This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17998.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12397.75 3099.89 2299.62 25
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11199.71 499.48 798.77 699.93 298.89 399.95 599.84 5
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5599.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2499.10 3199.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 15797.21 4899.76 3999.40 83
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2299.13 2799.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2599.15 2499.33 599.30 2199.00 3897.27 3899.92 497.64 3499.92 1499.75 13
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2599.12 2895.83 13699.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
Anonymous2023121198.55 1798.76 1397.94 9698.79 10894.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8598.12 1699.86 2599.73 15
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 13999.67 296.47 8899.92 497.88 2399.98 299.85 3
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3599.05 4397.40 7399.37 1899.08 3498.79 599.47 19197.74 3199.71 5199.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3299.00 6097.57 6199.27 2499.22 2298.32 999.50 18497.09 5499.75 4399.50 45
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4098.87 8798.23 3699.48 1299.27 1998.47 899.55 17096.52 6799.53 9799.60 26
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14499.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4599.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5699.08 3798.31 3399.02 3498.74 5597.68 2499.61 15597.77 2999.85 2799.70 18
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5195.47 12699.89 1697.95 2199.91 1799.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6499.00 6098.40 3099.07 3398.98 4096.89 6499.75 6597.19 5199.79 3599.55 37
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3498.84 9999.05 1399.01 3598.65 6395.37 12999.90 1397.57 3699.91 1799.77 8
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3095.44 12899.84 2596.47 7099.80 3399.47 61
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2899.21 1498.43 2998.89 3998.83 5094.30 16499.81 3297.87 2499.91 1799.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 4899.46 797.32 7597.82 14499.11 3196.75 7299.86 2097.84 2599.36 15599.15 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 7799.20 1698.21 3799.25 2598.51 7298.21 1199.40 21594.79 15999.72 4899.32 98
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2199.10 3198.76 2396.79 19899.34 1796.61 7898.82 30296.38 7299.50 11196.98 311
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12599.05 4398.67 2498.84 4298.45 7697.58 2899.88 1896.45 7199.86 2599.54 38
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 6899.11 2997.76 5098.62 5298.27 9997.88 1999.80 3895.67 10499.50 11199.38 87
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2899.03 5095.88 13197.88 13698.22 10698.15 1299.74 7596.50 6999.62 6699.42 80
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5199.16 2098.34 3298.78 4598.52 7197.32 3599.45 19894.08 18999.67 5899.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3598.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 9999.76 3999.30 104
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 7798.94 7497.10 8198.85 4198.88 4795.03 14099.67 12897.39 4399.65 6199.26 117
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5099.11 2998.04 4298.62 5298.66 6193.75 17899.78 4397.23 4599.84 2899.73 15
v897.60 8498.06 3896.23 21198.71 11989.44 25497.43 8798.82 11497.29 7798.74 4899.10 3293.86 17499.68 12398.61 1099.94 899.56 35
Anonymous2024052997.96 4698.04 3997.71 11298.69 12394.28 15197.86 5898.31 19398.79 2299.23 2698.86 4995.76 11599.61 15595.49 11499.36 15599.23 124
APDe-MVS98.14 3498.03 4098.47 5498.72 11696.04 7498.07 4799.10 3195.96 12598.59 5798.69 5996.94 5899.81 3296.64 6299.58 7999.57 32
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6098.45 17098.25 3599.13 3098.66 6196.65 7599.69 11693.92 19899.62 6698.91 185
v1097.55 8797.97 4196.31 20898.60 13489.64 25097.44 8599.02 5296.60 9498.72 5099.16 2993.48 18399.72 8598.76 699.92 1499.58 28
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12698.73 12998.66 2598.56 5998.41 7896.84 6999.69 11694.82 15799.81 3098.64 218
DROMVSNet97.90 6097.94 4497.79 10698.66 12595.14 11998.31 3199.66 297.57 6195.95 23997.01 22596.99 5599.82 2997.66 3399.64 6398.39 237
DVP-MVS++.97.96 4697.90 4598.12 8397.75 23995.40 10199.03 798.89 7996.62 9298.62 5298.30 9096.97 5699.75 6595.70 10199.25 18399.21 126
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 11898.83 10696.11 11599.08 3198.24 10197.87 2099.72 8595.44 12199.51 10799.14 140
