| LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 21 | 91.50 1 | 63.30 119 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 69 | 68.08 88 | 97.05 1 | 96.93 1 |
|
| TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 31 | 81.19 4 | 88.84 4 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 66 | 74.51 48 | 96.15 2 | 92.88 7 |
|
| RE-MVS-def | | | | 85.50 3 | | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 47 | 81.38 7 | | 78.11 23 | 94.46 36 | 84.89 94 |
|
| SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 18 | 88.52 33 | 77.71 13 | 86.81 16 | 85.25 37 | 77.42 13 | 86.15 38 | 90.24 70 | 81.69 5 | 85.94 35 | 77.77 26 | 93.58 61 | 83.09 153 |
|
| SR-MVS-dyc-post | | | 84.75 3 | 85.26 5 | 83.21 3 | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 47 | 79.20 14 | 85.58 49 | 78.11 23 | 94.46 36 | 84.89 94 |
|
| HPM-MVS_fast | | | 84.59 4 | 85.10 6 | 83.06 4 | 88.60 32 | 75.83 23 | 86.27 24 | 86.89 15 | 73.69 23 | 86.17 37 | 91.70 25 | 78.23 19 | 85.20 58 | 79.45 12 | 94.91 24 | 88.15 47 |
|
| LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 7 | 81.94 20 | 84.82 72 | 75.40 25 | 91.60 3 | 87.80 7 | 73.52 24 | 88.90 11 | 93.06 6 | 71.39 68 | 81.53 115 | 81.53 3 | 92.15 82 | 88.91 38 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMMP |  | | 84.22 6 | 84.84 8 | 82.35 17 | 89.23 21 | 76.66 22 | 87.65 6 | 85.89 26 | 71.03 42 | 85.85 42 | 90.58 51 | 78.77 16 | 85.78 42 | 79.37 15 | 95.17 16 | 84.62 105 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| HPM-MVS |  | | 84.12 8 | 84.63 9 | 82.60 13 | 88.21 35 | 74.40 31 | 85.24 28 | 87.21 13 | 70.69 45 | 85.14 54 | 90.42 58 | 78.99 15 | 86.62 13 | 80.83 5 | 94.93 23 | 86.79 63 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 84.12 8 | 84.55 10 | 82.80 10 | 89.42 17 | 79.74 5 | 88.19 5 | 84.43 58 | 71.96 38 | 84.70 61 | 90.56 52 | 77.12 25 | 86.18 26 | 79.24 17 | 95.36 12 | 82.49 173 |
|
| mPP-MVS | | | 84.01 10 | 84.39 11 | 82.88 6 | 90.65 3 | 81.38 3 | 87.08 12 | 82.79 83 | 72.41 34 | 85.11 55 | 90.85 44 | 76.65 28 | 84.89 63 | 79.30 16 | 94.63 33 | 82.35 175 |
|
| APD-MVS_3200maxsize | | | 83.57 13 | 84.33 12 | 81.31 28 | 82.83 106 | 73.53 40 | 85.50 27 | 87.45 12 | 74.11 19 | 86.45 35 | 90.52 55 | 80.02 10 | 84.48 70 | 77.73 27 | 94.34 47 | 85.93 74 |
|
| LPG-MVS_test | | | 83.47 16 | 84.33 12 | 80.90 32 | 87.00 39 | 70.41 60 | 82.04 56 | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| APDe-MVS |  | | 82.88 23 | 84.14 14 | 79.08 53 | 84.80 74 | 66.72 90 | 86.54 20 | 85.11 39 | 72.00 37 | 86.65 31 | 91.75 24 | 78.20 20 | 87.04 9 | 77.93 25 | 94.32 48 | 83.47 140 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| COLMAP_ROB |  | 72.78 3 | 83.75 11 | 84.11 15 | 82.68 12 | 82.97 103 | 74.39 32 | 87.18 10 | 88.18 6 | 78.98 6 | 86.11 40 | 91.47 30 | 79.70 12 | 85.76 43 | 66.91 107 | 95.46 11 | 87.89 48 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| HFP-MVS | | | 83.39 17 | 84.03 16 | 81.48 23 | 89.25 20 | 75.69 24 | 87.01 14 | 84.27 61 | 70.23 46 | 84.47 64 | 90.43 57 | 76.79 26 | 85.94 35 | 79.58 10 | 94.23 51 | 82.82 162 |
|
| ACMMPR | | | 83.62 12 | 83.93 17 | 82.69 11 | 89.78 10 | 77.51 18 | 87.01 14 | 84.19 65 | 70.23 46 | 84.49 63 | 90.67 50 | 75.15 41 | 86.37 18 | 79.58 10 | 94.26 49 | 84.18 122 |
|
| MTAPA | | | 83.19 18 | 83.87 18 | 81.13 30 | 91.16 2 | 78.16 11 | 84.87 30 | 80.63 124 | 72.08 36 | 84.93 56 | 90.79 45 | 74.65 46 | 84.42 72 | 80.98 4 | 94.75 28 | 80.82 203 |
|
| region2R | | | 83.54 14 | 83.86 19 | 82.58 14 | 89.82 9 | 77.53 16 | 87.06 13 | 84.23 64 | 70.19 48 | 83.86 71 | 90.72 49 | 75.20 40 | 86.27 21 | 79.41 14 | 94.25 50 | 83.95 126 |
|
| XVS | | | 83.51 15 | 83.73 20 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 53 | 72.71 27 | 82.87 81 | 90.39 62 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 103 |
|
| ZNCC-MVS | | | 83.12 20 | 83.68 21 | 81.45 24 | 89.14 24 | 73.28 42 | 86.32 23 | 85.97 25 | 67.39 60 | 84.02 68 | 90.39 62 | 74.73 45 | 86.46 15 | 80.73 6 | 94.43 40 | 84.60 108 |
|
| SteuartSystems-ACMMP | | | 83.07 21 | 83.64 22 | 81.35 26 | 85.14 68 | 71.00 54 | 85.53 26 | 84.78 46 | 70.91 43 | 85.64 45 | 90.41 59 | 75.55 38 | 87.69 4 | 79.75 7 | 95.08 19 | 85.36 85 |
| Skip Steuart: Steuart Systems R&D Blog. |
| MP-MVS |  | | 83.19 18 | 83.54 23 | 82.14 19 | 90.54 4 | 79.00 8 | 86.42 22 | 83.59 74 | 71.31 39 | 81.26 102 | 90.96 39 | 74.57 47 | 84.69 67 | 78.41 21 | 94.78 27 | 82.74 165 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| SED-MVS | | | 81.78 31 | 83.48 24 | 76.67 83 | 86.12 53 | 61.06 140 | 83.62 42 | 84.72 49 | 72.61 30 | 87.38 24 | 89.70 80 | 77.48 23 | 85.89 40 | 75.29 42 | 94.39 41 | 83.08 154 |
|
| MP-MVS-pluss | | | 82.54 26 | 83.46 25 | 79.76 41 | 88.88 30 | 68.44 76 | 81.57 59 | 86.33 19 | 63.17 108 | 85.38 52 | 91.26 33 | 76.33 30 | 84.67 68 | 83.30 1 | 94.96 22 | 86.17 70 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMP | | 69.50 8 | 82.64 25 | 83.38 26 | 80.40 37 | 86.50 45 | 69.44 67 | 82.30 53 | 86.08 24 | 66.80 65 | 86.70 30 | 89.99 75 | 81.64 6 | 85.95 34 | 74.35 50 | 96.11 3 | 85.81 76 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| ACMM | | 69.25 9 | 82.11 29 | 83.31 27 | 78.49 64 | 88.17 36 | 73.96 34 | 83.11 49 | 84.52 57 | 66.40 69 | 87.45 22 | 89.16 93 | 81.02 8 | 80.52 138 | 74.27 51 | 95.73 7 | 80.98 199 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMMP_NAP | | | 82.33 27 | 83.28 28 | 79.46 49 | 89.28 18 | 69.09 74 | 83.62 42 | 84.98 42 | 64.77 90 | 83.97 69 | 91.02 38 | 75.53 39 | 85.93 37 | 82.00 2 | 94.36 45 | 83.35 146 |
|
| GST-MVS | | | 82.79 24 | 83.27 29 | 81.34 27 | 88.99 26 | 73.29 41 | 85.94 25 | 85.13 38 | 68.58 57 | 84.14 67 | 90.21 72 | 73.37 56 | 86.41 16 | 79.09 18 | 93.98 56 | 84.30 121 |
|
| PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 15 | 89.57 13 | 77.21 20 | 82.04 56 | 85.40 34 | 67.96 59 | 84.91 59 | 90.88 42 | 75.59 36 | 86.57 14 | 78.16 22 | 94.71 30 | 83.82 128 |
|
| PMVS |  | 70.70 6 | 81.70 32 | 83.15 31 | 77.36 77 | 90.35 5 | 82.82 2 | 82.15 54 | 79.22 151 | 74.08 20 | 87.16 28 | 91.97 19 | 84.80 2 | 76.97 197 | 64.98 119 | 93.61 60 | 72.28 303 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS |  | | 81.15 37 | 83.12 32 | 75.24 103 | 86.16 51 | 60.78 147 | 83.77 40 | 80.58 126 | 72.48 32 | 85.83 43 | 90.41 59 | 78.57 17 | 85.69 45 | 75.86 39 | 94.39 41 | 79.24 231 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| DPE-MVS |  | | 82.00 30 | 83.02 33 | 78.95 58 | 85.36 65 | 67.25 85 | 82.91 50 | 84.98 42 | 73.52 24 | 85.43 51 | 90.03 74 | 76.37 29 | 86.97 11 | 74.56 47 | 94.02 55 | 82.62 170 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PEN-MVS | | | 80.46 46 | 82.91 34 | 73.11 132 | 89.83 8 | 39.02 320 | 77.06 112 | 82.61 87 | 80.04 4 | 90.60 6 | 92.85 9 | 74.93 44 | 85.21 57 | 63.15 139 | 95.15 17 | 95.09 2 |
|
| DTE-MVSNet | | | 80.35 48 | 82.89 35 | 72.74 146 | 89.84 7 | 37.34 337 | 77.16 109 | 81.81 98 | 80.45 3 | 90.92 3 | 92.95 7 | 74.57 47 | 86.12 29 | 63.65 132 | 94.68 31 | 94.76 6 |
|
| PS-CasMVS | | | 80.41 47 | 82.86 36 | 73.07 133 | 89.93 6 | 39.21 317 | 77.15 110 | 81.28 108 | 79.74 5 | 90.87 4 | 92.73 11 | 75.03 43 | 84.93 62 | 63.83 131 | 95.19 15 | 95.07 3 |
|
| DVP-MVS++ | | | 81.24 35 | 82.74 37 | 76.76 82 | 83.14 95 | 60.90 144 | 91.64 1 | 85.49 30 | 74.03 21 | 84.93 56 | 90.38 64 | 66.82 108 | 85.90 38 | 77.43 30 | 90.78 113 | 83.49 137 |
|
| SMA-MVS |  | | 82.12 28 | 82.68 38 | 80.43 36 | 88.90 29 | 69.52 65 | 85.12 29 | 84.76 47 | 63.53 102 | 84.23 66 | 91.47 30 | 72.02 62 | 87.16 7 | 79.74 9 | 94.36 45 | 84.61 106 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| ACMH+ | | 66.64 10 | 81.20 36 | 82.48 39 | 77.35 78 | 81.16 128 | 62.39 124 | 80.51 67 | 87.80 7 | 73.02 26 | 87.57 20 | 91.08 36 | 80.28 9 | 82.44 100 | 64.82 120 | 96.10 4 | 87.21 57 |
|
| UA-Net | | | 81.56 33 | 82.28 40 | 79.40 50 | 88.91 28 | 69.16 72 | 84.67 33 | 80.01 138 | 75.34 15 | 79.80 118 | 94.91 2 | 69.79 83 | 80.25 142 | 72.63 63 | 94.46 36 | 88.78 42 |
|
| WR-MVS_H | | | 80.22 50 | 82.17 41 | 74.39 111 | 89.46 14 | 42.69 294 | 78.24 96 | 82.24 90 | 78.21 9 | 89.57 9 | 92.10 18 | 68.05 96 | 85.59 48 | 66.04 112 | 95.62 9 | 94.88 5 |
|
| SF-MVS | | | 80.72 43 | 81.80 42 | 77.48 74 | 82.03 116 | 64.40 111 | 83.41 46 | 88.46 5 | 65.28 81 | 84.29 65 | 89.18 91 | 73.73 55 | 83.22 88 | 76.01 38 | 93.77 58 | 84.81 100 |
|
| CPTT-MVS | | | 81.51 34 | 81.76 43 | 80.76 34 | 89.20 22 | 78.75 9 | 86.48 21 | 82.03 94 | 68.80 53 | 80.92 107 | 88.52 109 | 72.00 63 | 82.39 101 | 74.80 44 | 93.04 68 | 81.14 193 |
|
| APD-MVS |  | | 81.13 38 | 81.73 44 | 79.36 51 | 84.47 79 | 70.53 59 | 83.85 38 | 83.70 72 | 69.43 52 | 83.67 73 | 88.96 99 | 75.89 34 | 86.41 16 | 72.62 64 | 92.95 69 | 81.14 193 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CP-MVSNet | | | 79.48 54 | 81.65 45 | 72.98 136 | 89.66 12 | 39.06 319 | 76.76 113 | 80.46 128 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 91 | 84.89 63 | 63.40 136 | 95.12 18 | 95.01 4 |
|
| OPM-MVS | | | 80.99 41 | 81.63 46 | 79.07 54 | 86.86 43 | 69.39 68 | 79.41 84 | 84.00 70 | 65.64 73 | 85.54 49 | 89.28 86 | 76.32 31 | 83.47 83 | 74.03 52 | 93.57 62 | 84.35 118 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| SD-MVS | | | 80.28 49 | 81.55 47 | 76.47 88 | 83.57 89 | 67.83 80 | 83.39 47 | 85.35 36 | 64.42 92 | 86.14 39 | 87.07 129 | 74.02 51 | 80.97 129 | 77.70 28 | 92.32 80 | 80.62 211 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| XVG-ACMP-BASELINE | | | 80.54 44 | 81.06 48 | 78.98 57 | 87.01 38 | 72.91 43 | 80.23 75 | 85.56 29 | 66.56 68 | 85.64 45 | 89.57 82 | 69.12 87 | 80.55 137 | 72.51 65 | 93.37 63 | 83.48 139 |
|
| LS3D | | | 80.99 41 | 80.85 49 | 81.41 25 | 78.37 162 | 71.37 50 | 87.45 7 | 85.87 27 | 77.48 12 | 81.98 90 | 89.95 77 | 69.14 86 | 85.26 54 | 66.15 109 | 91.24 95 | 87.61 52 |
|
| DeepC-MVS | | 72.44 4 | 81.00 40 | 80.83 50 | 81.50 22 | 86.70 44 | 70.03 64 | 82.06 55 | 87.00 14 | 59.89 130 | 80.91 108 | 90.53 53 | 72.19 60 | 88.56 1 | 73.67 55 | 94.52 35 | 85.92 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 73.19 2 | 81.08 39 | 80.48 51 | 82.87 7 | 81.41 124 | 72.03 45 | 84.38 34 | 86.23 23 | 77.28 14 | 80.65 111 | 90.18 73 | 59.80 181 | 87.58 5 | 73.06 59 | 91.34 93 | 89.01 34 |
|
| v7n | | | 79.37 56 | 80.41 52 | 76.28 90 | 78.67 161 | 55.81 182 | 79.22 86 | 82.51 89 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 98 | 81.34 117 | 72.84 61 | 91.72 84 | 91.69 10 |
|
| 9.14 | | | | 80.22 53 | | 80.68 130 | | 80.35 72 | 87.69 10 | 59.90 129 | 83.00 78 | 88.20 116 | 74.57 47 | 81.75 113 | 73.75 54 | 93.78 57 | |
|
