This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
mamv495.37 294.51 297.96 196.31 1098.41 191.05 4697.23 295.32 299.01 297.26 680.16 13398.99 195.15 199.14 296.47 30
MM87.64 8587.15 9089.09 6789.51 17476.39 11888.68 9686.76 23384.54 4683.58 24293.78 10873.36 21096.48 287.98 1396.21 11294.41 86
APDe-MVScopyleft91.22 2591.92 1589.14 6692.97 8278.04 9392.84 1694.14 3683.33 5893.90 2895.73 3188.77 2796.41 387.60 2197.98 4592.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSP-MVS89.08 6688.16 7891.83 2095.76 1886.14 2592.75 1793.90 4878.43 11689.16 12192.25 15972.03 22896.36 488.21 1190.93 26292.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft90.53 3691.08 3788.88 6993.38 7178.65 8789.15 8794.05 4184.68 4593.90 2894.11 9188.13 3696.30 584.51 6597.81 5591.70 208
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP91.16 2791.36 2890.55 4193.91 6080.97 7091.49 4093.48 6382.82 6592.60 5793.97 9688.19 3396.29 687.61 2098.20 3494.39 87
Skip Steuart: Steuart Systems R&D Blog.
ZD-MVS92.22 10380.48 7191.85 12171.22 21390.38 9292.98 13186.06 6496.11 781.99 9496.75 92
SMA-MVScopyleft90.31 3890.48 5089.83 5495.31 3079.52 8190.98 4793.24 7475.37 15492.84 5195.28 4485.58 6796.09 887.92 1497.76 5793.88 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSC_two_6792asdad88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
No_MVS88.81 7191.55 12977.99 9491.01 14696.05 987.45 2398.17 3592.40 177
MVS_030485.37 11784.58 14287.75 8885.28 27173.36 13686.54 13385.71 24877.56 12981.78 27692.47 15070.29 23696.02 1185.59 5395.96 12593.87 109
DTE-MVSNet89.98 4791.91 1784.21 15896.51 757.84 31788.93 9092.84 9391.92 496.16 496.23 2186.95 5195.99 1279.05 12498.57 1598.80 6
PGM-MVS91.20 2690.95 4391.93 1595.67 2385.85 3190.00 6293.90 4880.32 8991.74 7194.41 7588.17 3495.98 1386.37 4197.99 4393.96 104
APD-MVScopyleft89.54 5689.63 5889.26 6492.57 9181.34 6890.19 6193.08 8280.87 8591.13 8093.19 12286.22 6295.97 1482.23 9197.18 8190.45 242
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TSAR-MVS + MP.88.14 7587.82 8289.09 6795.72 2276.74 11292.49 2591.19 14267.85 25186.63 17694.84 5579.58 13895.96 1587.62 1994.50 18194.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LCM-MVSNet95.70 196.40 193.61 398.67 185.39 3795.54 597.36 196.97 199.04 199.05 196.61 195.92 1685.07 5799.27 199.54 1
WR-MVS_H89.91 5091.31 3385.71 12696.32 962.39 26289.54 7993.31 7090.21 1295.57 1195.66 3381.42 11995.90 1780.94 10298.80 398.84 5
DVP-MVS++90.07 4291.09 3687.00 9791.55 12972.64 14796.19 294.10 3985.33 3893.49 3994.64 6481.12 12295.88 1887.41 2595.94 12892.48 171
test_0728_SECOND86.79 10294.25 4872.45 15590.54 5294.10 3995.88 1886.42 3997.97 4692.02 196
ZNCC-MVS91.26 2491.34 3191.01 3495.73 2183.05 5692.18 3194.22 2980.14 9291.29 7893.97 9687.93 4095.87 2088.65 897.96 4894.12 99
region2R91.44 2291.30 3491.87 1995.75 1985.90 2992.63 2193.30 7181.91 7290.88 8894.21 8487.75 4195.87 2087.60 2197.71 6093.83 111
ACMMPR91.49 1991.35 3091.92 1695.74 2085.88 3092.58 2293.25 7381.99 7091.40 7494.17 8887.51 4595.87 2087.74 1697.76 5793.99 102
3Dnovator+83.92 289.97 4989.66 5790.92 3591.27 13881.66 6691.25 4294.13 3788.89 1588.83 12694.26 8277.55 15695.86 2384.88 6095.87 13295.24 57
SED-MVS90.46 3791.64 2186.93 9994.18 5072.65 14590.47 5593.69 5683.77 5294.11 2694.27 7990.28 1495.84 2486.03 4997.92 4992.29 183
test_241102_TWO93.71 5583.77 5293.49 3994.27 7989.27 2395.84 2486.03 4997.82 5492.04 195
reproduce-ours92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
our_new_method92.86 693.22 591.76 2394.39 4487.71 1192.40 2794.38 1989.82 1395.51 1295.49 3889.64 2195.82 2689.13 698.26 2891.76 204
GST-MVS90.96 2991.01 4090.82 3795.45 2882.73 5991.75 3893.74 5480.98 8391.38 7593.80 10687.20 4995.80 2887.10 3497.69 6193.93 105
XVS91.54 1791.36 2892.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10094.03 9386.57 5595.80 2887.35 2797.62 6494.20 92
X-MVStestdata85.04 12582.70 17692.08 995.64 2486.25 2292.64 1993.33 6785.07 4189.99 10016.05 41986.57 5595.80 2887.35 2797.62 6494.20 92
MVSMamba_PlusPlus87.53 8688.86 7183.54 17992.03 11062.26 26691.49 4092.62 9988.07 2488.07 14596.17 2372.24 22395.79 3184.85 6194.16 19292.58 166
DVP-MVScopyleft90.06 4391.32 3286.29 11194.16 5372.56 15190.54 5291.01 14683.61 5593.75 3494.65 6189.76 1895.78 3286.42 3997.97 4690.55 240
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3893.75 3494.65 6187.44 4695.78 3287.41 2598.21 3292.98 152
DeepC-MVS82.31 489.15 6489.08 6689.37 6293.64 6679.07 8388.54 9894.20 3073.53 17389.71 10794.82 5685.09 6895.77 3484.17 6898.03 4193.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVScopyleft92.13 1192.20 1391.91 1795.58 2684.67 4693.51 894.85 1582.88 6491.77 7093.94 10290.55 1295.73 3588.50 1098.23 3195.33 53
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model92.89 593.18 792.01 1394.20 4988.23 992.87 1394.32 2190.25 1195.65 995.74 3087.75 4195.72 3689.60 498.27 2692.08 193
CP-MVS91.67 1691.58 2391.96 1495.29 3187.62 1393.38 993.36 6583.16 6091.06 8294.00 9588.26 3295.71 3787.28 3098.39 2192.55 168
SR-MVS92.23 1092.34 1191.91 1794.89 3887.85 1092.51 2493.87 5188.20 2393.24 4294.02 9490.15 1695.67 3886.82 3697.34 7692.19 189
ACMMPcopyleft91.91 1491.87 1992.03 1295.53 2785.91 2893.35 1194.16 3282.52 6792.39 6194.14 8989.15 2595.62 3987.35 2798.24 3094.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS90.03 4591.88 1884.48 14896.57 558.88 30688.95 8993.19 7591.62 596.01 796.16 2487.02 5095.60 4078.69 12798.72 998.97 3
PS-CasMVS90.06 4391.92 1584.47 14996.56 658.83 30989.04 8892.74 9691.40 696.12 596.06 2687.23 4895.57 4179.42 12198.74 699.00 2
HFP-MVS91.30 2391.39 2791.02 3395.43 2984.66 4792.58 2293.29 7281.99 7091.47 7393.96 9988.35 3195.56 4287.74 1697.74 5992.85 155
RPMNet78.88 23678.28 24580.68 23979.58 34962.64 25782.58 21894.16 3274.80 15875.72 33992.59 14548.69 35095.56 4273.48 19682.91 36783.85 338
CP-MVSNet89.27 6290.91 4484.37 15096.34 858.61 31288.66 9792.06 11490.78 795.67 895.17 4781.80 11595.54 4479.00 12598.69 1098.95 4
LPG-MVS_test91.47 2191.68 2090.82 3794.75 4181.69 6390.00 6294.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
LGP-MVS_train90.82 3794.75 4181.69 6394.27 2482.35 6893.67 3794.82 5691.18 495.52 4585.36 5598.73 795.23 58
SR-MVS-dyc-post92.41 992.41 1092.39 594.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7288.83 2695.51 4787.16 3297.60 6692.73 158
mPP-MVS91.69 1591.47 2692.37 696.04 1388.48 892.72 1892.60 10083.09 6191.54 7294.25 8387.67 4495.51 4787.21 3198.11 3893.12 146
test_241102_ONE94.18 5072.65 14593.69 5683.62 5494.11 2693.78 10890.28 1495.50 49
EC-MVSNet88.01 7888.32 7787.09 9589.28 18072.03 16190.31 5996.31 480.88 8485.12 20689.67 23284.47 7595.46 5082.56 8696.26 11193.77 117
ACMMP_NAP90.65 3291.07 3989.42 6195.93 1679.54 8089.95 6693.68 5877.65 12691.97 6794.89 5388.38 2995.45 5189.27 597.87 5393.27 138
CANet83.79 15882.85 17486.63 10486.17 25872.21 16083.76 18691.43 13277.24 13274.39 35187.45 26975.36 18195.42 5277.03 15392.83 22492.25 187
MP-MVScopyleft91.14 2890.91 4491.83 2096.18 1186.88 1792.20 3093.03 8682.59 6688.52 13494.37 7886.74 5395.41 5386.32 4298.21 3293.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LS3D90.60 3490.34 5191.38 2889.03 18584.23 4993.58 694.68 1790.65 890.33 9493.95 10184.50 7495.37 5480.87 10395.50 14594.53 79
HPM-MVS_fast92.50 892.54 992.37 695.93 1685.81 3392.99 1294.23 2785.21 4092.51 5895.13 4890.65 995.34 5588.06 1298.15 3795.95 40
NCCC87.36 8786.87 9888.83 7092.32 10078.84 8686.58 13191.09 14478.77 11284.85 21490.89 19980.85 12595.29 5681.14 10095.32 15092.34 180
EPP-MVSNet85.47 11585.04 13286.77 10391.52 13269.37 18791.63 3987.98 21481.51 7787.05 16791.83 16866.18 25795.29 5670.75 22196.89 8695.64 45
