This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5799.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9586.07 4898.48 1897.22 17
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13591.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 193
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 158
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 189
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 95
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11398.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 146
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 168
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 92
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 182
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 102
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 111
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 155
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 99
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 104
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 105
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12678.35 13198.76 495.61 47
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 138
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14285.02 5998.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10395.50 14594.53 79
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8198.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6597.81 5591.70 208
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 183
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15492.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 91
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9886.25 4597.63 6397.82 8
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25277.55 14597.07 8383.13 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 171
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 240
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 4391.92 1584.47 14996.56 658.83 30989.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12198.74 699.00 2
PEN-MVS90.03 4591.88 1884.48 14896.57 558.88 30688.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12798.72 998.97 3
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5797.78 5697.26 15
DTE-MVSNet89.98 4791.91 1784.21 15896.51 757.84 31788.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12498.57 1598.80 6
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13882.67 8598.04 3993.64 123
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6095.87 13295.24 57
WR-MVS_H89.91 5091.31 3385.71 12696.32 962.39 26289.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10298.80 398.84 5
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10784.83 6297.55 6994.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22794.55 1996.67 1487.94 3993.59 11884.27 6795.97 12495.52 48
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22895.06 1596.14 2584.28 7793.07 13987.68 1896.34 10697.09 19
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20794.28 2496.54 1681.57 11794.27 8786.26 4396.49 10097.09 19
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19884.60 6490.75 26993.97 103
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9197.18 8190.45 242
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23194.39 2096.38 1886.02 6593.52 12283.96 6995.92 13095.34 52
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13183.07 7797.24 7991.67 209
ACMH76.49 1489.34 5991.14 3583.96 16392.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26283.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
CP-MVSNet89.27 6290.91 4484.37 15096.34 858.61 31288.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12598.69 1098.95 4
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14093.60 6180.16 9189.13 12393.44 11883.82 8090.98 19683.86 7195.30 15393.60 126
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17389.71 10794.82 5685.09 6895.77 3484.17 6898.03 4193.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6590.72 4784.31 15697.00 264.33 23789.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18772.57 20997.65 6297.34 14
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26292.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6789.88 5386.22 11491.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22086.24 4697.24 7991.36 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 246
test_040288.65 6989.58 6085.88 12292.55 9272.22 15984.01 17689.44 19388.63 2094.38 2195.77 2986.38 6193.59 11879.84 11495.21 15491.82 202
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10477.65 14396.62 9590.70 234
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24873.75 19294.81 17393.70 119
Anonymous2023121188.40 7189.62 5984.73 14290.46 15765.27 22788.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16876.70 15597.99 4396.88 23
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21894.19 2596.67 1476.94 16694.57 8183.07 7796.28 10896.15 32
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 12977.97 14197.03 8495.52 48
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22589.33 23683.87 7994.53 8482.45 8794.89 16994.90 64
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25186.63 17694.84 5579.58 13895.96 1587.62 1994.50 18194.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7789.79 5582.98 19393.26 7563.94 24191.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17382.03 9295.87 13293.13 144
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20689.67 23284.47 7595.46 5082.56 8696.26 11193.77 117
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26676.54 15788.74 29796.61 27
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13494.02 5864.13 23884.38 17091.29 13884.88 4492.06 6593.84 10586.45 5893.73 10973.22 20098.66 1197.69 9
nrg03087.85 8288.49 7585.91 12090.07 16669.73 18387.86 10694.20 3074.04 16592.70 5694.66 6085.88 6691.50 17979.72 11697.32 7796.50 29
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15391.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6396.27 11092.62 165
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10595.83 13494.46 80
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24293.78 10873.36 21096.48 287.98 1396.21 11294.41 86
MVSMamba_PlusPlus87.53 8688.86 7183.54 17992.03 11062.26 26691.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6194.16 19292.58 166
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21490.89 19980.85 12595.29 5681.14 10095.32 15092.34 180
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19492.38 10570.25 22489.35 11990.68 20882.85 9294.57 8179.55 11895.95 12792.00 197
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 7996.83 8995.41 50
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27887.25 27382.43 9894.53 8477.65 14396.46 10294.14 98
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19783.80 18592.87 9180.37 8789.61 11391.81 17077.72 15394.18 9375.00 17798.53 1696.99 22
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23094.05 9278.35 14693.65 11180.54 10991.58 25092.08 193
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11792.86 8667.02 21182.55 22091.56 12883.08 6290.92 8491.82 16978.25 14793.99 10074.16 18298.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11593.24 7667.02 21183.16 20392.21 10981.73 7490.92 8491.97 16377.20 16093.99 10074.16 18298.35 2297.61 10
