This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 10998.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30189.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 30888.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 29888.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14190.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12698.76 395.61 48
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14790.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25589.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 9898.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17589.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14396.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v7n90.13 3690.96 3887.65 8991.95 11071.06 16989.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30488.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12198.69 998.95 4
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23189.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20097.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14097.07 8283.13 330
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 9995.50 14394.53 79
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8298.04 3693.64 124
tt080588.09 7489.79 5182.98 18793.26 7363.94 23591.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 8995.87 13093.13 144
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20694.85 6785.07 5597.78 5397.26 16
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22188.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15097.99 4096.88 25
test_040288.65 6589.58 5685.88 12192.55 9072.22 15584.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11095.21 15291.82 197
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 13896.62 9490.70 225
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23284.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19198.66 1097.69 9
nrg03087.85 8088.49 7085.91 11990.07 16469.73 17987.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11397.32 7596.50 31
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15790.31 5496.31 380.88 8085.12 19689.67 22184.47 7095.46 4782.56 8396.26 11193.77 118
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 21896.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs686.52 9588.06 7481.90 20792.22 10262.28 25884.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27570.43 21797.30 7696.62 28
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18394.81 17193.70 120
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25195.90 1585.01 5898.23 2797.49 13
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13697.03 8395.52 49
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22284.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10694.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 18887.84 10488.05 20481.66 7094.64 1496.53 1465.94 24894.75 6983.02 7796.83 8895.41 51
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10195.83 13294.46 80
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24795.59 3786.02 4897.78 5397.24 17
Anonymous2024052986.20 10187.13 8783.42 17790.19 16064.55 22984.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 22996.40 10595.31 55
v1086.54 9487.10 8884.84 13788.16 20663.28 24186.64 12592.20 10275.42 14692.81 5094.50 6474.05 19094.06 9683.88 6896.28 10897.17 20
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20482.55 21091.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17498.35 2197.49 13
FC-MVSNet-test85.93 10687.05 9082.58 19892.25 10056.44 31985.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 16898.58 1397.88 7
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20483.16 19492.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17498.35 2197.61 10
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19283.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 16998.53 1596.99 24
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15388.74 28596.61 29
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9695.32 14892.34 176
v886.22 10086.83 9584.36 15187.82 21062.35 25786.42 12891.33 13076.78 12892.73 5294.48 6673.41 19993.72 10783.10 7495.41 14497.01 23
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20791.21 3988.64 19386.30 2889.60 11392.59 13869.22 23194.91 6673.89 18097.89 4996.72 26
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10591.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24579.09 13492.13 16075.51 16295.06 15990.41 234
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26587.25 26182.43 9394.53 7977.65 13896.46 10294.14 98
Gipumacopyleft84.44 13186.33 10178.78 25384.20 28473.57 13289.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 32976.14 15796.80 9082.36 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs85.35 11386.27 10282.60 19791.86 11457.31 31285.10 14893.05 7775.83 13991.02 8293.97 9373.57 19592.91 14273.97 17998.02 3997.58 12
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 22882.21 22290.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20198.65 1197.61 10
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11595.95 12592.00 192
canonicalmvs85.50 11086.14 10583.58 17387.97 20767.13 20287.55 10694.32 1873.44 16888.47 13187.54 25586.45 5491.06 19075.76 16193.76 19792.54 168
MSLP-MVS++85.00 12186.03 10681.90 20791.84 11771.56 16686.75 12393.02 8175.95 13787.12 15389.39 22577.98 14289.40 24177.46 14194.78 17284.75 305
baseline85.20 11685.93 10783.02 18686.30 24762.37 25684.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12494.21 18894.74 73
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 13888.40 9683.63 26681.27 7480.87 27594.12 8771.49 22295.71 3287.79 1296.50 9994.11 100
Baseline_NR-MVSNet84.00 14685.90 10978.29 26491.47 13253.44 33882.29 21887.00 22479.06 10289.55 11495.72 2877.20 15386.14 28872.30 20298.51 1695.28 56
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
casdiffmvspermissive85.21 11585.85 11183.31 18086.17 25362.77 24883.03 19693.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20385.86 13491.39 12872.33 19287.59 14790.25 21084.85 6692.37 15478.00 13491.94 23893.66 121
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25278.87 13694.18 9080.67 10396.29 10792.73 158
TransMVSNet (Re)84.02 14585.74 11478.85 25291.00 14455.20 32982.29 21887.26 21279.65 9388.38 13495.52 3383.00 8586.88 27367.97 24496.60 9594.45 82
ANet_high83.17 16385.68 11575.65 29881.24 31245.26 37779.94 24992.91 8483.83 4691.33 7496.88 1080.25 12785.92 29068.89 23395.89 12995.76 43
