This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5799.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
DTE-MVSNet89.98 4791.91 1784.21 15896.51 757.84 31788.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12498.57 1598.80 6
PEN-MVS90.03 4591.88 1884.48 14896.57 558.88 30688.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12798.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 14996.56 658.83 30989.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12198.74 699.00 2
CP-MVSNet89.27 6290.91 4484.37 15096.34 858.61 31288.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12598.69 1098.95 4
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10395.50 14594.53 79
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9586.07 4898.48 1897.22 17
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11398.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 193
WR-MVS_H89.91 5091.31 3385.71 12696.32 962.39 26289.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10298.80 398.84 5
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6095.87 13295.24 57
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13591.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D89.12 6590.72 4784.31 15697.00 264.33 23789.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18772.57 20997.65 6297.34 14
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 158
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 158
test_040288.65 6989.58 6085.88 12292.55 9272.22 15984.01 17689.44 19388.63 2094.38 2195.77 2986.38 6193.59 11879.84 11495.21 15491.82 202
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25277.55 14597.07 8383.13 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 189
MVSMamba_PlusPlus87.53 8688.86 7183.54 17992.03 11062.26 26691.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6194.16 19292.58 166
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10477.65 14396.62 9590.70 234
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12678.35 13198.76 495.61 47
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 95
Anonymous2023121188.40 7189.62 5984.73 14290.46 15765.27 22788.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16876.70 15597.99 4396.88 23
gg-mvs-nofinetune68.96 34069.11 33368.52 36276.12 38045.32 39383.59 19055.88 41386.68 2964.62 40297.01 930.36 40983.97 32344.78 39582.94 36676.26 391
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9886.25 4597.63 6397.82 8
VDDNet84.35 14085.39 12781.25 22795.13 3259.32 29985.42 15181.11 29886.41 3287.41 15896.21 2273.61 20290.61 21266.33 26496.85 8793.81 115
IS-MVSNet86.66 9786.82 10086.17 11792.05 10966.87 21491.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 18997.89 5296.72 24
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
Anonymous2024052986.20 10487.13 9183.42 18190.19 16264.55 23584.55 16590.71 15385.85 3689.94 10395.24 4682.13 10790.40 21669.19 23996.40 10595.31 54
SSC-MVS77.55 25181.64 19265.29 37790.46 15720.33 42373.56 34668.28 38085.44 3788.18 14494.64 6470.93 23381.33 33771.25 21592.03 23994.20 92
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 171
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 152
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
tt080588.09 7789.79 5582.98 19393.26 7563.94 24191.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17382.03 9295.87 13293.13 144
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 92
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 41986.57 5595.80 2887.35 2797.62 6494.20 92
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13494.02 5864.13 23884.38 17091.29 13884.88 4492.06 6593.84 10586.45 5893.73 10973.22 20098.66 1197.69 9
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6597.81 5591.70 208
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24293.78 10873.36 21096.48 287.98 1396.21 11294.41 86
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24873.75 19294.81 17393.70 119
Gipumacopyleft84.44 13886.33 10578.78 26284.20 29273.57 13589.55 7790.44 16184.24 4884.38 22294.89 5376.35 17780.40 34576.14 16496.80 9182.36 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 182
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15076.68 32784.06 5092.44 6096.99 1062.03 28094.65 7780.58 10893.24 21494.83 71
ANet_high83.17 17185.68 12175.65 30881.24 33145.26 39479.94 25992.91 9083.83 5191.33 7696.88 1380.25 13285.92 29868.89 24395.89 13195.76 42
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 183
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 195
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 240
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
pmmvs686.52 9988.06 7981.90 21492.22 10362.28 26584.66 16389.15 19683.54 5789.85 10497.32 588.08 3886.80 28170.43 22697.30 7896.62 26
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS76.06 27080.01 22664.19 38089.96 17020.58 42272.18 35568.19 38183.21 5986.46 18493.49 11770.19 23778.97 35365.96 26690.46 27693.02 149
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 168
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 146
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11792.86 8667.02 21182.55 22091.56 12883.08 6290.92 8491.82 16978.25 14793.99 10074.16 18298.35 2297.49 13
LFMVS80.15 22680.56 21278.89 26089.19 18355.93 33085.22 15473.78 34782.96 6384.28 22992.72 14357.38 31190.07 22963.80 28995.75 13990.68 235
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 155
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 102
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 111
ACMH76.49 1489.34 5991.14 3583.96 16392.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26283.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DU-MVS86.80 9486.99 9586.21 11593.24 7667.02 21183.16 20392.21 10981.73 7490.92 8491.97 16377.20 16093.99 10074.16 18298.35 2297.61 10
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 7996.83 8995.41 50
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20573.58 19594.66 17894.56 76
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22196.89 8695.64 45
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 91
WR-MVS83.56 16384.40 14981.06 23293.43 7054.88 34178.67 28185.02 26281.24 7990.74 9091.56 17772.85 21591.08 19368.00 25398.04 3997.23 16
Anonymous20240521180.51 21481.19 20678.49 26888.48 20157.26 32276.63 31182.49 28781.21 8084.30 22892.24 16067.99 24886.24 29062.22 29995.13 15791.98 199
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5797.78 5697.26 15
NR-MVSNet86.00 10786.22 10785.34 13293.24 7664.56 23482.21 23290.46 16080.99 8288.42 13791.97 16377.56 15593.85 10572.46 21098.65 1297.61 10
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 105
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20689.67 23284.47 7595.46 5082.56 8696.26 11193.77 117
