This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 13983.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 11993.61 6072.28 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14683.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 31877.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33577.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31577.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14391.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12096.10 487.21 57
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29278.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11195.62 994.88 5
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31776.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 10991.24 9687.61 52
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
v7n79.37 5680.41 5276.28 9078.67 16155.81 18179.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17778.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 20987.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_040278.17 6979.48 5974.24 11383.50 9159.15 16072.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11788.68 15781.20 191
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14392.40 7778.92 236
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28074.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21091.64 8689.08 32
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20782.60 9870.08 7792.80 7189.25 28
tt080576.12 8378.43 6869.20 20081.32 12641.37 30076.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12492.40 7787.17 60
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13483.29 4880.34 13257.43 15486.65 3191.79 2350.52 24386.01 3171.36 7094.65 3291.62 11
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29470.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20295.47 1091.35 13
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17580.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 26974.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 17992.77 7289.30 27
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 9991.26 9583.50 138
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
testf175.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13280.58 6682.12 9153.54 20583.93 7091.03 3749.49 24985.97 3373.26 5793.08 6791.59 12
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18676.47 11675.49 20064.10 9587.73 1792.24 1750.45 24581.30 11867.41 9791.46 9286.04 73
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11591.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1075.69 8676.20 8774.16 11474.44 22248.69 23275.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22772.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22674.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15092.34 7988.94 37
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14580.18 7674.88 20566.93 6269.11 26488.95 10157.84 20386.12 2976.63 3789.77 13685.28 86
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14088.14 16271.73 301
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26669.26 21278.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19494.98 2091.05 15
v875.07 9675.64 9473.35 12773.42 23547.46 25175.20 13581.45 10360.05 12885.64 4589.26 8858.08 19881.80 11169.71 8187.97 16790.79 19
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26669.47 20980.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19494.98 2091.93 8
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24370.41 20081.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18695.25 1490.94 17
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24179.43 8278.04 17470.09 4979.17 12488.02 12253.04 22983.60 8158.05 18193.76 5990.79 19
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 16988.54 15879.56 225
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16577.32 10784.12 6559.08 13471.58 23485.96 16858.09 19685.30 5367.38 10189.16 14783.73 135
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39473.86 5286.31 1978.84 1994.03 5384.64 104
FC-MVSNet-test73.32 11874.78 10168.93 20879.21 14936.57 33771.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18294.56 3491.23 14
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13082.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14179.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26790.00 12873.37 284
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13177.45 10681.98 9462.47 11479.06 12580.19 24461.83 15478.79 16459.83 16887.35 17679.54 228
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18380.89 26089.17 31
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23562.19 15283.86 7668.02 9090.92 10983.65 136
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16690.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23466.74 11281.96 10861.74 14689.40 14585.69 81
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19681.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 17881.66 25582.87 162
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28165.65 26577.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20595.63 891.93 8
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23287.19 18382.56 172
baseline73.10 12273.96 11270.51 17771.46 25846.39 26372.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12587.27 18087.11 61
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 25970.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11468.84 21178.74 16037.74 33171.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 18893.36 6490.51 21
Anonymous2024052972.56 13973.79 11568.86 21076.89 18745.21 27168.80 22177.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 23890.00 12887.18 59
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20174.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13781.84 24983.18 153
pmmvs671.82 14773.66 11766.31 23975.94 20042.01 29666.99 24772.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23390.46 12087.22 56
