This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29295.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 27990.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26562.45 27383.34 22287.37 24466.20 23088.66 24864.69 25485.02 31186.32 273
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31782.14 21481.96 27056.76 31169.57 33986.21 26460.03 26484.83 29349.58 34182.65 33285.11 286
IB-MVS62.13 1971.64 28668.97 30479.66 23480.80 30462.26 24773.94 31476.90 29963.27 26668.63 34176.79 35333.83 36991.84 16859.28 29187.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34267.22 19181.21 22582.18 26850.78 33976.50 29787.66 23955.20 29882.99 30462.17 27290.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet58.17 2166.41 31665.63 32168.75 32481.96 28849.88 34862.19 35472.51 33151.03 33768.04 34375.34 35850.84 31174.77 33145.82 35682.96 32781.60 328
PVSNet_051.08 2256.10 33754.97 34259.48 35075.12 34853.28 32555.16 36461.89 36144.30 35559.16 36662.48 36954.22 30065.91 35935.40 36947.01 37259.25 368
MVEpermissive40.22 2351.82 34050.47 34355.87 35262.66 37851.91 33431.61 37039.28 37940.65 36450.76 37374.98 35956.24 29344.67 37433.94 37164.11 36971.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_vis1_n70.29 29569.99 29871.20 31275.97 34166.50 20076.69 28880.81 28044.22 35675.43 31077.23 35050.00 31568.59 34766.71 23782.85 33178.52 347
test_fmvs1_n70.94 29170.41 29472.53 30673.92 35266.93 19675.99 29784.21 25543.31 36079.40 27679.39 33843.47 34968.55 34869.05 21884.91 31482.10 323
mvsany_test158.48 33656.47 34164.50 33865.90 37568.21 18556.95 36342.11 37838.30 36965.69 35277.19 35256.96 28759.35 36846.16 35358.96 37165.93 362
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
test_vis1_rt65.64 32064.09 32470.31 31466.09 37370.20 16561.16 35581.60 27538.65 36872.87 32569.66 36352.84 30360.04 36656.16 30577.77 35180.68 340
test_vis3_rt71.42 28870.67 28973.64 29769.66 36770.46 16266.97 34389.73 16942.68 36388.20 13583.04 30343.77 34860.07 36565.35 24986.66 29690.39 219
test_fmvs273.57 27072.80 27275.90 28672.74 36168.84 18177.07 28284.32 25445.14 35382.89 22884.22 29248.37 31970.36 34173.40 17887.03 29388.52 249
test_fmvs169.57 30469.05 30371.14 31369.15 36865.77 20973.98 31383.32 25942.83 36277.77 29278.27 34443.39 35268.50 34968.39 22784.38 32179.15 345
test_fmvs375.72 25075.20 25077.27 26975.01 35069.47 17178.93 25584.88 24846.67 34887.08 15287.84 23650.44 31471.62 33877.42 13388.53 27590.72 207
mvsany_test365.48 32162.97 32773.03 30269.99 36676.17 11364.83 34643.71 37743.68 35880.25 27087.05 25352.83 30463.09 36451.92 33472.44 36079.84 344
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
test_f64.31 32465.85 31859.67 34966.54 37262.24 24857.76 36270.96 34040.13 36584.36 20382.09 31546.93 32351.67 37161.99 27381.89 33565.12 363
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34493.60 11263.93 25891.50 23790.04 227
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36694.51 7979.83 10094.30 18093.50 125
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27270.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26160.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
EGC-MVSNET74.79 26169.99 29889.19 6394.89 3787.00 1191.89 3486.28 2231.09 3752.23 37795.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
test250674.12 26673.39 26676.28 28291.85 11544.20 36584.06 15648.20 37572.30 18781.90 24394.20 8027.22 37889.77 22664.81 25296.02 11994.87 67
test111178.53 22078.85 21177.56 26592.22 10247.49 35582.61 19569.24 34772.43 18185.28 18794.20 8051.91 30690.07 22165.36 24896.45 10295.11 62
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 34983.68 16969.91 34572.30 18784.26 21194.20 8051.89 30789.82 22563.58 26096.02 11994.87 67
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 384
eth-test0.00 384
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
test_method30.46 34129.60 34433.06 35617.99 3803.84 38213.62 37173.92 3192.79 37418.29 37653.41 37128.53 37543.25 37522.56 37335.27 37452.11 371
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25671.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33873.20 32080.63 28368.30 22881.80 24888.40 22666.92 22780.90 31355.35 31394.90 16293.12 136
KD-MVS_2432*160066.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32780.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22496.64 9395.38 52
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25764.69 26280.29 26785.91 26951.07 31092.38 15176.29 14593.63 19590.65 212
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