MTAPA91.52 1891.60 2291.29 3096.59 486.29 2192.02 3391.81 12584.07 4992.00 6694.40 7686.63 5495.28 5888.59 998.31 2492.30 182
HQP_MVS87.75 8487.43 8888.70 7593.45 6876.42 11689.45 8293.61 5979.44 10186.55 17792.95 13474.84 18795.22 5980.78 10595.83 13494.46 80
plane_prior593.61 5995.22 5980.78 10595.83 13494.46 80
ACMP79.16 1090.54 3590.60 4990.35 4594.36 4680.98 6989.16 8694.05 4179.03 10892.87 4993.74 11190.60 1195.21 6182.87 8198.76 494.87 66
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsmamba80.30 22178.87 23484.58 14688.12 21067.55 20692.35 2984.88 26663.15 28885.33 20390.91 19850.71 34395.20 6266.36 26387.98 30990.99 223
balanced_conf0384.80 13085.40 12683.00 19288.95 18861.44 27390.42 5892.37 10671.48 20988.72 12993.13 12570.16 23895.15 6379.26 12394.11 19392.41 175
DeepC-MVS_fast80.27 886.23 10285.65 12287.96 8791.30 13676.92 11087.19 11591.99 11670.56 21984.96 21090.69 20780.01 13595.14 6478.37 13095.78 13891.82 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS84.31 14183.91 15885.52 12988.58 19970.40 17884.50 16993.37 6478.76 11384.07 23378.72 37480.39 13095.13 6573.82 19192.98 22191.04 222
APD-MVS_3200maxsize92.05 1292.24 1291.48 2593.02 8085.17 3992.47 2695.05 1487.65 2793.21 4394.39 7790.09 1795.08 6686.67 3897.60 6694.18 95
HPM-MVS++copyleft88.93 6888.45 7690.38 4494.92 3685.85 3189.70 7191.27 13978.20 11886.69 17592.28 15880.36 13195.06 6786.17 4796.49 10090.22 246
MP-MVS-pluss90.81 3091.08 3789.99 5095.97 1479.88 7588.13 10294.51 1875.79 14792.94 4794.96 5188.36 3095.01 6890.70 398.40 2095.09 62
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CDPH-MVS86.17 10685.54 12388.05 8692.25 10175.45 12483.85 18292.01 11565.91 26586.19 18691.75 17383.77 8294.98 6977.43 14896.71 9393.73 118
COLMAP_ROBcopyleft83.01 391.97 1391.95 1492.04 1193.68 6586.15 2493.37 1095.10 1390.28 1092.11 6395.03 5089.75 2094.93 7079.95 11398.27 2695.04 63
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
IS-MVSNet86.66 9786.82 10086.17 11792.05 10966.87 21491.21 4388.64 20286.30 3389.60 11492.59 14569.22 24294.91 7173.89 18997.89 5296.72 24
OurMVSNet-221017-090.01 4689.74 5690.83 3693.16 7880.37 7291.91 3693.11 7981.10 8195.32 1497.24 772.94 21494.85 7285.07 5797.78 5697.26 15
test1286.57 10590.74 15172.63 14990.69 15482.76 25779.20 13994.80 7395.32 15092.27 185
SixPastTwentyTwo87.20 8987.45 8786.45 10892.52 9369.19 19287.84 10788.05 21281.66 7594.64 1896.53 1765.94 25894.75 7483.02 7996.83 8995.41 50
CNVR-MVS87.81 8387.68 8388.21 8392.87 8477.30 10785.25 15391.23 14077.31 13187.07 16691.47 17982.94 9194.71 7584.67 6396.27 11092.62 165
OPU-MVS88.27 8291.89 11577.83 9790.47 5591.22 18581.12 12294.68 7674.48 17995.35 14892.29 183
K. test v385.14 12284.73 13686.37 10991.13 14369.63 18585.45 15076.68 32784.06 5092.44 6096.99 1062.03 28094.65 7780.58 10893.24 21494.83 71
SF-MVS90.27 3990.80 4688.68 7692.86 8677.09 10891.19 4495.74 681.38 7892.28 6293.80 10686.89 5294.64 7885.52 5497.51 7394.30 91
HQP4-MVS80.56 29194.61 7993.56 129
HQP-MVS84.61 13484.06 15486.27 11291.19 13970.66 17584.77 15892.68 9773.30 18180.55 29290.17 22472.10 22494.61 7977.30 15094.47 18293.56 129
PS-MVSNAJss88.31 7387.90 8189.56 5993.31 7377.96 9687.94 10591.97 11770.73 21894.19 2596.67 1476.94 16694.57 8183.07 7796.28 10896.15 32
DeepPCF-MVS81.24 587.28 8886.21 10890.49 4291.48 13384.90 4283.41 19492.38 10570.25 22489.35 11990.68 20882.85 9294.57 8179.55 11895.95 12792.00 197
UA-Net91.49 1991.53 2491.39 2794.98 3582.95 5893.52 792.79 9488.22 2288.53 13397.64 383.45 8694.55 8386.02 5198.60 1396.67 25
CS-MVS88.14 7587.67 8489.54 6089.56 17379.18 8290.47 5594.77 1679.37 10384.32 22589.33 23683.87 7994.53 8482.45 8794.89 16994.90 64
SPE-MVS-test87.00 9086.43 10488.71 7489.46 17677.46 10289.42 8495.73 777.87 12481.64 27887.25 27382.43 9894.53 8477.65 14396.46 10294.14 98
114514_t83.10 17382.54 18184.77 14192.90 8369.10 19486.65 12990.62 15754.66 35881.46 28090.81 20476.98 16594.38 8672.62 20896.18 11490.82 230
MVSFormer82.23 18481.57 19784.19 16085.54 26869.26 18991.98 3490.08 17871.54 20776.23 33285.07 31158.69 30294.27 8786.26 4388.77 29589.03 271
test_djsdf89.62 5489.01 6791.45 2692.36 9782.98 5791.98 3490.08 17871.54 20794.28 2496.54 1681.57 11794.27 8786.26 4396.49 10097.09 19
原ACMM184.60 14592.81 8974.01 13291.50 13062.59 29182.73 25890.67 21076.53 17394.25 8969.24 23695.69 14185.55 314
AdaColmapbinary83.66 16083.69 16083.57 17790.05 16772.26 15886.29 13690.00 18078.19 11981.65 27787.16 27583.40 8794.24 9061.69 30694.76 17784.21 333
Effi-MVS+-dtu85.82 11183.38 16393.14 487.13 23291.15 387.70 10888.42 20474.57 16183.56 24385.65 29778.49 14594.21 9172.04 21292.88 22394.05 101
EIA-MVS82.19 18681.23 20585.10 13587.95 21369.17 19383.22 20293.33 6770.42 22078.58 31479.77 36677.29 15994.20 9271.51 21488.96 29391.93 200
UniMVSNet (Re)86.87 9186.98 9686.55 10693.11 7968.48 19783.80 18592.87 9180.37 8789.61 11391.81 17077.72 15394.18 9375.00 17798.53 1696.99 22
PHI-MVS86.38 10085.81 11788.08 8488.44 20377.34 10589.35 8593.05 8373.15 18684.76 21587.70 26378.87 14294.18 9380.67 10796.29 10792.73 158
test_prior86.32 11090.59 15571.99 16292.85 9294.17 9592.80 156
TDRefinement93.52 393.39 493.88 295.94 1590.26 495.70 496.46 390.58 992.86 5096.29 1988.16 3594.17 9586.07 4898.48 1897.22 17
tttt051781.07 20579.58 22885.52 12988.99 18766.45 21887.03 11975.51 33573.76 16988.32 14190.20 22137.96 39694.16 9779.36 12295.13 15795.93 41
v7n90.13 4090.96 4287.65 9191.95 11271.06 17389.99 6493.05 8386.53 3194.29 2296.27 2082.69 9394.08 9886.25 4597.63 6397.82 8
v1086.54 9887.10 9284.84 13888.16 20963.28 24886.64 13092.20 11075.42 15392.81 5394.50 6874.05 19894.06 9983.88 7096.28 10897.17 18
UniMVSNet_NR-MVSNet86.84 9387.06 9386.17 11792.86 8667.02 21182.55 22091.56 12883.08 6290.92 8491.82 16978.25 14793.99 10074.16 18298.35 2297.49 13
DU-MVS86.80 9486.99 9586.21 11593.24 7667.02 21183.16 20392.21 10981.73 7490.92 8491.97 16377.20 16093.99 10074.16 18298.35 2297.61 10
DP-MVS Recon84.05 15183.22 16586.52 10791.73 12275.27 12583.23 20192.40 10372.04 20482.04 26788.33 25177.91 15093.95 10266.17 26595.12 15990.34 245
h-mvs3384.25 14482.76 17588.72 7391.82 12182.60 6084.00 17784.98 26471.27 21086.70 17390.55 21363.04 27793.92 10378.26 13494.20 19089.63 257
DP-MVS88.60 7089.01 6787.36 9391.30 13677.50 10187.55 10992.97 8987.95 2589.62 11192.87 13784.56 7393.89 10477.65 14396.62 9590.70 234
NR-MVSNet86.00 10786.22 10785.34 13293.24 7664.56 23482.21 23290.46 16080.99 8288.42 13791.97 16377.56 15593.85 10572.46 21098.65 1297.61 10
EPNet80.37 21878.41 24486.23 11376.75 37273.28 13987.18 11677.45 31876.24 13868.14 38388.93 24365.41 26193.85 10569.47 23496.12 11891.55 213
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.80 5189.97 5289.27 6394.76 4079.86 7686.76 12792.78 9578.78 11192.51 5893.64 11588.13 3693.84 10784.83 6297.55 6994.10 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
9.1489.29 6291.84 11988.80 9395.32 1275.14 15691.07 8192.89 13687.27 4793.78 10883.69 7297.55 69
TranMVSNet+NR-MVSNet87.86 8188.76 7485.18 13494.02 5864.13 23884.38 17091.29 13884.88 4492.06 6593.84 10586.45 5893.73 10973.22 20098.66 1197.69 9
v886.22 10386.83 9984.36 15287.82 21562.35 26486.42 13491.33 13776.78 13592.73 5594.48 7073.41 20793.72 11083.10 7695.41 14697.01 21
Vis-MVSNetpermissive86.86 9286.58 10187.72 8992.09 10777.43 10487.35 11392.09 11378.87 11084.27 23094.05 9278.35 14693.65 11180.54 10991.58 25092.08 193
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v124084.30 14284.51 14683.65 17287.65 22161.26 27782.85 21291.54 12967.94 24990.68 9190.65 21171.71 23093.64 11282.84 8294.78 17496.07 35
TEST992.34 9879.70 7883.94 17890.32 16765.41 27684.49 21990.97 19482.03 10993.63 113
train_agg85.98 10885.28 12988.07 8592.34 9879.70 7883.94 17890.32 16765.79 26784.49 21990.97 19481.93 11193.63 11381.21 9996.54 9890.88 228
