This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19689.67 22284.47 7095.46 4782.56 8396.26 11193.77 117
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26687.25 26182.43 9394.53 7977.65 13896.46 10194.14 98
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
bld_raw_dy_0_6481.25 19481.17 19881.49 21785.55 26260.85 27786.36 12795.45 957.08 33490.81 8882.69 32765.85 25293.91 10170.37 21996.34 10589.72 244
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14193.03 12182.66 8991.47 17770.81 20996.14 11594.16 96
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 6995.37 5180.87 10095.50 14394.53 79
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
LCM-MVSNet-Re83.48 15785.06 12578.75 25685.94 25755.75 32680.05 24894.27 2076.47 12996.09 594.54 6283.31 8389.75 23459.95 30694.89 16790.75 220
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2082.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2385.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23065.22 22284.16 16294.23 2377.89 11691.28 7793.66 10884.35 7192.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2580.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2674.04 15892.70 5394.66 5585.88 6191.50 17679.72 11397.32 7596.50 31
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2673.53 16689.71 10694.82 5185.09 6395.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2888.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
RPMNet78.88 22778.28 23680.68 23279.58 33962.64 25082.58 20994.16 2874.80 15175.72 32792.59 13748.69 34195.56 3973.48 18782.91 35583.85 326
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2882.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3283.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3388.89 1188.83 12494.26 7777.55 14995.86 2284.88 5895.87 13095.24 58
test_one_060193.85 5873.27 13694.11 3486.57 2593.47 3894.64 5988.42 26
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3585.33 3393.49 3694.64 5981.12 11795.88 1787.41 2295.94 12692.48 167
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3595.88 1786.42 3697.97 4392.02 189
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3784.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 199
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3779.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3979.68 9292.09 6293.89 10083.80 7693.10 13682.67 8298.04 3693.64 123
baseline85.20 11785.93 10883.02 18686.30 24762.37 25684.55 15593.96 4074.48 15587.12 15392.03 15382.30 9891.94 16678.39 12494.21 18794.74 73
casdiffmvspermissive85.21 11685.85 11283.31 17986.17 25262.77 24883.03 19693.93 4174.69 15388.21 13792.68 13682.29 9991.89 16977.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11693.91 4280.07 8986.75 16493.26 11493.64 290.93 19484.60 6190.75 26393.97 104
test072694.16 4972.56 14890.63 4593.90 4383.61 5093.75 3094.49 6489.76 18
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4378.43 11189.16 11992.25 15072.03 22096.36 388.21 790.93 25792.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4380.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4688.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 183
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4781.89 6894.70 1395.44 3490.69 888.31 25783.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4878.90 10492.88 4592.29 14886.11 5890.22 21586.24 4397.24 7791.36 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4980.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
test_241102_TWO93.71 5083.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 188
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5183.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 177
test_241102_ONE94.18 4672.65 14293.69 5183.62 4994.11 2293.78 10490.28 1495.50 46
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5377.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5479.44 9686.55 16992.95 12674.84 18095.22 5680.78 10295.83 13294.46 80
plane_prior593.61 5495.22 5680.78 10295.83 13294.46 80
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13193.60 5680.16 8789.13 12193.44 11283.82 7590.98 19283.86 6895.30 15193.60 125
TAPA-MVS77.73 1285.71 11084.83 12988.37 7888.78 19179.72 7387.15 11193.50 5769.17 22285.80 18789.56 22380.76 12192.13 16173.21 19695.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5882.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 13483.91 15085.52 12788.58 19670.40 17584.50 15993.37 5978.76 10884.07 22478.72 36280.39 12595.13 6073.82 18292.98 21691.04 213
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6083.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6179.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 170
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 17781.23 19685.10 13387.95 20869.17 19083.22 19393.33 6270.42 21078.58 30279.77 35477.29 15294.20 8971.51 20588.96 28491.93 193
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12082.70 16792.08 895.64 2386.25 1892.64 1893.33 6285.07 3689.99 9916.05 40486.57 5295.80 2587.35 2497.62 6294.20 92
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25589.54 7493.31 6590.21 1095.57 995.66 2981.42 11495.90 1580.94 9998.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6681.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6781.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6881.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6975.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30088.95 8493.19 7091.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7186.02 2993.12 4195.30 3684.94 6489.44 23974.12 17696.10 11894.45 82
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10793.17 7176.02 13488.64 12791.22 17684.24 7393.37 12777.97 13697.03 8295.52 49
dcpmvs_284.23 13985.14 12481.50 21688.61 19561.98 26282.90 20293.11 7468.66 23092.77 5192.39 14278.50 13887.63 26376.99 14992.30 22694.90 65
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7481.10 7795.32 1097.24 572.94 20794.85 6785.07 5497.78 5397.26 16
FC-MVSNet-test85.93 10787.05 9182.58 19892.25 9956.44 32185.75 13593.09 7677.33 12391.94 6694.65 5674.78 18293.41 12675.11 16898.58 1397.88 7
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7780.87 8191.13 7893.19 11586.22 5795.97 1282.23 8897.18 7990.45 231
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11486.27 10382.60 19791.86 11357.31 31485.10 14793.05 7875.83 13991.02 8193.97 9273.57 19692.91 14373.97 17998.02 3997.58 12
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7886.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PHI-MVS86.38 9785.81 11388.08 8288.44 20077.34 10189.35 8093.05 7873.15 17784.76 20587.70 25278.87 13694.18 9080.67 10496.29 10792.73 156