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14396.71 9293.73 119
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
FMVSNet184.55 12985.45 11981.85 20990.27 15961.05 27186.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23095.33 14793.82 113
VDDNet84.35 13385.39 12081.25 21895.13 3159.32 29185.42 14281.11 28786.41 2787.41 15096.21 1973.61 19490.61 20666.33 25396.85 8693.81 116
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28784.31 6493.28 20892.15 187
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9596.54 9790.88 219
dcpmvs_284.23 13985.14 12381.50 21588.61 19561.98 26282.90 20193.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 14992.30 22694.90 65
LCM-MVSNet-Re83.48 15785.06 12478.75 25485.94 25855.75 32480.05 24794.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30494.89 16790.75 222
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18391.63 3687.98 20681.51 7287.05 15991.83 16066.18 24695.29 5370.75 21296.89 8595.64 46
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23683.25 19089.88 17376.06 13289.62 11092.37 14773.40 20192.52 14978.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
pm-mvs183.69 15184.95 12779.91 23990.04 16659.66 28882.43 21487.44 20975.52 14487.85 14395.26 3981.25 11685.65 29768.74 23696.04 12094.42 85
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22280.76 12192.13 16073.21 19695.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
VPA-MVSNet83.47 15884.73 12979.69 24390.29 15857.52 31181.30 23488.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25296.82 8994.34 89
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18185.45 14176.68 31684.06 4592.44 5796.99 862.03 26894.65 7280.58 10493.24 20994.83 72
v114484.54 13084.72 13184.00 16087.67 21562.55 25282.97 19890.93 14270.32 21489.80 10490.99 18573.50 19693.48 12181.69 9494.65 17795.97 39
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 18991.19 18578.28 12891.09 25189.29 253
v119284.57 12884.69 13384.21 15787.75 21262.88 24583.02 19791.43 12569.08 22589.98 10190.89 19072.70 21093.62 11382.41 8594.97 16496.13 34
MIMVSNet183.63 15384.59 13480.74 22794.06 5362.77 24882.72 20484.53 25977.57 12190.34 9295.92 2476.88 16585.83 29561.88 29297.42 7293.62 125
VDD-MVS84.23 13984.58 13583.20 18391.17 14065.16 22483.25 19084.97 25479.79 9087.18 15294.27 7574.77 18390.89 19669.24 22696.54 9793.55 131
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14083.91 17385.18 24680.44 8288.75 12585.49 28680.08 12891.92 16682.02 9090.85 26195.97 39
v124084.30 13584.51 13783.65 17187.65 21661.26 26882.85 20291.54 12267.94 24090.68 9090.65 20271.71 22093.64 10982.84 7994.78 17296.07 36
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28270.44 21091.28 7795.18 4256.62 30489.28 24385.15 5497.09 8193.99 103
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28872.52 14983.82 17585.15 24780.27 8688.75 12585.45 28879.95 13091.90 16781.92 9290.80 26296.13 34
v14419284.24 13884.41 14083.71 17087.59 21861.57 26482.95 19991.03 13867.82 24389.80 10490.49 20573.28 20393.51 12081.88 9394.89 16796.04 38
WR-MVS83.56 15584.40 14181.06 22393.43 6854.88 33078.67 27185.02 25181.24 7590.74 8991.56 16972.85 20791.08 18968.00 24398.04 3697.23 18
v192192084.23 13984.37 14283.79 16687.64 21761.71 26382.91 20091.20 13467.94 24090.06 9690.34 20772.04 21793.59 11582.32 8694.91 16596.07 36
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26387.13 21673.35 16985.56 19189.34 22683.60 8090.50 20876.64 15194.05 19390.09 242
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26582.71 20589.71 17672.19 19589.55 11491.41 17270.70 22693.20 13081.02 9793.76 19796.25 32
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14682.20 22487.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 18891.09 25188.21 267
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17184.77 14992.68 9173.30 17280.55 28090.17 21472.10 21494.61 7477.30 14594.47 18093.56 129
Effi-MVS+83.90 14984.01 14783.57 17487.22 22465.61 22086.55 12792.40 9678.64 10981.34 27084.18 30783.65 7992.93 14074.22 17387.87 29692.17 186
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 19984.54 15891.42 12773.27 17588.41 13387.96 24672.33 21390.83 19876.02 15994.11 19192.69 162
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16483.52 18392.13 10461.82 28783.96 22689.75 22079.93 13193.46 12278.33 12794.34 18491.87 196
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17484.50 16093.37 5878.76 10884.07 22478.72 35880.39 12595.13 6073.82 18292.98 21691.04 215
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 23883.56 26772.71 18486.07 18189.07 23281.75 11186.19 28677.11 14793.36 20488.24 266
AdaColmapbinary83.66 15283.69 15283.57 17490.05 16572.26 15486.29 13090.00 17178.19 11481.65 26487.16 26383.40 8294.24 8761.69 29494.76 17584.21 312
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 28889.15 23177.04 15793.28 12865.82 26092.28 22992.21 184
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23285.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
V4283.47 15883.37 15583.75 16883.16 29463.33 24081.31 23290.23 16569.51 22190.91 8590.81 19574.16 18892.29 15880.06 10790.22 27095.62 47
MVS_Test82.47 17283.22 15680.22 23682.62 30057.75 31082.54 21191.96 11071.16 20582.89 24292.52 14277.41 15090.50 20880.04 10887.84 29792.40 173
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19292.40 9672.04 19682.04 25588.33 24177.91 14493.95 9966.17 25495.12 15790.34 236
PAPM_NR83.23 16183.19 15883.33 17990.90 14665.98 21688.19 9890.78 14578.13 11580.87 27587.92 24973.49 19892.42 15170.07 21988.40 28791.60 204
SDMVSNet81.90 18683.17 15978.10 26788.81 18962.45 25476.08 30986.05 23473.67 16383.41 23493.04 12082.35 9580.65 32870.06 22095.03 16091.21 211
KD-MVS_self_test81.93 18483.14 16078.30 26384.75 27452.75 34280.37 24489.42 18470.24 21690.26 9493.39 11474.55 18786.77 27668.61 23896.64 9395.38 52
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23388.66 23874.87 17981.73 32166.84 24992.29 22889.11 255
FA-MVS(test-final)83.13 16483.02 16283.43 17686.16 25566.08 21588.00 10088.36 19775.55 14385.02 19892.75 13565.12 25292.50 15074.94 17091.30 24991.72 199
tfpnnormal81.79 18782.95 16378.31 26288.93 18655.40 32580.83 24182.85 27376.81 12785.90 18694.14 8574.58 18686.51 27966.82 25095.68 14193.01 150
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29382.28 8790.87 25993.58 127
CANet83.79 15082.85 16586.63 10286.17 25372.21 15683.76 17891.43 12577.24 12574.39 33687.45 25775.36 17495.42 4977.03 14892.83 21992.25 183
