| PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 182 | 88.51 17 | 90.11 95 | 95.12 44 | 90.98 6 | 88.92 247 | 77.55 140 | 97.07 81 | 83.13 339 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| Effi-MVS+-dtu | | | 85.82 109 | 83.38 154 | 93.14 3 | 87.13 226 | 91.15 2 | 87.70 104 | 88.42 196 | 74.57 154 | 83.56 233 | 85.65 284 | 78.49 139 | 94.21 88 | 72.04 203 | 92.88 218 | 94.05 102 |
|
| TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 92 | 86.07 45 | 98.48 17 | 97.22 19 |
|
| RPSCF | | | 88.00 76 | 86.93 94 | 91.22 27 | 90.08 161 | 89.30 4 | 89.68 68 | 91.11 137 | 79.26 99 | 89.68 107 | 94.81 54 | 82.44 92 | 87.74 261 | 76.54 153 | 88.74 288 | 96.61 29 |
|
| SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 28 | 88.75 14 | 93.79 28 | 94.43 67 | 88.83 24 | 95.51 44 | 87.16 29 | 97.60 64 | 92.73 156 |
|
| RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 28 | 88.75 14 | 93.79 28 | 94.43 67 | 90.64 10 | | 87.16 29 | 97.60 64 | 92.73 156 |
|
| mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 94 | 83.09 56 | 91.54 70 | 94.25 78 | 87.67 41 | 95.51 44 | 87.21 28 | 98.11 35 | 93.12 144 |
|
| SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 46 | 88.20 19 | 93.24 39 | 94.02 90 | 90.15 16 | 95.67 34 | 86.82 33 | 97.34 74 | 92.19 183 |
|
| CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 60 | 83.16 55 | 91.06 80 | 94.00 91 | 88.26 30 | 95.71 32 | 87.28 27 | 98.39 20 | 92.55 165 |
|
| FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
| EGC-MVSNET | | | 74.79 277 | 69.99 317 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 231 | 1.09 405 | 2.23 407 | 95.98 23 | 81.87 109 | 89.48 235 | 79.76 112 | 95.96 124 | 91.10 212 |
|
| CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 101 | 79.74 91 | 87.50 149 | 92.38 143 | 81.42 114 | 93.28 129 | 83.07 74 | 97.24 77 | 91.67 200 |
|
| MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 81 | 82.59 61 | 88.52 130 | 94.37 73 | 86.74 50 | 95.41 50 | 86.32 39 | 98.21 29 | 93.19 140 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 168 | 86.67 14 | 90.51 50 | 90.20 167 | 69.87 218 | 95.06 11 | 96.14 21 | 84.28 72 | 93.07 137 | 87.68 15 | 96.34 105 | 97.09 21 |
|
| PM-MVS | | | 80.20 215 | 79.00 225 | 83.78 165 | 88.17 205 | 86.66 15 | 81.31 233 | 66.81 378 | 69.64 219 | 88.33 135 | 90.19 212 | 64.58 257 | 83.63 318 | 71.99 204 | 90.03 272 | 81.06 365 |
|
| APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 172 | 86.65 16 | 89.98 60 | 91.91 113 | 84.26 42 | 90.87 87 | 93.92 99 | 82.18 101 | 89.29 243 | 73.75 183 | 94.81 171 | 93.70 119 |
|
| MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 119 | 84.07 44 | 92.00 64 | 94.40 71 | 86.63 51 | 95.28 55 | 88.59 5 | 98.31 23 | 92.30 176 |
|
| XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 62 | 85.07 36 | 89.99 99 | 94.03 89 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| X-MVStestdata | | | 85.04 120 | 82.70 167 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 62 | 85.07 36 | 89.99 99 | 16.05 404 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 61 | 86.15 20 | 93.37 10 | 95.10 13 | 90.28 9 | 92.11 61 | 95.03 45 | 89.75 20 | 94.93 65 | 79.95 110 | 98.27 25 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 43 | 78.43 111 | 89.16 119 | 92.25 150 | 72.03 220 | 96.36 3 | 88.21 7 | 90.93 257 | 92.98 150 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 131 | 93.60 56 | 80.16 87 | 89.13 121 | 93.44 112 | 83.82 75 | 90.98 192 | 83.86 68 | 95.30 151 | 93.60 125 |
|
| XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 116 | 93.91 42 | 80.07 89 | 86.75 164 | 93.26 114 | 93.64 2 | 90.93 194 | 84.60 61 | 90.75 263 | 93.97 104 |
|
| ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 28 | 82.52 62 | 92.39 58 | 94.14 84 | 89.15 23 | 95.62 35 | 87.35 24 | 98.24 26 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 66 | 81.91 67 | 90.88 86 | 94.21 79 | 87.75 39 | 95.87 19 | 87.60 18 | 97.71 58 | 93.83 111 |
|
| ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 68 | 81.99 65 | 91.40 72 | 94.17 83 | 87.51 42 | 95.87 19 | 87.74 13 | 97.76 55 | 93.99 103 |
|
| HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 133 | 78.20 113 | 86.69 167 | 92.28 149 | 80.36 126 | 95.06 62 | 86.17 44 | 96.49 99 | 90.22 235 |
|
| PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 43 | 80.32 85 | 91.74 69 | 94.41 70 | 88.17 32 | 95.98 11 | 86.37 38 | 97.99 40 | 93.96 105 |
|
| HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 23 | 85.21 35 | 92.51 55 | 95.13 43 | 90.65 9 | 95.34 52 | 88.06 8 | 98.15 34 | 95.95 41 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 67 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 71 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 239 | 74.12 176 | 96.10 118 | 94.45 82 |
|
| APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 71 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 239 | 74.12 176 | 96.10 118 | 94.45 82 |
|
| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| PatchMatch-RL | | | 74.48 279 | 73.22 284 | 78.27 267 | 87.70 213 | 85.26 34 | 75.92 313 | 70.09 362 | 64.34 272 | 76.09 322 | 81.25 340 | 65.87 251 | 78.07 346 | 53.86 341 | 83.82 349 | 71.48 385 |
|
| APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 77 | 85.17 35 | 92.47 25 | 95.05 14 | 87.65 22 | 93.21 40 | 94.39 72 | 90.09 17 | 95.08 61 | 86.67 35 | 97.60 64 | 94.18 95 |
|
| FPMVS | | | 72.29 298 | 72.00 297 | 73.14 315 | 88.63 194 | 85.00 36 | 74.65 326 | 67.39 372 | 71.94 198 | 77.80 309 | 87.66 253 | 50.48 336 | 75.83 354 | 49.95 361 | 79.51 370 | 58.58 399 |
|
| ITE_SJBPF | | | | | 90.11 45 | 90.72 149 | 84.97 37 | | 90.30 162 | 81.56 71 | 90.02 98 | 91.20 178 | 82.40 94 | 90.81 200 | 73.58 186 | 94.66 176 | 94.56 76 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 105 | 90.49 38 | 91.48 130 | 84.90 38 | 83.41 185 | 92.38 99 | 70.25 214 | 89.35 118 | 90.68 198 | 82.85 87 | 94.57 76 | 79.55 115 | 95.95 125 | 92.00 190 |
|
| N_pmnet | | | 70.20 314 | 68.80 328 | 74.38 308 | 80.91 326 | 84.81 39 | 59.12 389 | 76.45 320 | 55.06 342 | 75.31 334 | 82.36 328 | 55.74 314 | 54.82 399 | 47.02 375 | 87.24 306 | 83.52 330 |
|
| mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 64 | 84.79 40 | 89.89 63 | 90.63 150 | 70.00 217 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 116 | 84.27 64 | 95.97 123 | 95.52 49 |
|
| jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 68 | 84.72 41 | 89.70 66 | 90.29 164 | 69.27 221 | 94.39 16 | 96.38 15 | 86.02 60 | 93.52 120 | 83.96 66 | 95.92 128 | 95.34 53 |
|
| HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 15 | 82.88 59 | 91.77 68 | 93.94 98 | 90.55 12 | 95.73 31 | 88.50 6 | 98.23 27 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 67 | 81.99 65 | 91.47 71 | 93.96 95 | 88.35 29 | 95.56 39 | 87.74 13 | 97.74 57 | 92.85 153 |
|
| XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 39 | 79.68 92 | 92.09 62 | 93.89 100 | 83.80 76 | 93.10 136 | 82.67 82 | 98.04 36 | 93.64 123 |
|
| LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 183 | 84.23 45 | 93.58 6 | 94.68 17 | 90.65 7 | 90.33 93 | 93.95 97 | 84.50 69 | 95.37 51 | 80.87 100 | 95.50 143 | 94.53 79 |
|
| CNLPA | | | 83.55 156 | 83.10 161 | 84.90 135 | 89.34 176 | 83.87 46 | 84.54 157 | 88.77 191 | 79.09 101 | 83.54 234 | 88.66 238 | 74.87 179 | 81.73 327 | 66.84 251 | 92.29 228 | 89.11 257 |
|
| ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 61 | 79.20 100 | 93.83 27 | 93.60 110 | 90.81 7 | 92.96 139 | 85.02 56 | 98.45 18 | 92.41 170 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 121 | 83.40 48 | 89.50 75 | 95.44 10 | 79.47 94 | 88.00 141 | 93.03 121 | 82.66 89 | 91.47 177 | 70.81 209 | 96.14 115 | 94.16 96 |
|
| TestCases | | | | | 89.68 53 | 91.59 121 | 83.40 48 | | 95.44 10 | 79.47 94 | 88.00 141 | 93.03 121 | 82.66 89 | 91.47 177 | 70.81 209 | 96.14 115 | 94.16 96 |
|
| F-COLMAP | | | 84.97 123 | 83.42 153 | 89.63 55 | 92.39 93 | 83.40 48 | 88.83 87 | 91.92 112 | 73.19 176 | 80.18 289 | 89.15 231 | 77.04 157 | 93.28 129 | 65.82 262 | 92.28 229 | 92.21 182 |
|
| MVS_111021_LR | | | 84.28 136 | 83.76 151 | 85.83 122 | 89.23 179 | 83.07 51 | 80.99 239 | 83.56 270 | 72.71 184 | 86.07 181 | 89.07 232 | 81.75 111 | 86.19 288 | 77.11 147 | 93.36 204 | 88.24 268 |
|
| ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 25 | 80.14 88 | 91.29 76 | 93.97 92 | 87.93 38 | 95.87 19 | 88.65 4 | 97.96 45 | 94.12 99 |
|
| test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 94 | 82.98 53 | 91.98 31 | 90.08 170 | 71.54 199 | 94.28 20 | 96.54 13 | 81.57 112 | 94.27 84 | 86.26 40 | 96.49 99 | 97.09 21 |
|
| UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 89 | 88.22 18 | 88.53 129 | 97.64 2 | 83.45 81 | 94.55 78 | 86.02 48 | 98.60 12 | 96.67 27 |
|
| GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 49 | 80.98 79 | 91.38 73 | 93.80 102 | 87.20 46 | 95.80 25 | 87.10 31 | 97.69 59 | 93.93 106 |
|
| h-mvs33 | | | 84.25 137 | 82.76 166 | 88.72 71 | 91.82 118 | 82.60 56 | 84.00 168 | 84.98 256 | 71.27 201 | 86.70 165 | 90.55 203 | 63.04 270 | 93.92 100 | 78.26 129 | 94.20 188 | 89.63 247 |
|
| hse-mvs2 | | | 83.47 158 | 81.81 181 | 88.47 75 | 91.03 142 | 82.27 57 | 82.61 207 | 83.69 267 | 71.27 201 | 86.70 165 | 86.05 280 | 63.04 270 | 92.41 153 | 78.26 129 | 93.62 203 | 90.71 222 |
|
| AUN-MVS | | | 81.18 196 | 78.78 228 | 88.39 77 | 90.93 144 | 82.14 58 | 82.51 213 | 83.67 268 | 64.69 271 | 80.29 285 | 85.91 283 | 51.07 333 | 92.38 154 | 76.29 156 | 93.63 202 | 90.65 226 |
|
| LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 20 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 20 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 111 | 81.68 61 | 87.49 107 | 93.17 71 | 76.02 134 | 88.64 127 | 91.22 176 | 84.24 73 | 93.37 127 | 77.97 136 | 97.03 82 | 95.52 49 |
|
| 3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 135 | 81.66 62 | 91.25 38 | 94.13 33 | 88.89 11 | 88.83 124 | 94.26 77 | 77.55 149 | 95.86 22 | 84.88 58 | 95.87 130 | 95.24 58 |
|
| TSAR-MVS + GP. | | | 83.95 147 | 82.69 168 | 87.72 86 | 89.27 178 | 81.45 63 | 83.72 178 | 81.58 288 | 74.73 152 | 85.66 188 | 86.06 279 | 72.56 213 | 92.69 147 | 75.44 164 | 95.21 152 | 89.01 263 |
|
| APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 88 | 81.34 64 | 90.19 56 | 93.08 77 | 80.87 81 | 91.13 78 | 93.19 115 | 86.22 57 | 95.97 12 | 82.23 88 | 97.18 79 | 90.45 231 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 37 | 79.03 103 | 92.87 46 | 93.74 106 | 90.60 11 | 95.21 58 | 82.87 78 | 98.76 3 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 58 | 82.82 60 | 92.60 54 | 93.97 92 | 88.19 31 | 96.29 5 | 87.61 17 | 98.20 31 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ZD-MVS | | | | | | 92.22 101 | 80.48 67 | | 91.85 115 | 71.22 204 | 90.38 91 | 92.98 123 | 86.06 59 | 96.11 6 | 81.99 91 | 96.75 90 | |
|
| OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 75 | 80.37 68 | 91.91 33 | 93.11 74 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 207 | 94.85 67 | 85.07 54 | 97.78 53 | 97.26 16 |
|
| PLC |  | 73.85 16 | 82.09 180 | 80.31 208 | 87.45 90 | 90.86 147 | 80.29 69 | 85.88 132 | 90.65 149 | 68.17 235 | 76.32 318 | 86.33 274 | 73.12 206 | 92.61 149 | 61.40 299 | 90.02 273 | 89.44 250 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| LF4IMVS | | | 82.75 167 | 81.93 179 | 85.19 131 | 82.08 311 | 80.15 70 | 85.53 138 | 88.76 192 | 68.01 236 | 85.58 190 | 87.75 251 | 71.80 221 | 86.85 275 | 74.02 178 | 93.87 196 | 88.58 266 |
|
| MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 98 | 94.51 18 | 75.79 140 | 92.94 44 | 94.96 46 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 19 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 120 | 92.78 90 | 78.78 106 | 92.51 55 | 93.64 109 | 88.13 34 | 93.84 105 | 84.83 59 | 97.55 67 | 94.10 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 129 | 88.37 78 | 88.78 191 | 79.72 73 | 87.15 111 | 93.50 57 | 69.17 222 | 85.80 187 | 89.56 223 | 80.76 121 | 92.13 161 | 73.21 196 | 95.51 142 | 93.25 138 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| TEST9 | | | | | | 92.34 95 | 79.70 74 | 83.94 169 | 90.32 159 | 65.41 265 | 84.49 209 | 90.97 185 | 82.03 104 | 93.63 111 | | | |
|
| train_agg | | | 85.98 106 | 85.28 123 | 88.07 83 | 92.34 95 | 79.70 74 | 83.94 169 | 90.32 159 | 65.79 256 | 84.49 209 | 90.97 185 | 81.93 106 | 93.63 111 | 81.21 96 | 96.54 96 | 90.88 217 |
|
| ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 53 | 77.65 119 | 91.97 65 | 94.89 48 | 88.38 27 | 95.45 48 | 89.27 3 | 97.87 50 | 93.27 136 |
|
| SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 69 | 75.37 147 | 92.84 48 | 95.28 38 | 85.58 62 | 96.09 7 | 87.92 10 | 97.76 55 | 93.88 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 170 | 79.18 78 | 90.47 51 | 94.77 16 | 79.37 98 | 84.32 215 | 89.33 227 | 83.87 74 | 94.53 79 | 82.45 84 | 94.89 167 | 94.90 65 |
|
| DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 62 | 79.07 79 | 88.54 93 | 94.20 26 | 73.53 166 | 89.71 106 | 94.82 51 | 85.09 63 | 95.77 30 | 84.17 65 | 98.03 38 | 93.26 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_prior4 | | | | | | | 78.97 80 | 84.59 154 | | | | | | | | | |
|
| test_8 | | | | | | 92.09 105 | 78.87 81 | 83.82 174 | 90.31 161 | 65.79 256 | 84.36 213 | 90.96 187 | 81.93 106 | 93.44 124 | | | |
|
| NCCC | | | 87.36 84 | 86.87 95 | 88.83 68 | 92.32 97 | 78.84 82 | 86.58 124 | 91.09 138 | 78.77 107 | 84.85 204 | 90.89 189 | 80.85 120 | 95.29 53 | 81.14 97 | 95.32 148 | 92.34 174 |
|
| DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 67 | 93.38 68 | 78.65 83 | 89.15 82 | 94.05 37 | 84.68 40 | 93.90 24 | 94.11 87 | 88.13 34 | 96.30 4 | 84.51 62 | 97.81 52 | 91.70 199 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| 新几何1 | | | | | 82.95 189 | 93.96 55 | 78.56 84 | | 80.24 295 | 55.45 340 | 83.93 227 | 91.08 182 | 71.19 225 | 88.33 256 | 65.84 261 | 93.07 213 | 81.95 352 |
|
| test_fmvsmconf0.01_n | | | 86.68 93 | 86.52 99 | 87.18 92 | 85.94 257 | 78.30 85 | 86.93 114 | 92.20 103 | 65.94 253 | 89.16 119 | 93.16 117 | 83.10 84 | 89.89 228 | 87.81 11 | 94.43 182 | 93.35 132 |
|
| test_fmvsmconf0.1_n | | | 86.18 103 | 85.88 111 | 87.08 94 | 85.26 267 | 78.25 86 | 85.82 134 | 91.82 117 | 65.33 266 | 88.55 128 | 92.35 147 | 82.62 91 | 89.80 230 | 86.87 32 | 94.32 185 | 93.18 141 |
|
| test_fmvsmconf_n | | | 85.88 108 | 85.51 119 | 86.99 96 | 84.77 274 | 78.21 87 | 85.40 142 | 91.39 129 | 65.32 267 | 87.72 145 | 91.81 161 | 82.33 96 | 89.78 231 | 86.68 34 | 94.20 188 | 92.99 149 |
|
| MAR-MVS | | | 80.24 214 | 78.74 230 | 84.73 140 | 86.87 236 | 78.18 88 | 85.75 135 | 87.81 208 | 65.67 261 | 77.84 307 | 78.50 363 | 73.79 194 | 90.53 208 | 61.59 298 | 90.87 259 | 85.49 305 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| APDe-MVS |  | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 79 | 78.04 89 | 92.84 15 | 94.14 32 | 83.33 53 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 2 | 87.60 18 | 97.98 42 | 92.98 150 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSC_two_6792asdad | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 140 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 171 |
|
| No_MVS | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 140 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 171 |
|
| PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 70 | 77.96 92 | 87.94 101 | 91.97 110 | 70.73 208 | 94.19 21 | 96.67 11 | 76.94 159 | 94.57 76 | 83.07 74 | 96.28 108 | 96.15 33 |
|
| OPU-MVS | | | | | 88.27 80 | 91.89 112 | 77.83 93 | 90.47 51 | | | | 91.22 176 | 81.12 117 | 94.68 71 | 74.48 171 | 95.35 146 | 92.29 177 |
|
| test_part2 | | | | | | 93.86 57 | 77.77 94 | | | | 92.84 48 | | | | | | |
|
| test_fmvsm_n_1920 | | | 83.60 154 | 82.89 164 | 85.74 123 | 85.22 268 | 77.74 95 | 84.12 164 | 90.48 153 | 59.87 316 | 86.45 177 | 91.12 180 | 75.65 171 | 85.89 295 | 82.28 87 | 90.87 259 | 93.58 126 |
|
| agg_prior | | | | | | 91.58 124 | 77.69 96 | | 90.30 162 | | 84.32 215 | | | 93.18 132 | | | |
|
| DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 91 | 91.30 133 | 77.50 97 | 87.55 105 | 92.97 84 | 87.95 20 | 89.62 110 | 92.87 129 | 84.56 68 | 93.89 102 | 77.65 138 | 96.62 93 | 90.70 223 |
|
| CS-MVS-test | | | 87.00 87 | 86.43 101 | 88.71 72 | 89.46 173 | 77.46 98 | 89.42 79 | 95.73 6 | 77.87 117 | 81.64 266 | 87.25 261 | 82.43 93 | 94.53 79 | 77.65 138 | 96.46 101 | 94.14 98 |
|
| save fliter | | | | | | 93.75 59 | 77.44 99 | 86.31 128 | 89.72 176 | 70.80 207 | | | | | | | |
|
| Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 86 | 92.09 105 | 77.43 100 | 87.35 108 | 92.09 106 | 78.87 105 | 84.27 220 | 94.05 88 | 78.35 140 | 93.65 109 | 80.54 106 | 91.58 245 | 92.08 187 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| PHI-MVS | | | 86.38 97 | 85.81 113 | 88.08 82 | 88.44 200 | 77.34 101 | 89.35 80 | 93.05 78 | 73.15 177 | 84.76 205 | 87.70 252 | 78.87 136 | 94.18 90 | 80.67 104 | 96.29 107 | 92.73 156 |
|
| plane_prior7 | | | | | | 93.45 65 | 77.31 102 | | | | | | | | | | |
|
| CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 81 | 92.87 81 | 77.30 103 | 85.25 143 | 91.23 134 | 77.31 124 | 87.07 158 | 91.47 170 | 82.94 86 | 94.71 70 | 84.67 60 | 96.27 110 | 92.62 163 |
|
| SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 74 | 92.86 83 | 77.09 104 | 91.19 40 | 95.74 5 | 81.38 73 | 92.28 59 | 93.80 102 | 86.89 49 | 94.64 73 | 85.52 51 | 97.51 71 | 94.30 91 |
|
| SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 112 | 91.63 120 | 77.07 105 | 89.82 64 | 93.77 48 | 78.90 104 | 92.88 45 | 92.29 148 | 86.11 58 | 90.22 215 | 86.24 43 | 97.24 77 | 91.36 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 117 | 87.96 85 | 91.30 133 | 76.92 106 | 87.19 109 | 91.99 109 | 70.56 209 | 84.96 200 | 90.69 197 | 80.01 129 | 95.14 59 | 78.37 125 | 95.78 137 | 91.82 195 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| plane_prior3 | | | | | | | 76.85 107 | | | 77.79 118 | 86.55 169 | | | | | | |
|
| TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 136 | 67.85 241 | 86.63 168 | 94.84 50 | 79.58 132 | 95.96 13 | 87.62 16 | 94.50 179 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| test222 | | | | | | 93.31 70 | 76.54 109 | 79.38 259 | 77.79 306 | 52.59 354 | 82.36 251 | 90.84 193 | 66.83 245 | | | 91.69 241 | 81.25 360 |
|
| plane_prior6 | | | | | | 92.61 87 | 76.54 109 | | | | | | 74.84 180 | | | | |
|
| Fast-Effi-MVS+-dtu | | | 82.54 171 | 81.41 191 | 85.90 119 | 85.60 260 | 76.53 111 | 83.07 195 | 89.62 181 | 73.02 179 | 79.11 299 | 83.51 312 | 80.74 122 | 90.24 214 | 68.76 237 | 89.29 279 | 90.94 215 |
|
| mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 98 | 76.51 112 | 91.09 42 | 91.87 114 | 72.61 186 | 92.16 60 | 95.23 41 | 66.01 249 | 95.59 37 | 86.02 48 | 97.78 53 | 97.24 17 |
|
| HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 73 | 93.45 65 | 76.42 113 | 89.45 77 | 93.61 54 | 79.44 96 | 86.55 169 | 92.95 126 | 74.84 180 | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 111 | | 75.94 138 | | | | | | 95.03 160 | |
|
| MM | | | 87.64 83 | 87.15 87 | 89.09 65 | 89.51 171 | 76.39 115 | 88.68 91 | 86.76 227 | 84.54 41 | 83.58 232 | 93.78 104 | 73.36 203 | 96.48 1 | 87.98 9 | 96.21 112 | 94.41 86 |
|
| ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 76 | 93.00 78 | 76.26 116 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 47 | 91.62 3 | 93.44 124 | 78.35 126 | 98.76 3 | 95.61 48 |
|
| UGNet | | | 82.78 166 | 81.64 183 | 86.21 113 | 86.20 251 | 76.24 117 | 86.86 115 | 85.68 241 | 77.07 126 | 73.76 343 | 92.82 130 | 69.64 230 | 91.82 172 | 69.04 234 | 93.69 200 | 90.56 228 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| mvsany_test3 | | | 65.48 348 | 62.97 356 | 73.03 317 | 69.99 396 | 76.17 118 | 64.83 376 | 43.71 407 | 43.68 388 | 80.25 288 | 87.05 267 | 52.83 325 | 63.09 394 | 51.92 357 | 72.44 389 | 79.84 372 |
|
| test_fmvsmvis_n_1920 | | | 85.22 115 | 85.36 122 | 84.81 137 | 85.80 259 | 76.13 119 | 85.15 146 | 92.32 100 | 61.40 296 | 91.33 74 | 90.85 192 | 83.76 78 | 86.16 289 | 84.31 63 | 93.28 208 | 92.15 185 |
|
| MVS_111021_HR | | | 84.63 126 | 84.34 143 | 85.49 129 | 90.18 160 | 75.86 120 | 79.23 264 | 87.13 217 | 73.35 169 | 85.56 191 | 89.34 226 | 83.60 80 | 90.50 209 | 76.64 151 | 94.05 192 | 90.09 240 |
|
| RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 63 | 75.70 121 | 92.36 26 | 89.06 189 | 77.34 122 | 93.63 35 | 95.83 25 | 65.40 255 | 95.90 15 | 85.01 57 | 98.23 27 | 97.49 13 |
|
