This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19199.98 1100.00 199.98 3
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20599.51 6599.97 5699.86 32
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 24199.37 8499.93 10299.83 40
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28299.99 899.83 3299.51 29199.86 32
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
DPE-MVScopyleft99.14 18498.92 21399.82 3899.57 20299.77 5498.74 27199.60 18798.55 25799.76 10899.69 15298.23 20699.92 11796.39 33399.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30899.45 7199.96 7199.83 40
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24699.87 20599.03 13599.86 15399.76 67
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29599.81 3699.53 28799.73 72
MSP-MVS99.04 20398.79 23099.81 4199.78 10699.73 7799.35 12199.57 20598.54 26099.54 20098.99 35096.81 28199.93 9596.97 29899.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20599.59 5199.74 21899.71 77
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28699.98 2199.75 3999.23 33199.82 46
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
MP-MVS-pluss99.14 18498.92 21399.80 4699.83 6699.83 2998.61 27999.63 16596.84 36099.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 28399.51 21299.50 25399.31 6299.88 19198.18 20299.84 16299.69 84
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 29299.53 20599.73 12498.75 13299.87 20597.70 24799.83 17099.68 90
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20599.54 6099.92 10699.63 128
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 32499.35 24799.25 31499.23 7399.92 11797.21 28899.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++99.38 11899.25 13799.77 5899.03 34999.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
ZNCC-MVS99.22 15999.04 18699.77 5899.76 11899.73 7799.28 14499.56 21098.19 29799.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 27299.32 25599.36 29098.73 13699.93 9597.29 27699.74 21899.67 96
PGM-MVS99.20 16699.01 19399.77 5899.75 12999.71 8499.16 18399.72 12297.99 30799.42 23199.60 21498.81 12099.93 9596.91 30199.74 21899.66 105
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19198.93 15099.95 8499.60 153
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22499.42 7899.96 7199.80 47
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27899.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27899.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
MP-MVScopyleft99.06 19798.83 22599.76 6599.76 11899.71 8499.32 12799.50 24498.35 28398.97 30299.48 26098.37 18899.92 11795.95 35399.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
mPP-MVS99.19 16999.00 19699.76 6599.76 11899.68 9899.38 11399.54 22298.34 28799.01 30099.50 25398.53 16699.93 9597.18 29099.78 20399.66 105
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30299.94 7899.42 7899.92 10699.67 96
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25799.57 18699.67 16799.03 9999.94 7897.01 29599.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
GST-MVS99.16 18098.96 20799.75 7599.73 13899.73 7799.20 16799.55 21698.22 29499.32 25599.35 29598.65 14799.91 14196.86 30499.74 21899.62 139
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32999.47 26498.47 17399.88 19197.62 25599.73 22399.67 96
X-MVStestdata96.09 35594.87 36799.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32961.30 41398.47 17399.88 19197.62 25599.73 22399.67 96
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 27699.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
MSC_two_6792asdad99.74 8099.03 34999.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34999.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
SR-MVS99.19 16999.00 19699.74 8099.51 22999.72 8299.18 17299.60 18798.85 22299.47 21999.58 22298.38 18799.92 11796.92 30099.54 28599.57 170
HPM-MVS++copyleft98.96 21998.70 23699.74 8099.52 22799.71 8498.86 25199.19 32198.47 26898.59 34299.06 34098.08 21799.91 14196.94 29999.60 26999.60 153
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27699.62 25999.56 172
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32999.64 15699.69 15299.37 5699.89 17796.66 31699.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32999.64 15699.69 15299.37 5699.89 17796.66 31699.87 14599.69 84
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20598.20 19899.80 19399.75 70
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 30399.52 20799.69 15298.57 15799.92 11797.18 29099.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27999.61 26699.54 183
SMA-MVScopyleft99.19 16999.00 19699.73 8999.46 25599.73 7799.13 19399.52 23697.40 34099.57 18699.64 17998.93 10999.83 27197.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26799.90 15998.96 14499.90 11699.53 189
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
HyFIR lowres test98.91 22598.64 23899.73 8999.85 5999.47 14898.07 33699.83 6198.64 24899.89 5499.60 21492.57 339100.00 199.33 9399.97 5699.72 74
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22498.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23599.80 9299.85 5699.64 2899.85 24198.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 25099.86 22499.17 11899.44 30199.67 96
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24699.95 6499.17 11899.81 18899.63 128
