SED-MVS | | | 90.08 1 | 90.85 1 | 87.77 23 | 95.30 2 | 70.98 65 | 93.57 5 | 94.06 10 | 77.24 48 | 93.10 1 | 95.72 6 | 82.99 1 | 97.44 2 | 89.07 6 | 96.63 2 | 94.88 7 |
|
DVP-MVS | | | 89.60 2 | 90.35 2 | 87.33 42 | 95.27 5 | 71.25 59 | 93.49 7 | 92.73 58 | 77.33 46 | 92.12 8 | 95.78 4 | 80.98 7 | 97.40 4 | 89.08 4 | 96.41 8 | 93.33 74 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
MSP-MVS | | | 89.51 3 | 89.91 4 | 88.30 7 | 94.28 27 | 73.46 16 | 92.90 14 | 94.11 6 | 80.27 12 | 91.35 11 | 94.16 39 | 78.35 10 | 96.77 20 | 89.59 1 | 94.22 60 | 94.67 16 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
DPE-MVS |  | | 89.48 4 | 89.98 3 | 88.01 12 | 94.80 9 | 72.69 30 | 91.59 39 | 94.10 8 | 75.90 84 | 92.29 6 | 95.66 8 | 81.67 4 | 97.38 6 | 87.44 17 | 96.34 11 | 93.95 44 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
APDe-MVS | | | 89.15 5 | 89.63 5 | 87.73 27 | 94.49 18 | 71.69 55 | 93.83 2 | 93.96 14 | 75.70 88 | 91.06 12 | 96.03 1 | 76.84 12 | 97.03 12 | 89.09 3 | 95.65 28 | 94.47 23 |
|
SMA-MVS |  | | 89.08 6 | 89.23 6 | 88.61 3 | 94.25 28 | 73.73 8 | 92.40 20 | 93.63 20 | 74.77 105 | 92.29 6 | 95.97 2 | 74.28 31 | 97.24 8 | 88.58 10 | 96.91 1 | 94.87 9 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
HPM-MVS++ |  | | 89.02 7 | 89.15 7 | 88.63 2 | 95.01 8 | 76.03 1 | 92.38 23 | 92.85 53 | 80.26 13 | 87.78 26 | 94.27 34 | 75.89 16 | 96.81 19 | 87.45 16 | 96.44 7 | 93.05 85 |
|
CNVR-MVS | | | 88.93 8 | 89.13 8 | 88.33 5 | 94.77 10 | 73.82 7 | 90.51 60 | 93.00 42 | 80.90 9 | 88.06 24 | 94.06 44 | 76.43 13 | 96.84 17 | 88.48 11 | 95.99 15 | 94.34 27 |
|
SteuartSystems-ACMMP | | | 88.72 9 | 88.86 9 | 88.32 6 | 92.14 75 | 72.96 24 | 93.73 3 | 93.67 19 | 80.19 14 | 88.10 23 | 94.80 14 | 73.76 36 | 97.11 10 | 87.51 15 | 95.82 20 | 94.90 6 |
Skip Steuart: Steuart Systems R&D Blog. |
SF-MVS | | | 88.46 10 | 88.74 10 | 87.64 35 | 92.78 64 | 71.95 50 | 92.40 20 | 94.74 2 | 75.71 86 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
DeepPCF-MVS | | 80.84 1 | 88.10 11 | 88.56 11 | 86.73 53 | 92.24 73 | 69.03 105 | 89.57 86 | 93.39 30 | 77.53 43 | 89.79 14 | 94.12 41 | 78.98 9 | 96.58 33 | 85.66 24 | 95.72 25 | 94.58 19 |
|
ETH3D-3000-0.1 | | | 88.09 12 | 88.29 13 | 87.50 38 | 92.76 65 | 71.89 53 | 91.43 43 | 94.70 3 | 74.47 111 | 88.86 18 | 94.61 19 | 75.23 21 | 95.84 54 | 86.62 23 | 95.92 17 | 94.78 13 |
|
SD-MVS | | | 88.06 13 | 88.50 12 | 86.71 54 | 92.60 71 | 72.71 28 | 91.81 37 | 93.19 35 | 77.87 34 | 90.32 13 | 94.00 46 | 74.83 24 | 93.78 139 | 87.63 14 | 94.27 59 | 93.65 62 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
NCCC | | | 88.06 13 | 88.01 17 | 88.24 8 | 94.41 22 | 73.62 9 | 91.22 48 | 92.83 54 | 81.50 6 | 85.79 41 | 93.47 56 | 73.02 42 | 97.00 14 | 84.90 30 | 94.94 40 | 94.10 35 |
|
ACMMP_NAP | | | 88.05 15 | 88.08 16 | 87.94 15 | 93.70 42 | 73.05 21 | 90.86 53 | 93.59 21 | 76.27 78 | 88.14 22 | 95.09 13 | 71.06 56 | 96.67 25 | 87.67 13 | 96.37 10 | 94.09 36 |
|
TSAR-MVS + MP. | | | 88.02 16 | 88.11 15 | 87.72 29 | 93.68 44 | 72.13 47 | 91.41 44 | 92.35 73 | 74.62 109 | 88.90 17 | 93.85 49 | 75.75 17 | 96.00 50 | 87.80 12 | 94.63 49 | 95.04 3 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ZNCC-MVS | | | 87.94 17 | 87.85 19 | 88.20 9 | 94.39 24 | 73.33 18 | 93.03 12 | 93.81 17 | 76.81 62 | 85.24 47 | 94.32 33 | 71.76 51 | 96.93 15 | 85.53 26 | 95.79 21 | 94.32 28 |
|
xxxxxxxxxxxxxcwj | | | 87.88 18 | 87.92 18 | 87.77 23 | 93.80 39 | 72.35 42 | 90.47 63 | 89.69 161 | 74.31 114 | 89.16 15 | 95.10 11 | 75.65 18 | 96.19 42 | 87.07 18 | 96.01 13 | 94.79 11 |
|
testtj | | | 87.78 19 | 87.78 20 | 87.77 23 | 94.55 16 | 72.47 37 | 92.23 28 | 93.49 24 | 74.75 106 | 88.33 21 | 94.43 30 | 73.27 39 | 97.02 13 | 84.18 45 | 94.84 44 | 93.82 52 |
|
MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 18 | 94.36 26 | 73.88 5 | 92.71 19 | 92.65 63 | 77.57 39 | 83.84 75 | 94.40 32 | 72.24 47 | 96.28 38 | 85.65 25 | 95.30 36 | 93.62 64 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 45 | 72.04 49 | 89.80 80 | 93.50 23 | 75.17 99 | 86.34 36 | 95.29 10 | 70.86 57 | 96.00 50 | 88.78 9 | 96.04 12 | 94.58 19 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 15 | 94.58 14 | 73.54 13 | 93.04 10 | 93.24 32 | 76.78 64 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 84.53 37 | 94.89 42 | 93.66 57 |
|
zzz-MVS | | | 87.53 23 | 87.41 26 | 87.90 19 | 94.18 32 | 74.25 3 | 90.23 70 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 77 |
|
ETH3 D test6400 | | | 87.50 24 | 87.44 25 | 87.70 32 | 93.71 41 | 71.75 54 | 90.62 58 | 94.05 13 | 70.80 172 | 87.59 29 | 93.51 53 | 77.57 11 | 96.63 28 | 83.31 50 | 95.77 22 | 94.72 15 |
|
ACMMPR | | | 87.44 25 | 87.23 30 | 88.08 11 | 94.64 11 | 73.59 10 | 93.04 10 | 93.20 34 | 76.78 64 | 84.66 61 | 94.52 21 | 68.81 79 | 96.65 26 | 84.53 37 | 94.90 41 | 94.00 42 |
|
APD-MVS |  | | 87.44 25 | 87.52 23 | 87.19 44 | 94.24 29 | 72.39 40 | 91.86 36 | 92.83 54 | 73.01 142 | 88.58 19 | 94.52 21 | 73.36 37 | 96.49 34 | 84.26 42 | 95.01 38 | 92.70 95 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
GST-MVS | | | 87.42 27 | 87.26 28 | 87.89 22 | 94.12 34 | 72.97 23 | 92.39 22 | 93.43 28 | 76.89 60 | 84.68 58 | 93.99 47 | 70.67 61 | 96.82 18 | 84.18 45 | 95.01 38 | 93.90 47 |
|
region2R | | | 87.42 27 | 87.20 31 | 88.09 10 | 94.63 12 | 73.55 11 | 93.03 12 | 93.12 37 | 76.73 67 | 84.45 64 | 94.52 21 | 69.09 76 | 96.70 23 | 84.37 40 | 94.83 46 | 94.03 39 |
|
MCST-MVS | | | 87.37 29 | 87.25 29 | 87.73 27 | 94.53 17 | 72.46 38 | 89.82 78 | 93.82 16 | 73.07 140 | 84.86 57 | 92.89 68 | 76.22 14 | 96.33 36 | 84.89 32 | 95.13 37 | 94.40 24 |
|
#test# | | | 87.33 30 | 87.13 32 | 87.94 15 | 94.58 14 | 73.54 13 | 92.34 25 | 93.24 32 | 75.23 96 | 84.91 52 | 94.44 28 | 70.78 58 | 96.61 29 | 83.75 49 | 94.89 42 | 93.66 57 |
|
ETH3D cwj APD-0.16 | | | 87.31 31 | 87.27 27 | 87.44 40 | 91.60 82 | 72.45 39 | 90.02 74 | 94.37 4 | 71.76 156 | 87.28 30 | 94.27 34 | 75.18 22 | 96.08 46 | 85.16 27 | 95.77 22 | 93.80 55 |
|
MTAPA | | | 87.23 32 | 87.00 33 | 87.90 19 | 94.18 32 | 74.25 3 | 86.58 177 | 92.02 87 | 79.45 19 | 85.88 38 | 94.80 14 | 68.07 81 | 96.21 40 | 86.69 21 | 95.34 32 | 93.23 77 |
|
XVS | | | 87.18 33 | 86.91 36 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 78 | 94.17 38 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
HPM-MVS |  | | 87.11 34 | 86.98 34 | 87.50 38 | 93.88 38 | 72.16 46 | 92.19 29 | 93.33 31 | 76.07 81 | 83.81 76 | 93.95 48 | 69.77 70 | 96.01 49 | 85.15 28 | 94.66 48 | 94.32 28 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
CP-MVS | | | 87.11 34 | 86.92 35 | 87.68 34 | 94.20 31 | 73.86 6 | 93.98 1 | 92.82 57 | 76.62 69 | 83.68 77 | 94.46 25 | 67.93 83 | 95.95 52 | 84.20 44 | 94.39 55 | 93.23 77 |
|
DeepC-MVS | | 79.81 2 | 87.08 36 | 86.88 37 | 87.69 33 | 91.16 86 | 72.32 44 | 90.31 68 | 93.94 15 | 77.12 54 | 82.82 89 | 94.23 37 | 72.13 49 | 97.09 11 | 84.83 33 | 95.37 31 | 93.65 62 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
DeepC-MVS_fast | | 79.65 3 | 86.91 37 | 86.62 40 | 87.76 26 | 93.52 47 | 72.37 41 | 91.26 45 | 93.04 38 | 76.62 69 | 84.22 69 | 93.36 58 | 71.44 54 | 96.76 21 | 80.82 78 | 95.33 34 | 94.16 33 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
SR-MVS | | | 86.73 38 | 86.67 39 | 86.91 49 | 94.11 35 | 72.11 48 | 92.37 24 | 92.56 66 | 74.50 110 | 86.84 33 | 94.65 18 | 67.31 90 | 95.77 56 | 84.80 34 | 92.85 69 | 92.84 93 |
|
test_prior3 | | | 86.73 38 | 86.86 38 | 86.33 60 | 92.61 69 | 69.59 96 | 88.85 104 | 92.97 47 | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | 95.48 66 | 83.31 50 | 95.86 18 | 93.91 45 |
|
PGM-MVS | | | 86.68 40 | 86.27 44 | 87.90 19 | 94.22 30 | 73.38 17 | 90.22 71 | 93.04 38 | 75.53 90 | 83.86 74 | 94.42 31 | 67.87 85 | 96.64 27 | 82.70 65 | 94.57 51 | 93.66 57 |
|
mPP-MVS | | | 86.67 41 | 86.32 43 | 87.72 29 | 94.41 22 | 73.55 11 | 92.74 17 | 92.22 80 | 76.87 61 | 82.81 90 | 94.25 36 | 66.44 97 | 96.24 39 | 82.88 60 | 94.28 58 | 93.38 71 |
|
Regformer-2 | | | 86.63 42 | 86.53 41 | 86.95 48 | 89.33 125 | 71.24 62 | 88.43 118 | 92.05 86 | 82.50 1 | 86.88 32 | 90.09 123 | 74.45 26 | 95.61 59 | 84.38 39 | 90.63 92 | 94.01 41 |
|
CANet | | | 86.45 43 | 86.10 49 | 87.51 37 | 90.09 106 | 70.94 69 | 89.70 84 | 92.59 65 | 81.78 4 | 81.32 105 | 91.43 94 | 70.34 62 | 97.23 9 | 84.26 42 | 93.36 65 | 94.37 25 |
|
train_agg | | | 86.43 44 | 86.20 46 | 87.13 46 | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.69 219 | 85.00 50 | 93.10 62 | 74.43 27 | 95.41 72 | 84.97 29 | 95.71 26 | 93.02 87 |
|
PHI-MVS | | | 86.43 44 | 86.17 48 | 87.24 43 | 90.88 92 | 70.96 67 | 92.27 27 | 94.07 9 | 72.45 145 | 85.22 48 | 91.90 81 | 69.47 72 | 96.42 35 | 83.28 53 | 95.94 16 | 94.35 26 |
|
Regformer-1 | | | 86.41 46 | 86.33 42 | 86.64 55 | 89.33 125 | 70.93 70 | 88.43 118 | 91.39 115 | 82.14 3 | 86.65 34 | 90.09 123 | 74.39 29 | 95.01 91 | 83.97 47 | 90.63 92 | 93.97 43 |
|
CSCG | | | 86.41 46 | 86.19 47 | 87.07 47 | 92.91 60 | 72.48 36 | 90.81 54 | 93.56 22 | 73.95 122 | 83.16 83 | 91.07 103 | 75.94 15 | 95.19 82 | 79.94 86 | 94.38 56 | 93.55 67 |
|
agg_prior1 | | | 86.22 48 | 86.09 50 | 86.62 56 | 92.85 61 | 71.94 51 | 88.59 115 | 91.78 102 | 68.96 214 | 84.41 65 | 93.18 61 | 74.94 23 | 94.93 92 | 84.75 35 | 95.33 34 | 93.01 88 |
|
test1172 | | | 86.20 49 | 86.22 45 | 86.12 67 | 93.95 37 | 69.89 91 | 91.79 38 | 92.28 75 | 75.07 100 | 86.40 35 | 94.58 20 | 65.00 114 | 95.56 61 | 84.34 41 | 92.60 72 | 92.90 91 |
|