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9197.18 8190.45 242
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29472.76 14483.91 18185.18 25780.44 8688.75 12785.49 30080.08 13491.92 17082.02 9390.85 26795.97 38
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19783.80 18592.87 9180.37 8789.61 11391.81 17077.72 15394.18 9375.00 17798.53 1696.99 22
CSCG86.26 10186.47 10385.60 12890.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25579.09 14092.13 16475.51 17095.06 16190.41 243
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 104
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29872.52 15383.82 18385.15 25880.27 9088.75 12785.45 30279.95 13691.90 17181.92 9690.80 26896.13 33
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14093.60 6180.16 9189.13 12393.44 11883.82 8090.98 19683.86 7195.30 15393.60 126
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 99
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19884.60 6490.75 26993.97 103
mvs5depth83.82 15784.54 14481.68 22182.23 31968.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33376.37 15995.63 14394.35 88
VDD-MVS84.23 14684.58 14283.20 18791.17 14265.16 23083.25 19984.97 26579.79 9587.18 16094.27 7974.77 19090.89 20169.24 23696.54 9893.55 131
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13183.07 7797.24 7991.67 209
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13882.67 8598.04 3993.64 123
TransMVSNet (Re)84.02 15285.74 12078.85 26191.00 14655.20 34082.29 22887.26 22079.65 9888.38 13995.52 3783.00 9086.88 27967.97 25496.60 9694.45 82
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10595.83 13494.46 80
plane_prior289.45 8279.44 101
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22589.33 23683.87 7994.53 8482.45 8794.89 16994.90 64
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26676.54 15788.74 29796.61 27
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14285.02 5998.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA83.55 16483.10 17084.90 13789.34 17983.87 5084.54 16788.77 19979.09 10683.54 24488.66 24874.87 18681.73 33566.84 25992.29 23389.11 267
Baseline_NR-MVSNet84.00 15385.90 11478.29 27391.47 13453.44 35182.29 22887.00 23279.06 10789.55 11595.72 3277.20 16086.14 29572.30 21198.51 1795.28 55
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8198.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SD-MVS88.96 6789.88 5386.22 11491.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22086.24 4697.24 7991.36 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23094.05 9278.35 14693.65 11180.54 10991.58 25092.08 193
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10784.83 6297.55 6994.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21490.89 19980.85 12595.29 5681.14 10095.32 15092.34 180
ETV-MVS84.31 14183.91 15885.52 12988.58 19970.40 17884.50 16993.37 6478.76 11384.07 23378.72 37480.39 13095.13 6573.82 19192.98 22191.04 222
Effi-MVS+83.90 15684.01 15583.57 17787.22 23065.61 22686.55 13292.40 10378.64 11481.34 28384.18 32183.65 8492.93 14474.22 18187.87 31192.17 190
FMVSNet184.55 13685.45 12581.85 21690.27 16161.05 28086.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 20969.09 24095.33 14993.82 112
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26292.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
API-MVS82.28 18382.61 17981.30 22686.29 25469.79 18188.71 9587.67 21678.42 11782.15 26684.15 32277.98 14891.59 17865.39 27492.75 22582.51 360
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 246
AdaColmapbinary83.66 16083.69 16083.57 17790.05 16772.26 15886.29 13690.00 18078.19 11981.65 27787.16 27583.40 8794.24 9061.69 30694.76 17784.21 333
PAPM_NR83.23 16983.19 16783.33 18390.90 14865.98 22288.19 10190.78 15278.13 12080.87 28887.92 25973.49 20692.42 15570.07 22988.40 30091.60 211
mmtdpeth85.13 12385.78 11983.17 18984.65 28274.71 12785.87 14290.35 16677.94 12183.82 23796.96 1277.75 15180.03 34878.44 12896.21 11294.79 72
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15287.09 23665.22 22884.16 17294.23 2777.89 12291.28 7993.66 11484.35 7692.71 14880.07 11094.87 17295.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT-MVS82.97 17483.44 16181.57 22385.06 27558.04 31587.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14076.49 15888.47 29993.62 124
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27887.25 27382.43 9894.53 8477.65 14396.46 10294.14 98
plane_prior376.85 11177.79 12586.55 177
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 138
MSDG80.06 22879.99 22780.25 24483.91 29768.04 20377.51 29789.19 19577.65 12681.94 26883.45 32876.37 17686.31 28963.31 29486.59 32886.41 304
MIMVSNet183.63 16184.59 14180.74 23694.06 5762.77 25582.72 21484.53 27177.57 12890.34 9395.92 2876.88 17285.83 30361.88 30497.42 7493.62 124
MVS_030485.37 11784.58 14287.75 8885.28 27173.36 13686.54 13385.71 24877.56 12981.78 27692.47 15070.29 23696.02 1185.59 5395.96 12593.87 109
FC-MVSNet-test85.93 10987.05 9482.58 20492.25 10156.44 32885.75 14593.09 8177.33 13091.94 6894.65 6174.78 18993.41 12875.11 17698.58 1497.88 7
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15391.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6396.27 11092.62 165
CANet83.79 15882.85 17486.63 10486.17 25872.21 16083.76 18691.43 13277.24 13274.39 35187.45 26975.36 18195.42 5277.03 15392.83 22492.25 187
UGNet82.78 17581.64 19286.21 11586.20 25776.24 12086.86 12285.68 24977.07 13373.76 35592.82 13869.64 23991.82 17569.04 24293.69 20590.56 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal81.79 19782.95 17278.31 27188.93 18955.40 33680.83 25182.85 28476.81 13485.90 19494.14 8974.58 19386.51 28666.82 26095.68 14293.01 150
v886.22 10386.83 9984.36 15287.82 21562.35 26486.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11083.10 7695.41 14697.01 21
LCM-MVSNet-Re83.48 16585.06 13178.75 26385.94 26355.75 33480.05 25794.27 2476.47 13696.09 694.54 6783.31 8889.75 23959.95 31794.89 16990.75 231
VPA-MVSNet83.47 16684.73 13679.69 25290.29 16057.52 32081.30 24488.69 20176.29 13787.58 15694.44 7180.60 12987.20 27366.60 26296.82 9094.34 89
EPNet80.37 21878.41 24486.23 11376.75 37273.28 13987.18 11677.45 31876.24 13868.14 38388.93 24365.41 26193.85 10569.47 23496.12 11891.55 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet82.61 17782.42 18383.20 18783.25 31063.66 24283.50 19285.07 25976.06 13986.55 17785.10 30873.41 20790.25 21778.15 13890.67 27195.68 44
IterMVS-LS84.73 13284.98 13383.96 16387.35 22763.66 24283.25 19989.88 18376.06 13989.62 11192.37 15573.40 20992.52 15378.16 13694.77 17695.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 12977.97 14197.03 8495.52 48
test_yl78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
DCV-MVSNet78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
