This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5995.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 1196.68 294.95 11
SED-MVS90.08 290.85 287.77 2695.30 270.98 6693.57 794.06 1077.24 5393.10 195.72 882.99 197.44 789.07 1696.63 494.88 15
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5993.49 992.73 6477.33 5092.12 995.78 480.98 997.40 989.08 1496.41 1293.33 93
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 4278.35 1396.77 2489.59 1094.22 6094.67 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 9092.29 795.66 1081.67 697.38 1187.44 3596.34 1593.95 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM89.16 689.23 788.97 490.79 9573.65 1092.66 2391.17 12586.57 187.39 4394.97 1871.70 5397.68 192.19 195.63 2895.57 1
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9491.06 1696.03 176.84 1497.03 1789.09 1395.65 2794.47 38
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 11592.29 795.97 274.28 2997.24 1388.58 2396.91 194.87 17
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5980.26 1187.78 3594.27 3675.89 1996.81 2387.45 3496.44 993.05 108
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6293.00 4680.90 788.06 3094.06 4776.43 1696.84 2188.48 2695.99 1894.34 44
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 7272.96 2593.73 593.67 2080.19 1288.10 2994.80 1973.76 3397.11 1587.51 3395.82 2194.90 14
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6471.95 4992.40 2494.74 275.71 9289.16 1995.10 1675.65 2196.19 4687.07 3696.01 1794.79 22
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5392.24 7169.03 10389.57 9093.39 3077.53 4689.79 1894.12 4478.98 1296.58 3585.66 4295.72 2494.58 33
SD-MVS88.06 1488.50 1486.71 5492.60 6972.71 2991.81 4193.19 3577.87 3690.32 1794.00 5174.83 2393.78 14187.63 3294.27 5993.65 78
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NCCC88.06 1488.01 1888.24 1194.41 2273.62 1191.22 5492.83 6081.50 585.79 5793.47 6573.02 4097.00 1884.90 4894.94 4094.10 52
ACMMP_NAP88.05 1688.08 1787.94 1993.70 4173.05 2290.86 5793.59 2376.27 8488.14 2895.09 1771.06 6396.67 2987.67 3196.37 1494.09 53
TSAR-MVS + MP.88.02 1788.11 1687.72 3093.68 4372.13 4691.41 5092.35 8274.62 11988.90 2293.85 5775.75 2096.00 5487.80 3094.63 4895.04 9
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ZNCC-MVS87.94 1887.85 1988.20 1294.39 2473.33 1993.03 1493.81 1776.81 6685.24 6294.32 3471.76 5196.93 1985.53 4595.79 2294.32 45
MP-MVScopyleft87.71 1987.64 2187.93 2194.36 2673.88 692.71 2292.65 7077.57 4283.84 9294.40 3272.24 4596.28 4385.65 4395.30 3593.62 81
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_030487.69 2087.55 2488.12 1389.45 12971.76 5191.47 4989.54 17382.14 386.65 5194.28 3568.28 9597.46 690.81 295.31 3495.15 7
MP-MVS-pluss87.67 2187.72 2087.54 3693.64 4472.04 4889.80 8193.50 2575.17 10586.34 5395.29 1570.86 6596.00 5488.78 2196.04 1694.58 33
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS87.58 2287.47 2687.94 1994.58 1673.54 1593.04 1293.24 3376.78 6884.91 6794.44 3070.78 6696.61 3284.53 5694.89 4293.66 74
reproduce-ours87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
our_new_method87.47 2387.61 2287.07 4593.27 5071.60 5391.56 4693.19 3574.98 10888.96 2095.54 1271.20 6196.54 3686.28 3993.49 6593.06 106
ACMMPR87.44 2587.23 3088.08 1594.64 1373.59 1293.04 1293.20 3476.78 6884.66 7494.52 2368.81 9096.65 3084.53 5694.90 4194.00 57
APD-MVScopyleft87.44 2587.52 2587.19 4294.24 3272.39 3991.86 4092.83 6073.01 16088.58 2494.52 2373.36 3496.49 3884.26 5995.01 3792.70 118
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GST-MVS87.42 2787.26 2887.89 2494.12 3672.97 2492.39 2693.43 2876.89 6484.68 7193.99 5370.67 6896.82 2284.18 6395.01 3793.90 63
region2R87.42 2787.20 3188.09 1494.63 1473.55 1393.03 1493.12 4076.73 7184.45 7994.52 2369.09 8496.70 2784.37 5894.83 4594.03 56
MCST-MVS87.37 2987.25 2987.73 2894.53 1772.46 3889.82 7993.82 1673.07 15884.86 7092.89 7976.22 1796.33 4184.89 5095.13 3694.40 41
reproduce_model87.28 3087.39 2786.95 4893.10 5671.24 6391.60 4293.19 3574.69 11688.80 2395.61 1170.29 7296.44 3986.20 4193.08 6993.16 101
MTAPA87.23 3187.00 3287.90 2294.18 3574.25 586.58 19592.02 9379.45 1985.88 5594.80 1968.07 9696.21 4586.69 3895.34 3293.23 96
XVS87.18 3286.91 3788.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9694.17 4167.45 10396.60 3383.06 7194.50 5194.07 54
HPM-MVScopyleft87.11 3386.98 3487.50 3893.88 3972.16 4592.19 3393.33 3176.07 8783.81 9393.95 5669.77 7896.01 5385.15 4694.66 4794.32 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS87.11 3386.92 3687.68 3494.20 3473.86 793.98 392.82 6376.62 7483.68 9594.46 2767.93 9895.95 5784.20 6294.39 5593.23 96
DeepC-MVS79.81 287.08 3586.88 3887.69 3391.16 8472.32 4390.31 7193.94 1477.12 5882.82 10794.23 3972.13 4797.09 1684.83 5195.37 3193.65 78
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.65 386.91 3686.62 4087.76 2793.52 4672.37 4191.26 5193.04 4176.62 7484.22 8393.36 6871.44 5796.76 2580.82 9695.33 3394.16 50
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
balanced_conf0386.78 3786.99 3386.15 6391.24 8367.61 14590.51 6292.90 5677.26 5287.44 4291.63 10771.27 6096.06 4985.62 4495.01 3794.78 23
SR-MVS86.73 3886.67 3986.91 4994.11 3772.11 4792.37 2892.56 7574.50 12086.84 5094.65 2267.31 10595.77 5984.80 5292.85 7292.84 116
CS-MVS86.69 3986.95 3585.90 7190.76 9667.57 14792.83 1793.30 3279.67 1784.57 7892.27 9171.47 5695.02 9384.24 6193.46 6795.13 8
PGM-MVS86.68 4086.27 4487.90 2294.22 3373.38 1890.22 7393.04 4175.53 9683.86 9194.42 3167.87 10096.64 3182.70 8194.57 5093.66 74
mPP-MVS86.67 4186.32 4387.72 3094.41 2273.55 1392.74 2092.22 8876.87 6582.81 10894.25 3866.44 11396.24 4482.88 7694.28 5893.38 90
CANet86.45 4286.10 4987.51 3790.09 10770.94 7089.70 8592.59 7481.78 481.32 12391.43 11570.34 7097.23 1484.26 5993.36 6894.37 42
train_agg86.43 4386.20 4587.13 4493.26 5272.96 2588.75 12091.89 10168.69 24885.00 6593.10 7274.43 2695.41 7384.97 4795.71 2593.02 110
PHI-MVS86.43 4386.17 4787.24 4190.88 9270.96 6892.27 3294.07 972.45 16585.22 6391.90 9869.47 8096.42 4083.28 7095.94 1994.35 43
CSCG86.41 4586.19 4687.07 4592.91 6172.48 3790.81 5893.56 2473.95 13383.16 10291.07 12775.94 1895.19 8279.94 10594.38 5693.55 85
SPE-MVS-test86.29 4686.48 4185.71 7391.02 8867.21 16092.36 2993.78 1878.97 2883.51 9991.20 12270.65 6995.15 8481.96 8594.89 4294.77 24
EC-MVSNet86.01 4786.38 4284.91 9689.31 13866.27 17392.32 3093.63 2179.37 2084.17 8591.88 9969.04 8895.43 7083.93 6593.77 6393.01 111
MVSMamba_PlusPlus85.99 4885.96 5286.05 6691.09 8567.64 14489.63 8892.65 7072.89 16384.64 7591.71 10371.85 4996.03 5084.77 5394.45 5494.49 37
casdiffmvs_mvgpermissive85.99 4886.09 5085.70 7487.65 20967.22 15988.69 12493.04 4179.64 1885.33 6192.54 8873.30 3594.50 11283.49 6791.14 9595.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVS_3200maxsize85.97 5085.88 5386.22 6092.69 6669.53 9291.93 3792.99 4973.54 14585.94 5494.51 2665.80 12395.61 6283.04 7392.51 7693.53 87
test_fmvsmconf_n85.92 5186.04 5185.57 7685.03 26469.51 9389.62 8990.58 14073.42 14987.75 3794.02 4972.85 4193.24 16690.37 390.75 9993.96 58
sasdasda85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
canonicalmvs85.91 5285.87 5486.04 6789.84 11769.44 9890.45 6893.00 4676.70 7288.01 3291.23 11973.28 3693.91 13581.50 8888.80 12894.77 24
ACMMPcopyleft85.89 5485.39 6187.38 3993.59 4572.63 3392.74 2093.18 3976.78 6880.73 13293.82 5864.33 13396.29 4282.67 8290.69 10093.23 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post85.77 5585.61 5886.23 5993.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2865.00 13195.56 6382.75 7791.87 8492.50 127
CDPH-MVS85.76 5685.29 6687.17 4393.49 4771.08 6488.58 12892.42 8068.32 25584.61 7693.48 6372.32 4496.15 4879.00 10895.43 3094.28 47
