LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 36 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 54 | 99.27 1 | 99.54 1 |
|
PS-CasMVS | | | 90.06 43 | 91.92 13 | 84.47 156 | 96.56 7 | 58.83 296 | 89.04 85 | 92.74 99 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 47 | 95.57 38 | 79.42 120 | 98.74 6 | 99.00 2 |
|
PEN-MVS | | | 90.03 45 | 91.88 16 | 84.48 155 | 96.57 6 | 58.88 293 | 88.95 86 | 93.19 77 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 49 | 95.60 36 | 78.69 125 | 98.72 9 | 98.97 3 |
|
CP-MVSNet | | | 89.27 63 | 90.91 43 | 84.37 157 | 96.34 9 | 58.61 298 | 88.66 95 | 92.06 113 | 90.78 6 | 95.67 7 | 95.17 45 | 81.80 115 | 95.54 42 | 79.00 123 | 98.69 10 | 98.95 4 |
|
WR-MVS_H | | | 89.91 50 | 91.31 31 | 85.71 134 | 96.32 10 | 62.39 251 | 89.54 76 | 93.31 70 | 90.21 10 | 95.57 9 | 95.66 30 | 81.42 119 | 95.90 15 | 80.94 99 | 98.80 3 | 98.84 5 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 15 | 84.21 163 | 96.51 8 | 57.84 301 | 88.93 88 | 92.84 96 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 50 | 95.99 10 | 79.05 122 | 98.57 15 | 98.80 6 |
|
FC-MVSNet-test | | | 85.93 113 | 87.05 96 | 82.58 202 | 92.25 106 | 56.44 312 | 85.75 139 | 93.09 83 | 77.33 125 | 91.94 71 | 94.65 59 | 74.78 184 | 93.41 135 | 75.11 171 | 98.58 14 | 97.88 7 |
|
v7n | | | 90.13 40 | 90.96 41 | 87.65 97 | 91.95 116 | 71.06 173 | 89.99 62 | 93.05 85 | 86.53 28 | 94.29 19 | 96.27 17 | 82.69 93 | 94.08 103 | 86.25 40 | 97.63 65 | 97.82 8 |
|
TranMVSNet+NR-MVSNet | | | 87.86 84 | 88.76 75 | 85.18 142 | 94.02 58 | 64.13 230 | 84.38 160 | 91.29 136 | 84.88 39 | 92.06 67 | 93.84 104 | 86.45 58 | 93.73 116 | 73.22 192 | 98.66 11 | 97.69 9 |
|
DU-MVS | | | 86.80 97 | 86.99 97 | 86.21 122 | 93.24 79 | 67.02 206 | 83.16 197 | 92.21 109 | 81.73 72 | 90.92 87 | 91.97 154 | 77.20 158 | 93.99 105 | 74.16 177 | 98.35 22 | 97.61 10 |
|
NR-MVSNet | | | 86.00 110 | 86.22 109 | 85.34 140 | 93.24 79 | 64.56 226 | 82.21 225 | 90.46 157 | 80.99 80 | 88.42 139 | 91.97 154 | 77.56 154 | 93.85 111 | 72.46 202 | 98.65 12 | 97.61 10 |
|
FIs | | | 85.35 120 | 86.27 108 | 82.60 201 | 91.86 121 | 57.31 305 | 85.10 147 | 93.05 85 | 75.83 144 | 91.02 86 | 93.97 95 | 73.57 197 | 92.91 154 | 73.97 182 | 98.02 41 | 97.58 12 |
|
RRT_MVS | | | 88.30 76 | 87.83 82 | 89.70 56 | 93.62 70 | 75.70 128 | 92.36 27 | 89.06 192 | 77.34 124 | 93.63 36 | 95.83 25 | 65.40 251 | 95.90 15 | 85.01 57 | 98.23 29 | 97.49 13 |
|
UniMVSNet_NR-MVSNet | | | 86.84 96 | 87.06 95 | 86.17 124 | 92.86 89 | 67.02 206 | 82.55 213 | 91.56 127 | 83.08 57 | 90.92 87 | 91.82 160 | 78.25 148 | 93.99 105 | 74.16 177 | 98.35 22 | 97.49 13 |
|
UniMVSNet_ETH3D | | | 89.12 66 | 90.72 46 | 84.31 161 | 97.00 2 | 64.33 229 | 89.67 71 | 88.38 201 | 88.84 15 | 94.29 19 | 97.57 3 | 90.48 14 | 91.26 196 | 72.57 201 | 97.65 64 | 97.34 15 |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 81 | 80.37 73 | 91.91 35 | 93.11 81 | 81.10 79 | 95.32 10 | 97.24 5 | 72.94 207 | 94.85 72 | 85.07 54 | 97.78 56 | 97.26 16 |
|
mvsmamba | | | 87.87 83 | 87.23 92 | 89.78 55 | 92.31 104 | 76.51 121 | 91.09 43 | 91.87 119 | 72.61 190 | 92.16 64 | 95.23 43 | 66.01 247 | 95.59 37 | 86.02 46 | 97.78 56 | 97.24 17 |
|
WR-MVS | | | 83.56 163 | 84.40 149 | 81.06 227 | 93.43 74 | 54.88 323 | 78.67 276 | 85.02 257 | 81.24 77 | 90.74 91 | 91.56 167 | 72.85 208 | 91.08 202 | 68.00 240 | 98.04 38 | 97.23 18 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 15 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 50 | 96.29 16 | 88.16 35 | 94.17 99 | 86.07 43 | 98.48 18 | 97.22 19 |
|
v10 | | | 86.54 100 | 87.10 94 | 84.84 147 | 88.16 211 | 63.28 238 | 86.64 128 | 92.20 110 | 75.42 152 | 92.81 53 | 94.50 65 | 74.05 192 | 94.06 104 | 83.88 67 | 96.28 118 | 97.17 20 |
|
anonymousdsp | | | 89.73 53 | 88.88 72 | 92.27 9 | 89.82 178 | 86.67 17 | 90.51 52 | 90.20 171 | 69.87 225 | 95.06 11 | 96.14 21 | 84.28 77 | 93.07 148 | 87.68 13 | 96.34 116 | 97.09 21 |
|
test_djsdf | | | 89.62 54 | 89.01 68 | 91.45 25 | 92.36 100 | 82.98 57 | 91.98 32 | 90.08 174 | 71.54 204 | 94.28 21 | 96.54 13 | 81.57 117 | 94.27 90 | 86.26 38 | 96.49 109 | 97.09 21 |
|
v8 | | | 86.22 107 | 86.83 101 | 84.36 159 | 87.82 215 | 62.35 253 | 86.42 131 | 91.33 135 | 76.78 131 | 92.73 55 | 94.48 67 | 73.41 201 | 93.72 117 | 83.10 74 | 95.41 153 | 97.01 23 |
|
UniMVSNet (Re) | | | 86.87 94 | 86.98 98 | 86.55 111 | 93.11 82 | 68.48 195 | 83.80 176 | 92.87 93 | 80.37 86 | 89.61 118 | 91.81 161 | 77.72 152 | 94.18 97 | 75.00 172 | 98.53 16 | 96.99 24 |
|
Anonymous20231211 | | | 88.40 74 | 89.62 58 | 84.73 151 | 90.46 166 | 65.27 220 | 88.86 89 | 93.02 89 | 87.15 25 | 93.05 46 | 97.10 6 | 82.28 102 | 92.02 176 | 76.70 152 | 97.99 43 | 96.88 25 |
|
IS-MVSNet | | | 86.66 99 | 86.82 102 | 86.17 124 | 92.05 114 | 66.87 208 | 91.21 41 | 88.64 197 | 86.30 30 | 89.60 119 | 92.59 136 | 69.22 230 | 94.91 70 | 73.89 183 | 97.89 52 | 96.72 26 |
|
test_part1 | | | 87.15 92 | 87.82 83 | 85.15 143 | 88.88 194 | 63.04 241 | 87.98 103 | 94.85 16 | 82.52 63 | 93.61 38 | 95.73 27 | 67.51 238 | 95.71 32 | 80.48 107 | 98.83 2 | 96.69 27 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 36 | 82.95 58 | 93.52 7 | 92.79 97 | 88.22 20 | 88.53 136 | 97.64 2 | 83.45 86 | 94.55 84 | 86.02 46 | 98.60 13 | 96.67 28 |
|
pmmvs6 | | | 86.52 101 | 88.06 80 | 81.90 211 | 92.22 108 | 62.28 254 | 84.66 153 | 89.15 190 | 83.54 51 | 89.85 108 | 97.32 4 | 88.08 38 | 86.80 284 | 70.43 218 | 97.30 83 | 96.62 29 |
|
RPSCF | | | 88.00 81 | 86.93 99 | 91.22 31 | 90.08 172 | 89.30 5 | 89.68 70 | 91.11 141 | 79.26 102 | 89.68 113 | 94.81 57 | 82.44 96 | 87.74 271 | 76.54 155 | 88.74 289 | 96.61 30 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 66 | 85.72 33 | 96.79 1 | 95.51 8 | 88.86 14 | 95.63 8 | 96.99 8 | 84.81 72 | 93.16 143 | 91.10 1 | 97.53 75 | 96.58 31 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
nrg030 | | | 87.85 85 | 88.49 76 | 85.91 128 | 90.07 174 | 69.73 181 | 87.86 106 | 94.20 28 | 74.04 165 | 92.70 56 | 94.66 58 | 85.88 65 | 91.50 187 | 79.72 114 | 97.32 82 | 96.50 32 |
|
v2v482 | | | 84.09 151 | 84.24 152 | 83.62 177 | 87.13 230 | 61.40 261 | 82.71 208 | 89.71 180 | 72.19 199 | 89.55 120 | 91.41 170 | 70.70 226 | 93.20 140 | 81.02 97 | 93.76 199 | 96.25 33 |
|
PS-MVSNAJss | | | 88.31 75 | 87.90 81 | 89.56 62 | 93.31 77 | 77.96 97 | 87.94 105 | 91.97 116 | 70.73 214 | 94.19 22 | 96.67 11 | 76.94 164 | 94.57 82 | 83.07 75 | 96.28 118 | 96.15 34 |
|
v1192 | | | 84.57 136 | 84.69 140 | 84.21 163 | 87.75 217 | 62.88 243 | 83.02 200 | 91.43 131 | 69.08 231 | 89.98 105 | 90.89 187 | 72.70 211 | 93.62 123 | 82.41 83 | 94.97 171 | 96.13 35 |
|
EI-MVSNet-UG-set | | | 85.04 127 | 84.44 146 | 86.85 106 | 83.87 289 | 72.52 154 | 83.82 174 | 85.15 253 | 80.27 89 | 88.75 132 | 85.45 286 | 79.95 136 | 91.90 179 | 81.92 90 | 90.80 266 | 96.13 35 |
|
v1921920 | | | 84.23 148 | 84.37 150 | 83.79 172 | 87.64 221 | 61.71 259 | 82.91 203 | 91.20 139 | 67.94 246 | 90.06 100 | 90.34 201 | 72.04 218 | 93.59 125 | 82.32 85 | 94.91 172 | 96.07 37 |
|
v1240 | | | 84.30 144 | 84.51 145 | 83.65 176 | 87.65 220 | 61.26 264 | 82.85 205 | 91.54 128 | 67.94 246 | 90.68 92 | 90.65 196 | 71.71 221 | 93.64 119 | 82.84 79 | 94.78 177 | 96.07 37 |
|
v144192 | | | 84.24 147 | 84.41 148 | 83.71 175 | 87.59 222 | 61.57 260 | 82.95 202 | 91.03 143 | 67.82 249 | 89.80 110 | 90.49 199 | 73.28 204 | 93.51 130 | 81.88 91 | 94.89 174 | 96.04 39 |
|
v1144 | | | 84.54 139 | 84.72 138 | 84.00 167 | 87.67 219 | 62.55 249 | 82.97 201 | 90.93 147 | 70.32 220 | 89.80 110 | 90.99 182 | 73.50 198 | 93.48 131 | 81.69 92 | 94.65 182 | 95.97 40 |
|
EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 144 | 86.88 105 | 84.01 286 | 72.76 145 | 83.91 172 | 85.18 252 | 80.44 85 | 88.75 132 | 85.49 282 | 80.08 134 | 91.92 178 | 82.02 87 | 90.85 265 | 95.97 40 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 32 | 92.99 13 | 94.23 26 | 85.21 36 | 92.51 58 | 95.13 46 | 90.65 10 | 95.34 54 | 88.06 9 | 98.15 36 | 95.95 42 |
|
tttt0517 | | | 81.07 197 | 79.58 218 | 85.52 137 | 88.99 192 | 66.45 211 | 87.03 118 | 75.51 319 | 73.76 169 | 88.32 143 | 90.20 205 | 37.96 371 | 94.16 102 | 79.36 121 | 95.13 164 | 95.93 43 |
|
ANet_high | | | 83.17 171 | 85.68 121 | 75.65 301 | 81.24 311 | 45.26 370 | 79.94 254 | 92.91 92 | 83.83 45 | 91.33 80 | 96.88 10 | 80.25 133 | 85.92 297 | 68.89 232 | 95.89 138 | 95.76 44 |
|
IterMVS-LS | | | 84.73 133 | 84.98 132 | 83.96 169 | 87.35 225 | 63.66 233 | 83.25 193 | 89.88 178 | 76.06 137 | 89.62 116 | 92.37 146 | 73.40 203 | 92.52 161 | 78.16 133 | 94.77 179 | 95.69 45 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet | | | 82.61 176 | 82.42 180 | 83.20 188 | 83.25 293 | 63.66 233 | 83.50 186 | 85.07 254 | 76.06 137 | 86.55 173 | 85.10 292 | 73.41 201 | 90.25 225 | 78.15 135 | 90.67 269 | 95.68 46 |
|
EPP-MVSNet | | | 85.47 118 | 85.04 131 | 86.77 108 | 91.52 138 | 69.37 185 | 91.63 38 | 87.98 212 | 81.51 75 | 87.05 163 | 91.83 159 | 66.18 246 | 95.29 55 | 70.75 213 | 96.89 93 | 95.64 47 |
|
V42 | | | 83.47 166 | 83.37 163 | 83.75 174 | 83.16 295 | 63.33 237 | 81.31 237 | 90.23 170 | 69.51 227 | 90.91 89 | 90.81 190 | 74.16 190 | 92.29 170 | 80.06 108 | 90.22 273 | 95.62 48 |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 85 | 93.00 84 | 76.26 124 | 89.65 72 | 95.55 7 | 87.72 23 | 93.89 27 | 94.94 50 | 91.62 4 | 93.44 133 | 78.35 128 | 98.76 4 | 95.61 49 |
|
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 71 | 84.79 43 | 89.89 65 | 90.63 154 | 70.00 224 | 94.55 15 | 96.67 11 | 87.94 39 | 93.59 125 | 84.27 64 | 95.97 132 | 95.52 50 |
|
OMC-MVS | | | 88.19 77 | 87.52 88 | 90.19 49 | 91.94 118 | 81.68 65 | 87.49 111 | 93.17 78 | 76.02 139 | 88.64 134 | 91.22 174 | 84.24 78 | 93.37 136 | 77.97 138 | 97.03 90 | 95.52 50 |
|
SixPastTwentyTwo | | | 87.20 91 | 87.45 89 | 86.45 113 | 92.52 96 | 69.19 191 | 87.84 107 | 88.05 209 | 81.66 73 | 94.64 14 | 96.53 14 | 65.94 248 | 94.75 74 | 83.02 77 | 96.83 97 | 95.41 52 |
