This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
abl_697.31 597.12 1397.86 398.54 4295.32 796.61 2698.35 1995.81 3197.55 3697.44 6496.51 999.40 4394.06 3099.23 7898.85 75
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 25796.67 394.00 12995.41 22989.94 14991.93 24692.13 29290.12 15998.97 11987.68 20097.48 23697.67 184
UA-Net97.35 497.24 1197.69 598.22 6993.87 3098.42 698.19 3596.95 1495.46 12999.23 493.45 7599.57 1395.34 1299.89 299.63 9
mPP-MVS96.46 3296.05 5197.69 598.62 3194.65 1396.45 3497.74 9692.59 7695.47 12796.68 11794.50 6199.42 2993.10 7299.26 7498.99 53
anonymousdsp96.74 1796.42 2997.68 798.00 8694.03 2596.97 1797.61 10587.68 19998.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
RPSCF95.58 6594.89 9297.62 897.58 11196.30 495.97 5797.53 11292.42 7893.41 19797.78 4691.21 13697.77 25191.06 12097.06 24798.80 79
test117296.79 1596.52 2797.60 998.03 8394.87 1096.07 5398.06 5995.76 3296.89 6396.85 10394.85 5299.42 2993.35 6198.81 12998.53 109
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9294.85 5299.42 2993.49 4898.84 12198.00 149
SR-MVS96.70 1996.42 2997.54 1198.05 8094.69 1196.13 5098.07 5695.17 3796.82 6796.73 11495.09 4499.43 2892.99 7798.71 13898.50 111
CP-MVS96.44 3596.08 4997.54 1198.29 6394.62 1496.80 2198.08 5392.67 7595.08 14896.39 13794.77 5499.42 2993.17 6999.44 4598.58 107
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2494.06 2096.10 5197.78 9592.73 7293.48 19696.72 11594.23 6699.42 2991.99 9999.29 6799.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS95.34 7494.63 10597.48 1498.67 2894.05 2296.41 3898.18 3691.26 12195.12 14495.15 19986.60 21299.50 1993.43 5796.81 25798.89 69
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2293.69 13897.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2295.88 6197.62 10294.46 4596.29 8996.94 9693.56 7399.37 5694.29 2499.42 4798.99 53
XVS96.49 2996.18 4297.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17196.49 12694.56 5999.39 4893.57 4499.05 9798.93 63
X-MVStestdata90.70 20788.45 24797.44 1798.56 3793.99 2696.50 3197.95 7894.58 4194.38 17126.89 36894.56 5999.39 4893.57 4499.05 9798.93 63
PGM-MVS96.32 4195.94 5597.43 1998.59 3693.84 3295.33 7898.30 2391.40 11895.76 11596.87 10295.26 3599.45 2392.77 8099.21 8199.00 51
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3393.88 2996.95 1898.18 3692.26 8596.33 8596.84 10695.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3296.14 4597.41 2198.60 3493.82 3396.30 4697.96 7692.35 8295.57 12496.61 12294.93 5199.41 3693.78 3899.15 8799.00 51
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2897.16 1298.17 4093.11 7096.48 7997.36 7196.92 699.34 6294.31 2399.38 5598.92 67
region2R96.41 3796.09 4897.38 2398.62 3193.81 3596.32 4397.96 7692.26 8595.28 13796.57 12495.02 4799.41 3693.63 4299.11 9298.94 62
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3897.51 998.44 1292.35 8295.95 10796.41 13296.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9093.82 3396.31 4498.25 2795.51 3596.99 6097.05 9195.63 2199.39 4893.31 6298.88 11698.75 84
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2493.86 3199.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17696.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets96.83 996.71 1997.17 2798.83 2292.51 4996.58 2897.61 10587.57 20298.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5894.31 1696.79 2298.32 2096.69 1796.86 6597.56 5695.48 2598.77 15490.11 14999.44 4598.31 124
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax96.59 2796.42 2997.12 2998.76 2792.49 5096.44 3697.42 11886.96 21198.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2692.79 4796.08 5298.16 4391.74 10995.34 13396.36 14095.68 1999.44 2494.41 2199.28 7298.97 59
HFP-MVS96.39 3996.17 4497.04 3198.51 4693.37 3996.30 4697.98 7292.35 8295.63 12196.47 12795.37 2899.27 7593.78 3899.14 8898.48 113
#test#95.89 5495.51 7197.04 3198.51 4693.37 3995.14 8797.98 7289.34 16295.63 12196.47 12795.37 2899.27 7591.99 9999.14 8898.48 113
test_djsdf96.62 2396.49 2897.01 3398.55 4091.77 6097.15 1397.37 12088.98 16998.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
GST-MVS96.24 4495.99 5497.00 3498.65 2992.71 4895.69 6798.01 6992.08 9095.74 11796.28 14595.22 3799.42 2993.17 6999.06 9498.88 71
ACMM88.83 996.30 4396.07 5096.97 3598.39 5792.95 4594.74 10198.03 6590.82 13297.15 5196.85 10396.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 6994.15 5098.93 399.07 588.07 18399.57 1395.86 999.69 1599.46 18
LS3D96.11 4895.83 6296.95 3794.75 25594.20 1897.34 1197.98 7297.31 1195.32 13496.77 10893.08 8999.20 8391.79 10598.16 19897.44 198
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9293.58 3794.09 12696.99 15391.05 12692.40 23295.22 19891.03 14299.25 7792.11 9498.69 14197.90 163
mvs-test193.07 15191.80 18196.89 3994.74 25795.83 692.17 18795.41 22989.94 14989.85 28190.59 31990.12 15998.88 12987.68 20095.66 28195.97 256
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6192.13 5395.33 7898.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6192.13 5398.25 2791.78 10597.07 5397.22 8296.38 1399.28 7392.07 9799.59 2799.11 41
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3091.96 5695.70 6598.01 6993.34 6796.64 7496.57 12494.99 4999.36 5893.48 5199.34 5898.82 77
Skip Steuart: Steuart Systems R&D Blog.
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5693.04 4294.54 11498.05 6090.45 14296.31 8796.76 11092.91 9498.72 16091.19 11999.42 4798.32 122
CPTT-MVS94.74 9894.12 12296.60 4498.15 7393.01 4395.84 6297.66 10089.21 16893.28 20395.46 18888.89 17398.98 11589.80 15698.82 12797.80 174
MP-MVS-pluss96.08 4995.92 5796.57 4599.06 1091.21 6593.25 14798.32 2087.89 19296.86 6597.38 6795.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP88.15 1395.71 6195.43 7596.54 4698.17 7291.73 6194.24 12098.08 5389.46 15996.61 7696.47 12795.85 1799.12 9390.45 13199.56 3398.77 83
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4798.10 7694.07 1992.46 17198.13 4590.69 13593.75 18996.25 14898.03 297.02 28492.08 9695.55 28398.45 116
XVG-OURS94.72 9994.12 12296.50 4898.00 8694.23 1791.48 21898.17 4090.72 13495.30 13596.47 12787.94 18796.98 28591.41 11797.61 23398.30 125
ACMMP_NAP96.21 4596.12 4796.49 4998.90 1891.42 6394.57 10998.03 6590.42 14396.37 8297.35 7495.68 1999.25 7794.44 2099.34 5898.80 79
SMA-MVScopyleft95.77 5995.54 7096.47 5098.27 6591.19 6695.09 8897.79 9486.48 21597.42 4597.51 6194.47 6399.29 7193.55 4699.29 6798.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5195.96 20992.96 4489.48 27297.46 11685.14 23896.23 9495.42 19193.19 8498.08 22390.37 13598.76 13597.38 205
3Dnovator+92.74 295.86 5795.77 6596.13 5296.81 15090.79 7396.30 4697.82 8996.13 2594.74 16297.23 8191.33 13099.16 8693.25 6698.30 18298.46 115