MSLP-MVS++85.00 12886.03 11181.90 21491.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23477.98 14889.40 24777.46 14694.78 17484.75 323
plane_prior76.42 11687.15 11775.94 14595.03 162
FIs85.35 11886.27 10682.60 20391.86 11657.31 32185.10 15793.05 8375.83 14691.02 8393.97 9673.57 20392.91 14673.97 18898.02 4297.58 12
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
thres100view90075.45 27575.05 27576.66 29887.27 22851.88 36381.07 24773.26 35275.68 14883.25 24886.37 28645.54 36788.80 25351.98 36590.99 25889.31 263
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12788.77 9490.00 18075.65 14984.96 21093.17 12374.06 19791.19 18978.28 13391.09 25689.29 265
FA-MVS(test-final)83.13 17283.02 17183.43 18086.16 26066.08 22188.00 10388.36 20675.55 15085.02 20892.75 14265.12 26292.50 15474.94 17891.30 25491.72 206
pm-mvs183.69 15984.95 13479.91 24890.04 16859.66 29682.43 22487.44 21775.52 15187.85 15095.26 4581.25 12185.65 30568.74 24696.04 12194.42 85
test_prior283.37 19575.43 15284.58 21791.57 17681.92 11379.54 11996.97 85
v1086.54 9887.10 9284.84 13888.16 20963.28 24886.64 13092.20 11075.42 15392.81 5394.50 6874.05 19894.06 9983.88 7096.28 10897.17 18
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15492.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres600view775.97 27175.35 27377.85 28387.01 23851.84 36480.45 25373.26 35275.20 15583.10 25186.31 28945.54 36789.05 24955.03 34792.24 23592.66 163
9.1489.29 6291.84 11988.80 9395.32 1275.14 15691.07 8192.89 13687.27 4793.78 10883.69 7297.55 69
wuyk23d75.13 27879.30 23162.63 38375.56 38375.18 12680.89 24973.10 35475.06 15794.76 1695.32 4187.73 4352.85 41434.16 41397.11 8259.85 410
RPMNet78.88 23678.28 24580.68 23979.58 34962.64 25782.58 21894.16 3274.80 15875.72 33992.59 14548.69 35095.56 4273.48 19682.91 36783.85 338
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18781.58 29674.73 15985.66 19686.06 29272.56 22092.69 15075.44 17295.21 15489.01 273
casdiffmvspermissive85.21 12085.85 11683.31 18486.17 25862.77 25583.03 20593.93 4674.69 16088.21 14292.68 14482.29 10491.89 17277.87 14293.75 20495.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23291.15 387.70 10888.42 20474.57 16183.56 24385.65 29778.49 14594.21 9172.04 21292.88 22394.05 101
baseline85.20 12185.93 11383.02 19186.30 25362.37 26384.55 16593.96 4474.48 16287.12 16192.03 16282.30 10391.94 16978.39 12994.21 18994.74 73
VNet79.31 23280.27 21776.44 30087.92 21453.95 34775.58 32884.35 27274.39 16382.23 26490.72 20672.84 21684.39 31760.38 31593.98 19790.97 224
BH-RMVSNet80.53 21380.22 22081.49 22587.19 23166.21 22077.79 29286.23 23874.21 16483.69 23988.50 24973.25 21290.75 20663.18 29587.90 31087.52 293
nrg03087.85 8288.49 7585.91 12090.07 16669.73 18387.86 10694.20 3074.04 16592.70 5694.66 6085.88 6691.50 17979.72 11697.32 7796.50 29
Vis-MVSNet (Re-imp)77.82 24877.79 24977.92 28088.82 19151.29 36883.28 19771.97 36274.04 16582.23 26489.78 23057.38 31189.41 24657.22 33195.41 14693.05 148
testdata179.62 26373.95 167
Patchmtry76.56 26577.46 25073.83 32079.37 35446.60 38782.41 22576.90 32473.81 16885.56 20092.38 15248.07 35383.98 32263.36 29395.31 15290.92 226
tttt051781.07 20579.58 22885.52 12988.99 18766.45 21887.03 11975.51 33573.76 16988.32 14190.20 22137.96 39694.16 9779.36 12295.13 15795.93 41
SDMVSNet81.90 19683.17 16878.10 27688.81 19262.45 26176.08 32286.05 24373.67 17083.41 24593.04 12782.35 10080.65 34270.06 23095.03 16291.21 218
sd_testset79.95 23081.39 20175.64 30988.81 19258.07 31476.16 32182.81 28573.67 17083.41 24593.04 12780.96 12477.65 35858.62 32395.03 16291.21 218
PatchT70.52 32272.76 29963.79 38279.38 35333.53 41677.63 29465.37 39373.61 17271.77 36492.79 14144.38 37975.65 36664.53 28585.37 34082.18 362
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17389.71 10794.82 5685.09 6895.77 3484.17 6898.03 4193.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.04 12585.95 11282.31 21087.52 22463.59 24486.23 13893.96 4473.46 17488.07 14587.83 26186.46 5790.87 20376.17 16393.89 19992.47 173
VPNet80.25 22281.68 19175.94 30692.46 9547.98 38176.70 30981.67 29473.45 17584.87 21392.82 13874.66 19286.51 28661.66 30796.85 8793.33 134
sasdasda85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
canonicalmvs85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
MVS_111021_HR84.63 13384.34 15185.49 13190.18 16375.86 12379.23 27387.13 22473.35 17885.56 20089.34 23583.60 8590.50 21476.64 15694.05 19690.09 252
tfpn200view974.86 28374.23 28276.74 29786.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25889.31 263
thres40075.14 27774.23 28277.86 28286.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25892.66 163
HQP-NCC91.19 13984.77 15873.30 18180.55 292
ACMP_Plane91.19 13984.77 15873.30 18180.55 292
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15892.68 9773.30 18180.55 29290.17 22472.10 22494.61 7977.30 15094.47 18293.56 129
alignmvs83.94 15583.98 15683.80 16687.80 21667.88 20484.54 16791.42 13473.27 18488.41 13887.96 25672.33 22190.83 20476.02 16694.11 19392.69 162
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18580.18 30089.15 24077.04 16493.28 13165.82 27192.28 23492.21 188
MDA-MVSNet-bldmvs77.47 25276.90 25879.16 25979.03 35764.59 23266.58 38775.67 33373.15 18688.86 12488.99 24266.94 25281.23 33864.71 28188.22 30791.64 210
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18684.76 21587.70 26378.87 14294.18 9380.67 10796.29 10792.73 158
Fast-Effi-MVS+-dtu82.54 18081.41 20085.90 12185.60 26676.53 11583.07 20489.62 19073.02 18879.11 31083.51 32680.74 12790.24 21968.76 24589.29 28890.94 225
v14882.31 18282.48 18281.81 21985.59 26759.66 29681.47 24186.02 24472.85 18988.05 14790.65 21170.73 23490.91 20075.15 17591.79 24494.87 66
testing371.53 31470.79 31573.77 32188.89 19041.86 40476.60 31459.12 40872.83 19080.97 28482.08 34419.80 42487.33 27265.12 27791.68 24792.13 192
FE-MVS79.98 22978.86 23583.36 18286.47 24566.45 21889.73 7084.74 27072.80 19184.22 23291.38 18144.95 37693.60 11763.93 28791.50 25190.04 253
BH-untuned80.96 20780.99 20780.84 23588.55 20068.23 19880.33 25588.46 20372.79 19286.55 17786.76 28174.72 19191.77 17661.79 30588.99 29282.52 359
MVS_111021_LR84.28 14383.76 15985.83 12489.23 18283.07 5580.99 24883.56 27872.71 19386.07 18989.07 24181.75 11686.19 29377.11 15293.36 20988.24 279
EG-PatchMatch MVS84.08 15084.11 15383.98 16292.22 10372.61 15082.20 23487.02 22972.63 19488.86 12491.02 19278.52 14391.11 19273.41 19791.09 25688.21 280
test111178.53 24278.85 23677.56 28592.22 10347.49 38382.61 21669.24 37872.43 19585.28 20494.20 8551.91 33790.07 22965.36 27596.45 10395.11 61
IterMVS-SCA-FT80.64 21279.41 22984.34 15483.93 29669.66 18476.28 31881.09 29972.43 19586.47 18390.19 22260.46 28793.15 13677.45 14786.39 33190.22 246
GBi-Net82.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
test182.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
