This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15790.31 5496.31 380.88 8085.12 19689.67 22184.47 7095.46 4782.56 8396.26 11193.77 118
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26587.25 26182.43 9394.53 7977.65 13896.46 10294.14 98
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12698.76 395.61 48
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 20996.14 11594.16 96
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 10998.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22783.87 7494.53 7982.45 8494.89 16794.90 65
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 9995.50 14394.53 79
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
canonicalmvs85.50 11086.14 10583.58 17387.97 20767.13 20287.55 10694.32 1873.44 16888.47 13187.54 25586.45 5491.06 19075.76 16193.76 19792.54 168
LCM-MVSNet-Re83.48 15785.06 12478.75 25485.94 25855.75 32480.05 24794.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30494.89 16790.75 222
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22284.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10694.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
nrg03087.85 8088.49 7085.91 11990.07 16469.73 17987.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11397.32 7596.50 31
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
RPMNet78.88 22578.28 23480.68 23079.58 32962.64 25082.58 20894.16 2774.80 15175.72 32492.59 13848.69 33795.56 3973.48 18782.91 34683.85 317
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
test_one_060193.85 5873.27 13694.11 3386.57 2593.47 3894.64 6088.42 26
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14396.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_0728_SECOND86.79 10094.25 4572.45 15190.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8298.04 3693.64 124
baseline85.20 11685.93 10783.02 18686.30 24762.37 25684.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12494.21 18894.74 73
casdiffmvspermissive85.21 11585.85 11183.31 18086.17 25362.77 24883.03 19693.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13793.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
test072694.16 4972.56 14790.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 21896.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17589.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14190.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_ONE94.18 4672.65 14193.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10195.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10195.83 13294.46 80
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22280.76 12192.13 16073.21 19695.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17484.50 16093.37 5878.76 10884.07 22478.72 35880.39 12595.13 6073.82 18292.98 21691.04 215
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EIA-MVS82.19 17781.23 19585.10 13487.95 20869.17 18983.22 19393.33 6170.42 21178.58 30179.77 35277.29 15294.20 8971.51 20588.96 28191.93 195
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39586.57 5295.80 2587.35 2497.62 6294.20 92
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25589.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 9898.80 298.84 5
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 29888.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17696.10 11894.45 82
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13697.03 8395.52 49
dcpmvs_284.23 13985.14 12381.50 21588.61 19561.98 26282.90 20193.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 14992.30 22694.90 65
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20694.85 6785.07 5597.78 5397.26 16
FC-MVSNet-test85.93 10687.05 9082.58 19892.25 10056.44 31985.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 16898.58 1397.88 7
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FIs85.35 11386.27 10282.60 19791.86 11457.31 31285.10 14893.05 7775.83 13991.02 8293.97 9373.57 19592.91 14273.97 17998.02 3997.58 12
v7n90.13 3690.96 3887.65 8991.95 11071.06 16989.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25278.87 13694.18 9080.67 10396.29 10792.73 158
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22188.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15097.99 4096.88 25
MSLP-MVS++85.00 12186.03 10681.90 20791.84 11771.56 16686.75 12393.02 8175.95 13787.12 15389.39 22577.98 14289.40 24177.46 14194.78 17284.75 305
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 13896.62 9490.70 225
ANet_high83.17 16385.68 11575.65 29881.24 31245.26 37779.94 24992.91 8483.83 4691.33 7496.88 1080.25 12785.92 29068.89 23395.89 12995.76 43
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19283.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 16998.53 1596.99 24
test_prior86.32 10890.59 15371.99 15892.85 8694.17 9292.80 156
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 30888.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30189.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
HQP3-MVS92.68 9194.47 180
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17184.77 14992.68 9173.30 17280.55 28090.17 21472.10 21494.61 7477.30 14594.47 18093.56 129
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20077.93 27992.52 9468.33 23385.07 19781.54 33682.06 10392.96 13869.35 22597.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DELS-MVS81.44 19081.25 19382.03 20584.27 28362.87 24676.47 30392.49 9570.97 20681.64 26583.83 30975.03 17792.70 14574.29 17292.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14783.57 17487.22 22465.61 22086.55 12792.40 9678.64 10981.34 27084.18 30783.65 7992.93 14074.22 17387.87 29692.17 186
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19292.40 9672.04 19682.04 25588.33 24177.91 14493.95 9966.17 25495.12 15790.34 236
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11595.95 12592.00 192
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28784.31 6493.28 20892.15 187
