This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9197.05 296.93 1
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 184
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 93
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 156
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 93
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 46
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11781.53 492.15 8488.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 176
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 178
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 73
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 143
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11095.46 1287.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 165
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 123
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13072.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 208
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 128
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 103
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 108
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 84
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 168
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 157
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14074.27 5495.73 880.98 204
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 149
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 122
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 130
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15674.08 2487.16 3291.97 2184.80 276.97 20064.98 12293.61 6372.28 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVScopyleft81.15 4183.12 3675.24 10586.16 5260.78 14983.77 4480.58 13272.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 237
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
PEN-MVS80.46 5082.91 3873.11 13589.83 939.02 33177.06 11782.61 9280.04 590.60 792.85 1074.93 4785.21 6063.15 14395.15 2195.09 2
DTE-MVSNet80.35 5282.89 3972.74 15089.84 837.34 34877.16 11481.81 10480.45 490.92 492.95 874.57 5086.12 3163.65 13694.68 3594.76 6
PS-CasMVS80.41 5182.86 4073.07 13689.93 739.21 32877.15 11581.28 11479.74 690.87 592.73 1275.03 4684.93 6563.83 13595.19 1995.07 3
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 140
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10264.82 12396.10 587.21 56
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14375.34 1979.80 11994.91 269.79 8880.25 14472.63 6694.46 3988.78 41
WR-MVS_H80.22 5482.17 4574.39 11389.46 1542.69 30178.24 10182.24 9678.21 1389.57 1092.10 1968.05 10185.59 5066.04 11595.62 1094.88 5
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9176.01 4193.77 6184.81 100
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10068.80 5880.92 10888.52 11372.00 6882.39 10374.80 4793.04 7081.14 198
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVSNet79.48 5881.65 4972.98 13989.66 1339.06 33076.76 11880.46 13478.91 990.32 891.70 2968.49 9684.89 6663.40 14095.12 2295.01 4
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8774.03 5693.57 6584.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13177.70 3292.32 8280.62 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 13972.51 6893.37 6683.48 142
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11291.24 9787.61 51
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 33
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9470.72 4987.54 2592.44 1568.00 10381.34 11972.84 6491.72 8691.69 11
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11573.75 5893.78 60
ACMH63.62 1477.50 7680.11 5869.68 19579.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24267.58 9794.44 4279.44 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18174.73 4985.79 20482.35 178
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 17974.80 4790.76 11882.40 177
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14064.71 9578.11 14088.39 11665.46 13183.14 9277.64 3391.20 9878.94 241
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23384.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_040278.17 7279.48 6374.24 11583.50 9459.15 16372.52 16874.60 21475.34 1988.69 1791.81 2775.06 4582.37 10465.10 12088.68 15881.20 196
DP-MVS78.44 7079.29 6475.90 9681.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8862.45 14792.40 7978.92 242
UniMVSNet_ETH3D76.74 8279.02 6569.92 19389.27 2043.81 28874.47 15371.70 23572.33 4085.50 5393.65 477.98 2376.88 20354.60 21991.64 8889.08 31
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11251.71 23177.15 15191.42 3665.49 13087.20 779.44 1787.17 18884.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9592.44 7889.60 23
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7390.94 10784.82 98
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19751.98 22987.40 2791.86 2676.09 3678.53 17168.58 8690.20 12486.69 64
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10863.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 182
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 9961.89 12188.77 1693.32 557.15 21582.60 10170.08 7992.80 7389.25 27
tt080576.12 8678.43 7269.20 20381.32 12841.37 30976.72 11977.64 18563.78 10382.06 9187.88 12679.78 1179.05 16164.33 12792.40 7987.17 59
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20452.27 22487.37 3092.25 1768.04 10280.56 13772.28 7091.15 10090.32 21
MVSMamba_PlusPlus76.88 8078.21 7472.88 14680.83 13248.71 23783.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7786.15 19985.99 72
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 19951.33 23987.19 3191.51 3373.79 5778.44 17568.27 8990.13 12886.49 66
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12365.77 7675.55 18586.25 16567.42 10685.42 5270.10 7890.88 11381.81 189
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 19950.51 24889.19 1190.88 4571.45 7277.78 19373.38 6090.60 12090.90 17
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16671.22 4572.40 23488.70 10760.51 17987.70 477.40 3689.13 15285.48 83
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 16884.61 8142.57 30370.98 19878.29 17668.67 6183.04 7989.26 9072.99 6180.75 13655.58 21095.47 1191.35 12
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
EC-MVSNet77.08 7977.39 8176.14 9476.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19269.87 8784.94 6469.76 8189.59 13986.60 65
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15053.48 21586.29 3992.43 1662.39 15680.25 14467.90 9690.61 11987.77 48
Anonymous2023121175.54 9277.19 8370.59 17777.67 17645.70 27674.73 14880.19 13968.80 5882.95 8292.91 966.26 12276.76 20558.41 18492.77 7489.30 26
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16880.27 11685.31 18268.56 9587.03 1267.39 10291.26 9683.50 139
