| DVP-MVS++ | | | 90.23 1 | 91.01 1 | 87.89 24 | 94.34 27 | 71.25 57 | 95.06 1 | 94.23 3 | 78.38 33 | 92.78 4 | 95.74 6 | 82.45 3 | 97.49 4 | 89.42 9 | 96.68 2 | 94.95 10 |
|
| SED-MVS | | | 90.08 2 | 90.85 2 | 87.77 26 | 95.30 2 | 70.98 63 | 93.57 7 | 94.06 10 | 77.24 50 | 93.10 1 | 95.72 8 | 82.99 1 | 97.44 6 | 89.07 14 | 96.63 4 | 94.88 14 |
|
| DVP-MVS |  | | 89.60 3 | 90.35 3 | 87.33 40 | 95.27 5 | 71.25 57 | 93.49 9 | 92.73 59 | 77.33 48 | 92.12 9 | 95.78 4 | 80.98 9 | 97.40 8 | 89.08 12 | 96.41 12 | 93.33 84 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| MSP-MVS | | | 89.51 4 | 89.91 5 | 88.30 10 | 94.28 30 | 73.46 17 | 92.90 16 | 94.11 6 | 80.27 10 | 91.35 14 | 94.16 37 | 78.35 13 | 96.77 24 | 89.59 8 | 94.22 58 | 94.67 24 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 89.48 5 | 89.98 4 | 88.01 16 | 94.80 11 | 72.69 31 | 91.59 43 | 94.10 8 | 75.90 85 | 92.29 7 | 95.66 10 | 81.67 6 | 97.38 10 | 87.44 33 | 96.34 15 | 93.95 52 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 89.16 6 | 89.23 7 | 88.97 4 | 90.79 90 | 73.65 10 | 92.66 23 | 91.17 116 | 86.57 1 | 87.39 35 | 94.97 16 | 71.70 50 | 97.68 1 | 92.19 1 | 95.63 28 | 95.57 1 |
|
| APDe-MVS |  | | 89.15 7 | 89.63 6 | 87.73 28 | 94.49 18 | 71.69 52 | 93.83 4 | 93.96 13 | 75.70 89 | 91.06 16 | 96.03 1 | 76.84 14 | 97.03 17 | 89.09 11 | 95.65 27 | 94.47 31 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| SMA-MVS |  | | 89.08 8 | 89.23 7 | 88.61 6 | 94.25 31 | 73.73 9 | 92.40 24 | 93.63 21 | 74.77 107 | 92.29 7 | 95.97 2 | 74.28 29 | 97.24 12 | 88.58 21 | 96.91 1 | 94.87 16 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| HPM-MVS++ |  | | 89.02 9 | 89.15 9 | 88.63 5 | 95.01 9 | 76.03 1 | 92.38 27 | 92.85 54 | 80.26 11 | 87.78 29 | 94.27 32 | 75.89 19 | 96.81 23 | 87.45 32 | 96.44 9 | 93.05 96 |
|
| CNVR-MVS | | | 88.93 10 | 89.13 10 | 88.33 8 | 94.77 12 | 73.82 8 | 90.51 61 | 93.00 43 | 80.90 7 | 88.06 26 | 94.06 42 | 76.43 16 | 96.84 21 | 88.48 24 | 95.99 18 | 94.34 37 |
|
| SteuartSystems-ACMMP | | | 88.72 11 | 88.86 11 | 88.32 9 | 92.14 69 | 72.96 25 | 93.73 5 | 93.67 20 | 80.19 12 | 88.10 25 | 94.80 17 | 73.76 33 | 97.11 15 | 87.51 31 | 95.82 21 | 94.90 13 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SF-MVS | | | 88.46 12 | 88.74 12 | 87.64 35 | 92.78 61 | 71.95 50 | 92.40 24 | 94.74 2 | 75.71 87 | 89.16 19 | 95.10 14 | 75.65 21 | 96.19 43 | 87.07 34 | 96.01 17 | 94.79 21 |
|
| DeepPCF-MVS | | 80.84 1 | 88.10 13 | 88.56 13 | 86.73 50 | 92.24 68 | 69.03 99 | 89.57 87 | 93.39 30 | 77.53 45 | 89.79 18 | 94.12 39 | 78.98 12 | 96.58 35 | 85.66 37 | 95.72 24 | 94.58 27 |
|
| MVS_0304 | | | 88.08 14 | 88.08 17 | 88.08 14 | 89.67 114 | 72.04 48 | 92.26 33 | 89.26 173 | 84.19 2 | 85.01 55 | 95.18 13 | 69.93 69 | 97.20 14 | 91.63 2 | 95.60 29 | 94.99 9 |
|
| SD-MVS | | | 88.06 15 | 88.50 14 | 86.71 51 | 92.60 66 | 72.71 29 | 91.81 42 | 93.19 35 | 77.87 36 | 90.32 17 | 94.00 46 | 74.83 23 | 93.78 136 | 87.63 30 | 94.27 57 | 93.65 69 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NCCC | | | 88.06 15 | 88.01 19 | 88.24 11 | 94.41 22 | 73.62 11 | 91.22 52 | 92.83 55 | 81.50 5 | 85.79 48 | 93.47 60 | 73.02 39 | 97.00 18 | 84.90 42 | 94.94 39 | 94.10 45 |
|
| ACMMP_NAP | | | 88.05 17 | 88.08 17 | 87.94 19 | 93.70 41 | 73.05 22 | 90.86 56 | 93.59 23 | 76.27 79 | 88.14 24 | 95.09 15 | 71.06 57 | 96.67 29 | 87.67 29 | 96.37 14 | 94.09 46 |
|
| TSAR-MVS + MP. | | | 88.02 18 | 88.11 16 | 87.72 30 | 93.68 43 | 72.13 46 | 91.41 47 | 92.35 74 | 74.62 111 | 88.90 20 | 93.85 52 | 75.75 20 | 96.00 49 | 87.80 28 | 94.63 47 | 95.04 7 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ZNCC-MVS | | | 87.94 19 | 87.85 20 | 88.20 12 | 94.39 24 | 73.33 19 | 93.03 14 | 93.81 17 | 76.81 63 | 85.24 53 | 94.32 31 | 71.76 48 | 96.93 19 | 85.53 39 | 95.79 22 | 94.32 38 |
|
| MP-MVS |  | | 87.71 20 | 87.64 22 | 87.93 21 | 94.36 26 | 73.88 6 | 92.71 22 | 92.65 64 | 77.57 41 | 83.84 82 | 94.40 30 | 72.24 43 | 96.28 40 | 85.65 38 | 95.30 35 | 93.62 72 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MP-MVS-pluss | | | 87.67 21 | 87.72 21 | 87.54 36 | 93.64 44 | 72.04 48 | 89.80 79 | 93.50 25 | 75.17 100 | 86.34 44 | 95.29 12 | 70.86 59 | 96.00 49 | 88.78 19 | 96.04 16 | 94.58 27 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| HFP-MVS | | | 87.58 22 | 87.47 24 | 87.94 19 | 94.58 16 | 73.54 15 | 93.04 12 | 93.24 33 | 76.78 65 | 84.91 59 | 94.44 28 | 70.78 60 | 96.61 32 | 84.53 49 | 94.89 41 | 93.66 65 |
|
| ACMMPR | | | 87.44 23 | 87.23 27 | 88.08 14 | 94.64 13 | 73.59 12 | 93.04 12 | 93.20 34 | 76.78 65 | 84.66 66 | 94.52 21 | 68.81 84 | 96.65 30 | 84.53 49 | 94.90 40 | 94.00 50 |
|
| APD-MVS |  | | 87.44 23 | 87.52 23 | 87.19 42 | 94.24 32 | 72.39 39 | 91.86 41 | 92.83 55 | 73.01 151 | 88.58 21 | 94.52 21 | 73.36 34 | 96.49 36 | 84.26 52 | 95.01 37 | 92.70 105 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| GST-MVS | | | 87.42 25 | 87.26 25 | 87.89 24 | 94.12 36 | 72.97 24 | 92.39 26 | 93.43 28 | 76.89 61 | 84.68 63 | 93.99 48 | 70.67 62 | 96.82 22 | 84.18 56 | 95.01 37 | 93.90 55 |
|
| region2R | | | 87.42 25 | 87.20 28 | 88.09 13 | 94.63 14 | 73.55 13 | 93.03 14 | 93.12 37 | 76.73 68 | 84.45 70 | 94.52 21 | 69.09 78 | 96.70 27 | 84.37 51 | 94.83 44 | 94.03 49 |
|
| MCST-MVS | | | 87.37 27 | 87.25 26 | 87.73 28 | 94.53 17 | 72.46 38 | 89.82 77 | 93.82 16 | 73.07 149 | 84.86 62 | 92.89 74 | 76.22 17 | 96.33 38 | 84.89 44 | 95.13 36 | 94.40 34 |
|
| MTAPA | | | 87.23 28 | 87.00 29 | 87.90 22 | 94.18 35 | 74.25 5 | 86.58 187 | 92.02 85 | 79.45 19 | 85.88 46 | 94.80 17 | 68.07 89 | 96.21 42 | 86.69 36 | 95.34 33 | 93.23 87 |
|
| XVS | | | 87.18 29 | 86.91 33 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 85 | 94.17 36 | 67.45 95 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 47 |
|
| HPM-MVS |  | | 87.11 30 | 86.98 30 | 87.50 38 | 93.88 39 | 72.16 45 | 92.19 34 | 93.33 31 | 76.07 82 | 83.81 83 | 93.95 51 | 69.77 72 | 96.01 48 | 85.15 40 | 94.66 46 | 94.32 38 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 87.11 30 | 86.92 32 | 87.68 34 | 94.20 34 | 73.86 7 | 93.98 3 | 92.82 58 | 76.62 70 | 83.68 84 | 94.46 25 | 67.93 90 | 95.95 52 | 84.20 55 | 94.39 53 | 93.23 87 |
|
| DeepC-MVS | | 79.81 2 | 87.08 32 | 86.88 34 | 87.69 33 | 91.16 80 | 72.32 43 | 90.31 68 | 93.94 14 | 77.12 55 | 82.82 96 | 94.23 35 | 72.13 45 | 97.09 16 | 84.83 45 | 95.37 32 | 93.65 69 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepC-MVS_fast | | 79.65 3 | 86.91 33 | 86.62 36 | 87.76 27 | 93.52 46 | 72.37 41 | 91.26 48 | 93.04 38 | 76.62 70 | 84.22 74 | 93.36 63 | 71.44 54 | 96.76 25 | 80.82 85 | 95.33 34 | 94.16 43 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SR-MVS | | | 86.73 34 | 86.67 35 | 86.91 46 | 94.11 37 | 72.11 47 | 92.37 28 | 92.56 67 | 74.50 112 | 86.84 42 | 94.65 20 | 67.31 97 | 95.77 54 | 84.80 46 | 92.85 67 | 92.84 103 |
|
| CS-MVS | | | 86.69 35 | 86.95 31 | 85.90 63 | 90.76 91 | 67.57 140 | 92.83 17 | 93.30 32 | 79.67 17 | 84.57 69 | 92.27 86 | 71.47 53 | 95.02 86 | 84.24 54 | 93.46 63 | 95.13 6 |
|
| PGM-MVS | | | 86.68 36 | 86.27 40 | 87.90 22 | 94.22 33 | 73.38 18 | 90.22 70 | 93.04 38 | 75.53 91 | 83.86 81 | 94.42 29 | 67.87 92 | 96.64 31 | 82.70 72 | 94.57 49 | 93.66 65 |
|
| mPP-MVS | | | 86.67 37 | 86.32 39 | 87.72 30 | 94.41 22 | 73.55 13 | 92.74 20 | 92.22 80 | 76.87 62 | 82.81 97 | 94.25 34 | 66.44 105 | 96.24 41 | 82.88 67 | 94.28 56 | 93.38 81 |
|
| CANet | | | 86.45 38 | 86.10 45 | 87.51 37 | 90.09 102 | 70.94 67 | 89.70 83 | 92.59 66 | 81.78 4 | 81.32 112 | 91.43 106 | 70.34 64 | 97.23 13 | 84.26 52 | 93.36 64 | 94.37 35 |
|
| train_agg | | | 86.43 39 | 86.20 41 | 87.13 44 | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.69 237 | 85.00 57 | 93.10 67 | 74.43 26 | 95.41 67 | 84.97 41 | 95.71 25 | 93.02 98 |
|
| PHI-MVS | | | 86.43 39 | 86.17 43 | 87.24 41 | 90.88 87 | 70.96 65 | 92.27 32 | 94.07 9 | 72.45 154 | 85.22 54 | 91.90 92 | 69.47 74 | 96.42 37 | 83.28 62 | 95.94 19 | 94.35 36 |
|
| CSCG | | | 86.41 41 | 86.19 42 | 87.07 45 | 92.91 58 | 72.48 37 | 90.81 57 | 93.56 24 | 73.95 123 | 83.16 91 | 91.07 116 | 75.94 18 | 95.19 75 | 79.94 94 | 94.38 54 | 93.55 76 |
|
| CS-MVS-test | | | 86.29 42 | 86.48 37 | 85.71 65 | 91.02 83 | 67.21 152 | 92.36 29 | 93.78 18 | 78.97 28 | 83.51 88 | 91.20 111 | 70.65 63 | 95.15 77 | 81.96 76 | 94.89 41 | 94.77 22 |
|
| EC-MVSNet | | | 86.01 43 | 86.38 38 | 84.91 88 | 89.31 131 | 66.27 166 | 92.32 30 | 93.63 21 | 79.37 20 | 84.17 76 | 91.88 93 | 69.04 82 | 95.43 65 | 83.93 57 | 93.77 61 | 93.01 99 |
|
| casdiffmvs_mvg |  | | 85.99 44 | 86.09 46 | 85.70 66 | 87.65 198 | 67.22 151 | 88.69 119 | 93.04 38 | 79.64 18 | 85.33 52 | 92.54 83 | 73.30 35 | 94.50 107 | 83.49 59 | 91.14 89 | 95.37 2 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| APD-MVS_3200maxsize | | | 85.97 45 | 85.88 48 | 86.22 57 | 92.69 63 | 69.53 89 | 91.93 38 | 92.99 45 | 73.54 136 | 85.94 45 | 94.51 24 | 65.80 115 | 95.61 57 | 83.04 65 | 92.51 71 | 93.53 78 |
|
| test_fmvsmconf_n | | | 85.92 46 | 86.04 47 | 85.57 68 | 85.03 253 | 69.51 90 | 89.62 86 | 90.58 131 | 73.42 139 | 87.75 31 | 94.02 44 | 72.85 40 | 93.24 160 | 90.37 3 | 90.75 93 | 93.96 51 |
|
| canonicalmvs | | | 85.91 47 | 85.87 49 | 86.04 60 | 89.84 112 | 69.44 95 | 90.45 66 | 93.00 43 | 76.70 69 | 88.01 28 | 91.23 109 | 73.28 36 | 93.91 131 | 81.50 79 | 88.80 120 | 94.77 22 |
|
| ACMMP |  | | 85.89 48 | 85.39 54 | 87.38 39 | 93.59 45 | 72.63 33 | 92.74 20 | 93.18 36 | 76.78 65 | 80.73 121 | 93.82 53 | 64.33 125 | 96.29 39 | 82.67 73 | 90.69 94 | 93.23 87 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SR-MVS-dyc-post | | | 85.77 49 | 85.61 52 | 86.23 56 | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 137 | 85.69 49 | 94.45 26 | 65.00 123 | 95.56 58 | 82.75 68 | 91.87 79 | 92.50 114 |
|
| CDPH-MVS | | | 85.76 50 | 85.29 59 | 87.17 43 | 93.49 47 | 71.08 61 | 88.58 123 | 92.42 72 | 68.32 244 | 84.61 67 | 93.48 58 | 72.32 42 | 96.15 45 | 79.00 98 | 95.43 31 | 94.28 40 |
|
| TSAR-MVS + GP. | | | 85.71 51 | 85.33 56 | 86.84 47 | 91.34 78 | 72.50 36 | 89.07 104 | 87.28 228 | 76.41 72 | 85.80 47 | 90.22 134 | 74.15 31 | 95.37 72 | 81.82 77 | 91.88 78 | 92.65 109 |
|
| dcpmvs_2 | | | 85.63 52 | 86.15 44 | 84.06 125 | 91.71 75 | 64.94 197 | 86.47 190 | 91.87 95 | 73.63 132 | 86.60 43 | 93.02 72 | 76.57 15 | 91.87 216 | 83.36 60 | 92.15 75 | 95.35 3 |
|
| test_fmvsmconf0.1_n | | | 85.61 53 | 85.65 51 | 85.50 69 | 82.99 298 | 69.39 96 | 89.65 84 | 90.29 144 | 73.31 142 | 87.77 30 | 94.15 38 | 71.72 49 | 93.23 161 | 90.31 4 | 90.67 95 | 93.89 56 |
|
