This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 6199.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13498.99 195.15 199.14 296.47 30
WR-MVS_H89.91 5091.31 3385.71 12896.32 962.39 26789.54 7993.31 7090.21 1295.57 1195.66 3381.42 12095.90 1780.94 10698.80 398.84 5
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8598.76 494.87 70
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12878.35 13698.76 495.61 50
PS-CasMVS90.06 4391.92 1584.47 15396.56 658.83 31489.04 8892.74 9791.40 696.12 596.06 2687.23 4895.57 4179.42 12698.74 699.00 2
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5898.73 795.23 61
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5898.73 795.23 61
PEN-MVS90.03 4591.88 1884.48 15296.57 558.88 31188.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 13298.72 998.97 3
CP-MVSNet89.27 6290.91 4484.37 15496.34 858.61 31788.66 9792.06 11690.78 795.67 895.17 4781.80 11695.54 4479.00 13098.69 1098.95 4
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13694.02 5864.13 24384.38 17391.29 14084.88 4492.06 6593.84 10586.45 5893.73 11173.22 20598.66 1197.69 9
NR-MVSNet86.00 10886.22 10885.34 13493.24 7664.56 23982.21 23590.46 16280.99 8288.42 13791.97 16577.56 15693.85 10772.46 21598.65 1297.61 10
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9588.22 2288.53 13397.64 383.45 8694.55 8386.02 5398.60 1396.67 25
FC-MVSNet-test85.93 11087.05 9582.58 20992.25 10156.44 33385.75 14693.09 8177.33 13091.94 6894.65 6174.78 19093.41 13075.11 18198.58 1497.88 7
DTE-MVSNet89.98 4791.91 1784.21 16296.51 757.84 32288.93 9092.84 9491.92 496.16 496.23 2186.95 5195.99 1279.05 12998.57 1598.80 6
UniMVSNet (Re)86.87 9186.98 9786.55 10693.11 7968.48 20283.80 18892.87 9280.37 8789.61 11391.81 17377.72 15494.18 9575.00 18298.53 1696.99 22
Baseline_NR-MVSNet84.00 15485.90 11578.29 27891.47 13453.44 35682.29 23187.00 23679.06 10789.55 11595.72 3277.20 16186.14 30072.30 21698.51 1795.28 58
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9786.07 4998.48 1897.22 17
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14485.02 6398.45 1992.41 179
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 66
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3198.39 2192.55 172
UniMVSNet_NR-MVSNet86.84 9387.06 9486.17 11892.86 8667.02 21682.55 22391.56 13083.08 6290.92 8491.82 17278.25 14893.99 10274.16 18798.35 2297.49 13
DU-MVS86.80 9486.99 9686.21 11693.24 7667.02 21683.16 20692.21 11181.73 7490.92 8491.97 16577.20 16193.99 10274.16 18798.35 2297.61 10
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12784.07 4992.00 6694.40 7686.63 5495.28 5888.59 1098.31 2492.30 186
ACMH76.49 1489.34 5991.14 3583.96 16792.50 9470.36 18089.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26583.33 7798.30 2593.20 145
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 197
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11798.27 2695.04 67
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 208
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2898.24 3094.56 80
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1198.23 3195.33 56
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2698.21 3292.98 156
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4398.21 3293.19 146
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2198.20 3494.39 91
Skip Steuart: Steuart Systems R&D Blog.
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14896.05 987.45 2498.17 3592.40 181
No_MVS88.81 7191.55 12977.99 9491.01 14896.05 987.45 2498.17 3592.40 181
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1398.15 3795.95 41
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10283.09 6191.54 7294.25 8387.67 4495.51 4787.21 3298.11 3893.12 150
WR-MVS83.56 16684.40 15081.06 23793.43 7054.88 34678.67 28685.02 26681.24 7990.74 9091.56 18072.85 21691.08 19568.00 25898.04 3997.23 16
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 14082.67 8998.04 3993.64 127
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17589.71 10794.82 5685.09 6895.77 3484.17 7298.03 4193.26 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs85.35 11986.27 10782.60 20891.86 11657.31 32685.10 16093.05 8375.83 14691.02 8393.97 9673.57 20492.91 14873.97 19398.02 4297.58 12
Anonymous2023121188.40 7189.62 5984.73 14590.46 15765.27 23288.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 17076.70 16097.99 4396.88 23
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4297.99 4393.96 108
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2297.98 4592.98 156
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14883.61 5593.75 3494.65 6189.76 1895.78 3286.42 4097.97 4690.55 244
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 4097.97 4692.02 200
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 997.96 4894.12 103
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 5097.92 4992.29 187
IU-MVS94.18 5072.64 14790.82 15356.98 35189.67 10985.78 5597.92 4993.28 141
CLD-MVS83.18 17382.64 18184.79 14389.05 18467.82 21077.93 29492.52 10368.33 24585.07 21181.54 35582.06 10992.96 14469.35 24097.91 5193.57 132
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IS-MVSNet86.66 9786.82 10186.17 11892.05 10966.87 21991.21 4388.64 20486.30 3389.60 11492.59 14669.22 24594.91 7173.89 19497.89 5296.72 24
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 142
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 5097.82 5492.04 199
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6997.81 5591.70 212
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21594.85 7285.07 6197.78 5697.26 15
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15692.84 5195.28 4485.58 6796.09 887.92 1597.76 5793.88 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1797.76 5793.99 106
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1797.74 5992.85 159
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2297.71 6093.83 115
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3597.69 6193.93 109
UniMVSNet_ETH3D89.12 6590.72 4784.31 16097.00 264.33 24289.67 7488.38 20788.84 1794.29 2297.57 490.48 1391.26 18972.57 21497.65 6297.34 14
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 10086.25 4697.63 6397.82 8
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2897.62 6494.20 96
X-MVStestdata85.04 12682.70 17992.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 42486.57 5595.80 2887.35 2897.62 6494.20 96
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3397.60 6692.73 162
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3397.60 6692.73 162
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3997.60 6694.18 99
Anonymous2024052180.18 23081.25 20776.95 29783.15 31960.84 29082.46 22685.99 24968.76 24086.78 17393.73 11259.13 30277.44 36473.71 19897.55 6992.56 171
9.1489.29 6291.84 11988.80 9395.32 1275.14 15891.07 8192.89 13687.27 4793.78 11083.69 7697.55 69
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9678.78 11192.51 5893.64 11588.13 3693.84 10984.83 6697.55 6994.10 104
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13791.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5797.51 7394.30 95
MIMVSNet183.63 16384.59 14280.74 24194.06 5762.77 26082.72 21784.53 27577.57 12890.34 9395.92 2876.88 17385.83 30861.88 30997.42 7493.62 128
ACMMP++97.35 75
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3797.34 7692.19 193
nrg03087.85 8288.49 7585.91 12290.07 16669.73 18687.86 10694.20 3074.04 16792.70 5694.66 6085.88 6691.50 18179.72 12097.32 7796.50 29