PCF-MVS74.62 1582.15 18880.92 20985.84 12389.43 17772.30 15780.53 25291.82 12357.36 34287.81 15189.92 22877.67 15493.63 11358.69 32295.08 16091.58 212
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v119284.57 13584.69 14084.21 15887.75 21762.88 25283.02 20691.43 13269.08 23489.98 10290.89 19972.70 21893.62 11682.41 8894.97 16696.13 33
FE-MVS79.98 22978.86 23583.36 18286.47 24566.45 21889.73 7084.74 27072.80 19184.22 23291.38 18144.95 37693.60 11763.93 28791.50 25190.04 253
v192192084.23 14684.37 15083.79 16787.64 22261.71 27182.91 21091.20 14167.94 24990.06 9790.34 21772.04 22793.59 11882.32 8994.91 16796.07 35
mvs_tets89.78 5289.27 6391.30 2993.51 6784.79 4489.89 6890.63 15670.00 22794.55 1996.67 1487.94 3993.59 11884.27 6795.97 12495.52 48
test_040288.65 6989.58 6085.88 12292.55 9272.22 15984.01 17689.44 19388.63 2094.38 2195.77 2986.38 6193.59 11879.84 11495.21 15491.82 202
thisisatest053079.07 23377.33 25384.26 15787.13 23264.58 23383.66 18975.95 33068.86 23785.22 20587.36 27138.10 39393.57 12175.47 17194.28 18894.62 74
jajsoiax89.41 5788.81 7391.19 3293.38 7184.72 4589.70 7190.29 17269.27 23194.39 2096.38 1886.02 6593.52 12283.96 6995.92 13095.34 52
v14419284.24 14584.41 14883.71 17187.59 22361.57 27282.95 20991.03 14567.82 25289.80 10590.49 21473.28 21193.51 12381.88 9794.89 16996.04 37
v114484.54 13784.72 13884.00 16187.67 22062.55 25982.97 20890.93 14970.32 22389.80 10590.99 19373.50 20493.48 12481.69 9894.65 17995.97 38
MCST-MVS84.36 13983.93 15785.63 12791.59 12471.58 16883.52 19192.13 11261.82 30083.96 23589.75 23179.93 13793.46 12578.33 13294.34 18691.87 201
test_892.09 10778.87 8583.82 18390.31 16965.79 26784.36 22390.96 19681.93 11193.44 126
ACMH+77.89 1190.73 3191.50 2588.44 7893.00 8176.26 11989.65 7595.55 887.72 2693.89 3094.94 5291.62 393.44 12678.35 13198.76 495.61 47
FC-MVSNet-test85.93 10987.05 9482.58 20492.25 10156.44 32885.75 14593.09 8177.33 13091.94 6894.65 6174.78 18993.41 12875.11 17698.58 1497.88 7
OMC-MVS88.19 7487.52 8590.19 4891.94 11481.68 6587.49 11293.17 7676.02 14188.64 13091.22 18584.24 7893.37 12977.97 14197.03 8495.52 48
MG-MVS80.32 22080.94 20878.47 26988.18 20752.62 35882.29 22885.01 26372.01 20579.24 30992.54 14869.36 24193.36 13070.65 22389.19 29189.45 259
CPTT-MVS89.39 5888.98 6990.63 4095.09 3386.95 1692.09 3292.30 10879.74 9687.50 15792.38 15281.42 11993.28 13183.07 7797.24 7991.67 209
F-COLMAP84.97 12983.42 16289.63 5792.39 9683.40 5288.83 9291.92 11973.19 18580.18 30089.15 24077.04 16493.28 13165.82 27192.28 23492.21 188
v2v48284.09 14984.24 15283.62 17387.13 23261.40 27482.71 21589.71 18672.19 20389.55 11591.41 18070.70 23593.20 13381.02 10193.76 20196.25 31
agg_prior91.58 12777.69 10090.30 17084.32 22593.18 134
LTVRE_ROB86.10 193.04 493.44 391.82 2293.73 6485.72 3496.79 195.51 988.86 1695.63 1096.99 1084.81 7293.16 13591.10 297.53 7296.58 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
IterMVS-SCA-FT80.64 21279.41 22984.34 15483.93 29669.66 18476.28 31881.09 29972.43 19586.47 18390.19 22260.46 28793.15 13677.45 14786.39 33190.22 246
DPM-MVS80.10 22779.18 23282.88 19990.71 15369.74 18278.87 27890.84 15060.29 32275.64 34185.92 29567.28 25093.11 13771.24 21691.79 24485.77 312
XVG-ACMP-BASELINE89.98 4789.84 5490.41 4394.91 3784.50 4889.49 8193.98 4379.68 9792.09 6493.89 10483.80 8193.10 13882.67 8598.04 3993.64 123
anonymousdsp89.73 5388.88 7092.27 889.82 17186.67 1890.51 5490.20 17569.87 22895.06 1596.14 2584.28 7793.07 13987.68 1896.34 10697.09 19
RRT-MVS82.97 17483.44 16181.57 22385.06 27558.04 31587.20 11490.37 16477.88 12388.59 13193.70 11363.17 27493.05 14076.49 15888.47 29993.62 124
PC_three_145258.96 32990.06 9791.33 18280.66 12893.03 14175.78 16795.94 12892.48 171
ACMM79.39 990.65 3290.99 4189.63 5795.03 3483.53 5189.62 7693.35 6679.20 10593.83 3193.60 11690.81 792.96 14285.02 5998.45 1992.41 175
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CLD-MVS83.18 17082.64 17884.79 14089.05 18467.82 20577.93 28992.52 10168.33 24285.07 20781.54 35082.06 10892.96 14269.35 23597.91 5193.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+83.90 15684.01 15583.57 17787.22 23065.61 22686.55 13292.40 10378.64 11481.34 28384.18 32183.65 8492.93 14474.22 18187.87 31192.17 190
lessismore_v085.95 11991.10 14470.99 17470.91 37091.79 6994.42 7461.76 28192.93 14479.52 12093.03 21993.93 105
FIs85.35 11886.27 10682.60 20391.86 11657.31 32185.10 15793.05 8375.83 14691.02 8393.97 9673.57 20392.91 14673.97 18898.02 4297.58 12
PVSNet_Blended_VisFu81.55 19980.49 21484.70 14491.58 12773.24 14184.21 17191.67 12762.86 29080.94 28687.16 27567.27 25192.87 14769.82 23288.94 29487.99 286
casdiffmvs_mvgpermissive86.72 9587.51 8684.36 15287.09 23665.22 22884.16 17294.23 2777.89 12291.28 7993.66 11484.35 7692.71 14880.07 11094.87 17295.16 60
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS81.44 20181.25 20382.03 21284.27 29162.87 25376.47 31692.49 10270.97 21681.64 27883.83 32375.03 18492.70 14974.29 18092.22 23790.51 241
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TSAR-MVS + GP.83.95 15482.69 17787.72 8989.27 18181.45 6783.72 18781.58 29674.73 15985.66 19686.06 29272.56 22092.69 15075.44 17295.21 15489.01 273
Fast-Effi-MVS+81.04 20680.57 21182.46 20887.50 22563.22 24978.37 28589.63 18968.01 24681.87 27082.08 34482.31 10292.65 15167.10 25688.30 30691.51 214
PLCcopyleft73.85 1682.09 18980.31 21687.45 9290.86 15080.29 7385.88 14190.65 15568.17 24576.32 33186.33 28773.12 21392.61 15261.40 30990.02 28089.44 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-LS84.73 13284.98 13383.96 16387.35 22763.66 24283.25 19989.88 18376.06 13989.62 11192.37 15573.40 20992.52 15378.16 13694.77 17695.69 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)83.13 17283.02 17183.43 18086.16 26066.08 22188.00 10388.36 20675.55 15085.02 20892.75 14265.12 26292.50 15474.94 17891.30 25491.72 206
PAPM_NR83.23 16983.19 16783.33 18390.90 14865.98 22288.19 10190.78 15278.13 12080.87 28887.92 25973.49 20692.42 15570.07 22988.40 30091.60 211
hse-mvs283.47 16681.81 19088.47 7791.03 14582.27 6182.61 21683.69 27671.27 21086.70 17386.05 29363.04 27792.41 15678.26 13493.62 20890.71 233
AUN-MVS81.18 20478.78 23788.39 7990.93 14782.14 6282.51 22283.67 27764.69 28280.29 29685.91 29651.07 34192.38 15776.29 16293.63 20790.65 237
GeoE85.45 11685.81 11784.37 15090.08 16467.07 21085.86 14391.39 13572.33 20087.59 15590.25 22084.85 7192.37 15878.00 13991.94 24393.66 120
PAPM71.77 31070.06 32576.92 29386.39 24753.97 34676.62 31286.62 23453.44 36363.97 40384.73 31557.79 31092.34 15939.65 40481.33 37884.45 327
eth_miper_zixun_eth80.84 20880.22 22082.71 20181.41 32960.98 28377.81 29190.14 17767.31 25686.95 16987.24 27464.26 26592.31 16075.23 17491.61 24894.85 70
PAPR78.84 23778.10 24781.07 23185.17 27460.22 29082.21 23290.57 15862.51 29275.32 34584.61 31674.99 18592.30 16159.48 32088.04 30890.68 235
V4283.47 16683.37 16483.75 16983.16 31363.33 24781.31 24290.23 17469.51 23090.91 8690.81 20474.16 19692.29 16280.06 11190.22 27795.62 46
QAPM82.59 17882.59 18082.58 20486.44 24666.69 21589.94 6790.36 16567.97 24884.94 21292.58 14772.71 21792.18 16370.63 22487.73 31388.85 274
CSCG86.26 10186.47 10385.60 12890.87 14974.26 13187.98 10491.85 12180.35 8889.54 11788.01 25579.09 14092.13 16475.51 17095.06 16190.41 243
TAPA-MVS77.73 1285.71 11284.83 13588.37 8088.78 19479.72 7787.15 11793.50 6269.17 23285.80 19589.56 23380.76 12692.13 16473.21 20595.51 14493.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
thisisatest051573.00 30170.52 31980.46 24181.45 32859.90 29473.16 35174.31 34257.86 33776.08 33677.78 37937.60 39792.12 16665.00 27891.45 25289.35 262
HyFIR lowres test75.12 27972.66 30082.50 20791.44 13565.19 22972.47 35387.31 21946.79 39080.29 29684.30 31952.70 33492.10 16751.88 36986.73 32690.22 246