APD-MVS_3200maxsize | | | 85.97 50 | 85.88 51 | 86.22 64 | 92.69 67 | 69.53 98 | 91.93 33 | 92.99 44 | 73.54 132 | 85.94 37 | 94.51 24 | 65.80 106 | 95.61 59 | 83.04 57 | 92.51 74 | 93.53 69 |
|
canonicalmvs | | | 85.91 51 | 85.87 52 | 86.04 69 | 89.84 112 | 69.44 103 | 90.45 66 | 93.00 42 | 76.70 68 | 88.01 25 | 91.23 97 | 73.28 38 | 93.91 134 | 81.50 72 | 88.80 113 | 94.77 14 |
|
ACMMP |  | | 85.89 52 | 85.39 58 | 87.38 41 | 93.59 46 | 72.63 32 | 92.74 17 | 93.18 36 | 76.78 64 | 80.73 114 | 93.82 50 | 64.33 117 | 96.29 37 | 82.67 66 | 90.69 91 | 93.23 77 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SR-MVS-dyc-post | | | 85.77 53 | 85.61 55 | 86.23 63 | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 133 | 85.69 42 | 94.45 26 | 65.00 114 | 95.56 61 | 82.75 61 | 91.87 77 | 92.50 102 |
|
CDPH-MVS | | | 85.76 54 | 85.29 62 | 87.17 45 | 93.49 48 | 71.08 63 | 88.58 116 | 92.42 71 | 68.32 224 | 84.61 62 | 93.48 54 | 72.32 46 | 96.15 45 | 79.00 88 | 95.43 30 | 94.28 30 |
|
TSAR-MVS + GP. | | | 85.71 55 | 85.33 59 | 86.84 50 | 91.34 84 | 72.50 35 | 89.07 98 | 87.28 224 | 76.41 71 | 85.80 40 | 90.22 121 | 74.15 34 | 95.37 78 | 81.82 70 | 91.88 76 | 92.65 99 |
|
Regformer-4 | | | 85.68 56 | 85.45 57 | 86.35 59 | 88.95 142 | 69.67 95 | 88.29 128 | 91.29 117 | 81.73 5 | 85.36 45 | 90.01 126 | 72.62 44 | 95.35 79 | 83.28 53 | 87.57 125 | 94.03 39 |
|
alignmvs | | | 85.48 57 | 85.32 60 | 85.96 71 | 89.51 119 | 69.47 100 | 89.74 82 | 92.47 67 | 76.17 79 | 87.73 28 | 91.46 93 | 70.32 63 | 93.78 139 | 81.51 71 | 88.95 110 | 94.63 18 |
|
3Dnovator+ | | 77.84 4 | 85.48 57 | 84.47 71 | 88.51 4 | 91.08 87 | 73.49 15 | 93.18 9 | 93.78 18 | 80.79 10 | 76.66 177 | 93.37 57 | 60.40 182 | 96.75 22 | 77.20 108 | 93.73 63 | 95.29 2 |
|
MSLP-MVS++ | | | 85.43 59 | 85.76 53 | 84.45 104 | 91.93 78 | 70.24 82 | 90.71 56 | 92.86 52 | 77.46 45 | 84.22 69 | 92.81 72 | 67.16 92 | 92.94 179 | 80.36 82 | 94.35 57 | 90.16 177 |
|
DELS-MVS | | | 85.41 60 | 85.30 61 | 85.77 72 | 88.49 160 | 67.93 134 | 85.52 209 | 93.44 27 | 78.70 28 | 83.63 80 | 89.03 152 | 74.57 25 | 95.71 58 | 80.26 84 | 94.04 61 | 93.66 57 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
HPM-MVS_fast | | | 85.35 61 | 84.95 67 | 86.57 58 | 93.69 43 | 70.58 80 | 92.15 31 | 91.62 106 | 73.89 125 | 82.67 92 | 94.09 42 | 62.60 139 | 95.54 64 | 80.93 76 | 92.93 67 | 93.57 66 |
|
CS-MVS | | | 85.32 62 | 85.66 54 | 84.30 112 | 88.28 168 | 65.31 181 | 91.18 49 | 93.48 26 | 78.06 33 | 83.14 84 | 90.53 115 | 69.93 67 | 95.45 68 | 82.96 58 | 93.40 64 | 92.15 117 |
|
Regformer-3 | | | 85.23 63 | 85.07 64 | 85.70 73 | 88.95 142 | 69.01 107 | 88.29 128 | 89.91 155 | 80.95 8 | 85.01 49 | 90.01 126 | 72.45 45 | 94.19 120 | 82.50 67 | 87.57 125 | 93.90 47 |
|
abl_6 | | | 85.23 63 | 84.95 67 | 86.07 68 | 92.23 74 | 70.48 81 | 90.80 55 | 92.08 85 | 73.51 135 | 85.26 46 | 94.16 39 | 62.75 138 | 95.92 53 | 82.46 68 | 91.30 86 | 91.81 126 |
|
MVS_111021_HR | | | 85.14 65 | 84.75 69 | 86.32 62 | 91.65 81 | 72.70 29 | 85.98 192 | 90.33 143 | 76.11 80 | 82.08 95 | 91.61 88 | 71.36 55 | 94.17 122 | 81.02 75 | 92.58 73 | 92.08 119 |
|
casdiffmvs | | | 85.11 66 | 85.14 63 | 85.01 86 | 87.20 201 | 65.77 172 | 87.75 144 | 92.83 54 | 77.84 35 | 84.36 68 | 92.38 74 | 72.15 48 | 93.93 133 | 81.27 74 | 90.48 94 | 95.33 1 |
|
UA-Net | | | 85.08 67 | 84.96 66 | 85.45 75 | 92.07 76 | 68.07 132 | 89.78 81 | 90.86 130 | 82.48 2 | 84.60 63 | 93.20 60 | 69.35 73 | 95.22 81 | 71.39 158 | 90.88 90 | 93.07 84 |
|
DPM-MVS | | | 84.93 68 | 84.29 72 | 86.84 50 | 90.20 104 | 73.04 22 | 87.12 159 | 93.04 38 | 69.80 192 | 82.85 88 | 91.22 98 | 73.06 41 | 96.02 48 | 76.72 115 | 94.63 49 | 91.46 136 |
|
baseline | | | 84.93 68 | 84.98 65 | 84.80 96 | 87.30 199 | 65.39 179 | 87.30 155 | 92.88 51 | 77.62 37 | 84.04 73 | 92.26 75 | 71.81 50 | 93.96 127 | 81.31 73 | 90.30 96 | 95.03 4 |
|
ETV-MVS | | | 84.90 70 | 84.67 70 | 85.59 74 | 89.39 123 | 68.66 121 | 88.74 110 | 92.64 64 | 79.97 17 | 84.10 71 | 85.71 239 | 69.32 74 | 95.38 75 | 80.82 78 | 91.37 84 | 92.72 94 |
|
EI-MVSNet-Vis-set | | | 84.19 71 | 83.81 73 | 85.31 77 | 88.18 170 | 67.85 135 | 87.66 146 | 89.73 160 | 80.05 16 | 82.95 85 | 89.59 136 | 70.74 60 | 94.82 100 | 80.66 81 | 84.72 160 | 93.28 76 |
|
nrg030 | | | 83.88 72 | 83.53 74 | 84.96 88 | 86.77 209 | 69.28 104 | 90.46 65 | 92.67 60 | 74.79 104 | 82.95 85 | 91.33 96 | 72.70 43 | 93.09 173 | 80.79 80 | 79.28 226 | 92.50 102 |
|
EI-MVSNet-UG-set | | | 83.81 73 | 83.38 76 | 85.09 84 | 87.87 179 | 67.53 141 | 87.44 152 | 89.66 162 | 79.74 18 | 82.23 94 | 89.41 145 | 70.24 64 | 94.74 103 | 79.95 85 | 83.92 168 | 92.99 89 |
|
CPTT-MVS | | | 83.73 74 | 83.33 77 | 84.92 91 | 93.28 50 | 70.86 72 | 92.09 32 | 90.38 139 | 68.75 218 | 79.57 122 | 92.83 70 | 60.60 178 | 93.04 177 | 80.92 77 | 91.56 82 | 90.86 153 |
|
EPNet | | | 83.72 75 | 82.92 83 | 86.14 66 | 84.22 244 | 69.48 99 | 91.05 51 | 85.27 249 | 81.30 7 | 76.83 172 | 91.65 85 | 66.09 101 | 95.56 61 | 76.00 120 | 93.85 62 | 93.38 71 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
HQP_MVS | | | 83.64 76 | 83.14 78 | 85.14 82 | 90.08 107 | 68.71 117 | 91.25 46 | 92.44 68 | 79.12 23 | 78.92 130 | 91.00 107 | 60.42 180 | 95.38 75 | 78.71 91 | 86.32 146 | 91.33 138 |
|
Effi-MVS+ | | | 83.62 77 | 83.08 79 | 85.24 80 | 88.38 165 | 67.45 142 | 88.89 102 | 89.15 178 | 75.50 91 | 82.27 93 | 88.28 171 | 69.61 71 | 94.45 110 | 77.81 102 | 87.84 123 | 93.84 51 |
|
OPM-MVS | | | 83.50 78 | 82.95 82 | 85.14 82 | 88.79 150 | 70.95 68 | 89.13 97 | 91.52 109 | 77.55 42 | 80.96 112 | 91.75 83 | 60.71 174 | 94.50 109 | 79.67 87 | 86.51 144 | 89.97 193 |
|
Vis-MVSNet |  | | 83.46 79 | 82.80 85 | 85.43 76 | 90.25 103 | 68.74 115 | 90.30 69 | 90.13 149 | 76.33 77 | 80.87 113 | 92.89 68 | 61.00 171 | 94.20 119 | 72.45 152 | 90.97 88 | 93.35 73 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
MG-MVS | | | 83.41 80 | 83.45 75 | 83.28 144 | 92.74 66 | 62.28 236 | 88.17 133 | 89.50 165 | 75.22 97 | 81.49 104 | 92.74 73 | 66.75 93 | 95.11 85 | 72.85 148 | 91.58 81 | 92.45 105 |
|
EPP-MVSNet | | | 83.40 81 | 83.02 81 | 84.57 100 | 90.13 105 | 64.47 196 | 92.32 26 | 90.73 131 | 74.45 113 | 79.35 125 | 91.10 101 | 69.05 78 | 95.12 84 | 72.78 149 | 87.22 133 | 94.13 34 |
|
3Dnovator | | 76.31 5 | 83.38 82 | 82.31 91 | 86.59 57 | 87.94 178 | 72.94 27 | 90.64 57 | 92.14 84 | 77.21 50 | 75.47 202 | 92.83 70 | 58.56 189 | 94.72 104 | 73.24 145 | 92.71 71 | 92.13 118 |
|
EIA-MVS | | | 83.31 83 | 82.80 85 | 84.82 94 | 89.59 115 | 65.59 174 | 88.21 131 | 92.68 59 | 74.66 108 | 78.96 128 | 86.42 227 | 69.06 77 | 95.26 80 | 75.54 125 | 90.09 100 | 93.62 64 |
|
hse-mvs3 | | | 83.15 84 | 82.19 92 | 86.02 70 | 90.56 97 | 70.85 73 | 88.15 135 | 89.16 177 | 76.02 82 | 84.67 59 | 91.39 95 | 61.54 157 | 95.50 65 | 82.71 63 | 75.48 269 | 91.72 128 |
|
MVS_Test | | | 83.15 84 | 83.06 80 | 83.41 141 | 86.86 205 | 63.21 222 | 86.11 190 | 92.00 90 | 74.31 114 | 82.87 87 | 89.44 144 | 70.03 65 | 93.21 164 | 77.39 107 | 88.50 119 | 93.81 53 |
|
IS-MVSNet | | | 83.15 84 | 82.81 84 | 84.18 116 | 89.94 110 | 63.30 220 | 91.59 39 | 88.46 201 | 79.04 25 | 79.49 123 | 92.16 76 | 65.10 111 | 94.28 113 | 67.71 188 | 91.86 79 | 94.95 5 |
|
DP-MVS Recon | | | 83.11 87 | 82.09 94 | 86.15 65 | 94.44 19 | 70.92 71 | 88.79 106 | 92.20 81 | 70.53 179 | 79.17 126 | 91.03 106 | 64.12 119 | 96.03 47 | 68.39 185 | 90.14 99 | 91.50 133 |
|
PAPM_NR | | | 83.02 88 | 82.41 88 | 84.82 94 | 92.47 72 | 66.37 160 | 87.93 141 | 91.80 100 | 73.82 126 | 77.32 162 | 90.66 112 | 67.90 84 | 94.90 96 | 70.37 166 | 89.48 107 | 93.19 81 |
|
VDD-MVS | | | 83.01 89 | 82.36 90 | 84.96 88 | 91.02 89 | 66.40 159 | 88.91 101 | 88.11 204 | 77.57 39 | 84.39 67 | 93.29 59 | 52.19 237 | 93.91 134 | 77.05 110 | 88.70 115 | 94.57 21 |
|
MVSFormer | | | 82.85 90 | 82.05 96 | 85.24 80 | 87.35 194 | 70.21 83 | 90.50 61 | 90.38 139 | 68.55 221 | 81.32 105 | 89.47 139 | 61.68 154 | 93.46 157 | 78.98 89 | 90.26 97 | 92.05 120 |
|
test_part1 | | | 82.78 91 | 82.08 95 | 84.89 92 | 90.66 95 | 66.97 153 | 90.96 52 | 92.93 50 | 77.19 51 | 80.53 116 | 90.04 125 | 63.44 124 | 95.39 74 | 76.04 119 | 76.90 246 | 92.31 109 |
|
OMC-MVS | | | 82.69 92 | 81.97 99 | 84.85 93 | 88.75 152 | 67.42 143 | 87.98 137 | 90.87 129 | 74.92 103 | 79.72 121 | 91.65 85 | 62.19 149 | 93.96 127 | 75.26 127 | 86.42 145 | 93.16 82 |
|
PVSNet_Blended_VisFu | | | 82.62 93 | 81.83 101 | 84.96 88 | 90.80 94 | 69.76 93 | 88.74 110 | 91.70 105 | 69.39 199 | 78.96 128 | 88.46 166 | 65.47 108 | 94.87 99 | 74.42 130 | 88.57 116 | 90.24 175 |
|
MVS_111021_LR | | | 82.61 94 | 82.11 93 | 84.11 117 | 88.82 147 | 71.58 56 | 85.15 212 | 86.16 241 | 74.69 107 | 80.47 117 | 91.04 104 | 62.29 146 | 90.55 245 | 80.33 83 | 90.08 101 | 90.20 176 |
|
HQP-MVS | | | 82.61 94 | 82.02 97 | 84.37 107 | 89.33 125 | 66.98 151 | 89.17 92 | 92.19 82 | 76.41 71 | 77.23 165 | 90.23 120 | 60.17 183 | 95.11 85 | 77.47 105 | 85.99 151 | 91.03 147 |
|
CLD-MVS | | | 82.31 96 | 81.65 102 | 84.29 113 | 88.47 161 | 67.73 138 | 85.81 200 | 92.35 73 | 75.78 85 | 78.33 142 | 86.58 222 | 64.01 120 | 94.35 111 | 76.05 118 | 87.48 130 | 90.79 154 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
VNet | | | 82.21 97 | 82.41 88 | 81.62 193 | 90.82 93 | 60.93 250 | 84.47 228 | 89.78 157 | 76.36 76 | 84.07 72 | 91.88 82 | 64.71 116 | 90.26 247 | 70.68 163 | 88.89 111 | 93.66 57 |
|