| CDPH-MVS | | | 86.17 104 | 85.54 118 | 88.05 84 | 92.25 99 | 75.45 122 | 83.85 173 | 92.01 108 | 65.91 255 | 86.19 178 | 91.75 164 | 83.77 77 | 94.98 64 | 77.43 143 | 96.71 91 | 93.73 118 |
|
| DP-MVS Recon | | | 84.05 144 | 83.22 156 | 86.52 105 | 91.73 119 | 75.27 123 | 83.23 192 | 92.40 97 | 72.04 196 | 82.04 256 | 88.33 241 | 77.91 144 | 93.95 99 | 66.17 256 | 95.12 157 | 90.34 234 |
|
| wuyk23d | | | 75.13 270 | 79.30 223 | 62.63 370 | 75.56 372 | 75.18 124 | 80.89 240 | 73.10 345 | 75.06 150 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 400 | 34.16 400 | 97.11 80 | 59.85 397 |
|
| 3Dnovator | | 80.37 7 | 84.80 124 | 84.71 133 | 85.06 134 | 86.36 245 | 74.71 125 | 88.77 89 | 90.00 172 | 75.65 142 | 84.96 200 | 93.17 116 | 74.06 190 | 91.19 186 | 78.28 128 | 91.09 251 | 89.29 255 |
|
| NP-MVS | | | | | | 91.95 109 | 74.55 126 | | | | | 90.17 214 | | | | | |
|
| pmmvs-eth3d | | | 78.42 236 | 77.04 248 | 82.57 200 | 87.44 220 | 74.41 127 | 80.86 241 | 79.67 298 | 55.68 339 | 84.69 206 | 90.31 209 | 60.91 278 | 85.42 300 | 62.20 290 | 91.59 244 | 87.88 278 |
|
| CSCG | | | 86.26 99 | 86.47 100 | 85.60 126 | 90.87 146 | 74.26 128 | 87.98 100 | 91.85 115 | 80.35 84 | 89.54 116 | 88.01 245 | 79.09 134 | 92.13 161 | 75.51 162 | 95.06 159 | 90.41 232 |
|
| 原ACMM1 | | | | | 84.60 143 | 92.81 86 | 74.01 129 | | 91.50 124 | 62.59 280 | 82.73 247 | 90.67 200 | 76.53 166 | 94.25 86 | 69.24 228 | 95.69 140 | 85.55 303 |
|
| fmvsm_l_conf0.5_n | | | 82.06 181 | 81.54 189 | 83.60 171 | 83.94 288 | 73.90 130 | 83.35 187 | 86.10 234 | 58.97 318 | 83.80 228 | 90.36 206 | 74.23 188 | 86.94 273 | 82.90 77 | 90.22 270 | 89.94 242 |
|
| MVP-Stereo | | | 75.81 265 | 73.51 281 | 82.71 195 | 89.35 175 | 73.62 131 | 80.06 247 | 85.20 248 | 60.30 310 | 73.96 341 | 87.94 247 | 57.89 302 | 89.45 238 | 52.02 353 | 74.87 387 | 85.06 309 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Gipuma |  | | 84.44 131 | 86.33 102 | 78.78 255 | 84.20 285 | 73.57 132 | 89.55 72 | 90.44 155 | 84.24 43 | 84.38 212 | 94.89 48 | 76.35 170 | 80.40 336 | 76.14 157 | 96.80 89 | 82.36 348 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| fmvsm_s_conf0.1_n_a | | | 82.58 170 | 81.93 179 | 84.50 144 | 87.68 214 | 73.35 133 | 86.14 130 | 77.70 307 | 61.64 294 | 85.02 198 | 91.62 166 | 77.75 145 | 86.24 285 | 82.79 80 | 87.07 309 | 93.91 108 |
|
| fmvsm_s_conf0.5_n_a | | | 82.21 176 | 81.51 190 | 84.32 152 | 86.56 238 | 73.35 133 | 85.46 139 | 77.30 311 | 61.81 290 | 84.51 208 | 90.88 191 | 77.36 151 | 86.21 287 | 82.72 81 | 86.97 314 | 93.38 131 |
|
| EPNet | | | 80.37 210 | 78.41 235 | 86.23 111 | 76.75 362 | 73.28 135 | 87.18 110 | 77.45 309 | 76.24 131 | 68.14 371 | 88.93 234 | 65.41 254 | 93.85 103 | 69.47 226 | 96.12 117 | 91.55 204 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| test_one_0601 | | | | | | 93.85 58 | 73.27 136 | | 94.11 34 | 86.57 25 | 93.47 38 | 94.64 59 | 88.42 26 | | | | |
|
| PVSNet_Blended_VisFu | | | 81.55 190 | 80.49 206 | 84.70 142 | 91.58 124 | 73.24 137 | 84.21 161 | 91.67 121 | 62.86 279 | 80.94 274 | 87.16 263 | 67.27 242 | 92.87 144 | 69.82 224 | 88.94 285 | 87.99 275 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 191 | 80.87 202 | 83.25 180 | 83.73 293 | 73.21 138 | 83.00 198 | 85.59 243 | 58.22 324 | 82.96 243 | 90.09 216 | 72.30 215 | 86.65 279 | 81.97 92 | 89.95 274 | 89.88 243 |
|
| MVS_0304 | | | 86.35 98 | 85.92 109 | 87.66 88 | 89.21 180 | 73.16 139 | 88.40 95 | 83.63 269 | 81.27 74 | 80.87 276 | 94.12 86 | 71.49 224 | 95.71 32 | 87.79 12 | 96.50 98 | 94.11 100 |
|
| TAMVS | | | 78.08 239 | 76.36 254 | 83.23 181 | 90.62 151 | 72.87 140 | 79.08 265 | 80.01 297 | 61.72 292 | 81.35 270 | 86.92 268 | 63.96 263 | 88.78 251 | 50.61 359 | 93.01 215 | 88.04 274 |
|
| EI-MVSNet-Vis-set | | | 85.12 119 | 84.53 137 | 86.88 98 | 84.01 287 | 72.76 141 | 83.91 172 | 85.18 249 | 80.44 82 | 88.75 125 | 85.49 286 | 80.08 128 | 91.92 167 | 82.02 90 | 90.85 261 | 95.97 39 |
|
| SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 97 | 94.18 46 | 72.65 142 | 90.47 51 | 93.69 51 | 83.77 47 | 94.11 22 | 94.27 74 | 90.28 14 | 95.84 23 | 86.03 46 | 97.92 46 | 92.29 177 |
|
| test_241102_ONE | | | | | | 94.18 46 | 72.65 142 | | 93.69 51 | 83.62 49 | 94.11 22 | 93.78 104 | 90.28 14 | 95.50 46 | | | |
|
| DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 95 | 91.55 126 | 72.64 144 | 96.19 2 | 94.10 35 | 85.33 33 | 93.49 36 | 94.64 59 | 81.12 117 | 95.88 17 | 87.41 22 | 95.94 126 | 92.48 167 |
|
| IU-MVS | | | | | | 94.18 46 | 72.64 144 | | 90.82 145 | 56.98 335 | 89.67 108 | | | | 85.78 50 | 97.92 46 | 93.28 135 |
|
| test12 | | | | | 86.57 103 | 90.74 148 | 72.63 146 | | 90.69 148 | | 82.76 246 | | 79.20 133 | 94.80 68 | | 95.32 148 | 92.27 179 |
|
| EG-PatchMatch MVS | | | 84.08 143 | 84.11 145 | 83.98 159 | 92.22 101 | 72.61 147 | 82.20 225 | 87.02 222 | 72.63 185 | 88.86 122 | 91.02 183 | 78.52 137 | 91.11 189 | 73.41 188 | 91.09 251 | 88.21 269 |
|
| DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 109 | 94.16 49 | 72.56 148 | 90.54 48 | 91.01 140 | 83.61 50 | 93.75 30 | 94.65 56 | 89.76 18 | 95.78 28 | 86.42 36 | 97.97 43 | 90.55 229 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 94.16 49 | 72.56 148 | 90.63 45 | 93.90 43 | 83.61 50 | 93.75 30 | 94.49 64 | 89.76 18 | | | | |
|
| EI-MVSNet-UG-set | | | 85.04 120 | 84.44 139 | 86.85 99 | 83.87 291 | 72.52 150 | 83.82 174 | 85.15 250 | 80.27 86 | 88.75 125 | 85.45 288 | 79.95 130 | 91.90 168 | 81.92 93 | 90.80 262 | 96.13 34 |
|
| CDS-MVSNet | | | 77.32 247 | 75.40 263 | 83.06 185 | 89.00 184 | 72.48 151 | 77.90 281 | 82.17 282 | 60.81 305 | 78.94 300 | 83.49 313 | 59.30 290 | 88.76 252 | 54.64 339 | 92.37 225 | 87.93 277 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| test_0728_SECOND | | | | | 86.79 100 | 94.25 45 | 72.45 152 | 90.54 48 | 94.10 35 | | | | | 95.88 17 | 86.42 36 | 97.97 43 | 92.02 189 |
|
| testdata | | | | | 79.54 248 | 92.87 81 | 72.34 153 | | 80.14 296 | 59.91 315 | 85.47 193 | 91.75 164 | 67.96 240 | 85.24 301 | 68.57 242 | 92.18 233 | 81.06 365 |
|
| PCF-MVS | | 74.62 15 | 82.15 179 | 80.92 201 | 85.84 121 | 89.43 174 | 72.30 154 | 80.53 243 | 91.82 117 | 57.36 332 | 87.81 144 | 89.92 218 | 77.67 147 | 93.63 111 | 58.69 311 | 95.08 158 | 91.58 203 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| AdaColmap |  | | 83.66 152 | 83.69 152 | 83.57 173 | 90.05 164 | 72.26 155 | 86.29 129 | 90.00 172 | 78.19 114 | 81.65 265 | 87.16 263 | 83.40 82 | 94.24 87 | 61.69 296 | 94.76 175 | 84.21 321 |
|
| test_0402 | | | 88.65 65 | 89.58 56 | 85.88 120 | 92.55 89 | 72.22 156 | 84.01 167 | 89.44 184 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 56 | 93.59 116 | 79.84 111 | 95.21 152 | 91.82 195 |
|
| CANet | | | 83.79 150 | 82.85 165 | 86.63 102 | 86.17 252 | 72.21 157 | 83.76 177 | 91.43 126 | 77.24 125 | 74.39 339 | 87.45 257 | 75.36 174 | 95.42 49 | 77.03 148 | 92.83 219 | 92.25 181 |
|
| EC-MVSNet | | | 88.01 75 | 88.32 72 | 87.09 93 | 89.28 177 | 72.03 158 | 90.31 54 | 96.31 3 | 80.88 80 | 85.12 196 | 89.67 222 | 84.47 70 | 95.46 47 | 82.56 83 | 96.26 111 | 93.77 117 |
|
| test_prior | | | | | 86.32 108 | 90.59 152 | 71.99 159 | | 92.85 87 | | | | | 94.17 92 | | | 92.80 154 |
|
| 旧先验1 | | | | | | 91.97 108 | 71.77 160 | | 81.78 285 | | | 91.84 158 | 73.92 192 | | | 93.65 201 | 83.61 329 |
|
| xiu_mvs_v1_base_debu | | | 80.84 200 | 80.14 214 | 82.93 190 | 88.31 201 | 71.73 161 | 79.53 255 | 87.17 214 | 65.43 262 | 79.59 291 | 82.73 324 | 76.94 159 | 90.14 220 | 73.22 191 | 88.33 292 | 86.90 289 |
|
| xiu_mvs_v1_base | | | 80.84 200 | 80.14 214 | 82.93 190 | 88.31 201 | 71.73 161 | 79.53 255 | 87.17 214 | 65.43 262 | 79.59 291 | 82.73 324 | 76.94 159 | 90.14 220 | 73.22 191 | 88.33 292 | 86.90 289 |
|
| xiu_mvs_v1_base_debi | | | 80.84 200 | 80.14 214 | 82.93 190 | 88.31 201 | 71.73 161 | 79.53 255 | 87.17 214 | 65.43 262 | 79.59 291 | 82.73 324 | 76.94 159 | 90.14 220 | 73.22 191 | 88.33 292 | 86.90 289 |
|
| pmmvs4 | | | 74.92 274 | 72.98 287 | 80.73 230 | 84.95 270 | 71.71 164 | 76.23 308 | 77.59 308 | 52.83 353 | 77.73 311 | 86.38 272 | 56.35 311 | 84.97 304 | 57.72 319 | 87.05 310 | 85.51 304 |
|
| MCST-MVS | | | 84.36 132 | 83.93 149 | 85.63 125 | 91.59 121 | 71.58 165 | 83.52 182 | 92.13 105 | 61.82 289 | 83.96 226 | 89.75 221 | 79.93 131 | 93.46 123 | 78.33 127 | 94.34 184 | 91.87 194 |
|
| fmvsm_s_conf0.1_n | | | 82.17 178 | 81.59 186 | 83.94 162 | 86.87 236 | 71.57 166 | 85.19 145 | 77.42 310 | 62.27 288 | 84.47 211 | 91.33 173 | 76.43 167 | 85.91 293 | 83.14 71 | 87.14 307 | 94.33 90 |
|
| fmvsm_s_conf0.5_n | | | 81.91 186 | 81.30 193 | 83.75 166 | 86.02 256 | 71.56 167 | 84.73 151 | 77.11 314 | 62.44 285 | 84.00 225 | 90.68 198 | 76.42 168 | 85.89 295 | 83.14 71 | 87.11 308 | 93.81 115 |
|
| MSLP-MVS++ | | | 85.00 122 | 86.03 107 | 81.90 207 | 91.84 116 | 71.56 167 | 86.75 121 | 93.02 82 | 75.95 137 | 87.12 153 | 89.39 225 | 77.98 142 | 89.40 242 | 77.46 141 | 94.78 172 | 84.75 312 |
|
| JIA-IIPM | | | 69.41 324 | 66.64 341 | 77.70 277 | 73.19 386 | 71.24 169 | 75.67 314 | 65.56 380 | 70.42 210 | 65.18 384 | 92.97 125 | 33.64 393 | 83.06 319 | 53.52 345 | 69.61 396 | 78.79 374 |
|
| v7n | | | 90.13 36 | 90.96 38 | 87.65 89 | 91.95 109 | 71.06 170 | 89.99 59 | 93.05 78 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 88 | 94.08 95 | 86.25 42 | 97.63 61 | 97.82 8 |
|
| lessismore_v0 | | | | | 85.95 117 | 91.10 141 | 70.99 171 | | 70.91 360 | | 91.79 67 | 94.42 69 | 61.76 274 | 92.93 141 | 79.52 117 | 93.03 214 | 93.93 106 |
|
| HQP5-MVS | | | | | | | 70.66 172 | | | | | | | | | | |
|
| HQP-MVS | | | 84.61 127 | 84.06 146 | 86.27 110 | 91.19 136 | 70.66 172 | 84.77 148 | 92.68 92 | 73.30 172 | 80.55 281 | 90.17 214 | 72.10 216 | 94.61 74 | 77.30 145 | 94.47 180 | 93.56 128 |
|
| test_vis3_rt | | | 71.42 305 | 70.67 307 | 73.64 312 | 69.66 397 | 70.46 174 | 66.97 373 | 89.73 175 | 42.68 393 | 88.20 138 | 83.04 317 | 43.77 371 | 60.07 395 | 65.35 267 | 86.66 316 | 90.39 233 |
|
| ETV-MVS | | | 84.31 134 | 83.91 150 | 85.52 127 | 88.58 196 | 70.40 175 | 84.50 159 | 93.37 59 | 78.76 108 | 84.07 224 | 78.72 362 | 80.39 125 | 95.13 60 | 73.82 182 | 92.98 216 | 91.04 213 |
|
| ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 160 | 92.50 91 | 70.36 176 | 89.55 72 | 93.84 47 | 81.89 68 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 257 | 83.33 70 | 98.30 24 | 93.20 139 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_vis1_rt | | | 65.64 347 | 64.09 351 | 70.31 334 | 66.09 403 | 70.20 177 | 61.16 385 | 81.60 287 | 38.65 398 | 72.87 347 | 69.66 392 | 52.84 324 | 60.04 396 | 56.16 325 | 77.77 379 | 80.68 367 |
|
| API-MVS | | | 82.28 174 | 82.61 170 | 81.30 219 | 86.29 248 | 69.79 178 | 88.71 90 | 87.67 209 | 78.42 112 | 82.15 255 | 84.15 308 | 77.98 142 | 91.59 175 | 65.39 265 | 92.75 220 | 82.51 347 |
|
| DPM-MVS | | | 80.10 218 | 79.18 224 | 82.88 193 | 90.71 150 | 69.74 179 | 78.87 269 | 90.84 144 | 60.29 311 | 75.64 329 | 85.92 282 | 67.28 241 | 93.11 135 | 71.24 207 | 91.79 239 | 85.77 301 |
|
| nrg030 | | | 87.85 80 | 88.49 70 | 85.91 118 | 90.07 163 | 69.73 180 | 87.86 102 | 94.20 26 | 74.04 158 | 92.70 53 | 94.66 55 | 85.88 61 | 91.50 176 | 79.72 113 | 97.32 75 | 96.50 31 |
|
| IterMVS-SCA-FT | | | 80.64 204 | 79.41 221 | 84.34 151 | 83.93 289 | 69.66 181 | 76.28 307 | 81.09 290 | 72.43 187 | 86.47 175 | 90.19 212 | 60.46 280 | 93.15 134 | 77.45 142 | 86.39 320 | 90.22 235 |
|
| K. test v3 | | | 85.14 118 | 84.73 130 | 86.37 107 | 91.13 140 | 69.63 182 | 85.45 140 | 76.68 318 | 84.06 45 | 92.44 57 | 96.99 8 | 62.03 273 | 94.65 72 | 80.58 105 | 93.24 209 | 94.83 72 |
|
| test_fmvs3 | | | 75.72 266 | 75.20 266 | 77.27 282 | 75.01 379 | 69.47 183 | 78.93 266 | 84.88 258 | 46.67 377 | 87.08 157 | 87.84 250 | 50.44 337 | 71.62 364 | 77.42 144 | 88.53 289 | 90.72 221 |
|
| EPP-MVSNet | | | 85.47 112 | 85.04 126 | 86.77 101 | 91.52 129 | 69.37 184 | 91.63 36 | 87.98 207 | 81.51 72 | 87.05 159 | 91.83 159 | 66.18 248 | 95.29 53 | 70.75 212 | 96.89 84 | 95.64 46 |
|
| jason | | | 77.42 246 | 75.75 260 | 82.43 203 | 87.10 229 | 69.27 185 | 77.99 279 | 81.94 284 | 51.47 363 | 77.84 307 | 85.07 297 | 60.32 282 | 89.00 245 | 70.74 213 | 89.27 281 | 89.03 261 |
| jason: jason. |
| MVSFormer | | | 82.23 175 | 81.57 188 | 84.19 157 | 85.54 264 | 69.26 186 | 91.98 31 | 90.08 170 | 71.54 199 | 76.23 319 | 85.07 297 | 58.69 295 | 94.27 84 | 86.26 40 | 88.77 286 | 89.03 261 |
|
| lupinMVS | | | 76.37 260 | 74.46 272 | 82.09 204 | 85.54 264 | 69.26 186 | 76.79 297 | 80.77 293 | 50.68 370 | 76.23 319 | 82.82 322 | 58.69 295 | 88.94 246 | 69.85 223 | 88.77 286 | 88.07 271 |
|
| PMMVS | | | 61.65 357 | 60.38 364 | 65.47 363 | 65.40 406 | 69.26 186 | 63.97 380 | 61.73 390 | 36.80 401 | 60.11 395 | 68.43 394 | 59.42 289 | 66.35 385 | 48.97 368 | 78.57 377 | 60.81 396 |
|
| SixPastTwentyTwo | | | 87.20 86 | 87.45 83 | 86.45 106 | 92.52 90 | 69.19 189 | 87.84 103 | 88.05 205 | 81.66 70 | 94.64 14 | 96.53 14 | 65.94 250 | 94.75 69 | 83.02 76 | 96.83 87 | 95.41 51 |
|
| EIA-MVS | | | 82.19 177 | 81.23 196 | 85.10 133 | 87.95 208 | 69.17 190 | 83.22 193 | 93.33 62 | 70.42 210 | 78.58 302 | 79.77 354 | 77.29 152 | 94.20 89 | 71.51 205 | 88.96 284 | 91.93 193 |
|
| 114514_t | | | 83.10 165 | 82.54 172 | 84.77 139 | 92.90 80 | 69.10 191 | 86.65 122 | 90.62 151 | 54.66 345 | 81.46 268 | 90.81 194 | 76.98 158 | 94.38 83 | 72.62 199 | 96.18 113 | 90.82 219 |
|
| test_fmvs2 | | | 73.57 286 | 72.80 288 | 75.90 299 | 72.74 391 | 68.84 192 | 77.07 294 | 84.32 264 | 45.14 383 | 82.89 244 | 84.22 306 | 48.37 342 | 70.36 367 | 73.40 189 | 87.03 311 | 88.52 267 |
|
| UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 104 | 93.11 76 | 68.48 193 | 83.80 176 | 92.87 86 | 80.37 83 | 89.61 112 | 91.81 161 | 77.72 146 | 94.18 90 | 75.00 169 | 98.53 15 | 96.99 24 |
|
| BH-untuned | | | 80.96 199 | 80.99 199 | 80.84 228 | 88.55 197 | 68.23 194 | 80.33 246 | 88.46 195 | 72.79 183 | 86.55 169 | 86.76 269 | 74.72 184 | 91.77 173 | 61.79 295 | 88.99 283 | 82.52 346 |
|
| OpenMVS |  | 76.72 13 | 81.98 184 | 82.00 178 | 81.93 206 | 84.42 280 | 68.22 195 | 88.50 94 | 89.48 183 | 66.92 248 | 81.80 263 | 91.86 156 | 72.59 212 | 90.16 217 | 71.19 208 | 91.25 250 | 87.40 284 |
|
| mvsany_test1 | | | 58.48 366 | 56.47 371 | 64.50 366 | 65.90 405 | 68.21 196 | 56.95 393 | 42.11 408 | 38.30 399 | 65.69 381 | 77.19 375 | 56.96 307 | 59.35 398 | 46.16 378 | 58.96 401 | 65.93 392 |
|
| patch_mono-2 | | | 78.89 226 | 79.39 222 | 77.41 281 | 84.78 273 | 68.11 197 | 75.60 315 | 83.11 273 | 60.96 304 | 79.36 295 | 89.89 219 | 75.18 176 | 72.97 359 | 73.32 190 | 92.30 226 | 91.15 211 |
|
| ET-MVSNet_ETH3D | | | 75.28 268 | 72.77 289 | 82.81 194 | 83.03 307 | 68.11 197 | 77.09 293 | 76.51 319 | 60.67 308 | 77.60 312 | 80.52 346 | 38.04 385 | 91.15 188 | 70.78 211 | 90.68 264 | 89.17 256 |
|
| MSDG | | | 80.06 219 | 79.99 219 | 80.25 237 | 83.91 290 | 68.04 199 | 77.51 288 | 89.19 186 | 77.65 119 | 81.94 257 | 83.45 314 | 76.37 169 | 86.31 284 | 63.31 284 | 86.59 317 | 86.41 293 |
|
| alignmvs | | | 83.94 148 | 83.98 148 | 83.80 163 | 87.80 211 | 67.88 200 | 84.54 157 | 91.42 128 | 73.27 175 | 88.41 133 | 87.96 246 | 72.33 214 | 90.83 199 | 76.02 159 | 94.11 190 | 92.69 160 |
|
| CLD-MVS | | | 83.18 162 | 82.64 169 | 84.79 138 | 89.05 182 | 67.82 201 | 77.93 280 | 92.52 95 | 68.33 232 | 85.07 197 | 81.54 338 | 82.06 103 | 92.96 139 | 69.35 227 | 97.91 48 | 93.57 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CMPMVS |  | 59.41 20 | 75.12 271 | 73.57 279 | 79.77 242 | 75.84 371 | 67.22 202 | 81.21 236 | 82.18 281 | 50.78 368 | 76.50 315 | 87.66 253 | 55.20 318 | 82.99 321 | 62.17 292 | 90.64 268 | 89.09 260 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| canonicalmvs | | | 85.50 111 | 86.14 106 | 83.58 172 | 87.97 207 | 67.13 203 | 87.55 105 | 94.32 19 | 73.44 168 | 88.47 131 | 87.54 255 | 86.45 54 | 91.06 191 | 75.76 161 | 93.76 197 | 92.54 166 |
|
| GeoE | | | 85.45 113 | 85.81 113 | 84.37 147 | 90.08 161 | 67.07 204 | 85.86 133 | 91.39 129 | 72.33 192 | 87.59 147 | 90.25 210 | 84.85 66 | 92.37 155 | 78.00 134 | 91.94 238 | 93.66 120 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 115 | 92.86 83 | 67.02 205 | 82.55 211 | 91.56 122 | 83.08 57 | 90.92 82 | 91.82 160 | 78.25 141 | 93.99 97 | 74.16 174 | 98.35 21 | 97.49 13 |
|
| DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 113 | 93.24 73 | 67.02 205 | 83.16 194 | 92.21 102 | 81.73 69 | 90.92 82 | 91.97 154 | 77.20 153 | 93.99 97 | 74.16 174 | 98.35 21 | 97.61 10 |
|
| test_fmvs1_n | | | 70.94 309 | 70.41 312 | 72.53 323 | 73.92 381 | 66.93 207 | 75.99 312 | 84.21 266 | 43.31 390 | 79.40 294 | 79.39 356 | 43.47 372 | 68.55 375 | 69.05 233 | 84.91 339 | 82.10 350 |
|
| IS-MVSNet | | | 86.66 94 | 86.82 97 | 86.17 115 | 92.05 107 | 66.87 208 | 91.21 39 | 88.64 194 | 86.30 28 | 89.60 113 | 92.59 137 | 69.22 233 | 94.91 66 | 73.89 180 | 97.89 49 | 96.72 26 |
|
| QAPM | | | 82.59 169 | 82.59 171 | 82.58 198 | 86.44 240 | 66.69 209 | 89.94 62 | 90.36 158 | 67.97 238 | 84.94 202 | 92.58 139 | 72.71 210 | 92.18 160 | 70.63 215 | 87.73 302 | 88.85 264 |
|
| Patchmatch-RL test | | | 74.48 279 | 73.68 278 | 76.89 288 | 84.83 272 | 66.54 210 | 72.29 343 | 69.16 368 | 57.70 328 | 86.76 163 | 86.33 274 | 45.79 357 | 82.59 322 | 69.63 225 | 90.65 267 | 81.54 356 |
|
| test_vis1_n | | | 70.29 313 | 69.99 317 | 71.20 331 | 75.97 370 | 66.50 211 | 76.69 300 | 80.81 292 | 44.22 386 | 75.43 330 | 77.23 373 | 50.00 338 | 68.59 374 | 66.71 253 | 82.85 357 | 78.52 375 |
|
| FE-MVS | | | 79.98 220 | 78.86 226 | 83.36 177 | 86.47 239 | 66.45 212 | 89.73 65 | 84.74 261 | 72.80 182 | 84.22 223 | 91.38 172 | 44.95 367 | 93.60 115 | 63.93 278 | 91.50 246 | 90.04 241 |
|
| tttt0517 | | | 81.07 197 | 79.58 220 | 85.52 127 | 88.99 185 | 66.45 212 | 87.03 113 | 75.51 326 | 73.76 162 | 88.32 136 | 90.20 211 | 37.96 386 | 94.16 94 | 79.36 119 | 95.13 155 | 95.93 42 |
|
| BH-RMVSNet | | | 80.53 205 | 80.22 212 | 81.49 217 | 87.19 225 | 66.21 214 | 77.79 283 | 86.23 232 | 74.21 157 | 83.69 229 | 88.50 239 | 73.25 205 | 90.75 201 | 63.18 285 | 87.90 299 | 87.52 282 |
|
| FA-MVS(test-final) | | | 83.13 164 | 83.02 162 | 83.43 175 | 86.16 254 | 66.08 215 | 88.00 99 | 88.36 198 | 75.55 143 | 85.02 198 | 92.75 134 | 65.12 256 | 92.50 151 | 74.94 170 | 91.30 249 | 91.72 197 |
|
| PAPM_NR | | | 83.23 161 | 83.19 158 | 83.33 178 | 90.90 145 | 65.98 216 | 88.19 97 | 90.78 146 | 78.13 115 | 80.87 276 | 87.92 249 | 73.49 199 | 92.42 152 | 70.07 221 | 88.40 290 | 91.60 202 |
|
| BH-w/o | | | 76.57 256 | 76.07 258 | 78.10 269 | 86.88 235 | 65.92 217 | 77.63 285 | 86.33 230 | 65.69 260 | 80.89 275 | 79.95 351 | 68.97 236 | 90.74 202 | 53.01 349 | 85.25 331 | 77.62 376 |
|
| TR-MVS | | | 76.77 254 | 75.79 259 | 79.72 244 | 86.10 255 | 65.79 218 | 77.14 292 | 83.02 274 | 65.20 268 | 81.40 269 | 82.10 329 | 66.30 246 | 90.73 203 | 55.57 330 | 85.27 330 | 82.65 341 |
|
| test_fmvs1 | | | 69.57 323 | 69.05 323 | 71.14 332 | 69.15 398 | 65.77 219 | 73.98 331 | 83.32 271 | 42.83 392 | 77.77 310 | 78.27 365 | 43.39 375 | 68.50 376 | 68.39 243 | 84.38 346 | 79.15 373 |
|
| Effi-MVS+ | | | 83.90 149 | 84.01 147 | 83.57 173 | 87.22 224 | 65.61 220 | 86.55 125 | 92.40 97 | 78.64 109 | 81.34 271 | 84.18 307 | 83.65 79 | 92.93 141 | 74.22 173 | 87.87 300 | 92.17 184 |
|
| Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 140 | 90.46 154 | 65.27 221 | 88.86 86 | 93.02 82 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 100 | 92.02 165 | 76.70 150 | 97.99 40 | 96.88 25 |
|
| casdiffmvs_mvg |  | | 86.72 92 | 87.51 82 | 84.36 149 | 87.09 230 | 65.22 222 | 84.16 162 | 94.23 23 | 77.89 116 | 91.28 77 | 93.66 108 | 84.35 71 | 92.71 145 | 80.07 107 | 94.87 170 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| HyFIR lowres test | | | 75.12 271 | 72.66 291 | 82.50 201 | 91.44 132 | 65.19 223 | 72.47 342 | 87.31 212 | 46.79 376 | 80.29 285 | 84.30 305 | 52.70 326 | 92.10 164 | 51.88 358 | 86.73 315 | 90.22 235 |
|
| VDD-MVS | | | 84.23 139 | 84.58 136 | 83.20 183 | 91.17 139 | 65.16 224 | 83.25 190 | 84.97 257 | 79.79 90 | 87.18 152 | 94.27 74 | 74.77 183 | 90.89 197 | 69.24 228 | 96.54 96 | 93.55 130 |
|
| ambc | | | | | 82.98 187 | 90.55 153 | 64.86 225 | 88.20 96 | 89.15 187 | | 89.40 117 | 93.96 95 | 71.67 223 | 91.38 183 | 78.83 122 | 96.55 95 | 92.71 159 |
|
| MDA-MVSNet-bldmvs | | | 77.47 245 | 76.90 250 | 79.16 252 | 79.03 347 | 64.59 226 | 66.58 374 | 75.67 324 | 73.15 177 | 88.86 122 | 88.99 233 | 66.94 243 | 81.23 330 | 64.71 272 | 88.22 297 | 91.64 201 |
|
