This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29388.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37486.57 5295.80 2487.35 2197.62 6294.20 90
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28588.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28889.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31895.56 3773.48 17682.91 32983.85 300
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29088.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31887.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34180.39 11995.13 5873.82 17192.98 20891.04 199
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30284.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
HQP4-MVS80.56 26394.61 7293.56 122
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36694.51 7979.83 10094.30 18093.50 125
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37194.51 7976.64 14095.83 13094.38 87
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27694.76 17184.21 295
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31073.76 15988.32 13390.20 19637.96 36394.16 9279.36 10895.13 15395.93 42
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24095.12 15590.34 220
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
EPNet80.37 19678.41 21986.23 10676.75 33373.28 12787.18 10977.45 29776.24 12868.14 34288.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29295.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34493.60 11263.93 25891.50 23790.04 227
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30568.86 22285.22 18887.36 24538.10 36193.57 11675.47 15294.28 18194.62 74
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30485.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33082.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24592.28 22192.21 172
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27872.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
lessismore_v085.95 11391.10 14270.99 15970.91 34191.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
FIs85.35 10986.27 10182.60 18691.86 11457.31 29785.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27674.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23288.30 28191.51 193
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 27990.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25671.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25764.69 26280.29 26785.91 26951.07 31092.38 15176.29 14593.63 19590.65 212
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
PAPM71.77 28570.06 29776.92 27386.39 23253.97 31876.62 29086.62 22053.44 32263.97 36084.73 28757.79 28392.34 15339.65 36581.33 33984.45 292
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29088.04 28390.68 210
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051573.00 27670.52 29180.46 22281.45 29359.90 27373.16 32174.31 31757.86 30276.08 30477.78 34537.60 36492.12 16065.00 25091.45 23889.35 234
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32287.31 20646.79 34780.29 26784.30 29152.70 30592.10 16151.88 33586.73 29590.22 221
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
IB-MVS62.13 1971.64 28668.97 30479.66 23480.80 30462.26 24773.94 31476.90 29963.27 26668.63 34176.79 35333.83 36991.84 16859.28 29187.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32192.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27588.99 26982.52 319
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28278.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24792.75 21282.51 320
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28492.24 22290.11 225
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34369.11 21791.44 17660.68 28487.70 28884.42 293
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28477.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
无先验82.81 19285.62 23358.09 30091.41 17967.95 23184.48 291
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 33958.01 29275.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31587.34 20555.94 31275.16 31576.53 35563.97 24291.16 18465.00 25090.97 24788.06 253
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30360.67 28977.60 29480.52 32938.04 36291.15 18570.78 19990.68 25489.17 238
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31578.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 22998.04 3697.23 18
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 31977.22 35176.94 15190.94 19064.63 25584.83 31783.35 308
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31778.79 34077.20 14590.93 19164.62 25684.80 31883.32 309
