PMVS |  | 80.48 6 | 90.08 41 | 90.66 47 | 88.34 88 | 96.71 3 | 92.97 1 | 90.31 56 | 89.57 183 | 88.51 19 | 90.11 99 | 95.12 47 | 90.98 7 | 88.92 255 | 77.55 144 | 97.07 91 | 83.13 322 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
Effi-MVS+-dtu | | | 85.82 114 | 83.38 162 | 93.14 3 | 87.13 230 | 91.15 2 | 87.70 106 | 88.42 199 | 74.57 158 | 83.56 229 | 85.65 276 | 78.49 143 | 94.21 97 | 72.04 202 | 92.88 220 | 94.05 102 |
|
TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 15 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 49 | 96.29 16 | 88.16 35 | 94.17 101 | 86.07 45 | 98.48 18 | 97.22 20 |
|
mvs-test1 | | | 84.55 137 | 82.12 181 | 91.84 20 | 87.13 230 | 89.54 4 | 85.05 146 | 88.42 199 | 74.57 158 | 80.60 270 | 82.98 312 | 78.49 143 | 93.98 109 | 72.04 202 | 89.77 274 | 92.00 189 |
|
RPSCF | | | 88.00 80 | 86.93 99 | 91.22 31 | 90.08 174 | 89.30 5 | 89.68 69 | 91.11 140 | 79.26 100 | 89.68 113 | 94.81 57 | 82.44 94 | 87.74 269 | 76.54 156 | 88.74 287 | 96.61 32 |
|
test1172 | | | 92.40 7 | 92.41 7 | 92.37 6 | 94.68 45 | 89.04 6 | 91.98 32 | 93.62 57 | 90.14 11 | 93.63 36 | 94.16 87 | 88.83 24 | 95.51 46 | 87.11 30 | 97.54 76 | 92.54 165 |
|
abl_6 | | | 93.02 4 | 93.16 4 | 92.60 4 | 94.73 44 | 88.99 7 | 93.26 12 | 94.19 30 | 89.11 12 | 94.43 16 | 95.27 40 | 91.86 3 | 95.09 65 | 87.54 18 | 98.02 41 | 93.71 119 |
|
SR-MVS-dyc-post | | | 92.41 6 | 92.41 7 | 92.39 5 | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 69 | 88.83 24 | 95.51 46 | 87.16 28 | 97.60 70 | 92.73 155 |
|
RE-MVS-def | | | | 92.61 5 | | 94.13 55 | 88.95 8 | 92.87 14 | 94.16 31 | 88.75 16 | 93.79 29 | 94.43 69 | 90.64 11 | | 87.16 28 | 97.60 70 | 92.73 155 |
|
mPP-MVS | | | 91.69 13 | 91.47 24 | 92.37 6 | 96.04 13 | 88.48 10 | 92.72 18 | 92.60 101 | 83.09 54 | 91.54 75 | 94.25 81 | 87.67 43 | 95.51 46 | 87.21 27 | 98.11 37 | 93.12 141 |
|
SR-MVS | | | 92.23 8 | 92.34 9 | 91.91 17 | 94.89 39 | 87.85 11 | 92.51 24 | 93.87 49 | 88.20 21 | 93.24 43 | 94.02 93 | 90.15 17 | 95.67 34 | 86.82 32 | 97.34 83 | 92.19 184 |
|
CP-MVS | | | 91.67 14 | 91.58 21 | 91.96 14 | 95.29 32 | 87.62 12 | 93.38 9 | 93.36 65 | 83.16 53 | 91.06 85 | 94.00 94 | 88.26 32 | 95.71 32 | 87.28 26 | 98.39 21 | 92.55 164 |
|
FOURS1 | | | | | | 96.08 12 | 87.41 13 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
EGC-MVSNET | | | 74.79 273 | 69.99 307 | 89.19 68 | 94.89 39 | 87.00 14 | 91.89 36 | 86.28 234 | 1.09 378 | 2.23 380 | 95.98 24 | 81.87 112 | 89.48 245 | 79.76 115 | 95.96 133 | 91.10 210 |
|
CPTT-MVS | | | 89.39 59 | 88.98 68 | 90.63 41 | 95.09 34 | 86.95 15 | 92.09 30 | 92.30 107 | 79.74 92 | 87.50 153 | 92.38 142 | 81.42 117 | 93.28 139 | 83.07 77 | 97.24 86 | 91.67 200 |
|
MP-MVS |  | | 91.14 27 | 90.91 43 | 91.83 21 | 96.18 11 | 86.88 16 | 92.20 28 | 93.03 87 | 82.59 60 | 88.52 137 | 94.37 76 | 86.74 53 | 95.41 53 | 86.32 39 | 98.21 31 | 93.19 139 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
anonymousdsp | | | 89.73 53 | 88.88 70 | 92.27 9 | 89.82 180 | 86.67 17 | 90.51 52 | 90.20 170 | 69.87 223 | 95.06 11 | 96.14 21 | 84.28 75 | 93.07 149 | 87.68 13 | 96.34 118 | 97.09 22 |
|
PM-MVS | | | 80.20 216 | 79.00 222 | 83.78 173 | 88.17 210 | 86.66 18 | 81.31 235 | 66.81 360 | 69.64 224 | 88.33 142 | 90.19 204 | 64.58 252 | 83.63 315 | 71.99 204 | 90.03 272 | 81.06 347 |
|
zzz-MVS | | | 91.27 22 | 91.26 33 | 91.29 29 | 96.59 4 | 86.29 19 | 88.94 86 | 91.81 122 | 84.07 40 | 92.00 68 | 94.40 73 | 86.63 54 | 95.28 58 | 88.59 5 | 98.31 24 | 92.30 176 |
|
MTAPA | | | 91.52 16 | 91.60 20 | 91.29 29 | 96.59 4 | 86.29 19 | 92.02 31 | 91.81 122 | 84.07 40 | 92.00 68 | 94.40 73 | 86.63 54 | 95.28 58 | 88.59 5 | 98.31 24 | 92.30 176 |
|
XVS | | | 91.54 15 | 91.36 26 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 103 | 94.03 92 | 86.57 56 | 95.80 25 | 87.35 23 | 97.62 68 | 94.20 94 |
|
X-MVStestdata | | | 85.04 127 | 82.70 172 | 92.08 10 | 95.64 24 | 86.25 21 | 92.64 19 | 93.33 67 | 85.07 35 | 89.99 103 | 16.05 377 | 86.57 56 | 95.80 25 | 87.35 23 | 97.62 68 | 94.20 94 |
|
COLMAP_ROB |  | 83.01 3 | 91.97 11 | 91.95 12 | 92.04 12 | 93.68 68 | 86.15 23 | 93.37 10 | 95.10 14 | 90.28 9 | 92.11 65 | 95.03 48 | 89.75 21 | 94.93 70 | 79.95 112 | 98.27 27 | 95.04 67 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
MSP-MVS | | | 89.08 65 | 88.16 78 | 91.83 21 | 95.76 18 | 86.14 24 | 92.75 17 | 93.90 46 | 78.43 112 | 89.16 126 | 92.25 149 | 72.03 217 | 96.36 2 | 88.21 8 | 90.93 260 | 92.98 146 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
XVG-OURS | | | 89.18 62 | 88.83 71 | 90.23 48 | 94.28 48 | 86.11 25 | 85.91 133 | 93.60 60 | 80.16 88 | 89.13 127 | 93.44 113 | 83.82 79 | 90.98 204 | 83.86 70 | 95.30 160 | 93.60 126 |
|
XVG-OURS-SEG-HR | | | 89.59 55 | 89.37 61 | 90.28 47 | 94.47 46 | 85.95 26 | 86.84 119 | 93.91 45 | 80.07 90 | 86.75 167 | 93.26 115 | 93.64 2 | 90.93 206 | 84.60 64 | 90.75 265 | 93.97 105 |
|
ACMMP |  | | 91.91 12 | 91.87 17 | 92.03 13 | 95.53 27 | 85.91 27 | 93.35 11 | 94.16 31 | 82.52 61 | 92.39 61 | 94.14 88 | 89.15 23 | 95.62 36 | 87.35 23 | 98.24 28 | 94.56 80 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
region2R | | | 91.44 20 | 91.30 32 | 91.87 19 | 95.75 19 | 85.90 28 | 92.63 21 | 93.30 72 | 81.91 68 | 90.88 90 | 94.21 82 | 87.75 41 | 95.87 19 | 87.60 16 | 97.71 64 | 93.83 111 |
|
ACMMPR | | | 91.49 17 | 91.35 28 | 91.92 16 | 95.74 20 | 85.88 29 | 92.58 22 | 93.25 76 | 81.99 66 | 91.40 78 | 94.17 86 | 87.51 44 | 95.87 19 | 87.74 11 | 97.76 60 | 93.99 103 |
|
HPM-MVS++ |  | | 88.93 68 | 88.45 76 | 90.38 45 | 94.92 37 | 85.85 30 | 89.70 67 | 91.27 136 | 78.20 114 | 86.69 170 | 92.28 148 | 80.36 130 | 95.06 67 | 86.17 44 | 96.49 111 | 90.22 232 |
|
PGM-MVS | | | 91.20 25 | 90.95 42 | 91.93 15 | 95.67 23 | 85.85 30 | 90.00 60 | 93.90 46 | 80.32 86 | 91.74 74 | 94.41 72 | 88.17 34 | 95.98 11 | 86.37 38 | 97.99 43 | 93.96 106 |
|
HPM-MVS_fast | | | 92.50 5 | 92.54 6 | 92.37 6 | 95.93 16 | 85.81 32 | 92.99 13 | 94.23 26 | 85.21 34 | 92.51 58 | 95.13 46 | 90.65 10 | 95.34 55 | 88.06 9 | 98.15 36 | 95.95 44 |
|
LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 23 | 93.73 66 | 85.72 33 | 96.79 1 | 95.51 8 | 88.86 14 | 95.63 8 | 96.99 8 | 84.81 70 | 93.16 144 | 91.10 1 | 97.53 77 | 96.58 33 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 34 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 56 | 99.27 1 | 99.54 1 |
|
PatchMatch-RL | | | 74.48 275 | 73.22 280 | 78.27 268 | 87.70 218 | 85.26 35 | 75.92 307 | 70.09 348 | 64.34 275 | 76.09 309 | 81.25 331 | 65.87 249 | 78.07 335 | 53.86 326 | 83.82 331 | 71.48 361 |
|
APD-MVS_3200maxsize | | | 92.05 10 | 92.24 10 | 91.48 24 | 93.02 83 | 85.17 36 | 92.47 26 | 95.05 15 | 87.65 24 | 93.21 44 | 94.39 75 | 90.09 18 | 95.08 66 | 86.67 35 | 97.60 70 | 94.18 96 |
|
FPMVS | | | 72.29 293 | 72.00 292 | 73.14 310 | 88.63 199 | 85.00 37 | 74.65 319 | 67.39 354 | 71.94 200 | 77.80 298 | 87.66 246 | 50.48 324 | 75.83 342 | 49.95 342 | 79.51 349 | 58.58 372 |
|
ITE_SJBPF | | | | | 90.11 50 | 90.72 162 | 84.97 38 | | 90.30 164 | 81.56 72 | 90.02 102 | 91.20 174 | 82.40 96 | 90.81 212 | 73.58 186 | 94.66 181 | 94.56 80 |
|
DeepPCF-MVS | | 81.24 5 | 87.28 90 | 86.21 110 | 90.49 43 | 91.48 141 | 84.90 39 | 83.41 186 | 92.38 106 | 70.25 218 | 89.35 124 | 90.68 192 | 82.85 90 | 94.57 83 | 79.55 118 | 95.95 134 | 92.00 189 |
|
N_pmnet | | | 70.20 304 | 68.80 313 | 74.38 305 | 80.91 313 | 84.81 40 | 59.12 364 | 76.45 310 | 55.06 328 | 75.31 319 | 82.36 322 | 55.74 307 | 54.82 373 | 47.02 354 | 87.24 303 | 83.52 313 |
|
mvs_tets | | | 89.78 52 | 89.27 63 | 91.30 28 | 93.51 71 | 84.79 41 | 89.89 65 | 90.63 153 | 70.00 221 | 94.55 15 | 96.67 11 | 87.94 39 | 93.59 126 | 84.27 66 | 95.97 132 | 95.52 52 |
|
jajsoiax | | | 89.41 58 | 88.81 72 | 91.19 32 | 93.38 75 | 84.72 42 | 89.70 67 | 90.29 167 | 69.27 226 | 94.39 17 | 96.38 15 | 86.02 64 | 93.52 130 | 83.96 68 | 95.92 137 | 95.34 56 |
|
HPM-MVS |  | | 92.13 9 | 92.20 11 | 91.91 17 | 95.58 26 | 84.67 43 | 93.51 8 | 94.85 16 | 82.88 57 | 91.77 73 | 93.94 102 | 90.55 13 | 95.73 31 | 88.50 7 | 98.23 29 | 95.33 57 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
HFP-MVS | | | 91.30 21 | 91.39 25 | 91.02 33 | 95.43 29 | 84.66 44 | 92.58 22 | 93.29 73 | 81.99 66 | 91.47 76 | 93.96 98 | 88.35 30 | 95.56 40 | 87.74 11 | 97.74 62 | 92.85 150 |
|
#test# | | | 90.49 36 | 90.31 51 | 91.02 33 | 95.43 29 | 84.66 44 | 90.65 48 | 93.29 73 | 77.00 127 | 91.47 76 | 93.96 98 | 88.35 30 | 95.56 40 | 84.88 60 | 97.74 62 | 92.85 150 |
|
XVG-ACMP-BASELINE | | | 89.98 47 | 89.84 54 | 90.41 44 | 94.91 38 | 84.50 46 | 89.49 77 | 93.98 42 | 79.68 93 | 92.09 66 | 93.89 103 | 83.80 80 | 93.10 148 | 82.67 82 | 98.04 38 | 93.64 124 |
|
LS3D | | | 90.60 33 | 90.34 50 | 91.38 27 | 89.03 192 | 84.23 47 | 93.58 6 | 94.68 19 | 90.65 7 | 90.33 97 | 93.95 101 | 84.50 72 | 95.37 54 | 80.87 102 | 95.50 152 | 94.53 83 |
|
CNLPA | | | 83.55 164 | 83.10 168 | 84.90 146 | 89.34 186 | 83.87 48 | 84.54 155 | 88.77 194 | 79.09 102 | 83.54 230 | 88.66 232 | 74.87 179 | 81.73 323 | 66.84 245 | 92.29 232 | 89.11 249 |
|
ACMM | | 79.39 9 | 90.65 31 | 90.99 40 | 89.63 59 | 95.03 35 | 83.53 49 | 89.62 72 | 93.35 66 | 79.20 101 | 93.83 28 | 93.60 112 | 90.81 8 | 92.96 151 | 85.02 58 | 98.45 19 | 92.41 170 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
AllTest | | | 87.97 81 | 87.40 90 | 89.68 57 | 91.59 131 | 83.40 50 | 89.50 76 | 95.44 9 | 79.47 95 | 88.00 146 | 93.03 119 | 82.66 92 | 91.47 188 | 70.81 208 | 96.14 126 | 94.16 97 |
|
TestCases | | | | | 89.68 57 | 91.59 131 | 83.40 50 | | 95.44 9 | 79.47 95 | 88.00 146 | 93.03 119 | 82.66 92 | 91.47 188 | 70.81 208 | 96.14 126 | 94.16 97 |
|
F-COLMAP | | | 84.97 130 | 83.42 161 | 89.63 59 | 92.39 101 | 83.40 50 | 88.83 89 | 91.92 117 | 73.19 179 | 80.18 279 | 89.15 224 | 77.04 160 | 93.28 139 | 65.82 254 | 92.28 233 | 92.21 183 |
|
