This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 21896.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23193.78 10573.36 20296.48 187.98 996.21 11294.41 86
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 13888.40 9683.63 26681.27 7480.87 27594.12 8771.49 22295.71 3287.79 1296.50 9994.11 100
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14396.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39586.57 5295.80 2587.35 2497.62 6294.20 92
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14790.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15190.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18591.98 3190.08 16971.54 19976.23 31885.07 29758.69 29094.27 8486.26 4088.77 28389.03 259
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
v7n90.13 3690.96 3887.65 8991.95 11071.06 16989.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14190.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24795.59 3786.02 4897.78 5397.24 17
IU-MVS94.18 4672.64 14390.82 14456.98 32889.67 10885.78 5097.92 4693.28 137
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28270.44 21091.28 7795.18 4256.62 30489.28 24385.15 5497.09 8193.99 103
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20694.85 6785.07 5597.78 5397.26 16
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25195.90 1585.01 5898.23 2797.49 13
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28784.31 6493.28 20892.15 187
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
v1086.54 9487.10 8884.84 13788.16 20663.28 24186.64 12592.20 10275.42 14692.81 5094.50 6474.05 19094.06 9683.88 6896.28 10897.17 20
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17589.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16585.19 14677.42 30862.27 28684.47 21191.33 17476.43 16785.91 29183.14 7287.14 30394.33 90
fmvsm_s_conf0.5_n81.91 18581.30 19283.75 16886.02 25771.56 16684.73 15277.11 31262.44 28384.00 22590.68 19976.42 16885.89 29383.14 7287.11 30493.81 116
v886.22 10086.83 9584.36 15187.82 21062.35 25786.42 12891.33 13076.78 12892.73 5294.48 6673.41 19993.72 10783.10 7495.41 14497.01 23
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 18887.84 10488.05 20481.66 7094.64 1496.53 1465.94 24894.75 6983.02 7796.83 8895.41 51
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124084.30 13584.51 13783.65 17187.65 21661.26 26882.85 20291.54 12267.94 24090.68 9090.65 20271.71 22093.64 10982.84 7994.78 17296.07 36
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13386.14 13177.70 30561.64 29285.02 19891.62 16777.75 14586.24 28382.79 8087.07 30593.91 109
fmvsm_s_conf0.5_n_a82.21 17681.51 18984.32 15486.56 23873.35 13385.46 14077.30 30961.81 28884.51 20890.88 19277.36 15186.21 28582.72 8186.97 30993.38 133
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8298.04 3693.64 124
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15790.31 5496.31 380.88 8085.12 19689.67 22184.47 7095.46 4782.56 8396.26 11193.77 118
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
v119284.57 12884.69 13384.21 15787.75 21262.88 24583.02 19791.43 12569.08 22589.98 10190.89 19072.70 21093.62 11382.41 8594.97 16496.13 34
v192192084.23 13984.37 14283.79 16687.64 21761.71 26382.91 20091.20 13467.94 24090.06 9690.34 20772.04 21793.59 11582.32 8694.91 16596.07 36
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29382.28 8790.87 25993.58 127
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tt080588.09 7489.79 5182.98 18793.26 7363.94 23591.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 8995.87 13093.13 144
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14083.91 17385.18 24680.44 8288.75 12585.49 28680.08 12891.92 16682.02 9090.85 26195.97 39
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9196.75 91
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28872.52 14983.82 17585.15 24780.27 8688.75 12585.45 28879.95 13091.90 16781.92 9290.80 26296.13 34
v14419284.24 13884.41 14083.71 17087.59 21861.57 26482.95 19991.03 13867.82 24389.80 10490.49 20573.28 20393.51 12081.88 9394.89 16796.04 38
v114484.54 13084.72 13184.00 16087.67 21562.55 25282.97 19890.93 14270.32 21489.80 10490.99 18573.50 19693.48 12181.69 9494.65 17795.97 39
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9596.54 9790.88 219
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9695.32 14892.34 176
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26582.71 20589.71 17672.19 19589.55 11491.41 17270.70 22693.20 13081.02 9793.76 19796.25 32
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25589.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 9898.80 298.84 5
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 9995.50 14394.53 79
test9_res80.83 10096.45 10390.57 229
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10195.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10195.83 13294.46 80
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25278.87 13694.18 9080.67 10396.29 10792.73 158
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18185.45 14176.68 31684.06 4592.44 5796.99 862.03 26894.65 7280.58 10493.24 20994.83 72
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10591.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22284.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10694.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15883.37 15583.75 16883.16 29463.33 24081.31 23290.23 16569.51 22190.91 8590.81 19574.16 18892.29 15880.06 10790.22 27095.62 47
MVS_Test82.47 17283.22 15680.22 23682.62 30057.75 31082.54 21191.96 11071.16 20582.89 24292.52 14277.41 15090.50 20880.04 10887.84 29792.40 173
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 10998.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040288.65 6589.58 5685.88 12192.55 9072.22 15584.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11095.21 15291.82 197
