This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5398.46 2794.62 5998.84 12794.64 2199.53 3698.99 55
Effi-MVS+-dtu93.90 12692.60 16097.77 394.74 26096.67 594.00 13895.41 23089.94 14891.93 25492.13 30290.12 15398.97 10987.68 20697.48 23297.67 185
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3596.95 1495.46 13199.23 493.45 7699.57 1495.34 1799.89 299.63 9
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9392.59 7695.47 12996.68 13294.50 6299.42 3293.10 7099.26 7898.99 55
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10287.68 19998.45 1898.77 1594.20 6799.50 2196.70 399.40 5599.53 15
RPSCF95.58 6694.89 9797.62 797.58 11896.30 795.97 6697.53 10992.42 7893.41 20097.78 5691.21 13097.77 24691.06 11997.06 24498.80 82
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1894.96 3697.30 5197.93 4896.05 1697.90 22989.32 16799.23 8298.19 133
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10794.85 5399.42 3293.49 4998.84 12698.00 148
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5695.17 3596.82 7296.73 12995.09 4499.43 3192.99 7598.71 14398.50 112
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5392.67 7595.08 15296.39 15094.77 5599.42 3293.17 6899.44 4898.58 109
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9192.73 7293.48 19996.72 13094.23 6699.42 3291.99 9799.29 7099.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSP-MVS95.34 7794.63 10997.48 1498.67 3394.05 2396.41 4398.18 3791.26 12095.12 14895.15 21186.60 20399.50 2193.43 5896.81 25698.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10094.46 4496.29 9396.94 11293.56 7399.37 5694.29 2899.42 5098.99 55
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17496.49 14094.56 6099.39 4893.57 4599.05 10298.93 64
X-MVStestdata90.70 20188.45 24697.44 1698.56 4293.99 2696.50 3697.95 7594.58 4194.38 17426.89 37594.56 6099.39 4893.57 4599.05 10298.93 64
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2391.40 11895.76 11896.87 11795.26 3599.45 2692.77 7899.21 8699.00 53
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3792.26 8596.33 8996.84 12095.10 4399.40 4593.47 5299.33 6299.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7392.35 8295.57 12796.61 13694.93 5199.41 3893.78 3999.15 9499.00 53
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4193.11 6996.48 8497.36 8296.92 699.34 6194.31 2799.38 5798.92 68
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7392.26 8595.28 14196.57 13895.02 4799.41 3893.63 4399.11 9798.94 63
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 9893.38 6495.89 11497.23 9393.35 8197.66 25488.20 19398.66 15197.79 175
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1392.35 8295.95 10996.41 14596.71 899.42 3293.99 3499.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2795.51 3496.99 6697.05 10695.63 2299.39 4893.31 6198.88 12198.75 87
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16896.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10287.57 20198.80 798.90 996.50 999.59 1396.15 799.47 4199.40 21
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2096.69 1796.86 7097.56 6795.48 2698.77 14490.11 15199.44 4898.31 125
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11686.96 21098.71 1098.72 1795.36 3199.56 1795.92 899.45 4599.32 27
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4491.74 10995.34 13796.36 15395.68 2099.44 2894.41 2599.28 7598.97 60
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7092.35 8295.63 12596.47 14195.37 2999.27 7293.78 3999.14 9598.48 115
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 11888.98 16998.26 2198.86 1093.35 8199.60 996.41 499.45 4599.66 6
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6792.08 9095.74 12096.28 15995.22 3799.42 3293.17 6899.06 9998.88 73
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6490.82 13197.15 5696.85 11896.25 1499.00 10493.10 7099.33 6298.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6794.15 4898.93 399.07 588.07 17599.57 1495.86 999.69 1499.46 18
LS3D96.11 4795.83 6296.95 3694.75 25994.20 1997.34 1397.98 7097.31 1195.32 13896.77 12293.08 9199.20 7891.79 10498.16 19697.44 200
HPM-MVS++copyleft95.02 8894.39 11296.91 3797.88 9793.58 3794.09 13696.99 15291.05 12692.40 24095.22 21091.03 13799.25 7392.11 9298.69 14697.90 161
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2791.78 10597.07 5997.22 9596.38 1299.28 7092.07 9599.59 2899.11 44
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6793.34 6596.64 7996.57 13894.99 4999.36 5793.48 5199.34 6098.82 78
Skip Steuart: Steuart Systems R&D Blog.
XVG-ACMP-BASELINE95.68 6295.34 8096.69 4198.40 6193.04 4194.54 12398.05 5990.45 14196.31 9196.76 12492.91 9698.72 15091.19 11799.42 5098.32 123
EGC-MVSNET80.97 33175.73 34296.67 4298.85 2494.55 1596.83 2396.60 1782.44 3775.32 37898.25 3392.24 10898.02 22091.85 10299.21 8697.45 198
CPTT-MVS94.74 9894.12 12196.60 4398.15 7893.01 4295.84 7197.66 9789.21 16693.28 20695.46 19888.89 16698.98 10589.80 15898.82 13297.80 174
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15798.32 2087.89 19296.86 7097.38 7895.55 2599.39 4895.47 1399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13098.08 5389.46 15896.61 8196.47 14195.85 1899.12 8990.45 13499.56 3498.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR95.38 7595.00 9596.51 4698.10 8194.07 2092.46 18398.13 4690.69 13493.75 19196.25 16298.03 297.02 28192.08 9495.55 28398.45 117
XVG-OURS94.72 9994.12 12196.50 4798.00 9194.23 1891.48 22198.17 4190.72 13395.30 13996.47 14187.94 17996.98 28291.41 11597.61 22898.30 126
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6490.42 14296.37 8797.35 8595.68 2099.25 7394.44 2499.34 6098.80 82
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9086.48 21397.42 4897.51 7294.47 6499.29 6893.55 4799.29 7098.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CS-MVS95.77 5895.58 7196.37 5096.84 15291.72 6196.73 2999.06 594.23 4692.48 23594.79 22893.56 7399.49 2493.47 5299.05 10297.89 163
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11591.25 12297.49 4298.14 3583.49 22499.45 2695.52 1199.66 2199.36 24
DeepPCF-MVS90.46 694.20 11993.56 13796.14 5295.96 21392.96 4389.48 27597.46 11385.14 23696.23 9895.42 20193.19 8698.08 21490.37 13898.76 13997.38 207
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15590.79 7396.30 5497.82 8596.13 2694.74 16597.23 9391.33 12599.16 8193.25 6598.30 18298.46 116
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17597.33 12690.05 14796.77 7596.85 11895.04 4598.56 17592.77 7899.06 9998.70 95
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
RRT_MVS95.41 7495.20 8896.05 5598.86 2288.92 10197.49 1194.48 25293.12 6897.94 2698.54 2281.19 25599.63 695.48 1299.69 1499.60 12
AllTest94.88 9494.51 11196.00 5698.02 8992.17 5095.26 9398.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
TestCases96.00 5698.02 8992.17 5098.43 1490.48 13995.04 15396.74 12792.54 10597.86 23785.11 24398.98 10997.98 152
CS-MVS-test95.32 7895.10 9295.96 5896.86 15190.75 7496.33 4799.20 293.99 5091.03 26793.73 26493.52 7599.55 1891.81 10399.45 4597.58 189
PHI-MVS94.34 11293.80 12695.95 5995.65 23091.67 6294.82 10997.86 8087.86 19393.04 21794.16 24991.58 12098.78 14190.27 14498.96 11597.41 201
F-COLMAP92.28 17291.06 19595.95 5997.52 12191.90 5693.53 15197.18 13783.98 24988.70 30894.04 25288.41 17098.55 17780.17 29195.99 27497.39 205
ITE_SJBPF95.95 5997.34 13093.36 4096.55 18491.93 9494.82 16195.39 20591.99 11397.08 27985.53 23697.96 21197.41 201
