This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 9
UA-Net99.47 1199.40 1499.70 299.49 9299.29 1899.80 399.72 1399.82 399.04 12099.81 398.05 7199.96 1198.85 4899.99 599.86 8
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 3199.90 299.86 799.78 599.58 399.95 1799.00 4099.95 1899.78 15
DTE-MVSNet99.43 1599.35 1899.66 499.71 3799.30 1799.31 2699.51 6299.64 1399.56 3099.46 5098.23 5499.97 498.78 5199.93 3399.72 28
WR-MVS_H99.33 2499.22 2899.65 599.71 3799.24 2499.32 2299.55 4999.46 3199.50 4299.34 6997.30 12999.93 3198.90 4499.93 3399.77 17
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6499.34 2099.69 1798.93 9299.65 2399.72 1198.93 1999.95 1799.11 32100.00 199.82 10
PS-CasMVS99.40 1999.33 2199.62 699.71 3799.10 6199.29 3299.53 5899.53 2599.46 4699.41 6098.23 5499.95 1798.89 4699.95 1899.81 12
PEN-MVS99.41 1799.34 2099.62 699.73 3099.14 5399.29 3299.54 5499.62 1899.56 3099.42 5798.16 6499.96 1198.78 5199.93 3399.77 17
MSP-MVS98.40 13798.00 16799.61 999.57 6299.25 2398.57 9799.35 11997.55 18099.31 7997.71 30194.61 24999.88 7796.14 22899.19 26299.70 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS98.79 7298.52 9699.61 999.67 4799.36 1097.33 22499.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
MTAPA98.88 6398.64 8199.61 999.67 4799.36 1098.43 11699.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
abl_698.99 4798.78 6299.61 999.45 10699.46 498.60 9399.50 6498.59 10899.24 9199.04 12098.54 3799.89 6696.45 20899.62 16799.50 110
test_0728_SECOND99.60 1399.50 8599.23 2598.02 15799.32 13299.88 7796.99 15699.63 16499.68 38
MP-MVS-pluss98.57 11298.23 14299.60 1399.69 4599.35 1297.16 24199.38 10594.87 29398.97 13298.99 13698.01 7399.88 7797.29 13499.70 13699.58 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1399.84 899.83 299.50 599.87 9499.36 1799.92 4299.64 47
APDe-MVS98.99 4798.79 6199.60 1399.21 15099.15 4898.87 7699.48 7497.57 17799.35 6899.24 8397.83 8499.89 6697.88 10799.70 13699.75 24
HPM-MVScopyleft98.79 7298.53 9599.59 1799.65 5099.29 1899.16 5099.43 9496.74 24098.61 18998.38 25398.62 3299.87 9496.47 20699.67 15399.59 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test117298.76 7998.49 10399.57 1899.18 16499.37 998.39 11999.31 13898.43 11698.90 14598.88 16897.49 11899.86 10396.43 21099.37 23299.48 124
SR-MVS-dyc-post98.81 7098.55 9399.57 1899.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.49 11899.86 10396.56 19899.39 22899.45 138
SR-MVS98.71 8698.43 11599.57 1899.18 16499.35 1298.36 12299.29 15598.29 12698.88 15398.85 17597.53 11199.87 9496.14 22899.31 24199.48 124
DPE-MVScopyleft98.59 11198.26 13899.57 1899.27 13899.15 4897.01 24699.39 10397.67 16899.44 5198.99 13697.53 11199.89 6695.40 25999.68 14799.66 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMMP_NAP98.75 8198.48 10599.57 1899.58 5899.29 1897.82 17799.25 16796.94 23298.78 16899.12 10598.02 7299.84 13597.13 14699.67 15399.59 63
HPM-MVS_fast99.01 4598.82 5899.57 1899.71 3799.35 1299.00 6799.50 6497.33 20398.94 14198.86 17298.75 2499.82 16097.53 12499.71 13199.56 79
CP-MVSNet99.21 3299.09 3999.56 2499.65 5098.96 7199.13 5399.34 12599.42 3699.33 7199.26 7997.01 15099.94 2698.74 5599.93 3399.79 14
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1599.11 6099.90 199.78 899.63 1599.78 1099.67 1799.48 699.81 17499.30 2299.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_low_dy_conf_00199.26 2899.16 3199.55 2699.86 1298.86 7699.37 1898.87 25199.42 3699.46 4699.68 1496.44 18399.93 3199.39 1599.94 2899.87 5
RRT_MVS99.09 3998.94 5099.55 2699.87 1098.82 8299.48 998.16 30799.49 2799.59 2999.65 2094.79 24699.95 1799.45 1399.96 1599.88 3
PGM-MVS98.66 9898.37 12599.55 2699.53 7899.18 3898.23 13199.49 7297.01 23098.69 17898.88 16898.00 7499.89 6695.87 23999.59 17999.58 69
MIMVSNet199.38 2199.32 2299.55 2699.86 1299.19 3799.41 1499.59 2999.59 2199.71 1499.57 3197.12 14299.90 5699.21 2899.87 6299.54 91
TDRefinement99.42 1699.38 1599.55 2699.76 2899.33 1699.68 599.71 1499.38 4099.53 3599.61 2598.64 3099.80 18398.24 8499.84 6899.52 103
ZNCC-MVS98.68 9598.40 11999.54 3199.57 6299.21 2798.46 11399.29 15597.28 20998.11 23598.39 25198.00 7499.87 9496.86 17299.64 16199.55 87
nrg03099.40 1999.35 1899.54 3199.58 5899.13 5698.98 7099.48 7499.68 999.46 4699.26 7998.62 3299.73 23699.17 3199.92 4299.76 21
region2R98.69 9198.40 11999.54 3199.53 7899.17 3998.52 10299.31 13897.46 19198.44 21098.51 23597.83 8499.88 7796.46 20799.58 18599.58 69
ACMMPR98.70 8998.42 11799.54 3199.52 8099.14 5398.52 10299.31 13897.47 18698.56 19998.54 23197.75 9199.88 7796.57 19599.59 17999.58 69
MP-MVScopyleft98.46 13098.09 15899.54 3199.57 6299.22 2698.50 10799.19 18397.61 17497.58 26998.66 21197.40 12499.88 7794.72 27299.60 17599.54 91
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS98.64 10198.34 12999.54 3199.54 7699.17 3998.63 9099.24 17297.47 18698.09 23798.68 20697.62 10299.89 6696.22 22299.62 16799.57 74
SteuartSystems-ACMMP98.79 7298.54 9499.54 3199.73 3099.16 4398.23 13199.31 13897.92 15398.90 14598.90 15998.00 7499.88 7796.15 22799.72 12699.58 69
Skip Steuart: Steuart Systems R&D Blog.