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25371.27 20186.70 16590.55 20463.04 26593.92 10078.26 12994.20 18989.63 245
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39586.57 5295.80 2587.35 2497.62 6294.20 92
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28674.73 15285.66 18886.06 27972.56 21292.69 14675.44 16495.21 15289.01 261
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20077.93 27992.52 9468.33 23385.07 19781.54 33682.06 10392.96 13869.35 22597.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS82.28 17482.61 17081.30 21786.29 24869.79 17788.71 9087.67 20878.42 11282.15 25384.15 30877.98 14291.59 17465.39 26392.75 22082.51 338
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20889.94 6290.36 15767.97 23984.94 20292.58 14072.71 20992.18 15970.63 21587.73 29888.85 262
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19086.65 12490.62 15054.66 33681.46 26790.81 19576.98 15894.38 8372.62 19996.18 11390.82 221
v14882.31 17382.48 17381.81 21285.59 26259.66 28881.47 23186.02 23572.85 18088.05 14090.65 20270.73 22590.91 19575.15 16791.79 23994.87 67
EI-MVSNet82.61 16882.42 17483.20 18383.25 29263.66 23683.50 18485.07 24876.06 13286.55 16985.10 29473.41 19990.25 21178.15 13390.67 26595.68 45
TinyColmap81.25 19282.34 17577.99 27085.33 26560.68 27982.32 21788.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28695.17 15486.31 289
GBi-Net82.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
test182.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
OpenMVScopyleft76.72 1381.98 18382.00 17881.93 20684.42 27968.22 19488.50 9589.48 18266.92 24881.80 26291.86 15772.59 21190.16 21671.19 20891.25 25087.40 279
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13386.14 13177.70 30561.64 29285.02 19891.62 16777.75 14586.24 28382.79 8087.07 30593.91 109
LF4IMVS82.75 16781.93 17985.19 13282.08 30180.15 7085.53 13988.76 19168.01 23785.58 19087.75 25171.80 21986.85 27474.02 17893.87 19688.58 264
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20683.69 26471.27 20186.70 16586.05 28063.04 26592.41 15278.26 12993.62 20390.71 224
VPNet80.25 21181.68 18275.94 29692.46 9347.98 36876.70 29781.67 28473.45 16784.87 20392.82 13174.66 18586.51 27961.66 29596.85 8693.33 135
SSC-MVS77.55 24181.64 18365.29 35590.46 15520.33 40073.56 33268.28 36485.44 3288.18 13994.64 6070.93 22481.33 32371.25 20692.03 23494.20 92
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 23977.07 12673.76 33992.82 13169.64 22891.82 17169.04 23293.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FMVSNet281.31 19181.61 18580.41 23386.38 24258.75 30283.93 17286.58 22772.43 18787.65 14692.98 12463.78 25990.22 21466.86 24793.92 19592.27 181
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16585.19 14677.42 30862.27 28684.47 21191.33 17476.43 16785.91 29183.14 7287.14 30394.33 90
c3_l81.64 18881.59 18681.79 21380.86 31859.15 29578.61 27290.18 16768.36 23287.20 15187.11 26569.39 22991.62 17378.16 13194.43 18294.60 75
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18591.98 3190.08 16971.54 19976.23 31885.07 29758.69 29094.27 8486.26 4088.77 28389.03 259
fmvsm_s_conf0.5_n_a82.21 17681.51 18984.32 15486.56 23873.35 13385.46 14077.30 30961.81 28884.51 20890.88 19277.36 15186.21 28582.72 8186.97 30993.38 133
Fast-Effi-MVS+-dtu82.54 17181.41 19085.90 12085.60 26176.53 11183.07 19589.62 18073.02 17979.11 29883.51 31280.74 12290.24 21368.76 23589.29 27690.94 217
sd_testset79.95 21981.39 19175.64 29988.81 18958.07 30676.16 30882.81 27473.67 16383.41 23493.04 12080.96 11977.65 33958.62 31095.03 16091.21 211
fmvsm_s_conf0.5_n81.91 18581.30 19283.75 16886.02 25771.56 16684.73 15277.11 31262.44 28384.00 22590.68 19976.42 16885.89 29383.14 7287.11 30493.81 116
Anonymous2024052180.18 21481.25 19376.95 28383.15 29560.84 27682.46 21385.99 23668.76 22986.78 16293.73 10859.13 28777.44 34073.71 18497.55 6792.56 166
DELS-MVS81.44 19081.25 19382.03 20584.27 28362.87 24676.47 30392.49 9570.97 20681.64 26583.83 30975.03 17792.70 14574.29 17292.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EIA-MVS82.19 17781.23 19585.10 13487.95 20869.17 18983.22 19393.33 6170.42 21178.58 30179.77 35277.29 15294.20 8971.51 20588.96 28191.93 195
Anonymous20240521180.51 20381.19 19678.49 25988.48 19857.26 31376.63 29982.49 27681.21 7684.30 21892.24 15267.99 23786.24 28362.22 28795.13 15591.98 194
BH-untuned80.96 19680.99 19780.84 22688.55 19768.23 19380.33 24588.46 19472.79 18386.55 16986.76 26974.72 18491.77 17261.79 29388.99 28082.52 337
MG-MVS80.32 21080.94 19878.47 26088.18 20452.62 34582.29 21885.01 25272.01 19779.24 29792.54 14169.36 23093.36 12770.65 21489.19 27989.45 247
PCF-MVS74.62 1582.15 17980.92 19985.84 12289.43 17472.30 15380.53 24291.82 11657.36 32687.81 14489.92 21777.67 14793.63 11058.69 30995.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Fast-Effi-MVS+81.04 19580.57 20082.46 20287.50 21963.22 24278.37 27589.63 17968.01 23781.87 25882.08 33082.31 9792.65 14767.10 24688.30 29291.51 207
LFMVS80.15 21580.56 20178.89 25189.19 18155.93 32185.22 14573.78 33682.96 5884.28 21992.72 13657.38 29990.07 22363.80 27795.75 13890.68 226
ab-mvs79.67 22080.56 20176.99 28288.48 19856.93 31584.70 15386.06 23368.95 22780.78 27793.08 11975.30 17584.62 30556.78 31990.90 25889.43 249
PVSNet_Blended_VisFu81.55 18980.49 20384.70 14491.58 12573.24 13784.21 16291.67 12062.86 27880.94 27387.16 26367.27 24092.87 14369.82 22288.94 28287.99 271
diffmvspermissive80.40 20680.48 20480.17 23779.02 33860.04 28377.54 28690.28 16466.65 25182.40 24887.33 26073.50 19687.35 26677.98 13589.62 27493.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PLCcopyleft73.85 1682.09 18080.31 20587.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31786.33 27473.12 20592.61 14861.40 29790.02 27289.44 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet79.31 22180.27 20676.44 29087.92 20953.95 33475.58 31584.35 26074.39 15682.23 25190.72 19772.84 20884.39 30760.38 30393.98 19490.97 216
cl____80.42 20580.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.37 24586.18 18089.21 22963.08 26490.16 21676.31 15595.80 13593.65 123
DIV-MVS_self_test80.43 20480.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.38 24486.19 17889.22 22863.09 26390.16 21676.32 15495.80 13593.66 121
eth_miper_zixun_eth80.84 19780.22 20982.71 19581.41 31060.98 27477.81 28190.14 16867.31 24686.95 16187.24 26264.26 25592.31 15675.23 16691.61 24394.85 71
BH-RMVSNet80.53 20280.22 20981.49 21687.19 22566.21 21477.79 28286.23 23174.21 15783.69 22888.50 23973.25 20490.75 20063.18 28387.90 29587.52 277