OPM-MVS95.61 6495.45 7396.08 5398.49 5491.00 6892.65 16397.33 12990.05 14896.77 7096.85 10395.04 4598.56 18492.77 8099.06 9498.70 93
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
testtj94.81 9694.42 11196.01 5497.23 12790.51 7794.77 10097.85 8691.29 12094.92 15595.66 17691.71 12199.40 4388.07 19398.25 18898.11 140
AllTest94.88 9194.51 11096.00 5598.02 8492.17 5195.26 8198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
TestCases96.00 5598.02 8492.17 5198.43 1390.48 14095.04 15096.74 11292.54 10497.86 24285.11 23698.98 10597.98 153
PHI-MVS94.34 11493.80 12795.95 5795.65 22891.67 6294.82 9897.86 8387.86 19393.04 21494.16 23991.58 12498.78 15090.27 14298.96 11197.41 199
F-COLMAP92.28 17691.06 20095.95 5797.52 11491.90 5793.53 14197.18 14083.98 25288.70 30394.04 24288.41 17898.55 18680.17 28495.99 27497.39 203
ITE_SJBPF95.95 5797.34 12493.36 4196.55 18591.93 9494.82 15895.39 19491.99 11497.08 28285.53 22997.96 21597.41 199
APDe-MVS96.46 3296.64 2295.93 6097.68 10589.38 9696.90 1998.41 1692.52 7797.43 4397.92 4195.11 4299.50 1994.45 1999.30 6498.92 67
APD-MVScopyleft95.00 8594.69 10095.93 6097.38 12290.88 7194.59 10697.81 9089.22 16795.46 12996.17 15393.42 7899.34 6289.30 16598.87 11997.56 191
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft95.89 5495.88 5895.92 6297.93 9189.83 8593.46 14398.30 2392.37 8097.75 2996.95 9595.14 3999.51 1891.74 10799.28 7298.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
No_MVS95.90 6396.54 16389.57 8996.87 16499.41 3694.06 3099.30 6498.72 90
PS-MVSNAJss96.01 5196.04 5295.89 6598.82 2388.51 11495.57 7197.88 8288.72 17598.81 698.86 1090.77 14499.60 895.43 1199.53 3599.57 13
SF-MVS95.88 5695.88 5895.87 6698.12 7489.65 8895.58 7098.56 1191.84 10196.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
ETH3D-3000-0.194.86 9294.55 10795.81 6797.61 10989.72 8694.05 12798.37 1788.09 18895.06 14995.85 16392.58 10299.10 9790.33 13998.99 10498.62 102
OMC-MVS94.22 12093.69 13295.81 6797.25 12691.27 6492.27 18397.40 11987.10 21094.56 16695.42 19193.74 7198.11 22286.62 21698.85 12098.06 141
ETH3D cwj APD-0.1693.99 12693.38 14495.80 6996.82 14889.92 8292.72 15998.02 6784.73 24893.65 19395.54 18591.68 12299.22 8188.78 18098.49 16198.26 128
UniMVSNet (Re)95.32 7595.15 8595.80 6997.79 9588.91 10292.91 15598.07 5693.46 6596.31 8795.97 16090.14 15899.34 6292.11 9499.64 2399.16 36
Regformer-294.86 9294.55 10795.77 7192.83 29989.98 8191.87 20596.40 19094.38 4796.19 9995.04 20692.47 10799.04 10793.49 4898.31 18098.28 126
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7297.69 10488.59 11092.26 18497.84 8794.91 3896.80 6895.78 17190.42 15399.41 3691.60 11299.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7397.75 9788.59 11092.58 16497.81 9093.99 5296.80 6895.90 16190.10 16299.41 3691.60 11299.58 3199.26 29
MIMVSNet195.52 6695.45 7395.72 7499.14 589.02 10096.23 4996.87 16493.73 5997.87 2798.49 2490.73 14899.05 10486.43 22199.60 2599.10 44
DeepC-MVS91.39 495.43 7095.33 7895.71 7597.67 10690.17 7993.86 13498.02 6787.35 20496.22 9597.99 3894.48 6299.05 10492.73 8399.68 1897.93 159
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC94.08 12493.54 13995.70 7696.49 16889.90 8492.39 17696.91 16090.64 13792.33 23894.60 22490.58 15298.96 12090.21 14697.70 22898.23 129
nrg03096.32 4196.55 2695.62 7797.83 9488.55 11295.77 6498.29 2692.68 7398.03 2697.91 4295.13 4098.95 12293.85 3699.49 3899.36 24
Regformer-494.90 8994.67 10395.59 7892.78 30189.02 10092.39 17695.91 20994.50 4396.41 8095.56 18392.10 11199.01 11294.23 2698.14 20098.74 87
h-mvs3392.89 15691.99 17595.58 7996.97 13990.55 7593.94 13294.01 26489.23 16593.95 18396.19 15076.88 29099.14 8991.02 12195.71 28097.04 216
TSAR-MVS + MP.94.96 8794.75 9795.57 8098.86 2188.69 10696.37 3996.81 16885.23 23594.75 16197.12 8791.85 11799.40 4393.45 5398.33 17798.62 102
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Vis-MVSNetpermissive95.50 6795.48 7295.56 8198.11 7589.40 9595.35 7698.22 3292.36 8194.11 17598.07 3392.02 11299.44 2493.38 6097.67 23097.85 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8298.26 6687.69 12993.75 13697.86 8395.96 3097.48 4197.14 8695.33 3299.44 2490.79 12699.76 1199.38 22
ACMH+88.43 1196.48 3096.82 1695.47 8398.54 4289.06 9995.65 6898.61 996.10 2698.16 2397.52 5996.90 798.62 17590.30 14099.60 2598.72 90
CNVR-MVS94.58 10494.29 11695.46 8496.94 14189.35 9791.81 21196.80 16989.66 15593.90 18695.44 19092.80 9898.72 16092.74 8298.52 15698.32 122
hse-mvs292.24 17891.20 19695.38 8596.16 19390.65 7492.52 16692.01 30189.23 16593.95 18392.99 27176.88 29098.69 16891.02 12196.03 27296.81 225
UniMVSNet_ETH3D97.13 697.72 395.35 8699.51 287.38 13397.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12799.73 1499.59 12
train_agg92.71 16491.83 17995.35 8696.45 17089.46 9190.60 23896.92 15879.37 29090.49 26694.39 23191.20 13798.88 12988.66 18498.43 16397.72 180
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8897.46 11988.05 12292.04 19298.42 1587.63 20096.36 8396.68 11794.37 6499.32 6892.41 9199.05 9798.64 98
v7n96.82 1097.31 1095.33 8898.54 4286.81 14796.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
PM-MVS93.33 13892.67 16195.33 8896.58 15994.06 2092.26 18492.18 29485.92 22696.22 9596.61 12285.64 22395.99 31690.35 13698.23 19195.93 258
AUN-MVS90.05 22988.30 25095.32 9196.09 19990.52 7692.42 17492.05 30082.08 27288.45 30692.86 27365.76 32998.69 16888.91 17796.07 27196.75 229
RRT_MVS91.36 19690.05 22195.29 9289.21 34888.15 11992.51 17094.89 24086.73 21495.54 12595.68 17561.82 34899.30 7094.91 1399.13 9198.43 117
NR-MVSNet95.28 7895.28 8195.26 9397.75 9787.21 13795.08 8997.37 12093.92 5797.65 3195.90 16190.10 16299.33 6790.11 14999.66 2199.26 29
WR-MVS_H96.60 2597.05 1495.24 9499.02 1286.44 15896.78 2398.08 5397.42 998.48 1697.86 4591.76 12099.63 694.23 2699.84 399.66 6
HQP_MVS94.26 11893.93 12495.23 9597.71 10188.12 12094.56 11097.81 9091.74 10993.31 20095.59 17886.93 20498.95 12289.26 16998.51 15898.60 105
Regformer-194.55 10594.33 11595.19 9692.83 29988.54 11391.87 20595.84 21393.99 5295.95 10795.04 20692.00 11398.79 14693.14 7198.31 18098.23 129
CDPH-MVS92.67 16591.83 17995.18 9796.94 14188.46 11590.70 23697.07 14877.38 30692.34 23795.08 20492.67 10198.88 12985.74 22798.57 15098.20 133
OPU-MVS95.15 9896.84 14789.43 9395.21 8295.66 17693.12 8798.06 22486.28 22498.61 14797.95 157
pmmvs696.80 1397.36 995.15 9899.12 887.82 12896.68 2497.86 8396.10 2698.14 2499.28 397.94 398.21 21391.38 11899.69 1599.42 19
agg_prior192.60 16791.76 18295.10 10096.20 18988.89 10390.37 24596.88 16279.67 28790.21 27194.41 22991.30 13298.78 15088.46 18698.37 17597.64 186
