LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 28 | 98.81 28 | 93.86 34 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 39 | 98.61 183 | 96.85 2 | 99.77 10 | 99.31 29 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
UniMVSNet_ETH3D | | | 97.13 6 | 97.72 3 | 95.35 93 | 99.51 2 | 87.38 140 | 97.70 8 | 97.54 113 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 102 | 90.73 133 | 99.73 14 | 99.59 13 |
|
TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 7 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 53 | 98.46 27 | 94.62 60 | 98.84 140 | 94.64 20 | 99.53 37 | 98.99 56 |
|
PS-CasMVS | | | 96.69 22 | 97.43 5 | 94.49 135 | 99.13 6 | 84.09 204 | 96.61 31 | 97.97 78 | 97.91 5 | 98.64 13 | 98.13 38 | 95.24 38 | 99.65 3 | 93.39 63 | 99.84 3 | 99.72 2 |
|
DTE-MVSNet | | | 96.74 19 | 97.43 5 | 94.67 121 | 99.13 6 | 84.68 194 | 96.51 35 | 97.94 84 | 98.14 3 | 98.67 12 | 98.32 32 | 95.04 47 | 99.69 2 | 93.27 69 | 99.82 8 | 99.62 10 |
|
ACMH | | 88.36 12 | 96.59 29 | 97.43 5 | 94.07 148 | 98.56 41 | 85.33 188 | 96.33 47 | 98.30 26 | 94.66 42 | 98.72 8 | 98.30 33 | 97.51 5 | 98.00 239 | 94.87 17 | 99.59 29 | 98.86 76 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
PEN-MVS | | | 96.69 22 | 97.39 8 | 94.61 124 | 99.16 4 | 84.50 195 | 96.54 34 | 98.05 63 | 98.06 4 | 98.64 13 | 98.25 34 | 95.01 50 | 99.65 3 | 92.95 82 | 99.83 6 | 99.68 4 |
|
pmmvs6 | | | 96.80 13 | 97.36 9 | 95.15 104 | 99.12 8 | 87.82 135 | 96.68 29 | 97.86 86 | 96.10 26 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 221 | 91.38 123 | 99.69 15 | 99.42 20 |
|
v7n | | | 96.82 10 | 97.31 10 | 95.33 95 | 98.54 47 | 86.81 155 | 96.83 22 | 98.07 59 | 96.59 20 | 98.46 17 | 98.43 29 | 92.91 98 | 99.52 19 | 96.25 6 | 99.76 11 | 99.65 8 |
|
UA-Net | | | 97.35 4 | 97.24 11 | 97.69 5 | 98.22 75 | 93.87 33 | 98.42 6 | 98.19 38 | 96.95 14 | 95.46 138 | 99.23 4 | 93.45 79 | 99.57 14 | 95.34 16 | 99.89 2 | 99.63 9 |
|
Anonymous20231211 | | | 96.60 27 | 97.13 12 | 95.00 108 | 97.46 129 | 86.35 170 | 97.11 18 | 98.24 33 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 90 | 99.15 90 | 93.18 72 | 99.74 13 | 99.50 17 |
|
abl_6 | | | 97.31 5 | 97.12 13 | 97.86 3 | 98.54 47 | 95.32 9 | 96.61 31 | 98.35 20 | 95.81 31 | 97.55 38 | 97.44 75 | 96.51 9 | 99.40 47 | 94.06 33 | 99.23 84 | 98.85 79 |
|
WR-MVS_H | | | 96.60 27 | 97.05 14 | 95.24 100 | 99.02 12 | 86.44 166 | 96.78 26 | 98.08 56 | 97.42 9 | 98.48 16 | 97.86 56 | 91.76 124 | 99.63 6 | 94.23 29 | 99.84 3 | 99.66 6 |
|
HPM-MVS_fast | | | 97.01 7 | 96.89 15 | 97.39 24 | 99.12 8 | 93.92 31 | 97.16 13 | 98.17 43 | 93.11 75 | 96.48 85 | 97.36 82 | 96.92 6 | 99.34 66 | 94.31 26 | 99.38 59 | 98.92 70 |
|
ACMH+ | | 88.43 11 | 96.48 32 | 96.82 16 | 95.47 90 | 98.54 47 | 89.06 106 | 95.65 80 | 98.61 11 | 96.10 26 | 98.16 23 | 97.52 70 | 96.90 7 | 98.62 182 | 90.30 146 | 99.60 27 | 98.72 96 |
|
CP-MVSNet | | | 96.19 48 | 96.80 17 | 94.38 141 | 98.99 16 | 83.82 207 | 96.31 50 | 97.53 115 | 97.60 7 | 98.34 19 | 97.52 70 | 91.98 120 | 99.63 6 | 93.08 78 | 99.81 9 | 99.70 3 |
|
OurMVSNet-221017-0 | | | 96.80 13 | 96.75 18 | 96.96 38 | 99.03 11 | 91.85 61 | 97.98 7 | 98.01 72 | 94.15 53 | 98.93 3 | 99.07 5 | 88.07 188 | 99.57 14 | 95.86 9 | 99.69 15 | 99.46 19 |
|
mvs_tets | | | 96.83 9 | 96.71 19 | 97.17 29 | 98.83 26 | 92.51 52 | 96.58 33 | 97.61 108 | 87.57 212 | 98.80 7 | 98.90 9 | 96.50 10 | 99.59 13 | 96.15 7 | 99.47 42 | 99.40 22 |
|
RE-MVS-def | | | | 96.66 20 | | 98.07 84 | 95.27 10 | 96.37 44 | 98.12 49 | 95.66 33 | 97.00 64 | 97.03 105 | 95.40 29 | | 93.49 51 | 98.84 132 | 98.00 160 |
|
APD-MVS_3200maxsize | | | 96.82 10 | 96.65 21 | 97.32 27 | 97.95 97 | 93.82 36 | 96.31 50 | 98.25 30 | 95.51 35 | 96.99 66 | 97.05 104 | 95.63 23 | 99.39 52 | 93.31 66 | 98.88 127 | 98.75 90 |
|
APDe-MVS | | | 96.46 34 | 96.64 22 | 95.93 67 | 97.68 114 | 89.38 103 | 96.90 21 | 98.41 17 | 92.52 82 | 97.43 46 | 97.92 52 | 95.11 44 | 99.50 21 | 94.45 22 | 99.30 69 | 98.92 70 |
|
HPM-MVS |  | | 96.81 12 | 96.62 23 | 97.36 26 | 98.89 21 | 93.53 41 | 97.51 9 | 98.44 13 | 92.35 87 | 95.95 115 | 96.41 147 | 96.71 8 | 99.42 33 | 93.99 36 | 99.36 60 | 99.13 42 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
COLMAP_ROB |  | 91.06 5 | 96.75 18 | 96.62 23 | 97.13 30 | 98.38 64 | 94.31 19 | 96.79 25 | 98.32 23 | 96.69 17 | 96.86 71 | 97.56 67 | 95.48 27 | 98.77 159 | 90.11 155 | 99.44 49 | 98.31 132 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
SR-MVS-dyc-post | | | 96.84 8 | 96.60 25 | 97.56 12 | 98.07 84 | 95.27 10 | 96.37 44 | 98.12 49 | 95.66 33 | 97.00 64 | 97.03 105 | 94.85 54 | 99.42 33 | 93.49 51 | 98.84 132 | 98.00 160 |
|
nrg030 | | | 96.32 43 | 96.55 26 | 95.62 84 | 97.83 101 | 88.55 120 | 95.77 75 | 98.29 29 | 92.68 78 | 98.03 26 | 97.91 53 | 95.13 42 | 98.95 124 | 93.85 39 | 99.49 41 | 99.36 25 |
|
test1172 | | | 96.79 15 | 96.52 27 | 97.60 9 | 98.03 90 | 94.87 12 | 96.07 62 | 98.06 62 | 95.76 32 | 96.89 69 | 96.85 117 | 94.85 54 | 99.42 33 | 93.35 65 | 98.81 140 | 98.53 117 |
|
FMVS1 | | | 96.77 16 | 96.49 28 | 97.60 9 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 21 | 94.96 38 | 97.30 51 | 97.93 49 | 96.05 17 | 97.90 245 | 89.32 171 | 99.23 84 | 98.19 143 |
|
APD_test | | | 96.77 16 | 96.49 28 | 97.60 9 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 21 | 94.96 38 | 97.30 51 | 97.93 49 | 96.05 17 | 97.90 245 | 89.32 171 | 99.23 84 | 98.19 143 |
|
test_djsdf | | | 96.62 25 | 96.49 28 | 97.01 35 | 98.55 44 | 91.77 63 | 97.15 14 | 97.37 124 | 88.98 178 | 98.26 22 | 98.86 10 | 93.35 84 | 99.60 9 | 96.41 4 | 99.45 46 | 99.66 6 |
|
SR-MVS | | | 96.70 21 | 96.42 31 | 97.54 13 | 98.05 86 | 94.69 13 | 96.13 59 | 98.07 59 | 95.17 37 | 96.82 73 | 96.73 129 | 95.09 46 | 99.43 32 | 92.99 81 | 98.71 149 | 98.50 119 |
|
anonymousdsp | | | 96.74 19 | 96.42 31 | 97.68 7 | 98.00 93 | 94.03 28 | 96.97 19 | 97.61 108 | 87.68 209 | 98.45 18 | 98.77 15 | 94.20 69 | 99.50 21 | 96.70 3 | 99.40 57 | 99.53 15 |
|
jajsoiax | | | 96.59 29 | 96.42 31 | 97.12 31 | 98.76 31 | 92.49 53 | 96.44 41 | 97.42 122 | 86.96 221 | 98.71 10 | 98.72 17 | 95.36 33 | 99.56 17 | 95.92 8 | 99.45 46 | 99.32 28 |
|
SED-MVS | | | 96.00 54 | 96.41 34 | 94.76 117 | 98.51 51 | 86.97 151 | 95.21 95 | 98.10 52 | 91.95 97 | 97.63 34 | 97.25 91 | 96.48 11 | 99.35 63 | 93.29 67 | 99.29 72 | 97.95 168 |
|
MTAPA | | | 96.65 24 | 96.38 35 | 97.47 17 | 98.95 18 | 94.05 25 | 95.88 71 | 97.62 105 | 94.46 47 | 96.29 96 | 96.94 110 | 93.56 75 | 99.37 60 | 94.29 27 | 99.42 51 | 98.99 56 |
|
DVP-MVS++ | | | 95.93 55 | 96.34 36 | 94.70 120 | 96.54 176 | 86.66 160 | 98.45 4 | 98.22 35 | 93.26 72 | 97.54 39 | 97.36 82 | 93.12 91 | 99.38 58 | 93.88 37 | 98.68 153 | 98.04 155 |
|
ACMMP |  | | 96.61 26 | 96.34 36 | 97.43 21 | 98.61 37 | 93.88 32 | 96.95 20 | 98.18 39 | 92.26 90 | 96.33 92 | 96.84 120 | 95.10 45 | 99.40 47 | 93.47 55 | 99.33 64 | 99.02 53 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
SteuartSystems-ACMMP | | | 96.40 40 | 96.30 38 | 96.71 44 | 98.63 34 | 91.96 59 | 95.70 77 | 98.01 72 | 93.34 71 | 96.64 80 | 96.57 139 | 94.99 51 | 99.36 62 | 93.48 54 | 99.34 62 | 98.82 81 |
Skip Steuart: Steuart Systems R&D Blog. |
ANet_high | | | 94.83 101 | 96.28 39 | 90.47 272 | 96.65 166 | 73.16 341 | 94.33 130 | 98.74 10 | 96.39 23 | 98.09 25 | 98.93 8 | 93.37 83 | 98.70 171 | 90.38 141 | 99.68 19 | 99.53 15 |
|
TranMVSNet+NR-MVSNet | | | 96.07 52 | 96.26 40 | 95.50 89 | 98.26 72 | 87.69 136 | 93.75 150 | 97.86 86 | 95.96 30 | 97.48 44 | 97.14 99 | 95.33 34 | 99.44 28 | 90.79 132 | 99.76 11 | 99.38 23 |
|
LPG-MVS_test | | | 96.38 42 | 96.23 41 | 96.84 42 | 98.36 67 | 92.13 56 | 95.33 91 | 98.25 30 | 91.78 110 | 97.07 59 | 97.22 94 | 96.38 13 | 99.28 76 | 92.07 101 | 99.59 29 | 99.11 45 |
|
test_0402 | | | 95.73 63 | 96.22 42 | 94.26 143 | 98.19 77 | 85.77 183 | 93.24 163 | 97.24 141 | 96.88 16 | 97.69 32 | 97.77 59 | 94.12 70 | 99.13 94 | 91.54 120 | 99.29 72 | 97.88 177 |
|
ZNCC-MVS | | | 96.42 38 | 96.20 43 | 97.07 32 | 98.80 30 | 92.79 50 | 96.08 61 | 98.16 46 | 91.74 114 | 95.34 143 | 96.36 155 | 95.68 21 | 99.44 28 | 94.41 24 | 99.28 77 | 98.97 62 |
|
DVP-MVS |  | | 95.82 60 | 96.18 44 | 94.72 119 | 98.51 51 | 86.69 158 | 95.20 97 | 97.00 157 | 91.85 103 | 97.40 49 | 97.35 85 | 95.58 24 | 99.34 66 | 93.44 59 | 99.31 67 | 98.13 149 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
XVS | | | 96.49 31 | 96.18 44 | 97.44 19 | 98.56 41 | 93.99 29 | 96.50 36 | 97.95 81 | 94.58 43 | 94.38 181 | 96.49 141 | 94.56 61 | 99.39 52 | 93.57 47 | 99.05 106 | 98.93 66 |
|
HFP-MVS | | | 96.39 41 | 96.17 46 | 97.04 33 | 98.51 51 | 93.37 42 | 96.30 54 | 97.98 75 | 92.35 87 | 95.63 131 | 96.47 142 | 95.37 30 | 99.27 78 | 93.78 41 | 99.14 98 | 98.48 121 |
|
zzz-MVS | | | 96.47 33 | 96.14 47 | 97.47 17 | 98.95 18 | 94.05 25 | 93.69 152 | 97.62 105 | 94.46 47 | 96.29 96 | 96.94 110 | 93.56 75 | 99.37 60 | 94.29 27 | 99.42 51 | 98.99 56 |
|
ACMMPR | | | 96.46 34 | 96.14 47 | 97.41 23 | 98.60 38 | 93.82 36 | 96.30 54 | 97.96 79 | 92.35 87 | 95.57 134 | 96.61 137 | 94.93 53 | 99.41 40 | 93.78 41 | 99.15 97 | 99.00 54 |
|
ACMMP_NAP | | | 96.21 47 | 96.12 49 | 96.49 52 | 98.90 20 | 91.42 67 | 94.57 122 | 98.03 68 | 90.42 148 | 96.37 89 | 97.35 85 | 95.68 21 | 99.25 80 | 94.44 23 | 99.34 62 | 98.80 85 |
|
region2R | | | 96.41 39 | 96.09 50 | 97.38 25 | 98.62 35 | 93.81 38 | 96.32 49 | 97.96 79 | 92.26 90 | 95.28 147 | 96.57 139 | 95.02 49 | 99.41 40 | 93.63 45 | 99.11 101 | 98.94 65 |
|
CP-MVS | | | 96.44 37 | 96.08 51 | 97.54 13 | 98.29 69 | 94.62 16 | 96.80 24 | 98.08 56 | 92.67 80 | 95.08 158 | 96.39 152 | 94.77 56 | 99.42 33 | 93.17 73 | 99.44 49 | 98.58 115 |
|
ACMM | | 88.83 9 | 96.30 45 | 96.07 52 | 96.97 37 | 98.39 63 | 92.95 48 | 94.74 114 | 98.03 68 | 90.82 137 | 97.15 56 | 96.85 117 | 96.25 15 | 99.00 116 | 93.10 76 | 99.33 64 | 98.95 64 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
mPP-MVS | | | 96.46 34 | 96.05 53 | 97.69 5 | 98.62 35 | 94.65 15 | 96.45 39 | 97.74 99 | 92.59 81 | 95.47 136 | 96.68 132 | 94.50 63 | 99.42 33 | 93.10 76 | 99.26 80 | 98.99 56 |
