This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4688.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 183
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30389.04 8392.74 9191.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31088.93 8592.84 8891.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30088.95 8493.19 7091.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5183.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 177
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11984.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 176
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6083.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8988.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9483.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6781.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5882.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6881.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14083.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 229
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25589.54 7493.31 6590.21 1095.57 995.66 2981.42 11495.90 1580.94 9998.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6681.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4781.89 6894.70 1395.44 3490.69 888.31 25783.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11795.88 1787.41 2295.94 12692.48 167
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 199
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5377.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4980.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6179.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 170
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7886.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4380.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8182.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30688.66 9292.06 10790.78 695.67 795.17 4281.80 11095.54 4179.00 12198.69 998.95 4
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23189.67 6988.38 19788.84 1394.29 1897.57 390.48 1391.26 18472.57 20097.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18288.51 1790.11 9595.12 4490.98 688.92 24777.55 14097.07 8183.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6975.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 6995.37 5180.87 10095.50 14394.53 79
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 9078.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4878.90 10492.88 4592.29 14886.11 5890.22 21586.24 4397.24 7791.36 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7693.10 13682.67 8298.04 3693.64 123
tt080588.09 7489.79 5182.98 18793.26 7263.94 23591.10 4189.64 17985.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7481.10 7795.32 1097.24 572.94 20794.85 6785.07 5497.78 5397.26 16
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12494.26 7777.55 14995.86 2284.88 5895.87 13095.24 58
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7780.87 8191.13 7893.19 11586.22 5795.97 1282.23 8897.18 7990.45 231
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22188.86 8693.02 8287.15 2393.05 4397.10 682.28 10092.02 16576.70 15097.99 4096.88 25
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16789.44 18488.63 1694.38 1795.77 2686.38 5693.59 11679.84 11195.21 15291.82 195
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4280.07 8986.75 16493.26 11493.64 290.93 19484.60 6190.75 26393.97 104
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15070.00 21794.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10694.82 5185.09 6395.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17071.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 9997.09 21
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8487.95 2089.62 11092.87 12984.56 6893.89 10277.65 13896.62 9390.70 223
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10179.74 9187.50 14992.38 14381.42 11493.28 12983.07 7497.24 7791.67 200
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16769.87 21895.06 1196.14 2184.28 7293.07 13787.68 1596.34 10597.09 21
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13193.60 5680.16 8789.13 12193.44 11283.82 7590.98 19283.86 6895.30 15193.60 125
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16469.27 22194.39 1696.38 1586.02 6093.52 12083.96 6695.92 12895.34 53
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23284.38 16091.29 13284.88 3992.06 6393.84 10186.45 5493.73 10773.22 19198.66 1097.69 9
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6191.50 17679.72 11397.32 7596.50 31
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13378.20 11386.69 16792.28 14980.36 12695.06 6286.17 4496.49 9990.22 235
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19689.67 22284.47 7095.46 4782.56 8396.26 11193.77 117
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4378.43 11189.16 11992.25 15072.03 22096.36 388.21 790.93 25792.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs686.52 9688.06 7481.90 20792.22 10162.28 25884.66 15389.15 18783.54 5289.85 10397.32 488.08 3686.80 27670.43 21797.30 7696.62 28
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11384.26 4290.87 8793.92 9982.18 10189.29 24373.75 18394.81 17193.70 119
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11070.73 20894.19 2196.67 1176.94 15994.57 7683.07 7496.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 18977.34 12293.63 3595.83 2565.40 25595.90 1585.01 5798.23 2797.49 13
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13667.85 24186.63 16894.84 5079.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14391.23 13477.31 12487.07 15891.47 17082.94 8694.71 7084.67 6096.27 11092.62 163
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10793.17 7176.02 13488.64 12791.22 17684.24 7393.37 12777.97 13697.03 8295.52 49