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18474.69 14662.04 30466.16 7184.76 6093.23 549.47 25080.97 12865.66 11486.67 19185.02 94
v119273.40 11673.42 12073.32 12974.65 21948.67 23372.21 16681.73 9852.76 21181.85 9284.56 18257.12 20882.24 10568.58 8487.33 17789.06 33
v114473.29 11973.39 12173.01 13674.12 22748.11 23972.01 17181.08 11453.83 20281.77 9484.68 18058.07 19981.91 10968.10 8886.86 18688.99 36
canonicalmvs72.29 14473.38 12269.04 20374.23 22347.37 25273.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18587.28 17984.40 118
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 19880.45 6877.32 18365.11 8576.47 16886.80 13549.47 25083.77 7753.89 21992.72 7488.81 41
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 15974.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12189.09 15380.73 207
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17378.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16491.03 10580.45 214
Baseline_NR-MVSNet70.62 15973.19 12662.92 27076.97 18234.44 35368.84 21770.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 20995.27 1385.22 87
v124073.06 12573.14 12772.84 14574.74 21547.27 25471.88 17881.11 11151.80 22182.28 8984.21 18756.22 21682.34 10268.82 8387.17 18488.91 38
VDDNet71.60 14973.13 12867.02 23286.29 4741.11 30269.97 20366.50 27068.72 5574.74 18791.70 2559.90 17875.81 20748.58 25891.72 8484.15 125
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22271.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14419272.99 12973.06 13072.77 14674.58 22047.48 25071.90 17780.44 12851.57 22481.46 10084.11 18958.04 20082.12 10667.98 9287.47 17388.70 43
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30353.70 22185.33 20681.92 184
v192192072.96 13172.98 13272.89 14474.67 21647.58 24971.92 17680.69 12051.70 22381.69 9883.89 19256.58 21482.25 10468.34 8687.36 17588.82 40
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 21972.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 14986.15 19676.32 262
Gipumacopyleft69.55 17372.83 13459.70 29563.63 33453.97 19380.08 7875.93 19664.24 9473.49 20988.93 10257.89 20262.46 31959.75 17091.55 9162.67 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29151.92 22083.13 7790.26 7039.21 31069.91 27270.73 7391.60 8984.56 111
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24689.95 13080.89 201
dcpmvs_271.02 15572.65 13866.16 24076.06 19950.49 21371.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29461.54 14883.71 23280.71 209
v2v48272.55 14172.58 13972.43 15672.92 24846.72 25871.41 18479.13 15155.27 17481.17 10485.25 17655.41 21881.13 12167.25 10585.46 20289.43 26
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23170.62 7568.69 28069.74 8083.60 23483.14 154
WR-MVS71.20 15272.48 14167.36 22784.98 7135.70 34564.43 28068.66 26065.05 8681.49 9986.43 15357.57 20576.48 20350.36 24293.32 6589.90 23
FMVSNet171.06 15372.48 14166.81 23377.65 17540.68 30671.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24388.05 16484.54 112
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19068.77 22283.43 7552.12 21676.79 15874.44 30669.54 8583.91 7555.88 19793.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21574.72 14582.73 8362.62 11170.77 24676.83 28769.96 8180.97 12860.20 16178.43 28783.45 144
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17873.34 15884.67 5162.04 11572.19 22970.81 33265.90 12085.24 5658.64 17684.96 21481.95 183
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16372.24 16571.56 23263.92 9678.59 12871.59 32866.22 11778.60 16667.58 9580.32 26789.00 35
CANet73.00 12871.84 14976.48 8775.82 20161.28 13574.81 14080.37 13063.17 10862.43 32180.50 23961.10 16785.16 6064.00 12784.34 22483.01 159
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 19966.64 26956.87 15876.81 15781.76 22568.78 8871.76 25761.81 14483.74 23073.18 286
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15373.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25689.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16872.02 17071.50 23363.53 10278.58 13071.39 33165.98 11878.53 16767.30 10480.18 26989.23 29
TransMVSNet (Re)69.62 17171.63 15363.57 26076.51 19035.93 34365.75 26471.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24589.48 14184.38 119
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19871.12 24554.28 18977.89 13783.41 19749.04 25380.98 12763.62 13390.77 11678.58 239
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25660.73 12474.39 19678.44 27157.72 20482.78 9560.16 16389.60 13879.11 233
LCM-MVSNet-Re69.10 18071.57 15661.70 27970.37 27134.30 35561.45 30079.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30187.33 17777.85 252
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 17980.99 6176.84 18862.48 11371.24 24277.51 28361.51 15980.96 13152.04 22885.76 20171.22 306
VDD-MVS70.81 15771.44 15868.91 20979.07 15546.51 26067.82 23470.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23590.28 12284.61 107
MG-MVS70.47 16171.34 15967.85 22279.26 14740.42 31074.67 14775.15 20458.41 14268.74 27688.14 12156.08 21783.69 8059.90 16781.71 25479.43 230
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 21978.47 16960.82 15781.07 25975.45 268
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20476.45 11876.12 19359.07 13774.04 20486.18 15952.18 23379.43 15459.75 17081.76 25084.03 126
alignmvs70.54 16071.00 16269.15 20273.50 23348.04 24269.85 20679.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18487.21 18284.72 102
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16571.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20680.84 26272.74 291
V4271.06 15370.83 16471.72 16467.25 30547.14 25565.94 25980.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11280.81 26389.23 29
MVS_Test69.84 16870.71 16567.24 22867.49 30443.25 28869.87 20581.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11078.74 28383.96 127