xiu_mvs_v1_base_debu80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base_debi80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
miper_ehance_all_eth80.34 20980.04 21481.24 22079.82 32858.95 29777.66 28389.66 17765.75 25985.99 18585.11 29368.29 23691.42 18076.03 15892.03 23493.33 135
WB-MVS76.06 25980.01 21564.19 35889.96 16820.58 39972.18 34068.19 36583.21 5486.46 17693.49 11270.19 22778.97 33565.96 25590.46 26993.02 149
MSDG80.06 21779.99 21680.25 23583.91 28768.04 19877.51 28789.19 18577.65 11981.94 25683.45 31476.37 16986.31 28263.31 28286.59 31286.41 287
tttt051781.07 19479.58 21785.52 12888.99 18566.45 21187.03 11475.51 32473.76 16288.32 13690.20 21137.96 38294.16 9479.36 11995.13 15595.93 42
IterMVS-SCA-FT80.64 20179.41 21884.34 15383.93 28669.66 18076.28 30581.09 28872.43 18786.47 17590.19 21260.46 27593.15 13377.45 14286.39 31590.22 237
patch_mono-278.89 22479.39 21977.41 27984.78 27268.11 19675.60 31383.11 27060.96 30179.36 29489.89 21875.18 17672.97 35173.32 19092.30 22691.15 213
wuyk23d75.13 26779.30 22062.63 36175.56 36275.18 12480.89 23973.10 34275.06 15094.76 1295.32 3587.73 4052.85 39134.16 39197.11 8059.85 388
DPM-MVS80.10 21679.18 22182.88 19390.71 15169.74 17878.87 26890.84 14360.29 30875.64 32685.92 28267.28 23993.11 13471.24 20791.79 23985.77 295
PM-MVS80.20 21379.00 22283.78 16788.17 20586.66 1581.31 23266.81 37269.64 22088.33 13590.19 21264.58 25383.63 31371.99 20490.03 27181.06 356
iter_conf_final80.36 20878.88 22384.79 13986.29 24866.36 21386.95 11586.25 23068.16 23682.09 25489.48 22336.59 38594.51 8179.83 11194.30 18693.50 132
FE-MVS79.98 21878.86 22483.36 17886.47 23966.45 21189.73 6584.74 25872.80 18284.22 22391.38 17344.95 36393.60 11463.93 27691.50 24690.04 243
test111178.53 23278.85 22577.56 27692.22 10247.49 37082.61 20669.24 36272.43 18785.28 19494.20 8151.91 32590.07 22365.36 26496.45 10395.11 62
AUN-MVS81.18 19378.78 22688.39 7790.93 14582.14 5882.51 21283.67 26564.69 27180.29 28485.91 28351.07 32992.38 15376.29 15693.63 20290.65 228
mvs_anonymous78.13 23578.76 22776.23 29579.24 33550.31 36178.69 27084.82 25661.60 29383.09 24192.82 13173.89 19287.01 26968.33 24286.41 31491.37 208
MAR-MVS80.24 21278.74 22884.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30678.50 35973.79 19390.53 20761.59 29690.87 25985.49 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ECVR-MVScopyleft78.44 23378.63 22977.88 27291.85 11548.95 36483.68 18069.91 36072.30 19384.26 22194.20 8151.89 32689.82 22863.58 27896.02 12194.87 67
FMVSNet378.80 22878.55 23079.57 24582.89 29956.89 31781.76 22685.77 23869.04 22686.00 18290.44 20651.75 32790.09 22265.95 25693.34 20591.72 199
test_yl78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
DCV-MVSNet78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
EPNet80.37 20778.41 23386.23 11176.75 35273.28 13587.18 11177.45 30776.24 13168.14 36388.93 23465.41 25093.85 10269.47 22496.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet78.88 22578.28 23480.68 23079.58 32962.64 25082.58 20894.16 2774.80 15175.72 32492.59 13848.69 33795.56 3973.48 18782.91 34683.85 317
cl2278.97 22378.21 23581.24 22077.74 34259.01 29677.46 28987.13 21665.79 25684.32 21585.10 29458.96 28990.88 19775.36 16592.03 23493.84 111
PAPR78.84 22678.10 23681.07 22285.17 26860.22 28282.21 22290.57 15162.51 28075.32 33084.61 30274.99 17892.30 15759.48 30788.04 29490.68 226
PVSNet_BlendedMVS78.80 22877.84 23781.65 21484.43 27763.41 23879.49 25790.44 15461.70 29175.43 32787.07 26669.11 23291.44 17860.68 30192.24 23090.11 241
Vis-MVSNet (Re-imp)77.82 23877.79 23877.92 27188.82 18851.29 35583.28 18871.97 34974.04 15882.23 25189.78 21957.38 29989.41 24057.22 31895.41 14493.05 148
Patchmtry76.56 25477.46 23973.83 30879.37 33446.60 37482.41 21576.90 31373.81 16185.56 19192.38 14448.07 34083.98 31063.36 28195.31 15090.92 218
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23978.71 25584.39 28061.15 26981.18 23682.52 27562.45 28283.34 23687.37 25866.20 24588.66 25364.69 27185.02 32886.32 288
CL-MVSNet_self_test76.81 25077.38 24175.12 30286.90 23451.34 35373.20 33680.63 29268.30 23481.80 26288.40 24066.92 24280.90 32555.35 33194.90 16693.12 146
iter_conf0578.81 22777.35 24283.21 18282.98 29860.75 27884.09 16688.34 19863.12 27684.25 22289.48 22331.41 39094.51 8176.64 15195.83 13294.38 88
thisisatest053079.07 22277.33 24384.26 15687.13 22664.58 22783.66 18175.95 31968.86 22885.22 19587.36 25938.10 38093.57 11875.47 16394.28 18794.62 74
CANet_DTU77.81 23977.05 24480.09 23881.37 31159.90 28683.26 18988.29 20069.16 22467.83 36683.72 31060.93 27289.47 23569.22 22889.70 27390.88 219
pmmvs-eth3d78.42 23477.04 24582.57 20087.44 22074.41 12880.86 24079.67 29655.68 33284.69 20690.31 20960.91 27385.42 29862.20 28891.59 24487.88 274
miper_enhance_ethall77.83 23776.93 24680.51 23176.15 35858.01 30775.47 31788.82 18958.05 32083.59 23080.69 34064.41 25491.20 18473.16 19792.03 23492.33 177
MDA-MVSNet-bldmvs77.47 24276.90 24779.16 25079.03 33764.59 22666.58 36575.67 32273.15 17788.86 12288.99 23366.94 24181.23 32464.71 27088.22 29391.64 203
xiu_mvs_v2_base77.19 24576.75 24878.52 25887.01 23261.30 26775.55 31687.12 21961.24 29874.45 33578.79 35777.20 15390.93 19364.62 27384.80 33583.32 326
USDC76.63 25276.73 24976.34 29283.46 29057.20 31480.02 24888.04 20552.14 35083.65 22991.25 17663.24 26286.65 27854.66 33694.11 19185.17 300
PS-MVSNAJ77.04 24776.53 25078.56 25787.09 23061.40 26575.26 31887.13 21661.25 29774.38 33777.22 36876.94 15990.94 19264.63 27284.83 33483.35 325
TAMVS78.08 23676.36 25183.23 18190.62 15272.87 13979.08 26480.01 29561.72 29081.35 26986.92 26863.96 25888.78 25150.61 35593.01 21588.04 270
IterMVS76.91 24876.34 25278.64 25680.91 31664.03 23376.30 30479.03 29964.88 27083.11 23989.16 23059.90 28184.46 30668.61 23885.15 32787.42 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XXY-MVS74.44 27876.19 25369.21 33684.61 27552.43 34671.70 34277.18 31160.73 30480.60 27890.96 18875.44 17269.35 36156.13 32488.33 28885.86 294
miper_lstm_enhance76.45 25676.10 25477.51 27776.72 35360.97 27564.69 36985.04 25063.98 27383.20 23888.22 24256.67 30378.79 33773.22 19193.12 21292.78 157
BH-w/o76.57 25376.07 25578.10 26786.88 23565.92 21777.63 28486.33 22865.69 26080.89 27479.95 34968.97 23490.74 20153.01 34585.25 32477.62 367
TR-MVS76.77 25175.79 25679.72 24286.10 25665.79 21877.14 29083.02 27165.20 26881.40 26882.10 32866.30 24490.73 20255.57 32885.27 32382.65 332
jason77.42 24375.75 25782.43 20387.10 22969.27 18477.99 27881.94 28151.47 35477.84 30685.07 29760.32 27789.00 24570.74 21389.27 27889.03 259
jason: jason.
