This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 599.99 1100.00 199.98 1099.78 8100.00 199.92 4100.00 199.87 12
RRT_MVS99.67 3299.59 4499.91 299.94 1499.88 1199.78 1199.27 29499.87 2499.91 2499.87 3698.04 20299.96 3899.68 2099.99 1299.90 7
test_djsdf99.84 999.81 1299.91 299.94 1499.84 2299.77 1499.80 5699.73 5499.97 999.92 2199.77 999.98 1099.43 48100.00 199.90 7
ANet_high99.88 499.87 799.91 299.99 199.91 499.65 58100.00 199.90 13100.00 199.97 1199.61 1999.97 2099.75 16100.00 199.84 17
UniMVSNet_ETH3D99.85 799.83 1099.90 599.89 2999.91 499.89 499.71 10299.93 999.95 1499.89 3099.71 1199.96 3899.51 4099.97 3999.84 17
anonymousdsp99.80 1399.77 1599.90 599.96 499.88 1199.73 2699.85 3299.70 6299.92 2299.93 1799.45 2899.97 2099.36 60100.00 199.85 16
mvs_tets99.90 299.90 399.90 599.96 499.79 4399.72 2999.88 2399.92 1199.98 699.93 1799.94 199.98 1099.77 15100.00 199.92 6
PS-MVSNAJss99.84 999.82 1199.89 899.96 499.77 4999.68 4399.85 3299.95 499.98 699.92 2199.28 4699.98 1099.75 16100.00 199.94 4
jajsoiax99.89 399.89 499.89 899.96 499.78 4699.70 3499.86 2899.89 1899.98 699.90 2699.94 199.98 1099.75 16100.00 199.90 7
PS-CasMVS99.66 3499.58 4899.89 899.80 6699.85 1799.66 5299.73 9099.62 8399.84 5499.71 11798.62 13299.96 3899.30 7299.96 5399.86 14
PEN-MVS99.66 3499.59 4499.89 899.83 4799.87 1399.66 5299.73 9099.70 6299.84 5499.73 10498.56 14299.96 3899.29 7599.94 7399.83 21
v7n99.82 1299.80 1399.88 1299.96 499.84 2299.82 899.82 4599.84 3599.94 1599.91 2499.13 6599.96 3899.83 1299.99 1299.83 21
DTE-MVSNet99.68 2999.61 3999.88 1299.80 6699.87 1399.67 4799.71 10299.72 5799.84 5499.78 8298.67 12699.97 2099.30 7299.95 6299.80 28
LTVRE_ROB99.19 199.88 499.87 799.88 1299.91 2399.90 799.96 199.92 1299.90 1399.97 999.87 3699.81 799.95 4899.54 3599.99 1299.80 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CP-MVSNet99.54 5899.43 7499.87 1599.76 9599.82 3399.57 7699.61 15499.54 9799.80 6999.64 15797.79 22499.95 4899.21 8299.94 7399.84 17
WR-MVS_H99.61 4799.53 6099.87 1599.80 6699.83 2799.67 4799.75 8299.58 9699.85 5199.69 13098.18 19499.94 6299.28 7799.95 6299.83 21
UA-Net99.78 1599.76 1799.86 1799.72 11999.71 7699.91 399.95 1199.96 299.71 11199.91 2499.15 6099.97 2099.50 42100.00 199.90 7
FC-MVSNet-test99.70 2399.65 3099.86 1799.88 3399.86 1699.72 2999.78 6799.90 1399.82 5999.83 5298.45 16099.87 18999.51 4099.97 3999.86 14
bld_raw_dy_0_6499.70 2399.65 3099.85 1999.95 1299.77 4999.66 5299.71 10299.95 499.91 2499.77 8998.35 173100.00 199.54 3599.99 1299.79 34
APDe-MVS99.48 6699.36 8799.85 1999.55 19299.81 3699.50 8599.69 11498.99 18099.75 9299.71 11798.79 10999.93 7998.46 15599.85 13599.80 28
mvsmamba99.74 2099.70 2099.85 1999.93 2099.83 2799.76 1899.81 5499.96 299.91 2499.81 6298.60 13699.94 6299.58 3099.98 2899.77 40
FIs99.65 3999.58 4899.84 2299.84 4399.85 1799.66 5299.75 8299.86 2799.74 10199.79 7598.27 18299.85 22799.37 5899.93 8199.83 21
OurMVSNet-221017-099.75 1799.71 1999.84 2299.96 499.83 2799.83 699.85 3299.80 4499.93 1899.93 1798.54 14599.93 7999.59 2799.98 2899.76 45
test_0728_SECOND99.83 2499.70 13099.79 4399.14 17799.61 15499.92 9997.88 20399.72 21399.77 40
pmmvs699.86 699.86 999.83 2499.94 1499.90 799.83 699.91 1599.85 3299.94 1599.95 1399.73 1099.90 14399.65 2299.97 3999.69 61
DPE-MVScopyleft99.14 16298.92 19299.82 2699.57 18099.77 4998.74 25399.60 16798.55 23099.76 8499.69 13098.23 18899.92 9996.39 30899.75 19299.76 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 2399.66 2899.82 2699.76 9599.84 2299.61 6699.70 10899.93 999.78 7799.68 14199.10 6699.78 29399.45 4699.96 5399.83 21
Baseline_NR-MVSNet99.49 6499.37 8499.82 2699.91 2399.84 2298.83 23799.86 2899.68 6799.65 13299.88 3397.67 23299.87 18999.03 10899.86 13199.76 45
MSP-MVS99.04 18398.79 21099.81 2999.78 8399.73 7099.35 11399.57 18698.54 23399.54 17898.99 33896.81 26999.93 7996.97 27499.53 27499.77 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 1599.77 1599.81 2999.91 2399.85 1799.75 2199.86 2899.70 6299.91 2499.89 3099.60 2199.87 18999.59 2799.74 20099.71 54
XXY-MVS99.71 2299.67 2799.81 2999.89 2999.72 7499.59 7299.82 4599.39 12599.82 5999.84 5199.38 3499.91 12399.38 5599.93 8199.80 28
MP-MVS-pluss99.14 16298.92 19299.80 3299.83 4799.83 2798.61 26099.63 14496.84 33499.44 20399.58 20298.81 10299.91 12397.70 22599.82 15999.67 74
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS99.30 11699.14 12899.80 3299.81 6199.81 3698.73 25599.53 21299.27 13999.42 20999.63 16798.21 18999.95 4897.83 21299.79 17799.65 92
MTAPA99.35 10299.20 12099.80 3299.81 6199.81 3699.33 11699.53 21299.27 13999.42 20999.63 16798.21 18999.95 4897.83 21299.79 17799.65 92
HPM-MVS_fast99.43 7899.30 10099.80 3299.83 4799.81 3699.52 8299.70 10898.35 25599.51 19099.50 23599.31 4299.88 17698.18 17999.84 14099.69 61
MIMVSNet199.66 3499.62 3599.80 3299.94 1499.87 1399.69 4099.77 7099.78 4999.93 1899.89 3097.94 21199.92 9999.65 2299.98 2899.62 117
ACMMP_NAP99.28 11999.11 13899.79 3799.75 10699.81 3698.95 22399.53 21298.27 26499.53 18399.73 10498.75 11799.87 18997.70 22599.83 15099.68 67
VPA-MVSNet99.66 3499.62 3599.79 3799.68 14299.75 6199.62 6199.69 11499.85 3299.80 6999.81 6298.81 10299.91 12399.47 4499.88 11399.70 57
Vis-MVSNetpermissive99.75 1799.74 1899.79 3799.88 3399.66 9499.69 4099.92 1299.67 7199.77 8299.75 9899.61 1999.98 1099.35 6199.98 2899.72 51
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 2699.66 2899.78 4099.76 9599.76 5799.60 7199.82 4599.46 11299.75 9299.56 21599.63 1699.95 4899.43 4899.88 11399.62 117
pm-mvs199.79 1499.79 1499.78 4099.91 2399.83 2799.76 1899.87 2599.73 5499.89 3399.87 3699.63 1699.87 18999.54 3599.92 8599.63 106
HPM-MVScopyleft99.25 12699.07 15399.78 4099.81 6199.75 6199.61 6699.67 12297.72 29599.35 22899.25 30199.23 5399.92 9997.21 26499.82 15999.67 74
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++99.38 9499.25 11499.77 4399.03 33499.77 4999.74 2399.61 15499.18 15499.76 8499.61 18599.00 8099.92 9997.72 22099.60 25599.62 117
SED-MVS99.40 8899.28 10799.77 4399.69 13499.82 3399.20 15699.54 20399.13 16699.82 5999.63 16798.91 9299.92 9997.85 20999.70 21899.58 145
ZNCC-MVS99.22 13999.04 16599.77 4399.76 9599.73 7099.28 13499.56 19198.19 26999.14 27099.29 29298.84 10199.92 9997.53 24199.80 17299.64 101
DVP-MVScopyleft99.32 11399.17 12399.77 4399.69 13499.80 4199.14 17799.31 28599.16 16099.62 14799.61 18598.35 17399.91 12397.88 20399.72 21399.61 127
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 13099.05 15999.77 4399.76 9599.70 8399.31 12399.59 17498.41 24499.32 23699.36 27598.73 12099.93 7997.29 25399.74 20099.67 74
PGM-MVS99.20 14699.01 17199.77 4399.75 10699.71 7699.16 17399.72 9997.99 27999.42 20999.60 19498.81 10299.93 7996.91 27799.74 20099.66 84
TDRefinement99.72 2199.70 2099.77 4399.90 2799.85 1799.86 599.92 1299.69 6599.78 7799.92 2199.37 3699.88 17698.93 12399.95 6299.60 131
KD-MVS_self_test99.63 4099.59 4499.76 5099.84 4399.90 799.37 10999.79 6299.83 3899.88 3999.85 4698.42 16499.90 14399.60 2699.73 20799.49 195
Anonymous2023121199.62 4599.57 5199.76 5099.61 15999.60 11599.81 999.73 9099.82 4099.90 2999.90 2697.97 21099.86 20999.42 5399.96 5399.80 28
HFP-MVS99.25 12699.08 14999.76 5099.73 11599.70 8399.31 12399.59 17498.36 25099.36 22699.37 27098.80 10699.91 12397.43 24699.75 19299.68 67
#test#99.12 16698.90 19699.76 5099.73 11599.70 8399.10 19099.59 17497.60 30099.36 22699.37 27098.80 10699.91 12396.84 28399.75 19299.68 67
ACMMPR99.23 13099.06 15599.76 5099.74 11299.69 8799.31 12399.59 17498.36 25099.35 22899.38 26898.61 13499.93 7997.43 24699.75 19299.67 74
MP-MVScopyleft99.06 17798.83 20599.76 5099.76 9599.71 7699.32 11999.50 22898.35 25598.97 28599.48 24398.37 17199.92 9995.95 32899.75 19299.63 106
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 5899.47 6499.76 5099.58 17099.64 10199.30 12699.63 14499.61 8799.71 11199.56 21598.76 11599.96 3899.14 10199.92 8599.68 67
mPP-MVS99.19 14999.00 17499.76 5099.76 9599.68 9099.38 10599.54 20398.34 25999.01 28399.50 23598.53 14999.93 7997.18 26599.78 18399.66 84
SixPastTwentyTwo99.42 8199.30 10099.76 5099.92 2299.67 9299.70 3499.14 31799.65 7799.89 3399.90 2696.20 28699.94 6299.42 5399.92 8599.67 74
SteuartSystems-ACMMP99.30 11699.14 12899.76 5099.87 3799.66 9499.18 16299.60 16798.55 23099.57 16499.67 14699.03 7999.94 6297.01 27299.80 17299.69 61
Skip Steuart: Steuart Systems R&D Blog.