|
PS-MVSNAJss | | | 96.01 53 | 96.04 54 | 95.89 72 | 98.82 27 | 88.51 122 | 95.57 84 | 97.88 85 | 88.72 184 | 98.81 6 | 98.86 10 | 90.77 149 | 99.60 9 | 95.43 15 | 99.53 37 | 99.57 14 |
|
TransMVSNet (Re) | | | 95.27 86 | 96.04 54 | 92.97 184 | 98.37 66 | 81.92 227 | 95.07 103 | 96.76 179 | 93.97 58 | 97.77 30 | 98.57 20 | 95.72 20 | 97.90 245 | 88.89 187 | 99.23 84 | 99.08 49 |
|
GST-MVS | | | 96.24 46 | 95.99 56 | 97.00 36 | 98.65 33 | 92.71 51 | 95.69 79 | 98.01 72 | 92.08 95 | 95.74 126 | 96.28 161 | 95.22 39 | 99.42 33 | 93.17 73 | 99.06 103 | 98.88 75 |
|
pm-mvs1 | | | 95.43 74 | 95.94 57 | 93.93 154 | 98.38 64 | 85.08 191 | 95.46 88 | 97.12 150 | 91.84 106 | 97.28 53 | 98.46 27 | 95.30 36 | 97.71 267 | 90.17 153 | 99.42 51 | 98.99 56 |
|
PGM-MVS | | | 96.32 43 | 95.94 57 | 97.43 21 | 98.59 40 | 93.84 35 | 95.33 91 | 98.30 26 | 91.40 123 | 95.76 124 | 96.87 116 | 95.26 37 | 99.45 26 | 92.77 84 | 99.21 89 | 99.00 54 |
|
MP-MVS-pluss | | | 96.08 51 | 95.92 59 | 96.57 48 | 99.06 10 | 91.21 69 | 93.25 162 | 98.32 23 | 87.89 202 | 96.86 71 | 97.38 78 | 95.55 26 | 99.39 52 | 95.47 13 | 99.47 42 | 99.11 45 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
SF-MVS | | | 95.88 58 | 95.88 60 | 95.87 73 | 98.12 80 | 89.65 95 | 95.58 83 | 98.56 12 | 91.84 106 | 96.36 90 | 96.68 132 | 94.37 66 | 99.32 72 | 92.41 94 | 99.05 106 | 98.64 106 |
|
DPE-MVS |  | | 95.89 56 | 95.88 60 | 95.92 69 | 97.93 98 | 89.83 92 | 93.46 158 | 98.30 26 | 92.37 85 | 97.75 31 | 96.95 109 | 95.14 41 | 99.51 20 | 91.74 112 | 99.28 77 | 98.41 126 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
FC-MVSNet-test | | | 95.32 80 | 95.88 60 | 93.62 164 | 98.49 59 | 81.77 228 | 95.90 70 | 98.32 23 | 93.93 59 | 97.53 41 | 97.56 67 | 88.48 181 | 99.40 47 | 92.91 83 | 99.83 6 | 99.68 4 |
|
DP-MVS | | | 95.62 66 | 95.84 63 | 94.97 109 | 97.16 142 | 88.62 117 | 94.54 126 | 97.64 104 | 96.94 15 | 96.58 83 | 97.32 88 | 93.07 94 | 98.72 165 | 90.45 138 | 98.84 132 | 97.57 202 |
|
Anonymous20240529 | | | 95.50 71 | 95.83 64 | 94.50 133 | 97.33 135 | 85.93 180 | 95.19 99 | 96.77 178 | 96.64 19 | 97.61 37 | 98.05 43 | 93.23 87 | 98.79 151 | 88.60 194 | 99.04 112 | 98.78 87 |
|
LS3D | | | 96.11 50 | 95.83 64 | 96.95 39 | 94.75 269 | 94.20 21 | 97.34 12 | 97.98 75 | 97.31 11 | 95.32 144 | 96.77 122 | 93.08 93 | 99.20 86 | 91.79 111 | 98.16 208 | 97.44 212 |
|
Gipuma |  | | 95.31 83 | 95.80 66 | 93.81 161 | 97.99 96 | 90.91 74 | 96.42 42 | 97.95 81 | 96.69 17 | 91.78 263 | 98.85 12 | 91.77 123 | 95.49 334 | 91.72 113 | 99.08 102 | 95.02 300 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
3Dnovator+ | | 92.74 2 | 95.86 59 | 95.77 67 | 96.13 57 | 96.81 162 | 90.79 77 | 96.30 54 | 97.82 92 | 96.13 25 | 94.74 172 | 97.23 93 | 91.33 134 | 99.16 89 | 93.25 70 | 98.30 193 | 98.46 123 |
|
SD-MVS | | | 95.19 87 | 95.73 68 | 93.55 167 | 96.62 170 | 88.88 113 | 94.67 116 | 98.05 63 | 91.26 126 | 97.25 55 | 96.40 148 | 95.42 28 | 94.36 351 | 92.72 88 | 99.19 91 | 97.40 216 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
MP-MVS |  | | 96.14 49 | 95.68 69 | 97.51 15 | 98.81 28 | 94.06 23 | 96.10 60 | 97.78 98 | 92.73 77 | 93.48 207 | 96.72 130 | 94.23 68 | 99.42 33 | 91.99 103 | 99.29 72 | 99.05 51 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
VPA-MVSNet | | | 95.14 88 | 95.67 70 | 93.58 166 | 97.76 105 | 83.15 215 | 94.58 121 | 97.58 110 | 93.39 70 | 97.05 62 | 98.04 44 | 93.25 86 | 98.51 196 | 89.75 165 | 99.59 29 | 99.08 49 |
|
DROMVSNet | | | 95.44 73 | 95.62 71 | 94.89 111 | 96.93 153 | 87.69 136 | 96.48 38 | 99.14 4 | 93.93 59 | 92.77 234 | 94.52 244 | 93.95 72 | 99.49 24 | 93.62 46 | 99.22 88 | 97.51 207 |
|
CS-MVS | | | 95.77 61 | 95.58 72 | 96.37 54 | 96.84 158 | 91.72 65 | 96.73 28 | 99.06 5 | 94.23 51 | 92.48 242 | 94.79 236 | 93.56 75 | 99.49 24 | 93.47 55 | 99.05 106 | 97.89 176 |
|
SMA-MVS |  | | 95.77 61 | 95.54 73 | 96.47 53 | 98.27 71 | 91.19 70 | 95.09 101 | 97.79 97 | 86.48 224 | 97.42 48 | 97.51 72 | 94.47 65 | 99.29 74 | 93.55 49 | 99.29 72 | 98.93 66 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
#test# | | | 95.89 56 | 95.51 74 | 97.04 33 | 98.51 51 | 93.37 42 | 95.14 100 | 97.98 75 | 89.34 169 | 95.63 131 | 96.47 142 | 95.37 30 | 99.27 78 | 91.99 103 | 99.14 98 | 98.48 121 |
|
Vis-MVSNet |  | | 95.50 71 | 95.48 75 | 95.56 88 | 98.11 81 | 89.40 102 | 95.35 89 | 98.22 35 | 92.36 86 | 94.11 184 | 98.07 42 | 92.02 117 | 99.44 28 | 93.38 64 | 97.67 240 | 97.85 181 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
OPM-MVS | | | 95.61 67 | 95.45 76 | 96.08 58 | 98.49 59 | 91.00 72 | 92.65 179 | 97.33 133 | 90.05 153 | 96.77 76 | 96.85 117 | 95.04 47 | 98.56 191 | 92.77 84 | 99.06 103 | 98.70 99 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
MIMVSNet1 | | | 95.52 70 | 95.45 76 | 95.72 81 | 99.14 5 | 89.02 107 | 96.23 57 | 96.87 170 | 93.73 63 | 97.87 28 | 98.49 26 | 90.73 153 | 99.05 107 | 86.43 235 | 99.60 27 | 99.10 48 |
|
ACMP | | 88.15 13 | 95.71 64 | 95.43 78 | 96.54 49 | 98.17 78 | 91.73 64 | 94.24 133 | 98.08 56 | 89.46 165 | 96.61 82 | 96.47 142 | 95.85 19 | 99.12 98 | 90.45 138 | 99.56 35 | 98.77 89 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
mvsmamba | | | 95.61 67 | 95.40 79 | 96.22 55 | 98.44 61 | 89.86 91 | 97.14 16 | 97.45 121 | 91.25 128 | 97.49 43 | 98.14 36 | 83.49 238 | 99.45 26 | 95.52 11 | 99.66 22 | 99.36 25 |
|
FIs | | | 94.90 95 | 95.35 80 | 93.55 167 | 98.28 70 | 81.76 229 | 95.33 91 | 98.14 47 | 93.05 76 | 97.07 59 | 97.18 97 | 87.65 195 | 99.29 74 | 91.72 113 | 99.69 15 | 99.61 11 |
|
XVG-ACMP-BASELINE | | | 95.68 65 | 95.34 81 | 96.69 45 | 98.40 62 | 93.04 45 | 94.54 126 | 98.05 63 | 90.45 147 | 96.31 94 | 96.76 124 | 92.91 98 | 98.72 165 | 91.19 124 | 99.42 51 | 98.32 130 |
|
DeepC-MVS | | 91.39 4 | 95.43 74 | 95.33 82 | 95.71 82 | 97.67 115 | 90.17 85 | 93.86 147 | 98.02 70 | 87.35 214 | 96.22 103 | 97.99 47 | 94.48 64 | 99.05 107 | 92.73 87 | 99.68 19 | 97.93 170 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
PMVS |  | 87.21 14 | 94.97 92 | 95.33 82 | 93.91 156 | 98.97 17 | 97.16 2 | 95.54 85 | 95.85 219 | 96.47 21 | 93.40 210 | 97.46 74 | 95.31 35 | 95.47 335 | 86.18 239 | 98.78 144 | 89.11 364 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
v8 | | | 94.65 108 | 95.29 84 | 92.74 195 | 96.65 166 | 79.77 262 | 94.59 119 | 97.17 145 | 91.86 102 | 97.47 45 | 97.93 49 | 88.16 186 | 99.08 102 | 94.32 25 | 99.47 42 | 99.38 23 |
|
NR-MVSNet | | | 95.28 84 | 95.28 85 | 95.26 99 | 97.75 106 | 87.21 145 | 95.08 102 | 97.37 124 | 93.92 61 | 97.65 33 | 95.90 177 | 90.10 167 | 99.33 71 | 90.11 155 | 99.66 22 | 99.26 31 |
|
v10 | | | 94.68 107 | 95.27 86 | 92.90 190 | 96.57 173 | 80.15 247 | 94.65 118 | 97.57 111 | 90.68 141 | 97.43 46 | 98.00 46 | 88.18 185 | 99.15 90 | 94.84 18 | 99.55 36 | 99.41 21 |
|
UniMVSNet_NR-MVSNet | | | 95.35 78 | 95.21 87 | 95.76 79 | 97.69 113 | 88.59 118 | 92.26 199 | 97.84 90 | 94.91 40 | 96.80 74 | 95.78 187 | 90.42 158 | 99.41 40 | 91.60 117 | 99.58 33 | 99.29 30 |
|
SixPastTwentyTwo | | | 94.91 94 | 95.21 87 | 93.98 150 | 98.52 50 | 83.19 214 | 95.93 68 | 94.84 250 | 94.86 41 | 98.49 15 | 98.74 16 | 81.45 262 | 99.60 9 | 94.69 19 | 99.39 58 | 99.15 40 |
|
RRT_MVS | | | 95.41 76 | 95.20 89 | 96.05 59 | 98.86 23 | 88.92 109 | 97.49 10 | 94.48 261 | 93.12 74 | 97.94 27 | 98.54 22 | 81.19 268 | 99.63 6 | 95.48 12 | 99.69 15 | 99.60 12 |
|
UniMVSNet (Re) | | | 95.32 80 | 95.15 90 | 95.80 76 | 97.79 104 | 88.91 110 | 92.91 170 | 98.07 59 | 93.46 69 | 96.31 94 | 95.97 176 | 90.14 163 | 99.34 66 | 92.11 98 | 99.64 25 | 99.16 39 |
|
FMVSNet1 | | | 94.84 100 | 95.13 91 | 93.97 151 | 97.60 119 | 84.29 197 | 95.99 64 | 96.56 188 | 92.38 84 | 97.03 63 | 98.53 23 | 90.12 164 | 98.98 117 | 88.78 189 | 99.16 96 | 98.65 102 |
|
DU-MVS | | | 95.28 84 | 95.12 92 | 95.75 80 | 97.75 106 | 88.59 118 | 92.58 180 | 97.81 93 | 93.99 55 | 96.80 74 | 95.90 177 | 90.10 167 | 99.41 40 | 91.60 117 | 99.58 33 | 99.26 31 |
|
CS-MVS-test | | | 95.32 80 | 95.10 93 | 95.96 63 | 96.86 157 | 90.75 78 | 96.33 47 | 99.20 2 | 93.99 55 | 91.03 274 | 93.73 272 | 93.52 78 | 99.55 18 | 91.81 110 | 99.45 46 | 97.58 201 |
|
Baseline_NR-MVSNet | | | 94.47 115 | 95.09 94 | 92.60 202 | 98.50 58 | 80.82 243 | 92.08 205 | 96.68 182 | 93.82 62 | 96.29 96 | 98.56 21 | 90.10 167 | 97.75 265 | 90.10 157 | 99.66 22 | 99.24 33 |
|
dcpmvs_2 | | | 93.96 134 | 95.01 95 | 90.82 264 | 97.60 119 | 74.04 336 | 93.68 154 | 98.85 7 | 89.80 159 | 97.82 29 | 97.01 108 | 91.14 145 | 99.21 84 | 90.56 136 | 98.59 160 | 99.19 37 |
|
XVG-OURS-SEG-HR | | | 95.38 77 | 95.00 96 | 96.51 50 | 98.10 82 | 94.07 22 | 92.46 186 | 98.13 48 | 90.69 140 | 93.75 198 | 96.25 164 | 98.03 2 | 97.02 296 | 92.08 100 | 95.55 296 | 98.45 124 |
|
xxxxxxxxxxxxxcwj | | | 95.03 89 | 94.93 97 | 95.33 95 | 97.46 129 | 88.05 129 | 92.04 207 | 98.42 16 | 87.63 210 | 96.36 90 | 96.68 132 | 94.37 66 | 99.32 72 | 92.41 94 | 99.05 106 | 98.64 106 |
|
3Dnovator | | 92.54 3 | 94.80 103 | 94.90 98 | 94.47 136 | 95.47 247 | 87.06 148 | 96.63 30 | 97.28 139 | 91.82 109 | 94.34 183 | 97.41 76 | 90.60 156 | 98.65 180 | 92.47 93 | 98.11 214 | 97.70 193 |
|
RPSCF | | | 95.58 69 | 94.89 99 | 97.62 8 | 97.58 121 | 96.30 6 | 95.97 67 | 97.53 115 | 92.42 83 | 93.41 208 | 97.78 57 | 91.21 140 | 97.77 262 | 91.06 125 | 97.06 259 | 98.80 85 |
|
tfpnnormal | | | 94.27 123 | 94.87 100 | 92.48 206 | 97.71 110 | 80.88 242 | 94.55 125 | 95.41 237 | 93.70 64 | 96.67 79 | 97.72 60 | 91.40 132 | 98.18 225 | 87.45 215 | 99.18 93 | 98.36 128 |
|
9.14 | | | | 94.81 101 | | 97.49 126 | | 94.11 138 | 98.37 18 | 87.56 213 | 95.38 140 | 96.03 173 | 94.66 58 | 99.08 102 | 90.70 134 | 98.97 119 | |
|
casdiffmvs | | | 94.32 121 | 94.80 102 | 92.85 192 | 96.05 215 | 81.44 235 | 92.35 194 | 98.05 63 | 91.53 121 | 95.75 125 | 96.80 121 | 93.35 84 | 98.49 197 | 91.01 128 | 98.32 190 | 98.64 106 |
|
baseline | | | 94.26 125 | 94.80 102 | 92.64 198 | 96.08 213 | 80.99 240 | 93.69 152 | 98.04 67 | 90.80 138 | 94.89 166 | 96.32 157 | 93.19 88 | 98.48 201 | 91.68 115 | 98.51 170 | 98.43 125 |
