This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5499.27 199.54 1
PS-CasMVS90.06 4091.92 1284.47 14696.56 658.83 30689.04 8792.74 9491.40 696.12 596.06 2587.23 4595.57 3979.42 11998.74 699.00 2
PEN-MVS90.03 4291.88 1584.48 14596.57 558.88 30388.95 8893.19 7391.62 596.01 796.16 2387.02 4795.60 3878.69 12598.72 998.97 3
CP-MVSNet89.27 5990.91 4184.37 14796.34 858.61 30988.66 9692.06 11390.78 795.67 895.17 4381.80 11295.54 4279.00 12398.69 1098.95 4
WR-MVS_H89.91 4791.31 3085.71 12396.32 962.39 25789.54 7893.31 6890.21 1195.57 1095.66 3181.42 11695.90 1780.94 10098.80 398.84 5
DTE-MVSNet89.98 4491.91 1484.21 15696.51 757.84 31388.93 8992.84 9191.92 496.16 496.23 1986.95 4895.99 1279.05 12298.57 1598.80 6
FC-MVSNet-test85.93 10787.05 9282.58 20292.25 9856.44 32485.75 14093.09 7977.33 12591.94 6694.65 5774.78 18593.41 12775.11 17198.58 1497.88 7
v7n90.13 3790.96 3987.65 8891.95 11071.06 16989.99 6393.05 8186.53 2994.29 2096.27 1882.69 9094.08 9786.25 4297.63 6097.82 8
TranMVSNet+NR-MVSNet87.86 7988.76 7285.18 13194.02 5564.13 23384.38 16591.29 13784.88 4292.06 6393.84 10186.45 5593.73 10873.22 19598.66 1197.69 9
DU-MVS86.80 9286.99 9386.21 11293.24 7367.02 20683.16 19892.21 10881.73 7290.92 8291.97 15777.20 15693.99 9974.16 17898.35 2297.61 10
NR-MVSNet86.00 10586.22 10585.34 12993.24 7364.56 22982.21 22790.46 15980.99 8088.42 13391.97 15777.56 15193.85 10472.46 20598.65 1297.61 10
FIs85.35 11686.27 10482.60 20191.86 11457.31 31785.10 15293.05 8175.83 14191.02 8193.97 9273.57 19992.91 14473.97 18398.02 3997.58 12
UniMVSNet_NR-MVSNet86.84 9187.06 9186.17 11492.86 8367.02 20682.55 21591.56 12783.08 6090.92 8291.82 16378.25 14493.99 9974.16 17898.35 2297.49 13
UniMVSNet_ETH3D89.12 6290.72 4484.31 15397.00 264.33 23289.67 7388.38 20188.84 1494.29 2097.57 390.48 1391.26 18572.57 20497.65 5997.34 14
OurMVSNet-221017-090.01 4389.74 5490.83 3393.16 7580.37 6991.91 3393.11 7781.10 7995.32 1197.24 672.94 21094.85 7185.07 5497.78 5397.26 15
WR-MVS83.56 16084.40 14581.06 22893.43 6754.88 33578.67 27685.02 25781.24 7790.74 8891.56 17172.85 21191.08 19168.00 24798.04 3697.23 16
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4896.29 1788.16 3394.17 9486.07 4598.48 1897.22 17
v1086.54 9687.10 9084.84 13588.16 20863.28 24386.64 12792.20 10975.42 14892.81 5194.50 6474.05 19494.06 9883.88 6896.28 10597.17 18
anonymousdsp89.73 5088.88 6892.27 889.82 16986.67 1590.51 5390.20 17269.87 22295.06 1296.14 2484.28 7493.07 13887.68 1596.34 10397.09 19
test_djsdf89.62 5189.01 6591.45 2392.36 9482.98 5491.98 3190.08 17571.54 20294.28 2296.54 1481.57 11494.27 8686.26 4096.49 9797.09 19
v886.22 10186.83 9784.36 14987.82 21462.35 25986.42 13191.33 13676.78 13092.73 5394.48 6673.41 20393.72 10983.10 7495.41 14197.01 21
UniMVSNet (Re)86.87 8986.98 9486.55 10393.11 7668.48 19283.80 18092.87 8980.37 8589.61 11191.81 16477.72 14994.18 9275.00 17298.53 1696.99 22
Anonymous2023121188.40 6989.62 5784.73 13990.46 15565.27 22288.86 9093.02 8587.15 2693.05 4497.10 782.28 10292.02 16676.70 15297.99 4096.88 23
IS-MVSNet86.66 9586.82 9886.17 11492.05 10666.87 20991.21 4288.64 19886.30 3189.60 11292.59 13869.22 23994.91 7073.89 18497.89 4996.72 24
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9288.22 1988.53 12997.64 283.45 8394.55 8286.02 4898.60 1396.67 25
pmmvs686.52 9788.06 7781.90 21292.22 10062.28 26084.66 15889.15 19283.54 5589.85 10297.32 488.08 3686.80 27970.43 22197.30 7596.62 26
RPSCF88.00 7786.93 9591.22 2890.08 16289.30 589.68 7291.11 14279.26 10189.68 10694.81 5582.44 9487.74 26476.54 15488.74 29096.61 27
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 1088.86 1395.63 996.99 984.81 6993.16 13491.10 297.53 6996.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
nrg03087.85 8088.49 7385.91 11790.07 16469.73 17987.86 10594.20 2874.04 16092.70 5494.66 5685.88 6391.50 17779.72 11497.32 7496.50 29
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4597.23 295.32 299.01 297.26 580.16 13098.99 195.15 199.14 296.47 30
iter_conf0588.59 6890.04 4984.23 15592.03 10760.51 28591.36 4095.81 688.07 2194.56 1696.17 2172.24 21995.79 2984.85 5895.27 14996.38 31
v2v48284.09 14684.24 14883.62 17187.13 23161.40 27082.71 21089.71 18272.19 19889.55 11391.41 17470.70 23293.20 13281.02 9993.76 19896.25 32
PS-MVSNAJss88.31 7187.90 7989.56 5693.31 7077.96 9387.94 10491.97 11670.73 21294.19 2396.67 1276.94 16294.57 8083.07 7596.28 10596.15 33
v119284.57 13284.69 13784.21 15687.75 21662.88 24783.02 20191.43 13169.08 22889.98 10090.89 19372.70 21493.62 11582.41 8694.97 16296.13 34
EI-MVSNet-UG-set85.04 12284.44 14386.85 9883.87 29572.52 14983.82 17885.15 25380.27 8888.75 12485.45 29379.95 13391.90 16981.92 9490.80 26496.13 34
v192192084.23 14384.37 14683.79 16587.64 22161.71 26782.91 20591.20 14067.94 24390.06 9590.34 21172.04 22493.59 11782.32 8794.91 16396.07 36
v124084.30 13984.51 14283.65 17087.65 22061.26 27382.85 20791.54 12867.94 24390.68 8990.65 20571.71 22793.64 11182.84 8094.78 17096.07 36
v14419284.24 14284.41 14483.71 16987.59 22261.57 26882.95 20491.03 14467.82 24689.80 10390.49 20873.28 20793.51 12281.88 9594.89 16596.04 38
v114484.54 13484.72 13584.00 15987.67 21962.55 25482.97 20390.93 14870.32 21789.80 10390.99 18773.50 20093.48 12381.69 9694.65 17595.97 39
EI-MVSNet-Vis-set85.12 12184.53 14186.88 9784.01 29172.76 14083.91 17685.18 25280.44 8488.75 12485.49 29180.08 13191.92 16882.02 9190.85 26395.97 39
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2585.21 3892.51 5695.13 4490.65 995.34 5488.06 998.15 3495.95 41
tttt051781.07 20179.58 22485.52 12688.99 18566.45 21387.03 11775.51 32973.76 16488.32 13790.20 21537.96 39094.16 9679.36 12095.13 15395.93 42
ANet_high83.17 16885.68 11875.65 30381.24 32545.26 38679.94 25492.91 8883.83 4991.33 7496.88 1180.25 12985.92 29568.89 23795.89 12795.76 43