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20483.16 19492.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17498.35 2197.61 10
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
v1086.54 9487.10 8884.84 13788.16 20663.28 24186.64 12592.20 10275.42 14692.81 5094.50 6474.05 19094.06 9683.88 6896.28 10897.17 20
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16483.52 18392.13 10461.82 28783.96 22689.75 22079.93 13193.46 12278.33 12794.34 18491.87 196
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10591.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30488.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12198.69 998.95 4
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14396.71 9293.73 119
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
MVS_Test82.47 17283.22 15680.22 23682.62 30057.75 31082.54 21191.96 11071.16 20582.89 24292.52 14277.41 15090.50 20880.04 10887.84 29792.40 173
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 28889.15 23177.04 15793.28 12865.82 26092.28 22992.21 184
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18394.81 17193.70 120
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24795.59 3786.02 4897.78 5397.24 17
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9196.75 91
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24579.09 13492.13 16075.51 16295.06 15990.41 234
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
PCF-MVS74.62 1582.15 17980.92 19985.84 12289.43 17472.30 15380.53 24291.82 11657.36 32687.81 14489.92 21777.67 14793.63 11058.69 30995.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MTGPAbinary91.81 118
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
PVSNet_Blended_VisFu81.55 18980.49 20384.70 14491.58 12573.24 13784.21 16291.67 12062.86 27880.94 27387.16 26367.27 24092.87 14369.82 22288.94 28287.99 271
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20482.55 21091.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17498.35 2197.49 13
v124084.30 13584.51 13783.65 17187.65 21661.26 26882.85 20291.54 12267.94 24090.68 9090.65 20271.71 22093.64 10982.84 7994.78 17296.07 36
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24590.67 20176.53 16694.25 8669.24 22695.69 14085.55 296
test1191.46 124
CANet83.79 15082.85 16586.63 10286.17 25372.21 15683.76 17891.43 12577.24 12574.39 33687.45 25775.36 17495.42 4977.03 14892.83 21992.25 183
v119284.57 12884.69 13384.21 15787.75 21262.88 24583.02 19791.43 12569.08 22589.98 10190.89 19072.70 21093.62 11382.41 8594.97 16496.13 34
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 19984.54 15891.42 12773.27 17588.41 13387.96 24672.33 21390.83 19876.02 15994.11 19192.69 162
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20385.86 13491.39 12872.33 19287.59 14790.25 21084.85 6692.37 15478.00 13491.94 23893.66 121
v886.22 10086.83 9584.36 15187.82 21062.35 25786.42 12891.33 13076.78 12892.73 5294.48 6673.41 19993.72 10783.10 7495.41 14497.01 23
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23284.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19198.66 1097.69 9
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
v192192084.23 13984.37 14283.79 16687.64 21761.71 26382.91 20091.20 13467.94 24090.06 9690.34 20772.04 21793.59 11582.32 8694.91 16596.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15388.74 28596.61 29
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9695.32 14892.34 176
v14419284.24 13884.41 14083.71 17087.59 21861.57 26482.95 19991.03 13867.82 24389.80 10490.49 20573.28 20393.51 12081.88 9394.89 16796.04 38
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14790.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
v114484.54 13084.72 13184.00 16087.67 21562.55 25282.97 19890.93 14270.32 21489.80 10490.99 18573.50 19693.48 12181.69 9494.65 17795.97 39
DPM-MVS80.10 21679.18 22182.88 19390.71 15169.74 17878.87 26890.84 14360.29 30875.64 32685.92 28267.28 23993.11 13471.24 20791.79 23985.77 295
IU-MVS94.18 4672.64 14390.82 14456.98 32889.67 10885.78 5097.92 4693.28 137
PAPM_NR83.23 16183.19 15883.33 17990.90 14665.98 21688.19 9890.78 14578.13 11580.87 27587.92 24973.49 19892.42 15170.07 21988.40 28791.60 204
Anonymous2024052986.20 10187.13 8783.42 17790.19 16064.55 22984.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 22996.40 10595.31 55
test1286.57 10390.74 14972.63 14590.69 14782.76 24479.20 13394.80 6895.32 14892.27 181
PLCcopyleft73.85 1682.09 18080.31 20587.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31786.33 27473.12 20592.61 14861.40 29790.02 27289.44 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19086.65 12490.62 15054.66 33681.46 26790.81 19576.98 15894.38 8372.62 19996.18 11390.82 221
PAPR78.84 22678.10 23681.07 22285.17 26860.22 28282.21 22290.57 15162.51 28075.32 33084.61 30274.99 17892.30 15759.48 30788.04 29490.68 226
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29382.28 8790.87 25993.58 127
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 22882.21 22290.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20198.65 1197.61 10
PVSNet_BlendedMVS78.80 22877.84 23781.65 21484.43 27763.41 23879.49 25790.44 15461.70 29175.43 32787.07 26669.11 23291.44 17860.68 30192.24 23090.11 241
PVSNet_Blended76.49 25575.40 26079.76 24184.43 27763.41 23875.14 31990.44 15457.36 32675.43 32778.30 36069.11 23291.44 17860.68 30187.70 29984.42 308
Gipumacopyleft84.44 13186.33 10178.78 25384.20 28473.57 13289.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 32976.14 15796.80 9082.36 339
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
QAPM82.59 16982.59 17182.58 19886.44 24066.69 20889.94 6290.36 15767.97 23984.94 20292.58 14072.71 20992.18 15970.63 21587.73 29888.85 262
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9596.54 9790.88 219
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18694.66 17694.56 76
