This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11795.88 1787.41 2295.94 12692.48 167
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 6995.37 5180.87 10095.50 14394.53 79
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8988.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6083.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4378.43 11189.16 11992.25 15072.03 22096.36 388.21 790.93 25792.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9483.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12082.70 16792.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6681.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6781.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6881.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4688.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 183
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13667.85 24186.63 16894.84 5079.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 18977.34 12293.63 3595.83 2565.40 25595.90 1585.01 5798.23 2797.49 13
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8182.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10179.74 9187.50 14992.38 14381.42 11493.28 12983.07 7497.24 7791.67 200
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11984.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 176
MVSFormer82.23 17581.57 18884.19 15785.54 26469.26 18691.98 3190.08 17071.54 19976.23 31985.07 29758.69 29594.27 8486.26 4088.77 28689.03 261
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17071.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 9997.09 21
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7481.10 7795.32 1097.24 572.94 20794.85 6785.07 5497.78 5397.26 16
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2311.09 4052.23 40795.98 2381.87 10989.48 23579.76 11295.96 12491.10 212
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4980.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
EPP-MVSNet85.47 11285.04 12686.77 10191.52 12969.37 18491.63 3687.98 20781.51 7287.05 15991.83 15966.18 24895.29 5370.75 21296.89 8495.64 46
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5882.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12494.26 7777.55 14995.86 2284.88 5895.87 13095.24 58
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20891.21 3988.64 19486.30 2889.60 11392.59 13769.22 23394.91 6673.89 18097.89 4996.72 26
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
tt080588.09 7489.79 5182.98 18793.26 7263.94 23591.10 4189.64 17985.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11472.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6975.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTMP90.66 4433.14 410
test072694.16 4972.56 14890.63 4593.90 4383.61 5093.75 3094.49 6489.76 18
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14083.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 229
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 189
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16769.87 21895.06 1196.14 2184.28 7293.07 13787.68 1596.34 10597.09 21
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5183.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 177
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11794.68 7174.48 17195.35 14692.29 177
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19689.67 22284.47 7095.46 4782.56 8396.26 11193.77 117
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18288.51 1790.11 9595.12 4490.98 688.92 24777.55 14097.07 8183.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7780.87 8191.13 7893.19 11586.22 5795.97 1282.23 8897.18 7990.45 231
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4380.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7886.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11384.26 4290.87 8793.92 9982.18 10189.29 24373.75 18394.81 17193.70 119
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5377.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20989.94 6290.36 15867.97 23884.94 20292.58 13972.71 21092.18 16070.63 21587.73 30288.85 264
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15070.00 21794.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4878.90 10492.88 4592.29 14886.11 5890.22 21586.24 4397.24 7791.36 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FE-MVS79.98 22078.86 22683.36 17786.47 23966.45 21289.73 6584.74 26172.80 18284.22 22391.38 17244.95 36793.60 11563.93 27891.50 24690.04 241
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16469.27 22194.39 1696.38 1586.02 6093.52 12083.96 6695.92 12895.34 53
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13378.20 11386.69 16792.28 14980.36 12695.06 6286.17 4496.49 9990.22 235
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13779.26 9989.68 10794.81 5482.44 9287.74 26176.54 15388.74 28896.61 29
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23189.67 6988.38 19788.84 1394.29 1897.57 390.48 1391.26 18472.57 20097.65 6097.34 15
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6179.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 170
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4781.89 6894.70 1395.44 3490.69 888.31 25783.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Gipumacopyleft84.44 13186.33 10278.78 25584.20 28573.57 13289.55 7290.44 15584.24 4384.38 21294.89 4876.35 17080.40 33676.14 15796.80 8982.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25589.54 7493.31 6590.21 1095.57 995.66 2981.42 11495.90 1580.94 9998.80 298.84 5
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7693.10 13682.67 8298.04 3693.64 123
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5479.44 9686.55 16992.95 12674.84 18095.22 5680.78 10295.83 13294.46 80
plane_prior289.45 7779.44 96
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26687.25 26182.43 9394.53 7977.65 13896.46 10194.14 98
PHI-MVS86.38 9785.81 11388.08 8288.44 20077.34 10189.35 8093.05 7873.15 17784.76 20587.70 25278.87 13694.18 9080.67 10496.29 10792.73 156