TSAR-MVS + GP.85.71 5785.33 6386.84 5091.34 8172.50 3689.07 11087.28 23776.41 7785.80 5690.22 14674.15 3195.37 7881.82 8691.88 8392.65 122
dcpmvs_285.63 5886.15 4884.06 13391.71 7864.94 20386.47 19891.87 10373.63 14186.60 5293.02 7776.57 1591.87 22583.36 6892.15 8095.35 3
test_fmvsmconf0.1_n85.61 5985.65 5785.50 7782.99 31169.39 10089.65 8690.29 15373.31 15287.77 3694.15 4371.72 5293.23 16790.31 490.67 10193.89 64
alignmvs85.48 6085.32 6485.96 7089.51 12669.47 9589.74 8392.47 7676.17 8587.73 3991.46 11470.32 7193.78 14181.51 8788.95 12594.63 32
3Dnovator+77.84 485.48 6084.47 7688.51 791.08 8673.49 1693.18 1193.78 1880.79 876.66 20593.37 6760.40 19896.75 2677.20 12793.73 6495.29 5
MSLP-MVS++85.43 6285.76 5684.45 10991.93 7570.24 7990.71 5992.86 5877.46 4884.22 8392.81 8367.16 10792.94 18680.36 10094.35 5790.16 205
DELS-MVS85.41 6385.30 6585.77 7288.49 16967.93 13785.52 22893.44 2778.70 2983.63 9889.03 17474.57 2495.71 6180.26 10294.04 6193.66 74
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HPM-MVS_fast85.35 6484.95 7086.57 5693.69 4270.58 7892.15 3591.62 11173.89 13682.67 11094.09 4562.60 15295.54 6580.93 9492.93 7193.57 83
test_fmvsm_n_192085.29 6585.34 6285.13 8786.12 24269.93 8688.65 12690.78 13669.97 21688.27 2693.98 5471.39 5891.54 23788.49 2590.45 10393.91 61
MVS_111021_HR85.14 6684.75 7186.32 5891.65 7972.70 3085.98 21190.33 15076.11 8682.08 11391.61 10971.36 5994.17 12481.02 9392.58 7592.08 144
casdiffmvspermissive85.11 6785.14 6785.01 9087.20 22365.77 18587.75 15792.83 6077.84 3784.36 8292.38 9072.15 4693.93 13481.27 9290.48 10295.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net85.08 6884.96 6985.45 7892.07 7368.07 13489.78 8290.86 13582.48 284.60 7793.20 7169.35 8195.22 8171.39 18590.88 9893.07 105
MGCFI-Net85.06 6985.51 5983.70 14989.42 13063.01 24589.43 9392.62 7376.43 7687.53 4091.34 11772.82 4293.42 16181.28 9188.74 13194.66 31
DPM-MVS84.93 7084.29 7786.84 5090.20 10573.04 2387.12 17593.04 4169.80 22082.85 10691.22 12173.06 3996.02 5276.72 13594.63 4891.46 161
baseline84.93 7084.98 6884.80 10087.30 22165.39 19387.30 17192.88 5777.62 4084.04 8892.26 9271.81 5093.96 12881.31 9090.30 10595.03 10
ETV-MVS84.90 7284.67 7285.59 7589.39 13368.66 12088.74 12292.64 7279.97 1584.10 8685.71 26369.32 8295.38 7580.82 9691.37 9292.72 117
test_fmvsmconf0.01_n84.73 7384.52 7585.34 8080.25 35269.03 10389.47 9189.65 17073.24 15686.98 4894.27 3666.62 10993.23 16790.26 589.95 11393.78 71
fmvsm_l_conf0.5_n84.47 7484.54 7384.27 11985.42 25468.81 10988.49 13087.26 23968.08 25788.03 3193.49 6272.04 4891.77 22788.90 1989.14 12492.24 138
BP-MVS184.32 7583.71 8386.17 6187.84 19967.85 13889.38 9889.64 17177.73 3883.98 8992.12 9556.89 22295.43 7084.03 6491.75 8795.24 6
EI-MVSNet-Vis-set84.19 7683.81 8185.31 8188.18 18067.85 13887.66 15989.73 16880.05 1482.95 10389.59 15970.74 6794.82 10180.66 9984.72 18393.28 95
fmvsm_l_conf0.5_n_a84.13 7784.16 7884.06 13385.38 25568.40 12588.34 13786.85 24967.48 26487.48 4193.40 6670.89 6491.61 23188.38 2789.22 12292.16 142
fmvsm_s_conf0.5_n_284.04 7884.11 7983.81 14786.17 24065.00 20186.96 18087.28 23774.35 12488.25 2794.23 3961.82 16692.60 19489.85 688.09 14193.84 67
test_fmvsmvis_n_192084.02 7983.87 8084.49 10884.12 28069.37 10188.15 14587.96 22170.01 21483.95 9093.23 7068.80 9191.51 24088.61 2289.96 11292.57 123
nrg03083.88 8083.53 8584.96 9286.77 23169.28 10290.46 6792.67 6774.79 11482.95 10391.33 11872.70 4393.09 18080.79 9879.28 26192.50 127
EI-MVSNet-UG-set83.81 8183.38 8885.09 8887.87 19767.53 14887.44 16789.66 16979.74 1682.23 11289.41 16870.24 7394.74 10479.95 10483.92 19792.99 113
fmvsm_s_conf0.1_n_283.80 8283.79 8283.83 14685.62 25064.94 20387.03 17886.62 25374.32 12587.97 3494.33 3360.67 19092.60 19489.72 787.79 14393.96 58
fmvsm_s_conf0.5_n83.80 8283.71 8384.07 13186.69 23367.31 15489.46 9283.07 30571.09 19086.96 4993.70 6069.02 8991.47 24288.79 2084.62 18593.44 89
CPTT-MVS83.73 8483.33 9084.92 9593.28 4970.86 7292.09 3690.38 14668.75 24779.57 14492.83 8160.60 19493.04 18480.92 9591.56 9090.86 178
EPNet83.72 8582.92 9786.14 6584.22 27869.48 9491.05 5685.27 27081.30 676.83 20091.65 10566.09 11895.56 6376.00 14193.85 6293.38 90
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-283.65 8684.54 7380.99 22890.06 11265.83 18284.21 25788.74 20771.60 18085.01 6492.44 8974.51 2583.50 34782.15 8492.15 8093.64 80
HQP_MVS83.64 8783.14 9185.14 8590.08 10868.71 11691.25 5292.44 7779.12 2378.92 15391.00 13260.42 19695.38 7578.71 11286.32 16491.33 162
fmvsm_s_conf0.5_n_a83.63 8883.41 8784.28 11786.14 24168.12 13289.43 9382.87 31070.27 20987.27 4593.80 5969.09 8491.58 23388.21 2883.65 20593.14 103
Effi-MVS+83.62 8983.08 9285.24 8388.38 17567.45 14988.89 11589.15 18975.50 9782.27 11188.28 19569.61 7994.45 11477.81 12187.84 14293.84 67
fmvsm_s_conf0.1_n83.56 9083.38 8884.10 12584.86 26667.28 15589.40 9783.01 30670.67 19887.08 4693.96 5568.38 9391.45 24388.56 2484.50 18693.56 84
GDP-MVS83.52 9182.64 10186.16 6288.14 18368.45 12489.13 10892.69 6572.82 16483.71 9491.86 10155.69 22795.35 7980.03 10389.74 11694.69 27
OPM-MVS83.50 9282.95 9685.14 8588.79 15970.95 6989.13 10891.52 11477.55 4580.96 13091.75 10260.71 18894.50 11279.67 10786.51 16289.97 221
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Vis-MVSNetpermissive83.46 9382.80 9985.43 7990.25 10468.74 11490.30 7290.13 15776.33 8380.87 13192.89 7961.00 18594.20 12272.45 17990.97 9693.35 92
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MG-MVS83.41 9483.45 8683.28 16192.74 6562.28 25788.17 14389.50 17575.22 10181.49 12292.74 8766.75 10895.11 8772.85 17391.58 8992.45 130
EPP-MVSNet83.40 9583.02 9484.57 10490.13 10664.47 21492.32 3090.73 13774.45 12379.35 14791.10 12569.05 8795.12 8572.78 17487.22 15194.13 51
3Dnovator76.31 583.38 9682.31 10686.59 5587.94 19472.94 2890.64 6092.14 9277.21 5575.47 23092.83 8158.56 20594.72 10573.24 17092.71 7492.13 143
fmvsm_s_conf0.1_n_a83.32 9782.99 9584.28 11783.79 28868.07 13489.34 10082.85 31169.80 22087.36 4494.06 4768.34 9491.56 23587.95 2983.46 21093.21 99
EIA-MVS83.31 9882.80 9984.82 9889.59 12265.59 18888.21 14192.68 6674.66 11878.96 15186.42 25069.06 8695.26 8075.54 14790.09 10993.62 81
h-mvs3383.15 9982.19 10786.02 6990.56 9870.85 7388.15 14589.16 18876.02 8884.67 7291.39 11661.54 17195.50 6682.71 7975.48 30991.72 151
MVS_Test83.15 9983.06 9383.41 15886.86 22763.21 24186.11 20992.00 9574.31 12682.87 10589.44 16770.03 7493.21 16977.39 12688.50 13693.81 69
IS-MVSNet83.15 9982.81 9884.18 12389.94 11563.30 23991.59 4388.46 21379.04 2579.49 14592.16 9365.10 12894.28 11767.71 22191.86 8694.95 11
DP-MVS Recon83.11 10282.09 11086.15 6394.44 1970.92 7188.79 11892.20 8970.53 20379.17 14991.03 13064.12 13596.03 5068.39 21890.14 10891.50 157
PAPM_NR83.02 10382.41 10384.82 9892.47 7066.37 17187.93 15291.80 10673.82 13777.32 18890.66 13767.90 9994.90 9770.37 19589.48 11993.19 100
VDD-MVS83.01 10482.36 10584.96 9291.02 8866.40 17088.91 11488.11 21677.57 4284.39 8193.29 6952.19 25993.91 13577.05 13088.70 13294.57 35
MVSFormer82.85 10582.05 11185.24 8387.35 21570.21 8090.50 6490.38 14668.55 25081.32 12389.47 16261.68 16893.46 15878.98 10990.26 10692.05 145
OMC-MVS82.69 10681.97 11484.85 9788.75 16167.42 15087.98 14890.87 13474.92 11079.72 14291.65 10562.19 16293.96 12875.26 15186.42 16393.16 101
PVSNet_Blended_VisFu82.62 10781.83 11684.96 9290.80 9469.76 9088.74 12291.70 11069.39 22878.96 15188.46 19065.47 12594.87 10074.42 15688.57 13390.24 203
MVS_111021_LR82.61 10882.11 10884.11 12488.82 15671.58 5585.15 23186.16 26174.69 11680.47 13491.04 12862.29 15990.55 26580.33 10190.08 11090.20 204
HQP-MVS82.61 10882.02 11284.37 11189.33 13566.98 16389.17 10392.19 9076.41 7777.23 19190.23 14560.17 19995.11 8777.47 12485.99 17291.03 172
RRT-MVS82.60 11082.10 10984.10 12587.98 19362.94 25087.45 16691.27 12177.42 4979.85 14090.28 14256.62 22494.70 10779.87 10688.15 14094.67 28