iter_conf_final80.36 20878.88 22384.79 13986.29 24866.36 21386.95 11586.25 23068.16 23682.09 25489.48 22336.59 38594.51 8179.83 11194.30 18693.50 132
EGC-MVSNET74.79 27469.99 31489.19 6394.89 3787.00 1191.89 3486.28 2291.09 3962.23 39895.98 2381.87 10989.48 23479.76 11295.96 12491.10 214
nrg03087.85 8088.49 7085.91 11990.07 16469.73 17987.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11397.32 7596.50 31
agg_prior279.68 11496.16 11490.22 237
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11595.95 12592.00 192
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11696.97 84
lessismore_v085.95 11891.10 14270.99 17070.91 35691.79 6794.42 7061.76 26992.93 14079.52 11793.03 21493.93 107
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30189.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
tttt051781.07 19479.58 21785.52 12888.99 18566.45 21187.03 11475.51 32473.76 16288.32 13690.20 21137.96 38294.16 9479.36 11995.13 15595.93 42
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 30888.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30488.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12198.69 998.95 4
ambc82.98 18790.55 15464.86 22588.20 9789.15 18689.40 11793.96 9671.67 22191.38 18278.83 12296.55 9692.71 161
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 29888.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
baseline85.20 11685.93 10783.02 18686.30 24762.37 25684.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12494.21 18894.74 73
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12698.76 395.61 48
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16483.52 18392.13 10461.82 28783.96 22689.75 22079.93 13193.46 12278.33 12794.34 18491.87 196
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 18991.19 18578.28 12891.09 25189.29 253
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25371.27 20186.70 16590.55 20463.04 26593.92 10078.26 12994.20 18989.63 245
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20683.69 26471.27 20186.70 16586.05 28063.04 26592.41 15278.26 12993.62 20390.71 224
c3_l81.64 18881.59 18681.79 21380.86 31859.15 29578.61 27290.18 16768.36 23287.20 15187.11 26569.39 22991.62 17378.16 13194.43 18294.60 75
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23683.25 19089.88 17376.06 13289.62 11092.37 14773.40 20192.52 14978.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16882.42 17483.20 18383.25 29263.66 23683.50 18485.07 24876.06 13286.55 16985.10 29473.41 19990.25 21178.15 13390.67 26595.68 45
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20385.86 13491.39 12872.33 19287.59 14790.25 21084.85 6692.37 15478.00 13491.94 23893.66 121
diffmvspermissive80.40 20680.48 20480.17 23779.02 33860.04 28377.54 28690.28 16466.65 25182.40 24887.33 26073.50 19687.35 26677.98 13589.62 27493.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13697.03 8395.52 49
casdiffmvspermissive85.21 11585.85 11183.31 18086.17 25362.77 24883.03 19693.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26587.25 26182.43 9394.53 7977.65 13896.46 10294.14 98
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 13896.62 9490.70 225
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14097.07 8283.13 330
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSLP-MVS++85.00 12186.03 10681.90 20791.84 11771.56 16686.75 12393.02 8175.95 13787.12 15389.39 22577.98 14289.40 24177.46 14194.78 17284.75 305
IterMVS-SCA-FT80.64 20179.41 21884.34 15383.93 28669.66 18076.28 30581.09 28872.43 18786.47 17590.19 21260.46 27593.15 13377.45 14286.39 31590.22 237
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14396.71 9293.73 119
test_fmvs375.72 26375.20 26377.27 28075.01 36969.47 18278.93 26584.88 25546.67 36887.08 15787.84 25050.44 33371.62 35577.42 14488.53 28690.72 223
BP-MVS77.30 145
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17184.77 14992.68 9173.30 17280.55 28090.17 21472.10 21494.61 7477.30 14594.47 18093.56 129
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 23883.56 26772.71 18486.07 18189.07 23281.75 11186.19 28677.11 14793.36 20488.24 266
CANet83.79 15082.85 16586.63 10286.17 25372.21 15683.76 17891.43 12577.24 12574.39 33687.45 25775.36 17495.42 4977.03 14892.83 21992.25 183
dcpmvs_284.23 13985.14 12381.50 21588.61 19561.98 26282.90 20193.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 14992.30 22694.90 65
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22188.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15097.99 4096.88 25
iter_conf0578.81 22777.35 24283.21 18282.98 29860.75 27884.09 16688.34 19863.12 27684.25 22289.48 22331.41 39094.51 8176.64 15195.83 13294.38 88
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26387.13 21673.35 16985.56 19189.34 22683.60 8090.50 20876.64 15194.05 19390.09 242
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15388.74 28596.61 29
DIV-MVS_self_test80.43 20480.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.38 24486.19 17889.22 22863.09 26390.16 21676.32 15495.80 13593.66 121
cl____80.42 20580.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.37 24586.18 18089.21 22963.08 26490.16 21676.31 15595.80 13593.65 123
AUN-MVS81.18 19378.78 22688.39 7790.93 14582.14 5882.51 21283.67 26564.69 27180.29 28485.91 28351.07 32992.38 15376.29 15693.63 20290.65 228
Gipumacopyleft84.44 13186.33 10178.78 25384.20 28473.57 13289.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 32976.14 15796.80 9082.36 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
miper_ehance_all_eth80.34 20980.04 21481.24 22079.82 32858.95 29777.66 28389.66 17765.75 25985.99 18585.11 29368.29 23691.42 18076.03 15892.03 23493.33 135
