DVP-MVS | | | 89.60 1 | 90.35 1 | 87.33 35 | 95.27 2 | 71.25 52 | 93.49 5 | 92.73 49 | 77.33 45 | 92.12 4 | 95.78 4 | 80.98 3 | 97.40 2 | 89.08 4 | 96.41 4 | 93.33 66 |
|
MSP-MVS | | | 89.51 2 | 89.91 3 | 88.30 6 | 94.28 21 | 73.46 15 | 92.90 11 | 94.11 2 | 80.27 13 | 91.35 7 | 94.16 28 | 78.35 6 | 96.77 16 | 89.59 1 | 94.22 50 | 94.67 9 |
|
DPE-MVS | | | 89.48 3 | 89.98 2 | 88.01 11 | 94.80 6 | 72.69 28 | 91.59 32 | 94.10 4 | 75.90 77 | 92.29 2 | 95.66 6 | 81.67 1 | 97.38 4 | 87.44 14 | 96.34 7 | 93.95 36 |
|
APDe-MVS | | | 89.15 4 | 89.63 4 | 87.73 24 | 94.49 14 | 71.69 48 | 93.83 2 | 93.96 7 | 75.70 80 | 91.06 8 | 96.03 1 | 76.84 7 | 97.03 10 | 89.09 3 | 95.65 18 | 94.47 16 |
|
SMA-MVS | | | 89.08 5 | 89.23 5 | 88.61 2 | 94.25 22 | 73.73 7 | 92.40 17 | 93.63 12 | 74.77 96 | 92.29 2 | 95.97 2 | 74.28 21 | 97.24 6 | 88.58 7 | 96.91 1 | 94.87 7 |
|
HPM-MVS++ | | | 89.02 6 | 89.15 6 | 88.63 1 | 95.01 5 | 76.03 1 | 92.38 19 | 92.85 43 | 80.26 14 | 87.78 19 | 94.27 24 | 75.89 11 | 96.81 15 | 87.45 13 | 96.44 3 | 93.05 78 |
|
CNVR-MVS | | | 88.93 7 | 89.13 7 | 88.33 4 | 94.77 7 | 73.82 6 | 90.51 48 | 93.00 34 | 80.90 10 | 88.06 17 | 94.06 32 | 76.43 8 | 96.84 13 | 88.48 8 | 95.99 9 | 94.34 20 |
|
SteuartSystems-ACMMP | | | 88.72 8 | 88.86 8 | 88.32 5 | 92.14 61 | 72.96 22 | 93.73 3 | 93.67 11 | 80.19 15 | 88.10 16 | 94.80 9 | 73.76 25 | 97.11 8 | 87.51 12 | 95.82 14 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
DeepPCF-MVS | | 80.84 1 | 88.10 9 | 88.56 9 | 86.73 46 | 92.24 59 | 69.03 90 | 89.57 74 | 93.39 22 | 77.53 42 | 89.79 10 | 94.12 30 | 78.98 5 | 96.58 27 | 85.66 18 | 95.72 15 | 94.58 12 |
|
SD-MVS | | | 88.06 10 | 88.50 10 | 86.71 47 | 92.60 57 | 72.71 26 | 91.81 31 | 93.19 27 | 77.87 33 | 90.32 9 | 94.00 33 | 74.83 14 | 93.78 125 | 87.63 11 | 94.27 48 | 93.65 53 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 88.06 10 | 88.01 13 | 88.24 7 | 94.41 18 | 73.62 8 | 91.22 39 | 92.83 44 | 81.50 7 | 85.79 30 | 93.47 42 | 73.02 31 | 97.00 12 | 84.90 22 | 94.94 30 | 94.10 27 |
|
ACMMP_NAP | | | 88.05 12 | 88.08 12 | 87.94 14 | 93.70 33 | 73.05 19 | 90.86 42 | 93.59 13 | 76.27 73 | 88.14 15 | 95.09 8 | 71.06 45 | 96.67 20 | 87.67 10 | 96.37 6 | 94.09 28 |
|
TSAR-MVS + MP. | | | 88.02 13 | 88.11 11 | 87.72 26 | 93.68 35 | 72.13 43 | 91.41 35 | 92.35 62 | 74.62 100 | 88.90 11 | 93.85 36 | 75.75 12 | 96.00 41 | 87.80 9 | 94.63 38 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
testtj | | | 87.78 14 | 87.78 14 | 87.77 22 | 94.55 12 | 72.47 35 | 92.23 24 | 93.49 17 | 74.75 97 | 88.33 14 | 94.43 21 | 73.27 28 | 97.02 11 | 84.18 36 | 94.84 34 | 93.82 44 |
|
MP-MVS | | | 87.71 15 | 87.64 16 | 87.93 17 | 94.36 20 | 73.88 4 | 92.71 16 | 92.65 53 | 77.57 38 | 83.84 58 | 94.40 23 | 72.24 37 | 96.28 32 | 85.65 19 | 95.30 26 | 93.62 55 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 87.67 16 | 87.72 15 | 87.54 31 | 93.64 36 | 72.04 45 | 89.80 67 | 93.50 16 | 75.17 91 | 86.34 25 | 95.29 7 | 70.86 46 | 96.00 41 | 88.78 6 | 96.04 8 | 94.58 12 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 87.58 17 | 87.47 18 | 87.94 14 | 94.58 10 | 73.54 12 | 93.04 8 | 93.24 24 | 76.78 58 | 84.91 38 | 94.44 19 | 70.78 47 | 96.61 23 | 84.53 29 | 94.89 32 | 93.66 48 |
|
zzz-MVS | | | 87.53 18 | 87.41 19 | 87.90 18 | 94.18 26 | 74.25 2 | 90.23 57 | 92.02 73 | 79.45 19 | 85.88 27 | 94.80 9 | 68.07 70 | 96.21 34 | 86.69 15 | 95.34 22 | 93.23 70 |
|
ACMMPR | | | 87.44 19 | 87.23 22 | 88.08 9 | 94.64 8 | 73.59 9 | 93.04 8 | 93.20 26 | 76.78 58 | 84.66 45 | 94.52 14 | 68.81 67 | 96.65 21 | 84.53 29 | 94.90 31 | 94.00 34 |
|
APD-MVS | | | 87.44 19 | 87.52 17 | 87.19 37 | 94.24 23 | 72.39 37 | 91.86 30 | 92.83 44 | 73.01 128 | 88.58 12 | 94.52 14 | 73.36 26 | 96.49 28 | 84.26 33 | 95.01 28 | 92.70 86 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
GST-MVS | | | 87.42 21 | 87.26 20 | 87.89 21 | 94.12 28 | 72.97 21 | 92.39 18 | 93.43 20 | 76.89 55 | 84.68 44 | 93.99 34 | 70.67 50 | 96.82 14 | 84.18 36 | 95.01 28 | 93.90 39 |
|
region2R | | | 87.42 21 | 87.20 23 | 88.09 8 | 94.63 9 | 73.55 10 | 93.03 10 | 93.12 29 | 76.73 61 | 84.45 48 | 94.52 14 | 69.09 64 | 96.70 19 | 84.37 32 | 94.83 35 | 94.03 31 |
|
MCST-MVS | | | 87.37 23 | 87.25 21 | 87.73 24 | 94.53 13 | 72.46 36 | 89.82 65 | 93.82 9 | 73.07 126 | 84.86 43 | 92.89 54 | 76.22 9 | 96.33 30 | 84.89 24 | 95.13 27 | 94.40 17 |
|
#test# | | | 87.33 24 | 87.13 24 | 87.94 14 | 94.58 10 | 73.54 12 | 92.34 21 | 93.24 24 | 75.23 88 | 84.91 38 | 94.44 19 | 70.78 47 | 96.61 23 | 83.75 39 | 94.89 32 | 93.66 48 |
|
MTAPA | | | 87.23 25 | 87.00 25 | 87.90 18 | 94.18 26 | 74.25 2 | 86.58 163 | 92.02 73 | 79.45 19 | 85.88 27 | 94.80 9 | 68.07 70 | 96.21 34 | 86.69 15 | 95.34 22 | 93.23 70 |
|
XVS | | | 87.18 26 | 86.91 28 | 88.00 12 | 94.42 16 | 73.33 17 | 92.78 12 | 92.99 36 | 79.14 21 | 83.67 61 | 94.17 27 | 67.45 77 | 96.60 25 | 83.06 44 | 94.50 41 | 94.07 29 |
|
HPM-MVS | | | 87.11 27 | 86.98 26 | 87.50 33 | 93.88 31 | 72.16 42 | 92.19 25 | 93.33 23 | 76.07 76 | 83.81 59 | 93.95 35 | 69.77 59 | 96.01 40 | 85.15 20 | 94.66 37 | 94.32 22 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 87.11 27 | 86.92 27 | 87.68 30 | 94.20 25 | 73.86 5 | 93.98 1 | 92.82 47 | 76.62 63 | 83.68 60 | 94.46 18 | 67.93 72 | 95.95 43 | 84.20 35 | 94.39 44 | 93.23 70 |
|
DeepC-MVS | | 79.81 2 | 87.08 29 | 86.88 29 | 87.69 29 | 91.16 71 | 72.32 41 | 90.31 55 | 93.94 8 | 77.12 49 | 82.82 71 | 94.23 26 | 72.13 39 | 97.09 9 | 84.83 25 | 95.37 21 | 93.65 53 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 79.65 3 | 86.91 30 | 86.62 32 | 87.76 23 | 93.52 38 | 72.37 39 | 91.26 36 | 93.04 30 | 76.62 63 | 84.22 53 | 93.36 44 | 71.44 43 | 96.76 17 | 80.82 62 | 95.33 24 | 94.16 25 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 86.73 31 | 86.67 31 | 86.91 42 | 94.11 29 | 72.11 44 | 92.37 20 | 92.56 55 | 74.50 101 | 86.84 23 | 94.65 13 | 67.31 79 | 95.77 46 | 84.80 26 | 92.85 58 | 92.84 85 |
|
test_prior3 | | | 86.73 31 | 86.86 30 | 86.33 53 | 92.61 55 | 69.59 81 | 88.85 93 | 92.97 39 | 75.41 84 | 84.91 38 | 93.54 38 | 74.28 21 | 95.48 54 | 83.31 40 | 95.86 11 | 93.91 37 |
|
PGM-MVS | | | 86.68 33 | 86.27 36 | 87.90 18 | 94.22 24 | 73.38 16 | 90.22 59 | 93.04 30 | 75.53 82 | 83.86 57 | 94.42 22 | 67.87 74 | 96.64 22 | 82.70 49 | 94.57 40 | 93.66 48 |
|
mPP-MVS | | | 86.67 34 | 86.32 35 | 87.72 26 | 94.41 18 | 73.55 10 | 92.74 14 | 92.22 66 | 76.87 56 | 82.81 72 | 94.25 25 | 66.44 85 | 96.24 33 | 82.88 48 | 94.28 47 | 93.38 63 |
|
Regformer-2 | | | 86.63 35 | 86.53 33 | 86.95 41 | 89.33 110 | 71.24 54 | 88.43 105 | 92.05 72 | 82.50 1 | 86.88 22 | 90.09 108 | 74.45 16 | 95.61 50 | 84.38 31 | 90.63 79 | 94.01 33 |
|
CANet | | | 86.45 36 | 86.10 40 | 87.51 32 | 90.09 90 | 70.94 59 | 89.70 71 | 92.59 54 | 81.78 4 | 81.32 89 | 91.43 81 | 70.34 52 | 97.23 7 | 84.26 33 | 93.36 54 | 94.37 18 |
|
train_agg | | | 86.43 37 | 86.20 37 | 87.13 39 | 93.26 42 | 72.96 22 | 88.75 97 | 91.89 82 | 68.69 195 | 85.00 36 | 93.10 48 | 74.43 17 | 95.41 58 | 84.97 21 | 95.71 16 | 93.02 80 |
|
PHI-MVS | | | 86.43 37 | 86.17 39 | 87.24 36 | 90.88 77 | 70.96 57 | 92.27 23 | 94.07 6 | 72.45 132 | 85.22 34 | 91.90 68 | 69.47 61 | 96.42 29 | 83.28 42 | 95.94 10 | 94.35 19 |
|
Regformer-1 | | | 86.41 39 | 86.33 34 | 86.64 48 | 89.33 110 | 70.93 60 | 88.43 105 | 91.39 101 | 82.14 3 | 86.65 24 | 90.09 108 | 74.39 19 | 95.01 75 | 83.97 38 | 90.63 79 | 93.97 35 |
|
CSCG | | | 86.41 39 | 86.19 38 | 87.07 40 | 92.91 49 | 72.48 34 | 90.81 43 | 93.56 14 | 73.95 111 | 83.16 66 | 91.07 89 | 75.94 10 | 95.19 66 | 79.94 69 | 94.38 45 | 93.55 58 |
|
MVS_0304 | | | 86.37 41 | 85.81 44 | 88.02 10 | 90.13 88 | 72.39 37 | 89.66 72 | 92.75 48 | 81.64 6 | 82.66 75 | 92.04 64 | 64.44 101 | 97.35 5 | 84.76 27 | 94.25 49 | 94.33 21 |
|
agg_prior1 | | | 86.22 42 | 86.09 41 | 86.62 49 | 92.85 50 | 71.94 46 | 88.59 102 | 91.78 88 | 68.96 192 | 84.41 49 | 93.18 47 | 74.94 13 | 94.93 76 | 84.75 28 | 95.33 24 | 93.01 81 |
|