MVSTER77.09 24675.70 25881.25 21875.27 36661.08 27077.49 28885.07 24860.78 30386.55 16988.68 23743.14 37290.25 21173.69 18590.67 26592.42 171
D2MVS76.84 24975.67 25980.34 23480.48 32462.16 26173.50 33384.80 25757.61 32482.24 25087.54 25551.31 32887.65 26270.40 21893.19 21191.23 210
PVSNet_Blended76.49 25575.40 26079.76 24184.43 27763.41 23875.14 31990.44 15457.36 32675.43 32778.30 36069.11 23291.44 17860.68 30187.70 29984.42 308
CDS-MVSNet77.32 24475.40 26083.06 18589.00 18472.48 15077.90 28082.17 27960.81 30278.94 29983.49 31359.30 28588.76 25254.64 33792.37 22587.93 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
thres600view775.97 26075.35 26277.85 27487.01 23251.84 35180.45 24373.26 34075.20 14883.10 24086.31 27645.54 35489.05 24455.03 33492.24 23092.66 163
test_fmvs375.72 26375.20 26377.27 28075.01 36969.47 18278.93 26584.88 25546.67 36887.08 15787.84 25050.44 33371.62 35577.42 14488.53 28690.72 223
thres100view90075.45 26475.05 26476.66 28987.27 22251.88 35081.07 23773.26 34075.68 14183.25 23786.37 27345.54 35488.80 24851.98 35090.99 25389.31 251
cascas76.29 25874.81 26580.72 22984.47 27662.94 24473.89 33087.34 21055.94 33175.16 33276.53 37263.97 25791.16 18665.00 26790.97 25688.06 269
GA-MVS75.83 26174.61 26679.48 24781.87 30359.25 29273.42 33482.88 27268.68 23079.75 28981.80 33350.62 33189.46 23666.85 24885.64 32089.72 244
testgi72.36 29374.61 26665.59 35280.56 32342.82 38468.29 35773.35 33966.87 24981.84 25989.93 21672.08 21666.92 37446.05 37592.54 22387.01 283
test20.0373.75 28274.59 26871.22 32481.11 31451.12 35770.15 35272.10 34870.42 21180.28 28691.50 17064.21 25674.72 35046.96 37294.58 17887.82 276
lupinMVS76.37 25774.46 26982.09 20485.54 26369.26 18576.79 29580.77 29150.68 36176.23 31882.82 32258.69 29088.94 24669.85 22188.77 28388.07 268
EU-MVSNet75.12 26874.43 27077.18 28183.11 29659.48 29085.71 13882.43 27739.76 38885.64 18988.76 23544.71 36587.88 26073.86 18185.88 31984.16 313
tfpn200view974.86 27274.23 27176.74 28886.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25389.31 251
thres40075.14 26674.23 27177.86 27386.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25392.66 163
ppachtmachnet_test74.73 27574.00 27376.90 28580.71 32156.89 31771.53 34478.42 30158.24 31879.32 29682.92 32157.91 29684.26 30865.60 26291.36 24889.56 246
1112_ss74.82 27373.74 27478.04 26989.57 17060.04 28376.49 30287.09 22054.31 33773.66 34079.80 35060.25 27886.76 27758.37 31184.15 33987.32 280
Patchmatch-RL test74.48 27673.68 27576.89 28684.83 27166.54 20972.29 33969.16 36357.70 32286.76 16386.33 27445.79 35382.59 31669.63 22390.65 26781.54 347
CMPMVSbinary59.41 2075.12 26873.57 27679.77 24075.84 36167.22 20181.21 23582.18 27850.78 35976.50 31487.66 25355.20 31482.99 31562.17 29090.64 26889.09 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
baseline173.26 28573.54 27772.43 32084.92 27047.79 36979.89 25074.00 33265.93 25478.81 30086.28 27756.36 30681.63 32256.63 32079.04 36787.87 275
MVP-Stereo75.81 26273.51 27882.71 19589.35 17573.62 13180.06 24685.20 24560.30 30773.96 33887.94 24757.89 29789.45 23752.02 34974.87 37885.06 302
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test250674.12 27973.39 27976.28 29391.85 11544.20 38084.06 16748.20 39672.30 19381.90 25794.20 8127.22 39789.77 23164.81 26996.02 12194.87 67
new-patchmatchnet70.10 31373.37 28060.29 36881.23 31316.95 40159.54 37874.62 32762.93 27780.97 27187.93 24862.83 26771.90 35455.24 33295.01 16392.00 192
PatchMatch-RL74.48 27673.22 28178.27 26587.70 21385.26 3475.92 31170.09 35864.34 27276.09 32081.25 33865.87 24978.07 33853.86 33983.82 34071.48 376
Test_1112_low_res73.90 28173.08 28276.35 29190.35 15755.95 32073.40 33586.17 23250.70 36073.14 34185.94 28158.31 29285.90 29256.51 32183.22 34387.20 281
CR-MVSNet74.00 28073.04 28376.85 28779.58 32962.64 25082.58 20876.90 31350.50 36275.72 32492.38 14448.07 34084.07 30968.72 23782.91 34683.85 317
pmmvs474.92 27172.98 28480.73 22884.95 26971.71 16376.23 30677.59 30652.83 34477.73 31086.38 27256.35 30784.97 30257.72 31787.05 30685.51 297
test_fmvs273.57 28372.80 28575.90 29772.74 38168.84 19177.07 29284.32 26145.14 37482.89 24284.22 30648.37 33870.36 35873.40 18987.03 30788.52 265
ET-MVSNet_ETH3D75.28 26572.77 28682.81 19483.03 29768.11 19677.09 29176.51 31760.67 30577.60 31180.52 34438.04 38191.15 18770.78 21190.68 26489.17 254
PatchT70.52 30972.76 28763.79 36079.38 33333.53 39477.63 28465.37 37473.61 16571.77 34892.79 13444.38 36675.65 34764.53 27485.37 32282.18 340
HyFIR lowres test75.12 26872.66 28882.50 20191.44 13365.19 22372.47 33887.31 21146.79 36780.29 28484.30 30552.70 32292.10 16351.88 35486.73 31090.22 237
MVS73.21 28772.59 28975.06 30380.97 31560.81 27781.64 22985.92 23746.03 37271.68 34977.54 36368.47 23589.77 23155.70 32785.39 32174.60 373
SCA73.32 28472.57 29075.58 30081.62 30755.86 32278.89 26771.37 35461.73 28974.93 33383.42 31560.46 27587.01 26958.11 31582.63 35183.88 314