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
v14882.31 16682.48 16681.81 20185.59 25059.66 27581.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
cl2278.97 21178.21 22181.24 20977.74 32659.01 28377.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26587.90 28487.52 261
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32785.25 30977.62 348
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26265.20 25981.40 25482.10 31466.30 22990.73 20055.57 31085.27 30882.65 315
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24193.34 19893.82 108
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27885.42 13681.11 27786.41 2787.41 14596.21 1973.61 18390.61 20466.33 23996.85 8693.81 111
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34273.79 18290.53 20561.59 27890.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29582.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
MVSTER77.09 23475.70 24581.25 20775.27 34761.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35390.25 20973.69 17490.67 25592.42 159
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22189.29 26590.94 201
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 28983.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23393.92 18892.27 169
cl____80.42 19480.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 27977.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30281.76 21585.77 23169.04 22086.00 17590.44 19151.75 30890.09 22065.95 24193.34 19891.72 185
test111178.53 22078.85 21177.56 26592.22 10247.49 35582.61 19569.24 34772.43 18185.28 18794.20 8051.91 30690.07 22165.36 24896.45 10295.11 62
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30685.22 13873.78 32282.96 5584.28 20992.72 12957.38 28490.07 22163.80 25995.75 13690.68 210
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28678.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26692.73 21389.10 240
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 34983.68 16969.91 34572.30 18784.26 21194.20 8051.89 30789.82 22563.58 26096.02 11994.87 67
test250674.12 26673.39 26676.28 28291.85 11544.20 36584.06 15648.20 37572.30 18781.90 24394.20 8027.22 37889.77 22664.81 25296.02 11994.87 67
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35171.68 33177.54 34668.47 22089.77 22655.70 30985.39 30674.60 353
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 30980.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28794.89 16390.75 206
EGC-MVSNET74.79 26169.99 29889.19 6394.89 3787.00 1191.89 3486.28 2231.09 3752.23 37795.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27383.26 17888.29 19569.16 21867.83 34583.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 27973.42 31882.88 26368.68 22479.75 27281.80 31850.62 31289.46 23166.85 23485.64 30589.72 228
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32087.94 23357.89 28289.45 23252.02 33074.87 35885.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34083.28 17771.97 33474.04 15582.23 23789.78 20457.38 28489.41 23557.22 30095.41 14293.05 138
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27270.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33680.45 23373.26 32675.20 14583.10 22686.31 26245.54 33589.05 23955.03 31692.24 22292.66 151
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27151.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28250.68 34176.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33581.07 22773.26 32675.68 13883.25 22386.37 25945.54 33588.80 24351.98 33190.99 24489.31 235
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33279.24 25173.87 32073.34 16581.82 24684.60 28946.02 32988.80 24351.98 33190.99 24492.66 151
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28661.72 27881.35 25586.92 25463.96 24388.78 24650.61 33693.01 20788.04 254
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 26960.81 28678.94 28283.49 29959.30 27088.76 24754.64 31992.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26562.45 27383.34 22287.37 24466.20 23088.66 24864.69 25485.02 31186.32 273
baseline269.77 30266.89 31378.41 25179.51 31558.09 29176.23 29569.57 34657.50 30664.82 35877.45 34846.02 32988.44 24953.08 32477.83 35088.70 247
tpm268.45 30866.83 31473.30 29978.93 32348.50 35079.76 24171.76 33647.50 34669.92 33883.60 29742.07 35588.40 25048.44 34679.51 34383.01 314
新几何182.95 17893.96 5578.56 8480.24 28455.45 31483.93 21691.08 17171.19 21088.33 25165.84 24493.07 20581.95 325