|
TSAR-MVS + MP. | | | 94.96 93 | 94.75 104 | 95.57 87 | 98.86 23 | 88.69 114 | 96.37 44 | 96.81 174 | 85.23 244 | 94.75 171 | 97.12 100 | 91.85 122 | 99.40 47 | 93.45 57 | 98.33 188 | 98.62 110 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
CSCG | | | 94.69 106 | 94.75 104 | 94.52 132 | 97.55 123 | 87.87 133 | 95.01 106 | 97.57 111 | 92.68 78 | 96.20 105 | 93.44 279 | 91.92 121 | 98.78 155 | 89.11 182 | 99.24 83 | 96.92 233 |
|
KD-MVS_self_test | | | 94.10 130 | 94.73 106 | 92.19 213 | 97.66 116 | 79.49 268 | 94.86 110 | 97.12 150 | 89.59 164 | 96.87 70 | 97.65 63 | 90.40 161 | 98.34 211 | 89.08 183 | 99.35 61 | 98.75 90 |
|
canonicalmvs | | | 94.59 109 | 94.69 107 | 94.30 142 | 95.60 244 | 87.03 150 | 95.59 81 | 98.24 33 | 91.56 120 | 95.21 153 | 92.04 311 | 94.95 52 | 98.66 178 | 91.45 121 | 97.57 244 | 97.20 225 |
|
APD-MVS |  | | 95.00 91 | 94.69 107 | 95.93 67 | 97.38 132 | 90.88 75 | 94.59 119 | 97.81 93 | 89.22 174 | 95.46 138 | 96.17 169 | 93.42 82 | 99.34 66 | 89.30 173 | 98.87 130 | 97.56 204 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
GeoE | | | 94.55 111 | 94.68 109 | 94.15 145 | 97.23 137 | 85.11 190 | 94.14 137 | 97.34 132 | 88.71 185 | 95.26 148 | 95.50 201 | 94.65 59 | 99.12 98 | 90.94 129 | 98.40 176 | 98.23 138 |
|
Regformer-4 | | | 94.90 95 | 94.67 110 | 95.59 85 | 92.78 315 | 89.02 107 | 92.39 191 | 95.91 216 | 94.50 45 | 96.41 87 | 95.56 198 | 92.10 116 | 99.01 115 | 94.23 29 | 98.14 210 | 98.74 93 |
|
EG-PatchMatch MVS | | | 94.54 113 | 94.67 110 | 94.14 146 | 97.87 100 | 86.50 162 | 92.00 210 | 96.74 180 | 88.16 197 | 96.93 68 | 97.61 65 | 93.04 95 | 97.90 245 | 91.60 117 | 98.12 213 | 98.03 158 |
|
MSP-MVS | | | 95.34 79 | 94.63 112 | 97.48 16 | 98.67 32 | 94.05 25 | 96.41 43 | 98.18 39 | 91.26 126 | 95.12 154 | 95.15 215 | 86.60 217 | 99.50 21 | 93.43 61 | 96.81 270 | 98.89 73 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
LCM-MVSNet-Re | | | 94.20 128 | 94.58 113 | 93.04 181 | 95.91 226 | 83.13 216 | 93.79 149 | 99.19 3 | 92.00 96 | 98.84 5 | 98.04 44 | 93.64 74 | 99.02 113 | 81.28 286 | 98.54 166 | 96.96 232 |
|
ETH3D-3000-0.1 | | | 94.86 98 | 94.55 114 | 95.81 74 | 97.61 118 | 89.72 93 | 94.05 140 | 98.37 18 | 88.09 198 | 95.06 159 | 95.85 179 | 92.58 106 | 99.10 101 | 90.33 145 | 98.99 114 | 98.62 110 |
|
test_part1 | | | 94.39 116 | 94.55 114 | 93.92 155 | 96.14 208 | 82.86 219 | 95.54 85 | 98.09 55 | 95.36 36 | 98.27 20 | 98.36 31 | 75.91 306 | 99.44 28 | 93.41 62 | 99.84 3 | 99.47 18 |
|
Regformer-2 | | | 94.86 98 | 94.55 114 | 95.77 78 | 92.83 313 | 89.98 87 | 91.87 219 | 96.40 196 | 94.38 49 | 96.19 107 | 95.04 222 | 92.47 111 | 99.04 110 | 93.49 51 | 98.31 191 | 98.28 134 |
|
AllTest | | | 94.88 97 | 94.51 117 | 96.00 61 | 98.02 91 | 92.17 54 | 95.26 94 | 98.43 14 | 90.48 145 | 95.04 160 | 96.74 127 | 92.54 108 | 97.86 253 | 85.11 250 | 98.98 115 | 97.98 164 |
|
testtj | | | 94.81 102 | 94.42 118 | 96.01 60 | 97.23 137 | 90.51 82 | 94.77 113 | 97.85 89 | 91.29 125 | 94.92 165 | 95.66 191 | 91.71 125 | 99.40 47 | 88.07 204 | 98.25 198 | 98.11 151 |
|
HPM-MVS++ |  | | 95.02 90 | 94.39 119 | 96.91 40 | 97.88 99 | 93.58 40 | 94.09 139 | 96.99 159 | 91.05 132 | 92.40 247 | 95.22 214 | 91.03 147 | 99.25 80 | 92.11 98 | 98.69 152 | 97.90 174 |
|
VDD-MVS | | | 94.37 117 | 94.37 120 | 94.40 140 | 97.49 126 | 86.07 178 | 93.97 144 | 93.28 283 | 94.49 46 | 96.24 101 | 97.78 57 | 87.99 191 | 98.79 151 | 88.92 185 | 99.14 98 | 98.34 129 |
|
IS-MVSNet | | | 94.49 114 | 94.35 121 | 94.92 110 | 98.25 74 | 86.46 165 | 97.13 17 | 94.31 265 | 96.24 24 | 96.28 99 | 96.36 155 | 82.88 245 | 99.35 63 | 88.19 199 | 99.52 40 | 98.96 63 |
|
Regformer-1 | | | 94.55 111 | 94.33 122 | 95.19 102 | 92.83 313 | 88.54 121 | 91.87 219 | 95.84 220 | 93.99 55 | 95.95 115 | 95.04 222 | 92.00 118 | 98.79 151 | 93.14 75 | 98.31 191 | 98.23 138 |
|
CNVR-MVS | | | 94.58 110 | 94.29 123 | 95.46 91 | 96.94 151 | 89.35 104 | 91.81 225 | 96.80 175 | 89.66 161 | 93.90 196 | 95.44 205 | 92.80 102 | 98.72 165 | 92.74 86 | 98.52 168 | 98.32 130 |
|
EI-MVSNet-Vis-set | | | 94.36 118 | 94.28 124 | 94.61 124 | 92.55 318 | 85.98 179 | 92.44 187 | 94.69 257 | 93.70 64 | 96.12 110 | 95.81 183 | 91.24 138 | 98.86 137 | 93.76 44 | 98.22 203 | 98.98 61 |
|
IterMVS-LS | | | 93.78 137 | 94.28 124 | 92.27 210 | 96.27 197 | 79.21 275 | 91.87 219 | 96.78 176 | 91.77 112 | 96.57 84 | 97.07 102 | 87.15 204 | 98.74 163 | 91.99 103 | 99.03 113 | 98.86 76 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
EI-MVSNet-UG-set | | | 94.35 119 | 94.27 126 | 94.59 129 | 92.46 319 | 85.87 181 | 92.42 189 | 94.69 257 | 93.67 68 | 96.13 109 | 95.84 182 | 91.20 141 | 98.86 137 | 93.78 41 | 98.23 201 | 99.03 52 |
|
VDDNet | | | 94.03 132 | 94.27 126 | 93.31 176 | 98.87 22 | 82.36 223 | 95.51 87 | 91.78 313 | 97.19 12 | 96.32 93 | 98.60 19 | 84.24 234 | 98.75 160 | 87.09 222 | 98.83 137 | 98.81 83 |
|
Regformer-3 | | | 94.28 122 | 94.23 128 | 94.46 137 | 92.78 315 | 86.28 172 | 92.39 191 | 94.70 256 | 93.69 67 | 95.97 113 | 95.56 198 | 91.34 133 | 98.48 201 | 93.45 57 | 98.14 210 | 98.62 110 |
|
bld_raw_dy_0_64 | | | 94.27 123 | 94.15 129 | 94.65 123 | 98.55 44 | 86.28 172 | 95.80 74 | 95.55 232 | 88.41 192 | 97.09 58 | 98.08 41 | 78.69 281 | 98.87 136 | 95.63 10 | 99.53 37 | 98.81 83 |
|
XVG-OURS | | | 94.72 105 | 94.12 130 | 96.50 51 | 98.00 93 | 94.23 20 | 91.48 231 | 98.17 43 | 90.72 139 | 95.30 145 | 96.47 142 | 87.94 192 | 96.98 297 | 91.41 122 | 97.61 243 | 98.30 133 |
|
CPTT-MVS | | | 94.74 104 | 94.12 130 | 96.60 47 | 98.15 79 | 93.01 46 | 95.84 72 | 97.66 103 | 89.21 175 | 93.28 214 | 95.46 203 | 88.89 178 | 98.98 117 | 89.80 162 | 98.82 138 | 97.80 186 |
|
HQP_MVS | | | 94.26 125 | 93.93 132 | 95.23 101 | 97.71 110 | 88.12 127 | 94.56 123 | 97.81 93 | 91.74 114 | 93.31 211 | 95.59 193 | 86.93 209 | 98.95 124 | 89.26 177 | 98.51 170 | 98.60 113 |
|
MSLP-MVS++ | | | 93.25 152 | 93.88 133 | 91.37 241 | 96.34 191 | 82.81 220 | 93.11 164 | 97.74 99 | 89.37 168 | 94.08 186 | 95.29 213 | 90.40 161 | 96.35 318 | 90.35 143 | 98.25 198 | 94.96 301 |
|
v1144 | | | 93.50 141 | 93.81 134 | 92.57 203 | 96.28 196 | 79.61 265 | 91.86 223 | 96.96 160 | 86.95 222 | 95.91 119 | 96.32 157 | 87.65 195 | 98.96 122 | 93.51 50 | 98.88 127 | 99.13 42 |
|
PHI-MVS | | | 94.34 120 | 93.80 135 | 95.95 64 | 95.65 240 | 91.67 66 | 94.82 111 | 97.86 86 | 87.86 203 | 93.04 225 | 94.16 256 | 91.58 128 | 98.78 155 | 90.27 148 | 98.96 121 | 97.41 213 |
|
v1192 | | | 93.49 142 | 93.78 136 | 92.62 201 | 96.16 206 | 79.62 264 | 91.83 224 | 97.22 143 | 86.07 231 | 96.10 111 | 96.38 153 | 87.22 202 | 99.02 113 | 94.14 32 | 98.88 127 | 99.22 34 |
|
VPNet | | | 93.08 156 | 93.76 137 | 91.03 254 | 98.60 38 | 75.83 322 | 91.51 230 | 95.62 224 | 91.84 106 | 95.74 126 | 97.10 101 | 89.31 175 | 98.32 212 | 85.07 252 | 99.06 103 | 98.93 66 |
|
WR-MVS | | | 93.49 142 | 93.72 138 | 92.80 194 | 97.57 122 | 80.03 253 | 90.14 267 | 95.68 223 | 93.70 64 | 96.62 81 | 95.39 209 | 87.21 203 | 99.04 110 | 87.50 214 | 99.64 25 | 99.33 27 |
|
v1240 | | | 93.29 147 | 93.71 139 | 92.06 220 | 96.01 220 | 77.89 293 | 91.81 225 | 97.37 124 | 85.12 248 | 96.69 78 | 96.40 148 | 86.67 215 | 99.07 106 | 94.51 21 | 98.76 146 | 99.22 34 |
|
OMC-MVS | | | 94.22 127 | 93.69 140 | 95.81 74 | 97.25 136 | 91.27 68 | 92.27 198 | 97.40 123 | 87.10 220 | 94.56 176 | 95.42 206 | 93.74 73 | 98.11 230 | 86.62 229 | 98.85 131 | 98.06 152 |
|
EPP-MVSNet | | | 93.91 135 | 93.68 141 | 94.59 129 | 98.08 83 | 85.55 186 | 97.44 11 | 94.03 270 | 94.22 52 | 94.94 163 | 96.19 166 | 82.07 257 | 99.57 14 | 87.28 219 | 98.89 125 | 98.65 102 |
|
v2v482 | | | 93.29 147 | 93.63 142 | 92.29 209 | 96.35 190 | 78.82 281 | 91.77 227 | 96.28 200 | 88.45 190 | 95.70 130 | 96.26 163 | 86.02 223 | 98.90 128 | 93.02 79 | 98.81 140 | 99.14 41 |
|
v1921920 | | | 93.26 150 | 93.61 143 | 92.19 213 | 96.04 219 | 78.31 287 | 91.88 218 | 97.24 141 | 85.17 246 | 96.19 107 | 96.19 166 | 86.76 214 | 99.05 107 | 94.18 31 | 98.84 132 | 99.22 34 |
|
V42 | | | 93.43 144 | 93.58 144 | 92.97 184 | 95.34 253 | 81.22 237 | 92.67 178 | 96.49 193 | 87.25 216 | 96.20 105 | 96.37 154 | 87.32 201 | 98.85 139 | 92.39 96 | 98.21 204 | 98.85 79 |
|
Anonymous20240521 | | | 92.86 166 | 93.57 145 | 90.74 266 | 96.57 173 | 75.50 324 | 94.15 136 | 95.60 225 | 89.38 167 | 95.90 120 | 97.90 55 | 80.39 272 | 97.96 243 | 92.60 91 | 99.68 19 | 98.75 90 |
|
DeepPCF-MVS | | 90.46 6 | 94.20 128 | 93.56 146 | 96.14 56 | 95.96 222 | 92.96 47 | 89.48 284 | 97.46 119 | 85.14 247 | 96.23 102 | 95.42 206 | 93.19 88 | 98.08 231 | 90.37 142 | 98.76 146 | 97.38 219 |
|
v144192 | | | 93.20 155 | 93.54 147 | 92.16 217 | 96.05 215 | 78.26 288 | 91.95 211 | 97.14 147 | 84.98 252 | 95.96 114 | 96.11 170 | 87.08 206 | 99.04 110 | 93.79 40 | 98.84 132 | 99.17 38 |
|
NCCC | | | 94.08 131 | 93.54 147 | 95.70 83 | 96.49 181 | 89.90 90 | 92.39 191 | 96.91 166 | 90.64 142 | 92.33 253 | 94.60 241 | 90.58 157 | 98.96 122 | 90.21 152 | 97.70 238 | 98.23 138 |
|
DeepC-MVS_fast | | 89.96 7 | 93.73 138 | 93.44 149 | 94.60 128 | 96.14 208 | 87.90 132 | 93.36 161 | 97.14 147 | 85.53 241 | 93.90 196 | 95.45 204 | 91.30 136 | 98.59 187 | 89.51 168 | 98.62 157 | 97.31 222 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MVS_111021_HR | | | 93.63 140 | 93.42 150 | 94.26 143 | 96.65 166 | 86.96 153 | 89.30 290 | 96.23 204 | 88.36 194 | 93.57 205 | 94.60 241 | 93.45 79 | 97.77 262 | 90.23 151 | 98.38 181 | 98.03 158 |
|
ETH3D cwj APD-0.16 | | | 93.99 133 | 93.38 151 | 95.80 76 | 96.82 160 | 89.92 88 | 92.72 175 | 98.02 70 | 84.73 257 | 93.65 202 | 95.54 200 | 91.68 126 | 99.22 83 | 88.78 189 | 98.49 173 | 98.26 136 |
|
v148 | | | 92.87 165 | 93.29 152 | 91.62 234 | 96.25 200 | 77.72 296 | 91.28 236 | 95.05 244 | 89.69 160 | 95.93 118 | 96.04 172 | 87.34 200 | 98.38 207 | 90.05 158 | 97.99 224 | 98.78 87 |
|
