This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18098.58 2799.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3299.67 299.73 399.65 599.15 399.86 2497.22 6699.92 1599.77 12
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2499.01 1699.63 1199.66 399.27 299.68 12497.75 4999.89 2699.62 36
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4499.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2996.23 12199.71 499.48 1098.77 799.93 398.89 1599.95 599.84 5
ANet_high98.31 3198.94 696.41 21199.33 5489.64 26197.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5799.98 299.77 12
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4999.36 499.29 2899.06 5297.27 4699.93 397.71 5199.91 1899.70 26
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 15997.21 6799.76 5999.40 100
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4599.22 899.22 3398.96 6197.35 4299.92 597.79 4799.93 1199.79 10
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4199.33 599.30 2799.00 5597.27 4699.92 597.64 5599.92 1599.75 19
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4695.83 14799.67 799.37 1998.25 1399.92 598.77 1899.94 899.82 6
Anonymous2023121198.55 2098.76 1397.94 9998.79 13094.37 14798.84 1199.15 4199.37 399.67 799.43 1595.61 13399.72 8898.12 3399.86 3199.73 22
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2399.08 1097.87 16099.67 296.47 9899.92 597.88 4199.98 299.85 3
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6397.40 7999.37 2399.08 5198.79 699.47 19597.74 5099.71 7399.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7296.50 10999.32 2699.44 1497.43 3999.92 598.73 2099.95 599.86 2
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8197.57 6799.27 2999.22 3498.32 1299.50 18597.09 7399.75 6499.50 63
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 10898.23 4099.48 1699.27 3098.47 1199.55 17296.52 8999.53 12399.60 38
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3495.62 15699.35 2599.37 1997.38 4199.90 1498.59 2699.91 1899.77 12
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3096.91 9299.75 299.45 1395.82 12299.92 598.80 1799.96 499.89 1
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5598.31 3699.02 4398.74 8297.68 3099.61 15697.77 4899.85 3899.70 26
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3699.05 1399.17 3598.79 7695.47 13799.89 1897.95 4099.91 1899.75 19
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6398.05 4799.61 1399.52 793.72 18799.88 2098.72 2299.88 2799.65 33
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
test_fmvsmvis_n_192098.08 4598.47 2696.93 17599.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 303
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8198.40 3399.07 4298.98 5896.89 7399.75 6897.19 7099.79 5399.55 53
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 11899.05 1399.01 4498.65 9295.37 14099.90 1497.57 5699.91 1899.77 12
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10098.49 3199.38 2299.14 4695.44 13999.84 3096.47 9199.80 5199.47 80
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3098.43 3298.89 5298.83 7594.30 17299.81 3797.87 4299.91 1899.77 12
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16499.11 4796.75 8399.86 2497.84 4499.36 17599.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3298.21 4199.25 3198.51 10598.21 1499.40 22094.79 18699.72 7099.32 114
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 4998.76 2396.79 22199.34 2596.61 8998.82 31296.38 9499.50 13796.98 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6398.67 2498.84 5798.45 11097.58 3699.88 2096.45 9299.86 3199.54 54
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12193.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14199.21 799.87 2998.69 228
SDMVSNet97.97 5298.26 3997.11 16299.41 4392.21 21296.92 12798.60 17198.58 2898.78 6399.39 1697.80 2599.62 14994.98 18099.86 3199.52 59
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7095.88 14397.88 15798.22 14498.15 1699.74 7796.50 9099.62 9199.42 97
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21198.58 2898.78 6399.39 1698.21 1499.56 16892.65 25099.86 3199.52 59
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17298.57 16092.10 22095.97 19299.18 3597.67 6699.00 4698.48 10997.64 3399.50 18596.96 7899.54 11999.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3798.34 3598.78 6398.52 10397.32 4399.45 20294.08 21599.67 8399.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16397.41 7899.00 4699.19 3695.47 13799.73 8395.83 12399.76 5999.30 119
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6992.81 19797.55 9298.94 9497.10 8898.85 5598.88 7295.03 15099.67 13097.39 6399.65 8699.26 131
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4798.04 4898.62 7498.66 8993.75 18699.78 4897.23 6599.84 4099.73 22
v897.60 10098.06 4796.23 21798.71 14189.44 26597.43 10298.82 13297.29 8498.74 6999.10 4893.86 18299.68 12498.61 2599.94 899.56 51
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9497.71 6198.85 5599.10 4891.35 24099.83 3398.47 2899.90 2499.64 35
Anonymous2024052997.96 5498.04 4997.71 11398.69 14594.28 15397.86 7098.31 20898.79 2299.23 3298.86 7495.76 12899.61 15695.49 14099.36 17599.23 137
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13896.04 7598.07 5899.10 4995.96 13798.59 7898.69 8796.94 6799.81 3796.64 8499.58 10499.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18199.09 9891.43 23596.37 16099.11 4794.19 21099.01 4499.25 3196.30 10699.38 22799.00 1299.88 2799.73 22
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8292.51 20496.57 14999.15 4193.68 22798.89 5299.30 2896.42 10199.37 23299.03 1199.83 4399.66 30
CS-MVS98.09 4498.01 5298.32 6598.45 17896.69 5298.52 2699.69 598.07 4696.07 26297.19 24196.88 7599.86 2497.50 5999.73 6698.41 253
dcpmvs_297.12 12697.99 5494.51 30099.11 9584.00 35697.75 7799.65 997.38 8099.14 3798.42 11295.16 14699.96 295.52 13999.78 5699.58 40
tfpnnormal97.72 9097.97 5596.94 17499.26 6092.23 21197.83 7298.45 18698.25 3999.13 3898.66 8996.65 8699.69 11993.92 22399.62 9198.91 197
v1097.55 10397.97 5596.31 21598.60 15689.64 26197.44 10099.02 7296.60 10198.72 7199.16 4393.48 19199.72 8898.76 1999.92 1599.58 40
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14698.66 2598.56 8098.41 11396.84 7999.69 11994.82 18499.81 4898.64 232
EC-MVSNet97.90 7197.94 5897.79 10898.66 14795.14 12198.31 3999.66 897.57 6795.95 26697.01 25396.99 6499.82 3597.66 5499.64 8898.39 256
DVP-MVS++97.96 5497.90 5998.12 8497.75 26295.40 10399.03 798.89 10096.62 9998.62 7498.30 12796.97 6599.75 6895.70 12699.25 20199.21 139
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12496.11 12799.08 4098.24 13997.87 2399.72 8895.44 14799.51 13399.14 154
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13097.31 3697.55 9298.92 9797.72 5998.25 11698.13 15297.10 5499.75 6895.44 14799.24 20499.32 114
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18598.79 13091.44 23496.14 17999.06 5994.19 21098.82 5998.98 5896.22 11199.38 22798.98 1499.86 3199.58 40
DP-MVS97.87 7497.89 6297.81 10798.62 15494.82 12997.13 11798.79 13498.98 1798.74 6998.49 10695.80 12799.49 19095.04 17499.44 15399.11 164
RE-MVS-def97.88 6498.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.94 6795.49 14099.20 20699.26 131
