This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5299.27 199.54 1
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4794.47 4685.95 2686.84 11393.91 4580.07 9086.75 16293.26 11093.64 290.93 20384.60 5990.75 26093.97 100
abl_693.02 493.16 492.60 494.73 4488.99 793.26 1294.19 3089.11 1294.43 1695.27 3791.86 395.09 6387.54 1898.02 4093.71 114
ACMH+77.89 1190.73 3091.50 2388.44 8293.00 8276.26 12289.65 6795.55 787.72 2393.89 2794.94 4591.62 493.44 12978.35 12798.76 495.61 47
LPG-MVS_test91.47 1991.68 1890.82 3894.75 4281.69 6190.00 5694.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
LGP-MVS_train90.82 3894.75 4281.69 6194.27 2382.35 6393.67 3494.82 4991.18 595.52 4285.36 5098.73 795.23 58
PMVScopyleft80.48 690.08 4190.66 4788.34 8596.71 392.97 190.31 5289.57 18088.51 1990.11 9395.12 4290.98 788.92 25177.55 14197.07 8683.13 317
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMM79.39 990.65 3190.99 4089.63 5695.03 3583.53 4989.62 6893.35 6679.20 10293.83 2893.60 10790.81 892.96 14685.02 5498.45 1992.41 164
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 6091.14 3483.96 16492.50 9570.36 17389.55 6993.84 5081.89 6994.70 1395.44 3490.69 988.31 26183.33 7198.30 2693.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3292.99 1394.23 2685.21 3492.51 5495.13 4190.65 1095.34 5388.06 998.15 3595.95 40
RE-MVS-def92.61 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6490.64 1187.16 2897.60 6692.73 149
ACMP79.16 1090.54 3490.60 4890.35 4694.36 4780.98 6789.16 7794.05 4079.03 10592.87 4693.74 10490.60 1295.21 6082.87 7698.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
HPM-MVScopyleft92.13 992.20 1191.91 1795.58 2684.67 4393.51 894.85 1682.88 5791.77 6893.94 9790.55 1395.73 3088.50 798.23 2995.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UniMVSNet_ETH3D89.12 6490.72 4684.31 15697.00 264.33 22189.67 6688.38 19788.84 1594.29 1997.57 390.48 1491.26 19372.57 19497.65 6297.34 14
SED-MVS90.46 3791.64 1986.93 10194.18 5072.65 14190.47 5093.69 5483.77 4494.11 2394.27 7290.28 1595.84 2286.03 4497.92 4892.29 172
test_241102_ONE94.18 5072.65 14193.69 5483.62 4694.11 2393.78 10390.28 1595.50 47
SR-MVS92.23 892.34 991.91 1794.89 3987.85 1192.51 2493.87 4988.20 2193.24 4194.02 8890.15 1795.67 3386.82 3297.34 7992.19 178
APD-MVS_3200maxsize92.05 1092.24 1091.48 2493.02 8185.17 3692.47 2695.05 1587.65 2493.21 4294.39 7090.09 1895.08 6486.67 3397.60 6694.18 93
DVP-MVScopyleft90.06 4391.32 3086.29 11494.16 5372.56 14790.54 4691.01 14083.61 4793.75 3194.65 5489.76 1995.78 2786.42 3497.97 4590.55 221
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 14790.63 4593.90 4683.61 4793.75 3194.49 6189.76 19
COLMAP_ROBcopyleft83.01 391.97 1191.95 1292.04 1293.68 6786.15 2393.37 1095.10 1490.28 992.11 6095.03 4389.75 2194.93 6879.95 10998.27 2795.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_TWO93.71 5383.77 4493.49 3894.27 7289.27 2295.84 2286.03 4497.82 5392.04 181
ACMMPcopyleft91.91 1291.87 1792.03 1395.53 2785.91 2793.35 1194.16 3182.52 6192.39 5794.14 8389.15 2395.62 3487.35 2398.24 2894.56 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117292.40 792.41 792.37 694.68 4589.04 691.98 3193.62 5790.14 1193.63 3694.16 8288.83 2495.51 4487.11 3097.54 7292.54 159
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5588.95 892.87 1494.16 3188.75 1693.79 2994.43 6488.83 2495.51 4487.16 2897.60 6692.73 149
APDe-MVS91.22 2491.92 1389.14 6692.97 8378.04 9392.84 1694.14 3583.33 5193.90 2595.73 2688.77 2696.41 187.60 1697.98 4492.98 140
test_one_060193.85 6373.27 13794.11 3786.57 2793.47 4094.64 5788.42 27
ACMMP_NAP90.65 3191.07 3889.42 6095.93 1679.54 7989.95 5993.68 5677.65 11991.97 6594.89 4688.38 2895.45 4989.27 397.87 5293.27 129
MP-MVS-pluss90.81 2991.08 3689.99 5195.97 1479.88 7488.13 9494.51 2175.79 14292.94 4494.96 4488.36 2995.01 6690.70 298.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS91.30 2191.39 2591.02 3395.43 2984.66 4492.58 2293.29 7381.99 6691.47 7193.96 9388.35 3095.56 3787.74 1197.74 5892.85 144
#test#90.49 3690.31 5191.02 3395.43 2984.66 4490.65 4493.29 7377.00 12691.47 7193.96 9388.35 3095.56 3784.88 5597.74 5892.85 144
CP-MVS91.67 1491.58 2191.96 1495.29 3287.62 1293.38 993.36 6583.16 5391.06 7994.00 8988.26 3295.71 3187.28 2698.39 2192.55 158
SteuartSystems-ACMMP91.16 2691.36 2690.55 4293.91 6180.97 6891.49 3893.48 6382.82 5892.60 5393.97 9088.19 3396.29 487.61 1598.20 3294.39 86
Skip Steuart: Steuart Systems R&D Blog.
PGM-MVS91.20 2590.95 4291.93 1595.67 2385.85 3090.00 5693.90 4680.32 8691.74 6994.41 6788.17 3495.98 1186.37 3697.99 4293.96 101
TDRefinement93.52 293.39 393.88 195.94 1590.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3594.17 9686.07 4398.48 1897.22 17
DPE-MVScopyleft90.53 3591.08 3688.88 6993.38 7378.65 8889.15 7894.05 4084.68 3893.90 2594.11 8588.13 3696.30 384.51 6097.81 5491.70 193
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
OPM-MVS89.80 5189.97 5289.27 6294.76 4179.86 7586.76 11792.78 9578.78 10892.51 5493.64 10688.13 3693.84 11084.83 5797.55 6994.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs686.52 9788.06 7881.90 20492.22 10562.28 24684.66 14689.15 18683.54 4989.85 10297.32 488.08 3886.80 27770.43 21197.30 8196.62 27
mvs_tets89.78 5289.27 6391.30 2893.51 6984.79 4189.89 6190.63 15070.00 21894.55 1596.67 1187.94 3993.59 12184.27 6295.97 12795.52 48
ZNCC-MVS91.26 2391.34 2991.01 3595.73 2183.05 5492.18 2894.22 2780.14 8991.29 7693.97 9087.93 4095.87 1888.65 497.96 4794.12 96
region2R91.44 2091.30 3291.87 1995.75 1985.90 2892.63 2193.30 7281.91 6890.88 8494.21 7787.75 4195.87 1887.60 1697.71 6093.83 106
wuyk23d75.13 26179.30 21562.63 34175.56 35075.18 12780.89 23573.10 32975.06 15294.76 1295.32 3587.73 4252.85 37034.16 36997.11 8559.85 366
mPP-MVS91.69 1391.47 2492.37 696.04 1388.48 1092.72 1892.60 9983.09 5491.54 7094.25 7687.67 4395.51 4487.21 2798.11 3693.12 135
ACMMPR91.49 1791.35 2891.92 1695.74 2085.88 2992.58 2293.25 7581.99 6691.40 7394.17 8187.51 4495.87 1887.74 1197.76 5693.99 99
test_0728_THIRD85.33 3293.75 3194.65 5487.44 4595.78 2787.41 2198.21 3092.98 140
9.1489.29 6291.84 12188.80 8595.32 1175.14 15191.07 7892.89 12187.27 4693.78 11283.69 6897.55 69
PS-CasMVS90.06 4391.92 1384.47 15196.56 758.83 28589.04 7992.74 9691.40 596.12 496.06 2287.23 4795.57 3679.42 11898.74 699.00 2
GST-MVS90.96 2891.01 3990.82 3895.45 2882.73 5791.75 3693.74 5280.98 7991.38 7493.80 10087.20 4895.80 2487.10 3197.69 6193.93 102
PEN-MVS90.03 4591.88 1684.48 15096.57 658.88 28288.95 8093.19 7791.62 496.01 696.16 2087.02 4995.60 3578.69 12398.72 998.97 3
DTE-MVSNet89.98 4791.91 1584.21 15896.51 857.84 29088.93 8292.84 9391.92 396.16 396.23 1886.95 5095.99 1079.05 12098.57 1598.80 6
xxxxxxxxxxxxxcwj89.04 6689.13 6488.79 7393.75 6477.44 10486.31 12595.27 1270.80 20792.28 5893.80 10086.89 5194.64 7785.52 4897.51 7494.30 89
SF-MVS90.27 3990.80 4588.68 7792.86 8777.09 11191.19 4195.74 581.38 7492.28 5893.80 10086.89 5194.64 7785.52 4897.51 7494.30 89