| ACMH | | 63.62 14 | 77.50 73 | 80.11 54 | 69.68 193 | 79.61 140 | 56.28 178 | 78.81 89 | 83.62 73 | 63.41 106 | 87.14 29 | 90.23 71 | 76.11 32 | 73.32 237 | 67.58 94 | 94.44 39 | 79.44 229 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVG-OURS-SEG-HR | | | 79.62 52 | 79.99 55 | 78.49 64 | 86.46 46 | 74.79 29 | 77.15 110 | 85.39 35 | 66.73 66 | 80.39 114 | 88.85 102 | 74.43 50 | 78.33 178 | 74.73 46 | 85.79 200 | 82.35 175 |
|
| XVG-OURS | | | 79.51 53 | 79.82 56 | 78.58 63 | 86.11 56 | 74.96 28 | 76.33 122 | 84.95 44 | 66.89 63 | 82.75 84 | 88.99 98 | 66.82 108 | 78.37 176 | 74.80 44 | 90.76 116 | 82.40 174 |
|
| HPM-MVS++ |  | | 79.89 51 | 79.80 57 | 80.18 39 | 89.02 25 | 78.44 10 | 83.49 45 | 80.18 135 | 64.71 91 | 78.11 136 | 88.39 112 | 65.46 125 | 83.14 89 | 77.64 29 | 91.20 96 | 78.94 235 |
|
| MSP-MVS | | | 80.49 45 | 79.67 58 | 82.96 5 | 89.70 11 | 77.46 19 | 87.16 11 | 85.10 40 | 64.94 89 | 81.05 105 | 88.38 113 | 57.10 210 | 87.10 8 | 79.75 7 | 83.87 228 | 84.31 119 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test_0402 | | | 78.17 69 | 79.48 59 | 74.24 113 | 83.50 90 | 59.15 161 | 72.52 162 | 74.60 210 | 75.34 15 | 88.69 13 | 91.81 22 | 75.06 42 | 82.37 102 | 65.10 117 | 88.68 157 | 81.20 191 |
|
| DP-MVS | | | 78.44 66 | 79.29 60 | 75.90 94 | 81.86 119 | 65.33 102 | 79.05 87 | 84.63 55 | 74.83 18 | 80.41 113 | 86.27 155 | 71.68 64 | 83.45 84 | 62.45 143 | 92.40 77 | 78.92 236 |
|
| UniMVSNet_ETH3D | | | 76.74 79 | 79.02 61 | 69.92 191 | 89.27 19 | 43.81 282 | 74.47 148 | 71.70 230 | 72.33 35 | 85.50 50 | 93.65 3 | 77.98 21 | 76.88 200 | 54.60 212 | 91.64 86 | 89.08 32 |
|
| TSAR-MVS + MP. | | | 79.05 57 | 78.81 62 | 79.74 42 | 88.94 27 | 67.52 83 | 86.61 19 | 81.38 106 | 51.71 221 | 77.15 147 | 91.42 32 | 65.49 124 | 87.20 6 | 79.44 13 | 87.17 184 | 84.51 114 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| OMC-MVS | | | 79.41 55 | 78.79 63 | 81.28 29 | 80.62 131 | 70.71 58 | 80.91 63 | 84.76 47 | 62.54 112 | 81.77 93 | 86.65 144 | 71.46 66 | 83.53 82 | 67.95 92 | 92.44 76 | 89.60 24 |
|
| HQP_MVS | | | 78.77 60 | 78.78 64 | 78.72 60 | 85.18 66 | 65.18 104 | 82.74 51 | 85.49 30 | 65.45 76 | 78.23 133 | 89.11 94 | 60.83 170 | 86.15 27 | 71.09 71 | 90.94 105 | 84.82 98 |
|
| mvs_tets | | | 78.93 58 | 78.67 65 | 79.72 43 | 84.81 73 | 73.93 35 | 80.65 65 | 76.50 193 | 51.98 219 | 87.40 23 | 91.86 21 | 76.09 33 | 78.53 168 | 68.58 83 | 90.20 122 | 86.69 66 |
|
| CNVR-MVS | | | 78.49 64 | 78.59 66 | 78.16 68 | 85.86 60 | 67.40 84 | 78.12 99 | 81.50 102 | 63.92 96 | 77.51 144 | 86.56 148 | 68.43 93 | 84.82 65 | 73.83 53 | 91.61 88 | 82.26 179 |
|
| OurMVSNet-221017-0 | | | 78.57 62 | 78.53 67 | 78.67 61 | 80.48 132 | 64.16 112 | 80.24 74 | 82.06 93 | 61.89 116 | 88.77 12 | 93.32 4 | 57.15 208 | 82.60 99 | 70.08 76 | 92.80 71 | 89.25 28 |
|
| tt0805 | | | 76.12 84 | 78.43 68 | 69.20 201 | 81.32 125 | 41.37 302 | 76.72 114 | 77.64 180 | 63.78 99 | 82.06 89 | 87.88 122 | 79.78 11 | 79.05 159 | 64.33 124 | 92.40 77 | 87.17 60 |
|
| test_djsdf | | | 78.88 59 | 78.27 69 | 80.70 35 | 81.42 123 | 71.24 52 | 83.98 36 | 75.72 200 | 52.27 214 | 87.37 26 | 92.25 16 | 68.04 97 | 80.56 135 | 72.28 67 | 91.15 98 | 90.32 22 |
|
| jajsoiax | | | 78.51 63 | 78.16 70 | 79.59 47 | 84.65 76 | 73.83 37 | 80.42 69 | 76.12 195 | 51.33 229 | 87.19 27 | 91.51 29 | 73.79 54 | 78.44 172 | 68.27 86 | 90.13 126 | 86.49 68 |
|
| NCCC | | | 78.25 67 | 78.04 71 | 78.89 59 | 85.61 62 | 69.45 66 | 79.80 81 | 80.99 117 | 65.77 72 | 75.55 177 | 86.25 157 | 67.42 101 | 85.42 50 | 70.10 75 | 90.88 111 | 81.81 185 |
|
| anonymousdsp | | | 78.60 61 | 77.80 72 | 81.00 31 | 78.01 168 | 74.34 33 | 80.09 77 | 76.12 195 | 50.51 238 | 89.19 10 | 90.88 42 | 71.45 67 | 77.78 190 | 73.38 56 | 90.60 118 | 90.90 18 |
|
| RRT_MVS | | | 78.18 68 | 77.69 73 | 79.66 46 | 83.14 95 | 61.34 135 | 83.29 48 | 80.34 133 | 57.43 154 | 86.65 31 | 91.79 23 | 50.52 245 | 86.01 31 | 71.36 70 | 94.65 32 | 91.62 11 |
|
| MM | | | 78.15 70 | 77.68 74 | 79.55 48 | 80.10 136 | 65.47 100 | 80.94 62 | 78.74 161 | 71.22 40 | 72.40 225 | 88.70 104 | 60.51 172 | 87.70 3 | 77.40 32 | 89.13 151 | 85.48 84 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 83 | 77.66 75 | 71.56 164 | 84.61 77 | 42.57 296 | 70.98 191 | 78.29 171 | 68.67 56 | 83.04 77 | 89.26 87 | 72.99 58 | 80.75 134 | 55.58 204 | 95.47 10 | 91.35 13 |
|
| AllTest | | | 77.66 71 | 77.43 76 | 78.35 66 | 79.19 150 | 70.81 55 | 78.60 91 | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 117 | 70.33 76 | 78.43 173 | 55.60 201 | 90.90 109 | 85.81 76 |
|
| EC-MVSNet | | | 77.08 77 | 77.39 77 | 76.14 92 | 76.86 188 | 56.87 176 | 80.32 73 | 87.52 11 | 63.45 104 | 74.66 191 | 84.52 182 | 69.87 82 | 84.94 61 | 69.76 78 | 89.59 138 | 86.60 67 |
|
| PS-MVSNAJss | | | 77.54 72 | 77.35 78 | 78.13 70 | 84.88 71 | 66.37 92 | 78.55 92 | 79.59 145 | 53.48 206 | 86.29 36 | 92.43 15 | 62.39 149 | 80.25 142 | 67.90 93 | 90.61 117 | 87.77 49 |
|
| Anonymous20231211 | | | 75.54 90 | 77.19 79 | 70.59 175 | 77.67 174 | 45.70 271 | 74.73 143 | 80.19 134 | 68.80 53 | 82.95 80 | 92.91 8 | 66.26 116 | 76.76 202 | 58.41 179 | 92.77 72 | 89.30 27 |
|
| DeepPCF-MVS | | 71.07 5 | 78.48 65 | 77.14 80 | 82.52 16 | 84.39 82 | 77.04 21 | 76.35 120 | 84.05 68 | 56.66 162 | 80.27 115 | 85.31 174 | 68.56 90 | 87.03 10 | 67.39 99 | 91.26 94 | 83.50 136 |
|
| CDPH-MVS | | | 77.33 74 | 77.06 81 | 78.14 69 | 84.21 83 | 63.98 114 | 76.07 126 | 83.45 75 | 54.20 193 | 77.68 143 | 87.18 125 | 69.98 80 | 85.37 51 | 68.01 90 | 92.72 74 | 85.08 91 |
|
| testf1 | | | 75.66 88 | 76.57 82 | 72.95 137 | 67.07 318 | 67.62 81 | 76.10 124 | 80.68 122 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 260 | 60.46 159 | 91.13 100 | 79.56 225 |
|
| APD_test2 | | | 75.66 88 | 76.57 82 | 72.95 137 | 67.07 318 | 67.62 81 | 76.10 124 | 80.68 122 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 70 | 71.68 260 | 60.46 159 | 91.13 100 | 79.56 225 |
|
| train_agg | | | 76.38 81 | 76.55 84 | 75.86 95 | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 162 | 54.00 198 | 76.97 149 | 86.74 138 | 66.60 113 | 81.10 123 | 72.50 66 | 91.56 89 | 77.15 258 |
|
| mvsmamba | | | 77.20 75 | 76.37 85 | 79.69 45 | 80.34 134 | 61.52 132 | 80.58 66 | 82.12 92 | 53.54 205 | 83.93 70 | 91.03 37 | 49.49 251 | 85.97 33 | 73.26 57 | 93.08 67 | 91.59 12 |
|
| SixPastTwentyTwo | | | 75.77 85 | 76.34 86 | 74.06 116 | 81.69 121 | 54.84 187 | 76.47 115 | 75.49 202 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 247 | 81.30 119 | 67.41 97 | 91.46 91 | 86.04 73 |
|
| DeepC-MVS_fast | | 69.89 7 | 77.17 76 | 76.33 87 | 79.70 44 | 83.90 87 | 67.94 78 | 80.06 79 | 83.75 71 | 56.73 161 | 74.88 186 | 85.32 173 | 65.54 123 | 87.79 2 | 65.61 116 | 91.14 99 | 83.35 146 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v10 | | | 75.69 87 | 76.20 88 | 74.16 114 | 74.44 222 | 48.69 232 | 75.84 130 | 82.93 82 | 59.02 138 | 85.92 41 | 89.17 92 | 58.56 191 | 82.74 97 | 70.73 73 | 89.14 150 | 91.05 15 |
|
| casdiffmvs_mvg |  | | 75.26 93 | 76.18 89 | 72.52 151 | 72.87 251 | 49.47 227 | 72.94 160 | 84.71 51 | 59.49 132 | 80.90 109 | 88.81 103 | 70.07 79 | 79.71 150 | 67.40 98 | 88.39 159 | 88.40 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CS-MVS | | | 76.51 80 | 76.00 90 | 78.06 71 | 77.02 180 | 64.77 108 | 80.78 64 | 82.66 86 | 60.39 126 | 74.15 199 | 83.30 203 | 69.65 84 | 82.07 108 | 69.27 81 | 86.75 190 | 87.36 55 |
|
| nrg030 | | | 74.87 104 | 75.99 91 | 71.52 165 | 74.90 211 | 49.88 226 | 74.10 153 | 82.58 88 | 54.55 187 | 83.50 75 | 89.21 89 | 71.51 65 | 75.74 210 | 61.24 150 | 92.34 79 | 88.94 37 |
|
| MVS_0304 | | | 76.32 82 | 75.96 92 | 77.42 76 | 79.33 145 | 60.86 146 | 80.18 76 | 74.88 207 | 66.93 62 | 69.11 264 | 88.95 100 | 57.84 204 | 86.12 29 | 76.63 37 | 89.77 135 | 85.28 86 |
|
| MSLP-MVS++ | | | 74.48 106 | 75.78 93 | 70.59 175 | 84.66 75 | 62.40 123 | 78.65 90 | 84.24 63 | 60.55 125 | 77.71 142 | 81.98 219 | 63.12 140 | 77.64 192 | 62.95 140 | 88.14 162 | 71.73 308 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 102 | 75.65 94 | 72.64 149 | 83.04 101 | 45.79 268 | 69.26 213 | 78.81 157 | 66.66 67 | 81.74 95 | 86.88 133 | 63.26 139 | 81.07 125 | 56.21 196 | 94.98 20 | 91.05 15 |
|
| v8 | | | 75.07 97 | 75.64 95 | 73.35 126 | 73.42 235 | 47.46 251 | 75.20 134 | 81.45 104 | 60.05 128 | 85.64 45 | 89.26 87 | 58.08 199 | 81.80 112 | 69.71 80 | 87.97 167 | 90.79 19 |
|
| DU-MVS | | | 74.91 101 | 75.57 96 | 72.93 140 | 83.50 90 | 45.79 268 | 69.47 210 | 80.14 136 | 65.22 82 | 81.74 95 | 87.08 127 | 61.82 155 | 81.07 125 | 56.21 196 | 94.98 20 | 91.93 8 |
|
| UniMVSNet (Re) | | | 75.00 99 | 75.48 97 | 73.56 124 | 83.14 95 | 47.92 243 | 70.41 200 | 81.04 116 | 63.67 100 | 79.54 120 | 86.37 153 | 62.83 143 | 81.82 111 | 57.10 186 | 95.25 14 | 90.94 17 |
|
| IS-MVSNet | | | 75.10 96 | 75.42 98 | 74.15 115 | 79.23 148 | 48.05 241 | 79.43 82 | 78.04 175 | 70.09 49 | 79.17 124 | 88.02 121 | 53.04 231 | 83.60 80 | 58.05 181 | 93.76 59 | 90.79 19 |
|
| APD_test1 | | | 75.04 98 | 75.38 99 | 74.02 117 | 69.89 283 | 70.15 62 | 76.46 116 | 79.71 141 | 65.50 75 | 82.99 79 | 88.60 108 | 66.94 105 | 72.35 250 | 59.77 169 | 88.54 158 | 79.56 225 |
|
| HQP-MVS | | | 75.24 94 | 75.01 100 | 75.94 93 | 82.37 110 | 58.80 166 | 77.32 106 | 84.12 66 | 59.08 134 | 71.58 234 | 85.96 167 | 58.09 197 | 85.30 53 | 67.38 101 | 89.16 147 | 83.73 133 |
|
| X-MVStestdata | | | 76.81 78 | 74.79 101 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 53 | 72.71 27 | 82.87 81 | 9.95 403 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 103 |
|
| FC-MVSNet-test | | | 73.32 119 | 74.78 102 | 68.93 209 | 79.21 149 | 36.57 339 | 71.82 178 | 79.54 147 | 57.63 153 | 82.57 86 | 90.38 64 | 59.38 184 | 78.99 161 | 57.91 182 | 94.56 34 | 91.23 14 |
|
| Vis-MVSNet |  | | 74.85 105 | 74.56 103 | 75.72 96 | 81.63 122 | 64.64 109 | 76.35 120 | 79.06 153 | 62.85 110 | 73.33 212 | 88.41 111 | 62.54 147 | 79.59 153 | 63.94 130 | 82.92 238 | 82.94 158 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| AdaColmap |  | | 74.22 107 | 74.56 103 | 73.20 129 | 81.95 117 | 60.97 142 | 79.43 82 | 80.90 118 | 65.57 74 | 72.54 223 | 81.76 223 | 70.98 73 | 85.26 54 | 47.88 269 | 90.00 127 | 73.37 289 |
|
| CSCG | | | 74.12 108 | 74.39 105 | 73.33 127 | 79.35 144 | 61.66 131 | 77.45 105 | 81.98 95 | 62.47 114 | 79.06 125 | 80.19 244 | 61.83 154 | 78.79 165 | 59.83 168 | 87.35 176 | 79.54 228 |
|
| RPSCF | | | 75.76 86 | 74.37 106 | 79.93 40 | 74.81 213 | 77.53 16 | 77.53 104 | 79.30 150 | 59.44 133 | 78.88 126 | 89.80 79 | 71.26 69 | 73.09 239 | 57.45 183 | 80.89 260 | 89.17 31 |