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20377.68 14787.18 13269.98 8585.37 5368.01 9392.72 7685.08 90
testf175.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD_test275.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
train_agg76.38 8476.55 8875.86 9785.47 6769.32 7476.42 12378.69 16754.00 20876.97 15386.74 14666.60 11881.10 12572.50 6991.56 9177.15 265
SixPastTwentyTwo75.77 8776.34 8974.06 11881.69 12454.84 19076.47 12075.49 20664.10 9987.73 2192.24 1850.45 25581.30 12167.41 10091.46 9386.04 71
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16774.88 19585.32 18165.54 12987.79 365.61 11991.14 10183.35 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v1075.69 8976.20 9174.16 11674.44 22748.69 23875.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 9970.73 7589.14 15191.05 14
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15572.87 25649.47 23272.94 16684.71 5459.49 13880.90 11088.81 10670.07 8479.71 15267.40 10188.39 16188.40 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9160.39 13274.15 20883.30 21369.65 8982.07 11069.27 8486.75 19487.36 54
nrg03074.87 10775.99 9471.52 16974.90 21649.88 23174.10 15882.58 9354.55 19583.50 7789.21 9271.51 7075.74 21361.24 15492.34 8188.94 36
MSLP-MVS++74.48 10975.78 9570.59 17784.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 22963.12 14777.64 19562.95 14488.14 16471.73 318
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15383.04 10445.79 27369.26 22178.81 16266.66 7181.74 9786.88 14163.26 14681.07 12756.21 20194.98 2491.05 14
v875.07 10075.64 9773.35 12973.42 24147.46 25875.20 13881.45 11060.05 13485.64 4889.26 9058.08 20681.80 11469.71 8387.97 16990.79 18
DU-MVS74.91 10475.57 9872.93 14383.50 9445.79 27369.47 21780.14 14165.22 8681.74 9787.08 13461.82 16281.07 12756.21 20194.98 2491.93 9
UniMVSNet (Re)75.00 10275.48 9973.56 12783.14 9947.92 24970.41 20781.04 12263.67 10479.54 12186.37 16162.83 15081.82 11357.10 19395.25 1590.94 16
IS-MVSNet75.10 9975.42 10074.15 11779.23 15048.05 24779.43 8678.04 18070.09 5479.17 12688.02 12553.04 24083.60 8358.05 18693.76 6290.79 18
APD_test175.04 10175.38 10174.02 11969.89 29170.15 6676.46 12179.71 14665.50 7982.99 8188.60 11266.94 11072.35 25559.77 17388.54 15979.56 231
HQP-MVS75.24 9775.01 10275.94 9582.37 11358.80 16877.32 11184.12 6959.08 14071.58 24385.96 17558.09 20485.30 5567.38 10489.16 14883.73 135
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 41873.86 5586.31 2178.84 2394.03 5684.64 103
FC-MVSNet-test73.32 12374.78 10468.93 21379.21 15136.57 35071.82 18579.54 15257.63 15982.57 8890.38 6759.38 19178.99 16357.91 18794.56 3791.23 13
MVS_030475.45 9374.66 10577.83 7475.58 20861.53 13678.29 9977.18 19263.15 11469.97 26687.20 13157.54 21387.05 1074.05 5588.96 15584.89 93
Vis-MVSNetpermissive74.85 10874.56 10675.72 9881.63 12564.64 11376.35 12579.06 15862.85 11573.33 22288.41 11562.54 15479.59 15563.94 13482.92 24382.94 161
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary74.22 11074.56 10673.20 13281.95 12060.97 14579.43 8680.90 12465.57 7872.54 23281.76 23370.98 7885.26 5747.88 27890.00 12973.37 299
CSCG74.12 11174.39 10873.33 13079.35 14761.66 13577.45 11081.98 10162.47 11979.06 12880.19 25561.83 16178.79 16759.83 17287.35 17879.54 234
RPSCF75.76 8874.37 10979.93 4474.81 21877.53 1877.53 10979.30 15559.44 13978.88 12989.80 8271.26 7473.09 24457.45 18980.89 26589.17 30
PHI-MVS74.92 10374.36 11076.61 8676.40 19562.32 12980.38 7583.15 8254.16 20573.23 22480.75 24562.19 15983.86 8068.02 9290.92 11083.65 136
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21768.08 8177.89 10584.04 7255.15 18376.19 18083.39 20766.91 11180.11 14860.04 17090.14 12785.13 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26380.80 24466.74 11781.96 11161.74 15089.40 14685.69 80
PAPM_NR73.91 11274.16 11373.16 13381.90 12153.50 20181.28 6681.40 11166.17 7473.30 22383.31 21259.96 18483.10 9458.45 18381.66 26082.87 163
balanced_conf0373.59 11774.06 11472.17 16377.48 17947.72 25481.43 6582.20 9754.38 19679.19 12587.68 12854.41 23383.57 8463.98 13185.78 20585.22 85
NR-MVSNet73.62 11674.05 11572.33 16083.50 9443.71 28965.65 27577.32 18964.32 9775.59 18487.08 13462.45 15581.34 11954.90 21495.63 991.93 9
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23584.00 19964.56 14083.07 9551.48 24187.19 18782.56 175
baseline73.10 12773.96 11770.51 17971.46 26746.39 27072.08 17484.40 6255.95 17576.62 16686.46 15967.20 10778.03 18864.22 12887.27 18487.11 60
casdiffmvspermissive73.06 13073.84 11870.72 17571.32 26846.71 26670.93 19984.26 6555.62 17877.46 14987.10 13367.09 10977.81 19163.95 13286.83 19287.64 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14373.80 11968.84 21678.74 16237.74 34471.02 19779.83 14556.12 17280.88 11189.45 8758.18 20078.28 18256.63 19593.36 6790.51 20
Anonymous2024052972.56 14373.79 12068.86 21576.89 19045.21 27968.80 23077.25 19167.16 6676.89 15790.44 5965.95 12574.19 23550.75 24890.00 12987.18 58
GeoE73.14 12673.77 12171.26 17278.09 16852.64 20674.32 15479.56 15156.32 17176.35 17883.36 21170.76 7977.96 18963.32 14181.84 25483.18 154
pmmvs671.82 15273.66 12266.31 24675.94 20442.01 30566.99 25772.53 23063.45 10876.43 17692.78 1172.95 6269.69 28051.41 24390.46 12187.22 55
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10669.79 29566.25 9775.90 13379.90 14446.03 28776.48 17485.02 18567.96 10473.97 23774.47 5287.22 18583.90 129
K. test v373.67 11573.61 12473.87 12179.78 14155.62 18874.69 15062.04 31566.16 7584.76 6393.23 649.47 26080.97 13165.66 11886.67 19585.02 92
v119273.40 12173.42 12573.32 13174.65 22448.67 23972.21 17281.73 10552.76 22081.85 9384.56 19057.12 21682.24 10868.58 8687.33 18089.06 32
v114473.29 12473.39 12673.01 13774.12 23348.11 24572.01 17781.08 12153.83 21281.77 9584.68 18758.07 20781.91 11268.10 9086.86 19088.99 35
sasdasda72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
canonicalmvs72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
EPP-MVSNet73.86 11473.38 12775.31 10378.19 16653.35 20380.45 7377.32 18965.11 8976.47 17586.80 14249.47 26083.77 8153.89 22892.72 7688.81 40
MCST-MVS73.42 12073.34 13073.63 12581.28 12959.17 16274.80 14683.13 8345.50 29172.84 22783.78 20365.15 13580.99 12964.54 12489.09 15480.73 212
114514_t73.40 12173.33 13173.64 12484.15 8957.11 17678.20 10280.02 14243.76 30872.55 23186.07 17364.00 14383.35 9060.14 16891.03 10680.45 219
Baseline_NR-MVSNet70.62 16573.19 13262.92 27876.97 18534.44 36668.84 22670.88 25560.25 13379.50 12290.53 5661.82 16269.11 28454.67 21895.27 1485.22 85
v124073.06 13073.14 13372.84 14774.74 22047.27 26271.88 18481.11 11851.80 23082.28 9084.21 19656.22 22682.34 10568.82 8587.17 18888.91 37
VDDNet71.60 15573.13 13467.02 23986.29 4841.11 31169.97 21166.50 28168.72 6074.74 19691.70 2959.90 18575.81 21148.58 26991.72 8684.15 125