|
KD-MVS_self_test | | | 81.93 189 | 83.14 167 | 78.30 268 | 84.75 270 | 52.75 335 | 80.37 249 | 89.42 187 | 70.24 222 | 90.26 98 | 93.39 114 | 74.55 189 | 86.77 285 | 68.61 236 | 96.64 102 | 95.38 53 |
|
jajsoiax | | | 89.41 58 | 88.81 74 | 91.19 32 | 93.38 75 | 84.72 44 | 89.70 68 | 90.29 168 | 69.27 228 | 94.39 17 | 96.38 15 | 86.02 64 | 93.52 129 | 83.96 66 | 95.92 137 | 95.34 54 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 26 | 84.67 45 | 93.51 8 | 94.85 16 | 82.88 59 | 91.77 73 | 93.94 102 | 90.55 13 | 95.73 31 | 88.50 7 | 98.23 29 | 95.33 55 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
Anonymous20240529 | | | 86.20 108 | 87.13 93 | 83.42 182 | 90.19 170 | 64.55 227 | 84.55 155 | 90.71 151 | 85.85 33 | 89.94 106 | 95.24 42 | 82.13 104 | 90.40 223 | 69.19 229 | 96.40 114 | 95.31 56 |
|
Baseline_NR-MVSNet | | | 84.00 155 | 85.90 115 | 78.29 269 | 91.47 140 | 53.44 331 | 82.29 221 | 87.00 231 | 79.06 105 | 89.55 120 | 95.72 29 | 77.20 158 | 86.14 295 | 72.30 203 | 98.51 17 | 95.28 57 |
|
casdiffmvs | | | 85.21 121 | 85.85 116 | 83.31 185 | 86.17 255 | 62.77 245 | 83.03 199 | 93.93 44 | 74.69 159 | 88.21 144 | 92.68 135 | 82.29 101 | 91.89 180 | 77.87 139 | 93.75 201 | 95.27 58 |
|
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 144 | 81.66 66 | 91.25 40 | 94.13 36 | 88.89 13 | 88.83 131 | 94.26 80 | 77.55 155 | 95.86 22 | 84.88 58 | 95.87 139 | 95.24 59 |
|
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 42 | 81.69 63 | 90.00 60 | 94.27 23 | 82.35 65 | 93.67 34 | 94.82 54 | 91.18 5 | 95.52 43 | 85.36 51 | 98.73 7 | 95.23 60 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 42 | 81.69 63 | | 94.27 23 | 82.35 65 | 93.67 34 | 94.82 54 | 91.18 5 | 95.52 43 | 85.36 51 | 98.73 7 | 95.23 60 |
|
Regformer-4 | | | 86.41 102 | 85.71 120 | 88.52 81 | 84.27 279 | 77.57 102 | 84.07 164 | 88.00 211 | 82.82 60 | 89.84 109 | 85.48 283 | 82.06 106 | 92.77 156 | 83.83 69 | 91.04 256 | 95.22 62 |
|
test1111 | | | 78.53 235 | 78.85 226 | 77.56 280 | 92.22 108 | 47.49 363 | 82.61 209 | 69.24 356 | 72.43 191 | 85.28 197 | 94.20 83 | 51.91 319 | 90.07 237 | 65.36 259 | 96.45 112 | 95.11 63 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 36 | 89.99 51 | 95.97 14 | 79.88 76 | 88.13 101 | 94.51 21 | 75.79 145 | 92.94 47 | 94.96 49 | 88.36 29 | 95.01 67 | 90.70 2 | 98.40 20 | 95.09 64 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 68 | 86.15 23 | 93.37 10 | 95.10 14 | 90.28 9 | 92.11 65 | 95.03 48 | 89.75 21 | 94.93 69 | 79.95 110 | 98.27 27 | 95.04 65 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
dcpmvs_2 | | | 84.23 148 | 85.14 129 | 81.50 219 | 88.61 200 | 61.98 258 | 82.90 204 | 93.11 81 | 68.66 237 | 92.77 54 | 92.39 142 | 78.50 144 | 87.63 273 | 76.99 151 | 92.30 230 | 94.90 66 |
|
CS-MVS | | | 88.14 78 | 87.67 86 | 89.54 63 | 89.56 180 | 79.18 84 | 90.47 53 | 94.77 18 | 79.37 101 | 84.32 216 | 89.33 222 | 83.87 79 | 94.53 85 | 82.45 82 | 94.89 174 | 94.90 66 |
|
test2506 | | | 74.12 281 | 73.39 281 | 76.28 297 | 91.85 122 | 44.20 373 | 84.06 166 | 48.20 384 | 72.30 197 | 81.90 255 | 94.20 83 | 27.22 386 | 89.77 242 | 64.81 262 | 96.02 130 | 94.87 68 |
|
ECVR-MVS |  | | 78.44 236 | 78.63 230 | 77.88 276 | 91.85 122 | 48.95 357 | 83.68 180 | 69.91 354 | 72.30 197 | 84.26 223 | 94.20 83 | 51.89 320 | 89.82 241 | 63.58 270 | 96.02 130 | 94.87 68 |
|
v148 | | | 82.31 180 | 82.48 179 | 81.81 216 | 85.59 261 | 59.66 283 | 81.47 235 | 86.02 240 | 72.85 185 | 88.05 145 | 90.65 196 | 70.73 225 | 90.91 208 | 75.15 170 | 91.79 243 | 94.87 68 |
|
ACMP | | 79.16 10 | 90.54 34 | 90.60 48 | 90.35 46 | 94.36 47 | 80.98 69 | 89.16 83 | 94.05 40 | 79.03 106 | 92.87 49 | 93.74 109 | 90.60 12 | 95.21 61 | 82.87 78 | 98.76 4 | 94.87 68 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
eth_miper_zixun_eth | | | 80.84 201 | 80.22 210 | 82.71 199 | 81.41 309 | 60.98 270 | 77.81 286 | 90.14 173 | 67.31 252 | 86.95 165 | 87.24 258 | 64.26 255 | 92.31 168 | 75.23 169 | 91.61 246 | 94.85 72 |
|
Regformer-3 | | | 85.06 126 | 84.67 141 | 86.22 120 | 84.27 279 | 73.43 140 | 84.07 164 | 85.26 250 | 80.77 84 | 88.62 135 | 85.48 283 | 80.56 130 | 90.39 224 | 81.99 88 | 91.04 256 | 94.85 72 |
|
K. test v3 | | | 85.14 123 | 84.73 136 | 86.37 114 | 91.13 150 | 69.63 183 | 85.45 143 | 76.68 311 | 84.06 44 | 92.44 60 | 96.99 8 | 62.03 269 | 94.65 77 | 80.58 105 | 93.24 210 | 94.83 74 |
|
baseline | | | 85.20 122 | 85.93 114 | 83.02 191 | 86.30 249 | 62.37 252 | 84.55 155 | 93.96 43 | 74.48 162 | 87.12 157 | 92.03 153 | 82.30 100 | 91.94 177 | 78.39 126 | 94.21 191 | 94.74 75 |
|
thisisatest0530 | | | 79.07 225 | 77.33 244 | 84.26 162 | 87.13 230 | 64.58 225 | 83.66 181 | 75.95 314 | 68.86 234 | 85.22 198 | 87.36 255 | 38.10 369 | 93.57 128 | 75.47 166 | 94.28 190 | 94.62 76 |
|
c3_l | | | 81.64 191 | 81.59 191 | 81.79 217 | 80.86 317 | 59.15 290 | 78.61 277 | 90.18 172 | 68.36 238 | 87.20 155 | 87.11 261 | 69.39 228 | 91.62 185 | 78.16 133 | 94.43 187 | 94.60 77 |
|
TSAR-MVS + MP. | | | 88.14 78 | 87.82 83 | 89.09 70 | 95.72 22 | 76.74 117 | 92.49 25 | 91.19 140 | 67.85 248 | 86.63 172 | 94.84 53 | 79.58 138 | 95.96 13 | 87.62 14 | 94.50 184 | 94.56 78 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 27 | 85.91 27 | 93.35 11 | 94.16 31 | 82.52 63 | 92.39 61 | 94.14 88 | 89.15 23 | 95.62 35 | 87.35 23 | 98.24 28 | 94.56 78 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
ITE_SJBPF | | | | | 90.11 50 | 90.72 160 | 84.97 40 | | 90.30 165 | 81.56 74 | 90.02 102 | 91.20 176 | 82.40 98 | 90.81 212 | 73.58 188 | 94.66 181 | 94.56 78 |
|
LS3D | | | 90.60 33 | 90.34 50 | 91.38 27 | 89.03 190 | 84.23 49 | 93.58 6 | 94.68 19 | 90.65 7 | 90.33 97 | 93.95 101 | 84.50 74 | 95.37 53 | 80.87 100 | 95.50 152 | 94.53 81 |
|
ETH3D-3000-0.1 | | | 88.85 71 | 88.96 71 | 88.52 81 | 91.94 118 | 77.27 111 | 88.71 93 | 95.26 13 | 76.08 136 | 90.66 93 | 92.69 134 | 84.48 75 | 93.83 114 | 83.38 72 | 97.48 78 | 94.47 82 |
|
HQP_MVS | | | 87.75 88 | 87.43 90 | 88.70 79 | 93.45 72 | 76.42 122 | 89.45 79 | 93.61 58 | 79.44 99 | 86.55 173 | 92.95 124 | 74.84 182 | 95.22 59 | 80.78 102 | 95.83 140 | 94.46 83 |
|
plane_prior5 | | | | | | | | | 93.61 58 | | | | | 95.22 59 | 80.78 102 | 95.83 140 | 94.46 83 |
|
FMVS1 | | | 89.30 61 | 89.12 65 | 89.84 52 | 88.67 197 | 85.64 34 | 90.61 48 | 93.17 78 | 86.02 31 | 93.12 44 | 95.30 37 | 84.94 69 | 89.44 249 | 74.12 179 | 96.10 127 | 94.45 85 |
|
APD_test | | | 89.30 61 | 89.12 65 | 89.84 52 | 88.67 197 | 85.64 34 | 90.61 48 | 93.17 78 | 86.02 31 | 93.12 44 | 95.30 37 | 84.94 69 | 89.44 249 | 74.12 179 | 96.10 127 | 94.45 85 |
|
TransMVSNet (Re) | | | 84.02 154 | 85.74 119 | 78.85 257 | 91.00 153 | 55.20 322 | 82.29 221 | 87.26 219 | 79.65 96 | 88.38 141 | 95.52 34 | 83.00 90 | 86.88 282 | 67.97 241 | 96.60 105 | 94.45 85 |
|
pm-mvs1 | | | 83.69 160 | 84.95 133 | 79.91 244 | 90.04 176 | 59.66 283 | 82.43 217 | 87.44 216 | 75.52 149 | 87.85 148 | 95.26 41 | 81.25 121 | 85.65 301 | 68.74 234 | 96.04 129 | 94.42 88 |
|
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 61 | 80.97 70 | 91.49 39 | 93.48 63 | 82.82 60 | 92.60 57 | 93.97 95 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 33 | 94.39 89 |
Skip Steuart: Steuart Systems R&D Blog. |
iter_conf05 | | | 78.81 230 | 77.35 243 | 83.21 187 | 82.98 299 | 60.75 274 | 84.09 163 | 88.34 203 | 63.12 281 | 84.25 224 | 89.48 218 | 31.41 379 | 94.51 87 | 76.64 153 | 95.83 140 | 94.38 90 |
|
VPA-MVSNet | | | 83.47 166 | 84.73 136 | 79.69 248 | 90.29 168 | 57.52 304 | 81.30 239 | 88.69 196 | 76.29 133 | 87.58 152 | 94.44 68 | 80.60 129 | 87.20 277 | 66.60 249 | 96.82 98 | 94.34 91 |
|
xxxxxxxxxxxxxcwj | | | 89.04 68 | 89.13 64 | 88.79 75 | 93.75 64 | 77.44 105 | 86.31 132 | 95.27 12 | 70.80 212 | 92.28 62 | 93.80 105 | 86.89 51 | 94.64 78 | 85.52 49 | 97.51 76 | 94.30 92 |
|
SF-MVS | | | 90.27 39 | 90.80 45 | 88.68 80 | 92.86 89 | 77.09 112 | 91.19 42 | 95.74 5 | 81.38 76 | 92.28 62 | 93.80 105 | 86.89 51 | 94.64 78 | 85.52 49 | 97.51 76 | 94.30 92 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 37 | 89.99 103 | 94.03 92 | 86.57 56 | 95.80 25 | 87.35 23 | 97.62 66 | 94.20 94 |
|
X-MVStestdata | | | 85.04 127 | 82.70 173 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 37 | 89.99 103 | 16.05 382 | 86.57 56 | 95.80 25 | 87.35 23 | 97.62 66 | 94.20 94 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 83 | 85.17 38 | 92.47 26 | 95.05 15 | 87.65 24 | 93.21 43 | 94.39 75 | 90.09 18 | 95.08 65 | 86.67 33 | 97.60 68 | 94.18 96 |
|
AllTest | | | 87.97 82 | 87.40 91 | 89.68 57 | 91.59 129 | 83.40 52 | 89.50 77 | 95.44 9 | 79.47 97 | 88.00 146 | 93.03 119 | 82.66 94 | 91.47 188 | 70.81 210 | 96.14 124 | 94.16 97 |
|
TestCases | | | | | 89.68 57 | 91.59 129 | 83.40 52 | | 95.44 9 | 79.47 97 | 88.00 146 | 93.03 119 | 82.66 94 | 91.47 188 | 70.81 210 | 96.14 124 | 94.16 97 |
|
CS-MVS-test | | | 87.00 93 | 86.43 105 | 88.71 78 | 89.46 181 | 77.46 104 | 89.42 81 | 95.73 6 | 77.87 119 | 81.64 263 | 87.25 257 | 82.43 97 | 94.53 85 | 77.65 140 | 96.46 111 | 94.14 99 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 21 | 83.05 56 | 92.18 29 | 94.22 27 | 80.14 91 | 91.29 81 | 93.97 95 | 87.93 40 | 95.87 19 | 88.65 4 | 97.96 48 | 94.12 100 |
|
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 66 | 94.76 41 | 79.86 77 | 86.76 125 | 92.78 98 | 78.78 109 | 92.51 58 | 93.64 111 | 88.13 36 | 93.84 113 | 84.83 60 | 97.55 71 | 94.10 101 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
Effi-MVS+-dtu | | | 85.82 114 | 83.38 162 | 93.14 3 | 87.13 230 | 91.15 2 | 87.70 108 | 88.42 199 | 74.57 160 | 83.56 233 | 85.65 280 | 78.49 145 | 94.21 95 | 72.04 204 | 92.88 220 | 94.05 102 |
|
