This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 21100.00 199.87 28
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3499.10 20899.98 1199.99 299.98 1399.91 2499.68 2699.93 9699.93 1999.99 1699.99 1
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7299.01 23099.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6099.12 201100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7599.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 38100.00 199.84 34
UniMVSNet_ETH3D99.85 1199.83 2099.90 799.89 3799.91 499.89 499.71 12799.93 2399.95 3199.89 3499.71 2299.96 5499.51 6599.97 5399.84 34
anonymousdsp99.80 2399.77 3399.90 799.96 799.88 1299.73 2699.85 5599.70 8799.92 4399.93 1799.45 4799.97 3499.36 86100.00 199.85 33
mvs_tets99.90 299.90 399.90 799.96 799.79 4599.72 2999.88 4599.92 2699.98 1399.93 1799.94 499.98 2199.77 37100.00 199.92 18
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1099.93 2499.78 4899.07 21899.98 1199.99 299.98 1399.90 2999.88 899.92 11899.93 1999.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1099.85 5699.82 3499.03 22599.96 2399.99 299.97 1999.84 6499.58 3699.93 9699.92 2199.98 3999.93 15
PS-MVSNAJss99.84 1599.82 2299.89 1099.96 799.77 5399.68 4599.85 5599.95 1899.98 1399.92 2199.28 6699.98 2199.75 38100.00 199.94 13
jajsoiax99.89 399.89 599.89 1099.96 799.78 4899.70 3499.86 5099.89 3699.98 1399.90 2999.94 499.98 2199.75 38100.00 199.90 20
PS-CasMVS99.66 5299.58 6899.89 1099.80 8499.85 1999.66 5399.73 11599.62 10999.84 7599.71 14098.62 15299.96 5499.30 9899.96 6699.86 30
PEN-MVS99.66 5299.59 6599.89 1099.83 6399.87 1499.66 5399.73 11599.70 8799.84 7599.73 12498.56 16199.96 5499.29 10199.94 9099.83 38
test_fmvsmconf_n99.85 1199.84 1999.88 1699.91 2999.73 7598.97 24299.98 1199.99 299.96 2399.85 5899.93 799.99 899.94 1699.99 1699.93 15
v7n99.82 2199.80 2699.88 1699.96 799.84 2499.82 899.82 6899.84 5499.94 3499.91 2499.13 8699.96 5499.83 3199.99 1699.83 38
DTE-MVSNet99.68 4599.61 6099.88 1699.80 8499.87 1499.67 4999.71 12799.72 8099.84 7599.78 10298.67 14699.97 3499.30 9899.95 7999.80 45
LTVRE_ROB99.19 199.88 699.87 1099.88 1699.91 2999.90 799.96 199.92 3099.90 3099.97 1999.87 4799.81 1499.95 6499.54 5999.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2099.85 5699.78 4899.03 22599.96 2399.99 299.97 1999.84 6499.78 1799.92 11899.92 2199.99 1699.92 18
test_vis3_rt99.89 399.90 399.87 2099.98 399.75 6699.70 34100.00 199.73 75100.00 199.89 3499.79 1699.88 19299.98 1100.00 199.98 3
CP-MVSNet99.54 7999.43 9899.87 2099.76 11599.82 3499.57 8099.61 18099.54 12299.80 9199.64 18297.79 24199.95 6499.21 10899.94 9099.84 34
WR-MVS_H99.61 6799.53 8299.87 2099.80 8499.83 2999.67 4999.75 10599.58 12199.85 7299.69 15598.18 21499.94 7999.28 10399.95 7999.83 38
UA-Net99.78 2799.76 3699.86 2499.72 13899.71 8299.91 399.95 2899.96 1799.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
FC-MVSNet-test99.70 4099.65 5099.86 2499.88 4299.86 1899.72 2999.78 9299.90 3099.82 8099.83 6898.45 17999.87 20699.51 6599.97 5399.86 30
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2699.88 4299.66 10099.11 20599.91 3399.98 1399.96 2399.64 18299.60 3499.99 899.95 1299.99 1699.88 24
APDe-MVScopyleft99.48 8999.36 11299.85 2699.55 21499.81 3999.50 9599.69 14098.99 20499.75 11599.71 14098.79 12899.93 9698.46 18399.85 15799.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 2899.88 4299.64 10999.12 20199.91 3399.98 1399.95 3199.67 17099.67 2799.99 899.94 1699.99 1699.88 24
FIs99.65 5799.58 6899.84 2899.84 5999.85 1999.66 5399.75 10599.86 4599.74 12399.79 9498.27 20299.85 24299.37 8599.93 9799.83 38
OurMVSNet-221017-099.75 3299.71 3999.84 2899.96 799.83 2999.83 699.85 5599.80 6699.93 3799.93 1798.54 16499.93 9699.59 5199.98 3999.76 63
SSC-MVS99.52 8299.42 10199.83 3199.86 5299.65 10699.52 8799.81 7799.87 4299.81 8799.79 9496.78 28599.99 899.83 3199.51 29299.86 30
test_fmvsm_n_192099.84 1599.85 1699.83 3199.82 7099.70 8999.17 18199.97 1899.99 299.96 2399.82 7599.94 4100.00 199.95 12100.00 199.80 45
test_0728_SECOND99.83 3199.70 14999.79 4599.14 19199.61 18099.92 11897.88 22899.72 22999.77 58
pmmvs699.86 999.86 1299.83 3199.94 1899.90 799.83 699.91 3399.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5399.69 80
DPE-MVScopyleft99.14 18598.92 21799.82 3599.57 20299.77 5398.74 27499.60 19198.55 26099.76 11099.69 15598.23 20899.92 11896.39 33699.75 21199.76 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 4099.66 4899.82 3599.76 11599.84 2499.61 6899.70 13299.93 2399.78 10099.68 16699.10 8799.78 30999.45 7199.96 6699.83 38
Baseline_NR-MVSNet99.49 8799.37 10999.82 3599.91 2999.84 2498.83 25899.86 5099.68 9299.65 15499.88 4297.67 24999.87 20699.03 13599.86 15399.76 63
test_fmvsmvis_n_192099.84 1599.86 1299.81 3899.88 4299.55 13899.17 18199.98 1199.99 299.96 2399.84 6499.96 399.99 899.96 999.99 1699.88 24
tt080599.63 5999.57 7299.81 3899.87 4999.88 1299.58 7798.70 35099.72 8099.91 4699.60 21799.43 4899.81 29699.81 3599.53 28899.73 68
MSP-MVS99.04 20598.79 23499.81 3899.78 10399.73 7599.35 12699.57 20898.54 26399.54 19998.99 35196.81 28499.93 9696.97 30199.53 28899.77 58
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 2799.77 3399.81 3899.91 2999.85 1999.75 2199.86 5099.70 8799.91 4699.89 3499.60 3499.87 20699.59 5199.74 21899.71 73
XXY-MVS99.71 3999.67 4799.81 3899.89 3799.72 8099.59 7599.82 6899.39 14899.82 8099.84 6499.38 5499.91 14099.38 8299.93 9799.80 45
WB-MVS99.44 10199.32 11999.80 4399.81 7899.61 12399.47 10399.81 7799.82 6099.71 13399.72 13296.60 28999.98 2199.75 3899.23 33299.82 44
sd_testset99.78 2799.78 3199.80 4399.80 8499.76 6099.80 1199.79 8699.97 1599.89 5399.89 3499.53 4399.99 899.36 8699.96 6699.65 110
MP-MVS-pluss99.14 18598.92 21799.80 4399.83 6399.83 2998.61 28299.63 17096.84 36399.44 22499.58 22598.81 12399.91 14097.70 25099.82 17999.67 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.35 12899.20 14499.80 4399.81 7899.81 3999.33 13099.53 23499.27 16399.42 23099.63 19398.21 20999.95 6497.83 23899.79 19899.65 110
HPM-MVS_fast99.43 10499.30 12699.80 4399.83 6399.81 3999.52 8799.70 13298.35 28699.51 21199.50 25499.31 6299.88 19298.18 20599.84 16299.69 80
MIMVSNet199.66 5299.62 5699.80 4399.94 1899.87 1499.69 4199.77 9599.78 6999.93 3799.89 3497.94 23099.92 11899.65 4699.98 3999.62 136
ACMMP_NAP99.28 14299.11 16199.79 4999.75 12699.81 3998.95 24599.53 23498.27 29599.53 20499.73 12498.75 13599.87 20697.70 25099.83 17099.68 86
VPA-MVSNet99.66 5299.62 5699.79 4999.68 16199.75 6699.62 6399.69 14099.85 5199.80 9199.81 8198.81 12399.91 14099.47 6999.88 13399.70 76
Vis-MVSNetpermissive99.75 3299.74 3799.79 4999.88 4299.66 10099.69 4199.92 3099.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 3999.72 70
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 4299.66 4899.78 5299.76 11599.76 6099.60 7499.82 6899.46 13599.75 11599.56 23699.63 2999.95 6499.43 7399.88 13399.62 136
pm-mvs199.79 2699.79 2799.78 5299.91 2999.83 2999.76 1999.87 4799.73 7599.89 5399.87 4799.63 2999.87 20699.54 5999.92 10199.63 125
HPM-MVScopyleft99.25 14999.07 17699.78 5299.81 7899.75 6699.61 6899.67 14797.72 32799.35 24699.25 31599.23 7399.92 11897.21 29199.82 17999.67 93
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++99.38 12099.25 13999.77 5599.03 35299.77 5399.74 2399.61 18099.18 17899.76 11099.61 20999.00 10399.92 11897.72 24599.60 26999.62 136
SED-MVS99.40 11499.28 13399.77 5599.69 15399.82 3499.20 17199.54 22599.13 19199.82 8099.63 19398.91 11599.92 11897.85 23499.70 23499.58 162
ZNCC-MVS99.22 16199.04 18899.77 5599.76 11599.73 7599.28 14999.56 21398.19 30099.14 28899.29 30798.84 12299.92 11897.53 26699.80 19399.64 120
DVP-MVScopyleft99.32 13899.17 14799.77 5599.69 15399.80 4399.14 19199.31 29799.16 18599.62 16899.61 20998.35 19299.91 14097.88 22899.72 22999.61 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 15399.05 18299.77 5599.76 11599.70 8999.31 13799.59 19798.41 27599.32 25599.36 29198.73 13999.93 9697.29 27999.74 21899.67 93
PGM-MVS99.20 16899.01 19499.77 5599.75 12699.71 8299.16 18799.72 12497.99 31099.42 23099.60 21798.81 12399.93 9696.91 30499.74 21899.66 102
TDRefinement99.72 3699.70 4099.77 5599.90 3599.85 1999.86 599.92 3099.69 9099.78 10099.92 2199.37 5699.88 19298.93 15099.95 7999.60 150
SDMVSNet99.77 3099.77 3399.76 6299.80 8499.65 10699.63 6099.86 5099.97 1599.89 5399.89 3499.52 4499.99 899.42 7899.96 6699.65 110
KD-MVS_self_test99.63 5999.59 6599.76 6299.84 5999.90 799.37 12299.79 8699.83 5899.88 6199.85 5898.42 18399.90 15999.60 5099.73 22399.49 207
Anonymous2023121199.62 6599.57 7299.76 6299.61 18199.60 12699.81 1099.73 11599.82 6099.90 4999.90 2997.97 22999.86 22599.42 7899.96 6699.80 45
HFP-MVS99.25 14999.08 17299.76 6299.73 13599.70 8999.31 13799.59 19798.36 28199.36 24599.37 28798.80 12799.91 14097.43 27199.75 21199.68 86
ACMMPR99.23 15399.06 17899.76 6299.74 13299.69 9399.31 13799.59 19798.36 28199.35 24699.38 28598.61 15499.93 9697.43 27199.75 21199.67 93
MP-MVScopyleft99.06 19998.83 22999.76 6299.76 11599.71 8299.32 13299.50 24798.35 28698.97 30399.48 26198.37 19099.92 11895.95 35699.75 21199.63 125
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7999.47 8799.76 6299.58 19299.64 10999.30 14099.63 17099.61 11299.71 13399.56 23698.76 13399.96 5499.14 12699.92 10199.68 86
mPP-MVS99.19 17199.00 19899.76 6299.76 11599.68 9699.38 11899.54 22598.34 29099.01 30199.50 25498.53 16899.93 9697.18 29399.78 20399.66 102
SixPastTwentyTwo99.42 10899.30 12699.76 6299.92 2899.67 9899.70 3499.14 32899.65 10299.89 5399.90 2996.20 30699.94 7999.42 7899.92 10199.67 93
SteuartSystems-ACMMP99.30 14099.14 15299.76 6299.87 4999.66 10099.18 17699.60 19198.55 26099.57 18599.67 17099.03 10299.94 7997.01 29899.80 19399.69 80
Skip Steuart: Steuart Systems R&D Blog.