| thisisatest0530 | | | 79.07 224 | 77.33 245 | 84.26 154 | 87.13 226 | 64.58 227 | 83.66 180 | 75.95 321 | 68.86 227 | 85.22 195 | 87.36 259 | 38.10 384 | 93.57 119 | 75.47 163 | 94.28 186 | 94.62 74 |
|
| NR-MVSNet | | | 86.00 105 | 86.22 104 | 85.34 130 | 93.24 73 | 64.56 228 | 82.21 223 | 90.46 154 | 80.99 78 | 88.42 132 | 91.97 154 | 77.56 148 | 93.85 103 | 72.46 201 | 98.65 11 | 97.61 10 |
|
| Anonymous20240529 | | | 86.20 102 | 87.13 88 | 83.42 176 | 90.19 159 | 64.55 229 | 84.55 155 | 90.71 147 | 85.85 31 | 89.94 102 | 95.24 40 | 82.13 102 | 90.40 211 | 69.19 231 | 96.40 104 | 95.31 55 |
|
| CHOSEN 280x420 | | | 59.08 365 | 56.52 370 | 66.76 357 | 76.51 364 | 64.39 230 | 49.62 397 | 59.00 396 | 43.86 387 | 55.66 402 | 68.41 395 | 35.55 390 | 68.21 379 | 43.25 385 | 76.78 385 | 67.69 391 |
|
| UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 153 | 97.00 2 | 64.33 231 | 89.67 69 | 88.38 197 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 184 | 72.57 200 | 97.65 60 | 97.34 15 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 132 | 94.02 54 | 64.13 232 | 84.38 160 | 91.29 132 | 84.88 39 | 92.06 63 | 93.84 101 | 86.45 54 | 93.73 107 | 73.22 191 | 98.66 10 | 97.69 9 |
|
| IterMVS | | | 76.91 251 | 76.34 255 | 78.64 258 | 80.91 326 | 64.03 233 | 76.30 306 | 79.03 301 | 64.88 270 | 83.11 240 | 89.16 230 | 59.90 286 | 84.46 308 | 68.61 240 | 85.15 334 | 87.42 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| pmmvs3 | | | 62.47 354 | 60.02 367 | 69.80 338 | 71.58 394 | 64.00 234 | 70.52 357 | 58.44 398 | 39.77 396 | 66.05 378 | 75.84 381 | 27.10 407 | 72.28 360 | 46.15 379 | 84.77 344 | 73.11 383 |
|
| tt0805 | | | 88.09 74 | 89.79 51 | 82.98 187 | 93.26 72 | 63.94 235 | 91.10 41 | 89.64 179 | 85.07 36 | 90.91 84 | 91.09 181 | 89.16 22 | 91.87 170 | 82.03 89 | 95.87 130 | 93.13 142 |
|
| EI-MVSNet | | | 82.61 168 | 82.42 174 | 83.20 183 | 83.25 301 | 63.66 236 | 83.50 183 | 85.07 251 | 76.06 132 | 86.55 169 | 85.10 294 | 73.41 200 | 90.25 212 | 78.15 133 | 90.67 265 | 95.68 45 |
|
| IterMVS-LS | | | 84.73 125 | 84.98 127 | 83.96 160 | 87.35 221 | 63.66 236 | 83.25 190 | 89.88 174 | 76.06 132 | 89.62 110 | 92.37 146 | 73.40 202 | 92.52 150 | 78.16 131 | 94.77 174 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PVSNet_BlendedMVS | | | 78.80 230 | 77.84 239 | 81.65 215 | 84.43 278 | 63.41 238 | 79.49 258 | 90.44 155 | 61.70 293 | 75.43 330 | 87.07 266 | 69.11 234 | 91.44 179 | 60.68 303 | 92.24 230 | 90.11 239 |
|
| PVSNet_Blended | | | 76.49 258 | 75.40 263 | 79.76 243 | 84.43 278 | 63.41 238 | 75.14 321 | 90.44 155 | 57.36 332 | 75.43 330 | 78.30 364 | 69.11 234 | 91.44 179 | 60.68 303 | 87.70 303 | 84.42 317 |
|
| V42 | | | 83.47 158 | 83.37 155 | 83.75 166 | 83.16 304 | 63.33 240 | 81.31 233 | 90.23 166 | 69.51 220 | 90.91 84 | 90.81 194 | 74.16 189 | 92.29 159 | 80.06 108 | 90.22 270 | 95.62 47 |
|
| v10 | | | 86.54 95 | 87.10 89 | 84.84 136 | 88.16 206 | 63.28 241 | 86.64 123 | 92.20 103 | 75.42 146 | 92.81 50 | 94.50 63 | 74.05 191 | 94.06 96 | 83.88 67 | 96.28 108 | 97.17 20 |
|
| Fast-Effi-MVS+ | | | 81.04 198 | 80.57 203 | 82.46 202 | 87.50 219 | 63.22 242 | 78.37 276 | 89.63 180 | 68.01 236 | 81.87 259 | 82.08 331 | 82.31 97 | 92.65 148 | 67.10 248 | 88.30 296 | 91.51 205 |
|
| CHOSEN 1792x2688 | | | 72.45 295 | 70.56 308 | 78.13 268 | 90.02 166 | 63.08 243 | 68.72 365 | 83.16 272 | 42.99 391 | 75.92 324 | 85.46 287 | 57.22 306 | 85.18 303 | 49.87 363 | 81.67 362 | 86.14 296 |
|
| cascas | | | 76.29 261 | 74.81 268 | 80.72 231 | 84.47 277 | 62.94 244 | 73.89 333 | 87.34 211 | 55.94 338 | 75.16 335 | 76.53 379 | 63.97 262 | 91.16 187 | 65.00 269 | 90.97 256 | 88.06 273 |
|
| v1192 | | | 84.57 128 | 84.69 134 | 84.21 155 | 87.75 212 | 62.88 245 | 83.02 197 | 91.43 126 | 69.08 224 | 89.98 101 | 90.89 189 | 72.70 211 | 93.62 114 | 82.41 85 | 94.97 164 | 96.13 34 |
|
| DELS-MVS | | | 81.44 192 | 81.25 194 | 82.03 205 | 84.27 284 | 62.87 246 | 76.47 305 | 92.49 96 | 70.97 206 | 81.64 266 | 83.83 309 | 75.03 177 | 92.70 146 | 74.29 172 | 92.22 232 | 90.51 230 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| test_cas_vis1_n_1920 | | | 69.20 328 | 69.12 321 | 69.43 341 | 73.68 384 | 62.82 247 | 70.38 359 | 77.21 312 | 46.18 380 | 80.46 284 | 78.95 360 | 52.03 328 | 65.53 388 | 65.77 263 | 77.45 383 | 79.95 371 |
|
| casdiffmvs |  | | 85.21 116 | 85.85 112 | 83.31 179 | 86.17 252 | 62.77 248 | 83.03 196 | 93.93 41 | 74.69 153 | 88.21 137 | 92.68 136 | 82.29 99 | 91.89 169 | 77.87 137 | 93.75 199 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MIMVSNet1 | | | 83.63 153 | 84.59 135 | 80.74 229 | 94.06 53 | 62.77 248 | 82.72 205 | 84.53 262 | 77.57 121 | 90.34 92 | 95.92 24 | 76.88 165 | 85.83 297 | 61.88 294 | 97.42 72 | 93.62 124 |
|
| CR-MVSNet | | | 74.00 283 | 73.04 286 | 76.85 289 | 79.58 339 | 62.64 250 | 82.58 209 | 76.90 315 | 50.50 371 | 75.72 327 | 92.38 143 | 48.07 344 | 84.07 314 | 68.72 239 | 82.91 355 | 83.85 326 |
|
| RPMNet | | | 78.88 227 | 78.28 236 | 80.68 232 | 79.58 339 | 62.64 250 | 82.58 209 | 94.16 28 | 74.80 151 | 75.72 327 | 92.59 137 | 48.69 341 | 95.56 39 | 73.48 187 | 82.91 355 | 83.85 326 |
|
| v1144 | | | 84.54 130 | 84.72 132 | 84.00 158 | 87.67 215 | 62.55 252 | 82.97 199 | 90.93 143 | 70.32 213 | 89.80 104 | 90.99 184 | 73.50 197 | 93.48 122 | 81.69 95 | 94.65 177 | 95.97 39 |
|
| MS-PatchMatch | | | 70.93 310 | 70.22 313 | 73.06 316 | 81.85 314 | 62.50 253 | 73.82 334 | 77.90 305 | 52.44 356 | 75.92 324 | 81.27 339 | 55.67 315 | 81.75 326 | 55.37 332 | 77.70 380 | 74.94 381 |
|
| SDMVSNet | | | 81.90 187 | 83.17 159 | 78.10 269 | 88.81 189 | 62.45 254 | 76.08 311 | 86.05 236 | 73.67 163 | 83.41 235 | 93.04 119 | 82.35 95 | 80.65 334 | 70.06 222 | 95.03 160 | 91.21 209 |
|
| WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 124 | 96.32 9 | 62.39 255 | 89.54 74 | 93.31 65 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 114 | 95.90 15 | 80.94 99 | 98.80 2 | 98.84 5 |
|
| baseline | | | 85.20 117 | 85.93 108 | 83.02 186 | 86.30 247 | 62.37 256 | 84.55 155 | 93.96 40 | 74.48 155 | 87.12 153 | 92.03 153 | 82.30 98 | 91.94 166 | 78.39 124 | 94.21 187 | 94.74 73 |
|
| v8 | | | 86.22 101 | 86.83 96 | 84.36 149 | 87.82 210 | 62.35 257 | 86.42 126 | 91.33 131 | 76.78 128 | 92.73 52 | 94.48 65 | 73.41 200 | 93.72 108 | 83.10 73 | 95.41 144 | 97.01 23 |
|
| pmmvs6 | | | 86.52 96 | 88.06 74 | 81.90 207 | 92.22 101 | 62.28 258 | 84.66 153 | 89.15 187 | 83.54 52 | 89.85 103 | 97.32 4 | 88.08 36 | 86.80 276 | 70.43 217 | 97.30 76 | 96.62 28 |
|
| IB-MVS | | 62.13 19 | 71.64 302 | 68.97 326 | 79.66 246 | 80.80 330 | 62.26 259 | 73.94 332 | 76.90 315 | 63.27 276 | 68.63 370 | 76.79 376 | 33.83 392 | 91.84 171 | 59.28 310 | 87.26 305 | 84.88 310 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_f | | | 64.31 353 | 65.85 343 | 59.67 378 | 66.54 402 | 62.24 260 | 57.76 392 | 70.96 359 | 40.13 395 | 84.36 213 | 82.09 330 | 46.93 346 | 51.67 401 | 61.99 293 | 81.89 361 | 65.12 393 |
|
| D2MVS | | | 76.84 252 | 75.67 262 | 80.34 236 | 80.48 334 | 62.16 261 | 73.50 336 | 84.80 260 | 57.61 330 | 82.24 252 | 87.54 255 | 51.31 332 | 87.65 262 | 70.40 218 | 93.19 211 | 91.23 208 |
|
| dcpmvs_2 | | | 84.23 139 | 85.14 124 | 81.50 216 | 88.61 195 | 61.98 262 | 82.90 202 | 93.11 74 | 68.66 230 | 92.77 51 | 92.39 142 | 78.50 138 | 87.63 263 | 76.99 149 | 92.30 226 | 94.90 65 |
|
| v1921920 | | | 84.23 139 | 84.37 142 | 83.79 164 | 87.64 217 | 61.71 263 | 82.91 201 | 91.20 135 | 67.94 239 | 90.06 96 | 90.34 207 | 72.04 219 | 93.59 116 | 82.32 86 | 94.91 165 | 96.07 36 |
|
| v144192 | | | 84.24 138 | 84.41 140 | 83.71 168 | 87.59 218 | 61.57 264 | 82.95 200 | 91.03 139 | 67.82 242 | 89.80 104 | 90.49 204 | 73.28 204 | 93.51 121 | 81.88 94 | 94.89 167 | 96.04 38 |
|
| PS-MVSNAJ | | | 77.04 250 | 76.53 253 | 78.56 259 | 87.09 230 | 61.40 265 | 75.26 320 | 87.13 217 | 61.25 300 | 74.38 340 | 77.22 374 | 76.94 159 | 90.94 193 | 64.63 274 | 84.83 342 | 83.35 334 |
|
| v2v482 | | | 84.09 142 | 84.24 144 | 83.62 170 | 87.13 226 | 61.40 265 | 82.71 206 | 89.71 177 | 72.19 195 | 89.55 114 | 91.41 171 | 70.70 228 | 93.20 131 | 81.02 98 | 93.76 197 | 96.25 32 |
|
| xiu_mvs_v2_base | | | 77.19 248 | 76.75 251 | 78.52 260 | 87.01 232 | 61.30 267 | 75.55 318 | 87.12 220 | 61.24 301 | 74.45 338 | 78.79 361 | 77.20 153 | 90.93 194 | 64.62 275 | 84.80 343 | 83.32 335 |
|
| v1240 | | | 84.30 135 | 84.51 138 | 83.65 169 | 87.65 216 | 61.26 268 | 82.85 203 | 91.54 123 | 67.94 239 | 90.68 90 | 90.65 201 | 71.71 222 | 93.64 110 | 82.84 79 | 94.78 172 | 96.07 36 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 243 | 77.46 241 | 78.71 257 | 84.39 281 | 61.15 269 | 81.18 237 | 82.52 278 | 62.45 284 | 83.34 237 | 87.37 258 | 66.20 247 | 88.66 253 | 64.69 273 | 85.02 336 | 86.32 294 |
|
| MVSTER | | | 77.09 249 | 75.70 261 | 81.25 220 | 75.27 376 | 61.08 270 | 77.49 289 | 85.07 251 | 60.78 306 | 86.55 169 | 88.68 237 | 43.14 376 | 90.25 212 | 73.69 185 | 90.67 265 | 92.42 169 |
|
| GBi-Net | | | 82.02 182 | 82.07 176 | 81.85 209 | 86.38 242 | 61.05 271 | 86.83 117 | 88.27 202 | 72.43 187 | 86.00 182 | 95.64 30 | 63.78 264 | 90.68 204 | 65.95 258 | 93.34 205 | 93.82 112 |
|
| test1 | | | 82.02 182 | 82.07 176 | 81.85 209 | 86.38 242 | 61.05 271 | 86.83 117 | 88.27 202 | 72.43 187 | 86.00 182 | 95.64 30 | 63.78 264 | 90.68 204 | 65.95 258 | 93.34 205 | 93.82 112 |
|
| FMVSNet1 | | | 84.55 129 | 85.45 120 | 81.85 209 | 90.27 158 | 61.05 271 | 86.83 117 | 88.27 202 | 78.57 110 | 89.66 109 | 95.64 30 | 75.43 173 | 90.68 204 | 69.09 232 | 95.33 147 | 93.82 112 |
|
| eth_miper_zixun_eth | | | 80.84 200 | 80.22 212 | 82.71 195 | 81.41 320 | 60.98 274 | 77.81 282 | 90.14 169 | 67.31 246 | 86.95 161 | 87.24 262 | 64.26 259 | 92.31 157 | 75.23 166 | 91.61 243 | 94.85 71 |
|
| miper_lstm_enhance | | | 76.45 259 | 76.10 257 | 77.51 279 | 76.72 363 | 60.97 275 | 64.69 378 | 85.04 253 | 63.98 274 | 83.20 239 | 88.22 242 | 56.67 308 | 78.79 345 | 73.22 191 | 93.12 212 | 92.78 155 |
|
| iter_conf05_11 | | | 78.40 237 | 77.29 246 | 81.71 214 | 85.55 262 | 60.95 276 | 77.22 291 | 86.90 226 | 60.10 314 | 75.79 326 | 81.73 335 | 64.08 261 | 94.47 82 | 70.37 219 | 93.92 194 | 89.72 244 |
|
| bld_raw_dy_0_64 | | | 81.25 194 | 81.17 198 | 81.49 217 | 85.55 262 | 60.85 277 | 86.36 127 | 95.45 9 | 57.08 334 | 90.81 88 | 82.69 327 | 65.85 252 | 93.91 101 | 70.37 219 | 96.34 105 | 89.72 244 |
