This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1399.99 1100.00 199.98 1099.78 13100.00 199.92 14100.00 199.87 20
RRT_MVS99.67 4399.59 5699.91 299.94 1699.88 1299.78 1299.27 29199.87 3299.91 3599.87 4398.04 21099.96 4899.68 3299.99 1499.90 13
test_djsdf99.84 1099.81 1899.91 299.94 1699.84 2499.77 1599.80 6899.73 6499.97 1599.92 2199.77 1499.98 1599.43 61100.00 199.90 13
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 59100.00 199.90 20100.00 199.97 1199.61 2599.97 2799.75 28100.00 199.84 25
UniMVSNet_ETH3D99.85 899.83 1699.90 599.89 3599.91 499.89 499.71 11499.93 1699.95 2399.89 3199.71 1799.96 4899.51 5399.97 4699.84 25
anonymousdsp99.80 1699.77 2499.90 599.96 599.88 1299.73 2799.85 4499.70 7599.92 3299.93 1799.45 3899.97 2799.36 74100.00 199.85 24
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 3099.88 3499.92 1899.98 1299.93 1799.94 299.98 1599.77 27100.00 199.92 12
PS-MVSNAJss99.84 1099.82 1799.89 899.96 599.77 5099.68 4599.85 4499.95 1099.98 1299.92 2199.28 5799.98 1599.75 28100.00 199.94 9
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3599.86 3999.89 2699.98 1299.90 2799.94 299.98 1599.75 28100.00 199.90 13
PS-CasMVS99.66 4599.58 6099.89 899.80 7699.85 1999.66 5399.73 10299.62 9599.84 6799.71 13098.62 14099.96 4899.30 8799.96 6199.86 22
PEN-MVS99.66 4599.59 5699.89 899.83 5699.87 1599.66 5399.73 10299.70 7599.84 6799.73 11698.56 15099.96 4899.29 9099.94 8599.83 29
v7n99.82 1599.80 2099.88 1299.96 599.84 2499.82 899.82 5799.84 4399.94 2599.91 2499.13 7799.96 4899.83 2299.99 1499.83 29
DTE-MVSNet99.68 3799.61 5199.88 1299.80 7699.87 1599.67 4999.71 11499.72 6899.84 6799.78 9398.67 13499.97 2799.30 8799.95 7499.80 35
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2899.90 799.96 199.92 2299.90 2099.97 1599.87 4399.81 1099.95 5799.54 4899.99 1499.80 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6399.70 35100.00 199.73 64100.00 199.89 3199.79 1299.88 17899.98 1100.00 199.98 1
CP-MVSNet99.54 7099.43 8899.87 1599.76 10799.82 3599.57 7999.61 16499.54 10899.80 8299.64 16997.79 22999.95 5799.21 9799.94 8599.84 25
WR-MVS_H99.61 5999.53 7399.87 1599.80 7699.83 2999.67 4999.75 9399.58 10799.85 6499.69 14398.18 20299.94 7099.28 9299.95 7499.83 29
UA-Net99.78 1899.76 2799.86 1899.72 13099.71 7799.91 399.95 2199.96 899.71 12399.91 2499.15 7299.97 2799.50 55100.00 199.90 13
FC-MVSNet-test99.70 3199.65 4199.86 1899.88 4099.86 1899.72 3099.78 8099.90 2099.82 7299.83 5998.45 16899.87 19299.51 5399.97 4699.86 22
bld_raw_dy_0_6499.70 3199.65 4199.85 2099.95 1399.77 5099.66 5399.71 11499.95 1099.91 3599.77 10098.35 181100.00 199.54 4899.99 1499.79 42
APDe-MVS99.48 7899.36 10099.85 2099.55 20399.81 3899.50 9099.69 12698.99 18999.75 10599.71 13098.79 11699.93 8798.46 16799.85 14799.80 35
mvsmamba99.74 2699.70 3099.85 2099.93 2399.83 2999.76 1999.81 6699.96 899.91 3599.81 7298.60 14499.94 7099.58 4299.98 3399.77 49
FIs99.65 5099.58 6099.84 2399.84 5299.85 1999.66 5399.75 9399.86 3599.74 11399.79 8698.27 19199.85 22799.37 7299.93 9299.83 29
OurMVSNet-221017-099.75 2399.71 2999.84 2399.96 599.83 2999.83 699.85 4499.80 5399.93 2899.93 1798.54 15399.93 8799.59 3999.98 3399.76 55
test_fmvsm_n_192099.84 1099.85 1499.83 2599.82 6399.70 8499.17 17599.97 1399.99 199.96 1799.82 6699.94 2100.00 199.95 10100.00 199.80 35
test_0728_SECOND99.83 2599.70 14199.79 4499.14 18599.61 16499.92 10797.88 21299.72 21999.77 49
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2599.85 4099.94 2599.95 1399.73 1699.90 14799.65 3499.97 4699.69 72
DPE-MVScopyleft99.14 17298.92 20199.82 2899.57 19199.77 5098.74 25899.60 17698.55 23899.76 9899.69 14398.23 19799.92 10796.39 31399.75 20199.76 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 3199.66 3999.82 2899.76 10799.84 2499.61 6899.70 12099.93 1699.78 9199.68 15499.10 7899.78 29299.45 5999.96 6199.83 29
Baseline_NR-MVSNet99.49 7699.37 9799.82 2899.91 2899.84 2498.83 24399.86 3999.68 8099.65 14499.88 3997.67 23699.87 19299.03 12299.86 14399.76 55
test_fmvsmvis_n_192099.84 1099.86 1199.81 3199.88 4099.55 12899.17 17599.98 999.99 199.96 1799.84 5799.96 199.99 799.96 899.99 1499.88 18
tt080599.63 5199.57 6399.81 3199.87 4599.88 1299.58 7698.70 33399.72 6899.91 3599.60 20399.43 3999.81 28099.81 2599.53 27799.73 60
MSP-MVS99.04 19198.79 21899.81 3199.78 9599.73 7199.35 11999.57 19498.54 24199.54 18998.99 33896.81 27199.93 8796.97 28199.53 27799.77 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 1899.77 2499.81 3199.91 2899.85 1999.75 2299.86 3999.70 7599.91 3599.89 3199.60 2799.87 19299.59 3999.74 20899.71 65
XXY-MVS99.71 3099.67 3899.81 3199.89 3599.72 7599.59 7499.82 5799.39 13499.82 7299.84 5799.38 4599.91 12999.38 6999.93 9299.80 35
sd_testset99.78 1899.78 2399.80 3699.80 7699.76 5899.80 1099.79 7499.97 699.89 4599.89 3199.53 3499.99 799.36 7499.96 6199.65 101
MP-MVS-pluss99.14 17298.92 20199.80 3699.83 5699.83 2998.61 26499.63 15496.84 33899.44 21399.58 21098.81 11199.91 12997.70 23499.82 16999.67 84
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.35 11599.20 13199.80 3699.81 7199.81 3899.33 12399.53 22099.27 14899.42 21999.63 17998.21 19899.95 5797.83 22299.79 18899.65 101
HPM-MVS_fast99.43 9299.30 11399.80 3699.83 5699.81 3899.52 8699.70 12098.35 26399.51 20199.50 24199.31 5399.88 17898.18 18999.84 15299.69 72
MIMVSNet199.66 4599.62 4799.80 3699.94 1699.87 1599.69 4299.77 8399.78 5899.93 2899.89 3197.94 21899.92 10799.65 3499.98 3399.62 127
ACMMP_NAP99.28 12999.11 14899.79 4199.75 11899.81 3898.95 23199.53 22098.27 27299.53 19499.73 11698.75 12399.87 19297.70 23499.83 16099.68 78
VPA-MVSNet99.66 4599.62 4799.79 4199.68 15399.75 6399.62 6399.69 12699.85 4099.80 8299.81 7298.81 11199.91 12999.47 5799.88 12499.70 68
Vis-MVSNetpermissive99.75 2399.74 2899.79 4199.88 4099.66 9599.69 4299.92 2299.67 8499.77 9699.75 10999.61 2599.98 1599.35 7799.98 3399.72 62
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 3499.66 3999.78 4499.76 10799.76 5899.60 7399.82 5799.46 12199.75 10599.56 22399.63 2299.95 5799.43 6199.88 12499.62 127
pm-mvs199.79 1799.79 2199.78 4499.91 2899.83 2999.76 1999.87 3699.73 6499.89 4599.87 4399.63 2299.87 19299.54 4899.92 9699.63 116
HPM-MVScopyleft99.25 13699.07 16399.78 4499.81 7199.75 6399.61 6899.67 13397.72 30299.35 23599.25 30299.23 6499.92 10797.21 27399.82 16999.67 84
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++99.38 10799.25 12699.77 4799.03 33699.77 5099.74 2499.61 16499.18 16399.76 9899.61 19599.00 9199.92 10797.72 22999.60 25999.62 127
SED-MVS99.40 10199.28 12099.77 4799.69 14599.82 3599.20 16599.54 21199.13 17699.82 7299.63 17998.91 10399.92 10797.85 21899.70 22499.58 153
ZNCC-MVS99.22 14899.04 17499.77 4799.76 10799.73 7199.28 14299.56 19998.19 27799.14 27599.29 29498.84 11099.92 10797.53 25099.80 18399.64 111
DVP-MVScopyleft99.32 12599.17 13499.77 4799.69 14599.80 4299.14 18599.31 28399.16 17099.62 15899.61 19598.35 18199.91 12997.88 21299.72 21999.61 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 14099.05 16999.77 4799.76 10799.70 8499.31 13099.59 18298.41 25299.32 24399.36 27898.73 12799.93 8797.29 26299.74 20899.67 84
PGM-MVS99.20 15599.01 18199.77 4799.75 11899.71 7799.16 18199.72 11197.99 28799.42 21999.60 20398.81 11199.93 8796.91 28499.74 20899.66 93
TDRefinement99.72 2799.70 3099.77 4799.90 3399.85 1999.86 599.92 2299.69 7899.78 9199.92 2199.37 4799.88 17898.93 13799.95 7499.60 141
SDMVSNet99.77 2199.77 2499.76 5499.80 7699.65 10099.63 6199.86 3999.97 699.89 4599.89 3199.52 3599.99 799.42 6699.96 6199.65 101
KD-MVS_self_test99.63 5199.59 5699.76 5499.84 5299.90 799.37 11599.79 7499.83 4699.88 5399.85 5298.42 17299.90 14799.60 3899.73 21399.49 200
Anonymous2023121199.62 5799.57 6399.76 5499.61 17099.60 11699.81 999.73 10299.82 4899.90 4199.90 2797.97 21799.86 21099.42 6699.96 6199.80 35
HFP-MVS99.25 13699.08 15999.76 5499.73 12799.70 8499.31 13099.59 18298.36 25899.36 23499.37 27498.80 11599.91 12997.43 25599.75 20199.68 78
ACMMPR99.23 14099.06 16599.76 5499.74 12499.69 8899.31 13099.59 18298.36 25899.35 23599.38 27298.61 14299.93 8797.43 25599.75 20199.67 84
MP-MVScopyleft99.06 18598.83 21399.76 5499.76 10799.71 7799.32 12599.50 23398.35 26398.97 29099.48 24898.37 17999.92 10795.95 33399.75 20199.63 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7099.47 7799.76 5499.58 18199.64 10299.30 13399.63 15499.61 9899.71 12399.56 22398.76 12199.96 4899.14 11599.92 9699.68 78
mPP-MVS99.19 15899.00 18499.76 5499.76 10799.68 9199.38 11199.54 21198.34 26799.01 28899.50 24198.53 15799.93 8797.18 27499.78 19399.66 93
SixPastTwentyTwo99.42 9599.30 11399.76 5499.92 2799.67 9399.70 3599.14 31399.65 9099.89 4599.90 2796.20 28999.94 7099.42 6699.92 9699.67 84
SteuartSystems-ACMMP99.30 12799.14 13999.76 5499.87 4599.66 9599.18 17099.60 17698.55 23899.57 17599.67 15899.03 9099.94 7097.01 27999.80 18399.69 72
Skip Steuart: Steuart Systems R&D Blog.