APD-MVScopyleft98.87 23298.59 24399.71 10099.50 23599.62 11899.01 22899.57 20596.80 36299.54 20099.63 19098.29 19899.91 14195.24 36999.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30897.77 23699.88 13499.60 153
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22497.32 27499.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v398.87 23298.60 24199.69 10599.93 2699.46 15299.74 2494.97 39899.78 7099.88 6299.88 4293.66 32999.97 3499.61 4999.95 8499.64 123
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25699.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24299.88 19199.20 11299.87 14599.59 160
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25399.87 20598.97 14299.87 14599.63 128
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29699.76 6299.34 12299.97 1898.93 21199.91 4499.79 9398.68 14099.93 9596.80 30899.56 27699.30 267
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 28099.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
1112_ss99.05 20098.84 22399.67 11099.66 17099.29 19598.52 29899.82 6697.65 32799.43 22999.16 32796.42 29399.91 14199.07 13399.84 16299.80 47
DeepPCF-MVS98.42 699.18 17399.02 19099.67 11099.22 31899.75 6897.25 38499.47 25298.72 24099.66 15399.70 14699.29 6499.63 37398.07 21099.81 18899.62 139
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP97.51 1499.05 20098.84 22399.67 11099.78 10699.55 13998.88 24999.66 14897.11 35599.47 21999.60 21499.07 9499.89 17796.18 34299.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22499.90 2599.99 1699.73 72
WR-MVS99.11 19198.93 20999.66 11799.30 30399.42 16698.42 30799.37 28199.04 19899.57 18699.20 32596.89 27999.86 22498.66 17299.87 14599.70 80
XVG-OURS-SEG-HR99.16 18098.99 20199.66 11799.84 6299.64 11198.25 31999.73 11398.39 27599.63 16099.43 27299.70 2499.90 15997.34 27398.64 36599.44 230
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 27199.32 9599.94 9599.53 189
EPP-MVSNet99.17 17899.00 19699.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31499.93 9598.72 16799.89 12599.63 128
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22498.70 16899.68 24399.49 212
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25699.88 2999.99 1699.71 77
MCST-MVS99.02 20698.81 22799.65 12299.58 19299.49 14698.58 28699.07 33098.40 27499.04 29999.25 31498.51 17199.80 30297.31 27599.51 29199.65 113
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35799.74 10998.36 27899.66 15399.68 16399.71 2299.90 15996.84 30799.88 13499.43 236
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24699.96 2399.79 9397.45 25699.93 9599.34 9099.99 1699.78 57
QAPM98.40 28197.99 29599.65 12299.39 27299.47 14899.67 4999.52 23691.70 39598.78 32899.80 8398.55 16099.95 6494.71 37799.75 21199.53 189
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
EGC-MVSNET89.05 37285.52 37599.64 12999.89 4099.78 4999.56 8199.52 23624.19 40649.96 40799.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
lessismore_v099.64 12999.86 5599.38 17690.66 40799.89 5499.83 6694.56 31999.97 3499.56 5799.92 10699.57 170
114514_t98.49 27198.11 28999.64 12999.73 13899.58 13399.24 15799.76 9989.94 39899.42 23199.56 23597.76 24199.86 22497.74 24199.82 17999.47 220
CPTT-MVS98.74 24498.44 25999.64 12999.61 18199.38 17699.18 17299.55 21696.49 36499.27 26699.37 28697.11 27399.92 11795.74 36099.67 24999.62 139
RPSCF99.18 17399.02 19099.64 12999.83 6699.85 1999.44 10599.82 6698.33 28899.50 21499.78 10197.90 22999.65 37096.78 30999.83 17099.44 230
Anonymous20240521198.75 24298.46 25799.63 13699.34 29199.66 10299.47 9997.65 38199.28 15999.56 19399.50 25393.15 33399.84 25698.62 17399.58 27499.40 241
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23599.57 18699.70 14699.27 6999.88 19197.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28699.48 24998.50 26499.52 20799.63 19099.14 8499.76 31897.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24999.63 16099.72 13198.68 14099.75 32296.38 33499.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24999.63 16099.72 13198.68 14099.75 32296.38 33499.83 17099.51 202
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 28099.79 3799.95 8499.60 153
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27899.60 17899.71 13998.92 11099.91 14197.08 29399.84 16299.40 241
Test_1112_low_res98.95 22298.73 23299.63 13699.68 16499.15 22198.09 33399.80 7997.14 35399.46 22399.40 27896.11 30399.89 17799.01 13799.84 16299.84 36
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22499.44 7299.96 7199.61 149
SF-MVS99.10 19498.93 20999.62 14599.58 19299.51 14499.13 19399.65 15797.97 30999.42 23199.61 20698.86 11799.87 20596.45 33199.68 24399.49 212
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20599.15 12199.91 11599.66 105
F-COLMAP98.74 24498.45 25899.62 14599.57 20299.47 14898.84 25499.65 15796.31 36898.93 30699.19 32697.68 24599.87 20596.52 32499.37 31199.53 189
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25697.85 23199.70 23499.10 308
CDPH-MVS98.56 26298.20 28199.61 14899.50 23599.46 15298.32 31399.41 26695.22 38199.21 27799.10 33798.34 19399.82 28095.09 37399.66 25299.56 172
LS3D99.24 15099.11 15999.61 14898.38 39299.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28599.78 20399.15 297
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 23199.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
MVS_030499.17 17899.03 18899.59 15399.44 26098.90 24899.04 21995.32 39799.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25699.86 3199.98 4199.64 123