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
diffmvspermissive80.40 20680.48 20480.17 23779.02 33860.04 28377.54 28690.28 16466.65 25182.40 24887.33 26073.50 19687.35 26677.98 13589.62 27493.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15883.37 15583.75 16883.16 29463.33 24081.31 23290.23 16569.51 22190.91 8590.81 19574.16 18892.29 15880.06 10790.22 27095.62 47
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
c3_l81.64 18881.59 18681.79 21380.86 31859.15 29578.61 27290.18 16768.36 23287.20 15187.11 26569.39 22991.62 17378.16 13194.43 18294.60 75
eth_miper_zixun_eth80.84 19780.22 20982.71 19581.41 31060.98 27477.81 28190.14 16867.31 24686.95 16187.24 26264.26 25592.31 15675.23 16691.61 24394.85 71
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18591.98 3190.08 16971.54 19976.23 31885.07 29758.69 29094.27 8486.26 4088.77 28389.03 259
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
AdaColmapbinary83.66 15283.69 15283.57 17490.05 16572.26 15486.29 13090.00 17178.19 11481.65 26487.16 26383.40 8294.24 8761.69 29494.76 17584.21 312
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 18991.19 18578.28 12891.09 25189.29 253
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23683.25 19089.88 17376.06 13289.62 11092.37 14773.40 20192.52 14978.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis3_rt71.42 30270.67 30473.64 31069.66 38770.46 17366.97 36489.73 17442.68 38488.20 13883.04 31743.77 36760.07 38665.35 26586.66 31190.39 235
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26582.71 20589.71 17672.19 19589.55 11491.41 17270.70 22693.20 13081.02 9793.76 19796.25 32
miper_ehance_all_eth80.34 20980.04 21481.24 22079.82 32858.95 29777.66 28389.66 17765.75 25985.99 18585.11 29368.29 23691.42 18076.03 15892.03 23493.33 135
tt080588.09 7489.79 5182.98 18793.26 7363.94 23591.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 8995.87 13093.13 144
Fast-Effi-MVS+81.04 19580.57 20082.46 20287.50 21963.22 24278.37 27589.63 17968.01 23781.87 25882.08 33082.31 9792.65 14767.10 24688.30 29291.51 207
Fast-Effi-MVS+-dtu82.54 17181.41 19085.90 12085.60 26176.53 11183.07 19589.62 18073.02 17979.11 29883.51 31280.74 12290.24 21368.76 23589.29 27690.94 217
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14097.07 8283.13 330
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft76.72 1381.98 18382.00 17881.93 20684.42 27968.22 19488.50 9589.48 18266.92 24881.80 26291.86 15772.59 21190.16 21671.19 20891.25 25087.40 279
test_040288.65 6589.58 5685.88 12192.55 9072.22 15584.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11095.21 15291.82 197
KD-MVS_self_test81.93 18483.14 16078.30 26384.75 27452.75 34280.37 24489.42 18470.24 21690.26 9493.39 11474.55 18786.77 27668.61 23896.64 9395.38 52
MSDG80.06 21779.99 21680.25 23583.91 28768.04 19877.51 28789.19 18577.65 11981.94 25683.45 31476.37 16986.31 28263.31 28286.59 31286.41 287
ambc82.98 18790.55 15464.86 22588.20 9789.15 18689.40 11793.96 9671.67 22191.38 18278.83 12296.55 9692.71 161
pmmvs686.52 9588.06 7481.90 20792.22 10262.28 25884.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27570.43 21797.30 7696.62 28
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25195.90 1585.01 5898.23 2797.49 13
miper_enhance_ethall77.83 23776.93 24680.51 23176.15 35858.01 30775.47 31788.82 18958.05 32083.59 23080.69 34064.41 25491.20 18473.16 19792.03 23492.33 177
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23388.66 23874.87 17981.73 32166.84 24992.29 22889.11 255
LF4IMVS82.75 16781.93 17985.19 13282.08 30180.15 7085.53 13988.76 19168.01 23785.58 19087.75 25171.80 21986.85 27474.02 17893.87 19688.58 264
VPA-MVSNet83.47 15884.73 12979.69 24390.29 15857.52 31181.30 23488.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25296.82 8994.34 89
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20791.21 3988.64 19386.30 2889.60 11392.59 13869.22 23194.91 6673.89 18097.89 4996.72 26
BH-untuned80.96 19680.99 19780.84 22688.55 19768.23 19380.33 24588.46 19472.79 18386.55 16986.76 26974.72 18491.77 17261.79 29388.99 28082.52 337
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23285.65 28478.49 13994.21 8872.04 20392.88 21894.05 102
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23189.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20097.65 6097.34 15
FA-MVS(test-final)83.13 16483.02 16283.43 17686.16 25566.08 21588.00 10088.36 19775.55 14385.02 19892.75 13565.12 25292.50 15074.94 17091.30 24991.72 199
iter_conf0578.81 22777.35 24283.21 18282.98 29860.75 27884.09 16688.34 19863.12 27684.25 22289.48 22331.41 39094.51 8176.64 15195.83 13294.38 88
TinyColmap81.25 19282.34 17577.99 27085.33 26560.68 27982.32 21788.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28695.17 15486.31 289
CANet_DTU77.81 23977.05 24480.09 23881.37 31159.90 28683.26 18988.29 20069.16 22467.83 36683.72 31060.93 27289.47 23569.22 22889.70 27390.88 219
GBi-Net82.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
test182.02 18182.07 17681.85 20986.38 24261.05 27186.83 11988.27 20172.43 18786.00 18295.64 3063.78 25990.68 20365.95 25693.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 20990.27 15961.05 27186.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23095.33 14793.82 113
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 18887.84 10488.05 20481.66 7094.64 1496.53 1465.94 24894.75 6983.02 7796.83 8895.41 51
USDC76.63 25276.73 24976.34 29283.46 29057.20 31480.02 24888.04 20552.14 35083.65 22991.25 17663.24 26286.65 27854.66 33694.11 19185.17 300
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18391.63 3687.98 20681.51 7287.05 15991.83 16066.18 24695.29 5370.75 21296.89 8595.64 46
MAR-MVS80.24 21278.74 22884.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30678.50 35973.79 19390.53 20761.59 29690.87 25985.49 298