MVS_111021_LR | | | 84.28 145 | 83.76 159 | 85.83 132 | 89.23 189 | 83.07 53 | 80.99 241 | 83.56 266 | 72.71 185 | 86.07 183 | 89.07 226 | 81.75 114 | 86.19 292 | 77.11 150 | 93.36 206 | 88.24 259 |
|
ZNCC-MVS | | | 91.26 23 | 91.34 29 | 91.01 35 | 95.73 21 | 83.05 54 | 92.18 29 | 94.22 27 | 80.14 89 | 91.29 81 | 93.97 95 | 87.93 40 | 95.87 19 | 88.65 4 | 97.96 48 | 94.12 100 |
|
test_djsdf | | | 89.62 54 | 89.01 66 | 91.45 25 | 92.36 102 | 82.98 55 | 91.98 32 | 90.08 173 | 71.54 201 | 94.28 21 | 96.54 13 | 81.57 115 | 94.27 91 | 86.26 40 | 96.49 111 | 97.09 22 |
|
UA-Net | | | 91.49 17 | 91.53 22 | 91.39 26 | 94.98 36 | 82.95 56 | 93.52 7 | 92.79 96 | 88.22 20 | 88.53 136 | 97.64 2 | 83.45 84 | 94.55 85 | 86.02 48 | 98.60 13 | 96.67 30 |
|
GST-MVS | | | 90.96 28 | 91.01 39 | 90.82 38 | 95.45 28 | 82.73 57 | 91.75 37 | 93.74 52 | 80.98 79 | 91.38 79 | 93.80 105 | 87.20 48 | 95.80 25 | 87.10 31 | 97.69 65 | 93.93 107 |
|
h-mvs33 | | | 84.25 146 | 82.76 171 | 88.72 77 | 91.82 128 | 82.60 58 | 84.00 166 | 84.98 258 | 71.27 203 | 86.70 168 | 90.55 196 | 63.04 264 | 93.92 111 | 78.26 133 | 94.20 192 | 89.63 239 |
|
hse-mvs2 | | | 83.47 166 | 81.81 186 | 88.47 83 | 91.03 154 | 82.27 59 | 82.61 207 | 83.69 264 | 71.27 203 | 86.70 168 | 86.05 272 | 63.04 264 | 92.41 164 | 78.26 133 | 93.62 205 | 90.71 220 |
|
AUN-MVS | | | 81.18 195 | 78.78 225 | 88.39 86 | 90.93 156 | 82.14 60 | 82.51 213 | 83.67 265 | 64.69 274 | 80.29 276 | 85.91 275 | 51.07 321 | 92.38 165 | 76.29 159 | 93.63 204 | 90.65 224 |
|
LPG-MVS_test | | | 91.47 19 | 91.68 18 | 90.82 38 | 94.75 42 | 81.69 61 | 90.00 60 | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 54 | 91.18 5 | 95.52 44 | 85.36 53 | 98.73 7 | 95.23 62 |
|
LGP-MVS_train | | | | | 90.82 38 | 94.75 42 | 81.69 61 | | 94.27 23 | 82.35 63 | 93.67 34 | 94.82 54 | 91.18 5 | 95.52 44 | 85.36 53 | 98.73 7 | 95.23 62 |
|
OMC-MVS | | | 88.19 76 | 87.52 87 | 90.19 49 | 91.94 120 | 81.68 63 | 87.49 109 | 93.17 79 | 76.02 137 | 88.64 134 | 91.22 172 | 84.24 76 | 93.37 137 | 77.97 140 | 97.03 92 | 95.52 52 |
|
3Dnovator+ | | 83.92 2 | 89.97 49 | 89.66 56 | 90.92 36 | 91.27 146 | 81.66 64 | 91.25 41 | 94.13 36 | 88.89 13 | 88.83 131 | 94.26 80 | 77.55 153 | 95.86 22 | 84.88 60 | 95.87 139 | 95.24 61 |
|
TSAR-MVS + GP. | | | 83.95 156 | 82.69 173 | 87.72 95 | 89.27 188 | 81.45 65 | 83.72 176 | 81.58 282 | 74.73 156 | 85.66 190 | 86.06 271 | 72.56 211 | 92.69 159 | 75.44 168 | 95.21 161 | 89.01 255 |
|
APD-MVS |  | | 89.54 56 | 89.63 57 | 89.26 67 | 92.57 95 | 81.34 66 | 90.19 58 | 93.08 83 | 80.87 81 | 91.13 83 | 93.19 116 | 86.22 61 | 95.97 12 | 82.23 88 | 97.18 88 | 90.45 229 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
ACMP | | 79.16 10 | 90.54 34 | 90.60 48 | 90.35 46 | 94.36 47 | 80.98 67 | 89.16 82 | 94.05 40 | 79.03 104 | 92.87 48 | 93.74 109 | 90.60 12 | 95.21 62 | 82.87 80 | 98.76 4 | 94.87 70 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
SteuartSystems-ACMMP | | | 91.16 26 | 91.36 26 | 90.55 42 | 93.91 61 | 80.97 68 | 91.49 39 | 93.48 63 | 82.82 58 | 92.60 57 | 93.97 95 | 88.19 33 | 96.29 4 | 87.61 15 | 98.20 33 | 94.39 89 |
Skip Steuart: Steuart Systems R&D Blog. |
testtj | | | 89.51 57 | 89.48 60 | 89.59 61 | 92.26 107 | 80.80 69 | 90.14 59 | 93.54 61 | 83.37 50 | 90.57 94 | 92.55 138 | 84.99 68 | 96.15 5 | 81.26 96 | 96.61 106 | 91.83 195 |
|
ZD-MVS | | | | | | 92.22 110 | 80.48 70 | | 91.85 119 | 71.22 206 | 90.38 95 | 92.98 121 | 86.06 63 | 96.11 6 | 81.99 90 | 96.75 102 | |
|
OurMVSNet-221017-0 | | | 90.01 46 | 89.74 55 | 90.83 37 | 93.16 81 | 80.37 71 | 91.91 35 | 93.11 80 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 205 | 94.85 73 | 85.07 56 | 97.78 58 | 97.26 17 |
|
PLC |  | 73.85 16 | 82.09 184 | 80.31 205 | 87.45 99 | 90.86 159 | 80.29 72 | 85.88 135 | 90.65 152 | 68.17 239 | 76.32 306 | 86.33 266 | 73.12 204 | 92.61 161 | 61.40 285 | 90.02 273 | 89.44 242 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
LF4IMVS | | | 82.75 174 | 81.93 185 | 85.19 141 | 82.08 300 | 80.15 73 | 85.53 140 | 88.76 195 | 68.01 241 | 85.58 192 | 87.75 244 | 71.80 218 | 86.85 281 | 74.02 179 | 93.87 198 | 88.58 258 |
|
MP-MVS-pluss | | | 90.81 29 | 91.08 36 | 89.99 51 | 95.97 14 | 79.88 74 | 88.13 100 | 94.51 21 | 75.79 143 | 92.94 46 | 94.96 49 | 88.36 29 | 95.01 68 | 90.70 2 | 98.40 20 | 95.09 66 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
OPM-MVS | | | 89.80 51 | 89.97 52 | 89.27 66 | 94.76 41 | 79.86 75 | 86.76 123 | 92.78 97 | 78.78 107 | 92.51 58 | 93.64 111 | 88.13 36 | 93.84 115 | 84.83 62 | 97.55 73 | 94.10 101 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
TAPA-MVS | | 77.73 12 | 85.71 116 | 84.83 135 | 88.37 87 | 88.78 198 | 79.72 76 | 87.15 114 | 93.50 62 | 69.17 227 | 85.80 189 | 89.56 215 | 80.76 124 | 92.13 172 | 73.21 195 | 95.51 151 | 93.25 137 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
TEST9 | | | | | | 92.34 103 | 79.70 77 | 83.94 167 | 90.32 161 | 65.41 270 | 84.49 209 | 90.97 181 | 82.03 106 | 93.63 122 | | | |
|
train_agg | | | 85.98 112 | 85.28 127 | 88.07 92 | 92.34 103 | 79.70 77 | 83.94 167 | 90.32 161 | 65.79 260 | 84.49 209 | 90.97 181 | 81.93 108 | 93.63 122 | 81.21 97 | 96.54 109 | 90.88 216 |
|
ACMMP_NAP | | | 90.65 31 | 91.07 38 | 89.42 64 | 95.93 16 | 79.54 79 | 89.95 63 | 93.68 56 | 77.65 119 | 91.97 70 | 94.89 51 | 88.38 28 | 95.45 51 | 89.27 3 | 97.87 54 | 93.27 135 |
|
SMA-MVS |  | | 90.31 38 | 90.48 49 | 89.83 53 | 95.31 31 | 79.52 80 | 90.98 46 | 93.24 77 | 75.37 150 | 92.84 50 | 95.28 39 | 85.58 66 | 96.09 7 | 87.92 10 | 97.76 60 | 93.88 109 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
Regformer-2 | | | 86.74 98 | 86.08 112 | 88.73 76 | 84.18 281 | 79.20 81 | 83.52 181 | 89.33 187 | 83.33 51 | 89.92 107 | 85.07 291 | 83.23 87 | 93.16 144 | 83.39 73 | 92.72 225 | 93.83 111 |
|
CS-MVS | | | 88.14 77 | 87.67 85 | 89.54 63 | 89.56 182 | 79.18 82 | 90.47 53 | 94.77 18 | 79.37 99 | 84.32 213 | 89.33 220 | 83.87 77 | 94.53 86 | 82.45 84 | 94.89 174 | 94.90 68 |
|
DeepC-MVS | | 82.31 4 | 89.15 63 | 89.08 65 | 89.37 65 | 93.64 69 | 79.07 83 | 88.54 96 | 94.20 28 | 73.53 169 | 89.71 112 | 94.82 54 | 85.09 67 | 95.77 30 | 84.17 67 | 98.03 40 | 93.26 136 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_prior4 | | | | | | | 78.97 84 | 84.59 152 | | | | | | | | | |
|
test_8 | | | | | | 92.09 114 | 78.87 85 | 83.82 172 | 90.31 163 | 65.79 260 | 84.36 212 | 90.96 183 | 81.93 108 | 93.44 134 | | | |
|
NCCC | | | 87.36 89 | 86.87 100 | 88.83 72 | 92.32 105 | 78.84 86 | 86.58 127 | 91.09 141 | 78.77 108 | 84.85 204 | 90.89 185 | 80.85 123 | 95.29 56 | 81.14 98 | 95.32 157 | 92.34 174 |
|
1121 | | | 80.86 199 | 79.81 216 | 84.02 166 | 93.93 60 | 78.70 87 | 81.64 230 | 80.18 290 | 55.43 327 | 83.67 226 | 91.15 175 | 71.29 221 | 91.41 193 | 67.95 240 | 93.06 215 | 81.96 333 |
|
DPE-MVS |  | | 90.53 35 | 91.08 36 | 88.88 71 | 93.38 75 | 78.65 88 | 89.15 83 | 94.05 40 | 84.68 38 | 93.90 25 | 94.11 90 | 88.13 36 | 96.30 3 | 84.51 65 | 97.81 57 | 91.70 199 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
新几何1 | | | | | 82.95 191 | 93.96 59 | 78.56 89 | | 80.24 289 | 55.45 326 | 83.93 224 | 91.08 177 | 71.19 222 | 88.33 264 | 65.84 253 | 93.07 214 | 81.95 334 |
|
ETH3D cwj APD-0.16 | | | 87.83 85 | 87.62 86 | 88.47 83 | 91.21 147 | 78.20 90 | 87.26 111 | 94.54 20 | 72.05 197 | 88.89 128 | 92.31 146 | 83.86 78 | 94.24 94 | 81.59 95 | 96.87 96 | 92.97 149 |
|
MAR-MVS | | | 80.24 215 | 78.74 227 | 84.73 151 | 86.87 240 | 78.18 91 | 85.75 137 | 87.81 213 | 65.67 265 | 77.84 296 | 78.50 349 | 73.79 193 | 90.53 220 | 61.59 284 | 90.87 262 | 85.49 292 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
test_low_dy_conf_001 | | | 87.67 88 | 86.99 96 | 89.72 55 | 93.02 83 | 78.17 92 | 91.15 44 | 89.33 187 | 69.89 222 | 92.70 55 | 95.39 37 | 66.77 243 | 94.23 96 | 86.77 33 | 97.90 52 | 96.76 27 |
|
APDe-MVS | | | 91.22 24 | 91.92 13 | 89.14 69 | 92.97 86 | 78.04 93 | 92.84 16 | 94.14 35 | 83.33 51 | 93.90 25 | 95.73 28 | 88.77 26 | 96.41 1 | 87.60 16 | 97.98 45 | 92.98 146 |
|
MSC_two_6792asdad | | | | | 88.81 73 | 91.55 137 | 77.99 94 | | 91.01 143 | | | | | 96.05 8 | 87.45 19 | 98.17 34 | 92.40 171 |
|
No_MVS | | | | | 88.81 73 | 91.55 137 | 77.99 94 | | 91.01 143 | | | | | 96.05 8 | 87.45 19 | 98.17 34 | 92.40 171 |
|
PS-MVSNAJss | | | 88.31 74 | 87.90 80 | 89.56 62 | 93.31 77 | 77.96 96 | 87.94 103 | 91.97 115 | 70.73 211 | 94.19 22 | 96.67 11 | 76.94 162 | 94.57 83 | 83.07 77 | 96.28 120 | 96.15 36 |
|
OPU-MVS | | | | | 88.27 89 | 91.89 122 | 77.83 97 | 90.47 53 | | | | 91.22 172 | 81.12 120 | 94.68 77 | 74.48 174 | 95.35 155 | 92.29 178 |
|
test_part2 | | | | | | 93.86 62 | 77.77 98 | | | | 92.84 50 | | | | | | |
|
agg_prior1 | | | 85.72 115 | 85.20 128 | 87.28 101 | 91.58 134 | 77.69 99 | 83.69 177 | 90.30 164 | 66.29 257 | 84.32 213 | 91.07 178 | 82.13 102 | 93.18 142 | 81.02 99 | 96.36 117 | 90.98 212 |
|
agg_prior | | | | | | 91.58 134 | 77.69 99 | | 90.30 164 | | 84.32 213 | | | 93.18 142 | | | |
|
Regformer-4 | | | 86.41 102 | 85.71 120 | 88.52 81 | 84.27 277 | 77.57 101 | 84.07 162 | 88.00 210 | 82.82 58 | 89.84 109 | 85.48 279 | 82.06 104 | 92.77 157 | 83.83 71 | 91.04 254 | 95.22 64 |
|
DP-MVS | | | 88.60 72 | 89.01 66 | 87.36 100 | 91.30 144 | 77.50 102 | 87.55 107 | 92.97 90 | 87.95 22 | 89.62 116 | 92.87 127 | 84.56 71 | 93.89 112 | 77.65 142 | 96.62 105 | 90.70 221 |
|
CS-MVS-test | | | 87.00 93 | 86.43 105 | 88.71 78 | 89.46 183 | 77.46 103 | 89.42 80 | 95.73 6 | 77.87 117 | 81.64 259 | 87.25 254 | 82.43 95 | 94.53 86 | 77.65 142 | 96.46 113 | 94.14 99 |
|
xxxxxxxxxxxxxcwj | | | 89.04 66 | 89.13 64 | 88.79 75 | 93.75 64 | 77.44 104 | 86.31 130 | 95.27 12 | 70.80 209 | 92.28 62 | 93.80 105 | 86.89 51 | 94.64 79 | 85.52 51 | 97.51 78 | 94.30 92 |
|
save fliter | | | | | | 93.75 64 | 77.44 104 | 86.31 130 | 89.72 178 | 70.80 209 | | | | | | | |
|