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 10897.31 3797.55 7798.92 7697.72 5498.25 9398.13 11397.10 4599.75 6595.44 12199.24 18699.32 98
DP-MVS97.87 6397.89 4897.81 10598.62 13194.82 12897.13 10398.79 11698.98 1798.74 4898.49 7395.80 11499.49 18595.04 14999.44 12999.11 152
RE-MVS-def97.88 4998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.94 5895.49 11499.20 18899.26 117
NR-MVSNet97.96 4697.86 5098.26 6998.73 11495.54 9398.14 4398.73 12997.79 4699.42 1597.83 15394.40 16299.78 4395.91 9499.76 3999.46 63
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.60 8099.76 5895.49 11499.20 18899.26 117
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9498.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15497.41 16497.50 18497.98 1599.79 3995.58 11399.57 8299.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs97.50 9197.81 5496.56 19598.51 14491.04 22995.83 17299.09 3697.23 7898.33 8598.30 9097.03 5299.37 22696.58 6599.38 15199.28 112
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19098.86 9098.20 3898.37 7599.24 2094.69 14999.55 17095.98 9199.79 3599.65 23
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16398.97 7094.55 18898.82 4398.76 5497.31 3699.29 24797.20 5099.44 12999.38 87
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 12798.83 10695.21 16098.36 7898.13 11398.13 1499.62 14896.04 8599.54 9499.39 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 9697.78 5896.43 20198.52 14390.75 23696.84 11599.03 5096.51 9997.86 14098.02 13096.67 7499.36 22897.09 5499.47 12199.19 130
test117298.08 3997.76 5999.05 698.78 11098.07 797.41 8998.85 9497.57 6198.15 10497.96 13696.60 8099.76 5895.30 13099.18 19399.33 97
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10098.90 7896.58 9698.08 11497.87 15097.02 5399.76 5895.25 13399.59 7799.40 83
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4698.96 7195.75 14097.91 13298.06 12696.89 6499.76 5895.32 12999.57 8299.43 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE97.75 7497.70 6297.89 9998.88 10294.53 13997.10 10498.98 6695.75 14097.62 14797.59 17697.61 2799.77 5396.34 7499.44 12999.36 93
SD-MVS97.37 10197.70 6296.35 20598.14 18795.13 12096.54 13098.92 7695.94 12799.19 2898.08 11997.74 2295.06 36495.24 13499.54 9498.87 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 9799.00 6094.93 17598.58 5898.92 4597.31 3699.41 21394.44 17299.43 13799.59 27
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11095.72 8396.23 14799.02 5293.92 20898.62 5298.99 3997.69 2399.62 14896.18 7899.87 2499.15 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10599.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
SR-MVS98.00 4597.66 6799.01 1198.77 11297.93 1197.38 9098.83 10697.32 7598.06 11697.85 15196.65 7599.77 5395.00 15299.11 20499.32 98
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18098.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12198.23 19995.92 12898.40 7298.28 9597.06 5099.71 9995.48 11799.52 10299.26 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11695.78 8195.66 18099.02 5298.11 4098.31 8897.69 17094.65 15399.85 2297.02 5799.71 5199.48 58
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 10795.86 8095.92 16799.04 4997.51 6698.22 9697.81 15794.68 15199.78 4397.14 5399.75 4399.41 82
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7498.84 9996.05 11897.49 15597.54 17997.07 4899.70 10895.61 11099.46 12499.30 104
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24293.65 17798.49 2298.88 8596.86 8797.11 17798.55 6995.82 10899.73 8195.94 9299.42 14099.13 143
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 13898.79 11695.07 16897.88 13698.35 8297.24 4299.72 8596.05 8499.58 7999.45 68
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22297.64 17296.49 8699.72 8595.66 10699.37 15299.45 68
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8498.84 9995.76 13896.93 19397.43 19097.26 4099.79 3996.06 8299.53 9799.45 68
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7498.83 10696.05 11897.46 16197.63 17396.77 7199.76 5895.61 11099.46 12499.49 53
DU-MVS97.79 7197.60 7898.36 6198.73 11495.78 8195.65 18398.87 8797.57 6198.31 8897.83 15394.69 14999.85 2297.02 5799.71 5199.46 63
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7398.84 9996.00 12397.22 16897.62 17496.87 6799.76 5895.48 11799.43 13799.46 63
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19295.60 9198.04 4898.70 13998.13 3996.93 19398.45 7695.30 13399.62 14895.64 10898.96 21999.24 123
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3296.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 3999.54 38
CP-MVS97.92 5697.56 8298.99 1398.99 9597.82 1697.93 5398.96 7196.11 11596.89 19697.45 18896.85 6899.78 4395.19 13699.63 6599.38 87
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6698.78 12096.04 12097.10 17897.73 16596.53 8399.78 4395.16 14099.50 11199.46 63