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 17482.61 17081.30 21786.29 24869.79 17788.71 9087.67 20878.42 11282.15 25384.15 30877.98 14291.59 17465.39 26392.75 22082.51 338
pm-mvs183.69 15184.95 12779.91 23990.04 16659.66 28882.43 21487.44 20975.52 14487.85 14395.26 3981.25 11685.65 29768.74 23696.04 12094.42 85
cascas76.29 25874.81 26580.72 22984.47 27662.94 24473.89 33087.34 21055.94 33175.16 33276.53 37263.97 25791.16 18665.00 26790.97 25688.06 269
HyFIR lowres test75.12 26872.66 28882.50 20191.44 13365.19 22372.47 33887.31 21146.79 36780.29 28484.30 30552.70 32292.10 16351.88 35486.73 31090.22 237
TransMVSNet (Re)84.02 14585.74 11478.85 25291.00 14455.20 32982.29 21887.26 21279.65 9388.38 13495.52 3383.00 8586.88 27367.97 24496.60 9594.45 82
xiu_mvs_v1_base_debu80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
xiu_mvs_v1_base_debi80.84 19780.14 21182.93 19088.31 20171.73 16079.53 25487.17 21365.43 26279.59 29082.73 32476.94 15990.14 21973.22 19188.33 28886.90 284
cl2278.97 22378.21 23581.24 22077.74 34259.01 29677.46 28987.13 21665.79 25684.32 21585.10 29458.96 28990.88 19775.36 16592.03 23493.84 111
PS-MVSNAJ77.04 24776.53 25078.56 25787.09 23061.40 26575.26 31887.13 21661.25 29774.38 33777.22 36876.94 15990.94 19264.63 27284.83 33483.35 325
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26387.13 21673.35 16985.56 19189.34 22683.60 8090.50 20876.64 15194.05 19390.09 242
xiu_mvs_v2_base77.19 24576.75 24878.52 25887.01 23261.30 26775.55 31687.12 21961.24 29874.45 33578.79 35777.20 15390.93 19364.62 27384.80 33583.32 326
1112_ss74.82 27373.74 27478.04 26989.57 17060.04 28376.49 30287.09 22054.31 33773.66 34079.80 35060.25 27886.76 27758.37 31184.15 33987.32 280
cl____80.42 20580.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.37 24586.18 18089.21 22963.08 26490.16 21676.31 15595.80 13593.65 123
DIV-MVS_self_test80.43 20480.23 20781.02 22479.99 32659.25 29277.07 29287.02 22167.38 24486.19 17889.22 22863.09 26390.16 21676.32 15495.80 13593.66 121
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14682.20 22487.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 18891.09 25188.21 267
Baseline_NR-MVSNet84.00 14685.90 10978.29 26491.47 13253.44 33882.29 21887.00 22479.06 10289.55 11495.72 2877.20 15386.14 28872.30 20298.51 1695.28 56
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23193.78 10573.36 20296.48 187.98 996.21 11294.41 86
PAPM71.77 29870.06 31276.92 28486.39 24153.97 33376.62 30086.62 22653.44 34163.97 38184.73 30157.79 29892.34 15539.65 38681.33 35784.45 307
FMVSNet281.31 19181.61 18580.41 23386.38 24258.75 30283.93 17286.58 22772.43 18787.65 14692.98 12463.78 25990.22 21466.86 24793.92 19592.27 181
BH-w/o76.57 25376.07 25578.10 26786.88 23565.92 21777.63 28486.33 22865.69 26080.89 27479.95 34968.97 23490.74 20153.01 34585.25 32477.62 367
EGC-MVSNET74.79 27469.99 31489.19 6394.89 3787.00 1191.89 3486.28 2291.09 3962.23 39895.98 2381.87 10989.48 23479.76 11295.96 12491.10 214
iter_conf_final80.36 20878.88 22384.79 13986.29 24866.36 21386.95 11586.25 23068.16 23682.09 25489.48 22336.59 38594.51 8179.83 11194.30 18693.50 132
BH-RMVSNet80.53 20280.22 20981.49 21687.19 22566.21 21477.79 28286.23 23174.21 15783.69 22888.50 23973.25 20490.75 20063.18 28387.90 29587.52 277
Test_1112_low_res73.90 28173.08 28276.35 29190.35 15755.95 32073.40 33586.17 23250.70 36073.14 34185.94 28158.31 29285.90 29256.51 32183.22 34387.20 281
ab-mvs79.67 22080.56 20176.99 28288.48 19856.93 31584.70 15386.06 23368.95 22780.78 27793.08 11975.30 17584.62 30556.78 31990.90 25889.43 249
SDMVSNet81.90 18683.17 15978.10 26788.81 18962.45 25476.08 30986.05 23473.67 16383.41 23493.04 12082.35 9580.65 32870.06 22095.03 16091.21 211
v14882.31 17382.48 17381.81 21285.59 26259.66 28881.47 23186.02 23572.85 18088.05 14090.65 20270.73 22590.91 19575.15 16791.79 23994.87 67
Anonymous2024052180.18 21481.25 19376.95 28383.15 29560.84 27682.46 21385.99 23668.76 22986.78 16293.73 10859.13 28777.44 34073.71 18497.55 6792.56 166
MVS73.21 28772.59 28975.06 30380.97 31560.81 27781.64 22985.92 23746.03 37271.68 34977.54 36368.47 23589.77 23155.70 32785.39 32174.60 373
FMVSNet378.80 22878.55 23079.57 24582.89 29956.89 31781.76 22685.77 23869.04 22686.00 18290.44 20651.75 32790.09 22265.95 25693.34 20591.72 199
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 23977.07 12673.76 33992.82 13169.64 22891.82 17169.04 23293.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
无先验82.81 20385.62 24058.09 31991.41 18167.95 24584.48 306
cdsmvs_eth3d_5k20.81 36227.75 3650.00 3820.00 4040.00 4070.00 39385.44 2410.00 4000.00 40182.82 32281.46 1130.00 4010.00 4000.00 3990.00 397
131473.22 28672.56 29175.20 30180.41 32557.84 30881.64 22985.36 24251.68 35373.10 34276.65 37161.45 27085.19 30063.54 27979.21 36582.59 333
test_yl78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
DCV-MVSNet78.71 23078.51 23179.32 24884.32 28158.84 29978.38 27385.33 24375.99 13582.49 24686.57 27058.01 29390.02 22562.74 28492.73 22189.10 256
MVP-Stereo75.81 26273.51 27882.71 19589.35 17573.62 13180.06 24685.20 24560.30 30773.96 33887.94 24757.89 29789.45 23752.02 34974.87 37885.06 302
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14083.91 17385.18 24680.44 8288.75 12585.49 28680.08 12891.92 16682.02 9090.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28872.52 14983.82 17585.15 24780.27 8688.75 12585.45 28879.95 13091.90 16781.92 9290.80 26296.13 34
EI-MVSNet82.61 16882.42 17483.20 18383.25 29263.66 23683.50 18485.07 24876.06 13286.55 16985.10 29473.41 19990.25 21178.15 13390.67 26595.68 45
MVSTER77.09 24675.70 25881.25 21875.27 36661.08 27077.49 28885.07 24860.78 30386.55 16988.68 23743.14 37290.25 21173.69 18590.67 26592.42 171
miper_lstm_enhance76.45 25676.10 25477.51 27776.72 35360.97 27564.69 36985.04 25063.98 27383.20 23888.22 24256.67 30378.79 33773.22 19193.12 21292.78 157
WR-MVS83.56 15584.40 14181.06 22393.43 6854.88 33078.67 27185.02 25181.24 7590.74 8991.56 16972.85 20791.08 18968.00 24398.04 3697.23 18