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 199
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30389.04 8392.74 9191.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30088.95 8493.19 7091.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31088.93 8592.84 8891.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22188.86 8693.02 8287.15 2393.05 4397.10 682.28 10092.02 16576.70 15097.99 4096.88 25
F-COLMAP84.97 12383.42 15389.63 5592.39 9383.40 4888.83 8791.92 11273.19 17680.18 28989.15 23177.04 15793.28 12965.82 26292.28 22992.21 182
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
3Dnovator80.37 784.80 12484.71 13385.06 13486.36 24574.71 12588.77 8990.00 17275.65 14284.96 20093.17 11674.06 19091.19 18678.28 12891.09 25189.29 255
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17888.71 9087.67 20978.42 11282.15 25584.15 30877.98 14291.59 17565.39 26592.75 22082.51 347
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22784.54 4183.58 23293.78 10473.36 20396.48 187.98 996.21 11294.41 86
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30688.66 9292.06 10790.78 695.67 795.17 4281.80 11095.54 4179.00 12198.69 998.95 4
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10694.82 5185.09 6395.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20684.42 28068.22 19588.50 9489.48 18366.92 24881.80 26391.86 15672.59 21290.16 21771.19 20891.25 25087.40 284
MVS_030486.35 9885.92 10987.66 8889.21 18073.16 13988.40 9583.63 26981.27 7480.87 27694.12 8671.49 22495.71 3287.79 1296.50 9894.11 100
ambc82.98 18790.55 15364.86 22588.20 9689.15 18789.40 11793.96 9571.67 22391.38 18378.83 12296.55 9592.71 159
PAPM_NR83.23 16183.19 15883.33 17890.90 14565.98 21688.19 9790.78 14678.13 11580.87 27687.92 24973.49 19992.42 15270.07 22188.40 29091.60 202
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FA-MVS(test-final)83.13 16483.02 16283.43 17586.16 25466.08 21588.00 9988.36 19875.55 14385.02 19892.75 13465.12 25692.50 15174.94 17091.30 24991.72 197
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11580.35 8489.54 11688.01 24579.09 13492.13 16175.51 16295.06 15990.41 232
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11070.73 20894.19 2196.67 1176.94 15994.57 7683.07 7496.28 10896.15 33
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6191.50 17679.72 11397.32 7596.50 31
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20581.66 7094.64 1496.53 1465.94 25094.75 6983.02 7696.83 8795.41 51
Effi-MVS+-dtu85.82 10983.38 15493.14 387.13 22691.15 287.70 10488.42 19674.57 15483.56 23385.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8487.95 2089.62 11092.87 12984.56 6893.89 10277.65 13896.62 9390.70 223
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10793.17 7176.02 13488.64 12791.22 17684.24 7393.37 12777.97 13697.03 8295.52 49
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10892.09 10678.87 10584.27 22094.05 8878.35 14093.65 10980.54 10691.58 24592.08 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13376.92 10687.19 10991.99 10970.56 20984.96 20090.69 19780.01 12995.14 5978.37 12595.78 13791.82 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPNet80.37 21078.41 23586.23 11176.75 36273.28 13587.18 11077.45 30976.24 13168.14 37188.93 23465.41 25493.85 10369.47 22696.12 11791.55 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
plane_prior76.42 11387.15 11175.94 13895.03 160
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19179.72 7387.15 11193.50 5769.17 22285.80 18789.56 22380.76 12192.13 16173.21 19695.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051781.07 19779.58 22085.52 12788.99 18566.45 21287.03 11375.51 32673.76 16288.32 13690.20 21137.96 38694.16 9479.36 11995.13 15595.93 42
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25778.30 8586.93 11492.20 10365.94 25389.16 11993.16 11783.10 8489.89 22887.81 1194.43 18293.35 132
UGNet82.78 16681.64 18386.21 11386.20 25176.24 11786.86 11585.68 24177.07 12673.76 34392.82 13069.64 23091.82 17269.04 23493.69 20090.56 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4280.07 8986.75 16493.26 11493.64 290.93 19484.60 6190.75 26393.97 104
GBi-Net82.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
test182.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
FMVSNet184.55 12985.45 12081.85 20990.27 15861.05 27186.83 11788.27 20278.57 11089.66 10995.64 3075.43 17390.68 20469.09 23295.33 14793.82 112
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 9078.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MSLP-MVS++85.00 12286.03 10781.90 20791.84 11671.56 16786.75 12193.02 8275.95 13787.12 15389.39 22577.98 14289.40 24277.46 14194.78 17284.75 312
114514_t83.10 16582.54 17284.77 13992.90 8069.10 19186.65 12290.62 15154.66 34581.46 26890.81 19476.98 15894.38 8372.62 19996.18 11390.82 219
v1086.54 9587.10 8984.84 13688.16 20663.28 24186.64 12392.20 10375.42 14692.81 5094.50 6374.05 19194.06 9683.88 6796.28 10897.17 20
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12491.09 13878.77 10784.85 20490.89 18980.85 12095.29 5381.14 9795.32 14892.34 174
Effi-MVS+83.90 14984.01 14783.57 17387.22 22465.61 22086.55 12592.40 9778.64 10981.34 27184.18 30783.65 7992.93 14174.22 17387.87 30092.17 184
v886.22 10186.83 9684.36 14987.82 21062.35 25786.42 12691.33 13176.78 12892.73 5294.48 6573.41 20093.72 10883.10 7395.41 14497.01 23
bld_raw_dy_0_6481.25 19481.17 19881.49 21785.55 26260.85 27786.36 12795.45 957.08 33490.81 8882.69 32765.85 25293.91 10170.37 21996.34 10589.72 244
save fliter93.75 5977.44 9986.31 12889.72 17670.80 207
AdaColmapbinary83.66 15283.69 15283.57 17390.05 16472.26 15586.29 12990.00 17278.19 11481.65 26587.16 26383.40 8294.24 8761.69 29694.76 17584.21 321
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14487.68 21473.35 13386.14 13077.70 30761.64 29485.02 19891.62 16677.75 14586.24 28582.79 8087.07 30993.91 108
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13193.60 5680.16 8789.13 12193.44 11283.82 7590.98 19283.86 6895.30 15193.60 125
