This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5799.27 199.54 1
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9586.07 4898.48 1897.22 17
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20689.67 23284.47 7595.46 5082.56 8696.26 11193.77 117
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 91
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27887.25 27382.43 9894.53 8477.65 14396.46 10294.14 98
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12678.35 13198.76 495.61 47
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13591.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
9.1489.29 6291.84 11988.80 9395.32 1275.14 15691.07 8192.89 13687.27 4793.78 10883.69 7297.55 69
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11398.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 95
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22589.33 23683.87 7994.53 8482.45 8794.89 16994.90 64
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10395.50 14594.53 79
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 193
sasdasda85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
canonicalmvs85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
LCM-MVSNet-Re83.48 16585.06 13178.75 26385.94 26355.75 33480.05 25794.27 2476.47 13696.09 694.54 6783.31 8889.75 23959.95 31794.89 16990.75 231
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15287.09 23665.22 22884.16 17294.23 2777.89 12291.28 7993.66 11484.35 7692.71 14880.07 11094.87 17295.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 99
nrg03087.85 8288.49 7585.91 12090.07 16669.73 18387.86 10694.20 3074.04 16592.70 5694.66 6085.88 6691.50 17979.72 11697.32 7796.50 29
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17389.71 10794.82 5685.09 6895.77 3484.17 6898.03 4193.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 158
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 158
RPMNet78.88 23678.28 24580.68 23979.58 34962.64 25782.58 21894.16 3274.80 15875.72 33992.59 14548.69 35095.56 4273.48 19682.91 36783.85 338
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6095.87 13295.24 57
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 171
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 196
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6597.81 5591.70 208
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8198.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13882.67 8598.04 3993.64 123
MGCFI-Net85.04 12585.95 11282.31 21087.52 22463.59 24486.23 13893.96 4473.46 17488.07 14587.83 26186.46 5790.87 20376.17 16393.89 19992.47 173
baseline85.20 12185.93 11383.02 19186.30 25362.37 26384.55 16593.96 4474.48 16287.12 16192.03 16282.30 10391.94 16978.39 12994.21 18994.74 73
casdiffmvspermissive85.21 12085.85 11683.31 18486.17 25862.77 25583.03 20593.93 4674.69 16088.21 14292.68 14482.29 10491.89 17277.87 14293.75 20495.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19884.60 6490.75 26993.97 103
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26292.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 104
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 189
ACMH76.49 1489.34 5991.14 3583.96 16392.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26283.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6789.88 5386.22 11491.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22086.24 4697.24 7991.36 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 105
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 195
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 183
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 138
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10595.83 13494.46 80
plane_prior593.61 5995.22 5980.78 10595.83 13494.46 80
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14093.60 6180.16 9189.13 12393.44 11883.82 8090.98 19683.86 7195.30 15393.60 126
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23285.80 19589.56 23380.76 12692.13 16473.21 20595.51 14493.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 87
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 14183.91 15885.52 12988.58 19970.40 17884.50 16993.37 6478.76 11384.07 23378.72 37480.39 13095.13 6573.82 19192.98 22191.04 222
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 168
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14285.02 5998.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 18681.23 20585.10 13587.95 21369.17 19383.22 20293.33 6770.42 22078.58 31479.77 36677.29 15994.20 9271.51 21488.96 29391.93 200
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 92
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 41986.57 5595.80 2887.35 2797.62 6494.20 92
WR-MVS_H89.91 5091.31 3385.71 12696.32 962.39 26289.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10298.80 398.84 5
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 111
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 155
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 102
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15492.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4591.88 1884.48 14896.57 558.88 30688.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12798.72 998.97 3
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 12977.97 14197.03 8495.52 48
dcpmvs_284.23 14685.14 13081.50 22488.61 19861.98 27082.90 21193.11 7968.66 24092.77 5492.39 15178.50 14487.63 26876.99 15492.30 23194.90 64
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5797.78 5697.26 15
FC-MVSNet-test85.93 10987.05 9482.58 20492.25 10156.44 32885.75 14593.09 8177.33 13091.94 6894.65 6174.78 18993.41 12875.11 17698.58 1497.88 7
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9197.18 8190.45 242
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11886.27 10682.60 20391.86 11657.31 32185.10 15793.05 8375.83 14691.02 8393.97 9673.57 20392.91 14673.97 18898.02 4297.58 12
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9886.25 4597.63 6397.82 8
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18684.76 21587.70 26378.87 14294.18 9380.67 10796.29 10792.73 158
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 7189.62 5984.73 14290.46 15765.27 22788.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16876.70 15597.99 4396.88 23
MSLP-MVS++85.00 12886.03 11181.90 21491.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23477.98 14889.40 24777.46 14694.78 17484.75 323
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10477.65 14396.62 9590.70 234
ANet_high83.17 17185.68 12175.65 30881.24 33145.26 39479.94 25992.91 9083.83 5191.33 7696.88 1380.25 13285.92 29868.89 24395.89 13195.76 42