MVS_Test | | | 92.57 177 | 93.29 152 | 90.40 275 | 93.53 300 | 75.85 320 | 92.52 182 | 96.96 160 | 88.73 183 | 92.35 250 | 96.70 131 | 90.77 149 | 98.37 210 | 92.53 92 | 95.49 298 | 96.99 231 |
|
MVS_111021_LR | | | 93.66 139 | 93.28 154 | 94.80 115 | 96.25 200 | 90.95 73 | 90.21 263 | 95.43 236 | 87.91 200 | 93.74 200 | 94.40 247 | 92.88 100 | 96.38 316 | 90.39 140 | 98.28 194 | 97.07 226 |
|
K. test v3 | | | 93.37 145 | 93.27 155 | 93.66 163 | 98.05 86 | 82.62 221 | 94.35 129 | 86.62 345 | 96.05 28 | 97.51 42 | 98.85 12 | 76.59 304 | 99.65 3 | 93.21 71 | 98.20 206 | 98.73 95 |
|
EI-MVSNet | | | 92.99 160 | 93.26 156 | 92.19 213 | 92.12 326 | 79.21 275 | 92.32 196 | 94.67 259 | 91.77 112 | 95.24 151 | 95.85 179 | 87.14 205 | 98.49 197 | 91.99 103 | 98.26 196 | 98.86 76 |
|
XXY-MVS | | | 92.58 175 | 93.16 157 | 90.84 263 | 97.75 106 | 79.84 258 | 91.87 219 | 96.22 206 | 85.94 233 | 95.53 135 | 97.68 61 | 92.69 104 | 94.48 347 | 83.21 268 | 97.51 245 | 98.21 141 |
|
VNet | | | 92.67 172 | 92.96 158 | 91.79 226 | 96.27 197 | 80.15 247 | 91.95 211 | 94.98 246 | 92.19 93 | 94.52 178 | 96.07 171 | 87.43 199 | 97.39 284 | 84.83 254 | 98.38 181 | 97.83 182 |
|
GBi-Net | | | 93.21 153 | 92.96 158 | 93.97 151 | 95.40 249 | 84.29 197 | 95.99 64 | 96.56 188 | 88.63 186 | 95.10 155 | 98.53 23 | 81.31 264 | 98.98 117 | 86.74 225 | 98.38 181 | 98.65 102 |
|
test1 | | | 93.21 153 | 92.96 158 | 93.97 151 | 95.40 249 | 84.29 197 | 95.99 64 | 96.56 188 | 88.63 186 | 95.10 155 | 98.53 23 | 81.31 264 | 98.98 117 | 86.74 225 | 98.38 181 | 98.65 102 |
|
alignmvs | | | 93.26 150 | 92.85 161 | 94.50 133 | 95.70 236 | 87.45 138 | 93.45 159 | 95.76 221 | 91.58 119 | 95.25 150 | 92.42 305 | 81.96 259 | 98.72 165 | 91.61 116 | 97.87 230 | 97.33 221 |
|
test_prior3 | | | 93.29 147 | 92.85 161 | 94.61 124 | 95.95 223 | 87.23 143 | 90.21 263 | 97.36 129 | 89.33 170 | 90.77 277 | 94.81 232 | 90.41 159 | 98.68 175 | 88.21 197 | 98.55 163 | 97.93 170 |
|
QAPM | | | 92.88 164 | 92.77 163 | 93.22 179 | 95.82 229 | 83.31 211 | 96.45 39 | 97.35 131 | 83.91 262 | 93.75 198 | 96.77 122 | 89.25 176 | 98.88 131 | 84.56 258 | 97.02 261 | 97.49 208 |
|
TinyColmap | | | 92.00 191 | 92.76 164 | 89.71 291 | 95.62 243 | 77.02 304 | 90.72 248 | 96.17 209 | 87.70 208 | 95.26 148 | 96.29 159 | 92.54 108 | 96.45 313 | 81.77 282 | 98.77 145 | 95.66 286 |
|
ETV-MVS | | | 92.99 160 | 92.74 165 | 93.72 162 | 95.86 228 | 86.30 171 | 92.33 195 | 97.84 90 | 91.70 117 | 92.81 232 | 86.17 367 | 92.22 113 | 99.19 87 | 88.03 206 | 97.73 234 | 95.66 286 |
|
Effi-MVS+ | | | 92.79 167 | 92.74 165 | 92.94 188 | 95.10 257 | 83.30 212 | 94.00 142 | 97.53 115 | 91.36 124 | 89.35 305 | 90.65 333 | 94.01 71 | 98.66 178 | 87.40 217 | 95.30 304 | 96.88 236 |
|
FMVSNet2 | | | 92.78 168 | 92.73 167 | 92.95 186 | 95.40 249 | 81.98 226 | 94.18 135 | 95.53 234 | 88.63 186 | 96.05 112 | 97.37 79 | 81.31 264 | 98.81 147 | 87.38 218 | 98.67 155 | 98.06 152 |
|
patch_mono-2 | | | 92.46 179 | 92.72 168 | 91.71 230 | 96.65 166 | 78.91 279 | 88.85 299 | 97.17 145 | 83.89 263 | 92.45 244 | 96.76 124 | 89.86 171 | 97.09 293 | 90.24 150 | 98.59 160 | 99.12 44 |
|
PM-MVS | | | 93.33 146 | 92.67 169 | 95.33 95 | 96.58 172 | 94.06 23 | 92.26 199 | 92.18 304 | 85.92 234 | 96.22 103 | 96.61 137 | 85.64 228 | 95.99 327 | 90.35 143 | 98.23 201 | 95.93 272 |
|
ab-mvs | | | 92.40 181 | 92.62 170 | 91.74 228 | 97.02 147 | 81.65 230 | 95.84 72 | 95.50 235 | 86.95 222 | 92.95 229 | 97.56 67 | 90.70 154 | 97.50 275 | 79.63 305 | 97.43 249 | 96.06 267 |
|
Effi-MVS+-dtu | | | 93.90 136 | 92.60 171 | 97.77 4 | 94.74 270 | 96.67 5 | 94.00 142 | 95.41 237 | 89.94 154 | 91.93 261 | 92.13 309 | 90.12 164 | 98.97 121 | 87.68 212 | 97.48 247 | 97.67 196 |
|
MCST-MVS | | | 92.91 162 | 92.51 172 | 94.10 147 | 97.52 124 | 85.72 184 | 91.36 235 | 97.13 149 | 80.33 292 | 92.91 230 | 94.24 252 | 91.23 139 | 98.72 165 | 89.99 159 | 97.93 227 | 97.86 179 |
|
Anonymous202405211 | | | 92.58 175 | 92.50 173 | 92.83 193 | 96.55 175 | 83.22 213 | 92.43 188 | 91.64 315 | 94.10 54 | 95.59 133 | 96.64 135 | 81.88 261 | 97.50 275 | 85.12 249 | 98.52 168 | 97.77 188 |
|
UGNet | | | 93.08 156 | 92.50 173 | 94.79 116 | 93.87 295 | 87.99 131 | 95.07 103 | 94.26 267 | 90.64 142 | 87.33 334 | 97.67 62 | 86.89 212 | 98.49 197 | 88.10 202 | 98.71 149 | 97.91 173 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
TSAR-MVS + GP. | | | 93.07 158 | 92.41 175 | 95.06 107 | 95.82 229 | 90.87 76 | 90.97 242 | 92.61 298 | 88.04 199 | 94.61 175 | 93.79 270 | 88.08 187 | 97.81 257 | 89.41 170 | 98.39 179 | 96.50 250 |
|
FMVS2 | | | 92.42 180 | 92.40 176 | 92.46 208 | 93.80 298 | 87.28 142 | 93.86 147 | 97.05 154 | 76.86 322 | 96.25 100 | 98.66 18 | 82.87 246 | 91.26 368 | 95.44 14 | 96.83 269 | 98.82 81 |
|
MVSFormer | | | 92.18 188 | 92.23 177 | 92.04 221 | 94.74 270 | 80.06 251 | 97.15 14 | 97.37 124 | 88.98 178 | 88.83 309 | 92.79 294 | 77.02 298 | 99.60 9 | 96.41 4 | 96.75 273 | 96.46 252 |
|
Fast-Effi-MVS+-dtu | | | 92.77 169 | 92.16 178 | 94.58 131 | 94.66 276 | 88.25 125 | 92.05 206 | 96.65 184 | 89.62 162 | 90.08 290 | 91.23 321 | 92.56 107 | 98.60 185 | 86.30 237 | 96.27 282 | 96.90 234 |
|
DELS-MVS | | | 92.05 190 | 92.16 178 | 91.72 229 | 94.44 281 | 80.13 249 | 87.62 313 | 97.25 140 | 87.34 215 | 92.22 255 | 93.18 286 | 89.54 174 | 98.73 164 | 89.67 166 | 98.20 206 | 96.30 258 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
OpenMVS |  | 89.45 8 | 92.27 186 | 92.13 180 | 92.68 197 | 94.53 280 | 84.10 203 | 95.70 77 | 97.03 155 | 82.44 280 | 91.14 273 | 96.42 146 | 88.47 182 | 98.38 207 | 85.95 240 | 97.47 248 | 95.55 290 |
|
EIA-MVS | | | 92.35 183 | 92.03 181 | 93.30 177 | 95.81 231 | 83.97 205 | 92.80 173 | 98.17 43 | 87.71 207 | 89.79 299 | 87.56 357 | 91.17 144 | 99.18 88 | 87.97 207 | 97.27 253 | 96.77 240 |
|
LF4IMVS | | | 92.72 170 | 92.02 182 | 94.84 114 | 95.65 240 | 91.99 58 | 92.92 169 | 96.60 186 | 85.08 250 | 92.44 245 | 93.62 274 | 86.80 213 | 96.35 318 | 86.81 224 | 98.25 198 | 96.18 263 |
|
h-mvs33 | | | 92.89 163 | 91.99 183 | 95.58 86 | 96.97 149 | 90.55 80 | 93.94 145 | 94.01 273 | 89.23 172 | 93.95 193 | 96.19 166 | 76.88 301 | 99.14 92 | 91.02 126 | 95.71 293 | 97.04 229 |
|
CANet | | | 92.38 182 | 91.99 183 | 93.52 171 | 93.82 297 | 83.46 210 | 91.14 238 | 97.00 157 | 89.81 158 | 86.47 338 | 94.04 259 | 87.90 193 | 99.21 84 | 89.50 169 | 98.27 195 | 97.90 174 |
|
diffmvs | | | 91.74 195 | 91.93 185 | 91.15 252 | 93.06 308 | 78.17 289 | 88.77 302 | 97.51 118 | 86.28 227 | 92.42 246 | 93.96 264 | 88.04 189 | 97.46 278 | 90.69 135 | 96.67 275 | 97.82 184 |
|
DP-MVS Recon | | | 92.31 184 | 91.88 186 | 93.60 165 | 97.18 141 | 86.87 154 | 91.10 240 | 97.37 124 | 84.92 253 | 92.08 258 | 94.08 258 | 88.59 180 | 98.20 222 | 83.50 265 | 98.14 210 | 95.73 281 |
|
FA-MVS(test-final) | | | 91.81 194 | 91.85 187 | 91.68 232 | 94.95 260 | 79.99 255 | 96.00 63 | 93.44 281 | 87.80 204 | 94.02 191 | 97.29 89 | 77.60 291 | 98.45 204 | 88.04 205 | 97.49 246 | 96.61 244 |
|
train_agg | | | 92.71 171 | 91.83 188 | 95.35 93 | 96.45 183 | 89.46 98 | 90.60 251 | 96.92 164 | 79.37 301 | 90.49 282 | 94.39 248 | 91.20 141 | 98.88 131 | 88.66 193 | 98.43 175 | 97.72 192 |
|
CDPH-MVS | | | 92.67 172 | 91.83 188 | 95.18 103 | 96.94 151 | 88.46 123 | 90.70 249 | 97.07 153 | 77.38 317 | 92.34 252 | 95.08 220 | 92.67 105 | 98.88 131 | 85.74 241 | 98.57 162 | 98.20 142 |
|
mvs-test1 | | | 93.07 158 | 91.80 190 | 96.89 41 | 94.74 270 | 95.83 8 | 92.17 202 | 95.41 237 | 89.94 154 | 89.85 296 | 90.59 334 | 90.12 164 | 98.88 131 | 87.68 212 | 95.66 294 | 95.97 270 |
|
agg_prior1 | | | 92.60 174 | 91.76 191 | 95.10 106 | 96.20 202 | 88.89 111 | 90.37 258 | 96.88 168 | 79.67 298 | 90.21 287 | 94.41 246 | 91.30 136 | 98.78 155 | 88.46 196 | 98.37 186 | 97.64 198 |
|
TAPA-MVS | | 88.58 10 | 92.49 178 | 91.75 192 | 94.73 118 | 96.50 180 | 89.69 94 | 92.91 170 | 97.68 102 | 78.02 315 | 92.79 233 | 94.10 257 | 90.85 148 | 97.96 243 | 84.76 256 | 98.16 208 | 96.54 245 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
API-MVS | | | 91.52 201 | 91.61 193 | 91.26 246 | 94.16 286 | 86.26 174 | 94.66 117 | 94.82 251 | 91.17 130 | 92.13 257 | 91.08 324 | 90.03 170 | 97.06 295 | 79.09 312 | 97.35 252 | 90.45 362 |
|
IterMVS-SCA-FT | | | 91.65 197 | 91.55 194 | 91.94 222 | 93.89 294 | 79.22 274 | 87.56 316 | 93.51 279 | 91.53 121 | 95.37 141 | 96.62 136 | 78.65 282 | 98.90 128 | 91.89 108 | 94.95 310 | 97.70 193 |
|
xiu_mvs_v1_base_debu | | | 91.47 202 | 91.52 195 | 91.33 243 | 95.69 237 | 81.56 231 | 89.92 274 | 96.05 212 | 83.22 267 | 91.26 269 | 90.74 328 | 91.55 129 | 98.82 142 | 89.29 174 | 95.91 288 | 93.62 334 |
|
xiu_mvs_v1_base | | | 91.47 202 | 91.52 195 | 91.33 243 | 95.69 237 | 81.56 231 | 89.92 274 | 96.05 212 | 83.22 267 | 91.26 269 | 90.74 328 | 91.55 129 | 98.82 142 | 89.29 174 | 95.91 288 | 93.62 334 |
|
xiu_mvs_v1_base_debi | | | 91.47 202 | 91.52 195 | 91.33 243 | 95.69 237 | 81.56 231 | 89.92 274 | 96.05 212 | 83.22 267 | 91.26 269 | 90.74 328 | 91.55 129 | 98.82 142 | 89.29 174 | 95.91 288 | 93.62 334 |
|
HQP-MVS | | | 92.09 189 | 91.49 198 | 93.88 158 | 96.36 187 | 84.89 192 | 91.37 232 | 97.31 134 | 87.16 217 | 88.81 311 | 93.40 280 | 84.76 231 | 98.60 185 | 86.55 232 | 97.73 234 | 98.14 147 |
|
c3_l | | | 91.32 206 | 91.42 199 | 91.00 257 | 92.29 321 | 76.79 311 | 87.52 319 | 96.42 195 | 85.76 237 | 94.72 174 | 93.89 267 | 82.73 249 | 98.16 227 | 90.93 130 | 98.55 163 | 98.04 155 |
|
CLD-MVS | | | 91.82 193 | 91.41 200 | 93.04 181 | 96.37 185 | 83.65 209 | 86.82 332 | 97.29 137 | 84.65 258 | 92.27 254 | 89.67 343 | 92.20 114 | 97.85 255 | 83.95 262 | 99.47 42 | 97.62 199 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
AdaColmap |  | | 91.63 198 | 91.36 201 | 92.47 207 | 95.56 245 | 86.36 169 | 92.24 201 | 96.27 201 | 88.88 182 | 89.90 295 | 92.69 297 | 91.65 127 | 98.32 212 | 77.38 324 | 97.64 241 | 92.72 347 |
|
testgi | | | 90.38 225 | 91.34 202 | 87.50 324 | 97.49 126 | 71.54 351 | 89.43 285 | 95.16 243 | 88.38 193 | 94.54 177 | 94.68 240 | 92.88 100 | 93.09 361 | 71.60 356 | 97.85 231 | 97.88 177 |
