This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 153
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8372.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 140
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 162
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 122
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12472.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 126
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 154
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 146
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 121
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 128
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15174.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12672.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32077.06 11282.61 8780.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33777.16 10981.81 9880.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31777.15 11081.28 10879.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11383.49 137
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13875.34 1579.80 11894.91 269.79 8380.25 14272.63 6394.46 3688.78 42
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9682.24 9078.21 989.57 992.10 1868.05 9685.59 4866.04 11295.62 994.88 5
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9468.80 5380.92 10788.52 10972.00 6382.39 10174.80 4493.04 6881.14 193
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 31976.76 11380.46 12878.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8780.55 13772.51 6593.37 6383.48 139
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8685.26 5466.15 10991.24 9587.61 52
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18187.58 573.06 5991.34 9389.01 34
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 8970.72 4487.54 2192.44 1468.00 9881.34 11772.84 6191.72 8491.69 10
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23767.58 9494.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20082.35 175
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10878.37 17674.80 4490.76 11682.40 174
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13564.71 9178.11 13688.39 11265.46 12583.14 8977.64 2991.20 9678.94 235
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21087.10 879.75 783.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16274.60 21075.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 191
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6483.45 8462.45 14392.40 7778.92 236
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14871.70 23072.33 3585.50 5093.65 377.98 2176.88 20054.60 21291.64 8689.08 32
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10651.71 22177.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6683.53 8267.95 9292.44 7689.60 24
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17086.15 2771.09 7190.94 10584.82 98
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19351.98 21987.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10263.92 9677.51 14486.56 14868.43 9384.82 6573.83 5391.61 8882.26 179
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9361.89 11688.77 1293.32 457.15 20882.60 9970.08 7692.80 7189.25 28
tt080576.12 8478.43 6869.20 20181.32 12541.37 30276.72 11477.64 18063.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20052.27 21487.37 2692.25 1668.04 9780.56 13572.28 6791.15 9890.32 22
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19551.33 22987.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11765.77 7275.55 17786.25 15767.42 10185.42 5070.10 7590.88 11181.81 185
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19550.51 23889.19 1090.88 4271.45 6777.78 19073.38 5690.60 11890.90 18
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13357.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16171.22 4072.40 22588.70 10460.51 17287.70 377.40 3289.13 15185.48 84
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29670.98 19178.29 17168.67 5683.04 7789.26 8772.99 5880.75 13455.58 20495.47 1091.35 13
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19184.52 18269.87 8284.94 6169.76 7889.59 13886.60 67
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14553.48 20686.29 3692.43 1562.39 14980.25 14267.90 9390.61 11787.77 49
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27174.73 14380.19 13468.80 5382.95 8092.91 866.26 11676.76 20258.41 17992.77 7289.30 27
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9087.03 1067.39 9991.26 9483.50 136
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19377.68 14387.18 12569.98 8085.37 5168.01 9092.72 7485.08 91
testf175.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD_test275.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16254.00 19876.97 14986.74 13866.60 11381.10 12372.50 6691.56 8977.15 258
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9253.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20264.10 9587.73 1792.24 1750.45 24781.30 11967.41 9791.46 9186.04 73
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18685.32 17365.54 12387.79 265.61 11691.14 9983.35 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8259.02 13885.92 4189.17 9258.56 19182.74 9770.73 7389.14 15091.05 15
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25149.47 22772.94 16084.71 5159.49 13280.90 10988.81 10370.07 7979.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8660.39 12674.15 19983.30 20369.65 8482.07 10869.27 8186.75 19087.36 55
