This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 897.41 1097.28 5398.46 2894.62 5898.84 14294.64 2199.53 3998.99 58
abl_697.31 597.12 1397.86 398.54 4695.32 796.61 3298.35 2095.81 3197.55 4097.44 7396.51 999.40 4994.06 3499.23 8698.85 81
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 26896.67 394.00 14095.41 23689.94 15491.93 25692.13 30490.12 16298.97 12387.68 20997.48 24697.67 195
UA-Net97.35 497.24 1197.69 598.22 7593.87 3198.42 698.19 3696.95 1495.46 13599.23 493.45 7799.57 1495.34 1799.89 299.63 9
mPP-MVS96.46 3296.05 5297.69 598.62 3494.65 1396.45 4097.74 9892.59 8095.47 13396.68 12894.50 6199.42 3593.10 7799.26 8298.99 58
anonymousdsp96.74 1796.42 2997.68 798.00 9394.03 2696.97 2197.61 10787.68 20898.45 1898.77 1594.20 6799.50 2196.70 399.40 5999.53 15
RPSCF95.58 6994.89 9997.62 897.58 12196.30 495.97 6597.53 11492.42 8293.41 20497.78 5591.21 13897.77 26091.06 12697.06 25798.80 86
test117296.79 1596.52 2797.60 998.03 9094.87 1096.07 6198.06 6195.76 3296.89 6996.85 11394.85 5299.42 3593.35 6698.81 14098.53 118
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10194.85 5299.42 3593.49 5298.84 13298.00 159
SR-MVS96.70 1996.42 2997.54 1198.05 8694.69 1196.13 5898.07 5895.17 3796.82 7396.73 12595.09 4499.43 3492.99 8298.71 14998.50 120
CP-MVS96.44 3596.08 5097.54 1198.29 6994.62 1496.80 2698.08 5592.67 7995.08 15596.39 14894.77 5499.42 3593.17 7499.44 5198.58 116
MP-MVScopyleft96.14 4895.68 6897.51 1398.81 2694.06 2196.10 5997.78 9792.73 7593.48 20396.72 12694.23 6699.42 3591.99 10499.29 7499.05 53
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS95.34 7994.63 11297.48 1498.67 3194.05 2396.41 4498.18 3791.26 12595.12 15195.15 21086.60 21699.50 2193.43 6296.81 26798.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.47 3196.14 4697.47 1598.95 1694.05 2393.69 14997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6997.62 10494.46 4596.29 9596.94 10693.56 7399.37 6294.29 2899.42 5398.99 58
XVS96.49 2996.18 4397.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17896.49 13794.56 5999.39 5493.57 4899.05 10698.93 68
X-MVStestdata90.70 21388.45 25597.44 1798.56 4093.99 2796.50 3797.95 8094.58 4194.38 17826.89 37794.56 5999.39 5493.57 4899.05 10698.93 68
PGM-MVS96.32 4195.94 5697.43 1998.59 3993.84 3395.33 8998.30 2491.40 12295.76 12296.87 11295.26 3599.45 2892.77 8599.21 8999.00 56
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3693.88 3096.95 2298.18 3792.26 8996.33 9196.84 11695.10 4399.40 4993.47 5699.33 6699.02 55
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3296.14 4697.41 2198.60 3793.82 3496.30 5397.96 7892.35 8695.57 13196.61 13394.93 5199.41 4293.78 4299.15 9799.00 56
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4193.11 7396.48 8597.36 8096.92 699.34 6894.31 2799.38 6198.92 72
region2R96.41 3796.09 4997.38 2398.62 3493.81 3696.32 5097.96 7892.26 8995.28 14496.57 13595.02 4799.41 4293.63 4699.11 10198.94 67
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1392.35 8695.95 11396.41 14396.71 899.42 3593.99 3799.36 6299.13 44
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9793.82 3496.31 5198.25 2895.51 3596.99 6697.05 10095.63 2199.39 5493.31 6798.88 12798.75 91
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2693.86 3299.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 18496.85 299.77 1099.31 31
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets96.83 996.71 1997.17 2798.83 2492.51 5096.58 3497.61 10787.57 21198.80 798.90 996.50 1099.59 1396.15 799.47 4499.40 24
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 6494.31 1796.79 2798.32 2196.69 1796.86 7197.56 6595.48 2598.77 16090.11 15699.44 5198.31 133
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax96.59 2796.42 2997.12 2998.76 2992.49 5196.44 4297.42 12186.96 22098.71 1098.72 1795.36 3199.56 1795.92 999.45 4899.32 30
ZNCC-MVS96.42 3696.20 4297.07 3098.80 2892.79 4896.08 6098.16 4491.74 11395.34 14096.36 15195.68 1999.44 3094.41 2599.28 7998.97 64
HFP-MVS96.39 3996.17 4597.04 3198.51 5193.37 4096.30 5397.98 7492.35 8695.63 12896.47 13895.37 2899.27 8093.78 4299.14 9898.48 122
#test#95.89 5595.51 7397.04 3198.51 5193.37 4095.14 9897.98 7489.34 16995.63 12896.47 13895.37 2899.27 8091.99 10499.14 9898.48 122
test_djsdf96.62 2396.49 2897.01 3398.55 4391.77 6197.15 1597.37 12388.98 17898.26 2298.86 1093.35 8299.60 996.41 499.45 4899.66 6
GST-MVS96.24 4495.99 5597.00 3498.65 3292.71 4995.69 7798.01 7192.08 9495.74 12496.28 15695.22 3799.42 3593.17 7499.06 10398.88 77
ACMM88.83 996.30 4396.07 5196.97 3598.39 6392.95 4694.74 11298.03 6790.82 13697.15 5696.85 11396.25 1599.00 11893.10 7799.33 6698.95 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 7194.15 5198.93 399.07 588.07 18699.57 1495.86 1099.69 1599.46 20
LS3D96.11 4995.83 6396.95 3794.75 26794.20 1997.34 1297.98 7497.31 1195.32 14196.77 11893.08 9199.20 8891.79 11298.16 20897.44 211
HPM-MVS++copyleft95.02 9094.39 11996.91 3897.88 9993.58 3894.09 13796.99 15791.05 13192.40 24295.22 20991.03 14599.25 8292.11 9998.69 15297.90 173
mvs-test193.07 15891.80 18896.89 3994.74 26895.83 692.17 19995.41 23689.94 15489.85 29190.59 32990.12 16298.88 13387.68 20995.66 29195.97 268
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6792.13 5495.33 8998.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
LGP-MVS_train96.84 4098.36 6792.13 5498.25 2891.78 10997.07 5997.22 9196.38 1399.28 7892.07 10299.59 3199.11 47
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3391.96 5795.70 7598.01 7193.34 6996.64 8096.57 13594.99 4999.36 6493.48 5599.34 6498.82 83
Skip Steuart: Steuart Systems R&D Blog.