NR-MVSNet97.96 5497.86 6598.26 7098.73 13695.54 9598.14 5498.73 14697.79 5399.42 2097.83 18894.40 17099.78 4895.91 11899.76 5999.46 82
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.60 9199.76 6295.49 14099.20 20699.26 131
CS-MVS-test97.91 6997.84 6698.14 8298.52 16796.03 7798.38 3499.67 698.11 4495.50 28396.92 25996.81 8199.87 2296.87 8199.76 5998.51 246
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14697.69 6397.90 15597.96 17595.81 12699.82 3596.13 10499.61 9799.45 86
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12892.51 20496.25 17099.06 5993.67 22898.64 7299.00 5596.23 11099.36 23598.99 1399.80 5199.53 57
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6395.43 16797.41 18297.50 21697.98 1999.79 4595.58 13899.57 10799.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvspermissive97.50 10697.81 7196.56 20198.51 16991.04 24095.83 20299.09 5497.23 8598.33 10898.30 12797.03 6199.37 23296.58 8899.38 17199.28 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS97.95 5897.79 7298.43 5799.67 1295.56 9398.86 1096.73 30297.99 4999.15 3699.35 2389.84 26499.90 1498.64 2499.90 2499.82 6
Baseline_NR-MVSNet97.72 9097.79 7297.50 13299.56 2193.29 18795.44 22298.86 11198.20 4298.37 9999.24 3294.69 15899.55 17295.98 11499.79 5399.65 33
EG-PatchMatch MVS97.69 9297.79 7297.40 14599.06 10293.52 18095.96 19498.97 9094.55 20198.82 5998.76 8197.31 4499.29 25497.20 6999.44 15399.38 105
ACMM93.33 1198.05 4897.79 7298.85 2499.15 8697.55 2696.68 14698.83 12495.21 17398.36 10298.13 15298.13 1899.62 14996.04 10899.54 11999.39 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 11197.78 7696.43 20798.52 16790.75 24796.84 13099.03 7096.51 10897.86 16198.02 16996.67 8599.36 23597.09 7399.47 14699.19 144
SteuartSystems-ACMMP98.02 5097.76 7798.79 2999.43 4097.21 4197.15 11498.90 9996.58 10498.08 13697.87 18697.02 6299.76 6295.25 15899.59 10299.40 100
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 4897.75 7898.93 1899.23 6697.60 2298.09 5798.96 9195.75 15197.91 15498.06 16596.89 7399.76 6295.32 15599.57 10799.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE97.75 8797.70 7997.89 10298.88 12194.53 14097.10 11898.98 8795.75 15197.62 16897.59 20997.61 3599.77 5796.34 9699.44 15399.36 111
SD-MVS97.37 11797.70 7996.35 21298.14 21495.13 12296.54 15198.92 9795.94 13999.19 3498.08 15897.74 2895.06 38795.24 15999.54 11998.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 10497.70 7997.07 16699.46 3792.21 21297.22 11199.00 8194.93 18898.58 7998.92 6697.31 4499.41 21894.44 19999.43 16199.59 39
DeepC-MVS95.41 497.82 8197.70 7998.16 7998.78 13395.72 8696.23 17299.02 7293.92 22098.62 7498.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD_test197.95 5897.68 8398.75 3199.60 1798.60 597.21 11299.08 5596.57 10798.07 13898.38 11796.22 11199.14 27894.71 19399.31 19398.52 245
LPG-MVS_test97.94 6297.67 8498.74 3499.15 8697.02 4297.09 11999.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
SR-MVS98.00 5197.66 8599.01 898.77 13497.93 1197.38 10498.83 12497.32 8298.06 13997.85 18796.65 8699.77 5795.00 17799.11 22099.32 114
DVP-MVScopyleft97.78 8597.65 8698.16 7999.24 6495.51 9796.74 13998.23 21495.92 14098.40 9698.28 13297.06 5899.71 10495.48 14399.52 12899.26 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet97.83 7897.65 8698.37 6298.72 13895.78 8495.66 21099.02 7298.11 4498.31 11197.69 20394.65 16299.85 2797.02 7699.71 7399.48 77
UniMVSNet (Re)97.83 7897.65 8698.35 6498.80 12895.86 8395.92 19899.04 6997.51 7298.22 11997.81 19294.68 16099.78 4897.14 7199.75 6499.41 99
HFP-MVS97.94 6297.64 8998.83 2599.15 8697.50 2997.59 8998.84 11896.05 13097.49 17597.54 21297.07 5799.70 11295.61 13599.46 14999.30 119
3Dnovator96.53 297.61 9997.64 8997.50 13297.74 26593.65 17798.49 2898.88 10696.86 9497.11 19798.55 10195.82 12299.73 8395.94 11699.42 16499.13 156
ACMMP_NAP97.89 7297.63 9198.67 4099.35 5296.84 4796.36 16198.79 13495.07 18197.88 15798.35 11997.24 5099.72 8896.05 10799.58 10499.45 86
XVS97.96 5497.63 9198.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24897.64 20596.49 9699.72 8895.66 13199.37 17299.45 86
ZNCC-MVS97.92 6697.62 9398.83 2599.32 5697.24 3997.45 9998.84 11895.76 14996.93 21597.43 22097.26 4899.79 4596.06 10599.53 12399.45 86
ACMMPR97.95 5897.62 9398.94 1599.20 7897.56 2597.59 8998.83 12496.05 13097.46 18097.63 20696.77 8299.76 6295.61 13599.46 14999.49 71
bld_raw_dy_0_6497.69 9297.61 9597.91 10099.54 2694.27 15498.06 5998.60 17196.60 10198.79 6298.95 6389.62 26599.84 3098.43 3099.91 1899.62 36
DU-MVS97.79 8497.60 9698.36 6398.73 13695.78 8495.65 21298.87 10897.57 6798.31 11197.83 18894.69 15899.85 2797.02 7699.71 7399.46 82
region2R97.92 6697.59 9798.92 2199.22 6997.55 2697.60 8798.84 11896.00 13597.22 18797.62 20796.87 7799.76 6295.48 14399.43 16199.46 82
3Dnovator+96.13 397.73 8897.59 9798.15 8198.11 21895.60 9298.04 6098.70 15598.13 4396.93 21598.45 11095.30 14399.62 14995.64 13398.96 23599.24 136
SixPastTwentyTwo97.49 10797.57 9997.26 15399.56 2192.33 20898.28 4296.97 29198.30 3899.45 1899.35 2388.43 28199.89 1898.01 3899.76 5999.54 54
test_fmvs397.38 11597.56 10096.84 18398.63 15292.81 19797.60 8799.61 1390.87 28798.76 6899.66 394.03 17897.90 36799.24 699.68 8199.81 8
tt080597.44 11197.56 10097.11 16299.55 2396.36 6398.66 1895.66 31798.31 3697.09 20395.45 32597.17 5298.50 34498.67 2397.45 32996.48 356
CP-MVS97.92 6697.56 10098.99 1098.99 11197.82 1597.93 6698.96 9196.11 12796.89 21897.45 21896.85 7899.78 4895.19 16199.63 9099.38 105
mPP-MVS97.91 6997.53 10399.04 499.22 6997.87 1497.74 7998.78 13896.04 13297.10 19897.73 20096.53 9399.78 4895.16 16599.50 13799.46 82
PGM-MVS97.88 7397.52 10498.96 1399.20 7897.62 2197.09 11999.06 5995.45 16497.55 17097.94 17897.11 5399.78 4894.77 18999.46 14999.48 77
Anonymous2024052197.07 12897.51 10595.76 23999.35 5288.18 28997.78 7398.40 19597.11 8798.34 10599.04 5389.58 26799.79 4598.09 3599.93 1199.30 119
RPSCF97.87 7497.51 10598.95 1499.15 8698.43 697.56 9199.06 5996.19 12498.48 8898.70 8694.72 15799.24 26594.37 20499.33 18899.17 148
LS3D97.77 8697.50 10798.57 4796.24 33297.58 2498.45 3198.85 11598.58 2897.51 17397.94 17895.74 12999.63 14495.19 16198.97 23498.51 246
GST-MVS97.82 8197.49 10898.81 2799.23 6697.25 3897.16 11398.79 13495.96 13797.53 17197.40 22296.93 6999.77 5795.04 17499.35 18099.42 97
VPNet97.26 12397.49 10896.59 19799.47 3690.58 24996.27 16698.53 17997.77 5498.46 9198.41 11394.59 16399.68 12494.61 19499.29 19699.52 59
EI-MVSNet-UG-set97.32 12197.40 11097.09 16597.34 29992.01 22395.33 23497.65 26697.74 5798.30 11398.14 15095.04 14999.69 11997.55 5799.52 12899.58 40
SF-MVS97.60 10097.39 11198.22 7598.93 11795.69 8897.05 12199.10 4995.32 17097.83 16397.88 18596.44 10099.72 8894.59 19899.39 17099.25 135
EI-MVSNet-Vis-set97.32 12197.39 11197.11 16297.36 29692.08 22195.34 23397.65 26697.74 5798.29 11498.11 15695.05 14899.68 12497.50 5999.50 13799.56 51
MP-MVS-pluss97.69 9297.36 11398.70 3899.50 3496.84 4795.38 22998.99 8492.45 26598.11 13198.31 12397.25 4999.77 5796.60 8699.62 9199.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVScopyleft97.64 9697.35 11498.50 5198.85 12496.18 6995.21 24298.99 8495.84 14698.78 6398.08 15896.84 7999.81 3793.98 22199.57 10799.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LCM-MVSNet-Re97.33 12097.33 11597.32 14998.13 21793.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30499.06 22998.32 265