|
| Anonymous20240521 | | | 80.18 216 | 81.25 194 | 76.95 285 | 83.15 305 | 60.84 278 | 82.46 214 | 85.99 238 | 68.76 228 | 86.78 162 | 93.73 107 | 59.13 292 | 77.44 348 | 73.71 184 | 97.55 67 | 92.56 164 |
|
| MVS | | | 73.21 290 | 72.59 292 | 75.06 305 | 80.97 325 | 60.81 279 | 81.64 230 | 85.92 239 | 46.03 381 | 71.68 353 | 77.54 369 | 68.47 237 | 89.77 232 | 55.70 329 | 85.39 328 | 74.60 382 |
|
| iter_conf05 | | | 78.81 229 | 77.35 244 | 83.21 182 | 82.98 308 | 60.75 280 | 84.09 165 | 88.34 199 | 63.12 277 | 84.25 222 | 89.48 224 | 31.41 395 | 94.51 81 | 76.64 151 | 95.83 132 | 94.38 88 |
|
| TinyColmap | | | 81.25 194 | 82.34 175 | 77.99 272 | 85.33 266 | 60.68 281 | 82.32 218 | 88.33 200 | 71.26 203 | 86.97 160 | 92.22 152 | 77.10 156 | 86.98 272 | 62.37 288 | 95.17 154 | 86.31 295 |
|
| EPNet_dtu | | | 72.87 293 | 71.33 305 | 77.49 280 | 77.72 353 | 60.55 282 | 82.35 217 | 75.79 322 | 66.49 252 | 58.39 400 | 81.06 341 | 53.68 322 | 85.98 291 | 53.55 344 | 92.97 217 | 85.95 298 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CVMVSNet | | | 72.62 294 | 71.41 304 | 76.28 295 | 83.25 301 | 60.34 283 | 83.50 183 | 79.02 302 | 37.77 400 | 76.33 317 | 85.10 294 | 49.60 340 | 87.41 265 | 70.54 216 | 77.54 382 | 81.08 363 |
|
| PAPR | | | 78.84 228 | 78.10 238 | 81.07 224 | 85.17 269 | 60.22 284 | 82.21 223 | 90.57 152 | 62.51 281 | 75.32 333 | 84.61 302 | 74.99 178 | 92.30 158 | 59.48 309 | 88.04 298 | 90.68 224 |
|
| diffmvs |  | | 80.40 209 | 80.48 207 | 80.17 239 | 79.02 348 | 60.04 285 | 77.54 287 | 90.28 165 | 66.65 251 | 82.40 250 | 87.33 260 | 73.50 197 | 87.35 266 | 77.98 135 | 89.62 277 | 93.13 142 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 1112_ss | | | 74.82 276 | 73.74 277 | 78.04 271 | 89.57 169 | 60.04 285 | 76.49 304 | 87.09 221 | 54.31 346 | 73.66 344 | 79.80 352 | 60.25 283 | 86.76 278 | 58.37 313 | 84.15 347 | 87.32 285 |
|
| test_vis1_n_1920 | | | 71.30 307 | 71.58 302 | 70.47 333 | 77.58 355 | 59.99 287 | 74.25 327 | 84.22 265 | 51.06 365 | 74.85 337 | 79.10 358 | 55.10 319 | 68.83 373 | 68.86 236 | 79.20 375 | 82.58 343 |
|
| thisisatest0515 | | | 73.00 292 | 70.52 309 | 80.46 234 | 81.45 319 | 59.90 288 | 73.16 340 | 74.31 333 | 57.86 327 | 76.08 323 | 77.78 367 | 37.60 387 | 92.12 163 | 65.00 269 | 91.45 247 | 89.35 252 |
|
| CANet_DTU | | | 77.81 242 | 77.05 247 | 80.09 240 | 81.37 321 | 59.90 288 | 83.26 189 | 88.29 201 | 69.16 223 | 67.83 374 | 83.72 310 | 60.93 277 | 89.47 236 | 69.22 230 | 89.70 276 | 90.88 217 |
|
| v148 | | | 82.31 173 | 82.48 173 | 81.81 212 | 85.59 261 | 59.66 290 | 81.47 232 | 86.02 237 | 72.85 180 | 88.05 140 | 90.65 201 | 70.73 227 | 90.91 196 | 75.15 167 | 91.79 239 | 94.87 67 |
|
| pm-mvs1 | | | 83.69 151 | 84.95 128 | 79.91 241 | 90.04 165 | 59.66 290 | 82.43 215 | 87.44 210 | 75.52 144 | 87.85 143 | 95.26 39 | 81.25 116 | 85.65 299 | 68.74 238 | 96.04 120 | 94.42 85 |
|
| EU-MVSNet | | | 75.12 271 | 74.43 273 | 77.18 283 | 83.11 306 | 59.48 292 | 85.71 137 | 82.43 280 | 39.76 397 | 85.64 189 | 88.76 235 | 44.71 369 | 87.88 260 | 73.86 181 | 85.88 326 | 84.16 322 |
|
| VDDNet | | | 84.35 133 | 85.39 121 | 81.25 220 | 95.13 31 | 59.32 293 | 85.42 141 | 81.11 289 | 86.41 27 | 87.41 150 | 96.21 19 | 73.61 195 | 90.61 207 | 66.33 255 | 96.85 85 | 93.81 115 |
|
| cl____ | | | 80.42 208 | 80.23 210 | 81.02 226 | 79.99 336 | 59.25 294 | 77.07 294 | 87.02 222 | 67.37 244 | 86.18 180 | 89.21 229 | 63.08 269 | 90.16 217 | 76.31 155 | 95.80 135 | 93.65 122 |
|
| DIV-MVS_self_test | | | 80.43 207 | 80.23 210 | 81.02 226 | 79.99 336 | 59.25 294 | 77.07 294 | 87.02 222 | 67.38 243 | 86.19 178 | 89.22 228 | 63.09 268 | 90.16 217 | 76.32 154 | 95.80 135 | 93.66 120 |
|
| GA-MVS | | | 75.83 264 | 74.61 269 | 79.48 249 | 81.87 313 | 59.25 294 | 73.42 337 | 82.88 275 | 68.68 229 | 79.75 290 | 81.80 334 | 50.62 335 | 89.46 237 | 66.85 250 | 85.64 327 | 89.72 244 |
|
| c3_l | | | 81.64 189 | 81.59 186 | 81.79 213 | 80.86 328 | 59.15 297 | 78.61 273 | 90.18 168 | 68.36 231 | 87.20 151 | 87.11 265 | 69.39 231 | 91.62 174 | 78.16 131 | 94.43 182 | 94.60 75 |
|
| cl22 | | | 78.97 225 | 78.21 237 | 81.24 222 | 77.74 352 | 59.01 298 | 77.46 290 | 87.13 217 | 65.79 256 | 84.32 215 | 85.10 294 | 58.96 294 | 90.88 198 | 75.36 165 | 92.03 234 | 93.84 110 |
|
| miper_ehance_all_eth | | | 80.34 211 | 80.04 217 | 81.24 222 | 79.82 338 | 58.95 299 | 77.66 284 | 89.66 178 | 65.75 259 | 85.99 185 | 85.11 293 | 68.29 238 | 91.42 181 | 76.03 158 | 92.03 234 | 93.33 133 |
|
| PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 145 | 96.57 5 | 58.88 300 | 88.95 84 | 93.19 70 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 36 | 78.69 123 | 98.72 8 | 98.97 3 |
|
| test_yl | | | 78.71 232 | 78.51 233 | 79.32 250 | 84.32 282 | 58.84 301 | 78.38 274 | 85.33 246 | 75.99 135 | 82.49 248 | 86.57 270 | 58.01 298 | 90.02 226 | 62.74 286 | 92.73 221 | 89.10 258 |
|
| DCV-MVSNet | | | 78.71 232 | 78.51 233 | 79.32 250 | 84.32 282 | 58.84 301 | 78.38 274 | 85.33 246 | 75.99 135 | 82.49 248 | 86.57 270 | 58.01 298 | 90.02 226 | 62.74 286 | 92.73 221 | 89.10 258 |
|
| PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 146 | 96.56 6 | 58.83 303 | 89.04 83 | 92.74 91 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 38 | 79.42 118 | 98.74 5 | 99.00 2 |
|
| FMVSNet2 | | | 81.31 193 | 81.61 185 | 80.41 235 | 86.38 242 | 58.75 304 | 83.93 171 | 86.58 229 | 72.43 187 | 87.65 146 | 92.98 123 | 63.78 264 | 90.22 215 | 66.86 249 | 93.92 194 | 92.27 179 |
|
| dmvs_re | | | 66.81 340 | 66.98 336 | 66.28 359 | 76.87 361 | 58.68 305 | 71.66 348 | 72.24 349 | 60.29 311 | 69.52 367 | 73.53 386 | 52.38 327 | 64.40 391 | 44.90 382 | 81.44 365 | 75.76 379 |
|
| CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 147 | 96.34 8 | 58.61 306 | 88.66 92 | 92.06 107 | 90.78 6 | 95.67 7 | 95.17 42 | 81.80 110 | 95.54 41 | 79.00 121 | 98.69 9 | 98.95 4 |
|
| baseline2 | | | 69.77 321 | 66.89 337 | 78.41 263 | 79.51 341 | 58.09 307 | 76.23 308 | 69.57 365 | 57.50 331 | 64.82 388 | 77.45 371 | 46.02 352 | 88.44 254 | 53.08 346 | 77.83 378 | 88.70 265 |
|
| sd_testset | | | 79.95 221 | 81.39 192 | 75.64 301 | 88.81 189 | 58.07 308 | 76.16 310 | 82.81 277 | 73.67 163 | 83.41 235 | 93.04 119 | 80.96 119 | 77.65 347 | 58.62 312 | 95.03 160 | 91.21 209 |
|
| miper_enhance_ethall | | | 77.83 240 | 76.93 249 | 80.51 233 | 76.15 368 | 58.01 309 | 75.47 319 | 88.82 190 | 58.05 326 | 83.59 231 | 80.69 342 | 64.41 258 | 91.20 185 | 73.16 197 | 92.03 234 | 92.33 175 |
|
| 1314 | | | 73.22 289 | 72.56 294 | 75.20 303 | 80.41 335 | 57.84 310 | 81.64 230 | 85.36 245 | 51.68 362 | 73.10 346 | 76.65 378 | 61.45 275 | 85.19 302 | 63.54 281 | 79.21 374 | 82.59 342 |
|
| DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 155 | 96.51 7 | 57.84 310 | 88.93 85 | 92.84 88 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 10 | 79.05 120 | 98.57 14 | 98.80 6 |
|
| MVS_Test | | | 82.47 172 | 83.22 156 | 80.22 238 | 82.62 310 | 57.75 312 | 82.54 212 | 91.96 111 | 71.16 205 | 82.89 244 | 92.52 141 | 77.41 150 | 90.50 209 | 80.04 109 | 87.84 301 | 92.40 171 |
|
| VPA-MVSNet | | | 83.47 158 | 84.73 130 | 79.69 245 | 90.29 157 | 57.52 313 | 81.30 235 | 88.69 193 | 76.29 130 | 87.58 148 | 94.44 66 | 80.60 124 | 87.20 268 | 66.60 254 | 96.82 88 | 94.34 89 |
|
| FIs | | | 85.35 114 | 86.27 103 | 82.60 197 | 91.86 113 | 57.31 314 | 85.10 147 | 93.05 78 | 75.83 139 | 91.02 81 | 93.97 92 | 73.57 196 | 92.91 143 | 73.97 179 | 98.02 39 | 97.58 12 |
|
| Anonymous202405211 | | | 80.51 206 | 81.19 197 | 78.49 261 | 88.48 198 | 57.26 315 | 76.63 301 | 82.49 279 | 81.21 76 | 84.30 218 | 92.24 151 | 67.99 239 | 86.24 285 | 62.22 289 | 95.13 155 | 91.98 192 |
|
| USDC | | | 76.63 255 | 76.73 252 | 76.34 294 | 83.46 295 | 57.20 316 | 80.02 249 | 88.04 206 | 52.14 359 | 83.65 230 | 91.25 175 | 63.24 267 | 86.65 279 | 54.66 338 | 94.11 190 | 85.17 307 |
|
| ab-mvs | | | 79.67 222 | 80.56 204 | 76.99 284 | 88.48 198 | 56.93 317 | 84.70 152 | 86.06 235 | 68.95 226 | 80.78 278 | 93.08 118 | 75.30 175 | 84.62 307 | 56.78 321 | 90.90 258 | 89.43 251 |
|
| ADS-MVSNet2 | | | 65.87 346 | 63.64 354 | 72.55 322 | 73.16 387 | 56.92 318 | 67.10 371 | 74.81 328 | 49.74 373 | 66.04 379 | 82.97 318 | 46.71 347 | 77.26 349 | 42.29 386 | 69.96 394 | 83.46 331 |
|
| ppachtmachnet_test | | | 74.73 278 | 74.00 276 | 76.90 287 | 80.71 331 | 56.89 319 | 71.53 350 | 78.42 303 | 58.24 323 | 79.32 297 | 82.92 321 | 57.91 301 | 84.26 312 | 65.60 264 | 91.36 248 | 89.56 248 |
|
| FMVSNet3 | | | 78.80 230 | 78.55 232 | 79.57 247 | 82.89 309 | 56.89 319 | 81.76 227 | 85.77 240 | 69.04 225 | 86.00 182 | 90.44 205 | 51.75 331 | 90.09 223 | 65.95 258 | 93.34 205 | 91.72 197 |
|
| FC-MVSNet-test | | | 85.93 107 | 87.05 91 | 82.58 198 | 92.25 99 | 56.44 321 | 85.75 135 | 93.09 76 | 77.33 123 | 91.94 66 | 94.65 56 | 74.78 182 | 93.41 126 | 75.11 168 | 98.58 13 | 97.88 7 |
|
| Test_1112_low_res | | | 73.90 284 | 73.08 285 | 76.35 293 | 90.35 156 | 55.95 322 | 73.40 338 | 86.17 233 | 50.70 369 | 73.14 345 | 85.94 281 | 58.31 297 | 85.90 294 | 56.51 323 | 83.22 352 | 87.20 286 |
|
| LFMVS | | | 80.15 217 | 80.56 204 | 78.89 253 | 89.19 181 | 55.93 323 | 85.22 144 | 73.78 338 | 82.96 58 | 84.28 219 | 92.72 135 | 57.38 304 | 90.07 224 | 63.80 279 | 95.75 138 | 90.68 224 |
|
| SCA | | | 73.32 287 | 72.57 293 | 75.58 302 | 81.62 317 | 55.86 324 | 78.89 268 | 71.37 357 | 61.73 291 | 74.93 336 | 83.42 315 | 60.46 280 | 87.01 269 | 58.11 317 | 82.63 360 | 83.88 323 |
|
| EMVS | | | 61.10 361 | 60.81 363 | 61.99 372 | 65.96 404 | 55.86 324 | 53.10 396 | 58.97 397 | 67.06 247 | 56.89 401 | 63.33 398 | 40.98 379 | 67.03 382 | 54.79 337 | 86.18 323 | 63.08 394 |
|
| LCM-MVSNet-Re | | | 83.48 157 | 85.06 125 | 78.75 256 | 85.94 257 | 55.75 326 | 80.05 248 | 94.27 20 | 76.47 129 | 96.09 5 | 94.54 62 | 83.31 83 | 89.75 234 | 59.95 306 | 94.89 167 | 90.75 220 |
|
| tfpnnormal | | | 81.79 188 | 82.95 163 | 78.31 264 | 88.93 186 | 55.40 327 | 80.83 242 | 82.85 276 | 76.81 127 | 85.90 186 | 94.14 84 | 74.58 186 | 86.51 281 | 66.82 252 | 95.68 141 | 93.01 148 |
|
| E-PMN | | | 61.59 358 | 61.62 361 | 61.49 374 | 66.81 401 | 55.40 327 | 53.77 395 | 60.34 394 | 66.80 250 | 58.90 398 | 65.50 397 | 40.48 381 | 66.12 386 | 55.72 328 | 86.25 322 | 62.95 395 |