MG-MVS80.32 21080.94 19878.47 26088.18 20452.62 34582.29 21885.01 25272.01 19779.24 29792.54 14169.36 23093.36 12770.65 21489.19 27989.45 247
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25371.27 20186.70 16590.55 20463.04 26593.92 10078.26 12994.20 18989.63 245
VDD-MVS84.23 13984.58 13583.20 18391.17 14065.16 22483.25 19084.97 25479.79 9087.18 15294.27 7574.77 18390.89 19669.24 22696.54 9793.55 131
test_fmvs375.72 26375.20 26377.27 28075.01 36969.47 18278.93 26584.88 25546.67 36887.08 15787.84 25050.44 33371.62 35577.42 14488.53 28690.72 223
mvs_anonymous78.13 23578.76 22776.23 29579.24 33550.31 36178.69 27084.82 25661.60 29383.09 24192.82 13173.89 19287.01 26968.33 24286.41 31491.37 208
D2MVS76.84 24975.67 25980.34 23480.48 32462.16 26173.50 33384.80 25757.61 32482.24 25087.54 25551.31 32887.65 26270.40 21893.19 21191.23 210
FE-MVS79.98 21878.86 22483.36 17886.47 23966.45 21189.73 6584.74 25872.80 18284.22 22391.38 17344.95 36393.60 11463.93 27691.50 24690.04 243
MIMVSNet183.63 15384.59 13480.74 22794.06 5362.77 24882.72 20484.53 25977.57 12190.34 9295.92 2476.88 16585.83 29561.88 29297.42 7293.62 125
VNet79.31 22180.27 20676.44 29087.92 20953.95 33475.58 31584.35 26074.39 15682.23 25190.72 19772.84 20884.39 30760.38 30393.98 19490.97 216
test_fmvs273.57 28372.80 28575.90 29772.74 38168.84 19177.07 29284.32 26145.14 37482.89 24284.22 30648.37 33870.36 35873.40 18987.03 30788.52 265
test_vis1_n_192071.30 30471.58 29970.47 32777.58 34559.99 28574.25 32484.22 26251.06 35674.85 33479.10 35455.10 31568.83 36468.86 23479.20 36682.58 334
test_fmvs1_n70.94 30670.41 30972.53 31973.92 37166.93 20675.99 31084.21 26343.31 38179.40 29379.39 35343.47 36868.55 36669.05 23184.91 33182.10 341
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20683.69 26471.27 20186.70 16586.05 28063.04 26592.41 15278.26 12993.62 20390.71 224
AUN-MVS81.18 19378.78 22688.39 7790.93 14582.14 5882.51 21283.67 26564.69 27180.29 28485.91 28351.07 32992.38 15376.29 15693.63 20290.65 228
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 13888.40 9683.63 26681.27 7480.87 27594.12 8771.49 22295.71 3287.79 1296.50 9994.11 100
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 23883.56 26772.71 18486.07 18189.07 23281.75 11186.19 28677.11 14793.36 20488.24 266
test_fmvs169.57 31969.05 32071.14 32669.15 38865.77 21973.98 32883.32 26842.83 38377.77 30978.27 36143.39 37168.50 36768.39 24184.38 33879.15 364
CHOSEN 1792x268872.45 29270.56 30578.13 26690.02 16763.08 24368.72 35683.16 26942.99 38275.92 32285.46 28757.22 30185.18 30149.87 35981.67 35386.14 290
patch_mono-278.89 22479.39 21977.41 27984.78 27268.11 19675.60 31383.11 27060.96 30179.36 29489.89 21875.18 17672.97 35173.32 19092.30 22691.15 213
TR-MVS76.77 25175.79 25679.72 24286.10 25665.79 21877.14 29083.02 27165.20 26881.40 26882.10 32866.30 24490.73 20255.57 32885.27 32382.65 332
GA-MVS75.83 26174.61 26679.48 24781.87 30359.25 29273.42 33482.88 27268.68 23079.75 28981.80 33350.62 33189.46 23666.85 24885.64 32089.72 244
tfpnnormal81.79 18782.95 16378.31 26288.93 18655.40 32580.83 24182.85 27376.81 12785.90 18694.14 8574.58 18686.51 27966.82 25095.68 14193.01 150
sd_testset79.95 21981.39 19175.64 29988.81 18958.07 30676.16 30882.81 27473.67 16383.41 23493.04 12080.96 11977.65 33958.62 31095.03 16091.21 211
OpenMVS_ROBcopyleft70.19 1777.77 24077.46 23978.71 25584.39 28061.15 26981.18 23682.52 27562.45 28283.34 23687.37 25866.20 24588.66 25364.69 27185.02 32886.32 288
Anonymous20240521180.51 20381.19 19678.49 25988.48 19857.26 31376.63 29982.49 27681.21 7684.30 21892.24 15267.99 23786.24 28362.22 28795.13 15591.98 194
EU-MVSNet75.12 26874.43 27077.18 28183.11 29659.48 29085.71 13882.43 27739.76 38885.64 18988.76 23544.71 36587.88 26073.86 18185.88 31984.16 313
CMPMVSbinary59.41 2075.12 26873.57 27679.77 24075.84 36167.22 20181.21 23582.18 27850.78 35976.50 31487.66 25355.20 31482.99 31562.17 29090.64 26889.09 258
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet77.32 24475.40 26083.06 18589.00 18472.48 15077.90 28082.17 27960.81 30278.94 29983.49 31359.30 28588.76 25254.64 33792.37 22587.93 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HY-MVS64.64 1873.03 28872.47 29274.71 30483.36 29154.19 33282.14 22581.96 28056.76 33069.57 35986.21 27860.03 27984.83 30449.58 36182.65 34985.11 301
jason77.42 24375.75 25782.43 20387.10 22969.27 18477.99 27881.94 28151.47 35477.84 30685.07 29760.32 27789.00 24570.74 21389.27 27889.03 259
jason: jason.
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28270.44 21091.28 7795.18 4256.62 30489.28 24385.15 5497.09 8193.99 103
旧先验191.97 10971.77 15981.78 28391.84 15973.92 19193.65 20183.61 320
VPNet80.25 21181.68 18275.94 29692.46 9347.98 36876.70 29781.67 28473.45 16784.87 20392.82 13174.66 18586.51 27961.66 29596.85 8693.33 135
test_vis1_rt65.64 33864.09 34270.31 32866.09 39370.20 17661.16 37681.60 28538.65 38972.87 34369.66 38352.84 32060.04 38756.16 32377.77 37080.68 358
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28674.73 15285.66 18886.06 27972.56 21292.69 14675.44 16495.21 15289.01 261
VDDNet84.35 13385.39 12081.25 21895.13 3159.32 29185.42 14281.11 28786.41 2787.41 15096.21 1973.61 19490.61 20666.33 25396.85 8693.81 116
IterMVS-SCA-FT80.64 20179.41 21884.34 15383.93 28669.66 18076.28 30581.09 28872.43 18786.47 17590.19 21260.46 27593.15 13377.45 14286.39 31590.22 237
UnsupCasMVSNet_eth71.63 30072.30 29369.62 33376.47 35552.70 34470.03 35380.97 28959.18 31379.36 29488.21 24360.50 27469.12 36258.33 31377.62 37287.04 282
test_vis1_n70.29 31069.99 31471.20 32575.97 36066.50 21076.69 29880.81 29044.22 37775.43 32777.23 36750.00 33468.59 36566.71 25182.85 34878.52 366
lupinMVS76.37 25774.46 26982.09 20485.54 26369.26 18576.79 29580.77 29150.68 36176.23 31882.82 32258.69 29088.94 24669.85 22188.77 28388.07 268