Vis-MVSNet |  | | 86.86 95 | 86.58 103 | 87.72 95 | 92.09 114 | 77.43 106 | 87.35 110 | 92.09 111 | 78.87 106 | 84.27 219 | 94.05 91 | 78.35 145 | 93.65 120 | 80.54 108 | 91.58 248 | 92.08 186 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
PHI-MVS | | | 86.38 103 | 85.81 117 | 88.08 91 | 88.44 205 | 77.34 107 | 89.35 81 | 93.05 84 | 73.15 180 | 84.76 205 | 87.70 245 | 78.87 140 | 94.18 99 | 80.67 106 | 96.29 119 | 92.73 155 |
|
plane_prior7 | | | | | | 93.45 72 | 77.31 108 | | | | | | | | | | |
|
CNVR-MVS | | | 87.81 86 | 87.68 84 | 88.21 90 | 92.87 88 | 77.30 109 | 85.25 143 | 91.23 137 | 77.31 124 | 87.07 161 | 91.47 168 | 82.94 89 | 94.71 76 | 84.67 63 | 96.27 122 | 92.62 162 |
|
ETH3D-3000-0.1 | | | 88.85 69 | 88.96 69 | 88.52 81 | 91.94 120 | 77.27 110 | 88.71 92 | 95.26 13 | 76.08 134 | 90.66 93 | 92.69 133 | 84.48 73 | 93.83 116 | 83.38 74 | 97.48 80 | 94.47 84 |
|
SF-MVS | | | 90.27 39 | 90.80 45 | 88.68 80 | 92.86 90 | 77.09 111 | 91.19 43 | 95.74 5 | 81.38 74 | 92.28 62 | 93.80 105 | 86.89 51 | 94.64 79 | 85.52 51 | 97.51 78 | 94.30 92 |
|
SD-MVS | | | 88.96 67 | 89.88 53 | 86.22 120 | 91.63 130 | 77.07 112 | 89.82 66 | 93.77 51 | 78.90 105 | 92.88 47 | 92.29 147 | 86.11 62 | 90.22 228 | 86.24 43 | 97.24 86 | 91.36 207 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
DeepC-MVS_fast | | 80.27 8 | 86.23 106 | 85.65 122 | 87.96 94 | 91.30 144 | 76.92 113 | 87.19 112 | 91.99 114 | 70.56 212 | 84.96 200 | 90.69 191 | 80.01 133 | 95.14 63 | 78.37 129 | 95.78 145 | 91.82 196 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
Regformer-1 | | | 86.00 110 | 85.50 124 | 87.49 98 | 84.18 281 | 76.90 114 | 83.52 181 | 87.94 212 | 82.18 65 | 89.19 125 | 85.07 291 | 82.28 100 | 91.89 180 | 82.40 86 | 92.72 225 | 93.69 120 |
|
plane_prior3 | | | | | | | 76.85 115 | | | 77.79 118 | 86.55 172 | | | | | | |
|
TSAR-MVS + MP. | | | 88.14 77 | 87.82 82 | 89.09 70 | 95.72 22 | 76.74 116 | 92.49 25 | 91.19 139 | 67.85 246 | 86.63 171 | 94.84 53 | 79.58 136 | 95.96 13 | 87.62 14 | 94.50 184 | 94.56 80 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
test222 | | | | | | 93.31 77 | 76.54 117 | 79.38 261 | 77.79 301 | 52.59 339 | 82.36 243 | 90.84 187 | 66.83 242 | | | 91.69 245 | 81.25 342 |
|
plane_prior6 | | | | | | 92.61 94 | 76.54 117 | | | | | | 74.84 180 | | | | |
|
bld_raw_conf005 | | | 88.83 70 | 88.48 75 | 89.85 52 | 92.53 97 | 76.54 117 | 91.30 40 | 93.28 75 | 74.96 154 | 93.26 42 | 96.02 23 | 70.41 225 | 95.63 35 | 86.73 34 | 97.87 54 | 97.39 15 |
|
Fast-Effi-MVS+-dtu | | | 82.54 177 | 81.41 192 | 85.90 129 | 85.60 258 | 76.53 120 | 83.07 196 | 89.62 182 | 73.02 182 | 79.11 288 | 83.51 307 | 80.74 125 | 90.24 227 | 68.76 231 | 89.29 278 | 90.94 214 |
|
mvsmamba | | | 87.87 82 | 87.23 91 | 89.78 54 | 92.31 106 | 76.51 121 | 91.09 45 | 91.87 118 | 72.61 187 | 92.16 64 | 95.23 43 | 66.01 247 | 95.59 38 | 86.02 48 | 97.78 58 | 97.24 18 |
|
HQP_MVS | | | 87.75 87 | 87.43 89 | 88.70 79 | 93.45 72 | 76.42 122 | 89.45 78 | 93.61 58 | 79.44 97 | 86.55 172 | 92.95 124 | 74.84 180 | 95.22 60 | 80.78 104 | 95.83 140 | 94.46 85 |
|
plane_prior | | | | | | | 76.42 122 | 87.15 114 | | 75.94 141 | | | | | | 95.03 169 | |
|
ACMH+ | | 77.89 11 | 90.73 30 | 91.50 23 | 88.44 85 | 93.00 85 | 76.26 124 | 89.65 71 | 95.55 7 | 87.72 23 | 93.89 27 | 94.94 50 | 91.62 4 | 93.44 134 | 78.35 130 | 98.76 4 | 95.61 51 |
|
UGNet | | | 82.78 173 | 81.64 188 | 86.21 122 | 86.20 253 | 76.24 125 | 86.86 118 | 85.68 243 | 77.07 126 | 73.76 326 | 92.82 128 | 69.64 226 | 91.82 183 | 69.04 229 | 93.69 202 | 90.56 226 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
MVS_111021_HR | | | 84.63 134 | 84.34 151 | 85.49 139 | 90.18 173 | 75.86 126 | 79.23 266 | 87.13 222 | 73.35 172 | 85.56 193 | 89.34 219 | 83.60 83 | 90.50 221 | 76.64 154 | 94.05 195 | 90.09 237 |
|
RRT_MVS | | | 88.30 75 | 87.83 81 | 89.70 56 | 93.62 70 | 75.70 127 | 92.36 27 | 89.06 192 | 77.34 122 | 93.63 36 | 95.83 26 | 65.40 251 | 95.90 15 | 85.01 59 | 98.23 29 | 97.49 13 |
|
CDPH-MVS | | | 86.17 109 | 85.54 123 | 88.05 93 | 92.25 108 | 75.45 128 | 83.85 171 | 92.01 113 | 65.91 259 | 86.19 179 | 91.75 162 | 83.77 81 | 94.98 69 | 77.43 147 | 96.71 103 | 93.73 118 |
|
DP-MVS Recon | | | 84.05 153 | 83.22 164 | 86.52 112 | 91.73 129 | 75.27 129 | 83.23 193 | 92.40 104 | 72.04 198 | 82.04 249 | 88.33 235 | 77.91 149 | 93.95 110 | 66.17 249 | 95.12 166 | 90.34 231 |
|
wuyk23d | | | 75.13 266 | 79.30 220 | 62.63 345 | 75.56 355 | 75.18 130 | 80.89 242 | 73.10 334 | 75.06 153 | 94.76 12 | 95.32 38 | 87.73 42 | 52.85 374 | 34.16 373 | 97.11 89 | 59.85 370 |
|
bld_raw_dy_0_64 | | | 84.85 131 | 84.44 146 | 86.07 126 | 93.73 66 | 74.93 131 | 88.57 95 | 81.90 279 | 70.44 213 | 91.28 82 | 95.18 44 | 56.62 302 | 89.28 251 | 85.15 55 | 97.09 90 | 93.99 103 |
|
3Dnovator | | 80.37 7 | 84.80 132 | 84.71 139 | 85.06 145 | 86.36 246 | 74.71 132 | 88.77 91 | 90.00 175 | 75.65 145 | 84.96 200 | 93.17 117 | 74.06 189 | 91.19 198 | 78.28 132 | 91.09 252 | 89.29 247 |
|
NP-MVS | | | | | | 91.95 118 | 74.55 133 | | | | | 90.17 206 | | | | | |
|
pmmvs-eth3d | | | 78.42 235 | 77.04 245 | 82.57 202 | 87.44 224 | 74.41 134 | 80.86 243 | 79.67 293 | 55.68 325 | 84.69 206 | 90.31 201 | 60.91 272 | 85.42 300 | 62.20 277 | 91.59 247 | 87.88 267 |
|
CSCG | | | 86.26 105 | 86.47 104 | 85.60 136 | 90.87 158 | 74.26 135 | 87.98 101 | 91.85 119 | 80.35 85 | 89.54 122 | 88.01 239 | 79.09 138 | 92.13 172 | 75.51 166 | 95.06 168 | 90.41 230 |
|
原ACMM1 | | | | | 84.60 154 | 92.81 93 | 74.01 136 | | 91.50 128 | 62.59 282 | 82.73 239 | 90.67 193 | 76.53 169 | 94.25 93 | 69.24 224 | 95.69 148 | 85.55 290 |
|
MVP-Stereo | | | 75.81 262 | 73.51 277 | 82.71 197 | 89.35 185 | 73.62 137 | 80.06 249 | 85.20 250 | 60.30 302 | 73.96 325 | 87.94 241 | 57.89 296 | 89.45 248 | 52.02 335 | 74.87 363 | 85.06 296 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
Gipuma |  | | 84.44 140 | 86.33 106 | 78.78 256 | 84.20 280 | 73.57 138 | 89.55 73 | 90.44 157 | 84.24 39 | 84.38 211 | 94.89 51 | 76.35 171 | 80.40 329 | 76.14 160 | 96.80 101 | 82.36 330 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
Regformer-3 | | | 85.06 126 | 84.67 141 | 86.22 120 | 84.27 277 | 73.43 139 | 84.07 162 | 85.26 249 | 80.77 82 | 88.62 135 | 85.48 279 | 80.56 128 | 90.39 224 | 81.99 90 | 91.04 254 | 94.85 74 |
|
EPNet | | | 80.37 210 | 78.41 232 | 86.23 119 | 76.75 346 | 73.28 140 | 87.18 113 | 77.45 303 | 76.24 133 | 68.14 346 | 88.93 228 | 65.41 250 | 93.85 113 | 69.47 222 | 96.12 128 | 91.55 204 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
test_one_0601 | | | | | | 93.85 63 | 73.27 141 | | 94.11 37 | 86.57 27 | 93.47 41 | 94.64 62 | 88.42 27 | | | | |
|
PVSNet_Blended_VisFu | | | 81.55 191 | 80.49 203 | 84.70 153 | 91.58 134 | 73.24 142 | 84.21 159 | 91.67 125 | 62.86 281 | 80.94 266 | 87.16 256 | 67.27 239 | 92.87 156 | 69.82 220 | 88.94 284 | 87.99 264 |
|
TAMVS | | | 78.08 238 | 76.36 251 | 83.23 184 | 90.62 164 | 72.87 143 | 79.08 267 | 80.01 292 | 61.72 290 | 81.35 263 | 86.92 260 | 63.96 257 | 88.78 259 | 50.61 340 | 93.01 217 | 88.04 263 |
|
EI-MVSNet-Vis-set | | | 85.12 124 | 84.53 144 | 86.88 105 | 84.01 284 | 72.76 144 | 83.91 170 | 85.18 251 | 80.44 83 | 88.75 132 | 85.49 278 | 80.08 132 | 91.92 178 | 82.02 89 | 90.85 263 | 95.97 42 |
|
SED-MVS | | | 90.46 37 | 91.64 19 | 86.93 104 | 94.18 50 | 72.65 145 | 90.47 53 | 93.69 54 | 83.77 44 | 94.11 23 | 94.27 77 | 90.28 15 | 95.84 23 | 86.03 46 | 97.92 49 | 92.29 178 |
|
test_241102_ONE | | | | | | 94.18 50 | 72.65 145 | | 93.69 54 | 83.62 46 | 94.11 23 | 93.78 108 | 90.28 15 | 95.50 49 | | | |
|
DVP-MVS++ | | | 90.07 42 | 91.09 35 | 87.00 103 | 91.55 137 | 72.64 147 | 96.19 2 | 94.10 38 | 85.33 32 | 93.49 39 | 94.64 62 | 81.12 120 | 95.88 17 | 87.41 21 | 95.94 135 | 92.48 167 |
|
IU-MVS | | | | | | 94.18 50 | 72.64 147 | | 90.82 148 | 56.98 321 | 89.67 114 | | | | 85.78 50 | 97.92 49 | 93.28 134 |
|
test12 | | | | | 86.57 110 | 90.74 161 | 72.63 149 | | 90.69 151 | | 82.76 238 | | 79.20 137 | 94.80 74 | | 95.32 157 | 92.27 180 |
|
EG-PatchMatch MVS | | | 84.08 152 | 84.11 153 | 83.98 168 | 92.22 110 | 72.61 150 | 82.20 225 | 87.02 227 | 72.63 186 | 88.86 129 | 91.02 179 | 78.52 141 | 91.11 201 | 73.41 188 | 91.09 252 | 88.21 260 |
|
DVP-MVS |  | | 90.06 43 | 91.32 30 | 86.29 117 | 94.16 53 | 72.56 151 | 90.54 50 | 91.01 143 | 83.61 47 | 93.75 31 | 94.65 59 | 89.76 19 | 95.78 28 | 86.42 36 | 97.97 46 | 90.55 227 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
test0726 | | | | | | 94.16 53 | 72.56 151 | 90.63 49 | 93.90 46 | 83.61 47 | 93.75 31 | 94.49 66 | 89.76 19 | | | | |
|
EI-MVSNet-UG-set | | | 85.04 127 | 84.44 146 | 86.85 106 | 83.87 287 | 72.52 153 | 83.82 172 | 85.15 252 | 80.27 87 | 88.75 132 | 85.45 282 | 79.95 134 | 91.90 179 | 81.92 92 | 90.80 264 | 96.13 37 |
|
CDS-MVSNet | | | 77.32 245 | 75.40 260 | 83.06 188 | 89.00 193 | 72.48 154 | 77.90 282 | 82.17 276 | 60.81 298 | 78.94 289 | 83.49 308 | 59.30 284 | 88.76 260 | 54.64 324 | 92.37 229 | 87.93 266 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
test_0728_SECOND | | | | | 86.79 107 | 94.25 49 | 72.45 155 | 90.54 50 | 94.10 38 | | | | | 95.88 17 | 86.42 36 | 97.97 46 | 92.02 188 |
|
testdata | | | | | 79.54 249 | 92.87 88 | 72.34 156 | | 80.14 291 | 59.91 305 | 85.47 195 | 91.75 162 | 67.96 236 | 85.24 301 | 68.57 236 | 92.18 237 | 81.06 347 |
|
PCF-MVS | | 74.62 15 | 82.15 183 | 80.92 199 | 85.84 131 | 89.43 184 | 72.30 157 | 80.53 245 | 91.82 121 | 57.36 319 | 87.81 149 | 89.92 210 | 77.67 151 | 93.63 122 | 58.69 298 | 95.08 167 | 91.58 203 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
AdaColmap |  | | 83.66 161 | 83.69 160 | 83.57 179 | 90.05 177 | 72.26 158 | 86.29 132 | 90.00 175 | 78.19 115 | 81.65 258 | 87.16 256 | 83.40 85 | 94.24 94 | 61.69 282 | 94.76 180 | 84.21 304 |
|
test_0402 | | | 88.65 71 | 89.58 59 | 85.88 130 | 92.55 96 | 72.22 159 | 84.01 165 | 89.44 185 | 88.63 18 | 94.38 18 | 95.77 27 | 86.38 60 | 93.59 126 | 79.84 113 | 95.21 161 | 91.82 196 |