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8182.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22188.86 8693.02 8287.15 2393.05 4397.10 682.28 10092.02 16576.70 15097.99 4096.88 25
MSLP-MVS++85.00 12286.03 10781.90 20791.84 11671.56 16786.75 12193.02 8275.95 13787.12 15389.39 22577.98 14289.40 24277.46 14194.78 17284.75 312
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8487.95 2089.62 11092.87 12984.56 6893.89 10277.65 13896.62 9390.70 223
ANet_high83.17 16385.68 11675.65 30081.24 32245.26 38379.94 25092.91 8583.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17692.87 8680.37 8389.61 11291.81 16177.72 14694.18 9075.00 16998.53 1596.99 24
test_prior86.32 10890.59 15271.99 15992.85 8794.17 9292.80 154
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31088.93 8592.84 8891.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8988.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12092.78 9078.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30389.04 8392.74 9191.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
HQP3-MVS92.68 9294.47 180
HQP-MVS84.61 12784.06 14686.27 11091.19 13670.66 17284.77 14892.68 9273.30 17280.55 28190.17 21472.10 21694.61 7477.30 14594.47 18093.56 128
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9483.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
CLD-MVS83.18 16282.64 16984.79 13889.05 18267.82 20177.93 28092.52 9568.33 23285.07 19781.54 33882.06 10392.96 13969.35 22797.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 19281.25 19482.03 20584.27 28462.87 24676.47 30592.49 9670.97 20681.64 26683.83 30975.03 17792.70 14674.29 17292.22 23290.51 230
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14783.57 17387.22 22465.61 22086.55 12592.40 9778.64 10981.34 27184.18 30783.65 7992.93 14174.22 17387.87 30092.17 184
DP-MVS Recon84.05 14483.22 15686.52 10591.73 11975.27 12383.23 19292.40 9772.04 19682.04 25688.33 24177.91 14493.95 9966.17 25695.12 15790.34 234
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18592.38 9970.25 21489.35 11890.68 19882.85 8794.57 7679.55 11595.95 12592.00 190
test_fmvsmvis_n_192085.22 11585.36 12284.81 13785.80 25976.13 11985.15 14692.32 10061.40 29691.33 7490.85 19283.76 7886.16 28984.31 6393.28 20892.15 185
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10179.74 9187.50 14992.38 14381.42 11493.28 12983.07 7497.24 7791.67 200
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20583.16 19492.21 10281.73 6990.92 8291.97 15477.20 15393.99 9774.16 17498.35 2197.61 10
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25778.30 8586.93 11492.20 10365.94 25389.16 11993.16 11783.10 8489.89 22887.81 1194.43 18293.35 132
v1086.54 9587.10 8984.84 13688.16 20663.28 24186.64 12392.20 10375.42 14692.81 5094.50 6374.05 19194.06 9683.88 6796.28 10897.17 20
MCST-MVS84.36 13283.93 14985.63 12591.59 12171.58 16583.52 18292.13 10561.82 28983.96 22689.75 22179.93 13193.46 12378.33 12794.34 18491.87 194
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10892.09 10678.87 10584.27 22094.05 8878.35 14093.65 10980.54 10691.58 24592.08 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30688.66 9292.06 10790.78 695.67 795.17 4281.80 11095.54 4179.00 12198.69 998.95 4
CDPH-MVS86.17 10485.54 11888.05 8492.25 9975.45 12283.85 17392.01 10865.91 25586.19 17891.75 16483.77 7794.98 6477.43 14396.71 9193.73 118
DeepC-MVS_fast80.27 886.23 10085.65 11787.96 8591.30 13376.92 10687.19 10991.99 10970.56 20984.96 20090.69 19780.01 12995.14 5978.37 12595.78 13791.82 195
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11070.73 20894.19 2196.67 1176.94 15994.57 7683.07 7496.28 10896.15 33
MVS_Test82.47 17283.22 15680.22 23882.62 31057.75 31282.54 21291.96 11171.16 20582.89 24492.52 14177.41 15090.50 20980.04 10987.84 30192.40 171
F-COLMAP84.97 12383.42 15389.63 5592.39 9383.40 4888.83 8791.92 11273.19 17680.18 28989.15 23177.04 15793.28 12965.82 26292.28 22992.21 182
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11384.26 4290.87 8793.92 9982.18 10189.29 24373.75 18394.81 17193.70 119
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11472.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
ZD-MVS92.22 10180.48 6791.85 11571.22 20490.38 9192.98 12386.06 5996.11 681.99 9196.75 90
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11580.35 8489.54 11688.01 24579.09 13492.13 16175.51 16295.06 15990.41 232
test_fmvsmconf0.1_n86.18 10385.88 11187.08 9485.26 26778.25 8685.82 13491.82 11765.33 26688.55 12892.35 14782.62 9189.80 23086.87 3294.32 18593.18 141
PCF-MVS74.62 1582.15 17980.92 20185.84 12189.43 17472.30 15480.53 24391.82 11757.36 33287.81 14489.92 21877.67 14793.63 11158.69 31195.08 15891.58 203
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 119
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11984.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 176
PVSNet_Blended_VisFu81.55 19080.49 20684.70 14291.58 12473.24 13784.21 16191.67 12162.86 27980.94 27487.16 26367.27 24292.87 14469.82 22488.94 28587.99 275
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20582.55 21191.56 12283.08 5790.92 8291.82 16078.25 14193.99 9774.16 17498.35 2197.49 13
v124084.30 13584.51 13883.65 16987.65 21661.26 26882.85 20391.54 12367.94 23990.68 9090.65 20171.71 22293.64 11082.84 7994.78 17296.07 36
原ACMM184.60 14392.81 8674.01 12991.50 12462.59 28082.73 24790.67 20076.53 16694.25 8669.24 22895.69 14085.55 303
test1191.46 125
CANet83.79 15082.85 16586.63 10286.17 25272.21 15783.76 17791.43 12677.24 12574.39 33987.45 25775.36 17495.42 4977.03 14892.83 21992.25 181
v119284.57 12884.69 13484.21 15587.75 21262.88 24583.02 19791.43 12669.08 22489.98 10190.89 18972.70 21193.62 11482.41 8594.97 16496.13 34
alignmvs83.94 14883.98 14883.80 16387.80 21167.88 20084.54 15791.42 12873.27 17588.41 13387.96 24672.33 21490.83 19976.02 15994.11 19092.69 160
test_fmvsmconf_n85.88 10885.51 11986.99 9684.77 27478.21 8785.40 14291.39 12965.32 26787.72 14591.81 16182.33 9689.78 23186.68 3494.20 18892.99 149
GeoE85.45 11385.81 11384.37 14790.08 16167.07 20485.86 13391.39 12972.33 19287.59 14790.25 21084.85 6692.37 15578.00 13491.94 23893.66 120
v886.22 10186.83 9684.36 14987.82 21062.35 25786.42 12691.33 13176.78 12892.73 5294.48 6573.41 20093.72 10883.10 7395.41 14497.01 23
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23284.38 16091.29 13284.88 3992.06 6393.84 10186.45 5493.73 10773.22 19198.66 1097.69 9
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13378.20 11386.69 16792.28 14980.36 12695.06 6286.17 4496.49 9990.22 235
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14391.23 13477.31 12487.07 15891.47 17082.94 8694.71 7084.67 6096.27 11092.62 163