Anonymous2023121188.40 7189.62 5984.73 14290.46 15765.27 22788.86 9193.02 8787.15 2893.05 4697.10 882.28 10592.02 16876.70 15597.99 4396.88 23
baseline85.20 12185.93 11383.02 19186.30 25362.37 26384.55 16593.96 4474.48 16287.12 16192.03 16282.30 10391.94 16978.39 12994.21 18994.74 73
EI-MVSNet-Vis-set85.12 12484.53 14586.88 10084.01 29472.76 14483.91 18185.18 25780.44 8688.75 12785.49 30080.08 13491.92 17082.02 9390.85 26795.97 38
EI-MVSNet-UG-set85.04 12584.44 14786.85 10183.87 29872.52 15383.82 18385.15 25880.27 9088.75 12785.45 30279.95 13691.90 17181.92 9690.80 26896.13 33
casdiffmvspermissive85.21 12085.85 11683.31 18486.17 25862.77 25583.03 20593.93 4674.69 16088.21 14292.68 14482.29 10491.89 17277.87 14293.75 20495.27 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tt080588.09 7789.79 5582.98 19393.26 7563.94 24191.10 4589.64 18885.07 4190.91 8691.09 19089.16 2491.87 17382.03 9295.87 13293.13 144
IB-MVS62.13 1971.64 31268.97 33779.66 25380.80 33962.26 26673.94 34376.90 32463.27 28768.63 38276.79 38833.83 40291.84 17459.28 32187.26 31684.88 321
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UGNet82.78 17581.64 19286.21 11586.20 25776.24 12086.86 12285.68 24977.07 13373.76 35592.82 13869.64 23991.82 17569.04 24293.69 20590.56 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
BH-untuned80.96 20780.99 20780.84 23588.55 20068.23 19880.33 25588.46 20372.79 19286.55 17786.76 28174.72 19191.77 17661.79 30588.99 29282.52 359
c3_l81.64 19881.59 19581.79 22080.86 33759.15 30378.61 28290.18 17668.36 24187.20 15987.11 27769.39 24091.62 17778.16 13694.43 18494.60 75
API-MVS82.28 18382.61 17981.30 22686.29 25469.79 18188.71 9587.67 21678.42 11782.15 26684.15 32277.98 14891.59 17865.39 27492.75 22582.51 360
nrg03087.85 8288.49 7585.91 12090.07 16669.73 18387.86 10694.20 3074.04 16592.70 5694.66 6085.88 6691.50 17979.72 11697.32 7796.50 29
AllTest87.97 8087.40 8989.68 5591.59 12483.40 5289.50 8095.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
TestCases89.68 5591.59 12483.40 5295.44 1079.47 9988.00 14893.03 12982.66 9491.47 18070.81 21896.14 11694.16 96
PVSNet_BlendedMVS78.80 23877.84 24881.65 22284.43 28563.41 24579.49 26790.44 16161.70 30475.43 34287.07 27869.11 24391.44 18260.68 31392.24 23590.11 251
PVSNet_Blended76.49 26675.40 27179.76 25084.43 28563.41 24575.14 33290.44 16157.36 34275.43 34278.30 37669.11 24391.44 18260.68 31387.70 31484.42 328
miper_ehance_all_eth80.34 21980.04 22581.24 22979.82 34858.95 30577.66 29389.66 18765.75 27085.99 19385.11 30768.29 24791.42 18476.03 16592.03 23993.33 134
无先验82.81 21385.62 25058.09 33591.41 18567.95 25584.48 326
ambc82.98 19390.55 15664.86 23188.20 10089.15 19689.40 11893.96 9971.67 23191.38 18678.83 12696.55 9792.71 161
UniMVSNet_ETH3D89.12 6590.72 4784.31 15697.00 264.33 23789.67 7488.38 20588.84 1794.29 2297.57 490.48 1391.26 18772.57 20997.65 6297.34 14
miper_enhance_ethall77.83 24776.93 25780.51 24076.15 37958.01 31675.47 33088.82 19858.05 33683.59 24180.69 35464.41 26491.20 18873.16 20692.03 23992.33 181
3Dnovator80.37 784.80 13084.71 13985.06 13686.36 25174.71 12788.77 9490.00 18075.65 14984.96 21093.17 12374.06 19791.19 18978.28 13391.09 25689.29 265
cascas76.29 26974.81 27680.72 23884.47 28462.94 25173.89 34487.34 21855.94 34975.16 34776.53 39163.97 26891.16 19065.00 27890.97 26188.06 284
ET-MVSNet_ETH3D75.28 27672.77 29882.81 20083.03 31668.11 20177.09 30376.51 32860.67 31977.60 32480.52 35838.04 39491.15 19170.78 22090.68 27089.17 266
EG-PatchMatch MVS84.08 15084.11 15383.98 16292.22 10372.61 15082.20 23487.02 22972.63 19488.86 12491.02 19278.52 14391.11 19273.41 19791.09 25688.21 280
WR-MVS83.56 16384.40 14981.06 23293.43 7054.88 34178.67 28185.02 26281.24 7990.74 9091.56 17772.85 21591.08 19368.00 25398.04 3997.23 16
sasdasda85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
canonicalmvs85.50 11386.14 10983.58 17587.97 21167.13 20887.55 10994.32 2173.44 17688.47 13587.54 26686.45 5891.06 19475.76 16893.76 20192.54 169
XVG-OURS89.18 6388.83 7290.23 4794.28 4786.11 2685.91 14093.60 6180.16 9189.13 12393.44 11883.82 8090.98 19683.86 7195.30 15393.60 126
PS-MVSNAJ77.04 25776.53 26178.56 26687.09 23661.40 27475.26 33187.13 22461.25 31174.38 35277.22 38676.94 16690.94 19764.63 28384.83 35383.35 346
xiu_mvs_v2_base77.19 25576.75 25978.52 26787.01 23861.30 27675.55 32987.12 22761.24 31274.45 35078.79 37377.20 16090.93 19864.62 28484.80 35483.32 347
XVG-OURS-SEG-HR89.59 5589.37 6190.28 4694.47 4385.95 2786.84 12393.91 4780.07 9386.75 17293.26 12193.64 290.93 19884.60 6490.75 26993.97 103
v14882.31 18282.48 18281.81 21985.59 26759.66 29681.47 24186.02 24472.85 18988.05 14790.65 21170.73 23490.91 20075.15 17591.79 24494.87 66
VDD-MVS84.23 14684.58 14283.20 18791.17 14265.16 23083.25 19984.97 26579.79 9587.18 16094.27 7974.77 19090.89 20169.24 23696.54 9893.55 131
cl2278.97 23478.21 24681.24 22977.74 36259.01 30477.46 30087.13 22465.79 26784.32 22585.10 30858.96 30190.88 20275.36 17392.03 23993.84 110
MGCFI-Net85.04 12585.95 11282.31 21087.52 22463.59 24486.23 13893.96 4473.46 17488.07 14587.83 26186.46 5790.87 20376.17 16393.89 19992.47 173
alignmvs83.94 15583.98 15683.80 16687.80 21667.88 20484.54 16791.42 13473.27 18488.41 13887.96 25672.33 22190.83 20476.02 16694.11 19392.69 162
ITE_SJBPF90.11 4990.72 15284.97 4190.30 17081.56 7690.02 9991.20 18782.40 9990.81 20573.58 19594.66 17894.56 76
BH-RMVSNet80.53 21380.22 22081.49 22587.19 23166.21 22077.79 29286.23 23874.21 16483.69 23988.50 24973.25 21290.75 20663.18 29587.90 31087.52 293
BH-w/o76.57 26476.07 26678.10 27686.88 24165.92 22377.63 29486.33 23665.69 27180.89 28779.95 36368.97 24590.74 20753.01 36085.25 34277.62 389
TR-MVS76.77 26175.79 26779.72 25186.10 26165.79 22477.14 30283.02 28265.20 27981.40 28182.10 34266.30 25590.73 20855.57 34185.27 34182.65 354
GBi-Net82.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
test182.02 19182.07 18581.85 21686.38 24861.05 28086.83 12488.27 20972.43 19586.00 19095.64 3463.78 27090.68 20965.95 26793.34 21093.82 112
FMVSNet184.55 13685.45 12581.85 21690.27 16161.05 28086.83 12488.27 20978.57 11589.66 11095.64 3475.43 18090.68 20969.09 24095.33 14993.82 112
VDDNet84.35 14085.39 12781.25 22795.13 3259.32 29985.42 15181.11 29886.41 3287.41 15896.21 2273.61 20290.61 21266.33 26496.85 8793.81 115
MAR-MVS80.24 22378.74 23984.73 14286.87 24278.18 9285.75 14587.81 21565.67 27277.84 31978.50 37573.79 20190.53 21361.59 30890.87 26585.49 316
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVS_Test82.47 18183.22 16580.22 24582.62 31857.75 31982.54 22191.96 11871.16 21482.89 25492.52 14977.41 15790.50 21480.04 11287.84 31292.40 177
MVS_111021_HR84.63 13384.34 15185.49 13190.18 16375.86 12379.23 27387.13 22473.35 17885.56 20089.34 23583.60 8590.50 21476.64 15694.05 19690.09 252
Anonymous2024052986.20 10487.13 9183.42 18190.19 16264.55 23584.55 16590.71 15385.85 3689.94 10395.24 4682.13 10790.40 21669.19 23996.40 10595.31 54
EI-MVSNet82.61 17782.42 18383.20 18783.25 31063.66 24283.50 19285.07 25976.06 13986.55 17785.10 30873.41 20790.25 21778.15 13890.67 27195.68 44
MVSTER77.09 25675.70 26981.25 22775.27 38761.08 27977.49 29985.07 25960.78 31786.55 17788.68 24643.14 38590.25 21773.69 19490.67 27192.42 174
Fast-Effi-MVS+-dtu82.54 18081.41 20085.90 12185.60 26676.53 11583.07 20489.62 19073.02 18879.11 31083.51 32680.74 12790.24 21968.76 24589.29 28890.94 225
SD-MVS88.96 6789.88 5386.22 11491.63 12377.07 10989.82 6993.77 5378.90 10992.88 4892.29 15786.11 6390.22 22086.24 4697.24 7991.36 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet281.31 20281.61 19480.41 24286.38 24858.75 31083.93 18086.58 23572.43 19587.65 15492.98 13163.78 27090.22 22066.86 25793.92 19892.27 185