XVG-ACMP-BASELINE95.68 6495.34 8096.69 4398.40 6293.04 4394.54 12498.05 6290.45 14696.31 9396.76 12092.91 9698.72 16691.19 12599.42 5398.32 131
EGC-MVSNET80.97 33375.73 34496.67 4498.85 2394.55 1596.83 2496.60 1842.44 3795.32 38098.25 3492.24 11098.02 23791.85 11099.21 8997.45 209
CPTT-MVS94.74 10494.12 13096.60 4598.15 7993.01 4495.84 7097.66 10289.21 17593.28 21095.46 19888.89 17698.98 11989.80 16398.82 13897.80 185
MP-MVS-pluss96.08 5095.92 5896.57 4699.06 1091.21 6793.25 15998.32 2187.89 20296.86 7197.38 7695.55 2499.39 5495.47 1599.47 4499.11 47
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_low_dy_conf_00195.63 6595.32 8396.56 4798.74 3090.71 7797.10 2095.47 23490.00 15397.57 3998.49 2684.73 23299.46 2696.06 899.69 1599.50 17
ACMP88.15 1395.71 6395.43 7796.54 4898.17 7891.73 6294.24 13198.08 5589.46 16596.61 8296.47 13895.85 1799.12 10090.45 13999.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR95.38 7795.00 9696.51 4998.10 8294.07 2092.46 18398.13 4690.69 13993.75 19496.25 15998.03 297.02 29492.08 10195.55 29398.45 125
XVG-OURS94.72 10594.12 13096.50 5098.00 9394.23 1891.48 22898.17 4190.72 13895.30 14296.47 13887.94 19096.98 29591.41 12397.61 24398.30 134
ACMMP_NAP96.21 4696.12 4896.49 5198.90 1891.42 6594.57 12098.03 6790.42 14796.37 8897.35 8395.68 1999.25 8294.44 2499.34 6498.80 86
SMA-MVScopyleft95.77 6095.54 7296.47 5298.27 7191.19 6895.09 9997.79 9686.48 22397.42 5097.51 7094.47 6399.29 7693.55 5099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS95.77 6095.58 7196.37 5396.84 15891.72 6396.73 2999.06 594.23 4992.48 23794.79 23193.56 7399.49 2493.47 5699.05 10697.89 175
bld_raw_conf00596.23 4596.22 4096.26 5498.53 4989.90 8897.25 1398.12 4792.70 7698.10 2598.51 2587.19 20299.46 2695.86 1099.69 1599.42 21
mvsmamba95.61 6795.40 7896.22 5598.44 6189.86 9097.14 1797.45 12091.25 12797.49 4598.14 3683.49 23799.45 2895.52 1399.66 2499.36 27
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4589.48 28197.46 11885.14 24696.23 10095.42 20193.19 8698.08 23190.37 14398.76 14697.38 218
3Dnovator+92.74 295.86 5895.77 6696.13 5796.81 16290.79 7596.30 5397.82 9196.13 2594.74 16997.23 9091.33 13299.16 9193.25 7198.30 19398.46 124
OPM-MVS95.61 6795.45 7596.08 5898.49 5991.00 7092.65 17697.33 13290.05 15296.77 7696.85 11395.04 4598.56 19292.77 8599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RRT_MVS95.41 7695.20 8996.05 5998.86 2188.92 10897.49 1094.48 26093.12 7297.94 2898.54 2181.19 26699.63 695.48 1499.69 1599.60 12
testtj94.81 10294.42 11896.01 6097.23 13790.51 8194.77 11197.85 8891.29 12494.92 16295.66 18691.71 12399.40 4988.07 20298.25 19898.11 150
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5295.26 9298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
TestCases96.00 6198.02 9192.17 5298.43 1490.48 14495.04 15796.74 12392.54 10697.86 25185.11 24698.98 11597.98 163
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7696.33 4899.20 293.99 5391.03 26993.73 26793.52 7699.55 1891.81 11199.45 4897.58 200
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6494.82 10997.86 8587.86 20393.04 22194.16 25191.58 12698.78 15690.27 14998.96 12197.41 212
F-COLMAP92.28 18491.06 20795.95 6497.52 12491.90 5893.53 15397.18 14383.98 25988.70 31294.04 25488.41 18198.55 19480.17 29395.99 28497.39 216
ITE_SJBPF95.95 6497.34 13493.36 4296.55 18991.93 9894.82 16595.39 20491.99 11797.08 29285.53 23997.96 22597.41 212
APDe-MVS96.46 3296.64 2295.93 6797.68 11489.38 10296.90 2398.41 1792.52 8197.43 4897.92 5095.11 4299.50 2194.45 2399.30 7198.92 72
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7394.59 11797.81 9289.22 17495.46 13596.17 16493.42 8099.34 6889.30 17298.87 13097.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft95.89 5595.88 5995.92 6997.93 9889.83 9193.46 15598.30 2492.37 8497.75 3296.95 10595.14 3999.51 2091.74 11399.28 7998.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
No_MVS95.90 7096.54 17689.57 9596.87 16899.41 4294.06 3499.30 7198.72 97
PS-MVSNAJss96.01 5296.04 5395.89 7298.82 2588.51 12195.57 8297.88 8488.72 18498.81 698.86 1090.77 14799.60 995.43 1699.53 3999.57 14
SF-MVS95.88 5795.88 5995.87 7398.12 8089.65 9495.58 8198.56 1291.84 10596.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9294.05 13898.37 1888.09 19895.06 15695.85 17492.58 10499.10 10390.33 14698.99 11498.62 111
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6692.27 19597.40 12287.10 21994.56 17395.42 20193.74 7198.11 23086.62 22698.85 13198.06 151
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8692.72 17298.02 6984.73 25593.65 19895.54 19591.68 12499.22 8588.78 18798.49 17398.26 137
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 10992.91 16798.07 5893.46 6796.31 9395.97 17190.14 16199.34 6892.11 9999.64 2799.16 41
Regformer-294.86 9894.55 11495.77 7892.83 31089.98 8591.87 21696.40 19494.38 4796.19 10595.04 21792.47 10999.04 11293.49 5298.31 19198.28 135
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11792.26 19697.84 8994.91 3896.80 7495.78 18290.42 15699.41 4291.60 11899.58 3599.29 32
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11792.58 17797.81 9293.99 5396.80 7495.90 17290.10 16599.41 4291.60 11899.58 3599.26 33
MIMVSNet195.52 7095.45 7595.72 8199.14 589.02 10696.23 5696.87 16893.73 6197.87 2998.49 2690.73 15199.05 10986.43 23199.60 2999.10 50
DeepC-MVS91.39 495.43 7495.33 8195.71 8297.67 11590.17 8393.86 14598.02 6987.35 21396.22 10197.99 4794.48 6299.05 10992.73 8899.68 2197.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC94.08 13193.54 14795.70 8396.49 18189.90 8892.39 18896.91 16490.64 14192.33 24894.60 23690.58 15598.96 12490.21 15397.70 23898.23 139
nrg03096.32 4196.55 2695.62 8497.83 10188.55 11995.77 7398.29 2792.68 7798.03 2797.91 5195.13 4098.95 12693.85 4099.49 4399.36 27
Regformer-494.90 9594.67 11095.59 8592.78 31289.02 10692.39 18895.91 21494.50 4396.41 8695.56 19392.10 11499.01 11794.23 3098.14 21098.74 94
h-mvs3392.89 16391.99 18295.58 8696.97 14990.55 7993.94 14394.01 27289.23 17293.95 18996.19 16176.88 29899.14 9491.02 12795.71 29097.04 228
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2188.69 11396.37 4596.81 17285.23 24394.75 16897.12 9691.85 12099.40 4993.45 5898.33 18898.62 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Vis-MVSNetpermissive95.50 7195.48 7495.56 8898.11 8189.40 10195.35 8798.22 3392.36 8594.11 18198.07 4292.02 11599.44 3093.38 6597.67 24097.85 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet96.07 5196.26 3895.50 8998.26 7287.69 13593.75 14797.86 8595.96 3097.48 4697.14 9595.33 3299.44 3090.79 13399.76 1199.38 25
ACMH+88.43 1196.48 3096.82 1695.47 9098.54 4689.06 10595.65 7898.61 1196.10 2698.16 2397.52 6896.90 798.62 18390.30 14799.60 2998.72 97
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10391.81 22296.80 17389.66 16193.90 19295.44 20092.80 10098.72 16692.74 8798.52 16898.32 131
hse-mvs292.24 18691.20 20395.38 9296.16 20690.65 7892.52 17992.01 30989.23 17293.95 18992.99 28476.88 29898.69 17491.02 12796.03 28296.81 237
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 13997.70 897.54 11298.16 298.94 299.33 297.84 499.08 10490.73 13499.73 1499.59 13