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15287.09 23665.22 22884.16 17294.23 2777.89 12291.28 7993.66 11484.35 7692.71 14880.07 11094.87 17295.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26378.30 8986.93 12092.20 11065.94 26389.16 12193.16 12483.10 8989.89 23387.81 1594.43 18493.35 133
IS-MVSNet86.66 9786.82 10086.17 11792.05 10966.87 21491.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 18997.89 5296.72 24
v1086.54 9887.10 9284.84 13888.16 20963.28 24886.64 13092.20 11075.42 15392.81 5394.50 6874.05 19894.06 9983.88 7096.28 10897.17 18
pmmvs686.52 9988.06 7981.90 21492.22 10362.28 26584.66 16389.15 19683.54 5789.85 10497.32 588.08 3886.80 28170.43 22697.30 7896.62 26
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18684.76 21587.70 26378.87 14294.18 9380.67 10796.29 10792.73 158
CSCG86.26 10186.47 10385.60 12890.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25579.09 14092.13 16475.51 17095.06 16190.41 243
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 21984.96 21090.69 20780.01 13595.14 6478.37 13095.78 13891.82 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10386.83 9984.36 15287.82 21562.35 26486.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11083.10 7695.41 14697.01 21
Anonymous2024052986.20 10487.13 9183.42 18190.19 16264.55 23584.55 16590.71 15385.85 3689.94 10395.24 4682.13 10790.40 21669.19 23996.40 10595.31 54
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27278.25 9085.82 14491.82 12365.33 27788.55 13292.35 15682.62 9689.80 23586.87 3594.32 18793.18 143
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18292.01 11565.91 26586.19 18691.75 17383.77 8294.98 6977.43 14896.71 9393.73 118
NR-MVSNet86.00 10786.22 10785.34 13293.24 7664.56 23482.21 23290.46 16080.99 8288.42 13791.97 16377.56 15593.85 10572.46 21098.65 1297.61 10
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17890.32 16765.79 26784.49 21990.97 19481.93 11193.63 11381.21 9996.54 9890.88 228
FC-MVSNet-test85.93 10987.05 9482.58 20492.25 10156.44 32885.75 14593.09 8177.33 13091.94 6894.65 6174.78 18993.41 12875.11 17698.58 1497.88 7
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28078.21 9185.40 15291.39 13565.32 27887.72 15391.81 17082.33 10189.78 23686.68 3794.20 19092.99 151
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23291.15 387.70 10888.42 20474.57 16183.56 24385.65 29778.49 14594.21 9172.04 21292.88 22394.05 101
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23285.80 19589.56 23380.76 12692.13 16473.21 20595.51 14493.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
sasdasda85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
canonicalmvs85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22196.89 8695.64 45
GeoE85.45 11685.81 11784.37 15090.08 16467.07 21085.86 14391.39 13572.33 20087.59 15590.25 22084.85 7192.37 15878.00 13991.94 24393.66 120
MVS_030485.37 11784.58 14287.75 8885.28 27173.36 13686.54 13385.71 24877.56 12981.78 27692.47 15070.29 23696.02 1185.59 5395.96 12593.87 109
FIs85.35 11886.27 10682.60 20391.86 11657.31 32185.10 15793.05 8375.83 14691.02 8393.97 9673.57 20392.91 14673.97 18898.02 4297.58 12
test_fmvsmvis_n_192085.22 11985.36 12884.81 13985.80 26576.13 12285.15 15692.32 10761.40 30791.33 7690.85 20283.76 8386.16 29484.31 6693.28 21392.15 191
casdiffmvspermissive85.21 12085.85 11683.31 18486.17 25862.77 25583.03 20593.93 4674.69 16088.21 14292.68 14482.29 10491.89 17277.87 14293.75 20495.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 12185.93 11383.02 19186.30 25362.37 26384.55 16593.96 4474.48 16287.12 16192.03 16282.30 10391.94 16978.39 12994.21 18994.74 73
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15076.68 32784.06 5092.44 6096.99 1062.03 28094.65 7780.58 10893.24 21494.83 71
mmtdpeth85.13 12385.78 11983.17 18984.65 28274.71 12785.87 14290.35 16677.94 12183.82 23796.96 1277.75 15180.03 34878.44 12896.21 11294.79 72
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29472.76 14483.91 18185.18 25780.44 8688.75 12785.49 30080.08 13491.92 17082.02 9390.85 26795.97 38
MGCFI-Net85.04 12585.95 11282.31 21087.52 22463.59 24486.23 13893.96 4473.46 17488.07 14587.83 26186.46 5790.87 20376.17 16393.89 19992.47 173
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29872.52 15383.82 18385.15 25880.27 9088.75 12785.45 30279.95 13691.90 17181.92 9690.80 26896.13 33
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 41986.57 5595.80 2887.35 2797.62 6494.20 92
MSLP-MVS++85.00 12886.03 11181.90 21491.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23477.98 14889.40 24777.46 14694.78 17484.75 323
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18580.18 30089.15 24077.04 16493.28 13165.82 27192.28 23492.21 188
balanced_conf0384.80 13085.40 12683.00 19288.95 18861.44 27390.42 5892.37 10671.48 20988.72 12993.13 12570.16 23895.15 6379.26 12394.11 19392.41 175
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12788.77 9490.00 18075.65 14984.96 21093.17 12374.06 19791.19 18978.28 13391.09 25689.29 265
IterMVS-LS84.73 13284.98 13383.96 16387.35 22763.66 24283.25 19989.88 18376.06 13989.62 11192.37 15573.40 20992.52 15378.16 13694.77 17695.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 13384.34 15185.49 13190.18 16375.86 12379.23 27387.13 22473.35 17885.56 20089.34 23583.60 8590.50 21476.64 15694.05 19690.09 252
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15892.68 9773.30 18180.55 29290.17 22472.10 22494.61 7977.30 15094.47 18293.56 129
v119284.57 13584.69 14084.21 15887.75 21762.88 25283.02 20691.43 13269.08 23489.98 10290.89 19972.70 21893.62 11682.41 8894.97 16696.13 33
FMVSNet184.55 13685.45 12581.85 21690.27 16161.05 28086.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 20969.09 24095.33 14993.82 112
v114484.54 13784.72 13884.00 16187.67 22062.55 25982.97 20890.93 14970.32 22389.80 10590.99 19373.50 20493.48 12481.69 9894.65 17995.97 38
Gipumacopyleft84.44 13886.33 10578.78 26284.20 29273.57 13589.55 7790.44 16184.24 4884.38 22294.89 5376.35 17780.40 34576.14 16496.80 9182.36 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13983.93 15785.63 12791.59 12471.58 16883.52 19192.13 11261.82 30083.96 23589.75 23179.93 13793.46 12578.33 13294.34 18691.87 201
VDDNet84.35 14085.39 12781.25 22795.13 3259.32 29985.42 15181.11 29886.41 3287.41 15896.21 2273.61 20290.61 21266.33 26496.85 8793.81 115
ETV-MVS84.31 14183.91 15885.52 12988.58 19970.40 17884.50 16993.37 6478.76 11384.07 23378.72 37480.39 13095.13 6573.82 19192.98 22191.04 222
v124084.30 14284.51 14683.65 17287.65 22161.26 27782.85 21291.54 12967.94 24990.68 9190.65 21171.71 23093.64 11282.84 8294.78 17496.07 35
MVS_111021_LR84.28 14383.76 15985.83 12489.23 18283.07 5580.99 24883.56 27872.71 19386.07 18989.07 24181.75 11686.19 29377.11 15293.36 20988.24 279
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17784.98 26471.27 21086.70 17390.55 21363.04 27793.92 10378.26 13494.20 19089.63 257
v14419284.24 14584.41 14883.71 17187.59 22361.57 27282.95 20991.03 14567.82 25289.80 10590.49 21473.28 21193.51 12381.88 9794.89 16996.04 37
dcpmvs_284.23 14685.14 13081.50 22488.61 19861.98 27082.90 21193.11 7968.66 24092.77 5492.39 15178.50 14487.63 26876.99 15492.30 23194.90 64
v192192084.23 14684.37 15083.79 16787.64 22261.71 27182.91 21091.20 14167.94 24990.06 9790.34 21772.04 22793.59 11882.32 8994.91 16796.07 35
VDD-MVS84.23 14684.58 14283.20 18791.17 14265.16 23083.25 19984.97 26579.79 9587.18 16094.27 7974.77 19090.89 20169.24 23696.54 9893.55 131