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23065.22 22284.16 16294.23 2377.89 11691.28 7793.66 10884.35 7192.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20581.66 7094.64 1496.53 1465.94 25094.75 6983.02 7696.83 8795.41 51
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5479.44 9686.55 16992.95 12674.84 18095.22 5680.78 10295.83 13294.46 80
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11472.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22784.54 4183.58 23293.78 10473.36 20396.48 187.98 996.21 11294.41 86
Anonymous2024052986.20 10287.13 8883.42 17690.19 15964.55 22984.55 15590.71 14785.85 3189.94 10295.24 4082.13 10290.40 21169.19 23196.40 10495.31 55
v1086.54 9587.10 8984.84 13688.16 20663.28 24186.64 12392.20 10375.42 14692.81 5094.50 6374.05 19194.06 9683.88 6796.28 10897.17 20
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20582.55 21191.56 12283.08 5790.92 8291.82 16078.25 14193.99 9774.16 17498.35 2197.49 13
FC-MVSNet-test85.93 10787.05 9182.58 19892.25 9956.44 32185.75 13593.09 7677.33 12391.94 6694.65 5674.78 18293.41 12675.11 16898.58 1397.88 7
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20583.16 19492.21 10281.73 6990.92 8291.97 15477.20 15393.99 9774.16 17498.35 2197.61 10
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17692.87 8680.37 8389.61 11291.81 16177.72 14694.18 9075.00 16998.53 1596.99 24
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13779.26 9989.68 10794.81 5482.44 9287.74 26176.54 15388.74 28896.61 29
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12491.09 13878.77 10784.85 20490.89 18980.85 12095.29 5381.14 9795.32 14892.34 174
v886.22 10186.83 9684.36 14987.82 21062.35 25786.42 12691.33 13176.78 12892.73 5294.48 6573.41 20093.72 10883.10 7395.41 14497.01 23
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20891.21 3988.64 19486.30 2889.60 11392.59 13769.22 23394.91 6673.89 18097.89 4996.72 26
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10892.09 10678.87 10584.27 22094.05 8878.35 14093.65 10980.54 10691.58 24592.08 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25778.30 8586.93 11492.20 10365.94 25389.16 11993.16 11783.10 8489.89 22887.81 1194.43 18293.35 132
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11580.35 8489.54 11688.01 24579.09 13492.13 16175.51 16295.06 15990.41 232
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26687.25 26182.43 9394.53 7977.65 13896.46 10194.14 98
Gipumacopyleft84.44 13186.33 10278.78 25584.20 28573.57 13289.55 7290.44 15584.24 4384.38 21294.89 4876.35 17080.40 33676.14 15796.80 8982.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs85.35 11486.27 10382.60 19791.86 11357.31 31485.10 14793.05 7875.83 13991.02 8193.97 9273.57 19692.91 14373.97 17998.02 3997.58 12
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22882.21 22390.46 15480.99 7888.42 13291.97 15477.56 14893.85 10372.46 20198.65 1197.61 10
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18592.38 9970.25 21489.35 11890.68 19882.85 8794.57 7679.55 11595.95 12592.00 190
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
MSLP-MVS++85.00 12286.03 10781.90 20791.84 11671.56 16786.75 12193.02 8275.95 13787.12 15389.39 22577.98 14289.40 24277.46 14194.78 17284.75 312
baseline85.20 11785.93 10883.02 18686.30 24762.37 25684.55 15593.96 4074.48 15587.12 15392.03 15382.30 9891.94 16678.39 12494.21 18794.74 73
MVS_030486.35 9885.92 10987.66 8889.21 18073.16 13988.40 9583.63 26981.27 7480.87 27694.12 8671.49 22495.71 3287.79 1296.50 9894.11 100
Baseline_NR-MVSNet84.00 14685.90 11078.29 26691.47 13153.44 34082.29 21987.00 22579.06 10289.55 11495.72 2877.20 15386.14 29072.30 20298.51 1695.28 56
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13491.82 11765.33 26688.55 12892.35 14782.62 9189.80 23086.87 3294.32 18593.18 141
casdiffmvspermissive85.21 11685.85 11283.31 17986.17 25262.77 24883.03 19693.93 4174.69 15388.21 13792.68 13682.29 9991.89 16977.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE85.45 11385.81 11384.37 14790.08 16167.07 20485.86 13391.39 12972.33 19287.59 14790.25 21084.85 6692.37 15578.00 13491.94 23893.66 120
PHI-MVS86.38 9785.81 11388.08 8288.44 20077.34 10189.35 8093.05 7873.15 17784.76 20587.70 25278.87 13694.18 9080.67 10496.29 10792.73 156
TransMVSNet (Re)84.02 14585.74 11578.85 25491.00 14355.20 33182.29 21987.26 21379.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9494.45 82
ANet_high83.17 16385.68 11675.65 30081.24 32245.26 38379.94 25092.91 8583.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13376.92 10687.19 10991.99 10970.56 20984.96 20090.69 19780.01 12995.14 5978.37 12595.78 13791.82 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS86.17 10485.54 11888.05 8492.25 9975.45 12283.85 17392.01 10865.91 25586.19 17891.75 16483.77 7794.98 6477.43 14396.71 9193.73 118
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14291.39 12965.32 26787.72 14591.81 16182.33 9689.78 23186.68 3494.20 18892.99 149
FMVSNet184.55 12985.45 12081.85 20990.27 15861.05 27186.83 11788.27 20278.57 11089.66 10995.64 3075.43 17390.68 20469.09 23295.33 14793.82 112
VDDNet84.35 13385.39 12181.25 22095.13 3159.32 29385.42 14181.11 28986.41 2787.41 15096.21 1973.61 19590.61 20766.33 25596.85 8593.81 115
test_fmvsmvis_n_192085.22 11585.36 12284.81 13785.80 25976.13 11985.15 14692.32 10061.40 29691.33 7490.85 19283.76 7886.16 28984.31 6393.28 20892.15 185
train_agg85.98 10685.28 12388.07 8392.34 9579.70 7483.94 16990.32 15965.79 25684.49 20990.97 18581.93 10693.63 11181.21 9696.54 9690.88 217
dcpmvs_284.23 13985.14 12481.50 21688.61 19561.98 26282.90 20293.11 7468.66 23092.77 5192.39 14278.50 13887.63 26376.99 14992.30 22694.90 65
LCM-MVSNet-Re83.48 15785.06 12578.75 25685.94 25755.75 32680.05 24894.27 2076.47 12996.09 594.54 6283.31 8389.75 23459.95 30694.89 16790.75 220
EPP-MVSNet85.47 11285.04 12686.77 10191.52 12969.37 18491.63 3687.98 20781.51 7287.05 15991.83 15966.18 24895.29 5370.75 21296.89 8495.64 46