APDe-MVS96.46 3196.64 2195.93 6297.68 11289.38 9596.90 2298.41 1692.52 7797.43 4697.92 5195.11 4299.50 2194.45 2399.30 6798.92 68
APD-MVScopyleft95.00 8994.69 10595.93 6297.38 12890.88 7194.59 11697.81 8689.22 16595.46 13196.17 16793.42 7999.34 6189.30 16998.87 12497.56 192
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2392.37 8097.75 3196.95 11195.14 3999.51 2091.74 10599.28 7598.41 119
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
No_MVS95.90 6596.54 16889.57 8896.87 16299.41 3894.06 3299.30 6798.72 92
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11295.57 8497.88 7988.72 17598.81 698.86 1090.77 13999.60 995.43 1599.53 3699.57 14
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10196.36 8896.68 13294.37 6599.32 6792.41 8899.05 10298.64 103
OMC-MVS94.22 11893.69 13195.81 6997.25 13291.27 6492.27 19497.40 11787.10 20994.56 16995.42 20193.74 7198.11 21386.62 22298.85 12598.06 140
UniMVSNet (Re)95.32 7895.15 8995.80 7097.79 10288.91 10292.91 16598.07 5693.46 6296.31 9195.97 17590.14 15299.34 6192.11 9299.64 2499.16 38
UniMVSNet_NR-MVSNet95.35 7695.21 8695.76 7197.69 11188.59 10992.26 19597.84 8394.91 3896.80 7395.78 18590.42 14899.41 3891.60 11099.58 3299.29 29
DU-MVS95.28 8295.12 9195.75 7297.75 10488.59 10992.58 17797.81 8693.99 5096.80 7395.90 17690.10 15599.41 3891.60 11099.58 3299.26 30
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16293.73 5797.87 2798.49 2690.73 14399.05 9786.43 22899.60 2699.10 47
DeepC-MVS91.39 495.43 7195.33 8195.71 7497.67 11390.17 8093.86 14398.02 6687.35 20396.22 9997.99 4694.48 6399.05 9792.73 8199.68 1897.93 158
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NCCC94.08 12293.54 13895.70 7596.49 17389.90 8392.39 18896.91 15990.64 13692.33 24694.60 23590.58 14798.96 11090.21 14897.70 22398.23 129
nrg03096.32 4096.55 2595.62 7697.83 9988.55 11195.77 7498.29 2692.68 7398.03 2597.91 5295.13 4098.95 11293.85 3799.49 4099.36 24
h-mvs3392.89 15191.99 17295.58 7796.97 14390.55 7693.94 14194.01 26489.23 16393.95 18696.19 16476.88 29099.14 8491.02 12095.71 28097.04 218
TSAR-MVS + MP.94.96 9194.75 10295.57 7898.86 2288.69 10596.37 4496.81 16685.23 23394.75 16497.12 10291.85 11699.40 4593.45 5498.33 17998.62 106
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3292.36 8194.11 17798.07 4192.02 11299.44 2893.38 6097.67 22597.85 168
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12693.75 14697.86 8095.96 3197.48 4497.14 10195.33 3299.44 2890.79 12699.76 1099.38 22
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2297.52 7096.90 798.62 16790.30 14299.60 2698.72 92
CNVR-MVS94.58 10494.29 11595.46 8296.94 14589.35 9691.81 21596.80 16789.66 15493.90 18995.44 20092.80 10098.72 15092.74 8098.52 16298.32 123
hse-mvs292.24 17491.20 19195.38 8396.16 19890.65 7592.52 17992.01 30389.23 16393.95 18692.99 28276.88 29098.69 15991.02 12096.03 27296.81 227
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 12997.70 897.54 10798.16 298.94 299.33 297.84 499.08 9290.73 12899.73 1399.59 13
train_agg92.71 15991.83 17795.35 8496.45 17589.46 9090.60 24296.92 15779.37 28990.49 27394.39 24191.20 13198.88 11988.66 18998.43 16897.72 181
v7n96.82 997.31 1095.33 8698.54 4886.81 14396.83 2398.07 5696.59 2098.46 1798.43 2992.91 9699.52 1996.25 699.76 1099.65 8
PM-MVS93.33 13692.67 15895.33 8696.58 16494.06 2192.26 19592.18 29685.92 22396.22 9996.61 13685.64 21495.99 31290.35 13998.23 18995.93 261
AUN-MVS90.05 22788.30 25095.32 8896.09 20390.52 7792.42 18692.05 30282.08 27188.45 31292.86 28465.76 33598.69 15988.91 18396.07 27196.75 231
NR-MVSNet95.28 8295.28 8495.26 8997.75 10487.21 13395.08 10097.37 11893.92 5597.65 3395.90 17690.10 15599.33 6690.11 15199.66 2199.26 30
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15596.78 2798.08 5397.42 998.48 1697.86 5591.76 11899.63 694.23 2999.84 399.66 6
HQP_MVS94.26 11693.93 12395.23 9197.71 10888.12 11894.56 12097.81 8691.74 10993.31 20395.59 19186.93 19698.95 11289.26 17398.51 16498.60 107
CDPH-MVS92.67 16091.83 17795.18 9296.94 14588.46 11490.70 23997.07 14677.38 30492.34 24595.08 21692.67 10398.88 11985.74 23498.57 15798.20 132
OPU-MVS95.15 9396.84 15289.43 9295.21 9495.66 19093.12 8998.06 21586.28 23198.61 15397.95 156
pmmvs696.80 1297.36 995.15 9399.12 887.82 12596.68 3097.86 8096.10 2798.14 2399.28 397.94 398.21 20491.38 11699.69 1499.42 19
TSAR-MVS + GP.93.07 14792.41 16495.06 9595.82 21990.87 7290.97 23292.61 29088.04 18994.61 16893.79 26388.08 17497.81 24189.41 16698.39 17296.50 239
Anonymous2023121196.60 2597.13 1295.00 9697.46 12686.35 15997.11 1998.24 3097.58 898.72 898.97 793.15 8899.15 8293.18 6799.74 1299.50 17
DP-MVS95.62 6395.84 6194.97 9797.16 13788.62 10894.54 12397.64 9896.94 1596.58 8297.32 8893.07 9298.72 15090.45 13498.84 12697.57 190
IS-MVSNet94.49 10794.35 11494.92 9898.25 7386.46 15497.13 1894.31 25596.24 2596.28 9596.36 15382.88 23299.35 5888.19 19499.52 3998.96 61
DROMVSNet95.44 7095.62 6994.89 9996.93 14787.69 12696.48 3899.14 493.93 5392.77 22694.52 23893.95 7099.49 2493.62 4499.22 8597.51 195
test_0728_SECOND94.88 10098.55 4586.72 14695.20 9698.22 3299.38 5493.44 5599.31 6598.53 111
PLCcopyleft85.34 1590.40 21088.92 23894.85 10196.53 17190.02 8191.58 21996.48 18780.16 28186.14 33392.18 30085.73 21198.25 20276.87 32094.61 30996.30 247
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LF4IMVS92.72 15892.02 17194.84 10295.65 23091.99 5492.92 16496.60 17885.08 23992.44 23893.62 26786.80 19996.35 30386.81 21798.25 18796.18 252
MVS_111021_LR93.66 12993.28 14494.80 10396.25 19290.95 6990.21 25595.43 22987.91 19093.74 19394.40 24092.88 9896.38 30190.39 13698.28 18397.07 215
UGNet93.08 14592.50 16294.79 10493.87 28487.99 12195.07 10194.26 25890.64 13687.33 32797.67 6186.89 19898.49 18188.10 19798.71 14397.91 160
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 13995.21 9498.10 5091.95 9297.63 3497.25 9196.48 1099.35 5893.29 6299.29 7097.95 156
TAPA-MVS88.58 1092.49 16591.75 17994.73 10696.50 17289.69 8692.91 16597.68 9678.02 30292.79 22594.10 25090.85 13897.96 22684.76 24998.16 19696.54 234
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14795.20 9697.00 15091.85 9897.40 4997.35 8595.58 2399.34 6193.44 5599.31 6598.13 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DVP-MVS++95.93 5296.34 3494.70 10896.54 16886.66 14998.45 498.22 3293.26 6697.54 3897.36 8293.12 8999.38 5493.88 3598.68 14798.04 143
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18496.51 3597.94 7898.14 398.67 1298.32 3195.04 4599.69 293.27 6499.82 799.62 10
MAR-MVS90.32 21788.87 24194.66 11094.82 25491.85 5794.22 13194.75 24680.91 27587.52 32588.07 34986.63 20297.87 23676.67 32196.21 27094.25 310
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bld_raw_dy_0_6494.27 11494.15 12094.65 11198.55 4586.28 16195.80 7395.55 22588.41 18397.09 5898.08 4078.69 26998.87 12395.63 1099.53 3698.81 80
EI-MVSNet-Vis-set94.36 11094.28 11694.61 11292.55 30685.98 16792.44 18494.69 24893.70 5896.12 10595.81 18191.24 12898.86 12493.76 4298.22 19198.98 59
test_prior94.61 11295.95 21487.23 13297.36 12398.68 16197.93 158
PEN-MVS96.69 2097.39 894.61 11299.16 484.50 18596.54 3498.05 5998.06 498.64 1398.25 3395.01 4899.65 392.95 7699.83 599.68 4
DeepC-MVS_fast89.96 793.73 12893.44 14094.60 11596.14 20087.90 12293.36 15697.14 14085.53 23093.90 18995.45 19991.30 12798.59 17289.51 16498.62 15297.31 210