CSCG97.40 11497.30 11697.69 11698.95 11394.83 12897.28 10798.99 8496.35 11798.13 13095.95 31195.99 11599.66 13694.36 20699.73 6698.59 238
IterMVS-LS96.92 13897.29 11795.79 23898.51 16988.13 29295.10 24598.66 16396.99 8998.46 9198.68 8892.55 21499.74 7796.91 7999.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 10297.28 11898.49 5299.16 8396.90 4696.39 15698.98 8795.05 18298.06 13998.02 16995.86 11899.56 16894.37 20499.64 8899.00 180
OPM-MVS97.54 10497.25 11998.41 5999.11 9596.61 5695.24 24098.46 18594.58 20098.10 13398.07 16097.09 5699.39 22495.16 16599.44 15399.21 139
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS97.37 11797.25 11997.74 11198.69 14594.50 14397.04 12295.61 32198.59 2798.51 8398.72 8392.54 21699.58 16196.02 11099.49 14099.12 161
TSAR-MVS + MP.97.42 11397.23 12198.00 9599.38 4995.00 12597.63 8698.20 21993.00 25098.16 12698.06 16595.89 11799.72 8895.67 13099.10 22299.28 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs97.23 12497.21 12297.30 15097.65 27494.39 14597.84 7199.05 6397.42 7596.68 22993.85 35097.63 3499.33 24396.29 9798.47 28298.18 281
MP-MVScopyleft97.64 9697.18 12399.00 999.32 5697.77 1797.49 9898.73 14696.27 11895.59 28197.75 19796.30 10699.78 4893.70 23199.48 14499.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
V4297.04 12997.16 12496.68 19498.59 15891.05 23996.33 16398.36 20094.60 19797.99 14598.30 12793.32 19399.62 14997.40 6299.53 12399.38 105
SMA-MVScopyleft97.48 10897.11 12598.60 4598.83 12596.67 5396.74 13998.73 14691.61 27798.48 8898.36 11896.53 9399.68 12495.17 16399.54 11999.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PM-MVS97.36 11997.10 12698.14 8298.91 11996.77 4996.20 17398.63 16993.82 22298.54 8198.33 12193.98 17999.05 29195.99 11399.45 15298.61 237
ACMP92.54 1397.47 10997.10 12698.55 4999.04 10796.70 5196.24 17198.89 10093.71 22597.97 14997.75 19797.44 3899.63 14493.22 24399.70 7699.32 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 14297.08 12896.13 22498.42 18189.28 26895.41 22698.67 16194.21 20897.97 14998.31 12393.06 19899.65 13898.06 3799.62 9199.45 86
XVG-OURS-SEG-HR97.38 11597.07 12998.30 6899.01 11097.41 3494.66 26799.02 7295.20 17498.15 12897.52 21498.83 598.43 34994.87 18296.41 35199.07 171
v119296.83 14597.06 13096.15 22398.28 19189.29 26795.36 23098.77 13993.73 22498.11 13198.34 12093.02 20299.67 13098.35 3199.58 10499.50 63
v2v48296.78 14997.06 13095.95 23198.57 16088.77 27995.36 23098.26 21095.18 17697.85 16298.23 14192.58 21399.63 14497.80 4699.69 7799.45 86
SSC-MVS95.92 18997.03 13292.58 34599.28 5878.39 38096.68 14695.12 33098.90 1999.11 3998.66 8991.36 23999.68 12495.00 17799.16 21299.67 28
v124096.74 15097.02 13395.91 23498.18 20588.52 28195.39 22898.88 10693.15 24698.46 9198.40 11692.80 20599.71 10498.45 2999.49 14099.49 71
test_vis3_rt97.04 12996.98 13497.23 15698.44 17995.88 8096.82 13299.67 690.30 29699.27 2999.33 2794.04 17796.03 38697.14 7197.83 30799.78 11
v14896.58 16396.97 13595.42 25798.63 15287.57 30595.09 24697.90 24895.91 14298.24 11797.96 17593.42 19299.39 22496.04 10899.52 12899.29 125
PMVScopyleft89.60 1796.71 15596.97 13595.95 23199.51 3197.81 1697.42 10397.49 27397.93 5095.95 26698.58 9796.88 7596.91 38089.59 31299.36 17593.12 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 15396.96 13795.99 22798.21 19988.79 27895.42 22498.79 13493.22 24098.19 12498.26 13792.68 20999.70 11298.34 3299.55 11699.49 71
patch_mono-296.59 16196.93 13895.55 25098.88 12187.12 31594.47 27299.30 2494.12 21396.65 23398.41 11394.98 15399.87 2295.81 12599.78 5699.66 30
EI-MVSNet96.63 15996.93 13895.74 24097.26 30488.13 29295.29 23897.65 26696.99 8997.94 15298.19 14692.55 21499.58 16196.91 7999.56 11099.50 63
MSP-MVS97.45 11096.92 14099.03 599.26 6097.70 1897.66 8398.89 10095.65 15498.51 8396.46 28692.15 22499.81 3795.14 16898.58 27799.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AllTest97.20 12596.92 14098.06 8899.08 9996.16 7097.14 11699.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
v14419296.69 15696.90 14296.03 22698.25 19588.92 27395.49 22098.77 13993.05 24898.09 13498.29 13192.51 21999.70 11298.11 3499.56 11099.47 80
VDDNet96.98 13596.84 14397.41 14499.40 4693.26 18997.94 6595.31 32899.26 798.39 9899.18 3987.85 29099.62 14995.13 17099.09 22399.35 113
VNet96.84 14296.83 14496.88 17998.06 21992.02 22296.35 16297.57 27297.70 6297.88 15797.80 19392.40 22199.54 17594.73 19198.96 23599.08 169
WR-MVS96.90 14096.81 14597.16 15898.56 16292.20 21594.33 27598.12 23497.34 8198.20 12097.33 23392.81 20499.75 6894.79 18699.81 4899.54 54
GBi-Net96.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
test196.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
MVS_Test96.27 17596.79 14894.73 29096.94 31886.63 32396.18 17498.33 20494.94 18696.07 26298.28 13295.25 14499.26 26097.21 6797.90 30598.30 269
XVG-OURS97.12 12696.74 14998.26 7098.99 11197.45 3293.82 30299.05 6395.19 17598.32 10997.70 20295.22 14598.41 35094.27 20898.13 29698.93 193
MSLP-MVS++96.42 17196.71 15095.57 24797.82 24590.56 25195.71 20598.84 11894.72 19296.71 22897.39 22694.91 15598.10 36595.28 15699.02 23198.05 293
9.1496.69 15198.53 16696.02 18798.98 8793.23 23997.18 19297.46 21796.47 9899.62 14992.99 24799.32 190
IS-MVSNet96.93 13796.68 15297.70 11499.25 6394.00 16298.57 2096.74 30098.36 3498.14 12997.98 17488.23 28399.71 10493.10 24699.72 7099.38 105
FMVSNet296.72 15396.67 15396.87 18097.96 22991.88 22597.15 11498.06 24395.59 15898.50 8598.62 9589.51 27199.65 13894.99 17999.60 10099.07 171
WB-MVS95.50 20596.62 15492.11 35399.21 7677.26 38896.12 18095.40 32798.62 2698.84 5798.26 13791.08 24399.50 18593.37 23698.70 26599.58 40
test20.0396.58 16396.61 15596.48 20598.49 17391.72 22995.68 20997.69 26196.81 9598.27 11597.92 18194.18 17598.71 32490.78 28799.66 8599.00 180
ab-mvs96.59 16196.59 15696.60 19698.64 14892.21 21298.35 3597.67 26294.45 20296.99 21098.79 7694.96 15499.49 19090.39 30199.07 22698.08 284
new-patchmatchnet95.67 19996.58 15792.94 33997.48 28680.21 37592.96 32398.19 22494.83 18998.82 5998.79 7693.31 19499.51 18495.83 12399.04 23099.12 161
EPP-MVSNet96.84 14296.58 15797.65 11899.18 8193.78 17198.68 1496.34 30597.91 5197.30 18498.06 16588.46 28099.85 2793.85 22599.40 16999.32 114
UGNet96.81 14796.56 15997.58 12296.64 32393.84 16897.75 7797.12 28596.47 11293.62 33098.88 7293.22 19699.53 17795.61 13599.69 7799.36 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 13896.55 16098.03 9398.00 22795.54 9594.87 25898.17 22594.60 19796.38 24597.05 24995.67 13199.36 23595.12 17199.08 22499.19 144
MVS_111021_LR96.82 14696.55 16097.62 12098.27 19395.34 11093.81 30498.33 20494.59 19996.56 23796.63 27796.61 8998.73 32194.80 18599.34 18398.78 215
MVS_111021_HR96.73 15296.54 16297.27 15298.35 18693.66 17693.42 31498.36 20094.74 19196.58 23596.76 27196.54 9298.99 29894.87 18299.27 19999.15 151
APD-MVScopyleft97.00 13196.53 16398.41 5998.55 16396.31 6696.32 16498.77 13992.96 25597.44 18197.58 21195.84 11999.74 7791.96 25999.35 18099.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 13696.53 16398.25 7397.48 28696.50 5996.76 13898.85 11593.52 23096.19 25896.85 26295.94 11699.42 20993.79 22799.43 16198.83 210