FMVSNet281.31 20281.61 19480.41 24286.38 24858.75 31083.93 18086.58 23572.43 19587.65 15492.98 13163.78 27090.22 22066.86 25793.92 19892.27 185
GeoE85.45 11685.81 11784.37 15090.08 16467.07 21085.86 14391.39 13572.33 20087.59 15590.25 22084.85 7192.37 15878.00 13991.94 24393.66 120
test250674.12 29073.39 29076.28 30391.85 11744.20 39784.06 17548.20 41872.30 20181.90 26994.20 8527.22 41889.77 23764.81 28096.02 12294.87 66
ECVR-MVScopyleft78.44 24378.63 24077.88 28191.85 11748.95 37783.68 18869.91 37472.30 20184.26 23194.20 8551.89 33889.82 23463.58 29096.02 12294.87 66
v2v48284.09 14984.24 15283.62 17387.13 23261.40 27482.71 21589.71 18672.19 20389.55 11591.41 18070.70 23593.20 13381.02 10193.76 20196.25 31
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20192.40 10372.04 20482.04 26788.33 25177.91 15093.95 10266.17 26595.12 15990.34 245
MG-MVS80.32 22080.94 20878.47 26988.18 20752.62 35882.29 22885.01 26372.01 20579.24 30992.54 14869.36 24193.36 13070.65 22389.19 29189.45 259
FPMVS72.29 30772.00 30673.14 32588.63 19785.00 4074.65 33767.39 38371.94 20677.80 32187.66 26450.48 34575.83 36549.95 37279.51 38358.58 412
MVSFormer82.23 18481.57 19784.19 16085.54 26869.26 18991.98 3490.08 17871.54 20776.23 33285.07 31158.69 30294.27 8786.26 4388.77 29589.03 271
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20794.28 2496.54 1681.57 11794.27 8786.26 4396.49 10097.09 19
balanced_conf0384.80 13085.40 12683.00 19288.95 18861.44 27390.42 5892.37 10671.48 20988.72 12993.13 12570.16 23895.15 6379.26 12394.11 19392.41 175
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17784.98 26471.27 21086.70 17390.55 21363.04 27793.92 10378.26 13494.20 19089.63 257
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21683.69 27671.27 21086.70 17386.05 29363.04 27792.41 15678.26 13493.62 20890.71 233
TinyColmap81.25 20382.34 18477.99 27985.33 27060.68 28782.32 22788.33 20771.26 21286.97 16892.22 16177.10 16386.98 27762.37 29895.17 15686.31 306
ZD-MVS92.22 10380.48 7191.85 12171.22 21390.38 9292.98 13186.06 6496.11 781.99 9496.75 92
MVS_Test82.47 18183.22 16580.22 24582.62 31857.75 31982.54 22191.96 11871.16 21482.89 25492.52 14977.41 15790.50 21480.04 11287.84 31292.40 177
MonoMVSNet76.66 26277.26 25474.86 31479.86 34754.34 34486.26 13786.08 24171.08 21585.59 19888.68 24653.95 32985.93 29763.86 28880.02 38284.32 329
DELS-MVS81.44 20181.25 20382.03 21284.27 29162.87 25376.47 31692.49 10270.97 21681.64 27883.83 32375.03 18492.70 14974.29 18092.22 23790.51 241
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
save fliter93.75 6377.44 10386.31 13589.72 18570.80 217
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21894.19 2596.67 1476.94 16694.57 8183.07 7796.28 10896.15 32
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 21984.96 21090.69 20780.01 13595.14 6478.37 13095.78 13891.82 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS82.19 18681.23 20585.10 13587.95 21369.17 19383.22 20293.33 6770.42 22078.58 31479.77 36677.29 15994.20 9271.51 21488.96 29391.93 200
test20.0373.75 29474.59 27971.22 34181.11 33351.12 37070.15 37172.10 36170.42 22080.28 29891.50 17864.21 26674.72 37046.96 38994.58 18087.82 291
JIA-IIPM69.41 33566.64 35377.70 28473.19 39771.24 17275.67 32565.56 39270.42 22065.18 39792.97 13333.64 40483.06 32653.52 35669.61 40978.79 387
v114484.54 13784.72 13884.00 16187.67 22062.55 25982.97 20890.93 14970.32 22389.80 10590.99 19373.50 20493.48 12481.69 9894.65 17995.97 38
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19492.38 10570.25 22489.35 11990.68 20882.85 9294.57 8179.55 11895.95 12792.00 197
KD-MVS_self_test81.93 19483.14 16978.30 27284.75 28152.75 35580.37 25489.42 19470.24 22590.26 9593.39 11974.55 19486.77 28268.61 24896.64 9495.38 51
thres20072.34 30671.55 31274.70 31783.48 30251.60 36575.02 33373.71 34870.14 22678.56 31580.57 35746.20 35988.20 26346.99 38889.29 28884.32 329
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22794.55 1996.67 1487.94 3993.59 11884.27 6795.97 12495.52 48
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22895.06 1596.14 2584.28 7793.07 13987.68 1896.34 10697.09 19
PM-MVS80.20 22479.00 23383.78 16888.17 20886.66 1981.31 24266.81 38969.64 22988.33 14090.19 22264.58 26383.63 32571.99 21390.03 27981.06 378
V4283.47 16683.37 16483.75 16983.16 31363.33 24781.31 24290.23 17469.51 23090.91 8690.81 20474.16 19692.29 16280.06 11190.22 27795.62 46
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23194.39 2096.38 1886.02 6593.52 12283.96 6995.92 13095.34 52
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23285.80 19589.56 23380.76 12692.13 16473.21 20595.51 14493.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU77.81 24977.05 25580.09 24781.37 33059.90 29483.26 19888.29 20869.16 23367.83 38683.72 32460.93 28489.47 24169.22 23889.70 28490.88 228
v119284.57 13584.69 14084.21 15887.75 21762.88 25283.02 20691.43 13269.08 23489.98 10290.89 19972.70 21893.62 11682.41 8894.97 16696.13 33
FMVSNet378.80 23878.55 24179.57 25482.89 31756.89 32681.76 23685.77 24769.04 23586.00 19090.44 21551.75 33990.09 22865.95 26793.34 21091.72 206
ab-mvs79.67 23180.56 21276.99 29188.48 20156.93 32484.70 16286.06 24268.95 23680.78 28993.08 12675.30 18284.62 31356.78 33290.90 26389.43 261
thisisatest053079.07 23377.33 25384.26 15787.13 23264.58 23383.66 18975.95 33068.86 23785.22 20587.36 27138.10 39393.57 12175.47 17194.28 18894.62 74
Anonymous2024052180.18 22581.25 20376.95 29283.15 31460.84 28582.46 22385.99 24568.76 23886.78 17093.73 11259.13 29977.44 35973.71 19397.55 6992.56 167
GA-MVS75.83 27274.61 27779.48 25681.87 32259.25 30073.42 34882.88 28368.68 23979.75 30181.80 34750.62 34489.46 24266.85 25885.64 33889.72 256
dcpmvs_284.23 14685.14 13081.50 22488.61 19861.98 27082.90 21193.11 7968.66 24092.77 5492.39 15178.50 14487.63 26876.99 15492.30 23194.90 64
c3_l81.64 19881.59 19581.79 22080.86 33759.15 30378.61 28290.18 17668.36 24187.20 15987.11 27769.39 24091.62 17778.16 13694.43 18494.60 75
CLD-MVS83.18 17082.64 17884.79 14089.05 18467.82 20577.93 28992.52 10168.33 24285.07 20781.54 35082.06 10892.96 14269.35 23597.91 5193.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test76.81 26077.38 25275.12 31286.90 24051.34 36673.20 35080.63 30368.30 24381.80 27488.40 25066.92 25380.90 33955.35 34494.90 16893.12 146
testing9169.94 33168.99 33672.80 32883.81 29945.89 39071.57 36073.64 35068.24 24470.77 37277.82 37834.37 40184.44 31653.64 35487.00 32488.07 282
PLCcopyleft73.85 1682.09 18980.31 21687.45 9290.86 15080.29 7385.88 14190.65 15568.17 24576.32 33186.33 28773.12 21392.61 15261.40 30990.02 28089.44 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+81.04 20680.57 21182.46 20887.50 22563.22 24978.37 28589.63 18968.01 24681.87 27082.08 34482.31 10292.65 15167.10 25688.30 30691.51 214
