| mamv4 | | | 95.37 2 | 94.51 2 | 97.96 1 | 96.31 10 | 98.41 1 | 91.05 46 | 97.23 2 | 95.32 2 | 99.01 2 | 97.26 6 | 80.16 133 | 98.99 1 | 95.15 1 | 99.14 2 | 96.47 30 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 4 | 93.44 3 | 91.82 22 | 93.73 64 | 85.72 34 | 96.79 1 | 95.51 9 | 88.86 16 | 95.63 10 | 96.99 10 | 84.81 72 | 93.16 135 | 91.10 2 | 97.53 72 | 96.58 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MP-MVS-pluss | | | 90.81 30 | 91.08 37 | 89.99 50 | 95.97 14 | 79.88 75 | 88.13 102 | 94.51 18 | 75.79 147 | 92.94 47 | 94.96 51 | 88.36 30 | 95.01 68 | 90.70 3 | 98.40 20 | 95.09 62 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| reproduce_model | | | 92.89 5 | 93.18 7 | 92.01 13 | 94.20 49 | 88.23 9 | 92.87 13 | 94.32 21 | 90.25 11 | 95.65 9 | 95.74 30 | 87.75 41 | 95.72 36 | 89.60 4 | 98.27 26 | 92.08 193 |
|
| ACMMP_NAP | | | 90.65 32 | 91.07 39 | 89.42 61 | 95.93 16 | 79.54 80 | 89.95 66 | 93.68 58 | 77.65 126 | 91.97 67 | 94.89 53 | 88.38 29 | 95.45 51 | 89.27 5 | 97.87 53 | 93.27 138 |
|
| reproduce-ours | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 204 |
|
| our_new_method | | | 92.86 6 | 93.22 5 | 91.76 23 | 94.39 44 | 87.71 11 | 92.40 27 | 94.38 19 | 89.82 13 | 95.51 12 | 95.49 38 | 89.64 21 | 95.82 26 | 89.13 6 | 98.26 28 | 91.76 204 |
|
| ZNCC-MVS | | | 91.26 24 | 91.34 31 | 91.01 34 | 95.73 21 | 83.05 56 | 92.18 31 | 94.22 29 | 80.14 92 | 91.29 78 | 93.97 96 | 87.93 40 | 95.87 20 | 88.65 8 | 97.96 48 | 94.12 99 |
|
| MTAPA | | | 91.52 18 | 91.60 22 | 91.29 30 | 96.59 4 | 86.29 21 | 92.02 33 | 91.81 125 | 84.07 49 | 92.00 66 | 94.40 76 | 86.63 54 | 95.28 58 | 88.59 9 | 98.31 24 | 92.30 182 |
|
| HPM-MVS |  | | 92.13 11 | 92.20 13 | 91.91 17 | 95.58 26 | 84.67 46 | 93.51 8 | 94.85 15 | 82.88 64 | 91.77 70 | 93.94 102 | 90.55 12 | 95.73 35 | 88.50 10 | 98.23 31 | 95.33 53 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MSP-MVS | | | 89.08 66 | 88.16 78 | 91.83 20 | 95.76 18 | 86.14 25 | 92.75 17 | 93.90 48 | 78.43 116 | 89.16 121 | 92.25 159 | 72.03 228 | 96.36 4 | 88.21 11 | 90.93 262 | 92.98 152 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| HPM-MVS_fast | | | 92.50 8 | 92.54 9 | 92.37 6 | 95.93 16 | 85.81 33 | 92.99 12 | 94.23 27 | 85.21 40 | 92.51 58 | 95.13 48 | 90.65 9 | 95.34 55 | 88.06 12 | 98.15 37 | 95.95 40 |
|
| MM | | | 87.64 85 | 87.15 90 | 89.09 67 | 89.51 174 | 76.39 118 | 88.68 96 | 86.76 233 | 84.54 46 | 83.58 242 | 93.78 108 | 73.36 210 | 96.48 2 | 87.98 13 | 96.21 112 | 94.41 86 |
|
| SMA-MVS |  | | 90.31 38 | 90.48 50 | 89.83 54 | 95.31 30 | 79.52 81 | 90.98 47 | 93.24 74 | 75.37 154 | 92.84 51 | 95.28 44 | 85.58 67 | 96.09 8 | 87.92 14 | 97.76 57 | 93.88 108 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_fmvsmconf0.01_n | | | 86.68 96 | 86.52 102 | 87.18 94 | 85.94 263 | 78.30 89 | 86.93 120 | 92.20 110 | 65.94 263 | 89.16 121 | 93.16 124 | 83.10 89 | 89.89 233 | 87.81 15 | 94.43 184 | 93.35 133 |
|
| HFP-MVS | | | 91.30 23 | 91.39 27 | 91.02 33 | 95.43 29 | 84.66 47 | 92.58 22 | 93.29 72 | 81.99 70 | 91.47 73 | 93.96 99 | 88.35 31 | 95.56 42 | 87.74 16 | 97.74 59 | 92.85 155 |
|
| ACMMPR | | | 91.49 19 | 91.35 30 | 91.92 16 | 95.74 20 | 85.88 30 | 92.58 22 | 93.25 73 | 81.99 70 | 91.40 74 | 94.17 88 | 87.51 45 | 95.87 20 | 87.74 16 | 97.76 57 | 93.99 102 |
|
| anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 8 | 89.82 171 | 86.67 18 | 90.51 54 | 90.20 175 | 69.87 228 | 95.06 15 | 96.14 25 | 84.28 77 | 93.07 139 | 87.68 18 | 96.34 106 | 97.09 19 |
|
| TSAR-MVS + MP. | | | 88.14 75 | 87.82 82 | 89.09 67 | 95.72 22 | 76.74 112 | 92.49 25 | 91.19 142 | 67.85 251 | 86.63 176 | 94.84 55 | 79.58 138 | 95.96 15 | 87.62 19 | 94.50 181 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| SteuartSystems-ACMMP | | | 91.16 27 | 91.36 28 | 90.55 41 | 93.91 60 | 80.97 70 | 91.49 40 | 93.48 63 | 82.82 65 | 92.60 57 | 93.97 96 | 88.19 33 | 96.29 6 | 87.61 20 | 98.20 34 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| region2R | | | 91.44 22 | 91.30 34 | 91.87 19 | 95.75 19 | 85.90 29 | 92.63 21 | 93.30 71 | 81.91 72 | 90.88 88 | 94.21 84 | 87.75 41 | 95.87 20 | 87.60 21 | 97.71 60 | 93.83 111 |
|
| APDe-MVS |  | | 91.22 25 | 91.92 15 | 89.14 66 | 92.97 82 | 78.04 93 | 92.84 16 | 94.14 36 | 83.33 58 | 93.90 28 | 95.73 31 | 88.77 27 | 96.41 3 | 87.60 21 | 97.98 45 | 92.98 152 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSC_two_6792asdad | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 146 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 177 |
|
| No_MVS | | | | | 88.81 71 | 91.55 129 | 77.99 94 | | 91.01 146 | | | | | 96.05 9 | 87.45 23 | 98.17 35 | 92.40 177 |
|
| DVP-MVS++ | | | 90.07 42 | 91.09 36 | 87.00 97 | 91.55 129 | 72.64 147 | 96.19 2 | 94.10 39 | 85.33 38 | 93.49 39 | 94.64 64 | 81.12 122 | 95.88 18 | 87.41 25 | 95.94 128 | 92.48 171 |
|
| test_0728_THIRD | | | | | | | | | | 85.33 38 | 93.75 34 | 94.65 61 | 87.44 46 | 95.78 32 | 87.41 25 | 98.21 32 | 92.98 152 |
|
| XVS | | | 91.54 17 | 91.36 28 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 94.03 93 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 92 |
|
| X-MVStestdata | | | 85.04 125 | 82.70 176 | 92.08 9 | 95.64 24 | 86.25 22 | 92.64 19 | 93.33 67 | 85.07 41 | 89.99 100 | 16.05 419 | 86.57 55 | 95.80 28 | 87.35 27 | 97.62 64 | 94.20 92 |
|
| ACMMP |  | | 91.91 14 | 91.87 19 | 92.03 12 | 95.53 27 | 85.91 28 | 93.35 11 | 94.16 32 | 82.52 67 | 92.39 61 | 94.14 89 | 89.15 25 | 95.62 39 | 87.35 27 | 98.24 30 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CP-MVS | | | 91.67 16 | 91.58 23 | 91.96 14 | 95.29 31 | 87.62 13 | 93.38 9 | 93.36 65 | 83.16 60 | 91.06 82 | 94.00 95 | 88.26 32 | 95.71 37 | 87.28 30 | 98.39 21 | 92.55 168 |
|
| mPP-MVS | | | 91.69 15 | 91.47 26 | 92.37 6 | 96.04 13 | 88.48 8 | 92.72 18 | 92.60 100 | 83.09 61 | 91.54 72 | 94.25 83 | 87.67 44 | 95.51 47 | 87.21 31 | 98.11 38 | 93.12 146 |
|
| SR-MVS-dyc-post | | | 92.41 9 | 92.41 10 | 92.39 5 | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 88.83 26 | 95.51 47 | 87.16 32 | 97.60 66 | 92.73 158 |
|
| RE-MVS-def | | | | 92.61 8 | | 94.13 55 | 88.95 6 | 92.87 13 | 94.16 32 | 88.75 18 | 93.79 32 | 94.43 72 | 90.64 10 | | 87.16 32 | 97.60 66 | 92.73 158 |
|
| GST-MVS | | | 90.96 29 | 91.01 40 | 90.82 37 | 95.45 28 | 82.73 59 | 91.75 38 | 93.74 54 | 80.98 83 | 91.38 75 | 93.80 106 | 87.20 49 | 95.80 28 | 87.10 34 | 97.69 61 | 93.93 105 |
|
| test_fmvsmconf0.1_n | | | 86.18 105 | 85.88 115 | 87.08 96 | 85.26 272 | 78.25 90 | 85.82 144 | 91.82 123 | 65.33 277 | 88.55 132 | 92.35 156 | 82.62 96 | 89.80 235 | 86.87 35 | 94.32 187 | 93.18 143 |
|
| SR-MVS | | | 92.23 10 | 92.34 11 | 91.91 17 | 94.89 38 | 87.85 10 | 92.51 24 | 93.87 51 | 88.20 23 | 93.24 42 | 94.02 94 | 90.15 16 | 95.67 38 | 86.82 36 | 97.34 76 | 92.19 189 |
|
| test_fmvsmconf_n | | | 85.88 110 | 85.51 124 | 86.99 98 | 84.77 280 | 78.21 91 | 85.40 152 | 91.39 135 | 65.32 278 | 87.72 153 | 91.81 170 | 82.33 101 | 89.78 236 | 86.68 37 | 94.20 190 | 92.99 151 |
|
| APD-MVS_3200maxsize | | | 92.05 12 | 92.24 12 | 91.48 25 | 93.02 80 | 85.17 39 | 92.47 26 | 95.05 14 | 87.65 27 | 93.21 43 | 94.39 77 | 90.09 17 | 95.08 66 | 86.67 38 | 97.60 66 | 94.18 95 |
|
| DVP-MVS |  | | 90.06 43 | 91.32 32 | 86.29 111 | 94.16 53 | 72.56 151 | 90.54 52 | 91.01 146 | 83.61 55 | 93.75 34 | 94.65 61 | 89.76 18 | 95.78 32 | 86.42 39 | 97.97 46 | 90.55 240 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 86.79 102 | 94.25 48 | 72.45 155 | 90.54 52 | 94.10 39 | | | | | 95.88 18 | 86.42 39 | 97.97 46 | 92.02 196 |
|
| PGM-MVS | | | 91.20 26 | 90.95 43 | 91.93 15 | 95.67 23 | 85.85 31 | 90.00 62 | 93.90 48 | 80.32 89 | 91.74 71 | 94.41 75 | 88.17 34 | 95.98 13 | 86.37 41 | 97.99 43 | 93.96 104 |
|
| MP-MVS |  | | 91.14 28 | 90.91 44 | 91.83 20 | 96.18 11 | 86.88 17 | 92.20 30 | 93.03 86 | 82.59 66 | 88.52 134 | 94.37 78 | 86.74 53 | 95.41 53 | 86.32 42 | 98.21 32 | 93.19 142 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MVSFormer | | | 82.23 184 | 81.57 197 | 84.19 160 | 85.54 268 | 69.26 189 | 91.98 34 | 90.08 178 | 71.54 207 | 76.23 332 | 85.07 311 | 58.69 302 | 94.27 87 | 86.26 43 | 88.77 295 | 89.03 271 |
|
| test_djsdf | | | 89.62 54 | 89.01 67 | 91.45 26 | 92.36 97 | 82.98 57 | 91.98 34 | 90.08 178 | 71.54 207 | 94.28 24 | 96.54 16 | 81.57 117 | 94.27 87 | 86.26 43 | 96.49 100 | 97.09 19 |
|
| v7n | | | 90.13 40 | 90.96 42 | 87.65 91 | 91.95 112 | 71.06 173 | 89.99 64 | 93.05 83 | 86.53 31 | 94.29 22 | 96.27 20 | 82.69 93 | 94.08 98 | 86.25 45 | 97.63 63 | 97.82 8 |
|
| SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 114 | 91.63 123 | 77.07 109 | 89.82 69 | 93.77 53 | 78.90 109 | 92.88 48 | 92.29 157 | 86.11 63 | 90.22 220 | 86.24 46 | 97.24 79 | 91.36 216 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| HPM-MVS++ |  | | 88.93 68 | 88.45 76 | 90.38 44 | 94.92 36 | 85.85 31 | 89.70 71 | 91.27 139 | 78.20 118 | 86.69 175 | 92.28 158 | 80.36 131 | 95.06 67 | 86.17 47 | 96.49 100 | 90.22 246 |
|
| TDRefinement | | | 93.52 3 | 93.39 4 | 93.88 2 | 95.94 15 | 90.26 4 | 95.70 4 | 96.46 3 | 90.58 9 | 92.86 50 | 96.29 19 | 88.16 35 | 94.17 95 | 86.07 48 | 98.48 18 | 97.22 17 |
|
| SED-MVS | | | 90.46 37 | 91.64 21 | 86.93 99 | 94.18 50 | 72.65 145 | 90.47 55 | 93.69 56 | 83.77 52 | 94.11 26 | 94.27 79 | 90.28 14 | 95.84 24 | 86.03 49 | 97.92 49 | 92.29 183 |
|
| test_241102_TWO | | | | | | | | | 93.71 55 | 83.77 52 | 93.49 39 | 94.27 79 | 89.27 23 | 95.84 24 | 86.03 49 | 97.82 54 | 92.04 195 |
|
| UA-Net | | | 91.49 19 | 91.53 24 | 91.39 27 | 94.98 35 | 82.95 58 | 93.52 7 | 92.79 94 | 88.22 22 | 88.53 133 | 97.64 3 | 83.45 86 | 94.55 83 | 86.02 51 | 98.60 13 | 96.67 25 |
|
| IU-MVS | | | | | | 94.18 50 | 72.64 147 | | 90.82 151 | 56.98 346 | 89.67 109 | | | | 85.78 52 | 97.92 49 | 93.28 137 |
|
| MVS_0304 | | | 85.37 117 | 84.58 142 | 87.75 88 | 85.28 271 | 73.36 136 | 86.54 133 | 85.71 248 | 77.56 129 | 81.78 276 | 92.47 150 | 70.29 236 | 96.02 11 | 85.59 53 | 95.96 125 | 93.87 109 |
|
| SF-MVS | | | 90.27 39 | 90.80 46 | 88.68 76 | 92.86 86 | 77.09 108 | 91.19 44 | 95.74 6 | 81.38 78 | 92.28 62 | 93.80 106 | 86.89 52 | 94.64 78 | 85.52 54 | 97.51 73 | 94.30 91 |
|
| LPG-MVS_test | | | 91.47 21 | 91.68 20 | 90.82 37 | 94.75 41 | 81.69 63 | 90.00 62 | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 58 |
|
| LGP-MVS_train | | | | | 90.82 37 | 94.75 41 | 81.69 63 | | 94.27 24 | 82.35 68 | 93.67 37 | 94.82 56 | 91.18 4 | 95.52 45 | 85.36 55 | 98.73 7 | 95.23 58 |
|
| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 3 | 98.67 1 | 85.39 37 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 16 | 85.07 57 | 99.27 1 | 99.54 1 |
|
| OurMVSNet-221017-0 | | | 90.01 46 | 89.74 56 | 90.83 36 | 93.16 78 | 80.37 72 | 91.91 36 | 93.11 79 | 81.10 81 | 95.32 14 | 97.24 7 | 72.94 214 | 94.85 72 | 85.07 57 | 97.78 56 | 97.26 15 |
|