cl2278.97 21178.21 22181.24 20977.74 32659.01 28377.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28477.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 33958.01 29275.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
cl____80.42 19480.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30360.67 28977.60 29480.52 32938.04 36291.15 18570.78 19990.68 25489.17 238
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
miper_refine_blended66.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33460.97 26364.69 34885.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34180.39 11995.13 5873.82 17192.98 20891.04 199
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31784.80 25057.61 30582.24 23687.54 24151.31 30987.65 25770.40 20693.19 20391.23 196
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30568.86 22285.22 18887.36 24538.10 36193.57 11675.47 15294.28 18194.62 74
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29876.63 28982.49 26681.21 7284.30 20892.24 14467.99 22286.24 27862.22 26995.13 15391.98 180
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31073.76 15988.32 13390.20 19637.96 36394.16 9279.36 10895.13 15395.93 42
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32069.72 33371.71 33858.80 29678.03 28680.51 33056.61 29078.84 32062.20 27086.04 30385.23 284
thisisatest051573.00 27670.52 29180.46 22281.45 29359.90 27373.16 32174.31 31757.86 30276.08 30477.78 34537.60 36492.12 16065.00 25091.45 23889.35 234
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30271.53 32678.42 29258.24 29979.32 27982.92 30757.91 28184.26 29765.60 24691.36 23989.56 230
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS83.88 297
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part293.86 5777.77 9192.84 48
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33581.07 22773.26 32675.68 13883.25 22386.37 25945.54 33588.80 24351.98 33190.99 24489.31 235
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31080.83 23182.85 26476.81 12385.90 17994.14 8474.58 17586.51 27466.82 23695.68 13993.01 139
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24489.31 235
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28278.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
CHOSEN 280x42059.08 33556.52 34066.76 33176.51 33564.39 22049.62 36759.00 36643.86 35755.66 37268.41 36635.55 36868.21 35143.25 35976.78 35667.69 361
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31887.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22189.29 26590.94 201
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27383.26 17888.29 19569.16 21867.83 34583.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28076.28 12767.53 34789.11 21762.87 25286.77 27060.90 28392.01 22987.13 266
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs146.11 32883.88 297
sam_mvs45.92 333
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27872.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
MTGPAbinary91.81 115
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31778.79 34077.20 14590.93 19164.62 25684.80 31883.32 309
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
new-patchmatchnet70.10 29873.37 26760.29 34881.23 29716.95 37959.54 35774.62 31362.93 26880.97 25787.93 23462.83 25371.90 33755.24 31495.01 15992.00 178
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
pmmvs570.73 29370.07 29672.72 30377.03 33252.73 32874.14 31175.65 30950.36 34372.17 32985.37 27755.42 29780.67 31552.86 32887.59 28984.77 289
test_post178.85 2593.13 37545.19 34280.13 31758.11 297
test_post3.10 37645.43 33877.22 325
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23288.30 28191.51 193
patchmatchnet-post81.71 31945.93 33287.01 263
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28755.68 31384.69 19890.31 19460.91 25885.42 28762.20 27091.59 23587.88 258
GG-mvs-BLEND67.16 33073.36 35546.54 36084.15 15455.04 37158.64 36961.95 37029.93 37483.87 30138.71 36776.92 35571.07 357
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
Anonymous2023120671.38 28971.88 28269.88 31786.31 23754.37 31670.39 33074.62 31352.57 32776.73 29688.76 22159.94 26572.06 33644.35 35893.23 20283.23 311
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
MTMP90.66 4433.14 380
gm-plane-assit75.42 34644.97 36452.17 32972.36 36287.90 25454.10 320
test9_res80.83 8996.45 10290.57 213
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32087.94 23357.89 28289.45 23252.02 33074.87 35885.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
gg-mvs-nofinetune68.96 30769.11 30268.52 32776.12 34045.32 36183.59 17155.88 37086.68 2464.62 35997.01 730.36 37383.97 30044.78 35782.94 32876.26 350