pmmvs686.52 9988.06 7981.90 21992.22 10362.28 27084.66 16689.15 19883.54 5789.85 10497.32 588.08 3886.80 28670.43 23197.30 7896.62 26
SD-MVS88.96 6789.88 5386.22 11591.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15986.11 6390.22 22286.24 4797.24 7991.36 220
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 11079.74 9687.50 16092.38 15381.42 12093.28 13383.07 8197.24 7991.67 213
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9597.18 8190.45 246
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
wuyk23d75.13 28379.30 23662.63 38875.56 38875.18 12680.89 25373.10 35975.06 15994.76 1695.32 4187.73 4352.85 41934.16 41897.11 8259.85 415
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19388.51 2190.11 9695.12 4990.98 688.92 25477.55 15097.07 8383.13 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18884.24 7893.37 13177.97 14697.03 8495.52 51
test_prior283.37 19875.43 15484.58 22191.57 17981.92 11479.54 12496.97 85
EPP-MVSNet85.47 11685.04 13386.77 10391.52 13269.37 19091.63 3987.98 21681.51 7787.05 17091.83 17166.18 26095.29 5670.75 22696.89 8695.64 48
VDDNet84.35 14185.39 12881.25 23295.13 3259.32 30485.42 15381.11 30386.41 3287.41 16196.21 2273.61 20390.61 21466.33 26996.85 8793.81 119
VPNet80.25 22781.68 19475.94 31192.46 9547.98 38676.70 31481.67 29973.45 17784.87 21792.82 13974.66 19386.51 29161.66 31296.85 8793.33 138
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19587.84 10788.05 21481.66 7594.64 1896.53 1765.94 26194.75 7483.02 8396.83 8995.41 53
VPA-MVSNet83.47 16984.73 13779.69 25790.29 16057.52 32581.30 24788.69 20376.29 13787.58 15994.44 7180.60 13087.20 27866.60 26796.82 9094.34 93
Gipumacopyleft84.44 13986.33 10678.78 26784.20 29773.57 13589.55 7790.44 16384.24 4884.38 22694.89 5376.35 17880.40 35076.14 16996.80 9182.36 366
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ZD-MVS92.22 10380.48 7191.85 12371.22 21590.38 9292.98 13186.06 6496.11 781.99 9896.75 92
CDPH-MVS86.17 10785.54 12488.05 8692.25 10175.45 12483.85 18592.01 11765.91 27086.19 18991.75 17683.77 8294.98 6977.43 15396.71 9393.73 122
KD-MVS_self_test81.93 19983.14 17278.30 27784.75 28652.75 36080.37 25989.42 19670.24 22790.26 9593.39 11974.55 19586.77 28768.61 25396.64 9495.38 54
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 9087.95 2589.62 11192.87 13784.56 7393.89 10677.65 14896.62 9590.70 238
TransMVSNet (Re)84.02 15385.74 12178.85 26691.00 14655.20 34582.29 23187.26 22379.65 9888.38 13995.52 3783.00 9086.88 28467.97 25996.60 9694.45 86
ambc82.98 19790.55 15664.86 23688.20 10089.15 19889.40 11893.96 9971.67 23391.38 18878.83 13196.55 9792.71 165
train_agg85.98 10985.28 13088.07 8592.34 9879.70 7883.94 18190.32 16965.79 27284.49 22390.97 19781.93 11293.63 11581.21 10396.54 9890.88 232
VDD-MVS84.23 14784.58 14383.20 19191.17 14265.16 23583.25 20284.97 26979.79 9587.18 16394.27 7974.77 19190.89 20369.24 24196.54 9893.55 135
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 14178.20 11886.69 17892.28 16080.36 13295.06 6786.17 4896.49 10090.22 250
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 18071.54 20994.28 2496.54 1681.57 11894.27 8986.26 4496.49 10097.09 19
SPE-MVS-test87.00 9086.43 10588.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 28387.25 27882.43 9894.53 8477.65 14896.46 10294.14 102
test111178.53 24778.85 24177.56 29092.22 10347.49 38882.61 21969.24 38372.43 19785.28 20794.20 8551.91 34090.07 23165.36 28096.45 10395.11 65
test9_res80.83 10896.45 10390.57 242
Anonymous2024052986.20 10487.13 9283.42 18590.19 16264.55 24084.55 16890.71 15585.85 3689.94 10395.24 4682.13 10890.40 21869.19 24496.40 10595.31 57
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17769.87 23095.06 1596.14 2584.28 7793.07 14187.68 1996.34 10697.09 19
PHI-MVS86.38 10085.81 11888.08 8488.44 20477.34 10589.35 8593.05 8373.15 18884.76 21987.70 26878.87 14394.18 9580.67 11196.29 10792.73 162
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11970.73 22094.19 2596.67 1476.94 16794.57 8183.07 8196.28 10896.15 33
v1086.54 9887.10 9384.84 14088.16 21063.28 25386.64 13092.20 11275.42 15592.81 5394.50 6874.05 19994.06 10183.88 7496.28 10897.17 18
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15691.23 14277.31 13187.07 16991.47 18282.94 9194.71 7584.67 6796.27 11092.62 169
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 21089.67 23684.47 7595.46 5082.56 9096.26 11193.77 121
mmtdpeth85.13 12485.78 12083.17 19384.65 28774.71 12785.87 14390.35 16877.94 12183.82 24196.96 1277.75 15280.03 35378.44 13396.21 11294.79 76
MM87.64 8587.15 9189.09 6789.51 17476.39 11888.68 9686.76 23784.54 4683.58 24793.78 10873.36 21196.48 287.98 1496.21 11294.41 90
114514_t83.10 17682.54 18484.77 14492.90 8369.10 19786.65 12990.62 15954.66 36381.46 28590.81 20776.98 16694.38 8772.62 21396.18 11490.82 234
agg_prior279.68 12196.16 11590.22 250
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14993.03 12982.66 9491.47 18270.81 22396.14 11694.16 100
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14993.03 12982.66 9491.47 18270.81 22396.14 11694.16 100
EPNet80.37 22378.41 24986.23 11376.75 37773.28 13987.18 11677.45 32376.24 13868.14 38888.93 24865.41 26493.85 10769.47 23996.12 11891.55 217
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18996.10 11994.45 86
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24674.12 18996.10 11994.45 86
pm-mvs183.69 16184.95 13579.91 25390.04 16859.66 30182.43 22787.44 22075.52 15387.85 15295.26 4581.25 12285.65 31068.74 25196.04 12194.42 89
test250674.12 29573.39 29576.28 30891.85 11744.20 40284.06 17848.20 42372.30 20381.90 27494.20 8527.22 42389.77 23964.81 28596.02 12294.87 70
ECVR-MVScopyleft78.44 24878.63 24577.88 28691.85 11748.95 38283.68 19169.91 37972.30 20384.26 23594.20 8551.89 34189.82 23663.58 29596.02 12294.87 70
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15870.00 22994.55 1996.67 1487.94 3993.59 12084.27 7195.97 12495.52 51
EGC-MVSNET74.79 29069.99 33289.19 6594.89 3887.00 1591.89 3786.28 2411.09 4252.23 42795.98 2781.87 11589.48 24279.76 11995.96 12591.10 225
MVS_030485.37 11884.58 14387.75 8885.28 27673.36 13686.54 13385.71 25277.56 12981.78 28192.47 15170.29 23996.02 1185.59 5695.96 12593.87 113
DeepPCF-MVS81.24 587.28 8886.21 10990.49 4291.48 13384.90 4283.41 19792.38 10770.25 22689.35 11990.68 21182.85 9294.57 8179.55 12395.95 12792.00 201
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12395.88 1887.41 2695.94 12892.48 175
PC_three_145258.96 33490.06 9791.33 18580.66 12993.03 14375.78 17295.94 12892.48 175
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17469.27 23394.39 2096.38 1886.02 6593.52 12483.96 7395.92 13095.34 55
ANet_high83.17 17485.68 12275.65 31381.24 33645.26 39979.94 26492.91 9183.83 5191.33 7696.88 1380.25 13385.92 30368.89 24895.89 13195.76 43
tt080588.09 7789.79 5582.98 19793.26 7563.94 24691.10 4589.64 19085.07 4190.91 8691.09 19389.16 2491.87 17582.03 9695.87 13293.13 148
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15795.86 2384.88 6495.87 13295.24 60
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 18092.95 13474.84 18895.22 5980.78 10995.83 13494.46 84
plane_prior593.61 5995.22 5980.78 10995.83 13494.46 84
cl____80.42 22180.23 22381.02 23879.99 35059.25 30577.07 30987.02 23367.37 25786.18 19189.21 24363.08 27990.16 22476.31 16695.80 13693.65 126
DIV-MVS_self_test80.43 22080.23 22381.02 23879.99 35059.25 30577.07 30987.02 23367.38 25686.19 18989.22 24263.09 27890.16 22476.32 16595.80 13693.66 124
DeepC-MVS_fast80.27 886.23 10285.65 12387.96 8791.30 13676.92 11087.19 11591.99 11870.56 22184.96 21490.69 21080.01 13695.14 6478.37 13595.78 13891.82 206