| ACMM | | 79.39 9 | 90.65 32 | 90.99 41 | 89.63 57 | 95.03 34 | 83.53 51 | 89.62 76 | 93.35 66 | 79.20 105 | 93.83 31 | 93.60 116 | 90.81 7 | 92.96 142 | 85.02 59 | 98.45 19 | 92.41 175 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 57 | 90.92 35 | 91.27 138 | 81.66 66 | 91.25 42 | 94.13 37 | 88.89 15 | 88.83 126 | 94.26 82 | 77.55 156 | 95.86 23 | 84.88 60 | 95.87 132 | 95.24 57 |
|
| MVSMamba_PlusPlus | | | 87.53 86 | 88.86 71 | 83.54 179 | 92.03 110 | 62.26 266 | 91.49 40 | 92.62 99 | 88.07 24 | 88.07 145 | 96.17 23 | 72.24 223 | 95.79 31 | 84.85 61 | 94.16 192 | 92.58 166 |
|
| OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 63 | 94.76 40 | 79.86 76 | 86.76 127 | 92.78 95 | 78.78 111 | 92.51 58 | 93.64 115 | 88.13 36 | 93.84 107 | 84.83 62 | 97.55 69 | 94.10 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CNVR-MVS | | | 87.81 83 | 87.68 83 | 88.21 83 | 92.87 84 | 77.30 107 | 85.25 153 | 91.23 140 | 77.31 131 | 87.07 166 | 91.47 179 | 82.94 91 | 94.71 75 | 84.67 63 | 96.27 110 | 92.62 165 |
|
| XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 46 | 94.47 43 | 85.95 27 | 86.84 123 | 93.91 47 | 80.07 93 | 86.75 172 | 93.26 121 | 93.64 2 | 90.93 198 | 84.60 64 | 90.75 269 | 93.97 103 |
|
| DPE-MVS |  | | 90.53 36 | 91.08 37 | 88.88 69 | 93.38 71 | 78.65 87 | 89.15 87 | 94.05 41 | 84.68 45 | 93.90 28 | 94.11 91 | 88.13 36 | 96.30 5 | 84.51 65 | 97.81 55 | 91.70 208 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_fmvsmvis_n_1920 | | | 85.22 119 | 85.36 128 | 84.81 139 | 85.80 265 | 76.13 122 | 85.15 156 | 92.32 107 | 61.40 307 | 91.33 76 | 90.85 202 | 83.76 83 | 86.16 294 | 84.31 66 | 93.28 213 | 92.15 191 |
|
| mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 29 | 93.51 67 | 84.79 44 | 89.89 68 | 90.63 156 | 70.00 227 | 94.55 19 | 96.67 14 | 87.94 39 | 93.59 118 | 84.27 67 | 95.97 124 | 95.52 48 |
|
| DeepC-MVS | | 82.31 4 | 89.15 64 | 89.08 66 | 89.37 62 | 93.64 66 | 79.07 83 | 88.54 98 | 94.20 30 | 73.53 173 | 89.71 107 | 94.82 56 | 85.09 68 | 95.77 34 | 84.17 68 | 98.03 41 | 93.26 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| jajsoiax | | | 89.41 57 | 88.81 73 | 91.19 32 | 93.38 71 | 84.72 45 | 89.70 71 | 90.29 172 | 69.27 231 | 94.39 20 | 96.38 18 | 86.02 65 | 93.52 122 | 83.96 69 | 95.92 130 | 95.34 52 |
|
| v10 | | | 86.54 98 | 87.10 92 | 84.84 138 | 88.16 209 | 63.28 248 | 86.64 130 | 92.20 110 | 75.42 153 | 92.81 53 | 94.50 68 | 74.05 198 | 94.06 99 | 83.88 70 | 96.28 108 | 97.17 18 |
|
| XVG-OURS | | | 89.18 63 | 88.83 72 | 90.23 47 | 94.28 47 | 86.11 26 | 85.91 140 | 93.60 61 | 80.16 91 | 89.13 123 | 93.44 118 | 83.82 80 | 90.98 196 | 83.86 71 | 95.30 153 | 93.60 126 |
|
| 9.14 | | | | 89.29 62 | | 91.84 119 | | 88.80 93 | 95.32 12 | 75.14 156 | 91.07 81 | 92.89 136 | 87.27 47 | 93.78 108 | 83.69 72 | 97.55 69 | |
|
| ACMH | | 76.49 14 | 89.34 59 | 91.14 35 | 83.96 163 | 92.50 94 | 70.36 179 | 89.55 77 | 93.84 52 | 81.89 73 | 94.70 17 | 95.44 40 | 90.69 8 | 88.31 262 | 83.33 73 | 98.30 25 | 93.20 141 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| fmvsm_s_conf0.1_n | | | 82.17 187 | 81.59 195 | 83.94 165 | 86.87 242 | 71.57 169 | 85.19 155 | 77.42 319 | 62.27 299 | 84.47 221 | 91.33 182 | 76.43 174 | 85.91 299 | 83.14 74 | 87.14 318 | 94.33 90 |
|
| fmvsm_s_conf0.5_n | | | 81.91 195 | 81.30 202 | 83.75 169 | 86.02 262 | 71.56 170 | 84.73 161 | 77.11 323 | 62.44 296 | 84.00 234 | 90.68 208 | 76.42 175 | 85.89 301 | 83.14 74 | 87.11 319 | 93.81 115 |
|
| v8 | | | 86.22 103 | 86.83 99 | 84.36 152 | 87.82 215 | 62.35 264 | 86.42 134 | 91.33 137 | 76.78 135 | 92.73 55 | 94.48 70 | 73.41 207 | 93.72 110 | 83.10 76 | 95.41 146 | 97.01 21 |
|
| PS-MVSNAJss | | | 88.31 73 | 87.90 81 | 89.56 59 | 93.31 73 | 77.96 96 | 87.94 105 | 91.97 117 | 70.73 218 | 94.19 25 | 96.67 14 | 76.94 166 | 94.57 81 | 83.07 77 | 96.28 108 | 96.15 32 |
|
| CPTT-MVS | | | 89.39 58 | 88.98 69 | 90.63 40 | 95.09 33 | 86.95 16 | 92.09 32 | 92.30 108 | 79.74 96 | 87.50 157 | 92.38 152 | 81.42 119 | 93.28 131 | 83.07 77 | 97.24 79 | 91.67 209 |
|
| SixPastTwentyTwo | | | 87.20 89 | 87.45 87 | 86.45 108 | 92.52 93 | 69.19 192 | 87.84 107 | 88.05 212 | 81.66 75 | 94.64 18 | 96.53 17 | 65.94 258 | 94.75 74 | 83.02 79 | 96.83 89 | 95.41 50 |
|
| fmvsm_l_conf0.5_n | | | 82.06 190 | 81.54 198 | 83.60 174 | 83.94 295 | 73.90 133 | 83.35 196 | 86.10 240 | 58.97 328 | 83.80 238 | 90.36 216 | 74.23 195 | 86.94 278 | 82.90 80 | 90.22 277 | 89.94 254 |
|
| ACMP | | 79.16 10 | 90.54 35 | 90.60 49 | 90.35 45 | 94.36 46 | 80.98 69 | 89.16 86 | 94.05 41 | 79.03 108 | 92.87 49 | 93.74 111 | 90.60 11 | 95.21 61 | 82.87 81 | 98.76 4 | 94.87 66 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v1240 | | | 84.30 142 | 84.51 146 | 83.65 172 | 87.65 221 | 61.26 277 | 82.85 212 | 91.54 129 | 67.94 249 | 90.68 91 | 90.65 211 | 71.71 230 | 93.64 112 | 82.84 82 | 94.78 174 | 96.07 35 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 179 | 81.93 188 | 84.50 147 | 87.68 219 | 73.35 137 | 86.14 139 | 77.70 316 | 61.64 305 | 85.02 208 | 91.62 175 | 77.75 151 | 86.24 290 | 82.79 83 | 87.07 320 | 93.91 107 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 185 | 81.51 199 | 84.32 155 | 86.56 244 | 73.35 137 | 85.46 149 | 77.30 320 | 61.81 301 | 84.51 218 | 90.88 201 | 77.36 158 | 86.21 292 | 82.72 84 | 86.97 325 | 93.38 132 |
|
| XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 43 | 94.91 37 | 84.50 48 | 89.49 81 | 93.98 43 | 79.68 97 | 92.09 64 | 93.89 104 | 83.80 81 | 93.10 138 | 82.67 85 | 98.04 39 | 93.64 123 |
|
| EC-MVSNet | | | 88.01 78 | 88.32 77 | 87.09 95 | 89.28 180 | 72.03 161 | 90.31 59 | 96.31 4 | 80.88 84 | 85.12 206 | 89.67 232 | 84.47 75 | 95.46 50 | 82.56 86 | 96.26 111 | 93.77 117 |
|
| CS-MVS | | | 88.14 75 | 87.67 84 | 89.54 60 | 89.56 173 | 79.18 82 | 90.47 55 | 94.77 16 | 79.37 103 | 84.32 225 | 89.33 236 | 83.87 79 | 94.53 84 | 82.45 87 | 94.89 169 | 94.90 64 |
|
| v1192 | | | 84.57 135 | 84.69 140 | 84.21 158 | 87.75 217 | 62.88 252 | 83.02 206 | 91.43 132 | 69.08 234 | 89.98 102 | 90.89 199 | 72.70 218 | 93.62 116 | 82.41 88 | 94.97 166 | 96.13 33 |
|
| v1921920 | | | 84.23 146 | 84.37 150 | 83.79 167 | 87.64 222 | 61.71 271 | 82.91 210 | 91.20 141 | 67.94 249 | 90.06 97 | 90.34 217 | 72.04 227 | 93.59 118 | 82.32 89 | 94.91 167 | 96.07 35 |
|
| test_fmvsm_n_1920 | | | 83.60 162 | 82.89 173 | 85.74 125 | 85.22 273 | 77.74 99 | 84.12 174 | 90.48 159 | 59.87 326 | 86.45 185 | 91.12 189 | 75.65 178 | 85.89 301 | 82.28 90 | 90.87 265 | 93.58 127 |
|
| APD-MVS |  | | 89.54 56 | 89.63 58 | 89.26 64 | 92.57 91 | 81.34 68 | 90.19 61 | 93.08 82 | 80.87 85 | 91.13 80 | 93.19 122 | 86.22 62 | 95.97 14 | 82.23 91 | 97.18 81 | 90.45 242 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| tt0805 | | | 88.09 77 | 89.79 55 | 82.98 193 | 93.26 75 | 63.94 241 | 91.10 45 | 89.64 188 | 85.07 41 | 90.91 86 | 91.09 190 | 89.16 24 | 91.87 173 | 82.03 92 | 95.87 132 | 93.13 144 |
|
| EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 145 | 86.88 100 | 84.01 294 | 72.76 144 | 83.91 181 | 85.18 257 | 80.44 86 | 88.75 127 | 85.49 300 | 80.08 134 | 91.92 170 | 82.02 93 | 90.85 267 | 95.97 38 |
|
| ZD-MVS | | | | | | 92.22 103 | 80.48 71 | | 91.85 121 | 71.22 213 | 90.38 92 | 92.98 131 | 86.06 64 | 96.11 7 | 81.99 94 | 96.75 92 | |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 200 | 80.87 210 | 83.25 185 | 83.73 300 | 73.21 142 | 83.00 207 | 85.59 251 | 58.22 334 | 82.96 253 | 90.09 226 | 72.30 222 | 86.65 284 | 81.97 95 | 89.95 281 | 89.88 255 |
|
| EI-MVSNet-UG-set | | | 85.04 125 | 84.44 147 | 86.85 101 | 83.87 298 | 72.52 153 | 83.82 183 | 85.15 258 | 80.27 90 | 88.75 127 | 85.45 302 | 79.95 136 | 91.90 171 | 81.92 96 | 90.80 268 | 96.13 33 |
|
| v144192 | | | 84.24 145 | 84.41 148 | 83.71 171 | 87.59 223 | 61.57 272 | 82.95 209 | 91.03 145 | 67.82 252 | 89.80 105 | 90.49 214 | 73.28 211 | 93.51 123 | 81.88 97 | 94.89 169 | 96.04 37 |
|
| v1144 | | | 84.54 137 | 84.72 138 | 84.00 161 | 87.67 220 | 62.55 259 | 82.97 208 | 90.93 149 | 70.32 223 | 89.80 105 | 90.99 193 | 73.50 204 | 93.48 124 | 81.69 98 | 94.65 179 | 95.97 38 |
|
| train_agg | | | 85.98 108 | 85.28 129 | 88.07 85 | 92.34 98 | 79.70 78 | 83.94 178 | 90.32 167 | 65.79 267 | 84.49 219 | 90.97 194 | 81.93 111 | 93.63 113 | 81.21 99 | 96.54 98 | 90.88 228 |
|
| NCCC | | | 87.36 87 | 86.87 98 | 88.83 70 | 92.32 100 | 78.84 86 | 86.58 131 | 91.09 144 | 78.77 112 | 84.85 214 | 90.89 199 | 80.85 125 | 95.29 56 | 81.14 100 | 95.32 150 | 92.34 180 |
|
| v2v482 | | | 84.09 149 | 84.24 152 | 83.62 173 | 87.13 232 | 61.40 274 | 82.71 215 | 89.71 186 | 72.19 203 | 89.55 115 | 91.41 180 | 70.70 235 | 93.20 133 | 81.02 101 | 93.76 201 | 96.25 31 |
|
| WR-MVS_H | | | 89.91 50 | 91.31 33 | 85.71 126 | 96.32 9 | 62.39 262 | 89.54 79 | 93.31 70 | 90.21 12 | 95.57 11 | 95.66 33 | 81.42 119 | 95.90 17 | 80.94 102 | 98.80 3 | 98.84 5 |
|
| LS3D | | | 90.60 34 | 90.34 51 | 91.38 28 | 89.03 185 | 84.23 49 | 93.58 6 | 94.68 17 | 90.65 8 | 90.33 94 | 93.95 101 | 84.50 74 | 95.37 54 | 80.87 103 | 95.50 145 | 94.53 79 |
|
| test9_res | | | | | | | | | | | | | | | 80.83 104 | 96.45 103 | 90.57 238 |
|
| HQP_MVS | | | 87.75 84 | 87.43 88 | 88.70 75 | 93.45 68 | 76.42 116 | 89.45 82 | 93.61 59 | 79.44 101 | 86.55 177 | 92.95 134 | 74.84 187 | 95.22 59 | 80.78 105 | 95.83 134 | 94.46 80 |
|
| plane_prior5 | | | | | | | | | 93.61 59 | | | | | 95.22 59 | 80.78 105 | 95.83 134 | 94.46 80 |
|
| PHI-MVS | | | 86.38 100 | 85.81 117 | 88.08 84 | 88.44 203 | 77.34 105 | 89.35 85 | 93.05 83 | 73.15 186 | 84.76 215 | 87.70 263 | 78.87 142 | 94.18 93 | 80.67 107 | 96.29 107 | 92.73 158 |
|
| K. test v3 | | | 85.14 122 | 84.73 136 | 86.37 109 | 91.13 143 | 69.63 185 | 85.45 150 | 76.68 327 | 84.06 50 | 92.44 60 | 96.99 10 | 62.03 280 | 94.65 77 | 80.58 108 | 93.24 214 | 94.83 71 |
|
| Vis-MVSNet |  | | 86.86 92 | 86.58 101 | 87.72 89 | 92.09 107 | 77.43 104 | 87.35 113 | 92.09 113 | 78.87 110 | 84.27 230 | 94.05 92 | 78.35 146 | 93.65 111 | 80.54 109 | 91.58 250 | 92.08 193 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| casdiffmvs_mvg |  | | 86.72 95 | 87.51 86 | 84.36 152 | 87.09 236 | 65.22 228 | 84.16 172 | 94.23 27 | 77.89 122 | 91.28 79 | 93.66 114 | 84.35 76 | 92.71 148 | 80.07 110 | 94.87 172 | 95.16 60 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| V42 | | | 83.47 166 | 83.37 164 | 83.75 169 | 83.16 313 | 63.33 247 | 81.31 242 | 90.23 174 | 69.51 230 | 90.91 86 | 90.81 204 | 74.16 196 | 92.29 162 | 80.06 111 | 90.22 277 | 95.62 46 |
|
| MVS_Test | | | 82.47 181 | 83.22 165 | 80.22 245 | 82.62 318 | 57.75 319 | 82.54 221 | 91.96 118 | 71.16 214 | 82.89 254 | 92.52 149 | 77.41 157 | 90.50 214 | 80.04 112 | 87.84 312 | 92.40 177 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 13 | 91.95 14 | 92.04 11 | 93.68 65 | 86.15 24 | 93.37 10 | 95.10 13 | 90.28 10 | 92.11 63 | 95.03 50 | 89.75 20 | 94.93 70 | 79.95 113 | 98.27 26 | 95.04 63 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_0402 | | | 88.65 69 | 89.58 60 | 85.88 122 | 92.55 92 | 72.22 159 | 84.01 176 | 89.44 193 | 88.63 20 | 94.38 21 | 95.77 29 | 86.38 61 | 93.59 118 | 79.84 114 | 95.21 154 | 91.82 202 |