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21471.45 23554.28 18977.89 13778.26 27349.04 25379.23 15563.62 13389.13 15180.92 200
VPA-MVSNet68.71 18570.37 16763.72 25876.13 19538.06 32964.10 28271.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 26990.15 12583.37 147
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29180.63 23759.44 18281.74 11346.91 27484.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ANet_high67.08 20969.94 16958.51 30457.55 36527.09 38058.43 32376.80 18963.56 10182.40 8891.93 2059.82 18064.98 31050.10 24488.86 15683.46 143
c3_l69.82 16969.89 17069.61 19466.24 31443.48 28468.12 23179.61 14351.43 22677.72 14180.18 24554.61 22278.15 18363.62 13387.50 17287.20 58
pm-mvs168.40 18969.85 17164.04 25673.10 24339.94 31264.61 27870.50 25055.52 17373.97 20589.33 8663.91 13768.38 28349.68 24788.02 16583.81 131
BH-untuned69.39 17669.46 17269.18 20177.96 16956.88 17468.47 22877.53 18056.77 16077.79 14079.63 25360.30 17580.20 14446.04 28180.65 26470.47 312
v14869.38 17769.39 17369.36 19769.14 28544.56 27568.83 21872.70 22254.79 18178.59 12884.12 18854.69 22076.74 20259.40 17382.20 24386.79 63
TinyColmap67.98 19669.28 17464.08 25467.98 29946.82 25770.04 20275.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28488.01 16672.83 289
QAPM69.18 17969.26 17568.94 20771.61 25752.58 20280.37 7178.79 15949.63 24973.51 20885.14 17753.66 22679.12 15755.11 20475.54 30375.11 273
MIMVSNet166.57 21469.23 17658.59 30381.26 12837.73 33264.06 28357.62 31657.02 15778.40 13290.75 4662.65 14458.10 33641.77 30689.58 14079.95 220
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16470.53 19781.23 10947.79 26564.16 30780.21 24251.32 24083.12 9060.14 16484.95 21574.83 274
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33186.14 16252.37 23277.12 19550.67 23985.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15783.98 3675.72 19852.27 21463.53 31776.74 28843.19 28480.56 13472.28 6778.67 28578.14 246
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22271.31 18771.32 23858.22 14375.40 18170.44 33458.16 19475.85 20562.51 14179.81 27388.48 44
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29079.18 26251.42 23978.38 17454.39 21479.72 27678.60 238
GBi-Net68.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
test168.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21270.56 26853.91 19478.29 9677.35 18248.85 25670.22 25283.52 19652.65 23176.93 19755.31 20381.99 24575.49 267
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27474.71 30365.36 12675.75 20852.00 22979.00 28181.03 196
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26167.58 23678.81 15650.72 23778.13 13580.34 24150.15 24780.34 13960.18 16284.65 21887.74 50
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24675.31 13481.11 11149.62 25066.33 29379.27 25961.53 15882.96 9348.12 26481.50 25781.74 187
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20178.35 16737.69 33674.29 19778.89 26761.10 16768.10 28565.87 11379.07 28085.53 83
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23563.78 28682.13 9054.00 19868.96 26875.17 29958.95 18880.06 14658.55 17782.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23466.06 25878.32 16850.62 23871.48 24075.54 29568.75 8979.59 15250.55 24178.73 28482.86 163
cl____68.26 19568.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.42 21748.74 25775.38 21160.92 15689.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.43 21648.74 25775.38 21160.94 15589.81 13385.81 76
FMVSNet267.48 20368.21 19365.29 24573.14 24038.94 31968.81 21971.21 24454.81 17876.73 15986.48 15148.63 25974.60 22347.98 26686.11 19882.35 175
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19564.62 27773.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25777.96 29278.31 242
miper_ehance_all_eth68.36 19068.16 19568.98 20565.14 32543.34 28667.07 24678.92 15549.11 25476.21 17277.72 28053.48 22777.92 18661.16 15284.59 22085.68 82
tfpnnormal66.48 21567.93 19662.16 27673.40 23636.65 33663.45 28864.99 28255.97 16872.82 21987.80 12457.06 21069.10 27948.31 26287.54 17080.72 208
LFMVS67.06 21067.89 19764.56 25078.02 16738.25 32670.81 19659.60 31165.18 8371.06 24486.56 14943.85 28075.22 21446.35 27889.63 13780.21 218
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21571.39 23649.17 25371.70 23278.07 27837.62 32179.21 15661.81 14489.15 14980.82 203
SDMVSNet66.36 21767.85 19961.88 27873.04 24646.14 26558.54 32171.36 23751.42 22768.93 27082.72 21365.62 12262.22 32254.41 21384.67 21677.28 255
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20075.05 13663.27 29754.69 18378.87 12784.37 18526.63 37481.15 12063.95 12887.93 16889.51 25
VPNet65.58 22267.56 20159.65 29679.72 13930.17 37260.27 31162.14 30054.19 19471.24 24286.63 14658.80 18967.62 28944.17 29390.87 11381.18 192
KD-MVS_self_test66.38 21667.51 20262.97 26861.76 34134.39 35458.11 32575.30 20150.84 23677.12 14885.42 17356.84 21269.44 27551.07 23691.16 9885.08 92
diffmvspermissive67.42 20567.50 20367.20 22962.26 33945.21 27164.87 27477.04 18648.21 25971.74 23179.70 25258.40 19271.17 26364.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG67.47 20467.48 20467.46 22670.70 26554.69 18866.90 25078.17 17160.88 12370.41 24974.76 30161.22 16573.18 23747.38 27076.87 29574.49 276
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13677.56 10363.57 29560.95 12256.62 35182.75 21251.53 23881.24 11954.36 21590.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS67.50 20267.31 20668.08 22058.86 36061.93 12771.43 18375.90 19744.67 28972.42 22480.20 24357.16 20670.44 26958.99 17586.12 19771.88 299
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18369.39 21081.29 10652.44 21364.53 30370.69 33360.33 17482.30 10354.27 21676.31 29880.75 206
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20375.96 12973.54 21350.56 23969.90 25782.85 21024.76 38383.73 7865.40 11686.33 19585.22 87
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19177.55 10473.42 21557.65 15272.66 22084.91 17932.02 34781.49 11548.43 26081.85 24881.04 195