CLD-MVS82.31 11181.65 11784.29 11688.47 17067.73 14285.81 21992.35 8275.78 9178.33 16786.58 24564.01 13694.35 11576.05 14087.48 14890.79 179
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VNet82.21 11282.41 10381.62 20990.82 9360.93 27284.47 24889.78 16576.36 8284.07 8791.88 9964.71 13290.26 26770.68 19288.89 12693.66 74
diffmvspermissive82.10 11381.88 11582.76 19183.00 30963.78 22783.68 26589.76 16672.94 16182.02 11489.85 15165.96 12290.79 26182.38 8387.30 15093.71 73
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test82.08 11481.27 12084.50 10689.23 14268.76 11290.22 7391.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
FIs82.07 11582.42 10281.04 22788.80 15858.34 29988.26 14093.49 2676.93 6378.47 16491.04 12869.92 7692.34 20869.87 20284.97 18092.44 131
PS-MVSNAJss82.07 11581.31 11984.34 11486.51 23667.27 15689.27 10191.51 11571.75 17579.37 14690.22 14663.15 14694.27 11877.69 12282.36 22491.49 158
API-MVS81.99 11781.23 12184.26 12190.94 9070.18 8591.10 5589.32 18071.51 18278.66 15888.28 19565.26 12695.10 9064.74 24891.23 9487.51 290
UniMVSNet_NR-MVSNet81.88 11881.54 11882.92 18088.46 17163.46 23587.13 17492.37 8180.19 1278.38 16589.14 17071.66 5593.05 18270.05 19876.46 29292.25 136
MAR-MVS81.84 11980.70 12985.27 8291.32 8271.53 5689.82 7990.92 13169.77 22278.50 16286.21 25462.36 15894.52 11165.36 24292.05 8289.77 229
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS81.82 12081.23 12183.57 15391.89 7663.43 23789.84 7881.85 32277.04 6183.21 10093.10 7252.26 25893.43 16071.98 18089.95 11393.85 65
hse-mvs281.72 12180.94 12784.07 13188.72 16267.68 14385.87 21587.26 23976.02 8884.67 7288.22 19861.54 17193.48 15682.71 7973.44 33791.06 170
GeoE81.71 12281.01 12683.80 14889.51 12664.45 21588.97 11288.73 20871.27 18678.63 15989.76 15366.32 11593.20 17269.89 20186.02 17193.74 72
xiu_mvs_v2_base81.69 12381.05 12483.60 15189.15 14568.03 13684.46 25090.02 15970.67 19881.30 12686.53 24863.17 14594.19 12375.60 14688.54 13488.57 269
PS-MVSNAJ81.69 12381.02 12583.70 14989.51 12668.21 13184.28 25690.09 15870.79 19581.26 12785.62 26863.15 14694.29 11675.62 14588.87 12788.59 268
PAPR81.66 12580.89 12883.99 14190.27 10364.00 22286.76 19191.77 10968.84 24677.13 19889.50 16067.63 10194.88 9967.55 22388.52 13593.09 104
UniMVSNet (Re)81.60 12681.11 12383.09 17188.38 17564.41 21687.60 16093.02 4578.42 3278.56 16188.16 19969.78 7793.26 16569.58 20576.49 29191.60 152
FC-MVSNet-test81.52 12782.02 11280.03 24888.42 17455.97 33887.95 15093.42 2977.10 5977.38 18690.98 13469.96 7591.79 22668.46 21784.50 18692.33 132
VDDNet81.52 12780.67 13084.05 13690.44 10164.13 22189.73 8485.91 26471.11 18983.18 10193.48 6350.54 28593.49 15573.40 16788.25 13894.54 36
ACMP74.13 681.51 12980.57 13184.36 11289.42 13068.69 11989.97 7791.50 11874.46 12275.04 25290.41 14153.82 24594.54 10977.56 12382.91 21689.86 225
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
jason81.39 13080.29 13884.70 10286.63 23569.90 8885.95 21286.77 25063.24 31581.07 12989.47 16261.08 18492.15 21478.33 11790.07 11192.05 145
jason: jason.
lupinMVS81.39 13080.27 13984.76 10187.35 21570.21 8085.55 22486.41 25562.85 32281.32 12388.61 18561.68 16892.24 21278.41 11690.26 10691.83 148
test_yl81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DCV-MVSNet81.17 13280.47 13483.24 16489.13 14663.62 22886.21 20689.95 16272.43 16881.78 11989.61 15757.50 21593.58 14970.75 19086.90 15592.52 125
DU-MVS81.12 13480.52 13382.90 18187.80 20163.46 23587.02 17991.87 10379.01 2678.38 16589.07 17265.02 12993.05 18270.05 19876.46 29292.20 139
PVSNet_Blended80.98 13580.34 13682.90 18188.85 15365.40 19184.43 25292.00 9567.62 26178.11 17285.05 28266.02 12094.27 11871.52 18289.50 11889.01 250
FA-MVS(test-final)80.96 13679.91 14484.10 12588.30 17865.01 20084.55 24790.01 16073.25 15579.61 14387.57 21258.35 20794.72 10571.29 18686.25 16692.56 124
QAPM80.88 13779.50 15385.03 8988.01 19268.97 10791.59 4392.00 9566.63 27675.15 24892.16 9357.70 21295.45 6863.52 25488.76 13090.66 185
TranMVSNet+NR-MVSNet80.84 13880.31 13782.42 19687.85 19862.33 25587.74 15891.33 12080.55 977.99 17689.86 15065.23 12792.62 19267.05 23075.24 31992.30 134
UGNet80.83 13979.59 15184.54 10588.04 18968.09 13389.42 9588.16 21576.95 6276.22 21689.46 16449.30 30093.94 13168.48 21690.31 10491.60 152
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Fast-Effi-MVS+80.81 14079.92 14383.47 15488.85 15364.51 21185.53 22689.39 17870.79 19578.49 16385.06 28167.54 10293.58 14967.03 23186.58 16092.32 133
XVG-OURS-SEG-HR80.81 14079.76 14783.96 14385.60 25168.78 11183.54 27190.50 14370.66 20176.71 20491.66 10460.69 18991.26 24876.94 13181.58 23291.83 148
xiu_mvs_v1_base_debu80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
xiu_mvs_v1_base_debi80.80 14279.72 14884.03 13887.35 21570.19 8285.56 22188.77 20369.06 24081.83 11588.16 19950.91 27992.85 18878.29 11887.56 14589.06 245
ACMM73.20 880.78 14579.84 14683.58 15289.31 13868.37 12689.99 7691.60 11270.28 20877.25 18989.66 15553.37 25093.53 15474.24 15982.85 21788.85 258
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
114514_t80.68 14679.51 15284.20 12294.09 3867.27 15689.64 8791.11 12858.75 35974.08 26690.72 13658.10 20895.04 9269.70 20389.42 12090.30 201
CANet_DTU80.61 14779.87 14582.83 18385.60 25163.17 24487.36 16888.65 20976.37 8175.88 22388.44 19153.51 24893.07 18173.30 16889.74 11692.25 136
VPA-MVSNet80.60 14880.55 13280.76 23488.07 18860.80 27586.86 18591.58 11375.67 9580.24 13689.45 16663.34 14090.25 26870.51 19479.22 26291.23 165
mvsmamba80.60 14879.38 15584.27 11989.74 12067.24 15887.47 16486.95 24570.02 21375.38 23688.93 17551.24 27692.56 19775.47 14989.22 12293.00 112
PVSNet_BlendedMVS80.60 14880.02 14182.36 19888.85 15365.40 19186.16 20892.00 9569.34 23078.11 17286.09 25866.02 12094.27 11871.52 18282.06 22787.39 292
AdaColmapbinary80.58 15179.42 15484.06 13393.09 5768.91 10889.36 9988.97 19869.27 23175.70 22689.69 15457.20 21995.77 5963.06 25988.41 13787.50 291
EI-MVSNet80.52 15279.98 14282.12 19984.28 27663.19 24386.41 19988.95 19974.18 13078.69 15687.54 21566.62 10992.43 20272.57 17780.57 24590.74 183
XVG-OURS80.41 15379.23 16183.97 14285.64 24969.02 10583.03 28290.39 14571.09 19077.63 18291.49 11354.62 23991.35 24675.71 14383.47 20991.54 155
SDMVSNet80.38 15480.18 14080.99 22889.03 15164.94 20380.45 31489.40 17775.19 10376.61 20889.98 14860.61 19387.69 31176.83 13383.55 20790.33 199
PCF-MVS73.52 780.38 15478.84 16985.01 9087.71 20668.99 10683.65 26691.46 11963.00 31977.77 18090.28 14266.10 11795.09 9161.40 27888.22 13990.94 176
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
X-MVStestdata80.37 15677.83 19288.00 1794.42 2073.33 1992.78 1892.99 4979.14 2183.67 9612.47 42267.45 10396.60 3383.06 7194.50 5194.07 54
test_djsdf80.30 15779.32 15883.27 16283.98 28465.37 19490.50 6490.38 14668.55 25076.19 21788.70 18156.44 22593.46 15878.98 10980.14 25190.97 175
v2v48280.23 15879.29 15983.05 17483.62 29264.14 22087.04 17789.97 16173.61 14278.18 17187.22 22361.10 18393.82 13976.11 13876.78 28991.18 166
NR-MVSNet80.23 15879.38 15582.78 18987.80 20163.34 23886.31 20391.09 12979.01 2672.17 29089.07 17267.20 10692.81 19166.08 23775.65 30592.20 139
Anonymous2024052980.19 16078.89 16884.10 12590.60 9764.75 20888.95 11390.90 13265.97 28480.59 13391.17 12449.97 29093.73 14769.16 20982.70 22193.81 69
IterMVS-LS80.06 16179.38 15582.11 20085.89 24563.20 24286.79 18889.34 17974.19 12975.45 23386.72 23566.62 10992.39 20472.58 17676.86 28690.75 182
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Effi-MVS+-dtu80.03 16278.57 17384.42 11085.13 26268.74 11488.77 11988.10 21774.99 10774.97 25383.49 31457.27 21893.36 16273.53 16480.88 23991.18 166
v114480.03 16279.03 16583.01 17683.78 28964.51 21187.11 17690.57 14271.96 17478.08 17486.20 25561.41 17593.94 13174.93 15277.23 28090.60 188