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19783.80 18592.87 9180.37 8789.61 11391.81 17077.72 15394.18 9375.00 17798.53 1696.99 22
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9592.80 156
DTE-MVSNet89.98 4791.91 1784.21 15896.51 757.84 31788.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12498.57 1598.80 6
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10784.83 6297.55 6994.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 4391.92 1584.47 14996.56 658.83 30989.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12198.74 699.00 2
HQP3-MVS92.68 9794.47 182
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15892.68 9773.30 18180.55 29290.17 22472.10 22494.61 7977.30 15094.47 18293.56 129
MVSMamba_PlusPlus87.53 8688.86 7183.54 17992.03 11062.26 26691.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6194.16 19292.58 166
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 146
CLD-MVS83.18 17082.64 17884.79 14089.05 18467.82 20577.93 28992.52 10168.33 24285.07 20781.54 35082.06 10892.96 14269.35 23597.91 5193.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 20181.25 20382.03 21284.27 29162.87 25376.47 31692.49 10270.97 21681.64 27883.83 32375.03 18492.70 14974.29 18092.22 23790.51 241
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 15684.01 15583.57 17787.22 23065.61 22686.55 13292.40 10378.64 11481.34 28384.18 32183.65 8492.93 14474.22 18187.87 31192.17 190
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20192.40 10372.04 20482.04 26788.33 25177.91 15093.95 10266.17 26595.12 15990.34 245
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19492.38 10570.25 22489.35 11990.68 20882.85 9294.57 8179.55 11895.95 12792.00 197
balanced_conf0384.80 13085.40 12683.00 19288.95 18861.44 27390.42 5892.37 10671.48 20988.72 12993.13 12570.16 23895.15 6379.26 12394.11 19392.41 175
test_fmvsmvis_n_192085.22 11985.36 12884.81 13985.80 26576.13 12285.15 15692.32 10761.40 30791.33 7690.85 20283.76 8386.16 29484.31 6693.28 21392.15 191
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13183.07 7797.24 7991.67 209
DU-MVS86.80 9486.99 9586.21 11593.24 7667.02 21183.16 20392.21 10981.73 7490.92 8491.97 16377.20 16093.99 10074.16 18298.35 2297.61 10
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26378.30 8986.93 12092.20 11065.94 26389.16 12193.16 12483.10 8989.89 23387.81 1594.43 18493.35 133
v1086.54 9887.10 9284.84 13888.16 20963.28 24886.64 13092.20 11075.42 15392.81 5394.50 6874.05 19894.06 9983.88 7096.28 10897.17 18
MCST-MVS84.36 13983.93 15785.63 12791.59 12471.58 16883.52 19192.13 11261.82 30083.96 23589.75 23179.93 13793.46 12578.33 13294.34 18691.87 201
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23094.05 9278.35 14693.65 11180.54 10991.58 25092.08 193
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 6290.91 4484.37 15096.34 858.61 31288.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12598.69 1098.95 4
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18292.01 11565.91 26586.19 18691.75 17383.77 8294.98 6977.43 14896.71 9393.73 118
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 21984.96 21090.69 20780.01 13595.14 6478.37 13095.78 13891.82 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21894.19 2596.67 1476.94 16694.57 8183.07 7796.28 10896.15 32
MVS_Test82.47 18183.22 16580.22 24582.62 31857.75 31982.54 22191.96 11871.16 21482.89 25492.52 14977.41 15790.50 21480.04 11287.84 31292.40 177
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18580.18 30089.15 24077.04 16493.28 13165.82 27192.28 23492.21 188
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24873.75 19294.81 17393.70 119
ZD-MVS92.22 10380.48 7191.85 12171.22 21390.38 9292.98 13186.06 6496.11 781.99 9496.75 92
CSCG86.26 10186.47 10385.60 12890.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25579.09 14092.13 16475.51 17095.06 16190.41 243
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27278.25 9085.82 14491.82 12365.33 27788.55 13292.35 15682.62 9689.80 23586.87 3594.32 18793.18 143
PCF-MVS74.62 1582.15 18880.92 20985.84 12389.43 17772.30 15780.53 25291.82 12357.36 34287.81 15189.92 22877.67 15493.63 11358.69 32295.08 16091.58 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 125
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 182
PVSNet_Blended_VisFu81.55 19980.49 21484.70 14491.58 12773.24 14184.21 17191.67 12762.86 29080.94 28687.16 27567.27 25192.87 14769.82 23288.94 29487.99 286
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11792.86 8667.02 21182.55 22091.56 12883.08 6290.92 8491.82 16978.25 14793.99 10074.16 18298.35 2297.49 13
v124084.30 14284.51 14683.65 17287.65 22161.26 27782.85 21291.54 12967.94 24990.68 9190.65 21171.71 23093.64 11282.84 8294.78 17496.07 35
原ACMM184.60 14592.81 8974.01 13291.50 13062.59 29182.73 25890.67 21076.53 17394.25 8969.24 23695.69 14185.55 314
test1191.46 131
CANet83.79 15882.85 17486.63 10486.17 25872.21 16083.76 18691.43 13277.24 13274.39 35187.45 26975.36 18195.42 5277.03 15392.83 22492.25 187
v119284.57 13584.69 14084.21 15887.75 21762.88 25283.02 20691.43 13269.08 23489.98 10290.89 19972.70 21893.62 11682.41 8894.97 16696.13 33
alignmvs83.94 15583.98 15683.80 16687.80 21667.88 20484.54 16791.42 13473.27 18488.41 13887.96 25672.33 22190.83 20476.02 16694.11 19392.69 162
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28078.21 9185.40 15291.39 13565.32 27887.72 15391.81 17082.33 10189.78 23686.68 3794.20 19092.99 151
GeoE85.45 11685.81 11784.37 15090.08 16467.07 21085.86 14391.39 13572.33 20087.59 15590.25 22084.85 7192.37 15878.00 13991.94 24393.66 120
v886.22 10386.83 9984.36 15287.82 21562.35 26486.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11083.10 7695.41 14697.01 21
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13494.02 5864.13 23884.38 17091.29 13884.88 4492.06 6593.84 10586.45 5893.73 10973.22 20098.66 1197.69 9
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 246
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15391.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6396.27 11092.62 165
v192192084.23 14684.37 15083.79 16787.64 22261.71 27182.91 21091.20 14167.94 24990.06 9790.34 21772.04 22793.59 11882.32 8994.91 16796.07 35
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25186.63 17694.84 5579.58 13895.96 1587.62 1994.50 18194.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26676.54 15788.74 29796.61 27
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21490.89 19980.85 12595.29 5681.14 10095.32 15092.34 180
v14419284.24 14584.41 14883.71 17187.59 22361.57 27282.95 20991.03 14567.82 25289.80 10590.49 21473.28 21193.51 12381.88 9794.89 16996.04 37
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 240