mvsany_test99.85 799.88 599.75 6099.95 1299.37 16899.53 8199.98 499.77 5299.99 599.95 1399.85 399.94 6299.95 399.98 2899.94 4
GST-MVS99.16 15898.96 18599.75 6099.73 11599.73 7099.20 15699.55 19798.22 26699.32 23699.35 28098.65 13099.91 12396.86 28099.74 20099.62 117
test_part198.63 23698.26 26099.75 6099.40 25499.49 13499.67 4799.68 11799.86 2799.88 3999.86 4386.73 37299.93 7999.34 6299.97 3999.81 27
XVS99.27 12399.11 13899.75 6099.71 12299.71 7699.37 10999.61 15499.29 13598.76 31299.47 24898.47 15699.88 17697.62 23399.73 20799.67 74
X-MVStestdata96.09 33894.87 34799.75 6099.71 12299.71 7699.37 10999.61 15499.29 13598.76 31261.30 39198.47 15699.88 17697.62 23399.73 20799.67 74
abl_699.36 10099.23 11899.75 6099.71 12299.74 6799.33 11699.76 7599.07 17399.65 13299.63 16799.09 6899.92 9997.13 26899.76 18999.58 145
CP-MVS99.23 13099.05 15999.75 6099.66 14899.66 9499.38 10599.62 14798.38 24899.06 28199.27 29698.79 10999.94 6297.51 24299.82 15999.66 84
MSC_two_6792asdad99.74 6799.03 33499.53 12999.23 30499.92 9997.77 21499.69 22199.78 36
No_MVS99.74 6799.03 33499.53 12999.23 30499.92 9997.77 21499.69 22199.78 36
test117299.23 13099.05 15999.74 6799.52 20499.75 6199.20 15699.61 15498.97 18299.48 19599.58 20298.41 16599.91 12397.15 26799.55 26699.57 151
SR-MVS99.19 14999.00 17499.74 6799.51 20999.72 7499.18 16299.60 16798.85 20099.47 19799.58 20298.38 17099.92 9996.92 27699.54 27299.57 151
HPM-MVS++copyleft98.96 19998.70 21799.74 6799.52 20499.71 7698.86 23299.19 31298.47 24098.59 32499.06 32798.08 20099.91 12396.94 27599.60 25599.60 131
APD-MVS_3200maxsize99.31 11599.16 12499.74 6799.53 19899.75 6199.27 13799.61 15499.19 15399.57 16499.64 15798.76 11599.90 14397.29 25399.62 24599.56 154
LPG-MVS_test99.22 13999.05 15999.74 6799.82 5499.63 10599.16 17399.73 9097.56 30199.64 13499.69 13099.37 3699.89 16196.66 29399.87 12499.69 61
LGP-MVS_train99.74 6799.82 5499.63 10599.73 9097.56 30199.64 13499.69 13099.37 3699.89 16196.66 29399.87 12499.69 61
DP-MVS99.48 6699.39 7999.74 6799.57 18099.62 10799.29 13399.61 15499.87 2499.74 10199.76 9398.69 12299.87 18998.20 17599.80 17299.75 48
ACMMPcopyleft99.25 12699.08 14999.74 6799.79 7699.68 9099.50 8599.65 13698.07 27599.52 18599.69 13098.57 14099.92 9997.18 26599.79 17799.63 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 12399.11 13899.73 7799.54 19399.74 6799.26 13999.62 14799.16 16099.52 18599.64 15798.41 16599.91 12397.27 25699.61 25299.54 165
SMA-MVScopyleft99.19 14999.00 17499.73 7799.46 23799.73 7099.13 18399.52 22097.40 31299.57 16499.64 15798.93 8999.83 25697.61 23599.79 17799.63 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 8199.31 9599.73 7799.49 22099.77 4999.68 4399.70 10899.44 11599.62 14799.83 5297.21 25599.90 14398.96 11799.90 9599.53 171
test199.42 8199.31 9599.73 7799.49 22099.77 4999.68 4399.70 10899.44 11599.62 14799.83 5297.21 25599.90 14398.96 11799.90 9599.53 171
FMVSNet199.66 3499.63 3499.73 7799.78 8399.77 4999.68 4399.70 10899.67 7199.82 5999.83 5298.98 8399.90 14399.24 7999.97 3999.53 171
HyFIR lowres test98.91 20598.64 22099.73 7799.85 4299.47 13798.07 31499.83 4098.64 22199.89 3399.60 19492.57 324100.00 199.33 6699.97 3999.72 51
FMVS199.63 4099.60 4299.72 8399.94 1499.95 299.47 9199.89 1999.43 12099.88 3999.80 6599.26 5099.90 14398.81 13299.88 11399.32 248
APD_test99.63 4099.60 4299.72 8399.94 1499.95 299.47 9199.89 1999.43 12099.88 3999.80 6599.26 5099.90 14398.81 13299.88 11399.32 248
testtj98.56 24698.17 27199.72 8399.45 24099.60 11598.88 22899.50 22896.88 33199.18 26599.48 24397.08 26299.92 9993.69 36599.38 29699.63 106
UniMVSNet_NR-MVSNet99.37 9799.25 11499.72 8399.47 23299.56 12498.97 22199.61 15499.43 12099.67 12499.28 29497.85 22099.95 4899.17 9199.81 16799.65 92
ACMM98.09 1199.46 7399.38 8199.72 8399.80 6699.69 8799.13 18399.65 13698.99 18099.64 13499.72 11099.39 3099.86 20998.23 17299.81 16799.60 131
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 4999.54 5699.72 8399.86 3999.62 10799.56 7899.79 6298.77 21199.80 6999.85 4699.64 1599.85 22798.70 14399.89 10499.70 57
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 7399.37 8499.71 8999.82 5499.59 11899.48 8999.70 10899.81 4199.69 11799.58 20297.66 23699.86 20999.17 9199.44 28799.67 74
DU-MVS99.33 11199.21 11999.71 8999.43 24599.56 12498.83 23799.53 21299.38 12699.67 12499.36 27597.67 23299.95 4899.17 9199.81 16799.63 106
APD-MVScopyleft98.87 21398.59 22599.71 8999.50 21599.62 10799.01 20999.57 18696.80 33699.54 17899.63 16798.29 18099.91 12395.24 34599.71 21699.61 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 6299.43 7499.71 8999.86 3999.76 5799.32 11999.77 7099.53 9999.77 8299.76 9399.26 5099.78 29397.77 21499.88 11399.60 131
COLMAP_ROBcopyleft98.06 1299.45 7599.37 8499.70 9399.83 4799.70 8399.38 10599.78 6799.53 9999.67 12499.78 8299.19 5699.86 20997.32 25199.87 12499.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 21398.60 22399.69 9499.93 2099.46 14199.74 2394.97 37799.78 4999.88 3999.88 3393.66 31499.97 2099.61 2599.95 6299.64 101
UniMVSNet (Re)99.37 9799.26 11299.68 9599.51 20999.58 12198.98 22099.60 16799.43 12099.70 11499.36 27597.70 22799.88 17699.20 8599.87 12499.59 140
NR-MVSNet99.40 8899.31 9599.68 9599.43 24599.55 12799.73 2699.50 22899.46 11299.88 3999.36 27597.54 24099.87 18998.97 11599.87 12499.63 106
DROMVSNet99.69 2699.69 2499.68 9599.71 12299.91 499.76 1899.96 999.86 2799.51 19099.39 26699.57 2399.93 7999.64 2499.86 13199.20 273
LCM-MVSNet-Re99.28 11999.15 12799.67 9899.33 28199.76 5799.34 11499.97 598.93 19099.91 2499.79 7598.68 12399.93 7996.80 28599.56 26299.30 253
casdiffmvs99.63 4099.61 3999.67 9899.79 7699.59 11899.13 18399.85 3299.79 4799.76 8499.72 11099.33 4199.82 26699.21 8299.94 7399.59 140
1112_ss99.05 18098.84 20399.67 9899.66 14899.29 18598.52 27599.82 4597.65 29899.43 20799.16 31596.42 27899.91 12399.07 10699.84 14099.80 28
DeepPCF-MVS98.42 699.18 15399.02 16899.67 9899.22 30299.75 6197.25 36299.47 23998.72 21699.66 12899.70 12499.29 4499.63 35598.07 18899.81 16799.62 117
DeepC-MVS98.90 499.62 4599.61 3999.67 9899.72 11999.44 14899.24 14699.71 10299.27 13999.93 1899.90 2699.70 1399.93 7998.99 11199.99 1299.64 101
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 18098.84 20399.67 9899.78 8399.55 12798.88 22899.66 12697.11 32899.47 19799.60 19499.07 7499.89 16196.18 31799.85 13599.58 145
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 10299.24 11699.67 9899.35 26699.47 13799.62 6199.50 22899.44 11599.12 27399.78 8298.77 11499.94 6297.87 20699.72 21399.62 117
v1099.69 2699.69 2499.66 10599.81 6199.39 16299.66 5299.75 8299.60 9399.92 2299.87 3698.75 11799.86 20999.90 599.99 1299.73 50
WR-MVS99.11 17098.93 18899.66 10599.30 28899.42 15598.42 28599.37 27299.04 17899.57 16499.20 31296.89 26799.86 20998.66 14799.87 12499.70 57
XVG-OURS-SEG-HR99.16 15898.99 17999.66 10599.84 4399.64 10198.25 29799.73 9098.39 24799.63 13899.43 25699.70 1399.90 14397.34 25098.64 34899.44 216