APD-MVS_3200maxsize | | | 85.97 43 | 85.88 42 | 86.22 56 | 92.69 53 | 69.53 83 | 91.93 29 | 92.99 36 | 73.54 120 | 85.94 26 | 94.51 17 | 65.80 93 | 95.61 50 | 83.04 46 | 92.51 64 | 93.53 60 |
|
canonicalmvs | | | 85.91 44 | 85.87 43 | 86.04 60 | 89.84 97 | 69.44 88 | 90.45 53 | 93.00 34 | 76.70 62 | 88.01 18 | 91.23 83 | 73.28 27 | 93.91 119 | 81.50 56 | 88.80 100 | 94.77 8 |
|
ACMMP | | | 85.89 45 | 85.39 47 | 87.38 34 | 93.59 37 | 72.63 30 | 92.74 14 | 93.18 28 | 76.78 58 | 80.73 98 | 93.82 37 | 64.33 102 | 96.29 31 | 82.67 50 | 90.69 78 | 93.23 70 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
CDPH-MVS | | | 85.76 46 | 85.29 51 | 87.17 38 | 93.49 39 | 71.08 55 | 88.58 103 | 92.42 60 | 68.32 200 | 84.61 46 | 93.48 40 | 72.32 36 | 96.15 37 | 79.00 72 | 95.43 20 | 94.28 23 |
|
TSAR-MVS + GP. | | | 85.71 47 | 85.33 48 | 86.84 43 | 91.34 69 | 72.50 33 | 89.07 87 | 87.28 202 | 76.41 66 | 85.80 29 | 90.22 106 | 74.15 24 | 95.37 62 | 81.82 54 | 91.88 66 | 92.65 90 |
|
Regformer-4 | | | 85.68 48 | 85.45 46 | 86.35 52 | 88.95 127 | 69.67 80 | 88.29 115 | 91.29 103 | 81.73 5 | 85.36 32 | 90.01 110 | 72.62 33 | 95.35 63 | 83.28 42 | 87.57 114 | 94.03 31 |
|
alignmvs | | | 85.48 49 | 85.32 49 | 85.96 61 | 89.51 105 | 69.47 85 | 89.74 69 | 92.47 56 | 76.17 74 | 87.73 20 | 91.46 80 | 70.32 53 | 93.78 125 | 81.51 55 | 88.95 97 | 94.63 11 |
|
3Dnovator+ | | 77.84 4 | 85.48 49 | 84.47 60 | 88.51 3 | 91.08 72 | 73.49 14 | 93.18 7 | 93.78 10 | 80.79 11 | 76.66 159 | 93.37 43 | 60.40 159 | 96.75 18 | 77.20 90 | 93.73 53 | 95.29 2 |
|
MSLP-MVS++ | | | 85.43 51 | 85.76 45 | 84.45 94 | 91.93 64 | 70.24 68 | 90.71 45 | 92.86 42 | 77.46 44 | 84.22 53 | 92.81 58 | 67.16 81 | 92.94 163 | 80.36 65 | 94.35 46 | 90.16 162 |
|
DELS-MVS | | | 85.41 52 | 85.30 50 | 85.77 62 | 88.49 143 | 67.93 118 | 85.52 194 | 93.44 19 | 78.70 28 | 83.63 63 | 89.03 135 | 74.57 15 | 95.71 48 | 80.26 67 | 94.04 51 | 93.66 48 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 85.35 53 | 84.95 56 | 86.57 51 | 93.69 34 | 70.58 66 | 92.15 27 | 91.62 92 | 73.89 113 | 82.67 74 | 94.09 31 | 62.60 122 | 95.54 53 | 80.93 60 | 92.93 56 | 93.57 57 |
|
Regformer-3 | | | 85.23 54 | 85.07 53 | 85.70 63 | 88.95 127 | 69.01 92 | 88.29 115 | 89.91 141 | 80.95 9 | 85.01 35 | 90.01 110 | 72.45 35 | 94.19 105 | 82.50 51 | 87.57 114 | 93.90 39 |
|
abl_6 | | | 85.23 54 | 84.95 56 | 86.07 59 | 92.23 60 | 70.48 67 | 90.80 44 | 92.08 71 | 73.51 121 | 85.26 33 | 94.16 28 | 62.75 121 | 95.92 44 | 82.46 52 | 91.30 73 | 91.81 116 |
|
MVS_111021_HR | | | 85.14 56 | 84.75 58 | 86.32 55 | 91.65 67 | 72.70 27 | 85.98 178 | 90.33 129 | 76.11 75 | 82.08 79 | 91.61 75 | 71.36 44 | 94.17 107 | 81.02 59 | 92.58 63 | 92.08 108 |
|
casdiffmvs | | | 85.11 57 | 85.14 52 | 85.01 77 | 87.20 183 | 65.77 154 | 87.75 130 | 92.83 44 | 77.84 34 | 84.36 52 | 92.38 60 | 72.15 38 | 93.93 118 | 81.27 58 | 90.48 81 | 95.33 1 |
|
UA-Net | | | 85.08 58 | 84.96 55 | 85.45 64 | 92.07 62 | 68.07 116 | 89.78 68 | 90.86 115 | 82.48 2 | 84.60 47 | 93.20 46 | 69.35 62 | 95.22 65 | 71.39 136 | 90.88 77 | 93.07 77 |
|
DPM-MVS | | | 84.93 59 | 84.29 61 | 86.84 43 | 90.20 87 | 73.04 20 | 87.12 145 | 93.04 30 | 69.80 172 | 82.85 70 | 91.22 84 | 73.06 30 | 96.02 39 | 76.72 98 | 94.63 38 | 91.46 125 |
|
baseline | | | 84.93 59 | 84.98 54 | 84.80 86 | 87.30 181 | 65.39 162 | 87.30 141 | 92.88 41 | 77.62 36 | 84.04 56 | 92.26 61 | 71.81 40 | 93.96 112 | 81.31 57 | 90.30 83 | 95.03 4 |
|
CS-MVS | | | 84.76 61 | 84.61 59 | 85.22 72 | 89.66 99 | 66.43 141 | 90.23 57 | 93.56 14 | 76.52 65 | 82.59 76 | 85.93 215 | 70.41 51 | 95.80 45 | 79.93 70 | 92.68 62 | 93.42 62 |
|
EI-MVSNet-Vis-set | | | 84.19 62 | 83.81 62 | 85.31 67 | 88.18 152 | 67.85 119 | 87.66 132 | 89.73 146 | 80.05 17 | 82.95 67 | 89.59 120 | 70.74 49 | 94.82 84 | 80.66 64 | 84.72 149 | 93.28 68 |
|
nrg030 | | | 83.88 63 | 83.53 63 | 84.96 79 | 86.77 191 | 69.28 89 | 90.46 52 | 92.67 51 | 74.79 95 | 82.95 67 | 91.33 82 | 72.70 32 | 93.09 157 | 80.79 63 | 79.28 214 | 92.50 94 |
|
EI-MVSNet-UG-set | | | 83.81 64 | 83.38 65 | 85.09 75 | 87.87 161 | 67.53 123 | 87.44 138 | 89.66 147 | 79.74 18 | 82.23 78 | 89.41 129 | 70.24 54 | 94.74 87 | 79.95 68 | 83.92 157 | 92.99 82 |
|
CPTT-MVS | | | 83.73 65 | 83.33 66 | 84.92 82 | 93.28 41 | 70.86 62 | 92.09 28 | 90.38 125 | 68.75 194 | 79.57 106 | 92.83 56 | 60.60 155 | 93.04 161 | 80.92 61 | 91.56 70 | 90.86 139 |
|
EPNet | | | 83.72 66 | 82.92 72 | 86.14 58 | 84.22 224 | 69.48 84 | 91.05 41 | 85.27 223 | 81.30 8 | 76.83 154 | 91.65 72 | 66.09 88 | 95.56 52 | 76.00 103 | 93.85 52 | 93.38 63 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP_MVS | | | 83.64 67 | 83.14 67 | 85.14 73 | 90.08 92 | 68.71 102 | 91.25 37 | 92.44 57 | 79.12 23 | 78.92 114 | 91.00 93 | 60.42 157 | 95.38 60 | 78.71 75 | 86.32 135 | 91.33 126 |
|
Effi-MVS+ | | | 83.62 68 | 83.08 68 | 85.24 70 | 88.38 148 | 67.45 124 | 88.89 91 | 89.15 163 | 75.50 83 | 82.27 77 | 88.28 154 | 69.61 60 | 94.45 95 | 77.81 84 | 87.84 112 | 93.84 43 |
|
ETV-MVS | | | 83.53 69 | 82.92 72 | 85.36 66 | 90.09 90 | 67.18 131 | 89.10 86 | 92.24 64 | 72.97 129 | 80.18 102 | 85.32 231 | 68.66 68 | 95.63 49 | 74.95 110 | 92.74 59 | 93.26 69 |
|
OPM-MVS | | | 83.50 70 | 82.95 71 | 85.14 73 | 88.79 135 | 70.95 58 | 89.13 85 | 91.52 95 | 77.55 41 | 80.96 96 | 91.75 70 | 60.71 151 | 94.50 94 | 79.67 71 | 86.51 133 | 89.97 176 |
|
Vis-MVSNet | | | 83.46 71 | 82.80 75 | 85.43 65 | 90.25 86 | 68.74 100 | 90.30 56 | 90.13 135 | 76.33 72 | 80.87 97 | 92.89 54 | 61.00 148 | 94.20 104 | 72.45 131 | 90.97 75 | 93.35 65 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MG-MVS | | | 83.41 72 | 83.45 64 | 83.28 132 | 92.74 52 | 62.28 220 | 88.17 120 | 89.50 151 | 75.22 89 | 81.49 88 | 92.74 59 | 66.75 82 | 95.11 69 | 72.85 127 | 91.58 69 | 92.45 95 |
|
EPP-MVSNet | | | 83.40 73 | 83.02 70 | 84.57 90 | 90.13 88 | 64.47 180 | 92.32 22 | 90.73 116 | 74.45 103 | 79.35 109 | 91.10 87 | 69.05 66 | 95.12 68 | 72.78 128 | 87.22 122 | 94.13 26 |
|
3Dnovator | | 76.31 5 | 83.38 74 | 82.31 81 | 86.59 50 | 87.94 160 | 72.94 25 | 90.64 46 | 92.14 70 | 77.21 47 | 75.47 180 | 92.83 56 | 58.56 166 | 94.72 88 | 73.24 125 | 92.71 61 | 92.13 107 |
|
EIA-MVS | | | 83.31 75 | 82.80 75 | 84.82 84 | 89.59 101 | 65.59 156 | 88.21 118 | 92.68 50 | 74.66 99 | 78.96 112 | 86.42 207 | 69.06 65 | 95.26 64 | 75.54 108 | 90.09 87 | 93.62 55 |
|
MVS_Test | | | 83.15 76 | 83.06 69 | 83.41 129 | 86.86 187 | 63.21 206 | 86.11 176 | 92.00 76 | 74.31 104 | 82.87 69 | 89.44 128 | 70.03 55 | 93.21 148 | 77.39 89 | 88.50 108 | 93.81 45 |
|
IS-MVSNet | | | 83.15 76 | 82.81 74 | 84.18 104 | 89.94 95 | 63.30 204 | 91.59 32 | 88.46 182 | 79.04 25 | 79.49 107 | 92.16 62 | 65.10 97 | 94.28 98 | 67.71 164 | 91.86 67 | 94.95 5 |
|
DP-MVS Recon | | | 83.11 78 | 82.09 83 | 86.15 57 | 94.44 15 | 70.92 61 | 88.79 95 | 92.20 67 | 70.53 161 | 79.17 110 | 91.03 92 | 64.12 104 | 96.03 38 | 68.39 161 | 90.14 86 | 91.50 122 |
|
PAPM_NR | | | 83.02 79 | 82.41 78 | 84.82 84 | 92.47 58 | 66.37 143 | 87.93 127 | 91.80 86 | 73.82 114 | 77.32 145 | 90.66 98 | 67.90 73 | 94.90 80 | 70.37 142 | 89.48 94 | 93.19 74 |
|
VDD-MVS | | | 83.01 80 | 82.36 80 | 84.96 79 | 91.02 74 | 66.40 142 | 88.91 90 | 88.11 185 | 77.57 38 | 84.39 51 | 93.29 45 | 52.19 215 | 93.91 119 | 77.05 93 | 88.70 102 | 94.57 14 |
|
MVSFormer | | | 82.85 81 | 82.05 84 | 85.24 70 | 87.35 176 | 70.21 69 | 90.50 49 | 90.38 125 | 68.55 197 | 81.32 89 | 89.47 123 | 61.68 134 | 93.46 141 | 78.98 73 | 90.26 84 | 92.05 109 |
|
OMC-MVS | | | 82.69 82 | 81.97 87 | 84.85 83 | 88.75 137 | 67.42 125 | 87.98 123 | 90.87 114 | 74.92 94 | 79.72 105 | 91.65 72 | 62.19 132 | 93.96 112 | 75.26 109 | 86.42 134 | 93.16 75 |
|
PVSNet_Blended_VisFu | | | 82.62 83 | 81.83 89 | 84.96 79 | 90.80 79 | 69.76 78 | 88.74 99 | 91.70 91 | 69.39 179 | 78.96 112 | 88.46 149 | 65.47 94 | 94.87 83 | 74.42 113 | 88.57 104 | 90.24 160 |
|
