This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12494.26 7777.55 14995.86 2284.88 5895.87 13095.24 58
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10694.82 5185.09 6395.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18592.38 9970.25 21489.35 11890.68 19882.85 8794.57 7679.55 11595.95 12592.00 190
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18288.51 1790.11 9595.12 4490.98 688.92 24777.55 14097.07 8183.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator80.37 784.80 12484.71 13385.06 13486.36 24574.71 12588.77 8990.00 17275.65 14284.96 20093.17 11674.06 19091.19 18678.28 12891.09 25189.29 255
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13376.92 10687.19 10991.99 10970.56 20984.96 20090.69 19780.01 12995.14 5978.37 12595.78 13791.82 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6179.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 170
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19179.72 7387.15 11193.50 5769.17 22285.80 18789.56 22380.76 12192.13 16173.21 19695.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20684.42 28068.22 19588.50 9489.48 18366.92 24881.80 26391.86 15672.59 21290.16 21771.19 20891.25 25087.40 284
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4781.89 6894.70 1395.44 3490.69 888.31 25783.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS74.62 1582.15 17980.92 20185.84 12189.43 17472.30 15480.53 24391.82 11757.36 33287.81 14489.92 21877.67 14793.63 11158.69 31195.08 15891.58 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18080.31 20887.45 9090.86 14780.29 6985.88 13290.65 14968.17 23576.32 31886.33 27473.12 20692.61 14961.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24178.71 25784.39 28161.15 26981.18 23782.52 27862.45 28483.34 23787.37 25866.20 24788.66 25364.69 27385.02 33686.32 294
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22681.96 28356.76 33769.57 36686.21 27860.03 28484.83 30649.58 36582.65 35885.11 308
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 25973.94 33276.90 31563.27 27668.63 37076.79 37633.83 39291.84 17159.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20281.21 23682.18 28150.78 36876.50 31587.66 25355.20 31882.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33474.77 35645.82 38182.96 35381.60 355
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32165.91 38735.40 39847.01 40259.25 398
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31244.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23470.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28366.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24570.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32179.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 29968.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27369.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25371.89 36338.21 39685.04 33587.69 281
fmvsm_l_conf0.5_n_a81.46 19180.87 20283.25 18083.73 29373.21 13883.00 19885.59 24358.22 32482.96 24390.09 21672.30 21586.65 27981.97 9289.95 27489.88 243
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17183.94 28873.90 13083.35 18786.10 23458.97 31883.80 22890.36 20674.23 18886.94 27382.90 7790.22 27089.94 242
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14487.68 21473.35 13386.14 13077.70 30761.64 29485.02 19891.62 16677.75 14586.24 28582.79 8087.07 30993.91 108
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16286.87 23671.57 16685.19 14577.42 31062.27 28884.47 21191.33 17376.43 16785.91 29383.14 7187.14 30794.33 90
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15286.56 23873.35 13385.46 13977.30 31161.81 29084.51 20890.88 19177.36 15186.21 28782.72 8186.97 31493.38 131
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16686.02 25671.56 16784.73 15177.11 31462.44 28584.00 22590.68 19876.42 16885.89 29583.14 7187.11 30893.81 115
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22784.54 4183.58 23293.78 10473.36 20396.48 187.98 996.21 11294.41 86
WAC-MVS37.39 39952.61 351
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29770.81 35872.36 38961.37 27679.30 34064.50 27785.18 33284.22 319
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13491.82 11765.33 26688.55 12892.35 14782.62 9189.80 23086.87 3294.32 18593.18 141
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25778.30 8586.93 11492.20 10365.94 25389.16 11993.16 11783.10 8489.89 22887.81 1194.43 18293.35 132
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29770.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
testing371.53 30470.79 30673.77 31188.89 18741.86 39376.60 30359.12 39572.83 18180.97 27282.08 33119.80 41187.33 26765.12 26891.68 24292.13 186
SSC-MVS77.55 24481.64 18365.29 36490.46 15420.33 40973.56 33568.28 36985.44 3288.18 13994.64 5970.93 22681.33 32971.25 20692.03 23494.20 92
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14291.39 12965.32 26787.72 14591.81 16182.33 9689.78 23186.68 3494.20 18892.99 149
WB-MVS76.06 26280.01 21864.19 36789.96 16720.58 40872.18 34468.19 37083.21 5486.46 17693.49 11170.19 22978.97 34365.96 25790.46 26993.02 147
test_fmvsmvis_n_192085.22 11585.36 12284.81 13785.80 25976.13 11985.15 14692.32 10061.40 29691.33 7490.85 19283.76 7886.16 28984.31 6393.28 20892.15 185
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31169.52 36773.53 38652.38 32764.40 39144.90 38281.44 36575.76 379
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25476.08 31186.05 23673.67 16383.41 23593.04 11982.35 9580.65 33470.06 22295.03 16091.21 209
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 30965.62 38267.03 39655.93 31368.23 37832.07 40369.46 39768.17 390
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27773.67 16383.41 23593.04 11980.96 11977.65 34758.62 31295.03 16091.21 209
test_fmvsm_n_192083.60 15482.89 16485.74 12385.22 26877.74 9584.12 16490.48 15359.87 31686.45 17791.12 18075.65 17185.89 29582.28 8790.87 25993.58 126
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24770.38 35977.21 31246.18 38080.46 28478.95 36052.03 32865.53 38865.77 26377.45 38379.95 371