131473.22 28672.56 29175.20 30180.41 32557.84 30881.64 22985.36 24251.68 35373.10 34276.65 37161.45 27085.19 30063.54 27979.21 36582.59 333
HY-MVS64.64 1873.03 28872.47 29274.71 30483.36 29154.19 33282.14 22581.96 28056.76 33069.57 35986.21 27860.03 27984.83 30449.58 36182.65 34985.11 301
UnsupCasMVSNet_eth71.63 30072.30 29369.62 33376.47 35552.70 34470.03 35380.97 28959.18 31379.36 29488.21 24360.50 27469.12 36258.33 31377.62 37287.04 282
FPMVS72.29 29572.00 29473.14 31388.63 19485.00 3674.65 32367.39 36671.94 19877.80 30887.66 25350.48 33275.83 34649.95 35779.51 36158.58 390
Anonymous2023120671.38 30371.88 29569.88 33186.31 24654.37 33170.39 35074.62 32752.57 34676.73 31388.76 23559.94 28072.06 35344.35 37993.23 21083.23 328
FMVSNet572.10 29671.69 29673.32 31181.57 30853.02 34176.77 29678.37 30263.31 27476.37 31591.85 15836.68 38478.98 33447.87 36892.45 22487.95 272
our_test_371.85 29771.59 29772.62 31780.71 32153.78 33569.72 35471.71 35358.80 31578.03 30380.51 34556.61 30578.84 33662.20 28886.04 31885.23 299
MIMVSNet71.09 30571.59 29769.57 33487.23 22350.07 36278.91 26671.83 35060.20 31071.26 35091.76 16455.08 31676.09 34441.06 38487.02 30882.54 336
test_vis1_n_192071.30 30471.58 29970.47 32777.58 34559.99 28574.25 32484.22 26251.06 35674.85 33479.10 35455.10 31568.83 36468.86 23479.20 36682.58 334
thres20072.34 29471.55 30074.70 30583.48 28951.60 35275.02 32073.71 33770.14 21778.56 30280.57 34346.20 34688.20 25846.99 37189.29 27684.32 309
CVMVSNet72.62 29171.41 30176.28 29383.25 29260.34 28183.50 18479.02 30037.77 39176.33 31685.10 29449.60 33687.41 26570.54 21677.54 37381.08 354
EPNet_dtu72.87 29071.33 30277.49 27877.72 34360.55 28082.35 21675.79 32066.49 25258.39 39181.06 33953.68 31885.98 28953.55 34092.97 21785.95 292
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing371.53 30170.79 30373.77 30988.89 18741.86 38576.60 30159.12 38672.83 18180.97 27182.08 33019.80 40287.33 26765.12 26691.68 24292.13 188
test_vis3_rt71.42 30270.67 30473.64 31069.66 38770.46 17366.97 36489.73 17442.68 38488.20 13883.04 31743.77 36760.07 38665.35 26586.66 31190.39 235
CHOSEN 1792x268872.45 29270.56 30578.13 26690.02 16763.08 24368.72 35683.16 26942.99 38275.92 32285.46 28757.22 30185.18 30149.87 35981.67 35386.14 290
thisisatest051573.00 28970.52 30680.46 23281.45 30959.90 28673.16 33774.31 33157.86 32176.08 32177.78 36237.60 38392.12 16265.00 26791.45 24789.35 250
YYNet170.06 31470.44 30768.90 33773.76 37353.42 33958.99 38167.20 36858.42 31787.10 15585.39 29059.82 28267.32 37159.79 30583.50 34285.96 291
MDA-MVSNet_test_wron70.05 31570.44 30768.88 33873.84 37253.47 33758.93 38267.28 36758.43 31687.09 15685.40 28959.80 28367.25 37259.66 30683.54 34185.92 293
test_fmvs1_n70.94 30670.41 30972.53 31973.92 37166.93 20675.99 31084.21 26343.31 38179.40 29379.39 35343.47 36868.55 36669.05 23184.91 33182.10 341
MS-PatchMatch70.93 30770.22 31073.06 31481.85 30462.50 25373.82 33177.90 30352.44 34775.92 32281.27 33755.67 31181.75 32055.37 33077.70 37174.94 372
pmmvs570.73 30870.07 31172.72 31677.03 35052.73 34374.14 32575.65 32350.36 36372.17 34785.37 29155.42 31380.67 32752.86 34687.59 30084.77 304
PAPM71.77 29870.06 31276.92 28486.39 24153.97 33376.62 30086.62 22653.44 34163.97 38184.73 30157.79 29892.34 15539.65 38681.33 35784.45 307
Syy-MVS69.40 32170.03 31367.49 34581.72 30538.94 38771.00 34561.99 37861.38 29570.81 35472.36 38061.37 27179.30 33264.50 27585.18 32584.22 310
test_vis1_n70.29 31069.99 31471.20 32575.97 36066.50 21076.69 29880.81 29044.22 37775.43 32777.23 36750.00 33468.59 36566.71 25182.85 34878.52 366
EGC-MVSNET74.79 27469.99 31489.19 6394.89 3787.00 1191.89 3486.28 2291.09 3962.23 39895.98 2381.87 10989.48 23479.76 11295.96 12491.10 214
UnsupCasMVSNet_bld69.21 32269.68 31667.82 34379.42 33251.15 35667.82 36175.79 32054.15 33877.47 31285.36 29259.26 28670.64 35748.46 36579.35 36381.66 345
tpmvs70.16 31269.56 31771.96 32274.71 37048.13 36679.63 25275.45 32565.02 26970.26 35681.88 33245.34 35985.68 29658.34 31275.39 37782.08 342
test_cas_vis1_n_192069.20 32369.12 31869.43 33573.68 37462.82 24770.38 35177.21 31046.18 37180.46 28378.95 35652.03 32465.53 37965.77 26177.45 37479.95 362
gg-mvs-nofinetune68.96 32469.11 31968.52 34276.12 35945.32 37683.59 18255.88 39186.68 2464.62 38097.01 730.36 39283.97 31144.78 37882.94 34576.26 369
test_fmvs169.57 31969.05 32071.14 32669.15 38865.77 21973.98 32883.32 26842.83 38377.77 30978.27 36143.39 37168.50 36768.39 24184.38 33879.15 364
IB-MVS62.13 1971.64 29968.97 32179.66 24480.80 32062.26 25973.94 32976.90 31363.27 27568.63 36276.79 37033.83 38891.84 17059.28 30887.26 30184.88 303
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchmatchNetpermissive69.71 31868.83 32272.33 32177.66 34453.60 33679.29 25969.99 35957.66 32372.53 34582.93 32046.45 34580.08 33160.91 30072.09 38183.31 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet70.20 31168.80 32374.38 30680.91 31684.81 3959.12 38076.45 31855.06 33475.31 33182.36 32755.74 31054.82 39047.02 37087.24 30283.52 321