MP-MVScopyleft91.14 2790.91 4391.83 2196.18 1186.88 1692.20 2793.03 8582.59 6088.52 13194.37 7186.74 5395.41 5186.32 3798.21 3093.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS91.27 2291.26 3391.29 2996.59 486.29 1988.94 8191.81 11984.07 4092.00 6394.40 6886.63 5495.28 5688.59 598.31 2492.30 170
MTAPA91.52 1691.60 2091.29 2996.59 486.29 1992.02 3091.81 11984.07 4092.00 6394.40 6886.63 5495.28 5688.59 598.31 2492.30 170
XVS91.54 1591.36 2692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9794.03 8786.57 5695.80 2487.35 2397.62 6494.20 91
X-MVStestdata85.04 12382.70 16692.08 1095.64 2486.25 2192.64 1993.33 6785.07 3589.99 9716.05 37386.57 5695.80 2487.35 2397.62 6494.20 91
canonicalmvs85.50 11386.14 10783.58 17387.97 20667.13 19887.55 10194.32 2273.44 16988.47 13287.54 24286.45 5891.06 20075.76 16093.76 19592.54 159
TranMVSNet+NR-MVSNet87.86 8088.76 7385.18 13894.02 5864.13 22284.38 15391.29 13284.88 3792.06 6293.84 9986.45 5893.73 11373.22 18598.66 1197.69 9
test_040288.65 7089.58 5985.88 12692.55 9372.22 15584.01 15989.44 18288.63 1894.38 1895.77 2586.38 6093.59 12179.84 11095.21 15591.82 190
APD-MVScopyleft89.54 5689.63 5789.26 6392.57 9281.34 6690.19 5493.08 8180.87 8191.13 7793.19 11186.22 6195.97 1282.23 8597.18 8490.45 223
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SD-MVS88.96 6789.88 5386.22 11791.63 12577.07 11289.82 6293.77 5178.90 10692.88 4592.29 14186.11 6290.22 22586.24 4197.24 8291.36 201
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ZD-MVS92.22 10580.48 7091.85 11671.22 20490.38 8992.98 11686.06 6396.11 681.99 8796.75 97
jajsoiax89.41 5888.81 7291.19 3293.38 7384.72 4289.70 6390.29 16469.27 22294.39 1796.38 1586.02 6493.52 12583.96 6495.92 13295.34 52
nrg03087.85 8188.49 7485.91 12490.07 17169.73 17687.86 9894.20 2874.04 16192.70 5294.66 5385.88 6591.50 18479.72 11297.32 8096.50 30
SMA-MVScopyleft90.31 3890.48 4989.83 5295.31 3179.52 8090.98 4293.24 7675.37 14992.84 4895.28 3685.58 6696.09 787.92 1097.76 5693.88 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepC-MVS82.31 489.15 6389.08 6589.37 6193.64 6879.07 8388.54 9094.20 2873.53 16789.71 10694.82 4985.09 6795.77 2984.17 6398.03 3993.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testtj89.51 5789.48 6089.59 5892.26 10280.80 6990.14 5593.54 6183.37 5090.57 8892.55 13384.99 6896.15 581.26 9396.61 10191.83 189
GeoE85.45 11585.81 11384.37 15290.08 16967.07 19985.86 13191.39 13072.33 19087.59 14590.25 19784.85 6992.37 16178.00 13591.94 23793.66 116
LTVRE_ROB86.10 193.04 393.44 291.82 2393.73 6685.72 3396.79 195.51 888.86 1495.63 896.99 884.81 7093.16 13991.10 197.53 7396.58 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DP-MVS88.60 7189.01 6687.36 9791.30 13977.50 10387.55 10192.97 8887.95 2289.62 11092.87 12284.56 7193.89 10777.65 13996.62 10090.70 215
LS3D90.60 3390.34 5091.38 2789.03 18784.23 4793.58 694.68 1990.65 790.33 9193.95 9684.50 7295.37 5280.87 9995.50 14694.53 80
ETH3D-3000-0.188.85 6988.96 6988.52 7891.94 11577.27 11088.71 8795.26 1376.08 13390.66 8792.69 12884.48 7393.83 11183.38 7097.48 7694.47 81
DROMVSNet88.01 7788.32 7687.09 9989.28 18272.03 15790.31 5296.31 380.88 8085.12 19389.67 20984.47 7495.46 4882.56 7996.26 11793.77 112
anonymousdsp89.73 5388.88 7092.27 989.82 17586.67 1790.51 4890.20 16769.87 21995.06 1196.14 2184.28 7593.07 14487.68 1396.34 11297.09 19
OMC-MVS88.19 7487.52 8590.19 4991.94 11581.68 6387.49 10393.17 7876.02 13688.64 12891.22 16684.24 7693.37 13277.97 13797.03 8795.52 48
ETH3D cwj APD-0.1687.83 8287.62 8488.47 8091.21 14278.20 9087.26 10694.54 2072.05 19588.89 12292.31 14083.86 7794.24 9081.59 9296.87 9192.97 143
CS-MVS88.03 7687.67 8389.10 6789.60 17777.89 9790.49 4994.78 1879.37 10084.25 21789.32 21383.84 7894.49 8582.47 8194.93 16794.93 65
XVG-OURS89.18 6288.83 7190.23 4894.28 4886.11 2585.91 12893.60 6080.16 8889.13 12193.44 10883.82 7990.98 20183.86 6695.30 15493.60 121
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4494.91 3884.50 4689.49 7393.98 4279.68 9392.09 6193.89 9883.80 8093.10 14382.67 7898.04 3793.64 119
CDPH-MVS86.17 10585.54 11988.05 9092.25 10375.45 12583.85 16592.01 11165.91 25586.19 17491.75 15683.77 8194.98 6777.43 14496.71 9893.73 113
Effi-MVS+83.90 15284.01 14983.57 17487.22 22265.61 21186.55 12292.40 10278.64 11181.34 25984.18 29683.65 8292.93 14874.22 17187.87 29292.17 179
MVS_111021_HR84.63 12984.34 14585.49 13590.18 16875.86 12479.23 26087.13 21773.35 17085.56 18889.34 21283.60 8390.50 21876.64 15094.05 19190.09 231
UA-Net91.49 1791.53 2291.39 2694.98 3682.95 5693.52 792.79 9488.22 2088.53 13097.64 283.45 8494.55 8486.02 4698.60 1396.67 26
AdaColmapbinary83.66 15583.69 15483.57 17490.05 17272.26 15486.29 12790.00 17278.19 11681.65 25487.16 24983.40 8594.24 9061.69 27794.76 17684.21 299
LCM-MVSNet-Re83.48 15985.06 12578.75 25285.94 25055.75 30680.05 24494.27 2376.47 12996.09 594.54 5983.31 8689.75 24159.95 28994.89 17190.75 213
Regformer-286.74 9486.08 10888.73 7484.18 27579.20 8283.52 17589.33 18483.33 5189.92 10185.07 28583.23 8793.16 13983.39 6992.72 22193.83 106
TransMVSNet (Re)84.02 14885.74 11578.85 25091.00 15055.20 31182.29 21287.26 21379.65 9488.38 13595.52 3383.00 8886.88 27567.97 23496.60 10294.45 84
CNVR-MVS87.81 8387.68 8288.21 8792.87 8577.30 10985.25 13891.23 13477.31 12387.07 15591.47 16282.94 8994.71 7484.67 5896.27 11692.62 156
DeepPCF-MVS81.24 587.28 8786.21 10690.49 4391.48 13684.90 3983.41 18092.38 10470.25 21589.35 11890.68 18782.85 9094.57 8179.55 11495.95 12992.00 183
v7n90.13 4090.96 4187.65 9491.95 11371.06 16889.99 5893.05 8286.53 2894.29 1996.27 1782.69 9194.08 10086.25 4097.63 6397.82 8
AllTest87.97 7987.40 8889.68 5491.59 12683.40 5089.50 7295.44 979.47 9688.00 14093.03 11482.66 9291.47 18570.81 20396.14 12194.16 94
TestCases89.68 5491.59 12683.40 5095.44 979.47 9688.00 14093.03 11482.66 9291.47 18570.81 20396.14 12194.16 94
RPSCF88.00 7886.93 9591.22 3190.08 16989.30 589.68 6591.11 13779.26 10189.68 10794.81 5282.44 9487.74 26576.54 15188.74 28296.61 28
ITE_SJBPF90.11 5090.72 15784.97 3890.30 16181.56 7290.02 9691.20 16882.40 9590.81 20973.58 18194.66 17794.56 77
Fast-Effi-MVS+81.04 19280.57 19582.46 19987.50 21763.22 23178.37 27189.63 17868.01 23581.87 24882.08 31982.31 9692.65 15567.10 23788.30 28891.51 199
baseline85.20 11885.93 11083.02 18386.30 24262.37 24484.55 14893.96 4374.48 15887.12 15192.03 14682.30 9791.94 17478.39 12594.21 18694.74 73
casdiffmvs85.21 11785.85 11283.31 17886.17 24762.77 23783.03 19193.93 4474.69 15588.21 13892.68 12982.29 9891.89 17777.87 13893.75 19795.27 56
Anonymous2023121188.40 7289.62 5884.73 14690.46 16365.27 21288.86 8393.02 8687.15 2593.05 4397.10 682.28 9992.02 17376.70 14997.99 4296.88 23
Regformer-186.00 10685.50 12087.49 9584.18 27576.90 11483.52 17587.94 20782.18 6589.19 11985.07 28582.28 9991.89 17782.40 8392.72 22193.69 115
Anonymous2024052986.20 10487.13 8983.42 17690.19 16764.55 21984.55 14890.71 14785.85 3189.94 10095.24 3982.13 10190.40 22069.19 22296.40 11095.31 54
agg_prior185.72 11185.20 12487.28 9891.58 12977.69 10083.69 17190.30 16166.29 25284.32 20991.07 17382.13 10193.18 13781.02 9696.36 11190.98 206
