This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 1
LTVRE_ROB93.87 197.93 398.16 297.26 2798.81 2793.86 3299.07 298.98 797.01 1698.92 698.78 1495.22 4098.61 17296.85 499.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mamv498.21 297.86 399.26 198.24 7199.36 196.10 6399.32 298.75 299.58 298.70 1891.78 12899.88 198.60 199.67 2098.54 117
UniMVSNet_ETH3D97.13 697.72 495.35 8399.51 287.38 13397.70 897.54 11898.16 398.94 499.33 297.84 499.08 9690.73 14299.73 1399.59 12
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1097.41 1197.28 5698.46 3294.62 6498.84 13094.64 3499.53 3798.99 54
PS-CasMVS96.69 2197.43 694.49 12699.13 684.09 20596.61 3297.97 8197.91 698.64 1598.13 4295.24 3899.65 693.39 7299.84 399.72 2
DTE-MVSNet96.74 1897.43 694.67 11399.13 684.68 19496.51 3797.94 8798.14 498.67 1498.32 3695.04 4899.69 593.27 7799.82 799.62 10
ACMH88.36 1296.59 2897.43 694.07 14098.56 4185.33 18896.33 4998.30 2994.66 4598.72 1098.30 3797.51 598.00 23194.87 3199.59 2798.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2197.39 994.61 11699.16 484.50 19596.54 3498.05 6898.06 598.64 1598.25 3995.01 5199.65 692.95 8999.83 599.68 4
pmmvs696.80 1397.36 1095.15 9699.12 887.82 12896.68 2997.86 8996.10 3098.14 2699.28 397.94 398.21 21291.38 13199.69 1499.42 18
v7n96.82 1097.31 1195.33 8598.54 4686.81 14896.83 2298.07 6496.59 2398.46 1998.43 3492.91 10499.52 2196.25 1299.76 1099.65 8
UA-Net97.35 597.24 1297.69 598.22 7293.87 3198.42 698.19 4396.95 1795.46 14399.23 493.45 8499.57 1695.34 2999.89 299.63 9
Anonymous2023121196.60 2697.13 1395.00 9997.46 13086.35 16497.11 1898.24 3697.58 998.72 1098.97 793.15 9699.15 8793.18 8099.74 1299.50 16
WR-MVS_H96.60 2697.05 1495.24 9199.02 1286.44 16096.78 2698.08 6197.42 1098.48 1897.86 6291.76 13199.63 994.23 4299.84 399.66 6
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4993.11 7696.48 8997.36 9396.92 699.34 6394.31 4099.38 5798.92 70
ACMH+88.43 1196.48 3196.82 1695.47 8098.54 4689.06 10195.65 8298.61 1496.10 3098.16 2597.52 8096.90 798.62 17190.30 15699.60 2598.72 94
CP-MVSNet96.19 4696.80 1794.38 13198.99 1683.82 20896.31 5297.53 12097.60 898.34 2197.52 8091.98 12499.63 993.08 8599.81 899.70 3
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 7694.15 5498.93 599.07 588.07 19199.57 1695.86 1599.69 1499.46 17
iter_conf0595.52 6996.74 1991.88 22297.82 10177.68 30997.26 1398.91 897.14 1499.22 398.48 3087.01 21099.71 395.43 2499.38 5798.25 136
mvs_tets96.83 996.71 2097.17 2898.83 2492.51 4996.58 3397.61 11187.57 21098.80 998.90 996.50 999.59 1596.15 1399.47 4199.40 20
RE-MVS-def96.66 2198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12395.40 2993.49 6298.84 13198.00 158
APD-MVS_3200maxsize96.82 1096.65 2297.32 2697.95 9393.82 3496.31 5298.25 3395.51 3896.99 6997.05 12295.63 2399.39 5093.31 7498.88 12698.75 89
APDe-MVScopyleft96.46 3296.64 2395.93 6197.68 11689.38 9596.90 2198.41 2192.52 8497.43 4897.92 5895.11 4599.50 2394.45 3699.30 7098.92 70
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVScopyleft96.81 1296.62 2497.36 2498.89 2093.53 3997.51 1098.44 1892.35 8995.95 11596.41 16496.71 899.42 3493.99 4799.36 5999.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2998.38 6094.31 1896.79 2598.32 2696.69 2096.86 7497.56 7595.48 2798.77 14790.11 16599.44 4898.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post96.84 896.60 2697.56 1198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12394.85 5899.42 3493.49 6298.84 13198.00 158
nrg03096.32 4196.55 2795.62 7597.83 10088.55 11495.77 7798.29 3292.68 8098.03 2897.91 5995.13 4398.95 11693.85 5099.49 4099.36 23
testf196.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
APD_test296.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
test_djsdf96.62 2496.49 2897.01 3398.55 4491.77 6097.15 1597.37 12988.98 17798.26 2498.86 1093.35 8999.60 1196.41 999.45 4599.66 6
SR-MVS96.70 2096.42 3197.54 1298.05 8394.69 1296.13 6298.07 6495.17 4096.82 7696.73 14795.09 4799.43 3392.99 8898.71 15198.50 120
anonymousdsp96.74 1896.42 3197.68 798.00 8994.03 2696.97 1997.61 11187.68 20898.45 2098.77 1594.20 7499.50 2396.70 699.40 5599.53 14
jajsoiax96.59 2896.42 3197.12 3098.76 3092.49 5096.44 4397.42 12786.96 21998.71 1298.72 1795.36 3299.56 1995.92 1499.45 4599.32 25
SED-MVS96.00 5296.41 3494.76 10898.51 4986.97 14495.21 9998.10 5891.95 9997.63 3697.25 10396.48 1099.35 6093.29 7599.29 7397.95 166
MTAPA96.65 2396.38 3597.47 1698.95 1894.05 2495.88 7497.62 10994.46 5096.29 9896.94 12993.56 8199.37 5894.29 4199.42 5098.99 54
DVP-MVS++95.93 5396.34 3694.70 11196.54 17986.66 15498.45 498.22 4093.26 7497.54 4197.36 9393.12 9799.38 5693.88 4898.68 15598.04 153
ACMMPcopyleft96.61 2596.34 3697.43 1998.61 3793.88 3096.95 2098.18 4592.26 9296.33 9496.84 13795.10 4699.40 4793.47 6599.33 6599.02 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP96.40 3896.30 3896.71 4198.63 3491.96 5695.70 7998.01 7693.34 7396.64 8496.57 15694.99 5299.36 5993.48 6499.34 6398.82 80
Skip Steuart: Steuart Systems R&D Blog.
ANet_high94.83 10096.28 3990.47 27696.65 17073.16 35394.33 13298.74 1396.39 2798.09 2798.93 893.37 8898.70 16090.38 15199.68 1799.53 14
TranMVSNet+NR-MVSNet96.07 5096.26 4095.50 7998.26 6887.69 13093.75 15397.86 8995.96 3597.48 4697.14 11495.33 3499.44 3090.79 14099.76 1099.38 21
LPG-MVS_test96.38 4096.23 4196.84 3998.36 6392.13 5395.33 9498.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
test_040295.73 6296.22 4294.26 13498.19 7485.77 17893.24 16997.24 14596.88 1997.69 3497.77 6594.12 7599.13 9191.54 12799.29 7397.88 174
ZNCC-MVS96.42 3696.20 4397.07 3198.80 2992.79 4796.08 6598.16 5291.74 11695.34 15096.36 17295.68 2199.44 3094.41 3899.28 7898.97 60
DVP-MVScopyleft95.82 5996.18 4494.72 11098.51 4986.69 15295.20 10197.00 16191.85 10597.40 5297.35 9695.58 2499.34 6393.44 6899.31 6898.13 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
XVS96.49 3096.18 4497.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19196.49 15894.56 6699.39 5093.57 5899.05 10498.93 66
HFP-MVS96.39 3996.17 4697.04 3298.51 4993.37 4096.30 5697.98 7992.35 8995.63 13396.47 15995.37 3099.27 7593.78 5299.14 9798.48 123
ACMMPR96.46 3296.14 4797.41 2198.60 3893.82 3496.30 5697.96 8292.35 8995.57 13696.61 15494.93 5699.41 4093.78 5299.15 9699.00 52
ACMMP_NAP96.21 4596.12 4896.49 4998.90 1991.42 6494.57 12498.03 7390.42 15196.37 9297.35 9695.68 2199.25 7794.44 3799.34 6398.80 83
test_fmvsmconf0.01_n95.90 5596.09 4995.31 8897.30 13789.21 9794.24 13598.76 1286.25 22697.56 4098.66 1995.73 1998.44 19397.35 398.99 11198.27 135
region2R96.41 3796.09 4997.38 2398.62 3593.81 3696.32 5197.96 8292.26 9295.28 15596.57 15695.02 5099.41 4093.63 5699.11 9998.94 64
CP-MVS96.44 3596.08 5197.54 1298.29 6594.62 1596.80 2498.08 6192.67 8295.08 16896.39 16994.77 6099.42 3493.17 8199.44 4898.58 116
ACMM88.83 996.30 4396.07 5296.97 3598.39 5992.95 4594.74 11698.03 7390.82 13997.15 5996.85 13596.25 1499.00 10893.10 8399.33 6598.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS96.46 3296.05 5397.69 598.62 3594.65 1496.45 4197.74 10292.59 8395.47 14196.68 15094.50 6899.42 3493.10 8399.26 8098.99 54
PS-MVSNAJss96.01 5196.04 5495.89 6698.82 2588.51 11595.57 8897.88 8888.72 18398.81 898.86 1090.77 15499.60 1195.43 2499.53 3799.57 13
TransMVSNet (Re)95.27 8796.04 5492.97 18198.37 6281.92 23495.07 10696.76 18293.97 5897.77 3298.57 2495.72 2097.90 23888.89 19999.23 8499.08 46
GST-MVS96.24 4495.99 5697.00 3498.65 3392.71 4895.69 8198.01 7692.08 9795.74 12896.28 17895.22 4099.42 3493.17 8199.06 10198.88 75
pm-mvs195.43 7495.94 5793.93 14798.38 6085.08 19195.46 9197.12 15491.84 10897.28 5698.46 3295.30 3697.71 26390.17 16399.42 5098.99 54