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10599.06 4195.45 15297.55 14997.94 14197.11 4499.78 4394.77 16299.46 12499.48 58
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6198.40 18097.11 8098.34 8199.04 3789.58 25399.79 3998.09 1899.93 1099.30 104
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7699.06 4196.19 11298.48 6598.70 5894.72 14899.24 25594.37 17799.33 17099.17 133
LS3D97.77 7397.50 8798.57 4896.24 30997.58 2598.45 2598.85 9498.58 2797.51 15297.94 14195.74 11699.63 14095.19 13698.97 21898.51 229
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 9998.79 11695.96 12597.53 15097.40 19296.93 6099.77 5395.04 14999.35 16099.42 80
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14298.53 16397.77 4798.46 6898.41 7894.59 15599.68 12394.61 16599.29 17899.52 42
Regformer-497.53 9097.47 9097.71 11297.35 27193.91 16295.26 20798.14 21597.97 4398.34 8197.89 14695.49 12399.71 9997.41 4199.42 14099.51 44
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27592.01 21595.33 20197.65 25297.74 5198.30 9098.14 11295.04 13999.69 11697.55 3799.52 10299.58 28
SF-MVS97.60 8497.39 9298.22 7498.93 9895.69 8597.05 10799.10 3195.32 15797.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27092.08 21395.34 20097.65 25297.74 5198.29 9198.11 11795.05 13799.68 12397.50 3999.50 11199.56 35
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 19798.99 6392.45 24998.11 10898.31 8697.25 4199.77 5396.60 6399.62 6699.48 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10396.18 6895.21 21298.99 6395.84 13598.78 4598.08 11996.84 6999.81 3293.98 19699.57 8299.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19093.79 16996.99 11199.65 396.74 9099.47 1398.93 4496.91 6399.84 2590.11 27999.06 21398.32 246
CSCG97.40 9997.30 9797.69 11698.95 9794.83 12797.28 9398.99 6396.35 10798.13 10795.95 28695.99 10199.66 13494.36 18099.73 4598.59 224
Regformer-397.25 10997.29 9897.11 16197.35 27192.32 20495.26 20797.62 25797.67 5998.17 10197.89 14695.05 13799.56 16697.16 5299.42 14099.46 63
IterMVS-LS96.92 12397.29 9895.79 23198.51 14488.13 27995.10 21598.66 14996.99 8298.46 6898.68 6092.55 20599.74 7596.91 6099.79 3599.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13598.98 6695.05 16998.06 11698.02 13095.86 10499.56 16694.37 17799.64 6399.00 168
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21098.46 16994.58 18798.10 11198.07 12197.09 4799.39 22095.16 14099.44 12999.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS97.37 10197.25 10197.74 11098.69 12394.50 14297.04 10895.61 30898.59 2698.51 6298.72 5692.54 20799.58 15996.02 8799.49 11599.12 148
Regformer-297.41 9897.24 10397.93 9797.21 28394.72 13194.85 23398.27 19497.74 5198.11 10897.50 18495.58 12199.69 11696.57 6699.31 17499.37 92
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7298.20 20393.00 23798.16 10298.06 12695.89 10399.72 8595.67 10499.10 20699.28 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 11798.84 9994.25 19797.49 15597.54 17997.07 4899.70 10894.37 17799.46 12499.30 104
canonicalmvs97.23 11197.21 10697.30 15297.65 25094.39 14497.84 5999.05 4397.42 6996.68 20593.85 32797.63 2699.33 23696.29 7598.47 26498.18 262
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8398.73 12996.27 10895.59 25497.75 16296.30 9699.78 4393.70 20699.48 11999.45 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Regformer-197.27 10797.16 10897.61 12197.21 28393.86 16594.85 23398.04 22997.62 6098.03 12097.50 18495.34 13099.63 14096.52 6799.31 17499.35 95
V4297.04 11597.16 10896.68 18898.59 13691.05 22896.33 14098.36 18594.60 18497.99 12398.30 9093.32 18599.62 14897.40 4299.53 9799.38 87
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10496.67 5396.74 12198.73 12991.61 26098.48 6598.36 8196.53 8399.68 12395.17 13899.54 9499.45 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PM-MVS97.36 10397.10 11198.14 8298.91 10096.77 5096.20 14898.63 15593.82 21098.54 6098.33 8493.98 17299.05 28095.99 9099.45 12898.61 223
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9296.70 5296.24 14698.89 7993.71 21397.97 12797.75 16297.44 3099.63 14093.22 21599.70 5499.32 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 12897.08 11396.13 21798.42 15689.28 25795.41 19498.67 14794.21 19897.97 12798.31 8693.06 19099.65 13598.06 1999.62 6699.45 68
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9497.41 3594.66 24099.02 5295.20 16198.15 10497.52 18298.83 498.43 33594.87 15596.41 32799.07 159
v119296.83 13197.06 11596.15 21698.28 16689.29 25695.36 19898.77 12193.73 21298.11 10898.34 8393.02 19499.67 12898.35 1499.58 7999.50 45
v2v48296.78 13597.06 11595.95 22498.57 13888.77 26795.36 19898.26 19695.18 16397.85 14198.23 10392.58 20499.63 14097.80 2799.69 5599.45 68