CL-MVSNet_self_test76.81 25077.38 24175.12 30286.90 23451.34 35373.20 33680.63 29268.30 23481.80 26288.40 24066.92 24280.90 32555.35 33194.90 16693.12 146
新几何182.95 18993.96 5578.56 8480.24 29355.45 33383.93 22791.08 18371.19 22388.33 25665.84 25993.07 21381.95 343
testdata79.54 24692.87 8272.34 15280.14 29459.91 31185.47 19391.75 16567.96 23885.24 29968.57 24092.18 23381.06 356
TAMVS78.08 23676.36 25183.23 18190.62 15272.87 13979.08 26480.01 29561.72 29081.35 26986.92 26863.96 25888.78 25150.61 35593.01 21588.04 270
pmmvs-eth3d78.42 23477.04 24582.57 20087.44 22074.41 12880.86 24079.67 29655.68 33284.69 20690.31 20960.91 27385.42 29862.20 28891.59 24487.88 274
KD-MVS_2432*160066.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
miper_refine_blended66.87 33065.81 33770.04 32967.50 38947.49 37062.56 37379.16 29761.21 29977.98 30480.61 34125.29 39982.48 31753.02 34384.92 32980.16 360
IterMVS76.91 24876.34 25278.64 25680.91 31664.03 23376.30 30479.03 29964.88 27083.11 23989.16 23059.90 28184.46 30668.61 23885.15 32787.42 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet72.62 29171.41 30176.28 29383.25 29260.34 28183.50 18479.02 30037.77 39176.33 31685.10 29449.60 33687.41 26570.54 21677.54 37381.08 354
ppachtmachnet_test74.73 27574.00 27376.90 28580.71 32156.89 31771.53 34478.42 30158.24 31879.32 29682.92 32157.91 29684.26 30865.60 26291.36 24889.56 246
FMVSNet572.10 29671.69 29673.32 31181.57 30853.02 34176.77 29678.37 30263.31 27476.37 31591.85 15836.68 38478.98 33447.87 36892.45 22487.95 272
MS-PatchMatch70.93 30770.22 31073.06 31481.85 30462.50 25373.82 33177.90 30352.44 34775.92 32281.27 33755.67 31181.75 32055.37 33077.70 37174.94 372
test22293.31 7176.54 10979.38 25877.79 30452.59 34582.36 24990.84 19466.83 24391.69 24181.25 351
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13386.14 13177.70 30561.64 29285.02 19891.62 16777.75 14586.24 28382.79 8087.07 30593.91 109
pmmvs474.92 27172.98 28480.73 22884.95 26971.71 16376.23 30677.59 30652.83 34477.73 31086.38 27256.35 30784.97 30257.72 31787.05 30685.51 297
EPNet80.37 20778.41 23386.23 11176.75 35273.28 13587.18 11177.45 30776.24 13168.14 36388.93 23465.41 25093.85 10269.47 22496.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16585.19 14677.42 30862.27 28684.47 21191.33 17476.43 16785.91 29183.14 7287.14 30394.33 90
fmvsm_s_conf0.5_n_a82.21 17681.51 18984.32 15486.56 23873.35 13385.46 14077.30 30961.81 28884.51 20890.88 19277.36 15186.21 28582.72 8186.97 30993.38 133
test_cas_vis1_n_192069.20 32369.12 31869.43 33573.68 37462.82 24770.38 35177.21 31046.18 37180.46 28378.95 35652.03 32465.53 37965.77 26177.45 37479.95 362
XXY-MVS74.44 27876.19 25369.21 33684.61 27552.43 34671.70 34277.18 31160.73 30480.60 27890.96 18875.44 17269.35 36156.13 32488.33 28885.86 294
fmvsm_s_conf0.5_n81.91 18581.30 19283.75 16886.02 25771.56 16684.73 15277.11 31262.44 28384.00 22590.68 19976.42 16885.89 29383.14 7287.11 30493.81 116
CR-MVSNet74.00 28073.04 28376.85 28779.58 32962.64 25082.58 20876.90 31350.50 36275.72 32492.38 14448.07 34084.07 30968.72 23782.91 34683.85 317
Patchmtry76.56 25477.46 23973.83 30879.37 33446.60 37482.41 21576.90 31373.81 16185.56 19192.38 14448.07 34083.98 31063.36 28195.31 15090.92 218
IB-MVS62.13 1971.64 29968.97 32179.66 24480.80 32062.26 25973.94 32976.90 31363.27 27568.63 36276.79 37033.83 38891.84 17059.28 30887.26 30184.88 303
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18185.45 14176.68 31684.06 4592.44 5796.99 862.03 26894.65 7280.58 10493.24 20994.83 72
ET-MVSNet_ETH3D75.28 26572.77 28682.81 19483.03 29768.11 19677.09 29176.51 31760.67 30577.60 31180.52 34438.04 38191.15 18770.78 21190.68 26489.17 254
N_pmnet70.20 31168.80 32374.38 30680.91 31684.81 3959.12 38076.45 31855.06 33475.31 33182.36 32755.74 31054.82 39047.02 37087.24 30283.52 321
thisisatest053079.07 22277.33 24384.26 15687.13 22664.58 22783.66 18175.95 31968.86 22885.22 19587.36 25938.10 38093.57 11875.47 16394.28 18794.62 74
EPNet_dtu72.87 29071.33 30277.49 27877.72 34360.55 28082.35 21675.79 32066.49 25258.39 39181.06 33953.68 31885.98 28953.55 34092.97 21785.95 292
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
UnsupCasMVSNet_bld69.21 32269.68 31667.82 34379.42 33251.15 35667.82 36175.79 32054.15 33877.47 31285.36 29259.26 28670.64 35748.46 36579.35 36381.66 345
MDA-MVSNet-bldmvs77.47 24276.90 24779.16 25079.03 33764.59 22666.58 36575.67 32273.15 17788.86 12288.99 23366.94 24181.23 32464.71 27088.22 29391.64 203
pmmvs570.73 30870.07 31172.72 31677.03 35052.73 34374.14 32575.65 32350.36 36372.17 34785.37 29155.42 31380.67 32752.86 34687.59 30084.77 304
tttt051781.07 19479.58 21785.52 12888.99 18566.45 21187.03 11475.51 32473.76 16288.32 13690.20 21137.96 38294.16 9479.36 11995.13 15595.93 42
tpmvs70.16 31269.56 31771.96 32274.71 37048.13 36679.63 25275.45 32565.02 26970.26 35681.88 33245.34 35985.68 29658.34 31275.39 37782.08 342
ADS-MVSNet265.87 33763.64 34572.55 31873.16 37756.92 31667.10 36274.81 32649.74 36466.04 37082.97 31846.71 34377.26 34142.29 38169.96 38583.46 322
new-patchmatchnet70.10 31373.37 28060.29 36881.23 31316.95 40159.54 37874.62 32762.93 27780.97 27187.93 24862.83 26771.90 35455.24 33295.01 16392.00 192
Anonymous2023120671.38 30371.88 29569.88 33186.31 24654.37 33170.39 35074.62 32752.57 34676.73 31388.76 23559.94 28072.06 35344.35 37993.23 21083.23 328
CostFormer69.98 31668.68 32473.87 30777.14 34850.72 35979.26 26074.51 32951.94 35270.97 35384.75 30045.16 36287.49 26455.16 33379.23 36483.40 324
door-mid74.45 330
thisisatest051573.00 28970.52 30680.46 23281.45 30959.90 28673.16 33774.31 33157.86 32176.08 32177.78 36237.60 38392.12 16265.00 26791.45 24789.35 250
baseline173.26 28573.54 27772.43 32084.92 27047.79 36979.89 25074.00 33265.93 25478.81 30086.28 27756.36 30681.63 32256.63 32079.04 36787.87 275
test_method30.46 36129.60 36433.06 37717.99 4003.84 40413.62 39273.92 3332.79 39518.29 39753.41 39228.53 39443.25 39622.56 39535.27 39552.11 392