CostFormer69.98 31668.68 32473.87 30777.14 34850.72 35979.26 26074.51 32951.94 35270.97 35384.75 30045.16 36287.49 26455.16 33379.23 36483.40 324
WTY-MVS67.91 32768.35 32566.58 34980.82 31948.12 36765.96 36672.60 34353.67 34071.20 35181.68 33558.97 28869.06 36348.57 36481.67 35382.55 335
MDTV_nov1_ep1368.29 32678.03 34143.87 38174.12 32672.22 34752.17 34867.02 36885.54 28545.36 35880.85 32655.73 32584.42 337
tpm67.95 32668.08 32767.55 34478.74 34043.53 38275.60 31367.10 37154.92 33572.23 34688.10 24442.87 37375.97 34552.21 34880.95 36083.15 329
Patchmatch-test65.91 33667.38 32861.48 36675.51 36343.21 38368.84 35563.79 37662.48 28172.80 34483.42 31544.89 36459.52 38848.27 36786.45 31381.70 344
sss66.92 32967.26 32965.90 35177.23 34751.10 35864.79 36871.72 35252.12 35170.13 35780.18 34757.96 29565.36 38050.21 35681.01 35981.25 351
dmvs_re66.81 33266.98 33066.28 35076.87 35158.68 30371.66 34372.24 34660.29 30869.52 36073.53 37752.38 32364.40 38244.90 37781.44 35675.76 370
baseline269.77 31766.89 33178.41 26179.51 33158.09 30576.23 30669.57 36157.50 32564.82 37977.45 36546.02 34888.44 25453.08 34277.83 36988.70 263
tpm268.45 32566.83 33273.30 31278.93 33948.50 36579.76 25171.76 35147.50 36669.92 35883.60 31142.07 37488.40 25548.44 36679.51 36183.01 331
test-LLR67.21 32866.74 33368.63 34076.45 35655.21 32767.89 35867.14 36962.43 28465.08 37672.39 37843.41 36969.37 35961.00 29884.89 33281.31 349
tpmrst66.28 33566.69 33465.05 35672.82 38039.33 38678.20 27670.69 35753.16 34367.88 36580.36 34648.18 33974.75 34958.13 31470.79 38381.08 354
JIA-IIPM69.41 32066.64 33577.70 27573.19 37671.24 16875.67 31265.56 37370.42 21165.18 37592.97 12633.64 38983.06 31453.52 34169.61 38778.79 365
test_f64.31 34365.85 33659.67 36966.54 39262.24 26057.76 38370.96 35540.13 38684.36 21382.09 32946.93 34251.67 39261.99 29181.89 35265.12 384
KD-MVS_2432*160066.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
miper_refine_blended66.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
PVSNet58.17 2166.41 33465.63 33968.75 33981.96 30249.88 36362.19 37572.51 34551.03 35768.04 36475.34 37550.84 33074.77 34845.82 37682.96 34481.60 346
tpm cat166.76 33365.21 34071.42 32377.09 34950.62 36078.01 27773.68 33844.89 37568.64 36179.00 35545.51 35682.42 31949.91 35870.15 38481.23 353
test0.0.03 164.66 34164.36 34165.57 35375.03 36846.89 37364.69 36961.58 38362.43 28471.18 35277.54 36343.41 36968.47 36840.75 38582.65 34981.35 348
test_vis1_rt65.64 33864.09 34270.31 32866.09 39370.20 17661.16 37681.60 28538.65 38972.87 34369.66 38352.84 32060.04 38756.16 32377.77 37080.68 358
myMVS_eth3d64.66 34163.89 34366.97 34781.72 30537.39 39071.00 34561.99 37861.38 29570.81 35472.36 38020.96 40179.30 33249.59 36085.18 32584.22 310
test-mter65.00 34063.79 34468.63 34076.45 35655.21 32767.89 35867.14 36950.98 35865.08 37672.39 37828.27 39569.37 35961.00 29884.89 33281.31 349
ADS-MVSNet265.87 33763.64 34572.55 31873.16 37756.92 31667.10 36274.81 32649.74 36466.04 37082.97 31846.71 34377.26 34142.29 38169.96 38583.46 322
mvsany_test365.48 33962.97 34673.03 31569.99 38676.17 11864.83 36743.71 39843.68 37980.25 28787.05 26752.83 32163.09 38551.92 35372.44 38079.84 363
MVS-HIRNet61.16 35062.92 34755.87 37279.09 33635.34 39371.83 34157.98 39046.56 36959.05 38891.14 18049.95 33576.43 34338.74 38771.92 38255.84 391
EPMVS62.47 34462.63 34862.01 36270.63 38538.74 38874.76 32152.86 39353.91 33967.71 36780.01 34839.40 37866.60 37555.54 32968.81 38980.68 358
dmvs_testset60.59 35462.54 34954.72 37477.26 34627.74 39774.05 32761.00 38460.48 30665.62 37367.03 38755.93 30968.23 36932.07 39469.46 38868.17 381
ADS-MVSNet61.90 34662.19 35061.03 36773.16 37736.42 39267.10 36261.75 38149.74 36466.04 37082.97 31846.71 34363.21 38342.29 38169.96 38583.46 322
E-PMN61.59 34861.62 35161.49 36566.81 39155.40 32553.77 38660.34 38566.80 25058.90 38965.50 38840.48 37766.12 37755.72 32686.25 31662.95 386
DSMNet-mixed60.98 35261.61 35259.09 37172.88 37945.05 37874.70 32246.61 39726.20 39365.34 37490.32 20855.46 31263.12 38441.72 38381.30 35869.09 380
EMVS61.10 35160.81 35361.99 36365.96 39455.86 32253.10 38758.97 38867.06 24756.89 39263.33 38940.98 37567.03 37354.79 33586.18 31763.08 385
PMMVS61.65 34760.38 35465.47 35465.40 39669.26 18563.97 37161.73 38236.80 39260.11 38668.43 38559.42 28466.35 37648.97 36378.57 36860.81 387
TESTMET0.1,161.29 34960.32 35564.19 35872.06 38251.30 35467.89 35862.09 37745.27 37360.65 38569.01 38427.93 39664.74 38156.31 32281.65 35576.53 368
dp60.70 35360.29 35661.92 36472.04 38338.67 38970.83 34764.08 37551.28 35560.75 38477.28 36636.59 38571.58 35647.41 36962.34 39175.52 371
pmmvs362.47 34460.02 35769.80 33271.58 38464.00 23470.52 34958.44 38939.77 38766.05 36975.84 37327.10 39872.28 35246.15 37484.77 33673.11 374
PMMVS255.64 35959.27 35844.74 37664.30 39712.32 40240.60 38949.79 39553.19 34265.06 37884.81 29953.60 31949.76 39332.68 39389.41 27572.15 375
new_pmnet55.69 35857.66 35949.76 37575.47 36430.59 39559.56 37751.45 39443.62 38062.49 38275.48 37440.96 37649.15 39437.39 38972.52 37969.55 379