PGM-MVS96.32 4195.94 5797.43 1998.59 4093.84 3395.33 9498.30 2991.40 12795.76 12596.87 13495.26 3799.45 2992.77 9199.21 8899.00 52
tt080595.42 7795.93 5993.86 15198.75 3188.47 11697.68 994.29 27296.48 2495.38 14693.63 28494.89 5797.94 23795.38 2796.92 27195.17 310
MP-MVS-pluss96.08 4995.92 6096.57 4599.06 1091.21 6693.25 16898.32 2687.89 20196.86 7497.38 8995.55 2699.39 5095.47 2299.47 4199.11 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVSMamba_PlusPlus94.82 10195.89 6191.62 23497.82 10178.88 28896.52 3597.60 11397.14 1494.23 19498.48 3087.01 21099.71 395.43 2498.80 14096.28 267
SF-MVS95.88 5795.88 6295.87 6798.12 7789.65 8795.58 8798.56 1691.84 10896.36 9396.68 15094.37 7299.32 6992.41 10299.05 10498.64 109
DPE-MVScopyleft95.89 5695.88 6295.92 6397.93 9489.83 8593.46 16298.30 2992.37 8797.75 3396.95 12895.14 4299.51 2291.74 11899.28 7898.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FC-MVSNet-test95.32 8195.88 6293.62 15998.49 5681.77 23595.90 7398.32 2693.93 5997.53 4397.56 7588.48 18499.40 4792.91 9099.83 599.68 4
DP-MVS95.62 6595.84 6594.97 10097.16 14488.62 11094.54 12897.64 10796.94 1896.58 8797.32 10093.07 10098.72 15390.45 14898.84 13197.57 201
Anonymous2024052995.50 7195.83 6694.50 12497.33 13685.93 17495.19 10396.77 18196.64 2297.61 3998.05 4693.23 9398.79 14188.60 20599.04 10998.78 85
LS3D96.11 4895.83 6696.95 3794.75 28194.20 2097.34 1297.98 7997.31 1295.32 15196.77 13993.08 9999.20 8391.79 11798.16 20697.44 211
Gipumacopyleft95.31 8495.80 6893.81 15497.99 9290.91 7196.42 4497.95 8496.69 2091.78 27598.85 1291.77 12995.49 34491.72 11999.08 10095.02 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
3Dnovator+92.74 295.86 5895.77 6996.13 5396.81 16390.79 7496.30 5697.82 9496.13 2994.74 18297.23 10591.33 13899.16 8693.25 7898.30 19298.46 124
SD-MVS95.19 8895.73 7093.55 16296.62 17488.88 10694.67 11898.05 6891.26 12997.25 5896.40 16595.42 2894.36 36492.72 9599.19 9097.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n95.61 6695.72 7195.26 8996.85 15989.20 9893.51 16098.60 1585.68 23997.42 5098.30 3795.34 3398.39 19496.85 498.98 11298.19 141
MP-MVScopyleft96.14 4795.68 7297.51 1498.81 2794.06 2296.10 6397.78 10092.73 7993.48 21796.72 14894.23 7399.42 3491.99 11099.29 7399.05 49
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VPA-MVSNet95.14 8995.67 7393.58 16197.76 10683.15 21894.58 12397.58 11593.39 7197.05 6598.04 4893.25 9298.51 18589.75 17599.59 2799.08 46
casdiffmvs_mvgpermissive95.10 9095.62 7493.53 16596.25 20583.23 21592.66 18898.19 4393.06 7797.49 4597.15 11394.78 5998.71 15992.27 10498.72 14998.65 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet95.44 7395.62 7494.89 10296.93 15487.69 13096.48 4099.14 593.93 5992.77 24594.52 25693.95 7899.49 2693.62 5799.22 8797.51 206
CS-MVS95.77 6095.58 7696.37 5196.84 16091.72 6296.73 2899.06 694.23 5292.48 25494.79 24693.56 8199.49 2693.47 6599.05 10497.89 173
SMA-MVScopyleft95.77 6095.54 7796.47 5098.27 6791.19 6795.09 10497.79 9986.48 22297.42 5097.51 8394.47 7199.29 7193.55 6099.29 7398.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n95.43 7495.50 7895.22 9396.48 18689.19 9993.23 17098.36 2385.61 24296.92 7298.02 5095.23 3998.38 19796.69 798.95 12198.09 149
Vis-MVSNetpermissive95.50 7195.48 7995.56 7898.11 7889.40 9495.35 9298.22 4092.36 8894.11 19698.07 4592.02 12299.44 3093.38 7397.67 23997.85 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS95.61 6695.45 8096.08 5498.49 5691.00 6992.65 18997.33 13790.05 15696.77 7996.85 13595.04 4898.56 17992.77 9199.06 10198.70 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet195.52 6995.45 8095.72 7299.14 589.02 10296.23 5996.87 17393.73 6397.87 2998.49 2990.73 15899.05 10186.43 24599.60 2599.10 45
ACMP88.15 1395.71 6395.43 8296.54 4698.17 7591.73 6194.24 13598.08 6189.46 16696.61 8696.47 15995.85 1899.12 9290.45 14899.56 3498.77 88
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD_test195.91 5495.42 8397.36 2498.82 2596.62 795.64 8397.64 10793.38 7295.89 12097.23 10593.35 8997.66 26688.20 20898.66 15997.79 185
test_fmvsmvis_n_192095.08 9195.40 8494.13 13896.66 16987.75 12993.44 16498.49 1785.57 24398.27 2297.11 11794.11 7697.75 25996.26 1198.72 14996.89 240
FIs94.90 9795.35 8593.55 16298.28 6681.76 23695.33 9498.14 5393.05 7897.07 6297.18 11187.65 19899.29 7191.72 11999.69 1499.61 11
XVG-ACMP-BASELINE95.68 6495.34 8696.69 4298.40 5893.04 4294.54 12898.05 6890.45 15096.31 9696.76 14192.91 10498.72 15391.19 13299.42 5098.32 130
DeepC-MVS91.39 495.43 7495.33 8795.71 7397.67 11790.17 8193.86 15098.02 7587.35 21296.22 10497.99 5394.48 7099.05 10192.73 9499.68 1797.93 168
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMVScopyleft87.21 1494.97 9495.33 8793.91 14898.97 1797.16 395.54 8995.85 22596.47 2593.40 22097.46 8695.31 3595.47 34586.18 24998.78 14489.11 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v894.65 10895.29 8992.74 19196.65 17079.77 26994.59 12197.17 14991.86 10497.47 4797.93 5588.16 18999.08 9694.32 3999.47 4199.38 21
NR-MVSNet95.28 8595.28 9095.26 8997.75 10787.21 13795.08 10597.37 12993.92 6197.65 3595.90 19690.10 17199.33 6890.11 16599.66 2199.26 28
v1094.68 10795.27 9192.90 18696.57 17680.15 25494.65 12097.57 11690.68 14397.43 4898.00 5188.18 18899.15 8794.84 3299.55 3599.41 19
UniMVSNet_NR-MVSNet95.35 7995.21 9295.76 7097.69 11588.59 11292.26 21197.84 9294.91 4396.80 7795.78 20590.42 16399.41 4091.60 12399.58 3199.29 27
SixPastTwentyTwo94.91 9695.21 9293.98 14298.52 4883.19 21795.93 7194.84 25994.86 4498.49 1798.74 1681.45 27299.60 1194.69 3399.39 5699.15 37
UniMVSNet (Re)95.32 8195.15 9495.80 6997.79 10588.91 10492.91 17998.07 6493.46 7096.31 9695.97 19590.14 16899.34 6392.11 10599.64 2399.16 36
FMVSNet194.84 9995.13 9593.97 14397.60 12084.29 19895.99 6796.56 19492.38 8697.03 6698.53 2690.12 16998.98 10988.78 20199.16 9598.65 104
DU-MVS95.28 8595.12 9695.75 7197.75 10788.59 11292.58 19197.81 9593.99 5696.80 7795.90 19690.10 17199.41 4091.60 12399.58 3199.26 28
CS-MVS-test95.32 8195.10 9795.96 5796.86 15890.75 7596.33 4999.20 393.99 5691.03 28893.73 28293.52 8399.55 2091.81 11699.45 4597.58 200
Baseline_NR-MVSNet94.47 11595.09 9892.60 20198.50 5580.82 25092.08 21596.68 18693.82 6296.29 9898.56 2590.10 17197.75 25990.10 16799.66 2199.24 30
SDMVSNet94.43 11795.02 9992.69 19397.93 9482.88 22391.92 22495.99 22293.65 6895.51 13898.63 2194.60 6596.48 31987.57 22399.35 6098.70 98
dcpmvs_293.96 13795.01 10090.82 26897.60 12074.04 34893.68 15798.85 989.80 16197.82 3097.01 12691.14 14899.21 8090.56 14698.59 16499.19 34
XVG-OURS-SEG-HR95.38 7895.00 10196.51 4798.10 7994.07 2192.46 19798.13 5490.69 14293.75 21096.25 18298.03 297.02 30092.08 10795.55 30398.45 125
3Dnovator92.54 394.80 10294.90 10294.47 12795.47 25987.06 14196.63 3197.28 14391.82 11194.34 19397.41 8790.60 16198.65 16992.47 10198.11 21097.70 193
RPSCF95.58 6894.89 10397.62 897.58 12296.30 895.97 7097.53 12092.42 8593.41 21897.78 6391.21 14397.77 25691.06 13497.06 26398.80 83
tfpnnormal94.27 12494.87 10492.48 20597.71 11280.88 24994.55 12795.41 24493.70 6496.67 8397.72 6691.40 13798.18 21687.45 22599.18 9298.36 128
9.1494.81 10597.49 12794.11 14298.37 2287.56 21195.38 14696.03 19294.66 6299.08 9690.70 14398.97 117
casdiffmvspermissive94.32 12394.80 10692.85 18896.05 22181.44 24192.35 20498.05 6891.53 12495.75 12796.80 13893.35 8998.49 18691.01 13798.32 19198.64 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline94.26 12594.80 10692.64 19596.08 21980.99 24793.69 15698.04 7290.80 14094.89 17696.32 17493.19 9498.48 19091.68 12198.51 17398.43 126
TSAR-MVS + MP.94.96 9594.75 10895.57 7798.86 2288.69 10796.37 4696.81 17785.23 24894.75 18197.12 11691.85 12699.40 4793.45 6798.33 18998.62 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG94.69 10694.75 10894.52 12397.55 12487.87 12695.01 10997.57 11692.68 8096.20 10693.44 29091.92 12598.78 14489.11 19399.24 8396.92 238