XVS98.72 8598.45 11199.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27398.63 22097.50 11599.83 15096.79 17599.53 20199.56 79
X-MVStestdata94.32 31492.59 33299.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27345.85 37797.50 11599.83 15096.79 17599.53 20199.56 79
APD-MVS_3200maxsize98.84 6798.61 8799.53 3899.19 15799.27 2198.49 10899.33 13098.64 10299.03 12398.98 14097.89 8199.85 11896.54 20299.42 22499.46 134
test_djsdf99.52 999.51 999.53 3899.86 1298.74 8799.39 1699.56 4599.11 6599.70 1599.73 1099.00 1599.97 499.26 2399.98 999.89 2
OurMVSNet-221017-099.37 2299.31 2399.53 3899.91 398.98 6699.63 699.58 3199.44 3399.78 1099.76 696.39 18699.92 4099.44 1499.92 4299.68 38
DVP-MVScopyleft98.77 7898.52 9699.52 4399.50 8599.21 2798.02 15798.84 26197.97 14999.08 11199.02 12497.61 10399.88 7796.99 15699.63 16499.48 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
GST-MVS98.61 10698.30 13499.52 4399.51 8299.20 3398.26 12999.25 16797.44 19498.67 18098.39 25197.68 9499.85 11896.00 23199.51 20799.52 103
CP-MVS98.70 8998.42 11799.52 4399.36 12499.12 5898.72 8599.36 11397.54 18198.30 22098.40 24997.86 8399.89 6696.53 20399.72 12699.56 79
ACMMPcopyleft98.75 8198.50 10099.52 4399.56 6999.16 4398.87 7699.37 10997.16 22398.82 16599.01 13397.71 9399.87 9496.29 21999.69 14299.54 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++98.90 6198.70 7399.51 4798.43 30099.15 4899.43 1299.32 13298.17 13899.26 8699.02 12498.18 6199.88 7797.07 15099.45 22099.49 114
SMA-MVScopyleft98.40 13798.03 16599.51 4799.16 16899.21 2798.05 15299.22 17594.16 30998.98 12999.10 10897.52 11399.79 19696.45 20899.64 16199.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 8698.44 11399.51 4799.49 9299.16 4398.52 10299.31 13897.47 18698.58 19598.50 23997.97 7899.85 11896.57 19599.59 17999.53 99
#test#98.50 12698.16 15199.51 4799.49 9299.16 4398.03 15599.31 13896.30 25798.58 19598.50 23997.97 7899.85 11895.68 24999.59 17999.53 99
bld_raw_conf00599.41 1799.38 1599.51 4799.85 1598.88 7499.44 1199.74 1299.68 999.51 4099.61 2597.25 13699.91 5099.37 1699.95 1899.72 28
SED-MVS98.91 5998.72 6899.49 5299.49 9299.17 3998.10 14599.31 13898.03 14699.66 2099.02 12498.36 4699.88 7796.91 16299.62 16799.41 152
mvs_tets99.63 599.67 599.49 5299.88 798.61 9899.34 2099.71 1499.27 5299.90 499.74 899.68 299.97 499.55 899.99 599.88 3
mvsmamba99.24 3199.15 3499.49 5299.83 1998.85 7799.41 1499.55 4999.54 2499.40 5799.52 4195.86 21199.91 5099.32 1999.95 1899.70 35
jajsoiax99.58 699.61 799.48 5599.87 1098.61 9899.28 3699.66 2299.09 7599.89 699.68 1499.53 499.97 499.50 1099.99 599.87 5
HPM-MVS++copyleft98.10 16497.64 19399.48 5599.09 18499.13 5697.52 20998.75 27697.46 19196.90 30697.83 29596.01 19999.84 13595.82 24399.35 23599.46 134
ACMM96.08 1298.91 5998.73 6699.48 5599.55 7399.14 5398.07 14899.37 10997.62 17299.04 12098.96 14598.84 2099.79 19697.43 12899.65 15999.49 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test98.71 8698.46 10999.47 5899.57 6298.97 6798.23 13199.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
LGP-MVS_train99.47 5899.57 6298.97 6799.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
TranMVSNet+NR-MVSNet99.17 3399.07 4299.46 6099.37 12398.87 7598.39 11999.42 9799.42 3699.36 6699.06 11198.38 4599.95 1798.34 8099.90 5599.57 74
KD-MVS_self_test99.25 2999.18 2999.44 6199.63 5599.06 6598.69 8799.54 5499.31 4899.62 2899.53 3997.36 12799.86 10399.24 2799.71 13199.39 163
testtj97.79 19497.25 21899.42 6299.03 19998.85 7797.78 17999.18 18795.83 27298.12 23398.50 23995.50 22399.86 10392.23 33399.07 27899.54 91
APD-MVScopyleft98.10 16497.67 18899.42 6299.11 17798.93 7297.76 18499.28 15894.97 29098.72 17798.77 19297.04 14699.85 11893.79 30399.54 19799.49 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
RPSCF98.62 10598.36 12699.42 6299.65 5099.42 598.55 9999.57 3897.72 16698.90 14599.26 7996.12 19599.52 31595.72 24699.71 13199.32 193
v7n99.53 899.57 899.41 6599.88 798.54 10699.45 1099.61 2799.66 1299.68 1999.66 1898.44 4299.95 1799.73 299.96 1599.75 24
COLMAP_ROBcopyleft96.50 1098.99 4798.85 5699.41 6599.58 5899.10 6198.74 8299.56 4599.09 7599.33 7199.19 8998.40 4499.72 24495.98 23399.76 11299.42 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UniMVSNet_NR-MVSNet98.86 6698.68 7699.40 6799.17 16698.74 8797.68 19199.40 10099.14 6399.06 11398.59 22796.71 17199.93 3198.57 6599.77 10299.53 99
DU-MVS98.82 6898.63 8299.39 6899.16 16898.74 8797.54 20799.25 16798.84 9799.06 11398.76 19496.76 16799.93 3198.57 6599.77 10299.50 110
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 3899.39 3999.75 1299.62 2399.17 1299.83 15099.06 3599.62 16799.66 42
NR-MVSNet98.95 5598.82 5899.36 6999.16 16898.72 9299.22 4199.20 17899.10 7299.72 1398.76 19496.38 18899.86 10398.00 10099.82 7799.50 110
Baseline_NR-MVSNet98.98 5198.86 5599.36 6999.82 2198.55 10397.47 21599.57 3899.37 4199.21 9599.61 2596.76 16799.83 15098.06 9599.83 7499.71 30
ACMP95.32 1598.41 13598.09 15899.36 6999.51 8298.79 8597.68 19199.38 10595.76 27498.81 16798.82 18498.36 4699.82 16094.75 26999.77 10299.48 124
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D98.63 10398.38 12499.36 6997.25 35799.38 699.12 5599.32 13299.21 5498.44 21098.88 16897.31 12899.80 18396.58 19399.34 23798.92 267
Effi-MVS+-dtu98.26 15297.90 17599.35 7498.02 32599.49 398.02 15799.16 19698.29 12697.64 26497.99 28496.44 18399.95 1796.66 18998.93 29598.60 304
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2399.48 2899.92 399.71 1298.07 6899.96 1199.53 9100.00 199.93 1
UniMVSNet (Re)98.87 6498.71 7099.35 7499.24 14398.73 9097.73 18799.38 10598.93 9299.12 10498.73 19796.77 16599.86 10398.63 6299.80 8999.46 134
EGC-MVSNET85.24 34380.54 34699.34 7799.77 2599.20 3399.08 5799.29 15512.08 37920.84 38099.42 5797.55 10899.85 11897.08 14999.72 12698.96 260
FC-MVSNet-test99.27 2699.25 2699.34 7799.77 2598.37 11699.30 3199.57 3899.61 2099.40 5799.50 4397.12 14299.85 11899.02 3999.94 2899.80 13
PHI-MVS98.29 14997.95 17099.34 7798.44 29999.16 4398.12 14299.38 10596.01 26698.06 23998.43 24797.80 8899.67 26395.69 24899.58 18599.20 220
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2499.30 5099.65 2399.60 2899.16 1499.82 16099.07 3499.83 7499.56 79
ACMH+96.62 999.08 4199.00 4699.33 8099.71 3798.83 8098.60 9399.58 3199.11 6599.53 3599.18 9198.81 2299.67 26396.71 18699.77 10299.50 110
MSC_two_6792asdad99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
No_MVS99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
SF-MVS98.53 12298.27 13799.32 8299.31 13198.75 8698.19 13599.41 9896.77 23998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
bld_raw_dy_0_6499.07 4299.00 4699.29 8599.85 1598.18 13299.11 5699.40 10099.33 4699.38 6199.44 5595.21 23099.97 499.31 2099.98 999.73 27
ETH3D-3000-0.198.03 16897.62 19599.29 8599.11 17798.80 8497.47 21599.32 13295.54 27798.43 21398.62 22296.61 17599.77 21493.95 29799.49 21599.30 200
FIs99.14 3599.09 3999.29 8599.70 4398.28 12299.13 5399.52 6199.48 2899.24 9199.41 6096.79 16499.82 16098.69 5999.88 5999.76 21
VPA-MVSNet99.30 2599.30 2499.28 8899.49 9298.36 11999.00 6799.45 8599.63 1599.52 3799.44 5598.25 5299.88 7799.09 3399.84 6899.62 51
