This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
LTVRE_ROB93.87 197.93 298.16 297.26 2898.81 2893.86 3499.07 298.98 697.01 1398.92 498.78 1495.22 3998.61 18396.85 299.77 1099.31 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 14097.70 897.54 11398.16 298.94 299.33 297.84 499.08 10290.73 13399.73 1499.59 13
TDRefinement97.68 397.60 497.93 299.02 1295.95 798.61 398.81 897.41 1097.28 5398.46 2794.62 6098.84 14094.64 2099.53 3798.99 56
PS-CasMVS96.69 2297.43 594.49 13599.13 684.09 20496.61 3197.97 7897.91 598.64 1398.13 3895.24 3899.65 393.39 6399.84 399.72 2
DTE-MVSNet96.74 1997.43 594.67 12199.13 684.68 19496.51 3597.94 8498.14 398.67 1298.32 3295.04 4799.69 293.27 6999.82 899.62 10
ACMH88.36 1296.59 2997.43 594.07 14898.56 4185.33 18896.33 4798.30 2694.66 4298.72 898.30 3397.51 598.00 23994.87 1799.59 2998.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS96.69 2297.39 894.61 12499.16 484.50 19596.54 3498.05 6398.06 498.64 1398.25 3495.01 5099.65 392.95 8299.83 699.68 4
pmmvs696.80 1397.36 995.15 10499.12 887.82 13596.68 2997.86 8696.10 2698.14 2499.28 397.94 398.21 22191.38 12399.69 1599.42 20
v7n96.82 1097.31 1095.33 9598.54 4786.81 15596.83 2298.07 5996.59 2098.46 1798.43 2992.91 9899.52 1996.25 699.76 1199.65 8
UA-Net97.35 497.24 1197.69 598.22 7593.87 3398.42 698.19 3896.95 1495.46 13899.23 493.45 7999.57 1495.34 1699.89 299.63 9
Anonymous2023121196.60 2797.13 1295.00 10897.46 12986.35 17097.11 1898.24 3397.58 898.72 898.97 793.15 9099.15 9093.18 7299.74 1399.50 17
abl_697.31 597.12 1397.86 398.54 4795.32 996.61 3198.35 2095.81 3197.55 3897.44 7596.51 999.40 4794.06 3399.23 8498.85 79
WR-MVS_H96.60 2797.05 1495.24 10099.02 1286.44 16696.78 2698.08 5697.42 998.48 1697.86 5691.76 12499.63 694.23 2999.84 399.66 6
HPM-MVS_fast97.01 796.89 1597.39 2499.12 893.92 3197.16 1398.17 4393.11 7596.48 8597.36 8296.92 699.34 6694.31 2699.38 5998.92 70
ACMH+88.43 1196.48 3296.82 1695.47 9098.54 4789.06 10695.65 8098.61 1196.10 2698.16 2397.52 7096.90 798.62 18290.30 14699.60 2798.72 96
CP-MVSNet96.19 4896.80 1794.38 14198.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 7091.98 12099.63 693.08 7899.81 999.70 3
OurMVSNet-221017-096.80 1396.75 1896.96 3899.03 1191.85 6197.98 798.01 7294.15 5398.93 399.07 588.07 18899.57 1495.86 999.69 1599.46 19
mvs_tets96.83 996.71 1997.17 2998.83 2692.51 5296.58 3397.61 10887.57 21298.80 798.90 996.50 1099.59 1396.15 799.47 4299.40 22
RE-MVS-def96.66 2098.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10595.40 2993.49 5198.84 13298.00 160
APD-MVS_3200maxsize96.82 1096.65 2197.32 2797.95 9793.82 3696.31 5098.25 3095.51 3596.99 6697.05 10495.63 2399.39 5293.31 6698.88 12798.75 90
APDe-MVS96.46 3496.64 2295.93 6797.68 11489.38 10396.90 2198.41 1792.52 8297.43 4697.92 5295.11 4499.50 2194.45 2299.30 6998.92 70
HPM-MVScopyleft96.81 1296.62 2397.36 2698.89 2193.53 4197.51 998.44 1392.35 8795.95 11596.41 14796.71 899.42 3393.99 3699.36 6099.13 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
COLMAP_ROBcopyleft91.06 596.75 1896.62 2397.13 3098.38 6494.31 1996.79 2598.32 2396.69 1796.86 7197.56 6795.48 2798.77 15990.11 15599.44 4998.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post96.84 896.60 2597.56 1298.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10594.85 5499.42 3393.49 5198.84 13298.00 160
nrg03096.32 4396.55 2695.62 8497.83 10188.55 12095.77 7598.29 2992.68 7898.03 2697.91 5395.13 4298.95 12493.85 3999.49 4199.36 25
test117296.79 1596.52 2797.60 998.03 9094.87 1296.07 6298.06 6295.76 3296.89 6996.85 11794.85 5499.42 3393.35 6598.81 14098.53 117
FMVS196.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
APD_test96.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
test_djsdf96.62 2596.49 2897.01 3598.55 4491.77 6397.15 1497.37 12488.98 17898.26 2298.86 1093.35 8499.60 996.41 499.45 4699.66 6
SR-MVS96.70 2196.42 3197.54 1398.05 8694.69 1396.13 5998.07 5995.17 3796.82 7396.73 12995.09 4699.43 3292.99 8198.71 14998.50 119
anonymousdsp96.74 1996.42 3197.68 798.00 9394.03 2896.97 1997.61 10887.68 20998.45 1898.77 1594.20 6999.50 2196.70 399.40 5799.53 15
jajsoiax96.59 2996.42 3197.12 3198.76 3192.49 5396.44 4197.42 12286.96 22198.71 1098.72 1795.36 3399.56 1795.92 899.45 4699.32 28
SED-MVS96.00 5496.41 3494.76 11798.51 5186.97 15195.21 9598.10 5291.95 9797.63 3497.25 9196.48 1199.35 6393.29 6799.29 7297.95 168
MTAPA96.65 2496.38 3597.47 1798.95 1894.05 2595.88 7197.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
DVP-MVS++95.93 5596.34 3694.70 12096.54 17686.66 16098.45 498.22 3593.26 7297.54 3997.36 8293.12 9199.38 5893.88 3798.68 15398.04 155
ACMMPcopyleft96.61 2696.34 3697.43 2198.61 3793.88 3296.95 2098.18 3992.26 9096.33 9296.84 12095.10 4599.40 4793.47 5599.33 6499.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP96.40 4096.30 3896.71 4498.63 3491.96 5995.70 7798.01 7293.34 7196.64 8096.57 13994.99 5199.36 6293.48 5499.34 6298.82 81
Skip Steuart: Steuart Systems R&D Blog.