| alignmvs | | | 85.48 54 | 85.32 57 | 85.96 62 | 89.51 120 | 69.47 92 | 89.74 81 | 92.47 68 | 76.17 80 | 87.73 33 | 91.46 105 | 70.32 65 | 93.78 136 | 81.51 78 | 88.95 117 | 94.63 26 |
|
| 3Dnovator+ | | 77.84 4 | 85.48 54 | 84.47 69 | 88.51 7 | 91.08 81 | 73.49 16 | 93.18 11 | 93.78 18 | 80.79 8 | 76.66 195 | 93.37 62 | 60.40 188 | 96.75 26 | 77.20 117 | 93.73 62 | 95.29 5 |
|
| MSLP-MVS++ | | | 85.43 56 | 85.76 50 | 84.45 103 | 91.93 72 | 70.24 76 | 90.71 58 | 92.86 53 | 77.46 47 | 84.22 74 | 92.81 78 | 67.16 99 | 92.94 180 | 80.36 90 | 94.35 55 | 90.16 196 |
|
| DELS-MVS | | | 85.41 57 | 85.30 58 | 85.77 64 | 88.49 162 | 67.93 132 | 85.52 219 | 93.44 27 | 78.70 29 | 83.63 87 | 89.03 164 | 74.57 24 | 95.71 56 | 80.26 92 | 94.04 59 | 93.66 65 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| HPM-MVS_fast | | | 85.35 58 | 84.95 63 | 86.57 53 | 93.69 42 | 70.58 75 | 92.15 36 | 91.62 103 | 73.89 126 | 82.67 99 | 94.09 40 | 62.60 144 | 95.54 60 | 80.93 83 | 92.93 66 | 93.57 74 |
|
| test_fmvsm_n_1920 | | | 85.29 59 | 85.34 55 | 85.13 79 | 86.12 232 | 69.93 83 | 88.65 121 | 90.78 127 | 69.97 204 | 88.27 23 | 93.98 49 | 71.39 55 | 91.54 228 | 88.49 23 | 90.45 97 | 93.91 53 |
|
| MVS_111021_HR | | | 85.14 60 | 84.75 64 | 86.32 55 | 91.65 76 | 72.70 30 | 85.98 202 | 90.33 141 | 76.11 81 | 82.08 102 | 91.61 100 | 71.36 56 | 94.17 120 | 81.02 82 | 92.58 70 | 92.08 131 |
|
| casdiffmvs |  | | 85.11 61 | 85.14 60 | 85.01 82 | 87.20 214 | 65.77 179 | 87.75 153 | 92.83 55 | 77.84 37 | 84.36 73 | 92.38 85 | 72.15 44 | 93.93 130 | 81.27 81 | 90.48 96 | 95.33 4 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| UA-Net | | | 85.08 62 | 84.96 62 | 85.45 70 | 92.07 70 | 68.07 129 | 89.78 80 | 90.86 126 | 82.48 3 | 84.60 68 | 93.20 66 | 69.35 75 | 95.22 74 | 71.39 174 | 90.88 92 | 93.07 95 |
|
| DPM-MVS | | | 84.93 63 | 84.29 70 | 86.84 47 | 90.20 100 | 73.04 23 | 87.12 169 | 93.04 38 | 69.80 208 | 82.85 95 | 91.22 110 | 73.06 38 | 96.02 47 | 76.72 126 | 94.63 47 | 91.46 150 |
|
| baseline | | | 84.93 63 | 84.98 61 | 84.80 92 | 87.30 212 | 65.39 188 | 87.30 165 | 92.88 52 | 77.62 39 | 84.04 79 | 92.26 87 | 71.81 47 | 93.96 124 | 81.31 80 | 90.30 99 | 95.03 8 |
|
| ETV-MVS | | | 84.90 65 | 84.67 65 | 85.59 67 | 89.39 125 | 68.66 116 | 88.74 117 | 92.64 65 | 79.97 15 | 84.10 77 | 85.71 254 | 69.32 76 | 95.38 69 | 80.82 85 | 91.37 86 | 92.72 104 |
|
| test_fmvsmconf0.01_n | | | 84.73 66 | 84.52 68 | 85.34 72 | 80.25 338 | 69.03 99 | 89.47 88 | 89.65 161 | 73.24 146 | 86.98 40 | 94.27 32 | 66.62 101 | 93.23 161 | 90.26 5 | 89.95 107 | 93.78 62 |
|
| fmvsm_l_conf0.5_n | | | 84.47 67 | 84.54 66 | 84.27 113 | 85.42 242 | 68.81 105 | 88.49 125 | 87.26 229 | 68.08 246 | 88.03 27 | 93.49 57 | 72.04 46 | 91.77 218 | 88.90 17 | 89.14 116 | 92.24 125 |
|
| EI-MVSNet-Vis-set | | | 84.19 68 | 83.81 73 | 85.31 73 | 88.18 173 | 67.85 133 | 87.66 155 | 89.73 159 | 80.05 14 | 82.95 92 | 89.59 148 | 70.74 61 | 94.82 95 | 80.66 89 | 84.72 170 | 93.28 86 |
|
| fmvsm_l_conf0.5_n_a | | | 84.13 69 | 84.16 71 | 84.06 125 | 85.38 243 | 68.40 120 | 88.34 132 | 86.85 237 | 67.48 253 | 87.48 34 | 93.40 61 | 70.89 58 | 91.61 222 | 88.38 25 | 89.22 115 | 92.16 129 |
|
| test_fmvsmvis_n_1920 | | | 84.02 70 | 83.87 72 | 84.49 101 | 84.12 269 | 69.37 97 | 88.15 140 | 87.96 212 | 70.01 202 | 83.95 80 | 93.23 65 | 68.80 85 | 91.51 231 | 88.61 20 | 89.96 106 | 92.57 110 |
|
| nrg030 | | | 83.88 71 | 83.53 75 | 84.96 84 | 86.77 222 | 69.28 98 | 90.46 65 | 92.67 61 | 74.79 106 | 82.95 92 | 91.33 108 | 72.70 41 | 93.09 174 | 80.79 87 | 79.28 251 | 92.50 114 |
|
| EI-MVSNet-UG-set | | | 83.81 72 | 83.38 78 | 85.09 80 | 87.87 186 | 67.53 141 | 87.44 161 | 89.66 160 | 79.74 16 | 82.23 101 | 89.41 157 | 70.24 66 | 94.74 98 | 79.95 93 | 83.92 185 | 92.99 100 |
|
| fmvsm_s_conf0.5_n | | | 83.80 73 | 83.71 74 | 84.07 123 | 86.69 224 | 67.31 147 | 89.46 89 | 83.07 292 | 71.09 179 | 86.96 41 | 93.70 55 | 69.02 83 | 91.47 233 | 88.79 18 | 84.62 172 | 93.44 80 |
|
| CPTT-MVS | | | 83.73 74 | 83.33 80 | 84.92 87 | 93.28 49 | 70.86 69 | 92.09 37 | 90.38 137 | 68.75 236 | 79.57 132 | 92.83 76 | 60.60 184 | 93.04 178 | 80.92 84 | 91.56 84 | 90.86 169 |
|
| EPNet | | | 83.72 75 | 82.92 87 | 86.14 59 | 84.22 267 | 69.48 91 | 91.05 55 | 85.27 257 | 81.30 6 | 76.83 190 | 91.65 97 | 66.09 110 | 95.56 58 | 76.00 132 | 93.85 60 | 93.38 81 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 83.65 76 | 84.54 66 | 80.99 220 | 90.06 107 | 65.83 175 | 84.21 247 | 88.74 198 | 71.60 169 | 85.01 55 | 92.44 84 | 74.51 25 | 83.50 333 | 82.15 75 | 92.15 75 | 93.64 71 |
|
| HQP_MVS | | | 83.64 77 | 83.14 81 | 85.14 77 | 90.08 103 | 68.71 112 | 91.25 50 | 92.44 69 | 79.12 23 | 78.92 141 | 91.00 120 | 60.42 186 | 95.38 69 | 78.71 102 | 86.32 151 | 91.33 151 |
|
| fmvsm_s_conf0.5_n_a | | | 83.63 78 | 83.41 77 | 84.28 111 | 86.14 231 | 68.12 127 | 89.43 90 | 82.87 297 | 70.27 198 | 87.27 37 | 93.80 54 | 69.09 78 | 91.58 224 | 88.21 26 | 83.65 193 | 93.14 93 |
|
| Effi-MVS+ | | | 83.62 79 | 83.08 82 | 85.24 75 | 88.38 168 | 67.45 142 | 88.89 109 | 89.15 179 | 75.50 92 | 82.27 100 | 88.28 186 | 69.61 73 | 94.45 109 | 77.81 111 | 87.84 130 | 93.84 59 |
|
| fmvsm_s_conf0.1_n | | | 83.56 80 | 83.38 78 | 84.10 118 | 84.86 255 | 67.28 148 | 89.40 93 | 83.01 293 | 70.67 187 | 87.08 38 | 93.96 50 | 68.38 87 | 91.45 234 | 88.56 22 | 84.50 173 | 93.56 75 |
|
| OPM-MVS | | | 83.50 81 | 82.95 86 | 85.14 77 | 88.79 152 | 70.95 66 | 89.13 103 | 91.52 106 | 77.55 44 | 80.96 119 | 91.75 95 | 60.71 179 | 94.50 107 | 79.67 95 | 86.51 149 | 89.97 212 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Vis-MVSNet |  | | 83.46 82 | 82.80 89 | 85.43 71 | 90.25 99 | 68.74 110 | 90.30 69 | 90.13 148 | 76.33 78 | 80.87 120 | 92.89 74 | 61.00 176 | 94.20 118 | 72.45 168 | 90.97 90 | 93.35 83 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MG-MVS | | | 83.41 83 | 83.45 76 | 83.28 152 | 92.74 62 | 62.28 248 | 88.17 138 | 89.50 164 | 75.22 96 | 81.49 111 | 92.74 82 | 66.75 100 | 95.11 80 | 72.85 162 | 91.58 83 | 92.45 117 |
|
| EPP-MVSNet | | | 83.40 84 | 83.02 84 | 84.57 96 | 90.13 101 | 64.47 207 | 92.32 30 | 90.73 128 | 74.45 115 | 79.35 135 | 91.10 114 | 69.05 81 | 95.12 78 | 72.78 163 | 87.22 138 | 94.13 44 |
|
| 3Dnovator | | 76.31 5 | 83.38 85 | 82.31 95 | 86.59 52 | 87.94 184 | 72.94 28 | 90.64 59 | 92.14 84 | 77.21 52 | 75.47 221 | 92.83 76 | 58.56 195 | 94.72 99 | 73.24 159 | 92.71 69 | 92.13 130 |
|
| fmvsm_s_conf0.1_n_a | | | 83.32 86 | 82.99 85 | 84.28 111 | 83.79 276 | 68.07 129 | 89.34 95 | 82.85 298 | 69.80 208 | 87.36 36 | 94.06 42 | 68.34 88 | 91.56 226 | 87.95 27 | 83.46 199 | 93.21 90 |
|
| EIA-MVS | | | 83.31 87 | 82.80 89 | 84.82 90 | 89.59 116 | 65.59 181 | 88.21 136 | 92.68 60 | 74.66 109 | 78.96 139 | 86.42 241 | 69.06 80 | 95.26 73 | 75.54 138 | 90.09 103 | 93.62 72 |
|
| h-mvs33 | | | 83.15 88 | 82.19 96 | 86.02 61 | 90.56 93 | 70.85 70 | 88.15 140 | 89.16 178 | 76.02 83 | 84.67 64 | 91.39 107 | 61.54 162 | 95.50 61 | 82.71 70 | 75.48 298 | 91.72 139 |
|
| MVS_Test | | | 83.15 88 | 83.06 83 | 83.41 149 | 86.86 218 | 63.21 234 | 86.11 200 | 92.00 87 | 74.31 116 | 82.87 94 | 89.44 156 | 70.03 67 | 93.21 163 | 77.39 116 | 88.50 126 | 93.81 60 |
|
| IS-MVSNet | | | 83.15 88 | 82.81 88 | 84.18 116 | 89.94 110 | 63.30 232 | 91.59 43 | 88.46 204 | 79.04 25 | 79.49 133 | 92.16 88 | 65.10 120 | 94.28 112 | 67.71 209 | 91.86 81 | 94.95 10 |
|
| DP-MVS Recon | | | 83.11 91 | 82.09 98 | 86.15 58 | 94.44 19 | 70.92 68 | 88.79 113 | 92.20 81 | 70.53 192 | 79.17 137 | 91.03 119 | 64.12 127 | 96.03 46 | 68.39 206 | 90.14 102 | 91.50 146 |
|
| PAPM_NR | | | 83.02 92 | 82.41 92 | 84.82 90 | 92.47 67 | 66.37 164 | 87.93 148 | 91.80 98 | 73.82 127 | 77.32 179 | 90.66 125 | 67.90 91 | 94.90 91 | 70.37 183 | 89.48 112 | 93.19 91 |
|
| VDD-MVS | | | 83.01 93 | 82.36 94 | 84.96 84 | 91.02 83 | 66.40 163 | 88.91 108 | 88.11 207 | 77.57 41 | 84.39 72 | 93.29 64 | 52.19 247 | 93.91 131 | 77.05 119 | 88.70 122 | 94.57 29 |
|
| MVSFormer | | | 82.85 94 | 82.05 99 | 85.24 75 | 87.35 206 | 70.21 77 | 90.50 62 | 90.38 137 | 68.55 239 | 81.32 112 | 89.47 151 | 61.68 159 | 93.46 153 | 78.98 99 | 90.26 100 | 92.05 132 |
|
| OMC-MVS | | | 82.69 95 | 81.97 102 | 84.85 89 | 88.75 154 | 67.42 143 | 87.98 144 | 90.87 125 | 74.92 103 | 79.72 130 | 91.65 97 | 62.19 154 | 93.96 124 | 75.26 140 | 86.42 150 | 93.16 92 |
|
| PVSNet_Blended_VisFu | | | 82.62 96 | 81.83 104 | 84.96 84 | 90.80 89 | 69.76 87 | 88.74 117 | 91.70 102 | 69.39 216 | 78.96 139 | 88.46 181 | 65.47 117 | 94.87 94 | 74.42 145 | 88.57 123 | 90.24 194 |
|
| MVS_111021_LR | | | 82.61 97 | 82.11 97 | 84.11 117 | 88.82 149 | 71.58 53 | 85.15 222 | 86.16 247 | 74.69 108 | 80.47 123 | 91.04 117 | 62.29 151 | 90.55 256 | 80.33 91 | 90.08 104 | 90.20 195 |
|
| HQP-MVS | | | 82.61 97 | 82.02 100 | 84.37 105 | 89.33 128 | 66.98 155 | 89.17 98 | 92.19 82 | 76.41 72 | 77.23 182 | 90.23 133 | 60.17 189 | 95.11 80 | 77.47 114 | 85.99 159 | 91.03 163 |
|
| CLD-MVS | | | 82.31 99 | 81.65 105 | 84.29 110 | 88.47 163 | 67.73 136 | 85.81 210 | 92.35 74 | 75.78 86 | 78.33 156 | 86.58 236 | 64.01 128 | 94.35 110 | 76.05 131 | 87.48 135 | 90.79 170 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| VNet | | | 82.21 100 | 82.41 92 | 81.62 200 | 90.82 88 | 60.93 262 | 84.47 238 | 89.78 156 | 76.36 77 | 84.07 78 | 91.88 93 | 64.71 124 | 90.26 258 | 70.68 180 | 88.89 118 | 93.66 65 |
|
| diffmvs |  | | 82.10 101 | 81.88 103 | 82.76 182 | 83.00 296 | 63.78 220 | 83.68 254 | 89.76 157 | 72.94 152 | 82.02 103 | 89.85 140 | 65.96 114 | 90.79 252 | 82.38 74 | 87.30 137 | 93.71 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 82.08 102 | 81.27 108 | 84.50 99 | 89.23 135 | 68.76 108 | 90.22 70 | 91.94 91 | 75.37 94 | 76.64 196 | 91.51 102 | 54.29 228 | 94.91 88 | 78.44 104 | 83.78 186 | 89.83 217 |
|
| FIs | | | 82.07 103 | 82.42 91 | 81.04 219 | 88.80 151 | 58.34 288 | 88.26 135 | 93.49 26 | 76.93 60 | 78.47 153 | 91.04 117 | 69.92 70 | 92.34 199 | 69.87 190 | 84.97 167 | 92.44 118 |
|
| PS-MVSNAJss | | | 82.07 103 | 81.31 107 | 84.34 108 | 86.51 227 | 67.27 149 | 89.27 96 | 91.51 107 | 71.75 163 | 79.37 134 | 90.22 134 | 63.15 138 | 94.27 113 | 77.69 112 | 82.36 213 | 91.49 147 |
|
| API-MVS | | | 81.99 105 | 81.23 109 | 84.26 114 | 90.94 85 | 70.18 82 | 91.10 53 | 89.32 169 | 71.51 171 | 78.66 147 | 88.28 186 | 65.26 118 | 95.10 83 | 64.74 236 | 91.23 88 | 87.51 278 |
|
| UniMVSNet_NR-MVSNet | | | 81.88 106 | 81.54 106 | 82.92 171 | 88.46 164 | 63.46 228 | 87.13 168 | 92.37 73 | 80.19 12 | 78.38 154 | 89.14 160 | 71.66 52 | 93.05 176 | 70.05 186 | 76.46 281 | 92.25 123 |