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EI-MVSNet-UG-set94.35 11194.27 11894.59 11692.46 30785.87 17092.42 18694.69 24893.67 6196.13 10495.84 18091.20 13198.86 12493.78 3998.23 18999.03 51
EPP-MVSNet93.91 12593.68 13294.59 11698.08 8285.55 17597.44 1294.03 26194.22 4794.94 15696.19 16482.07 24499.57 1487.28 21298.89 11998.65 98
Fast-Effi-MVS+-dtu92.77 15792.16 16794.58 11894.66 26588.25 11692.05 20096.65 17689.62 15590.08 28291.23 31492.56 10498.60 17086.30 23096.27 26996.90 223
CSCG94.69 10094.75 10294.52 11997.55 12087.87 12395.01 10497.57 10592.68 7396.20 10193.44 27291.92 11598.78 14189.11 17899.24 8196.92 222
Anonymous2024052995.50 6895.83 6294.50 12097.33 13185.93 16895.19 9896.77 17096.64 1997.61 3798.05 4293.23 8598.79 13888.60 19099.04 10798.78 84
alignmvs93.26 13992.85 15194.50 12095.70 22687.45 12893.45 15495.76 21391.58 11495.25 14492.42 29881.96 24698.72 15091.61 10997.87 21697.33 209
PS-CasMVS96.69 2097.43 594.49 12299.13 684.09 19396.61 3297.97 7297.91 598.64 1398.13 3795.24 3699.65 393.39 5999.84 399.72 2
3Dnovator92.54 394.80 9794.90 9694.47 12395.47 23787.06 13696.63 3197.28 13291.82 10494.34 17697.41 7690.60 14698.65 16592.47 8798.11 20097.70 182
EPNet89.80 23388.25 25394.45 12483.91 37686.18 16393.87 14287.07 33591.16 12580.64 36494.72 23078.83 26798.89 11885.17 23898.89 11998.28 127
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test1294.43 12595.95 21486.75 14596.24 19689.76 29189.79 16098.79 13897.95 21297.75 180
VDD-MVS94.37 10994.37 11394.40 12697.49 12386.07 16693.97 14093.28 27594.49 4396.24 9797.78 5687.99 17898.79 13888.92 18299.14 9598.34 122
CP-MVSNet96.19 4596.80 1694.38 12798.99 1683.82 19696.31 5097.53 10997.60 798.34 1997.52 7091.98 11499.63 693.08 7299.81 899.70 3
canonicalmvs94.59 10394.69 10594.30 12895.60 23487.03 13895.59 8198.24 3091.56 11595.21 14792.04 30494.95 5098.66 16391.45 11497.57 22997.20 213
test_040295.73 6096.22 4094.26 12998.19 7685.77 17293.24 15897.24 13496.88 1697.69 3297.77 5894.12 6899.13 8691.54 11399.29 7097.88 164
MVS_111021_HR93.63 13093.42 14194.26 12996.65 15986.96 14189.30 28196.23 19788.36 18593.57 19794.60 23593.45 7697.77 24690.23 14798.38 17398.03 146
GeoE94.55 10594.68 10794.15 13197.23 13385.11 18094.14 13497.34 12588.71 17695.26 14295.50 19694.65 5899.12 8990.94 12398.40 16998.23 129
EG-PatchMatch MVS94.54 10694.67 10894.14 13297.87 9886.50 15192.00 20396.74 17288.16 18896.93 6897.61 6493.04 9397.90 22991.60 11098.12 19998.03 146
MCST-MVS92.91 15092.51 16194.10 13397.52 12185.72 17391.36 22597.13 14280.33 28092.91 22294.24 24591.23 12998.72 15089.99 15597.93 21397.86 166
ACMH88.36 1296.59 2797.43 594.07 13498.56 4285.33 17896.33 4798.30 2394.66 4098.72 898.30 3297.51 598.00 22294.87 1899.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs-eth3d91.54 18690.73 20393.99 13595.76 22487.86 12490.83 23593.98 26578.23 30194.02 18496.22 16382.62 23996.83 28886.57 22398.33 17997.29 211
SixPastTwentyTwo94.91 9295.21 8693.98 13698.52 5083.19 20495.93 6794.84 24294.86 3998.49 1598.74 1681.45 24999.60 994.69 2099.39 5699.15 39
GBi-Net93.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
test193.21 14292.96 14893.97 13795.40 23984.29 18695.99 6396.56 18188.63 17795.10 14998.53 2381.31 25198.98 10586.74 21898.38 17398.65 98
FMVSNet194.84 9595.13 9093.97 13797.60 11684.29 18695.99 6396.56 18192.38 7997.03 6398.53 2390.12 15398.98 10588.78 18699.16 9398.65 98
pm-mvs195.43 7195.94 5493.93 14098.38 6385.08 18195.46 8797.12 14391.84 10197.28 5398.46 2795.30 3497.71 25190.17 14999.42 5098.99 55
PMVScopyleft87.21 1494.97 9095.33 8193.91 14198.97 1797.16 295.54 8595.85 21296.47 2293.40 20297.46 7595.31 3395.47 32086.18 23298.78 13789.11 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HQP-MVS92.09 17691.49 18593.88 14296.36 17984.89 18291.37 22297.31 12787.16 20688.81 30293.40 27384.76 21798.60 17086.55 22597.73 22098.14 137
lessismore_v093.87 14398.05 8583.77 19780.32 36897.13 5797.91 5277.49 28099.11 9192.62 8498.08 20398.74 90
tt080595.42 7395.93 5693.86 14498.75 3288.47 11397.68 994.29 25696.48 2195.38 13393.63 26694.89 5297.94 22895.38 1696.92 25295.17 284
N_pmnet88.90 25287.25 27393.83 14594.40 27293.81 3584.73 34287.09 33479.36 29193.26 20892.43 29779.29 26591.68 35277.50 31697.22 24096.00 258
Gipumacopyleft95.31 8195.80 6493.81 14697.99 9490.91 7096.42 4297.95 7596.69 1791.78 25598.85 1291.77 11795.49 31991.72 10699.08 9895.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ETV-MVS92.99 14892.74 15493.72 14795.86 21886.30 16092.33 19097.84 8391.70 11292.81 22486.17 36092.22 10999.19 7988.03 20097.73 22095.66 275
K. test v393.37 13593.27 14593.66 14898.05 8582.62 21094.35 12686.62 33796.05 2997.51 4198.85 1276.59 29499.65 393.21 6698.20 19498.73 91
FC-MVSNet-test95.32 7895.88 5893.62 14998.49 5881.77 21995.90 6998.32 2093.93 5397.53 4097.56 6788.48 16899.40 4592.91 7799.83 599.68 4
DP-MVS Recon92.31 17191.88 17593.60 15097.18 13686.87 14291.10 23097.37 11884.92 24292.08 25194.08 25188.59 16798.20 20583.50 25798.14 19895.73 270
VPA-MVSNet95.14 8695.67 6893.58 15197.76 10383.15 20594.58 11897.58 10493.39 6397.05 6298.04 4393.25 8498.51 18089.75 16199.59 2899.08 48
FIs94.90 9395.35 7993.55 15298.28 6981.76 22095.33 9098.14 4593.05 7197.07 5997.18 9887.65 18299.29 6891.72 10699.69 1499.61 11
SD-MVS95.19 8595.73 6693.55 15296.62 16388.88 10494.67 11398.05 5991.26 12097.25 5596.40 14695.42 2794.36 33692.72 8299.19 8897.40 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MVP-Stereo90.07 22688.92 23893.54 15496.31 18686.49 15290.93 23395.59 22279.80 28291.48 25895.59 19180.79 25697.39 26978.57 30891.19 34996.76 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15596.25 19283.23 20292.66 17498.19 3593.06 7097.49 4297.15 10094.78 5498.71 15692.27 9098.72 14298.65 98
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet89.55 23488.22 25693.53 15595.37 24286.49 15289.26 28293.59 26879.76 28491.15 26592.31 29977.12 28598.38 19077.51 31597.92 21495.71 271
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet92.38 16991.99 17293.52 15793.82 28683.46 19991.14 22897.00 15089.81 15186.47 33194.04 25287.90 18099.21 7689.50 16598.27 18497.90 161
TAMVS90.16 22189.05 23493.49 15896.49 17386.37 15790.34 25292.55 29180.84 27892.99 21894.57 23781.94 24798.20 20573.51 33798.21 19295.90 264
MVS_030490.96 19690.15 21793.37 15993.17 29587.06 13693.62 15092.43 29489.60 15682.25 35695.50 19682.56 24097.83 24084.41 25397.83 21895.22 283
PCF-MVS84.52 1789.12 24287.71 26593.34 16096.06 20585.84 17186.58 33197.31 12768.46 35593.61 19693.89 26087.51 18598.52 17967.85 36098.11 20095.66 275
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet94.03 12394.27 11893.31 16198.87 2182.36 21495.51 8691.78 30597.19 1296.32 9098.60 1984.24 22098.75 14587.09 21598.83 13198.81 80
EIA-MVS92.35 17092.03 17093.30 16295.81 22183.97 19492.80 16898.17 4187.71 19789.79 29087.56 35091.17 13499.18 8087.97 20197.27 23896.77 229
CNLPA91.72 18291.20 19193.26 16396.17 19791.02 6791.14 22895.55 22590.16 14690.87 26893.56 27086.31 20594.40 33579.92 29797.12 24294.37 307
QAPM92.88 15292.77 15293.22 16495.82 21983.31 20096.45 3997.35 12483.91 25093.75 19196.77 12289.25 16498.88 11984.56 25197.02 24697.49 196
新几何193.17 16597.16 13787.29 13094.43 25367.95 35691.29 26194.94 22186.97 19598.23 20381.06 28397.75 21993.98 316
LCM-MVSNet-Re94.20 11994.58 11093.04 16695.91 21683.13 20693.79 14599.19 392.00 9198.84 598.04 4393.64 7299.02 10281.28 27998.54 16096.96 221