ANet_high94.83 10196.28 3990.47 27296.65 16673.16 34194.33 13098.74 1096.39 2398.09 2598.93 893.37 8398.70 17190.38 14199.68 1999.53 15
TranMVSNet+NR-MVSNet96.07 5296.26 4095.50 8998.26 7287.69 13693.75 15097.86 8695.96 3097.48 4497.14 9995.33 3499.44 2890.79 13299.76 1199.38 23
LPG-MVS_test96.38 4296.23 4196.84 4298.36 6792.13 5695.33 9198.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
test_040295.73 6396.22 4294.26 14398.19 7785.77 18393.24 16397.24 14196.88 1697.69 3297.77 5994.12 7099.13 9491.54 12099.29 7297.88 177
ZNCC-MVS96.42 3896.20 4397.07 3298.80 3092.79 5096.08 6198.16 4691.74 11495.34 14396.36 15595.68 2199.44 2894.41 2499.28 7798.97 62
DVP-MVScopyleft95.82 6096.18 4494.72 11998.51 5186.69 15895.20 9797.00 15791.85 10397.40 4997.35 8595.58 2499.34 6693.44 5999.31 6798.13 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
XVS96.49 3196.18 4497.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18196.49 14194.56 6199.39 5293.57 4799.05 10698.93 66
HFP-MVS96.39 4196.17 4697.04 3398.51 5193.37 4296.30 5497.98 7592.35 8795.63 13196.47 14295.37 3099.27 7893.78 4199.14 9898.48 121
zzz-MVS96.47 3396.14 4797.47 1798.95 1894.05 2593.69 15297.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
ACMMPR96.46 3496.14 4797.41 2398.60 3893.82 3696.30 5497.96 7992.35 8795.57 13496.61 13794.93 5399.41 4093.78 4199.15 9799.00 54
ACMMP_NAP96.21 4796.12 4996.49 5298.90 2091.42 6794.57 12298.03 6890.42 14896.37 8997.35 8595.68 2199.25 8094.44 2399.34 6298.80 85
region2R96.41 3996.09 5097.38 2598.62 3593.81 3896.32 4997.96 7992.26 9095.28 14796.57 13995.02 4999.41 4093.63 4599.11 10198.94 65
CP-MVS96.44 3796.08 5197.54 1398.29 6994.62 1696.80 2498.08 5692.67 8095.08 15896.39 15294.77 5699.42 3393.17 7399.44 4998.58 115
ACMM88.83 996.30 4596.07 5296.97 3798.39 6392.95 4894.74 11498.03 6890.82 13797.15 5696.85 11796.25 1599.00 11693.10 7699.33 6498.95 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mPP-MVS96.46 3496.05 5397.69 598.62 3594.65 1596.45 3997.74 9992.59 8195.47 13696.68 13294.50 6399.42 3393.10 7699.26 8098.99 56
PS-MVSNAJss96.01 5396.04 5495.89 7298.82 2788.51 12295.57 8497.88 8588.72 18498.81 698.86 1090.77 14999.60 995.43 1599.53 3799.57 14
TransMVSNet (Re)95.27 8696.04 5492.97 18498.37 6681.92 22795.07 10396.76 17993.97 5897.77 3098.57 2095.72 2097.90 24588.89 18799.23 8499.08 49
GST-MVS96.24 4695.99 5697.00 3698.65 3392.71 5195.69 7998.01 7292.08 9595.74 12696.28 16195.22 3999.42 3393.17 7399.06 10398.88 75
pm-mvs195.43 7495.94 5793.93 15498.38 6485.08 19195.46 8897.12 15091.84 10697.28 5398.46 2795.30 3697.71 26790.17 15399.42 5198.99 56
PGM-MVS96.32 4395.94 5797.43 2198.59 4093.84 3595.33 9198.30 2691.40 12395.76 12496.87 11695.26 3799.45 2692.77 8499.21 8999.00 54
MP-MVS-pluss96.08 5195.92 5996.57 4899.06 1091.21 6993.25 16298.32 2387.89 20296.86 7197.38 7895.55 2699.39 5295.47 1399.47 4299.11 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS95.88 5895.88 6095.87 7398.12 8089.65 9595.58 8398.56 1291.84 10696.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
DPE-MVScopyleft95.89 5695.88 6095.92 6997.93 9889.83 9293.46 15898.30 2692.37 8597.75 3196.95 10995.14 4199.51 2091.74 11299.28 7798.41 126
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FC-MVSNet-test95.32 8095.88 6093.62 16498.49 5981.77 22895.90 7098.32 2393.93 5997.53 4197.56 6788.48 18199.40 4792.91 8399.83 699.68 4
DP-MVS95.62 6695.84 6394.97 10997.16 14288.62 11794.54 12697.64 10496.94 1596.58 8397.32 8893.07 9498.72 16590.45 13898.84 13297.57 202
Anonymous2024052995.50 7195.83 6494.50 13397.33 13585.93 18095.19 9996.77 17896.64 1997.61 3798.05 4393.23 8798.79 15188.60 19499.04 11298.78 87
LS3D96.11 5095.83 6496.95 3994.75 26994.20 2197.34 1297.98 7597.31 1195.32 14496.77 12293.08 9399.20 8691.79 11198.16 20897.44 212
Gipumacopyleft95.31 8395.80 6693.81 16197.99 9690.91 7496.42 4297.95 8196.69 1791.78 26398.85 1291.77 12395.49 33491.72 11399.08 10295.02 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
3Dnovator+92.74 295.86 5995.77 6796.13 5796.81 16290.79 7796.30 5497.82 9296.13 2594.74 17297.23 9391.33 13499.16 8993.25 7098.30 19398.46 123
SD-MVS95.19 8795.73 6893.55 16796.62 17088.88 11394.67 11698.05 6391.26 12697.25 5596.40 14895.42 2894.36 35192.72 8899.19 9197.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MP-MVScopyleft96.14 4995.68 6997.51 1598.81 2894.06 2396.10 6097.78 9892.73 7793.48 20796.72 13094.23 6899.42 3391.99 10399.29 7299.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VPA-MVSNet95.14 8895.67 7093.58 16697.76 10583.15 21594.58 12197.58 11093.39 7097.05 6298.04 4493.25 8698.51 19689.75 16599.59 2999.08 49
DROMVSNet95.44 7395.62 7194.89 11196.93 15387.69 13696.48 3899.14 493.93 5992.77 23494.52 24493.95 7299.49 2493.62 4699.22 8897.51 207
CS-MVS95.77 6195.58 7296.37 5496.84 15891.72 6596.73 2899.06 594.23 5192.48 24294.79 23693.56 7599.49 2493.47 5599.05 10697.89 176
SMA-MVScopyleft95.77 6195.54 7396.47 5398.27 7191.19 7095.09 10197.79 9786.48 22497.42 4897.51 7294.47 6599.29 7493.55 4999.29 7298.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
#test#95.89 5695.51 7497.04 3398.51 5193.37 4295.14 10097.98 7589.34 16995.63 13196.47 14295.37 3099.27 7891.99 10399.14 9898.48 121
Vis-MVSNetpermissive95.50 7195.48 7595.56 8898.11 8189.40 10295.35 8998.22 3592.36 8694.11 18498.07 4292.02 11799.44 2893.38 6497.67 24097.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS95.61 6795.45 7696.08 5898.49 5991.00 7292.65 17997.33 13390.05 15396.77 7696.85 11795.04 4798.56 19192.77 8499.06 10398.70 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet195.52 7095.45 7695.72 8199.14 589.02 10796.23 5796.87 17093.73 6397.87 2898.49 2690.73 15399.05 10786.43 23599.60 2799.10 48
ACMP88.15 1395.71 6495.43 7896.54 4998.17 7891.73 6494.24 13398.08 5689.46 16596.61 8296.47 14295.85 1999.12 9890.45 13899.56 3598.77 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
mvsmamba95.61 6795.40 7996.22 5598.44 6189.86 9197.14 1697.45 12191.25 12897.49 4398.14 3683.49 23899.45 2695.52 1199.66 2299.36 25
FIs94.90 9595.35 8093.55 16798.28 7081.76 22995.33 9198.14 4793.05 7697.07 5997.18 9787.65 19599.29 7491.72 11399.69 1599.61 11
XVG-ACMP-BASELINE95.68 6595.34 8196.69 4598.40 6293.04 4594.54 12698.05 6390.45 14796.31 9496.76 12492.91 9898.72 16591.19 12499.42 5198.32 130
DeepC-MVS91.39 495.43 7495.33 8295.71 8297.67 11590.17 8593.86 14798.02 7087.35 21496.22 10397.99 4794.48 6499.05 10792.73 8799.68 1997.93 170
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PMVScopyleft87.21 1494.97 9295.33 8293.91 15698.97 1797.16 295.54 8595.85 21996.47 2193.40 21097.46 7495.31 3595.47 33586.18 23998.78 14489.11 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v894.65 10895.29 8492.74 19596.65 16679.77 26294.59 11997.17 14591.86 10297.47 4597.93 4988.16 18699.08 10294.32 2599.47 4299.38 23
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14595.08 10297.37 12493.92 6197.65 3395.90 17790.10 16799.33 7190.11 15599.66 2299.26 31
v1094.68 10795.27 8692.90 19096.57 17380.15 24794.65 11897.57 11190.68 14197.43 4698.00 4688.18 18599.15 9094.84 1899.55 3699.41 21
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11892.26 19997.84 9094.91 4096.80 7495.78 18790.42 15899.41 4091.60 11799.58 3399.29 30
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21495.93 6894.84 25094.86 4198.49 1598.74 1681.45 26299.60 994.69 1999.39 5899.15 40
RRT_MVS95.41 7695.20 8996.05 5998.86 2388.92 10997.49 1094.48 26193.12 7497.94 2798.54 2281.19 26899.63 695.48 1299.69 1599.60 12
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 11092.91 17098.07 5993.46 6996.31 9495.97 17690.14 16399.34 6692.11 9899.64 2599.16 39
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19795.99 6496.56 18892.38 8497.03 6398.53 2390.12 16498.98 11788.78 18999.16 9698.65 102
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11892.58 18097.81 9393.99 5596.80 7495.90 17790.10 16799.41 4091.60 11799.58 3399.26 31