v879.97 16479.02 16682.80 18684.09 28164.50 21387.96 14990.29 15374.13 13275.24 24586.81 23262.88 15193.89 13874.39 15775.40 31490.00 217
OpenMVScopyleft72.83 1079.77 16578.33 18084.09 12985.17 25869.91 8790.57 6190.97 13066.70 27072.17 29091.91 9754.70 23793.96 12861.81 27590.95 9788.41 273
v1079.74 16678.67 17082.97 17984.06 28264.95 20287.88 15590.62 13973.11 15775.11 24986.56 24661.46 17494.05 12773.68 16275.55 30789.90 223
ECVR-MVScopyleft79.61 16779.26 16080.67 23690.08 10854.69 35387.89 15477.44 36274.88 11180.27 13592.79 8448.96 30692.45 20168.55 21592.50 7794.86 18
BH-RMVSNet79.61 16778.44 17683.14 16989.38 13465.93 17984.95 23787.15 24273.56 14478.19 17089.79 15256.67 22393.36 16259.53 29386.74 15890.13 207
v119279.59 16978.43 17783.07 17383.55 29464.52 21086.93 18390.58 14070.83 19477.78 17985.90 25959.15 20293.94 13173.96 16177.19 28290.76 181
ab-mvs79.51 17078.97 16781.14 22488.46 17160.91 27383.84 26289.24 18570.36 20579.03 15088.87 17863.23 14490.21 26965.12 24482.57 22292.28 135
WR-MVS79.49 17179.22 16280.27 24488.79 15958.35 29885.06 23488.61 21178.56 3077.65 18188.34 19363.81 13990.66 26464.98 24677.22 28191.80 150
v14419279.47 17278.37 17882.78 18983.35 29763.96 22386.96 18090.36 14969.99 21577.50 18385.67 26660.66 19193.77 14374.27 15876.58 29090.62 186
BH-untuned79.47 17278.60 17282.05 20189.19 14465.91 18086.07 21088.52 21272.18 17075.42 23487.69 20961.15 18293.54 15360.38 28586.83 15786.70 311
test111179.43 17479.18 16380.15 24689.99 11353.31 36687.33 17077.05 36675.04 10680.23 13792.77 8648.97 30592.33 20968.87 21292.40 7994.81 21
mvs_anonymous79.42 17579.11 16480.34 24284.45 27557.97 30582.59 28487.62 23067.40 26576.17 22088.56 18868.47 9289.59 28070.65 19386.05 17093.47 88
thisisatest053079.40 17677.76 19784.31 11587.69 20865.10 19987.36 16884.26 28570.04 21277.42 18588.26 19749.94 29194.79 10370.20 19684.70 18493.03 109
tttt051779.40 17677.91 18983.90 14588.10 18663.84 22588.37 13684.05 28771.45 18376.78 20289.12 17149.93 29394.89 9870.18 19783.18 21492.96 114
V4279.38 17878.24 18282.83 18381.10 34465.50 19085.55 22489.82 16471.57 18178.21 16986.12 25760.66 19193.18 17575.64 14475.46 31189.81 228
jajsoiax79.29 17977.96 18783.27 16284.68 26966.57 16989.25 10290.16 15669.20 23675.46 23289.49 16145.75 33193.13 17876.84 13280.80 24190.11 209
v192192079.22 18078.03 18682.80 18683.30 29963.94 22486.80 18790.33 15069.91 21877.48 18485.53 26958.44 20693.75 14573.60 16376.85 28790.71 184
AUN-MVS79.21 18177.60 20284.05 13688.71 16367.61 14585.84 21787.26 23969.08 23977.23 19188.14 20353.20 25293.47 15775.50 14873.45 33691.06 170
TAPA-MVS73.13 979.15 18277.94 18882.79 18889.59 12262.99 24988.16 14491.51 11565.77 28577.14 19791.09 12660.91 18693.21 16950.26 35687.05 15392.17 141
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_tets79.13 18377.77 19683.22 16684.70 26866.37 17189.17 10390.19 15569.38 22975.40 23589.46 16444.17 34193.15 17676.78 13480.70 24390.14 206
UniMVSNet_ETH3D79.10 18478.24 18281.70 20886.85 22860.24 28487.28 17288.79 20274.25 12876.84 19990.53 14049.48 29691.56 23567.98 21982.15 22593.29 94
CDS-MVSNet79.07 18577.70 19983.17 16887.60 21068.23 13084.40 25486.20 26067.49 26376.36 21386.54 24761.54 17190.79 26161.86 27487.33 14990.49 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER79.01 18677.88 19182.38 19783.07 30664.80 20784.08 26188.95 19969.01 24378.69 15687.17 22654.70 23792.43 20274.69 15380.57 24589.89 224
v124078.99 18777.78 19582.64 19283.21 30163.54 23286.62 19490.30 15269.74 22577.33 18785.68 26557.04 22093.76 14473.13 17176.92 28490.62 186
Anonymous2023121178.97 18877.69 20082.81 18590.54 9964.29 21890.11 7591.51 11565.01 29676.16 22188.13 20450.56 28493.03 18569.68 20477.56 27991.11 168
v7n78.97 18877.58 20383.14 16983.45 29665.51 18988.32 13891.21 12373.69 14072.41 28686.32 25357.93 20993.81 14069.18 20875.65 30590.11 209
TAMVS78.89 19077.51 20483.03 17587.80 20167.79 14184.72 24185.05 27467.63 26076.75 20387.70 20862.25 16090.82 26058.53 30487.13 15290.49 193
c3_l78.75 19177.91 18981.26 22082.89 31361.56 26684.09 26089.13 19169.97 21675.56 22884.29 29666.36 11492.09 21673.47 16675.48 30990.12 208
tt080578.73 19277.83 19281.43 21485.17 25860.30 28389.41 9690.90 13271.21 18777.17 19688.73 18046.38 32093.21 16972.57 17778.96 26390.79 179
v14878.72 19377.80 19481.47 21382.73 31661.96 26186.30 20488.08 21873.26 15476.18 21885.47 27162.46 15692.36 20671.92 18173.82 33390.09 211
VPNet78.69 19478.66 17178.76 27188.31 17755.72 34284.45 25186.63 25276.79 6778.26 16890.55 13959.30 20189.70 27966.63 23277.05 28390.88 177
ET-MVSNet_ETH3D78.63 19576.63 22584.64 10386.73 23269.47 9585.01 23584.61 27869.54 22666.51 35286.59 24350.16 28891.75 22876.26 13784.24 19492.69 120
anonymousdsp78.60 19677.15 21082.98 17880.51 35067.08 16187.24 17389.53 17465.66 28775.16 24787.19 22552.52 25392.25 21177.17 12879.34 26089.61 233
miper_ehance_all_eth78.59 19777.76 19781.08 22682.66 31861.56 26683.65 26689.15 18968.87 24575.55 22983.79 30766.49 11292.03 21773.25 16976.39 29489.64 232
WR-MVS_H78.51 19878.49 17478.56 27688.02 19056.38 33288.43 13192.67 6777.14 5773.89 26787.55 21466.25 11689.24 28758.92 29973.55 33590.06 215
GBi-Net78.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
test178.40 19977.40 20581.40 21687.60 21063.01 24588.39 13389.28 18171.63 17775.34 23887.28 21954.80 23391.11 25162.72 26179.57 25590.09 211
Vis-MVSNet (Re-imp)78.36 20178.45 17578.07 28788.64 16551.78 37686.70 19279.63 34774.14 13175.11 24990.83 13561.29 17989.75 27758.10 30991.60 8892.69 120
Anonymous20240521178.25 20277.01 21281.99 20391.03 8760.67 27784.77 24083.90 28970.65 20280.00 13991.20 12241.08 36091.43 24465.21 24385.26 17893.85 65
CP-MVSNet78.22 20378.34 17977.84 28987.83 20054.54 35587.94 15191.17 12577.65 3973.48 27288.49 18962.24 16188.43 30262.19 26974.07 32890.55 190
BH-w/o78.21 20477.33 20880.84 23288.81 15765.13 19884.87 23887.85 22669.75 22374.52 26184.74 28861.34 17793.11 17958.24 30885.84 17484.27 348
FMVSNet278.20 20577.21 20981.20 22287.60 21062.89 25187.47 16489.02 19471.63 17775.29 24487.28 21954.80 23391.10 25462.38 26679.38 25989.61 233
MVS78.19 20676.99 21481.78 20685.66 24866.99 16284.66 24290.47 14455.08 37972.02 29285.27 27463.83 13894.11 12666.10 23689.80 11584.24 349
Baseline_NR-MVSNet78.15 20778.33 18077.61 29485.79 24656.21 33686.78 18985.76 26673.60 14377.93 17787.57 21265.02 12988.99 29167.14 22975.33 31687.63 286
CNLPA78.08 20876.79 21981.97 20490.40 10271.07 6587.59 16184.55 27966.03 28372.38 28789.64 15657.56 21486.04 32459.61 29283.35 21188.79 261
cl2278.07 20977.01 21281.23 22182.37 32561.83 26383.55 27087.98 22068.96 24475.06 25183.87 30361.40 17691.88 22473.53 16476.39 29489.98 220
PLCcopyleft70.83 1178.05 21076.37 23083.08 17291.88 7767.80 14088.19 14289.46 17664.33 30469.87 31688.38 19253.66 24693.58 14958.86 30082.73 21987.86 282
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu78.02 21176.49 22682.62 19383.16 30566.96 16586.94 18287.45 23572.45 16571.49 29884.17 30054.79 23691.58 23367.61 22280.31 24889.30 241
PS-CasMVS78.01 21278.09 18577.77 29187.71 20654.39 35788.02 14791.22 12277.50 4773.26 27488.64 18460.73 18788.41 30361.88 27373.88 33290.53 191
HY-MVS69.67 1277.95 21377.15 21080.36 24187.57 21460.21 28583.37 27387.78 22866.11 28075.37 23787.06 23063.27 14290.48 26661.38 27982.43 22390.40 197
eth_miper_zixun_eth77.92 21476.69 22381.61 21183.00 30961.98 26083.15 27689.20 18769.52 22774.86 25584.35 29561.76 16792.56 19771.50 18472.89 34190.28 202
FMVSNet377.88 21576.85 21780.97 23086.84 22962.36 25486.52 19788.77 20371.13 18875.34 23886.66 24154.07 24391.10 25462.72 26179.57 25589.45 237
miper_enhance_ethall77.87 21676.86 21680.92 23181.65 33261.38 26882.68 28388.98 19665.52 28975.47 23082.30 33465.76 12492.00 21972.95 17276.39 29489.39 238