IterMVS-LS84.73 12584.98 12783.96 16087.35 22163.66 23683.25 19089.88 17476.06 13289.62 11092.37 14673.40 20292.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs183.69 15184.95 12879.91 24190.04 16559.66 29082.43 21587.44 21075.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19179.72 7387.15 11193.50 5769.17 22285.80 18789.56 22380.76 12192.13 16173.21 19695.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet83.47 15884.73 13079.69 24590.29 15757.52 31381.30 23588.69 19376.29 13087.58 14894.44 6680.60 12487.20 26866.60 25496.82 8894.34 89
K. test v385.14 11884.73 13086.37 10791.13 14069.63 18285.45 14076.68 31884.06 4592.44 5796.99 862.03 27394.65 7280.58 10593.24 20994.83 72
v114484.54 13084.72 13284.00 15887.67 21562.55 25282.97 19990.93 14370.32 21389.80 10490.99 18473.50 19793.48 12281.69 9594.65 17795.97 39
3Dnovator80.37 784.80 12484.71 13385.06 13486.36 24574.71 12588.77 8990.00 17275.65 14284.96 20093.17 11674.06 19091.19 18678.28 12891.09 25189.29 255
v119284.57 12884.69 13484.21 15587.75 21262.88 24583.02 19791.43 12669.08 22489.98 10190.89 18972.70 21193.62 11482.41 8594.97 16496.13 34
MIMVSNet183.63 15384.59 13580.74 22994.06 5362.77 24882.72 20584.53 26277.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 124
VDD-MVS84.23 13984.58 13683.20 18391.17 13965.16 22483.25 19084.97 25779.79 9087.18 15294.27 7474.77 18390.89 19769.24 22896.54 9693.55 130
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14183.91 17285.18 24980.44 8288.75 12585.49 28680.08 12891.92 16782.02 9090.85 26195.97 39
v124084.30 13584.51 13883.65 16987.65 21661.26 26882.85 20391.54 12367.94 23990.68 9090.65 20171.71 22293.64 11082.84 7994.78 17296.07 36
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15083.82 17485.15 25080.27 8688.75 12585.45 28879.95 13091.90 16881.92 9390.80 26296.13 34
v14419284.24 13884.41 14083.71 16887.59 21861.57 26482.95 20091.03 13967.82 24289.80 10490.49 20473.28 20493.51 12181.88 9494.89 16796.04 38
WR-MVS83.56 15584.40 14181.06 22593.43 6754.88 33278.67 27285.02 25481.24 7590.74 8991.56 16872.85 20891.08 19068.00 24598.04 3697.23 18
v192192084.23 13984.37 14283.79 16487.64 21761.71 26382.91 20191.20 13567.94 23990.06 9690.34 20772.04 21993.59 11682.32 8694.91 16596.07 36
MVS_111021_HR84.63 12684.34 14385.49 12990.18 16075.86 12079.23 26487.13 21773.35 16985.56 19189.34 22683.60 8090.50 20976.64 15194.05 19290.09 240
v2v48284.09 14284.24 14483.62 17087.13 22661.40 26582.71 20689.71 17772.19 19589.55 11491.41 17170.70 22893.20 13181.02 9893.76 19796.25 32
EG-PatchMatch MVS84.08 14384.11 14583.98 15992.22 10172.61 14782.20 22587.02 22272.63 18588.86 12291.02 18378.52 13791.11 18973.41 18891.09 25188.21 269
HQP-MVS84.61 12784.06 14686.27 11091.19 13670.66 17284.77 14892.68 9273.30 17280.55 28190.17 21472.10 21694.61 7477.30 14594.47 18093.56 128
Effi-MVS+83.90 14984.01 14783.57 17387.22 22465.61 22086.55 12592.40 9778.64 10981.34 27184.18 30783.65 7992.93 14174.22 17387.87 30092.17 184
alignmvs83.94 14883.98 14883.80 16387.80 21167.88 20084.54 15791.42 12873.27 17588.41 13387.96 24672.33 21490.83 19976.02 15994.11 19092.69 160
MCST-MVS84.36 13283.93 14985.63 12591.59 12171.58 16583.52 18292.13 10561.82 28983.96 22689.75 22179.93 13193.46 12378.33 12794.34 18491.87 194
ETV-MVS84.31 13483.91 15085.52 12788.58 19670.40 17584.50 15993.37 5978.76 10884.07 22478.72 36280.39 12595.13 6073.82 18292.98 21691.04 213
MVS_111021_LR84.28 13683.76 15185.83 12289.23 17983.07 5180.99 23983.56 27072.71 18486.07 18189.07 23281.75 11186.19 28877.11 14793.36 20488.24 268
AdaColmapbinary83.66 15283.69 15283.57 17390.05 16472.26 15586.29 12990.00 17278.19 11481.65 26587.16 26383.40 8294.24 8761.69 29694.76 17584.21 321
F-COLMAP84.97 12383.42 15389.63 5592.39 9383.40 4888.83 8791.92 11273.19 17680.18 28989.15 23177.04 15793.28 12965.82 26292.28 22992.21 182
Effi-MVS+-dtu85.82 10983.38 15493.14 387.13 22691.15 287.70 10488.42 19674.57 15483.56 23385.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
V4283.47 15883.37 15583.75 16683.16 30463.33 24081.31 23390.23 16669.51 22090.91 8490.81 19474.16 18992.29 15980.06 10890.22 27095.62 47
MVS_Test82.47 17283.22 15680.22 23882.62 31057.75 31282.54 21291.96 11171.16 20582.89 24492.52 14177.41 15090.50 20980.04 10987.84 30192.40 171
DP-MVS Recon84.05 14483.22 15686.52 10591.73 11975.27 12383.23 19292.40 9772.04 19682.04 25688.33 24177.91 14493.95 9966.17 25695.12 15790.34 234
PAPM_NR83.23 16183.19 15883.33 17890.90 14565.98 21688.19 9790.78 14678.13 11580.87 27687.92 24973.49 19992.42 15270.07 22188.40 29091.60 202
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25476.08 31186.05 23673.67 16383.41 23593.04 11982.35 9580.65 33470.06 22295.03 16091.21 209
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27552.75 34480.37 24589.42 18570.24 21590.26 9493.39 11374.55 18786.77 27768.61 24096.64 9295.38 52
CNLPA83.55 15683.10 16184.90 13589.34 17683.87 4684.54 15788.77 19179.09 10183.54 23488.66 23874.87 17981.73 32766.84 25192.29 22889.11 257
FA-MVS(test-final)83.13 16483.02 16283.43 17586.16 25466.08 21588.00 9988.36 19875.55 14385.02 19892.75 13465.12 25692.50 15174.94 17091.30 24991.72 197
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24282.85 27676.81 12785.90 18694.14 8474.58 18686.51 28166.82 25295.68 14193.01 148
test_fmvsm_n_192083.60 15482.89 16485.74 12385.22 26877.74 9584.12 16490.48 15359.87 31686.45 17791.12 18075.65 17185.89 29582.28 8790.87 25993.58 126
CANet83.79 15082.85 16586.63 10286.17 25272.21 15783.76 17791.43 12677.24 12574.39 33987.45 25775.36 17495.42 4977.03 14892.83 21992.25 181
h-mvs3384.25 13782.76 16688.72 7191.82 11882.60 5684.00 16884.98 25671.27 20186.70 16590.55 20363.04 27093.92 10078.26 12994.20 18889.63 247
X-MVStestdata85.04 12082.70 16792.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17881.58 28874.73 15285.66 18886.06 27972.56 21392.69 14775.44 16495.21 15289.01 263
