973.41 20390.25 21578.15 13590.67 26795.68 45
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27577.49 29385.07 25460.78 31186.55 17388.68 24043.14 38090.25 21573.69 18990.67 26792.42 172
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16786.33 27945.79 36182.59 32569.63 22790.65 26981.54 359
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32182.99 32462.17 29590.64 27089.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.06 26580.01 22264.19 37089.96 16820.58 41272.18 34768.19 37383.21 5786.46 18093.49 11170.19 23478.97 34665.96 26090.46 27193.02 146
fmvsm_l_conf0.5_n82.06 18681.54 19483.60 17283.94 29273.90 12983.35 19186.10 23658.97 32283.80 23290.36 21074.23 19186.94 27682.90 7890.22 27289.94 247
V4283.47 16383.37 16083.75 16783.16 30863.33 24281.31 23790.23 17169.51 22490.91 8490.81 19874.16 19292.29 16080.06 10990.22 27295.62 47
PM-MVS80.20 22079.00 22983.78 16688.17 20786.66 1681.31 23766.81 38169.64 22388.33 13690.19 21664.58 26183.63 32171.99 20890.03 27481.06 368
PLCcopyleft73.85 1682.09 18580.31 21287.45 8990.86 14880.29 7085.88 13790.65 15468.17 23976.32 32286.33 27973.12 20992.61 15061.40 30290.02 27589.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18483.73 29773.21 13883.00 20285.59 24658.22 32882.96 24790.09 22072.30 21886.65 28281.97 9389.95 27689.88 248
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27785.66 305
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19388.29 20469.16 22767.83 37783.72 31560.93 28089.47 23969.22 23289.70 27890.88 222
diffmvspermissive80.40 21380.48 21180.17 24279.02 35160.04 28877.54 29190.28 17066.65 25582.40 25487.33 26573.50 20087.35 26977.98 13789.62 27993.13 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32649.76 40632.68 40589.41 28072.15 387
Fast-Effi-MVS+-dtu82.54 17681.41 19685.90 11885.60 26576.53 11283.07 19989.62 18673.02 18379.11 30383.51 31780.74 12490.24 21768.76 23989.29 28190.94 220
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 22078.56 30780.57 34846.20 35488.20 26146.99 37989.29 28184.32 321
jason77.42 24975.75 26382.43 20787.10 23469.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28589.00 24870.74 21789.27 28389.03 264
jason: jason.
MG-MVS80.32 21680.94 20478.47 26588.18 20652.62 35082.29 22385.01 25872.01 20079.24 30292.54 14169.36 23893.36 12970.65 21889.19 28489.45 252
BH-untuned80.96 20380.99 20380.84 23188.55 19968.23 19380.33 25088.46 19972.79 18786.55 17386.76 27474.72 18791.77 17461.79 29888.99 28582.52 349
EIA-MVS82.19 18281.23 20185.10 13287.95 21269.17 18983.22 19793.33 6570.42 21478.58 30679.77 35777.29 15594.20 9171.51 20988.96 28691.93 197
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14191.58 12573.24 13784.21 16691.67 12662.86 28480.94 27987.16 26867.27 24992.87 14569.82 22688.94 28787.99 278
MVSFormer82.23 18081.57 19384.19 15885.54 26769.26 18591.98 3190.08 17571.54 20276.23 32385.07 30258.69 29894.27 8686.26 4088.77 28889.03 264
lupinMVS76.37 26374.46 27582.09 20985.54 26769.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29888.94 24969.85 22588.77 28888.07 274
RPSCF88.00 7786.93 9591.22 2890.08 16289.30 589.68 7291.11 14279.26 10189.68 10694.81 5582.44 9487.74 26476.54 15488.74 29096.61 27
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 16187.84 25350.44 34171.62 36777.42 14688.53 29190.72 226
PAPM_NR83.23 16683.19 16383.33 18290.90 14665.98 21788.19 10090.78 15178.13 11780.87 28187.92 25273.49 20292.42 15370.07 22388.40 29291.60 206
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29386.62 295
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28390.96 19075.44 17569.35 37356.13 32988.33 29485.86 303
Fast-Effi-MVS+81.04 20280.57 20782.46 20687.50 22463.22 24478.37 28089.63 18568.01 24081.87 26382.08 33582.31 9992.65 14967.10 25088.30 29891.51 209
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 18188.86 12188.99 23666.94 25081.23 33364.71 27588.22 29991.64 205
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15762.51 28675.32 33684.61 30774.99 18192.30 15959.48 31288.04 30090.68 229
mvsmamba80.30 21778.87 23084.58 14388.12 20967.55 20192.35 2684.88 26163.15 28285.33 19890.91 19250.71 33895.20 6166.36 25787.98 30190.99 218
BH-RMVSNet80.53 20980.22 21681.49 22187.19 23066.21 21577.79 28786.23 23474.21 15983.69 23388.50 24273.25 20890.75 20463.18 28887.90 30287.52 285
Effi-MVS+83.90 15384.01 15183.57 17587.22 22965.61 22186.55 12992.40 10278.64 11181.34 27684.18 31283.65 8192.93 14274.22 17787.87 30392.17 188
MVS_Test82.47 17783.22 16180.22 24182.62 31357.75 31582.54 21691.96 11771.16 20982.89 24892.52 14277.41 15390.50 21280.04 11087.84 30492.40 175
QAPM82.59 17482.59 17682.58 20286.44 24566.69 21089.94 6690.36 16367.97 24284.94 20792.58 14072.71 21392.18 16170.63 21987.73 30588.85 267
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16057.36 33675.43 33378.30 36769.11 24091.44 18060.68 30687.70 30684.42 320
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32080.67 33652.86 35387.59 30784.77 314