PLCcopyleft73.85 1682.09 18080.31 20887.45 9090.86 14780.29 6985.88 13290.65 14968.17 23576.32 31886.33 27473.12 20692.61 14961.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GeoE85.45 11385.81 11384.37 14790.08 16167.07 20485.86 13391.39 12972.33 19287.59 14790.25 21084.85 6692.37 15578.00 13491.94 23893.66 120
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13491.82 11765.33 26688.55 12892.35 14782.62 9189.80 23086.87 3294.32 18593.18 141
FC-MVSNet-test85.93 10787.05 9182.58 19892.25 9956.44 32185.75 13593.09 7677.33 12391.94 6694.65 5674.78 18293.41 12675.11 16898.58 1397.88 7
MAR-MVS80.24 21478.74 23084.73 14086.87 23678.18 8885.75 13587.81 20865.67 26177.84 30778.50 36373.79 19490.53 20861.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13782.43 28039.76 39785.64 18988.76 23544.71 36987.88 26073.86 18185.88 32684.16 322
LF4IMVS82.75 16781.93 17985.19 13182.08 31180.15 7085.53 13888.76 19268.01 23685.58 19087.75 25171.80 22186.85 27574.02 17893.87 19688.58 266
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15286.56 23873.35 13385.46 13977.30 31161.81 29084.51 20890.88 19177.36 15186.21 28782.72 8186.97 31493.38 131
K. test v385.14 11884.73 13086.37 10791.13 14069.63 18285.45 14076.68 31884.06 4592.44 5796.99 862.03 27394.65 7280.58 10593.24 20994.83 72
VDDNet84.35 13385.39 12181.25 22095.13 3159.32 29385.42 14181.11 28986.41 2787.41 15096.21 1973.61 19590.61 20766.33 25596.85 8593.81 115
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14291.39 12965.32 26787.72 14591.81 16182.33 9689.78 23186.68 3494.20 18892.99 149
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14391.23 13477.31 12487.07 15891.47 17082.94 8694.71 7084.67 6096.27 11092.62 163
LFMVS80.15 21780.56 20478.89 25389.19 18155.93 32385.22 14473.78 33882.96 5884.28 21992.72 13557.38 30490.07 22463.80 27995.75 13890.68 224
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16286.87 23671.57 16685.19 14577.42 31062.27 28884.47 21191.33 17376.43 16785.91 29383.14 7187.14 30794.33 90
test_fmvsmvis_n_192085.22 11585.36 12284.81 13785.80 25976.13 11985.15 14692.32 10061.40 29691.33 7490.85 19283.76 7886.16 28984.31 6393.28 20892.15 185
FIs85.35 11486.27 10382.60 19791.86 11357.31 31485.10 14793.05 7875.83 13991.02 8193.97 9273.57 19692.91 14373.97 17998.02 3997.58 12
HQP-NCC91.19 13684.77 14873.30 17280.55 281
ACMP_Plane91.19 13684.77 14873.30 17280.55 281
HQP-MVS84.61 12784.06 14686.27 11091.19 13670.66 17284.77 14892.68 9273.30 17280.55 28190.17 21472.10 21694.61 7477.30 14594.47 18093.56 128
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16686.02 25671.56 16784.73 15177.11 31462.44 28584.00 22590.68 19876.42 16885.89 29583.14 7187.11 30893.81 115
ab-mvs79.67 22280.56 20476.99 28488.48 19856.93 31784.70 15286.06 23568.95 22680.78 27893.08 11875.30 17584.62 30756.78 32190.90 25889.43 251
pmmvs686.52 9688.06 7481.90 20792.22 10162.28 25884.66 15389.15 18783.54 5289.85 10397.32 488.08 3686.80 27670.43 21797.30 7696.62 28
test_prior478.97 8084.59 154
Anonymous2024052986.20 10287.13 8883.42 17690.19 15964.55 22984.55 15590.71 14785.85 3189.94 10295.24 4082.13 10290.40 21169.19 23196.40 10495.31 55
baseline85.20 11785.93 10883.02 18686.30 24762.37 25684.55 15593.96 4074.48 15587.12 15392.03 15382.30 9891.94 16678.39 12494.21 18794.74 73
alignmvs83.94 14883.98 14883.80 16387.80 21167.88 20084.54 15791.42 12873.27 17588.41 13387.96 24672.33 21490.83 19976.02 15994.11 19092.69 160
CNLPA83.55 15683.10 16184.90 13589.34 17683.87 4684.54 15788.77 19179.09 10183.54 23488.66 23874.87 17981.73 32766.84 25192.29 22889.11 257
ETV-MVS84.31 13483.91 15085.52 12788.58 19670.40 17584.50 15993.37 5978.76 10884.07 22478.72 36280.39 12595.13 6073.82 18292.98 21691.04 213
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23284.38 16091.29 13284.88 3992.06 6393.84 10186.45 5493.73 10773.22 19198.66 1097.69 9
PVSNet_Blended_VisFu81.55 19080.49 20684.70 14291.58 12473.24 13784.21 16191.67 12162.86 27980.94 27487.16 26367.27 24292.87 14469.82 22488.94 28587.99 275
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23065.22 22284.16 16294.23 2377.89 11691.28 7793.66 10884.35 7192.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16355.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
test_fmvsm_n_192083.60 15482.89 16485.74 12385.22 26877.74 9584.12 16490.48 15359.87 31686.45 17791.12 18075.65 17185.89 29582.28 8790.87 25993.58 126
iter_conf0578.81 22977.35 24483.21 18282.98 30860.75 28084.09 16588.34 19963.12 27784.25 22289.48 22431.41 39594.51 8176.64 15195.83 13294.38 88
test250674.12 28273.39 28276.28 29591.85 11444.20 38684.06 16648.20 40572.30 19381.90 25894.20 8027.22 40689.77 23264.81 27196.02 12194.87 67
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16789.44 18488.63 1694.38 1795.77 2686.38 5693.59 11679.84 11195.21 15291.82 195
h-mvs3384.25 13782.76 16688.72 7191.82 11882.60 5684.00 16884.98 25671.27 20186.70 16590.55 20363.04 27093.92 10078.26 12994.20 18889.63 247
TEST992.34 9579.70 7483.94 16990.32 15965.41 26584.49 20990.97 18582.03 10493.63 111
train_agg85.98 10685.28 12388.07 8392.34 9579.70 7483.94 16990.32 15965.79 25684.49 20990.97 18581.93 10693.63 11181.21 9696.54 9690.88 217
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17186.58 22972.43 18787.65 14692.98 12363.78 26490.22 21566.86 24993.92 19492.27 179
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14183.91 17285.18 24980.44 8288.75 12585.49 28680.08 12891.92 16782.02 9090.85 26195.97 39
CDPH-MVS86.17 10485.54 11888.05 8492.25 9975.45 12283.85 17392.01 10865.91 25586.19 17891.75 16483.77 7794.98 6477.43 14396.71 9193.73 118
test_892.09 10578.87 8183.82 17490.31 16165.79 25684.36 21390.96 18781.93 10693.44 124
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15083.82 17485.15 25080.27 8688.75 12585.45 28879.95 13091.90 16881.92 9390.80 26296.13 34
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17692.87 8680.37 8389.61 11291.81 16177.72 14694.18 9075.00 16998.53 1596.99 24