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7896.33 4799.20 293.99 5591.03 27493.73 27293.52 7899.55 1891.81 11099.45 4697.58 201
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24392.08 20596.68 18293.82 6296.29 9698.56 2190.10 16797.75 26590.10 15799.66 2299.24 33
dcpmvs_293.96 13495.01 9590.82 26497.60 11974.04 33693.68 15498.85 789.80 15997.82 2997.01 10891.14 14599.21 8490.56 13698.59 16099.19 37
XVG-OURS-SEG-HR95.38 7795.00 9696.51 5098.10 8294.07 2292.46 18698.13 4890.69 14093.75 19896.25 16498.03 297.02 29692.08 10095.55 29698.45 124
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12992.04 20798.42 1687.63 21096.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14896.63 3097.28 13991.82 10994.34 18397.41 7690.60 15698.65 18092.47 9398.11 21497.70 193
RPSCF95.58 6994.89 9997.62 897.58 12196.30 695.97 6797.53 11592.42 8393.41 20897.78 5791.21 14097.77 26291.06 12597.06 25998.80 85
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 24294.55 12595.41 23793.70 6496.67 7997.72 6091.40 13298.18 22587.45 21599.18 9398.36 128
9.1494.81 10197.49 12694.11 13898.37 1887.56 21395.38 14096.03 17394.66 5899.08 10290.70 13498.97 119
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23592.35 19498.05 6391.53 12195.75 12596.80 12193.35 8498.49 19791.01 12898.32 19098.64 106
baseline94.26 12594.80 10292.64 19896.08 21380.99 24093.69 15298.04 6790.80 13894.89 16696.32 15793.19 8898.48 20191.68 11598.51 17098.43 125
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2388.69 11496.37 4496.81 17485.23 24494.75 17197.12 10091.85 12299.40 4793.45 5798.33 18898.62 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13395.01 10697.57 11192.68 7896.20 10593.44 27991.92 12198.78 15589.11 18299.24 8396.92 233
KD-MVS_self_test94.10 13094.73 10692.19 21397.66 11679.49 26894.86 11097.12 15089.59 16496.87 7097.65 6390.40 16198.34 21189.08 18399.35 6198.75 90
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 15095.59 8198.24 3391.56 12095.21 15392.04 31194.95 5298.66 17891.45 12197.57 24497.20 225
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7594.59 11997.81 9389.22 17495.46 13896.17 16993.42 8299.34 6689.30 17398.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
GeoE94.55 11194.68 10994.15 14597.23 13785.11 19094.14 13797.34 13288.71 18595.26 14895.50 20194.65 5999.12 9890.94 12998.40 17698.23 138
Regformer-494.90 9594.67 11095.59 8592.78 31589.02 10792.39 19195.91 21694.50 4596.41 8795.56 19892.10 11699.01 11594.23 2998.14 21098.74 93
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16292.00 21096.74 18088.16 19796.93 6897.61 6593.04 9597.90 24591.60 11798.12 21398.03 158
MSP-MVS95.34 7994.63 11297.48 1698.67 3294.05 2596.41 4398.18 3991.26 12695.12 15495.15 21586.60 21799.50 2193.43 6196.81 27098.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21693.79 14999.19 392.00 9698.84 598.04 4493.64 7499.02 11381.28 28698.54 16696.96 232
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9394.05 14098.37 1888.09 19895.06 15995.85 17992.58 10699.10 10190.33 14598.99 11498.62 110
test_part194.39 11694.55 11493.92 15596.14 20882.86 21995.54 8598.09 5595.36 3698.27 2098.36 3175.91 30699.44 2893.41 6299.84 399.47 18
Regformer-294.86 9894.55 11495.77 7892.83 31389.98 8791.87 21996.40 19694.38 4996.19 10795.04 22292.47 11199.04 11093.49 5198.31 19198.28 134
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5495.26 9498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
testtj94.81 10294.42 11896.01 6097.23 13790.51 8294.77 11397.85 8991.29 12594.92 16595.66 19191.71 12599.40 4788.07 20498.25 19898.11 151
HPM-MVS++copyleft95.02 9094.39 11996.91 4097.88 9993.58 4094.09 13996.99 15991.05 13292.40 24795.22 21491.03 14799.25 8092.11 9898.69 15297.90 174
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17893.97 14493.28 28394.49 4696.24 10197.78 5787.99 19198.79 15188.92 18599.14 9898.34 129
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16597.13 1794.31 26596.24 2496.28 9996.36 15582.88 24599.35 6388.19 19999.52 4098.96 63
Regformer-194.55 11194.33 12295.19 10292.83 31388.54 12191.87 21995.84 22093.99 5595.95 11595.04 22292.00 11898.79 15193.14 7598.31 19198.23 138
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10491.81 22596.80 17589.66 16193.90 19695.44 20592.80 10298.72 16592.74 8698.52 16898.32 130
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31885.98 17992.44 18794.69 25793.70 6496.12 11095.81 18391.24 13898.86 13793.76 4498.22 20398.98 61
IterMVS-LS93.78 13794.28 12492.27 21096.27 19779.21 27591.87 21996.78 17691.77 11296.57 8497.07 10287.15 20498.74 16391.99 10399.03 11398.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31985.87 18192.42 18994.69 25793.67 6896.13 10995.84 18291.20 14198.86 13793.78 4198.23 20199.03 52
VDDNet94.03 13294.27 12693.31 17698.87 2282.36 22395.51 8791.78 31397.19 1296.32 9398.60 1984.24 23498.75 16087.09 22298.83 13798.81 83
Regformer-394.28 12294.23 12894.46 13792.78 31586.28 17292.39 19194.70 25693.69 6795.97 11395.56 19891.34 13398.48 20193.45 5798.14 21098.62 110
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4486.28 17295.80 7495.55 23288.41 19297.09 5898.08 4178.69 28198.87 13695.63 1099.53 3798.81 83
XVG-OURS94.72 10594.12 13096.50 5198.00 9394.23 2091.48 23198.17 4390.72 13995.30 14596.47 14287.94 19296.98 29791.41 12297.61 24398.30 133
CPTT-MVS94.74 10494.12 13096.60 4798.15 7993.01 4695.84 7297.66 10389.21 17593.28 21495.46 20388.89 17898.98 11789.80 16298.82 13897.80 186
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12794.56 12397.81 9391.74 11493.31 21195.59 19386.93 20998.95 12489.26 17798.51 17098.60 113
MSLP-MVS++93.25 15293.88 13391.37 24196.34 19182.81 22093.11 16497.74 9989.37 16894.08 18695.29 21390.40 16196.35 31890.35 14398.25 19894.96 301
v114493.50 14193.81 13492.57 20396.28 19679.61 26591.86 22396.96 16086.95 22295.91 11996.32 15787.65 19598.96 12293.51 5098.88 12799.13 42
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6694.82 11197.86 8687.86 20393.04 22594.16 25691.58 12898.78 15590.27 14898.96 12197.41 213
v119293.49 14293.78 13692.62 20196.16 20679.62 26491.83 22497.22 14386.07 23196.10 11196.38 15387.22 20299.02 11394.14 3298.88 12799.22 34
VPNet93.08 15693.76 13791.03 25498.60 3875.83 32291.51 23095.62 22491.84 10695.74 12697.10 10189.31 17598.32 21285.07 25299.06 10398.93 66
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25390.14 26795.68 22393.70 6496.62 8195.39 20987.21 20399.04 11087.50 21499.64 2599.33 27
v124093.29 14793.71 13992.06 22096.01 22077.89 29391.81 22597.37 12485.12 24896.69 7896.40 14886.67 21599.07 10694.51 2198.76 14699.22 34
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6892.27 19897.40 12387.10 22094.56 17695.42 20693.74 7398.11 23086.62 22998.85 13198.06 152
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18697.44 1194.03 27094.22 5294.94 16396.19 16682.07 25799.57 1487.28 21998.89 12598.65 102
v2v48293.29 14793.63 14292.29 20996.35 19078.82 28191.77 22796.28 20088.45 19095.70 13096.26 16386.02 22398.90 12893.02 7998.81 14099.14 41
v192192093.26 15093.61 14392.19 21396.04 21978.31 28791.88 21897.24 14185.17 24696.19 10796.19 16686.76 21499.05 10794.18 3198.84 13299.22 34
V4293.43 14493.58 14492.97 18495.34 25381.22 23792.67 17896.49 19387.25 21696.20 10596.37 15487.32 20198.85 13992.39 9698.21 20498.85 79
Anonymous2024052192.86 16693.57 14590.74 26696.57 17375.50 32494.15 13695.60 22589.38 16795.90 12097.90 5580.39 27297.96 24392.60 9199.68 1998.75 90
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4789.48 28497.46 11985.14 24796.23 10295.42 20693.19 8898.08 23190.37 14298.76 14697.38 219
v14419293.20 15593.54 14792.16 21796.05 21578.26 28891.95 21197.14 14784.98 25295.96 11496.11 17087.08 20699.04 11093.79 4098.84 13299.17 38
NCCC94.08 13193.54 14795.70 8396.49 18189.90 9092.39 19196.91 16690.64 14292.33 25394.60 24190.58 15798.96 12290.21 15297.70 23898.23 138