bld_raw_dy_0_64 | | | 84.85 131 | 84.44 146 | 86.07 126 | 93.73 66 | 74.93 132 | 88.57 96 | 81.90 282 | 70.44 216 | 91.28 82 | 95.18 44 | 56.62 303 | 89.28 253 | 85.15 53 | 97.09 88 | 93.99 103 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 20 | 85.88 29 | 92.58 22 | 93.25 75 | 81.99 68 | 91.40 78 | 94.17 86 | 87.51 44 | 95.87 19 | 87.74 11 | 97.76 58 | 93.99 103 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 46 | 85.95 26 | 86.84 121 | 93.91 45 | 80.07 92 | 86.75 168 | 93.26 115 | 93.64 2 | 90.93 206 | 84.60 62 | 90.75 267 | 93.97 105 |
|
PGM-MVS | | | 91.20 25 | 90.95 42 | 91.93 15 | 95.67 23 | 85.85 30 | 90.00 60 | 93.90 46 | 80.32 88 | 91.74 74 | 94.41 72 | 88.17 34 | 95.98 11 | 86.37 36 | 97.99 43 | 93.96 106 |
|
GST-MVS | | | 90.96 28 | 91.01 39 | 90.82 38 | 95.45 28 | 82.73 59 | 91.75 37 | 93.74 52 | 80.98 81 | 91.38 79 | 93.80 105 | 87.20 48 | 95.80 25 | 87.10 31 | 97.69 63 | 93.93 107 |
|
lessismore_v0 | | | | | 85.95 127 | 91.10 151 | 70.99 174 | | 70.91 350 | | 91.79 72 | 94.42 71 | 61.76 270 | 92.93 152 | 79.52 119 | 93.03 216 | 93.93 107 |
|
SMA-MVS |  | | 90.31 38 | 90.48 49 | 89.83 54 | 95.31 31 | 79.52 82 | 90.98 44 | 93.24 76 | 75.37 153 | 92.84 51 | 95.28 39 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 58 | 93.88 109 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
cl22 | | | 78.97 226 | 78.21 236 | 81.24 224 | 77.74 341 | 59.01 291 | 77.46 294 | 87.13 223 | 65.79 262 | 84.32 216 | 85.10 292 | 58.96 289 | 90.88 210 | 75.36 168 | 92.03 238 | 93.84 110 |
|
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 19 | 85.90 28 | 92.63 21 | 93.30 72 | 81.91 70 | 90.88 90 | 94.21 82 | 87.75 41 | 95.87 19 | 87.60 16 | 97.71 62 | 93.83 111 |
|
Regformer-2 | | | 86.74 98 | 86.08 112 | 88.73 76 | 84.18 283 | 79.20 83 | 83.52 183 | 89.33 188 | 83.33 53 | 89.92 107 | 85.07 295 | 83.23 89 | 93.16 143 | 83.39 71 | 92.72 225 | 93.83 111 |
|
GBi-Net | | | 82.02 186 | 82.07 183 | 81.85 213 | 86.38 244 | 61.05 267 | 86.83 122 | 88.27 206 | 72.43 191 | 86.00 185 | 95.64 31 | 63.78 259 | 90.68 216 | 65.95 252 | 93.34 207 | 93.82 113 |
|
test1 | | | 82.02 186 | 82.07 183 | 81.85 213 | 86.38 244 | 61.05 267 | 86.83 122 | 88.27 206 | 72.43 191 | 86.00 185 | 95.64 31 | 63.78 259 | 90.68 216 | 65.95 252 | 93.34 207 | 93.82 113 |
|
FMVSNet1 | | | 84.55 137 | 85.45 125 | 81.85 213 | 90.27 169 | 61.05 267 | 86.83 122 | 88.27 206 | 78.57 113 | 89.66 115 | 95.64 31 | 75.43 175 | 90.68 216 | 69.09 230 | 95.33 156 | 93.82 113 |
|
VDDNet | | | 84.35 142 | 85.39 126 | 81.25 222 | 95.13 33 | 59.32 286 | 85.42 144 | 81.11 286 | 86.41 29 | 87.41 154 | 96.21 19 | 73.61 196 | 90.61 219 | 66.33 250 | 96.85 95 | 93.81 116 |
|
DROMVSNet | | | 88.01 80 | 88.32 78 | 87.09 102 | 89.28 185 | 72.03 162 | 90.31 56 | 96.31 3 | 80.88 82 | 85.12 199 | 89.67 216 | 84.47 76 | 95.46 49 | 82.56 81 | 96.26 121 | 93.77 117 |
|
CDPH-MVS | | | 86.17 109 | 85.54 123 | 88.05 93 | 92.25 106 | 75.45 129 | 83.85 173 | 92.01 114 | 65.91 261 | 86.19 180 | 91.75 163 | 83.77 83 | 94.98 68 | 77.43 145 | 96.71 101 | 93.73 118 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 44 | 88.99 7 | 93.26 12 | 94.19 30 | 89.11 12 | 94.43 16 | 95.27 40 | 91.86 3 | 95.09 64 | 87.54 18 | 98.02 41 | 93.71 119 |
|
Regformer-1 | | | 86.00 110 | 85.50 124 | 87.49 98 | 84.18 283 | 76.90 115 | 83.52 183 | 87.94 213 | 82.18 67 | 89.19 125 | 85.07 295 | 82.28 102 | 91.89 180 | 82.40 84 | 92.72 225 | 93.69 120 |
|
GeoE | | | 85.45 119 | 85.81 117 | 84.37 157 | 90.08 172 | 67.07 205 | 85.86 138 | 91.39 134 | 72.33 196 | 87.59 151 | 90.25 204 | 84.85 71 | 92.37 166 | 78.00 136 | 91.94 242 | 93.66 121 |
|
DIV-MVS_self_test | | | 80.43 208 | 80.23 208 | 81.02 228 | 79.99 325 | 59.25 287 | 77.07 297 | 87.02 228 | 67.38 250 | 86.19 180 | 89.22 223 | 63.09 263 | 90.16 230 | 76.32 156 | 95.80 143 | 93.66 121 |
|
cl____ | | | 80.42 209 | 80.23 208 | 81.02 228 | 79.99 325 | 59.25 287 | 77.07 297 | 87.02 228 | 67.37 251 | 86.18 182 | 89.21 224 | 63.08 264 | 90.16 230 | 76.31 157 | 95.80 143 | 93.65 123 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 38 | 84.50 48 | 89.49 78 | 93.98 42 | 79.68 95 | 92.09 66 | 93.89 103 | 83.80 82 | 93.10 147 | 82.67 80 | 98.04 38 | 93.64 124 |
|
MIMVSNet1 | | | 83.63 162 | 84.59 142 | 80.74 232 | 94.06 57 | 62.77 245 | 82.72 207 | 84.53 265 | 77.57 123 | 90.34 96 | 95.92 24 | 76.88 170 | 85.83 299 | 61.88 284 | 97.42 79 | 93.62 125 |
|
XVG-OURS | | | 89.18 64 | 88.83 73 | 90.23 48 | 94.28 48 | 86.11 25 | 85.91 135 | 93.60 60 | 80.16 90 | 89.13 127 | 93.44 113 | 83.82 81 | 90.98 204 | 83.86 68 | 95.30 160 | 93.60 126 |
|
CLD-MVS | | | 83.18 170 | 82.64 175 | 84.79 148 | 89.05 189 | 67.82 202 | 77.93 284 | 92.52 103 | 68.33 239 | 85.07 200 | 81.54 334 | 82.06 106 | 92.96 150 | 69.35 225 | 97.91 51 | 93.57 127 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
HQP4-MVS | | | | | | | | | | | 80.56 276 | | | 94.61 80 | | | 93.56 128 |
|
HQP-MVS | | | 84.61 135 | 84.06 154 | 86.27 118 | 91.19 146 | 70.66 175 | 84.77 149 | 92.68 100 | 73.30 177 | 80.55 277 | 90.17 208 | 72.10 215 | 94.61 80 | 77.30 147 | 94.47 185 | 93.56 128 |
|
VDD-MVS | | | 84.23 148 | 84.58 143 | 83.20 188 | 91.17 149 | 65.16 222 | 83.25 193 | 84.97 260 | 79.79 93 | 87.18 156 | 94.27 77 | 74.77 185 | 90.89 209 | 69.24 226 | 96.54 107 | 93.55 130 |
|
iter_conf_final | | | 80.36 212 | 78.88 224 | 84.79 148 | 86.29 250 | 66.36 213 | 86.95 119 | 86.25 236 | 68.16 242 | 82.09 252 | 89.48 218 | 36.59 374 | 94.51 87 | 79.83 112 | 94.30 189 | 93.50 131 |
|
miper_ehance_all_eth | | | 80.34 213 | 80.04 215 | 81.24 224 | 79.82 327 | 58.95 292 | 77.66 288 | 89.66 181 | 65.75 265 | 85.99 188 | 85.11 291 | 68.29 235 | 91.42 192 | 76.03 160 | 92.03 238 | 93.33 132 |
|
VPNet | | | 80.25 215 | 81.68 188 | 75.94 300 | 92.46 98 | 47.98 361 | 76.70 301 | 81.67 284 | 73.45 172 | 84.87 205 | 92.82 128 | 74.66 187 | 86.51 289 | 61.66 287 | 96.85 95 | 93.33 132 |
|
IU-MVS | | | | | | 94.18 50 | 72.64 148 | | 90.82 149 | 56.98 323 | 89.67 114 | | | | 85.78 48 | 97.92 49 | 93.28 134 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 38 | 89.42 64 | 95.93 16 | 79.54 81 | 89.95 63 | 93.68 56 | 77.65 121 | 91.97 70 | 94.89 51 | 88.38 28 | 95.45 50 | 89.27 3 | 97.87 53 | 93.27 135 |
|
DeepC-MVS | | 82.31 4 | 89.15 65 | 89.08 67 | 89.37 65 | 93.64 69 | 79.07 85 | 88.54 97 | 94.20 28 | 73.53 171 | 89.71 112 | 94.82 54 | 85.09 67 | 95.77 30 | 84.17 65 | 98.03 40 | 93.26 136 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
TAPA-MVS | | 77.73 12 | 85.71 116 | 84.83 135 | 88.37 87 | 88.78 196 | 79.72 78 | 87.15 116 | 93.50 62 | 69.17 229 | 85.80 190 | 89.56 217 | 80.76 126 | 92.13 172 | 73.21 197 | 95.51 151 | 93.25 137 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
ACMH | | 76.49 14 | 89.34 60 | 91.14 34 | 83.96 169 | 92.50 97 | 70.36 178 | 89.55 74 | 93.84 50 | 81.89 71 | 94.70 13 | 95.44 35 | 90.69 9 | 88.31 267 | 83.33 73 | 98.30 26 | 93.20 138 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MP-MVS |  | | 91.14 27 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 16 | 92.20 28 | 93.03 88 | 82.59 62 | 88.52 137 | 94.37 76 | 86.74 53 | 95.41 52 | 86.32 37 | 98.21 31 | 93.19 139 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
diffmvs | | | 80.40 210 | 80.48 205 | 80.17 242 | 79.02 337 | 60.04 279 | 77.54 291 | 90.28 169 | 66.65 257 | 82.40 246 | 87.33 256 | 73.50 198 | 87.35 276 | 77.98 137 | 89.62 278 | 93.13 140 |
|
CL-MVSNet_self_test | | | 76.81 253 | 77.38 242 | 75.12 304 | 86.90 238 | 51.34 346 | 73.20 331 | 80.63 291 | 68.30 240 | 81.80 260 | 88.40 236 | 66.92 242 | 80.90 328 | 55.35 322 | 94.90 173 | 93.12 141 |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 13 | 88.48 10 | 92.72 18 | 92.60 102 | 83.09 56 | 91.54 75 | 94.25 81 | 87.67 43 | 95.51 45 | 87.21 27 | 98.11 37 | 93.12 141 |
|
ETH3 D test6400 | | | 85.09 125 | 84.87 134 | 85.75 133 | 90.80 158 | 69.34 186 | 85.90 136 | 93.31 70 | 65.43 268 | 86.11 183 | 89.95 210 | 80.92 124 | 94.86 71 | 75.90 162 | 95.57 150 | 93.05 143 |
|
Vis-MVSNet (Re-imp) | | | 77.82 242 | 77.79 239 | 77.92 275 | 88.82 195 | 51.29 348 | 83.28 191 | 71.97 343 | 74.04 165 | 82.23 249 | 89.78 214 | 57.38 299 | 89.41 251 | 57.22 310 | 95.41 153 | 93.05 143 |
|
tfpnnormal | | | 81.79 190 | 82.95 170 | 78.31 267 | 88.93 193 | 55.40 318 | 80.83 246 | 82.85 274 | 76.81 130 | 85.90 189 | 94.14 88 | 74.58 188 | 86.51 289 | 66.82 248 | 95.68 149 | 93.01 145 |
|
test_0728_THIRD | | | | | | | | | | 85.33 34 | 93.75 31 | 94.65 59 | 87.44 45 | 95.78 28 | 87.41 21 | 98.21 31 | 92.98 146 |
|
MSP-MVS | | | 89.08 67 | 88.16 79 | 91.83 21 | 95.76 18 | 86.14 24 | 92.75 17 | 93.90 46 | 78.43 114 | 89.16 126 | 92.25 150 | 72.03 219 | 96.36 2 | 88.21 8 | 90.93 262 | 92.98 146 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 69 | 92.97 85 | 78.04 94 | 92.84 16 | 94.14 35 | 83.33 53 | 93.90 25 | 95.73 27 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 45 | 92.98 146 |
|
ETH3D cwj APD-0.16 | | | 87.83 86 | 87.62 87 | 88.47 83 | 91.21 145 | 78.20 92 | 87.26 113 | 94.54 20 | 72.05 200 | 88.89 128 | 92.31 147 | 83.86 80 | 94.24 93 | 81.59 93 | 96.87 94 | 92.97 149 |
|
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 29 | 84.66 46 | 92.58 22 | 93.29 73 | 81.99 68 | 91.47 76 | 93.96 98 | 88.35 30 | 95.56 39 | 87.74 11 | 97.74 60 | 92.85 150 |
|
#test# | | | 90.49 36 | 90.31 51 | 91.02 33 | 95.43 29 | 84.66 46 | 90.65 46 | 93.29 73 | 77.00 129 | 91.47 76 | 93.96 98 | 88.35 30 | 95.56 39 | 84.88 58 | 97.74 60 | 92.85 150 |
|
test_prior3 | | | 86.31 104 | 86.31 107 | 86.32 115 | 90.59 163 | 71.99 163 | 83.37 189 | 92.85 94 | 75.43 150 | 84.58 209 | 91.57 165 | 81.92 112 | 94.17 99 | 79.54 117 | 96.97 91 | 92.80 152 |
|
test_prior | | | | | 86.32 115 | 90.59 163 | 71.99 163 | | 92.85 94 | | | | | 94.17 99 | | | 92.80 152 |
|