TSAR-MVS + GP.93.07 15192.41 16895.06 10195.82 21690.87 7290.97 22992.61 28888.04 18994.61 16593.79 25388.08 18297.81 24689.41 16498.39 16896.50 236
Anonymous2023121196.60 2597.13 1295.00 10297.46 11986.35 16297.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
DP-MVS95.62 6395.84 6194.97 10397.16 13288.62 10994.54 11497.64 10196.94 1596.58 7797.32 7793.07 9098.72 16090.45 13198.84 12197.57 189
IS-MVSNet94.49 10894.35 11494.92 10498.25 6886.46 15797.13 1594.31 25696.24 2496.28 9296.36 14082.88 23899.35 5988.19 18999.52 3798.96 60
DROMVSNet95.44 6995.62 6994.89 10596.93 14387.69 12996.48 3399.14 393.93 5592.77 22194.52 22793.95 7099.49 2293.62 4399.22 8097.51 194
test_0728_SECOND94.88 10698.55 4086.72 14995.20 8498.22 3299.38 5493.44 5599.31 6298.53 109
PLCcopyleft85.34 1590.40 21588.92 23994.85 10796.53 16690.02 8091.58 21696.48 18880.16 28286.14 32692.18 29085.73 22098.25 21176.87 31394.61 30696.30 244
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LF4IMVS92.72 16392.02 17494.84 10895.65 22891.99 5592.92 15496.60 18085.08 24292.44 23093.62 25686.80 20896.35 30786.81 21198.25 18896.18 249
MVS_111021_LR93.66 13193.28 14794.80 10996.25 18790.95 6990.21 25095.43 22887.91 19093.74 19194.40 23092.88 9696.38 30590.39 13398.28 18397.07 213
UGNet93.08 14992.50 16694.79 11093.87 28287.99 12495.07 9094.26 25890.64 13787.33 32097.67 5186.89 20798.49 19088.10 19298.71 13897.91 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SED-MVS96.00 5296.41 3294.76 11198.51 4686.97 14395.21 8298.10 4991.95 9297.63 3297.25 7996.48 1199.35 5993.29 6399.29 6797.95 157
TAPA-MVS88.58 1092.49 17191.75 18394.73 11296.50 16789.69 8792.91 15597.68 9978.02 30492.79 22094.10 24090.85 14397.96 23484.76 24298.16 19896.54 231
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft95.82 5896.18 4294.72 11398.51 4686.69 15095.20 8497.00 15191.85 9897.40 4697.35 7495.58 2299.34 6293.44 5599.31 6298.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++.95.93 5396.34 3494.70 11496.54 16386.66 15298.45 498.22 3293.26 6897.54 3797.36 7193.12 8799.38 5493.88 3498.68 14298.04 144
DTE-MVSNet96.74 1797.43 594.67 11599.13 684.68 18496.51 3097.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
MAR-MVS90.32 22088.87 24294.66 11694.82 25191.85 5894.22 12194.75 24680.91 27687.52 31888.07 34186.63 21197.87 24176.67 31496.21 27094.25 304
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11792.55 30385.98 16992.44 17294.69 24993.70 6096.12 10295.81 16791.24 13498.86 13493.76 4198.22 19398.98 58
test_prior393.29 14092.85 15494.61 11795.95 21087.23 13590.21 25097.36 12589.33 16390.77 26194.81 21690.41 15498.68 17088.21 18798.55 15197.93 159
test_prior94.61 11795.95 21087.23 13597.36 12598.68 17097.93 159
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 18596.54 2998.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12196.14 19587.90 12593.36 14697.14 14285.53 23293.90 18695.45 18991.30 13298.59 18089.51 16298.62 14697.31 208
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set94.35 11394.27 11994.59 12292.46 30485.87 17192.42 17494.69 24993.67 6496.13 10195.84 16691.20 13798.86 13493.78 3898.23 19199.03 49
EPP-MVSNet93.91 12793.68 13394.59 12298.08 7785.55 17697.44 1094.03 26194.22 4994.94 15396.19 15082.07 24999.57 1387.28 20798.89 11498.65 94
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12494.66 26388.25 11792.05 19196.65 17889.62 15690.08 27491.23 30692.56 10398.60 17886.30 22396.27 26996.90 221
CSCG94.69 10094.75 9794.52 12597.55 11387.87 12695.01 9397.57 10892.68 7396.20 9793.44 26191.92 11698.78 15089.11 17399.24 7796.92 220
Anonymous2024052995.50 6795.83 6294.50 12697.33 12585.93 17095.19 8696.77 17296.64 1997.61 3598.05 3493.23 8398.79 14688.60 18599.04 10298.78 81
alignmvs93.26 14392.85 15494.50 12695.70 22487.45 13193.45 14495.76 21491.58 11495.25 14092.42 28881.96 25198.72 16091.61 11197.87 22097.33 207
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 19496.61 2697.97 7597.91 598.64 1398.13 3295.24 3699.65 393.39 5999.84 399.72 2
3Dnovator92.54 394.80 9794.90 9194.47 12995.47 23587.06 14096.63 2597.28 13591.82 10494.34 17397.41 6590.60 15198.65 17492.47 8998.11 20497.70 181
Regformer-394.28 11694.23 12194.46 13092.78 30186.28 16492.39 17694.70 24893.69 6395.97 10595.56 18391.34 12998.48 19493.45 5398.14 20098.62 102
EPNet89.80 23688.25 25294.45 13183.91 36986.18 16693.87 13387.07 33291.16 12580.64 35894.72 22178.83 27098.89 12885.17 23198.89 11498.28 126
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test1294.43 13295.95 21086.75 14896.24 19789.76 28589.79 16698.79 14697.95 21697.75 179
VDD-MVS94.37 11194.37 11394.40 13397.49 11686.07 16893.97 13193.28 27394.49 4496.24 9397.78 4687.99 18698.79 14688.92 17699.14 8898.34 121
CP-MVSNet96.19 4696.80 1794.38 13498.99 1483.82 19796.31 4497.53 11297.60 798.34 1997.52 5991.98 11599.63 693.08 7499.81 999.70 3
canonicalmvs94.59 10394.69 10094.30 13595.60 23287.03 14295.59 6998.24 3091.56 11595.21 14392.04 29494.95 5098.66 17291.45 11697.57 23497.20 212
test_040295.73 6096.22 4094.26 13698.19 7185.77 17393.24 14897.24 13796.88 1697.69 3097.77 4894.12 6899.13 9191.54 11599.29 6797.88 165
MVS_111021_HR93.63 13293.42 14394.26 13696.65 15486.96 14589.30 27896.23 19888.36 18493.57 19594.60 22493.45 7597.77 25190.23 14498.38 17098.03 147
GeoE94.55 10594.68 10294.15 13897.23 12785.11 18094.14 12497.34 12888.71 17695.26 13895.50 18694.65 5799.12 9390.94 12498.40 16598.23 129
EG-PatchMatch MVS94.54 10794.67 10394.14 13997.87 9386.50 15492.00 19596.74 17488.16 18796.93 6297.61 5493.04 9197.90 23691.60 11298.12 20398.03 147
MCST-MVS92.91 15592.51 16594.10 14097.52 11485.72 17491.36 22297.13 14480.33 28192.91 21894.24 23591.23 13598.72 16089.99 15397.93 21797.86 167
ACMH88.36 1296.59 2797.43 594.07 14198.56 3785.33 17896.33 4298.30 2394.66 4098.72 898.30 3097.51 598.00 23094.87 1499.59 2798.86 72
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs-eth3d91.54 19190.73 20893.99 14295.76 22187.86 12790.83 23293.98 26578.23 30394.02 18296.22 14982.62 24496.83 29186.57 21798.33 17797.29 209
SixPastTwentyTwo94.91 8895.21 8393.98 14398.52 4583.19 20495.93 5894.84 24294.86 3998.49 1598.74 1681.45 25499.60 894.69 1699.39 5499.15 37
GBi-Net93.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
test193.21 14692.96 15193.97 14495.40 23784.29 18795.99 5496.56 18288.63 17795.10 14598.53 2181.31 25698.98 11586.74 21298.38 17098.65 94
FMVSNet194.84 9495.13 8693.97 14497.60 11084.29 18795.99 5496.56 18292.38 7997.03 5798.53 2190.12 15998.98 11588.78 18099.16 8698.65 94
pm-mvs195.43 7095.94 5593.93 14798.38 5885.08 18195.46 7597.12 14591.84 10197.28 4898.46 2595.30 3497.71 25690.17 14799.42 4798.99 53
test_part194.39 11094.55 10793.92 14896.14 19582.86 21095.54 7298.09 5295.36 3698.27 2098.36 2875.91 29599.44 2493.41 5899.84 399.47 17