Regformer-486.41 9885.71 11688.52 7884.27 27177.57 10284.07 15688.00 20582.82 5889.84 10385.48 27382.06 10392.77 15283.83 6791.04 24995.22 60
CLD-MVS83.18 16582.64 16884.79 14489.05 18667.82 19677.93 27592.52 10068.33 23285.07 19481.54 32482.06 10392.96 14669.35 21897.91 5093.57 122
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TEST992.34 9979.70 7783.94 16190.32 15865.41 26684.49 20590.97 17682.03 10593.63 117
segment_acmp81.94 106
train_agg85.98 10885.28 12388.07 8992.34 9979.70 7783.94 16190.32 15865.79 25684.49 20590.97 17681.93 10793.63 11781.21 9496.54 10490.88 210
test_892.09 10978.87 8583.82 16690.31 16065.79 25684.36 20890.96 17881.93 10793.44 129
test_prior386.31 10086.31 10386.32 11290.59 16071.99 15883.37 18192.85 9175.43 14684.58 20391.57 15881.92 10994.17 9679.54 11596.97 8892.80 146
test_prior283.37 18175.43 14684.58 20391.57 15881.92 10979.54 11596.97 88
EGC-MVSNET74.79 26869.99 30289.19 6594.89 3987.00 1491.89 3586.28 2301.09 3742.23 37695.98 2381.87 11189.48 24279.76 11195.96 12891.10 204
CP-MVSNet89.27 6190.91 4384.37 15296.34 958.61 28788.66 8992.06 11090.78 695.67 795.17 4081.80 11295.54 4179.00 12198.69 1098.95 4
MVS_111021_LR84.28 14083.76 15385.83 12889.23 18483.07 5380.99 23483.56 26172.71 18386.07 17889.07 22081.75 11386.19 28777.11 14793.36 20288.24 254
test_djsdf89.62 5489.01 6691.45 2592.36 9882.98 5591.98 3190.08 17071.54 19994.28 2196.54 1381.57 11494.27 8786.26 3896.49 10697.09 19
cdsmvs_eth3d_5k20.81 34127.75 3440.00 3600.00 3830.00 3840.00 37185.44 2400.00 3780.00 37982.82 31281.46 1150.00 3790.00 3770.00 3770.00 375
WR-MVS_H89.91 5091.31 3185.71 13096.32 1062.39 24389.54 7193.31 7090.21 1095.57 995.66 2981.42 11695.90 1580.94 9898.80 398.84 5
CPTT-MVS89.39 5988.98 6890.63 4195.09 3486.95 1592.09 2992.30 10579.74 9287.50 14792.38 13681.42 11693.28 13483.07 7397.24 8291.67 194
CS-MVS-test87.40 8586.81 9989.20 6489.70 17678.05 9287.30 10595.67 679.64 9584.28 21385.85 26981.34 11894.57 8182.55 8094.93 16794.97 64
pm-mvs183.69 15484.95 12879.91 23690.04 17359.66 27282.43 20887.44 21075.52 14587.85 14295.26 3881.25 11985.65 29468.74 22796.04 12494.42 85
DVP-MVS++90.07 4291.09 3587.00 10091.55 13272.64 14396.19 294.10 3885.33 3293.49 3894.64 5781.12 12095.88 1687.41 2195.94 13092.48 161
OPU-MVS88.27 8691.89 11777.83 9890.47 5091.22 16681.12 12094.68 7574.48 16995.35 14992.29 172
ETH3 D test640085.09 12184.87 12985.75 12990.80 15569.34 18085.90 12993.31 7065.43 26286.11 17789.95 20380.92 12294.86 7075.90 15895.57 14493.05 137
NCCC87.36 8686.87 9688.83 7092.32 10178.84 8686.58 12191.09 13878.77 10984.85 19990.89 18080.85 12395.29 5481.14 9595.32 15192.34 168
TAPA-MVS77.73 1285.71 11284.83 13088.37 8488.78 19379.72 7687.15 10993.50 6269.17 22385.80 18489.56 21080.76 12492.13 16773.21 19095.51 14593.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+-dtu82.54 17281.41 18685.90 12585.60 25276.53 11983.07 19089.62 17973.02 18079.11 28383.51 30180.74 12590.24 22468.76 22689.29 27390.94 208
PC_three_145258.96 30290.06 9491.33 16480.66 12693.03 14575.78 15995.94 13092.48 161
VPA-MVSNet83.47 16084.73 13179.69 24190.29 16557.52 29381.30 23088.69 19276.29 13087.58 14694.44 6380.60 12787.20 27066.60 24296.82 9594.34 88
Regformer-385.06 12284.67 13686.22 11784.27 27173.43 13584.07 15685.26 24480.77 8288.62 12985.48 27380.56 12890.39 22181.99 8791.04 24994.85 70
ETV-MVS84.31 13883.91 15285.52 13388.58 19570.40 17284.50 15293.37 6478.76 11084.07 21878.72 34380.39 12995.13 6273.82 17892.98 21491.04 205
HPM-MVS++copyleft88.93 6888.45 7590.38 4594.92 3785.85 3089.70 6391.27 13378.20 11586.69 16592.28 14280.36 13095.06 6586.17 4296.49 10690.22 226
ANet_high83.17 16685.68 11775.65 29381.24 30245.26 36179.94 24692.91 8983.83 4391.33 7596.88 1080.25 13185.92 29068.89 22595.89 13395.76 42
EI-MVSNet-Vis-set85.12 12084.53 13986.88 10284.01 27872.76 14083.91 16485.18 24680.44 8388.75 12685.49 27280.08 13291.92 17582.02 8690.85 25895.97 38
DeepC-MVS_fast80.27 886.23 10285.65 11887.96 9191.30 13976.92 11387.19 10791.99 11270.56 21084.96 19590.69 18680.01 13395.14 6178.37 12695.78 13991.82 190
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set85.04 12384.44 14186.85 10383.87 28172.52 14983.82 16685.15 24780.27 8788.75 12685.45 27679.95 13491.90 17681.92 8990.80 25996.13 33
MCST-MVS84.36 13683.93 15185.63 13191.59 12671.58 16583.52 17592.13 10861.82 28383.96 21989.75 20879.93 13593.46 12878.33 12894.34 18491.87 188
TSAR-MVS + MP.88.14 7587.82 8089.09 6895.72 2276.74 11692.49 2591.19 13667.85 24086.63 16694.84 4879.58 13695.96 1387.62 1494.50 18094.56 77
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test1286.57 10790.74 15672.63 14590.69 14882.76 23579.20 13794.80 7295.32 15192.27 174
CSCG86.26 10186.47 10185.60 13290.87 15374.26 13187.98 9591.85 11680.35 8589.54 11688.01 23379.09 13892.13 16775.51 16195.06 16290.41 224
Test By Simon79.09 138
PHI-MVS86.38 9985.81 11388.08 8888.44 19977.34 10789.35 7693.05 8273.15 17884.76 20087.70 23978.87 14094.18 9480.67 10396.29 11392.73 149
EG-PatchMatch MVS84.08 14684.11 14783.98 16392.22 10572.61 14682.20 21887.02 22272.63 18488.86 12391.02 17478.52 14191.11 19873.41 18391.09 24788.21 255
Effi-MVS+-dtu85.82 11083.38 15693.14 387.13 22491.15 287.70 10088.42 19574.57 15683.56 22585.65 27078.49 14294.21 9272.04 19792.88 21694.05 98
mvs-test184.55 13282.12 17591.84 2087.13 22489.54 485.05 14188.42 19574.57 15680.60 26582.98 30778.49 14293.98 10472.04 19789.77 26992.00 183
Vis-MVSNetpermissive86.86 9186.58 10087.72 9292.09 10977.43 10687.35 10492.09 10978.87 10784.27 21594.05 8678.35 14493.65 11580.54 10591.58 24392.08 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9287.06 9186.17 12192.86 8767.02 20082.55 20491.56 12383.08 5590.92 8191.82 15378.25 14593.99 10274.16 17298.35 2297.49 13
MSLP-MVS++85.00 12586.03 10981.90 20491.84 12171.56 16686.75 11893.02 8675.95 13987.12 15189.39 21177.98 14689.40 24777.46 14294.78 17384.75 294
API-MVS82.28 17582.61 16981.30 21386.29 24369.79 17488.71 8787.67 20978.42 11482.15 24484.15 29777.98 14691.59 18365.39 25192.75 21882.51 324
DP-MVS Recon84.05 14783.22 15886.52 10991.73 12475.27 12683.23 18792.40 10272.04 19682.04 24588.33 22977.91 14893.95 10566.17 24495.12 16090.34 225
UniMVSNet (Re)86.87 9086.98 9486.55 10893.11 8068.48 18983.80 16892.87 9080.37 8489.61 11291.81 15477.72 14994.18 9475.00 16898.53 1696.99 22
PCF-MVS74.62 1582.15 17880.92 19485.84 12789.43 17972.30 15380.53 23991.82 11857.36 31487.81 14389.92 20577.67 15093.63 11758.69 29495.08 16191.58 197
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
NR-MVSNet86.00 10686.22 10585.34 13693.24 7764.56 21882.21 21690.46 15380.99 7888.42 13391.97 14777.56 15193.85 10872.46 19598.65 1297.61 10
3Dnovator+83.92 289.97 4989.66 5690.92 3691.27 14181.66 6491.25 3994.13 3688.89 1388.83 12594.26 7577.55 15295.86 2184.88 5595.87 13495.24 57
MVS_Test82.47 17383.22 15880.22 23382.62 29257.75 29282.54 20591.96 11471.16 20582.89 23492.52 13577.41 15390.50 21880.04 10887.84 29392.40 165