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LFMVS80.15 23180.56 21778.89 26589.19 18355.93 33585.22 15773.78 35282.96 6384.28 23392.72 14457.38 31490.07 23163.80 29495.75 13990.68 239
ACMMP++_ref95.74 140
原ACMM184.60 14992.81 8974.01 13291.50 13262.59 29682.73 26390.67 21376.53 17494.25 9169.24 24195.69 14185.55 319
tfpnnormal81.79 20282.95 17578.31 27688.93 18955.40 34180.83 25582.85 28976.81 13485.90 19794.14 8974.58 19486.51 29166.82 26595.68 14293.01 154
mvs5depth83.82 15884.54 14581.68 22682.23 32468.65 20086.89 12189.90 18480.02 9487.74 15597.86 264.19 27082.02 33876.37 16495.63 14394.35 92
TAPA-MVS77.73 1285.71 11384.83 13688.37 8088.78 19479.72 7787.15 11793.50 6269.17 23485.80 19889.56 23780.76 12792.13 16673.21 21095.51 14493.25 144
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10795.50 14594.53 83
v886.22 10386.83 10084.36 15687.82 21762.35 26986.42 13491.33 13976.78 13592.73 5594.48 7073.41 20893.72 11283.10 8095.41 14697.01 21
Vis-MVSNet (Re-imp)77.82 25377.79 25477.92 28588.82 19151.29 37383.28 20071.97 36774.04 16782.23 26989.78 23457.38 31489.41 24857.22 33695.41 14693.05 152
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18881.12 12394.68 7674.48 18495.35 14892.29 187
FMVSNet184.55 13785.45 12681.85 22190.27 16161.05 28586.83 12488.27 21178.57 11589.66 11095.64 3475.43 18190.68 21169.09 24595.33 14993.82 116
test1286.57 10590.74 15172.63 14990.69 15682.76 26279.20 14094.80 7395.32 15092.27 189
NCCC87.36 8786.87 9988.83 7092.32 10078.84 8686.58 13191.09 14678.77 11284.85 21890.89 20280.85 12695.29 5681.14 10495.32 15092.34 184
Patchmtry76.56 27077.46 25573.83 32579.37 35946.60 39282.41 22876.90 32973.81 17085.56 20392.38 15348.07 35683.98 32763.36 29895.31 15290.92 230
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14193.60 6180.16 9189.13 12393.44 11883.82 8090.98 19883.86 7595.30 15393.60 130
TSAR-MVS + GP.83.95 15582.69 18087.72 8989.27 18181.45 6783.72 19081.58 30174.73 16185.66 19986.06 29772.56 22192.69 15275.44 17795.21 15489.01 278
test_040288.65 6989.58 6085.88 12492.55 9272.22 15984.01 17989.44 19588.63 2094.38 2195.77 2986.38 6193.59 12079.84 11895.21 15491.82 206
TinyColmap81.25 20882.34 18777.99 28485.33 27560.68 29282.32 23088.33 20971.26 21486.97 17192.22 16377.10 16486.98 28262.37 30395.17 15686.31 311
Anonymous20240521180.51 21981.19 21078.49 27388.48 20257.26 32776.63 31682.49 29281.21 8084.30 23292.24 16267.99 25186.24 29562.22 30495.13 15791.98 203
tttt051781.07 21079.58 23385.52 13188.99 18766.45 22387.03 11975.51 34073.76 17188.32 14190.20 22437.96 40194.16 9979.36 12795.13 15795.93 42
DP-MVS Recon84.05 15283.22 16886.52 10791.73 12275.27 12583.23 20492.40 10572.04 20682.04 27288.33 25677.91 15193.95 10466.17 27095.12 15990.34 249
PCF-MVS74.62 1582.15 19380.92 21385.84 12589.43 17772.30 15780.53 25791.82 12557.36 34787.81 15389.92 23277.67 15593.63 11558.69 32795.08 16091.58 216
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CSCG86.26 10186.47 10485.60 13090.87 14974.26 13187.98 10491.85 12380.35 8889.54 11788.01 26079.09 14192.13 16675.51 17595.06 16190.41 247
SDMVSNet81.90 20183.17 17178.10 28188.81 19262.45 26676.08 32786.05 24773.67 17283.41 25093.04 12782.35 10080.65 34770.06 23595.03 16291.21 222
sd_testset79.95 23581.39 20575.64 31488.81 19258.07 31976.16 32682.81 29073.67 17283.41 25093.04 12780.96 12577.65 36358.62 32895.03 16291.21 222
plane_prior76.42 11687.15 11775.94 14595.03 162
new-patchmatchnet70.10 33173.37 29660.29 39581.23 33716.95 43059.54 40674.62 34362.93 29480.97 28987.93 26362.83 28271.90 37955.24 35095.01 16592.00 201
v119284.57 13684.69 14184.21 16287.75 21962.88 25783.02 20991.43 13469.08 23689.98 10290.89 20272.70 21993.62 11882.41 9294.97 16696.13 34
v192192084.23 14784.37 15183.79 17187.64 22461.71 27682.91 21391.20 14367.94 25290.06 9790.34 22072.04 22893.59 12082.32 9394.91 16796.07 36
CL-MVSNet_self_test76.81 26577.38 25775.12 31786.90 24351.34 37173.20 35580.63 30868.30 24681.80 27988.40 25566.92 25680.90 34455.35 34994.90 16893.12 150
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22989.33 24183.87 7994.53 8482.45 9194.89 16994.90 68
v14419284.24 14684.41 14983.71 17587.59 22561.57 27782.95 21291.03 14767.82 25589.80 10590.49 21773.28 21293.51 12581.88 10194.89 16996.04 38
LCM-MVSNet-Re83.48 16885.06 13278.75 26885.94 26755.75 33980.05 26294.27 2476.47 13696.09 694.54 6783.31 8889.75 24159.95 32294.89 16990.75 235
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15687.09 23865.22 23384.16 17594.23 2777.89 12291.28 7993.66 11484.35 7692.71 15080.07 11494.87 17295.16 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12284.26 4790.87 8993.92 10382.18 10789.29 25073.75 19794.81 17393.70 123
v124084.30 14384.51 14783.65 17687.65 22361.26 28282.85 21591.54 13167.94 25290.68 9190.65 21471.71 23293.64 11482.84 8694.78 17496.07 36
MSLP-MVS++85.00 12986.03 11281.90 21991.84 11971.56 17086.75 12893.02 8775.95 14487.12 16489.39 23977.98 14989.40 24977.46 15194.78 17484.75 328
IterMVS-LS84.73 13384.98 13483.96 16787.35 22963.66 24783.25 20289.88 18576.06 13989.62 11192.37 15673.40 21092.52 15578.16 14194.77 17695.69 46
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AdaColmapbinary83.66 16283.69 16183.57 18190.05 16772.26 15886.29 13690.00 18278.19 11981.65 28287.16 28083.40 8794.24 9261.69 31194.76 17784.21 338
BP-MVS182.81 17881.67 19586.23 11387.88 21668.53 20186.06 14084.36 27675.65 14985.14 20990.19 22545.84 36994.42 8685.18 6094.72 17895.75 44
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17281.56 7690.02 9991.20 19082.40 9990.81 20773.58 20094.66 17994.56 80
v114484.54 13884.72 13984.00 16587.67 22262.55 26482.97 21190.93 15170.32 22589.80 10590.99 19673.50 20593.48 12681.69 10294.65 18095.97 39
test20.0373.75 29974.59 28471.22 34681.11 33851.12 37570.15 37672.10 36670.42 22280.28 30391.50 18164.21 26974.72 37546.96 39494.58 18187.82 296
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14467.85 25486.63 17994.84 5579.58 13995.96 1587.62 2094.50 18294.56 80
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP3-MVS92.68 9894.47 183
HQP-MVS84.61 13584.06 15586.27 11291.19 13970.66 17584.77 16192.68 9873.30 18380.55 29790.17 22872.10 22594.61 7977.30 15594.47 18393.56 133
test_fmvsmconf0.01_n86.68 9686.52 10387.18 9485.94 26778.30 8986.93 12092.20 11265.94 26889.16 12193.16 12483.10 8989.89 23587.81 1694.43 18593.35 137
c3_l81.64 20381.59 19981.79 22580.86 34259.15 30878.61 28790.18 17868.36 24487.20 16287.11 28269.39 24391.62 17978.16 14194.43 18594.60 79
MCST-MVS84.36 14083.93 15885.63 12991.59 12471.58 16883.52 19492.13 11461.82 30583.96 23989.75 23579.93 13893.46 12778.33 13794.34 18791.87 205
test_fmvsmconf0.1_n86.18 10685.88 11687.08 9685.26 27778.25 9085.82 14591.82 12565.33 28288.55 13292.35 15882.62 9689.80 23786.87 3694.32 18893.18 147
thisisatest053079.07 23877.33 25884.26 16187.13 23464.58 23883.66 19275.95 33568.86 23985.22 20887.36 27638.10 39893.57 12375.47 17694.28 18994.62 78
baseline85.20 12285.93 11483.02 19586.30 25662.37 26884.55 16893.96 4474.48 16487.12 16492.03 16482.30 10391.94 17178.39 13494.21 19094.74 77
test_fmvsmconf_n85.88 11185.51 12586.99 9884.77 28578.21 9185.40 15491.39 13765.32 28387.72 15691.81 17382.33 10189.78 23886.68 3894.20 19192.99 155
h-mvs3384.25 14582.76 17888.72 7391.82 12182.60 6084.00 18084.98 26871.27 21286.70 17690.55 21663.04 28093.92 10578.26 13994.20 19189.63 262
MVSMamba_PlusPlus87.53 8688.86 7183.54 18392.03 11062.26 27191.49 4092.62 10088.07 2488.07 14696.17 2372.24 22495.79 3184.85 6594.16 19392.58 170