CLD-MVS91.82 17991.41 18793.04 16696.37 17783.65 19886.82 32397.29 13084.65 24692.27 24789.67 33592.20 11097.85 23983.95 25599.47 4197.62 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ambc92.98 16896.88 14983.01 20895.92 6896.38 19196.41 8697.48 7488.26 17197.80 24289.96 15698.93 11898.12 139
V4293.43 13493.58 13592.97 16995.34 24381.22 22992.67 17396.49 18687.25 20596.20 10196.37 15287.32 18898.85 12692.39 8998.21 19298.85 77
TransMVSNet (Re)95.27 8496.04 5192.97 16998.37 6581.92 21895.07 10196.76 17193.97 5297.77 3098.57 2095.72 1997.90 22988.89 18499.23 8299.08 48
iter_conf_final90.23 21989.32 23092.95 17194.65 26681.46 22594.32 12995.40 23285.61 22992.84 22395.37 20754.58 36799.13 8692.16 9198.94 11798.25 128
FMVSNet292.78 15692.73 15692.95 17195.40 23981.98 21794.18 13295.53 22788.63 17796.05 10797.37 7981.31 25198.81 13487.38 21198.67 14998.06 140
Effi-MVS+92.79 15592.74 15492.94 17395.10 24783.30 20194.00 13897.53 10991.36 11989.35 29690.65 32694.01 6998.66 16387.40 21095.30 29296.88 225
PVSNet_Blended_VisFu91.63 18491.20 19192.94 17397.73 10783.95 19592.14 19897.46 11378.85 29892.35 24394.98 21984.16 22199.08 9286.36 22996.77 25895.79 268
v1094.68 10195.27 8592.90 17596.57 16580.15 23994.65 11597.57 10590.68 13597.43 4698.00 4588.18 17299.15 8294.84 1999.55 3599.41 20
原ACMM192.87 17696.91 14884.22 18997.01 14976.84 31089.64 29394.46 23988.00 17798.70 15781.53 27798.01 20995.70 273
casdiffmvspermissive94.32 11394.80 10092.85 17796.05 20681.44 22692.35 18998.05 5991.53 11695.75 11996.80 12193.35 8198.49 18191.01 12298.32 18198.64 103
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous20240521192.58 16292.50 16292.83 17896.55 16783.22 20392.43 18591.64 30794.10 4995.59 12696.64 13481.88 24897.50 26085.12 24298.52 16297.77 177
WR-MVS93.49 13293.72 12992.80 17997.57 11980.03 24590.14 25895.68 21693.70 5896.62 8095.39 20587.21 19099.04 10087.50 20799.64 2499.33 26
v894.65 10295.29 8392.74 18096.65 15979.77 25494.59 11697.17 13891.86 9797.47 4597.93 4888.16 17399.08 9294.32 2699.47 4199.38 22
pmmvs488.95 25087.70 26692.70 18194.30 27385.60 17487.22 31392.16 29874.62 32089.75 29294.19 24777.97 27796.41 29982.71 26496.36 26896.09 254
OpenMVScopyleft89.45 892.27 17392.13 16992.68 18294.53 26984.10 19295.70 7697.03 14882.44 26891.14 26696.42 14488.47 16998.38 19085.95 23397.47 23395.55 279
baseline94.26 11694.80 10092.64 18396.08 20480.99 23293.69 14898.04 6390.80 13294.89 15996.32 15593.19 8698.48 18591.68 10898.51 16498.43 118
PatchMatch-RL89.18 24088.02 26292.64 18395.90 21792.87 4588.67 29791.06 31080.34 27990.03 28491.67 30983.34 22694.42 33476.35 32494.84 30390.64 353
114514_t90.51 20689.80 22492.63 18598.00 9182.24 21593.40 15597.29 13065.84 36289.40 29594.80 22786.99 19498.75 14583.88 25698.61 15396.89 224
v119293.49 13293.78 12792.62 18696.16 19879.62 25691.83 21497.22 13686.07 22096.10 10696.38 15187.22 18999.02 10294.14 3198.88 12199.22 33
Baseline_NR-MVSNet94.47 10895.09 9392.60 18798.50 5780.82 23592.08 19996.68 17493.82 5696.29 9398.56 2190.10 15597.75 24990.10 15399.66 2199.24 32
v114493.50 13193.81 12592.57 18896.28 18879.61 25791.86 21396.96 15386.95 21195.91 11296.32 15587.65 18298.96 11093.51 4898.88 12199.13 41
tttt051789.81 23288.90 24092.55 18997.00 14279.73 25595.03 10383.65 35989.88 15095.30 13994.79 22853.64 37099.39 4891.99 9798.79 13698.54 110
Fast-Effi-MVS+91.28 19390.86 19892.53 19095.45 23882.53 21189.25 28496.52 18585.00 24089.91 28688.55 34692.94 9498.84 12784.72 25095.44 28796.22 250
tfpnnormal94.27 11494.87 9892.48 19197.71 10880.88 23494.55 12295.41 23093.70 5896.67 7897.72 5991.40 12498.18 20887.45 20899.18 9098.36 121
AdaColmapbinary91.63 18491.36 18892.47 19295.56 23586.36 15892.24 19796.27 19488.88 17389.90 28792.69 29091.65 11998.32 19577.38 31797.64 22692.72 339
test_fmvs392.42 16792.40 16592.46 19393.80 28787.28 13193.86 14397.05 14776.86 30996.25 9698.66 1882.87 23391.26 35495.44 1496.83 25598.82 78
v2v48293.29 13793.63 13392.29 19496.35 18278.82 27391.77 21796.28 19388.45 18195.70 12496.26 16186.02 20998.90 11693.02 7398.81 13499.14 40
IterMVS-LS93.78 12794.28 11692.27 19596.27 18979.21 26791.87 21196.78 16891.77 10796.57 8397.07 10487.15 19198.74 14891.99 9799.03 10898.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test87.19 28785.51 29892.24 19697.12 14080.51 23685.03 34096.06 20466.11 36191.66 25792.98 28370.12 31599.14 8475.29 32995.23 29497.07 215
thisisatest053088.69 25887.52 26892.20 19796.33 18479.36 26292.81 16784.01 35886.44 21493.67 19492.68 29153.62 37199.25 7389.65 16398.45 16798.00 148
KD-MVS_self_test94.10 12194.73 10492.19 19897.66 11479.49 26094.86 10897.12 14389.59 15796.87 6997.65 6290.40 15098.34 19489.08 17999.35 5998.75 87
v192192093.26 13993.61 13492.19 19896.04 21078.31 27991.88 21097.24 13485.17 23596.19 10396.19 16486.76 20099.05 9794.18 3098.84 12699.22 33
EI-MVSNet92.99 14893.26 14692.19 19892.12 31479.21 26792.32 19194.67 25091.77 10795.24 14595.85 17887.14 19298.49 18191.99 9798.26 18598.86 74
DPM-MVS89.35 23888.40 24792.18 20196.13 20284.20 19086.96 31896.15 20375.40 31787.36 32691.55 31283.30 22798.01 22182.17 27296.62 26294.32 309
v14419293.20 14493.54 13892.16 20296.05 20678.26 28091.95 20497.14 14084.98 24195.96 10896.11 16887.08 19399.04 10093.79 3898.84 12699.17 37
FMVSNet390.78 19990.32 21392.16 20293.03 30079.92 24992.54 17894.95 23986.17 21995.10 14996.01 17369.97 31698.75 14586.74 21898.38 17397.82 172
CMPMVSbinary68.83 2287.28 28385.67 29792.09 20488.77 35785.42 17790.31 25394.38 25470.02 34988.00 31893.30 27573.78 30494.03 34075.96 32796.54 26496.83 226
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
v124093.29 13793.71 13092.06 20596.01 21177.89 28591.81 21597.37 11885.12 23796.69 7796.40 14686.67 20199.07 9694.51 2298.76 13999.22 33
MVSFormer92.18 17592.23 16692.04 20694.74 26080.06 24397.15 1597.37 11888.98 16988.83 30092.79 28777.02 28799.60 996.41 496.75 25996.46 241
IterMVS-SCA-FT91.65 18391.55 18191.94 20793.89 28379.22 26687.56 30793.51 27191.53 11695.37 13596.62 13578.65 27098.90 11691.89 10194.95 29997.70 182
CANet_DTU89.85 23189.17 23291.87 20892.20 31280.02 24690.79 23695.87 21186.02 22182.53 35591.77 30780.01 26098.57 17485.66 23597.70 22397.01 219
mvsany_test389.11 24388.21 25791.83 20991.30 32990.25 7988.09 30178.76 37176.37 31296.43 8598.39 3083.79 22390.43 35986.57 22394.20 31794.80 296
LFMVS91.33 19191.16 19491.82 21096.27 18979.36 26295.01 10485.61 34796.04 3094.82 16197.06 10572.03 31098.46 18684.96 24698.70 14597.65 186
ET-MVSNet_ETH3D86.15 29684.27 30691.79 21193.04 29981.28 22787.17 31586.14 34079.57 28783.65 34788.66 34457.10 36298.18 20887.74 20595.40 28895.90 264
VNet92.67 16092.96 14891.79 21196.27 18980.15 23991.95 20494.98 23892.19 8894.52 17196.07 17087.43 18697.39 26984.83 24798.38 17397.83 170
ab-mvs92.40 16892.62 15991.74 21397.02 14181.65 22195.84 7195.50 22886.95 21192.95 22197.56 6790.70 14497.50 26079.63 29897.43 23496.06 256
DELS-MVS92.05 17792.16 16791.72 21494.44 27080.13 24187.62 30497.25 13387.34 20492.22 24893.18 27989.54 16298.73 14989.67 16298.20 19496.30 247
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-292.46 16692.72 15791.71 21596.65 15978.91 27188.85 29097.17 13883.89 25192.45 23796.76 12489.86 15997.09 27890.24 14698.59 15599.12 43
jason89.17 24188.32 24991.70 21695.73 22580.07 24288.10 30093.22 27671.98 33690.09 28192.79 28778.53 27398.56 17587.43 20997.06 24496.46 241
jason: jason.
