This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3495.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5499.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4597.23 295.32 299.01 297.26 580.16 13098.99 195.15 199.14 296.47 30
FOURS196.08 1287.41 1196.19 295.83 592.95 396.57 3
DTE-MVSNet89.98 4491.91 1484.21 15696.51 757.84 31388.93 8992.84 9191.92 496.16 496.23 1986.95 4895.99 1279.05 12298.57 1598.80 6
PS-CasMVS90.06 4091.92 1284.47 14696.56 658.83 30689.04 8792.74 9491.40 696.12 596.06 2587.23 4595.57 3979.42 11998.74 699.00 2
LCM-MVSNet-Re83.48 16285.06 12878.75 25985.94 26255.75 32980.05 25294.27 2276.47 13196.09 694.54 6383.31 8589.75 23759.95 30994.89 16590.75 225
PEN-MVS90.03 4291.88 1584.48 14596.57 558.88 30388.95 8893.19 7391.62 596.01 796.16 2387.02 4795.60 3878.69 12598.72 998.97 3
CP-MVSNet89.27 5990.91 4184.37 14796.34 858.61 30988.66 9692.06 11390.78 795.67 895.17 4381.80 11295.54 4279.00 12398.69 1098.95 4
LTVRE_ROB86.10 193.04 493.44 391.82 2193.73 6185.72 3196.79 195.51 1088.86 1395.63 996.99 984.81 6993.16 13491.10 297.53 6996.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H89.91 4791.31 3085.71 12396.32 962.39 25789.54 7893.31 6890.21 1195.57 1095.66 3181.42 11695.90 1780.94 10098.80 398.84 5
OurMVSNet-221017-090.01 4389.74 5490.83 3393.16 7580.37 6991.91 3393.11 7781.10 7995.32 1197.24 672.94 21094.85 7185.07 5497.78 5397.26 15
anonymousdsp89.73 5088.88 6892.27 889.82 16986.67 1590.51 5390.20 17269.87 22295.06 1296.14 2484.28 7493.07 13887.68 1596.34 10397.09 19
wuyk23d75.13 27379.30 22762.63 37375.56 37575.18 12380.89 24473.10 34875.06 15294.76 1395.32 3787.73 4052.85 40434.16 40397.11 7959.85 400
ACMH76.49 1489.34 5691.14 3283.96 16192.50 9170.36 17589.55 7693.84 5081.89 7194.70 1495.44 3690.69 888.31 26083.33 7198.30 2593.20 138
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo87.20 8787.45 8586.45 10592.52 9069.19 18887.84 10688.05 20881.66 7394.64 1596.53 1565.94 25694.75 7383.02 7796.83 8695.41 51
iter_conf0588.59 6890.04 4984.23 15592.03 10760.51 28591.36 4095.81 688.07 2194.56 1696.17 2172.24 21995.79 2984.85 5895.27 14996.38 31
mvs_tets89.78 4989.27 6191.30 2693.51 6484.79 4189.89 6790.63 15570.00 22194.55 1796.67 1287.94 3793.59 11784.27 6595.97 12095.52 49
jajsoiax89.41 5488.81 7191.19 2993.38 6884.72 4289.70 7090.29 16969.27 22594.39 1896.38 1686.02 6293.52 12183.96 6795.92 12695.34 53
test_040288.65 6689.58 5885.88 11992.55 8972.22 15584.01 17189.44 18988.63 1794.38 1995.77 2886.38 5893.59 11779.84 11295.21 15091.82 199
UniMVSNet_ETH3D89.12 6290.72 4484.31 15397.00 264.33 23289.67 7388.38 20188.84 1494.29 2097.57 390.48 1391.26 18572.57 20497.65 5997.34 14
v7n90.13 3790.96 3987.65 8891.95 11071.06 16989.99 6393.05 8186.53 2994.29 2096.27 1882.69 9094.08 9786.25 4297.63 6097.82 8
test_djsdf89.62 5189.01 6591.45 2392.36 9482.98 5491.98 3190.08 17571.54 20294.28 2296.54 1481.57 11494.27 8686.26 4096.49 9797.09 19
PS-MVSNAJss88.31 7187.90 7989.56 5693.31 7077.96 9387.94 10491.97 11670.73 21294.19 2396.67 1276.94 16294.57 8083.07 7596.28 10596.15 33
SED-MVS90.46 3491.64 1886.93 9694.18 4772.65 14190.47 5493.69 5483.77 5094.11 2494.27 7590.28 1495.84 2486.03 4697.92 4692.29 181
test_241102_ONE94.18 4772.65 14193.69 5483.62 5294.11 2493.78 10490.28 1495.50 48
DPE-MVScopyleft90.53 3391.08 3488.88 6693.38 6878.65 8489.15 8694.05 3984.68 4393.90 2694.11 8788.13 3496.30 584.51 6397.81 5291.70 203
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVScopyleft91.22 2291.92 1289.14 6392.97 7978.04 9092.84 1594.14 3483.33 5693.90 2695.73 2988.77 2596.41 387.60 1897.98 4292.98 149
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMH+77.89 1190.73 2891.50 2288.44 7593.00 7876.26 11689.65 7495.55 987.72 2493.89 2894.94 4891.62 393.44 12578.35 12898.76 495.61 48
ACMM79.39 990.65 2990.99 3889.63 5495.03 3483.53 4889.62 7593.35 6479.20 10293.83 2993.60 11090.81 792.96 14085.02 5698.45 1992.41 173
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post92.41 692.41 792.39 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6888.83 2495.51 4587.16 2997.60 6392.73 155
RE-MVS-def92.61 594.13 5288.95 692.87 1394.16 3088.75 1593.79 3094.43 6890.64 1087.16 2997.60 6392.73 155
DVP-MVScopyleft90.06 4091.32 2986.29 10894.16 5072.56 14790.54 5191.01 14583.61 5393.75 3294.65 5789.76 1895.78 3186.42 3697.97 4390.55 234
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3693.75 3294.65 5787.44 4395.78 3187.41 2298.21 2992.98 149
test072694.16 5072.56 14790.63 4893.90 4683.61 5393.75 3294.49 6589.76 18
LPG-MVS_test91.47 1891.68 1790.82 3494.75 4181.69 6090.00 6194.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
LGP-MVS_train90.82 3494.75 4181.69 6094.27 2282.35 6693.67 3594.82 5291.18 495.52 4385.36 5298.73 795.23 59
DVP-MVS++90.07 3991.09 3387.00 9491.55 12772.64 14396.19 294.10 3785.33 3693.49 3794.64 6081.12 11995.88 1887.41 2295.94 12492.48 169
test_241102_TWO93.71 5383.77 5093.49 3794.27 7589.27 2195.84 2486.03 4697.82 5192.04 192
test_one_060193.85 5973.27 13694.11 3686.57 2893.47 3994.64 6088.42 26
SR-MVS92.23 792.34 891.91 1694.89 3887.85 992.51 2393.87 4988.20 2093.24 4094.02 9090.15 1695.67 3686.82 3397.34 7392.19 187
APD-MVS_3200maxsize92.05 992.24 991.48 2293.02 7785.17 3692.47 2595.05 1587.65 2593.21 4194.39 7390.09 1795.08 6586.67 3597.60 6394.18 94
testf189.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
APD_test289.30 5789.12 6289.84 4988.67 19485.64 3290.61 4993.17 7486.02 3293.12 4295.30 3884.94 6689.44 24274.12 18096.10 11594.45 82
Anonymous2023121188.40 6989.62 5784.73 13990.46 15565.27 22288.86 9093.02 8587.15 2693.05 4497.10 782.28 10292.02 16676.70 15297.99 4096.88 23
MP-MVS-pluss90.81 2791.08 3489.99 4795.97 1479.88 7288.13 10194.51 1975.79 14292.94 4594.96 4788.36 2895.01 6790.70 398.40 2095.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS88.96 6489.88 5186.22 11191.63 12177.07 10689.82 6893.77 5178.90 10692.88 4692.29 15086.11 6090.22 21886.24 4397.24 7691.36 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMP79.16 1090.54 3290.60 4690.35 4294.36 4480.98 6689.16 8594.05 3979.03 10592.87 4793.74 10690.60 1195.21 6082.87 7998.76 494.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 4896.29 1788.16 3394.17 9486.07 4598.48 1897.22 17
SMA-MVScopyleft90.31 3590.48 4789.83 5195.31 3079.52 7890.98 4693.24 7275.37 14992.84 4995.28 4085.58 6496.09 887.92 1197.76 5493.88 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part293.86 5877.77 9592.84 49
v1086.54 9687.10 9084.84 13588.16 20863.28 24386.64 12792.20 10975.42 14892.81 5194.50 6474.05 19494.06 9883.88 6896.28 10597.17 18
dcpmvs_284.23 14385.14 12781.50 22088.61 19761.98 26682.90 20693.11 7768.66 23492.77 5292.39 14478.50 14187.63 26676.99 15192.30 22894.90 65
v886.22 10186.83 9784.36 14987.82 21462.35 25986.42 13191.33 13676.78 13092.73 5394.48 6673.41 20393.72 10983.10 7495.41 14197.01 21
nrg03087.85 8088.49 7385.91 11790.07 16469.73 17987.86 10594.20 2874.04 16092.70 5494.66 5685.88 6391.50 17779.72 11497.32 7496.50 29
SteuartSystems-ACMMP91.16 2491.36 2590.55 3893.91 5780.97 6791.49 3793.48 6182.82 6392.60 5593.97 9288.19 3196.29 687.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