IterMVS-LS73.01 13273.12 13572.66 15273.79 23749.90 22771.63 18778.44 17258.22 14980.51 11386.63 15358.15 20279.62 15362.51 14588.20 16388.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MGCFI-Net71.70 15473.10 13667.49 23273.23 24543.08 29772.06 17582.43 9554.58 19375.97 18182.00 22772.42 6375.22 21957.84 18887.34 17984.18 123
v14419272.99 13473.06 13772.77 14874.58 22547.48 25771.90 18380.44 13551.57 23381.46 10184.11 19858.04 20882.12 10967.98 9487.47 17588.70 42
CNLPA73.44 11973.03 13874.66 10778.27 16575.29 3075.99 13278.49 17165.39 8275.67 18383.22 21861.23 17066.77 31153.70 23085.33 21181.92 188
v192192072.96 13672.98 13972.89 14574.67 22147.58 25671.92 18280.69 12751.70 23281.69 9983.89 20156.58 22282.25 10768.34 8887.36 17788.82 39
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13365.47 10468.81 22872.77 22757.67 15675.76 18282.38 22571.01 7777.17 19861.38 15386.15 19976.32 273
Gipumacopyleft69.55 18072.83 14159.70 30663.63 35353.97 19780.08 8275.93 20264.24 9873.49 21988.93 10457.89 21062.46 33259.75 17491.55 9262.67 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 30166.18 9974.65 15279.34 15445.58 29075.54 18683.91 20067.19 10873.88 24073.26 6186.86 19083.63 137
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15482.96 8557.75 15470.35 25981.98 22964.34 14284.41 7649.69 25689.95 13180.89 206
dcpmvs_271.02 16172.65 14466.16 24776.06 20350.49 21871.97 17879.36 15350.34 24982.81 8583.63 20464.38 14167.27 30261.54 15283.71 23780.71 214
v2v48272.55 14572.58 14572.43 15772.92 25546.72 26571.41 19079.13 15755.27 18181.17 10585.25 18355.41 22881.13 12467.25 10885.46 20789.43 25
test_fmvsmvis_n_192072.36 14672.49 14671.96 16471.29 26964.06 11772.79 16781.82 10340.23 33981.25 10481.04 24170.62 8068.69 28769.74 8283.60 23983.14 155
WR-MVS71.20 15872.48 14767.36 23484.98 7435.70 35864.43 29068.66 27165.05 9081.49 10086.43 16057.57 21276.48 20750.36 25293.32 6889.90 22
FMVSNet171.06 15972.48 14766.81 24077.65 17740.68 31871.96 17973.03 22261.14 12579.45 12390.36 7060.44 18075.20 22150.20 25388.05 16684.54 110
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30566.12 10074.21 15778.80 16445.64 28974.62 20183.25 21566.80 11673.86 24172.97 6386.66 19683.39 146
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19468.77 23183.43 7952.12 22676.79 16274.44 32069.54 9083.91 7955.88 20493.25 6985.09 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15574.89 19478.13 28964.80 13884.26 7756.46 19985.32 21286.88 61
Effi-MVS+72.10 15072.28 15171.58 16774.21 23150.33 22074.72 14982.73 8962.62 11670.77 25576.83 30069.96 8680.97 13160.20 16478.43 29783.45 145
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 18273.34 16384.67 5562.04 12072.19 23870.81 34765.90 12685.24 5958.64 18184.96 21981.95 187
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21959.02 16672.24 17171.56 23863.92 10078.59 13271.59 34266.22 12378.60 17067.58 9780.32 27389.00 34
CANet73.00 13371.84 15576.48 8975.82 20561.28 13974.81 14480.37 13763.17 11262.43 33680.50 24961.10 17485.16 6364.00 13084.34 22983.01 160
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 4070.45 20666.64 28056.87 16376.81 16181.76 23368.78 9371.76 26361.81 14883.74 23573.18 301
PCF-MVS63.80 1372.70 14171.69 15775.72 9878.10 16760.01 15673.04 16581.50 10845.34 29679.66 12084.35 19565.15 13582.65 10048.70 26789.38 14784.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22158.64 17172.02 17671.50 23963.53 10678.58 13471.39 34665.98 12478.53 17167.30 10780.18 27689.23 28
TransMVSNet (Re)69.62 17871.63 15963.57 26776.51 19435.93 35665.75 27471.29 24661.05 12675.02 19289.90 8165.88 12770.41 27749.79 25589.48 14284.38 118
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20571.12 25254.28 19977.89 14183.41 20649.04 26480.98 13063.62 13790.77 11778.58 245
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26560.73 13074.39 20578.44 28357.72 21182.78 9860.16 16689.60 13879.11 239
LCM-MVSNet-Re69.10 18771.57 16261.70 28770.37 28334.30 36861.45 31079.62 14756.81 16489.59 988.16 12368.44 9772.94 24542.30 31387.33 18077.85 258
API-MVS70.97 16271.51 16369.37 19875.20 21155.94 18380.99 6776.84 19462.48 11871.24 25177.51 29561.51 16680.96 13452.04 23785.76 20671.22 324
VDD-MVS70.81 16371.44 16468.91 21479.07 15746.51 26767.82 24470.83 25661.23 12474.07 21188.69 10859.86 18675.62 21451.11 24590.28 12384.61 106
MG-MVS70.47 16771.34 16567.85 22879.26 14940.42 32274.67 15175.15 21058.41 14868.74 28788.14 12456.08 22783.69 8259.90 17181.71 25979.43 236
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24663.09 12478.37 9878.32 17457.67 15672.22 23784.61 18954.77 22978.47 17360.82 16081.07 26475.45 279
FA-MVS(test-final)71.27 15771.06 16771.92 16573.96 23452.32 20876.45 12276.12 19959.07 14374.04 21386.18 16652.18 24479.43 15759.75 17481.76 25584.03 126
alignmvs70.54 16671.00 16869.15 20573.50 23948.04 24869.85 21479.62 14753.94 21176.54 17182.00 22759.00 19474.68 22857.32 19087.21 18684.72 101
EG-PatchMatch MVS70.70 16470.88 16970.16 18782.64 11258.80 16871.48 18873.64 21954.98 18476.55 17081.77 23261.10 17478.94 16454.87 21580.84 26772.74 308
V4271.06 15970.83 17071.72 16667.25 32147.14 26365.94 26980.35 13851.35 23883.40 7883.23 21659.25 19278.80 16665.91 11680.81 26889.23 28
RRT-MVS70.33 16870.73 17169.14 20671.93 26345.24 27875.10 13975.08 21160.85 12978.62 13187.36 13049.54 25978.64 16960.16 16677.90 30483.55 138
MVS_Test69.84 17570.71 17267.24 23567.49 31943.25 29669.87 21381.22 11752.69 22171.57 24686.68 14962.09 16074.51 23066.05 11478.74 29283.96 127
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22371.45 24154.28 19977.89 14178.26 28549.04 26479.23 15863.62 13789.13 15280.92 205
mmtdpeth68.76 19270.55 17463.40 27167.06 32756.26 18168.73 23371.22 25055.47 18070.09 26488.64 11165.29 13456.89 35558.94 18089.50 14177.04 270
VPA-MVSNet68.71 19470.37 17563.72 26576.13 19938.06 34264.10 29271.48 24056.60 17074.10 21088.31 11864.78 13969.72 27947.69 28090.15 12683.37 148
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11554.57 19467.09 30380.63 24759.44 18981.74 11646.91 28584.17 23078.63 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ANet_high67.08 21769.94 17758.51 31657.55 38727.09 39958.43 33676.80 19563.56 10582.40 8991.93 2359.82 18764.98 32350.10 25488.86 15783.46 144
c3_l69.82 17669.89 17869.61 19666.24 33243.48 29268.12 24179.61 14951.43 23577.72 14580.18 25654.61 23278.15 18763.62 13787.50 17487.20 57
pm-mvs168.40 19769.85 17964.04 26373.10 25039.94 32564.61 28870.50 25855.52 17973.97 21489.33 8863.91 14468.38 29049.68 25788.02 16783.81 131
BH-untuned69.39 18369.46 18069.18 20477.96 17156.88 17768.47 23877.53 18656.77 16577.79 14479.63 26460.30 18280.20 14746.04 29380.65 27070.47 331
v14869.38 18469.39 18169.36 19969.14 30044.56 28368.83 22772.70 22854.79 18878.59 13284.12 19754.69 23076.74 20659.40 17782.20 24886.79 62
TinyColmap67.98 20469.28 18264.08 26167.98 31446.82 26470.04 20975.26 20853.05 21777.36 15086.79 14359.39 19072.59 25245.64 29688.01 16872.83 306