|
CANet | | | 83.79 159 | 82.85 170 | 86.63 109 | 86.17 254 | 72.21 160 | 83.76 175 | 91.43 130 | 77.24 125 | 74.39 323 | 87.45 250 | 75.36 174 | 95.42 52 | 77.03 151 | 92.83 221 | 92.25 182 |
|
DROMVSNet | | | 88.01 79 | 88.32 77 | 87.09 102 | 89.28 187 | 72.03 161 | 90.31 56 | 96.31 3 | 80.88 80 | 85.12 198 | 89.67 214 | 84.47 74 | 95.46 50 | 82.56 83 | 96.26 123 | 93.77 117 |
|
test_prior3 | | | 86.31 104 | 86.31 107 | 86.32 115 | 90.59 165 | 71.99 162 | 83.37 187 | 92.85 93 | 75.43 147 | 84.58 207 | 91.57 164 | 81.92 110 | 94.17 101 | 79.54 119 | 96.97 93 | 92.80 152 |
|
test_prior | | | | | 86.32 115 | 90.59 165 | 71.99 162 | | 92.85 93 | | | | | 94.17 101 | | | 92.80 152 |
|
旧先验1 | | | | | | 91.97 117 | 71.77 164 | | 81.78 280 | | | 91.84 157 | 73.92 191 | | | 93.65 203 | 83.61 312 |
|
xiu_mvs_v1_base_debu | | | 80.84 200 | 80.14 211 | 82.93 192 | 88.31 206 | 71.73 165 | 79.53 257 | 87.17 219 | 65.43 266 | 79.59 281 | 82.73 319 | 76.94 162 | 90.14 233 | 73.22 190 | 88.33 289 | 86.90 278 |
|
xiu_mvs_v1_base | | | 80.84 200 | 80.14 211 | 82.93 192 | 88.31 206 | 71.73 165 | 79.53 257 | 87.17 219 | 65.43 266 | 79.59 281 | 82.73 319 | 76.94 162 | 90.14 233 | 73.22 190 | 88.33 289 | 86.90 278 |
|
xiu_mvs_v1_base_debi | | | 80.84 200 | 80.14 211 | 82.93 192 | 88.31 206 | 71.73 165 | 79.53 257 | 87.17 219 | 65.43 266 | 79.59 281 | 82.73 319 | 76.94 162 | 90.14 233 | 73.22 190 | 88.33 289 | 86.90 278 |
|
pmmvs4 | | | 74.92 270 | 72.98 283 | 80.73 231 | 84.95 264 | 71.71 168 | 76.23 305 | 77.59 302 | 52.83 338 | 77.73 299 | 86.38 264 | 56.35 305 | 84.97 304 | 57.72 305 | 87.05 304 | 85.51 291 |
|
MCST-MVS | | | 84.36 141 | 83.93 157 | 85.63 135 | 91.59 131 | 71.58 169 | 83.52 181 | 92.13 110 | 61.82 288 | 83.96 223 | 89.75 213 | 79.93 135 | 93.46 133 | 78.33 131 | 94.34 188 | 91.87 194 |
|
MSLP-MVS++ | | | 85.00 129 | 86.03 113 | 81.90 209 | 91.84 126 | 71.56 170 | 86.75 124 | 93.02 88 | 75.95 140 | 87.12 157 | 89.39 218 | 77.98 147 | 89.40 250 | 77.46 145 | 94.78 177 | 84.75 299 |
|
JIA-IIPM | | | 69.41 312 | 66.64 324 | 77.70 277 | 73.19 366 | 71.24 171 | 75.67 308 | 65.56 361 | 70.42 214 | 65.18 357 | 92.97 123 | 33.64 373 | 83.06 316 | 53.52 328 | 69.61 371 | 78.79 352 |
|
v7n | | | 90.13 40 | 90.96 41 | 87.65 97 | 91.95 118 | 71.06 172 | 89.99 62 | 93.05 84 | 86.53 28 | 94.29 19 | 96.27 17 | 82.69 91 | 94.08 105 | 86.25 42 | 97.63 67 | 97.82 8 |
|
lessismore_v0 | | | | | 85.95 127 | 91.10 153 | 70.99 173 | | 70.91 346 | | 91.79 72 | 94.42 71 | 61.76 269 | 92.93 153 | 79.52 121 | 93.03 216 | 93.93 107 |
|
HQP5-MVS | | | | | | | 70.66 174 | | | | | | | | | | |
|
HQP-MVS | | | 84.61 135 | 84.06 154 | 86.27 118 | 91.19 148 | 70.66 174 | 84.77 147 | 92.68 99 | 73.30 175 | 80.55 273 | 90.17 206 | 72.10 213 | 94.61 81 | 77.30 148 | 94.47 185 | 93.56 128 |
|
ETV-MVS | | | 84.31 143 | 83.91 158 | 85.52 137 | 88.58 201 | 70.40 176 | 84.50 157 | 93.37 64 | 78.76 109 | 84.07 222 | 78.72 348 | 80.39 129 | 95.13 64 | 73.82 183 | 92.98 218 | 91.04 211 |
|
ACMH | | 76.49 14 | 89.34 60 | 91.14 34 | 83.96 169 | 92.50 99 | 70.36 177 | 89.55 73 | 93.84 50 | 81.89 69 | 94.70 13 | 95.44 36 | 90.69 9 | 88.31 265 | 83.33 75 | 98.30 26 | 93.20 138 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
API-MVS | | | 82.28 180 | 82.61 175 | 81.30 219 | 86.29 249 | 69.79 178 | 88.71 92 | 87.67 214 | 78.42 113 | 82.15 247 | 84.15 303 | 77.98 147 | 91.59 186 | 65.39 256 | 92.75 222 | 82.51 329 |
|
DPM-MVS | | | 80.10 219 | 79.18 221 | 82.88 195 | 90.71 163 | 69.74 179 | 78.87 270 | 90.84 147 | 60.29 303 | 75.64 315 | 85.92 274 | 67.28 238 | 93.11 147 | 71.24 206 | 91.79 243 | 85.77 289 |
|
nrg030 | | | 87.85 84 | 88.49 74 | 85.91 128 | 90.07 176 | 69.73 180 | 87.86 104 | 94.20 28 | 74.04 163 | 92.70 55 | 94.66 58 | 85.88 65 | 91.50 187 | 79.72 116 | 97.32 84 | 96.50 34 |
|
IterMVS-SCA-FT | | | 80.64 204 | 79.41 218 | 84.34 160 | 83.93 285 | 69.66 181 | 76.28 304 | 81.09 284 | 72.43 188 | 86.47 178 | 90.19 204 | 60.46 274 | 93.15 146 | 77.45 146 | 86.39 310 | 90.22 232 |
|
K. test v3 | | | 85.14 123 | 84.73 136 | 86.37 114 | 91.13 152 | 69.63 182 | 85.45 141 | 76.68 308 | 84.06 42 | 92.44 60 | 96.99 8 | 62.03 268 | 94.65 78 | 80.58 107 | 93.24 210 | 94.83 76 |
|
EPP-MVSNet | | | 85.47 118 | 85.04 131 | 86.77 108 | 91.52 140 | 69.37 183 | 91.63 38 | 87.98 211 | 81.51 73 | 87.05 162 | 91.83 158 | 66.18 246 | 95.29 56 | 70.75 211 | 96.89 95 | 95.64 49 |
|
ETH3 D test6400 | | | 85.09 125 | 84.87 134 | 85.75 133 | 90.80 160 | 69.34 184 | 85.90 134 | 93.31 70 | 65.43 266 | 86.11 182 | 89.95 208 | 80.92 122 | 94.86 72 | 75.90 163 | 95.57 150 | 93.05 143 |
|
jason | | | 77.42 244 | 75.75 257 | 82.43 205 | 87.10 234 | 69.27 185 | 77.99 280 | 81.94 278 | 51.47 348 | 77.84 296 | 85.07 291 | 60.32 276 | 89.00 253 | 70.74 212 | 89.27 280 | 89.03 253 |
jason: jason. |
MVSFormer | | | 82.23 181 | 81.57 191 | 84.19 165 | 85.54 260 | 69.26 186 | 91.98 32 | 90.08 173 | 71.54 201 | 76.23 307 | 85.07 291 | 58.69 289 | 94.27 91 | 86.26 40 | 88.77 285 | 89.03 253 |
|
lupinMVS | | | 76.37 258 | 74.46 268 | 82.09 206 | 85.54 260 | 69.26 186 | 76.79 296 | 80.77 287 | 50.68 354 | 76.23 307 | 82.82 317 | 58.69 289 | 88.94 254 | 69.85 219 | 88.77 285 | 88.07 261 |
|
PMMVS | | | 61.65 332 | 60.38 338 | 65.47 341 | 65.40 379 | 69.26 186 | 63.97 356 | 61.73 368 | 36.80 374 | 60.11 368 | 68.43 368 | 59.42 283 | 66.35 365 | 48.97 347 | 78.57 355 | 60.81 369 |
|
SixPastTwentyTwo | | | 87.20 91 | 87.45 88 | 86.45 113 | 92.52 98 | 69.19 189 | 87.84 105 | 88.05 208 | 81.66 71 | 94.64 14 | 96.53 14 | 65.94 248 | 94.75 75 | 83.02 79 | 96.83 99 | 95.41 54 |
|
EIA-MVS | | | 82.19 182 | 81.23 195 | 85.10 144 | 87.95 213 | 69.17 190 | 83.22 194 | 93.33 67 | 70.42 214 | 78.58 291 | 79.77 345 | 77.29 155 | 94.20 98 | 71.51 205 | 88.96 283 | 91.93 193 |
|
114514_t | | | 83.10 172 | 82.54 177 | 84.77 150 | 92.90 87 | 69.10 191 | 86.65 125 | 90.62 154 | 54.66 330 | 81.46 261 | 90.81 188 | 76.98 161 | 94.38 90 | 72.62 198 | 96.18 124 | 90.82 218 |
|
MVS_0304 | | | 78.17 236 | 77.23 243 | 80.99 228 | 84.13 283 | 69.07 192 | 81.39 234 | 80.81 286 | 76.28 132 | 67.53 351 | 89.11 225 | 62.87 266 | 86.77 283 | 60.90 289 | 92.01 241 | 87.13 275 |
|
UniMVSNet (Re) | | | 86.87 94 | 86.98 98 | 86.55 111 | 93.11 82 | 68.48 193 | 83.80 174 | 92.87 92 | 80.37 84 | 89.61 118 | 91.81 160 | 77.72 150 | 94.18 99 | 75.00 173 | 98.53 16 | 96.99 25 |
|
BH-untuned | | | 80.96 198 | 80.99 197 | 80.84 229 | 88.55 202 | 68.23 194 | 80.33 248 | 88.46 198 | 72.79 184 | 86.55 172 | 86.76 261 | 74.72 184 | 91.77 184 | 61.79 281 | 88.99 282 | 82.52 328 |
|
OpenMVS |  | 76.72 13 | 81.98 187 | 82.00 184 | 81.93 208 | 84.42 273 | 68.22 195 | 88.50 97 | 89.48 184 | 66.92 252 | 81.80 256 | 91.86 155 | 72.59 210 | 90.16 230 | 71.19 207 | 91.25 251 | 87.40 272 |
|
patch_mono-2 | | | 78.89 225 | 79.39 219 | 77.41 281 | 84.78 267 | 68.11 196 | 75.60 309 | 83.11 268 | 60.96 297 | 79.36 284 | 89.89 211 | 75.18 176 | 72.97 347 | 73.32 189 | 92.30 230 | 91.15 209 |
|
ET-MVSNet_ETH3D | | | 75.28 264 | 72.77 284 | 82.81 196 | 83.03 296 | 68.11 196 | 77.09 293 | 76.51 309 | 60.67 301 | 77.60 300 | 80.52 337 | 38.04 365 | 91.15 200 | 70.78 210 | 90.68 266 | 89.17 248 |
|
MSDG | | | 80.06 220 | 79.99 215 | 80.25 238 | 83.91 286 | 68.04 198 | 77.51 289 | 89.19 189 | 77.65 119 | 81.94 250 | 83.45 309 | 76.37 170 | 86.31 290 | 63.31 271 | 86.59 307 | 86.41 281 |
|
alignmvs | | | 83.94 157 | 83.98 156 | 83.80 171 | 87.80 216 | 67.88 199 | 84.54 155 | 91.42 132 | 73.27 178 | 88.41 140 | 87.96 240 | 72.33 212 | 90.83 211 | 76.02 162 | 94.11 193 | 92.69 159 |
|
CLD-MVS | | | 83.18 170 | 82.64 174 | 84.79 148 | 89.05 191 | 67.82 200 | 77.93 281 | 92.52 102 | 68.33 237 | 85.07 199 | 81.54 329 | 82.06 104 | 92.96 151 | 69.35 223 | 97.91 51 | 93.57 127 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CMPMVS |  | 59.41 20 | 75.12 267 | 73.57 275 | 79.77 243 | 75.84 354 | 67.22 201 | 81.21 238 | 82.18 275 | 50.78 352 | 76.50 303 | 87.66 246 | 55.20 311 | 82.99 317 | 62.17 279 | 90.64 270 | 89.09 252 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
canonicalmvs | | | 85.50 117 | 86.14 111 | 83.58 178 | 87.97 212 | 67.13 202 | 87.55 107 | 94.32 22 | 73.44 171 | 88.47 138 | 87.54 248 | 86.45 58 | 91.06 203 | 75.76 165 | 93.76 199 | 92.54 165 |
|
GeoE | | | 85.45 119 | 85.81 117 | 84.37 157 | 90.08 174 | 67.07 203 | 85.86 136 | 91.39 133 | 72.33 193 | 87.59 151 | 90.25 202 | 84.85 69 | 92.37 166 | 78.00 138 | 91.94 242 | 93.66 121 |
|
UniMVSNet_NR-MVSNet | | | 86.84 96 | 87.06 94 | 86.17 124 | 92.86 90 | 67.02 204 | 82.55 211 | 91.56 126 | 83.08 55 | 90.92 87 | 91.82 159 | 78.25 146 | 93.99 107 | 74.16 177 | 98.35 22 | 97.49 13 |
|
DU-MVS | | | 86.80 97 | 86.99 96 | 86.21 122 | 93.24 79 | 67.02 204 | 83.16 195 | 92.21 108 | 81.73 70 | 90.92 87 | 91.97 153 | 77.20 156 | 93.99 107 | 74.16 177 | 98.35 22 | 97.61 10 |
|
IS-MVSNet | | | 86.66 99 | 86.82 102 | 86.17 124 | 92.05 116 | 66.87 206 | 91.21 42 | 88.64 197 | 86.30 30 | 89.60 119 | 92.59 135 | 69.22 229 | 94.91 71 | 73.89 181 | 97.89 53 | 96.72 28 |
|
QAPM | | | 82.59 176 | 82.59 176 | 82.58 200 | 86.44 241 | 66.69 207 | 89.94 64 | 90.36 160 | 67.97 243 | 84.94 202 | 92.58 137 | 72.71 208 | 92.18 171 | 70.63 214 | 87.73 299 | 88.85 256 |
|
Patchmatch-RL test | | | 74.48 275 | 73.68 274 | 76.89 287 | 84.83 266 | 66.54 208 | 72.29 331 | 69.16 353 | 57.70 315 | 86.76 166 | 86.33 266 | 45.79 341 | 82.59 318 | 69.63 221 | 90.65 269 | 81.54 338 |
|
tttt0517 | | | 81.07 196 | 79.58 217 | 85.52 137 | 88.99 194 | 66.45 209 | 87.03 116 | 75.51 316 | 73.76 167 | 88.32 143 | 90.20 203 | 37.96 366 | 94.16 104 | 79.36 123 | 95.13 164 | 95.93 45 |
|
iter_conf_final | | | 80.36 211 | 78.88 223 | 84.79 148 | 86.29 249 | 66.36 210 | 86.95 117 | 86.25 235 | 68.16 240 | 82.09 248 | 89.48 216 | 36.59 369 | 94.51 88 | 79.83 114 | 94.30 189 | 93.50 131 |