mvsany_test399.85 899.88 699.75 6499.95 1399.37 16899.53 8599.98 999.77 6299.99 799.95 1399.85 699.94 7099.95 1099.98 3399.94 9
GST-MVS99.16 16898.96 19599.75 6499.73 12799.73 7199.20 16599.55 20598.22 27499.32 24399.35 28398.65 13899.91 12996.86 28799.74 20899.62 127
XVS99.27 13399.11 14899.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31699.47 25298.47 16499.88 17897.62 24299.73 21399.67 84
X-MVStestdata96.09 33894.87 34799.75 6499.71 13399.71 7799.37 11599.61 16499.29 14498.76 31661.30 39198.47 16499.88 17897.62 24299.73 21399.67 84
CP-MVS99.23 14099.05 16999.75 6499.66 15999.66 9599.38 11199.62 15798.38 25699.06 28699.27 29798.79 11699.94 7097.51 25199.82 16999.66 93
MSC_two_6792asdad99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
No_MVS99.74 6999.03 33699.53 13199.23 30199.92 10797.77 22399.69 22899.78 45
SR-MVS99.19 15899.00 18499.74 6999.51 21899.72 7599.18 17099.60 17698.85 20899.47 20799.58 21098.38 17899.92 10796.92 28399.54 27599.57 158
HPM-MVS++copyleft98.96 20798.70 22499.74 6999.52 21699.71 7798.86 23899.19 30898.47 24898.59 32999.06 32898.08 20899.91 12996.94 28299.60 25999.60 141
APD-MVS_3200maxsize99.31 12699.16 13599.74 6999.53 21199.75 6399.27 14599.61 16499.19 16299.57 17599.64 16998.76 12199.90 14797.29 26299.62 24999.56 160
LPG-MVS_test99.22 14899.05 16999.74 6999.82 6399.63 10699.16 18199.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
LGP-MVS_train99.74 6999.82 6399.63 10699.73 10297.56 30799.64 14599.69 14399.37 4799.89 16496.66 29999.87 13599.69 72
DP-MVS99.48 7899.39 9299.74 6999.57 19199.62 10899.29 14099.61 16499.87 3299.74 11399.76 10498.69 13099.87 19298.20 18599.80 18399.75 58
ACMMPcopyleft99.25 13699.08 15999.74 6999.79 8899.68 9199.50 9099.65 14698.07 28399.52 19699.69 14398.57 14899.92 10797.18 27499.79 18899.63 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 13399.11 14899.73 7899.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.41 17399.91 12997.27 26599.61 25699.54 171
SMA-MVScopyleft99.19 15899.00 18499.73 7899.46 24499.73 7199.13 19199.52 22597.40 31899.57 17599.64 16998.93 10099.83 25697.61 24499.79 18899.63 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
test199.42 9599.31 10899.73 7899.49 22999.77 5099.68 4599.70 12099.44 12499.62 15899.83 5997.21 25799.90 14798.96 13199.90 10699.53 177
FMVSNet199.66 4599.63 4699.73 7899.78 9599.77 5099.68 4599.70 12099.67 8499.82 7299.83 5998.98 9599.90 14799.24 9499.97 4699.53 177
HyFIR lowres test98.91 21398.64 22699.73 7899.85 5199.47 13798.07 31599.83 5298.64 23099.89 4599.60 20392.57 325100.00 199.33 8199.97 4699.72 62
testf199.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
APD_test299.63 5199.60 5499.72 8499.94 1699.95 299.47 9899.89 3099.43 12999.88 5399.80 7699.26 6199.90 14798.81 14499.88 12499.32 248
UniMVSNet_NR-MVSNet99.37 11099.25 12699.72 8499.47 24099.56 12598.97 22999.61 16499.43 12999.67 13899.28 29597.85 22599.95 5799.17 10699.81 17899.65 101
ACMM98.09 1199.46 8699.38 9499.72 8499.80 7699.69 8899.13 19199.65 14698.99 18999.64 14599.72 12399.39 4199.86 21098.23 18299.81 17899.60 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 6199.54 6999.72 8499.86 4899.62 10899.56 8199.79 7498.77 22099.80 8299.85 5299.64 2199.85 22798.70 15599.89 11599.70 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 8699.37 9799.71 8999.82 6399.59 11899.48 9599.70 12099.81 5099.69 12999.58 21097.66 24099.86 21099.17 10699.44 29099.67 84
DU-MVS99.33 12399.21 13099.71 8999.43 25399.56 12598.83 24399.53 22099.38 13599.67 13899.36 27897.67 23699.95 5799.17 10699.81 17899.63 116
APD-MVScopyleft98.87 22098.59 23199.71 8999.50 22499.62 10899.01 21899.57 19496.80 34099.54 18999.63 17998.29 18999.91 12995.24 34899.71 22299.61 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 7499.43 8899.71 8999.86 4899.76 5899.32 12599.77 8399.53 11099.77 9699.76 10499.26 6199.78 29297.77 22399.88 12499.60 141
COLMAP_ROBcopyleft98.06 1299.45 8899.37 9799.70 9399.83 5699.70 8499.38 11199.78 8099.53 11099.67 13899.78 9399.19 6899.86 21097.32 26099.87 13599.55 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 22098.60 22999.69 9499.93 2399.46 14199.74 2494.97 37799.78 5899.88 5399.88 3993.66 31599.97 2799.61 3799.95 7499.64 111
casdiffmvs_mvgpermissive99.68 3799.68 3799.69 9499.81 7199.59 11899.29 14099.90 2899.71 7099.79 8799.73 11699.54 3299.84 24199.36 7499.96 6199.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 11099.26 12499.68 9699.51 21899.58 12298.98 22899.60 17699.43 12999.70 12699.36 27897.70 23299.88 17899.20 10099.87 13599.59 148
NR-MVSNet99.40 10199.31 10899.68 9699.43 25399.55 12899.73 2799.50 23399.46 12199.88 5399.36 27897.54 24399.87 19298.97 12999.87 13599.63 116
EC-MVSNet99.69 3499.69 3499.68 9699.71 13399.91 499.76 1999.96 1899.86 3599.51 20199.39 27099.57 2999.93 8799.64 3699.86 14399.20 273
LCM-MVSNet-Re99.28 12999.15 13899.67 9999.33 28499.76 5899.34 12099.97 1398.93 19899.91 3599.79 8698.68 13199.93 8796.80 29199.56 26699.30 254
casdiffmvspermissive99.63 5199.61 5199.67 9999.79 8899.59 11899.13 19199.85 4499.79 5699.76 9899.72 12399.33 5299.82 26599.21 9799.94 8599.59 148
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss99.05 18898.84 21199.67 9999.66 15999.29 18498.52 27999.82 5797.65 30599.43 21799.16 31596.42 28199.91 12999.07 12099.84 15299.80 35
DeepPCF-MVS98.42 699.18 16299.02 17899.67 9999.22 30599.75 6397.25 36299.47 24198.72 22599.66 14299.70 13799.29 5599.63 35398.07 19799.81 17899.62 127
DeepC-MVS98.90 499.62 5799.61 5199.67 9999.72 13099.44 14899.24 15599.71 11499.27 14899.93 2899.90 2799.70 1999.93 8798.99 12599.99 1499.64 111
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 18898.84 21199.67 9999.78 9599.55 12898.88 23699.66 13797.11 33399.47 20799.60 20399.07 8599.89 16496.18 32299.85 14799.58 153
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 11599.24 12899.67 9999.35 27199.47 13799.62 6399.50 23399.44 12499.12 27899.78 9398.77 12099.94 7097.87 21599.72 21999.62 127
v1099.69 3499.69 3499.66 10699.81 7199.39 16399.66 5399.75 9399.60 10499.92 3299.87 4398.75 12399.86 21099.90 1599.99 1499.73 60
WR-MVS99.11 17998.93 19799.66 10699.30 29199.42 15598.42 28899.37 27099.04 18699.57 17599.20 31396.89 26999.86 21098.66 15999.87 13599.70 68
XVG-OURS-SEG-HR99.16 16898.99 18999.66 10699.84 5299.64 10298.25 29899.73 10298.39 25599.63 14999.43 26099.70 1999.90 14797.34 25998.64 34899.44 218
baseline99.63 5199.62 4799.66 10699.80 7699.62 10899.44 10399.80 6899.71 7099.72 11899.69 14399.15 7299.83 25699.32 8399.94 8599.53 177
EPP-MVSNet99.17 16699.00 18499.66 10699.80 7699.43 15299.70 3599.24 30099.48 11499.56 18299.77 10094.89 30099.93 8798.72 15499.89 11599.63 116
Anonymous2024052999.42 9599.34 10299.65 11199.53 21199.60 11699.63 6199.39 26599.47 11899.76 9899.78 9398.13 20499.86 21098.70 15599.68 23399.49 200
