This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 307
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
LS3D96.11 4795.83 6396.95 3694.75 27794.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 34191.72 11999.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 36192.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23697.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23996.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24198.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24299.45 2795.52 2299.66 2199.36 24
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 34286.18 24798.78 14489.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26699.60 994.69 3399.39 5899.15 39
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27299.63 695.48 2499.69 1499.60 12
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31687.57 22199.35 6198.70 101
dcpmvs_293.96 13595.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29792.08 10795.55 30198.45 127
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25587.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
tfpnnormal94.27 12194.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
casdiffmvspermissive94.32 12094.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline94.26 12394.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24694.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23897.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
KD-MVS_self_test94.10 13094.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
canonicalmvs94.59 10894.69 11194.30 13495.60 25287.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LCM-MVSNet-Re94.20 12794.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
fmvsm_s_conf0.1_n94.19 12994.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 26195.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
sd_testset93.94 13694.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 101
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
fmvsm_s_conf0.1_n_a94.26 12394.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27395.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
VDD-MVS94.37 11694.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 25099.35 6088.19 20799.52 4198.96 64
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11892.55 32685.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
IterMVS-LS93.78 14194.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet-UG-set94.35 11894.27 12794.59 12292.46 32985.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
VDDNet94.03 13294.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23898.75 14787.09 23098.83 13898.81 84
fmvsm_s_conf0.5_n94.00 13494.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 26095.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
bld_raw_dy_0_6494.27 12194.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28698.87 12595.63 1799.53 3898.81 84
MM94.41 11594.14 13195.22 9495.84 23587.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
XVG-OURS94.72 10394.12 13296.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29891.41 12897.61 24298.30 136
CPTT-MVS94.74 10294.12 13296.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
fmvsm_s_conf0.5_n_a94.02 13394.08 13493.84 15396.72 16685.73 18093.65 15595.23 24683.30 27195.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
HQP_MVS94.26 12393.93 13595.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
MSLP-MVS++93.25 15693.88 13691.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 32390.35 15298.25 19794.96 316
fmvsm_l_conf0.5_n93.79 14093.81 13793.73 15696.16 21186.26 16792.46 19496.72 17881.69 29595.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
v114493.50 14693.81 13792.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
PHI-MVS94.34 11993.80 13995.95 5995.65 24891.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
v119293.49 14793.78 14092.62 19996.16 21179.62 27191.83 22897.22 14186.07 22896.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
VPNet93.08 16093.76 14191.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
WR-MVS93.49 14793.72 14292.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
v124093.29 15293.71 14392.06 21996.01 22677.89 30191.81 22997.37 12385.12 25096.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
OMC-MVS94.22 12693.69 14495.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
MVS_030493.92 13793.68 14594.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
