This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 31080.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28894.89 16390.75 206
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31995.56 3773.48 17682.91 32983.85 300
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34280.39 11995.13 5873.82 17192.98 20891.04 199
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37586.57 5295.80 2487.35 2197.62 6294.20 90
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28688.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30585.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 10986.27 10182.60 18691.86 11457.31 29885.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36379.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29488.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28989.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
HQP3-MVS92.68 9194.47 176
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24195.12 15590.34 220
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29188.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29682.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24692.28 22192.21 172
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29395.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 115
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
test1191.46 121
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31987.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 28090.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29188.04 28390.68 210
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28592.24 22290.11 225
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34469.11 21791.44 17660.68 28587.70 28884.42 293
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28378.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27794.76 17184.21 295
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 28870.67 29073.64 29769.66 36870.46 16266.97 34489.73 16942.68 36488.20 13583.04 30343.77 34960.07 36665.35 25086.66 29690.39 219
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28577.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23388.30 28191.51 193
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22289.29 26590.94 201
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32880.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22596.64 9395.38 52
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26586.59 29786.41 272
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 34058.01 29375.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23692.29 22089.11 239
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29781.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23996.82 8994.34 88
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27688.99 26982.52 320
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37294.51 7976.64 14095.83 13094.38 87
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26995.17 15286.31 274
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27483.26 17888.29 19569.16 21867.83 34683.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
USDC76.63 24076.73 23676.34 28183.46 27657.20 30080.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31994.11 18485.17 285
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34373.79 18290.53 20561.59 27990.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24892.75 21282.51 321
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27682.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22396.04 11894.42 85
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31687.34 20555.94 31275.16 31576.53 35663.97 24291.16 18465.00 25190.97 24788.06 253
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32387.31 20646.79 34880.29 26784.30 29152.70 30692.10 16151.88 33686.73 29590.22 221
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31582.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23196.60 9594.45 82
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
cl2278.97 21178.21 22181.24 20977.74 32659.01 28477.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 32077.22 35276.94 15190.94 19064.63 25684.83 31783.35 308
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31878.79 34177.20 14590.93 19164.62 25784.80 31883.32 309