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13293.36 16197.14 14785.53 24193.90 19695.45 20491.30 13698.59 18789.51 16898.62 15797.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15389.30 29096.23 20488.36 19493.57 20594.60 24193.45 7997.77 26290.23 15198.38 18198.03 158
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8892.72 17598.02 7084.73 25793.65 20295.54 20091.68 12699.22 8388.78 18998.49 17398.26 136
v14892.87 16593.29 15291.62 23496.25 20077.72 29691.28 23695.05 24489.69 16095.93 11896.04 17287.34 20098.38 20790.05 15897.99 22498.78 87
MVS_Test92.57 17793.29 15290.40 27593.53 30075.85 32092.52 18296.96 16088.73 18392.35 25096.70 13190.77 14998.37 21092.53 9295.49 29896.99 231
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7390.21 26395.43 23687.91 20093.74 20094.40 24792.88 10096.38 31690.39 14098.28 19497.07 226
K. test v393.37 14593.27 15593.66 16398.05 8682.62 22194.35 12986.62 34596.05 2897.51 4298.85 1276.59 30499.65 393.21 7198.20 20698.73 95
EI-MVSNet92.99 16093.26 15692.19 21392.12 32679.21 27592.32 19694.67 25991.77 11295.24 15195.85 17987.14 20598.49 19791.99 10398.26 19698.86 76
XXY-MVS92.58 17593.16 15790.84 26397.75 10679.84 25891.87 21996.22 20685.94 23395.53 13597.68 6192.69 10494.48 34783.21 26897.51 24598.21 141
VNet92.67 17292.96 15891.79 22696.27 19780.15 24791.95 21194.98 24692.19 9394.52 17896.07 17187.43 19997.39 28484.83 25498.38 18197.83 182
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
test193.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13893.45 15995.76 22191.58 11995.25 15092.42 30581.96 25998.72 16591.61 11697.87 23097.33 221
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14390.21 26397.36 12989.33 17090.77 27794.81 23290.41 15998.68 17588.21 19798.55 16397.93 170
QAPM92.88 16492.77 16393.22 17995.82 22983.31 21196.45 3997.35 13183.91 26293.75 19896.77 12289.25 17698.88 13184.56 25897.02 26197.49 208
TinyColmap92.00 19192.76 16489.71 29195.62 24377.02 30490.72 24896.17 20987.70 20895.26 14896.29 15992.54 10896.45 31381.77 28298.77 14595.66 286
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 17192.33 19597.84 9091.70 11792.81 23286.17 36792.22 11399.19 8788.03 20697.73 23495.66 286
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 21294.00 14297.53 11591.36 12489.35 30590.65 33394.01 7198.66 17887.40 21795.30 30496.88 236
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22694.18 13595.53 23488.63 18696.05 11297.37 7981.31 26498.81 14787.38 21898.67 15598.06 152
patch_mono-292.46 17992.72 16891.71 23096.65 16678.91 27988.85 29997.17 14583.89 26392.45 24496.76 12489.86 17197.09 29390.24 15098.59 16099.12 44
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2392.26 19992.18 30485.92 23496.22 10396.61 13785.64 22895.99 32790.35 14398.23 20195.93 272
ab-mvs92.40 18192.62 17091.74 22897.02 14781.65 23095.84 7295.50 23586.95 22292.95 22997.56 6790.70 15497.50 27579.63 30597.43 24996.06 267
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 27096.67 594.00 14295.41 23789.94 15491.93 26192.13 30990.12 16498.97 12187.68 21297.48 24797.67 196
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18491.36 23597.13 14980.33 29292.91 23094.24 25291.23 13998.72 16589.99 15997.93 22797.86 179
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21392.43 18891.64 31594.10 5495.59 13396.64 13581.88 26197.50 27585.12 24998.52 16897.77 188
UGNet93.08 15692.50 17394.79 11693.87 29587.99 13195.07 10394.26 26790.64 14287.33 33497.67 6286.89 21298.49 19788.10 20298.71 14997.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7690.97 24292.61 29888.04 19994.61 17593.79 27088.08 18797.81 25789.41 17098.39 17996.50 250
FMVS292.42 18092.40 17692.46 20893.80 29887.28 14293.86 14797.05 15476.86 32296.25 10098.66 1882.87 24691.26 36895.44 1496.83 26998.82 81
MVSFormer92.18 18892.23 17792.04 22194.74 27080.06 25197.15 1497.37 12488.98 17888.83 30992.79 29477.02 29899.60 996.41 496.75 27396.46 252
Fast-Effi-MVS+-dtu92.77 16992.16 17894.58 13194.66 27688.25 12592.05 20696.65 18489.62 16290.08 29091.23 32192.56 10798.60 18586.30 23796.27 28296.90 234
DELS-MVS92.05 19092.16 17891.72 22994.44 28180.13 24987.62 31397.25 14087.34 21592.22 25593.18 28689.54 17498.73 16489.67 16698.20 20696.30 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft89.45 892.27 18692.13 18092.68 19794.53 28084.10 20395.70 7797.03 15582.44 28091.14 27396.42 14688.47 18298.38 20785.95 24097.47 24895.55 290
EIA-MVS92.35 18392.03 18193.30 17795.81 23183.97 20592.80 17398.17 4387.71 20789.79 29987.56 35791.17 14499.18 8887.97 20797.27 25396.77 240
LF4IMVS92.72 17092.02 18294.84 11495.65 24091.99 5892.92 16996.60 18685.08 25092.44 24593.62 27486.80 21396.35 31886.81 22498.25 19896.18 263
h-mvs3392.89 16391.99 18395.58 8696.97 14990.55 8093.94 14594.01 27389.23 17293.95 19396.19 16676.88 30199.14 9291.02 12695.71 29397.04 229
CANet92.38 18291.99 18393.52 17193.82 29783.46 21091.14 23897.00 15789.81 15886.47 33894.04 25987.90 19399.21 8489.50 16998.27 19597.90 174
diffmvs91.74 19591.93 18591.15 25293.06 30878.17 28988.77 30297.51 11886.28 22792.42 24693.96 26488.04 18997.46 27890.69 13596.67 27597.82 184
DP-MVS Recon92.31 18491.88 18693.60 16597.18 14186.87 15491.10 24097.37 12484.92 25392.08 25894.08 25888.59 18098.20 22283.50 26598.14 21095.73 281
FA-MVS(test-final)91.81 19491.85 18791.68 23294.95 26079.99 25596.00 6393.44 28187.80 20494.02 19197.29 8977.60 29198.45 20488.04 20597.49 24696.61 244
train_agg92.71 17191.83 18895.35 9396.45 18389.46 9890.60 25196.92 16479.37 30190.49 28294.39 24891.20 14198.88 13188.66 19398.43 17597.72 192
CDPH-MVS92.67 17291.83 18895.18 10396.94 15188.46 12390.70 24997.07 15377.38 31792.34 25295.08 22092.67 10598.88 13185.74 24198.57 16298.20 142
mvs-test193.07 15891.80 19096.89 4194.74 27095.83 892.17 20295.41 23789.94 15489.85 29690.59 33490.12 16498.88 13187.68 21295.66 29495.97 270
agg_prior192.60 17491.76 19195.10 10696.20 20288.89 11190.37 25896.88 16879.67 29890.21 28794.41 24691.30 13698.78 15588.46 19698.37 18697.64 198
TAPA-MVS88.58 1092.49 17891.75 19294.73 11896.50 18089.69 9492.91 17097.68 10278.02 31592.79 23394.10 25790.85 14897.96 24384.76 25698.16 20896.54 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
API-MVS91.52 20191.61 19391.26 24694.16 28686.26 17494.66 11794.82 25191.17 13092.13 25791.08 32490.03 17097.06 29579.09 31297.35 25290.45 362
IterMVS-SCA-FT91.65 19791.55 19491.94 22293.89 29479.22 27487.56 31693.51 27991.53 12195.37 14196.62 13678.65 28298.90 12891.89 10894.95 31097.70 193
xiu_mvs_v1_base_debu91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
xiu_mvs_v1_base91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
xiu_mvs_v1_base_debi91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
HQP-MVS92.09 18991.49 19893.88 15896.36 18784.89 19291.37 23297.31 13487.16 21788.81 31193.40 28084.76 23198.60 18586.55 23297.73 23498.14 147
c3_l91.32 20691.42 19991.00 25792.29 32176.79 31187.52 31996.42 19585.76 23794.72 17493.89 26782.73 24998.16 22790.93 13098.55 16398.04 155
CLD-MVS91.82 19391.41 20093.04 18196.37 18583.65 20986.82 33297.29 13784.65 25892.27 25489.67 34392.20 11497.85 25583.95 26299.47 4297.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AdaColmapbinary91.63 19891.36 20192.47 20795.56 24586.36 16992.24 20196.27 20188.88 18289.90 29592.69 29791.65 12798.32 21277.38 32497.64 24192.72 347
testgi90.38 22591.34 20287.50 32497.49 12671.54 35189.43 28595.16 24388.38 19394.54 17794.68 24092.88 10093.09 36171.60 35697.85 23197.88 177
mvs_anonymous90.37 22691.30 20387.58 32392.17 32568.00 36589.84 27794.73 25583.82 26493.22 21997.40 7787.54 19797.40 28387.94 20895.05 30997.34 220
ETH3 D test640091.91 19291.25 20493.89 15796.59 17184.41 19692.10 20497.72 10178.52 31191.82 26293.78 27188.70 17999.13 9483.61 26498.39 17998.14 147
hse-mvs292.24 18791.20 20595.38 9296.16 20690.65 7992.52 18292.01 31189.23 17293.95 19392.99 28976.88 30198.69 17391.02 12696.03 28596.81 238