v899.68 3799.69 3499.65 11199.80 7699.40 16199.66 5399.76 8899.64 9299.93 2899.85 5298.66 13699.84 24199.88 1999.99 1499.71 65
MCST-MVS99.02 19498.81 21599.65 11199.58 18199.49 13598.58 26899.07 31698.40 25499.04 28799.25 30298.51 16299.80 28697.31 26199.51 28199.65 101
XVG-OURS99.21 15399.06 16599.65 11199.82 6399.62 10897.87 33599.74 9898.36 25899.66 14299.68 15499.71 1799.90 14796.84 29099.88 12499.43 224
CHOSEN 1792x268899.39 10599.30 11399.65 11199.88 4099.25 19398.78 25599.88 3498.66 22899.96 1799.79 8697.45 24699.93 8799.34 7899.99 1499.78 45
QAPM98.40 26997.99 28299.65 11199.39 26199.47 13799.67 4999.52 22591.70 37398.78 31599.80 7698.55 15199.95 5794.71 35599.75 20199.53 177
3Dnovator99.15 299.43 9299.36 10099.65 11199.39 26199.42 15599.70 3599.56 19999.23 15699.35 23599.80 7699.17 7099.95 5798.21 18499.84 15299.59 148
patch_mono-299.51 7399.46 8199.64 11899.70 14199.11 21399.04 21199.87 3699.71 7099.47 20799.79 8698.24 19399.98 1599.38 6999.96 6199.83 29
EGC-MVSNET89.05 35085.52 35399.64 11899.89 3599.78 4799.56 8199.52 22524.19 38449.96 38599.83 5999.15 7299.92 10797.71 23199.85 14799.21 269
CS-MVS-test99.68 3799.70 3099.64 11899.57 19199.83 2999.78 1299.97 1399.92 1899.50 20399.38 27299.57 2999.95 5799.69 3199.90 10699.15 284
lessismore_v099.64 11899.86 4899.38 16590.66 38599.89 4599.83 5994.56 30599.97 2799.56 4599.92 9699.57 158
114514_t98.49 25998.11 27699.64 11899.73 12799.58 12299.24 15599.76 8889.94 37699.42 21999.56 22397.76 23199.86 21097.74 22899.82 16999.47 208
CPTT-MVS98.74 23298.44 24799.64 11899.61 17099.38 16599.18 17099.55 20596.49 34299.27 25499.37 27497.11 26399.92 10795.74 33999.67 23999.62 127
RPSCF99.18 16299.02 17899.64 11899.83 5699.85 1999.44 10399.82 5798.33 26899.50 20399.78 9397.90 22099.65 35096.78 29299.83 16099.44 218
Anonymous20240521198.75 23098.46 24599.63 12599.34 27999.66 9599.47 9897.65 36199.28 14799.56 18299.50 24193.15 31999.84 24198.62 16099.58 26499.40 229
TSAR-MVS + MP.99.34 12099.24 12899.63 12599.82 6399.37 16899.26 14799.35 27498.77 22099.57 17599.70 13799.27 6099.88 17897.71 23199.75 20199.65 101
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 13599.13 14199.63 12599.70 14199.61 11498.58 26899.48 23898.50 24499.52 19699.63 17999.14 7599.76 30297.89 21199.77 19799.51 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 15399.07 16399.63 12599.78 9599.64 10299.12 19599.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
TestCases99.63 12599.78 9599.64 10299.83 5298.63 23199.63 14999.72 12398.68 13199.75 30696.38 31499.83 16099.51 190
V4299.56 6599.54 6999.63 12599.79 8899.46 14199.39 10999.59 18299.24 15499.86 6299.70 13798.55 15199.82 26599.79 2699.95 7499.60 141
XVG-ACMP-BASELINE99.23 14099.10 15699.63 12599.82 6399.58 12298.83 24399.72 11198.36 25899.60 16799.71 13098.92 10199.91 12997.08 27799.84 15299.40 229
Test_1112_low_res98.95 21098.73 22099.63 12599.68 15399.15 21098.09 31299.80 6897.14 33199.46 21199.40 26696.11 29099.89 16499.01 12499.84 15299.84 25
TAMVS99.49 7699.45 8399.63 12599.48 23499.42 15599.45 10199.57 19499.66 8899.78 9199.83 5997.85 22599.86 21099.44 6099.96 6199.61 137
SF-MVS99.10 18298.93 19799.62 13499.58 18199.51 13399.13 19199.65 14697.97 28999.42 21999.61 19598.86 10899.87 19296.45 31199.68 23399.49 200
EG-PatchMatch MVS99.57 6299.56 6899.62 13499.77 10399.33 17899.26 14799.76 8899.32 14299.80 8299.78 9399.29 5599.87 19299.15 10999.91 10599.66 93
F-COLMAP98.74 23298.45 24699.62 13499.57 19199.47 13798.84 24199.65 14696.31 34698.93 29499.19 31497.68 23599.87 19296.52 30699.37 30099.53 177
APD_test199.36 11399.28 12099.61 13799.89 3599.89 1099.32 12599.74 9899.18 16399.69 12999.75 10998.41 17399.84 24197.85 21899.70 22499.10 295
CDPH-MVS98.56 25098.20 26999.61 13799.50 22499.46 14198.32 29399.41 25595.22 35999.21 26599.10 32598.34 18499.82 26595.09 35199.66 24299.56 160
LS3D99.24 13999.11 14899.61 13798.38 37199.79 4499.57 7999.68 12999.61 9899.15 27399.71 13098.70 12999.91 12997.54 24899.68 23399.13 292
tfpnnormal99.43 9299.38 9499.60 14099.87 4599.75 6399.59 7499.78 8099.71 7099.90 4199.69 14398.85 10999.90 14797.25 27099.78 19399.15 284
CSCG99.37 11099.29 11899.60 14099.71 13399.46 14199.43 10599.85 4498.79 21699.41 22599.60 20398.92 10199.92 10798.02 19899.92 9699.43 224
MVS_030499.17 16699.03 17699.59 14299.44 24998.90 23799.04 21195.32 37699.99 199.68 13299.57 21998.30 18899.97 2799.94 1399.98 3399.88 18
v114499.54 7099.53 7399.59 14299.79 8899.28 18699.10 19999.61 16499.20 16199.84 6799.73 11698.67 13499.84 24199.86 2199.98 3399.64 111
UnsupCasMVSNet_eth98.83 22398.57 23599.59 14299.68 15399.45 14698.99 22599.67 13399.48 11499.55 18799.36 27894.92 29999.86 21098.95 13596.57 37699.45 213
PHI-MVS99.11 17998.95 19699.59 14299.13 32099.59 11899.17 17599.65 14697.88 29599.25 25699.46 25598.97 9799.80 28697.26 26799.82 16999.37 236
CS-MVS99.67 4399.70 3099.58 14699.53 21199.84 2499.79 1199.96 1899.90 2099.61 16499.41 26299.51 3699.95 5799.66 3399.89 11598.96 318
v14419299.55 6899.54 6999.58 14699.78 9599.20 20599.11 19799.62 15799.18 16399.89 4599.72 12398.66 13699.87 19299.88 1999.97 4699.66 93
v2v48299.50 7499.47 7799.58 14699.78 9599.25 19399.14 18599.58 19299.25 15299.81 7999.62 18698.24 19399.84 24199.83 2299.97 4699.64 111
test20.0399.55 6899.54 6999.58 14699.79 8899.37 16899.02 21699.89 3099.60 10499.82 7299.62 18698.81 11199.89 16499.43 6199.86 14399.47 208
PM-MVS99.36 11399.29 11899.58 14699.83 5699.66 9598.95 23199.86 3998.85 20899.81 7999.73 11698.40 17799.92 10798.36 17299.83 16099.17 280
NCCC98.82 22498.57 23599.58 14699.21 30799.31 18198.61 26499.25 29798.65 22998.43 33799.26 30097.86 22399.81 28096.55 30499.27 31499.61 137
train_agg98.35 27497.95 28699.57 15299.35 27199.35 17598.11 31099.41 25594.90 36397.92 35698.99 33898.02 21299.85 22795.38 34699.44 29099.50 195
v119299.57 6299.57 6399.57 15299.77 10399.22 20099.04 21199.60 17699.18 16399.87 6199.72 12399.08 8399.85 22799.89 1899.98 3399.66 93
PMMVS299.48 7899.45 8399.57 15299.76 10798.99 22598.09 31299.90 2898.95 19499.78 9199.58 21099.57 2999.93 8799.48 5699.95 7499.79 42
VNet99.18 16299.06 16599.56 15599.24 30399.36 17299.33 12399.31 28399.67 8499.47 20799.57 21996.48 27899.84 24199.15 10999.30 30899.47 208
CNVR-MVS98.99 20398.80 21799.56 15599.25 30199.43 15298.54 27799.27 29198.58 23698.80 31299.43 26098.53 15799.70 31997.22 27299.59 26399.54 171
DeepC-MVS_fast98.47 599.23 14099.12 14599.56 15599.28 29699.22 20098.99 22599.40 26299.08 18199.58 17299.64 16998.90 10699.83 25697.44 25499.75 20199.63 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 6599.57 6399.55 15899.75 11899.11 21399.05 20999.61 16499.15 17499.88 5399.71 13099.08 8399.87 19299.90 1599.97 4699.66 93
HQP_MVS98.90 21598.68 22599.55 15899.58 18199.24 19798.80 25199.54 21198.94 19599.14 27599.25 30297.24 25599.82 26595.84 33699.78 19399.60 141