|
| EGC-MVSNET | | | 74.79 285 | 69.99 327 | 89.19 65 | 94.89 38 | 87.00 15 | 91.89 37 | 86.28 237 | 1.09 420 | 2.23 422 | 95.98 27 | 81.87 114 | 89.48 240 | 79.76 115 | 95.96 125 | 91.10 221 |
|
| nrg030 | | | 87.85 82 | 88.49 75 | 85.91 120 | 90.07 166 | 69.73 183 | 87.86 106 | 94.20 30 | 74.04 165 | 92.70 56 | 94.66 60 | 85.88 66 | 91.50 179 | 79.72 116 | 97.32 77 | 96.50 29 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 117 | 96.16 115 | 90.22 246 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 88 | 86.21 108 | 90.49 42 | 91.48 133 | 84.90 42 | 83.41 194 | 92.38 105 | 70.25 224 | 89.35 119 | 90.68 208 | 82.85 92 | 94.57 81 | 79.55 118 | 95.95 127 | 92.00 197 |
|
| test_prior2 | | | | | | | | 83.37 195 | | 75.43 152 | 84.58 217 | 91.57 176 | 81.92 113 | | 79.54 119 | 96.97 85 | |
|
| lessismore_v0 | | | | | 85.95 119 | 91.10 144 | 70.99 174 | | 70.91 370 | | 91.79 69 | 94.42 74 | 61.76 281 | 92.93 144 | 79.52 120 | 93.03 219 | 93.93 105 |
|
| PS-CasMVS | | | 90.06 43 | 91.92 15 | 84.47 149 | 96.56 6 | 58.83 309 | 89.04 88 | 92.74 96 | 91.40 6 | 96.12 5 | 96.06 26 | 87.23 48 | 95.57 41 | 79.42 121 | 98.74 6 | 99.00 2 |
|
| tttt0517 | | | 81.07 205 | 79.58 228 | 85.52 129 | 88.99 187 | 66.45 218 | 87.03 119 | 75.51 335 | 73.76 169 | 88.32 141 | 90.20 221 | 37.96 396 | 94.16 97 | 79.36 122 | 95.13 157 | 95.93 41 |
|
| balanced_conf03 | | | 84.80 130 | 85.40 126 | 83.00 192 | 88.95 188 | 61.44 273 | 90.42 58 | 92.37 106 | 71.48 209 | 88.72 129 | 93.13 125 | 70.16 238 | 95.15 63 | 79.26 123 | 94.11 193 | 92.41 175 |
|
| DTE-MVSNet | | | 89.98 47 | 91.91 17 | 84.21 158 | 96.51 7 | 57.84 317 | 88.93 90 | 92.84 93 | 91.92 4 | 96.16 4 | 96.23 21 | 86.95 51 | 95.99 12 | 79.05 124 | 98.57 15 | 98.80 6 |
|
| CP-MVSNet | | | 89.27 62 | 90.91 44 | 84.37 150 | 96.34 8 | 58.61 312 | 88.66 97 | 92.06 114 | 90.78 7 | 95.67 8 | 95.17 47 | 81.80 115 | 95.54 44 | 79.00 125 | 98.69 10 | 98.95 4 |
|
| ambc | | | | | 82.98 193 | 90.55 156 | 64.86 231 | 88.20 100 | 89.15 196 | | 89.40 118 | 93.96 99 | 71.67 231 | 91.38 186 | 78.83 126 | 96.55 97 | 92.71 161 |
|
| PEN-MVS | | | 90.03 45 | 91.88 18 | 84.48 148 | 96.57 5 | 58.88 306 | 88.95 89 | 93.19 75 | 91.62 5 | 96.01 7 | 96.16 24 | 87.02 50 | 95.60 40 | 78.69 127 | 98.72 9 | 98.97 3 |
|
| mmtdpeth | | | 85.13 123 | 85.78 119 | 83.17 189 | 84.65 282 | 74.71 127 | 85.87 142 | 90.35 166 | 77.94 121 | 83.82 237 | 96.96 12 | 77.75 151 | 80.03 348 | 78.44 128 | 96.21 112 | 94.79 72 |
|
| baseline | | | 85.20 121 | 85.93 113 | 83.02 191 | 86.30 253 | 62.37 263 | 84.55 165 | 93.96 44 | 74.48 162 | 87.12 161 | 92.03 162 | 82.30 103 | 91.94 169 | 78.39 129 | 94.21 189 | 94.74 73 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 102 | 85.65 122 | 87.96 87 | 91.30 136 | 76.92 110 | 87.19 115 | 91.99 116 | 70.56 219 | 84.96 210 | 90.69 207 | 80.01 135 | 95.14 64 | 78.37 130 | 95.78 138 | 91.82 202 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMH+ | | 77.89 11 | 90.73 31 | 91.50 25 | 88.44 78 | 93.00 81 | 76.26 119 | 89.65 75 | 95.55 8 | 87.72 26 | 93.89 30 | 94.94 52 | 91.62 3 | 93.44 126 | 78.35 131 | 98.76 4 | 95.61 47 |
|
| MCST-MVS | | | 84.36 139 | 83.93 157 | 85.63 127 | 91.59 124 | 71.58 168 | 83.52 191 | 92.13 112 | 61.82 300 | 83.96 235 | 89.75 231 | 79.93 137 | 93.46 125 | 78.33 132 | 94.34 186 | 91.87 201 |
|
| 3Dnovator | | 80.37 7 | 84.80 130 | 84.71 139 | 85.06 136 | 86.36 251 | 74.71 127 | 88.77 94 | 90.00 180 | 75.65 149 | 84.96 210 | 93.17 123 | 74.06 197 | 91.19 189 | 78.28 133 | 91.09 256 | 89.29 265 |
|
| h-mvs33 | | | 84.25 144 | 82.76 175 | 88.72 73 | 91.82 121 | 82.60 60 | 84.00 177 | 84.98 264 | 71.27 210 | 86.70 173 | 90.55 213 | 63.04 277 | 93.92 103 | 78.26 134 | 94.20 190 | 89.63 257 |
|
| hse-mvs2 | | | 83.47 166 | 81.81 190 | 88.47 77 | 91.03 145 | 82.27 61 | 82.61 216 | 83.69 276 | 71.27 210 | 86.70 173 | 86.05 293 | 63.04 277 | 92.41 156 | 78.26 134 | 93.62 208 | 90.71 233 |
|
| c3_l | | | 81.64 198 | 81.59 195 | 81.79 220 | 80.86 337 | 59.15 303 | 78.61 282 | 90.18 176 | 68.36 241 | 87.20 159 | 87.11 277 | 69.39 240 | 91.62 177 | 78.16 136 | 94.43 184 | 94.60 75 |
|
| IterMVS-LS | | | 84.73 132 | 84.98 133 | 83.96 163 | 87.35 227 | 63.66 242 | 83.25 199 | 89.88 183 | 76.06 139 | 89.62 111 | 92.37 155 | 73.40 209 | 92.52 153 | 78.16 136 | 94.77 176 | 95.69 43 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 82.61 177 | 82.42 183 | 83.20 187 | 83.25 310 | 63.66 242 | 83.50 192 | 85.07 259 | 76.06 139 | 86.55 177 | 85.10 308 | 73.41 207 | 90.25 217 | 78.15 138 | 90.67 271 | 95.68 44 |
|
| GeoE | | | 85.45 116 | 85.81 117 | 84.37 150 | 90.08 164 | 67.07 210 | 85.86 143 | 91.39 135 | 72.33 200 | 87.59 155 | 90.25 220 | 84.85 71 | 92.37 158 | 78.00 139 | 91.94 243 | 93.66 120 |
|
| diffmvs |  | | 80.40 217 | 80.48 215 | 80.17 246 | 79.02 358 | 60.04 291 | 77.54 296 | 90.28 173 | 66.65 261 | 82.40 261 | 87.33 272 | 73.50 204 | 87.35 271 | 77.98 140 | 89.62 285 | 93.13 144 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| OMC-MVS | | | 88.19 74 | 87.52 85 | 90.19 48 | 91.94 114 | 81.68 65 | 87.49 112 | 93.17 76 | 76.02 141 | 88.64 130 | 91.22 185 | 84.24 78 | 93.37 129 | 77.97 141 | 97.03 84 | 95.52 48 |
|
| casdiffmvs |  | | 85.21 120 | 85.85 116 | 83.31 184 | 86.17 258 | 62.77 255 | 83.03 205 | 93.93 46 | 74.69 160 | 88.21 142 | 92.68 144 | 82.29 104 | 91.89 172 | 77.87 142 | 93.75 204 | 95.27 56 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| SPE-MVS-test | | | 87.00 90 | 86.43 104 | 88.71 74 | 89.46 176 | 77.46 102 | 89.42 84 | 95.73 7 | 77.87 124 | 81.64 278 | 87.25 273 | 82.43 98 | 94.53 84 | 77.65 143 | 96.46 102 | 94.14 98 |
|
| DP-MVS | | | 88.60 70 | 89.01 67 | 87.36 93 | 91.30 136 | 77.50 101 | 87.55 109 | 92.97 89 | 87.95 25 | 89.62 111 | 92.87 137 | 84.56 73 | 93.89 104 | 77.65 143 | 96.62 95 | 90.70 234 |
|
| PMVS |  | 80.48 6 | 90.08 41 | 90.66 48 | 88.34 81 | 96.71 3 | 92.97 2 | 90.31 59 | 89.57 191 | 88.51 21 | 90.11 96 | 95.12 49 | 90.98 6 | 88.92 252 | 77.55 145 | 97.07 83 | 83.13 351 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MSLP-MVS++ | | | 85.00 128 | 86.03 111 | 81.90 214 | 91.84 119 | 71.56 170 | 86.75 128 | 93.02 87 | 75.95 144 | 87.12 161 | 89.39 234 | 77.98 148 | 89.40 247 | 77.46 146 | 94.78 174 | 84.75 323 |
|
| IterMVS-SCA-FT | | | 80.64 212 | 79.41 229 | 84.34 154 | 83.93 296 | 69.66 184 | 76.28 318 | 81.09 299 | 72.43 195 | 86.47 183 | 90.19 222 | 60.46 287 | 93.15 136 | 77.45 147 | 86.39 331 | 90.22 246 |
|
| CDPH-MVS | | | 86.17 106 | 85.54 123 | 88.05 86 | 92.25 101 | 75.45 124 | 83.85 182 | 92.01 115 | 65.91 265 | 86.19 186 | 91.75 173 | 83.77 82 | 94.98 69 | 77.43 148 | 96.71 93 | 93.73 118 |
|
| test_fmvs3 | | | 75.72 274 | 75.20 274 | 77.27 289 | 75.01 390 | 69.47 186 | 78.93 275 | 84.88 266 | 46.67 391 | 87.08 165 | 87.84 260 | 50.44 346 | 71.62 376 | 77.42 149 | 88.53 298 | 90.72 232 |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 150 | | |
|
| HQP-MVS | | | 84.61 134 | 84.06 154 | 86.27 112 | 91.19 139 | 70.66 175 | 84.77 158 | 92.68 97 | 73.30 181 | 80.55 292 | 90.17 224 | 72.10 224 | 94.61 79 | 77.30 150 | 94.47 182 | 93.56 129 |
|
| MVS_111021_LR | | | 84.28 143 | 83.76 159 | 85.83 124 | 89.23 182 | 83.07 55 | 80.99 248 | 83.56 278 | 72.71 193 | 86.07 189 | 89.07 241 | 81.75 116 | 86.19 293 | 77.11 152 | 93.36 209 | 88.24 279 |
|
| CANet | | | 83.79 158 | 82.85 174 | 86.63 104 | 86.17 258 | 72.21 160 | 83.76 186 | 91.43 132 | 77.24 132 | 74.39 351 | 87.45 269 | 75.36 181 | 95.42 52 | 77.03 153 | 92.83 224 | 92.25 187 |
|
| dcpmvs_2 | | | 84.23 146 | 85.14 130 | 81.50 224 | 88.61 198 | 61.98 270 | 82.90 211 | 93.11 79 | 68.66 240 | 92.77 54 | 92.39 151 | 78.50 144 | 87.63 268 | 76.99 154 | 92.30 231 | 94.90 64 |
|
| Anonymous20231211 | | | 88.40 71 | 89.62 59 | 84.73 142 | 90.46 157 | 65.27 227 | 88.86 91 | 93.02 87 | 87.15 28 | 93.05 46 | 97.10 8 | 82.28 105 | 92.02 168 | 76.70 155 | 97.99 43 | 96.88 23 |
|
| MVS_111021_HR | | | 84.63 133 | 84.34 151 | 85.49 131 | 90.18 163 | 75.86 123 | 79.23 273 | 87.13 224 | 73.35 178 | 85.56 200 | 89.34 235 | 83.60 85 | 90.50 214 | 76.64 156 | 94.05 196 | 90.09 252 |
|
| RPSCF | | | 88.00 79 | 86.93 97 | 91.22 31 | 90.08 164 | 89.30 5 | 89.68 73 | 91.11 143 | 79.26 104 | 89.68 108 | 94.81 59 | 82.44 97 | 87.74 266 | 76.54 157 | 88.74 297 | 96.61 27 |
|
| RRT-MVS | | | 82.97 174 | 83.44 161 | 81.57 223 | 85.06 275 | 58.04 315 | 87.20 114 | 90.37 164 | 77.88 123 | 88.59 131 | 93.70 113 | 63.17 274 | 93.05 140 | 76.49 158 | 88.47 299 | 93.62 124 |
|
| mvs5depth | | | 83.82 157 | 84.54 144 | 81.68 221 | 82.23 319 | 68.65 196 | 86.89 121 | 89.90 182 | 80.02 94 | 87.74 152 | 97.86 2 | 64.19 267 | 82.02 333 | 76.37 159 | 95.63 143 | 94.35 88 |
|
| DIV-MVS_self_test | | | 80.43 215 | 80.23 218 | 81.02 233 | 79.99 345 | 59.25 300 | 77.07 304 | 87.02 229 | 67.38 253 | 86.19 186 | 89.22 237 | 63.09 275 | 90.16 222 | 76.32 160 | 95.80 136 | 93.66 120 |
|
| cl____ | | | 80.42 216 | 80.23 218 | 81.02 233 | 79.99 345 | 59.25 300 | 77.07 304 | 87.02 229 | 67.37 254 | 86.18 188 | 89.21 238 | 63.08 276 | 90.16 222 | 76.31 161 | 95.80 136 | 93.65 122 |
|
| AUN-MVS | | | 81.18 204 | 78.78 237 | 88.39 79 | 90.93 147 | 82.14 62 | 82.51 222 | 83.67 277 | 64.69 282 | 80.29 296 | 85.91 296 | 51.07 341 | 92.38 157 | 76.29 162 | 93.63 207 | 90.65 237 |
|
| MGCFI-Net | | | 85.04 125 | 85.95 112 | 82.31 210 | 87.52 224 | 63.59 244 | 86.23 138 | 93.96 44 | 73.46 174 | 88.07 145 | 87.83 261 | 86.46 57 | 90.87 203 | 76.17 163 | 93.89 199 | 92.47 173 |
|
| Gipuma |  | | 84.44 138 | 86.33 105 | 78.78 262 | 84.20 292 | 73.57 135 | 89.55 77 | 90.44 161 | 84.24 48 | 84.38 222 | 94.89 53 | 76.35 177 | 80.40 345 | 76.14 164 | 96.80 91 | 82.36 361 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| miper_ehance_all_eth | | | 80.34 219 | 80.04 225 | 81.24 229 | 79.82 348 | 58.95 305 | 77.66 293 | 89.66 187 | 65.75 270 | 85.99 193 | 85.11 307 | 68.29 247 | 91.42 184 | 76.03 165 | 92.03 239 | 93.33 134 |
|
| alignmvs | | | 83.94 155 | 83.98 156 | 83.80 166 | 87.80 216 | 67.88 204 | 84.54 167 | 91.42 134 | 73.27 184 | 88.41 138 | 87.96 256 | 72.33 221 | 90.83 204 | 76.02 166 | 94.11 193 | 92.69 162 |
|
| PC_three_1452 | | | | | | | | | | 58.96 329 | 90.06 97 | 91.33 182 | 80.66 128 | 93.03 141 | 75.78 167 | 95.94 128 | 92.48 171 |
|
| sasdasda | | | 85.50 113 | 86.14 109 | 83.58 175 | 87.97 211 | 67.13 208 | 87.55 109 | 94.32 21 | 73.44 176 | 88.47 135 | 87.54 266 | 86.45 58 | 91.06 194 | 75.76 168 | 93.76 201 | 92.54 169 |
|
| canonicalmvs | | | 85.50 113 | 86.14 109 | 83.58 175 | 87.97 211 | 67.13 208 | 87.55 109 | 94.32 21 | 73.44 176 | 88.47 135 | 87.54 266 | 86.45 58 | 91.06 194 | 75.76 168 | 93.76 201 | 92.54 169 |
|
| CSCG | | | 86.26 101 | 86.47 103 | 85.60 128 | 90.87 149 | 74.26 131 | 87.98 104 | 91.85 121 | 80.35 88 | 89.54 117 | 88.01 255 | 79.09 140 | 92.13 164 | 75.51 170 | 95.06 161 | 90.41 243 |