mvsany_test399.85 1199.88 699.75 7299.95 1599.37 18199.53 8699.98 1199.77 7399.99 799.95 1399.85 1099.94 7999.95 1299.98 3999.94 13
GST-MVS99.16 18198.96 21099.75 7299.73 13599.73 7599.20 17199.55 21998.22 29799.32 25599.35 29698.65 15099.91 14096.86 30799.74 21899.62 136
XVS99.27 14699.11 16199.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33099.47 26598.47 17599.88 19297.62 25899.73 22399.67 93
X-MVStestdata96.09 35894.87 37099.75 7299.71 14199.71 8299.37 12299.61 18099.29 15998.76 33061.30 41898.47 17599.88 19297.62 25899.73 22399.67 93
CP-MVS99.23 15399.05 18299.75 7299.66 16999.66 10099.38 11899.62 17398.38 27999.06 29999.27 31098.79 12899.94 7997.51 26799.82 17999.66 102
MSC_two_6792asdad99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
No_MVS99.74 7799.03 35299.53 14199.23 31499.92 11897.77 23999.69 23899.78 54
SR-MVS99.19 17199.00 19899.74 7799.51 22999.72 8099.18 17699.60 19198.85 22599.47 21899.58 22598.38 18999.92 11896.92 30399.54 28699.57 167
HPM-MVS++copyleft98.96 22398.70 24099.74 7799.52 22799.71 8298.86 25399.19 32398.47 27198.59 34499.06 34198.08 22099.91 14096.94 30299.60 26999.60 150
APD-MVS_3200maxsize99.31 13999.16 14899.74 7799.53 22299.75 6699.27 15299.61 18099.19 17799.57 18599.64 18298.76 13399.90 15997.29 27999.62 25999.56 169
LPG-MVS_test99.22 16199.05 18299.74 7799.82 7099.63 11499.16 18799.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
LGP-MVS_train99.74 7799.82 7099.63 11499.73 11597.56 33299.64 15599.69 15599.37 5699.89 17896.66 31999.87 14599.69 80
DP-MVS99.48 8999.39 10499.74 7799.57 20299.62 11699.29 14799.61 18099.87 4299.74 12399.76 11298.69 14299.87 20698.20 20199.80 19399.75 66
ACMMPcopyleft99.25 14999.08 17299.74 7799.79 9699.68 9699.50 9599.65 16298.07 30699.52 20699.69 15598.57 15999.92 11897.18 29399.79 19899.63 125
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 14699.11 16199.73 8699.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.41 18499.91 14097.27 28299.61 26699.54 180
SMA-MVScopyleft99.19 17199.00 19899.73 8699.46 25599.73 7599.13 19799.52 23997.40 34399.57 18599.64 18298.93 11299.83 27297.61 26099.79 19899.63 125
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
test199.42 10899.31 12199.73 8699.49 24099.77 5399.68 4599.70 13299.44 13899.62 16899.83 6897.21 27099.90 15998.96 14499.90 11399.53 185
FMVSNet199.66 5299.63 5599.73 8699.78 10399.77 5399.68 4599.70 13299.67 9699.82 8099.83 6898.98 10799.90 15999.24 10599.97 5399.53 185
HyFIR lowres test98.91 22998.64 24299.73 8699.85 5699.47 14898.07 33999.83 6398.64 25199.89 5399.60 21792.57 344100.00 199.33 9399.97 5399.72 70
testf199.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
APD_test299.63 5999.60 6399.72 9299.94 1899.95 299.47 10399.89 4099.43 14399.88 6199.80 8499.26 7099.90 15998.81 15899.88 13399.32 256
UniMVSNet_NR-MVSNet99.37 12399.25 13999.72 9299.47 25199.56 13598.97 24299.61 18099.43 14399.67 14899.28 30897.85 23799.95 6499.17 11799.81 18899.65 110
ACMM98.09 1199.46 9799.38 10699.72 9299.80 8499.69 9399.13 19799.65 16298.99 20499.64 15599.72 13299.39 5099.86 22598.23 19899.81 18899.60 150
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 6999.54 7899.72 9299.86 5299.62 11699.56 8299.79 8698.77 23899.80 9199.85 5899.64 2899.85 24298.70 17099.89 12499.70 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9799.37 10999.71 9799.82 7099.59 12899.48 10099.70 13299.81 6399.69 14099.58 22597.66 25399.86 22599.17 11799.44 30299.67 93
DU-MVS99.33 13699.21 14399.71 9799.43 26399.56 13598.83 25899.53 23499.38 14999.67 14899.36 29197.67 24999.95 6499.17 11799.81 18899.63 125
APD-MVScopyleft98.87 23698.59 24799.71 9799.50 23599.62 11699.01 23099.57 20896.80 36599.54 19999.63 19398.29 19899.91 14095.24 37299.71 23299.61 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 8499.43 9899.71 9799.86 5299.76 6099.32 13299.77 9599.53 12499.77 10699.76 11299.26 7099.78 30997.77 23999.88 13399.60 150
mamv499.73 3599.74 3799.70 10199.66 16999.87 1499.69 4199.93 2999.93 2399.93 3799.86 5399.07 94100.00 199.66 4499.92 10199.24 271
COLMAP_ROBcopyleft98.06 1299.45 9999.37 10999.70 10199.83 6399.70 8999.38 11899.78 9299.53 12499.67 14899.78 10299.19 7799.86 22597.32 27799.87 14599.55 172
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 23698.60 24599.69 10399.93 2499.46 15299.74 2394.97 40099.78 6999.88 6199.88 4293.66 33499.97 3499.61 4999.95 7999.64 120
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10399.81 7899.59 12899.29 14799.90 3899.71 8299.79 9699.73 12499.54 4199.84 25799.36 8699.96 6699.65 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12399.26 13799.68 10599.51 22999.58 13298.98 24199.60 19199.43 14399.70 13799.36 29197.70 24599.88 19299.20 11199.87 14599.59 157
NR-MVSNet99.40 11499.31 12199.68 10599.43 26399.55 13899.73 2699.50 24799.46 13599.88 6199.36 29197.54 25699.87 20698.97 14299.87 14599.63 125
EC-MVSNet99.69 4299.69 4399.68 10599.71 14199.91 499.76 1999.96 2399.86 4599.51 21199.39 28399.57 3899.93 9699.64 4899.86 15399.20 285
LCM-MVSNet-Re99.28 14299.15 15199.67 10899.33 29899.76 6099.34 12799.97 1898.93 21499.91 4699.79 9498.68 14399.93 9696.80 31199.56 27799.30 262
casdiffmvspermissive99.63 5999.61 6099.67 10899.79 9699.59 12899.13 19799.85 5599.79 6899.76 11099.72 13299.33 6199.82 28199.21 10899.94 9099.59 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss99.05 20298.84 22799.67 10899.66 16999.29 19798.52 30199.82 6897.65 33099.43 22899.16 32896.42 29699.91 14099.07 13299.84 16299.80 45
DeepPCF-MVS98.42 699.18 17599.02 19199.67 10899.22 31999.75 6697.25 38799.47 25598.72 24399.66 15299.70 14899.29 6499.63 37498.07 21399.81 18899.62 136
DeepC-MVS98.90 499.62 6599.61 6099.67 10899.72 13899.44 15999.24 16199.71 12799.27 16399.93 3799.90 2999.70 2499.93 9698.99 13899.99 1699.64 120
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 20298.84 22799.67 10899.78 10399.55 13898.88 25199.66 15297.11 35899.47 21899.60 21799.07 9499.89 17896.18 34599.85 15799.58 162
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 12899.24 14199.67 10899.35 28499.47 14899.62 6399.50 24799.44 13899.12 29199.78 10298.77 13299.94 7997.87 23199.72 22999.62 136
v1099.69 4299.69 4399.66 11599.81 7899.39 17699.66 5399.75 10599.60 11899.92 4399.87 4798.75 13599.86 22599.90 2499.99 1699.73 68
WR-MVS99.11 19298.93 21399.66 11599.30 30499.42 16698.42 31099.37 28499.04 20199.57 18599.20 32696.89 28299.86 22598.66 17499.87 14599.70 76
XVG-OURS-SEG-HR99.16 18198.99 20499.66 11599.84 5999.64 10998.25 32299.73 11598.39 27899.63 15999.43 27399.70 2499.90 15997.34 27698.64 36899.44 225
baseline99.63 5999.62 5699.66 11599.80 8499.62 11699.44 10999.80 8099.71 8299.72 12899.69 15599.15 8199.83 27299.32 9599.94 9099.53 185
EPP-MVSNet99.17 18099.00 19899.66 11599.80 8499.43 16399.70 3499.24 31399.48 12899.56 19299.77 10994.89 31999.93 9698.72 16999.89 12499.63 125
Anonymous2024052999.42 10899.34 11499.65 12099.53 22299.60 12699.63 6099.39 27999.47 13299.76 11099.78 10298.13 21699.86 22598.70 17099.68 24399.49 207
v899.68 4599.69 4399.65 12099.80 8499.40 17299.66 5399.76 10099.64 10499.93 3799.85 5898.66 14899.84 25799.88 2899.99 1699.71 73
MCST-MVS99.02 20898.81 23199.65 12099.58 19299.49 14598.58 28999.07 33298.40 27799.04 30099.25 31598.51 17399.80 30397.31 27899.51 29299.65 110