EIA-MVS82.19 17781.23 18985.10 14087.95 20769.17 18683.22 18893.33 6770.42 21178.58 28679.77 34077.29 15494.20 9371.51 20088.96 27891.93 187
xiu_mvs_v2_base77.19 24176.75 24378.52 25687.01 23061.30 25375.55 30787.12 22061.24 28974.45 31778.79 34277.20 15590.93 20364.62 25984.80 32283.32 313
DU-MVS86.80 9386.99 9386.21 11993.24 7767.02 20083.16 18992.21 10681.73 7090.92 8191.97 14777.20 15593.99 10274.16 17298.35 2297.61 10
Baseline_NR-MVSNet84.00 14985.90 11178.29 26291.47 13753.44 32082.29 21287.00 22579.06 10489.55 11495.72 2877.20 15586.14 28872.30 19698.51 1795.28 55
TinyColmap81.25 18982.34 17477.99 26785.33 25660.68 26482.32 21188.33 19871.26 20386.97 15892.22 14577.10 15886.98 27462.37 27095.17 15786.31 278
F-COLMAP84.97 12683.42 15589.63 5692.39 9783.40 5088.83 8491.92 11573.19 17780.18 27489.15 21877.04 15993.28 13465.82 24992.28 22892.21 177
114514_t83.10 16782.54 17184.77 14592.90 8469.10 18786.65 11990.62 15154.66 32581.46 25690.81 18376.98 16094.38 8672.62 19396.18 11990.82 212
xiu_mvs_v1_base_debu80.84 19580.14 20682.93 18688.31 20071.73 16179.53 25187.17 21465.43 26279.59 27682.73 31476.94 16190.14 23073.22 18588.33 28486.90 273
xiu_mvs_v1_base80.84 19580.14 20682.93 18688.31 20071.73 16179.53 25187.17 21465.43 26279.59 27682.73 31476.94 16190.14 23073.22 18588.33 28486.90 273
xiu_mvs_v1_base_debi80.84 19580.14 20682.93 18688.31 20071.73 16179.53 25187.17 21465.43 26279.59 27682.73 31476.94 16190.14 23073.22 18588.33 28486.90 273
pcd_1.5k_mvsjas6.41 3448.55 3470.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 37876.94 1610.00 3790.00 3770.00 3770.00 375
PS-MVSNAJss88.31 7387.90 7989.56 5993.31 7577.96 9687.94 9791.97 11370.73 20994.19 2296.67 1176.94 16194.57 8183.07 7396.28 11496.15 32
PS-MVSNAJ77.04 24376.53 24578.56 25587.09 22961.40 25175.26 30987.13 21761.25 28874.38 31977.22 35176.94 16190.94 20264.63 25884.83 32183.35 312
MIMVSNet183.63 15684.59 13780.74 22494.06 5762.77 23782.72 19884.53 25777.57 12190.34 9095.92 2476.88 16785.83 29261.88 27597.42 7793.62 120
原ACMM184.60 14992.81 9074.01 13291.50 12562.59 27782.73 23690.67 18876.53 16894.25 8969.24 21995.69 14285.55 285
MSDG80.06 21479.99 21080.25 23283.91 28068.04 19477.51 28389.19 18577.65 11981.94 24683.45 30376.37 16986.31 28563.31 26686.59 30286.41 276
Gipumacopyleft84.44 13586.33 10278.78 25184.20 27473.57 13489.55 6990.44 15484.24 3984.38 20794.89 4676.35 17080.40 32576.14 15596.80 9682.36 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XXY-MVS74.44 27276.19 24869.21 32284.61 26352.43 32971.70 32977.18 29960.73 29580.60 26590.96 17875.44 17169.35 35156.13 30788.33 28485.86 283
FMVSNet184.55 13285.45 12181.85 20690.27 16661.05 25786.83 11488.27 20078.57 11289.66 10995.64 3075.43 17290.68 21369.09 22395.33 15093.82 108
CANet83.79 15382.85 16486.63 10686.17 24772.21 15683.76 16991.43 12777.24 12474.39 31887.45 24475.36 17395.42 5077.03 14892.83 21792.25 176
ab-mvs79.67 21580.56 19676.99 27888.48 19756.93 29784.70 14586.06 23368.95 22780.78 26493.08 11375.30 17484.62 30356.78 30390.90 25689.43 238
patch_mono-278.89 22079.39 21477.41 27684.78 26168.11 19275.60 30483.11 26360.96 29279.36 27989.89 20675.18 17572.97 34373.32 18492.30 22691.15 203
DELS-MVS81.44 18781.25 18782.03 20284.27 27162.87 23676.47 29792.49 10170.97 20681.64 25583.83 29875.03 17692.70 15374.29 17092.22 23190.51 222
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPR78.84 22278.10 22981.07 21885.17 25760.22 26782.21 21690.57 15262.51 27875.32 31384.61 29274.99 17792.30 16459.48 29288.04 29090.68 216
CNLPA83.55 15883.10 16284.90 14289.34 18183.87 4884.54 15088.77 19079.09 10383.54 22688.66 22674.87 17881.73 31966.84 24092.29 22789.11 244
HQP_MVS87.75 8487.43 8788.70 7693.45 7076.42 12089.45 7493.61 5879.44 9886.55 16792.95 11974.84 17995.22 5880.78 10195.83 13594.46 82
plane_prior692.61 9176.54 11774.84 179
FC-MVSNet-test85.93 10987.05 9282.58 19592.25 10356.44 30185.75 13293.09 8077.33 12291.94 6694.65 5474.78 18193.41 13175.11 16798.58 1497.88 7
VDD-MVS84.23 14384.58 13883.20 18091.17 14665.16 21483.25 18584.97 25479.79 9187.18 15094.27 7274.77 18290.89 20669.24 21996.54 10493.55 125
BH-untuned80.96 19380.99 19280.84 22388.55 19668.23 19080.33 24288.46 19472.79 18286.55 16786.76 25474.72 18391.77 18161.79 27688.99 27782.52 323
VPNet80.25 20881.68 18175.94 29292.46 9647.98 35276.70 29281.67 27573.45 16884.87 19892.82 12374.66 18486.51 28261.66 27896.85 9293.33 126
tfpnnormal81.79 18482.95 16378.31 26088.93 19055.40 30780.83 23782.85 26676.81 12785.90 18394.14 8374.58 18586.51 28266.82 24195.68 14393.01 139
KD-MVS_self_test81.93 18383.14 16178.30 26184.75 26252.75 32480.37 24189.42 18370.24 21690.26 9293.39 10974.55 18686.77 27868.61 22996.64 9995.38 51
V4283.47 16083.37 15783.75 16983.16 28763.33 22981.31 22890.23 16669.51 22190.91 8390.81 18374.16 18792.29 16580.06 10790.22 26695.62 46
3Dnovator80.37 784.80 12784.71 13485.06 14186.36 24074.71 12888.77 8690.00 17275.65 14484.96 19593.17 11274.06 18891.19 19578.28 12991.09 24789.29 242
v1086.54 9687.10 9084.84 14388.16 20563.28 23086.64 12092.20 10775.42 14892.81 5094.50 6074.05 18994.06 10183.88 6596.28 11497.17 18
旧先验191.97 11271.77 16081.78 27491.84 15173.92 19093.65 19983.61 307
mvs_anonymous78.13 23178.76 22076.23 29179.24 32750.31 34578.69 26684.82 25561.60 28783.09 23392.82 12373.89 19187.01 27168.33 23286.41 30491.37 200
MAR-MVS80.24 20978.74 22184.73 14686.87 23478.18 9185.75 13287.81 20865.67 26177.84 29178.50 34473.79 19290.53 21761.59 28090.87 25785.49 287
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet84.35 13785.39 12281.25 21495.13 3359.32 27585.42 13781.11 27786.41 2987.41 14896.21 1973.61 19390.61 21666.33 24396.85 9293.81 111
FIs85.35 11686.27 10482.60 19491.86 11857.31 29485.10 14093.05 8275.83 14191.02 8093.97 9073.57 19492.91 15073.97 17598.02 4097.58 12
v114484.54 13484.72 13384.00 16287.67 21362.55 24182.97 19390.93 14370.32 21489.80 10490.99 17573.50 19593.48 12781.69 9194.65 17895.97 38
diffmvs80.40 20480.48 19980.17 23479.02 33060.04 26877.54 28290.28 16566.65 25082.40 23987.33 24773.50 19587.35 26977.98 13689.62 27193.13 134
PAPM_NR83.23 16483.19 16083.33 17790.90 15265.98 20888.19 9390.78 14678.13 11780.87 26387.92 23773.49 19792.42 15870.07 21388.40 28391.60 196
v886.22 10386.83 9784.36 15487.82 20962.35 24586.42 12391.33 13176.78 12892.73 5194.48 6273.41 19893.72 11483.10 7295.41 14797.01 21
EI-MVSNet82.61 17082.42 17383.20 18083.25 28563.66 22583.50 17885.07 24876.06 13486.55 16785.10 28273.41 19890.25 22278.15 13490.67 26295.68 44
IterMVS-LS84.73 12884.98 12783.96 16487.35 21963.66 22583.25 18589.88 17476.06 13489.62 11092.37 13973.40 20092.52 15778.16 13294.77 17595.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419284.24 14284.41 14283.71 17087.59 21661.57 25082.95 19491.03 13967.82 24189.80 10490.49 19273.28 20193.51 12681.88 9094.89 17196.04 37
BH-RMVSNet80.53 20080.22 20481.49 21287.19 22366.21 20777.79 27886.23 23174.21 16083.69 22188.50 22773.25 20290.75 21063.18 26787.90 29187.52 265