PVSNet_Blended_VisFu91.63 19891.20 20592.94 18897.73 10983.95 20692.14 20397.46 11978.85 31092.35 25094.98 22584.16 23599.08 10286.36 23696.77 27295.79 279
CNLPA91.72 19691.20 20593.26 17896.17 20591.02 7191.14 23895.55 23290.16 15290.87 27693.56 27786.31 21994.40 35079.92 30497.12 25794.37 315
LFMVS91.33 20591.16 20891.82 22596.27 19779.36 27095.01 10685.61 35596.04 2994.82 16897.06 10372.03 31998.46 20384.96 25398.70 15197.65 197
F-COLMAP92.28 18591.06 20995.95 6497.52 12491.90 6093.53 15697.18 14483.98 26188.70 31794.04 25988.41 18398.55 19380.17 29895.99 28797.39 217
BH-untuned90.68 21690.90 21090.05 28695.98 22179.57 26690.04 27094.94 24887.91 20094.07 18793.00 28887.76 19497.78 26179.19 31195.17 30792.80 346
MDA-MVSNet-bldmvs91.04 20890.88 21191.55 23694.68 27580.16 24685.49 34592.14 30790.41 14994.93 16495.79 18485.10 22996.93 30085.15 24794.19 32997.57 202
Fast-Effi-MVS+91.28 20790.86 21292.53 20595.45 24882.53 22289.25 29396.52 19285.00 25189.91 29488.55 35392.94 9698.84 14084.72 25795.44 30096.22 261
test20.0390.80 21290.85 21390.63 26995.63 24279.24 27389.81 27892.87 28989.90 15694.39 18096.40 14885.77 22495.27 34273.86 34399.05 10697.39 217
PAPM_NR91.03 20990.81 21491.68 23296.73 16481.10 23993.72 15196.35 19988.19 19688.77 31592.12 31085.09 23097.25 28882.40 27793.90 33096.68 243
new-patchmatchnet88.97 26090.79 21583.50 35194.28 28555.83 38585.34 34693.56 27886.18 22995.47 13695.73 18983.10 24396.51 31185.40 24498.06 21898.16 145
wuyk23d87.83 27990.79 21578.96 36090.46 35088.63 11692.72 17590.67 32391.65 11898.68 1197.64 6496.06 1677.53 38159.84 37699.41 5670.73 379
pmmvs-eth3d91.54 20090.73 21793.99 14995.76 23487.86 13490.83 24593.98 27478.23 31494.02 19196.22 16582.62 25296.83 30386.57 23098.33 18897.29 223
MSDG90.82 21190.67 21891.26 24694.16 28683.08 21786.63 33796.19 20790.60 14491.94 26091.89 31289.16 17795.75 32980.96 29294.51 32094.95 302
test111190.39 22490.61 21989.74 29098.04 8971.50 35295.59 8179.72 37889.41 16695.94 11798.14 3670.79 32298.81 14788.52 19599.32 6698.90 72
eth_miper_zixun_eth90.72 21490.61 21991.05 25392.04 32876.84 31086.91 32896.67 18385.21 24594.41 17993.92 26579.53 27698.26 21889.76 16497.02 26198.06 152
cl____90.65 21790.56 22190.91 26191.85 33076.98 30786.75 33395.36 24185.53 24194.06 18894.89 22977.36 29697.98 24290.27 14898.98 11597.76 189
DIV-MVS_self_test90.65 21790.56 22190.91 26191.85 33076.99 30686.75 33395.36 24185.52 24394.06 18894.89 22977.37 29597.99 24190.28 14798.97 11997.76 189
BH-RMVSNet90.47 22190.44 22390.56 27195.21 25678.65 28589.15 29493.94 27588.21 19592.74 23594.22 25386.38 21897.88 24978.67 31495.39 30295.14 297
miper_ehance_all_eth90.48 22090.42 22490.69 26791.62 33576.57 31386.83 33196.18 20883.38 26594.06 18892.66 29982.20 25598.04 23389.79 16397.02 26197.45 210
UnsupCasMVSNet_eth90.33 22890.34 22590.28 27794.64 27880.24 24589.69 28095.88 21785.77 23693.94 19595.69 19081.99 25892.98 36284.21 26191.30 35797.62 199
FMVSNet390.78 21390.32 22692.16 21793.03 31079.92 25792.54 18194.95 24786.17 23095.10 15596.01 17469.97 32598.75 16086.74 22598.38 18197.82 184
ECVR-MVScopyleft90.12 23590.16 22790.00 28797.81 10272.68 34695.76 7678.54 38089.04 17695.36 14298.10 3970.51 32398.64 18187.10 22199.18 9398.67 100
IterMVS90.18 23390.16 22790.21 28193.15 30675.98 31987.56 31692.97 28886.43 22694.09 18596.40 14878.32 28697.43 28087.87 20994.69 31797.23 224
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Vis-MVSNet (Re-imp)90.42 22290.16 22791.20 25097.66 11677.32 30194.33 13087.66 33991.20 12992.99 22695.13 21775.40 30898.28 21477.86 31799.19 9197.99 163
MVS_030490.96 21090.15 23093.37 17393.17 30587.06 14893.62 15592.43 30289.60 16382.25 36395.50 20182.56 25397.83 25684.41 26097.83 23295.22 294
RPMNet90.31 23090.14 23190.81 26591.01 34278.93 27792.52 18298.12 4991.91 10089.10 30696.89 11568.84 32799.41 4090.17 15392.70 34694.08 319
PVSNet_BlendedMVS90.35 22789.96 23291.54 23794.81 26578.80 28390.14 26796.93 16279.43 30088.68 31895.06 22186.27 22098.15 22880.27 29498.04 22097.68 195
Patchmtry90.11 23689.92 23390.66 26890.35 35177.00 30592.96 16892.81 29090.25 15194.74 17296.93 11267.11 33297.52 27485.17 24598.98 11597.46 209
CL-MVSNet_self_test90.04 24189.90 23490.47 27295.24 25577.81 29486.60 33992.62 29785.64 23993.25 21893.92 26583.84 23696.06 32579.93 30298.03 22197.53 206
miper_lstm_enhance89.90 24389.80 23590.19 28391.37 33877.50 29883.82 36095.00 24584.84 25593.05 22494.96 22676.53 30595.20 34389.96 16098.67 15597.86 179
114514_t90.51 21989.80 23592.63 20098.00 9382.24 22493.40 16097.29 13765.84 36989.40 30494.80 23586.99 20798.75 16083.88 26398.61 15896.89 235
MG-MVS89.54 24889.80 23588.76 30694.88 26172.47 34889.60 28192.44 30185.82 23589.48 30395.98 17582.85 24797.74 26681.87 28195.27 30596.08 266
test_yl90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
DCV-MVSNet90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
D2MVS89.93 24289.60 24090.92 25994.03 29178.40 28688.69 30494.85 24978.96 30893.08 22295.09 21974.57 30996.94 29888.19 19998.96 12197.41 213
iter_conf_final90.23 23289.32 24192.95 18694.65 27781.46 23494.32 13295.40 24085.61 24092.84 23195.37 21154.58 37499.13 9492.16 9798.94 12398.25 137
112190.26 23189.23 24293.34 17497.15 14487.40 13991.94 21394.39 26367.88 36491.02 27594.91 22886.91 21198.59 18781.17 28997.71 23794.02 324
xiu_mvs_v2_base89.00 25989.19 24388.46 31394.86 26374.63 32886.97 32695.60 22580.88 28887.83 32888.62 35291.04 14698.81 14782.51 27694.38 32291.93 353
CANet_DTU89.85 24489.17 24491.87 22392.20 32480.02 25490.79 24695.87 21886.02 23282.53 36291.77 31480.01 27398.57 19085.66 24297.70 23897.01 230
USDC89.02 25789.08 24588.84 30595.07 25874.50 33188.97 29696.39 19773.21 34093.27 21596.28 16182.16 25696.39 31577.55 32198.80 14295.62 289
TAMVS90.16 23489.05 24693.49 17296.49 18186.37 16890.34 26092.55 29980.84 29092.99 22694.57 24381.94 26098.20 22273.51 34498.21 20495.90 275
OpenMVS_ROBcopyleft85.12 1689.52 24989.05 24690.92 25994.58 27981.21 23891.10 24093.41 28277.03 32193.41 20893.99 26383.23 24297.80 25879.93 30294.80 31493.74 331
PS-MVSNAJ88.86 26488.99 24888.48 31294.88 26174.71 32686.69 33595.60 22580.88 28887.83 32887.37 36090.77 14998.82 14282.52 27594.37 32391.93 353
MVP-Stereo90.07 23988.92 24993.54 16996.31 19486.49 16390.93 24395.59 22979.80 29491.48 26595.59 19380.79 26997.39 28478.57 31591.19 35896.76 241
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PLCcopyleft85.34 1590.40 22388.92 24994.85 11396.53 17990.02 8691.58 22996.48 19480.16 29386.14 34092.18 30785.73 22598.25 21976.87 32794.61 31996.30 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051789.81 24588.90 25192.55 20497.00 14879.73 26395.03 10583.65 36789.88 15795.30 14594.79 23653.64 37799.39 5291.99 10398.79 14398.54 116
MAR-MVS90.32 22988.87 25294.66 12294.82 26491.85 6194.22 13494.75 25480.91 28787.52 33288.07 35686.63 21697.87 25276.67 32896.21 28394.25 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER89.32 25188.75 25391.03 25490.10 35476.62 31290.85 24494.67 25982.27 28195.24 15195.79 18461.09 36398.49 19790.49 13798.26 19697.97 167
ppachtmachnet_test88.61 26988.64 25488.50 31191.76 33270.99 35584.59 35392.98 28779.30 30592.38 24893.53 27879.57 27597.45 27986.50 23497.17 25697.07 226
Patchmatch-RL test88.81 26588.52 25589.69 29295.33 25479.94 25686.22 34292.71 29478.46 31295.80 12394.18 25566.25 34095.33 34089.22 17998.53 16793.78 329
cl2289.02 25788.50 25690.59 27089.76 35676.45 31486.62 33894.03 27082.98 27392.65 23792.49 30072.05 31897.53 27388.93 18497.02 26197.78 187
X-MVStestdata90.70 21588.45 25797.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18126.89 38294.56 6199.39 5293.57 4799.05 10698.93 66
DPM-MVS89.35 25088.40 25892.18 21696.13 21184.20 20186.96 32796.15 21075.40 33087.36 33391.55 31983.30 24198.01 23882.17 28096.62 27694.32 317
jason89.17 25388.32 25991.70 23195.73 23580.07 25088.10 30993.22 28471.98 34690.09 28992.79 29478.53 28598.56 19187.43 21697.06 25996.46 252
jason: jason.