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26551.06 36574.85 33779.10 35855.10 31968.83 37368.86 23679.20 37582.58 343
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21176.69 30080.81 29244.22 38675.43 33077.23 37350.00 33868.59 37466.71 25382.85 35778.52 375
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20775.99 31284.21 26643.31 39079.40 29479.39 35643.47 37268.55 37569.05 23384.91 33982.10 350
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19656.95 39342.11 40838.30 39965.69 38177.19 37556.96 30759.35 39846.16 37858.96 40165.93 392
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11384.26 4290.87 8793.92 9982.18 10189.29 24373.75 18394.81 17193.70 119
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17761.16 38581.60 28738.65 39872.87 34769.66 39252.84 32460.04 39656.16 32577.77 37980.68 367
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17466.97 37389.73 17542.68 39388.20 13883.04 31743.77 37160.07 39565.35 26786.66 31690.39 233
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19277.07 29484.32 26445.14 38382.89 24484.22 30648.37 34270.36 36773.40 18987.03 31188.52 267
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 21973.98 33183.32 27142.83 39277.77 31078.27 36543.39 37568.50 37668.39 24384.38 34679.15 373
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18378.93 26684.88 25846.67 37787.08 15787.84 25050.44 33771.62 36477.42 14488.53 28990.72 221
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28887.05 26752.83 32563.09 39451.92 35772.44 38979.84 372
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
test_f64.31 35365.85 34359.67 37866.54 40262.24 26057.76 39270.96 35940.13 39584.36 21382.09 33046.93 34651.67 40161.99 29381.89 36165.12 393
FE-MVS79.98 22078.86 22683.36 17786.47 23966.45 21289.73 6584.74 26172.80 18284.22 22391.38 17244.95 36793.60 11563.93 27891.50 24690.04 241
FA-MVS(test-final)83.13 16483.02 16283.43 17586.16 25466.08 21588.00 9988.36 19875.55 14385.02 19892.75 13465.12 25692.50 15174.94 17091.30 24991.72 197
iter_conf05_1178.40 23777.29 24681.71 21485.55 26260.95 27677.22 29186.90 22660.10 31475.79 32681.73 33564.08 26194.47 8270.37 21993.92 19489.72 244
bld_raw_dy_0_6481.25 19481.17 19881.49 21785.55 26260.85 27786.36 12795.45 957.08 33490.81 8882.69 32765.85 25293.91 10170.37 21996.34 10589.72 244
patch_mono-278.89 22679.39 22277.41 28184.78 27368.11 19775.60 31583.11 27360.96 30479.36 29589.89 21975.18 17672.97 35973.32 19092.30 22691.15 211
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2311.09 4052.23 40795.98 2381.87 10989.48 23579.76 11295.96 12491.10 212
test250674.12 28273.39 28276.28 29591.85 11444.20 38684.06 16648.20 40572.30 19381.90 25894.20 8027.22 40689.77 23264.81 27196.02 12194.87 67
test111178.53 23478.85 22777.56 27892.22 10147.49 37282.61 20769.24 36772.43 18785.28 19494.20 8051.91 32990.07 22465.36 26696.45 10295.11 62
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11448.95 36683.68 17969.91 36472.30 19384.26 22194.20 8051.89 33089.82 22963.58 28096.02 12194.87 67
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080588.09 7489.79 5182.98 18793.26 7263.94 23591.10 4189.64 17985.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11795.88 1787.41 2295.94 12692.48 167
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
PC_three_145258.96 31990.06 9691.33 17380.66 12393.03 13875.78 16095.94 12692.48 167
No_MVS88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
eth-test20.00 414
eth-test0.00 414
GeoE85.45 11385.81 11384.37 14790.08 16167.07 20485.86 13391.39 12972.33 19287.59 14790.25 21084.85 6692.37 15578.00 13491.94 23893.66 120
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
Anonymous2024052180.18 21681.25 19476.95 28583.15 30560.84 27882.46 21485.99 23868.76 22886.78 16293.73 10759.13 29277.44 34873.71 18497.55 6792.56 164
h-mvs3384.25 13782.76 16688.72 7191.82 11882.60 5684.00 16884.98 25671.27 20186.70 16590.55 20363.04 27093.92 10078.26 12994.20 18889.63 247
hse-mvs283.47 15881.81 18188.47 7591.03 14282.27 5782.61 20783.69 26771.27 20186.70 16586.05 28063.04 27092.41 15378.26 12993.62 20390.71 222
CL-MVSNet_self_test76.81 25377.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23381.80 26388.40 24066.92 24480.90 33155.35 33394.90 16693.12 144
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27552.75 34480.37 24589.42 18570.24 21590.26 9493.39 11374.55 18786.77 27768.61 24096.64 9295.38 52
AUN-MVS81.18 19678.78 22888.39 7790.93 14482.14 5882.51 21383.67 26864.69 27180.29 28585.91 28351.07 33392.38 15476.29 15693.63 20290.65 226
ZD-MVS92.22 10180.48 6791.85 11571.22 20490.38 9192.98 12386.06 5996.11 681.99 9196.75 90
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5183.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 177
IU-MVS94.18 4672.64 14490.82 14556.98 33589.67 10885.78 5097.92 4693.28 135
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11794.68 7174.48 17195.35 14692.29 177
test_241102_TWO93.71 5083.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 188
test_241102_ONE94.18 4672.65 14293.69 5183.62 4994.11 2293.78 10490.28 1495.50 46
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
cl2278.97 22578.21 23781.24 22277.74 35259.01 29877.46 29087.13 21765.79 25684.32 21585.10 29458.96 29490.88 19875.36 16592.03 23493.84 110
miper_ehance_all_eth80.34 21180.04 21781.24 22279.82 33858.95 29977.66 28489.66 17865.75 25985.99 18585.11 29368.29 23891.42 18176.03 15892.03 23493.33 133
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 19058.05 32683.59 23180.69 34264.41 25891.20 18573.16 19792.03 23492.33 175
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
dcpmvs_284.23 13985.14 12481.50 21688.61 19561.98 26282.90 20293.11 7468.66 23092.77 5192.39 14278.50 13887.63 26376.99 14992.30 22694.90 65
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.37 24486.18 18089.21 22963.08 26990.16 21776.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.38 24386.19 17889.22 22863.09 26890.16 21776.32 15495.80 13593.66 120
eth_miper_zixun_eth80.84 20080.22 21282.71 19581.41 32060.98 27477.81 28290.14 16967.31 24686.95 16187.24 26264.26 25992.31 15775.23 16691.61 24394.85 71