EPP-MVSNet93.91 13893.68 14594.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26199.57 1487.28 22798.89 12698.65 107
fmvsm_l_conf0.5_n_a93.59 14593.63 14793.49 16996.10 21785.66 18392.32 20396.57 18781.32 29895.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
v2v48293.29 15293.63 14792.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
v192192093.26 15493.61 14992.19 21296.04 22578.31 29591.88 22497.24 13985.17 24896.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
V4293.43 14993.58 15092.97 18195.34 26181.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
Anonymous2024052192.86 16993.57 15190.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27697.96 23292.60 9899.68 1898.75 92
DeepPCF-MVS90.46 694.20 12793.56 15296.14 5295.96 22892.96 4389.48 29397.46 11885.14 24996.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
v14419293.20 15993.54 15392.16 21696.05 22178.26 29691.95 21797.14 14584.98 25495.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
NCCC94.08 13193.54 15395.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
DeepC-MVS_fast89.96 793.73 14293.44 15594.60 12196.14 21487.90 12693.36 16497.14 14585.53 24293.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR93.63 14493.42 15694.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
v14892.87 16893.29 15791.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
MVS_Test92.57 17993.29 15790.40 27693.53 30875.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30396.99 237
MVS_111021_LR93.66 14393.28 15994.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 32190.39 14998.28 19397.07 231
K. test v393.37 15093.27 16093.66 15898.05 8582.62 22594.35 12686.62 35696.05 2997.51 4398.85 1276.59 31299.65 393.21 7998.20 20498.73 96
EI-MVSNet92.99 16393.26 16192.19 21292.12 33879.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
XXY-MVS92.58 17793.16 16290.84 26497.75 10779.84 26591.87 22596.22 20685.94 23095.53 13897.68 6792.69 10894.48 35783.21 27797.51 24498.21 142
SSC-MVS90.16 23592.96 16381.78 37597.88 9948.48 40790.75 25187.69 34896.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
VNet92.67 17592.96 16391.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
GBi-Net93.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
test193.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
alignmvs93.26 15492.85 16794.50 12695.70 24487.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26398.72 15291.61 12297.87 22997.33 223
QAPM92.88 16792.77 16893.22 17695.82 23783.31 21296.45 3997.35 12983.91 26693.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
TinyColmap92.00 19392.76 16989.71 29395.62 25177.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31881.77 29298.77 14595.66 296
ETV-MVS92.99 16392.74 17093.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 38092.22 11699.19 8188.03 21497.73 23495.66 296
Effi-MVS+92.79 17092.74 17092.94 18595.10 26583.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 31096.88 243
FMVSNet292.78 17192.73 17292.95 18395.40 25781.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26898.81 13687.38 22698.67 15798.06 153
patch_mono-292.46 18192.72 17391.71 22996.65 17078.91 28788.85 31097.17 14383.89 26792.45 25496.76 14189.86 17297.09 29390.24 15998.59 16499.12 43
PM-MVS93.33 15192.67 17495.33 8696.58 17594.06 2192.26 20892.18 30985.92 23196.22 10596.61 15385.64 22895.99 33290.35 15298.23 19995.93 282
ab-mvs92.40 18392.62 17591.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 276
Effi-MVS+-dtu93.90 13992.60 17697.77 394.74 27896.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
MCST-MVS92.91 16592.51 17794.10 14097.52 12585.72 18191.36 23997.13 14780.33 30692.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
Anonymous20240521192.58 17792.50 17892.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26597.50 27085.12 25998.52 17197.77 190
UGNet93.08 16092.50 17894.79 10893.87 30287.99 12595.07 10194.26 27290.64 14287.33 34897.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 16292.41 18095.06 9995.82 23790.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
test_fmvs392.42 18292.40 18192.46 20793.80 30587.28 13693.86 14797.05 15276.86 33596.25 10298.66 1882.87 25191.26 38095.44 2696.83 27298.82 82
MVSFormer92.18 19092.23 18292.04 22094.74 27880.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30599.60 996.41 996.75 27696.46 259
Fast-Effi-MVS+-dtu92.77 17292.16 18394.58 12494.66 28388.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28796.90 240