balanced_conf0384.80 13185.40 12783.00 19688.95 18861.44 27890.42 5892.37 10871.48 21188.72 12993.13 12570.16 24195.15 6379.26 12894.11 19492.41 179
alignmvs83.94 15683.98 15783.80 17087.80 21867.88 20984.54 17091.42 13673.27 18688.41 13887.96 26172.33 22290.83 20676.02 17194.11 19492.69 166
USDC76.63 26876.73 26576.34 30783.46 30857.20 32880.02 26388.04 21552.14 37883.65 24591.25 18763.24 27686.65 28954.66 35494.11 19485.17 323
MVS_111021_HR84.63 13484.34 15285.49 13390.18 16375.86 12379.23 27887.13 22873.35 18085.56 20389.34 24083.60 8590.50 21676.64 16194.05 19790.09 256
VNet79.31 23780.27 22276.44 30587.92 21553.95 35275.58 33384.35 27774.39 16582.23 26990.72 20972.84 21784.39 32260.38 32093.98 19890.97 228
FMVSNet281.31 20781.61 19880.41 24786.38 25158.75 31583.93 18386.58 23972.43 19787.65 15792.98 13163.78 27390.22 22266.86 26293.92 19992.27 189
MGCFI-Net85.04 12685.95 11382.31 21587.52 22663.59 24986.23 13893.96 4473.46 17688.07 14687.83 26686.46 5790.87 20576.17 16893.89 20092.47 177
GDP-MVS82.17 19180.85 21586.15 12088.65 19768.95 19885.65 14993.02 8768.42 24383.73 24389.54 23845.07 38094.31 8879.66 12293.87 20195.19 63
LF4IMVS82.75 18081.93 19185.19 13582.08 32580.15 7485.53 15088.76 20268.01 24985.58 20287.75 26771.80 23086.85 28574.02 19293.87 20188.58 281
sasdasda85.50 11486.14 11083.58 17987.97 21267.13 21387.55 10994.32 2173.44 17888.47 13587.54 27186.45 5891.06 19675.76 17393.76 20392.54 173
canonicalmvs85.50 11486.14 11083.58 17987.97 21267.13 21387.55 10994.32 2173.44 17888.47 13587.54 27186.45 5891.06 19675.76 17393.76 20392.54 173
v2v48284.09 15084.24 15383.62 17787.13 23461.40 27982.71 21889.71 18872.19 20589.55 11591.41 18370.70 23893.20 13581.02 10593.76 20396.25 32
casdiffmvspermissive85.21 12185.85 11783.31 18886.17 26162.77 26083.03 20893.93 4674.69 16288.21 14392.68 14582.29 10491.89 17477.87 14793.75 20695.27 59
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UGNet82.78 17981.64 19686.21 11686.20 26076.24 12086.86 12285.68 25377.07 13373.76 36092.82 13969.64 24291.82 17769.04 24793.69 20790.56 243
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
旧先验191.97 11171.77 16381.78 29891.84 17073.92 20093.65 20883.61 346
AUN-MVS81.18 20978.78 24288.39 7990.93 14782.14 6282.51 22583.67 28264.69 28780.29 30185.91 30151.07 34492.38 15976.29 16793.63 20990.65 241
hse-mvs283.47 16981.81 19388.47 7791.03 14582.27 6182.61 21983.69 28171.27 21286.70 17686.05 29863.04 28092.41 15878.26 13993.62 21090.71 237
MVS_111021_LR84.28 14483.76 16085.83 12689.23 18283.07 5580.99 25183.56 28372.71 19586.07 19289.07 24681.75 11786.19 29877.11 15793.36 21188.24 284
GBi-Net82.02 19682.07 18881.85 22186.38 25161.05 28586.83 12488.27 21172.43 19786.00 19395.64 3463.78 27390.68 21165.95 27293.34 21293.82 116
test182.02 19682.07 18881.85 22186.38 25161.05 28586.83 12488.27 21172.43 19786.00 19395.64 3463.78 27390.68 21165.95 27293.34 21293.82 116
FMVSNet378.80 24378.55 24679.57 25982.89 32256.89 33181.76 23985.77 25169.04 23786.00 19390.44 21851.75 34290.09 23065.95 27293.34 21291.72 210
test_fmvsmvis_n_192085.22 12085.36 12984.81 14285.80 26976.13 12285.15 15992.32 10961.40 31291.33 7690.85 20583.76 8386.16 29984.31 7093.28 21592.15 195
K. test v385.14 12384.73 13786.37 10991.13 14369.63 18885.45 15276.68 33284.06 5092.44 6096.99 1062.03 28394.65 7780.58 11293.24 21694.83 75
Anonymous2023120671.38 32171.88 31269.88 35386.31 25554.37 34870.39 37474.62 34352.57 37476.73 33288.76 24959.94 29572.06 37844.35 40193.23 21783.23 354
D2MVS76.84 26475.67 27580.34 24880.48 34862.16 27473.50 35284.80 27357.61 34582.24 26887.54 27151.31 34387.65 27270.40 23293.19 21891.23 221
miper_lstm_enhance76.45 27276.10 27077.51 29176.72 37860.97 28964.69 39685.04 26563.98 29083.20 25488.22 25756.67 31878.79 36073.22 20593.12 21992.78 161
新几何182.95 19993.96 5978.56 8880.24 30955.45 35783.93 24091.08 19471.19 23588.33 26465.84 27593.07 22081.95 370
lessismore_v085.95 12191.10 14470.99 17470.91 37591.79 6994.42 7461.76 28492.93 14679.52 12593.03 22193.93 109
TAMVS78.08 25176.36 26783.23 19090.62 15472.87 14379.08 27980.01 31161.72 30881.35 28786.92 28563.96 27288.78 25850.61 37593.01 22288.04 290
ETV-MVS84.31 14283.91 15985.52 13188.58 20070.40 17884.50 17293.37 6478.76 11384.07 23778.72 37980.39 13195.13 6573.82 19692.98 22391.04 226
EPNet_dtu72.87 30771.33 31977.49 29277.72 36860.55 29382.35 22975.79 33666.49 26758.39 41881.06 35853.68 33385.98 30153.55 36092.97 22485.95 314
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Effi-MVS+-dtu85.82 11283.38 16593.14 487.13 23491.15 387.70 10888.42 20674.57 16383.56 24885.65 30278.49 14694.21 9372.04 21792.88 22594.05 105
CANet83.79 16082.85 17786.63 10486.17 26172.21 16083.76 18991.43 13477.24 13274.39 35687.45 27475.36 18295.42 5277.03 15892.83 22692.25 191
fmvsm_s_conf0.5_n_386.19 10587.27 9082.95 19986.91 24270.38 17985.31 15592.61 10175.59 15188.32 14192.87 13782.22 10688.63 26188.80 892.82 22789.83 260
API-MVS82.28 18782.61 18281.30 23186.29 25769.79 18488.71 9587.67 21878.42 11782.15 27184.15 32777.98 14991.59 18065.39 27992.75 22882.51 365
test_yl78.71 24578.51 24779.32 26284.32 29458.84 31278.38 28885.33 25875.99 14282.49 26486.57 28858.01 30890.02 23362.74 30192.73 22989.10 273
DCV-MVSNet78.71 24578.51 24779.32 26284.32 29458.84 31278.38 28885.33 25875.99 14282.49 26486.57 28858.01 30890.02 23362.74 30192.73 22989.10 273
testgi72.36 31074.61 28265.59 37980.56 34742.82 40768.29 38273.35 35666.87 26481.84 27689.93 23172.08 22766.92 40146.05 39792.54 23187.01 304
FMVSNet572.10 31371.69 31373.32 32881.57 33253.02 35976.77 31378.37 31863.31 29176.37 33491.85 16936.68 40378.98 35747.87 39092.45 23287.95 292
CDS-MVSNet77.32 25975.40 27683.06 19489.00 18672.48 15477.90 29582.17 29560.81 32178.94 31683.49 33259.30 30088.76 25954.64 35592.37 23387.93 293
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
patch_mono-278.89 24079.39 23577.41 29384.78 28468.11 20675.60 33183.11 28660.96 32079.36 31189.89 23375.18 18472.97 37673.32 20492.30 23491.15 224
dcpmvs_284.23 14785.14 13181.50 22988.61 19961.98 27582.90 21493.11 7968.66 24292.77 5492.39 15278.50 14587.63 27376.99 15992.30 23494.90 68
CNLPA83.55 16783.10 17384.90 13989.34 17983.87 5084.54 17088.77 20179.09 10683.54 24988.66 25374.87 18781.73 34066.84 26492.29 23689.11 272
F-COLMAP84.97 13083.42 16489.63 5792.39 9683.40 5288.83 9291.92 12173.19 18780.18 30589.15 24577.04 16593.28 13365.82 27692.28 23792.21 192
thres600view775.97 27675.35 27877.85 28887.01 24051.84 36980.45 25873.26 35775.20 15783.10 25686.31 29445.54 37189.05 25155.03 35292.24 23892.66 167
PVSNet_BlendedMVS78.80 24377.84 25381.65 22784.43 29063.41 25079.49 27290.44 16361.70 30975.43 34787.07 28369.11 24691.44 18460.68 31892.24 23890.11 255
DELS-MVS81.44 20681.25 20782.03 21784.27 29662.87 25876.47 32192.49 10470.97 21881.64 28383.83 32875.03 18592.70 15174.29 18592.22 24090.51 245
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testdata79.54 26092.87 8472.34 15680.14 31059.91 33085.47 20591.75 17667.96 25285.24 31268.57 25592.18 24181.06 383
SSC-MVS77.55 25681.64 19665.29 38290.46 15720.33 42873.56 35168.28 38585.44 3788.18 14594.64 6470.93 23681.33 34271.25 22092.03 24294.20 96
cl2278.97 23978.21 25181.24 23477.74 36759.01 30977.46 30587.13 22865.79 27284.32 22985.10 31358.96 30490.88 20475.36 17892.03 24293.84 114
miper_ehance_all_eth80.34 22480.04 23081.24 23479.82 35358.95 31077.66 29889.66 18965.75 27585.99 19685.11 31268.29 25091.42 18676.03 17092.03 24293.33 138
miper_enhance_ethall77.83 25276.93 26280.51 24576.15 38458.01 32175.47 33588.82 20058.05 34183.59 24680.69 35964.41 26791.20 19073.16 21192.03 24292.33 185