|
| thisisatest0530 | | | 79.07 233 | 77.33 253 | 84.26 157 | 87.13 232 | 64.58 233 | 83.66 189 | 75.95 330 | 68.86 237 | 85.22 205 | 87.36 271 | 38.10 393 | 93.57 121 | 75.47 171 | 94.28 188 | 94.62 74 |
|
| TSAR-MVS + GP. | | | 83.95 154 | 82.69 177 | 87.72 89 | 89.27 181 | 81.45 67 | 83.72 187 | 81.58 296 | 74.73 159 | 85.66 196 | 86.06 292 | 72.56 220 | 92.69 150 | 75.44 172 | 95.21 154 | 89.01 273 |
|
| cl22 | | | 78.97 234 | 78.21 246 | 81.24 229 | 77.74 362 | 59.01 304 | 77.46 300 | 87.13 224 | 65.79 267 | 84.32 225 | 85.10 308 | 58.96 301 | 90.88 202 | 75.36 173 | 92.03 239 | 93.84 110 |
|
| eth_miper_zixun_eth | | | 80.84 208 | 80.22 220 | 82.71 201 | 81.41 329 | 60.98 283 | 77.81 291 | 90.14 177 | 67.31 256 | 86.95 169 | 87.24 274 | 64.26 265 | 92.31 160 | 75.23 174 | 91.61 248 | 94.85 70 |
|
| v148 | | | 82.31 182 | 82.48 182 | 81.81 219 | 85.59 267 | 59.66 296 | 81.47 241 | 86.02 244 | 72.85 189 | 88.05 147 | 90.65 211 | 70.73 234 | 90.91 200 | 75.15 175 | 91.79 244 | 94.87 66 |
|
| FC-MVSNet-test | | | 85.93 109 | 87.05 94 | 82.58 204 | 92.25 101 | 56.44 328 | 85.75 145 | 93.09 81 | 77.33 130 | 91.94 68 | 94.65 61 | 74.78 189 | 93.41 128 | 75.11 176 | 98.58 14 | 97.88 7 |
|
| UniMVSNet (Re) | | | 86.87 91 | 86.98 96 | 86.55 106 | 93.11 79 | 68.48 197 | 83.80 185 | 92.87 91 | 80.37 87 | 89.61 113 | 91.81 170 | 77.72 153 | 94.18 93 | 75.00 177 | 98.53 16 | 96.99 22 |
|
| FA-MVS(test-final) | | | 83.13 172 | 83.02 171 | 83.43 180 | 86.16 260 | 66.08 221 | 88.00 103 | 88.36 206 | 75.55 150 | 85.02 208 | 92.75 142 | 65.12 262 | 92.50 154 | 74.94 178 | 91.30 254 | 91.72 206 |
|
| OPU-MVS | | | | | 88.27 82 | 91.89 115 | 77.83 97 | 90.47 55 | | | | 91.22 185 | 81.12 122 | 94.68 76 | 74.48 179 | 95.35 148 | 92.29 183 |
|
| DELS-MVS | | | 81.44 201 | 81.25 203 | 82.03 212 | 84.27 291 | 62.87 253 | 76.47 316 | 92.49 102 | 70.97 216 | 81.64 278 | 83.83 323 | 75.03 184 | 92.70 149 | 74.29 180 | 92.22 237 | 90.51 241 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Effi-MVS+ | | | 83.90 156 | 84.01 155 | 83.57 177 | 87.22 230 | 65.61 226 | 86.55 132 | 92.40 103 | 78.64 114 | 81.34 283 | 84.18 321 | 83.65 84 | 92.93 144 | 74.22 181 | 87.87 311 | 92.17 190 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 93 | 87.06 93 | 86.17 117 | 92.86 86 | 67.02 211 | 82.55 220 | 91.56 128 | 83.08 62 | 90.92 84 | 91.82 169 | 78.25 147 | 93.99 100 | 74.16 182 | 98.35 22 | 97.49 13 |
|
| DU-MVS | | | 86.80 94 | 86.99 95 | 86.21 115 | 93.24 76 | 67.02 211 | 83.16 203 | 92.21 109 | 81.73 74 | 90.92 84 | 91.97 163 | 77.20 160 | 93.99 100 | 74.16 182 | 98.35 22 | 97.61 10 |
|
| testf1 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 244 | 74.12 184 | 96.10 119 | 94.45 82 |
|
| APD_test2 | | | 89.30 60 | 89.12 64 | 89.84 52 | 88.67 195 | 85.64 35 | 90.61 50 | 93.17 76 | 86.02 34 | 93.12 44 | 95.30 42 | 84.94 69 | 89.44 244 | 74.12 184 | 96.10 119 | 94.45 82 |
|
| MVStest1 | | | 70.05 328 | 69.26 331 | 72.41 335 | 58.62 422 | 55.59 335 | 76.61 313 | 65.58 391 | 53.44 363 | 89.28 120 | 93.32 120 | 22.91 422 | 71.44 378 | 74.08 186 | 89.52 286 | 90.21 250 |
|
| LF4IMVS | | | 82.75 176 | 81.93 188 | 85.19 133 | 82.08 320 | 80.15 74 | 85.53 148 | 88.76 200 | 68.01 246 | 85.58 199 | 87.75 262 | 71.80 229 | 86.85 280 | 74.02 187 | 93.87 200 | 88.58 276 |
|
| FIs | | | 85.35 118 | 86.27 106 | 82.60 203 | 91.86 116 | 57.31 321 | 85.10 157 | 93.05 83 | 75.83 146 | 91.02 83 | 93.97 96 | 73.57 203 | 92.91 146 | 73.97 188 | 98.02 42 | 97.58 12 |
|
| IS-MVSNet | | | 86.66 97 | 86.82 100 | 86.17 117 | 92.05 109 | 66.87 214 | 91.21 43 | 88.64 202 | 86.30 33 | 89.60 114 | 92.59 145 | 69.22 242 | 94.91 71 | 73.89 189 | 97.89 52 | 96.72 24 |
|
| EU-MVSNet | | | 75.12 279 | 74.43 281 | 77.18 290 | 83.11 315 | 59.48 298 | 85.71 147 | 82.43 288 | 39.76 411 | 85.64 197 | 88.76 244 | 44.71 378 | 87.88 265 | 73.86 190 | 85.88 337 | 84.16 334 |
|
| ETV-MVS | | | 84.31 141 | 83.91 158 | 85.52 129 | 88.58 199 | 70.40 178 | 84.50 169 | 93.37 64 | 78.76 113 | 84.07 233 | 78.72 374 | 80.39 130 | 95.13 65 | 73.82 191 | 92.98 221 | 91.04 222 |
|
| APD_test1 | | | 88.40 71 | 87.91 80 | 89.88 51 | 89.50 175 | 86.65 20 | 89.98 65 | 91.91 120 | 84.26 47 | 90.87 89 | 93.92 103 | 82.18 106 | 89.29 248 | 73.75 192 | 94.81 173 | 93.70 119 |
|
| Anonymous20240521 | | | 80.18 225 | 81.25 203 | 76.95 292 | 83.15 314 | 60.84 285 | 82.46 223 | 85.99 245 | 68.76 238 | 86.78 170 | 93.73 112 | 59.13 299 | 77.44 359 | 73.71 193 | 97.55 69 | 92.56 167 |
|
| MVSTER | | | 77.09 256 | 75.70 269 | 81.25 227 | 75.27 387 | 61.08 279 | 77.49 299 | 85.07 259 | 60.78 317 | 86.55 177 | 88.68 246 | 43.14 385 | 90.25 217 | 73.69 194 | 90.67 271 | 92.42 174 |
|
| ITE_SJBPF | | | | | 90.11 49 | 90.72 152 | 84.97 41 | | 90.30 170 | 81.56 76 | 90.02 99 | 91.20 187 | 82.40 99 | 90.81 205 | 73.58 195 | 94.66 178 | 94.56 76 |
|
| RPMNet | | | 78.88 236 | 78.28 245 | 80.68 239 | 79.58 349 | 62.64 257 | 82.58 218 | 94.16 32 | 74.80 158 | 75.72 339 | 92.59 145 | 48.69 350 | 95.56 42 | 73.48 196 | 82.91 367 | 83.85 338 |
|
| EG-PatchMatch MVS | | | 84.08 150 | 84.11 153 | 83.98 162 | 92.22 103 | 72.61 150 | 82.20 234 | 87.02 229 | 72.63 194 | 88.86 124 | 91.02 192 | 78.52 143 | 91.11 192 | 73.41 197 | 91.09 256 | 88.21 280 |
|
| test_fmvs2 | | | 73.57 295 | 72.80 297 | 75.90 307 | 72.74 403 | 68.84 195 | 77.07 304 | 84.32 273 | 45.14 397 | 82.89 254 | 84.22 320 | 48.37 351 | 70.36 380 | 73.40 198 | 87.03 322 | 88.52 277 |
|
| patch_mono-2 | | | 78.89 235 | 79.39 230 | 77.41 288 | 84.78 279 | 68.11 201 | 75.60 326 | 83.11 281 | 60.96 315 | 79.36 306 | 89.89 229 | 75.18 183 | 72.97 371 | 73.32 199 | 92.30 231 | 91.15 220 |
|
| miper_lstm_enhance | | | 76.45 267 | 76.10 265 | 77.51 286 | 76.72 373 | 60.97 284 | 64.69 391 | 85.04 261 | 63.98 285 | 83.20 249 | 88.22 252 | 56.67 315 | 78.79 355 | 73.22 200 | 93.12 217 | 92.78 157 |
|
| xiu_mvs_v1_base_debu | | | 80.84 208 | 80.14 222 | 82.93 196 | 88.31 204 | 71.73 164 | 79.53 264 | 87.17 221 | 65.43 273 | 79.59 302 | 82.73 338 | 76.94 166 | 90.14 225 | 73.22 200 | 88.33 302 | 86.90 300 |
|
| xiu_mvs_v1_base | | | 80.84 208 | 80.14 222 | 82.93 196 | 88.31 204 | 71.73 164 | 79.53 264 | 87.17 221 | 65.43 273 | 79.59 302 | 82.73 338 | 76.94 166 | 90.14 225 | 73.22 200 | 88.33 302 | 86.90 300 |
|
| xiu_mvs_v1_base_debi | | | 80.84 208 | 80.14 222 | 82.93 196 | 88.31 204 | 71.73 164 | 79.53 264 | 87.17 221 | 65.43 273 | 79.59 302 | 82.73 338 | 76.94 166 | 90.14 225 | 73.22 200 | 88.33 302 | 86.90 300 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 81 | 88.76 74 | 85.18 134 | 94.02 58 | 64.13 238 | 84.38 170 | 91.29 138 | 84.88 44 | 92.06 65 | 93.84 105 | 86.45 58 | 93.73 109 | 73.22 200 | 98.66 11 | 97.69 9 |
|
| TAPA-MVS | | 77.73 12 | 85.71 112 | 84.83 135 | 88.37 80 | 88.78 194 | 79.72 77 | 87.15 117 | 93.50 62 | 69.17 232 | 85.80 195 | 89.56 233 | 80.76 126 | 92.13 164 | 73.21 205 | 95.51 144 | 93.25 140 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| miper_enhance_ethall | | | 77.83 247 | 76.93 257 | 80.51 240 | 76.15 379 | 58.01 316 | 75.47 330 | 88.82 198 | 58.05 336 | 83.59 241 | 80.69 354 | 64.41 264 | 91.20 188 | 73.16 206 | 92.03 239 | 92.33 181 |
|
| 旧先验2 | | | | | | | | 81.73 237 | | 56.88 347 | 86.54 182 | | | 84.90 311 | 72.81 207 | | |
|
| 114514_t | | | 83.10 173 | 82.54 181 | 84.77 141 | 92.90 83 | 69.10 194 | 86.65 129 | 90.62 157 | 54.66 358 | 81.46 280 | 90.81 204 | 76.98 165 | 94.38 86 | 72.62 208 | 96.18 114 | 90.82 230 |
|
| UniMVSNet_ETH3D | | | 89.12 65 | 90.72 47 | 84.31 156 | 97.00 2 | 64.33 237 | 89.67 74 | 88.38 205 | 88.84 17 | 94.29 22 | 97.57 4 | 90.48 13 | 91.26 187 | 72.57 209 | 97.65 62 | 97.34 14 |
|
| NR-MVSNet | | | 86.00 107 | 86.22 107 | 85.34 132 | 93.24 76 | 64.56 234 | 82.21 232 | 90.46 160 | 80.99 82 | 88.42 137 | 91.97 163 | 77.56 155 | 93.85 105 | 72.46 210 | 98.65 12 | 97.61 10 |
|
| Baseline_NR-MVSNet | | | 84.00 153 | 85.90 114 | 78.29 273 | 91.47 134 | 53.44 351 | 82.29 228 | 87.00 232 | 79.06 107 | 89.55 115 | 95.72 32 | 77.20 160 | 86.14 295 | 72.30 211 | 98.51 17 | 95.28 55 |
|
| Effi-MVS+-dtu | | | 85.82 111 | 83.38 163 | 93.14 4 | 87.13 232 | 91.15 3 | 87.70 108 | 88.42 204 | 74.57 161 | 83.56 243 | 85.65 297 | 78.49 145 | 94.21 91 | 72.04 212 | 92.88 223 | 94.05 101 |
|
| PM-MVS | | | 80.20 224 | 79.00 233 | 83.78 168 | 88.17 208 | 86.66 19 | 81.31 242 | 66.81 389 | 69.64 229 | 88.33 140 | 90.19 222 | 64.58 263 | 83.63 325 | 71.99 213 | 90.03 279 | 81.06 378 |
|
| EIA-MVS | | | 82.19 186 | 81.23 205 | 85.10 135 | 87.95 213 | 69.17 193 | 83.22 202 | 93.33 67 | 70.42 220 | 78.58 314 | 79.77 366 | 77.29 159 | 94.20 92 | 71.51 214 | 88.96 293 | 91.93 200 |
|
| SSC-MVS | | | 77.55 251 | 81.64 192 | 65.29 377 | 90.46 157 | 20.33 423 | 73.56 346 | 68.28 380 | 85.44 37 | 88.18 144 | 94.64 64 | 70.93 233 | 81.33 337 | 71.25 215 | 92.03 239 | 94.20 92 |
|
| DPM-MVS | | | 80.10 227 | 79.18 232 | 82.88 199 | 90.71 153 | 69.74 182 | 78.87 278 | 90.84 150 | 60.29 322 | 75.64 341 | 85.92 295 | 67.28 250 | 93.11 137 | 71.24 216 | 91.79 244 | 85.77 312 |
|
| OpenMVS |  | 76.72 13 | 81.98 193 | 82.00 187 | 81.93 213 | 84.42 287 | 68.22 199 | 88.50 99 | 89.48 192 | 66.92 258 | 81.80 274 | 91.86 165 | 72.59 219 | 90.16 222 | 71.19 217 | 91.25 255 | 87.40 295 |
|
| AllTest | | | 87.97 80 | 87.40 89 | 89.68 55 | 91.59 124 | 83.40 52 | 89.50 80 | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 180 | 70.81 218 | 96.14 116 | 94.16 96 |
|
| TestCases | | | | | 89.68 55 | 91.59 124 | 83.40 52 | | 95.44 10 | 79.47 99 | 88.00 148 | 93.03 129 | 82.66 94 | 91.47 180 | 70.81 218 | 96.14 116 | 94.16 96 |
|
| ET-MVSNet_ETH3D | | | 75.28 276 | 72.77 298 | 82.81 200 | 83.03 316 | 68.11 201 | 77.09 303 | 76.51 328 | 60.67 319 | 77.60 324 | 80.52 358 | 38.04 394 | 91.15 191 | 70.78 220 | 90.68 270 | 89.17 266 |
|
| EPP-MVSNet | | | 85.47 115 | 85.04 132 | 86.77 103 | 91.52 132 | 69.37 187 | 91.63 39 | 87.98 214 | 81.51 77 | 87.05 167 | 91.83 168 | 66.18 257 | 95.29 56 | 70.75 221 | 96.89 86 | 95.64 45 |
|
| jason | | | 77.42 253 | 75.75 268 | 82.43 209 | 87.10 235 | 69.27 188 | 77.99 288 | 81.94 292 | 51.47 377 | 77.84 319 | 85.07 311 | 60.32 289 | 89.00 250 | 70.74 222 | 89.27 290 | 89.03 271 |
| jason: jason. |
| MG-MVS | | | 80.32 220 | 80.94 208 | 78.47 269 | 88.18 207 | 52.62 358 | 82.29 228 | 85.01 263 | 72.01 205 | 79.24 309 | 92.54 148 | 69.36 241 | 93.36 130 | 70.65 223 | 89.19 291 | 89.45 259 |
|
| QAPM | | | 82.59 178 | 82.59 180 | 82.58 204 | 86.44 246 | 66.69 215 | 89.94 67 | 90.36 165 | 67.97 248 | 84.94 212 | 92.58 147 | 72.71 217 | 92.18 163 | 70.63 224 | 87.73 313 | 88.85 274 |
|
| CVMVSNet | | | 72.62 303 | 71.41 313 | 76.28 303 | 83.25 310 | 60.34 289 | 83.50 192 | 79.02 311 | 37.77 415 | 76.33 330 | 85.10 308 | 49.60 349 | 87.41 270 | 70.54 225 | 77.54 395 | 81.08 376 |
|
| pmmvs6 | | | 86.52 99 | 88.06 79 | 81.90 214 | 92.22 103 | 62.28 265 | 84.66 163 | 89.15 196 | 83.54 57 | 89.85 104 | 97.32 5 | 88.08 38 | 86.80 281 | 70.43 226 | 97.30 78 | 96.62 26 |