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32379.80 33560.25 26386.76 27258.37 29484.15 32287.32 264
cl____80.42 19480.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32482.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
PAPM71.77 28570.06 29876.92 27386.39 23253.97 31976.62 29086.62 22053.44 32263.97 36184.73 28757.79 28392.34 15339.65 36681.33 33984.45 292
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 29083.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23493.92 18892.27 169
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32885.25 30977.62 349
EGC-MVSNET74.79 26169.99 29989.19 6394.89 3787.00 1191.89 3486.28 2231.09 3762.23 37895.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36794.51 7979.83 10094.30 18093.50 125
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26687.90 28487.52 261
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30673.40 32086.17 22650.70 34173.14 32485.94 26758.31 27785.90 28356.51 30483.22 32687.20 265
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30184.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30290.90 24989.43 233
v14882.31 16682.48 16681.81 20185.59 25059.66 27681.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35271.68 33277.54 34768.47 22089.77 22655.70 31085.39 30674.60 354
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30381.76 21585.77 23169.04 22086.00 17590.44 19151.75 30990.09 22065.95 24293.34 19891.72 185
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32292.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 19285.62 23358.09 30091.41 17967.95 23284.48 291
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2340.00 3800.00 38182.82 30881.46 1080.00 3810.00 3790.00 3790.00 377
131473.22 27372.56 27875.20 28980.41 30957.84 29481.64 21885.36 23551.68 33473.10 32576.65 35561.45 25685.19 28963.54 26279.21 34782.59 316
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32187.94 23357.89 28289.45 23252.02 33174.87 35985.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
MVSTER77.09 23475.70 24581.25 20775.27 34861.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35490.25 20973.69 17490.67 25592.42 159
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33560.97 26364.69 34985.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31678.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 23098.04 3697.23 18
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33182.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
test_fmvs375.72 25075.20 25077.27 26975.01 35169.47 17178.93 25584.88 24846.67 34987.08 15287.84 23650.44 31571.62 33877.42 13388.53 27590.72 207
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34778.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22986.41 29991.37 194
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31884.80 25057.61 30582.24 23687.54 24151.31 31087.65 25770.40 20693.19 20391.23 196
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34593.60 11263.93 25991.50 23790.04 227
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27597.42 7293.62 119
VNet79.31 20980.27 19376.44 27987.92 20353.95 32075.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28793.98 18790.97 200
test_fmvs273.57 27072.80 27275.90 28672.74 36268.84 18177.07 28284.32 25445.14 35482.89 22884.22 29248.37 32070.36 34173.40 17887.03 29388.52 249
test_vis1_n_192071.30 29071.58 28670.47 31477.58 32959.99 27374.25 31184.22 25551.06 33774.85 31779.10 33955.10 29968.83 34768.86 22179.20 34882.58 317
test_fmvs1_n70.94 29270.41 29572.53 30673.92 35366.93 19675.99 29784.21 25643.31 36179.40 27679.39 33843.47 35068.55 34969.05 21884.91 31482.10 324
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25771.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25864.69 26280.29 26785.91 26951.07 31192.38 15176.29 14593.63 19590.65 212
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25972.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
test_fmvs169.57 30569.05 30471.14 31369.15 36965.77 20973.98 31483.32 26042.83 36377.77 29278.27 34543.39 35368.50 35068.39 22884.38 32179.15 346
CHOSEN 1792x268872.45 27970.56 29178.13 25690.02 16663.08 23368.72 33683.16 26142.99 36275.92 30585.46 27357.22 28685.18 29049.87 34181.67 33686.14 275