MVS_111021_LR | | | 82.61 84 | 82.11 82 | 84.11 105 | 88.82 132 | 71.58 49 | 85.15 197 | 86.16 216 | 74.69 98 | 80.47 100 | 91.04 90 | 62.29 129 | 90.55 221 | 80.33 66 | 90.08 88 | 90.20 161 |
|
HQP-MVS | | | 82.61 84 | 82.02 85 | 84.37 96 | 89.33 110 | 66.98 134 | 89.17 80 | 92.19 68 | 76.41 66 | 77.23 148 | 90.23 105 | 60.17 160 | 95.11 69 | 77.47 87 | 85.99 140 | 91.03 133 |
|
CLD-MVS | | | 82.31 86 | 81.65 90 | 84.29 101 | 88.47 144 | 67.73 122 | 85.81 185 | 92.35 62 | 75.78 78 | 78.33 125 | 86.58 202 | 64.01 105 | 94.35 96 | 76.05 102 | 87.48 119 | 90.79 140 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
VNet | | | 82.21 87 | 82.41 78 | 81.62 180 | 90.82 78 | 60.93 229 | 84.47 213 | 89.78 143 | 76.36 71 | 84.07 55 | 91.88 69 | 64.71 100 | 90.26 223 | 70.68 139 | 88.89 98 | 93.66 48 |
|
diffmvs | | | 82.10 88 | 81.88 88 | 82.76 163 | 83.00 250 | 63.78 192 | 83.68 228 | 89.76 144 | 72.94 130 | 82.02 80 | 89.85 113 | 65.96 92 | 90.79 217 | 82.38 53 | 87.30 121 | 93.71 47 |
|
LPG-MVS_test | | | 82.08 89 | 81.27 93 | 84.50 92 | 89.23 118 | 68.76 98 | 90.22 59 | 91.94 80 | 75.37 86 | 76.64 160 | 91.51 77 | 54.29 198 | 94.91 78 | 78.44 77 | 83.78 158 | 89.83 181 |
|
FIs | | | 82.07 90 | 82.42 77 | 81.04 193 | 88.80 134 | 58.34 250 | 88.26 117 | 93.49 17 | 76.93 54 | 78.47 122 | 91.04 90 | 69.92 57 | 92.34 180 | 69.87 148 | 84.97 146 | 92.44 96 |
|
PS-MVSNAJss | | | 82.07 90 | 81.31 92 | 84.34 99 | 86.51 194 | 67.27 129 | 89.27 78 | 91.51 96 | 71.75 141 | 79.37 108 | 90.22 106 | 63.15 115 | 94.27 99 | 77.69 85 | 82.36 180 | 91.49 123 |
|
API-MVS | | | 81.99 92 | 81.23 94 | 84.26 102 | 90.94 75 | 70.18 74 | 91.10 40 | 89.32 156 | 71.51 147 | 78.66 118 | 88.28 154 | 65.26 95 | 95.10 72 | 64.74 193 | 91.23 74 | 87.51 235 |
|
UniMVSNet_NR-MVSNet | | | 81.88 93 | 81.54 91 | 82.92 151 | 88.46 145 | 63.46 200 | 87.13 144 | 92.37 61 | 80.19 15 | 78.38 123 | 89.14 131 | 71.66 42 | 93.05 159 | 70.05 145 | 76.46 240 | 92.25 102 |
|
MAR-MVS | | | 81.84 94 | 80.70 100 | 85.27 69 | 91.32 70 | 71.53 50 | 89.82 65 | 90.92 112 | 69.77 173 | 78.50 120 | 86.21 211 | 62.36 128 | 94.52 93 | 65.36 186 | 92.05 65 | 89.77 184 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 81.82 95 | 81.23 94 | 83.57 124 | 91.89 65 | 63.43 202 | 89.84 64 | 81.85 265 | 77.04 52 | 83.21 64 | 93.10 48 | 52.26 214 | 93.43 143 | 71.98 132 | 89.95 90 | 93.85 41 |
|
xiu_mvs_v2_base | | | 81.69 96 | 81.05 97 | 83.60 122 | 89.15 121 | 68.03 117 | 84.46 215 | 90.02 137 | 70.67 158 | 81.30 92 | 86.53 205 | 63.17 114 | 94.19 105 | 75.60 107 | 88.54 106 | 88.57 216 |
|
PS-MVSNAJ | | | 81.69 96 | 81.02 98 | 83.70 121 | 89.51 105 | 68.21 114 | 84.28 221 | 90.09 136 | 70.79 155 | 81.26 93 | 85.62 225 | 63.15 115 | 94.29 97 | 75.62 106 | 88.87 99 | 88.59 215 |
|
PAPR | | | 81.66 98 | 80.89 99 | 83.99 114 | 90.27 85 | 64.00 187 | 86.76 159 | 91.77 90 | 68.84 193 | 77.13 152 | 89.50 121 | 67.63 75 | 94.88 82 | 67.55 166 | 88.52 107 | 93.09 76 |
|
UniMVSNet (Re) | | | 81.60 99 | 81.11 96 | 83.09 142 | 88.38 148 | 64.41 181 | 87.60 133 | 93.02 33 | 78.42 31 | 78.56 119 | 88.16 157 | 69.78 58 | 93.26 147 | 69.58 151 | 76.49 239 | 91.60 118 |
|
FC-MVSNet-test | | | 81.52 100 | 82.02 85 | 80.03 207 | 88.42 147 | 55.97 286 | 87.95 125 | 93.42 21 | 77.10 50 | 77.38 143 | 90.98 95 | 69.96 56 | 91.79 192 | 68.46 160 | 84.50 151 | 92.33 98 |
|
VDDNet | | | 81.52 100 | 80.67 101 | 84.05 109 | 90.44 83 | 64.13 186 | 89.73 70 | 85.91 219 | 71.11 151 | 83.18 65 | 93.48 40 | 50.54 238 | 93.49 140 | 73.40 123 | 88.25 110 | 94.54 15 |
|
ACMP | | 74.13 6 | 81.51 102 | 80.57 102 | 84.36 97 | 89.42 107 | 68.69 105 | 89.97 63 | 91.50 99 | 74.46 102 | 75.04 196 | 90.41 102 | 53.82 203 | 94.54 91 | 77.56 86 | 82.91 172 | 89.86 180 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jason | | | 81.39 103 | 80.29 109 | 84.70 88 | 86.63 193 | 69.90 76 | 85.95 179 | 86.77 207 | 63.24 247 | 81.07 95 | 89.47 123 | 61.08 147 | 92.15 185 | 78.33 80 | 90.07 89 | 92.05 109 |
jason: jason. |
lupinMVS | | | 81.39 103 | 80.27 110 | 84.76 87 | 87.35 176 | 70.21 69 | 85.55 190 | 86.41 211 | 62.85 253 | 81.32 89 | 88.61 144 | 61.68 134 | 92.24 183 | 78.41 79 | 90.26 84 | 91.83 114 |
|
test_yl | | | 81.17 105 | 80.47 105 | 83.24 135 | 89.13 122 | 63.62 193 | 86.21 172 | 89.95 139 | 72.43 135 | 81.78 85 | 89.61 118 | 57.50 174 | 93.58 134 | 70.75 137 | 86.90 126 | 92.52 92 |
|
DCV-MVSNet | | | 81.17 105 | 80.47 105 | 83.24 135 | 89.13 122 | 63.62 193 | 86.21 172 | 89.95 139 | 72.43 135 | 81.78 85 | 89.61 118 | 57.50 174 | 93.58 134 | 70.75 137 | 86.90 126 | 92.52 92 |
|
DU-MVS | | | 81.12 107 | 80.52 104 | 82.90 152 | 87.80 164 | 63.46 200 | 87.02 148 | 91.87 84 | 79.01 26 | 78.38 123 | 89.07 133 | 65.02 98 | 93.05 159 | 70.05 145 | 76.46 240 | 92.20 104 |
|
PVSNet_Blended | | | 80.98 108 | 80.34 107 | 82.90 152 | 88.85 129 | 65.40 159 | 84.43 217 | 92.00 76 | 67.62 203 | 78.11 130 | 85.05 237 | 66.02 90 | 94.27 99 | 71.52 134 | 89.50 93 | 89.01 199 |
|
mvs-test1 | | | 80.88 109 | 79.40 125 | 85.29 68 | 85.13 212 | 69.75 79 | 89.28 77 | 88.10 186 | 74.99 92 | 76.44 165 | 86.72 191 | 57.27 177 | 94.26 103 | 73.53 121 | 83.18 169 | 91.87 113 |
|
QAPM | | | 80.88 109 | 79.50 123 | 85.03 76 | 88.01 159 | 68.97 94 | 91.59 32 | 92.00 76 | 66.63 214 | 75.15 193 | 92.16 62 | 57.70 171 | 95.45 56 | 63.52 197 | 88.76 101 | 90.66 145 |
|
1121 | | | 80.84 111 | 79.77 116 | 84.05 109 | 93.11 46 | 70.78 63 | 84.66 207 | 85.42 222 | 57.37 295 | 81.76 87 | 92.02 65 | 63.41 108 | 94.12 108 | 67.28 169 | 92.93 56 | 87.26 242 |
|
TranMVSNet+NR-MVSNet | | | 80.84 111 | 80.31 108 | 82.42 167 | 87.85 162 | 62.33 218 | 87.74 131 | 91.33 102 | 80.55 12 | 77.99 133 | 89.86 112 | 65.23 96 | 92.62 170 | 67.05 174 | 75.24 258 | 92.30 100 |
|
UGNet | | | 80.83 113 | 79.59 121 | 84.54 91 | 88.04 157 | 68.09 115 | 89.42 75 | 88.16 184 | 76.95 53 | 76.22 169 | 89.46 125 | 49.30 252 | 93.94 115 | 68.48 159 | 90.31 82 | 91.60 118 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Fast-Effi-MVS+ | | | 80.81 114 | 79.92 113 | 83.47 125 | 88.85 129 | 64.51 177 | 85.53 192 | 89.39 154 | 70.79 155 | 78.49 121 | 85.06 236 | 67.54 76 | 93.58 134 | 67.03 175 | 86.58 131 | 92.32 99 |
|
XVG-OURS-SEG-HR | | | 80.81 114 | 79.76 117 | 83.96 116 | 85.60 204 | 68.78 97 | 83.54 232 | 90.50 122 | 70.66 159 | 76.71 158 | 91.66 71 | 60.69 152 | 91.26 204 | 76.94 94 | 81.58 187 | 91.83 114 |
|
xiu_mvs_v1_base_debu | | | 80.80 116 | 79.72 118 | 84.03 111 | 87.35 176 | 70.19 71 | 85.56 187 | 88.77 174 | 69.06 188 | 81.83 81 | 88.16 157 | 50.91 232 | 92.85 165 | 78.29 81 | 87.56 116 | 89.06 194 |
|
xiu_mvs_v1_base | | | 80.80 116 | 79.72 118 | 84.03 111 | 87.35 176 | 70.19 71 | 85.56 187 | 88.77 174 | 69.06 188 | 81.83 81 | 88.16 157 | 50.91 232 | 92.85 165 | 78.29 81 | 87.56 116 | 89.06 194 |
|
xiu_mvs_v1_base_debi | | | 80.80 116 | 79.72 118 | 84.03 111 | 87.35 176 | 70.19 71 | 85.56 187 | 88.77 174 | 69.06 188 | 81.83 81 | 88.16 157 | 50.91 232 | 92.85 165 | 78.29 81 | 87.56 116 | 89.06 194 |
|
ACMM | | 73.20 8 | 80.78 119 | 79.84 115 | 83.58 123 | 89.31 115 | 68.37 109 | 89.99 62 | 91.60 93 | 70.28 165 | 77.25 146 | 89.66 116 | 53.37 206 | 93.53 139 | 74.24 116 | 82.85 173 | 88.85 207 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
114514_t | | | 80.68 120 | 79.51 122 | 84.20 103 | 94.09 30 | 67.27 129 | 89.64 73 | 91.11 109 | 58.75 287 | 74.08 203 | 90.72 97 | 58.10 168 | 95.04 74 | 69.70 149 | 89.42 95 | 90.30 159 |
|
CANet_DTU | | | 80.61 121 | 79.87 114 | 82.83 155 | 85.60 204 | 63.17 209 | 87.36 139 | 88.65 178 | 76.37 70 | 75.88 176 | 88.44 150 | 53.51 205 | 93.07 158 | 73.30 124 | 89.74 92 | 92.25 102 |
|
VPA-MVSNet | | | 80.60 122 | 80.55 103 | 80.76 197 | 88.07 156 | 60.80 232 | 86.86 153 | 91.58 94 | 75.67 81 | 80.24 101 | 89.45 127 | 63.34 109 | 90.25 224 | 70.51 141 | 79.22 215 | 91.23 129 |
|
PVSNet_BlendedMVS | | | 80.60 122 | 80.02 111 | 82.36 169 | 88.85 129 | 65.40 159 | 86.16 174 | 92.00 76 | 69.34 182 | 78.11 130 | 86.09 214 | 66.02 90 | 94.27 99 | 71.52 134 | 82.06 182 | 87.39 237 |