OPM-MVS89.80 4889.97 5089.27 6094.76 4079.86 7386.76 12492.78 9378.78 10892.51 5693.64 10988.13 3493.84 10684.83 6097.55 6694.10 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HPM-MVS_fast92.50 592.54 692.37 695.93 1685.81 3092.99 1294.23 2585.21 3892.51 5695.13 4490.65 995.34 5488.06 998.15 3495.95 41
K. test v385.14 12084.73 13386.37 10691.13 14169.63 18185.45 14576.68 32184.06 4892.44 5896.99 962.03 27694.65 7680.58 10693.24 21194.83 72
ACMMPcopyleft91.91 1191.87 1692.03 1295.53 2785.91 2593.35 1194.16 3082.52 6592.39 5994.14 8589.15 2395.62 3787.35 2498.24 2794.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS90.27 3690.80 4388.68 7392.86 8377.09 10591.19 4395.74 781.38 7692.28 6093.80 10286.89 4994.64 7785.52 5197.51 7094.30 90
COLMAP_ROBcopyleft83.01 391.97 1091.95 1192.04 1193.68 6286.15 2193.37 1095.10 1490.28 1092.11 6195.03 4689.75 2094.93 6979.95 11198.27 2695.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE89.98 4489.84 5290.41 4094.91 3784.50 4589.49 8093.98 4179.68 9492.09 6293.89 10083.80 7893.10 13782.67 8398.04 3693.64 122
TranMVSNet+NR-MVSNet87.86 7988.76 7285.18 13194.02 5564.13 23384.38 16591.29 13784.88 4292.06 6393.84 10186.45 5593.73 10873.22 19598.66 1197.69 9
MTAPA91.52 1591.60 1991.29 2796.59 486.29 1892.02 3091.81 12484.07 4792.00 6494.40 7286.63 5195.28 5788.59 698.31 2492.30 180
ACMMP_NAP90.65 2991.07 3689.42 5895.93 1679.54 7789.95 6593.68 5677.65 12191.97 6594.89 4988.38 2795.45 5089.27 497.87 5093.27 135
FC-MVSNet-test85.93 10787.05 9282.58 20292.25 9856.44 32485.75 14093.09 7977.33 12591.94 6694.65 5774.78 18593.41 12775.11 17198.58 1497.88 7
lessismore_v085.95 11691.10 14270.99 17070.91 36391.79 6794.42 7061.76 27792.93 14279.52 11893.03 21693.93 104
HPM-MVScopyleft92.13 892.20 1091.91 1695.58 2684.67 4393.51 894.85 1682.88 6291.77 6893.94 9890.55 1295.73 3488.50 798.23 2895.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS91.20 2390.95 4091.93 1495.67 2385.85 2890.00 6193.90 4680.32 8791.74 6994.41 7188.17 3295.98 1386.37 3897.99 4093.96 103
mPP-MVS91.69 1291.47 2392.37 696.04 1388.48 892.72 1792.60 9983.09 5991.54 7094.25 7987.67 4195.51 4587.21 2898.11 3593.12 143
HFP-MVS91.30 2091.39 2491.02 3095.43 2984.66 4492.58 2193.29 7081.99 6891.47 7193.96 9588.35 2995.56 4087.74 1397.74 5692.85 152
ACMMPR91.49 1691.35 2791.92 1595.74 2085.88 2792.58 2193.25 7181.99 6891.40 7294.17 8487.51 4295.87 2087.74 1397.76 5493.99 101
GST-MVS90.96 2691.01 3790.82 3495.45 2882.73 5691.75 3593.74 5280.98 8191.38 7393.80 10287.20 4695.80 2687.10 3197.69 5893.93 104
test_fmvsmvis_n_192085.22 11785.36 12584.81 13685.80 26476.13 11985.15 15192.32 10661.40 30191.33 7490.85 19683.76 8086.16 29284.31 6493.28 21092.15 189
ANet_high83.17 16885.68 11875.65 30381.24 32545.26 38679.94 25492.91 8883.83 4991.33 7496.88 1180.25 12985.92 29568.89 23795.89 12795.76 43
ZNCC-MVS91.26 2191.34 2891.01 3195.73 2183.05 5392.18 2894.22 2780.14 9091.29 7693.97 9287.93 3895.87 2088.65 597.96 4594.12 98
casdiffmvs_mvgpermissive86.72 9387.51 8484.36 14987.09 23565.22 22384.16 16794.23 2577.89 11891.28 7793.66 10884.35 7392.71 14680.07 10894.87 16895.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft89.54 5389.63 5689.26 6192.57 8881.34 6590.19 6093.08 8080.87 8391.13 7893.19 11586.22 5995.97 1482.23 8997.18 7890.45 236
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1489.29 6091.84 11788.80 9295.32 1375.14 15191.07 7992.89 12987.27 4493.78 10783.69 7097.55 66
CP-MVS91.67 1391.58 2091.96 1395.29 3187.62 1093.38 993.36 6383.16 5891.06 8094.00 9188.26 3095.71 3587.28 2798.39 2192.55 166
FIs85.35 11686.27 10482.60 20191.86 11457.31 31785.10 15293.05 8175.83 14191.02 8193.97 9273.57 19992.91 14473.97 18398.02 3997.58 12
UniMVSNet_NR-MVSNet86.84 9187.06 9186.17 11492.86 8367.02 20682.55 21591.56 12783.08 6090.92 8291.82 16378.25 14493.99 9974.16 17898.35 2297.49 13
DU-MVS86.80 9286.99 9386.21 11293.24 7367.02 20683.16 19892.21 10881.73 7290.92 8291.97 15777.20 15693.99 9974.16 17898.35 2297.61 10
tt080588.09 7589.79 5382.98 19193.26 7263.94 23691.10 4489.64 18485.07 3990.91 8491.09 18489.16 2291.87 17182.03 9095.87 12893.13 141
V4283.47 16383.37 16083.75 16783.16 30863.33 24281.31 23790.23 17169.51 22490.91 8490.81 19874.16 19292.29 16080.06 10990.22 27295.62 47
region2R91.44 1991.30 3191.87 1895.75 1985.90 2692.63 2093.30 6981.91 7090.88 8694.21 8087.75 3995.87 2087.60 1897.71 5793.83 110
APD_test188.40 6987.91 7889.88 4889.50 17386.65 1789.98 6491.91 11984.26 4590.87 8793.92 9982.18 10389.29 24673.75 18794.81 16993.70 118
WR-MVS83.56 16084.40 14581.06 22893.43 6754.88 33578.67 27685.02 25781.24 7790.74 8891.56 17172.85 21191.08 19168.00 24798.04 3697.23 16
v124084.30 13984.51 14283.65 17087.65 22061.26 27382.85 20791.54 12867.94 24390.68 8990.65 20571.71 22793.64 11182.84 8094.78 17096.07 36
ZD-MVS92.22 10080.48 6891.85 12071.22 20890.38 9092.98 12486.06 6196.11 781.99 9296.75 89
MIMVSNet183.63 15884.59 13880.74 23294.06 5462.77 25082.72 20984.53 26677.57 12390.34 9195.92 2776.88 16885.83 30061.88 29797.42 7193.62 123
LS3D90.60 3190.34 4891.38 2589.03 18384.23 4693.58 694.68 1890.65 890.33 9293.95 9784.50 7195.37 5380.87 10195.50 14094.53 79
KD-MVS_self_test81.93 19083.14 16578.30 26884.75 27952.75 34780.37 24989.42 19070.24 21990.26 9393.39 11374.55 19086.77 28068.61 24296.64 9195.38 52
PMVScopyleft80.48 690.08 3890.66 4588.34 7896.71 392.97 290.31 5889.57 18788.51 1890.11 9495.12 4590.98 688.92 25077.55 14297.07 8083.13 342
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PC_three_145258.96 32390.06 9591.33 17680.66 12593.03 13975.78 16295.94 12492.48 169
v192192084.23 14384.37 14683.79 16587.64 22161.71 26782.91 20591.20 14067.94 24390.06 9590.34 21172.04 22493.59 11782.32 8794.91 16396.07 36
ITE_SJBPF90.11 4690.72 15084.97 3890.30 16781.56 7490.02 9791.20 18182.40 9690.81 20373.58 19094.66 17494.56 76
XVS91.54 1491.36 2592.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9894.03 8986.57 5295.80 2687.35 2497.62 6194.20 91
X-MVStestdata85.04 12282.70 17292.08 995.64 2486.25 1992.64 1893.33 6585.07 3989.99 9816.05 40986.57 5295.80 2687.35 2497.62 6194.20 91
v119284.57 13284.69 13784.21 15687.75 21662.88 24783.02 20191.43 13169.08 22889.98 10090.89 19372.70 21493.62 11582.41 8694.97 16296.13 34
Anonymous2024052986.20 10287.13 8983.42 18090.19 16064.55 23084.55 16090.71 15285.85 3489.94 10195.24 4282.13 10490.40 21469.19 23396.40 10295.31 55
pmmvs686.52 9788.06 7781.90 21292.22 10062.28 26084.66 15889.15 19283.54 5589.85 10297.32 488.08 3686.80 27970.43 22197.30 7596.62 26
v14419284.24 14284.41 14483.71 16987.59 22261.57 26882.95 20491.03 14467.82 24689.80 10390.49 20873.28 20793.51 12281.88 9594.89 16596.04 38
v114484.54 13484.72 13584.00 15987.67 21962.55 25482.97 20390.93 14870.32 21789.80 10390.99 18773.50 20093.48 12381.69 9694.65 17595.97 39
DeepC-MVS82.31 489.15 6189.08 6489.37 5993.64 6379.07 8088.54 9794.20 2873.53 16889.71 10594.82 5285.09 6595.77 3384.17 6698.03 3893.26 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7786.93 9591.22 2890.08 16289.30 589.68 7291.11 14279.26 10189.68 10694.81 5582.44 9487.74 26476.54 15488.74 29096.61 27
IU-MVS94.18 4772.64 14390.82 15056.98 33989.67 10785.78 4997.92 4693.28 134