IterMVS-LS84.73 12984.98 13083.96 16187.35 22663.66 23783.25 19489.88 17976.06 13489.62 10992.37 14873.40 20592.52 15178.16 13394.77 17295.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 17382.42 17983.20 18683.25 30563.66 23783.50 18785.07 25476.06 13486.55 17385.10 29973.41 20390.25 21578.15 13590.67 26795.68 45
EPP-MVSNet85.47 11385.04 12986.77 10091.52 13069.37 18391.63 3687.98 21081.51 7587.05 16391.83 16266.18 25595.29 5570.75 21696.89 8395.64 46
V4283.47 16383.37 16083.75 16783.16 30863.33 24281.31 23790.23 17169.51 22490.91 8490.81 19874.16 19292.29 16080.06 10990.22 27295.62 47
ACMH+77.89 1190.73 2891.50 2288.44 7593.00 7876.26 11689.65 7495.55 987.72 2493.89 2894.94 4891.62 393.44 12578.35 12898.76 495.61 48
mvs_tets89.78 4989.27 6191.30 2693.51 6484.79 4189.89 6790.63 15570.00 22194.55 1796.67 1287.94 3793.59 11784.27 6595.97 12095.52 49
OMC-MVS88.19 7287.52 8390.19 4591.94 11281.68 6287.49 11193.17 7476.02 13688.64 12791.22 17984.24 7593.37 12877.97 13897.03 8195.52 49
SixPastTwentyTwo87.20 8787.45 8586.45 10592.52 9069.19 18887.84 10688.05 20881.66 7394.64 1596.53 1565.94 25694.75 7383.02 7796.83 8695.41 51
KD-MVS_self_test81.93 19083.14 16578.30 26884.75 27952.75 34780.37 24989.42 19070.24 21990.26 9393.39 11374.55 19086.77 28068.61 24296.64 9195.38 52
jajsoiax89.41 5488.81 7191.19 2993.38 6884.72 4289.70 7090.29 16969.27 22594.39 1896.38 1686.02 6293.52 12183.96 6795.92 12695.34 53
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1682.88 6291.77 6893.94 9890.55 1295.73 3488.50 798.23 2895.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
Anonymous2024052986.20 10287.13 8983.42 18090.19 16064.55 23084.55 16090.71 15285.85 3489.94 10195.24 4282.13 10490.40 21469.19 23396.40 10295.31 55
Baseline_NR-MVSNet84.00 15085.90 11278.29 26991.47 13253.44 34382.29 22387.00 22879.06 10489.55 11395.72 3077.20 15686.14 29372.30 20698.51 1795.28 56
casdiffmvspermissive85.21 11885.85 11483.31 18386.17 25762.77 25083.03 20093.93 4474.69 15588.21 13892.68 13782.29 10191.89 17077.87 13993.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+83.92 289.97 4689.66 5590.92 3291.27 13681.66 6391.25 4194.13 3588.89 1288.83 12394.26 7877.55 15295.86 2384.88 5795.87 12895.24 58
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 6194.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
casdiffmvs_mvgpermissive86.72 9387.51 8484.36 14987.09 23565.22 22384.16 16794.23 2577.89 11891.28 7793.66 10884.35 7392.71 14680.07 10894.87 16895.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111178.53 23878.85 23277.56 28192.22 10047.49 37582.61 21169.24 37072.43 19085.28 19994.20 8151.91 33290.07 22765.36 26996.45 10095.11 62
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 10194.51 1975.79 14292.94 4594.96 4788.36 2895.01 6790.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1490.28 1092.11 6195.03 4689.75 2094.93 6979.95 11198.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
dcpmvs_284.23 14385.14 12781.50 22088.61 19761.98 26682.90 20693.11 7768.66 23492.77 5292.39 14478.50 14187.63 26676.99 15192.30 22894.90 65
CS-MVS88.14 7387.67 8289.54 5789.56 17179.18 7990.47 5494.77 1779.37 10084.32 22089.33 23083.87 7694.53 8382.45 8594.89 16594.90 65
test250674.12 28573.39 28576.28 29891.85 11544.20 38984.06 17048.20 40872.30 19681.90 26294.20 8127.22 40989.77 23564.81 27496.02 11894.87 67
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11548.95 36983.68 18369.91 36772.30 19684.26 22694.20 8151.89 33389.82 23263.58 28396.02 11894.87 67
v14882.31 17882.48 17881.81 21785.59 26659.66 29381.47 23686.02 23972.85 18488.05 14490.65 20570.73 23190.91 19875.15 17091.79 24194.87 67
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8594.05 3979.03 10592.87 4793.74 10690.60 1195.21 6082.87 7998.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
eth_miper_zixun_eth80.84 20480.22 21682.71 19981.41 32360.98 27977.81 28690.14 17467.31 25086.95 16587.24 26764.26 26392.31 15875.23 16991.61 24594.85 71
K. test v385.14 12084.73 13386.37 10691.13 14169.63 18185.45 14576.68 32184.06 4892.44 5896.99 962.03 27694.65 7680.58 10693.24 21194.83 72
baseline85.20 11985.93 11183.02 18986.30 25262.37 25884.55 16093.96 4274.48 15787.12 15792.03 15682.30 10091.94 16778.39 12694.21 18594.74 73
thisisatest053079.07 22977.33 24984.26 15487.13 23164.58 22883.66 18475.95 32468.86 23185.22 20087.36 26438.10 38893.57 12075.47 16694.28 18494.62 74
c3_l81.64 19481.59 19181.79 21880.86 33159.15 30078.61 27790.18 17368.36 23587.20 15587.11 27069.39 23791.62 17578.16 13394.43 18094.60 75
TSAR-MVS + MP.88.14 7387.82 8089.09 6495.72 2276.74 10992.49 2491.19 14167.85 24586.63 17294.84 5179.58 13595.96 1587.62 1694.50 17794.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 3082.52 6592.39 5994.14 8589.15 2395.62 3787.35 2498.24 2794.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ITE_SJBPF90.11 4690.72 15084.97 3890.30 16781.56 7490.02 9791.20 18182.40 9690.81 20373.58 19094.66 17494.56 76
LS3D90.60 3190.34 4891.38 2589.03 18384.23 4693.58 694.68 1890.65 890.33 9293.95 9784.50 7195.37 5380.87 10195.50 14094.53 79
HQP_MVS87.75 8287.43 8688.70 7293.45 6576.42 11389.45 8193.61 5779.44 9886.55 17392.95 12774.84 18395.22 5880.78 10395.83 13094.46 80
plane_prior593.61 5795.22 5880.78 10395.83 13094.46 80
testf189.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
APD_test289.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
TransMVSNet (Re)84.02 14985.74 11778.85 25791.00 14455.20 33482.29 22387.26 21679.65 9588.38 13595.52 3583.00 8786.88 27767.97 24896.60 9394.45 82
pm-mvs183.69 15684.95 13179.91 24490.04 16659.66 29382.43 21987.44 21375.52 14687.85 14795.26 4181.25 11885.65 30268.74 24096.04 11794.42 85
MM87.64 8387.15 8889.09 6489.51 17276.39 11588.68 9586.76 22984.54 4483.58 23693.78 10473.36 20696.48 287.98 1096.21 10994.41 86
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6182.82 6392.60 5593.97 9288.19 3196.29 687.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
VPA-MVSNet83.47 16384.73 13379.69 24890.29 15857.52 31681.30 23988.69 19776.29 13287.58 15294.44 6780.60 12687.20 27166.60 25696.82 8794.34 88