test_fmvsm_n_192094.72 10494.74 11094.67 11396.30 20088.62 11093.19 17198.07 6485.63 24197.08 6197.35 9690.86 15197.66 26695.70 1698.48 17697.74 191
KD-MVS_self_test94.10 13294.73 11192.19 21297.66 11879.49 27594.86 11397.12 15489.59 16596.87 7397.65 6990.40 16598.34 20289.08 19499.35 6098.75 89
sasdasda94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
canonicalmvs94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
APD-MVScopyleft95.00 9394.69 11295.93 6197.38 13290.88 7294.59 12197.81 9589.22 17395.46 14396.17 18793.42 8799.34 6389.30 18398.87 12997.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE94.55 11294.68 11594.15 13697.23 13985.11 19094.14 14197.34 13688.71 18495.26 15695.50 21794.65 6399.12 9290.94 13898.40 17998.23 137
MGCFI-Net94.44 11694.67 11693.75 15595.56 25585.47 18595.25 9898.24 3691.53 12495.04 16992.21 31894.94 5598.54 18291.56 12697.66 24097.24 224
EG-PatchMatch MVS94.54 11394.67 11694.14 13797.87 9986.50 15692.00 21996.74 18388.16 19796.93 7197.61 7293.04 10197.90 23891.60 12398.12 20998.03 156
MSP-MVS95.34 8094.63 11897.48 1598.67 3294.05 2496.41 4598.18 4591.26 12995.12 16495.15 22986.60 22199.50 2393.43 7196.81 27598.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LCM-MVSNet-Re94.20 12994.58 11993.04 17895.91 23183.13 21993.79 15299.19 492.00 9898.84 798.04 4893.64 8099.02 10681.28 30198.54 16996.96 237
AllTest94.88 9894.51 12096.00 5598.02 8792.17 5195.26 9798.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
fmvsm_s_conf0.1_n94.19 13194.41 12193.52 16797.22 14184.37 19693.73 15495.26 24884.45 26395.76 12598.00 5191.85 12697.21 28895.62 1797.82 23198.98 58
sd_testset93.94 13894.39 12292.61 20097.93 9483.24 21493.17 17295.04 25393.65 6895.51 13898.63 2194.49 6995.89 33781.72 29799.35 6098.70 98
HPM-MVS++copyleft95.02 9294.39 12296.91 3897.88 9793.58 3894.09 14396.99 16391.05 13492.40 25995.22 22891.03 15099.25 7792.11 10598.69 15497.90 171
fmvsm_s_conf0.1_n_a94.26 12594.37 12493.95 14697.36 13485.72 18094.15 13995.44 24183.25 27695.51 13898.05 4692.54 11397.19 29195.55 2097.46 25098.94 64
VDD-MVS94.37 11994.37 12494.40 13097.49 12786.07 17193.97 14793.28 29194.49 4896.24 10297.78 6387.99 19498.79 14188.92 19799.14 9798.34 129
IS-MVSNet94.49 11494.35 12694.92 10198.25 7086.46 15997.13 1794.31 27196.24 2896.28 10096.36 17282.88 25599.35 6088.19 20999.52 3998.96 62
CNVR-MVS94.58 11194.29 12795.46 8196.94 15289.35 9691.81 23296.80 17889.66 16393.90 20895.44 22092.80 10898.72 15392.74 9398.52 17198.32 130
EI-MVSNet-Vis-set94.36 12094.28 12894.61 11692.55 32885.98 17392.44 19994.69 26593.70 6496.12 11095.81 20191.24 14198.86 12793.76 5598.22 20198.98 58
IterMVS-LS93.78 14294.28 12892.27 20996.27 20279.21 28291.87 22896.78 17991.77 11496.57 8897.07 12087.15 20798.74 15191.99 11099.03 11098.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet-UG-set94.35 12194.27 13094.59 12092.46 33185.87 17692.42 20194.69 26593.67 6796.13 10995.84 20091.20 14498.86 12793.78 5298.23 19999.03 50
VDDNet94.03 13494.27 13093.31 17398.87 2182.36 22995.51 9091.78 32197.19 1396.32 9598.60 2384.24 24498.75 14887.09 23298.83 13698.81 82
fmvsm_s_conf0.5_n94.00 13694.20 13293.42 17196.69 16784.37 19693.38 16695.13 25184.50 26295.40 14597.55 7991.77 12997.20 28995.59 1897.79 23298.69 101
balanced_conf0393.45 15094.17 13391.28 24995.81 23978.40 29696.20 6097.48 12488.56 18995.29 15497.20 11085.56 23499.21 8092.52 10098.91 12396.24 271
MM94.41 11894.14 13495.22 9395.84 23587.21 13794.31 13490.92 32994.48 4992.80 24397.52 8085.27 23599.49 2696.58 899.57 3398.97 60
XVG-OURS94.72 10494.12 13596.50 4898.00 8994.23 1991.48 23898.17 4990.72 14195.30 15296.47 15987.94 19596.98 30191.41 13097.61 24398.30 133
CPTT-MVS94.74 10394.12 13596.60 4498.15 7693.01 4395.84 7597.66 10689.21 17493.28 22495.46 21888.89 18298.98 10989.80 17298.82 13797.80 184
fmvsm_s_conf0.5_n_a94.02 13594.08 13793.84 15296.72 16685.73 17993.65 15895.23 24983.30 27495.13 16397.56 7592.22 11897.17 29295.51 2197.41 25298.64 109
HQP_MVS94.26 12593.93 13895.23 9297.71 11288.12 12194.56 12597.81 9591.74 11693.31 22195.59 21286.93 21498.95 11689.26 18898.51 17398.60 114
MSLP-MVS++93.25 15893.88 13991.37 24396.34 19582.81 22493.11 17397.74 10289.37 16994.08 19895.29 22790.40 16596.35 32690.35 15398.25 19794.96 319
fmvsm_l_conf0.5_n93.79 14193.81 14093.73 15696.16 21186.26 16692.46 19796.72 18481.69 29895.77 12497.11 11790.83 15397.82 24995.58 1997.99 22197.11 229
v114493.50 14793.81 14092.57 20296.28 20179.61 27291.86 23096.96 16486.95 22095.91 11896.32 17487.65 19898.96 11493.51 6198.88 12699.13 39
PHI-MVS94.34 12293.80 14295.95 5895.65 24991.67 6394.82 11497.86 8987.86 20293.04 23694.16 26791.58 13398.78 14490.27 15898.96 11997.41 212
v119293.49 14893.78 14392.62 19996.16 21179.62 27191.83 23197.22 14786.07 23196.10 11196.38 17087.22 20599.02 10694.14 4498.88 12699.22 31
VPNet93.08 16293.76 14491.03 25898.60 3875.83 33491.51 23795.62 23091.84 10895.74 12897.10 11989.31 17998.32 20385.07 26499.06 10198.93 66
WR-MVS93.49 14893.72 14592.80 19097.57 12380.03 26090.14 27695.68 22993.70 6496.62 8595.39 22587.21 20699.04 10487.50 22499.64 2399.33 24
v124093.29 15493.71 14692.06 21996.01 22677.89 30491.81 23297.37 12985.12 25296.69 8296.40 16586.67 21999.07 10094.51 3598.76 14699.22 31
OMC-MVS94.22 12893.69 14795.81 6897.25 13891.27 6592.27 21097.40 12887.10 21894.56 18695.42 22193.74 7998.11 22186.62 23998.85 13098.06 150
EPP-MVSNet93.91 13993.68 14894.59 12098.08 8085.55 18497.44 1194.03 27794.22 5394.94 17396.19 18482.07 26799.57 1687.28 22998.89 12498.65 104
fmvsm_l_conf0.5_n_a93.59 14693.63 14993.49 16996.10 21785.66 18292.32 20696.57 19381.32 30195.63 13397.14 11490.19 16797.73 26295.37 2898.03 21797.07 230
v2v48293.29 15493.63 14992.29 20896.35 19478.82 29191.77 23496.28 20688.45 19095.70 13296.26 18186.02 22798.90 12093.02 8698.81 13999.14 38
v192192093.26 15693.61 15192.19 21296.04 22578.31 29891.88 22797.24 14585.17 25096.19 10896.19 18486.76 21899.05 10194.18 4398.84 13199.22 31
V4293.43 15193.58 15292.97 18195.34 26581.22 24492.67 18796.49 19987.25 21496.20 10696.37 17187.32 20498.85 12992.39 10398.21 20298.85 79
Anonymous2024052192.86 17293.57 15390.74 27096.57 17675.50 33694.15 13995.60 23189.38 16895.90 11997.90 6180.39 28197.96 23592.60 9899.68 1798.75 89
DeepPCF-MVS90.46 694.20 12993.56 15496.14 5295.96 22892.96 4489.48 29697.46 12585.14 25196.23 10395.42 22193.19 9498.08 22390.37 15298.76 14697.38 218
v14419293.20 16193.54 15592.16 21696.05 22178.26 29991.95 22097.14 15184.98 25695.96 11496.11 18887.08 20999.04 10493.79 5198.84 13199.17 35
NCCC94.08 13393.54 15595.70 7496.49 18489.90 8492.39 20396.91 17090.64 14492.33 26594.60 25390.58 16298.96 11490.21 16297.70 23798.23 137
DeepC-MVS_fast89.96 793.73 14393.44 15794.60 11996.14 21487.90 12593.36 16797.14 15185.53 24493.90 20895.45 21991.30 14098.59 17689.51 17898.62 16097.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR93.63 14593.42 15894.26 13496.65 17086.96 14689.30 30396.23 21088.36 19393.57 21594.60 25393.45 8497.77 25690.23 16198.38 18398.03 156
v14892.87 17193.29 15991.62 23496.25 20577.72 30791.28 24395.05 25289.69 16295.93 11796.04 19187.34 20398.38 19790.05 16897.99 22198.78 85
MVS_Test92.57 18393.29 15990.40 27993.53 31175.85 33292.52 19396.96 16488.73 18292.35 26296.70 14990.77 15498.37 20192.53 9995.49 30596.99 236
MVS_111021_LR93.66 14493.28 16194.80 10696.25 20590.95 7090.21 27395.43 24387.91 19993.74 21294.40 25892.88 10696.38 32490.39 15098.28 19397.07 230
K. test v393.37 15293.27 16293.66 15898.05 8382.62 22594.35 13186.62 35996.05 3297.51 4498.85 1276.59 31699.65 693.21 7998.20 20498.73 93