LF4IMVS82.75 17681.93 18885.19 13382.08 32080.15 7485.53 14888.76 20068.01 24685.58 19987.75 26271.80 22986.85 28074.02 18793.87 20088.58 276
QAPM82.59 17882.59 18082.58 20486.44 24666.69 21589.94 6790.36 16567.97 24884.94 21292.58 14772.71 21792.18 16370.63 22487.73 31388.85 274
v192192084.23 14684.37 15083.79 16787.64 22261.71 27182.91 21091.20 14167.94 24990.06 9790.34 21772.04 22793.59 11882.32 8994.91 16796.07 35
v124084.30 14284.51 14683.65 17287.65 22161.26 27782.85 21291.54 12967.94 24990.68 9190.65 21171.71 23093.64 11282.84 8294.78 17496.07 35
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25186.63 17694.84 5579.58 13895.96 1587.62 1994.50 18194.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419284.24 14584.41 14883.71 17187.59 22361.57 27282.95 20991.03 14567.82 25289.80 10590.49 21473.28 21193.51 12381.88 9794.89 16996.04 37
DIV-MVS_self_test80.43 21580.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.38 25386.19 18689.22 23763.09 27590.16 22276.32 16095.80 13693.66 120
cl____80.42 21680.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.37 25486.18 18889.21 23863.08 27690.16 22276.31 16195.80 13693.65 122
testing9969.27 33768.15 34472.63 33083.29 30845.45 39271.15 36271.08 36867.34 25570.43 37377.77 38032.24 40684.35 31853.72 35386.33 33288.10 281
eth_miper_zixun_eth80.84 20880.22 22082.71 20181.41 32960.98 28377.81 29190.14 17767.31 25686.95 16987.24 27464.26 26592.31 16075.23 17491.61 24894.85 70
EMVS61.10 37460.81 37661.99 38565.96 41755.86 33253.10 41158.97 41067.06 25756.89 41563.33 41140.98 38867.03 39554.79 34886.18 33463.08 407
OpenMVScopyleft76.72 1381.98 19382.00 18781.93 21384.42 28768.22 19988.50 9989.48 19266.92 25881.80 27491.86 16572.59 21990.16 22271.19 21791.25 25587.40 295
testgi72.36 30574.61 27765.59 37480.56 34242.82 40268.29 37773.35 35166.87 25981.84 27189.93 22772.08 22666.92 39646.05 39292.54 22887.01 299
E-PMN61.59 37161.62 37461.49 38766.81 41455.40 33653.77 41060.34 40766.80 26058.90 41165.50 41040.48 39066.12 39955.72 33986.25 33362.95 408
diffmvspermissive80.40 21780.48 21580.17 24679.02 35860.04 29177.54 29690.28 17366.65 26182.40 26187.33 27273.50 20487.35 27177.98 14089.62 28593.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu72.87 30271.33 31477.49 28777.72 36360.55 28882.35 22675.79 33166.49 26258.39 41381.06 35353.68 33085.98 29653.55 35592.97 22285.95 309
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26378.30 8986.93 12092.20 11065.94 26389.16 12193.16 12483.10 8989.89 23387.81 1594.43 18493.35 133
baseline173.26 29773.54 28872.43 33484.92 27747.79 38279.89 26074.00 34365.93 26478.81 31286.28 29056.36 31781.63 33656.63 33379.04 38987.87 290
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18292.01 11565.91 26586.19 18691.75 17383.77 8294.98 6977.43 14896.71 9393.73 118
reproduce_monomvs74.09 29173.23 29276.65 29976.52 37454.54 34277.50 29881.40 29765.85 26682.86 25686.67 28227.38 41684.53 31470.24 22890.66 27390.89 227
cl2278.97 23478.21 24681.24 22977.74 36259.01 30477.46 30087.13 22465.79 26784.32 22585.10 30858.96 30190.88 20275.36 17392.03 23993.84 110
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17890.32 16765.79 26784.49 21990.97 19481.93 11193.63 11381.21 9996.54 9890.88 228
test_892.09 10778.87 8583.82 18390.31 16965.79 26784.36 22390.96 19681.93 11193.44 126
miper_ehance_all_eth80.34 21980.04 22581.24 22979.82 34858.95 30577.66 29389.66 18765.75 27085.99 19385.11 30768.29 24791.42 18476.03 16592.03 23993.33 134
BH-w/o76.57 26476.07 26678.10 27686.88 24165.92 22377.63 29486.33 23665.69 27180.89 28779.95 36368.97 24590.74 20753.01 36085.25 34277.62 389
MAR-MVS80.24 22378.74 23984.73 14286.87 24278.18 9285.75 14587.81 21565.67 27277.84 31978.50 37573.79 20190.53 21361.59 30890.87 26585.49 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base_debi80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
TEST992.34 9879.70 7883.94 17890.32 16765.41 27684.49 21990.97 19482.03 10993.63 113
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27278.25 9085.82 14491.82 12365.33 27788.55 13292.35 15682.62 9689.80 23586.87 3594.32 18793.18 143
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28078.21 9185.40 15291.39 13565.32 27887.72 15391.81 17082.33 10189.78 23686.68 3794.20 19092.99 151
TR-MVS76.77 26175.79 26779.72 25186.10 26165.79 22477.14 30283.02 28265.20 27981.40 28182.10 34266.30 25590.73 20855.57 34185.27 34182.65 354
tpmvs70.16 32569.56 33071.96 33774.71 39148.13 37979.63 26275.45 33665.02 28070.26 37481.88 34645.34 37285.68 30458.34 32575.39 39982.08 364
IterMVS76.91 25876.34 26378.64 26580.91 33564.03 23976.30 31779.03 31064.88 28183.11 25089.16 23959.90 29384.46 31568.61 24885.15 34587.42 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS81.18 20478.78 23788.39 7990.93 14782.14 6282.51 22283.67 27764.69 28280.29 29685.91 29651.07 34192.38 15776.29 16293.63 20790.65 237
PatchMatch-RL74.48 28773.22 29378.27 27487.70 21885.26 3875.92 32470.09 37264.34 28376.09 33581.25 35265.87 25978.07 35753.86 35283.82 36071.48 398
testing22266.93 34865.30 36071.81 33883.38 30545.83 39172.06 35667.50 38264.12 28469.68 37776.37 39227.34 41783.00 32738.88 40588.38 30186.62 303
miper_lstm_enhance76.45 26776.10 26577.51 28676.72 37360.97 28464.69 39185.04 26163.98 28583.20 24988.22 25256.67 31578.79 35573.22 20093.12 21792.78 157
FMVSNet572.10 30871.69 30873.32 32381.57 32753.02 35476.77 30878.37 31363.31 28676.37 32991.85 16636.68 39878.98 35247.87 38592.45 22987.95 287
IB-MVS62.13 1971.64 31268.97 33779.66 25380.80 33962.26 26673.94 34376.90 32463.27 28768.63 38276.79 38833.83 40291.84 17459.28 32187.26 31684.88 321
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
mvsmamba80.30 22178.87 23484.58 14688.12 21067.55 20692.35 2984.88 26663.15 28885.33 20390.91 19850.71 34395.20 6266.36 26387.98 30990.99 223
new-patchmatchnet70.10 32673.37 29160.29 39081.23 33216.95 42559.54 40174.62 33862.93 28980.97 28487.93 25862.83 27971.90 37455.24 34595.01 16592.00 197
PVSNet_Blended_VisFu81.55 19980.49 21484.70 14491.58 12773.24 14184.21 17191.67 12762.86 29080.94 28687.16 27567.27 25192.87 14769.82 23288.94 29487.99 286
原ACMM184.60 14592.81 8974.01 13291.50 13062.59 29182.73 25890.67 21076.53 17394.25 8969.24 23695.69 14185.55 314
PAPR78.84 23778.10 24781.07 23185.17 27460.22 29082.21 23290.57 15862.51 29275.32 34584.61 31674.99 18592.30 16159.48 32088.04 30890.68 235
Patchmatch-test65.91 35767.38 34661.48 38875.51 38443.21 40168.84 37563.79 39762.48 29372.80 36083.42 32944.89 37759.52 41048.27 38486.45 32981.70 366
testing1167.38 34665.93 35471.73 33983.37 30646.60 38770.95 36569.40 37662.47 29466.14 39076.66 38931.22 40784.10 32049.10 37884.10 35984.49 325
OpenMVS_ROBcopyleft70.19 1777.77 25077.46 25078.71 26484.39 28861.15 27881.18 24682.52 28662.45 29583.34 24787.37 27066.20 25688.66 25864.69 28285.02 34786.32 305