|
AdaColmap | | | 80.58 124 | 79.42 124 | 84.06 108 | 93.09 47 | 68.91 95 | 89.36 76 | 88.97 169 | 69.27 183 | 75.70 179 | 89.69 115 | 57.20 180 | 95.77 46 | 63.06 203 | 88.41 109 | 87.50 236 |
|
EI-MVSNet | | | 80.52 125 | 79.98 112 | 82.12 170 | 84.28 222 | 63.19 208 | 86.41 166 | 88.95 170 | 74.18 108 | 78.69 116 | 87.54 171 | 66.62 83 | 92.43 175 | 72.57 130 | 80.57 199 | 90.74 143 |
|
XVG-OURS | | | 80.41 126 | 79.23 130 | 83.97 115 | 85.64 203 | 69.02 91 | 83.03 236 | 90.39 124 | 71.09 152 | 77.63 139 | 91.49 79 | 54.62 197 | 91.35 202 | 75.71 104 | 83.47 165 | 91.54 120 |
|
PCF-MVS | | 73.52 7 | 80.38 127 | 78.84 137 | 85.01 77 | 87.71 168 | 68.99 93 | 83.65 229 | 91.46 100 | 63.00 250 | 77.77 137 | 90.28 103 | 66.10 87 | 95.09 73 | 61.40 219 | 88.22 111 | 90.94 137 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 80.37 128 | 77.83 160 | 88.00 12 | 94.42 16 | 73.33 17 | 92.78 12 | 92.99 36 | 79.14 21 | 83.67 61 | 12.47 331 | 67.45 77 | 96.60 25 | 83.06 44 | 94.50 41 | 94.07 29 |
|
test_djsdf | | | 80.30 129 | 79.32 128 | 83.27 133 | 83.98 229 | 65.37 163 | 90.50 49 | 90.38 125 | 68.55 197 | 76.19 170 | 88.70 140 | 56.44 185 | 93.46 141 | 78.98 73 | 80.14 206 | 90.97 136 |
|
v2v482 | | | 80.23 130 | 79.29 129 | 83.05 145 | 83.62 234 | 64.14 185 | 87.04 147 | 89.97 138 | 73.61 117 | 78.18 129 | 87.22 179 | 61.10 146 | 93.82 122 | 76.11 101 | 76.78 237 | 91.18 130 |
|
NR-MVSNet | | | 80.23 130 | 79.38 126 | 82.78 161 | 87.80 164 | 63.34 203 | 86.31 169 | 91.09 110 | 79.01 26 | 72.17 221 | 89.07 133 | 67.20 80 | 92.81 169 | 66.08 181 | 75.65 249 | 92.20 104 |
|
Anonymous20240529 | | | 80.19 132 | 78.89 136 | 84.10 106 | 90.60 80 | 64.75 174 | 88.95 89 | 90.90 113 | 65.97 222 | 80.59 99 | 91.17 86 | 49.97 243 | 93.73 131 | 69.16 155 | 82.70 177 | 93.81 45 |
|
IterMVS-LS | | | 80.06 133 | 79.38 126 | 82.11 171 | 85.89 199 | 63.20 207 | 86.79 156 | 89.34 155 | 74.19 107 | 75.45 182 | 86.72 191 | 66.62 83 | 92.39 177 | 72.58 129 | 76.86 234 | 90.75 142 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 80.03 134 | 78.57 142 | 84.42 95 | 85.13 212 | 68.74 100 | 88.77 96 | 88.10 186 | 74.99 92 | 74.97 197 | 83.49 252 | 57.27 177 | 93.36 144 | 73.53 121 | 80.88 193 | 91.18 130 |
|
v1144 | | | 80.03 134 | 79.03 133 | 83.01 147 | 83.78 232 | 64.51 177 | 87.11 146 | 90.57 120 | 71.96 140 | 78.08 132 | 86.20 212 | 61.41 139 | 93.94 115 | 74.93 111 | 77.23 228 | 90.60 148 |
|
v8 | | | 79.97 136 | 79.02 134 | 82.80 158 | 84.09 226 | 64.50 179 | 87.96 124 | 90.29 132 | 74.13 110 | 75.24 191 | 86.81 188 | 62.88 120 | 93.89 121 | 74.39 114 | 75.40 254 | 90.00 173 |
|
DI_MVS_plusplus_test | | | 79.89 137 | 78.58 141 | 83.85 120 | 82.89 254 | 65.32 164 | 86.12 175 | 89.55 149 | 69.64 177 | 70.55 234 | 85.82 220 | 57.24 179 | 93.81 123 | 76.85 95 | 88.55 105 | 92.41 97 |
|
test_normal | | | 79.81 138 | 78.45 144 | 83.89 119 | 82.70 258 | 65.40 159 | 85.82 184 | 89.48 152 | 69.39 179 | 70.12 243 | 85.66 223 | 57.15 181 | 93.71 132 | 77.08 92 | 88.62 103 | 92.56 91 |
|
OpenMVS | | 72.83 10 | 79.77 139 | 78.33 150 | 84.09 107 | 85.17 209 | 69.91 75 | 90.57 47 | 90.97 111 | 66.70 210 | 72.17 221 | 91.91 67 | 54.70 195 | 93.96 112 | 61.81 216 | 90.95 76 | 88.41 220 |
|
v10 | | | 79.74 140 | 78.67 138 | 82.97 150 | 84.06 227 | 64.95 171 | 87.88 129 | 90.62 118 | 73.11 125 | 75.11 194 | 86.56 203 | 61.46 138 | 94.05 111 | 73.68 119 | 75.55 251 | 89.90 178 |
|
BH-RMVSNet | | | 79.61 141 | 78.44 146 | 83.14 140 | 89.38 109 | 65.93 149 | 84.95 202 | 87.15 203 | 73.56 119 | 78.19 128 | 89.79 114 | 56.67 184 | 93.36 144 | 59.53 233 | 86.74 129 | 90.13 164 |
|
v1192 | | | 79.59 142 | 78.43 147 | 83.07 144 | 83.55 236 | 64.52 176 | 86.93 151 | 90.58 119 | 70.83 154 | 77.78 136 | 85.90 216 | 59.15 163 | 93.94 115 | 73.96 118 | 77.19 230 | 90.76 141 |
|
ab-mvs | | | 79.51 143 | 78.97 135 | 81.14 191 | 88.46 145 | 60.91 230 | 83.84 226 | 89.24 161 | 70.36 163 | 79.03 111 | 88.87 138 | 63.23 113 | 90.21 225 | 65.12 188 | 82.57 178 | 92.28 101 |
|
WR-MVS | | | 79.49 144 | 79.22 131 | 80.27 204 | 88.79 135 | 58.35 249 | 85.06 199 | 88.61 180 | 78.56 29 | 77.65 138 | 88.34 152 | 63.81 107 | 90.66 220 | 64.98 191 | 77.22 229 | 91.80 117 |
|
v144192 | | | 79.47 145 | 78.37 148 | 82.78 161 | 83.35 238 | 63.96 188 | 86.96 149 | 90.36 128 | 69.99 169 | 77.50 140 | 85.67 222 | 60.66 153 | 93.77 127 | 74.27 115 | 76.58 238 | 90.62 146 |
|
BH-untuned | | | 79.47 145 | 78.60 140 | 82.05 172 | 89.19 120 | 65.91 150 | 86.07 177 | 88.52 181 | 72.18 137 | 75.42 183 | 87.69 166 | 61.15 145 | 93.54 138 | 60.38 226 | 86.83 128 | 86.70 255 |
|
mvs_anonymous | | | 79.42 147 | 79.11 132 | 80.34 202 | 84.45 221 | 57.97 256 | 82.59 237 | 87.62 195 | 67.40 207 | 76.17 173 | 88.56 147 | 68.47 69 | 89.59 234 | 70.65 140 | 86.05 139 | 93.47 61 |
|
thisisatest0530 | | | 79.40 148 | 77.76 164 | 84.31 100 | 87.69 170 | 65.10 170 | 87.36 139 | 84.26 234 | 70.04 168 | 77.42 142 | 88.26 156 | 49.94 244 | 94.79 86 | 70.20 143 | 84.70 150 | 93.03 79 |
|
tttt0517 | | | 79.40 148 | 77.91 158 | 83.90 118 | 88.10 155 | 63.84 190 | 88.37 112 | 84.05 236 | 71.45 148 | 76.78 156 | 89.12 132 | 49.93 246 | 94.89 81 | 70.18 144 | 83.18 169 | 92.96 83 |
|
V42 | | | 79.38 150 | 78.24 152 | 82.83 155 | 81.10 279 | 65.50 158 | 85.55 190 | 89.82 142 | 71.57 146 | 78.21 127 | 86.12 213 | 60.66 153 | 93.18 152 | 75.64 105 | 75.46 253 | 89.81 183 |
|
jajsoiax | | | 79.29 151 | 77.96 156 | 83.27 133 | 84.68 218 | 66.57 140 | 89.25 79 | 90.16 134 | 69.20 185 | 75.46 181 | 89.49 122 | 45.75 275 | 93.13 155 | 76.84 96 | 80.80 195 | 90.11 165 |
|
v1921920 | | | 79.22 152 | 78.03 155 | 82.80 158 | 83.30 240 | 63.94 189 | 86.80 155 | 90.33 129 | 69.91 170 | 77.48 141 | 85.53 226 | 58.44 167 | 93.75 129 | 73.60 120 | 76.85 235 | 90.71 144 |
|
TAPA-MVS | | 73.13 9 | 79.15 153 | 77.94 157 | 82.79 160 | 89.59 101 | 62.99 213 | 88.16 121 | 91.51 96 | 65.77 223 | 77.14 151 | 91.09 88 | 60.91 149 | 93.21 148 | 50.26 282 | 87.05 124 | 92.17 106 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_tets | | | 79.13 154 | 77.77 163 | 83.22 137 | 84.70 217 | 66.37 143 | 89.17 80 | 90.19 133 | 69.38 181 | 75.40 184 | 89.46 125 | 44.17 281 | 93.15 153 | 76.78 97 | 80.70 197 | 90.14 163 |
|
UniMVSNet_ETH3D | | | 79.10 155 | 78.24 152 | 81.70 179 | 86.85 188 | 60.24 237 | 87.28 142 | 88.79 173 | 74.25 106 | 76.84 153 | 90.53 101 | 49.48 249 | 91.56 198 | 67.98 162 | 82.15 181 | 93.29 67 |
|
CDS-MVSNet | | | 79.07 156 | 77.70 165 | 83.17 139 | 87.60 171 | 68.23 113 | 84.40 219 | 86.20 215 | 67.49 205 | 76.36 166 | 86.54 204 | 61.54 137 | 90.79 217 | 61.86 215 | 87.33 120 | 90.49 153 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSTER | | | 79.01 157 | 77.88 159 | 82.38 168 | 83.07 247 | 64.80 173 | 84.08 225 | 88.95 170 | 69.01 191 | 78.69 116 | 87.17 182 | 54.70 195 | 92.43 175 | 74.69 112 | 80.57 199 | 89.89 179 |
|
v1240 | | | 78.99 158 | 77.78 162 | 82.64 164 | 83.21 242 | 63.54 197 | 86.62 162 | 90.30 131 | 69.74 176 | 77.33 144 | 85.68 221 | 57.04 182 | 93.76 128 | 73.13 126 | 76.92 232 | 90.62 146 |
|
Anonymous20231211 | | | 78.97 159 | 77.69 166 | 82.81 157 | 90.54 81 | 64.29 183 | 90.11 61 | 91.51 96 | 65.01 232 | 76.16 174 | 88.13 161 | 50.56 237 | 93.03 162 | 69.68 150 | 77.56 226 | 91.11 132 |
|
v7n | | | 78.97 159 | 77.58 168 | 83.14 140 | 83.45 237 | 65.51 157 | 88.32 113 | 91.21 105 | 73.69 116 | 72.41 218 | 86.32 210 | 57.93 169 | 93.81 123 | 69.18 154 | 75.65 249 | 90.11 165 |
|
TAMVS | | | 78.89 161 | 77.51 169 | 83.03 146 | 87.80 164 | 67.79 121 | 84.72 206 | 85.05 226 | 67.63 202 | 76.75 157 | 87.70 165 | 62.25 130 | 90.82 216 | 58.53 243 | 87.13 123 | 90.49 153 |
|
v148 | | | 78.72 162 | 77.80 161 | 81.47 183 | 82.73 257 | 61.96 223 | 86.30 170 | 88.08 188 | 73.26 124 | 76.18 171 | 85.47 228 | 62.46 126 | 92.36 179 | 71.92 133 | 73.82 271 | 90.09 167 |
|