CLD-MVS83.18 16282.64 16984.79 13889.05 18267.82 20177.93 28092.52 9568.33 23285.07 19781.54 33882.06 10392.96 13969.35 22797.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17888.71 9087.67 20978.42 11282.15 25584.15 30877.98 14291.59 17565.39 26592.75 22082.51 347
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20989.94 6290.36 15867.97 23884.94 20292.58 13972.71 21092.18 16070.63 21587.73 30288.85 264
114514_t83.10 16582.54 17284.77 13992.90 8069.10 19186.65 12290.62 15154.66 34581.46 26890.81 19476.98 15894.38 8372.62 19996.18 11390.82 219
v14882.31 17382.48 17381.81 21285.59 26159.66 29081.47 23286.02 23772.85 18088.05 14090.65 20170.73 22790.91 19675.15 16791.79 23994.87 67
EI-MVSNet82.61 16882.42 17483.20 18383.25 30163.66 23683.50 18385.07 25176.06 13286.55 16985.10 29473.41 20090.25 21278.15 13390.67 26595.68 45
TinyColmap81.25 19482.34 17577.99 27285.33 26660.68 28182.32 21888.33 20071.26 20386.97 16092.22 15277.10 15686.98 27262.37 28895.17 15486.31 295
GBi-Net82.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
test182.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20684.42 28068.22 19588.50 9489.48 18366.92 24881.80 26391.86 15672.59 21290.16 21771.19 20891.25 25087.40 284
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14487.68 21473.35 13386.14 13077.70 30761.64 29485.02 19891.62 16677.75 14586.24 28582.79 8087.07 30993.91 108
LF4IMVS82.75 16781.93 17985.19 13182.08 31180.15 7085.53 13888.76 19268.01 23685.58 19087.75 25171.80 22186.85 27574.02 17893.87 19688.58 266
hse-mvs283.47 15881.81 18188.47 7591.03 14282.27 5782.61 20783.69 26771.27 20186.70 16586.05 28063.04 27092.41 15378.26 12993.62 20390.71 222
VPNet80.25 21381.68 18275.94 29892.46 9247.98 37076.70 29981.67 28673.45 16784.87 20392.82 13074.66 18586.51 28161.66 29796.85 8593.33 133
SSC-MVS77.55 24481.64 18365.29 36490.46 15420.33 40973.56 33568.28 36985.44 3288.18 13994.64 5970.93 22681.33 32971.25 20692.03 23494.20 92
UGNet82.78 16681.64 18386.21 11386.20 25176.24 11786.86 11585.68 24177.07 12673.76 34392.82 13069.64 23091.82 17269.04 23493.69 20090.56 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17186.58 22972.43 18787.65 14692.98 12363.78 26490.22 21566.86 24993.92 19492.27 179
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16286.87 23671.57 16685.19 14577.42 31062.27 28884.47 21191.33 17376.43 16785.91 29383.14 7187.14 30794.33 90
c3_l81.64 18981.59 18681.79 21380.86 32859.15 29778.61 27390.18 16868.36 23187.20 15187.11 26569.39 23191.62 17478.16 13194.43 18294.60 75
MVSFormer82.23 17581.57 18884.19 15785.54 26469.26 18691.98 3190.08 17071.54 19976.23 31985.07 29758.69 29594.27 8486.26 4088.77 28689.03 261
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17183.94 28873.90 13083.35 18786.10 23458.97 31883.80 22890.36 20674.23 18886.94 27382.90 7790.22 27089.94 242
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15286.56 23873.35 13385.46 13977.30 31161.81 29084.51 20890.88 19177.36 15186.21 28782.72 8186.97 31493.38 131
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 11985.60 26076.53 11183.07 19589.62 18173.02 17979.11 29983.51 31280.74 12290.24 21468.76 23789.29 27990.94 215
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27773.67 16383.41 23593.04 11980.96 11977.65 34758.62 31295.03 16091.21 209
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16686.02 25671.56 16784.73 15177.11 31462.44 28584.00 22590.68 19876.42 16885.89 29583.14 7187.11 30893.81 115
Anonymous2024052180.18 21681.25 19476.95 28583.15 30560.84 27882.46 21485.99 23868.76 22886.78 16293.73 10759.13 29277.44 34873.71 18497.55 6792.56 164
DELS-MVS81.44 19281.25 19482.03 20584.27 28462.87 24676.47 30592.49 9670.97 20681.64 26683.83 30975.03 17792.70 14674.29 17292.22 23290.51 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS82.19 17781.23 19685.10 13387.95 20869.17 19083.22 19393.33 6270.42 21078.58 30279.77 35477.29 15294.20 8971.51 20588.96 28491.93 193
Anonymous20240521180.51 20681.19 19778.49 26188.48 19857.26 31576.63 30182.49 27981.21 7684.30 21892.24 15167.99 23986.24 28562.22 28995.13 15591.98 192
bld_raw_dy_0_6481.25 19481.17 19881.49 21785.55 26260.85 27786.36 12795.45 957.08 33490.81 8882.69 32765.85 25293.91 10170.37 21996.34 10589.72 244
BH-untuned80.96 19980.99 19980.84 22888.55 19768.23 19480.33 24688.46 19572.79 18386.55 16986.76 26974.72 18491.77 17361.79 29588.99 28382.52 346
MG-MVS80.32 21280.94 20078.47 26288.18 20452.62 34782.29 21985.01 25572.01 19779.24 29892.54 14069.36 23293.36 12870.65 21489.19 28289.45 249
PCF-MVS74.62 1582.15 17980.92 20185.84 12189.43 17472.30 15480.53 24391.82 11757.36 33287.81 14489.92 21877.67 14793.63 11158.69 31195.08 15891.58 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_l_conf0.5_n_a81.46 19180.87 20283.25 18083.73 29373.21 13883.00 19885.59 24358.22 32482.96 24390.09 21672.30 21586.65 27981.97 9289.95 27489.88 243
Fast-Effi-MVS+81.04 19880.57 20382.46 20287.50 21963.22 24278.37 27689.63 18068.01 23681.87 25982.08 33182.31 9792.65 14867.10 24888.30 29691.51 205
LFMVS80.15 21780.56 20478.89 25389.19 18155.93 32385.22 14473.78 33882.96 5884.28 21992.72 13557.38 30490.07 22463.80 27995.75 13890.68 224
ab-mvs79.67 22280.56 20476.99 28488.48 19856.93 31784.70 15286.06 23568.95 22680.78 27893.08 11875.30 17584.62 30756.78 32190.90 25889.43 251
PVSNet_Blended_VisFu81.55 19080.49 20684.70 14291.58 12473.24 13784.21 16191.67 12162.86 27980.94 27487.16 26367.27 24292.87 14469.82 22488.94 28587.99 275
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28790.28 16566.65 25182.40 25087.33 26073.50 19787.35 26677.98 13589.62 27793.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PLCcopyleft73.85 1682.09 18080.31 20887.45 9090.86 14780.29 6985.88 13290.65 14968.17 23576.32 31886.33 27473.12 20692.61 14961.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet79.31 22380.27 20976.44 29287.92 20953.95 33675.58 31784.35 26374.39 15682.23 25390.72 19672.84 20984.39 31060.38 30593.98 19390.97 214