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31399.86 22498.95 14896.57 39899.45 225
PHI-MVS99.11 19198.95 20899.59 15399.13 33399.59 12999.17 17799.65 15797.88 31799.25 26899.46 26798.97 10699.80 30297.26 28199.82 17999.37 248
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 335
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20599.88 2999.97 5699.66 105
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25699.83 3299.97 5699.64 123
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17799.43 7399.86 15399.47 220
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22299.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
NCCC98.82 23698.57 24799.58 15799.21 32099.31 19298.61 27999.25 30898.65 24798.43 35199.26 31297.86 23299.81 29596.55 32299.27 32699.61 149
train_agg98.35 28697.95 29999.57 16399.35 28299.35 18698.11 33199.41 26694.90 38597.92 37098.99 35098.02 22199.85 24195.38 36799.44 30199.50 207
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 24199.89 2899.98 4199.66 105
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 33399.90 3798.95 20799.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
VNet99.18 17399.06 17699.56 16699.24 31599.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 29099.84 25699.15 12199.30 32099.47 220
CNVR-MVS98.99 21598.80 22999.56 16699.25 31399.43 16398.54 29599.27 30298.58 25598.80 32499.43 27298.53 16699.70 33797.22 28799.59 27399.54 183
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30899.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 27197.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM99.18 17399.05 18099.55 16999.35 28298.81 25499.05 21697.79 38099.99 299.48 21799.59 21996.29 30099.95 6499.94 1699.98 4199.88 25
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20599.90 2599.97 5699.66 105
HQP_MVS98.90 22798.68 23799.55 16999.58 19299.24 20898.80 26499.54 22298.94 20899.14 28799.25 31497.24 26599.82 28095.84 35799.78 20399.60 153
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26799.87 20599.03 13599.94 9599.44 230
IS-MVSNet99.03 20498.85 22199.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31799.81 29597.70 24799.88 13499.58 165
test1299.54 17499.29 30599.33 18999.16 32498.43 35197.54 25399.82 28099.47 29899.48 216
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
Effi-MVS+-dtu99.07 19698.92 21399.52 17798.89 36299.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24499.98 2198.11 20899.28 32398.81 352
新几何199.52 17799.50 23599.22 21199.26 30595.66 37798.60 34199.28 30797.67 24699.89 17795.95 35399.32 31899.45 225
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31898.98 14099.99 1699.36 251
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19199.90 2599.96 7199.67 96
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29899.83 27199.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29699.97 3499.59 5199.98 4199.55 175
Patchmtry98.78 23998.54 25199.49 18298.89 36299.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34799.95 6498.00 21599.97 5699.33 258
UGNet99.38 11899.34 11299.49 18298.90 35998.90 24899.70 3599.35 28599.86 4698.57 34499.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33498.41 18299.95 8499.05 325
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32999.53 23199.36 15099.41 23799.61 20699.22 7499.87 20599.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft97.35 1698.36 28397.99 29599.48 18699.32 29899.24 20898.50 30099.51 24095.19 38398.58 34398.96 35796.95 27899.83 27195.63 36199.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25299.88 19199.11 12999.84 16299.48 216
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21999.57 18699.82 7398.06 21899.87 20598.69 17099.73 22399.15 297
Fast-Effi-MVS+99.02 20698.87 21999.46 19099.38 27599.50 14599.04 21999.79 8597.17 35198.62 33998.74 37199.34 6099.95 6498.32 18999.41 30698.92 341
test_prior99.46 19099.35 28299.22 21199.39 27699.69 34399.48 216
TAPA-MVS97.92 1398.03 30397.55 31999.46 19099.47 25199.44 15998.50 30099.62 16886.79 39999.07 29799.26 31298.26 20199.62 37497.28 27899.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
EIA-MVS99.12 18899.01 19399.45 19399.36 28099.62 11899.34 12299.79 8598.41 27298.84 31998.89 36398.75 13299.84 25698.15 20699.51 29198.89 345
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 28096.01 34799.96 7199.11 306
h-mvs3398.61 25498.34 27099.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 342100.00 199.24 10696.51 39999.65 113
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36999.80 6599.56 19399.69 15296.99 27799.85 24198.99 13899.73 22399.50 207
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30999.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
OMC-MVS98.90 22798.72 23399.44 19699.39 27299.42 16698.58 28699.64 16397.31 34599.44 22599.62 19798.59 15499.69 34396.17 34399.79 19899.22 280
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31399.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 361
MVP-Stereo99.16 18099.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24999.31 25999.68 16398.19 20999.78 30898.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 29299.73 11398.82 22699.72 12899.62 19796.56 28799.82 28099.32 9599.95 8499.56 172
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17799.19 11399.90 11699.72 74