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20072.34 28171.55 28674.70 29383.48 27551.60 33775.02 30773.71 32370.14 21178.56 28580.57 32846.20 32788.20 25346.99 35189.29 26584.32 294
gm-plane-assit75.42 34644.97 36452.17 32972.36 36287.90 25454.10 320
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27785.71 13382.43 26739.76 36785.64 18288.76 22144.71 34687.88 25573.86 17085.88 30484.16 296
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31784.80 25057.61 30582.24 23687.54 24151.31 30987.65 25770.40 20693.19 20391.23 196
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
CostFormer69.98 30168.68 30773.87 29577.14 33050.72 34479.26 25074.51 31551.94 33370.97 33584.75 28645.16 34387.49 25955.16 31579.23 34683.40 307
CVMVSNet72.62 27871.41 28776.28 28283.25 27860.34 26983.50 17379.02 29137.77 37076.33 29985.10 28049.60 31787.41 26070.54 20477.54 35481.08 336
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29681.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23896.82 8994.34 88
patchmatchnet-post81.71 31945.93 33287.01 263
SCA73.32 27172.57 27775.58 28881.62 29155.86 30778.89 25771.37 33961.73 27774.93 31683.42 30160.46 26087.01 26358.11 29782.63 33483.88 297
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34678.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22886.41 29991.37 194
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26895.17 15286.31 274
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31482.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23096.60 9594.45 82
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32780.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22496.64 9395.38 52
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28076.28 12767.53 34789.11 21762.87 25286.77 27060.90 28392.01 22987.13 266
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32279.80 33560.25 26386.76 27258.37 29384.15 32287.32 264
USDC76.63 24076.73 23676.34 28183.46 27657.20 29980.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31894.11 18485.17 285
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31080.83 23182.85 26476.81 12385.90 17994.14 8474.58 17586.51 27466.82 23695.68 13993.01 139
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35376.70 28781.67 27473.45 16284.87 19592.82 12474.66 17486.51 27461.66 27796.85 8693.33 126
testdata286.43 27663.52 262
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26486.59 29786.41 272
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29876.63 28982.49 26681.21 7284.30 20892.24 14467.99 22286.24 27862.22 26995.13 15391.98 180
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25872.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32382.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
EPNet_dtu72.87 27771.33 28877.49 26777.72 32760.55 26882.35 20575.79 30666.49 24658.39 37081.06 32453.68 30185.98 28153.55 32292.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36279.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30573.40 31986.17 22650.70 34073.14 32385.94 26758.31 27785.90 28356.51 30383.22 32687.20 265
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27497.42 7293.62 119
tpmvs70.16 29769.56 30171.96 30974.71 35148.13 35179.63 24275.45 31165.02 26070.26 33681.88 31745.34 34085.68 28558.34 29475.39 35782.08 324
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27582.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22296.04 11894.42 85
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28755.68 31384.69 19890.31 19460.91 25885.42 28762.20 27091.59 23587.88 258
testdata79.54 23692.87 8272.34 14380.14 28559.91 29385.47 18691.75 15667.96 22385.24 28868.57 22692.18 22581.06 338
131473.22 27372.56 27875.20 28980.41 30957.84 29381.64 21885.36 23551.68 33473.10 32476.65 35461.45 25685.19 28963.54 26179.21 34782.59 316
CHOSEN 1792x268872.45 27970.56 29078.13 25690.02 16663.08 23368.72 33583.16 26042.99 36175.92 30585.46 27357.22 28685.18 29049.87 34081.67 33686.14 275
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29652.83 32577.73 29386.38 25856.35 29284.97 29157.72 29987.05 29285.51 282
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31782.14 21481.96 27056.76 31169.57 33986.21 26460.03 26484.83 29349.58 34182.65 33285.11 286
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30084.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30190.90 24989.43 233
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29064.88 26183.11 22589.16 21559.90 26684.46 29568.61 22485.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VNet79.31 20980.27 19376.44 27987.92 20353.95 31975.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28693.98 18790.97 200