FMVSNet299.35 11599.28 12099.55 15899.49 22999.35 17599.45 10199.57 19499.44 12499.70 12699.74 11297.21 25799.87 19299.03 12299.94 8599.44 218
IS-MVSNet99.03 19298.85 20999.55 15899.80 7699.25 19399.73 2799.15 31299.37 13699.61 16499.71 13094.73 30399.81 28097.70 23499.88 12499.58 153
test1299.54 16299.29 29399.33 17899.16 31198.43 33797.54 24399.82 26599.47 28799.48 204
test_fmvs399.83 1499.93 299.53 16399.96 598.62 26199.67 49100.00 199.95 10100.00 199.95 1399.85 699.99 799.98 199.99 1499.98 1
dcpmvs_299.61 5999.64 4599.53 16399.79 8898.82 24299.58 7699.97 1399.95 1099.96 1799.76 10498.44 16999.99 799.34 7899.96 6199.78 45
Effi-MVS+-dtu99.07 18498.92 20199.52 16598.89 34999.78 4799.15 18399.66 13799.34 13998.92 29799.24 30797.69 23499.98 1598.11 19599.28 31198.81 332
新几何199.52 16599.50 22499.22 20099.26 29495.66 35598.60 32899.28 29597.67 23699.89 16495.95 33399.32 30699.45 213
pmmvs-eth3d99.48 7899.47 7799.51 16799.77 10399.41 16098.81 24899.66 13799.42 13399.75 10599.66 16299.20 6799.76 30298.98 12799.99 1499.36 239
v124099.56 6599.58 6099.51 16799.80 7699.00 22499.00 22099.65 14699.15 17499.90 4199.75 10999.09 8099.88 17899.90 1599.96 6199.67 84
CDS-MVSNet99.22 14899.13 14199.50 16999.35 27199.11 21398.96 23099.54 21199.46 12199.61 16499.70 13796.31 28699.83 25699.34 7899.88 12499.55 163
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 9099.42 9099.49 17099.89 3598.96 23099.62 6399.76 8899.85 4099.82 7299.88 3996.39 28499.97 2799.59 3999.98 3399.55 163
Patchmtry98.78 22798.54 23999.49 17098.89 34999.19 20699.32 12599.67 13399.65 9099.72 11899.79 8691.87 33399.95 5798.00 20299.97 4699.33 245
UGNet99.38 10799.34 10299.49 17098.90 34698.90 23799.70 3599.35 27499.86 3598.57 33199.81 7298.50 16399.93 8799.38 6999.98 3399.66 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 6299.59 5699.49 17099.98 399.71 7799.72 3099.84 5099.81 5099.94 2599.78 9398.91 10399.71 31798.41 16999.95 7499.05 309
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 12099.30 11399.48 17499.51 21899.36 17298.12 30899.53 22099.36 13899.41 22599.61 19599.22 6599.87 19299.21 9799.68 23399.20 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 27197.99 28299.48 17499.32 28699.24 19798.50 28199.51 22995.19 36198.58 33098.96 34596.95 26899.83 25695.63 34099.25 31599.37 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 11599.31 10899.47 17699.74 12499.06 22399.28 14299.74 9899.23 15699.72 11899.53 23497.63 24299.88 17899.11 11799.84 15299.48 204
ab-mvs99.33 12399.28 12099.47 17699.57 19199.39 16399.78 1299.43 25298.87 20699.57 17599.82 6698.06 20999.87 19298.69 15799.73 21399.15 284
Fast-Effi-MVS+99.02 19498.87 20799.46 17899.38 26499.50 13499.04 21199.79 7497.17 32998.62 32698.74 35999.34 5199.95 5798.32 17699.41 29598.92 323
test_prior99.46 17899.35 27199.22 20099.39 26599.69 32599.48 204
TAPA-MVS97.92 1398.03 28997.55 30599.46 17899.47 24099.44 14898.50 28199.62 15786.79 37799.07 28599.26 30098.26 19299.62 35497.28 26499.73 21399.31 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192099.76 2299.86 1199.45 18199.93 2398.40 27399.30 13399.98 999.94 1499.99 799.89 3199.80 1199.97 2799.96 899.97 4699.97 3
EIA-MVS99.12 17699.01 18199.45 18199.36 26999.62 10899.34 12099.79 7498.41 25298.84 30798.89 35198.75 12399.84 24198.15 19399.51 28198.89 325
test_040299.22 14899.14 13999.45 18199.79 8899.43 15299.28 14299.68 12999.54 10899.40 23099.56 22399.07 8599.82 26596.01 32799.96 6199.11 293
h-mvs3398.61 24298.34 25899.44 18499.60 17298.67 25299.27 14599.44 24999.68 8099.32 24399.49 24592.50 328100.00 199.24 9496.51 37799.65 101
VDD-MVS99.20 15599.11 14899.44 18499.43 25398.98 22699.50 9098.32 35299.80 5399.56 18299.69 14396.99 26799.85 22798.99 12599.73 21399.50 195
PVSNet_Blended_VisFu99.40 10199.38 9499.44 18499.90 3398.66 25598.94 23399.91 2597.97 28999.79 8799.73 11699.05 8899.97 2799.15 10999.99 1499.68 78
OMC-MVS98.90 21598.72 22199.44 18499.39 26199.42 15598.58 26899.64 15297.31 32399.44 21399.62 18698.59 14599.69 32596.17 32399.79 18899.22 267
Fast-Effi-MVS+-dtu99.20 15599.12 14599.43 18899.25 30199.69 8899.05 20999.82 5799.50 11298.97 29099.05 32998.98 9599.98 1598.20 18599.24 31798.62 340
MVP-Stereo99.16 16899.08 15999.43 18899.48 23499.07 22199.08 20699.55 20598.63 23199.31 24799.68 15498.19 20099.78 29298.18 18999.58 26499.45 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 15899.11 14899.42 19099.76 10798.88 23998.55 27499.73 10298.82 21299.72 11899.62 18696.56 27599.82 26599.32 8399.95 7499.56 160
EI-MVSNet-UG-set99.48 7899.50 7599.42 19099.57 19198.65 25899.24 15599.46 24499.68 8099.80 8299.66 16298.99 9399.89 16499.19 10199.90 10699.72 62
EI-MVSNet-Vis-set99.47 8599.49 7699.42 19099.57 19198.66 25599.24 15599.46 24499.67 8499.79 8799.65 16798.97 9799.89 16499.15 10999.89 11599.71 65
testdata99.42 19099.51 21898.93 23499.30 28696.20 34798.87 30499.40 26698.33 18699.89 16496.29 31799.28 31199.44 218
VDDNet98.97 20498.82 21499.42 19099.71 13398.81 24399.62 6398.68 33499.81 5099.38 23299.80 7694.25 30799.85 22798.79 14699.32 30699.59 148
FMVSNet597.80 29697.25 31299.42 19098.83 35398.97 22899.38 11199.80 6898.87 20699.25 25699.69 14380.60 38399.91 12998.96 13199.90 10699.38 233
MVS_111021_LR99.13 17499.03 17699.42 19099.58 18199.32 18097.91 33399.73 10298.68 22799.31 24799.48 24899.09 8099.66 34497.70 23499.77 19799.29 257
test_vis1_rt99.45 8899.46 8199.41 19799.71 13398.63 26098.99 22599.96 1899.03 18799.95 2399.12 32198.75 12399.84 24199.82 2499.82 16999.77 49
CMPMVSbinary77.52 2398.50 25798.19 27299.41 19798.33 37399.56 12599.01 21899.59 18295.44 35699.57 17599.80 7695.64 29599.46 37296.47 31099.92 9699.21 269
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test199.44 9099.45 8399.40 19999.37 26698.64 25997.90 33499.59 18299.27 14899.92 3299.82 6699.74 1599.93 8799.55 4799.87 13599.63 116
iter_conf_final98.75 23098.54 23999.40 19999.33 28498.75 24799.26 14799.59 18299.80 5399.76 9899.58 21090.17 35499.92 10799.37 7299.97 4699.54 171
UnsupCasMVSNet_bld98.55 25198.27 26499.40 19999.56 20299.37 16897.97 32799.68 12997.49 31499.08 28299.35 28395.41 29899.82 26597.70 23498.19 36199.01 316
MVS_111021_HR99.12 17699.02 17899.40 19999.50 22499.11 21397.92 33199.71 11498.76 22399.08 28299.47 25299.17 7099.54 36397.85 21899.76 19999.54 171
v14899.40 10199.41 9199.39 20399.76 10798.94 23199.09 20399.59 18299.17 16899.81 7999.61 19598.41 17399.69 32599.32 8399.94 8599.53 177
diffmvspermissive99.34 12099.32 10799.39 20399.67 15898.77 24698.57 27299.81 6699.61 9899.48 20699.41 26298.47 16499.86 21098.97 12999.90 10699.53 177
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS98.36 27198.02 28199.39 20399.31 28798.94 23197.98 32499.37 27097.45 31598.15 34698.83 35496.67 27399.70 31994.73 35399.67 23999.53 177