diffmvs | | | 82.10 98 | 81.88 100 | 82.76 174 | 83.00 270 | 63.78 208 | 83.68 244 | 89.76 158 | 72.94 143 | 82.02 96 | 89.85 129 | 65.96 105 | 90.79 241 | 82.38 69 | 87.30 132 | 93.71 56 |
|
LPG-MVS_test | | | 82.08 99 | 81.27 105 | 84.50 102 | 89.23 133 | 68.76 113 | 90.22 71 | 91.94 94 | 75.37 94 | 76.64 178 | 91.51 90 | 54.29 220 | 94.91 94 | 78.44 95 | 83.78 169 | 89.83 198 |
|
FIs | | | 82.07 100 | 82.42 87 | 81.04 211 | 88.80 149 | 58.34 274 | 88.26 130 | 93.49 24 | 76.93 59 | 78.47 139 | 91.04 104 | 69.92 68 | 92.34 196 | 69.87 172 | 84.97 157 | 92.44 106 |
|
PS-MVSNAJss | | | 82.07 100 | 81.31 104 | 84.34 110 | 86.51 212 | 67.27 147 | 89.27 90 | 91.51 110 | 71.75 157 | 79.37 124 | 90.22 121 | 63.15 132 | 94.27 114 | 77.69 103 | 82.36 191 | 91.49 134 |
|
API-MVS | | | 81.99 102 | 81.23 106 | 84.26 114 | 90.94 90 | 70.18 88 | 91.10 50 | 89.32 169 | 71.51 163 | 78.66 135 | 88.28 171 | 65.26 109 | 95.10 88 | 64.74 216 | 91.23 87 | 87.51 257 |
|
UniMVSNet_NR-MVSNet | | | 81.88 103 | 81.54 103 | 82.92 163 | 88.46 162 | 63.46 216 | 87.13 158 | 92.37 72 | 80.19 14 | 78.38 140 | 89.14 147 | 71.66 53 | 93.05 175 | 70.05 169 | 76.46 254 | 92.25 112 |
|
MAR-MVS | | | 81.84 104 | 80.70 113 | 85.27 79 | 91.32 85 | 71.53 57 | 89.82 78 | 90.92 127 | 69.77 193 | 78.50 137 | 86.21 231 | 62.36 145 | 94.52 108 | 65.36 210 | 92.05 75 | 89.77 201 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
LFMVS | | | 81.82 105 | 81.23 106 | 83.57 136 | 91.89 79 | 63.43 218 | 89.84 77 | 81.85 295 | 77.04 57 | 83.21 81 | 93.10 62 | 52.26 236 | 93.43 159 | 71.98 153 | 89.95 103 | 93.85 49 |
|
hse-mvs2 | | | 81.72 106 | 80.94 111 | 84.07 120 | 88.72 153 | 67.68 139 | 85.87 196 | 87.26 225 | 76.02 82 | 84.67 59 | 88.22 174 | 61.54 157 | 93.48 155 | 82.71 63 | 73.44 296 | 91.06 145 |
|
xiu_mvs_v2_base | | | 81.69 107 | 81.05 109 | 83.60 134 | 89.15 136 | 68.03 133 | 84.46 230 | 90.02 151 | 70.67 176 | 81.30 108 | 86.53 225 | 63.17 131 | 94.19 120 | 75.60 124 | 88.54 117 | 88.57 237 |
|
PS-MVSNAJ | | | 81.69 107 | 81.02 110 | 83.70 133 | 89.51 119 | 68.21 130 | 84.28 236 | 90.09 150 | 70.79 173 | 81.26 109 | 85.62 243 | 63.15 132 | 94.29 112 | 75.62 123 | 88.87 112 | 88.59 236 |
|
PAPR | | | 81.66 109 | 80.89 112 | 83.99 128 | 90.27 102 | 64.00 203 | 86.76 173 | 91.77 104 | 68.84 217 | 77.13 170 | 89.50 137 | 67.63 86 | 94.88 98 | 67.55 190 | 88.52 118 | 93.09 83 |
|
UniMVSNet (Re) | | | 81.60 110 | 81.11 108 | 83.09 154 | 88.38 165 | 64.41 197 | 87.60 147 | 93.02 41 | 78.42 31 | 78.56 136 | 88.16 175 | 69.78 69 | 93.26 163 | 69.58 175 | 76.49 253 | 91.60 129 |
|
FC-MVSNet-test | | | 81.52 111 | 82.02 97 | 80.03 228 | 88.42 164 | 55.97 310 | 87.95 139 | 93.42 29 | 77.10 55 | 77.38 160 | 90.98 109 | 69.96 66 | 91.79 214 | 68.46 184 | 84.50 162 | 92.33 107 |
|
VDDNet | | | 81.52 111 | 80.67 114 | 84.05 122 | 90.44 100 | 64.13 202 | 89.73 83 | 85.91 244 | 71.11 167 | 83.18 82 | 93.48 54 | 50.54 260 | 93.49 154 | 73.40 142 | 88.25 121 | 94.54 22 |
|
ACMP | | 74.13 6 | 81.51 113 | 80.57 115 | 84.36 108 | 89.42 121 | 68.69 120 | 89.97 76 | 91.50 113 | 74.46 112 | 75.04 220 | 90.41 117 | 53.82 225 | 94.54 106 | 77.56 104 | 82.91 183 | 89.86 197 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
jason | | | 81.39 114 | 80.29 122 | 84.70 98 | 86.63 211 | 69.90 90 | 85.95 193 | 86.77 232 | 63.24 275 | 81.07 111 | 89.47 139 | 61.08 170 | 92.15 203 | 78.33 98 | 90.07 102 | 92.05 120 |
jason: jason. |
lupinMVS | | | 81.39 114 | 80.27 123 | 84.76 97 | 87.35 194 | 70.21 83 | 85.55 205 | 86.41 236 | 62.85 282 | 81.32 105 | 88.61 161 | 61.68 154 | 92.24 200 | 78.41 97 | 90.26 97 | 91.83 124 |
|
test_yl | | | 81.17 116 | 80.47 118 | 83.24 147 | 89.13 137 | 63.62 209 | 86.21 187 | 89.95 153 | 72.43 148 | 81.78 101 | 89.61 134 | 57.50 198 | 93.58 148 | 70.75 161 | 86.90 137 | 92.52 100 |
|
DCV-MVSNet | | | 81.17 116 | 80.47 118 | 83.24 147 | 89.13 137 | 63.62 209 | 86.21 187 | 89.95 153 | 72.43 148 | 81.78 101 | 89.61 134 | 57.50 198 | 93.58 148 | 70.75 161 | 86.90 137 | 92.52 100 |
|
DU-MVS | | | 81.12 118 | 80.52 117 | 82.90 164 | 87.80 182 | 63.46 216 | 87.02 162 | 91.87 98 | 79.01 26 | 78.38 140 | 89.07 150 | 65.02 112 | 93.05 175 | 70.05 169 | 76.46 254 | 92.20 114 |
|
PVSNet_Blended | | | 80.98 119 | 80.34 120 | 82.90 164 | 88.85 144 | 65.40 177 | 84.43 232 | 92.00 90 | 67.62 227 | 78.11 147 | 85.05 256 | 66.02 103 | 94.27 114 | 71.52 155 | 89.50 106 | 89.01 220 |
|
mvs-test1 | | | 80.88 120 | 79.40 138 | 85.29 78 | 85.13 232 | 69.75 94 | 89.28 89 | 88.10 205 | 74.99 101 | 76.44 183 | 86.72 211 | 57.27 201 | 94.26 118 | 73.53 138 | 83.18 180 | 91.87 123 |
|
QAPM | | | 80.88 120 | 79.50 136 | 85.03 85 | 88.01 177 | 68.97 109 | 91.59 39 | 92.00 90 | 66.63 239 | 75.15 216 | 92.16 76 | 57.70 195 | 95.45 68 | 63.52 220 | 88.76 114 | 90.66 159 |
|
1121 | | | 80.84 122 | 79.77 129 | 84.05 122 | 93.11 55 | 70.78 74 | 84.66 222 | 85.42 248 | 57.37 325 | 81.76 103 | 92.02 78 | 63.41 125 | 94.12 123 | 67.28 193 | 92.93 67 | 87.26 264 |
|
TranMVSNet+NR-MVSNet | | | 80.84 122 | 80.31 121 | 82.42 179 | 87.85 180 | 62.33 234 | 87.74 145 | 91.33 116 | 80.55 11 | 77.99 150 | 89.86 128 | 65.23 110 | 92.62 185 | 67.05 198 | 75.24 279 | 92.30 110 |
|
UGNet | | | 80.83 124 | 79.59 134 | 84.54 101 | 88.04 175 | 68.09 131 | 89.42 87 | 88.16 203 | 76.95 58 | 76.22 187 | 89.46 141 | 49.30 274 | 93.94 130 | 68.48 183 | 90.31 95 | 91.60 129 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
Fast-Effi-MVS+ | | | 80.81 125 | 79.92 126 | 83.47 137 | 88.85 144 | 64.51 193 | 85.53 207 | 89.39 167 | 70.79 173 | 78.49 138 | 85.06 255 | 67.54 87 | 93.58 148 | 67.03 199 | 86.58 142 | 92.32 108 |
|
XVG-OURS-SEG-HR | | | 80.81 125 | 79.76 130 | 83.96 130 | 85.60 223 | 68.78 112 | 83.54 250 | 90.50 136 | 70.66 177 | 76.71 176 | 91.66 84 | 60.69 175 | 91.26 228 | 76.94 112 | 81.58 198 | 91.83 124 |
|
xiu_mvs_v1_base_debu | | | 80.80 127 | 79.72 131 | 84.03 125 | 87.35 194 | 70.19 85 | 85.56 202 | 88.77 192 | 69.06 210 | 81.83 97 | 88.16 175 | 50.91 254 | 92.85 181 | 78.29 99 | 87.56 127 | 89.06 215 |
|
xiu_mvs_v1_base | | | 80.80 127 | 79.72 131 | 84.03 125 | 87.35 194 | 70.19 85 | 85.56 202 | 88.77 192 | 69.06 210 | 81.83 97 | 88.16 175 | 50.91 254 | 92.85 181 | 78.29 99 | 87.56 127 | 89.06 215 |
|
xiu_mvs_v1_base_debi | | | 80.80 127 | 79.72 131 | 84.03 125 | 87.35 194 | 70.19 85 | 85.56 202 | 88.77 192 | 69.06 210 | 81.83 97 | 88.16 175 | 50.91 254 | 92.85 181 | 78.29 99 | 87.56 127 | 89.06 215 |
|
ACMM | | 73.20 8 | 80.78 130 | 79.84 128 | 83.58 135 | 89.31 130 | 68.37 125 | 89.99 75 | 91.60 107 | 70.28 183 | 77.25 163 | 89.66 132 | 53.37 228 | 93.53 153 | 74.24 133 | 82.85 184 | 88.85 228 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
114514_t | | | 80.68 131 | 79.51 135 | 84.20 115 | 94.09 36 | 67.27 147 | 89.64 85 | 91.11 124 | 58.75 316 | 74.08 230 | 90.72 111 | 58.10 191 | 95.04 90 | 69.70 173 | 89.42 108 | 90.30 173 |
|
CANet_DTU | | | 80.61 132 | 79.87 127 | 82.83 166 | 85.60 223 | 63.17 225 | 87.36 153 | 88.65 197 | 76.37 75 | 75.88 196 | 88.44 167 | 53.51 227 | 93.07 174 | 73.30 143 | 89.74 105 | 92.25 112 |
|
VPA-MVSNet | | | 80.60 133 | 80.55 116 | 80.76 216 | 88.07 174 | 60.80 253 | 86.86 167 | 91.58 108 | 75.67 89 | 80.24 118 | 89.45 143 | 63.34 126 | 90.25 248 | 70.51 165 | 79.22 227 | 91.23 141 |
|
PVSNet_BlendedMVS | | | 80.60 133 | 80.02 124 | 82.36 181 | 88.85 144 | 65.40 177 | 86.16 189 | 92.00 90 | 69.34 201 | 78.11 147 | 86.09 234 | 66.02 103 | 94.27 114 | 71.52 155 | 82.06 193 | 87.39 259 |
|
AdaColmap |  | | 80.58 135 | 79.42 137 | 84.06 121 | 93.09 56 | 68.91 110 | 89.36 88 | 88.97 187 | 69.27 202 | 75.70 199 | 89.69 131 | 57.20 203 | 95.77 56 | 63.06 226 | 88.41 120 | 87.50 258 |
|
EI-MVSNet | | | 80.52 136 | 79.98 125 | 82.12 182 | 84.28 242 | 63.19 224 | 86.41 181 | 88.95 188 | 74.18 119 | 78.69 133 | 87.54 190 | 66.62 94 | 92.43 191 | 72.57 151 | 80.57 210 | 90.74 157 |
|
XVG-OURS | | | 80.41 137 | 79.23 143 | 83.97 129 | 85.64 222 | 69.02 106 | 83.03 258 | 90.39 138 | 71.09 168 | 77.63 156 | 91.49 92 | 54.62 219 | 91.35 226 | 75.71 121 | 83.47 176 | 91.54 131 |
|
PCF-MVS | | 73.52 7 | 80.38 138 | 78.84 150 | 85.01 86 | 87.71 186 | 68.99 108 | 83.65 245 | 91.46 114 | 63.00 279 | 77.77 154 | 90.28 118 | 66.10 100 | 95.09 89 | 61.40 242 | 88.22 122 | 90.94 151 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
X-MVStestdata | | | 80.37 139 | 77.83 173 | 88.00 13 | 94.42 20 | 73.33 18 | 92.78 15 | 92.99 44 | 79.14 21 | 83.67 78 | 12.47 361 | 67.45 88 | 96.60 31 | 83.06 55 | 94.50 52 | 94.07 37 |
|
test_djsdf | | | 80.30 140 | 79.32 141 | 83.27 145 | 83.98 249 | 65.37 180 | 90.50 61 | 90.38 139 | 68.55 221 | 76.19 188 | 88.70 157 | 56.44 207 | 93.46 157 | 78.98 89 | 80.14 216 | 90.97 150 |
|
v2v482 | | | 80.23 141 | 79.29 142 | 83.05 157 | 83.62 254 | 64.14 201 | 87.04 161 | 89.97 152 | 73.61 129 | 78.18 146 | 87.22 199 | 61.10 169 | 93.82 137 | 76.11 117 | 76.78 251 | 91.18 142 |
|
NR-MVSNet | | | 80.23 141 | 79.38 139 | 82.78 172 | 87.80 182 | 63.34 219 | 86.31 184 | 91.09 125 | 79.01 26 | 72.17 248 | 89.07 150 | 67.20 91 | 92.81 184 | 66.08 205 | 75.65 265 | 92.20 114 |
|
Anonymous20240529 | | | 80.19 143 | 78.89 149 | 84.10 118 | 90.60 96 | 64.75 190 | 88.95 100 | 90.90 128 | 65.97 247 | 80.59 115 | 91.17 100 | 49.97 265 | 93.73 145 | 69.16 179 | 82.70 188 | 93.81 53 |
|