DP-MVS98.93 5798.81 6099.28 8899.21 15098.45 11298.46 11399.33 13099.63 1599.48 4399.15 10197.23 13899.75 22897.17 13999.66 15899.63 50
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 199.82 399.93 299.81 399.17 1299.94 2699.31 20100.00 199.82 10
test_part197.91 17797.46 20799.27 9198.80 24798.18 13299.07 6099.36 11399.75 599.63 2699.49 4682.20 35399.89 6698.87 4799.95 1899.74 26
CPTT-MVS97.84 19097.36 21299.27 9199.31 13198.46 11198.29 12699.27 16194.90 29297.83 25298.37 25494.90 23799.84 13593.85 30299.54 19799.51 106
Vis-MVSNetpermissive99.34 2399.36 1799.27 9199.73 3098.26 12399.17 4999.78 899.11 6599.27 8299.48 4898.82 2199.95 1798.94 4299.93 3399.59 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test99.13 3799.09 3999.26 9499.13 17598.97 6799.31 2699.88 399.44 3398.16 22898.51 23598.64 3099.93 3198.91 4399.85 6498.88 274
Anonymous2023121199.27 2699.27 2599.26 9499.29 13598.18 13299.49 899.51 6299.70 899.80 999.68 1496.84 15899.83 15099.21 2899.91 4899.77 17
ACMH96.65 799.25 2999.24 2799.26 9499.72 3698.38 11599.07 6099.55 4998.30 12399.65 2399.45 5499.22 999.76 22198.44 7499.77 10299.64 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.05 4398.99 4999.25 9799.44 10898.35 12098.73 8499.56 4598.42 11798.91 14498.81 18698.94 1899.91 5098.35 7999.73 11999.49 114
OPM-MVS98.56 11398.32 13399.25 9799.41 11598.73 9097.13 24399.18 18797.10 22698.75 17498.92 15598.18 6199.65 27696.68 18899.56 19499.37 173
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CS-MVS99.13 3799.10 3899.24 9999.06 19299.15 4899.36 1999.88 399.36 4498.21 22598.46 24598.68 2999.93 3199.03 3899.85 6498.64 303
3Dnovator+97.89 398.69 9198.51 9899.24 9998.81 24598.40 11399.02 6499.19 18398.99 8498.07 23899.28 7597.11 14499.84 13596.84 17399.32 23999.47 132
DeepPCF-MVS96.93 598.32 14498.01 16699.23 10198.39 30598.97 6795.03 33499.18 18796.88 23599.33 7198.78 19098.16 6499.28 34996.74 18199.62 16799.44 142
XVG-ACMP-BASELINE98.56 11398.34 12999.22 10299.54 7698.59 10097.71 18899.46 8297.25 21298.98 12998.99 13697.54 10999.84 13595.88 23699.74 11699.23 215
DROMVSNet99.09 3999.05 4399.20 10399.28 13698.93 7299.24 4099.84 699.08 7798.12 23398.37 25498.72 2699.90 5699.05 3699.77 10298.77 290
CSCG98.68 9598.50 10099.20 10399.45 10698.63 9598.56 9899.57 3897.87 15798.85 15798.04 28297.66 9699.84 13596.72 18499.81 8199.13 235
ETH3D cwj APD-0.1697.55 20897.00 23299.19 10598.51 29398.64 9496.85 25899.13 20494.19 30897.65 26398.40 24995.78 21399.81 17493.37 31499.16 26599.12 236
GBi-Net98.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
test198.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
FMVSNet199.17 3399.17 3099.17 10699.55 7398.24 12599.20 4499.44 8899.21 5499.43 5299.55 3597.82 8799.86 10398.42 7699.89 5899.41 152
AllTest98.44 13298.20 14499.16 10999.50 8598.55 10398.25 13099.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
TestCases99.16 10999.50 8598.55 10399.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
SixPastTwentyTwo98.75 8198.62 8499.16 10999.83 1997.96 16199.28 3698.20 30499.37 4199.70 1599.65 2092.65 28599.93 3199.04 3799.84 6899.60 57
XVG-OURS-SEG-HR98.49 12798.28 13699.14 11299.49 9298.83 8096.54 27399.48 7497.32 20599.11 10598.61 22599.33 899.30 34696.23 22198.38 31699.28 205
F-COLMAP97.30 22796.68 25399.14 11299.19 15798.39 11497.27 23099.30 14892.93 32596.62 31798.00 28395.73 21599.68 26092.62 32898.46 31599.35 183
Anonymous2024052998.93 5798.87 5399.12 11499.19 15798.22 13099.01 6598.99 23599.25 5399.54 3299.37 6397.04 14699.80 18397.89 10499.52 20499.35 183
PM-MVS98.82 6898.72 6899.12 11499.64 5398.54 10697.98 16299.68 1997.62 17299.34 7099.18 9197.54 10999.77 21497.79 11099.74 11699.04 246
LCM-MVSNet-Re98.64 10198.48 10599.11 11698.85 23598.51 10898.49 10899.83 798.37 11899.69 1799.46 5098.21 5999.92 4094.13 29299.30 24498.91 270
XVG-OURS98.53 12298.34 12999.11 11699.50 8598.82 8295.97 29999.50 6497.30 20799.05 11898.98 14099.35 799.32 34395.72 24699.68 14799.18 227
h-mvs3397.77 19597.33 21699.10 11899.21 15097.84 17198.35 12398.57 28899.11 6598.58 19599.02 12488.65 31299.96 1198.11 9096.34 35899.49 114
MCST-MVS98.00 17297.63 19499.10 11899.24 14398.17 13596.89 25798.73 27995.66 27597.92 24597.70 30397.17 14199.66 27196.18 22699.23 25499.47 132
XXY-MVS99.14 3599.15 3499.10 11899.76 2897.74 18398.85 7999.62 2598.48 11599.37 6499.49 4698.75 2499.86 10398.20 8799.80 8999.71 30
DeepC-MVS97.60 498.97 5298.93 5199.10 11899.35 12897.98 15698.01 16099.46 8297.56 17999.54 3299.50 4398.97 1699.84 13598.06 9599.92 4299.49 114
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETH3 D test640096.46 27695.59 28899.08 12298.88 23098.21 13196.53 27499.18 18788.87 36097.08 29497.79 29693.64 27199.77 21488.92 35899.40 22799.28 205
Anonymous20240521197.90 17897.50 20199.08 12298.90 22498.25 12498.53 10196.16 34798.87 9499.11 10598.86 17290.40 29999.78 20897.36 13199.31 24199.19 225
IS-MVSNet98.19 15997.90 17599.08 12299.57 6297.97 15799.31 2698.32 29999.01 8398.98 12999.03 12391.59 29399.79 19695.49 25799.80 8999.48 124
train_agg97.10 24296.45 26699.07 12598.71 25998.08 14495.96 30199.03 22491.64 33895.85 33797.53 31196.47 18199.76 22193.67 30599.16 26599.36 179
VDD-MVS98.56 11398.39 12299.07 12599.13 17598.07 14698.59 9597.01 33599.59 2199.11 10599.27 7794.82 24199.79 19698.34 8099.63 16499.34 185
CDPH-MVS97.26 23096.66 25699.07 12599.00 20498.15 13696.03 29799.01 23191.21 34697.79 25597.85 29496.89 15699.69 25192.75 32599.38 23199.39 163
CNVR-MVS98.17 16297.87 17799.07 12598.67 27298.24 12597.01 24698.93 24097.25 21297.62 26598.34 25897.27 13299.57 30096.42 21199.33 23899.39 163
EPP-MVSNet98.30 14698.04 16499.07 12599.56 6997.83 17299.29 3298.07 31199.03 8198.59 19399.13 10492.16 28999.90 5696.87 17099.68 14799.49 114
xxxxxxxxxxxxxcwj98.44 13298.24 14099.06 13099.11 17797.97 15796.53 27499.54 5498.24 12998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
TSAR-MVS + MP.98.63 10398.49 10399.06 13099.64 5397.90 16698.51 10698.94 23896.96 23199.24 9198.89 16797.83 8499.81 17496.88 16999.49 21599.48 124
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
NCCC97.86 18497.47 20699.05 13298.61 27998.07 14696.98 24898.90 24697.63 17197.04 29797.93 29095.99 20399.66 27195.31 26098.82 29999.43 146
3Dnovator98.27 298.81 7098.73 6699.05 13298.76 25097.81 17799.25 3999.30 14898.57 11298.55 20199.33 7197.95 8099.90 5697.16 14099.67 15399.44 142
OMC-MVS97.88 18297.49 20299.04 13498.89 22998.63 9596.94 25099.25 16795.02 28898.53 20498.51 23597.27 13299.47 32693.50 31199.51 20799.01 250
agg_prior197.06 24696.40 26799.03 13598.68 27097.99 15295.76 31199.01 23191.73 33795.59 34097.50 31496.49 18099.77 21493.71 30499.14 26999.34 185
WR-MVS98.40 13798.19 14699.03 13599.00 20497.65 18896.85 25898.94 23898.57 11298.89 14898.50 23995.60 21899.85 11897.54 12399.85 6499.59 63
K. test v398.00 17297.66 19199.03 13599.79 2497.56 19299.19 4892.47 36799.62 1899.52 3799.66 1889.61 30399.96 1199.25 2599.81 8199.56 79
Regformer-298.60 10898.46 10999.02 13898.85 23597.71 18596.91 25599.09 21198.98 8699.01 12498.64 21697.37 12699.84 13597.75 11799.57 18999.52 103
VDDNet98.21 15797.95 17099.01 13999.58 5897.74 18399.01 6597.29 33199.67 1198.97 13299.50 4390.45 29899.80 18397.88 10799.20 25899.48 124