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13784.72 13884.00 16187.67 22062.55 25982.97 20890.93 14970.32 22389.80 10590.99 19373.50 20493.48 12481.69 9894.65 17995.97 38
DPM-MVS80.10 22779.18 23282.88 19990.71 15369.74 18278.87 27890.84 15060.29 32275.64 34185.92 29567.28 25093.11 13771.24 21691.79 24485.77 312
IU-MVS94.18 5072.64 14790.82 15156.98 34689.67 10985.78 5297.92 4993.28 137
PAPM_NR83.23 16983.19 16783.33 18390.90 14865.98 22288.19 10190.78 15278.13 12080.87 28887.92 25973.49 20692.42 15570.07 22988.40 30091.60 211
Anonymous2024052986.20 10487.13 9183.42 18190.19 16264.55 23584.55 16590.71 15385.85 3689.94 10395.24 4682.13 10790.40 21669.19 23996.40 10595.31 54
test1286.57 10590.74 15172.63 14990.69 15482.76 25779.20 13994.80 7395.32 15092.27 185
PLCcopyleft73.85 1682.09 18980.31 21687.45 9290.86 15080.29 7385.88 14190.65 15568.17 24576.32 33186.33 28773.12 21392.61 15261.40 30990.02 28089.44 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22794.55 1996.67 1487.94 3993.59 11884.27 6795.97 12495.52 48
114514_t83.10 17382.54 18184.77 14192.90 8369.10 19486.65 12990.62 15754.66 35881.46 28090.81 20476.98 16594.38 8672.62 20896.18 11490.82 230
PAPR78.84 23778.10 24781.07 23185.17 27460.22 29082.21 23290.57 15862.51 29275.32 34584.61 31674.99 18592.30 16159.48 32088.04 30890.68 235
test_fmvsm_n_192083.60 16282.89 17385.74 12585.22 27377.74 9984.12 17490.48 15959.87 32686.45 18591.12 18975.65 17885.89 30182.28 9090.87 26593.58 127
NR-MVSNet86.00 10786.22 10785.34 13293.24 7664.56 23482.21 23290.46 16080.99 8288.42 13791.97 16377.56 15593.85 10572.46 21098.65 1297.61 10
PVSNet_BlendedMVS78.80 23877.84 24881.65 22284.43 28563.41 24579.49 26790.44 16161.70 30475.43 34287.07 27869.11 24391.44 18260.68 31392.24 23590.11 251
PVSNet_Blended76.49 26675.40 27179.76 25084.43 28563.41 24575.14 33290.44 16157.36 34275.43 34278.30 37669.11 24391.44 18260.68 31387.70 31484.42 328
Gipumacopyleft84.44 13886.33 10578.78 26284.20 29273.57 13589.55 7790.44 16184.24 4884.38 22294.89 5376.35 17780.40 34576.14 16496.80 9182.36 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
RRT-MVS82.97 17483.44 16181.57 22385.06 27558.04 31587.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14076.49 15888.47 29993.62 124
QAPM82.59 17882.59 18082.58 20486.44 24666.69 21589.94 6790.36 16567.97 24884.94 21292.58 14772.71 21792.18 16370.63 22487.73 31388.85 274
mmtdpeth85.13 12385.78 11983.17 18984.65 28274.71 12785.87 14290.35 16677.94 12183.82 23796.96 1277.75 15180.03 34878.44 12896.21 11294.79 72
TEST992.34 9879.70 7883.94 17890.32 16765.41 27684.49 21990.97 19482.03 10993.63 113
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17890.32 16765.79 26784.49 21990.97 19481.93 11193.63 11381.21 9996.54 9890.88 228
test_892.09 10778.87 8583.82 18390.31 16965.79 26784.36 22390.96 19681.93 11193.44 126
agg_prior91.58 12777.69 10090.30 17084.32 22593.18 134
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20573.58 19594.66 17894.56 76
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23194.39 2096.38 1886.02 6593.52 12283.96 6995.92 13095.34 52
diffmvspermissive80.40 21780.48 21580.17 24679.02 35860.04 29177.54 29690.28 17366.65 26182.40 26187.33 27273.50 20487.35 27177.98 14089.62 28593.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 16683.37 16483.75 16983.16 31363.33 24781.31 24290.23 17469.51 23090.91 8690.81 20474.16 19692.29 16280.06 11190.22 27795.62 46
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22895.06 1596.14 2584.28 7793.07 13987.68 1896.34 10697.09 19
c3_l81.64 19881.59 19581.79 22080.86 33759.15 30378.61 28290.18 17668.36 24187.20 15987.11 27769.39 24091.62 17778.16 13694.43 18494.60 75
eth_miper_zixun_eth80.84 20880.22 22082.71 20181.41 32960.98 28377.81 29190.14 17767.31 25686.95 16987.24 27464.26 26592.31 16075.23 17491.61 24894.85 70
MVSFormer82.23 18481.57 19784.19 16085.54 26869.26 18991.98 3490.08 17871.54 20776.23 33285.07 31158.69 30294.27 8786.26 4388.77 29589.03 271
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20794.28 2496.54 1681.57 11794.27 8786.26 4396.49 10097.09 19
AdaColmapbinary83.66 16083.69 16083.57 17790.05 16772.26 15886.29 13690.00 18078.19 11981.65 27787.16 27583.40 8794.24 9061.69 30694.76 17784.21 333
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12788.77 9490.00 18075.65 14984.96 21093.17 12374.06 19791.19 18978.28 13391.09 25689.29 265
mvs5depth83.82 15784.54 14481.68 22182.23 31968.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33376.37 15995.63 14394.35 88
IterMVS-LS84.73 13284.98 13383.96 16387.35 22763.66 24283.25 19989.88 18376.06 13989.62 11192.37 15573.40 20992.52 15378.16 13694.77 17695.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 31570.67 31673.64 32269.66 41070.46 17766.97 38689.73 18442.68 40788.20 14383.04 33143.77 38060.07 40865.35 27686.66 32790.39 244
save fliter93.75 6377.44 10386.31 13589.72 18570.80 217
v2v48284.09 14984.24 15283.62 17387.13 23261.40 27482.71 21589.71 18672.19 20389.55 11591.41 18070.70 23593.20 13381.02 10193.76 20196.25 31
miper_ehance_all_eth80.34 21980.04 22581.24 22979.82 34858.95 30577.66 29389.66 18765.75 27085.99 19385.11 30768.29 24791.42 18476.03 16592.03 23993.33 134
tt080588.09 7789.79 5582.98 19393.26 7563.94 24191.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17382.03 9295.87 13293.13 144
Fast-Effi-MVS+81.04 20680.57 21182.46 20887.50 22563.22 24978.37 28589.63 18968.01 24681.87 27082.08 34482.31 10292.65 15167.10 25688.30 30691.51 214
Fast-Effi-MVS+-dtu82.54 18081.41 20085.90 12185.60 26676.53 11583.07 20489.62 19073.02 18879.11 31083.51 32680.74 12790.24 21968.76 24589.29 28890.94 225
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25277.55 14597.07 8383.13 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 19382.00 18781.93 21384.42 28768.22 19988.50 9989.48 19266.92 25881.80 27491.86 16572.59 21990.16 22271.19 21791.25 25587.40 295
test_040288.65 6989.58 6085.88 12292.55 9272.22 15984.01 17689.44 19388.63 2094.38 2195.77 2986.38 6193.59 11879.84 11495.21 15491.82 202
KD-MVS_self_test81.93 19483.14 16978.30 27284.75 28152.75 35580.37 25489.42 19470.24 22590.26 9593.39 11974.55 19486.77 28268.61 24896.64 9495.38 51
MSDG80.06 22879.99 22780.25 24483.91 29768.04 20377.51 29789.19 19577.65 12681.94 26883.45 32876.37 17686.31 28963.31 29486.59 32886.41 304
ambc82.98 19390.55 15664.86 23188.20 10089.15 19689.40 11893.96 9971.67 23191.38 18678.83 12696.55 9792.71 161
pmmvs686.52 9988.06 7981.90 21492.22 10362.28 26584.66 16389.15 19683.54 5789.85 10497.32 588.08 3886.80 28170.43 22697.30 7896.62 26
miper_enhance_ethall77.83 24776.93 25780.51 24076.15 37958.01 31675.47 33088.82 19858.05 33683.59 24180.69 35464.41 26491.20 18873.16 20692.03 23992.33 181
CNLPA83.55 16483.10 17084.90 13789.34 17983.87 5084.54 16788.77 19979.09 10683.54 24488.66 24874.87 18681.73 33566.84 25992.29 23389.11 267
