This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 10998.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12698.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 9995.50 14394.53 79
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14190.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
v7n90.13 3690.96 3887.65 8991.95 11071.06 16989.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14097.07 8283.13 330
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14396.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14790.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30189.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 29888.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20694.85 6785.07 5597.78 5397.26 16
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 30888.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8298.04 3693.64 124
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25589.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 9898.80 298.84 5
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17589.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30488.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12198.69 998.95 4
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23189.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20097.65 6097.34 15
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 21896.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
test_040288.65 6589.58 5685.88 12192.55 9072.22 15584.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11095.21 15291.82 197
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 13896.62 9490.70 225
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18394.81 17193.70 120
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22188.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15097.99 4096.88 25
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25195.90 1585.01 5898.23 2797.49 13
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13697.03 8395.52 49
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
tt080588.09 7489.79 5182.98 18793.26 7363.94 23591.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 8995.87 13093.13 144
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15790.31 5496.31 380.88 8085.12 19689.67 22184.47 7095.46 4782.56 8396.26 11193.77 118
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15388.74 28596.61 29
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24795.59 3786.02 4897.78 5397.24 17
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23284.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19198.66 1097.69 9
nrg03087.85 8088.49 7085.91 11990.07 16469.73 17987.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11397.32 7596.50 31
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10195.83 13294.46 80
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9695.32 14892.34 176
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11595.95 12592.00 192
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 18887.84 10488.05 20481.66 7094.64 1496.53 1465.94 24894.75 6983.02 7796.83 8895.41 51
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26587.25 26182.43 9394.53 7977.65 13896.46 10294.14 98
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19283.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 16998.53 1596.99 24
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10591.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20482.55 21091.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17498.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20483.16 19492.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17498.35 2197.61 10
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22284.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10694.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20791.21 3988.64 19386.30 2889.60 11392.59 13869.22 23194.91 6673.89 18097.89 4996.72 26
v1086.54 9487.10 8884.84 13788.16 20663.28 24186.64 12592.20 10275.42 14692.81 5094.50 6474.05 19094.06 9683.88 6896.28 10897.17 20
pmmvs686.52 9588.06 7481.90 20792.22 10262.28 25884.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27570.43 21797.30 7696.62 28
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25278.87 13694.18 9080.67 10396.29 10792.73 158
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 13888.40 9683.63 26681.27 7480.87 27594.12 8771.49 22295.71 3287.79 1296.50 9994.11 100
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24579.09 13492.13 16075.51 16295.06 15990.41 234
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v886.22 10086.83 9584.36 15187.82 21062.35 25786.42 12891.33 13076.78 12892.73 5294.48 6673.41 19993.72 10783.10 7495.41 14497.01 23
Anonymous2024052986.20 10187.13 8783.42 17790.19 16064.55 22984.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 22996.40 10595.31 55
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14396.71 9293.73 119
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 22882.21 22290.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20198.65 1197.61 10
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9596.54 9790.88 219
FC-MVSNet-test85.93 10687.05 9082.58 19892.25 10056.44 31985.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 16898.58 1397.88 7
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23285.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22280.76 12192.13 16073.21 19695.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
canonicalmvs85.50 11086.14 10583.58 17387.97 20767.13 20287.55 10694.32 1873.44 16888.47 13187.54 25586.45 5491.06 19075.76 16193.76 19792.54 168
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18391.63 3687.98 20681.51 7287.05 15991.83 16066.18 24695.29 5370.75 21296.89 8595.64 46
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20385.86 13491.39 12872.33 19287.59 14790.25 21084.85 6692.37 15478.00 13491.94 23893.66 121
FIs85.35 11386.27 10282.60 19791.86 11457.31 31285.10 14893.05 7775.83 13991.02 8293.97 9373.57 19592.91 14273.97 17998.02 3997.58 12