train_agg92.71 17191.83 18695.35 9396.45 18389.46 9790.60 24896.92 16279.37 29990.49 27794.39 24391.20 13998.88 13388.66 19198.43 17597.72 191
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12892.04 20498.42 1687.63 20996.36 8996.68 12894.37 6499.32 7492.41 9599.05 10698.64 107
v7n96.82 1097.31 1095.33 9598.54 4686.81 15396.83 2498.07 5896.59 2098.46 1798.43 3092.91 9699.52 1996.25 699.76 1199.65 8
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2192.26 19692.18 30285.92 23396.22 10196.61 13385.64 22795.99 32590.35 14498.23 20195.93 270
AUN-MVS90.05 23888.30 25895.32 9896.09 21290.52 8092.42 18692.05 30882.08 28188.45 31592.86 28665.76 33898.69 17488.91 18496.07 28196.75 241
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14395.08 10097.37 12393.92 5997.65 3495.90 17290.10 16599.33 7390.11 15699.66 2499.26 33
WR-MVS_H96.60 2597.05 1495.24 10099.02 1286.44 16496.78 2898.08 5597.42 998.48 1697.86 5491.76 12299.63 694.23 3099.84 399.66 6
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12694.56 12197.81 9291.74 11393.31 20795.59 18886.93 20898.95 12689.26 17698.51 17098.60 114
Regformer-194.55 11194.33 12295.19 10292.83 31088.54 12091.87 21695.84 21893.99 5395.95 11395.04 21792.00 11698.79 15293.14 7698.31 19198.23 139
CDPH-MVS92.67 17291.83 18695.18 10396.94 15188.46 12290.70 24697.07 15277.38 31592.34 24795.08 21592.67 10398.88 13385.74 23798.57 16298.20 143
OPU-MVS95.15 10496.84 15889.43 9995.21 9395.66 18693.12 8998.06 23286.28 23498.61 15897.95 167
pmmvs696.80 1397.36 995.15 10499.12 887.82 13496.68 3097.86 8596.10 2698.14 2499.28 397.94 398.21 22191.38 12499.69 1599.42 21
agg_prior192.60 17491.76 18995.10 10696.20 20288.89 11090.37 25596.88 16679.67 29690.21 28294.41 24191.30 13498.78 15688.46 19498.37 18697.64 197
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7490.97 23992.61 29688.04 19994.61 17293.79 26588.08 18597.81 25589.41 17198.39 17996.50 248
Anonymous2023121196.60 2597.13 1295.00 10897.46 12986.35 16897.11 1998.24 3197.58 898.72 898.97 793.15 8899.15 9293.18 7399.74 1399.50 17
DP-MVS95.62 6695.84 6294.97 10997.16 14288.62 11694.54 12497.64 10396.94 1596.58 8397.32 8693.07 9298.72 16690.45 13998.84 13297.57 201
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16397.13 1894.31 26496.24 2496.28 9896.36 15182.88 24499.35 6588.19 19799.52 4298.96 65
DROMVSNet95.44 7395.62 7094.89 11196.93 15387.69 13596.48 3999.14 493.93 5792.77 22994.52 23993.95 7099.49 2493.62 4799.22 8897.51 206
test_0728_SECOND94.88 11298.55 4386.72 15595.20 9598.22 3399.38 6093.44 6099.31 6998.53 118
PLCcopyleft85.34 1590.40 22188.92 24794.85 11396.53 17990.02 8491.58 22696.48 19280.16 29186.14 33592.18 30285.73 22498.25 21976.87 32294.61 31696.30 256
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LF4IMVS92.72 17092.02 18194.84 11495.65 24091.99 5692.92 16696.60 18485.08 24992.44 24093.62 26986.80 21296.35 31686.81 22198.25 19896.18 261
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7190.21 26095.43 23587.91 20093.74 19694.40 24292.88 9896.38 31490.39 14198.28 19497.07 225
UGNet93.08 15692.50 17394.79 11693.87 29387.99 13095.07 10194.26 26690.64 14187.33 32997.67 6086.89 21198.49 19888.10 20098.71 14997.91 172
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SED-MVS96.00 5396.41 3294.76 11798.51 5186.97 14995.21 9398.10 5191.95 9697.63 3597.25 8896.48 1199.35 6593.29 6899.29 7497.95 167
TAPA-MVS88.58 1092.49 17891.75 19094.73 11896.50 18089.69 9392.91 16797.68 10178.02 31392.79 22894.10 25290.85 14697.96 24384.76 25298.16 20896.54 243
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft95.82 5996.18 4394.72 11998.51 5186.69 15695.20 9597.00 15591.85 10297.40 5197.35 8395.58 2299.34 6893.44 6099.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++95.93 5496.34 3494.70 12096.54 17686.66 15898.45 498.22 3393.26 7097.54 4197.36 8093.12 8999.38 6093.88 3898.68 15398.04 154
DTE-MVSNet96.74 1797.43 594.67 12199.13 684.68 19196.51 3697.94 8398.14 398.67 1298.32 3295.04 4599.69 293.27 7099.82 899.62 10
MAR-MVS90.32 22788.87 25094.66 12294.82 26391.85 5994.22 13294.75 25380.91 28587.52 32788.07 35186.63 21597.87 25076.67 32396.21 28094.25 314
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4386.28 17095.80 7295.55 23088.41 19297.09 5898.08 4178.69 27998.87 13895.63 1299.53 3998.81 84
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31585.98 17692.44 18494.69 25693.70 6296.12 10895.81 17891.24 13698.86 13993.76 4598.22 20398.98 63
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14190.21 26097.36 12889.33 17090.77 27294.81 22790.41 15798.68 17688.21 19598.55 16397.93 169
test_prior94.61 12495.95 22387.23 14197.36 12898.68 17697.93 169
PEN-MVS96.69 2097.39 894.61 12499.16 484.50 19296.54 3598.05 6298.06 498.64 1398.25 3495.01 4899.65 392.95 8399.83 699.68 4
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13193.36 15897.14 14685.53 24093.90 19295.45 19991.30 13498.59 18889.51 16998.62 15797.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31685.87 17892.42 18694.69 25693.67 6696.13 10795.84 17791.20 13998.86 13993.78 4298.23 20199.03 54
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18397.44 1194.03 26994.22 5094.94 16096.19 16182.07 25599.57 1487.28 21698.89 12598.65 103
Fast-Effi-MVS+-dtu92.77 16992.16 17794.58 13194.66 27488.25 12492.05 20396.65 18289.62 16290.08 28591.23 31692.56 10598.60 18686.30 23396.27 27996.90 233
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13295.01 10497.57 11092.68 7796.20 10393.44 27491.92 11998.78 15689.11 18099.24 8596.92 232
Anonymous2024052995.50 7195.83 6394.50 13397.33 13585.93 17795.19 9796.77 17696.64 1997.61 3898.05 4393.23 8598.79 15288.60 19299.04 11298.78 88
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13793.45 15695.76 21991.58 11895.25 14792.42 30081.96 25798.72 16691.61 11797.87 23097.33 220
PS-CasMVS96.69 2097.43 594.49 13599.13 684.09 20196.61 3297.97 7797.91 598.64 1398.13 3895.24 3699.65 393.39 6499.84 399.72 2
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14696.63 3197.28 13891.82 10894.34 18097.41 7490.60 15498.65 18192.47 9498.11 21497.70 192
Regformer-394.28 12294.23 12894.46 13792.78 31286.28 17092.39 18894.70 25593.69 6595.97 11195.56 19391.34 13198.48 20293.45 5898.14 21098.62 111
EPNet89.80 24488.25 26094.45 13883.91 37886.18 17393.87 14487.07 33991.16 13080.64 36694.72 23378.83 27798.89 13285.17 24198.89 12598.28 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test1294.43 13995.95 22386.75 15496.24 20189.76 29589.79 17098.79 15297.95 22697.75 190
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17593.97 14293.28 28194.49 4496.24 9997.78 5587.99 18998.79 15288.92 18399.14 9898.34 130
CP-MVSNet96.19 4796.80 1794.38 14198.99 1483.82 20496.31 5197.53 11497.60 798.34 1997.52 6891.98 11899.63 693.08 7999.81 999.70 3
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 14895.59 7998.24 3191.56 11995.21 15092.04 30694.95 5098.66 17991.45 12297.57 24497.20 224
test_040295.73 6296.22 4094.26 14398.19 7785.77 18093.24 16097.24 14096.88 1697.69 3397.77 5794.12 6899.13 9691.54 12199.29 7497.88 176