IterMVS-LS | | | 80.06 144 | 79.38 139 | 82.11 183 | 85.89 218 | 63.20 223 | 86.79 170 | 89.34 168 | 74.19 118 | 75.45 205 | 86.72 211 | 66.62 94 | 92.39 193 | 72.58 150 | 76.86 248 | 90.75 156 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Effi-MVS+-dtu | | | 80.03 145 | 78.57 154 | 84.42 105 | 85.13 232 | 68.74 115 | 88.77 107 | 88.10 205 | 74.99 101 | 74.97 221 | 83.49 275 | 57.27 201 | 93.36 160 | 73.53 138 | 80.88 204 | 91.18 142 |
|
v1144 | | | 80.03 145 | 79.03 146 | 83.01 159 | 83.78 252 | 64.51 193 | 87.11 160 | 90.57 135 | 71.96 155 | 78.08 149 | 86.20 232 | 61.41 161 | 93.94 130 | 74.93 128 | 77.23 241 | 90.60 162 |
|
v8 | | | 79.97 147 | 79.02 147 | 82.80 169 | 84.09 246 | 64.50 195 | 87.96 138 | 90.29 146 | 74.13 121 | 75.24 214 | 86.81 208 | 62.88 137 | 93.89 136 | 74.39 131 | 75.40 273 | 90.00 189 |
|
RRT_MVS | | | 79.88 148 | 78.38 159 | 84.38 106 | 85.42 226 | 70.60 79 | 88.71 112 | 88.75 196 | 72.30 150 | 78.83 132 | 89.14 147 | 44.44 304 | 92.18 202 | 78.50 94 | 79.33 225 | 90.35 171 |
|
OpenMVS |  | 72.83 10 | 79.77 149 | 78.33 162 | 84.09 119 | 85.17 229 | 69.91 89 | 90.57 59 | 90.97 126 | 66.70 235 | 72.17 248 | 91.91 80 | 54.70 217 | 93.96 127 | 61.81 239 | 90.95 89 | 88.41 241 |
|
v10 | | | 79.74 150 | 78.67 151 | 82.97 162 | 84.06 247 | 64.95 187 | 87.88 143 | 90.62 133 | 73.11 139 | 75.11 217 | 86.56 223 | 61.46 160 | 94.05 126 | 73.68 136 | 75.55 267 | 89.90 195 |
|
BH-RMVSNet | | | 79.61 151 | 78.44 157 | 83.14 152 | 89.38 124 | 65.93 167 | 84.95 217 | 87.15 227 | 73.56 131 | 78.19 145 | 89.79 130 | 56.67 206 | 93.36 160 | 59.53 256 | 86.74 140 | 90.13 179 |
|
v1192 | | | 79.59 152 | 78.43 158 | 83.07 156 | 83.55 256 | 64.52 192 | 86.93 165 | 90.58 134 | 70.83 171 | 77.78 153 | 85.90 235 | 59.15 186 | 93.94 130 | 73.96 135 | 77.19 243 | 90.76 155 |
|
ab-mvs | | | 79.51 153 | 78.97 148 | 81.14 208 | 88.46 162 | 60.91 251 | 83.84 242 | 89.24 174 | 70.36 181 | 79.03 127 | 88.87 155 | 63.23 130 | 90.21 249 | 65.12 212 | 82.57 189 | 92.28 111 |
|
WR-MVS | | | 79.49 154 | 79.22 144 | 80.27 225 | 88.79 150 | 58.35 273 | 85.06 214 | 88.61 199 | 78.56 29 | 77.65 155 | 88.34 169 | 63.81 123 | 90.66 244 | 64.98 214 | 77.22 242 | 91.80 127 |
|
v144192 | | | 79.47 155 | 78.37 160 | 82.78 172 | 83.35 258 | 63.96 204 | 86.96 163 | 90.36 142 | 69.99 187 | 77.50 157 | 85.67 241 | 60.66 176 | 93.77 141 | 74.27 132 | 76.58 252 | 90.62 160 |
|
BH-untuned | | | 79.47 155 | 78.60 153 | 82.05 185 | 89.19 135 | 65.91 168 | 86.07 191 | 88.52 200 | 72.18 151 | 75.42 206 | 87.69 185 | 61.15 168 | 93.54 152 | 60.38 249 | 86.83 139 | 86.70 278 |
|
mvs_anonymous | | | 79.42 157 | 79.11 145 | 80.34 223 | 84.45 241 | 57.97 280 | 82.59 260 | 87.62 217 | 67.40 230 | 76.17 191 | 88.56 164 | 68.47 80 | 89.59 258 | 70.65 164 | 86.05 150 | 93.47 70 |
|
thisisatest0530 | | | 79.40 158 | 77.76 177 | 84.31 111 | 87.69 188 | 65.10 186 | 87.36 153 | 84.26 263 | 70.04 186 | 77.42 159 | 88.26 173 | 49.94 266 | 94.79 102 | 70.20 167 | 84.70 161 | 93.03 86 |
|
tttt0517 | | | 79.40 158 | 77.91 170 | 83.90 132 | 88.10 173 | 63.84 206 | 88.37 125 | 84.05 265 | 71.45 164 | 76.78 174 | 89.12 149 | 49.93 268 | 94.89 97 | 70.18 168 | 83.18 180 | 92.96 90 |
|
V42 | | | 79.38 160 | 78.24 164 | 82.83 166 | 81.10 305 | 65.50 176 | 85.55 205 | 89.82 156 | 71.57 162 | 78.21 144 | 86.12 233 | 60.66 176 | 93.18 168 | 75.64 122 | 75.46 271 | 89.81 200 |
|
jajsoiax | | | 79.29 161 | 77.96 168 | 83.27 145 | 84.68 238 | 66.57 158 | 89.25 91 | 90.16 148 | 69.20 206 | 75.46 204 | 89.49 138 | 45.75 298 | 93.13 171 | 76.84 113 | 80.80 206 | 90.11 181 |
|
v1921920 | | | 79.22 162 | 78.03 167 | 82.80 169 | 83.30 260 | 63.94 205 | 86.80 169 | 90.33 143 | 69.91 190 | 77.48 158 | 85.53 244 | 58.44 190 | 93.75 143 | 73.60 137 | 76.85 249 | 90.71 158 |
|
AUN-MVS | | | 79.21 163 | 77.60 182 | 84.05 122 | 88.71 154 | 67.61 140 | 85.84 198 | 87.26 225 | 69.08 209 | 77.23 165 | 88.14 179 | 53.20 230 | 93.47 156 | 75.50 126 | 73.45 295 | 91.06 145 |
|
TAPA-MVS | | 73.13 9 | 79.15 164 | 77.94 169 | 82.79 171 | 89.59 115 | 62.99 229 | 88.16 134 | 91.51 110 | 65.77 248 | 77.14 169 | 91.09 102 | 60.91 172 | 93.21 164 | 50.26 311 | 87.05 135 | 92.17 116 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
mvs_tets | | | 79.13 165 | 77.77 176 | 83.22 149 | 84.70 237 | 66.37 160 | 89.17 92 | 90.19 147 | 69.38 200 | 75.40 207 | 89.46 141 | 44.17 306 | 93.15 169 | 76.78 114 | 80.70 208 | 90.14 178 |
|
UniMVSNet_ETH3D | | | 79.10 166 | 78.24 164 | 81.70 192 | 86.85 206 | 60.24 260 | 87.28 156 | 88.79 191 | 74.25 117 | 76.84 171 | 90.53 115 | 49.48 271 | 91.56 220 | 67.98 186 | 82.15 192 | 93.29 75 |
|
CDS-MVSNet | | | 79.07 167 | 77.70 179 | 83.17 151 | 87.60 189 | 68.23 129 | 84.40 234 | 86.20 240 | 67.49 229 | 76.36 184 | 86.54 224 | 61.54 157 | 90.79 241 | 61.86 238 | 87.33 131 | 90.49 166 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
MVSTER | | | 79.01 168 | 77.88 172 | 82.38 180 | 83.07 267 | 64.80 189 | 84.08 241 | 88.95 188 | 69.01 213 | 78.69 133 | 87.17 202 | 54.70 217 | 92.43 191 | 74.69 129 | 80.57 210 | 89.89 196 |
|
v1240 | | | 78.99 169 | 77.78 175 | 82.64 175 | 83.21 262 | 63.54 213 | 86.62 176 | 90.30 145 | 69.74 196 | 77.33 161 | 85.68 240 | 57.04 204 | 93.76 142 | 73.13 146 | 76.92 245 | 90.62 160 |
|
Anonymous20231211 | | | 78.97 170 | 77.69 180 | 82.81 168 | 90.54 98 | 64.29 199 | 90.11 73 | 91.51 110 | 65.01 258 | 76.16 192 | 88.13 180 | 50.56 259 | 93.03 178 | 69.68 174 | 77.56 239 | 91.11 144 |
|
v7n | | | 78.97 170 | 77.58 183 | 83.14 152 | 83.45 257 | 65.51 175 | 88.32 126 | 91.21 120 | 73.69 128 | 72.41 245 | 86.32 230 | 57.93 192 | 93.81 138 | 69.18 178 | 75.65 265 | 90.11 181 |
|
TAMVS | | | 78.89 172 | 77.51 184 | 83.03 158 | 87.80 182 | 67.79 137 | 84.72 221 | 85.05 252 | 67.63 226 | 76.75 175 | 87.70 184 | 62.25 147 | 90.82 240 | 58.53 267 | 87.13 134 | 90.49 166 |
|
cl_fuxian | | | 78.75 173 | 77.91 170 | 81.26 204 | 82.89 274 | 61.56 245 | 84.09 240 | 89.13 180 | 69.97 188 | 75.56 200 | 84.29 263 | 66.36 98 | 92.09 205 | 73.47 141 | 75.48 269 | 90.12 180 |
|
v148 | | | 78.72 174 | 77.80 174 | 81.47 197 | 82.73 277 | 61.96 240 | 86.30 185 | 88.08 207 | 73.26 138 | 76.18 189 | 85.47 246 | 62.46 143 | 92.36 195 | 71.92 154 | 73.82 292 | 90.09 183 |
|
VPNet | | | 78.69 175 | 78.66 152 | 78.76 249 | 88.31 167 | 55.72 312 | 84.45 231 | 86.63 234 | 76.79 63 | 78.26 143 | 90.55 114 | 59.30 185 | 89.70 257 | 66.63 200 | 77.05 244 | 90.88 152 |
|
ET-MVSNet_ETH3D | | | 78.63 176 | 76.63 205 | 84.64 99 | 86.73 210 | 69.47 100 | 85.01 215 | 84.61 256 | 69.54 197 | 66.51 305 | 86.59 220 | 50.16 263 | 91.75 215 | 76.26 116 | 84.24 166 | 92.69 97 |
|
anonymousdsp | | | 78.60 177 | 77.15 190 | 82.98 161 | 80.51 311 | 67.08 149 | 87.24 157 | 89.53 164 | 65.66 250 | 75.16 215 | 87.19 201 | 52.52 231 | 92.25 199 | 77.17 109 | 79.34 224 | 89.61 205 |
|
miper_ehance_all_eth | | | 78.59 178 | 77.76 177 | 81.08 210 | 82.66 279 | 61.56 245 | 83.65 245 | 89.15 178 | 68.87 216 | 75.55 201 | 83.79 271 | 66.49 96 | 92.03 206 | 73.25 144 | 76.39 256 | 89.64 204 |
|
WR-MVS_H | | | 78.51 179 | 78.49 155 | 78.56 252 | 88.02 176 | 56.38 305 | 88.43 118 | 92.67 60 | 77.14 53 | 73.89 231 | 87.55 189 | 66.25 99 | 89.24 264 | 58.92 262 | 73.55 294 | 90.06 187 |
|
GBi-Net | | | 78.40 180 | 77.40 185 | 81.40 199 | 87.60 189 | 63.01 226 | 88.39 122 | 89.28 170 | 71.63 159 | 75.34 209 | 87.28 195 | 54.80 213 | 91.11 231 | 62.72 227 | 79.57 219 | 90.09 183 |
|
test1 | | | 78.40 180 | 77.40 185 | 81.40 199 | 87.60 189 | 63.01 226 | 88.39 122 | 89.28 170 | 71.63 159 | 75.34 209 | 87.28 195 | 54.80 213 | 91.11 231 | 62.72 227 | 79.57 219 | 90.09 183 |
|
RRT_test8_iter05 | | | 78.38 182 | 77.40 185 | 81.34 202 | 86.00 217 | 58.86 269 | 86.55 179 | 91.26 118 | 72.13 154 | 75.91 194 | 87.42 193 | 44.97 301 | 93.73 145 | 77.02 111 | 75.30 276 | 91.45 137 |
|
Vis-MVSNet (Re-imp) | | | 78.36 183 | 78.45 156 | 78.07 260 | 88.64 156 | 51.78 332 | 86.70 174 | 79.63 316 | 74.14 120 | 75.11 217 | 90.83 110 | 61.29 165 | 89.75 255 | 58.10 271 | 91.60 80 | 92.69 97 |
|
Anonymous202405211 | | | 78.25 184 | 77.01 192 | 81.99 187 | 91.03 88 | 60.67 254 | 84.77 220 | 83.90 267 | 70.65 178 | 80.00 119 | 91.20 99 | 41.08 323 | 91.43 224 | 65.21 211 | 85.26 155 | 93.85 49 |
|
CP-MVSNet | | | 78.22 185 | 78.34 161 | 77.84 262 | 87.83 181 | 54.54 317 | 87.94 140 | 91.17 122 | 77.65 36 | 73.48 233 | 88.49 165 | 62.24 148 | 88.43 277 | 62.19 233 | 74.07 287 | 90.55 164 |
|
BH-w/o | | | 78.21 186 | 77.33 188 | 80.84 214 | 88.81 148 | 65.13 185 | 84.87 218 | 87.85 214 | 69.75 194 | 74.52 226 | 84.74 259 | 61.34 163 | 93.11 172 | 58.24 270 | 85.84 153 | 84.27 308 |
|
FMVSNet2 | | | 78.20 187 | 77.21 189 | 81.20 206 | 87.60 189 | 62.89 230 | 87.47 151 | 89.02 183 | 71.63 159 | 75.29 213 | 87.28 195 | 54.80 213 | 91.10 234 | 62.38 231 | 79.38 223 | 89.61 205 |
|
MVS | | | 78.19 188 | 76.99 194 | 81.78 190 | 85.66 221 | 66.99 150 | 84.66 222 | 90.47 137 | 55.08 335 | 72.02 250 | 85.27 249 | 63.83 122 | 94.11 125 | 66.10 204 | 89.80 104 | 84.24 309 |
|
Baseline_NR-MVSNet | | | 78.15 189 | 78.33 162 | 77.61 267 | 85.79 219 | 56.21 308 | 86.78 171 | 85.76 245 | 73.60 130 | 77.93 151 | 87.57 188 | 65.02 112 | 88.99 268 | 67.14 197 | 75.33 275 | 87.63 253 |
|
CNLPA | | | 78.08 190 | 76.79 199 | 81.97 188 | 90.40 101 | 71.07 64 | 87.59 148 | 84.55 257 | 66.03 246 | 72.38 246 | 89.64 133 | 57.56 197 | 86.04 296 | 59.61 255 | 83.35 177 | 88.79 231 |
|
cl-mvsnet2 | | | 78.07 191 | 77.01 192 | 81.23 205 | 82.37 286 | 61.83 242 | 83.55 249 | 87.98 209 | 68.96 214 | 75.06 219 | 83.87 267 | 61.40 162 | 91.88 213 | 73.53 138 | 76.39 256 | 89.98 192 |