|
| MAR-MVS | | | 81.84 107 | 80.70 118 | 85.27 74 | 91.32 79 | 71.53 54 | 89.82 77 | 90.92 122 | 69.77 210 | 78.50 151 | 86.21 245 | 62.36 150 | 94.52 106 | 65.36 230 | 92.05 77 | 89.77 220 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LFMVS | | | 81.82 108 | 81.23 109 | 83.57 144 | 91.89 73 | 63.43 230 | 89.84 76 | 81.85 308 | 77.04 58 | 83.21 89 | 93.10 67 | 52.26 246 | 93.43 155 | 71.98 169 | 89.95 107 | 93.85 57 |
|
| hse-mvs2 | | | 81.72 109 | 80.94 115 | 84.07 123 | 88.72 155 | 67.68 138 | 85.87 206 | 87.26 229 | 76.02 83 | 84.67 64 | 88.22 189 | 61.54 162 | 93.48 151 | 82.71 70 | 73.44 326 | 91.06 161 |
|
| GeoE | | | 81.71 110 | 81.01 114 | 83.80 139 | 89.51 120 | 64.45 208 | 88.97 106 | 88.73 199 | 71.27 175 | 78.63 148 | 89.76 142 | 66.32 107 | 93.20 166 | 69.89 189 | 86.02 158 | 93.74 63 |
|
| xiu_mvs_v2_base | | | 81.69 111 | 81.05 112 | 83.60 142 | 89.15 138 | 68.03 131 | 84.46 240 | 90.02 150 | 70.67 187 | 81.30 115 | 86.53 239 | 63.17 137 | 94.19 119 | 75.60 137 | 88.54 124 | 88.57 260 |
|
| PS-MVSNAJ | | | 81.69 111 | 81.02 113 | 83.70 141 | 89.51 120 | 68.21 126 | 84.28 246 | 90.09 149 | 70.79 184 | 81.26 116 | 85.62 259 | 63.15 138 | 94.29 111 | 75.62 136 | 88.87 119 | 88.59 259 |
|
| mvsmamba | | | 81.69 111 | 80.74 117 | 84.56 97 | 87.45 205 | 66.72 159 | 91.26 48 | 85.89 251 | 74.66 109 | 78.23 159 | 90.56 127 | 54.33 227 | 94.91 88 | 80.73 88 | 83.54 197 | 92.04 134 |
|
| PAPR | | | 81.66 114 | 80.89 116 | 83.99 133 | 90.27 98 | 64.00 215 | 86.76 183 | 91.77 101 | 68.84 235 | 77.13 188 | 89.50 149 | 67.63 93 | 94.88 93 | 67.55 211 | 88.52 125 | 93.09 94 |
|
| UniMVSNet (Re) | | | 81.60 115 | 81.11 111 | 83.09 162 | 88.38 168 | 64.41 209 | 87.60 156 | 93.02 42 | 78.42 32 | 78.56 150 | 88.16 190 | 69.78 71 | 93.26 159 | 69.58 193 | 76.49 280 | 91.60 140 |
|
| FC-MVSNet-test | | | 81.52 116 | 82.02 100 | 80.03 240 | 88.42 167 | 55.97 326 | 87.95 146 | 93.42 29 | 77.10 56 | 77.38 177 | 90.98 122 | 69.96 68 | 91.79 217 | 68.46 205 | 84.50 173 | 92.33 119 |
|
| VDDNet | | | 81.52 116 | 80.67 119 | 84.05 128 | 90.44 96 | 64.13 214 | 89.73 82 | 85.91 250 | 71.11 178 | 83.18 90 | 93.48 58 | 50.54 271 | 93.49 150 | 73.40 156 | 88.25 128 | 94.54 30 |
|
| ACMP | | 74.13 6 | 81.51 118 | 80.57 120 | 84.36 106 | 89.42 123 | 68.69 115 | 89.97 74 | 91.50 110 | 74.46 114 | 75.04 242 | 90.41 130 | 53.82 233 | 94.54 104 | 77.56 113 | 82.91 205 | 89.86 216 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| jason | | | 81.39 119 | 80.29 127 | 84.70 94 | 86.63 226 | 69.90 85 | 85.95 203 | 86.77 238 | 63.24 300 | 81.07 118 | 89.47 151 | 61.08 175 | 92.15 205 | 78.33 107 | 90.07 105 | 92.05 132 |
| jason: jason. |
| lupinMVS | | | 81.39 119 | 80.27 128 | 84.76 93 | 87.35 206 | 70.21 77 | 85.55 215 | 86.41 242 | 62.85 307 | 81.32 112 | 88.61 176 | 61.68 159 | 92.24 203 | 78.41 106 | 90.26 100 | 91.83 136 |
|
| test_yl | | | 81.17 121 | 80.47 123 | 83.24 155 | 89.13 139 | 63.62 221 | 86.21 197 | 89.95 153 | 72.43 157 | 81.78 108 | 89.61 146 | 57.50 205 | 93.58 144 | 70.75 178 | 86.90 142 | 92.52 112 |
|
| DCV-MVSNet | | | 81.17 121 | 80.47 123 | 83.24 155 | 89.13 139 | 63.62 221 | 86.21 197 | 89.95 153 | 72.43 157 | 81.78 108 | 89.61 146 | 57.50 205 | 93.58 144 | 70.75 178 | 86.90 142 | 92.52 112 |
|
| DU-MVS | | | 81.12 123 | 80.52 122 | 82.90 172 | 87.80 190 | 63.46 228 | 87.02 172 | 91.87 95 | 79.01 26 | 78.38 154 | 89.07 162 | 65.02 121 | 93.05 176 | 70.05 186 | 76.46 281 | 92.20 126 |
|
| PVSNet_Blended | | | 80.98 124 | 80.34 125 | 82.90 172 | 88.85 146 | 65.40 186 | 84.43 242 | 92.00 87 | 67.62 250 | 78.11 163 | 85.05 273 | 66.02 112 | 94.27 113 | 71.52 171 | 89.50 111 | 89.01 242 |
|
| FA-MVS(test-final) | | | 80.96 125 | 79.91 133 | 84.10 118 | 88.30 171 | 65.01 195 | 84.55 237 | 90.01 151 | 73.25 145 | 79.61 131 | 87.57 203 | 58.35 197 | 94.72 99 | 71.29 175 | 86.25 153 | 92.56 111 |
|
| QAPM | | | 80.88 126 | 79.50 142 | 85.03 81 | 88.01 183 | 68.97 103 | 91.59 43 | 92.00 87 | 66.63 264 | 75.15 238 | 92.16 88 | 57.70 202 | 95.45 63 | 63.52 242 | 88.76 121 | 90.66 176 |
|
| TranMVSNet+NR-MVSNet | | | 80.84 127 | 80.31 126 | 82.42 187 | 87.85 187 | 62.33 246 | 87.74 154 | 91.33 112 | 80.55 9 | 77.99 167 | 89.86 139 | 65.23 119 | 92.62 186 | 67.05 218 | 75.24 308 | 92.30 121 |
|
| UGNet | | | 80.83 128 | 79.59 140 | 84.54 98 | 88.04 181 | 68.09 128 | 89.42 91 | 88.16 206 | 76.95 59 | 76.22 207 | 89.46 153 | 49.30 286 | 93.94 127 | 68.48 204 | 90.31 98 | 91.60 140 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Fast-Effi-MVS+ | | | 80.81 129 | 79.92 132 | 83.47 145 | 88.85 146 | 64.51 204 | 85.53 217 | 89.39 167 | 70.79 184 | 78.49 152 | 85.06 272 | 67.54 94 | 93.58 144 | 67.03 219 | 86.58 147 | 92.32 120 |
|
| XVG-OURS-SEG-HR | | | 80.81 129 | 79.76 136 | 83.96 135 | 85.60 239 | 68.78 107 | 83.54 260 | 90.50 134 | 70.66 190 | 76.71 194 | 91.66 96 | 60.69 180 | 91.26 239 | 76.94 120 | 81.58 222 | 91.83 136 |
|
| xiu_mvs_v1_base_debu | | | 80.80 131 | 79.72 137 | 84.03 130 | 87.35 206 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 229 | 81.83 104 | 88.16 190 | 50.91 265 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 237 |
|
| xiu_mvs_v1_base | | | 80.80 131 | 79.72 137 | 84.03 130 | 87.35 206 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 229 | 81.83 104 | 88.16 190 | 50.91 265 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 237 |
|
| xiu_mvs_v1_base_debi | | | 80.80 131 | 79.72 137 | 84.03 130 | 87.35 206 | 70.19 79 | 85.56 212 | 88.77 194 | 69.06 229 | 81.83 104 | 88.16 190 | 50.91 265 | 92.85 182 | 78.29 108 | 87.56 132 | 89.06 237 |
|
| ACMM | | 73.20 8 | 80.78 134 | 79.84 135 | 83.58 143 | 89.31 131 | 68.37 121 | 89.99 73 | 91.60 104 | 70.28 197 | 77.25 180 | 89.66 144 | 53.37 238 | 93.53 149 | 74.24 148 | 82.85 206 | 88.85 250 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 114514_t | | | 80.68 135 | 79.51 141 | 84.20 115 | 94.09 38 | 67.27 149 | 89.64 85 | 91.11 119 | 58.75 344 | 74.08 254 | 90.72 124 | 58.10 198 | 95.04 85 | 69.70 191 | 89.42 113 | 90.30 192 |
|
| iter_conf_final | | | 80.63 136 | 79.35 146 | 84.46 102 | 89.36 127 | 67.70 137 | 89.85 75 | 84.49 267 | 73.19 147 | 78.30 157 | 88.94 165 | 45.98 313 | 94.56 102 | 79.59 96 | 84.48 177 | 91.11 158 |
|
| CANet_DTU | | | 80.61 137 | 79.87 134 | 82.83 174 | 85.60 239 | 63.17 237 | 87.36 162 | 88.65 200 | 76.37 76 | 75.88 214 | 88.44 182 | 53.51 236 | 93.07 175 | 73.30 157 | 89.74 110 | 92.25 123 |
|
| VPA-MVSNet | | | 80.60 138 | 80.55 121 | 80.76 226 | 88.07 180 | 60.80 265 | 86.86 177 | 91.58 105 | 75.67 90 | 80.24 125 | 89.45 155 | 63.34 132 | 90.25 259 | 70.51 182 | 79.22 252 | 91.23 155 |
|
| PVSNet_BlendedMVS | | | 80.60 138 | 80.02 130 | 82.36 189 | 88.85 146 | 65.40 186 | 86.16 199 | 92.00 87 | 69.34 218 | 78.11 163 | 86.09 249 | 66.02 112 | 94.27 113 | 71.52 171 | 82.06 216 | 87.39 280 |
|
| AdaColmap |  | | 80.58 140 | 79.42 143 | 84.06 125 | 93.09 54 | 68.91 104 | 89.36 94 | 88.97 188 | 69.27 219 | 75.70 217 | 89.69 143 | 57.20 209 | 95.77 54 | 63.06 247 | 88.41 127 | 87.50 279 |
|
| EI-MVSNet | | | 80.52 141 | 79.98 131 | 82.12 190 | 84.28 265 | 63.19 236 | 86.41 191 | 88.95 189 | 74.18 120 | 78.69 145 | 87.54 206 | 66.62 101 | 92.43 193 | 72.57 166 | 80.57 235 | 90.74 174 |
|
| XVG-OURS | | | 80.41 142 | 79.23 150 | 83.97 134 | 85.64 238 | 69.02 101 | 83.03 271 | 90.39 136 | 71.09 179 | 77.63 173 | 91.49 104 | 54.62 226 | 91.35 237 | 75.71 134 | 83.47 198 | 91.54 143 |
|
| SDMVSNet | | | 80.38 143 | 80.18 129 | 80.99 220 | 89.03 144 | 64.94 197 | 80.45 303 | 89.40 166 | 75.19 98 | 76.61 198 | 89.98 137 | 60.61 183 | 87.69 301 | 76.83 123 | 83.55 195 | 90.33 190 |
|
| PCF-MVS | | 73.52 7 | 80.38 143 | 78.84 159 | 85.01 82 | 87.71 195 | 68.99 102 | 83.65 255 | 91.46 111 | 63.00 304 | 77.77 171 | 90.28 131 | 66.10 109 | 95.09 84 | 61.40 266 | 88.22 129 | 90.94 167 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| X-MVStestdata | | | 80.37 145 | 77.83 182 | 88.00 17 | 94.42 20 | 73.33 19 | 92.78 18 | 92.99 45 | 79.14 21 | 83.67 85 | 12.47 403 | 67.45 95 | 96.60 33 | 83.06 63 | 94.50 50 | 94.07 47 |
|
| RRT_MVS | | | 80.35 146 | 79.22 151 | 83.74 140 | 87.63 199 | 65.46 185 | 91.08 54 | 88.92 191 | 73.82 127 | 76.44 203 | 90.03 136 | 49.05 291 | 94.25 117 | 76.84 121 | 79.20 253 | 91.51 144 |
|
| test_djsdf | | | 80.30 147 | 79.32 147 | 83.27 153 | 83.98 273 | 65.37 189 | 90.50 62 | 90.38 137 | 68.55 239 | 76.19 208 | 88.70 172 | 56.44 213 | 93.46 153 | 78.98 99 | 80.14 241 | 90.97 166 |
|
| v2v482 | | | 80.23 148 | 79.29 148 | 83.05 165 | 83.62 279 | 64.14 213 | 87.04 171 | 89.97 152 | 73.61 133 | 78.18 162 | 87.22 214 | 61.10 174 | 93.82 134 | 76.11 129 | 76.78 278 | 91.18 156 |
|
| NR-MVSNet | | | 80.23 148 | 79.38 144 | 82.78 180 | 87.80 190 | 63.34 231 | 86.31 194 | 91.09 120 | 79.01 26 | 72.17 276 | 89.07 162 | 67.20 98 | 92.81 185 | 66.08 225 | 75.65 294 | 92.20 126 |
|
| Anonymous20240529 | | | 80.19 150 | 78.89 158 | 84.10 118 | 90.60 92 | 64.75 201 | 88.95 107 | 90.90 123 | 65.97 272 | 80.59 122 | 91.17 113 | 49.97 276 | 93.73 142 | 69.16 197 | 82.70 210 | 93.81 60 |
|
| IterMVS-LS | | | 80.06 151 | 79.38 144 | 82.11 191 | 85.89 234 | 63.20 235 | 86.79 180 | 89.34 168 | 74.19 119 | 75.45 224 | 86.72 226 | 66.62 101 | 92.39 195 | 72.58 165 | 76.86 275 | 90.75 173 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Effi-MVS+-dtu | | | 80.03 152 | 78.57 164 | 84.42 104 | 85.13 250 | 68.74 110 | 88.77 114 | 88.10 208 | 74.99 102 | 74.97 243 | 83.49 301 | 57.27 208 | 93.36 156 | 73.53 153 | 80.88 229 | 91.18 156 |
|
| v1144 | | | 80.03 152 | 79.03 155 | 83.01 167 | 83.78 277 | 64.51 204 | 87.11 170 | 90.57 133 | 71.96 162 | 78.08 165 | 86.20 246 | 61.41 166 | 93.94 127 | 74.93 141 | 77.23 269 | 90.60 179 |
|
| iter_conf05 | | | 80.00 154 | 78.70 160 | 83.91 137 | 87.84 188 | 65.83 175 | 88.84 112 | 84.92 262 | 71.61 168 | 78.70 144 | 88.94 165 | 43.88 329 | 94.56 102 | 79.28 97 | 84.28 181 | 91.33 151 |
|
| v8 | | | 79.97 155 | 79.02 156 | 82.80 177 | 84.09 270 | 64.50 206 | 87.96 145 | 90.29 144 | 74.13 122 | 75.24 235 | 86.81 223 | 62.88 143 | 93.89 133 | 74.39 146 | 75.40 303 | 90.00 208 |
|
| OpenMVS |  | 72.83 10 | 79.77 156 | 78.33 171 | 84.09 121 | 85.17 246 | 69.91 84 | 90.57 60 | 90.97 121 | 66.70 258 | 72.17 276 | 91.91 91 | 54.70 224 | 93.96 124 | 61.81 263 | 90.95 91 | 88.41 263 |
|
| v10 | | | 79.74 157 | 78.67 161 | 82.97 170 | 84.06 271 | 64.95 196 | 87.88 151 | 90.62 130 | 73.11 148 | 75.11 239 | 86.56 237 | 61.46 165 | 94.05 123 | 73.68 151 | 75.55 296 | 89.90 214 |
|