|
| PHI-MVS | | | 74.92 100 | 74.36 107 | 76.61 84 | 76.40 191 | 62.32 125 | 80.38 70 | 83.15 78 | 54.16 195 | 73.23 214 | 80.75 234 | 62.19 152 | 83.86 76 | 68.02 89 | 90.92 108 | 83.65 134 |
|
| TAPA-MVS | | 65.27 12 | 75.16 95 | 74.29 108 | 77.77 72 | 74.86 212 | 68.08 77 | 77.89 100 | 84.04 69 | 55.15 176 | 76.19 173 | 83.39 197 | 66.91 106 | 80.11 146 | 60.04 166 | 90.14 125 | 85.13 89 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| CS-MVS-test | | | 74.89 103 | 74.23 109 | 76.86 81 | 77.01 181 | 62.94 122 | 78.98 88 | 84.61 56 | 58.62 141 | 70.17 254 | 80.80 233 | 66.74 112 | 81.96 109 | 61.74 146 | 89.40 145 | 85.69 81 |
|
| PAPM_NR | | | 73.91 109 | 74.16 110 | 73.16 130 | 81.90 118 | 53.50 197 | 81.28 60 | 81.40 105 | 66.17 70 | 73.30 213 | 83.31 202 | 59.96 177 | 83.10 91 | 58.45 178 | 81.66 255 | 82.87 160 |
|
| NR-MVSNet | | | 73.62 113 | 74.05 111 | 72.33 157 | 83.50 90 | 43.71 283 | 65.65 267 | 77.32 184 | 64.32 93 | 75.59 176 | 87.08 127 | 62.45 148 | 81.34 117 | 54.90 207 | 95.63 8 | 91.93 8 |
|
| F-COLMAP | | | 75.29 92 | 73.99 112 | 79.18 52 | 81.73 120 | 71.90 46 | 81.86 58 | 82.98 80 | 59.86 131 | 72.27 226 | 84.00 189 | 64.56 133 | 83.07 92 | 51.48 234 | 87.19 183 | 82.56 172 |
|
| baseline | | | 73.10 123 | 73.96 113 | 70.51 177 | 71.46 261 | 46.39 265 | 72.08 168 | 84.40 59 | 55.95 169 | 76.62 161 | 86.46 151 | 67.20 102 | 78.03 185 | 64.22 125 | 87.27 180 | 87.11 61 |
|
| casdiffmvs |  | | 73.06 126 | 73.84 114 | 70.72 173 | 71.32 262 | 46.71 261 | 70.93 192 | 84.26 62 | 55.62 172 | 77.46 145 | 87.10 126 | 67.09 104 | 77.81 188 | 63.95 128 | 86.83 188 | 87.64 51 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FIs | | | 72.56 139 | 73.80 115 | 68.84 212 | 78.74 160 | 37.74 333 | 71.02 190 | 79.83 140 | 56.12 166 | 80.88 110 | 89.45 84 | 58.18 193 | 78.28 179 | 56.63 188 | 93.36 64 | 90.51 21 |
|
| Anonymous20240529 | | | 72.56 139 | 73.79 116 | 68.86 211 | 76.89 187 | 45.21 273 | 68.80 222 | 77.25 186 | 67.16 61 | 76.89 153 | 90.44 56 | 65.95 119 | 74.19 230 | 50.75 240 | 90.00 127 | 87.18 59 |
|
| GeoE | | | 73.14 122 | 73.77 117 | 71.26 168 | 78.09 166 | 52.64 202 | 74.32 149 | 79.56 146 | 56.32 165 | 76.35 171 | 83.36 201 | 70.76 74 | 77.96 186 | 63.32 137 | 81.84 249 | 83.18 151 |
|
| pmmvs6 | | | 71.82 147 | 73.66 118 | 66.31 241 | 75.94 200 | 42.01 298 | 66.99 248 | 72.53 225 | 63.45 104 | 76.43 169 | 92.78 10 | 72.95 59 | 69.69 274 | 51.41 235 | 90.46 119 | 87.22 56 |
|
| test_fmvsmconf0.01_n | | | 73.91 109 | 73.64 119 | 74.71 104 | 69.79 288 | 66.25 93 | 75.90 128 | 79.90 139 | 46.03 277 | 76.48 167 | 85.02 177 | 67.96 99 | 73.97 232 | 74.47 49 | 87.22 181 | 83.90 127 |
|
| K. test v3 | | | 73.67 112 | 73.61 120 | 73.87 119 | 79.78 138 | 55.62 185 | 74.69 145 | 62.04 306 | 66.16 71 | 84.76 60 | 93.23 5 | 49.47 252 | 80.97 129 | 65.66 115 | 86.67 191 | 85.02 93 |
|
| v1192 | | | 73.40 117 | 73.42 121 | 73.32 128 | 74.65 219 | 48.67 233 | 72.21 165 | 81.73 99 | 52.76 211 | 81.85 91 | 84.56 181 | 57.12 209 | 82.24 106 | 68.58 83 | 87.33 177 | 89.06 33 |
|
| v1144 | | | 73.29 120 | 73.39 122 | 73.01 134 | 74.12 227 | 48.11 239 | 72.01 170 | 81.08 115 | 53.83 202 | 81.77 93 | 84.68 179 | 58.07 200 | 81.91 110 | 68.10 87 | 86.86 186 | 88.99 36 |
|
| canonicalmvs | | | 72.29 144 | 73.38 123 | 69.04 204 | 74.23 223 | 47.37 252 | 73.93 155 | 83.18 77 | 54.36 188 | 76.61 162 | 81.64 225 | 72.03 61 | 75.34 214 | 57.12 185 | 87.28 179 | 84.40 116 |
|
| EPP-MVSNet | | | 73.86 111 | 73.38 123 | 75.31 101 | 78.19 164 | 53.35 199 | 80.45 68 | 77.32 184 | 65.11 85 | 76.47 168 | 86.80 134 | 49.47 252 | 83.77 77 | 53.89 221 | 92.72 74 | 88.81 41 |
|
| MCST-MVS | | | 73.42 116 | 73.34 125 | 73.63 123 | 81.28 126 | 59.17 160 | 74.80 141 | 83.13 79 | 45.50 280 | 72.84 218 | 83.78 193 | 65.15 128 | 80.99 127 | 64.54 121 | 89.09 153 | 80.73 207 |
|
| 114514_t | | | 73.40 117 | 73.33 126 | 73.64 122 | 84.15 85 | 57.11 174 | 78.20 97 | 80.02 137 | 43.76 297 | 72.55 222 | 86.07 165 | 64.00 136 | 83.35 86 | 60.14 164 | 91.03 104 | 80.45 214 |
|
| Baseline_NR-MVSNet | | | 70.62 159 | 73.19 127 | 62.92 272 | 76.97 182 | 34.44 355 | 68.84 218 | 70.88 249 | 60.25 127 | 79.50 121 | 90.53 53 | 61.82 155 | 69.11 278 | 54.67 211 | 95.27 13 | 85.22 87 |
|
| v1240 | | | 73.06 126 | 73.14 128 | 72.84 143 | 74.74 215 | 47.27 254 | 71.88 177 | 81.11 112 | 51.80 220 | 82.28 88 | 84.21 186 | 56.22 218 | 82.34 103 | 68.82 82 | 87.17 184 | 88.91 38 |
|
| VDDNet | | | 71.60 149 | 73.13 129 | 67.02 234 | 86.29 47 | 41.11 304 | 69.97 204 | 66.50 273 | 68.72 55 | 74.74 187 | 91.70 25 | 59.90 178 | 75.81 208 | 48.58 260 | 91.72 84 | 84.15 123 |
|
| IterMVS-LS | | | 73.01 128 | 73.12 130 | 72.66 148 | 73.79 231 | 49.90 222 | 71.63 180 | 78.44 167 | 58.22 143 | 80.51 112 | 86.63 145 | 58.15 195 | 79.62 151 | 62.51 141 | 88.20 161 | 88.48 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v144192 | | | 72.99 130 | 73.06 131 | 72.77 144 | 74.58 220 | 47.48 250 | 71.90 176 | 80.44 129 | 51.57 223 | 81.46 99 | 84.11 188 | 58.04 201 | 82.12 107 | 67.98 91 | 87.47 173 | 88.70 43 |
|
| CNLPA | | | 73.44 115 | 73.03 132 | 74.66 105 | 78.27 163 | 75.29 26 | 75.99 127 | 78.49 166 | 65.39 78 | 75.67 175 | 83.22 208 | 61.23 163 | 66.77 305 | 53.70 223 | 85.33 206 | 81.92 184 |
|
| v1921920 | | | 72.96 132 | 72.98 133 | 72.89 142 | 74.67 216 | 47.58 249 | 71.92 175 | 80.69 121 | 51.70 222 | 81.69 97 | 83.89 191 | 56.58 215 | 82.25 105 | 68.34 85 | 87.36 175 | 88.82 40 |
|
| MVS_111021_HR | | | 72.98 131 | 72.97 134 | 72.99 135 | 80.82 129 | 65.47 100 | 68.81 220 | 72.77 222 | 57.67 150 | 75.76 174 | 82.38 216 | 71.01 72 | 77.17 195 | 61.38 149 | 86.15 195 | 76.32 264 |
|
| Gipuma |  | | 69.55 174 | 72.83 135 | 59.70 297 | 63.63 344 | 53.97 194 | 80.08 78 | 75.93 198 | 64.24 94 | 73.49 209 | 88.93 101 | 57.89 203 | 62.46 325 | 59.75 170 | 91.55 90 | 62.67 367 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| test_fmvsmconf0.1_n | | | 73.26 121 | 72.82 136 | 74.56 106 | 69.10 294 | 66.18 95 | 74.65 147 | 79.34 149 | 45.58 279 | 75.54 178 | 83.91 190 | 67.19 103 | 73.88 235 | 73.26 57 | 86.86 186 | 83.63 135 |
|
| DP-MVS Recon | | | 73.57 114 | 72.69 137 | 76.23 91 | 82.85 105 | 63.39 117 | 74.32 149 | 82.96 81 | 57.75 148 | 70.35 250 | 81.98 219 | 64.34 135 | 84.41 73 | 49.69 248 | 89.95 129 | 80.89 201 |
|
| dcpmvs_2 | | | 71.02 155 | 72.65 138 | 66.16 242 | 76.06 199 | 50.49 213 | 71.97 171 | 79.36 148 | 50.34 239 | 82.81 83 | 83.63 194 | 64.38 134 | 67.27 296 | 61.54 148 | 83.71 232 | 80.71 209 |
|
| v2v482 | | | 72.55 141 | 72.58 139 | 72.43 154 | 72.92 250 | 46.72 260 | 71.41 183 | 79.13 152 | 55.27 174 | 81.17 104 | 85.25 175 | 55.41 220 | 81.13 122 | 67.25 105 | 85.46 202 | 89.43 26 |
|
| test_fmvsmvis_n_1920 | | | 72.36 142 | 72.49 140 | 71.96 160 | 71.29 263 | 64.06 113 | 72.79 161 | 81.82 97 | 40.23 329 | 81.25 103 | 81.04 230 | 70.62 75 | 68.69 281 | 69.74 79 | 83.60 234 | 83.14 152 |
|
| WR-MVS | | | 71.20 152 | 72.48 141 | 67.36 229 | 84.98 70 | 35.70 347 | 64.43 282 | 68.66 263 | 65.05 86 | 81.49 98 | 86.43 152 | 57.57 206 | 76.48 204 | 50.36 244 | 93.32 65 | 89.90 23 |
|
| FMVSNet1 | | | 71.06 153 | 72.48 141 | 66.81 235 | 77.65 175 | 40.68 308 | 71.96 172 | 73.03 217 | 61.14 120 | 79.45 122 | 90.36 67 | 60.44 173 | 75.20 216 | 50.20 245 | 88.05 164 | 84.54 110 |
|
| test_fmvsmconf_n | | | 72.91 133 | 72.40 143 | 74.46 107 | 68.62 298 | 66.12 96 | 74.21 152 | 78.80 159 | 45.64 278 | 74.62 192 | 83.25 205 | 66.80 111 | 73.86 236 | 72.97 60 | 86.66 192 | 83.39 143 |
|
| CLD-MVS | | | 72.88 134 | 72.36 144 | 74.43 110 | 77.03 179 | 54.30 191 | 68.77 223 | 83.43 76 | 52.12 216 | 76.79 158 | 74.44 307 | 69.54 85 | 83.91 75 | 55.88 199 | 93.25 66 | 85.09 90 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Effi-MVS+-dtu | | | 75.43 91 | 72.28 145 | 84.91 2 | 77.05 178 | 83.58 1 | 78.47 93 | 77.70 179 | 57.68 149 | 74.89 185 | 78.13 277 | 64.80 131 | 84.26 74 | 56.46 192 | 85.32 207 | 86.88 62 |
|
| Effi-MVS+ | | | 72.10 145 | 72.28 145 | 71.58 163 | 74.21 225 | 50.33 215 | 74.72 144 | 82.73 84 | 62.62 111 | 70.77 246 | 76.83 287 | 69.96 81 | 80.97 129 | 60.20 161 | 78.43 287 | 83.45 142 |
|
| ETV-MVS | | | 72.72 136 | 72.16 147 | 74.38 112 | 76.90 186 | 55.95 179 | 73.34 157 | 84.67 52 | 62.04 115 | 72.19 229 | 70.81 335 | 65.90 120 | 85.24 56 | 58.64 176 | 84.96 214 | 81.95 183 |
|
| EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 148 | 75.54 99 | 74.77 214 | 59.02 164 | 72.24 164 | 71.56 233 | 63.92 96 | 78.59 128 | 71.59 330 | 66.22 117 | 78.60 167 | 67.58 94 | 80.32 267 | 89.00 35 |
|
| CANet | | | 73.00 129 | 71.84 149 | 76.48 87 | 75.82 201 | 61.28 136 | 74.81 139 | 80.37 131 | 63.17 108 | 62.43 324 | 80.50 238 | 61.10 167 | 85.16 60 | 64.00 127 | 84.34 224 | 83.01 157 |
|
| MVS_111021_LR | | | 72.10 145 | 71.82 150 | 72.95 137 | 79.53 142 | 73.90 36 | 70.45 199 | 66.64 272 | 56.87 158 | 76.81 157 | 81.76 223 | 68.78 88 | 71.76 258 | 61.81 144 | 83.74 230 | 73.18 291 |
|
| PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 151 | 75.72 96 | 78.10 165 | 60.01 154 | 73.04 159 | 81.50 102 | 45.34 284 | 79.66 119 | 84.35 185 | 65.15 128 | 82.65 98 | 48.70 258 | 89.38 146 | 84.50 115 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| EI-MVSNet-UG-set | | | 72.63 138 | 71.68 152 | 75.47 100 | 74.67 216 | 58.64 169 | 72.02 169 | 71.50 234 | 63.53 102 | 78.58 130 | 71.39 334 | 65.98 118 | 78.53 168 | 67.30 104 | 80.18 269 | 89.23 29 |
|
| TransMVSNet (Re) | | | 69.62 172 | 71.63 153 | 63.57 262 | 76.51 190 | 35.93 345 | 65.75 266 | 71.29 241 | 61.05 121 | 75.02 183 | 89.90 78 | 65.88 121 | 70.41 272 | 49.79 247 | 89.48 141 | 84.38 117 |
|
| h-mvs33 | | | 73.08 124 | 71.61 154 | 77.48 74 | 83.89 88 | 72.89 44 | 70.47 198 | 71.12 246 | 54.28 189 | 77.89 137 | 83.41 196 | 49.04 256 | 80.98 128 | 63.62 133 | 90.77 115 | 78.58 239 |
|
| TSAR-MVS + GP. | | | 73.08 124 | 71.60 155 | 77.54 73 | 78.99 157 | 70.73 57 | 74.96 136 | 69.38 258 | 60.73 124 | 74.39 196 | 78.44 271 | 57.72 205 | 82.78 96 | 60.16 163 | 89.60 137 | 79.11 233 |
|
| LCM-MVSNet-Re | | | 69.10 181 | 71.57 156 | 61.70 281 | 70.37 277 | 34.30 357 | 61.45 302 | 79.62 142 | 56.81 159 | 89.59 8 | 88.16 119 | 68.44 92 | 72.94 240 | 42.30 303 | 87.33 177 | 77.85 252 |
|
| API-MVS | | | 70.97 156 | 71.51 157 | 69.37 196 | 75.20 206 | 55.94 180 | 80.99 61 | 76.84 190 | 62.48 113 | 71.24 242 | 77.51 283 | 61.51 159 | 80.96 132 | 52.04 230 | 85.76 201 | 71.22 313 |
|
| VDD-MVS | | | 70.81 157 | 71.44 158 | 68.91 210 | 79.07 155 | 46.51 262 | 67.82 235 | 70.83 250 | 61.23 119 | 74.07 202 | 88.69 105 | 59.86 179 | 75.62 211 | 51.11 237 | 90.28 121 | 84.61 106 |