v2v48284.09 14984.24 15283.62 17387.13 23261.40 27482.71 21589.71 18672.19 20389.55 11591.41 18070.70 23593.20 13381.02 10193.76 20196.25 31
EG-PatchMatch MVS84.08 15084.11 15383.98 16292.22 10372.61 15082.20 23487.02 22972.63 19488.86 12491.02 19278.52 14391.11 19273.41 19791.09 25688.21 280
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20192.40 10372.04 20482.04 26788.33 25177.91 15093.95 10266.17 26595.12 15990.34 245
TransMVSNet (Re)84.02 15285.74 12078.85 26191.00 14655.20 34082.29 22887.26 22079.65 9888.38 13995.52 3783.00 9086.88 27967.97 25496.60 9694.45 82
Baseline_NR-MVSNet84.00 15385.90 11478.29 27391.47 13453.44 35182.29 22887.00 23279.06 10789.55 11595.72 3277.20 16086.14 29572.30 21198.51 1795.28 55
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18781.58 29674.73 15985.66 19686.06 29272.56 22092.69 15075.44 17295.21 15489.01 273
alignmvs83.94 15583.98 15683.80 16687.80 21667.88 20484.54 16791.42 13473.27 18488.41 13887.96 25672.33 22190.83 20476.02 16694.11 19392.69 162
Effi-MVS+83.90 15684.01 15583.57 17787.22 23065.61 22686.55 13292.40 10378.64 11481.34 28384.18 32183.65 8492.93 14474.22 18187.87 31192.17 190
mvs5depth83.82 15784.54 14481.68 22182.23 31968.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33376.37 15995.63 14394.35 88
CANet83.79 15882.85 17486.63 10486.17 25872.21 16083.76 18691.43 13277.24 13274.39 35187.45 26975.36 18195.42 5277.03 15392.83 22492.25 187
pm-mvs183.69 15984.95 13479.91 24890.04 16859.66 29682.43 22487.44 21775.52 15187.85 15095.26 4581.25 12185.65 30568.74 24696.04 12194.42 85
AdaColmapbinary83.66 16083.69 16083.57 17790.05 16772.26 15886.29 13690.00 18078.19 11981.65 27787.16 27583.40 8794.24 9061.69 30694.76 17784.21 333
MIMVSNet183.63 16184.59 14180.74 23694.06 5762.77 25582.72 21484.53 27177.57 12890.34 9395.92 2876.88 17285.83 30361.88 30497.42 7493.62 124
test_fmvsm_n_192083.60 16282.89 17385.74 12585.22 27377.74 9984.12 17490.48 15959.87 32686.45 18591.12 18975.65 17885.89 30182.28 9090.87 26593.58 127
WR-MVS83.56 16384.40 14981.06 23293.43 7054.88 34178.67 28185.02 26281.24 7990.74 9091.56 17772.85 21591.08 19368.00 25398.04 3997.23 16
CNLPA83.55 16483.10 17084.90 13789.34 17983.87 5084.54 16788.77 19979.09 10683.54 24488.66 24874.87 18681.73 33566.84 25992.29 23389.11 267
LCM-MVSNet-Re83.48 16585.06 13178.75 26385.94 26355.75 33480.05 25794.27 2476.47 13696.09 694.54 6783.31 8889.75 23959.95 31794.89 16990.75 231
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21683.69 27671.27 21086.70 17386.05 29363.04 27792.41 15678.26 13493.62 20890.71 233
V4283.47 16683.37 16483.75 16983.16 31363.33 24781.31 24290.23 17469.51 23090.91 8690.81 20474.16 19692.29 16280.06 11190.22 27795.62 46
VPA-MVSNet83.47 16684.73 13679.69 25290.29 16057.52 32081.30 24488.69 20176.29 13787.58 15694.44 7180.60 12987.20 27366.60 26296.82 9094.34 89
PAPM_NR83.23 16983.19 16783.33 18390.90 14865.98 22288.19 10190.78 15278.13 12080.87 28887.92 25973.49 20692.42 15570.07 22988.40 30091.60 211
CLD-MVS83.18 17082.64 17884.79 14089.05 18467.82 20577.93 28992.52 10168.33 24285.07 20781.54 35082.06 10892.96 14269.35 23597.91 5193.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 17185.68 12175.65 30881.24 33145.26 39479.94 25992.91 9083.83 5191.33 7696.88 1380.25 13285.92 29868.89 24395.89 13195.76 42
FA-MVS(test-final)83.13 17283.02 17183.43 18086.16 26066.08 22188.00 10388.36 20675.55 15085.02 20892.75 14265.12 26292.50 15474.94 17891.30 25491.72 206
114514_t83.10 17382.54 18184.77 14192.90 8369.10 19486.65 12990.62 15754.66 35881.46 28090.81 20476.98 16594.38 8672.62 20896.18 11490.82 230
RRT-MVS82.97 17483.44 16181.57 22385.06 27558.04 31587.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14076.49 15888.47 29993.62 124
UGNet82.78 17581.64 19286.21 11586.20 25776.24 12086.86 12285.68 24977.07 13373.76 35592.82 13869.64 23991.82 17569.04 24293.69 20590.56 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 17681.93 18885.19 13382.08 32080.15 7485.53 14888.76 20068.01 24685.58 19987.75 26271.80 22986.85 28074.02 18793.87 20088.58 276
EI-MVSNet82.61 17782.42 18383.20 18783.25 31063.66 24283.50 19285.07 25976.06 13986.55 17785.10 30873.41 20790.25 21778.15 13890.67 27195.68 44
QAPM82.59 17882.59 18082.58 20486.44 24666.69 21589.94 6790.36 16567.97 24884.94 21292.58 14772.71 21792.18 16370.63 22487.73 31388.85 274
fmvsm_s_conf0.1_n_a82.58 17981.93 18884.50 14787.68 21973.35 13786.14 13977.70 31661.64 30585.02 20891.62 17577.75 15186.24 29082.79 8387.07 32093.91 107
Fast-Effi-MVS+-dtu82.54 18081.41 20085.90 12185.60 26676.53 11583.07 20489.62 19073.02 18879.11 31083.51 32680.74 12790.24 21968.76 24589.29 28890.94 225
MVS_Test82.47 18183.22 16580.22 24582.62 31857.75 31982.54 22191.96 11871.16 21482.89 25492.52 14977.41 15790.50 21480.04 11287.84 31292.40 177
v14882.31 18282.48 18281.81 21985.59 26759.66 29681.47 24186.02 24472.85 18988.05 14790.65 21170.73 23490.91 20075.15 17591.79 24494.87 66
API-MVS82.28 18382.61 17981.30 22686.29 25469.79 18188.71 9587.67 21678.42 11782.15 26684.15 32277.98 14891.59 17865.39 27492.75 22582.51 360
MVSFormer82.23 18481.57 19784.19 16085.54 26869.26 18991.98 3490.08 17871.54 20776.23 33285.07 31158.69 30294.27 8786.26 4388.77 29589.03 271
fmvsm_s_conf0.5_n_a82.21 18581.51 19984.32 15586.56 24473.35 13785.46 14977.30 32061.81 30184.51 21890.88 20177.36 15886.21 29282.72 8486.97 32593.38 132
EIA-MVS82.19 18681.23 20585.10 13587.95 21369.17 19383.22 20293.33 6770.42 22078.58 31479.77 36677.29 15994.20 9271.51 21488.96 29391.93 200
fmvsm_s_conf0.1_n82.17 18781.59 19583.94 16586.87 24271.57 16985.19 15577.42 31962.27 29984.47 22191.33 18276.43 17485.91 29983.14 7487.14 31894.33 90
PCF-MVS74.62 1582.15 18880.92 20985.84 12389.43 17772.30 15780.53 25291.82 12357.36 34287.81 15189.92 22877.67 15493.63 11358.69 32295.08 16091.58 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18980.31 21687.45 9290.86 15080.29 7385.88 14190.65 15568.17 24576.32 33186.33 28773.12 21392.61 15261.40 30990.02 28089.44 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_l_conf0.5_n82.06 19081.54 19883.60 17483.94 29573.90 13383.35 19686.10 24058.97 32883.80 23890.36 21674.23 19586.94 27882.90 8090.22 27789.94 254
GBi-Net82.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
test182.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
OpenMVScopyleft76.72 1381.98 19382.00 18781.93 21384.42 28768.22 19988.50 9989.48 19266.92 25881.80 27491.86 16572.59 21990.16 22271.19 21791.25 25587.40 295
KD-MVS_self_test81.93 19483.14 16978.30 27284.75 28152.75 35580.37 25489.42 19470.24 22590.26 9593.39 11974.55 19486.77 28268.61 24896.64 9495.38 51
fmvsm_s_conf0.5_n81.91 19581.30 20283.75 16986.02 26271.56 17084.73 16177.11 32362.44 29684.00 23490.68 20876.42 17585.89 30183.14 7487.11 31993.81 115
SDMVSNet81.90 19683.17 16878.10 27688.81 19262.45 26176.08 32286.05 24373.67 17083.41 24593.04 12782.35 10080.65 34270.06 23095.03 16291.21 218
tfpnnormal81.79 19782.95 17278.31 27188.93 18955.40 33680.83 25182.85 28476.81 13485.90 19494.14 8974.58 19386.51 28666.82 26095.68 14293.01 150
c3_l81.64 19881.59 19581.79 22080.86 33759.15 30378.61 28290.18 17668.36 24187.20 15987.11 27769.39 24091.62 17778.16 13694.43 18494.60 75
PVSNet_Blended_VisFu81.55 19980.49 21484.70 14491.58 12773.24 14184.21 17191.67 12762.86 29080.94 28687.16 27567.27 25192.87 14769.82 23288.94 29487.99 286
fmvsm_l_conf0.5_n_a81.46 20080.87 21083.25 18583.73 30073.21 14283.00 20785.59 25158.22 33482.96 25390.09 22672.30 22286.65 28481.97 9589.95 28189.88 255