FE-MVS77.78 21775.68 23684.08 13088.09 18766.00 17783.13 27787.79 22768.42 25478.01 17585.23 27645.50 33495.12 8559.11 29785.83 17591.11 168
PEN-MVS77.73 21877.69 20077.84 28987.07 22653.91 36087.91 15391.18 12477.56 4473.14 27688.82 17961.23 18089.17 28859.95 28872.37 34390.43 195
cl____77.72 21976.76 22080.58 23782.49 32260.48 28083.09 27887.87 22469.22 23474.38 26485.22 27762.10 16391.53 23871.09 18775.41 31389.73 231
DIV-MVS_self_test77.72 21976.76 22080.58 23782.48 32360.48 28083.09 27887.86 22569.22 23474.38 26485.24 27562.10 16391.53 23871.09 18775.40 31489.74 230
sd_testset77.70 22177.40 20578.60 27489.03 15160.02 28679.00 33385.83 26575.19 10376.61 20889.98 14854.81 23285.46 33262.63 26583.55 20790.33 199
PAPM77.68 22276.40 22981.51 21287.29 22261.85 26283.78 26389.59 17264.74 29871.23 29988.70 18162.59 15393.66 14852.66 34187.03 15489.01 250
CHOSEN 1792x268877.63 22375.69 23583.44 15589.98 11468.58 12278.70 33887.50 23356.38 37475.80 22586.84 23158.67 20491.40 24561.58 27785.75 17690.34 198
HyFIR lowres test77.53 22475.40 24383.94 14489.59 12266.62 16780.36 31588.64 21056.29 37576.45 21085.17 27857.64 21393.28 16461.34 28083.10 21591.91 147
FMVSNet177.44 22576.12 23281.40 21686.81 23063.01 24588.39 13389.28 18170.49 20474.39 26387.28 21949.06 30491.11 25160.91 28278.52 26690.09 211
TR-MVS77.44 22576.18 23181.20 22288.24 17963.24 24084.61 24586.40 25667.55 26277.81 17886.48 24954.10 24293.15 17657.75 31282.72 22087.20 297
1112_ss77.40 22776.43 22880.32 24389.11 15060.41 28283.65 26687.72 22962.13 33273.05 27786.72 23562.58 15489.97 27362.11 27280.80 24190.59 189
thisisatest051577.33 22875.38 24483.18 16785.27 25763.80 22682.11 28983.27 29965.06 29475.91 22283.84 30549.54 29594.27 11867.24 22786.19 16791.48 159
test250677.30 22976.49 22679.74 25490.08 10852.02 37087.86 15663.10 40874.88 11180.16 13892.79 8438.29 37492.35 20768.74 21492.50 7794.86 18
pm-mvs177.25 23076.68 22478.93 26984.22 27858.62 29686.41 19988.36 21471.37 18473.31 27388.01 20561.22 18189.15 28964.24 25273.01 34089.03 249
LCM-MVSNet-Re77.05 23176.94 21577.36 29887.20 22351.60 37780.06 31880.46 33775.20 10267.69 33486.72 23562.48 15588.98 29263.44 25689.25 12191.51 156
DTE-MVSNet76.99 23276.80 21877.54 29786.24 23853.06 36987.52 16290.66 13877.08 6072.50 28488.67 18360.48 19589.52 28157.33 31670.74 35590.05 216
baseline176.98 23376.75 22277.66 29288.13 18455.66 34385.12 23281.89 32073.04 15976.79 20188.90 17662.43 15787.78 31063.30 25871.18 35389.55 235
LS3D76.95 23474.82 25183.37 15990.45 10067.36 15389.15 10786.94 24661.87 33469.52 31990.61 13851.71 27294.53 11046.38 37786.71 15988.21 276
GA-MVS76.87 23575.17 24881.97 20482.75 31562.58 25281.44 29886.35 25872.16 17274.74 25682.89 32546.20 32592.02 21868.85 21381.09 23791.30 164
mamv476.81 23678.23 18472.54 34686.12 24265.75 18678.76 33782.07 31964.12 30672.97 27891.02 13167.97 9768.08 41083.04 7378.02 27383.80 356
DP-MVS76.78 23774.57 25383.42 15693.29 4869.46 9788.55 12983.70 29163.98 31170.20 30788.89 17754.01 24494.80 10246.66 37481.88 23086.01 323
cascas76.72 23874.64 25282.99 17785.78 24765.88 18182.33 28689.21 18660.85 34072.74 28081.02 34547.28 31393.75 14567.48 22485.02 17989.34 240
testing9176.54 23975.66 23879.18 26688.43 17355.89 33981.08 30183.00 30773.76 13975.34 23884.29 29646.20 32590.07 27164.33 25084.50 18691.58 154
131476.53 24075.30 24780.21 24583.93 28562.32 25684.66 24288.81 20160.23 34470.16 31084.07 30255.30 23090.73 26367.37 22583.21 21387.59 289
thres100view90076.50 24175.55 24079.33 26289.52 12556.99 32185.83 21883.23 30073.94 13476.32 21487.12 22751.89 26891.95 22048.33 36583.75 20189.07 243
thres600view776.50 24175.44 24179.68 25689.40 13257.16 31885.53 22683.23 30073.79 13876.26 21587.09 22851.89 26891.89 22348.05 37083.72 20490.00 217
thres40076.50 24175.37 24579.86 25189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20190.00 217
MonoMVSNet76.49 24475.80 23378.58 27581.55 33558.45 29786.36 20286.22 25974.87 11374.73 25783.73 30951.79 27188.73 29770.78 18972.15 34688.55 270
tfpn200view976.42 24575.37 24579.55 26189.13 14657.65 31285.17 22983.60 29273.41 15076.45 21086.39 25152.12 26091.95 22048.33 36583.75 20189.07 243
Test_1112_low_res76.40 24675.44 24179.27 26389.28 14058.09 30181.69 29387.07 24359.53 35172.48 28586.67 24061.30 17889.33 28460.81 28480.15 25090.41 196
F-COLMAP76.38 24774.33 25982.50 19589.28 14066.95 16688.41 13289.03 19364.05 30966.83 34488.61 18546.78 31792.89 18757.48 31378.55 26587.67 285
LTVRE_ROB69.57 1376.25 24874.54 25581.41 21588.60 16664.38 21779.24 32889.12 19270.76 19769.79 31887.86 20649.09 30393.20 17256.21 32680.16 24986.65 312
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVP-Stereo76.12 24974.46 25781.13 22585.37 25669.79 8984.42 25387.95 22265.03 29567.46 33785.33 27353.28 25191.73 23058.01 31083.27 21281.85 375
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
XVG-ACMP-BASELINE76.11 25074.27 26081.62 20983.20 30264.67 20983.60 26989.75 16769.75 22371.85 29387.09 22832.78 38792.11 21569.99 20080.43 24788.09 278
testing9976.09 25175.12 24979.00 26788.16 18155.50 34580.79 30581.40 32673.30 15375.17 24684.27 29844.48 33990.02 27264.28 25184.22 19591.48 159
ACMH+68.96 1476.01 25274.01 26182.03 20288.60 16665.31 19588.86 11687.55 23170.25 21067.75 33387.47 21741.27 35893.19 17458.37 30675.94 30287.60 287
ACMH67.68 1675.89 25373.93 26381.77 20788.71 16366.61 16888.62 12789.01 19569.81 21966.78 34586.70 23941.95 35791.51 24055.64 32778.14 27287.17 298
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IB-MVS68.01 1575.85 25473.36 27083.31 16084.76 26766.03 17583.38 27285.06 27370.21 21169.40 32081.05 34445.76 33094.66 10865.10 24575.49 30889.25 242
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline275.70 25573.83 26681.30 21983.26 30061.79 26482.57 28580.65 33366.81 26766.88 34383.42 31557.86 21192.19 21363.47 25579.57 25589.91 222
WTY-MVS75.65 25675.68 23675.57 31486.40 23756.82 32377.92 35082.40 31565.10 29376.18 21887.72 20763.13 14980.90 36260.31 28681.96 22889.00 252
thres20075.55 25774.47 25678.82 27087.78 20457.85 30883.07 28083.51 29572.44 16775.84 22484.42 29152.08 26391.75 22847.41 37283.64 20686.86 307
test_vis1_n_192075.52 25875.78 23474.75 32779.84 35857.44 31683.26 27485.52 26862.83 32379.34 14886.17 25645.10 33679.71 36678.75 11181.21 23687.10 304
EPNet_dtu75.46 25974.86 25077.23 30182.57 32054.60 35486.89 18483.09 30471.64 17666.25 35485.86 26155.99 22688.04 30754.92 33086.55 16189.05 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT75.43 26073.87 26580.11 24782.69 31764.85 20681.57 29583.47 29669.16 23770.49 30484.15 30151.95 26688.15 30569.23 20772.14 34787.34 294
XXY-MVS75.41 26175.56 23974.96 32383.59 29357.82 30980.59 31183.87 29066.54 27774.93 25488.31 19463.24 14380.09 36562.16 27076.85 28786.97 305
reproduce_monomvs75.40 26274.38 25878.46 28183.92 28657.80 31083.78 26386.94 24673.47 14872.25 28984.47 29038.74 37089.27 28675.32 15070.53 35688.31 274
TransMVSNet (Re)75.39 26374.56 25477.86 28885.50 25357.10 32086.78 18986.09 26372.17 17171.53 29787.34 21863.01 15089.31 28556.84 32161.83 38287.17 298
CostFormer75.24 26473.90 26479.27 26382.65 31958.27 30080.80 30482.73 31361.57 33575.33 24283.13 32055.52 22891.07 25764.98 24678.34 27188.45 271
testing1175.14 26574.01 26178.53 27888.16 18156.38 33280.74 30880.42 33870.67 19872.69 28383.72 31043.61 34589.86 27462.29 26883.76 20089.36 239
D2MVS74.82 26673.21 27179.64 25879.81 35962.56 25380.34 31687.35 23664.37 30368.86 32582.66 32946.37 32190.10 27067.91 22081.24 23586.25 316
pmmvs674.69 26773.39 26978.61 27381.38 33957.48 31586.64 19387.95 22264.99 29770.18 30886.61 24250.43 28689.52 28162.12 27170.18 35888.83 259
tfpnnormal74.39 26873.16 27278.08 28686.10 24458.05 30284.65 24487.53 23270.32 20771.22 30085.63 26754.97 23189.86 27443.03 38875.02 32186.32 315