CANet83.79 15082.85 16586.63 10286.17 25272.21 15783.76 17791.43 12677.24 12574.39 33987.45 25775.36 17495.42 4977.03 14892.83 21992.25 181
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17881.58 28874.73 15285.66 18886.06 27972.56 21392.69 14775.44 16495.21 15289.01 263
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11448.95 36683.68 17969.91 36472.30 19384.26 22194.20 8051.89 33089.82 22963.58 28096.02 12194.87 67
thisisatest053079.07 22477.33 24584.26 15487.13 22664.58 22783.66 18075.95 32168.86 22785.22 19587.36 25938.10 38493.57 11975.47 16394.28 18694.62 74
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18155.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
MCST-MVS84.36 13283.93 14985.63 12591.59 12171.58 16583.52 18292.13 10561.82 28983.96 22689.75 22179.93 13193.46 12378.33 12794.34 18491.87 194
EI-MVSNet82.61 16882.42 17483.20 18383.25 30163.66 23683.50 18385.07 25176.06 13286.55 16985.10 29473.41 20090.25 21278.15 13390.67 26595.68 45
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18379.02 30237.77 40076.33 31785.10 29449.60 34087.41 26570.54 21677.54 38281.08 363
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18592.38 9970.25 21489.35 11890.68 19882.85 8794.57 7679.55 11595.95 12592.00 190
test_prior283.37 18675.43 14584.58 20791.57 16781.92 10879.54 11696.97 83
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17183.94 28873.90 13083.35 18786.10 23458.97 31883.80 22890.36 20674.23 18886.94 27382.90 7790.22 27089.94 242
Vis-MVSNet (Re-imp)77.82 24177.79 24077.92 27388.82 18851.29 35783.28 18871.97 35274.04 15882.23 25389.78 22057.38 30489.41 24157.22 32095.41 14493.05 146
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 18988.29 20169.16 22367.83 37483.72 31060.93 27789.47 23669.22 23089.70 27690.88 217
VDD-MVS84.23 13984.58 13683.20 18391.17 13965.16 22483.25 19084.97 25779.79 9087.18 15294.27 7474.77 18390.89 19769.24 22896.54 9693.55 130
IterMVS-LS84.73 12584.98 12783.96 16087.35 22163.66 23683.25 19089.88 17476.06 13289.62 11092.37 14673.40 20292.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon84.05 14483.22 15686.52 10591.73 11975.27 12383.23 19292.40 9772.04 19682.04 25688.33 24177.91 14493.95 9966.17 25695.12 15790.34 234
EIA-MVS82.19 17781.23 19685.10 13387.95 20869.17 19083.22 19393.33 6270.42 21078.58 30279.77 35477.29 15294.20 8971.51 20588.96 28491.93 193
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20583.16 19492.21 10281.73 6990.92 8291.97 15477.20 15393.99 9774.16 17498.35 2197.61 10
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 11985.60 26076.53 11183.07 19589.62 18173.02 17979.11 29983.51 31280.74 12290.24 21468.76 23789.29 27990.94 215
casdiffmvspermissive85.21 11685.85 11283.31 17986.17 25262.77 24883.03 19693.93 4174.69 15388.21 13792.68 13682.29 9991.89 16977.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v119284.57 12884.69 13484.21 15587.75 21262.88 24583.02 19791.43 12669.08 22489.98 10190.89 18972.70 21193.62 11482.41 8594.97 16496.13 34
fmvsm_l_conf0.5_n_a81.46 19180.87 20283.25 18083.73 29373.21 13883.00 19885.59 24358.22 32482.96 24390.09 21672.30 21586.65 27981.97 9289.95 27489.88 243
v114484.54 13084.72 13284.00 15887.67 21562.55 25282.97 19990.93 14370.32 21389.80 10490.99 18473.50 19793.48 12281.69 9594.65 17795.97 39
v14419284.24 13884.41 14083.71 16887.59 21861.57 26482.95 20091.03 13967.82 24289.80 10490.49 20473.28 20493.51 12181.88 9494.89 16796.04 38
v192192084.23 13984.37 14283.79 16487.64 21761.71 26382.91 20191.20 13567.94 23990.06 9690.34 20772.04 21993.59 11682.32 8694.91 16596.07 36
dcpmvs_284.23 13985.14 12481.50 21688.61 19561.98 26282.90 20293.11 7468.66 23092.77 5192.39 14278.50 13887.63 26376.99 14992.30 22694.90 65
v124084.30 13584.51 13883.65 16987.65 21661.26 26882.85 20391.54 12367.94 23990.68 9090.65 20171.71 22293.64 11082.84 7994.78 17296.07 36
无先验82.81 20485.62 24258.09 32591.41 18267.95 24784.48 315
MIMVSNet183.63 15384.59 13580.74 22994.06 5362.77 24882.72 20584.53 26277.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 124
v2v48284.09 14284.24 14483.62 17087.13 22661.40 26582.71 20689.71 17772.19 19589.55 11491.41 17170.70 22893.20 13181.02 9893.76 19796.25 32
test111178.53 23478.85 22777.56 27892.22 10147.49 37282.61 20769.24 36772.43 18785.28 19494.20 8051.91 32990.07 22465.36 26696.45 10295.11 62
hse-mvs283.47 15881.81 18188.47 7591.03 14282.27 5782.61 20783.69 26771.27 20186.70 16586.05 28063.04 27092.41 15378.26 12993.62 20390.71 222
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25082.58 20976.90 31550.50 37175.72 32792.38 14348.07 34484.07 31468.72 23982.91 35583.85 326
RPMNet78.88 22778.28 23680.68 23279.58 33962.64 25082.58 20994.16 2874.80 15175.72 32792.59 13748.69 34195.56 3973.48 18782.91 35583.85 326
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20582.55 21191.56 12283.08 5790.92 8291.82 16078.25 14193.99 9774.16 17498.35 2197.49 13
MVS_Test82.47 17283.22 15680.22 23882.62 31057.75 31282.54 21291.96 11171.16 20582.89 24492.52 14177.41 15090.50 20980.04 10987.84 30192.40 171
AUN-MVS81.18 19678.78 22888.39 7790.93 14482.14 5882.51 21383.67 26864.69 27180.29 28585.91 28351.07 33392.38 15476.29 15693.63 20290.65 226
Anonymous2024052180.18 21681.25 19476.95 28583.15 30560.84 27882.46 21485.99 23868.76 22886.78 16293.73 10759.13 29277.44 34873.71 18497.55 6792.56 164
pm-mvs183.69 15184.95 12879.91 24190.04 16559.66 29082.43 21587.44 21075.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
Patchmtry76.56 25777.46 24173.83 31079.37 34446.60 37682.41 21676.90 31573.81 16185.56 19192.38 14348.07 34483.98 31563.36 28395.31 15090.92 216
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21775.79 32266.49 25258.39 40081.06 34153.68 32285.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TinyColmap81.25 19482.34 17577.99 27285.33 26660.68 28182.32 21888.33 20071.26 20386.97 16092.22 15277.10 15686.98 27262.37 28895.17 15486.31 295
TransMVSNet (Re)84.02 14585.74 11578.85 25491.00 14355.20 33182.29 21987.26 21379.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9494.45 82