baseline99.63 4099.62 3599.66 10599.80 6699.62 10799.44 9799.80 5699.71 5899.72 10699.69 13099.15 6099.83 25699.32 6899.94 7399.53 171
EPP-MVSNet99.17 15799.00 17499.66 10599.80 6699.43 15299.70 3499.24 30399.48 10399.56 17199.77 8994.89 29999.93 7998.72 14299.89 10499.63 106
Anonymous2024052999.42 8199.34 8999.65 11099.53 19899.60 11599.63 6099.39 26599.47 10899.76 8499.78 8298.13 19699.86 20998.70 14399.68 22699.49 195
v899.68 2999.69 2499.65 11099.80 6699.40 16099.66 5299.76 7599.64 7999.93 1899.85 4698.66 12899.84 24499.88 999.99 1299.71 54
MCST-MVS99.02 18698.81 20799.65 11099.58 17099.49 13498.58 26499.07 32098.40 24699.04 28299.25 30198.51 15499.80 28797.31 25299.51 27799.65 92
XVG-OURS99.21 14499.06 15599.65 11099.82 5499.62 10797.87 33599.74 8798.36 25099.66 12899.68 14199.71 1199.90 14396.84 28399.88 11399.43 222
CHOSEN 1792x268899.39 9299.30 10099.65 11099.88 3399.25 19598.78 24999.88 2398.66 21999.96 1199.79 7597.45 24399.93 7999.34 6299.99 1299.78 36
QAPM98.40 26897.99 28199.65 11099.39 25699.47 13799.67 4799.52 22091.70 37398.78 31099.80 6598.55 14399.95 4894.71 35399.75 19299.53 171
3Dnovator99.15 299.43 7899.36 8799.65 11099.39 25699.42 15599.70 3499.56 19199.23 14799.35 22899.80 6599.17 5899.95 4898.21 17499.84 14099.59 140
patch_mono-299.51 6199.46 6899.64 11799.70 13099.11 21899.04 20399.87 2599.71 5899.47 19799.79 7598.24 18499.98 1099.38 5599.96 5399.83 21
EGC-MVSNET89.05 35085.52 35399.64 11799.89 2999.78 4699.56 7899.52 22024.19 38449.96 38599.83 5299.15 6099.92 9997.71 22299.85 13599.21 269
CS-MVS-test99.68 2999.70 2099.64 11799.57 18099.83 2799.78 1199.97 599.92 1199.50 19299.38 26899.57 2399.95 4899.69 1999.90 9599.15 284
lessismore_v099.64 11799.86 3999.38 16590.66 38599.89 3399.83 5294.56 30499.97 2099.56 3399.92 8599.57 151
114514_t98.49 25898.11 27599.64 11799.73 11599.58 12199.24 14699.76 7589.94 37699.42 20999.56 21597.76 22699.86 20997.74 21999.82 15999.47 205
CPTT-MVS98.74 22798.44 24199.64 11799.61 15999.38 16599.18 16299.55 19796.49 33999.27 24799.37 27097.11 26199.92 9995.74 33599.67 23399.62 117
RPSCF99.18 15399.02 16899.64 11799.83 4799.85 1799.44 9799.82 4598.33 26099.50 19299.78 8297.90 21499.65 35296.78 28699.83 15099.44 216
Anonymous20240521198.75 22598.46 23999.63 12499.34 27699.66 9499.47 9197.65 36399.28 13899.56 17199.50 23593.15 31899.84 24498.62 14899.58 26099.40 228
TSAR-MVS + MP.99.34 10799.24 11699.63 12499.82 5499.37 16899.26 13999.35 27698.77 21199.57 16499.70 12499.27 4999.88 17697.71 22299.75 19299.65 92
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 12599.13 13199.63 12499.70 13099.61 11398.58 26499.48 23598.50 23699.52 18599.63 16799.14 6399.76 30397.89 20299.77 18799.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 14499.07 15399.63 12499.78 8399.64 10199.12 18799.83 4098.63 22299.63 13899.72 11098.68 12399.75 30796.38 30999.83 15099.51 184
TestCases99.63 12499.78 8399.64 10199.83 4098.63 22299.63 13899.72 11098.68 12399.75 30796.38 30999.83 15099.51 184
V4299.56 5399.54 5699.63 12499.79 7699.46 14199.39 10399.59 17499.24 14599.86 4999.70 12498.55 14399.82 26699.79 1499.95 6299.60 131
XVG-ACMP-BASELINE99.23 13099.10 14699.63 12499.82 5499.58 12198.83 23799.72 9998.36 25099.60 15699.71 11798.92 9099.91 12397.08 27099.84 14099.40 228
Test_1112_low_res98.95 20298.73 21299.63 12499.68 14299.15 21598.09 31199.80 5697.14 32699.46 20199.40 26296.11 28899.89 16199.01 11099.84 14099.84 17
TAMVS99.49 6499.45 6999.63 12499.48 22699.42 15599.45 9499.57 18699.66 7599.78 7799.83 5297.85 22099.86 20999.44 4799.96 5399.61 127
SF-MVS99.10 17498.93 18899.62 13399.58 17099.51 13299.13 18399.65 13697.97 28199.42 20999.61 18598.86 9899.87 18996.45 30599.68 22699.49 195
EG-PatchMatch MVS99.57 5099.56 5599.62 13399.77 9199.33 17999.26 13999.76 7599.32 13499.80 6999.78 8299.29 4499.87 18999.15 9599.91 9499.66 84
F-COLMAP98.74 22798.45 24099.62 13399.57 18099.47 13798.84 23599.65 13696.31 34398.93 28999.19 31497.68 23199.87 18996.52 30099.37 30099.53 171
CDPH-MVS98.56 24698.20 26699.61 13699.50 21599.46 14198.32 29199.41 25595.22 35799.21 25999.10 32498.34 17699.82 26695.09 34899.66 23799.56 154
LS3D99.24 12999.11 13899.61 13698.38 37199.79 4399.57 7699.68 11799.61 8799.15 26899.71 11798.70 12199.91 12397.54 23999.68 22699.13 292
tfpnnormal99.43 7899.38 8199.60 13899.87 3799.75 6199.59 7299.78 6799.71 5899.90 2999.69 13098.85 10099.90 14397.25 26199.78 18399.15 284
CSCG99.37 9799.29 10599.60 13899.71 12299.46 14199.43 9999.85 3298.79 20899.41 21799.60 19498.92 9099.92 9998.02 18999.92 8599.43 222
ETH3D-3000-0.198.77 22298.50 23799.59 14099.47 23299.53 12998.77 25099.60 16797.33 31799.23 25399.50 23597.91 21399.83 25695.02 34999.67 23399.41 226
v114499.54 5899.53 6099.59 14099.79 7699.28 18799.10 19099.61 15499.20 15299.84 5499.73 10498.67 12699.84 24499.86 1199.98 2899.64 101
UnsupCasMVSNet_eth98.83 21698.57 22999.59 14099.68 14299.45 14698.99 21699.67 12299.48 10399.55 17699.36 27594.92 29899.86 20998.95 12196.57 37699.45 211
PHI-MVS99.11 17098.95 18799.59 14099.13 31799.59 11899.17 16799.65 13697.88 28799.25 24999.46 25198.97 8599.80 28797.26 25899.82 15999.37 236
CS-MVS99.67 3299.70 2099.58 14499.53 19899.84 2299.79 1099.96 999.90 1399.61 15399.41 25899.51 2799.95 4899.66 2199.89 10498.96 317
v14419299.55 5699.54 5699.58 14499.78 8399.20 21099.11 18999.62 14799.18 15499.89 3399.72 11098.66 12899.87 18999.88 999.97 3999.66 84
v2v48299.50 6299.47 6499.58 14499.78 8399.25 19599.14 17799.58 18499.25 14399.81 6699.62 17698.24 18499.84 24499.83 1299.97 3999.64 101
test20.0399.55 5699.54 5699.58 14499.79 7699.37 16899.02 20799.89 1999.60 9399.82 5999.62 17698.81 10299.89 16199.43 4899.86 13199.47 205
PM-MVS99.36 10099.29 10599.58 14499.83 4799.66 9498.95 22399.86 2898.85 20099.81 6699.73 10498.40 16999.92 9998.36 16099.83 15099.17 280
NCCC98.82 21898.57 22999.58 14499.21 30499.31 18298.61 26099.25 30098.65 22098.43 33499.26 29997.86 21899.81 28296.55 29899.27 31499.61 127
train_agg98.35 27397.95 28599.57 15099.35 26699.35 17698.11 30999.41 25594.90 36197.92 35598.99 33898.02 20599.85 22795.38 34399.44 28799.50 190
agg_prior198.33 27597.92 29199.57 15099.35 26699.36 17297.99 32399.39 26594.85 36497.76 36498.98 34198.03 20399.85 22795.49 33999.44 28799.51 184
v119299.57 5099.57 5199.57 15099.77 9199.22 20499.04 20399.60 16799.18 15499.87 4899.72 11099.08 7299.85 22799.89 899.98 2899.66 84
PMMVS299.48 6699.45 6999.57 15099.76 9598.99 23198.09 31199.90 1898.95 18699.78 7799.58 20299.57 2399.93 7999.48 4399.95 6299.79 34
VNet99.18 15399.06 15599.56 15499.24 30099.36 17299.33 11699.31 28599.67 7199.47 19799.57 21296.48 27599.84 24499.15 9599.30 30899.47 205
CNVR-MVS98.99 19598.80 20999.56 15499.25 29899.43 15298.54 27399.27 29498.58 22798.80 30799.43 25698.53 14999.70 32097.22 26399.59 25999.54 165
DeepC-MVS_fast98.47 599.23 13099.12 13599.56 15499.28 29399.22 20498.99 21699.40 26299.08 17199.58 16199.64 15798.90 9599.83 25697.44 24599.75 19299.63 106