VPNet98.87 6498.83 5799.01 13999.70 4397.62 19198.43 11699.35 11999.47 3099.28 8099.05 11896.72 17099.82 16098.09 9399.36 23399.59 63
N_pmnet97.63 20497.17 22398.99 14199.27 13897.86 16995.98 29893.41 36495.25 28699.47 4598.90 15995.63 21799.85 11896.91 16299.73 11999.27 207
lessismore_v098.97 14299.73 3097.53 19486.71 37899.37 6499.52 4189.93 30199.92 4098.99 4199.72 12699.44 142
HyFIR lowres test97.19 23796.60 26198.96 14399.62 5797.28 20695.17 33099.50 6494.21 30799.01 12498.32 26186.61 32099.99 297.10 14899.84 6899.60 57
test_prior397.48 21497.00 23298.95 14498.69 26797.95 16295.74 31399.03 22496.48 24996.11 33197.63 30795.92 20899.59 29494.16 28799.20 25899.30 200
test_prior98.95 14498.69 26797.95 16299.03 22499.59 29499.30 200
EG-PatchMatch MVS98.99 4799.01 4598.94 14699.50 8597.47 19698.04 15499.59 2998.15 14299.40 5799.36 6698.58 3599.76 22198.78 5199.68 14799.59 63
test1298.93 14798.58 28497.83 17298.66 28396.53 32095.51 22299.69 25199.13 27299.27 207
HQP_MVS97.99 17597.67 18898.93 14799.19 15797.65 18897.77 18299.27 16198.20 13597.79 25597.98 28594.90 23799.70 24794.42 28199.51 20799.45 138
test_040298.76 7998.71 7098.93 14799.56 6998.14 13898.45 11599.34 12599.28 5198.95 13598.91 15698.34 5099.79 19695.63 25299.91 4898.86 276
tfpnnormal98.90 6198.90 5298.91 15099.67 4797.82 17599.00 6799.44 8899.45 3299.51 4099.24 8398.20 6099.86 10395.92 23599.69 14299.04 246
新几何198.91 15098.94 21497.76 18098.76 27387.58 36596.75 31398.10 27794.80 24499.78 20892.73 32699.00 28999.20 220
112196.73 26296.00 27698.91 15098.95 21397.76 18098.07 14898.73 27987.65 36496.54 31998.13 27294.52 25199.73 23692.38 33199.02 28699.24 214
mvs-test197.83 19297.48 20598.89 15398.02 32599.20 3397.20 23599.16 19698.29 12696.46 32697.17 32896.44 18399.92 4096.66 18997.90 33497.54 349
Regformer-498.73 8498.68 7698.89 15399.02 20197.22 21097.17 23999.06 21599.21 5499.17 10298.85 17597.45 12199.86 10398.48 7299.70 13699.60 57
Regformer-198.55 11798.44 11398.87 15598.85 23597.29 20496.91 25598.99 23598.97 8798.99 12798.64 21697.26 13599.81 17497.79 11099.57 18999.51 106
ITE_SJBPF98.87 15599.22 14898.48 11099.35 11997.50 18398.28 22298.60 22697.64 10099.35 33993.86 30199.27 24898.79 288
pmmvs-eth3d98.47 12998.34 12998.86 15799.30 13497.76 18097.16 24199.28 15895.54 27799.42 5399.19 8997.27 13299.63 28197.89 10499.97 1299.20 220
PLCcopyleft94.65 1696.51 27195.73 28298.85 15898.75 25297.91 16596.42 28299.06 21590.94 34995.59 34097.38 32294.41 25399.59 29490.93 34998.04 33299.05 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CMPMVSbinary75.91 2396.29 28095.44 29398.84 15996.25 37298.69 9397.02 24599.12 20688.90 35997.83 25298.86 17289.51 30498.90 36691.92 33499.51 20798.92 267
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_111021_LR98.30 14698.12 15698.83 16099.16 16898.03 15096.09 29699.30 14897.58 17698.10 23698.24 26598.25 5299.34 34096.69 18799.65 15999.12 236
OPU-MVS98.82 16198.59 28398.30 12198.10 14598.52 23498.18 6198.75 36994.62 27399.48 21799.41 152
QAPM97.31 22696.81 24698.82 16198.80 24797.49 19599.06 6299.19 18390.22 35297.69 26199.16 9796.91 15599.90 5690.89 35199.41 22599.07 240
Fast-Effi-MVS+-dtu98.27 15098.09 15898.81 16398.43 30098.11 13997.61 19999.50 6498.64 10297.39 28597.52 31398.12 6799.95 1796.90 16798.71 30598.38 315
casdiffmvs98.95 5599.00 4698.81 16399.38 11897.33 20297.82 17799.57 3899.17 6299.35 6899.17 9598.35 4999.69 25198.46 7399.73 11999.41 152
EIA-MVS98.00 17297.74 18498.80 16598.72 25698.09 14098.05 15299.60 2897.39 19896.63 31695.55 35697.68 9499.80 18396.73 18399.27 24898.52 307
TAMVS98.24 15598.05 16398.80 16599.07 18897.18 21597.88 17098.81 26796.66 24499.17 10299.21 8694.81 24399.77 21496.96 16099.88 5999.44 142
VNet98.42 13498.30 13498.79 16798.79 24997.29 20498.23 13198.66 28399.31 4898.85 15798.80 18794.80 24499.78 20898.13 8999.13 27299.31 197
UGNet98.53 12298.45 11198.79 16797.94 32996.96 22399.08 5798.54 28999.10 7296.82 31199.47 4996.55 17799.84 13598.56 6899.94 2899.55 87
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 27595.70 28398.79 16797.92 33099.12 5898.28 12798.60 28792.16 33595.54 34796.17 34794.77 24799.52 31589.62 35698.23 31997.72 342
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
alignmvs97.35 22396.88 24098.78 17098.54 28998.09 14097.71 18897.69 32199.20 5797.59 26895.90 35188.12 31699.55 30698.18 8898.96 29398.70 298
test20.0398.78 7598.77 6498.78 17099.46 10397.20 21397.78 17999.24 17299.04 8099.41 5498.90 15997.65 9799.76 22197.70 11899.79 9499.39 163
TSAR-MVS + GP.98.18 16097.98 16898.77 17298.71 25997.88 16796.32 28798.66 28396.33 25499.23 9498.51 23597.48 12099.40 33397.16 14099.46 21899.02 249
V4298.78 7598.78 6298.76 17399.44 10897.04 22098.27 12899.19 18397.87 15799.25 9099.16 9796.84 15899.78 20899.21 2899.84 6899.46 134
baseline98.96 5499.02 4498.76 17399.38 11897.26 20798.49 10899.50 6498.86 9599.19 9799.06 11198.23 5499.69 25198.71 5799.76 11299.33 191
UnsupCasMVSNet_eth97.89 18097.60 19798.75 17599.31 13197.17 21697.62 19799.35 11998.72 10198.76 17398.68 20692.57 28699.74 23297.76 11695.60 36599.34 185
FMVSNet298.49 12798.40 11998.75 17598.90 22497.14 21998.61 9299.13 20498.59 10899.19 9799.28 7594.14 25999.82 16097.97 10299.80 8999.29 204
MVS_111021_HR98.25 15498.08 16198.75 17599.09 18497.46 19795.97 29999.27 16197.60 17597.99 24498.25 26498.15 6699.38 33796.87 17099.57 18999.42 149
DeepC-MVS_fast96.85 698.30 14698.15 15398.75 17598.61 27997.23 20897.76 18499.09 21197.31 20698.75 17498.66 21197.56 10799.64 27896.10 23099.55 19699.39 163
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t96.50 27395.77 28098.69 17999.48 10097.43 19997.84 17699.55 4981.42 37396.51 32298.58 22895.53 22099.67 26393.41 31399.58 18598.98 255
CDS-MVSNet97.69 19897.35 21398.69 17998.73 25497.02 22296.92 25498.75 27695.89 27098.59 19398.67 20892.08 29199.74 23296.72 18499.81 8199.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
TAPA-MVS96.21 1196.63 26795.95 27898.65 18198.93 21698.09 14096.93 25299.28 15883.58 37198.13 23297.78 29796.13 19499.40 33393.52 30999.29 24698.45 311
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
hse-mvs297.46 21597.07 22898.64 18298.73 25497.33 20297.45 21797.64 32499.11 6598.58 19597.98 28588.65 31299.79 19698.11 9097.39 34298.81 282
LFMVS97.20 23696.72 25098.64 18298.72 25696.95 22498.93 7394.14 36299.74 798.78 16899.01 13384.45 33899.73 23697.44 12799.27 24899.25 211
Gipumacopyleft99.03 4499.16 3198.64 18299.94 298.51 10899.32 2299.75 1199.58 2398.60 19199.62 2398.22 5799.51 31997.70 11899.73 11997.89 331
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EI-MVSNet-Vis-set98.68 9598.70 7398.63 18599.09 18496.40 23797.23 23198.86 25799.20 5799.18 10198.97 14297.29 13199.85 11898.72 5699.78 9899.64 47
Regformer-398.61 10698.61 8798.63 18599.02 20196.53 23597.17 23998.84 26199.13 6499.10 10898.85 17597.24 13799.79 19698.41 7799.70 13699.57 74
Effi-MVS+98.02 17097.82 18098.62 18798.53 29197.19 21497.33 22499.68 1997.30 20796.68 31497.46 31898.56 3699.80 18396.63 19198.20 32198.86 276
EI-MVSNet-UG-set98.69 9198.71 7098.62 18799.10 18196.37 23897.23 23198.87 25199.20 5799.19 9798.99 13697.30 12999.85 11898.77 5499.79 9499.65 46