GeoE85.45 11785.81 11884.37 15490.08 16467.07 21585.86 14491.39 13772.33 20287.59 15890.25 22384.85 7192.37 16078.00 14491.94 24693.66 124
fmvsm_s_conf0.1_n_283.82 15883.49 16284.84 14085.99 26670.19 18280.93 25287.58 21967.26 26087.94 15192.37 15671.40 23488.01 26786.03 5091.87 24796.31 31
DPM-MVS80.10 23279.18 23782.88 20490.71 15369.74 18578.87 28390.84 15260.29 32775.64 34685.92 30067.28 25393.11 13971.24 22191.79 24885.77 317
v14882.31 18682.48 18581.81 22485.59 27159.66 30181.47 24486.02 24872.85 19188.05 14890.65 21470.73 23790.91 20275.15 18091.79 24894.87 70
fmvsm_s_conf0.5_n_283.62 16483.29 16784.62 14885.43 27470.18 18380.61 25687.24 22467.14 26187.79 15491.87 16771.79 23187.98 26886.00 5491.77 25095.71 45
test22293.31 7376.54 11379.38 27377.79 32052.59 37382.36 26790.84 20666.83 25791.69 25181.25 378
testing371.53 31970.79 32073.77 32688.89 19041.86 40976.60 31959.12 41372.83 19280.97 28982.08 34919.80 42987.33 27765.12 28291.68 25292.13 196
eth_miper_zixun_eth80.84 21380.22 22582.71 20681.41 33460.98 28877.81 29690.14 17967.31 25986.95 17287.24 27964.26 26892.31 16275.23 17991.61 25394.85 74
pmmvs-eth3d78.42 24977.04 26182.57 21187.44 22874.41 13080.86 25479.67 31255.68 35684.69 22090.31 22260.91 28885.42 31162.20 30591.59 25487.88 294
Vis-MVSNetpermissive86.86 9286.58 10287.72 8992.09 10777.43 10487.35 11392.09 11578.87 11084.27 23494.05 9278.35 14793.65 11380.54 11391.58 25592.08 197
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FE-MVS79.98 23478.86 24083.36 18686.47 24866.45 22389.73 7084.74 27472.80 19384.22 23691.38 18444.95 38193.60 11963.93 29291.50 25690.04 257
thisisatest051573.00 30670.52 32480.46 24681.45 33359.90 29973.16 35674.31 34757.86 34276.08 34177.78 38437.60 40292.12 16865.00 28391.45 25789.35 267
ppachtmachnet_test74.73 29174.00 28976.90 29980.71 34556.89 33171.53 36678.42 31758.24 33879.32 31382.92 34057.91 31184.26 32465.60 27891.36 25889.56 263
FA-MVS(test-final)83.13 17583.02 17483.43 18486.16 26366.08 22688.00 10388.36 20875.55 15285.02 21292.75 14365.12 26592.50 15674.94 18391.30 25991.72 210
OpenMVScopyleft76.72 1381.98 19882.00 19081.93 21884.42 29268.22 20488.50 9989.48 19466.92 26381.80 27991.86 16872.59 22090.16 22471.19 22291.25 26087.40 300
EG-PatchMatch MVS84.08 15184.11 15483.98 16692.22 10372.61 15082.20 23787.02 23372.63 19688.86 12491.02 19578.52 14491.11 19473.41 20291.09 26188.21 285
3Dnovator80.37 784.80 13184.71 14085.06 13886.36 25474.71 12788.77 9490.00 18275.65 14984.96 21493.17 12374.06 19891.19 19178.28 13891.09 26189.29 270
thres100view90075.45 28075.05 28076.66 30387.27 23051.88 36881.07 25073.26 35775.68 14883.25 25386.37 29145.54 37188.80 25551.98 37090.99 26389.31 268
tfpn200view974.86 28874.23 28776.74 30286.24 25852.12 36579.24 27673.87 35073.34 18181.82 27784.60 32246.02 36488.80 25551.98 37090.99 26389.31 268
thres40075.14 28274.23 28777.86 28786.24 25852.12 36579.24 27673.87 35073.34 18181.82 27784.60 32246.02 36488.80 25551.98 37090.99 26392.66 167
cascas76.29 27474.81 28180.72 24384.47 28962.94 25673.89 34987.34 22155.94 35475.16 35276.53 39663.97 27191.16 19265.00 28390.97 26688.06 289
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 16172.03 22996.36 488.21 1290.93 26792.98 156
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WBMVS68.76 34668.43 34669.75 35583.29 31340.30 41267.36 38872.21 36557.09 35077.05 33185.53 30433.68 40880.51 34848.79 38590.90 26888.45 283
ab-mvs79.67 23680.56 21776.99 29688.48 20256.93 32984.70 16586.06 24668.95 23880.78 29493.08 12675.30 18384.62 31856.78 33790.90 26889.43 266
test_fmvsm_n_192083.60 16582.89 17685.74 12785.22 27877.74 9984.12 17790.48 16159.87 33186.45 18891.12 19275.65 17985.89 30682.28 9490.87 27093.58 131
MAR-MVS80.24 22878.74 24484.73 14586.87 24578.18 9285.75 14687.81 21765.67 27777.84 32478.50 38073.79 20290.53 21561.59 31390.87 27085.49 321
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set85.12 12584.53 14686.88 10084.01 29972.76 14483.91 18485.18 26180.44 8688.75 12785.49 30580.08 13591.92 17282.02 9790.85 27295.97 39
EI-MVSNet-UG-set85.04 12684.44 14886.85 10183.87 30372.52 15383.82 18685.15 26280.27 9088.75 12785.45 30779.95 13791.90 17381.92 10090.80 27396.13 34
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17593.26 12193.64 290.93 20084.60 6890.75 27493.97 107
ET-MVSNet_ETH3D75.28 28172.77 30382.81 20583.03 32168.11 20677.09 30876.51 33360.67 32477.60 32980.52 36338.04 39991.15 19370.78 22590.68 27589.17 271
EI-MVSNet82.61 18182.42 18683.20 19183.25 31563.66 24783.50 19585.07 26376.06 13986.55 18085.10 31373.41 20890.25 21978.15 14390.67 27695.68 47
MVSTER77.09 26175.70 27481.25 23275.27 39261.08 28477.49 30485.07 26360.78 32286.55 18088.68 25143.14 39090.25 21973.69 19990.67 27692.42 178
reproduce_monomvs74.09 29673.23 29776.65 30476.52 37954.54 34777.50 30381.40 30265.85 27182.86 26186.67 28727.38 42184.53 31970.24 23390.66 27890.89 231
Patchmatch-RL test74.48 29273.68 29176.89 30084.83 28366.54 22172.29 35969.16 38457.70 34386.76 17486.33 29245.79 37082.59 33469.63 23890.65 27981.54 374
CMPMVSbinary59.41 2075.12 28473.57 29279.77 25475.84 38767.22 21281.21 24882.18 29450.78 38776.50 33387.66 26955.20 32882.99 33362.17 30790.64 28089.09 275
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.06 27580.01 23164.19 38589.96 17020.58 42772.18 36068.19 38683.21 5986.46 18793.49 11770.19 24078.97 35865.96 27190.46 28193.02 153
fmvsm_l_conf0.5_n82.06 19581.54 20283.60 17883.94 30073.90 13383.35 19986.10 24458.97 33383.80 24290.36 21974.23 19686.94 28382.90 8490.22 28289.94 258
V4283.47 16983.37 16683.75 17383.16 31863.33 25281.31 24590.23 17669.51 23290.91 8690.81 20774.16 19792.29 16480.06 11590.22 28295.62 49
PM-MVS80.20 22979.00 23883.78 17288.17 20986.66 1981.31 24566.81 39469.64 23188.33 14090.19 22564.58 26683.63 33071.99 21890.03 28481.06 383
PLCcopyleft73.85 1682.09 19480.31 22187.45 9290.86 15080.29 7385.88 14290.65 15768.17 24876.32 33686.33 29273.12 21492.61 15461.40 31490.02 28589.44 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n_a81.46 20580.87 21483.25 18983.73 30573.21 14283.00 21085.59 25558.22 33982.96 25890.09 23072.30 22386.65 28981.97 9989.95 28689.88 259
ttmdpeth71.72 31670.67 32174.86 31973.08 40555.88 33677.41 30669.27 38255.86 35578.66 31893.77 11038.01 40075.39 37260.12 32189.87 28793.31 140
UWE-MVS66.43 35965.56 36469.05 36084.15 29840.98 41073.06 35764.71 40054.84 36176.18 33979.62 37229.21 41680.50 34938.54 41389.75 28885.66 318
CANet_DTU77.81 25477.05 26080.09 25281.37 33559.90 29983.26 20188.29 21069.16 23567.83 39183.72 32960.93 28789.47 24369.22 24389.70 28990.88 232
diffmvspermissive80.40 22280.48 22080.17 25179.02 36360.04 29677.54 30190.28 17566.65 26682.40 26687.33 27773.50 20587.35 27677.98 14589.62 29093.13 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVStest170.05 33369.26 33672.41 34058.62 42755.59 34076.61 31865.58 39653.44 36889.28 12093.32 12022.91 42771.44 38374.08 19189.52 29190.21 254
PMMVS255.64 38759.27 38644.74 40364.30 42512.32 43140.60 41849.79 42253.19 37065.06 40584.81 31853.60 33449.76 42132.68 42089.41 29272.15 402
Fast-Effi-MVS+-dtu82.54 18481.41 20485.90 12385.60 27076.53 11583.07 20789.62 19273.02 19079.11 31583.51 33180.74 12890.24 22168.76 25089.29 29390.94 229
thres20072.34 31171.55 31774.70 32283.48 30751.60 37075.02 33873.71 35370.14 22878.56 32080.57 36246.20 36288.20 26646.99 39389.29 29384.32 334
jason77.42 25875.75 27382.43 21487.10 23769.27 19177.99 29381.94 29751.47 38277.84 32485.07 31660.32 29289.00 25270.74 22789.27 29589.03 276
jason: jason.