DeepC-MVS_fast94.34 796.74 15096.51 16597.44 14097.69 26894.15 15796.02 18798.43 18993.17 24597.30 18497.38 22895.48 13699.28 25693.74 22899.34 18398.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 18296.50 16694.80 28699.26 6087.69 30495.96 19498.58 17695.08 18098.02 14496.25 29697.92 2097.60 37388.68 32698.74 26099.11 164
test_fmvs296.38 17296.45 16796.16 22297.85 23791.30 23696.81 13399.45 1889.24 30898.49 8699.38 1888.68 27897.62 37298.83 1699.32 19099.57 47
DeepPCF-MVS94.58 596.90 14096.43 16898.31 6797.48 28697.23 4092.56 33298.60 17192.84 25798.54 8197.40 22296.64 8898.78 31694.40 20399.41 16898.93 193
test_vis1_n_192095.77 19596.41 16993.85 31698.55 16384.86 34695.91 19999.71 492.72 25997.67 16798.90 7087.44 29398.73 32197.96 3998.85 24997.96 299
MVS_030496.62 16096.40 17097.28 15197.91 23392.30 20996.47 15489.74 38197.52 7195.38 28798.63 9492.76 20699.81 3799.28 499.93 1199.75 19
HPM-MVS++copyleft96.99 13296.38 17198.81 2798.64 14897.59 2395.97 19298.20 21995.51 16295.06 29396.53 28294.10 17699.70 11294.29 20799.15 21399.13 156
MVSFormer96.14 18096.36 17295.49 25397.68 26987.81 30198.67 1599.02 7296.50 10994.48 30896.15 30086.90 29699.92 598.73 2099.13 21698.74 221
TinyColmap96.00 18796.34 17394.96 27797.90 23587.91 29794.13 28998.49 18394.41 20398.16 12697.76 19496.29 10898.68 32990.52 29799.42 16498.30 269
HQP_MVS96.66 15896.33 17497.68 11798.70 14394.29 15096.50 15298.75 14396.36 11596.16 25996.77 26991.91 23499.46 19892.59 25299.20 20699.28 126
K. test v396.44 16996.28 17596.95 17399.41 4391.53 23197.65 8490.31 37798.89 2098.93 4999.36 2184.57 31499.92 597.81 4599.56 11099.39 103
diffmvspermissive96.04 18496.23 17695.46 25597.35 29788.03 29593.42 31499.08 5594.09 21696.66 23196.93 25793.85 18399.29 25496.01 11298.67 26799.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS96.17 17996.23 17695.99 22797.55 28290.04 25592.38 33998.52 18094.13 21296.55 23997.06 24894.99 15299.58 16195.62 13499.28 19798.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 19296.19 17894.85 28397.68 26985.53 33492.42 33797.63 27096.99 8998.36 10298.54 10287.94 28599.75 6897.07 7599.08 22499.27 130
pmmvs-eth3d96.49 16696.18 17997.42 14398.25 19594.29 15094.77 26398.07 24289.81 30397.97 14998.33 12193.11 19799.08 28895.46 14699.84 4098.89 201
Fast-Effi-MVS+-dtu96.44 16996.12 18097.39 14697.18 30894.39 14595.46 22198.73 14696.03 13494.72 30194.92 33596.28 10999.69 11993.81 22697.98 30198.09 283
TSAR-MVS + GP.96.47 16896.12 18097.49 13597.74 26595.23 11594.15 28696.90 29393.26 23898.04 14296.70 27394.41 16998.89 30794.77 18999.14 21498.37 258
Effi-MVS+-dtu96.81 14796.09 18298.99 1096.90 32098.69 496.42 15598.09 23795.86 14595.15 29195.54 32294.26 17399.81 3794.06 21698.51 28198.47 250
CPTT-MVS96.69 15696.08 18398.49 5298.89 12096.64 5597.25 10898.77 13992.89 25696.01 26597.13 24392.23 22399.67 13092.24 25699.34 18399.17 148
mvs_anonymous95.36 21396.07 18493.21 33196.29 33181.56 37094.60 26997.66 26493.30 23796.95 21498.91 6993.03 20199.38 22796.60 8697.30 33498.69 228
Effi-MVS+96.19 17896.01 18596.71 19197.43 29292.19 21696.12 18099.10 4995.45 16493.33 34194.71 33897.23 5199.56 16893.21 24497.54 32398.37 258
OMC-MVS96.48 16796.00 18697.91 10098.30 18896.01 7894.86 25998.60 17191.88 27497.18 19297.21 24096.11 11399.04 29290.49 30099.34 18398.69 228
NCCC96.52 16595.99 18798.10 8597.81 24695.68 8995.00 25498.20 21995.39 16895.40 28696.36 29293.81 18499.45 20293.55 23498.42 28599.17 148
Anonymous20240521196.34 17395.98 18897.43 14198.25 19593.85 16796.74 13994.41 33797.72 5998.37 9998.03 16887.15 29599.53 17794.06 21699.07 22698.92 196
xiu_mvs_v1_base_debu95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base_debi95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
mvsany_test396.21 17795.93 19297.05 16797.40 29494.33 14995.76 20494.20 33989.10 30999.36 2499.60 693.97 18097.85 36895.40 15498.63 27298.99 183
ETV-MVS96.13 18195.90 19396.82 18497.76 26093.89 16595.40 22798.95 9395.87 14495.58 28291.00 38296.36 10599.72 8893.36 23798.83 25296.85 343
test_vis1_n95.67 19995.89 19495.03 27298.18 20589.89 25896.94 12699.28 2688.25 32298.20 12098.92 6686.69 29997.19 37597.70 5398.82 25398.00 298
test_f95.82 19495.88 19595.66 24497.61 27793.21 19195.61 21698.17 22586.98 33498.42 9499.47 1190.46 25294.74 38997.71 5198.45 28399.03 176
IterMVS95.42 21295.83 19694.20 31197.52 28383.78 35892.41 33897.47 27595.49 16398.06 13998.49 10687.94 28599.58 16196.02 11099.02 23199.23 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 17695.80 19797.56 12398.75 13594.13 15894.66 26798.17 22590.17 29996.21 25696.10 30595.14 14799.43 20794.13 21498.85 24999.13 156
PVSNet_Blended_VisFu95.95 18895.80 19796.42 20999.28 5890.62 24895.31 23699.08 5588.40 31996.97 21398.17 14992.11 22699.78 4893.64 23299.21 20598.86 208
EIA-MVS96.04 18495.77 19996.85 18197.80 25092.98 19496.12 18099.16 3794.65 19593.77 32591.69 37695.68 13099.67 13094.18 21198.85 24997.91 302
UnsupCasMVSNet_eth95.91 19095.73 20096.44 20698.48 17591.52 23295.31 23698.45 18695.76 14997.48 17797.54 21289.53 27098.69 32694.43 20094.61 37299.13 156
test_cas_vis1_n_192095.34 21495.67 20194.35 30698.21 19986.83 32195.61 21699.26 2790.45 29498.17 12598.96 6184.43 31598.31 35896.74 8299.17 21197.90 303
MDA-MVSNet-bldmvs95.69 19795.67 20195.74 24098.48 17588.76 28092.84 32497.25 27896.00 13597.59 16997.95 17791.38 23899.46 19893.16 24596.35 35298.99 183
CANet95.86 19295.65 20396.49 20496.41 32990.82 24494.36 27498.41 19394.94 18692.62 35796.73 27292.68 20999.71 10495.12 17199.60 10098.94 189
h-mvs3396.29 17495.63 20498.26 7098.50 17296.11 7396.90 12897.09 28696.58 10497.21 18998.19 14684.14 31699.78 4895.89 11996.17 35598.89 201
LF4IMVS96.07 18295.63 20497.36 14798.19 20295.55 9495.44 22298.82 13292.29 26895.70 27996.55 28092.63 21298.69 32691.75 26899.33 18897.85 307
QAPM95.88 19195.57 20696.80 18597.90 23591.84 22798.18 5398.73 14688.41 31896.42 24398.13 15294.73 15699.75 6888.72 32498.94 23898.81 212
alignmvs96.01 18695.52 20797.50 13297.77 25994.71 13196.07 18396.84 29497.48 7396.78 22594.28 34785.50 30799.40 22096.22 10098.73 26398.40 254
c3_l95.20 22195.32 20894.83 28596.19 33686.43 32691.83 34798.35 20393.47 23297.36 18397.26 23788.69 27799.28 25695.41 15399.36 17598.78 215
test_fmvs1_n95.21 22095.28 20994.99 27598.15 21289.13 27296.81 13399.43 2086.97 33597.21 18998.92 6683.00 32497.13 37698.09 3598.94 23898.72 224
MVP-Stereo95.69 19795.28 20996.92 17698.15 21293.03 19395.64 21598.20 21990.39 29596.63 23497.73 20091.63 23699.10 28691.84 26497.31 33398.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 29495.20 21187.40 37596.07 34395.38 10597.04 12294.97 33195.33 16999.70 698.11 15698.14 1791.94 39377.76 38699.68 8174.89 393
OpenMVScopyleft94.22 895.48 20895.20 21196.32 21497.16 30991.96 22497.74 7998.84 11887.26 32994.36 31098.01 17193.95 18199.67 13090.70 29398.75 25997.35 330
D2MVS95.18 22295.17 21395.21 26397.76 26087.76 30394.15 28697.94 24689.77 30496.99 21097.68 20487.45 29299.14 27895.03 17699.81 4898.74 221
DP-MVS Recon95.55 20495.13 21496.80 18598.51 16993.99 16394.60 26998.69 15690.20 29895.78 27596.21 29892.73 20898.98 30090.58 29698.86 24897.42 327
MSDG95.33 21595.13 21495.94 23397.40 29491.85 22691.02 36398.37 19995.30 17196.31 25095.99 30794.51 16798.38 35389.59 31297.65 32097.60 320
hse-mvs295.77 19595.09 21697.79 10897.84 24295.51 9795.66 21095.43 32696.58 10497.21 18996.16 29984.14 31699.54 17595.89 11996.92 33698.32 265