cl____80.42 21680.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.37 25486.18 18889.21 23863.08 27690.16 22276.31 16195.80 13693.65 122
DIV-MVS_self_test80.43 21580.23 21881.02 23379.99 34559.25 30077.07 30487.02 22967.38 25386.19 18689.22 23763.09 27590.16 22276.32 16095.80 13693.66 120
OpenMVScopyleft76.72 1381.98 19382.00 18781.93 21384.42 28768.22 19988.50 9989.48 19266.92 25881.80 27491.86 16572.59 21990.16 22271.19 21791.25 25587.40 295
xiu_mvs_v1_base_debu80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
xiu_mvs_v1_base_debi80.84 20880.14 22282.93 19688.31 20471.73 16479.53 26487.17 22165.43 27379.59 30282.73 33876.94 16690.14 22573.22 20088.33 30286.90 300
FMVSNet378.80 23878.55 24179.57 25482.89 31756.89 32681.76 23685.77 24769.04 23586.00 19090.44 21551.75 33990.09 22865.95 26793.34 21091.72 206
test111178.53 24278.85 23677.56 28592.22 10347.49 38382.61 21669.24 37872.43 19585.28 20494.20 8551.91 33790.07 22965.36 27596.45 10395.11 61
LFMVS80.15 22680.56 21278.89 26089.19 18355.93 33085.22 15473.78 34782.96 6384.28 22992.72 14357.38 31190.07 22963.80 28995.75 13990.68 235
test_yl78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
DCV-MVSNet78.71 24078.51 24279.32 25784.32 28958.84 30778.38 28385.33 25475.99 14282.49 25986.57 28358.01 30590.02 23162.74 29692.73 22689.10 268
test_fmvsmconf0.01_n86.68 9686.52 10287.18 9485.94 26378.30 8986.93 12092.20 11065.94 26389.16 12193.16 12483.10 8989.89 23387.81 1594.43 18493.35 133
ECVR-MVScopyleft78.44 24378.63 24077.88 28191.85 11748.95 37783.68 18869.91 37472.30 20184.26 23194.20 8551.89 33889.82 23463.58 29096.02 12294.87 66
test_fmvsmconf0.1_n86.18 10585.88 11587.08 9685.26 27278.25 9085.82 14491.82 12365.33 27788.55 13292.35 15682.62 9689.80 23586.87 3594.32 18793.18 143
test_fmvsmconf_n85.88 11085.51 12486.99 9884.77 28078.21 9185.40 15291.39 13565.32 27887.72 15391.81 17082.33 10189.78 23686.68 3794.20 19092.99 151
test250674.12 29073.39 29076.28 30391.85 11744.20 39784.06 17548.20 41872.30 20181.90 26994.20 8527.22 41889.77 23764.81 28096.02 12294.87 66
MVS73.21 29972.59 30175.06 31380.97 33460.81 28681.64 23985.92 24646.03 39571.68 36577.54 38168.47 24689.77 23755.70 34085.39 33974.60 395
LCM-MVSNet-Re83.48 16585.06 13178.75 26385.94 26355.75 33480.05 25794.27 2476.47 13696.09 694.54 6783.31 8889.75 23959.95 31794.89 16990.75 231
EGC-MVSNET74.79 28569.99 32789.19 6594.89 3887.00 1591.89 3786.28 2371.09 4202.23 42295.98 2781.87 11489.48 24079.76 11595.96 12591.10 221
CANet_DTU77.81 24977.05 25580.09 24781.37 33059.90 29483.26 19888.29 20869.16 23367.83 38683.72 32460.93 28489.47 24169.22 23889.70 28490.88 228
GA-MVS75.83 27274.61 27779.48 25681.87 32259.25 30073.42 34882.88 28368.68 23979.75 30181.80 34750.62 34489.46 24266.85 25885.64 33889.72 256
MVP-Stereo75.81 27373.51 28982.71 20189.35 17873.62 13480.06 25685.20 25660.30 32173.96 35387.94 25757.89 30989.45 24352.02 36474.87 40085.06 320
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testf189.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
APD_test289.30 6089.12 6489.84 5288.67 19585.64 3590.61 5093.17 7686.02 3493.12 4495.30 4284.94 6989.44 24474.12 18496.10 11994.45 82
Vis-MVSNet (Re-imp)77.82 24877.79 24977.92 28088.82 19151.29 36883.28 19771.97 36274.04 16582.23 26489.78 23057.38 31189.41 24657.22 33195.41 14693.05 148
MSLP-MVS++85.00 12886.03 11181.90 21491.84 11971.56 17086.75 12893.02 8775.95 14487.12 16189.39 23477.98 14889.40 24777.46 14694.78 17484.75 323
APD_test188.40 7187.91 8089.88 5189.50 17586.65 2089.98 6591.91 12084.26 4790.87 8993.92 10382.18 10689.29 24873.75 19294.81 17393.70 119
thres600view775.97 27175.35 27377.85 28387.01 23851.84 36480.45 25373.26 35275.20 15583.10 25186.31 28945.54 36789.05 24955.03 34792.24 23592.66 163
jason77.42 25375.75 26882.43 20987.10 23569.27 18877.99 28881.94 29251.47 37777.84 31985.07 31160.32 28989.00 25070.74 22289.27 29089.03 271
jason: jason.
lupinMVS76.37 26874.46 28082.09 21185.54 26869.26 18976.79 30780.77 30250.68 38476.23 33282.82 33658.69 30288.94 25169.85 23188.77 29588.07 282
PMVScopyleft80.48 690.08 4190.66 4888.34 8196.71 392.97 290.31 5989.57 19188.51 2190.11 9695.12 4990.98 688.92 25277.55 14597.07 8383.13 351
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
thres100view90075.45 27575.05 27576.66 29887.27 22851.88 36381.07 24773.26 35275.68 14883.25 24886.37 28645.54 36788.80 25351.98 36590.99 25889.31 263
tfpn200view974.86 28374.23 28276.74 29786.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25889.31 263
thres40075.14 27774.23 28277.86 28286.24 25552.12 36079.24 27173.87 34573.34 17981.82 27284.60 31746.02 36188.80 25351.98 36590.99 25892.66 163
TAMVS78.08 24676.36 26283.23 18690.62 15472.87 14379.08 27480.01 30661.72 30381.35 28286.92 28063.96 26988.78 25650.61 37093.01 22088.04 285
CDS-MVSNet77.32 25475.40 27183.06 19089.00 18672.48 15477.90 29082.17 29060.81 31678.94 31183.49 32759.30 29788.76 25754.64 35092.37 23087.93 288
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVS_ROBcopyleft70.19 1777.77 25077.46 25078.71 26484.39 28861.15 27881.18 24682.52 28662.45 29583.34 24787.37 27066.20 25688.66 25864.69 28285.02 34786.32 305
baseline269.77 33266.89 34978.41 27079.51 35158.09 31376.23 31969.57 37557.50 34164.82 40177.45 38346.02 36188.44 25953.08 35777.83 39188.70 275
tpm268.45 34366.83 35073.30 32478.93 35948.50 37879.76 26171.76 36447.50 38969.92 37683.60 32542.07 38788.40 26048.44 38379.51 38383.01 352
新几何182.95 19593.96 5978.56 8880.24 30455.45 35283.93 23691.08 19171.19 23288.33 26165.84 27093.07 21881.95 365
ACMH76.49 1489.34 5991.14 3583.96 16392.50 9470.36 17989.55 7793.84 5281.89 7394.70 1795.44 4090.69 888.31 26283.33 7398.30 2593.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres20072.34 30671.55 31274.70 31783.48 30251.60 36575.02 33373.71 34870.14 22678.56 31580.57 35746.20 35988.20 26346.99 38889.29 28884.32 329
gm-plane-assit75.42 38644.97 39652.17 37172.36 40287.90 26454.10 351
EU-MVSNet75.12 27974.43 28177.18 29083.11 31559.48 29885.71 14782.43 28839.76 41185.64 19788.76 24444.71 37887.88 26573.86 19085.88 33784.16 334
RPSCF88.00 7986.93 9791.22 3190.08 16489.30 589.68 7391.11 14379.26 10489.68 10894.81 5982.44 9787.74 26676.54 15788.74 29796.61 27
D2MVS76.84 25975.67 27080.34 24380.48 34362.16 26973.50 34784.80 26957.61 34082.24 26387.54 26651.31 34087.65 26770.40 22793.19 21691.23 217
dcpmvs_284.23 14685.14 13081.50 22488.61 19861.98 27082.90 21193.11 7968.66 24092.77 5492.39 15178.50 14487.63 26876.99 15492.30 23194.90 64
CostFormer69.98 33068.68 34073.87 31977.14 36850.72 37279.26 27074.51 34051.94 37570.97 36984.75 31445.16 37587.49 26955.16 34679.23 38683.40 345
CVMVSNet72.62 30371.41 31376.28 30383.25 31060.34 28983.50 19279.02 31137.77 41576.33 33085.10 30849.60 34987.41 27070.54 22577.54 39581.08 376
diffmvspermissive80.40 21780.48 21580.17 24679.02 35860.04 29177.54 29690.28 17366.65 26182.40 26187.33 27273.50 20487.35 27177.98 14089.62 28593.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing371.53 31470.79 31573.77 32188.89 19041.86 40476.60 31459.12 40872.83 19080.97 28482.08 34419.80 42487.33 27265.12 27791.68 24792.13 192
VPA-MVSNet83.47 16684.73 13679.69 25290.29 16057.52 32081.30 24488.69 20176.29 13787.58 15694.44 7180.60 12987.20 27366.60 26296.82 9094.34 89
patchmatchnet-post81.71 34845.93 36487.01 274
SCA73.32 29672.57 30275.58 31081.62 32655.86 33278.89 27771.37 36761.73 30274.93 34883.42 32960.46 28787.01 27458.11 32882.63 37283.88 335
mvs_anonymous78.13 24578.76 23876.23 30579.24 35550.31 37478.69 28084.82 26861.60 30683.09 25292.82 13873.89 20087.01 27468.33 25286.41 33091.37 215
TinyColmap81.25 20382.34 18477.99 27985.33 27060.68 28782.32 22788.33 20771.26 21286.97 16892.22 16177.10 16386.98 27762.37 29895.17 15686.31 306