Anonymous20240521166.02 21966.89 21363.43 26374.22 22438.14 32759.00 31766.13 27263.33 10769.76 26085.95 16951.88 23470.50 26844.23 29287.52 17181.64 188
cl2267.14 20866.51 21469.03 20463.20 33543.46 28566.88 25176.25 19249.22 25274.48 19477.88 27945.49 27077.40 19360.64 15884.59 22086.24 69
fmvsm_s_conf0.1_n_a67.37 20666.36 21570.37 17970.86 26261.17 13774.00 15557.18 32340.77 31968.83 27580.88 23363.11 14167.61 29066.94 10674.72 31082.33 178
wuyk23d61.97 26066.25 21649.12 34458.19 36460.77 14866.32 25652.97 34855.93 17090.62 586.91 13373.07 5735.98 38920.63 39391.63 8750.62 379
MAR-MVS67.72 20066.16 21772.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29768.58 35357.01 21177.79 18846.68 27781.92 24674.42 277
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SSC-MVS61.79 26366.08 21848.89 34676.91 18410.00 40053.56 34847.37 36668.20 5876.56 16389.21 9054.13 22457.59 33754.75 20774.07 31979.08 234
Anonymous2024052163.55 24466.07 21955.99 31466.18 31644.04 27968.77 22268.80 25846.99 27072.57 22185.84 17039.87 30550.22 34853.40 22692.23 8173.71 283
IterMVS-SCA-FT67.68 20166.07 21972.49 15573.34 23758.20 17063.80 28565.55 27848.10 26076.91 15282.64 21545.20 27178.84 16261.20 15177.89 29380.44 215
fmvsm_s_conf0.5_n_a67.00 21265.95 22170.17 18469.72 28161.16 13873.34 15856.83 32640.96 31668.36 27780.08 24762.84 14267.57 29166.90 10874.50 31481.78 186
iter_conf0567.34 20765.62 22272.50 15469.82 27647.06 25672.19 16776.86 18745.32 28472.86 21782.85 21020.53 39083.73 7861.13 15389.02 15486.70 65
fmvsm_s_conf0.1_n66.60 21365.54 22369.77 19268.99 28759.15 16072.12 16856.74 32840.72 32168.25 28080.14 24661.18 16666.92 29767.34 10374.40 31583.23 152
mvs_anonymous65.08 22765.49 22463.83 25763.79 33237.60 33366.52 25569.82 25443.44 29973.46 21086.08 16558.79 19071.75 25851.90 23075.63 30282.15 180
sd_testset63.55 24465.38 22558.07 30673.04 24638.83 32157.41 32865.44 27951.42 22768.93 27082.72 21363.76 13858.11 33541.05 31084.67 21677.28 255
fmvsm_s_conf0.5_n66.34 21865.27 22669.57 19568.20 29559.14 16271.66 18056.48 32940.92 31767.78 28279.46 25561.23 16366.90 29867.39 9974.32 31882.66 169
ECVR-MVScopyleft64.82 22965.22 22763.60 25978.80 15831.14 36966.97 24856.47 33054.23 19169.94 25688.68 10737.23 32274.81 22145.28 28989.41 14384.86 97
test111164.62 23265.19 22862.93 26979.01 15629.91 37365.45 26854.41 33954.09 19671.47 24188.48 11137.02 32374.29 22846.83 27689.94 13184.58 110
thisisatest053067.05 21165.16 22972.73 14973.10 24350.55 21271.26 18963.91 29350.22 24374.46 19580.75 23526.81 37380.25 14159.43 17286.50 19387.37 54
FMVSNet365.00 22865.16 22964.52 25169.47 28237.56 33466.63 25370.38 25151.55 22574.72 18883.27 20537.89 31974.44 22547.12 27185.37 20381.57 189
VNet64.01 24365.15 23160.57 29073.28 23835.61 34657.60 32767.08 26754.61 18566.76 29283.37 20056.28 21566.87 29942.19 30285.20 20979.23 232
ab-mvs64.11 24165.13 23261.05 28671.99 25538.03 33067.59 23568.79 25949.08 25565.32 29986.26 15758.02 20166.85 30139.33 31879.79 27578.27 243
test_yl65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
DCV-MVSNet65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
RPMNet65.77 22165.08 23567.84 22366.37 31148.24 23770.93 19386.27 1954.66 18461.35 32586.77 13833.29 33585.67 4755.93 19670.17 34469.62 320
miper_enhance_ethall65.86 22065.05 23668.28 21961.62 34342.62 29364.74 27577.97 17542.52 30473.42 21172.79 32149.66 24877.68 19058.12 18084.59 22084.54 112
PVSNet_BlendedMVS65.38 22364.30 23768.61 21369.81 27749.36 22865.60 26778.96 15345.50 27959.98 33478.61 26951.82 23578.20 18044.30 29084.11 22678.27 243
BH-w/o64.81 23064.29 23866.36 23876.08 19854.71 18765.61 26675.23 20350.10 24571.05 24571.86 32754.33 22379.02 15938.20 32976.14 29965.36 345
WB-MVS60.04 27764.19 23947.59 34876.09 19610.22 39952.44 35346.74 36765.17 8474.07 20287.48 12553.48 22755.28 34049.36 25072.84 32677.28 255
patch_mono-262.73 25664.08 24058.68 30270.36 27255.87 18060.84 30664.11 29241.23 31264.04 30878.22 27460.00 17648.80 35254.17 21783.71 23271.37 303
xiu_mvs_v2_base64.43 23763.96 24165.85 24477.72 17351.32 20863.63 28772.31 22745.06 28861.70 32269.66 34262.56 14573.93 23349.06 25373.91 32072.31 295
CANet_DTU64.04 24263.83 24264.66 24968.39 29142.97 29073.45 15774.50 20952.05 21854.78 35975.44 29843.99 27970.42 27053.49 22378.41 28880.59 212
TAMVS65.31 22463.75 24369.97 19082.23 11559.76 15566.78 25263.37 29645.20 28569.79 25979.37 25847.42 26572.17 25034.48 35385.15 21077.99 250
PS-MVSNAJ64.27 24063.73 24465.90 24377.82 17151.42 20763.33 29072.33 22645.09 28761.60 32368.04 35462.39 14973.95 23249.07 25273.87 32172.34 294
PM-MVS64.49 23563.61 24567.14 23176.68 18975.15 2768.49 22742.85 37851.17 23377.85 13980.51 23845.76 26766.31 30652.83 22776.35 29759.96 367
TR-MVS64.59 23363.54 24667.73 22575.75 20350.83 21163.39 28970.29 25249.33 25171.55 23874.55 30450.94 24178.46 17040.43 31475.69 30173.89 281
CL-MVSNet_self_test62.44 25863.40 24759.55 29772.34 25232.38 36256.39 33264.84 28451.21 23267.46 28781.01 23250.75 24263.51 31738.47 32788.12 16382.75 166
OpenMVS_ROBcopyleft54.93 1763.23 24963.28 24863.07 26669.81 27745.34 27068.52 22667.14 26643.74 29670.61 24879.22 26047.90 26372.66 24248.75 25573.84 32271.21 307
pmmvs-eth3d64.41 23863.27 24967.82 22475.81 20260.18 15269.49 20862.05 30338.81 33274.13 20082.23 21943.76 28168.65 28142.53 30080.63 26674.63 275
Vis-MVSNet (Re-imp)62.74 25563.21 25061.34 28472.19 25331.56 36667.31 24453.87 34053.60 20469.88 25883.37 20040.52 30170.98 26441.40 30886.78 18981.48 190
USDC62.80 25463.10 25161.89 27765.19 32243.30 28767.42 23974.20 21035.80 34672.25 22784.48 18445.67 26871.95 25537.95 33184.97 21170.42 314
Patchmtry60.91 26963.01 25254.62 31966.10 31726.27 38367.47 23856.40 33154.05 19772.04 23086.66 14333.19 33660.17 32743.69 29487.45 17477.42 253
jason64.47 23662.84 25369.34 19976.91 18459.20 15667.15 24565.67 27535.29 34765.16 30076.74 28844.67 27570.68 26554.74 20879.28 27978.14 246
jason: jason.