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v192192099.56 5399.57 5199.55 15799.75 10699.11 21899.05 20199.61 15499.15 16499.88 3999.71 11799.08 7299.87 18999.90 599.97 3999.66 84
HQP_MVS98.90 20798.68 21999.55 15799.58 17099.24 20098.80 24599.54 20398.94 18799.14 27099.25 30197.24 25399.82 26695.84 33199.78 18399.60 131
FMVSNet299.35 10299.28 10799.55 15799.49 22099.35 17699.45 9499.57 18699.44 11599.70 11499.74 10097.21 25599.87 18999.03 10899.94 7399.44 216
IS-MVSNet99.03 18498.85 20199.55 15799.80 6699.25 19599.73 2699.15 31699.37 12799.61 15399.71 11794.73 30299.81 28297.70 22599.88 11399.58 145
xxxxxxxxxxxxxcwj99.11 17098.96 18599.54 16199.53 19899.25 19598.29 29399.76 7599.07 17399.42 20999.61 18598.86 9899.87 18996.45 30599.68 22699.49 195
test1299.54 16199.29 29099.33 17999.16 31598.43 33497.54 24099.82 26699.47 28499.48 200
FMVS299.83 1199.93 299.53 16399.96 498.62 26899.67 47100.00 199.95 4100.00 199.95 1399.85 399.99 699.98 199.99 1299.98 1
dcpmvs_299.61 4799.64 3399.53 16399.79 7698.82 25099.58 7499.97 599.95 499.96 1199.76 9398.44 16199.99 699.34 6299.96 5399.78 36
Regformer-299.34 10799.27 11099.53 16399.41 25199.10 22398.99 21699.53 21299.47 10899.66 12899.52 22898.80 10699.89 16198.31 16699.74 20099.60 131
Effi-MVS+-dtu99.07 17698.92 19299.52 16698.89 34799.78 4699.15 17599.66 12699.34 13098.92 29299.24 30697.69 22999.98 1098.11 18599.28 31198.81 331
新几何199.52 16699.50 21599.22 20499.26 29795.66 35398.60 32399.28 29497.67 23299.89 16195.95 32899.32 30699.45 211
112198.56 24698.24 26199.52 16699.49 22099.24 20099.30 12699.22 30795.77 35098.52 32999.29 29297.39 24799.85 22795.79 33399.34 30399.46 209
ETH3D cwj APD-0.1698.50 25598.16 27299.51 16999.04 33299.39 16298.47 27999.47 23996.70 33898.78 31099.33 28497.62 23999.86 20994.69 35499.38 29699.28 258
pmmvs-eth3d99.48 6699.47 6499.51 16999.77 9199.41 15998.81 24299.66 12699.42 12499.75 9299.66 15099.20 5599.76 30398.98 11399.99 1299.36 239
v124099.56 5399.58 4899.51 16999.80 6699.00 23099.00 21199.65 13699.15 16499.90 2999.75 9899.09 6899.88 17699.90 599.96 5399.67 74
ETH3 D test640097.76 29897.19 31499.50 17299.38 25999.26 19198.34 28899.49 23392.99 37098.54 32899.20 31295.92 29299.82 26691.14 37299.66 23799.40 228
Regformer-499.45 7599.44 7199.50 17299.52 20498.94 23899.17 16799.53 21299.64 7999.76 8499.60 19498.96 8899.90 14398.91 12499.84 14099.67 74
CDS-MVSNet99.22 13999.13 13199.50 17299.35 26699.11 21898.96 22299.54 20399.46 11299.61 15399.70 12496.31 28399.83 25699.34 6299.88 11399.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 7799.42 7699.49 17599.89 2998.96 23699.62 6199.76 7599.85 3299.82 5999.88 3396.39 28199.97 2099.59 2799.98 2899.55 157
Patchmtry98.78 22198.54 23399.49 17598.89 34799.19 21199.32 11999.67 12299.65 7799.72 10699.79 7591.87 33299.95 4898.00 19399.97 3999.33 245
UGNet99.38 9499.34 8999.49 17598.90 34498.90 24699.70 3499.35 27699.86 2798.57 32699.81 6298.50 15599.93 7999.38 5599.98 2899.66 84
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 5099.59 4499.49 17599.98 399.71 7699.72 2999.84 3899.81 4199.94 1599.78 8298.91 9299.71 31898.41 15799.95 6299.05 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 10799.30 10099.48 17999.51 20999.36 17298.12 30799.53 21299.36 12999.41 21799.61 18599.22 5499.87 18999.21 8299.68 22699.20 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 27097.99 28199.48 17999.32 28399.24 20098.50 27799.51 22495.19 35998.58 32598.96 34696.95 26699.83 25695.63 33699.25 31599.37 236
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 10299.31 9599.47 18199.74 11299.06 22999.28 13499.74 8799.23 14799.72 10699.53 22697.63 23899.88 17699.11 10399.84 14099.48 200
Regformer-199.32 11399.27 11099.47 18199.41 25198.95 23798.99 21699.48 23599.48 10399.66 12899.52 22898.78 11199.87 18998.36 16099.74 20099.60 131
ab-mvs99.33 11199.28 10799.47 18199.57 18099.39 16299.78 1199.43 25298.87 19899.57 16499.82 5998.06 20199.87 18998.69 14599.73 20799.15 284
Fast-Effi-MVS+99.02 18698.87 19999.46 18499.38 25999.50 13399.04 20399.79 6297.17 32498.62 32198.74 36199.34 4099.95 4898.32 16599.41 29398.92 322
test_prior398.62 23798.34 25299.46 18499.35 26699.22 20497.95 32899.39 26597.87 28898.05 35099.05 32897.90 21499.69 32695.99 32499.49 28199.48 200
test_prior99.46 18499.35 26699.22 20499.39 26599.69 32699.48 200
TAPA-MVS97.92 1398.03 28997.55 30599.46 18499.47 23299.44 14898.50 27799.62 14786.79 37799.07 28099.26 29998.26 18399.62 35697.28 25599.73 20799.31 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EIA-MVS99.12 16699.01 17199.45 18899.36 26499.62 10799.34 11499.79 6298.41 24498.84 30298.89 35398.75 11799.84 24498.15 18399.51 27798.89 324
test_040299.22 13999.14 12899.45 18899.79 7699.43 15299.28 13499.68 11799.54 9799.40 22299.56 21599.07 7499.82 26696.01 32299.96 5399.11 293
h-mvs3398.61 23898.34 25299.44 19099.60 16198.67 26199.27 13799.44 24899.68 6799.32 23699.49 24092.50 327100.00 199.24 7996.51 37799.65 92
VDD-MVS99.20 14699.11 13899.44 19099.43 24598.98 23299.50 8598.32 35499.80 4499.56 17199.69 13096.99 26599.85 22798.99 11199.73 20799.50 190
PVSNet_Blended_VisFu99.40 8899.38 8199.44 19099.90 2798.66 26498.94 22599.91 1597.97 28199.79 7499.73 10499.05 7799.97 2099.15 9599.99 1299.68 67
OMC-MVS98.90 20798.72 21399.44 19099.39 25699.42 15598.58 26499.64 14297.31 31899.44 20399.62 17698.59 13799.69 32696.17 31899.79 17799.22 267
Fast-Effi-MVS+-dtu99.20 14699.12 13599.43 19499.25 29899.69 8799.05 20199.82 4599.50 10198.97 28599.05 32898.98 8399.98 1098.20 17599.24 31798.62 339
MVP-Stereo99.16 15899.08 14999.43 19499.48 22699.07 22799.08 19899.55 19798.63 22299.31 24099.68 14198.19 19299.78 29398.18 17999.58 26099.45 211
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 14999.11 13899.42 19699.76 9598.88 24798.55 27099.73 9098.82 20499.72 10699.62 17696.56 27299.82 26699.32 6899.95 6299.56 154
EI-MVSNet-UG-set99.48 6699.50 6299.42 19699.57 18098.65 26799.24 14699.46 24399.68 6799.80 6999.66 15098.99 8299.89 16199.19 8699.90 9599.72 51
EI-MVSNet-Vis-set99.47 7299.49 6399.42 19699.57 18098.66 26499.24 14699.46 24399.67 7199.79 7499.65 15598.97 8599.89 16199.15 9599.89 10499.71 54
testdata99.42 19699.51 20998.93 24299.30 28896.20 34498.87 29999.40 26298.33 17899.89 16196.29 31299.28 31199.44 216
VDDNet98.97 19698.82 20699.42 19699.71 12298.81 25199.62 6198.68 33799.81 4199.38 22499.80 6594.25 30699.85 22798.79 13499.32 30699.59 140
FMVSNet597.80 29697.25 31299.42 19698.83 35398.97 23499.38 10599.80 5698.87 19899.25 24999.69 13080.60 38399.91 12398.96 11799.90 9599.38 233
MVS_111021_LR99.13 16499.03 16799.42 19699.58 17099.32 18197.91 33499.73 9098.68 21899.31 24099.48 24399.09 6899.66 34697.70 22599.77 18799.29 256
CMPMVSbinary77.52 2398.50 25598.19 26999.41 20398.33 37399.56 12499.01 20999.59 17495.44 35499.57 16499.80 6595.64 29499.46 37496.47 30499.92 8599.21 269
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final98.75 22598.54 23399.40 20499.33 28198.75 25599.26 13999.59 17499.80 4499.76 8499.58 20290.17 35399.92 9999.37 5899.97 3999.54 165