|
| D2MVS | | | 76.84 259 | 75.67 270 | 80.34 243 | 80.48 343 | 62.16 269 | 73.50 347 | 84.80 269 | 57.61 340 | 82.24 263 | 87.54 266 | 51.31 340 | 87.65 267 | 70.40 227 | 93.19 216 | 91.23 217 |
|
| reproduce_monomvs | | | 74.09 291 | 73.23 292 | 76.65 299 | 76.52 374 | 54.54 342 | 77.50 298 | 81.40 297 | 65.85 266 | 82.86 256 | 86.67 282 | 27.38 416 | 84.53 314 | 70.24 228 | 90.66 273 | 90.89 227 |
|
| PAPM_NR | | | 83.23 169 | 83.19 167 | 83.33 183 | 90.90 148 | 65.98 222 | 88.19 101 | 90.78 152 | 78.13 120 | 80.87 288 | 87.92 259 | 73.49 206 | 92.42 155 | 70.07 229 | 88.40 300 | 91.60 211 |
|
| SDMVSNet | | | 81.90 196 | 83.17 168 | 78.10 276 | 88.81 192 | 62.45 261 | 76.08 322 | 86.05 243 | 73.67 170 | 83.41 245 | 93.04 127 | 82.35 100 | 80.65 342 | 70.06 230 | 95.03 162 | 91.21 218 |
|
| lupinMVS | | | 76.37 268 | 74.46 280 | 82.09 211 | 85.54 268 | 69.26 189 | 76.79 307 | 80.77 302 | 50.68 384 | 76.23 332 | 82.82 336 | 58.69 302 | 88.94 251 | 69.85 231 | 88.77 295 | 88.07 282 |
|
| PVSNet_Blended_VisFu | | | 81.55 199 | 80.49 214 | 84.70 144 | 91.58 127 | 73.24 141 | 84.21 171 | 91.67 127 | 62.86 290 | 80.94 286 | 87.16 275 | 67.27 251 | 92.87 147 | 69.82 232 | 88.94 294 | 87.99 286 |
|
| Patchmatch-RL test | | | 74.48 287 | 73.68 286 | 76.89 295 | 84.83 278 | 66.54 216 | 72.29 354 | 69.16 379 | 57.70 338 | 86.76 171 | 86.33 287 | 45.79 366 | 82.59 329 | 69.63 233 | 90.65 274 | 81.54 369 |
|
| EPNet | | | 80.37 218 | 78.41 244 | 86.23 113 | 76.75 372 | 73.28 139 | 87.18 116 | 77.45 318 | 76.24 138 | 68.14 383 | 88.93 243 | 65.41 261 | 93.85 105 | 69.47 234 | 96.12 118 | 91.55 213 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CLD-MVS | | | 83.18 170 | 82.64 178 | 84.79 140 | 89.05 184 | 67.82 205 | 77.93 289 | 92.52 101 | 68.33 242 | 85.07 207 | 81.54 350 | 82.06 108 | 92.96 142 | 69.35 235 | 97.91 51 | 93.57 128 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| 原ACMM1 | | | | | 84.60 145 | 92.81 89 | 74.01 132 | | 91.50 130 | 62.59 291 | 82.73 258 | 90.67 210 | 76.53 173 | 94.25 89 | 69.24 236 | 95.69 141 | 85.55 314 |
|
| VDD-MVS | | | 84.23 146 | 84.58 142 | 83.20 187 | 91.17 142 | 65.16 230 | 83.25 199 | 84.97 265 | 79.79 95 | 87.18 160 | 94.27 79 | 74.77 190 | 90.89 201 | 69.24 236 | 96.54 98 | 93.55 131 |
|
| CANet_DTU | | | 77.81 249 | 77.05 255 | 80.09 247 | 81.37 330 | 59.90 294 | 83.26 198 | 88.29 208 | 69.16 233 | 67.83 386 | 83.72 324 | 60.93 284 | 89.47 241 | 69.22 238 | 89.70 284 | 90.88 228 |
|
| Anonymous20240529 | | | 86.20 104 | 87.13 91 | 83.42 181 | 90.19 162 | 64.55 235 | 84.55 165 | 90.71 153 | 85.85 36 | 89.94 103 | 95.24 46 | 82.13 107 | 90.40 216 | 69.19 239 | 96.40 105 | 95.31 54 |
|
| FMVSNet1 | | | 84.55 136 | 85.45 125 | 81.85 216 | 90.27 161 | 61.05 280 | 86.83 124 | 88.27 209 | 78.57 115 | 89.66 110 | 95.64 34 | 75.43 180 | 90.68 209 | 69.09 240 | 95.33 149 | 93.82 112 |
|
| test_fmvs1_n | | | 70.94 319 | 70.41 322 | 72.53 333 | 73.92 392 | 66.93 213 | 75.99 323 | 84.21 275 | 43.31 404 | 79.40 305 | 79.39 368 | 43.47 381 | 68.55 388 | 69.05 241 | 84.91 350 | 82.10 363 |
|
| UGNet | | | 82.78 175 | 81.64 192 | 86.21 115 | 86.20 257 | 76.24 120 | 86.86 122 | 85.68 249 | 77.07 133 | 73.76 355 | 92.82 138 | 69.64 239 | 91.82 175 | 69.04 242 | 93.69 205 | 90.56 239 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| ANet_high | | | 83.17 171 | 85.68 121 | 75.65 308 | 81.24 331 | 45.26 394 | 79.94 259 | 92.91 90 | 83.83 51 | 91.33 76 | 96.88 13 | 80.25 132 | 85.92 298 | 68.89 243 | 95.89 131 | 95.76 42 |
|
| test_vis1_n_1920 | | | 71.30 317 | 71.58 311 | 70.47 344 | 77.58 365 | 59.99 293 | 74.25 338 | 84.22 274 | 51.06 379 | 74.85 349 | 79.10 370 | 55.10 326 | 68.83 386 | 68.86 244 | 79.20 388 | 82.58 356 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 180 | 81.41 200 | 85.90 121 | 85.60 266 | 76.53 115 | 83.07 204 | 89.62 190 | 73.02 188 | 79.11 310 | 83.51 326 | 80.74 127 | 90.24 219 | 68.76 245 | 89.29 288 | 90.94 225 |
|
| pm-mvs1 | | | 83.69 159 | 84.95 134 | 79.91 248 | 90.04 168 | 59.66 296 | 82.43 224 | 87.44 217 | 75.52 151 | 87.85 150 | 95.26 45 | 81.25 121 | 85.65 305 | 68.74 246 | 96.04 121 | 94.42 85 |
|
| CR-MVSNet | | | 74.00 292 | 73.04 295 | 76.85 296 | 79.58 349 | 62.64 257 | 82.58 218 | 76.90 324 | 50.50 385 | 75.72 339 | 92.38 152 | 48.07 353 | 84.07 321 | 68.72 247 | 82.91 367 | 83.85 338 |
|
| KD-MVS_self_test | | | 81.93 194 | 83.14 169 | 78.30 272 | 84.75 281 | 52.75 355 | 80.37 254 | 89.42 194 | 70.24 225 | 90.26 95 | 93.39 119 | 74.55 194 | 86.77 282 | 68.61 248 | 96.64 94 | 95.38 51 |
|
| IterMVS | | | 76.91 258 | 76.34 263 | 78.64 265 | 80.91 335 | 64.03 239 | 76.30 317 | 79.03 310 | 64.88 281 | 83.11 250 | 89.16 239 | 59.90 293 | 84.46 315 | 68.61 248 | 85.15 345 | 87.42 294 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| testdata | | | | | 79.54 255 | 92.87 84 | 72.34 156 | | 80.14 305 | 59.91 325 | 85.47 202 | 91.75 173 | 67.96 249 | 85.24 307 | 68.57 250 | 92.18 238 | 81.06 378 |
|
| test_fmvs1 | | | 69.57 334 | 69.05 334 | 71.14 343 | 69.15 411 | 65.77 225 | 73.98 342 | 83.32 279 | 42.83 406 | 77.77 322 | 78.27 377 | 43.39 384 | 68.50 389 | 68.39 251 | 84.38 357 | 79.15 386 |
|
| mvs_anonymous | | | 78.13 245 | 78.76 238 | 76.23 305 | 79.24 355 | 50.31 374 | 78.69 280 | 84.82 268 | 61.60 306 | 83.09 252 | 92.82 138 | 73.89 200 | 87.01 274 | 68.33 252 | 86.41 330 | 91.37 215 |
|
| WR-MVS | | | 83.56 163 | 84.40 149 | 81.06 232 | 93.43 70 | 54.88 341 | 78.67 281 | 85.02 262 | 81.24 79 | 90.74 90 | 91.56 177 | 72.85 215 | 91.08 193 | 68.00 253 | 98.04 39 | 97.23 16 |
|
| TransMVSNet (Re) | | | 84.02 152 | 85.74 120 | 78.85 261 | 91.00 146 | 55.20 340 | 82.29 228 | 87.26 220 | 79.65 98 | 88.38 139 | 95.52 37 | 83.00 90 | 86.88 279 | 67.97 254 | 96.60 96 | 94.45 82 |
|
| 无先验 | | | | | | | | 82.81 213 | 85.62 250 | 58.09 335 | | | | 91.41 185 | 67.95 255 | | 84.48 326 |
|
| Fast-Effi-MVS+ | | | 81.04 206 | 80.57 211 | 82.46 208 | 87.50 225 | 63.22 249 | 78.37 285 | 89.63 189 | 68.01 246 | 81.87 270 | 82.08 344 | 82.31 102 | 92.65 151 | 67.10 256 | 88.30 306 | 91.51 214 |
|
| FMVSNet2 | | | 81.31 202 | 81.61 194 | 80.41 242 | 86.38 248 | 58.75 310 | 83.93 180 | 86.58 235 | 72.43 195 | 87.65 154 | 92.98 131 | 63.78 270 | 90.22 220 | 66.86 257 | 93.92 198 | 92.27 185 |
|
| GA-MVS | | | 75.83 272 | 74.61 277 | 79.48 256 | 81.87 322 | 59.25 300 | 73.42 348 | 82.88 283 | 68.68 239 | 79.75 301 | 81.80 347 | 50.62 344 | 89.46 242 | 66.85 258 | 85.64 338 | 89.72 256 |
|
| CNLPA | | | 83.55 164 | 83.10 170 | 84.90 137 | 89.34 179 | 83.87 50 | 84.54 167 | 88.77 199 | 79.09 106 | 83.54 244 | 88.66 248 | 74.87 186 | 81.73 335 | 66.84 259 | 92.29 233 | 89.11 267 |
|
| tfpnnormal | | | 81.79 197 | 82.95 172 | 78.31 271 | 88.93 189 | 55.40 336 | 80.83 251 | 82.85 284 | 76.81 134 | 85.90 194 | 94.14 89 | 74.58 193 | 86.51 286 | 66.82 260 | 95.68 142 | 93.01 150 |
|
| test_vis1_n | | | 70.29 323 | 69.99 327 | 71.20 342 | 75.97 381 | 66.50 217 | 76.69 310 | 80.81 301 | 44.22 400 | 75.43 342 | 77.23 385 | 50.00 347 | 68.59 387 | 66.71 261 | 82.85 369 | 78.52 388 |
|
| VPA-MVSNet | | | 83.47 166 | 84.73 136 | 79.69 252 | 90.29 160 | 57.52 320 | 81.30 244 | 88.69 201 | 76.29 137 | 87.58 156 | 94.44 71 | 80.60 129 | 87.20 273 | 66.60 262 | 96.82 90 | 94.34 89 |
|
| mvsmamba | | | 80.30 221 | 78.87 234 | 84.58 146 | 88.12 210 | 67.55 206 | 92.35 29 | 84.88 266 | 63.15 288 | 85.33 203 | 90.91 198 | 50.71 343 | 95.20 62 | 66.36 263 | 87.98 309 | 90.99 223 |
|
| VDDNet | | | 84.35 140 | 85.39 127 | 81.25 227 | 95.13 32 | 59.32 299 | 85.42 151 | 81.11 298 | 86.41 32 | 87.41 158 | 96.21 22 | 73.61 202 | 90.61 212 | 66.33 264 | 96.85 87 | 93.81 115 |
|
| DP-MVS Recon | | | 84.05 151 | 83.22 165 | 86.52 107 | 91.73 122 | 75.27 125 | 83.23 201 | 92.40 103 | 72.04 204 | 82.04 267 | 88.33 251 | 77.91 150 | 93.95 102 | 66.17 265 | 95.12 159 | 90.34 245 |
|
| WB-MVS | | | 76.06 270 | 80.01 226 | 64.19 380 | 89.96 170 | 20.58 422 | 72.18 355 | 68.19 381 | 83.21 59 | 86.46 184 | 93.49 117 | 70.19 237 | 78.97 353 | 65.96 266 | 90.46 276 | 93.02 149 |
|
| GBi-Net | | | 82.02 191 | 82.07 185 | 81.85 216 | 86.38 248 | 61.05 280 | 86.83 124 | 88.27 209 | 72.43 195 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 209 | 65.95 267 | 93.34 210 | 93.82 112 |
|
| test1 | | | 82.02 191 | 82.07 185 | 81.85 216 | 86.38 248 | 61.05 280 | 86.83 124 | 88.27 209 | 72.43 195 | 86.00 190 | 95.64 34 | 63.78 270 | 90.68 209 | 65.95 267 | 93.34 210 | 93.82 112 |
|
| FMVSNet3 | | | 78.80 238 | 78.55 241 | 79.57 254 | 82.89 317 | 56.89 326 | 81.76 236 | 85.77 247 | 69.04 235 | 86.00 190 | 90.44 215 | 51.75 339 | 90.09 228 | 65.95 267 | 93.34 210 | 91.72 206 |
|
| 新几何1 | | | | | 82.95 195 | 93.96 59 | 78.56 88 | | 80.24 304 | 55.45 352 | 83.93 236 | 91.08 191 | 71.19 232 | 88.33 261 | 65.84 270 | 93.07 218 | 81.95 365 |
|
| F-COLMAP | | | 84.97 129 | 83.42 162 | 89.63 57 | 92.39 96 | 83.40 52 | 88.83 92 | 91.92 119 | 73.19 185 | 80.18 300 | 89.15 240 | 77.04 164 | 93.28 131 | 65.82 271 | 92.28 234 | 92.21 188 |
|
| test_cas_vis1_n_1920 | | | 69.20 339 | 69.12 332 | 69.43 353 | 73.68 395 | 62.82 254 | 70.38 370 | 77.21 321 | 46.18 394 | 80.46 295 | 78.95 372 | 52.03 336 | 65.53 401 | 65.77 272 | 77.45 396 | 79.95 384 |
|
| ppachtmachnet_test | | | 74.73 286 | 74.00 284 | 76.90 294 | 80.71 340 | 56.89 326 | 71.53 361 | 78.42 312 | 58.24 333 | 79.32 308 | 82.92 335 | 57.91 308 | 84.26 319 | 65.60 273 | 91.36 253 | 89.56 258 |
|
| API-MVS | | | 82.28 183 | 82.61 179 | 81.30 226 | 86.29 254 | 69.79 181 | 88.71 95 | 87.67 216 | 78.42 117 | 82.15 266 | 84.15 322 | 77.98 148 | 91.59 178 | 65.39 274 | 92.75 225 | 82.51 360 |
|
| test1111 | | | 78.53 242 | 78.85 236 | 77.56 285 | 92.22 103 | 47.49 383 | 82.61 216 | 69.24 378 | 72.43 195 | 85.28 204 | 94.20 85 | 51.91 337 | 90.07 229 | 65.36 275 | 96.45 103 | 95.11 61 |
|
| test_vis3_rt | | | 71.42 315 | 70.67 316 | 73.64 322 | 69.66 410 | 70.46 177 | 66.97 386 | 89.73 184 | 42.68 407 | 88.20 143 | 83.04 331 | 43.77 380 | 60.07 408 | 65.35 276 | 86.66 327 | 90.39 244 |
|
| testing3 | | | 71.53 314 | 70.79 315 | 73.77 321 | 88.89 190 | 41.86 404 | 76.60 314 | 59.12 408 | 72.83 190 | 80.97 284 | 82.08 344 | 19.80 424 | 87.33 272 | 65.12 277 | 91.68 247 | 92.13 192 |
|
| thisisatest0515 | | | 73.00 301 | 70.52 319 | 80.46 241 | 81.45 328 | 59.90 294 | 73.16 351 | 74.31 342 | 57.86 337 | 76.08 336 | 77.78 379 | 37.60 397 | 92.12 166 | 65.00 278 | 91.45 252 | 89.35 262 |
|
| cascas | | | 76.29 269 | 74.81 276 | 80.72 238 | 84.47 284 | 62.94 251 | 73.89 344 | 87.34 218 | 55.94 349 | 75.16 347 | 76.53 391 | 63.97 268 | 91.16 190 | 65.00 278 | 90.97 261 | 88.06 284 |
|
| test2506 | | | 74.12 290 | 73.39 290 | 76.28 303 | 91.85 117 | 44.20 397 | 84.06 175 | 48.20 418 | 72.30 201 | 81.90 269 | 94.20 85 | 27.22 418 | 89.77 237 | 64.81 280 | 96.02 122 | 94.87 66 |
|