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 19984.54 15891.42 12773.27 17588.41 13387.96 24672.33 21390.83 19876.02 15994.11 19192.69 162
PC_three_145258.96 31490.06 9691.33 17480.66 12393.03 13775.78 16095.94 12692.48 169
canonicalmvs85.50 11086.14 10583.58 17387.97 20767.13 20287.55 10694.32 1873.44 16888.47 13187.54 25586.45 5491.06 19075.76 16193.76 19792.54 168
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24579.09 13492.13 16075.51 16295.06 15990.41 234
thisisatest053079.07 22277.33 24384.26 15687.13 22664.58 22783.66 18175.95 31968.86 22885.22 19587.36 25938.10 38093.57 11875.47 16394.28 18794.62 74
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28674.73 15285.66 18886.06 27972.56 21292.69 14675.44 16495.21 15289.01 261
cl2278.97 22378.21 23581.24 22077.74 34259.01 29677.46 28987.13 21665.79 25684.32 21585.10 29458.96 28990.88 19775.36 16592.03 23493.84 111
eth_miper_zixun_eth80.84 19780.22 20982.71 19581.41 31060.98 27477.81 28190.14 16867.31 24686.95 16187.24 26264.26 25592.31 15675.23 16691.61 24394.85 71
v14882.31 17382.48 17381.81 21285.59 26259.66 28881.47 23186.02 23572.85 18088.05 14090.65 20270.73 22590.91 19575.15 16791.79 23994.87 67
FC-MVSNet-test85.93 10687.05 9082.58 19892.25 10056.44 31985.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 16898.58 1397.88 7
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19283.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 16998.53 1596.99 24
FA-MVS(test-final)83.13 16483.02 16283.43 17686.16 25566.08 21588.00 10088.36 19775.55 14385.02 19892.75 13565.12 25292.50 15074.94 17091.30 24991.72 199
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17195.35 14692.29 179
DELS-MVS81.44 19081.25 19382.03 20584.27 28362.87 24676.47 30392.49 9570.97 20681.64 26583.83 30975.03 17792.70 14574.29 17292.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14783.57 17487.22 22465.61 22086.55 12792.40 9678.64 10981.34 27084.18 30783.65 7992.93 14074.22 17387.87 29692.17 186
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20482.55 21091.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17498.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20483.16 19492.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17498.35 2197.61 10
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
LF4IMVS82.75 16781.93 17985.19 13282.08 30180.15 7085.53 13988.76 19168.01 23785.58 19087.75 25171.80 21986.85 27474.02 17893.87 19688.58 264
FIs85.35 11386.27 10282.60 19791.86 11457.31 31285.10 14893.05 7775.83 13991.02 8293.97 9373.57 19592.91 14273.97 17998.02 3997.58 12
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20791.21 3988.64 19386.30 2889.60 11392.59 13869.22 23194.91 6673.89 18097.89 4996.72 26
EU-MVSNet75.12 26874.43 27077.18 28183.11 29659.48 29085.71 13882.43 27739.76 38885.64 18988.76 23544.71 36587.88 26073.86 18185.88 31984.16 313
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17484.50 16093.37 5878.76 10884.07 22478.72 35880.39 12595.13 6073.82 18292.98 21691.04 215
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18394.81 17193.70 120
Anonymous2024052180.18 21481.25 19376.95 28383.15 29560.84 27682.46 21385.99 23668.76 22986.78 16293.73 10859.13 28777.44 34073.71 18497.55 6792.56 166
MVSTER77.09 24675.70 25881.25 21875.27 36661.08 27077.49 28885.07 24860.78 30386.55 16988.68 23743.14 37290.25 21173.69 18590.67 26592.42 171
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18694.66 17694.56 76
RPMNet78.88 22578.28 23480.68 23079.58 32962.64 25082.58 20894.16 2774.80 15175.72 32492.59 13848.69 33795.56 3973.48 18782.91 34683.85 317
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14682.20 22487.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 18891.09 25188.21 267
test_fmvs273.57 28372.80 28575.90 29772.74 38168.84 19177.07 29284.32 26145.14 37482.89 24284.22 30648.37 33870.36 35873.40 18987.03 30788.52 265
patch_mono-278.89 22479.39 21977.41 27984.78 27268.11 19675.60 31383.11 27060.96 30179.36 29489.89 21875.18 17672.97 35173.32 19092.30 22691.15 213
miper_lstm_enhance76.45 25676.10 25477.51 27776.72 35360.97 27564.69 36985.04 25063.98 27383.20 23888.22 24256.67 30378.79 33773.22 19193.12 21292.78 157
xiu_mvs_v1_base_debu80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base_debi80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23284.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19198.66 1097.69 9
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22280.76 12192.13 16073.21 19695.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall77.83 23776.93 24680.51 23176.15 35858.01 30775.47 31788.82 18958.05 32083.59 23080.69 34064.41 25491.20 18473.16 19792.03 23492.33 177
旧先验281.73 22756.88 32986.54 17484.90 30372.81 198
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19086.65 12490.62 15054.66 33681.46 26790.81 19576.98 15894.38 8372.62 19996.18 11390.82 221
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23189.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20097.65 6097.34 15
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 22882.21 22290.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20198.65 1197.61 10
Baseline_NR-MVSNet84.00 14685.90 10978.29 26491.47 13253.44 33882.29 21887.00 22479.06 10289.55 11495.72 2877.20 15386.14 28872.30 20298.51 1695.28 56
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23285.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
PM-MVS80.20 21379.00 22283.78 16788.17 20586.66 1581.31 23266.81 37269.64 22088.33 13590.19 21264.58 25383.63 31371.99 20490.03 27181.06 356
EIA-MVS82.19 17781.23 19585.10 13487.95 20869.17 18983.22 19393.33 6170.42 21178.58 30179.77 35277.29 15294.20 8971.51 20588.96 28191.93 195