EI-MVSNet92.99 16593.26 16392.19 21292.12 34179.21 28292.32 20694.67 26791.77 11495.24 15995.85 19887.14 20898.49 18691.99 11098.26 19598.86 76
XXY-MVS92.58 18193.16 16490.84 26797.75 10779.84 26591.87 22896.22 21285.94 23395.53 13797.68 6792.69 11094.48 36083.21 28097.51 24698.21 139
SSC-MVS90.16 23992.96 16581.78 37897.88 9748.48 41090.75 25487.69 35196.02 3496.70 8197.63 7185.60 23397.80 25185.73 25398.60 16399.06 48
bld_raw_conf0392.59 18092.96 16591.47 24095.85 23478.88 28896.52 3597.60 11383.31 27394.23 19496.75 14384.27 24399.26 7689.30 18398.80 14096.28 267
VNet92.67 17892.96 16591.79 22696.27 20280.15 25491.95 22094.98 25592.19 9594.52 18896.07 19087.43 20297.39 28284.83 26698.38 18397.83 180
GBi-Net93.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
test193.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
alignmvs93.26 15692.85 17094.50 12495.70 24587.45 13293.45 16395.76 22691.58 12195.25 15892.42 31681.96 26998.72 15391.61 12297.87 22997.33 220
QAPM92.88 16992.77 17193.22 17695.82 23783.31 21296.45 4197.35 13583.91 26893.75 21096.77 13989.25 18098.88 12384.56 27097.02 26597.49 207
TinyColmap92.00 19792.76 17289.71 29695.62 25277.02 31690.72 25696.17 21587.70 20795.26 15696.29 17692.54 11396.45 32181.77 29598.77 14595.66 299
ETV-MVS92.99 16592.74 17393.72 15795.86 23386.30 16592.33 20597.84 9291.70 11992.81 24286.17 38392.22 11899.19 8488.03 21697.73 23495.66 299
Effi-MVS+92.79 17392.74 17392.94 18495.10 26983.30 21394.00 14597.53 12091.36 12889.35 31890.65 34694.01 7798.66 16687.40 22795.30 31296.88 242
FMVSNet292.78 17492.73 17592.95 18395.40 26181.98 23394.18 13895.53 23988.63 18596.05 11297.37 9081.31 27498.81 13787.38 22898.67 15798.06 150
patch_mono-292.46 18592.72 17691.71 23096.65 17078.91 28788.85 31397.17 14983.89 26992.45 25696.76 14189.86 17597.09 29690.24 16098.59 16499.12 41
PM-MVS93.33 15392.67 17795.33 8596.58 17594.06 2292.26 21192.18 31285.92 23496.22 10496.61 15485.64 23295.99 33590.35 15398.23 19995.93 285
ab-mvs92.40 18792.62 17891.74 22897.02 14881.65 23795.84 7595.50 24086.95 22092.95 24097.56 7590.70 15997.50 27379.63 32097.43 25196.06 279
Effi-MVS+-dtu93.90 14092.60 17997.77 494.74 28296.67 694.00 14595.41 24489.94 15791.93 27492.13 32190.12 16998.97 11387.68 22297.48 24897.67 196
MCST-MVS92.91 16792.51 18094.10 13997.52 12585.72 18091.36 24297.13 15380.33 30992.91 24194.24 26391.23 14298.72 15389.99 16997.93 22697.86 176
Anonymous20240521192.58 18192.50 18192.83 18996.55 17883.22 21692.43 20091.64 32394.10 5595.59 13596.64 15281.88 27197.50 27385.12 26198.52 17197.77 187
UGNet93.08 16292.50 18194.79 10793.87 30587.99 12495.07 10694.26 27490.64 14487.33 35197.67 6886.89 21698.49 18688.10 21298.71 15197.91 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16492.41 18395.06 9895.82 23790.87 7390.97 24992.61 30688.04 19894.61 18593.79 28188.08 19097.81 25089.41 18098.39 18296.50 256
test_fmvs392.42 18692.40 18492.46 20793.80 30887.28 13593.86 15097.05 15876.86 33896.25 10198.66 1982.87 25691.26 38395.44 2396.83 27498.82 80
MVS_030492.88 16992.27 18594.69 11292.35 33286.03 17292.88 18189.68 33690.53 14791.52 27896.43 16282.52 26399.32 6995.01 3099.54 3698.71 97
MVSFormer92.18 19492.23 18692.04 22094.74 28280.06 25897.15 1597.37 12988.98 17788.83 32292.79 30577.02 30999.60 1196.41 996.75 27896.46 259
Fast-Effi-MVS+-dtu92.77 17592.16 18794.58 12294.66 28788.25 11992.05 21696.65 18889.62 16490.08 30491.23 33492.56 11298.60 17486.30 24796.27 28996.90 239
DELS-MVS92.05 19692.16 18791.72 22994.44 29180.13 25687.62 32897.25 14487.34 21392.22 26793.18 29789.54 17898.73 15289.67 17698.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WB-MVS89.44 25792.15 18981.32 37997.73 11048.22 41189.73 28987.98 34995.24 3996.05 11296.99 12785.18 23696.95 30282.45 28997.97 22398.78 85
OpenMVScopyleft89.45 892.27 19292.13 19092.68 19494.53 29084.10 20495.70 7997.03 15982.44 29091.14 28796.42 16388.47 18598.38 19785.95 25097.47 24995.55 304
EIA-MVS92.35 18992.03 19193.30 17495.81 23983.97 20692.80 18398.17 4987.71 20689.79 31287.56 37391.17 14799.18 8587.97 21797.27 25696.77 246
LF4IMVS92.72 17692.02 19294.84 10595.65 24991.99 5592.92 17896.60 19085.08 25492.44 25793.62 28586.80 21796.35 32686.81 23498.25 19796.18 274
h-mvs3392.89 16891.99 19395.58 7696.97 15090.55 7793.94 14894.01 28089.23 17193.95 20596.19 18476.88 31299.14 8991.02 13595.71 30097.04 234
CANet92.38 18891.99 19393.52 16793.82 30783.46 21191.14 24597.00 16189.81 16086.47 35594.04 27087.90 19699.21 8089.50 17998.27 19497.90 171
diffmvspermissive91.74 20091.93 19591.15 25693.06 31878.17 30088.77 31697.51 12386.28 22592.42 25893.96 27588.04 19297.46 27690.69 14496.67 28097.82 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon92.31 19091.88 19693.60 16097.18 14386.87 14791.10 24797.37 12984.92 25792.08 27194.08 26988.59 18398.20 21383.50 27798.14 20895.73 294
FA-MVS(test-final)91.81 19991.85 19791.68 23294.95 27279.99 26296.00 6693.44 28987.80 20394.02 20397.29 10177.60 30098.45 19288.04 21597.49 24796.61 250
train_agg92.71 17791.83 19895.35 8396.45 18789.46 9090.60 26096.92 16879.37 31890.49 29594.39 25991.20 14498.88 12388.66 20498.43 17897.72 192
CDPH-MVS92.67 17891.83 19895.18 9596.94 15288.46 11790.70 25797.07 15777.38 33392.34 26495.08 23492.67 11198.88 12385.74 25298.57 16698.20 140
TAPA-MVS88.58 1092.49 18491.75 20094.73 10996.50 18389.69 8692.91 17997.68 10578.02 33192.79 24494.10 26890.85 15297.96 23584.76 26898.16 20696.54 251
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
API-MVS91.52 20691.61 20191.26 25094.16 29686.26 16694.66 11994.82 26091.17 13292.13 27091.08 33790.03 17497.06 29979.09 32797.35 25590.45 385
IterMVS-SCA-FT91.65 20291.55 20291.94 22193.89 30479.22 28187.56 33193.51 28791.53 12495.37 14896.62 15378.65 29198.90 12091.89 11494.95 32197.70 193
xiu_mvs_v1_base_debu91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
xiu_mvs_v1_base_debi91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
HQP-MVS92.09 19591.49 20693.88 14996.36 19184.89 19291.37 23997.31 13887.16 21588.81 32493.40 29184.76 24098.60 17486.55 24297.73 23498.14 146
c3_l91.32 21191.42 20791.00 26192.29 33476.79 32287.52 33496.42 20285.76 23794.72 18493.89 27882.73 25998.16 21890.93 13998.55 16798.04 153
CLD-MVS91.82 19891.41 20893.04 17896.37 18983.65 21086.82 34797.29 14184.65 26192.27 26689.67 35592.20 12097.85 24883.95 27599.47 4197.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary91.63 20391.36 20992.47 20695.56 25586.36 16392.24 21396.27 20788.88 18189.90 30992.69 30891.65 13298.32 20377.38 33997.64 24192.72 369
testgi90.38 23191.34 21087.50 33497.49 12771.54 36389.43 29895.16 25088.38 19294.54 18794.68 25092.88 10693.09 37571.60 37597.85 23097.88 174
mvs_anonymous90.37 23291.30 21187.58 33392.17 34068.00 37889.84 28694.73 26483.82 27093.22 23097.40 8887.54 20097.40 28187.94 21895.05 31997.34 219
hse-mvs292.24 19391.20 21295.38 8296.16 21190.65 7692.52 19392.01 31989.23 17193.95 20592.99 30076.88 31298.69 16291.02 13596.03 29296.81 244
PVSNet_Blended_VisFu91.63 20391.20 21292.94 18497.73 11083.95 20792.14 21497.46 12578.85 32792.35 26294.98 23784.16 24599.08 9686.36 24696.77 27795.79 292
CNLPA91.72 20191.20 21293.26 17596.17 21091.02 6891.14 24595.55 23890.16 15590.87 28993.56 28886.31 22394.40 36379.92 31997.12 26194.37 337
LFMVS91.33 21091.16 21591.82 22596.27 20279.36 27795.01 10985.61 37096.04 3394.82 17897.06 12172.03 33498.46 19184.96 26598.70 15397.65 197
F-COLMAP92.28 19191.06 21695.95 5897.52 12591.90 5793.53 15997.18 14883.98 26788.70 33094.04 27088.41 18698.55 18180.17 31395.99 29497.39 216
BH-untuned90.68 22090.90 21790.05 29095.98 22779.57 27390.04 27994.94 25787.91 19994.07 19993.00 29987.76 19797.78 25579.19 32695.17 31692.80 368