fmvsm_s_conf0.1_n82.17 18381.59 19183.94 16386.87 24171.57 16585.19 15077.42 31362.27 29384.47 21691.33 17676.43 17085.91 29683.14 7287.14 31094.33 89
SF-MVS90.27 3690.80 4388.68 7392.86 8377.09 10591.19 4395.74 781.38 7692.28 6093.80 10286.89 4994.64 7785.52 5197.51 7094.30 90
SSC-MVS77.55 24781.64 18865.29 36790.46 15520.33 41373.56 33868.28 37285.44 3588.18 14094.64 6070.93 23081.33 33271.25 21092.03 23694.20 91
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9894.03 8986.57 5295.80 2687.35 2497.62 6194.20 91
X-MVStestdata85.04 12282.70 17292.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9816.05 40986.57 5295.80 2687.35 2497.62 6194.20 91
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2595.05 1587.65 2593.21 4194.39 7390.09 1795.08 6586.67 3597.60 6394.18 94
AllTest87.97 7887.40 8789.68 5291.59 12283.40 4989.50 7995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
TestCases89.68 5291.59 12283.40 4995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
CS-MVS-test87.00 8886.43 10288.71 7189.46 17477.46 9989.42 8395.73 877.87 11981.64 27187.25 26682.43 9594.53 8377.65 14096.46 9994.14 97
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2780.14 9091.29 7693.97 9287.93 3895.87 2088.65 597.96 4594.12 98
OPM-MVS89.80 4889.97 5089.27 6094.76 4079.86 7386.76 12492.78 9378.78 10892.51 5693.64 10988.13 3493.84 10684.83 6097.55 6694.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu85.82 10983.38 15993.14 487.13 23191.15 387.70 10788.42 20074.57 15683.56 23785.65 28978.49 14294.21 9072.04 20792.88 22094.05 100
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2193.25 7181.99 6891.40 7294.17 8487.51 4295.87 2087.74 1397.76 5493.99 101
XVG-OURS-SEG-HR89.59 5289.37 5990.28 4394.47 4385.95 2486.84 12093.91 4580.07 9186.75 16893.26 11493.64 290.93 19684.60 6290.75 26593.97 102
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 6193.90 4680.32 8791.74 6994.41 7188.17 3295.98 1386.37 3897.99 4093.96 103
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5280.98 8191.38 7393.80 10287.20 4695.80 2687.10 3197.69 5893.93 104
lessismore_v085.95 11691.10 14270.99 17070.91 36391.79 6794.42 7061.76 27792.93 14279.52 11893.03 21693.93 104
fmvsm_s_conf0.1_n_a82.58 17581.93 18484.50 14487.68 21873.35 13386.14 13577.70 31061.64 29985.02 20391.62 16977.75 14886.24 28882.79 8187.07 31293.91 106
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4693.24 7275.37 14992.84 4995.28 4085.58 6496.09 887.92 1197.76 5493.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MVS_030485.37 11584.58 13987.75 8585.28 27073.36 13286.54 13085.71 24377.56 12481.78 26992.47 14370.29 23396.02 1185.59 5095.96 12193.87 108
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22065.79 26084.32 22085.10 29958.96 29790.88 20075.36 16892.03 23693.84 109
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2093.30 6981.91 7090.88 8694.21 8087.75 3995.87 2087.60 1897.71 5793.83 110
GBi-Net82.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
test182.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
FMVSNet184.55 13385.45 12281.85 21490.27 15961.05 27686.83 12188.27 20578.57 11289.66 10895.64 3275.43 17690.68 20769.09 23495.33 14493.82 111
fmvsm_s_conf0.5_n81.91 19181.30 19883.75 16786.02 26171.56 16684.73 15677.11 31762.44 29084.00 22990.68 20276.42 17185.89 29883.14 7287.11 31193.81 114
VDDNet84.35 13785.39 12481.25 22395.13 3259.32 29685.42 14681.11 29286.41 3087.41 15496.21 2073.61 19890.61 21066.33 25896.85 8493.81 114
EC-MVSNet88.01 7688.32 7587.09 9289.28 17872.03 15790.31 5896.31 480.88 8285.12 20189.67 22684.47 7295.46 4982.56 8496.26 10893.77 116
CDPH-MVS86.17 10485.54 12088.05 8392.25 9875.45 12183.85 17792.01 11465.91 25986.19 18291.75 16783.77 7994.98 6877.43 14596.71 9093.73 117
APD_test188.40 6987.91 7889.88 4889.50 17386.65 1789.98 6491.91 11984.26 4590.87 8793.92 9982.18 10389.29 24673.75 18794.81 16993.70 118
GeoE85.45 11485.81 11584.37 14790.08 16267.07 20585.86 13891.39 13472.33 19587.59 15190.25 21484.85 6892.37 15678.00 13691.94 24093.66 119
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.38 24786.19 18289.22 23163.09 27190.16 22076.32 15595.80 13293.66 119
cl____80.42 21280.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.37 24886.18 18489.21 23263.08 27290.16 22076.31 15695.80 13293.65 121
XVG-ACMP-BASELINE89.98 4489.84 5290.41 4094.91 3784.50 4589.49 8093.98 4179.68 9492.09 6293.89 10083.80 7893.10 13782.67 8398.04 3693.64 122
MIMVSNet183.63 15884.59 13880.74 23294.06 5462.77 25082.72 20984.53 26677.57 12390.34 9195.92 2776.88 16885.83 30061.88 29797.42 7193.62 123
XVG-OURS89.18 6088.83 7090.23 4494.28 4586.11 2385.91 13693.60 5980.16 8989.13 12093.44 11283.82 7790.98 19483.86 6995.30 14893.60 124
test_fmvsm_n_192083.60 15982.89 16985.74 12285.22 27277.74 9684.12 16990.48 15859.87 32086.45 18191.12 18375.65 17485.89 29882.28 8890.87 26193.58 125
CLD-MVS83.18 16782.64 17484.79 13789.05 18267.82 20077.93 28492.52 10068.33 23685.07 20281.54 34182.06 10592.96 14069.35 22997.91 4893.57 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP4-MVS80.56 28494.61 7893.56 127
HQP-MVS84.61 13184.06 15086.27 10991.19 13770.66 17184.77 15392.68 9573.30 17680.55 28590.17 21872.10 22194.61 7877.30 14794.47 17893.56 127
VDD-MVS84.23 14384.58 13983.20 18691.17 14065.16 22583.25 19484.97 26079.79 9287.18 15694.27 7574.77 18690.89 19969.24 23096.54 9593.55 129
fmvsm_s_conf0.5_n_a82.21 18181.51 19584.32 15286.56 24373.35 13385.46 14477.30 31461.81 29584.51 21390.88 19577.36 15486.21 29082.72 8286.97 31793.38 130
test_fmvsmconf0.01_n86.68 9486.52 10087.18 9185.94 26278.30 8686.93 11892.20 10965.94 25789.16 11893.16 11783.10 8689.89 23187.81 1294.43 18093.35 131
miper_ehance_all_eth80.34 21580.04 22181.24 22579.82 34158.95 30277.66 28889.66 18365.75 26385.99 18985.11 29868.29 24591.42 18276.03 16092.03 23693.33 132