XVG-OURS99.21 16699.06 17899.65 12099.82 7099.62 11697.87 36099.74 11198.36 28199.66 15299.68 16699.71 2299.90 15996.84 31099.88 13399.43 231
CHOSEN 1792x268899.39 11899.30 12699.65 12099.88 4299.25 20698.78 27099.88 4598.66 24999.96 2399.79 9497.45 25999.93 9699.34 9099.99 1699.78 54
QAPM98.40 28497.99 29899.65 12099.39 27399.47 14899.67 4999.52 23991.70 39998.78 32999.80 8498.55 16299.95 6494.71 38099.75 21199.53 185
3Dnovator99.15 299.43 10499.36 11299.65 12099.39 27399.42 16699.70 3499.56 21399.23 17199.35 24699.80 8499.17 7999.95 6498.21 20099.84 16299.59 157
patch_mono-299.51 8399.46 9199.64 12799.70 14999.11 22799.04 22299.87 4799.71 8299.47 21899.79 9498.24 20499.98 2199.38 8299.96 6699.83 38
EGC-MVSNET89.05 37685.52 37999.64 12799.89 3799.78 4899.56 8299.52 23924.19 41149.96 41299.83 6899.15 8199.92 11897.71 24799.85 15799.21 281
CS-MVS-test99.68 4599.70 4099.64 12799.57 20299.83 2999.78 1399.97 1899.92 2699.50 21399.38 28599.57 3899.95 6499.69 4299.90 11399.15 296
lessismore_v099.64 12799.86 5299.38 17890.66 41099.89 5399.83 6894.56 32499.97 3499.56 5699.92 10199.57 167
114514_t98.49 27598.11 29299.64 12799.73 13599.58 13299.24 16199.76 10089.94 40299.42 23099.56 23697.76 24499.86 22597.74 24499.82 17999.47 215
CPTT-MVS98.74 24798.44 26299.64 12799.61 18199.38 17899.18 17699.55 21996.49 36799.27 26799.37 28797.11 27699.92 11895.74 36399.67 24999.62 136
RPSCF99.18 17599.02 19199.64 12799.83 6399.85 1999.44 10999.82 6898.33 29199.50 21399.78 10297.90 23299.65 37196.78 31299.83 17099.44 225
Anonymous20240521198.75 24698.46 26099.63 13499.34 29399.66 10099.47 10397.65 38499.28 16299.56 19299.50 25493.15 33899.84 25798.62 17699.58 27599.40 236
TSAR-MVS + MP.99.34 13399.24 14199.63 13499.82 7099.37 18199.26 15499.35 28898.77 23899.57 18599.70 14899.27 6999.88 19297.71 24799.75 21199.65 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 14899.13 15499.63 13499.70 14999.61 12398.58 28999.48 25298.50 26799.52 20699.63 19399.14 8499.76 31997.89 22799.77 20799.51 197
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 16699.07 17699.63 13499.78 10399.64 10999.12 20199.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
TestCases99.63 13499.78 10399.64 10999.83 6398.63 25299.63 15999.72 13298.68 14399.75 32396.38 33799.83 17099.51 197
V4299.56 7399.54 7899.63 13499.79 9699.46 15299.39 11599.59 19799.24 16999.86 7099.70 14898.55 16299.82 28199.79 3699.95 7999.60 150
XVG-ACMP-BASELINE99.23 15399.10 16999.63 13499.82 7099.58 13298.83 25899.72 12498.36 28199.60 17799.71 14098.92 11399.91 14097.08 29699.84 16299.40 236
Test_1112_low_res98.95 22698.73 23699.63 13499.68 16199.15 22498.09 33699.80 8097.14 35699.46 22299.40 27996.11 30799.89 17899.01 13799.84 16299.84 34
TAMVS99.49 8799.45 9399.63 13499.48 24599.42 16699.45 10799.57 20899.66 10099.78 10099.83 6897.85 23799.86 22599.44 7299.96 6699.61 146
SF-MVS99.10 19598.93 21399.62 14399.58 19299.51 14399.13 19799.65 16297.97 31299.42 23099.61 20998.86 12099.87 20696.45 33499.68 24399.49 207
EG-PatchMatch MVS99.57 7099.56 7799.62 14399.77 11199.33 19199.26 15499.76 10099.32 15799.80 9199.78 10299.29 6499.87 20699.15 12099.91 11199.66 102
F-COLMAP98.74 24798.45 26199.62 14399.57 20299.47 14898.84 25699.65 16296.31 37198.93 30799.19 32797.68 24899.87 20696.52 32799.37 31299.53 185
APD_test199.36 12699.28 13399.61 14699.89 3799.89 1099.32 13299.74 11199.18 17899.69 14099.75 11798.41 18499.84 25797.85 23499.70 23499.10 307
CDPH-MVS98.56 26698.20 28499.61 14699.50 23599.46 15298.32 31699.41 26995.22 38499.21 27899.10 33898.34 19499.82 28195.09 37699.66 25299.56 169
LS3D99.24 15299.11 16199.61 14698.38 39599.79 4599.57 8099.68 14399.61 11299.15 28699.71 14098.70 14199.91 14097.54 26499.68 24399.13 304
tfpnnormal99.43 10499.38 10699.60 14999.87 4999.75 6699.59 7599.78 9299.71 8299.90 4999.69 15598.85 12199.90 15997.25 28899.78 20399.15 296
iter_conf0599.64 5899.65 5099.60 14999.68 16199.62 11699.82 899.89 4099.92 2699.93 3799.86 5398.28 19999.96 5499.54 5999.91 11199.23 275
CSCG99.37 12399.29 13199.60 14999.71 14199.46 15299.43 11199.85 5598.79 23499.41 23699.60 21798.92 11399.92 11898.02 21499.92 10199.43 231
v114499.54 7999.53 8299.59 15299.79 9699.28 19999.10 20899.61 18099.20 17699.84 7599.73 12498.67 14699.84 25799.86 3099.98 3999.64 120
UnsupCasMVSNet_eth98.83 23998.57 25199.59 15299.68 16199.45 15798.99 23899.67 14799.48 12899.55 19799.36 29194.92 31899.86 22598.95 14896.57 40299.45 220
PHI-MVS99.11 19298.95 21199.59 15299.13 33599.59 12899.17 18199.65 16297.88 32099.25 26999.46 26898.97 10999.80 30397.26 28499.82 17999.37 243
CS-MVS99.67 5199.70 4099.58 15599.53 22299.84 2499.79 1299.96 2399.90 3099.61 17499.41 27599.51 4599.95 6499.66 4499.89 12498.96 339
v14419299.55 7699.54 7899.58 15599.78 10399.20 21899.11 20599.62 17399.18 17899.89 5399.72 13298.66 14899.87 20699.88 2899.97 5399.66 102
v2v48299.50 8499.47 8799.58 15599.78 10399.25 20699.14 19199.58 20699.25 16799.81 8799.62 20098.24 20499.84 25799.83 3199.97 5399.64 120
test20.0399.55 7699.54 7899.58 15599.79 9699.37 18199.02 22899.89 4099.60 11899.82 8099.62 20098.81 12399.89 17899.43 7399.86 15399.47 215
PM-MVS99.36 12699.29 13199.58 15599.83 6399.66 10098.95 24599.86 5098.85 22599.81 8799.73 12498.40 18899.92 11898.36 18899.83 17099.17 292
NCCC98.82 24098.57 25199.58 15599.21 32199.31 19498.61 28299.25 31098.65 25098.43 35499.26 31397.86 23599.81 29696.55 32599.27 32799.61 146
train_agg98.35 28997.95 30299.57 16199.35 28499.35 18898.11 33499.41 26994.90 38897.92 37398.99 35198.02 22499.85 24295.38 37099.44 30299.50 202
v119299.57 7099.57 7299.57 16199.77 11199.22 21399.04 22299.60 19199.18 17899.87 6999.72 13299.08 9299.85 24299.89 2799.98 3999.66 102
PMMVS299.48 8999.45 9399.57 16199.76 11598.99 23998.09 33699.90 3898.95 21099.78 10099.58 22599.57 3899.93 9699.48 6899.95 7999.79 52
VNet99.18 17599.06 17899.56 16499.24 31699.36 18599.33 13099.31 29799.67 9699.47 21899.57 23296.48 29399.84 25799.15 12099.30 32199.47 215
CNVR-MVS98.99 21998.80 23399.56 16499.25 31499.43 16398.54 29899.27 30598.58 25898.80 32599.43 27398.53 16899.70 33897.22 29099.59 27399.54 180
DeepC-MVS_fast98.47 599.23 15399.12 15899.56 16499.28 30999.22 21398.99 23899.40 27699.08 19699.58 18299.64 18298.90 11899.83 27297.44 27099.75 21199.63 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM99.18 17599.05 18299.55 16799.35 28498.81 25799.05 21997.79 38399.99 299.48 21699.59 22296.29 30499.95 6499.94 1699.98 3999.88 24
v192192099.56 7399.57 7299.55 16799.75 12699.11 22799.05 21999.61 18099.15 18999.88 6199.71 14099.08 9299.87 20699.90 2499.97 5399.66 102
HQP_MVS98.90 23198.68 24199.55 16799.58 19299.24 21098.80 26699.54 22598.94 21199.14 28899.25 31597.24 26899.82 28195.84 36099.78 20399.60 150
FMVSNet299.35 12899.28 13399.55 16799.49 24099.35 18899.45 10799.57 20899.44 13899.70 13799.74 12097.21 27099.87 20699.03 13599.94 9099.44 225
IS-MVSNet99.03 20698.85 22599.55 16799.80 8499.25 20699.73 2699.15 32799.37 15099.61 17499.71 14094.73 32299.81 29697.70 25099.88 13399.58 162
test1299.54 17299.29 30699.33 19199.16 32698.43 35497.54 25699.82 28199.47 29999.48 211