Baseline_NR-MVSNet84.00 14685.90 11078.29 26691.47 13153.44 34082.29 21987.00 22579.06 10289.55 11495.72 2877.20 15386.14 29072.30 20298.51 1695.28 56
MG-MVS80.32 21280.94 20078.47 26288.18 20452.62 34782.29 21985.01 25572.01 19779.24 29892.54 14069.36 23293.36 12870.65 21489.19 28289.45 249
原ACMM282.26 222
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22882.21 22390.46 15480.99 7888.42 13291.97 15477.56 14893.85 10372.46 20198.65 1197.61 10
PAPR78.84 22878.10 23881.07 22485.17 26960.22 28482.21 22390.57 15262.51 28175.32 33384.61 30274.99 17892.30 15859.48 30988.04 29890.68 224
EG-PatchMatch MVS84.08 14384.11 14583.98 15992.22 10172.61 14782.20 22587.02 22272.63 18588.86 12291.02 18378.52 13791.11 18973.41 18891.09 25188.21 269
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22681.96 28356.76 33769.57 36686.21 27860.03 28484.83 30649.58 36582.65 35885.11 308
FMVSNet378.80 23078.55 23279.57 24782.89 30956.89 31981.76 22785.77 24069.04 22586.00 18290.44 20551.75 33190.09 22365.95 25893.34 20591.72 197
旧先验281.73 22856.88 33686.54 17484.90 30572.81 198
新几何281.72 229
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23085.36 24551.68 36273.10 34676.65 37861.45 27585.19 30263.54 28179.21 37482.59 342
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23085.92 23946.03 38171.68 35377.54 36968.47 23789.77 23255.70 32985.39 32874.60 382
v14882.31 17382.48 17381.81 21285.59 26159.66 29081.47 23286.02 23772.85 18088.05 14090.65 20170.73 22790.91 19675.15 16791.79 23994.87 67
V4283.47 15883.37 15583.75 16683.16 30463.33 24081.31 23390.23 16669.51 22090.91 8490.81 19474.16 18992.29 15980.06 10890.22 27095.62 47
PM-MVS80.20 21579.00 22583.78 16588.17 20586.66 1581.31 23366.81 37869.64 21988.33 13590.19 21264.58 25783.63 31871.99 20490.03 27281.06 365
VPA-MVSNet83.47 15884.73 13079.69 24590.29 15757.52 31381.30 23588.69 19376.29 13087.58 14894.44 6680.60 12487.20 26866.60 25496.82 8894.34 89
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20281.21 23682.18 28150.78 36876.50 31587.66 25355.20 31882.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24178.71 25784.39 28161.15 26981.18 23782.52 27862.45 28483.34 23787.37 25866.20 24788.66 25364.69 27385.02 33686.32 294
thres100view90075.45 26775.05 26776.66 29187.27 22251.88 35281.07 23873.26 34375.68 14183.25 23886.37 27345.54 35888.80 24851.98 35490.99 25389.31 253
MVS_111021_LR84.28 13683.76 15185.83 12289.23 17983.07 5180.99 23983.56 27072.71 18486.07 18189.07 23281.75 11186.19 28877.11 14793.36 20488.24 268
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24073.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
pmmvs-eth3d78.42 23677.04 24882.57 20087.44 22074.41 12780.86 24179.67 29855.68 33984.69 20690.31 20960.91 27885.42 30062.20 29091.59 24487.88 278
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24282.85 27676.81 12785.90 18694.14 8474.58 18686.51 28166.82 25295.68 14193.01 148
PCF-MVS74.62 1582.15 17980.92 20185.84 12189.43 17472.30 15480.53 24391.82 11757.36 33287.81 14489.92 21877.67 14793.63 11158.69 31195.08 15891.58 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
thres600view775.97 26375.35 26577.85 27687.01 23251.84 35380.45 24473.26 34375.20 14883.10 24186.31 27645.54 35889.05 24455.03 33692.24 23092.66 161
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27552.75 34480.37 24589.42 18570.24 21590.26 9493.39 11374.55 18786.77 27768.61 24096.64 9295.38 52
BH-untuned80.96 19980.99 19980.84 22888.55 19768.23 19480.33 24688.46 19572.79 18386.55 16986.76 26974.72 18491.77 17361.79 29588.99 28382.52 346
MVP-Stereo75.81 26573.51 28182.71 19589.35 17573.62 13180.06 24785.20 24860.30 31073.96 34187.94 24757.89 30289.45 23852.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LCM-MVSNet-Re83.48 15785.06 12578.75 25685.94 25755.75 32680.05 24894.27 2076.47 12996.09 594.54 6283.31 8389.75 23459.95 30694.89 16790.75 220
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 24988.04 20652.14 35983.65 23091.25 17563.24 26786.65 27954.66 33894.11 19085.17 307
ANet_high83.17 16385.68 11675.65 30081.24 32245.26 38379.94 25092.91 8583.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25174.00 33465.93 25478.81 30186.28 27756.36 31081.63 32856.63 32279.04 37687.87 279
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25271.76 35447.50 37569.92 36483.60 31142.07 37888.40 25548.44 37179.51 37083.01 340
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25375.45 32765.02 26970.26 36281.88 33345.34 36385.68 29858.34 31475.39 38682.08 351
testdata179.62 25473.95 160
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
PVSNet_BlendedMVS78.80 23077.84 23981.65 21584.43 27863.41 23879.49 25890.44 15561.70 29375.43 33087.07 26669.11 23491.44 17960.68 30392.24 23090.11 239
test22293.31 7076.54 10979.38 25977.79 30652.59 35482.36 25190.84 19366.83 24591.69 24181.25 360
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26069.99 36357.66 32972.53 34982.93 32046.45 34980.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26174.51 33151.94 36170.97 35784.75 30045.16 36687.49 26455.16 33579.23 37383.40 333
tfpn200view974.86 27574.23 27476.74 29086.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25392.66 161
MVS_111021_HR84.63 12684.34 14385.49 12990.18 16075.86 12079.23 26487.13 21773.35 16985.56 19189.34 22683.60 8090.50 20976.64 15194.05 19290.09 240
TAMVS78.08 23976.36 25483.23 18190.62 15172.87 14079.08 26580.01 29761.72 29281.35 27086.92 26863.96 26388.78 25150.61 35993.01 21588.04 274
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18378.93 26684.88 25846.67 37787.08 15787.84 25050.44 33771.62 36477.42 14488.53 28990.72 221
MIMVSNet71.09 30871.59 30069.57 34087.23 22350.07 36478.91 26771.83 35360.20 31371.26 35491.76 16355.08 32076.09 35241.06 38987.02 31282.54 345
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26871.37 35761.73 29174.93 33683.42 31560.46 28087.01 26958.11 31782.63 36083.88 323
DPM-MVS80.10 21879.18 22482.88 19390.71 15069.74 17978.87 26990.84 14460.29 31175.64 32985.92 28267.28 24193.11 13571.24 20791.79 23985.77 301