MDA-MVSNet-bldmvs91.04 21390.88 21891.55 23794.68 28680.16 25385.49 36892.14 31590.41 15294.93 17495.79 20285.10 23796.93 30585.15 25994.19 34297.57 201
Fast-Effi-MVS+91.28 21290.86 21992.53 20495.45 26082.53 22689.25 30696.52 19885.00 25589.91 30888.55 36792.94 10298.84 13084.72 26995.44 30796.22 272
test20.0390.80 21690.85 22090.63 27395.63 25179.24 28089.81 28792.87 29789.90 15894.39 19096.40 16585.77 22895.27 35273.86 36299.05 10497.39 216
PAPM_NR91.03 21490.81 22191.68 23296.73 16581.10 24693.72 15596.35 20588.19 19588.77 32892.12 32285.09 23897.25 28682.40 29093.90 34796.68 249
new-patchmatchnet88.97 26990.79 22283.50 37394.28 29555.83 40885.34 37093.56 28686.18 22995.47 14195.73 20883.10 25296.51 31885.40 25698.06 21498.16 144
wuyk23d87.83 28990.79 22278.96 38490.46 37288.63 10992.72 18490.67 33291.65 12098.68 1397.64 7096.06 1577.53 40659.84 40099.41 5470.73 404
pmmvs-eth3d91.54 20590.73 22493.99 14195.76 24387.86 12790.83 25293.98 28178.23 33094.02 20396.22 18382.62 26296.83 31086.57 24098.33 18997.29 222
MSDG90.82 21590.67 22591.26 25094.16 29683.08 22086.63 35296.19 21390.60 14691.94 27391.89 32589.16 18195.75 33980.96 30694.51 33294.95 320
test111190.39 23090.61 22689.74 29598.04 8671.50 36495.59 8479.72 39989.41 16795.94 11698.14 4170.79 33898.81 13788.52 20699.32 6798.90 72
eth_miper_zixun_eth90.72 21890.61 22691.05 25792.04 34476.84 32186.91 34396.67 18785.21 24994.41 18993.92 27679.53 28598.26 20989.76 17497.02 26598.06 150
cl____90.65 22190.56 22890.91 26591.85 34976.98 31986.75 34895.36 24685.53 24494.06 20094.89 24077.36 30697.98 23490.27 15898.98 11297.76 188
DIV-MVS_self_test90.65 22190.56 22890.91 26591.85 34976.99 31886.75 34895.36 24685.52 24694.06 20094.89 24077.37 30597.99 23390.28 15798.97 11797.76 188
BH-RMVSNet90.47 22690.44 23090.56 27595.21 26878.65 29589.15 30793.94 28288.21 19492.74 24694.22 26486.38 22297.88 24278.67 32995.39 30995.14 313
miper_ehance_all_eth90.48 22590.42 23190.69 27191.62 35676.57 32586.83 34696.18 21483.38 27294.06 20092.66 31082.20 26598.04 22589.79 17397.02 26597.45 209
test_fmvs290.62 22390.40 23291.29 24891.93 34885.46 18692.70 18696.48 20074.44 35394.91 17597.59 7375.52 32090.57 38593.44 6896.56 28297.84 179
UnsupCasMVSNet_eth90.33 23490.34 23390.28 28194.64 28880.24 25289.69 29195.88 22385.77 23693.94 20795.69 20981.99 26892.98 37684.21 27391.30 37897.62 198
FMVSNet390.78 21790.32 23492.16 21693.03 32079.92 26492.54 19294.95 25686.17 23095.10 16596.01 19369.97 34298.75 14886.74 23598.38 18397.82 182
ECVR-MVScopyleft90.12 24190.16 23590.00 29197.81 10372.68 35895.76 7878.54 40289.04 17595.36 14998.10 4370.51 34098.64 17087.10 23199.18 9298.67 102
IterMVS90.18 23890.16 23590.21 28593.15 31675.98 33187.56 33192.97 29686.43 22494.09 19796.40 16578.32 29597.43 27887.87 21994.69 32997.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)90.42 22790.16 23591.20 25497.66 11877.32 31394.33 13287.66 35291.20 13192.99 23795.13 23175.40 32198.28 20577.86 33299.19 9097.99 161
RPMNet90.31 23690.14 23890.81 26991.01 36478.93 28492.52 19398.12 5591.91 10289.10 31996.89 13368.84 34499.41 4090.17 16392.70 36794.08 341
test_vis3_rt90.40 22890.03 23991.52 23992.58 32688.95 10390.38 26897.72 10473.30 36097.79 3197.51 8377.05 30887.10 39889.03 19594.89 32298.50 120
PVSNet_BlendedMVS90.35 23389.96 24091.54 23894.81 27778.80 29390.14 27696.93 16679.43 31788.68 33195.06 23586.27 22498.15 21980.27 30998.04 21697.68 195
Patchmtry90.11 24289.92 24190.66 27290.35 37377.00 31792.96 17792.81 29890.25 15494.74 18296.93 13067.11 35197.52 27285.17 25798.98 11297.46 208
CL-MVSNet_self_test90.04 24789.90 24290.47 27695.24 26777.81 30586.60 35492.62 30585.64 24093.25 22893.92 27683.84 24696.06 33379.93 31798.03 21797.53 205
test_vis1_n_192089.45 25689.85 24388.28 32393.59 31076.71 32390.67 25897.78 10079.67 31590.30 30196.11 18876.62 31592.17 37990.31 15593.57 35295.96 283
miper_lstm_enhance89.90 24989.80 24490.19 28791.37 36077.50 31083.82 38495.00 25484.84 25993.05 23594.96 23876.53 31795.20 35389.96 17098.67 15797.86 176
114514_t90.51 22489.80 24492.63 19898.00 8982.24 23193.40 16597.29 14165.84 39589.40 31794.80 24586.99 21298.75 14883.88 27698.61 16196.89 240
MG-MVS89.54 25489.80 24488.76 31294.88 27372.47 36089.60 29292.44 30985.82 23589.48 31695.98 19482.85 25797.74 26181.87 29495.27 31396.08 278
test_yl90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
DCV-MVSNet90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
D2MVS89.93 24889.60 24990.92 26394.03 30178.40 29688.69 31894.85 25878.96 32593.08 23395.09 23374.57 32396.94 30388.19 20998.96 11997.41 212
mvsmamba90.24 23789.43 25092.64 19595.52 25782.36 22996.64 3092.29 31081.77 29692.14 26996.28 17870.59 33999.10 9584.44 27295.22 31596.47 258
xiu_mvs_v2_base89.00 26889.19 25188.46 32194.86 27574.63 34086.97 34195.60 23180.88 30587.83 34388.62 36691.04 14998.81 13782.51 28894.38 33491.93 375
CANet_DTU89.85 25089.17 25291.87 22392.20 33880.02 26190.79 25395.87 22486.02 23282.53 38691.77 32780.01 28298.57 17885.66 25497.70 23797.01 235
USDC89.02 26589.08 25388.84 31195.07 27074.50 34388.97 30996.39 20373.21 36193.27 22596.28 17882.16 26696.39 32377.55 33698.80 14095.62 302
TAMVS90.16 23989.05 25493.49 16996.49 18486.37 16290.34 27092.55 30780.84 30792.99 23794.57 25581.94 27098.20 21373.51 36398.21 20295.90 288
OpenMVS_ROBcopyleft85.12 1689.52 25589.05 25490.92 26394.58 28981.21 24591.10 24793.41 29077.03 33793.41 21893.99 27483.23 25197.80 25179.93 31794.80 32693.74 352
test_vis1_n89.01 26789.01 25689.03 30792.57 32782.46 22892.62 19096.06 21773.02 36390.40 29895.77 20674.86 32289.68 39190.78 14194.98 32094.95 320
PS-MVSNAJ88.86 27288.99 25788.48 32094.88 27374.71 33886.69 35095.60 23180.88 30587.83 34387.37 37690.77 15498.82 13282.52 28794.37 33591.93 375
MVP-Stereo90.07 24588.92 25893.54 16496.31 19886.49 15790.93 25095.59 23579.80 31191.48 27995.59 21280.79 27897.39 28278.57 33091.19 37996.76 247
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PLCcopyleft85.34 1590.40 22888.92 25894.85 10496.53 18290.02 8291.58 23696.48 20080.16 31086.14 35792.18 31985.73 22998.25 21076.87 34294.61 33196.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051789.81 25188.90 26092.55 20397.00 14979.73 27095.03 10883.65 38389.88 15995.30 15294.79 24653.64 39599.39 5091.99 11098.79 14398.54 117
MAR-MVS90.32 23588.87 26194.66 11594.82 27691.85 5894.22 13794.75 26380.91 30487.52 34988.07 37186.63 22097.87 24576.67 34396.21 29094.25 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER89.32 25988.75 26291.03 25890.10 37676.62 32490.85 25194.67 26782.27 29195.24 15995.79 20261.09 38298.49 18690.49 14798.26 19597.97 165
ppachtmachnet_test88.61 27888.64 26388.50 31991.76 35170.99 36784.59 37792.98 29579.30 32292.38 26093.53 28979.57 28497.45 27786.50 24497.17 26097.07 230
Patchmatch-RL test88.81 27388.52 26489.69 29795.33 26679.94 26386.22 36092.71 30278.46 32895.80 12394.18 26666.25 35995.33 35089.22 19098.53 17093.78 350
cl2289.02 26588.50 26590.59 27489.76 37876.45 32686.62 35394.03 27782.98 28392.65 24892.49 31172.05 33397.53 27188.93 19697.02 26597.78 186
X-MVStestdata90.70 21988.45 26697.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19126.89 40994.56 6699.39 5093.57 5899.05 10498.93 66
DPM-MVS89.35 25888.40 26792.18 21596.13 21684.20 20286.96 34296.15 21675.40 34787.36 35091.55 33283.30 25098.01 23082.17 29396.62 28194.32 339
test_fmvs1_n88.73 27688.38 26889.76 29492.06 34382.53 22692.30 20996.59 19271.14 37392.58 25195.41 22468.55 34589.57 39391.12 13395.66 30197.18 228
jason89.17 26188.32 26991.70 23195.73 24480.07 25788.10 32493.22 29271.98 36890.09 30392.79 30578.53 29498.56 17987.43 22697.06 26396.46 259
jason: jason.