DELS-MVS92.05 19292.16 18391.72 22894.44 28880.13 25687.62 32597.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WB-MVS89.44 25392.15 18581.32 37697.73 11048.22 40889.73 28687.98 34695.24 3696.05 11396.99 12785.18 23196.95 29982.45 28697.97 22398.78 88
OpenMVScopyleft89.45 892.27 18892.13 18692.68 19594.53 28784.10 20495.70 7697.03 15382.44 28891.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 301
EIA-MVS92.35 18592.03 18793.30 17495.81 23983.97 20692.80 17998.17 4587.71 20389.79 30987.56 37091.17 14499.18 8287.97 21597.27 25496.77 247
LF4IMVS92.72 17392.02 18894.84 10695.65 24891.99 5492.92 17596.60 18485.08 25292.44 25593.62 28486.80 21296.35 32386.81 23298.25 19796.18 271
h-mvs3392.89 16691.99 18995.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30899.14 8691.02 13395.71 29897.04 235
CANet92.38 18491.99 18993.52 16793.82 30483.46 21191.14 24297.00 15589.81 15786.47 35294.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
diffmvspermissive91.74 19691.93 19191.15 25393.06 31578.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DP-MVS Recon92.31 18691.88 19293.60 16097.18 14386.87 14791.10 24497.37 12384.92 25592.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 291
FA-MVS(test-final)91.81 19591.85 19391.68 23194.95 26879.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29698.45 18988.04 21397.49 24596.61 251
train_agg92.71 17491.83 19495.35 8496.45 18789.46 9090.60 25796.92 16279.37 31590.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
CDPH-MVS92.67 17591.83 19495.18 9696.94 15288.46 11890.70 25497.07 15177.38 33092.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
TAPA-MVS88.58 1092.49 18091.75 19694.73 11096.50 18389.69 8692.91 17697.68 10178.02 32892.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
API-MVS91.52 20291.61 19791.26 24794.16 29386.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29679.09 32497.35 25390.45 382
IterMVS-SCA-FT91.65 19891.55 19891.94 22193.89 30179.22 28187.56 32893.51 28591.53 12295.37 14996.62 15278.65 28798.90 11891.89 11494.95 31897.70 196
xiu_mvs_v1_base_debu91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
HQP-MVS92.09 19191.49 20293.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23598.60 17286.55 24097.73 23498.14 149
c3_l91.32 20791.42 20391.00 25892.29 33176.79 31987.52 33196.42 19685.76 23494.72 18293.89 27782.73 25498.16 21590.93 13798.55 16798.04 156
CLD-MVS91.82 19491.41 20493.04 17896.37 18983.65 21086.82 34497.29 13584.65 25992.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary91.63 19991.36 20592.47 20695.56 25386.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 366
testgi90.38 22791.34 20687.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 37271.60 37297.85 23097.88 177
mvs_anonymous90.37 22891.30 20787.58 33092.17 33768.00 37589.84 28394.73 26183.82 26893.22 22797.40 8987.54 19797.40 27887.94 21695.05 31697.34 222
hse-mvs292.24 18991.20 20895.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30898.69 16191.02 13396.03 29096.81 245
PVSNet_Blended_VisFu91.63 19991.20 20892.94 18597.73 11083.95 20792.14 21197.46 11878.85 32492.35 26094.98 23684.16 23999.08 9486.36 24496.77 27595.79 289
CNLPA91.72 19791.20 20893.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 36079.92 31697.12 25994.37 334
LFMVS91.33 20691.16 21191.82 22496.27 20279.36 27795.01 10485.61 36796.04 3094.82 17697.06 12172.03 33098.46 18884.96 26398.70 15397.65 200
F-COLMAP92.28 18791.06 21295.95 5997.52 12591.90 5693.53 15697.18 14283.98 26588.70 32794.04 26988.41 18398.55 17980.17 31095.99 29297.39 219
BH-untuned90.68 21690.90 21390.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31392.80 365
MDA-MVSNet-bldmvs91.04 20990.88 21491.55 23594.68 28280.16 25385.49 36592.14 31290.41 14994.93 17295.79 19985.10 23296.93 30285.15 25794.19 33997.57 204
Fast-Effi-MVS+91.28 20890.86 21592.53 20495.45 25682.53 22689.25 30396.52 19285.00 25389.91 30588.55 36492.94 10098.84 12984.72 26795.44 30596.22 269
test20.0390.80 21290.85 21690.63 27095.63 25079.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34973.86 35999.05 10697.39 219
PAPM_NR91.03 21090.81 21791.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 34496.68 250
new-patchmatchnet88.97 26590.79 21883.50 37094.28 29255.83 40585.34 36793.56 28486.18 22695.47 14295.73 20583.10 24796.51 31585.40 25498.06 21498.16 147
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 40359.84 39799.41 5670.73 401
pmmvs-eth3d91.54 20190.73 22093.99 14295.76 24287.86 12890.83 24993.98 27978.23 32794.02 19996.22 18082.62 25796.83 30786.57 23898.33 18997.29 225