PLCcopyleft73.85 1682.09 17980.31 20087.45 9690.86 15480.29 7285.88 13090.65 14968.17 23476.32 30186.33 25973.12 20392.61 15661.40 28190.02 26889.44 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OurMVSNet-221017-090.01 4689.74 5590.83 3793.16 7980.37 7191.91 3493.11 7981.10 7795.32 1097.24 572.94 20494.85 7185.07 5297.78 5597.26 15
WR-MVS83.56 15784.40 14381.06 21993.43 7254.88 31278.67 26785.02 25181.24 7590.74 8591.56 16072.85 20591.08 19968.00 23398.04 3797.23 16
VNet79.31 21680.27 20176.44 28687.92 20853.95 31675.58 30684.35 25874.39 15982.23 24290.72 18572.84 20684.39 30560.38 28893.98 19290.97 207
QAPM82.59 17182.59 17082.58 19586.44 23566.69 20489.94 6090.36 15767.97 23784.94 19792.58 13272.71 20792.18 16670.63 20987.73 29488.85 251
v119284.57 13184.69 13584.21 15887.75 21162.88 23583.02 19291.43 12769.08 22589.98 9990.89 18072.70 20893.62 12082.41 8294.97 16696.13 33
OpenMVScopyleft76.72 1381.98 18282.00 17881.93 20384.42 26768.22 19188.50 9189.48 18166.92 24781.80 25291.86 14972.59 20990.16 22771.19 20291.25 24687.40 267
TSAR-MVS + GP.83.95 15082.69 16787.72 9289.27 18381.45 6583.72 17081.58 27674.73 15485.66 18586.06 26472.56 21092.69 15475.44 16395.21 15589.01 250
alignmvs83.94 15183.98 15083.80 16687.80 21067.88 19584.54 15091.42 12973.27 17688.41 13487.96 23472.33 21190.83 20876.02 15794.11 18992.69 153
HQP2-MVS72.10 212
HQP-MVS84.61 13084.06 14886.27 11591.19 14370.66 17084.77 14292.68 9773.30 17380.55 26890.17 20172.10 21294.61 7977.30 14594.47 18193.56 123
testgi72.36 28674.61 26065.59 33580.56 31442.82 36868.29 34073.35 32666.87 24881.84 24989.93 20472.08 21466.92 35946.05 35492.54 22387.01 272
v192192084.23 14384.37 14483.79 16787.64 21561.71 24982.91 19591.20 13567.94 23890.06 9490.34 19472.04 21593.59 12182.32 8494.91 16996.07 35
MSP-MVS89.08 6588.16 7791.83 2195.76 1886.14 2492.75 1793.90 4678.43 11389.16 12092.25 14372.03 21696.36 288.21 890.93 25592.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LF4IMVS82.75 16981.93 17985.19 13782.08 29380.15 7385.53 13588.76 19168.01 23585.58 18787.75 23871.80 21786.85 27674.02 17493.87 19488.58 253
v124084.30 13984.51 14083.65 17187.65 21461.26 25482.85 19691.54 12467.94 23890.68 8690.65 18971.71 21893.64 11682.84 7794.78 17396.07 35
ambc82.98 18490.55 16264.86 21588.20 9289.15 18689.40 11793.96 9371.67 21991.38 19278.83 12296.55 10392.71 152
112180.86 19479.81 21184.02 16193.93 6078.70 8781.64 22380.18 28455.43 32283.67 22291.15 16971.29 22091.41 19067.95 23593.06 21181.96 329
新几何182.95 18593.96 5978.56 8980.24 28355.45 32183.93 22091.08 17171.19 22188.33 26065.84 24893.07 21081.95 330
v14882.31 17482.48 17281.81 20985.59 25359.66 27281.47 22686.02 23472.85 18188.05 13990.65 18970.73 22290.91 20575.15 16691.79 23894.87 66
v2v48284.09 14584.24 14683.62 17287.13 22461.40 25182.71 19989.71 17672.19 19489.55 11491.41 16370.70 22393.20 13681.02 9693.76 19596.25 31
UGNet82.78 16881.64 18286.21 11986.20 24676.24 12386.86 11285.68 23877.07 12573.76 32192.82 12369.64 22491.82 18069.04 22493.69 19890.56 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
c3_l81.64 18581.59 18481.79 21080.86 30859.15 27978.61 26890.18 16868.36 23187.20 14987.11 25169.39 22591.62 18278.16 13294.43 18394.60 76
MG-MVS80.32 20780.94 19378.47 25888.18 20352.62 32782.29 21285.01 25272.01 19779.24 28292.54 13469.36 22693.36 13370.65 20889.19 27689.45 236
IS-MVSNet86.66 9586.82 9886.17 12192.05 11166.87 20291.21 4088.64 19386.30 3089.60 11392.59 13069.22 22794.91 6973.89 17697.89 5196.72 24
PVSNet_BlendedMVS78.80 22377.84 23181.65 21184.43 26563.41 22779.49 25490.44 15461.70 28675.43 31187.07 25269.11 22891.44 18760.68 28692.24 22990.11 230
PVSNet_Blended76.49 25175.40 25579.76 23884.43 26563.41 22775.14 31090.44 15457.36 31475.43 31178.30 34569.11 22891.44 18760.68 28687.70 29584.42 297
BH-w/o76.57 24976.07 25078.10 26586.88 23365.92 20977.63 28086.33 22965.69 26080.89 26279.95 33768.97 23090.74 21153.01 32885.25 31477.62 349
MVS73.21 28072.59 28275.06 29780.97 30560.81 26381.64 22385.92 23646.03 35971.68 33077.54 34768.47 23189.77 23955.70 31085.39 31174.60 354
miper_ehance_all_eth80.34 20680.04 20981.24 21679.82 32058.95 28177.66 27989.66 17765.75 25985.99 18285.11 28168.29 23291.42 18976.03 15692.03 23393.33 126
Anonymous20240521180.51 20181.19 19078.49 25788.48 19757.26 29576.63 29382.49 26881.21 7684.30 21292.24 14467.99 23386.24 28662.22 27195.13 15891.98 186
testdata79.54 24492.87 8572.34 15280.14 28559.91 30085.47 19091.75 15667.96 23485.24 29668.57 23192.18 23281.06 343
test_part187.15 8987.82 8085.15 13988.88 19163.04 23387.98 9594.85 1682.52 6193.61 3795.73 2667.51 23595.71 3180.48 10698.83 296.69 25
DPM-MVS80.10 21379.18 21682.88 18990.71 15869.74 17578.87 26490.84 14460.29 29875.64 31085.92 26767.28 23693.11 14271.24 20191.79 23885.77 284
PVSNet_Blended_VisFu81.55 18680.49 19884.70 14891.58 12973.24 13884.21 15491.67 12262.86 27680.94 26187.16 24967.27 23792.87 15169.82 21588.94 27987.99 259
MDA-MVSNet-bldmvs77.47 23876.90 24279.16 24879.03 32964.59 21666.58 34775.67 30973.15 17888.86 12388.99 22166.94 23881.23 32164.71 25688.22 28991.64 195
CL-MVSNet_self_test76.81 24677.38 23675.12 29686.90 23251.34 33673.20 32480.63 28268.30 23381.80 25288.40 22866.92 23980.90 32255.35 31494.90 17093.12 135
test22293.31 7576.54 11779.38 25577.79 29652.59 33582.36 24090.84 18266.83 24091.69 24081.25 338
TR-MVS76.77 24775.79 25179.72 24086.10 24965.79 21077.14 28683.02 26465.20 26781.40 25782.10 31866.30 24190.73 21255.57 31185.27 31382.65 319
OpenMVS_ROBcopyleft70.19 1777.77 23777.46 23478.71 25384.39 26861.15 25581.18 23282.52 26762.45 28083.34 22887.37 24566.20 24288.66 25764.69 25785.02 31686.32 277
EPP-MVSNet85.47 11485.04 12686.77 10591.52 13569.37 17991.63 3787.98 20681.51 7387.05 15691.83 15266.18 24395.29 5470.75 20696.89 9095.64 45
SixPastTwentyTwo87.20 8887.45 8686.45 11092.52 9469.19 18587.84 9988.05 20381.66 7194.64 1496.53 1465.94 24494.75 7383.02 7596.83 9495.41 50
PatchMatch-RL74.48 27073.22 27578.27 26387.70 21285.26 3575.92 30270.09 34464.34 27176.09 30481.25 32665.87 24578.07 33153.86 32283.82 32671.48 357
EPNet80.37 20578.41 22686.23 11676.75 34173.28 13687.18 10877.45 29876.24 13268.14 34188.93 22265.41 24693.85 10869.47 21796.12 12391.55 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PM-MVS80.20 21079.00 21783.78 16888.17 20486.66 1881.31 22866.81 35669.64 22088.33 13690.19 19964.58 24783.63 31171.99 19990.03 26781.06 343
miper_enhance_ethall77.83 23476.93 24180.51 22876.15 34758.01 28975.47 30888.82 18958.05 30883.59 22480.69 32864.41 24891.20 19473.16 19192.03 23392.33 169
eth_miper_zixun_eth80.84 19580.22 20482.71 19281.41 30060.98 26077.81 27790.14 16967.31 24586.95 15987.24 24864.26 24992.31 16375.23 16591.61 24194.85 70
test20.0373.75 27674.59 26271.22 31581.11 30451.12 34070.15 33572.10 33570.42 21180.28 27391.50 16164.21 25074.72 34246.96 35294.58 17987.82 264
cascas76.29 25474.81 25980.72 22684.47 26462.94 23473.89 31987.34 21155.94 31975.16 31576.53 35463.97 25191.16 19665.00 25390.97 25488.06 257