QAPM69.18 18669.26 18368.94 21271.61 26552.58 20780.37 7678.79 16549.63 25873.51 21885.14 18453.66 23779.12 16055.11 21275.54 32075.11 284
MIMVSNet166.57 22369.23 18458.59 31581.26 13037.73 34564.06 29357.62 32757.02 16278.40 13690.75 4962.65 15158.10 35241.77 31989.58 14079.95 226
DPM-MVS69.98 17369.22 18572.26 16182.69 11158.82 16770.53 20481.23 11647.79 27564.16 32080.21 25351.32 25183.12 9360.14 16884.95 22074.83 285
UGNet70.20 17069.05 18673.65 12376.24 19763.64 11975.87 13472.53 23061.48 12360.93 34686.14 16952.37 24377.12 19950.67 24985.21 21380.17 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVSFormer69.93 17469.03 18772.63 15474.93 21459.19 16083.98 4075.72 20452.27 22463.53 33076.74 30143.19 29680.56 13772.28 7078.67 29478.14 252
EI-MVSNet69.61 17969.01 18871.41 17173.94 23549.90 22771.31 19371.32 24458.22 14975.40 18970.44 34958.16 20175.85 20962.51 14579.81 28288.48 43
PVSNet_Blended_VisFu70.04 17168.88 18973.53 12882.71 11063.62 12074.81 14481.95 10248.53 26867.16 30279.18 27451.42 25078.38 17854.39 22379.72 28578.60 244
GBi-Net68.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
test168.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
OpenMVScopyleft62.51 1568.76 19268.75 19268.78 21770.56 27853.91 19878.29 9977.35 18848.85 26670.22 26183.52 20552.65 24276.93 20155.31 21181.99 25075.49 278
Fast-Effi-MVS+-dtu70.00 17268.74 19373.77 12273.47 24064.53 11471.36 19178.14 17955.81 17768.84 28574.71 31765.36 13275.75 21252.00 23879.00 29081.03 201
eth_miper_zixun_eth69.42 18268.73 19471.50 17067.99 31346.42 26867.58 24678.81 16250.72 24678.13 13980.34 25250.15 25780.34 14260.18 16584.65 22387.74 49
PAPR69.20 18568.66 19570.82 17475.15 21347.77 25275.31 13781.11 11849.62 25966.33 30579.27 27161.53 16582.96 9648.12 27581.50 26281.74 192
test_fmvsm_n_192069.63 17768.45 19673.16 13370.56 27865.86 10270.26 20878.35 17337.69 35674.29 20678.89 27961.10 17468.10 29365.87 11779.07 28985.53 82
DELS-MVS68.83 19068.31 19770.38 18070.55 28048.31 24163.78 29682.13 9854.00 20868.96 27875.17 31358.95 19580.06 14958.55 18282.74 24582.76 166
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Fast-Effi-MVS+68.81 19168.30 19870.35 18274.66 22348.61 24066.06 26878.32 17450.62 24771.48 24975.54 30868.75 9479.59 15550.55 25178.73 29382.86 164
cl____68.26 20368.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.42 22448.74 26875.38 21560.92 15989.81 13485.80 79
DIV-MVS_self_test68.27 20268.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.43 22348.74 26875.38 21560.94 15889.81 13485.81 75
FMVSNet267.48 21168.21 20165.29 25273.14 24738.94 33268.81 22871.21 25154.81 18576.73 16386.48 15848.63 27074.60 22947.98 27786.11 20282.35 178
BH-RMVSNet68.69 19568.20 20270.14 18876.40 19553.90 19964.62 28773.48 22058.01 15173.91 21581.78 23159.09 19378.22 18348.59 26877.96 30378.31 248
miper_ehance_all_eth68.36 19868.16 20368.98 21065.14 34443.34 29467.07 25678.92 16149.11 26476.21 17977.72 29253.48 23877.92 19061.16 15684.59 22585.68 81
mvs5depth66.35 22767.98 20461.47 29162.43 35751.05 21369.38 21969.24 26756.74 16673.62 21689.06 10046.96 27758.63 34855.87 20588.49 16074.73 286
tfpnnormal66.48 22467.93 20562.16 28473.40 24236.65 34963.45 29864.99 29355.97 17472.82 22887.80 12757.06 21869.10 28548.31 27387.54 17280.72 213
LFMVS67.06 21867.89 20664.56 25778.02 16938.25 33970.81 20259.60 32265.18 8771.06 25386.56 15643.85 29275.22 21946.35 29089.63 13780.21 224
AUN-MVS70.22 16967.88 20777.22 8282.96 10771.61 5269.08 22471.39 24249.17 26371.70 24178.07 29037.62 33379.21 15961.81 14889.15 15080.82 208
SDMVSNet66.36 22667.85 20861.88 28673.04 25346.14 27258.54 33471.36 24351.42 23668.93 28182.72 22065.62 12862.22 33554.41 22284.67 22177.28 261
tttt051769.46 18167.79 20974.46 10975.34 20952.72 20575.05 14063.27 30854.69 19078.87 13084.37 19426.63 38781.15 12363.95 13287.93 17089.51 24
VPNet65.58 23267.56 21059.65 30779.72 14230.17 38860.27 32162.14 31154.19 20471.24 25186.63 15358.80 19667.62 29744.17 30590.87 11481.18 197
KD-MVS_self_test66.38 22567.51 21162.97 27661.76 36134.39 36758.11 33975.30 20750.84 24577.12 15285.42 18056.84 22069.44 28151.07 24691.16 9985.08 90
diffmvspermissive67.42 21467.50 21267.20 23662.26 35945.21 27964.87 28477.04 19348.21 26971.74 24079.70 26358.40 19971.17 26964.99 12180.27 27485.22 85
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MSDG67.47 21367.48 21367.46 23370.70 27454.69 19266.90 26078.17 17760.88 12870.41 25874.76 31561.22 17273.18 24347.38 28176.87 31074.49 290
EPNet69.10 18767.32 21474.46 10968.33 30961.27 14077.56 10763.57 30560.95 12756.62 37082.75 21951.53 24981.24 12254.36 22490.20 12480.88 207
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS67.50 21067.31 21568.08 22658.86 38161.93 13171.43 18975.90 20344.67 30272.42 23380.20 25457.16 21470.44 27558.99 17986.12 20171.88 316
mvsmamba68.87 18967.30 21673.57 12676.58 19353.70 20084.43 3774.25 21645.38 29576.63 16584.55 19135.85 34085.27 5649.54 25978.49 29681.75 191
EIA-MVS68.59 19667.16 21772.90 14475.18 21255.64 18769.39 21881.29 11352.44 22364.53 31670.69 34860.33 18182.30 10654.27 22576.31 31480.75 211
xiu_mvs_v1_base_debu67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base_debi67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
FE-MVS68.29 20166.96 22172.26 16174.16 23254.24 19577.55 10873.42 22157.65 15872.66 22984.91 18632.02 36081.49 11848.43 27181.85 25381.04 200
Anonymous20240521166.02 22966.89 22263.43 27074.22 23038.14 34059.00 32966.13 28363.33 11169.76 27085.95 17651.88 24570.50 27444.23 30487.52 17381.64 193
fmvsm_l_conf0.5_n67.48 21166.88 22369.28 20267.41 32062.04 13070.69 20369.85 26239.46 34269.59 27181.09 24058.15 20268.73 28667.51 9978.16 30277.07 269
cl2267.14 21666.51 22469.03 20963.20 35443.46 29366.88 26176.25 19849.22 26274.48 20377.88 29145.49 28277.40 19760.64 16184.59 22586.24 67
fmvsm_s_conf0.1_n_a67.37 21566.36 22570.37 18170.86 27161.17 14174.00 15957.18 33440.77 33468.83 28680.88 24363.11 14867.61 29866.94 10974.72 32782.33 181
wuyk23d61.97 27166.25 22649.12 36558.19 38660.77 15166.32 26652.97 36155.93 17690.62 686.91 14073.07 6035.98 41220.63 41591.63 8950.62 401
MAR-MVS67.72 20866.16 22772.40 15874.45 22664.99 11174.87 14277.50 18748.67 26765.78 30968.58 37257.01 21977.79 19246.68 28881.92 25174.42 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SSC-MVS61.79 27466.08 22848.89 36776.91 18710.00 42453.56 36747.37 38568.20 6376.56 16989.21 9254.13 23557.59 35354.75 21674.07 33679.08 240
Anonymous2024052163.55 25466.07 22955.99 32966.18 33444.04 28768.77 23168.80 26946.99 28072.57 23085.84 17739.87 31750.22 37053.40 23592.23 8373.71 298
IterMVS-SCA-FT67.68 20966.07 22972.49 15673.34 24358.20 17363.80 29565.55 28948.10 27076.91 15682.64 22245.20 28378.84 16561.20 15577.89 30580.44 220
fmvsm_l_conf0.5_n_a66.66 22165.97 23168.72 21867.09 32361.38 13870.03 21069.15 26838.59 35068.41 28880.36 25156.56 22368.32 29166.10 11377.45 30776.46 271