| MDA-MVSNet-bldmvs | | | 77.47 252 | 76.90 258 | 79.16 259 | 79.03 357 | 64.59 232 | 66.58 387 | 75.67 333 | 73.15 186 | 88.86 124 | 88.99 242 | 66.94 252 | 81.23 338 | 64.71 281 | 88.22 307 | 91.64 210 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 250 | 77.46 250 | 78.71 264 | 84.39 288 | 61.15 278 | 81.18 246 | 82.52 286 | 62.45 295 | 83.34 247 | 87.37 270 | 66.20 256 | 88.66 258 | 64.69 282 | 85.02 347 | 86.32 305 |
|
| PS-MVSNAJ | | | 77.04 257 | 76.53 261 | 78.56 266 | 87.09 236 | 61.40 274 | 75.26 331 | 87.13 224 | 61.25 311 | 74.38 352 | 77.22 386 | 76.94 166 | 90.94 197 | 64.63 283 | 84.83 353 | 83.35 346 |
|
| xiu_mvs_v2_base | | | 77.19 255 | 76.75 259 | 78.52 267 | 87.01 238 | 61.30 276 | 75.55 329 | 87.12 227 | 61.24 312 | 74.45 350 | 78.79 373 | 77.20 160 | 90.93 198 | 64.62 284 | 84.80 354 | 83.32 347 |
|
| PatchT | | | 70.52 322 | 72.76 299 | 63.79 382 | 79.38 353 | 33.53 416 | 77.63 294 | 65.37 393 | 73.61 172 | 71.77 364 | 92.79 141 | 44.38 379 | 75.65 366 | 64.53 285 | 85.37 340 | 82.18 362 |
|
| Syy-MVS | | | 69.40 336 | 70.03 326 | 67.49 366 | 81.72 324 | 38.94 409 | 71.00 363 | 61.99 399 | 61.38 308 | 70.81 370 | 72.36 402 | 61.37 283 | 79.30 350 | 64.50 286 | 85.18 343 | 84.22 331 |
|
| FE-MVS | | | 79.98 229 | 78.86 235 | 83.36 182 | 86.47 245 | 66.45 218 | 89.73 70 | 84.74 270 | 72.80 191 | 84.22 232 | 91.38 181 | 44.95 376 | 93.60 117 | 63.93 287 | 91.50 251 | 90.04 253 |
|
| MonoMVSNet | | | 76.66 262 | 77.26 254 | 74.86 314 | 79.86 347 | 54.34 344 | 86.26 137 | 86.08 241 | 71.08 215 | 85.59 198 | 88.68 246 | 53.95 329 | 85.93 297 | 63.86 288 | 80.02 382 | 84.32 329 |
|
| LFMVS | | | 80.15 226 | 80.56 212 | 78.89 260 | 89.19 183 | 55.93 330 | 85.22 154 | 73.78 347 | 82.96 63 | 84.28 229 | 92.72 143 | 57.38 311 | 90.07 229 | 63.80 289 | 95.75 139 | 90.68 235 |
|
| ECVR-MVS |  | | 78.44 243 | 78.63 240 | 77.88 281 | 91.85 117 | 48.95 377 | 83.68 188 | 69.91 374 | 72.30 201 | 84.26 231 | 94.20 85 | 51.89 338 | 89.82 234 | 63.58 290 | 96.02 122 | 94.87 66 |
|
| 1314 | | | 73.22 298 | 72.56 303 | 75.20 311 | 80.41 344 | 57.84 317 | 81.64 239 | 85.36 253 | 51.68 376 | 73.10 358 | 76.65 390 | 61.45 282 | 85.19 308 | 63.54 291 | 79.21 387 | 82.59 355 |
|
| testdata2 | | | | | | | | | | | | | | 86.43 288 | 63.52 292 | | |
|
| Patchmtry | | | 76.56 265 | 77.46 250 | 73.83 320 | 79.37 354 | 46.60 387 | 82.41 225 | 76.90 324 | 73.81 168 | 85.56 200 | 92.38 152 | 48.07 353 | 83.98 322 | 63.36 293 | 95.31 152 | 90.92 226 |
|
| MSDG | | | 80.06 228 | 79.99 227 | 80.25 244 | 83.91 297 | 68.04 203 | 77.51 297 | 89.19 195 | 77.65 126 | 81.94 268 | 83.45 328 | 76.37 176 | 86.31 289 | 63.31 294 | 86.59 328 | 86.41 304 |
|
| BH-RMVSNet | | | 80.53 213 | 80.22 220 | 81.49 225 | 87.19 231 | 66.21 220 | 77.79 292 | 86.23 238 | 74.21 164 | 83.69 239 | 88.50 249 | 73.25 212 | 90.75 206 | 63.18 295 | 87.90 310 | 87.52 293 |
|
| test_yl | | | 78.71 240 | 78.51 242 | 79.32 257 | 84.32 289 | 58.84 307 | 78.38 283 | 85.33 254 | 75.99 142 | 82.49 259 | 86.57 283 | 58.01 305 | 90.02 231 | 62.74 296 | 92.73 226 | 89.10 268 |
|
| DCV-MVSNet | | | 78.71 240 | 78.51 242 | 79.32 257 | 84.32 289 | 58.84 307 | 78.38 283 | 85.33 254 | 75.99 142 | 82.49 259 | 86.57 283 | 58.01 305 | 90.02 231 | 62.74 296 | 92.73 226 | 89.10 268 |
|
| TinyColmap | | | 81.25 203 | 82.34 184 | 77.99 279 | 85.33 270 | 60.68 287 | 82.32 227 | 88.33 207 | 71.26 212 | 86.97 168 | 92.22 161 | 77.10 163 | 86.98 277 | 62.37 298 | 95.17 156 | 86.31 306 |
|
| Anonymous202405211 | | | 80.51 214 | 81.19 206 | 78.49 268 | 88.48 201 | 57.26 322 | 76.63 311 | 82.49 287 | 81.21 80 | 84.30 228 | 92.24 160 | 67.99 248 | 86.24 290 | 62.22 299 | 95.13 157 | 91.98 199 |
|
| our_test_3 | | | 71.85 309 | 71.59 309 | 72.62 331 | 80.71 340 | 53.78 348 | 69.72 373 | 71.71 366 | 58.80 330 | 78.03 316 | 80.51 359 | 56.61 316 | 78.84 354 | 62.20 300 | 86.04 336 | 85.23 317 |
|
| pmmvs-eth3d | | | 78.42 244 | 77.04 256 | 82.57 206 | 87.44 226 | 74.41 130 | 80.86 250 | 79.67 307 | 55.68 351 | 84.69 216 | 90.31 219 | 60.91 285 | 85.42 306 | 62.20 300 | 91.59 249 | 87.88 289 |
|
| CMPMVS |  | 59.41 20 | 75.12 279 | 73.57 287 | 79.77 249 | 75.84 382 | 67.22 207 | 81.21 245 | 82.18 289 | 50.78 382 | 76.50 328 | 87.66 264 | 55.20 325 | 82.99 328 | 62.17 302 | 90.64 275 | 89.09 270 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_f | | | 64.31 366 | 65.85 355 | 59.67 391 | 66.54 415 | 62.24 268 | 57.76 407 | 70.96 369 | 40.13 409 | 84.36 223 | 82.09 343 | 46.93 355 | 51.67 415 | 61.99 303 | 81.89 373 | 65.12 406 |
|
| MIMVSNet1 | | | 83.63 161 | 84.59 141 | 80.74 236 | 94.06 57 | 62.77 255 | 82.72 214 | 84.53 271 | 77.57 128 | 90.34 93 | 95.92 28 | 76.88 172 | 85.83 303 | 61.88 304 | 97.42 74 | 93.62 124 |
|
| BH-untuned | | | 80.96 207 | 80.99 207 | 80.84 235 | 88.55 200 | 68.23 198 | 80.33 255 | 88.46 203 | 72.79 192 | 86.55 177 | 86.76 281 | 74.72 191 | 91.77 176 | 61.79 305 | 88.99 292 | 82.52 359 |
|
| AdaColmap |  | | 83.66 160 | 83.69 160 | 83.57 177 | 90.05 167 | 72.26 158 | 86.29 136 | 90.00 180 | 78.19 119 | 81.65 277 | 87.16 275 | 83.40 87 | 94.24 90 | 61.69 306 | 94.76 177 | 84.21 333 |
|
| VPNet | | | 80.25 222 | 81.68 191 | 75.94 306 | 92.46 95 | 47.98 381 | 76.70 309 | 81.67 294 | 73.45 175 | 84.87 213 | 92.82 138 | 74.66 192 | 86.51 286 | 61.66 307 | 96.85 87 | 93.33 134 |
|
| MAR-MVS | | | 80.24 223 | 78.74 239 | 84.73 142 | 86.87 242 | 78.18 92 | 85.75 145 | 87.81 215 | 65.67 272 | 77.84 319 | 78.50 375 | 73.79 201 | 90.53 213 | 61.59 308 | 90.87 265 | 85.49 316 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PLC |  | 73.85 16 | 82.09 189 | 80.31 216 | 87.45 92 | 90.86 150 | 80.29 73 | 85.88 141 | 90.65 155 | 68.17 245 | 76.32 331 | 86.33 287 | 73.12 213 | 92.61 152 | 61.40 309 | 90.02 280 | 89.44 260 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test-LLR | | | 67.21 347 | 66.74 351 | 68.63 360 | 76.45 377 | 55.21 338 | 67.89 378 | 67.14 386 | 62.43 297 | 65.08 398 | 72.39 400 | 43.41 382 | 69.37 381 | 61.00 310 | 84.89 351 | 81.31 371 |
|
| test-mter | | | 65.00 361 | 63.79 365 | 68.63 360 | 76.45 377 | 55.21 338 | 67.89 378 | 67.14 386 | 50.98 381 | 65.08 398 | 72.39 400 | 28.27 414 | 69.37 381 | 61.00 310 | 84.89 351 | 81.31 371 |
|
| PatchmatchNet |  | | 69.71 333 | 68.83 338 | 72.33 336 | 77.66 364 | 53.60 349 | 79.29 269 | 69.99 373 | 57.66 339 | 72.53 361 | 82.93 334 | 46.45 358 | 80.08 347 | 60.91 312 | 72.09 403 | 83.31 348 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PVSNet_BlendedMVS | | | 78.80 238 | 77.84 248 | 81.65 222 | 84.43 285 | 63.41 245 | 79.49 267 | 90.44 161 | 61.70 304 | 75.43 342 | 87.07 278 | 69.11 243 | 91.44 182 | 60.68 313 | 92.24 235 | 90.11 251 |
|
| PVSNet_Blended | | | 76.49 266 | 75.40 271 | 79.76 250 | 84.43 285 | 63.41 245 | 75.14 332 | 90.44 161 | 57.36 342 | 75.43 342 | 78.30 376 | 69.11 243 | 91.44 182 | 60.68 313 | 87.70 314 | 84.42 328 |
|
| VNet | | | 79.31 232 | 80.27 217 | 76.44 300 | 87.92 214 | 53.95 347 | 75.58 328 | 84.35 272 | 74.39 163 | 82.23 264 | 90.72 206 | 72.84 216 | 84.39 317 | 60.38 315 | 93.98 197 | 90.97 224 |
|
| ttmdpeth | | | 71.72 311 | 70.67 316 | 74.86 314 | 73.08 400 | 55.88 331 | 77.41 301 | 69.27 377 | 55.86 350 | 78.66 313 | 93.77 110 | 38.01 395 | 75.39 367 | 60.12 316 | 89.87 282 | 93.31 136 |
|
| LCM-MVSNet-Re | | | 83.48 165 | 85.06 131 | 78.75 263 | 85.94 263 | 55.75 334 | 80.05 257 | 94.27 24 | 76.47 136 | 96.09 6 | 94.54 67 | 83.31 88 | 89.75 239 | 59.95 317 | 94.89 169 | 90.75 231 |
|
| YYNet1 | | | 70.06 327 | 70.44 320 | 68.90 356 | 73.76 394 | 53.42 352 | 58.99 404 | 67.20 385 | 58.42 332 | 87.10 163 | 85.39 304 | 59.82 294 | 67.32 393 | 59.79 318 | 83.50 363 | 85.96 308 |
|
| MDA-MVSNet_test_wron | | | 70.05 328 | 70.44 320 | 68.88 357 | 73.84 393 | 53.47 350 | 58.93 405 | 67.28 384 | 58.43 331 | 87.09 164 | 85.40 303 | 59.80 295 | 67.25 394 | 59.66 319 | 83.54 362 | 85.92 310 |
|
| PAPR | | | 78.84 237 | 78.10 247 | 81.07 231 | 85.17 274 | 60.22 290 | 82.21 232 | 90.57 158 | 62.51 292 | 75.32 345 | 84.61 316 | 74.99 185 | 92.30 161 | 59.48 320 | 88.04 308 | 90.68 235 |
|
| IB-MVS | | 62.13 19 | 71.64 312 | 68.97 337 | 79.66 253 | 80.80 339 | 62.26 266 | 73.94 343 | 76.90 324 | 63.27 287 | 68.63 382 | 76.79 388 | 33.83 402 | 91.84 174 | 59.28 321 | 87.26 316 | 84.88 321 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| PCF-MVS | | 74.62 15 | 82.15 188 | 80.92 209 | 85.84 123 | 89.43 177 | 72.30 157 | 80.53 252 | 91.82 123 | 57.36 342 | 87.81 151 | 89.92 228 | 77.67 154 | 93.63 113 | 58.69 322 | 95.08 160 | 91.58 212 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| sd_testset | | | 79.95 230 | 81.39 201 | 75.64 309 | 88.81 192 | 58.07 314 | 76.16 321 | 82.81 285 | 73.67 170 | 83.41 245 | 93.04 127 | 80.96 124 | 77.65 358 | 58.62 323 | 95.03 162 | 91.21 218 |
|
| 1112_ss | | | 74.82 284 | 73.74 285 | 78.04 278 | 89.57 172 | 60.04 291 | 76.49 315 | 87.09 228 | 54.31 359 | 73.66 356 | 79.80 364 | 60.25 290 | 86.76 283 | 58.37 324 | 84.15 358 | 87.32 296 |
|
| tpmvs | | | 70.16 325 | 69.56 330 | 71.96 337 | 74.71 391 | 48.13 379 | 79.63 262 | 75.45 336 | 65.02 280 | 70.26 374 | 81.88 346 | 45.34 372 | 85.68 304 | 58.34 325 | 75.39 399 | 82.08 364 |
|
| UnsupCasMVSNet_eth | | | 71.63 313 | 72.30 305 | 69.62 351 | 76.47 376 | 52.70 357 | 70.03 372 | 80.97 300 | 59.18 327 | 79.36 306 | 88.21 253 | 60.50 286 | 69.12 384 | 58.33 326 | 77.62 394 | 87.04 298 |
|
| tpmrst | | | 66.28 356 | 66.69 352 | 65.05 378 | 72.82 402 | 39.33 408 | 78.20 286 | 70.69 371 | 53.16 366 | 67.88 385 | 80.36 360 | 48.18 352 | 74.75 369 | 58.13 327 | 70.79 405 | 81.08 376 |
|
| test_post1 | | | | | | | | 78.85 279 | | | | 3.13 420 | 45.19 374 | 80.13 346 | 58.11 328 | | |
|
| SCA | | | 73.32 296 | 72.57 302 | 75.58 310 | 81.62 326 | 55.86 332 | 78.89 277 | 71.37 367 | 61.73 302 | 74.93 348 | 83.42 329 | 60.46 287 | 87.01 274 | 58.11 328 | 82.63 372 | 83.88 335 |
|
| pmmvs4 | | | 74.92 282 | 72.98 296 | 80.73 237 | 84.95 276 | 71.71 167 | 76.23 319 | 77.59 317 | 52.83 367 | 77.73 323 | 86.38 285 | 56.35 318 | 84.97 310 | 57.72 330 | 87.05 321 | 85.51 315 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 248 | 77.79 249 | 77.92 280 | 88.82 191 | 51.29 368 | 83.28 197 | 71.97 362 | 74.04 165 | 82.23 264 | 89.78 230 | 57.38 311 | 89.41 246 | 57.22 331 | 95.41 146 | 93.05 148 |
|
| ab-mvs | | | 79.67 231 | 80.56 212 | 76.99 291 | 88.48 201 | 56.93 324 | 84.70 162 | 86.06 242 | 68.95 236 | 80.78 289 | 93.08 126 | 75.30 182 | 84.62 313 | 56.78 332 | 90.90 263 | 89.43 261 |
|
| baseline1 | | | 73.26 297 | 73.54 288 | 72.43 334 | 84.92 277 | 47.79 382 | 79.89 260 | 74.00 343 | 65.93 264 | 78.81 312 | 86.28 290 | 56.36 317 | 81.63 336 | 56.63 333 | 79.04 389 | 87.87 290 |
|
| Test_1112_low_res | | | 73.90 293 | 73.08 294 | 76.35 301 | 90.35 159 | 55.95 329 | 73.40 349 | 86.17 239 | 50.70 383 | 73.14 357 | 85.94 294 | 58.31 304 | 85.90 300 | 56.51 334 | 83.22 364 | 87.20 297 |
|