|
mvs_anonymous | | | 90.37 226 | 91.30 203 | 87.58 323 | 92.17 325 | 68.00 365 | 89.84 277 | 94.73 255 | 83.82 264 | 93.22 219 | 97.40 77 | 87.54 197 | 97.40 283 | 87.94 208 | 95.05 309 | 97.34 220 |
|
ETH3 D test6400 | | | 91.91 192 | 91.25 204 | 93.89 157 | 96.59 171 | 84.41 196 | 92.10 204 | 97.72 101 | 78.52 311 | 91.82 262 | 93.78 271 | 88.70 179 | 99.13 94 | 83.61 264 | 98.39 179 | 98.14 147 |
|
hse-mvs2 | | | 92.24 187 | 91.20 205 | 95.38 92 | 96.16 206 | 90.65 79 | 92.52 182 | 92.01 311 | 89.23 172 | 93.95 193 | 92.99 289 | 76.88 301 | 98.69 173 | 91.02 126 | 96.03 285 | 96.81 238 |
|
PVSNet_Blended_VisFu | | | 91.63 198 | 91.20 205 | 92.94 188 | 97.73 109 | 83.95 206 | 92.14 203 | 97.46 119 | 78.85 310 | 92.35 250 | 94.98 225 | 84.16 235 | 99.08 102 | 86.36 236 | 96.77 272 | 95.79 279 |
|
CNLPA | | | 91.72 196 | 91.20 205 | 93.26 178 | 96.17 205 | 91.02 71 | 91.14 238 | 95.55 232 | 90.16 152 | 90.87 276 | 93.56 277 | 86.31 219 | 94.40 350 | 79.92 304 | 97.12 257 | 94.37 315 |
|
LFMVS | | | 91.33 205 | 91.16 208 | 91.82 225 | 96.27 197 | 79.36 270 | 95.01 106 | 85.61 355 | 96.04 29 | 94.82 168 | 97.06 103 | 72.03 319 | 98.46 203 | 84.96 253 | 98.70 151 | 97.65 197 |
|
F-COLMAP | | | 92.28 185 | 91.06 209 | 95.95 64 | 97.52 124 | 91.90 60 | 93.53 156 | 97.18 144 | 83.98 261 | 88.70 317 | 94.04 259 | 88.41 183 | 98.55 193 | 80.17 298 | 95.99 287 | 97.39 217 |
|
BH-untuned | | | 90.68 216 | 90.90 210 | 90.05 286 | 95.98 221 | 79.57 266 | 90.04 270 | 94.94 248 | 87.91 200 | 94.07 187 | 93.00 288 | 87.76 194 | 97.78 261 | 79.19 311 | 95.17 307 | 92.80 346 |
|
MDA-MVSNet-bldmvs | | | 91.04 208 | 90.88 211 | 91.55 236 | 94.68 275 | 80.16 246 | 85.49 345 | 92.14 307 | 90.41 149 | 94.93 164 | 95.79 184 | 85.10 229 | 96.93 300 | 85.15 247 | 94.19 329 | 97.57 202 |
|
Fast-Effi-MVS+ | | | 91.28 207 | 90.86 212 | 92.53 205 | 95.45 248 | 82.53 222 | 89.25 293 | 96.52 192 | 85.00 251 | 89.91 294 | 88.55 353 | 92.94 96 | 98.84 140 | 84.72 257 | 95.44 300 | 96.22 261 |
|
test20.03 | | | 90.80 212 | 90.85 213 | 90.63 269 | 95.63 242 | 79.24 273 | 89.81 278 | 92.87 289 | 89.90 156 | 94.39 180 | 96.40 148 | 85.77 224 | 95.27 342 | 73.86 343 | 99.05 106 | 97.39 217 |
|
PAPM_NR | | | 91.03 209 | 90.81 214 | 91.68 232 | 96.73 164 | 81.10 239 | 93.72 151 | 96.35 199 | 88.19 196 | 88.77 315 | 92.12 310 | 85.09 230 | 97.25 288 | 82.40 277 | 93.90 330 | 96.68 243 |
|
new-patchmatchnet | | | 88.97 260 | 90.79 215 | 83.50 351 | 94.28 285 | 55.83 385 | 85.34 346 | 93.56 278 | 86.18 229 | 95.47 136 | 95.73 189 | 83.10 243 | 96.51 311 | 85.40 244 | 98.06 218 | 98.16 145 |
|
wuyk23d | | | 87.83 279 | 90.79 215 | 78.96 360 | 90.46 350 | 88.63 116 | 92.72 175 | 90.67 323 | 91.65 118 | 98.68 11 | 97.64 64 | 96.06 16 | 77.53 381 | 59.84 376 | 99.41 56 | 70.73 379 |
|
pmmvs-eth3d | | | 91.54 200 | 90.73 217 | 93.99 149 | 95.76 234 | 87.86 134 | 90.83 245 | 93.98 274 | 78.23 314 | 94.02 191 | 96.22 165 | 82.62 252 | 96.83 303 | 86.57 230 | 98.33 188 | 97.29 223 |
|
MSDG | | | 90.82 211 | 90.67 218 | 91.26 246 | 94.16 286 | 83.08 217 | 86.63 337 | 96.19 207 | 90.60 144 | 91.94 260 | 91.89 312 | 89.16 177 | 95.75 329 | 80.96 292 | 94.51 320 | 94.95 302 |
|
test1111 | | | 90.39 224 | 90.61 219 | 89.74 290 | 98.04 89 | 71.50 352 | 95.59 81 | 79.72 378 | 89.41 166 | 95.94 117 | 98.14 36 | 70.79 322 | 98.81 147 | 88.52 195 | 99.32 66 | 98.90 72 |
|
eth_miper_zixun_eth | | | 90.72 214 | 90.61 219 | 91.05 253 | 92.04 328 | 76.84 310 | 86.91 328 | 96.67 183 | 85.21 245 | 94.41 179 | 93.92 265 | 79.53 276 | 98.26 218 | 89.76 164 | 97.02 261 | 98.06 152 |
|
cl____ | | | 90.65 217 | 90.56 221 | 90.91 261 | 91.85 330 | 76.98 307 | 86.75 333 | 95.36 241 | 85.53 241 | 94.06 188 | 94.89 229 | 77.36 296 | 97.98 242 | 90.27 148 | 98.98 115 | 97.76 189 |
|
DIV-MVS_self_test | | | 90.65 217 | 90.56 221 | 90.91 261 | 91.85 330 | 76.99 306 | 86.75 333 | 95.36 241 | 85.52 243 | 94.06 188 | 94.89 229 | 77.37 295 | 97.99 241 | 90.28 147 | 98.97 119 | 97.76 189 |
|
BH-RMVSNet | | | 90.47 221 | 90.44 223 | 90.56 271 | 95.21 256 | 78.65 285 | 89.15 294 | 93.94 275 | 88.21 195 | 92.74 235 | 94.22 253 | 86.38 218 | 97.88 249 | 78.67 314 | 95.39 302 | 95.14 297 |
|
miper_ehance_all_eth | | | 90.48 220 | 90.42 224 | 90.69 267 | 91.62 335 | 76.57 313 | 86.83 331 | 96.18 208 | 83.38 265 | 94.06 188 | 92.66 299 | 82.20 255 | 98.04 233 | 89.79 163 | 97.02 261 | 97.45 210 |
|
UnsupCasMVSNet_eth | | | 90.33 228 | 90.34 225 | 90.28 277 | 94.64 278 | 80.24 245 | 89.69 280 | 95.88 217 | 85.77 236 | 93.94 195 | 95.69 190 | 81.99 258 | 92.98 362 | 84.21 261 | 91.30 357 | 97.62 199 |
|
FMVSNet3 | | | 90.78 213 | 90.32 226 | 92.16 217 | 93.03 310 | 79.92 257 | 92.54 181 | 94.95 247 | 86.17 230 | 95.10 155 | 96.01 174 | 69.97 325 | 98.75 160 | 86.74 225 | 98.38 181 | 97.82 184 |
|
ECVR-MVS |  | | 90.12 235 | 90.16 227 | 90.00 287 | 97.81 102 | 72.68 346 | 95.76 76 | 78.54 380 | 89.04 176 | 95.36 142 | 98.10 39 | 70.51 323 | 98.64 181 | 87.10 221 | 99.18 93 | 98.67 100 |
|
IterMVS | | | 90.18 233 | 90.16 227 | 90.21 281 | 93.15 306 | 75.98 319 | 87.56 316 | 92.97 288 | 86.43 226 | 94.09 185 | 96.40 148 | 78.32 286 | 97.43 280 | 87.87 209 | 94.69 317 | 97.23 224 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Vis-MVSNet (Re-imp) | | | 90.42 222 | 90.16 227 | 91.20 250 | 97.66 116 | 77.32 301 | 94.33 130 | 87.66 339 | 91.20 129 | 92.99 226 | 95.13 217 | 75.40 308 | 98.28 214 | 77.86 317 | 99.19 91 | 97.99 163 |
|
MVS_0304 | | | 90.96 210 | 90.15 230 | 93.37 173 | 93.17 305 | 87.06 148 | 93.62 155 | 92.43 302 | 89.60 163 | 82.25 363 | 95.50 201 | 82.56 253 | 97.83 256 | 84.41 260 | 97.83 232 | 95.22 294 |
|
RPMNet | | | 90.31 230 | 90.14 231 | 90.81 265 | 91.01 342 | 78.93 277 | 92.52 182 | 98.12 49 | 91.91 100 | 89.10 306 | 96.89 115 | 68.84 327 | 99.41 40 | 90.17 153 | 92.70 346 | 94.08 319 |
|
PVSNet_BlendedMVS | | | 90.35 227 | 89.96 232 | 91.54 237 | 94.81 265 | 78.80 283 | 90.14 267 | 96.93 162 | 79.43 300 | 88.68 318 | 95.06 221 | 86.27 220 | 98.15 228 | 80.27 294 | 98.04 220 | 97.68 195 |
|
Patchmtry | | | 90.11 236 | 89.92 233 | 90.66 268 | 90.35 351 | 77.00 305 | 92.96 168 | 92.81 290 | 90.25 151 | 94.74 172 | 96.93 112 | 67.11 332 | 97.52 274 | 85.17 245 | 98.98 115 | 97.46 209 |
|
CL-MVSNet_self_test | | | 90.04 241 | 89.90 234 | 90.47 272 | 95.24 255 | 77.81 294 | 86.60 339 | 92.62 297 | 85.64 239 | 93.25 218 | 93.92 265 | 83.84 236 | 96.06 325 | 79.93 302 | 98.03 221 | 97.53 206 |
|
miper_lstm_enhance | | | 89.90 243 | 89.80 235 | 90.19 283 | 91.37 338 | 77.50 298 | 83.82 360 | 95.00 245 | 84.84 255 | 93.05 224 | 94.96 226 | 76.53 305 | 95.20 343 | 89.96 160 | 98.67 155 | 97.86 179 |
|
114514_t | | | 90.51 219 | 89.80 235 | 92.63 200 | 98.00 93 | 82.24 224 | 93.40 160 | 97.29 137 | 65.84 369 | 89.40 304 | 94.80 235 | 86.99 207 | 98.75 160 | 83.88 263 | 98.61 158 | 96.89 235 |
|
MG-MVS | | | 89.54 248 | 89.80 235 | 88.76 306 | 94.88 261 | 72.47 348 | 89.60 281 | 92.44 301 | 85.82 235 | 89.48 303 | 95.98 175 | 82.85 247 | 97.74 266 | 81.87 281 | 95.27 305 | 96.08 266 |
|
test_yl | | | 90.11 236 | 89.73 238 | 91.26 246 | 94.09 289 | 79.82 259 | 90.44 255 | 92.65 295 | 90.90 133 | 93.19 220 | 93.30 282 | 73.90 311 | 98.03 234 | 82.23 278 | 96.87 267 | 95.93 272 |
|
DCV-MVSNet | | | 90.11 236 | 89.73 238 | 91.26 246 | 94.09 289 | 79.82 259 | 90.44 255 | 92.65 295 | 90.90 133 | 93.19 220 | 93.30 282 | 73.90 311 | 98.03 234 | 82.23 278 | 96.87 267 | 95.93 272 |
|
D2MVS | | | 89.93 242 | 89.60 240 | 90.92 259 | 94.03 291 | 78.40 286 | 88.69 304 | 94.85 249 | 78.96 308 | 93.08 222 | 95.09 219 | 74.57 309 | 96.94 298 | 88.19 199 | 98.96 121 | 97.41 213 |
|
iter_conf_final | | | 90.23 232 | 89.32 241 | 92.95 186 | 94.65 277 | 81.46 234 | 94.32 132 | 95.40 240 | 85.61 240 | 92.84 231 | 95.37 211 | 54.58 374 | 99.13 94 | 92.16 97 | 98.94 123 | 98.25 137 |
|
1121 | | | 90.26 231 | 89.23 242 | 93.34 174 | 97.15 144 | 87.40 139 | 91.94 213 | 94.39 263 | 67.88 364 | 91.02 275 | 94.91 228 | 86.91 211 | 98.59 187 | 81.17 289 | 97.71 237 | 94.02 324 |
|
xiu_mvs_v2_base | | | 89.00 259 | 89.19 243 | 88.46 313 | 94.86 263 | 74.63 328 | 86.97 326 | 95.60 225 | 80.88 288 | 87.83 328 | 88.62 352 | 91.04 146 | 98.81 147 | 82.51 276 | 94.38 322 | 91.93 353 |
|
CANet_DTU | | | 89.85 244 | 89.17 244 | 91.87 223 | 92.20 324 | 80.02 254 | 90.79 246 | 95.87 218 | 86.02 232 | 82.53 362 | 91.77 314 | 80.01 273 | 98.57 190 | 85.66 242 | 97.70 238 | 97.01 230 |
|
USDC | | | 89.02 257 | 89.08 245 | 88.84 305 | 95.07 258 | 74.50 331 | 88.97 296 | 96.39 197 | 73.21 340 | 93.27 215 | 96.28 161 | 82.16 256 | 96.39 315 | 77.55 321 | 98.80 142 | 95.62 289 |
|
TAMVS | | | 90.16 234 | 89.05 246 | 93.49 172 | 96.49 181 | 86.37 168 | 90.34 260 | 92.55 299 | 80.84 290 | 92.99 226 | 94.57 243 | 81.94 260 | 98.20 222 | 73.51 344 | 98.21 204 | 95.90 275 |
|
OpenMVS_ROB |  | 85.12 16 | 89.52 249 | 89.05 246 | 90.92 259 | 94.58 279 | 81.21 238 | 91.10 240 | 93.41 282 | 77.03 321 | 93.41 208 | 93.99 263 | 83.23 242 | 97.80 258 | 79.93 302 | 94.80 314 | 93.74 331 |
|
PS-MVSNAJ | | | 88.86 264 | 88.99 248 | 88.48 312 | 94.88 261 | 74.71 326 | 86.69 335 | 95.60 225 | 80.88 288 | 87.83 328 | 87.37 360 | 90.77 149 | 98.82 142 | 82.52 275 | 94.37 323 | 91.93 353 |
|
MVP-Stereo | | | 90.07 239 | 88.92 249 | 93.54 169 | 96.31 194 | 86.49 163 | 90.93 243 | 95.59 229 | 79.80 294 | 91.48 265 | 95.59 193 | 80.79 269 | 97.39 284 | 78.57 315 | 91.19 358 | 96.76 241 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
PLC |  | 85.34 15 | 90.40 223 | 88.92 249 | 94.85 113 | 96.53 179 | 90.02 86 | 91.58 229 | 96.48 194 | 80.16 293 | 86.14 340 | 92.18 307 | 85.73 225 | 98.25 219 | 76.87 327 | 94.61 319 | 96.30 258 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
tttt0517 | | | 89.81 245 | 88.90 251 | 92.55 204 | 97.00 148 | 79.73 263 | 95.03 105 | 83.65 367 | 89.88 157 | 95.30 145 | 94.79 236 | 53.64 377 | 99.39 52 | 91.99 103 | 98.79 143 | 98.54 116 |
|