FA-MVS(test-final)91.81 18091.85 17691.68 21794.95 25079.99 24796.00 6293.44 27387.80 19494.02 18497.29 8977.60 27998.45 18788.04 19997.49 23196.61 233
PAPM_NR91.03 19590.81 20091.68 21796.73 15781.10 23193.72 14796.35 19288.19 18788.77 30692.12 30385.09 21697.25 27382.40 26993.90 32096.68 232
v14892.87 15393.29 14291.62 21996.25 19277.72 28891.28 22695.05 23689.69 15395.93 11196.04 17187.34 18798.38 19090.05 15497.99 21098.78 84
FMVSNet587.82 27086.56 28791.62 21992.31 30879.81 25393.49 15294.81 24583.26 25491.36 26096.93 11352.77 37297.49 26276.07 32598.03 20797.55 193
MDA-MVSNet-bldmvs91.04 19490.88 19791.55 22194.68 26480.16 23885.49 33692.14 29990.41 14394.93 15795.79 18285.10 21596.93 28585.15 24094.19 31997.57 190
PVSNet_BlendedMVS90.35 21589.96 22091.54 22294.81 25578.80 27590.14 25896.93 15579.43 28888.68 30995.06 21786.27 20698.15 21180.27 28798.04 20697.68 184
test_vis3_rt90.40 21090.03 21991.52 22392.58 30488.95 10090.38 25097.72 9573.30 32897.79 2997.51 7277.05 28687.10 36889.03 18094.89 30098.50 112
iter_conf0588.94 25188.09 26091.50 22492.74 30376.97 30092.80 16895.92 20982.82 26393.65 19595.37 20749.41 37499.13 8690.82 12599.28 7598.40 120
lupinMVS88.34 26387.31 27091.45 22594.74 26080.06 24387.23 31292.27 29571.10 34188.83 30091.15 31577.02 28798.53 17886.67 22196.75 25995.76 269
1112_ss88.42 26187.41 26991.45 22596.69 15880.99 23289.72 27096.72 17373.37 32787.00 32990.69 32477.38 28298.20 20581.38 27893.72 32395.15 286
MSLP-MVS++93.25 14193.88 12491.37 22796.34 18382.81 20993.11 15997.74 9389.37 16194.08 17995.29 20990.40 15096.35 30390.35 13998.25 18794.96 291
FE-MVS89.06 24488.29 25191.36 22894.78 25779.57 25896.77 2890.99 31184.87 24392.96 22096.29 15760.69 35898.80 13780.18 29097.11 24395.71 271
xiu_mvs_v1_base_debu91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
xiu_mvs_v1_base_debi91.47 18891.52 18291.33 22995.69 22781.56 22289.92 26596.05 20683.22 25591.26 26290.74 32191.55 12198.82 12989.29 17095.91 27593.62 326
test_fmvs290.62 20590.40 21191.29 23291.93 31985.46 17692.70 17296.48 18774.44 32194.91 15897.59 6575.52 29790.57 35693.44 5596.56 26397.84 169
test_yl90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
DCV-MVSNet90.11 22389.73 22791.26 23394.09 27879.82 25190.44 24692.65 28790.90 12793.19 21293.30 27573.90 30298.03 21782.23 27096.87 25395.93 261
API-MVS91.52 18791.61 18091.26 23394.16 27586.26 16294.66 11494.82 24391.17 12492.13 25091.08 31790.03 15897.06 28079.09 30597.35 23790.45 354
MSDG90.82 19790.67 20491.26 23394.16 27583.08 20786.63 32896.19 20090.60 13891.94 25391.89 30589.16 16595.75 31480.96 28494.51 31094.95 292
Vis-MVSNet (Re-imp)90.42 20990.16 21491.20 23797.66 11477.32 29394.33 12787.66 33191.20 12392.99 21895.13 21375.40 29898.28 19777.86 31099.19 8897.99 151
JIA-IIPM85.08 30483.04 31391.19 23887.56 36286.14 16489.40 27884.44 35788.98 16982.20 35797.95 4756.82 36496.15 30676.55 32383.45 36791.30 349
diffmvspermissive91.74 18191.93 17491.15 23993.06 29878.17 28188.77 29397.51 11286.28 21692.42 23993.96 25788.04 17697.46 26390.69 13096.67 26197.82 172
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
eth_miper_zixun_eth90.72 20090.61 20591.05 24092.04 31776.84 30286.91 31996.67 17585.21 23494.41 17293.92 25879.53 26398.26 20189.76 16097.02 24698.06 140
testdata91.03 24196.87 15082.01 21694.28 25771.55 33792.46 23695.42 20185.65 21397.38 27182.64 26597.27 23893.70 323
VPNet93.08 14593.76 12891.03 24198.60 3975.83 31591.51 22095.62 21791.84 10195.74 12097.10 10389.31 16398.32 19585.07 24599.06 9998.93 64
MVSTER89.32 23988.75 24291.03 24190.10 34476.62 30590.85 23494.67 25082.27 26995.24 14595.79 18261.09 35698.49 18190.49 13398.26 18597.97 155
c3_l91.32 19291.42 18691.00 24492.29 30976.79 30387.52 31096.42 18985.76 22694.72 16793.89 26082.73 23698.16 21090.93 12498.55 15898.04 143
CHOSEN 1792x268887.19 28785.92 29691.00 24497.13 13979.41 26184.51 34695.60 21864.14 36590.07 28394.81 22578.26 27597.14 27773.34 33895.38 29096.46 241
D2MVS89.93 22989.60 22990.92 24694.03 28078.40 27888.69 29594.85 24178.96 29693.08 21495.09 21574.57 30096.94 28388.19 19498.96 11597.41 201
OpenMVS_ROBcopyleft85.12 1689.52 23689.05 23490.92 24694.58 26881.21 23091.10 23093.41 27477.03 30893.41 20093.99 25683.23 22897.80 24279.93 29594.80 30493.74 322
cl____90.65 20390.56 20790.91 24891.85 32076.98 29986.75 32495.36 23385.53 23094.06 18194.89 22277.36 28497.98 22590.27 14498.98 10997.76 178
DIV-MVS_self_test90.65 20390.56 20790.91 24891.85 32076.99 29886.75 32495.36 23385.52 23294.06 18194.89 22277.37 28397.99 22490.28 14398.97 11397.76 178
XXY-MVS92.58 16293.16 14790.84 25097.75 10479.84 25091.87 21196.22 19985.94 22295.53 12897.68 6092.69 10294.48 33283.21 26097.51 23098.21 131
dcpmvs_293.96 12495.01 9490.82 25197.60 11674.04 32993.68 14998.85 789.80 15297.82 2897.01 11091.14 13599.21 7690.56 13298.59 15599.19 36
RPMNet90.31 21890.14 21890.81 25291.01 33278.93 26992.52 17998.12 4791.91 9589.10 29796.89 11668.84 31899.41 3890.17 14992.70 33794.08 311
Anonymous2024052192.86 15493.57 13690.74 25396.57 16575.50 31794.15 13395.60 21889.38 16095.90 11397.90 5480.39 25997.96 22692.60 8599.68 1898.75 87
miper_ehance_all_eth90.48 20790.42 21090.69 25491.62 32576.57 30686.83 32296.18 20183.38 25394.06 18192.66 29282.20 24298.04 21689.79 15997.02 24697.45 198
Patchmtry90.11 22389.92 22190.66 25590.35 34177.00 29792.96 16392.81 28290.25 14594.74 16596.93 11367.11 32597.52 25985.17 23898.98 10997.46 197
test20.0390.80 19890.85 19990.63 25695.63 23279.24 26589.81 26992.87 28189.90 14994.39 17396.40 14685.77 21095.27 32773.86 33699.05 10297.39 205
cl2289.02 24588.50 24590.59 25789.76 34676.45 30786.62 32994.03 26182.98 26192.65 22992.49 29372.05 30997.53 25888.93 18197.02 24697.78 176
BH-RMVSNet90.47 20890.44 20990.56 25895.21 24678.65 27789.15 28593.94 26688.21 18692.74 22794.22 24686.38 20497.88 23378.67 30795.39 28995.14 287
CL-MVSNet_self_test90.04 22889.90 22290.47 25995.24 24577.81 28686.60 33092.62 28985.64 22893.25 21093.92 25883.84 22296.06 31079.93 29598.03 20797.53 194
ANet_high94.83 9696.28 3790.47 25996.65 15973.16 33494.33 12798.74 1096.39 2498.09 2498.93 893.37 8098.70 15790.38 13799.68 1899.53 15