TSAR-MVS + GP.99.12 17699.04 17499.38 20699.34 27999.16 20898.15 30499.29 28798.18 27899.63 14999.62 18699.18 6999.68 33598.20 18599.74 20899.30 254
AdaColmapbinary98.60 24498.35 25799.38 20699.12 32299.22 20098.67 26399.42 25497.84 29998.81 31099.27 29797.32 25399.81 28095.14 34999.53 27799.10 295
ITE_SJBPF99.38 20699.63 16599.44 14899.73 10298.56 23799.33 24099.53 23498.88 10799.68 33596.01 32799.65 24499.02 315
test_f99.75 2399.88 699.37 20999.96 598.21 28599.51 89100.00 199.94 14100.00 199.93 1799.58 2899.94 7099.97 499.99 1499.97 3
原ACMM199.37 20999.47 24098.87 24199.27 29196.74 34198.26 34199.32 28797.93 21999.82 26595.96 33299.38 29899.43 224
testgi99.29 12899.26 12499.37 20999.75 11898.81 24398.84 24199.89 3098.38 25699.75 10599.04 33199.36 5099.86 21099.08 11999.25 31599.45 213
MSDG99.08 18398.98 19299.37 20999.60 17299.13 21197.54 34899.74 9898.84 21199.53 19499.55 23099.10 7899.79 28997.07 27899.86 14399.18 278
test_vis1_n99.68 3799.79 2199.36 21399.94 1698.18 28899.52 86100.00 199.86 35100.00 199.88 3998.99 9399.96 4899.97 499.96 6199.95 7
pmmvs499.13 17499.06 16599.36 21399.57 19199.10 21898.01 32099.25 29798.78 21899.58 17299.44 25998.24 19399.76 30298.74 15299.93 9299.22 267
N_pmnet98.73 23498.53 24199.35 21599.72 13098.67 25298.34 29194.65 37898.35 26399.79 8799.68 15498.03 21199.93 8798.28 17899.92 9699.44 218
test_fmvs299.72 2799.85 1499.34 21699.91 2898.08 29899.48 95100.00 199.90 2099.99 799.91 2499.50 3799.98 1599.98 199.99 1499.96 6
Effi-MVS+99.06 18598.97 19399.34 21699.31 28798.98 22698.31 29499.91 2598.81 21398.79 31398.94 34799.14 7599.84 24198.79 14698.74 34499.20 273
Vis-MVSNet (Re-imp)98.77 22898.58 23499.34 21699.78 9598.88 23999.61 6899.56 19999.11 18099.24 25999.56 22393.00 32399.78 29297.43 25599.89 11599.35 242
Patchmatch-RL test98.60 24498.36 25599.33 21999.77 10399.07 22198.27 29699.87 3698.91 20199.74 11399.72 12390.57 35099.79 28998.55 16399.85 14799.11 293
PAPM_NR98.36 27198.04 27999.33 21999.48 23498.93 23498.79 25499.28 29097.54 31098.56 33298.57 36597.12 26299.69 32594.09 36198.90 33599.38 233
PCF-MVS96.03 1896.73 32695.86 33799.33 21999.44 24999.16 20896.87 37199.44 24986.58 37898.95 29299.40 26694.38 30699.88 17887.93 37699.80 18398.95 320
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 22998.57 23599.33 21999.57 19198.97 22897.53 35099.55 20596.41 34399.27 25499.13 31799.07 8599.78 29296.73 29599.89 11599.23 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 27697.94 29099.32 22399.36 26999.11 21397.31 36098.78 33096.88 33698.84 30799.11 32497.77 23099.61 35894.03 36399.36 30199.23 265
jason99.16 16899.11 14899.32 22399.75 11898.44 27098.26 29799.39 26598.70 22699.74 11399.30 29198.54 15399.97 2798.48 16699.82 16999.55 163
jason: jason.
FMVSNet398.80 22698.63 22899.32 22399.13 32098.72 25099.10 19999.48 23899.23 15699.62 15899.64 16992.57 32599.86 21098.96 13199.90 10699.39 231
dmvs_re98.69 23898.48 24399.31 22699.55 20399.42 15599.54 8498.38 35099.32 14298.72 31998.71 36096.76 27299.21 37596.01 32799.35 30399.31 252
MVSFormer99.41 9999.44 8699.31 22699.57 19198.40 27399.77 1599.80 6899.73 6499.63 14999.30 29198.02 21299.98 1599.43 6199.69 22899.55 163
DP-MVS Recon98.50 25798.23 26599.31 22699.49 22999.46 14198.56 27399.63 15494.86 36598.85 30699.37 27497.81 22799.59 36096.08 32499.44 29098.88 326
PatchMatch-RL98.68 23998.47 24499.30 22999.44 24999.28 18698.14 30699.54 21197.12 33299.11 27999.25 30297.80 22899.70 31996.51 30799.30 30898.93 322
OPU-MVS99.29 23099.12 32299.44 14899.20 16599.40 26699.00 9198.84 38096.54 30599.60 25999.58 153
D2MVS99.22 14899.19 13299.29 23099.69 14598.74 24998.81 24899.41 25598.55 23899.68 13299.69 14398.13 20499.87 19298.82 14299.98 3399.24 262
test_fmvs1_n99.68 3799.81 1899.28 23299.95 1397.93 30799.49 94100.00 199.82 4899.99 799.89 3199.21 6699.98 1599.97 499.98 3399.93 11
CANet99.11 17999.05 16999.28 23298.83 35398.56 26398.71 26299.41 25599.25 15299.23 26099.22 30997.66 24099.94 7099.19 10199.97 4699.33 245
CNLPA98.57 24998.34 25899.28 23299.18 31499.10 21898.34 29199.41 25598.48 24798.52 33398.98 34197.05 26599.78 29295.59 34199.50 28398.96 318
test_vis1_n_192099.72 2799.88 699.27 23599.93 2397.84 30999.34 120100.00 199.99 199.99 799.82 6699.87 599.99 799.97 499.99 1499.97 3
sss98.90 21598.77 21999.27 23599.48 23498.44 27098.72 26099.32 27997.94 29399.37 23399.35 28396.31 28699.91 12998.85 13999.63 24899.47 208
LF4IMVS99.01 19898.92 20199.27 23599.71 13399.28 18698.59 26799.77 8398.32 26999.39 23199.41 26298.62 14099.84 24196.62 30399.84 15298.69 338
LFMVS98.46 26298.19 27299.26 23899.24 30398.52 26699.62 6396.94 36899.87 3299.31 24799.58 21091.04 34199.81 28098.68 15899.42 29499.45 213
WTY-MVS98.59 24798.37 25499.26 23899.43 25398.40 27398.74 25899.13 31598.10 28099.21 26599.24 30794.82 30199.90 14797.86 21698.77 34099.49 200
OpenMVScopyleft98.12 1098.23 28197.89 29599.26 23899.19 31299.26 19099.65 5999.69 12691.33 37498.14 35099.77 10098.28 19099.96 4895.41 34599.55 27098.58 344
alignmvs98.28 27697.96 28599.25 24199.12 32298.93 23499.03 21598.42 34799.64 9298.72 31997.85 37990.86 34699.62 35498.88 13899.13 32099.19 276
IterMVS-LS99.41 9999.47 7799.25 24199.81 7198.09 29598.85 24099.76 8899.62 9599.83 7199.64 16998.54 15399.97 2799.15 10999.99 1499.68 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 20798.87 20799.24 24399.57 19198.40 27398.12 30899.18 30998.28 27199.63 14999.13 31798.02 21299.97 2798.22 18399.69 22899.35 242
MVSTER98.47 26198.22 26799.24 24399.06 33298.35 27999.08 20699.46 24499.27 14899.75 10599.66 16288.61 36299.85 22799.14 11599.92 9699.52 188
EI-MVSNet99.38 10799.44 8699.21 24599.58 18198.09 29599.26 14799.46 24499.62 9599.75 10599.67 15898.54 15399.85 22799.15 10999.92 9699.68 78
BH-RMVSNet98.41 26798.14 27599.21 24599.21 30798.47 26798.60 26698.26 35398.35 26398.93 29499.31 28997.20 26099.66 34494.32 35799.10 32399.51 190
ambc99.20 24799.35 27198.53 26499.17 17599.46 24499.67 13899.80 7698.46 16799.70 31997.92 20899.70 22499.38 233
MVS_Test99.28 12999.31 10899.19 24899.35 27198.79 24599.36 11899.49 23799.17 16899.21 26599.67 15898.78 11899.66 34499.09 11899.66 24299.10 295
MAR-MVS98.24 28097.92 29299.19 24898.78 36099.65 10099.17 17599.14 31395.36 35798.04 35398.81 35697.47 24599.72 31395.47 34499.06 32498.21 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 28497.77 29999.18 25094.57 38797.99 30099.24 15597.96 35799.74 6397.29 36999.62 18693.13 32099.97 2798.59 16199.83 16099.58 153
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 25498.30 26299.16 25199.29 29398.60 26298.77 25699.02 32099.68 8099.32 24399.04 33192.50 32899.85 22799.24 9497.87 36899.03 311
ETV-MVS99.18 16299.18 13399.16 25199.34 27999.28 18699.12 19599.79 7499.48 11498.93 29498.55 36799.40 4099.93 8798.51 16599.52 28098.28 357