MSDG90.82 21190.67 22191.26 24794.16 29383.08 22086.63 34996.19 20790.60 14491.94 27091.89 32289.16 17895.75 33680.96 30394.51 32994.95 317
test111190.39 22690.61 22289.74 29298.04 8871.50 36195.59 8179.72 39689.41 16495.94 11798.14 3970.79 33498.81 13688.52 20499.32 6898.90 74
eth_miper_zixun_eth90.72 21490.61 22291.05 25492.04 34176.84 31886.91 34096.67 18185.21 24794.41 18793.92 27579.53 28098.26 20689.76 17397.02 26398.06 153
cl____90.65 21790.56 22490.91 26291.85 34676.98 31586.75 34595.36 24385.53 24294.06 19694.89 23977.36 30297.98 23190.27 15798.98 11497.76 191
DIV-MVS_self_test90.65 21790.56 22490.91 26291.85 34676.99 31486.75 34595.36 24385.52 24494.06 19694.89 23977.37 30197.99 23090.28 15698.97 11997.76 191
BH-RMVSNet90.47 22290.44 22690.56 27295.21 26478.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30795.14 310
miper_ehance_all_eth90.48 22190.42 22790.69 26891.62 35376.57 32286.83 34396.18 20883.38 27094.06 19692.66 30982.20 25998.04 22289.79 17297.02 26397.45 212
test_fmvs290.62 21990.40 22891.29 24691.93 34585.46 18692.70 18396.48 19474.44 35094.91 17397.59 7475.52 31690.57 38293.44 6896.56 28097.84 182
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28580.24 25289.69 28895.88 21885.77 23393.94 20395.69 20681.99 26292.98 37384.21 27091.30 37597.62 201
FMVSNet390.78 21390.32 23092.16 21693.03 31779.92 26492.54 18994.95 25386.17 22795.10 16496.01 19069.97 33798.75 14786.74 23398.38 18397.82 185
ECVR-MVScopyleft90.12 23790.16 23190.00 28897.81 10372.68 35595.76 7578.54 39989.04 17295.36 15098.10 4270.51 33598.64 16887.10 22999.18 9498.67 105
IterMVS90.18 23490.16 23190.21 28293.15 31375.98 32887.56 32892.97 29486.43 22194.09 19396.40 16378.32 29197.43 27587.87 21794.69 32697.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 25197.66 11877.32 30994.33 12887.66 34991.20 12992.99 23495.13 23075.40 31798.28 20277.86 32999.19 9297.99 164
RPMNet90.31 23290.14 23490.81 26691.01 36178.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33999.41 3990.17 16292.70 36494.08 338
test_vis3_rt90.40 22490.03 23591.52 23792.58 32488.95 10390.38 26597.72 10073.30 35797.79 3097.51 8477.05 30487.10 39589.03 19394.89 31998.50 122
PVSNet_BlendedMVS90.35 22989.96 23691.54 23694.81 27378.80 29190.14 27396.93 16079.43 31488.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
Patchmtry90.11 23889.92 23790.66 26990.35 37077.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34697.52 26985.17 25598.98 11497.46 211
CL-MVSNet_self_test90.04 24389.90 23890.47 27395.24 26377.81 30286.60 35192.62 30385.64 23793.25 22593.92 27583.84 24096.06 33079.93 31498.03 21797.53 208
test_vis1_n_192089.45 25289.85 23988.28 32093.59 30776.71 32090.67 25597.78 9679.67 31290.30 29896.11 18576.62 31192.17 37690.31 15493.57 34995.96 280
miper_lstm_enhance89.90 24589.80 24090.19 28491.37 35777.50 30683.82 38195.00 25184.84 25793.05 23294.96 23776.53 31395.20 35089.96 16998.67 15797.86 179
114514_t90.51 22089.80 24092.63 19898.00 9182.24 23093.40 16297.29 13565.84 39189.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
MG-MVS89.54 25089.80 24088.76 30994.88 26972.47 35789.60 28992.44 30785.82 23289.48 31395.98 19182.85 25297.74 25881.87 29195.27 31196.08 275
test_yl90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
DCV-MVSNet90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
D2MVS89.93 24489.60 24590.92 26094.03 29878.40 29488.69 31594.85 25578.96 32293.08 23095.09 23274.57 31996.94 30088.19 20798.96 12197.41 215
iter_conf_final90.23 23389.32 24692.95 18394.65 28481.46 24094.32 13095.40 24285.61 23992.84 23995.37 22454.58 38899.13 8892.16 10498.94 12498.25 139
xiu_mvs_v2_base89.00 26489.19 24788.46 31894.86 27174.63 33786.97 33895.60 22680.88 30287.83 34088.62 36391.04 14698.81 13682.51 28594.38 33191.93 372
CANet_DTU89.85 24689.17 24891.87 22292.20 33580.02 26190.79 25095.87 21986.02 22982.53 38391.77 32480.01 27798.57 17685.66 25297.70 23797.01 236
USDC89.02 26189.08 24988.84 30895.07 26674.50 34088.97 30696.39 19773.21 35893.27 22296.28 17682.16 26096.39 32077.55 33398.80 14295.62 299
TAMVS90.16 23589.05 25093.49 16996.49 18486.37 16290.34 26792.55 30580.84 30492.99 23494.57 25481.94 26498.20 21073.51 36098.21 20295.90 285
OpenMVS_ROBcopyleft85.12 1689.52 25189.05 25090.92 26094.58 28681.21 24591.10 24493.41 28877.03 33493.41 21593.99 27383.23 24697.80 24879.93 31494.80 32393.74 349
test_vis1_n89.01 26389.01 25289.03 30492.57 32582.46 22892.62 18796.06 21173.02 36090.40 29595.77 20374.86 31889.68 38890.78 14094.98 31794.95 317