tfpn200view974.86 27274.23 27176.74 28886.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25389.31 251
thres40075.14 26674.23 27177.86 27386.24 25052.12 34779.24 26173.87 33473.34 17081.82 26084.60 30346.02 34888.80 24851.98 35090.99 25392.66 163
LFMVS80.15 21580.56 20178.89 25189.19 18155.93 32185.22 14573.78 33682.96 5884.28 21992.72 13657.38 29990.07 22363.80 27795.75 13890.68 226
thres20072.34 29471.55 30074.70 30583.48 28951.60 35275.02 32073.71 33770.14 21778.56 30280.57 34346.20 34688.20 25846.99 37189.29 27684.32 309
tpm cat166.76 33365.21 34071.42 32377.09 34950.62 36078.01 27773.68 33844.89 37568.64 36179.00 35545.51 35682.42 31949.91 35870.15 38481.23 353
testgi72.36 29374.61 26665.59 35280.56 32342.82 38468.29 35773.35 33966.87 24981.84 25989.93 21672.08 21666.92 37446.05 37592.54 22387.01 283
thres100view90075.45 26475.05 26476.66 28987.27 22251.88 35081.07 23773.26 34075.68 14183.25 23786.37 27345.54 35488.80 24851.98 35090.99 25389.31 251
thres600view775.97 26075.35 26277.85 27487.01 23251.84 35180.45 24373.26 34075.20 14883.10 24086.31 27645.54 35489.05 24455.03 33492.24 23092.66 163
wuyk23d75.13 26779.30 22062.63 36175.56 36275.18 12480.89 23973.10 34275.06 15094.76 1295.32 3587.73 4052.85 39134.16 39197.11 8059.85 388
WTY-MVS67.91 32768.35 32566.58 34980.82 31948.12 36765.96 36672.60 34353.67 34071.20 35181.68 33558.97 28869.06 36348.57 36481.67 35382.55 335
door72.57 344
PVSNet58.17 2166.41 33465.63 33968.75 33981.96 30249.88 36362.19 37572.51 34551.03 35768.04 36475.34 37550.84 33074.77 34845.82 37682.96 34481.60 346
dmvs_re66.81 33266.98 33066.28 35076.87 35158.68 30371.66 34372.24 34660.29 30869.52 36073.53 37752.38 32364.40 38244.90 37781.44 35675.76 370
MDTV_nov1_ep1368.29 32678.03 34143.87 38174.12 32672.22 34752.17 34867.02 36885.54 28545.36 35880.85 32655.73 32584.42 337
test20.0373.75 28274.59 26871.22 32481.11 31451.12 35770.15 35272.10 34870.42 21180.28 28691.50 17064.21 25674.72 35046.96 37294.58 17887.82 276
Vis-MVSNet (Re-imp)77.82 23877.79 23877.92 27188.82 18851.29 35583.28 18871.97 34974.04 15882.23 25189.78 21957.38 29989.41 24057.22 31895.41 14493.05 148
MIMVSNet71.09 30571.59 29769.57 33487.23 22350.07 36278.91 26671.83 35060.20 31071.26 35091.76 16455.08 31676.09 34441.06 38487.02 30882.54 336
tpm268.45 32566.83 33273.30 31278.93 33948.50 36579.76 25171.76 35147.50 36669.92 35883.60 31142.07 37488.40 25548.44 36679.51 36183.01 331
sss66.92 32967.26 32965.90 35177.23 34751.10 35864.79 36871.72 35252.12 35170.13 35780.18 34757.96 29565.36 38050.21 35681.01 35981.25 351
our_test_371.85 29771.59 29772.62 31780.71 32153.78 33569.72 35471.71 35358.80 31578.03 30380.51 34556.61 30578.84 33662.20 28886.04 31885.23 299
SCA73.32 28472.57 29075.58 30081.62 30755.86 32278.89 26771.37 35461.73 28974.93 33383.42 31560.46 27587.01 26958.11 31582.63 35183.88 314
test_f64.31 34365.85 33659.67 36966.54 39262.24 26057.76 38370.96 35540.13 38684.36 21382.09 32946.93 34251.67 39261.99 29181.89 35265.12 384
lessismore_v085.95 11891.10 14270.99 17070.91 35691.79 6794.42 7061.76 26992.93 14079.52 11793.03 21493.93 107
tpmrst66.28 33566.69 33465.05 35672.82 38039.33 38678.20 27670.69 35753.16 34367.88 36580.36 34648.18 33974.75 34958.13 31470.79 38381.08 354
PatchMatch-RL74.48 27673.22 28178.27 26587.70 21385.26 3475.92 31170.09 35864.34 27276.09 32081.25 33865.87 24978.07 33853.86 33983.82 34071.48 376
PatchmatchNetpermissive69.71 31868.83 32272.33 32177.66 34453.60 33679.29 25969.99 35957.66 32372.53 34582.93 32046.45 34580.08 33160.91 30072.09 38183.31 327
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ECVR-MVScopyleft78.44 23378.63 22977.88 27291.85 11548.95 36483.68 18069.91 36072.30 19384.26 22194.20 8151.89 32689.82 22863.58 27896.02 12194.87 67
baseline269.77 31766.89 33178.41 26179.51 33158.09 30576.23 30669.57 36157.50 32564.82 37977.45 36546.02 34888.44 25453.08 34277.83 36988.70 263
test111178.53 23278.85 22577.56 27692.22 10247.49 37082.61 20669.24 36272.43 18785.28 19494.20 8151.91 32590.07 22365.36 26496.45 10395.11 62
Patchmatch-RL test74.48 27673.68 27576.89 28684.83 27166.54 20972.29 33969.16 36357.70 32286.76 16386.33 27445.79 35382.59 31669.63 22390.65 26781.54 347
SSC-MVS77.55 24181.64 18365.29 35590.46 15520.33 40073.56 33268.28 36485.44 3288.18 13994.64 6070.93 22481.33 32371.25 20692.03 23494.20 92
WB-MVS76.06 25980.01 21564.19 35889.96 16820.58 39972.18 34068.19 36583.21 5486.46 17693.49 11270.19 22778.97 33565.96 25590.46 26993.02 149
FPMVS72.29 29572.00 29473.14 31388.63 19485.00 3674.65 32367.39 36671.94 19877.80 30887.66 25350.48 33275.83 34649.95 35779.51 36158.58 390
MDA-MVSNet_test_wron70.05 31570.44 30768.88 33873.84 37253.47 33758.93 38267.28 36758.43 31687.09 15685.40 28959.80 28367.25 37259.66 30683.54 34185.92 293
YYNet170.06 31470.44 30768.90 33773.76 37353.42 33958.99 38167.20 36858.42 31787.10 15585.39 29059.82 28267.32 37159.79 30583.50 34285.96 291
test-LLR67.21 32866.74 33368.63 34076.45 35655.21 32767.89 35867.14 36962.43 28465.08 37672.39 37843.41 36969.37 35961.00 29884.89 33281.31 349
test-mter65.00 34063.79 34468.63 34076.45 35655.21 32767.89 35867.14 36950.98 35865.08 37672.39 37828.27 39569.37 35961.00 29884.89 33281.31 349
tpm67.95 32668.08 32767.55 34478.74 34043.53 38275.60 31367.10 37154.92 33572.23 34688.10 24442.87 37375.97 34552.21 34880.95 36083.15 329
PM-MVS80.20 21379.00 22283.78 16788.17 20586.66 1581.31 23266.81 37269.64 22088.33 13590.19 21264.58 25383.63 31371.99 20490.03 27181.06 356
JIA-IIPM69.41 32066.64 33577.70 27573.19 37671.24 16875.67 31265.56 37370.42 21165.18 37592.97 12633.64 38983.06 31453.52 34169.61 38778.79 365
PatchT70.52 30972.76 28763.79 36079.38 33333.53 39477.63 28465.37 37473.61 16571.77 34892.79 13444.38 36675.65 34764.53 27485.37 32282.18 340
dp60.70 35360.29 35661.92 36472.04 38338.67 38970.83 34764.08 37551.28 35560.75 38477.28 36636.59 38571.58 35647.41 36962.34 39175.52 371