fmvsm_s_conf0.5_n_a67.00 22065.95 23270.17 18669.72 29661.16 14273.34 16356.83 33740.96 33168.36 28980.08 25862.84 14967.57 29966.90 11174.50 33181.78 190
fmvsm_s_conf0.1_n66.60 22265.54 23369.77 19468.99 30259.15 16372.12 17356.74 33940.72 33668.25 29280.14 25761.18 17366.92 30567.34 10674.40 33283.23 153
mvs_anonymous65.08 23765.49 23463.83 26463.79 35137.60 34666.52 26569.82 26343.44 31373.46 22086.08 17258.79 19771.75 26451.90 23975.63 31982.15 183
sd_testset63.55 25465.38 23558.07 31873.04 25338.83 33457.41 34265.44 29051.42 23668.93 28182.72 22063.76 14558.11 35141.05 32384.67 22177.28 261
fmvsm_s_conf0.5_n66.34 22865.27 23669.57 19768.20 31059.14 16571.66 18656.48 34040.92 33267.78 29479.46 26661.23 17066.90 30667.39 10274.32 33582.66 172
ECVR-MVScopyleft64.82 23965.22 23763.60 26678.80 16031.14 38366.97 25856.47 34154.23 20169.94 26788.68 10937.23 33474.81 22745.28 30189.41 14484.86 96
test111164.62 24265.19 23862.93 27779.01 15829.91 38965.45 27854.41 35154.09 20671.47 25088.48 11437.02 33574.29 23446.83 28789.94 13284.58 109
thisisatest053067.05 21965.16 23972.73 15173.10 25050.55 21771.26 19563.91 30350.22 25274.46 20480.75 24526.81 38680.25 14459.43 17686.50 19787.37 53
FMVSNet365.00 23865.16 23964.52 25869.47 29737.56 34766.63 26370.38 25951.55 23474.72 19783.27 21437.89 33174.44 23147.12 28285.37 20881.57 194
VNet64.01 25365.15 24160.57 30173.28 24435.61 35957.60 34167.08 27854.61 19266.76 30483.37 20956.28 22566.87 30742.19 31585.20 21479.23 238
ab-mvs64.11 25165.13 24261.05 29671.99 26238.03 34367.59 24568.79 27049.08 26565.32 31286.26 16458.02 20966.85 30939.33 33179.79 28478.27 249
test_yl65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
DCV-MVSNet65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
RPMNet65.77 23165.08 24567.84 22966.37 32948.24 24370.93 19986.27 2054.66 19161.35 34086.77 14533.29 34885.67 4955.93 20370.17 36569.62 340
miper_enhance_ethall65.86 23065.05 24668.28 22561.62 36342.62 30264.74 28577.97 18142.52 31873.42 22172.79 33549.66 25877.68 19458.12 18584.59 22584.54 110
PVSNet_BlendedMVS65.38 23364.30 24768.61 21969.81 29249.36 23365.60 27778.96 15945.50 29159.98 34978.61 28151.82 24678.20 18444.30 30284.11 23178.27 249
BH-w/o64.81 24064.29 24866.36 24576.08 20254.71 19165.61 27675.23 20950.10 25471.05 25471.86 34154.33 23479.02 16238.20 34276.14 31565.36 366
WB-MVS60.04 28864.19 24947.59 37076.09 20010.22 42352.44 37246.74 38765.17 8874.07 21187.48 12953.48 23855.28 35949.36 26172.84 34477.28 261
patch_mono-262.73 26764.08 25058.68 31470.36 28455.87 18460.84 31664.11 30241.23 32764.04 32178.22 28660.00 18348.80 37454.17 22683.71 23771.37 321
xiu_mvs_v2_base64.43 24763.96 25165.85 25177.72 17551.32 21263.63 29772.31 23345.06 30061.70 33769.66 36062.56 15273.93 23949.06 26473.91 33772.31 312
CANet_DTU64.04 25263.83 25264.66 25668.39 30642.97 29973.45 16274.50 21552.05 22854.78 37975.44 31143.99 29170.42 27653.49 23278.41 29880.59 217
TAMVS65.31 23463.75 25369.97 19282.23 11759.76 15866.78 26263.37 30745.20 29769.79 26979.37 27047.42 27672.17 25634.48 36885.15 21577.99 256
PS-MVSNAJ64.27 25063.73 25465.90 25077.82 17351.42 21163.33 30072.33 23245.09 29961.60 33868.04 37462.39 15673.95 23849.07 26373.87 33872.34 311
PM-MVS64.49 24563.61 25567.14 23876.68 19275.15 3168.49 23742.85 40051.17 24277.85 14380.51 24845.76 27966.31 31452.83 23676.35 31359.96 389
TR-MVS64.59 24363.54 25667.73 23175.75 20750.83 21663.39 29970.29 26049.33 26171.55 24774.55 31850.94 25278.46 17440.43 32775.69 31873.89 296
MonoMVSNet62.75 26563.42 25760.73 30065.60 33840.77 31672.49 16970.56 25752.49 22275.07 19179.42 26839.52 32169.97 27846.59 28969.06 37171.44 320
CL-MVSNet_self_test62.44 26963.40 25859.55 30872.34 25932.38 37556.39 34764.84 29551.21 24167.46 29981.01 24250.75 25363.51 33038.47 34088.12 16582.75 167
OpenMVS_ROBcopyleft54.93 1763.23 25963.28 25963.07 27469.81 29245.34 27768.52 23667.14 27743.74 30970.61 25779.22 27247.90 27472.66 24848.75 26673.84 33971.21 325
pmmvs-eth3d64.41 24863.27 26067.82 23075.81 20660.18 15569.49 21662.05 31438.81 34974.13 20982.23 22643.76 29368.65 28842.53 31280.63 27274.63 287
Vis-MVSNet (Re-imp)62.74 26663.21 26161.34 29472.19 26031.56 38067.31 25453.87 35353.60 21469.88 26883.37 20940.52 31370.98 27041.40 32186.78 19381.48 195
USDC62.80 26463.10 26261.89 28565.19 34143.30 29567.42 24974.20 21735.80 36872.25 23684.48 19345.67 28071.95 26137.95 34484.97 21670.42 333
Patchmtry60.91 28063.01 26354.62 33666.10 33526.27 40567.47 24856.40 34254.05 20772.04 23986.66 15033.19 34960.17 34143.69 30687.45 17677.42 259
jason64.47 24662.84 26469.34 20176.91 18759.20 15967.15 25565.67 28635.29 36965.16 31376.74 30144.67 28770.68 27154.74 21779.28 28878.14 252
jason: jason.
cascas64.59 24362.77 26570.05 19075.27 21050.02 22461.79 30971.61 23642.46 31963.68 32768.89 36849.33 26280.35 14147.82 27984.05 23279.78 229
CDS-MVSNet64.33 24962.66 26669.35 20080.44 13758.28 17265.26 28065.66 28744.36 30367.30 30175.54 30843.27 29571.77 26237.68 34584.44 22878.01 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IterMVS63.12 26062.48 26765.02 25566.34 33152.86 20463.81 29462.25 31046.57 28371.51 24880.40 25044.60 28866.82 31051.38 24475.47 32175.38 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MDA-MVSNet-bldmvs62.34 27061.73 26864.16 25961.64 36249.90 22748.11 38557.24 33353.31 21680.95 10779.39 26949.00 26661.55 33745.92 29480.05 27781.03 201
GA-MVS62.91 26261.66 26966.66 24467.09 32344.49 28461.18 31469.36 26651.33 23969.33 27474.47 31936.83 33674.94 22450.60 25074.72 32780.57 218
PVSNet_Blended62.90 26361.64 27066.69 24369.81 29249.36 23361.23 31378.96 15942.04 32059.98 34968.86 36951.82 24678.20 18444.30 30277.77 30672.52 309
miper_lstm_enhance61.97 27161.63 27162.98 27560.04 37045.74 27547.53 38770.95 25344.04 30473.06 22578.84 28039.72 31860.33 34055.82 20684.64 22482.88 162
MVSTER63.29 25861.60 27268.36 22159.77 37646.21 27160.62 31871.32 24441.83 32275.40 18979.12 27530.25 37575.85 20956.30 20079.81 28283.03 159
lupinMVS63.36 25661.49 27368.97 21174.93 21459.19 16065.80 27364.52 29934.68 37563.53 33074.25 32343.19 29670.62 27253.88 22978.67 29477.10 266
thres600view761.82 27361.38 27463.12 27371.81 26434.93 36364.64 28656.99 33554.78 18970.33 26079.74 26232.07 35872.42 25438.61 33883.46 24082.02 185
EGC-MVSNET64.77 24161.17 27575.60 10086.90 4374.47 3484.04 3968.62 2720.60 4201.13 42291.61 3265.32 13374.15 23664.01 12988.28 16278.17 251
thres100view90061.17 27961.09 27661.39 29272.14 26135.01 36265.42 27956.99 33555.23 18270.71 25679.90 26032.07 35872.09 25735.61 36381.73 25677.08 267
D2MVS62.58 26861.05 27767.20 23663.85 35047.92 24956.29 34869.58 26439.32 34370.07 26578.19 28734.93 34372.68 24753.44 23383.74 23581.00 203