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27799.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
dcpmvs_299.61 6799.64 5499.53 17399.79 9698.82 25699.58 7799.97 1899.95 1899.96 2399.76 11298.44 18099.99 899.34 9099.96 6699.78 54
Effi-MVS+-dtu99.07 19898.92 21799.52 17598.89 36599.78 4899.15 18999.66 15299.34 15498.92 31099.24 32097.69 24799.98 2198.11 21199.28 32498.81 356
MVS_030498.61 25798.30 27799.52 17597.88 40698.95 24598.76 27294.11 40599.84 5499.32 25599.57 23295.57 31599.95 6499.68 4399.98 3999.68 86
新几何199.52 17599.50 23599.22 21399.26 30795.66 38098.60 34399.28 30897.67 24999.89 17895.95 35699.32 31999.45 220
pmmvs-eth3d99.48 8999.47 8799.51 17899.77 11199.41 17198.81 26399.66 15299.42 14799.75 11599.66 17599.20 7699.76 31998.98 14099.99 1699.36 246
v124099.56 7399.58 6899.51 17899.80 8499.00 23899.00 23399.65 16299.15 18999.90 4999.75 11799.09 8999.88 19299.90 2499.96 6699.67 93
balanced_conf0399.50 8499.50 8499.50 18099.42 26899.49 14599.52 8799.75 10599.86 4599.78 10099.71 14098.20 21199.90 15999.39 8199.88 13399.10 307
CDS-MVSNet99.22 16199.13 15499.50 18099.35 28499.11 22798.96 24499.54 22599.46 13599.61 17499.70 14896.31 30299.83 27299.34 9099.88 13399.55 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 10199.42 10199.49 18299.89 3798.96 24499.62 6399.76 10099.85 5199.82 8099.88 4296.39 29999.97 3499.59 5199.98 3999.55 172
Patchmtry98.78 24398.54 25599.49 18298.89 36599.19 21999.32 13299.67 14799.65 10299.72 12899.79 9491.87 35299.95 6498.00 21899.97 5399.33 253
UGNet99.38 12099.34 11499.49 18298.90 36298.90 25299.70 3499.35 28899.86 4598.57 34799.81 8198.50 17499.93 9699.38 8299.98 3999.66 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 7099.59 6599.49 18299.98 399.71 8299.72 2999.84 6199.81 6399.94 3499.78 10298.91 11599.71 33598.41 18599.95 7999.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 13399.30 12699.48 18699.51 22999.36 18598.12 33299.53 23499.36 15399.41 23699.61 20999.22 7499.87 20699.21 10899.68 24399.20 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 28697.99 29899.48 18699.32 29999.24 21098.50 30399.51 24395.19 38698.58 34598.96 35896.95 28199.83 27295.63 36499.25 32899.37 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVSMamba_PlusPlus99.55 7699.58 6899.47 18899.68 16199.40 17299.52 8799.70 13299.92 2699.77 10699.86 5398.28 19999.96 5499.54 5999.90 11399.05 325
Anonymous2023120699.35 12899.31 12199.47 18899.74 13299.06 23799.28 14999.74 11199.23 17199.72 12899.53 24797.63 25599.88 19299.11 12899.84 16299.48 211
ab-mvs99.33 13699.28 13399.47 18899.57 20299.39 17699.78 1399.43 26698.87 22299.57 18599.82 7598.06 22199.87 20698.69 17299.73 22399.15 296
Fast-Effi-MVS+99.02 20898.87 22399.46 19199.38 27699.50 14499.04 22299.79 8697.17 35498.62 34198.74 37399.34 6099.95 6498.32 19299.41 30798.92 345
test_prior99.46 19199.35 28499.22 21399.39 27999.69 34499.48 211
TAPA-MVS97.92 1398.03 30697.55 32299.46 19199.47 25199.44 15998.50 30399.62 17386.79 40399.07 29899.26 31398.26 20399.62 37597.28 28199.73 22399.31 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192099.76 3199.86 1299.45 19499.93 2498.40 29099.30 14099.98 1199.94 2199.99 799.89 3499.80 1599.97 3499.96 999.97 5399.97 7
bld_raw_conf0399.43 10499.43 9899.45 19499.42 26899.40 17299.52 8799.70 13299.73 7599.77 10699.73 12498.05 22299.91 14099.04 13499.90 11399.05 325
EIA-MVS99.12 18999.01 19499.45 19499.36 28199.62 11699.34 12799.79 8698.41 27598.84 32098.89 36498.75 13599.84 25798.15 20999.51 29298.89 349
mvsmamba99.08 19698.95 21199.45 19499.36 28199.18 22199.39 11598.81 34599.37 15099.35 24699.70 14896.36 30199.94 7998.66 17499.59 27399.22 278
test_040299.22 16199.14 15299.45 19499.79 9699.43 16399.28 14999.68 14399.54 12299.40 24199.56 23699.07 9499.82 28196.01 35099.96 6699.11 305
h-mvs3398.61 25798.34 27399.44 19999.60 18398.67 26899.27 15299.44 26399.68 9299.32 25599.49 25892.50 347100.00 199.24 10596.51 40399.65 110
VDD-MVS99.20 16899.11 16199.44 19999.43 26398.98 24099.50 9598.32 37299.80 6699.56 19299.69 15596.99 28099.85 24298.99 13899.73 22399.50 202
PVSNet_Blended_VisFu99.40 11499.38 10699.44 19999.90 3598.66 27198.94 24799.91 3397.97 31299.79 9699.73 12499.05 9999.97 3499.15 12099.99 1699.68 86
OMC-MVS98.90 23198.72 23799.44 19999.39 27399.42 16698.58 28999.64 16897.31 34899.44 22499.62 20098.59 15699.69 34496.17 34699.79 19899.22 278
Fast-Effi-MVS+-dtu99.20 16899.12 15899.43 20399.25 31499.69 9399.05 21999.82 6899.50 12698.97 30399.05 34298.98 10799.98 2198.20 20199.24 33098.62 365
MVP-Stereo99.16 18199.08 17299.43 20399.48 24599.07 23599.08 21599.55 21998.63 25299.31 26099.68 16698.19 21299.78 30998.18 20599.58 27599.45 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 17199.11 16199.42 20599.76 11598.88 25398.55 29599.73 11598.82 22999.72 12899.62 20096.56 29099.82 28199.32 9599.95 7999.56 169
EI-MVSNet-UG-set99.48 8999.50 8499.42 20599.57 20298.65 27499.24 16199.46 25899.68 9299.80 9199.66 17598.99 10599.89 17899.19 11299.90 11399.72 70
EI-MVSNet-Vis-set99.47 9699.49 8699.42 20599.57 20298.66 27199.24 16199.46 25899.67 9699.79 9699.65 18098.97 10999.89 17899.15 12099.89 12499.71 73
testdata99.42 20599.51 22998.93 24999.30 30096.20 37298.87 31799.40 27998.33 19699.89 17896.29 34099.28 32499.44 225
VDDNet98.97 22098.82 23099.42 20599.71 14198.81 25799.62 6398.68 35199.81 6399.38 24399.80 8494.25 32699.85 24298.79 16099.32 31999.59 157
FMVSNet597.80 31397.25 32999.42 20598.83 36998.97 24299.38 11899.80 8098.87 22299.25 26999.69 15580.60 40099.91 14098.96 14499.90 11399.38 240
MVS_111021_LR99.13 18799.03 19099.42 20599.58 19299.32 19397.91 35899.73 11598.68 24799.31 26099.48 26199.09 8999.66 36597.70 25099.77 20799.29 265
test_vis1_rt99.45 9999.46 9199.41 21299.71 14198.63 27698.99 23899.96 2399.03 20299.95 3199.12 33498.75 13599.84 25799.82 3499.82 17999.77 58
CMPMVSbinary77.52 2398.50 27398.19 28799.41 21298.33 39799.56 13599.01 23099.59 19795.44 38199.57 18599.80 8495.64 31299.46 39796.47 33299.92 10199.21 281
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test199.44 10199.45 9399.40 21499.37 27898.64 27597.90 35999.59 19799.27 16399.92 4399.82 7599.74 2099.93 9699.55 5899.87 14599.63 125
UnsupCasMVSNet_bld98.55 26798.27 28099.40 21499.56 21399.37 18197.97 35299.68 14397.49 33999.08 29599.35 29695.41 31799.82 28197.70 25098.19 38399.01 336
MVS_111021_HR99.12 18999.02 19199.40 21499.50 23599.11 22797.92 35699.71 12798.76 24199.08 29599.47 26599.17 7999.54 38797.85 23499.76 20999.54 180
v14899.40 11499.41 10399.39 21799.76 11598.94 24699.09 21299.59 19799.17 18399.81 8799.61 20998.41 18499.69 34499.32 9599.94 9099.53 185
diffmvspermissive99.34 13399.32 11999.39 21799.67 16898.77 26298.57 29399.81 7799.61 11299.48 21699.41 27598.47 17599.86 22598.97 14299.90 11399.53 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS98.36 28698.02 29799.39 21799.31 30098.94 24697.98 34999.37 28497.45 34098.15 36398.83 36796.67 28799.70 33894.73 37899.67 24999.53 185
TSAR-MVS + GP.99.12 18999.04 18899.38 22099.34 29399.16 22298.15 32899.29 30198.18 30199.63 15999.62 20099.18 7899.68 35698.20 20199.74 21899.30 262
AdaColmapbinary98.60 26098.35 27299.38 22099.12 33799.22 21398.67 27999.42 26897.84 32498.81 32399.27 31097.32 26699.81 29695.14 37499.53 28899.10 307