PVSNet_Blended88.74 25688.16 25990.46 26194.81 25578.80 27586.64 32796.93 15574.67 31988.68 30989.18 34286.27 20698.15 21180.27 28796.00 27394.44 306
MVS_Test92.57 16493.29 14290.40 26293.53 29075.85 31392.52 17996.96 15388.73 17492.35 24396.70 13190.77 13998.37 19392.53 8695.49 28596.99 220
GA-MVS87.70 27186.82 28290.31 26393.27 29377.22 29584.72 34492.79 28485.11 23889.82 28890.07 32766.80 32897.76 24884.56 25194.27 31695.96 259
UnsupCasMVSNet_eth90.33 21690.34 21290.28 26494.64 26780.24 23789.69 27195.88 21085.77 22593.94 18895.69 18981.99 24592.98 34784.21 25491.30 34897.62 187
PAPR87.65 27486.77 28490.27 26592.85 30277.38 29288.56 29896.23 19776.82 31184.98 33989.75 33486.08 20897.16 27672.33 34493.35 32796.26 249
Test_1112_low_res87.50 27986.58 28690.25 26696.80 15677.75 28787.53 30996.25 19569.73 35186.47 33193.61 26875.67 29697.88 23379.95 29393.20 32995.11 288
CR-MVSNet87.89 26787.12 27890.22 26791.01 33278.93 26992.52 17992.81 28273.08 33089.10 29796.93 11367.11 32597.64 25588.80 18592.70 33794.08 311
IterMVS90.18 22090.16 21490.21 26893.15 29675.98 31287.56 30792.97 28086.43 21594.09 17896.40 14678.32 27497.43 26587.87 20394.69 30797.23 212
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2023120688.77 25588.29 25190.20 26996.31 18678.81 27489.56 27493.49 27274.26 32392.38 24195.58 19482.21 24195.43 32272.07 34598.75 14196.34 245
miper_lstm_enhance89.90 23089.80 22490.19 27091.37 32877.50 29083.82 35295.00 23784.84 24493.05 21694.96 22076.53 29595.20 32889.96 15698.67 14997.86 166
miper_enhance_ethall88.42 26187.87 26390.07 27188.67 35875.52 31685.10 33995.59 22275.68 31392.49 23489.45 33878.96 26697.88 23387.86 20497.02 24696.81 227
pmmvs587.87 26887.14 27690.07 27193.26 29476.97 30088.89 28992.18 29673.71 32688.36 31393.89 26076.86 29296.73 29180.32 28696.81 25696.51 236
BH-untuned90.68 20290.90 19690.05 27395.98 21279.57 25890.04 26194.94 24087.91 19094.07 18093.00 28187.76 18197.78 24579.19 30495.17 29592.80 338
ECVR-MVScopyleft90.12 22290.16 21490.00 27497.81 10072.68 33995.76 7578.54 37289.04 16795.36 13698.10 3870.51 31498.64 16687.10 21499.18 9098.67 96
thisisatest051584.72 30682.99 31489.90 27592.96 30175.33 31884.36 34783.42 36077.37 30588.27 31586.65 35553.94 36998.72 15082.56 26697.40 23595.67 274
UnsupCasMVSNet_bld88.50 26088.03 26189.90 27595.52 23678.88 27287.39 31194.02 26379.32 29293.06 21594.02 25480.72 25794.27 33775.16 33093.08 33396.54 234
test_fmvs1_n88.73 25788.38 24889.76 27792.06 31682.53 21192.30 19396.59 18071.14 34092.58 23295.41 20468.55 31989.57 36391.12 11895.66 28197.18 214
test111190.39 21290.61 20589.74 27898.04 8871.50 34595.59 8179.72 37089.41 15995.94 11098.14 3570.79 31398.81 13488.52 19199.32 6498.90 70
TinyColmap92.00 17892.76 15389.71 27995.62 23377.02 29690.72 23896.17 20287.70 19895.26 14296.29 15792.54 10596.45 29881.77 27498.77 13895.66 275
Patchmatch-RL test88.81 25488.52 24489.69 28095.33 24479.94 24886.22 33392.71 28678.46 29995.80 11794.18 24866.25 33395.33 32589.22 17598.53 16193.78 320
HY-MVS82.50 1886.81 29385.93 29589.47 28193.63 28877.93 28394.02 13791.58 30875.68 31383.64 34893.64 26577.40 28197.42 26671.70 34892.07 34493.05 335
EU-MVSNet87.39 28186.71 28589.44 28293.40 29176.11 31094.93 10790.00 31857.17 37195.71 12397.37 7964.77 34197.68 25392.67 8394.37 31394.52 304
ADS-MVSNet284.01 31082.20 31989.41 28389.04 35476.37 30987.57 30590.98 31272.71 33484.46 34292.45 29468.08 32196.48 29770.58 35583.97 36595.38 281
EPNet_dtu85.63 29984.37 30489.40 28486.30 36974.33 32691.64 21888.26 32584.84 24472.96 37389.85 32871.27 31297.69 25276.60 32297.62 22796.18 252
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres600view787.66 27387.10 27989.36 28596.05 20673.17 33392.72 17085.31 35091.89 9693.29 20590.97 31863.42 34798.39 18873.23 33996.99 25196.51 236
IB-MVS77.21 1983.11 31481.05 32589.29 28691.15 33075.85 31385.66 33586.00 34279.70 28582.02 36086.61 35648.26 37598.39 18877.84 31192.22 34293.63 325
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TR-MVS87.70 27187.17 27589.27 28794.11 27779.26 26488.69 29591.86 30481.94 27290.69 27189.79 33282.82 23597.42 26672.65 34391.98 34591.14 350
cascas87.02 29186.28 29389.25 28891.56 32676.45 30784.33 34896.78 16871.01 34286.89 33085.91 36181.35 25096.94 28383.09 26195.60 28294.35 308
thres40087.20 28686.52 28989.24 28995.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26496.51 236
test_vis1_n89.01 24789.01 23689.03 29092.57 30582.46 21392.62 17696.06 20473.02 33190.40 27695.77 18674.86 29989.68 36190.78 12794.98 29894.95 292
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28387.88 30392.49 29275.42 31692.57 23393.59 26980.44 25894.24 33981.28 27992.75 33694.69 302
baseline283.38 31381.54 32288.90 29291.38 32772.84 33888.78 29281.22 36578.97 29579.82 36687.56 35061.73 35497.80 24274.30 33490.05 35496.05 257
MIMVSNet87.13 28986.54 28888.89 29396.05 20676.11 31094.39 12588.51 32381.37 27488.27 31596.75 12672.38 30795.52 31765.71 36595.47 28695.03 289
USDC89.02 24589.08 23388.84 29495.07 24874.50 32488.97 28796.39 19073.21 32993.27 20796.28 15982.16 24396.39 30077.55 31498.80 13595.62 278
MG-MVS89.54 23589.80 22488.76 29594.88 25172.47 34189.60 27292.44 29385.82 22489.48 29495.98 17482.85 23497.74 25081.87 27395.27 29396.08 255
thres100view90087.35 28286.89 28188.72 29696.14 20073.09 33593.00 16285.31 35092.13 8993.26 20890.96 31963.42 34798.28 19771.27 35196.54 26494.79 297
tfpn200view987.05 29086.52 28988.67 29795.77 22272.94 33691.89 20886.00 34290.84 12992.61 23089.80 33063.93 34498.28 19771.27 35196.54 26494.79 297
PMMVS83.00 31681.11 32488.66 29883.81 37786.44 15582.24 35785.65 34561.75 36982.07 35885.64 36279.75 26191.59 35375.99 32693.09 33287.94 361
test_vis1_rt85.58 30084.58 30288.60 29987.97 36086.76 14485.45 33793.59 26866.43 35987.64 32289.20 34179.33 26485.38 37081.59 27689.98 35593.66 324
test_fmvs187.59 27687.27 27288.54 30088.32 35981.26 22890.43 24995.72 21570.55 34691.70 25694.63 23368.13 32089.42 36490.59 13195.34 29194.94 294