FMVSNet184.55 13385.45 12281.85 21490.27 15961.05 27686.83 12188.27 20578.57 11289.66 10895.64 3275.43 17690.68 20769.09 23495.33 14493.82 111
IterMVS-LS84.73 12984.98 13083.96 16187.35 22663.66 23783.25 19489.88 17976.06 13489.62 10992.37 14873.40 20592.52 15178.16 13394.77 17295.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS88.60 6789.01 6587.36 9091.30 13477.50 9887.55 10892.97 8787.95 2389.62 10992.87 13084.56 7093.89 10377.65 14096.62 9290.70 228
UniMVSNet (Re)86.87 8986.98 9486.55 10393.11 7668.48 19283.80 18092.87 8980.37 8589.61 11191.81 16477.72 14994.18 9275.00 17298.53 1696.99 22
IS-MVSNet86.66 9586.82 9886.17 11492.05 10666.87 20991.21 4288.64 19886.30 3189.60 11292.59 13869.22 23994.91 7073.89 18497.89 4996.72 24
v2v48284.09 14684.24 14883.62 17187.13 23161.40 27082.71 21089.71 18272.19 19889.55 11391.41 17470.70 23293.20 13281.02 9993.76 19896.25 32
Baseline_NR-MVSNet84.00 15085.90 11278.29 26991.47 13253.44 34382.29 22387.00 22879.06 10489.55 11395.72 3077.20 15686.14 29372.30 20698.51 1795.28 56
CSCG86.26 9986.47 10185.60 12590.87 14774.26 12787.98 10391.85 12080.35 8689.54 11588.01 24879.09 13792.13 16275.51 16595.06 15790.41 237
ambc82.98 19190.55 15464.86 22688.20 9989.15 19289.40 11693.96 9571.67 22891.38 18478.83 12496.55 9492.71 158
DeepPCF-MVS81.24 587.28 8686.21 10690.49 3991.48 13184.90 3983.41 18992.38 10470.25 21889.35 11790.68 20282.85 8994.57 8079.55 11695.95 12392.00 194
test_fmvsmconf0.01_n86.68 9486.52 10087.18 9185.94 26278.30 8686.93 11892.20 10965.94 25789.16 11893.16 11783.10 8689.89 23187.81 1294.43 18093.35 131
MSP-MVS89.08 6388.16 7691.83 1995.76 1886.14 2292.75 1693.90 4678.43 11389.16 11892.25 15272.03 22596.36 488.21 890.93 25992.98 149
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 6088.83 7090.23 4494.28 4586.11 2385.91 13693.60 5980.16 8989.13 12093.44 11283.82 7790.98 19483.86 6995.30 14893.60 124
MDA-MVSNet-bldmvs77.47 24876.90 25379.16 25579.03 35064.59 22766.58 37775.67 32773.15 18188.86 12188.99 23666.94 25081.23 33364.71 27588.22 29991.64 205
EG-PatchMatch MVS84.08 14784.11 14983.98 16092.22 10072.61 14682.20 22987.02 22572.63 18988.86 12191.02 18678.52 14091.11 19073.41 19291.09 25388.21 272
3Dnovator+83.92 289.97 4689.66 5590.92 3291.27 13681.66 6391.25 4194.13 3588.89 1288.83 12394.26 7877.55 15295.86 2384.88 5795.87 12895.24 58
EI-MVSNet-UG-set85.04 12284.44 14386.85 9883.87 29572.52 14983.82 17885.15 25380.27 8888.75 12485.45 29379.95 13391.90 16981.92 9490.80 26496.13 34
EI-MVSNet-Vis-set85.12 12184.53 14186.88 9784.01 29172.76 14083.91 17685.18 25280.44 8488.75 12485.49 29180.08 13191.92 16882.02 9190.85 26395.97 39
balanced_conf0384.80 12785.40 12383.00 19088.95 18661.44 26990.42 5792.37 10571.48 20488.72 12693.13 11870.16 23595.15 6279.26 12194.11 19092.41 173
OMC-MVS88.19 7287.52 8390.19 4591.94 11281.68 6287.49 11193.17 7476.02 13688.64 12791.22 17984.24 7593.37 12877.97 13897.03 8195.52 49
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9385.26 27178.25 8785.82 13991.82 12265.33 27188.55 12892.35 14982.62 9389.80 23386.87 3294.32 18393.18 140
UA-Net91.49 1691.53 2191.39 2494.98 3582.95 5593.52 792.79 9288.22 1988.53 12997.64 283.45 8394.55 8286.02 4898.60 1396.67 25
MP-MVScopyleft91.14 2590.91 4191.83 1996.18 1186.88 1492.20 2793.03 8482.59 6488.52 13094.37 7486.74 5095.41 5286.32 3998.21 2993.19 139
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
sasdasda85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
canonicalmvs85.50 11186.14 10783.58 17387.97 21067.13 20387.55 10894.32 2073.44 17188.47 13187.54 25986.45 5591.06 19275.76 16393.76 19892.54 167
NR-MVSNet86.00 10586.22 10585.34 12993.24 7364.56 22982.21 22790.46 15980.99 8088.42 13391.97 15777.56 15193.85 10472.46 20598.65 1297.61 10
alignmvs83.94 15283.98 15383.80 16487.80 21567.88 19984.54 16291.42 13373.27 17988.41 13487.96 24972.33 21790.83 20276.02 16194.11 19092.69 159
TransMVSNet (Re)84.02 14985.74 11778.85 25791.00 14455.20 33482.29 22387.26 21679.65 9588.38 13595.52 3583.00 8786.88 27767.97 24896.60 9394.45 82
PM-MVS80.20 22079.00 22983.78 16688.17 20786.66 1681.31 23766.81 38169.64 22388.33 13690.19 21664.58 26183.63 32171.99 20890.03 27481.06 368
tttt051781.07 20179.58 22485.52 12688.99 18566.45 21387.03 11775.51 32973.76 16488.32 13790.20 21537.96 39094.16 9679.36 12095.13 15395.93 42
casdiffmvspermissive85.21 11885.85 11483.31 18386.17 25762.77 25083.03 20093.93 4474.69 15588.21 13892.68 13782.29 10191.89 17077.87 13993.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis3_rt71.42 30870.67 31073.64 31569.66 40170.46 17366.97 37689.73 18042.68 39788.20 13983.04 32243.77 37560.07 39865.35 27086.66 31990.39 238
SSC-MVS77.55 24781.64 18865.29 36790.46 15520.33 41373.56 33868.28 37285.44 3588.18 14094.64 6070.93 23081.33 33271.25 21092.03 23694.20 91
MVSMamba_PlusPlus87.53 8488.86 6983.54 17792.03 10762.26 26191.49 3792.62 9788.07 2188.07 14196.17 2172.24 21995.79 2984.85 5894.16 18892.58 163
MGCFI-Net85.04 12285.95 11082.31 20887.52 22363.59 23986.23 13493.96 4273.46 16988.07 14187.83 25486.46 5490.87 20176.17 15893.89 19692.47 171
bld_raw_conf0383.86 15483.99 15283.45 17888.77 19362.26 26191.49 3792.62 9765.43 26688.07 14192.18 15568.44 24495.51 4574.78 17494.16 18892.58 163
v14882.31 17882.48 17881.81 21785.59 26659.66 29381.47 23686.02 23972.85 18488.05 14490.65 20570.73 23190.91 19875.15 17091.79 24194.87 67
AllTest87.97 7887.40 8789.68 5291.59 12283.40 4989.50 7995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
TestCases89.68 5291.59 12283.40 4995.44 1179.47 9688.00 14593.03 12282.66 9191.47 17870.81 21396.14 11294.16 95
pm-mvs183.69 15684.95 13179.91 24490.04 16659.66 29382.43 21987.44 21375.52 14687.85 14795.26 4181.25 11885.65 30268.74 24096.04 11794.42 85
PCF-MVS74.62 1582.15 18480.92 20585.84 12089.43 17572.30 15380.53 24791.82 12257.36 33687.81 14889.92 22277.67 15093.63 11258.69 31495.08 15691.58 207
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_fmvsmconf_n85.88 10885.51 12186.99 9584.77 27878.21 8885.40 14791.39 13465.32 27287.72 14991.81 16482.33 9889.78 23486.68 3494.20 18692.99 148
FMVSNet281.31 19881.61 19080.41 23886.38 24758.75 30783.93 17586.58 23172.43 19087.65 15092.98 12463.78 26790.22 21866.86 25193.92 19592.27 183
GeoE85.45 11485.81 11584.37 14790.08 16267.07 20585.86 13891.39 13472.33 19587.59 15190.25 21484.85 6892.37 15678.00 13691.94 24093.66 119
VPA-MVSNet83.47 16384.73 13379.69 24890.29 15857.52 31681.30 23988.69 19776.29 13287.58 15294.44 6780.60 12687.20 27166.60 25696.82 8794.34 88
CPTT-MVS89.39 5588.98 6790.63 3795.09 3386.95 1392.09 2992.30 10779.74 9387.50 15392.38 14581.42 11693.28 13083.07 7597.24 7691.67 204
VDDNet84.35 13785.39 12481.25 22395.13 3259.32 29685.42 14681.11 29286.41 3087.41 15496.21 2073.61 19890.61 21066.33 25896.85 8493.81 114
c3_l81.64 19481.59 19181.79 21880.86 33159.15 30078.61 27790.18 17368.36 23587.20 15587.11 27069.39 23791.62 17578.16 13394.43 18094.60 75
VDD-MVS84.23 14384.58 13983.20 18691.17 14065.16 22583.25 19484.97 26079.79 9287.18 15694.27 7574.77 18690.89 19969.24 23096.54 9593.55 129
MSLP-MVS++85.00 12586.03 10981.90 21291.84 11771.56 16686.75 12593.02 8575.95 13987.12 15789.39 22877.98 14589.40 24577.46 14394.78 17084.75 315