| ECVR-MVS |  | | 79.61 158 | 79.26 149 | 80.67 228 | 90.08 103 | 54.69 340 | 87.89 150 | 77.44 348 | 74.88 104 | 80.27 124 | 92.79 79 | 48.96 293 | 92.45 192 | 68.55 203 | 92.50 72 | 94.86 17 |
|
| BH-RMVSNet | | | 79.61 158 | 78.44 167 | 83.14 160 | 89.38 126 | 65.93 172 | 84.95 227 | 87.15 232 | 73.56 135 | 78.19 161 | 89.79 141 | 56.67 212 | 93.36 156 | 59.53 280 | 86.74 145 | 90.13 198 |
|
| v1192 | | | 79.59 160 | 78.43 168 | 83.07 164 | 83.55 281 | 64.52 203 | 86.93 175 | 90.58 131 | 70.83 183 | 77.78 170 | 85.90 250 | 59.15 192 | 93.94 127 | 73.96 150 | 77.19 271 | 90.76 172 |
|
| ab-mvs | | | 79.51 161 | 78.97 157 | 81.14 216 | 88.46 164 | 60.91 263 | 83.84 252 | 89.24 175 | 70.36 194 | 79.03 138 | 88.87 169 | 63.23 136 | 90.21 260 | 65.12 232 | 82.57 211 | 92.28 122 |
|
| WR-MVS | | | 79.49 162 | 79.22 151 | 80.27 236 | 88.79 152 | 58.35 287 | 85.06 224 | 88.61 202 | 78.56 30 | 77.65 172 | 88.34 184 | 63.81 131 | 90.66 255 | 64.98 234 | 77.22 270 | 91.80 138 |
|
| v144192 | | | 79.47 163 | 78.37 169 | 82.78 180 | 83.35 284 | 63.96 216 | 86.96 173 | 90.36 140 | 69.99 203 | 77.50 174 | 85.67 257 | 60.66 181 | 93.77 138 | 74.27 147 | 76.58 279 | 90.62 177 |
|
| BH-untuned | | | 79.47 163 | 78.60 163 | 82.05 192 | 89.19 137 | 65.91 173 | 86.07 201 | 88.52 203 | 72.18 159 | 75.42 225 | 87.69 200 | 61.15 173 | 93.54 148 | 60.38 273 | 86.83 144 | 86.70 299 |
|
| test1111 | | | 79.43 165 | 79.18 153 | 80.15 238 | 89.99 108 | 53.31 353 | 87.33 164 | 77.05 351 | 75.04 101 | 80.23 126 | 92.77 81 | 48.97 292 | 92.33 200 | 68.87 200 | 92.40 74 | 94.81 20 |
|
| mvs_anonymous | | | 79.42 166 | 79.11 154 | 80.34 234 | 84.45 264 | 57.97 294 | 82.59 273 | 87.62 221 | 67.40 254 | 76.17 211 | 88.56 179 | 68.47 86 | 89.59 271 | 70.65 181 | 86.05 157 | 93.47 79 |
|
| thisisatest0530 | | | 79.40 167 | 77.76 187 | 84.31 109 | 87.69 197 | 65.10 194 | 87.36 162 | 84.26 273 | 70.04 201 | 77.42 176 | 88.26 188 | 49.94 277 | 94.79 97 | 70.20 184 | 84.70 171 | 93.03 97 |
|
| tttt0517 | | | 79.40 167 | 77.91 179 | 83.90 138 | 88.10 178 | 63.84 218 | 88.37 131 | 84.05 275 | 71.45 172 | 76.78 192 | 89.12 161 | 49.93 279 | 94.89 92 | 70.18 185 | 83.18 203 | 92.96 101 |
|
| V42 | | | 79.38 169 | 78.24 173 | 82.83 174 | 81.10 330 | 65.50 183 | 85.55 215 | 89.82 155 | 71.57 170 | 78.21 160 | 86.12 248 | 60.66 181 | 93.18 169 | 75.64 135 | 75.46 300 | 89.81 219 |
|
| jajsoiax | | | 79.29 170 | 77.96 177 | 83.27 153 | 84.68 258 | 66.57 162 | 89.25 97 | 90.16 147 | 69.20 224 | 75.46 223 | 89.49 150 | 45.75 318 | 93.13 172 | 76.84 121 | 80.80 231 | 90.11 200 |
|
| v1921920 | | | 79.22 171 | 78.03 176 | 82.80 177 | 83.30 286 | 63.94 217 | 86.80 179 | 90.33 141 | 69.91 206 | 77.48 175 | 85.53 260 | 58.44 196 | 93.75 140 | 73.60 152 | 76.85 276 | 90.71 175 |
|
| AUN-MVS | | | 79.21 172 | 77.60 192 | 84.05 128 | 88.71 156 | 67.61 139 | 85.84 208 | 87.26 229 | 69.08 228 | 77.23 182 | 88.14 194 | 53.20 240 | 93.47 152 | 75.50 139 | 73.45 325 | 91.06 161 |
|
| TAPA-MVS | | 73.13 9 | 79.15 173 | 77.94 178 | 82.79 179 | 89.59 116 | 62.99 241 | 88.16 139 | 91.51 107 | 65.77 273 | 77.14 187 | 91.09 115 | 60.91 177 | 93.21 163 | 50.26 341 | 87.05 140 | 92.17 128 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_tets | | | 79.13 174 | 77.77 186 | 83.22 157 | 84.70 257 | 66.37 164 | 89.17 98 | 90.19 146 | 69.38 217 | 75.40 226 | 89.46 153 | 44.17 327 | 93.15 170 | 76.78 124 | 80.70 233 | 90.14 197 |
|
| UniMVSNet_ETH3D | | | 79.10 175 | 78.24 173 | 81.70 199 | 86.85 219 | 60.24 274 | 87.28 166 | 88.79 193 | 74.25 118 | 76.84 189 | 90.53 129 | 49.48 282 | 91.56 226 | 67.98 207 | 82.15 214 | 93.29 85 |
|
| CDS-MVSNet | | | 79.07 176 | 77.70 189 | 83.17 159 | 87.60 200 | 68.23 125 | 84.40 244 | 86.20 246 | 67.49 252 | 76.36 204 | 86.54 238 | 61.54 162 | 90.79 252 | 61.86 262 | 87.33 136 | 90.49 184 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| MVSTER | | | 79.01 177 | 77.88 181 | 82.38 188 | 83.07 293 | 64.80 200 | 84.08 251 | 88.95 189 | 69.01 232 | 78.69 145 | 87.17 217 | 54.70 224 | 92.43 193 | 74.69 142 | 80.57 235 | 89.89 215 |
|
| v1240 | | | 78.99 178 | 77.78 185 | 82.64 183 | 83.21 288 | 63.54 225 | 86.62 186 | 90.30 143 | 69.74 213 | 77.33 178 | 85.68 256 | 57.04 210 | 93.76 139 | 73.13 160 | 76.92 273 | 90.62 177 |
|
| Anonymous20231211 | | | 78.97 179 | 77.69 190 | 82.81 176 | 90.54 94 | 64.29 211 | 90.11 72 | 91.51 107 | 65.01 282 | 76.16 212 | 88.13 195 | 50.56 270 | 93.03 179 | 69.68 192 | 77.56 268 | 91.11 158 |
|
| v7n | | | 78.97 179 | 77.58 193 | 83.14 160 | 83.45 283 | 65.51 182 | 88.32 133 | 91.21 114 | 73.69 131 | 72.41 273 | 86.32 244 | 57.93 199 | 93.81 135 | 69.18 196 | 75.65 294 | 90.11 200 |
|
| TAMVS | | | 78.89 181 | 77.51 194 | 83.03 166 | 87.80 190 | 67.79 135 | 84.72 231 | 85.05 260 | 67.63 249 | 76.75 193 | 87.70 199 | 62.25 152 | 90.82 251 | 58.53 291 | 87.13 139 | 90.49 184 |
|
| c3_l | | | 78.75 182 | 77.91 179 | 81.26 211 | 82.89 300 | 61.56 257 | 84.09 250 | 89.13 181 | 69.97 204 | 75.56 219 | 84.29 284 | 66.36 106 | 92.09 207 | 73.47 155 | 75.48 298 | 90.12 199 |
|
| tt0805 | | | 78.73 183 | 77.83 182 | 81.43 205 | 85.17 246 | 60.30 273 | 89.41 92 | 90.90 123 | 71.21 176 | 77.17 186 | 88.73 171 | 46.38 306 | 93.21 163 | 72.57 166 | 78.96 254 | 90.79 170 |
|
| v148 | | | 78.72 184 | 77.80 184 | 81.47 204 | 82.73 303 | 61.96 252 | 86.30 195 | 88.08 209 | 73.26 144 | 76.18 209 | 85.47 262 | 62.46 148 | 92.36 197 | 71.92 170 | 73.82 322 | 90.09 202 |
|
| VPNet | | | 78.69 185 | 78.66 162 | 78.76 263 | 88.31 170 | 55.72 329 | 84.45 241 | 86.63 240 | 76.79 64 | 78.26 158 | 90.55 128 | 59.30 191 | 89.70 270 | 66.63 220 | 77.05 272 | 90.88 168 |
|
| ET-MVSNet_ETH3D | | | 78.63 186 | 76.63 215 | 84.64 95 | 86.73 223 | 69.47 92 | 85.01 225 | 84.61 265 | 69.54 214 | 66.51 337 | 86.59 234 | 50.16 274 | 91.75 219 | 76.26 128 | 84.24 182 | 92.69 107 |
|
| anonymousdsp | | | 78.60 187 | 77.15 200 | 82.98 169 | 80.51 336 | 67.08 153 | 87.24 167 | 89.53 163 | 65.66 275 | 75.16 237 | 87.19 216 | 52.52 241 | 92.25 202 | 77.17 118 | 79.34 250 | 89.61 224 |
|
| miper_ehance_all_eth | | | 78.59 188 | 77.76 187 | 81.08 218 | 82.66 305 | 61.56 257 | 83.65 255 | 89.15 179 | 68.87 234 | 75.55 220 | 83.79 295 | 66.49 104 | 92.03 208 | 73.25 158 | 76.39 283 | 89.64 223 |
|
| WR-MVS_H | | | 78.51 189 | 78.49 165 | 78.56 267 | 88.02 182 | 56.38 320 | 88.43 126 | 92.67 61 | 77.14 54 | 73.89 255 | 87.55 205 | 66.25 108 | 89.24 277 | 58.92 286 | 73.55 324 | 90.06 206 |
|
| GBi-Net | | | 78.40 190 | 77.40 195 | 81.40 207 | 87.60 200 | 63.01 238 | 88.39 128 | 89.28 170 | 71.63 165 | 75.34 228 | 87.28 210 | 54.80 220 | 91.11 242 | 62.72 249 | 79.57 245 | 90.09 202 |
|
| test1 | | | 78.40 190 | 77.40 195 | 81.40 207 | 87.60 200 | 63.01 238 | 88.39 128 | 89.28 170 | 71.63 165 | 75.34 228 | 87.28 210 | 54.80 220 | 91.11 242 | 62.72 249 | 79.57 245 | 90.09 202 |
|
| Vis-MVSNet (Re-imp) | | | 78.36 192 | 78.45 166 | 78.07 277 | 88.64 158 | 51.78 362 | 86.70 184 | 79.63 332 | 74.14 121 | 75.11 239 | 90.83 123 | 61.29 170 | 89.75 268 | 58.10 295 | 91.60 82 | 92.69 107 |
|
| Anonymous202405211 | | | 78.25 193 | 77.01 202 | 81.99 194 | 91.03 82 | 60.67 267 | 84.77 230 | 83.90 277 | 70.65 191 | 80.00 128 | 91.20 111 | 41.08 347 | 91.43 235 | 65.21 231 | 85.26 165 | 93.85 57 |
|
| CP-MVSNet | | | 78.22 194 | 78.34 170 | 77.84 279 | 87.83 189 | 54.54 342 | 87.94 147 | 91.17 116 | 77.65 38 | 73.48 260 | 88.49 180 | 62.24 153 | 88.43 292 | 62.19 257 | 74.07 317 | 90.55 181 |
|
| BH-w/o | | | 78.21 195 | 77.33 198 | 80.84 224 | 88.81 150 | 65.13 193 | 84.87 228 | 87.85 217 | 69.75 211 | 74.52 250 | 84.74 277 | 61.34 168 | 93.11 173 | 58.24 294 | 85.84 161 | 84.27 334 |
|
| FMVSNet2 | | | 78.20 196 | 77.21 199 | 81.20 214 | 87.60 200 | 62.89 242 | 87.47 160 | 89.02 184 | 71.63 165 | 75.29 234 | 87.28 210 | 54.80 220 | 91.10 245 | 62.38 254 | 79.38 249 | 89.61 224 |
|
| MVS | | | 78.19 197 | 76.99 204 | 81.78 197 | 85.66 237 | 66.99 154 | 84.66 232 | 90.47 135 | 55.08 364 | 72.02 278 | 85.27 265 | 63.83 130 | 94.11 122 | 66.10 224 | 89.80 109 | 84.24 335 |
|
| Baseline_NR-MVSNet | | | 78.15 198 | 78.33 171 | 77.61 284 | 85.79 235 | 56.21 324 | 86.78 181 | 85.76 253 | 73.60 134 | 77.93 168 | 87.57 203 | 65.02 121 | 88.99 281 | 67.14 217 | 75.33 305 | 87.63 274 |
|
| CNLPA | | | 78.08 199 | 76.79 209 | 81.97 195 | 90.40 97 | 71.07 62 | 87.59 157 | 84.55 266 | 66.03 271 | 72.38 274 | 89.64 145 | 57.56 204 | 86.04 312 | 59.61 279 | 83.35 200 | 88.79 253 |
|
| cl22 | | | 78.07 200 | 77.01 202 | 81.23 212 | 82.37 312 | 61.83 254 | 83.55 259 | 87.98 211 | 68.96 233 | 75.06 241 | 83.87 291 | 61.40 167 | 91.88 215 | 73.53 153 | 76.39 283 | 89.98 211 |
|
| PLC |  | 70.83 11 | 78.05 201 | 76.37 220 | 83.08 163 | 91.88 74 | 67.80 134 | 88.19 137 | 89.46 165 | 64.33 290 | 69.87 301 | 88.38 183 | 53.66 234 | 93.58 144 | 58.86 287 | 82.73 208 | 87.86 270 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| Fast-Effi-MVS+-dtu | | | 78.02 202 | 76.49 216 | 82.62 184 | 83.16 292 | 66.96 157 | 86.94 174 | 87.45 226 | 72.45 154 | 71.49 283 | 84.17 288 | 54.79 223 | 91.58 224 | 67.61 210 | 80.31 238 | 89.30 233 |
|
| PS-CasMVS | | | 78.01 203 | 78.09 175 | 77.77 281 | 87.71 195 | 54.39 344 | 88.02 143 | 91.22 113 | 77.50 46 | 73.26 262 | 88.64 175 | 60.73 178 | 88.41 293 | 61.88 261 | 73.88 321 | 90.53 182 |
|
| HY-MVS | | 69.67 12 | 77.95 204 | 77.15 200 | 80.36 233 | 87.57 204 | 60.21 275 | 83.37 262 | 87.78 219 | 66.11 268 | 75.37 227 | 87.06 221 | 63.27 134 | 90.48 257 | 61.38 267 | 82.43 212 | 90.40 188 |
|
| eth_miper_zixun_eth | | | 77.92 205 | 76.69 213 | 81.61 202 | 83.00 296 | 61.98 251 | 83.15 265 | 89.20 177 | 69.52 215 | 74.86 245 | 84.35 283 | 61.76 158 | 92.56 189 | 71.50 173 | 72.89 330 | 90.28 193 |
|
| FMVSNet3 | | | 77.88 206 | 76.85 207 | 80.97 222 | 86.84 220 | 62.36 245 | 86.52 189 | 88.77 194 | 71.13 177 | 75.34 228 | 86.66 232 | 54.07 231 | 91.10 245 | 62.72 249 | 79.57 245 | 89.45 228 |
|
| miper_enhance_ethall | | | 77.87 207 | 76.86 206 | 80.92 223 | 81.65 319 | 61.38 259 | 82.68 272 | 88.98 186 | 65.52 277 | 75.47 221 | 82.30 318 | 65.76 116 | 92.00 210 | 72.95 161 | 76.39 283 | 89.39 229 |
|
| FE-MVS | | | 77.78 208 | 75.68 226 | 84.08 122 | 88.09 179 | 66.00 170 | 83.13 266 | 87.79 218 | 68.42 243 | 78.01 166 | 85.23 267 | 45.50 320 | 95.12 78 | 59.11 284 | 85.83 162 | 91.11 158 |
|
| PEN-MVS | | | 77.73 209 | 77.69 190 | 77.84 279 | 87.07 217 | 53.91 347 | 87.91 149 | 91.18 115 | 77.56 43 | 73.14 264 | 88.82 170 | 61.23 171 | 89.17 278 | 59.95 276 | 72.37 332 | 90.43 186 |
|