FE-MVS97.85 29497.42 30799.15 25399.44 24998.75 24799.77 1598.20 35495.85 35199.33 24099.80 7688.86 36199.88 17896.40 31299.12 32198.81 332
CL-MVSNet_self_test98.71 23698.56 23899.15 25399.22 30598.66 25597.14 36599.51 22998.09 28299.54 18999.27 29796.87 27099.74 30898.43 16898.96 33099.03 311
iter_conf0598.46 26298.23 26599.15 25399.04 33597.99 30099.10 19999.61 16499.79 5699.76 9899.58 21087.88 36499.92 10799.31 8699.97 4699.53 177
AUN-MVS97.82 29597.38 30899.14 25699.27 29898.53 26498.72 26099.02 32098.10 28097.18 37299.03 33589.26 36099.85 22797.94 20797.91 36699.03 311
test_yl98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
DCV-MVSNet98.25 27897.95 28699.13 25799.17 31598.47 26799.00 22098.67 33698.97 19199.22 26399.02 33691.31 33799.69 32597.26 26798.93 33199.24 262
MIMVSNet98.43 26598.20 26999.11 25999.53 21198.38 27799.58 7698.61 33898.96 19399.33 24099.76 10490.92 34399.81 28097.38 25899.76 19999.15 284
PMMVS98.49 25998.29 26399.11 25998.96 34398.42 27297.54 34899.32 27997.53 31198.47 33698.15 37697.88 22299.82 26597.46 25399.24 31799.09 299
FA-MVS(test-final)98.52 25498.32 26099.10 26199.48 23498.67 25299.77 1598.60 34097.35 32199.63 14999.80 7693.07 32199.84 24197.92 20899.30 30898.78 335
CANet_DTU98.91 21398.85 20999.09 26298.79 35898.13 29098.18 30199.31 28399.48 11498.86 30599.51 23896.56 27599.95 5799.05 12199.95 7499.19 276
MS-PatchMatch99.00 20098.97 19399.09 26299.11 32798.19 28698.76 25799.33 27798.49 24699.44 21399.58 21098.21 19899.69 32598.20 18599.62 24999.39 231
canonicalmvs99.02 19499.00 18499.09 26299.10 32898.70 25199.61 6899.66 13799.63 9498.64 32597.65 38299.04 8999.54 36398.79 14698.92 33399.04 310
PVSNet_BlendedMVS99.03 19299.01 18199.09 26299.54 20597.99 30098.58 26899.82 5797.62 30699.34 23899.71 13098.52 16099.77 30097.98 20399.97 4699.52 188
MDA-MVSNet-bldmvs99.06 18599.05 16999.07 26699.80 7697.83 31098.89 23599.72 11199.29 14499.63 14999.70 13796.47 27999.89 16498.17 19199.82 16999.50 195
TinyColmap98.97 20498.93 19799.07 26699.46 24498.19 28697.75 33999.75 9398.79 21699.54 18999.70 13798.97 9799.62 35496.63 30299.83 16099.41 228
USDC98.96 20798.93 19799.05 26899.54 20597.99 30097.07 36899.80 6898.21 27599.75 10599.77 10098.43 17099.64 35297.90 21099.88 12499.51 190
PAPR97.56 30797.07 31599.04 26998.80 35798.11 29397.63 34499.25 29794.56 36898.02 35498.25 37597.43 24799.68 33590.90 37298.74 34499.33 245
PVSNet_Blended98.70 23798.59 23199.02 27099.54 20597.99 30097.58 34799.82 5795.70 35499.34 23898.98 34198.52 16099.77 30097.98 20399.83 16099.30 254
MVS95.72 34594.63 34998.99 27198.56 36897.98 30699.30 13398.86 32572.71 38297.30 36899.08 32698.34 18499.74 30889.21 37398.33 35699.26 259
HY-MVS98.23 998.21 28397.95 28698.99 27199.03 33698.24 28199.61 6898.72 33296.81 33998.73 31899.51 23894.06 30899.86 21096.91 28498.20 35998.86 328
test_fmvs199.48 7899.65 4198.97 27399.54 20597.16 33099.11 19799.98 999.78 5899.96 1799.81 7298.72 12899.97 2799.95 1099.97 4699.79 42
baseline197.73 29997.33 30998.96 27499.30 29197.73 31499.40 10798.42 34799.33 14199.46 21199.21 31191.18 33999.82 26598.35 17391.26 38299.32 248
DSMNet-mixed99.48 7899.65 4198.95 27599.71 13397.27 32799.50 9099.82 5799.59 10699.41 22599.85 5299.62 24100.00 199.53 5199.89 11599.59 148
thisisatest053097.45 30996.95 31998.94 27699.68 15397.73 31499.09 20394.19 38198.61 23499.56 18299.30 29184.30 37999.93 8798.27 17999.54 27599.16 282
mvs_anonymous99.28 12999.39 9298.94 27699.19 31297.81 31199.02 21699.55 20599.78 5899.85 6499.80 7698.24 19399.86 21099.57 4499.50 28399.15 284
MG-MVS98.52 25498.39 25298.94 27699.15 31797.39 32598.18 30199.21 30798.89 20599.23 26099.63 17997.37 25199.74 30894.22 35999.61 25699.69 72
GA-MVS97.99 29297.68 30298.93 27999.52 21698.04 29997.19 36499.05 31998.32 26998.81 31098.97 34389.89 35899.41 37398.33 17599.05 32599.34 244
cl____98.54 25298.41 25098.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.85 31199.78 29297.97 20599.89 11599.17 280
DIV-MVS_self_test98.54 25298.42 24998.92 28099.03 33697.80 31297.46 35499.59 18298.90 20299.60 16799.46 25593.87 31099.78 29297.97 20599.89 11599.18 278
ET-MVSNet_ETH3D96.78 32496.07 33398.91 28299.26 30097.92 30897.70 34296.05 37397.96 29292.37 38398.43 37187.06 36799.90 14798.27 17997.56 37198.91 324
xiu_mvs_v1_base_debu99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
xiu_mvs_v1_base_debi99.23 14099.34 10298.91 28299.59 17698.23 28298.47 28399.66 13799.61 9899.68 13298.94 34799.39 4199.97 2799.18 10399.55 27098.51 347
MSLP-MVS++99.05 18899.09 15798.91 28299.21 30798.36 27898.82 24799.47 24198.85 20898.90 30099.56 22398.78 11899.09 37798.57 16299.68 23399.26 259
pmmvs398.08 28797.80 29698.91 28299.41 25997.69 31697.87 33599.66 13795.87 35099.50 20399.51 23890.35 35299.97 2798.55 16399.47 28799.08 302
tttt051797.62 30497.20 31398.90 28899.76 10797.40 32499.48 9594.36 37999.06 18599.70 12699.49 24584.55 37899.94 7098.73 15399.65 24499.36 239
OpenMVS_ROBcopyleft97.31 1797.36 31396.84 32398.89 28999.29 29399.45 14698.87 23799.48 23886.54 37999.44 21399.74 11297.34 25299.86 21091.61 36999.28 31197.37 374
MDA-MVSNet_test_wron98.95 21098.99 18998.85 29099.64 16397.16 33098.23 29999.33 27798.93 19899.56 18299.66 16297.39 25099.83 25698.29 17799.88 12499.55 163
PMVScopyleft92.94 2198.82 22498.81 21598.85 29099.84 5297.99 30099.20 16599.47 24199.71 7099.42 21999.82 6698.09 20699.47 37093.88 36599.85 14799.07 307
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 21098.99 18998.84 29299.64 16397.14 33298.22 30099.32 27998.92 20099.59 17099.66 16297.40 24899.83 25698.27 17999.90 10699.55 163
new_pmnet98.88 21998.89 20598.84 29299.70 14197.62 31798.15 30499.50 23397.98 28899.62 15899.54 23298.15 20399.94 7097.55 24799.84 15298.95 320
CR-MVSNet98.35 27498.20 26998.83 29499.05 33398.12 29199.30 13399.67 13397.39 31999.16 27199.79 8691.87 33399.91 12998.78 14998.77 34098.44 352
PatchT98.45 26498.32 26098.83 29498.94 34498.29 28099.24 15598.82 32899.84 4399.08 28299.76 10491.37 33699.94 7098.82 14299.00 32998.26 358
RPMNet98.60 24498.53 24198.83 29499.05 33398.12 29199.30 13399.62 15799.86 3599.16 27199.74 11292.53 32799.92 10798.75 15198.77 34098.44 352
miper_lstm_enhance98.65 24198.60 22998.82 29799.20 31097.33 32697.78 33899.66 13799.01 18899.59 17099.50 24194.62 30499.85 22798.12 19499.90 10699.26 259
FPMVS96.32 33495.50 34198.79 29899.60 17298.17 28998.46 28798.80 32997.16 33096.28 37499.63 17982.19 38099.09 37788.45 37598.89 33699.10 295
xiu_mvs_v2_base99.02 19499.11 14898.77 29999.37 26698.09 29598.13 30799.51 22999.47 11899.42 21998.54 36899.38 4599.97 2798.83 14099.33 30598.24 359
PS-MVSNAJ99.00 20099.08 15998.76 30099.37 26698.10 29498.00 32299.51 22999.47 11899.41 22598.50 37099.28 5799.97 2798.83 14099.34 30498.20 363