AUN-MVS90.05 24688.30 27095.32 8796.09 21890.52 7892.42 20192.05 31882.08 29488.45 33492.86 30265.76 36198.69 16288.91 19896.07 29196.75 248
FE-MVS89.06 26488.29 27191.36 24494.78 27979.57 27396.77 2790.99 32784.87 25892.96 23996.29 17660.69 38498.80 14080.18 31297.11 26295.71 295
Anonymous2023120688.77 27488.29 27190.20 28696.31 19878.81 29289.56 29493.49 28874.26 35592.38 26095.58 21582.21 26495.43 34772.07 37198.75 14896.34 263
test_cas_vis1_n_192088.25 28388.27 27388.20 32592.19 33978.92 28689.45 29795.44 24175.29 35093.23 22995.65 21171.58 33590.23 38988.05 21493.55 35495.44 306
EPNet89.80 25288.25 27494.45 12883.91 40886.18 16893.87 14987.07 35791.16 13380.64 39694.72 24878.83 28998.89 12285.17 25798.89 12498.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
YYNet188.17 28488.24 27587.93 32992.21 33773.62 35080.75 39388.77 33982.51 28994.99 17295.11 23282.70 26093.70 36983.33 27893.83 34896.48 257
MDA-MVSNet_test_wron88.16 28588.23 27687.93 32992.22 33673.71 34980.71 39488.84 33882.52 28894.88 17795.14 23082.70 26093.61 37083.28 27993.80 34996.46 259
CDS-MVSNet89.55 25388.22 27793.53 16595.37 26486.49 15789.26 30493.59 28479.76 31391.15 28692.31 31777.12 30798.38 19777.51 33797.92 22795.71 295
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsany_test389.11 26388.21 27891.83 22491.30 36190.25 8088.09 32578.76 40076.37 34196.43 9098.39 3583.79 24790.43 38886.57 24094.20 34094.80 326
PatchT87.51 29888.17 27985.55 35590.64 36766.91 38292.02 21886.09 36392.20 9489.05 32197.16 11264.15 36996.37 32589.21 19192.98 36593.37 360
PVSNet_Blended88.74 27588.16 28090.46 27894.81 27778.80 29386.64 35196.93 16674.67 35188.68 33189.18 36286.27 22498.15 21980.27 30996.00 29394.44 336
UnsupCasMVSNet_bld88.50 27988.03 28189.90 29295.52 25778.88 28887.39 33594.02 27979.32 32193.06 23494.02 27280.72 27994.27 36575.16 35493.08 36396.54 251
PatchMatch-RL89.18 26088.02 28292.64 19595.90 23292.87 4688.67 32091.06 32680.34 30890.03 30691.67 32983.34 24994.42 36276.35 34794.84 32590.64 384
miper_enhance_ethall88.42 28087.87 28390.07 28888.67 39075.52 33585.10 37195.59 23575.68 34392.49 25389.45 35878.96 28897.88 24287.86 22097.02 26596.81 244
MS-PatchMatch88.05 28687.75 28488.95 30893.28 31377.93 30287.88 32792.49 30875.42 34692.57 25293.59 28780.44 28094.24 36781.28 30192.75 36694.69 332
PCF-MVS84.52 1789.12 26287.71 28593.34 17296.06 22085.84 17786.58 35597.31 13868.46 38893.61 21493.89 27887.51 20198.52 18467.85 38898.11 21095.66 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs488.95 27087.70 28692.70 19294.30 29485.60 18387.22 33792.16 31474.62 35289.75 31494.19 26577.97 29896.41 32282.71 28496.36 28796.09 277
our_test_387.55 29787.59 28787.44 33591.76 35170.48 36883.83 38390.55 33379.79 31292.06 27292.17 32078.63 29395.63 34084.77 26794.73 32796.22 272
thisisatest053088.69 27787.52 28892.20 21196.33 19679.36 27792.81 18284.01 38286.44 22393.67 21392.68 30953.62 39699.25 7789.65 17798.45 17798.00 158
1112_ss88.42 28087.41 28991.45 24196.69 16780.99 24789.72 29096.72 18473.37 35987.00 35390.69 34477.38 30498.20 21381.38 30093.72 35095.15 312
baseline187.62 29587.31 29088.54 31794.71 28574.27 34693.10 17488.20 34586.20 22892.18 26893.04 29873.21 32895.52 34279.32 32485.82 39495.83 290
lupinMVS88.34 28287.31 29091.45 24194.74 28280.06 25887.23 33692.27 31171.10 37488.83 32291.15 33577.02 30998.53 18386.67 23896.75 27895.76 293
test_fmvs187.59 29687.27 29288.54 31788.32 39181.26 24390.43 26795.72 22870.55 37991.70 27694.63 25168.13 34689.42 39490.59 14595.34 31194.94 322
N_pmnet88.90 27187.25 29393.83 15394.40 29393.81 3684.73 37487.09 35679.36 32093.26 22692.43 31579.29 28791.68 38177.50 33897.22 25896.00 281
SCA87.43 30087.21 29488.10 32792.01 34571.98 36289.43 29888.11 34782.26 29288.71 32992.83 30378.65 29197.59 26979.61 32193.30 35794.75 329
TR-MVS87.70 29187.17 29589.27 30494.11 29879.26 27988.69 31891.86 32081.94 29590.69 29389.79 35282.82 25897.42 27972.65 36991.98 37591.14 381
pmmvs587.87 28887.14 29690.07 28893.26 31576.97 32088.89 31192.18 31273.71 35888.36 33593.89 27876.86 31496.73 31380.32 30896.81 27596.51 253
test_f86.65 31487.13 29785.19 35990.28 37486.11 17086.52 35691.66 32269.76 38395.73 13097.21 10969.51 34381.28 40589.15 19294.40 33388.17 391
CR-MVSNet87.89 28787.12 29890.22 28491.01 36478.93 28492.52 19392.81 29873.08 36289.10 31996.93 13067.11 35197.64 26888.80 20092.70 36794.08 341
thres600view787.66 29387.10 29989.36 30296.05 22173.17 35292.72 18485.31 37391.89 10393.29 22390.97 33863.42 37398.39 19473.23 36596.99 27096.51 253
BH-w/o87.21 30587.02 30087.79 33294.77 28077.27 31487.90 32693.21 29481.74 29789.99 30788.39 36983.47 24896.93 30571.29 37692.43 37189.15 386
thres100view90087.35 30286.89 30188.72 31396.14 21473.09 35493.00 17685.31 37392.13 9693.26 22690.96 33963.42 37398.28 20571.27 37796.54 28394.79 327
GA-MVS87.70 29186.82 30290.31 28093.27 31477.22 31584.72 37692.79 30085.11 25389.82 31090.07 34766.80 35497.76 25884.56 27094.27 33895.96 283
sss87.23 30486.82 30288.46 32193.96 30277.94 30186.84 34592.78 30177.59 33287.61 34891.83 32678.75 29091.92 38077.84 33394.20 34095.52 305
PAPR87.65 29486.77 30490.27 28292.85 32477.38 31288.56 32196.23 21076.82 34084.98 36689.75 35486.08 22697.16 29472.33 37093.35 35696.26 270
EU-MVSNet87.39 30186.71 30589.44 29993.40 31276.11 32994.93 11290.00 33557.17 40495.71 13197.37 9064.77 36797.68 26592.67 9694.37 33594.52 334
Test_1112_low_res87.50 29986.58 30690.25 28396.80 16477.75 30687.53 33396.25 20869.73 38486.47 35593.61 28675.67 31997.88 24279.95 31593.20 35995.11 316
FMVSNet587.82 29086.56 30791.62 23492.31 33379.81 26893.49 16194.81 26283.26 27591.36 28196.93 13052.77 39797.49 27576.07 34998.03 21797.55 204
MIMVSNet87.13 30986.54 30888.89 31096.05 22176.11 32994.39 13088.51 34181.37 30088.27 33796.75 14372.38 33195.52 34265.71 39395.47 30695.03 317
tfpn200view987.05 31086.52 30988.67 31495.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28394.79 327
thres40087.20 30686.52 30989.24 30695.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28396.51 253
WTY-MVS86.93 31286.50 31188.24 32494.96 27174.64 33987.19 33892.07 31778.29 32988.32 33691.59 33178.06 29794.27 36574.88 35593.15 36195.80 291
131486.46 31586.33 31286.87 34291.65 35574.54 34191.94 22294.10 27674.28 35484.78 36887.33 37783.03 25495.00 35478.72 32891.16 38091.06 382
cascas87.02 31186.28 31389.25 30591.56 35876.45 32684.33 38096.78 17971.01 37586.89 35485.91 38481.35 27396.94 30383.09 28195.60 30294.35 338
Patchmatch-test86.10 31786.01 31486.38 35090.63 36874.22 34789.57 29386.69 35885.73 23889.81 31192.83 30365.24 36591.04 38477.82 33595.78 29993.88 349
HY-MVS82.50 1886.81 31385.93 31589.47 29893.63 30977.93 30294.02 14491.58 32475.68 34383.64 37793.64 28377.40 30397.42 27971.70 37492.07 37493.05 365
CHOSEN 1792x268887.19 30785.92 31691.00 26197.13 14679.41 27684.51 37895.60 23164.14 39890.07 30594.81 24378.26 29697.14 29573.34 36495.38 31096.46 259
CMPMVSbinary68.83 2287.28 30385.67 31792.09 21888.77 38985.42 18790.31 27194.38 27070.02 38288.00 34093.30 29373.78 32794.03 36875.96 35196.54 28396.83 243