| cl____ | | | 77.72 210 | 76.76 210 | 80.58 229 | 82.49 309 | 60.48 270 | 83.09 267 | 87.87 215 | 69.22 222 | 74.38 252 | 85.22 268 | 62.10 155 | 91.53 229 | 71.09 176 | 75.41 302 | 89.73 222 |
|
| DIV-MVS_self_test | | | 77.72 210 | 76.76 210 | 80.58 229 | 82.48 310 | 60.48 270 | 83.09 267 | 87.86 216 | 69.22 222 | 74.38 252 | 85.24 266 | 62.10 155 | 91.53 229 | 71.09 176 | 75.40 303 | 89.74 221 |
|
| sd_testset | | | 77.70 212 | 77.40 195 | 78.60 266 | 89.03 144 | 60.02 276 | 79.00 321 | 85.83 252 | 75.19 98 | 76.61 198 | 89.98 137 | 54.81 219 | 85.46 319 | 62.63 253 | 83.55 195 | 90.33 190 |
|
| PAPM | | | 77.68 213 | 76.40 219 | 81.51 203 | 87.29 213 | 61.85 253 | 83.78 253 | 89.59 162 | 64.74 284 | 71.23 284 | 88.70 172 | 62.59 145 | 93.66 143 | 52.66 326 | 87.03 141 | 89.01 242 |
|
| CHOSEN 1792x2688 | | | 77.63 214 | 75.69 225 | 83.44 146 | 89.98 109 | 68.58 118 | 78.70 325 | 87.50 224 | 56.38 359 | 75.80 216 | 86.84 222 | 58.67 194 | 91.40 236 | 61.58 265 | 85.75 163 | 90.34 189 |
|
| HyFIR lowres test | | | 77.53 215 | 75.40 233 | 83.94 136 | 89.59 116 | 66.62 160 | 80.36 304 | 88.64 201 | 56.29 360 | 76.45 200 | 85.17 269 | 57.64 203 | 93.28 158 | 61.34 268 | 83.10 204 | 91.91 135 |
|
| FMVSNet1 | | | 77.44 216 | 76.12 222 | 81.40 207 | 86.81 221 | 63.01 238 | 88.39 128 | 89.28 170 | 70.49 193 | 74.39 251 | 87.28 210 | 49.06 290 | 91.11 242 | 60.91 270 | 78.52 257 | 90.09 202 |
|
| TR-MVS | | | 77.44 216 | 76.18 221 | 81.20 214 | 88.24 172 | 63.24 233 | 84.61 235 | 86.40 243 | 67.55 251 | 77.81 169 | 86.48 240 | 54.10 230 | 93.15 170 | 57.75 298 | 82.72 209 | 87.20 285 |
|
| 1112_ss | | | 77.40 218 | 76.43 218 | 80.32 235 | 89.11 143 | 60.41 272 | 83.65 255 | 87.72 220 | 62.13 317 | 73.05 265 | 86.72 226 | 62.58 146 | 89.97 264 | 62.11 260 | 80.80 231 | 90.59 180 |
|
| thisisatest0515 | | | 77.33 219 | 75.38 234 | 83.18 158 | 85.27 245 | 63.80 219 | 82.11 278 | 83.27 287 | 65.06 280 | 75.91 213 | 83.84 293 | 49.54 281 | 94.27 113 | 67.24 215 | 86.19 154 | 91.48 148 |
|
| test2506 | | | 77.30 220 | 76.49 216 | 79.74 246 | 90.08 103 | 52.02 356 | 87.86 152 | 63.10 391 | 74.88 104 | 80.16 127 | 92.79 79 | 38.29 360 | 92.35 198 | 68.74 202 | 92.50 72 | 94.86 17 |
|
| bld_raw_dy_0_64 | | | 77.29 221 | 75.98 223 | 81.22 213 | 85.04 252 | 65.47 184 | 88.14 142 | 77.56 345 | 69.20 224 | 73.77 256 | 89.40 159 | 42.24 341 | 88.85 287 | 76.78 124 | 81.64 221 | 89.33 232 |
|
| pm-mvs1 | | | 77.25 222 | 76.68 214 | 78.93 261 | 84.22 267 | 58.62 286 | 86.41 191 | 88.36 205 | 71.37 173 | 73.31 261 | 88.01 196 | 61.22 172 | 89.15 279 | 64.24 240 | 73.01 329 | 89.03 241 |
|
| LCM-MVSNet-Re | | | 77.05 223 | 76.94 205 | 77.36 287 | 87.20 214 | 51.60 363 | 80.06 307 | 80.46 322 | 75.20 97 | 67.69 319 | 86.72 226 | 62.48 147 | 88.98 282 | 63.44 244 | 89.25 114 | 91.51 144 |
|
| DTE-MVSNet | | | 76.99 224 | 76.80 208 | 77.54 286 | 86.24 229 | 53.06 355 | 87.52 158 | 90.66 129 | 77.08 57 | 72.50 271 | 88.67 174 | 60.48 185 | 89.52 272 | 57.33 302 | 70.74 343 | 90.05 207 |
|
| baseline1 | | | 76.98 225 | 76.75 212 | 77.66 282 | 88.13 176 | 55.66 330 | 85.12 223 | 81.89 306 | 73.04 150 | 76.79 191 | 88.90 167 | 62.43 149 | 87.78 300 | 63.30 246 | 71.18 341 | 89.55 226 |
|
| LS3D | | | 76.95 226 | 74.82 241 | 83.37 150 | 90.45 95 | 67.36 146 | 89.15 102 | 86.94 235 | 61.87 319 | 69.52 304 | 90.61 126 | 51.71 259 | 94.53 105 | 46.38 362 | 86.71 146 | 88.21 265 |
|
| GA-MVS | | | 76.87 227 | 75.17 238 | 81.97 195 | 82.75 302 | 62.58 243 | 81.44 287 | 86.35 245 | 72.16 161 | 74.74 246 | 82.89 310 | 46.20 311 | 92.02 209 | 68.85 201 | 81.09 227 | 91.30 154 |
|
| DP-MVS | | | 76.78 228 | 74.57 243 | 83.42 147 | 93.29 48 | 69.46 94 | 88.55 124 | 83.70 279 | 63.98 296 | 70.20 292 | 88.89 168 | 54.01 232 | 94.80 96 | 46.66 359 | 81.88 219 | 86.01 311 |
|
| cascas | | | 76.72 229 | 74.64 242 | 82.99 168 | 85.78 236 | 65.88 174 | 82.33 275 | 89.21 176 | 60.85 325 | 72.74 267 | 81.02 329 | 47.28 300 | 93.75 140 | 67.48 212 | 85.02 166 | 89.34 231 |
|
| testing91 | | | 76.54 230 | 75.66 228 | 79.18 258 | 88.43 166 | 55.89 327 | 81.08 290 | 83.00 294 | 73.76 130 | 75.34 228 | 84.29 284 | 46.20 311 | 90.07 262 | 64.33 238 | 84.50 173 | 91.58 142 |
|
| 1314 | | | 76.53 231 | 75.30 237 | 80.21 237 | 83.93 274 | 62.32 247 | 84.66 232 | 88.81 192 | 60.23 329 | 70.16 295 | 84.07 290 | 55.30 217 | 90.73 254 | 67.37 213 | 83.21 202 | 87.59 277 |
|
| thres100view900 | | | 76.50 232 | 75.55 230 | 79.33 254 | 89.52 119 | 56.99 309 | 85.83 209 | 83.23 288 | 73.94 124 | 76.32 205 | 87.12 218 | 51.89 256 | 91.95 211 | 48.33 350 | 83.75 189 | 89.07 235 |
|
| thres600view7 | | | 76.50 232 | 75.44 231 | 79.68 248 | 89.40 124 | 57.16 306 | 85.53 217 | 83.23 288 | 73.79 129 | 76.26 206 | 87.09 219 | 51.89 256 | 91.89 214 | 48.05 355 | 83.72 192 | 90.00 208 |
|
| thres400 | | | 76.50 232 | 75.37 235 | 79.86 243 | 89.13 139 | 57.65 300 | 85.17 220 | 83.60 280 | 73.41 140 | 76.45 200 | 86.39 242 | 52.12 248 | 91.95 211 | 48.33 350 | 83.75 189 | 90.00 208 |
|
| tfpn200view9 | | | 76.42 235 | 75.37 235 | 79.55 253 | 89.13 139 | 57.65 300 | 85.17 220 | 83.60 280 | 73.41 140 | 76.45 200 | 86.39 242 | 52.12 248 | 91.95 211 | 48.33 350 | 83.75 189 | 89.07 235 |
|
| Test_1112_low_res | | | 76.40 236 | 75.44 231 | 79.27 255 | 89.28 133 | 58.09 290 | 81.69 282 | 87.07 233 | 59.53 336 | 72.48 272 | 86.67 231 | 61.30 169 | 89.33 275 | 60.81 272 | 80.15 240 | 90.41 187 |
|
| F-COLMAP | | | 76.38 237 | 74.33 248 | 82.50 186 | 89.28 133 | 66.95 158 | 88.41 127 | 89.03 183 | 64.05 294 | 66.83 329 | 88.61 176 | 46.78 304 | 92.89 181 | 57.48 299 | 78.55 256 | 87.67 273 |
|
| LTVRE_ROB | | 69.57 13 | 76.25 238 | 74.54 245 | 81.41 206 | 88.60 159 | 64.38 210 | 79.24 317 | 89.12 182 | 70.76 186 | 69.79 303 | 87.86 197 | 49.09 289 | 93.20 166 | 56.21 312 | 80.16 239 | 86.65 300 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MVP-Stereo | | | 76.12 239 | 74.46 247 | 81.13 217 | 85.37 244 | 69.79 86 | 84.42 243 | 87.95 213 | 65.03 281 | 67.46 322 | 85.33 264 | 53.28 239 | 91.73 221 | 58.01 296 | 83.27 201 | 81.85 359 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| XVG-ACMP-BASELINE | | | 76.11 240 | 74.27 249 | 81.62 200 | 83.20 289 | 64.67 202 | 83.60 258 | 89.75 158 | 69.75 211 | 71.85 279 | 87.09 219 | 32.78 372 | 92.11 206 | 69.99 188 | 80.43 237 | 88.09 266 |
|
| testing99 | | | 76.09 241 | 75.12 239 | 79.00 259 | 88.16 174 | 55.50 332 | 80.79 294 | 81.40 312 | 73.30 143 | 75.17 236 | 84.27 286 | 44.48 325 | 90.02 263 | 64.28 239 | 84.22 183 | 91.48 148 |
|
| ACMH+ | | 68.96 14 | 76.01 242 | 74.01 250 | 82.03 193 | 88.60 159 | 65.31 190 | 88.86 110 | 87.55 222 | 70.25 199 | 67.75 318 | 87.47 208 | 41.27 345 | 93.19 168 | 58.37 292 | 75.94 291 | 87.60 275 |
|
| ACMH | | 67.68 16 | 75.89 243 | 73.93 252 | 81.77 198 | 88.71 156 | 66.61 161 | 88.62 122 | 89.01 185 | 69.81 207 | 66.78 330 | 86.70 230 | 41.95 344 | 91.51 231 | 55.64 313 | 78.14 263 | 87.17 286 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| IB-MVS | | 68.01 15 | 75.85 244 | 73.36 259 | 83.31 151 | 84.76 256 | 66.03 168 | 83.38 261 | 85.06 259 | 70.21 200 | 69.40 305 | 81.05 328 | 45.76 317 | 94.66 101 | 65.10 233 | 75.49 297 | 89.25 234 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| baseline2 | | | 75.70 245 | 73.83 255 | 81.30 210 | 83.26 287 | 61.79 255 | 82.57 274 | 80.65 318 | 66.81 255 | 66.88 328 | 83.42 302 | 57.86 201 | 92.19 204 | 63.47 243 | 79.57 245 | 89.91 213 |
|
| WTY-MVS | | | 75.65 246 | 75.68 226 | 75.57 303 | 86.40 228 | 56.82 311 | 77.92 335 | 82.40 302 | 65.10 279 | 76.18 209 | 87.72 198 | 63.13 141 | 80.90 348 | 60.31 274 | 81.96 217 | 89.00 244 |
|
| thres200 | | | 75.55 247 | 74.47 246 | 78.82 262 | 87.78 193 | 57.85 297 | 83.07 269 | 83.51 283 | 72.44 156 | 75.84 215 | 84.42 279 | 52.08 251 | 91.75 219 | 47.41 357 | 83.64 194 | 86.86 295 |
|
| test_vis1_n_1920 | | | 75.52 248 | 75.78 224 | 74.75 313 | 79.84 344 | 57.44 304 | 83.26 263 | 85.52 255 | 62.83 308 | 79.34 136 | 86.17 247 | 45.10 322 | 79.71 352 | 78.75 101 | 81.21 226 | 87.10 292 |
|
| EPNet_dtu | | | 75.46 249 | 74.86 240 | 77.23 290 | 82.57 307 | 54.60 341 | 86.89 176 | 83.09 291 | 71.64 164 | 66.25 339 | 85.86 252 | 55.99 214 | 88.04 297 | 54.92 315 | 86.55 148 | 89.05 240 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IterMVS-SCA-FT | | | 75.43 250 | 73.87 254 | 80.11 239 | 82.69 304 | 64.85 199 | 81.57 284 | 83.47 284 | 69.16 226 | 70.49 289 | 84.15 289 | 51.95 254 | 88.15 295 | 69.23 195 | 72.14 335 | 87.34 282 |
|
| XXY-MVS | | | 75.41 251 | 75.56 229 | 74.96 309 | 83.59 280 | 57.82 298 | 80.59 300 | 83.87 278 | 66.54 265 | 74.93 244 | 88.31 185 | 63.24 135 | 80.09 351 | 62.16 258 | 76.85 276 | 86.97 293 |
|
| TransMVSNet (Re) | | | 75.39 252 | 74.56 244 | 77.86 278 | 85.50 241 | 57.10 308 | 86.78 181 | 86.09 249 | 72.17 160 | 71.53 282 | 87.34 209 | 63.01 142 | 89.31 276 | 56.84 307 | 61.83 369 | 87.17 286 |
|
| CostFormer | | | 75.24 253 | 73.90 253 | 79.27 255 | 82.65 306 | 58.27 289 | 80.80 293 | 82.73 300 | 61.57 320 | 75.33 232 | 83.13 306 | 55.52 215 | 91.07 248 | 64.98 234 | 78.34 262 | 88.45 261 |
|
| testing11 | | | 75.14 254 | 74.01 250 | 78.53 269 | 88.16 174 | 56.38 320 | 80.74 297 | 80.42 323 | 70.67 187 | 72.69 270 | 83.72 297 | 43.61 331 | 89.86 265 | 62.29 256 | 83.76 188 | 89.36 230 |
|
| D2MVS | | | 74.82 255 | 73.21 260 | 79.64 250 | 79.81 345 | 62.56 244 | 80.34 305 | 87.35 227 | 64.37 289 | 68.86 310 | 82.66 314 | 46.37 307 | 90.10 261 | 67.91 208 | 81.24 225 | 86.25 304 |
|
| pmmvs6 | | | 74.69 256 | 73.39 258 | 78.61 265 | 81.38 325 | 57.48 303 | 86.64 185 | 87.95 213 | 64.99 283 | 70.18 293 | 86.61 233 | 50.43 272 | 89.52 272 | 62.12 259 | 70.18 345 | 88.83 251 |
|
| tfpnnormal | | | 74.39 257 | 73.16 261 | 78.08 276 | 86.10 233 | 58.05 291 | 84.65 234 | 87.53 223 | 70.32 196 | 71.22 285 | 85.63 258 | 54.97 218 | 89.86 265 | 43.03 373 | 75.02 310 | 86.32 303 |
|
| IterMVS | | | 74.29 258 | 72.94 263 | 78.35 272 | 81.53 322 | 63.49 227 | 81.58 283 | 82.49 301 | 68.06 247 | 69.99 298 | 83.69 298 | 51.66 260 | 85.54 317 | 65.85 227 | 71.64 338 | 86.01 311 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| OurMVSNet-221017-0 | | | 74.26 259 | 72.42 268 | 79.80 245 | 83.76 278 | 59.59 281 | 85.92 205 | 86.64 239 | 66.39 266 | 66.96 327 | 87.58 202 | 39.46 353 | 91.60 223 | 65.76 228 | 69.27 348 | 88.22 264 |
|
| SCA | | | 74.22 260 | 72.33 269 | 79.91 242 | 84.05 272 | 62.17 249 | 79.96 310 | 79.29 335 | 66.30 267 | 72.38 274 | 80.13 338 | 51.95 254 | 88.60 290 | 59.25 282 | 77.67 267 | 88.96 246 |
|