PatchMatch-RL97.24 23396.78 24798.61 18999.03 19997.83 17296.36 28599.06 21593.49 32097.36 28797.78 29795.75 21499.49 32193.44 31298.77 30098.52 307
AUN-MVS96.24 28395.45 29298.60 19098.70 26397.22 21097.38 22097.65 32295.95 26895.53 34897.96 28982.11 35499.79 19696.31 21797.44 34098.80 287
ab-mvs98.41 13598.36 12698.59 19199.19 15797.23 20899.32 2298.81 26797.66 16998.62 18799.40 6296.82 16199.80 18395.88 23699.51 20798.75 293
canonicalmvs98.34 14398.26 13898.58 19298.46 29797.82 17598.96 7199.46 8299.19 6197.46 28095.46 35998.59 3499.46 32898.08 9498.71 30598.46 309
1112_ss97.29 22996.86 24198.58 19299.34 13096.32 23996.75 26599.58 3193.14 32396.89 30797.48 31692.11 29099.86 10396.91 16299.54 19799.57 74
Fast-Effi-MVS+97.67 20097.38 21098.57 19498.71 25997.43 19997.23 23199.45 8594.82 29496.13 33096.51 33998.52 3899.91 5096.19 22498.83 29898.37 317
MVP-Stereo98.08 16697.92 17398.57 19498.96 21196.79 22897.90 16999.18 18796.41 25298.46 20898.95 14995.93 20799.60 29096.51 20498.98 29299.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v899.01 4599.16 3198.57 19499.47 10296.31 24098.90 7499.47 8099.03 8199.52 3799.57 3196.93 15499.81 17499.60 499.98 999.60 57
DP-MVS Recon97.33 22596.92 23798.57 19499.09 18497.99 15296.79 26199.35 11993.18 32297.71 25998.07 28195.00 23699.31 34493.97 29599.13 27298.42 314
ETV-MVS98.03 16897.86 17898.56 19898.69 26798.07 14697.51 21199.50 6498.10 14397.50 27795.51 35798.41 4399.88 7796.27 22099.24 25397.71 343
v1098.97 5299.11 3698.55 19999.44 10896.21 24298.90 7499.55 4998.73 10099.48 4399.60 2896.63 17499.83 15099.70 399.99 599.61 56
HQP-MVS97.00 25396.49 26598.55 19998.67 27296.79 22896.29 28899.04 22296.05 26395.55 34496.84 33493.84 26499.54 30992.82 32299.26 25199.32 193
CNLPA97.17 23996.71 25198.55 19998.56 28798.05 14996.33 28698.93 24096.91 23497.06 29697.39 32194.38 25599.45 32991.66 33799.18 26498.14 323
CHOSEN 1792x268897.49 21297.14 22798.54 20299.68 4696.09 24596.50 27799.62 2591.58 34098.84 16098.97 14292.36 28799.88 7796.76 17999.95 1899.67 41
MVS_030497.64 20297.35 21398.52 20397.87 33496.69 23398.59 9598.05 31397.44 19493.74 36798.85 17593.69 27099.88 7798.11 9099.81 8198.98 255
LF4IMVS97.90 17897.69 18798.52 20399.17 16697.66 18797.19 23899.47 8096.31 25697.85 25198.20 26996.71 17199.52 31594.62 27399.72 12698.38 315
DPM-MVS96.32 27995.59 28898.51 20598.76 25097.21 21294.54 35098.26 30191.94 33696.37 32797.25 32693.06 27899.43 33191.42 34398.74 30198.89 271
pmmvs497.58 20797.28 21798.51 20598.84 23896.93 22595.40 32698.52 29193.60 31798.61 18998.65 21395.10 23499.60 29096.97 15999.79 9498.99 254
Patchmtry97.35 22396.97 23498.50 20797.31 35696.47 23698.18 13698.92 24398.95 9198.78 16899.37 6385.44 33299.85 11895.96 23499.83 7499.17 231
DELS-MVS98.27 15098.20 14498.48 20898.86 23396.70 23295.60 31899.20 17897.73 16498.45 20998.71 20097.50 11599.82 16098.21 8699.59 17998.93 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CLD-MVS97.49 21297.16 22498.48 20899.07 18897.03 22194.71 34199.21 17694.46 30098.06 23997.16 32997.57 10699.48 32494.46 27899.78 9898.95 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary97.14 24196.71 25198.46 21098.34 30797.80 17896.95 24998.93 24095.58 27696.92 30197.66 30495.87 21099.53 31190.97 34899.14 26998.04 326
iter_conf_final97.10 24296.65 25898.45 21198.53 29196.08 24698.30 12599.11 20898.10 14398.85 15798.95 14979.38 36399.87 9498.68 6099.91 4899.40 161
v14419298.54 12098.57 9298.45 21199.21 15095.98 24797.63 19699.36 11397.15 22599.32 7799.18 9195.84 21299.84 13599.50 1099.91 4899.54 91
UnsupCasMVSNet_bld97.30 22796.92 23798.45 21199.28 13696.78 23196.20 29399.27 16195.42 28298.28 22298.30 26293.16 27499.71 24594.99 26497.37 34398.87 275
PCF-MVS92.86 1894.36 31393.00 33098.42 21498.70 26397.56 19293.16 36699.11 20879.59 37497.55 27297.43 31992.19 28899.73 23679.85 37599.45 22097.97 330
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119298.60 10898.66 7998.41 21599.27 13895.88 25097.52 20999.36 11397.41 19699.33 7199.20 8896.37 18999.82 16099.57 699.92 4299.55 87
v114498.60 10898.66 7998.41 21599.36 12495.90 24997.58 20399.34 12597.51 18299.27 8299.15 10196.34 19199.80 18399.47 1299.93 3399.51 106
FMVSNet596.01 28695.20 30198.41 21597.53 34896.10 24398.74 8299.50 6497.22 22198.03 24399.04 12069.80 37699.88 7797.27 13599.71 13199.25 211
v192192098.54 12098.60 8998.38 21899.20 15495.76 25597.56 20599.36 11397.23 21899.38 6199.17 9596.02 19899.84 13599.57 699.90 5599.54 91
v2v48298.56 11398.62 8498.37 21999.42 11395.81 25397.58 20399.16 19697.90 15599.28 8099.01 13395.98 20499.79 19699.33 1899.90 5599.51 106
原ACMM198.35 22098.90 22496.25 24198.83 26692.48 33196.07 33498.10 27795.39 22799.71 24592.61 32998.99 29099.08 239
Vis-MVSNet (Re-imp)97.46 21597.16 22498.34 22199.55 7396.10 24398.94 7298.44 29498.32 12298.16 22898.62 22288.76 30899.73 23693.88 30099.79 9499.18 227
v124098.55 11798.62 8498.32 22299.22 14895.58 25697.51 21199.45 8597.16 22399.45 5099.24 8396.12 19599.85 11899.60 499.88 5999.55 87
OpenMVScopyleft96.65 797.09 24496.68 25398.32 22298.32 30897.16 21798.86 7899.37 10989.48 35696.29 32999.15 10196.56 17699.90 5692.90 31999.20 25897.89 331
Test_1112_low_res96.99 25496.55 26398.31 22499.35 12895.47 26195.84 31099.53 5891.51 34296.80 31298.48 24491.36 29499.83 15096.58 19399.53 20199.62 51
PAPM_NR96.82 26096.32 27098.30 22599.07 18896.69 23397.48 21398.76 27395.81 27396.61 31896.47 34294.12 26299.17 35690.82 35297.78 33599.06 241
FMVSNet397.50 21097.24 22098.29 22698.08 32395.83 25297.86 17498.91 24597.89 15698.95 13598.95 14987.06 31799.81 17497.77 11299.69 14299.23 215
MSDG97.71 19797.52 20098.28 22798.91 22396.82 22794.42 35199.37 10997.65 17098.37 21998.29 26397.40 12499.33 34294.09 29399.22 25598.68 302
EPNet96.14 28495.44 29398.25 22890.76 38295.50 26097.92 16694.65 35598.97 8792.98 36898.85 17589.12 30799.87 9495.99 23299.68 14799.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ambc98.24 22998.82 24395.97 24898.62 9199.00 23499.27 8299.21 8696.99 15199.50 32096.55 20199.50 21499.26 210
PVSNet_Blended_VisFu98.17 16298.15 15398.22 23099.73 3095.15 27097.36 22299.68 1994.45 30298.99 12799.27 7796.87 15799.94 2697.13 14699.91 4899.57 74
Anonymous2023120698.21 15798.21 14398.20 23199.51 8295.43 26398.13 14099.32 13296.16 26098.93 14298.82 18496.00 20099.83 15097.32 13399.73 11999.36 179
CANet97.87 18397.76 18298.19 23297.75 33895.51 25996.76 26499.05 21997.74 16396.93 30098.21 26895.59 21999.89 6697.86 10999.93 3399.19 225
patch_mono-298.51 12598.63 8298.17 23399.38 11894.78 27897.36 22299.69 1798.16 14198.49 20799.29 7497.06 14599.97 498.29 8399.91 4899.76 21
diffmvs98.22 15698.24 14098.17 23399.00 20495.44 26296.38 28499.58 3197.79 16298.53 20498.50 23996.76 16799.74 23297.95 10399.64 16199.34 185
Anonymous2024052198.69 9198.87 5398.16 23599.77 2595.11 27399.08 5799.44 8899.34 4599.33 7199.55 3594.10 26399.94 2699.25 2599.96 1599.42 149
testgi98.32 14498.39 12298.13 23699.57 6295.54 25797.78 17999.49 7297.37 20099.19 9797.65 30598.96 1799.49 32196.50 20598.99 29099.34 185
testdata98.09 23798.93 21695.40 26498.80 26990.08 35497.45 28198.37 25495.26 22999.70 24793.58 30898.95 29499.17 231