PMVScopyleft87.21 1494.97 8695.33 7893.91 14998.97 1597.16 295.54 7295.85 21296.47 2193.40 19997.46 6395.31 3395.47 32486.18 22598.78 13389.11 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ETH3 D test640091.91 18491.25 19593.89 15096.59 15884.41 18692.10 18997.72 9878.52 30091.82 24793.78 25488.70 17499.13 9183.61 25098.39 16898.14 136
HQP-MVS92.09 18191.49 18993.88 15196.36 17484.89 18291.37 21997.31 13087.16 20788.81 29793.40 26284.76 22698.60 17886.55 21897.73 22498.14 136
lessismore_v093.87 15298.05 8083.77 19880.32 36697.13 5297.91 4277.49 28199.11 9592.62 8698.08 20798.74 87
N_pmnet88.90 25087.25 27093.83 15394.40 27093.81 3584.73 33587.09 33179.36 29293.26 20592.43 28779.29 26891.68 35577.50 30997.22 24496.00 255
Gipumacopyleft95.31 7795.80 6493.81 15497.99 8990.91 7096.42 3797.95 7896.69 1791.78 24898.85 1291.77 11995.49 32391.72 10899.08 9395.02 286
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ETV-MVS92.99 15392.74 15893.72 15595.86 21586.30 16392.33 18097.84 8791.70 11292.81 21986.17 35292.22 10899.19 8488.03 19497.73 22495.66 272
K. test v393.37 13793.27 14893.66 15698.05 8082.62 21294.35 11786.62 33496.05 2897.51 4098.85 1276.59 29399.65 393.21 6798.20 19698.73 89
FC-MVSNet-test95.32 7595.88 5893.62 15798.49 5481.77 21995.90 6098.32 2093.93 5597.53 3997.56 5688.48 17699.40 4392.91 7999.83 699.68 4
DP-MVS Recon92.31 17591.88 17893.60 15897.18 13186.87 14691.10 22797.37 12084.92 24592.08 24394.08 24188.59 17598.20 21483.50 25198.14 20095.73 268
VPA-MVSNet95.14 8295.67 6893.58 15997.76 9683.15 20594.58 10897.58 10793.39 6697.05 5698.04 3593.25 8298.51 18989.75 15999.59 2799.08 45
FIs94.90 8995.35 7693.55 16098.28 6481.76 22095.33 7898.14 4493.05 7197.07 5397.18 8487.65 19099.29 7191.72 10899.69 1599.61 11
SD-MVS95.19 8195.73 6693.55 16096.62 15788.88 10594.67 10398.05 6091.26 12197.25 5096.40 13395.42 2694.36 34092.72 8499.19 8397.40 202
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVP-Stereo90.07 22888.92 23993.54 16296.31 18186.49 15590.93 23095.59 22279.80 28391.48 25095.59 17880.79 26097.39 27378.57 30191.19 34396.76 228
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CDS-MVSNet89.55 23788.22 25593.53 16395.37 24086.49 15589.26 27993.59 26879.76 28591.15 25792.31 28977.12 28698.38 19977.51 30897.92 21895.71 269
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet92.38 17391.99 17593.52 16493.82 28483.46 20091.14 22597.00 15189.81 15386.47 32494.04 24287.90 18899.21 8289.50 16398.27 18497.90 163
TAMVS90.16 22489.05 23693.49 16596.49 16886.37 16090.34 24792.55 28980.84 27992.99 21594.57 22681.94 25298.20 21473.51 33098.21 19495.90 261
MVS_030490.96 20290.15 21993.37 16693.17 29187.06 14093.62 14092.43 29289.60 15782.25 34995.50 18682.56 24597.83 24584.41 24697.83 22295.22 280
112190.26 22289.23 23193.34 16797.15 13487.40 13291.94 19994.39 25467.88 35191.02 25994.91 21286.91 20698.59 18081.17 27697.71 22794.02 310
PCF-MVS84.52 1789.12 24487.71 26393.34 16796.06 20185.84 17286.58 32697.31 13068.46 34993.61 19493.89 25087.51 19398.52 18867.85 35398.11 20495.66 272
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet94.03 12594.27 11993.31 16998.87 2082.36 21495.51 7491.78 30397.19 1296.32 8698.60 1884.24 22998.75 15587.09 20998.83 12698.81 78
EIA-MVS92.35 17492.03 17393.30 17095.81 21883.97 19592.80 15898.17 4087.71 19789.79 28487.56 34291.17 14099.18 8587.97 19597.27 24296.77 227
CNLPA91.72 18791.20 19693.26 17196.17 19291.02 6791.14 22595.55 22590.16 14790.87 26093.56 25986.31 21494.40 33979.92 29097.12 24694.37 301
QAPM92.88 15792.77 15693.22 17295.82 21683.31 20196.45 3497.35 12783.91 25393.75 18996.77 10889.25 17198.88 12984.56 24497.02 24997.49 195
新几何193.17 17397.16 13287.29 13494.43 25367.95 35091.29 25394.94 21186.97 20398.23 21281.06 27897.75 22393.98 311
LCM-MVSNet-Re94.20 12194.58 10693.04 17495.91 21383.13 20693.79 13599.19 292.00 9198.84 598.04 3593.64 7299.02 11081.28 27398.54 15496.96 219
CLD-MVS91.82 18591.41 19193.04 17496.37 17283.65 19986.82 31897.29 13384.65 24992.27 23989.67 32892.20 10997.85 24483.95 24899.47 3997.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ambc92.98 17696.88 14583.01 20995.92 5996.38 19296.41 8097.48 6288.26 17997.80 24789.96 15498.93 11398.12 139
V4293.43 13693.58 13692.97 17795.34 24181.22 22892.67 16296.49 18787.25 20696.20 9796.37 13987.32 19698.85 13692.39 9398.21 19498.85 75
TransMVSNet (Re)95.27 8096.04 5292.97 17798.37 6081.92 21895.07 9096.76 17393.97 5497.77 2898.57 1995.72 1897.90 23688.89 17899.23 7899.08 45
FMVSNet292.78 16192.73 16092.95 17995.40 23781.98 21794.18 12295.53 22688.63 17796.05 10497.37 6881.31 25698.81 14487.38 20698.67 14498.06 141
Effi-MVS+92.79 16092.74 15892.94 18095.10 24583.30 20294.00 12997.53 11291.36 11989.35 29090.65 31894.01 6998.66 17287.40 20595.30 29196.88 223
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18097.73 10083.95 19692.14 18897.46 11678.85 29992.35 23594.98 20984.16 23099.08 9986.36 22296.77 25995.79 266
v1094.68 10195.27 8292.90 18296.57 16080.15 23894.65 10597.57 10890.68 13697.43 4398.00 3788.18 18099.15 8794.84 1599.55 3499.41 20
原ACMM192.87 18396.91 14484.22 19097.01 15076.84 31189.64 28794.46 22888.00 18598.70 16681.53 27198.01 21395.70 270
casdiffmvs94.32 11594.80 9592.85 18496.05 20281.44 22592.35 17998.05 6091.53 11695.75 11696.80 10793.35 8098.49 19091.01 12398.32 17998.64 98
Anonymous20240521192.58 16892.50 16692.83 18596.55 16283.22 20392.43 17391.64 30494.10 5195.59 12396.64 12081.88 25397.50 26485.12 23598.52 15697.77 176
WR-MVS93.49 13493.72 13092.80 18697.57 11280.03 24490.14 25495.68 21693.70 6096.62 7595.39 19487.21 19899.04 10787.50 20299.64 2399.33 25
v894.65 10295.29 8092.74 18796.65 15479.77 25294.59 10697.17 14191.86 9797.47 4297.93 4088.16 18199.08 9994.32 2299.47 3999.38 22
CS-MVS-test93.33 13893.53 14192.71 18895.74 22283.08 20794.55 11298.85 591.02 12789.30 29191.91 29591.79 11899.23 8090.23 14498.41 16495.82 264
pmmvs488.95 24987.70 26492.70 18994.30 27185.60 17587.22 30892.16 29674.62 32089.75 28694.19 23777.97 27996.41 30382.71 25896.36 26896.09 251
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19094.53 26784.10 19395.70 6597.03 14982.44 26991.14 25896.42 13188.47 17798.38 19985.95 22697.47 23795.55 276
baseline94.26 11894.80 9592.64 19196.08 20080.99 23193.69 13898.04 6490.80 13394.89 15696.32 14293.19 8498.48 19491.68 11098.51 15898.43 117
PatchMatch-RL89.18 24288.02 26092.64 19195.90 21492.87 4688.67 29391.06 30780.34 28090.03 27791.67 30183.34 23394.42 33876.35 31794.84 30090.64 348
114514_t90.51 21189.80 22592.63 19398.00 8682.24 21593.40 14597.29 13365.84 35689.40 28994.80 21986.99 20298.75 15583.88 24998.61 14796.89 222