LF4IMVS82.75 17681.93 18885.19 13382.08 32080.15 7485.53 14888.76 20068.01 24685.58 19987.75 26271.80 22986.85 28074.02 18793.87 20088.58 276
VPA-MVSNet83.47 16684.73 13679.69 25290.29 16057.52 32081.30 24488.69 20176.29 13787.58 15694.44 7180.60 12987.20 27366.60 26296.82 9094.34 89
IS-MVSNet86.66 9786.82 10086.17 11792.05 10966.87 21491.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 18997.89 5296.72 24
BH-untuned80.96 20780.99 20780.84 23588.55 20068.23 19880.33 25588.46 20372.79 19286.55 17786.76 28174.72 19191.77 17661.79 30588.99 29282.52 359
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23291.15 387.70 10888.42 20474.57 16183.56 24385.65 29778.49 14594.21 9172.04 21292.88 22394.05 101
UniMVSNet_ETH3D89.12 6590.72 4784.31 15697.00 264.33 23789.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18772.57 20997.65 6297.34 14
FA-MVS(test-final)83.13 17283.02 17183.43 18086.16 26066.08 22188.00 10388.36 20675.55 15085.02 20892.75 14265.12 26292.50 15474.94 17891.30 25491.72 206
TinyColmap81.25 20382.34 18477.99 27985.33 27060.68 28782.32 22788.33 20771.26 21286.97 16892.22 16177.10 16386.98 27762.37 29895.17 15686.31 306
CANet_DTU77.81 24977.05 25580.09 24781.37 33059.90 29483.26 19888.29 20869.16 23367.83 38683.72 32460.93 28489.47 24169.22 23889.70 28490.88 228
GBi-Net82.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
test182.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
FMVSNet184.55 13685.45 12581.85 21690.27 16161.05 28086.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 20969.09 24095.33 14993.82 112
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 7996.83 8995.41 50
USDC76.63 26376.73 26076.34 30283.46 30357.20 32380.02 25888.04 21352.14 37383.65 24091.25 18463.24 27386.65 28454.66 34994.11 19385.17 318
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22196.89 8695.64 45
MAR-MVS80.24 22378.74 23984.73 14286.87 24278.18 9285.75 14587.81 21565.67 27277.84 31978.50 37573.79 20190.53 21361.59 30890.87 26585.49 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 18382.61 17981.30 22686.29 25469.79 18188.71 9587.67 21678.42 11782.15 26684.15 32277.98 14891.59 17865.39 27492.75 22582.51 360
pm-mvs183.69 15984.95 13479.91 24890.04 16859.66 29682.43 22487.44 21775.52 15187.85 15095.26 4581.25 12185.65 30568.74 24696.04 12194.42 85
cascas76.29 26974.81 27680.72 23884.47 28462.94 25173.89 34487.34 21855.94 34975.16 34776.53 39163.97 26891.16 19065.00 27890.97 26188.06 284
HyFIR lowres test75.12 27972.66 30082.50 20791.44 13565.19 22972.47 35387.31 21946.79 39080.29 29684.30 31952.70 33492.10 16751.88 36986.73 32690.22 246
TransMVSNet (Re)84.02 15285.74 12078.85 26191.00 14655.20 34082.29 22887.26 22079.65 9888.38 13995.52 3783.00 9086.88 27967.97 25496.60 9694.45 82
xiu_mvs_v1_base_debu80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base_debi80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
cl2278.97 23478.21 24681.24 22977.74 36259.01 30477.46 30087.13 22465.79 26784.32 22585.10 30858.96 30190.88 20275.36 17392.03 23993.84 110
PS-MVSNAJ77.04 25776.53 26178.56 26687.09 23661.40 27475.26 33187.13 22461.25 31174.38 35277.22 38676.94 16690.94 19764.63 28384.83 35383.35 346
MVS_111021_HR84.63 13384.34 15185.49 13190.18 16375.86 12379.23 27387.13 22473.35 17885.56 20089.34 23583.60 8590.50 21476.64 15694.05 19690.09 252
xiu_mvs_v2_base77.19 25576.75 25978.52 26787.01 23861.30 27675.55 32987.12 22761.24 31274.45 35078.79 37377.20 16090.93 19864.62 28484.80 35483.32 347
1112_ss74.82 28473.74 28578.04 27889.57 17260.04 29176.49 31587.09 22854.31 35973.66 35679.80 36460.25 29086.76 28358.37 32484.15 35887.32 296
cl____80.42 21680.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.37 25486.18 18889.21 23863.08 27690.16 22276.31 16195.80 13693.65 122
DIV-MVS_self_test80.43 21580.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.38 25386.19 18689.22 23763.09 27590.16 22276.32 16095.80 13693.66 120
EG-PatchMatch MVS84.08 15084.11 15383.98 16292.22 10372.61 15082.20 23487.02 22972.63 19488.86 12491.02 19278.52 14391.11 19273.41 19791.09 25688.21 280
Baseline_NR-MVSNet84.00 15385.90 11478.29 27391.47 13453.44 35182.29 22887.00 23279.06 10789.55 11595.72 3277.20 16086.14 29572.30 21198.51 1795.28 55
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24293.78 10873.36 21096.48 287.98 1396.21 11294.41 86
PAPM71.77 31070.06 32576.92 29386.39 24753.97 34676.62 31286.62 23453.44 36363.97 40384.73 31557.79 31092.34 15939.65 40481.33 37884.45 327
FMVSNet281.31 20281.61 19480.41 24286.38 24858.75 31083.93 18086.58 23572.43 19587.65 15492.98 13163.78 27090.22 22066.86 25793.92 19892.27 185
BH-w/o76.57 26476.07 26678.10 27686.88 24165.92 22377.63 29486.33 23665.69 27180.89 28779.95 36368.97 24590.74 20753.01 36085.25 34277.62 389
EGC-MVSNET74.79 28569.99 32789.19 6594.89 3887.00 1591.89 3786.28 2371.09 4202.23 42295.98 2781.87 11489.48 24079.76 11595.96 12591.10 221
BH-RMVSNet80.53 21380.22 22081.49 22587.19 23166.21 22077.79 29286.23 23874.21 16483.69 23988.50 24973.25 21290.75 20663.18 29587.90 31087.52 293
Test_1112_low_res73.90 29373.08 29476.35 30190.35 15955.95 32973.40 34986.17 23950.70 38373.14 35785.94 29458.31 30485.90 30056.51 33483.22 36487.20 297
fmvsm_l_conf0.5_n82.06 19081.54 19883.60 17483.94 29573.90 13383.35 19686.10 24058.97 32883.80 23890.36 21674.23 19586.94 27882.90 8090.22 27789.94 254
MonoMVSNet76.66 26277.26 25474.86 31479.86 34754.34 34486.26 13786.08 24171.08 21585.59 19888.68 24653.95 32985.93 29763.86 28880.02 38284.32 329
ab-mvs79.67 23180.56 21276.99 29188.48 20156.93 32484.70 16286.06 24268.95 23680.78 28993.08 12675.30 18284.62 31356.78 33290.90 26389.43 261
SDMVSNet81.90 19683.17 16878.10 27688.81 19262.45 26176.08 32286.05 24373.67 17083.41 24593.04 12782.35 10080.65 34270.06 23095.03 16291.21 218
v14882.31 18282.48 18281.81 21985.59 26759.66 29681.47 24186.02 24472.85 18988.05 14790.65 21170.73 23490.91 20075.15 17591.79 24494.87 66
Anonymous2024052180.18 22581.25 20376.95 29283.15 31460.84 28582.46 22385.99 24568.76 23886.78 17093.73 11259.13 29977.44 35973.71 19397.55 6992.56 167
MVS73.21 29972.59 30175.06 31380.97 33460.81 28681.64 23985.92 24646.03 39571.68 36577.54 38168.47 24689.77 23755.70 34085.39 33974.60 395
FMVSNet378.80 23878.55 24179.57 25482.89 31756.89 32681.76 23685.77 24769.04 23586.00 19090.44 21551.75 33990.09 22865.95 26793.34 21091.72 206
MVS_030485.37 11784.58 14287.75 8885.28 27173.36 13686.54 13385.71 24877.56 12981.78 27692.47 15070.29 23696.02 1185.59 5395.96 12593.87 109
UGNet82.78 17581.64 19286.21 11586.20 25776.24 12086.86 12285.68 24977.07 13373.76 35592.82 13869.64 23991.82 17569.04 24293.69 20590.56 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 21385.62 25058.09 33591.41 18567.95 25584.48 326