IterMVS74.29 26972.94 27578.35 28281.53 33663.49 23481.58 29482.49 31468.06 25869.99 31383.69 31151.66 27385.54 33065.85 23971.64 35086.01 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OurMVSNet-221017-074.26 27072.42 28179.80 25383.76 29059.59 29185.92 21486.64 25166.39 27866.96 34287.58 21139.46 36691.60 23265.76 24069.27 36188.22 275
SCA74.22 27172.33 28279.91 25084.05 28362.17 25879.96 32179.29 35066.30 27972.38 28780.13 35551.95 26688.60 30059.25 29577.67 27888.96 254
mmtdpeth74.16 27273.01 27477.60 29683.72 29161.13 26985.10 23385.10 27272.06 17377.21 19580.33 35343.84 34385.75 32677.14 12952.61 40085.91 326
miper_lstm_enhance74.11 27373.11 27377.13 30280.11 35459.62 29072.23 37886.92 24866.76 26970.40 30582.92 32456.93 22182.92 35169.06 21072.63 34288.87 257
testing22274.04 27472.66 27878.19 28487.89 19655.36 34681.06 30279.20 35171.30 18574.65 25983.57 31339.11 36988.67 29951.43 34885.75 17690.53 191
EG-PatchMatch MVS74.04 27471.82 28680.71 23584.92 26567.42 15085.86 21688.08 21866.04 28264.22 36683.85 30435.10 38392.56 19757.44 31480.83 24082.16 374
pmmvs474.03 27671.91 28580.39 24081.96 32868.32 12781.45 29782.14 31759.32 35269.87 31685.13 27952.40 25688.13 30660.21 28774.74 32484.73 345
MS-PatchMatch73.83 27772.67 27777.30 30083.87 28766.02 17681.82 29084.66 27761.37 33868.61 32882.82 32747.29 31288.21 30459.27 29484.32 19377.68 390
test_cas_vis1_n_192073.76 27873.74 26773.81 33575.90 37959.77 28880.51 31282.40 31558.30 36181.62 12185.69 26444.35 34076.41 38476.29 13678.61 26485.23 336
sss73.60 27973.64 26873.51 33782.80 31455.01 35176.12 35781.69 32362.47 32874.68 25885.85 26257.32 21778.11 37360.86 28380.93 23887.39 292
RPMNet73.51 28070.49 30282.58 19481.32 34265.19 19675.92 35992.27 8457.60 36772.73 28176.45 38252.30 25795.43 7048.14 36977.71 27687.11 302
WBMVS73.43 28172.81 27675.28 32087.91 19550.99 38378.59 34181.31 32865.51 29174.47 26284.83 28546.39 31986.68 31758.41 30577.86 27488.17 277
SixPastTwentyTwo73.37 28271.26 29579.70 25585.08 26357.89 30785.57 22083.56 29471.03 19265.66 35685.88 26042.10 35592.57 19659.11 29763.34 38088.65 267
CR-MVSNet73.37 28271.27 29479.67 25781.32 34265.19 19675.92 35980.30 34059.92 34772.73 28181.19 34252.50 25486.69 31659.84 28977.71 27687.11 302
MSDG73.36 28470.99 29780.49 23984.51 27465.80 18380.71 30986.13 26265.70 28665.46 35783.74 30844.60 33790.91 25951.13 34976.89 28584.74 344
tpm273.26 28571.46 29078.63 27283.34 29856.71 32680.65 31080.40 33956.63 37373.55 27182.02 33951.80 27091.24 24956.35 32578.42 26987.95 279
RPSCF73.23 28671.46 29078.54 27782.50 32159.85 28782.18 28882.84 31258.96 35671.15 30189.41 16845.48 33584.77 33958.82 30171.83 34991.02 174
PatchmatchNetpermissive73.12 28771.33 29378.49 28083.18 30360.85 27479.63 32378.57 35464.13 30571.73 29479.81 36051.20 27785.97 32557.40 31576.36 29988.66 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
UBG73.08 28872.27 28375.51 31688.02 19051.29 38178.35 34577.38 36365.52 28973.87 26882.36 33245.55 33286.48 32055.02 32984.39 19288.75 263
COLMAP_ROBcopyleft66.92 1773.01 28970.41 30480.81 23387.13 22565.63 18788.30 13984.19 28662.96 32063.80 37087.69 20938.04 37592.56 19746.66 37474.91 32284.24 349
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CVMVSNet72.99 29072.58 27974.25 33184.28 27650.85 38486.41 19983.45 29744.56 39973.23 27587.54 21549.38 29885.70 32765.90 23878.44 26886.19 318
test-LLR72.94 29172.43 28074.48 32881.35 34058.04 30378.38 34277.46 36066.66 27169.95 31479.00 36648.06 30979.24 36766.13 23484.83 18186.15 319
test_040272.79 29270.44 30379.84 25288.13 18465.99 17885.93 21384.29 28365.57 28867.40 33985.49 27046.92 31692.61 19335.88 40274.38 32780.94 380
tpmrst72.39 29372.13 28473.18 34180.54 34949.91 38879.91 32279.08 35263.11 31771.69 29579.95 35755.32 22982.77 35265.66 24173.89 33186.87 306
PatchMatch-RL72.38 29470.90 29876.80 30588.60 16667.38 15279.53 32476.17 37262.75 32569.36 32182.00 34045.51 33384.89 33853.62 33680.58 24478.12 389
CL-MVSNet_self_test72.37 29571.46 29075.09 32279.49 36553.53 36280.76 30785.01 27569.12 23870.51 30382.05 33857.92 21084.13 34252.27 34366.00 37487.60 287
tpm72.37 29571.71 28774.35 33082.19 32652.00 37179.22 32977.29 36464.56 30072.95 27983.68 31251.35 27483.26 35058.33 30775.80 30387.81 283
ETVMVS72.25 29771.05 29675.84 31087.77 20551.91 37379.39 32674.98 37569.26 23273.71 26982.95 32340.82 36286.14 32346.17 37884.43 19189.47 236
UWE-MVS72.13 29871.49 28974.03 33386.66 23447.70 39281.40 29976.89 36863.60 31475.59 22784.22 29939.94 36585.62 32948.98 36286.13 16988.77 262
PVSNet64.34 1872.08 29970.87 29975.69 31286.21 23956.44 33074.37 37280.73 33262.06 33370.17 30982.23 33642.86 34983.31 34954.77 33184.45 19087.32 295
WB-MVSnew71.96 30071.65 28872.89 34284.67 27251.88 37482.29 28777.57 35962.31 32973.67 27083.00 32253.49 24981.10 36145.75 38182.13 22685.70 329
pmmvs571.55 30170.20 30775.61 31377.83 37256.39 33181.74 29280.89 32957.76 36567.46 33784.49 28949.26 30185.32 33457.08 31875.29 31785.11 340
test-mter71.41 30270.39 30574.48 32881.35 34058.04 30378.38 34277.46 36060.32 34369.95 31479.00 36636.08 38179.24 36766.13 23484.83 18186.15 319
K. test v371.19 30368.51 31579.21 26583.04 30857.78 31184.35 25576.91 36772.90 16262.99 37382.86 32639.27 36791.09 25661.65 27652.66 39988.75 263
dmvs_re71.14 30470.58 30072.80 34381.96 32859.68 28975.60 36379.34 34968.55 25069.27 32380.72 35049.42 29776.54 38152.56 34277.79 27582.19 373
tpmvs71.09 30569.29 31076.49 30682.04 32756.04 33778.92 33581.37 32764.05 30967.18 34178.28 37249.74 29489.77 27649.67 35972.37 34383.67 357
AllTest70.96 30668.09 32179.58 25985.15 26063.62 22884.58 24679.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
test_fmvs170.93 30770.52 30172.16 34873.71 39055.05 35080.82 30378.77 35351.21 39178.58 16084.41 29231.20 39276.94 37975.88 14280.12 25284.47 347
test_fmvs1_n70.86 30870.24 30672.73 34472.51 40155.28 34881.27 30079.71 34651.49 39078.73 15584.87 28427.54 39777.02 37876.06 13979.97 25385.88 327
Patchmtry70.74 30969.16 31275.49 31780.72 34654.07 35974.94 37080.30 34058.34 36070.01 31181.19 34252.50 25486.54 31853.37 33871.09 35485.87 328
MIMVSNet70.69 31069.30 30974.88 32484.52 27356.35 33475.87 36179.42 34864.59 29967.76 33282.41 33141.10 35981.54 35846.64 37681.34 23386.75 310
tpm cat170.57 31168.31 31777.35 29982.41 32457.95 30678.08 34780.22 34252.04 38668.54 32977.66 37752.00 26587.84 30951.77 34472.07 34886.25 316
OpenMVS_ROBcopyleft64.09 1970.56 31268.19 31877.65 29380.26 35159.41 29385.01 23582.96 30958.76 35865.43 35882.33 33337.63 37791.23 25045.34 38476.03 30182.32 371
pmmvs-eth3d70.50 31367.83 32678.52 27977.37 37566.18 17481.82 29081.51 32458.90 35763.90 36980.42 35242.69 35086.28 32258.56 30365.30 37683.11 363
USDC70.33 31468.37 31676.21 30880.60 34856.23 33579.19 33086.49 25460.89 33961.29 37885.47 27131.78 39089.47 28353.37 33876.21 30082.94 367
Patchmatch-RL test70.24 31567.78 32877.61 29477.43 37459.57 29271.16 38270.33 38962.94 32168.65 32772.77 39450.62 28385.49 33169.58 20566.58 37187.77 284
CMPMVSbinary51.72 2170.19 31668.16 31976.28 30773.15 39757.55 31479.47 32583.92 28848.02 39556.48 39584.81 28643.13 34786.42 32162.67 26481.81 23184.89 342
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test70.04 31767.34 33578.14 28579.80 36061.13 26979.19 33080.59 33459.16 35465.27 35979.29 36346.75 31887.29 31349.33 36066.72 36986.00 325
gg-mvs-nofinetune69.95 31867.96 32275.94 30983.07 30654.51 35677.23 35470.29 39063.11 31770.32 30662.33 40343.62 34488.69 29853.88 33587.76 14484.62 346
TESTMET0.1,169.89 31969.00 31372.55 34579.27 36856.85 32278.38 34274.71 37957.64 36668.09 33177.19 37937.75 37676.70 38063.92 25384.09 19684.10 352
test_vis1_n69.85 32069.21 31171.77 35072.66 40055.27 34981.48 29676.21 37152.03 38775.30 24383.20 31928.97 39576.22 38674.60 15478.41 27083.81 355