SCA73.32 27172.57 27775.58 28881.62 29155.86 30778.89 25771.37 33961.73 27774.93 31683.42 30160.46 26087.01 26358.11 29782.63 33483.88 297
Patchmatch-test65.91 31867.38 31161.48 34675.51 34443.21 36868.84 33463.79 35962.48 27272.80 32683.42 30144.89 34559.52 36748.27 34786.45 29881.70 326
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
MS-PatchMatch70.93 29270.22 29573.06 30181.85 29062.50 24273.82 31677.90 29452.44 32875.92 30581.27 32255.67 29581.75 30955.37 31277.70 35274.94 352
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32369.16 34857.70 30386.76 15886.33 26045.79 33482.59 30569.63 21090.65 25781.54 329
cdsmvs_eth3d_5k20.81 34227.75 3450.00 3610.00 3840.00 3850.00 37285.44 2340.00 3790.00 38082.82 30881.46 1080.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.41 3458.55 3480.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37976.94 1510.00 3800.00 3780.00 3780.00 376
agg_prior279.68 10396.16 11290.22 221
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
tmp_tt20.25 34324.50 3467.49 3584.47 3818.70 38134.17 36925.16 3811.00 37632.43 37518.49 37339.37 3609.21 37721.64 37443.75 3734.57 373
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
FIs85.35 10986.27 10182.60 18691.86 11457.31 29785.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30485.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
v14882.31 16682.48 16681.81 20185.59 25059.66 27581.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37194.51 7976.64 14095.83 13094.38 87
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 31977.22 35176.94 15190.94 19064.63 25584.83 31783.35 308
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
test_prior478.97 8084.59 145
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27582.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22296.04 11894.42 85
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37486.57 5295.80 2487.35 2197.62 6294.20 90
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
新几何281.72 217
新几何182.95 17893.96 5578.56 8480.24 28455.45 31483.93 21691.08 17171.19 21088.33 25165.84 24493.07 20581.95 325
旧先验191.97 10971.77 15081.78 27391.84 15173.92 18093.65 19483.61 303
无先验82.81 19285.62 23358.09 30091.41 17967.95 23184.48 291
原ACMM282.26 210
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
test22293.31 7176.54 10579.38 24877.79 29552.59 32682.36 23590.84 18066.83 22891.69 23381.25 333
testdata286.43 27663.52 262
segment_acmp81.94 100
testdata79.54 23692.87 8272.34 14380.14 28559.91 29385.47 18691.75 15667.96 22385.24 28868.57 22692.18 22581.06 338
testdata179.62 24373.95 157
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
131473.22 27372.56 27875.20 28980.41 30957.84 29381.64 21885.36 23551.68 33473.10 32476.65 35461.45 25685.19 28963.54 26179.21 34782.59 316
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30685.22 13873.78 32282.96 5584.28 20992.72 12957.38 28490.07 22163.80 25995.75 13690.68 210
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27885.42 13681.11 27786.41 2787.41 14596.21 1973.61 18390.61 20466.33 23996.85 8693.81 111
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35376.70 28781.67 27473.45 16284.87 19592.82 12474.66 17486.51 27461.66 27796.85 8693.33 126
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35171.68 33177.54 34668.47 22089.77 22655.70 30985.39 30674.60 353
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 27973.42 31882.88 26368.68 22479.75 27281.80 31850.62 31289.46 23166.85 23485.64 30589.72 228
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
ADS-MVSNet265.87 31963.64 32672.55 30573.16 35756.92 30167.10 34174.81 31249.74 34466.04 35082.97 30446.71 32477.26 32442.29 36069.96 36583.46 305
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
CVMVSNet72.62 27871.41 28776.28 28283.25 27860.34 26983.50 17379.02 29137.77 37076.33 29985.10 28049.60 31787.41 26070.54 20477.54 35481.08 336
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29652.83 32577.73 29386.38 25856.35 29284.97 29157.72 29987.05 29285.51 282
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27785.71 13382.43 26739.76 36785.64 18288.76 22144.71 34687.88 25573.86 17085.88 30484.16 296
VNet79.31 20980.27 19376.44 27987.92 20353.95 31975.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28693.98 18790.97 200
test-LLR67.21 31166.74 31568.63 32576.45 33755.21 31267.89 33767.14 35262.43 27465.08 35572.39 36043.41 35069.37 34261.00 28084.89 31581.31 331
TESTMET0.1,161.29 33060.32 33564.19 33972.06 36251.30 33967.89 33762.09 36045.27 35260.65 36469.01 36427.93 37764.74 36156.31 30481.65 33876.53 349