v192192084.23 13984.37 14283.79 16487.64 21761.71 26382.91 20191.20 13567.94 23990.06 9690.34 20772.04 21993.59 11682.32 8694.91 16596.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13667.85 24186.63 16894.84 5079.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13779.26 9989.68 10794.81 5482.44 9287.74 26176.54 15388.74 28896.61 29
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12491.09 13878.77 10784.85 20490.89 18980.85 12095.29 5381.14 9795.32 14892.34 174
v14419284.24 13884.41 14083.71 16887.59 21861.57 26482.95 20091.03 13967.82 24289.80 10490.49 20473.28 20493.51 12181.88 9494.89 16796.04 38
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
No_MVS88.81 6991.55 12677.99 9091.01 14096.05 887.45 2098.17 3292.40 171
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14083.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 229
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13084.72 13284.00 15887.67 21562.55 25282.97 19990.93 14370.32 21389.80 10490.99 18473.50 19793.48 12281.69 9594.65 17795.97 39
DPM-MVS80.10 21879.18 22482.88 19390.71 15069.74 17978.87 26990.84 14460.29 31175.64 32985.92 28267.28 24193.11 13571.24 20791.79 23985.77 301
IU-MVS94.18 4672.64 14490.82 14556.98 33589.67 10885.78 5097.92 4693.28 135
PAPM_NR83.23 16183.19 15883.33 17890.90 14565.98 21688.19 9790.78 14678.13 11580.87 27687.92 24973.49 19992.42 15270.07 22188.40 29091.60 202
Anonymous2024052986.20 10287.13 8883.42 17690.19 15964.55 22984.55 15590.71 14785.85 3189.94 10295.24 4082.13 10290.40 21169.19 23196.40 10495.31 55
test1286.57 10390.74 14872.63 14690.69 14882.76 24679.20 13394.80 6895.32 14892.27 179
PLCcopyleft73.85 1682.09 18080.31 20887.45 9090.86 14780.29 6985.88 13290.65 14968.17 23576.32 31886.33 27473.12 20692.61 14961.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15070.00 21794.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
114514_t83.10 16582.54 17284.77 13992.90 8069.10 19186.65 12290.62 15154.66 34581.46 26890.81 19476.98 15894.38 8372.62 19996.18 11390.82 219
PAPR78.84 22878.10 23881.07 22485.17 26960.22 28482.21 22390.57 15262.51 28175.32 33384.61 30274.99 17892.30 15859.48 30988.04 29890.68 224
test_fmvsm_n_192083.60 15482.89 16485.74 12385.22 26877.74 9584.12 16490.48 15359.87 31686.45 17791.12 18075.65 17185.89 29582.28 8790.87 25993.58 126
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22882.21 22390.46 15480.99 7888.42 13291.97 15477.56 14893.85 10372.46 20198.65 1197.61 10
PVSNet_BlendedMVS78.80 23077.84 23981.65 21584.43 27863.41 23879.49 25890.44 15561.70 29375.43 33087.07 26669.11 23491.44 17960.68 30392.24 23090.11 239
PVSNet_Blended76.49 25875.40 26379.76 24384.43 27863.41 23875.14 32190.44 15557.36 33275.43 33078.30 36469.11 23491.44 17960.68 30387.70 30384.42 317
Gipumacopyleft84.44 13186.33 10278.78 25584.20 28573.57 13289.55 7290.44 15584.24 4384.38 21294.89 4876.35 17080.40 33676.14 15796.80 8982.36 348
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20989.94 6290.36 15867.97 23884.94 20292.58 13972.71 21092.18 16070.63 21587.73 30288.85 264
TEST992.34 9579.70 7483.94 16990.32 15965.41 26584.49 20990.97 18582.03 10493.63 111
train_agg85.98 10685.28 12388.07 8392.34 9579.70 7483.94 16990.32 15965.79 25684.49 20990.97 18581.93 10693.63 11181.21 9696.54 9690.88 217
test_892.09 10578.87 8183.82 17490.31 16165.79 25684.36 21390.96 18781.93 10693.44 124
agg_prior91.58 12477.69 9690.30 16284.32 21593.18 132
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16281.56 7190.02 9891.20 17882.40 9490.81 20073.58 18694.66 17694.56 76
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16469.27 22194.39 1696.38 1586.02 6093.52 12083.96 6695.92 12895.34 53
diffmvspermissive80.40 20980.48 20780.17 23979.02 34860.04 28577.54 28790.28 16566.65 25182.40 25087.33 26073.50 19787.35 26677.98 13589.62 27793.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15883.37 15583.75 16683.16 30463.33 24081.31 23390.23 16669.51 22090.91 8490.81 19474.16 18992.29 15980.06 10890.22 27095.62 47
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16769.87 21895.06 1196.14 2184.28 7293.07 13787.68 1596.34 10597.09 21
c3_l81.64 18981.59 18681.79 21380.86 32859.15 29778.61 27390.18 16868.36 23187.20 15187.11 26569.39 23191.62 17478.16 13194.43 18294.60 75
eth_miper_zixun_eth80.84 20080.22 21282.71 19581.41 32060.98 27477.81 28290.14 16967.31 24686.95 16187.24 26264.26 25992.31 15775.23 16691.61 24394.85 71
MVSFormer82.23 17581.57 18884.19 15785.54 26469.26 18691.98 3190.08 17071.54 19976.23 31985.07 29758.69 29594.27 8486.26 4088.77 28689.03 261
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17071.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 9997.09 21
AdaColmapbinary83.66 15283.69 15283.57 17390.05 16472.26 15586.29 12990.00 17278.19 11481.65 26587.16 26383.40 8294.24 8761.69 29694.76 17584.21 321
3Dnovator80.37 784.80 12484.71 13385.06 13486.36 24574.71 12588.77 8990.00 17275.65 14284.96 20093.17 11674.06 19091.19 18678.28 12891.09 25189.29 255
IterMVS-LS84.73 12584.98 12783.96 16087.35 22163.66 23683.25 19089.88 17476.06 13289.62 11092.37 14673.40 20292.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 30570.67 30773.64 31269.66 39770.46 17466.97 37389.73 17542.68 39388.20 13883.04 31743.77 37160.07 39565.35 26786.66 31690.39 233
save fliter93.75 5977.44 9986.31 12889.72 17670.80 207
v2v48284.09 14284.24 14483.62 17087.13 22661.40 26582.71 20689.71 17772.19 19589.55 11491.41 17170.70 22893.20 13181.02 9893.76 19796.25 32
miper_ehance_all_eth80.34 21180.04 21781.24 22279.82 33858.95 29977.66 28489.66 17865.75 25985.99 18585.11 29368.29 23891.42 18176.03 15892.03 23493.33 133
tt080588.09 7489.79 5182.98 18793.26 7263.94 23591.10 4189.64 17985.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
Fast-Effi-MVS+81.04 19880.57 20382.46 20287.50 21963.22 24278.37 27689.63 18068.01 23681.87 25982.08 33182.31 9792.65 14867.10 24888.30 29691.51 205
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 11985.60 26076.53 11183.07 19589.62 18173.02 17979.11 29983.51 31280.74 12290.24 21468.76 23789.29 27990.94 215
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18288.51 1790.11 9595.12 4490.98 688.92 24777.55 14097.07 8183.13 339
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20684.42 28068.22 19588.50 9489.48 18366.92 24881.80 26391.86 15672.59 21290.16 21771.19 20891.25 25087.40 284
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16789.44 18488.63 1694.38 1795.77 2686.38 5693.59 11679.84 11195.21 15291.82 195
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27552.75 34480.37 24589.42 18570.24 21590.26 9493.39 11374.55 18786.77 27768.61 24096.64 9295.38 52
MSDG80.06 21979.99 21980.25 23783.91 29068.04 19977.51 28889.19 18677.65 11981.94 25783.45 31476.37 16986.31 28463.31 28486.59 31786.41 293
ambc82.98 18790.55 15364.86 22588.20 9689.15 18789.40 11793.96 9571.67 22391.38 18378.83 12296.55 9592.71 159