v119293.49 13493.78 12892.62 19496.16 19379.62 25491.83 21097.22 13986.07 22396.10 10396.38 13887.22 19799.02 11094.14 2998.88 11699.22 32
Baseline_NR-MVSNet94.47 10995.09 8892.60 19598.50 5380.82 23492.08 19096.68 17693.82 5896.29 8998.56 2090.10 16297.75 25490.10 15199.66 2199.24 31
v114493.50 13393.81 12692.57 19696.28 18379.61 25591.86 20996.96 15486.95 21295.91 11096.32 14287.65 19098.96 12093.51 4798.88 11699.13 39
tttt051789.81 23588.90 24192.55 19797.00 13879.73 25395.03 9283.65 35789.88 15295.30 13594.79 22053.64 36399.39 4891.99 9998.79 13298.54 108
Fast-Effi-MVS+91.28 19990.86 20392.53 19895.45 23682.53 21389.25 28196.52 18685.00 24389.91 27988.55 33892.94 9298.84 13784.72 24395.44 28796.22 247
bset_n11_16_dypcd89.99 23189.15 23492.53 19894.75 25581.34 22684.19 34287.56 32885.13 23993.77 18892.46 28372.82 30499.01 11292.46 9099.21 8197.23 210
tfpnnormal94.27 11794.87 9392.48 20097.71 10180.88 23394.55 11295.41 22993.70 6096.67 7397.72 4991.40 12898.18 21787.45 20399.18 8598.36 120
AdaColmapbinary91.63 18991.36 19292.47 20195.56 23386.36 16192.24 18696.27 19588.88 17389.90 28092.69 27991.65 12398.32 20477.38 31097.64 23192.72 334
v2v48293.29 14093.63 13492.29 20296.35 17778.82 26991.77 21396.28 19488.45 18195.70 12096.26 14786.02 21898.90 12693.02 7598.81 12999.14 38
IterMVS-LS93.78 12994.28 11792.27 20396.27 18479.21 26491.87 20596.78 17091.77 10796.57 7897.07 8987.15 19998.74 15891.99 9999.03 10398.86 72
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.19 28485.51 29492.24 20497.12 13680.51 23585.03 33396.06 20566.11 35591.66 24992.98 27270.12 31299.14 8975.29 32295.23 29397.07 213
thisisatest053088.69 25587.52 26692.20 20596.33 17979.36 25992.81 15784.01 35686.44 21693.67 19292.68 28053.62 36499.25 7789.65 16198.45 16298.00 149
KD-MVS_self_test94.10 12394.73 9992.19 20697.66 10779.49 25794.86 9797.12 14589.59 15896.87 6497.65 5290.40 15698.34 20389.08 17499.35 5798.75 84
v192192093.26 14393.61 13592.19 20696.04 20678.31 27591.88 20497.24 13785.17 23796.19 9996.19 15086.76 20999.05 10494.18 2898.84 12199.22 32
EI-MVSNet92.99 15393.26 14992.19 20692.12 31179.21 26492.32 18194.67 25191.77 10795.24 14195.85 16387.14 20098.49 19091.99 9998.26 18598.86 72
DPM-MVS89.35 24088.40 24892.18 20996.13 19884.20 19186.96 31396.15 20475.40 31787.36 31991.55 30483.30 23498.01 22982.17 26696.62 26394.32 303
v14419293.20 14893.54 13992.16 21096.05 20278.26 27691.95 19797.14 14284.98 24495.96 10696.11 15487.08 20199.04 10793.79 3798.84 12199.17 35
FMVSNet390.78 20590.32 21692.16 21093.03 29679.92 24792.54 16594.95 23886.17 22295.10 14596.01 15869.97 31398.75 15586.74 21298.38 17097.82 172
CMPMVSbinary68.83 2287.28 28085.67 29392.09 21288.77 35285.42 17790.31 24894.38 25570.02 34488.00 31293.30 26473.78 30294.03 34475.96 32096.54 26496.83 224
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v124093.29 14093.71 13192.06 21396.01 20777.89 28291.81 21197.37 12085.12 24096.69 7296.40 13386.67 21099.07 10394.51 1898.76 13599.22 32
MVSFormer92.18 17992.23 16992.04 21494.74 25780.06 24297.15 1397.37 12088.98 16988.83 29592.79 27677.02 28799.60 896.41 496.75 26096.46 238
IterMVS-SCA-FT91.65 18891.55 18591.94 21593.89 28179.22 26387.56 30293.51 27091.53 11695.37 13296.62 12178.65 27298.90 12691.89 10494.95 29797.70 181
CANet_DTU89.85 23489.17 23391.87 21692.20 30980.02 24590.79 23395.87 21186.02 22482.53 34891.77 29980.01 26498.57 18385.66 22897.70 22897.01 217
LFMVS91.33 19791.16 19991.82 21796.27 18479.36 25995.01 9385.61 34596.04 2994.82 15897.06 9072.03 30998.46 19684.96 23998.70 14097.65 185
ET-MVSNet_ETH3D86.15 29284.27 30091.79 21893.04 29581.28 22787.17 31086.14 33779.57 28883.65 34088.66 33657.10 35698.18 21787.74 19995.40 28895.90 261
VNet92.67 16592.96 15191.79 21896.27 18480.15 23891.95 19794.98 23792.19 8894.52 16896.07 15587.43 19497.39 27384.83 24098.38 17097.83 170
ab-mvs92.40 17292.62 16291.74 22097.02 13781.65 22195.84 6295.50 22786.95 21292.95 21797.56 5690.70 14997.50 26479.63 29197.43 23896.06 253
DELS-MVS92.05 18292.16 17091.72 22194.44 26880.13 24087.62 29997.25 13687.34 20592.22 24093.18 26889.54 16998.73 15989.67 16098.20 19696.30 244
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason89.17 24388.32 24991.70 22295.73 22380.07 24188.10 29693.22 27471.98 33490.09 27392.79 27678.53 27598.56 18487.43 20497.06 24796.46 238
jason: jason.
PAPM_NR91.03 20190.81 20591.68 22396.73 15281.10 23093.72 13796.35 19388.19 18688.77 30192.12 29385.09 22597.25 27782.40 26393.90 31596.68 230
v14892.87 15893.29 14591.62 22496.25 18777.72 28591.28 22395.05 23589.69 15495.93 10996.04 15687.34 19598.38 19990.05 15297.99 21498.78 81
FMVSNet587.82 26886.56 28391.62 22492.31 30579.81 25193.49 14294.81 24583.26 25691.36 25296.93 9852.77 36597.49 26676.07 31898.03 21197.55 192
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22694.68 26280.16 23785.49 33092.14 29790.41 14494.93 15495.79 16885.10 22496.93 28885.15 23394.19 31497.57 189
PVSNet_BlendedMVS90.35 21889.96 22291.54 22794.81 25278.80 27190.14 25496.93 15679.43 28988.68 30495.06 20586.27 21598.15 22080.27 28198.04 21097.68 183
lupinMVS88.34 26087.31 26891.45 22894.74 25780.06 24287.23 30792.27 29371.10 33888.83 29591.15 30777.02 28798.53 18786.67 21596.75 26095.76 267
1112_ss88.42 25887.41 26791.45 22896.69 15380.99 23189.72 26796.72 17573.37 32787.00 32290.69 31677.38 28398.20 21481.38 27293.72 31895.15 282
MSLP-MVS++93.25 14593.88 12591.37 23096.34 17882.81 21193.11 14997.74 9689.37 16194.08 17795.29 19790.40 15696.35 30790.35 13698.25 18894.96 287
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23195.69 22581.56 22289.92 26196.05 20683.22 25791.26 25490.74 31391.55 12598.82 13989.29 16695.91 27593.62 320
test_yl90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
DCV-MVSNet90.11 22589.73 22891.26 23494.09 27679.82 24990.44 24292.65 28590.90 12893.19 20993.30 26473.90 30098.03 22682.23 26496.87 25595.93 258
API-MVS91.52 19291.61 18491.26 23494.16 27386.26 16594.66 10494.82 24391.17 12492.13 24291.08 30990.03 16597.06 28379.09 29897.35 24190.45 349
MSDG90.82 20390.67 20991.26 23494.16 27383.08 20786.63 32396.19 20190.60 13991.94 24591.89 29689.16 17295.75 31880.96 27994.51 30794.95 288
Vis-MVSNet (Re-imp)90.42 21490.16 21791.20 23897.66 10777.32 29094.33 11887.66 32791.20 12392.99 21595.13 20175.40 29798.28 20677.86 30399.19 8397.99 152
JIA-IIPM85.08 29883.04 30791.19 23987.56 35586.14 16789.40 27584.44 35588.98 16982.20 35097.95 3956.82 35896.15 31076.55 31683.45 35991.30 344
diffmvs91.74 18691.93 17791.15 24093.06 29478.17 27788.77 28997.51 11586.28 21992.42 23193.96 24788.04 18497.46 26790.69 12996.67 26297.82 172