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15094.71 13294.53 24599.07 4095.02 17197.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
v124096.74 13797.02 11895.91 22798.18 18088.52 26995.39 19698.88 8593.15 23398.46 6898.40 8092.80 19799.71 9998.45 1399.49 11599.49 53
v14896.58 15096.97 11995.42 24798.63 13087.57 29095.09 21797.90 23395.91 13098.24 9597.96 13693.42 18499.39 22096.04 8599.52 10299.29 111
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 8897.49 26097.93 4495.95 23998.58 6596.88 6696.91 35889.59 28799.36 15593.12 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 14096.96 12195.99 22098.21 17588.79 26695.42 19298.79 11693.22 22798.19 10098.26 10092.68 20099.70 10898.34 1599.55 9199.49 53
EI-MVSNet96.63 14796.93 12295.74 23397.26 28088.13 27995.29 20597.65 25296.99 8297.94 13098.19 10892.55 20599.58 15996.91 6099.56 8599.50 45
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 6998.89 7995.65 14298.51 6296.46 25892.15 21499.81 3295.14 14398.58 26099.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10299.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
v14419296.69 14396.90 12596.03 21998.25 17188.92 26195.49 18898.77 12193.05 23598.09 11298.29 9492.51 20999.70 10898.11 1799.56 8599.47 61
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5295.31 31499.26 798.39 7499.18 2787.85 27599.62 14895.13 14599.09 20799.35 95
VNet96.84 12896.83 12796.88 17498.06 19392.02 21496.35 13997.57 25997.70 5697.88 13697.80 15892.40 21199.54 17394.73 16498.96 21999.08 157
WR-MVS96.90 12596.81 12897.16 15898.56 13992.20 20994.33 24998.12 21897.34 7498.20 9797.33 20392.81 19699.75 6594.79 15999.81 3099.54 38
GBi-Net96.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
test196.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
MVS_Test96.27 16196.79 13194.73 27596.94 29486.63 30596.18 14998.33 19094.94 17396.07 23598.28 9595.25 13499.26 25297.21 4897.90 28498.30 250
XVG-OURS97.12 11396.74 13298.26 6998.99 9597.45 3393.82 27599.05 4395.19 16298.32 8697.70 16895.22 13598.41 33694.27 18298.13 27598.93 180
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22090.56 24095.71 17598.84 9994.72 18096.71 20497.39 19694.91 14598.10 35095.28 13199.02 21598.05 274
9.1496.69 13498.53 14296.02 15898.98 6693.23 22697.18 17297.46 18796.47 8899.62 14892.99 21999.32 172
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10697.98 13588.23 26899.71 9993.10 21899.72 4899.38 87
FMVSNet296.72 14096.67 13696.87 17597.96 20491.88 21797.15 10098.06 22795.59 14798.50 6498.62 6489.51 25799.65 13594.99 15399.60 7599.07 159
test20.0396.58 15096.61 13796.48 19998.49 14891.72 22195.68 17997.69 24796.81 8898.27 9297.92 14494.18 16898.71 31390.78 26099.66 6099.00 168
CS-MVS-test96.62 14896.59 13896.69 18697.88 21293.16 18897.21 9899.53 695.61 14593.72 30195.33 30195.49 12399.69 11695.37 12899.19 19297.22 305
ab-mvs96.59 14996.59 13896.60 19098.64 12692.21 20798.35 2897.67 24894.45 18996.99 18898.79 5194.96 14399.49 18590.39 27699.07 21098.08 265
new-patchmatchnet95.67 18596.58 14092.94 31697.48 26180.21 35192.96 29898.19 20894.83 17798.82 4398.79 5193.31 18699.51 18395.83 9999.04 21499.12 148
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16698.06 12688.46 26599.85 2293.85 20099.40 14799.32 98
UGNet96.81 13396.56 14297.58 12296.64 29993.84 16797.75 6597.12 27396.47 10393.62 30698.88 4793.22 18899.53 17595.61 11099.69 5599.36 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 12396.55 14398.03 9298.00 20295.54 9394.87 23198.17 20994.60 18496.38 21997.05 22195.67 11899.36 22895.12 14699.08 20899.19 130
MVS_111021_LR96.82 13296.55 14397.62 12098.27 16895.34 10893.81 27798.33 19094.59 18696.56 21196.63 24996.61 7898.73 31194.80 15899.34 16398.78 204
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16193.66 17693.42 28798.36 18594.74 17996.58 20996.76 24296.54 8298.99 28794.87 15599.27 18199.15 137
test_part196.77 13696.53 14697.47 13698.04 19492.92 19497.93 5398.85 9498.83 2199.30 2199.07 3579.25 31599.79 3997.59 3599.93 1099.69 20
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14096.31 6596.32 14198.77 12192.96 24297.44 16397.58 17895.84 10599.74 7591.96 23099.35 16099.19 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 12196.53 14698.25 7297.48 26196.50 5996.76 12098.85 9493.52 21696.19 23196.85 23395.94 10299.42 20493.79 20299.43 13798.83 198
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24594.15 15596.02 15898.43 17393.17 23297.30 16697.38 19895.48 12599.28 24993.74 20399.34 16398.88 193
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16398.58 16095.08 16798.02 12296.25 26997.92 1697.60 35588.68 30198.74 24599.11 152
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13195.69 8595.96 16398.98 6693.36 22197.04 18497.31 20594.93 14499.63 14092.60 22299.34 16399.17 133