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28784.31 6493.28 20892.15 187
casdiffmvspermissive85.21 11585.85 11183.31 18086.17 25362.77 24883.03 19693.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline85.20 11685.93 10783.02 18686.30 24762.37 25684.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12494.21 18894.74 73
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18185.45 14176.68 31684.06 4592.44 5796.99 862.03 26894.65 7280.58 10493.24 20994.83 72
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14083.91 17385.18 24680.44 8288.75 12585.49 28680.08 12891.92 16682.02 9090.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28872.52 14983.82 17585.15 24780.27 8688.75 12585.45 28879.95 13091.90 16781.92 9290.80 26296.13 34
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39586.57 5295.80 2587.35 2497.62 6294.20 92
MSLP-MVS++85.00 12186.03 10681.90 20791.84 11771.56 16686.75 12393.02 8175.95 13787.12 15389.39 22577.98 14289.40 24177.46 14194.78 17284.75 305
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 28889.15 23177.04 15793.28 12865.82 26092.28 22992.21 184
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28270.44 21091.28 7795.18 4256.62 30489.28 24385.15 5497.09 8193.99 103
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 18991.19 18578.28 12891.09 25189.29 253
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23683.25 19089.88 17376.06 13289.62 11092.37 14773.40 20192.52 14978.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26387.13 21673.35 16985.56 19189.34 22683.60 8090.50 20876.64 15194.05 19390.09 242
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17184.77 14992.68 9173.30 17280.55 28090.17 21472.10 21494.61 7477.30 14594.47 18093.56 129
v119284.57 12884.69 13384.21 15787.75 21262.88 24583.02 19791.43 12569.08 22589.98 10190.89 19072.70 21093.62 11382.41 8594.97 16496.13 34
FMVSNet184.55 12985.45 11981.85 20990.27 15961.05 27186.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23095.33 14793.82 113
v114484.54 13084.72 13184.00 16087.67 21562.55 25282.97 19890.93 14270.32 21489.80 10490.99 18573.50 19693.48 12181.69 9494.65 17795.97 39
Gipumacopyleft84.44 13186.33 10178.78 25384.20 28473.57 13289.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 32976.14 15796.80 9082.36 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16483.52 18392.13 10461.82 28783.96 22689.75 22079.93 13193.46 12278.33 12794.34 18491.87 196
VDDNet84.35 13385.39 12081.25 21895.13 3159.32 29185.42 14281.11 28786.41 2787.41 15096.21 1973.61 19490.61 20666.33 25396.85 8693.81 116
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17484.50 16093.37 5878.76 10884.07 22478.72 35880.39 12595.13 6073.82 18292.98 21691.04 215
v124084.30 13584.51 13783.65 17187.65 21661.26 26882.85 20291.54 12267.94 24090.68 9090.65 20271.71 22093.64 10982.84 7994.78 17296.07 36
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 23883.56 26772.71 18486.07 18189.07 23281.75 11186.19 28677.11 14793.36 20488.24 266
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25371.27 20186.70 16590.55 20463.04 26593.92 10078.26 12994.20 18989.63 245
v14419284.24 13884.41 14083.71 17087.59 21861.57 26482.95 19991.03 13867.82 24389.80 10490.49 20573.28 20393.51 12081.88 9394.89 16796.04 38
dcpmvs_284.23 13985.14 12381.50 21588.61 19561.98 26282.90 20193.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 14992.30 22694.90 65
v192192084.23 13984.37 14283.79 16687.64 21761.71 26382.91 20091.20 13467.94 24090.06 9690.34 20772.04 21793.59 11582.32 8694.91 16596.07 36
VDD-MVS84.23 13984.58 13583.20 18391.17 14065.16 22483.25 19084.97 25479.79 9087.18 15294.27 7574.77 18390.89 19669.24 22696.54 9793.55 131
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26582.71 20589.71 17672.19 19589.55 11491.41 17270.70 22693.20 13081.02 9793.76 19796.25 32
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14682.20 22487.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 18891.09 25188.21 267
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19292.40 9672.04 19682.04 25588.33 24177.91 14493.95 9966.17 25495.12 15790.34 236
TransMVSNet (Re)84.02 14585.74 11478.85 25291.00 14455.20 32982.29 21887.26 21279.65 9388.38 13495.52 3383.00 8586.88 27367.97 24496.60 9594.45 82
Baseline_NR-MVSNet84.00 14685.90 10978.29 26491.47 13253.44 33882.29 21887.00 22479.06 10289.55 11495.72 2877.20 15386.14 28872.30 20298.51 1695.28 56
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28674.73 15285.66 18886.06 27972.56 21292.69 14675.44 16495.21 15289.01 261
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 19984.54 15891.42 12773.27 17588.41 13387.96 24672.33 21390.83 19876.02 15994.11 19192.69 162
Effi-MVS+83.90 14984.01 14783.57 17487.22 22465.61 22086.55 12792.40 9678.64 10981.34 27084.18 30783.65 7992.93 14074.22 17387.87 29692.17 186
CANet83.79 15082.85 16586.63 10286.17 25372.21 15683.76 17891.43 12577.24 12574.39 33687.45 25775.36 17495.42 4977.03 14892.83 21992.25 183
pm-mvs183.69 15184.95 12779.91 23990.04 16659.66 28882.43 21487.44 20975.52 14487.85 14395.26 3981.25 11685.65 29768.74 23696.04 12094.42 85
AdaColmapbinary83.66 15283.69 15283.57 17490.05 16572.26 15486.29 13090.00 17178.19 11481.65 26487.16 26383.40 8294.24 8761.69 29494.76 17584.21 312
MIMVSNet183.63 15384.59 13480.74 22794.06 5362.77 24882.72 20484.53 25977.57 12190.34 9295.92 2476.88 16585.83 29561.88 29297.42 7293.62 125
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29382.28 8790.87 25993.58 127
WR-MVS83.56 15584.40 14181.06 22393.43 6854.88 33078.67 27185.02 25181.24 7590.74 8991.56 16972.85 20791.08 18968.00 24398.04 3697.23 18
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23388.66 23874.87 17981.73 32166.84 24992.29 22889.11 255
LCM-MVSNet-Re83.48 15785.06 12478.75 25485.94 25855.75 32480.05 24794.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30494.89 16790.75 222
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20683.69 26471.27 20186.70 16586.05 28063.04 26592.41 15278.26 12993.62 20390.71 224