eth_miper_zixun_eth90.72 20690.61 21091.05 24192.04 31376.84 29886.91 31496.67 17785.21 23694.41 16993.92 24879.53 26798.26 21089.76 15897.02 24998.06 141
testdata91.03 24296.87 14682.01 21694.28 25771.55 33592.46 22995.42 19185.65 22297.38 27582.64 25997.27 24293.70 318
VPNet93.08 14993.76 12991.03 24298.60 3475.83 31091.51 21795.62 21791.84 10195.74 11797.10 8889.31 17098.32 20485.07 23899.06 9498.93 63
MVSTER89.32 24188.75 24391.03 24290.10 33876.62 30090.85 23194.67 25182.27 27095.24 14195.79 16861.09 35198.49 19090.49 13098.26 18597.97 156
c3_l91.32 19891.42 19091.00 24592.29 30676.79 29987.52 30596.42 18985.76 22994.72 16493.89 25082.73 24198.16 21990.93 12598.55 15198.04 144
CHOSEN 1792x268887.19 28485.92 29291.00 24597.13 13579.41 25884.51 33995.60 21864.14 35990.07 27694.81 21678.26 27797.14 28173.34 33195.38 29096.46 238
D2MVS89.93 23289.60 23090.92 24794.03 27878.40 27488.69 29194.85 24178.96 29793.08 21195.09 20374.57 29896.94 28688.19 18998.96 11197.41 199
OpenMVS_ROBcopyleft85.12 1689.52 23989.05 23690.92 24794.58 26581.21 22991.10 22793.41 27277.03 31093.41 19793.99 24683.23 23597.80 24779.93 28894.80 30193.74 317
cl____90.65 20990.56 21190.91 24991.85 31576.98 29686.75 31995.36 23285.53 23294.06 17994.89 21377.36 28597.98 23390.27 14298.98 10597.76 177
DIV-MVS_self_test90.65 20990.56 21190.91 24991.85 31576.99 29586.75 31995.36 23285.52 23494.06 17994.89 21377.37 28497.99 23290.28 14198.97 10997.76 177
XXY-MVS92.58 16893.16 15090.84 25197.75 9779.84 24891.87 20596.22 20085.94 22595.53 12697.68 5092.69 10094.48 33683.21 25497.51 23598.21 132
RPMNet90.31 22190.14 22090.81 25291.01 32778.93 26692.52 16698.12 4691.91 9589.10 29296.89 10168.84 31499.41 3690.17 14792.70 33194.08 305
Anonymous2024052192.86 15993.57 13790.74 25396.57 16075.50 31294.15 12395.60 21889.38 16095.90 11197.90 4480.39 26397.96 23492.60 8799.68 1898.75 84
miper_ehance_all_eth90.48 21290.42 21490.69 25491.62 32076.57 30186.83 31796.18 20283.38 25594.06 17992.66 28182.20 24798.04 22589.79 15797.02 24997.45 197
Patchmtry90.11 22589.92 22390.66 25590.35 33677.00 29492.96 15392.81 28090.25 14694.74 16296.93 9867.11 31997.52 26385.17 23198.98 10597.46 196
test20.0390.80 20490.85 20490.63 25695.63 23079.24 26289.81 26692.87 27989.90 15194.39 17096.40 13385.77 21995.27 33173.86 32999.05 9797.39 203
CS-MVS92.12 18092.62 16290.60 25794.57 26678.12 27892.00 19598.58 1087.75 19690.08 27491.88 29789.79 16699.10 9790.35 13698.60 14994.58 296
cl2289.02 24588.50 24690.59 25889.76 34076.45 30286.62 32494.03 26182.98 26392.65 22492.49 28272.05 30897.53 26288.93 17597.02 24997.78 175
BH-RMVSNet90.47 21390.44 21390.56 25995.21 24478.65 27389.15 28293.94 26688.21 18592.74 22294.22 23686.38 21397.88 23878.67 30095.39 28995.14 283
CL-MVSNet_self_test90.04 23089.90 22490.47 26095.24 24377.81 28386.60 32592.62 28785.64 23193.25 20793.92 24883.84 23196.06 31479.93 28898.03 21197.53 193
ANet_high94.83 9596.28 3790.47 26096.65 15473.16 32894.33 11898.74 896.39 2398.09 2598.93 893.37 7998.70 16690.38 13499.68 1899.53 14
PVSNet_Blended88.74 25488.16 25890.46 26294.81 25278.80 27186.64 32296.93 15674.67 31988.68 30489.18 33486.27 21598.15 22080.27 28196.00 27394.44 300
MVS_Test92.57 17093.29 14590.40 26393.53 28675.85 30892.52 16696.96 15488.73 17492.35 23596.70 11690.77 14498.37 20292.53 8895.49 28596.99 218
GA-MVS87.70 26986.82 27890.31 26493.27 28977.22 29284.72 33792.79 28285.11 24189.82 28290.07 32066.80 32297.76 25384.56 24494.27 31295.96 257
UnsupCasMVSNet_eth90.33 21990.34 21590.28 26594.64 26480.24 23689.69 26895.88 21085.77 22893.94 18595.69 17481.99 25092.98 35184.21 24791.30 34297.62 187
PAPR87.65 27286.77 28090.27 26692.85 29877.38 28988.56 29496.23 19876.82 31284.98 33289.75 32786.08 21797.16 28072.33 33793.35 32196.26 246
Test_1112_low_res87.50 27686.58 28290.25 26796.80 15177.75 28487.53 30496.25 19669.73 34586.47 32493.61 25775.67 29697.88 23879.95 28693.20 32395.11 284
CR-MVSNet87.89 26587.12 27490.22 26891.01 32778.93 26692.52 16692.81 28073.08 32989.10 29296.93 9867.11 31997.64 25988.80 17992.70 33194.08 305
IterMVS90.18 22390.16 21790.21 26993.15 29275.98 30787.56 30292.97 27886.43 21794.09 17696.40 13378.32 27697.43 26987.87 19794.69 30497.23 210
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023120688.77 25388.29 25190.20 27096.31 18178.81 27089.56 27193.49 27174.26 32292.38 23395.58 18182.21 24695.43 32672.07 33898.75 13796.34 242
miper_lstm_enhance89.90 23389.80 22590.19 27191.37 32477.50 28783.82 34695.00 23684.84 24693.05 21394.96 21076.53 29495.20 33289.96 15498.67 14497.86 167
miper_enhance_ethall88.42 25887.87 26190.07 27288.67 35375.52 31185.10 33295.59 22275.68 31392.49 22889.45 33178.96 26997.88 23887.86 19897.02 24996.81 225
pmmvs587.87 26687.14 27390.07 27293.26 29076.97 29788.89 28692.18 29473.71 32688.36 30793.89 25076.86 29296.73 29480.32 28096.81 25796.51 233
BH-untuned90.68 20890.90 20190.05 27495.98 20879.57 25690.04 25794.94 23987.91 19094.07 17893.00 27087.76 18997.78 25079.19 29795.17 29492.80 332
thisisatest051584.72 30082.99 30889.90 27592.96 29775.33 31384.36 34083.42 35877.37 30788.27 30986.65 34753.94 36298.72 16082.56 26097.40 23995.67 271
UnsupCasMVSNet_bld88.50 25788.03 25989.90 27595.52 23478.88 26887.39 30694.02 26379.32 29393.06 21294.02 24480.72 26194.27 34175.16 32393.08 32796.54 231
TinyColmap92.00 18392.76 15789.71 27795.62 23177.02 29390.72 23596.17 20387.70 19895.26 13896.29 14492.54 10496.45 30281.77 26898.77 13495.66 272
Patchmatch-RL test88.81 25288.52 24589.69 27895.33 24279.94 24686.22 32792.71 28478.46 30195.80 11494.18 23866.25 32795.33 32989.22 17198.53 15593.78 315
HY-MVS82.50 1886.81 29085.93 29189.47 27993.63 28577.93 28094.02 12891.58 30575.68 31383.64 34193.64 25577.40 28297.42 27071.70 34192.07 33893.05 329
EU-MVSNet87.39 27886.71 28189.44 28093.40 28776.11 30594.93 9690.00 31457.17 36595.71 11997.37 6864.77 33597.68 25892.67 8594.37 30994.52 298
ADS-MVSNet284.01 30482.20 31289.41 28189.04 34976.37 30487.57 30090.98 30872.71 33284.46 33592.45 28468.08 31596.48 30170.58 34883.97 35795.38 278
EPNet_dtu85.63 29584.37 29889.40 28286.30 36374.33 32191.64 21588.26 32184.84 24672.96 36789.85 32171.27 31197.69 25776.60 31597.62 23296.18 249
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view787.66 27187.10 27589.36 28396.05 20273.17 32792.72 15985.31 34891.89 9693.29 20290.97 31063.42 34198.39 19773.23 33296.99 25496.51 233
IB-MVS77.21 1983.11 30781.05 31889.29 28491.15 32575.85 30885.66 32986.00 34079.70 28682.02 35386.61 34848.26 36898.39 19777.84 30492.22 33693.63 319
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TR-MVS87.70 26987.17 27289.27 28594.11 27579.26 26188.69 29191.86 30281.94 27390.69 26489.79 32582.82 24097.42 27072.65 33691.98 33991.14 345