MG-MVS80.32 22580.94 21278.47 27488.18 20852.62 36382.29 23185.01 26772.01 20779.24 31492.54 14969.36 24493.36 13270.65 22889.19 29689.45 264
BH-untuned80.96 21280.99 21180.84 24088.55 20168.23 20380.33 26088.46 20572.79 19486.55 18086.76 28674.72 19291.77 17861.79 31088.99 29782.52 364
EIA-MVS82.19 19081.23 20985.10 13787.95 21469.17 19683.22 20593.33 6770.42 22278.58 31979.77 37177.29 16094.20 9471.51 21988.96 29891.93 204
PVSNet_Blended_VisFu81.55 20480.49 21984.70 14791.58 12773.24 14184.21 17491.67 12962.86 29580.94 29187.16 28067.27 25492.87 14969.82 23788.94 29987.99 291
MVSFormer82.23 18881.57 20184.19 16485.54 27269.26 19291.98 3490.08 18071.54 20976.23 33785.07 31658.69 30594.27 8986.26 4488.77 30089.03 276
lupinMVS76.37 27374.46 28582.09 21685.54 27269.26 19276.79 31280.77 30750.68 38976.23 33782.82 34158.69 30588.94 25369.85 23688.77 30088.07 287
RPSCF88.00 7986.93 9891.22 3190.08 16489.30 589.68 7391.11 14579.26 10489.68 10894.81 5982.44 9787.74 27176.54 16288.74 30296.61 27
test_fmvs375.72 27975.20 27977.27 29475.01 39569.47 18978.93 28084.88 27046.67 39687.08 16887.84 26550.44 34971.62 38177.42 15488.53 30390.72 236
RRT-MVS82.97 17783.44 16381.57 22885.06 28058.04 32087.20 11490.37 16677.88 12388.59 13193.70 11363.17 27793.05 14276.49 16388.47 30493.62 128
PAPM_NR83.23 17283.19 17083.33 18790.90 14865.98 22788.19 10190.78 15478.13 12080.87 29387.92 26473.49 20792.42 15770.07 23488.40 30591.60 215
testing22266.93 35365.30 36571.81 34383.38 31045.83 39672.06 36167.50 38764.12 28969.68 38276.37 39727.34 42283.00 33238.88 41088.38 30686.62 308
xiu_mvs_v1_base_debu80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
xiu_mvs_v1_base80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
xiu_mvs_v1_base_debi80.84 21380.14 22782.93 20188.31 20571.73 16479.53 26987.17 22565.43 27879.59 30782.73 34376.94 16790.14 22773.22 20588.33 30786.90 305
XXY-MVS74.44 29476.19 26969.21 35984.61 28852.43 36471.70 36377.18 32760.73 32380.60 29590.96 19975.44 18069.35 38856.13 34288.33 30785.86 316
Fast-Effi-MVS+81.04 21180.57 21682.46 21387.50 22763.22 25478.37 29089.63 19168.01 24981.87 27582.08 34982.31 10292.65 15367.10 26188.30 31191.51 218
MDA-MVSNet-bldmvs77.47 25776.90 26379.16 26479.03 36264.59 23766.58 39275.67 33873.15 18888.86 12488.99 24766.94 25581.23 34364.71 28688.22 31291.64 214
PAPR78.84 24278.10 25281.07 23685.17 27960.22 29582.21 23590.57 16062.51 29775.32 35084.61 32174.99 18692.30 16359.48 32588.04 31390.68 239
mvsmamba80.30 22678.87 23984.58 15088.12 21167.55 21192.35 2984.88 27063.15 29385.33 20690.91 20150.71 34695.20 6266.36 26887.98 31490.99 227
BH-RMVSNet80.53 21880.22 22581.49 23087.19 23366.21 22577.79 29786.23 24274.21 16683.69 24488.50 25473.25 21390.75 20863.18 30087.90 31587.52 298
Effi-MVS+83.90 15784.01 15683.57 18187.22 23265.61 23186.55 13292.40 10578.64 11481.34 28884.18 32683.65 8492.93 14674.22 18687.87 31692.17 194
MVS_Test82.47 18583.22 16880.22 25082.62 32357.75 32482.54 22491.96 12071.16 21682.89 25992.52 15077.41 15890.50 21680.04 11687.84 31792.40 181
QAPM82.59 18282.59 18382.58 20986.44 24966.69 22089.94 6790.36 16767.97 25184.94 21692.58 14872.71 21892.18 16570.63 22987.73 31888.85 279
PVSNet_Blended76.49 27175.40 27679.76 25584.43 29063.41 25075.14 33790.44 16357.36 34775.43 34778.30 38169.11 24691.44 18460.68 31887.70 31984.42 333
pmmvs570.73 32670.07 32972.72 33477.03 37552.73 36174.14 34475.65 33950.36 39172.17 36885.37 31055.42 32780.67 34652.86 36687.59 32084.77 327
IB-MVS62.13 1971.64 31768.97 34279.66 25880.80 34462.26 27173.94 34876.90 32963.27 29268.63 38776.79 39333.83 40791.84 17659.28 32687.26 32184.88 326
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
N_pmnet70.20 32968.80 34474.38 32380.91 34084.81 4359.12 40876.45 33455.06 35975.31 35182.36 34655.74 32454.82 41847.02 39287.24 32283.52 347
fmvsm_s_conf0.1_n82.17 19181.59 19983.94 16986.87 24571.57 16985.19 15877.42 32462.27 30484.47 22591.33 18576.43 17585.91 30483.14 7887.14 32394.33 94
fmvsm_s_conf0.5_n81.91 20081.30 20683.75 17386.02 26571.56 17084.73 16477.11 32862.44 30184.00 23890.68 21176.42 17685.89 30683.14 7887.11 32493.81 119
fmvsm_s_conf0.1_n_a82.58 18381.93 19184.50 15187.68 22173.35 13786.14 13977.70 32161.64 31085.02 21291.62 17877.75 15286.24 29582.79 8787.07 32593.91 111
pmmvs474.92 28772.98 30180.73 24284.95 28171.71 16776.23 32477.59 32252.83 37277.73 32886.38 29056.35 32184.97 31557.72 33587.05 32685.51 320
test_fmvs273.57 30072.80 30275.90 31272.74 40868.84 19977.07 30984.32 27845.14 40282.89 25984.22 32548.37 35470.36 38573.40 20387.03 32788.52 282
MIMVSNet71.09 32371.59 31469.57 35787.23 23150.07 38078.91 28171.83 36860.20 32971.26 37191.76 17555.08 33076.09 36841.06 40687.02 32882.54 363
testing9169.94 33668.99 34172.80 33383.81 30445.89 39571.57 36573.64 35568.24 24770.77 37777.82 38334.37 40684.44 32153.64 35987.00 32988.07 287
fmvsm_s_conf0.5_n_a82.21 18981.51 20384.32 15986.56 24773.35 13785.46 15177.30 32561.81 30684.51 22290.88 20477.36 15986.21 29782.72 8886.97 33093.38 136
HyFIR lowres test75.12 28472.66 30582.50 21291.44 13565.19 23472.47 35887.31 22246.79 39580.29 30184.30 32452.70 33792.10 16951.88 37486.73 33190.22 250
test_vis3_rt71.42 32070.67 32173.64 32769.66 41570.46 17766.97 39189.73 18642.68 41288.20 14483.04 33643.77 38560.07 41365.35 28186.66 33290.39 248
MSDG80.06 23379.99 23280.25 24983.91 30268.04 20877.51 30289.19 19777.65 12681.94 27383.45 33376.37 17786.31 29463.31 29986.59 33386.41 309
Patchmatch-test65.91 36267.38 35161.48 39375.51 38943.21 40668.84 38063.79 40262.48 29872.80 36583.42 33444.89 38259.52 41548.27 38986.45 33481.70 371
mvs_anonymous78.13 25078.76 24376.23 31079.24 36050.31 37978.69 28584.82 27261.60 31183.09 25792.82 13973.89 20187.01 27968.33 25786.41 33591.37 219
IterMVS-SCA-FT80.64 21779.41 23484.34 15883.93 30169.66 18776.28 32381.09 30472.43 19786.47 18690.19 22560.46 29093.15 13877.45 15286.39 33690.22 250
testing9969.27 34268.15 34972.63 33583.29 31345.45 39771.15 36771.08 37367.34 25870.43 37877.77 38532.24 41184.35 32353.72 35886.33 33788.10 286
E-PMN61.59 37661.62 37961.49 39266.81 41955.40 34153.77 41560.34 41266.80 26558.90 41665.50 41540.48 39566.12 40455.72 34486.25 33862.95 413
EMVS61.10 37960.81 38161.99 39065.96 42255.86 33753.10 41658.97 41567.06 26256.89 42063.33 41640.98 39367.03 40054.79 35386.18 33963.08 412
ETVMVS64.67 36763.34 37368.64 36483.44 30941.89 40869.56 37961.70 40961.33 31568.74 38575.76 39928.76 41779.35 35434.65 41786.16 34084.67 329
our_test_371.85 31471.59 31472.62 33680.71 34553.78 35369.72 37871.71 37158.80 33578.03 32180.51 36456.61 31978.84 35962.20 30586.04 34185.23 322
EU-MVSNet75.12 28474.43 28677.18 29583.11 32059.48 30385.71 14882.43 29339.76 41685.64 20088.76 24944.71 38387.88 27073.86 19585.88 34284.16 339
GA-MVS75.83 27774.61 28279.48 26181.87 32759.25 30573.42 35382.88 28868.68 24179.75 30681.80 35250.62 34789.46 24466.85 26385.64 34389.72 261
MVS73.21 30472.59 30675.06 31880.97 33960.81 29181.64 24285.92 25046.03 40071.68 37077.54 38668.47 24989.77 23955.70 34585.39 34474.60 400
PatchT70.52 32772.76 30463.79 38779.38 35833.53 42177.63 29965.37 39873.61 17471.77 36992.79 14244.38 38475.65 37164.53 29085.37 34582.18 367