VPNet80.25 21881.68 18775.94 30192.46 9247.98 37376.70 30281.67 28973.45 17084.87 20892.82 13174.66 18886.51 28461.66 30096.85 8493.33 132
IU-MVS94.18 4772.64 14390.82 15056.98 33989.67 10785.78 4997.92 4693.28 134
ACMMP_NAP90.65 2991.07 3689.42 5895.93 1679.54 7789.95 6593.68 5677.65 12191.97 6594.89 4988.38 2795.45 5089.27 497.87 5093.27 135
DeepC-MVS82.31 489.15 6189.08 6489.37 5993.64 6379.07 8088.54 9794.20 2873.53 16889.71 10594.82 5285.09 6595.77 3384.17 6698.03 3893.26 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TAPA-MVS77.73 1285.71 11084.83 13288.37 7788.78 19279.72 7487.15 11593.50 6069.17 22685.80 19189.56 22780.76 12392.13 16273.21 20095.51 13993.25 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH76.49 1489.34 5691.14 3283.96 16192.50 9170.36 17589.55 7693.84 5081.89 7194.70 1495.44 3690.69 888.31 26083.33 7198.30 2593.20 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8482.59 6488.52 13094.37 7486.74 5095.41 5286.32 3998.21 2993.19 139
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27178.25 8785.82 13991.82 12265.33 27188.55 12892.35 14982.62 9389.80 23386.87 3294.32 18393.18 140
tt080588.09 7589.79 5382.98 19193.26 7263.94 23691.10 4489.64 18485.07 3990.91 8491.09 18489.16 2291.87 17182.03 9095.87 12893.13 141
diffmvspermissive80.40 21380.48 21180.17 24279.02 35160.04 28877.54 29190.28 17066.65 25582.40 25487.33 26573.50 20087.35 26977.98 13789.62 27993.13 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23951.34 35873.20 34280.63 29768.30 23781.80 26788.40 24366.92 25180.90 33455.35 33694.90 16493.12 143
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1792.60 9983.09 5991.54 7094.25 7987.67 4195.51 4587.21 2898.11 3593.12 143
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 19271.97 35574.04 16082.23 25789.78 22457.38 30789.41 24457.22 32395.41 14193.05 145
WB-MVS76.06 26580.01 22264.19 37089.96 16820.58 41272.18 34768.19 37383.21 5786.46 18093.49 11170.19 23478.97 34665.96 26090.46 27193.02 146
tfpnnormal81.79 19382.95 16878.31 26788.93 18755.40 33080.83 24682.85 27976.81 12985.90 19094.14 8574.58 18986.51 28466.82 25495.68 13893.01 147
test_fmvsmconf_n85.88 10885.51 12186.99 9584.77 27878.21 8885.40 14791.39 13465.32 27287.72 14991.81 16482.33 9889.78 23486.68 3494.20 18692.99 148
test_0728_THIRD85.33 3693.75 3294.65 5787.44 4395.78 3187.41 2298.21 2992.98 149
MSP-MVS89.08 6388.16 7691.83 1995.76 1886.14 2292.75 1693.90 4678.43 11389.16 11892.25 15272.03 22596.36 488.21 890.93 25992.98 149
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft91.22 2291.92 1289.14 6392.97 7978.04 9092.84 1594.14 3483.33 5693.90 2695.73 2988.77 2596.41 387.60 1897.98 4292.98 149
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2193.29 7081.99 6891.47 7193.96 9588.35 2995.56 4087.74 1397.74 5692.85 152
test_prior86.32 10790.59 15371.99 15892.85 9094.17 9492.80 153
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 27983.20 24388.22 24556.67 31178.79 34873.22 19593.12 21492.78 154
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6888.83 2495.51 4587.16 2997.60 6392.73 155
RE-MVS-def92.61 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6890.64 1087.16 2997.60 6392.73 155
PHI-MVS86.38 9885.81 11588.08 8188.44 20277.34 10289.35 8493.05 8173.15 18184.76 21087.70 25678.87 13994.18 9280.67 10596.29 10492.73 155
ambc82.98 19190.55 15464.86 22688.20 9989.15 19289.40 11693.96 9571.67 22891.38 18478.83 12496.55 9492.71 158
alignmvs83.94 15283.98 15383.80 16487.80 21567.88 19984.54 16291.42 13373.27 17988.41 13487.96 24972.33 21790.83 20276.02 16194.11 19092.69 159
thres600view775.97 26675.35 26877.85 27987.01 23751.84 35680.45 24873.26 34675.20 15083.10 24586.31 28145.54 36289.05 24755.03 33992.24 23292.66 160
thres40075.14 27274.23 27777.86 27886.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25592.66 160
CNVR-MVS87.81 8187.68 8188.21 8092.87 8177.30 10485.25 14891.23 13977.31 12687.07 16291.47 17382.94 8894.71 7484.67 6196.27 10792.62 162
MVSMamba_PlusPlus87.53 8488.86 6983.54 17792.03 10762.26 26191.49 3792.62 9788.07 2188.07 14196.17 2172.24 21995.79 2984.85 5894.16 18892.58 163
bld_raw_conf0383.86 15483.99 15283.45 17888.77 19362.26 26191.49 3792.62 9765.43 26688.07 14192.18 15568.44 24495.51 4574.78 17494.16 18892.58 163
Anonymous2024052180.18 22181.25 19976.95 28883.15 30960.84 28182.46 21885.99 24068.76 23286.78 16693.73 10759.13 29577.44 35173.71 18897.55 6692.56 165
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6383.16 5891.06 8094.00 9188.26 3095.71 3587.28 2798.39 2192.55 166
sasdasda85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
canonicalmvs85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
DVP-MVS++90.07 3991.09 3387.00 9491.55 12772.64 14396.19 294.10 3785.33 3693.49 3794.64 6081.12 11995.88 1887.41 2295.94 12492.48 169
PC_three_145258.96 32390.06 9591.33 17680.66 12593.03 13975.78 16295.94 12492.48 169
MGCFI-Net85.04 12285.95 11082.31 20887.52 22363.59 23986.23 13493.96 4273.46 16988.07 14187.83 25486.46 5490.87 20176.17 15893.89 19692.47 171
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27577.49 29385.07 25460.78 31186.55 17388.68 24043.14 38090.25 21573.69 18990.67 26792.42 172
balanced_conf0384.80 12785.40 12383.00 19088.95 18661.44 26990.42 5792.37 10571.48 20488.72 12693.13 11870.16 23595.15 6279.26 12194.11 19092.41 173
ACMM79.39 990.65 2990.99 3889.63 5495.03 3483.53 4889.62 7593.35 6479.20 10293.83 2993.60 11090.81 792.96 14085.02 5698.45 1992.41 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSC_two_6792asdad88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
No_MVS88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
MVS_Test82.47 17783.22 16180.22 24182.62 31357.75 31582.54 21691.96 11771.16 20982.89 24892.52 14277.41 15390.50 21280.04 11087.84 30492.40 175
NCCC87.36 8586.87 9688.83 6792.32 9778.84 8386.58 12891.09 14378.77 10984.85 20990.89 19380.85 12295.29 5581.14 9895.32 14592.34 178