Fast-Effi-MVS+95.49 20695.07 21796.75 18997.67 27292.82 19694.22 28298.60 17191.61 27793.42 33992.90 36096.73 8499.70 11292.60 25197.89 30697.74 312
CLD-MVS95.47 20995.07 21796.69 19398.27 19392.53 20391.36 35298.67 16191.22 28495.78 27594.12 34895.65 13298.98 30090.81 28599.72 7098.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 21895.06 21995.88 23598.72 13889.37 26695.70 20697.85 25188.00 32596.98 21297.62 20791.95 23199.34 24189.21 31799.53 12398.94 189
API-MVS95.09 22795.01 22095.31 26096.61 32494.02 16196.83 13197.18 28295.60 15795.79 27394.33 34694.54 16698.37 35585.70 35298.52 27993.52 382
FMVSNet395.26 21994.94 22196.22 21996.53 32690.06 25495.99 19097.66 26494.11 21497.99 14597.91 18280.22 33899.63 14494.60 19599.44 15398.96 186
TAMVS95.49 20694.94 22197.16 15898.31 18793.41 18495.07 24996.82 29691.09 28597.51 17397.82 19189.96 26199.42 20988.42 32999.44 15398.64 232
eth_miper_zixun_eth94.89 23494.93 22394.75 28995.99 34486.12 32991.35 35398.49 18393.40 23397.12 19697.25 23886.87 29899.35 23995.08 17398.82 25398.78 215
PVSNet_BlendedMVS95.02 23194.93 22395.27 26197.79 25587.40 31094.14 28898.68 15888.94 31394.51 30698.01 17193.04 19999.30 25089.77 31099.49 14099.11 164
MS-PatchMatch94.83 23694.91 22594.57 29796.81 32187.10 31694.23 28197.34 27788.74 31697.14 19497.11 24591.94 23298.23 36192.99 24797.92 30398.37 258
FA-MVS(test-final)94.91 23394.89 22694.99 27597.51 28488.11 29498.27 4495.20 32992.40 26796.68 22998.60 9683.44 32199.28 25693.34 23898.53 27897.59 321
LFMVS95.32 21694.88 22796.62 19598.03 22091.47 23397.65 8490.72 37499.11 997.89 15698.31 12379.20 34099.48 19393.91 22499.12 21998.93 193
Vis-MVSNet (Re-imp)95.11 22594.85 22895.87 23699.12 9489.17 26997.54 9794.92 33296.50 10996.58 23597.27 23683.64 32099.48 19388.42 32999.67 8398.97 185
ppachtmachnet_test94.49 25794.84 22993.46 32596.16 33882.10 36690.59 36797.48 27490.53 29397.01 20997.59 20991.01 24499.36 23593.97 22299.18 21098.94 189
YYNet194.73 23994.84 22994.41 30497.47 29085.09 34390.29 37095.85 31592.52 26297.53 17197.76 19491.97 23099.18 27193.31 24096.86 33998.95 187
MDA-MVSNet_test_wron94.73 23994.83 23194.42 30397.48 28685.15 34190.28 37195.87 31492.52 26297.48 17797.76 19491.92 23399.17 27593.32 23996.80 34498.94 189
test111194.53 25594.81 23293.72 31999.06 10281.94 36998.31 3983.87 39496.37 11498.49 8699.17 4281.49 32999.73 8396.64 8499.86 3199.49 71
miper_lstm_enhance94.81 23894.80 23394.85 28396.16 33886.45 32591.14 36098.20 21993.49 23197.03 20797.37 23084.97 31199.26 26095.28 15699.56 11098.83 210
CL-MVSNet_self_test95.04 22894.79 23495.82 23797.51 28489.79 25991.14 36096.82 29693.05 24896.72 22796.40 29090.82 24799.16 27691.95 26098.66 26998.50 248
BH-untuned94.69 24494.75 23594.52 29997.95 23287.53 30694.07 29197.01 28993.99 21897.10 19895.65 31892.65 21198.95 30587.60 33996.74 34597.09 333
miper_ehance_all_eth94.69 24494.70 23694.64 29195.77 35186.22 32891.32 35698.24 21391.67 27697.05 20596.65 27688.39 28299.22 26994.88 18198.34 28798.49 249
train_agg95.46 21094.66 23797.88 10397.84 24295.23 11593.62 30898.39 19687.04 33293.78 32395.99 30794.58 16499.52 18091.76 26798.90 24298.89 201
CDPH-MVS95.45 21194.65 23897.84 10698.28 19194.96 12693.73 30698.33 20485.03 35595.44 28496.60 27895.31 14299.44 20590.01 30699.13 21699.11 164
cl____94.73 23994.64 23995.01 27395.85 34887.00 31791.33 35498.08 23893.34 23597.10 19897.33 23384.01 31999.30 25095.14 16899.56 11098.71 227
DIV-MVS_self_test94.73 23994.64 23995.01 27395.86 34787.00 31791.33 35498.08 23893.34 23597.10 19897.34 23284.02 31899.31 24795.15 16799.55 11698.72 224
xiu_mvs_v2_base94.22 26394.63 24192.99 33797.32 30284.84 34792.12 34297.84 25391.96 27294.17 31393.43 35196.07 11499.71 10491.27 27397.48 32694.42 377
AdaColmapbinary95.11 22594.62 24296.58 19897.33 30194.45 14494.92 25698.08 23893.15 24693.98 32195.53 32394.34 17199.10 28685.69 35398.61 27496.20 361
test_fmvs194.51 25694.60 24394.26 31095.91 34587.92 29695.35 23299.02 7286.56 33996.79 22198.52 10382.64 32697.00 37997.87 4298.71 26497.88 305
RPMNet94.68 24694.60 24394.90 28095.44 35988.15 29096.18 17498.86 11197.43 7494.10 31598.49 10679.40 33999.76 6295.69 12895.81 35796.81 347
Patchmtry95.03 23094.59 24596.33 21394.83 36890.82 24496.38 15997.20 28096.59 10397.49 17598.57 9877.67 34799.38 22792.95 24999.62 9198.80 213
our_test_394.20 26794.58 24693.07 33396.16 33881.20 37290.42 36996.84 29490.72 28997.14 19497.13 24390.47 25199.11 28494.04 21998.25 29198.91 197
HQP-MVS95.17 22494.58 24696.92 17697.85 23792.47 20694.26 27698.43 18993.18 24292.86 34895.08 32990.33 25599.23 26790.51 29898.74 26099.05 175
USDC94.56 25294.57 24894.55 29897.78 25886.43 32692.75 32798.65 16885.96 34396.91 21797.93 18090.82 24798.74 32090.71 29299.59 10298.47 250
Patchmatch-RL test94.66 24794.49 24995.19 26498.54 16588.91 27492.57 33198.74 14591.46 28098.32 10997.75 19777.31 35298.81 31496.06 10599.61 9797.85 307
ECVR-MVScopyleft94.37 26194.48 25094.05 31598.95 11383.10 36098.31 3982.48 39596.20 12298.23 11899.16 4381.18 33299.66 13695.95 11599.83 4399.38 105
PS-MVSNAJ94.10 26994.47 25193.00 33697.35 29784.88 34591.86 34697.84 25391.96 27294.17 31392.50 36895.82 12299.71 10491.27 27397.48 32694.40 378
EU-MVSNet94.25 26294.47 25193.60 32298.14 21482.60 36497.24 11092.72 35585.08 35398.48 8898.94 6482.59 32798.76 31997.47 6199.53 12399.44 95
CNLPA95.04 22894.47 25196.75 18997.81 24695.25 11494.12 29097.89 24994.41 20394.57 30495.69 31690.30 25898.35 35686.72 34898.76 25896.64 351
BH-RMVSNet94.56 25294.44 25494.91 27897.57 27987.44 30993.78 30596.26 30693.69 22696.41 24496.50 28592.10 22799.00 29685.96 35097.71 31498.31 267
F-COLMAP95.30 21794.38 25598.05 9298.64 14896.04 7595.61 21698.66 16389.00 31293.22 34296.40 29092.90 20399.35 23987.45 34397.53 32498.77 218
pmmvs594.63 24994.34 25695.50 25297.63 27688.34 28594.02 29297.13 28487.15 33195.22 29097.15 24287.50 29199.27 25993.99 22099.26 20098.88 205
UnsupCasMVSNet_bld94.72 24394.26 25796.08 22598.62 15490.54 25293.38 31698.05 24490.30 29697.02 20896.80 26889.54 26899.16 27688.44 32896.18 35498.56 240
N_pmnet95.18 22294.23 25898.06 8897.85 23796.55 5892.49 33391.63 36589.34 30698.09 13497.41 22190.33 25599.06 29091.58 26999.31 19398.56 240
TAPA-MVS93.32 1294.93 23294.23 25897.04 16998.18 20594.51 14195.22 24198.73 14681.22 37496.25 25495.95 31193.80 18598.98 30089.89 30898.87 24697.62 318
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 24894.21 26095.96 22995.90 34689.68 26093.92 29997.83 25593.19 24190.12 37695.64 31988.52 27999.57 16793.27 24299.47 14698.62 235
pmmvs494.82 23794.19 26196.70 19297.42 29392.75 20192.09 34496.76 29886.80 33795.73 27897.22 23989.28 27498.89 30793.28 24199.14 21498.46 252
PAPM_NR94.61 25094.17 26295.96 22998.36 18591.23 23795.93 19797.95 24592.98 25193.42 33994.43 34590.53 25098.38 35387.60 33996.29 35398.27 273
CDS-MVSNet94.88 23594.12 26397.14 16097.64 27593.57 17893.96 29897.06 28890.05 30096.30 25196.55 28086.10 30199.47 19590.10 30599.31 19398.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS293.66 28294.07 26492.45 34997.57 27980.67 37486.46 38596.00 31093.99 21897.10 19897.38 22889.90 26297.82 36988.76 32399.47 14698.86 208
jason94.39 26094.04 26595.41 25998.29 18987.85 30092.74 32996.75 29985.38 35295.29 28896.15 30088.21 28499.65 13894.24 20999.34 18398.74 221
jason: jason.