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.37 24486.18 18089.21 22963.08 26990.16 21776.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.38 24386.19 17889.22 22863.09 26890.16 21776.32 15495.80 13593.66 120
eth_miper_zixun_eth80.84 20080.22 21282.71 19581.41 32060.98 27477.81 28290.14 16967.31 24686.95 16187.24 26264.26 25992.31 15775.23 16691.61 24394.85 71
BH-RMVSNet80.53 20580.22 21281.49 21787.19 22566.21 21477.79 28386.23 23274.21 15783.69 22988.50 23973.25 20590.75 20163.18 28587.90 29987.52 282
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
miper_ehance_all_eth80.34 21180.04 21781.24 22279.82 33858.95 29977.66 28489.66 17865.75 25985.99 18585.11 29368.29 23891.42 18176.03 15892.03 23493.33 133
WB-MVS76.06 26280.01 21864.19 36789.96 16720.58 40872.18 34468.19 37083.21 5486.46 17693.49 11170.19 22978.97 34365.96 25790.46 26993.02 147
MSDG80.06 21979.99 21980.25 23783.91 29068.04 19977.51 28889.19 18677.65 11981.94 25783.45 31476.37 16986.31 28463.31 28486.59 31786.41 293
tttt051781.07 19779.58 22085.52 12788.99 18566.45 21287.03 11375.51 32673.76 16288.32 13690.20 21137.96 38694.16 9479.36 11995.13 15595.93 42
IterMVS-SCA-FT80.64 20479.41 22184.34 15183.93 28969.66 18176.28 30781.09 29072.43 18786.47 17590.19 21260.46 28093.15 13477.45 14286.39 32090.22 235
patch_mono-278.89 22679.39 22277.41 28184.78 27368.11 19775.60 31583.11 27360.96 30479.36 29589.89 21975.18 17672.97 35973.32 19092.30 22691.15 211
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24073.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
DPM-MVS80.10 21879.18 22482.88 19390.71 15069.74 17978.87 26990.84 14460.29 31175.64 32985.92 28267.28 24193.11 13571.24 20791.79 23985.77 301
PM-MVS80.20 21579.00 22583.78 16588.17 20586.66 1581.31 23366.81 37869.64 21988.33 13590.19 21264.58 25783.63 31871.99 20490.03 27281.06 365
FE-MVS79.98 22078.86 22683.36 17786.47 23966.45 21289.73 6584.74 26172.80 18284.22 22391.38 17244.95 36793.60 11563.93 27891.50 24690.04 241
test111178.53 23478.85 22777.56 27892.22 10147.49 37282.61 20769.24 36772.43 18785.28 19494.20 8051.91 32990.07 22465.36 26696.45 10295.11 62
AUN-MVS81.18 19678.78 22888.39 7790.93 14482.14 5882.51 21383.67 26864.69 27180.29 28585.91 28351.07 33392.38 15476.29 15693.63 20290.65 226
mvs_anonymous78.13 23878.76 22976.23 29779.24 34550.31 36378.69 27184.82 25961.60 29583.09 24292.82 13073.89 19387.01 26968.33 24486.41 31991.37 206
MAR-MVS80.24 21478.74 23084.73 14086.87 23678.18 8885.75 13587.81 20865.67 26177.84 30778.50 36373.79 19490.53 20861.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11448.95 36683.68 17969.91 36472.30 19384.26 22194.20 8051.89 33089.82 22963.58 28096.02 12194.87 67
FMVSNet378.80 23078.55 23279.57 24782.89 30956.89 31981.76 22785.77 24069.04 22586.00 18290.44 20551.75 33190.09 22365.95 25893.34 20591.72 197
test_yl78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
EPNet80.37 21078.41 23586.23 11176.75 36273.28 13587.18 11077.45 30976.24 13168.14 37188.93 23465.41 25493.85 10369.47 22696.12 11791.55 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet78.88 22778.28 23680.68 23279.58 33962.64 25082.58 20994.16 2874.80 15175.72 32792.59 13748.69 34195.56 3973.48 18782.91 35583.85 326
cl2278.97 22578.21 23781.24 22277.74 35259.01 29877.46 29087.13 21765.79 25684.32 21585.10 29458.96 29490.88 19875.36 16592.03 23493.84 110
PAPR78.84 22878.10 23881.07 22485.17 26960.22 28482.21 22390.57 15262.51 28175.32 33384.61 30274.99 17892.30 15859.48 30988.04 29890.68 224
PVSNet_BlendedMVS78.80 23077.84 23981.65 21584.43 27863.41 23879.49 25890.44 15561.70 29375.43 33087.07 26669.11 23491.44 17960.68 30392.24 23090.11 239
Vis-MVSNet (Re-imp)77.82 24177.79 24077.92 27388.82 18851.29 35783.28 18871.97 35274.04 15882.23 25389.78 22057.38 30489.41 24157.22 32095.41 14493.05 146
Patchmtry76.56 25777.46 24173.83 31079.37 34446.60 37682.41 21676.90 31573.81 16185.56 19192.38 14348.07 34483.98 31563.36 28395.31 15090.92 216
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24178.71 25784.39 28161.15 26981.18 23782.52 27862.45 28483.34 23787.37 25866.20 24788.66 25364.69 27385.02 33686.32 294
CL-MVSNet_self_test76.81 25377.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23381.80 26388.40 24066.92 24480.90 33155.35 33394.90 16693.12 144
iter_conf0578.81 22977.35 24483.21 18282.98 30860.75 28084.09 16588.34 19963.12 27784.25 22289.48 22431.41 39594.51 8176.64 15195.83 13294.38 88
thisisatest053079.07 22477.33 24584.26 15487.13 22664.58 22783.66 18075.95 32168.86 22785.22 19587.36 25938.10 38493.57 11975.47 16394.28 18694.62 74
iter_conf05_1178.40 23777.29 24681.71 21485.55 26260.95 27677.22 29186.90 22660.10 31475.79 32681.73 33564.08 26194.47 8270.37 21993.92 19489.72 244
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 18988.29 20169.16 22367.83 37483.72 31060.93 27789.47 23669.22 23089.70 27690.88 217
pmmvs-eth3d78.42 23677.04 24882.57 20087.44 22074.41 12780.86 24179.67 29855.68 33984.69 20690.31 20960.91 27885.42 30062.20 29091.59 24487.88 278
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 19058.05 32683.59 23180.69 34264.41 25891.20 18573.16 19792.03 23492.33 175
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22666.58 37475.67 32473.15 17788.86 12288.99 23366.94 24381.23 33064.71 27288.22 29791.64 201
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23261.30 26775.55 31887.12 22061.24 30174.45 33878.79 36177.20 15390.93 19464.62 27584.80 34383.32 335
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 24988.04 20652.14 35983.65 23091.25 17563.24 26786.65 27954.66 33894.11 19085.17 307
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23061.40 26575.26 32087.13 21761.25 30074.38 34077.22 37476.94 15990.94 19364.63 27484.83 34283.35 334
TAMVS78.08 23976.36 25483.23 18190.62 15172.87 14079.08 26580.01 29761.72 29281.35 27086.92 26863.96 26388.78 25150.61 35993.01 21588.04 274