V4283.47 15883.37 15583.75 16883.16 29463.33 24081.31 23290.23 16569.51 22190.91 8590.81 19574.16 18892.29 15880.06 10790.22 27095.62 47
VPA-MVSNet83.47 15884.73 12979.69 24390.29 15857.52 31181.30 23488.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25296.82 8994.34 89
PAPM_NR83.23 16183.19 15883.33 17990.90 14665.98 21688.19 9890.78 14578.13 11580.87 27587.92 24973.49 19892.42 15170.07 21988.40 28791.60 204
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20077.93 27992.52 9468.33 23385.07 19781.54 33682.06 10392.96 13869.35 22597.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ANet_high83.17 16385.68 11575.65 29881.24 31245.26 37779.94 24992.91 8483.83 4691.33 7496.88 1080.25 12785.92 29068.89 23395.89 12995.76 43
FA-MVS(test-final)83.13 16483.02 16283.43 17686.16 25566.08 21588.00 10088.36 19775.55 14385.02 19892.75 13565.12 25292.50 15074.94 17091.30 24991.72 199
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19086.65 12490.62 15054.66 33681.46 26790.81 19576.98 15894.38 8372.62 19996.18 11390.82 221
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 23977.07 12673.76 33992.82 13169.64 22891.82 17169.04 23293.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LF4IMVS82.75 16781.93 17985.19 13282.08 30180.15 7085.53 13988.76 19168.01 23785.58 19087.75 25171.80 21986.85 27474.02 17893.87 19688.58 264
EI-MVSNet82.61 16882.42 17483.20 18383.25 29263.66 23683.50 18485.07 24876.06 13286.55 16985.10 29473.41 19990.25 21178.15 13390.67 26595.68 45
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20889.94 6290.36 15767.97 23984.94 20292.58 14072.71 20992.18 15970.63 21587.73 29888.85 262
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13386.14 13177.70 30561.64 29285.02 19891.62 16777.75 14586.24 28382.79 8087.07 30593.91 109
Fast-Effi-MVS+-dtu82.54 17181.41 19085.90 12085.60 26176.53 11183.07 19589.62 18073.02 17979.11 29883.51 31280.74 12290.24 21368.76 23589.29 27690.94 217
MVS_Test82.47 17283.22 15680.22 23682.62 30057.75 31082.54 21191.96 11071.16 20582.89 24292.52 14277.41 15090.50 20880.04 10887.84 29792.40 173
v14882.31 17382.48 17381.81 21285.59 26259.66 28881.47 23186.02 23572.85 18088.05 14090.65 20270.73 22590.91 19575.15 16791.79 23994.87 67
API-MVS82.28 17482.61 17081.30 21786.29 24869.79 17788.71 9087.67 20878.42 11282.15 25384.15 30877.98 14291.59 17465.39 26392.75 22082.51 338
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18591.98 3190.08 16971.54 19976.23 31885.07 29758.69 29094.27 8486.26 4088.77 28389.03 259
fmvsm_s_conf0.5_n_a82.21 17681.51 18984.32 15486.56 23873.35 13385.46 14077.30 30961.81 28884.51 20890.88 19277.36 15186.21 28582.72 8186.97 30993.38 133
EIA-MVS82.19 17781.23 19585.10 13487.95 20869.17 18983.22 19393.33 6170.42 21178.58 30179.77 35277.29 15294.20 8971.51 20588.96 28191.93 195
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16585.19 14677.42 30862.27 28684.47 21191.33 17476.43 16785.91 29183.14 7287.14 30394.33 90
PCF-MVS74.62 1582.15 17980.92 19985.84 12289.43 17472.30 15380.53 24291.82 11657.36 32687.81 14489.92 21777.67 14793.63 11058.69 30995.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PLCcopyleft73.85 1682.09 18080.31 20587.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31786.33 27473.12 20592.61 14861.40 29790.02 27289.44 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net82.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
test182.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
OpenMVScopyleft76.72 1381.98 18382.00 17881.93 20684.42 27968.22 19488.50 9589.48 18266.92 24881.80 26291.86 15772.59 21190.16 21671.19 20891.25 25087.40 279
KD-MVS_self_test81.93 18483.14 16078.30 26384.75 27452.75 34280.37 24489.42 18470.24 21690.26 9493.39 11474.55 18786.77 27668.61 23896.64 9395.38 52
fmvsm_s_conf0.5_n81.91 18581.30 19283.75 16886.02 25771.56 16684.73 15277.11 31262.44 28384.00 22590.68 19976.42 16885.89 29383.14 7287.11 30493.81 116
SDMVSNet81.90 18683.17 15978.10 26788.81 18962.45 25476.08 30986.05 23473.67 16383.41 23493.04 12082.35 9580.65 32870.06 22095.03 16091.21 211
tfpnnormal81.79 18782.95 16378.31 26288.93 18655.40 32580.83 24182.85 27376.81 12785.90 18694.14 8574.58 18686.51 27966.82 25095.68 14193.01 150
c3_l81.64 18881.59 18681.79 21380.86 31859.15 29578.61 27290.18 16768.36 23287.20 15187.11 26569.39 22991.62 17378.16 13194.43 18294.60 75
PVSNet_Blended_VisFu81.55 18980.49 20384.70 14491.58 12573.24 13784.21 16291.67 12062.86 27880.94 27387.16 26367.27 24092.87 14369.82 22288.94 28287.99 271
DELS-MVS81.44 19081.25 19382.03 20584.27 28362.87 24676.47 30392.49 9570.97 20681.64 26583.83 30975.03 17792.70 14574.29 17292.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet281.31 19181.61 18580.41 23386.38 24258.75 30283.93 17286.58 22772.43 18787.65 14692.98 12463.78 25990.22 21466.86 24793.92 19592.27 181
TinyColmap81.25 19282.34 17577.99 27085.33 26560.68 27982.32 21788.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28695.17 15486.31 289
AUN-MVS81.18 19378.78 22688.39 7790.93 14582.14 5882.51 21283.67 26564.69 27180.29 28485.91 28351.07 32992.38 15376.29 15693.63 20290.65 228
tttt051781.07 19479.58 21785.52 12888.99 18566.45 21187.03 11475.51 32473.76 16288.32 13690.20 21137.96 38294.16 9479.36 11995.13 15595.93 42
Fast-Effi-MVS+81.04 19580.57 20082.46 20287.50 21963.22 24278.37 27589.63 17968.01 23781.87 25882.08 33082.31 9792.65 14767.10 24688.30 29291.51 207
BH-untuned80.96 19680.99 19780.84 22688.55 19768.23 19380.33 24588.46 19472.79 18386.55 16986.76 26974.72 18491.77 17261.79 29388.99 28082.52 337
eth_miper_zixun_eth80.84 19780.22 20982.71 19581.41 31060.98 27477.81 28190.14 16867.31 24686.95 16187.24 26264.26 25592.31 15675.23 16691.61 24394.85 71
xiu_mvs_v1_base_debu80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base_debi80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
IterMVS-SCA-FT80.64 20179.41 21884.34 15383.93 28669.66 18076.28 30581.09 28872.43 18786.47 17590.19 21260.46 27593.15 13377.45 14286.39 31590.22 237