VPNet | | | 78.69 163 | 78.66 139 | 78.76 230 | 88.31 150 | 55.72 288 | 84.45 216 | 86.63 209 | 76.79 57 | 78.26 126 | 90.55 100 | 59.30 162 | 89.70 233 | 66.63 176 | 77.05 231 | 90.88 138 |
|
ET-MVSNet_ETH3D | | | 78.63 164 | 76.63 184 | 84.64 89 | 86.73 192 | 69.47 85 | 85.01 200 | 84.61 229 | 69.54 178 | 66.51 277 | 86.59 200 | 50.16 241 | 91.75 193 | 76.26 100 | 84.24 155 | 92.69 88 |
|
anonymousdsp | | | 78.60 165 | 77.15 174 | 82.98 149 | 80.51 285 | 67.08 132 | 87.24 143 | 89.53 150 | 65.66 225 | 75.16 192 | 87.19 181 | 52.52 208 | 92.25 182 | 77.17 91 | 79.34 213 | 89.61 185 |
|
WR-MVS_H | | | 78.51 166 | 78.49 143 | 78.56 233 | 88.02 158 | 56.38 281 | 88.43 105 | 92.67 51 | 77.14 48 | 73.89 204 | 87.55 170 | 66.25 86 | 89.24 240 | 58.92 238 | 73.55 273 | 90.06 171 |
|
GBi-Net | | | 78.40 167 | 77.40 170 | 81.40 185 | 87.60 171 | 63.01 210 | 88.39 109 | 89.28 157 | 71.63 143 | 75.34 186 | 87.28 175 | 54.80 191 | 91.11 207 | 62.72 204 | 79.57 208 | 90.09 167 |
|
test1 | | | 78.40 167 | 77.40 170 | 81.40 185 | 87.60 171 | 63.01 210 | 88.39 109 | 89.28 157 | 71.63 143 | 75.34 186 | 87.28 175 | 54.80 191 | 91.11 207 | 62.72 204 | 79.57 208 | 90.09 167 |
|
Vis-MVSNet (Re-imp) | | | 78.36 169 | 78.45 144 | 78.07 241 | 88.64 139 | 51.78 304 | 86.70 160 | 79.63 286 | 74.14 109 | 75.11 194 | 90.83 96 | 61.29 142 | 89.75 231 | 58.10 247 | 91.60 68 | 92.69 88 |
|
Anonymous202405211 | | | 78.25 170 | 77.01 176 | 81.99 174 | 91.03 73 | 60.67 233 | 84.77 205 | 83.90 238 | 70.65 160 | 80.00 103 | 91.20 85 | 41.08 297 | 91.43 200 | 65.21 187 | 85.26 144 | 93.85 41 |
|
CP-MVSNet | | | 78.22 171 | 78.34 149 | 77.84 243 | 87.83 163 | 54.54 293 | 87.94 126 | 91.17 107 | 77.65 35 | 73.48 206 | 88.49 148 | 62.24 131 | 88.43 254 | 62.19 210 | 74.07 266 | 90.55 151 |
|
BH-w/o | | | 78.21 172 | 77.33 172 | 80.84 195 | 88.81 133 | 65.13 169 | 84.87 203 | 87.85 192 | 69.75 174 | 74.52 201 | 84.74 240 | 61.34 140 | 93.11 156 | 58.24 246 | 85.84 142 | 84.27 283 |
|
FMVSNet2 | | | 78.20 173 | 77.21 173 | 81.20 189 | 87.60 171 | 62.89 214 | 87.47 137 | 89.02 166 | 71.63 143 | 75.29 190 | 87.28 175 | 54.80 191 | 91.10 210 | 62.38 208 | 79.38 212 | 89.61 185 |
|
MVS | | | 78.19 174 | 76.99 177 | 81.78 177 | 85.66 202 | 66.99 133 | 84.66 207 | 90.47 123 | 55.08 305 | 72.02 223 | 85.27 232 | 63.83 106 | 94.11 110 | 66.10 180 | 89.80 91 | 84.24 284 |
|
Baseline_NR-MVSNet | | | 78.15 175 | 78.33 150 | 77.61 248 | 85.79 200 | 56.21 284 | 86.78 157 | 85.76 220 | 73.60 118 | 77.93 134 | 87.57 169 | 65.02 98 | 88.99 244 | 67.14 173 | 75.33 255 | 87.63 232 |
|
CNLPA | | | 78.08 176 | 76.79 181 | 81.97 175 | 90.40 84 | 71.07 56 | 87.59 134 | 84.55 230 | 66.03 221 | 72.38 219 | 89.64 117 | 57.56 173 | 86.04 273 | 59.61 232 | 83.35 166 | 88.79 210 |
|
PLC | | 70.83 11 | 78.05 177 | 76.37 188 | 83.08 143 | 91.88 66 | 67.80 120 | 88.19 119 | 89.46 153 | 64.33 240 | 69.87 249 | 88.38 151 | 53.66 204 | 93.58 134 | 58.86 239 | 82.73 175 | 87.86 228 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Fast-Effi-MVS+-dtu | | | 78.02 178 | 76.49 185 | 82.62 165 | 83.16 246 | 66.96 136 | 86.94 150 | 87.45 200 | 72.45 132 | 71.49 229 | 84.17 243 | 54.79 194 | 91.58 197 | 67.61 165 | 80.31 203 | 89.30 190 |
|
PS-CasMVS | | | 78.01 179 | 78.09 154 | 77.77 245 | 87.71 168 | 54.39 295 | 88.02 122 | 91.22 104 | 77.50 43 | 73.26 208 | 88.64 143 | 60.73 150 | 88.41 255 | 61.88 214 | 73.88 270 | 90.53 152 |
|
HY-MVS | | 69.67 12 | 77.95 180 | 77.15 174 | 80.36 201 | 87.57 175 | 60.21 238 | 83.37 234 | 87.78 193 | 66.11 218 | 75.37 185 | 87.06 186 | 63.27 111 | 90.48 222 | 61.38 220 | 82.43 179 | 90.40 157 |
|
FMVSNet3 | | | 77.88 181 | 76.85 179 | 80.97 194 | 86.84 189 | 62.36 217 | 86.52 165 | 88.77 174 | 71.13 150 | 75.34 186 | 86.66 198 | 54.07 201 | 91.10 210 | 62.72 204 | 79.57 208 | 89.45 188 |
|
PEN-MVS | | | 77.73 182 | 77.69 166 | 77.84 243 | 87.07 186 | 53.91 297 | 87.91 128 | 91.18 106 | 77.56 40 | 73.14 210 | 88.82 139 | 61.23 143 | 89.17 241 | 59.95 229 | 72.37 277 | 90.43 155 |
|
PAPM | | | 77.68 183 | 76.40 187 | 81.51 182 | 87.29 182 | 61.85 224 | 83.78 227 | 89.59 148 | 64.74 234 | 71.23 230 | 88.70 140 | 62.59 123 | 93.66 133 | 52.66 272 | 87.03 125 | 89.01 199 |
|
CHOSEN 1792x2688 | | | 77.63 184 | 75.69 191 | 83.44 126 | 89.98 94 | 68.58 107 | 78.70 275 | 87.50 198 | 56.38 300 | 75.80 178 | 86.84 187 | 58.67 165 | 91.40 201 | 61.58 218 | 85.75 143 | 90.34 158 |
|
HyFIR lowres test | | | 77.53 185 | 75.40 197 | 83.94 117 | 89.59 101 | 66.62 138 | 80.36 257 | 88.64 179 | 56.29 301 | 76.45 162 | 85.17 233 | 57.64 172 | 93.28 146 | 61.34 221 | 83.10 171 | 91.91 112 |
|
FMVSNet1 | | | 77.44 186 | 76.12 190 | 81.40 185 | 86.81 190 | 63.01 210 | 88.39 109 | 89.28 157 | 70.49 162 | 74.39 202 | 87.28 175 | 49.06 255 | 91.11 207 | 60.91 223 | 78.52 217 | 90.09 167 |
|
TR-MVS | | | 77.44 186 | 76.18 189 | 81.20 189 | 88.24 151 | 63.24 205 | 84.61 211 | 86.40 212 | 67.55 204 | 77.81 135 | 86.48 206 | 54.10 200 | 93.15 153 | 57.75 250 | 82.72 176 | 87.20 243 |
|
1112_ss | | | 77.40 188 | 76.43 186 | 80.32 203 | 89.11 126 | 60.41 236 | 83.65 229 | 87.72 194 | 62.13 261 | 73.05 211 | 86.72 191 | 62.58 124 | 89.97 228 | 62.11 213 | 80.80 195 | 90.59 150 |
|
thisisatest0515 | | | 77.33 189 | 75.38 198 | 83.18 138 | 85.27 208 | 63.80 191 | 82.11 242 | 83.27 248 | 65.06 230 | 75.91 175 | 83.84 247 | 49.54 248 | 94.27 99 | 67.24 171 | 86.19 137 | 91.48 124 |
|
pm-mvs1 | | | 77.25 190 | 76.68 183 | 78.93 227 | 84.22 224 | 58.62 248 | 86.41 166 | 88.36 183 | 71.37 149 | 73.31 207 | 88.01 162 | 61.22 144 | 89.15 242 | 64.24 195 | 73.01 275 | 89.03 198 |
|
LCM-MVSNet-Re | | | 77.05 191 | 76.94 178 | 77.36 251 | 87.20 183 | 51.60 305 | 80.06 260 | 80.46 278 | 75.20 90 | 67.69 264 | 86.72 191 | 62.48 125 | 88.98 245 | 63.44 199 | 89.25 96 | 91.51 121 |
|
DTE-MVSNet | | | 76.99 192 | 76.80 180 | 77.54 250 | 86.24 196 | 53.06 301 | 87.52 135 | 90.66 117 | 77.08 51 | 72.50 216 | 88.67 142 | 60.48 156 | 89.52 235 | 57.33 254 | 70.74 288 | 90.05 172 |
|
baseline1 | | | 76.98 193 | 76.75 182 | 77.66 246 | 88.13 153 | 55.66 289 | 85.12 198 | 81.89 263 | 73.04 127 | 76.79 155 | 88.90 136 | 62.43 127 | 87.78 262 | 63.30 201 | 71.18 286 | 89.55 187 |
|
LS3D | | | 76.95 194 | 74.82 204 | 83.37 130 | 90.45 82 | 67.36 128 | 89.15 84 | 86.94 205 | 61.87 263 | 69.52 252 | 90.61 99 | 51.71 226 | 94.53 92 | 46.38 302 | 86.71 130 | 88.21 222 |
|
GA-MVS | | | 76.87 195 | 75.17 202 | 81.97 175 | 82.75 256 | 62.58 215 | 81.44 251 | 86.35 214 | 72.16 139 | 74.74 199 | 82.89 257 | 46.20 270 | 92.02 187 | 68.85 158 | 81.09 191 | 91.30 128 |
|
DP-MVS | | | 76.78 196 | 74.57 206 | 83.42 127 | 93.29 40 | 69.46 87 | 88.55 104 | 83.70 240 | 63.98 244 | 70.20 239 | 88.89 137 | 54.01 202 | 94.80 85 | 46.66 299 | 81.88 185 | 86.01 267 |
|
cascas | | | 76.72 197 | 74.64 205 | 82.99 148 | 85.78 201 | 65.88 151 | 82.33 240 | 89.21 162 | 60.85 269 | 72.74 213 | 81.02 275 | 47.28 262 | 93.75 129 | 67.48 167 | 85.02 145 | 89.34 189 |
|
1314 | | | 76.53 198 | 75.30 201 | 80.21 205 | 83.93 230 | 62.32 219 | 84.66 207 | 88.81 172 | 60.23 273 | 70.16 242 | 84.07 245 | 55.30 189 | 90.73 219 | 67.37 168 | 83.21 168 | 87.59 234 |
|
thres100view900 | | | 76.50 199 | 75.55 194 | 79.33 221 | 89.52 104 | 56.99 270 | 85.83 183 | 83.23 249 | 73.94 112 | 76.32 167 | 87.12 183 | 51.89 223 | 91.95 188 | 48.33 290 | 83.75 160 | 89.07 192 |
|
thres600view7 | | | 76.50 199 | 75.44 195 | 79.68 214 | 89.40 108 | 57.16 267 | 85.53 192 | 83.23 249 | 73.79 115 | 76.26 168 | 87.09 184 | 51.89 223 | 91.89 191 | 48.05 295 | 83.72 163 | 90.00 173 |
|
thres400 | | | 76.50 199 | 75.37 199 | 79.86 210 | 89.13 122 | 57.65 262 | 85.17 195 | 83.60 241 | 73.41 122 | 76.45 162 | 86.39 208 | 52.12 216 | 91.95 188 | 48.33 290 | 83.75 160 | 90.00 173 |
|
tfpn200view9 | | | 76.42 202 | 75.37 199 | 79.55 220 | 89.13 122 | 57.65 262 | 85.17 195 | 83.60 241 | 73.41 122 | 76.45 162 | 86.39 208 | 52.12 216 | 91.95 188 | 48.33 290 | 83.75 160 | 89.07 192 |
|