IterMVS-LS98.55 11798.70 7398.09 23799.48 10094.73 28097.22 23499.39 10398.97 8799.38 6199.31 7396.00 20099.93 3198.58 6399.97 1299.60 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS96.51 27195.98 27798.09 23797.53 34895.84 25194.92 33798.84 26191.58 34096.05 33595.58 35595.68 21699.66 27195.59 25498.09 32898.76 292
CL-MVSNet_self_test97.44 21897.22 22198.08 24098.57 28695.78 25494.30 35498.79 27096.58 24798.60 19198.19 27094.74 24899.64 27896.41 21298.84 29798.82 279
pmmvs597.64 20297.49 20298.08 24099.14 17395.12 27296.70 26899.05 21993.77 31598.62 18798.83 18193.23 27299.75 22898.33 8299.76 11299.36 179
MDA-MVSNet-bldmvs97.94 17697.91 17498.06 24299.44 10894.96 27596.63 27199.15 20298.35 11998.83 16199.11 10694.31 25699.85 11896.60 19298.72 30399.37 173
sss97.21 23596.93 23598.06 24298.83 24095.22 26896.75 26598.48 29394.49 29897.27 28897.90 29192.77 28399.80 18396.57 19599.32 23999.16 234
EI-MVSNet98.40 13798.51 9898.04 24499.10 18194.73 28097.20 23598.87 25198.97 8799.06 11399.02 12496.00 20099.80 18398.58 6399.82 7799.60 57
PMMVS298.07 16798.08 16198.04 24499.41 11594.59 28694.59 34899.40 10097.50 18398.82 16598.83 18196.83 16099.84 13597.50 12699.81 8199.71 30
v14898.45 13198.60 8998.00 24699.44 10894.98 27497.44 21899.06 21598.30 12399.32 7798.97 14296.65 17399.62 28398.37 7899.85 6499.39 163
Patchmatch-RL test97.26 23097.02 23197.99 24799.52 8095.53 25896.13 29599.71 1497.47 18699.27 8299.16 9784.30 34199.62 28397.89 10499.77 10298.81 282
iter_conf0596.54 27096.07 27597.92 24897.90 33294.50 28797.87 17399.14 20397.73 16498.89 14898.95 14975.75 37299.87 9498.50 7099.92 4299.40 161
test_yl96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
DCV-MVSNet96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
WTY-MVS96.67 26596.27 27397.87 25198.81 24594.61 28596.77 26397.92 31694.94 29197.12 29197.74 30091.11 29599.82 16093.89 29998.15 32599.18 227
CANet_DTU97.26 23097.06 22997.84 25297.57 34594.65 28496.19 29498.79 27097.23 21895.14 35398.24 26593.22 27399.84 13597.34 13299.84 6899.04 246
D2MVS97.84 19097.84 17997.83 25399.14 17394.74 27996.94 25098.88 24995.84 27198.89 14898.96 14594.40 25499.69 25197.55 12199.95 1899.05 242
OpenMVS_ROBcopyleft95.38 1495.84 29195.18 30297.81 25498.41 30497.15 21897.37 22198.62 28683.86 37098.65 18398.37 25494.29 25799.68 26088.41 35998.62 31196.60 361
MVSTER96.86 25796.55 26397.79 25597.91 33194.21 29397.56 20598.87 25197.49 18599.06 11399.05 11880.72 35599.80 18398.44 7499.82 7799.37 173
dcpmvs_298.78 7599.11 3697.78 25699.56 6993.67 31399.06 6299.86 599.50 2699.66 2099.26 7997.21 14099.99 298.00 10099.91 4899.68 38
MVSFormer98.26 15298.43 11597.77 25798.88 23093.89 30799.39 1699.56 4599.11 6598.16 22898.13 27293.81 26699.97 499.26 2399.57 18999.43 146
jason97.45 21797.35 21397.76 25899.24 14393.93 30395.86 30798.42 29594.24 30698.50 20698.13 27294.82 24199.91 5097.22 13799.73 11999.43 146
jason: jason.
PAPR95.29 30194.47 31097.75 25997.50 35295.14 27194.89 33898.71 28191.39 34495.35 35195.48 35894.57 25099.14 35984.95 36697.37 34398.97 259
thisisatest053095.27 30294.45 31197.74 26099.19 15794.37 28997.86 17490.20 37497.17 22298.22 22497.65 30573.53 37599.90 5696.90 16799.35 23598.95 261
MIMVSNet96.62 26896.25 27497.71 26199.04 19694.66 28399.16 5096.92 33997.23 21897.87 24999.10 10886.11 32699.65 27691.65 33899.21 25798.82 279
MVS_Test98.18 16098.36 12697.67 26298.48 29594.73 28098.18 13699.02 22897.69 16798.04 24299.11 10697.22 13999.56 30398.57 6598.90 29698.71 296
new_pmnet96.99 25496.76 24897.67 26298.72 25694.89 27695.95 30398.20 30492.62 33098.55 20198.54 23194.88 24099.52 31593.96 29699.44 22398.59 306
lupinMVS97.06 24696.86 24197.65 26498.88 23093.89 30795.48 32397.97 31493.53 31898.16 22897.58 30993.81 26699.91 5096.77 17899.57 18999.17 231
PMVScopyleft91.26 2097.86 18497.94 17297.65 26499.71 3797.94 16498.52 10298.68 28298.99 8497.52 27599.35 6797.41 12398.18 37291.59 34099.67 15396.82 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tttt051795.64 29594.98 30597.64 26699.36 12493.81 30998.72 8590.47 37398.08 14598.67 18098.34 25873.88 37499.92 4097.77 11299.51 20799.20 220
MSLP-MVS++98.02 17098.14 15597.64 26698.58 28495.19 26997.48 21399.23 17497.47 18697.90 24798.62 22297.04 14698.81 36897.55 12199.41 22598.94 265
PVSNet_BlendedMVS97.55 20897.53 19997.60 26898.92 22093.77 31196.64 27099.43 9494.49 29897.62 26599.18 9196.82 16199.67 26394.73 27099.93 3399.36 179
TinyColmap97.89 18097.98 16897.60 26898.86 23394.35 29096.21 29299.44 8897.45 19399.06 11398.88 16897.99 7799.28 34994.38 28599.58 18599.18 227
cl____97.02 25096.83 24497.58 27097.82 33694.04 29794.66 34499.16 19697.04 22898.63 18598.71 20088.68 31199.69 25197.00 15499.81 8199.00 253
DIV-MVS_self_test97.02 25096.84 24397.58 27097.82 33694.03 29894.66 34499.16 19697.04 22898.63 18598.71 20088.69 30999.69 25197.00 15499.81 8199.01 250
ET-MVSNet_ETH3D94.30 31693.21 32697.58 27098.14 31994.47 28894.78 34093.24 36694.72 29589.56 37495.87 35278.57 36799.81 17496.91 16297.11 35098.46 309
BH-RMVSNet96.83 25896.58 26297.58 27098.47 29694.05 29696.67 26997.36 32796.70 24397.87 24997.98 28595.14 23399.44 33090.47 35398.58 31399.25 211
HY-MVS95.94 1395.90 28995.35 29797.55 27497.95 32894.79 27798.81 8196.94 33892.28 33495.17 35298.57 22989.90 30299.75 22891.20 34697.33 34798.10 324
SD-MVS98.40 13798.68 7697.54 27598.96 21197.99 15297.88 17099.36 11398.20 13599.63 2699.04 12098.76 2395.33 37896.56 19899.74 11699.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PatchT96.65 26696.35 26897.54 27597.40 35395.32 26597.98 16296.64 34399.33 4696.89 30799.42 5784.32 34099.81 17497.69 12097.49 33897.48 350
baseline195.96 28895.44 29397.52 27798.51 29393.99 30198.39 11996.09 34998.21 13298.40 21897.76 29986.88 31899.63 28195.42 25889.27 37698.95 261
GA-MVS95.86 29095.32 29897.49 27898.60 28194.15 29593.83 36197.93 31595.49 28096.68 31497.42 32083.21 34699.30 34696.22 22298.55 31499.01 250
PVSNet_Blended96.88 25696.68 25397.47 27998.92 22093.77 31194.71 34199.43 9490.98 34897.62 26597.36 32496.82 16199.67 26394.73 27099.56 19498.98 255
MS-PatchMatch97.68 19997.75 18397.45 28098.23 31593.78 31097.29 22798.84 26196.10 26298.64 18498.65 21396.04 19799.36 33896.84 17399.14 26999.20 220
USDC97.41 22097.40 20897.44 28198.94 21493.67 31395.17 33099.53 5894.03 31298.97 13299.10 10895.29 22899.34 34095.84 24299.73 11999.30 200
API-MVS97.04 24996.91 23997.42 28297.88 33398.23 12998.18 13698.50 29297.57 17797.39 28596.75 33696.77 16599.15 35890.16 35499.02 28694.88 372
MDA-MVSNet_test_wron97.60 20597.66 19197.41 28399.04 19693.09 31895.27 32798.42 29597.26 21198.88 15398.95 14995.43 22699.73 23697.02 15398.72 30399.41 152
YYNet197.60 20597.67 18897.39 28499.04 19693.04 32295.27 32798.38 29897.25 21298.92 14398.95 14995.48 22599.73 23696.99 15698.74 30199.41 152
c3_l97.36 22297.37 21197.31 28598.09 32293.25 31795.01 33599.16 19697.05 22798.77 17198.72 19992.88 28199.64 27896.93 16199.76 11299.05 242
RPMNet97.02 25096.93 23597.30 28697.71 34094.22 29198.11 14399.30 14899.37 4196.91 30399.34 6986.72 31999.87 9497.53 12497.36 34597.81 336