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26197.23 4192.56 30798.60 15792.84 24498.54 6097.40 19296.64 7798.78 30694.40 17699.41 14698.93 180
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12697.59 2495.97 16298.20 20395.51 15095.06 26396.53 25494.10 16999.70 10894.29 18199.15 19599.13 143
MVSFormer96.14 16796.36 15495.49 24497.68 24687.81 28698.67 1399.02 5296.50 10094.48 28096.15 27486.90 28099.92 498.73 799.13 20098.74 209
TinyColmap96.00 17496.34 15594.96 26397.90 21087.91 28294.13 26398.49 16794.41 19098.16 10297.76 15996.29 9798.68 31890.52 27299.42 14098.30 250
HQP_MVS96.66 14696.33 15697.68 11798.70 12194.29 14896.50 13198.75 12596.36 10596.16 23296.77 24091.91 22599.46 19492.59 22499.20 18899.28 112
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7090.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8599.39 85
CS-MVS95.98 17596.24 15895.20 25497.26 28089.88 24695.84 17199.39 993.89 20994.28 28395.15 30494.81 14699.62 14896.11 8199.40 14796.10 336
diffmvs96.04 17196.23 15995.46 24697.35 27188.03 28193.42 28799.08 3794.09 20396.66 20696.93 22993.85 17599.29 24796.01 8998.67 25099.06 161
DELS-MVS96.17 16696.23 15995.99 22097.55 25890.04 24392.38 31298.52 16494.13 20196.55 21397.06 22094.99 14299.58 15995.62 10999.28 17998.37 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24685.53 31692.42 31097.63 25696.99 8298.36 7898.54 7087.94 27099.75 6597.07 5699.08 20899.27 116
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17194.29 14894.77 23798.07 22689.81 28197.97 12798.33 8493.11 18999.08 27795.46 12099.84 2898.89 189
testtj96.69 14396.13 16398.36 6198.46 15496.02 7696.44 13398.70 13994.26 19696.79 19897.13 21394.07 17099.75 6590.53 27198.80 23999.31 103
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28594.39 14495.46 18998.73 12996.03 12294.72 27194.92 31196.28 9899.69 11693.81 20197.98 28098.09 264
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24295.23 11394.15 26096.90 28193.26 22598.04 11996.70 24594.41 16198.89 29794.77 16299.14 19698.37 239
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29698.69 296.42 13498.09 22095.86 13395.15 26295.54 29794.26 16599.81 3294.06 19098.51 26398.47 232
CPTT-MVS96.69 14396.08 16798.49 5298.89 10196.64 5597.25 9498.77 12192.89 24396.01 23897.13 21392.23 21399.67 12892.24 22799.34 16399.17 133
mvs_anonymous95.36 19996.07 16893.21 30896.29 30781.56 34694.60 24297.66 25093.30 22496.95 19298.91 4693.03 19399.38 22396.60 6397.30 31198.69 215
Effi-MVS+96.19 16596.01 16996.71 18497.43 26792.19 21096.12 15299.10 3195.45 15293.33 31894.71 31497.23 4399.56 16693.21 21697.54 30198.37 239
OMC-MVS96.48 15496.00 17097.91 9898.30 16396.01 7794.86 23298.60 15791.88 25797.18 17297.21 21196.11 9999.04 28190.49 27599.34 16398.69 215
NCCC96.52 15295.99 17198.10 8497.81 22195.68 8795.00 22698.20 20395.39 15595.40 25896.36 26593.81 17699.45 19893.55 20998.42 26599.17 133
Anonymous20240521196.34 15995.98 17297.43 14398.25 17193.85 16696.74 12194.41 32197.72 5498.37 7598.03 12987.15 27999.53 17594.06 19099.07 21098.92 184
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
ETV-MVS96.13 16895.90 17696.82 17897.76 23793.89 16395.40 19598.95 7395.87 13295.58 25591.00 35896.36 9599.72 8593.36 21098.83 23796.85 318
IterMVS95.42 19795.83 17794.20 29297.52 25983.78 33792.41 31197.47 26395.49 15198.06 11698.49 7387.94 27099.58 15996.02 8799.02 21599.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 16295.80 17897.56 12398.75 11394.13 15694.66 24098.17 20990.17 27896.21 23096.10 27995.14 13699.43 20394.13 18898.85 23599.13 143
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20399.08 3788.40 29596.97 19198.17 11192.11 21699.78 4393.64 20799.21 18798.86 196
EIA-MVS96.04 17195.77 18096.85 17697.80 22592.98 19296.12 15299.16 2094.65 18293.77 29991.69 35295.68 11799.67 12894.18 18598.85 23597.91 282
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15091.52 22495.31 20398.45 17095.76 13897.48 15897.54 17989.53 25698.69 31594.43 17394.61 34699.13 143
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15088.76 26892.84 29997.25 26696.00 12397.59 14897.95 14091.38 23099.46 19493.16 21796.35 32898.99 171
CANet95.86 18095.65 18396.49 19896.41 30590.82 23394.36 24898.41 17894.94 17392.62 33296.73 24392.68 20099.71 9995.12 14699.60 7598.94 176
h-mvs3396.29 16095.63 18498.26 6998.50 14796.11 7296.90 11397.09 27496.58 9697.21 17098.19 10884.14 29699.78 4395.89 9596.17 33198.89 189
LF4IMVS96.07 16995.63 18497.36 14998.19 17795.55 9295.44 19098.82 11492.29 25195.70 25296.55 25292.63 20398.69 31591.75 23999.33 17097.85 284
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 20895.65 9094.94 22898.74 12791.31 26696.02 23797.08 21894.05 17199.69 11691.51 24298.94 22398.93 180