SSC-MVS77.55 24181.64 18365.29 35590.46 15520.33 40073.56 33268.28 36485.44 3288.18 13994.64 6070.93 22481.33 32371.25 20692.03 23494.20 92
DPM-MVS80.10 21679.18 22182.88 19390.71 15169.74 17878.87 26890.84 14360.29 30875.64 32685.92 28267.28 23993.11 13471.24 20791.79 23985.77 295
OpenMVScopyleft76.72 1381.98 18382.00 17881.93 20684.42 27968.22 19488.50 9589.48 18266.92 24881.80 26291.86 15772.59 21190.16 21671.19 20891.25 25087.40 279
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
ET-MVSNet_ETH3D75.28 26572.77 28682.81 19483.03 29768.11 19677.09 29176.51 31760.67 30577.60 31180.52 34438.04 38191.15 18770.78 21190.68 26489.17 254
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18391.63 3687.98 20681.51 7287.05 15991.83 16066.18 24695.29 5370.75 21296.89 8595.64 46
jason77.42 24375.75 25782.43 20387.10 22969.27 18477.99 27881.94 28151.47 35477.84 30685.07 29760.32 27789.00 24570.74 21389.27 27889.03 259
jason: jason.
MG-MVS80.32 21080.94 19878.47 26088.18 20452.62 34582.29 21885.01 25272.01 19779.24 29792.54 14169.36 23093.36 12770.65 21489.19 27989.45 247
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20889.94 6290.36 15767.97 23984.94 20292.58 14072.71 20992.18 15970.63 21587.73 29888.85 262
CVMVSNet72.62 29171.41 30176.28 29383.25 29260.34 28183.50 18479.02 30037.77 39176.33 31685.10 29449.60 33687.41 26570.54 21677.54 37381.08 354
pmmvs686.52 9588.06 7481.90 20792.22 10262.28 25884.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27570.43 21797.30 7696.62 28
D2MVS76.84 24975.67 25980.34 23480.48 32462.16 26173.50 33384.80 25757.61 32482.24 25087.54 25551.31 32887.65 26270.40 21893.19 21191.23 210
PAPM_NR83.23 16183.19 15883.33 17990.90 14665.98 21688.19 9890.78 14578.13 11580.87 27587.92 24973.49 19892.42 15170.07 21988.40 28791.60 204
SDMVSNet81.90 18683.17 15978.10 26788.81 18962.45 25476.08 30986.05 23473.67 16383.41 23493.04 12082.35 9580.65 32870.06 22095.03 16091.21 211
lupinMVS76.37 25774.46 26982.09 20485.54 26369.26 18576.79 29580.77 29150.68 36176.23 31882.82 32258.69 29088.94 24669.85 22188.77 28388.07 268
PVSNet_Blended_VisFu81.55 18980.49 20384.70 14491.58 12573.24 13784.21 16291.67 12062.86 27880.94 27387.16 26367.27 24092.87 14369.82 22288.94 28287.99 271
Patchmatch-RL test74.48 27673.68 27576.89 28684.83 27166.54 20972.29 33969.16 36357.70 32286.76 16386.33 27445.79 35382.59 31669.63 22390.65 26781.54 347
EPNet80.37 20778.41 23386.23 11176.75 35273.28 13587.18 11177.45 30776.24 13168.14 36388.93 23465.41 25093.85 10269.47 22496.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20077.93 27992.52 9468.33 23385.07 19781.54 33682.06 10392.96 13869.35 22597.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24590.67 20176.53 16694.25 8669.24 22695.69 14085.55 296
VDD-MVS84.23 13984.58 13583.20 18391.17 14065.16 22483.25 19084.97 25479.79 9087.18 15294.27 7574.77 18390.89 19669.24 22696.54 9793.55 131
CANet_DTU77.81 23977.05 24480.09 23881.37 31159.90 28683.26 18988.29 20069.16 22467.83 36683.72 31060.93 27289.47 23569.22 22889.70 27390.88 219
Anonymous2024052986.20 10187.13 8783.42 17790.19 16064.55 22984.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 22996.40 10595.31 55
FMVSNet184.55 12985.45 11981.85 20990.27 15961.05 27186.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23095.33 14793.82 113
test_fmvs1_n70.94 30670.41 30972.53 31973.92 37166.93 20675.99 31084.21 26343.31 38179.40 29379.39 35343.47 36868.55 36669.05 23184.91 33182.10 341
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 23977.07 12673.76 33992.82 13169.64 22891.82 17169.04 23293.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ANet_high83.17 16385.68 11575.65 29881.24 31245.26 37779.94 24992.91 8483.83 4691.33 7496.88 1080.25 12785.92 29068.89 23395.89 12995.76 43
test_vis1_n_192071.30 30471.58 29970.47 32777.58 34559.99 28574.25 32484.22 26251.06 35674.85 33479.10 35455.10 31568.83 36468.86 23479.20 36682.58 334
Fast-Effi-MVS+-dtu82.54 17181.41 19085.90 12085.60 26176.53 11183.07 19589.62 18073.02 17979.11 29883.51 31280.74 12290.24 21368.76 23589.29 27690.94 217
pm-mvs183.69 15184.95 12779.91 23990.04 16659.66 28882.43 21487.44 20975.52 14487.85 14395.26 3981.25 11685.65 29768.74 23696.04 12094.42 85
CR-MVSNet74.00 28073.04 28376.85 28779.58 32962.64 25082.58 20876.90 31350.50 36275.72 32492.38 14448.07 34084.07 30968.72 23782.91 34683.85 317
KD-MVS_self_test81.93 18483.14 16078.30 26384.75 27452.75 34280.37 24489.42 18470.24 21690.26 9493.39 11474.55 18786.77 27668.61 23896.64 9395.38 52
IterMVS76.91 24876.34 25278.64 25680.91 31664.03 23376.30 30479.03 29964.88 27083.11 23989.16 23059.90 28184.46 30668.61 23885.15 32787.42 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata79.54 24692.87 8272.34 15280.14 29459.91 31185.47 19391.75 16567.96 23885.24 29968.57 24092.18 23381.06 356
test_fmvs169.57 31969.05 32071.14 32669.15 38865.77 21973.98 32883.32 26842.83 38377.77 30978.27 36143.39 37168.50 36768.39 24184.38 33879.15 364
mvs_anonymous78.13 23578.76 22776.23 29579.24 33550.31 36178.69 27084.82 25661.60 29383.09 24192.82 13173.89 19287.01 26968.33 24286.41 31491.37 208
WR-MVS83.56 15584.40 14181.06 22393.43 6854.88 33078.67 27185.02 25181.24 7590.74 8991.56 16972.85 20791.08 18968.00 24398.04 3697.23 18
TransMVSNet (Re)84.02 14585.74 11478.85 25291.00 14455.20 32982.29 21887.26 21279.65 9388.38 13495.52 3383.00 8586.88 27367.97 24496.60 9594.45 82
无先验82.81 20385.62 24058.09 31991.41 18167.95 24584.48 306
Fast-Effi-MVS+81.04 19580.57 20082.46 20287.50 21963.22 24278.37 27589.63 17968.01 23781.87 25882.08 33082.31 9792.65 14767.10 24688.30 29291.51 207
FMVSNet281.31 19181.61 18580.41 23386.38 24258.75 30283.93 17286.58 22772.43 18787.65 14692.98 12463.78 25990.22 21466.86 24793.92 19592.27 181