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17799.15 12199.89 12599.71 77
testdata99.42 20299.51 22998.93 24599.30 29796.20 36998.87 31699.40 27898.33 19599.89 17796.29 33799.28 32399.44 230
VDDNet98.97 21698.82 22699.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32199.85 24198.79 15999.32 31899.59 160
FMVSNet597.80 31097.25 32699.42 20298.83 36698.97 23999.38 11399.80 7998.87 21999.25 26899.69 15280.60 39799.91 14198.96 14499.90 11699.38 245
MVS_111021_LR99.13 18699.03 18899.42 20299.58 19299.32 19197.91 35599.73 11398.68 24499.31 25999.48 26099.09 8999.66 36497.70 24799.77 20799.29 270
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25699.82 3599.82 17999.77 61
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20998.33 39499.56 13699.01 22899.59 19395.44 37899.57 18699.80 8395.64 30899.46 39496.47 32999.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 35699.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
iter_conf_final98.75 24298.54 25199.40 21199.33 29698.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36899.92 11799.37 8499.97 5699.54 183
UnsupCasMVSNet_bld98.55 26398.27 27699.40 21199.56 21399.37 17997.97 34999.68 14097.49 33699.08 29499.35 29595.41 31299.82 28097.70 24798.19 38099.01 332
MVS_111021_HR99.12 18899.02 19099.40 21199.50 23599.11 22497.92 35399.71 12598.76 23899.08 29499.47 26499.17 7999.54 38597.85 23199.76 20999.54 183
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 34399.32 9599.94 9599.53 189
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 29099.81 7599.61 11099.48 21799.41 27498.47 17399.86 22498.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP-MVS98.36 28398.02 29499.39 21599.31 29998.94 24297.98 34699.37 28197.45 33798.15 36098.83 36696.67 28499.70 33794.73 37599.67 24999.53 189
TSAR-MVS + GP.99.12 18899.04 18699.38 21899.34 29199.16 21998.15 32599.29 29898.18 29899.63 16099.62 19799.18 7899.68 35598.20 19899.74 21899.30 267
AdaColmapbinary98.60 25698.35 26999.38 21899.12 33599.22 21198.67 27699.42 26597.84 32198.81 32299.27 30997.32 26399.81 29595.14 37199.53 28799.10 308
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25699.33 25299.53 24698.88 11699.68 35596.01 34799.65 25499.02 331
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 36398.26 35599.32 29997.93 22899.82 28095.96 35299.38 30999.43 236
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 27699.75 11599.04 34399.36 5999.86 22499.08 13299.25 32799.45 225
MSDG99.08 19598.98 20499.37 22199.60 18399.13 22297.54 37099.74 10998.84 22599.53 20599.55 24299.10 8799.79 30597.07 29499.86 15399.18 291
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
pmmvs499.13 18699.06 17699.36 22599.57 20299.10 22998.01 34299.25 30898.78 23399.58 18399.44 27198.24 20299.76 31898.74 16599.93 10299.22 280
N_pmnet98.73 24698.53 25399.35 22799.72 14198.67 26598.34 31194.65 39998.35 28399.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
Effi-MVS+99.06 19798.97 20599.34 22899.31 29998.98 23798.31 31499.91 3298.81 22898.79 32698.94 35999.14 8499.84 25698.79 15998.74 35999.20 286
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33799.78 30897.43 26899.89 12599.35 254
Patchmatch-RL test98.60 25698.36 26799.33 23199.77 11499.07 23298.27 31699.87 4598.91 21499.74 12399.72 13190.57 36499.79 30598.55 17699.85 15799.11 306
PAPM_NR98.36 28398.04 29299.33 23199.48 24598.93 24598.79 26799.28 30197.54 33298.56 34598.57 37797.12 27299.69 34394.09 38498.90 35099.38 245
PCF-MVS96.03 1896.73 34095.86 35199.33 23199.44 26099.16 21996.87 39399.44 26086.58 40098.95 30499.40 27894.38 32099.88 19187.93 39999.80 19398.95 337
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CLD-MVS98.76 24198.57 24799.33 23199.57 20298.97 23997.53 37299.55 21696.41 36599.27 26699.13 32999.07 9499.78 30896.73 31299.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DPM-MVS98.28 28997.94 30399.32 23599.36 28099.11 22497.31 38298.78 34496.88 35898.84 31999.11 33697.77 23999.61 37894.03 38699.36 31299.23 278
jason99.16 18099.11 15999.32 23599.75 12998.44 28398.26 31899.39 27698.70 24399.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
FMVSNet398.80 23898.63 24099.32 23599.13 33398.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33999.86 22498.96 14499.90 11699.39 243
dmvs_re98.69 25098.48 25599.31 23899.55 21499.42 16699.54 8498.38 36699.32 15498.72 33298.71 37296.76 28399.21 39796.01 34799.35 31499.31 265
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
DP-MVS Recon98.50 26998.23 27799.31 23899.49 24099.46 15298.56 29199.63 16594.86 38798.85 31899.37 28697.81 23699.59 38096.08 34499.44 30198.88 346
PatchMatch-RL98.68 25198.47 25699.30 24199.44 26099.28 19798.14 32799.54 22297.12 35499.11 29199.25 31497.80 23799.70 33796.51 32599.30 32098.93 339
OPU-MVS99.29 24299.12 33599.44 15999.20 16799.40 27899.00 10098.84 40296.54 32399.60 26999.58 165
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25799.68 14399.69 15298.13 21399.87 20598.82 15599.98 4199.24 275
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32199.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
CANet99.11 19199.05 18099.28 24498.83 36698.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 25099.94 7899.19 11399.97 5699.33 258
CNLPA98.57 26198.34 27099.28 24499.18 32799.10 22998.34 31199.41 26698.48 26798.52 34698.98 35397.05 27599.78 30895.59 36299.50 29498.96 335