ITE_SJBPF99.38 22099.63 17699.44 15999.73 11598.56 25999.33 25299.53 24798.88 11999.68 35696.01 35099.65 25499.02 335
test_f99.75 3299.88 699.37 22399.96 798.21 30299.51 94100.00 199.94 21100.00 199.93 1799.58 3699.94 7999.97 499.99 1699.97 7
原ACMM199.37 22399.47 25198.87 25599.27 30596.74 36698.26 35899.32 30097.93 23199.82 28195.96 35599.38 31099.43 231
testgi99.29 14199.26 13799.37 22399.75 12698.81 25798.84 25699.89 4098.38 27999.75 11599.04 34499.36 5999.86 22599.08 13199.25 32899.45 220
MSDG99.08 19698.98 20799.37 22399.60 18399.13 22597.54 37399.74 11198.84 22899.53 20499.55 24399.10 8799.79 30697.07 29799.86 15399.18 290
test_vis1_n99.68 4599.79 2799.36 22799.94 1898.18 30599.52 87100.00 199.86 45100.00 199.88 4298.99 10599.96 5499.97 499.96 6699.95 11
pmmvs499.13 18799.06 17899.36 22799.57 20299.10 23298.01 34599.25 31098.78 23699.58 18299.44 27298.24 20499.76 31998.74 16799.93 9799.22 278
N_pmnet98.73 24998.53 25699.35 22999.72 13898.67 26898.34 31494.65 40198.35 28699.79 9699.68 16698.03 22399.93 9698.28 19499.92 10199.44 225
test_fmvs299.72 3699.85 1699.34 23099.91 2998.08 31599.48 100100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
Effi-MVS+99.06 19998.97 20899.34 23099.31 30098.98 24098.31 31799.91 3398.81 23198.79 32798.94 36099.14 8499.84 25798.79 16098.74 36299.20 285
Vis-MVSNet (Re-imp)98.77 24498.58 25099.34 23099.78 10398.88 25399.61 6899.56 21399.11 19599.24 27299.56 23693.00 34299.78 30997.43 27199.89 12499.35 249
Patchmatch-RL test98.60 26098.36 27099.33 23399.77 11199.07 23598.27 31999.87 4798.91 21799.74 12399.72 13290.57 36999.79 30698.55 17999.85 15799.11 305
PAPM_NR98.36 28698.04 29599.33 23399.48 24598.93 24998.79 26999.28 30497.54 33598.56 34898.57 37997.12 27599.69 34494.09 38798.90 35399.38 240
PCF-MVS96.03 1896.73 34395.86 35499.33 23399.44 26099.16 22296.87 39699.44 26386.58 40498.95 30599.40 27994.38 32599.88 19287.93 40299.80 19398.95 341
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 24598.57 25199.33 23399.57 20298.97 24297.53 37599.55 21996.41 36899.27 26799.13 33099.07 9499.78 30996.73 31599.89 12499.23 275
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 29297.94 30699.32 23799.36 28199.11 22797.31 38598.78 34796.88 36198.84 32099.11 33797.77 24299.61 37994.03 38999.36 31399.23 275
jason99.16 18199.11 16199.32 23799.75 12698.44 28798.26 32199.39 27998.70 24699.74 12399.30 30498.54 16499.97 3498.48 18299.82 17999.55 172
jason: jason.
FMVSNet398.80 24298.63 24499.32 23799.13 33598.72 26599.10 20899.48 25299.23 17199.62 16899.64 18292.57 34499.86 22598.96 14499.90 11399.39 238
dmvs_re98.69 25398.48 25899.31 24099.55 21499.42 16699.54 8598.38 36999.32 15798.72 33398.71 37496.76 28699.21 40096.01 35099.35 31599.31 260
MVSFormer99.41 11299.44 9699.31 24099.57 20298.40 29099.77 1599.80 8099.73 7599.63 15999.30 30498.02 22499.98 2199.43 7399.69 23899.55 172
DP-MVS Recon98.50 27398.23 28199.31 24099.49 24099.46 15298.56 29499.63 17094.86 39098.85 31999.37 28797.81 23999.59 38196.08 34799.44 30298.88 350
PatchMatch-RL98.68 25498.47 25999.30 24399.44 26099.28 19998.14 33099.54 22597.12 35799.11 29299.25 31597.80 24099.70 33896.51 32899.30 32198.93 343
OPU-MVS99.29 24499.12 33799.44 15999.20 17199.40 27999.00 10398.84 40596.54 32699.60 26999.58 162
D2MVS99.22 16199.19 14599.29 24499.69 15398.74 26498.81 26399.41 26998.55 26099.68 14399.69 15598.13 21699.87 20698.82 15699.98 3999.24 271
test_fmvs1_n99.68 4599.81 2399.28 24699.95 1597.93 32499.49 99100.00 199.82 6099.99 799.89 3499.21 7599.98 2199.97 499.98 3999.93 15
CANet99.11 19299.05 18299.28 24698.83 36998.56 28098.71 27899.41 26999.25 16799.23 27399.22 32297.66 25399.94 7999.19 11299.97 5399.33 253
CNLPA98.57 26598.34 27399.28 24699.18 32999.10 23298.34 31499.41 26998.48 27098.52 34998.98 35497.05 27899.78 30995.59 36599.50 29598.96 339
test_vis1_n_192099.72 3699.88 699.27 24999.93 2497.84 32799.34 127100.00 199.99 299.99 799.82 7599.87 999.99 899.97 499.99 1699.97 7
sss98.90 23198.77 23599.27 24999.48 24598.44 28798.72 27699.32 29397.94 31699.37 24499.35 29696.31 30299.91 14098.85 15299.63 25899.47 215
LF4IMVS99.01 21498.92 21799.27 24999.71 14199.28 19998.59 28799.77 9598.32 29299.39 24299.41 27598.62 15299.84 25796.62 32499.84 16298.69 363
LFMVS98.46 27898.19 28799.26 25299.24 31698.52 28399.62 6396.94 39299.87 4299.31 26099.58 22591.04 36099.81 29698.68 17399.42 30699.45 220
WTY-MVS98.59 26398.37 26999.26 25299.43 26398.40 29098.74 27499.13 33098.10 30399.21 27899.24 32094.82 32099.90 15997.86 23298.77 35899.49 207
OpenMVScopyleft98.12 1098.23 29797.89 31199.26 25299.19 32699.26 20399.65 5899.69 14091.33 40098.14 36799.77 10998.28 19999.96 5495.41 36999.55 28198.58 370
alignmvs98.28 29297.96 30199.25 25599.12 33798.93 24999.03 22598.42 36699.64 10498.72 33397.85 39690.86 36599.62 37598.88 15199.13 33499.19 288
IterMVS-LS99.41 11299.47 8799.25 25599.81 7898.09 31298.85 25599.76 10099.62 10999.83 7999.64 18298.54 16499.97 3499.15 12099.99 1699.68 86
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 22398.87 22399.24 25799.57 20298.40 29098.12 33299.18 32498.28 29499.63 15999.13 33098.02 22499.97 3498.22 19999.69 23899.35 249
MVSTER98.47 27798.22 28299.24 25799.06 34998.35 29699.08 21599.46 25899.27 16399.75 11599.66 17588.61 38099.85 24299.14 12699.92 10199.52 195
EI-MVSNet99.38 12099.44 9699.21 25999.58 19298.09 31299.26 15499.46 25899.62 10999.75 11599.67 17098.54 16499.85 24299.15 12099.92 10199.68 86
BH-RMVSNet98.41 28298.14 29099.21 25999.21 32198.47 28498.60 28498.26 37398.35 28698.93 30799.31 30297.20 27399.66 36594.32 38399.10 33799.51 197
ambc99.20 26199.35 28498.53 28199.17 18199.46 25899.67 14899.80 8498.46 17899.70 33897.92 22499.70 23499.38 240
MVS_Test99.28 14299.31 12199.19 26299.35 28498.79 26099.36 12599.49 25199.17 18399.21 27899.67 17098.78 13099.66 36599.09 13099.66 25299.10 307
MAR-MVS98.24 29697.92 30899.19 26298.78 37799.65 10699.17 18199.14 32895.36 38298.04 37098.81 37097.47 25899.72 33195.47 36899.06 33898.21 388
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 30197.77 31699.18 26494.57 41497.99 31899.24 16197.96 37899.74 7497.29 38799.62 20093.13 33999.97 3498.59 17799.83 17099.58 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 27098.30 27799.16 26599.29 30698.60 27898.77 27199.02 33699.68 9299.32 25599.04 34492.50 34799.85 24299.24 10597.87 39399.03 330
ETV-MVS99.18 17599.18 14699.16 26599.34 29399.28 19999.12 20199.79 8699.48 12898.93 30798.55 38199.40 4999.93 9698.51 18199.52 29198.28 384
Syy-MVS98.17 30097.85 31299.15 26798.50 39298.79 26098.60 28499.21 32097.89 31896.76 39496.37 41595.47 31699.57 38399.10 12998.73 36499.09 312
FE-MVS97.85 31197.42 32499.15 26799.44 26098.75 26399.77 1598.20 37595.85 37699.33 25299.80 8488.86 37999.88 19296.40 33599.12 33598.81 356
CL-MVSNet_self_test98.71 25198.56 25499.15 26799.22 31998.66 27197.14 39099.51 24398.09 30599.54 19999.27 31096.87 28399.74 32698.43 18498.96 34699.03 330
AUN-MVS97.82 31297.38 32599.14 27099.27 31198.53 28198.72 27699.02 33698.10 30397.18 39099.03 34889.26 37899.85 24297.94 22397.91 39199.03 330
test_yl98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
DCV-MVSNet98.25 29497.95 30299.13 27199.17 33098.47 28499.00 23398.67 35398.97 20699.22 27699.02 34991.31 35699.69 34497.26 28498.93 34799.24 271