baseline187.62 27587.31 27088.54 30094.71 26374.27 32793.10 16088.20 32786.20 21792.18 24993.04 28073.21 30595.52 31779.32 30285.82 36395.83 266
ppachtmachnet_test88.61 25988.64 24388.50 30291.76 32270.99 34884.59 34592.98 27979.30 29392.38 24193.53 27179.57 26297.45 26486.50 22797.17 24197.07 215
PS-MVSNAJ88.86 25388.99 23788.48 30394.88 25174.71 31986.69 32695.60 21880.88 27687.83 32087.37 35390.77 13998.82 12982.52 26794.37 31391.93 345
xiu_mvs_v2_base89.00 24889.19 23188.46 30494.86 25374.63 32186.97 31795.60 21880.88 27687.83 32088.62 34591.04 13698.81 13482.51 26894.38 31291.93 345
sss87.23 28486.82 28288.46 30493.96 28177.94 28286.84 32192.78 28577.59 30387.61 32491.83 30678.75 26891.92 35177.84 31194.20 31795.52 280
test_vis1_n_192089.45 23789.85 22388.28 30693.59 28976.71 30490.67 24097.78 9179.67 28690.30 27996.11 16876.62 29392.17 35090.31 14193.57 32595.96 259
WTY-MVS86.93 29286.50 29188.24 30794.96 24974.64 32087.19 31492.07 30178.29 30088.32 31491.59 31178.06 27694.27 33774.88 33193.15 33195.80 267
FPMVS84.50 30783.28 31188.16 30896.32 18594.49 1685.76 33485.47 34883.09 25885.20 33794.26 24463.79 34686.58 36963.72 36791.88 34783.40 366
SCA87.43 28087.21 27488.10 30992.01 31871.98 34389.43 27688.11 32982.26 27088.71 30792.83 28578.65 27097.59 25679.61 29993.30 32894.75 299
test250685.42 30184.57 30387.96 31097.81 10066.53 36396.14 5856.35 38089.04 16793.55 19898.10 3842.88 38298.68 16188.09 19899.18 9098.67 96
YYNet188.17 26488.24 25487.93 31192.21 31173.62 33180.75 36188.77 32182.51 26794.99 15595.11 21482.70 23793.70 34183.33 25893.83 32196.48 240
MDA-MVSNet_test_wron88.16 26588.23 25587.93 31192.22 31073.71 33080.71 36288.84 32082.52 26694.88 16095.14 21282.70 23793.61 34283.28 25993.80 32296.46 241
thres20085.85 29885.18 29987.88 31394.44 27072.52 34089.08 28686.21 33988.57 18091.44 25988.40 34764.22 34298.00 22268.35 35995.88 27893.12 332
BH-w/o87.21 28587.02 28087.79 31494.77 25877.27 29487.90 30293.21 27881.74 27389.99 28588.39 34883.47 22596.93 28571.29 35092.43 34189.15 355
mvs_anonymous90.37 21491.30 19087.58 31592.17 31368.00 35889.84 26894.73 24783.82 25293.22 21197.40 7787.54 18497.40 26887.94 20295.05 29797.34 208
testgi90.38 21391.34 18987.50 31697.49 12371.54 34489.43 27695.16 23588.38 18494.54 17094.68 23292.88 9893.09 34671.60 34997.85 21797.88 164
our_test_387.55 27787.59 26787.44 31791.76 32270.48 34983.83 35190.55 31679.79 28392.06 25292.17 30178.63 27295.63 31584.77 24894.73 30596.22 250
PAPM81.91 32580.11 33587.31 31893.87 28472.32 34284.02 35093.22 27669.47 35276.13 37189.84 32972.15 30897.23 27453.27 37389.02 35692.37 342
MVS84.98 30584.30 30587.01 31991.03 33177.69 28991.94 20694.16 25959.36 37084.23 34587.50 35285.66 21296.80 28971.79 34693.05 33486.54 363
PatchmatchNetpermissive85.22 30284.64 30186.98 32089.51 35169.83 35590.52 24487.34 33378.87 29787.22 32892.74 28966.91 32796.53 29481.77 27486.88 36194.58 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
131486.46 29586.33 29286.87 32191.65 32474.54 32291.94 20694.10 26074.28 32284.78 34187.33 35483.03 23195.00 32978.72 30691.16 35091.06 351
mvsany_test183.91 31182.93 31586.84 32286.18 37085.93 16881.11 36075.03 37570.80 34588.57 31194.63 23383.08 23087.38 36780.39 28586.57 36287.21 362
CVMVSNet85.16 30384.72 30086.48 32392.12 31470.19 35092.32 19188.17 32856.15 37290.64 27295.85 17867.97 32396.69 29288.78 18690.52 35292.56 340
pmmvs380.83 33278.96 33886.45 32487.23 36577.48 29184.87 34182.31 36263.83 36685.03 33889.50 33749.66 37393.10 34573.12 34195.10 29688.78 359
KD-MVS_2432*160082.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
miper_refine_blended82.17 32280.75 32986.42 32582.04 37870.09 35281.75 35890.80 31382.56 26490.37 27789.30 33942.90 38096.11 30874.47 33292.55 33993.06 333
Patchmatch-test86.10 29786.01 29486.38 32790.63 33674.22 32889.57 27386.69 33685.73 22789.81 28992.83 28565.24 33991.04 35577.82 31395.78 27993.88 319
CHOSEN 280x42080.04 33677.97 34186.23 32890.13 34374.53 32372.87 36789.59 31966.38 36076.29 37085.32 36356.96 36395.36 32369.49 35894.72 30688.79 358
CostFormer83.09 31582.21 31885.73 32989.27 35367.01 35990.35 25186.47 33870.42 34783.52 35093.23 27861.18 35596.85 28777.21 31888.26 35993.34 331
PatchT87.51 27888.17 25885.55 33090.64 33566.91 36092.02 20286.09 34192.20 8789.05 29997.16 9964.15 34396.37 30289.21 17692.98 33593.37 330
test0.0.03 182.48 31981.47 32385.48 33189.70 34773.57 33284.73 34281.64 36483.07 25988.13 31786.61 35662.86 35089.10 36666.24 36490.29 35393.77 321
gg-mvs-nofinetune82.10 32481.02 32685.34 33287.46 36471.04 34694.74 11167.56 37796.44 2379.43 36798.99 645.24 37696.15 30667.18 36292.17 34388.85 357
tpm84.38 30884.08 30785.30 33390.47 33963.43 37389.34 27985.63 34677.24 30787.62 32395.03 21861.00 35797.30 27279.26 30391.09 35195.16 285
test_f86.65 29487.13 27785.19 33490.28 34286.11 16586.52 33291.66 30669.76 35095.73 12297.21 9769.51 31781.28 37389.15 17794.40 31188.17 360
tpmvs84.22 30983.97 30884.94 33587.09 36665.18 36691.21 22788.35 32482.87 26285.21 33690.96 31965.24 33996.75 29079.60 30185.25 36492.90 337
tpm281.46 32680.35 33384.80 33689.90 34565.14 36790.44 24685.36 34965.82 36382.05 35992.44 29657.94 36196.69 29270.71 35488.49 35892.56 340
test-LLR83.58 31283.17 31284.79 33789.68 34866.86 36183.08 35384.52 35583.07 25982.85 35384.78 36462.86 35093.49 34382.85 26294.86 30194.03 314
test-mter81.21 32980.01 33684.79 33789.68 34866.86 36183.08 35384.52 35573.85 32582.85 35384.78 36443.66 37993.49 34382.85 26294.86 30194.03 314
PVSNet76.22 2082.89 31782.37 31784.48 33993.96 28164.38 37178.60 36488.61 32271.50 33884.43 34486.36 35974.27 30194.60 33169.87 35793.69 32494.46 305
ADS-MVSNet82.25 32081.55 32184.34 34089.04 35465.30 36587.57 30585.13 35472.71 33484.46 34292.45 29468.08 32192.33 34970.58 35583.97 36595.38 281
DSMNet-mixed82.21 32181.56 32084.16 34189.57 35070.00 35490.65 24177.66 37454.99 37383.30 35197.57 6677.89 27890.50 35866.86 36395.54 28491.97 344
tpm cat180.61 33479.46 33784.07 34288.78 35665.06 36989.26 28288.23 32662.27 36881.90 36189.66 33662.70 35295.29 32671.72 34780.60 37191.86 347