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23376.30 30679.03 30164.88 27083.11 24089.16 23059.90 28684.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30780.60 27990.96 18775.44 17269.35 37056.13 32688.33 29285.86 300
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27564.69 37885.04 25363.98 27483.20 23988.22 24256.67 30878.79 34573.22 19193.12 21292.78 155
BH-w/o76.57 25676.07 25878.10 26986.88 23565.92 21777.63 28586.33 23065.69 26080.89 27579.95 35168.97 23690.74 20253.01 34985.25 33177.62 376
TR-MVS76.77 25475.79 25979.72 24486.10 25565.79 21877.14 29283.02 27465.20 26881.40 26982.10 32966.30 24690.73 20355.57 33085.27 33082.65 341
jason77.42 24675.75 26082.43 20387.10 22969.27 18577.99 27981.94 28451.47 36377.84 30785.07 29760.32 28289.00 24570.74 21389.27 28189.03 261
jason: jason.
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27077.49 28985.07 25160.78 30686.55 16988.68 23743.14 37690.25 21273.69 18590.67 26592.42 169
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26173.50 33684.80 26057.61 33082.24 25287.54 25551.31 33287.65 26270.40 21893.19 21191.23 208
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 23875.14 32190.44 15557.36 33275.43 33078.30 36469.11 23491.44 17960.68 30387.70 30384.42 317
CDS-MVSNet77.32 24775.40 26383.06 18589.00 18472.48 15177.90 28182.17 28260.81 30578.94 30083.49 31359.30 29088.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres600view775.97 26375.35 26577.85 27687.01 23251.84 35380.45 24473.26 34375.20 14883.10 24186.31 27645.54 35889.05 24455.03 33692.24 23092.66 161
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18378.93 26684.88 25846.67 37787.08 15787.84 25050.44 33771.62 36477.42 14488.53 28990.72 221
thres100view90075.45 26775.05 26776.66 29187.27 22251.88 35281.07 23873.26 34375.68 14183.25 23886.37 27345.54 35888.80 24851.98 35490.99 25389.31 253
cascas76.29 26174.81 26880.72 23184.47 27762.94 24473.89 33387.34 21155.94 33875.16 33576.53 37963.97 26291.16 18765.00 26990.97 25688.06 273
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27568.68 22979.75 29081.80 33450.62 33589.46 23766.85 25085.64 32789.72 244
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 24981.84 26089.93 21772.08 21866.92 38346.05 38092.54 22387.01 288
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21080.28 28791.50 16964.21 26074.72 35846.96 37794.58 17887.82 280
lupinMVS76.37 26074.46 27282.09 20485.54 26469.26 18676.79 29780.77 29350.68 37076.23 31982.82 32258.69 29588.94 24669.85 22388.77 28688.07 271
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13782.43 28039.76 39785.64 18988.76 23544.71 36987.88 26073.86 18185.88 32684.16 322
tfpn200view974.86 27574.23 27476.74 29086.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25392.66 161
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32379.32 29782.92 32157.91 30184.26 31265.60 26491.36 24889.56 248
1112_ss74.82 27673.74 27778.04 27189.57 16960.04 28576.49 30487.09 22154.31 34673.66 34479.80 35260.25 28386.76 27858.37 31384.15 34787.32 285
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21072.29 34369.16 36857.70 32886.76 16386.33 27445.79 35782.59 32269.63 22590.65 26781.54 356
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20281.21 23682.18 28150.78 36876.50 31587.66 25355.20 31882.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25174.00 33465.93 25478.81 30186.28 27756.36 31081.63 32856.63 32279.04 37687.87 279
MVP-Stereo75.81 26573.51 28182.71 19589.35 17573.62 13180.06 24785.20 24860.30 31073.96 34187.94 24757.89 30289.45 23852.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test250674.12 28273.39 28276.28 29591.85 11444.20 38684.06 16648.20 40572.30 19381.90 25894.20 8027.22 40689.77 23264.81 27196.02 12194.87 67
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 27880.97 27287.93 24862.83 27271.90 36255.24 33495.01 16392.00 190
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21385.26 3475.92 31370.09 36264.34 27276.09 32281.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15655.95 32273.40 33886.17 23350.70 36973.14 34585.94 28158.31 29785.90 29456.51 32383.22 35287.20 286
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25082.58 20976.90 31550.50 37175.72 32792.38 14348.07 34484.07 31468.72 23982.91 35583.85 326
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16476.23 30877.59 30852.83 35377.73 31186.38 27256.35 31184.97 30457.72 31987.05 31085.51 304
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19277.07 29484.32 26445.14 38382.89 24484.22 30648.37 34270.36 36773.40 18987.03 31188.52 267
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19483.03 30768.11 19777.09 29376.51 31960.67 30877.60 31280.52 34638.04 38591.15 18870.78 21190.68 26489.17 256
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28565.37 38173.61 16571.77 35292.79 13344.38 37075.65 35564.53 27685.37 32982.18 349
HyFIR lowres test75.12 27172.66 29182.50 20191.44 13265.19 22372.47 34287.31 21246.79 37680.29 28584.30 30552.70 32692.10 16451.88 35886.73 31590.22 235
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23085.92 23946.03 38171.68 35377.54 36968.47 23789.77 23255.70 32985.39 32874.60 382
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26871.37 35761.73 29174.93 33683.42 31560.46 28087.01 26958.11 31782.63 36083.88 323
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23085.36 24551.68 36273.10 34676.65 37861.45 27585.19 30263.54 28179.21 37482.59 342
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22681.96 28356.76 33769.57 36686.21 27860.03 28484.83 30649.58 36582.65 35885.11 308
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31779.36 29588.21 24360.50 27969.12 37158.33 31577.62 38187.04 287
FPMVS72.29 29872.00 29773.14 31588.63 19485.00 3674.65 32667.39 37271.94 19877.80 30987.66 25350.48 33675.83 35449.95 36179.51 37058.58 399
Anonymous2023120671.38 30671.88 29869.88 33786.31 24654.37 33370.39 35874.62 32952.57 35576.73 31488.76 23559.94 28572.06 36144.35 38493.23 21083.23 337