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter93.75 5977.44 9986.31 12889.72 17670.80 207
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19483.03 30768.11 19777.09 29376.51 31960.67 30877.60 31280.52 34638.04 38591.15 18870.78 21190.68 26489.17 256
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23189.67 6988.38 19788.84 1394.29 1897.57 390.48 1391.26 18472.57 20097.65 6097.34 15
EIA-MVS82.19 17781.23 19685.10 13387.95 20869.17 19083.22 19393.33 6270.42 21078.58 30279.77 35477.29 15294.20 8971.51 20588.96 28491.93 193
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27564.69 37885.04 25363.98 27483.20 23988.22 24256.67 30878.79 34573.22 19193.12 21292.78 155
ETV-MVS84.31 13483.91 15085.52 12788.58 19670.40 17584.50 15993.37 5978.76 10884.07 22478.72 36280.39 12595.13 6073.82 18292.98 21691.04 213
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26173.50 33684.80 26057.61 33082.24 25287.54 25551.31 33287.65 26270.40 21893.19 21191.23 208
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14083.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 229
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 189
test072694.16 4972.56 14890.63 4593.90 4383.61 5093.75 3094.49 6489.76 18
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4688.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 183
DPM-MVS80.10 21879.18 22482.88 19390.71 15069.74 17978.87 26990.84 14460.29 31175.64 32985.92 28267.28 24193.11 13571.24 20791.79 23985.77 301
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4980.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
test_yl78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
thisisatest053079.07 22477.33 24584.26 15487.13 22664.58 22783.66 18075.95 32168.86 22785.22 19587.36 25938.10 38493.57 11975.47 16394.28 18694.62 74
Anonymous2024052986.20 10287.13 8883.42 17690.19 15964.55 22984.55 15590.71 14785.85 3189.94 10295.24 4082.13 10290.40 21169.19 23196.40 10495.31 55
Anonymous20240521180.51 20681.19 19778.49 26188.48 19857.26 31576.63 30182.49 27981.21 7684.30 21892.24 15167.99 23986.24 28562.22 28995.13 15591.98 192
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
tttt051781.07 19779.58 22085.52 12788.99 18566.45 21287.03 11375.51 32673.76 16288.32 13690.20 21137.96 38694.16 9479.36 11995.13 15595.93 42
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32078.03 30480.51 34756.61 30978.84 34462.20 29086.04 32585.23 306
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32776.08 32377.78 36737.60 38792.12 16365.00 26991.45 24789.35 252
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32379.32 29782.92 32157.91 30184.26 31265.60 26491.36 24889.56 248
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6975.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS83.88 323
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 199
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part293.86 5777.77 9492.84 48
thres100view90075.45 26775.05 26776.66 29187.27 22251.88 35281.07 23873.26 34375.68 14183.25 23886.37 27345.54 35888.80 24851.98 35490.99 25389.31 253
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24282.85 27676.81 12785.90 18694.14 8474.58 18686.51 28166.82 25295.68 14193.01 148
tfpn200view974.86 27574.23 27476.74 29086.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25389.31 253
c3_l81.64 18981.59 18681.79 21380.86 32859.15 29778.61 27390.18 16868.36 23187.20 15187.11 26569.39 23191.62 17478.16 13194.43 18294.60 75
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23049.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
CANet83.79 15082.85 16586.63 10286.17 25272.21 15783.76 17791.43 12677.24 12574.39 33987.45 25775.36 17495.42 4977.03 14892.83 21992.25 181
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 11985.60 26076.53 11183.07 19589.62 18173.02 17979.11 29983.51 31280.74 12290.24 21468.76 23789.29 27990.94 215
Effi-MVS+-dtu85.82 10983.38 15493.14 387.13 22691.15 287.70 10488.42 19674.57 15483.56 23385.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 18988.29 20169.16 22367.83 37483.72 31060.93 27789.47 23669.22 23089.70 27690.88 217
MVS_030486.35 9885.92 10987.66 8889.21 18073.16 13988.40 9583.63 26981.27 7480.87 27694.12 8671.49 22495.71 3287.79 1296.50 9894.11 100
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4378.43 11189.16 11992.25 15072.03 22096.36 388.21 790.93 25792.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs146.11 35183.88 323
sam_mvs45.92 356
IterMVS-SCA-FT80.64 20479.41 22184.34 15183.93 28969.66 18176.28 30781.09 29072.43 18786.47 17590.19 21260.46 28093.15 13477.45 14286.39 32090.22 235
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13667.85 24186.63 16894.84 5079.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 9078.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5377.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
ambc82.98 18790.55 15364.86 22588.20 9689.15 18789.40 11793.96 9571.67 22391.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 119
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26687.25 26182.43 9394.53 7977.65 13896.46 10194.14 98
Effi-MVS+83.90 14984.01 14783.57 17387.22 22465.61 22086.55 12592.40 9778.64 10981.34 27184.18 30783.65 7992.93 14174.22 17387.87 30092.17 184
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23261.30 26775.55 31887.12 22061.24 30174.45 33878.79 36177.20 15390.93 19464.62 27584.80 34383.32 335
xiu_mvs_v1_base80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 27880.97 27287.93 24862.83 27271.90 36255.24 33495.01 16392.00 190
pmmvs686.52 9688.06 7481.90 20792.22 10162.28 25884.66 15389.15 18783.54 5289.85 10397.32 488.08 3686.80 27670.43 21797.30 7696.62 28
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29155.42 31780.67 33352.86 35087.59 30484.77 311
test_post178.85 2703.13 40545.19 36580.13 33758.11 317
test_post3.10 40645.43 36177.22 350
Fast-Effi-MVS+81.04 19880.57 20382.46 20287.50 21963.22 24278.37 27689.63 18068.01 23681.87 25982.08 33182.31 9792.65 14867.10 24888.30 29691.51 205
patchmatchnet-post81.71 33645.93 35587.01 269