GA-MVS75.83 26174.61 26679.48 24781.87 30359.25 29273.42 33482.88 27268.68 23079.75 28981.80 33350.62 33189.46 23666.85 24885.64 32089.72 244
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23388.66 23874.87 17981.73 32166.84 24992.29 22889.11 255
tfpnnormal81.79 18782.95 16378.31 26288.93 18655.40 32580.83 24182.85 27376.81 12785.90 18694.14 8574.58 18686.51 27966.82 25095.68 14193.01 150
test_vis1_n70.29 31069.99 31471.20 32575.97 36066.50 21076.69 29880.81 29044.22 37775.43 32777.23 36750.00 33468.59 36566.71 25182.85 34878.52 366
VPA-MVSNet83.47 15884.73 12979.69 24390.29 15857.52 31181.30 23488.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25296.82 8994.34 89
VDDNet84.35 13385.39 12081.25 21895.13 3159.32 29185.42 14281.11 28786.41 2787.41 15096.21 1973.61 19490.61 20666.33 25396.85 8693.81 116
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19292.40 9672.04 19682.04 25588.33 24177.91 14493.95 9966.17 25495.12 15790.34 236
WB-MVS76.06 25980.01 21564.19 35889.96 16820.58 39972.18 34068.19 36583.21 5486.46 17693.49 11270.19 22778.97 33565.96 25590.46 26993.02 149
GBi-Net82.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
test182.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
FMVSNet378.80 22878.55 23079.57 24582.89 29956.89 31781.76 22685.77 23869.04 22686.00 18290.44 20651.75 32790.09 22265.95 25693.34 20591.72 199
新几何182.95 18993.96 5578.56 8480.24 29355.45 33383.93 22791.08 18371.19 22388.33 25665.84 25993.07 21381.95 343
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 28889.15 23177.04 15793.28 12865.82 26092.28 22992.21 184
test_cas_vis1_n_192069.20 32369.12 31869.43 33573.68 37462.82 24770.38 35177.21 31046.18 37180.46 28378.95 35652.03 32465.53 37965.77 26177.45 37479.95 362
ppachtmachnet_test74.73 27574.00 27376.90 28580.71 32156.89 31771.53 34478.42 30158.24 31879.32 29682.92 32157.91 29684.26 30865.60 26291.36 24889.56 246
API-MVS82.28 17482.61 17081.30 21786.29 24869.79 17788.71 9087.67 20878.42 11282.15 25384.15 30877.98 14291.59 17465.39 26392.75 22082.51 338
test111178.53 23278.85 22577.56 27692.22 10247.49 37082.61 20669.24 36272.43 18785.28 19494.20 8151.91 32590.07 22365.36 26496.45 10395.11 62
test_vis3_rt71.42 30270.67 30473.64 31069.66 38770.46 17366.97 36489.73 17442.68 38488.20 13883.04 31743.77 36760.07 38665.35 26586.66 31190.39 235
testing371.53 30170.79 30373.77 30988.89 18741.86 38576.60 30159.12 38672.83 18180.97 27182.08 33019.80 40287.33 26765.12 26691.68 24292.13 188
thisisatest051573.00 28970.52 30680.46 23281.45 30959.90 28673.16 33774.31 33157.86 32176.08 32177.78 36237.60 38392.12 16265.00 26791.45 24789.35 250
cascas76.29 25874.81 26580.72 22984.47 27662.94 24473.89 33087.34 21055.94 33175.16 33276.53 37263.97 25791.16 18665.00 26790.97 25688.06 269
test250674.12 27973.39 27976.28 29391.85 11544.20 38084.06 16748.20 39672.30 19381.90 25794.20 8127.22 39789.77 23164.81 26996.02 12194.87 67
MDA-MVSNet-bldmvs77.47 24276.90 24779.16 25079.03 33764.59 22666.58 36575.67 32273.15 17788.86 12288.99 23366.94 24181.23 32464.71 27088.22 29391.64 203
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23978.71 25584.39 28061.15 26981.18 23682.52 27562.45 28283.34 23687.37 25866.20 24588.66 25364.69 27185.02 32886.32 288
PS-MVSNAJ77.04 24776.53 25078.56 25787.09 23061.40 26575.26 31887.13 21661.25 29774.38 33777.22 36876.94 15990.94 19264.63 27284.83 33483.35 325
xiu_mvs_v2_base77.19 24576.75 24878.52 25887.01 23261.30 26775.55 31687.12 21961.24 29874.45 33578.79 35777.20 15390.93 19364.62 27384.80 33583.32 326
PatchT70.52 30972.76 28763.79 36079.38 33333.53 39477.63 28465.37 37473.61 16571.77 34892.79 13444.38 36675.65 34764.53 27485.37 32282.18 340
Syy-MVS69.40 32170.03 31367.49 34581.72 30538.94 38771.00 34561.99 37861.38 29570.81 35472.36 38061.37 27179.30 33264.50 27585.18 32584.22 310
FE-MVS79.98 21878.86 22483.36 17886.47 23966.45 21189.73 6584.74 25872.80 18284.22 22391.38 17344.95 36393.60 11463.93 27691.50 24690.04 243
LFMVS80.15 21580.56 20178.89 25189.19 18155.93 32185.22 14573.78 33682.96 5884.28 21992.72 13657.38 29990.07 22363.80 27795.75 13890.68 226
ECVR-MVScopyleft78.44 23378.63 22977.88 27291.85 11548.95 36483.68 18069.91 36072.30 19384.26 22194.20 8151.89 32689.82 22863.58 27896.02 12194.87 67
131473.22 28672.56 29175.20 30180.41 32557.84 30881.64 22985.36 24251.68 35373.10 34276.65 37161.45 27085.19 30063.54 27979.21 36582.59 333
testdata286.43 28163.52 280
Patchmtry76.56 25477.46 23973.83 30879.37 33446.60 37482.41 21576.90 31373.81 16185.56 19192.38 14448.07 34083.98 31063.36 28195.31 15090.92 218
MSDG80.06 21779.99 21680.25 23583.91 28768.04 19877.51 28789.19 18577.65 11981.94 25683.45 31476.37 16986.31 28263.31 28286.59 31286.41 287
BH-RMVSNet80.53 20280.22 20981.49 21687.19 22566.21 21477.79 28286.23 23174.21 15783.69 22888.50 23973.25 20490.75 20063.18 28387.90 29587.52 277
test_yl78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
DCV-MVSNet78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
TinyColmap81.25 19282.34 17577.99 27085.33 26560.68 27982.32 21788.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28695.17 15486.31 289
Anonymous20240521180.51 20381.19 19678.49 25988.48 19857.26 31376.63 29982.49 27681.21 7684.30 21892.24 15267.99 23786.24 28362.22 28795.13 15591.98 194
our_test_371.85 29771.59 29772.62 31780.71 32153.78 33569.72 35471.71 35358.80 31578.03 30380.51 34556.61 30578.84 33662.20 28886.04 31885.23 299
pmmvs-eth3d78.42 23477.04 24582.57 20087.44 22074.41 12880.86 24079.67 29655.68 33284.69 20690.31 20960.91 27385.42 29862.20 28891.59 24487.88 274
CMPMVSbinary59.41 2075.12 26873.57 27679.77 24075.84 36167.22 20181.21 23582.18 27850.78 35976.50 31487.66 25355.20 31482.99 31562.17 29090.64 26889.09 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f64.31 34365.85 33659.67 36966.54 39262.24 26057.76 38370.96 35540.13 38684.36 21382.09 32946.93 34251.67 39261.99 29181.89 35265.12 384