BH-RMVSNet80.53 20280.22 20981.49 21687.19 22566.21 21477.79 28286.23 23174.21 15783.69 22888.50 23973.25 20490.75 20063.18 28387.90 29587.52 277
Anonymous20240521180.51 20381.19 19678.49 25988.48 19857.26 31376.63 29982.49 27681.21 7684.30 21892.24 15267.99 23786.24 28362.22 28795.13 15591.98 194
DIV-MVS_self_test80.43 20480.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.38 24486.19 17889.22 22863.09 26390.16 21676.32 15495.80 13593.66 121
cl____80.42 20580.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.37 24586.18 18089.21 22963.08 26490.16 21676.31 15595.80 13593.65 123
diffmvspermissive80.40 20680.48 20480.17 23779.02 33860.04 28377.54 28690.28 16466.65 25182.40 24887.33 26073.50 19687.35 26677.98 13589.62 27493.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet80.37 20778.41 23386.23 11176.75 35273.28 13587.18 11177.45 30776.24 13168.14 36388.93 23465.41 25093.85 10269.47 22496.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf_final80.36 20878.88 22384.79 13986.29 24866.36 21386.95 11586.25 23068.16 23682.09 25489.48 22336.59 38594.51 8179.83 11194.30 18693.50 132
miper_ehance_all_eth80.34 20980.04 21481.24 22079.82 32858.95 29777.66 28389.66 17765.75 25985.99 18585.11 29368.29 23691.42 18076.03 15892.03 23493.33 135
MG-MVS80.32 21080.94 19878.47 26088.18 20452.62 34582.29 21885.01 25272.01 19779.24 29792.54 14169.36 23093.36 12770.65 21489.19 27989.45 247
VPNet80.25 21181.68 18275.94 29692.46 9347.98 36876.70 29781.67 28473.45 16784.87 20392.82 13174.66 18586.51 27961.66 29596.85 8693.33 135
MAR-MVS80.24 21278.74 22884.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30678.50 35973.79 19390.53 20761.59 29690.87 25985.49 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PM-MVS80.20 21379.00 22283.78 16788.17 20586.66 1581.31 23266.81 37269.64 22088.33 13590.19 21264.58 25383.63 31371.99 20490.03 27181.06 356
Anonymous2024052180.18 21481.25 19376.95 28383.15 29560.84 27682.46 21385.99 23668.76 22986.78 16293.73 10859.13 28777.44 34073.71 18497.55 6792.56 166
LFMVS80.15 21580.56 20178.89 25189.19 18155.93 32185.22 14573.78 33682.96 5884.28 21992.72 13657.38 29990.07 22363.80 27795.75 13890.68 226
DPM-MVS80.10 21679.18 22182.88 19390.71 15169.74 17878.87 26890.84 14360.29 30875.64 32685.92 28267.28 23993.11 13471.24 20791.79 23985.77 295
MSDG80.06 21779.99 21680.25 23583.91 28768.04 19877.51 28789.19 18577.65 11981.94 25683.45 31476.37 16986.31 28263.31 28286.59 31286.41 287
FE-MVS79.98 21878.86 22483.36 17886.47 23966.45 21189.73 6584.74 25872.80 18284.22 22391.38 17344.95 36393.60 11463.93 27691.50 24690.04 243
sd_testset79.95 21981.39 19175.64 29988.81 18958.07 30676.16 30882.81 27473.67 16383.41 23493.04 12080.96 11977.65 33958.62 31095.03 16091.21 211
ab-mvs79.67 22080.56 20176.99 28288.48 19856.93 31584.70 15386.06 23368.95 22780.78 27793.08 11975.30 17584.62 30556.78 31990.90 25889.43 249
VNet79.31 22180.27 20676.44 29087.92 20953.95 33475.58 31584.35 26074.39 15682.23 25190.72 19772.84 20884.39 30760.38 30393.98 19490.97 216
thisisatest053079.07 22277.33 24384.26 15687.13 22664.58 22783.66 18175.95 31968.86 22885.22 19587.36 25938.10 38093.57 11875.47 16394.28 18794.62 74
cl2278.97 22378.21 23581.24 22077.74 34259.01 29677.46 28987.13 21665.79 25684.32 21585.10 29458.96 28990.88 19775.36 16592.03 23493.84 111
patch_mono-278.89 22479.39 21977.41 27984.78 27268.11 19675.60 31383.11 27060.96 30179.36 29489.89 21875.18 17672.97 35173.32 19092.30 22691.15 213
RPMNet78.88 22578.28 23480.68 23079.58 32962.64 25082.58 20894.16 2774.80 15175.72 32492.59 13848.69 33795.56 3973.48 18782.91 34683.85 317
PAPR78.84 22678.10 23681.07 22285.17 26860.22 28282.21 22290.57 15162.51 28075.32 33084.61 30274.99 17892.30 15759.48 30788.04 29490.68 226
iter_conf0578.81 22777.35 24283.21 18282.98 29860.75 27884.09 16688.34 19863.12 27684.25 22289.48 22331.41 39094.51 8176.64 15195.83 13294.38 88
PVSNet_BlendedMVS78.80 22877.84 23781.65 21484.43 27763.41 23879.49 25790.44 15461.70 29175.43 32787.07 26669.11 23291.44 17860.68 30192.24 23090.11 241
FMVSNet378.80 22878.55 23079.57 24582.89 29956.89 31781.76 22685.77 23869.04 22686.00 18290.44 20651.75 32790.09 22265.95 25693.34 20591.72 199
test_yl78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
DCV-MVSNet78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
test111178.53 23278.85 22577.56 27692.22 10247.49 37082.61 20669.24 36272.43 18785.28 19494.20 8151.91 32590.07 22365.36 26496.45 10395.11 62
ECVR-MVScopyleft78.44 23378.63 22977.88 27291.85 11548.95 36483.68 18069.91 36072.30 19384.26 22194.20 8151.89 32689.82 22863.58 27896.02 12194.87 67
pmmvs-eth3d78.42 23477.04 24582.57 20087.44 22074.41 12880.86 24079.67 29655.68 33284.69 20690.31 20960.91 27385.42 29862.20 28891.59 24487.88 274
mvs_anonymous78.13 23578.76 22776.23 29579.24 33550.31 36178.69 27084.82 25661.60 29383.09 24192.82 13173.89 19287.01 26968.33 24286.41 31491.37 208
TAMVS78.08 23676.36 25183.23 18190.62 15272.87 13979.08 26480.01 29561.72 29081.35 26986.92 26863.96 25888.78 25150.61 35593.01 21588.04 270
miper_enhance_ethall77.83 23776.93 24680.51 23176.15 35858.01 30775.47 31788.82 18958.05 32083.59 23080.69 34064.41 25491.20 18473.16 19792.03 23492.33 177
Vis-MVSNet (Re-imp)77.82 23877.79 23877.92 27188.82 18851.29 35583.28 18871.97 34974.04 15882.23 25189.78 21957.38 29989.41 24057.22 31895.41 14493.05 148
CANet_DTU77.81 23977.05 24480.09 23881.37 31159.90 28683.26 18988.29 20069.16 22467.83 36683.72 31060.93 27289.47 23569.22 22889.70 27390.88 219
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23978.71 25584.39 28061.15 26981.18 23682.52 27562.45 28283.34 23687.37 25866.20 24588.66 25364.69 27185.02 32886.32 288
SSC-MVS77.55 24181.64 18365.29 35590.46 15520.33 40073.56 33268.28 36485.44 3288.18 13994.64 6070.93 22481.33 32371.25 20692.03 23494.20 92
MDA-MVSNet-bldmvs77.47 24276.90 24779.16 25079.03 33764.59 22666.58 36575.67 32273.15 17788.86 12288.99 23366.94 24181.23 32464.71 27088.22 29391.64 203
jason77.42 24375.75 25782.43 20387.10 22969.27 18477.99 27881.94 28151.47 35477.84 30685.07 29760.32 27789.00 24570.74 21389.27 27889.03 259
jason: jason.