| miper_lstm_enhance | | | 74.11 261 | 73.11 262 | 77.13 291 | 80.11 340 | 59.62 280 | 72.23 362 | 86.92 236 | 66.76 257 | 70.40 290 | 82.92 309 | 56.93 211 | 82.92 337 | 69.06 198 | 72.63 331 | 88.87 249 |
|
| testing222 | | | 74.04 262 | 72.66 265 | 78.19 274 | 87.89 185 | 55.36 333 | 81.06 291 | 79.20 336 | 71.30 174 | 74.65 248 | 83.57 300 | 39.11 356 | 88.67 289 | 51.43 333 | 85.75 163 | 90.53 182 |
|
| EG-PatchMatch MVS | | | 74.04 262 | 71.82 272 | 80.71 227 | 84.92 254 | 67.42 143 | 85.86 207 | 88.08 209 | 66.04 270 | 64.22 351 | 83.85 292 | 35.10 369 | 92.56 189 | 57.44 300 | 80.83 230 | 82.16 358 |
|
| pmmvs4 | | | 74.03 264 | 71.91 271 | 80.39 232 | 81.96 315 | 68.32 122 | 81.45 286 | 82.14 304 | 59.32 337 | 69.87 301 | 85.13 270 | 52.40 244 | 88.13 296 | 60.21 275 | 74.74 313 | 84.73 331 |
|
| MS-PatchMatch | | | 73.83 265 | 72.67 264 | 77.30 289 | 83.87 275 | 66.02 169 | 81.82 279 | 84.66 264 | 61.37 323 | 68.61 313 | 82.82 312 | 47.29 299 | 88.21 294 | 59.27 281 | 84.32 180 | 77.68 373 |
|
| test_cas_vis1_n_1920 | | | 73.76 266 | 73.74 256 | 73.81 321 | 75.90 365 | 59.77 278 | 80.51 301 | 82.40 302 | 58.30 346 | 81.62 110 | 85.69 255 | 44.35 326 | 76.41 370 | 76.29 127 | 78.61 255 | 85.23 322 |
|
| sss | | | 73.60 267 | 73.64 257 | 73.51 323 | 82.80 301 | 55.01 338 | 76.12 342 | 81.69 309 | 62.47 313 | 74.68 247 | 85.85 253 | 57.32 207 | 78.11 359 | 60.86 271 | 80.93 228 | 87.39 280 |
|
| RPMNet | | | 73.51 268 | 70.49 288 | 82.58 185 | 81.32 328 | 65.19 191 | 75.92 344 | 92.27 76 | 57.60 352 | 72.73 268 | 76.45 365 | 52.30 245 | 95.43 65 | 48.14 354 | 77.71 265 | 87.11 290 |
|
| SixPastTwentyTwo | | | 73.37 269 | 71.26 281 | 79.70 247 | 85.08 251 | 57.89 296 | 85.57 211 | 83.56 282 | 71.03 181 | 65.66 341 | 85.88 251 | 42.10 342 | 92.57 188 | 59.11 284 | 63.34 367 | 88.65 258 |
|
| CR-MVSNet | | | 73.37 269 | 71.27 280 | 79.67 249 | 81.32 328 | 65.19 191 | 75.92 344 | 80.30 325 | 59.92 332 | 72.73 268 | 81.19 326 | 52.50 242 | 86.69 306 | 59.84 277 | 77.71 265 | 87.11 290 |
|
| MSDG | | | 73.36 271 | 70.99 283 | 80.49 231 | 84.51 263 | 65.80 177 | 80.71 298 | 86.13 248 | 65.70 274 | 65.46 342 | 83.74 296 | 44.60 323 | 90.91 250 | 51.13 334 | 76.89 274 | 84.74 330 |
|
| tpm2 | | | 73.26 272 | 71.46 276 | 78.63 264 | 83.34 285 | 56.71 314 | 80.65 299 | 80.40 324 | 56.63 358 | 73.55 259 | 82.02 323 | 51.80 258 | 91.24 240 | 56.35 311 | 78.42 260 | 87.95 267 |
|
| RPSCF | | | 73.23 273 | 71.46 276 | 78.54 268 | 82.50 308 | 59.85 277 | 82.18 277 | 82.84 299 | 58.96 341 | 71.15 286 | 89.41 157 | 45.48 321 | 84.77 325 | 58.82 288 | 71.83 337 | 91.02 165 |
|
| PatchmatchNet |  | | 73.12 274 | 71.33 279 | 78.49 271 | 83.18 290 | 60.85 264 | 79.63 312 | 78.57 339 | 64.13 291 | 71.73 280 | 79.81 343 | 51.20 263 | 85.97 313 | 57.40 301 | 76.36 288 | 88.66 257 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| COLMAP_ROB |  | 66.92 17 | 73.01 275 | 70.41 290 | 80.81 225 | 87.13 216 | 65.63 180 | 88.30 134 | 84.19 274 | 62.96 305 | 63.80 355 | 87.69 200 | 38.04 361 | 92.56 189 | 46.66 359 | 74.91 311 | 84.24 335 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CVMVSNet | | | 72.99 276 | 72.58 266 | 74.25 317 | 84.28 265 | 50.85 368 | 86.41 191 | 83.45 285 | 44.56 381 | 73.23 263 | 87.54 206 | 49.38 284 | 85.70 314 | 65.90 226 | 78.44 259 | 86.19 306 |
|
| test-LLR | | | 72.94 277 | 72.43 267 | 74.48 314 | 81.35 326 | 58.04 292 | 78.38 328 | 77.46 346 | 66.66 259 | 69.95 299 | 79.00 349 | 48.06 296 | 79.24 353 | 66.13 222 | 84.83 168 | 86.15 307 |
|
| test_0402 | | | 72.79 278 | 70.44 289 | 79.84 244 | 88.13 176 | 65.99 171 | 85.93 204 | 84.29 271 | 65.57 276 | 67.40 324 | 85.49 261 | 46.92 303 | 92.61 187 | 35.88 385 | 74.38 316 | 80.94 364 |
|
| tpmrst | | | 72.39 279 | 72.13 270 | 73.18 327 | 80.54 335 | 49.91 372 | 79.91 311 | 79.08 337 | 63.11 302 | 71.69 281 | 79.95 340 | 55.32 216 | 82.77 338 | 65.66 229 | 73.89 320 | 86.87 294 |
|
| PatchMatch-RL | | | 72.38 280 | 70.90 284 | 76.80 294 | 88.60 159 | 67.38 145 | 79.53 313 | 76.17 357 | 62.75 310 | 69.36 306 | 82.00 324 | 45.51 319 | 84.89 324 | 53.62 321 | 80.58 234 | 78.12 372 |
|
| CL-MVSNet_self_test | | | 72.37 281 | 71.46 276 | 75.09 308 | 79.49 351 | 53.53 349 | 80.76 296 | 85.01 261 | 69.12 227 | 70.51 288 | 82.05 322 | 57.92 200 | 84.13 328 | 52.27 328 | 66.00 361 | 87.60 275 |
|
| tpm | | | 72.37 281 | 71.71 273 | 74.35 316 | 82.19 313 | 52.00 357 | 79.22 318 | 77.29 349 | 64.56 286 | 72.95 266 | 83.68 299 | 51.35 261 | 83.26 336 | 58.33 293 | 75.80 292 | 87.81 271 |
|
| ETVMVS | | | 72.25 283 | 71.05 282 | 75.84 299 | 87.77 194 | 51.91 359 | 79.39 315 | 74.98 360 | 69.26 220 | 73.71 257 | 82.95 308 | 40.82 349 | 86.14 311 | 46.17 363 | 84.43 179 | 89.47 227 |
|
| UWE-MVS | | | 72.13 284 | 71.49 275 | 74.03 319 | 86.66 225 | 47.70 376 | 81.40 288 | 76.89 353 | 63.60 299 | 75.59 218 | 84.22 287 | 39.94 352 | 85.62 316 | 48.98 347 | 86.13 156 | 88.77 254 |
|
| PVSNet | | 64.34 18 | 72.08 285 | 70.87 285 | 75.69 301 | 86.21 230 | 56.44 318 | 74.37 356 | 80.73 317 | 62.06 318 | 70.17 294 | 82.23 320 | 42.86 335 | 83.31 335 | 54.77 316 | 84.45 178 | 87.32 283 |
|
| WB-MVSnew | | | 71.96 286 | 71.65 274 | 72.89 328 | 84.67 261 | 51.88 360 | 82.29 276 | 77.57 344 | 62.31 314 | 73.67 258 | 83.00 307 | 53.49 237 | 81.10 347 | 45.75 366 | 82.13 215 | 85.70 316 |
|
| pmmvs5 | | | 71.55 287 | 70.20 293 | 75.61 302 | 77.83 358 | 56.39 319 | 81.74 281 | 80.89 314 | 57.76 350 | 67.46 322 | 84.49 278 | 49.26 287 | 85.32 321 | 57.08 304 | 75.29 306 | 85.11 326 |
|
| test-mter | | | 71.41 288 | 70.39 291 | 74.48 314 | 81.35 326 | 58.04 292 | 78.38 328 | 77.46 346 | 60.32 328 | 69.95 299 | 79.00 349 | 36.08 367 | 79.24 353 | 66.13 222 | 84.83 168 | 86.15 307 |
|
| K. test v3 | | | 71.19 289 | 68.51 301 | 79.21 257 | 83.04 295 | 57.78 299 | 84.35 245 | 76.91 352 | 72.90 153 | 62.99 358 | 82.86 311 | 39.27 354 | 91.09 247 | 61.65 264 | 52.66 385 | 88.75 255 |
|
| dmvs_re | | | 71.14 290 | 70.58 286 | 72.80 329 | 81.96 315 | 59.68 279 | 75.60 348 | 79.34 334 | 68.55 239 | 69.27 308 | 80.72 334 | 49.42 283 | 76.54 367 | 52.56 327 | 77.79 264 | 82.19 357 |
|
| tpmvs | | | 71.09 291 | 69.29 296 | 76.49 295 | 82.04 314 | 56.04 325 | 78.92 323 | 81.37 313 | 64.05 294 | 67.18 326 | 78.28 355 | 49.74 280 | 89.77 267 | 49.67 344 | 72.37 332 | 83.67 342 |
|
| AllTest | | | 70.96 292 | 68.09 307 | 79.58 251 | 85.15 248 | 63.62 221 | 84.58 236 | 79.83 329 | 62.31 314 | 60.32 366 | 86.73 224 | 32.02 373 | 88.96 284 | 50.28 339 | 71.57 339 | 86.15 307 |
|
| test_fmvs1 | | | 70.93 293 | 70.52 287 | 72.16 333 | 73.71 375 | 55.05 337 | 80.82 292 | 78.77 338 | 51.21 375 | 78.58 149 | 84.41 280 | 31.20 377 | 76.94 365 | 75.88 133 | 80.12 242 | 84.47 333 |
|
| test_fmvs1_n | | | 70.86 294 | 70.24 292 | 72.73 330 | 72.51 385 | 55.28 335 | 81.27 289 | 79.71 331 | 51.49 374 | 78.73 143 | 84.87 274 | 27.54 382 | 77.02 364 | 76.06 130 | 79.97 243 | 85.88 314 |
|
| Patchmtry | | | 70.74 295 | 69.16 298 | 75.49 305 | 80.72 332 | 54.07 346 | 74.94 355 | 80.30 325 | 58.34 345 | 70.01 296 | 81.19 326 | 52.50 242 | 86.54 307 | 53.37 323 | 71.09 342 | 85.87 315 |
|
| MIMVSNet | | | 70.69 296 | 69.30 295 | 74.88 310 | 84.52 262 | 56.35 322 | 75.87 346 | 79.42 333 | 64.59 285 | 67.76 317 | 82.41 316 | 41.10 346 | 81.54 344 | 46.64 361 | 81.34 223 | 86.75 298 |
|
| tpm cat1 | | | 70.57 297 | 68.31 303 | 77.35 288 | 82.41 311 | 57.95 295 | 78.08 332 | 80.22 327 | 52.04 370 | 68.54 314 | 77.66 360 | 52.00 253 | 87.84 299 | 51.77 329 | 72.07 336 | 86.25 304 |
|
| OpenMVS_ROB |  | 64.09 19 | 70.56 298 | 68.19 304 | 77.65 283 | 80.26 337 | 59.41 283 | 85.01 225 | 82.96 296 | 58.76 343 | 65.43 343 | 82.33 317 | 37.63 363 | 91.23 241 | 45.34 369 | 76.03 290 | 82.32 355 |
|
| pmmvs-eth3d | | | 70.50 299 | 67.83 312 | 78.52 270 | 77.37 361 | 66.18 167 | 81.82 279 | 81.51 310 | 58.90 342 | 63.90 354 | 80.42 336 | 42.69 336 | 86.28 310 | 58.56 290 | 65.30 363 | 83.11 348 |
|
| USDC | | | 70.33 300 | 68.37 302 | 76.21 297 | 80.60 334 | 56.23 323 | 79.19 319 | 86.49 241 | 60.89 324 | 61.29 362 | 85.47 262 | 31.78 375 | 89.47 274 | 53.37 323 | 76.21 289 | 82.94 352 |
|
| Patchmatch-RL test | | | 70.24 301 | 67.78 314 | 77.61 284 | 77.43 360 | 59.57 282 | 71.16 365 | 70.33 374 | 62.94 306 | 68.65 312 | 72.77 377 | 50.62 269 | 85.49 318 | 69.58 193 | 66.58 358 | 87.77 272 |
|
| CMPMVS |  | 51.72 21 | 70.19 302 | 68.16 305 | 76.28 296 | 73.15 381 | 57.55 302 | 79.47 314 | 83.92 276 | 48.02 378 | 56.48 379 | 84.81 275 | 43.13 333 | 86.42 309 | 62.67 252 | 81.81 220 | 84.89 328 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ppachtmachnet_test | | | 70.04 303 | 67.34 320 | 78.14 275 | 79.80 346 | 61.13 260 | 79.19 319 | 80.59 319 | 59.16 339 | 65.27 344 | 79.29 346 | 46.75 305 | 87.29 303 | 49.33 345 | 66.72 356 | 86.00 313 |
|
| gg-mvs-nofinetune | | | 69.95 304 | 67.96 308 | 75.94 298 | 83.07 293 | 54.51 343 | 77.23 339 | 70.29 375 | 63.11 302 | 70.32 291 | 62.33 386 | 43.62 330 | 88.69 288 | 53.88 320 | 87.76 131 | 84.62 332 |
|
| TESTMET0.1,1 | | | 69.89 305 | 69.00 299 | 72.55 331 | 79.27 354 | 56.85 310 | 78.38 328 | 74.71 364 | 57.64 351 | 68.09 316 | 77.19 362 | 37.75 362 | 76.70 366 | 63.92 241 | 84.09 184 | 84.10 338 |
|
| test_vis1_n | | | 69.85 306 | 69.21 297 | 71.77 335 | 72.66 384 | 55.27 336 | 81.48 285 | 76.21 356 | 52.03 371 | 75.30 233 | 83.20 305 | 28.97 380 | 76.22 372 | 74.60 143 | 78.41 261 | 83.81 341 |
|
| FMVSNet5 | | | 69.50 307 | 67.96 308 | 74.15 318 | 82.97 299 | 55.35 334 | 80.01 309 | 82.12 305 | 62.56 312 | 63.02 356 | 81.53 325 | 36.92 364 | 81.92 342 | 48.42 349 | 74.06 318 | 85.17 325 |
|
| PMMVS | | | 69.34 308 | 68.67 300 | 71.35 340 | 75.67 367 | 62.03 250 | 75.17 350 | 73.46 367 | 50.00 376 | 68.68 311 | 79.05 347 | 52.07 252 | 78.13 358 | 61.16 269 | 82.77 207 | 73.90 379 |
|
| our_test_3 | | | 69.14 309 | 67.00 322 | 75.57 303 | 79.80 346 | 58.80 284 | 77.96 333 | 77.81 342 | 59.55 335 | 62.90 359 | 78.25 356 | 47.43 298 | 83.97 329 | 51.71 330 | 67.58 355 | 83.93 340 |
|
| EPMVS | | | 69.02 310 | 68.16 305 | 71.59 336 | 79.61 349 | 49.80 374 | 77.40 337 | 66.93 383 | 62.82 309 | 70.01 296 | 79.05 347 | 45.79 316 | 77.86 361 | 56.58 309 | 75.26 307 | 87.13 289 |
|
| KD-MVS_self_test | | | 68.81 311 | 67.59 318 | 72.46 332 | 74.29 373 | 45.45 381 | 77.93 334 | 87.00 234 | 63.12 301 | 63.99 353 | 78.99 351 | 42.32 338 | 84.77 325 | 56.55 310 | 64.09 366 | 87.16 288 |
|
| Anonymous20240521 | | | 68.80 312 | 67.22 321 | 73.55 322 | 74.33 372 | 54.11 345 | 83.18 264 | 85.61 254 | 58.15 347 | 61.68 361 | 80.94 331 | 30.71 378 | 81.27 346 | 57.00 305 | 73.34 328 | 85.28 321 |
|