MAR-MVS | | | 90.32 229 | 88.87 252 | 94.66 122 | 94.82 264 | 91.85 61 | 94.22 134 | 94.75 254 | 80.91 287 | 87.52 332 | 88.07 356 | 86.63 216 | 97.87 252 | 76.67 328 | 96.21 283 | 94.25 318 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
MVSTER | | | 89.32 251 | 88.75 253 | 91.03 254 | 90.10 354 | 76.62 312 | 90.85 244 | 94.67 259 | 82.27 281 | 95.24 151 | 95.79 184 | 61.09 363 | 98.49 197 | 90.49 137 | 98.26 196 | 97.97 167 |
|
ppachtmachnet_test | | | 88.61 269 | 88.64 254 | 88.50 311 | 91.76 332 | 70.99 355 | 84.59 353 | 92.98 287 | 79.30 305 | 92.38 248 | 93.53 278 | 79.57 275 | 97.45 279 | 86.50 234 | 97.17 256 | 97.07 226 |
|
Patchmatch-RL test | | | 88.81 265 | 88.52 255 | 89.69 292 | 95.33 254 | 79.94 256 | 86.22 342 | 92.71 294 | 78.46 312 | 95.80 123 | 94.18 255 | 66.25 340 | 95.33 340 | 89.22 179 | 98.53 167 | 93.78 329 |
|
cl22 | | | 89.02 257 | 88.50 256 | 90.59 270 | 89.76 356 | 76.45 314 | 86.62 338 | 94.03 270 | 82.98 273 | 92.65 237 | 92.49 300 | 72.05 318 | 97.53 273 | 88.93 184 | 97.02 261 | 97.78 187 |
|
X-MVStestdata | | | 90.70 215 | 88.45 257 | 97.44 19 | 98.56 41 | 93.99 29 | 96.50 36 | 97.95 81 | 94.58 43 | 94.38 181 | 26.89 382 | 94.56 61 | 99.39 52 | 93.57 47 | 99.05 106 | 98.93 66 |
|
DPM-MVS | | | 89.35 250 | 88.40 258 | 92.18 216 | 96.13 211 | 84.20 201 | 86.96 327 | 96.15 210 | 75.40 330 | 87.36 333 | 91.55 319 | 83.30 241 | 98.01 238 | 82.17 280 | 96.62 276 | 94.32 317 |
|
jason | | | 89.17 253 | 88.32 259 | 91.70 231 | 95.73 235 | 80.07 250 | 88.10 309 | 93.22 284 | 71.98 346 | 90.09 289 | 92.79 294 | 78.53 285 | 98.56 191 | 87.43 216 | 97.06 259 | 96.46 252 |
jason: jason. |
AUN-MVS | | | 90.05 240 | 88.30 260 | 95.32 98 | 96.09 212 | 90.52 81 | 92.42 189 | 92.05 310 | 82.08 283 | 88.45 320 | 92.86 291 | 65.76 342 | 98.69 173 | 88.91 186 | 96.07 284 | 96.75 242 |
|
FE-MVS | | | 89.06 256 | 88.29 261 | 91.36 242 | 94.78 267 | 79.57 266 | 96.77 27 | 90.99 319 | 84.87 254 | 92.96 228 | 96.29 159 | 60.69 365 | 98.80 150 | 80.18 297 | 97.11 258 | 95.71 282 |
|
Anonymous20231206 | | | 88.77 266 | 88.29 261 | 90.20 282 | 96.31 194 | 78.81 282 | 89.56 283 | 93.49 280 | 74.26 335 | 92.38 248 | 95.58 196 | 82.21 254 | 95.43 337 | 72.07 352 | 98.75 148 | 96.34 256 |
|
EPNet | | | 89.80 246 | 88.25 263 | 94.45 138 | 83.91 383 | 86.18 175 | 93.87 146 | 87.07 343 | 91.16 131 | 80.64 371 | 94.72 238 | 78.83 279 | 98.89 130 | 85.17 245 | 98.89 125 | 98.28 134 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
YYNet1 | | | 88.17 274 | 88.24 264 | 87.93 319 | 92.21 323 | 73.62 338 | 80.75 368 | 88.77 329 | 82.51 279 | 94.99 162 | 95.11 218 | 82.70 250 | 93.70 356 | 83.33 266 | 93.83 331 | 96.48 251 |
|
MDA-MVSNet_test_wron | | | 88.16 275 | 88.23 265 | 87.93 319 | 92.22 322 | 73.71 337 | 80.71 369 | 88.84 328 | 82.52 278 | 94.88 167 | 95.14 216 | 82.70 250 | 93.61 357 | 83.28 267 | 93.80 332 | 96.46 252 |
|
CDS-MVSNet | | | 89.55 247 | 88.22 266 | 93.53 170 | 95.37 252 | 86.49 163 | 89.26 291 | 93.59 277 | 79.76 296 | 91.15 272 | 92.31 306 | 77.12 297 | 98.38 207 | 77.51 322 | 97.92 228 | 95.71 282 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
mvsany_test | | | 89.11 255 | 88.21 267 | 91.83 224 | 91.30 339 | 90.25 84 | 88.09 310 | 78.76 379 | 76.37 325 | 96.43 86 | 98.39 30 | 83.79 237 | 90.43 372 | 86.57 230 | 94.20 327 | 94.80 304 |
|
PatchT | | | 87.51 287 | 88.17 268 | 85.55 337 | 90.64 345 | 66.91 367 | 92.02 209 | 86.09 349 | 92.20 92 | 89.05 308 | 97.16 98 | 64.15 350 | 96.37 317 | 89.21 180 | 92.98 344 | 93.37 338 |
|
PVSNet_Blended | | | 88.74 267 | 88.16 269 | 90.46 274 | 94.81 265 | 78.80 283 | 86.64 336 | 96.93 162 | 74.67 332 | 88.68 318 | 89.18 349 | 86.27 220 | 98.15 228 | 80.27 294 | 96.00 286 | 94.44 314 |
|
iter_conf05 | | | 88.94 262 | 88.09 270 | 91.50 238 | 92.74 317 | 76.97 308 | 92.80 173 | 95.92 215 | 82.82 275 | 93.65 202 | 95.37 211 | 49.41 381 | 99.13 94 | 90.82 131 | 99.28 77 | 98.40 127 |
|
UnsupCasMVSNet_bld | | | 88.50 270 | 88.03 271 | 89.90 288 | 95.52 246 | 78.88 280 | 87.39 320 | 94.02 272 | 79.32 304 | 93.06 223 | 94.02 261 | 80.72 270 | 94.27 352 | 75.16 337 | 93.08 342 | 96.54 245 |
|
PatchMatch-RL | | | 89.18 252 | 88.02 272 | 92.64 198 | 95.90 227 | 92.87 49 | 88.67 306 | 91.06 318 | 80.34 291 | 90.03 292 | 91.67 316 | 83.34 240 | 94.42 349 | 76.35 331 | 94.84 313 | 90.64 361 |
|
miper_enhance_ethall | | | 88.42 271 | 87.87 273 | 90.07 284 | 88.67 368 | 75.52 323 | 85.10 347 | 95.59 229 | 75.68 326 | 92.49 241 | 89.45 346 | 78.96 278 | 97.88 249 | 87.86 210 | 97.02 261 | 96.81 238 |
|
MS-PatchMatch | | | 88.05 276 | 87.75 274 | 88.95 302 | 93.28 302 | 77.93 291 | 87.88 312 | 92.49 300 | 75.42 329 | 92.57 240 | 93.59 276 | 80.44 271 | 94.24 354 | 81.28 286 | 92.75 345 | 94.69 310 |
|
PCF-MVS | | 84.52 17 | 89.12 254 | 87.71 275 | 93.34 174 | 96.06 214 | 85.84 182 | 86.58 340 | 97.31 134 | 68.46 362 | 93.61 204 | 93.89 267 | 87.51 198 | 98.52 195 | 67.85 367 | 98.11 214 | 95.66 286 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
pmmvs4 | | | 88.95 261 | 87.70 276 | 92.70 196 | 94.30 284 | 85.60 185 | 87.22 322 | 92.16 306 | 74.62 333 | 89.75 301 | 94.19 254 | 77.97 289 | 96.41 314 | 82.71 272 | 96.36 281 | 96.09 265 |
|
our_test_3 | | | 87.55 286 | 87.59 277 | 87.44 325 | 91.76 332 | 70.48 356 | 83.83 359 | 90.55 324 | 79.79 295 | 92.06 259 | 92.17 308 | 78.63 284 | 95.63 330 | 84.77 255 | 94.73 315 | 96.22 261 |
|
thisisatest0530 | | | 88.69 268 | 87.52 278 | 92.20 212 | 96.33 192 | 79.36 270 | 92.81 172 | 84.01 366 | 86.44 225 | 93.67 201 | 92.68 298 | 53.62 378 | 99.25 80 | 89.65 167 | 98.45 174 | 98.00 160 |
|
1112_ss | | | 88.42 271 | 87.41 279 | 91.45 239 | 96.69 165 | 80.99 240 | 89.72 279 | 96.72 181 | 73.37 339 | 87.00 336 | 90.69 331 | 77.38 294 | 98.20 222 | 81.38 285 | 93.72 333 | 95.15 296 |
|
baseline1 | | | 87.62 285 | 87.31 280 | 88.54 310 | 94.71 274 | 74.27 334 | 93.10 165 | 88.20 335 | 86.20 228 | 92.18 256 | 93.04 287 | 73.21 314 | 95.52 332 | 79.32 309 | 85.82 370 | 95.83 277 |
|
lupinMVS | | | 88.34 273 | 87.31 280 | 91.45 239 | 94.74 270 | 80.06 251 | 87.23 321 | 92.27 303 | 71.10 350 | 88.83 309 | 91.15 322 | 77.02 298 | 98.53 194 | 86.67 228 | 96.75 273 | 95.76 280 |
|
N_pmnet | | | 88.90 263 | 87.25 282 | 93.83 160 | 94.40 283 | 93.81 38 | 84.73 350 | 87.09 342 | 79.36 303 | 93.26 216 | 92.43 304 | 79.29 277 | 91.68 366 | 77.50 323 | 97.22 255 | 96.00 269 |
|
SCA | | | 87.43 289 | 87.21 283 | 88.10 317 | 92.01 329 | 71.98 350 | 89.43 285 | 88.11 337 | 82.26 282 | 88.71 316 | 92.83 292 | 78.65 282 | 97.59 271 | 79.61 306 | 93.30 337 | 94.75 307 |
|
TR-MVS | | | 87.70 281 | 87.17 284 | 89.27 299 | 94.11 288 | 79.26 272 | 88.69 304 | 91.86 312 | 81.94 284 | 90.69 280 | 89.79 340 | 82.82 248 | 97.42 281 | 72.65 350 | 91.98 354 | 91.14 358 |
|
pmmvs5 | | | 87.87 278 | 87.14 285 | 90.07 284 | 93.26 304 | 76.97 308 | 88.89 298 | 92.18 304 | 73.71 338 | 88.36 321 | 93.89 267 | 76.86 303 | 96.73 306 | 80.32 293 | 96.81 270 | 96.51 247 |
|
FMVS | | | 86.65 303 | 87.13 286 | 85.19 341 | 90.28 352 | 86.11 177 | 86.52 341 | 91.66 314 | 69.76 357 | 95.73 128 | 97.21 96 | 69.51 326 | 81.28 380 | 89.15 181 | 94.40 321 | 88.17 368 |
|
CR-MVSNet | | | 87.89 277 | 87.12 287 | 90.22 280 | 91.01 342 | 78.93 277 | 92.52 182 | 92.81 290 | 73.08 341 | 89.10 306 | 96.93 112 | 67.11 332 | 97.64 270 | 88.80 188 | 92.70 346 | 94.08 319 |
|
thres600view7 | | | 87.66 283 | 87.10 288 | 89.36 297 | 96.05 215 | 73.17 340 | 92.72 175 | 85.31 358 | 91.89 101 | 93.29 213 | 90.97 325 | 63.42 354 | 98.39 205 | 73.23 346 | 96.99 266 | 96.51 247 |
|
BH-w/o | | | 87.21 294 | 87.02 289 | 87.79 322 | 94.77 268 | 77.27 302 | 87.90 311 | 93.21 286 | 81.74 285 | 89.99 293 | 88.39 355 | 83.47 239 | 96.93 300 | 71.29 357 | 92.43 350 | 89.15 363 |
|
thres100view900 | | | 87.35 291 | 86.89 290 | 88.72 307 | 96.14 208 | 73.09 342 | 93.00 167 | 85.31 358 | 92.13 94 | 93.26 216 | 90.96 326 | 63.42 354 | 98.28 214 | 71.27 358 | 96.54 277 | 94.79 305 |
|
GA-MVS | | | 87.70 281 | 86.82 291 | 90.31 276 | 93.27 303 | 77.22 303 | 84.72 352 | 92.79 292 | 85.11 249 | 89.82 297 | 90.07 335 | 66.80 335 | 97.76 264 | 84.56 258 | 94.27 326 | 95.96 271 |
|
sss | | | 87.23 293 | 86.82 291 | 88.46 313 | 93.96 292 | 77.94 290 | 86.84 330 | 92.78 293 | 77.59 316 | 87.61 331 | 91.83 313 | 78.75 280 | 91.92 365 | 77.84 318 | 94.20 327 | 95.52 291 |
|
PAPR | | | 87.65 284 | 86.77 293 | 90.27 278 | 92.85 312 | 77.38 300 | 88.56 307 | 96.23 204 | 76.82 324 | 84.98 346 | 89.75 342 | 86.08 222 | 97.16 291 | 72.33 351 | 93.35 336 | 96.26 260 |
|
EU-MVSNet | | | 87.39 290 | 86.71 294 | 89.44 294 | 93.40 301 | 76.11 317 | 94.93 109 | 90.00 326 | 57.17 378 | 95.71 129 | 97.37 79 | 64.77 348 | 97.68 269 | 92.67 89 | 94.37 323 | 94.52 312 |
|
Test_1112_low_res | | | 87.50 288 | 86.58 295 | 90.25 279 | 96.80 163 | 77.75 295 | 87.53 318 | 96.25 202 | 69.73 358 | 86.47 338 | 93.61 275 | 75.67 307 | 97.88 249 | 79.95 300 | 93.20 338 | 95.11 298 |
|
FMVSNet5 | | | 87.82 280 | 86.56 296 | 91.62 234 | 92.31 320 | 79.81 261 | 93.49 157 | 94.81 253 | 83.26 266 | 91.36 267 | 96.93 112 | 52.77 379 | 97.49 277 | 76.07 332 | 98.03 221 | 97.55 205 |
|
MIMVSNet | | | 87.13 298 | 86.54 297 | 88.89 304 | 96.05 215 | 76.11 317 | 94.39 128 | 88.51 331 | 81.37 286 | 88.27 323 | 96.75 126 | 72.38 316 | 95.52 332 | 65.71 372 | 95.47 299 | 95.03 299 |
|
tfpn200view9 | | | 87.05 299 | 86.52 298 | 88.67 308 | 95.77 232 | 72.94 343 | 91.89 216 | 86.00 350 | 90.84 135 | 92.61 238 | 89.80 338 | 63.93 351 | 98.28 214 | 71.27 358 | 96.54 277 | 94.79 305 |
|
thres400 | | | 87.20 295 | 86.52 298 | 89.24 301 | 95.77 232 | 72.94 343 | 91.89 216 | 86.00 350 | 90.84 135 | 92.61 238 | 89.80 338 | 63.93 351 | 98.28 214 | 71.27 358 | 96.54 277 | 96.51 247 |
|
WTY-MVS | | | 86.93 301 | 86.50 300 | 88.24 315 | 94.96 259 | 74.64 327 | 87.19 323 | 92.07 309 | 78.29 313 | 88.32 322 | 91.59 318 | 78.06 288 | 94.27 352 | 74.88 338 | 93.15 340 | 95.80 278 |
|