|
BH-RMVSNet | | | 80.53 205 | 80.22 209 | 81.49 218 | 87.19 229 | 66.21 211 | 77.79 284 | 86.23 236 | 74.21 162 | 83.69 225 | 88.50 233 | 73.25 203 | 90.75 213 | 63.18 272 | 87.90 296 | 87.52 270 |
|
PAPM_NR | | | 83.23 169 | 83.19 166 | 83.33 182 | 90.90 157 | 65.98 212 | 88.19 99 | 90.78 149 | 78.13 116 | 80.87 268 | 87.92 243 | 73.49 198 | 92.42 163 | 70.07 218 | 88.40 288 | 91.60 202 |
|
BH-w/o | | | 76.57 254 | 76.07 255 | 78.10 270 | 86.88 239 | 65.92 213 | 77.63 286 | 86.33 233 | 65.69 264 | 80.89 267 | 79.95 342 | 68.97 232 | 90.74 214 | 53.01 332 | 85.25 319 | 77.62 353 |
|
TR-MVS | | | 76.77 252 | 75.79 256 | 79.72 245 | 86.10 256 | 65.79 214 | 77.14 292 | 83.02 269 | 65.20 271 | 81.40 262 | 82.10 323 | 66.30 244 | 90.73 215 | 55.57 315 | 85.27 318 | 82.65 324 |
|
Effi-MVS+ | | | 83.90 158 | 84.01 155 | 83.57 179 | 87.22 228 | 65.61 215 | 86.55 128 | 92.40 104 | 78.64 110 | 81.34 264 | 84.18 302 | 83.65 82 | 92.93 153 | 74.22 176 | 87.87 297 | 92.17 185 |
|
Anonymous20231211 | | | 88.40 73 | 89.62 58 | 84.73 151 | 90.46 168 | 65.27 216 | 88.86 88 | 93.02 88 | 87.15 25 | 93.05 45 | 97.10 6 | 82.28 100 | 92.02 176 | 76.70 153 | 97.99 43 | 96.88 26 |
|
HyFIR lowres test | | | 75.12 267 | 72.66 286 | 82.50 203 | 91.44 143 | 65.19 217 | 72.47 330 | 87.31 217 | 46.79 360 | 80.29 276 | 84.30 301 | 52.70 316 | 92.10 175 | 51.88 339 | 86.73 306 | 90.22 232 |
|
VDD-MVS | | | 84.23 148 | 84.58 143 | 83.20 186 | 91.17 151 | 65.16 218 | 83.25 191 | 84.97 259 | 79.79 91 | 87.18 156 | 94.27 77 | 74.77 183 | 90.89 209 | 69.24 224 | 96.54 109 | 93.55 130 |
|
ambc | | | | | 82.98 190 | 90.55 167 | 64.86 219 | 88.20 98 | 89.15 190 | | 89.40 123 | 93.96 98 | 71.67 220 | 91.38 195 | 78.83 126 | 96.55 108 | 92.71 158 |
|
MDA-MVSNet-bldmvs | | | 77.47 243 | 76.90 247 | 79.16 253 | 79.03 334 | 64.59 220 | 66.58 351 | 75.67 314 | 73.15 180 | 88.86 129 | 88.99 227 | 66.94 240 | 81.23 325 | 64.71 261 | 88.22 294 | 91.64 201 |
|
thisisatest0530 | | | 79.07 223 | 77.33 242 | 84.26 162 | 87.13 230 | 64.58 221 | 83.66 179 | 75.95 311 | 68.86 232 | 85.22 197 | 87.36 252 | 38.10 364 | 93.57 129 | 75.47 167 | 94.28 190 | 94.62 78 |
|
NR-MVSNet | | | 86.00 110 | 86.22 109 | 85.34 140 | 93.24 79 | 64.56 222 | 82.21 223 | 90.46 156 | 80.99 78 | 88.42 139 | 91.97 153 | 77.56 152 | 93.85 113 | 72.46 200 | 98.65 12 | 97.61 10 |
|
Anonymous20240529 | | | 86.20 108 | 87.13 92 | 83.42 181 | 90.19 172 | 64.55 223 | 84.55 153 | 90.71 150 | 85.85 31 | 89.94 106 | 95.24 42 | 82.13 102 | 90.40 223 | 69.19 227 | 96.40 116 | 95.31 58 |
|
CHOSEN 280x420 | | | 59.08 339 | 56.52 344 | 66.76 336 | 76.51 348 | 64.39 224 | 49.62 370 | 59.00 371 | 43.86 367 | 55.66 375 | 68.41 369 | 35.55 371 | 68.21 359 | 43.25 362 | 76.78 361 | 67.69 366 |
|
UniMVSNet_ETH3D | | | 89.12 64 | 90.72 46 | 84.31 161 | 97.00 2 | 64.33 225 | 89.67 70 | 88.38 201 | 88.84 15 | 94.29 19 | 97.57 3 | 90.48 14 | 91.26 196 | 72.57 199 | 97.65 66 | 97.34 16 |
|
TranMVSNet+NR-MVSNet | | | 87.86 83 | 88.76 73 | 85.18 142 | 94.02 58 | 64.13 226 | 84.38 158 | 91.29 135 | 84.88 37 | 92.06 67 | 93.84 104 | 86.45 58 | 93.73 118 | 73.22 190 | 98.66 11 | 97.69 9 |
|
IterMVS | | | 76.91 249 | 76.34 252 | 78.64 259 | 80.91 313 | 64.03 227 | 76.30 303 | 79.03 296 | 64.88 273 | 83.11 234 | 89.16 223 | 59.90 280 | 84.46 308 | 68.61 234 | 85.15 320 | 87.42 271 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
pmmvs3 | | | 62.47 329 | 60.02 341 | 69.80 323 | 71.58 373 | 64.00 228 | 70.52 337 | 58.44 373 | 39.77 371 | 66.05 353 | 75.84 360 | 27.10 382 | 72.28 348 | 46.15 357 | 84.77 328 | 73.11 359 |
|
EI-MVSNet | | | 82.61 175 | 82.42 179 | 83.20 186 | 83.25 291 | 63.66 229 | 83.50 184 | 85.07 253 | 76.06 135 | 86.55 172 | 85.10 288 | 73.41 199 | 90.25 225 | 78.15 137 | 90.67 267 | 95.68 48 |
|
IterMVS-LS | | | 84.73 133 | 84.98 132 | 83.96 169 | 87.35 225 | 63.66 229 | 83.25 191 | 89.88 177 | 76.06 135 | 89.62 116 | 92.37 145 | 73.40 201 | 92.52 162 | 78.16 135 | 94.77 179 | 95.69 47 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
PVSNet_BlendedMVS | | | 78.80 229 | 77.84 236 | 81.65 216 | 84.43 271 | 63.41 231 | 79.49 260 | 90.44 157 | 61.70 291 | 75.43 316 | 87.07 259 | 69.11 230 | 91.44 190 | 60.68 290 | 92.24 234 | 90.11 236 |
|
PVSNet_Blended | | | 76.49 256 | 75.40 260 | 79.76 244 | 84.43 271 | 63.41 231 | 75.14 315 | 90.44 157 | 57.36 319 | 75.43 316 | 78.30 350 | 69.11 230 | 91.44 190 | 60.68 290 | 87.70 300 | 84.42 302 |
|
V42 | | | 83.47 166 | 83.37 163 | 83.75 174 | 83.16 293 | 63.33 233 | 81.31 235 | 90.23 169 | 69.51 225 | 90.91 89 | 90.81 188 | 74.16 188 | 92.29 170 | 80.06 110 | 90.22 271 | 95.62 50 |
|
v10 | | | 86.54 100 | 87.10 93 | 84.84 147 | 88.16 211 | 63.28 234 | 86.64 126 | 92.20 109 | 75.42 149 | 92.81 52 | 94.50 65 | 74.05 190 | 94.06 106 | 83.88 69 | 96.28 120 | 97.17 21 |
|
Fast-Effi-MVS+ | | | 81.04 197 | 80.57 200 | 82.46 204 | 87.50 223 | 63.22 235 | 78.37 277 | 89.63 181 | 68.01 241 | 81.87 252 | 82.08 324 | 82.31 97 | 92.65 160 | 67.10 242 | 88.30 293 | 91.51 205 |
|
CHOSEN 1792x2688 | | | 72.45 290 | 70.56 300 | 78.13 269 | 90.02 179 | 63.08 236 | 68.72 343 | 83.16 267 | 42.99 369 | 75.92 311 | 85.46 281 | 57.22 300 | 85.18 303 | 49.87 344 | 81.67 342 | 86.14 284 |
|
test_part1 | | | 87.15 92 | 87.82 82 | 85.15 143 | 88.88 196 | 63.04 237 | 87.98 101 | 94.85 16 | 82.52 61 | 93.61 38 | 95.73 28 | 67.51 237 | 95.71 32 | 80.48 109 | 98.83 2 | 96.69 29 |
|
cascas | | | 76.29 259 | 74.81 264 | 80.72 232 | 84.47 270 | 62.94 238 | 73.89 323 | 87.34 216 | 55.94 324 | 75.16 320 | 76.53 359 | 63.97 256 | 91.16 199 | 65.00 258 | 90.97 259 | 88.06 262 |
|
v1192 | | | 84.57 136 | 84.69 140 | 84.21 163 | 87.75 217 | 62.88 239 | 83.02 198 | 91.43 130 | 69.08 229 | 89.98 105 | 90.89 185 | 72.70 209 | 93.62 125 | 82.41 85 | 94.97 171 | 96.13 37 |
|
DELS-MVS | | | 81.44 192 | 81.25 193 | 82.03 207 | 84.27 277 | 62.87 240 | 76.47 302 | 92.49 103 | 70.97 208 | 81.64 259 | 83.83 304 | 75.03 177 | 92.70 158 | 74.29 175 | 92.22 236 | 90.51 228 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
casdiffmvs | | | 85.21 121 | 85.85 116 | 83.31 183 | 86.17 254 | 62.77 241 | 83.03 197 | 93.93 44 | 74.69 157 | 88.21 144 | 92.68 134 | 82.29 99 | 91.89 180 | 77.87 141 | 93.75 201 | 95.27 60 |
|
MIMVSNet1 | | | 83.63 162 | 84.59 142 | 80.74 230 | 94.06 57 | 62.77 241 | 82.72 205 | 84.53 262 | 77.57 121 | 90.34 96 | 95.92 25 | 76.88 168 | 85.83 297 | 61.88 280 | 97.42 81 | 93.62 125 |
|
CR-MVSNet | | | 74.00 279 | 73.04 282 | 76.85 288 | 79.58 326 | 62.64 243 | 82.58 209 | 76.90 305 | 50.50 355 | 75.72 313 | 92.38 142 | 48.07 329 | 84.07 311 | 68.72 233 | 82.91 337 | 83.85 309 |
|
RPMNet | | | 78.88 226 | 78.28 233 | 80.68 233 | 79.58 326 | 62.64 243 | 82.58 209 | 94.16 31 | 74.80 155 | 75.72 313 | 92.59 135 | 48.69 327 | 95.56 40 | 73.48 187 | 82.91 337 | 83.85 309 |
|
v1144 | | | 84.54 139 | 84.72 138 | 84.00 167 | 87.67 219 | 62.55 245 | 82.97 199 | 90.93 146 | 70.32 217 | 89.80 110 | 90.99 180 | 73.50 196 | 93.48 132 | 81.69 94 | 94.65 182 | 95.97 42 |
|
MS-PatchMatch | | | 70.93 301 | 70.22 304 | 73.06 311 | 81.85 303 | 62.50 246 | 73.82 324 | 77.90 300 | 52.44 341 | 75.92 311 | 81.27 330 | 55.67 308 | 81.75 322 | 55.37 317 | 77.70 357 | 74.94 357 |
|
WR-MVS_H | | | 89.91 50 | 91.31 31 | 85.71 134 | 96.32 10 | 62.39 247 | 89.54 75 | 93.31 70 | 90.21 10 | 95.57 9 | 95.66 31 | 81.42 117 | 95.90 15 | 80.94 101 | 98.80 3 | 98.84 5 |
|
baseline | | | 85.20 122 | 85.93 114 | 83.02 189 | 86.30 248 | 62.37 248 | 84.55 153 | 93.96 43 | 74.48 160 | 87.12 157 | 92.03 152 | 82.30 98 | 91.94 177 | 78.39 128 | 94.21 191 | 94.74 77 |
|
v8 | | | 86.22 107 | 86.83 101 | 84.36 159 | 87.82 215 | 62.35 249 | 86.42 129 | 91.33 134 | 76.78 129 | 92.73 54 | 94.48 67 | 73.41 199 | 93.72 119 | 83.10 76 | 95.41 153 | 97.01 24 |
|
pmmvs6 | | | 86.52 101 | 88.06 79 | 81.90 209 | 92.22 110 | 62.28 250 | 84.66 151 | 89.15 190 | 83.54 49 | 89.85 108 | 97.32 4 | 88.08 38 | 86.80 282 | 70.43 216 | 97.30 85 | 96.62 31 |
|
IB-MVS | | 62.13 19 | 71.64 297 | 68.97 311 | 79.66 247 | 80.80 317 | 62.26 251 | 73.94 322 | 76.90 305 | 63.27 278 | 68.63 345 | 76.79 357 | 33.83 372 | 91.84 182 | 59.28 297 | 87.26 302 | 84.88 297 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
D2MVS | | | 76.84 250 | 75.67 259 | 80.34 237 | 80.48 321 | 62.16 252 | 73.50 325 | 84.80 261 | 57.61 317 | 82.24 244 | 87.54 248 | 51.31 320 | 87.65 270 | 70.40 217 | 93.19 212 | 91.23 208 |
|
dcpmvs_2 | | | 84.23 148 | 85.14 129 | 81.50 217 | 88.61 200 | 61.98 253 | 82.90 202 | 93.11 80 | 68.66 235 | 92.77 53 | 92.39 141 | 78.50 142 | 87.63 271 | 76.99 152 | 92.30 230 | 94.90 68 |
|
v1921920 | | | 84.23 148 | 84.37 150 | 83.79 172 | 87.64 221 | 61.71 254 | 82.91 201 | 91.20 138 | 67.94 244 | 90.06 100 | 90.34 199 | 72.04 216 | 93.59 126 | 82.32 87 | 94.91 172 | 96.07 39 |
|
v144192 | | | 84.24 147 | 84.41 148 | 83.71 175 | 87.59 222 | 61.57 255 | 82.95 200 | 91.03 142 | 67.82 247 | 89.80 110 | 90.49 197 | 73.28 202 | 93.51 131 | 81.88 93 | 94.89 174 | 96.04 41 |
|
PS-MVSNAJ | | | 77.04 248 | 76.53 250 | 78.56 260 | 87.09 235 | 61.40 256 | 75.26 314 | 87.13 222 | 61.25 293 | 74.38 324 | 77.22 356 | 76.94 162 | 90.94 205 | 64.63 263 | 84.83 326 | 83.35 317 |
|
v2v482 | | | 84.09 151 | 84.24 152 | 83.62 177 | 87.13 230 | 61.40 256 | 82.71 206 | 89.71 179 | 72.19 196 | 89.55 120 | 91.41 169 | 70.70 224 | 93.20 141 | 81.02 99 | 93.76 199 | 96.25 35 |
|
xiu_mvs_v2_base | | | 77.19 246 | 76.75 248 | 78.52 261 | 87.01 236 | 61.30 258 | 75.55 312 | 87.12 225 | 61.24 294 | 74.45 322 | 78.79 347 | 77.20 156 | 90.93 206 | 64.62 264 | 84.80 327 | 83.32 318 |
|
v1240 | | | 84.30 144 | 84.51 145 | 83.65 176 | 87.65 220 | 61.26 259 | 82.85 203 | 91.54 127 | 67.94 244 | 90.68 92 | 90.65 194 | 71.71 219 | 93.64 121 | 82.84 81 | 94.78 177 | 96.07 39 |