CDS-MVSNet77.32 24475.40 26083.06 18589.00 18472.48 15077.90 28082.17 27960.81 30278.94 29983.49 31359.30 28588.76 25254.64 33792.37 22587.93 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
xiu_mvs_v2_base77.19 24576.75 24878.52 25887.01 23261.30 26775.55 31687.12 21961.24 29874.45 33578.79 35777.20 15390.93 19364.62 27384.80 33583.32 326
MVSTER77.09 24675.70 25881.25 21875.27 36661.08 27077.49 28885.07 24860.78 30386.55 16988.68 23743.14 37290.25 21173.69 18590.67 26592.42 171
PS-MVSNAJ77.04 24776.53 25078.56 25787.09 23061.40 26575.26 31887.13 21661.25 29774.38 33777.22 36876.94 15990.94 19264.63 27284.83 33483.35 325
IterMVS76.91 24876.34 25278.64 25680.91 31664.03 23376.30 30479.03 29964.88 27083.11 23989.16 23059.90 28184.46 30668.61 23885.15 32787.42 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
D2MVS76.84 24975.67 25980.34 23480.48 32462.16 26173.50 33384.80 25757.61 32482.24 25087.54 25551.31 32887.65 26270.40 21893.19 21191.23 210
CL-MVSNet_self_test76.81 25077.38 24175.12 30286.90 23451.34 35373.20 33680.63 29268.30 23481.80 26288.40 24066.92 24280.90 32555.35 33194.90 16693.12 146
TR-MVS76.77 25175.79 25679.72 24286.10 25665.79 21877.14 29083.02 27165.20 26881.40 26882.10 32866.30 24490.73 20255.57 32885.27 32382.65 332
USDC76.63 25276.73 24976.34 29283.46 29057.20 31480.02 24888.04 20552.14 35083.65 22991.25 17663.24 26286.65 27854.66 33694.11 19185.17 300
BH-w/o76.57 25376.07 25578.10 26786.88 23565.92 21777.63 28486.33 22865.69 26080.89 27479.95 34968.97 23490.74 20153.01 34585.25 32477.62 367
Patchmtry76.56 25477.46 23973.83 30879.37 33446.60 37482.41 21576.90 31373.81 16185.56 19192.38 14448.07 34083.98 31063.36 28195.31 15090.92 218
PVSNet_Blended76.49 25575.40 26079.76 24184.43 27763.41 23875.14 31990.44 15457.36 32675.43 32778.30 36069.11 23291.44 17860.68 30187.70 29984.42 308
miper_lstm_enhance76.45 25676.10 25477.51 27776.72 35360.97 27564.69 36985.04 25063.98 27383.20 23888.22 24256.67 30378.79 33773.22 19193.12 21292.78 157
lupinMVS76.37 25774.46 26982.09 20485.54 26369.26 18576.79 29580.77 29150.68 36176.23 31882.82 32258.69 29088.94 24669.85 22188.77 28388.07 268
cascas76.29 25874.81 26580.72 22984.47 27662.94 24473.89 33087.34 21055.94 33175.16 33276.53 37263.97 25791.16 18665.00 26790.97 25688.06 269
WB-MVS76.06 25980.01 21564.19 35889.96 16820.58 39972.18 34068.19 36583.21 5486.46 17693.49 11270.19 22778.97 33565.96 25590.46 26993.02 149
thres600view775.97 26075.35 26277.85 27487.01 23251.84 35180.45 24373.26 34075.20 14883.10 24086.31 27645.54 35489.05 24455.03 33492.24 23092.66 163
GA-MVS75.83 26174.61 26679.48 24781.87 30359.25 29273.42 33482.88 27268.68 23079.75 28981.80 33350.62 33189.46 23666.85 24885.64 32089.72 244
MVP-Stereo75.81 26273.51 27882.71 19589.35 17573.62 13180.06 24685.20 24560.30 30773.96 33887.94 24757.89 29789.45 23752.02 34974.87 37885.06 302
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvs375.72 26375.20 26377.27 28075.01 36969.47 18278.93 26584.88 25546.67 36887.08 15787.84 25050.44 33371.62 35577.42 14488.53 28690.72 223
thres100view90075.45 26475.05 26476.66 28987.27 22251.88 35081.07 23773.26 34075.68 14183.25 23786.37 27345.54 35488.80 24851.98 35090.99 25389.31 251
ET-MVSNet_ETH3D75.28 26572.77 28682.81 19483.03 29768.11 19677.09 29176.51 31760.67 30577.60 31180.52 34438.04 38191.15 18770.78 21190.68 26489.17 254
thres40075.14 26674.23 27177.86 27386.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25392.66 163
wuyk23d75.13 26779.30 22062.63 36175.56 36275.18 12480.89 23973.10 34275.06 15094.76 1295.32 3587.73 4052.85 39134.16 39197.11 8059.85 388
EU-MVSNet75.12 26874.43 27077.18 28183.11 29659.48 29085.71 13882.43 27739.76 38885.64 18988.76 23544.71 36587.88 26073.86 18185.88 31984.16 313
HyFIR lowres test75.12 26872.66 28882.50 20191.44 13365.19 22372.47 33887.31 21146.79 36780.29 28484.30 30552.70 32292.10 16351.88 35486.73 31090.22 237
CMPMVSbinary59.41 2075.12 26873.57 27679.77 24075.84 36167.22 20181.21 23582.18 27850.78 35976.50 31487.66 25355.20 31482.99 31562.17 29090.64 26889.09 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs474.92 27172.98 28480.73 22884.95 26971.71 16376.23 30677.59 30652.83 34477.73 31086.38 27256.35 30784.97 30257.72 31787.05 30685.51 297
tfpn200view974.86 27274.23 27176.74 28886.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25389.31 251
1112_ss74.82 27373.74 27478.04 26989.57 17060.04 28376.49 30287.09 22054.31 33773.66 34079.80 35060.25 27886.76 27758.37 31184.15 33987.32 280
EGC-MVSNET74.79 27469.99 31489.19 6394.89 3787.00 1191.89 3486.28 2291.09 3962.23 39895.98 2381.87 10989.48 23479.76 11295.96 12491.10 214
ppachtmachnet_test74.73 27574.00 27376.90 28580.71 32156.89 31771.53 34478.42 30158.24 31879.32 29682.92 32157.91 29684.26 30865.60 26291.36 24889.56 246
Patchmatch-RL test74.48 27673.68 27576.89 28684.83 27166.54 20972.29 33969.16 36357.70 32286.76 16386.33 27445.79 35382.59 31669.63 22390.65 26781.54 347
PatchMatch-RL74.48 27673.22 28178.27 26587.70 21385.26 3475.92 31170.09 35864.34 27276.09 32081.25 33865.87 24978.07 33853.86 33983.82 34071.48 376
XXY-MVS74.44 27876.19 25369.21 33684.61 27552.43 34671.70 34277.18 31160.73 30480.60 27890.96 18875.44 17269.35 36156.13 32488.33 28885.86 294
test250674.12 27973.39 27976.28 29391.85 11544.20 38084.06 16748.20 39672.30 19381.90 25794.20 8127.22 39789.77 23164.81 26996.02 12194.87 67