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19458.05 33083.59 23580.69 34564.41 26291.20 18673.16 20192.03 23692.33 179
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12484.07 4792.00 6494.40 7286.63 5195.28 5788.59 698.31 2492.30 180
SED-MVS90.46 3491.64 1886.93 9694.18 4772.65 14190.47 5493.69 5483.77 5094.11 2494.27 7590.28 1495.84 2486.03 4697.92 4692.29 181
OPU-MVS88.27 7991.89 11377.83 9490.47 5491.22 17981.12 11994.68 7574.48 17595.35 14392.29 181
test1286.57 10290.74 14972.63 14590.69 15382.76 25079.20 13694.80 7295.32 14592.27 183
FMVSNet281.31 19881.61 19080.41 23886.38 24758.75 30783.93 17586.58 23172.43 19087.65 15092.98 12463.78 26790.22 21866.86 25193.92 19592.27 183
CANet83.79 15582.85 17086.63 10186.17 25772.21 15683.76 18191.43 13177.24 12774.39 34287.45 26275.36 17795.42 5177.03 15092.83 22192.25 185
F-COLMAP84.97 12683.42 15889.63 5492.39 9383.40 4988.83 9191.92 11873.19 18080.18 29389.15 23477.04 16093.28 13065.82 26592.28 23192.21 186
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2393.87 4988.20 2093.24 4094.02 9090.15 1695.67 3686.82 3397.34 7392.19 187
Effi-MVS+83.90 15384.01 15183.57 17587.22 22965.61 22186.55 12992.40 10278.64 11181.34 27684.18 31283.65 8192.93 14274.22 17787.87 30392.17 188
test_fmvsmvis_n_192085.22 11785.36 12584.81 13685.80 26476.13 11985.15 15192.32 10661.40 30191.33 7490.85 19683.76 8086.16 29284.31 6493.28 21092.15 189
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18580.97 27782.08 33519.80 41487.33 27065.12 27191.68 24492.13 190
Vis-MVSNetpermissive86.86 9086.58 9987.72 8692.09 10477.43 10187.35 11292.09 11278.87 10784.27 22594.05 8878.35 14393.65 11080.54 10791.58 24792.08 191
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_241102_TWO93.71 5383.77 5093.49 3794.27 7589.27 2195.84 2486.03 4697.82 5192.04 192
test_0728_SECOND86.79 9994.25 4672.45 15190.54 5194.10 3795.88 1886.42 3697.97 4392.02 193
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28380.97 27787.93 25162.83 27571.90 36555.24 33795.01 16192.00 194
DeepPCF-MVS81.24 587.28 8686.21 10690.49 3991.48 13184.90 3983.41 18992.38 10470.25 21889.35 11790.68 20282.85 8994.57 8079.55 11695.95 12392.00 194
Anonymous20240521180.51 21081.19 20278.49 26488.48 20057.26 31876.63 30482.49 28281.21 7884.30 22392.24 15367.99 24686.24 28862.22 29295.13 15391.98 196
EIA-MVS82.19 18281.23 20185.10 13287.95 21269.17 18983.22 19793.33 6570.42 21478.58 30679.77 35777.29 15594.20 9171.51 20988.96 28691.93 197
MCST-MVS84.36 13683.93 15485.63 12491.59 12271.58 16483.52 18692.13 11161.82 29483.96 23089.75 22579.93 13493.46 12478.33 12994.34 18291.87 198
test_040288.65 6689.58 5885.88 11992.55 8972.22 15584.01 17189.44 18988.63 1794.38 1995.77 2886.38 5893.59 11779.84 11295.21 15091.82 199
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8491.30 13476.92 10787.19 11391.99 11570.56 21384.96 20590.69 20180.01 13295.14 6378.37 12795.78 13491.82 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FA-MVS(test-final)83.13 16983.02 16783.43 17986.16 25966.08 21688.00 10288.36 20275.55 14585.02 20392.75 13565.12 26092.50 15274.94 17391.30 25191.72 201
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24269.04 22986.00 18690.44 20951.75 33490.09 22665.95 26193.34 20791.72 201
DPE-MVScopyleft90.53 3391.08 3488.88 6693.38 6878.65 8489.15 8694.05 3984.68 4393.90 2694.11 8788.13 3496.30 584.51 6397.81 5291.70 203
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CPTT-MVS89.39 5588.98 6790.63 3795.09 3386.95 1392.09 2992.30 10779.74 9387.50 15392.38 14581.42 11693.28 13083.07 7597.24 7691.67 204
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 18188.86 12188.99 23666.94 25081.23 33364.71 27588.22 29991.64 205
PAPM_NR83.23 16683.19 16383.33 18290.90 14665.98 21788.19 10090.78 15178.13 11780.87 28187.92 25273.49 20292.42 15370.07 22388.40 29291.60 206
PCF-MVS74.62 1582.15 18480.92 20585.84 12089.43 17572.30 15380.53 24791.82 12257.36 33687.81 14889.92 22277.67 15093.63 11258.69 31495.08 15691.58 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPNet80.37 21478.41 24086.23 11076.75 36573.28 13587.18 11477.45 31276.24 13368.14 37488.93 23765.41 25993.85 10469.47 22896.12 11491.55 208
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Fast-Effi-MVS+81.04 20280.57 20782.46 20687.50 22463.22 24478.37 28089.63 18568.01 24081.87 26382.08 33582.31 9992.65 14967.10 25088.30 29891.51 209
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26361.60 30083.09 24692.82 13173.89 19687.01 27268.33 24686.41 32291.37 210
SD-MVS88.96 6489.88 5186.22 11191.63 12177.07 10689.82 6893.77 5178.90 10692.88 4692.29 15086.11 6090.22 21886.24 4397.24 7691.36 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26573.50 33984.80 26457.61 33482.24 25687.54 25951.31 33587.65 26570.40 22293.19 21391.23 212
SDMVSNet81.90 19283.17 16478.10 27288.81 19062.45 25676.08 31486.05 23873.67 16583.41 23993.04 12082.35 9780.65 33770.06 22495.03 15891.21 213
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16583.41 23993.04 12080.96 12177.65 35058.62 31595.03 15891.21 213
patch_mono-278.89 23179.39 22677.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29989.89 22375.18 17972.97 36273.32 19492.30 22891.15 215
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3887.00 1291.89 3486.28 2331.09 4102.23 41295.98 2681.87 11189.48 23879.76 11395.96 12191.10 216
ETV-MVS84.31 13883.91 15585.52 12688.58 19870.40 17484.50 16493.37 6278.76 11084.07 22878.72 36580.39 12795.13 6473.82 18692.98 21891.04 217
mvsmamba80.30 21778.87 23084.58 14388.12 20967.55 20192.35 2684.88 26163.15 28285.33 19890.91 19250.71 33895.20 6166.36 25787.98 30190.99 218
VNet79.31 22880.27 21376.44 29587.92 21353.95 33975.58 32084.35 26774.39 15882.23 25790.72 20072.84 21284.39 31360.38 30893.98 19490.97 219
Fast-Effi-MVS+-dtu82.54 17681.41 19685.90 11885.60 26576.53 11283.07 19989.62 18673.02 18379.11 30383.51 31780.74 12490.24 21768.76 23989.29 28190.94 220