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22188.86 8693.02 8287.15 2393.05 4397.10 682.28 10092.02 16576.70 15097.99 4096.88 25
pmmvs-eth3d78.42 23677.04 24882.57 20087.44 22074.41 12780.86 24179.67 29855.68 33984.69 20690.31 20960.91 27885.42 30062.20 29091.59 24487.88 278
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16355.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
Anonymous2023120671.38 30671.88 29869.88 33786.31 24654.37 33370.39 35874.62 32952.57 35576.73 31488.76 23559.94 28572.06 36144.35 38493.23 21083.23 337
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11984.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 176
MTMP90.66 4433.14 410
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test9_res80.83 10196.45 10290.57 227
MVP-Stereo75.81 26573.51 28182.71 19589.35 17573.62 13180.06 24785.20 24860.30 31073.96 34187.94 24757.89 30289.45 23852.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST992.34 9579.70 7483.94 16990.32 15965.41 26584.49 20990.97 18582.03 10493.63 111
train_agg85.98 10685.28 12388.07 8392.34 9579.70 7483.94 16990.32 15965.79 25684.49 20990.97 18581.93 10693.63 11181.21 9696.54 9690.88 217
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18155.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26871.37 35761.73 29174.93 33683.42 31560.46 28087.01 26958.11 31782.63 36083.88 323
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28272.80 34883.42 31544.89 36859.52 39748.27 37286.45 31881.70 353
test_892.09 10578.87 8183.82 17490.31 16165.79 25684.36 21390.96 18781.93 10693.44 124
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25373.82 33477.90 30552.44 35675.92 32481.27 33955.67 31581.75 32655.37 33277.70 38074.94 381
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21072.29 34369.16 36857.70 32886.76 16386.33 27445.79 35782.59 32269.63 22590.65 26781.54 356
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2440.00 4090.00 41082.82 32281.46 1130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
agg_prior279.68 11496.16 11490.22 235
agg_prior91.58 12477.69 9690.30 16284.32 21593.18 132
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3839.21 40721.64 40543.75 4034.57 403
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16769.87 21895.06 1196.14 2184.28 7293.07 13787.68 1596.34 10597.09 21
alignmvs83.94 14883.98 14883.80 16387.80 21167.88 20084.54 15791.42 12873.27 17588.41 13387.96 24672.33 21490.83 19976.02 15994.11 19092.69 160
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6191.50 17679.72 11397.32 7596.50 31
v14419284.24 13884.41 14083.71 16887.59 21861.57 26482.95 20091.03 13967.82 24289.80 10490.49 20473.28 20493.51 12181.88 9494.89 16796.04 38
FIs85.35 11486.27 10382.60 19791.86 11357.31 31485.10 14793.05 7875.83 13991.02 8193.97 9273.57 19692.91 14373.97 17998.02 3997.58 12
v192192084.23 13984.37 14283.79 16487.64 21761.71 26382.91 20191.20 13567.94 23990.06 9690.34 20772.04 21993.59 11682.32 8694.91 16596.07 36
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8988.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
v119284.57 12884.69 13484.21 15587.75 21262.88 24583.02 19791.43 12669.08 22489.98 10190.89 18972.70 21193.62 11482.41 8594.97 16496.13 34
FC-MVSNet-test85.93 10787.05 9182.58 19892.25 9956.44 32185.75 13593.09 7677.33 12391.94 6694.65 5674.78 18293.41 12675.11 16898.58 1397.88 7
v114484.54 13084.72 13284.00 15887.67 21562.55 25282.97 19990.93 14370.32 21389.80 10490.99 18473.50 19793.48 12281.69 9594.65 17795.97 39
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6781.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
v14882.31 17382.48 17381.81 21285.59 26159.66 29081.47 23286.02 23772.85 18088.05 14090.65 20170.73 22790.91 19675.15 16791.79 23994.87 67
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7886.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6681.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
iter_conf0578.81 22977.35 24483.21 18282.98 30860.75 28084.09 16588.34 19963.12 27784.25 22289.48 22431.41 39594.51 8176.64 15195.83 13294.38 88
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 18977.34 12293.63 3595.83 2565.40 25595.90 1585.01 5798.23 2797.49 13
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11070.73 20894.19 2196.67 1176.94 15994.57 7683.07 7496.28 10896.15 33
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23061.40 26575.26 32087.13 21761.25 30074.38 34077.22 37476.94 15990.94 19364.63 27484.83 34283.35 334
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16469.27 22194.39 1696.38 1586.02 6093.52 12083.96 6695.92 12895.34 53
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15070.00 21794.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15083.82 17485.15 25080.27 8688.75 12585.45 28879.95 13091.90 16881.92 9390.80 26296.13 34
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14183.91 17285.18 24980.44 8288.75 12585.49 28680.08 12891.92 16782.02 9090.85 26195.97 39
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13378.20 11386.69 16792.28 14980.36 12695.06 6286.17 4496.49 9990.22 235
test_prior478.97 8084.59 154
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
v124084.30 13584.51 13883.65 16987.65 21661.26 26882.85 20391.54 12367.94 23990.68 9090.65 20171.71 22293.64 11082.84 7994.78 17296.07 36
pm-mvs183.69 15184.95 12879.91 24190.04 16559.66 29082.43 21587.44 21075.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
test_prior283.37 18675.43 14584.58 20791.57 16781.92 10879.54 11696.97 83
X-MVStestdata85.04 12082.70 16792.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
test_prior86.32 10890.59 15271.99 15992.85 8794.17 9292.80 154
旧先验281.73 22856.88 33686.54 17484.90 30572.81 198
新几何281.72 229
新几何182.95 18993.96 5578.56 8480.24 29555.45 34083.93 22791.08 18271.19 22588.33 25665.84 26193.07 21381.95 352
旧先验191.97 10871.77 16081.78 28591.84 15873.92 19293.65 20183.61 329
无先验82.81 20485.62 24258.09 32591.41 18267.95 24784.48 315
原ACMM282.26 222
原ACMM184.60 14392.81 8674.01 12991.50 12462.59 28082.73 24790.67 20076.53 16694.25 8669.24 22895.69 14085.55 303