miper_lstm_enhance | | | 76.45 259 | 76.10 256 | 77.51 281 | 76.72 349 | 60.97 271 | 64.69 358 | 85.04 256 | 63.98 278 | 83.20 237 | 88.22 238 | 56.67 302 | 78.79 336 | 73.22 192 | 93.12 213 | 92.78 154 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 69 | 88.83 24 | 95.51 45 | 87.16 28 | 97.60 68 | 92.73 155 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 69 | 90.64 11 | | 87.16 28 | 97.60 68 | 92.73 155 |
|
PHI-MVS | | | 86.38 103 | 85.81 117 | 88.08 91 | 88.44 205 | 77.34 108 | 89.35 82 | 93.05 85 | 73.15 182 | 84.76 207 | 87.70 248 | 78.87 142 | 94.18 97 | 80.67 104 | 96.29 117 | 92.73 155 |
|
ambc | | | | | 82.98 192 | 90.55 165 | 64.86 223 | 88.20 99 | 89.15 190 | | 89.40 123 | 93.96 98 | 71.67 222 | 91.38 195 | 78.83 124 | 96.55 106 | 92.71 158 |
|
alignmvs | | | 83.94 157 | 83.98 156 | 83.80 171 | 87.80 216 | 67.88 201 | 84.54 157 | 91.42 133 | 73.27 180 | 88.41 140 | 87.96 242 | 72.33 214 | 90.83 211 | 76.02 161 | 94.11 193 | 92.69 159 |
|
thres600view7 | | | 75.97 262 | 75.35 264 | 77.85 278 | 87.01 236 | 51.84 344 | 80.45 248 | 73.26 335 | 75.20 154 | 83.10 239 | 86.31 272 | 45.54 346 | 89.05 254 | 55.03 325 | 92.24 234 | 92.66 160 |
|
thres400 | | | 75.14 268 | 74.23 273 | 77.86 277 | 86.24 252 | 52.12 340 | 79.24 266 | 73.87 329 | 73.34 175 | 81.82 258 | 84.60 303 | 46.02 340 | 88.80 258 | 51.98 340 | 90.99 258 | 92.66 160 |
|
CNVR-MVS | | | 87.81 87 | 87.68 85 | 88.21 90 | 92.87 87 | 77.30 110 | 85.25 145 | 91.23 138 | 77.31 126 | 87.07 162 | 91.47 169 | 82.94 91 | 94.71 75 | 84.67 61 | 96.27 120 | 92.62 162 |
|
Anonymous20240521 | | | 80.18 218 | 81.25 194 | 76.95 287 | 83.15 296 | 60.84 272 | 82.46 216 | 85.99 241 | 68.76 235 | 86.78 166 | 93.73 110 | 59.13 287 | 77.44 338 | 73.71 186 | 97.55 71 | 92.56 163 |
|
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 32 | 87.62 12 | 93.38 9 | 93.36 65 | 83.16 55 | 91.06 85 | 94.00 94 | 88.26 32 | 95.71 32 | 87.28 26 | 98.39 21 | 92.55 164 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 45 | 89.04 6 | 91.98 32 | 93.62 57 | 90.14 11 | 93.63 36 | 94.16 87 | 88.83 24 | 95.51 45 | 87.11 30 | 97.54 74 | 92.54 165 |
|
canonicalmvs | | | 85.50 117 | 86.14 111 | 83.58 178 | 87.97 212 | 67.13 204 | 87.55 109 | 94.32 22 | 73.44 173 | 88.47 138 | 87.54 251 | 86.45 58 | 91.06 203 | 75.76 164 | 93.76 199 | 92.54 165 |
|
DVP-MVS++ | | | 90.07 42 | 91.09 35 | 87.00 103 | 91.55 135 | 72.64 148 | 96.19 2 | 94.10 38 | 85.33 34 | 93.49 39 | 94.64 62 | 81.12 122 | 95.88 17 | 87.41 21 | 95.94 135 | 92.48 167 |
|
PC_three_1452 | | | | | | | | | | 58.96 309 | 90.06 100 | 91.33 172 | 80.66 128 | 93.03 149 | 75.78 163 | 95.94 135 | 92.48 167 |
|
MVSTER | | | 77.09 249 | 75.70 260 | 81.25 222 | 75.27 361 | 61.08 266 | 77.49 293 | 85.07 254 | 60.78 301 | 86.55 173 | 88.68 233 | 43.14 361 | 90.25 225 | 73.69 187 | 90.67 269 | 92.42 169 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 40 | 89.63 59 | 95.03 35 | 83.53 51 | 89.62 73 | 93.35 66 | 79.20 103 | 93.83 28 | 93.60 112 | 90.81 8 | 92.96 150 | 85.02 56 | 98.45 19 | 92.41 170 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
MSC_two_6792asdad | | | | | 88.81 73 | 91.55 135 | 77.99 95 | | 91.01 144 | | | | | 96.05 8 | 87.45 19 | 98.17 34 | 92.40 171 |
|
No_MVS | | | | | 88.81 73 | 91.55 135 | 77.99 95 | | 91.01 144 | | | | | 96.05 8 | 87.45 19 | 98.17 34 | 92.40 171 |
|
MVS_Test | | | 82.47 179 | 83.22 164 | 80.22 241 | 82.62 301 | 57.75 303 | 82.54 214 | 91.96 117 | 71.16 210 | 82.89 241 | 92.52 141 | 77.41 156 | 90.50 221 | 80.04 109 | 87.84 301 | 92.40 171 |
|
NCCC | | | 87.36 89 | 86.87 100 | 88.83 72 | 92.32 103 | 78.84 88 | 86.58 129 | 91.09 142 | 78.77 110 | 84.85 206 | 90.89 187 | 80.85 125 | 95.29 55 | 81.14 96 | 95.32 157 | 92.34 174 |
|
miper_enhance_ethall | | | 77.83 241 | 76.93 248 | 80.51 236 | 76.15 354 | 58.01 300 | 75.47 316 | 88.82 193 | 58.05 315 | 83.59 232 | 80.69 338 | 64.41 254 | 91.20 197 | 73.16 198 | 92.03 238 | 92.33 175 |
|
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 19 | 88.94 87 | 91.81 123 | 84.07 42 | 92.00 68 | 94.40 73 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 176 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 19 | 92.02 31 | 91.81 123 | 84.07 42 | 92.00 68 | 94.40 73 | 86.63 54 | 95.28 57 | 88.59 5 | 98.31 24 | 92.30 176 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 104 | 94.18 50 | 72.65 146 | 90.47 53 | 93.69 54 | 83.77 46 | 94.11 23 | 94.27 77 | 90.28 15 | 95.84 23 | 86.03 44 | 97.92 49 | 92.29 178 |
|
OPU-MVS | | | | | 88.27 89 | 91.89 120 | 77.83 98 | 90.47 53 | | | | 91.22 174 | 81.12 122 | 94.68 76 | 74.48 174 | 95.35 155 | 92.29 178 |
|
test12 | | | | | 86.57 110 | 90.74 159 | 72.63 150 | | 90.69 152 | | 82.76 242 | | 79.20 139 | 94.80 73 | | 95.32 157 | 92.27 180 |
|
FMVSNet2 | | | 81.31 194 | 81.61 190 | 80.41 238 | 86.38 244 | 58.75 297 | 83.93 171 | 86.58 233 | 72.43 191 | 87.65 150 | 92.98 121 | 63.78 259 | 90.22 228 | 66.86 245 | 93.92 197 | 92.27 180 |
|
CANet | | | 83.79 159 | 82.85 171 | 86.63 109 | 86.17 255 | 72.21 161 | 83.76 177 | 91.43 131 | 77.24 127 | 74.39 328 | 87.45 253 | 75.36 176 | 95.42 51 | 77.03 150 | 92.83 221 | 92.25 182 |
|
F-COLMAP | | | 84.97 130 | 83.42 161 | 89.63 59 | 92.39 99 | 83.40 52 | 88.83 90 | 91.92 118 | 73.19 181 | 80.18 284 | 89.15 226 | 77.04 162 | 93.28 138 | 65.82 256 | 92.28 233 | 92.21 183 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 39 | 87.85 11 | 92.51 24 | 93.87 49 | 88.20 21 | 93.24 42 | 94.02 93 | 90.15 17 | 95.67 34 | 86.82 32 | 97.34 81 | 92.19 184 |
|
Effi-MVS+ | | | 83.90 158 | 84.01 155 | 83.57 179 | 87.22 228 | 65.61 219 | 86.55 130 | 92.40 105 | 78.64 112 | 81.34 268 | 84.18 306 | 83.65 84 | 92.93 152 | 74.22 176 | 87.87 300 | 92.17 185 |
|
Vis-MVSNet |  | | 86.86 95 | 86.58 103 | 87.72 95 | 92.09 112 | 77.43 107 | 87.35 112 | 92.09 112 | 78.87 108 | 84.27 222 | 94.05 91 | 78.35 147 | 93.65 118 | 80.54 106 | 91.58 248 | 92.08 186 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
test_241102_TWO | | | | | | | | | 93.71 53 | 83.77 46 | 93.49 39 | 94.27 77 | 89.27 22 | 95.84 23 | 86.03 44 | 97.82 54 | 92.04 187 |
|
test_0728_SECOND | | | | | 86.79 107 | 94.25 49 | 72.45 156 | 90.54 50 | 94.10 38 | | | | | 95.88 17 | 86.42 34 | 97.97 46 | 92.02 188 |
|
mvs-test1 | | | 84.55 137 | 82.12 182 | 91.84 20 | 87.13 230 | 89.54 4 | 85.05 148 | 88.42 199 | 74.57 160 | 80.60 274 | 82.98 316 | 78.49 145 | 93.98 107 | 72.04 204 | 89.77 276 | 92.00 189 |
|
new-patchmatchnet | | | 70.10 309 | 73.37 282 | 60.29 356 | 81.23 312 | 16.95 387 | 59.54 366 | 74.62 322 | 62.93 282 | 80.97 269 | 87.93 244 | 62.83 268 | 71.90 352 | 55.24 323 | 95.01 170 | 92.00 189 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 90 | 86.21 110 | 90.49 43 | 91.48 139 | 84.90 41 | 83.41 188 | 92.38 107 | 70.25 221 | 89.35 124 | 90.68 194 | 82.85 92 | 94.57 82 | 79.55 116 | 95.95 134 | 92.00 189 |
|
Anonymous202405211 | | | 80.51 207 | 81.19 197 | 78.49 264 | 88.48 203 | 57.26 306 | 76.63 302 | 82.49 276 | 81.21 78 | 84.30 220 | 92.24 151 | 67.99 236 | 86.24 293 | 62.22 279 | 95.13 164 | 91.98 192 |
|
EIA-MVS | | | 82.19 183 | 81.23 196 | 85.10 144 | 87.95 213 | 69.17 192 | 83.22 196 | 93.33 67 | 70.42 217 | 78.58 296 | 79.77 350 | 77.29 157 | 94.20 96 | 71.51 207 | 88.96 285 | 91.93 193 |
|
MCST-MVS | | | 84.36 141 | 83.93 157 | 85.63 135 | 91.59 129 | 71.58 170 | 83.52 183 | 92.13 111 | 61.82 290 | 83.96 227 | 89.75 215 | 79.93 137 | 93.46 132 | 78.33 129 | 94.34 188 | 91.87 194 |
|
testtj | | | 89.51 57 | 89.48 60 | 89.59 61 | 92.26 105 | 80.80 71 | 90.14 59 | 93.54 61 | 83.37 52 | 90.57 94 | 92.55 139 | 84.99 68 | 96.15 5 | 81.26 94 | 96.61 104 | 91.83 195 |
|
test_0402 | | | 88.65 72 | 89.58 59 | 85.88 130 | 92.55 95 | 72.22 160 | 84.01 167 | 89.44 186 | 88.63 18 | 94.38 18 | 95.77 26 | 86.38 60 | 93.59 125 | 79.84 111 | 95.21 161 | 91.82 196 |
|
DeepC-MVS_fast | | 80.27 8 | 86.23 106 | 85.65 122 | 87.96 94 | 91.30 142 | 76.92 114 | 87.19 114 | 91.99 115 | 70.56 215 | 84.96 202 | 90.69 193 | 80.01 135 | 95.14 62 | 78.37 127 | 95.78 145 | 91.82 196 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
FA-MVS(test-final) | | | 83.13 172 | 83.02 169 | 83.43 181 | 86.16 257 | 66.08 215 | 88.00 102 | 88.36 202 | 75.55 148 | 85.02 201 | 92.75 132 | 65.12 252 | 92.50 162 | 74.94 173 | 91.30 252 | 91.72 198 |
|
FMVSNet3 | | | 78.80 231 | 78.55 231 | 79.57 250 | 82.89 300 | 56.89 310 | 81.76 229 | 85.77 243 | 69.04 232 | 86.00 185 | 90.44 200 | 51.75 321 | 90.09 236 | 65.95 252 | 93.34 207 | 91.72 198 |
|
DPE-MVS |  | | 90.53 35 | 91.08 36 | 88.88 71 | 93.38 75 | 78.65 90 | 89.15 84 | 94.05 40 | 84.68 40 | 93.90 25 | 94.11 90 | 88.13 36 | 96.30 3 | 84.51 63 | 97.81 55 | 91.70 200 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
CPTT-MVS | | | 89.39 59 | 88.98 70 | 90.63 41 | 95.09 34 | 86.95 15 | 92.09 30 | 92.30 108 | 79.74 94 | 87.50 153 | 92.38 143 | 81.42 119 | 93.28 138 | 83.07 75 | 97.24 84 | 91.67 201 |
|
MDA-MVSNet-bldmvs | | | 77.47 245 | 76.90 249 | 79.16 255 | 79.03 336 | 64.59 224 | 66.58 354 | 75.67 317 | 73.15 182 | 88.86 129 | 88.99 229 | 66.94 241 | 81.23 327 | 64.71 263 | 88.22 297 | 91.64 202 |
|
PAPM_NR | | | 83.23 169 | 83.19 166 | 83.33 184 | 90.90 155 | 65.98 216 | 88.19 100 | 90.78 150 | 78.13 118 | 80.87 272 | 87.92 245 | 73.49 200 | 92.42 163 | 70.07 220 | 88.40 291 | 91.60 203 |
|
PCF-MVS | | 74.62 15 | 82.15 184 | 80.92 200 | 85.84 131 | 89.43 182 | 72.30 158 | 80.53 247 | 91.82 122 | 57.36 321 | 87.81 149 | 89.92 212 | 77.67 153 | 93.63 120 | 58.69 302 | 95.08 167 | 91.58 204 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
EPNet | | | 80.37 211 | 78.41 234 | 86.23 119 | 76.75 348 | 73.28 141 | 87.18 115 | 77.45 306 | 76.24 135 | 68.14 351 | 88.93 230 | 65.41 250 | 93.85 111 | 69.47 224 | 96.12 126 | 91.55 205 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
Fast-Effi-MVS+ | | | 81.04 198 | 80.57 201 | 82.46 206 | 87.50 223 | 63.22 239 | 78.37 280 | 89.63 182 | 68.01 243 | 81.87 256 | 82.08 329 | 82.31 99 | 92.65 159 | 67.10 244 | 88.30 296 | 91.51 206 |
|