FMVSNet569.50 32167.96 32274.15 33282.97 31255.35 34780.01 32082.12 31862.56 32763.02 37181.53 34136.92 37881.92 35648.42 36474.06 32985.17 339
mvs5depth69.45 32267.45 33475.46 31873.93 38855.83 34079.19 33083.23 30066.89 26671.63 29683.32 31633.69 38685.09 33559.81 29055.34 39685.46 332
PMMVS69.34 32368.67 31471.35 35575.67 38162.03 25975.17 36573.46 38250.00 39268.68 32679.05 36452.07 26478.13 37261.16 28182.77 21873.90 396
our_test_369.14 32467.00 33775.57 31479.80 36058.80 29477.96 34877.81 35759.55 35062.90 37478.25 37347.43 31183.97 34351.71 34567.58 36883.93 354
EPMVS69.02 32568.16 31971.59 35179.61 36349.80 39077.40 35266.93 40062.82 32470.01 31179.05 36445.79 32977.86 37556.58 32375.26 31887.13 301
KD-MVS_self_test68.81 32667.59 33272.46 34774.29 38745.45 39877.93 34987.00 24463.12 31663.99 36878.99 36842.32 35284.77 33956.55 32464.09 37987.16 300
Anonymous2024052168.80 32767.22 33673.55 33674.33 38654.11 35883.18 27585.61 26758.15 36261.68 37780.94 34730.71 39381.27 36057.00 31973.34 33985.28 335
Anonymous2023120668.60 32867.80 32771.02 35880.23 35350.75 38578.30 34680.47 33656.79 37266.11 35582.63 33046.35 32278.95 36943.62 38775.70 30483.36 360
MIMVSNet168.58 32966.78 33973.98 33480.07 35551.82 37580.77 30684.37 28064.40 30259.75 38582.16 33736.47 37983.63 34642.73 38970.33 35786.48 314
testing368.56 33067.67 33071.22 35787.33 22042.87 40783.06 28171.54 38770.36 20569.08 32484.38 29330.33 39485.69 32837.50 40075.45 31285.09 341
EU-MVSNet68.53 33167.61 33171.31 35678.51 37147.01 39584.47 24884.27 28442.27 40266.44 35384.79 28740.44 36383.76 34458.76 30268.54 36683.17 361
PatchT68.46 33267.85 32470.29 36180.70 34743.93 40572.47 37774.88 37660.15 34570.55 30276.57 38149.94 29181.59 35750.58 35074.83 32385.34 334
test_fmvs268.35 33367.48 33370.98 35969.50 40451.95 37280.05 31976.38 37049.33 39374.65 25984.38 29323.30 40675.40 39474.51 15575.17 32085.60 330
Syy-MVS68.05 33467.85 32468.67 37084.68 26940.97 41378.62 33973.08 38466.65 27466.74 34679.46 36152.11 26282.30 35432.89 40576.38 29782.75 368
test0.0.03 168.00 33567.69 32968.90 36777.55 37347.43 39375.70 36272.95 38666.66 27166.56 34882.29 33548.06 30975.87 38944.97 38574.51 32683.41 359
TDRefinement67.49 33664.34 34676.92 30373.47 39461.07 27184.86 23982.98 30859.77 34858.30 38985.13 27926.06 39887.89 30847.92 37160.59 38781.81 376
test20.0367.45 33766.95 33868.94 36675.48 38344.84 40377.50 35177.67 35866.66 27163.01 37283.80 30647.02 31578.40 37142.53 39168.86 36583.58 358
UnsupCasMVSNet_eth67.33 33865.99 34271.37 35373.48 39351.47 37975.16 36685.19 27165.20 29260.78 38080.93 34942.35 35177.20 37757.12 31753.69 39885.44 333
TinyColmap67.30 33964.81 34474.76 32681.92 33056.68 32780.29 31781.49 32560.33 34256.27 39683.22 31724.77 40287.66 31245.52 38269.47 36079.95 385
myMVS_eth3d67.02 34066.29 34169.21 36584.68 26942.58 40878.62 33973.08 38466.65 27466.74 34679.46 36131.53 39182.30 35439.43 39776.38 29782.75 368
dp66.80 34165.43 34370.90 36079.74 36248.82 39175.12 36874.77 37759.61 34964.08 36777.23 37842.89 34880.72 36348.86 36366.58 37183.16 362
MDA-MVSNet-bldmvs66.68 34263.66 35175.75 31179.28 36760.56 27973.92 37478.35 35564.43 30150.13 40479.87 35944.02 34283.67 34546.10 37956.86 39083.03 365
testgi66.67 34366.53 34067.08 37775.62 38241.69 41275.93 35876.50 36966.11 28065.20 36286.59 24335.72 38274.71 39643.71 38673.38 33884.84 343
CHOSEN 280x42066.51 34464.71 34571.90 34981.45 33763.52 23357.98 41268.95 39653.57 38262.59 37576.70 38046.22 32475.29 39555.25 32879.68 25476.88 392
PM-MVS66.41 34564.14 34773.20 34073.92 38956.45 32978.97 33464.96 40663.88 31364.72 36380.24 35419.84 41083.44 34866.24 23364.52 37879.71 386
JIA-IIPM66.32 34662.82 35776.82 30477.09 37661.72 26565.34 40575.38 37358.04 36464.51 36462.32 40442.05 35686.51 31951.45 34769.22 36282.21 372
KD-MVS_2432*160066.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
miper_refine_blended66.22 34763.89 34973.21 33875.47 38453.42 36470.76 38584.35 28164.10 30766.52 35078.52 37034.55 38484.98 33650.40 35250.33 40381.23 378
ADS-MVSNet266.20 34963.33 35274.82 32579.92 35658.75 29567.55 39775.19 37453.37 38365.25 36075.86 38542.32 35280.53 36441.57 39268.91 36385.18 337
YYNet165.03 35062.91 35571.38 35275.85 38056.60 32869.12 39374.66 38057.28 37054.12 39877.87 37545.85 32874.48 39749.95 35761.52 38483.05 364
MDA-MVSNet_test_wron65.03 35062.92 35471.37 35375.93 37856.73 32469.09 39474.73 37857.28 37054.03 39977.89 37445.88 32774.39 39849.89 35861.55 38382.99 366
Patchmatch-test64.82 35263.24 35369.57 36379.42 36649.82 38963.49 40969.05 39551.98 38859.95 38480.13 35550.91 27970.98 40340.66 39473.57 33487.90 281
ADS-MVSNet64.36 35362.88 35668.78 36979.92 35647.17 39467.55 39771.18 38853.37 38365.25 36075.86 38542.32 35273.99 39941.57 39268.91 36385.18 337
LF4IMVS64.02 35462.19 35869.50 36470.90 40253.29 36776.13 35677.18 36552.65 38558.59 38780.98 34623.55 40576.52 38253.06 34066.66 37078.68 388
UnsupCasMVSNet_bld63.70 35561.53 36170.21 36273.69 39151.39 38072.82 37681.89 32055.63 37757.81 39171.80 39638.67 37178.61 37049.26 36152.21 40180.63 382
test_fmvs363.36 35661.82 35967.98 37462.51 41346.96 39677.37 35374.03 38145.24 39867.50 33678.79 36912.16 41872.98 40272.77 17566.02 37383.99 353
dmvs_testset62.63 35764.11 34858.19 38778.55 37024.76 42575.28 36465.94 40367.91 25960.34 38176.01 38453.56 24773.94 40031.79 40667.65 36775.88 394
mvsany_test162.30 35861.26 36265.41 37969.52 40354.86 35266.86 39949.78 41946.65 39668.50 33083.21 31849.15 30266.28 41156.93 32060.77 38575.11 395
new-patchmatchnet61.73 35961.73 36061.70 38372.74 39924.50 42669.16 39278.03 35661.40 33656.72 39475.53 38838.42 37276.48 38345.95 38057.67 38984.13 351
PVSNet_057.27 2061.67 36059.27 36368.85 36879.61 36357.44 31668.01 39573.44 38355.93 37658.54 38870.41 39944.58 33877.55 37647.01 37335.91 41171.55 399
test_vis1_rt60.28 36158.42 36465.84 37867.25 40755.60 34470.44 38760.94 41144.33 40059.00 38666.64 40124.91 40168.67 40862.80 26069.48 35973.25 397
ttmdpeth59.91 36257.10 36668.34 37267.13 40846.65 39774.64 37167.41 39948.30 39462.52 37685.04 28320.40 40875.93 38842.55 39045.90 40982.44 370
MVS-HIRNet59.14 36357.67 36563.57 38181.65 33243.50 40671.73 37965.06 40539.59 40651.43 40157.73 40938.34 37382.58 35339.53 39573.95 33064.62 405
pmmvs357.79 36454.26 36968.37 37164.02 41256.72 32575.12 36865.17 40440.20 40452.93 40069.86 40020.36 40975.48 39245.45 38355.25 39772.90 398
DSMNet-mixed57.77 36556.90 36760.38 38567.70 40635.61 41669.18 39153.97 41732.30 41557.49 39279.88 35840.39 36468.57 40938.78 39872.37 34376.97 391
MVStest156.63 36652.76 37268.25 37361.67 41453.25 36871.67 38068.90 39738.59 40750.59 40383.05 32125.08 40070.66 40436.76 40138.56 41080.83 381
WB-MVS54.94 36754.72 36855.60 39373.50 39220.90 42774.27 37361.19 41059.16 35450.61 40274.15 39047.19 31475.78 39017.31 41835.07 41270.12 400
LCM-MVSNet54.25 36849.68 37867.97 37553.73 42245.28 40166.85 40080.78 33135.96 41139.45 41262.23 4058.70 42278.06 37448.24 36851.20 40280.57 383
mvsany_test353.99 36951.45 37461.61 38455.51 41844.74 40463.52 40845.41 42343.69 40158.11 39076.45 38217.99 41163.76 41454.77 33147.59 40576.34 393
SSC-MVS53.88 37053.59 37054.75 39572.87 39819.59 42873.84 37560.53 41257.58 36849.18 40673.45 39346.34 32375.47 39316.20 42132.28 41469.20 401
FPMVS53.68 37151.64 37359.81 38665.08 41051.03 38269.48 39069.58 39341.46 40340.67 41072.32 39516.46 41470.00 40724.24 41465.42 37558.40 410
APD_test153.31 37249.93 37763.42 38265.68 40950.13 38771.59 38166.90 40134.43 41240.58 41171.56 3978.65 42376.27 38534.64 40455.36 39563.86 406
N_pmnet52.79 37353.26 37151.40 39778.99 3697.68 43169.52 3893.89 43051.63 38957.01 39374.98 38940.83 36165.96 41237.78 39964.67 37780.56 384
test_f52.09 37450.82 37555.90 39153.82 42142.31 41159.42 41158.31 41536.45 41056.12 39770.96 39812.18 41757.79 41753.51 33756.57 39267.60 402