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15189.30 28796.23 20288.36 19493.57 20194.60 23693.45 7797.77 26090.23 15298.38 18198.03 157
GeoE94.55 11194.68 10994.15 14597.23 13785.11 18794.14 13597.34 13188.71 18595.26 14595.50 19694.65 5799.12 10090.94 13098.40 17698.23 139
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16092.00 20796.74 17888.16 19796.93 6897.61 6393.04 9397.90 24591.60 11898.12 21398.03 157
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18191.36 23297.13 14880.33 29092.91 22594.24 24791.23 13798.72 16689.99 16097.93 22797.86 178
ACMH88.36 1296.59 2797.43 594.07 14898.56 4085.33 18596.33 4898.30 2494.66 4098.72 898.30 3397.51 598.00 23994.87 1899.59 3198.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs-eth3d91.54 19890.73 21593.99 14995.76 23487.86 13390.83 24293.98 27378.23 31294.02 18896.22 16082.62 25096.83 30186.57 22798.33 18897.29 222
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21195.93 6694.84 24994.86 3998.49 1598.74 1681.45 26099.60 994.69 2099.39 6099.15 42
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
test193.21 15392.96 15893.97 15195.40 24984.29 19495.99 6296.56 18688.63 18695.10 15298.53 2281.31 26298.98 11986.74 22298.38 18198.65 103
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19495.99 6296.56 18692.38 8397.03 6398.53 2290.12 16298.98 11988.78 18799.16 9698.65 103
pm-mvs195.43 7495.94 5693.93 15498.38 6485.08 18895.46 8697.12 14991.84 10597.28 5398.46 2895.30 3497.71 26590.17 15499.42 5398.99 58
test_part194.39 11694.55 11493.92 15596.14 20882.86 21695.54 8398.09 5495.36 3698.27 2098.36 3175.91 30399.44 3093.41 6399.84 399.47 19
PMVScopyleft87.21 1494.97 9295.33 8193.91 15698.97 1597.16 295.54 8395.85 21796.47 2193.40 20697.46 7295.31 3395.47 33386.18 23598.78 14489.11 360
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETH3 D test640091.91 19191.25 20293.89 15796.59 17184.41 19392.10 20197.72 10078.52 30991.82 25793.78 26688.70 17799.13 9683.61 26098.39 17998.14 146
HQP-MVS92.09 18891.49 19693.88 15896.36 18784.89 18991.37 22997.31 13387.16 21688.81 30693.40 27584.76 23098.60 18686.55 22897.73 23498.14 146
lessismore_v093.87 15998.05 8683.77 20580.32 37297.13 5797.91 5177.49 28999.11 10292.62 9198.08 21798.74 94
N_pmnet88.90 25987.25 27893.83 16094.40 28193.81 3684.73 34587.09 33879.36 30193.26 21292.43 29979.29 27591.68 36477.50 31897.22 25496.00 267
Gipumacopyleft95.31 8395.80 6593.81 16197.99 9690.91 7296.42 4397.95 8096.69 1791.78 25898.85 1291.77 12195.49 33291.72 11499.08 10295.02 297
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 16992.33 19297.84 8991.70 11692.81 22786.17 36292.22 11199.19 8988.03 20397.73 23495.66 283
K. test v393.37 14593.27 15593.66 16398.05 8682.62 21894.35 12786.62 34196.05 2897.51 4498.85 1276.59 30199.65 393.21 7298.20 20698.73 96
FC-MVSNet-test95.32 8095.88 5993.62 16498.49 5981.77 22595.90 6898.32 2193.93 5797.53 4397.56 6588.48 17999.40 4992.91 8499.83 699.68 4
DP-MVS Recon92.31 18391.88 18593.60 16597.18 14186.87 15291.10 23797.37 12384.92 25292.08 25394.08 25388.59 17898.20 22283.50 26198.14 21095.73 279
VPA-MVSNet95.14 8895.67 6993.58 16697.76 10583.15 21294.58 11997.58 10993.39 6897.05 6298.04 4493.25 8498.51 19789.75 16699.59 3199.08 51
FIs94.90 9595.35 7993.55 16798.28 7081.76 22695.33 8998.14 4593.05 7497.07 5997.18 9387.65 19399.29 7691.72 11499.69 1599.61 11
SD-MVS95.19 8795.73 6793.55 16796.62 17088.88 11294.67 11498.05 6291.26 12597.25 5596.40 14495.42 2694.36 34992.72 8999.19 9197.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVP-Stereo90.07 23788.92 24793.54 16996.31 19486.49 16190.93 24095.59 22779.80 29291.48 26095.59 18880.79 26797.39 28278.57 31091.19 35396.76 240
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 24588.22 26393.53 17095.37 25286.49 16189.26 28893.59 27679.76 29491.15 26792.31 30177.12 29498.38 20777.51 31797.92 22895.71 280
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet92.38 18191.99 18293.52 17193.82 29583.46 20791.14 23597.00 15589.81 15886.47 33394.04 25487.90 19199.21 8689.50 17098.27 19597.90 173
TAMVS90.16 23289.05 24493.49 17296.49 18186.37 16690.34 25792.55 29780.84 28892.99 22294.57 23881.94 25898.20 22273.51 33998.21 20495.90 273
MVS_030490.96 20890.15 22893.37 17393.17 30287.06 14693.62 15292.43 30089.60 16382.25 35895.50 19682.56 25197.83 25484.41 25697.83 23295.22 291
112190.26 22989.23 24093.34 17497.15 14487.40 13891.94 21094.39 26267.88 35991.02 27094.91 22386.91 21098.59 18881.17 28597.71 23794.02 320
PCF-MVS84.52 1789.12 25287.71 27193.34 17496.06 21485.84 17986.58 33697.31 13368.46 35793.61 20093.89 26287.51 19698.52 19667.85 36298.11 21495.66 283
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet94.03 13294.27 12693.31 17698.87 2082.36 22095.51 8591.78 31197.19 1296.32 9298.60 1884.24 23498.75 16187.09 21998.83 13798.81 84
EIA-MVS92.35 18292.03 18093.30 17795.81 23183.97 20292.80 17098.17 4187.71 20689.79 29487.56 35291.17 14299.18 9087.97 20497.27 25296.77 239
CNLPA91.72 19491.20 20393.26 17896.17 20591.02 6991.14 23595.55 23090.16 15190.87 27193.56 27286.31 21894.40 34879.92 29997.12 25694.37 311
QAPM92.88 16492.77 16393.22 17995.82 22983.31 20896.45 4097.35 13083.91 26093.75 19496.77 11889.25 17498.88 13384.56 25497.02 25997.49 207
新几何193.17 18097.16 14287.29 14094.43 26167.95 35891.29 26394.94 22286.97 20798.23 22081.06 28797.75 23393.98 321
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21393.79 14699.19 392.00 9598.84 598.04 4493.64 7299.02 11581.28 28298.54 16696.96 231
CLD-MVS91.82 19291.41 19893.04 18196.37 18583.65 20686.82 32897.29 13684.65 25692.27 24989.67 33892.20 11297.85 25383.95 25899.47 4497.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ambc92.98 18396.88 15583.01 21595.92 6796.38 19696.41 8697.48 7188.26 18297.80 25689.96 16198.93 12498.12 149
V4293.43 14493.58 14492.97 18495.34 25381.22 23492.67 17596.49 19187.25 21596.20 10396.37 15087.32 19998.85 14192.39 9798.21 20498.85 81
TransMVSNet (Re)95.27 8696.04 5392.97 18498.37 6681.92 22495.07 10196.76 17793.97 5697.77 3198.57 1995.72 1897.90 24588.89 18599.23 8699.08 51
iter_conf_final90.23 23089.32 23992.95 18694.65 27581.46 23194.32 13095.40 23985.61 23992.84 22695.37 20654.58 36999.13 9692.16 9898.94 12398.25 138
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22394.18 13395.53 23288.63 18696.05 11097.37 7781.31 26298.81 14987.38 21598.67 15598.06 151
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 20994.00 14097.53 11491.36 12389.35 30090.65 32894.01 6998.66 17987.40 21495.30 30196.88 235
PVSNet_Blended_VisFu91.63 19691.20 20392.94 18897.73 10983.95 20392.14 20097.46 11878.85 30892.35 24594.98 22084.16 23599.08 10486.36 23296.77 26995.79 277
v1094.68 10795.27 8692.90 19096.57 17380.15 24494.65 11697.57 11090.68 14097.43 4898.00 4688.18 18399.15 9294.84 1999.55 3899.41 23
原ACMM192.87 19196.91 15484.22 19797.01 15476.84 32089.64 29794.46 24088.00 18898.70 17281.53 28098.01 22395.70 281