cascas64.59 23362.77 25470.05 18875.27 20550.02 21961.79 29971.61 23042.46 30563.68 31468.89 34949.33 25280.35 13847.82 26884.05 22779.78 223
CDS-MVSNet64.33 23962.66 25569.35 19880.44 13458.28 16965.26 27065.66 27644.36 29067.30 28975.54 29543.27 28371.77 25637.68 33284.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS63.12 25062.48 25665.02 24866.34 31352.86 19963.81 28462.25 29946.57 27371.51 23980.40 24044.60 27666.82 30251.38 23475.47 30475.38 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs62.34 25961.73 25764.16 25261.64 34249.90 22248.11 36357.24 32253.31 20780.95 10679.39 25749.00 25561.55 32445.92 28280.05 27081.03 196
GA-MVS62.91 25261.66 25866.66 23767.09 30744.49 27661.18 30469.36 25751.33 23069.33 26374.47 30536.83 32474.94 21850.60 24074.72 31080.57 213
PVSNet_Blended62.90 25361.64 25966.69 23669.81 27749.36 22861.23 30378.96 15342.04 30659.98 33468.86 35051.82 23578.20 18044.30 29077.77 29472.52 292
miper_lstm_enhance61.97 26061.63 26062.98 26760.04 35045.74 26847.53 36570.95 24644.04 29173.06 21578.84 26839.72 30660.33 32655.82 19884.64 21982.88 161
MVSTER63.29 24861.60 26168.36 21559.77 35646.21 26460.62 30871.32 23841.83 30775.40 18179.12 26330.25 36275.85 20556.30 19379.81 27383.03 158
lupinMVS63.36 24661.49 26268.97 20674.93 20959.19 15765.80 26364.52 28834.68 35263.53 31774.25 30943.19 28470.62 26653.88 22078.67 28577.10 259
thres600view761.82 26261.38 26363.12 26571.81 25634.93 35064.64 27656.99 32454.78 18270.33 25179.74 25132.07 34572.42 24838.61 32583.46 23582.02 181
EGC-MVSNET64.77 23161.17 26475.60 9886.90 4274.47 3084.04 3568.62 2610.60 3961.13 39891.61 2865.32 12774.15 23064.01 12688.28 16078.17 245
thres100view90061.17 26861.09 26561.39 28372.14 25435.01 34965.42 26956.99 32455.23 17570.71 24779.90 24932.07 34572.09 25135.61 34881.73 25177.08 260
D2MVS62.58 25761.05 26667.20 22963.85 33147.92 24356.29 33369.58 25539.32 32770.07 25578.19 27534.93 33072.68 24153.44 22483.74 23081.00 198
CMPMVSbinary48.73 2061.54 26660.89 26763.52 26161.08 34551.55 20668.07 23268.00 26433.88 35465.87 29581.25 22937.91 31867.71 28749.32 25182.60 24171.31 305
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 26760.85 26862.38 27478.80 15827.88 37967.33 24337.42 39154.23 19167.55 28688.68 10717.87 39574.39 22646.33 27989.41 14384.86 97
EU-MVSNet60.82 27060.80 26960.86 28968.37 29241.16 30172.27 16468.27 26326.96 37769.08 26575.71 29332.09 34467.44 29255.59 20178.90 28273.97 279
ET-MVSNet_ETH3D63.32 24760.69 27071.20 17170.15 27455.66 18265.02 27364.32 28943.28 30368.99 26772.05 32625.46 38078.19 18254.16 21882.80 23979.74 224
HyFIR lowres test63.01 25160.47 27170.61 17483.04 10254.10 19259.93 31372.24 22833.67 35769.00 26675.63 29438.69 31376.93 19736.60 34075.45 30580.81 205
PAPM61.79 26360.37 27266.05 24176.09 19641.87 29769.30 21176.79 19040.64 32253.80 36479.62 25444.38 27782.92 9429.64 37273.11 32573.36 285
FPMVS59.43 28260.07 27357.51 30977.62 17671.52 4962.33 29750.92 35357.40 15569.40 26280.00 24839.14 31161.92 32337.47 33566.36 36039.09 390
tfpn200view960.35 27559.97 27461.51 28170.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25177.08 260
MVS60.62 27359.97 27462.58 27268.13 29747.28 25368.59 22473.96 21132.19 36159.94 33668.86 35050.48 24477.64 19141.85 30575.74 30062.83 356
thres40060.77 27259.97 27463.15 26470.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25182.02 181
ppachtmachnet_test60.26 27659.61 27762.20 27567.70 30244.33 27758.18 32460.96 30740.75 32065.80 29672.57 32241.23 29463.92 31446.87 27582.42 24278.33 241
MVP-Stereo61.56 26559.22 27868.58 21479.28 14660.44 15069.20 21371.57 23143.58 29856.42 35278.37 27239.57 30876.46 20434.86 35260.16 37568.86 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test59.95 27859.12 27962.44 27372.46 25154.61 18959.63 31447.51 36541.05 31574.58 19374.30 30831.06 35665.31 30751.61 23179.85 27267.39 332
pmmvs460.78 27159.04 28066.00 24273.06 24557.67 17264.53 27960.22 30936.91 34165.96 29477.27 28439.66 30768.54 28238.87 32274.89 30971.80 300
1112_ss59.48 28158.99 28160.96 28877.84 17042.39 29561.42 30168.45 26237.96 33559.93 33767.46 35645.11 27365.07 30940.89 31271.81 33475.41 269
131459.83 27958.86 28262.74 27165.71 31944.78 27468.59 22472.63 22333.54 35961.05 32967.29 35943.62 28271.26 26249.49 24967.84 35772.19 297
Test_1112_low_res58.78 28658.69 28359.04 30179.41 14338.13 32857.62 32666.98 26834.74 35059.62 34077.56 28242.92 28663.65 31638.66 32470.73 34075.35 271
EPNet_dtu58.93 28558.52 28460.16 29467.91 30047.70 24869.97 20358.02 31549.73 24847.28 38073.02 32038.14 31562.34 32036.57 34185.99 19970.43 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet58.96 28458.49 28560.36 29266.37 31148.24 23770.93 19356.40 33132.87 36061.35 32586.66 14333.19 33663.22 31848.50 25970.17 34469.62 320
CVMVSNet59.21 28358.44 28661.51 28173.94 22947.76 24771.31 18764.56 28726.91 37960.34 33370.44 33436.24 32767.65 28853.57 22268.66 35269.12 325
testing358.28 28958.38 28758.00 30777.45 17726.12 38460.78 30743.00 37756.02 16770.18 25375.76 29213.27 40267.24 29548.02 26580.89 26080.65 210