1314 | | | 86.46 304 | 86.33 301 | 86.87 329 | 91.65 334 | 74.54 329 | 91.94 213 | 94.10 269 | 74.28 334 | 84.78 348 | 87.33 361 | 83.03 244 | 95.00 344 | 78.72 313 | 91.16 359 | 91.06 359 |
|
cascas | | | 87.02 300 | 86.28 302 | 89.25 300 | 91.56 336 | 76.45 314 | 84.33 356 | 96.78 176 | 71.01 351 | 86.89 337 | 85.91 368 | 81.35 263 | 96.94 298 | 83.09 269 | 95.60 295 | 94.35 316 |
|
Patchmatch-test | | | 86.10 306 | 86.01 303 | 86.38 334 | 90.63 346 | 74.22 335 | 89.57 282 | 86.69 344 | 85.73 238 | 89.81 298 | 92.83 292 | 65.24 346 | 91.04 369 | 77.82 320 | 95.78 292 | 93.88 328 |
|
HY-MVS | | 82.50 18 | 86.81 302 | 85.93 304 | 89.47 293 | 93.63 299 | 77.93 291 | 94.02 141 | 91.58 316 | 75.68 326 | 83.64 355 | 93.64 273 | 77.40 293 | 97.42 281 | 71.70 355 | 92.07 353 | 93.05 343 |
|
CHOSEN 1792x2688 | | | 87.19 296 | 85.92 305 | 91.00 257 | 97.13 145 | 79.41 269 | 84.51 354 | 95.60 225 | 64.14 372 | 90.07 291 | 94.81 232 | 78.26 287 | 97.14 292 | 73.34 345 | 95.38 303 | 96.46 252 |
|
CMPMVS |  | 68.83 22 | 87.28 292 | 85.67 306 | 92.09 219 | 88.77 367 | 85.42 187 | 90.31 261 | 94.38 264 | 70.02 356 | 88.00 326 | 93.30 282 | 73.78 313 | 94.03 355 | 75.96 334 | 96.54 277 | 96.83 237 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
HyFIR lowres test | | | 87.19 296 | 85.51 307 | 92.24 211 | 97.12 146 | 80.51 244 | 85.03 348 | 96.06 211 | 66.11 368 | 91.66 264 | 92.98 290 | 70.12 324 | 99.14 92 | 75.29 336 | 95.23 306 | 97.07 226 |
|
thres200 | | | 85.85 307 | 85.18 308 | 87.88 321 | 94.44 281 | 72.52 347 | 89.08 295 | 86.21 347 | 88.57 189 | 91.44 266 | 88.40 354 | 64.22 349 | 98.00 239 | 68.35 366 | 95.88 291 | 93.12 340 |
|
CVMVSNet | | | 85.16 311 | 84.72 309 | 86.48 330 | 92.12 326 | 70.19 357 | 92.32 196 | 88.17 336 | 56.15 379 | 90.64 281 | 95.85 179 | 67.97 330 | 96.69 307 | 88.78 189 | 90.52 361 | 92.56 348 |
|
PatchmatchNet |  | | 85.22 310 | 84.64 310 | 86.98 328 | 89.51 361 | 69.83 362 | 90.52 253 | 87.34 341 | 78.87 309 | 87.22 335 | 92.74 296 | 66.91 334 | 96.53 309 | 81.77 282 | 86.88 369 | 94.58 311 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
test2506 | | | 85.42 309 | 84.57 311 | 87.96 318 | 97.81 102 | 66.53 370 | 96.14 58 | 56.35 387 | 89.04 176 | 93.55 206 | 98.10 39 | 42.88 389 | 98.68 175 | 88.09 203 | 99.18 93 | 98.67 100 |
|
EPNet_dtu | | | 85.63 308 | 84.37 312 | 89.40 296 | 86.30 377 | 74.33 333 | 91.64 228 | 88.26 333 | 84.84 255 | 72.96 380 | 89.85 336 | 71.27 321 | 97.69 268 | 76.60 329 | 97.62 242 | 96.18 263 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
MVS | | | 84.98 313 | 84.30 313 | 87.01 327 | 91.03 341 | 77.69 297 | 91.94 213 | 94.16 268 | 59.36 377 | 84.23 352 | 87.50 359 | 85.66 226 | 96.80 304 | 71.79 353 | 93.05 343 | 86.54 370 |
|
ET-MVSNet_ETH3D | | | 86.15 305 | 84.27 314 | 91.79 226 | 93.04 309 | 81.28 236 | 87.17 324 | 86.14 348 | 79.57 299 | 83.65 354 | 88.66 351 | 57.10 369 | 98.18 225 | 87.74 211 | 95.40 301 | 95.90 275 |
|
tpm | | | 84.38 316 | 84.08 315 | 85.30 340 | 90.47 349 | 63.43 380 | 89.34 288 | 85.63 354 | 77.24 320 | 87.62 330 | 95.03 224 | 61.00 364 | 97.30 287 | 79.26 310 | 91.09 360 | 95.16 295 |
|
tpmvs | | | 84.22 317 | 83.97 316 | 84.94 342 | 87.09 374 | 65.18 373 | 91.21 237 | 88.35 332 | 82.87 274 | 85.21 343 | 90.96 326 | 65.24 346 | 96.75 305 | 79.60 308 | 85.25 371 | 92.90 345 |
|
MDTV_nov1_ep13 | | | | 83.88 317 | | 89.42 362 | 61.52 381 | 88.74 303 | 87.41 340 | 73.99 336 | 84.96 347 | 94.01 262 | 65.25 345 | 95.53 331 | 78.02 316 | 93.16 339 | |
|
PMMVS2 | | | 81.31 334 | 83.44 318 | 74.92 362 | 90.52 348 | 46.49 387 | 69.19 376 | 85.23 361 | 84.30 260 | 87.95 327 | 94.71 239 | 76.95 300 | 84.36 379 | 64.07 373 | 98.09 216 | 93.89 327 |
|
FPMVS | | | 84.50 315 | 83.28 319 | 88.16 316 | 96.32 193 | 94.49 18 | 85.76 343 | 85.47 356 | 83.09 270 | 85.20 344 | 94.26 251 | 63.79 353 | 86.58 377 | 63.72 374 | 91.88 356 | 83.40 373 |
|
test-LLR | | | 83.58 319 | 83.17 320 | 84.79 344 | 89.68 358 | 66.86 368 | 83.08 361 | 84.52 363 | 83.07 271 | 82.85 360 | 84.78 371 | 62.86 357 | 93.49 358 | 82.85 270 | 94.86 311 | 94.03 322 |
|
JIA-IIPM | | | 85.08 312 | 83.04 321 | 91.19 251 | 87.56 370 | 86.14 176 | 89.40 287 | 84.44 365 | 88.98 178 | 82.20 364 | 97.95 48 | 56.82 371 | 96.15 321 | 76.55 330 | 83.45 374 | 91.30 357 |
|
thisisatest0515 | | | 84.72 314 | 82.99 322 | 89.90 288 | 92.96 311 | 75.33 325 | 84.36 355 | 83.42 368 | 77.37 318 | 88.27 323 | 86.65 362 | 53.94 376 | 98.72 165 | 82.56 274 | 97.40 250 | 95.67 285 |
|
tpmrst | | | 82.85 325 | 82.93 323 | 82.64 353 | 87.65 369 | 58.99 383 | 90.14 267 | 87.90 338 | 75.54 328 | 83.93 353 | 91.63 317 | 66.79 337 | 95.36 338 | 81.21 288 | 81.54 377 | 93.57 337 |
|
PVSNet | | 76.22 20 | 82.89 324 | 82.37 324 | 84.48 346 | 93.96 292 | 64.38 378 | 78.60 371 | 88.61 330 | 71.50 348 | 84.43 351 | 86.36 366 | 74.27 310 | 94.60 346 | 69.87 364 | 93.69 334 | 94.46 313 |
|
CostFormer | | | 83.09 322 | 82.21 325 | 85.73 336 | 89.27 363 | 67.01 366 | 90.35 259 | 86.47 346 | 70.42 354 | 83.52 357 | 93.23 285 | 61.18 362 | 96.85 302 | 77.21 325 | 88.26 367 | 93.34 339 |
|
ADS-MVSNet2 | | | 84.01 318 | 82.20 326 | 89.41 295 | 89.04 364 | 76.37 316 | 87.57 314 | 90.98 320 | 72.71 344 | 84.46 349 | 92.45 301 | 68.08 328 | 96.48 312 | 70.58 362 | 83.97 372 | 95.38 292 |
|
DSMNet-mixed | | | 82.21 328 | 81.56 327 | 84.16 348 | 89.57 360 | 70.00 361 | 90.65 250 | 77.66 382 | 54.99 380 | 83.30 358 | 97.57 66 | 77.89 290 | 90.50 371 | 66.86 370 | 95.54 297 | 91.97 352 |
|
ADS-MVSNet | | | 82.25 327 | 81.55 328 | 84.34 347 | 89.04 364 | 65.30 372 | 87.57 314 | 85.13 362 | 72.71 344 | 84.46 349 | 92.45 301 | 68.08 328 | 92.33 364 | 70.58 362 | 83.97 372 | 95.38 292 |
|
baseline2 | | | 83.38 320 | 81.54 329 | 88.90 303 | 91.38 337 | 72.84 345 | 88.78 301 | 81.22 373 | 78.97 307 | 79.82 373 | 87.56 357 | 61.73 361 | 97.80 258 | 74.30 341 | 90.05 363 | 96.05 268 |
|
test0.0.03 1 | | | 82.48 326 | 81.47 330 | 85.48 338 | 89.70 357 | 73.57 339 | 84.73 350 | 81.64 372 | 83.07 271 | 88.13 325 | 86.61 363 | 62.86 357 | 89.10 376 | 66.24 371 | 90.29 362 | 93.77 330 |
|
PMMVS | | | 83.00 323 | 81.11 331 | 88.66 309 | 83.81 384 | 86.44 166 | 82.24 365 | 85.65 353 | 61.75 376 | 82.07 365 | 85.64 369 | 79.75 274 | 91.59 367 | 75.99 333 | 93.09 341 | 87.94 369 |
|
IB-MVS | | 77.21 19 | 83.11 321 | 81.05 332 | 89.29 298 | 91.15 340 | 75.85 320 | 85.66 344 | 86.00 350 | 79.70 297 | 82.02 367 | 86.61 363 | 48.26 382 | 98.39 205 | 77.84 318 | 92.22 351 | 93.63 333 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
gg-mvs-nofinetune | | | 82.10 331 | 81.02 333 | 85.34 339 | 87.46 372 | 71.04 353 | 94.74 114 | 67.56 384 | 96.44 22 | 79.43 374 | 98.99 6 | 45.24 383 | 96.15 321 | 67.18 369 | 92.17 352 | 88.85 365 |
|
new_pmnet | | | 81.22 335 | 81.01 334 | 81.86 355 | 90.92 344 | 70.15 358 | 84.03 357 | 80.25 377 | 70.83 352 | 85.97 341 | 89.78 341 | 67.93 331 | 84.65 378 | 67.44 368 | 91.90 355 | 90.78 360 |
|
E-PMN | | | 80.72 340 | 80.86 335 | 80.29 358 | 85.11 380 | 68.77 364 | 72.96 373 | 81.97 371 | 87.76 206 | 83.25 359 | 83.01 375 | 62.22 360 | 89.17 375 | 77.15 326 | 94.31 325 | 82.93 374 |
|
KD-MVS_2432*1600 | | | 82.17 329 | 80.75 336 | 86.42 332 | 82.04 385 | 70.09 359 | 81.75 366 | 90.80 321 | 82.56 276 | 90.37 285 | 89.30 347 | 42.90 387 | 96.11 323 | 74.47 339 | 92.55 348 | 93.06 341 |
|
miper_refine_blended | | | 82.17 329 | 80.75 336 | 86.42 332 | 82.04 385 | 70.09 359 | 81.75 366 | 90.80 321 | 82.56 276 | 90.37 285 | 89.30 347 | 42.90 387 | 96.11 323 | 74.47 339 | 92.55 348 | 93.06 341 |
|
MVS-HIRNet | | | 78.83 346 | 80.60 338 | 73.51 363 | 93.07 307 | 47.37 386 | 87.10 325 | 78.00 381 | 68.94 360 | 77.53 376 | 97.26 90 | 71.45 320 | 94.62 345 | 63.28 375 | 88.74 365 | 78.55 378 |
|
EPMVS | | | 81.17 337 | 80.37 339 | 83.58 350 | 85.58 379 | 65.08 375 | 90.31 261 | 71.34 383 | 77.31 319 | 85.80 342 | 91.30 320 | 59.38 366 | 92.70 363 | 79.99 299 | 82.34 376 | 92.96 344 |
|
tpm2 | | | 81.46 333 | 80.35 340 | 84.80 343 | 89.90 355 | 65.14 374 | 90.44 255 | 85.36 357 | 65.82 370 | 82.05 366 | 92.44 303 | 57.94 368 | 96.69 307 | 70.71 361 | 88.49 366 | 92.56 348 |
|
EMVS | | | 80.35 342 | 80.28 341 | 80.54 357 | 84.73 382 | 69.07 363 | 72.54 375 | 80.73 374 | 87.80 204 | 81.66 369 | 81.73 376 | 62.89 356 | 89.84 373 | 75.79 335 | 94.65 318 | 82.71 375 |
|
PAPM | | | 81.91 332 | 80.11 342 | 87.31 326 | 93.87 295 | 72.32 349 | 84.02 358 | 93.22 284 | 69.47 359 | 76.13 378 | 89.84 337 | 72.15 317 | 97.23 289 | 53.27 380 | 89.02 364 | 92.37 350 |
|
test-mter | | | 81.21 336 | 80.01 343 | 84.79 344 | 89.68 358 | 66.86 368 | 83.08 361 | 84.52 363 | 73.85 337 | 82.85 360 | 84.78 371 | 43.66 386 | 93.49 358 | 82.85 270 | 94.86 311 | 94.03 322 |
|
tpm cat1 | | | 80.61 341 | 79.46 344 | 84.07 349 | 88.78 366 | 65.06 376 | 89.26 291 | 88.23 334 | 62.27 375 | 81.90 368 | 89.66 344 | 62.70 359 | 95.29 341 | 71.72 354 | 80.60 378 | 91.86 355 |
|
pmmvs3 | | | 80.83 339 | 78.96 345 | 86.45 331 | 87.23 373 | 77.48 299 | 84.87 349 | 82.31 370 | 63.83 373 | 85.03 345 | 89.50 345 | 49.66 380 | 93.10 360 | 73.12 348 | 95.10 308 | 88.78 367 |
|
dp | | | 79.28 344 | 78.62 346 | 81.24 356 | 85.97 378 | 56.45 384 | 86.91 328 | 85.26 360 | 72.97 342 | 81.45 370 | 89.17 350 | 56.01 373 | 95.45 336 | 73.19 347 | 76.68 379 | 91.82 356 |
|
TESTMET0.1,1 | | | 79.09 345 | 78.04 347 | 82.25 354 | 87.52 371 | 64.03 379 | 83.08 361 | 80.62 375 | 70.28 355 | 80.16 372 | 83.22 374 | 44.13 385 | 90.56 370 | 79.95 300 | 93.36 335 | 92.15 351 |
|
CHOSEN 280x420 | | | 80.04 343 | 77.97 348 | 86.23 335 | 90.13 353 | 74.53 330 | 72.87 374 | 89.59 327 | 66.38 367 | 76.29 377 | 85.32 370 | 56.96 370 | 95.36 338 | 69.49 365 | 94.72 316 | 88.79 366 |
|
EGC-MVSNET | | | 80.97 338 | 75.73 349 | 96.67 46 | 98.85 25 | 94.55 17 | 96.83 22 | 96.60 186 | 2.44 384 | 5.32 385 | 98.25 34 | 92.24 112 | 98.02 237 | 91.85 109 | 99.21 89 | 97.45 210 |
|
PVSNet_0 | | 70.34 21 | 74.58 347 | 72.96 350 | 79.47 359 | 90.63 346 | 66.24 371 | 73.26 372 | 83.40 369 | 63.67 374 | 78.02 375 | 78.35 378 | 72.53 315 | 89.59 374 | 56.68 378 | 60.05 382 | 82.57 376 |