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23292.35 19198.05 6291.53 12095.75 12396.80 11793.35 8298.49 19891.01 12998.32 19098.64 107
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21092.43 18591.64 31294.10 5295.59 13096.64 13181.88 25997.50 27385.12 24598.52 16897.77 187
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25090.14 26495.68 22193.70 6296.62 8195.39 20487.21 20199.04 11287.50 21199.64 2799.33 29
v894.65 10895.29 8492.74 19596.65 16679.77 25894.59 11797.17 14491.86 10197.47 4797.93 4988.16 18499.08 10494.32 2699.47 4499.38 25
pmmvs488.95 25787.70 27292.70 19694.30 28285.60 18287.22 31892.16 30474.62 32989.75 29694.19 24977.97 28796.41 31282.71 26896.36 27896.09 263
OpenMVScopyleft89.45 892.27 18592.13 17992.68 19794.53 27884.10 20095.70 7597.03 15382.44 27891.14 26896.42 14288.47 18098.38 20785.95 23697.47 24795.55 287
baseline94.26 12594.80 10292.64 19896.08 21380.99 23793.69 14998.04 6690.80 13794.89 16396.32 15393.19 8698.48 20291.68 11698.51 17098.43 126
PatchMatch-RL89.18 25088.02 26892.64 19895.90 22792.87 4788.67 30391.06 31580.34 28990.03 28791.67 31183.34 23994.42 34776.35 32694.84 31090.64 357
114514_t90.51 21789.80 23392.63 20098.00 9382.24 22193.40 15797.29 13665.84 36489.40 29994.80 23086.99 20698.75 16183.88 25998.61 15896.89 234
v119293.49 14293.78 13692.62 20196.16 20679.62 26091.83 22197.22 14286.07 23096.10 10996.38 14987.22 20099.02 11594.14 3398.88 12799.22 36
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24092.08 20296.68 18093.82 6096.29 9598.56 2090.10 16597.75 26390.10 15899.66 2499.24 35
v114493.50 14193.81 13492.57 20396.28 19679.61 26191.86 22096.96 15886.95 22195.91 11796.32 15387.65 19398.96 12493.51 5198.88 12799.13 44
tttt051789.81 24388.90 24992.55 20497.00 14879.73 25995.03 10383.65 36389.88 15795.30 14294.79 23153.64 37299.39 5491.99 10498.79 14398.54 117
Fast-Effi-MVS+91.28 20590.86 21092.53 20595.45 24882.53 21989.25 29096.52 19085.00 25089.91 28988.55 34892.94 9498.84 14284.72 25395.44 29796.22 259
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 23994.55 12395.41 23693.70 6296.67 7997.72 5891.40 13098.18 22587.45 21299.18 9398.36 129
AdaColmapbinary91.63 19691.36 19992.47 20795.56 24586.36 16792.24 19896.27 19988.88 18289.90 29092.69 29291.65 12598.32 21277.38 31997.64 24192.72 343
v2v48293.29 14793.63 14292.29 20896.35 19078.82 27691.77 22496.28 19888.45 19095.70 12796.26 15886.02 22298.90 13093.02 8098.81 14099.14 43
IterMVS-LS93.78 13794.28 12492.27 20996.27 19779.21 27091.87 21696.78 17491.77 11196.57 8497.07 9887.15 20398.74 16491.99 10499.03 11398.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.19 29285.51 30292.24 21097.12 14680.51 24185.03 34396.06 20966.11 36391.66 25992.98 28570.12 32199.14 9475.29 33195.23 30397.07 225
thisisatest053088.69 26487.52 27492.20 21196.33 19279.36 26592.81 16984.01 36286.44 22493.67 19792.68 29353.62 37399.25 8289.65 16898.45 17498.00 159
KD-MVS_self_test94.10 13094.73 10692.19 21297.66 11679.49 26394.86 10897.12 14989.59 16496.87 7097.65 6190.40 15998.34 21189.08 18199.35 6398.75 91
v192192093.26 15093.61 14392.19 21296.04 21978.31 28291.88 21597.24 14085.17 24596.19 10596.19 16186.76 21399.05 10994.18 3298.84 13299.22 36
EI-MVSNet92.99 16093.26 15692.19 21292.12 32379.21 27092.32 19394.67 25891.77 11195.24 14895.85 17487.14 20498.49 19891.99 10498.26 19698.86 78
DPM-MVS89.35 24888.40 25692.18 21596.13 21184.20 19886.96 32396.15 20875.40 32687.36 32891.55 31483.30 24098.01 23882.17 27696.62 27394.32 313
v14419293.20 15593.54 14792.16 21696.05 21578.26 28391.95 20897.14 14684.98 25195.96 11296.11 16587.08 20599.04 11293.79 4198.84 13299.17 40
FMVSNet390.78 21190.32 22492.16 21693.03 30779.92 25392.54 17894.95 24686.17 22995.10 15296.01 16969.97 32298.75 16186.74 22298.38 18197.82 183
CMPMVSbinary68.83 2287.28 28885.67 30192.09 21888.77 36285.42 18490.31 25894.38 26370.02 35288.00 32193.30 27773.78 31094.03 35375.96 32996.54 27496.83 236
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v124093.29 14793.71 13992.06 21996.01 22077.89 28891.81 22297.37 12385.12 24796.69 7896.40 14486.67 21499.07 10894.51 2298.76 14699.22 36
MVSFormer92.18 18792.23 17692.04 22094.74 26880.06 24897.15 1597.37 12388.98 17888.83 30492.79 28977.02 29599.60 996.41 496.75 27096.46 250
IterMVS-SCA-FT91.65 19591.55 19291.94 22193.89 29279.22 26987.56 31293.51 27891.53 12095.37 13896.62 13278.65 28098.90 13091.89 10994.95 30797.70 192
CANet_DTU89.85 24289.17 24291.87 22292.20 32180.02 25190.79 24395.87 21686.02 23182.53 35791.77 30980.01 27198.57 19185.66 23897.70 23897.01 229
LFMVS91.33 20391.16 20691.82 22396.27 19779.36 26595.01 10485.61 35196.04 2994.82 16597.06 9972.03 31698.46 20484.96 24998.70 15197.65 196
ET-MVSNet_ETH3D86.15 30084.27 30991.79 22493.04 30681.28 23387.17 32086.14 34479.57 29783.65 34988.66 34657.10 36498.18 22587.74 20895.40 29895.90 273
VNet92.67 17292.96 15891.79 22496.27 19780.15 24491.95 20894.98 24592.19 9294.52 17596.07 16687.43 19797.39 28284.83 25098.38 18197.83 181
ab-mvs92.40 18092.62 17091.74 22697.02 14781.65 22795.84 7095.50 23386.95 22192.95 22497.56 6590.70 15297.50 27379.63 30097.43 24896.06 265
DELS-MVS92.05 18992.16 17791.72 22794.44 27980.13 24687.62 30997.25 13987.34 21492.22 25093.18 28189.54 17298.73 16589.67 16798.20 20696.30 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-292.46 17992.72 16891.71 22896.65 16678.91 27488.85 29697.17 14483.89 26192.45 23996.76 12089.86 16997.09 29190.24 15198.59 16099.12 46
jason89.17 25188.32 25791.70 22995.73 23580.07 24788.10 30693.22 28271.98 34290.09 28492.79 28978.53 28398.56 19287.43 21397.06 25796.46 250
jason: jason.
PAPM_NR91.03 20790.81 21291.68 23096.73 16481.10 23693.72 14896.35 19788.19 19688.77 31092.12 30585.09 22997.25 28682.40 27393.90 32596.68 242
v14892.87 16593.29 15291.62 23196.25 20077.72 29191.28 23395.05 24389.69 16095.93 11696.04 16787.34 19898.38 20790.05 15997.99 22498.78 88
FMVSNet587.82 27686.56 29191.62 23192.31 31779.81 25793.49 15494.81 25283.26 26491.36 26296.93 10852.77 37497.49 27576.07 32798.03 22197.55 204
MDA-MVSNet-bldmvs91.04 20690.88 20991.55 23394.68 27380.16 24385.49 34092.14 30590.41 14894.93 16195.79 17985.10 22896.93 29885.15 24394.19 32497.57 201
PVSNet_BlendedMVS90.35 22589.96 23091.54 23494.81 26478.80 27890.14 26496.93 16079.43 29888.68 31395.06 21686.27 21998.15 22880.27 29098.04 22097.68 194
iter_conf0588.94 25888.09 26691.50 23592.74 31476.97 30392.80 17095.92 21382.82 27393.65 19895.37 20649.41 37699.13 9690.82 13299.28 7998.40 128
lupinMVS88.34 26987.31 27691.45 23694.74 26880.06 24887.23 31792.27 30171.10 34688.83 30491.15 31777.02 29598.53 19586.67 22596.75 27095.76 278
1112_ss88.42 26787.41 27591.45 23696.69 16580.99 23789.72 27696.72 17973.37 33587.00 33190.69 32677.38 29198.20 22281.38 28193.72 32895.15 293
MSLP-MVS++93.25 15293.88 13391.37 23896.34 19182.81 21793.11 16197.74 9889.37 16894.08 18395.29 20890.40 15996.35 31690.35 14498.25 19894.96 298
xiu_mvs_v1_base_debu91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
xiu_mvs_v1_base_debi91.47 20091.52 19391.33 23995.69 23781.56 22889.92 27196.05 21083.22 26591.26 26490.74 32391.55 12798.82 14489.29 17395.91 28593.62 330