MIMVSNet98.43 28098.20 28499.11 27399.53 22298.38 29499.58 7798.61 35698.96 20899.33 25299.76 11290.92 36299.81 29697.38 27499.76 20999.15 296
PMMVS98.49 27598.29 27999.11 27398.96 35998.42 28997.54 37399.32 29397.53 33698.47 35298.15 39197.88 23499.82 28197.46 26999.24 33099.09 312
FA-MVS(test-final)98.52 27098.32 27599.10 27599.48 24598.67 26899.77 1598.60 35897.35 34699.63 15999.80 8493.07 34099.84 25797.92 22499.30 32198.78 359
sasdasda99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
CANet_DTU98.91 22998.85 22599.09 27698.79 37598.13 30798.18 32599.31 29799.48 12898.86 31899.51 25196.56 29099.95 6499.05 13399.95 7999.19 288
MS-PatchMatch99.00 21698.97 20899.09 27699.11 34298.19 30398.76 27299.33 29198.49 26999.44 22499.58 22598.21 20999.69 34498.20 20199.62 25999.39 238
canonicalmvs99.02 20899.00 19899.09 27699.10 34498.70 26699.61 6899.66 15299.63 10698.64 33997.65 39999.04 10099.54 38798.79 16098.92 34999.04 328
PVSNet_BlendedMVS99.03 20699.01 19499.09 27699.54 21697.99 31898.58 28999.82 6897.62 33199.34 25099.71 14098.52 17199.77 31797.98 21999.97 5399.52 195
MDA-MVSNet-bldmvs99.06 19999.05 18299.07 28199.80 8497.83 32898.89 25099.72 12499.29 15999.63 15999.70 14896.47 29499.89 17898.17 20799.82 17999.50 202
TinyColmap98.97 22098.93 21399.07 28199.46 25598.19 30397.75 36499.75 10598.79 23499.54 19999.70 14898.97 10999.62 37596.63 32399.83 17099.41 235
MGCFI-Net99.02 20899.01 19499.06 28399.11 34298.60 27899.63 6099.67 14799.63 10698.58 34597.65 39999.07 9499.57 38398.85 15298.92 34999.03 330
USDC98.96 22398.93 21399.05 28499.54 21697.99 31897.07 39399.80 8098.21 29899.75 11599.77 10998.43 18199.64 37397.90 22699.88 13399.51 197
PAPR97.56 32497.07 33299.04 28598.80 37398.11 31097.63 36999.25 31094.56 39398.02 37198.25 38997.43 26099.68 35690.90 39898.74 36299.33 253
PVSNet_Blended98.70 25298.59 24799.02 28699.54 21697.99 31897.58 37299.82 6895.70 37999.34 25098.98 35498.52 17199.77 31797.98 21999.83 17099.30 262
testing396.48 34895.63 35999.01 28799.23 31897.81 32998.90 24999.10 33198.72 24397.84 37997.92 39572.44 41299.85 24297.21 29199.33 31799.35 249
MVS95.72 36894.63 37398.99 28898.56 38997.98 32399.30 14098.86 34172.71 40997.30 38699.08 33998.34 19499.74 32689.21 39998.33 37699.26 268
HY-MVS98.23 998.21 29997.95 30298.99 28899.03 35298.24 29899.61 6898.72 34996.81 36498.73 33299.51 25194.06 32799.86 22596.91 30498.20 38198.86 352
test_fmvs199.48 8999.65 5098.97 29099.54 21697.16 35099.11 20599.98 1199.78 6999.96 2399.81 8198.72 14099.97 3499.95 1299.97 5399.79 52
WB-MVSnew98.34 29198.14 29098.96 29198.14 40497.90 32698.27 31997.26 39198.63 25298.80 32598.00 39497.77 24299.90 15997.37 27598.98 34599.09 312
baseline197.73 31697.33 32698.96 29199.30 30497.73 33399.40 11398.42 36699.33 15699.46 22299.21 32491.18 35899.82 28198.35 18991.26 40999.32 256
DSMNet-mixed99.48 8999.65 5098.95 29399.71 14197.27 34799.50 9599.82 6899.59 12099.41 23699.85 5899.62 31100.00 199.53 6399.89 12499.59 157
thisisatest053097.45 32696.95 33698.94 29499.68 16197.73 33399.09 21294.19 40498.61 25699.56 19299.30 30484.30 39699.93 9698.27 19599.54 28699.16 294
mvs_anonymous99.28 14299.39 10498.94 29499.19 32697.81 32999.02 22899.55 21999.78 6999.85 7299.80 8498.24 20499.86 22599.57 5599.50 29599.15 296
MG-MVS98.52 27098.39 26798.94 29499.15 33297.39 34598.18 32599.21 32098.89 22199.23 27399.63 19397.37 26499.74 32694.22 38599.61 26699.69 80
GA-MVS97.99 30997.68 31998.93 29799.52 22798.04 31697.19 38999.05 33598.32 29298.81 32398.97 35689.89 37699.41 39898.33 19199.05 34099.34 252
cl____98.54 26898.41 26598.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.85 33099.78 30997.97 22199.89 12499.17 292
DIV-MVS_self_test98.54 26898.42 26498.92 29899.03 35297.80 33197.46 37999.59 19798.90 21899.60 17799.46 26893.87 32999.78 30997.97 22199.89 12499.18 290
ET-MVSNet_ETH3D96.78 34196.07 35098.91 30099.26 31397.92 32597.70 36796.05 39797.96 31592.37 40998.43 38587.06 38499.90 15998.27 19597.56 39698.91 346
xiu_mvs_v1_base_debu99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
xiu_mvs_v1_base_debi99.23 15399.34 11498.91 30099.59 18798.23 29998.47 30599.66 15299.61 11299.68 14398.94 36099.39 5099.97 3499.18 11499.55 28198.51 374
MSLP-MVS++99.05 20299.09 17098.91 30099.21 32198.36 29598.82 26299.47 25598.85 22598.90 31399.56 23698.78 13099.09 40298.57 17899.68 24399.26 268
pmmvs398.08 30497.80 31398.91 30099.41 27197.69 33597.87 36099.66 15295.87 37599.50 21399.51 25190.35 37199.97 3498.55 17999.47 29999.08 318
tttt051797.62 32197.20 33098.90 30699.76 11597.40 34499.48 10094.36 40299.06 20099.70 13799.49 25884.55 39599.94 7998.73 16899.65 25499.36 246
ETVMVS96.14 35795.22 36798.89 30798.80 37398.01 31798.66 28098.35 37198.71 24597.18 39096.31 41774.23 41199.75 32396.64 32298.13 38898.90 347
OpenMVS_ROBcopyleft97.31 1797.36 33096.84 34098.89 30799.29 30699.45 15798.87 25299.48 25286.54 40599.44 22499.74 12097.34 26599.86 22591.61 39599.28 32497.37 401
MDA-MVSNet_test_wron98.95 22698.99 20498.85 30999.64 17497.16 35098.23 32399.33 29198.93 21499.56 19299.66 17597.39 26399.83 27298.29 19399.88 13399.55 172
PMVScopyleft92.94 2198.82 24098.81 23198.85 30999.84 5997.99 31899.20 17199.47 25599.71 8299.42 23099.82 7598.09 21899.47 39593.88 39199.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 22698.99 20498.84 31199.64 17497.14 35298.22 32499.32 29398.92 21699.59 18099.66 17597.40 26199.83 27298.27 19599.90 11399.55 172
new_pmnet98.88 23598.89 22198.84 31199.70 14997.62 33698.15 32899.50 24797.98 31199.62 16899.54 24598.15 21599.94 7997.55 26399.84 16298.95 341
CR-MVSNet98.35 28998.20 28498.83 31399.05 35098.12 30899.30 14099.67 14797.39 34499.16 28499.79 9491.87 35299.91 14098.78 16498.77 35898.44 379
PatchT98.45 27998.32 27598.83 31398.94 36098.29 29799.24 16198.82 34499.84 5499.08 29599.76 11291.37 35599.94 7998.82 15699.00 34498.26 385
RPMNet98.60 26098.53 25698.83 31399.05 35098.12 30899.30 14099.62 17399.86 4599.16 28499.74 12092.53 34699.92 11898.75 16698.77 35898.44 379
miper_lstm_enhance98.65 25698.60 24598.82 31699.20 32497.33 34697.78 36399.66 15299.01 20399.59 18099.50 25494.62 32399.85 24298.12 21099.90 11399.26 268
FPMVS96.32 35295.50 36098.79 31799.60 18398.17 30698.46 30998.80 34697.16 35596.28 39999.63 19382.19 39799.09 40288.45 40198.89 35499.10 307
xiu_mvs_v2_base99.02 20899.11 16198.77 31899.37 27898.09 31298.13 33199.51 24399.47 13299.42 23098.54 38299.38 5499.97 3498.83 15499.33 31798.24 386
PS-MVSNAJ99.00 21699.08 17298.76 31999.37 27898.10 31198.00 34799.51 24399.47 13299.41 23698.50 38499.28 6699.97 3498.83 15499.34 31698.20 390
test0.0.03 197.37 32996.91 33998.74 32097.72 40797.57 33797.60 37197.36 39098.00 30899.21 27898.02 39290.04 37499.79 30698.37 18795.89 40698.86 352
c3_l98.72 25098.71 23898.72 32199.12 33797.22 34997.68 36899.56 21398.90 21899.54 19999.48 26196.37 30099.73 32997.88 22899.88 13399.21 281
EU-MVSNet99.39 11899.62 5698.72 32199.88 4296.44 36499.56 8299.85 5599.90 3099.90 4999.85 5898.09 21899.83 27299.58 5499.95 7999.90 20
new-patchmatchnet99.35 12899.57 7298.71 32399.82 7096.62 36298.55 29599.75 10599.50 12699.88 6199.87 4799.31 6299.88 19299.43 73100.00 199.62 136