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8854.55 18783.50 7589.21 8971.51 6575.74 21061.24 15092.34 7988.94 37
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20766.93 6269.11 26488.95 10057.84 20486.12 2976.63 3789.77 13585.28 86
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14077.64 19262.95 14088.14 16271.73 308
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26869.26 21378.81 15766.66 6781.74 9586.88 13363.26 13981.07 12556.21 19694.98 2091.05 15
v875.07 9775.64 9573.35 12673.42 23547.46 25175.20 13481.45 10460.05 12885.64 4589.26 8758.08 19981.80 11269.71 8087.97 16790.79 19
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26869.47 21080.14 13665.22 8281.74 9587.08 12761.82 15581.07 12556.21 19694.98 2091.93 8
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20081.04 11663.67 10079.54 12086.37 15362.83 14381.82 11157.10 18695.25 1490.94 17
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17570.09 4979.17 12488.02 12153.04 23183.60 8058.05 18193.76 5990.79 19
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11679.71 14165.50 7582.99 7988.60 10866.94 10572.35 25059.77 16988.54 15879.56 225
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23485.96 16758.09 19785.30 5367.38 10189.16 14783.73 133
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40373.86 5286.31 1978.84 1994.03 5384.64 103
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 14936.57 33971.82 17879.54 14757.63 15382.57 8690.38 6459.38 18478.99 16157.91 18294.56 3491.23 14
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15362.85 11073.33 21288.41 11162.54 14779.59 15363.94 13082.92 23882.94 158
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11865.57 7472.54 22381.76 22370.98 7385.26 5447.88 26990.00 12773.37 289
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9562.47 11479.06 12580.19 24461.83 15478.79 16559.83 16887.35 17679.54 228
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15059.44 13378.88 12689.80 7971.26 6973.09 23957.45 18380.89 26089.17 31
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7854.16 19573.23 21480.75 23462.19 15283.86 7668.02 8990.92 10883.65 134
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17383.39 19766.91 10680.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25480.80 23366.74 11281.96 10961.74 14689.40 14585.69 81
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10566.17 7073.30 21383.31 20259.96 17783.10 9158.45 17881.66 25582.87 160
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28365.65 26777.32 18464.32 9375.59 17687.08 12762.45 14881.34 11754.90 20795.63 891.93 8
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8059.86 13172.27 22684.00 18964.56 13383.07 9251.48 23487.19 18382.56 172
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16884.40 5955.95 16976.62 16186.46 15167.20 10278.03 18564.22 12587.27 18087.11 61
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19284.26 6255.62 17277.46 14587.10 12667.09 10477.81 18863.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11568.84 21278.74 16037.74 33371.02 19079.83 14056.12 16680.88 11089.45 8458.18 19378.28 17956.63 18893.36 6490.51 21
Anonymous2024052972.56 13973.79 11668.86 21176.89 18745.21 27368.80 22277.25 18667.16 6176.89 15390.44 5665.95 11974.19 23050.75 24090.00 12787.18 59
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14656.32 16576.35 17183.36 20170.76 7477.96 18663.32 13781.84 24983.18 151
pmmvs671.82 14773.66 11866.31 24175.94 20042.01 29866.99 24872.53 22563.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 11987.22 56
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 12879.90 13946.03 27776.48 16785.02 17767.96 9973.97 23274.47 4987.22 18183.90 127
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30666.16 7184.76 6093.23 549.47 25280.97 12965.66 11586.67 19185.02 93
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16581.73 9952.76 21181.85 9184.56 18157.12 20982.24 10668.58 8387.33 17789.06 33
v114473.29 12073.39 12273.01 13474.12 22748.11 23972.01 17081.08 11553.83 20281.77 9384.68 17958.07 20081.91 11068.10 8786.86 18688.99 36
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18465.11 8576.47 16886.80 13449.47 25283.77 7753.89 22192.72 7488.81 41
MCST-MVS73.42 11673.34 12573.63 12381.28 12659.17 16074.80 14183.13 7945.50 28072.84 21883.78 19365.15 12880.99 12764.54 12189.09 15380.73 207
114514_t73.40 11773.33 12673.64 12284.15 8557.11 17478.20 9780.02 13743.76 29772.55 22286.07 16564.00 13683.35 8660.14 16491.03 10480.45 214
Baseline_NR-MVSNet70.62 15973.19 12762.92 27276.97 18234.44 35568.84 21870.88 24960.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
v124073.06 12673.14 12872.84 14374.74 21547.27 25471.88 17781.11 11251.80 22082.28 8884.21 18656.22 21882.34 10368.82 8287.17 18488.91 38
VDDNet71.60 14973.13 12967.02 23486.29 4741.11 30469.97 20466.50 27368.72 5574.74 18791.70 2559.90 17875.81 20848.58 26091.72 8484.15 123
IterMVS-LS73.01 12873.12 13072.66 14873.79 23149.90 22271.63 18078.44 16758.22 14380.51 11286.63 14558.15 19579.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419272.99 13073.06 13172.77 14474.58 22047.48 25071.90 17680.44 12951.57 22381.46 9984.11 18858.04 20182.12 10767.98 9187.47 17388.70 43
CNLPA73.44 11573.03 13274.66 10578.27 16375.29 2675.99 12778.49 16665.39 7875.67 17583.22 20861.23 16366.77 30553.70 22385.33 20681.92 184
v192192072.96 13272.98 13372.89 14274.67 21647.58 24971.92 17580.69 12151.70 22281.69 9783.89 19156.58 21582.25 10568.34 8587.36 17588.82 40
MVS_111021_HR72.98 13172.97 13472.99 13580.82 12965.47 10068.81 22072.77 22257.67 15075.76 17482.38 21671.01 7277.17 19561.38 14986.15 19576.32 264