test_post178.85 2703.13 40545.19 36580.13 33758.11 317
mvs_anonymous78.13 23878.76 22976.23 29779.24 34550.31 36378.69 27184.82 25961.60 29583.09 24292.82 13073.89 19387.01 26968.33 24486.41 31991.37 206
WR-MVS83.56 15584.40 14181.06 22593.43 6754.88 33278.67 27285.02 25481.24 7590.74 8991.56 16872.85 20891.08 19068.00 24598.04 3697.23 18
c3_l81.64 18981.59 18681.79 21380.86 32859.15 29778.61 27390.18 16868.36 23187.20 15187.11 26569.39 23191.62 17478.16 13194.43 18294.60 75
test_yl78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
Fast-Effi-MVS+81.04 19880.57 20382.46 20287.50 21963.22 24278.37 27689.63 18068.01 23681.87 25982.08 33182.31 9792.65 14867.10 24888.30 29691.51 205
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27770.69 36153.16 35267.88 37380.36 34848.18 34374.75 35758.13 31670.79 39281.08 363
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27873.68 34044.89 38468.64 36979.00 35945.51 36082.42 32549.91 36270.15 39381.23 362
jason77.42 24675.75 26082.43 20387.10 22969.27 18577.99 27981.94 28451.47 36377.84 30785.07 29760.32 28289.00 24570.74 21389.27 28189.03 261
jason: jason.
CLD-MVS83.18 16282.64 16984.79 13889.05 18267.82 20177.93 28092.52 9568.33 23285.07 19781.54 33882.06 10392.96 13969.35 22797.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet77.32 24775.40 26383.06 18589.00 18472.48 15177.90 28182.17 28260.81 30578.94 30083.49 31359.30 29088.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth80.84 20080.22 21282.71 19581.41 32060.98 27477.81 28290.14 16967.31 24686.95 16187.24 26264.26 25992.31 15775.23 16691.61 24394.85 71
BH-RMVSNet80.53 20580.22 21281.49 21787.19 22566.21 21477.79 28386.23 23274.21 15783.69 22988.50 23973.25 20590.75 20163.18 28587.90 29987.52 282
miper_ehance_all_eth80.34 21180.04 21781.24 22279.82 33858.95 29977.66 28489.66 17865.75 25985.99 18585.11 29368.29 23891.42 18176.03 15892.03 23493.33 133
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28565.37 38173.61 16571.77 35292.79 13344.38 37075.65 35564.53 27685.37 32982.18 349
BH-w/o76.57 25676.07 25878.10 26986.88 23565.92 21777.63 28586.33 23065.69 26080.89 27579.95 35168.97 23690.74 20253.01 34985.25 33177.62 376
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28790.28 16566.65 25182.40 25087.33 26073.50 19787.35 26677.98 13589.62 27793.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG80.06 21979.99 21980.25 23783.91 29068.04 19977.51 28889.19 18677.65 11981.94 25783.45 31476.37 16986.31 28463.31 28486.59 31786.41 293
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27077.49 28985.07 25160.78 30686.55 16988.68 23743.14 37690.25 21273.69 18590.67 26592.42 169
cl2278.97 22578.21 23781.24 22277.74 35259.01 29877.46 29087.13 21765.79 25684.32 21585.10 29458.96 29490.88 19875.36 16592.03 23493.84 110
iter_conf05_1178.40 23777.29 24681.71 21485.55 26260.95 27677.22 29186.90 22660.10 31475.79 32681.73 33564.08 26194.47 8270.37 21993.92 19489.72 244
TR-MVS76.77 25475.79 25979.72 24486.10 25565.79 21877.14 29283.02 27465.20 26881.40 26982.10 32966.30 24690.73 20355.57 33085.27 33082.65 341
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19483.03 30768.11 19777.09 29376.51 31960.67 30877.60 31280.52 34638.04 38591.15 18870.78 21190.68 26489.17 256
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19277.07 29484.32 26445.14 38382.89 24484.22 30648.37 34270.36 36773.40 18987.03 31188.52 267
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.37 24486.18 18089.21 22963.08 26990.16 21776.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.38 24386.19 17889.22 22863.09 26890.16 21776.32 15495.80 13593.66 120
lupinMVS76.37 26074.46 27282.09 20485.54 26469.26 18676.79 29780.77 29350.68 37076.23 31982.82 32258.69 29588.94 24669.85 22388.77 28688.07 271
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27576.37 31691.85 15736.68 38878.98 34247.87 37392.45 22487.95 276
VPNet80.25 21381.68 18275.94 29892.46 9247.98 37076.70 29981.67 28673.45 16784.87 20392.82 13074.66 18586.51 28161.66 29796.85 8593.33 133
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21176.69 30080.81 29244.22 38675.43 33077.23 37350.00 33868.59 37466.71 25382.85 35778.52 375
Anonymous20240521180.51 20681.19 19778.49 26188.48 19857.26 31576.63 30182.49 27981.21 7684.30 21892.24 15167.99 23986.24 28562.22 28995.13 15591.98 192
PAPM71.77 30170.06 31576.92 28686.39 24153.97 33576.62 30286.62 22853.44 35063.97 39084.73 30157.79 30392.34 15639.65 39181.33 36684.45 316
testing371.53 30470.79 30673.77 31188.89 18741.86 39376.60 30359.12 39572.83 18180.97 27282.08 33119.80 41187.33 26765.12 26891.68 24292.13 186
1112_ss74.82 27673.74 27778.04 27189.57 16960.04 28576.49 30487.09 22154.31 34673.66 34479.80 35260.25 28386.76 27858.37 31384.15 34787.32 285
DELS-MVS81.44 19281.25 19482.03 20584.27 28462.87 24676.47 30592.49 9670.97 20681.64 26683.83 30975.03 17792.70 14674.29 17292.22 23290.51 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23376.30 30679.03 30164.88 27083.11 24089.16 23059.90 28684.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT80.64 20479.41 22184.34 15183.93 28969.66 18176.28 30781.09 29072.43 18786.47 17590.19 21260.46 28093.15 13477.45 14286.39 32090.22 235
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16476.23 30877.59 30852.83 35377.73 31186.38 27256.35 31184.97 30457.72 31987.05 31085.51 304
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33164.82 38877.45 37146.02 35288.44 25453.08 34677.83 37888.70 265
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27773.67 16383.41 23593.04 11980.96 11977.65 34758.62 31295.03 16091.21 209
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25476.08 31186.05 23673.67 16383.41 23593.04 11982.35 9580.65 33470.06 22295.03 16091.21 209
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20775.99 31284.21 26643.31 39079.40 29479.39 35643.47 37268.55 37569.05 23384.91 33982.10 350