MIMVSNet183.63 15384.59 13480.74 22794.06 5362.77 24882.72 20484.53 25977.57 12190.34 9295.92 2476.88 16585.83 29561.88 29297.42 7293.62 125
BH-untuned80.96 19680.99 19780.84 22688.55 19768.23 19380.33 24588.46 19472.79 18386.55 16986.76 26974.72 18491.77 17261.79 29388.99 28082.52 337
AdaColmapbinary83.66 15283.69 15283.57 17490.05 16572.26 15486.29 13090.00 17178.19 11481.65 26487.16 26383.40 8294.24 8761.69 29494.76 17584.21 312
VPNet80.25 21181.68 18275.94 29692.46 9347.98 36876.70 29781.67 28473.45 16784.87 20392.82 13174.66 18586.51 27961.66 29596.85 8693.33 135
MAR-MVS80.24 21278.74 22884.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30678.50 35973.79 19390.53 20761.59 29690.87 25985.49 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft73.85 1682.09 18080.31 20587.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31786.33 27473.12 20592.61 14861.40 29790.02 27289.44 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test-LLR67.21 32866.74 33368.63 34076.45 35655.21 32767.89 35867.14 36962.43 28465.08 37672.39 37843.41 36969.37 35961.00 29884.89 33281.31 349
test-mter65.00 34063.79 34468.63 34076.45 35655.21 32767.89 35867.14 36950.98 35865.08 37672.39 37828.27 39569.37 35961.00 29884.89 33281.31 349
PatchmatchNetpermissive69.71 31868.83 32272.33 32177.66 34453.60 33679.29 25969.99 35957.66 32372.53 34582.93 32046.45 34580.08 33160.91 30072.09 38183.31 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_BlendedMVS78.80 22877.84 23781.65 21484.43 27763.41 23879.49 25790.44 15461.70 29175.43 32787.07 26669.11 23291.44 17860.68 30192.24 23090.11 241
PVSNet_Blended76.49 25575.40 26079.76 24184.43 27763.41 23875.14 31990.44 15457.36 32675.43 32778.30 36069.11 23291.44 17860.68 30187.70 29984.42 308
VNet79.31 22180.27 20676.44 29087.92 20953.95 33475.58 31584.35 26074.39 15682.23 25190.72 19772.84 20884.39 30760.38 30393.98 19490.97 216
LCM-MVSNet-Re83.48 15785.06 12478.75 25485.94 25855.75 32480.05 24794.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30494.89 16790.75 222
YYNet170.06 31470.44 30768.90 33773.76 37353.42 33958.99 38167.20 36858.42 31787.10 15585.39 29059.82 28267.32 37159.79 30583.50 34285.96 291
MDA-MVSNet_test_wron70.05 31570.44 30768.88 33873.84 37253.47 33758.93 38267.28 36758.43 31687.09 15685.40 28959.80 28367.25 37259.66 30683.54 34185.92 293
PAPR78.84 22678.10 23681.07 22285.17 26860.22 28282.21 22290.57 15162.51 28075.32 33084.61 30274.99 17892.30 15759.48 30788.04 29490.68 226
IB-MVS62.13 1971.64 29968.97 32179.66 24480.80 32062.26 25973.94 32976.90 31363.27 27568.63 36276.79 37033.83 38891.84 17059.28 30887.26 30184.88 303
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS74.62 1582.15 17980.92 19985.84 12289.43 17472.30 15380.53 24291.82 11657.36 32687.81 14489.92 21777.67 14793.63 11058.69 30995.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sd_testset79.95 21981.39 19175.64 29988.81 18958.07 30676.16 30882.81 27473.67 16383.41 23493.04 12080.96 11977.65 33958.62 31095.03 16091.21 211
1112_ss74.82 27373.74 27478.04 26989.57 17060.04 28376.49 30287.09 22054.31 33773.66 34079.80 35060.25 27886.76 27758.37 31184.15 33987.32 280
tpmvs70.16 31269.56 31771.96 32274.71 37048.13 36679.63 25275.45 32565.02 26970.26 35681.88 33245.34 35985.68 29658.34 31275.39 37782.08 342
UnsupCasMVSNet_eth71.63 30072.30 29369.62 33376.47 35552.70 34470.03 35380.97 28959.18 31379.36 29488.21 24360.50 27469.12 36258.33 31377.62 37287.04 282
tpmrst66.28 33566.69 33465.05 35672.82 38039.33 38678.20 27670.69 35753.16 34367.88 36580.36 34648.18 33974.75 34958.13 31470.79 38381.08 354
test_post178.85 2693.13 39645.19 36180.13 33058.11 315
SCA73.32 28472.57 29075.58 30081.62 30755.86 32278.89 26771.37 35461.73 28974.93 33383.42 31560.46 27587.01 26958.11 31582.63 35183.88 314
pmmvs474.92 27172.98 28480.73 22884.95 26971.71 16376.23 30677.59 30652.83 34477.73 31086.38 27256.35 30784.97 30257.72 31787.05 30685.51 297
Vis-MVSNet (Re-imp)77.82 23877.79 23877.92 27188.82 18851.29 35583.28 18871.97 34974.04 15882.23 25189.78 21957.38 29989.41 24057.22 31895.41 14493.05 148
ab-mvs79.67 22080.56 20176.99 28288.48 19856.93 31584.70 15386.06 23368.95 22780.78 27793.08 11975.30 17584.62 30556.78 31990.90 25889.43 249
baseline173.26 28573.54 27772.43 32084.92 27047.79 36979.89 25074.00 33265.93 25478.81 30086.28 27756.36 30681.63 32256.63 32079.04 36787.87 275
Test_1112_low_res73.90 28173.08 28276.35 29190.35 15755.95 32073.40 33586.17 23250.70 36073.14 34185.94 28158.31 29285.90 29256.51 32183.22 34387.20 281
TESTMET0.1,161.29 34960.32 35564.19 35872.06 38251.30 35467.89 35862.09 37745.27 37360.65 38569.01 38427.93 39664.74 38156.31 32281.65 35576.53 368
test_vis1_rt65.64 33864.09 34270.31 32866.09 39370.20 17661.16 37681.60 28538.65 38972.87 34369.66 38352.84 32060.04 38756.16 32377.77 37080.68 358
XXY-MVS74.44 27876.19 25369.21 33684.61 27552.43 34671.70 34277.18 31160.73 30480.60 27890.96 18875.44 17269.35 36156.13 32488.33 28885.86 294
MDTV_nov1_ep1368.29 32678.03 34143.87 38174.12 32672.22 34752.17 34867.02 36885.54 28545.36 35880.85 32655.73 32584.42 337
E-PMN61.59 34861.62 35161.49 36566.81 39155.40 32553.77 38660.34 38566.80 25058.90 38965.50 38840.48 37766.12 37755.72 32686.25 31662.95 386
MVS73.21 28772.59 28975.06 30380.97 31560.81 27781.64 22985.92 23746.03 37271.68 34977.54 36368.47 23589.77 23155.70 32785.39 32174.60 373
TR-MVS76.77 25175.79 25679.72 24286.10 25665.79 21877.14 29083.02 27165.20 26881.40 26882.10 32866.30 24490.73 20255.57 32885.27 32382.65 332
EPMVS62.47 34462.63 34862.01 36270.63 38538.74 38874.76 32152.86 39353.91 33967.71 36780.01 34839.40 37866.60 37555.54 32968.81 38980.68 358