| TESTMET0.1,1 | | | 61.29 372 | 60.32 378 | 64.19 380 | 72.06 404 | 51.30 367 | 67.89 378 | 62.09 398 | 45.27 396 | 60.65 407 | 69.01 406 | 27.93 415 | 64.74 403 | 56.31 335 | 81.65 376 | 76.53 390 |
|
| test_vis1_rt | | | 65.64 359 | 64.09 363 | 70.31 345 | 66.09 416 | 70.20 180 | 61.16 398 | 81.60 295 | 38.65 412 | 72.87 359 | 69.66 405 | 52.84 332 | 60.04 409 | 56.16 336 | 77.77 392 | 80.68 380 |
|
| XXY-MVS | | | 74.44 289 | 76.19 264 | 69.21 354 | 84.61 283 | 52.43 359 | 71.70 358 | 77.18 322 | 60.73 318 | 80.60 290 | 90.96 196 | 75.44 179 | 69.35 383 | 56.13 337 | 88.33 302 | 85.86 311 |
|
| MDTV_nov1_ep13 | | | | 68.29 343 | | 78.03 361 | 43.87 399 | 74.12 340 | 72.22 359 | 52.17 371 | 67.02 389 | 85.54 298 | 45.36 371 | 80.85 340 | 55.73 338 | 84.42 356 | |
|
| E-PMN | | | 61.59 371 | 61.62 374 | 61.49 387 | 66.81 414 | 55.40 336 | 53.77 410 | 60.34 407 | 66.80 260 | 58.90 411 | 65.50 410 | 40.48 390 | 66.12 399 | 55.72 339 | 86.25 333 | 62.95 408 |
|
| MVS | | | 73.21 299 | 72.59 301 | 75.06 313 | 80.97 334 | 60.81 286 | 81.64 239 | 85.92 246 | 46.03 395 | 71.68 365 | 77.54 381 | 68.47 246 | 89.77 237 | 55.70 340 | 85.39 339 | 74.60 395 |
|
| TR-MVS | | | 76.77 261 | 75.79 267 | 79.72 251 | 86.10 261 | 65.79 224 | 77.14 302 | 83.02 282 | 65.20 279 | 81.40 281 | 82.10 342 | 66.30 255 | 90.73 208 | 55.57 341 | 85.27 341 | 82.65 354 |
|
| EPMVS | | | 62.47 367 | 62.63 371 | 62.01 384 | 70.63 408 | 38.74 410 | 74.76 335 | 52.86 415 | 53.91 361 | 67.71 387 | 80.01 362 | 39.40 391 | 66.60 397 | 55.54 342 | 68.81 411 | 80.68 380 |
|
| MS-PatchMatch | | | 70.93 320 | 70.22 323 | 73.06 326 | 81.85 323 | 62.50 260 | 73.82 345 | 77.90 314 | 52.44 370 | 75.92 337 | 81.27 351 | 55.67 322 | 81.75 334 | 55.37 343 | 77.70 393 | 74.94 394 |
|
| CL-MVSNet_self_test | | | 76.81 260 | 77.38 252 | 75.12 312 | 86.90 240 | 51.34 366 | 73.20 350 | 80.63 303 | 68.30 243 | 81.80 274 | 88.40 250 | 66.92 253 | 80.90 339 | 55.35 344 | 94.90 168 | 93.12 146 |
|
| new-patchmatchnet | | | 70.10 326 | 73.37 291 | 60.29 390 | 81.23 332 | 16.95 425 | 59.54 401 | 74.62 338 | 62.93 289 | 80.97 284 | 87.93 258 | 62.83 279 | 71.90 374 | 55.24 345 | 95.01 165 | 92.00 197 |
|
| CostFormer | | | 69.98 330 | 68.68 340 | 73.87 319 | 77.14 368 | 50.72 372 | 79.26 270 | 74.51 340 | 51.94 375 | 70.97 369 | 84.75 314 | 45.16 375 | 87.49 269 | 55.16 346 | 79.23 386 | 83.40 345 |
|
| thres600view7 | | | 75.97 271 | 75.35 273 | 77.85 283 | 87.01 238 | 51.84 364 | 80.45 253 | 73.26 352 | 75.20 155 | 83.10 251 | 86.31 289 | 45.54 367 | 89.05 249 | 55.03 347 | 92.24 235 | 92.66 163 |
|
| EMVS | | | 61.10 374 | 60.81 376 | 61.99 385 | 65.96 417 | 55.86 332 | 53.10 411 | 58.97 410 | 67.06 257 | 56.89 415 | 63.33 411 | 40.98 388 | 67.03 395 | 54.79 348 | 86.18 334 | 63.08 407 |
|
| USDC | | | 76.63 263 | 76.73 260 | 76.34 302 | 83.46 303 | 57.20 323 | 80.02 258 | 88.04 213 | 52.14 373 | 83.65 240 | 91.25 184 | 63.24 273 | 86.65 284 | 54.66 349 | 94.11 193 | 85.17 318 |
|
| CDS-MVSNet | | | 77.32 254 | 75.40 271 | 83.06 190 | 89.00 186 | 72.48 154 | 77.90 290 | 82.17 290 | 60.81 316 | 78.94 311 | 83.49 327 | 59.30 297 | 88.76 257 | 54.64 350 | 92.37 230 | 87.93 288 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| gm-plane-assit | | | | | | 75.42 386 | 44.97 396 | | | 52.17 371 | | 72.36 402 | | 87.90 264 | 54.10 351 | | |
|
| PatchMatch-RL | | | 74.48 287 | 73.22 293 | 78.27 274 | 87.70 218 | 85.26 38 | 75.92 324 | 70.09 372 | 64.34 283 | 76.09 335 | 81.25 352 | 65.87 259 | 78.07 357 | 53.86 352 | 83.82 360 | 71.48 398 |
|
| testing99 | | | 69.27 337 | 68.15 344 | 72.63 330 | 83.29 308 | 45.45 392 | 71.15 362 | 71.08 368 | 67.34 255 | 70.43 373 | 77.77 380 | 32.24 406 | 84.35 318 | 53.72 353 | 86.33 332 | 88.10 281 |
|
| testing91 | | | 69.94 331 | 68.99 336 | 72.80 328 | 83.81 299 | 45.89 390 | 71.57 360 | 73.64 350 | 68.24 244 | 70.77 372 | 77.82 378 | 34.37 401 | 84.44 316 | 53.64 354 | 87.00 324 | 88.07 282 |
|
| EPNet_dtu | | | 72.87 302 | 71.33 314 | 77.49 287 | 77.72 363 | 60.55 288 | 82.35 226 | 75.79 331 | 66.49 262 | 58.39 413 | 81.06 353 | 53.68 330 | 85.98 296 | 53.55 355 | 92.97 222 | 85.95 309 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| JIA-IIPM | | | 69.41 335 | 66.64 353 | 77.70 284 | 73.19 397 | 71.24 172 | 75.67 325 | 65.56 392 | 70.42 220 | 65.18 397 | 92.97 133 | 33.64 404 | 83.06 326 | 53.52 356 | 69.61 409 | 78.79 387 |
|
| baseline2 | | | 69.77 332 | 66.89 349 | 78.41 270 | 79.51 351 | 58.09 313 | 76.23 319 | 69.57 375 | 57.50 341 | 64.82 401 | 77.45 383 | 46.02 361 | 88.44 259 | 53.08 357 | 77.83 391 | 88.70 275 |
|
| KD-MVS_2432*1600 | | | 66.87 350 | 65.81 356 | 70.04 346 | 67.50 412 | 47.49 383 | 62.56 395 | 79.16 308 | 61.21 313 | 77.98 317 | 80.61 355 | 25.29 420 | 82.48 330 | 53.02 358 | 84.92 348 | 80.16 382 |
|
| miper_refine_blended | | | 66.87 350 | 65.81 356 | 70.04 346 | 67.50 412 | 47.49 383 | 62.56 395 | 79.16 308 | 61.21 313 | 77.98 317 | 80.61 355 | 25.29 420 | 82.48 330 | 53.02 358 | 84.92 348 | 80.16 382 |
|
| BH-w/o | | | 76.57 264 | 76.07 266 | 78.10 276 | 86.88 241 | 65.92 223 | 77.63 294 | 86.33 236 | 65.69 271 | 80.89 287 | 79.95 363 | 68.97 245 | 90.74 207 | 53.01 360 | 85.25 342 | 77.62 389 |
|
| pmmvs5 | | | 70.73 321 | 70.07 324 | 72.72 329 | 77.03 370 | 52.73 356 | 74.14 339 | 75.65 334 | 50.36 386 | 72.17 363 | 85.37 305 | 55.42 324 | 80.67 341 | 52.86 361 | 87.59 315 | 84.77 322 |
|
| WAC-MVS | | | | | | | 37.39 412 | | | | | | | | 52.61 362 | | |
|
| tpm | | | 67.95 344 | 68.08 345 | 67.55 365 | 78.74 360 | 43.53 400 | 75.60 326 | 67.10 388 | 54.92 355 | 72.23 362 | 88.10 254 | 42.87 386 | 75.97 364 | 52.21 363 | 80.95 381 | 83.15 350 |
|
| MVP-Stereo | | | 75.81 273 | 73.51 289 | 82.71 201 | 89.35 178 | 73.62 134 | 80.06 256 | 85.20 256 | 60.30 321 | 73.96 353 | 87.94 257 | 57.89 309 | 89.45 243 | 52.02 364 | 74.87 400 | 85.06 320 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| thres100view900 | | | 75.45 275 | 75.05 275 | 76.66 298 | 87.27 228 | 51.88 363 | 81.07 247 | 73.26 352 | 75.68 148 | 83.25 248 | 86.37 286 | 45.54 367 | 88.80 253 | 51.98 365 | 90.99 258 | 89.31 263 |
|
| tfpn200view9 | | | 74.86 283 | 74.23 282 | 76.74 297 | 86.24 255 | 52.12 360 | 79.24 271 | 73.87 345 | 73.34 179 | 81.82 272 | 84.60 317 | 46.02 361 | 88.80 253 | 51.98 365 | 90.99 258 | 89.31 263 |
|
| thres400 | | | 75.14 277 | 74.23 282 | 77.86 282 | 86.24 255 | 52.12 360 | 79.24 271 | 73.87 345 | 73.34 179 | 81.82 272 | 84.60 317 | 46.02 361 | 88.80 253 | 51.98 365 | 90.99 258 | 92.66 163 |
|
| mvsany_test3 | | | 65.48 360 | 62.97 369 | 73.03 327 | 69.99 409 | 76.17 121 | 64.83 389 | 43.71 420 | 43.68 402 | 80.25 299 | 87.05 279 | 52.83 333 | 63.09 407 | 51.92 368 | 72.44 402 | 79.84 385 |
|
| HyFIR lowres test | | | 75.12 279 | 72.66 300 | 82.50 207 | 91.44 135 | 65.19 229 | 72.47 353 | 87.31 219 | 46.79 390 | 80.29 296 | 84.30 319 | 52.70 334 | 92.10 167 | 51.88 369 | 86.73 326 | 90.22 246 |
|
| TAMVS | | | 78.08 246 | 76.36 262 | 83.23 186 | 90.62 154 | 72.87 143 | 79.08 274 | 80.01 306 | 61.72 303 | 81.35 282 | 86.92 280 | 63.96 269 | 88.78 256 | 50.61 370 | 93.01 220 | 88.04 285 |
|
| sss | | | 66.92 349 | 67.26 347 | 65.90 373 | 77.23 367 | 51.10 371 | 64.79 390 | 71.72 365 | 52.12 374 | 70.13 375 | 80.18 361 | 57.96 307 | 65.36 402 | 50.21 371 | 81.01 380 | 81.25 373 |
|
| FPMVS | | | 72.29 307 | 72.00 306 | 73.14 325 | 88.63 197 | 85.00 40 | 74.65 337 | 67.39 383 | 71.94 206 | 77.80 321 | 87.66 264 | 50.48 345 | 75.83 365 | 49.95 372 | 79.51 383 | 58.58 412 |
|
| tpm cat1 | | | 66.76 353 | 65.21 361 | 71.42 340 | 77.09 369 | 50.62 373 | 78.01 287 | 73.68 349 | 44.89 398 | 68.64 381 | 79.00 371 | 45.51 369 | 82.42 332 | 49.91 373 | 70.15 406 | 81.23 375 |
|
| CHOSEN 1792x2688 | | | 72.45 304 | 70.56 318 | 78.13 275 | 90.02 169 | 63.08 250 | 68.72 376 | 83.16 280 | 42.99 405 | 75.92 337 | 85.46 301 | 57.22 313 | 85.18 309 | 49.87 374 | 81.67 374 | 86.14 307 |
|
| myMVS_eth3d | | | 64.66 363 | 63.89 364 | 66.97 369 | 81.72 324 | 37.39 412 | 71.00 363 | 61.99 399 | 61.38 308 | 70.81 370 | 72.36 402 | 20.96 423 | 79.30 350 | 49.59 375 | 85.18 343 | 84.22 331 |
|
| HY-MVS | | 64.64 18 | 73.03 300 | 72.47 304 | 74.71 316 | 83.36 307 | 54.19 345 | 82.14 235 | 81.96 291 | 56.76 348 | 69.57 378 | 86.21 291 | 60.03 291 | 84.83 312 | 49.58 376 | 82.65 370 | 85.11 319 |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 420 | 70.76 367 | | 46.47 393 | 61.27 405 | | 45.20 373 | | 49.18 377 | | 83.75 340 |
|
| testing11 | | | 67.38 346 | 65.93 354 | 71.73 339 | 83.37 306 | 46.60 387 | 70.95 365 | 69.40 376 | 62.47 294 | 66.14 390 | 76.66 389 | 31.22 407 | 84.10 320 | 49.10 378 | 84.10 359 | 84.49 325 |
|
| PMMVS | | | 61.65 370 | 60.38 377 | 65.47 376 | 65.40 419 | 69.26 189 | 63.97 393 | 61.73 403 | 36.80 416 | 60.11 408 | 68.43 407 | 59.42 296 | 66.35 398 | 48.97 379 | 78.57 390 | 60.81 409 |
|
| WBMVS | | | 68.76 341 | 68.43 341 | 69.75 350 | 83.29 308 | 40.30 407 | 67.36 383 | 72.21 360 | 57.09 345 | 77.05 326 | 85.53 299 | 33.68 403 | 80.51 343 | 48.79 380 | 90.90 263 | 88.45 278 |
|
| WTY-MVS | | | 67.91 345 | 68.35 342 | 66.58 371 | 80.82 338 | 48.12 380 | 65.96 388 | 72.60 355 | 53.67 362 | 71.20 367 | 81.68 349 | 58.97 300 | 69.06 385 | 48.57 381 | 81.67 374 | 82.55 357 |
|
| UnsupCasMVSNet_bld | | | 69.21 338 | 69.68 329 | 67.82 364 | 79.42 352 | 51.15 369 | 67.82 381 | 75.79 331 | 54.15 360 | 77.47 325 | 85.36 306 | 59.26 298 | 70.64 379 | 48.46 382 | 79.35 385 | 81.66 367 |
|
| tpm2 | | | 68.45 343 | 66.83 350 | 73.30 324 | 78.93 359 | 48.50 378 | 79.76 261 | 71.76 364 | 47.50 389 | 69.92 376 | 83.60 325 | 42.07 387 | 88.40 260 | 48.44 383 | 79.51 383 | 83.01 352 |
|
| Patchmatch-test | | | 65.91 357 | 67.38 346 | 61.48 388 | 75.51 384 | 43.21 401 | 68.84 375 | 63.79 397 | 62.48 293 | 72.80 360 | 83.42 329 | 44.89 377 | 59.52 410 | 48.27 384 | 86.45 329 | 81.70 366 |
|
| FMVSNet5 | | | 72.10 308 | 71.69 308 | 73.32 323 | 81.57 327 | 53.02 354 | 76.77 308 | 78.37 313 | 63.31 286 | 76.37 329 | 91.85 166 | 36.68 398 | 78.98 352 | 47.87 385 | 92.45 229 | 87.95 287 |
|
| dp | | | 60.70 376 | 60.29 379 | 61.92 386 | 72.04 405 | 38.67 411 | 70.83 366 | 64.08 396 | 51.28 378 | 60.75 406 | 77.28 384 | 36.59 399 | 71.58 377 | 47.41 386 | 62.34 413 | 75.52 393 |
|
| N_pmnet | | | 70.20 324 | 68.80 339 | 74.38 318 | 80.91 335 | 84.81 43 | 59.12 403 | 76.45 329 | 55.06 354 | 75.31 346 | 82.36 341 | 55.74 321 | 54.82 413 | 47.02 387 | 87.24 317 | 83.52 342 |
|
| thres200 | | | 72.34 306 | 71.55 312 | 74.70 317 | 83.48 302 | 51.60 365 | 75.02 333 | 73.71 348 | 70.14 226 | 78.56 315 | 80.57 357 | 46.20 359 | 88.20 263 | 46.99 388 | 89.29 288 | 84.32 329 |
|
| test20.03 | | | 73.75 294 | 74.59 279 | 71.22 341 | 81.11 333 | 51.12 370 | 70.15 371 | 72.10 361 | 70.42 220 | 80.28 298 | 91.50 178 | 64.21 266 | 74.72 370 | 46.96 389 | 94.58 180 | 87.82 291 |
|