pmmvs686.52 9688.06 7481.90 20792.22 10162.28 25884.66 15389.15 18783.54 5289.85 10397.32 488.08 3686.80 27670.43 21797.30 7696.62 28
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 18977.34 12293.63 3595.83 2565.40 25595.90 1585.01 5798.23 2797.49 13
miper_enhance_ethall77.83 24076.93 24980.51 23376.15 36858.01 30975.47 31988.82 19058.05 32683.59 23180.69 34264.41 25891.20 18573.16 19792.03 23492.33 175
CNLPA83.55 15683.10 16184.90 13589.34 17683.87 4684.54 15788.77 19179.09 10183.54 23488.66 23874.87 17981.73 32766.84 25192.29 22889.11 257
LF4IMVS82.75 16781.93 17985.19 13182.08 31180.15 7085.53 13888.76 19268.01 23685.58 19087.75 25171.80 22186.85 27574.02 17893.87 19688.58 266
VPA-MVSNet83.47 15884.73 13079.69 24590.29 15757.52 31381.30 23588.69 19376.29 13087.58 14894.44 6680.60 12487.20 26866.60 25496.82 8894.34 89
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20891.21 3988.64 19486.30 2889.60 11392.59 13769.22 23394.91 6673.89 18097.89 4996.72 26
BH-untuned80.96 19980.99 19980.84 22888.55 19768.23 19480.33 24688.46 19572.79 18386.55 16986.76 26974.72 18491.77 17361.79 29588.99 28382.52 346
Effi-MVS+-dtu85.82 10983.38 15493.14 387.13 22691.15 287.70 10488.42 19674.57 15483.56 23385.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23189.67 6988.38 19788.84 1394.29 1897.57 390.48 1391.26 18472.57 20097.65 6097.34 15
FA-MVS(test-final)83.13 16483.02 16283.43 17586.16 25466.08 21588.00 9988.36 19875.55 14385.02 19892.75 13465.12 25692.50 15174.94 17091.30 24991.72 197
iter_conf0578.81 22977.35 24483.21 18282.98 30860.75 28084.09 16588.34 19963.12 27784.25 22289.48 22431.41 39594.51 8176.64 15195.83 13294.38 88
TinyColmap81.25 19482.34 17577.99 27285.33 26660.68 28182.32 21888.33 20071.26 20386.97 16092.22 15277.10 15686.98 27262.37 28895.17 15486.31 295
CANet_DTU77.81 24277.05 24780.09 24081.37 32159.90 28883.26 18988.29 20169.16 22367.83 37483.72 31060.93 27789.47 23669.22 23089.70 27690.88 217
GBi-Net82.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
test182.02 18282.07 17681.85 20986.38 24261.05 27186.83 11788.27 20272.43 18786.00 18295.64 3063.78 26490.68 20465.95 25893.34 20593.82 112
FMVSNet184.55 12985.45 12081.85 20990.27 15861.05 27186.83 11788.27 20278.57 11089.66 10995.64 3075.43 17390.68 20469.09 23295.33 14793.82 112
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20581.66 7094.64 1496.53 1465.94 25094.75 6983.02 7696.83 8795.41 51
USDC76.63 25576.73 25276.34 29483.46 29557.20 31680.02 24988.04 20652.14 35983.65 23091.25 17563.24 26786.65 27954.66 33894.11 19085.17 307
EPP-MVSNet85.47 11285.04 12686.77 10191.52 12969.37 18491.63 3687.98 20781.51 7287.05 15991.83 15966.18 24895.29 5370.75 21296.89 8495.64 46
MAR-MVS80.24 21478.74 23084.73 14086.87 23678.18 8885.75 13587.81 20865.67 26177.84 30778.50 36373.79 19490.53 20861.59 29890.87 25985.49 305
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17888.71 9087.67 20978.42 11282.15 25584.15 30877.98 14291.59 17565.39 26592.75 22082.51 347
pm-mvs183.69 15184.95 12879.91 24190.04 16559.66 29082.43 21587.44 21075.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
cascas76.29 26174.81 26880.72 23184.47 27762.94 24473.89 33387.34 21155.94 33875.16 33576.53 37963.97 26291.16 18765.00 26990.97 25688.06 273
HyFIR lowres test75.12 27172.66 29182.50 20191.44 13265.19 22372.47 34287.31 21246.79 37680.29 28584.30 30552.70 32692.10 16451.88 35886.73 31590.22 235
TransMVSNet (Re)84.02 14585.74 11578.85 25491.00 14355.20 33182.29 21987.26 21379.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9494.45 82
xiu_mvs_v1_base_debu80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
xiu_mvs_v1_base_debi80.84 20080.14 21482.93 19088.31 20171.73 16179.53 25587.17 21465.43 26279.59 29182.73 32476.94 15990.14 22073.22 19188.33 29286.90 289
cl2278.97 22578.21 23781.24 22277.74 35259.01 29877.46 29087.13 21765.79 25684.32 21585.10 29458.96 29490.88 19875.36 16592.03 23493.84 110
PS-MVSNAJ77.04 25076.53 25378.56 25987.09 23061.40 26575.26 32087.13 21761.25 30074.38 34077.22 37476.94 15990.94 19364.63 27484.83 34283.35 334
MVS_111021_HR84.63 12684.34 14385.49 12990.18 16075.86 12079.23 26487.13 21773.35 16985.56 19189.34 22683.60 8090.50 20976.64 15194.05 19290.09 240
xiu_mvs_v2_base77.19 24876.75 25178.52 26087.01 23261.30 26775.55 31887.12 22061.24 30174.45 33878.79 36177.20 15390.93 19464.62 27584.80 34383.32 335
1112_ss74.82 27673.74 27778.04 27189.57 16960.04 28576.49 30487.09 22154.31 34673.66 34479.80 35260.25 28386.76 27858.37 31384.15 34787.32 285
cl____80.42 20880.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.37 24486.18 18089.21 22963.08 26990.16 21776.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20780.23 21081.02 22679.99 33659.25 29477.07 29487.02 22267.38 24386.19 17889.22 22863.09 26890.16 21776.32 15495.80 13593.66 120
EG-PatchMatch MVS84.08 14384.11 14583.98 15992.22 10172.61 14782.20 22587.02 22272.63 18588.86 12291.02 18378.52 13791.11 18973.41 18891.09 25188.21 269
Baseline_NR-MVSNet84.00 14685.90 11078.29 26691.47 13153.44 34082.29 21987.00 22579.06 10289.55 11495.72 2877.20 15386.14 29072.30 20298.51 1695.28 56
iter_conf05_1178.40 23777.29 24681.71 21485.55 26260.95 27677.22 29186.90 22660.10 31475.79 32681.73 33564.08 26194.47 8270.37 21993.92 19489.72 244
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22784.54 4183.58 23293.78 10473.36 20396.48 187.98 996.21 11294.41 86
PAPM71.77 30170.06 31576.92 28686.39 24153.97 33576.62 30286.62 22853.44 35063.97 39084.73 30157.79 30392.34 15639.65 39181.33 36684.45 316
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17186.58 22972.43 18787.65 14692.98 12363.78 26490.22 21566.86 24993.92 19492.27 179
BH-w/o76.57 25676.07 25878.10 26986.88 23565.92 21777.63 28586.33 23065.69 26080.89 27579.95 35168.97 23690.74 20253.01 34985.25 33177.62 376
EGC-MVSNET74.79 27769.99 31789.19 6394.89 3787.00 1191.89 3486.28 2311.09 4052.23 40795.98 2381.87 10989.48 23579.76 11295.96 12491.10 212
BH-RMVSNet80.53 20580.22 21281.49 21787.19 22566.21 21477.79 28386.23 23274.21 15783.69 22988.50 23973.25 20590.75 20163.18 28587.90 29987.52 282
Test_1112_low_res73.90 28473.08 28576.35 29390.35 15655.95 32273.40 33886.17 23350.70 36973.14 34585.94 28158.31 29785.90 29456.51 32383.22 35287.20 286
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17183.94 28873.90 13083.35 18786.10 23458.97 31883.80 22890.36 20674.23 18886.94 27382.90 7790.22 27089.94 242
ab-mvs79.67 22280.56 20476.99 28488.48 19856.93 31784.70 15286.06 23568.95 22680.78 27893.08 11875.30 17584.62 30756.78 32190.90 25889.43 251
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25476.08 31186.05 23673.67 16383.41 23593.04 11982.35 9580.65 33470.06 22295.03 16091.21 209
v14882.31 17382.48 17381.81 21285.59 26159.66 29081.47 23286.02 23772.85 18088.05 14090.65 20170.73 22790.91 19675.15 16791.79 23994.87 67