AUN-MVS90.05 24088.30 26095.32 9896.09 21290.52 8192.42 18992.05 31082.08 28388.45 32092.86 29165.76 34298.69 17388.91 18696.07 28496.75 242
FE-MVS89.06 25688.29 26191.36 24294.78 26779.57 26696.77 2790.99 31984.87 25492.96 22896.29 15960.69 36598.80 15080.18 29797.11 25895.71 282
Anonymous2023120688.77 26688.29 26190.20 28296.31 19478.81 28289.56 28393.49 28074.26 33592.38 24895.58 19682.21 25495.43 33772.07 35298.75 14896.34 256
EPNet89.80 24688.25 26394.45 13883.91 38386.18 17593.87 14687.07 34391.16 13180.64 37194.72 23878.83 27998.89 13085.17 24598.89 12598.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
YYNet188.17 27488.24 26487.93 31992.21 32373.62 33880.75 36888.77 32982.51 27994.99 16295.11 21882.70 25093.70 35683.33 26693.83 33196.48 251
MDA-MVSNet_test_wron88.16 27588.23 26587.93 31992.22 32273.71 33780.71 36988.84 32882.52 27894.88 16795.14 21682.70 25093.61 35783.28 26793.80 33296.46 252
CDS-MVSNet89.55 24788.22 26693.53 17095.37 25286.49 16389.26 29193.59 27779.76 29691.15 27292.31 30677.12 29798.38 20777.51 32297.92 22895.71 282
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsany_test89.11 25588.21 26791.83 22491.30 33990.25 8488.09 31078.76 37976.37 32596.43 8698.39 3083.79 23790.43 37286.57 23094.20 32794.80 304
PatchT87.51 28788.17 26885.55 33790.64 34566.91 36792.02 20986.09 34992.20 9289.05 30897.16 9864.15 35096.37 31789.21 18092.98 34493.37 338
PVSNet_Blended88.74 26788.16 26990.46 27494.81 26578.80 28386.64 33696.93 16274.67 33288.68 31889.18 34986.27 22098.15 22880.27 29496.00 28694.44 314
iter_conf0588.94 26288.09 27091.50 23892.74 31776.97 30892.80 17395.92 21582.82 27593.65 20295.37 21149.41 38199.13 9490.82 13199.28 7798.40 127
UnsupCasMVSNet_bld88.50 27088.03 27189.90 28895.52 24678.88 28087.39 32094.02 27279.32 30493.06 22394.02 26180.72 27094.27 35275.16 33793.08 34296.54 245
PatchMatch-RL89.18 25288.02 27292.64 19895.90 22792.87 4988.67 30691.06 31880.34 29190.03 29291.67 31683.34 24094.42 34976.35 33194.84 31390.64 361
miper_enhance_ethall88.42 27187.87 27390.07 28488.67 36875.52 32385.10 34795.59 22975.68 32692.49 24189.45 34678.96 27897.88 24987.86 21097.02 26196.81 238
MS-PatchMatch88.05 27687.75 27488.95 30293.28 30277.93 29187.88 31292.49 30075.42 32992.57 24093.59 27680.44 27194.24 35481.28 28692.75 34594.69 310
PCF-MVS84.52 1789.12 25487.71 27593.34 17496.06 21485.84 18286.58 34097.31 13468.46 36293.61 20493.89 26787.51 19898.52 19567.85 36798.11 21495.66 286
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
pmmvs488.95 26187.70 27692.70 19694.30 28485.60 18587.22 32292.16 30674.62 33389.75 30194.19 25477.97 28996.41 31482.71 27296.36 28196.09 265
our_test_387.55 28687.59 27787.44 32591.76 33270.48 35683.83 35990.55 32479.79 29592.06 25992.17 30878.63 28495.63 33084.77 25594.73 31596.22 261
thisisatest053088.69 26887.52 27892.20 21296.33 19279.36 27092.81 17284.01 36686.44 22593.67 20192.68 29853.62 37899.25 8089.65 16798.45 17498.00 160
1112_ss88.42 27187.41 27991.45 23996.69 16580.99 24089.72 27996.72 18173.37 33987.00 33690.69 33177.38 29498.20 22281.38 28593.72 33395.15 296
baseline187.62 28587.31 28088.54 31094.71 27474.27 33493.10 16588.20 33586.20 22892.18 25693.04 28773.21 31495.52 33279.32 30985.82 37095.83 277
lupinMVS88.34 27387.31 28091.45 23994.74 27080.06 25187.23 32192.27 30371.10 35088.83 30991.15 32277.02 29898.53 19486.67 22896.75 27395.76 280
N_pmnet88.90 26387.25 28293.83 16094.40 28393.81 3884.73 35087.09 34279.36 30393.26 21692.43 30479.29 27791.68 36677.50 32397.22 25596.00 269
SCA87.43 28987.21 28388.10 31792.01 32971.98 35089.43 28588.11 33782.26 28288.71 31692.83 29278.65 28297.59 27179.61 30693.30 33794.75 307
TR-MVS87.70 28187.17 28489.27 29994.11 28879.26 27288.69 30491.86 31281.94 28490.69 28089.79 34082.82 24897.42 28172.65 35091.98 35491.14 358
pmmvs587.87 27887.14 28590.07 28493.26 30476.97 30888.89 29892.18 30473.71 33888.36 32193.89 26776.86 30396.73 30680.32 29396.81 27096.51 247
FMVS86.65 30387.13 28685.19 34190.28 35286.11 17786.52 34191.66 31469.76 35795.73 12897.21 9669.51 32681.28 38089.15 18194.40 32188.17 368
CR-MVSNet87.89 27787.12 28790.22 28091.01 34278.93 27792.52 18292.81 29073.08 34189.10 30696.93 11267.11 33297.64 27088.80 18892.70 34694.08 319
thres600view787.66 28387.10 28889.36 29796.05 21573.17 34092.72 17585.31 35891.89 10193.29 21390.97 32563.42 35498.39 20573.23 34696.99 26696.51 247
BH-w/o87.21 29487.02 28987.79 32294.77 26877.27 30287.90 31193.21 28681.74 28589.99 29388.39 35583.47 23996.93 30071.29 35792.43 35089.15 363
thres100view90087.35 29186.89 29088.72 30796.14 20873.09 34293.00 16785.31 35892.13 9493.26 21690.96 32663.42 35498.28 21471.27 35896.54 27794.79 305
GA-MVS87.70 28186.82 29190.31 27693.27 30377.22 30384.72 35292.79 29285.11 24989.82 29790.07 33566.80 33597.76 26484.56 25894.27 32695.96 271
sss87.23 29386.82 29188.46 31393.96 29277.94 29086.84 33092.78 29377.59 31687.61 33191.83 31378.75 28091.92 36577.84 31894.20 32795.52 291
PAPR87.65 28486.77 29390.27 27892.85 31277.38 30088.56 30796.23 20476.82 32484.98 34689.75 34286.08 22297.16 29172.33 35193.35 33696.26 260
EU-MVSNet87.39 29086.71 29489.44 29493.40 30176.11 31794.93 10990.00 32657.17 37895.71 12997.37 7964.77 34897.68 26992.67 8994.37 32394.52 312
Test_1112_low_res87.50 28886.58 29590.25 27996.80 16377.75 29587.53 31896.25 20269.73 35886.47 33893.61 27575.67 30797.88 24979.95 30093.20 33895.11 298
FMVSNet587.82 28086.56 29691.62 23492.31 32079.81 26193.49 15794.81 25383.26 26691.36 26796.93 11252.77 37997.49 27776.07 33298.03 22197.55 205
MIMVSNet87.13 29886.54 29788.89 30496.05 21576.11 31794.39 12888.51 33181.37 28688.27 32396.75 12672.38 31695.52 33265.71 37295.47 29995.03 299
tfpn200view987.05 29986.52 29888.67 30895.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27794.79 305
thres40087.20 29586.52 29889.24 30195.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27796.51 247
WTY-MVS86.93 30186.50 30088.24 31594.96 25974.64 32787.19 32392.07 30978.29 31388.32 32291.59 31878.06 28894.27 35274.88 33893.15 34095.80 278