baseline85.20 11985.93 11183.02 18986.30 25262.37 25884.55 16093.96 4274.48 15787.12 15792.03 15682.30 10091.94 16778.39 12694.21 18594.74 73
YYNet170.06 32070.44 31368.90 34773.76 38653.42 34458.99 39467.20 37758.42 32687.10 15985.39 29559.82 29067.32 38359.79 31083.50 35485.96 300
MDA-MVSNet_test_wron70.05 32170.44 31368.88 34873.84 38553.47 34258.93 39567.28 37658.43 32587.09 16085.40 29459.80 29167.25 38459.66 31183.54 35385.92 302
test_fmvs375.72 26975.20 26977.27 28575.01 38269.47 18278.93 27084.88 26146.67 38187.08 16187.84 25350.44 34171.62 36777.42 14688.53 29190.72 226
CNVR-MVS87.81 8187.68 8188.21 8092.87 8177.30 10485.25 14891.23 13977.31 12687.07 16291.47 17382.94 8894.71 7484.67 6196.27 10792.62 162
EPP-MVSNet85.47 11385.04 12986.77 10091.52 13069.37 18391.63 3687.98 21081.51 7587.05 16391.83 16266.18 25595.29 5570.75 21696.89 8395.64 46
TinyColmap81.25 19982.34 18077.99 27585.33 26960.68 28382.32 22288.33 20371.26 20786.97 16492.22 15477.10 15986.98 27562.37 29195.17 15286.31 298
eth_miper_zixun_eth80.84 20480.22 21682.71 19981.41 32360.98 27977.81 28690.14 17467.31 25086.95 16587.24 26764.26 26392.31 15875.23 16991.61 24594.85 71
Anonymous2024052180.18 22181.25 19976.95 28883.15 30960.84 28182.46 21885.99 24068.76 23286.78 16693.73 10759.13 29577.44 35173.71 18897.55 6692.56 165
Patchmatch-RL test74.48 28273.68 28176.89 29184.83 27666.54 21172.29 34669.16 37157.70 33286.76 16786.33 27945.79 36182.59 32569.63 22790.65 26981.54 359
XVG-OURS-SEG-HR89.59 5289.37 5990.28 4394.47 4385.95 2486.84 12093.91 4580.07 9186.75 16893.26 11493.64 290.93 19684.60 6290.75 26593.97 102
h-mvs3384.25 14182.76 17188.72 7091.82 11982.60 5784.00 17284.98 25971.27 20586.70 16990.55 20763.04 27393.92 10278.26 13194.20 18689.63 250
hse-mvs283.47 16381.81 18688.47 7491.03 14382.27 5882.61 21183.69 27171.27 20586.70 16986.05 28563.04 27392.41 15478.26 13193.62 20590.71 227
HPM-MVS++copyleft88.93 6588.45 7490.38 4194.92 3685.85 2889.70 7091.27 13878.20 11586.69 17192.28 15180.36 12895.06 6686.17 4496.49 9790.22 240
TSAR-MVS + MP.88.14 7387.82 8089.09 6495.72 2276.74 10992.49 2491.19 14167.85 24586.63 17294.84 5179.58 13595.96 1587.62 1694.50 17794.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet82.61 17382.42 17983.20 18683.25 30563.66 23783.50 18785.07 25476.06 13486.55 17385.10 29973.41 20390.25 21578.15 13590.67 26795.68 45
HQP_MVS87.75 8287.43 8688.70 7293.45 6576.42 11389.45 8193.61 5779.44 9886.55 17392.95 12774.84 18395.22 5880.78 10395.83 13094.46 80
plane_prior376.85 10877.79 12086.55 173
BH-untuned80.96 20380.99 20380.84 23188.55 19968.23 19380.33 25088.46 19972.79 18786.55 17386.76 27474.72 18791.77 17461.79 29888.99 28582.52 349
MVSTER77.09 25275.70 26481.25 22375.27 37961.08 27577.49 29385.07 25460.78 31186.55 17388.68 24043.14 38090.25 21573.69 18990.67 26792.42 172
旧先验281.73 23256.88 34086.54 17884.90 30872.81 202
IterMVS-SCA-FT80.64 20879.41 22584.34 15183.93 29369.66 18076.28 31081.09 29372.43 19086.47 17990.19 21660.46 28393.15 13577.45 14486.39 32390.22 240
WB-MVS76.06 26580.01 22264.19 37089.96 16820.58 41272.18 34768.19 37383.21 5786.46 18093.49 11170.19 23478.97 34665.96 26090.46 27193.02 146
test_fmvsm_n_192083.60 15982.89 16985.74 12285.22 27277.74 9684.12 16990.48 15859.87 32086.45 18191.12 18375.65 17485.89 29882.28 8890.87 26193.58 125
DIV-MVS_self_test80.43 21180.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.38 24786.19 18289.22 23163.09 27190.16 22076.32 15595.80 13293.66 119
CDPH-MVS86.17 10485.54 12088.05 8392.25 9875.45 12183.85 17792.01 11465.91 25986.19 18291.75 16783.77 7994.98 6877.43 14596.71 9093.73 117
cl____80.42 21280.23 21481.02 22979.99 33959.25 29777.07 29787.02 22567.37 24886.18 18489.21 23263.08 27290.16 22076.31 15695.80 13293.65 121
MVS_111021_LR84.28 14083.76 15685.83 12189.23 18083.07 5280.99 24383.56 27372.71 18886.07 18589.07 23581.75 11386.19 29177.11 14993.36 20688.24 271
GBi-Net82.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
test182.02 18782.07 18181.85 21486.38 24761.05 27686.83 12188.27 20572.43 19086.00 18695.64 3263.78 26790.68 20765.95 26193.34 20793.82 111
FMVSNet378.80 23478.55 23779.57 25082.89 31256.89 32281.76 23185.77 24269.04 22986.00 18690.44 20951.75 33490.09 22665.95 26193.34 20791.72 201
miper_ehance_all_eth80.34 21580.04 22181.24 22579.82 34158.95 30277.66 28889.66 18365.75 26385.99 18985.11 29868.29 24591.42 18276.03 16092.03 23693.33 132
tfpnnormal81.79 19382.95 16878.31 26788.93 18755.40 33080.83 24682.85 27976.81 12985.90 19094.14 8574.58 18986.51 28466.82 25495.68 13893.01 147
TAPA-MVS77.73 1285.71 11084.83 13288.37 7788.78 19279.72 7487.15 11593.50 6069.17 22685.80 19189.56 22780.76 12392.13 16273.21 20095.51 13993.25 137
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.83.95 15182.69 17387.72 8689.27 17981.45 6483.72 18281.58 29174.73 15485.66 19286.06 28472.56 21692.69 14875.44 16795.21 15089.01 266
EU-MVSNet75.12 27474.43 27677.18 28683.11 31059.48 29585.71 14282.43 28339.76 40185.64 19388.76 23844.71 37387.88 26373.86 18585.88 32984.16 325
LF4IMVS82.75 17281.93 18485.19 13082.08 31480.15 7185.53 14388.76 19668.01 24085.58 19487.75 25571.80 22686.85 27874.02 18293.87 19788.58 269
Patchmtry76.56 26077.46 24673.83 31379.37 34746.60 37982.41 22076.90 31873.81 16385.56 19592.38 14548.07 34883.98 31863.36 28695.31 14790.92 221
MVS_111021_HR84.63 13084.34 14785.49 12890.18 16175.86 12079.23 26887.13 22073.35 17385.56 19589.34 22983.60 8290.50 21276.64 15394.05 19390.09 245
testdata79.54 25192.87 8172.34 15280.14 29959.91 31985.47 19791.75 16767.96 24785.24 30468.57 24492.18 23581.06 368
mvsmamba80.30 21778.87 23084.58 14388.12 20967.55 20192.35 2684.88 26163.15 28285.33 19890.91 19250.71 33895.20 6166.36 25787.98 30190.99 218
test111178.53 23878.85 23277.56 28192.22 10047.49 37582.61 21169.24 37072.43 19085.28 19994.20 8151.91 33290.07 22765.36 26996.45 10095.11 62
thisisatest053079.07 22977.33 24984.26 15487.13 23164.58 22883.66 18475.95 32468.86 23185.22 20087.36 26438.10 38893.57 12075.47 16694.28 18494.62 74
EC-MVSNet88.01 7688.32 7587.09 9289.28 17872.03 15790.31 5896.31 480.88 8285.12 20189.67 22684.47 7295.46 4982.56 8496.26 10893.77 116
CLD-MVS83.18 16782.64 17484.79 13789.05 18267.82 20077.93 28492.52 10068.33 23685.07 20281.54 34182.06 10592.96 14069.35 22997.91 4893.57 126
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.1_n_a82.58 17581.93 18484.50 14487.68 21873.35 13386.14 13577.70 31061.64 29985.02 20391.62 16977.75 14886.24 28882.79 8187.07 31293.91 106
FA-MVS(test-final)83.13 16983.02 16783.43 17986.16 25966.08 21688.00 10288.36 20275.55 14585.02 20392.75 13565.12 26092.50 15274.94 17391.30 25191.72 201
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8491.30 13476.92 10787.19 11391.99 11570.56 21384.96 20590.69 20180.01 13295.14 6378.37 12795.78 13491.82 199
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator80.37 784.80 12784.71 13685.06 13386.36 25074.71 12488.77 9390.00 17775.65 14484.96 20593.17 11674.06 19391.19 18778.28 13091.09 25389.29 258
QAPM82.59 17482.59 17682.58 20286.44 24566.69 21089.94 6690.36 16367.97 24284.94 20792.58 14072.71 21392.18 16170.63 21987.73 30588.85 267