test_yl90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
DCV-MVSNet90.11 23489.73 23691.26 24294.09 28779.82 25590.44 25292.65 29390.90 13293.19 21693.30 27773.90 30898.03 23482.23 27496.87 26595.93 270
API-MVS91.52 19991.61 19191.26 24294.16 28486.26 17294.66 11594.82 25091.17 12992.13 25291.08 31990.03 16897.06 29379.09 30797.35 25190.45 358
MSDG90.82 20990.67 21691.26 24294.16 28483.08 21486.63 33396.19 20590.60 14391.94 25591.89 30789.16 17595.75 32780.96 28894.51 31794.95 299
Vis-MVSNet (Re-imp)90.42 22090.16 22591.20 24697.66 11677.32 29694.33 12887.66 33591.20 12892.99 22295.13 21275.40 30598.28 21477.86 31299.19 9197.99 162
JIA-IIPM85.08 30783.04 31691.19 24787.56 36586.14 17489.40 28484.44 36188.98 17882.20 35997.95 4856.82 36696.15 31976.55 32583.45 36991.30 353
diffmvs91.74 19391.93 18491.15 24893.06 30578.17 28488.77 29997.51 11786.28 22692.42 24193.96 25988.04 18797.46 27690.69 13696.67 27297.82 183
eth_miper_zixun_eth90.72 21290.61 21791.05 24992.04 32576.84 30586.91 32496.67 18185.21 24494.41 17693.92 26079.53 27498.26 21889.76 16597.02 25998.06 151
testdata91.03 25096.87 15682.01 22294.28 26571.55 34392.46 23895.42 20185.65 22697.38 28482.64 26997.27 25293.70 328
VPNet93.08 15693.76 13791.03 25098.60 3775.83 31791.51 22795.62 22291.84 10595.74 12497.10 9789.31 17398.32 21285.07 24899.06 10398.93 68
MVSTER89.32 24988.75 25191.03 25090.10 34976.62 30790.85 24194.67 25882.27 27995.24 14895.79 17961.09 35998.49 19890.49 13898.26 19697.97 166
c3_l91.32 20491.42 19791.00 25392.29 31876.79 30687.52 31596.42 19385.76 23694.72 17193.89 26282.73 24798.16 22790.93 13198.55 16398.04 154
CHOSEN 1792x268887.19 29285.92 30091.00 25397.13 14579.41 26484.51 34995.60 22364.14 36790.07 28694.81 22778.26 28597.14 29073.34 34095.38 30096.46 250
D2MVS89.93 24089.60 23890.92 25594.03 28978.40 28188.69 30194.85 24878.96 30693.08 21895.09 21474.57 30696.94 29688.19 19798.96 12197.41 212
OpenMVS_ROBcopyleft85.12 1689.52 24789.05 24490.92 25594.58 27781.21 23591.10 23793.41 28077.03 31993.41 20493.99 25883.23 24197.80 25679.93 29794.80 31193.74 327
cl____90.65 21590.56 21990.91 25791.85 32776.98 30286.75 32995.36 24085.53 24094.06 18594.89 22477.36 29397.98 24290.27 14998.98 11597.76 188
DIV-MVS_self_test90.65 21590.56 21990.91 25791.85 32776.99 30186.75 32995.36 24085.52 24294.06 18594.89 22477.37 29297.99 24190.28 14898.97 11997.76 188
XXY-MVS92.58 17593.16 15790.84 25997.75 10679.84 25491.87 21696.22 20485.94 23295.53 13297.68 5992.69 10294.48 34583.21 26497.51 24598.21 142
dcpmvs_293.96 13495.01 9590.82 26097.60 11974.04 33193.68 15198.85 789.80 15997.82 3097.01 10491.14 14399.21 8690.56 13798.59 16099.19 39
RPMNet90.31 22890.14 22990.81 26191.01 33878.93 27292.52 17998.12 4791.91 9989.10 30196.89 11168.84 32399.41 4290.17 15492.70 34194.08 315
Anonymous2024052192.86 16693.57 14590.74 26296.57 17375.50 31994.15 13495.60 22389.38 16795.90 11897.90 5380.39 27097.96 24392.60 9299.68 2198.75 91
miper_ehance_all_eth90.48 21890.42 22290.69 26391.62 33276.57 30886.83 32796.18 20683.38 26394.06 18592.66 29482.20 25398.04 23389.79 16497.02 25997.45 209
Patchmtry90.11 23489.92 23190.66 26490.35 34777.00 30092.96 16592.81 28890.25 15094.74 16996.93 10867.11 32897.52 27285.17 24198.98 11597.46 208
test20.0390.80 21090.85 21190.63 26595.63 24279.24 26889.81 27592.87 28789.90 15694.39 17796.40 14485.77 22395.27 34073.86 33899.05 10697.39 216
cl2289.02 25388.50 25490.59 26689.76 35176.45 30986.62 33494.03 26982.98 27192.65 23292.49 29572.05 31597.53 27188.93 18297.02 25997.78 186
BH-RMVSNet90.47 21990.44 22190.56 26795.21 25678.65 28089.15 29193.94 27488.21 19592.74 23094.22 24886.38 21797.88 24778.67 30995.39 29995.14 294
CL-MVSNet_self_test90.04 23989.90 23290.47 26895.24 25577.81 28986.60 33592.62 29585.64 23893.25 21493.92 26083.84 23696.06 32379.93 29798.03 22197.53 205
ANet_high94.83 10196.28 3790.47 26896.65 16673.16 33694.33 12898.74 1096.39 2398.09 2698.93 893.37 8198.70 17290.38 14299.68 2199.53 15
PVSNet_Blended88.74 26388.16 26590.46 27094.81 26478.80 27886.64 33296.93 16074.67 32888.68 31389.18 34486.27 21998.15 22880.27 29096.00 28394.44 310
MVS_Test92.57 17793.29 15290.40 27193.53 29775.85 31592.52 17996.96 15888.73 18392.35 24596.70 12790.77 14798.37 21092.53 9395.49 29596.99 230
GA-MVS87.70 27786.82 28690.31 27293.27 30077.22 29884.72 34792.79 29085.11 24889.82 29290.07 33066.80 33197.76 26284.56 25494.27 32295.96 269
UnsupCasMVSNet_eth90.33 22690.34 22390.28 27394.64 27680.24 24289.69 27795.88 21585.77 23593.94 19195.69 18581.99 25692.98 36084.21 25791.30 35297.62 198
PAPR87.65 28086.77 28890.27 27492.85 30977.38 29588.56 30496.23 20276.82 32184.98 34189.75 33786.08 22197.16 28972.33 34693.35 33196.26 258
Test_1112_low_res87.50 28486.58 29090.25 27596.80 16377.75 29087.53 31496.25 20069.73 35386.47 33393.61 27075.67 30497.88 24779.95 29593.20 33395.11 295
CR-MVSNet87.89 27387.12 28290.22 27691.01 33878.93 27292.52 17992.81 28873.08 33789.10 30196.93 10867.11 32897.64 26888.80 18692.70 34194.08 315
IterMVS90.18 23190.16 22590.21 27793.15 30375.98 31487.56 31292.97 28686.43 22594.09 18296.40 14478.32 28497.43 27887.87 20694.69 31497.23 223
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023120688.77 26288.29 25990.20 27896.31 19478.81 27789.56 28093.49 27974.26 33192.38 24395.58 19182.21 25295.43 33572.07 34798.75 14896.34 254
miper_lstm_enhance89.90 24189.80 23390.19 27991.37 33577.50 29383.82 35595.00 24484.84 25393.05 22094.96 22176.53 30295.20 34189.96 16198.67 15597.86 178
miper_enhance_ethall88.42 26787.87 26990.07 28088.67 36375.52 31885.10 34295.59 22775.68 32292.49 23689.45 34178.96 27697.88 24787.86 20797.02 25996.81 237
pmmvs587.87 27487.14 28190.07 28093.26 30176.97 30388.89 29592.18 30273.71 33488.36 31693.89 26276.86 30096.73 30480.32 28996.81 26796.51 245
BH-untuned90.68 21490.90 20890.05 28295.98 22179.57 26290.04 26794.94 24787.91 20094.07 18493.00 28387.76 19297.78 25979.19 30695.17 30492.80 342
ECVR-MVScopyleft90.12 23390.16 22590.00 28397.81 10272.68 34195.76 7478.54 37589.04 17695.36 13998.10 3970.51 32098.64 18287.10 21899.18 9398.67 101
thisisatest051584.72 30982.99 31789.90 28492.96 30875.33 32084.36 35083.42 36477.37 31688.27 31886.65 35753.94 37198.72 16682.56 27097.40 24995.67 282
UnsupCasMVSNet_bld88.50 26688.03 26789.90 28495.52 24678.88 27587.39 31694.02 27179.32 30293.06 21994.02 25680.72 26894.27 35075.16 33293.08 33796.54 243
test111190.39 22290.61 21789.74 28698.04 8971.50 34795.59 7979.72 37489.41 16695.94 11598.14 3670.79 31998.81 14988.52 19399.32 6898.90 74
TinyColmap92.00 19092.76 16489.71 28795.62 24377.02 29990.72 24596.17 20787.70 20795.26 14596.29 15592.54 10696.45 31181.77 27898.77 14595.66 283
Patchmatch-RL test88.81 26188.52 25389.69 28895.33 25479.94 25286.22 33792.71 29278.46 31095.80 12194.18 25066.25 33695.33 33889.22 17898.53 16793.78 325
HY-MVS82.50 1886.81 29885.93 29989.47 28993.63 29677.93 28694.02 13991.58 31375.68 32283.64 35093.64 26877.40 29097.42 27971.70 35092.07 34893.05 339