test_yl94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
DCV-MVSNet94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
MG-MVS94.08 27194.00 26694.32 30797.09 31285.89 33193.19 32195.96 31292.52 26294.93 29997.51 21589.54 26898.77 31787.52 34297.71 31498.31 267
MVSTER94.21 26593.93 26995.05 27195.83 34986.46 32495.18 24397.65 26692.41 26697.94 15298.00 17372.39 37499.58 16196.36 9599.56 11099.12 161
iter_conf_final94.54 25493.91 27096.43 20797.23 30690.41 25396.81 13398.10 23593.87 22196.80 22097.89 18368.02 38599.72 8896.73 8399.77 5899.18 147
PatchMatch-RL94.61 25093.81 27197.02 17198.19 20295.72 8693.66 30797.23 27988.17 32394.94 29895.62 32091.43 23798.57 33787.36 34497.68 31796.76 349
sss94.22 26393.72 27295.74 24097.71 26789.95 25793.84 30196.98 29088.38 32093.75 32695.74 31587.94 28598.89 30791.02 27998.10 29798.37 258
test_vis1_rt94.03 27393.65 27395.17 26695.76 35293.42 18393.97 29798.33 20484.68 35993.17 34395.89 31392.53 21894.79 38893.50 23594.97 36897.31 331
PVSNet_Blended93.96 27493.65 27394.91 27897.79 25587.40 31091.43 35198.68 15884.50 36294.51 30694.48 34493.04 19999.30 25089.77 31098.61 27498.02 296
PatchT93.75 27893.57 27594.29 30995.05 36687.32 31296.05 18492.98 35197.54 7094.25 31198.72 8375.79 36099.24 26595.92 11795.81 35796.32 358
SCA93.38 29193.52 27692.96 33896.24 33281.40 37193.24 31994.00 34091.58 27994.57 30496.97 25487.94 28599.42 20989.47 31497.66 31998.06 290
1112_ss94.12 26893.42 27796.23 21798.59 15890.85 24394.24 28098.85 11585.49 34892.97 34694.94 33386.01 30299.64 14191.78 26697.92 30398.20 279
CHOSEN 1792x268894.10 26993.41 27896.18 22199.16 8390.04 25592.15 34198.68 15879.90 37996.22 25597.83 18887.92 28999.42 20989.18 31899.65 8699.08 169
lupinMVS93.77 27793.28 27995.24 26297.68 26987.81 30192.12 34296.05 30884.52 36194.48 30895.06 33186.90 29699.63 14493.62 23399.13 21698.27 273
Patchmatch-test93.60 28593.25 28094.63 29296.14 34187.47 30796.04 18594.50 33693.57 22996.47 24196.97 25476.50 35598.61 33490.67 29498.41 28697.81 311
114514_t93.96 27493.22 28196.19 22099.06 10290.97 24295.99 19098.94 9473.88 39193.43 33896.93 25792.38 22299.37 23289.09 31999.28 19798.25 275
iter_conf0593.65 28393.05 28295.46 25596.13 34287.45 30895.95 19698.22 21592.66 26097.04 20697.89 18363.52 39199.72 8896.19 10299.82 4799.21 139
OpenMVS_ROBcopyleft91.80 1493.64 28493.05 28295.42 25797.31 30391.21 23895.08 24896.68 30381.56 37196.88 21996.41 28890.44 25499.25 26285.39 35897.67 31895.80 365
mvsany_test193.47 28893.03 28494.79 28794.05 38092.12 21790.82 36590.01 38085.02 35697.26 18698.28 13293.57 18997.03 37792.51 25495.75 36295.23 373
MAR-MVS94.21 26593.03 28497.76 11096.94 31897.44 3396.97 12597.15 28387.89 32792.00 36292.73 36492.14 22599.12 28183.92 36797.51 32596.73 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 28693.00 28695.19 26497.81 24687.86 29893.89 30096.00 31089.02 31194.07 31795.44 32686.27 30099.33 24387.69 33796.82 34298.39 256
PLCcopyleft91.02 1694.05 27292.90 28797.51 12898.00 22795.12 12394.25 27998.25 21186.17 34191.48 36795.25 32791.01 24499.19 27085.02 36296.69 34698.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 28792.86 28895.54 25198.60 15688.86 27692.75 32798.69 15682.66 36892.65 35496.92 25984.75 31299.56 16890.94 28197.76 31098.19 280
MIMVSNet93.42 28992.86 28895.10 26998.17 20888.19 28898.13 5593.69 34192.07 26995.04 29698.21 14580.95 33599.03 29581.42 37698.06 29998.07 286
cl2293.25 29492.84 29094.46 30294.30 37486.00 33091.09 36296.64 30490.74 28895.79 27396.31 29478.24 34498.77 31794.15 21398.34 28798.62 235
CVMVSNet92.33 30892.79 29190.95 36097.26 30475.84 39295.29 23892.33 36081.86 36996.27 25298.19 14681.44 33098.46 34894.23 21098.29 29098.55 242
CR-MVSNet93.29 29392.79 29194.78 28895.44 35988.15 29096.18 17497.20 28084.94 35894.10 31598.57 9877.67 34799.39 22495.17 16395.81 35796.81 347
miper_enhance_ethall93.14 29692.78 29394.20 31193.65 38385.29 33889.97 37397.85 25185.05 35496.15 26194.56 34085.74 30499.14 27893.74 22898.34 28798.17 282
DPM-MVS93.68 28192.77 29496.42 20997.91 23392.54 20291.17 35997.47 27584.99 35793.08 34594.74 33789.90 26299.00 29687.54 34198.09 29897.72 313
AUN-MVS93.95 27692.69 29597.74 11197.80 25095.38 10595.57 21995.46 32591.26 28392.64 35596.10 30574.67 36399.55 17293.72 23096.97 33598.30 269
HyFIR lowres test93.72 27992.65 29696.91 17898.93 11791.81 22891.23 35898.52 18082.69 36796.46 24296.52 28480.38 33799.90 1490.36 30298.79 25599.03 176
baseline193.14 29692.64 29794.62 29397.34 29987.20 31496.67 14893.02 35094.71 19396.51 24095.83 31481.64 32898.60 33690.00 30788.06 38998.07 286
EPNet93.72 27992.62 29897.03 17087.61 39992.25 21096.27 16691.28 36896.74 9787.65 38697.39 22685.00 31099.64 14192.14 25799.48 14499.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 29292.56 29995.57 24798.71 14187.86 29897.44 10087.17 38895.79 14897.47 17996.84 26364.12 38999.81 3796.20 10199.32 19099.02 179
FMVSNet593.39 29092.35 30096.50 20395.83 34990.81 24697.31 10598.27 20992.74 25896.27 25298.28 13262.23 39299.67 13090.86 28399.36 17599.03 176
131492.38 30692.30 30192.64 34495.42 36185.15 34195.86 20096.97 29185.40 35190.62 37093.06 35891.12 24297.80 37086.74 34795.49 36594.97 375
FE-MVS92.95 29892.22 30295.11 26797.21 30788.33 28698.54 2393.66 34489.91 30296.21 25698.14 15070.33 38199.50 18587.79 33598.24 29297.51 323
TR-MVS92.54 30492.20 30393.57 32396.49 32786.66 32293.51 31294.73 33389.96 30194.95 29793.87 34990.24 26098.61 33481.18 37794.88 36995.45 371
GA-MVS92.83 30092.15 30494.87 28296.97 31587.27 31390.03 37296.12 30791.83 27594.05 31894.57 33976.01 35998.97 30492.46 25597.34 33298.36 263
BH-w/o92.14 31191.94 30592.73 34397.13 31185.30 33792.46 33495.64 31889.33 30794.21 31292.74 36389.60 26698.24 36081.68 37594.66 37194.66 376
PatchmatchNetpermissive91.98 31691.87 30692.30 35194.60 37179.71 37695.12 24493.59 34689.52 30593.61 33197.02 25177.94 34599.18 27190.84 28494.57 37498.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 31091.83 30793.25 32996.18 33783.68 35996.27 16693.68 34376.97 38892.54 35899.18 3989.20 27698.55 34083.88 36898.60 27697.51 323
HY-MVS91.43 1592.58 30391.81 30894.90 28096.49 32788.87 27597.31 10594.62 33485.92 34490.50 37396.84 26385.05 30999.40 22083.77 37095.78 36096.43 357
Syy-MVS92.09 31391.80 30992.93 34095.19 36382.65 36292.46 33491.35 36690.67 29191.76 36587.61 38985.64 30698.50 34494.73 19196.84 34097.65 316
thisisatest053092.71 30291.76 31095.56 24998.42 18188.23 28796.03 18687.35 38794.04 21796.56 23795.47 32464.03 39099.77 5794.78 18899.11 22098.68 231