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.19 30785.51 31892.24 21097.12 14780.51 25185.03 37296.06 21766.11 39491.66 27792.98 30170.12 34199.14 8975.29 35395.23 31497.07 230
thres20085.85 31885.18 31987.88 33194.44 29172.52 35989.08 30886.21 36188.57 18891.44 28088.40 36864.22 36898.00 23168.35 38695.88 29893.12 362
Syy-MVS84.81 32684.93 32084.42 36691.71 35363.36 40085.89 36381.49 39081.03 30285.13 36381.64 39977.44 30295.00 35485.94 25194.12 34394.91 323
CVMVSNet85.16 32384.72 32186.48 34692.12 34170.19 36992.32 20688.17 34656.15 40590.64 29495.85 19867.97 34996.69 31488.78 20190.52 38392.56 370
PatchmatchNetpermissive85.22 32284.64 32286.98 33989.51 38369.83 37490.52 26287.34 35578.87 32687.22 35292.74 30766.91 35396.53 31681.77 29586.88 39294.58 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt85.58 32084.58 32388.60 31687.97 39286.76 14985.45 36993.59 28466.43 39287.64 34689.20 36179.33 28685.38 40281.59 29889.98 38693.66 354
test250685.42 32184.57 32487.96 32897.81 10366.53 38596.14 6156.35 41289.04 17593.55 21698.10 4342.88 41098.68 16488.09 21399.18 9298.67 102
EPNet_dtu85.63 31984.37 32589.40 30186.30 40174.33 34591.64 23588.26 34384.84 25972.96 40589.85 34871.27 33797.69 26476.60 34497.62 24296.18 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS84.98 32584.30 32687.01 33891.03 36377.69 30891.94 22294.16 27559.36 40384.23 37387.50 37585.66 23096.80 31171.79 37293.05 36486.54 395
ET-MVSNet_ETH3D86.15 31684.27 32791.79 22693.04 31981.28 24287.17 33986.14 36279.57 31683.65 37688.66 36457.10 38898.18 21687.74 22195.40 30895.90 288
tpm84.38 33084.08 32885.30 35890.47 37163.43 39989.34 30185.63 36977.24 33687.62 34795.03 23661.00 38397.30 28579.26 32591.09 38195.16 311
tpmvs84.22 33183.97 32984.94 36187.09 39865.18 39291.21 24488.35 34282.87 28485.21 36190.96 33965.24 36596.75 31279.60 32385.25 39592.90 367
dmvs_re84.69 32883.94 33086.95 34092.24 33582.93 22289.51 29587.37 35484.38 26585.37 36085.08 39072.44 33086.59 39968.05 38791.03 38291.33 379
WB-MVSnew84.20 33283.89 33185.16 36091.62 35666.15 38988.44 32381.00 39376.23 34287.98 34187.77 37284.98 23993.35 37362.85 39894.10 34595.98 282
MDTV_nov1_ep1383.88 33289.42 38461.52 40188.74 31787.41 35373.99 35684.96 36794.01 27365.25 36495.53 34178.02 33193.16 360
PMMVS281.31 35483.44 33374.92 38790.52 37046.49 41369.19 40385.23 37684.30 26687.95 34294.71 24976.95 31184.36 40464.07 39598.09 21293.89 348
FPMVS84.50 32983.28 33488.16 32696.32 19794.49 1785.76 36685.47 37183.09 28085.20 36294.26 26263.79 37286.58 40063.72 39691.88 37783.40 398
test-LLR83.58 33683.17 33584.79 36389.68 38066.86 38383.08 38584.52 37983.07 28182.85 38384.78 39162.86 37693.49 37182.85 28294.86 32394.03 344
JIA-IIPM85.08 32483.04 33691.19 25587.56 39486.14 16989.40 30084.44 38188.98 17782.20 38797.95 5456.82 39096.15 32976.55 34683.45 39891.30 380
thisisatest051584.72 32782.99 33789.90 29292.96 32275.33 33784.36 37983.42 38477.37 33488.27 33786.65 37853.94 39498.72 15382.56 28697.40 25395.67 298
mvsany_test183.91 33482.93 33886.84 34386.18 40285.93 17481.11 39275.03 40770.80 37888.57 33394.63 25183.08 25387.38 39780.39 30786.57 39387.21 393
tpmrst82.85 34482.93 33882.64 37587.65 39358.99 40690.14 27687.90 35075.54 34583.93 37591.63 33066.79 35695.36 34881.21 30381.54 40293.57 359
testing383.66 33582.52 34087.08 33795.84 23565.84 39089.80 28877.17 40688.17 19690.84 29088.63 36530.95 41498.11 22184.05 27497.19 25997.28 223
testing9183.56 33782.45 34186.91 34192.92 32367.29 37986.33 35888.07 34886.22 22784.26 37285.76 38548.15 40097.17 29276.27 34894.08 34696.27 269
PVSNet76.22 2082.89 34382.37 34284.48 36593.96 30264.38 39778.60 39688.61 34071.50 37184.43 37186.36 38274.27 32494.60 35969.87 38493.69 35194.46 335
CostFormer83.09 34082.21 34385.73 35389.27 38567.01 38190.35 26986.47 36070.42 38083.52 37993.23 29661.18 38196.85 30977.21 34088.26 39093.34 361
ADS-MVSNet284.01 33382.20 34489.41 30089.04 38676.37 32887.57 32990.98 32872.71 36684.46 36992.45 31268.08 34796.48 31970.58 38283.97 39695.38 307
testing9982.94 34281.72 34586.59 34492.55 32866.53 38586.08 36285.70 36785.47 24783.95 37485.70 38645.87 40197.07 29876.58 34593.56 35396.17 276
DSMNet-mixed82.21 34781.56 34684.16 36889.57 38270.00 37390.65 25977.66 40454.99 40683.30 38197.57 7477.89 29990.50 38766.86 39195.54 30491.97 374
ADS-MVSNet82.25 34681.55 34784.34 36789.04 38665.30 39187.57 32985.13 37772.71 36684.46 36992.45 31268.08 34792.33 37870.58 38283.97 39695.38 307
baseline283.38 33881.54 34888.90 30991.38 35972.84 35788.78 31581.22 39278.97 32479.82 39887.56 37361.73 38097.80 25174.30 35990.05 38596.05 280
test0.0.03 182.48 34581.47 34985.48 35689.70 37973.57 35184.73 37481.64 38983.07 28188.13 33986.61 37962.86 37689.10 39666.24 39290.29 38493.77 351
PMMVS83.00 34181.11 35088.66 31583.81 40986.44 16082.24 38985.65 36861.75 40282.07 38885.64 38779.75 28391.59 38275.99 35093.09 36287.94 392
IB-MVS77.21 1983.11 33981.05 35189.29 30391.15 36275.85 33285.66 36786.00 36479.70 31482.02 39086.61 37948.26 39998.39 19477.84 33392.22 37293.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 35081.02 35285.34 35787.46 39671.04 36594.74 11667.56 40996.44 2679.43 39998.99 645.24 40296.15 32967.18 39092.17 37388.85 388
new_pmnet81.22 35581.01 35381.86 37790.92 36670.15 37084.03 38180.25 39870.83 37685.97 35889.78 35367.93 35084.65 40367.44 38991.90 37690.78 383
E-PMN80.72 36080.86 35480.29 38285.11 40568.77 37672.96 40081.97 38887.76 20583.25 38283.01 39762.22 37989.17 39577.15 34194.31 33782.93 399
KD-MVS_2432*160082.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
miper_refine_blended82.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
MVS-HIRNet78.83 37080.60 35773.51 38893.07 31747.37 41287.10 34078.00 40368.94 38677.53 40197.26 10271.45 33694.62 35863.28 39788.74 38878.55 403
testing1181.98 35180.52 35886.38 35092.69 32567.13 38085.79 36584.80 37882.16 29381.19 39585.41 38845.24 40296.88 30874.14 36093.24 35895.14 313
EPMVS81.17 35780.37 35983.58 37285.58 40465.08 39490.31 27171.34 40877.31 33585.80 35991.30 33359.38 38592.70 37779.99 31482.34 40192.96 366
tpm281.46 35380.35 36084.80 36289.90 37765.14 39390.44 26485.36 37265.82 39682.05 38992.44 31457.94 38796.69 31470.71 38188.49 38992.56 370
EMVS80.35 36380.28 36180.54 38184.73 40769.07 37572.54 40280.73 39587.80 20381.66 39281.73 39862.89 37589.84 39075.79 35294.65 33082.71 400
PAPM81.91 35280.11 36287.31 33693.87 30572.32 36184.02 38293.22 29269.47 38576.13 40389.84 34972.15 33297.23 28753.27 40589.02 38792.37 372
test-mter81.21 35680.01 36384.79 36389.68 38066.86 38383.08 38584.52 37973.85 35782.85 38384.78 39143.66 40793.49 37182.85 28294.86 32394.03 344
tpm cat180.61 36179.46 36484.07 36988.78 38865.06 39589.26 30488.23 34462.27 40181.90 39189.66 35662.70 37895.29 35171.72 37380.60 40391.86 377
UWE-MVS80.29 36479.10 36583.87 37091.97 34759.56 40486.50 35777.43 40575.40 34787.79 34588.10 37044.08 40696.90 30764.23 39496.36 28795.14 313
dmvs_testset78.23 37178.99 36675.94 38691.99 34655.34 40988.86 31278.70 40182.69 28581.64 39379.46 40175.93 31885.74 40148.78 40782.85 40086.76 394