QAPM95.88 17995.57 18796.80 17997.90 21091.84 21998.18 4298.73 12988.41 29496.42 21798.13 11394.73 14799.75 6588.72 29998.94 22398.81 200
alignmvs96.01 17395.52 18897.50 13197.77 23694.71 13296.07 15496.84 28297.48 6796.78 20294.28 32485.50 28899.40 21596.22 7698.73 24898.40 235
mvs-test196.20 16495.50 18998.32 6496.90 29698.16 595.07 22098.09 22095.86 13393.63 30594.32 32394.26 16599.71 9994.06 19097.27 31297.07 308
test_prior395.91 17795.39 19097.46 13997.79 23194.26 15293.33 29298.42 17694.21 19894.02 29296.25 26993.64 18099.34 23391.90 23298.96 21998.79 202
c3_l95.20 20595.32 19194.83 27196.19 31386.43 30891.83 32098.35 18993.47 21897.36 16597.26 20888.69 26399.28 24995.41 12799.36 15598.78 204
MVP-Stereo95.69 18395.28 19296.92 17198.15 18693.03 19195.64 18598.20 20390.39 27596.63 20897.73 16591.63 22899.10 27591.84 23697.31 31098.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 27495.20 19387.40 34896.07 31995.38 10397.04 10894.97 31595.33 15699.70 598.11 11798.14 1391.94 36677.76 35999.68 5774.89 366
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28691.96 21697.74 6698.84 9987.26 30494.36 28298.01 13293.95 17399.67 12890.70 26698.75 24497.35 304
D2MVS95.18 20695.17 19595.21 25397.76 23787.76 28894.15 26097.94 23189.77 28296.99 18897.68 17187.45 27799.14 26895.03 15199.81 3098.74 209
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14493.99 16194.60 24298.69 14290.20 27795.78 24896.21 27292.73 19998.98 28990.58 27098.86 23397.42 301
MSDG95.33 20095.13 19695.94 22697.40 26991.85 21891.02 33698.37 18495.30 15896.31 22495.99 28194.51 15998.38 33989.59 28797.65 29897.60 296
hse-mvs295.77 18295.09 19897.79 10697.84 21795.51 9595.66 18095.43 31396.58 9697.21 17096.16 27384.14 29699.54 17395.89 9596.92 31498.32 246
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 24992.82 19594.22 25698.60 15791.61 26093.42 31692.90 33796.73 7399.70 10892.60 22297.89 28597.74 289
CLD-MVS95.47 19495.07 19996.69 18698.27 16892.53 20091.36 32598.67 14791.22 26895.78 24894.12 32595.65 11998.98 28990.81 25899.72 4898.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 20395.06 20195.88 22898.72 11689.37 25595.70 17697.85 23688.00 30096.98 19097.62 17491.95 22199.34 23389.21 29299.53 9798.94 176
MVS_030495.50 19095.05 20296.84 17796.28 30893.12 18997.00 11096.16 29495.03 17089.22 35497.70 16890.16 24899.48 18894.51 17199.34 16397.93 281
API-MVS95.09 21195.01 20395.31 25096.61 30094.02 15996.83 11697.18 27095.60 14695.79 24694.33 32294.54 15898.37 34185.70 32898.52 26193.52 355
FMVSNet395.26 20494.94 20496.22 21396.53 30290.06 24295.99 16097.66 25094.11 20297.99 12397.91 14580.22 31399.63 14094.60 16699.44 12998.96 173
TAMVS95.49 19194.94 20497.16 15898.31 16293.41 18295.07 22096.82 28491.09 26997.51 15297.82 15689.96 24999.42 20488.42 30499.44 12998.64 218
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32086.12 31191.35 32698.49 16793.40 21997.12 17697.25 20986.87 28299.35 23195.08 14898.82 23898.78 204
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23187.40 29494.14 26298.68 14488.94 28994.51 27898.01 13293.04 19199.30 24389.77 28599.49 11599.11 152
MS-PatchMatch94.83 22094.91 20894.57 28296.81 29887.10 29994.23 25597.34 26588.74 29297.14 17497.11 21691.94 22298.23 34692.99 21997.92 28298.37 239
LFMVS95.32 20194.88 20996.62 18998.03 19591.47 22597.65 7090.72 35499.11 997.89 13598.31 8679.20 31699.48 18893.91 19999.12 20398.93 180
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8294.92 31696.50 10096.58 20997.27 20783.64 30099.48 18888.42 30499.67 5898.97 172
ppachtmachnet_test94.49 24094.84 21193.46 30296.16 31582.10 34390.59 33997.48 26290.53 27497.01 18797.59 17691.01 23399.36 22893.97 19799.18 19398.94 176
YYNet194.73 22494.84 21194.41 28797.47 26585.09 32590.29 34295.85 30392.52 24697.53 15097.76 15991.97 22099.18 26193.31 21296.86 31798.95 174
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26185.15 32390.28 34395.87 30292.52 24697.48 15897.76 15991.92 22499.17 26593.32 21196.80 32098.94 176
miper_lstm_enhance94.81 22294.80 21494.85 26996.16 31586.45 30791.14 33398.20 20393.49 21797.03 18597.37 20084.97 29299.26 25295.28 13199.56 8598.83 198
CL-MVSNet_self_test95.04 21294.79 21595.82 23097.51 26089.79 24891.14 33396.82 28493.05 23596.72 20396.40 26290.82 23699.16 26691.95 23198.66 25298.50 230
BH-untuned94.69 22994.75 21694.52 28497.95 20787.53 29194.07 26597.01 27793.99 20597.10 17895.65 29392.65 20298.95 29487.60 31496.74 32197.09 307
miper_ehance_all_eth94.69 22994.70 21794.64 27695.77 32686.22 31091.32 32998.24 19891.67 25997.05 18396.65 24888.39 26799.22 25994.88 15498.34 26798.49 231
train_agg95.46 19594.66 21897.88 10197.84 21795.23 11393.62 28198.39 18187.04 30893.78 29795.99 28194.58 15699.52 17991.76 23898.90 22798.89 189