VPNet80.25 21881.68 18775.94 30192.46 9247.98 37376.70 30281.67 28973.45 17084.87 20892.82 13174.66 18886.51 28461.66 30096.85 8493.33 132
NCCC87.36 8586.87 9688.83 6792.32 9778.84 8386.58 12891.09 14378.77 10984.85 20990.89 19380.85 12295.29 5581.14 9895.32 14592.34 178
PHI-MVS86.38 9885.81 11588.08 8188.44 20277.34 10289.35 8493.05 8173.15 18184.76 21087.70 25678.87 13994.18 9280.67 10596.29 10492.73 155
pmmvs-eth3d78.42 24077.04 25182.57 20487.44 22574.41 12680.86 24579.67 30155.68 34384.69 21190.31 21360.91 28185.42 30362.20 29391.59 24687.88 281
test_prior283.37 19075.43 14784.58 21291.57 17081.92 11079.54 11796.97 82
fmvsm_s_conf0.5_n_a82.21 18181.51 19584.32 15286.56 24373.35 13385.46 14477.30 31461.81 29584.51 21390.88 19577.36 15486.21 29082.72 8286.97 31793.38 130
TEST992.34 9579.70 7583.94 17390.32 16465.41 27084.49 21490.97 18882.03 10693.63 112
train_agg85.98 10685.28 12688.07 8292.34 9579.70 7583.94 17390.32 16465.79 26084.49 21490.97 18881.93 10893.63 11281.21 9796.54 9590.88 222
fmvsm_s_conf0.1_n82.17 18381.59 19183.94 16386.87 24171.57 16585.19 15077.42 31362.27 29384.47 21691.33 17676.43 17085.91 29683.14 7287.14 31094.33 89
Gipumacopyleft84.44 13586.33 10378.78 25884.20 28973.57 13189.55 7690.44 16084.24 4684.38 21794.89 4976.35 17380.40 33976.14 15996.80 8882.36 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f64.31 35665.85 34659.67 38166.54 40662.24 26457.76 39770.96 36240.13 39984.36 21882.09 33446.93 35051.67 40561.99 29681.89 36465.12 396
test_892.09 10478.87 8283.82 17890.31 16665.79 26084.36 21890.96 19081.93 10893.44 125
cl2278.97 23078.21 24281.24 22577.74 35559.01 30177.46 29487.13 22065.79 26084.32 22085.10 29958.96 29790.88 20075.36 16892.03 23693.84 109
CS-MVS88.14 7387.67 8289.54 5789.56 17179.18 7990.47 5494.77 1779.37 10084.32 22089.33 23083.87 7694.53 8382.45 8594.89 16594.90 65
agg_prior91.58 12577.69 9790.30 16784.32 22093.18 133
Anonymous20240521180.51 21081.19 20278.49 26488.48 20057.26 31876.63 30482.49 28281.21 7884.30 22392.24 15367.99 24686.24 28862.22 29295.13 15391.98 196
LFMVS80.15 22280.56 20878.89 25689.19 18155.93 32685.22 14973.78 34182.96 6184.28 22492.72 13657.38 30790.07 22763.80 28295.75 13590.68 229
Vis-MVSNetpermissive86.86 9086.58 9987.72 8692.09 10477.43 10187.35 11292.09 11278.87 10784.27 22594.05 8878.35 14393.65 11080.54 10791.58 24792.08 191
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ECVR-MVScopyleft78.44 23978.63 23677.88 27791.85 11548.95 36983.68 18369.91 36772.30 19684.26 22694.20 8151.89 33389.82 23263.58 28396.02 11894.87 67
FE-MVS79.98 22578.86 23183.36 18186.47 24466.45 21389.73 6984.74 26572.80 18684.22 22791.38 17544.95 37193.60 11663.93 28191.50 24890.04 246
ETV-MVS84.31 13883.91 15585.52 12688.58 19870.40 17484.50 16493.37 6278.76 11084.07 22878.72 36580.39 12795.13 6473.82 18692.98 21891.04 217
fmvsm_s_conf0.5_n81.91 19181.30 19883.75 16786.02 26171.56 16684.73 15677.11 31762.44 29084.00 22990.68 20276.42 17185.89 29883.14 7287.11 31193.81 114
MCST-MVS84.36 13683.93 15485.63 12491.59 12271.58 16483.52 18692.13 11161.82 29483.96 23089.75 22579.93 13493.46 12478.33 12994.34 18291.87 198
新几何182.95 19393.96 5678.56 8580.24 29855.45 34483.93 23191.08 18571.19 22988.33 25965.84 26493.07 21581.95 355
fmvsm_l_conf0.5_n82.06 18681.54 19483.60 17283.94 29273.90 12983.35 19186.10 23658.97 32283.80 23290.36 21074.23 19186.94 27682.90 7890.22 27289.94 247
BH-RMVSNet80.53 20980.22 21681.49 22187.19 23066.21 21577.79 28786.23 23474.21 15983.69 23388.50 24273.25 20890.75 20463.18 28887.90 30287.52 285
USDC76.63 25876.73 25576.34 29783.46 29957.20 31980.02 25388.04 20952.14 36383.65 23491.25 17863.24 27086.65 28254.66 34194.11 19085.17 310
miper_enhance_ethall77.83 24376.93 25280.51 23676.15 37158.01 31275.47 32288.82 19458.05 33083.59 23580.69 34564.41 26291.20 18673.16 20192.03 23692.33 179
MM87.64 8387.15 8889.09 6489.51 17276.39 11588.68 9586.76 22984.54 4483.58 23693.78 10473.36 20696.48 287.98 1096.21 10994.41 86
Effi-MVS+-dtu85.82 10983.38 15993.14 487.13 23191.15 387.70 10788.42 20074.57 15683.56 23785.65 28978.49 14294.21 9072.04 20792.88 22094.05 100
CNLPA83.55 16183.10 16684.90 13489.34 17783.87 4784.54 16288.77 19579.09 10383.54 23888.66 24174.87 18281.73 33066.84 25392.29 23089.11 260
SDMVSNet81.90 19283.17 16478.10 27288.81 19062.45 25676.08 31486.05 23873.67 16583.41 23993.04 12082.35 9780.65 33770.06 22495.03 15891.21 213
sd_testset79.95 22681.39 19775.64 30488.81 19058.07 31176.16 31382.81 28073.67 16583.41 23993.04 12080.96 12177.65 35058.62 31595.03 15891.21 213
OpenMVS_ROBcopyleft70.19 1777.77 24677.46 24678.71 26084.39 28561.15 27481.18 24182.52 28162.45 28983.34 24187.37 26366.20 25488.66 25664.69 27685.02 33986.32 297
thres100view90075.45 27075.05 27076.66 29487.27 22751.88 35581.07 24273.26 34675.68 14383.25 24286.37 27845.54 36288.80 25151.98 35790.99 25589.31 256
miper_lstm_enhance76.45 26276.10 26077.51 28276.72 36660.97 28064.69 38185.04 25663.98 27983.20 24388.22 24556.67 31178.79 34873.22 19593.12 21492.78 154
IterMVS76.91 25476.34 25878.64 26180.91 32964.03 23476.30 30979.03 30464.88 27583.11 24489.16 23359.90 28984.46 31168.61 24285.15 33787.42 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres600view775.97 26675.35 26877.85 27987.01 23751.84 35680.45 24873.26 34675.20 15083.10 24586.31 28145.54 36289.05 24755.03 33992.24 23292.66 160
mvs_anonymous78.13 24178.76 23476.23 30079.24 34850.31 36678.69 27584.82 26361.60 30083.09 24692.82 13173.89 19687.01 27268.33 24686.41 32291.37 210
fmvsm_l_conf0.5_n_a81.46 19680.87 20683.25 18483.73 29773.21 13883.00 20285.59 24658.22 32882.96 24790.09 22072.30 21886.65 28281.97 9389.95 27689.88 248
test_fmvs273.57 28972.80 29175.90 30272.74 39468.84 19177.07 29784.32 26845.14 38782.89 24884.22 31148.37 34670.36 37073.40 19387.03 31488.52 270
MVS_Test82.47 17783.22 16180.22 24182.62 31357.75 31582.54 21691.96 11771.16 20982.89 24892.52 14277.41 15390.50 21280.04 11087.84 30492.40 175
test1286.57 10290.74 14972.63 14590.69 15382.76 25079.20 13694.80 7295.32 14592.27 183
原ACMM184.60 14292.81 8674.01 12891.50 12962.59 28582.73 25190.67 20476.53 16994.25 8869.24 23095.69 13785.55 306
test_yl78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
DCV-MVSNet78.71 23678.51 23879.32 25384.32 28658.84 30478.38 27885.33 24975.99 13782.49 25286.57 27558.01 30190.02 22962.74 28992.73 22389.10 261
diffmvspermissive80.40 21380.48 21180.17 24279.02 35160.04 28877.54 29190.28 17066.65 25582.40 25487.33 26573.50 20087.35 26977.98 13789.62 27993.13 141
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22293.31 7076.54 11079.38 26377.79 30952.59 35882.36 25590.84 19766.83 25291.69 24381.25 363
D2MVS76.84 25575.67 26580.34 23980.48 33762.16 26573.50 33984.80 26457.61 33482.24 25687.54 25951.31 33587.65 26570.40 22293.19 21391.23 212
VNet79.31 22880.27 21376.44 29587.92 21353.95 33975.58 32084.35 26774.39 15882.23 25790.72 20072.84 21284.39 31360.38 30893.98 19490.97 219
Vis-MVSNet (Re-imp)77.82 24477.79 24577.92 27688.82 18951.29 36083.28 19271.97 35574.04 16082.23 25789.78 22457.38 30789.41 24457.22 32395.41 14193.05 145