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19480.08 7875.93 19864.24 9473.49 20988.93 10157.89 20362.46 32559.75 17091.55 9062.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14779.34 14945.58 27975.54 17883.91 19067.19 10373.88 23573.26 5786.86 18683.63 135
DP-MVS Recon73.57 11472.69 13776.23 9182.85 10563.39 11774.32 14982.96 8157.75 14870.35 25081.98 21964.34 13584.41 7349.69 24889.95 12980.89 201
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21371.97 17179.36 14850.34 23982.81 8383.63 19464.38 13467.27 29661.54 14883.71 23280.71 209
v2v48272.55 14172.58 13972.43 15472.92 25046.72 26071.41 18379.13 15255.27 17481.17 10485.25 17555.41 22081.13 12267.25 10585.46 20289.43 26
test_fmvsmvis_n_192072.36 14272.49 14071.96 16071.29 26364.06 11372.79 16181.82 9740.23 32981.25 10381.04 23070.62 7568.69 28169.74 7983.60 23483.14 152
WR-MVS71.20 15272.48 14167.36 22984.98 7035.70 34764.43 28268.66 26365.05 8681.49 9886.43 15257.57 20676.48 20450.36 24493.32 6589.90 23
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17273.03 21761.14 12079.45 12290.36 6760.44 17375.20 21650.20 24588.05 16484.54 110
test_fmvsmconf_n72.91 13372.40 14374.46 10768.62 29866.12 9674.21 15278.80 15945.64 27874.62 19283.25 20566.80 11173.86 23672.97 6086.66 19283.39 143
CLD-MVS72.88 13472.36 14474.43 11077.03 17954.30 19168.77 22383.43 7652.12 21676.79 15874.44 30769.54 8583.91 7555.88 19993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu75.43 9172.28 14584.91 277.05 17883.58 178.47 9377.70 17957.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
Effi-MVS+72.10 14572.28 14571.58 16374.21 22550.33 21574.72 14482.73 8462.62 11170.77 24676.83 28769.96 8180.97 12960.20 16178.43 28783.45 142
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17973.34 15784.67 5262.04 11572.19 22970.81 33565.90 12085.24 5658.64 17684.96 21481.95 183
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16472.24 16471.56 23363.92 9678.59 12871.59 33066.22 11778.60 16767.58 9480.32 26789.00 35
CANet73.00 12971.84 14976.48 8775.82 20161.28 13674.81 13980.37 13163.17 10862.43 32480.50 23861.10 16785.16 6064.00 12784.34 22483.01 157
MVS_111021_LR72.10 14571.82 15072.95 13779.53 14273.90 3670.45 19966.64 27256.87 15876.81 15781.76 22368.78 8871.76 25861.81 14483.74 23073.18 291
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15473.04 15981.50 10245.34 28479.66 11984.35 18565.15 12882.65 9848.70 25889.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16972.02 16971.50 23463.53 10278.58 13071.39 33465.98 11878.53 16867.30 10480.18 26989.23 29
TransMVSNet (Re)69.62 17271.63 15363.57 26276.51 19035.93 34565.75 26671.29 24161.05 12175.02 18389.90 7865.88 12170.41 27249.79 24789.48 14184.38 117
h-mvs3373.08 12471.61 15477.48 7483.89 8872.89 4470.47 19871.12 24654.28 18977.89 13783.41 19649.04 25680.98 12863.62 13390.77 11578.58 239
TSAR-MVS + GP.73.08 12471.60 15577.54 7378.99 15770.73 5774.96 13669.38 25860.73 12474.39 19678.44 27157.72 20582.78 9660.16 16389.60 13779.11 233
LCM-MVSNet-Re69.10 18171.57 15661.70 28170.37 27734.30 35761.45 30279.62 14256.81 15989.59 888.16 11968.44 9272.94 24042.30 30387.33 17777.85 252
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18080.99 6176.84 19062.48 11371.24 24277.51 28361.51 15980.96 13252.04 23085.76 20171.22 313
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23570.83 25061.23 11974.07 20288.69 10559.86 17975.62 21151.11 23790.28 12184.61 106
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14675.15 20658.41 14268.74 27688.14 12056.08 21983.69 7959.90 16781.71 25479.43 230
3Dnovator65.95 1171.50 15071.22 16072.34 15673.16 24163.09 12078.37 9478.32 16957.67 15072.22 22884.61 18054.77 22178.47 17060.82 15781.07 25975.45 270
FA-MVS(test-final)71.27 15171.06 16171.92 16173.96 22852.32 20476.45 11776.12 19559.07 13774.04 20486.18 15852.18 23579.43 15559.75 17081.76 25084.03 124
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24269.85 20779.62 14253.94 20176.54 16582.00 21859.00 18774.68 22357.32 18487.21 18284.72 101
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 10958.80 16671.48 18173.64 21454.98 17776.55 16481.77 22261.10 16778.94 16254.87 20880.84 26272.74 298
V4271.06 15370.83 16471.72 16267.25 31447.14 25565.94 26180.35 13251.35 22883.40 7683.23 20659.25 18578.80 16465.91 11380.81 26389.23 29
MVS_Test69.84 16970.71 16567.24 23067.49 31243.25 29069.87 20681.22 11152.69 21271.57 23786.68 14162.09 15374.51 22566.05 11178.74 28383.96 125
hse-mvs272.32 14370.66 16677.31 7983.10 10071.77 4769.19 21571.45 23654.28 18977.89 13778.26 27349.04 25679.23 15663.62 13389.13 15180.92 200
VPA-MVSNet68.71 18670.37 16763.72 26076.13 19538.06 33164.10 28471.48 23556.60 16474.10 20188.31 11464.78 13269.72 27347.69 27190.15 12483.37 145
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13568.63 7578.18 9881.24 10954.57 18667.09 29280.63 23659.44 18281.74 11446.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ANet_high67.08 21069.94 16958.51 30657.55 37527.09 38858.43 32576.80 19163.56 10182.40 8791.93 2059.82 18064.98 31650.10 24688.86 15683.46 141
c3_l69.82 17069.89 17069.61 19466.24 32443.48 28668.12 23279.61 14451.43 22577.72 14180.18 24554.61 22478.15 18463.62 13387.50 17287.20 58
pm-mvs168.40 18969.85 17164.04 25873.10 24539.94 31464.61 28070.50 25155.52 17373.97 20589.33 8563.91 13768.38 28449.68 24988.02 16583.81 129
bld_raw_dy_0_6469.94 16769.64 17270.84 17173.28 23846.85 25875.82 13186.52 1640.43 32881.41 10074.77 30148.70 26283.01 9356.25 19489.59 13882.66 167