test0.0.03 197.37 31296.91 32298.74 30197.72 38097.57 31897.60 34697.36 36798.00 28599.21 26598.02 37790.04 35699.79 28998.37 17195.89 38098.86 328
c3_l98.72 23598.71 22298.72 30299.12 32297.22 32997.68 34399.56 19998.90 20299.54 18999.48 24896.37 28599.73 31197.88 21299.88 12499.21 269
EU-MVSNet99.39 10599.62 4798.72 30299.88 4096.44 34499.56 8199.85 4499.90 2099.90 4199.85 5298.09 20699.83 25699.58 4299.95 7499.90 13
new-patchmatchnet99.35 11599.57 6398.71 30499.82 6396.62 34298.55 27499.75 9399.50 11299.88 5399.87 4399.31 5399.88 17899.43 61100.00 199.62 127
thisisatest051596.98 32096.42 32798.66 30599.42 25897.47 32197.27 36194.30 38097.24 32599.15 27398.86 35385.01 37699.87 19297.10 27699.39 29798.63 339
eth_miper_zixun_eth98.68 23998.71 22298.60 30699.10 32896.84 33997.52 35299.54 21198.94 19599.58 17299.48 24896.25 28899.76 30298.01 20199.93 9299.21 269
dmvs_testset97.27 31496.83 32498.59 30799.46 24497.55 31999.25 15496.84 36998.78 21897.24 37097.67 38197.11 26398.97 37986.59 38298.54 35299.27 258
miper_ehance_all_eth98.59 24798.59 23198.59 30798.98 34297.07 33397.49 35399.52 22598.50 24499.52 19699.37 27496.41 28399.71 31797.86 21699.62 24999.00 317
BH-untuned98.22 28298.09 27798.58 30999.38 26497.24 32898.55 27498.98 32397.81 30099.20 27098.76 35897.01 26699.65 35094.83 35298.33 35698.86 328
IterMVS-SCA-FT99.00 20099.16 13598.51 31099.75 11895.90 35298.07 31599.84 5099.84 4399.89 4599.73 11696.01 29299.99 799.33 81100.00 199.63 116
JIA-IIPM98.06 28897.92 29298.50 31198.59 36797.02 33498.80 25198.51 34399.88 3197.89 35899.87 4391.89 33299.90 14798.16 19297.68 37098.59 342
Patchmatch-test98.10 28697.98 28498.48 31299.27 29896.48 34399.40 10799.07 31698.81 21399.23 26099.57 21990.11 35599.87 19296.69 29699.64 24699.09 299
baseline296.83 32396.28 32998.46 31399.09 33096.91 33798.83 24393.87 38297.23 32696.23 37798.36 37288.12 36399.90 14796.68 29798.14 36398.57 345
IterMVS98.97 20499.16 13598.42 31499.74 12495.64 35598.06 31799.83 5299.83 4699.85 6499.74 11296.10 29199.99 799.27 93100.00 199.63 116
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 30797.28 31098.40 31598.37 37296.75 34097.24 36399.37 27097.31 32399.41 22599.22 30987.30 36599.37 37497.70 23499.62 24999.08 302
CHOSEN 280x42098.41 26798.41 25098.40 31599.34 27995.89 35396.94 37099.44 24998.80 21599.25 25699.52 23693.51 31799.98 1598.94 13699.98 3399.32 248
API-MVS98.38 27098.39 25298.35 31798.83 35399.26 19099.14 18599.18 30998.59 23598.66 32498.78 35798.61 14299.57 36294.14 36099.56 26696.21 378
PVSNet97.47 1598.42 26698.44 24798.35 31799.46 24496.26 34696.70 37399.34 27697.68 30499.00 28999.13 31797.40 24899.72 31397.59 24699.68 23399.08 302
miper_enhance_ethall98.03 28997.94 29098.32 31998.27 37496.43 34596.95 36999.41 25596.37 34599.43 21798.96 34594.74 30299.69 32597.71 23199.62 24998.83 331
TR-MVS97.44 31097.15 31498.32 31998.53 36997.46 32298.47 28397.91 35996.85 33798.21 34598.51 36996.42 28199.51 36892.16 36897.29 37297.98 367
PAPM95.61 34694.71 34898.31 32199.12 32296.63 34196.66 37498.46 34690.77 37596.25 37598.68 36293.01 32299.69 32581.60 38397.86 36998.62 340
MVEpermissive92.54 2296.66 32896.11 33298.31 32199.68 15397.55 31997.94 32995.60 37599.37 13690.68 38498.70 36196.56 27598.61 38286.94 38199.55 27098.77 336
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 29197.90 29498.27 32398.90 34697.45 32399.30 13399.06 31894.98 36297.21 37199.12 32198.43 17099.67 34095.58 34298.56 35197.71 370
ppachtmachnet_test98.89 21899.12 14598.20 32499.66 15995.24 35997.63 34499.68 12999.08 18199.78 9199.62 18698.65 13899.88 17898.02 19899.96 6199.48 204
SD-MVS99.01 19899.30 11398.15 32599.50 22499.40 16198.94 23399.61 16499.22 16099.75 10599.82 6699.54 3295.51 38597.48 25299.87 13599.54 171
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 22299.09 15798.13 32699.66 15994.90 36297.72 34099.58 19299.07 18399.64 14599.62 18698.19 20099.93 8798.41 16999.95 7499.55 163
ADS-MVSNet297.78 29797.66 30498.12 32799.14 31895.36 35799.22 16298.75 33196.97 33498.25 34299.64 16990.90 34499.94 7096.51 30799.56 26699.08 302
DeepMVS_CXcopyleft97.98 32899.69 14596.95 33599.26 29475.51 38195.74 37998.28 37496.47 27999.62 35491.23 37197.89 36797.38 373
gg-mvs-nofinetune95.87 34295.17 34697.97 32998.19 37696.95 33599.69 4289.23 38899.89 2696.24 37699.94 1681.19 38199.51 36893.99 36498.20 35997.44 372
thres600view796.60 32996.16 33197.93 33099.63 16596.09 35099.18 17097.57 36298.77 22098.72 31997.32 38587.04 36899.72 31388.57 37498.62 34997.98 367
thres40096.40 33195.89 33597.92 33199.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35397.98 367
ADS-MVSNet97.72 30297.67 30397.86 33299.14 31894.65 36399.22 16298.86 32596.97 33498.25 34299.64 16990.90 34499.84 24196.51 30799.56 26699.08 302
IB-MVS95.41 2095.30 34794.46 35197.84 33398.76 36295.33 35897.33 35996.07 37296.02 34995.37 38197.41 38476.17 38999.96 4897.54 24895.44 38198.22 360
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 24298.88 20697.80 33499.58 18193.60 36999.26 14799.64 15299.66 8899.72 11899.67 15893.26 31899.93 8799.30 8799.81 17899.87 20
BH-w/o97.20 31597.01 31797.76 33599.08 33195.69 35498.03 31998.52 34295.76 35397.96 35598.02 37795.62 29699.47 37092.82 36797.25 37398.12 365
tpm97.15 31696.95 31997.75 33698.91 34594.24 36599.32 12597.96 35797.71 30398.29 34099.32 28786.72 37399.92 10798.10 19696.24 37999.09 299
test-LLR97.15 31696.95 31997.74 33798.18 37795.02 36097.38 35696.10 37098.00 28597.81 36298.58 36390.04 35699.91 12997.69 24098.78 33898.31 355
test-mter96.23 33795.73 33997.74 33798.18 37795.02 36097.38 35696.10 37097.90 29497.81 36298.58 36379.12 38799.91 12997.69 24098.78 33898.31 355
tfpn200view996.30 33595.89 33597.53 33999.58 18196.11 34899.00 22097.54 36598.43 24998.52 33396.98 38886.85 37099.67 34087.62 37798.51 35396.81 376
cascas96.99 31996.82 32597.48 34097.57 38395.64 35596.43 37599.56 19991.75 37297.13 37397.61 38395.58 29798.63 38196.68 29799.11 32298.18 364
thres100view90096.39 33296.03 33497.47 34199.63 16595.93 35199.18 17097.57 36298.75 22498.70 32297.31 38687.04 36899.67 34087.62 37798.51 35396.81 376
PVSNet_095.53 1995.85 34395.31 34597.47 34198.78 36093.48 37095.72 37699.40 26296.18 34897.37 36797.73 38095.73 29499.58 36195.49 34381.40 38399.36 239
TESTMET0.1,196.24 33695.84 33897.41 34398.24 37593.84 36897.38 35695.84 37498.43 24997.81 36298.56 36679.77 38499.89 16497.77 22398.77 34098.52 346
GG-mvs-BLEND97.36 34497.59 38196.87 33899.70 3588.49 38994.64 38297.26 38780.66 38299.12 37691.50 37096.50 37896.08 380
SCA98.11 28598.36 25597.36 34499.20 31092.99 37198.17 30398.49 34598.24 27399.10 28199.57 21996.01 29299.94 7096.86 28799.62 24999.14 289
thres20096.09 33895.68 34097.33 34699.48 23496.22 34798.53 27897.57 36298.06 28498.37 33996.73 39086.84 37299.61 35886.99 38098.57 35096.16 379
KD-MVS_2432*160095.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