Regformer-399.41 8599.41 7799.40 20499.52 20498.70 25999.17 16799.44 24899.62 8399.75 9299.60 19498.90 9599.85 22798.89 12599.84 14099.65 92
UnsupCasMVSNet_bld98.55 24998.27 25999.40 20499.56 19199.37 16897.97 32799.68 11797.49 30899.08 27799.35 28095.41 29799.82 26697.70 22598.19 36199.01 315
MVS_111021_HR99.12 16699.02 16899.40 20499.50 21599.11 21897.92 33299.71 10298.76 21499.08 27799.47 24899.17 5899.54 36597.85 20999.76 18999.54 165
MVS_030498.88 21198.71 21499.39 20898.85 35198.91 24599.45 9499.30 28898.56 22897.26 37099.68 14196.18 28799.96 3899.17 9199.94 7399.29 256
v14899.40 8899.41 7799.39 20899.76 9598.94 23899.09 19599.59 17499.17 15899.81 6699.61 18598.41 16599.69 32699.32 6899.94 7399.53 171
diffmvs99.34 10799.32 9499.39 20899.67 14798.77 25498.57 26899.81 5499.61 8799.48 19599.41 25898.47 15699.86 20998.97 11599.90 9599.53 171
HQP-MVS98.36 27098.02 28099.39 20899.31 28498.94 23897.98 32499.37 27297.45 30998.15 34498.83 35696.67 27099.70 32094.73 35199.67 23399.53 171
TSAR-MVS + GP.99.12 16699.04 16599.38 21299.34 27699.16 21398.15 30399.29 29098.18 27099.63 13899.62 17699.18 5799.68 33798.20 17599.74 20099.30 253
AdaColmapbinary98.60 24098.35 25199.38 21299.12 31999.22 20498.67 25999.42 25497.84 29298.81 30599.27 29697.32 25199.81 28295.14 34699.53 27499.10 295
ITE_SJBPF99.38 21299.63 15499.44 14899.73 9098.56 22899.33 23399.53 22698.88 9799.68 33796.01 32299.65 24099.02 314
FMVS99.75 1799.88 599.37 21599.96 498.21 29199.51 84100.00 199.94 8100.00 199.93 1799.58 2299.94 6299.97 299.99 1299.97 2
原ACMM199.37 21599.47 23298.87 24999.27 29496.74 33798.26 33999.32 28597.93 21299.82 26695.96 32799.38 29699.43 222
testgi99.29 11899.26 11299.37 21599.75 10698.81 25198.84 23599.89 1998.38 24899.75 9299.04 33199.36 3999.86 20999.08 10599.25 31599.45 211
MSDG99.08 17598.98 18299.37 21599.60 16199.13 21697.54 34899.74 8798.84 20399.53 18399.55 22299.10 6699.79 29097.07 27199.86 13199.18 278
pmmvs499.13 16499.06 15599.36 21999.57 18099.10 22398.01 31999.25 30098.78 21099.58 16199.44 25598.24 18499.76 30398.74 14099.93 8199.22 267
N_pmnet98.73 22998.53 23599.35 22099.72 11998.67 26198.34 28894.65 37898.35 25599.79 7499.68 14198.03 20399.93 7998.28 16899.92 8599.44 216
Effi-MVS+99.06 17798.97 18399.34 22199.31 28498.98 23298.31 29299.91 1598.81 20598.79 30898.94 34899.14 6399.84 24498.79 13498.74 34499.20 273
Vis-MVSNet (Re-imp)98.77 22298.58 22899.34 22199.78 8398.88 24799.61 6699.56 19199.11 17099.24 25299.56 21593.00 32299.78 29397.43 24699.89 10499.35 242
Patchmatch-RL test98.60 24098.36 24999.33 22399.77 9199.07 22798.27 29599.87 2598.91 19399.74 10199.72 11090.57 34999.79 29098.55 15199.85 13599.11 293
PAPM_NR98.36 27098.04 27899.33 22399.48 22698.93 24298.79 24899.28 29397.54 30498.56 32798.57 36697.12 26099.69 32694.09 36098.90 33599.38 233
PCF-MVS96.03 1896.73 32695.86 33799.33 22399.44 24299.16 21396.87 37199.44 24886.58 37898.95 28799.40 26294.38 30599.88 17687.93 37799.80 17298.95 319
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 22498.57 22999.33 22399.57 18098.97 23497.53 35099.55 19796.41 34099.27 24799.13 31799.07 7499.78 29396.73 28999.89 10499.23 265
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 27697.94 28999.32 22799.36 26499.11 21897.31 36098.78 33496.88 33198.84 30299.11 32397.77 22599.61 36094.03 36299.36 30199.23 265
jason99.16 15899.11 13899.32 22799.75 10698.44 27798.26 29699.39 26598.70 21799.74 10199.30 28998.54 14599.97 2098.48 15499.82 15999.55 157
jason: jason.
FMVSNet398.80 22098.63 22299.32 22799.13 31798.72 25899.10 19099.48 23599.23 14799.62 14799.64 15792.57 32499.86 20998.96 11799.90 9599.39 231
MVSFormer99.41 8599.44 7199.31 23099.57 18098.40 28099.77 1499.80 5699.73 5499.63 13899.30 28998.02 20599.98 1099.43 4899.69 22199.55 157
DP-MVS Recon98.50 25598.23 26299.31 23099.49 22099.46 14198.56 26999.63 14494.86 36398.85 30199.37 27097.81 22299.59 36296.08 31999.44 28798.88 325
PatchMatch-RL98.68 23398.47 23899.30 23299.44 24299.28 18798.14 30599.54 20397.12 32799.11 27499.25 30197.80 22399.70 32096.51 30199.30 30898.93 321
OPU-MVS99.29 23399.12 31999.44 14899.20 15699.40 26299.00 8098.84 38096.54 29999.60 25599.58 145
D2MVS99.22 13999.19 12199.29 23399.69 13498.74 25798.81 24299.41 25598.55 23099.68 11999.69 13098.13 19699.87 18998.82 13099.98 2899.24 262
CANet99.11 17099.05 15999.28 23598.83 35398.56 27098.71 25899.41 25599.25 14399.23 25399.22 30897.66 23699.94 6299.19 8699.97 3999.33 245
CNLPA98.57 24598.34 25299.28 23599.18 31199.10 22398.34 28899.41 25598.48 23998.52 32998.98 34197.05 26399.78 29395.59 33799.50 27998.96 317
sss98.90 20798.77 21199.27 23799.48 22698.44 27798.72 25699.32 28197.94 28599.37 22599.35 28096.31 28399.91 12398.85 12799.63 24499.47 205
LF4IMVS99.01 19098.92 19299.27 23799.71 12299.28 18798.59 26399.77 7098.32 26199.39 22399.41 25898.62 13299.84 24496.62 29799.84 14098.69 337
LFMVS98.46 26198.19 26999.26 23999.24 30098.52 27399.62 6196.94 37099.87 2499.31 24099.58 20291.04 34099.81 28298.68 14699.42 29299.45 211
WTY-MVS98.59 24398.37 24899.26 23999.43 24598.40 28098.74 25399.13 31998.10 27299.21 25999.24 30694.82 30099.90 14397.86 20798.77 34099.49 195
OpenMVScopyleft98.12 1098.23 28197.89 29599.26 23999.19 30999.26 19199.65 5899.69 11491.33 37498.14 34899.77 8998.28 18199.96 3895.41 34299.55 26698.58 343
alignmvs98.28 27697.96 28499.25 24299.12 31998.93 24299.03 20698.42 35099.64 7998.72 31597.85 38090.86 34599.62 35698.88 12699.13 32099.19 276
IterMVS-LS99.41 8599.47 6499.25 24299.81 6198.09 30098.85 23499.76 7599.62 8399.83 5899.64 15798.54 14599.97 2099.15 9599.99 1299.68 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 19998.87 19999.24 24499.57 18098.40 28098.12 30799.18 31398.28 26399.63 13899.13 31798.02 20599.97 2098.22 17399.69 22199.35 242
MVSTER98.47 26098.22 26499.24 24499.06 32998.35 28599.08 19899.46 24399.27 13999.75 9299.66 15088.61 36199.85 22799.14 10199.92 8599.52 182
mvs-test198.83 21698.70 21799.22 24698.89 34799.65 9998.88 22899.66 12699.34 13098.29 33798.94 34897.69 22999.96 3898.11 18598.54 35298.04 366
EI-MVSNet99.38 9499.44 7199.21 24799.58 17098.09 30099.26 13999.46 24399.62 8399.75 9299.67 14698.54 14599.85 22799.15 9599.92 8599.68 67
BH-RMVSNet98.41 26698.14 27499.21 24799.21 30498.47 27498.60 26298.26 35598.35 25598.93 28999.31 28797.20 25899.66 34694.32 35699.10 32399.51 184
ambc99.20 24999.35 26698.53 27199.17 16799.46 24399.67 12499.80 6598.46 15999.70 32097.92 19999.70 21899.38 233
MVS_Test99.28 11999.31 9599.19 25099.35 26698.79 25399.36 11299.49 23399.17 15899.21 25999.67 14698.78 11199.66 34699.09 10499.66 23799.10 295
MAR-MVS98.24 28097.92 29199.19 25098.78 36099.65 9999.17 16799.14 31795.36 35598.04 35298.81 35897.47 24299.72 31495.47 34199.06 32498.21 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 28497.77 29999.18 25294.57 38797.99 30499.24 14697.96 35999.74 5397.29 36999.62 17693.13 31999.97 2098.59 14999.83 15099.58 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 25298.30 25799.16 25399.29 29098.60 26998.77 25099.02 32499.68 6799.32 23699.04 33192.50 32799.85 22799.24 7997.87 36899.03 310