EU-MVSNet87.39 28686.71 28989.44 29093.40 29876.11 31294.93 10790.00 32257.17 37395.71 12697.37 7764.77 34497.68 26792.67 9094.37 31994.52 308
ADS-MVSNet284.01 31382.20 32189.41 29189.04 35976.37 31187.57 31090.98 31672.71 34084.46 34492.45 29668.08 32496.48 31070.58 35783.97 36795.38 289
EPNet_dtu85.63 30384.37 30789.40 29286.30 37274.33 32891.64 22588.26 32984.84 25372.96 37589.85 33171.27 31897.69 26676.60 32497.62 24296.18 261
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view787.66 27987.10 28389.36 29396.05 21573.17 33592.72 17285.31 35491.89 10093.29 20990.97 32063.42 35098.39 20573.23 34196.99 26496.51 245
IB-MVS77.21 1983.11 31681.05 32789.29 29491.15 33675.85 31585.66 33986.00 34679.70 29582.02 36286.61 35848.26 37798.39 20577.84 31392.22 34693.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TR-MVS87.70 27787.17 28089.27 29594.11 28679.26 26788.69 30191.86 31081.94 28290.69 27589.79 33582.82 24697.42 27972.65 34591.98 34991.14 354
cascas87.02 29686.28 29789.25 29691.56 33376.45 30984.33 35196.78 17471.01 34786.89 33285.91 36381.35 26196.94 29683.09 26595.60 29294.35 312
thres40087.20 29186.52 29389.24 29795.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27496.51 245
MS-PatchMatch88.05 27287.75 27088.95 29893.28 29977.93 28687.88 30892.49 29875.42 32592.57 23593.59 27180.44 26994.24 35281.28 28292.75 34094.69 306
baseline283.38 31581.54 32488.90 29991.38 33472.84 34088.78 29881.22 36978.97 30579.82 36887.56 35261.73 35797.80 25674.30 33690.05 35896.05 266
MIMVSNet87.13 29486.54 29288.89 30096.05 21576.11 31294.39 12688.51 32781.37 28488.27 31896.75 12272.38 31395.52 33065.71 36795.47 29695.03 296
USDC89.02 25389.08 24388.84 30195.07 25874.50 32688.97 29396.39 19573.21 33693.27 21196.28 15682.16 25496.39 31377.55 31698.80 14295.62 286
MG-MVS89.54 24689.80 23388.76 30294.88 26072.47 34389.60 27892.44 29985.82 23489.48 29895.98 17082.85 24597.74 26481.87 27795.27 30296.08 264
thres100view90087.35 28786.89 28588.72 30396.14 20873.09 33793.00 16485.31 35492.13 9393.26 21290.96 32163.42 35098.28 21471.27 35396.54 27494.79 301
tfpn200view987.05 29586.52 29388.67 30495.77 23272.94 33891.89 21386.00 34690.84 13492.61 23389.80 33363.93 34798.28 21471.27 35396.54 27494.79 301
PMMVS83.00 31881.11 32688.66 30583.81 37986.44 16482.24 36085.65 34961.75 37182.07 36085.64 36479.75 27291.59 36575.99 32893.09 33687.94 364
baseline187.62 28187.31 27688.54 30694.71 27274.27 32993.10 16288.20 33186.20 22792.18 25193.04 28273.21 31195.52 33079.32 30485.82 36595.83 275
ppachtmachnet_test88.61 26588.64 25288.50 30791.76 32970.99 35084.59 34892.98 28579.30 30392.38 24393.53 27379.57 27397.45 27786.50 23097.17 25597.07 225
PS-MVSNAJ88.86 26088.99 24688.48 30894.88 26074.71 32186.69 33195.60 22380.88 28687.83 32387.37 35590.77 14798.82 14482.52 27194.37 31991.93 349
xiu_mvs_v2_base89.00 25589.19 24188.46 30994.86 26274.63 32386.97 32295.60 22380.88 28687.83 32388.62 34791.04 14498.81 14982.51 27294.38 31891.93 349
sss87.23 28986.82 28688.46 30993.96 29077.94 28586.84 32692.78 29177.59 31487.61 32691.83 30878.75 27891.92 36377.84 31394.20 32395.52 288
WTY-MVS86.93 29786.50 29588.24 31194.96 25974.64 32287.19 31992.07 30778.29 31188.32 31791.59 31378.06 28694.27 35074.88 33393.15 33595.80 276
FPMVS84.50 31083.28 31488.16 31296.32 19394.49 1685.76 33885.47 35283.09 26885.20 33994.26 24663.79 34986.58 37363.72 36991.88 35183.40 368
SCA87.43 28587.21 27988.10 31392.01 32671.98 34589.43 28288.11 33382.26 28088.71 31192.83 28778.65 28097.59 26979.61 30193.30 33294.75 303
test250685.42 30484.57 30687.96 31497.81 10266.53 36596.14 5756.35 38289.04 17693.55 20298.10 3942.88 38498.68 17688.09 20199.18 9398.67 101
YYNet188.17 27088.24 26187.93 31592.21 32073.62 33380.75 36388.77 32582.51 27794.99 15995.11 21382.70 24893.70 35483.33 26293.83 32696.48 249
MDA-MVSNet_test_wron88.16 27188.23 26287.93 31592.22 31973.71 33280.71 36488.84 32482.52 27694.88 16495.14 21182.70 24893.61 35583.28 26393.80 32796.46 250
thres20085.85 30285.18 30387.88 31794.44 27972.52 34289.08 29286.21 34388.57 18991.44 26188.40 34964.22 34598.00 23968.35 36195.88 28893.12 336
BH-w/o87.21 29087.02 28487.79 31894.77 26677.27 29787.90 30793.21 28481.74 28389.99 28888.39 35083.47 23896.93 29871.29 35292.43 34589.15 359
mvs_anonymous90.37 22491.30 20187.58 31992.17 32268.00 36089.84 27494.73 25483.82 26293.22 21597.40 7587.54 19597.40 28187.94 20595.05 30697.34 219
testgi90.38 22391.34 20087.50 32097.49 12671.54 34689.43 28295.16 24288.38 19394.54 17494.68 23592.88 9893.09 35971.60 35197.85 23197.88 176
our_test_387.55 28287.59 27387.44 32191.76 32970.48 35183.83 35490.55 32079.79 29392.06 25492.17 30378.63 28295.63 32884.77 25194.73 31296.22 259
PAPM81.91 32780.11 33787.31 32293.87 29372.32 34484.02 35393.22 28269.47 35476.13 37389.84 33272.15 31497.23 28753.27 37589.02 35992.37 346
MVS84.98 30884.30 30887.01 32391.03 33777.69 29291.94 21094.16 26759.36 37284.23 34787.50 35485.66 22596.80 30271.79 34893.05 33886.54 365
PatchmatchNetpermissive85.22 30584.64 30586.98 32489.51 35669.83 35790.52 25087.34 33778.87 30787.22 33092.74 29166.91 33096.53 30781.77 27886.88 36494.58 307
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131486.46 29986.33 29686.87 32591.65 33174.54 32491.94 21094.10 26874.28 33084.78 34387.33 35683.03 24395.00 34278.72 30891.16 35491.06 355
CVMVSNet85.16 30684.72 30486.48 32692.12 32370.19 35292.32 19388.17 33256.15 37490.64 27695.85 17467.97 32696.69 30588.78 18790.52 35692.56 344
pmmvs380.83 33478.96 34086.45 32787.23 36877.48 29484.87 34482.31 36663.83 36885.03 34089.50 34049.66 37593.10 35873.12 34395.10 30588.78 363
KD-MVS_2432*160082.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
miper_refine_blended82.17 32480.75 33186.42 32882.04 38070.09 35481.75 36190.80 31782.56 27490.37 28089.30 34242.90 38296.11 32174.47 33492.55 34393.06 337
Patchmatch-test86.10 30186.01 29886.38 33090.63 34274.22 33089.57 27986.69 34085.73 23789.81 29392.83 28765.24 34291.04 36677.82 31595.78 28993.88 324
CHOSEN 280x42080.04 33877.97 34386.23 33190.13 34874.53 32572.87 36989.59 32366.38 36276.29 37285.32 36556.96 36595.36 33669.49 36094.72 31388.79 362
CostFormer83.09 31782.21 32085.73 33289.27 35867.01 36190.35 25686.47 34270.42 35083.52 35293.23 28061.18 35896.85 30077.21 32088.26 36293.34 335
PatchT87.51 28388.17 26485.55 33390.64 34166.91 36292.02 20686.09 34592.20 9189.05 30397.16 9464.15 34696.37 31589.21 17992.98 33993.37 334
test0.0.03 182.48 32181.47 32585.48 33489.70 35273.57 33484.73 34581.64 36883.07 26988.13 32086.61 35862.86 35389.10 37266.24 36690.29 35793.77 326
gg-mvs-nofinetune82.10 32681.02 32885.34 33587.46 36771.04 34894.74 11267.56 37996.44 2279.43 36998.99 645.24 37896.15 31967.18 36492.17 34788.85 361
tpm84.38 31184.08 31085.30 33690.47 34563.43 37589.34 28585.63 35077.24 31887.62 32595.03 21961.00 36097.30 28579.26 30591.09 35595.16 292
tpmvs84.22 31283.97 31184.94 33787.09 36965.18 36891.21 23488.35 32882.87 27285.21 33890.96 32165.24 34296.75 30379.60 30385.25 36692.90 341
tpm281.46 32880.35 33584.80 33889.90 35065.14 36990.44 25285.36 35365.82 36582.05 36192.44 29857.94 36396.69 30570.71 35688.49 36192.56 344