|
| MG-MVS | | | 70.47 161 | 71.34 159 | 67.85 224 | 79.26 147 | 40.42 312 | 74.67 146 | 75.15 206 | 58.41 142 | 68.74 276 | 88.14 120 | 56.08 219 | 83.69 79 | 59.90 167 | 81.71 254 | 79.43 230 |
|
| 3Dnovator | | 65.95 11 | 71.50 150 | 71.22 160 | 72.34 156 | 73.16 241 | 63.09 120 | 78.37 94 | 78.32 169 | 57.67 150 | 72.22 228 | 84.61 180 | 54.77 221 | 78.47 170 | 60.82 157 | 81.07 259 | 75.45 270 |
|
| FA-MVS(test-final) | | | 71.27 151 | 71.06 161 | 71.92 161 | 73.96 228 | 52.32 204 | 76.45 117 | 76.12 195 | 59.07 137 | 74.04 204 | 86.18 158 | 52.18 235 | 79.43 155 | 59.75 170 | 81.76 250 | 84.03 124 |
|
| alignmvs | | | 70.54 160 | 71.00 162 | 69.15 203 | 73.50 233 | 48.04 242 | 69.85 207 | 79.62 142 | 53.94 201 | 76.54 165 | 82.00 218 | 59.00 187 | 74.68 223 | 57.32 184 | 87.21 182 | 84.72 101 |
|
| EG-PatchMatch MVS | | | 70.70 158 | 70.88 163 | 70.16 185 | 82.64 109 | 58.80 166 | 71.48 181 | 73.64 214 | 54.98 177 | 76.55 164 | 81.77 222 | 61.10 167 | 78.94 162 | 54.87 208 | 80.84 262 | 72.74 298 |
|
| V42 | | | 71.06 153 | 70.83 164 | 71.72 162 | 67.25 314 | 47.14 255 | 65.94 261 | 80.35 132 | 51.35 228 | 83.40 76 | 83.23 206 | 59.25 185 | 78.80 164 | 65.91 113 | 80.81 263 | 89.23 29 |
|
| MVS_Test | | | 69.84 169 | 70.71 165 | 67.24 230 | 67.49 312 | 43.25 290 | 69.87 206 | 81.22 111 | 52.69 212 | 71.57 237 | 86.68 141 | 62.09 153 | 74.51 225 | 66.05 111 | 78.74 283 | 83.96 125 |
|
| hse-mvs2 | | | 72.32 143 | 70.66 166 | 77.31 79 | 83.10 100 | 71.77 47 | 69.19 215 | 71.45 236 | 54.28 189 | 77.89 137 | 78.26 273 | 49.04 256 | 79.23 156 | 63.62 133 | 89.13 151 | 80.92 200 |
|
| VPA-MVSNet | | | 68.71 186 | 70.37 167 | 63.72 260 | 76.13 195 | 38.06 331 | 64.10 284 | 71.48 235 | 56.60 164 | 74.10 201 | 88.31 114 | 64.78 132 | 69.72 273 | 47.69 271 | 90.15 124 | 83.37 145 |
|
| PLC |  | 62.01 16 | 71.79 148 | 70.28 168 | 76.33 89 | 80.31 135 | 68.63 75 | 78.18 98 | 81.24 109 | 54.57 186 | 67.09 292 | 80.63 236 | 59.44 182 | 81.74 114 | 46.91 276 | 84.17 225 | 78.63 237 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ANet_high | | | 67.08 210 | 69.94 169 | 58.51 306 | 57.55 375 | 27.09 388 | 58.43 325 | 76.80 191 | 63.56 101 | 82.40 87 | 91.93 20 | 59.82 180 | 64.98 316 | 50.10 246 | 88.86 156 | 83.46 141 |
|
| c3_l | | | 69.82 170 | 69.89 170 | 69.61 194 | 66.24 324 | 43.48 286 | 68.12 232 | 79.61 144 | 51.43 225 | 77.72 141 | 80.18 245 | 54.61 224 | 78.15 184 | 63.62 133 | 87.50 172 | 87.20 58 |
|
| pm-mvs1 | | | 68.40 189 | 69.85 171 | 64.04 258 | 73.10 245 | 39.94 314 | 64.61 280 | 70.50 251 | 55.52 173 | 73.97 205 | 89.33 85 | 63.91 137 | 68.38 284 | 49.68 249 | 88.02 165 | 83.81 129 |
|
| bld_raw_dy_0_64 | | | 69.94 167 | 69.64 172 | 70.84 171 | 73.28 238 | 46.85 258 | 75.82 131 | 86.52 16 | 40.43 328 | 81.41 100 | 74.77 301 | 48.70 262 | 83.01 93 | 56.25 194 | 89.59 138 | 82.66 167 |
|
| BH-untuned | | | 69.39 177 | 69.46 173 | 69.18 202 | 77.96 169 | 56.88 175 | 68.47 229 | 77.53 181 | 56.77 160 | 77.79 140 | 79.63 253 | 60.30 175 | 80.20 145 | 46.04 283 | 80.65 264 | 70.47 319 |
|
| v148 | | | 69.38 178 | 69.39 174 | 69.36 197 | 69.14 293 | 44.56 277 | 68.83 219 | 72.70 223 | 54.79 181 | 78.59 128 | 84.12 187 | 54.69 222 | 76.74 203 | 59.40 173 | 82.20 243 | 86.79 63 |
|
| TinyColmap | | | 67.98 196 | 69.28 175 | 64.08 256 | 67.98 307 | 46.82 259 | 70.04 202 | 75.26 204 | 53.05 208 | 77.36 146 | 86.79 135 | 59.39 183 | 72.59 247 | 45.64 286 | 88.01 166 | 72.83 296 |
|
| QAPM | | | 69.18 180 | 69.26 176 | 68.94 208 | 71.61 259 | 52.58 203 | 80.37 71 | 78.79 160 | 49.63 248 | 73.51 208 | 85.14 176 | 53.66 228 | 79.12 158 | 55.11 206 | 75.54 309 | 75.11 275 |
|
| MIMVSNet1 | | | 66.57 217 | 69.23 177 | 58.59 305 | 81.26 127 | 37.73 334 | 64.06 285 | 57.62 318 | 57.02 157 | 78.40 132 | 90.75 46 | 62.65 144 | 58.10 344 | 41.77 308 | 89.58 140 | 79.95 220 |
|
| DPM-MVS | | | 69.98 166 | 69.22 178 | 72.26 158 | 82.69 108 | 58.82 165 | 70.53 197 | 81.23 110 | 47.79 265 | 64.16 308 | 80.21 242 | 51.32 242 | 83.12 90 | 60.14 164 | 84.95 215 | 74.83 276 |
|
| UGNet | | | 70.20 163 | 69.05 179 | 73.65 121 | 76.24 193 | 63.64 115 | 75.87 129 | 72.53 225 | 61.48 118 | 60.93 334 | 86.14 161 | 52.37 234 | 77.12 196 | 50.67 241 | 85.21 208 | 80.17 219 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MVSFormer | | | 69.93 168 | 69.03 180 | 72.63 150 | 74.93 209 | 59.19 158 | 83.98 36 | 75.72 200 | 52.27 214 | 63.53 318 | 76.74 288 | 43.19 289 | 80.56 135 | 72.28 67 | 78.67 285 | 78.14 246 |
|
| EI-MVSNet | | | 69.61 173 | 69.01 181 | 71.41 167 | 73.94 229 | 49.90 222 | 71.31 186 | 71.32 239 | 58.22 143 | 75.40 181 | 70.44 337 | 58.16 194 | 75.85 206 | 62.51 141 | 79.81 273 | 88.48 44 |
|
| PVSNet_Blended_VisFu | | | 70.04 164 | 68.88 182 | 73.53 125 | 82.71 107 | 63.62 116 | 74.81 139 | 81.95 96 | 48.53 258 | 67.16 291 | 79.18 262 | 51.42 241 | 78.38 175 | 54.39 216 | 79.72 276 | 78.60 238 |
|
| GBi-Net | | | 68.30 191 | 68.79 183 | 66.81 235 | 73.14 242 | 40.68 308 | 71.96 172 | 73.03 217 | 54.81 178 | 74.72 188 | 90.36 67 | 48.63 263 | 75.20 216 | 47.12 273 | 85.37 203 | 84.54 110 |
|
| test1 | | | 68.30 191 | 68.79 183 | 66.81 235 | 73.14 242 | 40.68 308 | 71.96 172 | 73.03 217 | 54.81 178 | 74.72 188 | 90.36 67 | 48.63 263 | 75.20 216 | 47.12 273 | 85.37 203 | 84.54 110 |
|
| OpenMVS |  | 62.51 15 | 68.76 185 | 68.75 185 | 68.78 213 | 70.56 272 | 53.91 195 | 78.29 95 | 77.35 183 | 48.85 256 | 70.22 252 | 83.52 195 | 52.65 233 | 76.93 198 | 55.31 205 | 81.99 245 | 75.49 269 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 165 | 68.74 186 | 73.77 120 | 73.47 234 | 64.53 110 | 71.36 184 | 78.14 174 | 55.81 171 | 68.84 274 | 74.71 304 | 65.36 126 | 75.75 209 | 52.00 231 | 79.00 281 | 81.03 196 |
|
| eth_miper_zixun_eth | | | 69.42 176 | 68.73 187 | 71.50 166 | 67.99 306 | 46.42 263 | 67.58 237 | 78.81 157 | 50.72 236 | 78.13 135 | 80.34 241 | 50.15 249 | 80.34 140 | 60.18 162 | 84.65 218 | 87.74 50 |
|
| PAPR | | | 69.20 179 | 68.66 188 | 70.82 172 | 75.15 208 | 47.77 246 | 75.31 133 | 81.11 112 | 49.62 249 | 66.33 294 | 79.27 259 | 61.53 158 | 82.96 94 | 48.12 266 | 81.50 257 | 81.74 187 |
|
| test_fmvsm_n_1920 | | | 69.63 171 | 68.45 189 | 73.16 130 | 70.56 272 | 65.86 98 | 70.26 201 | 78.35 168 | 37.69 345 | 74.29 197 | 78.89 267 | 61.10 167 | 68.10 287 | 65.87 114 | 79.07 280 | 85.53 83 |
|
| DELS-MVS | | | 68.83 183 | 68.31 190 | 70.38 178 | 70.55 274 | 48.31 235 | 63.78 288 | 82.13 91 | 54.00 198 | 68.96 268 | 75.17 299 | 58.95 188 | 80.06 147 | 58.55 177 | 82.74 240 | 82.76 163 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Fast-Effi-MVS+ | | | 68.81 184 | 68.30 191 | 70.35 180 | 74.66 218 | 48.61 234 | 66.06 260 | 78.32 169 | 50.62 237 | 71.48 240 | 75.54 295 | 68.75 89 | 79.59 153 | 50.55 243 | 78.73 284 | 82.86 161 |
|
| cl____ | | | 68.26 195 | 68.26 192 | 68.29 219 | 64.98 336 | 43.67 284 | 65.89 262 | 74.67 208 | 50.04 245 | 76.86 155 | 82.42 215 | 48.74 260 | 75.38 212 | 60.92 156 | 89.81 132 | 85.80 80 |
|
| DIV-MVS_self_test | | | 68.27 194 | 68.26 192 | 68.29 219 | 64.98 336 | 43.67 284 | 65.89 262 | 74.67 208 | 50.04 245 | 76.86 155 | 82.43 214 | 48.74 260 | 75.38 212 | 60.94 155 | 89.81 132 | 85.81 76 |
|
| FMVSNet2 | | | 67.48 203 | 68.21 194 | 65.29 247 | 73.14 242 | 38.94 321 | 68.81 220 | 71.21 245 | 54.81 178 | 76.73 159 | 86.48 150 | 48.63 263 | 74.60 224 | 47.98 268 | 86.11 197 | 82.35 175 |
|
| BH-RMVSNet | | | 68.69 187 | 68.20 195 | 70.14 186 | 76.40 191 | 53.90 196 | 64.62 279 | 73.48 215 | 58.01 145 | 73.91 206 | 81.78 221 | 59.09 186 | 78.22 180 | 48.59 259 | 77.96 293 | 78.31 242 |
|
| miper_ehance_all_eth | | | 68.36 190 | 68.16 196 | 68.98 206 | 65.14 335 | 43.34 288 | 67.07 247 | 78.92 156 | 49.11 254 | 76.21 172 | 77.72 280 | 53.48 229 | 77.92 187 | 61.16 152 | 84.59 220 | 85.68 82 |
|
| tfpnnormal | | | 66.48 218 | 67.93 197 | 62.16 278 | 73.40 236 | 36.65 338 | 63.45 290 | 64.99 285 | 55.97 168 | 72.82 219 | 87.80 123 | 57.06 211 | 69.10 279 | 48.31 264 | 87.54 170 | 80.72 208 |
|
| LFMVS | | | 67.06 211 | 67.89 198 | 64.56 252 | 78.02 167 | 38.25 328 | 70.81 195 | 59.60 313 | 65.18 83 | 71.06 244 | 86.56 148 | 43.85 285 | 75.22 215 | 46.35 280 | 89.63 136 | 80.21 218 |
|
| AUN-MVS | | | 70.22 162 | 67.88 199 | 77.22 80 | 82.96 104 | 71.61 48 | 69.08 216 | 71.39 237 | 49.17 253 | 71.70 232 | 78.07 278 | 37.62 325 | 79.21 157 | 61.81 144 | 89.15 149 | 80.82 203 |
|
| SDMVSNet | | | 66.36 220 | 67.85 200 | 61.88 280 | 73.04 248 | 46.14 267 | 58.54 323 | 71.36 238 | 51.42 226 | 68.93 270 | 82.72 211 | 65.62 122 | 62.22 328 | 54.41 215 | 84.67 216 | 77.28 255 |
|
| tttt0517 | | | 69.46 175 | 67.79 201 | 74.46 107 | 75.34 204 | 52.72 201 | 75.05 135 | 63.27 299 | 54.69 183 | 78.87 127 | 84.37 184 | 26.63 378 | 81.15 121 | 63.95 128 | 87.93 168 | 89.51 25 |
|
| VPNet | | | 65.58 225 | 67.56 202 | 59.65 298 | 79.72 139 | 30.17 377 | 60.27 313 | 62.14 302 | 54.19 194 | 71.24 242 | 86.63 145 | 58.80 189 | 67.62 291 | 44.17 295 | 90.87 112 | 81.18 192 |
|
| KD-MVS_self_test | | | 66.38 219 | 67.51 203 | 62.97 270 | 61.76 351 | 34.39 356 | 58.11 328 | 75.30 203 | 50.84 235 | 77.12 148 | 85.42 172 | 56.84 213 | 69.44 275 | 51.07 238 | 91.16 97 | 85.08 91 |
|
| diffmvs |  | | 67.42 206 | 67.50 204 | 67.20 231 | 62.26 349 | 45.21 273 | 64.87 276 | 77.04 187 | 48.21 259 | 71.74 231 | 79.70 252 | 58.40 192 | 71.17 264 | 64.99 118 | 80.27 268 | 85.22 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MSDG | | | 67.47 205 | 67.48 205 | 67.46 228 | 70.70 268 | 54.69 189 | 66.90 251 | 78.17 172 | 60.88 123 | 70.41 249 | 74.76 302 | 61.22 165 | 73.18 238 | 47.38 272 | 76.87 299 | 74.49 280 |
|
| EPNet | | | 69.10 181 | 67.32 206 | 74.46 107 | 68.33 302 | 61.27 137 | 77.56 102 | 63.57 297 | 60.95 122 | 56.62 358 | 82.75 210 | 51.53 240 | 81.24 120 | 54.36 217 | 90.20 122 | 80.88 202 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| LF4IMVS | | | 67.50 202 | 67.31 207 | 68.08 222 | 58.86 370 | 61.93 127 | 71.43 182 | 75.90 199 | 44.67 291 | 72.42 224 | 80.20 243 | 57.16 207 | 70.44 270 | 58.99 175 | 86.12 196 | 71.88 306 |
|
| EIA-MVS | | | 68.59 188 | 67.16 208 | 72.90 141 | 75.18 207 | 55.64 184 | 69.39 211 | 81.29 107 | 52.44 213 | 64.53 304 | 70.69 336 | 60.33 174 | 82.30 104 | 54.27 218 | 76.31 303 | 80.75 206 |
|
| xiu_mvs_v1_base_debu | | | 67.87 197 | 67.07 209 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 241 | 71.25 242 | 47.98 261 | 67.70 284 | 74.19 312 | 61.31 160 | 72.62 244 | 56.51 189 | 78.26 289 | 76.27 265 |
|