| Anonymous20231206 | | | 68.60 313 | 67.80 313 | 71.02 343 | 80.23 339 | 50.75 369 | 78.30 331 | 80.47 321 | 56.79 357 | 66.11 340 | 82.63 315 | 46.35 308 | 78.95 355 | 43.62 372 | 75.70 293 | 83.36 345 |
|
| MIMVSNet1 | | | 68.58 314 | 66.78 324 | 73.98 320 | 80.07 341 | 51.82 361 | 80.77 295 | 84.37 268 | 64.40 288 | 59.75 369 | 82.16 321 | 36.47 365 | 83.63 332 | 42.73 374 | 70.33 344 | 86.48 302 |
|
| testing3 | | | 68.56 315 | 67.67 316 | 71.22 342 | 87.33 211 | 42.87 390 | 83.06 270 | 71.54 372 | 70.36 194 | 69.08 309 | 84.38 281 | 30.33 379 | 85.69 315 | 37.50 384 | 75.45 301 | 85.09 327 |
|
| EU-MVSNet | | | 68.53 316 | 67.61 317 | 71.31 341 | 78.51 357 | 47.01 379 | 84.47 238 | 84.27 272 | 42.27 384 | 66.44 338 | 84.79 276 | 40.44 350 | 83.76 330 | 58.76 289 | 68.54 353 | 83.17 346 |
|
| PatchT | | | 68.46 317 | 67.85 310 | 70.29 346 | 80.70 333 | 43.93 388 | 72.47 361 | 74.88 361 | 60.15 330 | 70.55 287 | 76.57 364 | 49.94 277 | 81.59 343 | 50.58 335 | 74.83 312 | 85.34 320 |
|
| test_fmvs2 | | | 68.35 318 | 67.48 319 | 70.98 344 | 69.50 388 | 51.95 358 | 80.05 308 | 76.38 355 | 49.33 377 | 74.65 248 | 84.38 281 | 23.30 388 | 75.40 379 | 74.51 144 | 75.17 309 | 85.60 317 |
|
| Syy-MVS | | | 68.05 319 | 67.85 310 | 68.67 355 | 84.68 258 | 40.97 396 | 78.62 326 | 73.08 369 | 66.65 262 | 66.74 331 | 79.46 344 | 52.11 250 | 82.30 340 | 32.89 388 | 76.38 286 | 82.75 353 |
|
| test0.0.03 1 | | | 68.00 320 | 67.69 315 | 68.90 352 | 77.55 359 | 47.43 377 | 75.70 347 | 72.95 371 | 66.66 259 | 66.56 333 | 82.29 319 | 48.06 296 | 75.87 374 | 44.97 370 | 74.51 315 | 83.41 344 |
|
| TDRefinement | | | 67.49 321 | 64.34 331 | 76.92 292 | 73.47 379 | 61.07 261 | 84.86 229 | 82.98 295 | 59.77 333 | 58.30 373 | 85.13 270 | 26.06 383 | 87.89 298 | 47.92 356 | 60.59 374 | 81.81 360 |
|
| test20.03 | | | 67.45 322 | 66.95 323 | 68.94 351 | 75.48 369 | 44.84 386 | 77.50 336 | 77.67 343 | 66.66 259 | 63.01 357 | 83.80 294 | 47.02 302 | 78.40 357 | 42.53 375 | 68.86 352 | 83.58 343 |
|
| UnsupCasMVSNet_eth | | | 67.33 323 | 65.99 327 | 71.37 338 | 73.48 378 | 51.47 365 | 75.16 351 | 85.19 258 | 65.20 278 | 60.78 364 | 80.93 333 | 42.35 337 | 77.20 363 | 57.12 303 | 53.69 384 | 85.44 319 |
|
| TinyColmap | | | 67.30 324 | 64.81 329 | 74.76 312 | 81.92 317 | 56.68 315 | 80.29 306 | 81.49 311 | 60.33 327 | 56.27 380 | 83.22 303 | 24.77 385 | 87.66 302 | 45.52 367 | 69.47 347 | 79.95 368 |
|
| myMVS_eth3d | | | 67.02 325 | 66.29 326 | 69.21 350 | 84.68 258 | 42.58 391 | 78.62 326 | 73.08 369 | 66.65 262 | 66.74 331 | 79.46 344 | 31.53 376 | 82.30 340 | 39.43 381 | 76.38 286 | 82.75 353 |
|
| dp | | | 66.80 326 | 65.43 328 | 70.90 345 | 79.74 348 | 48.82 375 | 75.12 353 | 74.77 362 | 59.61 334 | 64.08 352 | 77.23 361 | 42.89 334 | 80.72 349 | 48.86 348 | 66.58 358 | 83.16 347 |
|
| MDA-MVSNet-bldmvs | | | 66.68 327 | 63.66 336 | 75.75 300 | 79.28 353 | 60.56 269 | 73.92 358 | 78.35 340 | 64.43 287 | 50.13 387 | 79.87 342 | 44.02 328 | 83.67 331 | 46.10 364 | 56.86 377 | 83.03 350 |
|
| testgi | | | 66.67 328 | 66.53 325 | 67.08 360 | 75.62 368 | 41.69 395 | 75.93 343 | 76.50 354 | 66.11 268 | 65.20 347 | 86.59 234 | 35.72 368 | 74.71 381 | 43.71 371 | 73.38 327 | 84.84 329 |
|
| CHOSEN 280x420 | | | 66.51 329 | 64.71 330 | 71.90 334 | 81.45 323 | 63.52 226 | 57.98 393 | 68.95 381 | 53.57 366 | 62.59 360 | 76.70 363 | 46.22 310 | 75.29 380 | 55.25 314 | 79.68 244 | 76.88 375 |
|
| PM-MVS | | | 66.41 330 | 64.14 332 | 73.20 326 | 73.92 374 | 56.45 317 | 78.97 322 | 64.96 389 | 63.88 298 | 64.72 348 | 80.24 337 | 19.84 391 | 83.44 334 | 66.24 221 | 64.52 365 | 79.71 369 |
|
| JIA-IIPM | | | 66.32 331 | 62.82 342 | 76.82 293 | 77.09 362 | 61.72 256 | 65.34 386 | 75.38 358 | 58.04 349 | 64.51 349 | 62.32 387 | 42.05 343 | 86.51 308 | 51.45 332 | 69.22 349 | 82.21 356 |
|
| KD-MVS_2432*1600 | | | 66.22 332 | 63.89 334 | 73.21 324 | 75.47 370 | 53.42 351 | 70.76 368 | 84.35 269 | 64.10 292 | 66.52 335 | 78.52 353 | 34.55 370 | 84.98 322 | 50.40 337 | 50.33 388 | 81.23 362 |
|
| miper_refine_blended | | | 66.22 332 | 63.89 334 | 73.21 324 | 75.47 370 | 53.42 351 | 70.76 368 | 84.35 269 | 64.10 292 | 66.52 335 | 78.52 353 | 34.55 370 | 84.98 322 | 50.40 337 | 50.33 388 | 81.23 362 |
|
| ADS-MVSNet2 | | | 66.20 334 | 63.33 337 | 74.82 311 | 79.92 342 | 58.75 285 | 67.55 379 | 75.19 359 | 53.37 367 | 65.25 345 | 75.86 368 | 42.32 338 | 80.53 350 | 41.57 376 | 68.91 350 | 85.18 323 |
|
| YYNet1 | | | 65.03 335 | 62.91 340 | 71.38 337 | 75.85 366 | 56.60 316 | 69.12 376 | 74.66 365 | 57.28 355 | 54.12 382 | 77.87 358 | 45.85 315 | 74.48 382 | 49.95 342 | 61.52 371 | 83.05 349 |
|
| MDA-MVSNet_test_wron | | | 65.03 335 | 62.92 339 | 71.37 338 | 75.93 364 | 56.73 312 | 69.09 377 | 74.73 363 | 57.28 355 | 54.03 383 | 77.89 357 | 45.88 314 | 74.39 383 | 49.89 343 | 61.55 370 | 82.99 351 |
|
| Patchmatch-test | | | 64.82 337 | 63.24 338 | 69.57 348 | 79.42 352 | 49.82 373 | 63.49 390 | 69.05 380 | 51.98 372 | 59.95 368 | 80.13 338 | 50.91 265 | 70.98 388 | 40.66 378 | 73.57 323 | 87.90 269 |
|
| ADS-MVSNet | | | 64.36 338 | 62.88 341 | 68.78 354 | 79.92 342 | 47.17 378 | 67.55 379 | 71.18 373 | 53.37 367 | 65.25 345 | 75.86 368 | 42.32 338 | 73.99 384 | 41.57 376 | 68.91 350 | 85.18 323 |
|
| LF4IMVS | | | 64.02 339 | 62.19 343 | 69.50 349 | 70.90 386 | 53.29 354 | 76.13 341 | 77.18 350 | 52.65 369 | 58.59 371 | 80.98 330 | 23.55 387 | 76.52 368 | 53.06 325 | 66.66 357 | 78.68 371 |
|
| UnsupCasMVSNet_bld | | | 63.70 340 | 61.53 346 | 70.21 347 | 73.69 376 | 51.39 366 | 72.82 360 | 81.89 306 | 55.63 362 | 57.81 375 | 71.80 379 | 38.67 357 | 78.61 356 | 49.26 346 | 52.21 386 | 80.63 365 |
|
| test_fmvs3 | | | 63.36 341 | 61.82 344 | 67.98 357 | 62.51 395 | 46.96 380 | 77.37 338 | 74.03 366 | 45.24 380 | 67.50 321 | 78.79 352 | 12.16 399 | 72.98 387 | 72.77 164 | 66.02 360 | 83.99 339 |
|
| dmvs_testset | | | 62.63 342 | 64.11 333 | 58.19 370 | 78.55 356 | 24.76 406 | 75.28 349 | 65.94 386 | 67.91 248 | 60.34 365 | 76.01 367 | 53.56 235 | 73.94 385 | 31.79 389 | 67.65 354 | 75.88 377 |
|
| mvsany_test1 | | | 62.30 343 | 61.26 347 | 65.41 362 | 69.52 387 | 54.86 339 | 66.86 381 | 49.78 402 | 46.65 379 | 68.50 315 | 83.21 304 | 49.15 288 | 66.28 394 | 56.93 306 | 60.77 372 | 75.11 378 |
|
| new-patchmatchnet | | | 61.73 344 | 61.73 345 | 61.70 366 | 72.74 383 | 24.50 407 | 69.16 375 | 78.03 341 | 61.40 321 | 56.72 378 | 75.53 371 | 38.42 358 | 76.48 369 | 45.95 365 | 57.67 376 | 84.13 337 |
|
| PVSNet_0 | | 57.27 20 | 61.67 345 | 59.27 348 | 68.85 353 | 79.61 349 | 57.44 304 | 68.01 378 | 73.44 368 | 55.93 361 | 58.54 372 | 70.41 382 | 44.58 324 | 77.55 362 | 47.01 358 | 35.91 394 | 71.55 382 |
|
| test_vis1_rt | | | 60.28 346 | 58.42 349 | 65.84 361 | 67.25 391 | 55.60 331 | 70.44 370 | 60.94 394 | 44.33 382 | 59.00 370 | 66.64 384 | 24.91 384 | 68.67 392 | 62.80 248 | 69.48 346 | 73.25 380 |
|
| MVS-HIRNet | | | 59.14 347 | 57.67 350 | 63.57 364 | 81.65 319 | 43.50 389 | 71.73 363 | 65.06 388 | 39.59 388 | 51.43 385 | 57.73 392 | 38.34 359 | 82.58 339 | 39.53 379 | 73.95 319 | 64.62 388 |
|
| pmmvs3 | | | 57.79 348 | 54.26 353 | 68.37 356 | 64.02 394 | 56.72 313 | 75.12 353 | 65.17 387 | 40.20 386 | 52.93 384 | 69.86 383 | 20.36 390 | 75.48 377 | 45.45 368 | 55.25 383 | 72.90 381 |
|
| DSMNet-mixed | | | 57.77 349 | 56.90 351 | 60.38 368 | 67.70 390 | 35.61 399 | 69.18 374 | 53.97 400 | 32.30 396 | 57.49 376 | 79.88 341 | 40.39 351 | 68.57 393 | 38.78 382 | 72.37 332 | 76.97 374 |
|
| WB-MVS | | | 54.94 350 | 54.72 352 | 55.60 376 | 73.50 377 | 20.90 408 | 74.27 357 | 61.19 393 | 59.16 339 | 50.61 386 | 74.15 373 | 47.19 301 | 75.78 375 | 17.31 400 | 35.07 395 | 70.12 383 |
|
| LCM-MVSNet | | | 54.25 351 | 49.68 361 | 67.97 358 | 53.73 403 | 45.28 384 | 66.85 382 | 80.78 316 | 35.96 392 | 39.45 393 | 62.23 388 | 8.70 403 | 78.06 360 | 48.24 353 | 51.20 387 | 80.57 366 |
|
| mvsany_test3 | | | 53.99 352 | 51.45 357 | 61.61 367 | 55.51 399 | 44.74 387 | 63.52 389 | 45.41 406 | 43.69 383 | 58.11 374 | 76.45 365 | 17.99 392 | 63.76 397 | 54.77 316 | 47.59 390 | 76.34 376 |
|
| SSC-MVS | | | 53.88 353 | 53.59 354 | 54.75 378 | 72.87 382 | 19.59 409 | 73.84 359 | 60.53 395 | 57.58 353 | 49.18 388 | 73.45 376 | 46.34 309 | 75.47 378 | 16.20 403 | 32.28 397 | 69.20 384 |
|
| FPMVS | | | 53.68 354 | 51.64 356 | 59.81 369 | 65.08 393 | 51.03 367 | 69.48 373 | 69.58 378 | 41.46 385 | 40.67 391 | 72.32 378 | 16.46 395 | 70.00 391 | 24.24 397 | 65.42 362 | 58.40 393 |
|
| APD_test1 | | | 53.31 355 | 49.93 360 | 63.42 365 | 65.68 392 | 50.13 371 | 71.59 364 | 66.90 384 | 34.43 393 | 40.58 392 | 71.56 380 | 8.65 404 | 76.27 371 | 34.64 387 | 55.36 382 | 63.86 389 |
|
| N_pmnet | | | 52.79 356 | 53.26 355 | 51.40 380 | 78.99 355 | 7.68 412 | 69.52 372 | 3.89 411 | 51.63 373 | 57.01 377 | 74.98 372 | 40.83 348 | 65.96 395 | 37.78 383 | 64.67 364 | 80.56 367 |
|
| test_f | | | 52.09 357 | 50.82 358 | 55.90 374 | 53.82 402 | 42.31 394 | 59.42 392 | 58.31 398 | 36.45 391 | 56.12 381 | 70.96 381 | 12.18 398 | 57.79 399 | 53.51 322 | 56.57 379 | 67.60 385 |
|
| EGC-MVSNET | | | 52.07 358 | 47.05 362 | 67.14 359 | 83.51 282 | 60.71 266 | 80.50 302 | 67.75 382 | 0.07 406 | 0.43 407 | 75.85 370 | 24.26 386 | 81.54 344 | 28.82 391 | 62.25 368 | 59.16 391 |
|
| new_pmnet | | | 50.91 359 | 50.29 359 | 52.78 379 | 68.58 389 | 34.94 401 | 63.71 388 | 56.63 399 | 39.73 387 | 44.95 389 | 65.47 385 | 21.93 389 | 58.48 398 | 34.98 386 | 56.62 378 | 64.92 387 |
|
| ANet_high | | | 50.57 360 | 46.10 364 | 63.99 363 | 48.67 406 | 39.13 397 | 70.99 367 | 80.85 315 | 61.39 322 | 31.18 395 | 57.70 393 | 17.02 394 | 73.65 386 | 31.22 390 | 15.89 403 | 79.18 370 |
|
| test_vis3_rt | | | 49.26 361 | 47.02 363 | 56.00 373 | 54.30 400 | 45.27 385 | 66.76 383 | 48.08 403 | 36.83 390 | 44.38 390 | 53.20 395 | 7.17 406 | 64.07 396 | 56.77 308 | 55.66 380 | 58.65 392 |
|
| testf1 | | | 45.72 362 | 41.96 365 | 57.00 371 | 56.90 397 | 45.32 382 | 66.14 384 | 59.26 396 | 26.19 397 | 30.89 396 | 60.96 390 | 4.14 407 | 70.64 389 | 26.39 395 | 46.73 392 | 55.04 394 |
|
| APD_test2 | | | 45.72 362 | 41.96 365 | 57.00 371 | 56.90 397 | 45.32 382 | 66.14 384 | 59.26 396 | 26.19 397 | 30.89 396 | 60.96 390 | 4.14 407 | 70.64 389 | 26.39 395 | 46.73 392 | 55.04 394 |
|