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26260.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26365.20 25981.40 25482.10 31466.30 22990.73 20055.57 31185.27 30882.65 315
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 28073.42 31982.88 26468.68 22479.75 27281.80 31850.62 31389.46 23166.85 23585.64 30589.72 228
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31180.83 23182.85 26576.81 12385.90 17994.14 8474.58 17586.51 27466.82 23795.68 13993.01 139
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26662.45 27383.34 22287.37 24466.20 23088.66 24864.69 25585.02 31186.32 273
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29976.63 28982.49 26781.21 7284.30 20892.24 14467.99 22286.24 27862.22 27095.13 15391.98 180
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27885.71 13382.43 26839.76 36885.64 18288.76 22144.71 34787.88 25573.86 17085.88 30484.16 296
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34367.22 19181.21 22582.18 26950.78 34076.50 29787.66 23955.20 29882.99 30462.17 27390.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 27060.81 28678.94 28283.49 29959.30 27088.76 24754.64 32092.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31882.14 21481.96 27156.76 31169.57 34086.21 26460.03 26484.83 29349.58 34282.65 33285.11 286
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27251.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27370.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
旧先验191.97 10971.77 15081.78 27491.84 15173.92 18093.65 19483.61 303
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35476.70 28781.67 27573.45 16284.87 19592.82 12474.66 17486.51 27461.66 27896.85 8693.33 126
test_vis1_rt65.64 32164.09 32570.31 31566.09 37470.20 16561.16 35681.60 27638.65 36972.87 32669.66 36452.84 30460.04 36756.16 30677.77 35280.68 341
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27774.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27985.42 13681.11 27886.41 2787.41 14596.21 1973.61 18390.61 20466.33 24096.85 8693.81 111
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27972.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
UnsupCasMVSNet_eth71.63 28772.30 28069.62 32076.47 33752.70 33070.03 33380.97 28059.18 29479.36 27788.21 22960.50 25969.12 34558.33 29677.62 35487.04 267
test_vis1_n70.29 29669.99 29971.20 31275.97 34266.50 20076.69 28880.81 28144.22 35775.43 31077.23 35150.00 31668.59 34866.71 23882.85 33178.52 348
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28176.28 12767.53 34889.11 21762.87 25286.77 27060.90 28492.01 22987.13 266
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28350.68 34276.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33973.20 32180.63 28468.30 22881.80 24888.40 22666.92 22780.90 31355.35 31494.90 16293.12 136
新几何182.95 17893.96 5578.56 8480.24 28555.45 31483.93 21691.08 17171.19 21088.33 25165.84 24593.07 20581.95 326
testdata79.54 23692.87 8272.34 14380.14 28659.91 29385.47 18691.75 15667.96 22385.24 28868.57 22792.18 22581.06 339
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28761.72 27881.35 25586.92 25463.96 24388.78 24650.61 33793.01 20788.04 254
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28855.68 31384.69 19890.31 19460.91 25885.42 28762.20 27191.59 23587.88 258
KD-MVS_2432*160066.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
miper_refine_blended66.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29164.88 26183.11 22589.16 21559.90 26684.46 29568.61 22585.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 27871.41 28876.28 28283.25 27860.34 26983.50 17379.02 29237.77 37176.33 29985.10 28049.60 31887.41 26070.54 20477.54 35581.08 337
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30371.53 32778.42 29358.24 29979.32 27982.92 30757.91 28184.26 29765.60 24791.36 23989.56 230
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32776.77 28678.37 29463.31 26576.37 29891.85 15036.68 36678.98 31947.87 34992.45 21687.95 256
MS-PatchMatch70.93 29370.22 29673.06 30181.85 29062.50 24273.82 31777.90 29552.44 32875.92 30581.27 32255.67 29581.75 30955.37 31377.70 35374.94 353
test22293.31 7176.54 10579.38 24877.79 29652.59 32682.36 23590.84 18066.83 22891.69 23381.25 334