DELS-MVS81.44 20181.25 20382.03 21284.27 29162.87 25376.47 31692.49 10270.97 21681.64 27883.83 32375.03 18492.70 14974.29 18092.22 23790.51 241
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 20281.61 19480.41 24286.38 24858.75 31083.93 18086.58 23572.43 19587.65 15492.98 13163.78 27090.22 22066.86 25793.92 19892.27 185
TinyColmap81.25 20382.34 18477.99 27985.33 27060.68 28782.32 22788.33 20771.26 21286.97 16892.22 16177.10 16386.98 27762.37 29895.17 15686.31 306
AUN-MVS81.18 20478.78 23788.39 7990.93 14782.14 6282.51 22283.67 27764.69 28280.29 29685.91 29651.07 34192.38 15776.29 16293.63 20790.65 237
tttt051781.07 20579.58 22885.52 12988.99 18766.45 21887.03 11975.51 33573.76 16988.32 14190.20 22137.96 39694.16 9779.36 12295.13 15795.93 41
Fast-Effi-MVS+81.04 20680.57 21182.46 20887.50 22563.22 24978.37 28589.63 18968.01 24681.87 27082.08 34482.31 10292.65 15167.10 25688.30 30691.51 214
BH-untuned80.96 20780.99 20780.84 23588.55 20068.23 19880.33 25588.46 20372.79 19286.55 17786.76 28174.72 19191.77 17661.79 30588.99 29282.52 359
eth_miper_zixun_eth80.84 20880.22 22082.71 20181.41 32960.98 28377.81 29190.14 17767.31 25686.95 16987.24 27464.26 26592.31 16075.23 17491.61 24894.85 70
xiu_mvs_v1_base_debu80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base_debi80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
IterMVS-SCA-FT80.64 21279.41 22984.34 15483.93 29669.66 18476.28 31881.09 29972.43 19586.47 18390.19 22260.46 28793.15 13677.45 14786.39 33190.22 246
BH-RMVSNet80.53 21380.22 22081.49 22587.19 23166.21 22077.79 29286.23 23874.21 16483.69 23988.50 24973.25 21290.75 20663.18 29587.90 31087.52 293
Anonymous20240521180.51 21481.19 20678.49 26888.48 20157.26 32276.63 31182.49 28781.21 8084.30 22892.24 16067.99 24886.24 29062.22 29995.13 15791.98 199
DIV-MVS_self_test80.43 21580.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.38 25386.19 18689.22 23763.09 27590.16 22276.32 16095.80 13693.66 120
cl____80.42 21680.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.37 25486.18 18889.21 23863.08 27690.16 22276.31 16195.80 13693.65 122
diffmvspermissive80.40 21780.48 21580.17 24679.02 35860.04 29177.54 29690.28 17366.65 26182.40 26187.33 27273.50 20487.35 27177.98 14089.62 28593.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 21878.41 24486.23 11376.75 37273.28 13987.18 11677.45 31876.24 13868.14 38388.93 24365.41 26193.85 10569.47 23496.12 11891.55 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_ehance_all_eth80.34 21980.04 22581.24 22979.82 34858.95 30577.66 29389.66 18765.75 27085.99 19385.11 30768.29 24791.42 18476.03 16592.03 23993.33 134
MG-MVS80.32 22080.94 20878.47 26988.18 20752.62 35882.29 22885.01 26372.01 20579.24 30992.54 14869.36 24193.36 13070.65 22389.19 29189.45 259
mvsmamba80.30 22178.87 23484.58 14688.12 21067.55 20692.35 2984.88 26663.15 28885.33 20390.91 19850.71 34395.20 6266.36 26387.98 30990.99 223
VPNet80.25 22281.68 19175.94 30692.46 9547.98 38176.70 30981.67 29473.45 17584.87 21392.82 13874.66 19286.51 28661.66 30796.85 8793.33 134
MAR-MVS80.24 22378.74 23984.73 14286.87 24278.18 9285.75 14587.81 21565.67 27277.84 31978.50 37573.79 20190.53 21361.59 30890.87 26585.49 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 22479.00 23383.78 16888.17 20886.66 1981.31 24266.81 38969.64 22988.33 14090.19 22264.58 26383.63 32571.99 21390.03 27981.06 378
Anonymous2024052180.18 22581.25 20376.95 29283.15 31460.84 28582.46 22385.99 24568.76 23886.78 17093.73 11259.13 29977.44 35973.71 19397.55 6992.56 167
LFMVS80.15 22680.56 21278.89 26089.19 18355.93 33085.22 15473.78 34782.96 6384.28 22992.72 14357.38 31190.07 22963.80 28995.75 13990.68 235
DPM-MVS80.10 22779.18 23282.88 19990.71 15369.74 18278.87 27890.84 15060.29 32275.64 34185.92 29567.28 25093.11 13771.24 21691.79 24485.77 312
MSDG80.06 22879.99 22780.25 24483.91 29768.04 20377.51 29789.19 19577.65 12681.94 26883.45 32876.37 17686.31 28963.31 29486.59 32886.41 304
FE-MVS79.98 22978.86 23583.36 18286.47 24566.45 21889.73 7084.74 27072.80 19184.22 23291.38 18144.95 37693.60 11763.93 28791.50 25190.04 253
sd_testset79.95 23081.39 20175.64 30988.81 19258.07 31476.16 32182.81 28573.67 17083.41 24593.04 12780.96 12477.65 35858.62 32395.03 16291.21 218
ab-mvs79.67 23180.56 21276.99 29188.48 20156.93 32484.70 16286.06 24268.95 23680.78 28993.08 12675.30 18284.62 31356.78 33290.90 26389.43 261
VNet79.31 23280.27 21776.44 30087.92 21453.95 34775.58 32884.35 27274.39 16382.23 26490.72 20672.84 21684.39 31760.38 31593.98 19790.97 224
thisisatest053079.07 23377.33 25384.26 15787.13 23264.58 23383.66 18975.95 33068.86 23785.22 20587.36 27138.10 39393.57 12175.47 17194.28 18894.62 74
cl2278.97 23478.21 24681.24 22977.74 36259.01 30477.46 30087.13 22465.79 26784.32 22585.10 30858.96 30190.88 20275.36 17392.03 23993.84 110
patch_mono-278.89 23579.39 23077.41 28884.78 27968.11 20175.60 32683.11 28160.96 31579.36 30689.89 22975.18 18372.97 37173.32 19992.30 23191.15 220
RPMNet78.88 23678.28 24580.68 23979.58 34962.64 25782.58 21894.16 3274.80 15875.72 33992.59 14548.69 35095.56 4273.48 19682.91 36783.85 338
PAPR78.84 23778.10 24781.07 23185.17 27460.22 29082.21 23290.57 15862.51 29275.32 34584.61 31674.99 18592.30 16159.48 32088.04 30890.68 235
PVSNet_BlendedMVS78.80 23877.84 24881.65 22284.43 28563.41 24579.49 26790.44 16161.70 30475.43 34287.07 27869.11 24391.44 18260.68 31392.24 23590.11 251
FMVSNet378.80 23878.55 24179.57 25482.89 31756.89 32681.76 23685.77 24769.04 23586.00 19090.44 21551.75 33990.09 22865.95 26793.34 21091.72 206
test_yl78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
DCV-MVSNet78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
test111178.53 24278.85 23677.56 28592.22 10347.49 38382.61 21669.24 37872.43 19585.28 20494.20 8551.91 33790.07 22965.36 27596.45 10395.11 61
ECVR-MVScopyleft78.44 24378.63 24077.88 28191.85 11748.95 37783.68 18869.91 37472.30 20184.26 23194.20 8551.89 33889.82 23463.58 29096.02 12294.87 66
pmmvs-eth3d78.42 24477.04 25682.57 20687.44 22674.41 13080.86 25079.67 30755.68 35184.69 21690.31 21960.91 28585.42 30662.20 30091.59 24987.88 289
mvs_anonymous78.13 24578.76 23876.23 30579.24 35550.31 37478.69 28084.82 26861.60 30683.09 25292.82 13873.89 20087.01 27468.33 25286.41 33091.37 215
TAMVS78.08 24676.36 26283.23 18690.62 15472.87 14379.08 27480.01 30661.72 30381.35 28286.92 28063.96 26988.78 25650.61 37093.01 22088.04 285
miper_enhance_ethall77.83 24776.93 25780.51 24076.15 37958.01 31675.47 33088.82 19858.05 33683.59 24180.69 35464.41 26491.20 18873.16 20692.03 23992.33 181
Vis-MVSNet (Re-imp)77.82 24877.79 24977.92 28088.82 19151.29 36883.28 19771.97 36274.04 16582.23 26489.78 23057.38 31189.41 24657.22 33195.41 14693.05 148
CANet_DTU77.81 24977.05 25580.09 24781.37 33059.90 29483.26 19888.29 20869.16 23367.83 38683.72 32460.93 28489.47 24169.22 23889.70 28490.88 228
OpenMVS_ROBcopyleft70.19 1777.77 25077.46 25078.71 26484.39 28861.15 27881.18 24682.52 28662.45 29583.34 24787.37 27066.20 25688.66 25864.69 28285.02 34786.32 305
SSC-MVS77.55 25181.64 19265.29 37790.46 15720.33 42373.56 34668.28 38085.44 3788.18 14494.64 6470.93 23381.33 33771.25 21592.03 23994.20 92
MDA-MVSNet-bldmvs77.47 25276.90 25879.16 25979.03 35764.59 23266.58 38775.67 33373.15 18688.86 12488.99 24266.94 25281.23 33864.71 28188.22 30791.64 210
jason77.42 25375.75 26882.43 20987.10 23569.27 18877.99 28881.94 29251.47 37777.84 31985.07 31160.32 28989.00 25070.74 22289.27 29089.03 271
jason: jason.