TR-MVS76.77 26675.79 27279.72 25686.10 26465.79 22977.14 30783.02 28765.20 28481.40 28682.10 34766.30 25890.73 21055.57 34685.27 34682.65 359
BH-w/o76.57 26976.07 27178.10 28186.88 24465.92 22877.63 29986.33 24065.69 27680.89 29279.95 36868.97 24890.74 20953.01 36585.25 34777.62 394
Syy-MVS69.40 34170.03 33167.49 37181.72 32938.94 41471.00 36861.99 40461.38 31370.81 37572.36 40761.37 28679.30 35564.50 29185.18 34884.22 336
myMVS_eth3d64.66 36863.89 36966.97 37481.72 32937.39 41771.00 36861.99 40461.38 31370.81 37572.36 40720.96 42879.30 35549.59 38085.18 34884.22 336
IterMVS76.91 26376.34 26878.64 27080.91 34064.03 24476.30 32279.03 31564.88 28683.11 25589.16 24459.90 29684.46 32068.61 25385.15 35087.42 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVSnew68.72 34769.01 34067.85 36883.22 31743.98 40374.93 33965.98 39555.09 35873.83 35979.11 37465.63 26371.89 38038.21 41485.04 35187.69 297
OpenMVS_ROBcopyleft70.19 1777.77 25577.46 25578.71 26984.39 29361.15 28381.18 24982.52 29162.45 30083.34 25287.37 27566.20 25988.66 26064.69 28785.02 35286.32 310
KD-MVS_2432*160066.87 35565.81 36170.04 35167.50 41747.49 38862.56 40079.16 31361.21 31877.98 32280.61 36025.29 42582.48 33553.02 36384.92 35380.16 387
miper_refine_blended66.87 35565.81 36170.04 35167.50 41747.49 38862.56 40079.16 31361.21 31877.98 32280.61 36025.29 42582.48 33553.02 36384.92 35380.16 387
test_fmvs1_n70.94 32470.41 32772.53 33873.92 39766.93 21875.99 32884.21 28043.31 40979.40 31079.39 37343.47 38668.55 39369.05 24684.91 35582.10 368
test-LLR67.21 35266.74 35668.63 36576.45 38255.21 34367.89 38367.14 39162.43 30265.08 40372.39 40543.41 38769.37 38661.00 31584.89 35681.31 376
test-mter65.00 36663.79 37068.63 36576.45 38255.21 34367.89 38367.14 39150.98 38665.08 40372.39 40528.27 41969.37 38661.00 31584.89 35681.31 376
PS-MVSNAJ77.04 26276.53 26678.56 27187.09 23861.40 27975.26 33687.13 22861.25 31674.38 35777.22 39176.94 16790.94 19964.63 28884.83 35883.35 351
xiu_mvs_v2_base77.19 26076.75 26478.52 27287.01 24061.30 28175.55 33487.12 23161.24 31774.45 35578.79 37877.20 16190.93 20064.62 28984.80 35983.32 352
pmmvs362.47 37260.02 38569.80 35471.58 41164.00 24570.52 37358.44 41639.77 41566.05 39675.84 39827.10 42472.28 37746.15 39684.77 36073.11 401
MDTV_nov1_ep1368.29 34878.03 36643.87 40474.12 34572.22 36452.17 37667.02 39485.54 30345.36 37580.85 34555.73 34384.42 361
test_fmvs169.57 33969.05 33971.14 34869.15 41665.77 23073.98 34783.32 28442.83 41177.77 32778.27 38243.39 38968.50 39468.39 25684.38 36279.15 391
1112_ss74.82 28973.74 29078.04 28389.57 17260.04 29676.49 32087.09 23254.31 36473.66 36179.80 36960.25 29386.76 28858.37 32984.15 36387.32 301
testing1167.38 35165.93 35971.73 34483.37 31146.60 39270.95 37069.40 38162.47 29966.14 39576.66 39431.22 41284.10 32549.10 38384.10 36484.49 330
PatchMatch-RL74.48 29273.22 29878.27 27987.70 22085.26 3875.92 32970.09 37764.34 28876.09 34081.25 35765.87 26278.07 36253.86 35783.82 36571.48 403
UBG64.34 37063.35 37267.30 37283.50 30640.53 41167.46 38765.02 39954.77 36267.54 39374.47 40332.99 41078.50 36140.82 40783.58 36682.88 358
MDA-MVSNet_test_wron70.05 33370.44 32568.88 36273.84 39853.47 35558.93 41067.28 38958.43 33687.09 16785.40 30859.80 29867.25 39959.66 32483.54 36785.92 315
YYNet170.06 33270.44 32568.90 36173.76 39953.42 35758.99 40967.20 39058.42 33787.10 16685.39 30959.82 29767.32 39859.79 32383.50 36885.96 313
Test_1112_low_res73.90 29873.08 29976.35 30690.35 15955.95 33473.40 35486.17 24350.70 38873.14 36285.94 29958.31 30785.90 30556.51 33983.22 36987.20 302
PVSNet58.17 2166.41 36065.63 36368.75 36381.96 32649.88 38162.19 40272.51 36251.03 38568.04 38975.34 40150.84 34574.77 37345.82 39882.96 37081.60 373
gg-mvs-nofinetune68.96 34569.11 33868.52 36776.12 38545.32 39883.59 19355.88 41886.68 2964.62 40797.01 930.36 41483.97 32844.78 40082.94 37176.26 396
CR-MVSNet74.00 29773.04 30076.85 30179.58 35462.64 26282.58 22176.90 32950.50 39075.72 34492.38 15348.07 35684.07 32668.72 25282.91 37283.85 343
RPMNet78.88 24178.28 25080.68 24479.58 35462.64 26282.58 22194.16 3274.80 16075.72 34492.59 14648.69 35395.56 4273.48 20182.91 37283.85 343
test_vis1_n70.29 32869.99 33271.20 34775.97 38666.50 22276.69 31580.81 30644.22 40575.43 34777.23 39050.00 35068.59 39266.71 26682.85 37478.52 393
test0.0.03 164.66 36864.36 36765.57 38075.03 39446.89 39164.69 39661.58 41062.43 30271.18 37377.54 38643.41 38768.47 39540.75 40882.65 37581.35 375
HY-MVS64.64 1873.03 30572.47 30974.71 32183.36 31254.19 35082.14 23881.96 29656.76 35369.57 38386.21 29660.03 29484.83 31749.58 38182.65 37585.11 324
SCA73.32 30172.57 30775.58 31581.62 33155.86 33778.89 28271.37 37261.73 30774.93 35383.42 33460.46 29087.01 27958.11 33382.63 37783.88 340
test_f64.31 37165.85 36059.67 39666.54 42062.24 27357.76 41270.96 37440.13 41484.36 22782.09 34846.93 35851.67 42061.99 30881.89 37865.12 411
CHOSEN 1792x268872.45 30970.56 32378.13 28090.02 16963.08 25568.72 38183.16 28542.99 41075.92 34285.46 30657.22 31685.18 31449.87 37981.67 37986.14 312
WTY-MVS67.91 35068.35 34766.58 37680.82 34348.12 38565.96 39372.60 36053.67 36771.20 37281.68 35458.97 30369.06 39048.57 38681.67 37982.55 362
TESTMET0.1,161.29 37760.32 38364.19 38572.06 40951.30 37267.89 38362.09 40345.27 40160.65 41269.01 41127.93 42064.74 40856.31 34081.65 38176.53 395
dmvs_re66.81 35766.98 35366.28 37776.87 37658.68 31671.66 36472.24 36360.29 32769.52 38473.53 40452.38 33864.40 40944.90 39981.44 38275.76 397
PAPM71.77 31570.06 33076.92 29886.39 25053.97 35176.62 31786.62 23853.44 36863.97 40884.73 32057.79 31392.34 16139.65 40981.33 38384.45 332
DSMNet-mixed60.98 38061.61 38059.09 39872.88 40645.05 40074.70 34146.61 42426.20 42265.34 40190.32 22155.46 32663.12 41141.72 40581.30 38469.09 407
sss66.92 35467.26 35265.90 37877.23 37251.10 37664.79 39571.72 37052.12 37970.13 38080.18 36657.96 31065.36 40750.21 37681.01 38581.25 378
tpm67.95 34968.08 35067.55 37078.74 36543.53 40575.60 33167.10 39354.92 36072.23 36788.10 25942.87 39175.97 36952.21 36880.95 38683.15 355
MonoMVSNet76.66 26777.26 25974.86 31979.86 35254.34 34986.26 13786.08 24571.08 21785.59 20188.68 25153.95 33285.93 30263.86 29380.02 38784.32 334
tpm268.45 34866.83 35573.30 32978.93 36448.50 38379.76 26671.76 36947.50 39469.92 38183.60 33042.07 39288.40 26348.44 38879.51 38883.01 357
FPMVS72.29 31272.00 31173.14 33088.63 19885.00 4074.65 34267.39 38871.94 20877.80 32687.66 26950.48 34875.83 37049.95 37779.51 38858.58 417
UnsupCasMVSNet_bld69.21 34369.68 33467.82 36979.42 35751.15 37467.82 38675.79 33654.15 36577.47 33085.36 31159.26 30170.64 38448.46 38779.35 39081.66 372
CostFormer69.98 33568.68 34573.87 32477.14 37350.72 37779.26 27574.51 34551.94 38070.97 37484.75 31945.16 37987.49 27455.16 35179.23 39183.40 350
131473.22 30372.56 30875.20 31680.41 34957.84 32281.64 24285.36 25751.68 38173.10 36376.65 39561.45 28585.19 31363.54 29679.21 39282.59 360
test_vis1_n_192071.30 32271.58 31670.47 34977.58 37059.99 29874.25 34384.22 27951.06 38474.85 35479.10 37555.10 32968.83 39168.86 24979.20 39382.58 361
baseline173.26 30273.54 29372.43 33984.92 28247.79 38779.89 26574.00 34865.93 26978.81 31786.28 29556.36 32081.63 34156.63 33879.04 39487.87 295