|
PLC |  | 70.83 11 | 78.05 192 | 76.37 209 | 83.08 155 | 91.88 80 | 67.80 136 | 88.19 132 | 89.46 166 | 64.33 266 | 69.87 274 | 88.38 168 | 53.66 226 | 93.58 148 | 58.86 263 | 82.73 186 | 87.86 249 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
Fast-Effi-MVS+-dtu | | | 78.02 193 | 76.49 206 | 82.62 176 | 83.16 266 | 66.96 154 | 86.94 164 | 87.45 222 | 72.45 145 | 71.49 255 | 84.17 264 | 54.79 216 | 91.58 219 | 67.61 189 | 80.31 213 | 89.30 211 |
|
PS-CasMVS | | | 78.01 194 | 78.09 166 | 77.77 264 | 87.71 186 | 54.39 319 | 88.02 136 | 91.22 119 | 77.50 44 | 73.26 235 | 88.64 160 | 60.73 173 | 88.41 278 | 61.88 237 | 73.88 291 | 90.53 165 |
|
HY-MVS | | 69.67 12 | 77.95 195 | 77.15 190 | 80.36 222 | 87.57 193 | 60.21 261 | 83.37 252 | 87.78 215 | 66.11 243 | 75.37 208 | 87.06 206 | 63.27 128 | 90.48 246 | 61.38 243 | 82.43 190 | 90.40 170 |
|
eth_miper_zixun_eth | | | 77.92 196 | 76.69 203 | 81.61 195 | 83.00 270 | 61.98 239 | 83.15 254 | 89.20 176 | 69.52 198 | 74.86 223 | 84.35 262 | 61.76 153 | 92.56 188 | 71.50 157 | 72.89 300 | 90.28 174 |
|
FMVSNet3 | | | 77.88 197 | 76.85 197 | 80.97 212 | 86.84 207 | 62.36 233 | 86.52 180 | 88.77 192 | 71.13 166 | 75.34 209 | 86.66 218 | 54.07 223 | 91.10 234 | 62.72 227 | 79.57 219 | 89.45 208 |
|
miper_enhance_ethall | | | 77.87 198 | 76.86 196 | 80.92 213 | 81.65 293 | 61.38 247 | 82.68 259 | 88.98 185 | 65.52 252 | 75.47 202 | 82.30 289 | 65.76 107 | 92.00 208 | 72.95 147 | 76.39 256 | 89.39 209 |
|
PEN-MVS | | | 77.73 199 | 77.69 180 | 77.84 262 | 87.07 204 | 53.91 322 | 87.91 142 | 91.18 121 | 77.56 41 | 73.14 237 | 88.82 156 | 61.23 166 | 89.17 265 | 59.95 252 | 72.37 302 | 90.43 168 |
|
cl-mvsnet____ | | | 77.72 200 | 76.76 200 | 80.58 218 | 82.49 283 | 60.48 257 | 83.09 255 | 87.87 212 | 69.22 204 | 74.38 228 | 85.22 251 | 62.10 150 | 91.53 221 | 71.09 159 | 75.41 272 | 89.73 203 |
|
cl-mvsnet1 | | | 77.72 200 | 76.76 200 | 80.58 218 | 82.48 284 | 60.48 257 | 83.09 255 | 87.86 213 | 69.22 204 | 74.38 228 | 85.24 250 | 62.10 150 | 91.53 221 | 71.09 159 | 75.40 273 | 89.74 202 |
|
PAPM | | | 77.68 202 | 76.40 208 | 81.51 196 | 87.29 200 | 61.85 241 | 83.78 243 | 89.59 163 | 64.74 260 | 71.23 256 | 88.70 157 | 62.59 140 | 93.66 147 | 52.66 298 | 87.03 136 | 89.01 220 |
|
CHOSEN 1792x2688 | | | 77.63 203 | 75.69 212 | 83.44 138 | 89.98 109 | 68.58 123 | 78.70 299 | 87.50 220 | 56.38 330 | 75.80 198 | 86.84 207 | 58.67 188 | 91.40 225 | 61.58 241 | 85.75 154 | 90.34 172 |
|
HyFIR lowres test | | | 77.53 204 | 75.40 219 | 83.94 131 | 89.59 115 | 66.62 156 | 80.36 281 | 88.64 198 | 56.29 331 | 76.45 180 | 85.17 252 | 57.64 196 | 93.28 162 | 61.34 244 | 83.10 182 | 91.91 122 |
|
FMVSNet1 | | | 77.44 205 | 76.12 211 | 81.40 199 | 86.81 208 | 63.01 226 | 88.39 122 | 89.28 170 | 70.49 180 | 74.39 227 | 87.28 195 | 49.06 277 | 91.11 231 | 60.91 246 | 78.52 229 | 90.09 183 |
|
TR-MVS | | | 77.44 205 | 76.18 210 | 81.20 206 | 88.24 169 | 63.24 221 | 84.61 226 | 86.40 237 | 67.55 228 | 77.81 152 | 86.48 226 | 54.10 222 | 93.15 169 | 57.75 274 | 82.72 187 | 87.20 265 |
|
1112_ss | | | 77.40 207 | 76.43 207 | 80.32 224 | 89.11 141 | 60.41 259 | 83.65 245 | 87.72 216 | 62.13 290 | 73.05 238 | 86.72 211 | 62.58 141 | 89.97 252 | 62.11 236 | 80.80 206 | 90.59 163 |
|
thisisatest0515 | | | 77.33 208 | 75.38 220 | 83.18 150 | 85.27 228 | 63.80 207 | 82.11 265 | 83.27 278 | 65.06 256 | 75.91 194 | 83.84 269 | 49.54 270 | 94.27 114 | 67.24 195 | 86.19 148 | 91.48 135 |
|
pm-mvs1 | | | 77.25 209 | 76.68 204 | 78.93 247 | 84.22 244 | 58.62 272 | 86.41 181 | 88.36 202 | 71.37 165 | 73.31 234 | 88.01 181 | 61.22 167 | 89.15 266 | 64.24 218 | 73.01 299 | 89.03 219 |
|
bset_n11_16_dypcd | | | 77.12 210 | 75.47 216 | 82.06 184 | 81.12 304 | 65.99 165 | 81.37 274 | 83.20 281 | 69.94 189 | 76.09 193 | 83.38 277 | 47.75 282 | 92.26 198 | 78.51 93 | 77.91 235 | 87.95 245 |
|
LCM-MVSNet-Re | | | 77.05 211 | 76.94 195 | 77.36 270 | 87.20 201 | 51.60 333 | 80.06 284 | 80.46 308 | 75.20 98 | 67.69 289 | 86.72 211 | 62.48 142 | 88.98 269 | 63.44 222 | 89.25 109 | 91.51 132 |
|
DTE-MVSNet | | | 76.99 212 | 76.80 198 | 77.54 269 | 86.24 214 | 53.06 329 | 87.52 149 | 90.66 132 | 77.08 56 | 72.50 243 | 88.67 159 | 60.48 179 | 89.52 259 | 57.33 278 | 70.74 313 | 90.05 188 |
|
baseline1 | | | 76.98 213 | 76.75 202 | 77.66 265 | 88.13 171 | 55.66 313 | 85.12 213 | 81.89 293 | 73.04 141 | 76.79 173 | 88.90 153 | 62.43 144 | 87.78 285 | 63.30 224 | 71.18 311 | 89.55 207 |
|
LS3D | | | 76.95 214 | 74.82 226 | 83.37 142 | 90.45 99 | 67.36 146 | 89.15 96 | 86.94 230 | 61.87 292 | 69.52 277 | 90.61 113 | 51.71 248 | 94.53 107 | 46.38 331 | 86.71 141 | 88.21 243 |
|
GA-MVS | | | 76.87 215 | 75.17 224 | 81.97 188 | 82.75 276 | 62.58 231 | 81.44 273 | 86.35 239 | 72.16 153 | 74.74 224 | 82.89 281 | 46.20 293 | 92.02 207 | 68.85 182 | 81.09 202 | 91.30 140 |
|
DP-MVS | | | 76.78 216 | 74.57 228 | 83.42 139 | 93.29 49 | 69.46 102 | 88.55 117 | 83.70 269 | 63.98 272 | 70.20 265 | 88.89 154 | 54.01 224 | 94.80 101 | 46.66 328 | 81.88 196 | 86.01 290 |
|
cascas | | | 76.72 217 | 74.64 227 | 82.99 160 | 85.78 220 | 65.88 169 | 82.33 263 | 89.21 175 | 60.85 298 | 72.74 240 | 81.02 300 | 47.28 285 | 93.75 143 | 67.48 191 | 85.02 156 | 89.34 210 |
|
1314 | | | 76.53 218 | 75.30 223 | 80.21 226 | 83.93 250 | 62.32 235 | 84.66 222 | 88.81 190 | 60.23 302 | 70.16 268 | 84.07 266 | 55.30 211 | 90.73 243 | 67.37 192 | 83.21 179 | 87.59 256 |
|
thres100view900 | | | 76.50 219 | 75.55 215 | 79.33 241 | 89.52 118 | 56.99 294 | 85.83 199 | 83.23 279 | 73.94 123 | 76.32 185 | 87.12 203 | 51.89 245 | 91.95 209 | 48.33 319 | 83.75 171 | 89.07 213 |
|
thres600view7 | | | 76.50 219 | 75.44 217 | 79.68 235 | 89.40 122 | 57.16 291 | 85.53 207 | 83.23 279 | 73.79 127 | 76.26 186 | 87.09 204 | 51.89 245 | 91.89 212 | 48.05 324 | 83.72 174 | 90.00 189 |
|
thres400 | | | 76.50 219 | 75.37 221 | 79.86 231 | 89.13 137 | 57.65 286 | 85.17 210 | 83.60 270 | 73.41 136 | 76.45 180 | 86.39 228 | 52.12 238 | 91.95 209 | 48.33 319 | 83.75 171 | 90.00 189 |
|
tfpn200view9 | | | 76.42 222 | 75.37 221 | 79.55 240 | 89.13 137 | 57.65 286 | 85.17 210 | 83.60 270 | 73.41 136 | 76.45 180 | 86.39 228 | 52.12 238 | 91.95 209 | 48.33 319 | 83.75 171 | 89.07 213 |
|
Test_1112_low_res | | | 76.40 223 | 75.44 217 | 79.27 242 | 89.28 131 | 58.09 276 | 81.69 269 | 87.07 228 | 59.53 309 | 72.48 244 | 86.67 217 | 61.30 164 | 89.33 262 | 60.81 248 | 80.15 215 | 90.41 169 |
|
F-COLMAP | | | 76.38 224 | 74.33 233 | 82.50 178 | 89.28 131 | 66.95 155 | 88.41 121 | 89.03 182 | 64.05 270 | 66.83 299 | 88.61 161 | 46.78 288 | 92.89 180 | 57.48 275 | 78.55 228 | 87.67 252 |
|
LTVRE_ROB | | 69.57 13 | 76.25 225 | 74.54 230 | 81.41 198 | 88.60 157 | 64.38 198 | 79.24 292 | 89.12 181 | 70.76 175 | 69.79 276 | 87.86 182 | 49.09 276 | 93.20 166 | 56.21 286 | 80.16 214 | 86.65 279 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
MVP-Stereo | | | 76.12 226 | 74.46 232 | 81.13 209 | 85.37 227 | 69.79 92 | 84.42 233 | 87.95 210 | 65.03 257 | 67.46 291 | 85.33 248 | 53.28 229 | 91.73 217 | 58.01 272 | 83.27 178 | 81.85 328 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
XVG-ACMP-BASELINE | | | 76.11 227 | 74.27 234 | 81.62 193 | 83.20 263 | 64.67 191 | 83.60 248 | 89.75 159 | 69.75 194 | 71.85 251 | 87.09 204 | 32.78 345 | 92.11 204 | 69.99 171 | 80.43 212 | 88.09 244 |
|
ACMH+ | | 68.96 14 | 76.01 228 | 74.01 235 | 82.03 186 | 88.60 157 | 65.31 181 | 88.86 103 | 87.55 218 | 70.25 184 | 67.75 288 | 87.47 192 | 41.27 321 | 93.19 167 | 58.37 268 | 75.94 262 | 87.60 254 |
|
ACMH | | 67.68 16 | 75.89 229 | 73.93 236 | 81.77 191 | 88.71 154 | 66.61 157 | 88.62 114 | 89.01 184 | 69.81 191 | 66.78 300 | 86.70 216 | 41.95 320 | 91.51 223 | 55.64 287 | 78.14 234 | 87.17 266 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
IB-MVS | | 68.01 15 | 75.85 230 | 73.36 242 | 83.31 143 | 84.76 236 | 66.03 163 | 83.38 251 | 85.06 251 | 70.21 185 | 69.40 278 | 81.05 299 | 45.76 297 | 94.66 105 | 65.10 213 | 75.49 268 | 89.25 212 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
baseline2 | | | 75.70 231 | 73.83 239 | 81.30 203 | 83.26 261 | 61.79 243 | 82.57 261 | 80.65 304 | 66.81 232 | 66.88 297 | 83.42 276 | 57.86 194 | 92.19 201 | 63.47 221 | 79.57 219 | 89.91 194 |
|
WTY-MVS | | | 75.65 232 | 75.68 213 | 75.57 286 | 86.40 213 | 56.82 296 | 77.92 307 | 82.40 289 | 65.10 255 | 76.18 189 | 87.72 183 | 63.13 135 | 80.90 324 | 60.31 250 | 81.96 194 | 89.00 222 |
|
thres200 | | | 75.55 233 | 74.47 231 | 78.82 248 | 87.78 185 | 57.85 283 | 83.07 257 | 83.51 273 | 72.44 147 | 75.84 197 | 84.42 261 | 52.08 240 | 91.75 215 | 47.41 326 | 83.64 175 | 86.86 274 |
|
EPNet_dtu | | | 75.46 234 | 74.86 225 | 77.23 274 | 82.57 281 | 54.60 316 | 86.89 166 | 83.09 283 | 71.64 158 | 66.25 307 | 85.86 237 | 55.99 208 | 88.04 282 | 54.92 289 | 86.55 143 | 89.05 218 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
IterMVS-SCA-FT | | | 75.43 235 | 73.87 238 | 80.11 227 | 82.69 278 | 64.85 188 | 81.57 271 | 83.47 275 | 69.16 207 | 70.49 262 | 84.15 265 | 51.95 243 | 88.15 280 | 69.23 177 | 72.14 305 | 87.34 261 |
|
XXY-MVS | | | 75.41 236 | 75.56 214 | 74.96 292 | 83.59 255 | 57.82 284 | 80.59 280 | 83.87 268 | 66.54 240 | 74.93 222 | 88.31 170 | 63.24 129 | 80.09 327 | 62.16 234 | 76.85 249 | 86.97 272 |
|