ETV-MVS99.18 15399.18 12299.16 25399.34 27699.28 18799.12 18799.79 6299.48 10398.93 28998.55 36899.40 2999.93 7998.51 15399.52 27698.28 356
FE-MVS97.85 29497.42 30799.15 25599.44 24298.75 25599.77 1498.20 35695.85 34899.33 23399.80 6588.86 36099.88 17696.40 30799.12 32198.81 331
CL-MVSNet_self_test98.71 23198.56 23299.15 25599.22 30298.66 26497.14 36599.51 22498.09 27499.54 17899.27 29696.87 26899.74 30998.43 15698.96 33099.03 310
iter_conf0598.46 26198.23 26299.15 25599.04 33297.99 30499.10 19099.61 15499.79 4799.76 8499.58 20287.88 36399.92 9999.31 7199.97 3999.53 171
AUN-MVS97.82 29597.38 30899.14 25899.27 29598.53 27198.72 25699.02 32498.10 27297.18 37299.03 33589.26 35999.85 22797.94 19897.91 36699.03 310
test_yl98.25 27897.95 28599.13 25999.17 31298.47 27499.00 21198.67 33998.97 18299.22 25799.02 33691.31 33699.69 32697.26 25898.93 33199.24 262
DCV-MVSNet98.25 27897.95 28599.13 25999.17 31298.47 27499.00 21198.67 33998.97 18299.22 25799.02 33691.31 33699.69 32697.26 25898.93 33199.24 262
MIMVSNet98.43 26498.20 26699.11 26199.53 19898.38 28399.58 7498.61 34198.96 18599.33 23399.76 9390.92 34299.81 28297.38 24999.76 18999.15 284
PMMVS98.49 25898.29 25899.11 26198.96 34198.42 27997.54 34899.32 28197.53 30598.47 33398.15 37797.88 21799.82 26697.46 24499.24 31799.09 298
FA-MVS(test-final)98.52 25298.32 25599.10 26399.48 22698.67 26199.77 1498.60 34397.35 31599.63 13899.80 6593.07 32099.84 24497.92 19999.30 30898.78 334
CANet_DTU98.91 20598.85 20199.09 26498.79 35898.13 29598.18 30099.31 28599.48 10398.86 30099.51 23296.56 27299.95 4899.05 10799.95 6299.19 276
MS-PatchMatch99.00 19298.97 18399.09 26499.11 32498.19 29298.76 25299.33 27998.49 23899.44 20399.58 20298.21 18999.69 32698.20 17599.62 24599.39 231
canonicalmvs99.02 18699.00 17499.09 26499.10 32598.70 25999.61 6699.66 12699.63 8298.64 32097.65 38299.04 7899.54 36598.79 13498.92 33399.04 309
PVSNet_BlendedMVS99.03 18499.01 17199.09 26499.54 19397.99 30498.58 26499.82 4597.62 29999.34 23199.71 11798.52 15299.77 30197.98 19499.97 3999.52 182
MDA-MVSNet-bldmvs99.06 17799.05 15999.07 26899.80 6697.83 31298.89 22799.72 9999.29 13599.63 13899.70 12496.47 27699.89 16198.17 18199.82 15999.50 190
TinyColmap98.97 19698.93 18899.07 26899.46 23798.19 29297.75 33999.75 8298.79 20899.54 17899.70 12498.97 8599.62 35696.63 29699.83 15099.41 226
USDC98.96 19998.93 18899.05 27099.54 19397.99 30497.07 36899.80 5698.21 26799.75 9299.77 8998.43 16299.64 35497.90 20199.88 11399.51 184
PAPR97.56 30897.07 31699.04 27198.80 35798.11 29897.63 34499.25 30094.56 36798.02 35398.25 37697.43 24499.68 33790.90 37398.74 34499.33 245
PVSNet_Blended98.70 23298.59 22599.02 27299.54 19397.99 30497.58 34799.82 4595.70 35299.34 23198.98 34198.52 15299.77 30197.98 19499.83 15099.30 253
MVS95.72 34594.63 34998.99 27398.56 36897.98 31099.30 12698.86 32972.71 38297.30 36899.08 32598.34 17699.74 30989.21 37498.33 35699.26 259
HY-MVS98.23 998.21 28397.95 28598.99 27399.03 33498.24 28799.61 6698.72 33696.81 33598.73 31499.51 23294.06 30799.86 20996.91 27798.20 35998.86 327
baseline197.73 30097.33 30998.96 27599.30 28897.73 31699.40 10198.42 35099.33 13399.46 20199.21 31091.18 33899.82 26698.35 16291.26 38299.32 248
DSMNet-mixed99.48 6699.65 3098.95 27699.71 12297.27 32899.50 8599.82 4599.59 9599.41 21799.85 4699.62 18100.00 199.53 3899.89 10499.59 140
thisisatest053097.45 31096.95 32098.94 27799.68 14297.73 31699.09 19594.19 38198.61 22599.56 17199.30 28984.30 37999.93 7998.27 16999.54 27299.16 282
mvs_anonymous99.28 11999.39 7998.94 27799.19 30997.81 31399.02 20799.55 19799.78 4999.85 5199.80 6598.24 18499.86 20999.57 3299.50 27999.15 284
MG-MVS98.52 25298.39 24698.94 27799.15 31497.39 32698.18 30099.21 31198.89 19799.23 25399.63 16797.37 24999.74 30994.22 35899.61 25299.69 61
GA-MVS97.99 29297.68 30298.93 28099.52 20498.04 30397.19 36499.05 32398.32 26198.81 30598.97 34489.89 35799.41 37598.33 16499.05 32599.34 244
cl____98.54 25098.41 24498.92 28199.03 33497.80 31497.46 35499.59 17498.90 19499.60 15699.46 25193.85 31099.78 29397.97 19699.89 10499.17 280
DIV-MVS_self_test98.54 25098.42 24398.92 28199.03 33497.80 31497.46 35499.59 17498.90 19499.60 15699.46 25193.87 30999.78 29397.97 19699.89 10499.18 278
ET-MVSNet_ETH3D96.78 32496.07 33398.91 28399.26 29797.92 31197.70 34296.05 37497.96 28492.37 38398.43 37287.06 36699.90 14398.27 16997.56 37198.91 323
xiu_mvs_v1_base_debu99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
xiu_mvs_v1_base99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
xiu_mvs_v1_base_debi99.23 13099.34 8998.91 28399.59 16598.23 28898.47 27999.66 12699.61 8799.68 11998.94 34899.39 3099.97 2099.18 8899.55 26698.51 346
MSLP-MVS++99.05 18099.09 14798.91 28399.21 30498.36 28498.82 24199.47 23998.85 20098.90 29599.56 21598.78 11199.09 37898.57 15099.68 22699.26 259
pmmvs398.08 28797.80 29698.91 28399.41 25197.69 31897.87 33599.66 12695.87 34799.50 19299.51 23290.35 35199.97 2098.55 15199.47 28499.08 301
tttt051797.62 30597.20 31398.90 28999.76 9597.40 32599.48 8994.36 37999.06 17799.70 11499.49 24084.55 37899.94 6298.73 14199.65 24099.36 239
OpenMVS_ROBcopyleft97.31 1797.36 31496.84 32498.89 29099.29 29099.45 14698.87 23199.48 23586.54 37999.44 20399.74 10097.34 25099.86 20991.61 36999.28 31197.37 374
MDA-MVSNet_test_wron98.95 20298.99 17998.85 29199.64 15297.16 33198.23 29899.33 27998.93 19099.56 17199.66 15097.39 24799.83 25698.29 16799.88 11399.55 157
PMVScopyleft92.94 2198.82 21898.81 20798.85 29199.84 4397.99 30499.20 15699.47 23999.71 5899.42 20999.82 5998.09 19899.47 37293.88 36499.85 13599.07 306
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 20298.99 17998.84 29399.64 15297.14 33298.22 29999.32 28198.92 19299.59 15999.66 15097.40 24599.83 25698.27 16999.90 9599.55 157
new_pmnet98.88 21198.89 19798.84 29399.70 13097.62 31998.15 30399.50 22897.98 28099.62 14799.54 22498.15 19599.94 6297.55 23899.84 14098.95 319
CR-MVSNet98.35 27398.20 26698.83 29599.05 33098.12 29699.30 12699.67 12297.39 31399.16 26699.79 7591.87 33299.91 12398.78 13798.77 34098.44 351
PatchT98.45 26398.32 25598.83 29598.94 34298.29 28699.24 14698.82 33299.84 3599.08 27799.76 9391.37 33599.94 6298.82 13099.00 32998.26 357
RPMNet98.60 24098.53 23598.83 29599.05 33098.12 29699.30 12699.62 14799.86 2799.16 26699.74 10092.53 32699.92 9998.75 13998.77 34098.44 351
miper_lstm_enhance98.65 23598.60 22398.82 29899.20 30797.33 32797.78 33899.66 12699.01 17999.59 15999.50 23594.62 30399.85 22798.12 18499.90 9599.26 259
FPMVS96.32 33495.50 34198.79 29999.60 16198.17 29498.46 28498.80 33397.16 32596.28 37499.63 16782.19 38099.09 37888.45 37698.89 33699.10 295
xiu_mvs_v2_base99.02 18699.11 13898.77 30099.37 26298.09 30098.13 30699.51 22499.47 10899.42 20998.54 36999.38 3499.97 2098.83 12899.33 30598.24 358