CR-MVSNet74.00 28073.04 28376.85 28779.58 32962.64 25082.58 20876.90 31350.50 36275.72 32492.38 14448.07 34084.07 30968.72 23782.91 34683.85 317
Test_1112_low_res73.90 28173.08 28276.35 29190.35 15755.95 32073.40 33586.17 23250.70 36073.14 34185.94 28158.31 29285.90 29256.51 32183.22 34387.20 281
test20.0373.75 28274.59 26871.22 32481.11 31451.12 35770.15 35272.10 34870.42 21180.28 28691.50 17064.21 25674.72 35046.96 37294.58 17887.82 276
test_fmvs273.57 28372.80 28575.90 29772.74 38168.84 19177.07 29284.32 26145.14 37482.89 24284.22 30648.37 33870.36 35873.40 18987.03 30788.52 265
SCA73.32 28472.57 29075.58 30081.62 30755.86 32278.89 26771.37 35461.73 28974.93 33383.42 31560.46 27587.01 26958.11 31582.63 35183.88 314
baseline173.26 28573.54 27772.43 32084.92 27047.79 36979.89 25074.00 33265.93 25478.81 30086.28 27756.36 30681.63 32256.63 32079.04 36787.87 275
131473.22 28672.56 29175.20 30180.41 32557.84 30881.64 22985.36 24251.68 35373.10 34276.65 37161.45 27085.19 30063.54 27979.21 36582.59 333
MVS73.21 28772.59 28975.06 30380.97 31560.81 27781.64 22985.92 23746.03 37271.68 34977.54 36368.47 23589.77 23155.70 32785.39 32174.60 373
HY-MVS64.64 1873.03 28872.47 29274.71 30483.36 29154.19 33282.14 22581.96 28056.76 33069.57 35986.21 27860.03 27984.83 30449.58 36182.65 34985.11 301
thisisatest051573.00 28970.52 30680.46 23281.45 30959.90 28673.16 33774.31 33157.86 32176.08 32177.78 36237.60 38392.12 16265.00 26791.45 24789.35 250
EPNet_dtu72.87 29071.33 30277.49 27877.72 34360.55 28082.35 21675.79 32066.49 25258.39 39181.06 33953.68 31885.98 28953.55 34092.97 21785.95 292
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CVMVSNet72.62 29171.41 30176.28 29383.25 29260.34 28183.50 18479.02 30037.77 39176.33 31685.10 29449.60 33687.41 26570.54 21677.54 37381.08 354
CHOSEN 1792x268872.45 29270.56 30578.13 26690.02 16763.08 24368.72 35683.16 26942.99 38275.92 32285.46 28757.22 30185.18 30149.87 35981.67 35386.14 290
testgi72.36 29374.61 26665.59 35280.56 32342.82 38468.29 35773.35 33966.87 24981.84 25989.93 21672.08 21666.92 37446.05 37592.54 22387.01 283
thres20072.34 29471.55 30074.70 30583.48 28951.60 35275.02 32073.71 33770.14 21778.56 30280.57 34346.20 34688.20 25846.99 37189.29 27684.32 309
FPMVS72.29 29572.00 29473.14 31388.63 19485.00 3674.65 32367.39 36671.94 19877.80 30887.66 25350.48 33275.83 34649.95 35779.51 36158.58 390
FMVSNet572.10 29671.69 29673.32 31181.57 30853.02 34176.77 29678.37 30263.31 27476.37 31591.85 15836.68 38478.98 33447.87 36892.45 22487.95 272
our_test_371.85 29771.59 29772.62 31780.71 32153.78 33569.72 35471.71 35358.80 31578.03 30380.51 34556.61 30578.84 33662.20 28886.04 31885.23 299
PAPM71.77 29870.06 31276.92 28486.39 24153.97 33376.62 30086.62 22653.44 34163.97 38184.73 30157.79 29892.34 15539.65 38681.33 35784.45 307
IB-MVS62.13 1971.64 29968.97 32179.66 24480.80 32062.26 25973.94 32976.90 31363.27 27568.63 36276.79 37033.83 38891.84 17059.28 30887.26 30184.88 303
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UnsupCasMVSNet_eth71.63 30072.30 29369.62 33376.47 35552.70 34470.03 35380.97 28959.18 31379.36 29488.21 24360.50 27469.12 36258.33 31377.62 37287.04 282
testing371.53 30170.79 30373.77 30988.89 18741.86 38576.60 30159.12 38672.83 18180.97 27182.08 33019.80 40287.33 26765.12 26691.68 24292.13 188
test_vis3_rt71.42 30270.67 30473.64 31069.66 38770.46 17366.97 36489.73 17442.68 38488.20 13883.04 31743.77 36760.07 38665.35 26586.66 31190.39 235
Anonymous2023120671.38 30371.88 29569.88 33186.31 24654.37 33170.39 35074.62 32752.57 34676.73 31388.76 23559.94 28072.06 35344.35 37993.23 21083.23 328
test_vis1_n_192071.30 30471.58 29970.47 32777.58 34559.99 28574.25 32484.22 26251.06 35674.85 33479.10 35455.10 31568.83 36468.86 23479.20 36682.58 334
MIMVSNet71.09 30571.59 29769.57 33487.23 22350.07 36278.91 26671.83 35060.20 31071.26 35091.76 16455.08 31676.09 34441.06 38487.02 30882.54 336
test_fmvs1_n70.94 30670.41 30972.53 31973.92 37166.93 20675.99 31084.21 26343.31 38179.40 29379.39 35343.47 36868.55 36669.05 23184.91 33182.10 341
MS-PatchMatch70.93 30770.22 31073.06 31481.85 30462.50 25373.82 33177.90 30352.44 34775.92 32281.27 33755.67 31181.75 32055.37 33077.70 37174.94 372
pmmvs570.73 30870.07 31172.72 31677.03 35052.73 34374.14 32575.65 32350.36 36372.17 34785.37 29155.42 31380.67 32752.86 34687.59 30084.77 304
PatchT70.52 30972.76 28763.79 36079.38 33333.53 39477.63 28465.37 37473.61 16571.77 34892.79 13444.38 36675.65 34764.53 27485.37 32282.18 340
test_vis1_n70.29 31069.99 31471.20 32575.97 36066.50 21076.69 29880.81 29044.22 37775.43 32777.23 36750.00 33468.59 36566.71 25182.85 34878.52 366
N_pmnet70.20 31168.80 32374.38 30680.91 31684.81 3959.12 38076.45 31855.06 33475.31 33182.36 32755.74 31054.82 39047.02 37087.24 30283.52 321
tpmvs70.16 31269.56 31771.96 32274.71 37048.13 36679.63 25275.45 32565.02 26970.26 35681.88 33245.34 35985.68 29658.34 31275.39 37782.08 342
new-patchmatchnet70.10 31373.37 28060.29 36881.23 31316.95 40159.54 37874.62 32762.93 27780.97 27187.93 24862.83 26771.90 35455.24 33295.01 16392.00 192
YYNet170.06 31470.44 30768.90 33773.76 37353.42 33958.99 38167.20 36858.42 31787.10 15585.39 29059.82 28267.32 37159.79 30583.50 34285.96 291
MDA-MVSNet_test_wron70.05 31570.44 30768.88 33873.84 37253.47 33758.93 38267.28 36758.43 31687.09 15685.40 28959.80 28367.25 37259.66 30683.54 34185.92 293
CostFormer69.98 31668.68 32473.87 30777.14 34850.72 35979.26 26074.51 32951.94 35270.97 35384.75 30045.16 36287.49 26455.16 33379.23 36483.40 324