fmvsm_s_conf0.5_n81.91 19581.30 20283.75 16986.02 26271.56 17084.73 16177.11 32362.44 29684.00 23490.68 20876.42 17585.89 30183.14 7487.11 31993.81 115
test-LLR67.21 34766.74 35168.63 36076.45 37755.21 33867.89 37867.14 38662.43 29765.08 39872.39 40043.41 38269.37 38161.00 31084.89 35181.31 371
test0.0.03 164.66 36364.36 36265.57 37575.03 38946.89 38664.69 39161.58 40562.43 29771.18 36877.54 38143.41 38268.47 39040.75 40382.65 37081.35 370
fmvsm_s_conf0.1_n82.17 18781.59 19583.94 16586.87 24271.57 16985.19 15577.42 31962.27 29984.47 22191.33 18276.43 17485.91 29983.14 7487.14 31894.33 90
MCST-MVS84.36 13983.93 15785.63 12791.59 12471.58 16883.52 19192.13 11261.82 30083.96 23589.75 23179.93 13793.46 12578.33 13294.34 18691.87 201
fmvsm_s_conf0.5_n_a82.21 18581.51 19984.32 15586.56 24473.35 13785.46 14977.30 32061.81 30184.51 21890.88 20177.36 15886.21 29282.72 8486.97 32593.38 132
SCA73.32 29672.57 30275.58 31081.62 32655.86 33278.89 27771.37 36761.73 30274.93 34883.42 32960.46 28787.01 27458.11 32882.63 37283.88 335
TAMVS78.08 24676.36 26283.23 18690.62 15472.87 14379.08 27480.01 30661.72 30381.35 28286.92 28063.96 26988.78 25650.61 37093.01 22088.04 285
PVSNet_BlendedMVS78.80 23877.84 24881.65 22284.43 28563.41 24579.49 26790.44 16161.70 30475.43 34287.07 27869.11 24391.44 18260.68 31392.24 23590.11 251
fmvsm_s_conf0.1_n_a82.58 17981.93 18884.50 14787.68 21973.35 13786.14 13977.70 31661.64 30585.02 20891.62 17577.75 15186.24 29082.79 8387.07 32093.91 107
mvs_anonymous78.13 24578.76 23876.23 30579.24 35550.31 37478.69 28084.82 26861.60 30683.09 25292.82 13873.89 20087.01 27468.33 25286.41 33091.37 215
test_fmvsmvis_n_192085.22 11985.36 12884.81 13985.80 26576.13 12285.15 15692.32 10761.40 30791.33 7690.85 20283.76 8386.16 29484.31 6693.28 21392.15 191
Syy-MVS69.40 33670.03 32667.49 36681.72 32438.94 40971.00 36361.99 39961.38 30870.81 37072.36 40261.37 28379.30 35064.50 28685.18 34384.22 331
myMVS_eth3d64.66 36363.89 36466.97 36981.72 32437.39 41271.00 36361.99 39961.38 30870.81 37072.36 40220.96 42379.30 35049.59 37585.18 34384.22 331
ETVMVS64.67 36263.34 36868.64 35983.44 30441.89 40369.56 37461.70 40461.33 31068.74 38075.76 39428.76 41279.35 34934.65 41286.16 33584.67 324
PS-MVSNAJ77.04 25776.53 26178.56 26687.09 23661.40 27475.26 33187.13 22461.25 31174.38 35277.22 38676.94 16690.94 19764.63 28384.83 35383.35 346
xiu_mvs_v2_base77.19 25576.75 25978.52 26787.01 23861.30 27675.55 32987.12 22761.24 31274.45 35078.79 37377.20 16090.93 19864.62 28484.80 35483.32 347
KD-MVS_2432*160066.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
miper_refine_blended66.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
patch_mono-278.89 23579.39 23077.41 28884.78 27968.11 20175.60 32683.11 28160.96 31579.36 30689.89 22975.18 18372.97 37173.32 19992.30 23191.15 220
CDS-MVSNet77.32 25475.40 27183.06 19089.00 18672.48 15477.90 29082.17 29060.81 31678.94 31183.49 32759.30 29788.76 25754.64 35092.37 23087.93 288
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER77.09 25675.70 26981.25 22775.27 38761.08 27977.49 29985.07 25960.78 31786.55 17788.68 24643.14 38590.25 21773.69 19490.67 27192.42 174
XXY-MVS74.44 28976.19 26469.21 35484.61 28352.43 35971.70 35877.18 32260.73 31880.60 29090.96 19675.44 17969.35 38356.13 33788.33 30285.86 311
ET-MVSNet_ETH3D75.28 27672.77 29882.81 20083.03 31668.11 20177.09 30376.51 32860.67 31977.60 32480.52 35838.04 39491.15 19170.78 22090.68 27089.17 266
dmvs_testset60.59 37762.54 37254.72 39677.26 36627.74 41974.05 34161.00 40660.48 32065.62 39567.03 40955.93 32068.23 39132.07 41669.46 41068.17 403
MVP-Stereo75.81 27373.51 28982.71 20189.35 17873.62 13480.06 25685.20 25660.30 32173.96 35387.94 25757.89 30989.45 24352.02 36474.87 40085.06 320
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re66.81 35266.98 34866.28 37276.87 37158.68 31171.66 35972.24 35860.29 32269.52 37973.53 39952.38 33564.40 40444.90 39481.44 37775.76 392
DPM-MVS80.10 22779.18 23282.88 19990.71 15369.74 18278.87 27890.84 15060.29 32275.64 34185.92 29567.28 25093.11 13771.24 21691.79 24485.77 312
MIMVSNet71.09 31871.59 30969.57 35287.23 22950.07 37578.91 27671.83 36360.20 32471.26 36691.76 17255.08 32776.09 36341.06 40187.02 32382.54 358
testdata79.54 25592.87 8472.34 15680.14 30559.91 32585.47 20291.75 17367.96 24985.24 30768.57 25092.18 23881.06 378
test_fmvsm_n_192083.60 16282.89 17385.74 12585.22 27377.74 9984.12 17490.48 15959.87 32686.45 18591.12 18975.65 17885.89 30182.28 9090.87 26593.58 127
UnsupCasMVSNet_eth71.63 31372.30 30569.62 35176.47 37652.70 35770.03 37280.97 30059.18 32779.36 30688.21 25360.50 28669.12 38458.33 32677.62 39487.04 298
fmvsm_l_conf0.5_n82.06 19081.54 19883.60 17483.94 29573.90 13383.35 19686.10 24058.97 32883.80 23890.36 21674.23 19586.94 27882.90 8090.22 27789.94 254
PC_three_145258.96 32990.06 9791.33 18280.66 12893.03 14175.78 16795.94 12892.48 171
our_test_371.85 30971.59 30972.62 33180.71 34053.78 34869.72 37371.71 36658.80 33078.03 31680.51 35956.61 31678.84 35462.20 30086.04 33685.23 317
MDA-MVSNet_test_wron70.05 32870.44 32068.88 35773.84 39353.47 35058.93 40567.28 38458.43 33187.09 16485.40 30359.80 29567.25 39459.66 31983.54 36285.92 310
YYNet170.06 32770.44 32068.90 35673.76 39453.42 35258.99 40467.20 38558.42 33287.10 16385.39 30459.82 29467.32 39359.79 31883.50 36385.96 308
ppachtmachnet_test74.73 28674.00 28476.90 29480.71 34056.89 32671.53 36178.42 31258.24 33379.32 30882.92 33557.91 30884.26 31965.60 27391.36 25389.56 258
fmvsm_l_conf0.5_n_a81.46 20080.87 21083.25 18583.73 30073.21 14283.00 20785.59 25158.22 33482.96 25390.09 22672.30 22286.65 28481.97 9589.95 28189.88 255
无先验82.81 21385.62 25058.09 33591.41 18567.95 25584.48 326
miper_enhance_ethall77.83 24776.93 25780.51 24076.15 37958.01 31675.47 33088.82 19858.05 33683.59 24180.69 35464.41 26491.20 18873.16 20692.03 23992.33 181
thisisatest051573.00 30170.52 31980.46 24181.45 32859.90 29473.16 35174.31 34257.86 33776.08 33677.78 37937.60 39792.12 16665.00 27891.45 25289.35 262
Patchmatch-RL test74.48 28773.68 28676.89 29584.83 27866.54 21672.29 35469.16 37957.70 33886.76 17186.33 28745.79 36682.59 32969.63 23390.65 27481.54 369
PatchmatchNetpermissive69.71 33368.83 33872.33 33677.66 36453.60 34979.29 26969.99 37357.66 33972.53 36182.93 33446.45 35880.08 34760.91 31272.09 40383.31 348
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS76.84 25975.67 27080.34 24380.48 34362.16 26973.50 34784.80 26957.61 34082.24 26387.54 26651.31 34087.65 26770.40 22793.19 21691.23 217
baseline269.77 33266.89 34978.41 27079.51 35158.09 31376.23 31969.57 37557.50 34164.82 40177.45 38346.02 36188.44 25953.08 35777.83 39188.70 275
dongtai41.90 38442.65 38739.67 39970.86 40721.11 42161.01 39921.42 42657.36 34257.97 41450.06 41516.40 42558.73 41221.03 41927.69 41939.17 415