131486.46 30486.33 30186.87 32991.65 33474.54 32991.94 21394.10 26974.28 33484.78 34887.33 36183.03 24495.00 34478.72 31391.16 35991.06 359
cascas87.02 30086.28 30289.25 30091.56 33676.45 31484.33 35696.78 17671.01 35186.89 33785.91 36881.35 26396.94 29883.09 26995.60 29594.35 316
Patchmatch-test86.10 30686.01 30386.38 33490.63 34674.22 33589.57 28286.69 34485.73 23889.81 29892.83 29265.24 34691.04 36977.82 32095.78 29293.88 328
HY-MVS82.50 1886.81 30285.93 30489.47 29393.63 29977.93 29194.02 14191.58 31675.68 32683.64 35593.64 27377.40 29397.42 28171.70 35592.07 35393.05 343
CHOSEN 1792x268887.19 29685.92 30591.00 25797.13 14579.41 26984.51 35495.60 22564.14 37290.07 29194.81 23278.26 28797.14 29273.34 34595.38 30396.46 252
CMPMVSbinary68.83 2287.28 29285.67 30692.09 21988.77 36785.42 18790.31 26194.38 26470.02 35688.00 32693.30 28273.78 31394.03 35575.96 33496.54 27796.83 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
HyFIR lowres test87.19 29685.51 30792.24 21197.12 14680.51 24485.03 34896.06 21166.11 36891.66 26492.98 29070.12 32499.14 9275.29 33695.23 30697.07 226
thres20085.85 30785.18 30887.88 32194.44 28172.52 34789.08 29586.21 34788.57 18991.44 26688.40 35464.22 34998.00 23968.35 36695.88 29193.12 340
CVMVSNet85.16 31184.72 30986.48 33092.12 32670.19 35792.32 19688.17 33656.15 37990.64 28195.85 17967.97 33096.69 30788.78 18990.52 36192.56 348
PatchmatchNetpermissive85.22 31084.64 31086.98 32889.51 36169.83 36290.52 25387.34 34178.87 30987.22 33592.74 29666.91 33496.53 30981.77 28286.88 36994.58 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test250685.42 30984.57 31187.96 31897.81 10266.53 37096.14 5856.35 38789.04 17693.55 20698.10 3942.88 38998.68 17588.09 20399.18 9398.67 100
EPNet_dtu85.63 30884.37 31289.40 29686.30 37774.33 33391.64 22888.26 33384.84 25572.96 38089.85 33671.27 32197.69 26876.60 32997.62 24296.18 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS84.98 31384.30 31387.01 32791.03 34177.69 29791.94 21394.16 26859.36 37784.23 35287.50 35985.66 22696.80 30471.79 35393.05 34386.54 370
ET-MVSNet_ETH3D86.15 30584.27 31491.79 22693.04 30981.28 23687.17 32486.14 34879.57 29983.65 35488.66 35157.10 36998.18 22587.74 21195.40 30195.90 275
tpm84.38 31684.08 31585.30 34090.47 34963.43 38089.34 28885.63 35477.24 32087.62 33095.03 22461.00 36497.30 28779.26 31091.09 36095.16 295
tpmvs84.22 31783.97 31684.94 34287.09 37465.18 37391.21 23788.35 33282.87 27485.21 34390.96 32665.24 34696.75 30579.60 30885.25 37192.90 345
MDTV_nov1_ep1383.88 31789.42 36261.52 38188.74 30387.41 34073.99 33684.96 34794.01 26265.25 34595.53 33178.02 31693.16 339
PMMVS281.31 33483.44 31874.92 36290.52 34846.49 38769.19 37685.23 36184.30 26087.95 32794.71 23976.95 30084.36 37964.07 37398.09 21693.89 327
FPMVS84.50 31583.28 31988.16 31696.32 19394.49 1885.76 34385.47 35683.09 27085.20 34494.26 25163.79 35386.58 37763.72 37491.88 35683.40 373
test-LLR83.58 31983.17 32084.79 34489.68 35866.86 36883.08 36184.52 36383.07 27182.85 36084.78 37162.86 35793.49 35882.85 27094.86 31194.03 322
JIA-IIPM85.08 31283.04 32191.19 25187.56 37086.14 17689.40 28784.44 36588.98 17882.20 36497.95 4856.82 37196.15 32176.55 33083.45 37491.30 357
thisisatest051584.72 31482.99 32289.90 28892.96 31175.33 32584.36 35583.42 36877.37 31888.27 32386.65 36253.94 37698.72 16582.56 27497.40 25095.67 285
tpmrst82.85 32582.93 32382.64 35387.65 36958.99 38390.14 26787.90 33875.54 32883.93 35391.63 31766.79 33795.36 33881.21 28881.54 37793.57 337
PVSNet76.22 2082.89 32482.37 32484.48 34693.96 29264.38 37878.60 37188.61 33071.50 34884.43 35186.36 36674.27 31094.60 34669.87 36493.69 33494.46 313
CostFormer83.09 32282.21 32585.73 33689.27 36367.01 36690.35 25986.47 34670.42 35483.52 35793.23 28561.18 36296.85 30277.21 32588.26 36793.34 339
ADS-MVSNet284.01 31882.20 32689.41 29589.04 36476.37 31687.57 31490.98 32072.71 34484.46 34992.45 30168.08 32896.48 31270.58 36283.97 37295.38 292
DSMNet-mixed82.21 32881.56 32784.16 34889.57 36070.00 36190.65 25077.66 38254.99 38083.30 35897.57 6677.89 29090.50 37166.86 37095.54 29791.97 352
ADS-MVSNet82.25 32781.55 32884.34 34789.04 36465.30 37287.57 31485.13 36272.71 34484.46 34992.45 30168.08 32892.33 36470.58 36283.97 37295.38 292
baseline283.38 32081.54 32988.90 30391.38 33772.84 34588.78 30181.22 37378.97 30779.82 37387.56 35761.73 36197.80 25874.30 34190.05 36396.05 268
test0.0.03 182.48 32681.47 33085.48 33889.70 35773.57 33984.73 35081.64 37283.07 27188.13 32586.61 36362.86 35789.10 37666.24 37190.29 36293.77 330
PMMVS83.00 32381.11 33188.66 30983.81 38486.44 16682.24 36585.65 35361.75 37682.07 36585.64 36979.75 27491.59 36775.99 33393.09 34187.94 369
IB-MVS77.21 1983.11 32181.05 33289.29 29891.15 34075.85 32085.66 34486.00 35079.70 29782.02 36786.61 36348.26 38298.39 20577.84 31892.22 35193.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 33181.02 33385.34 33987.46 37271.04 35394.74 11467.56 38496.44 2279.43 37498.99 645.24 38396.15 32167.18 36992.17 35288.85 365
new_pmnet81.22 33581.01 33481.86 35590.92 34470.15 35884.03 35780.25 37770.83 35285.97 34189.78 34167.93 33184.65 37867.44 36891.90 35590.78 360
E-PMN80.72 34080.86 33580.29 35885.11 38068.77 36472.96 37381.97 37187.76 20683.25 35983.01 37562.22 36089.17 37577.15 32694.31 32582.93 374
KD-MVS_2432*160082.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
miper_refine_blended82.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
MVS-HIRNet78.83 34680.60 33873.51 36393.07 30747.37 38687.10 32578.00 38168.94 36077.53 37697.26 9071.45 32094.62 34563.28 37588.74 36578.55 378
EPMVS81.17 33780.37 33983.58 35085.58 37965.08 37590.31 26171.34 38377.31 31985.80 34291.30 32059.38 36692.70 36379.99 29982.34 37692.96 344
tpm281.46 33380.35 34084.80 34389.90 35565.14 37490.44 25585.36 35765.82 37082.05 36692.44 30357.94 36896.69 30770.71 36188.49 36692.56 348
EMVS80.35 34280.28 34180.54 35784.73 38269.07 36372.54 37580.73 37487.80 20481.66 36981.73 37662.89 35689.84 37375.79 33594.65 31882.71 375
PAPM81.91 33280.11 34287.31 32693.87 29572.32 34984.02 35893.22 28469.47 35976.13 37889.84 33772.15 31797.23 28953.27 38089.02 36492.37 350