CMPMVSbinary48.73 2061.54 27760.89 27863.52 26861.08 36551.55 21068.07 24268.00 27533.88 37765.87 30781.25 23837.91 33067.71 29549.32 26282.60 24671.31 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test250661.23 27860.85 27962.38 28278.80 16027.88 39767.33 25337.42 41354.23 20167.55 29888.68 10917.87 41674.39 23246.33 29189.41 14484.86 96
EU-MVSNet60.82 28160.80 28060.86 29968.37 30741.16 31072.27 17068.27 27426.96 40069.08 27575.71 30632.09 35767.44 30055.59 20978.90 29173.97 294
ET-MVSNet_ETH3D63.32 25760.69 28171.20 17370.15 28955.66 18665.02 28364.32 30043.28 31768.99 27772.05 34025.46 39378.19 18654.16 22782.80 24479.74 230
HyFIR lowres test63.01 26160.47 28270.61 17683.04 10454.10 19659.93 32472.24 23433.67 38069.00 27675.63 30738.69 32576.93 20136.60 35575.45 32280.81 210
PAPM61.79 27460.37 28366.05 24876.09 20041.87 30669.30 22076.79 19640.64 33753.80 38479.62 26544.38 28982.92 9729.64 38973.11 34373.36 300
FPMVS59.43 29360.07 28457.51 32177.62 17871.52 5362.33 30750.92 36957.40 16069.40 27380.00 25939.14 32361.92 33637.47 34866.36 38239.09 412
tfpn200view960.35 28659.97 28561.51 28970.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25677.08 267
MVS60.62 28459.97 28562.58 28068.13 31247.28 26168.59 23473.96 21832.19 38459.94 35168.86 36950.48 25477.64 19541.85 31875.74 31762.83 378
thres40060.77 28359.97 28563.15 27270.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25682.02 185
ppachtmachnet_test60.26 28759.61 28862.20 28367.70 31744.33 28558.18 33860.96 31840.75 33565.80 30872.57 33641.23 30663.92 32746.87 28682.42 24778.33 247
MVP-Stereo61.56 27659.22 28968.58 22079.28 14860.44 15369.20 22271.57 23743.58 31156.42 37178.37 28439.57 32076.46 20834.86 36760.16 39768.86 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-RL test59.95 28959.12 29062.44 28172.46 25854.61 19359.63 32547.51 38441.05 33074.58 20274.30 32231.06 36965.31 32051.61 24079.85 28167.39 353
pmmvs460.78 28259.04 29166.00 24973.06 25257.67 17564.53 28960.22 32036.91 36265.96 30677.27 29639.66 31968.54 28938.87 33574.89 32671.80 317
1112_ss59.48 29258.99 29260.96 29877.84 17242.39 30461.42 31168.45 27337.96 35459.93 35267.46 37745.11 28565.07 32240.89 32571.81 35375.41 280
131459.83 29058.86 29362.74 27965.71 33744.78 28268.59 23472.63 22933.54 38261.05 34467.29 38043.62 29471.26 26849.49 26067.84 37972.19 314
Test_1112_low_res58.78 29858.69 29459.04 31379.41 14638.13 34157.62 34066.98 27934.74 37359.62 35577.56 29442.92 29863.65 32938.66 33770.73 36175.35 282
EPNet_dtu58.93 29758.52 29560.16 30567.91 31547.70 25569.97 21158.02 32649.73 25747.28 40373.02 33438.14 32762.34 33336.57 35685.99 20370.43 332
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CR-MVSNet58.96 29558.49 29660.36 30366.37 32948.24 24370.93 19956.40 34232.87 38361.35 34086.66 15033.19 34963.22 33148.50 27070.17 36569.62 340
CVMVSNet59.21 29458.44 29761.51 28973.94 23547.76 25371.31 19364.56 29826.91 40260.34 34870.44 34936.24 33967.65 29653.57 23168.66 37469.12 345
testing358.28 30158.38 29858.00 31977.45 18026.12 40660.78 31743.00 39956.02 17370.18 26275.76 30513.27 42467.24 30348.02 27680.89 26580.65 215
baseline157.82 30458.36 29956.19 32869.17 29930.76 38662.94 30555.21 34646.04 28663.83 32578.47 28241.20 30763.68 32839.44 33068.99 37274.13 293
reproduce_monomvs58.94 29658.14 30061.35 29359.70 37740.98 31360.24 32263.51 30645.85 28868.95 27975.31 31218.27 41465.82 31651.47 24279.97 27877.26 264
SCA58.57 30058.04 30160.17 30470.17 28741.07 31265.19 28153.38 35943.34 31661.00 34573.48 32945.20 28369.38 28240.34 32870.31 36470.05 334
thisisatest051560.48 28557.86 30268.34 22267.25 32146.42 26860.58 31962.14 31140.82 33363.58 32969.12 36326.28 38978.34 18048.83 26582.13 24980.26 223
PatchMatch-RL58.68 29957.72 30361.57 28876.21 19873.59 4361.83 30849.00 37947.30 27961.08 34268.97 36550.16 25659.01 34536.06 36268.84 37352.10 399
HY-MVS49.31 1957.96 30357.59 30459.10 31266.85 32836.17 35365.13 28265.39 29139.24 34654.69 38178.14 28844.28 29067.18 30433.75 37370.79 36073.95 295
test20.0355.74 31357.51 30550.42 35659.89 37532.09 37750.63 37749.01 37850.11 25365.07 31483.23 21645.61 28148.11 37930.22 38583.82 23471.07 328
XXY-MVS55.19 31857.40 30648.56 36964.45 34834.84 36551.54 37553.59 35538.99 34863.79 32679.43 26756.59 22145.57 38536.92 35471.29 35765.25 367
thres20057.55 30557.02 30759.17 31067.89 31634.93 36358.91 33257.25 33250.24 25164.01 32271.46 34432.49 35471.39 26731.31 38179.57 28671.19 326
IB-MVS49.67 1859.69 29156.96 30867.90 22768.19 31150.30 22161.42 31165.18 29247.57 27755.83 37467.15 38123.77 39979.60 15443.56 30879.97 27873.79 297
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testgi54.00 32856.86 30945.45 37958.20 38525.81 40749.05 38149.50 37745.43 29467.84 29381.17 23951.81 24843.20 39929.30 39079.41 28767.34 355
gg-mvs-nofinetune55.75 31256.75 31052.72 34562.87 35528.04 39668.92 22541.36 40871.09 4650.80 39492.63 1320.74 40766.86 30829.97 38772.41 34763.25 377
our_test_356.46 30856.51 31156.30 32767.70 31739.66 32755.36 35652.34 36540.57 33863.85 32469.91 35940.04 31658.22 35043.49 30975.29 32571.03 329
PatchT53.35 33256.47 31243.99 38664.19 34917.46 41759.15 32643.10 39852.11 22754.74 38086.95 13929.97 37849.98 37143.62 30774.40 33264.53 375
CHOSEN 1792x268858.09 30256.30 31363.45 26979.95 14050.93 21554.07 36565.59 28828.56 39661.53 33974.33 32141.09 30966.52 31333.91 37167.69 38072.92 304
CostFormer57.35 30656.14 31460.97 29763.76 35238.43 33667.50 24760.22 32037.14 36159.12 35776.34 30332.78 35271.99 26039.12 33469.27 37072.47 310
MIMVSNet54.39 32356.12 31549.20 36372.57 25730.91 38459.98 32348.43 38141.66 32355.94 37383.86 20241.19 30850.42 36926.05 40075.38 32366.27 361
test_fmvs356.78 30755.99 31659.12 31153.96 40648.09 24658.76 33366.22 28227.54 39876.66 16468.69 37125.32 39551.31 36753.42 23473.38 34177.97 257
Anonymous2023120654.13 32455.82 31749.04 36670.89 27035.96 35551.73 37450.87 37034.86 37062.49 33579.22 27242.52 30244.29 39527.95 39681.88 25266.88 357
new-patchmatchnet52.89 33655.76 31844.26 38559.94 3746.31 42537.36 40950.76 37141.10 32864.28 31979.82 26144.77 28648.43 37836.24 35987.61 17178.03 254
FMVSNet555.08 32055.54 31953.71 33865.80 33633.50 37256.22 34952.50 36343.72 31061.06 34383.38 20825.46 39354.87 36030.11 38681.64 26172.75 307
ttmdpeth56.40 30955.45 32059.25 30955.63 39740.69 31758.94 33149.72 37536.22 36465.39 31086.97 13823.16 40256.69 35642.30 31380.74 26980.36 221
Syy-MVS54.13 32455.45 32050.18 35768.77 30323.59 41055.02 35744.55 39343.80 30658.05 36164.07 38746.22 27858.83 34646.16 29272.36 34868.12 349
tpmvs55.84 31155.45 32057.01 32360.33 36933.20 37365.89 27059.29 32447.52 27856.04 37273.60 32831.05 37068.06 29440.64 32664.64 38569.77 338
testing9155.74 31355.29 32357.08 32270.63 27530.85 38554.94 36056.31 34450.34 24957.08 36470.10 35624.50 39765.86 31536.98 35376.75 31174.53 289
MVStest155.38 31754.97 32456.58 32643.72 41940.07 32459.13 32747.09 38634.83 37176.53 17284.65 18813.55 42353.30 36555.04 21380.23 27576.38 272