Patchmatch-test65.91 33667.38 32861.48 36675.51 36343.21 38368.84 35563.79 37662.48 28172.80 34483.42 31544.89 36459.52 38848.27 36786.45 31381.70 344
TESTMET0.1,161.29 34960.32 35564.19 35872.06 38251.30 35467.89 35862.09 37745.27 37360.65 38569.01 38427.93 39664.74 38156.31 32281.65 35576.53 368
Syy-MVS69.40 32170.03 31367.49 34581.72 30538.94 38771.00 34561.99 37861.38 29570.81 35472.36 38061.37 27179.30 33264.50 27585.18 32584.22 310
myMVS_eth3d64.66 34163.89 34366.97 34781.72 30537.39 39071.00 34561.99 37861.38 29570.81 35472.36 38020.96 40179.30 33249.59 36085.18 32584.22 310
PVSNet_051.08 2256.10 35754.97 36259.48 37075.12 36753.28 34055.16 38561.89 38044.30 37659.16 38762.48 39054.22 31765.91 37835.40 39047.01 39359.25 389
ADS-MVSNet61.90 34662.19 35061.03 36773.16 37736.42 39267.10 36261.75 38149.74 36466.04 37082.97 31846.71 34363.21 38342.29 38169.96 38583.46 322
PMMVS61.65 34760.38 35465.47 35465.40 39669.26 18563.97 37161.73 38236.80 39260.11 38668.43 38559.42 28466.35 37648.97 36378.57 36860.81 387
test0.0.03 164.66 34164.36 34165.57 35375.03 36846.89 37364.69 36961.58 38362.43 28471.18 35277.54 36343.41 36968.47 36840.75 38582.65 34981.35 348
dmvs_testset60.59 35462.54 34954.72 37477.26 34627.74 39774.05 32761.00 38460.48 30665.62 37367.03 38755.93 30968.23 36932.07 39469.46 38868.17 381
E-PMN61.59 34861.62 35161.49 36566.81 39155.40 32553.77 38660.34 38566.80 25058.90 38965.50 38840.48 37766.12 37755.72 32686.25 31662.95 386
testing371.53 30170.79 30373.77 30988.89 18741.86 38576.60 30159.12 38672.83 18180.97 27182.08 33019.80 40287.33 26765.12 26691.68 24292.13 188
CHOSEN 280x42059.08 35556.52 36066.76 34876.51 35464.39 23049.62 38859.00 38743.86 37855.66 39368.41 38635.55 38768.21 37043.25 38076.78 37667.69 382
EMVS61.10 35160.81 35361.99 36365.96 39455.86 32253.10 38758.97 38867.06 24756.89 39263.33 38940.98 37567.03 37354.79 33586.18 31763.08 385
pmmvs362.47 34460.02 35769.80 33271.58 38464.00 23470.52 34958.44 38939.77 38766.05 36975.84 37327.10 39872.28 35246.15 37484.77 33673.11 374
MVS-HIRNet61.16 35062.92 34755.87 37279.09 33635.34 39371.83 34157.98 39046.56 36959.05 38891.14 18049.95 33576.43 34338.74 38771.92 38255.84 391
gg-mvs-nofinetune68.96 32469.11 31968.52 34276.12 35945.32 37683.59 18255.88 39186.68 2464.62 38097.01 730.36 39283.97 31144.78 37882.94 34576.26 369
GG-mvs-BLEND67.16 34673.36 37546.54 37584.15 16455.04 39258.64 39061.95 39129.93 39383.87 31238.71 38876.92 37571.07 377
EPMVS62.47 34462.63 34862.01 36270.63 38538.74 38874.76 32152.86 39353.91 33967.71 36780.01 34839.40 37866.60 37555.54 32968.81 38980.68 358
new_pmnet55.69 35857.66 35949.76 37575.47 36430.59 39559.56 37751.45 39443.62 38062.49 38275.48 37440.96 37649.15 39437.39 38972.52 37969.55 379
PMMVS255.64 35959.27 35844.74 37664.30 39712.32 40240.60 38949.79 39553.19 34265.06 37884.81 29953.60 31949.76 39332.68 39389.41 27572.15 375
test250674.12 27973.39 27976.28 29391.85 11544.20 38084.06 16748.20 39672.30 19381.90 25794.20 8127.22 39789.77 23164.81 26996.02 12194.87 67
DSMNet-mixed60.98 35261.61 35259.09 37172.88 37945.05 37874.70 32246.61 39726.20 39365.34 37490.32 20855.46 31263.12 38441.72 38381.30 35869.09 380
mvsany_test365.48 33962.97 34673.03 31569.99 38676.17 11864.83 36743.71 39843.68 37980.25 28787.05 26752.83 32163.09 38551.92 35372.44 38079.84 363
mvsany_test158.48 35656.47 36164.50 35765.90 39568.21 19556.95 38442.11 39938.30 39065.69 37277.19 36956.96 30259.35 38946.16 37358.96 39265.93 383
MVEpermissive40.22 2351.82 36050.47 36355.87 37262.66 39851.91 34931.61 39139.28 40040.65 38550.76 39474.98 37656.24 30844.67 39533.94 39264.11 39071.04 378
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MTMP90.66 4433.14 401
tmp_tt20.25 36324.50 3667.49 3794.47 4018.70 40334.17 39025.16 4021.00 39732.43 39618.49 39439.37 3799.21 39821.64 39643.75 3944.57 394
DeepMVS_CXcopyleft24.13 37832.95 39929.49 39621.63 40312.07 39437.95 39545.07 39330.84 39119.21 39717.94 39733.06 39623.69 393
test1236.27 3668.08 3690.84 3801.11 4030.57 40562.90 3720.82 4040.54 3981.07 4002.75 3991.26 4030.30 3991.04 3981.26 3981.66 395
testmvs5.91 3677.65 3700.72 3811.20 4020.37 40659.14 3790.67 4050.49 3991.11 3992.76 3980.94 4040.24 4001.02 3991.47 3971.55 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas6.41 3658.55 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40076.94 1590.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
n20.00 406
nn0.00 406
ab-mvs-re6.65 3648.87 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40179.80 3500.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS37.39 39052.61 347
PC_three_145258.96 31490.06 9691.33 17480.66 12393.03 13775.78 16095.94 12692.48 169
eth-test20.00 404
eth-test0.00 404
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17195.35 14692.29 179
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
GSMVS83.88 314
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34783.88 314
sam_mvs45.92 352
test_post178.85 2693.13 39645.19 36180.13 33058.11 315
test_post3.10 39745.43 35777.22 342
patchmatchnet-post81.71 33445.93 35187.01 269
gm-plane-assit75.42 36544.97 37952.17 34872.36 38087.90 25954.10 338
test9_res80.83 10096.45 10390.57 229
agg_prior279.68 11496.16 11490.22 237
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11696.97 84
旧先验281.73 22756.88 32986.54 17484.90 30372.81 198
新几何281.72 228
原ACMM282.26 221
testdata286.43 28163.52 280
segment_acmp81.94 105
testdata179.62 25373.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
HQP5-MVS70.66 171
HQP-NCC91.19 13784.77 14973.30 17280.55 280
ACMP_Plane91.19 13784.77 14973.30 17280.55 280
BP-MVS77.30 145
HQP4-MVS80.56 27994.61 7493.56 129
HQP2-MVS72.10 214
NP-MVS91.95 11074.55 12790.17 214
MDTV_nov1_ep13_2view27.60 39870.76 34846.47 37061.27 38345.20 36049.18 36283.75 319
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134