PS-MVSNAJ88.86 26988.99 25388.48 31794.88 26974.71 33586.69 34795.60 22680.88 30287.83 34087.37 37390.77 15198.82 13182.52 28494.37 33291.93 372
MVP-Stereo90.07 24188.92 25493.54 16496.31 19886.49 15790.93 24795.59 23079.80 30891.48 27595.59 20980.79 27397.39 27978.57 32791.19 37696.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PLCcopyleft85.34 1590.40 22488.92 25494.85 10596.53 18290.02 8191.58 23396.48 19480.16 30786.14 35492.18 31785.73 22598.25 20776.87 33994.61 32896.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051789.81 24788.90 25692.55 20397.00 14979.73 27095.03 10383.65 38089.88 15695.30 15394.79 24553.64 39199.39 4991.99 11098.79 14398.54 120
MAR-MVS90.32 23188.87 25794.66 11594.82 27291.85 5794.22 13494.75 26080.91 30187.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER89.32 25588.75 25891.03 25590.10 37376.62 32190.85 24894.67 26482.27 28995.24 15995.79 19961.09 37798.49 18390.49 14698.26 19597.97 168
ppachtmachnet_test88.61 27588.64 25988.50 31691.76 34870.99 36484.59 37492.98 29379.30 31992.38 25893.53 28879.57 27997.45 27486.50 24297.17 25897.07 231
Patchmatch-RL test88.81 27088.52 26089.69 29495.33 26279.94 26386.22 35792.71 30078.46 32595.80 12494.18 26566.25 35495.33 34789.22 18898.53 17093.78 347
cl2289.02 26188.50 26190.59 27189.76 37576.45 32386.62 35094.03 27582.98 28092.65 24692.49 31072.05 32997.53 26888.93 19497.02 26397.78 189
X-MVStestdata90.70 21588.45 26297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 40494.56 6499.39 4993.57 5899.05 10698.93 68
DPM-MVS89.35 25488.40 26392.18 21596.13 21684.20 20286.96 33996.15 21075.40 34487.36 34791.55 32983.30 24598.01 22782.17 29096.62 27994.32 336
test_fmvs1_n88.73 27388.38 26489.76 29192.06 34082.53 22692.30 20696.59 18671.14 36992.58 24995.41 22168.55 34089.57 39091.12 13195.66 29997.18 229
jason89.17 25788.32 26591.70 23095.73 24380.07 25788.10 32193.22 29071.98 36590.09 30092.79 30478.53 29098.56 17787.43 22497.06 26196.46 259
jason: jason.
AUN-MVS90.05 24288.30 26695.32 8896.09 21890.52 7792.42 19892.05 31582.08 29288.45 33192.86 30165.76 35698.69 16188.91 19696.07 28996.75 249
FE-MVS89.06 26088.29 26791.36 24294.78 27579.57 27396.77 2890.99 32484.87 25692.96 23696.29 17460.69 37998.80 13980.18 30997.11 26095.71 292
Anonymous2023120688.77 27188.29 26790.20 28396.31 19878.81 29089.56 29193.49 28674.26 35292.38 25895.58 21282.21 25895.43 34472.07 36898.75 14896.34 263
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28689.45 29495.44 23775.29 34793.23 22695.65 20871.58 33190.23 38688.05 21293.55 35195.44 303
EPNet89.80 24888.25 27094.45 13083.91 40586.18 16993.87 14687.07 35491.16 13180.64 39394.72 24778.83 28498.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28794.99 17095.11 23182.70 25593.70 36683.33 27593.83 34596.48 258
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28694.88 17595.14 22982.70 25593.61 36783.28 27693.80 34696.46 259
CDS-MVSNet89.55 24988.22 27393.53 16595.37 26086.49 15789.26 30193.59 28279.76 31091.15 28292.31 31677.12 30398.38 19477.51 33497.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsany_test389.11 25988.21 27491.83 22391.30 35890.25 7988.09 32278.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23894.20 33794.80 323
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21586.09 36092.20 9389.05 31897.16 11264.15 36496.37 32289.21 18992.98 36293.37 357
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27378.80 29186.64 34896.93 16074.67 34888.68 32889.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
iter_conf0588.94 26788.09 27791.50 23892.74 32276.97 31692.80 17995.92 21782.82 28293.65 21095.37 22449.41 39599.13 8890.82 13899.28 7998.40 130
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25478.88 28887.39 33294.02 27779.32 31893.06 23194.02 27180.72 27494.27 36275.16 35193.08 36096.54 252
PatchMatch-RL89.18 25688.02 27992.64 19695.90 23392.87 4588.67 31791.06 32380.34 30590.03 30391.67 32683.34 24494.42 35976.35 34494.84 32290.64 381
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23075.68 34092.49 25189.45 35578.96 28397.88 23987.86 21897.02 26396.81 245
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29987.88 32492.49 30675.42 34392.57 25093.59 28680.44 27594.24 36481.28 29892.75 36394.69 329
PCF-MVS84.52 1789.12 25887.71 28293.34 17296.06 22085.84 17786.58 35297.31 13268.46 38493.61 21193.89 27787.51 19898.52 18167.85 38598.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs488.95 26687.70 28392.70 19394.30 29185.60 18487.22 33492.16 31174.62 34989.75 31194.19 26477.97 29496.41 31982.71 28196.36 28596.09 274