test22293.31 7076.54 10979.38 25977.79 30652.59 35482.36 25190.84 19366.83 24591.69 24181.25 360
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata79.54 24892.87 8172.34 15380.14 29659.91 31585.47 19391.75 16467.96 24085.24 30168.57 24292.18 23381.06 365
testdata179.62 25473.95 160
v886.22 10186.83 9684.36 14987.82 21062.35 25786.42 12691.33 13176.78 12892.73 5294.48 6573.41 20093.72 10883.10 7395.41 14497.01 23
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23085.36 24551.68 36273.10 34676.65 37861.45 27585.19 30263.54 28179.21 37482.59 342
LFMVS80.15 21780.56 20478.89 25389.19 18155.93 32385.22 14473.78 33882.96 5884.28 21992.72 13557.38 30490.07 22463.80 27995.75 13890.68 224
VDD-MVS84.23 13984.58 13683.20 18391.17 13965.16 22483.25 19084.97 25779.79 9087.18 15294.27 7474.77 18390.89 19769.24 22896.54 9693.55 130
VDDNet84.35 13385.39 12181.25 22095.13 3159.32 29385.42 14181.11 28986.41 2787.41 15096.21 1973.61 19590.61 20766.33 25596.85 8593.81 115
v1086.54 9587.10 8984.84 13688.16 20663.28 24186.64 12392.20 10375.42 14692.81 5094.50 6374.05 19194.06 9683.88 6796.28 10897.17 20
VPNet80.25 21381.68 18275.94 29892.46 9247.98 37076.70 29981.67 28673.45 16784.87 20392.82 13074.66 18586.51 28161.66 29796.85 8593.33 133
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23085.92 23946.03 38171.68 35377.54 36968.47 23789.77 23255.70 32985.39 32874.60 382
v2v48284.09 14284.24 14483.62 17087.13 22661.40 26582.71 20689.71 17772.19 19589.55 11491.41 17170.70 22893.20 13181.02 9893.76 19796.25 32
V4283.47 15883.37 15583.75 16683.16 30463.33 24081.31 23390.23 16669.51 22090.91 8490.81 19474.16 18992.29 15980.06 10890.22 27095.62 47
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4878.90 10492.88 4592.29 14886.11 5890.22 21586.24 4397.24 7791.36 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27568.68 22979.75 29081.80 33450.62 33589.46 23766.85 25085.64 32789.72 244
MSLP-MVS++85.00 12286.03 10781.90 20791.84 11671.56 16786.75 12193.02 8275.95 13787.12 15389.39 22577.98 14289.40 24277.46 14194.78 17284.75 312
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 31846.71 34777.26 34942.29 38669.96 39483.46 331
EI-MVSNet82.61 16882.42 17483.20 18383.25 30163.66 23683.50 18385.07 25176.06 13286.55 16985.10 29473.41 20090.25 21278.15 13390.67 26595.68 45
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18379.02 30237.77 40076.33 31785.10 29449.60 34087.41 26570.54 21677.54 38281.08 363
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16476.23 30877.59 30852.83 35377.73 31186.38 27256.35 31184.97 30457.72 31987.05 31085.51 304
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13782.43 28039.76 39785.64 18988.76 23544.71 36987.88 26073.86 18185.88 32684.16 322
VNet79.31 22380.27 20976.44 29287.92 20953.95 33675.58 31784.35 26374.39 15682.23 25390.72 19672.84 20984.39 31060.38 30593.98 19390.97 214
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28665.08 38572.39 38743.41 37369.37 36861.00 30084.89 34081.31 358
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
VPA-MVSNet83.47 15884.73 13079.69 24590.29 15757.52 31381.30 23588.69 19376.29 13087.58 14894.44 6680.60 12487.20 26866.60 25496.82 8894.34 89
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6881.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 24981.84 26089.93 21772.08 21866.92 38346.05 38092.54 22387.01 288
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21080.28 28791.50 16964.21 26074.72 35846.96 37794.58 17887.82 280
thres600view775.97 26375.35 26577.85 27687.01 23251.84 35380.45 24473.26 34375.20 14883.10 24186.31 27645.54 35889.05 24455.03 33692.24 23092.66 161
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 31846.71 34763.21 39242.29 38669.96 39483.46 331
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8182.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
thres40075.14 26974.23 27477.86 27586.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25392.66 161
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21678.56 30380.57 34546.20 35088.20 25846.99 37689.29 27984.32 318
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28671.18 35677.54 36943.41 37368.47 37740.75 39082.65 35881.35 357
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23470.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24756.89 40163.33 39840.98 37967.03 38254.79 33786.18 32363.08 394
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25058.90 39865.50 39740.48 38166.12 38655.72 32886.25 32262.95 395
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4380.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
LCM-MVSNet-Re83.48 15785.06 12578.75 25685.94 25755.75 32680.05 24894.27 2076.47 12996.09 594.54 6283.31 8389.75 23459.95 30694.89 16790.75 220
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
MCST-MVS84.36 13283.93 14985.63 12591.59 12171.58 16583.52 18292.13 10561.82 28983.96 22689.75 22179.93 13193.46 12378.33 12794.34 18491.87 194
mvs_anonymous78.13 23878.76 22976.23 29779.24 34550.31 36378.69 27184.82 25961.60 29583.09 24292.82 13073.89 19387.01 26968.33 24486.41 31991.37 206
MVS_Test82.47 17283.22 15680.22 23882.62 31057.75 31282.54 21291.96 11171.16 20582.89 24492.52 14177.41 15090.50 20980.04 10987.84 30192.40 171
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22666.58 37475.67 32473.15 17788.86 12288.99 23366.94 24381.23 33064.71 27288.22 29791.64 201
CDPH-MVS86.17 10485.54 11888.05 8492.25 9975.45 12283.85 17392.01 10865.91 25586.19 17891.75 16483.77 7794.98 6477.43 14396.71 9193.73 118
test1286.57 10390.74 14872.63 14690.69 14882.76 24679.20 13394.80 6895.32 14892.27 179
casdiffmvspermissive85.21 11685.85 11283.31 17986.17 25262.77 24883.03 19693.93 4174.69 15388.21 13792.68 13682.29 9991.89 16977.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28790.28 16566.65 25182.40 25087.33 26073.50 19787.35 26677.98 13589.62 27793.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33164.82 38877.45 37146.02 35288.44 25453.08 34677.83 37888.70 265
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25174.00 33465.93 25478.81 30186.28 27756.36 31081.63 32856.63 32279.04 37687.87 279