Test_1112_low_res | | | 76.40 203 | 75.44 195 | 79.27 222 | 89.28 116 | 58.09 252 | 81.69 246 | 87.07 204 | 59.53 280 | 72.48 217 | 86.67 197 | 61.30 141 | 89.33 238 | 60.81 225 | 80.15 205 | 90.41 156 |
|
F-COLMAP | | | 76.38 204 | 74.33 211 | 82.50 166 | 89.28 116 | 66.95 137 | 88.41 108 | 89.03 165 | 64.05 242 | 66.83 273 | 88.61 144 | 46.78 265 | 92.89 164 | 57.48 251 | 78.55 216 | 87.67 231 |
|
LTVRE_ROB | | 69.57 13 | 76.25 205 | 74.54 208 | 81.41 184 | 88.60 140 | 64.38 182 | 79.24 268 | 89.12 164 | 70.76 157 | 69.79 251 | 87.86 163 | 49.09 254 | 93.20 150 | 56.21 260 | 80.16 204 | 86.65 256 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVP-Stereo | | | 76.12 206 | 74.46 210 | 81.13 192 | 85.37 207 | 69.79 77 | 84.42 218 | 87.95 190 | 65.03 231 | 67.46 266 | 85.33 230 | 53.28 207 | 91.73 195 | 58.01 248 | 83.27 167 | 81.85 303 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
XVG-ACMP-BASELINE | | | 76.11 207 | 74.27 212 | 81.62 180 | 83.20 243 | 64.67 175 | 83.60 231 | 89.75 145 | 69.75 174 | 71.85 224 | 87.09 184 | 32.78 317 | 92.11 186 | 69.99 147 | 80.43 202 | 88.09 224 |
|
ACMH+ | | 68.96 14 | 76.01 208 | 74.01 213 | 82.03 173 | 88.60 140 | 65.31 165 | 88.86 92 | 87.55 196 | 70.25 166 | 67.75 263 | 87.47 173 | 41.27 295 | 93.19 151 | 58.37 244 | 75.94 245 | 87.60 233 |
|
ACMH | | 67.68 16 | 75.89 209 | 73.93 214 | 81.77 178 | 88.71 138 | 66.61 139 | 88.62 101 | 89.01 167 | 69.81 171 | 66.78 274 | 86.70 196 | 41.95 294 | 91.51 199 | 55.64 261 | 78.14 222 | 87.17 244 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 68.01 15 | 75.85 210 | 73.36 220 | 83.31 131 | 84.76 216 | 66.03 146 | 83.38 233 | 85.06 225 | 70.21 167 | 69.40 253 | 81.05 274 | 45.76 274 | 94.66 89 | 65.10 189 | 75.49 252 | 89.25 191 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
testing_2 | | | 75.73 211 | 73.34 221 | 82.89 154 | 77.37 306 | 65.22 166 | 84.10 224 | 90.54 121 | 69.09 187 | 60.46 303 | 81.15 273 | 40.48 299 | 92.84 168 | 76.36 99 | 80.54 201 | 90.60 148 |
|
baseline2 | | | 75.70 212 | 73.83 217 | 81.30 188 | 83.26 241 | 61.79 225 | 82.57 238 | 80.65 274 | 66.81 208 | 66.88 272 | 83.42 253 | 57.86 170 | 92.19 184 | 63.47 198 | 79.57 208 | 89.91 177 |
|
WTY-MVS | | | 75.65 213 | 75.68 192 | 75.57 266 | 86.40 195 | 56.82 272 | 77.92 282 | 82.40 258 | 65.10 229 | 76.18 171 | 87.72 164 | 63.13 118 | 80.90 296 | 60.31 227 | 81.96 183 | 89.00 201 |
|
thres200 | | | 75.55 214 | 74.47 209 | 78.82 229 | 87.78 167 | 57.85 259 | 83.07 235 | 83.51 244 | 72.44 134 | 75.84 177 | 84.42 242 | 52.08 218 | 91.75 193 | 47.41 297 | 83.64 164 | 86.86 251 |
|
EPNet_dtu | | | 75.46 215 | 74.86 203 | 77.23 254 | 82.57 261 | 54.60 292 | 86.89 152 | 83.09 252 | 71.64 142 | 66.25 279 | 85.86 218 | 55.99 186 | 88.04 259 | 54.92 263 | 86.55 132 | 89.05 197 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-SCA-FT | | | 75.43 216 | 73.87 216 | 80.11 206 | 82.69 259 | 64.85 172 | 81.57 249 | 83.47 245 | 69.16 186 | 70.49 236 | 84.15 244 | 51.95 221 | 88.15 257 | 69.23 153 | 72.14 280 | 87.34 239 |
|
XXY-MVS | | | 75.41 217 | 75.56 193 | 74.96 271 | 83.59 235 | 57.82 260 | 80.59 256 | 83.87 239 | 66.54 215 | 74.93 198 | 88.31 153 | 63.24 112 | 80.09 299 | 62.16 211 | 76.85 235 | 86.97 249 |
|
TransMVSNet (Re) | | | 75.39 218 | 74.56 207 | 77.86 242 | 85.50 206 | 57.10 269 | 86.78 157 | 86.09 218 | 72.17 138 | 71.53 228 | 87.34 174 | 63.01 119 | 89.31 239 | 56.84 257 | 61.83 308 | 87.17 244 |
|
CostFormer | | | 75.24 219 | 73.90 215 | 79.27 222 | 82.65 260 | 58.27 251 | 80.80 252 | 82.73 256 | 61.57 264 | 75.33 189 | 83.13 255 | 55.52 187 | 91.07 213 | 64.98 191 | 78.34 221 | 88.45 218 |
|
D2MVS | | | 74.82 220 | 73.21 222 | 79.64 217 | 79.81 292 | 62.56 216 | 80.34 258 | 87.35 201 | 64.37 239 | 68.86 256 | 82.66 261 | 46.37 267 | 90.10 227 | 67.91 163 | 81.24 190 | 86.25 260 |
|
pmmvs6 | | | 74.69 221 | 73.39 219 | 78.61 232 | 81.38 274 | 57.48 265 | 86.64 161 | 87.95 190 | 64.99 233 | 70.18 240 | 86.61 199 | 50.43 239 | 89.52 235 | 62.12 212 | 70.18 290 | 88.83 208 |
|
PatchFormer-LS_test | | | 74.50 222 | 73.05 225 | 78.86 228 | 82.95 252 | 59.55 243 | 81.65 247 | 82.30 259 | 67.44 206 | 71.62 227 | 78.15 296 | 52.34 212 | 88.92 249 | 65.05 190 | 75.90 246 | 88.12 223 |
|
tfpnnormal | | | 74.39 223 | 73.16 223 | 78.08 240 | 86.10 198 | 58.05 253 | 84.65 210 | 87.53 197 | 70.32 164 | 71.22 231 | 85.63 224 | 54.97 190 | 89.86 229 | 43.03 311 | 75.02 259 | 86.32 259 |
|
IterMVS | | | 74.29 224 | 72.94 226 | 78.35 237 | 81.53 271 | 63.49 199 | 81.58 248 | 82.49 257 | 68.06 201 | 69.99 246 | 83.69 250 | 51.66 227 | 85.54 276 | 65.85 183 | 71.64 283 | 86.01 267 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OurMVSNet-221017-0 | | | 74.26 225 | 72.42 230 | 79.80 212 | 83.76 233 | 59.59 241 | 85.92 181 | 86.64 208 | 66.39 216 | 66.96 271 | 87.58 168 | 39.46 302 | 91.60 196 | 65.76 184 | 69.27 292 | 88.22 221 |
|
SCA | | | 74.22 226 | 72.33 231 | 79.91 209 | 84.05 228 | 62.17 221 | 79.96 262 | 79.29 288 | 66.30 217 | 72.38 219 | 80.13 282 | 51.95 221 | 88.60 252 | 59.25 235 | 77.67 225 | 88.96 203 |
|
miper_lstm_enhance | | | 74.11 227 | 73.11 224 | 77.13 255 | 80.11 288 | 59.62 240 | 72.23 304 | 86.92 206 | 66.76 209 | 70.40 237 | 82.92 256 | 56.93 183 | 82.92 290 | 69.06 156 | 72.63 276 | 88.87 206 |
|
EG-PatchMatch MVS | | | 74.04 228 | 71.82 235 | 80.71 198 | 84.92 215 | 67.42 125 | 85.86 182 | 88.08 188 | 66.04 220 | 64.22 291 | 83.85 246 | 35.10 316 | 92.56 173 | 57.44 252 | 80.83 194 | 82.16 302 |
|
pmmvs4 | | | 74.03 229 | 71.91 233 | 80.39 200 | 81.96 266 | 68.32 110 | 81.45 250 | 82.14 261 | 59.32 281 | 69.87 249 | 85.13 234 | 52.40 211 | 88.13 258 | 60.21 228 | 74.74 262 | 84.73 281 |
|
MS-PatchMatch | | | 73.83 230 | 72.67 227 | 77.30 253 | 83.87 231 | 66.02 147 | 81.82 243 | 84.66 228 | 61.37 267 | 68.61 259 | 82.82 259 | 47.29 261 | 88.21 256 | 59.27 234 | 84.32 154 | 77.68 315 |
|
DWT-MVSNet_test | | | 73.70 231 | 71.86 234 | 79.21 224 | 82.91 253 | 58.94 245 | 82.34 239 | 82.17 260 | 65.21 227 | 71.05 233 | 78.31 293 | 44.21 280 | 90.17 226 | 63.29 202 | 77.28 227 | 88.53 217 |
|
sss | | | 73.60 232 | 73.64 218 | 73.51 281 | 82.80 255 | 55.01 291 | 76.12 288 | 81.69 266 | 62.47 258 | 74.68 200 | 85.85 219 | 57.32 176 | 78.11 306 | 60.86 224 | 80.93 192 | 87.39 237 |
|
SixPastTwentyTwo | | | 73.37 233 | 71.26 241 | 79.70 213 | 85.08 214 | 57.89 258 | 85.57 186 | 83.56 243 | 71.03 153 | 65.66 281 | 85.88 217 | 42.10 292 | 92.57 172 | 59.11 237 | 63.34 307 | 88.65 214 |
|
CR-MVSNet | | | 73.37 233 | 71.27 240 | 79.67 215 | 81.32 277 | 65.19 167 | 75.92 290 | 80.30 280 | 59.92 276 | 72.73 214 | 81.19 271 | 52.50 209 | 86.69 267 | 59.84 230 | 77.71 223 | 87.11 247 |
|
MSDG | | | 73.36 235 | 70.99 242 | 80.49 199 | 84.51 220 | 65.80 152 | 80.71 254 | 86.13 217 | 65.70 224 | 65.46 282 | 83.74 249 | 44.60 278 | 90.91 215 | 51.13 277 | 76.89 233 | 84.74 280 |
|
tpm2 | | | 73.26 236 | 71.46 237 | 78.63 231 | 83.34 239 | 56.71 275 | 80.65 255 | 80.40 279 | 56.63 299 | 73.55 205 | 82.02 268 | 51.80 225 | 91.24 205 | 56.35 259 | 78.42 220 | 87.95 225 |
|
RPSCF | | | 73.23 237 | 71.46 237 | 78.54 234 | 82.50 262 | 59.85 239 | 82.18 241 | 82.84 255 | 58.96 284 | 71.15 232 | 89.41 129 | 45.48 277 | 84.77 281 | 58.82 240 | 71.83 282 | 91.02 135 |
|
PatchmatchNet | | | 73.12 238 | 71.33 239 | 78.49 236 | 83.18 244 | 60.85 231 | 79.63 264 | 78.57 290 | 64.13 241 | 71.73 225 | 79.81 287 | 51.20 230 | 85.97 274 | 57.40 253 | 76.36 242 | 88.66 213 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB | | 66.92 17 | 73.01 239 | 70.41 246 | 80.81 196 | 87.13 185 | 65.63 155 | 88.30 114 | 84.19 235 | 62.96 251 | 63.80 294 | 87.69 166 | 38.04 308 | 92.56 173 | 46.66 299 | 74.91 260 | 84.24 284 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CVMVSNet | | | 72.99 240 | 72.58 228 | 74.25 278 | 84.28 222 | 50.85 310 | 86.41 166 | 83.45 246 | 44.56 316 | 73.23 209 | 87.54 171 | 49.38 250 | 85.70 275 | 65.90 182 | 78.44 219 | 86.19 262 |
|