CR-MVSNet96.28 28195.95 27897.28 28797.71 34094.22 29198.11 14398.92 24392.31 33396.91 30399.37 6385.44 33299.81 17497.39 13097.36 34597.81 336
MG-MVS96.77 26196.61 25997.26 28898.31 30993.06 31995.93 30498.12 31096.45 25197.92 24598.73 19793.77 26899.39 33591.19 34799.04 28299.33 191
miper_lstm_enhance97.18 23897.16 22497.25 28998.16 31892.85 32495.15 33299.31 13897.25 21298.74 17698.78 19090.07 30099.78 20897.19 13899.80 8999.11 238
new-patchmatchnet98.35 14298.74 6597.18 29099.24 14392.23 33596.42 28299.48 7498.30 12399.69 1799.53 3997.44 12299.82 16098.84 4999.77 10299.49 114
eth_miper_zixun_eth97.23 23497.25 21897.17 29198.00 32792.77 32694.71 34199.18 18797.27 21098.56 19998.74 19691.89 29299.69 25197.06 15299.81 8199.05 242
Patchmatch-test96.55 26996.34 26997.17 29198.35 30693.06 31998.40 11897.79 31797.33 20398.41 21498.67 20883.68 34599.69 25195.16 26299.31 24198.77 290
miper_ehance_all_eth97.06 24697.03 23097.16 29397.83 33593.06 31994.66 34499.09 21195.99 26798.69 17898.45 24692.73 28499.61 28996.79 17599.03 28398.82 279
BH-untuned96.83 25896.75 24997.08 29498.74 25393.33 31696.71 26798.26 30196.72 24198.44 21097.37 32395.20 23199.47 32691.89 33597.43 34198.44 312
FPMVS93.44 32992.23 33497.08 29499.25 14297.86 16995.61 31797.16 33392.90 32693.76 36698.65 21375.94 37195.66 37679.30 37697.49 33897.73 341
JIA-IIPM95.52 29895.03 30497.00 29696.85 36394.03 29896.93 25295.82 35199.20 5794.63 35799.71 1283.09 34799.60 29094.42 28194.64 36997.36 352
test0.0.03 194.51 31193.69 32096.99 29796.05 37393.61 31594.97 33693.49 36396.17 25897.57 27194.88 36782.30 35199.01 36393.60 30794.17 37298.37 317
cl2295.79 29295.39 29696.98 29896.77 36592.79 32594.40 35298.53 29094.59 29797.89 24898.17 27182.82 35099.24 35196.37 21399.03 28398.92 267
thisisatest051594.12 32093.16 32796.97 29998.60 28192.90 32393.77 36290.61 37294.10 31096.91 30395.87 35274.99 37399.80 18394.52 27699.12 27598.20 320
pmmvs395.03 30694.40 31296.93 30097.70 34292.53 32995.08 33397.71 32088.57 36197.71 25998.08 28079.39 36299.82 16096.19 22499.11 27698.43 313
xiu_mvs_v1_base_debu97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base_debi97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
IterMVS-SCA-FT97.85 18998.18 14796.87 30499.27 13891.16 35095.53 32099.25 16799.10 7299.41 5499.35 6793.10 27699.96 1198.65 6199.94 2899.49 114
mvs_anonymous97.83 19298.16 15196.87 30498.18 31791.89 33797.31 22698.90 24697.37 20098.83 16199.46 5096.28 19299.79 19698.90 4498.16 32498.95 261
DSMNet-mixed97.42 21997.60 19796.87 30499.15 17291.46 34198.54 10099.12 20692.87 32797.58 26999.63 2296.21 19399.90 5695.74 24599.54 19799.27 207
TR-MVS95.55 29795.12 30396.86 30797.54 34793.94 30296.49 27896.53 34494.36 30597.03 29896.61 33894.26 25899.16 35786.91 36396.31 35997.47 351
miper_enhance_ethall96.01 28695.74 28196.81 30896.41 37092.27 33493.69 36398.89 24891.14 34798.30 22097.35 32590.58 29799.58 29996.31 21799.03 28398.60 304
ppachtmachnet_test97.50 21097.74 18496.78 30998.70 26391.23 34994.55 34999.05 21996.36 25399.21 9598.79 18996.39 18699.78 20896.74 18199.82 7799.34 185
ADS-MVSNet295.43 30094.98 30596.76 31098.14 31991.74 33897.92 16697.76 31890.23 35096.51 32298.91 15685.61 32999.85 11892.88 32096.90 35198.69 299
IterMVS97.73 19698.11 15796.57 31199.24 14390.28 35195.52 32299.21 17698.86 9599.33 7199.33 7193.11 27599.94 2698.49 7199.94 2899.48 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM91.88 34190.34 34496.51 31298.06 32492.56 32892.44 36997.17 33286.35 36690.38 37396.01 34886.61 32099.21 35470.65 37895.43 36697.75 340
MVS93.19 33192.09 33596.50 31396.91 36194.03 29898.07 14898.06 31268.01 37594.56 35896.48 34195.96 20699.30 34683.84 36896.89 35396.17 364
baseline293.73 32592.83 33196.42 31497.70 34291.28 34796.84 26089.77 37593.96 31492.44 36995.93 35079.14 36499.77 21492.94 31896.76 35598.21 319
our_test_397.39 22197.73 18696.34 31598.70 26389.78 35394.61 34798.97 23796.50 24899.04 12098.85 17595.98 20499.84 13597.26 13699.67 15399.41 152
thres600view794.45 31293.83 31896.29 31699.06 19291.53 34097.99 16194.24 36098.34 12097.44 28295.01 36379.84 35899.67 26384.33 36798.23 31997.66 344
IB-MVS91.63 1992.24 33990.90 34396.27 31797.22 35891.24 34894.36 35393.33 36592.37 33292.24 37094.58 37066.20 38399.89 6693.16 31794.63 37097.66 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres40094.14 31993.44 32396.24 31898.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32997.66 344
ADS-MVSNet95.24 30394.93 30796.18 31998.14 31990.10 35297.92 16697.32 33090.23 35096.51 32298.91 15685.61 32999.74 23292.88 32096.90 35198.69 299
xiu_mvs_v2_base97.16 24097.49 20296.17 32098.54 28992.46 33095.45 32498.84 26197.25 21297.48 27996.49 34098.31 5199.90 5696.34 21698.68 30796.15 366
131495.74 29395.60 28796.17 32097.53 34892.75 32798.07 14898.31 30091.22 34594.25 35996.68 33795.53 22099.03 36091.64 33997.18 34896.74 359
PS-MVSNAJ97.08 24597.39 20996.16 32298.56 28792.46 33095.24 32998.85 26097.25 21297.49 27895.99 34998.07 6899.90 5696.37 21398.67 30896.12 367
cascas94.79 30994.33 31596.15 32396.02 37592.36 33392.34 37099.26 16685.34 36995.08 35494.96 36692.96 28098.53 37094.41 28498.59 31297.56 348
BH-w/o95.13 30494.89 30895.86 32498.20 31691.31 34595.65 31697.37 32693.64 31696.52 32195.70 35493.04 27999.02 36188.10 36095.82 36497.24 353
ECVR-MVScopyleft96.42 27796.61 25995.85 32599.38 11888.18 36099.22 4186.00 37999.08 7799.36 6699.57 3188.47 31499.82 16098.52 6999.95 1899.54 91
gg-mvs-nofinetune92.37 33791.20 34295.85 32595.80 37692.38 33299.31 2681.84 38299.75 591.83 37199.74 868.29 37799.02 36187.15 36297.12 34996.16 365
tfpn200view994.03 32193.44 32395.78 32798.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32996.29 362
thres100view90094.19 31793.67 32195.75 32899.06 19291.35 34498.03 15594.24 36098.33 12197.40 28494.98 36579.84 35899.62 28383.05 36998.08 32996.29 362
SCA96.41 27896.66 25695.67 32998.24 31388.35 35895.85 30996.88 34096.11 26197.67 26298.67 20893.10 27699.85 11894.16 28799.22 25598.81 282
tpm94.67 31094.34 31495.66 33097.68 34488.42 35797.88 17094.90 35494.46 30096.03 33698.56 23078.66 36599.79 19695.88 23695.01 36898.78 289
CHOSEN 280x42095.51 29995.47 29095.65 33198.25 31288.27 35993.25 36598.88 24993.53 31894.65 35697.15 33086.17 32499.93 3197.41 12999.93 3398.73 295
PVSNet93.40 1795.67 29495.70 28395.57 33298.83 24088.57 35692.50 36897.72 31992.69 32996.49 32596.44 34393.72 26999.43 33193.61 30699.28 24798.71 296
test111196.49 27496.82 24595.52 33399.42 11387.08 36499.22 4187.14 37799.11 6599.46 4699.58 3088.69 30999.86 10398.80 5099.95 1899.62 51
KD-MVS_2432*160092.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
miper_refine_blended92.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
thres20093.72 32693.14 32895.46 33698.66 27791.29 34696.61 27294.63 35697.39 19896.83 31093.71 37379.88 35799.56 30382.40 37298.13 32695.54 371
EPNet_dtu94.93 30894.78 30995.38 33793.58 37987.68 36296.78 26295.69 35397.35 20289.14 37598.09 27988.15 31599.49 32194.95 26699.30 24498.98 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive95.58 29695.67 28595.30 33897.34 35587.32 36397.65 19596.65 34295.30 28597.07 29598.69 20484.77 33599.75 22894.97 26598.64 30998.83 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet97.66 20198.50 10095.13 33999.63 5585.84 36798.35 12398.21 30398.23 13199.54 3299.46 5095.02 23599.68 26098.24 8499.87 6299.87 5