fmvsm_l_conf0.5_n_a81.46 20080.87 21083.25 18583.73 30073.21 14283.00 20785.59 25158.22 33482.96 25390.09 22672.30 22286.65 28481.97 9589.95 28189.88 255
cdsmvs_eth3d_5k20.81 38727.75 3900.00 4060.00 4290.00 4310.00 41785.44 2520.00 4240.00 42582.82 33681.46 1180.00 4250.00 4240.00 4230.00 421
131473.22 29872.56 30375.20 31180.41 34457.84 31781.64 23985.36 25351.68 37673.10 35876.65 39061.45 28285.19 30863.54 29179.21 38782.59 355
test_yl78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
DCV-MVSNet78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
MVP-Stereo75.81 27373.51 28982.71 20189.35 17873.62 13480.06 25685.20 25660.30 32173.96 35387.94 25757.89 30989.45 24352.02 36474.87 40085.06 320
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29472.76 14483.91 18185.18 25780.44 8688.75 12785.49 30080.08 13491.92 17082.02 9390.85 26795.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29872.52 15383.82 18385.15 25880.27 9088.75 12785.45 30279.95 13691.90 17181.92 9690.80 26896.13 33
EI-MVSNet82.61 17782.42 18383.20 18783.25 31063.66 24283.50 19285.07 25976.06 13986.55 17785.10 30873.41 20790.25 21778.15 13890.67 27195.68 44
MVSTER77.09 25675.70 26981.25 22775.27 38761.08 27977.49 29985.07 25960.78 31786.55 17788.68 24643.14 38590.25 21773.69 19490.67 27192.42 174
miper_lstm_enhance76.45 26776.10 26577.51 28676.72 37360.97 28464.69 39185.04 26163.98 28583.20 24988.22 25256.67 31578.79 35573.22 20093.12 21792.78 157
WR-MVS83.56 16384.40 14981.06 23293.43 7054.88 34178.67 28185.02 26281.24 7990.74 9091.56 17772.85 21591.08 19368.00 25398.04 3997.23 16
MG-MVS80.32 22080.94 20878.47 26988.18 20752.62 35882.29 22885.01 26372.01 20579.24 30992.54 14869.36 24193.36 13070.65 22389.19 29189.45 259
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17784.98 26471.27 21086.70 17390.55 21363.04 27793.92 10378.26 13494.20 19089.63 257
VDD-MVS84.23 14684.58 14283.20 18791.17 14265.16 23083.25 19984.97 26579.79 9587.18 16094.27 7974.77 19090.89 20169.24 23696.54 9893.55 131
test_fmvs375.72 27475.20 27477.27 28975.01 39069.47 18678.93 27584.88 26646.67 39187.08 16587.84 26050.44 34671.62 37677.42 14988.53 29890.72 232
mvsmamba80.30 22178.87 23484.58 14688.12 21067.55 20692.35 2984.88 26663.15 28885.33 20390.91 19850.71 34395.20 6266.36 26387.98 30990.99 223
mvs_anonymous78.13 24578.76 23876.23 30579.24 35550.31 37478.69 28084.82 26861.60 30683.09 25292.82 13873.89 20087.01 27468.33 25286.41 33091.37 215
D2MVS76.84 25975.67 27080.34 24380.48 34362.16 26973.50 34784.80 26957.61 34082.24 26387.54 26651.31 34087.65 26770.40 22793.19 21691.23 217
FE-MVS79.98 22978.86 23583.36 18286.47 24566.45 21889.73 7084.74 27072.80 19184.22 23291.38 18144.95 37693.60 11763.93 28791.50 25190.04 253
MIMVSNet183.63 16184.59 14180.74 23694.06 5762.77 25582.72 21484.53 27177.57 12890.34 9395.92 2876.88 17285.83 30361.88 30497.42 7493.62 124
VNet79.31 23280.27 21776.44 30087.92 21453.95 34775.58 32884.35 27274.39 16382.23 26490.72 20672.84 21684.39 31760.38 31593.98 19790.97 224
test_fmvs273.57 29572.80 29775.90 30772.74 40368.84 19577.07 30484.32 27345.14 39782.89 25484.22 32048.37 35170.36 38073.40 19887.03 32288.52 277
test_vis1_n_192071.30 31771.58 31170.47 34477.58 36559.99 29374.25 33884.22 27451.06 37974.85 34979.10 37055.10 32668.83 38668.86 24479.20 38882.58 356
test_fmvs1_n70.94 31970.41 32272.53 33373.92 39266.93 21375.99 32384.21 27543.31 40479.40 30579.39 36843.47 38168.55 38869.05 24184.91 35082.10 363
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21683.69 27671.27 21086.70 17386.05 29363.04 27792.41 15678.26 13493.62 20890.71 233
AUN-MVS81.18 20478.78 23788.39 7990.93 14782.14 6282.51 22283.67 27764.69 28280.29 29685.91 29651.07 34192.38 15776.29 16293.63 20790.65 237
MVS_111021_LR84.28 14383.76 15985.83 12489.23 18283.07 5580.99 24883.56 27872.71 19386.07 18989.07 24181.75 11686.19 29377.11 15293.36 20988.24 279
test_fmvs169.57 33469.05 33471.14 34369.15 41165.77 22573.98 34283.32 27942.83 40677.77 32278.27 37743.39 38468.50 38968.39 25184.38 35779.15 386
CHOSEN 1792x268872.45 30470.56 31878.13 27590.02 16963.08 25068.72 37683.16 28042.99 40575.92 33785.46 30157.22 31385.18 30949.87 37481.67 37486.14 307
patch_mono-278.89 23579.39 23077.41 28884.78 27968.11 20175.60 32683.11 28160.96 31579.36 30689.89 22975.18 18372.97 37173.32 19992.30 23191.15 220
TR-MVS76.77 26175.79 26779.72 25186.10 26165.79 22477.14 30283.02 28265.20 27981.40 28182.10 34266.30 25590.73 20855.57 34185.27 34182.65 354
GA-MVS75.83 27274.61 27779.48 25681.87 32259.25 30073.42 34882.88 28368.68 23979.75 30181.80 34750.62 34489.46 24266.85 25885.64 33889.72 256
tfpnnormal81.79 19782.95 17278.31 27188.93 18955.40 33680.83 25182.85 28476.81 13485.90 19494.14 8974.58 19386.51 28666.82 26095.68 14293.01 150
sd_testset79.95 23081.39 20175.64 30988.81 19258.07 31476.16 32182.81 28573.67 17083.41 24593.04 12780.96 12477.65 35858.62 32395.03 16291.21 218
OpenMVS_ROBcopyleft70.19 1777.77 25077.46 25078.71 26484.39 28861.15 27881.18 24682.52 28662.45 29583.34 24787.37 27066.20 25688.66 25864.69 28285.02 34786.32 305
Anonymous20240521180.51 21481.19 20678.49 26888.48 20157.26 32276.63 31182.49 28781.21 8084.30 22892.24 16067.99 24886.24 29062.22 29995.13 15791.98 199
EU-MVSNet75.12 27974.43 28177.18 29083.11 31559.48 29885.71 14782.43 28839.76 41185.64 19788.76 24444.71 37887.88 26573.86 19085.88 33784.16 334
CMPMVSbinary59.41 2075.12 27973.57 28779.77 24975.84 38267.22 20781.21 24582.18 28950.78 38276.50 32887.66 26455.20 32582.99 32862.17 30290.64 27589.09 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 25475.40 27183.06 19089.00 18672.48 15477.90 29082.17 29060.81 31678.94 31183.49 32759.30 29788.76 25754.64 35092.37 23087.93 288
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 30072.47 30474.71 31683.36 30754.19 34582.14 23581.96 29156.76 34869.57 37886.21 29160.03 29184.83 31249.58 37682.65 37085.11 319
jason77.42 25375.75 26882.43 20987.10 23569.27 18877.99 28881.94 29251.47 37777.84 31985.07 31160.32 28989.00 25070.74 22289.27 29089.03 271
jason: jason.
旧先验191.97 11171.77 16381.78 29391.84 16773.92 19993.65 20683.61 341
VPNet80.25 22281.68 19175.94 30692.46 9547.98 38176.70 30981.67 29473.45 17584.87 21392.82 13874.66 19286.51 28661.66 30796.85 8793.33 134
test_vis1_rt65.64 35964.09 36370.31 34566.09 41670.20 18061.16 39881.60 29538.65 41272.87 35969.66 40552.84 33260.04 40956.16 33677.77 39280.68 380
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18781.58 29674.73 15985.66 19686.06 29272.56 22092.69 15075.44 17295.21 15489.01 273
reproduce_monomvs74.09 29173.23 29276.65 29976.52 37454.54 34277.50 29881.40 29765.85 26682.86 25686.67 28227.38 41684.53 31470.24 22890.66 27390.89 227