Anonymous2024052180.18 21681.25 19476.95 28583.15 30560.84 27882.46 21485.99 23868.76 22886.78 16293.73 10759.13 29277.44 34873.71 18497.55 6792.56 164
MVS73.21 29072.59 29275.06 30580.97 32560.81 27981.64 23085.92 23946.03 38171.68 35377.54 36968.47 23789.77 23255.70 32985.39 32874.60 382
FMVSNet378.80 23078.55 23279.57 24782.89 30956.89 31981.76 22785.77 24069.04 22586.00 18290.44 20551.75 33190.09 22365.95 25893.34 20591.72 197
UGNet82.78 16681.64 18386.21 11386.20 25176.24 11786.86 11585.68 24177.07 12673.76 34392.82 13069.64 23091.82 17269.04 23493.69 20090.56 228
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 20485.62 24258.09 32591.41 18267.95 24784.48 315
fmvsm_l_conf0.5_n_a81.46 19180.87 20283.25 18083.73 29373.21 13883.00 19885.59 24358.22 32482.96 24390.09 21672.30 21586.65 27981.97 9289.95 27489.88 243
cdsmvs_eth3d_5k20.81 37227.75 3750.00 3910.00 4140.00 4160.00 40285.44 2440.00 4090.00 41082.82 32281.46 1130.00 4100.00 4090.00 4080.00 406
131473.22 28972.56 29475.20 30380.41 33557.84 31081.64 23085.36 24551.68 36273.10 34676.65 37861.45 27585.19 30263.54 28179.21 37482.59 342
test_yl78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28258.84 30178.38 27485.33 24675.99 13582.49 24886.57 27058.01 29890.02 22662.74 28692.73 22189.10 258
MVP-Stereo75.81 26573.51 28182.71 19589.35 17573.62 13180.06 24785.20 24860.30 31073.96 34187.94 24757.89 30289.45 23852.02 35374.87 38785.06 309
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 11984.53 13786.88 9884.01 28772.76 14183.91 17285.18 24980.44 8288.75 12585.49 28680.08 12891.92 16782.02 9090.85 26195.97 39
EI-MVSNet-UG-set85.04 12084.44 13986.85 9983.87 29172.52 15083.82 17485.15 25080.27 8688.75 12585.45 28879.95 13091.90 16881.92 9390.80 26296.13 34
EI-MVSNet82.61 16882.42 17483.20 18383.25 30163.66 23683.50 18385.07 25176.06 13286.55 16985.10 29473.41 20090.25 21278.15 13390.67 26595.68 45
MVSTER77.09 24975.70 26181.25 22075.27 37661.08 27077.49 28985.07 25160.78 30686.55 16988.68 23743.14 37690.25 21273.69 18590.67 26592.42 169
miper_lstm_enhance76.45 25976.10 25777.51 27976.72 36360.97 27564.69 37885.04 25363.98 27483.20 23988.22 24256.67 30878.79 34573.22 19193.12 21292.78 155
WR-MVS83.56 15584.40 14181.06 22593.43 6754.88 33278.67 27285.02 25481.24 7590.74 8991.56 16872.85 20891.08 19068.00 24598.04 3697.23 18
MG-MVS80.32 21280.94 20078.47 26288.18 20452.62 34782.29 21985.01 25572.01 19779.24 29892.54 14069.36 23293.36 12870.65 21489.19 28289.45 249
h-mvs3384.25 13782.76 16688.72 7191.82 11882.60 5684.00 16884.98 25671.27 20186.70 16590.55 20363.04 27093.92 10078.26 12994.20 18889.63 247
VDD-MVS84.23 13984.58 13683.20 18391.17 13965.16 22483.25 19084.97 25779.79 9087.18 15294.27 7474.77 18390.89 19769.24 22896.54 9693.55 130
test_fmvs375.72 26675.20 26677.27 28275.01 37969.47 18378.93 26684.88 25846.67 37787.08 15787.84 25050.44 33771.62 36477.42 14488.53 28990.72 221
mvs_anonymous78.13 23878.76 22976.23 29779.24 34550.31 36378.69 27184.82 25961.60 29583.09 24292.82 13073.89 19387.01 26968.33 24486.41 31991.37 206
D2MVS76.84 25275.67 26280.34 23680.48 33462.16 26173.50 33684.80 26057.61 33082.24 25287.54 25551.31 33287.65 26270.40 21893.19 21191.23 208
FE-MVS79.98 22078.86 22683.36 17786.47 23966.45 21289.73 6584.74 26172.80 18284.22 22391.38 17244.95 36793.60 11563.93 27891.50 24690.04 241
MIMVSNet183.63 15384.59 13580.74 22994.06 5362.77 24882.72 20584.53 26277.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 124
VNet79.31 22380.27 20976.44 29287.92 20953.95 33675.58 31784.35 26374.39 15682.23 25390.72 19672.84 20984.39 31060.38 30593.98 19390.97 214
test_fmvs273.57 28672.80 28875.90 29972.74 39168.84 19277.07 29484.32 26445.14 38382.89 24484.22 30648.37 34270.36 36773.40 18987.03 31188.52 267
test_vis1_n_192071.30 30771.58 30270.47 33377.58 35559.99 28774.25 32784.22 26551.06 36574.85 33779.10 35855.10 31968.83 37368.86 23679.20 37582.58 343
test_fmvs1_n70.94 30970.41 31272.53 32373.92 38166.93 20775.99 31284.21 26643.31 39079.40 29479.39 35643.47 37268.55 37569.05 23384.91 33982.10 350
hse-mvs283.47 15881.81 18188.47 7591.03 14282.27 5782.61 20783.69 26771.27 20186.70 16586.05 28063.04 27092.41 15378.26 12993.62 20390.71 222
AUN-MVS81.18 19678.78 22888.39 7790.93 14482.14 5882.51 21383.67 26864.69 27180.29 28585.91 28351.07 33392.38 15476.29 15693.63 20290.65 226
MVS_030486.35 9885.92 10987.66 8889.21 18073.16 13988.40 9583.63 26981.27 7480.87 27694.12 8671.49 22495.71 3287.79 1296.50 9894.11 100
MVS_111021_LR84.28 13683.76 15185.83 12289.23 17983.07 5180.99 23983.56 27072.71 18486.07 18189.07 23281.75 11186.19 28877.11 14793.36 20488.24 268
test_fmvs169.57 32369.05 32371.14 33269.15 39865.77 21973.98 33183.32 27142.83 39277.77 31078.27 36543.39 37568.50 37668.39 24384.38 34679.15 373
CHOSEN 1792x268872.45 29570.56 30878.13 26890.02 16663.08 24368.72 36583.16 27242.99 39175.92 32485.46 28757.22 30685.18 30349.87 36381.67 36286.14 296
patch_mono-278.89 22679.39 22277.41 28184.78 27368.11 19775.60 31583.11 27360.96 30479.36 29589.89 21975.18 17672.97 35973.32 19092.30 22691.15 211
TR-MVS76.77 25475.79 25979.72 24486.10 25565.79 21877.14 29283.02 27465.20 26881.40 26982.10 32966.30 24690.73 20355.57 33085.27 33082.65 341
GA-MVS75.83 26474.61 26979.48 24981.87 31359.25 29473.42 33782.88 27568.68 22979.75 29081.80 33450.62 33589.46 23766.85 25085.64 32789.72 244
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24282.85 27676.81 12785.90 18694.14 8474.58 18686.51 28166.82 25295.68 14193.01 148
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27773.67 16383.41 23593.04 11980.96 11977.65 34758.62 31295.03 16091.21 209
OpenMVS_ROBcopyleft70.19 1777.77 24377.46 24178.71 25784.39 28161.15 26981.18 23782.52 27862.45 28483.34 23787.37 25866.20 24788.66 25364.69 27385.02 33686.32 294
Anonymous20240521180.51 20681.19 19778.49 26188.48 19857.26 31576.63 30182.49 27981.21 7684.30 21892.24 15167.99 23986.24 28562.22 28995.13 15591.98 192
EU-MVSNet75.12 27174.43 27377.18 28383.11 30659.48 29285.71 13782.43 28039.76 39785.64 18988.76 23544.71 36987.88 26073.86 18185.88 32684.16 322
CMPMVSbinary59.41 2075.12 27173.57 27979.77 24275.84 37167.22 20281.21 23682.18 28150.78 36876.50 31587.66 25355.20 31882.99 32162.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 24775.40 26383.06 18589.00 18472.48 15177.90 28182.17 28260.81 30578.94 30083.49 31359.30 29088.76 25254.64 33992.37 22587.93 277
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 29172.47 29574.71 30683.36 29954.19 33482.14 22681.96 28356.76 33769.57 36686.21 27860.03 28484.83 30649.58 36582.65 35885.11 308
jason77.42 24675.75 26082.43 20387.10 22969.27 18577.99 27981.94 28451.47 36377.84 30785.07 29760.32 28289.00 24570.74 21389.27 28189.03 261
jason: jason.