baseline269.77 31766.89 33178.41 26179.51 33158.09 30576.23 30669.57 36157.50 32564.82 37977.45 36546.02 34888.44 25453.08 34277.83 36988.70 263
PatchmatchNetpermissive69.71 31868.83 32272.33 32177.66 34453.60 33679.29 25969.99 35957.66 32372.53 34582.93 32046.45 34580.08 33160.91 30072.09 38183.31 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs169.57 31969.05 32071.14 32669.15 38865.77 21973.98 32883.32 26842.83 38377.77 30978.27 36143.39 37168.50 36768.39 24184.38 33879.15 364
JIA-IIPM69.41 32066.64 33577.70 27573.19 37671.24 16875.67 31265.56 37370.42 21165.18 37592.97 12633.64 38983.06 31453.52 34169.61 38778.79 365
Syy-MVS69.40 32170.03 31367.49 34581.72 30538.94 38771.00 34561.99 37861.38 29570.81 35472.36 38061.37 27179.30 33264.50 27585.18 32584.22 310
UnsupCasMVSNet_bld69.21 32269.68 31667.82 34379.42 33251.15 35667.82 36175.79 32054.15 33877.47 31285.36 29259.26 28670.64 35748.46 36579.35 36381.66 345
test_cas_vis1_n_192069.20 32369.12 31869.43 33573.68 37462.82 24770.38 35177.21 31046.18 37180.46 28378.95 35652.03 32465.53 37965.77 26177.45 37479.95 362
gg-mvs-nofinetune68.96 32469.11 31968.52 34276.12 35945.32 37683.59 18255.88 39186.68 2464.62 38097.01 730.36 39283.97 31144.78 37882.94 34576.26 369
tpm268.45 32566.83 33273.30 31278.93 33948.50 36579.76 25171.76 35147.50 36669.92 35883.60 31142.07 37488.40 25548.44 36679.51 36183.01 331
tpm67.95 32668.08 32767.55 34478.74 34043.53 38275.60 31367.10 37154.92 33572.23 34688.10 24442.87 37375.97 34552.21 34880.95 36083.15 329
WTY-MVS67.91 32768.35 32566.58 34980.82 31948.12 36765.96 36672.60 34353.67 34071.20 35181.68 33558.97 28869.06 36348.57 36481.67 35382.55 335
test-LLR67.21 32866.74 33368.63 34076.45 35655.21 32767.89 35867.14 36962.43 28465.08 37672.39 37843.41 36969.37 35961.00 29884.89 33281.31 349
sss66.92 32967.26 32965.90 35177.23 34751.10 35864.79 36871.72 35252.12 35170.13 35780.18 34757.96 29565.36 38050.21 35681.01 35981.25 351
KD-MVS_2432*160066.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
miper_refine_blended66.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
dmvs_re66.81 33266.98 33066.28 35076.87 35158.68 30371.66 34372.24 34660.29 30869.52 36073.53 37752.38 32364.40 38244.90 37781.44 35675.76 370
tpm cat166.76 33365.21 34071.42 32377.09 34950.62 36078.01 27773.68 33844.89 37568.64 36179.00 35545.51 35682.42 31949.91 35870.15 38481.23 353
PVSNet58.17 2166.41 33465.63 33968.75 33981.96 30249.88 36362.19 37572.51 34551.03 35768.04 36475.34 37550.84 33074.77 34845.82 37682.96 34481.60 346
tpmrst66.28 33566.69 33465.05 35672.82 38039.33 38678.20 27670.69 35753.16 34367.88 36580.36 34648.18 33974.75 34958.13 31470.79 38381.08 354
Patchmatch-test65.91 33667.38 32861.48 36675.51 36343.21 38368.84 35563.79 37662.48 28172.80 34483.42 31544.89 36459.52 38848.27 36786.45 31381.70 344
ADS-MVSNet265.87 33763.64 34572.55 31873.16 37756.92 31667.10 36274.81 32649.74 36466.04 37082.97 31846.71 34377.26 34142.29 38169.96 38583.46 322
test_vis1_rt65.64 33864.09 34270.31 32866.09 39370.20 17661.16 37681.60 28538.65 38972.87 34369.66 38352.84 32060.04 38756.16 32377.77 37080.68 358
mvsany_test365.48 33962.97 34673.03 31569.99 38676.17 11864.83 36743.71 39843.68 37980.25 28787.05 26752.83 32163.09 38551.92 35372.44 38079.84 363
test-mter65.00 34063.79 34468.63 34076.45 35655.21 32767.89 35867.14 36950.98 35865.08 37672.39 37828.27 39569.37 35961.00 29884.89 33281.31 349
myMVS_eth3d64.66 34163.89 34366.97 34781.72 30537.39 39071.00 34561.99 37861.38 29570.81 35472.36 38020.96 40179.30 33249.59 36085.18 32584.22 310
test0.0.03 164.66 34164.36 34165.57 35375.03 36846.89 37364.69 36961.58 38362.43 28471.18 35277.54 36343.41 36968.47 36840.75 38582.65 34981.35 348
test_f64.31 34365.85 33659.67 36966.54 39262.24 26057.76 38370.96 35540.13 38684.36 21382.09 32946.93 34251.67 39261.99 29181.89 35265.12 384
pmmvs362.47 34460.02 35769.80 33271.58 38464.00 23470.52 34958.44 38939.77 38766.05 36975.84 37327.10 39872.28 35246.15 37484.77 33673.11 374
EPMVS62.47 34462.63 34862.01 36270.63 38538.74 38874.76 32152.86 39353.91 33967.71 36780.01 34839.40 37866.60 37555.54 32968.81 38980.68 358
ADS-MVSNet61.90 34662.19 35061.03 36773.16 37736.42 39267.10 36261.75 38149.74 36466.04 37082.97 31846.71 34363.21 38342.29 38169.96 38583.46 322
PMMVS61.65 34760.38 35465.47 35465.40 39669.26 18563.97 37161.73 38236.80 39260.11 38668.43 38559.42 28466.35 37648.97 36378.57 36860.81 387
E-PMN61.59 34861.62 35161.49 36566.81 39155.40 32553.77 38660.34 38566.80 25058.90 38965.50 38840.48 37766.12 37755.72 32686.25 31662.95 386
TESTMET0.1,161.29 34960.32 35564.19 35872.06 38251.30 35467.89 35862.09 37745.27 37360.65 38569.01 38427.93 39664.74 38156.31 32281.65 35576.53 368
MVS-HIRNet61.16 35062.92 34755.87 37279.09 33635.34 39371.83 34157.98 39046.56 36959.05 38891.14 18049.95 33576.43 34338.74 38771.92 38255.84 391
EMVS61.10 35160.81 35361.99 36365.96 39455.86 32253.10 38758.97 38867.06 24756.89 39263.33 38940.98 37567.03 37354.79 33586.18 31763.08 385
DSMNet-mixed60.98 35261.61 35259.09 37172.88 37945.05 37874.70 32246.61 39726.20 39365.34 37490.32 20855.46 31263.12 38441.72 38381.30 35869.09 380
dp60.70 35360.29 35661.92 36472.04 38338.67 38970.83 34764.08 37551.28 35560.75 38477.28 36636.59 38571.58 35647.41 36962.34 39175.52 371
dmvs_testset60.59 35462.54 34954.72 37477.26 34627.74 39774.05 32761.00 38460.48 30665.62 37367.03 38755.93 30968.23 36932.07 39469.46 38868.17 381