test-LLR | | | 72.94 241 | 72.43 229 | 74.48 275 | 81.35 275 | 58.04 254 | 78.38 276 | 77.46 296 | 66.66 211 | 69.95 247 | 79.00 291 | 48.06 258 | 79.24 300 | 66.13 178 | 84.83 147 | 86.15 263 |
|
test_0402 | | | 72.79 242 | 70.44 245 | 79.84 211 | 88.13 153 | 65.99 148 | 85.93 180 | 84.29 232 | 65.57 226 | 67.40 268 | 85.49 227 | 46.92 264 | 92.61 171 | 35.88 320 | 74.38 265 | 80.94 306 |
|
tpmrst | | | 72.39 243 | 72.13 232 | 73.18 283 | 80.54 284 | 49.91 313 | 79.91 263 | 79.08 289 | 63.11 248 | 71.69 226 | 79.95 284 | 55.32 188 | 82.77 291 | 65.66 185 | 73.89 269 | 86.87 250 |
|
PatchMatch-RL | | | 72.38 244 | 70.90 243 | 76.80 258 | 88.60 140 | 67.38 127 | 79.53 265 | 76.17 302 | 62.75 255 | 69.36 254 | 82.00 269 | 45.51 276 | 84.89 280 | 53.62 268 | 80.58 198 | 78.12 314 |
|
tpm | | | 72.37 245 | 71.71 236 | 74.35 277 | 82.19 264 | 52.00 302 | 79.22 269 | 77.29 298 | 64.56 236 | 72.95 212 | 83.68 251 | 51.35 228 | 83.26 289 | 58.33 245 | 75.80 247 | 87.81 229 |
|
PVSNet | | 64.34 18 | 72.08 246 | 70.87 244 | 75.69 264 | 86.21 197 | 56.44 279 | 74.37 300 | 80.73 273 | 62.06 262 | 70.17 241 | 82.23 266 | 42.86 287 | 83.31 288 | 54.77 264 | 84.45 153 | 87.32 240 |
|
RPMNet | | | 71.62 247 | 68.94 254 | 79.67 215 | 81.32 277 | 65.19 167 | 75.92 290 | 78.30 292 | 57.60 293 | 72.73 214 | 76.45 305 | 52.30 213 | 86.69 267 | 48.14 294 | 77.71 223 | 87.11 247 |
|
pmmvs5 | | | 71.55 248 | 70.20 248 | 75.61 265 | 77.83 303 | 56.39 280 | 81.74 245 | 80.89 270 | 57.76 291 | 67.46 266 | 84.49 241 | 49.26 253 | 85.32 279 | 57.08 256 | 75.29 256 | 85.11 277 |
|
test-mter | | | 71.41 249 | 70.39 247 | 74.48 275 | 81.35 275 | 58.04 254 | 78.38 276 | 77.46 296 | 60.32 272 | 69.95 247 | 79.00 291 | 36.08 314 | 79.24 300 | 66.13 178 | 84.83 147 | 86.15 263 |
|
K. test v3 | | | 71.19 250 | 68.51 256 | 79.21 224 | 83.04 249 | 57.78 261 | 84.35 220 | 76.91 300 | 72.90 131 | 62.99 297 | 82.86 258 | 39.27 303 | 91.09 212 | 61.65 217 | 52.66 320 | 88.75 211 |
|
tpmvs | | | 71.09 251 | 69.29 251 | 76.49 259 | 82.04 265 | 56.04 285 | 78.92 273 | 81.37 269 | 64.05 242 | 67.18 270 | 78.28 294 | 49.74 247 | 89.77 230 | 49.67 285 | 72.37 277 | 83.67 289 |
|
AllTest | | | 70.96 252 | 68.09 262 | 79.58 218 | 85.15 210 | 63.62 193 | 84.58 212 | 79.83 284 | 62.31 259 | 60.32 304 | 86.73 189 | 32.02 318 | 88.96 247 | 50.28 280 | 71.57 284 | 86.15 263 |
|
Patchmtry | | | 70.74 253 | 69.16 252 | 75.49 268 | 80.72 281 | 54.07 296 | 74.94 299 | 80.30 280 | 58.34 288 | 70.01 244 | 81.19 271 | 52.50 209 | 86.54 269 | 53.37 269 | 71.09 287 | 85.87 270 |
|
MIMVSNet | | | 70.69 254 | 69.30 250 | 74.88 272 | 84.52 219 | 56.35 282 | 75.87 292 | 79.42 287 | 64.59 235 | 67.76 262 | 82.41 263 | 41.10 296 | 81.54 295 | 46.64 301 | 81.34 188 | 86.75 254 |
|
tpm cat1 | | | 70.57 255 | 68.31 258 | 77.35 252 | 82.41 263 | 57.95 257 | 78.08 280 | 80.22 282 | 52.04 311 | 68.54 260 | 77.66 300 | 52.00 220 | 87.84 261 | 51.77 273 | 72.07 281 | 86.25 260 |
|
OpenMVS_ROB | | 64.09 19 | 70.56 256 | 68.19 259 | 77.65 247 | 80.26 286 | 59.41 244 | 85.01 200 | 82.96 254 | 58.76 286 | 65.43 283 | 82.33 264 | 37.63 310 | 91.23 206 | 45.34 307 | 76.03 244 | 82.32 300 |
|
pmmvs-eth3d | | | 70.50 257 | 67.83 266 | 78.52 235 | 77.37 306 | 66.18 145 | 81.82 243 | 81.51 267 | 58.90 285 | 63.90 293 | 80.42 280 | 42.69 288 | 86.28 272 | 58.56 242 | 65.30 304 | 83.11 295 |
|
USDC | | | 70.33 258 | 68.37 257 | 76.21 261 | 80.60 283 | 56.23 283 | 79.19 270 | 86.49 210 | 60.89 268 | 61.29 300 | 85.47 228 | 31.78 320 | 89.47 237 | 53.37 269 | 76.21 243 | 82.94 299 |
|
Patchmatch-RL test | | | 70.24 259 | 67.78 268 | 77.61 248 | 77.43 305 | 59.57 242 | 71.16 306 | 70.33 314 | 62.94 252 | 68.65 258 | 72.77 312 | 50.62 236 | 85.49 277 | 69.58 151 | 66.58 301 | 87.77 230 |
|
CMPMVS | | 51.72 21 | 70.19 260 | 68.16 260 | 76.28 260 | 73.15 320 | 57.55 264 | 79.47 266 | 83.92 237 | 48.02 315 | 56.48 315 | 84.81 238 | 43.13 285 | 86.42 271 | 62.67 207 | 81.81 186 | 84.89 278 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ppachtmachnet_test | | | 70.04 261 | 67.34 271 | 78.14 239 | 79.80 293 | 61.13 227 | 79.19 270 | 80.59 275 | 59.16 283 | 65.27 284 | 79.29 288 | 46.75 266 | 87.29 264 | 49.33 286 | 66.72 299 | 86.00 269 |
|
gg-mvs-nofinetune | | | 69.95 262 | 67.96 263 | 75.94 262 | 83.07 247 | 54.51 294 | 77.23 285 | 70.29 315 | 63.11 248 | 70.32 238 | 62.33 318 | 43.62 283 | 88.69 251 | 53.88 267 | 87.76 113 | 84.62 282 |
|
TESTMET0.1,1 | | | 69.89 263 | 69.00 253 | 72.55 284 | 79.27 300 | 56.85 271 | 78.38 276 | 74.71 308 | 57.64 292 | 68.09 261 | 77.19 302 | 37.75 309 | 76.70 311 | 63.92 196 | 84.09 156 | 84.10 287 |
|
FMVSNet5 | | | 69.50 264 | 67.96 263 | 74.15 279 | 82.97 251 | 55.35 290 | 80.01 261 | 82.12 262 | 62.56 257 | 63.02 295 | 81.53 270 | 36.92 311 | 81.92 293 | 48.42 289 | 74.06 267 | 85.17 276 |
|
PMMVS | | | 69.34 265 | 68.67 255 | 71.35 290 | 75.67 312 | 62.03 222 | 75.17 294 | 73.46 310 | 50.00 314 | 68.68 257 | 79.05 289 | 52.07 219 | 78.13 305 | 61.16 222 | 82.77 174 | 73.90 318 |
|
our_test_3 | | | 69.14 266 | 67.00 272 | 75.57 266 | 79.80 293 | 58.80 246 | 77.96 281 | 77.81 294 | 59.55 279 | 62.90 298 | 78.25 295 | 47.43 260 | 83.97 283 | 51.71 274 | 67.58 298 | 83.93 288 |
|
EPMVS | | | 69.02 267 | 68.16 260 | 71.59 286 | 79.61 296 | 49.80 315 | 77.40 284 | 66.93 322 | 62.82 254 | 70.01 244 | 79.05 289 | 45.79 273 | 77.86 308 | 56.58 258 | 75.26 257 | 87.13 246 |
|
Anonymous20231206 | | | 68.60 268 | 67.80 267 | 71.02 292 | 80.23 287 | 50.75 311 | 78.30 279 | 80.47 277 | 56.79 298 | 66.11 280 | 82.63 262 | 46.35 268 | 78.95 302 | 43.62 310 | 75.70 248 | 83.36 292 |
|
MIMVSNet1 | | | 68.58 269 | 66.78 274 | 73.98 280 | 80.07 289 | 51.82 303 | 80.77 253 | 84.37 231 | 64.40 238 | 59.75 307 | 82.16 267 | 36.47 312 | 83.63 286 | 42.73 312 | 70.33 289 | 86.48 258 |
|
EU-MVSNet | | | 68.53 270 | 67.61 270 | 71.31 291 | 78.51 302 | 47.01 319 | 84.47 213 | 84.27 233 | 42.27 317 | 66.44 278 | 84.79 239 | 40.44 300 | 83.76 284 | 58.76 241 | 68.54 297 | 83.17 293 |
|
PatchT | | | 68.46 271 | 67.85 265 | 70.29 294 | 80.70 282 | 43.93 322 | 72.47 303 | 74.88 305 | 60.15 274 | 70.55 234 | 76.57 304 | 49.94 244 | 81.59 294 | 50.58 278 | 74.83 261 | 85.34 273 |
|
test0.0.03 1 | | | 68.00 272 | 67.69 269 | 68.90 299 | 77.55 304 | 47.43 317 | 75.70 293 | 72.95 312 | 66.66 211 | 66.56 275 | 82.29 265 | 48.06 258 | 75.87 315 | 44.97 308 | 74.51 264 | 83.41 291 |
|
TDRefinement | | | 67.49 273 | 64.34 280 | 76.92 256 | 73.47 318 | 61.07 228 | 84.86 204 | 82.98 253 | 59.77 277 | 58.30 310 | 85.13 234 | 26.06 322 | 87.89 260 | 47.92 296 | 60.59 312 | 81.81 304 |
|
test20.03 | | | 67.45 274 | 66.95 273 | 68.94 298 | 75.48 314 | 44.84 321 | 77.50 283 | 77.67 295 | 66.66 211 | 63.01 296 | 83.80 248 | 47.02 263 | 78.40 304 | 42.53 313 | 68.86 296 | 83.58 290 |
|
UnsupCasMVSNet_eth | | | 67.33 275 | 65.99 276 | 71.37 288 | 73.48 317 | 51.47 307 | 75.16 295 | 85.19 224 | 65.20 228 | 60.78 302 | 80.93 278 | 42.35 289 | 77.20 310 | 57.12 255 | 53.69 319 | 85.44 272 |
|
TinyColmap | | | 67.30 276 | 64.81 278 | 74.76 274 | 81.92 267 | 56.68 276 | 80.29 259 | 81.49 268 | 60.33 271 | 56.27 316 | 83.22 254 | 24.77 323 | 87.66 263 | 45.52 305 | 69.47 291 | 79.95 310 |
|
dp | | | 66.80 277 | 65.43 277 | 70.90 293 | 79.74 295 | 48.82 316 | 75.12 297 | 74.77 306 | 59.61 278 | 64.08 292 | 77.23 301 | 42.89 286 | 80.72 297 | 48.86 288 | 66.58 301 | 83.16 294 |
|
MDA-MVSNet-bldmvs | | | 66.68 278 | 63.66 282 | 75.75 263 | 79.28 299 | 60.56 235 | 73.92 301 | 78.35 291 | 64.43 237 | 50.13 321 | 79.87 286 | 44.02 282 | 83.67 285 | 46.10 303 | 56.86 315 | 83.03 297 |
|
testgi | | | 66.67 279 | 66.53 275 | 67.08 304 | 75.62 313 | 41.69 325 | 75.93 289 | 76.50 301 | 66.11 218 | 65.20 287 | 86.59 200 | 35.72 315 | 74.71 319 | 43.71 309 | 73.38 274 | 84.84 279 |
|
CHOSEN 280x420 | | | 66.51 280 | 64.71 279 | 71.90 285 | 81.45 272 | 63.52 198 | 57.98 325 | 68.95 321 | 53.57 307 | 62.59 299 | 76.70 303 | 46.22 269 | 75.29 318 | 55.25 262 | 79.68 207 | 76.88 317 |