CDPH-MVS95.45 19694.65 21997.84 10498.28 16694.96 12493.73 27998.33 19085.03 33095.44 25696.60 25095.31 13299.44 20190.01 28199.13 20099.11 152
cl____94.73 22494.64 22095.01 26195.85 32387.00 30091.33 32798.08 22293.34 22297.10 17897.33 20384.01 29999.30 24395.14 14399.56 8598.71 214
DIV-MVS_self_test94.73 22494.64 22095.01 26195.86 32287.00 30091.33 32798.08 22293.34 22297.10 17897.34 20284.02 29899.31 24095.15 14299.55 9198.72 212
xiu_mvs_v2_base94.22 24694.63 22292.99 31497.32 27884.84 32892.12 31597.84 23891.96 25594.17 28693.43 32896.07 10099.71 9991.27 24697.48 30494.42 351
AdaColmapbinary95.11 20994.62 22396.58 19297.33 27794.45 14394.92 22998.08 22293.15 23393.98 29595.53 29894.34 16399.10 27585.69 32998.61 25796.20 335
agg_prior195.39 19894.60 22497.75 10997.80 22594.96 12493.39 28998.36 18587.20 30693.49 31195.97 28494.65 15399.53 17591.69 24098.86 23398.77 207
RPMNet94.68 23194.60 22494.90 26695.44 33388.15 27796.18 14998.86 9097.43 6894.10 28898.49 7379.40 31499.76 5895.69 10395.81 33396.81 322
Patchmtry95.03 21494.59 22696.33 20694.83 34190.82 23396.38 13797.20 26896.59 9597.49 15598.57 6677.67 32399.38 22392.95 22199.62 6698.80 201
our_test_394.20 25094.58 22793.07 31096.16 31581.20 34890.42 34196.84 28290.72 27297.14 17497.13 21390.47 24099.11 27394.04 19498.25 27198.91 185
HQP-MVS95.17 20894.58 22796.92 17197.85 21392.47 20194.26 25098.43 17393.18 22992.86 32495.08 30590.33 24299.23 25790.51 27398.74 24599.05 163
USDC94.56 23794.57 22994.55 28397.78 23586.43 30892.75 30298.65 15485.96 31696.91 19597.93 14390.82 23698.74 31090.71 26599.59 7798.47 232
Patchmatch-RL test94.66 23294.49 23095.19 25598.54 14188.91 26292.57 30698.74 12791.46 26398.32 8697.75 16277.31 32898.81 30496.06 8299.61 7297.85 284
PS-MVSNAJ94.10 25294.47 23193.00 31397.35 27184.88 32791.86 31997.84 23891.96 25594.17 28692.50 34495.82 10899.71 9991.27 24697.48 30494.40 352
EU-MVSNet94.25 24594.47 23193.60 29998.14 18782.60 34197.24 9692.72 33785.08 32898.48 6598.94 4382.59 30398.76 30997.47 4099.53 9799.44 78
CNLPA95.04 21294.47 23196.75 18297.81 22195.25 11294.12 26497.89 23494.41 19094.57 27595.69 29190.30 24598.35 34286.72 32398.76 24396.64 327
BH-RMVSNet94.56 23794.44 23494.91 26497.57 25487.44 29393.78 27896.26 29393.69 21496.41 21896.50 25792.10 21799.00 28585.96 32697.71 29298.31 248
F-COLMAP95.30 20294.38 23598.05 9198.64 12696.04 7495.61 18698.66 14989.00 28893.22 31996.40 26292.90 19599.35 23187.45 31897.53 30298.77 207
pmmvs594.63 23494.34 23695.50 24397.63 25288.34 27394.02 26697.13 27287.15 30795.22 26197.15 21287.50 27699.27 25193.99 19599.26 18298.88 193
UnsupCasMVSNet_bld94.72 22894.26 23796.08 21898.62 13190.54 24193.38 29098.05 22890.30 27697.02 18696.80 23989.54 25499.16 26688.44 30396.18 33098.56 226
N_pmnet95.18 20694.23 23898.06 8897.85 21396.55 5892.49 30891.63 34589.34 28498.09 11297.41 19190.33 24299.06 27991.58 24199.31 17498.56 226
TAPA-MVS93.32 1294.93 21694.23 23897.04 16698.18 18094.51 14095.22 21198.73 12981.22 34796.25 22895.95 28693.80 17798.98 28989.89 28398.87 23197.62 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 23394.21 24095.96 22295.90 32189.68 24993.92 27297.83 24093.19 22890.12 34995.64 29488.52 26499.57 16593.27 21499.47 12198.62 221
pmmvs494.82 22194.19 24196.70 18597.42 26892.75 19892.09 31796.76 28686.80 31195.73 25197.22 21089.28 26098.89 29793.28 21399.14 19698.46 234
PAPM_NR94.61 23594.17 24295.96 22298.36 16091.23 22695.93 16697.95 23092.98 23893.42 31694.43 32190.53 23998.38 33987.60 31496.29 32998.27 254
CDS-MVSNet94.88 21994.12 24397.14 16097.64 25193.57 17893.96 27197.06 27690.05 27996.30 22596.55 25286.10 28499.47 19190.10 28099.31 17498.40 235
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS94.90 21794.07 24497.39 14793.18 35893.21 18795.26 20797.49 26093.94 20798.25 9397.85 15172.96 35099.84 2597.90 2299.78 3899.14 140
PMMVS293.66 26494.07 24492.45 32497.57 25480.67 35086.46 35896.00 29893.99 20597.10 17897.38 19889.90 25097.82 35288.76 29899.47 12198.86 196
jason94.39 24394.04 24695.41 24998.29 16487.85 28592.74 30496.75 28785.38 32795.29 25996.15 27488.21 26999.65 13594.24 18399.34 16398.74 209
jason: jason.
test_yl94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
DCV-MVSNet94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
MG-MVS94.08 25494.00 24794.32 28997.09 28885.89 31393.19 29695.96 30092.52 24694.93 26997.51 18389.54 25498.77 30787.52 31797.71 29298.31 248
bset_n11_16_dypcd94.53 23993.95 25096.25 21097.56 25689.85 24788.52 35591.32 34794.90 17697.51 15296.38 26482.34 30499.78 4397.22 4699.80 3399.12 148
MVSTER94.21 24893.93 25195.05 26095.83 32486.46 30695.18 21397.65 25292.41 25097.94 13098.00 13472.39 35199.58 15996.36 7399.56 8599.12 148
ETH3 D test640094.77 22393.87 25297.47 13698.12 19193.73 17194.56 24498.70 13985.45 32594.70 27395.93 28891.77 22799.63 14086.45 32499.14 19699.05 163