fmvsm_l_conf0.5_n82.06 19081.54 19883.60 17483.94 29573.90 13383.35 19686.10 24058.97 32883.80 23890.36 21674.23 19586.94 27882.90 8090.22 27789.94 254
TransMVSNet (Re)84.02 15285.74 12078.85 26191.00 14655.20 34082.29 22887.26 22079.65 9888.38 13995.52 3783.00 9086.88 27967.97 25496.60 9694.45 82
LF4IMVS82.75 17681.93 18885.19 13382.08 32080.15 7485.53 14888.76 20068.01 24685.58 19987.75 26271.80 22986.85 28074.02 18793.87 20088.58 276
pmmvs686.52 9988.06 7981.90 21492.22 10362.28 26584.66 16389.15 19683.54 5789.85 10497.32 588.08 3886.80 28170.43 22697.30 7896.62 26
KD-MVS_self_test81.93 19483.14 16978.30 27284.75 28152.75 35580.37 25489.42 19470.24 22590.26 9593.39 11974.55 19486.77 28268.61 24896.64 9495.38 51
1112_ss74.82 28473.74 28578.04 27889.57 17260.04 29176.49 31587.09 22854.31 35973.66 35679.80 36460.25 29086.76 28358.37 32484.15 35887.32 296
fmvsm_l_conf0.5_n_a81.46 20080.87 21083.25 18583.73 30073.21 14283.00 20785.59 25158.22 33482.96 25390.09 22672.30 22286.65 28481.97 9589.95 28189.88 255
USDC76.63 26376.73 26076.34 30283.46 30357.20 32380.02 25888.04 21352.14 37383.65 24091.25 18463.24 27386.65 28454.66 34994.11 19385.17 318
tfpnnormal81.79 19782.95 17278.31 27188.93 18955.40 33680.83 25182.85 28476.81 13485.90 19494.14 8974.58 19386.51 28666.82 26095.68 14293.01 150
VPNet80.25 22281.68 19175.94 30692.46 9547.98 38176.70 30981.67 29473.45 17584.87 21392.82 13874.66 19286.51 28661.66 30796.85 8793.33 134
testdata286.43 28863.52 292
MSDG80.06 22879.99 22780.25 24483.91 29768.04 20377.51 29789.19 19577.65 12681.94 26883.45 32876.37 17686.31 28963.31 29486.59 32886.41 304
fmvsm_s_conf0.1_n_a82.58 17981.93 18884.50 14787.68 21973.35 13786.14 13977.70 31661.64 30585.02 20891.62 17577.75 15186.24 29082.79 8387.07 32093.91 107
Anonymous20240521180.51 21481.19 20678.49 26888.48 20157.26 32276.63 31182.49 28781.21 8084.30 22892.24 16067.99 24886.24 29062.22 29995.13 15791.98 199
fmvsm_s_conf0.5_n_a82.21 18581.51 19984.32 15586.56 24473.35 13785.46 14977.30 32061.81 30184.51 21890.88 20177.36 15886.21 29282.72 8486.97 32593.38 132
MVS_111021_LR84.28 14383.76 15985.83 12489.23 18283.07 5580.99 24883.56 27872.71 19386.07 18989.07 24181.75 11686.19 29377.11 15293.36 20988.24 279
test_fmvsmvis_n_192085.22 11985.36 12884.81 13985.80 26576.13 12285.15 15692.32 10761.40 30791.33 7690.85 20283.76 8386.16 29484.31 6693.28 21392.15 191
Baseline_NR-MVSNet84.00 15385.90 11478.29 27391.47 13453.44 35182.29 22887.00 23279.06 10789.55 11595.72 3277.20 16086.14 29572.30 21198.51 1795.28 55
EPNet_dtu72.87 30271.33 31477.49 28777.72 36360.55 28882.35 22675.79 33166.49 26258.39 41381.06 35353.68 33085.98 29653.55 35592.97 22285.95 309
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MonoMVSNet76.66 26277.26 25474.86 31479.86 34754.34 34486.26 13786.08 24171.08 21585.59 19888.68 24653.95 32985.93 29763.86 28880.02 38284.32 329
ANet_high83.17 17185.68 12175.65 30881.24 33145.26 39479.94 25992.91 9083.83 5191.33 7696.88 1380.25 13285.92 29868.89 24395.89 13195.76 42
fmvsm_s_conf0.1_n82.17 18781.59 19583.94 16586.87 24271.57 16985.19 15577.42 31962.27 29984.47 22191.33 18276.43 17485.91 29983.14 7487.14 31894.33 90
Test_1112_low_res73.90 29373.08 29476.35 30190.35 15955.95 32973.40 34986.17 23950.70 38373.14 35785.94 29458.31 30485.90 30056.51 33483.22 36487.20 297
fmvsm_s_conf0.5_n81.91 19581.30 20283.75 16986.02 26271.56 17084.73 16177.11 32362.44 29684.00 23490.68 20876.42 17585.89 30183.14 7487.11 31993.81 115
test_fmvsm_n_192083.60 16282.89 17385.74 12585.22 27377.74 9984.12 17490.48 15959.87 32686.45 18591.12 18975.65 17885.89 30182.28 9090.87 26593.58 127
MIMVSNet183.63 16184.59 14180.74 23694.06 5762.77 25582.72 21484.53 27177.57 12890.34 9395.92 2876.88 17285.83 30361.88 30497.42 7493.62 124
tpmvs70.16 32569.56 33071.96 33774.71 39148.13 37979.63 26275.45 33665.02 28070.26 37481.88 34645.34 37285.68 30458.34 32575.39 39982.08 364
pm-mvs183.69 15984.95 13479.91 24890.04 16859.66 29682.43 22487.44 21775.52 15187.85 15095.26 4581.25 12185.65 30568.74 24696.04 12194.42 85
pmmvs-eth3d78.42 24477.04 25682.57 20687.44 22674.41 13080.86 25079.67 30755.68 35184.69 21690.31 21960.91 28585.42 30662.20 30091.59 24987.88 289
testdata79.54 25592.87 8472.34 15680.14 30559.91 32585.47 20291.75 17367.96 24985.24 30768.57 25092.18 23881.06 378
131473.22 29872.56 30375.20 31180.41 34457.84 31781.64 23985.36 25351.68 37673.10 35876.65 39061.45 28285.19 30863.54 29179.21 38782.59 355
CHOSEN 1792x268872.45 30470.56 31878.13 27590.02 16963.08 25068.72 37683.16 28042.99 40575.92 33785.46 30157.22 31385.18 30949.87 37481.67 37486.14 307
pmmvs474.92 28272.98 29680.73 23784.95 27671.71 16776.23 31977.59 31752.83 36777.73 32386.38 28556.35 31884.97 31057.72 33087.05 32185.51 315
旧先验281.73 23756.88 34786.54 18284.90 31172.81 207
HY-MVS64.64 1873.03 30072.47 30474.71 31683.36 30754.19 34582.14 23581.96 29156.76 34869.57 37886.21 29160.03 29184.83 31249.58 37682.65 37085.11 319
ab-mvs79.67 23180.56 21276.99 29188.48 20156.93 32484.70 16286.06 24268.95 23680.78 28993.08 12675.30 18284.62 31356.78 33290.90 26389.43 261
reproduce_monomvs74.09 29173.23 29276.65 29976.52 37454.54 34277.50 29881.40 29765.85 26682.86 25686.67 28227.38 41684.53 31470.24 22890.66 27390.89 227
IterMVS76.91 25876.34 26378.64 26580.91 33564.03 23976.30 31779.03 31064.88 28183.11 25089.16 23959.90 29384.46 31568.61 24885.15 34587.42 294
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testing9169.94 33168.99 33672.80 32883.81 29945.89 39071.57 36073.64 35068.24 24470.77 37277.82 37834.37 40184.44 31653.64 35487.00 32488.07 282
VNet79.31 23280.27 21776.44 30087.92 21453.95 34775.58 32884.35 27274.39 16382.23 26490.72 20672.84 21684.39 31760.38 31593.98 19790.97 224
testing9969.27 33768.15 34472.63 33083.29 30845.45 39271.15 36271.08 36867.34 25570.43 37377.77 38032.24 40684.35 31853.72 35386.33 33288.10 281
ppachtmachnet_test74.73 28674.00 28476.90 29480.71 34056.89 32671.53 36178.42 31258.24 33379.32 30882.92 33557.91 30884.26 31965.60 27391.36 25389.56 258
testing1167.38 34665.93 35471.73 33983.37 30646.60 38770.95 36569.40 37662.47 29466.14 39076.66 38931.22 40784.10 32049.10 37884.10 35984.49 325
CR-MVSNet74.00 29273.04 29576.85 29679.58 34962.64 25782.58 21876.90 32450.50 38575.72 33992.38 15248.07 35384.07 32168.72 24782.91 36783.85 338
Patchmtry76.56 26577.46 25073.83 32079.37 35446.60 38782.41 22576.90 32473.81 16885.56 20092.38 15248.07 35383.98 32263.36 29395.31 15290.92 226
gg-mvs-nofinetune68.96 34069.11 33368.52 36276.12 38045.32 39383.59 19055.88 41386.68 2964.62 40297.01 930.36 40983.97 32344.78 39582.94 36676.26 391
GG-mvs-BLEND67.16 36873.36 39646.54 38984.15 17355.04 41458.64 41261.95 41329.93 41083.87 32438.71 40776.92 39771.07 399
PM-MVS80.20 22479.00 23383.78 16888.17 20886.66 1981.31 24266.81 38969.64 22988.33 14090.19 22264.58 26383.63 32571.99 21390.03 27981.06 378
JIA-IIPM69.41 33566.64 35377.70 28473.19 39771.24 17275.67 32565.56 39270.42 22065.18 39792.97 13333.64 40483.06 32653.52 35669.61 40978.79 387
testing22266.93 34865.30 36071.81 33883.38 30545.83 39172.06 35667.50 38264.12 28469.68 37776.37 39227.34 41783.00 32738.88 40588.38 30186.62 303
CMPMVSbinary59.41 2075.12 27973.57 28779.77 24975.84 38267.22 20781.21 24582.18 28950.78 38276.50 32887.66 26455.20 32582.99 32862.17 30290.64 27589.09 270
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test74.48 28773.68 28676.89 29584.83 27866.54 21672.29 35469.16 37957.70 33886.76 17186.33 28745.79 36682.59 32969.63 23390.65 27481.54 369
KD-MVS_2432*160066.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
miper_refine_blended66.87 35065.81 35670.04 34667.50 41247.49 38362.56 39579.16 30861.21 31377.98 31780.61 35525.29 42082.48 33053.02 35884.92 34880.16 382
tpm cat166.76 35365.21 36171.42 34077.09 36950.62 37378.01 28773.68 34944.89 39868.64 38179.00 37145.51 36982.42 33249.91 37370.15 40681.23 375