test-mter65.00 32263.79 32568.63 32576.45 33755.21 31267.89 33767.14 35250.98 33865.08 35572.39 36028.27 37669.37 34261.00 28084.89 31581.31 331
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29681.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23896.82 8994.34 88
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
testgi72.36 28074.61 25365.59 33480.56 30742.82 36968.29 33673.35 32566.87 24381.84 24589.93 20172.08 20466.92 35546.05 35592.54 21587.01 268
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34270.15 33172.10 33370.42 20580.28 26991.50 16064.21 24174.72 33346.96 35294.58 17487.82 260
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33680.45 23373.26 32675.20 14583.10 22686.31 26245.54 33589.05 23955.03 31692.24 22292.66 151
ADS-MVSNet61.90 32762.19 33061.03 34773.16 35736.42 37367.10 34161.75 36249.74 34466.04 35082.97 30446.71 32463.21 36242.29 36069.96 36583.46 305
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs5.91 3477.65 3500.72 3601.20 3820.37 38459.14 3580.67 3840.49 3781.11 3782.76 3770.94 3830.24 3791.02 3771.47 3761.55 375
thres40075.14 25374.23 25877.86 26286.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24492.66 151
test1236.27 3468.08 3490.84 3591.11 3830.57 38362.90 3510.82 3830.54 3771.07 3792.75 3781.26 3820.30 3781.04 3761.26 3771.66 374
thres20072.34 28171.55 28674.70 29383.48 27551.60 33775.02 30773.71 32370.14 21178.56 28580.57 32846.20 32788.20 25346.99 35189.29 26584.32 294
test0.0.03 164.66 32364.36 32365.57 33575.03 34946.89 35864.69 34861.58 36462.43 27471.18 33477.54 34643.41 35068.47 35040.75 36482.65 33281.35 330
pmmvs362.47 32560.02 33769.80 31871.58 36464.00 22470.52 32958.44 36839.77 36666.05 34975.84 35627.10 37972.28 33546.15 35484.77 31973.11 354
EMVS61.10 33260.81 33361.99 34365.96 37455.86 30753.10 36658.97 36767.06 24156.89 37163.33 36840.98 35667.03 35454.79 31786.18 30263.08 364
E-PMN61.59 32961.62 33161.49 34566.81 37155.40 31053.77 36560.34 36566.80 24458.90 36865.50 36740.48 35866.12 35855.72 30886.25 30162.95 365
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 30980.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28794.89 16390.75 206
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34678.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22886.41 29991.37 194
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29582.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34475.67 30873.15 17288.86 12088.99 21966.94 22681.23 31264.71 25388.22 28291.64 189
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline269.77 30266.89 31378.41 25179.51 31558.09 29176.23 29569.57 34657.50 30664.82 35877.45 34846.02 32988.44 24953.08 32477.83 35088.70 247
baseline173.26 27273.54 26472.43 30784.92 25647.79 35479.89 24074.00 31865.93 24778.81 28386.28 26356.36 29181.63 31156.63 30279.04 34887.87 259
YYNet170.06 29970.44 29268.90 32273.76 35453.42 32458.99 36067.20 35158.42 29887.10 15085.39 27659.82 26767.32 35259.79 28883.50 32585.96 276
PMMVS255.64 33959.27 33844.74 35564.30 37712.32 38040.60 36849.79 37453.19 32365.06 35784.81 28553.60 30249.76 37232.68 37289.41 26472.15 355
MDA-MVSNet_test_wron70.05 30070.44 29268.88 32373.84 35353.47 32258.93 36167.28 35058.43 29787.09 15185.40 27559.80 26867.25 35359.66 28983.54 32485.92 278
tpmvs70.16 29769.56 30171.96 30974.71 35148.13 35179.63 24275.45 31165.02 26070.26 33681.88 31745.34 34085.68 28558.34 29475.39 35782.08 324
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35569.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 338
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28889.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28588.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31482.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23096.60 9594.45 82
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29388.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29088.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31578.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 22998.04 3697.23 18
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32382.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27674.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
n20.00 385
nn0.00 385
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
door-mid74.45 316
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27151.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28250.68 34176.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30284.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
lessismore_v085.95 11391.10 14270.99 15970.91 34191.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
test1191.46 121