new_pmnet92.34 30791.69 31194.32 30796.23 33489.16 27092.27 34092.88 35284.39 36495.29 28896.35 29385.66 30596.74 38484.53 36597.56 32297.05 334
thres600view792.03 31591.43 31293.82 31798.19 20284.61 34996.27 16690.39 37596.81 9596.37 24693.11 35373.44 37299.49 19080.32 37997.95 30297.36 328
CMPMVSbinary73.10 2392.74 30191.39 31396.77 18893.57 38594.67 13494.21 28397.67 26280.36 37893.61 33196.60 27882.85 32597.35 37484.86 36398.78 25698.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 31791.35 31493.51 32494.27 37585.60 33388.86 38298.61 17079.32 38192.16 36191.44 37889.22 27598.12 36490.80 28697.47 32896.82 346
MDTV_nov1_ep1391.28 31594.31 37373.51 39694.80 26093.16 34986.75 33893.45 33797.40 22276.37 35698.55 34088.85 32296.43 350
dmvs_re92.08 31491.27 31694.51 30097.16 30992.79 20095.65 21292.64 35794.11 21492.74 35190.98 38383.41 32294.44 39180.72 37894.07 37596.29 359
PAPR92.22 30991.27 31695.07 27095.73 35488.81 27791.97 34597.87 25085.80 34690.91 36992.73 36491.16 24198.33 35779.48 38095.76 36198.08 284
thres100view90091.76 31991.26 31893.26 32898.21 19984.50 35096.39 15690.39 37596.87 9396.33 24793.08 35773.44 37299.42 20978.85 38397.74 31195.85 363
PMMVS92.39 30591.08 31996.30 21693.12 38792.81 19790.58 36895.96 31279.17 38291.85 36492.27 36990.29 25998.66 33189.85 30996.68 34797.43 326
tfpn200view991.55 32191.00 32093.21 33198.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31195.85 363
thres40091.68 32091.00 32093.71 32098.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31197.36 328
PVSNet86.72 1991.10 32590.97 32291.49 35797.56 28178.04 38287.17 38494.60 33584.65 36092.34 35992.20 37087.37 29498.47 34785.17 36197.69 31697.96 299
tpmvs90.79 32990.87 32390.57 36392.75 39176.30 39095.79 20393.64 34591.04 28691.91 36396.26 29577.19 35398.86 31189.38 31689.85 38696.56 354
tpm91.08 32690.85 32491.75 35695.33 36278.09 38195.03 25391.27 36988.75 31593.53 33497.40 22271.24 37699.30 25091.25 27593.87 37697.87 306
X-MVStestdata92.86 29990.83 32598.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24836.50 39596.49 9699.72 8895.66 13199.37 17299.45 86
EPNet_dtu91.39 32390.75 32693.31 32790.48 39682.61 36394.80 26092.88 35293.39 23481.74 39494.90 33681.36 33199.11 28488.28 33198.87 24698.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 31890.69 32795.11 26793.80 38290.98 24194.16 28591.78 36496.38 11390.30 37599.30 2872.02 37598.90 30688.28 33190.17 38595.45 371
PCF-MVS89.43 1892.12 31290.64 32896.57 20097.80 25093.48 18189.88 37798.45 18674.46 39096.04 26495.68 31790.71 24999.31 24773.73 38999.01 23396.91 340
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 33190.61 32989.41 36794.06 37972.37 39895.06 25093.69 34188.01 32492.32 36096.86 26177.45 34998.82 31291.04 27887.01 39097.04 335
ADS-MVSNet291.47 32290.51 33094.36 30595.51 35785.63 33295.05 25195.70 31683.46 36592.69 35296.84 26379.15 34199.41 21885.66 35490.52 38398.04 294
thres20091.00 32790.42 33192.77 34297.47 29083.98 35794.01 29391.18 37095.12 17995.44 28491.21 38073.93 36599.31 24777.76 38697.63 32195.01 374
ADS-MVSNet90.95 32890.26 33293.04 33495.51 35782.37 36595.05 25193.41 34783.46 36592.69 35296.84 26379.15 34198.70 32585.66 35490.52 38398.04 294
MVS-HIRNet88.40 34990.20 33382.99 37697.01 31460.04 40193.11 32285.61 39284.45 36388.72 38399.09 5084.72 31398.23 36182.52 37496.59 34990.69 391
test-LLR89.97 33689.90 33490.16 36494.24 37674.98 39389.89 37489.06 38292.02 27089.97 37790.77 38473.92 36698.57 33791.88 26297.36 33096.92 338
E-PMN89.52 34289.78 33588.73 36993.14 38677.61 38483.26 38992.02 36194.82 19093.71 32793.11 35375.31 36196.81 38185.81 35196.81 34391.77 388
ET-MVSNet_ETH3D91.12 32489.67 33695.47 25496.41 32989.15 27191.54 35090.23 37889.07 31086.78 39092.84 36169.39 38399.44 20594.16 21296.61 34897.82 309
CostFormer89.75 33989.25 33791.26 35994.69 37078.00 38395.32 23591.98 36281.50 37290.55 37296.96 25671.06 37898.89 30788.59 32792.63 38096.87 341
EMVS89.06 34489.22 33888.61 37093.00 38877.34 38682.91 39090.92 37194.64 19692.63 35691.81 37476.30 35797.02 37883.83 36996.90 33891.48 389
test0.0.03 190.11 33289.21 33992.83 34193.89 38186.87 32091.74 34888.74 38492.02 27094.71 30291.14 38173.92 36694.48 39083.75 37192.94 37897.16 332
MVS90.02 33389.20 34092.47 34894.71 36986.90 31995.86 20096.74 30064.72 39390.62 37092.77 36292.54 21698.39 35279.30 38195.56 36492.12 386
CHOSEN 280x42089.98 33589.19 34192.37 35095.60 35681.13 37386.22 38697.09 28681.44 37387.44 38793.15 35273.99 36499.47 19588.69 32599.07 22696.52 355
thisisatest051590.43 33089.18 34294.17 31397.07 31385.44 33589.75 37887.58 38688.28 32193.69 32991.72 37565.27 38899.58 16190.59 29598.67 26797.50 325
test250689.86 33889.16 34391.97 35498.95 11376.83 38998.54 2361.07 40296.20 12297.07 20499.16 4355.19 39999.69 11996.43 9399.83 4399.38 105
pmmvs390.00 33488.90 34493.32 32694.20 37885.34 33691.25 35792.56 35978.59 38393.82 32295.17 32867.36 38798.69 32689.08 32098.03 30095.92 362
FPMVS89.92 33788.63 34593.82 31798.37 18496.94 4591.58 34993.34 34888.00 32590.32 37497.10 24670.87 37991.13 39471.91 39296.16 35693.39 384
EPMVS89.26 34388.55 34691.39 35892.36 39279.11 37995.65 21279.86 39688.60 31793.12 34496.53 28270.73 38098.10 36590.75 28889.32 38796.98 336
baseline289.65 34188.44 34793.25 32995.62 35582.71 36193.82 30285.94 39188.89 31487.35 38892.54 36671.23 37799.33 24386.01 34994.60 37397.72 313
testing389.72 34088.26 34894.10 31497.66 27384.30 35494.80 26088.25 38594.66 19495.07 29292.51 36741.15 40299.43 20791.81 26598.44 28498.55 242
dp88.08 35188.05 34988.16 37492.85 38968.81 40094.17 28492.88 35285.47 34991.38 36896.14 30268.87 38498.81 31486.88 34683.80 39396.87 341
KD-MVS_2432*160088.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
miper_refine_blended88.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
tpm288.47 34887.69 35290.79 36194.98 36777.34 38695.09 24691.83 36377.51 38789.40 38096.41 28867.83 38698.73 32183.58 37292.60 38196.29 359
tpm cat188.01 35287.33 35390.05 36694.48 37276.28 39194.47 27294.35 33873.84 39289.26 38195.61 32173.64 36898.30 35984.13 36686.20 39195.57 370
test-mter87.92 35387.17 35490.16 36494.24 37674.98 39389.89 37489.06 38286.44 34089.97 37790.77 38454.96 40098.57 33791.88 26297.36 33096.92 338
dmvs_testset87.30 35586.99 35588.24 37296.71 32277.48 38594.68 26686.81 39092.64 26189.61 37987.01 39185.91 30393.12 39261.04 39688.49 38894.13 379
gg-mvs-nofinetune88.28 35086.96 35692.23 35292.84 39084.44 35198.19 5274.60 39899.08 1087.01 38999.47 1156.93 39498.23 36178.91 38295.61 36394.01 380