MS-PatchMatch70.93 30770.22 31073.06 31481.85 30462.50 25373.82 33177.90 30352.44 34775.92 32281.27 33755.67 31181.75 32055.37 33077.70 37174.94 372
CL-MVSNet_self_test76.81 25077.38 24175.12 30286.90 23451.34 35373.20 33680.63 29268.30 23481.80 26288.40 24066.92 24280.90 32555.35 33194.90 16693.12 146
new-patchmatchnet70.10 31373.37 28060.29 36881.23 31316.95 40159.54 37874.62 32762.93 27780.97 27187.93 24862.83 26771.90 35455.24 33295.01 16392.00 192
CostFormer69.98 31668.68 32473.87 30777.14 34850.72 35979.26 26074.51 32951.94 35270.97 35384.75 30045.16 36287.49 26455.16 33379.23 36483.40 324
thres600view775.97 26075.35 26277.85 27487.01 23251.84 35180.45 24373.26 34075.20 14883.10 24086.31 27645.54 35489.05 24455.03 33492.24 23092.66 163
EMVS61.10 35160.81 35361.99 36365.96 39455.86 32253.10 38758.97 38867.06 24756.89 39263.33 38940.98 37567.03 37354.79 33586.18 31763.08 385
USDC76.63 25276.73 24976.34 29283.46 29057.20 31480.02 24888.04 20552.14 35083.65 22991.25 17663.24 26286.65 27854.66 33694.11 19185.17 300
CDS-MVSNet77.32 24475.40 26083.06 18589.00 18472.48 15077.90 28082.17 27960.81 30278.94 29983.49 31359.30 28588.76 25254.64 33792.37 22587.93 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit75.42 36544.97 37952.17 34872.36 38087.90 25954.10 338
PatchMatch-RL74.48 27673.22 28178.27 26587.70 21385.26 3475.92 31170.09 35864.34 27276.09 32081.25 33865.87 24978.07 33853.86 33983.82 34071.48 376
EPNet_dtu72.87 29071.33 30277.49 27877.72 34360.55 28082.35 21675.79 32066.49 25258.39 39181.06 33953.68 31885.98 28953.55 34092.97 21785.95 292
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM69.41 32066.64 33577.70 27573.19 37671.24 16875.67 31265.56 37370.42 21165.18 37592.97 12633.64 38983.06 31453.52 34169.61 38778.79 365
baseline269.77 31766.89 33178.41 26179.51 33158.09 30576.23 30669.57 36157.50 32564.82 37977.45 36546.02 34888.44 25453.08 34277.83 36988.70 263
KD-MVS_2432*160066.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
miper_refine_blended66.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
BH-w/o76.57 25376.07 25578.10 26786.88 23565.92 21777.63 28486.33 22865.69 26080.89 27479.95 34968.97 23490.74 20153.01 34585.25 32477.62 367
pmmvs570.73 30870.07 31172.72 31677.03 35052.73 34374.14 32575.65 32350.36 36372.17 34785.37 29155.42 31380.67 32752.86 34687.59 30084.77 304
WAC-MVS37.39 39052.61 347
tpm67.95 32668.08 32767.55 34478.74 34043.53 38275.60 31367.10 37154.92 33572.23 34688.10 24442.87 37375.97 34552.21 34880.95 36083.15 329
MVP-Stereo75.81 26273.51 27882.71 19589.35 17573.62 13180.06 24685.20 24560.30 30773.96 33887.94 24757.89 29789.45 23752.02 34974.87 37885.06 302
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 26475.05 26476.66 28987.27 22251.88 35081.07 23773.26 34075.68 14183.25 23786.37 27345.54 35488.80 24851.98 35090.99 25389.31 251
tfpn200view974.86 27274.23 27176.74 28886.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25389.31 251
thres40075.14 26674.23 27177.86 27386.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25392.66 163
mvsany_test365.48 33962.97 34673.03 31569.99 38676.17 11864.83 36743.71 39843.68 37980.25 28787.05 26752.83 32163.09 38551.92 35372.44 38079.84 363
HyFIR lowres test75.12 26872.66 28882.50 20191.44 13365.19 22372.47 33887.31 21146.79 36780.29 28484.30 30552.70 32292.10 16351.88 35486.73 31090.22 237
TAMVS78.08 23676.36 25183.23 18190.62 15272.87 13979.08 26480.01 29561.72 29081.35 26986.92 26863.96 25888.78 25150.61 35593.01 21588.04 270
sss66.92 32967.26 32965.90 35177.23 34751.10 35864.79 36871.72 35252.12 35170.13 35780.18 34757.96 29565.36 38050.21 35681.01 35981.25 351
FPMVS72.29 29572.00 29473.14 31388.63 19485.00 3674.65 32367.39 36671.94 19877.80 30887.66 25350.48 33275.83 34649.95 35779.51 36158.58 390
tpm cat166.76 33365.21 34071.42 32377.09 34950.62 36078.01 27773.68 33844.89 37568.64 36179.00 35545.51 35682.42 31949.91 35870.15 38481.23 353
CHOSEN 1792x268872.45 29270.56 30578.13 26690.02 16763.08 24368.72 35683.16 26942.99 38275.92 32285.46 28757.22 30185.18 30149.87 35981.67 35386.14 290
myMVS_eth3d64.66 34163.89 34366.97 34781.72 30537.39 39071.00 34561.99 37861.38 29570.81 35472.36 38020.96 40179.30 33249.59 36085.18 32584.22 310
HY-MVS64.64 1873.03 28872.47 29274.71 30483.36 29154.19 33282.14 22581.96 28056.76 33069.57 35986.21 27860.03 27984.83 30449.58 36182.65 34985.11 301
MDTV_nov1_ep13_2view27.60 39870.76 34846.47 37061.27 38345.20 36049.18 36283.75 319
PMMVS61.65 34760.38 35465.47 35465.40 39669.26 18563.97 37161.73 38236.80 39260.11 38668.43 38559.42 28466.35 37648.97 36378.57 36860.81 387
WTY-MVS67.91 32768.35 32566.58 34980.82 31948.12 36765.96 36672.60 34353.67 34071.20 35181.68 33558.97 28869.06 36348.57 36481.67 35382.55 335
UnsupCasMVSNet_bld69.21 32269.68 31667.82 34379.42 33251.15 35667.82 36175.79 32054.15 33877.47 31285.36 29259.26 28670.64 35748.46 36579.35 36381.66 345
tpm268.45 32566.83 33273.30 31278.93 33948.50 36579.76 25171.76 35147.50 36669.92 35883.60 31142.07 37488.40 25548.44 36679.51 36183.01 331
Patchmatch-test65.91 33667.38 32861.48 36675.51 36343.21 38368.84 35563.79 37662.48 28172.80 34483.42 31544.89 36459.52 38848.27 36786.45 31381.70 344
FMVSNet572.10 29671.69 29673.32 31181.57 30853.02 34176.77 29678.37 30263.31 27476.37 31591.85 15836.68 38478.98 33447.87 36892.45 22487.95 272
dp60.70 35360.29 35661.92 36472.04 38338.67 38970.83 34764.08 37551.28 35560.75 38477.28 36636.59 38571.58 35647.41 36962.34 39175.52 371
N_pmnet70.20 31168.80 32374.38 30680.91 31684.81 3959.12 38076.45 31855.06 33475.31 33182.36 32755.74 31054.82 39047.02 37087.24 30283.52 321
thres20072.34 29471.55 30074.70 30583.48 28951.60 35275.02 32073.71 33770.14 21778.56 30280.57 34346.20 34688.20 25846.99 37189.29 27684.32 309