API-MVS82.28 17982.61 17581.30 22286.29 25369.79 17788.71 9487.67 21278.42 11482.15 25984.15 31377.98 14591.59 17665.39 26892.75 22282.51 350
DP-MVS Recon84.05 14883.22 16186.52 10491.73 12075.27 12283.23 19692.40 10272.04 19982.04 26088.33 24477.91 14793.95 10166.17 25995.12 15590.34 239
MSDG80.06 22479.99 22380.25 24083.91 29468.04 19877.51 29289.19 19177.65 12181.94 26183.45 31976.37 17286.31 28763.31 28786.59 32086.41 296
test250674.12 28573.39 28576.28 29891.85 11544.20 38984.06 17048.20 40872.30 19681.90 26294.20 8127.22 40989.77 23564.81 27496.02 11894.87 67
Fast-Effi-MVS+81.04 20280.57 20782.46 20687.50 22463.22 24478.37 28089.63 18568.01 24081.87 26382.08 33582.31 9992.65 14967.10 25088.30 29891.51 209
testgi72.36 29974.61 27265.59 36480.56 33642.82 39468.29 36973.35 34566.87 25381.84 26489.93 22172.08 22366.92 38646.05 38392.54 22587.01 291
tfpn200view974.86 27874.23 27776.74 29386.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25589.31 256
thres40075.14 27274.23 27777.86 27886.24 25452.12 35279.24 26673.87 33973.34 17481.82 26584.60 30846.02 35688.80 25151.98 35790.99 25592.66 160
CL-MVSNet_self_test76.81 25677.38 24875.12 30786.90 23951.34 35873.20 34280.63 29768.30 23781.80 26788.40 24366.92 25180.90 33455.35 33694.90 16493.12 143
OpenMVScopyleft76.72 1381.98 18982.00 18381.93 21184.42 28468.22 19488.50 9889.48 18866.92 25281.80 26791.86 15972.59 21590.16 22071.19 21291.25 25287.40 287
MVS_030485.37 11584.58 13987.75 8585.28 27073.36 13286.54 13085.71 24377.56 12481.78 26992.47 14370.29 23396.02 1185.59 5095.96 12193.87 108
AdaColmapbinary83.66 15783.69 15783.57 17590.05 16572.26 15486.29 13390.00 17778.19 11681.65 27087.16 26883.40 8494.24 8961.69 29994.76 17384.21 324
CS-MVS-test87.00 8886.43 10288.71 7189.46 17477.46 9989.42 8395.73 877.87 11981.64 27187.25 26682.43 9594.53 8377.65 14096.46 9994.14 97
DELS-MVS81.44 19781.25 19982.03 21084.27 28862.87 24876.47 30892.49 10170.97 21081.64 27183.83 31475.03 18092.70 14774.29 17692.22 23490.51 235
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
114514_t83.10 17082.54 17784.77 13892.90 8069.10 19086.65 12690.62 15654.66 34981.46 27390.81 19876.98 16194.38 8572.62 20396.18 11090.82 224
TR-MVS76.77 25775.79 26279.72 24786.10 26065.79 21977.14 29583.02 27765.20 27381.40 27482.10 33366.30 25390.73 20655.57 33385.27 33382.65 344
TAMVS78.08 24276.36 25783.23 18590.62 15272.87 13979.08 26980.01 30061.72 29781.35 27586.92 27363.96 26688.78 25450.61 36293.01 21788.04 277
Effi-MVS+83.90 15384.01 15183.57 17587.22 22965.61 22186.55 12992.40 10278.64 11181.34 27684.18 31283.65 8192.93 14274.22 17787.87 30392.17 188
testing371.53 30770.79 30973.77 31488.89 18841.86 39676.60 30659.12 39872.83 18580.97 27782.08 33519.80 41487.33 27065.12 27191.68 24492.13 190
new-patchmatchnet70.10 31973.37 28660.29 38081.23 32616.95 41559.54 39174.62 33262.93 28380.97 27787.93 25162.83 27571.90 36555.24 33795.01 16192.00 194
PVSNet_Blended_VisFu81.55 19580.49 21084.70 14191.58 12573.24 13784.21 16691.67 12662.86 28480.94 27987.16 26867.27 24992.87 14569.82 22688.94 28787.99 278
BH-w/o76.57 25976.07 26178.10 27286.88 24065.92 21877.63 28986.33 23265.69 26480.89 28079.95 35468.97 24290.74 20553.01 35285.25 33477.62 379
PAPM_NR83.23 16683.19 16383.33 18290.90 14665.98 21788.19 10090.78 15178.13 11780.87 28187.92 25273.49 20292.42 15370.07 22388.40 29291.60 206
ab-mvs79.67 22780.56 20876.99 28788.48 20056.93 32084.70 15786.06 23768.95 23080.78 28293.08 11975.30 17884.62 31056.78 32490.90 26089.43 254
XXY-MVS74.44 28476.19 25969.21 34584.61 28052.43 35171.70 35077.18 31660.73 31280.60 28390.96 19075.44 17569.35 37356.13 32988.33 29485.86 303
HQP4-MVS80.56 28494.61 7893.56 127
HQP-NCC91.19 13784.77 15373.30 17680.55 285
ACMP_Plane91.19 13784.77 15373.30 17680.55 285
HQP-MVS84.61 13184.06 15086.27 10991.19 13770.66 17184.77 15392.68 9573.30 17680.55 28590.17 21872.10 22194.61 7877.30 14794.47 17893.56 127
test_cas_vis1_n_192069.20 33169.12 32469.43 34473.68 38762.82 24970.38 36277.21 31546.18 38480.46 28878.95 36352.03 33165.53 39165.77 26677.45 38679.95 374
AUN-MVS81.18 20078.78 23388.39 7690.93 14582.14 5982.51 21783.67 27264.69 27680.29 28985.91 28851.07 33692.38 15576.29 15793.63 20490.65 231
HyFIR lowres test75.12 27472.66 29482.50 20591.44 13365.19 22472.47 34587.31 21546.79 38080.29 28984.30 31052.70 32992.10 16551.88 36186.73 31890.22 240
test20.0373.75 28874.59 27471.22 33381.11 32751.12 36270.15 36372.10 35470.42 21480.28 29191.50 17264.21 26474.72 36146.96 38094.58 17687.82 283
mvsany_test365.48 35162.97 35973.03 32069.99 40076.17 11864.83 37943.71 41043.68 39280.25 29287.05 27252.83 32863.09 39751.92 36072.44 39279.84 375
F-COLMAP84.97 12683.42 15889.63 5492.39 9383.40 4988.83 9191.92 11873.19 18080.18 29389.15 23477.04 16093.28 13065.82 26592.28 23192.21 186
GA-MVS75.83 26774.61 27279.48 25281.87 31659.25 29773.42 34082.88 27868.68 23379.75 29481.80 33850.62 33989.46 24066.85 25285.64 33089.72 249
xiu_mvs_v1_base_debu80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
xiu_mvs_v1_base_debi80.84 20480.14 21882.93 19488.31 20371.73 16079.53 25987.17 21765.43 26679.59 29582.73 32976.94 16290.14 22373.22 19588.33 29486.90 292
test_fmvs1_n70.94 31270.41 31572.53 32673.92 38466.93 20875.99 31584.21 27043.31 39479.40 29879.39 35943.47 37668.55 37869.05 23584.91 34282.10 353
patch_mono-278.89 23179.39 22677.41 28484.78 27768.11 19675.60 31883.11 27660.96 30979.36 29989.89 22375.18 17972.97 36273.32 19492.30 22891.15 215
UnsupCasMVSNet_eth71.63 30672.30 29969.62 34276.47 36852.70 34970.03 36480.97 29459.18 32179.36 29988.21 24660.50 28269.12 37458.33 31877.62 38487.04 290
ppachtmachnet_test74.73 28174.00 27976.90 29080.71 33456.89 32271.53 35378.42 30658.24 32779.32 30182.92 32657.91 30484.26 31565.60 26791.36 25089.56 251
MG-MVS80.32 21680.94 20478.47 26588.18 20652.62 35082.29 22385.01 25872.01 20079.24 30292.54 14169.36 23893.36 12970.65 21889.19 28489.45 252
Fast-Effi-MVS+-dtu82.54 17681.41 19685.90 11885.60 26576.53 11283.07 19989.62 18673.02 18379.11 30383.51 31780.74 12490.24 21768.76 23989.29 28190.94 220
CDS-MVSNet77.32 25075.40 26683.06 18889.00 18472.48 15077.90 28582.17 28560.81 31078.94 30483.49 31859.30 29388.76 25554.64 34292.37 22787.93 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline173.26 29173.54 28372.43 32784.92 27547.79 37479.89 25574.00 33765.93 25878.81 30586.28 28256.36 31381.63 33156.63 32579.04 37987.87 282
EIA-MVS82.19 18281.23 20185.10 13287.95 21269.17 18983.22 19793.33 6570.42 21478.58 30679.77 35777.29 15594.20 9171.51 20988.96 28691.93 197
thres20072.34 30071.55 30674.70 31083.48 29851.60 35775.02 32573.71 34270.14 22078.56 30780.57 34846.20 35488.20 26146.99 37989.29 28184.32 321
our_test_371.85 30371.59 30372.62 32480.71 33453.78 34069.72 36571.71 35958.80 32478.03 30880.51 35056.61 31278.84 34762.20 29386.04 32885.23 309
KD-MVS_2432*160066.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
miper_refine_blended66.87 34165.81 34770.04 33867.50 40347.49 37562.56 38579.16 30261.21 30777.98 30980.61 34625.29 41182.48 32653.02 35084.92 34080.16 372
jason77.42 24975.75 26382.43 20787.10 23469.27 18477.99 28381.94 28751.47 36777.84 31185.07 30260.32 28589.00 24870.74 21789.27 28389.03 264
jason: jason.