baseline157.82 29258.36 28856.19 31369.17 28430.76 37162.94 29555.21 33446.04 27563.83 31278.47 27041.20 29563.68 31539.44 31768.99 35074.13 278
SCA58.57 28858.04 28960.17 29370.17 27341.07 30365.19 27153.38 34643.34 30261.00 33073.48 31545.20 27169.38 27640.34 31570.31 34370.05 315
thisisatest051560.48 27457.86 29068.34 21667.25 30546.42 26160.58 30962.14 30040.82 31863.58 31669.12 34526.28 37678.34 17648.83 25482.13 24480.26 217
PatchMatch-RL58.68 28757.72 29161.57 28076.21 19473.59 3961.83 29849.00 36047.30 26961.08 32768.97 34750.16 24659.01 33036.06 34768.84 35152.10 377
HY-MVS49.31 1957.96 29157.59 29259.10 30066.85 31036.17 34065.13 27265.39 28039.24 32954.69 36178.14 27644.28 27867.18 29633.75 35870.79 33973.95 280
test20.0355.74 30057.51 29350.42 33559.89 35532.09 36450.63 35749.01 35950.11 24465.07 30183.23 20745.61 26948.11 35730.22 36883.82 22971.07 309
XXY-MVS55.19 30357.40 29448.56 34764.45 32934.84 35251.54 35553.59 34238.99 33163.79 31379.43 25656.59 21345.57 36336.92 33971.29 33665.25 346
thres20057.55 29357.02 29559.17 29867.89 30134.93 35058.91 31957.25 32150.24 24264.01 30971.46 33032.49 34171.39 26131.31 36479.57 27771.19 308
IB-MVS49.67 1859.69 28056.96 29667.90 22168.19 29650.30 21661.42 30165.18 28147.57 26755.83 35567.15 36023.77 38679.60 15143.56 29679.97 27173.79 282
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testgi54.00 31256.86 29745.45 35758.20 36325.81 38549.05 35949.50 35845.43 28267.84 28181.17 23051.81 23743.20 37729.30 37379.41 27867.34 334
gg-mvs-nofinetune55.75 29956.75 29852.72 32762.87 33628.04 37868.92 21641.36 38671.09 4150.80 37292.63 1220.74 38966.86 30029.97 37072.41 32863.25 355
our_test_356.46 29656.51 29956.30 31267.70 30239.66 31455.36 34052.34 35140.57 32363.85 31169.91 34140.04 30458.22 33443.49 29775.29 30871.03 310
PatchT53.35 31356.47 30043.99 36464.19 33017.46 39559.15 31543.10 37652.11 21754.74 36086.95 13229.97 36549.98 34943.62 29574.40 31564.53 353
CHOSEN 1792x268858.09 29056.30 30163.45 26279.95 13750.93 21054.07 34665.59 27728.56 37361.53 32474.33 30741.09 29766.52 30533.91 35667.69 35872.92 288
CostFormer57.35 29456.14 30260.97 28763.76 33338.43 32367.50 23760.22 30937.14 34059.12 34176.34 29032.78 33971.99 25439.12 32169.27 34972.47 293
MIMVSNet54.39 30756.12 30349.20 34272.57 25030.91 37059.98 31248.43 36241.66 30855.94 35483.86 19341.19 29650.42 34726.05 38275.38 30666.27 340
test_fmvs356.78 29555.99 30459.12 29953.96 38348.09 24058.76 32066.22 27127.54 37576.66 16068.69 35225.32 38251.31 34553.42 22573.38 32377.97 251
Anonymous2023120654.13 30855.82 30549.04 34570.89 26135.96 34251.73 35450.87 35434.86 34862.49 32079.22 26042.52 29044.29 37327.95 37981.88 24766.88 336
new-patchmatchnet52.89 31555.76 30644.26 36359.94 3546.31 40137.36 38550.76 35541.10 31364.28 30679.82 25044.77 27448.43 35636.24 34487.61 16978.03 248
FMVSNet555.08 30455.54 30753.71 32165.80 31833.50 35956.22 33452.50 35043.72 29761.06 32883.38 19925.46 38054.87 34130.11 36981.64 25672.75 290
Syy-MVS54.13 30855.45 30850.18 33668.77 28823.59 38855.02 34144.55 37243.80 29358.05 34564.07 36546.22 26658.83 33146.16 28072.36 32968.12 328
tpmvs55.84 29855.45 30857.01 31060.33 34933.20 36065.89 26059.29 31347.52 26856.04 35373.60 31431.05 35768.06 28640.64 31364.64 36369.77 318
MS-PatchMatch55.59 30154.89 31057.68 30869.18 28349.05 23161.00 30562.93 29835.98 34458.36 34368.93 34836.71 32566.59 30437.62 33463.30 36757.39 373
tpm256.12 29754.64 31160.55 29166.24 31436.01 34168.14 23056.77 32733.60 35858.25 34475.52 29730.25 36274.33 22733.27 35969.76 34871.32 304
PatchmatchNetpermissive54.60 30654.27 31255.59 31565.17 32439.08 31666.92 24951.80 35239.89 32558.39 34273.12 31931.69 35058.33 33343.01 29958.38 38169.38 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_fmvs254.80 30554.11 31356.88 31151.76 38749.95 22156.70 33165.80 27426.22 38069.42 26165.25 36331.82 34849.98 34949.63 24870.36 34270.71 311
MDTV_nov1_ep1354.05 31465.54 32029.30 37559.00 31755.22 33335.96 34552.44 36675.98 29130.77 35959.62 32838.21 32873.33 324
test_vis1_n_192052.96 31453.50 31551.32 33259.15 35844.90 27356.13 33564.29 29030.56 37159.87 33860.68 37640.16 30347.47 35848.25 26362.46 36961.58 364
YYNet152.58 31753.50 31549.85 33854.15 38036.45 33940.53 37846.55 36938.09 33475.52 17973.31 31841.08 29843.88 37441.10 30971.14 33869.21 324
MDA-MVSNet_test_wron52.57 31853.49 31749.81 33954.24 37936.47 33840.48 37946.58 36838.13 33375.47 18073.32 31741.05 29943.85 37540.98 31171.20 33769.10 326
UnsupCasMVSNet_eth52.26 32053.29 31849.16 34355.08 37633.67 35850.03 35858.79 31437.67 33763.43 31974.75 30241.82 29245.83 36238.59 32659.42 37767.98 331
baseline255.57 30252.74 31964.05 25565.26 32144.11 27862.38 29654.43 33839.03 33051.21 37067.35 35833.66 33472.45 24737.14 33764.22 36575.60 266
tpm cat154.02 31152.63 32058.19 30564.85 32839.86 31366.26 25757.28 32032.16 36256.90 34970.39 33632.75 34065.30 30834.29 35458.79 37869.41 322