mvs_anonymous | | | 78.13 239 | 78.76 228 | 76.23 299 | 79.24 334 | 50.31 354 | 78.69 275 | 84.82 262 | 61.60 294 | 83.09 240 | 92.82 128 | 73.89 194 | 87.01 278 | 68.33 239 | 86.41 312 | 91.37 207 |
|
SD-MVS | | | 88.96 69 | 89.88 53 | 86.22 120 | 91.63 128 | 77.07 113 | 89.82 66 | 93.77 51 | 78.90 107 | 92.88 48 | 92.29 148 | 86.11 62 | 90.22 228 | 86.24 41 | 97.24 84 | 91.36 208 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
D2MVS | | | 76.84 252 | 75.67 261 | 80.34 239 | 80.48 323 | 62.16 257 | 73.50 328 | 84.80 263 | 57.61 319 | 82.24 248 | 87.54 251 | 51.31 322 | 87.65 272 | 70.40 219 | 93.19 212 | 91.23 209 |
|
patch_mono-2 | | | 78.89 227 | 79.39 220 | 77.41 283 | 84.78 269 | 68.11 198 | 75.60 312 | 83.11 271 | 60.96 299 | 79.36 289 | 89.89 213 | 75.18 178 | 72.97 349 | 73.32 191 | 92.30 230 | 91.15 210 |
|
EGC-MVSNET | | | 74.79 276 | 69.99 310 | 89.19 68 | 94.89 39 | 87.00 14 | 91.89 36 | 86.28 235 | 1.09 383 | 2.23 385 | 95.98 23 | 81.87 114 | 89.48 245 | 79.76 113 | 95.96 133 | 91.10 211 |
|
ETV-MVS | | | 84.31 143 | 83.91 158 | 85.52 137 | 88.58 201 | 70.40 177 | 84.50 159 | 93.37 64 | 78.76 111 | 84.07 226 | 78.72 353 | 80.39 131 | 95.13 63 | 73.82 185 | 92.98 218 | 91.04 212 |
|
agg_prior1 | | | 85.72 115 | 85.20 128 | 87.28 101 | 91.58 132 | 77.69 100 | 83.69 179 | 90.30 165 | 66.29 259 | 84.32 216 | 91.07 180 | 82.13 104 | 93.18 141 | 81.02 97 | 96.36 115 | 90.98 213 |
|
VNet | | | 79.31 224 | 80.27 207 | 76.44 294 | 87.92 214 | 53.95 327 | 75.58 314 | 84.35 266 | 74.39 163 | 82.23 249 | 90.72 192 | 72.84 209 | 84.39 311 | 60.38 296 | 93.98 196 | 90.97 214 |
|
Fast-Effi-MVS+-dtu | | | 82.54 178 | 81.41 193 | 85.90 129 | 85.60 260 | 76.53 120 | 83.07 198 | 89.62 183 | 73.02 184 | 79.11 293 | 83.51 311 | 80.74 127 | 90.24 227 | 68.76 233 | 89.29 280 | 90.94 215 |
|
Patchmtry | | | 76.56 257 | 77.46 240 | 73.83 310 | 79.37 333 | 46.60 367 | 82.41 218 | 76.90 308 | 73.81 168 | 85.56 194 | 92.38 143 | 48.07 332 | 83.98 314 | 63.36 273 | 95.31 159 | 90.92 216 |
|
CANet_DTU | | | 77.81 243 | 77.05 246 | 80.09 243 | 81.37 310 | 59.90 281 | 83.26 192 | 88.29 205 | 69.16 230 | 67.83 354 | 83.72 309 | 60.93 272 | 89.47 246 | 69.22 228 | 89.70 277 | 90.88 217 |
|
train_agg | | | 85.98 112 | 85.28 127 | 88.07 92 | 92.34 101 | 79.70 79 | 83.94 169 | 90.32 162 | 65.79 262 | 84.49 211 | 90.97 183 | 81.93 110 | 93.63 120 | 81.21 95 | 96.54 107 | 90.88 217 |
|
114514_t | | | 83.10 173 | 82.54 178 | 84.77 150 | 92.90 86 | 69.10 193 | 86.65 127 | 90.62 155 | 54.66 332 | 81.46 265 | 90.81 190 | 76.98 163 | 94.38 89 | 72.62 200 | 96.18 122 | 90.82 219 |
|
LCM-MVSNet-Re | | | 83.48 165 | 85.06 130 | 78.75 259 | 85.94 259 | 55.75 317 | 80.05 252 | 94.27 23 | 76.47 132 | 96.09 5 | 94.54 64 | 83.31 88 | 89.75 244 | 59.95 297 | 94.89 174 | 90.75 220 |
|
FMVS2 | | | 75.72 265 | 75.20 265 | 77.27 284 | 75.01 364 | 69.47 184 | 78.93 270 | 84.88 261 | 46.67 363 | 87.08 161 | 87.84 246 | 50.44 327 | 71.62 353 | 77.42 146 | 88.53 290 | 90.72 221 |
|
hse-mvs2 | | | 83.47 166 | 81.81 187 | 88.47 83 | 91.03 152 | 82.27 61 | 82.61 209 | 83.69 267 | 71.27 206 | 86.70 169 | 86.05 276 | 63.04 265 | 92.41 164 | 78.26 131 | 93.62 205 | 90.71 222 |
|
DP-MVS | | | 88.60 73 | 89.01 68 | 87.36 100 | 91.30 142 | 77.50 103 | 87.55 109 | 92.97 91 | 87.95 22 | 89.62 116 | 92.87 127 | 84.56 73 | 93.89 110 | 77.65 140 | 96.62 103 | 90.70 223 |
|
LFMVS | | | 80.15 219 | 80.56 202 | 78.89 256 | 89.19 188 | 55.93 314 | 85.22 146 | 73.78 331 | 82.96 58 | 84.28 221 | 92.72 133 | 57.38 299 | 90.07 237 | 63.80 269 | 95.75 146 | 90.68 224 |
|
PAPR | | | 78.84 229 | 78.10 237 | 81.07 226 | 85.17 265 | 60.22 278 | 82.21 225 | 90.57 156 | 62.51 285 | 75.32 323 | 84.61 302 | 74.99 180 | 92.30 169 | 59.48 300 | 88.04 298 | 90.68 224 |
|
AUN-MVS | | | 81.18 196 | 78.78 227 | 88.39 86 | 90.93 154 | 82.14 62 | 82.51 215 | 83.67 268 | 64.69 276 | 80.29 280 | 85.91 279 | 51.07 323 | 92.38 165 | 76.29 158 | 93.63 204 | 90.65 226 |
|
test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 112 | 90.57 227 |
|
UGNet | | | 82.78 174 | 81.64 189 | 86.21 122 | 86.20 254 | 76.24 125 | 86.86 120 | 85.68 244 | 77.07 128 | 73.76 331 | 92.82 128 | 69.64 227 | 91.82 183 | 69.04 231 | 93.69 202 | 90.56 228 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
DVP-MVS |  | | 90.06 43 | 91.32 30 | 86.29 117 | 94.16 53 | 72.56 152 | 90.54 50 | 91.01 144 | 83.61 49 | 93.75 31 | 94.65 59 | 89.76 19 | 95.78 28 | 86.42 34 | 97.97 46 | 90.55 229 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
DELS-MVS | | | 81.44 193 | 81.25 194 | 82.03 209 | 84.27 279 | 62.87 244 | 76.47 305 | 92.49 104 | 70.97 211 | 81.64 263 | 83.83 308 | 75.03 179 | 92.70 157 | 74.29 175 | 92.22 236 | 90.51 230 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
APD-MVS |  | | 89.54 56 | 89.63 57 | 89.26 67 | 92.57 94 | 81.34 68 | 90.19 58 | 93.08 84 | 80.87 83 | 91.13 83 | 93.19 116 | 86.22 61 | 95.97 12 | 82.23 86 | 97.18 86 | 90.45 231 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
CSCG | | | 86.26 105 | 86.47 104 | 85.60 136 | 90.87 156 | 74.26 136 | 87.98 103 | 91.85 120 | 80.35 87 | 89.54 122 | 88.01 241 | 79.09 140 | 92.13 172 | 75.51 165 | 95.06 168 | 90.41 232 |
|
DP-MVS Recon | | | 84.05 153 | 83.22 164 | 86.52 112 | 91.73 127 | 75.27 130 | 83.23 195 | 92.40 105 | 72.04 201 | 82.04 253 | 88.33 237 | 77.91 151 | 93.95 108 | 66.17 251 | 95.12 166 | 90.34 233 |
|
IterMVS-SCA-FT | | | 80.64 205 | 79.41 219 | 84.34 160 | 83.93 287 | 69.66 182 | 76.28 307 | 81.09 287 | 72.43 191 | 86.47 179 | 90.19 206 | 60.46 275 | 93.15 145 | 77.45 144 | 86.39 313 | 90.22 234 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 115 | 96.16 123 | 90.22 234 |
|
HPM-MVS++ |  | | 88.93 70 | 88.45 77 | 90.38 45 | 94.92 37 | 85.85 30 | 89.70 68 | 91.27 137 | 78.20 116 | 86.69 171 | 92.28 149 | 80.36 132 | 95.06 66 | 86.17 42 | 96.49 109 | 90.22 234 |
|
HyFIR lowres test | | | 75.12 270 | 72.66 289 | 82.50 205 | 91.44 141 | 65.19 221 | 72.47 333 | 87.31 218 | 46.79 362 | 80.29 280 | 84.30 305 | 52.70 318 | 92.10 175 | 51.88 344 | 86.73 309 | 90.22 234 |
|
PVSNet_BlendedMVS | | | 78.80 231 | 77.84 238 | 81.65 218 | 84.43 273 | 63.41 235 | 79.49 262 | 90.44 158 | 61.70 293 | 75.43 321 | 87.07 262 | 69.11 231 | 91.44 190 | 60.68 294 | 92.24 234 | 90.11 238 |
|
MVS_111021_HR | | | 84.63 134 | 84.34 151 | 85.49 139 | 90.18 171 | 75.86 127 | 79.23 268 | 87.13 223 | 73.35 174 | 85.56 194 | 89.34 221 | 83.60 85 | 90.50 221 | 76.64 153 | 94.05 195 | 90.09 239 |
|
FE-MVS | | | 79.98 222 | 78.86 225 | 83.36 183 | 86.47 241 | 66.45 211 | 89.73 67 | 84.74 264 | 72.80 186 | 84.22 225 | 91.38 171 | 44.95 355 | 93.60 124 | 63.93 268 | 91.50 249 | 90.04 240 |
|
GA-MVS | | | 75.83 263 | 74.61 268 | 79.48 252 | 81.87 304 | 59.25 287 | 73.42 329 | 82.88 273 | 68.68 236 | 79.75 285 | 81.80 331 | 50.62 325 | 89.46 247 | 66.85 246 | 85.64 318 | 89.72 241 |
|
h-mvs33 | | | 84.25 146 | 82.76 172 | 88.72 77 | 91.82 126 | 82.60 60 | 84.00 168 | 84.98 259 | 71.27 206 | 86.70 169 | 90.55 198 | 63.04 265 | 93.92 109 | 78.26 131 | 94.20 192 | 89.63 242 |
|
ppachtmachnet_test | | | 74.73 277 | 74.00 275 | 76.90 289 | 80.71 320 | 56.89 310 | 71.53 337 | 78.42 301 | 58.24 313 | 79.32 291 | 82.92 320 | 57.91 296 | 84.26 312 | 65.60 257 | 91.36 251 | 89.56 243 |
|
MG-MVS | | | 80.32 214 | 80.94 199 | 78.47 265 | 88.18 209 | 52.62 338 | 82.29 221 | 85.01 258 | 72.01 202 | 79.24 292 | 92.54 140 | 69.36 229 | 93.36 137 | 70.65 215 | 89.19 283 | 89.45 244 |
|
PLC |  | 73.85 16 | 82.09 185 | 80.31 206 | 87.45 99 | 90.86 157 | 80.29 74 | 85.88 137 | 90.65 153 | 68.17 241 | 76.32 311 | 86.33 270 | 73.12 206 | 92.61 160 | 61.40 289 | 90.02 275 | 89.44 245 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
ab-mvs | | | 79.67 223 | 80.56 202 | 76.99 286 | 88.48 203 | 56.93 308 | 84.70 152 | 86.06 239 | 68.95 233 | 80.78 273 | 93.08 118 | 75.30 177 | 84.62 309 | 56.78 311 | 90.90 263 | 89.43 246 |
|
thisisatest0515 | | | 73.00 290 | 70.52 304 | 80.46 237 | 81.45 308 | 59.90 281 | 73.16 332 | 74.31 326 | 57.86 316 | 76.08 315 | 77.78 356 | 37.60 372 | 92.12 174 | 65.00 260 | 91.45 250 | 89.35 247 |
|
thres100view900 | | | 75.45 266 | 75.05 266 | 76.66 293 | 87.27 226 | 51.88 343 | 81.07 242 | 73.26 335 | 75.68 146 | 83.25 236 | 86.37 269 | 45.54 346 | 88.80 258 | 51.98 340 | 90.99 258 | 89.31 248 |
|
tfpn200view9 | | | 74.86 274 | 74.23 273 | 76.74 292 | 86.24 252 | 52.12 340 | 79.24 266 | 73.87 329 | 73.34 175 | 81.82 258 | 84.60 303 | 46.02 340 | 88.80 258 | 51.98 340 | 90.99 258 | 89.31 248 |
|
3Dnovator | | 80.37 7 | 84.80 132 | 84.71 139 | 85.06 145 | 86.36 247 | 74.71 133 | 88.77 92 | 90.00 176 | 75.65 147 | 84.96 202 | 93.17 117 | 74.06 191 | 91.19 198 | 78.28 130 | 91.09 254 | 89.29 250 |
|
ET-MVSNet_ETH3D | | | 75.28 267 | 72.77 287 | 82.81 198 | 83.03 298 | 68.11 198 | 77.09 296 | 76.51 312 | 60.67 303 | 77.60 305 | 80.52 342 | 38.04 370 | 91.15 200 | 70.78 212 | 90.68 268 | 89.17 251 |
|
CNLPA | | | 83.55 164 | 83.10 168 | 84.90 146 | 89.34 184 | 83.87 50 | 84.54 157 | 88.77 194 | 79.09 104 | 83.54 234 | 88.66 234 | 74.87 181 | 81.73 325 | 66.84 247 | 92.29 232 | 89.11 252 |
|
test_yl | | | 78.71 233 | 78.51 232 | 79.32 253 | 84.32 277 | 58.84 294 | 78.38 278 | 85.33 248 | 75.99 140 | 82.49 244 | 86.57 266 | 58.01 293 | 90.02 239 | 62.74 276 | 92.73 223 | 89.10 253 |
|
DCV-MVSNet | | | 78.71 233 | 78.51 232 | 79.32 253 | 84.32 277 | 58.84 294 | 78.38 278 | 85.33 248 | 75.99 140 | 82.49 244 | 86.57 266 | 58.01 293 | 90.02 239 | 62.74 276 | 92.73 223 | 89.10 253 |
|
CMPMVS |  | 59.41 20 | 75.12 270 | 73.57 278 | 79.77 245 | 75.84 356 | 67.22 203 | 81.21 240 | 82.18 278 | 50.78 354 | 76.50 308 | 87.66 249 | 55.20 312 | 82.99 319 | 62.17 282 | 90.64 272 | 89.09 255 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
MVSFormer | | | 82.23 182 | 81.57 192 | 84.19 165 | 85.54 262 | 69.26 188 | 91.98 32 | 90.08 174 | 71.54 204 | 76.23 312 | 85.07 295 | 58.69 290 | 94.27 90 | 86.26 38 | 88.77 287 | 89.03 256 |