door72.57 330
EPNet_dtu72.87 27771.33 28877.49 26777.72 32760.55 26882.35 20575.79 30666.49 24658.39 37081.06 32453.68 30185.98 28153.55 32292.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268872.45 27970.56 29078.13 25690.02 16663.08 23368.72 33583.16 26042.99 36175.92 30585.46 27357.22 28685.18 29049.87 34081.67 33686.14 275
EPNet80.37 19678.41 21986.23 10676.75 33373.28 12787.18 10977.45 29776.24 12868.14 34288.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.30 134
HQP4-MVS80.56 26394.61 7293.56 122
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
DSMNet-mixed60.98 33361.61 33259.09 35172.88 35945.05 36374.70 30946.61 37626.20 37265.34 35390.32 19355.46 29663.12 36341.72 36281.30 34069.09 360
tpm268.45 30866.83 31473.30 29978.93 32348.50 35079.76 24171.76 33647.50 34669.92 33883.60 29742.07 35588.40 25048.44 34679.51 34383.01 314
NP-MVS91.95 11074.55 12190.17 199
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
tpm cat166.76 31565.21 32271.42 31077.09 33150.62 34578.01 26773.68 32444.89 35468.64 34079.00 33945.51 33782.42 30849.91 33970.15 36481.23 335
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
CostFormer69.98 30168.68 30773.87 29577.14 33050.72 34479.26 25074.51 31551.94 33370.97 33584.75 28645.16 34387.49 25955.16 31579.23 34683.40 307
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 29950.50 34275.72 30792.38 13748.07 32184.07 29868.72 22382.91 32983.85 300
JIA-IIPM69.41 30566.64 31777.70 26473.19 35671.24 15775.67 29965.56 35670.42 20565.18 35492.97 11933.64 37083.06 30353.52 32369.61 36778.79 346
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 35982.41 20476.90 29973.81 15885.56 18492.38 13748.07 32183.98 29963.36 26395.31 14890.92 202
PatchT70.52 29472.76 27463.79 34079.38 31733.53 37577.63 27465.37 35773.61 16071.77 33092.79 12744.38 34775.65 33064.53 25785.37 30782.18 322
tpmrst66.28 31766.69 31665.05 33772.82 36039.33 37078.20 26670.69 34253.16 32467.88 34480.36 33148.18 32074.75 33258.13 29670.79 36381.08 336
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32785.25 30977.62 348
tpm67.95 30968.08 31067.55 32978.74 32443.53 36775.60 30067.10 35454.92 31672.23 32888.10 23042.87 35475.97 32852.21 32980.95 34283.15 312
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27588.99 26982.52 319
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31895.56 3773.48 17682.91 32983.85 300
MVSTER77.09 23475.70 24581.25 20775.27 34761.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35390.25 20973.69 17490.67 25592.42 159
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28492.24 22290.11 225
UnsupCasMVSNet_eth71.63 28772.30 28069.62 31976.47 33652.70 32970.03 33280.97 27959.18 29479.36 27788.21 22960.50 25969.12 34558.33 29577.62 35387.04 267
UnsupCasMVSNet_bld69.21 30669.68 30067.82 32879.42 31651.15 34167.82 34075.79 30654.15 31977.47 29585.36 27859.26 27170.64 34048.46 34579.35 34581.66 327
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34369.11 21791.44 17660.68 28487.70 28884.42 293
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32676.77 28678.37 29363.31 26576.37 29891.85 15036.68 36578.98 31947.87 34892.45 21687.95 256
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
new_pmnet55.69 33857.66 33949.76 35475.47 34530.59 37659.56 35651.45 37343.62 35962.49 36175.48 35740.96 35749.15 37337.39 36872.52 35969.55 359
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30281.76 21585.77 23169.04 22086.00 17590.44 19151.75 30890.09 22065.95 24193.34 19891.72 185
dp60.70 33460.29 33661.92 34472.04 36338.67 37270.83 32764.08 35851.28 33660.75 36377.28 34936.59 36671.58 33947.41 34962.34 37075.52 351
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 28983.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23393.92 18892.27 169
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
N_pmnet70.20 29668.80 30674.38 29480.91 30084.81 3959.12 35976.45 30455.06 31575.31 31482.36 31355.74 29454.82 36947.02 35087.24 29183.52 304
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31587.34 20555.94 31275.16 31576.53 35563.97 24291.16 18465.00 25090.97 24788.06 253
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26587.90 28487.52 261
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32192.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS67.91 31068.35 30866.58 33280.82 30348.12 35265.96 34572.60 32953.67 32171.20 33381.68 32058.97 27369.06 34648.57 34481.67 33682.55 317
XXY-MVS74.44 26576.19 24069.21 32184.61 26052.43 33171.70 32577.18 29860.73 28880.60 26290.96 17675.44 16169.35 34456.13 30688.33 27785.86 279
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