CHOSEN 280x42059.08 35556.52 36066.76 34876.51 35464.39 23049.62 38859.00 38743.86 37855.66 39368.41 38635.55 38768.21 37043.25 38076.78 37667.69 382
mvsany_test158.48 35656.47 36164.50 35765.90 39568.21 19556.95 38442.11 39938.30 39065.69 37277.19 36956.96 30259.35 38946.16 37358.96 39265.93 383
PVSNet_051.08 2256.10 35754.97 36259.48 37075.12 36753.28 34055.16 38561.89 38044.30 37659.16 38762.48 39054.22 31765.91 37835.40 39047.01 39359.25 389
MVEpermissive40.22 2351.82 36050.47 36355.87 37262.66 39851.91 34931.61 39139.28 40040.65 38550.76 39474.98 37656.24 30844.67 39533.94 39264.11 39071.04 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 36129.60 36433.06 37717.99 4003.84 40413.62 39273.92 3332.79 39518.29 39753.41 39228.53 39443.25 39622.56 39535.27 39552.11 392
cdsmvs_eth3d_5k20.81 36227.75 3650.00 3820.00 4040.00 4070.00 39385.44 2410.00 4000.00 40182.82 32281.46 1130.00 4010.00 4000.00 3990.00 397
tmp_tt20.25 36324.50 3667.49 3794.47 4018.70 40334.17 39025.16 4021.00 39732.43 39618.49 39439.37 3799.21 39821.64 39643.75 3944.57 394
ab-mvs-re6.65 3648.87 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40179.80 3500.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.41 3658.55 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40076.94 1590.00 4010.00 4000.00 3990.00 397
test1236.27 3668.08 3690.84 3801.11 4030.57 40562.90 3720.82 4040.54 3981.07 4002.75 3991.26 4030.30 3991.04 3981.26 3981.66 395
testmvs5.91 3677.65 3700.72 3811.20 4020.37 40659.14 3790.67 4050.49 3991.11 3992.76 3980.94 4040.24 4001.02 3991.47 3971.55 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23193.78 10573.36 20296.48 187.98 996.21 11294.41 86
WAC-MVS37.39 39052.61 347
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
PC_three_145258.96 31490.06 9691.33 17480.66 12393.03 13775.78 16095.94 12692.48 169
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
test_one_060193.85 5873.27 13694.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 404
eth-test0.00 404
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9196.75 91
IU-MVS94.18 4672.64 14390.82 14456.98 32889.67 10885.78 5097.92 4693.28 137
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17195.35 14692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14193.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
test_0728_SECOND86.79 10094.25 4572.45 15190.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
test072694.16 4972.56 14790.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 314
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34783.88 314
sam_mvs45.92 352
ambc82.98 18790.55 15464.86 22588.20 9789.15 18689.40 11793.96 9671.67 22191.38 18278.83 12296.55 9692.71 161
MTGPAbinary91.81 118
test_post178.85 2693.13 39645.19 36180.13 33058.11 315
test_post3.10 39745.43 35777.22 342
patchmatchnet-post81.71 33445.93 35187.01 269
GG-mvs-BLEND67.16 34673.36 37546.54 37584.15 16455.04 39258.64 39061.95 39129.93 39383.87 31238.71 38876.92 37571.07 377
MTMP90.66 4433.14 401
gm-plane-assit75.42 36544.97 37952.17 34872.36 38087.90 25954.10 338
test9_res80.83 10096.45 10390.57 229
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11696.97 84
test_prior86.32 10890.59 15371.99 15892.85 8694.17 9292.80 156
旧先验281.73 22756.88 32986.54 17484.90 30372.81 198
新几何281.72 228
新几何182.95 18993.96 5578.56 8480.24 29355.45 33383.93 22791.08 18371.19 22388.33 25665.84 25993.07 21381.95 343
旧先验191.97 10971.77 15981.78 28391.84 15973.92 19193.65 20183.61 320
无先验82.81 20385.62 24058.09 31991.41 18167.95 24584.48 306
原ACMM282.26 221
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24590.67 20176.53 16694.25 8669.24 22695.69 14085.55 296
test22293.31 7176.54 10979.38 25877.79 30452.59 34582.36 24990.84 19466.83 24391.69 24181.25 351
testdata286.43 28163.52 280
segment_acmp81.94 105
testdata79.54 24692.87 8272.34 15280.14 29459.91 31185.47 19391.75 16567.96 23885.24 29968.57 24092.18 23381.06 356
testdata179.62 25373.95 160
test1286.57 10390.74 14972.63 14590.69 14782.76 24479.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10195.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 406
nn0.00 406
door-mid74.45 330
lessismore_v085.95 11891.10 14270.99 17070.91 35691.79 6794.42 7061.76 26992.93 14079.52 11793.03 21493.93 107
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
test1191.46 124
door72.57 344
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 14973.30 17280.55 280
ACMP_Plane91.19 13784.77 14973.30 17280.55 280
BP-MVS77.30 145
HQP4-MVS80.56 27994.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 214
NP-MVS91.95 11074.55 12790.17 214
MDTV_nov1_ep13_2view27.60 39870.76 34846.47 37061.27 38345.20 36049.18 36283.75 319
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18694.66 17694.56 76
DeepMVS_CXcopyleft24.13 37832.95 39929.49 39621.63 40312.07 39437.95 39545.07 39330.84 39119.21 39717.94 39733.06 39623.69 393