PMMVS61.65 37560.38 38265.47 38165.40 42469.26 19263.97 39861.73 40836.80 42160.11 41368.43 41259.42 29966.35 40348.97 38478.57 39560.81 414
baseline269.77 33766.89 35478.41 27579.51 35658.09 31876.23 32469.57 38057.50 34664.82 40677.45 38846.02 36488.44 26253.08 36277.83 39688.70 280
test_vis1_rt65.64 36464.09 36870.31 35066.09 42170.20 18161.16 40381.60 30038.65 41772.87 36469.66 41052.84 33560.04 41456.16 34177.77 39780.68 385
MS-PatchMatch70.93 32570.22 32873.06 33181.85 32862.50 26573.82 35077.90 31952.44 37575.92 34281.27 35655.67 32581.75 33955.37 34877.70 39874.94 399
UnsupCasMVSNet_eth71.63 31872.30 31069.62 35676.47 38152.70 36270.03 37780.97 30559.18 33279.36 31188.21 25860.50 28969.12 38958.33 33177.62 39987.04 303
CVMVSNet72.62 30871.41 31876.28 30883.25 31560.34 29483.50 19579.02 31637.77 42076.33 33585.10 31349.60 35287.41 27570.54 23077.54 40081.08 381
test_cas_vis1_n_192069.20 34469.12 33769.43 35873.68 40062.82 25970.38 37577.21 32646.18 39980.46 30078.95 37752.03 33965.53 40665.77 27777.45 40179.95 389
GG-mvs-BLEND67.16 37373.36 40146.54 39484.15 17655.04 41958.64 41761.95 41829.93 41583.87 32938.71 41276.92 40271.07 404
CHOSEN 280x42059.08 38356.52 38866.76 37576.51 38064.39 24149.62 41759.00 41443.86 40655.66 42168.41 41335.55 40568.21 39743.25 40276.78 40367.69 409
tpmvs70.16 33069.56 33571.96 34274.71 39648.13 38479.63 26775.45 34165.02 28570.26 37981.88 35145.34 37685.68 30958.34 33075.39 40482.08 369
MVP-Stereo75.81 27873.51 29482.71 20689.35 17873.62 13480.06 26185.20 26060.30 32673.96 35887.94 26257.89 31289.45 24552.02 36974.87 40585.06 325
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new_pmnet55.69 38657.66 38749.76 40275.47 39030.59 42259.56 40551.45 42143.62 40862.49 40975.48 40040.96 39449.15 42237.39 41572.52 40669.55 406
mvsany_test365.48 36562.97 37473.03 33269.99 41476.17 12164.83 39443.71 42543.68 40780.25 30487.05 28452.83 33663.09 41251.92 37372.44 40779.84 390
PatchmatchNetpermissive69.71 33868.83 34372.33 34177.66 36953.60 35479.29 27469.99 37857.66 34472.53 36682.93 33946.45 36180.08 35260.91 31772.09 40883.31 353
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet61.16 37862.92 37555.87 39979.09 36135.34 42071.83 36257.98 41746.56 39759.05 41591.14 19149.95 35176.43 36738.74 41171.92 40955.84 418
tpmrst66.28 36166.69 35765.05 38372.82 40739.33 41378.20 29170.69 37653.16 37167.88 39080.36 36548.18 35574.75 37458.13 33270.79 41081.08 381
tpm cat166.76 35865.21 36671.42 34577.09 37450.62 37878.01 29273.68 35444.89 40368.64 38679.00 37645.51 37382.42 33749.91 37870.15 41181.23 380
ADS-MVSNet265.87 36363.64 37172.55 33773.16 40356.92 33067.10 38974.81 34249.74 39266.04 39782.97 33746.71 35977.26 36542.29 40369.96 41283.46 348
ADS-MVSNet61.90 37462.19 37861.03 39473.16 40336.42 41967.10 38961.75 40749.74 39266.04 39782.97 33746.71 35963.21 41042.29 40369.96 41283.46 348
JIA-IIPM69.41 34066.64 35877.70 28973.19 40271.24 17275.67 33065.56 39770.42 22265.18 40292.97 13333.64 40983.06 33153.52 36169.61 41478.79 392
dmvs_testset60.59 38262.54 37754.72 40177.26 37127.74 42474.05 34661.00 41160.48 32565.62 40067.03 41455.93 32368.23 39632.07 42169.46 41568.17 408
EPMVS62.47 37262.63 37662.01 38970.63 41338.74 41574.76 34052.86 42053.91 36667.71 39280.01 36739.40 39666.60 40255.54 34768.81 41680.68 385
MVEpermissive40.22 2351.82 38850.47 39155.87 39962.66 42651.91 36731.61 42039.28 42740.65 41350.76 42274.98 40256.24 32244.67 42333.94 41964.11 41771.04 405
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dp60.70 38160.29 38461.92 39172.04 41038.67 41670.83 37164.08 40151.28 38360.75 41177.28 38936.59 40471.58 38247.41 39162.34 41875.52 398
mvsany_test158.48 38456.47 38964.50 38465.90 42368.21 20556.95 41342.11 42638.30 41865.69 39977.19 39256.96 31759.35 41646.16 39558.96 41965.93 410
PVSNet_051.08 2256.10 38554.97 39059.48 39775.12 39353.28 35855.16 41461.89 40644.30 40459.16 41462.48 41754.22 33165.91 40535.40 41647.01 42059.25 416
tmp_tt20.25 39324.50 3967.49 4084.47 4318.70 43234.17 41925.16 4291.00 42632.43 42518.49 42339.37 3979.21 42721.64 42343.75 4214.57 423
test_method30.46 39129.60 39433.06 40517.99 4303.84 43313.62 42173.92 3492.79 42418.29 42653.41 41928.53 41843.25 42422.56 42235.27 42252.11 419
DeepMVS_CXcopyleft24.13 40732.95 42929.49 42321.63 43012.07 42337.95 42445.07 42130.84 41319.21 42617.94 42533.06 42323.69 422
dongtai41.90 38942.65 39239.67 40470.86 41221.11 42661.01 40421.42 43157.36 34757.97 41950.06 42016.40 43058.73 41721.03 42427.69 42439.17 420
kuosan30.83 39032.17 39326.83 40653.36 42819.02 42957.90 41120.44 43238.29 41938.01 42337.82 42215.18 43133.45 4257.74 42620.76 42528.03 421
testmvs5.91 3977.65 4000.72 4101.20 4320.37 43559.14 4070.67 4340.49 4281.11 4282.76 4270.94 4330.24 4291.02 4281.47 4261.55 425
test1236.27 3968.08 3990.84 4091.11 4330.57 43462.90 3990.82 4330.54 4271.07 4292.75 4281.26 4320.30 4281.04 4271.26 4271.66 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k20.81 39227.75 3950.00 4110.00 4340.00 4360.00 42285.44 2560.00 4290.00 43082.82 34181.46 1190.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas6.41 3958.55 3980.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42976.94 1670.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re6.65 3948.87 3970.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43079.80 3690.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS37.39 41752.61 367
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 434
eth-test0.00 434
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
save fliter93.75 6377.44 10386.31 13589.72 18770.80 219
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 340
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36383.88 340
sam_mvs45.92 368
MTGPAbinary91.81 127
test_post178.85 2843.13 42545.19 37880.13 35158.11 333
test_post3.10 42645.43 37477.22 366
patchmatchnet-post81.71 35345.93 36787.01 279
MTMP90.66 4833.14 428
gm-plane-assit75.42 39144.97 40152.17 37672.36 40787.90 26954.10 356
TEST992.34 9879.70 7883.94 18190.32 16965.41 28184.49 22390.97 19782.03 11093.63 115
test_892.09 10778.87 8583.82 18690.31 17165.79 27284.36 22790.96 19981.93 11293.44 128
agg_prior91.58 12777.69 10090.30 17284.32 22993.18 136
test_prior478.97 8484.59 167
test_prior86.32 11090.59 15571.99 16292.85 9394.17 9792.80 160
旧先验281.73 24056.88 35286.54 18584.90 31672.81 212
新几何281.72 241
无先验82.81 21685.62 25458.09 34091.41 18767.95 26084.48 331
原ACMM282.26 234
testdata286.43 29363.52 297
segment_acmp81.94 111
testdata179.62 26873.95 169
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 188
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 180
plane_prior289.45 8279.44 101
plane_prior192.83 88
n20.00 435
nn0.00 435
door-mid74.45 346
test1191.46 133
door72.57 361
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 16173.30 18380.55 297
ACMP_Plane91.19 13984.77 16173.30 18380.55 297
BP-MVS77.30 155
HQP4-MVS80.56 29694.61 7993.56 133
HQP2-MVS72.10 225
NP-MVS91.95 11274.55 12990.17 228
MDTV_nov1_ep13_2view27.60 42570.76 37246.47 39861.27 41045.20 37749.18 38283.75 345
Test By Simon79.09 141