test-LLR83.58 31483.17 31584.79 33989.68 35366.86 36383.08 35684.52 35983.07 26982.85 35584.78 36662.86 35393.49 35682.85 26694.86 30894.03 318
test-mter81.21 33180.01 33884.79 33989.68 35366.86 36383.08 35684.52 35973.85 33382.85 35584.78 36643.66 38193.49 35682.85 26694.86 30894.03 318
PVSNet76.22 2082.89 31982.37 31984.48 34193.96 29064.38 37378.60 36688.61 32671.50 34484.43 34686.36 36174.27 30794.60 34469.87 35993.69 32994.46 309
ADS-MVSNet82.25 32281.55 32384.34 34289.04 35965.30 36787.57 31085.13 35872.71 34084.46 34492.45 29668.08 32492.33 36270.58 35783.97 36795.38 289
DSMNet-mixed82.21 32381.56 32284.16 34389.57 35570.00 35690.65 24777.66 37754.99 37583.30 35397.57 6477.89 28890.50 36866.86 36595.54 29491.97 348
tpm cat180.61 33679.46 33984.07 34488.78 36165.06 37189.26 28888.23 33062.27 37081.90 36389.66 33962.70 35595.29 33971.72 34980.60 37391.86 351
EPMVS81.17 33280.37 33483.58 34585.58 37465.08 37090.31 25871.34 37877.31 31785.80 33791.30 31559.38 36192.70 36179.99 29482.34 37192.96 340
new-patchmatchnet88.97 25690.79 21383.50 34694.28 28355.83 38085.34 34193.56 27786.18 22895.47 13395.73 18483.10 24296.51 30985.40 24098.06 21898.16 144
GG-mvs-BLEND83.24 34785.06 37671.03 34994.99 10665.55 38074.09 37475.51 37444.57 37994.46 34659.57 37287.54 36384.24 367
tpmrst82.85 32082.93 31882.64 34887.65 36458.99 37890.14 26487.90 33475.54 32483.93 34891.63 31266.79 33395.36 33681.21 28481.54 37293.57 333
TESTMET0.1,179.09 34078.04 34282.25 34987.52 36664.03 37483.08 35680.62 37170.28 35180.16 36783.22 36944.13 38090.56 36779.95 29593.36 33092.15 347
new_pmnet81.22 33081.01 32981.86 35090.92 34070.15 35384.03 35280.25 37370.83 34885.97 33689.78 33667.93 32784.65 37467.44 36391.90 35090.78 356
dp79.28 33978.62 34181.24 35185.97 37356.45 37986.91 32485.26 35672.97 33881.45 36589.17 34556.01 36895.45 33473.19 34276.68 37491.82 352
EMVS80.35 33780.28 33680.54 35284.73 37769.07 35872.54 37080.73 37087.80 20481.66 36481.73 37162.89 35289.84 36975.79 33094.65 31582.71 370
E-PMN80.72 33580.86 33080.29 35385.11 37568.77 35972.96 36881.97 36787.76 20583.25 35483.01 37062.22 35689.17 37177.15 32194.31 32182.93 369
PVSNet_070.34 2174.58 34272.96 34579.47 35490.63 34266.24 36673.26 36783.40 36563.67 36978.02 37078.35 37372.53 31289.59 37056.68 37360.05 37782.57 371
wuyk23d87.83 27590.79 21378.96 35590.46 34688.63 11592.72 17290.67 31991.65 11798.68 1197.64 6296.06 1677.53 37659.84 37199.41 5870.73 374
MVEpermissive59.87 2373.86 34372.65 34677.47 35687.00 37174.35 32761.37 37360.93 38167.27 36069.69 37686.49 36081.24 26572.33 37756.45 37483.45 36985.74 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS281.31 32983.44 31374.92 35790.52 34446.49 38269.19 37185.23 35784.30 25887.95 32294.71 23476.95 29784.36 37564.07 36898.09 21693.89 323
MVS-HIRNet78.83 34180.60 33373.51 35893.07 30447.37 38187.10 32178.00 37668.94 35577.53 37197.26 8771.45 31794.62 34363.28 37088.74 36078.55 373
test_method50.44 34448.94 34754.93 35939.68 38312.38 38528.59 37490.09 3216.82 37741.10 37978.41 37254.41 37070.69 37850.12 37651.26 37881.72 372
DeepMVS_CXcopyleft53.83 36070.38 38264.56 37248.52 38433.01 37665.50 37774.21 37556.19 36746.64 37938.45 37870.07 37550.30 375
tmp_tt37.97 34544.33 34818.88 36111.80 38421.54 38463.51 37245.66 3854.23 37851.34 37850.48 37659.08 36222.11 38044.50 37768.35 37613.00 376
test1239.49 34712.01 3501.91 3622.87 3851.30 38682.38 3591.34 3871.36 3802.84 3816.56 3792.45 3850.97 3812.73 3795.56 3793.47 377
testmvs9.02 34811.42 3511.81 3632.77 3861.13 38779.44 3651.90 3861.18 3812.65 3826.80 3781.95 3860.87 3822.62 3803.45 3803.44 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k23.35 34631.13 3490.00 3640.00 3870.00 3880.00 37595.58 2290.00 3820.00 38391.15 31793.43 790.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.56 34910.09 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38290.77 1470.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.56 34910.08 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38390.69 3260.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
PC_three_145275.31 32795.87 11995.75 18392.93 9596.34 31887.18 21798.68 15398.04 154
test_one_060198.26 7287.14 14498.18 3794.25 4896.99 6697.36 8095.13 40
eth-test20.00 387
eth-test0.00 387
ZD-MVS97.23 13790.32 8297.54 11284.40 25794.78 16795.79 17992.76 10199.39 5488.72 19098.40 176
RE-MVS-def96.66 2098.07 8495.27 896.37 4598.12 4795.66 3397.00 6497.03 10195.40 2793.49 5298.84 13298.00 159
IU-MVS98.51 5186.66 15896.83 17172.74 33995.83 12093.00 8199.29 7498.64 107
test_241102_TWO98.10 5191.95 9697.54 4197.25 8895.37 2899.35 6593.29 6899.25 8398.49 121
test_241102_ONE98.51 5186.97 14998.10 5191.85 10297.63 3597.03 10196.48 1198.95 126
9.1494.81 10197.49 12694.11 13698.37 1887.56 21295.38 13796.03 16894.66 5699.08 10490.70 13598.97 119
save fliter97.46 12988.05 12892.04 20497.08 15187.63 209
test_0728_THIRD93.26 7097.40 5197.35 8394.69 5599.34 6893.88 3899.42 5398.89 75
test072698.51 5186.69 15695.34 8898.18 3791.85 10297.63 3597.37 7795.58 22
GSMVS94.75 303
test_part298.21 7689.41 10096.72 77
sam_mvs166.64 33494.75 303
sam_mvs66.41 335
MTGPAbinary97.62 104
test_post190.21 2605.85 38165.36 34096.00 32479.61 301
test_post6.07 38065.74 33995.84 326
patchmatchnet-post91.71 31066.22 33797.59 269
MTMP94.82 10954.62 383
gm-plane-assit87.08 37059.33 37771.22 34583.58 36897.20 28873.95 337
test9_res88.16 19998.40 17697.83 181
TEST996.45 18389.46 9790.60 24896.92 16279.09 30490.49 27794.39 24391.31 13398.88 133
test_896.37 18589.14 10490.51 25196.89 16579.37 29990.42 27994.36 24591.20 13998.82 144
agg_prior287.06 22098.36 18797.98 163
agg_prior96.20 20288.89 11096.88 16690.21 28298.78 156
test_prior489.91 8790.74 244
test_prior290.21 26089.33 17090.77 27294.81 22790.41 15788.21 19598.55 163
旧先验290.00 26968.65 35692.71 23196.52 30885.15 243
新几何290.02 268
旧先验196.20 20284.17 19994.82 25095.57 19289.57 17197.89 22996.32 255
无先验89.94 27095.75 22070.81 34998.59 18881.17 28594.81 300
原ACMM289.34 285
test22296.95 15085.27 18688.83 29793.61 27565.09 36690.74 27494.85 22684.62 23397.36 25093.91 322
testdata298.03 23480.24 292
segment_acmp92.14 113
testdata188.96 29488.44 191
plane_prior797.71 11088.68 114
plane_prior697.21 14088.23 12586.93 208
plane_prior597.81 9298.95 12689.26 17698.51 17098.60 114
plane_prior495.59 188
plane_prior388.43 12390.35 14993.31 207
plane_prior294.56 12191.74 113
plane_prior197.38 132
plane_prior88.12 12693.01 16388.98 17898.06 218
n20.00 388
nn0.00 388
door-mid92.13 306
test1196.65 182
door91.26 314
HQP5-MVS84.89 189
HQP-NCC96.36 18791.37 22987.16 21688.81 306
ACMP_Plane96.36 18791.37 22987.16 21688.81 306
BP-MVS86.55 228
HQP4-MVS88.81 30698.61 18498.15 145
HQP3-MVS97.31 13397.73 234
HQP2-MVS84.76 230
NP-MVS96.82 16087.10 14593.40 275
MDTV_nov1_ep13_2view42.48 38388.45 30567.22 36183.56 35166.80 33172.86 34494.06 317
MDTV_nov1_ep1383.88 31289.42 35761.52 37688.74 30087.41 33673.99 33284.96 34294.01 25765.25 34195.53 32978.02 31193.16 334
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 153