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27576.37 31691.85 15736.68 38878.98 34247.87 37392.45 22487.95 276
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32078.03 30480.51 34756.61 30978.84 34462.20 29086.04 32585.23 306
MIMVSNet71.09 30871.59 30069.57 34087.23 22350.07 36478.91 26771.83 35360.20 31371.26 35491.76 16355.08 32076.09 35241.06 38987.02 31282.54 345
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26551.06 36574.85 33779.10 35855.10 31968.83 37368.86 23679.20 37582.58 343
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21678.56 30380.57 34546.20 35088.20 25846.99 37689.29 27984.32 318
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18379.02 30237.77 40076.33 31785.10 29449.60 34087.41 26570.54 21677.54 38281.08 363
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21775.79 32266.49 25258.39 40081.06 34153.68 32285.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing371.53 30470.79 30673.77 31188.89 18741.86 39376.60 30359.12 39572.83 18180.97 27282.08 33119.80 41187.33 26765.12 26891.68 24292.13 186
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17466.97 37389.73 17542.68 39388.20 13883.04 31743.77 37160.07 39565.35 26786.66 31690.39 233
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16663.08 24368.72 36583.16 27242.99 39175.92 32485.46 28757.22 30685.18 30349.87 36381.67 36286.14 296
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32776.08 32377.78 36737.60 38792.12 16365.00 26991.45 24789.35 252
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32287.10 15585.39 29059.82 28767.32 38059.79 30783.50 35185.96 297
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32187.09 15685.40 28959.80 28867.25 38159.66 30883.54 35085.92 299
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20775.99 31284.21 26643.31 39079.40 29479.39 35643.47 37268.55 37569.05 23384.91 33982.10 350
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25373.82 33477.90 30552.44 35675.92 32481.27 33955.67 31581.75 32655.37 33277.70 38074.94 381
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29155.42 31780.67 33352.86 35087.59 30484.77 311
PAPM71.77 30170.06 31576.92 28686.39 24153.97 33576.62 30286.62 22853.44 35063.97 39084.73 30157.79 30392.34 15639.65 39181.33 36684.45 316
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29770.81 35872.36 38961.37 27679.30 34064.50 27785.18 33284.22 319
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21176.69 30080.81 29244.22 38675.43 33077.23 37350.00 33868.59 37466.71 25382.85 35778.52 375
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2311.09 4052.23 40795.98 2381.87 10989.48 23579.76 11295.96 12491.10 212
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31385.36 29259.26 29170.64 36648.46 37079.35 37281.66 354
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25375.45 32765.02 26970.26 36281.88 33345.34 36385.68 29858.34 31475.39 38682.08 351
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24770.38 35977.21 31246.18 38080.46 28478.95 36052.03 32865.53 38865.77 26377.45 38379.95 371
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18155.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 21973.98 33183.32 27142.83 39277.77 31078.27 36543.39 37568.50 37668.39 24384.38 34679.15 373
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25371.89 36338.21 39685.04 33587.69 281
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23470.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 25973.94 33276.90 31563.27 27668.63 37076.79 37633.83 39291.84 17159.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26069.99 36357.66 32972.53 34982.93 32046.45 34980.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32855.74 31454.82 39947.02 37587.24 30683.52 330
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26174.51 33151.94 36170.97 35784.75 30045.16 36687.49 26455.16 33579.23 37383.40 333
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29369.06 37248.57 36981.67 36282.55 344
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28545.36 36280.85 33255.73 32784.42 345
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24570.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24442.87 37775.97 35352.21 35280.95 36983.15 338
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28272.80 34883.42 31544.89 36859.52 39748.27 37286.45 31881.70 353
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 30065.36 38950.21 36081.01 36881.25 360
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31169.52 36773.53 38652.38 32764.40 39144.90 38281.44 36575.76 379
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33164.82 38877.45 37146.02 35288.44 25453.08 34677.83 37888.70 265
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25271.76 35447.50 37569.92 36483.60 31142.07 37888.40 25548.44 37179.51 37083.01 340
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28665.08 38572.39 38743.41 37369.37 36861.00 30084.89 34081.31 358
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27770.69 36153.16 35267.88 37380.36 34848.18 34374.75 35758.13 31670.79 39281.08 363
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 16975.67 31465.56 38070.42 21065.18 38492.97 12533.64 39383.06 31953.52 34569.61 39678.79 374
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28366.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
test_f64.31 35365.85 34359.67 37866.54 40262.24 26057.76 39270.96 35940.13 39584.36 21382.09 33046.93 34651.67 40161.99 29381.89 36165.12 393
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33474.77 35645.82 38182.96 35381.60 355
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32179.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27369.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27873.68 34044.89 38468.64 36979.00 35945.51 36082.42 32549.91 36270.15 39381.23 362
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28671.18 35677.54 36943.41 37368.47 37740.75 39082.65 35881.35 357