mvs5depth83.82 15784.54 14481.68 22182.23 31968.65 19686.89 12189.90 18280.02 9487.74 15297.86 264.19 26782.02 33376.37 15995.63 14394.35 88
MS-PatchMatch70.93 32070.22 32373.06 32681.85 32362.50 26073.82 34577.90 31452.44 37075.92 33781.27 35155.67 32281.75 33455.37 34377.70 39374.94 394
CNLPA83.55 16483.10 17084.90 13789.34 17983.87 5084.54 16788.77 19979.09 10683.54 24488.66 24874.87 18681.73 33566.84 25992.29 23389.11 267
baseline173.26 29773.54 28872.43 33484.92 27747.79 38279.89 26074.00 34365.93 26478.81 31286.28 29056.36 31781.63 33656.63 33379.04 38987.87 290
SSC-MVS77.55 25181.64 19265.29 37790.46 15720.33 42373.56 34668.28 38085.44 3788.18 14494.64 6470.93 23381.33 33771.25 21592.03 23994.20 92
MDA-MVSNet-bldmvs77.47 25276.90 25879.16 25979.03 35764.59 23266.58 38775.67 33373.15 18688.86 12488.99 24266.94 25281.23 33864.71 28188.22 30791.64 210
CL-MVSNet_self_test76.81 26077.38 25275.12 31286.90 24051.34 36673.20 35080.63 30368.30 24381.80 27488.40 25066.92 25380.90 33955.35 34494.90 16893.12 146
MDTV_nov1_ep1368.29 34378.03 36143.87 39974.12 34072.22 35952.17 37167.02 38985.54 29845.36 37180.85 34055.73 33884.42 356
pmmvs570.73 32170.07 32472.72 32977.03 37052.73 35674.14 33975.65 33450.36 38672.17 36385.37 30555.42 32480.67 34152.86 36187.59 31584.77 322
SDMVSNet81.90 19683.17 16878.10 27688.81 19262.45 26176.08 32286.05 24373.67 17083.41 24593.04 12782.35 10080.65 34270.06 23095.03 16291.21 218
WBMVS68.76 34168.43 34169.75 35083.29 30840.30 40767.36 38372.21 36057.09 34577.05 32685.53 29933.68 40380.51 34348.79 38090.90 26388.45 278
UWE-MVS66.43 35465.56 35969.05 35584.15 29340.98 40573.06 35264.71 39554.84 35676.18 33479.62 36729.21 41180.50 34438.54 40889.75 28385.66 313
Gipumacopyleft84.44 13886.33 10578.78 26284.20 29273.57 13589.55 7790.44 16184.24 4884.38 22294.89 5376.35 17780.40 34576.14 16496.80 9182.36 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_post178.85 2793.13 42045.19 37480.13 34658.11 328
PatchmatchNetpermissive69.71 33368.83 33872.33 33677.66 36453.60 34979.29 26969.99 37357.66 33972.53 36182.93 33446.45 35880.08 34760.91 31272.09 40383.31 348
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mmtdpeth85.13 12385.78 11983.17 18984.65 28274.71 12785.87 14290.35 16677.94 12183.82 23796.96 1277.75 15180.03 34878.44 12896.21 11294.79 72
ETVMVS64.67 36263.34 36868.64 35983.44 30441.89 40369.56 37461.70 40461.33 31068.74 38075.76 39428.76 41279.35 34934.65 41286.16 33584.67 324
Syy-MVS69.40 33670.03 32667.49 36681.72 32438.94 40971.00 36361.99 39961.38 30870.81 37072.36 40261.37 28379.30 35064.50 28685.18 34384.22 331
myMVS_eth3d64.66 36363.89 36466.97 36981.72 32437.39 41271.00 36361.99 39961.38 30870.81 37072.36 40220.96 42379.30 35049.59 37585.18 34384.22 331
FMVSNet572.10 30871.69 30873.32 32381.57 32753.02 35476.77 30878.37 31363.31 28676.37 32991.85 16636.68 39878.98 35247.87 38592.45 22987.95 287
WB-MVS76.06 27080.01 22664.19 38089.96 17020.58 42272.18 35568.19 38183.21 5986.46 18493.49 11770.19 23778.97 35365.96 26690.46 27693.02 149
our_test_371.85 30971.59 30972.62 33180.71 34053.78 34869.72 37371.71 36658.80 33078.03 31680.51 35956.61 31678.84 35462.20 30086.04 33685.23 317
miper_lstm_enhance76.45 26776.10 26577.51 28676.72 37360.97 28464.69 39185.04 26163.98 28583.20 24988.22 25256.67 31578.79 35573.22 20093.12 21792.78 157
UBG64.34 36563.35 36767.30 36783.50 30140.53 40667.46 38265.02 39454.77 35767.54 38874.47 39832.99 40578.50 35640.82 40283.58 36182.88 353
PatchMatch-RL74.48 28773.22 29378.27 27487.70 21885.26 3875.92 32470.09 37264.34 28376.09 33581.25 35265.87 25978.07 35753.86 35283.82 36071.48 398
sd_testset79.95 23081.39 20175.64 30988.81 19258.07 31476.16 32182.81 28573.67 17083.41 24593.04 12780.96 12477.65 35858.62 32395.03 16291.21 218
Anonymous2024052180.18 22581.25 20376.95 29283.15 31460.84 28582.46 22385.99 24568.76 23886.78 17093.73 11259.13 29977.44 35973.71 19397.55 6992.56 167
ADS-MVSNet265.87 35863.64 36672.55 33273.16 39856.92 32567.10 38474.81 33749.74 38766.04 39282.97 33246.71 35677.26 36042.29 39869.96 40783.46 343
test_post3.10 42145.43 37077.22 361
MVS-HIRNet61.16 37362.92 37055.87 39479.09 35635.34 41571.83 35757.98 41246.56 39259.05 41091.14 18849.95 34876.43 36238.74 40671.92 40455.84 413
MIMVSNet71.09 31871.59 30969.57 35287.23 22950.07 37578.91 27671.83 36360.20 32471.26 36691.76 17255.08 32776.09 36341.06 40187.02 32382.54 358
tpm67.95 34468.08 34567.55 36578.74 36043.53 40075.60 32667.10 38854.92 35572.23 36288.10 25442.87 38675.97 36452.21 36380.95 38183.15 350
FPMVS72.29 30772.00 30673.14 32588.63 19785.00 4074.65 33767.39 38371.94 20677.80 32187.66 26450.48 34575.83 36549.95 37279.51 38358.58 412
PatchT70.52 32272.76 29963.79 38279.38 35333.53 41677.63 29465.37 39373.61 17271.77 36492.79 14144.38 37975.65 36664.53 28585.37 34082.18 362
ttmdpeth71.72 31170.67 31674.86 31473.08 40055.88 33177.41 30169.27 37755.86 35078.66 31393.77 11038.01 39575.39 36760.12 31689.87 28293.31 136
PVSNet58.17 2166.41 35565.63 35868.75 35881.96 32149.88 37662.19 39772.51 35751.03 38068.04 38475.34 39650.84 34274.77 36845.82 39382.96 36581.60 368
tpmrst66.28 35666.69 35265.05 37872.82 40239.33 40878.20 28670.69 37153.16 36667.88 38580.36 36048.18 35274.75 36958.13 32770.79 40581.08 376
test20.0373.75 29474.59 27971.22 34181.11 33351.12 37070.15 37172.10 36170.42 22080.28 29891.50 17864.21 26674.72 37046.96 38994.58 18087.82 291
patch_mono-278.89 23579.39 23077.41 28884.78 27968.11 20175.60 32683.11 28160.96 31579.36 30689.89 22975.18 18372.97 37173.32 19992.30 23191.15 220
pmmvs362.47 36760.02 38069.80 34971.58 40664.00 24070.52 36858.44 41139.77 41066.05 39175.84 39327.10 41972.28 37246.15 39184.77 35573.11 396
Anonymous2023120671.38 31671.88 30769.88 34886.31 25254.37 34370.39 36974.62 33852.57 36976.73 32788.76 24459.94 29272.06 37344.35 39693.23 21583.23 349
new-patchmatchnet70.10 32673.37 29160.29 39081.23 33216.95 42559.54 40174.62 33862.93 28980.97 28487.93 25862.83 27971.90 37455.24 34595.01 16592.00 197
WB-MVSnew68.72 34269.01 33567.85 36383.22 31243.98 39874.93 33465.98 39055.09 35373.83 35479.11 36965.63 26071.89 37538.21 40985.04 34687.69 292
test_fmvs375.72 27475.20 27477.27 28975.01 39069.47 18678.93 27584.88 26646.67 39187.08 16587.84 26050.44 34671.62 37677.42 14988.53 29890.72 232
dp60.70 37660.29 37961.92 38672.04 40538.67 41170.83 36664.08 39651.28 37860.75 40677.28 38436.59 39971.58 37747.41 38662.34 41375.52 393
MVStest170.05 32869.26 33172.41 33558.62 42255.59 33576.61 31365.58 39153.44 36389.28 12093.32 12022.91 42271.44 37874.08 18689.52 28690.21 250
UnsupCasMVSNet_bld69.21 33869.68 32967.82 36479.42 35251.15 36967.82 38175.79 33154.15 36077.47 32585.36 30659.26 29870.64 37948.46 38279.35 38581.66 367
test_fmvs273.57 29572.80 29775.90 30772.74 40368.84 19577.07 30484.32 27345.14 39782.89 25484.22 32048.37 35170.36 38073.40 19887.03 32288.52 277
test-LLR67.21 34766.74 35168.63 36076.45 37755.21 33867.89 37867.14 38662.43 29765.08 39872.39 40043.41 38269.37 38161.00 31084.89 35181.31 371
test-mter65.00 36163.79 36568.63 36076.45 37755.21 33867.89 37867.14 38650.98 38165.08 39872.39 40028.27 41469.37 38161.00 31084.89 35181.31 371
XXY-MVS74.44 28976.19 26469.21 35484.61 28352.43 35971.70 35877.18 32260.73 31880.60 29090.96 19675.44 17969.35 38356.13 33788.33 30285.86 311
UnsupCasMVSNet_eth71.63 31372.30 30569.62 35176.47 37652.70 35770.03 37280.97 30059.18 32779.36 30688.21 25360.50 28669.12 38458.33 32677.62 39487.04 298
WTY-MVS67.91 34568.35 34266.58 37180.82 33848.12 38065.96 38872.60 35553.67 36271.20 36781.68 34958.97 30069.06 38548.57 38181.67 37482.55 357
test_vis1_n_192071.30 31771.58 31170.47 34477.58 36559.99 29374.25 33884.22 27451.06 37974.85 34979.10 37055.10 32668.83 38668.86 24479.20 38882.58 356