test-mter81.21 33680.01 34384.79 34489.68 35866.86 36883.08 36184.52 36373.85 33782.85 36084.78 37143.66 38693.49 35882.85 27094.86 31194.03 322
tpm cat180.61 34179.46 34484.07 34988.78 36665.06 37689.26 29188.23 33462.27 37581.90 36889.66 34462.70 35995.29 34171.72 35480.60 37891.86 355
pmmvs380.83 33978.96 34586.45 33187.23 37377.48 29984.87 34982.31 37063.83 37385.03 34589.50 34549.66 38093.10 36073.12 34895.10 30888.78 367
dp79.28 34478.62 34681.24 35685.97 37856.45 38486.91 32885.26 36072.97 34281.45 37089.17 35056.01 37395.45 33673.19 34776.68 37991.82 356
TESTMET0.1,179.09 34578.04 34782.25 35487.52 37164.03 37983.08 36180.62 37570.28 35580.16 37283.22 37444.13 38590.56 37079.95 30093.36 33592.15 351
CHOSEN 280x42080.04 34377.97 34886.23 33590.13 35374.53 33072.87 37489.59 32766.38 36776.29 37785.32 37056.96 37095.36 33869.49 36594.72 31688.79 366
EGC-MVSNET80.97 33875.73 34996.67 4698.85 2594.55 1796.83 2296.60 1862.44 3845.32 38598.25 3492.24 11298.02 23791.85 10999.21 8997.45 210
PVSNet_070.34 2174.58 34772.96 35079.47 35990.63 34666.24 37173.26 37283.40 36963.67 37478.02 37578.35 37872.53 31589.59 37456.68 37860.05 38282.57 376
MVEpermissive59.87 2373.86 34872.65 35177.47 36187.00 37674.35 33261.37 37860.93 38667.27 36569.69 38186.49 36581.24 26772.33 38256.45 37983.45 37485.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3256.82 38241.10 38478.41 37754.41 37570.69 38350.12 38151.26 38381.72 377
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2310.00 3870.00 38891.15 32293.43 810.00 3880.00 3860.00 3860.00 384
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3641.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1490.00 3880.00 3860.00 3860.00 384
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3310.00 3920.00 3880.00 3860.00 3860.00 384
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
FOURS199.21 394.68 1498.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
PC_three_145275.31 33195.87 12195.75 18892.93 9796.34 32087.18 22098.68 15398.04 155
No_MVS95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
test_one_060198.26 7287.14 14698.18 3994.25 5096.99 6697.36 8295.13 42
eth-test20.00 392
eth-test0.00 392
ZD-MVS97.23 13790.32 8397.54 11384.40 25994.78 17095.79 18492.76 10399.39 5288.72 19298.40 176
IU-MVS98.51 5186.66 16096.83 17372.74 34395.83 12293.00 8099.29 7298.64 106
OPU-MVS95.15 10496.84 15889.43 10095.21 9595.66 19193.12 9198.06 23286.28 23898.61 15897.95 168
test_241102_TWO98.10 5291.95 9797.54 3997.25 9195.37 3099.35 6393.29 6799.25 8198.49 120
test_241102_ONE98.51 5186.97 15198.10 5291.85 10397.63 3497.03 10596.48 1198.95 124
save fliter97.46 12988.05 12992.04 20797.08 15287.63 210
test_0728_THIRD93.26 7297.40 4997.35 8594.69 5799.34 6693.88 3799.42 5198.89 73
test_0728_SECOND94.88 11298.55 4486.72 15795.20 9798.22 3599.38 5893.44 5999.31 6798.53 117
test072698.51 5186.69 15895.34 9098.18 3991.85 10397.63 3497.37 7995.58 24
GSMVS94.75 307
test_part298.21 7689.41 10196.72 77
sam_mvs166.64 33894.75 307
sam_mvs66.41 339
ambc92.98 18396.88 15583.01 21895.92 6996.38 19896.41 8797.48 7388.26 18497.80 25889.96 16098.93 12498.12 150
MTGPAbinary97.62 105
test_post190.21 2635.85 38665.36 34496.00 32679.61 306
test_post6.07 38565.74 34395.84 328
patchmatchnet-post91.71 31566.22 34197.59 271
GG-mvs-BLEND83.24 35285.06 38171.03 35494.99 10865.55 38574.09 37975.51 37944.57 38494.46 34859.57 37787.54 36884.24 372
MTMP94.82 11154.62 388
gm-plane-assit87.08 37559.33 38271.22 34983.58 37397.20 29073.95 342
test9_res88.16 20198.40 17697.83 182
TEST996.45 18389.46 9890.60 25196.92 16479.09 30690.49 28294.39 24891.31 13598.88 131
test_896.37 18589.14 10590.51 25496.89 16779.37 30190.42 28494.36 25091.20 14198.82 142
agg_prior287.06 22398.36 18797.98 164
agg_prior96.20 20288.89 11196.88 16890.21 28798.78 155
TestCases96.00 6198.02 9192.17 5498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
test_prior489.91 8990.74 247
test_prior290.21 26389.33 17090.77 27794.81 23290.41 15988.21 19798.55 163
test_prior94.61 12495.95 22387.23 14397.36 12998.68 17597.93 170
旧先验290.00 27268.65 36192.71 23696.52 31085.15 247
新几何290.02 271
新几何193.17 18097.16 14287.29 14194.43 26267.95 36391.29 26894.94 22786.97 20898.23 22081.06 29197.75 23393.98 325
旧先验196.20 20284.17 20294.82 25195.57 19789.57 17397.89 22996.32 257
无先验89.94 27395.75 22270.81 35398.59 18781.17 28994.81 303
原ACMM289.34 288
原ACMM192.87 19196.91 15484.22 20097.01 15676.84 32389.64 30294.46 24588.00 19098.70 17181.53 28498.01 22395.70 284
test22296.95 15085.27 18988.83 30093.61 27665.09 37190.74 27994.85 23184.62 23397.36 25193.91 326
testdata298.03 23480.24 296
segment_acmp92.14 115
testdata91.03 25496.87 15682.01 22594.28 26671.55 34792.46 24395.42 20685.65 22797.38 28682.64 27397.27 25393.70 332
testdata188.96 29788.44 191
test1294.43 13995.95 22386.75 15696.24 20389.76 30089.79 17298.79 15197.95 22697.75 191
plane_prior797.71 11088.68 115
plane_prior697.21 14088.23 12686.93 209
plane_prior597.81 9398.95 12489.26 17798.51 17098.60 113
plane_prior495.59 193
plane_prior388.43 12490.35 15093.31 211
plane_prior294.56 12391.74 114
plane_prior197.38 132
plane_prior88.12 12793.01 16688.98 17898.06 218
n20.00 393
nn0.00 393
door-mid92.13 308
lessismore_v093.87 15998.05 8683.77 20880.32 37697.13 5797.91 5377.49 29299.11 10092.62 9098.08 21798.74 93
LGP-MVS_train96.84 4298.36 6792.13 5698.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
test1196.65 184
door91.26 317
HQP5-MVS84.89 192
HQP-NCC96.36 18791.37 23287.16 21788.81 311
ACMP_Plane96.36 18791.37 23287.16 21788.81 311
BP-MVS86.55 232
HQP4-MVS88.81 31198.61 18398.15 146
HQP3-MVS97.31 13497.73 234
HQP2-MVS84.76 231
NP-MVS96.82 16087.10 14793.40 280
MDTV_nov1_ep13_2view42.48 38888.45 30867.22 36683.56 35666.80 33572.86 34994.06 321
ACMMP++_ref98.82 138
ACMMP++99.25 81
Test By Simon90.61 155
ITE_SJBPF95.95 6497.34 13493.36 4496.55 19191.93 9994.82 16895.39 20991.99 11997.08 29485.53 24397.96 22597.41 213
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37748.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380