BH-untuned69.39 17769.46 17369.18 20277.96 16956.88 17568.47 22977.53 18156.77 16077.79 14079.63 25360.30 17580.20 14546.04 28380.65 26470.47 319
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 21972.70 22354.79 18178.59 12884.12 18754.69 22276.74 20359.40 17382.20 24386.79 63
TinyColmap67.98 19669.28 17564.08 25667.98 30746.82 25970.04 20275.26 20453.05 20877.36 14686.79 13559.39 18372.59 24745.64 28688.01 16672.83 296
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20380.37 7178.79 16049.63 24873.51 20885.14 17653.66 22879.12 15855.11 20675.54 30975.11 275
MIMVSNet166.57 21769.23 17758.59 30581.26 12737.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
DPM-MVS69.98 16669.22 17872.26 15882.69 10858.82 16570.53 19781.23 11047.79 26564.16 30880.21 24251.32 24283.12 9060.14 16484.95 21574.83 276
UGNet70.20 16369.05 17973.65 12176.24 19363.64 11575.87 12972.53 22561.48 11860.93 33486.14 16152.37 23477.12 19650.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSFormer69.93 16869.03 18072.63 15074.93 20959.19 15883.98 3675.72 20052.27 21463.53 31876.74 28843.19 28980.56 13572.28 6778.67 28578.14 246
EI-MVSNet69.61 17369.01 18171.41 16773.94 22949.90 22271.31 18671.32 23958.22 14375.40 18170.44 33758.16 19475.85 20662.51 14179.81 27388.48 44
PVSNet_Blended_VisFu70.04 16468.88 18273.53 12582.71 10763.62 11674.81 13981.95 9648.53 25867.16 29179.18 26251.42 24178.38 17554.39 21679.72 27678.60 238
GBi-Net68.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
test168.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19578.29 9577.35 18348.85 25670.22 25283.52 19552.65 23376.93 19855.31 20581.99 24575.49 269
Fast-Effi-MVS+-dtu70.00 16568.74 18673.77 12073.47 23464.53 11071.36 18478.14 17455.81 17168.84 27474.71 30465.36 12675.75 20952.00 23179.00 28181.03 196
eth_miper_zixun_eth69.42 17668.73 18771.50 16667.99 30646.42 26367.58 23778.81 15750.72 23678.13 13580.34 24150.15 24980.34 14060.18 16284.65 21887.74 50
PAPR69.20 17968.66 18870.82 17275.15 20847.77 24675.31 13381.11 11249.62 24966.33 29479.27 25961.53 15882.96 9448.12 26681.50 25781.74 187
test_fmvsm_n_192069.63 17168.45 18973.16 13070.56 27265.86 9870.26 20178.35 16837.69 34574.29 19778.89 26761.10 16768.10 28765.87 11479.07 28085.53 83
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23563.78 28882.13 9154.00 19868.96 26875.17 29958.95 18880.06 14758.55 17782.74 24082.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21848.61 23466.06 26078.32 16950.62 23771.48 24075.54 29568.75 8979.59 15350.55 24378.73 28482.86 161
cl____68.26 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.42 21548.74 26075.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19468.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.43 21448.74 26075.38 21260.94 15589.81 13285.81 76
FMVSNet267.48 20368.21 19465.29 24773.14 24238.94 32168.81 22071.21 24554.81 17876.73 15986.48 15048.63 26374.60 22447.98 26886.11 19782.35 175
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19153.90 19664.62 27973.48 21558.01 14573.91 20681.78 22159.09 18678.22 18048.59 25977.96 29378.31 242
miper_ehance_all_eth68.36 19068.16 19668.98 20665.14 33543.34 28867.07 24778.92 15649.11 25476.21 17277.72 28053.48 22977.92 18761.16 15284.59 22085.68 82
tfpnnormal66.48 21867.93 19762.16 27873.40 23636.65 33863.45 29064.99 28555.97 16872.82 21987.80 12357.06 21169.10 27948.31 26487.54 17080.72 208
LFMVS67.06 21167.89 19864.56 25278.02 16738.25 32870.81 19559.60 31365.18 8371.06 24486.56 14843.85 28575.22 21546.35 28089.63 13680.21 218
AUN-MVS70.22 16267.88 19977.22 8082.96 10471.61 4869.08 21671.39 23749.17 25371.70 23278.07 27837.62 32579.21 15761.81 14489.15 14980.82 203
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23851.42 22668.93 27082.72 21165.62 12262.22 32854.41 21584.67 21677.28 255
tttt051769.46 17567.79 20174.46 10775.34 20452.72 20175.05 13563.27 29954.69 18378.87 12784.37 18426.63 37881.15 12163.95 12887.93 16889.51 25
VPNet65.58 22567.56 20259.65 29879.72 13930.17 37760.27 31362.14 30254.19 19471.24 24286.63 14558.80 18967.62 29144.17 29590.87 11281.18 192
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20350.84 23577.12 14885.42 17256.84 21369.44 27551.07 23891.16 9785.08 91
diffmvspermissive67.42 20667.50 20467.20 23162.26 34945.21 27364.87 27677.04 18748.21 25971.74 23179.70 25258.40 19271.17 26464.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG67.47 20567.48 20567.46 22870.70 26854.69 18966.90 25178.17 17260.88 12370.41 24974.76 30261.22 16573.18 23847.38 27276.87 29974.49 280
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13777.56 10263.57 29760.95 12256.62 35882.75 21051.53 24081.24 12054.36 21790.20 12280.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS67.50 20267.31 20768.08 22258.86 37061.93 12771.43 18275.90 19944.67 29172.42 22480.20 24357.16 20770.44 27058.99 17586.12 19671.88 306
EIA-MVS68.59 18867.16 20872.90 14175.18 20755.64 18469.39 21181.29 10752.44 21364.53 30470.69 33660.33 17482.30 10454.27 21876.31 30380.75 206
xiu_mvs_v1_base_debu67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
FE-MVS68.29 19366.96 21272.26 15874.16 22654.24 19277.55 10373.42 21657.65 15272.66 22084.91 17832.02 35181.49 11648.43 26281.85 24881.04 195
Anonymous20240521166.02 22266.89 21363.43 26574.22 22438.14 32959.00 31966.13 27563.33 10769.76 25985.95 16851.88 23670.50 26944.23 29487.52 17181.64 188
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 31362.04 12670.69 19669.85 25539.46 33269.59 26081.09 22958.15 19568.73 28067.51 9678.16 29277.07 262