CDS-MVSNet77.32 25475.40 27183.06 19089.00 18672.48 15477.90 29082.17 29060.81 31678.94 31183.49 32759.30 29788.76 25754.64 35092.37 23087.93 288
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 25576.75 25978.52 26787.01 23861.30 27675.55 32987.12 22761.24 31274.45 35078.79 37377.20 16090.93 19864.62 28484.80 35483.32 347
MVSTER77.09 25675.70 26981.25 22775.27 38761.08 27977.49 29985.07 25960.78 31786.55 17788.68 24643.14 38590.25 21773.69 19490.67 27192.42 174
PS-MVSNAJ77.04 25776.53 26178.56 26687.09 23661.40 27475.26 33187.13 22461.25 31174.38 35277.22 38676.94 16690.94 19764.63 28384.83 35383.35 346
IterMVS76.91 25876.34 26378.64 26580.91 33564.03 23976.30 31779.03 31064.88 28183.11 25089.16 23959.90 29384.46 31568.61 24885.15 34587.42 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 25975.67 27080.34 24380.48 34362.16 26973.50 34784.80 26957.61 34082.24 26387.54 26651.31 34087.65 26770.40 22793.19 21691.23 217
CL-MVSNet_self_test76.81 26077.38 25275.12 31286.90 24051.34 36673.20 35080.63 30368.30 24381.80 27488.40 25066.92 25380.90 33955.35 34494.90 16893.12 146
TR-MVS76.77 26175.79 26779.72 25186.10 26165.79 22477.14 30283.02 28265.20 27981.40 28182.10 34266.30 25590.73 20855.57 34185.27 34182.65 354
MonoMVSNet76.66 26277.26 25474.86 31479.86 34754.34 34486.26 13786.08 24171.08 21585.59 19888.68 24653.95 32985.93 29763.86 28880.02 38284.32 329
USDC76.63 26376.73 26076.34 30283.46 30357.20 32380.02 25888.04 21352.14 37383.65 24091.25 18463.24 27386.65 28454.66 34994.11 19385.17 318
BH-w/o76.57 26476.07 26678.10 27686.88 24165.92 22377.63 29486.33 23665.69 27180.89 28779.95 36368.97 24590.74 20753.01 36085.25 34277.62 389
Patchmtry76.56 26577.46 25073.83 32079.37 35446.60 38782.41 22576.90 32473.81 16885.56 20092.38 15248.07 35383.98 32263.36 29395.31 15290.92 226
PVSNet_Blended76.49 26675.40 27179.76 25084.43 28563.41 24575.14 33290.44 16157.36 34275.43 34278.30 37669.11 24391.44 18260.68 31387.70 31484.42 328
miper_lstm_enhance76.45 26776.10 26577.51 28676.72 37360.97 28464.69 39185.04 26163.98 28583.20 24988.22 25256.67 31578.79 35573.22 20093.12 21792.78 157
lupinMVS76.37 26874.46 28082.09 21185.54 26869.26 18976.79 30780.77 30250.68 38476.23 33282.82 33658.69 30288.94 25169.85 23188.77 29588.07 282
cascas76.29 26974.81 27680.72 23884.47 28462.94 25173.89 34487.34 21855.94 34975.16 34776.53 39163.97 26891.16 19065.00 27890.97 26188.06 284
WB-MVS76.06 27080.01 22664.19 38089.96 17020.58 42272.18 35568.19 38183.21 5986.46 18493.49 11770.19 23778.97 35365.96 26690.46 27693.02 149
thres600view775.97 27175.35 27377.85 28387.01 23851.84 36480.45 25373.26 35275.20 15583.10 25186.31 28945.54 36789.05 24955.03 34792.24 23592.66 163
GA-MVS75.83 27274.61 27779.48 25681.87 32259.25 30073.42 34882.88 28368.68 23979.75 30181.80 34750.62 34489.46 24266.85 25885.64 33889.72 256
MVP-Stereo75.81 27373.51 28982.71 20189.35 17873.62 13480.06 25685.20 25660.30 32173.96 35387.94 25757.89 30989.45 24352.02 36474.87 40085.06 320
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 27475.20 27477.27 28975.01 39069.47 18678.93 27584.88 26646.67 39187.08 16587.84 26050.44 34671.62 37677.42 14988.53 29890.72 232
thres100view90075.45 27575.05 27576.66 29887.27 22851.88 36381.07 24773.26 35275.68 14883.25 24886.37 28645.54 36788.80 25351.98 36590.99 25889.31 263
ET-MVSNet_ETH3D75.28 27672.77 29882.81 20083.03 31668.11 20177.09 30376.51 32860.67 31977.60 32480.52 35838.04 39491.15 19170.78 22090.68 27089.17 266
thres40075.14 27774.23 28277.86 28286.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25892.66 163
wuyk23d75.13 27879.30 23162.63 38375.56 38375.18 12680.89 24973.10 35475.06 15794.76 1695.32 4187.73 4352.85 41434.16 41397.11 8259.85 410
EU-MVSNet75.12 27974.43 28177.18 29083.11 31559.48 29885.71 14782.43 28839.76 41185.64 19788.76 24444.71 37887.88 26573.86 19085.88 33784.16 334
HyFIR lowres test75.12 27972.66 30082.50 20791.44 13565.19 22972.47 35387.31 21946.79 39080.29 29684.30 31952.70 33492.10 16751.88 36986.73 32690.22 246
CMPMVSbinary59.41 2075.12 27973.57 28779.77 24975.84 38267.22 20781.21 24582.18 28950.78 38276.50 32887.66 26455.20 32582.99 32862.17 30290.64 27589.09 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 28272.98 29680.73 23784.95 27671.71 16776.23 31977.59 31752.83 36777.73 32386.38 28556.35 31884.97 31057.72 33087.05 32185.51 315
tfpn200view974.86 28374.23 28276.74 29786.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25889.31 263
1112_ss74.82 28473.74 28578.04 27889.57 17260.04 29176.49 31587.09 22854.31 35973.66 35679.80 36460.25 29086.76 28358.37 32484.15 35887.32 296
EGC-MVSNET74.79 28569.99 32789.19 6594.89 3887.00 1591.89 3786.28 2371.09 4202.23 42295.98 2781.87 11489.48 24079.76 11595.96 12591.10 221
ppachtmachnet_test74.73 28674.00 28476.90 29480.71 34056.89 32671.53 36178.42 31258.24 33379.32 30882.92 33557.91 30884.26 31965.60 27391.36 25389.56 258
Patchmatch-RL test74.48 28773.68 28676.89 29584.83 27866.54 21672.29 35469.16 37957.70 33886.76 17186.33 28745.79 36682.59 32969.63 23390.65 27481.54 369
PatchMatch-RL74.48 28773.22 29378.27 27487.70 21885.26 3875.92 32470.09 37264.34 28376.09 33581.25 35265.87 25978.07 35753.86 35283.82 36071.48 398
XXY-MVS74.44 28976.19 26469.21 35484.61 28352.43 35971.70 35877.18 32260.73 31880.60 29090.96 19675.44 17969.35 38356.13 33788.33 30285.86 311
test250674.12 29073.39 29076.28 30391.85 11744.20 39784.06 17548.20 41872.30 20181.90 26994.20 8527.22 41889.77 23764.81 28096.02 12294.87 66
reproduce_monomvs74.09 29173.23 29276.65 29976.52 37454.54 34277.50 29881.40 29765.85 26682.86 25686.67 28227.38 41684.53 31470.24 22890.66 27390.89 227
CR-MVSNet74.00 29273.04 29576.85 29679.58 34962.64 25782.58 21876.90 32450.50 38575.72 33992.38 15248.07 35384.07 32168.72 24782.91 36783.85 338
Test_1112_low_res73.90 29373.08 29476.35 30190.35 15955.95 32973.40 34986.17 23950.70 38373.14 35785.94 29458.31 30485.90 30056.51 33483.22 36487.20 297
test20.0373.75 29474.59 27971.22 34181.11 33351.12 37070.15 37172.10 36170.42 22080.28 29891.50 17864.21 26674.72 37046.96 38994.58 18087.82 291