|
OpenMVS_ROB |  | 70.19 17 | 77.77 242 | 77.46 238 | 78.71 258 | 84.39 274 | 61.15 260 | 81.18 239 | 82.52 272 | 62.45 285 | 83.34 231 | 87.37 251 | 66.20 245 | 88.66 261 | 64.69 262 | 85.02 321 | 86.32 282 |
|
MVSTER | | | 77.09 247 | 75.70 258 | 81.25 220 | 75.27 359 | 61.08 261 | 77.49 290 | 85.07 253 | 60.78 299 | 86.55 172 | 88.68 231 | 43.14 356 | 90.25 225 | 73.69 185 | 90.67 267 | 92.42 169 |
|
GBi-Net | | | 82.02 185 | 82.07 182 | 81.85 211 | 86.38 243 | 61.05 262 | 86.83 120 | 88.27 205 | 72.43 188 | 86.00 184 | 95.64 32 | 63.78 258 | 90.68 216 | 65.95 250 | 93.34 207 | 93.82 113 |
|
test1 | | | 82.02 185 | 82.07 182 | 81.85 211 | 86.38 243 | 61.05 262 | 86.83 120 | 88.27 205 | 72.43 188 | 86.00 184 | 95.64 32 | 63.78 258 | 90.68 216 | 65.95 250 | 93.34 207 | 93.82 113 |
|
FMVSNet1 | | | 84.55 137 | 85.45 125 | 81.85 211 | 90.27 171 | 61.05 262 | 86.83 120 | 88.27 205 | 78.57 111 | 89.66 115 | 95.64 32 | 75.43 173 | 90.68 216 | 69.09 228 | 95.33 156 | 93.82 113 |
|
eth_miper_zixun_eth | | | 80.84 200 | 80.22 209 | 82.71 197 | 81.41 307 | 60.98 265 | 77.81 283 | 90.14 172 | 67.31 250 | 86.95 164 | 87.24 255 | 64.26 254 | 92.31 168 | 75.23 170 | 91.61 246 | 94.85 74 |
|
miper_lstm_enhance | | | 76.45 257 | 76.10 254 | 77.51 279 | 76.72 347 | 60.97 266 | 64.69 354 | 85.04 255 | 63.98 276 | 83.20 233 | 88.22 236 | 56.67 301 | 78.79 334 | 73.22 190 | 93.12 213 | 92.78 154 |
|
Anonymous20240521 | | | 80.18 217 | 81.25 193 | 76.95 284 | 83.15 294 | 60.84 267 | 82.46 214 | 85.99 240 | 68.76 233 | 86.78 165 | 93.73 110 | 59.13 286 | 77.44 336 | 73.71 184 | 97.55 73 | 92.56 163 |
|
MVS | | | 73.21 285 | 72.59 287 | 75.06 302 | 80.97 312 | 60.81 268 | 81.64 230 | 85.92 241 | 46.03 363 | 71.68 335 | 77.54 352 | 68.47 233 | 89.77 242 | 55.70 314 | 85.39 316 | 74.60 358 |
|
iter_conf05 | | | 78.81 228 | 77.35 241 | 83.21 185 | 82.98 297 | 60.75 269 | 84.09 161 | 88.34 202 | 63.12 279 | 84.25 221 | 89.48 216 | 31.41 374 | 94.51 88 | 76.64 154 | 95.83 140 | 94.38 90 |
|
TinyColmap | | | 81.25 194 | 82.34 180 | 77.99 272 | 85.33 262 | 60.68 270 | 82.32 218 | 88.33 203 | 71.26 205 | 86.97 163 | 92.22 151 | 77.10 159 | 86.98 279 | 62.37 275 | 95.17 163 | 86.31 283 |
|
EPNet_dtu | | | 72.87 288 | 71.33 299 | 77.49 280 | 77.72 340 | 60.55 271 | 82.35 217 | 75.79 312 | 66.49 256 | 58.39 373 | 81.06 332 | 53.68 314 | 85.98 294 | 53.55 327 | 92.97 219 | 85.95 286 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CVMVSNet | | | 72.62 289 | 71.41 298 | 76.28 294 | 83.25 291 | 60.34 272 | 83.50 184 | 79.02 297 | 37.77 373 | 76.33 305 | 85.10 288 | 49.60 326 | 87.41 273 | 70.54 215 | 77.54 359 | 81.08 345 |
|
PAPR | | | 78.84 227 | 78.10 235 | 81.07 224 | 85.17 263 | 60.22 273 | 82.21 223 | 90.57 155 | 62.51 283 | 75.32 318 | 84.61 298 | 74.99 178 | 92.30 169 | 59.48 296 | 88.04 295 | 90.68 222 |
|
diffmvs | | | 80.40 209 | 80.48 204 | 80.17 240 | 79.02 335 | 60.04 274 | 77.54 288 | 90.28 168 | 66.65 255 | 82.40 242 | 87.33 253 | 73.50 196 | 87.35 274 | 77.98 139 | 89.62 276 | 93.13 140 |
|
1112_ss | | | 74.82 272 | 73.74 273 | 78.04 271 | 89.57 181 | 60.04 274 | 76.49 301 | 87.09 226 | 54.31 331 | 73.66 327 | 79.80 343 | 60.25 277 | 86.76 285 | 58.37 299 | 84.15 330 | 87.32 273 |
|
thisisatest0515 | | | 73.00 287 | 70.52 301 | 80.46 235 | 81.45 306 | 59.90 276 | 73.16 329 | 74.31 323 | 57.86 314 | 76.08 310 | 77.78 351 | 37.60 367 | 92.12 174 | 65.00 258 | 91.45 249 | 89.35 244 |
|
CANet_DTU | | | 77.81 241 | 77.05 244 | 80.09 241 | 81.37 308 | 59.90 276 | 83.26 190 | 88.29 204 | 69.16 228 | 67.83 349 | 83.72 305 | 60.93 271 | 89.47 246 | 69.22 226 | 89.70 275 | 90.88 216 |
|
v148 | | | 82.31 179 | 82.48 178 | 81.81 214 | 85.59 259 | 59.66 278 | 81.47 233 | 86.02 239 | 72.85 183 | 88.05 145 | 90.65 194 | 70.73 223 | 90.91 208 | 75.15 171 | 91.79 243 | 94.87 70 |
|
pm-mvs1 | | | 83.69 160 | 84.95 133 | 79.91 242 | 90.04 178 | 59.66 278 | 82.43 215 | 87.44 215 | 75.52 146 | 87.85 148 | 95.26 41 | 81.25 119 | 85.65 299 | 68.74 232 | 96.04 129 | 94.42 88 |
|
EU-MVSNet | | | 75.12 267 | 74.43 269 | 77.18 282 | 83.11 295 | 59.48 280 | 85.71 139 | 82.43 274 | 39.76 372 | 85.64 191 | 88.76 229 | 44.71 352 | 87.88 268 | 73.86 182 | 85.88 314 | 84.16 305 |
|
VDDNet | | | 84.35 142 | 85.39 126 | 81.25 220 | 95.13 33 | 59.32 281 | 85.42 142 | 81.11 283 | 86.41 29 | 87.41 154 | 96.21 19 | 73.61 194 | 90.61 219 | 66.33 248 | 96.85 97 | 93.81 116 |
|
cl____ | | | 80.42 208 | 80.23 207 | 81.02 226 | 79.99 323 | 59.25 282 | 77.07 294 | 87.02 227 | 67.37 249 | 86.18 181 | 89.21 222 | 63.08 263 | 90.16 230 | 76.31 158 | 95.80 143 | 93.65 123 |
|
DIV-MVS_self_test | | | 80.43 207 | 80.23 207 | 81.02 226 | 79.99 323 | 59.25 282 | 77.07 294 | 87.02 227 | 67.38 248 | 86.19 179 | 89.22 221 | 63.09 262 | 90.16 230 | 76.32 157 | 95.80 143 | 93.66 121 |
|
GA-MVS | | | 75.83 261 | 74.61 265 | 79.48 250 | 81.87 302 | 59.25 282 | 73.42 326 | 82.88 270 | 68.68 234 | 79.75 280 | 81.80 326 | 50.62 323 | 89.46 247 | 66.85 244 | 85.64 315 | 89.72 238 |
|
c3_l | | | 81.64 190 | 81.59 190 | 81.79 215 | 80.86 315 | 59.15 285 | 78.61 274 | 90.18 171 | 68.36 236 | 87.20 155 | 87.11 258 | 69.39 227 | 91.62 185 | 78.16 135 | 94.43 187 | 94.60 79 |
|
cl22 | | | 78.97 224 | 78.21 234 | 81.24 222 | 77.74 339 | 59.01 286 | 77.46 291 | 87.13 222 | 65.79 260 | 84.32 213 | 85.10 288 | 58.96 288 | 90.88 210 | 75.36 169 | 92.03 238 | 93.84 110 |
|
miper_ehance_all_eth | | | 80.34 212 | 80.04 214 | 81.24 222 | 79.82 325 | 58.95 287 | 77.66 285 | 89.66 180 | 65.75 263 | 85.99 187 | 85.11 287 | 68.29 234 | 91.42 192 | 76.03 161 | 92.03 238 | 93.33 132 |
|
PEN-MVS | | | 90.03 45 | 91.88 16 | 84.48 155 | 96.57 6 | 58.88 288 | 88.95 85 | 93.19 78 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 49 | 95.60 37 | 78.69 127 | 98.72 9 | 98.97 3 |
|
test_yl | | | 78.71 231 | 78.51 230 | 79.32 251 | 84.32 275 | 58.84 289 | 78.38 275 | 85.33 247 | 75.99 138 | 82.49 240 | 86.57 262 | 58.01 292 | 90.02 239 | 62.74 273 | 92.73 223 | 89.10 250 |
|
DCV-MVSNet | | | 78.71 231 | 78.51 230 | 79.32 251 | 84.32 275 | 58.84 289 | 78.38 275 | 85.33 247 | 75.99 138 | 82.49 240 | 86.57 262 | 58.01 292 | 90.02 239 | 62.74 273 | 92.73 223 | 89.10 250 |
|
PS-CasMVS | | | 90.06 43 | 91.92 13 | 84.47 156 | 96.56 7 | 58.83 291 | 89.04 84 | 92.74 98 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 47 | 95.57 39 | 79.42 122 | 98.74 6 | 99.00 2 |
|
FMVSNet2 | | | 81.31 193 | 81.61 189 | 80.41 236 | 86.38 243 | 58.75 292 | 83.93 169 | 86.58 232 | 72.43 188 | 87.65 150 | 92.98 121 | 63.78 258 | 90.22 228 | 66.86 243 | 93.92 197 | 92.27 180 |
|
CP-MVSNet | | | 89.27 61 | 90.91 43 | 84.37 157 | 96.34 9 | 58.61 293 | 88.66 94 | 92.06 112 | 90.78 6 | 95.67 7 | 95.17 45 | 81.80 113 | 95.54 43 | 79.00 125 | 98.69 10 | 98.95 4 |
|
baseline2 | | | 69.77 310 | 66.89 320 | 78.41 264 | 79.51 328 | 58.09 294 | 76.23 305 | 69.57 351 | 57.50 318 | 64.82 361 | 77.45 354 | 46.02 336 | 88.44 262 | 53.08 329 | 77.83 356 | 88.70 257 |
|
miper_enhance_ethall | | | 77.83 239 | 76.93 246 | 80.51 234 | 76.15 352 | 58.01 295 | 75.47 313 | 88.82 193 | 58.05 313 | 83.59 228 | 80.69 333 | 64.41 253 | 91.20 197 | 73.16 196 | 92.03 238 | 92.33 175 |
|
1314 | | | 73.22 284 | 72.56 289 | 75.20 300 | 80.41 322 | 57.84 296 | 81.64 230 | 85.36 246 | 51.68 347 | 73.10 329 | 76.65 358 | 61.45 270 | 85.19 302 | 63.54 268 | 79.21 353 | 82.59 325 |
|
DTE-MVSNet | | | 89.98 47 | 91.91 15 | 84.21 163 | 96.51 8 | 57.84 296 | 88.93 87 | 92.84 95 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 50 | 95.99 10 | 79.05 124 | 98.57 15 | 98.80 6 |
|
MVS_Test | | | 82.47 178 | 83.22 164 | 80.22 239 | 82.62 299 | 57.75 298 | 82.54 212 | 91.96 116 | 71.16 207 | 82.89 237 | 92.52 140 | 77.41 154 | 90.50 221 | 80.04 111 | 87.84 298 | 92.40 171 |
|
VPA-MVSNet | | | 83.47 166 | 84.73 136 | 79.69 246 | 90.29 170 | 57.52 299 | 81.30 237 | 88.69 196 | 76.29 131 | 87.58 152 | 94.44 68 | 80.60 127 | 87.20 275 | 66.60 247 | 96.82 100 | 94.34 91 |
|
FIs | | | 85.35 120 | 86.27 108 | 82.60 199 | 91.86 123 | 57.31 300 | 85.10 145 | 93.05 84 | 75.83 142 | 91.02 86 | 93.97 95 | 73.57 195 | 92.91 155 | 73.97 180 | 98.02 41 | 97.58 12 |
|
Anonymous202405211 | | | 80.51 206 | 81.19 196 | 78.49 262 | 88.48 203 | 57.26 301 | 76.63 299 | 82.49 273 | 81.21 76 | 84.30 217 | 92.24 150 | 67.99 235 | 86.24 291 | 62.22 276 | 95.13 164 | 91.98 192 |
|
USDC | | | 76.63 253 | 76.73 249 | 76.34 293 | 83.46 289 | 57.20 302 | 80.02 251 | 88.04 209 | 52.14 344 | 83.65 227 | 91.25 171 | 63.24 261 | 86.65 286 | 54.66 323 | 94.11 193 | 85.17 294 |
|
ab-mvs | | | 79.67 221 | 80.56 201 | 76.99 283 | 88.48 203 | 56.93 303 | 84.70 150 | 86.06 238 | 68.95 231 | 80.78 269 | 93.08 118 | 75.30 175 | 84.62 307 | 56.78 307 | 90.90 261 | 89.43 243 |
|
ADS-MVSNet2 | | | 65.87 326 | 63.64 331 | 72.55 314 | 73.16 367 | 56.92 304 | 67.10 349 | 74.81 318 | 49.74 357 | 66.04 354 | 82.97 313 | 46.71 331 | 77.26 337 | 42.29 363 | 69.96 369 | 83.46 314 |
|
ppachtmachnet_test | | | 74.73 274 | 74.00 272 | 76.90 286 | 80.71 318 | 56.89 305 | 71.53 334 | 78.42 298 | 58.24 311 | 79.32 286 | 82.92 316 | 57.91 295 | 84.26 310 | 65.60 255 | 91.36 250 | 89.56 240 |
|
FMVSNet3 | | | 78.80 229 | 78.55 229 | 79.57 248 | 82.89 298 | 56.89 305 | 81.76 227 | 85.77 242 | 69.04 230 | 86.00 184 | 90.44 198 | 51.75 319 | 90.09 236 | 65.95 250 | 93.34 207 | 91.72 198 |
|
FC-MVSNet-test | | | 85.93 113 | 87.05 95 | 82.58 200 | 92.25 108 | 56.44 307 | 85.75 137 | 93.09 82 | 77.33 123 | 91.94 71 | 94.65 59 | 74.78 182 | 93.41 136 | 75.11 172 | 98.58 14 | 97.88 7 |
|
Test_1112_low_res | | | 73.90 280 | 73.08 281 | 76.35 292 | 90.35 169 | 55.95 308 | 73.40 327 | 86.17 237 | 50.70 353 | 73.14 328 | 85.94 273 | 58.31 291 | 85.90 296 | 56.51 309 | 83.22 334 | 87.20 274 |
|
LFMVS | | | 80.15 218 | 80.56 201 | 78.89 254 | 89.19 190 | 55.93 309 | 85.22 144 | 73.78 328 | 82.96 56 | 84.28 218 | 92.72 132 | 57.38 298 | 90.07 237 | 63.80 266 | 95.75 146 | 90.68 222 |