cl2267.14 20966.51 21569.03 20563.20 34543.46 28766.88 25276.25 19449.22 25274.48 19477.88 27945.49 27577.40 19460.64 15884.59 22086.24 69
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26561.17 13874.00 15457.18 32540.77 32368.83 27580.88 23263.11 14167.61 29266.94 10674.72 31682.33 178
wuyk23d61.97 26366.25 21749.12 35358.19 37460.77 14966.32 25752.97 35255.93 17090.62 586.91 13273.07 5735.98 39820.63 40291.63 8750.62 388
MAR-MVS67.72 20066.16 21872.40 15574.45 22164.99 10774.87 13777.50 18248.67 25765.78 29868.58 36057.01 21277.79 18946.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SSC-MVS61.79 26666.08 21948.89 35576.91 18410.00 40953.56 35647.37 37468.20 5876.56 16389.21 8954.13 22657.59 34554.75 20974.07 32579.08 234
Anonymous2024052163.55 24766.07 22055.99 31866.18 32644.04 28168.77 22368.80 26146.99 27072.57 22185.84 16939.87 31050.22 35753.40 22892.23 8173.71 288
IterMVS-SCA-FT67.68 20166.07 22072.49 15373.34 23758.20 17163.80 28765.55 28148.10 26076.91 15282.64 21345.20 27678.84 16361.20 15177.89 29480.44 215
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31661.38 13470.03 20369.15 26038.59 33968.41 27780.36 24056.56 21668.32 28566.10 11077.45 29676.46 263
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28961.16 13973.34 15756.83 32840.96 32068.36 27880.08 24762.84 14267.57 29366.90 10874.50 32081.78 186
iter_conf0567.34 20865.62 22472.50 15269.82 28447.06 25672.19 16676.86 18945.32 28572.86 21782.85 20920.53 39683.73 7861.13 15389.02 15486.70 65
fmvsm_s_conf0.1_n66.60 21665.54 22569.77 19268.99 29559.15 16172.12 16756.74 33040.72 32568.25 28180.14 24661.18 16666.92 29967.34 10374.40 32183.23 150
mvs_anonymous65.08 23065.49 22663.83 25963.79 34237.60 33566.52 25669.82 25643.44 30273.46 21086.08 16458.79 19071.75 25951.90 23275.63 30882.15 180
sd_testset63.55 24765.38 22758.07 30873.04 24838.83 32357.41 33165.44 28251.42 22668.93 27082.72 21163.76 13858.11 34341.05 31284.67 21677.28 255
fmvsm_s_conf0.5_n66.34 22165.27 22869.57 19568.20 30359.14 16371.66 17956.48 33140.92 32167.78 28379.46 25561.23 16366.90 30067.39 9974.32 32482.66 167
ECVR-MVScopyleft64.82 23265.22 22963.60 26178.80 15831.14 37266.97 24956.47 33254.23 19169.94 25688.68 10637.23 32674.81 22245.28 29189.41 14384.86 96
iter_conf05_1166.64 21565.20 23070.94 17073.28 23846.89 25766.09 25977.03 18843.44 30263.43 32074.09 31547.19 27083.26 8756.25 19486.01 19882.66 167
test111164.62 23565.19 23162.93 27179.01 15629.91 37865.45 27054.41 34254.09 19671.47 24188.48 11037.02 32774.29 22946.83 27889.94 13084.58 109
thisisatest053067.05 21265.16 23272.73 14773.10 24550.55 21271.26 18863.91 29550.22 24274.46 19580.75 23426.81 37780.25 14259.43 17286.50 19387.37 54
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25470.38 25251.55 22474.72 18883.27 20437.89 32374.44 22647.12 27385.37 20381.57 189
VNet64.01 24665.15 23460.57 29273.28 23835.61 34857.60 33067.08 27054.61 18566.76 29383.37 19956.28 21766.87 30142.19 30485.20 20979.23 232
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23668.79 26249.08 25565.32 30086.26 15658.02 20266.85 30339.33 32079.79 27578.27 243
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23770.93 19286.27 2054.66 18461.35 32886.77 13733.29 33985.67 4755.93 19870.17 35369.62 328
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17642.52 30873.42 21172.79 32349.66 25077.68 19158.12 18084.59 22084.54 110
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 22865.60 26978.96 15445.50 28059.98 33778.61 26951.82 23778.20 18144.30 29284.11 22678.27 243
BH-w/o64.81 23364.29 24166.36 24076.08 19854.71 18865.61 26875.23 20550.10 24471.05 24571.86 32954.33 22579.02 16038.20 33176.14 30465.36 354
WB-MVS60.04 28064.19 24247.59 35776.09 19610.22 40852.44 36146.74 37565.17 8474.07 20287.48 12453.48 22955.28 34849.36 25272.84 33377.28 255
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18160.84 30864.11 29441.23 31664.04 30978.22 27460.00 17648.80 36154.17 21983.71 23271.37 310
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17351.32 20863.63 28972.31 22845.06 28961.70 32569.66 34862.56 14573.93 23449.06 25573.91 32672.31 302
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15674.50 21152.05 21854.78 36775.44 29843.99 28470.42 27153.49 22578.41 28880.59 212
TAMVS65.31 22763.75 24669.97 19082.23 11459.76 15666.78 25363.37 29845.20 28669.79 25879.37 25847.42 26972.17 25134.48 35785.15 21077.99 250
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17151.42 20763.33 29272.33 22745.09 28861.60 32668.04 36262.39 14973.95 23349.07 25473.87 32772.34 301
PM-MVS64.49 23863.61 24867.14 23376.68 18975.15 2768.49 22842.85 38751.17 23277.85 13980.51 23745.76 27266.31 30852.83 22976.35 30259.96 376
TR-MVS64.59 23663.54 24967.73 22775.75 20350.83 21163.39 29170.29 25349.33 25171.55 23874.55 30550.94 24378.46 17140.43 31675.69 30773.89 286
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28751.21 23167.46 28881.01 23150.75 24463.51 32338.47 32988.12 16382.75 164
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22767.14 26943.74 29870.61 24879.22 26047.90 26772.66 24348.75 25773.84 32871.21 314
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20260.18 15369.49 20962.05 30538.81 33874.13 20082.23 21743.76 28668.65 28242.53 30280.63 26674.63 277
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24553.87 34453.60 20469.88 25783.37 19940.52 30670.98 26541.40 31086.78 18981.48 190
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24074.20 21235.80 35572.25 22784.48 18345.67 27371.95 25637.95 33384.97 21170.42 321