MAR-MVS80.24 21978.74 23584.73 13986.87 24178.18 8985.75 14087.81 21165.67 26577.84 31178.50 36673.79 19790.53 21161.59 30190.87 26185.49 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FPMVS72.29 30172.00 30073.14 31888.63 19685.00 3774.65 32967.39 37571.94 20177.80 31387.66 25750.48 34075.83 35749.95 36479.51 37358.58 402
test_fmvs169.57 32669.05 32671.14 33569.15 40265.77 22073.98 33483.32 27442.83 39677.77 31478.27 36843.39 37968.50 37968.39 24584.38 34979.15 376
pmmvs474.92 27772.98 29080.73 23384.95 27471.71 16376.23 31177.59 31152.83 35777.73 31586.38 27756.35 31484.97 30757.72 32287.05 31385.51 307
ET-MVSNet_ETH3D75.28 27172.77 29282.81 19883.03 31168.11 19677.09 29676.51 32260.67 31377.60 31680.52 34938.04 38991.15 18970.78 21590.68 26689.17 259
UnsupCasMVSNet_bld69.21 33069.68 32267.82 35579.42 34551.15 36167.82 37375.79 32554.15 35177.47 31785.36 29759.26 29470.64 36948.46 37379.35 37581.66 357
Anonymous2023120671.38 30971.88 30169.88 34086.31 25154.37 33670.39 36174.62 33252.57 35976.73 31888.76 23859.94 28872.06 36444.35 38793.23 21283.23 340
CMPMVSbinary59.41 2075.12 27473.57 28279.77 24575.84 37467.22 20281.21 24082.18 28450.78 37276.50 31987.66 25755.20 32182.99 32462.17 29590.64 27089.09 263
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet572.10 30271.69 30273.32 31681.57 32153.02 34676.77 30178.37 30763.31 28076.37 32091.85 16036.68 39278.98 34547.87 37692.45 22687.95 279
CVMVSNet72.62 29771.41 30776.28 29883.25 30560.34 28683.50 18779.02 30537.77 40576.33 32185.10 29949.60 34487.41 26870.54 22077.54 38581.08 366
PLCcopyleft73.85 1682.09 18580.31 21287.45 8990.86 14880.29 7085.88 13790.65 15468.17 23976.32 32286.33 27973.12 20992.61 15061.40 30290.02 27589.44 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVSFormer82.23 18081.57 19384.19 15885.54 26769.26 18591.98 3190.08 17571.54 20276.23 32385.07 30258.69 29894.27 8686.26 4088.77 28889.03 264
lupinMVS76.37 26374.46 27582.09 20985.54 26769.26 18576.79 30080.77 29650.68 37476.23 32382.82 32758.69 29888.94 24969.85 22588.77 28888.07 274
UWE-MVS66.43 34565.56 35069.05 34684.15 29040.98 39773.06 34464.71 38554.84 34876.18 32579.62 35829.21 40380.50 33838.54 39889.75 27785.66 305
PatchMatch-RL74.48 28273.22 28778.27 27087.70 21785.26 3575.92 31670.09 36564.34 27776.09 32681.25 34365.87 25778.07 34953.86 34483.82 35271.48 388
thisisatest051573.00 29570.52 31280.46 23781.45 32259.90 29173.16 34374.31 33657.86 33176.08 32777.78 37037.60 39192.12 16465.00 27291.45 24989.35 255
MS-PatchMatch70.93 31370.22 31673.06 31981.85 31762.50 25573.82 33777.90 30852.44 36075.92 32881.27 34255.67 31881.75 32955.37 33577.70 38374.94 384
CHOSEN 1792x268872.45 29870.56 31178.13 27190.02 16763.08 24568.72 36883.16 27542.99 39575.92 32885.46 29257.22 30985.18 30649.87 36681.67 36586.14 299
CR-MVSNet74.00 28673.04 28976.85 29279.58 34262.64 25282.58 21376.90 31850.50 37575.72 33092.38 14548.07 34884.07 31768.72 24182.91 35883.85 329
RPMNet78.88 23278.28 24180.68 23579.58 34262.64 25282.58 21394.16 3074.80 15375.72 33092.59 13848.69 34595.56 4073.48 19182.91 35883.85 329
DPM-MVS80.10 22379.18 22882.88 19790.71 15169.74 17878.87 27390.84 14960.29 31675.64 33285.92 28767.28 24893.11 13671.24 21191.79 24185.77 304
test_vis1_n70.29 31669.99 32071.20 33475.97 37366.50 21276.69 30380.81 29544.22 39075.43 33377.23 37650.00 34268.59 37766.71 25582.85 36078.52 378
PVSNet_BlendedMVS78.80 23477.84 24481.65 21984.43 28263.41 24079.49 26290.44 16061.70 29875.43 33387.07 27169.11 24091.44 18060.68 30692.24 23290.11 244
PVSNet_Blended76.49 26175.40 26679.76 24684.43 28263.41 24075.14 32490.44 16057.36 33675.43 33378.30 36769.11 24091.44 18060.68 30687.70 30684.42 320
PAPR78.84 23378.10 24381.07 22785.17 27360.22 28782.21 22790.57 15762.51 28675.32 33684.61 30774.99 18192.30 15959.48 31288.04 30090.68 229
N_pmnet70.20 31768.80 33174.38 31180.91 32984.81 4059.12 39376.45 32355.06 34675.31 33782.36 33255.74 31754.82 40347.02 37887.24 30983.52 333
cascas76.29 26474.81 27180.72 23484.47 28162.94 24673.89 33687.34 21455.94 34275.16 33876.53 38263.97 26591.16 18865.00 27290.97 25888.06 276
SCA73.32 29072.57 29675.58 30581.62 32055.86 32778.89 27271.37 36061.73 29674.93 33983.42 32060.46 28387.01 27258.11 32082.63 36383.88 326
test_vis1_n_192071.30 31071.58 30570.47 33677.58 35859.99 29074.25 33084.22 26951.06 36974.85 34079.10 36155.10 32268.83 37668.86 23879.20 37882.58 346
xiu_mvs_v2_base77.19 25176.75 25478.52 26387.01 23761.30 27275.55 32187.12 22361.24 30674.45 34178.79 36477.20 15690.93 19664.62 27884.80 34683.32 338
CANet83.79 15582.85 17086.63 10186.17 25772.21 15683.76 18191.43 13177.24 12774.39 34287.45 26275.36 17795.42 5177.03 15092.83 22192.25 185
PS-MVSNAJ77.04 25376.53 25678.56 26287.09 23561.40 27075.26 32387.13 22061.25 30574.38 34377.22 37776.94 16290.94 19564.63 27784.83 34583.35 337
MVP-Stereo75.81 26873.51 28482.71 19989.35 17673.62 13080.06 25185.20 25160.30 31573.96 34487.94 25057.89 30589.45 24152.02 35674.87 39085.06 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WB-MVSnew68.72 33369.01 32767.85 35483.22 30743.98 39074.93 32665.98 38255.09 34573.83 34579.11 36065.63 25871.89 36638.21 39985.04 33887.69 284
UGNet82.78 17181.64 18886.21 11286.20 25676.24 11786.86 11985.68 24477.07 12873.76 34692.82 13169.64 23691.82 17369.04 23693.69 20290.56 233
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
1112_ss74.82 27973.74 28078.04 27489.57 17060.04 28876.49 30787.09 22454.31 35073.66 34779.80 35560.25 28686.76 28158.37 31684.15 35087.32 288
Test_1112_low_res73.90 28773.08 28876.35 29690.35 15755.95 32573.40 34186.17 23550.70 37373.14 34885.94 28658.31 30085.90 29756.51 32683.22 35587.20 289
131473.22 29272.56 29775.20 30680.41 33857.84 31381.64 23485.36 24851.68 36673.10 34976.65 38161.45 27885.19 30563.54 28479.21 37782.59 345
test_vis1_rt65.64 35064.09 35470.31 33766.09 40770.20 17661.16 38881.60 29038.65 40272.87 35069.66 39552.84 32760.04 39956.16 32877.77 38280.68 370
Patchmatch-test65.91 34867.38 33761.48 37875.51 37643.21 39368.84 36763.79 38762.48 28772.80 35183.42 32044.89 37259.52 40048.27 37586.45 32181.70 356
PatchmatchNetpermissive69.71 32568.83 33072.33 32877.66 35753.60 34179.29 26469.99 36657.66 33372.53 35282.93 32546.45 35380.08 34160.91 30572.09 39383.31 339
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm67.95 33568.08 33667.55 35678.74 35343.53 39275.60 31867.10 38054.92 34772.23 35388.10 24742.87 38175.97 35652.21 35580.95 37283.15 341
pmmvs570.73 31470.07 31772.72 32277.03 36352.73 34874.14 33175.65 32850.36 37672.17 35485.37 29655.42 32080.67 33652.86 35387.59 30784.77 314
PatchT70.52 31572.76 29363.79 37279.38 34633.53 40677.63 28965.37 38473.61 16771.77 35592.79 13444.38 37475.65 35864.53 27985.37 33282.18 352
MVS73.21 29372.59 29575.06 30880.97 32860.81 28281.64 23485.92 24146.03 38571.68 35677.54 37268.47 24389.77 23555.70 33285.39 33174.60 385
MIMVSNet71.09 31171.59 30369.57 34387.23 22850.07 36778.91 27171.83 35660.20 31871.26 35791.76 16655.08 32376.09 35541.06 39287.02 31582.54 348
WTY-MVS67.91 33668.35 33366.58 36180.82 33248.12 37265.96 37872.60 34953.67 35371.20 35881.68 34058.97 29669.06 37548.57 37281.67 36582.55 347
test0.0.03 164.66 35464.36 35365.57 36575.03 38146.89 37864.69 38161.58 39562.43 29171.18 35977.54 37243.41 37768.47 38040.75 39382.65 36181.35 360
CostFormer69.98 32268.68 33273.87 31277.14 36150.72 36479.26 26574.51 33451.94 36570.97 36084.75 30545.16 37087.49 26755.16 33879.23 37683.40 336
Syy-MVS69.40 32870.03 31967.49 35781.72 31838.94 39971.00 35561.99 38961.38 30270.81 36172.36 39261.37 27979.30 34364.50 28085.18 33584.22 322
myMVS_eth3d64.66 35463.89 35566.97 35981.72 31837.39 40271.00 35561.99 38961.38 30270.81 36172.36 39220.96 41379.30 34349.59 36785.18 33584.22 322
testing9169.94 32368.99 32872.80 32183.81 29645.89 38271.57 35273.64 34468.24 23870.77 36377.82 36934.37 39584.44 31253.64 34687.00 31688.07 274
testing9969.27 32968.15 33572.63 32383.29 30445.45 38471.15 35471.08 36167.34 24970.43 36477.77 37132.24 39884.35 31453.72 34586.33 32488.10 273
tpmvs70.16 31869.56 32371.96 32974.71 38348.13 37179.63 25775.45 33065.02 27470.26 36581.88 33745.34 36785.68 30158.34 31775.39 38982.08 354
sss66.92 34067.26 33865.90 36377.23 36051.10 36364.79 38071.72 35852.12 36470.13 36680.18 35257.96 30365.36 39250.21 36381.01 37181.25 363
tpm268.45 33466.83 34173.30 31778.93 35248.50 37079.76 25671.76 35747.50 37969.92 36783.60 31642.07 38288.40 25848.44 37479.51 37383.01 343
testing22266.93 33965.30 35171.81 33083.38 30145.83 38372.06 34867.50 37464.12 27869.68 36876.37 38327.34 40883.00 32338.88 39588.38 29386.62 295
HY-MVS64.64 1873.03 29472.47 29874.71 30983.36 30354.19 33782.14 23081.96 28656.76 34169.57 36986.21 28360.03 28784.83 30949.58 36882.65 36185.11 311