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30271.53 32678.42 29258.24 29979.32 27982.92 30757.91 28184.26 29765.60 24691.36 23989.56 230
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 29950.50 34275.72 30792.38 13748.07 32184.07 29868.72 22382.91 32983.85 300
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 35982.41 20476.90 29973.81 15885.56 18492.38 13748.07 32183.98 29963.36 26395.31 14890.92 202
gg-mvs-nofinetune68.96 30769.11 30268.52 32776.12 34045.32 36183.59 17155.88 37086.68 2464.62 35997.01 730.36 37383.97 30044.78 35782.94 32876.26 350
GG-mvs-BLEND67.16 33073.36 35546.54 36084.15 15455.04 37158.64 36961.95 37029.93 37483.87 30138.71 36776.92 35571.07 357
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35569.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 338
JIA-IIPM69.41 30566.64 31777.70 26473.19 35671.24 15775.67 29965.56 35670.42 20565.18 35492.97 11933.64 37083.06 30353.52 32369.61 36778.79 346
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34267.22 19181.21 22582.18 26850.78 33976.50 29787.66 23955.20 29882.99 30462.17 27290.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32369.16 34857.70 30386.76 15886.33 26045.79 33482.59 30569.63 21090.65 25781.54 329
KD-MVS_2432*160066.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
miper_refine_blended66.87 31365.81 31970.04 31567.50 36947.49 35562.56 35279.16 28861.21 28377.98 28780.61 32625.29 38082.48 30653.02 32584.92 31280.16 342
tpm cat166.76 31565.21 32271.42 31077.09 33150.62 34578.01 26773.68 32444.89 35468.64 34079.00 33945.51 33782.42 30849.91 33970.15 36481.23 335
MS-PatchMatch70.93 29270.22 29573.06 30181.85 29062.50 24273.82 31677.90 29452.44 32875.92 30581.27 32255.67 29581.75 30955.37 31277.70 35274.94 352
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23592.29 22089.11 239
baseline173.26 27273.54 26472.43 30784.92 25647.79 35479.89 24074.00 31865.93 24778.81 28386.28 26356.36 29181.63 31156.63 30279.04 34887.87 259
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34475.67 30873.15 17288.86 12088.99 21966.94 22681.23 31264.71 25388.22 28291.64 189
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33873.20 32080.63 28368.30 22881.80 24888.40 22666.92 22780.90 31355.35 31394.90 16293.12 136
MDTV_nov1_ep1368.29 30978.03 32543.87 36674.12 31272.22 33252.17 32967.02 34885.54 27145.36 33980.85 31455.73 30784.42 320
pmmvs570.73 29370.07 29672.72 30377.03 33252.73 32874.14 31175.65 30950.36 34372.17 32985.37 27755.42 29780.67 31552.86 32887.59 28984.77 289
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 321
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.85 2593.13 37545.19 34280.13 31758.11 297
PatchmatchNetpermissive69.71 30368.83 30572.33 30877.66 32853.60 32179.29 24969.99 34457.66 30472.53 32782.93 30646.45 32680.08 31860.91 28272.09 36183.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32676.77 28678.37 29363.31 26576.37 29891.85 15036.68 36578.98 31947.87 34892.45 21687.95 256
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32069.72 33371.71 33858.80 29678.03 28680.51 33056.61 29078.84 32062.20 27086.04 30385.23 284
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33460.97 26364.69 34885.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34364.34 26376.09 30381.25 32365.87 23478.07 32253.86 32183.82 32371.48 356
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
ADS-MVSNet265.87 31963.64 32672.55 30573.16 35756.92 30167.10 34174.81 31249.74 34466.04 35082.97 30446.71 32477.26 32442.29 36069.96 36583.46 305
test_post3.10 37645.43 33877.22 325
MVS-HIRNet61.16 33162.92 32855.87 35279.09 32035.34 37471.83 32457.98 36946.56 34959.05 36791.14 16949.95 31676.43 32638.74 36671.92 36255.84 370
MIMVSNet71.09 29071.59 28469.57 32087.23 21650.07 34778.91 25671.83 33560.20 29271.26 33291.76 15555.08 29976.09 32741.06 36387.02 29482.54 318
tpm67.95 30968.08 31067.55 32978.74 32443.53 36775.60 30067.10 35454.92 31672.23 32888.10 23042.87 35475.97 32852.21 32980.95 34283.15 312
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 34971.94 19277.80 29187.66 23950.48 31375.83 32949.95 33879.51 34358.58 369
PatchT70.52 29472.76 27463.79 34079.38 31733.53 37577.63 27465.37 35773.61 16071.77 33092.79 12744.38 34775.65 33064.53 25785.37 30782.18 322
PVSNet58.17 2166.41 31665.63 32168.75 32481.96 28849.88 34862.19 35472.51 33151.03 33768.04 34375.34 35850.84 31174.77 33145.82 35682.96 32781.60 328