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29752.83 32577.73 29386.38 25856.35 29284.97 29157.72 30087.05 29285.51 282
EPNet80.37 19678.41 21986.23 10676.75 33473.28 12787.18 10977.45 29876.24 12868.14 34388.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XXY-MVS74.44 26576.19 24069.21 32284.61 26052.43 33271.70 32677.18 29960.73 28880.60 26290.96 17675.44 16169.35 34456.13 30788.33 27785.86 279
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 30050.50 34375.72 30792.38 13748.07 32284.07 29868.72 22482.91 32983.85 300
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 36082.41 20476.90 30073.81 15885.56 18492.38 13748.07 32283.98 29963.36 26495.31 14890.92 202
IB-MVS62.13 1971.64 28668.97 30579.66 23480.80 30462.26 24773.94 31576.90 30063.27 26668.63 34276.79 35433.83 37091.84 16859.28 29287.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30384.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30460.67 28977.60 29480.52 32938.04 36391.15 18570.78 19990.68 25489.17 238
N_pmnet70.20 29768.80 30774.38 29480.91 30084.81 3959.12 36076.45 30555.06 31575.31 31482.36 31355.74 29454.82 37047.02 35187.24 29183.52 304
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30668.86 22285.22 18887.36 24538.10 36293.57 11675.47 15294.28 18194.62 74
EPNet_dtu72.87 27771.33 28977.49 26777.72 32760.55 26882.35 20575.79 30766.49 24658.39 37181.06 32453.68 30285.98 28153.55 32392.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 30769.68 30167.82 32979.42 31651.15 34267.82 34175.79 30754.15 31977.47 29585.36 27859.26 27170.64 34048.46 34679.35 34581.66 328
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34575.67 30973.15 17288.86 12088.99 21966.94 22681.23 31264.71 25488.22 28291.64 189
pmmvs570.73 29470.07 29772.72 30377.03 33352.73 32974.14 31275.65 31050.36 34472.17 33085.37 27755.42 29780.67 31552.86 32987.59 28984.77 289
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31173.76 15988.32 13390.20 19637.96 36494.16 9279.36 10895.13 15395.93 42
tpmvs70.16 29869.56 30271.96 30974.71 35248.13 35279.63 24275.45 31265.02 26070.26 33781.88 31745.34 34185.68 28558.34 29575.39 35882.08 325
ADS-MVSNet265.87 32063.64 32772.55 30573.16 35856.92 30267.10 34274.81 31349.74 34566.04 35182.97 30446.71 32577.26 32442.29 36169.96 36683.46 305
new-patchmatchnet70.10 29973.37 26760.29 34981.23 29716.95 38059.54 35874.62 31462.93 26880.97 25787.93 23462.83 25371.90 33755.24 31595.01 15992.00 178
Anonymous2023120671.38 28971.88 28269.88 31886.31 23754.37 31770.39 33174.62 31452.57 32776.73 29688.76 22159.94 26572.06 33644.35 35993.23 20283.23 311
CostFormer69.98 30268.68 30873.87 29577.14 33150.72 34579.26 25074.51 31651.94 33370.97 33684.75 28645.16 34487.49 25955.16 31679.23 34683.40 307
door-mid74.45 317
thisisatest051573.00 27670.52 29280.46 22281.45 29359.90 27473.16 32274.31 31857.86 30276.08 30477.78 34637.60 36592.12 16065.00 25191.45 23889.35 234
baseline173.26 27273.54 26472.43 30784.92 25647.79 35579.89 24074.00 31965.93 24778.81 28386.28 26356.36 29181.63 31156.63 30379.04 34987.87 259
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3202.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24492.66 151
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30785.22 13873.78 32382.96 5584.28 20992.72 12957.38 28490.07 22163.80 26095.75 13690.68 210
thres20072.34 28171.55 28774.70 29383.48 27551.60 33875.02 30773.71 32470.14 21178.56 28580.57 32846.20 32888.20 25346.99 35289.29 26584.32 294
tpm cat166.76 31665.21 32371.42 31077.09 33250.62 34678.01 26773.68 32544.89 35568.64 34179.00 34045.51 33882.42 30849.91 34070.15 36581.23 336
testgi72.36 28074.61 25365.59 33580.56 30742.82 37068.29 33773.35 32666.87 24381.84 24589.93 20172.08 20466.92 35646.05 35692.54 21587.01 268
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33681.07 22773.26 32775.68 13883.25 22386.37 25945.54 33688.80 24351.98 33290.99 24489.31 235
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33780.45 23373.26 32775.20 14583.10 22686.31 26245.54 33689.05 23955.03 31792.24 22292.66 151
wuyk23d75.13 25479.30 20662.63 34275.56 34475.18 11880.89 22973.10 32975.06 14794.76 1295.32 3587.73 4052.85 37134.16 37197.11 8059.85 368