| mvsany_test1 | | | 58.48 379 | 56.47 384 | 64.50 379 | 65.90 418 | 68.21 200 | 56.95 408 | 42.11 421 | 38.30 413 | 65.69 394 | 77.19 387 | 56.96 314 | 59.35 411 | 46.16 390 | 58.96 414 | 65.93 405 |
|
| pmmvs3 | | | 62.47 367 | 60.02 380 | 69.80 349 | 71.58 406 | 64.00 240 | 70.52 368 | 58.44 411 | 39.77 410 | 66.05 391 | 75.84 393 | 27.10 419 | 72.28 372 | 46.15 391 | 84.77 355 | 73.11 396 |
|
| testgi | | | 72.36 305 | 74.61 277 | 65.59 374 | 80.56 342 | 42.82 402 | 68.29 377 | 73.35 351 | 66.87 259 | 81.84 271 | 89.93 227 | 72.08 226 | 66.92 396 | 46.05 392 | 92.54 228 | 87.01 299 |
|
| PVSNet | | 58.17 21 | 66.41 355 | 65.63 358 | 68.75 358 | 81.96 321 | 49.88 376 | 62.19 397 | 72.51 357 | 51.03 380 | 68.04 384 | 75.34 396 | 50.84 342 | 74.77 368 | 45.82 393 | 82.96 365 | 81.60 368 |
|
| dmvs_re | | | 66.81 352 | 66.98 348 | 66.28 372 | 76.87 371 | 58.68 311 | 71.66 359 | 72.24 358 | 60.29 322 | 69.52 379 | 73.53 399 | 52.38 335 | 64.40 404 | 44.90 394 | 81.44 377 | 75.76 392 |
|
| gg-mvs-nofinetune | | | 68.96 340 | 69.11 333 | 68.52 362 | 76.12 380 | 45.32 393 | 83.59 190 | 55.88 413 | 86.68 29 | 64.62 402 | 97.01 9 | 30.36 409 | 83.97 323 | 44.78 395 | 82.94 366 | 76.26 391 |
|
| Anonymous20231206 | | | 71.38 316 | 71.88 307 | 69.88 348 | 86.31 252 | 54.37 343 | 70.39 369 | 74.62 338 | 52.57 369 | 76.73 327 | 88.76 244 | 59.94 292 | 72.06 373 | 44.35 396 | 93.23 215 | 83.23 349 |
|
| CHOSEN 280x420 | | | 59.08 378 | 56.52 383 | 66.76 370 | 76.51 375 | 64.39 236 | 49.62 412 | 59.00 409 | 43.86 401 | 55.66 416 | 68.41 408 | 35.55 400 | 68.21 392 | 43.25 397 | 76.78 398 | 67.69 404 |
|
| ADS-MVSNet2 | | | 65.87 358 | 63.64 366 | 72.55 332 | 73.16 398 | 56.92 325 | 67.10 384 | 74.81 337 | 49.74 387 | 66.04 392 | 82.97 332 | 46.71 356 | 77.26 360 | 42.29 398 | 69.96 407 | 83.46 343 |
|
| ADS-MVSNet | | | 61.90 369 | 62.19 373 | 61.03 389 | 73.16 398 | 36.42 414 | 67.10 384 | 61.75 402 | 49.74 387 | 66.04 392 | 82.97 332 | 46.71 356 | 63.21 405 | 42.29 398 | 69.96 407 | 83.46 343 |
|
| DSMNet-mixed | | | 60.98 375 | 61.61 375 | 59.09 393 | 72.88 401 | 45.05 395 | 74.70 336 | 46.61 419 | 26.20 417 | 65.34 396 | 90.32 218 | 55.46 323 | 63.12 406 | 41.72 400 | 81.30 379 | 69.09 402 |
|
| MIMVSNet | | | 71.09 318 | 71.59 309 | 69.57 352 | 87.23 229 | 50.07 375 | 78.91 276 | 71.83 363 | 60.20 324 | 71.26 366 | 91.76 172 | 55.08 327 | 76.09 363 | 41.06 401 | 87.02 323 | 82.54 358 |
|
| UBG | | | 64.34 365 | 63.35 367 | 67.30 367 | 83.50 301 | 40.53 406 | 67.46 382 | 65.02 394 | 54.77 357 | 67.54 388 | 74.47 398 | 32.99 405 | 78.50 356 | 40.82 402 | 83.58 361 | 82.88 353 |
|
| test0.0.03 1 | | | 64.66 363 | 64.36 362 | 65.57 375 | 75.03 389 | 46.89 386 | 64.69 391 | 61.58 405 | 62.43 297 | 71.18 368 | 77.54 381 | 43.41 382 | 68.47 390 | 40.75 403 | 82.65 370 | 81.35 370 |
|
| PAPM | | | 71.77 310 | 70.06 325 | 76.92 293 | 86.39 247 | 53.97 346 | 76.62 312 | 86.62 234 | 53.44 363 | 63.97 403 | 84.73 315 | 57.79 310 | 92.34 159 | 39.65 404 | 81.33 378 | 84.45 327 |
|
| testing222 | | | 66.93 348 | 65.30 360 | 71.81 338 | 83.38 305 | 45.83 391 | 72.06 356 | 67.50 382 | 64.12 284 | 69.68 377 | 76.37 392 | 27.34 417 | 83.00 327 | 38.88 405 | 88.38 301 | 86.62 303 |
|
| MVS-HIRNet | | | 61.16 373 | 62.92 370 | 55.87 394 | 79.09 356 | 35.34 415 | 71.83 357 | 57.98 412 | 46.56 392 | 59.05 410 | 91.14 188 | 49.95 348 | 76.43 362 | 38.74 406 | 71.92 404 | 55.84 413 |
|
| GG-mvs-BLEND | | | | | 67.16 368 | 73.36 396 | 46.54 389 | 84.15 173 | 55.04 414 | | 58.64 412 | 61.95 413 | 29.93 410 | 83.87 324 | 38.71 407 | 76.92 397 | 71.07 399 |
|
| UWE-MVS | | | 66.43 354 | 65.56 359 | 69.05 355 | 84.15 293 | 40.98 405 | 73.06 352 | 64.71 395 | 54.84 356 | 76.18 334 | 79.62 367 | 29.21 411 | 80.50 344 | 38.54 408 | 89.75 283 | 85.66 313 |
|
| WB-MVSnew | | | 68.72 342 | 69.01 335 | 67.85 363 | 83.22 312 | 43.98 398 | 74.93 334 | 65.98 390 | 55.09 353 | 73.83 354 | 79.11 369 | 65.63 260 | 71.89 375 | 38.21 409 | 85.04 346 | 87.69 292 |
|
| new_pmnet | | | 55.69 381 | 57.66 382 | 49.76 397 | 75.47 385 | 30.59 417 | 59.56 400 | 51.45 416 | 43.62 403 | 62.49 404 | 75.48 395 | 40.96 389 | 49.15 417 | 37.39 410 | 72.52 401 | 69.55 401 |
|
| PVSNet_0 | | 51.08 22 | 56.10 380 | 54.97 385 | 59.48 392 | 75.12 388 | 53.28 353 | 55.16 409 | 61.89 401 | 44.30 399 | 59.16 409 | 62.48 412 | 54.22 328 | 65.91 400 | 35.40 411 | 47.01 415 | 59.25 411 |
|
| ETVMVS | | | 64.67 362 | 63.34 368 | 68.64 359 | 83.44 304 | 41.89 403 | 69.56 374 | 61.70 404 | 61.33 310 | 68.74 380 | 75.76 394 | 28.76 412 | 79.35 349 | 34.65 412 | 86.16 335 | 84.67 324 |
|
| wuyk23d | | | 75.13 278 | 79.30 231 | 62.63 383 | 75.56 383 | 75.18 126 | 80.89 249 | 73.10 354 | 75.06 157 | 94.76 16 | 95.32 41 | 87.73 43 | 52.85 414 | 34.16 413 | 97.11 82 | 59.85 410 |
|
| MVE |  | 40.22 23 | 51.82 383 | 50.47 386 | 55.87 394 | 62.66 421 | 51.91 362 | 31.61 415 | 39.28 422 | 40.65 408 | 50.76 417 | 74.98 397 | 56.24 319 | 44.67 418 | 33.94 414 | 64.11 412 | 71.04 400 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 55.64 382 | 59.27 381 | 44.74 398 | 64.30 420 | 12.32 426 | 40.60 413 | 49.79 417 | 53.19 365 | 65.06 400 | 84.81 313 | 53.60 331 | 49.76 416 | 32.68 415 | 89.41 287 | 72.15 397 |
|
| dmvs_testset | | | 60.59 377 | 62.54 372 | 54.72 396 | 77.26 366 | 27.74 419 | 74.05 341 | 61.00 406 | 60.48 320 | 65.62 395 | 67.03 409 | 55.93 320 | 68.23 391 | 32.07 416 | 69.46 410 | 68.17 403 |
|
| test_method | | | 30.46 386 | 29.60 389 | 33.06 400 | 17.99 425 | 3.84 428 | 13.62 416 | 73.92 344 | 2.79 419 | 18.29 421 | 53.41 414 | 28.53 413 | 43.25 419 | 22.56 417 | 35.27 417 | 52.11 414 |
|
| tmp_tt | | | 20.25 388 | 24.50 391 | 7.49 403 | 4.47 426 | 8.70 427 | 34.17 414 | 25.16 424 | 1.00 421 | 32.43 420 | 18.49 418 | 39.37 392 | 9.21 422 | 21.64 418 | 43.75 416 | 4.57 418 |
|
| dongtai | | | 41.90 384 | 42.65 387 | 39.67 399 | 70.86 407 | 21.11 421 | 61.01 399 | 21.42 426 | 57.36 342 | 57.97 414 | 50.06 415 | 16.40 425 | 58.73 412 | 21.03 419 | 27.69 419 | 39.17 415 |
|
| DeepMVS_CX |  | | | | 24.13 402 | 32.95 424 | 29.49 418 | | 21.63 425 | 12.07 418 | 37.95 419 | 45.07 416 | 30.84 408 | 19.21 421 | 17.94 420 | 33.06 418 | 23.69 417 |
|
| kuosan | | | 30.83 385 | 32.17 388 | 26.83 401 | 53.36 423 | 19.02 424 | 57.90 406 | 20.44 427 | 38.29 414 | 38.01 418 | 37.82 417 | 15.18 426 | 33.45 420 | 7.74 421 | 20.76 420 | 28.03 416 |
|
| test123 | | | 6.27 391 | 8.08 394 | 0.84 404 | 1.11 428 | 0.57 429 | 62.90 394 | 0.82 428 | 0.54 422 | 1.07 424 | 2.75 423 | 1.26 427 | 0.30 423 | 1.04 422 | 1.26 422 | 1.66 419 |
|
| testmvs | | | 5.91 392 | 7.65 395 | 0.72 405 | 1.20 427 | 0.37 430 | 59.14 402 | 0.67 429 | 0.49 423 | 1.11 423 | 2.76 422 | 0.94 428 | 0.24 424 | 1.02 423 | 1.47 421 | 1.55 420 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 20.81 387 | 27.75 390 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 85.44 252 | 0.00 424 | 0.00 425 | 82.82 336 | 81.46 118 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 6.41 390 | 8.55 393 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 76.94 166 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 6.65 389 | 8.87 392 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 79.80 364 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| FOURS1 | | | | | | 96.08 12 | 87.41 14 | 96.19 2 | 95.83 5 | 92.95 3 | 96.57 3 | | | | | | |
|
| test_one_0601 | | | | | | 93.85 62 | 73.27 140 | | 94.11 38 | 86.57 30 | 93.47 41 | 94.64 64 | 88.42 28 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 94.18 50 | 72.65 145 | | 93.69 56 | 83.62 54 | 94.11 26 | 93.78 108 | 90.28 14 | 95.50 49 | | | |
|
| save fliter | | | | | | 93.75 63 | 77.44 103 | 86.31 135 | 89.72 185 | 70.80 217 | | | | | | | |
|
| test0726 | | | | | | 94.16 53 | 72.56 151 | 90.63 49 | 93.90 48 | 83.61 55 | 93.75 34 | 94.49 69 | 89.76 18 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 335 |
|
| test_part2 | | | | | | 93.86 61 | 77.77 98 | | | | 92.84 51 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 360 | | | | 83.88 335 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 365 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 125 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 3.10 421 | 45.43 370 | 77.22 361 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 348 | 45.93 364 | 87.01 274 | | | |
|
| MTMP | | | | | | | | 90.66 48 | 33.14 423 | | | | | | | | |
|
| TEST9 | | | | | | 92.34 98 | 79.70 78 | 83.94 178 | 90.32 167 | 65.41 276 | 84.49 219 | 90.97 194 | 82.03 109 | 93.63 113 | | | |
|
| test_8 | | | | | | 92.09 107 | 78.87 85 | 83.82 183 | 90.31 169 | 65.79 267 | 84.36 223 | 90.96 196 | 81.93 111 | 93.44 126 | | | |
|
| agg_prior | | | | | | 91.58 127 | 77.69 100 | | 90.30 170 | | 84.32 225 | | | 93.18 134 | | | |
|
| test_prior4 | | | | | | | 78.97 84 | 84.59 164 | | | | | | | | | |
|
| test_prior | | | | | 86.32 110 | 90.59 155 | 71.99 162 | | 92.85 92 | | | | | 94.17 95 | | | 92.80 156 |
|
| 新几何2 | | | | | | | | 81.72 238 | | | | | | | | | |
|
| 旧先验1 | | | | | | 91.97 111 | 71.77 163 | | 81.78 293 | | | 91.84 167 | 73.92 199 | | | 93.65 206 | 83.61 341 |
|
| 原ACMM2 | | | | | | | | 82.26 231 | | | | | | | | | |
|
| test222 | | | | | | 93.31 73 | 76.54 113 | 79.38 268 | 77.79 315 | 52.59 368 | 82.36 262 | 90.84 203 | 66.83 254 | | | 91.69 246 | 81.25 373 |
|
| segment_acmp | | | | | | | | | | | | | 81.94 110 | | | | |
|
| testdata1 | | | | | | | | 79.62 263 | | 73.95 167 | | | | | | | |
|
| test12 | | | | | 86.57 105 | 90.74 151 | 72.63 149 | | 90.69 154 | | 82.76 257 | | 79.20 139 | 94.80 73 | | 95.32 150 | 92.27 185 |
|
| plane_prior7 | | | | | | 93.45 68 | 77.31 106 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 92.61 90 | 76.54 113 | | | | | | 74.84 187 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 92.95 134 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 111 | | | 77.79 125 | 86.55 177 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 82 | | 79.44 101 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 88 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 76.42 116 | 87.15 117 | | 75.94 145 | | | | | | 95.03 162 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 341 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 131 | | | | | | | | |
|
| door | | | | | | | | | 72.57 356 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 175 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 139 | | 84.77 158 | | 73.30 181 | 80.55 292 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 139 | | 84.77 158 | | 73.30 181 | 80.55 292 | | | | | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 291 | | | 94.61 79 | | | 93.56 129 |
|
| HQP3-MVS | | | | | | | | | 92.68 97 | | | | | | | 94.47 182 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 224 | | | | |
|
| NP-MVS | | | | | | 91.95 112 | 74.55 129 | | | | | 90.17 224 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 140 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 75 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 140 | | | | |
|