test_vis1_n70.29 32369.99 32771.20 34275.97 38166.50 21776.69 31080.81 30144.22 40075.43 34277.23 38550.00 34768.59 38766.71 26182.85 36978.52 388
test_fmvs1_n70.94 31970.41 32272.53 33373.92 39266.93 21375.99 32384.21 27543.31 40479.40 30579.39 36843.47 38168.55 38869.05 24184.91 35082.10 363
test_fmvs169.57 33469.05 33471.14 34369.15 41165.77 22573.98 34283.32 27942.83 40677.77 32278.27 37743.39 38468.50 38968.39 25184.38 35779.15 386
test0.0.03 164.66 36364.36 36265.57 37575.03 38946.89 38664.69 39161.58 40562.43 29771.18 36877.54 38143.41 38268.47 39040.75 40382.65 37081.35 370
dmvs_testset60.59 37762.54 37254.72 39677.26 36627.74 41974.05 34161.00 40660.48 32065.62 39567.03 40955.93 32068.23 39132.07 41669.46 41068.17 403
CHOSEN 280x42059.08 37856.52 38366.76 37076.51 37564.39 23649.62 41259.00 40943.86 40155.66 41668.41 40835.55 40068.21 39243.25 39776.78 39867.69 404
YYNet170.06 32770.44 32068.90 35673.76 39453.42 35258.99 40467.20 38558.42 33287.10 16385.39 30459.82 29467.32 39359.79 31883.50 36385.96 308
MDA-MVSNet_test_wron70.05 32870.44 32068.88 35773.84 39353.47 35058.93 40567.28 38458.43 33187.09 16485.40 30359.80 29567.25 39459.66 31983.54 36285.92 310
EMVS61.10 37460.81 37661.99 38565.96 41755.86 33253.10 41158.97 41067.06 25756.89 41563.33 41140.98 38867.03 39554.79 34886.18 33463.08 407
testgi72.36 30574.61 27765.59 37480.56 34242.82 40268.29 37773.35 35166.87 25981.84 27189.93 22772.08 22666.92 39646.05 39292.54 22887.01 299
EPMVS62.47 36762.63 37162.01 38470.63 40838.74 41074.76 33552.86 41553.91 36167.71 38780.01 36239.40 39166.60 39755.54 34268.81 41180.68 380
PMMVS61.65 37060.38 37765.47 37665.40 41969.26 18963.97 39361.73 40336.80 41660.11 40868.43 40759.42 29666.35 39848.97 37978.57 39060.81 409
E-PMN61.59 37161.62 37461.49 38766.81 41455.40 33653.77 41060.34 40766.80 26058.90 41165.50 41040.48 39066.12 39955.72 33986.25 33362.95 408
PVSNet_051.08 2256.10 38054.97 38559.48 39275.12 38853.28 35355.16 40961.89 40144.30 39959.16 40962.48 41254.22 32865.91 40035.40 41147.01 41559.25 411
test_cas_vis1_n_192069.20 33969.12 33269.43 35373.68 39562.82 25470.38 37077.21 32146.18 39480.46 29578.95 37252.03 33665.53 40165.77 27277.45 39679.95 384
sss66.92 34967.26 34765.90 37377.23 36751.10 37164.79 39071.72 36552.12 37470.13 37580.18 36157.96 30765.36 40250.21 37181.01 38081.25 373
TESTMET0.1,161.29 37260.32 37864.19 38072.06 40451.30 36767.89 37862.09 39845.27 39660.65 40769.01 40627.93 41564.74 40356.31 33581.65 37676.53 390
dmvs_re66.81 35266.98 34866.28 37276.87 37158.68 31171.66 35972.24 35860.29 32269.52 37973.53 39952.38 33564.40 40444.90 39481.44 37775.76 392
ADS-MVSNet61.90 36962.19 37361.03 38973.16 39836.42 41467.10 38461.75 40249.74 38766.04 39282.97 33246.71 35663.21 40542.29 39869.96 40783.46 343
DSMNet-mixed60.98 37561.61 37559.09 39372.88 40145.05 39574.70 33646.61 41926.20 41765.34 39690.32 21855.46 32363.12 40641.72 40081.30 37969.09 402
mvsany_test365.48 36062.97 36973.03 32769.99 40976.17 12164.83 38943.71 42043.68 40280.25 29987.05 27952.83 33363.09 40751.92 36872.44 40279.84 385
test_vis3_rt71.42 31570.67 31673.64 32269.66 41070.46 17766.97 38689.73 18442.68 40788.20 14383.04 33143.77 38060.07 40865.35 27686.66 32790.39 244
test_vis1_rt65.64 35964.09 36370.31 34566.09 41670.20 18061.16 39881.60 29538.65 41272.87 35969.66 40552.84 33260.04 40956.16 33677.77 39280.68 380
Patchmatch-test65.91 35767.38 34661.48 38875.51 38443.21 40168.84 37563.79 39762.48 29372.80 36083.42 32944.89 37759.52 41048.27 38486.45 32981.70 366
mvsany_test158.48 37956.47 38464.50 37965.90 41868.21 20056.95 40842.11 42138.30 41365.69 39477.19 38756.96 31459.35 41146.16 39058.96 41465.93 405
dongtai41.90 38442.65 38739.67 39970.86 40721.11 42161.01 39921.42 42657.36 34257.97 41450.06 41516.40 42558.73 41221.03 41927.69 41939.17 415
N_pmnet70.20 32468.80 33974.38 31880.91 33584.81 4359.12 40376.45 32955.06 35475.31 34682.36 34155.74 32154.82 41347.02 38787.24 31783.52 342
wuyk23d75.13 27879.30 23162.63 38375.56 38375.18 12680.89 24973.10 35475.06 15794.76 1695.32 4187.73 4352.85 41434.16 41397.11 8259.85 410
test_f64.31 36665.85 35559.67 39166.54 41562.24 26857.76 40770.96 36940.13 40984.36 22382.09 34346.93 35551.67 41561.99 30381.89 37365.12 406
PMMVS255.64 38259.27 38144.74 39864.30 42012.32 42640.60 41349.79 41753.19 36565.06 40084.81 31353.60 33149.76 41632.68 41589.41 28772.15 397
new_pmnet55.69 38157.66 38249.76 39775.47 38530.59 41759.56 40051.45 41643.62 40362.49 40475.48 39540.96 38949.15 41737.39 41072.52 40169.55 401
MVEpermissive40.22 2351.82 38350.47 38655.87 39462.66 42151.91 36231.61 41539.28 42240.65 40850.76 41774.98 39756.24 31944.67 41833.94 41464.11 41271.04 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method30.46 38629.60 38933.06 40017.99 4253.84 42813.62 41673.92 3442.79 41918.29 42153.41 41428.53 41343.25 41922.56 41735.27 41752.11 414
kuosan30.83 38532.17 38826.83 40153.36 42319.02 42457.90 40620.44 42738.29 41438.01 41837.82 41715.18 42633.45 4207.74 42120.76 42028.03 416
DeepMVS_CXcopyleft24.13 40232.95 42429.49 41821.63 42512.07 41837.95 41945.07 41630.84 40819.21 42117.94 42033.06 41823.69 417
tmp_tt20.25 38824.50 3917.49 4034.47 4268.70 42734.17 41425.16 4241.00 42132.43 42018.49 41839.37 3929.21 42221.64 41843.75 4164.57 418
test1236.27 3918.08 3940.84 4041.11 4280.57 42962.90 3940.82 4280.54 4221.07 4242.75 4231.26 4270.30 4231.04 4221.26 4221.66 419
testmvs5.91 3927.65 3950.72 4051.20 4270.37 43059.14 4020.67 4290.49 4231.11 4232.76 4220.94 4280.24 4241.02 4231.47 4211.55 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k20.81 38727.75 3900.00 4060.00 4290.00 4310.00 41785.44 2520.00 4240.00 42582.82 33681.46 1180.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas6.41 3908.55 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42476.94 1660.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re6.65 3898.87 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42579.80 3640.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS37.39 41252.61 362
FOURS196.08 1287.41 1496.19 295.83 592.95 396.57 3
test_one_060193.85 6273.27 14094.11 3886.57 3093.47 4194.64 6488.42 28
eth-test20.00 429
eth-test0.00 429
RE-MVS-def92.61 894.13 5588.95 692.87 1394.16 3288.75 1893.79 3294.43 7290.64 1087.16 3297.60 6692.73 158
IU-MVS94.18 5072.64 14790.82 15156.98 34689.67 10985.78 5297.92 4993.28 137
save fliter93.75 6377.44 10386.31 13589.72 18570.80 217
test072694.16 5372.56 15190.63 4993.90 4883.61 5593.75 3494.49 6989.76 18
GSMVS83.88 335
test_part293.86 6177.77 9892.84 51
sam_mvs146.11 36083.88 335
sam_mvs45.92 365
MTGPAbinary91.81 125
MTMP90.66 4833.14 423
test9_res80.83 10496.45 10390.57 238
agg_prior279.68 11796.16 11590.22 246
test_prior478.97 8484.59 164
test_prior283.37 19575.43 15284.58 21791.57 17681.92 11379.54 11996.97 85
新几何281.72 238
旧先验191.97 11171.77 16381.78 29391.84 16773.92 19993.65 20683.61 341
原ACMM282.26 231
test22293.31 7376.54 11379.38 26877.79 31552.59 36882.36 26290.84 20366.83 25491.69 24681.25 373
segment_acmp81.94 110
testdata179.62 26373.95 167
plane_prior793.45 6877.31 106
plane_prior692.61 9076.54 11374.84 187
plane_prior492.95 134
plane_prior376.85 11177.79 12586.55 177
plane_prior289.45 8279.44 101
plane_prior192.83 88
plane_prior76.42 11687.15 11775.94 14595.03 162
n20.00 430
nn0.00 430
door-mid74.45 341
test1191.46 131
door72.57 356
HQP5-MVS70.66 175
HQP-NCC91.19 13984.77 15873.30 18180.55 292
ACMP_Plane91.19 13984.77 15873.30 18180.55 292
BP-MVS77.30 150
HQP3-MVS92.68 9794.47 182
HQP2-MVS72.10 224
NP-MVS91.95 11274.55 12990.17 224
MDTV_nov1_ep13_2view27.60 42070.76 36746.47 39361.27 40545.20 37349.18 37783.75 340
ACMMP++_ref95.74 140
ACMMP++97.35 75
Test By Simon79.09 140