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 23956.40 33354.05 19772.04 23086.66 14233.19 34060.17 33443.69 29687.45 17477.42 253
jason64.47 23962.84 25669.34 19976.91 18459.20 15767.15 24665.67 27835.29 35665.16 30176.74 28844.67 28070.68 26654.74 21079.28 27978.14 246
jason: jason.
cascas64.59 23662.77 25770.05 18875.27 20550.02 21961.79 30171.61 23142.46 30963.68 31568.89 35649.33 25480.35 13947.82 27084.05 22779.78 223
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13358.28 17065.26 27265.66 27944.36 29267.30 29075.54 29543.27 28871.77 25737.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20063.81 28662.25 30146.57 27371.51 23980.40 23944.60 28166.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22248.11 37257.24 32453.31 20780.95 10679.39 25749.00 25861.55 33045.92 28480.05 27081.03 196
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25951.33 22969.33 26374.47 30636.83 32874.94 21950.60 24274.72 31680.57 213
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 22861.23 30578.96 15442.04 31059.98 33768.86 35751.82 23778.20 18144.30 29277.77 29572.52 299
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24744.04 29373.06 21578.84 26839.72 31160.33 33355.82 20084.64 21982.88 159
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23941.83 31175.40 18179.12 26330.25 36675.85 20656.30 19379.81 27383.03 156
lupinMVS63.36 24961.49 26568.97 20774.93 20959.19 15865.80 26564.52 29134.68 36163.53 31874.25 31043.19 28970.62 26753.88 22278.67 28577.10 259
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25132.07 34972.42 24938.61 32783.46 23582.02 181
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2640.60 4051.13 40791.61 2865.32 12774.15 23164.01 12688.28 16078.17 245
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 24932.07 34972.09 25235.61 35281.73 25177.08 260
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24356.29 33769.58 25739.32 33370.07 25578.19 27534.93 33472.68 24253.44 22683.74 23081.00 198
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20668.07 23368.00 26733.88 36365.87 29681.25 22737.91 32267.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 27060.85 27162.38 27678.80 15827.88 38667.33 24437.42 40054.23 19167.55 28788.68 10617.87 40474.39 22746.33 28189.41 14384.86 96
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16368.27 26626.96 38669.08 26575.71 29332.09 34867.44 29455.59 20378.90 28273.97 284
ET-MVSNet_ETH3D63.32 25060.69 27371.20 16970.15 28155.66 18365.02 27564.32 29243.28 30768.99 26772.05 32825.46 38478.19 18354.16 22082.80 23979.74 224
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10154.10 19359.93 31572.24 22933.67 36669.00 26675.63 29438.69 31776.93 19836.60 34475.45 31180.81 205
PAPM61.79 26660.37 27566.05 24376.09 19641.87 29969.30 21276.79 19240.64 32653.80 37279.62 25444.38 28282.92 9529.64 37773.11 33273.36 290
FPMVS59.43 28560.07 27657.51 31177.62 17671.52 4962.33 29950.92 35957.40 15569.40 26280.00 24839.14 31561.92 32937.47 33766.36 36939.09 399
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25177.08 260
MVS60.62 27659.97 27762.58 27468.13 30547.28 25368.59 22573.96 21332.19 37059.94 33968.86 35750.48 24677.64 19241.85 30775.74 30662.83 365
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25182.02 181
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32465.80 29772.57 32441.23 29963.92 32046.87 27782.42 24278.33 241
MVP-Stereo61.56 26859.22 28168.58 21679.28 14660.44 15169.20 21471.57 23243.58 30056.42 35978.37 27239.57 31376.46 20534.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19059.63 31647.51 37341.05 31974.58 19374.30 30931.06 36065.31 31351.61 23379.85 27267.39 341
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17364.53 28160.22 31136.91 35065.96 29577.27 28439.66 31268.54 28338.87 32474.89 31571.80 307
1112_ss59.48 28458.99 28460.96 29077.84 17042.39 29761.42 30368.45 26537.96 34359.93 34067.46 36545.11 27865.07 31540.89 31471.81 34275.41 271
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22572.63 22433.54 36861.05 33267.29 36843.62 28771.26 26349.49 25167.84 36672.19 304
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14338.13 33057.62 32966.98 27134.74 35959.62 34377.56 28242.92 29163.65 32238.66 32670.73 34975.35 273
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 24869.97 20458.02 31749.73 24747.28 38973.02 32238.14 31962.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23770.93 19256.40 33332.87 36961.35 32886.66 14233.19 34063.22 32448.50 26170.17 35369.62 328
CVMVSNet59.21 28658.44 28961.51 28373.94 22947.76 24771.31 18664.56 29026.91 38860.34 33670.44 33736.24 33167.65 29053.57 22468.66 36169.12 333
testing358.28 29258.38 29058.00 30977.45 17726.12 39360.78 30943.00 38656.02 16770.18 25375.76 29213.27 41167.24 29748.02 26780.89 26080.65 210
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27663.83 31378.47 27041.20 30063.68 32139.44 31968.99 35974.13 283
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30661.00 33373.48 31745.20 27669.38 27640.34 31770.31 35270.05 322
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32263.58 31769.12 35126.28 38078.34 17748.83 25682.13 24480.26 217
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19473.59 3961.83 30049.00 36847.30 26961.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28339.24 33554.69 36978.14 27644.28 28367.18 29833.75 36270.79 34873.95 285
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24365.07 30283.23 20645.61 27448.11 36630.22 37383.82 22971.07 316