| xiu_mvs_v1_base | | | 67.87 197 | 67.07 209 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 241 | 71.25 242 | 47.98 261 | 67.70 284 | 74.19 312 | 61.31 160 | 72.62 244 | 56.51 189 | 78.26 289 | 76.27 265 |
|
| xiu_mvs_v1_base_debi | | | 67.87 197 | 67.07 209 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 241 | 71.25 242 | 47.98 261 | 67.70 284 | 74.19 312 | 61.31 160 | 72.62 244 | 56.51 189 | 78.26 289 | 76.27 265 |
|
| FE-MVS | | | 68.29 193 | 66.96 212 | 72.26 158 | 74.16 226 | 54.24 192 | 77.55 103 | 73.42 216 | 57.65 152 | 72.66 220 | 84.91 178 | 32.02 351 | 81.49 116 | 48.43 262 | 81.85 248 | 81.04 195 |
|
| Anonymous202405211 | | | 66.02 222 | 66.89 213 | 63.43 265 | 74.22 224 | 38.14 329 | 59.00 319 | 66.13 275 | 63.33 107 | 69.76 259 | 85.95 168 | 51.88 236 | 70.50 269 | 44.23 294 | 87.52 171 | 81.64 188 |
|
| fmvsm_l_conf0.5_n | | | 67.48 203 | 66.88 214 | 69.28 200 | 67.41 313 | 62.04 126 | 70.69 196 | 69.85 255 | 39.46 332 | 69.59 260 | 81.09 229 | 58.15 195 | 68.73 280 | 67.51 96 | 78.16 292 | 77.07 262 |
|
| cl22 | | | 67.14 209 | 66.51 215 | 69.03 205 | 63.20 345 | 43.46 287 | 66.88 252 | 76.25 194 | 49.22 252 | 74.48 194 | 77.88 279 | 45.49 275 | 77.40 194 | 60.64 158 | 84.59 220 | 86.24 69 |
|
| fmvsm_s_conf0.1_n_a | | | 67.37 207 | 66.36 216 | 70.37 179 | 70.86 265 | 61.17 138 | 74.00 154 | 57.18 325 | 40.77 323 | 68.83 275 | 80.88 232 | 63.11 141 | 67.61 292 | 66.94 106 | 74.72 316 | 82.33 178 |
|
| wuyk23d | | | 61.97 263 | 66.25 217 | 49.12 353 | 58.19 374 | 60.77 149 | 66.32 257 | 52.97 352 | 55.93 170 | 90.62 5 | 86.91 132 | 73.07 57 | 35.98 398 | 20.63 402 | 91.63 87 | 50.62 388 |
|
| MAR-MVS | | | 67.72 200 | 66.16 218 | 72.40 155 | 74.45 221 | 64.99 107 | 74.87 137 | 77.50 182 | 48.67 257 | 65.78 298 | 68.58 360 | 57.01 212 | 77.79 189 | 46.68 279 | 81.92 246 | 74.42 282 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| SSC-MVS | | | 61.79 266 | 66.08 219 | 48.89 355 | 76.91 184 | 10.00 409 | 53.56 356 | 47.37 374 | 68.20 58 | 76.56 163 | 89.21 89 | 54.13 226 | 57.59 345 | 54.75 209 | 74.07 325 | 79.08 234 |
|
| Anonymous20240521 | | | 63.55 247 | 66.07 220 | 55.99 318 | 66.18 326 | 44.04 281 | 68.77 223 | 68.80 261 | 46.99 270 | 72.57 221 | 85.84 169 | 39.87 310 | 50.22 357 | 53.40 228 | 92.23 81 | 73.71 288 |
|
| IterMVS-SCA-FT | | | 67.68 201 | 66.07 220 | 72.49 153 | 73.34 237 | 58.20 171 | 63.80 287 | 65.55 281 | 48.10 260 | 76.91 152 | 82.64 213 | 45.20 276 | 78.84 163 | 61.20 151 | 77.89 294 | 80.44 215 |
|
| fmvsm_l_conf0.5_n_a | | | 66.66 214 | 65.97 222 | 68.72 214 | 67.09 316 | 61.38 134 | 70.03 203 | 69.15 260 | 38.59 339 | 68.41 277 | 80.36 240 | 56.56 216 | 68.32 285 | 66.10 110 | 77.45 296 | 76.46 263 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 213 | 65.95 223 | 70.17 184 | 69.72 289 | 61.16 139 | 73.34 157 | 56.83 328 | 40.96 320 | 68.36 278 | 80.08 247 | 62.84 142 | 67.57 293 | 66.90 108 | 74.50 320 | 81.78 186 |
|
| iter_conf05 | | | 67.34 208 | 65.62 224 | 72.50 152 | 69.82 284 | 47.06 256 | 72.19 166 | 76.86 189 | 45.32 285 | 72.86 217 | 82.85 209 | 20.53 396 | 83.73 78 | 61.13 153 | 89.02 154 | 86.70 65 |
|
| fmvsm_s_conf0.1_n | | | 66.60 216 | 65.54 225 | 69.77 192 | 68.99 295 | 59.15 161 | 72.12 167 | 56.74 330 | 40.72 325 | 68.25 281 | 80.14 246 | 61.18 166 | 66.92 299 | 67.34 103 | 74.40 321 | 83.23 150 |
|
| mvs_anonymous | | | 65.08 230 | 65.49 226 | 63.83 259 | 63.79 342 | 37.60 335 | 66.52 256 | 69.82 256 | 43.44 302 | 73.46 210 | 86.08 164 | 58.79 190 | 71.75 259 | 51.90 232 | 75.63 308 | 82.15 180 |
|
| sd_testset | | | 63.55 247 | 65.38 227 | 58.07 308 | 73.04 248 | 38.83 323 | 57.41 331 | 65.44 282 | 51.42 226 | 68.93 270 | 82.72 211 | 63.76 138 | 58.11 343 | 41.05 312 | 84.67 216 | 77.28 255 |
|
| fmvsm_s_conf0.5_n | | | 66.34 221 | 65.27 228 | 69.57 195 | 68.20 303 | 59.14 163 | 71.66 179 | 56.48 331 | 40.92 321 | 67.78 283 | 79.46 255 | 61.23 163 | 66.90 300 | 67.39 99 | 74.32 324 | 82.66 167 |
|
| ECVR-MVS |  | | 64.82 232 | 65.22 229 | 63.60 261 | 78.80 158 | 31.14 372 | 66.97 249 | 56.47 332 | 54.23 191 | 69.94 256 | 88.68 106 | 37.23 326 | 74.81 222 | 45.28 291 | 89.41 143 | 84.86 96 |
|
| iter_conf05_11 | | | 66.64 215 | 65.20 230 | 70.94 170 | 73.28 238 | 46.89 257 | 66.09 259 | 77.03 188 | 43.44 302 | 63.43 320 | 74.09 315 | 47.19 270 | 83.26 87 | 56.25 194 | 86.01 198 | 82.66 167 |
|
| test1111 | | | 64.62 235 | 65.19 231 | 62.93 271 | 79.01 156 | 29.91 378 | 65.45 270 | 54.41 342 | 54.09 196 | 71.47 241 | 88.48 110 | 37.02 327 | 74.29 229 | 46.83 278 | 89.94 130 | 84.58 109 |
|
| thisisatest0530 | | | 67.05 212 | 65.16 232 | 72.73 147 | 73.10 245 | 50.55 212 | 71.26 188 | 63.91 295 | 50.22 242 | 74.46 195 | 80.75 234 | 26.81 377 | 80.25 142 | 59.43 172 | 86.50 193 | 87.37 54 |
|
| FMVSNet3 | | | 65.00 231 | 65.16 232 | 64.52 253 | 69.47 290 | 37.56 336 | 66.63 254 | 70.38 252 | 51.55 224 | 74.72 188 | 83.27 204 | 37.89 323 | 74.44 226 | 47.12 273 | 85.37 203 | 81.57 189 |
|
| VNet | | | 64.01 246 | 65.15 234 | 60.57 292 | 73.28 238 | 35.61 348 | 57.60 330 | 67.08 270 | 54.61 185 | 66.76 293 | 83.37 199 | 56.28 217 | 66.87 301 | 42.19 304 | 85.20 209 | 79.23 232 |
|
| ab-mvs | | | 64.11 244 | 65.13 235 | 61.05 288 | 71.99 257 | 38.03 332 | 67.59 236 | 68.79 262 | 49.08 255 | 65.32 300 | 86.26 156 | 58.02 202 | 66.85 303 | 39.33 320 | 79.79 275 | 78.27 243 |
|
| test_yl | | | 65.11 228 | 65.09 236 | 65.18 248 | 70.59 270 | 40.86 306 | 63.22 295 | 72.79 220 | 57.91 146 | 68.88 272 | 79.07 265 | 42.85 292 | 74.89 220 | 45.50 288 | 84.97 211 | 79.81 221 |
|
| DCV-MVSNet | | | 65.11 228 | 65.09 236 | 65.18 248 | 70.59 270 | 40.86 306 | 63.22 295 | 72.79 220 | 57.91 146 | 68.88 272 | 79.07 265 | 42.85 292 | 74.89 220 | 45.50 288 | 84.97 211 | 79.81 221 |
|
| RPMNet | | | 65.77 224 | 65.08 238 | 67.84 225 | 66.37 321 | 48.24 237 | 70.93 192 | 86.27 20 | 54.66 184 | 61.35 328 | 86.77 137 | 33.29 339 | 85.67 47 | 55.93 198 | 70.17 353 | 69.62 328 |
|
| miper_enhance_ethall | | | 65.86 223 | 65.05 239 | 68.28 221 | 61.62 353 | 42.62 295 | 64.74 277 | 77.97 176 | 42.52 308 | 73.42 211 | 72.79 323 | 49.66 250 | 77.68 191 | 58.12 180 | 84.59 220 | 84.54 110 |
|
| PVSNet_BlendedMVS | | | 65.38 226 | 64.30 240 | 68.61 215 | 69.81 285 | 49.36 228 | 65.60 269 | 78.96 154 | 45.50 280 | 59.98 337 | 78.61 269 | 51.82 237 | 78.20 181 | 44.30 292 | 84.11 226 | 78.27 243 |
|
| BH-w/o | | | 64.81 233 | 64.29 241 | 66.36 240 | 76.08 198 | 54.71 188 | 65.61 268 | 75.23 205 | 50.10 244 | 71.05 245 | 71.86 329 | 54.33 225 | 79.02 160 | 38.20 331 | 76.14 304 | 65.36 354 |
|
| WB-MVS | | | 60.04 280 | 64.19 242 | 47.59 357 | 76.09 196 | 10.22 408 | 52.44 361 | 46.74 375 | 65.17 84 | 74.07 202 | 87.48 124 | 53.48 229 | 55.28 348 | 49.36 252 | 72.84 333 | 77.28 255 |
|
| patch_mono-2 | | | 62.73 259 | 64.08 243 | 58.68 304 | 70.36 278 | 55.87 181 | 60.84 308 | 64.11 294 | 41.23 316 | 64.04 309 | 78.22 274 | 60.00 176 | 48.80 361 | 54.17 219 | 83.71 232 | 71.37 310 |
|
| xiu_mvs_v2_base | | | 64.43 240 | 63.96 244 | 65.85 246 | 77.72 173 | 51.32 208 | 63.63 289 | 72.31 228 | 45.06 289 | 61.70 325 | 69.66 348 | 62.56 145 | 73.93 234 | 49.06 255 | 73.91 326 | 72.31 302 |
|
| CANet_DTU | | | 64.04 245 | 63.83 245 | 64.66 251 | 68.39 299 | 42.97 292 | 73.45 156 | 74.50 211 | 52.05 218 | 54.78 367 | 75.44 298 | 43.99 284 | 70.42 271 | 53.49 225 | 78.41 288 | 80.59 212 |
|
| TAMVS | | | 65.31 227 | 63.75 246 | 69.97 190 | 82.23 114 | 59.76 156 | 66.78 253 | 63.37 298 | 45.20 286 | 69.79 258 | 79.37 258 | 47.42 269 | 72.17 251 | 34.48 357 | 85.15 210 | 77.99 250 |
|
| PS-MVSNAJ | | | 64.27 243 | 63.73 247 | 65.90 245 | 77.82 171 | 51.42 207 | 63.33 292 | 72.33 227 | 45.09 288 | 61.60 326 | 68.04 362 | 62.39 149 | 73.95 233 | 49.07 254 | 73.87 327 | 72.34 301 |
|
| PM-MVS | | | 64.49 238 | 63.61 248 | 67.14 233 | 76.68 189 | 75.15 27 | 68.49 228 | 42.85 387 | 51.17 232 | 77.85 139 | 80.51 237 | 45.76 272 | 66.31 308 | 52.83 229 | 76.35 302 | 59.96 376 |
|
| TR-MVS | | | 64.59 236 | 63.54 249 | 67.73 227 | 75.75 203 | 50.83 211 | 63.39 291 | 70.29 253 | 49.33 251 | 71.55 238 | 74.55 305 | 50.94 243 | 78.46 171 | 40.43 316 | 75.69 307 | 73.89 286 |
|
| CL-MVSNet_self_test | | | 62.44 261 | 63.40 250 | 59.55 299 | 72.34 254 | 32.38 364 | 56.39 336 | 64.84 287 | 51.21 231 | 67.46 288 | 81.01 231 | 50.75 244 | 63.51 323 | 38.47 329 | 88.12 163 | 82.75 164 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 252 | 63.28 251 | 63.07 268 | 69.81 285 | 45.34 272 | 68.52 227 | 67.14 269 | 43.74 298 | 70.61 248 | 79.22 260 | 47.90 267 | 72.66 243 | 48.75 257 | 73.84 328 | 71.21 314 |
|
| pmmvs-eth3d | | | 64.41 241 | 63.27 252 | 67.82 226 | 75.81 202 | 60.18 153 | 69.49 209 | 62.05 305 | 38.81 338 | 74.13 200 | 82.23 217 | 43.76 286 | 68.65 282 | 42.53 302 | 80.63 266 | 74.63 277 |
|
| Vis-MVSNet (Re-imp) | | | 62.74 258 | 63.21 253 | 61.34 286 | 72.19 255 | 31.56 369 | 67.31 245 | 53.87 344 | 53.60 204 | 69.88 257 | 83.37 199 | 40.52 306 | 70.98 265 | 41.40 310 | 86.78 189 | 81.48 190 |
|
| USDC | | | 62.80 257 | 63.10 254 | 61.89 279 | 65.19 332 | 43.30 289 | 67.42 240 | 74.20 212 | 35.80 355 | 72.25 227 | 84.48 183 | 45.67 273 | 71.95 256 | 37.95 333 | 84.97 211 | 70.42 321 |
|
| Patchmtry | | | 60.91 272 | 63.01 255 | 54.62 325 | 66.10 327 | 26.27 392 | 67.47 239 | 56.40 333 | 54.05 197 | 72.04 230 | 86.66 142 | 33.19 340 | 60.17 334 | 43.69 296 | 87.45 174 | 77.42 253 |
|
| jason | | | 64.47 239 | 62.84 256 | 69.34 199 | 76.91 184 | 59.20 157 | 67.15 246 | 65.67 278 | 35.29 356 | 65.16 301 | 76.74 288 | 44.67 280 | 70.68 266 | 54.74 210 | 79.28 279 | 78.14 246 |
| jason: jason. |
| cascas | | | 64.59 236 | 62.77 257 | 70.05 188 | 75.27 205 | 50.02 219 | 61.79 301 | 71.61 231 | 42.46 309 | 63.68 315 | 68.89 356 | 49.33 254 | 80.35 139 | 47.82 270 | 84.05 227 | 79.78 223 |
|
| CDS-MVSNet | | | 64.33 242 | 62.66 258 | 69.35 198 | 80.44 133 | 58.28 170 | 65.26 272 | 65.66 279 | 44.36 292 | 67.30 290 | 75.54 295 | 43.27 288 | 71.77 257 | 37.68 334 | 84.44 223 | 78.01 249 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IterMVS | | | 63.12 253 | 62.48 259 | 65.02 250 | 66.34 323 | 52.86 200 | 63.81 286 | 62.25 301 | 46.57 273 | 71.51 239 | 80.40 239 | 44.60 281 | 66.82 304 | 51.38 236 | 75.47 310 | 75.38 272 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MDA-MVSNet-bldmvs | | | 62.34 262 | 61.73 260 | 64.16 254 | 61.64 352 | 49.90 222 | 48.11 372 | 57.24 324 | 53.31 207 | 80.95 106 | 79.39 257 | 49.00 258 | 61.55 330 | 45.92 284 | 80.05 270 | 81.03 196 |
|
| GA-MVS | | | 62.91 255 | 61.66 261 | 66.66 239 | 67.09 316 | 44.49 278 | 61.18 306 | 69.36 259 | 51.33 229 | 69.33 263 | 74.47 306 | 36.83 328 | 74.94 219 | 50.60 242 | 74.72 316 | 80.57 213 |