旧先验191.97 10871.77 16081.78 28591.84 15873.92 19293.65 20183.61 329
VPNet80.25 21381.68 18275.94 29892.46 9247.98 37076.70 29981.67 28673.45 16784.87 20392.82 13074.66 18586.51 28161.66 29796.85 8593.33 133
test_vis1_rt65.64 34764.09 35170.31 33466.09 40370.20 17761.16 38581.60 28738.65 39872.87 34769.66 39252.84 32460.04 39656.16 32577.77 37980.68 367
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17881.58 28874.73 15285.66 18886.06 27972.56 21392.69 14775.44 16495.21 15289.01 263
VDDNet84.35 13385.39 12181.25 22095.13 3159.32 29385.42 14181.11 28986.41 2787.41 15096.21 1973.61 19590.61 20766.33 25596.85 8593.81 115
IterMVS-SCA-FT80.64 20479.41 22184.34 15183.93 28969.66 18176.28 30781.09 29072.43 18786.47 17590.19 21260.46 28093.15 13477.45 14286.39 32090.22 235
UnsupCasMVSNet_eth71.63 30372.30 29669.62 33976.47 36552.70 34670.03 36180.97 29159.18 31779.36 29588.21 24360.50 27969.12 37158.33 31577.62 38187.04 287
test_vis1_n70.29 31369.99 31771.20 33175.97 37066.50 21176.69 30080.81 29244.22 38675.43 33077.23 37350.00 33868.59 37466.71 25382.85 35778.52 375
lupinMVS76.37 26074.46 27282.09 20485.54 26469.26 18676.79 29780.77 29350.68 37076.23 31982.82 32258.69 29588.94 24669.85 22388.77 28688.07 271
CL-MVSNet_self_test76.81 25377.38 24375.12 30486.90 23451.34 35573.20 33980.63 29468.30 23381.80 26388.40 24066.92 24480.90 33155.35 33394.90 16693.12 144
新几何182.95 18993.96 5578.56 8480.24 29555.45 34083.93 22791.08 18271.19 22588.33 25665.84 26193.07 21381.95 352
testdata79.54 24892.87 8172.34 15380.14 29659.91 31585.47 19391.75 16467.96 24085.24 30168.57 24292.18 23381.06 365
TAMVS78.08 23976.36 25483.23 18190.62 15172.87 14079.08 26580.01 29761.72 29281.35 27086.92 26863.96 26388.78 25150.61 35993.01 21588.04 274
pmmvs-eth3d78.42 23677.04 24882.57 20087.44 22074.41 12780.86 24179.67 29855.68 33984.69 20690.31 20960.91 27885.42 30062.20 29091.59 24487.88 278
KD-MVS_2432*160066.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
miper_refine_blended66.87 33865.81 34470.04 33567.50 39947.49 37262.56 38279.16 29961.21 30277.98 30580.61 34325.29 40882.48 32353.02 34784.92 33780.16 369
IterMVS76.91 25176.34 25578.64 25880.91 32664.03 23376.30 30679.03 30164.88 27083.11 24089.16 23059.90 28684.46 30868.61 24085.15 33487.42 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 29471.41 30476.28 29583.25 30160.34 28383.50 18379.02 30237.77 40076.33 31785.10 29449.60 34087.41 26570.54 21677.54 38281.08 363
ppachtmachnet_test74.73 27874.00 27676.90 28780.71 33156.89 31971.53 35078.42 30358.24 32379.32 29782.92 32157.91 30184.26 31265.60 26491.36 24889.56 248
FMVSNet572.10 29971.69 29973.32 31381.57 31853.02 34376.77 29878.37 30463.31 27576.37 31691.85 15736.68 38878.98 34247.87 37392.45 22487.95 276
MS-PatchMatch70.93 31070.22 31373.06 31681.85 31462.50 25373.82 33477.90 30552.44 35675.92 32481.27 33955.67 31581.75 32655.37 33277.70 38074.94 381
test22293.31 7076.54 10979.38 25977.79 30652.59 35482.36 25190.84 19366.83 24591.69 24181.25 360
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14487.68 21473.35 13386.14 13077.70 30761.64 29485.02 19891.62 16677.75 14586.24 28582.79 8087.07 30993.91 108
pmmvs474.92 27472.98 28780.73 23084.95 27071.71 16476.23 30877.59 30852.83 35377.73 31186.38 27256.35 31184.97 30457.72 31987.05 31085.51 304
EPNet80.37 21078.41 23586.23 11176.75 36273.28 13587.18 11077.45 30976.24 13168.14 37188.93 23465.41 25493.85 10369.47 22696.12 11791.55 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16286.87 23671.57 16685.19 14577.42 31062.27 28884.47 21191.33 17376.43 16785.91 29383.14 7187.14 30794.33 90
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15286.56 23873.35 13385.46 13977.30 31161.81 29084.51 20890.88 19177.36 15186.21 28782.72 8186.97 31493.38 131
test_cas_vis1_n_192069.20 32869.12 32169.43 34173.68 38462.82 24770.38 35977.21 31246.18 38080.46 28478.95 36052.03 32865.53 38865.77 26377.45 38379.95 371
XXY-MVS74.44 28176.19 25669.21 34284.61 27652.43 34871.70 34777.18 31360.73 30780.60 27990.96 18775.44 17269.35 37056.13 32688.33 29285.86 300
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16686.02 25671.56 16784.73 15177.11 31462.44 28584.00 22590.68 19876.42 16885.89 29583.14 7187.11 30893.81 115
CR-MVSNet74.00 28373.04 28676.85 28979.58 33962.64 25082.58 20976.90 31550.50 37175.72 32792.38 14348.07 34484.07 31468.72 23982.91 35583.85 326
Patchmtry76.56 25777.46 24173.83 31079.37 34446.60 37682.41 21676.90 31573.81 16185.56 19192.38 14348.07 34483.98 31563.36 28395.31 15090.92 216
IB-MVS62.13 1971.64 30268.97 32679.66 24680.80 33062.26 25973.94 33276.90 31563.27 27668.63 37076.79 37633.83 39291.84 17159.28 31087.26 30584.88 310
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 11884.73 13086.37 10791.13 14069.63 18285.45 14076.68 31884.06 4592.44 5796.99 862.03 27394.65 7280.58 10593.24 20994.83 72
ET-MVSNet_ETH3D75.28 26872.77 28982.81 19483.03 30768.11 19777.09 29376.51 31960.67 30877.60 31280.52 34638.04 38591.15 18870.78 21190.68 26489.17 256
N_pmnet70.20 31468.80 32874.38 30880.91 32684.81 3959.12 38976.45 32055.06 34275.31 33482.36 32855.74 31454.82 39947.02 37587.24 30683.52 330
thisisatest053079.07 22477.33 24584.26 15487.13 22664.58 22783.66 18075.95 32168.86 22785.22 19587.36 25938.10 38493.57 11975.47 16394.28 18694.62 74
EPNet_dtu72.87 29371.33 30577.49 28077.72 35360.55 28282.35 21775.79 32266.49 25258.39 40081.06 34153.68 32285.98 29153.55 34492.97 21785.95 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 32769.68 31967.82 35279.42 34251.15 35867.82 37075.79 32254.15 34777.47 31385.36 29259.26 29170.64 36648.46 37079.35 37281.66 354
MDA-MVSNet-bldmvs77.47 24576.90 25079.16 25279.03 34764.59 22666.58 37475.67 32473.15 17788.86 12288.99 23366.94 24381.23 33064.71 27288.22 29791.64 201
pmmvs570.73 31170.07 31472.72 31977.03 36052.73 34574.14 32875.65 32550.36 37272.17 35185.37 29155.42 31780.67 33352.86 35087.59 30484.77 311
tttt051781.07 19779.58 22085.52 12788.99 18566.45 21287.03 11375.51 32673.76 16288.32 13690.20 21137.96 38694.16 9479.36 11995.13 15595.93 42
tpmvs70.16 31569.56 32071.96 32674.71 38048.13 36879.63 25375.45 32765.02 26970.26 36281.88 33345.34 36385.68 29858.34 31475.39 38682.08 351
ADS-MVSNet265.87 34663.64 35472.55 32273.16 38756.92 31867.10 37174.81 32849.74 37366.04 37982.97 31846.71 34777.26 34942.29 38669.96 39483.46 331
new-patchmatchnet70.10 31673.37 28360.29 37781.23 32316.95 41059.54 38774.62 32962.93 27880.97 27287.93 24862.83 27271.90 36255.24 33495.01 16392.00 190
Anonymous2023120671.38 30671.88 29869.88 33786.31 24654.37 33370.39 35874.62 32952.57 35576.73 31488.76 23559.94 28572.06 36144.35 38493.23 21083.23 337