TAMVS78.08 23276.36 24683.23 17990.62 15972.87 13979.08 26180.01 28661.72 28581.35 25886.92 25363.96 25288.78 25550.61 33693.01 21388.04 258
GBi-Net82.02 18082.07 17681.85 20686.38 23761.05 25786.83 11488.27 20072.43 18586.00 17995.64 3063.78 25390.68 21365.95 24593.34 20393.82 108
test182.02 18082.07 17681.85 20686.38 23761.05 25786.83 11488.27 20072.43 18586.00 17995.64 3063.78 25390.68 21365.95 24593.34 20393.82 108
FMVSNet281.31 18881.61 18380.41 23086.38 23758.75 28683.93 16386.58 22872.43 18587.65 14492.98 11663.78 25390.22 22566.86 23893.92 19392.27 174
USDC76.63 24876.73 24476.34 28883.46 28357.20 29680.02 24588.04 20452.14 34083.65 22391.25 16563.24 25686.65 28154.66 31994.11 18985.17 289
DIV-MVS_self_test80.43 20280.23 20281.02 22079.99 31859.25 27677.07 28887.02 22267.38 24386.19 17489.22 21563.09 25790.16 22776.32 15295.80 13793.66 116
cl____80.42 20380.23 20281.02 22079.99 31859.25 27677.07 28887.02 22267.37 24486.18 17689.21 21663.08 25890.16 22776.31 15395.80 13793.65 118
h-mvs3384.25 14182.76 16588.72 7591.82 12382.60 5884.00 16084.98 25371.27 20186.70 16390.55 19163.04 25993.92 10678.26 13094.20 18789.63 233
hse-mvs283.47 16081.81 18088.47 8091.03 14982.27 5982.61 20083.69 25971.27 20186.70 16386.05 26563.04 25992.41 15978.26 13093.62 20190.71 214
MVS_030478.17 23077.23 23880.99 22284.13 27769.07 18881.39 22780.81 28076.28 13167.53 34689.11 21962.87 26186.77 27860.90 28592.01 23687.13 270
new-patchmatchnet70.10 30173.37 27460.29 34881.23 30316.95 37859.54 35874.62 31462.93 27580.97 26087.93 23662.83 26271.90 34655.24 31595.01 16492.00 183
K. test v385.14 11984.73 13186.37 11191.13 14769.63 17885.45 13676.68 30384.06 4292.44 5696.99 862.03 26394.65 7680.58 10493.24 20694.83 72
lessismore_v085.95 12391.10 14870.99 16970.91 34291.79 6794.42 6661.76 26492.93 14879.52 11793.03 21293.93 102
131473.22 27972.56 28475.20 29580.41 31757.84 29081.64 22385.36 24151.68 34373.10 32476.65 35361.45 26585.19 29763.54 26379.21 34882.59 320
CANet_DTU77.81 23677.05 23980.09 23581.37 30159.90 27083.26 18488.29 19969.16 22467.83 34483.72 29960.93 26689.47 24369.22 22189.70 27090.88 210
pmmvs-eth3d78.42 22977.04 24082.57 19787.44 21874.41 13080.86 23679.67 28755.68 32084.69 20190.31 19660.91 26785.42 29562.20 27291.59 24287.88 262
UnsupCasMVSNet_eth71.63 29372.30 28669.62 32076.47 34452.70 32670.03 33680.97 27959.18 30179.36 27988.21 23160.50 26869.12 35258.33 29777.62 35387.04 271
IterMVS-SCA-FT80.64 19979.41 21384.34 15583.93 27969.66 17776.28 29981.09 27872.43 18586.47 17390.19 19960.46 26993.15 14177.45 14386.39 30590.22 226
SCA73.32 27772.57 28375.58 29481.62 29755.86 30478.89 26371.37 34161.73 28474.93 31683.42 30460.46 26987.01 27158.11 29982.63 33683.88 301
jason77.42 23975.75 25282.43 20087.10 22869.27 18177.99 27481.94 27351.47 34477.84 29185.07 28560.32 27189.00 24970.74 20789.27 27589.03 248
jason: jason.
1112_ss74.82 26773.74 26878.04 26689.57 17860.04 26876.49 29687.09 22154.31 32673.66 32279.80 33860.25 27286.76 28058.37 29584.15 32587.32 268
HY-MVS64.64 1873.03 28172.47 28574.71 29883.36 28454.19 31482.14 21981.96 27256.76 31869.57 33886.21 26360.03 27384.83 30249.58 34182.65 33485.11 290
Anonymous2023120671.38 29471.88 28869.88 31886.31 24154.37 31370.39 33474.62 31452.57 33676.73 29788.76 22359.94 27472.06 34544.35 35793.23 20783.23 315
IterMVS76.91 24476.34 24778.64 25480.91 30664.03 22376.30 29879.03 29164.88 26983.11 23189.16 21759.90 27584.46 30468.61 22985.15 31587.42 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
YYNet170.06 30270.44 29768.90 32373.76 36053.42 32158.99 36167.20 35258.42 30587.10 15385.39 27859.82 27667.32 35659.79 29083.50 32885.96 280
MDA-MVSNet_test_wron70.05 30370.44 29768.88 32473.84 35953.47 31958.93 36267.28 35158.43 30487.09 15485.40 27759.80 27767.25 35759.66 29183.54 32785.92 282
PMMVS61.65 32860.38 33465.47 33765.40 37569.26 18263.97 35261.73 36436.80 37060.11 36468.43 36359.42 27866.35 36148.97 34378.57 35060.81 365
CDS-MVSNet77.32 24075.40 25583.06 18289.00 18872.48 15077.90 27682.17 27160.81 29378.94 28483.49 30259.30 27988.76 25654.64 32092.37 22587.93 261
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UnsupCasMVSNet_bld69.21 30869.68 30367.82 32979.42 32451.15 33967.82 34475.79 30754.15 32777.47 29685.36 28059.26 28070.64 34848.46 34579.35 34681.66 332
Anonymous2024052180.18 21181.25 18776.95 27983.15 28860.84 26282.46 20785.99 23568.76 22986.78 16093.73 10559.13 28177.44 33273.71 17997.55 6992.56 157
WTY-MVS67.91 31268.35 31066.58 33380.82 31048.12 35165.96 34872.60 33153.67 33071.20 33281.68 32358.97 28269.06 35348.57 34481.67 33782.55 321
cl2278.97 21978.21 22881.24 21677.74 33459.01 28077.46 28587.13 21765.79 25684.32 20985.10 28258.96 28390.88 20775.36 16492.03 23393.84 105
MVSFormer82.23 17681.57 18584.19 16085.54 25469.26 18291.98 3190.08 17071.54 19976.23 30285.07 28558.69 28494.27 8786.26 3888.77 28089.03 248
lupinMVS76.37 25374.46 26382.09 20185.54 25469.26 18276.79 29080.77 28150.68 35076.23 30282.82 31258.69 28488.94 25069.85 21488.77 28088.07 256
Test_1112_low_res73.90 27573.08 27676.35 28790.35 16455.95 30273.40 32386.17 23250.70 34973.14 32385.94 26658.31 28685.90 29156.51 30583.22 32987.20 269
test_yl78.71 22578.51 22479.32 24684.32 26958.84 28378.38 26985.33 24275.99 13782.49 23786.57 25558.01 28790.02 23662.74 26892.73 21989.10 245
DCV-MVSNet78.71 22578.51 22479.32 24684.32 26958.84 28378.38 26985.33 24275.99 13782.49 23786.57 25558.01 28790.02 23662.74 26892.73 21989.10 245
sss66.92 31467.26 31465.90 33477.23 33751.10 34164.79 34971.72 33952.12 34170.13 33680.18 33557.96 28965.36 36450.21 33781.01 34281.25 338
ppachtmachnet_test74.73 26974.00 26776.90 28180.71 31256.89 29971.53 33078.42 29358.24 30679.32 28182.92 31157.91 29084.26 30665.60 25091.36 24589.56 235
MVP-Stereo75.81 25773.51 27282.71 19289.35 18073.62 13380.06 24385.20 24560.30 29773.96 32087.94 23557.89 29189.45 24552.02 33174.87 35885.06 291
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PAPM71.77 29170.06 30176.92 28086.39 23653.97 31576.62 29486.62 22753.44 33163.97 35984.73 29157.79 29292.34 16239.65 36481.33 34084.45 296
LFMVS80.15 21280.56 19678.89 24989.19 18555.93 30385.22 13973.78 32382.96 5684.28 21392.72 12757.38 29390.07 23463.80 26195.75 14090.68 216
Vis-MVSNet (Re-imp)77.82 23577.79 23277.92 26888.82 19251.29 33883.28 18371.97 33674.04 16182.23 24289.78 20757.38 29389.41 24657.22 30295.41 14793.05 137
CHOSEN 1792x268872.45 28570.56 29578.13 26490.02 17463.08 23268.72 33983.16 26242.99 36575.92 30685.46 27557.22 29585.18 29849.87 34081.67 33786.14 279
miper_lstm_enhance76.45 25276.10 24977.51 27476.72 34260.97 26164.69 35085.04 25063.98 27283.20 23088.22 23056.67 29678.79 33073.22 18593.12 20992.78 148
our_test_371.85 29071.59 29072.62 30980.71 31253.78 31769.72 33771.71 34058.80 30378.03 28880.51 33356.61 29778.84 32962.20 27286.04 30885.23 288
baseline173.26 27873.54 27172.43 31184.92 25947.79 35379.89 24774.00 31965.93 25478.81 28586.28 26256.36 29881.63 32056.63 30479.04 34987.87 263