sss66.92 31267.26 31265.90 33377.23 32951.10 34364.79 34771.72 33752.12 33270.13 33780.18 33257.96 28065.36 36050.21 33781.01 34181.25 333
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30573.40 31986.17 22650.70 34073.14 32385.94 26758.31 27785.90 28356.51 30383.22 32687.20 265
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32279.80 33560.25 26386.76 27258.37 29384.15 32287.32 264
ab-mvs-re6.65 3448.87 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38079.80 3350.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30084.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30190.90 24989.43 233
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26265.20 25981.40 25482.10 31466.30 22990.73 20055.57 31085.27 30882.65 315
MDTV_nov1_ep13_2view27.60 37870.76 32846.47 35061.27 36245.20 34149.18 34283.75 302
MDTV_nov1_ep1368.29 30978.03 32543.87 36674.12 31272.22 33252.17 32967.02 34885.54 27145.36 33980.85 31455.73 30784.42 320
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27497.42 7293.62 119
MIMVSNet71.09 29071.59 28469.57 32087.23 21650.07 34778.91 25671.83 33560.20 29271.26 33291.76 15555.08 29976.09 32741.06 36387.02 29482.54 318
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 26960.81 28678.94 28283.49 29959.30 27088.76 24754.64 31992.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref95.74 137
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29064.88 26183.11 22589.16 21559.90 26684.46 29568.61 22485.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24095.12 15590.34 220
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25872.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
ACMMP++97.35 73
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet61.16 33162.92 32855.87 35279.09 32035.34 37471.83 32457.98 36946.56 34959.05 36791.14 16949.95 31676.43 32638.74 36671.92 36255.84 370
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32287.31 20646.79 34780.29 26784.30 29152.70 30592.10 16151.88 33586.73 29590.22 221
EPMVS62.47 32562.63 32962.01 34270.63 36538.74 37174.76 30852.86 37253.91 32067.71 34680.01 33339.40 35966.60 35655.54 31168.81 36880.68 340
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28661.72 27881.35 25586.92 25463.96 24388.78 24650.61 33693.01 20788.04 254
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29088.04 28390.68 210
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34083.28 17771.97 33474.04 15582.23 23789.78 20457.38 28489.41 23557.22 30095.41 14293.05 138
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34364.34 26376.09 30381.25 32365.87 23478.07 32253.86 32183.82 32371.48 356
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24792.75 21282.51 320
Test By Simon79.09 128
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
USDC76.63 24076.73 23676.34 28183.46 27657.20 29980.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31894.11 18485.17 285
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
PMMVS61.65 32860.38 33465.47 33665.40 37669.26 17463.97 35061.73 36336.80 37160.11 36568.43 36559.42 26966.35 35748.97 34378.57 34960.81 366
PAPM71.77 28570.06 29776.92 27386.39 23253.97 31876.62 29086.62 22053.44 32263.97 36084.73 28757.79 28392.34 15339.65 36581.33 33984.45 292
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23592.29 22089.11 239
PatchmatchNetpermissive69.71 30368.83 30572.33 30877.66 32853.60 32179.29 24969.99 34457.66 30472.53 32782.93 30646.45 32680.08 31860.91 28272.09 36183.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24592.28 22192.21 172
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36279.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
wuyk23d75.13 25479.30 20662.63 34175.56 34375.18 11880.89 22973.10 32875.06 14794.76 1295.32 3587.73 4052.85 37034.16 37097.11 8059.85 367
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33082.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27694.76 17184.21 295
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
DeepMVS_CXcopyleft24.13 35732.95 37929.49 37721.63 38212.07 37337.95 37445.07 37230.84 37219.21 37617.94 37533.06 37523.69 372
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26895.17 15286.31 274
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34273.79 18290.53 20561.59 27890.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26486.59 29786.41 272
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 34971.94 19277.80 29187.66 23950.48 31375.83 32949.95 33879.51 34358.58 369
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 321
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015