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 22076.90 31873.81 16385.56 19592.38 14548.07 34883.98 31863.36 28695.31 14790.92 221
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19388.29 20469.16 22767.83 37783.72 31560.93 28089.47 23969.22 23289.70 27890.88 222
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7583.94 17390.32 16465.79 26084.49 21490.97 18881.93 10893.63 11281.21 9796.54 9590.88 222
114514_t83.10 17082.54 17784.77 13892.90 8069.10 19086.65 12690.62 15654.66 34981.46 27390.81 19876.98 16194.38 8572.62 20396.18 11090.82 224
LCM-MVSNet-Re83.48 16285.06 12878.75 25985.94 26255.75 32980.05 25294.27 2276.47 13196.09 694.54 6383.31 8589.75 23759.95 30994.89 16590.75 225
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 16187.84 25350.44 34171.62 36777.42 14688.53 29190.72 226
hse-mvs283.47 16381.81 18688.47 7491.03 14382.27 5882.61 21183.69 27171.27 20586.70 16986.05 28563.04 27392.41 15478.26 13193.62 20590.71 227
DP-MVS88.60 6789.01 6587.36 9091.30 13477.50 9887.55 10892.97 8787.95 2389.62 10992.87 13084.56 7093.89 10377.65 14096.62 9290.70 228
LFMVS80.15 22280.56 20878.89 25689.19 18155.93 32685.22 14973.78 34182.96 6184.28 22492.72 13657.38 30790.07 22763.80 28295.75 13590.68 229
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15762.51 28675.32 33684.61 30774.99 18192.30 15959.48 31288.04 30090.68 229
AUN-MVS81.18 20078.78 23388.39 7690.93 14582.14 5982.51 21783.67 27264.69 27680.29 28985.91 28851.07 33692.38 15576.29 15793.63 20490.65 231
test9_res80.83 10296.45 10090.57 232
UGNet82.78 17181.64 18886.21 11286.20 25676.24 11786.86 11985.68 24477.07 12873.76 34692.82 13169.64 23691.82 17369.04 23693.69 20290.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
DVP-MVScopyleft90.06 4091.32 2986.29 10894.16 5072.56 14790.54 5191.01 14583.61 5393.75 3294.65 5789.76 1895.78 3186.42 3697.97 4390.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DELS-MVS81.44 19781.25 19982.03 21084.27 28862.87 24876.47 30892.49 10170.97 21081.64 27183.83 31475.03 18092.70 14774.29 17692.22 23490.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
APD-MVScopyleft89.54 5389.63 5689.26 6192.57 8881.34 6590.19 6093.08 8080.87 8391.13 7893.19 11586.22 5995.97 1482.23 8997.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CSCG86.26 9986.47 10185.60 12590.87 14774.26 12787.98 10391.85 12080.35 8689.54 11588.01 24879.09 13792.13 16275.51 16595.06 15790.41 237
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18042.68 39788.20 13983.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
DP-MVS Recon84.05 14883.22 16186.52 10491.73 12075.27 12283.23 19692.40 10272.04 19982.04 26088.33 24477.91 14793.95 10166.17 25995.12 15590.34 239
IterMVS-SCA-FT80.64 20879.41 22584.34 15183.93 29369.66 18076.28 31081.09 29372.43 19086.47 17990.19 21660.46 28393.15 13577.45 14486.39 32390.22 240
agg_prior279.68 11596.16 11190.22 240
HPM-MVS++copyleft88.93 6588.45 7490.38 4194.92 3685.85 2889.70 7091.27 13878.20 11586.69 17192.28 15180.36 12895.06 6686.17 4496.49 9790.22 240
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13365.19 22472.47 34587.31 21546.79 38080.29 28984.30 31052.70 32992.10 16551.88 36186.73 31890.22 240
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16061.70 29875.43 33387.07 27169.11 24091.44 18060.68 30692.24 23290.11 244
MVS_111021_HR84.63 13084.34 14785.49 12890.18 16175.86 12079.23 26887.13 22073.35 17385.56 19589.34 22983.60 8290.50 21276.64 15394.05 19390.09 245
FE-MVS79.98 22578.86 23183.36 18186.47 24466.45 21389.73 6984.74 26572.80 18684.22 22791.38 17544.95 37193.60 11663.93 28191.50 24890.04 246
fmvsm_l_conf0.5_n82.06 18681.54 19483.60 17283.94 29273.90 12983.35 19186.10 23658.97 32283.80 23290.36 21074.23 19186.94 27682.90 7890.22 27289.94 247
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18483.73 29773.21 13883.00 20285.59 24658.22 32882.96 24790.09 22072.30 21886.65 28281.97 9389.95 27689.88 248
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23379.75 29481.80 33850.62 33989.46 24066.85 25285.64 33089.72 249
h-mvs3384.25 14182.76 17188.72 7091.82 11982.60 5784.00 17284.98 25971.27 20586.70 16990.55 20763.04 27393.92 10278.26 13194.20 18689.63 250
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30484.26 31565.60 26791.36 25089.56 251
MG-MVS80.32 21680.94 20478.47 26588.18 20652.62 35082.29 22385.01 25872.01 20079.24 30292.54 14169.36 23893.36 12970.65 21889.19 28489.45 252
PLCcopyleft73.85 1682.09 18580.31 21287.45 8990.86 14880.29 7085.88 13790.65 15468.17 23976.32 32286.33 27973.12 20992.61 15061.40 30290.02 27589.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ab-mvs79.67 22780.56 20876.99 28788.48 20056.93 32084.70 15786.06 23768.95 23080.78 28293.08 11975.30 17884.62 31056.78 32490.90 26089.43 254
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 24989.35 255
thres100view90075.45 27075.05 27076.66 29487.27 22751.88 35581.07 24273.26 34675.68 14383.25 24286.37 27845.54 36288.80 25151.98 35790.99 25589.31 256
tfpn200view974.86 27874.23 27776.74 29386.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25589.31 256
3Dnovator80.37 784.80 12784.71 13685.06 13386.36 25074.71 12488.77 9390.00 17775.65 14484.96 20593.17 11674.06 19391.19 18778.28 13091.09 25389.29 258
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19883.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21590.68 26689.17 259
CNLPA83.55 16183.10 16684.90 13489.34 17783.87 4784.54 16288.77 19579.09 10383.54 23888.66 24174.87 18281.73 33066.84 25392.29 23089.11 260
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32182.99 32462.17 29590.64 27089.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVSFormer82.23 18081.57 19384.19 15885.54 26769.26 18591.98 3190.08 17571.54 20276.23 32385.07 30258.69 29894.27 8686.26 4088.77 28889.03 264
jason77.42 24975.75 26382.43 20787.10 23469.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28589.00 24870.74 21789.27 28389.03 264
jason: jason.