|
SCA | | | 73.32 282 | 72.57 288 | 75.58 299 | 81.62 304 | 55.86 310 | 78.89 269 | 71.37 345 | 61.73 289 | 74.93 321 | 83.42 310 | 60.46 274 | 87.01 276 | 58.11 303 | 82.63 341 | 83.88 306 |
|
EMVS | | | 61.10 336 | 60.81 337 | 61.99 347 | 65.96 378 | 55.86 310 | 53.10 369 | 58.97 372 | 67.06 251 | 56.89 374 | 63.33 371 | 40.98 359 | 67.03 362 | 54.79 322 | 86.18 312 | 63.08 367 |
|
LCM-MVSNet-Re | | | 83.48 165 | 85.06 130 | 78.75 257 | 85.94 257 | 55.75 312 | 80.05 250 | 94.27 23 | 76.47 130 | 96.09 5 | 94.54 64 | 83.31 86 | 89.75 244 | 59.95 293 | 94.89 174 | 90.75 219 |
|
tfpnnormal | | | 81.79 189 | 82.95 169 | 78.31 265 | 88.93 195 | 55.40 313 | 80.83 244 | 82.85 271 | 76.81 128 | 85.90 188 | 94.14 88 | 74.58 186 | 86.51 287 | 66.82 246 | 95.68 149 | 93.01 145 |
|
E-PMN | | | 61.59 333 | 61.62 335 | 61.49 349 | 66.81 377 | 55.40 313 | 53.77 368 | 60.34 370 | 66.80 254 | 58.90 371 | 65.50 370 | 40.48 361 | 66.12 366 | 55.72 313 | 86.25 311 | 62.95 368 |
|
test-LLR | | | 67.21 318 | 66.74 322 | 68.63 330 | 76.45 350 | 55.21 315 | 67.89 345 | 67.14 357 | 62.43 286 | 65.08 358 | 72.39 364 | 43.41 354 | 69.37 353 | 61.00 286 | 84.89 324 | 81.31 340 |
|
test-mter | | | 65.00 327 | 63.79 330 | 68.63 330 | 76.45 350 | 55.21 315 | 67.89 345 | 67.14 357 | 50.98 351 | 65.08 358 | 72.39 364 | 28.27 379 | 69.37 353 | 61.00 286 | 84.89 324 | 81.31 340 |
|
TransMVSNet (Re) | | | 84.02 154 | 85.74 119 | 78.85 255 | 91.00 155 | 55.20 317 | 82.29 219 | 87.26 218 | 79.65 94 | 88.38 141 | 95.52 35 | 83.00 88 | 86.88 280 | 67.97 239 | 96.60 107 | 94.45 87 |
|
WR-MVS | | | 83.56 163 | 84.40 149 | 81.06 225 | 93.43 74 | 54.88 318 | 78.67 273 | 85.02 256 | 81.24 75 | 90.74 91 | 91.56 166 | 72.85 206 | 91.08 202 | 68.00 238 | 98.04 38 | 97.23 19 |
|
Anonymous20231206 | | | 71.38 299 | 71.88 293 | 69.88 322 | 86.31 247 | 54.37 319 | 70.39 338 | 74.62 319 | 52.57 340 | 76.73 302 | 88.76 229 | 59.94 279 | 72.06 349 | 44.35 361 | 93.23 211 | 83.23 320 |
|
HY-MVS | | 64.64 18 | 73.03 286 | 72.47 290 | 74.71 303 | 83.36 290 | 54.19 320 | 82.14 226 | 81.96 277 | 56.76 323 | 69.57 343 | 86.21 270 | 60.03 278 | 84.83 306 | 49.58 345 | 82.65 339 | 85.11 295 |
|
PAPM | | | 71.77 296 | 70.06 306 | 76.92 285 | 86.39 242 | 53.97 321 | 76.62 300 | 86.62 231 | 53.44 335 | 63.97 363 | 84.73 297 | 57.79 297 | 92.34 167 | 39.65 368 | 81.33 345 | 84.45 301 |
|
VNet | | | 79.31 222 | 80.27 206 | 76.44 291 | 87.92 214 | 53.95 322 | 75.58 311 | 84.35 263 | 74.39 161 | 82.23 245 | 90.72 190 | 72.84 207 | 84.39 309 | 60.38 292 | 93.98 196 | 90.97 213 |
|
our_test_3 | | | 71.85 295 | 71.59 295 | 72.62 313 | 80.71 318 | 53.78 323 | 69.72 341 | 71.71 344 | 58.80 308 | 78.03 293 | 80.51 338 | 56.61 303 | 78.84 333 | 62.20 277 | 86.04 313 | 85.23 293 |
|
PatchmatchNet |  | | 69.71 311 | 68.83 312 | 72.33 316 | 77.66 341 | 53.60 324 | 79.29 262 | 69.99 349 | 57.66 316 | 72.53 331 | 82.93 315 | 46.45 333 | 80.08 331 | 60.91 288 | 72.09 365 | 83.31 319 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MDA-MVSNet_test_wron | | | 70.05 308 | 70.44 302 | 68.88 328 | 73.84 363 | 53.47 325 | 58.93 366 | 67.28 355 | 58.43 309 | 87.09 160 | 85.40 283 | 59.80 282 | 67.25 361 | 59.66 295 | 83.54 332 | 85.92 287 |
|
Baseline_NR-MVSNet | | | 84.00 155 | 85.90 115 | 78.29 267 | 91.47 142 | 53.44 326 | 82.29 219 | 87.00 230 | 79.06 103 | 89.55 120 | 95.72 30 | 77.20 156 | 86.14 293 | 72.30 201 | 98.51 17 | 95.28 59 |
|
YYNet1 | | | 70.06 307 | 70.44 302 | 68.90 327 | 73.76 364 | 53.42 327 | 58.99 365 | 67.20 356 | 58.42 310 | 87.10 159 | 85.39 284 | 59.82 281 | 67.32 360 | 59.79 294 | 83.50 333 | 85.96 285 |
|
PVSNet_0 | | 51.08 22 | 56.10 340 | 54.97 345 | 59.48 353 | 75.12 360 | 53.28 328 | 55.16 367 | 61.89 366 | 44.30 366 | 59.16 369 | 62.48 372 | 54.22 313 | 65.91 367 | 35.40 372 | 47.01 375 | 59.25 371 |
|
FMVSNet5 | | | 72.10 294 | 71.69 294 | 73.32 308 | 81.57 305 | 53.02 329 | 76.77 297 | 78.37 299 | 63.31 277 | 76.37 304 | 91.85 156 | 36.68 368 | 78.98 332 | 47.87 352 | 92.45 228 | 87.95 265 |
|
KD-MVS_self_test | | | 81.93 188 | 83.14 167 | 78.30 266 | 84.75 268 | 52.75 330 | 80.37 247 | 89.42 186 | 70.24 219 | 90.26 98 | 93.39 114 | 74.55 187 | 86.77 283 | 68.61 234 | 96.64 104 | 95.38 55 |
|
pmmvs5 | | | 70.73 302 | 70.07 305 | 72.72 312 | 77.03 345 | 52.73 331 | 74.14 320 | 75.65 315 | 50.36 356 | 72.17 333 | 85.37 285 | 55.42 310 | 80.67 328 | 52.86 333 | 87.59 301 | 84.77 298 |
|
UnsupCasMVSNet_eth | | | 71.63 298 | 72.30 291 | 69.62 324 | 76.47 349 | 52.70 332 | 70.03 340 | 80.97 285 | 59.18 306 | 79.36 284 | 88.21 237 | 60.50 273 | 69.12 356 | 58.33 301 | 77.62 358 | 87.04 276 |
|
MG-MVS | | | 80.32 213 | 80.94 198 | 78.47 263 | 88.18 209 | 52.62 333 | 82.29 219 | 85.01 257 | 72.01 199 | 79.24 287 | 92.54 139 | 69.36 228 | 93.36 138 | 70.65 213 | 89.19 281 | 89.45 241 |
|
XXY-MVS | | | 74.44 277 | 76.19 253 | 69.21 326 | 84.61 269 | 52.43 334 | 71.70 333 | 77.18 304 | 60.73 300 | 80.60 270 | 90.96 183 | 75.44 172 | 69.35 355 | 56.13 311 | 88.33 289 | 85.86 288 |
|
tfpn200view9 | | | 74.86 271 | 74.23 270 | 76.74 289 | 86.24 251 | 52.12 335 | 79.24 264 | 73.87 326 | 73.34 173 | 81.82 254 | 84.60 299 | 46.02 336 | 88.80 256 | 51.98 336 | 90.99 256 | 89.31 245 |
|
thres400 | | | 75.14 265 | 74.23 270 | 77.86 275 | 86.24 251 | 52.12 335 | 79.24 264 | 73.87 326 | 73.34 173 | 81.82 254 | 84.60 299 | 46.02 336 | 88.80 256 | 51.98 336 | 90.99 256 | 92.66 160 |
|
MVE |  | 40.22 23 | 51.82 343 | 50.47 346 | 55.87 355 | 62.66 381 | 51.91 337 | 31.61 373 | 39.28 382 | 40.65 370 | 50.76 376 | 74.98 363 | 56.24 306 | 44.67 377 | 33.94 374 | 64.11 373 | 71.04 363 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
thres100view900 | | | 75.45 263 | 75.05 263 | 76.66 290 | 87.27 226 | 51.88 338 | 81.07 240 | 73.26 332 | 75.68 144 | 83.25 232 | 86.37 265 | 45.54 342 | 88.80 256 | 51.98 336 | 90.99 256 | 89.31 245 |
|
thres600view7 | | | 75.97 260 | 75.35 262 | 77.85 276 | 87.01 236 | 51.84 339 | 80.45 246 | 73.26 332 | 75.20 151 | 83.10 235 | 86.31 268 | 45.54 342 | 89.05 252 | 55.03 321 | 92.24 234 | 92.66 160 |
|
thres200 | | | 72.34 292 | 71.55 297 | 74.70 304 | 83.48 288 | 51.60 340 | 75.02 316 | 73.71 329 | 70.14 220 | 78.56 292 | 80.57 336 | 46.20 334 | 88.20 266 | 46.99 355 | 89.29 278 | 84.32 303 |
|
CL-MVSNet_self_test | | | 76.81 251 | 77.38 240 | 75.12 301 | 86.90 238 | 51.34 341 | 73.20 328 | 80.63 288 | 68.30 238 | 81.80 256 | 88.40 234 | 66.92 241 | 80.90 326 | 55.35 318 | 94.90 173 | 93.12 141 |
|
TESTMET0.1,1 | | | 61.29 334 | 60.32 339 | 64.19 343 | 72.06 371 | 51.30 342 | 67.89 345 | 62.09 365 | 45.27 364 | 60.65 367 | 69.01 367 | 27.93 380 | 64.74 369 | 56.31 310 | 81.65 344 | 76.53 354 |
|
Vis-MVSNet (Re-imp) | | | 77.82 240 | 77.79 237 | 77.92 273 | 88.82 197 | 51.29 343 | 83.28 189 | 71.97 340 | 74.04 163 | 82.23 245 | 89.78 212 | 57.38 298 | 89.41 249 | 57.22 306 | 95.41 153 | 93.05 143 |
|
UnsupCasMVSNet_bld | | | 69.21 313 | 69.68 308 | 67.82 333 | 79.42 329 | 51.15 344 | 67.82 348 | 75.79 312 | 54.15 332 | 77.47 301 | 85.36 286 | 59.26 285 | 70.64 352 | 48.46 349 | 79.35 351 | 81.66 336 |
|
test20.03 | | | 73.75 281 | 74.59 267 | 71.22 319 | 81.11 311 | 51.12 345 | 70.15 339 | 72.10 339 | 70.42 214 | 80.28 278 | 91.50 167 | 64.21 255 | 74.72 346 | 46.96 356 | 94.58 183 | 87.82 269 |
|
sss | | | 66.92 319 | 67.26 319 | 65.90 338 | 77.23 342 | 51.10 346 | 64.79 353 | 71.72 343 | 52.12 345 | 70.13 341 | 80.18 340 | 57.96 294 | 65.36 368 | 50.21 341 | 81.01 347 | 81.25 342 |
|
CostFormer | | | 69.98 309 | 68.68 314 | 73.87 306 | 77.14 343 | 50.72 347 | 79.26 263 | 74.51 321 | 51.94 346 | 70.97 339 | 84.75 296 | 45.16 350 | 87.49 272 | 55.16 320 | 79.23 352 | 83.40 316 |
|
tpm cat1 | | | 66.76 322 | 65.21 328 | 71.42 318 | 77.09 344 | 50.62 348 | 78.01 279 | 73.68 330 | 44.89 365 | 68.64 344 | 79.00 346 | 45.51 344 | 82.42 321 | 49.91 343 | 70.15 368 | 81.23 344 |
|
mvs_anonymous | | | 78.13 237 | 78.76 226 | 76.23 296 | 79.24 332 | 50.31 349 | 78.69 272 | 84.82 260 | 61.60 292 | 83.09 236 | 92.82 128 | 73.89 192 | 87.01 276 | 68.33 237 | 86.41 309 | 91.37 206 |
|
MIMVSNet | | | 71.09 300 | 71.59 295 | 69.57 325 | 87.23 227 | 50.07 350 | 78.91 268 | 71.83 341 | 60.20 304 | 71.26 336 | 91.76 161 | 55.08 312 | 76.09 340 | 41.06 366 | 87.02 305 | 82.54 327 |
|
PVSNet | | 58.17 21 | 66.41 323 | 65.63 327 | 68.75 329 | 81.96 301 | 49.88 351 | 62.19 360 | 72.51 337 | 51.03 350 | 68.04 347 | 75.34 362 | 50.84 322 | 74.77 344 | 45.82 359 | 82.96 335 | 81.60 337 |
|
ECVR-MVS |  | | 78.44 234 | 78.63 228 | 77.88 274 | 91.85 124 | 48.95 352 | 83.68 178 | 69.91 350 | 72.30 194 | 84.26 220 | 94.20 83 | 51.89 318 | 89.82 241 | 63.58 267 | 96.02 130 | 94.87 70 |
|
tpm2 | | | 68.45 315 | 66.83 321 | 73.30 309 | 78.93 336 | 48.50 353 | 79.76 254 | 71.76 342 | 47.50 359 | 69.92 342 | 83.60 306 | 42.07 358 | 88.40 263 | 48.44 350 | 79.51 349 | 83.01 323 |
|
tpmvs | | | 70.16 305 | 69.56 309 | 71.96 317 | 74.71 362 | 48.13 354 | 79.63 255 | 75.45 317 | 65.02 272 | 70.26 340 | 81.88 325 | 45.34 347 | 85.68 298 | 58.34 300 | 75.39 362 | 82.08 332 |
|
WTY-MVS | | | 67.91 317 | 68.35 315 | 66.58 337 | 80.82 316 | 48.12 355 | 65.96 352 | 72.60 335 | 53.67 334 | 71.20 337 | 81.68 328 | 58.97 287 | 69.06 357 | 48.57 348 | 81.67 342 | 82.55 326 |
|
VPNet | | | 80.25 214 | 81.68 187 | 75.94 297 | 92.46 100 | 47.98 356 | 76.70 298 | 81.67 281 | 73.45 170 | 84.87 203 | 92.82 128 | 74.66 185 | 86.51 287 | 61.66 283 | 96.85 97 | 93.33 132 |
|
baseline1 | | | 73.26 283 | 73.54 276 | 72.43 315 | 84.92 265 | 47.79 357 | 79.89 253 | 74.00 324 | 65.93 258 | 78.81 290 | 86.28 269 | 56.36 304 | 81.63 324 | 56.63 308 | 79.04 354 | 87.87 268 |
|
test1111 | | | 78.53 233 | 78.85 224 | 77.56 278 | 92.22 110 | 47.49 358 | 82.61 207 | 69.24 352 | 72.43 188 | 85.28 196 | 94.20 83 | 51.91 317 | 90.07 237 | 65.36 257 | 96.45 114 | 95.11 65 |