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30992.06 26992.17 31878.63 28995.63 33784.77 26594.73 32496.22 269
thisisatest053088.69 27487.52 28592.20 21196.33 19679.36 27792.81 17884.01 37986.44 22093.67 20992.68 30853.62 39299.25 7589.65 17698.45 17798.00 161
1112_ss88.42 27787.41 28691.45 23996.69 16780.99 24789.72 28796.72 17873.37 35687.00 35090.69 34177.38 30098.20 21081.38 29793.72 34795.15 309
baseline187.62 29287.31 28788.54 31494.71 28174.27 34393.10 17188.20 34186.20 22592.18 26693.04 29773.21 32495.52 33979.32 32185.82 39195.83 287
lupinMVS88.34 27987.31 28791.45 23994.74 27880.06 25887.23 33392.27 30871.10 37088.83 31991.15 33277.02 30598.53 18086.67 23696.75 27695.76 290
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24390.43 26495.72 22370.55 37591.70 27394.63 25068.13 34189.42 39190.59 14495.34 30994.94 319
N_pmnet88.90 26887.25 29093.83 15494.40 29093.81 3584.73 37187.09 35379.36 31793.26 22392.43 31479.29 28291.68 37877.50 33597.22 25696.00 278
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29588.11 34482.26 29088.71 32692.83 30278.65 28797.59 26679.61 31893.30 35494.75 326
TR-MVS87.70 28887.17 29289.27 30194.11 29579.26 27988.69 31591.86 31781.94 29390.69 29089.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30892.18 30973.71 35588.36 33293.89 27776.86 31096.73 31080.32 30596.81 27396.51 254
test_f86.65 31187.13 29485.19 35690.28 37186.11 17186.52 35391.66 31969.76 37995.73 13197.21 11069.51 33881.28 40289.15 19094.40 33088.17 388
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28492.52 19092.81 29673.08 35989.10 31696.93 13067.11 34697.64 26588.80 19892.70 36494.08 338
thres600view787.66 29087.10 29689.36 29996.05 22173.17 34992.72 18185.31 37091.89 10293.29 22090.97 33563.42 36898.39 19173.23 36296.99 26896.51 254
BH-w/o87.21 30287.02 29787.79 32994.77 27677.27 31087.90 32393.21 29281.74 29489.99 30488.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
thres100view90087.35 29986.89 29888.72 31096.14 21473.09 35193.00 17385.31 37092.13 9593.26 22390.96 33663.42 36898.28 20271.27 37496.54 28194.79 324
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 25189.82 30790.07 34466.80 34997.76 25584.56 26894.27 33595.96 280
sss87.23 30186.82 29988.46 31893.96 29977.94 29886.84 34292.78 29977.59 32987.61 34591.83 32378.75 28591.92 37777.84 33094.20 33795.52 302
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31896.23 20476.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 268
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10790.00 33257.17 40095.71 13297.37 9164.77 36297.68 26292.67 9694.37 33294.52 331
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16477.75 30387.53 33096.25 20269.73 38086.47 35293.61 28575.67 31597.88 23979.95 31293.20 35695.11 313
FMVSNet587.82 28786.56 30491.62 23392.31 33079.81 26893.49 15894.81 25983.26 27291.36 27796.93 13052.77 39397.49 27276.07 34698.03 21797.55 207
MIMVSNet87.13 30686.54 30588.89 30796.05 22176.11 32694.39 12588.51 33781.37 29788.27 33496.75 14372.38 32795.52 33965.71 39095.47 30495.03 314
tfpn200view987.05 30786.52 30688.67 31195.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28196.51 254
WTY-MVS86.93 30986.50 30888.24 32194.96 26774.64 33687.19 33592.07 31478.29 32688.32 33391.59 32878.06 29394.27 36274.88 35293.15 35895.80 288
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21994.10 27474.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17371.01 37186.89 35185.91 38181.35 26796.94 30083.09 27895.60 30094.35 335
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 29086.69 35585.73 23589.81 30892.83 30265.24 36091.04 38177.82 33295.78 29793.88 346
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29994.02 14191.58 32175.68 34083.64 37493.64 28277.40 29997.42 27671.70 37192.07 37193.05 362
CHOSEN 1792x268887.19 30485.92 31391.00 25897.13 14679.41 27684.51 37595.60 22664.14 39490.07 30294.81 24278.26 29297.14 29273.34 36195.38 30896.46 259
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21888.77 38685.42 18790.31 26894.38 26870.02 37888.00 33793.30 29273.78 32394.03 36575.96 34896.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.19 30485.51 31592.24 21097.12 14780.51 25185.03 36996.06 21166.11 39091.66 27492.98 30070.12 33699.14 8675.29 35095.23 31297.07 231
thres20085.85 31585.18 31687.88 32894.44 28872.52 35689.08 30586.21 35888.57 18591.44 27688.40 36564.22 36398.00 22868.35 38395.88 29693.12 359
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29985.13 36081.64 39677.44 29895.00 35185.94 24994.12 34094.91 320