PS-MVSNAJ99.00 19299.08 14998.76 30199.37 26298.10 29998.00 32199.51 22499.47 10899.41 21798.50 37199.28 4699.97 2098.83 12899.34 30398.20 362
test0.0.03 197.37 31396.91 32398.74 30297.72 38097.57 32097.60 34697.36 36998.00 27799.21 25998.02 37890.04 35599.79 29098.37 15995.89 38098.86 327
c3_l98.72 23098.71 21498.72 30399.12 31997.22 33097.68 34399.56 19198.90 19499.54 17899.48 24396.37 28299.73 31297.88 20399.88 11399.21 269
EU-MVSNet99.39 9299.62 3598.72 30399.88 3396.44 34499.56 7899.85 3299.90 1399.90 2999.85 4698.09 19899.83 25699.58 3099.95 6299.90 7
new-patchmatchnet99.35 10299.57 5198.71 30599.82 5496.62 34298.55 27099.75 8299.50 10199.88 3999.87 3699.31 4299.88 17699.43 48100.00 199.62 117
thisisatest051596.98 32096.42 32798.66 30699.42 25097.47 32297.27 36194.30 38097.24 32099.15 26898.86 35585.01 37699.87 18997.10 26999.39 29598.63 338
eth_miper_zixun_eth98.68 23398.71 21498.60 30799.10 32596.84 33997.52 35299.54 20398.94 18799.58 16199.48 24396.25 28599.76 30398.01 19299.93 8199.21 269
miper_ehance_all_eth98.59 24398.59 22598.59 30898.98 34097.07 33397.49 35399.52 22098.50 23699.52 18599.37 27096.41 28099.71 31897.86 20799.62 24599.00 316
BH-untuned98.22 28298.09 27698.58 30999.38 25997.24 32998.55 27098.98 32797.81 29399.20 26498.76 36097.01 26499.65 35294.83 35098.33 35698.86 327
IterMVS-SCA-FT99.00 19299.16 12498.51 31099.75 10695.90 35298.07 31499.84 3899.84 3599.89 3399.73 10496.01 29099.99 699.33 66100.00 199.63 106
JIA-IIPM98.06 28897.92 29198.50 31198.59 36797.02 33498.80 24598.51 34699.88 2397.89 35799.87 3691.89 33199.90 14398.16 18297.68 37098.59 341
Patchmatch-test98.10 28697.98 28398.48 31299.27 29596.48 34399.40 10199.07 32098.81 20599.23 25399.57 21290.11 35499.87 18996.69 29099.64 24299.09 298
baseline296.83 32396.28 32998.46 31399.09 32796.91 33798.83 23793.87 38297.23 32196.23 37798.36 37388.12 36299.90 14396.68 29198.14 36398.57 344
IterMVS98.97 19699.16 12498.42 31499.74 11295.64 35598.06 31699.83 4099.83 3899.85 5199.74 10096.10 28999.99 699.27 78100.00 199.63 106
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 30897.28 31098.40 31598.37 37296.75 34097.24 36399.37 27297.31 31899.41 21799.22 30887.30 36499.37 37697.70 22599.62 24599.08 301
CHOSEN 280x42098.41 26698.41 24498.40 31599.34 27695.89 35396.94 37099.44 24898.80 20799.25 24999.52 22893.51 31699.98 1098.94 12299.98 2899.32 248
API-MVS98.38 26998.39 24698.35 31798.83 35399.26 19199.14 17799.18 31398.59 22698.66 31998.78 35998.61 13499.57 36494.14 35999.56 26296.21 378
PVSNet97.47 1598.42 26598.44 24198.35 31799.46 23796.26 34696.70 37399.34 27897.68 29799.00 28499.13 31797.40 24599.72 31497.59 23799.68 22699.08 301
miper_enhance_ethall98.03 28997.94 28998.32 31998.27 37496.43 34596.95 36999.41 25596.37 34299.43 20798.96 34694.74 30199.69 32697.71 22299.62 24598.83 330
TR-MVS97.44 31197.15 31598.32 31998.53 36997.46 32398.47 27997.91 36196.85 33398.21 34398.51 37096.42 27899.51 37092.16 36897.29 37297.98 367
PAPM95.61 34694.71 34898.31 32199.12 31996.63 34196.66 37498.46 34990.77 37596.25 37598.68 36393.01 32199.69 32681.60 38397.86 36998.62 339
MVEpermissive92.54 2296.66 32896.11 33298.31 32199.68 14297.55 32197.94 33095.60 37699.37 12790.68 38498.70 36296.56 27298.61 38286.94 38299.55 26698.77 335
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 29197.90 29498.27 32398.90 34497.45 32499.30 12699.06 32294.98 36097.21 37199.12 32198.43 16299.67 34295.58 33898.56 35197.71 370
ppachtmachnet_test98.89 21099.12 13598.20 32499.66 14895.24 35997.63 34499.68 11799.08 17199.78 7799.62 17698.65 13099.88 17698.02 18999.96 5399.48 200
SD-MVS99.01 19099.30 10098.15 32599.50 21599.40 16098.94 22599.61 15499.22 15199.75 9299.82 5999.54 2695.51 38597.48 24399.87 12499.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 21599.09 14798.13 32699.66 14894.90 36297.72 34099.58 18499.07 17399.64 13499.62 17698.19 19299.93 7998.41 15799.95 6299.55 157
ADS-MVSNet297.78 29797.66 30498.12 32799.14 31595.36 35799.22 15398.75 33596.97 32998.25 34099.64 15790.90 34399.94 6296.51 30199.56 26299.08 301
DeepMVS_CXcopyleft97.98 32899.69 13496.95 33599.26 29775.51 38195.74 37998.28 37596.47 27699.62 35691.23 37197.89 36797.38 373
gg-mvs-nofinetune95.87 34295.17 34697.97 32998.19 37696.95 33599.69 4089.23 38899.89 1896.24 37699.94 1681.19 38199.51 37093.99 36398.20 35997.44 372
thres600view796.60 32996.16 33197.93 33099.63 15496.09 35099.18 16297.57 36498.77 21198.72 31597.32 38587.04 36799.72 31488.57 37598.62 34997.98 367
thres40096.40 33195.89 33597.92 33199.58 17096.11 34899.00 21197.54 36798.43 24198.52 32996.98 38886.85 36999.67 34287.62 37898.51 35397.98 367
ADS-MVSNet97.72 30397.67 30397.86 33299.14 31594.65 36399.22 15398.86 32996.97 32998.25 34099.64 15790.90 34399.84 24496.51 30199.56 26299.08 301
IB-MVS95.41 2095.30 34794.46 35197.84 33398.76 36295.33 35897.33 35996.07 37396.02 34695.37 38197.41 38476.17 38999.96 3897.54 23995.44 38198.22 359
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 23898.88 19897.80 33499.58 17093.60 36999.26 13999.64 14299.66 7599.72 10699.67 14693.26 31799.93 7999.30 7299.81 16799.87 12
BH-w/o97.20 31597.01 31897.76 33599.08 32895.69 35498.03 31898.52 34595.76 35197.96 35498.02 37895.62 29599.47 37292.82 36797.25 37398.12 364
tpm97.15 31696.95 32097.75 33698.91 34394.24 36599.32 11997.96 35997.71 29698.29 33799.32 28586.72 37399.92 9998.10 18796.24 37999.09 298
test-LLR97.15 31696.95 32097.74 33798.18 37795.02 36097.38 35696.10 37198.00 27797.81 36198.58 36490.04 35599.91 12397.69 23198.78 33898.31 354
test-mter96.23 33795.73 33997.74 33798.18 37795.02 36097.38 35696.10 37197.90 28697.81 36198.58 36479.12 38799.91 12397.69 23198.78 33898.31 354
tfpn200view996.30 33595.89 33597.53 33999.58 17096.11 34899.00 21197.54 36798.43 24198.52 32996.98 38886.85 36999.67 34287.62 37898.51 35396.81 376
cascas96.99 31996.82 32597.48 34097.57 38395.64 35596.43 37599.56 19191.75 37297.13 37397.61 38395.58 29698.63 38196.68 29199.11 32298.18 363
thres100view90096.39 33296.03 33497.47 34199.63 15495.93 35199.18 16297.57 36498.75 21598.70 31797.31 38687.04 36799.67 34287.62 37898.51 35396.81 376
PVSNet_095.53 1995.85 34395.31 34597.47 34198.78 36093.48 37095.72 37699.40 26296.18 34597.37 36797.73 38195.73 29399.58 36395.49 33981.40 38399.36 239
TESTMET0.1,196.24 33695.84 33897.41 34398.24 37593.84 36897.38 35695.84 37598.43 24197.81 36198.56 36779.77 38499.89 16197.77 21498.77 34098.52 345
GG-mvs-BLEND97.36 34497.59 38196.87 33899.70 3488.49 38994.64 38297.26 38780.66 38299.12 37791.50 37096.50 37896.08 380
SCA98.11 28598.36 24997.36 34499.20 30792.99 37198.17 30298.49 34898.24 26599.10 27699.57 21296.01 29099.94 6296.86 28099.62 24599.14 289
thres20096.09 33895.68 34097.33 34699.48 22696.22 34798.53 27497.57 36498.06 27698.37 33696.73 39086.84 37199.61 36086.99 38198.57 35096.16 379
KD-MVS_2432*160095.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30797.23 32198.88 29699.04 33179.23 38599.54 36596.24 31596.81 37498.50 349