cascas87.02 28886.28 28989.25 28691.56 32276.45 30284.33 34196.78 17071.01 33986.89 32385.91 35381.35 25596.94 28683.09 25595.60 28294.35 302
thres40087.20 28386.52 28589.24 28795.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26496.51 233
MS-PatchMatch88.05 26487.75 26288.95 28893.28 28877.93 28087.88 29892.49 29075.42 31692.57 22793.59 25880.44 26294.24 34381.28 27392.75 33094.69 295
baseline283.38 30681.54 31588.90 28991.38 32372.84 33288.78 28881.22 36378.97 29679.82 36087.56 34261.73 34997.80 24774.30 32790.05 34896.05 254
MIMVSNet87.13 28686.54 28488.89 29096.05 20276.11 30594.39 11688.51 31981.37 27588.27 30996.75 11172.38 30695.52 32165.71 35895.47 28695.03 285
USDC89.02 24589.08 23588.84 29195.07 24674.50 31988.97 28496.39 19173.21 32893.27 20496.28 14582.16 24896.39 30477.55 30798.80 13195.62 275
MG-MVS89.54 23889.80 22588.76 29294.88 24872.47 33489.60 26992.44 29185.82 22789.48 28895.98 15982.85 23997.74 25581.87 26795.27 29296.08 252
thres100view90087.35 27986.89 27788.72 29396.14 19573.09 32993.00 15285.31 34892.13 8993.26 20590.96 31163.42 34198.28 20671.27 34496.54 26494.79 290
tfpn200view987.05 28786.52 28588.67 29495.77 21972.94 33091.89 20286.00 34090.84 13092.61 22589.80 32363.93 33898.28 20671.27 34496.54 26494.79 290
PMMVS83.00 30981.11 31788.66 29583.81 37086.44 15882.24 35185.65 34361.75 36382.07 35185.64 35479.75 26591.59 35675.99 31993.09 32687.94 355
baseline187.62 27387.31 26888.54 29694.71 26174.27 32293.10 15088.20 32386.20 22092.18 24193.04 26973.21 30395.52 32179.32 29585.82 35595.83 263
ppachtmachnet_test88.61 25688.64 24488.50 29791.76 31770.99 34084.59 33892.98 27779.30 29492.38 23393.53 26079.57 26697.45 26886.50 22097.17 24597.07 213
PS-MVSNAJ88.86 25188.99 23888.48 29894.88 24874.71 31486.69 32195.60 21880.88 27787.83 31487.37 34590.77 14498.82 13982.52 26194.37 30991.93 340
xiu_mvs_v2_base89.00 24789.19 23288.46 29994.86 25074.63 31686.97 31295.60 21880.88 27787.83 31488.62 33791.04 14198.81 14482.51 26294.38 30891.93 340
sss87.23 28186.82 27888.46 29993.96 27977.94 27986.84 31692.78 28377.59 30587.61 31791.83 29878.75 27191.92 35477.84 30494.20 31395.52 277
RRT_test8_iter0588.21 26188.17 25688.33 30191.62 32066.82 35691.73 21496.60 18086.34 21894.14 17495.38 19647.72 36999.11 9591.78 10698.26 18599.06 47
WTY-MVS86.93 28986.50 28788.24 30294.96 24774.64 31587.19 30992.07 29978.29 30288.32 30891.59 30378.06 27894.27 34174.88 32493.15 32595.80 265
FPMVS84.50 30183.28 30588.16 30396.32 18094.49 1585.76 32885.47 34683.09 26085.20 33094.26 23463.79 34086.58 36463.72 36091.88 34183.40 359
SCA87.43 27787.21 27188.10 30492.01 31471.98 33689.43 27388.11 32582.26 27188.71 30292.83 27478.65 27297.59 26079.61 29293.30 32294.75 292
YYNet188.17 26288.24 25387.93 30592.21 30873.62 32580.75 35488.77 31782.51 26894.99 15295.11 20282.70 24293.70 34583.33 25293.83 31696.48 237
MDA-MVSNet_test_wron88.16 26388.23 25487.93 30592.22 30773.71 32480.71 35588.84 31682.52 26794.88 15795.14 20082.70 24293.61 34683.28 25393.80 31796.46 238
thres20085.85 29485.18 29587.88 30794.44 26872.52 33389.08 28386.21 33688.57 18091.44 25188.40 33964.22 33698.00 23068.35 35295.88 27893.12 326
BH-w/o87.21 28287.02 27687.79 30894.77 25477.27 29187.90 29793.21 27681.74 27489.99 27888.39 34083.47 23296.93 28871.29 34392.43 33589.15 350
mvs_anonymous90.37 21791.30 19487.58 30992.17 31068.00 35089.84 26594.73 24783.82 25493.22 20897.40 6687.54 19297.40 27287.94 19695.05 29697.34 206
testgi90.38 21691.34 19387.50 31097.49 11671.54 33789.43 27395.16 23488.38 18394.54 16794.68 22392.88 9693.09 35071.60 34297.85 22197.88 165
our_test_387.55 27487.59 26587.44 31191.76 31770.48 34183.83 34590.55 31279.79 28492.06 24492.17 29178.63 27495.63 31984.77 24194.73 30296.22 247
PAPM81.91 31880.11 32887.31 31293.87 28272.32 33584.02 34493.22 27469.47 34676.13 36589.84 32272.15 30797.23 27853.27 36689.02 34992.37 337
MVS84.98 29984.30 29987.01 31391.03 32677.69 28691.94 19994.16 25959.36 36484.23 33887.50 34485.66 22196.80 29271.79 33993.05 32886.54 356
PatchmatchNetpermissive85.22 29684.64 29786.98 31489.51 34569.83 34790.52 24087.34 33078.87 29887.22 32192.74 27866.91 32196.53 29881.77 26886.88 35494.58 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131486.46 29186.33 28886.87 31591.65 31974.54 31791.94 19994.10 26074.28 32184.78 33487.33 34683.03 23795.00 33378.72 29991.16 34491.06 346
CVMVSNet85.16 29784.72 29686.48 31692.12 31170.19 34292.32 18188.17 32456.15 36690.64 26595.85 16367.97 31796.69 29588.78 18090.52 34692.56 335
pmmvs380.83 32478.96 33286.45 31787.23 35977.48 28884.87 33482.31 36063.83 36085.03 33189.50 33049.66 36693.10 34973.12 33495.10 29588.78 354
KD-MVS_2432*160082.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
miper_refine_blended82.17 31580.75 32286.42 31882.04 37170.09 34481.75 35290.80 30982.56 26590.37 26989.30 33242.90 37496.11 31274.47 32592.55 33393.06 327
Patchmatch-test86.10 29386.01 29086.38 32090.63 33174.22 32389.57 27086.69 33385.73 23089.81 28392.83 27465.24 33391.04 35777.82 30695.78 27993.88 314
CHOSEN 280x42080.04 32977.97 33586.23 32190.13 33774.53 31872.87 36089.59 31566.38 35476.29 36485.32 35556.96 35795.36 32769.49 35194.72 30388.79 353
CostFormer83.09 30882.21 31185.73 32289.27 34767.01 35190.35 24686.47 33570.42 34283.52 34393.23 26761.18 35096.85 29077.21 31188.26 35293.34 325
PatchT87.51 27588.17 25685.55 32390.64 33066.91 35292.02 19486.09 33892.20 8789.05 29497.16 8564.15 33796.37 30689.21 17292.98 32993.37 324
test0.0.03 182.48 31281.47 31685.48 32489.70 34173.57 32684.73 33581.64 36283.07 26188.13 31186.61 34862.86 34489.10 36366.24 35790.29 34793.77 316
DWT-MVSNet_test80.74 32579.18 33185.43 32587.51 35766.87 35389.87 26486.01 33974.20 32380.86 35780.62 36248.84 36796.68 29781.54 27083.14 36192.75 333
gg-mvs-nofinetune82.10 31781.02 31985.34 32687.46 35871.04 33894.74 10167.56 37196.44 2279.43 36198.99 645.24 37096.15 31067.18 35592.17 33788.85 352
tpm84.38 30284.08 30185.30 32790.47 33463.43 36689.34 27685.63 34477.24 30987.62 31695.03 20861.00 35297.30 27679.26 29691.09 34595.16 281
tpmvs84.22 30383.97 30284.94 32887.09 36065.18 35991.21 22488.35 32082.87 26485.21 32990.96 31165.24 33396.75 29379.60 29485.25 35692.90 331
tpm281.46 31980.35 32684.80 32989.90 33965.14 36090.44 24285.36 34765.82 35782.05 35292.44 28657.94 35596.69 29570.71 34788.49 35192.56 335
test-LLR83.58 30583.17 30684.79 33089.68 34266.86 35483.08 34784.52 35383.07 26182.85 34684.78 35662.86 34493.49 34782.85 25694.86 29894.03 308
test-mter81.21 32280.01 32984.79 33089.68 34266.86 35483.08 34784.52 35373.85 32582.85 34684.78 35643.66 37393.49 34782.85 25694.86 29894.03 308