VDDNet84.35 14085.39 12781.25 22795.13 3259.32 29985.42 15181.11 29886.41 3287.41 15896.21 2273.61 20290.61 21266.33 26496.85 8793.81 115
IterMVS-SCA-FT80.64 21279.41 22984.34 15483.93 29669.66 18476.28 31881.09 29972.43 19586.47 18390.19 22260.46 28793.15 13677.45 14786.39 33190.22 246
UnsupCasMVSNet_eth71.63 31372.30 30569.62 35176.47 37652.70 35770.03 37280.97 30059.18 32779.36 30688.21 25360.50 28669.12 38458.33 32677.62 39487.04 298
test_vis1_n70.29 32369.99 32771.20 34275.97 38166.50 21776.69 31080.81 30144.22 40075.43 34277.23 38550.00 34768.59 38766.71 26182.85 36978.52 388
lupinMVS76.37 26874.46 28082.09 21185.54 26869.26 18976.79 30780.77 30250.68 38476.23 33282.82 33658.69 30288.94 25169.85 23188.77 29588.07 282
CL-MVSNet_self_test76.81 26077.38 25275.12 31286.90 24051.34 36673.20 35080.63 30368.30 24381.80 27488.40 25066.92 25380.90 33955.35 34494.90 16893.12 146
新几何182.95 19593.96 5978.56 8880.24 30455.45 35283.93 23691.08 19171.19 23288.33 26165.84 27093.07 21881.95 365
testdata79.54 25592.87 8472.34 15680.14 30559.91 32585.47 20291.75 17367.96 24985.24 30768.57 25092.18 23881.06 378
TAMVS78.08 24676.36 26283.23 18690.62 15472.87 14379.08 27480.01 30661.72 30381.35 28286.92 28063.96 26988.78 25650.61 37093.01 22088.04 285
pmmvs-eth3d78.42 24477.04 25682.57 20687.44 22674.41 13080.86 25079.67 30755.68 35184.69 21690.31 21960.91 28585.42 30662.20 30091.59 24987.88 289
KD-MVS_2432*160066.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
miper_refine_blended66.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
IterMVS76.91 25876.34 26378.64 26580.91 33564.03 23976.30 31779.03 31064.88 28183.11 25089.16 23959.90 29384.46 31568.61 24885.15 34587.42 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 30371.41 31376.28 30383.25 31060.34 28983.50 19279.02 31137.77 41576.33 33085.10 30849.60 34987.41 27070.54 22577.54 39581.08 376
ppachtmachnet_test74.73 28674.00 28476.90 29480.71 34056.89 32671.53 36178.42 31258.24 33379.32 30882.92 33557.91 30884.26 31965.60 27391.36 25389.56 258
FMVSNet572.10 30871.69 30873.32 32381.57 32753.02 35476.77 30878.37 31363.31 28676.37 32991.85 16636.68 39878.98 35247.87 38592.45 22987.95 287
MS-PatchMatch70.93 32070.22 32373.06 32681.85 32362.50 26073.82 34577.90 31452.44 37075.92 33781.27 35155.67 32281.75 33455.37 34377.70 39374.94 394
test22293.31 7376.54 11379.38 26877.79 31552.59 36882.36 26290.84 20366.83 25491.69 24681.25 373
fmvsm_s_conf0.1_n_a82.58 17981.93 18884.50 14787.68 21973.35 13786.14 13977.70 31661.64 30585.02 20891.62 17577.75 15186.24 29082.79 8387.07 32093.91 107
pmmvs474.92 28272.98 29680.73 23784.95 27671.71 16776.23 31977.59 31752.83 36777.73 32386.38 28556.35 31884.97 31057.72 33087.05 32185.51 315
EPNet80.37 21878.41 24486.23 11376.75 37273.28 13987.18 11677.45 31876.24 13868.14 38388.93 24365.41 26193.85 10569.47 23496.12 11891.55 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 18781.59 19583.94 16586.87 24271.57 16985.19 15577.42 31962.27 29984.47 22191.33 18276.43 17485.91 29983.14 7487.14 31894.33 90
fmvsm_s_conf0.5_n_a82.21 18581.51 19984.32 15586.56 24473.35 13785.46 14977.30 32061.81 30184.51 21890.88 20177.36 15886.21 29282.72 8486.97 32593.38 132
test_cas_vis1_n_192069.20 33969.12 33269.43 35373.68 39562.82 25470.38 37077.21 32146.18 39480.46 29578.95 37252.03 33665.53 40165.77 27277.45 39679.95 384
XXY-MVS74.44 28976.19 26469.21 35484.61 28352.43 35971.70 35877.18 32260.73 31880.60 29090.96 19675.44 17969.35 38356.13 33788.33 30285.86 311
fmvsm_s_conf0.5_n81.91 19581.30 20283.75 16986.02 26271.56 17084.73 16177.11 32362.44 29684.00 23490.68 20876.42 17585.89 30183.14 7487.11 31993.81 115
CR-MVSNet74.00 29273.04 29576.85 29679.58 34962.64 25782.58 21876.90 32450.50 38575.72 33992.38 15248.07 35384.07 32168.72 24782.91 36783.85 338
Patchmtry76.56 26577.46 25073.83 32079.37 35446.60 38782.41 22576.90 32473.81 16885.56 20092.38 15248.07 35383.98 32263.36 29395.31 15290.92 226
IB-MVS62.13 1971.64 31268.97 33779.66 25380.80 33962.26 26673.94 34376.90 32463.27 28768.63 38276.79 38833.83 40291.84 17459.28 32187.26 31684.88 321
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15076.68 32784.06 5092.44 6096.99 1062.03 28094.65 7780.58 10893.24 21494.83 71
ET-MVSNet_ETH3D75.28 27672.77 29882.81 20083.03 31668.11 20177.09 30376.51 32860.67 31977.60 32480.52 35838.04 39491.15 19170.78 22090.68 27089.17 266
N_pmnet70.20 32468.80 33974.38 31880.91 33584.81 4359.12 40376.45 32955.06 35475.31 34682.36 34155.74 32154.82 41347.02 38787.24 31783.52 342
thisisatest053079.07 23377.33 25384.26 15787.13 23264.58 23383.66 18975.95 33068.86 23785.22 20587.36 27138.10 39393.57 12175.47 17194.28 18894.62 74
EPNet_dtu72.87 30271.33 31477.49 28777.72 36360.55 28882.35 22675.79 33166.49 26258.39 41381.06 35353.68 33085.98 29653.55 35592.97 22285.95 309
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 33869.68 32967.82 36479.42 35251.15 36967.82 38175.79 33154.15 36077.47 32585.36 30659.26 29870.64 37948.46 38279.35 38581.66 367
MDA-MVSNet-bldmvs77.47 25276.90 25879.16 25979.03 35764.59 23266.58 38775.67 33373.15 18688.86 12488.99 24266.94 25281.23 33864.71 28188.22 30791.64 210
pmmvs570.73 32170.07 32472.72 32977.03 37052.73 35674.14 33975.65 33450.36 38672.17 36385.37 30555.42 32480.67 34152.86 36187.59 31584.77 322
tttt051781.07 20579.58 22885.52 12988.99 18766.45 21887.03 11975.51 33573.76 16988.32 14190.20 22137.96 39694.16 9779.36 12295.13 15795.93 41
tpmvs70.16 32569.56 33071.96 33774.71 39148.13 37979.63 26275.45 33665.02 28070.26 37481.88 34645.34 37285.68 30458.34 32575.39 39982.08 364
ADS-MVSNet265.87 35863.64 36672.55 33273.16 39856.92 32567.10 38474.81 33749.74 38766.04 39282.97 33246.71 35677.26 36042.29 39869.96 40783.46 343
new-patchmatchnet70.10 32673.37 29160.29 39081.23 33216.95 42559.54 40174.62 33862.93 28980.97 28487.93 25862.83 27971.90 37455.24 34595.01 16592.00 197
Anonymous2023120671.38 31671.88 30769.88 34886.31 25254.37 34370.39 36974.62 33852.57 36976.73 32788.76 24459.94 29272.06 37344.35 39693.23 21583.23 349
CostFormer69.98 33068.68 34073.87 31977.14 36850.72 37279.26 27074.51 34051.94 37570.97 36984.75 31445.16 37587.49 26955.16 34679.23 38683.40 345
door-mid74.45 341
thisisatest051573.00 30170.52 31980.46 24181.45 32859.90 29473.16 35174.31 34257.86 33776.08 33677.78 37937.60 39792.12 16665.00 27891.45 25289.35 262
baseline173.26 29773.54 28872.43 33484.92 27747.79 38279.89 26074.00 34365.93 26478.81 31286.28 29056.36 31781.63 33656.63 33379.04 38987.87 290
test_method30.46 38629.60 38933.06 40017.99 4253.84 42813.62 41673.92 3442.79 41918.29 42153.41 41428.53 41343.25 41922.56 41735.27 41752.11 414
tfpn200view974.86 28374.23 28276.74 29786.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25889.31 263