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21385.26 3475.92 31370.09 36264.34 27276.09 32281.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 16975.67 31465.56 38070.42 21065.18 38492.97 12533.64 39383.06 31953.52 34569.61 39678.79 374
patch_mono-278.89 22679.39 22277.41 28184.78 27368.11 19775.60 31583.11 27360.96 30479.36 29589.89 21975.18 17672.97 35973.32 19092.30 22691.15 211
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24442.87 37775.97 35352.21 35280.95 36983.15 338
VNet79.31 22380.27 20976.44 29287.92 20953.95 33675.58 31784.35 26374.39 15682.23 25390.72 19672.84 20984.39 31060.38 30593.98 19390.97 214
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23261.30 26775.55 31887.12 22061.24 30174.45 33878.79 36177.20 15390.93 19464.62 27584.80 34383.32 335
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 19058.05 32683.59 23180.69 34264.41 25891.20 18573.16 19792.03 23492.33 175
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23061.40 26575.26 32087.13 21761.25 30074.38 34077.22 37476.94 15990.94 19364.63 27484.83 34283.35 334
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 23875.14 32190.44 15557.36 33275.43 33078.30 36469.11 23491.44 17960.68 30387.70 30384.42 317
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21678.56 30380.57 34546.20 35088.20 25846.99 37689.29 27984.32 318
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25371.89 36338.21 39685.04 33587.69 281
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38266.60 38455.54 33168.81 39880.68 367
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20855.46 31663.12 39341.72 38881.30 36769.09 389
FPMVS72.29 29872.00 29773.14 31588.63 19485.00 3674.65 32667.39 37271.94 19877.80 30987.66 25350.48 33675.83 35449.95 36179.51 37058.58 399
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26551.06 36574.85 33779.10 35855.10 31968.83 37368.86 23679.20 37582.58 343
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29155.42 31780.67 33352.86 35087.59 30484.77 311
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28545.36 36280.85 33255.73 32784.42 345
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 30965.62 38267.03 39655.93 31368.23 37832.07 40369.46 39768.17 390
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 21973.98 33183.32 27142.83 39277.77 31078.27 36543.39 37568.50 37668.39 24384.38 34679.15 373
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 25973.94 33276.90 31563.27 27668.63 37076.79 37633.83 39291.84 17159.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
cascas76.29 26174.81 26880.72 23184.47 27762.94 24473.89 33387.34 21155.94 33875.16 33576.53 37963.97 26291.16 18765.00 26990.97 25688.06 273
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25373.82 33477.90 30552.44 35675.92 32481.27 33955.67 31581.75 32655.37 33277.70 38074.94 381
SSC-MVS77.55 24481.64 18365.29 36490.46 15420.33 40973.56 33568.28 36985.44 3288.18 13994.64 5970.93 22681.33 32971.25 20692.03 23494.20 92
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26173.50 33684.80 26057.61 33082.24 25287.54 25551.31 33287.65 26270.40 21893.19 21191.23 208
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27568.68 22979.75 29081.80 33450.62 33589.46 23766.85 25085.64 32789.72 244
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15655.95 32273.40 33886.17 23350.70 36973.14 34585.94 28158.31 29785.90 29456.51 32383.22 35287.20 286
CL-MVSNet_self_test76.81 25377.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23381.80 26388.40 24066.92 24480.90 33155.35 33394.90 16693.12 144
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32776.08 32377.78 36737.60 38792.12 16365.00 26991.45 24789.35 252
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32179.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
HyFIR lowres test75.12 27172.66 29182.50 20191.44 13265.19 22372.47 34287.31 21246.79 37680.29 28584.30 30552.70 32692.10 16451.88 35886.73 31590.22 235
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21072.29 34369.16 36857.70 32886.76 16386.33 27445.79 35782.59 32269.63 22590.65 26781.54 356
WB-MVS76.06 26280.01 21864.19 36789.96 16720.58 40872.18 34468.19 37083.21 5486.46 17693.49 11170.19 22978.97 34365.96 25790.46 26993.02 147
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27369.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 17949.95 33976.43 35138.74 39371.92 39155.84 400
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30780.60 27990.96 18775.44 17269.35 37056.13 32688.33 29285.86 300
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31169.52 36773.53 38652.38 32764.40 39144.90 38281.44 36575.76 379
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23470.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32379.32 29782.92 32157.91 30184.26 31265.60 26491.36 24889.56 248
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24570.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29770.81 35872.36 38961.37 27679.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29770.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28366.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38971.58 36547.41 37462.34 40075.52 380
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36449.18 36683.75 328
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23470.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
Anonymous2023120671.38 30671.88 29869.88 33786.31 24654.37 33370.39 35874.62 32952.57 35576.73 31488.76 23559.94 28572.06 36144.35 38493.23 21083.23 337
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24770.38 35977.21 31246.18 38080.46 28478.95 36052.03 32865.53 38865.77 26377.45 38379.95 371
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21080.28 28791.50 16964.21 26074.72 35846.96 37794.58 17887.82 280
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31779.36 29588.21 24360.50 27969.12 37158.33 31577.62 38187.04 287
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32078.03 30480.51 34756.61 30978.84 34462.20 29086.04 32585.23 306
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 29968.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28272.80 34883.42 31544.89 36859.52 39748.27 37286.45 31881.70 353