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20388.17 34256.15 40190.64 29195.85 19567.97 34496.69 31188.78 19990.52 38092.56 367
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25987.34 35278.87 32387.22 34992.74 30666.91 34896.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28266.43 38887.64 34389.20 35879.33 28185.38 39981.59 29589.98 38393.66 351
test250685.42 31884.57 32187.96 32597.81 10366.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16388.09 21199.18 9498.67 105
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23288.26 33984.84 25772.96 40289.85 34571.27 33397.69 26176.60 34197.62 24196.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21994.16 27359.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22593.04 31681.28 24287.17 33686.14 35979.57 31383.65 37388.66 36157.10 38398.18 21387.74 21995.40 30695.90 285
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29885.63 36677.24 33387.62 34495.03 23561.00 37897.30 28279.26 32291.09 37895.16 308
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24188.35 33882.87 28185.21 35890.96 33665.24 36096.75 30979.60 32085.25 39292.90 364
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22289.51 29287.37 35184.38 26385.37 35785.08 38772.44 32686.59 39668.05 38491.03 37991.33 376
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 32081.00 39076.23 33987.98 33887.77 36984.98 23493.35 37062.85 39594.10 34295.98 279
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31487.41 35073.99 35384.96 36494.01 27265.25 35995.53 33878.02 32893.16 357
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26487.95 33994.71 24876.95 30784.36 40164.07 39298.09 21293.89 345
FPMVS84.50 32683.28 33188.16 32396.32 19794.49 1685.76 36385.47 36883.09 27785.20 35994.26 26163.79 36786.58 39763.72 39391.88 37483.40 395
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27882.85 38084.78 38862.86 37193.49 36882.85 27994.86 32094.03 341
JIA-IIPM85.08 32183.04 33391.19 25287.56 39186.14 17089.40 29784.44 37888.98 17482.20 38497.95 5456.82 38596.15 32676.55 34383.45 39591.30 377
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33486.65 37553.94 39098.72 15282.56 28397.40 25195.67 295
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17481.11 38975.03 40470.80 37488.57 33094.63 25083.08 24887.38 39480.39 30486.57 39087.21 390
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27387.90 34775.54 34283.93 37291.63 32766.79 35195.36 34581.21 30081.54 39993.57 356
testing383.66 33282.52 33787.08 33495.84 23565.84 38789.80 28577.17 40388.17 19390.84 28788.63 36230.95 41198.11 21884.05 27197.19 25797.28 226
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22484.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 267
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29964.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32094.60 35669.87 38193.69 34894.46 332
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26686.47 35770.42 37683.52 37693.23 29561.18 37696.85 30677.21 33788.26 38793.34 358
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32690.98 32572.71 36384.46 36692.45 31168.08 34296.48 31670.58 37983.97 39395.38 304
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24583.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 273
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25677.66 40154.99 40283.30 37897.57 7577.89 29590.50 38466.86 38895.54 30291.97 371
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32685.13 37472.71 36384.46 36692.45 31168.08 34292.33 37570.58 37983.97 39395.38 304
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31281.22 38978.97 32179.82 39587.56 37061.73 37597.80 24874.30 35690.05 38296.05 277
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27888.13 33686.61 37662.86 37189.10 39366.24 38990.29 38193.77 348
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 27891.59 37975.99 34793.09 35987.94 389
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 31182.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11167.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34584.65 40067.44 38691.90 37390.78 380
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20283.25 37983.01 39462.22 37489.17 39277.15 33894.31 33482.93 396
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33778.00 40068.94 38277.53 39897.26 10371.45 33294.62 35563.28 39488.74 38578.55 400
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 29181.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 310