miper_refine_blended95.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30497.23 32698.88 30199.04 33179.23 38599.54 36396.24 32096.81 37498.50 350
PatchmatchNetpermissive97.65 30397.80 29697.18 34998.82 35692.49 37399.17 17598.39 34998.12 27998.79 31399.58 21090.71 34899.89 16497.23 27199.41 29599.16 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 33096.32 32897.17 35098.18 37792.97 37299.39 10989.95 38798.21 27598.61 32799.59 20886.69 37499.72 31396.99 28099.23 31998.81 332
EPNet_dtu97.62 30497.79 29897.11 35196.67 38492.31 37498.51 28098.04 35599.24 15495.77 37899.47 25293.78 31399.66 34498.98 12799.62 24999.37 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 29998.04 27996.78 35299.59 17690.81 38399.72 3090.43 38699.89 2699.86 6299.86 5093.60 31699.89 16499.46 5899.99 1499.65 101
tmp_tt95.75 34495.42 34296.76 35389.90 38994.42 36498.86 23897.87 36078.01 38099.30 25299.69 14397.70 23295.89 38499.29 9098.14 36399.95 7
MVS-HIRNet97.86 29398.22 26796.76 35399.28 29691.53 37998.38 29092.60 38399.13 17699.31 24799.96 1297.18 26199.68 33598.34 17499.83 16099.07 307
tpm296.35 33396.22 33096.73 35598.88 35191.75 37799.21 16498.51 34393.27 37097.89 35899.21 31184.83 37799.70 31996.04 32698.18 36298.75 337
tpmrst97.73 29998.07 27896.73 35598.71 36492.00 37599.10 19998.86 32598.52 24298.92 29799.54 23291.90 33199.82 26598.02 19899.03 32798.37 354
tpmvs97.39 31197.69 30196.52 35798.41 37091.76 37699.30 13398.94 32497.74 30197.85 36199.55 23092.40 33099.73 31196.25 31998.73 34698.06 366
test111197.74 29898.16 27496.49 35899.60 17289.86 38799.71 3491.21 38499.89 2699.88 5399.87 4393.73 31499.90 14799.56 4599.99 1499.70 68
CostFormer96.71 32796.79 32696.46 35998.90 34690.71 38499.41 10698.68 33494.69 36798.14 35099.34 28686.32 37599.80 28697.60 24598.07 36598.88 326
E-PMN97.14 31897.43 30696.27 36098.79 35891.62 37895.54 37799.01 32299.44 12498.88 30199.12 32192.78 32499.68 33594.30 35899.03 32797.50 371
dp96.86 32297.07 31596.24 36198.68 36690.30 38699.19 16998.38 35097.35 32198.23 34499.59 20887.23 36699.82 26596.27 31898.73 34698.59 342
tpm cat196.78 32496.98 31896.16 36298.85 35290.59 38599.08 20699.32 27992.37 37197.73 36699.46 25591.15 34099.69 32596.07 32598.80 33798.21 361
EMVS96.96 32197.28 31095.99 36398.76 36291.03 38195.26 37898.61 33899.34 13998.92 29798.88 35293.79 31299.66 34492.87 36699.05 32597.30 375
test250694.73 34894.59 35095.15 36499.59 17685.90 38999.75 2274.01 39099.89 2699.71 12399.86 5079.00 38899.90 14799.52 5299.99 1499.65 101
wuyk23d97.58 30699.13 14192.93 36599.69 14599.49 13599.52 8699.77 8397.97 28999.96 1799.79 8699.84 899.94 7095.85 33599.82 16979.36 381
test_method91.72 34992.32 35289.91 36693.49 38870.18 39090.28 37999.56 19961.71 38395.39 38099.52 23693.90 30999.94 7098.76 15098.27 35899.62 127
test12329.31 35133.05 35618.08 36725.93 39112.24 39197.53 35010.93 39211.78 38524.21 38650.08 39521.04 3908.60 38623.51 38432.43 38533.39 382
testmvs28.94 35233.33 35415.79 36826.03 3909.81 39296.77 37215.67 39111.55 38623.87 38750.74 39419.03 3918.53 38723.21 38533.07 38429.03 383
test_blank8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.88 35333.17 3550.00 3690.00 3920.00 3930.00 38099.62 1570.00 3870.00 38899.13 31799.82 90.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas16.61 35422.14 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 199.28 570.00 3880.00 3860.00 3860.00 384
sosnet-low-res8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
Regformer8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.26 36311.02 3660.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.16 3150.00 3920.00 3880.00 3860.00 3860.00 384
uanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.83 5699.89 1099.74 2499.71 11499.69 7899.63 149
PC_three_145297.56 30799.68 13299.41 26299.09 8097.09 38396.66 29999.60 25999.62 127
test_one_060199.63 16599.76 5899.55 20599.23 15699.31 24799.61 19598.59 145
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.43 25399.61 11499.43 25296.38 34499.11 27999.07 32797.86 22399.92 10794.04 36299.49 285
RE-MVS-def99.13 14199.54 20599.74 6999.26 14799.62 15799.16 17099.52 19699.64 16998.57 14897.27 26599.61 25699.54 171
IU-MVS99.69 14599.77 5099.22 30497.50 31399.69 12997.75 22799.70 22499.77 49
test_241102_TWO99.54 21199.13 17699.76 9899.63 17998.32 18799.92 10797.85 21899.69 22899.75 58
test_241102_ONE99.69 14599.82 3599.54 21199.12 17999.82 7299.49 24598.91 10399.52 367
9.1498.64 22699.45 24898.81 24899.60 17697.52 31299.28 25399.56 22398.53 15799.83 25695.36 34799.64 246
save fliter99.53 21199.25 19398.29 29599.38 26999.07 183
test_0728_THIRD99.18 16399.62 15899.61 19598.58 14799.91 12997.72 22999.80 18399.77 49
test072699.69 14599.80 4299.24 15599.57 19499.16 17099.73 11799.65 16798.35 181
GSMVS99.14 289
test_part299.62 16999.67 9399.55 187
sam_mvs190.81 34799.14 289
sam_mvs90.52 351
MTGPAbinary99.53 220
test_post199.14 18551.63 39389.54 35999.82 26596.86 287
test_post52.41 39290.25 35399.86 210
patchmatchnet-post99.62 18690.58 34999.94 70
MTMP99.09 20398.59 341
gm-plane-assit97.59 38189.02 38893.47 36998.30 37399.84 24196.38 314
test9_res95.10 35099.44 29099.50 195
TEST999.35 27199.35 17598.11 31099.41 25594.83 36697.92 35698.99 33898.02 21299.85 227
test_899.34 27999.31 18198.08 31499.40 26294.90 36397.87 36098.97 34398.02 21299.84 241
agg_prior294.58 35699.46 28999.50 195
agg_prior99.35 27199.36 17299.39 26597.76 36599.85 227
test_prior499.19 20698.00 322
test_prior297.95 32897.87 29698.05 35299.05 32997.90 22095.99 33099.49 285
旧先验297.94 32995.33 35898.94 29399.88 17896.75 293
新几何298.04 318
旧先验199.49 22999.29 18499.26 29499.39 27097.67 23699.36 30199.46 212
无先验98.01 32099.23 30195.83 35299.85 22795.79 33899.44 218
原ACMM297.92 331
test22299.51 21899.08 22097.83 33799.29 28795.21 36098.68 32399.31 28997.28 25499.38 29899.43 224
testdata299.89 16495.99 330
segment_acmp98.37 179
testdata197.72 34097.86 298
plane_prior799.58 18199.38 165
plane_prior699.47 24099.26 19097.24 255
plane_prior599.54 21199.82 26595.84 33699.78 19399.60 141
plane_prior499.25 302
plane_prior399.31 18198.36 25899.14 275
plane_prior298.80 25198.94 195
plane_prior199.51 218
plane_prior99.24 19798.42 28897.87 29699.71 222
n20.00 393
nn0.00 393
door-mid99.83 52
test1199.29 287
door99.77 83
HQP5-MVS98.94 231
HQP-NCC99.31 28797.98 32497.45 31598.15 346
ACMP_Plane99.31 28797.98 32497.45 31598.15 346
BP-MVS94.73 353
HQP4-MVS98.15 34699.70 31999.53 177
HQP3-MVS99.37 27099.67 239
HQP2-MVS96.67 273
NP-MVS99.40 26099.13 21198.83 354
MDTV_nov1_ep13_2view91.44 38099.14 18597.37 32099.21 26591.78 33596.75 29399.03 311
MDTV_nov1_ep1397.73 30098.70 36590.83 38299.15 18398.02 35698.51 24398.82 30999.61 19590.98 34299.66 34496.89 28698.92 333
ACMMP++_ref99.94 85
ACMMP++99.79 188
Test By Simon98.41 173