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31479.43 25656.59 21445.57 37236.92 34371.29 34565.25 355
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24164.01 31071.46 33232.49 34571.39 26231.31 36979.57 27771.19 315
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21661.42 30365.18 28447.57 26755.83 36267.15 36923.77 39079.60 15243.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28367.84 28281.17 22851.81 23943.20 38629.30 37879.41 27867.34 343
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21741.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32763.85 31269.91 34740.04 30958.22 34243.49 29975.29 31471.03 317
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13129.97 36949.98 35843.62 29774.40 32164.53 362
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13750.93 21054.07 35465.59 28028.56 38261.53 32774.33 30841.09 30266.52 30733.91 36067.69 36772.92 294
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23860.22 31137.14 34959.12 34576.34 29032.78 34371.99 25539.12 32369.27 35872.47 300
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31255.94 36183.86 19241.19 30150.42 35626.05 38775.38 31266.27 349
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24058.76 32266.22 27427.54 38476.66 16068.69 35925.32 38651.31 35453.42 22773.38 33077.97 251
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26042.52 29544.29 38227.95 38481.88 24766.88 345
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31764.28 30779.82 25044.77 27948.43 36536.24 34887.61 16978.03 248
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 29961.06 33183.38 19825.46 38454.87 34930.11 37481.64 25672.75 297
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29558.05 34964.07 37446.22 27158.83 33946.16 28272.36 33768.12 337
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 26856.04 36073.60 31631.05 36168.06 28840.64 31564.64 37269.77 326
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 23957.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23161.00 30762.93 30035.98 35358.36 34768.93 35536.71 32966.59 30637.62 33663.30 37657.39 382
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23156.77 32933.60 36758.25 34875.52 29730.25 36674.33 22833.27 36369.76 35771.32 311
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25056.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25051.80 35839.89 33058.39 34673.12 32131.69 35458.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22156.70 33565.80 27726.22 38969.42 26165.25 37231.82 35249.98 35849.63 25070.36 35170.71 318
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29130.77 36359.62 33638.21 33073.33 331
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29330.56 38059.87 34160.68 38540.16 30847.47 36748.25 26562.46 37861.58 373
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30343.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30443.85 38440.98 31371.20 34669.10 334
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32074.75 30341.82 29745.83 37138.59 32859.42 38667.98 340
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33872.45 24837.14 33964.22 37475.60 268
UWE-MVS52.94 32352.70 32653.65 32873.56 23227.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25857.28 32232.16 37156.90 35470.39 33932.75 34465.30 31434.29 35858.79 38769.41 330
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30038.08 32057.37 34634.02 35974.40 32166.88 345
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27556.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26430.20 36842.32 38732.77 36566.36 36966.81 347
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29052.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21455.80 34265.90 27624.96 39265.39 29960.64 38627.69 37548.46 36345.88 28567.99 36465.46 353
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18659.10 31847.72 37150.85 23450.31 38585.81 17020.10 39863.97 31936.16 34955.41 39564.55 361
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33348.69 36239.24 32158.51 38965.89 350
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33554.20 35230.34 37269.87 35565.71 352
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32131.03 40029.13 38371.35 34462.70 366
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 21844.34 38378.17 17223.62 39668.95 26962.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29847.07 36930.68 37160.78 38361.13 374
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24551.44 36554.61 34026.95 38763.95 31160.85 38437.86 32444.97 37745.53 28762.97 37759.72 377
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23054.11 35364.96 28624.64 39463.66 31659.61 38928.33 37448.45 36445.38 29067.30 36862.66 368
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 33044.40 38129.15 38268.23 36258.75 379
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30449.41 38660.47 38729.22 37244.73 37942.09 30572.14 34062.33 371
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29558.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22056.75 33460.53 31025.68 39059.74 34257.86 39029.40 37147.41 36843.10 30063.66 37564.08 363
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29645.40 37431.28 37064.42 37362.47 369
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36533.87 39929.29 37972.61 33567.39 341
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30154.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30741.91 39031.85 36761.97 38060.35 375
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30455.81 36367.65 36429.22 37243.77 38525.73 39169.87 35564.62 360