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32499.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
sss98.90 22798.77 23199.27 24799.48 24598.44 28398.72 27399.32 29097.94 31399.37 24599.35 29596.31 29899.91 14198.85 15299.63 25899.47 220
LF4IMVS99.01 21098.92 21399.27 24799.71 14499.28 19798.59 28499.77 9498.32 28999.39 24399.41 27498.62 14999.84 25696.62 32199.84 16298.69 359
LFMVS98.46 27498.19 28499.26 25099.24 31598.52 27999.62 6396.94 38999.87 4299.31 25999.58 22291.04 35599.81 29598.68 17199.42 30599.45 225
WTY-MVS98.59 25998.37 26699.26 25099.43 26498.40 28698.74 27199.13 32898.10 30099.21 27799.24 31994.82 31599.90 15997.86 22998.77 35599.49 212
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 25099.19 32599.26 20199.65 5999.69 13791.33 39698.14 36499.77 10898.28 19999.96 5595.41 36699.55 28098.58 365
alignmvs98.28 28997.96 29899.25 25399.12 33598.93 24599.03 22398.42 36399.64 10498.72 33297.85 39490.86 36099.62 37498.88 15199.13 33399.19 289
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
lupinMVS98.96 21998.87 21999.24 25599.57 20298.40 28698.12 32999.18 32298.28 29199.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
MVSTER98.47 27398.22 27999.24 25599.06 34598.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37699.85 24199.14 12799.92 10699.52 200
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 24199.15 12199.92 10699.68 90
BH-RMVSNet98.41 27998.14 28799.21 25799.21 32098.47 28098.60 28198.26 37098.35 28398.93 30699.31 30197.20 27099.66 36494.32 38099.10 33699.51 202
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33797.92 22199.70 23499.38 245
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 36499.09 13199.66 25299.10 308
MAR-MVS98.24 29397.92 30599.19 26098.78 37499.65 10899.17 17799.14 32695.36 37998.04 36798.81 36897.47 25599.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet98.13 29897.77 31399.18 26294.57 40997.99 31499.24 15797.96 37599.74 7597.29 38499.62 19793.13 33499.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
hse-mvs298.52 26698.30 27499.16 26399.29 30598.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34299.85 24199.24 10697.87 39099.03 327
ETV-MVS99.18 17399.18 14499.16 26399.34 29199.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 379
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25798.60 28199.21 31897.89 31596.76 39196.37 41095.47 31199.57 38299.10 13098.73 36199.09 312
FE-MVS97.85 30897.42 32199.15 26599.44 26098.75 26099.77 1598.20 37295.85 37399.33 25299.80 8388.86 37599.88 19196.40 33299.12 33498.81 352
CL-MVSNet_self_test98.71 24898.56 25099.15 26599.22 31898.66 26897.14 38799.51 24098.09 30299.54 20099.27 30996.87 28099.74 32598.43 18198.96 34599.03 327
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20499.61 17599.79 6899.76 10899.58 22287.88 37899.92 11799.31 9899.97 5699.53 189
AUN-MVS97.82 30997.38 32299.14 26999.27 31098.53 27798.72 27399.02 33498.10 30097.18 38799.03 34789.26 37499.85 24197.94 22097.91 38899.03 327
test_yl98.25 29197.95 29999.13 27099.17 32898.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34397.26 28198.93 34699.24 275
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32898.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35199.69 34397.26 28198.93 34699.24 275
MIMVSNet98.43 27798.20 28199.11 27299.53 22298.38 29099.58 7698.61 35398.96 20599.33 25299.76 11290.92 35799.81 29597.38 27199.76 20999.15 297
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 29097.53 33398.47 34998.15 38997.88 23199.82 28097.46 26699.24 32999.09 312
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24598.67 26599.77 1598.60 35597.35 34399.63 16099.80 8393.07 33599.84 25697.92 22199.30 32098.78 355
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32299.31 29499.48 12698.86 31799.51 25096.56 28799.95 6499.05 13499.95 8499.19 289
MS-PatchMatch99.00 21298.97 20599.09 27599.11 34098.19 29998.76 27099.33 28898.49 26699.44 22599.58 22298.21 20799.69 34398.20 19899.62 25999.39 243
canonicalmvs99.02 20699.00 19699.09 27599.10 34198.70 26499.61 6899.66 14899.63 10698.64 33897.65 39799.04 9899.54 38598.79 15998.92 34899.04 326
PVSNet_BlendedMVS99.03 20499.01 19399.09 27599.54 21697.99 31498.58 28699.82 6697.62 32899.34 25099.71 13998.52 16999.77 31697.98 21699.97 5699.52 200
MDA-MVSNet-bldmvs99.06 19799.05 18099.07 27999.80 8797.83 32598.89 24899.72 12299.29 15699.63 16099.70 14696.47 29199.89 17798.17 20499.82 17999.50 207
TinyColmap98.97 21698.93 20999.07 27999.46 25598.19 29997.75 36199.75 10498.79 23199.54 20099.70 14698.97 10699.62 37496.63 32099.83 17099.41 240
USDC98.96 21998.93 20999.05 28199.54 21697.99 31497.07 39099.80 7998.21 29599.75 11599.77 10898.43 17999.64 37297.90 22399.88 13499.51 202
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30894.56 39098.02 36898.25 38797.43 25799.68 35590.90 39598.74 35999.33 258
PVSNet_Blended98.70 24998.59 24399.02 28399.54 21697.99 31497.58 36999.82 6695.70 37699.34 25098.98 35398.52 16999.77 31697.98 21699.83 17099.30 267
testing396.48 34595.63 35699.01 28499.23 31797.81 32698.90 24799.10 32998.72 24097.84 37697.92 39372.44 40999.85 24197.21 28899.33 31699.35 254
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13598.86 33972.71 40497.30 38399.08 33898.34 19399.74 32589.21 39698.33 37399.26 272
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6898.72 34696.81 36198.73 33199.51 25094.06 32299.86 22496.91 30198.20 37898.86 348