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26871.34 40577.31 33285.80 35691.30 33059.38 38092.70 37479.99 31182.34 39892.96 363
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26185.36 36965.82 39282.05 38692.44 31357.94 38296.69 31170.71 37888.49 38692.56 367
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 20081.66 38981.73 39562.89 37089.84 38775.79 34994.65 32782.71 397
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 29069.47 38176.13 40089.84 34672.15 32897.23 28453.27 40289.02 38492.37 369
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30188.23 34062.27 39781.90 38889.66 35362.70 37395.29 34871.72 37080.60 40091.86 374
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34288.10 36744.08 40396.90 30464.23 39196.36 28595.14 310
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30978.70 39882.69 28381.64 39079.46 39875.93 31485.74 39848.78 40482.85 39786.76 391
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38795.45 34373.19 36376.68 40191.82 375
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26982.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 306
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29985.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38495.36 34569.49 38294.72 32588.79 386
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29683.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 300
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1842.44 4065.32 40798.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32589.59 38956.68 39960.05 40482.57 398
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27172.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38122.11 40744.50 40568.35 40313.00 403
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2320.00 4090.00 41091.15 33293.43 840.00 4100.00 4090.00 4080.00 406
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3410.00 4140.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
PC_three_145275.31 34695.87 12295.75 20492.93 10196.34 32587.18 22898.68 15598.04 156
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 414
eth-test0.00 414
ZD-MVS97.23 13990.32 7897.54 11284.40 26294.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
IU-MVS98.51 5186.66 15496.83 17072.74 36295.83 12393.00 8799.29 7498.64 112
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
GSMVS94.75 326
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 35294.75 326
sam_mvs66.41 353
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
MTGPAbinary97.62 105
test_post190.21 2705.85 40865.36 35896.00 33179.61 318
test_post6.07 40765.74 35795.84 335
patchmatchnet-post91.71 32566.22 35597.59 266
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10665.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
MTMP94.82 10954.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test9_res88.16 20998.40 17997.83 183
TEST996.45 18789.46 9090.60 25796.92 16279.09 32090.49 29294.39 25891.31 13698.88 121
test_896.37 18989.14 10090.51 26096.89 16579.37 31590.42 29494.36 26091.20 14198.82 131
agg_prior287.06 23198.36 18897.98 165
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
test_prior489.91 8290.74 252
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
旧先验290.00 27868.65 38392.71 24596.52 31485.15 257
新几何290.02 277
新几何193.17 17797.16 14487.29 13594.43 26767.95 38591.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 343
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
无先验89.94 27995.75 22270.81 37398.59 17481.17 30194.81 322
原ACMM289.34 298
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33689.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 294
test22296.95 15185.27 18988.83 31193.61 28165.09 39390.74 28994.85 24184.62 23797.36 25293.91 344
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata91.03 25596.87 15782.01 23194.28 27171.55 36692.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 350
testdata188.96 30788.44 187
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 415
nn0.00 415
door-mid92.13 313
lessismore_v093.87 15198.05 8583.77 20980.32 39497.13 6097.91 5977.49 29799.11 9392.62 9798.08 21398.74 95
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
BP-MVS86.55 240
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 235
NP-MVS96.82 16287.10 14193.40 290
MDTV_nov1_ep13_2view42.48 41188.45 31967.22 38783.56 37566.80 34972.86 36594.06 340
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29485.53 25397.96 22497.41 215
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38646.64 40638.45 40670.07 40250.30 402