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31551.79 37856.48 39139.44 31449.91 36021.42 40055.35 39650.85 387
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22633.96 33655.48 34724.46 39556.79 39138.43 400
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35754.26 35125.93 38855.93 39265.07 356
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38242.04 38937.19 33855.50 39465.78 351
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 28963.15 37731.82 35230.60 40139.19 32262.28 37945.53 395
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35739.31 39425.93 38855.93 39265.07 356
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27439.55 40051.15 39726.00 38145.37 37537.68 33476.41 30145.69 394
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 20939.91 38967.56 26821.84 40051.94 37750.79 39833.83 33739.77 39335.25 35561.50 38162.38 370
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23655.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28138.83 31639.29 39525.32 39360.12 38548.08 390
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27238.00 40248.43 40026.42 37946.27 37037.11 34075.38 31246.03 393
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19848.08 37342.40 38922.36 39844.01 39853.05 39542.60 29445.49 37331.69 36861.36 38241.79 397
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17242.47 38523.85 40923.30 39764.80 30362.17 38127.12 37640.59 39229.17 38148.11 39957.69 381
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33229.51 40219.08 40367.85 36550.22 389
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30545.12 37623.15 39734.96 40241.16 398
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20533.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22236.54 39524.37 40819.56 40145.76 39153.46 39432.99 34237.97 39726.17 38635.52 40144.99 396
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31827.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2540.00 4090.00 41074.25 31068.16 950.00 4100.00 4090.00 4080.00 406
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3834.57 40711.61 40527.37 4031.96 403
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
PC_three_145246.98 27181.83 9286.28 15466.55 11584.47 7163.31 13890.78 11383.49 137
No_MVS79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
ZD-MVS83.91 8669.36 6981.09 11458.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
IU-MVS86.12 5360.90 14480.38 13045.49 28281.31 10175.64 4194.39 4184.65 102
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10886.01 3161.72 14789.79 13483.08 154
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 148
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
save fliter87.00 3967.23 8679.24 8577.94 17756.65 163
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 119
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 148
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
GSMVS70.05 322
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35570.05 322
sam_mvs31.21 359
ambc70.10 18777.74 17250.21 21774.28 15177.93 17879.26 12388.29 11554.11 22779.77 14964.43 12291.10 10280.30 216
MTGPAbinary80.63 124
test_post166.63 2542.08 40530.66 36459.33 33740.34 317
test_post1.99 40630.91 36254.76 350
patchmatchnet-post68.99 35231.32 35669.38 276
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20842.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24138.70 325
test9_res72.12 6991.37 9277.40 254
TEST985.47 6369.32 7076.42 11878.69 16253.73 20376.97 14986.74 13866.84 10781.10 123
test_885.09 6967.89 7976.26 12378.66 16454.00 19876.89 15386.72 14066.60 11380.89 133
agg_prior270.70 7490.93 10778.55 240
agg_prior84.44 8166.02 9778.62 16576.95 15180.34 140
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
test_prior470.14 6377.57 101
test_prior275.57 13258.92 13976.53 16686.78 13667.83 10069.81 7792.76 73
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 171
旧先验271.17 18945.11 28778.54 13161.28 33159.19 174
新几何271.33 185
新几何169.99 18988.37 3471.34 5162.08 30443.85 29474.99 18486.11 16352.85 23270.57 26850.99 23983.23 23768.05 339
旧先验184.55 7860.36 15263.69 29687.05 13054.65 22383.34 23669.66 327
无先验74.82 13870.94 24847.75 26676.85 20154.47 21372.09 305
原ACMM274.78 142
原ACMM173.90 11885.90 5765.15 10681.67 10050.97 23374.25 19886.16 16061.60 15783.54 8156.75 18791.08 10373.00 293
test22287.30 3769.15 7367.85 23459.59 31441.06 31873.05 21685.72 17148.03 26680.65 26466.92 344
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata64.13 25585.87 5963.34 11861.80 30747.83 26476.42 17086.60 14748.83 25962.31 32754.46 21481.26 25866.74 348
testdata168.34 23057.24 156
test1276.51 8682.28 11360.94 14381.64 10173.60 20764.88 13085.19 5990.42 12083.38 144
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 170
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 415
nn0.00 415
door-mid55.02 338
lessismore_v072.75 14579.60 14156.83 17757.37 32183.80 7289.01 9747.45 26878.74 16664.39 12386.49 19482.69 166
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
test1182.71 85
door52.91 353
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 234
ACMP_Plane82.37 11077.32 10659.08 13471.58 234
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 132
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9463.07 12185.97 166
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 37032.93 36471.48 309
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12766.87 6483.64 7486.18 15870.25 7879.90 14861.12 15488.95 15587.56 53
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402