tpmrst66.28 31766.69 31665.05 33772.82 36039.33 37078.20 26670.69 34253.16 32467.88 34480.36 33148.18 32074.75 33258.13 29670.79 36381.08 336
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34270.15 33172.10 33370.42 20580.28 26991.50 16064.21 24174.72 33346.96 35294.58 17487.82 260
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26160.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
pmmvs362.47 32560.02 33769.80 31871.58 36464.00 22470.52 32958.44 36839.77 36666.05 34975.84 35627.10 37972.28 33546.15 35484.77 31973.11 354
Anonymous2023120671.38 28971.88 28269.88 31786.31 23754.37 31670.39 33074.62 31352.57 32776.73 29688.76 22159.94 26572.06 33644.35 35893.23 20283.23 311
new-patchmatchnet70.10 29873.37 26760.29 34881.23 29716.95 37959.54 35774.62 31362.93 26880.97 25787.93 23462.83 25371.90 33755.24 31495.01 15992.00 178
test_fmvs375.72 25075.20 25077.27 26975.01 35069.47 17178.93 25584.88 24846.67 34887.08 15287.84 23650.44 31471.62 33877.42 13388.53 27590.72 207
dp60.70 33460.29 33661.92 34472.04 36338.67 37270.83 32764.08 35851.28 33660.75 36377.28 34936.59 36671.58 33947.41 34962.34 37075.52 351
UnsupCasMVSNet_bld69.21 30669.68 30067.82 32879.42 31651.15 34167.82 34075.79 30654.15 31977.47 29585.36 27859.26 27170.64 34048.46 34579.35 34581.66 327
test_fmvs273.57 27072.80 27275.90 28672.74 36168.84 18177.07 28284.32 25445.14 35382.89 22884.22 29248.37 31970.36 34173.40 17887.03 29388.52 249
test-LLR67.21 31166.74 31568.63 32576.45 33755.21 31267.89 33767.14 35262.43 27465.08 35572.39 36043.41 35069.37 34261.00 28084.89 31581.31 331
test-mter65.00 32263.79 32568.63 32576.45 33755.21 31267.89 33767.14 35250.98 33865.08 35572.39 36028.27 37669.37 34261.00 28084.89 31581.31 331
XXY-MVS74.44 26576.19 24069.21 32184.61 26052.43 33171.70 32577.18 29860.73 28880.60 26290.96 17675.44 16169.35 34456.13 30688.33 27785.86 279
UnsupCasMVSNet_eth71.63 28772.30 28069.62 31976.47 33652.70 32970.03 33280.97 27959.18 29479.36 27788.21 22960.50 25969.12 34558.33 29577.62 35387.04 267
WTY-MVS67.91 31068.35 30866.58 33280.82 30348.12 35265.96 34572.60 32953.67 32171.20 33381.68 32058.97 27369.06 34648.57 34481.67 33682.55 317
test_vis1_n70.29 29569.99 29871.20 31275.97 34166.50 20076.69 28880.81 28044.22 35675.43 31077.23 35050.00 31568.59 34766.71 23782.85 33178.52 347
test_fmvs1_n70.94 29170.41 29472.53 30673.92 35266.93 19675.99 29784.21 25543.31 36079.40 27679.39 33843.47 34968.55 34869.05 21884.91 31482.10 323
test_fmvs169.57 30469.05 30371.14 31369.15 36865.77 20973.98 31383.32 25942.83 36277.77 29278.27 34443.39 35268.50 34968.39 22784.38 32179.15 345
test0.0.03 164.66 32364.36 32365.57 33575.03 34946.89 35864.69 34861.58 36462.43 27471.18 33477.54 34643.41 35068.47 35040.75 36482.65 33281.35 330
CHOSEN 280x42059.08 33556.52 34066.76 33176.51 33564.39 22049.62 36759.00 36643.86 35755.66 37268.41 36635.55 36868.21 35143.25 35976.78 35667.69 361
YYNet170.06 29970.44 29268.90 32273.76 35453.42 32458.99 36067.20 35158.42 29887.10 15085.39 27659.82 26767.32 35259.79 28883.50 32585.96 276
MDA-MVSNet_test_wron70.05 30070.44 29268.88 32373.84 35353.47 32258.93 36167.28 35058.43 29787.09 15185.40 27559.80 26867.25 35359.66 28983.54 32485.92 278
EMVS61.10 33260.81 33361.99 34365.96 37455.86 30753.10 36658.97 36767.06 24156.89 37163.33 36840.98 35667.03 35454.79 31786.18 30263.08 364
testgi72.36 28074.61 25365.59 33480.56 30742.82 36968.29 33673.35 32566.87 24381.84 24589.93 20172.08 20466.92 35546.05 35592.54 21587.01 268
EPMVS62.47 32562.63 32962.01 34270.63 36538.74 37174.76 30852.86 37253.91 32067.71 34680.01 33339.40 35966.60 35655.54 31168.81 36880.68 340
PMMVS61.65 32860.38 33465.47 33665.40 37669.26 17463.97 35061.73 36336.80 37160.11 36568.43 36559.42 26966.35 35748.97 34378.57 34960.81 366
E-PMN61.59 32961.62 33161.49 34566.81 37155.40 31053.77 36560.34 36566.80 24458.90 36865.50 36740.48 35866.12 35855.72 30886.25 30162.95 365
PVSNet_051.08 2256.10 33754.97 34259.48 35075.12 34853.28 32555.16 36461.89 36144.30 35559.16 36662.48 36954.22 30065.91 35935.40 36947.01 37259.25 368
sss66.92 31267.26 31265.90 33377.23 32951.10 34364.79 34771.72 33752.12 33270.13 33780.18 33257.96 28065.36 36050.21 33781.01 34181.25 333
TESTMET0.1,161.29 33060.32 33564.19 33972.06 36251.30 33967.89 33762.09 36045.27 35260.65 36469.01 36427.93 37764.74 36156.31 30481.65 33876.53 349
ADS-MVSNet61.90 32762.19 33061.03 34773.16 35736.42 37367.10 34161.75 36249.74 34466.04 35082.97 30446.71 32463.21 36242.29 36069.96 36583.46 305
DSMNet-mixed60.98 33361.61 33259.09 35172.88 35945.05 36374.70 30946.61 37626.20 37265.34 35390.32 19355.46 29663.12 36341.72 36281.30 34069.09 360