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26173.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 4059.12 39376.45 32355.06 34675.31 33782.36 33255.74 31754.82 40347.02 37887.24 30983.52 333
fmvsm_s_conf0.1_n82.17 18381.59 19183.94 16386.87 24171.57 16585.19 15077.42 31362.27 29384.47 21691.33 17676.43 17085.91 29683.14 7287.14 31094.33 89
fmvsm_s_conf0.5_n81.91 19181.30 19883.75 16786.02 26171.56 16684.73 15677.11 31762.44 29084.00 22990.68 20276.42 17185.89 29883.14 7287.11 31193.81 114
fmvsm_s_conf0.1_n_a82.58 17581.93 18484.50 14487.68 21873.35 13386.14 13577.70 31061.64 29985.02 20391.62 16977.75 14886.24 28882.79 8187.07 31293.91 106
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31484.97 30757.72 32287.05 31385.51 307
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26845.14 38782.89 24884.22 31148.37 34670.36 37073.40 19387.03 31488.52 270
MIMVSNet71.09 31171.59 30369.57 34387.23 22850.07 36778.91 27171.83 35660.20 31871.26 35791.76 16655.08 32376.09 35541.06 39287.02 31582.54 348
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23870.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
fmvsm_s_conf0.5_n_a82.21 18181.51 19584.32 15286.56 24373.35 13385.46 14477.30 31461.81 29584.51 21390.88 19577.36 15486.21 29082.72 8286.97 31793.38 130
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13365.19 22472.47 34587.31 21546.79 38080.29 28984.30 31052.70 32992.10 16551.88 36186.73 31890.22 240
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18042.68 39788.20 13983.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
MSDG80.06 22479.99 22380.25 24083.91 29468.04 19877.51 29289.19 19177.65 12181.94 26183.45 31976.37 17286.31 28763.31 28786.59 32086.41 296
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26361.60 30083.09 24692.82 13173.89 19687.01 27268.33 24686.41 32291.37 210
IterMVS-SCA-FT80.64 20879.41 22584.34 15183.93 29369.66 18076.28 31081.09 29372.43 19086.47 17990.19 21660.46 28393.15 13577.45 14486.39 32390.22 240
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24970.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25458.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25156.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31278.84 34762.20 29386.04 32885.23 309
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 14282.43 28339.76 40185.64 19388.76 23844.71 37387.88 26373.86 18585.88 32984.16 325
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23379.75 29481.80 33850.62 33989.46 24066.85 25285.64 33089.72 249
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23485.92 24146.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16771.77 35592.79 13444.38 37475.65 35864.53 27985.37 33282.18 352
TR-MVS76.77 25775.79 26279.72 24786.10 26065.79 21977.14 29583.02 27765.20 27381.40 27482.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
BH-w/o76.57 25976.07 26178.10 27286.88 24065.92 21877.63 28986.33 23265.69 26480.89 28079.95 35468.97 24290.74 20553.01 35285.25 33477.62 379
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 27979.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24489.16 23359.90 28984.46 31168.61 24285.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25871.89 36638.21 39985.04 33887.69 284
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24182.52 28162.45 28983.34 24187.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 27043.31 39479.40 29879.39 35943.47 37668.55 37869.05 23584.91 34282.10 353
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23561.40 27075.26 32387.13 22061.25 30574.38 34377.22 37776.94 16290.94 19564.63 27784.83 34583.35 337
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23761.30 27275.55 32187.12 22361.24 30674.45 34178.79 36477.20 15690.93 19664.62 27884.80 34683.32 338
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24584.38 34979.15 376
1112_ss74.82 27973.74 28078.04 27489.57 17060.04 28876.49 30787.09 22454.31 35073.66 34779.80 35560.25 28686.76 28158.37 31684.15 35087.32 288
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21785.26 3575.92 31670.09 36564.34 27776.09 32681.25 34365.87 25778.07 34953.86 34483.82 35271.48 388
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 16085.40 29459.80 29167.25 38459.66 31183.54 35385.92 302
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15985.39 29559.82 29067.32 38359.79 31083.50 35485.96 300
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15755.95 32573.40 34186.17 23550.70 37373.14 34885.94 28658.31 30085.90 29756.51 32683.22 35587.20 289
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33774.77 35945.82 38482.96 35681.60 358
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18555.88 40386.68 2764.62 39297.01 830.36 40183.97 31944.78 38682.94 35776.26 381
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21376.90 31850.50 37575.72 33092.38 14548.07 34884.07 31768.72 24182.91 35883.85 329