|
jason | | | 77.42 246 | 75.75 259 | 82.43 207 | 87.10 234 | 69.27 187 | 77.99 283 | 81.94 281 | 51.47 350 | 77.84 301 | 85.07 295 | 60.32 277 | 89.00 255 | 70.74 214 | 89.27 282 | 89.03 256 |
jason: jason. |
TSAR-MVS + GP. | | | 83.95 156 | 82.69 174 | 87.72 95 | 89.27 186 | 81.45 67 | 83.72 178 | 81.58 285 | 74.73 158 | 85.66 191 | 86.06 275 | 72.56 213 | 92.69 158 | 75.44 167 | 95.21 161 | 89.01 258 |
|
QAPM | | | 82.59 177 | 82.59 177 | 82.58 202 | 86.44 242 | 66.69 209 | 89.94 64 | 90.36 161 | 67.97 245 | 84.94 204 | 92.58 138 | 72.71 210 | 92.18 171 | 70.63 216 | 87.73 302 | 88.85 259 |
|
baseline2 | | | 69.77 313 | 66.89 323 | 78.41 266 | 79.51 330 | 58.09 299 | 76.23 308 | 69.57 355 | 57.50 320 | 64.82 366 | 77.45 359 | 46.02 340 | 88.44 264 | 53.08 333 | 77.83 360 | 88.70 260 |
|
LF4IMVS | | | 82.75 175 | 81.93 186 | 85.19 141 | 82.08 302 | 80.15 75 | 85.53 142 | 88.76 195 | 68.01 243 | 85.58 193 | 87.75 247 | 71.80 220 | 86.85 283 | 74.02 181 | 93.87 198 | 88.58 261 |
|
MVS_111021_LR | | | 84.28 145 | 83.76 159 | 85.83 132 | 89.23 187 | 83.07 55 | 80.99 243 | 83.56 269 | 72.71 188 | 86.07 184 | 89.07 228 | 81.75 116 | 86.19 294 | 77.11 149 | 93.36 206 | 88.24 262 |
|
EG-PatchMatch MVS | | | 84.08 152 | 84.11 153 | 83.98 168 | 92.22 108 | 72.61 151 | 82.20 227 | 87.02 228 | 72.63 189 | 88.86 129 | 91.02 181 | 78.52 143 | 91.11 201 | 73.41 190 | 91.09 254 | 88.21 263 |
|
lupinMVS | | | 76.37 260 | 74.46 271 | 82.09 208 | 85.54 262 | 69.26 188 | 76.79 299 | 80.77 290 | 50.68 356 | 76.23 312 | 82.82 321 | 58.69 290 | 88.94 256 | 69.85 221 | 88.77 287 | 88.07 264 |
|
cascas | | | 76.29 261 | 74.81 267 | 80.72 234 | 84.47 272 | 62.94 242 | 73.89 326 | 87.34 217 | 55.94 326 | 75.16 325 | 76.53 364 | 63.97 257 | 91.16 199 | 65.00 260 | 90.97 261 | 88.06 265 |
|
TAMVS | | | 78.08 240 | 76.36 253 | 83.23 186 | 90.62 162 | 72.87 144 | 79.08 269 | 80.01 295 | 61.72 292 | 81.35 267 | 86.92 264 | 63.96 258 | 88.78 261 | 50.61 345 | 93.01 217 | 88.04 266 |
|
PVSNet_Blended_VisFu | | | 81.55 192 | 80.49 204 | 84.70 153 | 91.58 132 | 73.24 143 | 84.21 161 | 91.67 126 | 62.86 283 | 80.94 270 | 87.16 259 | 67.27 240 | 92.87 155 | 69.82 222 | 88.94 286 | 87.99 267 |
|
FMVSNet5 | | | 72.10 297 | 71.69 297 | 73.32 311 | 81.57 307 | 53.02 334 | 76.77 300 | 78.37 302 | 63.31 279 | 76.37 309 | 91.85 157 | 36.68 373 | 78.98 334 | 47.87 357 | 92.45 228 | 87.95 268 |
|
CDS-MVSNet | | | 77.32 247 | 75.40 262 | 83.06 190 | 89.00 191 | 72.48 155 | 77.90 285 | 82.17 279 | 60.81 300 | 78.94 294 | 83.49 312 | 59.30 285 | 88.76 262 | 54.64 328 | 92.37 229 | 87.93 269 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
pmmvs-eth3d | | | 78.42 237 | 77.04 247 | 82.57 204 | 87.44 224 | 74.41 135 | 80.86 245 | 79.67 296 | 55.68 327 | 84.69 208 | 90.31 203 | 60.91 273 | 85.42 302 | 62.20 280 | 91.59 247 | 87.88 270 |
|
baseline1 | | | 73.26 286 | 73.54 279 | 72.43 319 | 84.92 267 | 47.79 362 | 79.89 255 | 74.00 327 | 65.93 260 | 78.81 295 | 86.28 273 | 56.36 305 | 81.63 326 | 56.63 312 | 79.04 358 | 87.87 271 |
|
test20.03 | | | 73.75 284 | 74.59 270 | 71.22 323 | 81.11 313 | 51.12 350 | 70.15 342 | 72.10 342 | 70.42 217 | 80.28 282 | 91.50 168 | 64.21 256 | 74.72 348 | 46.96 361 | 94.58 183 | 87.82 272 |
|
BH-RMVSNet | | | 80.53 206 | 80.22 210 | 81.49 220 | 87.19 229 | 66.21 214 | 77.79 287 | 86.23 237 | 74.21 164 | 83.69 229 | 88.50 235 | 73.25 205 | 90.75 213 | 63.18 275 | 87.90 299 | 87.52 273 |
|
IterMVS | | | 76.91 251 | 76.34 254 | 78.64 261 | 80.91 315 | 64.03 231 | 76.30 306 | 79.03 299 | 64.88 275 | 83.11 238 | 89.16 225 | 59.90 281 | 84.46 310 | 68.61 236 | 85.15 323 | 87.42 274 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OpenMVS |  | 76.72 13 | 81.98 188 | 82.00 185 | 81.93 210 | 84.42 275 | 68.22 197 | 88.50 98 | 89.48 185 | 66.92 254 | 81.80 260 | 91.86 156 | 72.59 212 | 90.16 230 | 71.19 209 | 91.25 253 | 87.40 275 |
|
1112_ss | | | 74.82 275 | 73.74 276 | 78.04 273 | 89.57 179 | 60.04 279 | 76.49 304 | 87.09 227 | 54.31 333 | 73.66 332 | 79.80 348 | 60.25 278 | 86.76 287 | 58.37 303 | 84.15 333 | 87.32 276 |
|
Test_1112_low_res | | | 73.90 283 | 73.08 284 | 76.35 295 | 90.35 167 | 55.95 313 | 73.40 330 | 86.17 238 | 50.70 355 | 73.14 333 | 85.94 277 | 58.31 292 | 85.90 298 | 56.51 313 | 83.22 337 | 87.20 277 |
|
MVS_0304 | | | 78.17 238 | 77.23 245 | 80.99 230 | 84.13 285 | 69.07 194 | 81.39 236 | 80.81 289 | 76.28 134 | 67.53 356 | 89.11 227 | 62.87 267 | 86.77 285 | 60.90 293 | 92.01 241 | 87.13 278 |
|
UnsupCasMVSNet_eth | | | 71.63 301 | 72.30 294 | 69.62 328 | 76.47 351 | 52.70 337 | 70.03 343 | 80.97 288 | 59.18 308 | 79.36 289 | 88.21 239 | 60.50 274 | 69.12 359 | 58.33 305 | 77.62 362 | 87.04 279 |
|
testgi | | | 72.36 294 | 74.61 268 | 65.59 343 | 80.56 322 | 42.82 377 | 68.29 347 | 73.35 334 | 66.87 255 | 81.84 257 | 89.93 211 | 72.08 217 | 66.92 366 | 46.05 363 | 92.54 227 | 87.01 280 |
|
xiu_mvs_v1_base_debu | | | 80.84 201 | 80.14 212 | 82.93 194 | 88.31 206 | 71.73 166 | 79.53 259 | 87.17 220 | 65.43 268 | 79.59 286 | 82.73 323 | 76.94 164 | 90.14 233 | 73.22 192 | 88.33 292 | 86.90 281 |
|
xiu_mvs_v1_base | | | 80.84 201 | 80.14 212 | 82.93 194 | 88.31 206 | 71.73 166 | 79.53 259 | 87.17 220 | 65.43 268 | 79.59 286 | 82.73 323 | 76.94 164 | 90.14 233 | 73.22 192 | 88.33 292 | 86.90 281 |
|
xiu_mvs_v1_base_debi | | | 80.84 201 | 80.14 212 | 82.93 194 | 88.31 206 | 71.73 166 | 79.53 259 | 87.17 220 | 65.43 268 | 79.59 286 | 82.73 323 | 76.94 164 | 90.14 233 | 73.22 192 | 88.33 292 | 86.90 281 |
|
MSDG | | | 80.06 221 | 79.99 216 | 80.25 240 | 83.91 288 | 68.04 200 | 77.51 292 | 89.19 189 | 77.65 121 | 81.94 254 | 83.45 313 | 76.37 172 | 86.31 292 | 63.31 274 | 86.59 310 | 86.41 284 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 244 | 77.46 240 | 78.71 260 | 84.39 276 | 61.15 265 | 81.18 241 | 82.52 275 | 62.45 287 | 83.34 235 | 87.37 254 | 66.20 245 | 88.66 263 | 64.69 264 | 85.02 324 | 86.32 285 |
|
TinyColmap | | | 81.25 195 | 82.34 181 | 77.99 274 | 85.33 264 | 60.68 275 | 82.32 220 | 88.33 204 | 71.26 208 | 86.97 164 | 92.22 152 | 77.10 161 | 86.98 281 | 62.37 278 | 95.17 163 | 86.31 286 |
|
CHOSEN 1792x2688 | | | 72.45 293 | 70.56 303 | 78.13 271 | 90.02 177 | 63.08 240 | 68.72 346 | 83.16 270 | 42.99 373 | 75.92 316 | 85.46 285 | 57.22 301 | 85.18 305 | 49.87 349 | 81.67 346 | 86.14 287 |
|
YYNet1 | | | 70.06 310 | 70.44 305 | 68.90 331 | 73.76 367 | 53.42 332 | 58.99 369 | 67.20 360 | 58.42 312 | 87.10 159 | 85.39 288 | 59.82 282 | 67.32 363 | 59.79 298 | 83.50 336 | 85.96 288 |
|
EPNet_dtu | | | 72.87 291 | 71.33 302 | 77.49 282 | 77.72 342 | 60.55 276 | 82.35 219 | 75.79 315 | 66.49 258 | 58.39 378 | 81.06 337 | 53.68 315 | 85.98 296 | 53.55 331 | 92.97 219 | 85.95 289 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MDA-MVSNet_test_wron | | | 70.05 311 | 70.44 305 | 68.88 332 | 73.84 366 | 53.47 330 | 58.93 370 | 67.28 359 | 58.43 311 | 87.09 160 | 85.40 287 | 59.80 283 | 67.25 364 | 59.66 299 | 83.54 335 | 85.92 290 |
|
XXY-MVS | | | 74.44 280 | 76.19 255 | 69.21 330 | 84.61 271 | 52.43 339 | 71.70 336 | 77.18 307 | 60.73 302 | 80.60 274 | 90.96 185 | 75.44 174 | 69.35 358 | 56.13 315 | 88.33 292 | 85.86 291 |
|
DPM-MVS | | | 80.10 220 | 79.18 222 | 82.88 197 | 90.71 161 | 69.74 180 | 78.87 273 | 90.84 148 | 60.29 305 | 75.64 320 | 85.92 278 | 67.28 239 | 93.11 146 | 71.24 208 | 91.79 243 | 85.77 292 |
|
原ACMM1 | | | | | 84.60 154 | 92.81 92 | 74.01 137 | | 91.50 129 | 62.59 284 | 82.73 243 | 90.67 195 | 76.53 171 | 94.25 92 | 69.24 226 | 95.69 148 | 85.55 293 |
|
pmmvs4 | | | 74.92 273 | 72.98 286 | 80.73 233 | 84.95 266 | 71.71 169 | 76.23 308 | 77.59 305 | 52.83 340 | 77.73 304 | 86.38 268 | 56.35 306 | 84.97 306 | 57.72 309 | 87.05 307 | 85.51 294 |
|
MAR-MVS | | | 80.24 216 | 78.74 229 | 84.73 151 | 86.87 240 | 78.18 93 | 85.75 139 | 87.81 214 | 65.67 267 | 77.84 301 | 78.50 354 | 73.79 195 | 90.53 220 | 61.59 288 | 90.87 264 | 85.49 295 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
our_test_3 | | | 71.85 298 | 71.59 298 | 72.62 317 | 80.71 320 | 53.78 328 | 69.72 344 | 71.71 347 | 58.80 310 | 78.03 298 | 80.51 343 | 56.61 304 | 78.84 335 | 62.20 280 | 86.04 316 | 85.23 296 |
|
USDC | | | 76.63 255 | 76.73 251 | 76.34 296 | 83.46 291 | 57.20 307 | 80.02 253 | 88.04 210 | 52.14 346 | 83.65 231 | 91.25 173 | 63.24 262 | 86.65 288 | 54.66 327 | 94.11 193 | 85.17 297 |
|
HY-MVS | | 64.64 18 | 73.03 289 | 72.47 293 | 74.71 306 | 83.36 292 | 54.19 325 | 82.14 228 | 81.96 280 | 56.76 325 | 69.57 348 | 86.21 274 | 60.03 279 | 84.83 308 | 49.58 350 | 82.65 342 | 85.11 298 |
|
MVP-Stereo | | | 75.81 264 | 73.51 280 | 82.71 199 | 89.35 183 | 73.62 138 | 80.06 251 | 85.20 251 | 60.30 304 | 73.96 330 | 87.94 243 | 57.89 297 | 89.45 248 | 52.02 339 | 74.87 367 | 85.06 299 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
IB-MVS | | 62.13 19 | 71.64 300 | 68.97 314 | 79.66 249 | 80.80 319 | 62.26 255 | 73.94 325 | 76.90 308 | 63.27 280 | 68.63 350 | 76.79 362 | 33.83 377 | 91.84 182 | 59.28 301 | 87.26 305 | 84.88 300 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
pmmvs5 | | | 70.73 305 | 70.07 308 | 72.72 316 | 77.03 347 | 52.73 336 | 74.14 323 | 75.65 318 | 50.36 358 | 72.17 338 | 85.37 289 | 55.42 311 | 80.67 330 | 52.86 337 | 87.59 304 | 84.77 301 |
|
MSLP-MVS++ | | | 85.00 129 | 86.03 113 | 81.90 211 | 91.84 124 | 71.56 171 | 86.75 126 | 93.02 89 | 75.95 142 | 87.12 157 | 89.39 220 | 77.98 149 | 89.40 252 | 77.46 143 | 94.78 177 | 84.75 302 |
|
æ— å…ˆéªŒ | | | | | | | | 82.81 206 | 85.62 245 | 58.09 314 | | | | 91.41 193 | 67.95 242 | | 84.48 303 |
|
PAPM | | | 71.77 299 | 70.06 309 | 76.92 288 | 86.39 243 | 53.97 326 | 76.62 303 | 86.62 232 | 53.44 337 | 63.97 368 | 84.73 301 | 57.79 298 | 92.34 167 | 39.65 373 | 81.33 349 | 84.45 304 |
|