pmmvs474.92 26572.98 27880.73 22584.95 25871.71 16476.23 30077.59 29752.83 33477.73 29486.38 25756.35 29984.97 29957.72 30187.05 29985.51 286
MVEpermissive40.22 2351.82 33950.47 34255.87 35162.66 37751.91 33231.61 36939.28 37840.65 36650.76 37274.98 35856.24 30044.67 37333.94 37064.11 36971.04 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
N_pmnet70.20 29968.80 30874.38 30080.91 30684.81 4059.12 36076.45 30555.06 32375.31 31482.36 31755.74 30154.82 36947.02 35087.24 29883.52 308
MS-PatchMatch70.93 29670.22 29973.06 30681.85 29662.50 24273.82 32077.90 29552.44 33775.92 30681.27 32555.67 30281.75 31855.37 31377.70 35274.94 353
DSMNet-mixed60.98 33361.61 33259.09 35072.88 36545.05 36274.70 31446.61 37726.20 37165.34 35290.32 19555.46 30363.12 36741.72 36181.30 34169.09 361
pmmvs570.73 29770.07 30072.72 30777.03 34052.73 32574.14 31675.65 31050.36 35272.17 32885.37 27955.42 30480.67 32452.86 32987.59 29684.77 293
CMPMVSbinary59.41 2075.12 26273.57 27079.77 23775.84 34967.22 19781.21 23182.18 27050.78 34876.50 29887.66 24055.20 30582.99 31362.17 27490.64 26589.09 247
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MIMVSNet71.09 29571.59 29069.57 32187.23 22150.07 34678.91 26271.83 33760.20 29971.26 33191.76 15555.08 30676.09 33641.06 36287.02 30082.54 322
bset_n11_16_dypcd79.19 21777.97 23082.86 19085.81 25166.85 20375.02 31179.31 28866.07 25383.50 22783.37 30655.04 30792.10 17078.63 12494.99 16589.63 233
PVSNet_051.08 2256.10 33654.97 34159.48 34975.12 35553.28 32255.16 36361.89 36244.30 36259.16 36562.48 36854.22 30865.91 36335.40 36847.01 37159.25 367
EPNet_dtu72.87 28371.33 29477.49 27577.72 33560.55 26582.35 21075.79 30766.49 25158.39 36981.06 32753.68 30985.98 28953.55 32392.97 21585.95 281
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS255.64 33859.27 33844.74 35464.30 37612.32 37940.60 36749.79 37553.19 33265.06 35684.81 28953.60 31049.76 37132.68 37189.41 27272.15 356
HyFIR lowres test75.12 26272.66 28182.50 19891.44 13865.19 21372.47 32687.31 21246.79 35680.29 27184.30 29552.70 31192.10 17051.88 33586.73 30190.22 226
test111178.53 22778.85 21877.56 27392.22 10547.49 35482.61 20069.24 34872.43 18585.28 19194.20 7851.91 31290.07 23465.36 25296.45 10895.11 61
ECVR-MVScopyleft78.44 22878.63 22277.88 26991.85 11948.95 34883.68 17269.91 34672.30 19284.26 21694.20 7851.89 31389.82 23863.58 26296.02 12594.87 66
FMVSNet378.80 22378.55 22379.57 24382.89 29156.89 29981.76 22085.77 23769.04 22686.00 17990.44 19351.75 31490.09 23365.95 24593.34 20391.72 192
D2MVS76.84 24575.67 25480.34 23180.48 31662.16 24873.50 32184.80 25657.61 31282.24 24187.54 24251.31 31587.65 26670.40 21293.19 20891.23 202
AUN-MVS81.18 19078.78 21988.39 8390.93 15182.14 6082.51 20683.67 26064.69 27080.29 27185.91 26851.07 31692.38 16076.29 15493.63 20090.65 218
PVSNet58.17 2166.41 31965.63 32268.75 32581.96 29449.88 34762.19 35672.51 33351.03 34668.04 34275.34 35750.84 31774.77 34045.82 35582.96 33081.60 333
GA-MVS75.83 25674.61 26079.48 24581.87 29559.25 27673.42 32282.88 26568.68 23079.75 27581.80 32150.62 31889.46 24466.85 23985.64 31089.72 232
FPMVS72.29 28872.00 28773.14 30588.63 19485.00 3774.65 31567.39 35071.94 19877.80 29387.66 24050.48 31975.83 33849.95 33879.51 34458.58 368
MVS-HIRNet61.16 33162.92 32855.87 35179.09 32835.34 37371.83 32857.98 37046.56 35759.05 36691.14 17049.95 32076.43 33538.74 36571.92 36255.84 369
CVMVSNet72.62 28471.41 29376.28 28983.25 28560.34 26683.50 17879.02 29237.77 36976.33 30085.10 28249.60 32187.41 26870.54 21077.54 35481.08 341
RPMNet78.88 22178.28 22780.68 22779.58 32162.64 23982.58 20294.16 3174.80 15375.72 30892.59 13048.69 32295.56 3773.48 18282.91 33283.85 304
tpmrst66.28 32066.69 31865.05 33872.82 36639.33 36978.20 27270.69 34353.16 33367.88 34380.36 33448.18 32374.75 34158.13 29870.79 36381.08 341
CR-MVSNet74.00 27473.04 27776.85 28379.58 32162.64 23982.58 20276.90 30050.50 35175.72 30892.38 13648.07 32484.07 30768.72 22882.91 33283.85 304
Patchmtry76.56 25077.46 23473.83 30279.37 32646.60 35882.41 20976.90 30073.81 16485.56 18892.38 13648.07 32483.98 30863.36 26595.31 15390.92 209
ADS-MVSNet265.87 32263.64 32772.55 31073.16 36356.92 29867.10 34574.81 31349.74 35366.04 34982.97 30846.71 32677.26 33342.29 35969.96 36583.46 309
ADS-MVSNet61.90 32762.19 33061.03 34773.16 36336.42 37267.10 34561.75 36349.74 35366.04 34982.97 30846.71 32663.21 36642.29 35969.96 36583.46 309
PatchmatchNetpermissive69.71 30668.83 30772.33 31277.66 33653.60 31879.29 25669.99 34557.66 31172.53 32682.93 31046.45 32880.08 32760.91 28472.09 36183.31 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thres20072.34 28771.55 29274.70 29983.48 28251.60 33575.02 31173.71 32470.14 21778.56 28780.57 33146.20 32988.20 26246.99 35189.29 27384.32 298
sam_mvs146.11 33083.88 301
tfpn200view974.86 26674.23 26576.74 28486.24 24452.12 33079.24 25873.87 32173.34 17181.82 25084.60 29346.02 33188.80 25251.98 33290.99 25189.31 240
thres40075.14 26074.23 26577.86 27086.24 24452.12 33079.24 25873.87 32173.34 17181.82 25084.60 29346.02 33188.80 25251.98 33290.99 25192.66 154
baseline269.77 30566.89 31578.41 25979.51 32358.09 28876.23 30069.57 34757.50 31364.82 35777.45 34946.02 33188.44 25853.08 32577.83 35188.70 252
patchmatchnet-post81.71 32245.93 33487.01 271
sam_mvs45.92 335
Patchmatch-RL test74.48 27073.68 26976.89 28284.83 26066.54 20572.29 32769.16 34957.70 31086.76 16186.33 25945.79 33682.59 31469.63 21690.65 26481.54 334
thres100view90075.45 25875.05 25876.66 28587.27 22051.88 33381.07 23373.26 32775.68 14383.25 22986.37 25845.54 33788.80 25251.98 33290.99 25189.31 240
thres600view775.97 25575.35 25777.85 27187.01 23051.84 33480.45 24073.26 32775.20 15083.10 23286.31 26145.54 33789.05 24855.03 31792.24 22992.66 154
tpm cat166.76 31765.21 32371.42 31477.09 33950.62 34478.01 27373.68 32544.89 36168.64 33979.00 34145.51 33982.42 31749.91 33970.15 36481.23 340
test_post3.10 37545.43 34077.22 334
MDTV_nov1_ep1368.29 31178.03 33343.87 36574.12 31772.22 33452.17 33867.02 34785.54 27145.36 34180.85 32355.73 30884.42 324
tpmvs70.16 30069.56 30471.96 31374.71 35848.13 35079.63 24975.45 31265.02 26870.26 33581.88 32045.34 34285.68 29358.34 29675.39 35782.08 328
MDTV_nov1_ep13_2view27.60 37770.76 33246.47 35861.27 36145.20 34349.18 34283.75 306
test_post178.85 2653.13 37445.19 34480.13 32658.11 299
CostFormer69.98 30468.68 30973.87 30177.14 33850.72 34379.26 25774.51 31651.94 34270.97 33484.75 29045.16 34587.49 26755.16 31679.23 34783.40 311
RRT_MVS83.25 16381.08 19189.74 5380.55 31579.32 8186.41 12486.69 22672.33 19087.00 15791.08 17144.98 34695.55 4084.47 6196.24 11894.36 87
Patchmatch-test65.91 32167.38 31361.48 34675.51 35143.21 36768.84 33863.79 36062.48 27972.80 32583.42 30444.89 34759.52 36848.27 34786.45 30381.70 331
EU-MVSNet75.12 26274.43 26477.18 27783.11 28959.48 27485.71 13482.43 26939.76 36885.64 18688.76 22344.71 34887.88 26473.86 17785.88 30984.16 300
PatchT70.52 29872.76 28063.79 34079.38 32533.53 37477.63 28065.37 35873.61 16671.77 32992.79 12644.38 34975.65 33964.53 26085.37 31282.18 327