WTY-MVS67.91 31168.35 30966.58 33380.82 30348.12 35365.96 34672.60 33053.67 32171.20 33481.68 32058.97 27369.06 34648.57 34581.67 33682.55 318
door72.57 331
PVSNet58.17 2166.41 31765.63 32268.75 32581.96 28849.88 34962.19 35572.51 33251.03 33868.04 34475.34 35950.84 31274.77 33145.82 35782.96 32781.60 329
MDTV_nov1_ep1368.29 31078.03 32543.87 36774.12 31372.22 33352.17 32967.02 34985.54 27145.36 34080.85 31455.73 30884.42 320
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34370.15 33272.10 33470.42 20580.28 26991.50 16064.21 24174.72 33346.96 35394.58 17487.82 260
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34183.28 17771.97 33574.04 15582.23 23789.78 20457.38 28489.41 23557.22 30195.41 14293.05 138
MIMVSNet71.09 29171.59 28469.57 32187.23 21650.07 34878.91 25671.83 33660.20 29271.26 33391.76 15555.08 30076.09 32741.06 36487.02 29482.54 319
tpm268.45 30966.83 31573.30 29978.93 32348.50 35179.76 24171.76 33747.50 34769.92 33983.60 29742.07 35688.40 25048.44 34779.51 34383.01 314
sss66.92 31367.26 31365.90 33477.23 33051.10 34464.79 34871.72 33852.12 33270.13 33880.18 33257.96 28065.36 36150.21 33881.01 34181.25 334
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32169.72 33471.71 33958.80 29678.03 28680.51 33056.61 29078.84 32062.20 27186.04 30385.23 284
SCA73.32 27172.57 27775.58 28881.62 29155.86 30878.89 25771.37 34061.73 27774.93 31683.42 30160.46 26087.01 26358.11 29882.63 33483.88 297
test_f64.31 32565.85 31959.67 35066.54 37362.24 24857.76 36370.96 34140.13 36684.36 20382.09 31546.93 32451.67 37261.99 27481.89 33565.12 364
lessismore_v085.95 11391.10 14270.99 15970.91 34291.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
tpmrst66.28 31866.69 31765.05 33872.82 36139.33 37178.20 26670.69 34353.16 32467.88 34580.36 33148.18 32174.75 33258.13 29770.79 36481.08 337
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34464.34 26376.09 30381.25 32365.87 23478.07 32253.86 32283.82 32371.48 357
PatchmatchNetpermissive69.71 30468.83 30672.33 30877.66 32853.60 32279.29 24969.99 34557.66 30472.53 32882.93 30646.45 32780.08 31860.91 28372.09 36283.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 35083.68 16969.91 34672.30 18784.26 21194.20 8051.89 30889.82 22563.58 26196.02 11994.87 67
baseline269.77 30366.89 31478.41 25179.51 31558.09 29276.23 29569.57 34757.50 30664.82 35977.45 34946.02 33088.44 24953.08 32577.83 35188.70 247
test111178.53 22078.85 21177.56 26592.22 10247.49 35682.61 19569.24 34872.43 18185.28 18794.20 8051.91 30790.07 22165.36 24996.45 10295.11 62
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32469.16 34957.70 30386.76 15886.33 26045.79 33582.59 30569.63 21090.65 25781.54 330
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 35071.94 19277.80 29187.66 23950.48 31475.83 32949.95 33979.51 34358.58 370
MDA-MVSNet_test_wron70.05 30170.44 29368.88 32473.84 35453.47 32358.93 36267.28 35158.43 29787.09 15185.40 27559.80 26867.25 35459.66 29083.54 32485.92 278
YYNet170.06 30070.44 29368.90 32373.76 35553.42 32558.99 36167.20 35258.42 29887.10 15085.39 27659.82 26767.32 35359.79 28983.50 32585.96 276
test-LLR67.21 31266.74 31668.63 32676.45 33855.21 31367.89 33867.14 35362.43 27465.08 35672.39 36143.41 35169.37 34261.00 28184.89 31581.31 332
test-mter65.00 32363.79 32668.63 32676.45 33855.21 31367.89 33867.14 35350.98 33965.08 35672.39 36128.27 37769.37 34261.00 28184.89 31581.31 332
tpm67.95 31068.08 31167.55 33078.74 32443.53 36875.60 30067.10 35554.92 31672.23 32988.10 23042.87 35575.97 32852.21 33080.95 34283.15 312
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35669.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 339
JIA-IIPM69.41 30666.64 31877.70 26473.19 35771.24 15775.67 29965.56 35770.42 20565.18 35592.97 11933.64 37183.06 30353.52 32469.61 36878.79 347
PatchT70.52 29572.76 27463.79 34179.38 31733.53 37677.63 27465.37 35873.61 16071.77 33192.79 12744.38 34875.65 33064.53 25885.37 30782.18 323
dp60.70 33560.29 33761.92 34572.04 36438.67 37370.83 32864.08 35951.28 33660.75 36477.28 35036.59 36771.58 33947.41 35062.34 37175.52 352
Patchmatch-test65.91 31967.38 31261.48 34775.51 34543.21 36968.84 33563.79 36062.48 27272.80 32783.42 30144.89 34659.52 36848.27 34886.45 29881.70 327