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34799.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31697.26 38898.63 24998.80 32498.00 39297.77 23999.90 15997.37 27298.98 34499.09 312
baseline197.73 31397.33 32398.96 28899.30 30397.73 33099.40 10998.42 36399.33 15399.46 22399.21 32391.18 35399.82 28098.35 18691.26 40499.32 261
DSMNet-mixed99.48 8899.65 5098.95 29099.71 14497.27 34499.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
thisisatest053097.45 32396.95 33398.94 29199.68 16497.73 33099.09 20994.19 40298.61 25399.56 19399.30 30384.30 39399.93 9598.27 19299.54 28599.16 295
mvs_anonymous99.28 14099.39 10298.94 29199.19 32597.81 32699.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22499.57 5699.50 29499.15 297
MG-MVS98.52 26698.39 26498.94 29199.15 33097.39 34298.18 32299.21 31898.89 21899.23 27299.63 19097.37 26199.74 32594.22 38299.61 26699.69 84
GA-MVS97.99 30697.68 31698.93 29499.52 22798.04 31297.19 38699.05 33398.32 28998.81 32298.97 35589.89 37299.41 39598.33 18899.05 33999.34 257
cl____98.54 26498.41 26298.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17899.46 26793.85 32599.78 30897.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26498.42 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17899.46 26793.87 32499.78 30897.97 21899.89 12599.18 291
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31297.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15998.27 19297.56 39398.91 342
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
xiu_mvs_v1_base99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29799.59 18798.23 29598.47 30299.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 369
MSLP-MVS++99.05 20099.09 16898.91 29799.21 32098.36 29198.82 26099.47 25298.85 22298.90 31299.56 23598.78 12799.09 39998.57 17599.68 24399.26 272
pmmvs398.08 30197.80 31098.91 29799.41 27097.69 33297.87 35799.66 14895.87 37299.50 21499.51 25090.35 36699.97 3498.55 17699.47 29899.08 318
tttt051797.62 31897.20 32798.90 30399.76 11897.40 34199.48 9694.36 40099.06 19799.70 13799.49 25784.55 39299.94 7898.73 16699.65 25499.36 251
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27798.35 36898.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 343
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30599.45 15798.87 25099.48 24986.54 40199.44 22599.74 12097.34 26299.86 22491.61 39299.28 32397.37 396
MDA-MVSNet_test_wron98.95 22298.99 20198.85 30699.64 17497.16 34798.23 32099.33 28898.93 21199.56 19399.66 17297.39 26099.83 27198.29 19099.88 13499.55 175
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6297.99 31499.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 39293.88 38899.85 15799.07 323
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
YYNet198.95 22298.99 20198.84 30899.64 17497.14 34998.22 32199.32 29098.92 21399.59 18199.66 17297.40 25899.83 27198.27 19299.90 11699.55 175
new_pmnet98.88 23198.89 21798.84 30899.70 15297.62 33398.15 32599.50 24497.98 30899.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 337
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13599.67 14497.39 34199.16 28399.79 9391.87 34799.91 14198.78 16298.77 35598.44 374
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 35099.94 7898.82 15599.00 34398.26 380
RPMNet98.60 25698.53 25398.83 31099.05 34698.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34199.92 11798.75 16498.77 35598.44 374
miper_lstm_enhance98.65 25398.60 24198.82 31399.20 32397.33 34397.78 36099.66 14899.01 20099.59 18199.50 25394.62 31899.85 24198.12 20799.90 11699.26 272
FPMVS96.32 34995.50 35798.79 31499.60 18398.17 30298.46 30698.80 34397.16 35296.28 39699.63 19082.19 39499.09 39988.45 39898.89 35199.10 308
xiu_mvs_v2_base99.02 20699.11 15998.77 31599.37 27798.09 30898.13 32899.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 381
PS-MVSNAJ99.00 21299.08 17098.76 31699.37 27798.10 30798.00 34499.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 385
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18495.89 40298.86 348
c3_l98.72 24798.71 23498.72 31899.12 33597.22 34697.68 36599.56 21098.90 21599.54 20099.48 26096.37 29799.73 32897.88 22599.88 13499.21 282
EU-MVSNet99.39 11699.62 5698.72 31899.88 4596.44 36199.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 27199.58 5499.95 8499.90 20
new-patchmatchnet99.35 12699.57 7298.71 32099.82 7396.62 35998.55 29299.75 10499.50 12499.88 6299.87 4799.31 6299.88 19199.43 73100.00 199.62 139
thisisatest051596.98 33496.42 34198.66 32199.42 26997.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20597.10 29299.39 30898.63 360
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29597.90 37898.53 26196.54 39596.47 40970.62 41199.81 29595.91 35598.15 38298.56 367
eth_miper_zixun_eth98.68 25198.71 23498.60 32399.10 34196.84 35697.52 37499.54 22298.94 20899.58 18399.48 26096.25 30199.76 31898.01 21499.93 10299.21 282
dmvs_testset97.27 32896.83 33898.59 32499.46 25597.55 33599.25 15696.84 39098.78 23397.24 38597.67 39697.11 27398.97 40186.59 40598.54 36999.27 271
miper_ehance_all_eth98.59 25998.59 24398.59 32498.98 35597.07 35097.49 37599.52 23698.50 26499.52 20799.37 28696.41 29599.71 33497.86 22999.62 25999.00 333
BH-untuned98.22 29598.09 29098.58 32699.38 27597.24 34598.55 29298.98 33797.81 32299.20 28298.76 37097.01 27699.65 37094.83 37498.33 37398.86 348