thres40075.14 27774.23 28277.86 28286.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25892.66 163
LFMVS80.15 22680.56 21278.89 26089.19 18355.93 33085.22 15473.78 34782.96 6384.28 22992.72 14357.38 31190.07 22963.80 28995.75 13990.68 235
thres20072.34 30671.55 31274.70 31783.48 30251.60 36575.02 33373.71 34870.14 22678.56 31580.57 35746.20 35988.20 26346.99 38889.29 28884.32 329
tpm cat166.76 35365.21 36171.42 34077.09 36950.62 37378.01 28773.68 34944.89 39868.64 38179.00 37145.51 36982.42 33249.91 37370.15 40681.23 375
testing9169.94 33168.99 33672.80 32883.81 29945.89 39071.57 36073.64 35068.24 24470.77 37277.82 37834.37 40184.44 31653.64 35487.00 32488.07 282
testgi72.36 30574.61 27765.59 37480.56 34242.82 40268.29 37773.35 35166.87 25981.84 27189.93 22772.08 22666.92 39646.05 39292.54 22887.01 299
thres100view90075.45 27575.05 27576.66 29887.27 22851.88 36381.07 24773.26 35275.68 14883.25 24886.37 28645.54 36788.80 25351.98 36590.99 25889.31 263
thres600view775.97 27175.35 27377.85 28387.01 23851.84 36480.45 25373.26 35275.20 15583.10 25186.31 28945.54 36789.05 24955.03 34792.24 23592.66 163
wuyk23d75.13 27879.30 23162.63 38375.56 38375.18 12680.89 24973.10 35475.06 15794.76 1695.32 4187.73 4352.85 41434.16 41397.11 8259.85 410
WTY-MVS67.91 34568.35 34266.58 37180.82 33848.12 38065.96 38872.60 35553.67 36271.20 36781.68 34958.97 30069.06 38548.57 38181.67 37482.55 357
door72.57 356
PVSNet58.17 2166.41 35565.63 35868.75 35881.96 32149.88 37662.19 39772.51 35751.03 38068.04 38475.34 39650.84 34274.77 36845.82 39382.96 36581.60 368
dmvs_re66.81 35266.98 34866.28 37276.87 37158.68 31171.66 35972.24 35860.29 32269.52 37973.53 39952.38 33564.40 40444.90 39481.44 37775.76 392
MDTV_nov1_ep1368.29 34378.03 36143.87 39974.12 34072.22 35952.17 37167.02 38985.54 29845.36 37180.85 34055.73 33884.42 356
WBMVS68.76 34168.43 34169.75 35083.29 30840.30 40767.36 38372.21 36057.09 34577.05 32685.53 29933.68 40380.51 34348.79 38090.90 26388.45 278
test20.0373.75 29474.59 27971.22 34181.11 33351.12 37070.15 37172.10 36170.42 22080.28 29891.50 17864.21 26674.72 37046.96 38994.58 18087.82 291
Vis-MVSNet (Re-imp)77.82 24877.79 24977.92 28088.82 19151.29 36883.28 19771.97 36274.04 16582.23 26489.78 23057.38 31189.41 24657.22 33195.41 14693.05 148
MIMVSNet71.09 31871.59 30969.57 35287.23 22950.07 37578.91 27671.83 36360.20 32471.26 36691.76 17255.08 32776.09 36341.06 40187.02 32382.54 358
tpm268.45 34366.83 35073.30 32478.93 35948.50 37879.76 26171.76 36447.50 38969.92 37683.60 32542.07 38788.40 26048.44 38379.51 38383.01 352
sss66.92 34967.26 34765.90 37377.23 36751.10 37164.79 39071.72 36552.12 37470.13 37580.18 36157.96 30765.36 40250.21 37181.01 38081.25 373
our_test_371.85 30971.59 30972.62 33180.71 34053.78 34869.72 37371.71 36658.80 33078.03 31680.51 35956.61 31678.84 35462.20 30086.04 33685.23 317
SCA73.32 29672.57 30275.58 31081.62 32655.86 33278.89 27771.37 36761.73 30274.93 34883.42 32960.46 28787.01 27458.11 32882.63 37283.88 335
testing9969.27 33768.15 34472.63 33083.29 30845.45 39271.15 36271.08 36867.34 25570.43 37377.77 38032.24 40684.35 31853.72 35386.33 33288.10 281
test_f64.31 36665.85 35559.67 39166.54 41562.24 26857.76 40770.96 36940.13 40984.36 22382.09 34346.93 35551.67 41561.99 30381.89 37365.12 406
lessismore_v085.95 11991.10 14470.99 17470.91 37091.79 6994.42 7461.76 28192.93 14479.52 12093.03 21993.93 105
tpmrst66.28 35666.69 35265.05 37872.82 40239.33 40878.20 28670.69 37153.16 36667.88 38580.36 36048.18 35274.75 36958.13 32770.79 40581.08 376
PatchMatch-RL74.48 28773.22 29378.27 27487.70 21885.26 3875.92 32470.09 37264.34 28376.09 33581.25 35265.87 25978.07 35753.86 35283.82 36071.48 398
PatchmatchNetpermissive69.71 33368.83 33872.33 33677.66 36453.60 34979.29 26969.99 37357.66 33972.53 36182.93 33446.45 35880.08 34760.91 31272.09 40383.31 348
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 24378.63 24077.88 28191.85 11748.95 37783.68 18869.91 37472.30 20184.26 23194.20 8551.89 33889.82 23463.58 29096.02 12294.87 66
baseline269.77 33266.89 34978.41 27079.51 35158.09 31376.23 31969.57 37557.50 34164.82 40177.45 38346.02 36188.44 25953.08 35777.83 39188.70 275
testing1167.38 34665.93 35471.73 33983.37 30646.60 38770.95 36569.40 37662.47 29466.14 39076.66 38931.22 40784.10 32049.10 37884.10 35984.49 325
ttmdpeth71.72 31170.67 31674.86 31473.08 40055.88 33177.41 30169.27 37755.86 35078.66 31393.77 11038.01 39575.39 36760.12 31689.87 28293.31 136
test111178.53 24278.85 23677.56 28592.22 10347.49 38382.61 21669.24 37872.43 19585.28 20494.20 8551.91 33790.07 22965.36 27596.45 10395.11 61
Patchmatch-RL test74.48 28773.68 28676.89 29584.83 27866.54 21672.29 35469.16 37957.70 33886.76 17186.33 28745.79 36682.59 32969.63 23390.65 27481.54 369
SSC-MVS77.55 25181.64 19265.29 37790.46 15720.33 42373.56 34668.28 38085.44 3788.18 14494.64 6470.93 23381.33 33771.25 21592.03 23994.20 92
WB-MVS76.06 27080.01 22664.19 38089.96 17020.58 42272.18 35568.19 38183.21 5986.46 18493.49 11770.19 23778.97 35365.96 26690.46 27693.02 149
testing22266.93 34865.30 36071.81 33883.38 30545.83 39172.06 35667.50 38264.12 28469.68 37776.37 39227.34 41783.00 32738.88 40588.38 30186.62 303
FPMVS72.29 30772.00 30673.14 32588.63 19785.00 4074.65 33767.39 38371.94 20677.80 32187.66 26450.48 34575.83 36549.95 37279.51 38358.58 412
MDA-MVSNet_test_wron70.05 32870.44 32068.88 35773.84 39353.47 35058.93 40567.28 38458.43 33187.09 16485.40 30359.80 29567.25 39459.66 31983.54 36285.92 310
YYNet170.06 32770.44 32068.90 35673.76 39453.42 35258.99 40467.20 38558.42 33287.10 16385.39 30459.82 29467.32 39359.79 31883.50 36385.96 308
test-LLR67.21 34766.74 35168.63 36076.45 37755.21 33867.89 37867.14 38662.43 29765.08 39872.39 40043.41 38269.37 38161.00 31084.89 35181.31 371
test-mter65.00 36163.79 36568.63 36076.45 37755.21 33867.89 37867.14 38650.98 38165.08 39872.39 40028.27 41469.37 38161.00 31084.89 35181.31 371
tpm67.95 34468.08 34567.55 36578.74 36043.53 40075.60 32667.10 38854.92 35572.23 36288.10 25442.87 38675.97 36452.21 36380.95 38183.15 350
PM-MVS80.20 22479.00 23383.78 16888.17 20886.66 1981.31 24266.81 38969.64 22988.33 14090.19 22264.58 26383.63 32571.99 21390.03 27981.06 378
WB-MVSnew68.72 34269.01 33567.85 36383.22 31243.98 39874.93 33465.98 39055.09 35373.83 35479.11 36965.63 26071.89 37538.21 40985.04 34687.69 292
MVStest170.05 32869.26 33172.41 33558.62 42255.59 33576.61 31365.58 39153.44 36389.28 12093.32 12022.91 42271.44 37874.08 18689.52 28690.21 250
JIA-IIPM69.41 33566.64 35377.70 28473.19 39771.24 17275.67 32565.56 39270.42 22065.18 39792.97 13333.64 40483.06 32653.52 35669.61 40978.79 387
PatchT70.52 32272.76 29963.79 38279.38 35333.53 41677.63 29465.37 39373.61 17271.77 36492.79 14144.38 37975.65 36664.53 28585.37 34082.18 362