MS-PatchMatch55.59 31554.89 32557.68 32069.18 29849.05 23661.00 31562.93 30935.98 36658.36 35968.93 36736.71 33766.59 31237.62 34763.30 38957.39 395
WB-MVSnew53.94 32954.76 32651.49 35171.53 26628.05 39558.22 33750.36 37237.94 35559.16 35670.17 35449.21 26351.94 36624.49 40771.80 35474.47 291
tpm256.12 31054.64 32760.55 30266.24 33236.01 35468.14 24056.77 33833.60 38158.25 36075.52 31030.25 37574.33 23333.27 37469.76 36971.32 322
testing9955.16 31954.56 32856.98 32470.13 29030.58 38754.55 36354.11 35249.53 26056.76 36870.14 35522.76 40465.79 31736.99 35276.04 31674.57 288
PatchmatchNetpermissive54.60 32254.27 32955.59 33265.17 34339.08 32966.92 25951.80 36739.89 34058.39 35873.12 33331.69 36358.33 34943.01 31158.38 40369.38 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
WBMVS53.38 33054.14 33051.11 35370.16 28826.66 40150.52 37951.64 36839.32 34363.08 33377.16 29723.53 40055.56 35731.99 37879.88 28071.11 327
test_fmvs254.80 32154.11 33156.88 32551.76 41049.95 22656.70 34665.80 28526.22 40369.42 27265.25 38531.82 36149.98 37149.63 25870.36 36370.71 330
MDTV_nov1_ep1354.05 33265.54 33929.30 39259.00 32955.22 34535.96 36752.44 38775.98 30430.77 37259.62 34338.21 34173.33 342
test_vis1_n_192052.96 33453.50 33351.32 35259.15 37944.90 28156.13 35164.29 30130.56 39459.87 35360.68 39840.16 31547.47 38048.25 27462.46 39161.58 386
YYNet152.58 33853.50 33349.85 35954.15 40336.45 35240.53 40246.55 38938.09 35375.52 18773.31 33241.08 31043.88 39641.10 32271.14 35969.21 344
MDA-MVSNet_test_wron52.57 33953.49 33549.81 36054.24 40236.47 35140.48 40346.58 38838.13 35275.47 18873.32 33141.05 31143.85 39740.98 32471.20 35869.10 346
UnsupCasMVSNet_eth52.26 34153.29 33649.16 36455.08 39933.67 37150.03 38058.79 32537.67 35763.43 33274.75 31641.82 30445.83 38438.59 33959.42 39967.98 352
baseline255.57 31652.74 33764.05 26265.26 34044.11 28662.38 30654.43 35039.03 34751.21 39267.35 37933.66 34772.45 25337.14 35064.22 38775.60 277
UWE-MVS52.94 33552.70 33853.65 33973.56 23827.49 39857.30 34349.57 37638.56 35162.79 33471.42 34519.49 41160.41 33924.33 40977.33 30873.06 302
tpm cat154.02 32752.63 33958.19 31764.85 34739.86 32666.26 26757.28 33132.16 38556.90 36670.39 35132.75 35365.30 32134.29 36958.79 40069.41 342
pmmvs552.49 34052.58 34052.21 34754.99 40032.38 37555.45 35553.84 35432.15 38655.49 37674.81 31438.08 32857.37 35434.02 37074.40 33266.88 357
testing22253.37 33152.50 34155.98 33070.51 28129.68 39056.20 35051.85 36646.19 28556.76 36868.94 36619.18 41265.39 31925.87 40376.98 30972.87 305
tpm50.60 35052.42 34245.14 38165.18 34226.29 40460.30 32043.50 39637.41 35957.01 36579.09 27630.20 37742.32 40032.77 37666.36 38266.81 359
testing1153.13 33352.26 34355.75 33170.44 28231.73 37954.75 36152.40 36444.81 30152.36 38968.40 37321.83 40565.74 31832.64 37772.73 34569.78 337
test_fmvs1_n52.70 33752.01 34454.76 33453.83 40750.36 21955.80 35365.90 28424.96 40765.39 31060.64 39927.69 38448.46 37645.88 29567.99 37765.46 365
JIA-IIPM54.03 32651.62 34561.25 29559.14 38055.21 18959.10 32847.72 38250.85 24450.31 39885.81 17820.10 40963.97 32636.16 36055.41 40864.55 374
KD-MVS_2432*160052.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
miper_refine_blended52.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
tpmrst50.15 35451.38 34846.45 37656.05 39324.77 40864.40 29149.98 37336.14 36553.32 38669.59 36135.16 34248.69 37539.24 33258.51 40265.89 362
PVSNet43.83 2151.56 34651.17 34952.73 34468.34 30838.27 33848.22 38453.56 35736.41 36354.29 38264.94 38634.60 34454.20 36330.34 38469.87 36765.71 364
N_pmnet52.06 34251.11 35054.92 33359.64 37871.03 5737.42 40861.62 31733.68 37957.12 36372.10 33737.94 32931.03 41429.13 39571.35 35662.70 379
test_vis3_rt51.94 34551.04 35154.65 33546.32 41750.13 22344.34 39778.17 17723.62 41168.95 27962.81 39121.41 40638.52 41041.49 32072.22 35075.30 283
UnsupCasMVSNet_bld50.01 35551.03 35246.95 37258.61 38232.64 37448.31 38353.27 36034.27 37660.47 34771.53 34341.40 30547.07 38230.68 38360.78 39661.13 387
test_cas_vis1_n_192050.90 34950.92 35350.83 35554.12 40547.80 25151.44 37654.61 34926.95 40163.95 32360.85 39737.86 33244.97 39045.53 29762.97 39059.72 390
test_fmvs151.51 34750.86 35453.48 34049.72 41349.35 23554.11 36464.96 29424.64 40963.66 32859.61 40228.33 38348.45 37745.38 30067.30 38162.66 381
dmvs_re49.91 35650.77 35547.34 37159.98 37138.86 33353.18 36853.58 35639.75 34155.06 37761.58 39636.42 33844.40 39429.15 39468.23 37558.75 392
test-LLR50.43 35150.69 35649.64 36160.76 36641.87 30653.18 36845.48 39143.41 31449.41 39960.47 40029.22 38144.73 39242.09 31672.14 35162.33 384
myMVS_eth3d50.36 35250.52 35749.88 35868.77 30322.69 41255.02 35744.55 39343.80 30658.05 36164.07 38714.16 42258.83 34633.90 37272.36 34868.12 349
test_vis1_n51.27 34850.41 35853.83 33756.99 38950.01 22556.75 34560.53 31925.68 40559.74 35457.86 40329.40 38047.41 38143.10 31063.66 38864.08 376
WTY-MVS49.39 35750.31 35946.62 37561.22 36432.00 37846.61 39049.77 37433.87 37854.12 38369.55 36241.96 30345.40 38731.28 38264.42 38662.47 382
Patchmatch-test47.93 36149.96 36041.84 38957.42 38824.26 40948.75 38241.49 40739.30 34556.79 36773.48 32930.48 37433.87 41329.29 39172.61 34667.39 353
ETVMVS50.32 35349.87 36151.68 34970.30 28626.66 40152.33 37343.93 39543.54 31254.91 37867.95 37520.01 41060.17 34122.47 41173.40 34068.22 348
UBG49.18 35849.35 36248.66 36870.36 28426.56 40350.53 37845.61 39037.43 35853.37 38565.97 38223.03 40354.20 36326.29 39871.54 35565.20 368
sss47.59 36348.32 36345.40 38056.73 39233.96 36945.17 39348.51 38032.11 38852.37 38865.79 38340.39 31441.91 40331.85 37961.97 39360.35 388
test0.0.03 147.72 36248.31 36445.93 37755.53 39829.39 39146.40 39141.21 40943.41 31455.81 37567.65 37629.22 38143.77 39825.73 40469.87 36764.62 373
test-mter48.56 36048.20 36549.64 36160.76 36641.87 30653.18 36845.48 39131.91 38949.41 39960.47 40018.34 41344.73 39242.09 31672.14 35162.33 384
dmvs_testset45.26 36847.51 36638.49 39559.96 37314.71 41958.50 33543.39 39741.30 32651.79 39156.48 40439.44 32249.91 37321.42 41355.35 40950.85 400
MVS-HIRNet45.53 36747.29 36740.24 39262.29 35826.82 40056.02 35237.41 41429.74 39543.69 41381.27 23733.96 34555.48 35824.46 40856.79 40438.43 413
ADS-MVSNet248.76 35947.25 36853.29 34355.90 39540.54 32147.34 38854.99 34831.41 39150.48 39572.06 33831.23 36654.26 36225.93 40155.93 40565.07 369
EPMVS45.74 36646.53 36943.39 38754.14 40422.33 41455.02 35735.00 41634.69 37451.09 39370.20 35325.92 39142.04 40237.19 34955.50 40765.78 363
test_f43.79 37545.63 37038.24 39642.29 42238.58 33534.76 41147.68 38322.22 41467.34 30063.15 39031.82 36130.60 41539.19 33362.28 39245.53 408
ADS-MVSNet44.62 37245.58 37141.73 39055.90 39520.83 41547.34 38839.94 41131.41 39150.48 39572.06 33831.23 36639.31 40825.93 40155.93 40565.07 369
E-PMN45.17 36945.36 37244.60 38350.07 41142.75 30038.66 40642.29 40446.39 28439.55 41451.15 41026.00 39045.37 38837.68 34576.41 31245.69 407