CostFormer69.98 31968.68 32973.87 30977.14 35850.72 36179.26 26174.51 33151.94 36170.97 35784.75 30045.16 36687.49 26455.16 33579.23 37383.40 333
door-mid74.45 332
thisisatest051573.00 29270.52 30980.46 23481.45 31959.90 28873.16 34074.31 33357.86 32776.08 32377.78 36737.60 38792.12 16365.00 26991.45 24789.35 252
baseline173.26 28873.54 28072.43 32484.92 27147.79 37179.89 25174.00 33465.93 25478.81 30186.28 27756.36 31081.63 32856.63 32279.04 37687.87 279
test_method30.46 37129.60 37433.06 38617.99 4103.84 41313.62 40173.92 3352.79 40418.29 40653.41 40128.53 40243.25 40522.56 40435.27 40452.11 401
tfpn200view974.86 27574.23 27476.74 29086.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25389.31 253
thres40075.14 26974.23 27477.86 27586.24 24952.12 34979.24 26273.87 33673.34 17081.82 26184.60 30346.02 35288.80 24851.98 35490.99 25392.66 161
LFMVS80.15 21780.56 20478.89 25389.19 18155.93 32385.22 14473.78 33882.96 5884.28 21992.72 13557.38 30490.07 22463.80 27995.75 13890.68 224
thres20072.34 29771.55 30374.70 30783.48 29451.60 35475.02 32273.71 33970.14 21678.56 30380.57 34546.20 35088.20 25846.99 37689.29 27984.32 318
tpm cat166.76 34165.21 34971.42 32977.09 35950.62 36278.01 27873.68 34044.89 38468.64 36979.00 35945.51 36082.42 32549.91 36270.15 39381.23 362
testing9169.94 32068.99 32572.80 31883.81 29245.89 37971.57 34973.64 34168.24 23470.77 36077.82 36634.37 39184.44 30953.64 34387.00 31388.07 271
testgi72.36 29674.61 26965.59 36180.56 33342.82 39168.29 36673.35 34266.87 24981.84 26089.93 21772.08 21866.92 38346.05 38092.54 22387.01 288
thres100view90075.45 26775.05 26776.66 29187.27 22251.88 35281.07 23873.26 34375.68 14183.25 23886.37 27345.54 35888.80 24851.98 35490.99 25389.31 253
thres600view775.97 26375.35 26577.85 27687.01 23251.84 35380.45 24473.26 34375.20 14883.10 24186.31 27645.54 35889.05 24455.03 33692.24 23092.66 161
wuyk23d75.13 27079.30 22362.63 37075.56 37275.18 12480.89 24073.10 34575.06 15094.76 1295.32 3587.73 4052.85 40034.16 40097.11 8059.85 397
WTY-MVS67.91 33368.35 33066.58 35880.82 32948.12 36965.96 37572.60 34653.67 34971.20 35581.68 33758.97 29369.06 37248.57 36981.67 36282.55 344
door72.57 347
PVSNet58.17 2166.41 34365.63 34668.75 34681.96 31249.88 36562.19 38472.51 34851.03 36668.04 37275.34 38450.84 33474.77 35645.82 38182.96 35381.60 355
dmvs_re66.81 34066.98 33666.28 35976.87 36158.68 30571.66 34872.24 34960.29 31169.52 36773.53 38652.38 32764.40 39144.90 38281.44 36575.76 379
MDTV_nov1_ep1368.29 33178.03 35143.87 38874.12 32972.22 35052.17 35767.02 37685.54 28545.36 36280.85 33255.73 32784.42 345
test20.0373.75 28574.59 27171.22 33081.11 32451.12 35970.15 36072.10 35170.42 21080.28 28791.50 16964.21 26074.72 35846.96 37794.58 17887.82 280
Vis-MVSNet (Re-imp)77.82 24177.79 24077.92 27388.82 18851.29 35783.28 18871.97 35274.04 15882.23 25389.78 22057.38 30489.41 24157.22 32095.41 14493.05 146
MIMVSNet71.09 30871.59 30069.57 34087.23 22350.07 36478.91 26771.83 35360.20 31371.26 35491.76 16355.08 32076.09 35241.06 38987.02 31282.54 345
tpm268.45 33166.83 33873.30 31478.93 34948.50 36779.76 25271.76 35447.50 37569.92 36483.60 31142.07 37888.40 25548.44 37179.51 37083.01 340
sss66.92 33767.26 33565.90 36077.23 35751.10 36064.79 37771.72 35552.12 36070.13 36380.18 34957.96 30065.36 38950.21 36081.01 36881.25 360
our_test_371.85 30071.59 30072.62 32180.71 33153.78 33769.72 36271.71 35658.80 32078.03 30480.51 34756.61 30978.84 34462.20 29086.04 32585.23 306
SCA73.32 28772.57 29375.58 30281.62 31755.86 32478.89 26871.37 35761.73 29174.93 33683.42 31560.46 28087.01 26958.11 31782.63 36083.88 323
testing9969.27 32668.15 33272.63 32083.29 30045.45 38171.15 35171.08 35867.34 24570.43 36177.77 36832.24 39484.35 31153.72 34286.33 32188.10 270
test_f64.31 35365.85 34359.67 37866.54 40262.24 26057.76 39270.96 35940.13 39584.36 21382.09 33046.93 34651.67 40161.99 29381.89 36165.12 393
lessismore_v085.95 11791.10 14170.99 17170.91 36091.79 6794.42 6961.76 27492.93 14179.52 11793.03 21493.93 106
tpmrst66.28 34466.69 34065.05 36572.82 39039.33 39578.20 27770.69 36153.16 35267.88 37380.36 34848.18 34374.75 35758.13 31670.79 39281.08 363
PatchMatch-RL74.48 27973.22 28478.27 26787.70 21385.26 3475.92 31370.09 36264.34 27276.09 32281.25 34065.87 25178.07 34653.86 34183.82 34971.48 385
PatchmatchNetpermissive69.71 32268.83 32772.33 32577.66 35453.60 33879.29 26069.99 36357.66 32972.53 34982.93 32046.45 34980.08 33860.91 30272.09 39083.31 336
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11448.95 36683.68 17969.91 36472.30 19384.26 22194.20 8051.89 33089.82 22963.58 28096.02 12194.87 67
baseline269.77 32166.89 33778.41 26379.51 34158.09 30776.23 30869.57 36557.50 33164.82 38877.45 37146.02 35288.44 25453.08 34677.83 37888.70 265
testing1167.38 33465.93 34271.73 32883.37 29846.60 37670.95 35469.40 36662.47 28366.14 37776.66 37731.22 39684.10 31349.10 36784.10 34884.49 314
test111178.53 23478.85 22777.56 27892.22 10147.49 37282.61 20769.24 36772.43 18785.28 19494.20 8051.91 32990.07 22465.36 26696.45 10295.11 62
Patchmatch-RL test74.48 27973.68 27876.89 28884.83 27266.54 21072.29 34369.16 36857.70 32886.76 16386.33 27445.79 35782.59 32269.63 22590.65 26781.54 356
SSC-MVS77.55 24481.64 18365.29 36490.46 15420.33 40973.56 33568.28 36985.44 3288.18 13994.64 5970.93 22681.33 32971.25 20692.03 23494.20 92
WB-MVS76.06 26280.01 21864.19 36789.96 16720.58 40872.18 34468.19 37083.21 5486.46 17693.49 11170.19 22978.97 34365.96 25790.46 26993.02 147
testing22266.93 33665.30 34871.81 32783.38 29745.83 38072.06 34567.50 37164.12 27369.68 36576.37 38027.34 40583.00 32038.88 39288.38 29186.62 292
FPMVS72.29 29872.00 29773.14 31588.63 19485.00 3674.65 32667.39 37271.94 19877.80 30987.66 25350.48 33675.83 35449.95 36179.51 37058.58 399
MDA-MVSNet_test_wron70.05 31870.44 31068.88 34573.84 38253.47 33958.93 39167.28 37358.43 32187.09 15685.40 28959.80 28867.25 38159.66 30883.54 35085.92 299
YYNet170.06 31770.44 31068.90 34473.76 38353.42 34158.99 39067.20 37458.42 32287.10 15585.39 29059.82 28767.32 38059.79 30783.50 35185.96 297
test-LLR67.21 33566.74 33968.63 34876.45 36655.21 32967.89 36767.14 37562.43 28665.08 38572.39 38743.41 37369.37 36861.00 30084.89 34081.31 358
test-mter65.00 34963.79 35368.63 34876.45 36655.21 32967.89 36767.14 37550.98 36765.08 38572.39 38728.27 40369.37 36861.00 30084.89 34081.31 358
tpm67.95 33268.08 33367.55 35378.74 35043.53 38975.60 31567.10 37754.92 34372.23 35088.10 24442.87 37775.97 35352.21 35280.95 36983.15 338
PM-MVS80.20 21579.00 22583.78 16588.17 20586.66 1581.31 23366.81 37869.64 21988.33 13590.19 21264.58 25783.63 31871.99 20490.03 27281.06 365
WB-MVSnew68.72 33069.01 32467.85 35183.22 30343.98 38774.93 32365.98 37955.09 34173.83 34279.11 35765.63 25371.89 36338.21 39685.04 33587.69 281