mvsany_test365.48 32162.97 32773.03 30269.99 36676.17 11364.83 34643.71 37743.68 35880.25 27087.05 25352.83 30463.09 36451.92 33472.44 36079.84 344
test_vis3_rt71.42 28870.67 28973.64 29769.66 36770.46 16266.97 34389.73 16942.68 36388.20 13583.04 30343.77 34860.07 36565.35 24986.66 29690.39 219
test_vis1_rt65.64 32064.09 32470.31 31466.09 37370.20 16561.16 35581.60 27538.65 36872.87 32569.66 36352.84 30360.04 36656.16 30577.77 35180.68 340
Patchmatch-test65.91 31867.38 31161.48 34675.51 34443.21 36868.84 33463.79 35962.48 27272.80 32683.42 30144.89 34559.52 36748.27 34786.45 29881.70 326
mvsany_test158.48 33656.47 34164.50 33865.90 37568.21 18556.95 36342.11 37838.30 36965.69 35277.19 35256.96 28759.35 36846.16 35358.96 37165.93 362
N_pmnet70.20 29668.80 30674.38 29480.91 30084.81 3959.12 35976.45 30455.06 31575.31 31482.36 31355.74 29454.82 36947.02 35087.24 29183.52 304
wuyk23d75.13 25479.30 20662.63 34175.56 34375.18 11880.89 22973.10 32875.06 14794.76 1295.32 3587.73 4052.85 37034.16 37097.11 8059.85 367
test_f64.31 32465.85 31859.67 34966.54 37262.24 24857.76 36270.96 34040.13 36584.36 20382.09 31546.93 32351.67 37161.99 27381.89 33565.12 363
PMMVS255.64 33959.27 33844.74 35564.30 37712.32 38040.60 36849.79 37453.19 32365.06 35784.81 28553.60 30249.76 37232.68 37289.41 26472.15 355
new_pmnet55.69 33857.66 33949.76 35475.47 34530.59 37659.56 35651.45 37343.62 35962.49 36175.48 35740.96 35749.15 37337.39 36872.52 35969.55 359
MVEpermissive40.22 2351.82 34050.47 34355.87 35262.66 37851.91 33431.61 37039.28 37940.65 36450.76 37374.98 35956.24 29344.67 37433.94 37164.11 36971.04 358
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 34129.60 34433.06 35617.99 3803.84 38213.62 37173.92 3192.79 37418.29 37653.41 37128.53 37543.25 37522.56 37335.27 37452.11 371
DeepMVS_CXcopyleft24.13 35732.95 37929.49 37721.63 38212.07 37337.95 37445.07 37230.84 37219.21 37617.94 37533.06 37523.69 372
tmp_tt20.25 34324.50 3467.49 3584.47 3818.70 38134.17 36925.16 3811.00 37632.43 37518.49 37339.37 3609.21 37721.64 37443.75 3734.57 373
test1236.27 3468.08 3490.84 3591.11 3830.57 38362.90 3510.82 3830.54 3771.07 3792.75 3781.26 3820.30 3781.04 3761.26 3771.66 374
testmvs5.91 3477.65 3500.72 3601.20 3820.37 38459.14 3580.67 3840.49 3781.11 3782.76 3770.94 3830.24 3791.02 3771.47 3761.55 375
test_blank0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uanet_test0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
DCPMVS0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
cdsmvs_eth3d_5k20.81 34227.75 3450.00 3610.00 3840.00 3850.00 37285.44 2340.00 3790.00 38082.82 30881.46 1080.00 3800.00 3780.00 3780.00 376
pcd_1.5k_mvsjas6.41 3458.55 3480.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 37976.94 1510.00 3800.00 3780.00 3780.00 376
sosnet-low-res0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
sosnet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
uncertanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
Regformer0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
ab-mvs-re6.65 3448.87 3470.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 38079.80 3350.00 3840.00 3800.00 3780.00 3780.00 376
uanet0.00 3480.00 3510.00 3610.00 3840.00 3850.00 3720.00 3850.00 3790.00 3800.00 3790.00 3840.00 3800.00 3780.00 3780.00 376
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 384
eth-test0.00 384
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
GSMVS83.88 297
test_part293.86 5777.77 9192.84 48
sam_mvs146.11 32883.88 297
sam_mvs45.92 333
MTGPAbinary91.81 115
MTMP90.66 4433.14 380
test9_res80.83 8996.45 10290.57 213
agg_prior279.68 10396.16 11290.22 221
test_prior478.97 8084.59 145
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
新几何281.72 217
旧先验191.97 10971.77 15081.78 27391.84 15173.92 18093.65 19483.61 303
原ACMM282.26 210
test22293.31 7176.54 10579.38 24877.79 29552.59 32682.36 23590.84 18066.83 22891.69 23381.25 333
segment_acmp81.94 100
testdata179.62 24373.95 157
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior492.95 120
plane_prior376.85 10377.79 11486.55 164
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
n20.00 385
nn0.00 385
door-mid74.45 316
test1191.46 121
door72.57 330
HQP5-MVS70.66 160
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
BP-MVS77.30 134
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
MDTV_nov1_ep13_2view27.60 37870.76 32846.47 35061.27 36245.20 34149.18 34283.75 302
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128