EGC-MVSNET52.07 37547.05 37967.14 37683.51 29560.71 27680.50 31367.75 3980.07 4250.43 42675.85 38724.26 40381.54 35828.82 40862.25 38159.16 408
new_pmnet50.91 37650.29 37652.78 39668.58 40534.94 41863.71 40756.63 41639.73 40544.95 40765.47 40221.93 40758.48 41634.98 40356.62 39164.92 404
ANet_high50.57 37746.10 38163.99 38048.67 42539.13 41470.99 38480.85 33061.39 33731.18 41457.70 41017.02 41373.65 40131.22 40715.89 42279.18 387
test_vis3_rt49.26 37847.02 38056.00 39054.30 41945.27 40266.76 40148.08 42036.83 40944.38 40853.20 4137.17 42564.07 41356.77 32255.66 39358.65 409
testf145.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
APD_test245.72 37941.96 38357.00 38856.90 41645.32 39966.14 40259.26 41326.19 41630.89 41560.96 4074.14 42670.64 40526.39 41246.73 40755.04 411
dongtai45.42 38145.38 38245.55 39973.36 39526.85 42367.72 39634.19 42554.15 38149.65 40556.41 41225.43 39962.94 41519.45 41628.09 41646.86 415
Gipumacopyleft45.18 38241.86 38555.16 39477.03 37751.52 37832.50 41880.52 33532.46 41427.12 41735.02 4189.52 42175.50 39122.31 41560.21 38838.45 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 38340.28 38755.82 39240.82 42742.54 41065.12 40663.99 40734.43 41224.48 41857.12 4113.92 42876.17 38717.10 41955.52 39448.75 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 38438.86 38846.69 39853.84 42016.45 42948.61 41549.92 41837.49 40831.67 41360.97 4068.14 42456.42 41828.42 40930.72 41567.19 403
kuosan39.70 38540.40 38637.58 40264.52 41126.98 42165.62 40433.02 42646.12 39742.79 40948.99 41524.10 40446.56 42312.16 42426.30 41739.20 416
E-PMN31.77 38630.64 38935.15 40352.87 42327.67 42057.09 41347.86 42124.64 41816.40 42333.05 41911.23 41954.90 41914.46 42218.15 42022.87 419
test_method31.52 38729.28 39138.23 40127.03 4296.50 43220.94 42062.21 4094.05 42322.35 42152.50 41413.33 41547.58 42127.04 41134.04 41360.62 407
EMVS30.81 38829.65 39034.27 40450.96 42425.95 42456.58 41446.80 42224.01 41915.53 42430.68 42012.47 41654.43 42012.81 42317.05 42122.43 420
MVEpermissive26.22 2330.37 38925.89 39343.81 40044.55 42635.46 41728.87 41939.07 42418.20 42018.58 42240.18 4172.68 42947.37 42217.07 42023.78 41948.60 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k19.96 39026.61 3920.00 4100.00 4330.00 4350.00 42189.26 1840.00 4280.00 42988.61 18561.62 1700.00 4290.00 4280.00 4270.00 425
tmp_tt18.61 39121.40 39410.23 4074.82 43010.11 43034.70 41730.74 4281.48 42423.91 42026.07 42128.42 39613.41 42627.12 41015.35 4237.17 421
wuyk23d16.82 39215.94 39519.46 40658.74 41531.45 41939.22 4163.74 4316.84 4226.04 4252.70 4251.27 43024.29 42510.54 42514.40 4242.63 422
ab-mvs-re7.23 3939.64 3960.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42986.72 2350.00 4330.00 4290.00 4280.00 4270.00 425
test1236.12 3948.11 3970.14 4080.06 4320.09 43371.05 3830.03 4330.04 4270.25 4281.30 4270.05 4310.03 4280.21 4270.01 4260.29 423
testmvs6.04 3958.02 3980.10 4090.08 4310.03 43469.74 3880.04 4320.05 4260.31 4271.68 4260.02 4320.04 4270.24 4260.02 4250.25 424
pcd_1.5k_mvsjas5.26 3967.02 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42863.15 1460.00 4290.00 4280.00 4270.00 425
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS42.58 40839.46 396
FOURS195.00 1072.39 3995.06 193.84 1574.49 12191.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
PC_three_145268.21 25692.02 1294.00 5182.09 595.98 5684.58 5596.68 294.95 11
No_MVS89.16 194.34 2775.53 292.99 4997.53 289.67 896.44 994.41 39
test_one_060195.07 771.46 5794.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 433
eth-test0.00 433
ZD-MVS94.38 2572.22 4492.67 6770.98 19387.75 3794.07 4674.01 3296.70 2784.66 5494.84 44
RE-MVS-def85.48 6093.06 5870.63 7691.88 3892.27 8473.53 14685.69 5894.45 2863.87 13782.75 7791.87 8492.50 127
IU-MVS95.30 271.25 5992.95 5566.81 26792.39 688.94 1896.63 494.85 20
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4982.45 396.87 2083.77 6696.48 894.88 15
test_241102_TWO94.06 1077.24 5392.78 495.72 881.26 897.44 789.07 1696.58 694.26 48
test_241102_ONE95.30 270.98 6694.06 1077.17 5693.10 195.39 1482.99 197.27 12
9.1488.26 1592.84 6391.52 4894.75 173.93 13588.57 2594.67 2175.57 2295.79 5886.77 3795.76 23
save fliter93.80 4072.35 4290.47 6691.17 12574.31 126
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 989.42 1196.57 794.67 28
test_0728_SECOND87.71 3295.34 171.43 5893.49 994.23 397.49 489.08 1496.41 1294.21 49
test072695.27 571.25 5993.60 694.11 677.33 5092.81 395.79 380.98 9
GSMVS88.96 254
test_part295.06 872.65 3291.80 13
sam_mvs151.32 27588.96 254
sam_mvs50.01 289
ambc75.24 32173.16 39650.51 38663.05 41087.47 23464.28 36577.81 37617.80 41289.73 27857.88 31160.64 38685.49 331
MTGPAbinary92.02 93
test_post178.90 3365.43 42448.81 30885.44 33359.25 295
test_post5.46 42350.36 28784.24 341
patchmatchnet-post74.00 39151.12 27888.60 300
GG-mvs-BLEND75.38 31981.59 33455.80 34179.32 32769.63 39267.19 34073.67 39243.24 34688.90 29650.41 35184.50 18681.45 377
MTMP92.18 3432.83 427
gm-plane-assit81.40 33853.83 36162.72 32680.94 34792.39 20463.40 257
test9_res84.90 4895.70 2692.87 115
TEST993.26 5272.96 2588.75 12091.89 10168.44 25385.00 6593.10 7274.36 2895.41 73
test_893.13 5472.57 3588.68 12591.84 10568.69 24884.87 6993.10 7274.43 2695.16 83
agg_prior282.91 7595.45 2992.70 118
agg_prior92.85 6271.94 5091.78 10884.41 8094.93 94
TestCases79.58 25985.15 26063.62 22879.83 34462.31 32960.32 38286.73 23332.02 38888.96 29450.28 35471.57 35186.15 319
test_prior472.60 3489.01 111
test_prior288.85 11775.41 9884.91 6793.54 6174.28 2983.31 6995.86 20
test_prior86.33 5792.61 6869.59 9192.97 5495.48 6793.91 61
旧先验286.56 19658.10 36387.04 4788.98 29274.07 160
新几何286.29 205
新几何183.42 15693.13 5470.71 7485.48 26957.43 36981.80 11891.98 9663.28 14192.27 21064.60 24992.99 7087.27 296
旧先验191.96 7465.79 18486.37 25793.08 7669.31 8392.74 7388.74 265
无先验87.48 16388.98 19660.00 34694.12 12567.28 22688.97 253
原ACMM286.86 185
原ACMM184.35 11393.01 6068.79 11092.44 7763.96 31281.09 12891.57 11066.06 11995.45 6867.19 22894.82 4688.81 260
test22291.50 8068.26 12984.16 25883.20 30354.63 38079.74 14191.63 10758.97 20391.42 9186.77 309
testdata291.01 25862.37 267
segment_acmp73.08 38
testdata79.97 24990.90 9164.21 21984.71 27659.27 35385.40 6092.91 7862.02 16589.08 29068.95 21191.37 9286.63 313
testdata184.14 25975.71 92
test1286.80 5292.63 6770.70 7591.79 10782.71 10971.67 5496.16 4794.50 5193.54 86
plane_prior790.08 10868.51 123
plane_prior689.84 11768.70 11860.42 196
plane_prior592.44 7795.38 7578.71 11286.32 16491.33 162
plane_prior491.00 132
plane_prior368.60 12178.44 3178.92 153
plane_prior291.25 5279.12 23
plane_prior189.90 116
plane_prior68.71 11690.38 7077.62 4086.16 168
n20.00 434
nn0.00 434
door-mid69.98 391
lessismore_v078.97 26881.01 34557.15 31965.99 40261.16 37982.82 32739.12 36891.34 24759.67 29146.92 40688.43 272
LGP-MVS_train84.50 10689.23 14268.76 11291.94 9975.37 9976.64 20691.51 11154.29 24094.91 9578.44 11483.78 19889.83 226
test1192.23 87
door69.44 394
HQP5-MVS66.98 163
HQP-NCC89.33 13589.17 10376.41 7777.23 191
ACMP_Plane89.33 13589.17 10376.41 7777.23 191
BP-MVS77.47 124
HQP4-MVS77.24 19095.11 8791.03 172
HQP3-MVS92.19 9085.99 172
HQP2-MVS60.17 199
NP-MVS89.62 12168.32 12790.24 144
MDTV_nov1_ep13_2view37.79 41575.16 36655.10 37866.53 34949.34 29953.98 33487.94 280
MDTV_nov1_ep1369.97 30883.18 30353.48 36377.10 35580.18 34360.45 34169.33 32280.44 35148.89 30786.90 31551.60 34678.51 267
ACMMP++_ref81.95 229
ACMMP++81.25 234
Test By Simon64.33 133
ITE_SJBPF78.22 28381.77 33160.57 27883.30 29869.25 23367.54 33587.20 22436.33 38087.28 31454.34 33374.62 32586.80 308
DeepMVS_CXcopyleft27.40 40540.17 42826.90 42224.59 42917.44 42123.95 41948.61 4169.77 42026.48 42418.06 41724.47 41828.83 418