IterMVS-SCA-FT99.00 21299.16 14698.51 32799.75 12995.90 37198.07 33699.84 5999.84 5499.89 5499.73 12496.01 30599.99 899.33 93100.00 199.63 128
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26498.51 35899.88 4197.89 37299.87 4791.89 34699.90 15998.16 20597.68 39298.59 363
Patchmatch-test98.10 30097.98 29798.48 32999.27 31096.48 36099.40 10999.07 33098.81 22899.23 27299.57 23190.11 36999.87 20596.69 31399.64 25699.09 312
baseline296.83 33796.28 34398.46 33099.09 34396.91 35498.83 25693.87 40497.23 34896.23 39998.36 38488.12 37799.90 15996.68 31498.14 38398.57 366
IterMVS98.97 21699.16 14698.42 33199.74 13595.64 37498.06 33899.83 6199.83 5799.85 7399.74 12096.10 30499.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28197.31 34599.41 23799.22 32187.30 37999.37 39697.70 24799.62 25999.08 318
CHOSEN 280x42098.41 27998.41 26298.40 33299.34 29195.89 37296.94 39299.44 26098.80 23099.25 26899.52 24893.51 33199.98 2198.94 14999.98 4199.32 261
API-MVS98.38 28298.39 26498.35 33498.83 36699.26 20199.14 18799.18 32298.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
PVSNet97.47 1598.42 27898.44 25998.35 33499.46 25596.26 36596.70 39599.34 28797.68 32699.00 30199.13 32997.40 25899.72 33097.59 25999.68 24399.08 318
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28199.21 31897.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 312
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26696.37 36799.43 22998.96 35794.74 31699.69 34397.71 24499.62 25998.83 351
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30297.91 37796.85 35998.21 35998.51 38196.42 29399.51 39092.16 39197.29 39497.98 389
PAPM95.61 36794.71 36998.31 33999.12 33596.63 35896.66 39698.46 36190.77 39796.25 39798.68 37493.01 33699.69 34381.60 40697.86 39198.62 361
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16497.55 33597.94 35195.60 39699.37 14890.68 40698.70 37396.56 28798.61 40486.94 40499.55 28098.77 357
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13599.06 33294.98 38497.21 38699.12 33398.43 17999.67 36095.58 36398.56 36897.71 392
ppachtmachnet_test98.89 23099.12 15698.20 34299.66 17095.24 38097.63 36699.68 14099.08 19399.78 10199.62 19798.65 14799.88 19198.02 21199.96 7199.48 216
SD-MVS99.01 21099.30 12498.15 34399.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40797.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
our_test_398.85 23499.09 16898.13 34499.66 17094.90 38497.72 36299.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
ADS-MVSNet297.78 31197.66 31898.12 34599.14 33195.36 37799.22 16498.75 34596.97 35698.25 35699.64 17990.90 35899.94 7896.51 32599.56 27699.08 318
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30998.65 35298.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 334
DeepMVS_CXcopyleft97.98 34799.69 15696.95 35299.26 30575.51 40395.74 40198.28 38696.47 29199.62 37491.23 39497.89 38997.38 395
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28498.23 37198.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 339
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3696.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
thres600view796.60 34396.16 34597.93 35099.63 17696.09 36999.18 17297.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
thres40096.40 34695.89 34997.92 35199.58 19296.11 36799.00 23197.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27898.44 36298.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 343
ADS-MVSNet97.72 31697.67 31797.86 35399.14 33194.65 38599.22 16498.86 33996.97 35698.25 35699.64 17990.90 35899.84 25696.51 32599.56 27699.08 318
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5597.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CVMVSNet98.61 25498.88 21897.80 35599.58 19293.60 39299.26 14999.64 16399.66 10099.72 12899.67 16793.26 33299.93 9599.30 9999.81 18899.87 30
BH-w/o97.20 32997.01 33197.76 35699.08 34495.69 37398.03 34198.52 35795.76 37597.96 36998.02 39095.62 30999.47 39292.82 39097.25 39598.12 387
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12797.96 37597.71 32598.29 35499.32 29986.72 38799.92 11798.10 20996.24 40199.09 312
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 14197.69 25398.78 35398.31 377
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 14197.69 25398.78 35398.31 377
tfpn200view996.30 35095.89 34997.53 36099.58 19296.11 36799.00 23197.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33993.94 40398.96 20598.46 35098.17 38879.86 39899.87 20596.99 29699.06 33798.78 355
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 21091.75 39497.13 38997.61 39895.58 31098.63 40396.68 31499.11 33598.18 386
thres100view90096.39 34796.03 34897.47 36399.63 17695.93 37099.18 17297.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27396.18 37097.37 38297.73 39595.73 30799.58 38195.49 36481.40 40599.36 251
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17797.77 23698.77 35598.52 368
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
SCA98.11 29998.36 26797.36 36699.20 32392.99 39498.17 32498.49 36098.24 29399.10 29399.57 23196.01 30599.94 7896.86 30499.62 25999.14 302
thres20096.09 35595.68 35597.33 36899.48 24596.22 36698.53 29797.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31597.23 34898.88 31399.04 34379.23 40099.54 38596.24 34096.81 39698.50 372
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31597.23 34898.88 31399.04 34379.23 40099.54 38596.24 34096.81 39698.50 372