|
| PVSNet_Blended | | | 62.90 256 | 61.64 262 | 66.69 238 | 69.81 285 | 49.36 228 | 61.23 305 | 78.96 154 | 42.04 310 | 59.98 337 | 68.86 357 | 51.82 237 | 78.20 181 | 44.30 292 | 77.77 295 | 72.52 299 |
|
| miper_lstm_enhance | | | 61.97 263 | 61.63 263 | 62.98 269 | 60.04 360 | 45.74 270 | 47.53 374 | 70.95 247 | 44.04 293 | 73.06 215 | 78.84 268 | 39.72 311 | 60.33 333 | 55.82 200 | 84.64 219 | 82.88 159 |
|
| MVSTER | | | 63.29 251 | 61.60 264 | 68.36 217 | 59.77 366 | 46.21 266 | 60.62 310 | 71.32 239 | 41.83 311 | 75.40 181 | 79.12 263 | 30.25 366 | 75.85 206 | 56.30 193 | 79.81 273 | 83.03 156 |
|
| lupinMVS | | | 63.36 249 | 61.49 265 | 68.97 207 | 74.93 209 | 59.19 158 | 65.80 265 | 64.52 291 | 34.68 361 | 63.53 318 | 74.25 310 | 43.19 289 | 70.62 267 | 53.88 222 | 78.67 285 | 77.10 259 |
|
| thres600view7 | | | 61.82 265 | 61.38 266 | 63.12 267 | 71.81 258 | 34.93 352 | 64.64 278 | 56.99 326 | 54.78 182 | 70.33 251 | 79.74 251 | 32.07 349 | 72.42 249 | 38.61 327 | 83.46 235 | 82.02 181 |
|
| EGC-MVSNET | | | 64.77 234 | 61.17 267 | 75.60 98 | 86.90 42 | 74.47 30 | 84.04 35 | 68.62 264 | 0.60 405 | 1.13 407 | 91.61 28 | 65.32 127 | 74.15 231 | 64.01 126 | 88.28 160 | 78.17 245 |
|
| thres100view900 | | | 61.17 271 | 61.09 268 | 61.39 285 | 72.14 256 | 35.01 351 | 65.42 271 | 56.99 326 | 55.23 175 | 70.71 247 | 79.90 249 | 32.07 349 | 72.09 252 | 35.61 352 | 81.73 251 | 77.08 260 |
|
| D2MVS | | | 62.58 260 | 61.05 269 | 67.20 231 | 63.85 341 | 47.92 243 | 56.29 337 | 69.58 257 | 39.32 333 | 70.07 255 | 78.19 275 | 34.93 334 | 72.68 242 | 53.44 226 | 83.74 230 | 81.00 198 |
|
| CMPMVS |  | 48.73 20 | 61.54 269 | 60.89 270 | 63.52 263 | 61.08 355 | 51.55 206 | 68.07 233 | 68.00 267 | 33.88 363 | 65.87 296 | 81.25 227 | 37.91 322 | 67.71 289 | 49.32 253 | 82.60 241 | 71.31 312 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test2506 | | | 61.23 270 | 60.85 271 | 62.38 276 | 78.80 158 | 27.88 386 | 67.33 244 | 37.42 400 | 54.23 191 | 67.55 287 | 88.68 106 | 17.87 404 | 74.39 227 | 46.33 281 | 89.41 143 | 84.86 96 |
|
| EU-MVSNet | | | 60.82 273 | 60.80 272 | 60.86 291 | 68.37 300 | 41.16 303 | 72.27 163 | 68.27 266 | 26.96 386 | 69.08 265 | 75.71 293 | 32.09 348 | 67.44 294 | 55.59 203 | 78.90 282 | 73.97 284 |
|
| ET-MVSNet_ETH3D | | | 63.32 250 | 60.69 273 | 71.20 169 | 70.15 281 | 55.66 183 | 65.02 275 | 64.32 292 | 43.28 307 | 68.99 267 | 72.05 328 | 25.46 384 | 78.19 183 | 54.16 220 | 82.80 239 | 79.74 224 |
|
| HyFIR lowres test | | | 63.01 254 | 60.47 274 | 70.61 174 | 83.04 101 | 54.10 193 | 59.93 315 | 72.24 229 | 33.67 366 | 69.00 266 | 75.63 294 | 38.69 317 | 76.93 198 | 36.60 344 | 75.45 311 | 80.81 205 |
|
| PAPM | | | 61.79 266 | 60.37 275 | 66.05 243 | 76.09 196 | 41.87 299 | 69.30 212 | 76.79 192 | 40.64 326 | 53.80 372 | 79.62 254 | 44.38 282 | 82.92 95 | 29.64 377 | 73.11 332 | 73.36 290 |
|
| FPMVS | | | 59.43 285 | 60.07 276 | 57.51 311 | 77.62 176 | 71.52 49 | 62.33 299 | 50.92 359 | 57.40 155 | 69.40 262 | 80.00 248 | 39.14 315 | 61.92 329 | 37.47 337 | 66.36 369 | 39.09 399 |
|
| tfpn200view9 | | | 60.35 278 | 59.97 277 | 61.51 283 | 70.78 266 | 35.35 349 | 63.27 293 | 57.47 319 | 53.00 209 | 68.31 279 | 77.09 285 | 32.45 346 | 72.09 252 | 35.61 352 | 81.73 251 | 77.08 260 |
|
| MVS | | | 60.62 276 | 59.97 277 | 62.58 274 | 68.13 305 | 47.28 253 | 68.59 225 | 73.96 213 | 32.19 370 | 59.94 339 | 68.86 357 | 50.48 246 | 77.64 192 | 41.85 307 | 75.74 306 | 62.83 365 |
|
| thres400 | | | 60.77 275 | 59.97 277 | 63.15 266 | 70.78 266 | 35.35 349 | 63.27 293 | 57.47 319 | 53.00 209 | 68.31 279 | 77.09 285 | 32.45 346 | 72.09 252 | 35.61 352 | 81.73 251 | 82.02 181 |
|
| ppachtmachnet_test | | | 60.26 279 | 59.61 280 | 62.20 277 | 67.70 310 | 44.33 279 | 58.18 327 | 60.96 309 | 40.75 324 | 65.80 297 | 72.57 324 | 41.23 299 | 63.92 320 | 46.87 277 | 82.42 242 | 78.33 241 |
|
| MVP-Stereo | | | 61.56 268 | 59.22 281 | 68.58 216 | 79.28 146 | 60.44 151 | 69.20 214 | 71.57 232 | 43.58 300 | 56.42 359 | 78.37 272 | 39.57 313 | 76.46 205 | 34.86 356 | 60.16 384 | 68.86 335 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Patchmatch-RL test | | | 59.95 281 | 59.12 282 | 62.44 275 | 72.46 253 | 54.61 190 | 59.63 316 | 47.51 373 | 41.05 319 | 74.58 193 | 74.30 309 | 31.06 360 | 65.31 313 | 51.61 233 | 79.85 272 | 67.39 341 |
|
| pmmvs4 | | | 60.78 274 | 59.04 283 | 66.00 244 | 73.06 247 | 57.67 173 | 64.53 281 | 60.22 311 | 36.91 350 | 65.96 295 | 77.27 284 | 39.66 312 | 68.54 283 | 38.87 324 | 74.89 315 | 71.80 307 |
|
| 1112_ss | | | 59.48 284 | 58.99 284 | 60.96 290 | 77.84 170 | 42.39 297 | 61.42 303 | 68.45 265 | 37.96 343 | 59.93 340 | 67.46 365 | 45.11 278 | 65.07 315 | 40.89 314 | 71.81 342 | 75.41 271 |
|
| 1314 | | | 59.83 282 | 58.86 285 | 62.74 273 | 65.71 329 | 44.78 276 | 68.59 225 | 72.63 224 | 33.54 368 | 61.05 332 | 67.29 368 | 43.62 287 | 71.26 263 | 49.49 251 | 67.84 366 | 72.19 304 |
|
| Test_1112_low_res | | | 58.78 289 | 58.69 286 | 59.04 303 | 79.41 143 | 38.13 330 | 57.62 329 | 66.98 271 | 34.74 359 | 59.62 343 | 77.56 282 | 42.92 291 | 63.65 322 | 38.66 326 | 70.73 349 | 75.35 273 |
|
| EPNet_dtu | | | 58.93 288 | 58.52 287 | 60.16 296 | 67.91 308 | 47.70 248 | 69.97 204 | 58.02 317 | 49.73 247 | 47.28 389 | 73.02 322 | 38.14 319 | 62.34 326 | 36.57 345 | 85.99 199 | 70.43 320 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CR-MVSNet | | | 58.96 287 | 58.49 288 | 60.36 294 | 66.37 321 | 48.24 237 | 70.93 192 | 56.40 333 | 32.87 369 | 61.35 328 | 86.66 142 | 33.19 340 | 63.22 324 | 48.50 261 | 70.17 353 | 69.62 328 |
|
| CVMVSNet | | | 59.21 286 | 58.44 289 | 61.51 283 | 73.94 229 | 47.76 247 | 71.31 186 | 64.56 290 | 26.91 388 | 60.34 336 | 70.44 337 | 36.24 331 | 67.65 290 | 53.57 224 | 68.66 361 | 69.12 333 |
|
| testing3 | | | 58.28 292 | 58.38 290 | 58.00 309 | 77.45 177 | 26.12 393 | 60.78 309 | 43.00 386 | 56.02 167 | 70.18 253 | 75.76 292 | 13.27 411 | 67.24 297 | 48.02 267 | 80.89 260 | 80.65 210 |
|
| baseline1 | | | 57.82 295 | 58.36 291 | 56.19 317 | 69.17 292 | 30.76 375 | 62.94 297 | 55.21 337 | 46.04 276 | 63.83 313 | 78.47 270 | 41.20 300 | 63.68 321 | 39.44 319 | 68.99 359 | 74.13 283 |
|
| SCA | | | 58.57 291 | 58.04 292 | 60.17 295 | 70.17 280 | 41.07 305 | 65.19 273 | 53.38 350 | 43.34 306 | 61.00 333 | 73.48 317 | 45.20 276 | 69.38 276 | 40.34 317 | 70.31 352 | 70.05 322 |
|
| thisisatest0515 | | | 60.48 277 | 57.86 293 | 68.34 218 | 67.25 314 | 46.42 263 | 60.58 311 | 62.14 302 | 40.82 322 | 63.58 317 | 69.12 351 | 26.28 380 | 78.34 177 | 48.83 256 | 82.13 244 | 80.26 217 |
|
| PatchMatch-RL | | | 58.68 290 | 57.72 294 | 61.57 282 | 76.21 194 | 73.59 39 | 61.83 300 | 49.00 368 | 47.30 269 | 61.08 330 | 68.97 353 | 50.16 248 | 59.01 338 | 36.06 351 | 68.84 360 | 52.10 386 |
|
| HY-MVS | | 49.31 19 | 57.96 294 | 57.59 295 | 59.10 302 | 66.85 320 | 36.17 342 | 65.13 274 | 65.39 283 | 39.24 335 | 54.69 369 | 78.14 276 | 44.28 283 | 67.18 298 | 33.75 362 | 70.79 348 | 73.95 285 |
|
| test20.03 | | | 55.74 303 | 57.51 296 | 50.42 344 | 59.89 365 | 32.09 366 | 50.63 366 | 49.01 367 | 50.11 243 | 65.07 302 | 83.23 206 | 45.61 274 | 48.11 366 | 30.22 373 | 83.82 229 | 71.07 316 |
|
| XXY-MVS | | | 55.19 307 | 57.40 297 | 48.56 356 | 64.45 339 | 34.84 354 | 51.54 364 | 53.59 346 | 38.99 337 | 63.79 314 | 79.43 256 | 56.59 214 | 45.57 372 | 36.92 343 | 71.29 345 | 65.25 355 |
|
| thres200 | | | 57.55 296 | 57.02 298 | 59.17 300 | 67.89 309 | 34.93 352 | 58.91 321 | 57.25 323 | 50.24 241 | 64.01 310 | 71.46 332 | 32.49 345 | 71.39 262 | 31.31 369 | 79.57 277 | 71.19 315 |
|
| IB-MVS | | 49.67 18 | 59.69 283 | 56.96 299 | 67.90 223 | 68.19 304 | 50.30 216 | 61.42 303 | 65.18 284 | 47.57 267 | 55.83 362 | 67.15 369 | 23.77 390 | 79.60 152 | 43.56 298 | 79.97 271 | 73.79 287 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| testgi | | | 54.00 317 | 56.86 300 | 45.45 366 | 58.20 373 | 25.81 394 | 49.05 368 | 49.50 366 | 45.43 283 | 67.84 282 | 81.17 228 | 51.81 239 | 43.20 386 | 29.30 378 | 79.41 278 | 67.34 343 |
|
| gg-mvs-nofinetune | | | 55.75 302 | 56.75 301 | 52.72 334 | 62.87 346 | 28.04 385 | 68.92 217 | 41.36 395 | 71.09 41 | 50.80 381 | 92.63 12 | 20.74 395 | 66.86 302 | 29.97 375 | 72.41 336 | 63.25 364 |
|
| our_test_3 | | | 56.46 299 | 56.51 302 | 56.30 316 | 67.70 310 | 39.66 316 | 55.36 345 | 52.34 356 | 40.57 327 | 63.85 312 | 69.91 347 | 40.04 309 | 58.22 342 | 43.49 299 | 75.29 314 | 71.03 317 |
|
| PatchT | | | 53.35 320 | 56.47 303 | 43.99 373 | 64.19 340 | 17.46 404 | 59.15 317 | 43.10 385 | 52.11 217 | 54.74 368 | 86.95 131 | 29.97 369 | 49.98 358 | 43.62 297 | 74.40 321 | 64.53 362 |
|
| CHOSEN 1792x2688 | | | 58.09 293 | 56.30 304 | 63.45 264 | 79.95 137 | 50.93 210 | 54.07 354 | 65.59 280 | 28.56 382 | 61.53 327 | 74.33 308 | 41.09 302 | 66.52 307 | 33.91 360 | 67.69 367 | 72.92 294 |
|
| CostFormer | | | 57.35 297 | 56.14 305 | 60.97 289 | 63.76 343 | 38.43 325 | 67.50 238 | 60.22 311 | 37.14 349 | 59.12 345 | 76.34 290 | 32.78 343 | 71.99 255 | 39.12 323 | 69.27 358 | 72.47 300 |
|
| MIMVSNet | | | 54.39 312 | 56.12 306 | 49.20 351 | 72.57 252 | 30.91 373 | 59.98 314 | 48.43 370 | 41.66 312 | 55.94 361 | 83.86 192 | 41.19 301 | 50.42 356 | 26.05 387 | 75.38 312 | 66.27 349 |
|
| test_fmvs3 | | | 56.78 298 | 55.99 307 | 59.12 301 | 53.96 393 | 48.09 240 | 58.76 322 | 66.22 274 | 27.54 384 | 76.66 160 | 68.69 359 | 25.32 386 | 51.31 354 | 53.42 227 | 73.38 330 | 77.97 251 |
|
| Anonymous20231206 | | | 54.13 313 | 55.82 308 | 49.04 354 | 70.89 264 | 35.96 344 | 51.73 363 | 50.87 360 | 34.86 357 | 62.49 323 | 79.22 260 | 42.52 295 | 44.29 382 | 27.95 384 | 81.88 247 | 66.88 345 |
|
| new-patchmatchnet | | | 52.89 324 | 55.76 309 | 44.26 372 | 59.94 364 | 6.31 410 | 37.36 394 | 50.76 361 | 41.10 317 | 64.28 307 | 79.82 250 | 44.77 279 | 48.43 365 | 36.24 348 | 87.61 169 | 78.03 248 |
|
| FMVSNet5 | | | 55.08 309 | 55.54 310 | 53.71 327 | 65.80 328 | 33.50 361 | 56.22 338 | 52.50 354 | 43.72 299 | 61.06 331 | 83.38 198 | 25.46 384 | 54.87 349 | 30.11 374 | 81.64 256 | 72.75 297 |
|
| Syy-MVS | | | 54.13 313 | 55.45 311 | 50.18 345 | 68.77 296 | 23.59 397 | 55.02 346 | 44.55 380 | 43.80 295 | 58.05 349 | 64.07 374 | 46.22 271 | 58.83 339 | 46.16 282 | 72.36 337 | 68.12 337 |
|
| tpmvs | | | 55.84 301 | 55.45 311 | 57.01 313 | 60.33 359 | 33.20 362 | 65.89 262 | 59.29 315 | 47.52 268 | 56.04 360 | 73.60 316 | 31.05 361 | 68.06 288 | 40.64 315 | 64.64 372 | 69.77 326 |
|