EPMVS81.17 33080.37 33283.58 34385.58 37265.08 36890.31 25371.34 37677.31 30685.80 33591.30 31359.38 35992.70 34879.99 29282.34 36992.96 336
new-patchmatchnet88.97 24990.79 20183.50 34494.28 27455.83 37885.34 33893.56 27086.18 21895.47 12995.73 18883.10 22996.51 29685.40 23798.06 20498.16 135
GG-mvs-BLEND83.24 34585.06 37471.03 34794.99 10665.55 37874.09 37275.51 37244.57 37794.46 33359.57 37087.54 36084.24 365
tpmrst82.85 31882.93 31582.64 34687.65 36158.99 37690.14 25887.90 33075.54 31583.93 34691.63 31066.79 33095.36 32381.21 28181.54 37093.57 329
TESTMET0.1,179.09 33878.04 34082.25 34787.52 36364.03 37283.08 35380.62 36770.28 34880.16 36583.22 36744.13 37890.56 35779.95 29393.36 32692.15 343
new_pmnet81.22 32881.01 32781.86 34890.92 33470.15 35184.03 34980.25 36970.83 34385.97 33489.78 33367.93 32484.65 37167.44 36191.90 34690.78 352
dp79.28 33778.62 33981.24 34985.97 37156.45 37786.91 31985.26 35272.97 33281.45 36389.17 34356.01 36695.45 32173.19 34076.68 37291.82 348
EMVS80.35 33580.28 33480.54 35084.73 37569.07 35672.54 36880.73 36687.80 19481.66 36281.73 36962.89 34989.84 36075.79 32894.65 30882.71 368
E-PMN80.72 33380.86 32880.29 35185.11 37368.77 35772.96 36681.97 36387.76 19683.25 35283.01 36862.22 35389.17 36577.15 31994.31 31582.93 367
PVSNet_070.34 2174.58 34072.96 34379.47 35290.63 33666.24 36473.26 36583.40 36163.67 36778.02 36878.35 37172.53 30689.59 36256.68 37160.05 37582.57 369
wuyk23d87.83 26990.79 20178.96 35390.46 34088.63 10792.72 17090.67 31591.65 11398.68 1197.64 6396.06 1577.53 37459.84 36999.41 5470.73 372
MVEpermissive59.87 2373.86 34172.65 34477.47 35487.00 36874.35 32561.37 37160.93 37967.27 35769.69 37486.49 35881.24 25472.33 37556.45 37283.45 36785.74 364
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS281.31 32783.44 31074.92 35590.52 33846.49 38069.19 36985.23 35384.30 24887.95 31994.71 23176.95 28984.36 37264.07 36698.09 20293.89 318
MVS-HIRNet78.83 33980.60 33173.51 35693.07 29747.37 37987.10 31678.00 37368.94 35377.53 36997.26 9071.45 31194.62 33063.28 36888.74 35778.55 371
test_method50.44 34248.94 34554.93 35739.68 38112.38 38328.59 37290.09 3176.82 37541.10 37778.41 37054.41 36870.69 37650.12 37451.26 37681.72 370
DeepMVS_CXcopyleft53.83 35870.38 38064.56 37048.52 38233.01 37465.50 37574.21 37356.19 36546.64 37738.45 37670.07 37350.30 373
tmp_tt37.97 34344.33 34618.88 35911.80 38221.54 38263.51 37045.66 3834.23 37651.34 37650.48 37459.08 36022.11 37844.50 37568.35 37413.00 374
test1239.49 34512.01 3481.91 3602.87 3831.30 38482.38 3561.34 3851.36 3782.84 3796.56 3772.45 3830.97 3792.73 3775.56 3773.47 375
testmvs9.02 34611.42 3491.81 3612.77 3841.13 38579.44 3631.90 3841.18 3792.65 3806.80 3761.95 3840.87 3802.62 3783.45 3783.44 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.35 34431.13 3470.00 3620.00 3850.00 3860.00 37395.58 2240.00 3800.00 38191.15 31593.43 780.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.56 34710.09 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38090.77 1390.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re7.56 34710.08 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38190.69 3240.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
PC_three_145275.31 31895.87 11595.75 18792.93 9596.34 30587.18 21398.68 14798.04 143
test_one_060198.26 7187.14 13498.18 3794.25 4596.99 6697.36 8295.13 40
eth-test20.00 385
eth-test0.00 385
ZD-MVS97.23 13390.32 7897.54 10784.40 24794.78 16395.79 18292.76 10199.39 4888.72 18898.40 169
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4795.66 3297.00 6497.03 10795.40 2893.49 4998.84 12698.00 148
IU-MVS98.51 5186.66 14996.83 16572.74 33395.83 11693.00 7499.29 7098.64 103
test_241102_TWO98.10 5091.95 9297.54 3897.25 9195.37 2999.35 5893.29 6299.25 7998.49 114
test_241102_ONE98.51 5186.97 13998.10 5091.85 9897.63 3497.03 10796.48 1098.95 112
9.1494.81 9997.49 12394.11 13598.37 1787.56 20295.38 13396.03 17294.66 5799.08 9290.70 12998.97 113
save fliter97.46 12688.05 12092.04 20197.08 14587.63 200
test_0728_THIRD93.26 6697.40 4997.35 8594.69 5699.34 6193.88 3599.42 5098.89 71
test072698.51 5186.69 14795.34 8998.18 3791.85 9897.63 3497.37 7995.58 23
GSMVS94.75 299
test_part298.21 7589.41 9396.72 76
sam_mvs166.64 33194.75 299
sam_mvs66.41 332
MTGPAbinary97.62 100
test_post190.21 2555.85 37965.36 33796.00 31179.61 299
test_post6.07 37865.74 33695.84 313
patchmatchnet-post91.71 30866.22 33497.59 256
MTMP94.82 10954.62 381
gm-plane-assit87.08 36759.33 37571.22 33983.58 36697.20 27573.95 335
test9_res88.16 19698.40 16997.83 170
TEST996.45 17589.46 9090.60 24296.92 15779.09 29490.49 27394.39 24191.31 12698.88 119
test_896.37 17789.14 9790.51 24596.89 16079.37 28990.42 27594.36 24391.20 13198.82 129
agg_prior287.06 21698.36 17897.98 152
agg_prior96.20 19588.89 10396.88 16190.21 28098.78 141
test_prior489.91 8290.74 237
test_prior290.21 25589.33 16290.77 26994.81 22590.41 14988.21 19298.55 158
旧先验290.00 26368.65 35492.71 22896.52 29585.15 240
新几何290.02 262
旧先验196.20 19584.17 19194.82 24395.57 19589.57 16197.89 21596.32 246
无先验89.94 26495.75 21470.81 34498.59 17281.17 28294.81 295
原ACMM289.34 279
test22296.95 14485.27 17988.83 29193.61 26765.09 36490.74 27094.85 22484.62 21997.36 23693.91 317
testdata298.03 21780.24 289
segment_acmp92.14 111
testdata188.96 28888.44 182
plane_prior797.71 10888.68 106
plane_prior697.21 13588.23 11786.93 196
plane_prior597.81 8698.95 11289.26 17398.51 16498.60 107
plane_prior495.59 191
plane_prior388.43 11590.35 14493.31 203
plane_prior294.56 12091.74 109
plane_prior197.38 128
plane_prior88.12 11893.01 16188.98 16998.06 204
n20.00 386
nn0.00 386
door-mid92.13 300
test1196.65 176
door91.26 309
HQP5-MVS84.89 182
HQP-NCC96.36 17991.37 22287.16 20688.81 302
ACMP_Plane96.36 17991.37 22287.16 20688.81 302
BP-MVS86.55 225
HQP4-MVS88.81 30298.61 16898.15 136
HQP3-MVS97.31 12797.73 220
HQP2-MVS84.76 217
NP-MVS96.82 15487.10 13593.40 273
MDTV_nov1_ep13_2view42.48 38188.45 29967.22 35883.56 34966.80 32872.86 34294.06 313
MDTV_nov1_ep1383.88 30989.42 35261.52 37488.74 29487.41 33273.99 32484.96 34094.01 25565.25 33895.53 31678.02 30993.16 330
ACMMP++_ref98.82 132
ACMMP++99.25 79
Test By Simon90.61 145