TransMVSNet (Re) | | | 75.39 237 | 74.56 229 | 77.86 261 | 85.50 225 | 57.10 293 | 86.78 171 | 86.09 243 | 72.17 152 | 71.53 254 | 87.34 194 | 63.01 136 | 89.31 263 | 56.84 282 | 61.83 335 | 87.17 266 |
|
CostFormer | | | 75.24 238 | 73.90 237 | 79.27 242 | 82.65 280 | 58.27 275 | 80.80 275 | 82.73 287 | 61.57 293 | 75.33 212 | 83.13 279 | 55.52 209 | 91.07 237 | 64.98 214 | 78.34 233 | 88.45 239 |
|
D2MVS | | | 74.82 239 | 73.21 243 | 79.64 237 | 79.81 318 | 62.56 232 | 80.34 282 | 87.35 223 | 64.37 265 | 68.86 281 | 82.66 285 | 46.37 290 | 90.10 251 | 67.91 187 | 81.24 201 | 86.25 283 |
|
pmmvs6 | | | 74.69 240 | 73.39 241 | 78.61 251 | 81.38 299 | 57.48 289 | 86.64 175 | 87.95 210 | 64.99 259 | 70.18 266 | 86.61 219 | 50.43 261 | 89.52 259 | 62.12 235 | 70.18 315 | 88.83 229 |
|
tfpnnormal | | | 74.39 241 | 73.16 244 | 78.08 259 | 86.10 216 | 58.05 277 | 84.65 225 | 87.53 219 | 70.32 182 | 71.22 257 | 85.63 242 | 54.97 212 | 89.86 253 | 43.03 340 | 75.02 280 | 86.32 282 |
|
IterMVS | | | 74.29 242 | 72.94 246 | 78.35 256 | 81.53 296 | 63.49 215 | 81.58 270 | 82.49 288 | 68.06 225 | 69.99 271 | 83.69 273 | 51.66 249 | 85.54 299 | 65.85 207 | 71.64 308 | 86.01 290 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
OurMVSNet-221017-0 | | | 74.26 243 | 72.42 250 | 79.80 233 | 83.76 253 | 59.59 265 | 85.92 195 | 86.64 233 | 66.39 241 | 66.96 296 | 87.58 187 | 39.46 327 | 91.60 218 | 65.76 208 | 69.27 317 | 88.22 242 |
|
SCA | | | 74.22 244 | 72.33 251 | 79.91 230 | 84.05 248 | 62.17 237 | 79.96 286 | 79.29 318 | 66.30 242 | 72.38 246 | 80.13 309 | 51.95 243 | 88.60 275 | 59.25 258 | 77.67 238 | 88.96 224 |
|
miper_lstm_enhance | | | 74.11 245 | 73.11 245 | 77.13 275 | 80.11 314 | 59.62 264 | 72.23 329 | 86.92 231 | 66.76 234 | 70.40 263 | 82.92 280 | 56.93 205 | 82.92 317 | 69.06 180 | 72.63 301 | 88.87 227 |
|
EG-PatchMatch MVS | | | 74.04 246 | 71.82 255 | 80.71 217 | 84.92 235 | 67.42 143 | 85.86 197 | 88.08 207 | 66.04 245 | 64.22 319 | 83.85 268 | 35.10 341 | 92.56 188 | 57.44 276 | 80.83 205 | 82.16 327 |
|
pmmvs4 | | | 74.03 247 | 71.91 253 | 80.39 221 | 81.96 290 | 68.32 126 | 81.45 272 | 82.14 291 | 59.32 310 | 69.87 274 | 85.13 253 | 52.40 234 | 88.13 281 | 60.21 251 | 74.74 283 | 84.73 305 |
|
MS-PatchMatch | | | 73.83 248 | 72.67 247 | 77.30 272 | 83.87 251 | 66.02 164 | 81.82 266 | 84.66 255 | 61.37 296 | 68.61 284 | 82.82 283 | 47.29 284 | 88.21 279 | 59.27 257 | 84.32 165 | 77.68 342 |
|
DWT-MVSNet_test | | | 73.70 249 | 71.86 254 | 79.21 244 | 82.91 273 | 58.94 268 | 82.34 262 | 82.17 290 | 65.21 253 | 71.05 259 | 78.31 323 | 44.21 305 | 90.17 250 | 63.29 225 | 77.28 240 | 88.53 238 |
|
sss | | | 73.60 250 | 73.64 240 | 73.51 303 | 82.80 275 | 55.01 315 | 76.12 313 | 81.69 296 | 62.47 287 | 74.68 225 | 85.85 238 | 57.32 200 | 78.11 334 | 60.86 247 | 80.93 203 | 87.39 259 |
|
RPMNet | | | 73.51 251 | 70.49 267 | 82.58 177 | 81.32 302 | 65.19 183 | 75.92 315 | 92.27 76 | 57.60 323 | 72.73 241 | 76.45 334 | 52.30 235 | 95.43 71 | 48.14 323 | 77.71 236 | 87.11 270 |
|
SixPastTwentyTwo | | | 73.37 252 | 71.26 262 | 79.70 234 | 85.08 234 | 57.89 282 | 85.57 201 | 83.56 272 | 71.03 169 | 65.66 309 | 85.88 236 | 42.10 318 | 92.57 187 | 59.11 260 | 63.34 334 | 88.65 235 |
|
CR-MVSNet | | | 73.37 252 | 71.27 261 | 79.67 236 | 81.32 302 | 65.19 183 | 75.92 315 | 80.30 310 | 59.92 305 | 72.73 241 | 81.19 297 | 52.50 232 | 86.69 291 | 59.84 253 | 77.71 236 | 87.11 270 |
|
MSDG | | | 73.36 254 | 70.99 263 | 80.49 220 | 84.51 240 | 65.80 170 | 80.71 278 | 86.13 242 | 65.70 249 | 65.46 310 | 83.74 272 | 44.60 302 | 90.91 239 | 51.13 304 | 76.89 247 | 84.74 304 |
|
tpm2 | | | 73.26 255 | 71.46 257 | 78.63 250 | 83.34 259 | 56.71 299 | 80.65 279 | 80.40 309 | 56.63 329 | 73.55 232 | 82.02 294 | 51.80 247 | 91.24 229 | 56.35 285 | 78.42 232 | 87.95 245 |
|
RPSCF | | | 73.23 256 | 71.46 257 | 78.54 253 | 82.50 282 | 59.85 262 | 82.18 264 | 82.84 286 | 58.96 313 | 71.15 258 | 89.41 145 | 45.48 300 | 84.77 306 | 58.82 264 | 71.83 307 | 91.02 149 |
|
PatchmatchNet |  | | 73.12 257 | 71.33 260 | 78.49 255 | 83.18 264 | 60.85 252 | 79.63 288 | 78.57 320 | 64.13 267 | 71.73 252 | 79.81 314 | 51.20 252 | 85.97 297 | 57.40 277 | 76.36 259 | 88.66 234 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
COLMAP_ROB |  | 66.92 17 | 73.01 258 | 70.41 269 | 80.81 215 | 87.13 203 | 65.63 173 | 88.30 127 | 84.19 264 | 62.96 280 | 63.80 323 | 87.69 185 | 38.04 333 | 92.56 188 | 46.66 328 | 74.91 281 | 84.24 309 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
CVMVSNet | | | 72.99 259 | 72.58 248 | 74.25 299 | 84.28 242 | 50.85 338 | 86.41 181 | 83.45 276 | 44.56 346 | 73.23 236 | 87.54 190 | 49.38 272 | 85.70 298 | 65.90 206 | 78.44 231 | 86.19 285 |
|
test-LLR | | | 72.94 260 | 72.43 249 | 74.48 296 | 81.35 300 | 58.04 278 | 78.38 300 | 77.46 325 | 66.66 236 | 69.95 272 | 79.00 318 | 48.06 280 | 79.24 328 | 66.13 202 | 84.83 158 | 86.15 286 |
|
test_0402 | | | 72.79 261 | 70.44 268 | 79.84 232 | 88.13 171 | 65.99 165 | 85.93 194 | 84.29 261 | 65.57 251 | 67.40 293 | 85.49 245 | 46.92 287 | 92.61 186 | 35.88 349 | 74.38 286 | 80.94 333 |
|
MVS_0304 | | | 72.48 262 | 70.89 265 | 77.24 273 | 82.20 287 | 59.68 263 | 84.11 239 | 83.49 274 | 67.10 231 | 66.87 298 | 80.59 305 | 35.00 342 | 87.40 287 | 59.07 261 | 79.58 218 | 84.63 306 |
|
tpmrst | | | 72.39 263 | 72.13 252 | 73.18 307 | 80.54 310 | 49.91 341 | 79.91 287 | 79.08 319 | 63.11 277 | 71.69 253 | 79.95 311 | 55.32 210 | 82.77 318 | 65.66 209 | 73.89 290 | 86.87 273 |
|
PatchMatch-RL | | | 72.38 264 | 70.90 264 | 76.80 278 | 88.60 157 | 67.38 145 | 79.53 289 | 76.17 331 | 62.75 284 | 69.36 279 | 82.00 295 | 45.51 299 | 84.89 305 | 53.62 294 | 80.58 209 | 78.12 341 |
|
CL-MVSNet_2432*1600 | | | 72.37 265 | 71.46 257 | 75.09 291 | 79.49 324 | 53.53 324 | 80.76 277 | 85.01 253 | 69.12 208 | 70.51 261 | 82.05 293 | 57.92 193 | 84.13 309 | 52.27 299 | 66.00 328 | 87.60 254 |
|
tpm | | | 72.37 265 | 71.71 256 | 74.35 298 | 82.19 288 | 52.00 330 | 79.22 293 | 77.29 327 | 64.56 262 | 72.95 239 | 83.68 274 | 51.35 250 | 83.26 316 | 58.33 269 | 75.80 263 | 87.81 250 |
|
PVSNet | | 64.34 18 | 72.08 267 | 70.87 266 | 75.69 284 | 86.21 215 | 56.44 303 | 74.37 325 | 80.73 303 | 62.06 291 | 70.17 267 | 82.23 291 | 42.86 312 | 83.31 315 | 54.77 290 | 84.45 164 | 87.32 262 |
|
pmmvs5 | | | 71.55 268 | 70.20 271 | 75.61 285 | 77.83 330 | 56.39 304 | 81.74 268 | 80.89 300 | 57.76 321 | 67.46 291 | 84.49 260 | 49.26 275 | 85.32 302 | 57.08 280 | 75.29 277 | 85.11 301 |
|
test-mter | | | 71.41 269 | 70.39 270 | 74.48 296 | 81.35 300 | 58.04 278 | 78.38 300 | 77.46 325 | 60.32 301 | 69.95 272 | 79.00 318 | 36.08 339 | 79.24 328 | 66.13 202 | 84.83 158 | 86.15 286 |
|
K. test v3 | | | 71.19 270 | 68.51 278 | 79.21 244 | 83.04 269 | 57.78 285 | 84.35 235 | 76.91 329 | 72.90 144 | 62.99 326 | 82.86 282 | 39.27 328 | 91.09 236 | 61.65 240 | 52.66 347 | 88.75 232 |
|
tpmvs | | | 71.09 271 | 69.29 274 | 76.49 279 | 82.04 289 | 56.04 309 | 78.92 297 | 81.37 299 | 64.05 270 | 67.18 295 | 78.28 324 | 49.74 269 | 89.77 254 | 49.67 314 | 72.37 302 | 83.67 314 |
|
AllTest | | | 70.96 272 | 68.09 284 | 79.58 238 | 85.15 230 | 63.62 209 | 84.58 227 | 79.83 314 | 62.31 288 | 60.32 333 | 86.73 209 | 32.02 346 | 88.96 271 | 50.28 309 | 71.57 309 | 86.15 286 |
|
Patchmtry | | | 70.74 273 | 69.16 275 | 75.49 288 | 80.72 307 | 54.07 321 | 74.94 324 | 80.30 310 | 58.34 317 | 70.01 269 | 81.19 297 | 52.50 232 | 86.54 292 | 53.37 295 | 71.09 312 | 85.87 293 |
|
MIMVSNet | | | 70.69 274 | 69.30 273 | 74.88 293 | 84.52 239 | 56.35 306 | 75.87 317 | 79.42 317 | 64.59 261 | 67.76 287 | 82.41 287 | 41.10 322 | 81.54 322 | 46.64 330 | 81.34 199 | 86.75 277 |
|
tpm cat1 | | | 70.57 275 | 68.31 280 | 77.35 271 | 82.41 285 | 57.95 281 | 78.08 304 | 80.22 312 | 52.04 341 | 68.54 285 | 77.66 329 | 52.00 242 | 87.84 284 | 51.77 300 | 72.07 306 | 86.25 283 |
|
OpenMVS_ROB |  | 64.09 19 | 70.56 276 | 68.19 281 | 77.65 266 | 80.26 312 | 59.41 267 | 85.01 215 | 82.96 285 | 58.76 315 | 65.43 311 | 82.33 288 | 37.63 335 | 91.23 230 | 45.34 336 | 76.03 261 | 82.32 325 |
|
pmmvs-eth3d | | | 70.50 277 | 67.83 288 | 78.52 254 | 77.37 333 | 66.18 162 | 81.82 266 | 81.51 297 | 58.90 314 | 63.90 322 | 80.42 307 | 42.69 313 | 86.28 295 | 58.56 266 | 65.30 330 | 83.11 320 |
|
USDC | | | 70.33 278 | 68.37 279 | 76.21 281 | 80.60 309 | 56.23 307 | 79.19 294 | 86.49 235 | 60.89 297 | 61.29 330 | 85.47 246 | 31.78 348 | 89.47 261 | 53.37 295 | 76.21 260 | 82.94 324 |
|
Patchmatch-RL test | | | 70.24 279 | 67.78 290 | 77.61 267 | 77.43 332 | 59.57 266 | 71.16 331 | 70.33 343 | 62.94 281 | 68.65 283 | 72.77 341 | 50.62 258 | 85.49 300 | 69.58 175 | 66.58 326 | 87.77 251 |
|
CMPMVS |  | 51.72 21 | 70.19 280 | 68.16 282 | 76.28 280 | 73.15 350 | 57.55 288 | 79.47 290 | 83.92 266 | 48.02 345 | 56.48 344 | 84.81 257 | 43.13 310 | 86.42 294 | 62.67 230 | 81.81 197 | 84.89 302 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ppachtmachnet_test | | | 70.04 281 | 67.34 294 | 78.14 258 | 79.80 319 | 61.13 248 | 79.19 294 | 80.59 305 | 59.16 312 | 65.27 312 | 79.29 315 | 46.75 289 | 87.29 288 | 49.33 315 | 66.72 324 | 86.00 292 |
|
gg-mvs-nofinetune | | | 69.95 282 | 67.96 285 | 75.94 282 | 83.07 267 | 54.51 318 | 77.23 310 | 70.29 344 | 63.11 277 | 70.32 264 | 62.33 347 | 43.62 308 | 88.69 274 | 53.88 293 | 87.76 124 | 84.62 307 |
|
TESTMET0.1,1 | | | 69.89 283 | 69.00 276 | 72.55 308 | 79.27 327 | 56.85 295 | 78.38 300 | 74.71 337 | 57.64 322 | 68.09 286 | 77.19 331 | 37.75 334 | 76.70 339 | 63.92 219 | 84.09 167 | 84.10 312 |