dmvs_re66.81 34366.98 33966.28 36276.87 36458.68 30871.66 35172.24 35260.29 31669.52 37073.53 38952.38 33064.40 39444.90 38581.44 36875.76 382
ETVMVS64.67 35363.34 35868.64 35083.44 30041.89 39569.56 36661.70 39461.33 30468.74 37175.76 38528.76 40479.35 34234.65 40286.16 32784.67 316
tpm cat166.76 34465.21 35271.42 33277.09 36250.62 36578.01 28273.68 34344.89 38868.64 37279.00 36245.51 36482.42 32849.91 36570.15 39681.23 365
IB-MVS62.13 1971.64 30568.97 32979.66 24980.80 33362.26 26173.94 33576.90 31863.27 28168.63 37376.79 37933.83 39691.84 17259.28 31387.26 30884.88 313
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet80.37 21478.41 24086.23 11076.75 36573.28 13587.18 11477.45 31276.24 13368.14 37488.93 23765.41 25993.85 10469.47 22896.12 11491.55 208
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet58.17 2166.41 34665.63 34968.75 34981.96 31549.88 36862.19 38772.51 35151.03 37068.04 37575.34 38750.84 33774.77 35945.82 38482.96 35681.60 358
tpmrst66.28 34766.69 34365.05 36872.82 39339.33 39878.20 28170.69 36453.16 35667.88 37680.36 35148.18 34774.75 36058.13 31970.79 39581.08 366
CANet_DTU77.81 24577.05 25080.09 24381.37 32459.90 29183.26 19388.29 20469.16 22767.83 37783.72 31560.93 28089.47 23969.22 23289.70 27890.88 222
EPMVS62.47 35762.63 36162.01 37470.63 39938.74 40074.76 32752.86 40553.91 35267.71 37880.01 35339.40 38666.60 38755.54 33468.81 40180.68 370
MDTV_nov1_ep1368.29 33478.03 35443.87 39174.12 33272.22 35352.17 36167.02 37985.54 29045.36 36680.85 33555.73 33084.42 348
testing1167.38 33765.93 34571.73 33183.37 30246.60 37970.95 35769.40 36962.47 28866.14 38076.66 38031.22 39984.10 31649.10 37084.10 35184.49 317
pmmvs362.47 35760.02 37069.80 34171.58 39764.00 23570.52 36058.44 40139.77 40066.05 38175.84 38427.10 41072.28 36346.15 38284.77 34773.11 386
ADS-MVSNet265.87 34963.64 35772.55 32573.16 39056.92 32167.10 37474.81 33149.74 37766.04 38282.97 32346.71 35177.26 35242.29 38969.96 39783.46 334
ADS-MVSNet61.90 35962.19 36361.03 37973.16 39036.42 40467.10 37461.75 39249.74 37766.04 38282.97 32346.71 35163.21 39542.29 38969.96 39783.46 334
mvsany_test158.48 36956.47 37464.50 36965.90 40968.21 19556.95 39842.11 41138.30 40365.69 38477.19 37856.96 31059.35 40146.16 38158.96 40465.93 395
dmvs_testset60.59 36762.54 36254.72 38677.26 35927.74 40974.05 33361.00 39660.48 31465.62 38567.03 39955.93 31668.23 38132.07 40669.46 40068.17 393
DSMNet-mixed60.98 36561.61 36559.09 38372.88 39245.05 38774.70 32846.61 40926.20 40765.34 38690.32 21255.46 31963.12 39641.72 39181.30 37069.09 392
JIA-IIPM69.41 32766.64 34477.70 28073.19 38971.24 16875.67 31765.56 38370.42 21465.18 38792.97 12633.64 39783.06 32253.52 34869.61 39978.79 377
test-LLR67.21 33866.74 34268.63 35176.45 36955.21 33267.89 37067.14 37862.43 29165.08 38872.39 39043.41 37769.37 37161.00 30384.89 34381.31 361
test-mter65.00 35263.79 35668.63 35176.45 36955.21 33267.89 37067.14 37850.98 37165.08 38872.39 39028.27 40669.37 37161.00 30384.89 34381.31 361
PMMVS255.64 37259.27 37144.74 38864.30 41112.32 41640.60 40349.79 40753.19 35565.06 39084.81 30453.60 32649.76 40632.68 40589.41 28072.15 387
baseline269.77 32466.89 34078.41 26679.51 34458.09 31076.23 31169.57 36857.50 33564.82 39177.45 37446.02 35688.44 25753.08 34977.83 38188.70 268
gg-mvs-nofinetune68.96 33269.11 32568.52 35376.12 37245.32 38583.59 18555.88 40386.68 2764.62 39297.01 830.36 40183.97 31944.78 38682.94 35776.26 381
PAPM71.77 30470.06 31876.92 28986.39 24653.97 33876.62 30586.62 23053.44 35463.97 39384.73 30657.79 30692.34 15739.65 39481.33 36984.45 319
new_pmnet55.69 37157.66 37249.76 38775.47 37730.59 40759.56 39051.45 40643.62 39362.49 39475.48 38640.96 38449.15 40737.39 40072.52 39169.55 391
MDTV_nov1_ep13_2view27.60 41070.76 35946.47 38361.27 39545.20 36849.18 36983.75 331
dp60.70 36660.29 36961.92 37672.04 39638.67 40170.83 35864.08 38651.28 36860.75 39677.28 37536.59 39371.58 36847.41 37762.34 40375.52 383
TESTMET0.1,161.29 36260.32 36864.19 37072.06 39551.30 35967.89 37062.09 38845.27 38660.65 39769.01 39627.93 40764.74 39356.31 32781.65 36776.53 380
PMMVS61.65 36060.38 36765.47 36665.40 41069.26 18563.97 38361.73 39336.80 40660.11 39868.43 39759.42 29266.35 38848.97 37178.57 38060.81 399
PVSNet_051.08 2256.10 37054.97 37559.48 38275.12 38053.28 34555.16 39961.89 39144.30 38959.16 39962.48 40254.22 32465.91 39035.40 40147.01 40559.25 401
MVS-HIRNet61.16 36362.92 36055.87 38479.09 34935.34 40571.83 34957.98 40246.56 38259.05 40091.14 18249.95 34376.43 35438.74 39671.92 39455.84 403
E-PMN61.59 36161.62 36461.49 37766.81 40555.40 33053.77 40060.34 39766.80 25458.90 40165.50 40040.48 38566.12 38955.72 33186.25 32562.95 398
GG-mvs-BLEND67.16 35873.36 38846.54 38184.15 16855.04 40458.64 40261.95 40329.93 40283.87 32038.71 39776.92 38771.07 389
EPNet_dtu72.87 29671.33 30877.49 28377.72 35660.55 28482.35 22175.79 32566.49 25658.39 40381.06 34453.68 32585.98 29453.55 34792.97 21985.95 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai41.90 37442.65 37739.67 38970.86 39821.11 41161.01 38921.42 41657.36 33657.97 40450.06 40516.40 41558.73 40221.03 40927.69 40939.17 405
EMVS61.10 36460.81 36661.99 37565.96 40855.86 32753.10 40158.97 40067.06 25156.89 40563.33 40140.98 38367.03 38554.79 34086.18 32663.08 397
CHOSEN 280x42059.08 36856.52 37366.76 36076.51 36764.39 23149.62 40259.00 39943.86 39155.66 40668.41 39835.55 39468.21 38243.25 38876.78 38867.69 394
MVEpermissive40.22 2351.82 37350.47 37655.87 38462.66 41251.91 35431.61 40539.28 41240.65 39850.76 40774.98 38856.24 31544.67 40833.94 40464.11 40271.04 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan30.83 37532.17 37826.83 39153.36 41319.02 41457.90 39620.44 41738.29 40438.01 40837.82 40715.18 41633.45 4107.74 41120.76 41028.03 406
DeepMVS_CXcopyleft24.13 39232.95 41429.49 40821.63 41512.07 40837.95 40945.07 40630.84 40019.21 41117.94 41033.06 40823.69 407
tmp_tt20.25 37824.50 3817.49 3934.47 4168.70 41734.17 40425.16 4141.00 41132.43 41018.49 40839.37 3879.21 41221.64 40843.75 4064.57 408
test_method30.46 37629.60 37933.06 39017.99 4153.84 41813.62 40673.92 3382.79 40918.29 41153.41 40428.53 40543.25 40922.56 40735.27 40752.11 404
EGC-MVSNET74.79 28069.99 32089.19 6294.89 3887.00 1291.89 3486.28 2331.09 4102.23 41295.98 2681.87 11189.48 23879.76 11395.96 12191.10 216
testmvs5.91 3827.65 3850.72 3951.20 4170.37 42059.14 3920.67 4190.49 4131.11 4132.76 4120.94 4180.24 4141.02 4131.47 4111.55 410
test1236.27 3818.08 3840.84 3941.11 4180.57 41962.90 3840.82 4180.54 4121.07 4142.75 4131.26 4170.30 4131.04 4121.26 4121.66 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k20.81 37727.75 3800.00 3960.00 4190.00 4210.00 40785.44 2470.00 4140.00 41582.82 32781.46 1150.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas6.41 3808.55 3830.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41476.94 1620.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re6.65 3798.87 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41579.80 3550.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS37.39 40252.61 354
MSC_two_6792asdad88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
No_MVS88.81 6891.55 12777.99 9191.01 14596.05 987.45 2098.17 3292.40 175
eth-test20.00 419
eth-test0.00 419
OPU-MVS88.27 7991.89 11377.83 9490.47 5491.22 17981.12 11994.68 7574.48 17595.35 14392.29 181
save fliter93.75 6077.44 10086.31 13289.72 18170.80 211
test_0728_SECOND86.79 9994.25 4672.45 15190.54 5194.10 3795.88 1886.42 3697.97 4392.02 193
GSMVS83.88 326
sam_mvs146.11 35583.88 326
sam_mvs45.92 360
MTGPAbinary91.81 124
test_post178.85 2743.13 41045.19 36980.13 34058.11 320
test_post3.10 41145.43 36577.22 353
patchmatchnet-post81.71 33945.93 35987.01 272
MTMP90.66 4733.14 413
gm-plane-assit75.42 37844.97 38852.17 36172.36 39287.90 26254.10 343
test9_res80.83 10296.45 10090.57 232
agg_prior279.68 11596.16 11190.22 240
test_prior478.97 8184.59 159
test_prior86.32 10790.59 15371.99 15892.85 9094.17 9492.80 153
新几何281.72 233
旧先验191.97 10971.77 15981.78 28891.84 16173.92 19593.65 20383.61 332
无先验82.81 20885.62 24558.09 32991.41 18367.95 24984.48 318
原ACMM282.26 226
testdata286.43 28663.52 285
segment_acmp81.94 107
testdata179.62 25873.95 162
plane_prior793.45 6577.31 103
plane_prior692.61 8776.54 11074.84 183
plane_prior593.61 5795.22 5880.78 10395.83 13094.46 80
plane_prior492.95 127
plane_prior289.45 8179.44 98
plane_prior192.83 85
plane_prior76.42 11387.15 11575.94 14095.03 158
n20.00 420
nn0.00 420
door-mid74.45 335
test1191.46 130
door72.57 350
HQP5-MVS70.66 171
BP-MVS77.30 147
HQP3-MVS92.68 9594.47 178
HQP2-MVS72.10 221
NP-MVS91.95 11074.55 12590.17 218
ACMMP++_ref95.74 136
ACMMP++97.35 72
Test By Simon79.09 137