|
PM-MVS | | | 66.41 281 | 64.14 281 | 73.20 282 | 73.92 315 | 56.45 278 | 78.97 272 | 64.96 326 | 63.88 246 | 64.72 288 | 80.24 281 | 19.84 327 | 83.44 287 | 66.24 177 | 64.52 306 | 79.71 311 |
|
JIA-IIPM | | | 66.32 282 | 62.82 288 | 76.82 257 | 77.09 308 | 61.72 226 | 65.34 320 | 75.38 303 | 58.04 290 | 64.51 289 | 62.32 319 | 42.05 293 | 86.51 270 | 51.45 276 | 69.22 293 | 82.21 301 |
|
ADS-MVSNet2 | | | 66.20 283 | 63.33 283 | 74.82 273 | 79.92 290 | 58.75 247 | 67.55 317 | 75.19 304 | 53.37 308 | 65.25 285 | 75.86 306 | 42.32 290 | 80.53 298 | 41.57 314 | 68.91 294 | 85.18 274 |
|
YYNet1 | | | 65.03 284 | 62.91 286 | 71.38 287 | 75.85 311 | 56.60 277 | 69.12 314 | 74.66 309 | 57.28 296 | 54.12 317 | 77.87 298 | 45.85 272 | 74.48 320 | 49.95 283 | 61.52 310 | 83.05 296 |
|
MDA-MVSNet_test_wron | | | 65.03 284 | 62.92 285 | 71.37 288 | 75.93 310 | 56.73 273 | 69.09 315 | 74.73 307 | 57.28 296 | 54.03 318 | 77.89 297 | 45.88 271 | 74.39 321 | 49.89 284 | 61.55 309 | 82.99 298 |
|
Patchmatch-test | | | 64.82 286 | 63.24 284 | 69.57 296 | 79.42 298 | 49.82 314 | 63.49 323 | 69.05 320 | 51.98 312 | 59.95 306 | 80.13 282 | 50.91 232 | 70.98 324 | 40.66 316 | 73.57 272 | 87.90 227 |
|
ADS-MVSNet | | | 64.36 287 | 62.88 287 | 68.78 301 | 79.92 290 | 47.17 318 | 67.55 317 | 71.18 313 | 53.37 308 | 65.25 285 | 75.86 306 | 42.32 290 | 73.99 322 | 41.57 314 | 68.91 294 | 85.18 274 |
|
LF4IMVS | | | 64.02 288 | 62.19 289 | 69.50 297 | 70.90 322 | 53.29 300 | 76.13 287 | 77.18 299 | 52.65 310 | 58.59 308 | 80.98 276 | 23.55 324 | 76.52 312 | 53.06 271 | 66.66 300 | 78.68 313 |
|
UnsupCasMVSNet_bld | | | 63.70 289 | 61.53 291 | 70.21 295 | 73.69 316 | 51.39 308 | 72.82 302 | 81.89 263 | 55.63 303 | 57.81 311 | 71.80 314 | 38.67 305 | 78.61 303 | 49.26 287 | 52.21 321 | 80.63 307 |
|
new-patchmatchnet | | | 61.73 290 | 61.73 290 | 61.70 307 | 72.74 321 | 24.50 335 | 69.16 313 | 78.03 293 | 61.40 265 | 56.72 314 | 75.53 308 | 38.42 306 | 76.48 313 | 45.95 304 | 57.67 314 | 84.13 286 |
|
PVSNet_0 | | 57.27 20 | 61.67 291 | 59.27 292 | 68.85 300 | 79.61 296 | 57.44 266 | 68.01 316 | 73.44 311 | 55.93 302 | 58.54 309 | 70.41 315 | 44.58 279 | 77.55 309 | 47.01 298 | 35.91 324 | 71.55 320 |
|
MVS-HIRNet | | | 59.14 292 | 57.67 293 | 63.57 306 | 81.65 269 | 43.50 323 | 71.73 305 | 65.06 325 | 39.59 321 | 51.43 320 | 57.73 322 | 38.34 307 | 82.58 292 | 39.53 317 | 73.95 268 | 64.62 323 |
|
pmmvs3 | | | 57.79 293 | 54.26 295 | 68.37 302 | 64.02 326 | 56.72 274 | 75.12 297 | 65.17 324 | 40.20 319 | 52.93 319 | 69.86 316 | 20.36 326 | 75.48 317 | 45.45 306 | 55.25 318 | 72.90 319 |
|
DSMNet-mixed | | | 57.77 294 | 56.90 294 | 60.38 308 | 67.70 324 | 35.61 328 | 69.18 312 | 53.97 329 | 32.30 326 | 57.49 312 | 79.88 285 | 40.39 301 | 68.57 326 | 38.78 318 | 72.37 277 | 76.97 316 |
|
LCM-MVSNet | | | 54.25 295 | 49.68 299 | 67.97 303 | 53.73 329 | 45.28 320 | 66.85 319 | 80.78 272 | 35.96 323 | 39.45 324 | 62.23 320 | 8.70 335 | 78.06 307 | 48.24 293 | 51.20 322 | 80.57 308 |
|
FPMVS | | | 53.68 296 | 51.64 297 | 59.81 309 | 65.08 325 | 51.03 309 | 69.48 311 | 69.58 318 | 41.46 318 | 40.67 323 | 72.32 313 | 16.46 330 | 70.00 325 | 24.24 325 | 65.42 303 | 58.40 324 |
|
N_pmnet | | | 52.79 297 | 53.26 296 | 51.40 313 | 78.99 301 | 7.68 338 | 69.52 310 | 3.89 337 | 51.63 313 | 57.01 313 | 74.98 309 | 40.83 298 | 65.96 327 | 37.78 319 | 64.67 305 | 80.56 309 |
|
new_pmnet | | | 50.91 298 | 50.29 298 | 52.78 312 | 68.58 323 | 34.94 330 | 63.71 322 | 56.63 328 | 39.73 320 | 44.95 322 | 65.47 317 | 21.93 325 | 58.48 328 | 34.98 321 | 56.62 316 | 64.92 322 |
|
ANet_high | | | 50.57 299 | 46.10 300 | 63.99 305 | 48.67 332 | 39.13 326 | 70.99 308 | 80.85 271 | 61.39 266 | 31.18 326 | 57.70 323 | 17.02 329 | 73.65 323 | 31.22 322 | 15.89 330 | 79.18 312 |
|
Gipuma | | | 45.18 300 | 41.86 301 | 55.16 311 | 77.03 309 | 51.52 306 | 32.50 331 | 80.52 276 | 32.46 325 | 27.12 327 | 35.02 327 | 9.52 334 | 75.50 316 | 22.31 326 | 60.21 313 | 38.45 327 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS | | 37.38 22 | 44.16 301 | 40.28 302 | 55.82 310 | 40.82 334 | 42.54 324 | 65.12 321 | 63.99 327 | 34.43 324 | 24.48 328 | 57.12 324 | 3.92 337 | 76.17 314 | 17.10 328 | 55.52 317 | 48.75 325 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 40.82 302 | 38.86 303 | 46.69 314 | 53.84 328 | 16.45 336 | 48.61 328 | 49.92 330 | 37.49 322 | 31.67 325 | 60.97 321 | 8.14 336 | 56.42 329 | 28.42 323 | 30.72 325 | 67.19 321 |
|
E-PMN | | | 31.77 303 | 30.64 304 | 35.15 316 | 52.87 330 | 27.67 332 | 57.09 326 | 47.86 331 | 24.64 327 | 16.40 332 | 33.05 328 | 11.23 332 | 54.90 330 | 14.46 330 | 18.15 328 | 22.87 329 |
|
EMVS | | | 30.81 304 | 29.65 305 | 34.27 317 | 50.96 331 | 25.95 334 | 56.58 327 | 46.80 332 | 24.01 328 | 15.53 333 | 30.68 329 | 12.47 331 | 54.43 331 | 12.81 331 | 17.05 329 | 22.43 330 |
|
MVE | | 26.22 23 | 30.37 305 | 25.89 307 | 43.81 315 | 44.55 333 | 35.46 329 | 28.87 332 | 39.07 333 | 18.20 329 | 18.58 331 | 40.18 326 | 2.68 338 | 47.37 332 | 17.07 329 | 23.78 327 | 48.60 326 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 19.96 306 | 26.61 306 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 89.26 160 | 0.00 335 | 0.00 337 | 88.61 144 | 61.62 136 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
tmp_tt | | | 18.61 307 | 21.40 308 | 10.23 320 | 4.82 336 | 10.11 337 | 34.70 330 | 30.74 335 | 1.48 332 | 23.91 330 | 26.07 330 | 28.42 321 | 13.41 335 | 27.12 324 | 15.35 331 | 7.17 331 |
|
wuyk23d | | | 16.82 308 | 15.94 309 | 19.46 319 | 58.74 327 | 31.45 331 | 39.22 329 | 3.74 338 | 6.84 331 | 6.04 334 | 2.70 334 | 1.27 339 | 24.29 334 | 10.54 332 | 14.40 332 | 2.63 332 |
|
ab-mvs-re | | | 7.23 309 | 9.64 310 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 86.72 191 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
test123 | | | 6.12 310 | 8.11 311 | 0.14 321 | 0.06 338 | 0.09 339 | 71.05 307 | 0.03 340 | 0.04 334 | 0.25 336 | 1.30 336 | 0.05 340 | 0.03 337 | 0.21 334 | 0.01 334 | 0.29 333 |
|
testmvs | | | 6.04 311 | 8.02 312 | 0.10 322 | 0.08 337 | 0.03 340 | 69.74 309 | 0.04 339 | 0.05 333 | 0.31 335 | 1.68 335 | 0.02 341 | 0.04 336 | 0.24 333 | 0.02 333 | 0.25 334 |
|
pcd_1.5k_mvsjas | | | 5.26 312 | 7.02 313 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 63.15 115 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
sosnet-low-res | | | 0.00 313 | 0.00 314 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
sosnet | | | 0.00 313 | 0.00 314 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
uncertanet | | | 0.00 313 | 0.00 314 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
Regformer | | | 0.00 313 | 0.00 314 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
uanet | | | 0.00 313 | 0.00 314 | 0.00 323 | 0.00 339 | 0.00 341 | 0.00 333 | 0.00 341 | 0.00 335 | 0.00 337 | 0.00 337 | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
save filter2 | | | | | | | | | | | 88.41 13 | 94.67 12 | 72.46 34 | 94.59 90 | 86.67 17 | 95.86 11 | 91.94 111 |
|
save fliter | | | | | | 93.80 32 | 72.35 40 | 90.47 51 | 91.17 107 | 74.31 104 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 4 | 95.78 4 | 81.46 2 | 97.40 2 | 89.42 2 | 96.57 2 | 94.67 9 |
|
test_0728_SECOND | | | | | 87.71 28 | 95.34 1 | 71.43 51 | 93.49 5 | 94.23 1 | | | | | 97.49 1 | 89.08 4 | 96.41 4 | 94.21 24 |
|
test0726 | | | | | | 95.27 2 | 71.25 52 | 93.60 4 | 94.11 2 | 77.33 45 | 92.81 1 | 95.79 3 | 80.98 3 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 203 |
|
test_part2 | | | | | | 95.06 4 | 72.65 29 | | | | 91.80 6 | | | | | | |
|
test_part1 | | | | | 0.00 323 | | 0.00 341 | 0.00 333 | 94.09 5 | | | | 0.00 342 | 0.00 338 | 0.00 335 | 0.00 335 | 0.00 335 |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 229 | | | | 88.96 203 |
|
sam_mvs | | | | | | | | | | | | | 50.01 242 | | | | |
|
ambc | | | | | 75.24 270 | 73.16 319 | 50.51 312< |