miper_refine_blended95.89 34095.41 34397.31 34794.96 38593.89 36697.09 36699.22 30797.23 32198.88 29699.04 33179.23 38599.54 36596.24 31596.81 37498.50 349
PatchmatchNetpermissive97.65 30497.80 29697.18 34998.82 35692.49 37399.17 16798.39 35298.12 27198.79 30899.58 20290.71 34799.89 16197.23 26299.41 29399.16 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 33096.32 32897.17 35098.18 37792.97 37299.39 10389.95 38798.21 26798.61 32299.59 20086.69 37499.72 31496.99 27399.23 31998.81 331
EPNet_dtu97.62 30597.79 29897.11 35196.67 38492.31 37498.51 27698.04 35799.24 14595.77 37899.47 24893.78 31299.66 34698.98 11399.62 24599.37 236
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 30098.04 27896.78 35299.59 16590.81 38399.72 2990.43 38699.89 1899.86 4999.86 4393.60 31599.89 16199.46 4599.99 1299.65 92
tmp_tt95.75 34495.42 34296.76 35389.90 38994.42 36498.86 23297.87 36278.01 38099.30 24599.69 13097.70 22795.89 38499.29 7598.14 36399.95 3
MVS-HIRNet97.86 29398.22 26496.76 35399.28 29391.53 37998.38 28792.60 38399.13 16699.31 24099.96 1297.18 25999.68 33798.34 16399.83 15099.07 306
tpm296.35 33396.22 33096.73 35598.88 35091.75 37799.21 15598.51 34693.27 36997.89 35799.21 31084.83 37799.70 32096.04 32198.18 36298.75 336
tpmrst97.73 30098.07 27796.73 35598.71 36492.00 37599.10 19098.86 32998.52 23498.92 29299.54 22491.90 33099.82 26698.02 18999.03 32798.37 353
tpmvs97.39 31297.69 30196.52 35798.41 37091.76 37699.30 12698.94 32897.74 29497.85 36099.55 22292.40 32999.73 31296.25 31498.73 34698.06 365
test111197.74 29998.16 27296.49 35899.60 16189.86 38799.71 3391.21 38499.89 1899.88 3999.87 3693.73 31399.90 14399.56 3399.99 1299.70 57
CostFormer96.71 32796.79 32696.46 35998.90 34490.71 38499.41 10098.68 33794.69 36698.14 34899.34 28386.32 37599.80 28797.60 23698.07 36598.88 325
E-PMN97.14 31897.43 30696.27 36098.79 35891.62 37895.54 37799.01 32699.44 11598.88 29699.12 32192.78 32399.68 33794.30 35799.03 32797.50 371
dp96.86 32297.07 31696.24 36198.68 36690.30 38699.19 16198.38 35397.35 31598.23 34299.59 20087.23 36599.82 26696.27 31398.73 34698.59 341
tpm cat196.78 32496.98 31996.16 36298.85 35190.59 38599.08 19899.32 28192.37 37197.73 36699.46 25191.15 33999.69 32696.07 32098.80 33798.21 360
EMVS96.96 32197.28 31095.99 36398.76 36291.03 38195.26 37898.61 34199.34 13098.92 29298.88 35493.79 31199.66 34692.87 36699.05 32597.30 375
test250694.73 34894.59 35095.15 36499.59 16585.90 38999.75 2174.01 39099.89 1899.71 11199.86 4379.00 38899.90 14399.52 3999.99 1299.65 92
wuyk23d97.58 30799.13 13192.93 36599.69 13499.49 13499.52 8299.77 7097.97 28199.96 1199.79 7599.84 599.94 6295.85 33099.82 15979.36 381
test_method91.72 34992.32 35289.91 36693.49 38870.18 39090.28 37999.56 19161.71 38395.39 38099.52 22893.90 30899.94 6298.76 13898.27 35899.62 117
test12329.31 35133.05 35618.08 36725.93 39112.24 39197.53 35010.93 39211.78 38524.21 38650.08 39521.04 3908.60 38623.51 38432.43 38533.39 382
testmvs28.94 35233.33 35415.79 36826.03 3909.81 39296.77 37215.67 39111.55 38623.87 38750.74 39419.03 3918.53 38723.21 38533.07 38429.03 383
test_blank8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.88 35333.17 3550.00 3690.00 3920.00 3930.00 38099.62 1470.00 3870.00 38899.13 31799.82 60.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas16.61 35422.14 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 199.28 460.00 3880.00 3860.00 3860.00 384
sosnet-low-res8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
sosnet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
Regformer8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.26 36311.02 3660.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38899.16 3150.00 3920.00 3880.00 3860.00 3860.00 384
uanet8.33 35511.11 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 388100.00 10.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.83 4799.89 1099.74 2399.71 10299.69 6599.63 138
PC_three_145297.56 30199.68 11999.41 25899.09 6897.09 38396.66 29399.60 25599.62 117
test_one_060199.63 15499.76 5799.55 19799.23 14799.31 24099.61 18598.59 137
eth-test20.00 392
eth-test0.00 392
ZD-MVS99.43 24599.61 11399.43 25296.38 34199.11 27499.07 32697.86 21899.92 9994.04 36199.49 281
RE-MVS-def99.13 13199.54 19399.74 6799.26 13999.62 14799.16 16099.52 18599.64 15798.57 14097.27 25699.61 25299.54 165
IU-MVS99.69 13499.77 4999.22 30797.50 30799.69 11797.75 21899.70 21899.77 40
test_241102_TWO99.54 20399.13 16699.76 8499.63 16798.32 17999.92 9997.85 20999.69 22199.75 48
test_241102_ONE99.69 13499.82 3399.54 20399.12 16999.82 5999.49 24098.91 9299.52 369
9.1498.64 22099.45 24098.81 24299.60 16797.52 30699.28 24699.56 21598.53 14999.83 25695.36 34499.64 242
save fliter99.53 19899.25 19598.29 29399.38 27199.07 173
test_0728_THIRD99.18 15499.62 14799.61 18598.58 13999.91 12397.72 22099.80 17299.77 40
test072699.69 13499.80 4199.24 14699.57 18699.16 16099.73 10599.65 15598.35 173
GSMVS99.14 289
test_part299.62 15899.67 9299.55 176
sam_mvs190.81 34699.14 289
sam_mvs90.52 350
MTGPAbinary99.53 212
test_post199.14 17751.63 39389.54 35899.82 26696.86 280
test_post52.41 39290.25 35299.86 209
patchmatchnet-post99.62 17690.58 34899.94 62
MTMP99.09 19598.59 344
gm-plane-assit97.59 38189.02 38893.47 36898.30 37499.84 24496.38 309
test9_res95.10 34799.44 28799.50 190
TEST999.35 26699.35 17698.11 30999.41 25594.83 36597.92 35598.99 33898.02 20599.85 227
test_899.34 27699.31 18298.08 31399.40 26294.90 36197.87 35998.97 34498.02 20599.84 244
agg_prior294.58 35599.46 28699.50 190
agg_prior99.35 26699.36 17299.39 26597.76 36499.85 227
test_prior499.19 21198.00 321
test_prior297.95 32897.87 28898.05 35099.05 32897.90 21495.99 32499.49 281
旧先验297.94 33095.33 35698.94 28899.88 17696.75 287
新几何298.04 317
旧先验199.49 22099.29 18599.26 29799.39 26697.67 23299.36 30199.46 209
无先验98.01 31999.23 30495.83 34999.85 22795.79 33399.44 216
原ACMM297.92 332
test22299.51 20999.08 22697.83 33799.29 29095.21 35898.68 31899.31 28797.28 25299.38 29699.43 222
testdata299.89 16195.99 324
segment_acmp98.37 171
testdata197.72 34097.86 291
plane_prior799.58 17099.38 165
plane_prior699.47 23299.26 19197.24 253
plane_prior599.54 20399.82 26695.84 33199.78 18399.60 131
plane_prior499.25 301
plane_prior399.31 18298.36 25099.14 270
plane_prior298.80 24598.94 187
plane_prior199.51 209
plane_prior99.24 20098.42 28597.87 28899.71 216
n20.00 393
nn0.00 393
door-mid99.83 40
test1199.29 290
door99.77 70
HQP5-MVS98.94 238
HQP-NCC99.31 28497.98 32497.45 30998.15 344
ACMP_Plane99.31 28497.98 32497.45 30998.15 344
BP-MVS94.73 351
HQP4-MVS98.15 34499.70 32099.53 171
HQP3-MVS99.37 27299.67 233
HQP2-MVS96.67 270
NP-MVS99.40 25499.13 21698.83 356
MDTV_nov1_ep13_2view91.44 38099.14 17797.37 31499.21 25991.78 33496.75 28799.03 310
MDTV_nov1_ep1397.73 30098.70 36590.83 38299.15 17598.02 35898.51 23598.82 30499.61 18590.98 34199.66 34696.89 27998.92 333
ACMMP++_ref99.94 73
ACMMP++99.79 177
Test By Simon98.41 165