pmmvs552.49 31952.58 32152.21 32954.99 37732.38 36255.45 33953.84 34132.15 36355.49 35774.81 30038.08 31657.37 33834.02 35574.40 31566.88 336
tpm50.60 32952.42 32245.14 35965.18 32326.29 38260.30 31043.50 37437.41 33857.01 34879.09 26430.20 36442.32 37832.77 36166.36 36066.81 338
test_fmvs1_n52.70 31652.01 32354.76 31753.83 38450.36 21455.80 33765.90 27324.96 38365.39 29860.64 37727.69 37148.46 35445.88 28367.99 35565.46 344
JIA-IIPM54.03 31051.62 32461.25 28559.14 35955.21 18559.10 31647.72 36350.85 23550.31 37685.81 17120.10 39263.97 31336.16 34555.41 38664.55 352
KD-MVS_2432*160052.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
miper_refine_blended52.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
tpmrst50.15 33251.38 32746.45 35456.05 37124.77 38664.40 28149.98 35636.14 34353.32 36569.59 34335.16 32948.69 35339.24 31958.51 38065.89 341
PVSNet43.83 2151.56 32551.17 32852.73 32668.34 29338.27 32548.22 36253.56 34436.41 34254.29 36264.94 36434.60 33154.20 34430.34 36769.87 34665.71 343
N_pmnet52.06 32151.11 32954.92 31659.64 35771.03 5337.42 38461.62 30633.68 35657.12 34772.10 32337.94 31731.03 39129.13 37871.35 33562.70 357
test_vis3_rt51.94 32451.04 33054.65 31846.32 39450.13 21844.34 37478.17 17123.62 38768.95 26962.81 36921.41 38838.52 38741.49 30772.22 33175.30 272
UnsupCasMVSNet_bld50.01 33351.03 33146.95 35058.61 36132.64 36148.31 36153.27 34734.27 35360.47 33271.53 32941.40 29347.07 36030.68 36660.78 37461.13 365
test_cas_vis1_n_192050.90 32850.92 33250.83 33454.12 38247.80 24551.44 35654.61 33726.95 37863.95 31060.85 37537.86 32044.97 36845.53 28562.97 36859.72 368
test_fmvs151.51 32650.86 33353.48 32249.72 39049.35 23054.11 34564.96 28324.64 38563.66 31559.61 38028.33 37048.45 35545.38 28867.30 35962.66 359
dmvs_re49.91 33450.77 33447.34 34959.98 35138.86 32053.18 34953.58 34339.75 32655.06 35861.58 37436.42 32644.40 37229.15 37768.23 35358.75 370
test-LLR50.43 33050.69 33549.64 34060.76 34641.87 29753.18 34945.48 37043.41 30049.41 37760.47 37829.22 36844.73 37042.09 30372.14 33262.33 362
myMVS_eth3d50.36 33150.52 33649.88 33768.77 28822.69 39055.02 34144.55 37243.80 29358.05 34564.07 36514.16 40158.83 33133.90 35772.36 32968.12 328
test_vis1_n51.27 32750.41 33753.83 32056.99 36750.01 22056.75 33060.53 30825.68 38159.74 33957.86 38129.40 36747.41 35943.10 29863.66 36664.08 354
WTY-MVS49.39 33550.31 33846.62 35361.22 34432.00 36546.61 36849.77 35733.87 35554.12 36369.55 34441.96 29145.40 36531.28 36564.42 36462.47 360
Patchmatch-test47.93 33849.96 33941.84 36757.42 36624.26 38748.75 36041.49 38539.30 32856.79 35073.48 31530.48 36133.87 39029.29 37472.61 32767.39 332
sss47.59 34048.32 34045.40 35856.73 37033.96 35645.17 37148.51 36132.11 36552.37 36765.79 36140.39 30241.91 38131.85 36261.97 37160.35 366
test0.0.03 147.72 33948.31 34145.93 35555.53 37529.39 37446.40 36941.21 38743.41 30055.81 35667.65 35529.22 36843.77 37625.73 38569.87 34664.62 351
test-mter48.56 33748.20 34249.64 34060.76 34641.87 29753.18 34945.48 37031.91 36649.41 37760.47 37818.34 39344.73 37042.09 30372.14 33262.33 362
dmvs_testset45.26 34547.51 34338.49 37359.96 35314.71 39758.50 32243.39 37541.30 31151.79 36956.48 38239.44 30949.91 35121.42 39155.35 38750.85 378
MVS-HIRNet45.53 34447.29 34440.24 37062.29 33826.82 38156.02 33637.41 39229.74 37243.69 39081.27 22833.96 33255.48 33924.46 38856.79 38238.43 391
ADS-MVSNet248.76 33647.25 34553.29 32555.90 37340.54 30947.34 36654.99 33631.41 36850.48 37372.06 32431.23 35354.26 34325.93 38355.93 38365.07 347
EPMVS45.74 34346.53 34643.39 36554.14 38122.33 39255.02 34135.00 39434.69 35151.09 37170.20 33825.92 37842.04 38037.19 33655.50 38565.78 342
test_f43.79 35245.63 34738.24 37442.29 39838.58 32234.76 38747.68 36422.22 39067.34 28863.15 36831.82 34830.60 39239.19 32062.28 37045.53 386
ADS-MVSNet44.62 34945.58 34841.73 36855.90 37320.83 39347.34 36639.94 38931.41 36850.48 37372.06 32431.23 35339.31 38525.93 38355.93 38365.07 347
E-PMN45.17 34645.36 34944.60 36150.07 38842.75 29138.66 38242.29 38246.39 27439.55 39151.15 38826.00 37745.37 36637.68 33276.41 29645.69 385
test_vis1_rt46.70 34245.24 35051.06 33344.58 39551.04 20939.91 38067.56 26521.84 39151.94 36850.79 38933.83 33339.77 38435.25 35161.50 37262.38 361
pmmvs346.71 34145.09 35151.55 33156.76 36948.25 23655.78 33839.53 39024.13 38650.35 37563.40 36715.90 39851.08 34629.29 37470.69 34155.33 376
TESTMET0.1,145.17 34644.93 35245.89 35656.02 37238.31 32453.18 34941.94 38427.85 37444.86 38656.47 38317.93 39441.50 38238.08 33068.06 35457.85 371
dp44.09 35144.88 35341.72 36958.53 36223.18 38954.70 34442.38 38134.80 34944.25 38865.61 36224.48 38544.80 36929.77 37149.42 38957.18 374
DSMNet-mixed43.18 35444.66 35438.75 37254.75 37828.88 37757.06 32927.42 39713.47 39347.27 38177.67 28138.83 31239.29 38625.32 38760.12 37648.08 381
EMVS44.61 35044.45 35545.10 36048.91 39143.00 28937.92 38341.10 38846.75 27238.00 39348.43 39126.42 37546.27 36137.11 33875.38 30646.03 384
PMMVS44.69 34843.95 35646.92 35150.05 38953.47 19748.08 36442.40 38022.36 38944.01 38953.05 38642.60 28945.49 36431.69 36361.36 37341.79 388