test-LLR67.21 31366.74 31768.63 32676.45 34555.21 30967.89 34167.14 35362.43 28165.08 35472.39 35943.41 35069.37 34961.00 28284.89 31981.31 336
test0.0.03 164.66 32464.36 32565.57 33675.03 35646.89 35764.69 35061.58 36562.43 28171.18 33377.54 34743.41 35068.47 35440.75 36382.65 33481.35 335
MVSTER77.09 24275.70 25381.25 21475.27 35461.08 25677.49 28485.07 24860.78 29486.55 16788.68 22543.14 35290.25 22273.69 18090.67 26292.42 163
tpm67.95 31168.08 31267.55 33078.74 33243.53 36675.60 30467.10 35554.92 32472.23 32788.10 23242.87 35375.97 33752.21 33080.95 34383.15 316
tpm268.45 31066.83 31673.30 30478.93 33148.50 34979.76 24871.76 33847.50 35569.92 33783.60 30042.07 35488.40 25948.44 34679.51 34483.01 318
EMVS61.10 33260.81 33361.99 34365.96 37455.86 30453.10 36558.97 36867.06 24656.89 37063.33 36740.98 35567.03 35854.79 31886.18 30763.08 363
new_pmnet55.69 33757.66 33949.76 35375.47 35230.59 37559.56 35751.45 37443.62 36462.49 36075.48 35640.96 35649.15 37237.39 36772.52 36069.55 360
E-PMN61.59 32961.62 33161.49 34566.81 37355.40 30753.77 36460.34 36666.80 24958.90 36765.50 36640.48 35766.12 36255.72 30986.25 30662.95 364
EPMVS62.47 32562.63 32962.01 34270.63 37038.74 37074.76 31352.86 37353.91 32967.71 34580.01 33639.40 35866.60 36055.54 31268.81 36880.68 345
tmp_tt20.25 34224.50 3457.49 3574.47 3808.70 38034.17 36825.16 3801.00 37532.43 37418.49 37239.37 3599.21 37621.64 37343.75 3724.57 372
thisisatest053079.07 21877.33 23784.26 15787.13 22464.58 21783.66 17375.95 30668.86 22885.22 19287.36 24638.10 36093.57 12475.47 16294.28 18594.62 74
ET-MVSNet_ETH3D75.28 25972.77 27982.81 19183.03 29068.11 19277.09 28776.51 30460.67 29677.60 29580.52 33238.04 36191.15 19770.78 20590.68 26189.17 243
tttt051781.07 19179.58 21285.52 13388.99 18966.45 20687.03 11175.51 31173.76 16588.32 13790.20 19837.96 36294.16 9979.36 11995.13 15895.93 41
thisisatest051573.00 28270.52 29680.46 22981.45 29959.90 27073.16 32574.31 31857.86 30976.08 30577.78 34637.60 36392.12 16965.00 25391.45 24489.35 239
FMVSNet572.10 28971.69 28973.32 30381.57 29853.02 32376.77 29178.37 29463.31 27376.37 29991.85 15036.68 36478.98 32847.87 34892.45 22487.95 260
dp60.70 33460.29 33661.92 34472.04 36838.67 37170.83 33164.08 35951.28 34560.75 36277.28 35036.59 36571.58 34747.41 34962.34 37075.52 352
CHOSEN 280x42059.08 33556.52 34066.76 33276.51 34364.39 22049.62 36659.00 36743.86 36355.66 37168.41 36435.55 36668.21 35543.25 35876.78 35667.69 362
RRT_test8_iter0578.08 23277.52 23379.75 23980.84 30952.54 32880.61 23888.96 18867.77 24284.62 20289.29 21433.89 36792.10 17077.59 14094.15 18894.62 74
IB-MVS62.13 1971.64 29268.97 30679.66 24280.80 31162.26 24773.94 31876.90 30063.27 27468.63 34076.79 35233.83 36891.84 17959.28 29387.26 29784.88 292
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
JIA-IIPM69.41 30766.64 31977.70 27273.19 36271.24 16775.67 30365.56 35770.42 21165.18 35392.97 11833.64 36983.06 31253.52 32469.61 36778.79 348
DWT-MVSNet_test66.43 31864.37 32472.63 30874.86 35750.86 34276.52 29572.74 33054.06 32865.50 35168.30 36532.13 37084.84 30161.63 27973.59 35982.19 326
DeepMVS_CXcopyleft24.13 35632.95 37829.49 37621.63 38112.07 37237.95 37345.07 37130.84 37119.21 37517.94 37433.06 37423.69 371
gg-mvs-nofinetune68.96 30969.11 30568.52 32876.12 34845.32 36083.59 17455.88 37186.68 2664.62 35897.01 730.36 37283.97 30944.78 35682.94 33176.26 351
GG-mvs-BLEND67.16 33173.36 36146.54 35984.15 15555.04 37258.64 36861.95 36929.93 37383.87 31038.71 36676.92 35571.07 358
test_method30.46 34029.60 34333.06 35517.99 3793.84 38113.62 37073.92 3202.79 37318.29 37553.41 37028.53 37443.25 37422.56 37235.27 37352.11 370
test-mter65.00 32363.79 32668.63 32676.45 34555.21 30967.89 34167.14 35350.98 34765.08 35472.39 35928.27 37569.37 34961.00 28284.89 31981.31 336
TESTMET0.1,161.29 33060.32 33564.19 33972.06 36751.30 33767.89 34162.09 36145.27 36060.65 36369.01 36227.93 37664.74 36556.31 30681.65 33976.53 350
test250674.12 27373.39 27376.28 28991.85 11944.20 36484.06 15848.20 37672.30 19281.90 24794.20 7827.22 37789.77 23964.81 25596.02 12594.87 66
pmmvs362.47 32560.02 33769.80 31971.58 36964.00 22470.52 33358.44 36939.77 36766.05 34875.84 35527.10 37872.28 34446.15 35384.77 32373.11 355
KD-MVS_2432*160066.87 31565.81 32070.04 31667.50 37147.49 35462.56 35479.16 28961.21 29077.98 28980.61 32925.29 37982.48 31553.02 32684.92 31780.16 346
miper_refine_blended66.87 31565.81 32070.04 31667.50 37147.49 35462.56 35479.16 28961.21 29077.98 28980.61 32925.29 37982.48 31553.02 32684.92 31780.16 346
test1236.27 3458.08 3480.84 3581.11 3820.57 38262.90 3530.82 3820.54 3761.07 3782.75 3771.26 3810.30 3771.04 3751.26 3761.66 373
testmvs5.91 3467.65 3490.72 3591.20 3810.37 38359.14 3590.67 3830.49 3771.11 3772.76 3760.94 3820.24 3781.02 3761.47 3751.55 374
test_blank0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uanet_test0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet-low-res0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
sosnet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
uncertanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
Regformer0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
ab-mvs-re6.65 3438.87 3460.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 37979.80 3380.00 3830.00 3790.00 3770.00 3770.00 375
uanet0.00 3470.00 3500.00 3600.00 3830.00 3840.00 3710.00 3840.00 3780.00 3790.00 3780.00 3830.00 3790.00 3770.00 3770.00 375
FOURS196.08 1287.41 1396.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 7191.55 13277.99 9491.01 14096.05 887.45 1998.17 3392.40 165
No_MVS88.81 7191.55 13277.99 9491.01 14096.05 887.45 1998.17 3392.40 165
eth-test20.00 383
eth-test0.00 383
IU-MVS94.18 5072.64 14390.82 14556.98 31689.67 10885.78 4797.92 4893.28 128
save fliter93.75 6477.44 10486.31 12589.72 17570.80 207
test_0728_SECOND86.79 10494.25 4972.45 15190.54 4694.10 3895.88 1686.42 3497.97 4592.02 182
GSMVS83.88 301
test_part293.86 6277.77 9992.84 48
MTGPAbinary91.81 119
MTMP90.66 4333.14 379
gm-plane-assit75.42 35344.97 36352.17 33872.36 36187.90 26354.10 321
test9_res80.83 10096.45 10890.57 219
agg_prior279.68 11396.16 12090.22 226
agg_prior91.58 12977.69 10090.30 16184.32 20993.18 137
test_prior478.97 8484.59 147
test_prior86.32 11290.59 16071.99 15892.85 9194.17 9692.80 146
旧先验281.73 22156.88 31786.54 17284.90 30072.81 192
新几何281.72 222
无先验82.81 19785.62 23958.09 30791.41 19067.95 23584.48 295
原ACMM282.26 215
testdata286.43 28463.52 264
testdata179.62 25073.95 163
plane_prior793.45 7077.31 108
plane_prior593.61 5895.22 5880.78 10195.83 13594.46 82
plane_prior492.95 119
plane_prior376.85 11577.79 11886.55 167
plane_prior289.45 7479.44 98
plane_prior192.83 89
plane_prior76.42 12087.15 10975.94 14095.03 163
n20.00 384
nn0.00 384
door-mid74.45 317
test1191.46 126
door72.57 332
HQP5-MVS70.66 170
HQP-NCC91.19 14384.77 14273.30 17380.55 268
ACMP_Plane91.19 14384.77 14273.30 17380.55 268
BP-MVS77.30 145
HQP4-MVS80.56 26794.61 7993.56 123
HQP3-MVS92.68 9794.47 181
NP-MVS91.95 11374.55 12990.17 201
ACMMP++_ref95.74 141
ACMMP++97.35 78