| testing91 | | | 55.74 303 | 55.29 313 | 57.08 312 | 70.63 269 | 30.85 374 | 54.94 349 | 56.31 335 | 50.34 239 | 57.08 352 | 70.10 344 | 24.50 388 | 65.86 309 | 36.98 342 | 76.75 300 | 74.53 279 |
|
| MS-PatchMatch | | | 55.59 305 | 54.89 314 | 57.68 310 | 69.18 291 | 49.05 231 | 61.00 307 | 62.93 300 | 35.98 353 | 58.36 347 | 68.93 355 | 36.71 329 | 66.59 306 | 37.62 336 | 63.30 376 | 57.39 382 |
|
| WB-MVSnew | | | 53.94 318 | 54.76 315 | 51.49 340 | 71.53 260 | 28.05 384 | 58.22 326 | 50.36 362 | 37.94 344 | 59.16 344 | 70.17 342 | 49.21 255 | 51.94 353 | 24.49 394 | 71.80 343 | 74.47 281 |
|
| tpm2 | | | 56.12 300 | 54.64 316 | 60.55 293 | 66.24 324 | 36.01 343 | 68.14 231 | 56.77 329 | 33.60 367 | 58.25 348 | 75.52 297 | 30.25 366 | 74.33 228 | 33.27 363 | 69.76 357 | 71.32 311 |
|
| testing99 | | | 55.16 308 | 54.56 317 | 56.98 314 | 70.13 282 | 30.58 376 | 54.55 352 | 54.11 343 | 49.53 250 | 56.76 356 | 70.14 343 | 22.76 392 | 65.79 310 | 36.99 341 | 76.04 305 | 74.57 278 |
|
| PatchmatchNet |  | | 54.60 311 | 54.27 318 | 55.59 321 | 65.17 334 | 39.08 318 | 66.92 250 | 51.80 358 | 39.89 330 | 58.39 346 | 73.12 321 | 31.69 354 | 58.33 341 | 43.01 301 | 58.38 390 | 69.38 331 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_fmvs2 | | | 54.80 310 | 54.11 319 | 56.88 315 | 51.76 397 | 49.95 221 | 56.70 335 | 65.80 277 | 26.22 389 | 69.42 261 | 65.25 372 | 31.82 352 | 49.98 358 | 49.63 250 | 70.36 351 | 70.71 318 |
|
| MDTV_nov1_ep13 | | | | 54.05 320 | | 65.54 330 | 29.30 381 | 59.00 319 | 55.22 336 | 35.96 354 | 52.44 374 | 75.98 291 | 30.77 363 | 59.62 336 | 38.21 330 | 73.33 331 | |
|
| test_vis1_n_1920 | | | 52.96 322 | 53.50 321 | 51.32 341 | 59.15 368 | 44.90 275 | 56.13 340 | 64.29 293 | 30.56 380 | 59.87 341 | 60.68 385 | 40.16 308 | 47.47 367 | 48.25 265 | 62.46 378 | 61.58 373 |
|
| YYNet1 | | | 52.58 326 | 53.50 321 | 49.85 347 | 54.15 390 | 36.45 341 | 40.53 387 | 46.55 377 | 38.09 342 | 75.52 179 | 73.31 320 | 41.08 303 | 43.88 383 | 41.10 311 | 71.14 347 | 69.21 332 |
|
| MDA-MVSNet_test_wron | | | 52.57 327 | 53.49 323 | 49.81 348 | 54.24 389 | 36.47 340 | 40.48 388 | 46.58 376 | 38.13 341 | 75.47 180 | 73.32 319 | 41.05 304 | 43.85 384 | 40.98 313 | 71.20 346 | 69.10 334 |
|
| UnsupCasMVSNet_eth | | | 52.26 329 | 53.29 324 | 49.16 352 | 55.08 386 | 33.67 360 | 50.03 367 | 58.79 316 | 37.67 346 | 63.43 320 | 74.75 303 | 41.82 297 | 45.83 371 | 38.59 328 | 59.42 386 | 67.98 340 |
|
| baseline2 | | | 55.57 306 | 52.74 325 | 64.05 257 | 65.26 331 | 44.11 280 | 62.38 298 | 54.43 341 | 39.03 336 | 51.21 379 | 67.35 367 | 33.66 338 | 72.45 248 | 37.14 339 | 64.22 374 | 75.60 268 |
|
| UWE-MVS | | | 52.94 323 | 52.70 326 | 53.65 328 | 73.56 232 | 27.49 387 | 57.30 332 | 49.57 365 | 38.56 340 | 62.79 322 | 71.42 333 | 19.49 400 | 60.41 332 | 24.33 396 | 77.33 297 | 73.06 292 |
|
| tpm cat1 | | | 54.02 316 | 52.63 327 | 58.19 307 | 64.85 338 | 39.86 315 | 66.26 258 | 57.28 322 | 32.16 371 | 56.90 354 | 70.39 339 | 32.75 344 | 65.30 314 | 34.29 358 | 58.79 387 | 69.41 330 |
|
| pmmvs5 | | | 52.49 328 | 52.58 328 | 52.21 336 | 54.99 387 | 32.38 364 | 55.45 344 | 53.84 345 | 32.15 372 | 55.49 364 | 74.81 300 | 38.08 320 | 57.37 346 | 34.02 359 | 74.40 321 | 66.88 345 |
|
| testing222 | | | 53.37 319 | 52.50 329 | 55.98 319 | 70.51 275 | 29.68 379 | 56.20 339 | 51.85 357 | 46.19 275 | 56.76 356 | 68.94 354 | 19.18 401 | 65.39 312 | 25.87 390 | 76.98 298 | 72.87 295 |
|
| tpm | | | 50.60 338 | 52.42 330 | 45.14 368 | 65.18 333 | 26.29 391 | 60.30 312 | 43.50 383 | 37.41 347 | 57.01 353 | 79.09 264 | 30.20 368 | 42.32 387 | 32.77 365 | 66.36 369 | 66.81 347 |
|
| testing11 | | | 53.13 321 | 52.26 331 | 55.75 320 | 70.44 276 | 31.73 368 | 54.75 350 | 52.40 355 | 44.81 290 | 52.36 376 | 68.40 361 | 21.83 393 | 65.74 311 | 32.64 366 | 72.73 334 | 69.78 325 |
|
| test_fmvs1_n | | | 52.70 325 | 52.01 332 | 54.76 323 | 53.83 394 | 50.36 214 | 55.80 342 | 65.90 276 | 24.96 392 | 65.39 299 | 60.64 386 | 27.69 375 | 48.46 363 | 45.88 285 | 67.99 364 | 65.46 353 |
|
| JIA-IIPM | | | 54.03 315 | 51.62 333 | 61.25 287 | 59.14 369 | 55.21 186 | 59.10 318 | 47.72 371 | 50.85 234 | 50.31 385 | 85.81 170 | 20.10 398 | 63.97 319 | 36.16 349 | 55.41 395 | 64.55 361 |
|
| KD-MVS_2432*1600 | | | 52.05 331 | 51.58 334 | 53.44 330 | 52.11 395 | 31.20 370 | 44.88 381 | 64.83 288 | 41.53 313 | 64.37 305 | 70.03 345 | 15.61 408 | 64.20 317 | 36.25 346 | 74.61 318 | 64.93 358 |
|
| miper_refine_blended | | | 52.05 331 | 51.58 334 | 53.44 330 | 52.11 395 | 31.20 370 | 44.88 381 | 64.83 288 | 41.53 313 | 64.37 305 | 70.03 345 | 15.61 408 | 64.20 317 | 36.25 346 | 74.61 318 | 64.93 358 |
|
| tpmrst | | | 50.15 342 | 51.38 336 | 46.45 363 | 56.05 381 | 24.77 395 | 64.40 283 | 49.98 363 | 36.14 352 | 53.32 373 | 69.59 349 | 35.16 333 | 48.69 362 | 39.24 321 | 58.51 389 | 65.89 350 |
|
| PVSNet | | 43.83 21 | 51.56 334 | 51.17 337 | 52.73 333 | 68.34 301 | 38.27 327 | 48.22 371 | 53.56 348 | 36.41 351 | 54.29 370 | 64.94 373 | 34.60 335 | 54.20 352 | 30.34 372 | 69.87 355 | 65.71 352 |
|
| N_pmnet | | | 52.06 330 | 51.11 338 | 54.92 322 | 59.64 367 | 71.03 53 | 37.42 393 | 61.62 308 | 33.68 365 | 57.12 351 | 72.10 325 | 37.94 321 | 31.03 400 | 29.13 383 | 71.35 344 | 62.70 366 |
|
| test_vis3_rt | | | 51.94 333 | 51.04 339 | 54.65 324 | 46.32 404 | 50.13 218 | 44.34 383 | 78.17 172 | 23.62 396 | 68.95 269 | 62.81 378 | 21.41 394 | 38.52 396 | 41.49 309 | 72.22 339 | 75.30 274 |
|
| UnsupCasMVSNet_bld | | | 50.01 343 | 51.03 340 | 46.95 359 | 58.61 371 | 32.64 363 | 48.31 370 | 53.27 351 | 34.27 362 | 60.47 335 | 71.53 331 | 41.40 298 | 47.07 369 | 30.68 371 | 60.78 383 | 61.13 374 |
|
| test_cas_vis1_n_1920 | | | 50.90 337 | 50.92 341 | 50.83 343 | 54.12 392 | 47.80 245 | 51.44 365 | 54.61 340 | 26.95 387 | 63.95 311 | 60.85 384 | 37.86 324 | 44.97 377 | 45.53 287 | 62.97 377 | 59.72 377 |
|
| test_fmvs1 | | | 51.51 335 | 50.86 342 | 53.48 329 | 49.72 400 | 49.35 230 | 54.11 353 | 64.96 286 | 24.64 394 | 63.66 316 | 59.61 389 | 28.33 374 | 48.45 364 | 45.38 290 | 67.30 368 | 62.66 368 |
|
| dmvs_re | | | 49.91 344 | 50.77 343 | 47.34 358 | 59.98 361 | 38.86 322 | 53.18 357 | 53.58 347 | 39.75 331 | 55.06 365 | 61.58 383 | 36.42 330 | 44.40 381 | 29.15 382 | 68.23 362 | 58.75 379 |
|
| test-LLR | | | 50.43 339 | 50.69 344 | 49.64 349 | 60.76 356 | 41.87 299 | 53.18 357 | 45.48 378 | 43.41 304 | 49.41 386 | 60.47 387 | 29.22 372 | 44.73 379 | 42.09 305 | 72.14 340 | 62.33 371 |
|
| myMVS_eth3d | | | 50.36 340 | 50.52 345 | 49.88 346 | 68.77 296 | 22.69 399 | 55.02 346 | 44.55 380 | 43.80 295 | 58.05 349 | 64.07 374 | 14.16 410 | 58.83 339 | 33.90 361 | 72.36 337 | 68.12 337 |
|
| test_vis1_n | | | 51.27 336 | 50.41 346 | 53.83 326 | 56.99 377 | 50.01 220 | 56.75 334 | 60.53 310 | 25.68 390 | 59.74 342 | 57.86 390 | 29.40 371 | 47.41 368 | 43.10 300 | 63.66 375 | 64.08 363 |
|
| WTY-MVS | | | 49.39 345 | 50.31 347 | 46.62 362 | 61.22 354 | 32.00 367 | 46.61 377 | 49.77 364 | 33.87 364 | 54.12 371 | 69.55 350 | 41.96 296 | 45.40 374 | 31.28 370 | 64.42 373 | 62.47 369 |
|
| Patchmatch-test | | | 47.93 348 | 49.96 348 | 41.84 376 | 57.42 376 | 24.26 396 | 48.75 369 | 41.49 394 | 39.30 334 | 56.79 355 | 73.48 317 | 30.48 365 | 33.87 399 | 29.29 379 | 72.61 335 | 67.39 341 |
|
| ETVMVS | | | 50.32 341 | 49.87 349 | 51.68 338 | 70.30 279 | 26.66 390 | 52.33 362 | 43.93 382 | 43.54 301 | 54.91 366 | 67.95 363 | 20.01 399 | 60.17 334 | 22.47 398 | 73.40 329 | 68.22 336 |
|
| sss | | | 47.59 350 | 48.32 350 | 45.40 367 | 56.73 380 | 33.96 358 | 45.17 380 | 48.51 369 | 32.11 374 | 52.37 375 | 65.79 370 | 40.39 307 | 41.91 390 | 31.85 367 | 61.97 380 | 60.35 375 |
|
| test0.0.03 1 | | | 47.72 349 | 48.31 351 | 45.93 364 | 55.53 385 | 29.39 380 | 46.40 378 | 41.21 396 | 43.41 304 | 55.81 363 | 67.65 364 | 29.22 372 | 43.77 385 | 25.73 391 | 69.87 355 | 64.62 360 |
|
| test-mter | | | 48.56 347 | 48.20 352 | 49.64 349 | 60.76 356 | 41.87 299 | 53.18 357 | 45.48 378 | 31.91 375 | 49.41 386 | 60.47 387 | 18.34 402 | 44.73 379 | 42.09 305 | 72.14 340 | 62.33 371 |
|
| dmvs_testset | | | 45.26 355 | 47.51 353 | 38.49 382 | 59.96 363 | 14.71 406 | 58.50 324 | 43.39 384 | 41.30 315 | 51.79 378 | 56.48 391 | 39.44 314 | 49.91 360 | 21.42 400 | 55.35 396 | 50.85 387 |
|
| MVS-HIRNet | | | 45.53 354 | 47.29 354 | 40.24 379 | 62.29 348 | 26.82 389 | 56.02 341 | 37.41 401 | 29.74 381 | 43.69 399 | 81.27 226 | 33.96 336 | 55.48 347 | 24.46 395 | 56.79 391 | 38.43 400 |
|
| ADS-MVSNet2 | | | 48.76 346 | 47.25 355 | 53.29 332 | 55.90 383 | 40.54 311 | 47.34 375 | 54.99 339 | 31.41 377 | 50.48 382 | 72.06 326 | 31.23 357 | 54.26 351 | 25.93 388 | 55.93 392 | 65.07 356 |
|
| EPMVS | | | 45.74 353 | 46.53 356 | 43.39 374 | 54.14 391 | 22.33 401 | 55.02 346 | 35.00 403 | 34.69 360 | 51.09 380 | 70.20 341 | 25.92 382 | 42.04 389 | 37.19 338 | 55.50 394 | 65.78 351 |
|
| test_f | | | 43.79 362 | 45.63 357 | 38.24 383 | 42.29 408 | 38.58 324 | 34.76 396 | 47.68 372 | 22.22 399 | 67.34 289 | 63.15 377 | 31.82 352 | 30.60 401 | 39.19 322 | 62.28 379 | 45.53 395 |
|
| ADS-MVSNet | | | 44.62 359 | 45.58 358 | 41.73 377 | 55.90 383 | 20.83 402 | 47.34 375 | 39.94 398 | 31.41 377 | 50.48 382 | 72.06 326 | 31.23 357 | 39.31 394 | 25.93 388 | 55.93 392 | 65.07 356 |
|
| E-PMN | | | 45.17 356 | 45.36 359 | 44.60 370 | 50.07 398 | 42.75 293 | 38.66 391 | 42.29 391 | 46.39 274 | 39.55 400 | 51.15 397 | 26.00 381 | 45.37 375 | 37.68 334 | 76.41 301 | 45.69 394 |
|
| test_vis1_rt | | | 46.70 352 | 45.24 360 | 51.06 342 | 44.58 405 | 51.04 209 | 39.91 389 | 67.56 268 | 21.84 400 | 51.94 377 | 50.79 398 | 33.83 337 | 39.77 393 | 35.25 355 | 61.50 381 | 62.38 370 |
|
| pmmvs3 | | | 46.71 351 | 45.09 361 | 51.55 339 | 56.76 379 | 48.25 236 | 55.78 343 | 39.53 399 | 24.13 395 | 50.35 384 | 63.40 376 | 15.90 407 | 51.08 355 | 29.29 379 | 70.69 350 | 55.33 385 |
|
| TESTMET0.1,1 | | | 45.17 356 | 44.93 362 | 45.89 365 | 56.02 382 | 38.31 326 | 53.18 357 | 41.94 393 | 27.85 383 | 44.86 395 | 56.47 392 | 17.93 403 | 41.50 391 | 38.08 332 | 68.06 363 | 57.85 380 |
|
| dp | | | 44.09 361 | 44.88 363 | 41.72 378 | 58.53 372 | 23.18 398 | 54.70 351 | 42.38 390 | 34.80 358 | 44.25 397 | 65.61 371 | 24.48 389 | 44.80 378 | 29.77 376 | 49.42 398 | 57.18 383 |
|
| DSMNet-mixed | | | 43.18 364 | 44.66 364 | 38.75 381 | 54.75 388 | 28.88 383 | 57.06 333 | 27.42 406 | 13.47 402 | 47.27 390 | 77.67 281 | 38.83 316 | 39.29 395 | 25.32 393 | 60.12 385 | 48.08 390 |
|
| EMVS | | | 44.61 360 | 44.45 365 | 45.10 369 | 48.91 401 | 43.00 291 | 37.92 392 | 41.10 397 | 46.75 272 | 38.00 402 | 48.43 400 | 26.42 379 | 46.27 370 | 37.11 340 | 75.38 312 | 46.03 393 |