test_fmvs273.57 29572.80 29775.90 30772.74 40368.84 19577.07 30484.32 27345.14 39782.89 25484.22 32048.37 35170.36 38073.40 19887.03 32288.52 277
SCA73.32 29672.57 30275.58 31081.62 32655.86 33278.89 27771.37 36761.73 30274.93 34883.42 32960.46 28787.01 27458.11 32882.63 37283.88 335
baseline173.26 29773.54 28872.43 33484.92 27747.79 38279.89 26074.00 34365.93 26478.81 31286.28 29056.36 31781.63 33656.63 33379.04 38987.87 290
131473.22 29872.56 30375.20 31180.41 34457.84 31781.64 23985.36 25351.68 37673.10 35876.65 39061.45 28285.19 30863.54 29179.21 38782.59 355
MVS73.21 29972.59 30175.06 31380.97 33460.81 28681.64 23985.92 24646.03 39571.68 36577.54 38168.47 24689.77 23755.70 34085.39 33974.60 395
HY-MVS64.64 1873.03 30072.47 30474.71 31683.36 30754.19 34582.14 23581.96 29156.76 34869.57 37886.21 29160.03 29184.83 31249.58 37682.65 37085.11 319
thisisatest051573.00 30170.52 31980.46 24181.45 32859.90 29473.16 35174.31 34257.86 33776.08 33677.78 37937.60 39792.12 16665.00 27891.45 25289.35 262
EPNet_dtu72.87 30271.33 31477.49 28777.72 36360.55 28882.35 22675.79 33166.49 26258.39 41381.06 35353.68 33085.98 29653.55 35592.97 22285.95 309
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 30371.41 31376.28 30383.25 31060.34 28983.50 19279.02 31137.77 41576.33 33085.10 30849.60 34987.41 27070.54 22577.54 39581.08 376
CHOSEN 1792x268872.45 30470.56 31878.13 27590.02 16963.08 25068.72 37683.16 28042.99 40575.92 33785.46 30157.22 31385.18 30949.87 37481.67 37486.14 307
testgi72.36 30574.61 27765.59 37480.56 34242.82 40268.29 37773.35 35166.87 25981.84 27189.93 22772.08 22666.92 39646.05 39292.54 22887.01 299
thres20072.34 30671.55 31274.70 31783.48 30251.60 36575.02 33373.71 34870.14 22678.56 31580.57 35746.20 35988.20 26346.99 38889.29 28884.32 329
FPMVS72.29 30772.00 30673.14 32588.63 19785.00 4074.65 33767.39 38371.94 20677.80 32187.66 26450.48 34575.83 36549.95 37279.51 38358.58 412
FMVSNet572.10 30871.69 30873.32 32381.57 32753.02 35476.77 30878.37 31363.31 28676.37 32991.85 16636.68 39878.98 35247.87 38592.45 22987.95 287
our_test_371.85 30971.59 30972.62 33180.71 34053.78 34869.72 37371.71 36658.80 33078.03 31680.51 35956.61 31678.84 35462.20 30086.04 33685.23 317
PAPM71.77 31070.06 32576.92 29386.39 24753.97 34676.62 31286.62 23453.44 36363.97 40384.73 31557.79 31092.34 15939.65 40481.33 37884.45 327
ttmdpeth71.72 31170.67 31674.86 31473.08 40055.88 33177.41 30169.27 37755.86 35078.66 31393.77 11038.01 39575.39 36760.12 31689.87 28293.31 136
IB-MVS62.13 1971.64 31268.97 33779.66 25380.80 33962.26 26673.94 34376.90 32463.27 28768.63 38276.79 38833.83 40291.84 17459.28 32187.26 31684.88 321
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 31372.30 30569.62 35176.47 37652.70 35770.03 37280.97 30059.18 32779.36 30688.21 25360.50 28669.12 38458.33 32677.62 39487.04 298
testing371.53 31470.79 31573.77 32188.89 19041.86 40476.60 31459.12 40872.83 19080.97 28482.08 34419.80 42487.33 27265.12 27791.68 24792.13 192
test_vis3_rt71.42 31570.67 31673.64 32269.66 41070.46 17766.97 38689.73 18442.68 40788.20 14383.04 33143.77 38060.07 40865.35 27686.66 32790.39 244
Anonymous2023120671.38 31671.88 30769.88 34886.31 25254.37 34370.39 36974.62 33852.57 36976.73 32788.76 24459.94 29272.06 37344.35 39693.23 21583.23 349
test_vis1_n_192071.30 31771.58 31170.47 34477.58 36559.99 29374.25 33884.22 27451.06 37974.85 34979.10 37055.10 32668.83 38668.86 24479.20 38882.58 356
MIMVSNet71.09 31871.59 30969.57 35287.23 22950.07 37578.91 27671.83 36360.20 32471.26 36691.76 17255.08 32776.09 36341.06 40187.02 32382.54 358
test_fmvs1_n70.94 31970.41 32272.53 33373.92 39266.93 21375.99 32384.21 27543.31 40479.40 30579.39 36843.47 38168.55 38869.05 24184.91 35082.10 363
MS-PatchMatch70.93 32070.22 32373.06 32681.85 32362.50 26073.82 34577.90 31452.44 37075.92 33781.27 35155.67 32281.75 33455.37 34377.70 39374.94 394
pmmvs570.73 32170.07 32472.72 32977.03 37052.73 35674.14 33975.65 33450.36 38672.17 36385.37 30555.42 32480.67 34152.86 36187.59 31584.77 322
PatchT70.52 32272.76 29963.79 38279.38 35333.53 41677.63 29465.37 39373.61 17271.77 36492.79 14144.38 37975.65 36664.53 28585.37 34082.18 362
test_vis1_n70.29 32369.99 32771.20 34275.97 38166.50 21776.69 31080.81 30144.22 40075.43 34277.23 38550.00 34768.59 38766.71 26182.85 36978.52 388
N_pmnet70.20 32468.80 33974.38 31880.91 33584.81 4359.12 40376.45 32955.06 35475.31 34682.36 34155.74 32154.82 41347.02 38787.24 31783.52 342
tpmvs70.16 32569.56 33071.96 33774.71 39148.13 37979.63 26275.45 33665.02 28070.26 37481.88 34645.34 37285.68 30458.34 32575.39 39982.08 364
new-patchmatchnet70.10 32673.37 29160.29 39081.23 33216.95 42559.54 40174.62 33862.93 28980.97 28487.93 25862.83 27971.90 37455.24 34595.01 16592.00 197
YYNet170.06 32770.44 32068.90 35673.76 39453.42 35258.99 40467.20 38558.42 33287.10 16385.39 30459.82 29467.32 39359.79 31883.50 36385.96 308
MVStest170.05 32869.26 33172.41 33558.62 42255.59 33576.61 31365.58 39153.44 36389.28 12093.32 12022.91 42271.44 37874.08 18689.52 28690.21 250
MDA-MVSNet_test_wron70.05 32870.44 32068.88 35773.84 39353.47 35058.93 40567.28 38458.43 33187.09 16485.40 30359.80 29567.25 39459.66 31983.54 36285.92 310
CostFormer69.98 33068.68 34073.87 31977.14 36850.72 37279.26 27074.51 34051.94 37570.97 36984.75 31445.16 37587.49 26955.16 34679.23 38683.40 345
testing9169.94 33168.99 33672.80 32883.81 29945.89 39071.57 36073.64 35068.24 24470.77 37277.82 37834.37 40184.44 31653.64 35487.00 32488.07 282
baseline269.77 33266.89 34978.41 27079.51 35158.09 31376.23 31969.57 37557.50 34164.82 40177.45 38346.02 36188.44 25953.08 35777.83 39188.70 275
PatchmatchNetpermissive69.71 33368.83 33872.33 33677.66 36453.60 34979.29 26969.99 37357.66 33972.53 36182.93 33446.45 35880.08 34760.91 31272.09 40383.31 348
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 33469.05 33471.14 34369.15 41165.77 22573.98 34283.32 27942.83 40677.77 32278.27 37743.39 38468.50 38968.39 25184.38 35779.15 386
JIA-IIPM69.41 33566.64 35377.70 28473.19 39771.24 17275.67 32565.56 39270.42 22065.18 39792.97 13333.64 40483.06 32653.52 35669.61 40978.79 387