CHOSEN 280x42059.08 35556.52 36066.76 34876.51 35464.39 23049.62 38859.00 38743.86 37855.66 39368.41 38635.55 38768.21 37043.25 38076.78 37667.69 382
mvsany_test158.48 35656.47 36164.50 35765.90 39568.21 19556.95 38442.11 39938.30 39065.69 37277.19 36956.96 30259.35 38946.16 37358.96 39265.93 383
PVSNet_051.08 2256.10 35754.97 36259.48 37075.12 36753.28 34055.16 38561.89 38044.30 37659.16 38762.48 39054.22 31765.91 37835.40 39047.01 39359.25 389
new_pmnet55.69 35857.66 35949.76 37575.47 36430.59 39559.56 37751.45 39443.62 38062.49 38275.48 37440.96 37649.15 39437.39 38972.52 37969.55 379
PMMVS255.64 35959.27 35844.74 37664.30 39712.32 40240.60 38949.79 39553.19 34265.06 37884.81 29953.60 31949.76 39332.68 39389.41 27572.15 375
MVEpermissive40.22 2351.82 36050.47 36355.87 37262.66 39851.91 34931.61 39139.28 40040.65 38550.76 39474.98 37656.24 30844.67 39533.94 39264.11 39071.04 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 36129.60 36433.06 37717.99 4003.84 40413.62 39273.92 3332.79 39518.29 39753.41 39228.53 39443.25 39622.56 39535.27 39552.11 392
cdsmvs_eth3d_5k20.81 36227.75 3650.00 3820.00 4040.00 4070.00 39385.44 2410.00 4000.00 40182.82 32281.46 1130.00 4010.00 4000.00 3990.00 397
tmp_tt20.25 36324.50 3667.49 3794.47 4018.70 40334.17 39025.16 4021.00 39732.43 39618.49 39439.37 3799.21 39821.64 39643.75 3944.57 394
ab-mvs-re6.65 3648.87 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40179.80 3500.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.41 3658.55 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40076.94 1590.00 4010.00 4000.00 3990.00 397
test1236.27 3668.08 3690.84 3801.11 4030.57 40562.90 3720.82 4040.54 3981.07 4002.75 3991.26 4030.30 3991.04 3981.26 3981.66 395
testmvs5.91 3677.65 3700.72 3811.20 4020.37 40659.14 3790.67 4050.49 3991.11 3992.76 3980.94 4040.24 4001.02 3991.47 3971.55 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23193.78 10573.36 20296.48 187.98 996.21 11294.41 86
WAC-MVS37.39 39052.61 347
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
PC_three_145258.96 31490.06 9691.33 17480.66 12393.03 13775.78 16095.94 12692.48 169
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
test_one_060193.85 5873.27 13694.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 404
eth-test0.00 404
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9196.75 91
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
IU-MVS94.18 4672.64 14390.82 14456.98 32889.67 10885.78 5097.92 4693.28 137
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17195.35 14692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14193.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
test_0728_SECOND86.79 10094.25 4572.45 15190.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
test072694.16 4972.56 14790.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 314
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34783.88 314
sam_mvs45.92 352
ambc82.98 18790.55 15464.86 22588.20 9789.15 18689.40 11793.96 9671.67 22191.38 18278.83 12296.55 9692.71 161
MTGPAbinary91.81 118
test_post178.85 2693.13 39645.19 36180.13 33058.11 315
test_post3.10 39745.43 35777.22 342
patchmatchnet-post81.71 33445.93 35187.01 269
GG-mvs-BLEND67.16 34673.36 37546.54 37584.15 16455.04 39258.64 39061.95 39129.93 39383.87 31238.71 38876.92 37571.07 377
MTMP90.66 4433.14 401
gm-plane-assit75.42 36544.97 37952.17 34872.36 38087.90 25954.10 338
test9_res80.83 10096.45 10390.57 229
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11696.97 84
test_prior86.32 10890.59 15371.99 15892.85 8694.17 9292.80 156
旧先验281.73 22756.88 32986.54 17484.90 30372.81 198
新几何281.72 228
新几何182.95 18993.96 5578.56 8480.24 29355.45 33383.93 22791.08 18371.19 22388.33 25665.84 25993.07 21381.95 343
旧先验191.97 10971.77 15981.78 28391.84 15973.92 19193.65 20183.61 320
无先验82.81 20385.62 24058.09 31991.41 18167.95 24584.48 306
原ACMM282.26 221
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24590.67 20176.53 16694.25 8669.24 22695.69 14085.55 296
test22293.31 7176.54 10979.38 25877.79 30452.59 34582.36 24990.84 19466.83 24391.69 24181.25 351
testdata286.43 28163.52 280
segment_acmp81.94 105
testdata79.54 24692.87 8272.34 15280.14 29459.91 31185.47 19391.75 16567.96 23885.24 29968.57 24092.18 23381.06 356
testdata179.62 25373.95 160
test1286.57 10390.74 14972.63 14590.69 14782.76 24479.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10195.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 406
nn0.00 406
door-mid74.45 330
lessismore_v085.95 11891.10 14270.99 17070.91 35691.79 6794.42 7061.76 26992.93 14079.52 11793.03 21493.93 107
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
test1191.46 124
door72.57 344
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 14973.30 17280.55 280
ACMP_Plane91.19 13784.77 14973.30 17280.55 280
BP-MVS77.30 145
HQP4-MVS80.56 27994.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 214
NP-MVS91.95 11074.55 12790.17 214
MDTV_nov1_ep13_2view27.60 39870.76 34846.47 37061.27 38345.20 36049.18 36283.75 319
MDTV_nov1_ep1368.29 32678.03 34143.87 38174.12 32672.22 34752.17 34867.02 36885.54 28545.36 35880.85 32655.73 32584.42 337
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18694.66 17694.56 76
DeepMVS_CXcopyleft24.13 37832.95 39929.49 39621.63 40312.07 39437.95 39545.07 39330.84 39119.21 39717.94 39733.06 39623.69 393