|
| PMMVS | | | 44.69 358 | 43.95 366 | 46.92 360 | 50.05 399 | 53.47 198 | 48.08 373 | 42.40 389 | 22.36 398 | 44.01 398 | 53.05 395 | 42.60 294 | 45.49 373 | 31.69 368 | 61.36 382 | 41.79 397 |
|
| mvsany_test3 | | | 43.76 363 | 41.01 367 | 52.01 337 | 48.09 402 | 57.74 172 | 42.47 385 | 23.85 409 | 23.30 397 | 64.80 303 | 62.17 381 | 27.12 376 | 40.59 392 | 29.17 381 | 48.11 399 | 57.69 381 |
|
| PMMVS2 | | | 37.74 368 | 40.87 368 | 28.36 385 | 42.41 407 | 5.35 411 | 24.61 398 | 27.75 405 | 32.15 372 | 47.85 388 | 70.27 340 | 35.85 332 | 29.51 402 | 19.08 403 | 67.85 365 | 50.22 389 |
|
| PVSNet_0 | | 36.71 22 | 41.12 366 | 40.78 369 | 42.14 375 | 59.97 362 | 40.13 313 | 40.97 386 | 42.24 392 | 30.81 379 | 44.86 395 | 49.41 399 | 40.70 305 | 45.12 376 | 23.15 397 | 34.96 402 | 41.16 398 |
|
| CHOSEN 280x420 | | | 41.62 365 | 39.89 370 | 46.80 361 | 61.81 350 | 51.59 205 | 33.56 397 | 35.74 402 | 27.48 385 | 37.64 403 | 53.53 393 | 23.24 391 | 42.09 388 | 27.39 385 | 58.64 388 | 46.72 392 |
|
| new_pmnet | | | 37.55 369 | 39.80 371 | 30.79 384 | 56.83 378 | 16.46 405 | 39.35 390 | 30.65 404 | 25.59 391 | 45.26 393 | 61.60 382 | 24.54 387 | 28.02 403 | 21.60 399 | 52.80 397 | 47.90 391 |
|
| mvsany_test1 | | | 37.88 367 | 35.74 372 | 44.28 371 | 47.28 403 | 49.90 222 | 36.54 395 | 24.37 408 | 19.56 401 | 45.76 391 | 53.46 394 | 32.99 342 | 37.97 397 | 26.17 386 | 35.52 401 | 44.99 396 |
|
| MVE |  | 27.91 23 | 36.69 370 | 35.64 373 | 39.84 380 | 43.37 406 | 35.85 346 | 19.49 399 | 24.61 407 | 24.68 393 | 39.05 401 | 62.63 380 | 38.67 318 | 27.10 404 | 21.04 401 | 47.25 400 | 56.56 384 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| cdsmvs_eth3d_5k | | | 17.71 372 | 23.62 374 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 70.17 254 | 0.00 409 | 0.00 410 | 74.25 310 | 68.16 95 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| test_method | | | 19.26 371 | 19.12 375 | 19.71 386 | 9.09 410 | 1.91 413 | 7.79 401 | 53.44 349 | 1.42 404 | 10.27 406 | 35.80 401 | 17.42 405 | 25.11 405 | 12.44 404 | 24.38 404 | 32.10 401 |
|
| tmp_tt | | | 11.98 373 | 14.73 376 | 3.72 388 | 2.28 411 | 4.62 412 | 19.44 400 | 14.50 411 | 0.47 406 | 21.55 404 | 9.58 404 | 25.78 383 | 4.57 407 | 11.61 405 | 27.37 403 | 1.96 403 |
|
| ab-mvs-re | | | 5.62 374 | 7.50 377 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 67.46 365 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 5.20 375 | 6.93 378 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 62.39 149 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| test123 | | | 4.43 376 | 5.78 379 | 0.39 390 | 0.97 412 | 0.28 414 | 46.33 379 | 0.45 413 | 0.31 407 | 0.62 408 | 1.50 407 | 0.61 413 | 0.11 409 | 0.56 407 | 0.63 406 | 0.77 405 |
|
| testmvs | | | 4.06 377 | 5.28 380 | 0.41 389 | 0.64 413 | 0.16 415 | 42.54 384 | 0.31 414 | 0.26 408 | 0.50 409 | 1.40 408 | 0.77 412 | 0.17 408 | 0.56 407 | 0.55 407 | 0.90 404 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 22.69 399 | | | | | | | | 36.10 350 | | |
|
| FOURS1 | | | | | | 89.19 23 | 77.84 12 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
| MSC_two_6792asdad | | | | | 79.02 55 | 83.14 95 | 67.03 87 | | 80.75 119 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 130 |
|
| PC_three_1452 | | | | | | | | | | 46.98 271 | 81.83 92 | 86.28 154 | 66.55 115 | 84.47 71 | 63.31 138 | 90.78 113 | 83.49 137 |
|
| No_MVS | | | | | 79.02 55 | 83.14 95 | 67.03 87 | | 80.75 119 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 130 |
|
| test_one_0601 | | | | | | 85.84 61 | 61.45 133 | | 85.63 28 | 75.27 17 | 85.62 48 | 90.38 64 | 76.72 27 | | | | |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| ZD-MVS | | | | | | 83.91 86 | 69.36 69 | | 81.09 114 | 58.91 140 | 82.73 85 | 89.11 94 | 75.77 35 | 86.63 12 | 72.73 62 | 92.93 70 | |
|
| IU-MVS | | | | | | 86.12 53 | 60.90 144 | | 80.38 130 | 45.49 282 | 81.31 101 | | | | 75.64 41 | 94.39 41 | 84.65 102 |
|
| OPU-MVS | | | | | 78.65 62 | 83.44 93 | 66.85 89 | 83.62 42 | | | | 86.12 162 | 66.82 108 | 86.01 31 | 61.72 147 | 89.79 134 | 83.08 154 |
|
| test_241102_TWO | | | | | | | | | 84.80 45 | 72.61 30 | 84.93 56 | 89.70 80 | 77.73 22 | 85.89 40 | 75.29 42 | 94.22 52 | 83.25 148 |
|
| test_241102_ONE | | | | | | 86.12 53 | 61.06 140 | | 84.72 49 | 72.64 29 | 87.38 24 | 89.47 83 | 77.48 23 | 85.74 44 | | | |
|
| save fliter | | | | | | 87.00 39 | 67.23 86 | 79.24 85 | 77.94 177 | 56.65 163 | | | | | | | |
|
| test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 43 | 90.41 59 | 75.58 37 | 85.69 45 | 77.43 30 | 94.74 29 | 84.31 119 |
|
| test_0728_SECOND | | | | | 76.57 85 | 86.20 48 | 60.57 150 | 83.77 40 | 85.49 30 | | | | | 85.90 38 | 75.86 39 | 94.39 41 | 83.25 148 |
|
| test0726 | | | | | | 86.16 51 | 60.78 147 | 83.81 39 | 85.10 40 | 72.48 32 | 85.27 53 | 89.96 76 | 78.57 17 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 322 |
|
| test_part2 | | | | | | 85.90 57 | 66.44 91 | | | | 84.61 62 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 355 | | | | 70.05 322 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 359 | | | | |
|
| ambc | | | | | 70.10 187 | 77.74 172 | 50.21 217 | 74.28 151 | 77.93 178 | | 79.26 123 | 88.29 115 | 54.11 227 | 79.77 149 | 64.43 122 | 91.10 102 | 80.30 216 |
|
| MTGPA |  | | | | | | | | 80.63 124 | | | | | | | | |
|
| test_post1 | | | | | | | | 66.63 254 | | | | 2.08 405 | 30.66 364 | 59.33 337 | 40.34 317 | | |
|
| test_post | | | | | | | | | | | | 1.99 406 | 30.91 362 | 54.76 350 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 352 | 31.32 356 | 69.38 276 | | | |
|
| GG-mvs-BLEND | | | | | 52.24 335 | 60.64 358 | 29.21 382 | 69.73 208 | 42.41 388 | | 45.47 392 | 52.33 396 | 20.43 397 | 68.16 286 | 25.52 392 | 65.42 371 | 59.36 378 |
|
| MTMP | | | | | | | | 84.83 31 | 19.26 410 | | | | | | | | |
|
| gm-plane-assit | | | | | | 62.51 347 | 33.91 359 | | | 37.25 348 | | 62.71 379 | | 72.74 241 | 38.70 325 | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 69 | 91.37 92 | 77.40 254 |
|
| TEST9 | | | | | | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 162 | 53.73 203 | 76.97 149 | 86.74 138 | 66.84 107 | 81.10 123 | | | |
|
| test_8 | | | | | | 85.09 69 | 67.89 79 | 76.26 123 | 78.66 164 | 54.00 198 | 76.89 153 | 86.72 140 | 66.60 113 | 80.89 133 | | | |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 107 | 78.55 240 |
|
| agg_prior | | | | | | 84.44 81 | 66.02 97 | | 78.62 165 | | 76.95 151 | | | 80.34 140 | | | |
|
| TestCases | | | | | 78.35 66 | 79.19 150 | 70.81 55 | | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 117 | 70.33 76 | 78.43 173 | 55.60 201 | 90.90 109 | 85.81 76 |
|
| test_prior4 | | | | | | | 70.14 63 | 77.57 101 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 75.57 132 | | 58.92 139 | 76.53 166 | 86.78 136 | 67.83 100 | | 69.81 77 | 92.76 73 | |
|
| test_prior | | | | | 75.27 102 | 82.15 115 | 59.85 155 | | 84.33 60 | | | | | 83.39 85 | | | 82.58 171 |
|
| 旧先验2 | | | | | | | | 71.17 189 | | 45.11 287 | 78.54 131 | | | 61.28 331 | 59.19 174 | | |
|
| 新几何2 | | | | | | | | 71.33 185 | | | | | | | | | |
|
| 新几何1 | | | | | 69.99 189 | 88.37 34 | 71.34 51 | | 62.08 304 | 43.85 294 | 74.99 184 | 86.11 163 | 52.85 232 | 70.57 268 | 50.99 239 | 83.23 237 | 68.05 339 |
|
| 旧先验1 | | | | | | 84.55 78 | 60.36 152 | | 63.69 296 | | | 87.05 130 | 54.65 223 | | | 83.34 236 | 69.66 327 |
|
| 无先验 | | | | | | | | 74.82 138 | 70.94 248 | 47.75 266 | | | | 76.85 201 | 54.47 213 | | 72.09 305 |
|
| 原ACMM2 | | | | | | | | 74.78 142 | | | | | | | | | |
|
| 原ACMM1 | | | | | 73.90 118 | 85.90 57 | 65.15 106 | | 81.67 100 | 50.97 233 | 74.25 198 | 86.16 160 | 61.60 157 | 83.54 81 | 56.75 187 | 91.08 103 | 73.00 293 |
|
| test222 | | | | | | 87.30 37 | 69.15 73 | 67.85 234 | 59.59 314 | 41.06 318 | 73.05 216 | 85.72 171 | 48.03 266 | | | 80.65 264 | 66.92 344 |
|
| testdata2 | | | | | | | | | | | | | | 67.30 295 | 48.34 263 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 94 | | | | |
|
| testdata | | | | | 64.13 255 | 85.87 59 | 63.34 118 | | 61.80 307 | 47.83 264 | 76.42 170 | 86.60 147 | 48.83 259 | 62.31 327 | 54.46 214 | 81.26 258 | 66.74 348 |
|
| testdata1 | | | | | | | | 68.34 230 | | 57.24 156 | | | | | | | |
|
| test12 | | | | | 76.51 86 | 82.28 113 | 60.94 143 | | 81.64 101 | | 73.60 207 | | 64.88 130 | 85.19 59 | | 90.42 120 | 83.38 144 |
|
| plane_prior7 | | | | | | 85.18 66 | 66.21 94 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 84.18 84 | 65.31 103 | | | | | | 60.83 170 | | | | |
|
| plane_prior5 | | | | | | | | | 85.49 30 | | | | | 86.15 27 | 71.09 71 | 90.94 105 | 84.82 98 |
|
| plane_prior4 | | | | | | | | | | | | 89.11 94 | | | | | |
|
| plane_prior3 | | | | | | | 65.67 99 | | | 63.82 98 | 78.23 133 | | | | | | |
|
| plane_prior2 | | | | | | | | 82.74 51 | | 65.45 76 | | | | | | | |
|
| plane_prior1 | | | | | | 84.46 80 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 65.18 104 | 80.06 79 | | 61.88 117 | | | | | | 89.91 131 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 55.02 338 | | | | | | | | |
|
| lessismore_v0 | | | | | 72.75 145 | 79.60 141 | 56.83 177 | | 57.37 321 | | 83.80 72 | 89.01 97 | 47.45 268 | 78.74 166 | 64.39 123 | 86.49 194 | 82.69 166 |
|
| LGP-MVS_train | | | | | 80.90 32 | 87.00 39 | 70.41 60 | | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| test11 | | | | | | | | | 82.71 85 | | | | | | | | |
|
| door | | | | | | | | | 52.91 353 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 58.80 166 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 82.37 110 | | 77.32 106 | | 59.08 134 | 71.58 234 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 110 | | 77.32 106 | | 59.08 134 | 71.58 234 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 233 | | | 85.31 52 | | | 83.74 132 |
|
| HQP3-MVS | | | | | | | | | 84.12 66 | | | | | | | 89.16 147 | |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 197 | | | | |
|
| NP-MVS | | | | | | 83.34 94 | 63.07 121 | | | | | 85.97 166 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 403 | 53.74 355 | | 31.57 376 | 44.89 394 | | 29.90 370 | | 32.93 364 | | 71.48 309 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 145 | | | | |
|
| ITE_SJBPF | | | | | 80.35 38 | 76.94 183 | 73.60 38 | | 80.48 127 | 66.87 64 | 83.64 74 | 86.18 158 | 70.25 78 | 79.90 148 | 61.12 154 | 88.95 155 | 87.56 53 |
|
| DeepMVS_CX |  | | | | 11.83 387 | 15.51 409 | 13.86 407 | | 11.25 412 | 5.76 403 | 20.85 405 | 26.46 402 | 17.06 406 | 9.22 406 | 9.69 406 | 13.82 405 | 12.42 402 |
|