TSAR-MVS + GP.83.95 15182.69 17387.72 8689.27 17981.45 6483.72 18281.58 29174.73 15485.66 19286.06 28472.56 21692.69 14875.44 16795.21 15089.01 266
QAPM82.59 17482.59 17682.58 20286.44 24566.69 21089.94 6690.36 16367.97 24284.94 20792.58 14072.71 21392.18 16170.63 21987.73 30588.85 267
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
LF4IMVS82.75 17281.93 18485.19 13082.08 31480.15 7185.53 14388.76 19668.01 24085.58 19487.75 25571.80 22686.85 27874.02 18293.87 19788.58 269
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26845.14 38782.89 24884.22 31148.37 34670.36 37073.40 19387.03 31488.52 270
MVS_111021_LR84.28 14083.76 15685.83 12189.23 18083.07 5280.99 24383.56 27372.71 18886.07 18589.07 23581.75 11386.19 29177.11 14993.36 20688.24 271
EG-PatchMatch MVS84.08 14784.11 14983.98 16092.22 10072.61 14682.20 22987.02 22572.63 18988.86 12191.02 18678.52 14091.11 19073.41 19291.09 25388.21 272
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24970.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23870.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
lupinMVS76.37 26374.46 27582.09 20985.54 26769.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29888.94 24969.85 22588.77 28888.07 274
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21455.94 34275.16 33876.53 38263.97 26591.16 18865.00 27290.97 25888.06 276
TAMVS78.08 24276.36 25783.23 18590.62 15272.87 13979.08 26980.01 30061.72 29781.35 27586.92 27363.96 26688.78 25450.61 36293.01 21788.04 277
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14191.58 12573.24 13784.21 16691.67 12662.86 28480.94 27987.16 26867.27 24992.87 14569.82 22688.94 28787.99 278
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 16036.68 39278.98 34547.87 37692.45 22687.95 279
CDS-MVSNet77.32 25075.40 26683.06 18889.00 18472.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29388.76 25554.64 34292.37 22787.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22574.41 12680.86 24579.67 30155.68 34384.69 21190.31 21360.91 28185.42 30362.20 29391.59 24687.88 281
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25878.81 30586.28 28256.36 31381.63 33156.63 32579.04 37987.87 282
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21480.28 29191.50 17264.21 26474.72 36146.96 38094.58 17687.82 283
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25871.89 36638.21 39985.04 33887.69 284
BH-RMVSNet80.53 20980.22 21681.49 22187.19 23066.21 21577.79 28786.23 23474.21 15983.69 23388.50 24273.25 20890.75 20463.18 28887.90 30287.52 285
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24489.16 23359.90 28984.46 31168.61 24285.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVScopyleft76.72 1381.98 18982.00 18381.93 21184.42 28468.22 19488.50 9889.48 18866.92 25281.80 26791.86 15972.59 21590.16 22071.19 21291.25 25287.40 287
1112_ss74.82 27973.74 28078.04 27489.57 17060.04 28876.49 30787.09 22454.31 35073.66 34779.80 35560.25 28686.76 28158.37 31684.15 35087.32 288
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15755.95 32573.40 34186.17 23550.70 37373.14 34885.94 28658.31 30085.90 29756.51 32683.22 35587.20 289
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29988.21 24660.50 28269.12 37458.33 31877.62 38487.04 290
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25381.84 26489.93 22172.08 22366.92 38646.05 38392.54 22587.01 291
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29386.62 295
MSDG80.06 22479.99 22380.25 24083.91 29468.04 19877.51 29289.19 19177.65 12181.94 26183.45 31976.37 17286.31 28763.31 28786.59 32086.41 296
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24182.52 28162.45 28983.34 24187.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
TinyColmap81.25 19982.34 18077.99 27585.33 26960.68 28382.32 22288.33 20371.26 20786.97 16492.22 15477.10 15986.98 27562.37 29195.17 15286.31 298
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16763.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 30985.18 30649.87 36681.67 36586.14 299
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15985.39 29559.82 29067.32 38359.79 31083.50 35485.96 300
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22175.79 32566.49 25658.39 40381.06 34453.68 32585.98 29453.55 34792.97 21985.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 16085.40 29459.80 29167.25 38459.66 31183.54 35385.92 302
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28390.96 19075.44 17569.35 37356.13 32988.33 29485.86 303
DPM-MVS80.10 22379.18 22882.88 19790.71 15169.74 17878.87 27390.84 14960.29 31675.64 33285.92 28767.28 24893.11 13671.24 21191.79 24185.77 304
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27785.66 305
原ACMM184.60 14292.81 8674.01 12891.50 12962.59 28582.73 25190.67 20476.53 16994.25 8869.24 23095.69 13785.55 306
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31484.97 30757.72 32287.05 31385.51 307
MAR-MVS80.24 21978.74 23584.73 13986.87 24178.18 8985.75 14087.81 21165.67 26577.84 31178.50 36673.79 19790.53 21161.59 30190.87 26185.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31278.84 34762.20 29386.04 32885.23 309
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 20952.14 36383.65 23491.25 17863.24 27086.65 28254.66 34194.11 19085.17 310
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28784.83 30949.58 36882.65 36185.11 311
MVP-Stereo75.81 26873.51 28482.71 19989.35 17673.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30589.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26173.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32080.67 33652.86 35387.59 30784.77 314
MSLP-MVS++85.00 12586.03 10981.90 21291.84 11771.56 16686.75 12593.02 8575.95 13987.12 15789.39 22877.98 14589.40 24577.46 14394.78 17084.75 315
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
无先验82.81 20885.62 24558.09 32991.41 18367.95 24984.48 318
PAPM71.77 30470.06 31876.92 28986.39 24653.97 33876.62 30586.62 23053.44 35463.97 39384.73 30657.79 30692.34 15739.65 39481.33 36984.45 319
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16057.36 33675.43 33378.30 36769.11 24091.44 18060.68 30687.70 30684.42 320
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 22078.56 30780.57 34846.20 35488.20 26146.99 37989.29 28184.32 321
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 27979.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
AdaColmapbinary83.66 15783.69 15783.57 17590.05 16572.26 15486.29 13390.00 17778.19 11681.65 27087.16 26883.40 8494.24 8961.69 29994.76 17384.21 324
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 14282.43 28339.76 40185.64 19388.76 23844.71 37387.88 26373.86 18585.88 32984.16 325
GSMVS83.88 326
sam_mvs146.11 35583.88 326
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28387.01 27258.11 32082.63 36383.88 326
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21376.90 31850.50 37575.72 33092.38 14548.07 34884.07 31768.72 24182.91 35883.85 329
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21394.16 3074.80 15375.72 33092.59 13848.69 34595.56 4073.48 19182.91 35883.85 329
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
旧先验191.97 10971.77 15981.78 28891.84 16173.92 19593.65 20383.61 332
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 4059.12 39376.45 32355.06 34675.31 33782.36 33255.74 31754.82 40347.02 37887.24 30983.52 333