JIA-IIPM69.41 32466.64 34177.70 27773.19 38671.24 16975.67 31465.56 38070.42 21065.18 38492.97 12533.64 39383.06 31953.52 34569.61 39678.79 374
PatchT70.52 31272.76 29063.79 36979.38 34333.53 40377.63 28565.37 38173.61 16571.77 35292.79 13344.38 37075.65 35564.53 27685.37 32982.18 349
UWE-MVS66.43 34265.56 34769.05 34384.15 28640.98 39473.06 34164.71 38254.84 34476.18 32179.62 35529.21 40080.50 33538.54 39589.75 27585.66 302
dp60.70 36360.29 36661.92 37372.04 39338.67 39870.83 35564.08 38351.28 36460.75 39377.28 37236.59 38971.58 36547.41 37462.34 40075.52 380
Patchmatch-test65.91 34567.38 33461.48 37575.51 37343.21 39068.84 36463.79 38462.48 28272.80 34883.42 31544.89 36859.52 39748.27 37286.45 31881.70 353
TESTMET0.1,161.29 35960.32 36564.19 36772.06 39251.30 35667.89 36762.09 38545.27 38260.65 39469.01 39327.93 40464.74 39056.31 32481.65 36476.53 377
Syy-MVS69.40 32570.03 31667.49 35481.72 31538.94 39671.00 35261.99 38661.38 29770.81 35872.36 38961.37 27679.30 34064.50 27785.18 33284.22 319
myMVS_eth3d64.66 35163.89 35266.97 35681.72 31537.39 39971.00 35261.99 38661.38 29770.81 35872.36 38920.96 41079.30 34049.59 36485.18 33284.22 319
PVSNet_051.08 2256.10 36754.97 37259.48 37975.12 37753.28 34255.16 39461.89 38844.30 38559.16 39662.48 39954.22 32165.91 38735.40 39847.01 40259.25 398
ADS-MVSNet61.90 35662.19 36061.03 37673.16 38736.42 40167.10 37161.75 38949.74 37366.04 37982.97 31846.71 34763.21 39242.29 38669.96 39483.46 331
PMMVS61.65 35760.38 36465.47 36365.40 40669.26 18663.97 38061.73 39036.80 40160.11 39568.43 39459.42 28966.35 38548.97 36878.57 37760.81 396
ETVMVS64.67 35063.34 35568.64 34783.44 29641.89 39269.56 36361.70 39161.33 29968.74 36875.76 38228.76 40179.35 33934.65 39986.16 32484.67 313
test0.0.03 164.66 35164.36 35065.57 36275.03 37846.89 37564.69 37861.58 39262.43 28671.18 35677.54 36943.41 37368.47 37740.75 39082.65 35881.35 357
dmvs_testset60.59 36462.54 35954.72 38377.26 35627.74 40674.05 33061.00 39360.48 30965.62 38267.03 39655.93 31368.23 37832.07 40369.46 39768.17 390
E-PMN61.59 35861.62 36161.49 37466.81 40155.40 32753.77 39560.34 39466.80 25058.90 39865.50 39740.48 38166.12 38655.72 32886.25 32262.95 395
testing371.53 30470.79 30673.77 31188.89 18741.86 39376.60 30359.12 39572.83 18180.97 27282.08 33119.80 41187.33 26765.12 26891.68 24292.13 186
CHOSEN 280x42059.08 36556.52 37066.76 35776.51 36464.39 23049.62 39759.00 39643.86 38755.66 40268.41 39535.55 39068.21 37943.25 38576.78 38567.69 391
EMVS61.10 36160.81 36361.99 37265.96 40455.86 32453.10 39658.97 39767.06 24756.89 40163.33 39840.98 37967.03 38254.79 33786.18 32363.08 394
pmmvs362.47 35460.02 36769.80 33871.58 39464.00 23470.52 35758.44 39839.77 39666.05 37875.84 38127.10 40772.28 36046.15 37984.77 34473.11 383
MVS-HIRNet61.16 36062.92 35755.87 38179.09 34635.34 40271.83 34657.98 39946.56 37859.05 39791.14 17949.95 33976.43 35138.74 39371.92 39155.84 400
gg-mvs-nofinetune68.96 32969.11 32268.52 35076.12 36945.32 38283.59 18155.88 40086.68 2464.62 38997.01 730.36 39883.97 31644.78 38382.94 35476.26 378
GG-mvs-BLEND67.16 35573.36 38546.54 37884.15 16355.04 40158.64 39961.95 40029.93 39983.87 31738.71 39476.92 38471.07 386
EPMVS62.47 35462.63 35862.01 37170.63 39538.74 39774.76 32452.86 40253.91 34867.71 37580.01 35039.40 38266.60 38455.54 33168.81 39880.68 367
new_pmnet55.69 36857.66 36949.76 38475.47 37430.59 40459.56 38651.45 40343.62 38962.49 39175.48 38340.96 38049.15 40337.39 39772.52 38869.55 388
PMMVS255.64 36959.27 36844.74 38564.30 40712.32 41140.60 39849.79 40453.19 35165.06 38784.81 29953.60 32349.76 40232.68 40289.41 27872.15 384
test250674.12 28273.39 28276.28 29591.85 11444.20 38684.06 16648.20 40572.30 19381.90 25894.20 8027.22 40689.77 23264.81 27196.02 12194.87 67
DSMNet-mixed60.98 36261.61 36259.09 38072.88 38945.05 38474.70 32546.61 40626.20 40265.34 38390.32 20855.46 31663.12 39341.72 38881.30 36769.09 389
mvsany_test365.48 34862.97 35673.03 31769.99 39676.17 11864.83 37643.71 40743.68 38880.25 28887.05 26752.83 32563.09 39451.92 35772.44 38979.84 372
mvsany_test158.48 36656.47 37164.50 36665.90 40568.21 19656.95 39342.11 40838.30 39965.69 38177.19 37556.96 30759.35 39846.16 37858.96 40165.93 392
MVEpermissive40.22 2351.82 37050.47 37355.87 38162.66 40851.91 35131.61 40039.28 40940.65 39450.76 40374.98 38556.24 31244.67 40433.94 40164.11 39971.04 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4433.14 410
tmp_tt20.25 37324.50 3767.49 3884.47 4118.70 41234.17 39925.16 4111.00 40632.43 40518.49 40339.37 3839.21 40721.64 40543.75 4034.57 403
DeepMVS_CXcopyleft24.13 38732.95 40929.49 40521.63 41212.07 40337.95 40445.07 40230.84 39719.21 40617.94 40633.06 40523.69 402
test1236.27 3768.08 3790.84 3891.11 4130.57 41462.90 3810.82 4130.54 4071.07 4092.75 4081.26 4120.30 4081.04 4071.26 4071.66 404
testmvs5.91 3777.65 3800.72 3901.20 4120.37 41559.14 3880.67 4140.49 4081.11 4082.76 4070.94 4130.24 4091.02 4081.47 4061.55 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas6.41 3758.55 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40976.94 1590.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
n20.00 415
nn0.00 415
ab-mvs-re6.65 3748.87 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41079.80 3520.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS37.39 39952.61 351
PC_three_145258.96 31990.06 9691.33 17380.66 12393.03 13875.78 16095.94 12692.48 167
eth-test20.00 414
eth-test0.00 414
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11794.68 7174.48 17195.35 14692.29 177
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
GSMVS83.88 323
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35183.88 323
sam_mvs45.92 356
test_post178.85 2703.13 40545.19 36580.13 33758.11 317
test_post3.10 40645.43 36177.22 350
patchmatchnet-post81.71 33645.93 35587.01 269
gm-plane-assit75.42 37544.97 38552.17 35772.36 38987.90 25954.10 340
test9_res80.83 10196.45 10290.57 227
agg_prior279.68 11496.16 11490.22 235
test_prior478.97 8084.59 154
test_prior283.37 18675.43 14584.58 20791.57 16781.92 10879.54 11696.97 83
旧先验281.73 22856.88 33686.54 17484.90 30572.81 198
新几何281.72 229
原ACMM282.26 222
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25473.95 160
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 180
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 85
plane_prior76.42 11387.15 11175.94 13895.03 160
HQP5-MVS70.66 172
HQP-NCC91.19 13684.77 14873.30 17280.55 281
ACMP_Plane91.19 13684.77 14873.30 17280.55 281
BP-MVS77.30 145
HQP4-MVS80.56 28094.61 7493.56 128
HQP2-MVS72.10 216
NP-MVS91.95 10974.55 12690.17 214
MDTV_nov1_ep13_2view27.60 40770.76 35646.47 37961.27 39245.20 36449.18 36683.75 328
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134