PVSNet_Blended76.49 26675.40 27179.76 25084.43 28563.41 24575.14 33290.44 16157.36 34275.43 34278.30 37669.11 24391.44 18260.68 31387.70 31484.42 328
PCF-MVS74.62 1582.15 18880.92 20985.84 12389.43 17772.30 15780.53 25291.82 12357.36 34287.81 15189.92 22877.67 15493.63 11358.69 32295.08 16091.58 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
WBMVS68.76 34168.43 34169.75 35083.29 30840.30 40767.36 38372.21 36057.09 34577.05 32685.53 29933.68 40380.51 34348.79 38090.90 26388.45 278
IU-MVS94.18 5072.64 14790.82 15156.98 34689.67 10985.78 5297.92 4993.28 137
旧先验281.73 23756.88 34786.54 18284.90 31172.81 207
HY-MVS64.64 1873.03 30072.47 30474.71 31683.36 30754.19 34582.14 23581.96 29156.76 34869.57 37886.21 29160.03 29184.83 31249.58 37682.65 37085.11 319
cascas76.29 26974.81 27680.72 23884.47 28462.94 25173.89 34487.34 21855.94 34975.16 34776.53 39163.97 26891.16 19065.00 27890.97 26188.06 284
ttmdpeth71.72 31170.67 31674.86 31473.08 40055.88 33177.41 30169.27 37755.86 35078.66 31393.77 11038.01 39575.39 36760.12 31689.87 28293.31 136
pmmvs-eth3d78.42 24477.04 25682.57 20687.44 22674.41 13080.86 25079.67 30755.68 35184.69 21690.31 21960.91 28585.42 30662.20 30091.59 24987.88 289
新几何182.95 19593.96 5978.56 8880.24 30455.45 35283.93 23691.08 19171.19 23288.33 26165.84 27093.07 21881.95 365
WB-MVSnew68.72 34269.01 33567.85 36383.22 31243.98 39874.93 33465.98 39055.09 35373.83 35479.11 36965.63 26071.89 37538.21 40985.04 34687.69 292
N_pmnet70.20 32468.80 33974.38 31880.91 33584.81 4359.12 40376.45 32955.06 35475.31 34682.36 34155.74 32154.82 41347.02 38787.24 31783.52 342
tpm67.95 34468.08 34567.55 36578.74 36043.53 40075.60 32667.10 38854.92 35572.23 36288.10 25442.87 38675.97 36452.21 36380.95 38183.15 350
UWE-MVS66.43 35465.56 35969.05 35584.15 29340.98 40573.06 35264.71 39554.84 35676.18 33479.62 36729.21 41180.50 34438.54 40889.75 28385.66 313
UBG64.34 36563.35 36767.30 36783.50 30140.53 40667.46 38265.02 39454.77 35767.54 38874.47 39832.99 40578.50 35640.82 40283.58 36182.88 353
114514_t83.10 17382.54 18184.77 14192.90 8369.10 19486.65 12990.62 15754.66 35881.46 28090.81 20476.98 16594.38 8672.62 20896.18 11490.82 230
1112_ss74.82 28473.74 28578.04 27889.57 17260.04 29176.49 31587.09 22854.31 35973.66 35679.80 36460.25 29086.76 28358.37 32484.15 35887.32 296
UnsupCasMVSNet_bld69.21 33869.68 32967.82 36479.42 35251.15 36967.82 38175.79 33154.15 36077.47 32585.36 30659.26 29870.64 37948.46 38279.35 38581.66 367
EPMVS62.47 36762.63 37162.01 38470.63 40838.74 41074.76 33552.86 41553.91 36167.71 38780.01 36239.40 39166.60 39755.54 34268.81 41180.68 380
WTY-MVS67.91 34568.35 34266.58 37180.82 33848.12 38065.96 38872.60 35553.67 36271.20 36781.68 34958.97 30069.06 38548.57 38181.67 37482.55 357
MVStest170.05 32869.26 33172.41 33558.62 42255.59 33576.61 31365.58 39153.44 36389.28 12093.32 12022.91 42271.44 37874.08 18689.52 28690.21 250
PAPM71.77 31070.06 32576.92 29386.39 24753.97 34676.62 31286.62 23453.44 36363.97 40384.73 31557.79 31092.34 15939.65 40481.33 37884.45 327
PMMVS255.64 38259.27 38144.74 39864.30 42012.32 42640.60 41349.79 41753.19 36565.06 40084.81 31353.60 33149.76 41632.68 41589.41 28772.15 397
tpmrst66.28 35666.69 35265.05 37872.82 40239.33 40878.20 28670.69 37153.16 36667.88 38580.36 36048.18 35274.75 36958.13 32770.79 40581.08 376
pmmvs474.92 28272.98 29680.73 23784.95 27671.71 16776.23 31977.59 31752.83 36777.73 32386.38 28556.35 31884.97 31057.72 33087.05 32185.51 315
test22293.31 7376.54 11379.38 26877.79 31552.59 36882.36 26290.84 20366.83 25491.69 24681.25 373
Anonymous2023120671.38 31671.88 30769.88 34886.31 25254.37 34370.39 36974.62 33852.57 36976.73 32788.76 24459.94 29272.06 37344.35 39693.23 21583.23 349
MS-PatchMatch70.93 32070.22 32373.06 32681.85 32362.50 26073.82 34577.90 31452.44 37075.92 33781.27 35155.67 32281.75 33455.37 34377.70 39374.94 394
gm-plane-assit75.42 38644.97 39652.17 37172.36 40287.90 26454.10 351
MDTV_nov1_ep1368.29 34378.03 36143.87 39974.12 34072.22 35952.17 37167.02 38985.54 29845.36 37180.85 34055.73 33884.42 356
USDC76.63 26376.73 26076.34 30283.46 30357.20 32380.02 25888.04 21352.14 37383.65 24091.25 18463.24 27386.65 28454.66 34994.11 19385.17 318
sss66.92 34967.26 34765.90 37377.23 36751.10 37164.79 39071.72 36552.12 37470.13 37580.18 36157.96 30765.36 40250.21 37181.01 38081.25 373
CostFormer69.98 33068.68 34073.87 31977.14 36850.72 37279.26 27074.51 34051.94 37570.97 36984.75 31445.16 37587.49 26955.16 34679.23 38683.40 345
131473.22 29872.56 30375.20 31180.41 34457.84 31781.64 23985.36 25351.68 37673.10 35876.65 39061.45 28285.19 30863.54 29179.21 38782.59 355
jason77.42 25375.75 26882.43 20987.10 23569.27 18877.99 28881.94 29251.47 37777.84 31985.07 31160.32 28989.00 25070.74 22289.27 29089.03 271
jason: jason.
dp60.70 37660.29 37961.92 38672.04 40538.67 41170.83 36664.08 39651.28 37860.75 40677.28 38436.59 39971.58 37747.41 38662.34 41375.52 393
test_vis1_n_192071.30 31771.58 31170.47 34477.58 36559.99 29374.25 33884.22 27451.06 37974.85 34979.10 37055.10 32668.83 38668.86 24479.20 38882.58 356
PVSNet58.17 2166.41 35565.63 35868.75 35881.96 32149.88 37662.19 39772.51 35751.03 38068.04 38475.34 39650.84 34274.77 36845.82 39382.96 36581.60 368
test-mter65.00 36163.79 36568.63 36076.45 37755.21 33867.89 37867.14 38650.98 38165.08 39872.39 40028.27 41469.37 38161.00 31084.89 35181.31 371
CMPMVSbinary59.41 2075.12 27973.57 28779.77 24975.84 38267.22 20781.21 24582.18 28950.78 38276.50 32887.66 26455.20 32582.99 32862.17 30290.64 27589.09 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res73.90 29373.08 29476.35 30190.35 15955.95 32973.40 34986.17 23950.70 38373.14 35785.94 29458.31 30485.90 30056.51 33483.22 36487.20 297
lupinMVS76.37 26874.46 28082.09 21185.54 26869.26 18976.79 30780.77 30250.68 38476.23 33282.82 33658.69 30288.94 25169.85 23188.77 29588.07 282
CR-MVSNet74.00 29273.04 29576.85 29679.58 34962.64 25782.58 21876.90 32450.50 38575.72 33992.38 15248.07 35384.07 32168.72 24782.91 36783.85 338
pmmvs570.73 32170.07 32472.72 32977.03 37052.73 35674.14 33975.65 33450.36 38672.17 36385.37 30555.42 32480.67 34152.86 36187.59 31584.77 322
ADS-MVSNet265.87 35863.64 36672.55 33273.16 39856.92 32567.10 38474.81 33749.74 38766.04 39282.97 33246.71 35677.26 36042.29 39869.96 40783.46 343
ADS-MVSNet61.90 36962.19 37361.03 38973.16 39836.42 41467.10 38461.75 40249.74 38766.04 39282.97 33246.71 35663.21 40542.29 39869.96 40783.46 343
tpm268.45 34366.83 35073.30 32478.93 35948.50 37879.76 26171.76 36447.50 38969.92 37683.60 32542.07 38788.40 26048.44 38379.51 38383.01 352
HyFIR lowres test75.12 27972.66 30082.50 20791.44 13565.19 22972.47 35387.31 21946.79 39080.29 29684.30 31952.70 33492.10 16751.88 36986.73 32690.22 246
test_fmvs375.72 27475.20 27477.27 28975.01 39069.47 18678.93 27584.88 26646.67 39187.08 16587.84 26050.44 34671.62 37677.42 14988.53 29890.72 232