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32287.10 15585.39 29059.82 28767.32 38059.79 30783.50 35185.96 297
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 29953.60 32349.76 40232.68 40289.41 27872.15 384
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32187.09 15685.40 28959.80 28867.25 38159.66 30883.54 35085.92 299
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25375.45 32765.02 26970.26 36281.88 33345.34 36385.68 29858.34 31475.39 38682.08 351
PM-MVS80.20 21579.00 22583.78 16588.17 20586.66 1581.31 23366.81 37869.64 21988.33 13590.19 21264.58 25783.63 31871.99 20490.03 27281.06 365
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5479.44 9686.55 16992.95 12674.84 18095.22 5680.78 10295.83 13294.46 80
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 180
plane_prior593.61 5495.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11175.94 13895.03 160
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30389.04 8392.74 9191.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20582.55 21191.56 12283.08 5790.92 8291.82 16078.25 14193.99 9774.16 17498.35 2197.49 13
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30088.95 8493.19 7091.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
TransMVSNet (Re)84.02 14585.74 11578.85 25491.00 14355.20 33182.29 21987.26 21379.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9494.45 82
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31088.93 8592.84 8891.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20583.16 19492.21 10281.73 6990.92 8291.97 15477.20 15393.99 9774.16 17498.35 2197.61 10
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17692.87 8680.37 8389.61 11291.81 16177.72 14694.18 9075.00 16998.53 1596.99 24
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30688.66 9292.06 10790.78 695.67 795.17 4281.80 11095.54 4179.00 12198.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25589.54 7493.31 6590.21 1095.57 995.66 2981.42 11495.90 1580.94 9998.80 298.84 5
WR-MVS83.56 15584.40 14181.06 22593.43 6754.88 33278.67 27285.02 25481.24 7590.74 8991.56 16872.85 20891.08 19068.00 24598.04 3697.23 18
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22882.21 22390.46 15480.99 7888.42 13291.97 15477.56 14893.85 10372.46 20198.65 1197.61 10
Baseline_NR-MVSNet84.00 14685.90 11078.29 26691.47 13153.44 34082.29 21987.00 22579.06 10289.55 11495.72 2877.20 15386.14 29072.30 20298.51 1695.28 56
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23284.38 16091.29 13284.88 3992.06 6393.84 10186.45 5493.73 10773.22 19198.66 1097.69 9
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17881.58 28874.73 15285.66 18886.06 27972.56 21392.69 14775.44 16495.21 15289.01 263
n20.00 415
nn0.00 415
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9483.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
door-mid74.45 332
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4280.07 8986.75 16493.26 11493.64 290.93 19484.60 6190.75 26393.97 104
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11472.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
MVSFormer82.23 17581.57 18884.19 15785.54 26469.26 18691.98 3190.08 17071.54 19976.23 31985.07 29758.69 29594.27 8486.26 4088.77 28689.03 261
jason77.42 24675.75 26082.43 20387.10 22969.27 18577.99 27981.94 28451.47 36377.84 30785.07 29760.32 28289.00 24570.74 21389.27 28189.03 261
jason: jason.
lupinMVS76.37 26074.46 27282.09 20485.54 26469.26 18676.79 29780.77 29350.68 37076.23 31982.82 32258.69 29588.94 24669.85 22388.77 28688.07 271
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17071.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 9997.09 21
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
K. test v385.14 11884.73 13086.37 10791.13 14069.63 18285.45 14076.68 31884.06 4592.44 5796.99 862.03 27394.65 7280.58 10593.24 20994.83 72
lessismore_v085.95 11791.10 14170.99 17170.91 36091.79 6794.42 6961.76 27492.93 14179.52 11793.03 21493.93 106
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20581.66 7094.64 1496.53 1465.94 25094.75 6983.02 7696.83 8795.41 51
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7481.10 7795.32 1097.24 572.94 20794.85 6785.07 5497.78 5397.26 16
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13193.60 5680.16 8789.13 12193.44 11283.82 7590.98 19283.86 6895.30 15193.60 125
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7693.10 13682.67 8298.04 3693.64 123
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23065.22 22284.16 16294.23 2377.89 11691.28 7793.66 10884.35 7192.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
baseline85.20 11785.93 10883.02 18686.30 24762.37 25684.55 15593.96 4074.48 15587.12 15392.03 15382.30 9891.94 16678.39 12494.21 18794.74 73
test1191.46 125
door72.57 347
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21775.79 32266.49 25258.39 40081.06 34153.68 32285.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16663.08 24368.72 36583.16 27242.99 39175.92 32485.46 28757.22 30685.18 30349.87 36381.67 36286.14 296
EPNet80.37 21078.41 23586.23 11176.75 36273.28 13587.18 11077.45 30976.24 13168.14 37188.93 23465.41 25493.85 10369.47 22696.12 11791.55 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14873.30 17280.55 281
ACMP_Plane91.19 13684.77 14873.30 17280.55 281
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7780.87 8191.13 7893.19 11586.22 5795.97 1282.23 8897.18 7990.45 231
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.30 145
HQP4-MVS80.56 28094.61 7493.56 128
HQP3-MVS92.68 9294.47 180
HQP2-MVS72.10 216
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14391.23 13477.31 12487.07 15891.47 17082.94 8694.71 7084.67 6096.27 11092.62 163
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12491.09 13878.77 10784.85 20490.89 18980.85 12095.29 5381.14 9795.32 14892.34 174
114514_t83.10 16582.54 17284.77 13992.90 8069.10 19186.65 12290.62 15154.66 34581.46 26890.81 19476.98 15894.38 8372.62 19996.18 11390.82 219
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6083.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20855.46 31663.12 39341.72 38881.30 36769.09 389