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17798.39 36598.12 29998.79 32699.58 22290.71 36299.89 17797.23 28699.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11189.95 40998.21 29598.61 34099.59 21986.69 38899.72 33096.99 29699.23 33198.81 352
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29998.04 37399.24 16695.77 40099.47 26493.78 32799.66 36498.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18790.81 40699.72 3090.43 40899.89 3699.86 7199.86 5493.60 33099.89 17799.46 7099.99 1699.65 113
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25197.87 37978.01 40299.30 26499.69 15297.70 24295.89 40699.29 10298.14 38399.95 11
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30891.53 40298.38 30992.60 40599.13 18899.31 25999.96 1297.18 27199.68 35598.34 18799.83 17099.07 323
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16698.51 35893.27 39297.89 37299.21 32384.83 39199.70 33796.04 34698.18 38198.75 358
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20498.86 33998.52 26298.92 30999.54 24491.90 34599.82 28098.02 21199.03 34198.37 376
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13598.94 33897.74 32397.85 37599.55 24292.40 34499.73 32896.25 33998.73 36198.06 388
test111197.74 31298.16 28696.49 38099.60 18389.86 41099.71 3491.21 40699.89 3699.88 6299.87 4793.73 32899.90 15999.56 5799.99 1699.70 80
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10898.68 34894.69 38998.14 36499.34 29886.32 38999.80 30297.60 25898.07 38698.88 346
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33699.44 13698.88 31399.12 33392.78 33899.68 35594.30 38199.03 34197.50 393
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17198.38 36697.35 34398.23 35899.59 21987.23 38099.82 28096.27 33898.73 36198.59 363
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21299.32 29092.37 39397.73 38199.46 26791.15 35499.69 34396.07 34598.80 35298.21 383
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35399.34 15198.92 30998.88 36493.79 32699.66 36492.87 38999.05 33997.30 397
test250694.73 37094.59 37195.15 38699.59 18785.90 41299.75 2274.01 41299.89 3699.71 13399.86 5479.00 40399.90 15999.52 6499.99 1699.65 113
wuyk23d97.58 32099.13 15292.93 38799.69 15699.49 14699.52 8699.77 9497.97 30999.96 2399.79 9399.84 1299.94 7895.85 35699.82 17979.36 403
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 21061.71 40595.39 40299.52 24893.90 32399.94 7898.76 16398.27 37699.62 139
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32999.82 130.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3270.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS96.36 36395.20 370
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
PC_three_145297.56 32999.68 14399.41 27499.09 8997.09 40596.66 31699.60 26999.62 139
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.43 26499.61 12499.43 26396.38 36699.11 29199.07 33997.86 23299.92 11794.04 38599.49 296
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27999.61 26699.54 183
IU-MVS99.69 15699.77 5499.22 31597.50 33599.69 14097.75 24099.70 23499.77 61
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 389
9.1498.64 23899.45 25998.81 26199.60 18797.52 33499.28 26599.56 23598.53 16699.83 27195.36 36899.64 256
save fliter99.53 22299.25 20498.29 31599.38 28099.07 195
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
GSMVS99.14 302
test_part299.62 18099.67 10099.55 198
sam_mvs190.81 36199.14 302
sam_mvs90.52 365
MTGPAbinary99.53 231
test_post199.14 18751.63 41589.54 37399.82 28096.86 304
test_post52.41 41490.25 36799.86 224
patchmatchnet-post99.62 19790.58 36399.94 78
MTMP99.09 20998.59 356
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25696.38 334
test9_res95.10 37299.44 30199.50 207
TEST999.35 28299.35 18698.11 33199.41 26694.83 38897.92 37098.99 35098.02 22199.85 241
test_899.34 29199.31 19298.08 33599.40 27394.90 38597.87 37498.97 35598.02 22199.84 256
agg_prior294.58 37899.46 30099.50 207
agg_prior99.35 28299.36 18399.39 27697.76 38099.85 241
test_prior499.19 21798.00 344
test_prior297.95 35097.87 31898.05 36699.05 34197.90 22995.99 35099.49 296
旧先验297.94 35195.33 38098.94 30599.88 19196.75 310
新几何298.04 339
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24699.36 31299.46 224
无先验98.01 34299.23 31295.83 37499.85 24195.79 35999.44 230
原ACMM297.92 353
test22299.51 22999.08 23197.83 35999.29 29895.21 38298.68 33699.31 30197.28 26499.38 30999.43 236
testdata299.89 17795.99 350
segment_acmp98.37 188
testdata197.72 36297.86 320
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 265
plane_prior599.54 22299.82 28095.84 35799.78 20399.60 153
plane_prior499.25 314
plane_prior399.31 19298.36 27899.14 287
plane_prior298.80 26498.94 208
plane_prior199.51 229
plane_prior99.24 20898.42 30797.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
HQP-NCC99.31 29997.98 34697.45 33798.15 360
ACMP_Plane99.31 29997.98 34697.45 33798.15 360
BP-MVS94.73 375
HQP4-MVS98.15 36099.70 33799.53 189
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
NP-MVS99.40 27199.13 22298.83 366
MDTV_nov1_ep13_2view91.44 40399.14 18797.37 34299.21 27791.78 34996.75 31099.03 327
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18598.02 37498.51 26398.82 32199.61 20690.98 35699.66 36496.89 30398.92 348
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182