mvsany_test343.76 35341.01 35752.01 33048.09 39257.74 17142.47 37623.85 40023.30 38864.80 30262.17 37227.12 37240.59 38329.17 37648.11 39057.69 372
PMMVS237.74 35840.87 35828.36 37642.41 3975.35 40224.61 38927.75 39632.15 36347.85 37970.27 33735.85 32829.51 39319.08 39467.85 35650.22 380
PVSNet_036.71 2241.12 35640.78 35942.14 36659.97 35240.13 31140.97 37742.24 38330.81 37044.86 38649.41 39040.70 30045.12 36723.15 38934.96 39341.16 389
CHOSEN 280x42041.62 35539.89 36046.80 35261.81 34051.59 20533.56 38835.74 39327.48 37637.64 39453.53 38423.24 38742.09 37927.39 38058.64 37946.72 383
new_pmnet37.55 35939.80 36130.79 37556.83 36816.46 39639.35 38130.65 39525.59 38245.26 38461.60 37324.54 38428.02 39421.60 39052.80 38847.90 382
mvsany_test137.88 35735.74 36244.28 36247.28 39349.90 22236.54 38624.37 39919.56 39245.76 38253.46 38532.99 33837.97 38826.17 38135.52 39244.99 387
MVEpermissive27.91 2336.69 36035.64 36339.84 37143.37 39635.85 34419.49 39024.61 39824.68 38439.05 39262.63 37138.67 31427.10 39521.04 39247.25 39156.56 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
cdsmvs_eth3d_5k17.71 36223.62 3640.00 3820.00 4040.00 4070.00 39370.17 2530.00 4000.00 40174.25 30968.16 950.00 4010.00 4000.00 3990.00 397
test_method19.26 36119.12 36519.71 3779.09 4001.91 4047.79 39253.44 3451.42 39510.27 39735.80 39217.42 39625.11 39612.44 39524.38 39532.10 392
tmp_tt11.98 36314.73 3663.72 3792.28 4014.62 40319.44 39114.50 4020.47 39721.55 3959.58 39525.78 3794.57 39811.61 39627.37 3941.96 394
ab-mvs-re5.62 3647.50 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40167.46 3560.00 4050.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.20 3656.93 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40062.39 1490.00 4010.00 4000.00 3990.00 397
test1234.43 3665.78 3690.39 3810.97 4020.28 40546.33 3700.45 4040.31 3980.62 3991.50 3980.61 4040.11 4000.56 3980.63 3970.77 396
testmvs4.06 3675.28 3700.41 3800.64 4030.16 40642.54 3750.31 4050.26 3990.50 4001.40 3990.77 4030.17 3990.56 3980.55 3980.90 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 39036.10 346
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 13890.78 11483.49 139
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
test_one_060185.84 6161.45 13385.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 404
eth-test0.00 404
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
IU-MVS86.12 5360.90 14380.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14789.79 13583.08 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_241102_ONE86.12 5361.06 13984.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
test_0728_SECOND76.57 8586.20 4860.57 14983.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
test072686.16 5160.78 14683.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 315
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35170.05 315
sam_mvs31.21 355
ambc70.10 18777.74 17250.21 21774.28 15277.93 17779.26 12388.29 11654.11 22579.77 14864.43 12291.10 10380.30 216
MTGPAbinary80.63 123
test_post166.63 2532.08 39630.66 36059.33 32940.34 315
test_post1.99 39730.91 35854.76 342
patchmatchnet-post68.99 34631.32 35269.38 276
GG-mvs-BLEND52.24 32860.64 34829.21 37669.73 20742.41 37945.47 38352.33 38720.43 39168.16 28425.52 38665.42 36259.36 369
MTMP84.83 3119.26 401
gm-plane-assit62.51 33733.91 35737.25 33962.71 37072.74 24038.70 323
test9_res72.12 6991.37 9377.40 254
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior270.70 7590.93 10878.55 240
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
test_prior75.27 10282.15 11659.85 15484.33 5983.39 8682.58 171
旧先验271.17 19045.11 28678.54 13161.28 32559.19 174
新几何271.33 186
新几何169.99 18988.37 3471.34 5162.08 30243.85 29274.99 18486.11 16452.85 23070.57 26750.99 23783.23 23768.05 330
旧先验184.55 7960.36 15163.69 29487.05 13154.65 22183.34 23669.66 319
无先验74.82 13970.94 24747.75 26676.85 20054.47 21172.09 298
原ACMM274.78 143
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18791.08 10473.00 287
test22287.30 3769.15 7367.85 23359.59 31241.06 31473.05 21685.72 17248.03 26280.65 26466.92 335
testdata267.30 29348.34 261
segment_acmp68.30 94
testdata64.13 25385.87 5963.34 11961.80 30547.83 26476.42 17086.60 14848.83 25662.31 32154.46 21281.26 25866.74 339
testdata168.34 22957.24 156
test1276.51 8682.28 11460.94 14281.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 406
nn0.00 406
door-mid55.02 335
lessismore_v072.75 14779.60 14156.83 17657.37 31983.80 7289.01 9847.45 26478.74 16564.39 12386.49 19482.69 168
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
test1182.71 84
door52.91 349
HQP5-MVS58.80 165
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 196
NP-MVS83.34 9563.07 12285.97 167
MDTV_nov1_ep13_2view18.41 39453.74 34731.57 36744.89 38529.90 36632.93 36071.48 302
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15488.95 15587.56 53
DeepMVS_CXcopyleft11.83 37815.51 39913.86 39811.25 4035.76 39420.85 39626.46 39317.06 3979.22 3979.69 39713.82 39612.42 393