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16663.08 24368.72 36583.16 27242.99 39175.92 32485.46 28757.22 30685.18 30349.87 36381.67 36286.14 296
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 24981.84 26089.93 21772.08 21866.92 38346.05 38092.54 22387.01 288
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28665.08 38572.39 38743.41 37369.37 36861.00 30084.89 34081.31 358
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31385.36 29259.26 29170.64 36648.46 37079.35 37281.66 354
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 31846.71 34777.26 34942.29 38669.96 39483.46 331
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 31846.71 34763.21 39242.29 38669.96 39483.46 331
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17466.97 37389.73 17542.68 39388.20 13883.04 31743.77 37160.07 39565.35 26786.66 31690.39 233
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22666.58 37475.67 32473.15 17788.86 12288.99 23366.94 24381.23 33064.71 27288.22 29791.64 201
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29369.06 37248.57 36981.67 36282.55 344
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28887.05 26752.83 32563.09 39451.92 35772.44 38979.84 372
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 30065.36 38950.21 36081.01 36881.25 360
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27564.69 37885.04 25363.98 27483.20 23988.22 24256.67 30878.79 34573.22 19193.12 21292.78 155
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28671.18 35677.54 36943.41 37368.47 37740.75 39082.65 35881.35 357
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18663.97 38061.73 39036.80 40160.11 39568.43 39459.42 28966.35 38548.97 36878.57 37760.81 396
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33474.77 35645.82 38182.96 35381.60 355
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17761.16 38581.60 28738.65 39872.87 34769.66 39252.84 32460.04 39656.16 32577.77 37980.68 367
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 38049.15 40337.39 39772.52 38869.55 388
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 27880.97 27287.93 24862.83 27271.90 36255.24 33495.01 16392.00 190
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32855.74 31454.82 39947.02 37587.24 30683.52 330
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32287.10 15585.39 29059.82 28767.32 38059.79 30783.50 35185.96 297
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32187.09 15685.40 28959.80 28867.25 38159.66 30883.54 35085.92 299
test_f64.31 35365.85 34359.67 37866.54 40262.24 26057.76 39270.96 35940.13 39584.36 21382.09 33046.93 34651.67 40161.99 29381.89 36165.12 393
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19656.95 39342.11 40838.30 39965.69 38177.19 37556.96 30759.35 39846.16 37858.96 40165.93 392
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32165.91 38735.40 39847.01 40259.25 398
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25058.90 39865.50 39740.48 38166.12 38655.72 32886.25 32262.95 395
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24756.89 40163.33 39840.98 37967.03 38254.79 33786.18 32363.08 394
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23049.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 29953.60 32349.76 40232.68 40289.41 27872.15 384
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3839.21 40721.64 40543.75 4034.57 403
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31244.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2440.00 4090.00 41082.82 32281.46 1130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
PC_three_145258.96 31990.06 9691.33 17380.66 12393.03 13875.78 16095.94 12692.48 167
No_MVS88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
eth-test20.00 414
eth-test0.00 414
ZD-MVS92.22 10180.48 6791.85 11571.22 20490.38 9192.98 12386.06 5996.11 681.99 9196.75 90
IU-MVS94.18 4672.64 14490.82 14556.98 33589.67 10885.78 5097.92 4693.28 135
test_241102_TWO93.71 5083.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 188
test_241102_ONE94.18 4672.65 14293.69 5183.62 4994.11 2293.78 10490.28 1495.50 46
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
GSMVS83.88 323
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35183.88 323
sam_mvs45.92 356
MTGPAbinary91.81 119
test_post3.10 40645.43 36177.22 350
patchmatchnet-post81.71 33645.93 35587.01 269
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test9_res80.83 10196.45 10290.57 227
agg_prior279.68 11496.16 11490.22 235
agg_prior91.58 12477.69 9690.30 16284.32 21593.18 132
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
test_prior86.32 10890.59 15271.99 15992.85 8794.17 9292.80 154
新几何182.95 18993.96 5578.56 8480.24 29555.45 34083.93 22791.08 18271.19 22588.33 25665.84 26193.07 21381.95 352
旧先验191.97 10871.77 16081.78 28591.84 15873.92 19293.65 20183.61 329
原ACMM184.60 14392.81 8674.01 12991.50 12462.59 28082.73 24790.67 20076.53 16694.25 8669.24 22895.69 14085.55 303
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata79.54 24892.87 8172.34 15380.14 29659.91 31585.47 19391.75 16467.96 24085.24 30168.57 24292.18 23381.06 365
test1286.57 10390.74 14872.63 14690.69 14882.76 24679.20 13394.80 6895.32 14892.27 179
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 180
plane_prior593.61 5495.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 169
plane_prior192.83 85
n20.00 415
nn0.00 415
door-mid74.45 332
lessismore_v085.95 11791.10 14170.99 17170.91 36091.79 6794.42 6961.76 27492.93 14179.52 11793.03 21493.93 106
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
test1191.46 125
door72.57 347
HQP5-MVS70.66 172
BP-MVS77.30 145
HQP4-MVS80.56 28094.61 7493.56 128
HQP3-MVS92.68 9294.47 180
HQP2-MVS72.10 216
NP-MVS91.95 10974.55 12690.17 214
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16281.56 7190.02 9891.20 17882.40 9490.81 20073.58 18694.66 17694.56 76
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402