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17761.16 38581.60 28738.65 39872.87 34769.66 39252.84 32460.04 39656.16 32577.77 37980.68 367
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29770.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 31846.71 34777.26 34942.29 38669.96 39483.46 331
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 29968.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28887.05 26752.83 32563.09 39451.92 35772.44 38979.84 372
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 17949.95 33976.43 35138.74 39371.92 39155.84 400
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38266.60 38455.54 33168.81 39880.68 367
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 30965.62 38267.03 39655.93 31368.23 37832.07 40369.46 39768.17 390
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 31846.71 34763.21 39242.29 38669.96 39483.46 331
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25058.90 39865.50 39740.48 38166.12 38655.72 32886.25 32262.95 395
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20855.46 31663.12 39341.72 38881.30 36769.09 389
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24756.89 40163.33 39840.98 37967.03 38254.79 33786.18 32363.08 394
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18663.97 38061.73 39036.80 40160.11 39568.43 39459.42 28966.35 38548.97 36878.57 37760.81 396
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38971.58 36547.41 37462.34 40075.52 380
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23470.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 29953.60 32349.76 40232.68 40289.41 27872.15 384
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 38049.15 40337.39 39772.52 38869.55 388
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23049.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19656.95 39342.11 40838.30 39965.69 38177.19 37556.96 30759.35 39846.16 37858.96 40165.93 392
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32165.91 38735.40 39847.01 40259.25 398
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31244.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2440.00 4090.00 41082.82 32281.46 1130.00 4100.00 4090.00 4080.00 406
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3839.21 40721.64 40543.75 4034.57 403
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
PC_three_145258.96 31990.06 9691.33 17380.66 12393.03 13875.78 16095.94 12692.48 167
No_MVS88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
eth-test20.00 414
eth-test0.00 414
ZD-MVS92.22 10180.48 6791.85 11571.22 20490.38 9192.98 12386.06 5996.11 681.99 9196.75 90
IU-MVS94.18 4672.64 14490.82 14556.98 33589.67 10885.78 5097.92 4693.28 135
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11794.68 7174.48 17195.35 14692.29 177
test_241102_TWO93.71 5083.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 188
test_241102_ONE94.18 4672.65 14293.69 5183.62 4994.11 2293.78 10490.28 1495.50 46
save fliter93.75 5977.44 9986.31 12889.72 17670.80 207
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 189
test072694.16 4972.56 14890.63 4593.90 4383.61 5093.75 3094.49 6489.76 18
GSMVS83.88 323
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35183.88 323
sam_mvs45.92 356
ambc82.98 18790.55 15364.86 22588.20 9689.15 18789.40 11793.96 9571.67 22391.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 119
test_post178.85 2703.13 40545.19 36580.13 33758.11 317
test_post3.10 40645.43 36177.22 350
patchmatchnet-post81.71 33645.93 35587.01 269
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16355.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
MTMP90.66 4433.14 410
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test9_res80.83 10196.45 10290.57 227
TEST992.34 9579.70 7483.94 16990.32 15965.41 26584.49 20990.97 18582.03 10493.63 111
test_892.09 10578.87 8183.82 17490.31 16165.79 25684.36 21390.96 18781.93 10693.44 124
agg_prior279.68 11496.16 11490.22 235
agg_prior91.58 12477.69 9690.30 16284.32 21593.18 132
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
test_prior478.97 8084.59 154
test_prior283.37 18675.43 14584.58 20791.57 16781.92 10879.54 11696.97 83
test_prior86.32 10890.59 15271.99 15992.85 8794.17 9292.80 154
旧先验281.73 22856.88 33686.54 17484.90 30572.81 198
新几何281.72 229
新几何182.95 18993.96 5578.56 8480.24 29555.45 34083.93 22791.08 18271.19 22588.33 25665.84 26193.07 21381.95 352
旧先验191.97 10871.77 16081.78 28591.84 15873.92 19293.65 20183.61 329
无先验82.81 20485.62 24258.09 32591.41 18267.95 24784.48 315
原ACMM282.26 222
原ACMM184.60 14392.81 8674.01 12991.50 12462.59 28082.73 24790.67 20076.53 16694.25 8669.24 22895.69 14085.55 303
test22293.31 7076.54 10979.38 25977.79 30652.59 35482.36 25190.84 19366.83 24591.69 24181.25 360
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata79.54 24892.87 8172.34 15380.14 29659.91 31585.47 19391.75 16467.96 24085.24 30168.57 24292.18 23381.06 365
testdata179.62 25473.95 160
test1286.57 10390.74 14872.63 14690.69 14882.76 24679.20 13394.80 6895.32 14892.27 179
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 180
plane_prior593.61 5495.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11175.94 13895.03 160
n20.00 415
nn0.00 415
door-mid74.45 332
lessismore_v085.95 11791.10 14170.99 17170.91 36091.79 6794.42 6961.76 27492.93 14179.52 11793.03 21493.93 106
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
test1191.46 125
door72.57 347
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14873.30 17280.55 281
ACMP_Plane91.19 13684.77 14873.30 17280.55 281
BP-MVS77.30 145
HQP4-MVS80.56 28094.61 7493.56 128
HQP3-MVS92.68 9294.47 180
HQP2-MVS72.10 216
NP-MVS91.95 10974.55 12690.17 214
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36449.18 36683.75 328
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16281.56 7190.02 9891.20 17882.40 9490.81 20073.58 18694.66 17694.56 76
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402