|
| test-LLR | | | 67.21 335 | 66.74 339 | 68.63 348 | 76.45 366 | 55.21 329 | 67.89 367 | 67.14 375 | 62.43 286 | 65.08 385 | 72.39 387 | 43.41 373 | 69.37 368 | 61.00 300 | 84.89 340 | 81.31 358 |
|
| test-mter | | | 65.00 349 | 63.79 353 | 68.63 348 | 76.45 366 | 55.21 329 | 67.89 367 | 67.14 375 | 50.98 367 | 65.08 385 | 72.39 387 | 28.27 403 | 69.37 368 | 61.00 300 | 84.89 340 | 81.31 358 |
|
| TransMVSNet (Re) | | | 84.02 145 | 85.74 115 | 78.85 254 | 91.00 143 | 55.20 331 | 82.29 219 | 87.26 213 | 79.65 93 | 88.38 134 | 95.52 33 | 83.00 85 | 86.88 274 | 67.97 246 | 96.60 94 | 94.45 82 |
|
| WR-MVS | | | 83.56 155 | 84.40 141 | 81.06 225 | 93.43 67 | 54.88 332 | 78.67 272 | 85.02 254 | 81.24 75 | 90.74 89 | 91.56 168 | 72.85 208 | 91.08 190 | 68.00 245 | 98.04 36 | 97.23 18 |
|
| Anonymous20231206 | | | 71.38 306 | 71.88 298 | 69.88 337 | 86.31 246 | 54.37 333 | 70.39 358 | 74.62 329 | 52.57 355 | 76.73 314 | 88.76 235 | 59.94 285 | 72.06 361 | 44.35 384 | 93.23 210 | 83.23 337 |
|
| HY-MVS | | 64.64 18 | 73.03 291 | 72.47 295 | 74.71 306 | 83.36 299 | 54.19 334 | 82.14 226 | 81.96 283 | 56.76 337 | 69.57 366 | 86.21 278 | 60.03 284 | 84.83 306 | 49.58 365 | 82.65 358 | 85.11 308 |
|
| PAPM | | | 71.77 301 | 70.06 315 | 76.92 286 | 86.39 241 | 53.97 335 | 76.62 302 | 86.62 228 | 53.44 350 | 63.97 390 | 84.73 301 | 57.79 303 | 92.34 156 | 39.65 391 | 81.33 366 | 84.45 316 |
|
| VNet | | | 79.31 223 | 80.27 209 | 76.44 292 | 87.92 209 | 53.95 336 | 75.58 317 | 84.35 263 | 74.39 156 | 82.23 253 | 90.72 196 | 72.84 209 | 84.39 310 | 60.38 305 | 93.98 193 | 90.97 214 |
|
| our_test_3 | | | 71.85 300 | 71.59 300 | 72.62 321 | 80.71 331 | 53.78 337 | 69.72 362 | 71.71 356 | 58.80 320 | 78.03 304 | 80.51 347 | 56.61 309 | 78.84 344 | 62.20 290 | 86.04 325 | 85.23 306 |
|
| PatchmatchNet |  | | 69.71 322 | 68.83 327 | 72.33 325 | 77.66 354 | 53.60 338 | 79.29 260 | 69.99 363 | 57.66 329 | 72.53 349 | 82.93 320 | 46.45 349 | 80.08 338 | 60.91 302 | 72.09 390 | 83.31 336 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDA-MVSNet_test_wron | | | 70.05 318 | 70.44 310 | 68.88 345 | 73.84 382 | 53.47 339 | 58.93 391 | 67.28 373 | 58.43 321 | 87.09 156 | 85.40 289 | 59.80 288 | 67.25 381 | 59.66 308 | 83.54 350 | 85.92 299 |
|
| Baseline_NR-MVSNet | | | 84.00 146 | 85.90 110 | 78.29 266 | 91.47 131 | 53.44 340 | 82.29 219 | 87.00 225 | 79.06 102 | 89.55 114 | 95.72 28 | 77.20 153 | 86.14 290 | 72.30 202 | 98.51 16 | 95.28 56 |
|
| YYNet1 | | | 70.06 317 | 70.44 310 | 68.90 344 | 73.76 383 | 53.42 341 | 58.99 390 | 67.20 374 | 58.42 322 | 87.10 155 | 85.39 290 | 59.82 287 | 67.32 380 | 59.79 307 | 83.50 351 | 85.96 297 |
|
| PVSNet_0 | | 51.08 22 | 56.10 367 | 54.97 372 | 59.48 379 | 75.12 377 | 53.28 342 | 55.16 394 | 61.89 388 | 44.30 385 | 59.16 396 | 62.48 399 | 54.22 321 | 65.91 387 | 35.40 398 | 47.01 402 | 59.25 398 |
|
| FMVSNet5 | | | 72.10 299 | 71.69 299 | 73.32 313 | 81.57 318 | 53.02 343 | 76.77 298 | 78.37 304 | 63.31 275 | 76.37 316 | 91.85 157 | 36.68 388 | 78.98 342 | 47.87 373 | 92.45 224 | 87.95 276 |
|
| KD-MVS_self_test | | | 81.93 185 | 83.14 160 | 78.30 265 | 84.75 275 | 52.75 344 | 80.37 245 | 89.42 185 | 70.24 215 | 90.26 94 | 93.39 113 | 74.55 187 | 86.77 277 | 68.61 240 | 96.64 92 | 95.38 52 |
|
| pmmvs5 | | | 70.73 311 | 70.07 314 | 72.72 319 | 77.03 360 | 52.73 345 | 74.14 328 | 75.65 325 | 50.36 372 | 72.17 351 | 85.37 291 | 55.42 317 | 80.67 333 | 52.86 350 | 87.59 304 | 84.77 311 |
|
| UnsupCasMVSNet_eth | | | 71.63 303 | 72.30 296 | 69.62 339 | 76.47 365 | 52.70 346 | 70.03 361 | 80.97 291 | 59.18 317 | 79.36 295 | 88.21 243 | 60.50 279 | 69.12 371 | 58.33 315 | 77.62 381 | 87.04 287 |
|
| MG-MVS | | | 80.32 212 | 80.94 200 | 78.47 262 | 88.18 204 | 52.62 347 | 82.29 219 | 85.01 255 | 72.01 197 | 79.24 298 | 92.54 140 | 69.36 232 | 93.36 128 | 70.65 214 | 89.19 282 | 89.45 249 |
|
| XXY-MVS | | | 74.44 281 | 76.19 256 | 69.21 342 | 84.61 276 | 52.43 348 | 71.70 347 | 77.18 313 | 60.73 307 | 80.60 279 | 90.96 187 | 75.44 172 | 69.35 370 | 56.13 326 | 88.33 292 | 85.86 300 |
|
| tfpn200view9 | | | 74.86 275 | 74.23 274 | 76.74 290 | 86.24 249 | 52.12 349 | 79.24 262 | 73.87 336 | 73.34 170 | 81.82 261 | 84.60 303 | 46.02 352 | 88.80 248 | 51.98 354 | 90.99 253 | 89.31 253 |
|
| thres400 | | | 75.14 269 | 74.23 274 | 77.86 275 | 86.24 249 | 52.12 349 | 79.24 262 | 73.87 336 | 73.34 170 | 81.82 261 | 84.60 303 | 46.02 352 | 88.80 248 | 51.98 354 | 90.99 253 | 92.66 161 |
|
| MVE |  | 40.22 23 | 51.82 370 | 50.47 373 | 55.87 381 | 62.66 408 | 51.91 351 | 31.61 400 | 39.28 409 | 40.65 394 | 50.76 403 | 74.98 385 | 56.24 312 | 44.67 404 | 33.94 401 | 64.11 399 | 71.04 387 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| thres100view900 | | | 75.45 267 | 75.05 267 | 76.66 291 | 87.27 222 | 51.88 352 | 81.07 238 | 73.26 343 | 75.68 141 | 83.25 238 | 86.37 273 | 45.54 358 | 88.80 248 | 51.98 354 | 90.99 253 | 89.31 253 |
|
| thres600view7 | | | 75.97 263 | 75.35 265 | 77.85 276 | 87.01 232 | 51.84 353 | 80.45 244 | 73.26 343 | 75.20 148 | 83.10 241 | 86.31 276 | 45.54 358 | 89.05 244 | 55.03 336 | 92.24 230 | 92.66 161 |
|
| thres200 | | | 72.34 297 | 71.55 303 | 74.70 307 | 83.48 294 | 51.60 354 | 75.02 322 | 73.71 339 | 70.14 216 | 78.56 303 | 80.57 345 | 46.20 350 | 88.20 258 | 46.99 376 | 89.29 279 | 84.32 318 |
|
| CL-MVSNet_self_test | | | 76.81 253 | 77.38 243 | 75.12 304 | 86.90 234 | 51.34 355 | 73.20 339 | 80.63 294 | 68.30 233 | 81.80 263 | 88.40 240 | 66.92 244 | 80.90 331 | 55.35 333 | 94.90 166 | 93.12 144 |
|
| TESTMET0.1,1 | | | 61.29 359 | 60.32 365 | 64.19 367 | 72.06 392 | 51.30 356 | 67.89 367 | 62.09 385 | 45.27 382 | 60.65 394 | 69.01 393 | 27.93 404 | 64.74 390 | 56.31 324 | 81.65 364 | 76.53 377 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 241 | 77.79 240 | 77.92 273 | 88.82 188 | 51.29 357 | 83.28 188 | 71.97 352 | 74.04 158 | 82.23 253 | 89.78 220 | 57.38 304 | 89.41 241 | 57.22 320 | 95.41 144 | 93.05 146 |
|
| UnsupCasMVSNet_bld | | | 69.21 327 | 69.68 319 | 67.82 352 | 79.42 342 | 51.15 358 | 67.82 370 | 75.79 322 | 54.15 347 | 77.47 313 | 85.36 292 | 59.26 291 | 70.64 366 | 48.46 370 | 79.35 372 | 81.66 354 |
|
| test20.03 | | | 73.75 285 | 74.59 271 | 71.22 330 | 81.11 324 | 51.12 359 | 70.15 360 | 72.10 351 | 70.42 210 | 80.28 287 | 91.50 169 | 64.21 260 | 74.72 358 | 46.96 377 | 94.58 178 | 87.82 280 |
|
| sss | | | 66.92 337 | 67.26 335 | 65.90 360 | 77.23 357 | 51.10 360 | 64.79 377 | 71.72 355 | 52.12 360 | 70.13 363 | 80.18 349 | 57.96 300 | 65.36 389 | 50.21 360 | 81.01 368 | 81.25 360 |
|
| CostFormer | | | 69.98 319 | 68.68 329 | 73.87 309 | 77.14 358 | 50.72 361 | 79.26 261 | 74.51 331 | 51.94 361 | 70.97 357 | 84.75 300 | 45.16 366 | 87.49 264 | 55.16 335 | 79.23 373 | 83.40 333 |
|
| tpm cat1 | | | 66.76 341 | 65.21 349 | 71.42 329 | 77.09 359 | 50.62 362 | 78.01 278 | 73.68 340 | 44.89 384 | 68.64 369 | 79.00 359 | 45.51 360 | 82.42 325 | 49.91 362 | 70.15 393 | 81.23 362 |
|
| mvs_anonymous | | | 78.13 238 | 78.76 229 | 76.23 297 | 79.24 345 | 50.31 363 | 78.69 271 | 84.82 259 | 61.60 295 | 83.09 242 | 92.82 130 | 73.89 193 | 87.01 269 | 68.33 244 | 86.41 319 | 91.37 206 |
|
| MIMVSNet | | | 71.09 308 | 71.59 300 | 69.57 340 | 87.23 223 | 50.07 364 | 78.91 267 | 71.83 353 | 60.20 313 | 71.26 354 | 91.76 163 | 55.08 320 | 76.09 352 | 41.06 389 | 87.02 312 | 82.54 345 |
|
| PVSNet | | 58.17 21 | 66.41 343 | 65.63 346 | 68.75 346 | 81.96 312 | 49.88 365 | 62.19 384 | 72.51 348 | 51.03 366 | 68.04 372 | 75.34 384 | 50.84 334 | 74.77 356 | 45.82 381 | 82.96 353 | 81.60 355 |
|
| ECVR-MVS |  | | 78.44 235 | 78.63 231 | 77.88 274 | 91.85 114 | 48.95 366 | 83.68 179 | 69.91 364 | 72.30 193 | 84.26 221 | 94.20 80 | 51.89 330 | 89.82 229 | 63.58 280 | 96.02 121 | 94.87 67 |
|
| tpm2 | | | 68.45 331 | 66.83 338 | 73.30 314 | 78.93 349 | 48.50 367 | 79.76 252 | 71.76 354 | 47.50 375 | 69.92 364 | 83.60 311 | 42.07 378 | 88.40 255 | 48.44 371 | 79.51 370 | 83.01 340 |
|
| tpmvs | | | 70.16 315 | 69.56 320 | 71.96 326 | 74.71 380 | 48.13 368 | 79.63 253 | 75.45 327 | 65.02 269 | 70.26 362 | 81.88 333 | 45.34 363 | 85.68 298 | 58.34 314 | 75.39 386 | 82.08 351 |
|
| WTY-MVS | | | 67.91 333 | 68.35 330 | 66.58 358 | 80.82 329 | 48.12 369 | 65.96 375 | 72.60 346 | 53.67 349 | 71.20 355 | 81.68 337 | 58.97 293 | 69.06 372 | 48.57 369 | 81.67 362 | 82.55 344 |
|
| VPNet | | | 80.25 213 | 81.68 182 | 75.94 298 | 92.46 92 | 47.98 370 | 76.70 299 | 81.67 286 | 73.45 167 | 84.87 203 | 92.82 130 | 74.66 185 | 86.51 281 | 61.66 297 | 96.85 85 | 93.33 133 |
|
| baseline1 | | | 73.26 288 | 73.54 280 | 72.43 324 | 84.92 271 | 47.79 371 | 79.89 251 | 74.00 334 | 65.93 254 | 78.81 301 | 86.28 277 | 56.36 310 | 81.63 328 | 56.63 322 | 79.04 376 | 87.87 279 |
|
| test1111 | | | 78.53 234 | 78.85 227 | 77.56 278 | 92.22 101 | 47.49 372 | 82.61 207 | 69.24 367 | 72.43 187 | 85.28 194 | 94.20 80 | 51.91 329 | 90.07 224 | 65.36 266 | 96.45 102 | 95.11 62 |
|
| KD-MVS_2432*1600 | | | 66.87 338 | 65.81 344 | 70.04 335 | 67.50 399 | 47.49 372 | 62.56 382 | 79.16 299 | 61.21 302 | 77.98 305 | 80.61 343 | 25.29 408 | 82.48 323 | 53.02 347 | 84.92 337 | 80.16 369 |
|
| miper_refine_blended | | | 66.87 338 | 65.81 344 | 70.04 335 | 67.50 399 | 47.49 372 | 62.56 382 | 79.16 299 | 61.21 302 | 77.98 305 | 80.61 343 | 25.29 408 | 82.48 323 | 53.02 347 | 84.92 337 | 80.16 369 |
|
| test0.0.03 1 | | | 64.66 351 | 64.36 350 | 65.57 362 | 75.03 378 | 46.89 375 | 64.69 378 | 61.58 392 | 62.43 286 | 71.18 356 | 77.54 369 | 43.41 373 | 68.47 377 | 40.75 390 | 82.65 358 | 81.35 357 |
|
| testing11 | | | 67.38 334 | 65.93 342 | 71.73 328 | 83.37 298 | 46.60 376 | 70.95 354 | 69.40 366 | 62.47 283 | 66.14 377 | 76.66 377 | 31.22 396 | 84.10 313 | 49.10 367 | 84.10 348 | 84.49 314 |
|
| Patchmtry | | | 76.56 257 | 77.46 241 | 73.83 310 | 79.37 344 | 46.60 376 | 82.41 216 | 76.90 315 | 73.81 161 | 85.56 191 | 92.38 143 | 48.07 344 | 83.98 315 | 63.36 283 | 95.31 150 | 90.92 216 |
|
| GG-mvs-BLEND | | | | | 67.16 355 | 73.36 385 | 46.54 378 | 84.15 163 | 55.04 401 | | 58.64 399 | 61.95 400 | 29.93 399 | 83.87 317 | 38.71 394 | 76.92 384 | 71.07 386 |
|