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21394.16 3074.80 15375.72 33092.59 13848.69 34595.56 4073.48 19182.91 35883.85 329
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25582.85 36078.52 378
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28784.83 30949.58 36882.65 36185.11 311
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28387.01 27258.11 32082.63 36383.88 326
test_f64.31 35665.85 34659.67 38166.54 40662.24 26457.76 39770.96 36240.13 39984.36 21882.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16763.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 30985.18 30649.87 36681.67 36586.14 299
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29669.06 37548.57 37281.67 36582.55 347
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33064.40 39444.90 38581.44 36875.76 382
PAPM71.77 30470.06 31876.92 28986.39 24653.97 33876.62 30586.62 23053.44 35463.97 39384.73 30657.79 30692.34 15739.65 39481.33 36984.45 319
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21255.46 31963.12 39641.72 39181.30 37069.09 392
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30365.36 39250.21 36381.01 37181.25 363
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3774.65 32967.39 37571.94 20177.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29470.64 36948.46 37379.35 37581.66 357
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27885.19 30563.54 28479.21 37782.59 345
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26951.06 36974.85 34079.10 36155.10 32268.83 37668.86 23879.20 37882.58 346
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25878.81 30586.28 28256.36 31381.63 33156.63 32579.04 37987.87 282
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29266.35 38848.97 37178.57 38060.81 399
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32760.04 39956.16 32877.77 38280.68 370
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31881.75 32955.37 33577.70 38374.94 384
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29988.21 24660.50 28269.12 37458.33 31877.62 38487.04 290
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18779.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22077.54 38581.08 366
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28878.95 36352.03 33165.53 39165.77 26677.45 38679.95 374
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16855.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
MVP-Stereo75.81 26873.51 28482.71 19989.35 17673.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30589.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29287.05 27252.83 32863.09 39751.92 36072.44 39279.84 375
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18249.95 34376.43 35438.74 39671.92 39455.84 403
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21465.18 38792.97 12633.64 39783.06 32253.52 34869.61 39978.79 377
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31668.23 38132.07 40669.46 40068.17 393
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31544.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31059.35 40146.16 38158.96 40465.93 395
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32465.91 39035.40 40147.01 40559.25 401
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1620.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
test_one_060193.85 5973.27 13694.11 3686.57 2893.47 3994.64 6088.42 26
eth-test20.00 419
eth-test0.00 419
test_241102_ONE94.18 4772.65 14193.69 5483.62 5294.11 2493.78 10490.28 1495.50 48
save fliter93.75 6077.44 10086.31 13289.72 18170.80 211
test072694.16 5072.56 14790.63 4893.90 4683.61 5393.75 3294.49 6589.76 18
GSMVS83.88 326
test_part293.86 5877.77 9592.84 49
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
MTGPAbinary91.81 124
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
MTMP90.66 4733.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
TEST992.34 9579.70 7583.94 17390.32 16465.41 27084.49 21490.97 18882.03 10693.63 112
test_892.09 10478.87 8283.82 17890.31 16665.79 26084.36 21890.96 19081.93 10893.44 125
agg_prior91.58 12577.69 9790.30 16784.32 22093.18 133
test_prior478.97 8184.59 159
test_prior86.32 10790.59 15371.99 15892.85 9094.17 9492.80 153
旧先验281.73 23256.88 34086.54 17884.90 30872.81 202
新几何281.72 233
无先验82.81 20885.62 24558.09 32991.41 18367.95 24984.48 318
原ACMM282.26 226
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata179.62 25873.95 162
plane_prior793.45 6577.31 103
plane_prior692.61 8776.54 11074.84 183
plane_prior492.95 127
plane_prior376.85 10877.79 12086.55 173
plane_prior289.45 8179.44 98
plane_prior192.83 85
n20.00 420
nn0.00 420
door-mid74.45 335
test1191.46 130
door72.57 350
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 15373.30 17680.55 285
ACMP_Plane91.19 13784.77 15373.30 17680.55 285
BP-MVS77.30 147
HQP4-MVS80.56 28494.61 7893.56 127
HQP2-MVS72.10 221
NP-MVS91.95 11074.55 12590.17 218
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
Test By Simon79.09 137