test20.0373.75 28274.59 26871.22 32481.11 31451.12 35770.15 35272.10 34870.42 21180.28 28691.50 17064.21 25674.72 35046.96 37294.58 17887.82 276
mvsany_test158.48 35656.47 36164.50 35765.90 39568.21 19556.95 38442.11 39938.30 39065.69 37277.19 36956.96 30259.35 38946.16 37358.96 39265.93 383
pmmvs362.47 34460.02 35769.80 33271.58 38464.00 23470.52 34958.44 38939.77 38766.05 36975.84 37327.10 39872.28 35246.15 37484.77 33673.11 374
testgi72.36 29374.61 26665.59 35280.56 32342.82 38468.29 35773.35 33966.87 24981.84 25989.93 21672.08 21666.92 37446.05 37592.54 22387.01 283
PVSNet58.17 2166.41 33465.63 33968.75 33981.96 30249.88 36362.19 37572.51 34551.03 35768.04 36475.34 37550.84 33074.77 34845.82 37682.96 34481.60 346
dmvs_re66.81 33266.98 33066.28 35076.87 35158.68 30371.66 34372.24 34660.29 30869.52 36073.53 37752.38 32364.40 38244.90 37781.44 35675.76 370
gg-mvs-nofinetune68.96 32469.11 31968.52 34276.12 35945.32 37683.59 18255.88 39186.68 2464.62 38097.01 730.36 39283.97 31144.78 37882.94 34576.26 369
Anonymous2023120671.38 30371.88 29569.88 33186.31 24654.37 33170.39 35074.62 32752.57 34676.73 31388.76 23559.94 28072.06 35344.35 37993.23 21083.23 328
CHOSEN 280x42059.08 35556.52 36066.76 34876.51 35464.39 23049.62 38859.00 38743.86 37855.66 39368.41 38635.55 38768.21 37043.25 38076.78 37667.69 382
ADS-MVSNet265.87 33763.64 34572.55 31873.16 37756.92 31667.10 36274.81 32649.74 36466.04 37082.97 31846.71 34377.26 34142.29 38169.96 38583.46 322
ADS-MVSNet61.90 34662.19 35061.03 36773.16 37736.42 39267.10 36261.75 38149.74 36466.04 37082.97 31846.71 34363.21 38342.29 38169.96 38583.46 322
DSMNet-mixed60.98 35261.61 35259.09 37172.88 37945.05 37874.70 32246.61 39726.20 39365.34 37490.32 20855.46 31263.12 38441.72 38381.30 35869.09 380
MIMVSNet71.09 30571.59 29769.57 33487.23 22350.07 36278.91 26671.83 35060.20 31071.26 35091.76 16455.08 31676.09 34441.06 38487.02 30882.54 336
test0.0.03 164.66 34164.36 34165.57 35375.03 36846.89 37364.69 36961.58 38362.43 28471.18 35277.54 36343.41 36968.47 36840.75 38582.65 34981.35 348
PAPM71.77 29870.06 31276.92 28486.39 24153.97 33376.62 30086.62 22653.44 34163.97 38184.73 30157.79 29892.34 15539.65 38681.33 35784.45 307
MVS-HIRNet61.16 35062.92 34755.87 37279.09 33635.34 39371.83 34157.98 39046.56 36959.05 38891.14 18049.95 33576.43 34338.74 38771.92 38255.84 391
GG-mvs-BLEND67.16 34673.36 37546.54 37584.15 16455.04 39258.64 39061.95 39129.93 39383.87 31238.71 38876.92 37571.07 377
new_pmnet55.69 35857.66 35949.76 37575.47 36430.59 39559.56 37751.45 39443.62 38062.49 38275.48 37440.96 37649.15 39437.39 38972.52 37969.55 379
PVSNet_051.08 2256.10 35754.97 36259.48 37075.12 36753.28 34055.16 38561.89 38044.30 37659.16 38762.48 39054.22 31765.91 37835.40 39047.01 39359.25 389
wuyk23d75.13 26779.30 22062.63 36175.56 36275.18 12480.89 23973.10 34275.06 15094.76 1295.32 3587.73 4052.85 39134.16 39197.11 8059.85 388
MVEpermissive40.22 2351.82 36050.47 36355.87 37262.66 39851.91 34931.61 39139.28 40040.65 38550.76 39474.98 37656.24 30844.67 39533.94 39264.11 39071.04 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS255.64 35959.27 35844.74 37664.30 39712.32 40240.60 38949.79 39553.19 34265.06 37884.81 29953.60 31949.76 39332.68 39389.41 27572.15 375
dmvs_testset60.59 35462.54 34954.72 37477.26 34627.74 39774.05 32761.00 38460.48 30665.62 37367.03 38755.93 30968.23 36932.07 39469.46 38868.17 381
test_method30.46 36129.60 36433.06 37717.99 4003.84 40413.62 39273.92 3332.79 39518.29 39753.41 39228.53 39443.25 39622.56 39535.27 39552.11 392
tmp_tt20.25 36324.50 3667.49 3794.47 4018.70 40334.17 39025.16 4021.00 39732.43 39618.49 39439.37 3799.21 39821.64 39643.75 3944.57 394
DeepMVS_CXcopyleft24.13 37832.95 39929.49 39621.63 40312.07 39437.95 39545.07 39330.84 39119.21 39717.94 39733.06 39623.69 393
test1236.27 3668.08 3690.84 3801.11 4030.57 40562.90 3720.82 4040.54 3981.07 4002.75 3991.26 4030.30 3991.04 3981.26 3981.66 395
testmvs5.91 3677.65 3700.72 3811.20 4020.37 40659.14 3790.67 4050.49 3991.11 3992.76 3980.94 4040.24 4001.02 3991.47 3971.55 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k20.81 36227.75 3650.00 3820.00 4040.00 4070.00 39385.44 2410.00 4000.00 40182.82 32281.46 1130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.41 3658.55 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40076.94 1590.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re6.65 3648.87 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40179.80 3500.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13694.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 404
eth-test0.00 404
test_241102_ONE94.18 4672.65 14193.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14790.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 314
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34783.88 314
sam_mvs45.92 352
MTGPAbinary91.81 118
test_post3.10 39745.43 35777.22 342
patchmatchnet-post81.71 33445.93 35187.01 269
MTMP90.66 4433.14 401
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 15892.85 8694.17 9292.80 156
新几何281.72 228
旧先验191.97 10971.77 15981.78 28391.84 15973.92 19193.65 20183.61 320
原ACMM282.26 221
test22293.31 7176.54 10979.38 25877.79 30452.59 34582.36 24990.84 19466.83 24391.69 24181.25 351
segment_acmp81.94 105
testdata179.62 25373.95 160
test1286.57 10390.74 14972.63 14590.69 14782.76 24479.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 406
nn0.00 406
door-mid74.45 330
test1191.46 124
door72.57 344
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 14973.30 17280.55 280
ACMP_Plane91.19 13784.77 14973.30 17280.55 280
HQP4-MVS80.56 27994.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 214
NP-MVS91.95 11074.55 12790.17 214
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134