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25271.76 35447.50 37569.92 36483.60 31142.07 37888.40 25548.44 37179.51 37083.01 340
NP-MVS91.95 10974.55 12690.17 214
EG-PatchMatch MVS84.08 14384.11 14583.98 15992.22 10172.61 14782.20 22587.02 22272.63 18588.86 12291.02 18378.52 13791.11 18973.41 18891.09 25188.21 269
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27873.68 34044.89 38468.64 36979.00 35945.51 36082.42 32549.91 36270.15 39381.23 362
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5882.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26174.51 33151.94 36170.97 35784.75 30045.16 36687.49 26455.16 33579.23 37383.40 333
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25082.58 20976.90 31550.50 37175.72 32792.38 14348.07 34484.07 31468.72 23982.91 35583.85 326
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 16975.67 31465.56 38070.42 21065.18 38492.97 12533.64 39383.06 31953.52 34569.61 39678.79 374
Patchmtry76.56 25777.46 24173.83 31079.37 34446.60 37682.41 21676.90 31573.81 16185.56 19192.38 14348.07 34483.98 31563.36 28395.31 15090.92 216
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28565.37 38173.61 16571.77 35292.79 13344.38 37075.65 35564.53 27685.37 32982.18 349
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27770.69 36153.16 35267.88 37380.36 34848.18 34374.75 35758.13 31670.79 39281.08 363
BH-w/o76.57 25676.07 25878.10 26986.88 23565.92 21777.63 28586.33 23065.69 26080.89 27579.95 35168.97 23690.74 20253.01 34985.25 33177.62 376
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24442.87 37775.97 35352.21 35280.95 36983.15 338
DELS-MVS81.44 19281.25 19482.03 20584.27 28462.87 24676.47 30592.49 9670.97 20681.64 26683.83 30975.03 17792.70 14674.29 17292.22 23290.51 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned80.96 19980.99 19980.84 22888.55 19768.23 19480.33 24688.46 19572.79 18386.55 16986.76 26974.72 18491.77 17361.79 29588.99 28382.52 346
RPMNet78.88 22778.28 23680.68 23279.58 33962.64 25082.58 20994.16 2874.80 15175.72 32792.59 13748.69 34195.56 3973.48 18782.91 35583.85 326
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27077.49 28985.07 25160.78 30686.55 16988.68 23743.14 37690.25 21273.69 18590.67 26592.42 169
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10179.74 9187.50 14992.38 14381.42 11493.28 12983.07 7497.24 7791.67 200
GBi-Net82.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
PVSNet_Blended_VisFu81.55 19080.49 20684.70 14291.58 12473.24 13784.21 16191.67 12162.86 27980.94 27487.16 26367.27 24292.87 14469.82 22488.94 28587.99 275
PVSNet_BlendedMVS78.80 23077.84 23981.65 21584.43 27863.41 23879.49 25890.44 15561.70 29375.43 33087.07 26669.11 23491.44 17960.68 30392.24 23090.11 239
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31779.36 29588.21 24360.50 27969.12 37158.33 31577.62 38187.04 287
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31385.36 29259.26 29170.64 36648.46 37079.35 37281.66 354
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 23875.14 32190.44 15557.36 33275.43 33078.30 36469.11 23491.44 17960.68 30387.70 30384.42 317
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27576.37 31691.85 15736.68 38878.98 34247.87 37392.45 22487.95 276
test182.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 38049.15 40337.39 39772.52 38869.55 388
FMVSNet378.80 23078.55 23279.57 24782.89 30956.89 31981.76 22785.77 24069.04 22586.00 18290.44 20551.75 33190.09 22365.95 25893.34 20591.72 197
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38971.58 36547.41 37462.34 40075.52 380
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17186.58 22972.43 18787.65 14692.98 12363.78 26490.22 21566.86 24993.92 19492.27 179
FMVSNet184.55 12985.45 12081.85 20990.27 15861.05 27186.83 11788.27 20278.57 11089.66 10995.64 3075.43 17390.68 20469.09 23295.33 14793.82 112
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32855.74 31454.82 39947.02 37587.24 30683.52 330
cascas76.29 26174.81 26880.72 23184.47 27762.94 24473.89 33387.34 21155.94 33875.16 33576.53 37963.97 26291.16 18765.00 26990.97 25688.06 273
BH-RMVSNet80.53 20580.22 21281.49 21787.19 22566.21 21477.79 28386.23 23274.21 15783.69 22988.50 23973.25 20590.75 20163.18 28587.90 29987.52 282
UGNet82.78 16681.64 18386.21 11386.20 25176.24 11786.86 11585.68 24177.07 12673.76 34392.82 13069.64 23091.82 17269.04 23493.69 20090.56 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29369.06 37248.57 36981.67 36282.55 344
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30780.60 27990.96 18775.44 17269.35 37056.13 32688.33 29285.86 300
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19689.67 22284.47 7095.46 4782.56 8396.26 11193.77 117
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 30065.36 38950.21 36081.01 36881.25 360
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15655.95 32273.40 33886.17 23350.70 36973.14 34585.94 28158.31 29785.90 29456.51 32383.22 35287.20 286
1112_ss74.82 27673.74 27778.04 27189.57 16960.04 28576.49 30487.09 22154.31 34673.66 34479.80 35260.25 28386.76 27858.37 31384.15 34787.32 285
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs79.67 22280.56 20476.99 28488.48 19856.93 31784.70 15286.06 23568.95 22680.78 27893.08 11875.30 17584.62 30756.78 32190.90 25889.43 251
TR-MVS76.77 25475.79 25979.72 24486.10 25565.79 21877.14 29283.02 27465.20 26881.40 26982.10 32966.30 24690.73 20355.57 33085.27 33082.65 341
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36449.18 36683.75 328
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28545.36 36280.85 33255.73 32784.42 345
MIMVSNet183.63 15384.59 13580.74 22994.06 5362.77 24882.72 20584.53 26277.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 124
MIMVSNet71.09 30871.59 30069.57 34087.23 22350.07 36478.91 26771.83 35360.20 31371.26 35491.76 16355.08 32076.09 35241.06 38987.02 31282.54 345
IterMVS-LS84.73 12584.98 12783.96 16087.35 22163.66 23683.25 19089.88 17476.06 13289.62 11092.37 14673.40 20292.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet77.32 24775.40 26383.06 18589.00 18472.48 15177.90 28182.17 28260.81 30578.94 30083.49 31359.30 29088.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref95.74 139