UBG64.34 36563.35 36767.30 36783.50 30140.53 40667.46 38265.02 39454.77 35767.54 38874.47 39832.99 40578.50 35640.82 40283.58 36182.88 353
UWE-MVS66.43 35465.56 35969.05 35584.15 29340.98 40573.06 35264.71 39554.84 35676.18 33479.62 36729.21 41180.50 34438.54 40889.75 28385.66 313
dp60.70 37660.29 37961.92 38672.04 40538.67 41170.83 36664.08 39651.28 37860.75 40677.28 38436.59 39971.58 37747.41 38662.34 41375.52 393
Patchmatch-test65.91 35767.38 34661.48 38875.51 38443.21 40168.84 37563.79 39762.48 29372.80 36083.42 32944.89 37759.52 41048.27 38486.45 32981.70 366
TESTMET0.1,161.29 37260.32 37864.19 38072.06 40451.30 36767.89 37862.09 39845.27 39660.65 40769.01 40627.93 41564.74 40356.31 33581.65 37676.53 390
Syy-MVS69.40 33670.03 32667.49 36681.72 32438.94 40971.00 36361.99 39961.38 30870.81 37072.36 40261.37 28379.30 35064.50 28685.18 34384.22 331
myMVS_eth3d64.66 36363.89 36466.97 36981.72 32437.39 41271.00 36361.99 39961.38 30870.81 37072.36 40220.96 42379.30 35049.59 37585.18 34384.22 331
PVSNet_051.08 2256.10 38054.97 38559.48 39275.12 38853.28 35355.16 40961.89 40144.30 39959.16 40962.48 41254.22 32865.91 40035.40 41147.01 41559.25 411
ADS-MVSNet61.90 36962.19 37361.03 38973.16 39836.42 41467.10 38461.75 40249.74 38766.04 39282.97 33246.71 35663.21 40542.29 39869.96 40783.46 343
PMMVS61.65 37060.38 37765.47 37665.40 41969.26 18963.97 39361.73 40336.80 41660.11 40868.43 40759.42 29666.35 39848.97 37978.57 39060.81 409
ETVMVS64.67 36263.34 36868.64 35983.44 30441.89 40369.56 37461.70 40461.33 31068.74 38075.76 39428.76 41279.35 34934.65 41286.16 33584.67 324
test0.0.03 164.66 36364.36 36265.57 37575.03 38946.89 38664.69 39161.58 40562.43 29771.18 36877.54 38143.41 38268.47 39040.75 40382.65 37081.35 370
dmvs_testset60.59 37762.54 37254.72 39677.26 36627.74 41974.05 34161.00 40660.48 32065.62 39567.03 40955.93 32068.23 39132.07 41669.46 41068.17 403
E-PMN61.59 37161.62 37461.49 38766.81 41455.40 33653.77 41060.34 40766.80 26058.90 41165.50 41040.48 39066.12 39955.72 33986.25 33362.95 408
testing371.53 31470.79 31573.77 32188.89 19041.86 40476.60 31459.12 40872.83 19080.97 28482.08 34419.80 42487.33 27265.12 27791.68 24792.13 192
CHOSEN 280x42059.08 37856.52 38366.76 37076.51 37564.39 23649.62 41259.00 40943.86 40155.66 41668.41 40835.55 40068.21 39243.25 39776.78 39867.69 404
EMVS61.10 37460.81 37661.99 38565.96 41755.86 33253.10 41158.97 41067.06 25756.89 41563.33 41140.98 38867.03 39554.79 34886.18 33463.08 407
pmmvs362.47 36760.02 38069.80 34971.58 40664.00 24070.52 36858.44 41139.77 41066.05 39175.84 39327.10 41972.28 37246.15 39184.77 35573.11 396
MVS-HIRNet61.16 37362.92 37055.87 39479.09 35635.34 41571.83 35757.98 41246.56 39259.05 41091.14 18849.95 34876.43 36238.74 40671.92 40455.84 413
gg-mvs-nofinetune68.96 34069.11 33368.52 36276.12 38045.32 39383.59 19055.88 41386.68 2964.62 40297.01 930.36 40983.97 32344.78 39582.94 36676.26 391
GG-mvs-BLEND67.16 36873.36 39646.54 38984.15 17355.04 41458.64 41261.95 41329.93 41083.87 32438.71 40776.92 39771.07 399
EPMVS62.47 36762.63 37162.01 38470.63 40838.74 41074.76 33552.86 41553.91 36167.71 38780.01 36239.40 39166.60 39755.54 34268.81 41180.68 380
new_pmnet55.69 38157.66 38249.76 39775.47 38530.59 41759.56 40051.45 41643.62 40362.49 40475.48 39540.96 38949.15 41737.39 41072.52 40169.55 401
PMMVS255.64 38259.27 38144.74 39864.30 42012.32 42640.60 41349.79 41753.19 36565.06 40084.81 31353.60 33149.76 41632.68 41589.41 28772.15 397
test250674.12 29073.39 29076.28 30391.85 11744.20 39784.06 17548.20 41872.30 20181.90 26994.20 8527.22 41889.77 23764.81 28096.02 12294.87 66
DSMNet-mixed60.98 37561.61 37559.09 39372.88 40145.05 39574.70 33646.61 41926.20 41765.34 39690.32 21855.46 32363.12 40641.72 40081.30 37969.09 402
mvsany_test365.48 36062.97 36973.03 32769.99 40976.17 12164.83 38943.71 42043.68 40280.25 29987.05 27952.83 33363.09 40751.92 36872.44 40279.84 385
mvsany_test158.48 37956.47 38464.50 37965.90 41868.21 20056.95 40842.11 42138.30 41365.69 39477.19 38756.96 31459.35 41146.16 39058.96 41465.93 405
MVEpermissive40.22 2351.82 38350.47 38655.87 39462.66 42151.91 36231.61 41539.28 42240.65 40850.76 41774.98 39756.24 31944.67 41833.94 41464.11 41271.04 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4833.14 423
tmp_tt20.25 38824.50 3917.49 4034.47 4268.70 42734.17 41425.16 4241.00 42132.43 42018.49 41839.37 3929.21 42221.64 41843.75 4164.57 418
DeepMVS_CXcopyleft24.13 40232.95 42429.49 41821.63 42512.07 41837.95 41945.07 41630.84 40819.21 42117.94 42033.06 41823.69 417
dongtai41.90 38442.65 38739.67 39970.86 40721.11 42161.01 39921.42 42657.36 34257.97 41450.06 41516.40 42558.73 41221.03 41927.69 41939.17 415
kuosan30.83 38532.17 38826.83 40153.36 42319.02 42457.90 40620.44 42738.29 41438.01 41837.82 41715.18 42633.45 4207.74 42120.76 42028.03 416
test1236.27 3918.08 3940.84 4041.11 4280.57 42962.90 3940.82 4280.54 4221.07 4242.75 4231.26 4270.30 4231.04 4221.26 4221.66 419
testmvs5.91 3927.65 3950.72 4051.20 4270.37 43059.14 4020.67 4290.49 4231.11 4232.76 4220.94 4280.24 4241.02 4231.47 4211.55 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.41 3908.55 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42476.94 1660.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
n20.00 430
nn0.00 430
ab-mvs-re6.65 3898.87 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42579.80 3640.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS37.39 41252.61 362
PC_three_145258.96 32990.06 9791.33 18280.66 12893.03 14175.78 16795.94 12892.48 171
eth-test20.00 429
eth-test0.00 429
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 17995.35 14892.29 183
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 152
GSMVS83.88 335
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 335
sam_mvs45.92 365
test_post178.85 2793.13 42045.19 37480.13 34658.11 328
test_post3.10 42145.43 37077.22 361
patchmatchnet-post81.71 34845.93 36487.01 274
gm-plane-assit75.42 38644.97 39652.17 37172.36 40287.90 26454.10 351
test9_res80.83 10496.45 10390.57 238
agg_prior279.68 11796.16 11590.22 246
test_prior478.97 8484.59 164
test_prior283.37 19575.43 15284.58 21791.57 17681.92 11379.54 11996.97 85
旧先验281.73 23756.88 34786.54 18284.90 31172.81 207
新几何281.72 238
原ACMM282.26 231
testdata286.43 28863.52 292
segment_acmp81.94 110
testdata179.62 26373.95 167
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15873.30 18180.55 292
ACMP_Plane91.19 13984.77 15873.30 18180.55 292
BP-MVS77.30 150
HQP4-MVS80.56 29194.61 7993.56 129
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 224
MDTV_nov1_ep13_2view27.60 42070.76 36746.47 39361.27 40545.20 37349.18 37783.75 340
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140