thisisatest051596.98 33796.42 34498.66 32499.42 26897.47 34097.27 38694.30 40397.24 35099.15 28698.86 36685.01 39399.87 20697.10 29599.39 30998.63 364
testing22295.60 37194.59 37498.61 32598.66 38797.45 34298.54 29897.90 38198.53 26496.54 39896.47 41470.62 41599.81 29695.91 35898.15 38598.56 372
eth_miper_zixun_eth98.68 25498.71 23898.60 32699.10 34496.84 35997.52 37799.54 22598.94 21199.58 18299.48 26196.25 30599.76 31998.01 21799.93 9799.21 281
dmvs_testset97.27 33196.83 34198.59 32799.46 25597.55 33899.25 16096.84 39398.78 23697.24 38897.67 39897.11 27698.97 40486.59 40898.54 37299.27 266
miper_ehance_all_eth98.59 26398.59 24798.59 32798.98 35897.07 35397.49 37899.52 23998.50 26799.52 20699.37 28796.41 29899.71 33597.86 23299.62 25999.00 337
BH-untuned98.22 29898.09 29398.58 32999.38 27697.24 34898.55 29598.98 33997.81 32599.20 28398.76 37297.01 27999.65 37194.83 37798.33 37698.86 352
IterMVS-SCA-FT99.00 21699.16 14898.51 33099.75 12695.90 37498.07 33999.84 6199.84 5499.89 5399.73 12496.01 30999.99 899.33 93100.00 199.63 125
JIA-IIPM98.06 30597.92 30898.50 33198.59 38897.02 35498.80 26698.51 36199.88 4197.89 37599.87 4791.89 35199.90 15998.16 20897.68 39598.59 368
Patchmatch-test98.10 30397.98 30098.48 33299.27 31196.48 36399.40 11399.07 33298.81 23199.23 27399.57 23290.11 37399.87 20696.69 31699.64 25699.09 312
baseline296.83 34096.28 34698.46 33399.09 34796.91 35798.83 25893.87 40797.23 35196.23 40298.36 38688.12 38199.90 15996.68 31798.14 38698.57 371
IterMVS98.97 22099.16 14898.42 33499.74 13295.64 37798.06 34199.83 6399.83 5899.85 7299.74 12096.10 30899.99 899.27 104100.00 199.63 125
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 32497.28 32798.40 33598.37 39696.75 36097.24 38899.37 28497.31 34899.41 23699.22 32287.30 38299.37 39997.70 25099.62 25999.08 318
CHOSEN 280x42098.41 28298.41 26598.40 33599.34 29395.89 37596.94 39599.44 26398.80 23399.25 26999.52 24993.51 33699.98 2198.94 14999.98 3999.32 256
API-MVS98.38 28598.39 26798.35 33798.83 36999.26 20399.14 19199.18 32498.59 25798.66 33898.78 37198.61 15499.57 38394.14 38699.56 27796.21 405
PVSNet97.47 1598.42 28198.44 26298.35 33799.46 25596.26 36896.70 39899.34 29097.68 32999.00 30299.13 33097.40 26199.72 33197.59 26299.68 24399.08 318
myMVS_eth3d95.63 36994.73 37198.34 33998.50 39296.36 36698.60 28499.21 32097.89 31896.76 39496.37 41572.10 41399.57 38394.38 38298.73 36499.09 312
miper_enhance_ethall98.03 30697.94 30698.32 34098.27 39896.43 36596.95 39499.41 26996.37 37099.43 22898.96 35894.74 32199.69 34497.71 24799.62 25998.83 355
TR-MVS97.44 32797.15 33198.32 34098.53 39097.46 34198.47 30597.91 38096.85 36298.21 36298.51 38396.42 29699.51 39392.16 39497.29 39897.98 394
PAPM95.61 37094.71 37298.31 34299.12 33796.63 36196.66 39998.46 36490.77 40196.25 40098.68 37693.01 34199.69 34481.60 40997.86 39498.62 365
MVEpermissive92.54 2296.66 34596.11 34998.31 34299.68 16197.55 33897.94 35495.60 39999.37 15090.68 41098.70 37596.56 29098.61 40786.94 40799.55 28198.77 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 30897.90 31098.27 34498.90 36297.45 34299.30 14099.06 33494.98 38797.21 38999.12 33498.43 18199.67 36195.58 36698.56 37197.71 397
ppachtmachnet_test98.89 23499.12 15898.20 34599.66 16995.24 38397.63 36999.68 14399.08 19699.78 10099.62 20098.65 15099.88 19298.02 21499.96 6699.48 211
SD-MVS99.01 21499.30 12698.15 34699.50 23599.40 17298.94 24799.61 18099.22 17599.75 11599.82 7599.54 4195.51 41197.48 26899.87 14599.54 180
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 23899.09 17098.13 34799.66 16994.90 38797.72 36599.58 20699.07 19899.64 15599.62 20098.19 21299.93 9698.41 18599.95 7999.55 172
ADS-MVSNet297.78 31497.66 32198.12 34899.14 33395.36 38099.22 16898.75 34896.97 35998.25 35999.64 18290.90 36399.94 7996.51 32899.56 27799.08 318
testing9196.00 36195.32 36598.02 34998.76 38095.39 37998.38 31298.65 35598.82 22996.84 39396.71 41275.06 40999.71 33596.46 33398.23 38098.98 338
DeepMVS_CXcopyleft97.98 35099.69 15396.95 35599.26 30775.51 40895.74 40498.28 38896.47 29499.62 37591.23 39797.89 39297.38 400
testing1196.05 36095.41 36297.97 35198.78 37795.27 38298.59 28798.23 37498.86 22496.56 39796.91 40975.20 40899.69 34497.26 28498.29 37898.93 343
gg-mvs-nofinetune95.87 36495.17 36997.97 35198.19 40096.95 35599.69 4189.23 41399.89 3696.24 40199.94 1681.19 39899.51 39393.99 39098.20 38197.44 399
thres600view796.60 34696.16 34897.93 35399.63 17696.09 37299.18 17697.57 38598.77 23898.72 33397.32 40487.04 38599.72 33188.57 40098.62 36997.98 394
thres40096.40 34995.89 35297.92 35499.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37397.98 394
testing9995.86 36595.19 36897.87 35598.76 38095.03 38498.62 28198.44 36598.68 24796.67 39696.66 41374.31 41099.69 34496.51 32898.03 39098.90 347
ADS-MVSNet97.72 31997.67 32097.86 35699.14 33394.65 38899.22 16898.86 34196.97 35998.25 35999.64 18290.90 36399.84 25796.51 32899.56 27799.08 318
IB-MVS95.41 2095.30 37294.46 37697.84 35798.76 38095.33 38197.33 38496.07 39696.02 37495.37 40697.41 40376.17 40799.96 5497.54 26495.44 40898.22 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 25798.88 22297.80 35899.58 19293.60 39599.26 15499.64 16899.66 10099.72 12899.67 17093.26 33799.93 9699.30 9899.81 18899.87 28
BH-w/o97.20 33297.01 33497.76 35999.08 34895.69 37698.03 34498.52 36095.76 37897.96 37298.02 39295.62 31399.47 39592.82 39397.25 39998.12 392
tpm97.15 33396.95 33697.75 36098.91 36194.24 39099.32 13297.96 37897.71 32898.29 35799.32 30086.72 39099.92 11898.10 21296.24 40599.09 312
test-LLR97.15 33396.95 33697.74 36198.18 40195.02 38597.38 38196.10 39498.00 30897.81 38098.58 37790.04 37499.91 14097.69 25698.78 35698.31 382
test-mter96.23 35595.73 35797.74 36198.18 40195.02 38597.38 38196.10 39497.90 31797.81 38098.58 37779.12 40599.91 14097.69 25698.78 35698.31 382
tfpn200view996.30 35395.89 35297.53 36399.58 19296.11 37099.00 23397.54 38898.43 27298.52 34996.98 40786.85 38799.67 36187.62 40398.51 37396.81 403
UWE-MVS96.21 35695.78 35697.49 36498.53 39093.83 39498.04 34293.94 40698.96 20898.46 35398.17 39079.86 40199.87 20696.99 29999.06 33898.78 359
cascas96.99 33696.82 34297.48 36597.57 41095.64 37796.43 40099.56 21391.75 39897.13 39297.61 40295.58 31498.63 40696.68 31799.11 33698.18 391
thres100view90096.39 35096.03 35197.47 36699.63 17695.93 37399.18 17697.57 38598.75 24298.70 33697.31 40587.04 38599.67 36187.62 40398.51 37396.81 403
PVSNet_095.53 1995.85 36695.31 36697.47 36698.78 37793.48 39695.72 40299.40 27696.18 37397.37 38597.73 39795.73 31199.58 38295.49 36781.40 41099.36 246
TESTMET0.1,196.24 35495.84 35597.41 36898.24 39993.84 39397.38 38195.84 39898.43 27297.81 38098.56 38079.77 40299.89 17897.77 23998.77 35898.52 373
GG-mvs-BLEND97.36 36997.59 40896.87 35899.70 3488.49 41494.64 40797.26 40680.66 39999.12 40191.50 39696.50 40496.08 407
SCA98.11 30298.36 27097.36 36999.20 32492.99 39798.17 32798.49 36398.24 29699.10 29499.57 23296.01 30999.94 7996.86 30799.62 25999.14 301
thres20096.09 35895.68 35897.33 37199.48 24596.22 36998.53 30097.57 38598.06 30798.37 35696.73 41186.84 38999.61 37986.99 40698.57 37096.16 406
KD-MVS_2432*160095.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