| testing91 | | | 69.94 320 | 68.99 325 | 72.80 318 | 83.81 292 | 45.89 379 | 71.57 349 | 73.64 341 | 68.24 234 | 70.77 360 | 77.82 366 | 34.37 391 | 84.44 309 | 53.64 343 | 87.00 313 | 88.07 271 |
|
| testing222 | | | 66.93 336 | 65.30 348 | 71.81 327 | 83.38 297 | 45.83 380 | 72.06 345 | 67.50 371 | 64.12 273 | 69.68 365 | 76.37 380 | 27.34 405 | 83.00 320 | 38.88 392 | 88.38 291 | 86.62 292 |
|
| testing99 | | | 69.27 326 | 68.15 332 | 72.63 320 | 83.29 300 | 45.45 381 | 71.15 351 | 71.08 358 | 67.34 245 | 70.43 361 | 77.77 368 | 32.24 394 | 84.35 311 | 53.72 342 | 86.33 321 | 88.10 270 |
|
| gg-mvs-nofinetune | | | 68.96 329 | 69.11 322 | 68.52 350 | 76.12 369 | 45.32 382 | 83.59 181 | 55.88 400 | 86.68 24 | 64.62 389 | 97.01 7 | 30.36 398 | 83.97 316 | 44.78 383 | 82.94 354 | 76.26 378 |
|
| ANet_high | | | 83.17 163 | 85.68 116 | 75.65 300 | 81.24 322 | 45.26 383 | 79.94 250 | 92.91 85 | 83.83 46 | 91.33 74 | 96.88 10 | 80.25 127 | 85.92 292 | 68.89 235 | 95.89 129 | 95.76 43 |
|
| DSMNet-mixed | | | 60.98 362 | 61.61 362 | 59.09 380 | 72.88 389 | 45.05 384 | 74.70 325 | 46.61 406 | 26.20 402 | 65.34 383 | 90.32 208 | 55.46 316 | 63.12 393 | 41.72 388 | 81.30 367 | 69.09 389 |
|
| gm-plane-assit | | | | | | 75.42 375 | 44.97 385 | | | 52.17 357 | | 72.36 389 | | 87.90 259 | 54.10 340 | | |
|
| test2506 | | | 74.12 282 | 73.39 282 | 76.28 295 | 91.85 114 | 44.20 386 | 84.06 166 | 48.20 405 | 72.30 193 | 81.90 258 | 94.20 80 | 27.22 406 | 89.77 232 | 64.81 271 | 96.02 121 | 94.87 67 |
|
| WB-MVSnew | | | 68.72 330 | 69.01 324 | 67.85 351 | 83.22 303 | 43.98 387 | 74.93 323 | 65.98 379 | 55.09 341 | 73.83 342 | 79.11 357 | 65.63 253 | 71.89 363 | 38.21 396 | 85.04 335 | 87.69 281 |
|
| MDTV_nov1_ep13 | | | | 68.29 331 | | 78.03 351 | 43.87 388 | 74.12 329 | 72.22 350 | 52.17 357 | 67.02 376 | 85.54 285 | 45.36 362 | 80.85 332 | 55.73 327 | 84.42 345 | |
|
| tpm | | | 67.95 332 | 68.08 333 | 67.55 353 | 78.74 350 | 43.53 389 | 75.60 315 | 67.10 377 | 54.92 343 | 72.23 350 | 88.10 244 | 42.87 377 | 75.97 353 | 52.21 352 | 80.95 369 | 83.15 338 |
|
| Patchmatch-test | | | 65.91 345 | 67.38 334 | 61.48 375 | 75.51 373 | 43.21 390 | 68.84 364 | 63.79 384 | 62.48 282 | 72.80 348 | 83.42 315 | 44.89 368 | 59.52 397 | 48.27 372 | 86.45 318 | 81.70 353 |
|
| testgi | | | 72.36 296 | 74.61 269 | 65.59 361 | 80.56 333 | 42.82 391 | 68.29 366 | 73.35 342 | 66.87 249 | 81.84 260 | 89.93 217 | 72.08 218 | 66.92 383 | 46.05 380 | 92.54 223 | 87.01 288 |
|
| ETVMVS | | | 64.67 350 | 63.34 355 | 68.64 347 | 83.44 296 | 41.89 392 | 69.56 363 | 61.70 391 | 61.33 299 | 68.74 368 | 75.76 382 | 28.76 401 | 79.35 339 | 34.65 399 | 86.16 324 | 84.67 313 |
|
| testing3 | | | 71.53 304 | 70.79 306 | 73.77 311 | 88.89 187 | 41.86 393 | 76.60 303 | 59.12 395 | 72.83 181 | 80.97 272 | 82.08 331 | 19.80 411 | 87.33 267 | 65.12 268 | 91.68 242 | 92.13 186 |
|
| UWE-MVS | | | 66.43 342 | 65.56 347 | 69.05 343 | 84.15 286 | 40.98 394 | 73.06 341 | 64.71 382 | 54.84 344 | 76.18 321 | 79.62 355 | 29.21 400 | 80.50 335 | 38.54 395 | 89.75 275 | 85.66 302 |
|
| tpmrst | | | 66.28 344 | 66.69 340 | 65.05 365 | 72.82 390 | 39.33 395 | 78.20 277 | 70.69 361 | 53.16 352 | 67.88 373 | 80.36 348 | 48.18 343 | 74.75 357 | 58.13 316 | 70.79 392 | 81.08 363 |
|
| Syy-MVS | | | 69.40 325 | 70.03 316 | 67.49 354 | 81.72 315 | 38.94 396 | 71.00 352 | 61.99 386 | 61.38 297 | 70.81 358 | 72.36 389 | 61.37 276 | 79.30 340 | 64.50 277 | 85.18 332 | 84.22 319 |
|
| EPMVS | | | 62.47 354 | 62.63 358 | 62.01 371 | 70.63 395 | 38.74 397 | 74.76 324 | 52.86 402 | 53.91 348 | 67.71 375 | 80.01 350 | 39.40 382 | 66.60 384 | 55.54 331 | 68.81 398 | 80.68 367 |
|
| dp | | | 60.70 363 | 60.29 366 | 61.92 373 | 72.04 393 | 38.67 398 | 70.83 355 | 64.08 383 | 51.28 364 | 60.75 393 | 77.28 372 | 36.59 389 | 71.58 365 | 47.41 374 | 62.34 400 | 75.52 380 |
|
| WAC-MVS | | | | | | | 37.39 399 | | | | | | | | 52.61 351 | | |
|
| myMVS_eth3d | | | 64.66 351 | 63.89 352 | 66.97 356 | 81.72 315 | 37.39 399 | 71.00 352 | 61.99 386 | 61.38 297 | 70.81 358 | 72.36 389 | 20.96 410 | 79.30 340 | 49.59 364 | 85.18 332 | 84.22 319 |
|
| ADS-MVSNet | | | 61.90 356 | 62.19 360 | 61.03 376 | 73.16 387 | 36.42 401 | 67.10 371 | 61.75 389 | 49.74 373 | 66.04 379 | 82.97 318 | 46.71 347 | 63.21 392 | 42.29 386 | 69.96 394 | 83.46 331 |
|
| MVS-HIRNet | | | 61.16 360 | 62.92 357 | 55.87 381 | 79.09 346 | 35.34 402 | 71.83 346 | 57.98 399 | 46.56 378 | 59.05 397 | 91.14 179 | 49.95 339 | 76.43 351 | 38.74 393 | 71.92 391 | 55.84 400 |
|
| PatchT | | | 70.52 312 | 72.76 290 | 63.79 369 | 79.38 343 | 33.53 403 | 77.63 285 | 65.37 381 | 73.61 165 | 71.77 352 | 92.79 133 | 44.38 370 | 75.65 355 | 64.53 276 | 85.37 329 | 82.18 349 |
|
| new_pmnet | | | 55.69 368 | 57.66 369 | 49.76 384 | 75.47 374 | 30.59 404 | 59.56 386 | 51.45 403 | 43.62 389 | 62.49 391 | 75.48 383 | 40.96 380 | 49.15 403 | 37.39 397 | 72.52 388 | 69.55 388 |
|
| DeepMVS_CX |  | | | | 24.13 387 | 32.95 409 | 29.49 405 | | 21.63 412 | 12.07 403 | 37.95 404 | 45.07 402 | 30.84 397 | 19.21 406 | 17.94 406 | 33.06 405 | 23.69 402 |
|
| dmvs_testset | | | 60.59 364 | 62.54 359 | 54.72 383 | 77.26 356 | 27.74 406 | 74.05 330 | 61.00 393 | 60.48 309 | 65.62 382 | 67.03 396 | 55.93 313 | 68.23 378 | 32.07 403 | 69.46 397 | 68.17 390 |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 407 | 70.76 356 | | 46.47 379 | 61.27 392 | | 45.20 364 | | 49.18 366 | | 83.75 328 |
|
| WB-MVS | | | 76.06 262 | 80.01 218 | 64.19 367 | 89.96 167 | 20.58 408 | 72.18 344 | 68.19 370 | 83.21 54 | 86.46 176 | 93.49 111 | 70.19 229 | 78.97 343 | 65.96 257 | 90.46 269 | 93.02 147 |
|
| SSC-MVS | | | 77.55 244 | 81.64 183 | 65.29 364 | 90.46 154 | 20.33 409 | 73.56 335 | 68.28 369 | 85.44 32 | 88.18 139 | 94.64 59 | 70.93 226 | 81.33 329 | 71.25 206 | 92.03 234 | 94.20 92 |
|
| new-patchmatchnet | | | 70.10 316 | 73.37 283 | 60.29 377 | 81.23 323 | 16.95 410 | 59.54 387 | 74.62 329 | 62.93 278 | 80.97 272 | 87.93 248 | 62.83 272 | 71.90 362 | 55.24 334 | 95.01 163 | 92.00 190 |
|
| PMMVS2 | | | 55.64 369 | 59.27 368 | 44.74 385 | 64.30 407 | 12.32 411 | 40.60 398 | 49.79 404 | 53.19 351 | 65.06 387 | 84.81 299 | 53.60 323 | 49.76 402 | 32.68 402 | 89.41 278 | 72.15 384 |
|
| tmp_tt | | | 20.25 373 | 24.50 376 | 7.49 388 | 4.47 411 | 8.70 412 | 34.17 399 | 25.16 411 | 1.00 406 | 32.43 405 | 18.49 403 | 39.37 383 | 9.21 407 | 21.64 405 | 43.75 403 | 4.57 403 |
|
| test_method | | | 30.46 371 | 29.60 374 | 33.06 386 | 17.99 410 | 3.84 413 | 13.62 401 | 73.92 335 | 2.79 404 | 18.29 406 | 53.41 401 | 28.53 402 | 43.25 405 | 22.56 404 | 35.27 404 | 52.11 401 |
|
| test123 | | | 6.27 376 | 8.08 379 | 0.84 389 | 1.11 413 | 0.57 414 | 62.90 381 | 0.82 413 | 0.54 407 | 1.07 409 | 2.75 408 | 1.26 412 | 0.30 408 | 1.04 407 | 1.26 407 | 1.66 404 |
|
| testmvs | | | 5.91 377 | 7.65 380 | 0.72 390 | 1.20 412 | 0.37 415 | 59.14 388 | 0.67 414 | 0.49 408 | 1.11 408 | 2.76 407 | 0.94 413 | 0.24 409 | 1.02 408 | 1.47 406 | 1.55 405 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 20.81 372 | 27.75 375 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 85.44 244 | 0.00 409 | 0.00 410 | 82.82 322 | 81.46 113 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 6.41 375 | 8.55 378 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 76.94 159 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 6.65 374 | 8.87 377 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 79.80 352 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| PC_three_1452 | | | | | | | | | | 58.96 319 | 90.06 96 | 91.33 173 | 80.66 123 | 93.03 138 | 75.78 160 | 95.94 126 | 92.48 167 |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| test_241102_TWO | | | | | | | | | 93.71 50 | 83.77 47 | 93.49 36 | 94.27 74 | 89.27 21 | 95.84 23 | 86.03 46 | 97.82 51 | 92.04 188 |
|
| 9.14 | | | | 89.29 58 | | 91.84 116 | | 88.80 88 | 95.32 12 | 75.14 149 | 91.07 79 | 92.89 128 | 87.27 44 | 93.78 106 | 83.69 69 | 97.55 67 | |
|
| test_0728_THIRD | | | | | | | | | | 85.33 33 | 93.75 30 | 94.65 56 | 87.44 43 | 95.78 28 | 87.41 22 | 98.21 29 | 92.98 150 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 323 |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 351 | | | | 83.88 323 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 356 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 119 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 270 | | | | 3.13 405 | 45.19 365 | 80.13 337 | 58.11 317 | | |
|
| test_post | | | | | | | | | | | | 3.10 406 | 45.43 361 | 77.22 350 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 336 | 45.93 355 | 87.01 269 | | | |
|
| MTMP | | | | | | | | 90.66 44 | 33.14 410 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 102 | 90.57 227 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 114 | 90.22 235 |
|
| test_prior2 | | | | | | | | 83.37 186 | | 75.43 145 | 84.58 207 | 91.57 167 | 81.92 108 | | 79.54 116 | 96.97 83 | |
|
| 旧先验2 | | | | | | | | 81.73 228 | | 56.88 336 | 86.54 174 | | | 84.90 305 | 72.81 198 | | |
|
| 新几何2 | | | | | | | | 81.72 229 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 204 | 85.62 242 | 58.09 325 | | | | 91.41 182 | 67.95 247 | | 84.48 315 |
|
| 原ACMM2 | | | | | | | | 82.26 222 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 283 | 63.52 282 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 105 | | | | |
|
| testdata1 | | | | | | | | 79.62 254 | | 73.95 160 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 54 | | | | | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 126 | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 77 | | 79.44 96 | | | | | | | |
|
| plane_prior1 | | | | | | 92.83 85 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 332 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 125 | | | | | | | | |
|
| door | | | | | | | | | 72.57 347 | | | | | | | | |
|
| HQP-NCC | | | | | | 91.19 136 | | 84.77 148 | | 73.30 172 | 80.55 281 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 136 | | 84.77 148 | | 73.30 172 | 80.55 281 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 280 | | | 94.61 74 | | | 93.56 128 |
|
| HQP3-MVS | | | | | | | | | 92.68 92 | | | | | | | 94.47 180 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 216 | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 134 | | | | |
|