|
FMVSNet5 | | | 69.50 284 | 67.96 285 | 74.15 300 | 82.97 272 | 55.35 314 | 80.01 285 | 82.12 292 | 62.56 286 | 63.02 324 | 81.53 296 | 36.92 336 | 81.92 320 | 48.42 318 | 74.06 288 | 85.17 300 |
|
PMMVS | | | 69.34 285 | 68.67 277 | 71.35 315 | 75.67 338 | 62.03 238 | 75.17 319 | 73.46 339 | 50.00 344 | 68.68 282 | 79.05 316 | 52.07 241 | 78.13 333 | 61.16 245 | 82.77 185 | 73.90 345 |
|
our_test_3 | | | 69.14 286 | 67.00 296 | 75.57 286 | 79.80 319 | 58.80 270 | 77.96 305 | 77.81 323 | 59.55 308 | 62.90 327 | 78.25 325 | 47.43 283 | 83.97 310 | 51.71 301 | 67.58 323 | 83.93 313 |
|
EPMVS | | | 69.02 287 | 68.16 282 | 71.59 311 | 79.61 322 | 49.80 343 | 77.40 309 | 66.93 351 | 62.82 283 | 70.01 269 | 79.05 316 | 45.79 296 | 77.86 336 | 56.58 283 | 75.26 278 | 87.13 269 |
|
DIV-MVS_2432*1600 | | | 68.81 288 | 67.59 293 | 72.46 309 | 74.29 344 | 45.45 348 | 77.93 306 | 87.00 229 | 63.12 276 | 63.99 321 | 78.99 320 | 42.32 315 | 84.77 306 | 56.55 284 | 64.09 333 | 87.16 268 |
|
Anonymous20240521 | | | 68.80 289 | 67.22 295 | 73.55 302 | 74.33 343 | 54.11 320 | 83.18 253 | 85.61 246 | 58.15 318 | 61.68 329 | 80.94 302 | 30.71 349 | 81.27 323 | 57.00 281 | 73.34 298 | 85.28 297 |
|
Anonymous20231206 | | | 68.60 290 | 67.80 289 | 71.02 317 | 80.23 313 | 50.75 339 | 78.30 303 | 80.47 307 | 56.79 328 | 66.11 308 | 82.63 286 | 46.35 291 | 78.95 330 | 43.62 339 | 75.70 264 | 83.36 317 |
|
MIMVSNet1 | | | 68.58 291 | 66.78 298 | 73.98 301 | 80.07 315 | 51.82 331 | 80.77 276 | 84.37 258 | 64.40 264 | 59.75 336 | 82.16 292 | 36.47 337 | 83.63 313 | 42.73 341 | 70.33 314 | 86.48 281 |
|
EU-MVSNet | | | 68.53 292 | 67.61 292 | 71.31 316 | 78.51 329 | 47.01 347 | 84.47 228 | 84.27 262 | 42.27 347 | 66.44 306 | 84.79 258 | 40.44 325 | 83.76 311 | 58.76 265 | 68.54 322 | 83.17 318 |
|
PatchT | | | 68.46 293 | 67.85 287 | 70.29 319 | 80.70 308 | 43.93 351 | 72.47 328 | 74.88 334 | 60.15 303 | 70.55 260 | 76.57 333 | 49.94 266 | 81.59 321 | 50.58 305 | 74.83 282 | 85.34 296 |
|
test0.0.03 1 | | | 68.00 294 | 67.69 291 | 68.90 324 | 77.55 331 | 47.43 345 | 75.70 318 | 72.95 341 | 66.66 236 | 66.56 301 | 82.29 290 | 48.06 280 | 75.87 343 | 44.97 337 | 74.51 285 | 83.41 316 |
|
TDRefinement | | | 67.49 295 | 64.34 304 | 76.92 276 | 73.47 348 | 61.07 249 | 84.86 219 | 82.98 284 | 59.77 306 | 58.30 339 | 85.13 253 | 26.06 351 | 87.89 283 | 47.92 325 | 60.59 339 | 81.81 329 |
|
test20.03 | | | 67.45 296 | 66.95 297 | 68.94 323 | 75.48 340 | 44.84 350 | 77.50 308 | 77.67 324 | 66.66 236 | 63.01 325 | 83.80 270 | 47.02 286 | 78.40 332 | 42.53 342 | 68.86 321 | 83.58 315 |
|
UnsupCasMVSNet_eth | | | 67.33 297 | 65.99 300 | 71.37 313 | 73.48 347 | 51.47 335 | 75.16 320 | 85.19 250 | 65.20 254 | 60.78 332 | 80.93 304 | 42.35 314 | 77.20 338 | 57.12 279 | 53.69 346 | 85.44 295 |
|
TinyColmap | | | 67.30 298 | 64.81 302 | 74.76 295 | 81.92 291 | 56.68 300 | 80.29 283 | 81.49 298 | 60.33 300 | 56.27 345 | 83.22 278 | 24.77 352 | 87.66 286 | 45.52 334 | 69.47 316 | 79.95 337 |
|
dp | | | 66.80 299 | 65.43 301 | 70.90 318 | 79.74 321 | 48.82 344 | 75.12 322 | 74.77 335 | 59.61 307 | 64.08 320 | 77.23 330 | 42.89 311 | 80.72 325 | 48.86 317 | 66.58 326 | 83.16 319 |
|
MDA-MVSNet-bldmvs | | | 66.68 300 | 63.66 308 | 75.75 283 | 79.28 326 | 60.56 256 | 73.92 326 | 78.35 321 | 64.43 263 | 50.13 350 | 79.87 313 | 44.02 307 | 83.67 312 | 46.10 332 | 56.86 342 | 83.03 322 |
|
testgi | | | 66.67 301 | 66.53 299 | 67.08 329 | 75.62 339 | 41.69 354 | 75.93 314 | 76.50 330 | 66.11 243 | 65.20 315 | 86.59 220 | 35.72 340 | 74.71 347 | 43.71 338 | 73.38 297 | 84.84 303 |
|
CHOSEN 280x420 | | | 66.51 302 | 64.71 303 | 71.90 310 | 81.45 297 | 63.52 214 | 57.98 352 | 68.95 350 | 53.57 337 | 62.59 328 | 76.70 332 | 46.22 292 | 75.29 346 | 55.25 288 | 79.68 217 | 76.88 344 |
|
PM-MVS | | | 66.41 303 | 64.14 305 | 73.20 306 | 73.92 345 | 56.45 302 | 78.97 296 | 64.96 355 | 63.88 274 | 64.72 316 | 80.24 308 | 19.84 356 | 83.44 314 | 66.24 201 | 64.52 332 | 79.71 338 |
|
JIA-IIPM | | | 66.32 304 | 62.82 314 | 76.82 277 | 77.09 334 | 61.72 244 | 65.34 347 | 75.38 332 | 58.04 320 | 64.51 317 | 62.32 348 | 42.05 319 | 86.51 293 | 51.45 303 | 69.22 318 | 82.21 326 |
|
KD-MVS_2432*1600 | | | 66.22 305 | 63.89 306 | 73.21 304 | 75.47 341 | 53.42 326 | 70.76 334 | 84.35 259 | 64.10 268 | 66.52 303 | 78.52 321 | 34.55 343 | 84.98 303 | 50.40 307 | 50.33 350 | 81.23 331 |
|
miper_refine_blended | | | 66.22 305 | 63.89 306 | 73.21 304 | 75.47 341 | 53.42 326 | 70.76 334 | 84.35 259 | 64.10 268 | 66.52 303 | 78.52 321 | 34.55 343 | 84.98 303 | 50.40 307 | 50.33 350 | 81.23 331 |
|
ADS-MVSNet2 | | | 66.20 307 | 63.33 309 | 74.82 294 | 79.92 316 | 58.75 271 | 67.55 344 | 75.19 333 | 53.37 338 | 65.25 313 | 75.86 335 | 42.32 315 | 80.53 326 | 41.57 343 | 68.91 319 | 85.18 298 |
|
YYNet1 | | | 65.03 308 | 62.91 312 | 71.38 312 | 75.85 337 | 56.60 301 | 69.12 341 | 74.66 338 | 57.28 326 | 54.12 346 | 77.87 327 | 45.85 295 | 74.48 348 | 49.95 312 | 61.52 337 | 83.05 321 |
|
MDA-MVSNet_test_wron | | | 65.03 308 | 62.92 311 | 71.37 313 | 75.93 336 | 56.73 297 | 69.09 342 | 74.73 336 | 57.28 326 | 54.03 347 | 77.89 326 | 45.88 294 | 74.39 349 | 49.89 313 | 61.55 336 | 82.99 323 |
|
Patchmatch-test | | | 64.82 310 | 63.24 310 | 69.57 321 | 79.42 325 | 49.82 342 | 63.49 350 | 69.05 349 | 51.98 342 | 59.95 335 | 80.13 309 | 50.91 254 | 70.98 352 | 40.66 345 | 73.57 293 | 87.90 248 |
|
ADS-MVSNet | | | 64.36 311 | 62.88 313 | 68.78 326 | 79.92 316 | 47.17 346 | 67.55 344 | 71.18 342 | 53.37 338 | 65.25 313 | 75.86 335 | 42.32 315 | 73.99 350 | 41.57 343 | 68.91 319 | 85.18 298 |
|
LF4IMVS | | | 64.02 312 | 62.19 315 | 69.50 322 | 70.90 352 | 53.29 328 | 76.13 312 | 77.18 328 | 52.65 340 | 58.59 337 | 80.98 301 | 23.55 353 | 76.52 340 | 53.06 297 | 66.66 325 | 78.68 340 |
|
UnsupCasMVSNet_bld | | | 63.70 313 | 61.53 317 | 70.21 320 | 73.69 346 | 51.39 336 | 72.82 327 | 81.89 293 | 55.63 333 | 57.81 340 | 71.80 343 | 38.67 330 | 78.61 331 | 49.26 316 | 52.21 348 | 80.63 334 |
|
new-patchmatchnet | | | 61.73 314 | 61.73 316 | 61.70 332 | 72.74 351 | 24.50 364 | 69.16 340 | 78.03 322 | 61.40 294 | 56.72 343 | 75.53 337 | 38.42 331 | 76.48 341 | 45.95 333 | 57.67 341 | 84.13 311 |
|
PVSNet_0 | | 57.27 20 | 61.67 315 | 59.27 318 | 68.85 325 | 79.61 322 | 57.44 290 | 68.01 343 | 73.44 340 | 55.93 332 | 58.54 338 | 70.41 344 | 44.58 303 | 77.55 337 | 47.01 327 | 35.91 353 | 71.55 347 |
|
MVS-HIRNet | | | 59.14 316 | 57.67 319 | 63.57 331 | 81.65 293 | 43.50 352 | 71.73 330 | 65.06 354 | 39.59 351 | 51.43 349 | 57.73 351 | 38.34 332 | 82.58 319 | 39.53 346 | 73.95 289 | 64.62 350 |
|
pmmvs3 | | | 57.79 317 | 54.26 321 | 68.37 327 | 64.02 356 | 56.72 298 | 75.12 322 | 65.17 353 | 40.20 349 | 52.93 348 | 69.86 345 | 20.36 355 | 75.48 345 | 45.45 335 | 55.25 345 | 72.90 346 |
|
DSMNet-mixed | | | 57.77 318 | 56.90 320 | 60.38 333 | 67.70 354 | 35.61 357 | 69.18 339 | 53.97 359 | 32.30 356 | 57.49 341 | 79.88 312 | 40.39 326 | 68.57 354 | 38.78 347 | 72.37 302 | 76.97 343 |
|
LCM-MVSNet | | | 54.25 319 | 49.68 325 | 67.97 328 | 53.73 359 | 45.28 349 | 66.85 346 | 80.78 302 | 35.96 353 | 39.45 353 | 62.23 349 | 8.70 365 | 78.06 335 | 48.24 322 | 51.20 349 | 80.57 335 |
|
FPMVS | | | 53.68 320 | 51.64 323 | 59.81 334 | 65.08 355 | 51.03 337 | 69.48 338 | 69.58 347 | 41.46 348 | 40.67 352 | 72.32 342 | 16.46 359 | 70.00 353 | 24.24 355 | 65.42 329 | 58.40 352 |
|
N_pmnet | | | 52.79 321 | 53.26 322 | 51.40 338 | 78.99 328 | 7.68 367 | 69.52 337 | 3.89 367 | 51.63 343 | 57.01 342 | 74.98 338 | 40.83 324 | 65.96 355 | 37.78 348 | 64.67 331 | 80.56 336 |
|
new_pmnet | | | 50.91 322 | 50.29 324 | 52.78 337 | 68.58 353 | 34.94 359 | 63.71 349 | 56.63 358 | 39.73 350 | 44.95 351 | 65.47 346 | 21.93 354 | 58.48 356 | 34.98 350 | 56.62 343 | 64.92 349 |
|
ANet_high | | | 50.57 323 | 46.10 326 | 63.99 330 | 48.67 362 | 39.13 355 | 70.99 333 | 80.85 301 | 61.39 295 | 31.18 355 | 57.70 352 | 17.02 358 | 73.65 351 | 31.22 351 | 15.89 360 | 79.18 339 |
|
Gipuma |  | | 45.18 324 | 41.86 327 | 55.16 336 | 77.03 335 | 51.52 334 | 32.50 358 | 80.52 306 | 32.46 355 | 27.12 356 | 35.02 357 | 9.52 364 | 75.50 344 | 22.31 356 | 60.21 340 | 38.45 355 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
PMVS |  | 37.38 22 | 44.16 325 | 40.28 328 | 55.82 335 | 40.82 364 | 42.54 353 | 65.12 348 | 63.99 356 | 34.43 354 | 24.48 357 | 57.12 353 | 3.92 367 | 76.17 342 | 17.10 358 | 55.52 344 | 48.75 353 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
PMMVS2 | | | 40.82 326 | 38.86 329 | 46.69 339 | 53.84 358 | 16.45 365 | 48.61 355 | 49.92 360 | 37.49 352 | 31.67 354 | 60.97 350 | 8.14 366 | 56.42 357 | 28.42 352 | 30.72 355 | 67.19 348 |
|
E-PMN | | | 31.77 327 | 30.64 330 | 35.15 342 | 52.87 360 | 27.67 361 | 57.09 353 | 47.86 361 | 24.64 357 | 16.40 362 | 33.05 358 | 11.23 362 | 54.90 358 | 14.46 360 | 18.15 358 | 22.87 357 |
|
test_method | | | 31.52 328 | 29.28 332 | 38.23 341 | 27.03 366 | 6.50 368 | 20.94 360 | 62.21 357 | 4.05 362 | 22.35 360 | 52.50 354 | 13.33 360 | 47.58 360 | 27.04 354 | 34.04 354 | 60.62 351 |
|
EMVS | | | 30.81 329 | 29.65 331 | 34.27 343 | 50.96 361 | 25.95 363 | 56.58 354 | 46.80 362 | 24.01 358 | 15.53 363 | 30.68 359 | 12.47 361 | 54.43 359 | 12.81 361 | 17.05 359 | 22.43 358 |
|