PVSNet_Blended | | | 76.49 258 | 75.40 262 | 79.76 246 | 84.43 273 | 63.41 235 | 75.14 318 | 90.44 158 | 57.36 321 | 75.43 321 | 78.30 355 | 69.11 231 | 91.44 190 | 60.68 294 | 87.70 303 | 84.42 305 |
|
thres200 | | | 72.34 295 | 71.55 300 | 74.70 307 | 83.48 290 | 51.60 345 | 75.02 319 | 73.71 332 | 70.14 223 | 78.56 297 | 80.57 341 | 46.20 338 | 88.20 268 | 46.99 360 | 89.29 280 | 84.32 306 |
|
AdaColmap |  | | 83.66 161 | 83.69 160 | 83.57 179 | 90.05 175 | 72.26 159 | 86.29 134 | 90.00 176 | 78.19 117 | 81.65 262 | 87.16 259 | 83.40 87 | 94.24 93 | 61.69 286 | 94.76 180 | 84.21 307 |
|
EU-MVSNet | | | 75.12 270 | 74.43 272 | 77.18 285 | 83.11 297 | 59.48 285 | 85.71 141 | 82.43 277 | 39.76 377 | 85.64 192 | 88.76 231 | 44.71 357 | 87.88 270 | 73.86 184 | 85.88 317 | 84.16 308 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 309 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 339 | | | | 83.88 309 |
|
SCA | | | 73.32 285 | 72.57 291 | 75.58 302 | 81.62 306 | 55.86 315 | 78.89 272 | 71.37 348 | 61.73 291 | 74.93 326 | 83.42 314 | 60.46 275 | 87.01 278 | 58.11 307 | 82.63 344 | 83.88 309 |
|
CR-MVSNet | | | 74.00 282 | 73.04 285 | 76.85 291 | 79.58 328 | 62.64 247 | 82.58 211 | 76.90 308 | 50.50 357 | 75.72 318 | 92.38 143 | 48.07 332 | 84.07 313 | 68.72 235 | 82.91 340 | 83.85 312 |
|
RPMNet | | | 78.88 228 | 78.28 235 | 80.68 235 | 79.58 328 | 62.64 247 | 82.58 211 | 94.16 31 | 74.80 157 | 75.72 318 | 92.59 136 | 48.69 330 | 95.56 39 | 73.48 189 | 82.91 340 | 83.85 312 |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 386 | 70.76 339 | | 46.47 365 | 61.27 370 | | 45.20 352 | | 49.18 351 | | 83.75 314 |
|
旧先验1 | | | | | | 91.97 115 | 71.77 165 | | 81.78 283 | | | 91.84 158 | 73.92 193 | | | 93.65 203 | 83.61 315 |
|
N_pmnet | | | 70.20 307 | 68.80 316 | 74.38 308 | 80.91 315 | 84.81 42 | 59.12 368 | 76.45 313 | 55.06 330 | 75.31 324 | 82.36 326 | 55.74 308 | 54.82 377 | 47.02 359 | 87.24 306 | 83.52 316 |
|
ADS-MVSNet2 | | | 65.87 329 | 63.64 335 | 72.55 318 | 73.16 370 | 56.92 309 | 67.10 352 | 74.81 321 | 49.74 359 | 66.04 359 | 82.97 317 | 46.71 335 | 77.26 339 | 42.29 368 | 69.96 374 | 83.46 317 |
|
ADS-MVSNet | | | 61.90 336 | 62.19 339 | 61.03 355 | 73.16 370 | 36.42 381 | 67.10 352 | 61.75 371 | 49.74 359 | 66.04 359 | 82.97 317 | 46.71 335 | 63.21 373 | 42.29 368 | 69.96 374 | 83.46 317 |
|
CostFormer | | | 69.98 312 | 68.68 317 | 73.87 309 | 77.14 345 | 50.72 352 | 79.26 265 | 74.51 324 | 51.94 348 | 70.97 344 | 84.75 300 | 45.16 354 | 87.49 274 | 55.16 324 | 79.23 356 | 83.40 319 |
|
PS-MVSNAJ | | | 77.04 250 | 76.53 252 | 78.56 262 | 87.09 235 | 61.40 261 | 75.26 317 | 87.13 223 | 61.25 295 | 74.38 329 | 77.22 361 | 76.94 164 | 90.94 205 | 64.63 265 | 84.83 329 | 83.35 320 |
|
xiu_mvs_v2_base | | | 77.19 248 | 76.75 250 | 78.52 263 | 87.01 236 | 61.30 263 | 75.55 315 | 87.12 226 | 61.24 296 | 74.45 327 | 78.79 352 | 77.20 158 | 90.93 206 | 64.62 266 | 84.80 330 | 83.32 321 |
|
PatchmatchNet |  | | 69.71 314 | 68.83 315 | 72.33 320 | 77.66 343 | 53.60 329 | 79.29 264 | 69.99 353 | 57.66 318 | 72.53 336 | 82.93 319 | 46.45 337 | 80.08 333 | 60.91 292 | 72.09 370 | 83.31 322 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
Anonymous20231206 | | | 71.38 302 | 71.88 296 | 69.88 326 | 86.31 248 | 54.37 324 | 70.39 341 | 74.62 322 | 52.57 342 | 76.73 307 | 88.76 231 | 59.94 280 | 72.06 351 | 44.35 366 | 93.23 211 | 83.23 323 |
|
tpm | | | 67.95 319 | 68.08 320 | 67.55 338 | 78.74 339 | 43.53 375 | 75.60 312 | 67.10 363 | 54.92 331 | 72.23 337 | 88.10 240 | 42.87 362 | 75.97 343 | 52.21 338 | 80.95 352 | 83.15 324 |
|
PMVS |  | 80.48 6 | 90.08 41 | 90.66 47 | 88.34 88 | 96.71 3 | 92.97 1 | 90.31 56 | 89.57 184 | 88.51 19 | 90.11 99 | 95.12 47 | 90.98 7 | 88.92 257 | 77.55 142 | 97.07 89 | 83.13 325 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
tpm2 | | | 68.45 318 | 66.83 324 | 73.30 312 | 78.93 338 | 48.50 358 | 79.76 256 | 71.76 345 | 47.50 361 | 69.92 347 | 83.60 310 | 42.07 363 | 88.40 265 | 48.44 355 | 79.51 353 | 83.01 326 |
|
TR-MVS | | | 76.77 254 | 75.79 258 | 79.72 247 | 86.10 258 | 65.79 218 | 77.14 295 | 83.02 272 | 65.20 273 | 81.40 266 | 82.10 327 | 66.30 244 | 90.73 215 | 55.57 319 | 85.27 321 | 82.65 327 |
|
1314 | | | 73.22 287 | 72.56 292 | 75.20 303 | 80.41 324 | 57.84 301 | 81.64 232 | 85.36 247 | 51.68 349 | 73.10 334 | 76.65 363 | 61.45 271 | 85.19 304 | 63.54 271 | 79.21 357 | 82.59 328 |
|
WTY-MVS | | | 67.91 320 | 68.35 318 | 66.58 341 | 80.82 318 | 48.12 360 | 65.96 355 | 72.60 338 | 53.67 336 | 71.20 342 | 81.68 333 | 58.97 288 | 69.06 360 | 48.57 353 | 81.67 346 | 82.55 329 |
|
MIMVSNet | | | 71.09 303 | 71.59 298 | 69.57 329 | 87.23 227 | 50.07 355 | 78.91 271 | 71.83 344 | 60.20 306 | 71.26 341 | 91.76 162 | 55.08 313 | 76.09 342 | 41.06 371 | 87.02 308 | 82.54 330 |
|
BH-untuned | | | 80.96 199 | 80.99 198 | 80.84 231 | 88.55 202 | 68.23 196 | 80.33 250 | 88.46 198 | 72.79 187 | 86.55 173 | 86.76 265 | 74.72 186 | 91.77 184 | 61.79 285 | 88.99 284 | 82.52 331 |
|
API-MVS | | | 82.28 181 | 82.61 176 | 81.30 221 | 86.29 250 | 69.79 179 | 88.71 93 | 87.67 215 | 78.42 115 | 82.15 251 | 84.15 307 | 77.98 149 | 91.59 186 | 65.39 258 | 92.75 222 | 82.51 332 |
|
Gipuma |  | | 84.44 140 | 86.33 106 | 78.78 258 | 84.20 282 | 73.57 139 | 89.55 74 | 90.44 158 | 84.24 41 | 84.38 213 | 94.89 51 | 76.35 173 | 80.40 331 | 76.14 159 | 96.80 99 | 82.36 333 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PatchT | | | 70.52 306 | 72.76 288 | 63.79 348 | 79.38 332 | 33.53 383 | 77.63 289 | 65.37 366 | 73.61 170 | 71.77 339 | 92.79 131 | 44.38 358 | 75.65 345 | 64.53 267 | 85.37 320 | 82.18 334 |
|
tpmvs | | | 70.16 308 | 69.56 312 | 71.96 321 | 74.71 365 | 48.13 359 | 79.63 257 | 75.45 320 | 65.02 274 | 70.26 345 | 81.88 330 | 45.34 351 | 85.68 300 | 58.34 304 | 75.39 366 | 82.08 335 |
|
1121 | | | 80.86 200 | 79.81 217 | 84.02 166 | 93.93 60 | 78.70 89 | 81.64 232 | 80.18 293 | 55.43 329 | 83.67 230 | 91.15 177 | 71.29 223 | 91.41 193 | 67.95 242 | 93.06 215 | 81.96 336 |
|
æ–°å‡ ä½•1 | | | | | 82.95 193 | 93.96 59 | 78.56 91 | | 80.24 292 | 55.45 328 | 83.93 228 | 91.08 179 | 71.19 224 | 88.33 266 | 65.84 255 | 93.07 214 | 81.95 337 |
|
Patchmatch-test | | | 65.91 328 | 67.38 321 | 61.48 354 | 75.51 358 | 43.21 376 | 68.84 345 | 63.79 368 | 62.48 286 | 72.80 335 | 83.42 314 | 44.89 356 | 59.52 376 | 48.27 356 | 86.45 311 | 81.70 338 |
|
UnsupCasMVSNet_bld | | | 69.21 316 | 69.68 311 | 67.82 337 | 79.42 331 | 51.15 349 | 67.82 351 | 75.79 315 | 54.15 334 | 77.47 306 | 85.36 290 | 59.26 286 | 70.64 355 | 48.46 354 | 79.35 355 | 81.66 339 |
|
PVSNet | | 58.17 21 | 66.41 326 | 65.63 331 | 68.75 333 | 81.96 303 | 49.88 356 | 62.19 364 | 72.51 340 | 51.03 352 | 68.04 352 | 75.34 367 | 50.84 324 | 74.77 346 | 45.82 364 | 82.96 338 | 81.60 340 |
|
Patchmatch-RL test | | | 74.48 278 | 73.68 277 | 76.89 290 | 84.83 268 | 66.54 210 | 72.29 334 | 69.16 357 | 57.70 317 | 86.76 167 | 86.33 270 | 45.79 345 | 82.59 320 | 69.63 223 | 90.65 271 | 81.54 341 |
|
test0.0.03 1 | | | 64.66 332 | 64.36 333 | 65.57 344 | 75.03 363 | 46.89 366 | 64.69 358 | 61.58 373 | 62.43 288 | 71.18 343 | 77.54 357 | 43.41 359 | 68.47 361 | 40.75 372 | 82.65 342 | 81.35 342 |
|
test-LLR | | | 67.21 321 | 66.74 325 | 68.63 334 | 76.45 352 | 55.21 320 | 67.89 348 | 67.14 361 | 62.43 288 | 65.08 363 | 72.39 369 | 43.41 359 | 69.37 356 | 61.00 290 | 84.89 327 | 81.31 343 |
|
test-mter | | | 65.00 331 | 63.79 334 | 68.63 334 | 76.45 352 | 55.21 320 | 67.89 348 | 67.14 361 | 50.98 353 | 65.08 363 | 72.39 369 | 28.27 384 | 69.37 356 | 61.00 290 | 84.89 327 | 81.31 343 |
|
test222 | | | | | | 93.31 77 | 76.54 118 | 79.38 263 | 77.79 304 | 52.59 341 | 82.36 247 | 90.84 189 | 66.83 243 | | | 91.69 245 | 81.25 345 |
|
sss | | | 66.92 322 | 67.26 322 | 65.90 342 | 77.23 344 | 51.10 351 | 64.79 357 | 71.72 346 | 52.12 347 | 70.13 346 | 80.18 345 | 57.96 295 | 65.36 371 | 50.21 346 | 81.01 351 | 81.25 345 |
|
tpm cat1 | | | 66.76 325 | 65.21 332 | 71.42 322 | 77.09 346 | 50.62 353 | 78.01 282 | 73.68 333 | 44.89 368 | 68.64 349 | 79.00 351 | 45.51 348 | 82.42 323 | 49.91 348 | 70.15 373 | 81.23 347 |
|
CVMVSNet | | | 72.62 292 | 71.41 301 | 76.28 297 | 83.25 293 | 60.34 277 | 83.50 186 | 79.02 300 | 37.77 378 | 76.33 310 | 85.10 292 | 49.60 329 | 87.41 275 | 70.54 217 | 77.54 363 | 81.08 348 |
|
tpmrst | | | 66.28 327 | 66.69 326 | 65.05 346 | 72.82 373 | 39.33 378 | 78.20 281 | 70.69 351 | 53.16 339 | 67.88 353 | 80.36 344 | 48.18 331 | 74.75 347 | 58.13 306 | 70.79 372 | 81.08 348 |
|
testdata | | | | | 79.54 251 | 92.87 87 | 72.34 157 | | 80.14 294 | 59.91 307 | 85.47 196 | 91.75 163 | 67.96 237 | 85.24 303 | 68.57 238 | 92.18 237 | 81.06 350 |
|
PM-MVS | | | 80.20 217 | 79.00 223 | 83.78 173 | 88.17 210 | 86.66 18 | 81.31 237 | 66.81 364 | 69.64 226 | 88.33 142 | 90.19 206 | 64.58 253 | 83.63 317 | 71.99 206 | 90.03 274 | 81.06 350 |
|
EPMVS | | | 62.47 334 | 62.63 338 | 62.01 350 | 70.63 377 | 38.74 379 | 74.76 320 | 52.86 381 | 53.91 335 | 67.71 355 | 80.01 346 | 39.40 367 | 66.60 367 | 55.54 320 | 68.81 377 | 80.68 352 |
|
KD-MVS_2432*1600 | | | 66.87 323 | 65.81 329 | 70.04 324 | 67.50 379 | 47.49 363 | 62.56 362 | 79.16 297 | 61.21 297 | 77.98 299 | 80.61 339 | 25.29 388 | 82.48 321 | 53.02 334 | 84.92 325 | 80.16 353 |
|
miper_refine_blended | | | 66.87 323 | 65.81 329 | 70.04 324 | 67.50 379 | 47.49 363 | 62.56 362 | 79.16 297 | 61.21 297 | 77.98 299 | 80.61 339 | 25.29 388 | 82.48 321 | 53.02 334 | 84.92 325 | 80.16 353 |
|
mvsany_test | | | 65.48 330 | 62.97 336 | 73.03 315 | 69.99 378 | 76.17 126 | 64.83 356 | 43.71 386 | 43.68 371 | 80.25 283 | 87.05 263 | 52.83 317 | 63.09 375 | 51.92 343 | 72.44 369 | 79.84 355 |
|
JIA-IIPM | | | 69.41 315 | 66.64 327 | 77.70 279 | 73.19 369 | 71.24 172 | 75.67 311 | 65.56 365 | 70.42 217 | 65.18 362 | 92.97 123 | 33.64 378 | 83.06 318 | 53.52 332 | 69.61 376 | 78.79 356 |