pmmvs380.83 35978.96 36786.45 34787.23 39777.48 31184.87 37382.31 38763.83 39985.03 36589.50 35749.66 39893.10 37473.12 36795.10 31788.78 390
dp79.28 36878.62 36881.24 38085.97 40356.45 40786.91 34385.26 37572.97 36481.45 39489.17 36356.01 39295.45 34673.19 36676.68 40491.82 378
testing22280.54 36278.53 36986.58 34592.54 33068.60 37786.24 35982.72 38683.78 27182.68 38584.24 39339.25 41295.94 33660.25 39995.09 31895.20 309
myMVS_eth3d79.62 36778.26 37083.72 37191.71 35361.25 40285.89 36381.49 39081.03 30285.13 36381.64 39932.12 41395.00 35471.17 38094.12 34394.91 323
TESTMET0.1,179.09 36978.04 37182.25 37687.52 39564.03 39883.08 38580.62 39670.28 38180.16 39783.22 39644.13 40590.56 38679.95 31593.36 35592.15 373
CHOSEN 280x42080.04 36577.97 37286.23 35290.13 37574.53 34272.87 40189.59 33766.38 39376.29 40285.32 38956.96 38995.36 34869.49 38594.72 32888.79 389
ETVMVS79.85 36677.94 37385.59 35492.97 32166.20 38886.13 36180.99 39481.41 29983.52 37983.89 39441.81 41194.98 35756.47 40394.25 33995.61 303
EGC-MVSNET80.97 35875.73 37496.67 4398.85 2394.55 1696.83 2296.60 1902.44 4115.32 41298.25 3992.24 11798.02 22991.85 11599.21 8897.45 209
PVSNet_070.34 2174.58 37272.96 37579.47 38390.63 36866.24 38773.26 39983.40 38563.67 40078.02 40078.35 40372.53 32989.59 39256.68 40260.05 40782.57 401
MVEpermissive59.87 2373.86 37372.65 37677.47 38587.00 40074.35 34461.37 40560.93 41167.27 39069.69 40686.49 38181.24 27772.33 40856.45 40483.45 39885.74 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai53.72 37453.79 37753.51 39179.69 41236.70 41577.18 39732.53 41771.69 36968.63 40760.79 40626.65 41573.11 40730.67 41036.29 40950.73 405
test_method50.44 37548.94 37854.93 38939.68 41512.38 41828.59 40690.09 3346.82 40941.10 41178.41 40254.41 39370.69 40950.12 40651.26 40881.72 402
tmp_tt37.97 37744.33 37918.88 39311.80 41621.54 41763.51 40445.66 4154.23 41051.34 40950.48 40859.08 38622.11 41244.50 40868.35 40613.00 408
kuosan43.63 37644.25 38041.78 39266.04 41434.37 41675.56 39832.62 41653.25 40750.46 41051.18 40725.28 41649.13 41013.44 41130.41 41041.84 407
cdsmvs_eth3d_5k23.35 37831.13 3810.00 3960.00 4190.00 4210.00 40795.58 2370.00 4140.00 41591.15 33593.43 860.00 4150.00 4140.00 4130.00 411
test1239.49 37912.01 3821.91 3942.87 4171.30 41982.38 3881.34 4191.36 4122.84 4136.56 4112.45 4170.97 4132.73 4125.56 4113.47 409
testmvs9.02 38011.42 3831.81 3952.77 4181.13 42079.44 3951.90 4181.18 4132.65 4146.80 4101.95 4180.87 4142.62 4133.45 4123.44 410
pcd_1.5k_mvsjas7.56 38110.09 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41490.77 1540.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.56 38110.08 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41590.69 3440.00 4190.00 4150.00 4140.00 4130.00 411
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS61.25 40274.55 356
FOURS199.21 394.68 1398.45 498.81 1097.73 798.27 22
MSC_two_6792asdad95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
PC_three_145275.31 34995.87 12195.75 20792.93 10396.34 32887.18 23098.68 15598.04 153
No_MVS95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
test_one_060198.26 6887.14 13998.18 4594.25 5196.99 6997.36 9395.13 43
eth-test20.00 419
eth-test0.00 419
ZD-MVS97.23 13990.32 7997.54 11884.40 26494.78 18095.79 20292.76 10999.39 5088.72 20398.40 179
IU-MVS98.51 4986.66 15496.83 17672.74 36595.83 12293.00 8799.29 7398.64 109
OPU-MVS95.15 9696.84 16089.43 9295.21 9995.66 21093.12 9798.06 22486.28 24898.61 16197.95 166
test_241102_TWO98.10 5891.95 9997.54 4197.25 10395.37 3099.35 6093.29 7599.25 8198.49 122
test_241102_ONE98.51 4986.97 14498.10 5891.85 10597.63 3697.03 12396.48 1098.95 116
save fliter97.46 13088.05 12392.04 21797.08 15687.63 209
test_0728_THIRD93.26 7497.40 5297.35 9694.69 6199.34 6393.88 4899.42 5098.89 73
test_0728_SECOND94.88 10398.55 4486.72 15195.20 10198.22 4099.38 5693.44 6899.31 6898.53 119
test072698.51 4986.69 15295.34 9398.18 4591.85 10597.63 3697.37 9095.58 24
GSMVS94.75 329
test_part298.21 7389.41 9396.72 80
sam_mvs166.64 35794.75 329
sam_mvs66.41 358
ambc92.98 18096.88 15683.01 22195.92 7296.38 20496.41 9197.48 8588.26 18797.80 25189.96 17098.93 12298.12 148
MTGPAbinary97.62 109
test_post190.21 2735.85 41365.36 36396.00 33479.61 321
test_post6.07 41265.74 36295.84 338
patchmatchnet-post91.71 32866.22 36097.59 269
GG-mvs-BLEND83.24 37485.06 40671.03 36694.99 11165.55 41074.09 40475.51 40444.57 40494.46 36159.57 40187.54 39184.24 397
MTMP94.82 11454.62 413
gm-plane-assit87.08 39959.33 40571.22 37283.58 39597.20 28973.95 361
test9_res88.16 21198.40 17997.83 180
TEST996.45 18789.46 9090.60 26096.92 16879.09 32390.49 29594.39 25991.31 13998.88 123
test_896.37 18989.14 10090.51 26396.89 17179.37 31890.42 29794.36 26191.20 14498.82 132
agg_prior287.06 23398.36 18897.98 162
agg_prior96.20 20888.89 10596.88 17290.21 30298.78 144
TestCases96.00 5598.02 8792.17 5198.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
test_prior489.91 8390.74 255
test_prior290.21 27389.33 17090.77 29194.81 24390.41 16488.21 20798.55 167
test_prior94.61 11695.95 22987.23 13697.36 13498.68 16497.93 168
旧先验290.00 28168.65 38792.71 24796.52 31785.15 259
新几何290.02 280
新几何193.17 17797.16 14487.29 13494.43 26967.95 38991.29 28294.94 23986.97 21398.23 21181.06 30597.75 23393.98 346
旧先验196.20 20884.17 20394.82 26095.57 21689.57 17797.89 22896.32 264
无先验89.94 28295.75 22770.81 37798.59 17681.17 30494.81 325
原ACMM289.34 301
原ACMM192.87 18796.91 15584.22 20197.01 16076.84 33989.64 31594.46 25788.00 19398.70 16081.53 29998.01 22095.70 297
test22296.95 15185.27 18988.83 31493.61 28365.09 39790.74 29294.85 24284.62 24297.36 25493.91 347
testdata298.03 22680.24 311
segment_acmp92.14 121
testdata91.03 25896.87 15782.01 23294.28 27371.55 37092.46 25595.42 22185.65 23197.38 28482.64 28597.27 25693.70 353
testdata188.96 31088.44 191
test1294.43 12995.95 22986.75 15096.24 20989.76 31389.79 17698.79 14197.95 22597.75 190
plane_prior797.71 11288.68 108
plane_prior697.21 14288.23 12086.93 214
plane_prior597.81 9598.95 11689.26 18898.51 17398.60 114
plane_prior495.59 212
plane_prior388.43 11890.35 15393.31 221
plane_prior294.56 12591.74 116
plane_prior197.38 132
plane_prior88.12 12193.01 17588.98 17798.06 214
n20.00 420
nn0.00 420
door-mid92.13 316
lessismore_v093.87 15098.05 8383.77 20980.32 39797.13 6097.91 5977.49 30199.11 9492.62 9798.08 21398.74 92
LGP-MVS_train96.84 3998.36 6392.13 5398.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
test1196.65 188
door91.26 325
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23987.16 21588.81 324
ACMP_Plane96.36 19191.37 23987.16 21588.81 324
BP-MVS86.55 242
HQP4-MVS88.81 32498.61 17298.15 145
HQP3-MVS97.31 13897.73 234
HQP2-MVS84.76 240
NP-MVS96.82 16287.10 14093.40 291
MDTV_nov1_ep13_2view42.48 41488.45 32267.22 39183.56 37866.80 35472.86 36894.06 343
ACMMP++_ref98.82 137
ACMMP++99.25 81
Test By Simon90.61 160
ITE_SJBPF95.95 5897.34 13593.36 4196.55 19791.93 10194.82 17895.39 22591.99 12397.08 29785.53 25597.96 22497.41 212
DeepMVS_CXcopyleft53.83 39070.38 41364.56 39648.52 41433.01 40865.50 40874.21 40556.19 39146.64 41138.45 40970.07 40550.30 406