| Gipuma |  | | 45.18 364 | 41.86 367 | 55.16 377 | 77.03 363 | 51.52 364 | 32.50 399 | 80.52 320 | 32.46 395 | 27.12 398 | 35.02 399 | 9.52 402 | 75.50 376 | 22.31 398 | 60.21 375 | 38.45 398 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 37.38 22 | 44.16 365 | 40.28 368 | 55.82 375 | 40.82 408 | 42.54 393 | 65.12 387 | 63.99 390 | 34.43 393 | 24.48 399 | 57.12 394 | 3.92 409 | 76.17 373 | 17.10 401 | 55.52 381 | 48.75 396 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PMMVS2 | | | 40.82 366 | 38.86 369 | 46.69 381 | 53.84 401 | 16.45 410 | 48.61 396 | 49.92 401 | 37.49 389 | 31.67 394 | 60.97 389 | 8.14 405 | 56.42 400 | 28.42 392 | 30.72 398 | 67.19 386 |
|
| E-PMN | | | 31.77 367 | 30.64 370 | 35.15 384 | 52.87 404 | 27.67 403 | 57.09 394 | 47.86 404 | 24.64 399 | 16.40 404 | 33.05 400 | 11.23 400 | 54.90 401 | 14.46 404 | 18.15 401 | 22.87 400 |
|
| test_method | | | 31.52 368 | 29.28 372 | 38.23 383 | 27.03 410 | 6.50 413 | 20.94 401 | 62.21 392 | 4.05 404 | 22.35 402 | 52.50 396 | 13.33 396 | 47.58 403 | 27.04 394 | 34.04 396 | 60.62 390 |
|
| EMVS | | | 30.81 369 | 29.65 371 | 34.27 385 | 50.96 405 | 25.95 405 | 56.58 395 | 46.80 405 | 24.01 400 | 15.53 405 | 30.68 401 | 12.47 397 | 54.43 402 | 12.81 405 | 17.05 402 | 22.43 401 |
|
| MVE |  | 26.22 23 | 30.37 370 | 25.89 374 | 43.81 382 | 44.55 407 | 35.46 400 | 28.87 400 | 39.07 407 | 18.20 401 | 18.58 403 | 40.18 398 | 2.68 410 | 47.37 404 | 17.07 402 | 23.78 400 | 48.60 397 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 19.96 371 | 26.61 373 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 89.26 173 | 0.00 409 | 0.00 410 | 88.61 176 | 61.62 161 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| tmp_tt | | | 18.61 372 | 21.40 375 | 10.23 388 | 4.82 411 | 10.11 411 | 34.70 398 | 30.74 409 | 1.48 405 | 23.91 401 | 26.07 402 | 28.42 381 | 13.41 407 | 27.12 393 | 15.35 404 | 7.17 402 |
|
| wuyk23d | | | 16.82 373 | 15.94 376 | 19.46 387 | 58.74 396 | 31.45 402 | 39.22 397 | 3.74 412 | 6.84 403 | 6.04 406 | 2.70 406 | 1.27 411 | 24.29 406 | 10.54 406 | 14.40 405 | 2.63 403 |
|
| ab-mvs-re | | | 7.23 374 | 9.64 377 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 86.72 226 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| test123 | | | 6.12 375 | 8.11 378 | 0.14 389 | 0.06 413 | 0.09 414 | 71.05 366 | 0.03 414 | 0.04 408 | 0.25 409 | 1.30 408 | 0.05 412 | 0.03 409 | 0.21 408 | 0.01 407 | 0.29 404 |
|
| testmvs | | | 6.04 376 | 8.02 379 | 0.10 390 | 0.08 412 | 0.03 415 | 69.74 371 | 0.04 413 | 0.05 407 | 0.31 408 | 1.68 407 | 0.02 413 | 0.04 408 | 0.24 407 | 0.02 406 | 0.25 405 |
|
| pcd_1.5k_mvsjas | | | 5.26 377 | 7.02 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 63.15 138 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 42.58 391 | | | | | | | | 39.46 380 | | |
|
| FOURS1 | | | | | | 95.00 10 | 72.39 39 | 95.06 1 | 93.84 15 | 74.49 113 | 91.30 15 | | | | | | |
|
| MSC_two_6792asdad | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| PC_three_1452 | | | | | | | | | | 68.21 245 | 92.02 12 | 94.00 46 | 82.09 5 | 95.98 51 | 84.58 48 | 96.68 2 | 94.95 10 |
|
| No_MVS | | | | | 89.16 1 | 94.34 27 | 75.53 2 | | 92.99 45 | | | | | 97.53 2 | 89.67 6 | 96.44 9 | 94.41 32 |
|
| test_one_0601 | | | | | | 95.07 7 | 71.46 55 | | 94.14 5 | 78.27 35 | 92.05 11 | 95.74 6 | 80.83 11 | | | | |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 94.38 25 | 72.22 44 | | 92.67 61 | 70.98 182 | 87.75 31 | 94.07 41 | 74.01 32 | 96.70 27 | 84.66 47 | 94.84 43 | |
|
| RE-MVS-def | | | | 85.48 53 | | 93.06 55 | 70.63 73 | 91.88 39 | 92.27 76 | 73.53 137 | 85.69 49 | 94.45 26 | 63.87 129 | | 82.75 68 | 91.87 79 | 92.50 114 |
|
| IU-MVS | | | | | | 95.30 2 | 71.25 57 | | 92.95 51 | 66.81 255 | 92.39 6 | | | | 88.94 16 | 96.63 4 | 94.85 19 |
|
| OPU-MVS | | | | | 89.06 3 | 94.62 15 | 75.42 4 | 93.57 7 | | | | 94.02 44 | 82.45 3 | 96.87 20 | 83.77 58 | 96.48 8 | 94.88 14 |
|
| test_241102_TWO | | | | | | | | | 94.06 10 | 77.24 50 | 92.78 4 | 95.72 8 | 81.26 8 | 97.44 6 | 89.07 14 | 96.58 6 | 94.26 41 |
|
| test_241102_ONE | | | | | | 95.30 2 | 70.98 63 | | 94.06 10 | 77.17 53 | 93.10 1 | 95.39 11 | 82.99 1 | 97.27 11 | | | |
|
| 9.14 | | | | 88.26 15 | | 92.84 60 | | 91.52 46 | 94.75 1 | 73.93 125 | 88.57 22 | 94.67 19 | 75.57 22 | 95.79 53 | 86.77 35 | 95.76 23 | |
|
| save fliter | | | | | | 93.80 40 | 72.35 42 | 90.47 64 | 91.17 116 | 74.31 116 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 78.38 33 | 92.12 9 | 95.78 4 | 81.46 7 | 97.40 8 | 89.42 9 | 96.57 7 | 94.67 24 |
|
| test_0728_SECOND | | | | | 87.71 32 | 95.34 1 | 71.43 56 | 93.49 9 | 94.23 3 | | | | | 97.49 4 | 89.08 12 | 96.41 12 | 94.21 42 |
|
| test0726 | | | | | | 95.27 5 | 71.25 57 | 93.60 6 | 94.11 6 | 77.33 48 | 92.81 3 | 95.79 3 | 80.98 9 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.96 246 |
|
| test_part2 | | | | | | 95.06 8 | 72.65 32 | | | | 91.80 13 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 51.32 262 | | | | 88.96 246 |
|
| sam_mvs | | | | | | | | | | | | | 50.01 275 | | | | |
|
| ambc | | | | | 75.24 307 | 73.16 380 | 50.51 370 | 63.05 391 | 87.47 225 | | 64.28 350 | 77.81 359 | 17.80 393 | 89.73 269 | 57.88 297 | 60.64 373 | 85.49 318 |
|
| MTGPA |  | | | | | | | | 92.02 85 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.90 324 | | | | 5.43 405 | 48.81 295 | 85.44 320 | 59.25 282 | | |
|
| test_post | | | | | | | | | | | | 5.46 404 | 50.36 273 | 84.24 327 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 74.00 374 | 51.12 264 | 88.60 290 | | | |
|
| GG-mvs-BLEND | | | | | 75.38 306 | 81.59 321 | 55.80 328 | 79.32 316 | 69.63 377 | | 67.19 325 | 73.67 375 | 43.24 332 | 88.90 286 | 50.41 336 | 84.50 173 | 81.45 361 |
|
| MTMP | | | | | | | | 92.18 35 | 32.83 408 | | | | | | | | |
|
| gm-plane-assit | | | | | | 81.40 324 | 53.83 348 | | | 62.72 311 | | 80.94 331 | | 92.39 195 | 63.40 245 | | |
|
| test9_res | | | | | | | | | | | | | | | 84.90 42 | 95.70 26 | 92.87 102 |
|
| TEST9 | | | | | | 93.26 50 | 72.96 25 | 88.75 115 | 91.89 93 | 68.44 242 | 85.00 57 | 93.10 67 | 74.36 28 | 95.41 67 | | | |
|
| test_8 | | | | | | 93.13 52 | 72.57 35 | 88.68 120 | 91.84 97 | 68.69 237 | 84.87 61 | 93.10 67 | 74.43 26 | 95.16 76 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 82.91 66 | 95.45 30 | 92.70 105 |
|
| agg_prior | | | | | | 92.85 59 | 71.94 51 | | 91.78 100 | | 84.41 71 | | | 94.93 87 | | | |
|
| TestCases | | | | | 79.58 251 | 85.15 248 | 63.62 221 | | 79.83 329 | 62.31 314 | 60.32 366 | 86.73 224 | 32.02 373 | 88.96 284 | 50.28 339 | 71.57 339 | 86.15 307 |
|
| test_prior4 | | | | | | | 72.60 34 | 89.01 105 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 88.85 111 | | 75.41 93 | 84.91 59 | 93.54 56 | 74.28 29 | | 83.31 61 | 95.86 20 | |
|
| test_prior | | | | | 86.33 54 | 92.61 65 | 69.59 88 | | 92.97 50 | | | | | 95.48 62 | | | 93.91 53 |
|
| 旧先验2 | | | | | | | | 86.56 188 | | 58.10 348 | 87.04 39 | | | 88.98 282 | 74.07 149 | | |
|
| æ–°å‡ ä½•2 | | | | | | | | 86.29 196 | | | | | | | | | |
|
| æ–°å‡ ä½•1 | | | | | 83.42 147 | 93.13 52 | 70.71 71 | | 85.48 256 | 57.43 354 | 81.80 107 | 91.98 90 | 63.28 133 | 92.27 201 | 64.60 237 | 92.99 65 | 87.27 284 |
|
| 旧先验1 | | | | | | 91.96 71 | 65.79 178 | | 86.37 244 | | | 93.08 71 | 69.31 77 | | | 92.74 68 | 88.74 256 |
|
| æ— å…ˆéªŒ | | | | | | | | 87.48 159 | 88.98 186 | 60.00 331 | | | | 94.12 121 | 67.28 214 | | 88.97 245 |
|
| 原ACMM2 | | | | | | | | 86.86 177 | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.35 107 | 93.01 57 | 68.79 106 | | 92.44 69 | 63.96 297 | 81.09 117 | 91.57 101 | 66.06 111 | 95.45 63 | 67.19 216 | 94.82 45 | 88.81 252 |
|
| test222 | | | | | | 91.50 77 | 68.26 124 | 84.16 248 | 83.20 290 | 54.63 365 | 79.74 129 | 91.63 99 | 58.97 193 | | | 91.42 85 | 86.77 297 |
|
| testdata2 | | | | | | | | | | | | | | 91.01 249 | 62.37 255 | | |
|
| segment_acmp | | | | | | | | | | | | | 73.08 37 | | | | |
|
| testdata | | | | | 79.97 241 | 90.90 86 | 64.21 212 | | 84.71 263 | 59.27 338 | 85.40 51 | 92.91 73 | 62.02 157 | 89.08 280 | 68.95 199 | 91.37 86 | 86.63 301 |
|
| testdata1 | | | | | | | | 84.14 249 | | 75.71 87 | | | | | | | |
|
| test12 | | | | | 86.80 49 | 92.63 64 | 70.70 72 | | 91.79 99 | | 82.71 98 | | 71.67 51 | 96.16 44 | | 94.50 50 | 93.54 77 |
|
| plane_prior7 | | | | | | 90.08 103 | 68.51 119 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 89.84 112 | 68.70 114 | | | | | | 60.42 186 | | | | |
|
| plane_prior5 | | | | | | | | | 92.44 69 | | | | | 95.38 69 | 78.71 102 | 86.32 151 | 91.33 151 |
|
| plane_prior4 | | | | | | | | | | | | 91.00 120 | | | | | |
|
| plane_prior3 | | | | | | | 68.60 117 | | | 78.44 31 | 78.92 141 | | | | | | |
|
| plane_prior2 | | | | | | | | 91.25 50 | | 79.12 23 | | | | | | | |
|
| plane_prior1 | | | | | | 89.90 111 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 68.71 112 | 90.38 67 | | 77.62 39 | | | | | | 86.16 155 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 69.98 376 | | | | | | | | |
|
| lessismore_v0 | | | | | 78.97 260 | 81.01 331 | 57.15 307 | | 65.99 385 | | 61.16 363 | 82.82 312 | 39.12 355 | 91.34 238 | 59.67 278 | 46.92 391 | 88.43 262 |
|
| LGP-MVS_train | | | | | 84.50 99 | 89.23 135 | 68.76 108 | | 91.94 91 | 75.37 94 | 76.64 196 | 91.51 102 | 54.29 228 | 94.91 88 | 78.44 104 | 83.78 186 | 89.83 217 |
|
| test11 | | | | | | | | | 92.23 79 | | | | | | | | |
|
| door | | | | | | | | | 69.44 379 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 66.98 155 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 89.33 128 | | 89.17 98 | | 76.41 72 | 77.23 182 | | | | | | |
|
| ACMP_Plane | | | | | | 89.33 128 | | 89.17 98 | | 76.41 72 | 77.23 182 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.47 114 | | |
|
| HQP4-MVS | | | | | | | | | | | 77.24 181 | | | 95.11 80 | | | 91.03 163 |
|
| HQP3-MVS | | | | | | | | | 92.19 82 | | | | | | | 85.99 159 | |
|
| HQP2-MVS | | | | | | | | | | | | | 60.17 189 | | | | |
|
| NP-MVS | | | | | | 89.62 115 | 68.32 122 | | | | | 90.24 132 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 37.79 398 | 75.16 351 | | 55.10 363 | 66.53 334 | | 49.34 285 | | 53.98 319 | | 87.94 268 |
|
| MDTV_nov1_ep13 | | | | 69.97 294 | | 83.18 290 | 53.48 350 | 77.10 340 | 80.18 328 | 60.45 326 | 69.33 307 | 80.44 335 | 48.89 294 | 86.90 305 | 51.60 331 | 78.51 258 | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 81.95 218 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 81.25 224 | |
|
| Test By Simon | | | | | | | | | | | | | 64.33 125 | | | | |
|
| ITE_SJBPF | | | | | 78.22 273 | 81.77 318 | 60.57 268 | | 83.30 286 | 69.25 221 | 67.54 320 | 87.20 215 | 36.33 366 | 87.28 304 | 54.34 318 | 74.62 314 | 86.80 296 |
|
| DeepMVS_CX |  | | | | 27.40 386 | 40.17 409 | 26.90 404 | | 24.59 410 | 17.44 402 | 23.95 400 | 48.61 397 | 9.77 401 | 26.48 405 | 18.06 399 | 24.47 399 | 28.83 399 |
|