|
KD-MVS_2432*1600 | | | 66.87 320 | 65.81 325 | 70.04 320 | 67.50 375 | 47.49 358 | 62.56 358 | 79.16 294 | 61.21 295 | 77.98 294 | 80.61 334 | 25.29 383 | 82.48 319 | 53.02 330 | 84.92 322 | 80.16 350 |
|
miper_refine_blended | | | 66.87 320 | 65.81 325 | 70.04 320 | 67.50 375 | 47.49 358 | 62.56 358 | 79.16 294 | 61.21 295 | 77.98 294 | 80.61 334 | 25.29 383 | 82.48 319 | 53.02 330 | 84.92 322 | 80.16 350 |
|
test0.0.03 1 | | | 64.66 328 | 64.36 329 | 65.57 340 | 75.03 361 | 46.89 361 | 64.69 354 | 61.58 369 | 62.43 286 | 71.18 338 | 77.54 352 | 43.41 354 | 68.47 358 | 40.75 367 | 82.65 339 | 81.35 339 |
|
Patchmtry | | | 76.56 255 | 77.46 238 | 73.83 307 | 79.37 331 | 46.60 362 | 82.41 216 | 76.90 305 | 73.81 166 | 85.56 193 | 92.38 142 | 48.07 329 | 83.98 312 | 63.36 270 | 95.31 159 | 90.92 215 |
|
GG-mvs-BLEND | | | | | 67.16 335 | 73.36 365 | 46.54 363 | 84.15 160 | 55.04 376 | | 58.64 372 | 61.95 373 | 29.93 377 | 83.87 314 | 38.71 370 | 76.92 360 | 71.07 362 |
|
gg-mvs-nofinetune | | | 68.96 314 | 69.11 310 | 68.52 332 | 76.12 353 | 45.32 364 | 83.59 180 | 55.88 375 | 86.68 26 | 64.62 362 | 97.01 7 | 30.36 376 | 83.97 313 | 44.78 360 | 82.94 336 | 76.26 355 |
|
ANet_high | | | 83.17 171 | 85.68 121 | 75.65 298 | 81.24 309 | 45.26 365 | 79.94 252 | 92.91 91 | 83.83 43 | 91.33 80 | 96.88 10 | 80.25 131 | 85.92 295 | 68.89 230 | 95.89 138 | 95.76 46 |
|
DSMNet-mixed | | | 60.98 337 | 61.61 336 | 59.09 354 | 72.88 369 | 45.05 366 | 74.70 318 | 46.61 381 | 26.20 375 | 65.34 356 | 90.32 200 | 55.46 309 | 63.12 371 | 41.72 365 | 81.30 346 | 69.09 365 |
|
gm-plane-assit | | | | | | 75.42 358 | 44.97 367 | | | 52.17 342 | | 72.36 366 | | 87.90 267 | 54.10 325 | | |
|
test2506 | | | 74.12 278 | 73.39 278 | 76.28 294 | 91.85 124 | 44.20 368 | 84.06 164 | 48.20 380 | 72.30 194 | 81.90 251 | 94.20 83 | 27.22 381 | 89.77 242 | 64.81 260 | 96.02 130 | 94.87 70 |
|
MDTV_nov1_ep13 | | | | 68.29 316 | | 78.03 338 | 43.87 369 | 74.12 321 | 72.22 338 | 52.17 342 | 67.02 352 | 85.54 277 | 45.36 346 | 80.85 327 | 55.73 312 | 84.42 329 | |
|
tpm | | | 67.95 316 | 68.08 317 | 67.55 334 | 78.74 337 | 43.53 370 | 75.60 309 | 67.10 359 | 54.92 329 | 72.23 332 | 88.10 238 | 42.87 357 | 75.97 341 | 52.21 334 | 80.95 348 | 83.15 321 |
|
Patchmatch-test | | | 65.91 325 | 67.38 318 | 61.48 350 | 75.51 356 | 43.21 371 | 68.84 342 | 63.79 364 | 62.48 284 | 72.80 330 | 83.42 310 | 44.89 351 | 59.52 372 | 48.27 351 | 86.45 308 | 81.70 335 |
|
testgi | | | 72.36 291 | 74.61 265 | 65.59 339 | 80.56 320 | 42.82 372 | 68.29 344 | 73.35 331 | 66.87 253 | 81.84 253 | 89.93 209 | 72.08 215 | 66.92 363 | 46.05 358 | 92.54 227 | 87.01 277 |
|
tpmrst | | | 66.28 324 | 66.69 323 | 65.05 342 | 72.82 370 | 39.33 373 | 78.20 278 | 70.69 347 | 53.16 337 | 67.88 348 | 80.36 339 | 48.18 328 | 74.75 345 | 58.13 302 | 70.79 367 | 81.08 345 |
|
EPMVS | | | 62.47 329 | 62.63 333 | 62.01 346 | 70.63 374 | 38.74 374 | 74.76 317 | 52.86 377 | 53.91 333 | 67.71 350 | 80.01 341 | 39.40 362 | 66.60 364 | 55.54 316 | 68.81 372 | 80.68 349 |
|
dp | | | 60.70 338 | 60.29 340 | 61.92 348 | 72.04 372 | 38.67 375 | 70.83 335 | 64.08 363 | 51.28 349 | 60.75 366 | 77.28 355 | 36.59 369 | 71.58 351 | 47.41 353 | 62.34 374 | 75.52 356 |
|
ADS-MVSNet | | | 61.90 331 | 62.19 334 | 61.03 351 | 73.16 367 | 36.42 376 | 67.10 349 | 61.75 367 | 49.74 357 | 66.04 354 | 82.97 313 | 46.71 331 | 63.21 370 | 42.29 363 | 69.96 369 | 83.46 314 |
|
MVS-HIRNet | | | 61.16 335 | 62.92 332 | 55.87 355 | 79.09 333 | 35.34 377 | 71.83 332 | 57.98 374 | 46.56 361 | 59.05 370 | 91.14 176 | 49.95 325 | 76.43 339 | 38.74 369 | 71.92 366 | 55.84 373 |
|
PatchT | | | 70.52 303 | 72.76 285 | 63.79 344 | 79.38 330 | 33.53 378 | 77.63 286 | 65.37 362 | 73.61 168 | 71.77 334 | 92.79 131 | 44.38 353 | 75.65 343 | 64.53 265 | 85.37 317 | 82.18 331 |
|
new_pmnet | | | 55.69 341 | 57.66 343 | 49.76 357 | 75.47 357 | 30.59 379 | 59.56 361 | 51.45 378 | 43.62 368 | 62.49 364 | 75.48 361 | 40.96 360 | 49.15 376 | 37.39 371 | 72.52 364 | 69.55 364 |
|
DeepMVS_CX |  | | | | 24.13 360 | 32.95 382 | 29.49 380 | | 21.63 385 | 12.07 376 | 37.95 377 | 45.07 375 | 30.84 375 | 19.21 379 | 17.94 378 | 33.06 378 | 23.69 375 |
|
MDTV_nov1_ep13_2view | | | | | | | 27.60 381 | 70.76 336 | | 46.47 362 | 61.27 365 | | 45.20 348 | | 49.18 346 | | 83.75 311 |
|
new-patchmatchnet | | | 70.10 306 | 73.37 279 | 60.29 352 | 81.23 310 | 16.95 382 | 59.54 362 | 74.62 319 | 62.93 280 | 80.97 265 | 87.93 242 | 62.83 267 | 71.90 350 | 55.24 319 | 95.01 170 | 92.00 189 |
|
PMMVS2 | | | 55.64 342 | 59.27 342 | 44.74 358 | 64.30 380 | 12.32 383 | 40.60 371 | 49.79 379 | 53.19 336 | 65.06 360 | 84.81 295 | 53.60 315 | 49.76 375 | 32.68 375 | 89.41 277 | 72.15 360 |
|
tmp_tt | | | 20.25 346 | 24.50 349 | 7.49 361 | 4.47 384 | 8.70 384 | 34.17 372 | 25.16 384 | 1.00 379 | 32.43 378 | 18.49 376 | 39.37 363 | 9.21 380 | 21.64 377 | 43.75 376 | 4.57 376 |
|
test_method | | | 30.46 344 | 29.60 347 | 33.06 359 | 17.99 383 | 3.84 385 | 13.62 374 | 73.92 325 | 2.79 377 | 18.29 379 | 53.41 374 | 28.53 378 | 43.25 378 | 22.56 376 | 35.27 377 | 52.11 374 |
|
test123 | | | 6.27 349 | 8.08 352 | 0.84 362 | 1.11 386 | 0.57 386 | 62.90 357 | 0.82 386 | 0.54 380 | 1.07 382 | 2.75 381 | 1.26 385 | 0.30 381 | 1.04 379 | 1.26 380 | 1.66 377 |
|
testmvs | | | 5.91 350 | 7.65 353 | 0.72 363 | 1.20 385 | 0.37 387 | 59.14 363 | 0.67 387 | 0.49 381 | 1.11 381 | 2.76 380 | 0.94 386 | 0.24 382 | 1.02 380 | 1.47 379 | 1.55 378 |
|
test_blank | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet_test | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
DCPMVS | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
cdsmvs_eth3d_5k | | | 20.81 345 | 27.75 348 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 85.44 245 | 0.00 382 | 0.00 383 | 82.82 317 | 81.46 116 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
pcd_1.5k_mvsjas | | | 6.41 348 | 8.55 351 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 76.94 162 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet-low-res | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
sosnet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uncertanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
Regformer | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
ab-mvs-re | | | 6.65 347 | 8.87 350 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 79.80 343 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
uanet | | | 0.00 351 | 0.00 354 | 0.00 364 | 0.00 387 | 0.00 388 | 0.00 375 | 0.00 388 | 0.00 382 | 0.00 383 | 0.00 382 | 0.00 387 | 0.00 383 | 0.00 381 | 0.00 381 | 0.00 379 |
|
PC_three_1452 | | | | | | | | | | 58.96 307 | 90.06 100 | 91.33 170 | 80.66 126 | 93.03 150 | 75.78 164 | 95.94 135 | 92.48 167 |
|
eth-test2 | | | | | | 0.00 387 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 387 | | | | | | | | | | | |
|
test_241102_TWO | | | | | | | | | 93.71 53 | 83.77 44 | 93.49 39 | 94.27 77 | 89.27 22 | 95.84 23 | 86.03 46 | 97.82 56 | 92.04 187 |
|
9.14 | | | | 89.29 62 | | 91.84 126 | | 88.80 90 | 95.32 11 | 75.14 152 | 91.07 84 | 92.89 126 | 87.27 46 | 93.78 117 | 83.69 72 | 97.55 73 | |
|
test_0728_THIRD | | | | | | | | | | 85.33 32 | 93.75 31 | 94.65 59 | 87.44 45 | 95.78 28 | 87.41 21 | 98.21 31 | 92.98 146 |
|
GSMVS | | | | | | | | | | | | | | | | | 83.88 306 |
|
sam_mvs1 | | | | | | | | | | | | | 46.11 335 | | | | 83.88 306 |
|
sam_mvs | | | | | | | | | | | | | 45.92 340 | | | | |
|
MTGPA |  | | | | | | | | 91.81 122 | | | | | | | | |
|
test_post1 | | | | | | | | 78.85 271 | | | | 3.13 378 | 45.19 349 | 80.13 330 | 58.11 303 | | |
|
test_post | | | | | | | | | | | | 3.10 379 | 45.43 345 | 77.22 338 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 81.71 327 | 45.93 339 | 87.01 276 | | | |
|
MTMP | | | | | | | | 90.66 47 | 33.14 383 | | | | | | | | |
|
test9_res | | | | | | | | | | | | | | | 80.83 103 | 96.45 114 | 90.57 225 |
|
agg_prior2 | | | | | | | | | | | | | | | 79.68 117 | 96.16 125 | 90.22 232 |
|
test_prior2 | | | | | | | | 83.37 187 | | 75.43 147 | 84.58 207 | 91.57 164 | 81.92 110 | | 79.54 119 | 96.97 93 | |
|
旧先验2 | | | | | | | | 81.73 228 | | 56.88 322 | 86.54 177 | | | 84.90 305 | 72.81 197 | | |
|
新几何2 | | | | | | | | 81.72 229 | | | | | | | | | |
|
无先验 | | | | | | | | 82.81 204 | 85.62 244 | 58.09 312 | | | | 91.41 193 | 67.95 240 | | 84.48 300 |
|
原ACMM2 | | | | | | | | 82.26 222 | | | | | | | | | |
|
testdata2 | | | | | | | | | | | | | | 86.43 289 | 63.52 269 | | |
|
segment_acmp | | | | | | | | | | | | | 81.94 107 | | | | |
|
testdata1 | | | | | | | | 79.62 256 | | 73.95 165 | | | | | | | |
|
plane_prior5 | | | | | | | | | 93.61 58 | | | | | 95.22 60 | 80.78 104 | 95.83 140 | 94.46 85 |
|
plane_prior4 | | | | | | | | | | | | 92.95 124 | | | | | |
|
plane_prior2 | | | | | | | | 89.45 78 | | 79.44 97 | | | | | | | |
|
plane_prior1 | | | | | | 92.83 92 | | | | | | | | | | | |
|
n2 | | | | | | | | | 0.00 388 | | | | | | | | |
|
nn | | | | | | | | | 0.00 388 | | | | | | | | |
|
door-mid | | | | | | | | | 74.45 322 | | | | | | | | |
|
test11 | | | | | | | | | 91.46 129 | | | | | | | | |
|
door | | | | | | | | | 72.57 336 | | | | | | | | |
|
HQP-NCC | | | | | | 91.19 148 | | 84.77 147 | | 73.30 175 | 80.55 273 | | | | | | |
|
ACMP_Plane | | | | | | 91.19 148 | | 84.77 147 | | 73.30 175 | 80.55 273 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.30 148 | | |
|
HQP4-MVS | | | | | | | | | | | 80.56 272 | | | 94.61 81 | | | 93.56 128 |
|
HQP3-MVS | | | | | | | | | 92.68 99 | | | | | | | 94.47 185 | |
|
HQP2-MVS | | | | | | | | | | | | | 72.10 213 | | | | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 147 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 97.35 82 | |
|
Test By Simon | | | | | | | | | | | | | 79.09 138 | | | | |
|