IB-MVS85.98 2088.63 34786.95 35793.68 32195.12 36584.82 34890.85 36490.17 37987.55 32888.48 38491.34 37958.01 39399.59 15987.24 34593.80 37796.63 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TESTMET0.1,187.20 35686.57 35889.07 36893.62 38472.84 39789.89 37487.01 38985.46 35089.12 38290.20 38656.00 39897.72 37190.91 28296.92 33696.64 351
MVEpermissive73.61 2286.48 35885.92 35988.18 37396.23 33485.28 33981.78 39175.79 39786.01 34282.53 39391.88 37392.74 20787.47 39671.42 39394.86 37091.78 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 35485.84 36093.04 33496.54 32584.99 34488.42 38395.57 32279.52 38083.82 39193.05 35980.57 33698.41 35062.29 39592.79 37995.71 366
myMVS_eth3d87.16 35785.61 36191.82 35595.19 36379.32 37792.46 33491.35 36690.67 29191.76 36587.61 38941.96 40198.50 34482.66 37396.84 34097.65 316
PVSNet_081.89 2184.49 35983.21 36288.34 37195.76 35274.97 39583.49 38892.70 35678.47 38487.94 38586.90 39283.38 32396.63 38573.44 39066.86 39693.40 383
EGC-MVSNET83.08 36077.93 36398.53 5099.57 2097.55 2698.33 3898.57 1774.71 39710.38 39898.90 7095.60 13499.50 18595.69 12899.61 9798.55 242
test_method66.88 36166.13 36469.11 37862.68 40025.73 40449.76 39296.04 30914.32 39664.27 39791.69 37673.45 37188.05 39576.06 38866.94 39593.54 381
tmp_tt57.23 36262.50 36541.44 37934.77 40149.21 40383.93 38760.22 40315.31 39571.11 39679.37 39470.09 38244.86 39864.76 39482.93 39430.25 394
cdsmvs_eth3d_5k24.22 36332.30 3660.00 3820.00 4040.00 4070.00 39398.10 2350.00 4000.00 40195.06 33197.54 370.00 4010.00 4000.00 3990.00 397
test12312.59 36415.49 3673.87 3806.07 4022.55 40590.75 3662.59 4052.52 3985.20 40013.02 3974.96 4031.85 4005.20 3989.09 3977.23 395
testmvs12.33 36515.23 3683.64 3815.77 4032.23 40688.99 3813.62 4042.30 3995.29 39913.09 3964.52 4041.95 3995.16 3998.32 3986.75 396
pcd_1.5k_mvsjas7.98 36610.65 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40095.82 1220.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.91 36710.55 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.94 3330.00 4050.00 4010.00 4000.00 3990.00 397
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM97.62 12093.30 18696.39 15692.61 35897.90 5296.76 22698.64 9390.46 25299.81 3799.16 999.94 899.76 17
WAC-MVS79.32 37785.41 357
FOURS199.59 1898.20 799.03 799.25 2898.96 1898.87 54
MSC_two_6792asdad98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
PC_three_145287.24 33098.37 9997.44 21997.00 6396.78 38392.01 25899.25 20199.21 139
No_MVS98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
test_one_060199.05 10695.50 10098.87 10897.21 8698.03 14398.30 12796.93 69
eth-test20.00 404
eth-test0.00 404
ZD-MVS98.43 18095.94 7998.56 17890.72 28996.66 23197.07 24795.02 15199.74 7791.08 27798.93 240
IU-MVS99.22 6995.40 10398.14 23285.77 34798.36 10295.23 16099.51 13399.49 71
OPU-MVS97.64 11998.01 22395.27 11396.79 13697.35 23196.97 6598.51 34391.21 27699.25 20199.14 154
test_241102_TWO98.83 12496.11 12798.62 7498.24 13996.92 7199.72 8895.44 14799.49 14099.49 71
test_241102_ONE99.22 6995.35 10898.83 12496.04 13299.08 4098.13 15297.87 2399.33 243
save fliter98.48 17594.71 13194.53 27198.41 19395.02 184
test_0728_THIRD96.62 9998.40 9698.28 13297.10 5499.71 10495.70 12699.62 9199.58 40
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10099.75 6895.48 14399.52 12899.53 57
test072699.24 6495.51 9796.89 12998.89 10095.92 14098.64 7298.31 12397.06 58
GSMVS98.06 290
test_part299.03 10896.07 7498.08 136
sam_mvs177.80 34698.06 290
sam_mvs77.38 350
ambc96.56 20198.23 19891.68 23097.88 6998.13 23398.42 9498.56 10094.22 17499.04 29294.05 21899.35 18098.95 187
MTGPAbinary98.73 146
test_post194.98 25510.37 39976.21 35899.04 29289.47 314
test_post10.87 39876.83 35499.07 289
patchmatchnet-post96.84 26377.36 35199.42 209
GG-mvs-BLEND90.60 36291.00 39484.21 35598.23 4672.63 40182.76 39284.11 39356.14 39796.79 38272.20 39192.09 38290.78 390
MTMP96.55 15074.60 398
gm-plane-assit91.79 39371.40 39981.67 37090.11 38798.99 29884.86 363
test9_res91.29 27298.89 24599.00 180
TEST997.84 24295.23 11593.62 30898.39 19686.81 33693.78 32395.99 30794.68 16099.52 180
test_897.81 24695.07 12493.54 31198.38 19887.04 33293.71 32795.96 31094.58 16499.52 180
agg_prior290.34 30398.90 24299.10 168
agg_prior97.80 25094.96 12698.36 20093.49 33599.53 177
TestCases98.06 8899.08 9996.16 7099.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
test_prior495.38 10593.61 310
test_prior293.33 31894.21 20894.02 31996.25 29693.64 18891.90 26198.96 235
test_prior97.46 13897.79 25594.26 15598.42 19299.34 24198.79 214
旧先验293.35 31777.95 38695.77 27798.67 33090.74 291
新几何293.43 313
新几何197.25 15498.29 18994.70 13397.73 25977.98 38594.83 30096.67 27592.08 22899.45 20288.17 33398.65 27197.61 319
旧先验197.80 25093.87 16697.75 25897.04 25093.57 18998.68 26698.72 224
无先验93.20 32097.91 24780.78 37599.40 22087.71 33697.94 301
原ACMM292.82 325
原ACMM196.58 19898.16 21092.12 21798.15 23185.90 34593.49 33596.43 28792.47 22099.38 22787.66 33898.62 27398.23 276
test22298.17 20893.24 19092.74 32997.61 27175.17 38994.65 30396.69 27490.96 24698.66 26997.66 315
testdata299.46 19887.84 334
segment_acmp95.34 141
testdata95.70 24398.16 21090.58 24997.72 26080.38 37795.62 28097.02 25192.06 22998.98 30089.06 32198.52 27997.54 322
testdata192.77 32693.78 223
test1297.46 13897.61 27794.07 15997.78 25793.57 33393.31 19499.42 20998.78 25698.89 201
plane_prior798.70 14394.67 134
plane_prior698.38 18394.37 14791.91 234
plane_prior598.75 14399.46 19892.59 25299.20 20699.28 126
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 259
plane_prior296.50 15296.36 115
plane_prior198.49 173
plane_prior94.29 15095.42 22494.31 20798.93 240
n20.00 406
nn0.00 406
door-mid98.17 225
lessismore_v097.05 16799.36 5192.12 21784.07 39398.77 6798.98 5885.36 30899.74 7797.34 6499.37 17299.30 119
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
test1198.08 238
door97.81 256
HQP5-MVS92.47 206
HQP-NCC97.85 23794.26 27693.18 24292.86 348
ACMP_Plane97.85 23794.26 27693.18 24292.86 348
BP-MVS90.51 298
HQP4-MVS92.87 34799.23 26799.06 173
HQP3-MVS98.43 18998.74 260
HQP2-MVS90.33 255
NP-MVS98.14 21493.72 17295.08 329
MDTV_nov1_ep13_2view57.28 40294.89 25780.59 37694.02 31978.66 34385.50 35697.82 309
ACMMP++_ref99.52 128
ACMMP++99.55 116
Test By Simon94.51 167
ITE_SJBPF97.85 10598.64 14896.66 5498.51 18295.63 15597.22 18797.30 23595.52 13598.55 34090.97 28098.90 24298.34 264
DeepMVS_CXcopyleft77.17 37790.94 39585.28 33974.08 40052.51 39480.87 39588.03 38875.25 36270.63 39759.23 39784.94 39275.62 392