Syy-MVS69.40 33670.03 32667.49 36681.72 32438.94 40971.00 36361.99 39961.38 30870.81 37072.36 40261.37 28379.30 35064.50 28685.18 34384.22 331
testing9969.27 33768.15 34472.63 33083.29 30845.45 39271.15 36271.08 36867.34 25570.43 37377.77 38032.24 40684.35 31853.72 35386.33 33288.10 281
UnsupCasMVSNet_bld69.21 33869.68 32967.82 36479.42 35251.15 36967.82 38175.79 33154.15 36077.47 32585.36 30659.26 29870.64 37948.46 38279.35 38581.66 367
test_cas_vis1_n_192069.20 33969.12 33269.43 35373.68 39562.82 25470.38 37077.21 32146.18 39480.46 29578.95 37252.03 33665.53 40165.77 27277.45 39679.95 384
gg-mvs-nofinetune68.96 34069.11 33368.52 36276.12 38045.32 39383.59 19055.88 41386.68 2964.62 40297.01 930.36 40983.97 32344.78 39582.94 36676.26 391
WBMVS68.76 34168.43 34169.75 35083.29 30840.30 40767.36 38372.21 36057.09 34577.05 32685.53 29933.68 40380.51 34348.79 38090.90 26388.45 278
WB-MVSnew68.72 34269.01 33567.85 36383.22 31243.98 39874.93 33465.98 39055.09 35373.83 35479.11 36965.63 26071.89 37538.21 40985.04 34687.69 292
tpm268.45 34366.83 35073.30 32478.93 35948.50 37879.76 26171.76 36447.50 38969.92 37683.60 32542.07 38788.40 26048.44 38379.51 38383.01 352
tpm67.95 34468.08 34567.55 36578.74 36043.53 40075.60 32667.10 38854.92 35572.23 36288.10 25442.87 38675.97 36452.21 36380.95 38183.15 350
WTY-MVS67.91 34568.35 34266.58 37180.82 33848.12 38065.96 38872.60 35553.67 36271.20 36781.68 34958.97 30069.06 38548.57 38181.67 37482.55 357
testing1167.38 34665.93 35471.73 33983.37 30646.60 38770.95 36569.40 37662.47 29466.14 39076.66 38931.22 40784.10 32049.10 37884.10 35984.49 325
test-LLR67.21 34766.74 35168.63 36076.45 37755.21 33867.89 37867.14 38662.43 29765.08 39872.39 40043.41 38269.37 38161.00 31084.89 35181.31 371
testing22266.93 34865.30 36071.81 33883.38 30545.83 39172.06 35667.50 38264.12 28469.68 37776.37 39227.34 41783.00 32738.88 40588.38 30186.62 303
sss66.92 34967.26 34765.90 37377.23 36751.10 37164.79 39071.72 36552.12 37470.13 37580.18 36157.96 30765.36 40250.21 37181.01 38081.25 373
KD-MVS_2432*160066.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
miper_refine_blended66.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
dmvs_re66.81 35266.98 34866.28 37276.87 37158.68 31171.66 35972.24 35860.29 32269.52 37973.53 39952.38 33564.40 40444.90 39481.44 37775.76 392
tpm cat166.76 35365.21 36171.42 34077.09 36950.62 37378.01 28773.68 34944.89 39868.64 38179.00 37145.51 36982.42 33249.91 37370.15 40681.23 375
UWE-MVS66.43 35465.56 35969.05 35584.15 29340.98 40573.06 35264.71 39554.84 35676.18 33479.62 36729.21 41180.50 34438.54 40889.75 28385.66 313
PVSNet58.17 2166.41 35565.63 35868.75 35881.96 32149.88 37662.19 39772.51 35751.03 38068.04 38475.34 39650.84 34274.77 36845.82 39382.96 36581.60 368
tpmrst66.28 35666.69 35265.05 37872.82 40239.33 40878.20 28670.69 37153.16 36667.88 38580.36 36048.18 35274.75 36958.13 32770.79 40581.08 376
Patchmatch-test65.91 35767.38 34661.48 38875.51 38443.21 40168.84 37563.79 39762.48 29372.80 36083.42 32944.89 37759.52 41048.27 38486.45 32981.70 366
ADS-MVSNet265.87 35863.64 36672.55 33273.16 39856.92 32567.10 38474.81 33749.74 38766.04 39282.97 33246.71 35677.26 36042.29 39869.96 40783.46 343
test_vis1_rt65.64 35964.09 36370.31 34566.09 41670.20 18061.16 39881.60 29538.65 41272.87 35969.66 40552.84 33260.04 40956.16 33677.77 39280.68 380
mvsany_test365.48 36062.97 36973.03 32769.99 40976.17 12164.83 38943.71 42043.68 40280.25 29987.05 27952.83 33363.09 40751.92 36872.44 40279.84 385
test-mter65.00 36163.79 36568.63 36076.45 37755.21 33867.89 37867.14 38650.98 38165.08 39872.39 40028.27 41469.37 38161.00 31084.89 35181.31 371
ETVMVS64.67 36263.34 36868.64 35983.44 30441.89 40369.56 37461.70 40461.33 31068.74 38075.76 39428.76 41279.35 34934.65 41286.16 33584.67 324
myMVS_eth3d64.66 36363.89 36466.97 36981.72 32437.39 41271.00 36361.99 39961.38 30870.81 37072.36 40220.96 42379.30 35049.59 37585.18 34384.22 331
test0.0.03 164.66 36364.36 36265.57 37575.03 38946.89 38664.69 39161.58 40562.43 29771.18 36877.54 38143.41 38268.47 39040.75 40382.65 37081.35 370
UBG64.34 36563.35 36767.30 36783.50 30140.53 40667.46 38265.02 39454.77 35767.54 38874.47 39832.99 40578.50 35640.82 40283.58 36182.88 353
test_f64.31 36665.85 35559.67 39166.54 41562.24 26857.76 40770.96 36940.13 40984.36 22382.09 34346.93 35551.67 41561.99 30381.89 37365.12 406
pmmvs362.47 36760.02 38069.80 34971.58 40664.00 24070.52 36858.44 41139.77 41066.05 39175.84 39327.10 41972.28 37246.15 39184.77 35573.11 396
EPMVS62.47 36762.63 37162.01 38470.63 40838.74 41074.76 33552.86 41553.91 36167.71 38780.01 36239.40 39166.60 39755.54 34268.81 41180.68 380
ADS-MVSNet61.90 36962.19 37361.03 38973.16 39836.42 41467.10 38461.75 40249.74 38766.04 39282.97 33246.71 35663.21 40542.29 39869.96 40783.46 343
PMMVS61.65 37060.38 37765.47 37665.40 41969.26 18963.97 39361.73 40336.80 41660.11 40868.43 40759.42 29666.35 39848.97 37978.57 39060.81 409
E-PMN61.59 37161.62 37461.49 38766.81 41455.40 33653.77 41060.34 40766.80 26058.90 41165.50 41040.48 39066.12 39955.72 33986.25 33362.95 408
TESTMET0.1,161.29 37260.32 37864.19 38072.06 40451.30 36767.89 37862.09 39845.27 39660.65 40769.01 40627.93 41564.74 40356.31 33581.65 37676.53 390
MVS-HIRNet61.16 37362.92 37055.87 39479.09 35635.34 41571.83 35757.98 41246.56 39259.05 41091.14 18849.95 34876.43 36238.74 40671.92 40455.84 413
EMVS61.10 37460.81 37661.99 38565.96 41755.86 33253.10 41158.97 41067.06 25756.89 41563.33 41140.98 38867.03 39554.79 34886.18 33463.08 407
DSMNet-mixed60.98 37561.61 37559.09 39372.88 40145.05 39574.70 33646.61 41926.20 41765.34 39690.32 21855.46 32363.12 40641.72 40081.30 37969.09 402
dp60.70 37660.29 37961.92 38672.04 40538.67 41170.83 36664.08 39651.28 37860.75 40677.28 38436.59 39971.58 37747.41 38662.34 41375.52 393
dmvs_testset60.59 37762.54 37254.72 39677.26 36627.74 41974.05 34161.00 40660.48 32065.62 39567.03 40955.93 32068.23 39132.07 41669.46 41068.17 403