|
BH-w/o | | | 76.57 256 | 76.07 257 | 78.10 272 | 86.88 239 | 65.92 217 | 77.63 289 | 86.33 234 | 65.69 266 | 80.89 271 | 79.95 347 | 68.97 233 | 90.74 214 | 53.01 336 | 85.25 322 | 77.62 357 |
|
TESTMET0.1,1 | | | 61.29 339 | 60.32 344 | 64.19 347 | 72.06 374 | 51.30 347 | 67.89 348 | 62.09 369 | 45.27 367 | 60.65 372 | 69.01 372 | 27.93 385 | 64.74 372 | 56.31 314 | 81.65 348 | 76.53 358 |
|
gg-mvs-nofinetune | | | 68.96 317 | 69.11 313 | 68.52 336 | 76.12 355 | 45.32 369 | 83.59 182 | 55.88 379 | 86.68 26 | 64.62 367 | 97.01 7 | 30.36 381 | 83.97 315 | 44.78 365 | 82.94 339 | 76.26 359 |
|
dp | | | 60.70 343 | 60.29 345 | 61.92 352 | 72.04 375 | 38.67 380 | 70.83 338 | 64.08 367 | 51.28 351 | 60.75 371 | 77.28 360 | 36.59 374 | 71.58 354 | 47.41 358 | 62.34 379 | 75.52 360 |
|
MS-PatchMatch | | | 70.93 304 | 70.22 307 | 73.06 314 | 81.85 305 | 62.50 250 | 73.82 327 | 77.90 303 | 52.44 343 | 75.92 316 | 81.27 335 | 55.67 309 | 81.75 324 | 55.37 321 | 77.70 361 | 74.94 361 |
|
MVS | | | 73.21 288 | 72.59 290 | 75.06 305 | 80.97 314 | 60.81 273 | 81.64 232 | 85.92 242 | 46.03 366 | 71.68 340 | 77.54 357 | 68.47 234 | 89.77 242 | 55.70 318 | 85.39 319 | 74.60 362 |
|
pmmvs3 | | | 62.47 334 | 60.02 346 | 69.80 327 | 71.58 376 | 64.00 232 | 70.52 340 | 58.44 377 | 39.77 376 | 66.05 358 | 75.84 365 | 27.10 387 | 72.28 350 | 46.15 362 | 84.77 331 | 73.11 363 |
|
PMMVS2 | | | 55.64 347 | 59.27 347 | 44.74 363 | 64.30 385 | 12.32 388 | 40.60 376 | 49.79 383 | 53.19 338 | 65.06 365 | 84.81 299 | 53.60 316 | 49.76 380 | 32.68 380 | 89.41 279 | 72.15 364 |
|
PatchMatch-RL | | | 74.48 278 | 73.22 283 | 78.27 270 | 87.70 218 | 85.26 37 | 75.92 310 | 70.09 352 | 64.34 277 | 76.09 314 | 81.25 336 | 65.87 249 | 78.07 337 | 53.86 330 | 83.82 334 | 71.48 365 |
|
GG-mvs-BLEND | | | | | 67.16 339 | 73.36 368 | 46.54 368 | 84.15 162 | 55.04 380 | | 58.64 377 | 61.95 378 | 29.93 382 | 83.87 316 | 38.71 375 | 76.92 364 | 71.07 366 |
|
MVE |  | 40.22 23 | 51.82 348 | 50.47 351 | 55.87 360 | 62.66 386 | 51.91 342 | 31.61 378 | 39.28 387 | 40.65 374 | 50.76 381 | 74.98 368 | 56.24 307 | 44.67 382 | 33.94 379 | 64.11 378 | 71.04 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
new_pmnet | | | 55.69 346 | 57.66 348 | 49.76 362 | 75.47 359 | 30.59 384 | 59.56 365 | 51.45 382 | 43.62 372 | 62.49 369 | 75.48 366 | 40.96 365 | 49.15 381 | 37.39 376 | 72.52 368 | 69.55 368 |
|
DSMNet-mixed | | | 60.98 342 | 61.61 341 | 59.09 359 | 72.88 372 | 45.05 371 | 74.70 321 | 46.61 385 | 26.20 380 | 65.34 361 | 90.32 202 | 55.46 310 | 63.12 374 | 41.72 370 | 81.30 350 | 69.09 369 |
|
CHOSEN 280x420 | | | 59.08 344 | 56.52 349 | 66.76 340 | 76.51 350 | 64.39 228 | 49.62 375 | 59.00 375 | 43.86 370 | 55.66 380 | 68.41 374 | 35.55 376 | 68.21 362 | 43.25 367 | 76.78 365 | 67.69 370 |
|
FMVS | | | 64.31 333 | 65.85 328 | 59.67 357 | 66.54 382 | 62.24 256 | 57.76 371 | 70.96 349 | 40.13 375 | 84.36 214 | 82.09 328 | 46.93 334 | 51.67 379 | 61.99 283 | 81.89 345 | 65.12 371 |
|
EMVS | | | 61.10 341 | 60.81 342 | 61.99 351 | 65.96 383 | 55.86 315 | 53.10 374 | 58.97 376 | 67.06 253 | 56.89 379 | 63.33 376 | 40.98 364 | 67.03 365 | 54.79 326 | 86.18 315 | 63.08 372 |
|
E-PMN | | | 61.59 338 | 61.62 340 | 61.49 353 | 66.81 381 | 55.40 318 | 53.77 373 | 60.34 374 | 66.80 256 | 58.90 376 | 65.50 375 | 40.48 366 | 66.12 369 | 55.72 317 | 86.25 314 | 62.95 373 |
|
PMMVS | | | 61.65 337 | 60.38 343 | 65.47 345 | 65.40 384 | 69.26 188 | 63.97 360 | 61.73 372 | 36.80 379 | 60.11 373 | 68.43 373 | 59.42 284 | 66.35 368 | 48.97 352 | 78.57 359 | 60.81 374 |
|
wuyk23d | | | 75.13 269 | 79.30 221 | 62.63 349 | 75.56 357 | 75.18 131 | 80.89 244 | 73.10 337 | 75.06 156 | 94.76 12 | 95.32 36 | 87.73 42 | 52.85 378 | 34.16 378 | 97.11 87 | 59.85 375 |
|
PVSNet_0 | | 51.08 22 | 56.10 345 | 54.97 350 | 59.48 358 | 75.12 362 | 53.28 333 | 55.16 372 | 61.89 370 | 44.30 369 | 59.16 374 | 62.48 377 | 54.22 314 | 65.91 370 | 35.40 377 | 47.01 380 | 59.25 376 |
|
FPMVS | | | 72.29 296 | 72.00 295 | 73.14 313 | 88.63 199 | 85.00 39 | 74.65 322 | 67.39 358 | 71.94 203 | 77.80 303 | 87.66 249 | 50.48 326 | 75.83 344 | 49.95 347 | 79.51 353 | 58.58 377 |
|
MVS-HIRNet | | | 61.16 340 | 62.92 337 | 55.87 360 | 79.09 335 | 35.34 382 | 71.83 335 | 57.98 378 | 46.56 364 | 59.05 375 | 91.14 178 | 49.95 328 | 76.43 341 | 38.74 374 | 71.92 371 | 55.84 378 |
|
test_method | | | 30.46 349 | 29.60 352 | 33.06 364 | 17.99 388 | 3.84 390 | 13.62 379 | 73.92 328 | 2.79 382 | 18.29 384 | 53.41 379 | 28.53 383 | 43.25 383 | 22.56 381 | 35.27 382 | 52.11 379 |
|
DeepMVS_CX |  | | | | 24.13 365 | 32.95 387 | 29.49 385 | | 21.63 390 | 12.07 381 | 37.95 382 | 45.07 380 | 30.84 380 | 19.21 384 | 17.94 383 | 33.06 383 | 23.69 380 |
|
tmp_tt | | | 20.25 351 | 24.50 354 | 7.49 366 | 4.47 389 | 8.70 389 | 34.17 377 | 25.16 389 | 1.00 384 | 32.43 383 | 18.49 381 | 39.37 368 | 9.21 385 | 21.64 382 | 43.75 381 | 4.57 381 |
|
test123 | | | 6.27 354 | 8.08 357 | 0.84 367 | 1.11 391 | 0.57 391 | 62.90 361 | 0.82 391 | 0.54 385 | 1.07 387 | 2.75 386 | 1.26 390 | 0.30 386 | 1.04 384 | 1.26 385 | 1.66 382 |
|
testmvs | | | 5.91 355 | 7.65 358 | 0.72 368 | 1.20 390 | 0.37 392 | 59.14 367 | 0.67 392 | 0.49 386 | 1.11 386 | 2.76 385 | 0.94 391 | 0.24 387 | 1.02 385 | 1.47 384 | 1.55 383 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
cdsmvs_eth3d_5k | | | 20.81 350 | 27.75 353 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 85.44 246 | 0.00 387 | 0.00 388 | 82.82 321 | 81.46 118 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
pcd_1.5k_mvsjas | | | 6.41 353 | 8.55 356 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 76.94 164 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 6.65 352 | 8.87 355 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 79.80 348 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 96.08 12 | 87.41 13 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
test_one_0601 | | | | | | 93.85 63 | 73.27 142 | | 94.11 37 | 86.57 27 | 93.47 41 | 94.64 62 | 88.42 27 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 92.22 108 | 80.48 72 | | 91.85 120 | 71.22 209 | 90.38 95 | 92.98 121 | 86.06 63 | 96.11 6 | 81.99 88 | 96.75 100 | |
|
test_241102_ONE | | | | | | 94.18 50 | 72.65 146 | | 93.69 54 | 83.62 48 | 94.11 23 | 93.78 108 | 90.28 15 | 95.50 48 | | | |
|
9.14 | | | | 89.29 62 | | 91.84 124 | | 88.80 91 | 95.32 11 | 75.14 155 | 91.07 84 | 92.89 126 | 87.27 46 | 93.78 115 | 83.69 70 | 97.55 71 | |
|
save fliter | | | | | | 93.75 64 | 77.44 105 | 86.31 132 | 89.72 179 | 70.80 212 | | | | | | | |
|
test0726 | | | | | | 94.16 53 | 72.56 152 | 90.63 47 | 93.90 46 | 83.61 49 | 93.75 31 | 94.49 66 | 89.76 19 | | | | |
|
test_part2 | | | | | | 93.86 62 | 77.77 99 | | | | 92.84 51 | | | | | | |
|
sam_mvs | | | | | | | | | | | | | 45.92 344 | | | | |
|
MTGPA |  | | | | | | | | 91.81 123 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 274 | | | | 3.13 383 | 45.19 353 | 80.13 332 | 58.11 307 | | |
|
test_post | | | | | | | | | | | | 3.10 384 | 45.43 349 | 77.22 340 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 332 | 45.93 343 | 87.01 278 | | | |
|
MTMP | | | | | | | | 90.66 45 | 33.14 388 | | | | | | | | |
|
gm-plane-assit | | | | | | 75.42 360 | 44.97 372 | | | 52.17 344 | | 72.36 371 | | 87.90 269 | 54.10 329 | | |
|
TEST9 | | | | | | 92.34 101 | 79.70 79 | 83.94 169 | 90.32 162 | 65.41 272 | 84.49 211 | 90.97 183 | 82.03 108 | 93.63 120 | | | |
|
test_8 | | | | | | 92.09 112 | 78.87 87 | 83.82 174 | 90.31 164 | 65.79 262 | 84.36 214 | 90.96 185 | 81.93 110 | 93.44 133 | | | |
|
agg_prior | | | | | | 91.58 132 | 77.69 100 | | 90.30 165 | | 84.32 216 | | | 93.18 141 | | | |
|
test_prior4 | | | | | | | 78.97 86 | 84.59 154 | | | | | | | | | |
|
test_prior2 | | | | | | | | 83.37 189 | | 75.43 150 | 84.58 209 | 91.57 165 | 81.92 112 | | 79.54 117 | 96.97 91 | |
|
旧先验2 | | | | | | | | 81.73 230 | | 56.88 324 | 86.54 178 | | | 84.90 307 | 72.81 199 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 81.72 231 | | | | | | | | | |
|
原ACMM2 | | | | | | | | 82.26 224 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 291 | 63.52 272 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 109 | | | | |
|
testdata1 | | | | | | | | 79.62 258 | | 73.95 167 | | | | | | | |
|
plane_prior7 | | | | | | 93.45 72 | 77.31 109 | | | | | | | | | | |
|
plane_prior6 | | | | | | 92.61 93 | 76.54 118 | | | | | | 74.84 182 | | | | |
|
plane_prior4 | | | | | | | | | | | | 92.95 124 | | | | | |
|
plane_prior3 | | | | | | | 76.85 116 | | | 77.79 120 | 86.55 173 | | | | | | |
|
plane_prior2 | | | | | | | | 89.45 79 | | 79.44 99 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 91 | | | | | | | | | | | |
|
plane_prior | | | | | | | 76.42 122 | 87.15 116 | | 75.94 143 | | | | | | 95.03 169 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 325 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 130 | | | | | | | | |
|
door | | | | | | | | | 72.57 339 | | | | | | | | |
|
HQP5-MVS | | | | | | | 70.66 175 | | | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 146 | | 84.77 149 | | 73.30 177 | 80.55 277 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 146 | | 84.77 149 | | 73.30 177 | 80.55 277 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 147 | | |
|
HQP3-MVS | | | | | | | | | 92.68 100 | | | | | | | 94.47 185 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 215 | | | | |
|
NP-MVS | | | | | | 91.95 116 | 74.55 134 | | | | | 90.17 208 | | | | | |
|
MDTV_nov1_ep13 | | | | 68.29 319 | | 78.03 340 | 43.87 374 | 74.12 324 | 72.22 341 | 52.17 344 | 67.02 357 | 85.54 281 | 45.36 350 | 80.85 329 | 55.73 316 | 84.42 332 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 147 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 80 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 140 | | | | |
|