|
MVE |  | 59.87 23 | 73.86 348 | 72.65 351 | 77.47 361 | 87.00 376 | 74.35 332 | 61.37 378 | 60.93 386 | 67.27 365 | 69.69 381 | 86.49 365 | 81.24 267 | 72.33 382 | 56.45 379 | 83.45 374 | 85.74 371 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test_method | | | 50.44 349 | 48.94 352 | 54.93 364 | 39.68 388 | 12.38 390 | 28.59 379 | 90.09 325 | 6.82 382 | 41.10 384 | 78.41 377 | 54.41 375 | 70.69 383 | 50.12 381 | 51.26 383 | 81.72 377 |
|
tmp_tt | | | 37.97 350 | 44.33 353 | 18.88 366 | 11.80 389 | 21.54 389 | 63.51 377 | 45.66 390 | 4.23 383 | 51.34 383 | 50.48 381 | 59.08 367 | 22.11 385 | 44.50 382 | 68.35 381 | 13.00 381 |
|
cdsmvs_eth3d_5k | | | 23.35 351 | 31.13 354 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 95.58 231 | 0.00 387 | 0.00 388 | 91.15 322 | 93.43 81 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test123 | | | 9.49 352 | 12.01 355 | 1.91 367 | 2.87 390 | 1.30 391 | 82.38 364 | 1.34 392 | 1.36 385 | 2.84 386 | 6.56 384 | 2.45 390 | 0.97 386 | 2.73 384 | 5.56 384 | 3.47 382 |
|
testmvs | | | 9.02 353 | 11.42 356 | 1.81 368 | 2.77 391 | 1.13 392 | 79.44 370 | 1.90 391 | 1.18 386 | 2.65 387 | 6.80 383 | 1.95 391 | 0.87 387 | 2.62 385 | 3.45 385 | 3.44 383 |
|
pcd_1.5k_mvsjas | | | 7.56 354 | 10.09 357 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 90.77 149 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
ab-mvs-re | | | 7.56 354 | 10.08 358 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 90.69 331 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
test_blank | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet_test | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
DCPMVS | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet-low-res | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
sosnet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uncertanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
Regformer | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
uanet | | | 0.00 356 | 0.00 359 | 0.00 369 | 0.00 392 | 0.00 393 | 0.00 380 | 0.00 393 | 0.00 387 | 0.00 388 | 0.00 387 | 0.00 392 | 0.00 388 | 0.00 386 | 0.00 386 | 0.00 384 |
|
FOURS1 | | | | | | 99.21 3 | 94.68 14 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
MSC_two_6792asdad | | | | | 95.90 70 | 96.54 176 | 89.57 96 | | 96.87 170 | | | | | 99.41 40 | 94.06 33 | 99.30 69 | 98.72 96 |
|
PC_three_1452 | | | | | | | | | | 75.31 331 | 95.87 121 | 95.75 188 | 92.93 97 | 96.34 320 | 87.18 220 | 98.68 153 | 98.04 155 |
|
No_MVS | | | | | 95.90 70 | 96.54 176 | 89.57 96 | | 96.87 170 | | | | | 99.41 40 | 94.06 33 | 99.30 69 | 98.72 96 |
|
test_one_0601 | | | | | | 98.26 72 | 87.14 146 | | 98.18 39 | 94.25 50 | 96.99 66 | 97.36 82 | 95.13 42 | | | | |
|
eth-test2 | | | | | | 0.00 392 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 392 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 97.23 137 | 90.32 83 | | 97.54 113 | 84.40 259 | 94.78 170 | 95.79 184 | 92.76 103 | 99.39 52 | 88.72 192 | 98.40 176 | |
|
IU-MVS | | | | | | 98.51 51 | 86.66 160 | | 96.83 173 | 72.74 343 | 95.83 122 | | | | 93.00 80 | 99.29 72 | 98.64 106 |
|
OPU-MVS | | | | | 95.15 104 | 96.84 158 | 89.43 100 | 95.21 95 | | | | 95.66 191 | 93.12 91 | 98.06 232 | 86.28 238 | 98.61 158 | 97.95 168 |
|
test_241102_TWO | | | | | | | | | 98.10 52 | 91.95 97 | 97.54 39 | 97.25 91 | 95.37 30 | 99.35 63 | 93.29 67 | 99.25 81 | 98.49 120 |
|
test_241102_ONE | | | | | | 98.51 51 | 86.97 151 | | 98.10 52 | 91.85 103 | 97.63 34 | 97.03 105 | 96.48 11 | 98.95 124 | | | |
|
save fliter | | | | | | 97.46 129 | 88.05 129 | 92.04 207 | 97.08 152 | 87.63 210 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 93.26 72 | 97.40 49 | 97.35 85 | 94.69 57 | 99.34 66 | 93.88 37 | 99.42 51 | 98.89 73 |
|
test_0728_SECOND | | | | | 94.88 112 | 98.55 44 | 86.72 157 | 95.20 97 | 98.22 35 | | | | | 99.38 58 | 93.44 59 | 99.31 67 | 98.53 117 |
|
test0726 | | | | | | 98.51 51 | 86.69 158 | 95.34 90 | 98.18 39 | 91.85 103 | 97.63 34 | 97.37 79 | 95.58 24 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.75 307 |
|
test_part2 | | | | | | 98.21 76 | 89.41 101 | | | | 96.72 77 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 66.64 338 | | | | 94.75 307 |
|
sam_mvs | | | | | | | | | | | | | 66.41 339 | | | | |
|
ambc | | | | | 92.98 183 | 96.88 155 | 83.01 218 | 95.92 69 | 96.38 198 | | 96.41 87 | 97.48 73 | 88.26 184 | 97.80 258 | 89.96 160 | 98.93 124 | 98.12 150 |
|
MTGPA |  | | | | | | | | 97.62 105 | | | | | | | | |
|
test_post1 | | | | | | | | 90.21 263 | | | | 5.85 386 | 65.36 344 | 96.00 326 | 79.61 306 | | |
|
test_post | | | | | | | | | | | | 6.07 385 | 65.74 343 | 95.84 328 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 91.71 315 | 66.22 341 | 97.59 271 | | | |
|
GG-mvs-BLEND | | | | | 83.24 352 | 85.06 381 | 71.03 354 | 94.99 108 | 65.55 385 | | 74.09 379 | 75.51 379 | 44.57 384 | 94.46 348 | 59.57 377 | 87.54 368 | 84.24 372 |
|
MTMP | | | | | | | | 94.82 111 | 54.62 388 | | | | | | | | |
|
gm-plane-assit | | | | | | 87.08 375 | 59.33 382 | | | 71.22 349 | | 83.58 373 | | 97.20 290 | 73.95 342 | | |
|
test9_res | | | | | | | | | | | | | | | 88.16 201 | 98.40 176 | 97.83 182 |
|
TEST9 | | | | | | 96.45 183 | 89.46 98 | 90.60 251 | 96.92 164 | 79.09 306 | 90.49 282 | 94.39 248 | 91.31 135 | 98.88 131 | | | |
|
test_8 | | | | | | 96.37 185 | 89.14 105 | 90.51 254 | 96.89 167 | 79.37 301 | 90.42 284 | 94.36 250 | 91.20 141 | 98.82 142 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 87.06 223 | 98.36 187 | 97.98 164 |
|
agg_prior | | | | | | 96.20 202 | 88.89 111 | | 96.88 168 | | 90.21 287 | | | 98.78 155 | | | |
|
TestCases | | | | | 96.00 61 | 98.02 91 | 92.17 54 | | 98.43 14 | 90.48 145 | 95.04 160 | 96.74 127 | 92.54 108 | 97.86 253 | 85.11 250 | 98.98 115 | 97.98 164 |
|
test_prior4 | | | | | | | 89.91 89 | 90.74 247 | | | | | | | | | |
|
test_prior2 | | | | | | | | 90.21 263 | | 89.33 170 | 90.77 277 | 94.81 232 | 90.41 159 | | 88.21 197 | 98.55 163 | |
|
test_prior | | | | | 94.61 124 | 95.95 223 | 87.23 143 | | 97.36 129 | | | | | 98.68 175 | | | 97.93 170 |
|
旧先验2 | | | | | | | | 90.00 272 | | 68.65 361 | 92.71 236 | | | 96.52 310 | 85.15 247 | | |
|
新几何2 | | | | | | | | 90.02 271 | | | | | | | | | |
|
新几何1 | | | | | 93.17 180 | 97.16 142 | 87.29 141 | | 94.43 262 | 67.95 363 | 91.29 268 | 94.94 227 | 86.97 208 | 98.23 220 | 81.06 291 | 97.75 233 | 93.98 325 |
|
旧先验1 | | | | | | 96.20 202 | 84.17 202 | | 94.82 251 | | | 95.57 197 | 89.57 173 | | | 97.89 229 | 96.32 257 |
|
无先验 | | | | | | | | 89.94 273 | 95.75 222 | 70.81 353 | | | | 98.59 187 | 81.17 289 | | 94.81 303 |
|
原ACMM2 | | | | | | | | 89.34 288 | | | | | | | | | |
|
原ACMM1 | | | | | 92.87 191 | 96.91 154 | 84.22 200 | | 97.01 156 | 76.84 323 | 89.64 302 | 94.46 245 | 88.00 190 | 98.70 171 | 81.53 284 | 98.01 223 | 95.70 284 |
|
test222 | | | | | | 96.95 150 | 85.27 189 | 88.83 300 | 93.61 276 | 65.09 371 | 90.74 279 | 94.85 231 | 84.62 233 | | | 97.36 251 | 93.91 326 |
|
testdata2 | | | | | | | | | | | | | | 98.03 234 | 80.24 296 | | |
|
segment_acmp | | | | | | | | | | | | | 92.14 115 | | | | |
|
testdata | | | | | 91.03 254 | 96.87 156 | 82.01 225 | | 94.28 266 | 71.55 347 | 92.46 243 | 95.42 206 | 85.65 227 | 97.38 286 | 82.64 273 | 97.27 253 | 93.70 332 |
|
testdata1 | | | | | | | | 88.96 297 | | 88.44 191 | | | | | | | |
|
test12 | | | | | 94.43 139 | 95.95 223 | 86.75 156 | | 96.24 203 | | 89.76 300 | | 89.79 172 | 98.79 151 | | 97.95 226 | 97.75 191 |
|
plane_prior7 | | | | | | 97.71 110 | 88.68 115 | | | | | | | | | | |
|
plane_prior6 | | | | | | 97.21 140 | 88.23 126 | | | | | | 86.93 209 | | | | |
|
plane_prior5 | | | | | | | | | 97.81 93 | | | | | 98.95 124 | 89.26 177 | 98.51 170 | 98.60 113 |
|
plane_prior4 | | | | | | | | | | | | 95.59 193 | | | | | |
|
plane_prior3 | | | | | | | 88.43 124 | | | 90.35 150 | 93.31 211 | | | | | | |
|
plane_prior2 | | | | | | | | 94.56 123 | | 91.74 114 | | | | | | | |
|
plane_prior1 | | | | | | 97.38 132 | | | | | | | | | | | |
|
plane_prior | | | | | | | 88.12 127 | 93.01 166 | | 88.98 178 | | | | | | 98.06 218 | |
|
n2 | | | | | | | | | 0.00 393 | | | | | | | | |
|
nn | | | | | | | | | 0.00 393 | | | | | | | | |
|
door-mid | | | | | | | | | 92.13 308 | | | | | | | | |
|
lessismore_v0 | | | | | 93.87 159 | 98.05 86 | 83.77 208 | | 80.32 376 | | 97.13 57 | 97.91 53 | 77.49 292 | 99.11 100 | 92.62 90 | 98.08 217 | 98.74 93 |
|
LGP-MVS_train | | | | | 96.84 42 | 98.36 67 | 92.13 56 | | 98.25 30 | 91.78 110 | 97.07 59 | 97.22 94 | 96.38 13 | 99.28 76 | 92.07 101 | 99.59 29 | 99.11 45 |
|
test11 | | | | | | | | | 96.65 184 | | | | | | | | |
|
door | | | | | | | | | 91.26 317 | | | | | | | | |
|
HQP5-MVS | | | | | | | 84.89 192 | | | | | | | | | | |
|
HQP-NCC | | | | | | 96.36 187 | | 91.37 232 | | 87.16 217 | 88.81 311 | | | | | | |
|
ACMP_Plane | | | | | | 96.36 187 | | 91.37 232 | | 87.16 217 | 88.81 311 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 86.55 232 | | |
|
HQP4-MVS | | | | | | | | | | | 88.81 311 | | | 98.61 183 | | | 98.15 146 |
|
HQP3-MVS | | | | | | | | | 97.31 134 | | | | | | | 97.73 234 | |
|
HQP2-MVS | | | | | | | | | | | | | 84.76 231 | | | | |
|
NP-MVS | | | | | | 96.82 160 | 87.10 147 | | | | | 93.40 280 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 42.48 388 | 88.45 308 | | 67.22 366 | 83.56 356 | | 66.80 335 | | 72.86 349 | | 94.06 321 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 138 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.25 81 | |
|
Test By Simon | | | | | | | | | | | | | 90.61 155 | | | | |
|
ITE_SJBPF | | | | | 95.95 64 | 97.34 134 | 93.36 44 | | 96.55 191 | 91.93 99 | 94.82 168 | 95.39 209 | 91.99 119 | 97.08 294 | 85.53 243 | 97.96 225 | 97.41 213 |
|
DeepMVS_CX |  | | | | 53.83 365 | 70.38 387 | 64.56 377 | | 48.52 389 | 33.01 381 | 65.50 382 | 74.21 380 | 56.19 372 | 46.64 384 | 38.45 383 | 70.07 380 | 50.30 380 |
|