MVE |  | 26.22 23 | 30.37 330 | 25.89 334 | 43.81 340 | 44.55 363 | 35.46 358 | 28.87 359 | 39.07 363 | 18.20 359 | 18.58 361 | 40.18 356 | 2.68 368 | 47.37 361 | 17.07 359 | 23.78 357 | 48.60 354 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
cdsmvs_eth3d_5k | | | 19.96 331 | 26.61 333 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 89.26 173 | 0.00 366 | 0.00 367 | 88.61 161 | 61.62 156 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
tmp_tt | | | 18.61 332 | 21.40 335 | 10.23 346 | 4.82 367 | 10.11 366 | 34.70 357 | 30.74 365 | 1.48 363 | 23.91 359 | 26.07 360 | 28.42 350 | 13.41 364 | 27.12 353 | 15.35 361 | 7.17 359 |
|
wuyk23d | | | 16.82 333 | 15.94 336 | 19.46 345 | 58.74 357 | 31.45 360 | 39.22 356 | 3.74 368 | 6.84 361 | 6.04 364 | 2.70 364 | 1.27 369 | 24.29 363 | 10.54 362 | 14.40 362 | 2.63 360 |
|
ab-mvs-re | | | 7.23 334 | 9.64 337 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 86.72 211 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
test123 | | | 6.12 335 | 8.11 338 | 0.14 347 | 0.06 369 | 0.09 369 | 71.05 332 | 0.03 370 | 0.04 365 | 0.25 366 | 1.30 366 | 0.05 370 | 0.03 366 | 0.21 364 | 0.01 364 | 0.29 361 |
|
testmvs | | | 6.04 336 | 8.02 339 | 0.10 348 | 0.08 368 | 0.03 370 | 69.74 336 | 0.04 369 | 0.05 364 | 0.31 365 | 1.68 365 | 0.02 371 | 0.04 365 | 0.24 363 | 0.02 363 | 0.25 362 |
|
pcd_1.5k_mvsjas | | | 5.26 337 | 7.02 340 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 63.15 132 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
uanet_test | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
sosnet-low-res | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
sosnet | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
uncertanet | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
Regformer | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
uanet | | | 0.00 338 | 0.00 341 | 0.00 349 | 0.00 370 | 0.00 371 | 0.00 361 | 0.00 371 | 0.00 366 | 0.00 367 | 0.00 367 | 0.00 372 | 0.00 367 | 0.00 365 | 0.00 365 | 0.00 363 |
|
ZD-MVS | | | | | | 94.38 25 | 72.22 45 | | 92.67 60 | 70.98 170 | 87.75 27 | 94.07 43 | 74.01 35 | 96.70 23 | 84.66 36 | 94.84 44 | |
|
RE-MVS-def | | | | 85.48 56 | | 93.06 57 | 70.63 77 | 91.88 34 | 92.27 76 | 73.53 133 | 85.69 42 | 94.45 26 | 63.87 121 | | 82.75 61 | 91.87 77 | 92.50 102 |
|
IU-MVS | | | | | | 95.30 2 | 71.25 59 | | 92.95 49 | 66.81 232 | 92.39 5 | | | | 88.94 8 | 96.63 2 | 94.85 10 |
|
OPU-MVS | | | | | 89.06 1 | 94.62 13 | 75.42 2 | 93.57 5 | | | | 94.02 45 | 82.45 3 | 96.87 16 | 83.77 48 | 96.48 6 | 94.88 7 |
|
test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 48 | 92.78 4 | 95.72 6 | 81.26 6 | 97.44 2 | 89.07 6 | 96.58 4 | 94.26 31 |
|
test_241102_ONE | | | | | | 95.30 2 | 70.98 65 | | 94.06 10 | 77.17 52 | 93.10 1 | 95.39 9 | 82.99 1 | 97.27 7 | | | |
|
9.14 | | | | 88.26 14 | | 92.84 63 | | 91.52 42 | 94.75 1 | 73.93 124 | 88.57 20 | 94.67 17 | 75.57 20 | 95.79 55 | 86.77 20 | 95.76 24 | |
|
save fliter | | | | | | 93.80 39 | 72.35 42 | 90.47 63 | 91.17 122 | 74.31 114 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 78.38 32 | 92.12 8 | 95.78 4 | 81.46 5 | 97.40 4 | 89.42 2 | 96.57 5 | 94.67 16 |
|
test_0728_SECOND | | | | | 87.71 31 | 95.34 1 | 71.43 58 | 93.49 7 | 94.23 5 | | | | | 97.49 1 | 89.08 4 | 96.41 8 | 94.21 32 |
|
test0726 | | | | | | 95.27 5 | 71.25 59 | 93.60 4 | 94.11 6 | 77.33 46 | 92.81 3 | 95.79 3 | 80.98 7 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 88.96 224 |
|
test_part2 | | | | | | 95.06 7 | 72.65 31 | | | | 91.80 10 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 51.32 251 | | | | 88.96 224 |
|
sam_mvs | | | | | | | | | | | | | 50.01 264 | | | | |
|
ambc | | | | | 75.24 290 | 73.16 349 | 50.51 340 | 63.05 351 | 87.47 221 | | 64.28 318 | 77.81 328 | 17.80 357 | 89.73 256 | 57.88 273 | 60.64 338 | 85.49 294 |
|
MTGPA |  | | | | | | | | 92.02 87 | | | | | | | | |
|
test_post1 | | | | | | | | 78.90 298 | | | | 5.43 363 | 48.81 279 | 85.44 301 | 59.25 258 | | |
|
test_post | | | | | | | | | | | | 5.46 362 | 50.36 262 | 84.24 308 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 74.00 339 | 51.12 253 | 88.60 275 | | | |
|
GG-mvs-BLEND | | | | | 75.38 289 | 81.59 295 | 55.80 311 | 79.32 291 | 69.63 346 | | 67.19 294 | 73.67 340 | 43.24 309 | 88.90 273 | 50.41 306 | 84.50 162 | 81.45 330 |
|
MTMP | | | | | | | | 92.18 30 | 32.83 364 | | | | | | | | |
|
gm-plane-assit | | | | | | 81.40 298 | 53.83 323 | | | 62.72 285 | | 80.94 302 | | 92.39 193 | 63.40 223 | | |
|
test9_res | | | | | | | | | | | | | | | 84.90 30 | 95.70 27 | 92.87 92 |
|
TEST9 | | | | | | 93.26 51 | 72.96 24 | 88.75 108 | 91.89 96 | 68.44 223 | 85.00 50 | 93.10 62 | 74.36 30 | 95.41 72 | | | |
|
test_8 | | | | | | 93.13 53 | 72.57 34 | 88.68 113 | 91.84 99 | 68.69 219 | 84.87 56 | 93.10 62 | 74.43 27 | 95.16 83 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 82.91 59 | 95.45 29 | 92.70 95 |
|
agg_prior | | | | | | 92.85 61 | 71.94 51 | | 91.78 102 | | 84.41 65 | | | 94.93 92 | | | |
|
TestCases | | | | | 79.58 238 | 85.15 230 | 63.62 209 | | 79.83 314 | 62.31 288 | 60.32 333 | 86.73 209 | 32.02 346 | 88.96 271 | 50.28 309 | 71.57 309 | 86.15 286 |
|
test_prior4 | | | | | | | 72.60 33 | 89.01 99 | | | | | | | | | |
|
test_prior2 | | | | | | | | 88.85 104 | | 75.41 92 | 84.91 52 | 93.54 51 | 74.28 31 | | 83.31 50 | 95.86 18 | |
|
test_prior | | | | | 86.33 60 | 92.61 69 | 69.59 96 | | 92.97 47 | | | | | 95.48 66 | | | 93.91 45 |
|
旧先验2 | | | | | | | | 86.56 178 | | 58.10 319 | 87.04 31 | | | 88.98 269 | 74.07 134 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 86.29 186 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 83.42 139 | 93.13 53 | 70.71 75 | | 85.48 247 | 57.43 324 | 81.80 100 | 91.98 79 | 63.28 127 | 92.27 197 | 64.60 217 | 92.99 66 | 87.27 263 |
|
旧先验1 | | | | | | 91.96 77 | 65.79 171 | | 86.37 238 | | | 93.08 66 | 69.31 75 | | | 92.74 70 | 88.74 233 |
|
æ— å…ˆéªŒ | | | | | | | | 87.48 150 | 88.98 185 | 60.00 304 | | | | 94.12 123 | 67.28 193 | | 88.97 223 |
|
原ACMM2 | | | | | | | | 86.86 167 | | | | | | | | | |
|
原ACMM1 | | | | | 84.35 109 | 93.01 59 | 68.79 111 | | 92.44 68 | 63.96 273 | 81.09 110 | 91.57 89 | 66.06 102 | 95.45 68 | 67.19 196 | 94.82 47 | 88.81 230 |
|
test222 | | | | | | 91.50 83 | 68.26 128 | 84.16 237 | 83.20 281 | 54.63 336 | 79.74 120 | 91.63 87 | 58.97 187 | | | 91.42 83 | 86.77 276 |
|
testdata2 | | | | | | | | | | | | | | 91.01 238 | 62.37 232 | | |
|
segment_acmp | | | | | | | | | | | | | 73.08 40 | | | | |
|
testdata | | | | | 79.97 229 | 90.90 91 | 64.21 200 | | 84.71 254 | 59.27 311 | 85.40 44 | 92.91 67 | 62.02 152 | 89.08 267 | 68.95 181 | 91.37 84 | 86.63 280 |
|
testdata1 | | | | | | | | 84.14 238 | | 75.71 86 | | | | | | | |
|
test12 | | | | | 86.80 52 | 92.63 68 | 70.70 76 | | 91.79 101 | | 82.71 91 | | 71.67 52 | 96.16 44 | | 94.50 52 | 93.54 68 |
|
plane_prior7 | | | | | | 90.08 107 | 68.51 124 | | | | | | | | | | |
|
plane_prior6 | | | | | | 89.84 112 | 68.70 119 | | | | | | 60.42 180 | | | | |
|
plane_prior5 | | | | | | | | | 92.44 68 | | | | | 95.38 75 | 78.71 91 | 86.32 146 | 91.33 138 |
|
plane_prior4 | | | | | | | | | | | | 91.00 107 | | | | | |
|
plane_prior3 | | | | | | | 68.60 122 | | | 78.44 30 | 78.92 130 | | | | | | |
|
plane_prior2 | | | | | | | | 91.25 46 | | 79.12 23 | | | | | | | |
|
plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
plane_prior | | | | | | | 68.71 117 | 90.38 67 | | 77.62 37 | | | | | | 86.16 149 | |
|
n2 | | | | | | | | | 0.00 371 | | | | | | | | |
|
nn | | | | | | | | | 0.00 371 | | | | | | | | |
|
door-mid | | | | | | | | | 69.98 345 | | | | | | | | |
|
lessismore_v0 | | | | | 78.97 246 | 81.01 306 | 57.15 292 | | 65.99 352 | | 61.16 331 | 82.82 283 | 39.12 329 | 91.34 227 | 59.67 254 | 46.92 352 | 88.43 240 |
|
LGP-MVS_train | | | | | 84.50 102 | 89.23 133 | 68.76 113 | | 91.94 94 | 75.37 94 | 76.64 178 | 91.51 90 | 54.29 220 | 94.91 94 | 78.44 95 | 83.78 169 | 89.83 198 |
|
test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
door | | | | | | | | | 69.44 348 | | | | | | | | |
|
HQP5-MVS | | | | | | | 66.98 151 | | | | | | | | | | |
|
HQP-NCC | | | | | | 89.33 125 | | 89.17 92 | | 76.41 71 | 77.23 165 | | | | | | |
|
ACMP_Plane | | | | | | 89.33 125 | | 89.17 92 | | 76.41 71 | 77.23 165 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.47 105 | | |
|
HQP4-MVS | | | | | | | | | | | 77.24 164 | | | 95.11 85 | | | 91.03 147 |
|
HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 151 | |
|
HQP2-MVS | | | | | | | | | | | | | 60.17 183 | | | | |
|
NP-MVS | | | | | | 89.62 114 | 68.32 126 | | | | | 90.24 119 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 37.79 356 | 75.16 320 | | 55.10 334 | 66.53 302 | | 49.34 273 | | 53.98 292 | | 87.94 247 |
|
MDTV_nov1_ep13 | | | | 69.97 272 | | 83.18 264 | 53.48 325 | 77.10 311 | 80.18 313 | 60.45 299 | 69.33 280 | 80.44 306 | 48.89 278 | 86.90 290 | 51.60 302 | 78.51 230 | |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 195 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 81.25 200 | |
|
Test By Simon | | | | | | | | | | | | | 64.33 117 | | | | |
|
ITE_SJBPF | | | | | 78.22 257 | 81.77 292 | 60.57 255 | | 83.30 277 | 69.25 203 | 67.54 290 | 87.20 200 | 36.33 338 | 87.28 289 | 54.34 291 | 74.62 284 | 86.80 275 |
|
DeepMVS_CX |  | | | | 27.40 344 | 40.17 365 | 26.90 362 | | 24.59 366 | 17.44 360 | 23.95 358 | 48.61 355 | 9.77 363 | 26.48 362 | 18.06 357 | 24.47 356 | 28.83 356 |
|