test_vis1_rt46.70 36545.24 37351.06 35444.58 41851.04 21439.91 40467.56 27621.84 41551.94 39050.79 41133.83 34639.77 40735.25 36661.50 39462.38 383
pmmvs346.71 36445.09 37451.55 35056.76 39148.25 24255.78 35439.53 41224.13 41050.35 39763.40 38915.90 41951.08 36829.29 39170.69 36255.33 398
TESTMET0.1,145.17 36944.93 37545.89 37856.02 39438.31 33753.18 36841.94 40627.85 39744.86 40956.47 40517.93 41541.50 40538.08 34368.06 37657.85 393
dp44.09 37444.88 37641.72 39158.53 38423.18 41154.70 36242.38 40334.80 37244.25 41165.61 38424.48 39844.80 39129.77 38849.42 41157.18 396
DSMNet-mixed43.18 37744.66 37738.75 39454.75 40128.88 39457.06 34427.42 41913.47 41747.27 40477.67 29338.83 32439.29 40925.32 40660.12 39848.08 403
EMVS44.61 37344.45 37845.10 38248.91 41443.00 29837.92 40741.10 41046.75 28238.00 41648.43 41326.42 38846.27 38337.11 35175.38 32346.03 406
PMMVS44.69 37143.95 37946.92 37350.05 41253.47 20248.08 38642.40 40222.36 41344.01 41253.05 40842.60 30145.49 38631.69 38061.36 39541.79 410
mvsany_test343.76 37641.01 38052.01 34848.09 41557.74 17442.47 39923.85 42223.30 41264.80 31562.17 39427.12 38540.59 40629.17 39348.11 41257.69 394
PMMVS237.74 38140.87 38128.36 39842.41 4215.35 42624.61 41327.75 41832.15 38647.85 40270.27 35235.85 34029.51 41619.08 41667.85 37850.22 402
PVSNet_036.71 2241.12 37940.78 38242.14 38859.97 37240.13 32340.97 40142.24 40530.81 39344.86 40949.41 41240.70 31245.12 38923.15 41034.96 41541.16 411
CHOSEN 280x42041.62 37839.89 38346.80 37461.81 36051.59 20933.56 41235.74 41527.48 39937.64 41753.53 40623.24 40142.09 40127.39 39758.64 40146.72 405
new_pmnet37.55 38239.80 38430.79 39756.83 39016.46 41839.35 40530.65 41725.59 40645.26 40761.60 39524.54 39628.02 41721.60 41252.80 41047.90 404
mvsany_test137.88 38035.74 38544.28 38447.28 41649.90 22736.54 41024.37 42119.56 41645.76 40553.46 40732.99 35137.97 41126.17 39935.52 41444.99 409
MVEpermissive27.91 2336.69 38335.64 38639.84 39343.37 42035.85 35719.49 41424.61 42024.68 40839.05 41562.63 39338.67 32627.10 41821.04 41447.25 41356.56 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai31.66 38432.98 38727.71 39958.58 38312.61 42145.02 39414.24 42541.90 32147.93 40143.91 41410.65 42541.81 40414.06 41720.53 41828.72 415
cdsmvs_eth3d_5k17.71 38723.62 3880.00 4060.00 4290.00 4310.00 41770.17 2610.00 4240.00 42574.25 32368.16 1000.00 4250.00 4240.00 4230.00 421
kuosan22.02 38523.52 38917.54 40141.56 42311.24 42241.99 40013.39 42626.13 40428.87 41830.75 4169.72 42621.94 4204.77 42114.49 41919.43 416
test_method19.26 38619.12 39019.71 4009.09 4251.91 4287.79 41653.44 3581.42 41910.27 42135.80 41517.42 41725.11 41912.44 41824.38 41732.10 414
tmp_tt11.98 38814.73 3913.72 4032.28 4264.62 42719.44 41514.50 4240.47 42121.55 4199.58 41925.78 3924.57 42211.61 41927.37 4161.96 418
ab-mvs-re5.62 3897.50 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42567.46 3770.00 4290.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.20 3906.93 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42462.39 1560.00 4250.00 4240.00 4230.00 421
test1234.43 3915.78 3940.39 4050.97 4270.28 42946.33 3920.45 4280.31 4220.62 4231.50 4220.61 4280.11 4240.56 4220.63 4210.77 420
testmvs4.06 3925.28 3950.41 4040.64 4280.16 43042.54 3980.31 4290.26 4230.50 4241.40 4230.77 4270.17 4230.56 4220.55 4220.90 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS22.69 41236.10 361
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
PC_three_145246.98 28181.83 9486.28 16266.55 12184.47 7463.31 14290.78 11583.49 140
No_MVS79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
eth-test20.00 429
eth-test0.00 429
ZD-MVS83.91 9069.36 7381.09 12058.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
IU-MVS86.12 5460.90 14780.38 13645.49 29381.31 10275.64 4494.39 4484.65 102
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15189.79 13683.08 157
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 151
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
save fliter87.00 4067.23 9079.24 8977.94 18256.65 169
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 120
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 151
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
GSMVS70.05 334
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36470.05 334
sam_mvs31.21 368
ambc70.10 18977.74 17450.21 22274.28 15677.93 18379.26 12488.29 11954.11 23679.77 15164.43 12591.10 10480.30 222
MTGPAbinary80.63 130
test_post166.63 2632.08 42030.66 37359.33 34440.34 328
test_post1.99 42130.91 37154.76 361
patchmatchnet-post68.99 36431.32 36569.38 282
GG-mvs-BLEND52.24 34660.64 36829.21 39369.73 21542.41 40145.47 40652.33 40920.43 40868.16 29225.52 40565.42 38459.36 391
MTMP84.83 3419.26 423
gm-plane-assit62.51 35633.91 37037.25 36062.71 39272.74 24638.70 336
test9_res72.12 7291.37 9477.40 260
TEST985.47 6769.32 7476.42 12378.69 16753.73 21376.97 15386.74 14666.84 11281.10 125
test_885.09 7367.89 8376.26 12878.66 16954.00 20876.89 15786.72 14866.60 11880.89 135
agg_prior270.70 7690.93 10978.55 246
agg_prior84.44 8566.02 10178.62 17076.95 15580.34 142
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8092.76 75
test_prior75.27 10482.15 11859.85 15784.33 6383.39 8982.58 174
旧先验271.17 19645.11 29878.54 13561.28 33859.19 178
新几何271.33 192
新几何169.99 19188.37 3571.34 5562.08 31343.85 30574.99 19386.11 17152.85 24170.57 27350.99 24783.23 24268.05 351
旧先验184.55 8260.36 15463.69 30487.05 13754.65 23183.34 24169.66 339
无先验74.82 14370.94 25447.75 27676.85 20454.47 22072.09 315
原ACMM274.78 147
原ACMM173.90 12085.90 6065.15 11081.67 10650.97 24374.25 20786.16 16861.60 16483.54 8556.75 19491.08 10573.00 303
test22287.30 3869.15 7767.85 24359.59 32341.06 32973.05 22685.72 17948.03 27380.65 27066.92 356
testdata267.30 30148.34 272
segment_acmp68.30 99
testdata64.13 26085.87 6263.34 12261.80 31647.83 27476.42 17786.60 15548.83 26762.31 33454.46 22181.26 26366.74 360
testdata168.34 23957.24 161
test1276.51 8882.28 11660.94 14681.64 10773.60 21764.88 13785.19 6290.42 12283.38 147
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7390.94 10784.82 98
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 430
nn0.00 430
door-mid55.02 347
lessismore_v072.75 14979.60 14456.83 17957.37 33083.80 7489.01 10147.45 27578.74 16864.39 12686.49 19882.69 171
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
test1182.71 90
door52.91 362
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 243
ACMP_Plane82.37 11377.32 11159.08 14071.58 243
BP-MVS67.38 104
HQP4-MVS71.59 24285.31 5483.74 134
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41653.74 36631.57 39044.89 40829.90 37932.93 37571.48 319
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13366.87 6883.64 7686.18 16670.25 8379.90 15061.12 15788.95 15687.56 52
DeepMVS_CXcopyleft11.83 40215.51 42413.86 42011.25 4275.76 41820.85 42026.46 41717.06 4189.22 4219.69 42013.82 42012.42 417