miper_refine_blended95.89 36295.41 36297.31 37294.96 41293.89 39197.09 39199.22 31797.23 35198.88 31499.04 34479.23 40399.54 38796.24 34396.81 40098.50 377
PatchmatchNetpermissive97.65 32097.80 31397.18 37498.82 37292.49 39999.17 18198.39 36898.12 30298.79 32799.58 22590.71 36799.89 17897.23 28999.41 30799.16 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 34796.32 34597.17 37598.18 40192.97 39899.39 11589.95 41298.21 29898.61 34299.59 22286.69 39199.72 33196.99 29999.23 33298.81 356
EPNet_dtu97.62 32197.79 31597.11 37696.67 41192.31 40098.51 30298.04 37699.24 16995.77 40399.47 26593.78 33299.66 36598.98 14099.62 25999.37 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 31698.04 29596.78 37799.59 18790.81 40999.72 2990.43 41199.89 3699.86 7099.86 5393.60 33599.89 17899.46 7099.99 1699.65 110
tmp_tt95.75 36795.42 36196.76 37889.90 41694.42 38998.86 25397.87 38278.01 40799.30 26599.69 15597.70 24595.89 40999.29 10198.14 38699.95 11
MVS-HIRNet97.86 31098.22 28296.76 37899.28 30991.53 40598.38 31292.60 40899.13 19199.31 26099.96 1297.18 27499.68 35698.34 19099.83 17099.07 323
tpm296.35 35196.22 34796.73 38098.88 36791.75 40399.21 17098.51 36193.27 39597.89 37599.21 32484.83 39499.70 33896.04 34998.18 38498.75 362
tpmrst97.73 31698.07 29496.73 38098.71 38492.00 40199.10 20898.86 34198.52 26598.92 31099.54 24591.90 35099.82 28198.02 21499.03 34298.37 381
tpmvs97.39 32897.69 31896.52 38298.41 39491.76 40299.30 14098.94 34097.74 32697.85 37899.55 24392.40 34999.73 32996.25 34298.73 36498.06 393
test111197.74 31598.16 28996.49 38399.60 18389.86 41399.71 3391.21 40999.89 3699.88 6199.87 4793.73 33399.90 15999.56 5699.99 1699.70 76
CostFormer96.71 34496.79 34396.46 38498.90 36290.71 41099.41 11298.68 35194.69 39298.14 36799.34 29986.32 39299.80 30397.60 26198.07 38998.88 350
E-PMN97.14 33597.43 32396.27 38598.79 37591.62 40495.54 40399.01 33899.44 13898.88 31499.12 33492.78 34399.68 35694.30 38499.03 34297.50 398
dp96.86 33997.07 33296.24 38698.68 38690.30 41299.19 17598.38 36997.35 34698.23 36199.59 22287.23 38399.82 28196.27 34198.73 36498.59 368
tpm cat196.78 34196.98 33596.16 38798.85 36890.59 41199.08 21599.32 29392.37 39697.73 38499.46 26891.15 35999.69 34496.07 34898.80 35598.21 388
EMVS96.96 33897.28 32795.99 38898.76 38091.03 40795.26 40598.61 35699.34 15498.92 31098.88 36593.79 33199.66 36592.87 39299.05 34097.30 402
test250694.73 37394.59 37495.15 38999.59 18785.90 41599.75 2174.01 41799.89 3699.71 13399.86 5379.00 40699.90 15999.52 6499.99 1699.65 110
wuyk23d97.58 32399.13 15492.93 39099.69 15399.49 14599.52 8799.77 9597.97 31299.96 2399.79 9499.84 1299.94 7995.85 35999.82 17979.36 408
dongtai89.37 37588.91 37890.76 39199.19 32677.46 41695.47 40487.82 41592.28 39794.17 40898.82 36971.22 41495.54 41063.85 41097.34 39799.27 266
test_method91.72 37492.32 37789.91 39293.49 41570.18 41890.28 40699.56 21361.71 41095.39 40599.52 24993.90 32899.94 7998.76 16598.27 37999.62 136
kuosan85.65 37784.57 38088.90 39397.91 40577.11 41796.37 40187.62 41685.24 40685.45 41196.83 41069.94 41690.98 41245.90 41195.83 40798.62 365
test12329.31 37833.05 38318.08 39425.93 41812.24 41997.53 37510.93 41911.78 41224.21 41350.08 42221.04 4178.60 41323.51 41232.43 41233.39 409
testmvs28.94 37933.33 38115.79 39526.03 4179.81 42096.77 39715.67 41811.55 41323.87 41450.74 42119.03 4188.53 41423.21 41333.07 41129.03 410
test_blank8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.88 38033.17 3820.00 3960.00 4190.00 4210.00 40799.62 1730.00 4140.00 41599.13 33099.82 130.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas16.61 38122.14 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 199.28 660.00 4150.00 4140.00 4130.00 411
sosnet-low-res8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
sosnet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
Regformer8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.26 39011.02 3930.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41599.16 3280.00 4190.00 4150.00 4140.00 4130.00 411
uanet8.33 38211.11 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 415100.00 10.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS96.36 36695.20 373
FOURS199.83 6399.89 1099.74 2399.71 12799.69 9099.63 159
PC_three_145297.56 33299.68 14399.41 27599.09 8997.09 40896.66 31999.60 26999.62 136
test_one_060199.63 17699.76 6099.55 21999.23 17199.31 26099.61 20998.59 156
eth-test20.00 419
eth-test0.00 419
ZD-MVS99.43 26399.61 12399.43 26696.38 36999.11 29299.07 34097.86 23599.92 11894.04 38899.49 297
RE-MVS-def99.13 15499.54 21699.74 7299.26 15499.62 17399.16 18599.52 20699.64 18298.57 15997.27 28299.61 26699.54 180
IU-MVS99.69 15399.77 5399.22 31797.50 33899.69 14097.75 24399.70 23499.77 58
test_241102_TWO99.54 22599.13 19199.76 11099.63 19398.32 19799.92 11897.85 23499.69 23899.75 66
test_241102_ONE99.69 15399.82 3499.54 22599.12 19499.82 8099.49 25898.91 11599.52 392
9.1498.64 24299.45 25998.81 26399.60 19197.52 33799.28 26699.56 23698.53 16899.83 27295.36 37199.64 256
save fliter99.53 22299.25 20698.29 31899.38 28399.07 198
test_0728_THIRD99.18 17899.62 16899.61 20998.58 15899.91 14097.72 24599.80 19399.77 58
test072699.69 15399.80 4399.24 16199.57 20899.16 18599.73 12799.65 18098.35 192
GSMVS99.14 301
test_part299.62 18099.67 9899.55 197
sam_mvs190.81 36699.14 301
sam_mvs90.52 370
MTGPAbinary99.53 234
test_post199.14 19151.63 42089.54 37799.82 28196.86 307
test_post52.41 41990.25 37299.86 225
patchmatchnet-post99.62 20090.58 36899.94 79
MTMP99.09 21298.59 359
gm-plane-assit97.59 40889.02 41493.47 39498.30 38799.84 25796.38 337
test9_res95.10 37599.44 30299.50 202
TEST999.35 28499.35 18898.11 33499.41 26994.83 39197.92 37398.99 35198.02 22499.85 242
test_899.34 29399.31 19498.08 33899.40 27694.90 38897.87 37798.97 35698.02 22499.84 257
agg_prior294.58 38199.46 30199.50 202
agg_prior99.35 28499.36 18599.39 27997.76 38399.85 242
test_prior499.19 21998.00 347
test_prior297.95 35397.87 32198.05 36999.05 34297.90 23295.99 35399.49 297
旧先验297.94 35495.33 38398.94 30699.88 19296.75 313
新几何298.04 342
旧先验199.49 24099.29 19799.26 30799.39 28397.67 24999.36 31399.46 219
无先验98.01 34599.23 31495.83 37799.85 24295.79 36299.44 225
原ACMM297.92 356
test22299.51 22999.08 23497.83 36299.29 30195.21 38598.68 33799.31 30297.28 26799.38 31099.43 231
testdata299.89 17895.99 353
segment_acmp98.37 190
testdata197.72 36597.86 323
plane_prior799.58 19299.38 178
plane_prior699.47 25199.26 20397.24 268
plane_prior599.54 22599.82 28195.84 36099.78 20399.60 150
plane_prior499.25 315
plane_prior399.31 19498.36 28199.14 288
plane_prior298.80 26698.94 211
plane_prior199.51 229
plane_prior99.24 21098.42 31097.87 32199.71 232
n20.00 420
nn0.00 420
door-mid99.83 63
test1199.29 301
door99.77 95
HQP5-MVS98.94 246
HQP-NCC99.31 30097.98 34997.45 34098.15 363
ACMP_Plane99.31 30097.98 34997.45 34098.15 363
BP-MVS94.73 378
HQP4-MVS98.15 36399.70 33899.53 185
HQP3-MVS99.37 28499.67 249
HQP2-MVS96.67 287
NP-MVS99.40 27299.13 22598.83 367
MDTV_nov1_ep13_2view91.44 40699.14 19197.37 34599.21 27891.78 35496.75 31399.03 330
MDTV_nov1_ep1397.73 31798.70 38590.83 40899.15 18998.02 37798.51 26698.82 32299.61 20990.98 36199.66 36596.89 30698.92 349
ACMMP++_ref99.94 90
ACMMP++99.79 198
Test By Simon98.41 184