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23376.30 30679.03 30164.88 27083.11 24089.16 23059.90 28684.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 14483.22 15686.52 10591.73 11975.27 12383.23 19292.40 9772.04 19682.04 25688.33 24177.91 14493.95 9966.17 25695.12 15790.34 234
MVS_111021_LR84.28 13683.76 15185.83 12289.23 17983.07 5180.99 23983.56 27072.71 18486.07 18189.07 23281.75 11186.19 28877.11 14793.36 20488.24 268
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8487.95 2089.62 11092.87 12984.56 6893.89 10277.65 13896.62 9390.70 223
ACMMP++97.35 73
HQP-MVS84.61 12784.06 14686.27 11091.19 13670.66 17284.77 14892.68 9273.30 17280.55 28190.17 21472.10 21694.61 7477.30 14594.47 18093.56 128
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20989.94 6290.36 15867.97 23884.94 20292.58 13972.71 21092.18 16070.63 21587.73 30288.85 264
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10892.09 10678.87 10584.27 22094.05 8878.35 14093.65 10980.54 10691.58 24592.08 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 17949.95 33976.43 35138.74 39371.92 39155.84 400
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20891.21 3988.64 19486.30 2889.60 11392.59 13769.22 23394.91 6673.89 18097.89 4996.72 26
HyFIR lowres test75.12 27172.66 29182.50 20191.44 13265.19 22372.47 34287.31 21246.79 37680.29 28584.30 30552.70 32692.10 16451.88 35886.73 31590.22 235
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38266.60 38455.54 33168.81 39880.68 367
PAPM_NR83.23 16183.19 15883.33 17890.90 14565.98 21688.19 9790.78 14678.13 11580.87 27687.92 24973.49 19992.42 15270.07 22188.40 29091.60 202
TAMVS78.08 23976.36 25483.23 18190.62 15172.87 14079.08 26580.01 29761.72 29281.35 27086.92 26863.96 26388.78 25150.61 35993.01 21588.04 274
PAPR78.84 22878.10 23881.07 22485.17 26960.22 28482.21 22390.57 15262.51 28175.32 33384.61 30274.99 17892.30 15859.48 30988.04 29890.68 224
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13779.26 9989.68 10794.81 5482.44 9287.74 26176.54 15388.74 28896.61 29
Vis-MVSNet (Re-imp)77.82 24177.79 24077.92 27388.82 18851.29 35783.28 18871.97 35274.04 15882.23 25389.78 22057.38 30489.41 24157.22 32095.41 14493.05 146
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16789.44 18488.63 1694.38 1795.77 2686.38 5693.59 11679.84 11195.21 15291.82 195
MVS_111021_HR84.63 12684.34 14385.49 12990.18 16075.86 12079.23 26487.13 21773.35 16985.56 19189.34 22683.60 8090.50 20976.64 15194.05 19290.09 240
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11580.35 8489.54 11688.01 24579.09 13492.13 16175.51 16295.06 15990.41 232
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21385.26 3475.92 31370.09 36264.34 27276.09 32281.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17888.71 9087.67 20978.42 11282.15 25584.15 30877.98 14291.59 17565.39 26592.75 22082.51 347
Test By Simon79.09 134
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 24988.04 20652.14 35983.65 23091.25 17563.24 26786.65 27954.66 33894.11 19085.17 307
EPP-MVSNet85.47 11285.04 12686.77 10191.52 12969.37 18491.63 3687.98 20781.51 7287.05 15991.83 15966.18 24895.29 5370.75 21296.89 8495.64 46
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18663.97 38061.73 39036.80 40160.11 39568.43 39459.42 28966.35 38548.97 36878.57 37760.81 396
PAPM71.77 30170.06 31576.92 28686.39 24153.97 33576.62 30286.62 22853.44 35063.97 39084.73 30157.79 30392.34 15639.65 39181.33 36684.45 316
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA83.55 15683.10 16184.90 13589.34 17683.87 4684.54 15788.77 19179.09 10183.54 23488.66 23874.87 17981.73 32766.84 25192.29 22889.11 257
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26069.99 36357.66 32972.53 34982.93 32046.45 34980.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.38 9785.81 11388.08 8288.44 20077.34 10189.35 8093.05 7873.15 17784.76 20587.70 25278.87 13694.18 9080.67 10496.29 10792.73 156
F-COLMAP84.97 12383.42 15389.63 5592.39 9383.40 4888.83 8791.92 11273.19 17680.18 28989.15 23177.04 15793.28 12965.82 26292.28 22992.21 182
ANet_high83.17 16385.68 11675.65 30081.24 32245.26 38379.94 25092.91 8583.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24073.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10793.17 7176.02 13488.64 12791.22 17684.24 7393.37 12777.97 13697.03 8295.52 49
MG-MVS80.32 21280.94 20078.47 26288.18 20452.62 34782.29 21985.01 25572.01 19779.24 29892.54 14069.36 23293.36 12870.65 21489.19 28289.45 249
AdaColmapbinary83.66 15283.69 15283.57 17390.05 16472.26 15586.29 12990.00 17278.19 11481.65 26587.16 26383.40 8294.24 8761.69 29694.76 17584.21 321
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16281.56 7190.02 9891.20 17882.40 9490.81 20073.58 18694.66 17694.56 76
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
TinyColmap81.25 19482.34 17577.99 27285.33 26660.68 28182.32 21888.33 20071.26 20386.97 16092.22 15277.10 15686.98 27262.37 28895.17 15486.31 295
MAR-MVS80.24 21478.74 23084.73 14086.87 23678.18 8885.75 13587.81 20865.67 26177.84 30778.50 36373.79 19490.53 20861.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS82.75 16781.93 17985.19 13182.08 31180.15 7085.53 13888.76 19268.01 23685.58 19087.75 25171.80 22186.85 27574.02 17893.87 19688.58 266
MSDG80.06 21979.99 21980.25 23783.91 29068.04 19977.51 28889.19 18677.65 11981.94 25783.45 31476.37 16986.31 28463.31 28486.59 31786.41 293
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 6995.37 5180.87 10095.50 14394.53 79
CLD-MVS83.18 16282.64 16984.79 13889.05 18267.82 20177.93 28092.52 9568.33 23285.07 19781.54 33882.06 10392.96 13969.35 22797.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS72.29 29872.00 29773.14 31588.63 19485.00 3674.65 32667.39 37271.94 19877.80 30987.66 25350.48 33675.83 35449.95 36179.51 37058.58 399
Gipumacopyleft84.44 13186.33 10278.78 25584.20 28573.57 13289.55 7290.44 15584.24 4384.38 21294.89 4876.35 17080.40 33676.14 15796.80 8982.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015