MVS-HIRNet61.16 37362.92 37055.87 39479.09 35635.34 41571.83 35757.98 41246.56 39259.05 41091.14 18849.95 34876.43 36238.74 40671.92 40455.84 413
MDTV_nov1_ep13_2view27.60 42070.76 36746.47 39361.27 40545.20 37349.18 37783.75 340
test_cas_vis1_n_192069.20 33969.12 33269.43 35373.68 39562.82 25470.38 37077.21 32146.18 39480.46 29578.95 37252.03 33665.53 40165.77 27277.45 39679.95 384
MVS73.21 29972.59 30175.06 31380.97 33460.81 28681.64 23985.92 24646.03 39571.68 36577.54 38168.47 24689.77 23755.70 34085.39 33974.60 395
TESTMET0.1,161.29 37260.32 37864.19 38072.06 40451.30 36767.89 37862.09 39845.27 39660.65 40769.01 40627.93 41564.74 40356.31 33581.65 37676.53 390
test_fmvs273.57 29572.80 29775.90 30772.74 40368.84 19577.07 30484.32 27345.14 39782.89 25484.22 32048.37 35170.36 38073.40 19887.03 32288.52 277
tpm cat166.76 35365.21 36171.42 34077.09 36950.62 37378.01 28773.68 34944.89 39868.64 38179.00 37145.51 36982.42 33249.91 37370.15 40681.23 375
PVSNet_051.08 2256.10 38054.97 38559.48 39275.12 38853.28 35355.16 40961.89 40144.30 39959.16 40962.48 41254.22 32865.91 40035.40 41147.01 41559.25 411
test_vis1_n70.29 32369.99 32771.20 34275.97 38166.50 21776.69 31080.81 30144.22 40075.43 34277.23 38550.00 34768.59 38766.71 26182.85 36978.52 388
CHOSEN 280x42059.08 37856.52 38366.76 37076.51 37564.39 23649.62 41259.00 40943.86 40155.66 41668.41 40835.55 40068.21 39243.25 39776.78 39867.69 404
mvsany_test365.48 36062.97 36973.03 32769.99 40976.17 12164.83 38943.71 42043.68 40280.25 29987.05 27952.83 33363.09 40751.92 36872.44 40279.84 385
new_pmnet55.69 38157.66 38249.76 39775.47 38530.59 41759.56 40051.45 41643.62 40362.49 40475.48 39540.96 38949.15 41737.39 41072.52 40169.55 401
test_fmvs1_n70.94 31970.41 32272.53 33373.92 39266.93 21375.99 32384.21 27543.31 40479.40 30579.39 36843.47 38168.55 38869.05 24184.91 35082.10 363
CHOSEN 1792x268872.45 30470.56 31878.13 27590.02 16963.08 25068.72 37683.16 28042.99 40575.92 33785.46 30157.22 31385.18 30949.87 37481.67 37486.14 307
test_fmvs169.57 33469.05 33471.14 34369.15 41165.77 22573.98 34283.32 27942.83 40677.77 32278.27 37743.39 38468.50 38968.39 25184.38 35779.15 386
test_vis3_rt71.42 31570.67 31673.64 32269.66 41070.46 17766.97 38689.73 18442.68 40788.20 14383.04 33143.77 38060.07 40865.35 27686.66 32790.39 244
MVEpermissive40.22 2351.82 38350.47 38655.87 39462.66 42151.91 36231.61 41539.28 42240.65 40850.76 41774.98 39756.24 31944.67 41833.94 41464.11 41271.04 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f64.31 36665.85 35559.67 39166.54 41562.24 26857.76 40770.96 36940.13 40984.36 22382.09 34346.93 35551.67 41561.99 30381.89 37365.12 406
pmmvs362.47 36760.02 38069.80 34971.58 40664.00 24070.52 36858.44 41139.77 41066.05 39175.84 39327.10 41972.28 37246.15 39184.77 35573.11 396
EU-MVSNet75.12 27974.43 28177.18 29083.11 31559.48 29885.71 14782.43 28839.76 41185.64 19788.76 24444.71 37887.88 26573.86 19085.88 33784.16 334
test_vis1_rt65.64 35964.09 36370.31 34566.09 41670.20 18061.16 39881.60 29538.65 41272.87 35969.66 40552.84 33260.04 40956.16 33677.77 39280.68 380
mvsany_test158.48 37956.47 38464.50 37965.90 41868.21 20056.95 40842.11 42138.30 41365.69 39477.19 38756.96 31459.35 41146.16 39058.96 41465.93 405
kuosan30.83 38532.17 38826.83 40153.36 42319.02 42457.90 40620.44 42738.29 41438.01 41837.82 41715.18 42633.45 4207.74 42120.76 42028.03 416
CVMVSNet72.62 30371.41 31376.28 30383.25 31060.34 28983.50 19279.02 31137.77 41576.33 33085.10 30849.60 34987.41 27070.54 22577.54 39581.08 376
PMMVS61.65 37060.38 37765.47 37665.40 41969.26 18963.97 39361.73 40336.80 41660.11 40868.43 40759.42 29666.35 39848.97 37978.57 39060.81 409
DSMNet-mixed60.98 37561.61 37559.09 39372.88 40145.05 39574.70 33646.61 41926.20 41765.34 39690.32 21855.46 32363.12 40641.72 40081.30 37969.09 402
DeepMVS_CXcopyleft24.13 40232.95 42429.49 41821.63 42512.07 41837.95 41945.07 41630.84 40819.21 42117.94 42033.06 41823.69 417
test_method30.46 38629.60 38933.06 40017.99 4253.84 42813.62 41673.92 3442.79 41918.29 42153.41 41428.53 41343.25 41922.56 41735.27 41752.11 414
EGC-MVSNET74.79 28569.99 32789.19 6594.89 3887.00 1591.89 3786.28 2371.09 4202.23 42295.98 2781.87 11489.48 24079.76 11595.96 12591.10 221
tmp_tt20.25 38824.50 3917.49 4034.47 4268.70 42734.17 41425.16 4241.00 42132.43 42018.49 41839.37 3929.21 42221.64 41843.75 4164.57 418
test1236.27 3918.08 3940.84 4041.11 4280.57 42962.90 3940.82 4280.54 4221.07 4242.75 4231.26 4270.30 4231.04 4221.26 4221.66 419
testmvs5.91 3927.65 3950.72 4051.20 4270.37 43059.14 4020.67 4290.49 4231.11 4232.76 4220.94 4280.24 4241.02 4231.47 4211.55 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k20.81 38727.75 3900.00 4060.00 4290.00 4310.00 41785.44 2520.00 4240.00 42582.82 33681.46 1180.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.41 3908.55 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42476.94 1660.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re6.65 3898.87 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42579.80 3640.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS37.39 41252.61 362
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
eth-test20.00 429
eth-test0.00 429
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 17995.35 14892.29 183
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 196
GSMVS83.88 335
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 335
sam_mvs45.92 365
ambc82.98 19390.55 15664.86 23188.20 10089.15 19689.40 11893.96 9971.67 23191.38 18678.83 12696.55 9792.71 161
MTGPAbinary91.81 125
test_post178.85 2793.13 42045.19 37480.13 34658.11 328
test_post3.10 42145.43 37077.22 361
patchmatchnet-post81.71 34845.93 36487.01 274
GG-mvs-BLEND67.16 36873.36 39646.54 38984.15 17355.04 41458.64 41261.95 41329.93 41083.87 32438.71 40776.92 39771.07 399
MTMP90.66 4833.14 423
test9_res80.83 10496.45 10390.57 238
agg_prior279.68 11796.16 11590.22 246
agg_prior91.58 12777.69 10090.30 17084.32 22593.18 134
test_prior478.97 8484.59 164
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9592.80 156
新几何281.72 238
旧先验191.97 11171.77 16381.78 29391.84 16773.92 19993.65 20683.61 341
原ACMM282.26 231
testdata286.43 28863.52 292
segment_acmp81.94 110
test1286.57 10590.74 15172.63 14990.69 15482.76 25779.20 13994.80 7395.32 15092.27 185
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior593.61 5995.22 5980.78 10595.83 13494.46 80
plane_prior492.95 134
plane_prior192.83 88
n20.00 430
nn0.00 430
door-mid74.45 341
lessismore_v085.95 11991.10 14470.99 17470.91 37091.79 6994.42 7461.76 28192.93 14479.52 12093.03 21993.93 105
test1191.46 131
door72.57 356
HQP5-MVS70.66 175
BP-MVS77.30 150
HQP4-MVS80.56 29194.61 7993.56 129
HQP3-MVS92.68 9794.47 182
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 224
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140