EPMVS93.72 32693.27 32595.09 34096.04 37487.76 36198.13 14085.01 38094.69 29696.92 30198.64 21678.47 36999.31 34495.04 26396.46 35798.20 320
GG-mvs-BLEND94.76 34194.54 37892.13 33699.31 2680.47 38388.73 37691.01 37667.59 38098.16 37382.30 37394.53 37193.98 373
tpm293.09 33292.58 33394.62 34297.56 34686.53 36597.66 19395.79 35286.15 36794.07 36398.23 26775.95 37099.53 31190.91 35096.86 35497.81 336
CostFormer93.97 32293.78 31994.51 34397.53 34885.83 36897.98 16295.96 35089.29 35894.99 35598.63 22078.63 36699.62 28394.54 27596.50 35698.09 325
tpmvs95.02 30795.25 29994.33 34496.39 37185.87 36698.08 14796.83 34195.46 28195.51 34998.69 20485.91 32799.53 31194.16 28796.23 36097.58 347
MVEpermissive83.40 2292.50 33591.92 33894.25 34598.83 24091.64 33992.71 36783.52 38195.92 26986.46 37895.46 35995.20 23195.40 37780.51 37498.64 30995.73 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test-LLR93.90 32393.85 31794.04 34696.53 36784.62 37294.05 35892.39 36896.17 25894.12 36195.07 36182.30 35199.67 26395.87 23998.18 32297.82 334
test-mter92.33 33891.76 34194.04 34696.53 36784.62 37294.05 35892.39 36894.00 31394.12 36195.07 36165.63 38499.67 26395.87 23998.18 32297.82 334
tpmrst95.07 30595.46 29193.91 34897.11 35984.36 37497.62 19796.96 33694.98 28996.35 32898.80 18785.46 33199.59 29495.60 25396.23 36097.79 339
test250692.39 33691.89 33993.89 34999.38 11882.28 37899.32 2266.03 38599.08 7798.77 17199.57 3166.26 38299.84 13598.71 5799.95 1899.54 91
tpm cat193.29 33093.13 32993.75 35097.39 35484.74 37197.39 21997.65 32283.39 37294.16 36098.41 24882.86 34999.39 33591.56 34195.35 36797.14 354
PVSNet_089.98 2191.15 34290.30 34593.70 35197.72 33984.34 37590.24 37197.42 32590.20 35393.79 36593.09 37490.90 29698.89 36786.57 36472.76 37897.87 333
E-PMN94.17 31894.37 31393.58 35296.86 36285.71 36990.11 37297.07 33498.17 13897.82 25497.19 32784.62 33798.94 36489.77 35597.68 33796.09 368
TESTMET0.1,192.19 34091.77 34093.46 35396.48 36982.80 37794.05 35891.52 37194.45 30294.00 36494.88 36766.65 38199.56 30395.78 24498.11 32798.02 327
DeepMVS_CXcopyleft93.44 35498.24 31394.21 29394.34 35764.28 37691.34 37294.87 36989.45 30692.77 37977.54 37793.14 37393.35 374
CVMVSNet96.25 28297.21 22293.38 35599.10 18180.56 38197.20 23598.19 30696.94 23299.00 12699.02 12489.50 30599.80 18396.36 21599.59 17999.78 15
EMVS93.83 32494.02 31693.23 35696.83 36484.96 37089.77 37396.32 34697.92 15397.43 28396.36 34686.17 32498.93 36587.68 36197.73 33695.81 369
dp93.47 32893.59 32293.13 35796.64 36681.62 38097.66 19396.42 34592.80 32896.11 33198.64 21678.55 36899.59 29493.31 31592.18 37598.16 322
wuyk23d96.06 28597.62 19591.38 35898.65 27898.57 10298.85 7996.95 33796.86 23699.90 499.16 9799.18 1198.40 37189.23 35799.77 10277.18 376
MVS-HIRNet94.32 31495.62 28690.42 35998.46 29775.36 38296.29 28889.13 37695.25 28695.38 35099.75 792.88 28199.19 35594.07 29499.39 22896.72 360
test_method79.78 34479.50 34780.62 36080.21 38345.76 38570.82 37498.41 29731.08 37880.89 37997.71 30184.85 33497.37 37491.51 34280.03 37798.75 293
tmp_tt78.77 34578.73 34878.90 36158.45 38474.76 38494.20 35578.26 38439.16 37786.71 37792.82 37580.50 35675.19 38086.16 36592.29 37486.74 375
test12317.04 34820.11 3517.82 36210.25 3864.91 38694.80 3394.47 3874.93 38010.00 38224.28 3799.69 3853.64 38110.14 37912.43 38014.92 377
testmvs17.12 34720.53 3506.87 36312.05 3854.20 38793.62 3646.73 3864.62 38110.41 38124.33 3788.28 3863.56 3829.69 38015.07 37912.86 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.66 34632.88 3490.00 3640.00 3870.00 3880.00 37599.10 2100.00 3820.00 38397.58 30999.21 100.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.17 34910.90 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38298.07 680.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.12 35010.83 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38397.48 3160.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.73 3099.67 299.43 1299.54 5499.43 3599.26 86
PC_three_145293.27 32199.40 5798.54 23198.22 5797.00 37595.17 26199.45 22099.49 114
test_one_060199.39 11799.20 3399.31 13898.49 11498.66 18299.02 12497.64 100
eth-test20.00 387
eth-test0.00 387
ZD-MVS99.01 20398.84 7999.07 21494.10 31098.05 24198.12 27596.36 19099.86 10392.70 32799.19 262
RE-MVS-def98.58 9199.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.75 9196.56 19899.39 22899.45 138
IU-MVS99.49 9299.15 4898.87 25192.97 32499.41 5496.76 17999.62 16799.66 42
test_241102_TWO99.30 14898.03 14699.26 8699.02 12497.51 11499.88 7796.91 16299.60 17599.66 42
test_241102_ONE99.49 9299.17 3999.31 13897.98 14899.66 2098.90 15998.36 4699.48 324
9.1497.78 18199.07 18897.53 20899.32 13295.53 27998.54 20398.70 20397.58 10599.76 22194.32 28699.46 218
save fliter99.11 17797.97 15796.53 27499.02 22898.24 129
test_0728_THIRD98.17 13899.08 11199.02 12497.89 8199.88 7797.07 15099.71 13199.70 35
test072699.50 8599.21 2798.17 13999.35 11997.97 14999.26 8699.06 11197.61 103
GSMVS98.81 282
test_part299.36 12499.10 6199.05 118
sam_mvs184.74 33698.81 282
sam_mvs84.29 342
MTGPAbinary99.20 178
test_post197.59 20220.48 38183.07 34899.66 27194.16 287
test_post21.25 38083.86 34499.70 247
patchmatchnet-post98.77 19284.37 33999.85 118
MTMP97.93 16591.91 370
gm-plane-assit94.83 37781.97 37988.07 36394.99 36499.60 29091.76 336
test9_res93.28 31699.15 26899.38 170
TEST998.71 25998.08 14495.96 30199.03 22491.40 34395.85 33797.53 31196.52 17899.76 221
test_898.67 27298.01 15195.91 30699.02 22891.64 33895.79 33997.50 31496.47 18199.76 221
agg_prior292.50 33099.16 26599.37 173
agg_prior98.68 27097.99 15299.01 23195.59 34099.77 214
test_prior497.97 15795.86 307
test_prior295.74 31396.48 24996.11 33197.63 30795.92 20894.16 28799.20 258
旧先验295.76 31188.56 36297.52 27599.66 27194.48 277
新几何295.93 304
旧先验198.82 24397.45 19898.76 27398.34 25895.50 22399.01 28899.23 215
无先验95.74 31398.74 27889.38 35799.73 23692.38 33199.22 219
原ACMM295.53 320
test22298.92 22096.93 22595.54 31998.78 27285.72 36896.86 30998.11 27694.43 25299.10 27799.23 215
testdata299.79 19692.80 324
segment_acmp97.02 149
testdata195.44 32596.32 255
plane_prior799.19 15797.87 168
plane_prior698.99 20797.70 18694.90 237
plane_prior599.27 16199.70 24794.42 28199.51 20799.45 138
plane_prior497.98 285
plane_prior397.78 17997.41 19697.79 255
plane_prior297.77 18298.20 135
plane_prior199.05 195
plane_prior97.65 18897.07 24496.72 24199.36 233
n20.00 388
nn0.00 388
door-mid99.57 38
test1198.87 251
door99.41 98
HQP5-MVS96.79 228
HQP-NCC98.67 27296.29 28896.05 26395.55 344
ACMP_Plane98.67 27296.29 28896.05 26395.55 344
BP-MVS92.82 322
HQP4-MVS95.56 34399.54 30999.32 193
HQP3-MVS99.04 22299.26 251
HQP2-MVS93.84 264
NP-MVS98.84 23897.39 20196.84 334
MDTV_nov1_ep13_2view74.92 38397.69 19090.06 35597.75 25885.78 32893.52 30998.69 299
MDTV_nov1_ep1395.22 30097.06 36083.20 37697.74 18696.16 34794.37 30496.99 29998.83 18183.95 34399.53 31193.90 29897.95 333
ACMMP++_ref99.77 102
ACMMP++99.68 147
Test By Simon96.52 178