TESTMET0.1,161.29 33160.32 33664.19 34072.06 36351.30 34067.89 33862.09 36145.27 35360.65 36569.01 36527.93 37864.74 36256.31 30581.65 33876.53 350
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 34953.28 32655.16 36561.89 36244.30 35659.16 36762.48 37054.22 30165.91 36035.40 37047.01 37359.25 369
ADS-MVSNet61.90 32862.19 33161.03 34873.16 35836.42 37467.10 34261.75 36349.74 34566.04 35182.97 30446.71 32563.21 36342.29 36169.96 36683.46 305
PMMVS61.65 32960.38 33565.47 33765.40 37769.26 17463.97 35161.73 36436.80 37260.11 36668.43 36659.42 26966.35 35848.97 34478.57 35060.81 367
test0.0.03 164.66 32464.36 32465.57 33675.03 35046.89 35964.69 34961.58 36562.43 27471.18 33577.54 34743.41 35168.47 35140.75 36582.65 33281.35 331
E-PMN61.59 33061.62 33261.49 34666.81 37255.40 31153.77 36660.34 36666.80 24458.90 36965.50 36840.48 35966.12 35955.72 30986.25 30162.95 366
CHOSEN 280x42059.08 33656.52 34166.76 33276.51 33664.39 22049.62 36859.00 36743.86 35855.66 37368.41 36735.55 36968.21 35243.25 36076.78 35767.69 362
EMVS61.10 33360.81 33461.99 34465.96 37555.86 30853.10 36758.97 36867.06 24156.89 37263.33 36940.98 35767.03 35554.79 31886.18 30263.08 365
pmmvs362.47 32660.02 33869.80 31971.58 36564.00 22470.52 33058.44 36939.77 36766.05 35075.84 35727.10 38072.28 33546.15 35584.77 31973.11 355
MVS-HIRNet61.16 33262.92 32955.87 35379.09 32035.34 37571.83 32557.98 37046.56 35059.05 36891.14 16949.95 31776.43 32638.74 36771.92 36355.84 371
gg-mvs-nofinetune68.96 30869.11 30368.52 32876.12 34145.32 36283.59 17155.88 37186.68 2464.62 36097.01 730.36 37483.97 30044.78 35882.94 32876.26 351
GG-mvs-BLEND67.16 33173.36 35646.54 36184.15 15455.04 37258.64 37061.95 37129.93 37583.87 30138.71 36876.92 35671.07 358
EPMVS62.47 32662.63 33062.01 34370.63 36638.74 37274.76 30852.86 37353.91 32067.71 34780.01 33339.40 36066.60 35755.54 31268.81 36980.68 341
new_pmnet55.69 33957.66 34049.76 35575.47 34630.59 37759.56 35751.45 37443.62 36062.49 36275.48 35840.96 35849.15 37437.39 36972.52 36069.55 360
PMMVS255.64 34059.27 33944.74 35664.30 37812.32 38140.60 36949.79 37553.19 32365.06 35884.81 28553.60 30349.76 37332.68 37389.41 26472.15 356
test250674.12 26673.39 26676.28 28291.85 11544.20 36684.06 15648.20 37672.30 18781.90 24394.20 8027.22 37989.77 22664.81 25396.02 11994.87 67
DSMNet-mixed60.98 33461.61 33359.09 35272.88 36045.05 36474.70 30946.61 37726.20 37365.34 35490.32 19355.46 29663.12 36441.72 36381.30 34069.09 361
mvsany_test365.48 32262.97 32873.03 30269.99 36776.17 11364.83 34743.71 37843.68 35980.25 27087.05 25352.83 30563.09 36551.92 33572.44 36179.84 345
mvsany_test158.48 33756.47 34264.50 33965.90 37668.21 18556.95 36442.11 37938.30 37065.69 35377.19 35356.96 28759.35 36946.16 35458.96 37265.93 363
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36550.76 37474.98 36056.24 29344.67 37533.94 37264.11 37071.04 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4433.14 381
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3520.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3590.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1510.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
n20.00 386
nn0.00 386
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3350.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
eth-test20.00 385
eth-test0.00 385
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
GSMVS83.88 297
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 32983.88 297
sam_mvs45.92 334
test_post178.85 2593.13 37645.19 34380.13 31758.11 298
test_post3.10 37745.43 33977.22 325
patchmatchnet-post81.71 31945.93 33387.01 263
gm-plane-assit75.42 34744.97 36552.17 32972.36 36387.90 25454.10 321
test9_res80.83 8996.45 10290.57 213
agg_prior279.68 10396.16 11290.22 221
test_prior478.97 8084.59 145
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
新几何281.72 217
原ACMM282.26 210
testdata286.43 27663.52 263
segment_acmp81.94 100
testdata179.62 24373.95 157
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
BP-MVS77.30 134
HQP4-MVS80.56 26394.61 7293.56 122
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
MDTV_nov1_ep13_2view27.60 37970.76 32946.47 35161.27 36345.20 34249.18 34383.75 302
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128