CHOSEN 280x42059.08 37856.52 38366.76 37076.51 37564.39 23649.62 41259.00 40943.86 40155.66 41668.41 40835.55 40068.21 39243.25 39776.78 39867.69 404
mvsany_test158.48 37956.47 38464.50 37965.90 41868.21 20056.95 40842.11 42138.30 41365.69 39477.19 38756.96 31459.35 41146.16 39058.96 41465.93 405
PVSNet_051.08 2256.10 38054.97 38559.48 39275.12 38853.28 35355.16 40961.89 40144.30 39959.16 40962.48 41254.22 32865.91 40035.40 41147.01 41559.25 411
new_pmnet55.69 38157.66 38249.76 39775.47 38530.59 41759.56 40051.45 41643.62 40362.49 40475.48 39540.96 38949.15 41737.39 41072.52 40169.55 401
PMMVS255.64 38259.27 38144.74 39864.30 42012.32 42640.60 41349.79 41753.19 36565.06 40084.81 31353.60 33149.76 41632.68 41589.41 28772.15 397
MVEpermissive40.22 2351.82 38350.47 38655.87 39462.66 42151.91 36231.61 41539.28 42240.65 40850.76 41774.98 39756.24 31944.67 41833.94 41464.11 41271.04 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai41.90 38442.65 38739.67 39970.86 40721.11 42161.01 39921.42 42657.36 34257.97 41450.06 41516.40 42558.73 41221.03 41927.69 41939.17 415
kuosan30.83 38532.17 38826.83 40153.36 42319.02 42457.90 40620.44 42738.29 41438.01 41837.82 41715.18 42633.45 4207.74 42120.76 42028.03 416
test_method30.46 38629.60 38933.06 40017.99 4253.84 42813.62 41673.92 3442.79 41918.29 42153.41 41428.53 41343.25 41922.56 41735.27 41752.11 414
cdsmvs_eth3d_5k20.81 38727.75 3900.00 4060.00 4290.00 4310.00 41785.44 2520.00 4240.00 42582.82 33681.46 1180.00 4250.00 4240.00 4230.00 421
tmp_tt20.25 38824.50 3917.49 4034.47 4268.70 42734.17 41425.16 4241.00 42132.43 42018.49 41839.37 3929.21 42221.64 41843.75 4164.57 418
ab-mvs-re6.65 3898.87 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42579.80 3640.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.41 3908.55 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42476.94 1660.00 4250.00 4240.00 4230.00 421
test1236.27 3918.08 3940.84 4041.11 4280.57 42962.90 3940.82 4280.54 4221.07 4242.75 4231.26 4270.30 4231.04 4221.26 4221.66 419
testmvs5.91 3927.65 3950.72 4051.20 4270.37 43059.14 4020.67 4290.49 4231.11 4232.76 4220.94 4280.24 4241.02 4231.47 4211.55 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS37.39 41252.61 362
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
PC_three_145258.96 32990.06 9791.33 18280.66 12893.03 14175.78 16795.94 12892.48 171
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 429
eth-test0.00 429
ZD-MVS92.22 10380.48 7191.85 12171.22 21390.38 9292.98 13186.06 6496.11 781.99 9496.75 92
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 158
IU-MVS94.18 5072.64 14790.82 15156.98 34689.67 10985.78 5297.92 4993.28 137
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 17995.35 14892.29 183
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 195
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
9.1489.29 6291.84 11988.80 9395.32 1275.14 15691.07 8192.89 13687.27 4793.78 10883.69 7297.55 69
save fliter93.75 6377.44 10386.31 13589.72 18570.80 217
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 152
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 196
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 335
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 335
sam_mvs45.92 365
ambc82.98 19390.55 15664.86 23188.20 10089.15 19689.40 11893.96 9971.67 23191.38 18678.83 12696.55 9792.71 161
MTGPAbinary91.81 125
test_post178.85 2793.13 42045.19 37480.13 34658.11 328
test_post3.10 42145.43 37077.22 361
patchmatchnet-post81.71 34845.93 36487.01 274
GG-mvs-BLEND67.16 36873.36 39646.54 38984.15 17355.04 41458.64 41261.95 41329.93 41083.87 32438.71 40776.92 39771.07 399
MTMP90.66 4833.14 423
gm-plane-assit75.42 38644.97 39652.17 37172.36 40287.90 26454.10 351
test9_res80.83 10496.45 10390.57 238
TEST992.34 9879.70 7883.94 17890.32 16765.41 27684.49 21990.97 19482.03 10993.63 113
test_892.09 10778.87 8583.82 18390.31 16965.79 26784.36 22390.96 19681.93 11193.44 126
agg_prior279.68 11796.16 11590.22 246
agg_prior91.58 12777.69 10090.30 17084.32 22593.18 134
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
test_prior478.97 8484.59 164
test_prior283.37 19575.43 15284.58 21791.57 17681.92 11379.54 11996.97 85
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9592.80 156
旧先验281.73 23756.88 34786.54 18284.90 31172.81 207
新几何281.72 238
新几何182.95 19593.96 5978.56 8880.24 30455.45 35283.93 23691.08 19171.19 23288.33 26165.84 27093.07 21881.95 365
旧先验191.97 11171.77 16381.78 29391.84 16773.92 19993.65 20683.61 341
无先验82.81 21385.62 25058.09 33591.41 18567.95 25584.48 326
原ACMM282.26 231
原ACMM184.60 14592.81 8974.01 13291.50 13062.59 29182.73 25890.67 21076.53 17394.25 8969.24 23695.69 14185.55 314
test22293.31 7376.54 11379.38 26877.79 31552.59 36882.36 26290.84 20366.83 25491.69 24681.25 373
testdata286.43 28863.52 292
segment_acmp81.94 110
testdata79.54 25592.87 8472.34 15680.14 30559.91 32585.47 20291.75 17367.96 24985.24 30768.57 25092.18 23881.06 378
testdata179.62 26373.95 167
test1286.57 10590.74 15172.63 14990.69 15482.76 25779.20 13994.80 7395.32 15092.27 185
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10595.83 13494.46 80
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 430
nn0.00 430
door-mid74.45 341
lessismore_v085.95 11991.10 14470.99 17470.91 37091.79 6994.42 7461.76 28192.93 14479.52 12093.03 21993.93 105
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
test1191.46 131
door72.57 356
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15873.30 18180.55 292
ACMP_Plane91.19 13984.77 15873.30 18180.55 292
BP-MVS77.30 150
HQP4-MVS80.56 29194.61 7993.56 129
HQP3-MVS92.68 9794.47 182
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 224
MDTV_nov1_ep13_2view27.60 42070.76 36746.47 39361.27 40545.20 37349.18 37783.75 340
MDTV_nov1_ep1368.29 34378.03 36143.87 39974.12 34072.22 35952.17 37167.02 38985.54 29845.36 37180.85 34055.73 33884.42 356
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20573.58 19594.66 17894.56 76
DeepMVS_CXcopyleft24.13 40232.95 42429.49 41821.63 42512.07 41837.95 41945.07 41630.84 40819.21 42117.94 42033.06 41823.69 417