PVSNet76.22 2082.89 31082.37 31084.48 33293.96 27964.38 36478.60 35788.61 31871.50 33684.43 33786.36 35174.27 29994.60 33569.87 35093.69 31994.46 299
ADS-MVSNet82.25 31381.55 31484.34 33389.04 34965.30 35887.57 30085.13 35272.71 33284.46 33592.45 28468.08 31592.33 35370.58 34883.97 35795.38 278
DSMNet-mixed82.21 31481.56 31384.16 33489.57 34470.00 34690.65 23777.66 36954.99 36783.30 34497.57 5577.89 28090.50 35966.86 35695.54 28491.97 339
tpm cat180.61 32779.46 33084.07 33588.78 35165.06 36289.26 27988.23 32262.27 36281.90 35489.66 32962.70 34695.29 33071.72 34080.60 36491.86 342
EPMVS81.17 32380.37 32583.58 33685.58 36565.08 36190.31 24871.34 37077.31 30885.80 32891.30 30559.38 35392.70 35279.99 28582.34 36292.96 330
new-patchmatchnet88.97 24890.79 20683.50 33794.28 27255.83 37185.34 33193.56 26986.18 22195.47 12795.73 17383.10 23696.51 30085.40 23098.06 20898.16 134
GG-mvs-BLEND83.24 33885.06 36771.03 33994.99 9565.55 37274.09 36675.51 36544.57 37194.46 33759.57 36387.54 35384.24 358
tpmrst82.85 31182.93 30982.64 33987.65 35458.99 36990.14 25487.90 32675.54 31583.93 33991.63 30266.79 32495.36 32781.21 27581.54 36393.57 323
TESTMET0.1,179.09 33178.04 33482.25 34087.52 35664.03 36583.08 34780.62 36570.28 34380.16 35983.22 35944.13 37290.56 35879.95 28693.36 32092.15 338
new_pmnet81.22 32181.01 32081.86 34190.92 32970.15 34384.03 34380.25 36770.83 34085.97 32789.78 32667.93 31884.65 36567.44 35491.90 34090.78 347
dp79.28 33078.62 33381.24 34285.97 36456.45 37086.91 31485.26 35072.97 33081.45 35689.17 33556.01 36095.45 32573.19 33376.68 36591.82 343
EMVS80.35 32880.28 32780.54 34384.73 36869.07 34872.54 36180.73 36487.80 19481.66 35581.73 36162.89 34389.84 36075.79 32194.65 30582.71 361
E-PMN80.72 32680.86 32180.29 34485.11 36668.77 34972.96 35981.97 36187.76 19583.25 34583.01 36062.22 34789.17 36277.15 31294.31 31182.93 360
PVSNet_070.34 2174.58 33372.96 33679.47 34590.63 33166.24 35773.26 35883.40 35963.67 36178.02 36278.35 36472.53 30589.59 36156.68 36460.05 36882.57 362
wuyk23d87.83 26790.79 20678.96 34690.46 33588.63 10892.72 15990.67 31191.65 11398.68 1197.64 5396.06 1677.53 36759.84 36299.41 5270.73 365
MVEpermissive59.87 2373.86 33472.65 33777.47 34787.00 36274.35 32061.37 36460.93 37367.27 35269.69 36886.49 35081.24 25972.33 36856.45 36583.45 35985.74 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS281.31 32083.44 30474.92 34890.52 33346.49 37369.19 36285.23 35184.30 25187.95 31394.71 22276.95 28984.36 36664.07 35998.09 20693.89 313
MVS-HIRNet78.83 33280.60 32473.51 34993.07 29347.37 37287.10 31178.00 36868.94 34777.53 36397.26 7871.45 31094.62 33463.28 36188.74 35078.55 364
test_method50.44 33548.94 33854.93 35039.68 37412.38 37628.59 36590.09 3136.82 36941.10 37178.41 36354.41 36170.69 36950.12 36751.26 36981.72 363
DeepMVS_CXcopyleft53.83 35170.38 37364.56 36348.52 37533.01 36865.50 36974.21 36656.19 35946.64 37038.45 36970.07 36650.30 366
tmp_tt37.97 33644.33 33918.88 35211.80 37521.54 37563.51 36345.66 3764.23 37051.34 37050.48 36759.08 35422.11 37144.50 36868.35 36713.00 367
test1239.49 33812.01 3411.91 3532.87 3761.30 37782.38 3501.34 3781.36 3712.84 3726.56 3702.45 3760.97 3722.73 3705.56 3703.47 368
testmvs9.02 33911.42 3421.81 3542.77 3771.13 37879.44 3561.90 3771.18 3722.65 3736.80 3691.95 3770.87 3732.62 3713.45 3713.44 369
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
cdsmvs_eth3d_5k23.35 33731.13 3400.00 3550.00 3780.00 3790.00 36695.58 2240.00 3730.00 37491.15 30793.43 770.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.56 34010.09 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37390.77 1440.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.56 34010.08 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37490.69 3160.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
PC_three_145275.31 31895.87 11295.75 17292.93 9396.34 30987.18 20898.68 14298.04 144
test_one_060198.26 6687.14 13898.18 3694.25 4896.99 6097.36 7195.13 40
eth-test20.00 378
eth-test0.00 378
ZD-MVS97.23 12790.32 7897.54 11084.40 25094.78 16095.79 16892.76 9999.39 4888.72 18398.40 165
RE-MVS-def96.66 2098.07 7895.27 896.37 3998.12 4695.66 3397.00 5897.03 9295.40 2793.49 4898.84 12198.00 149
IU-MVS98.51 4686.66 15296.83 16772.74 33195.83 11393.00 7699.29 6798.64 98
test_241102_TWO98.10 4991.95 9297.54 3797.25 7995.37 2899.35 5993.29 6399.25 7598.49 112
test_241102_ONE98.51 4686.97 14398.10 4991.85 9897.63 3297.03 9296.48 1198.95 122
9.1494.81 9497.49 11694.11 12598.37 1787.56 20395.38 13196.03 15794.66 5699.08 9990.70 12898.97 109
save fliter97.46 11988.05 12292.04 19297.08 14787.63 200
test_0728_THIRD93.26 6897.40 4697.35 7494.69 5599.34 6293.88 3499.42 4798.89 69
test072698.51 4686.69 15095.34 7798.18 3691.85 9897.63 3297.37 6895.58 22
GSMVS94.75 292
test_part298.21 7089.41 9496.72 71
sam_mvs166.64 32594.75 292
sam_mvs66.41 326
MTGPAbinary97.62 102
test_post190.21 2505.85 37265.36 33196.00 31579.61 292
test_post6.07 37165.74 33095.84 317
patchmatchnet-post91.71 30066.22 32897.59 260
MTMP94.82 9854.62 374
gm-plane-assit87.08 36159.33 36871.22 33783.58 35897.20 27973.95 328
test9_res88.16 19198.40 16597.83 170
TEST996.45 17089.46 9190.60 23896.92 15879.09 29590.49 26694.39 23191.31 13198.88 129
test_896.37 17289.14 9890.51 24196.89 16179.37 29090.42 26894.36 23391.20 13798.82 139
agg_prior287.06 21098.36 17697.98 153
agg_prior96.20 18988.89 10396.88 16290.21 27198.78 150
test_prior489.91 8390.74 234
test_prior290.21 25089.33 16390.77 26194.81 21690.41 15488.21 18798.55 151
旧先验290.00 25968.65 34892.71 22396.52 29985.15 233
新几何290.02 258
旧先验196.20 18984.17 19294.82 24395.57 18289.57 16897.89 21996.32 243
无先验89.94 26095.75 21570.81 34198.59 18081.17 27694.81 289
原ACMM289.34 276
test22296.95 14085.27 17988.83 28793.61 26765.09 35890.74 26394.85 21584.62 22897.36 24093.91 312
testdata298.03 22680.24 283
segment_acmp92.14 110
testdata188.96 28588.44 182
plane_prior797.71 10188.68 107
plane_prior697.21 13088.23 11886.93 204
plane_prior597.81 9098.95 12289.26 16998.51 15898.60 105
plane_prior495.59 178
plane_prior388.43 11690.35 14593.31 200
plane_prior294.56 11091.74 109
plane_prior197.38 122
plane_prior88.12 12093.01 15188.98 16998.06 208
n20.00 379
nn0.00 379
door-mid92.13 298
test1196.65 178
door91.26 306
HQP5-MVS84.89 182
HQP-NCC96.36 17491.37 21987.16 20788.81 297
ACMP_Plane96.36 17491.37 21987.16 20788.81 297
BP-MVS86.55 218
HQP4-MVS88.81 29798.61 17698.15 135
HQP3-MVS97.31 13097.73 224
HQP2-MVS84.76 226
NP-MVS96.82 14887.10 13993.40 262
MDTV_nov1_ep13_2view42.48 37488.45 29567.22 35383.56 34266.80 32272.86 33594.06 307
MDTV_nov1_ep1383.88 30389.42 34661.52 36788.74 29087.41 32973.99 32484.96 33394.01 24565.25 33295.53 32078.02 30293.16 324
ACMMP++_ref98.82 127
ACMMP++99.25 75
Test By Simon90.61 150