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23561.40 27075.26 32387.13 22061.25 30574.38 34377.22 37776.94 16290.94 19564.63 27784.83 34583.35 337
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23761.30 27275.55 32187.12 22361.24 30674.45 34178.79 36477.20 15690.93 19664.62 27884.80 34683.32 338
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Anonymous2023120671.38 30971.88 30169.88 34086.31 25154.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28872.06 36444.35 38793.23 21283.23 340
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
PMVScopyleft80.48 690.08 3890.66 4588.34 7896.71 392.97 290.31 5889.57 18788.51 1890.11 9495.12 4590.98 688.92 25077.55 14297.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
TR-MVS76.77 25775.79 26279.72 24786.10 26065.79 21977.14 29583.02 27765.20 27381.40 27482.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27885.19 30563.54 28479.21 37782.59 345
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26951.06 36974.85 34079.10 36155.10 32268.83 37668.86 23879.20 37882.58 346
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29669.06 37548.57 37281.67 36582.55 347
MIMVSNet71.09 31171.59 30369.57 34387.23 22850.07 36778.91 27171.83 35660.20 31871.26 35791.76 16655.08 32376.09 35541.06 39287.02 31582.54 348
BH-untuned80.96 20380.99 20380.84 23188.55 19968.23 19380.33 25088.46 19972.79 18786.55 17386.76 27474.72 18791.77 17461.79 29888.99 28582.52 349
API-MVS82.28 17982.61 17581.30 22286.29 25369.79 17788.71 9487.67 21278.42 11482.15 25984.15 31377.98 14591.59 17665.39 26892.75 22282.51 350
Gipumacopyleft84.44 13586.33 10378.78 25884.20 28973.57 13189.55 7690.44 16084.24 4684.38 21794.89 4976.35 17380.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16771.77 35592.79 13444.38 37475.65 35864.53 27985.37 33282.18 352
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 27043.31 39479.40 29879.39 35943.47 37668.55 37869.05 23584.91 34282.10 353
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
新几何182.95 19393.96 5678.56 8580.24 29855.45 34483.93 23191.08 18571.19 22988.33 25965.84 26493.07 21581.95 355
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29470.64 36948.46 37379.35 37581.66 357
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33774.77 35945.82 38482.96 35681.60 358
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16786.33 27945.79 36182.59 32569.63 22790.65 26981.54 359
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
test22293.31 7076.54 11079.38 26377.79 30952.59 35882.36 25590.84 19766.83 25291.69 24381.25 363
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30365.36 39250.21 36381.01 37181.25 363
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18779.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22077.54 38581.08 366
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19791.75 16767.96 24785.24 30468.57 24492.18 23581.06 368
PM-MVS80.20 22079.00 22983.78 16688.17 20786.66 1681.31 23766.81 38169.64 22388.33 13690.19 21664.58 26183.63 32171.99 20890.03 27481.06 368
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32760.04 39956.16 32877.77 38280.68 370
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28878.95 36352.03 33165.53 39165.77 26677.45 38679.95 374
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29287.05 27252.83 32863.09 39751.92 36072.44 39279.84 375
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24584.38 34979.15 376
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21465.18 38792.97 12633.64 39783.06 32253.52 34869.61 39978.79 377
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25582.85 36078.52 378
BH-w/o76.57 25976.07 26178.10 27286.88 24065.92 21877.63 28986.33 23265.69 26480.89 28079.95 35468.97 24290.74 20553.01 35285.25 33477.62 379
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18555.88 40386.68 2764.62 39297.01 830.36 40183.97 31944.78 38682.94 35776.26 381
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33064.40 39444.90 38581.44 36875.76 382
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31881.75 32955.37 33577.70 38374.94 384
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23485.92 24146.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32649.76 40632.68 40589.41 28072.15 387
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21785.26 3575.92 31670.09 36564.34 27776.09 32681.25 34365.87 25778.07 34953.86 34483.82 35271.48 388
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16855.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31544.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21255.46 31963.12 39641.72 39181.30 37069.09 392
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31668.23 38132.07 40669.46 40068.17 393
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31059.35 40146.16 38158.96 40465.93 395
test_f64.31 35665.85 34659.67 38166.54 40662.24 26457.76 39770.96 36240.13 39984.36 21882.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25156.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25458.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29266.35 38848.97 37178.57 38060.81 399
wuyk23d75.13 27379.30 22762.63 37375.56 37575.18 12380.89 24473.10 34875.06 15294.76 1395.32 3787.73 4052.85 40434.16 40397.11 7959.85 400
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32465.91 39035.40 40147.01 40559.25 401
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3774.65 32967.39 37571.94 20177.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18249.95 34376.43 35438.74 39671.92 39455.84 403
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1620.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
test_one_060193.85 5973.27 13694.11 3686.57 2893.47 3994.64 6088.42 26
eth-test20.00 419
eth-test0.00 419
ZD-MVS92.22 10080.48 6891.85 12071.22 20890.38 9092.98 12486.06 6196.11 781.99 9296.75 89
test_241102_ONE94.18 4772.65 14193.69 5483.62 5294.11 2493.78 10490.28 1495.50 48
9.1489.29 6091.84 11788.80 9295.32 1375.14 15191.07 7992.89 12987.27 4493.78 10783.69 7097.55 66
save fliter93.75 6077.44 10086.31 13289.72 18170.80 211
test072694.16 5072.56 14790.63 4893.90 4683.61 5393.75 3294.49 6589.76 18
test_part293.86 5877.77 9592.84 49
sam_mvs45.92 360
MTGPAbinary91.81 124
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
MTMP90.66 4733.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
TEST992.34 9579.70 7583.94 17390.32 16465.41 27084.49 21490.97 18882.03 10693.63 112
test_892.09 10478.87 8283.82 17890.31 16665.79 26084.36 21890.96 19081.93 10893.44 125
agg_prior91.58 12577.69 9790.30 16784.32 22093.18 133
test_prior478.97 8184.59 159
test_prior283.37 19075.43 14784.58 21291.57 17081.92 11079.54 11796.97 82
旧先验281.73 23256.88 34086.54 17884.90 30872.81 202
新几何281.72 233
原ACMM282.26 226
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata179.62 25873.95 162
plane_prior793.45 6577.31 103
plane_prior692.61 8776.54 11074.84 183
plane_prior492.95 127
plane_prior376.85 10877.79 12086.55 173
plane_prior289.45 8179.44 98
plane_prior192.83 85
plane_prior76.42 11387.15 11575.94 14095.03 158
n20.00 420
nn0.00 420
door-mid74.45 335
test1191.46 130
door72.57 350
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 15373.30 17680.55 285
ACMP_Plane91.19 13784.77 15373.30 17680.55 285
BP-MVS77.30 147
HQP3-MVS92.68 9594.47 178
HQP2-MVS72.10 221
NP-MVS91.95 11074.55 12590.17 218
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
ACMMP++_ref95.74 136
ACMMP++97.35 72
Test By Simon79.09 137