PatchMatch-RL94.61 23593.81 25397.02 16898.19 17795.72 8393.66 28097.23 26788.17 29894.94 26895.62 29591.43 22998.57 32687.36 31997.68 29596.76 324
sss94.22 24693.72 25495.74 23397.71 24489.95 24593.84 27496.98 27888.38 29693.75 30095.74 29087.94 27098.89 29791.02 25298.10 27698.37 239
PVSNet_Blended93.96 25693.65 25594.91 26497.79 23187.40 29491.43 32498.68 14484.50 33594.51 27894.48 32093.04 19199.30 24389.77 28598.61 25798.02 277
PatchT93.75 26093.57 25694.29 29195.05 33987.32 29696.05 15592.98 33397.54 6594.25 28498.72 5675.79 33699.24 25595.92 9395.81 33396.32 333
SCA93.38 27193.52 25792.96 31596.24 30981.40 34793.24 29494.00 32391.58 26294.57 27596.97 22687.94 27099.42 20489.47 28997.66 29798.06 271
1112_ss94.12 25193.42 25896.23 21198.59 13690.85 23294.24 25498.85 9485.49 32292.97 32294.94 30986.01 28599.64 13891.78 23797.92 28298.20 260
CHOSEN 1792x268894.10 25293.41 25996.18 21599.16 7090.04 24392.15 31498.68 14479.90 35296.22 22997.83 15387.92 27499.42 20489.18 29399.65 6199.08 157
lupinMVS93.77 25993.28 26095.24 25297.68 24687.81 28692.12 31596.05 29684.52 33494.48 28095.06 30786.90 28099.63 14093.62 20899.13 20098.27 254
112194.26 24493.26 26197.27 15398.26 17094.73 13095.86 16897.71 24677.96 35994.53 27796.71 24491.93 22399.40 21587.71 31098.64 25597.69 292
Patchmatch-test93.60 26693.25 26294.63 27796.14 31887.47 29296.04 15694.50 32093.57 21596.47 21596.97 22676.50 33198.61 32390.67 26798.41 26697.81 288
114514_t93.96 25693.22 26396.19 21499.06 8890.97 23195.99 16098.94 7473.88 36593.43 31596.93 22992.38 21299.37 22689.09 29499.28 17998.25 256
OpenMVS_ROBcopyleft91.80 1493.64 26593.05 26495.42 24797.31 27991.21 22795.08 21996.68 29081.56 34496.88 19796.41 26090.44 24199.25 25485.39 33397.67 29695.80 340
MAR-MVS94.21 24893.03 26597.76 10896.94 29497.44 3496.97 11297.15 27187.89 30292.00 33792.73 34192.14 21599.12 27083.92 34297.51 30396.73 325
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 26793.00 26695.19 25597.81 22187.86 28393.89 27396.00 29889.02 28794.07 29095.44 30086.27 28399.33 23687.69 31296.82 31898.39 237
PLCcopyleft91.02 1694.05 25592.90 26797.51 12898.00 20295.12 12194.25 25398.25 19786.17 31491.48 34095.25 30291.01 23399.19 26085.02 33796.69 32298.22 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 26892.86 26895.54 24298.60 13488.86 26492.75 30298.69 14282.66 34192.65 32996.92 23184.75 29399.56 16690.94 25497.76 28898.19 261
MIMVSNet93.42 26992.86 26895.10 25898.17 18288.19 27598.13 4493.69 32492.07 25295.04 26698.21 10780.95 31099.03 28481.42 35098.06 27898.07 267
cl2293.25 27492.84 27094.46 28594.30 34786.00 31291.09 33596.64 29190.74 27195.79 24696.31 26778.24 32098.77 30794.15 18798.34 26798.62 221
CVMVSNet92.33 28892.79 27190.95 33497.26 28075.84 36495.29 20592.33 34081.86 34296.27 22698.19 10881.44 30698.46 33494.23 18498.29 27098.55 228
CR-MVSNet93.29 27392.79 27194.78 27395.44 33388.15 27796.18 14997.20 26884.94 33294.10 28898.57 6677.67 32399.39 22095.17 13895.81 33396.81 322
miper_enhance_ethall93.14 27692.78 27394.20 29293.65 35585.29 32089.97 34597.85 23685.05 32996.15 23494.56 31685.74 28699.14 26893.74 20398.34 26798.17 263
DPM-MVS93.68 26392.77 27496.42 20297.91 20892.54 19991.17 33297.47 26384.99 33193.08 32194.74 31389.90 25099.00 28587.54 31698.09 27797.72 290
AUN-MVS93.95 25892.69 27597.74 11097.80 22595.38 10395.57 18795.46 31291.26 26792.64 33096.10 27974.67 33999.55 17093.72 20596.97 31398.30 250
HyFIR lowres test93.72 26192.65 27696.91 17398.93 9891.81 22091.23 33198.52 16482.69 34096.46 21696.52 25680.38 31299.90 1390.36 27798.79 24099.03 165
baseline193.14 27692.64 27794.62 27897.34 27587.20 29896.67 12893.02 33294.71 18196.51 21495.83 28981.64 30598.60 32590.00 28288.06 36198.07 267
EPNet93.72 26192.62 27897.03 16787.61 37392.25 20596.27 14291.28 34896.74 9087.65 36097.39 19685.00 29199.64 13892.14 22899.48 11999.20 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 27292.56 27995.57 23998.71 11987.86 28397.44 8587.17 36595.79 13797.47 16096.84 23464.12 36499.81 3296.20 7799.32 17299.02 167
RRT_test8_iter0592.46 28492.52 28092.29 32795.33 33677.43 35995.73 17498.55 16294.41 19097.46 16197.72 16757.44 36999.74 7596.92 5999.14 19699.69 20
FMVSNet593.39 27092.35 28196.50 19795.83 32490.81 23597.31 9198.27 19492.74 24596.27 22698.28 9562.23 36699.67 12890.86 25699.36 15599.03 165
131492.38 28692.30 28292.64 32095.42 33585.15 32395.86 16896.97 27985.40 32690.62 34393.06 33591.12 23297.80 35386.74 32295.49 34094.97 349
TR-MVS92.54 28392.20 28393.57 30096.49 30386.66 30493.51 28594.73 31789.96 28094.95 26793.87 32690.24 24798.61 32381.18 35194.88 34395.45 346
GA-MVS92.83 27992.15 28494.87 26896.97 29187.27 29790.03 34496.12 29591.83 25894.05 29194.57 31576.01 33598.97 29392.46 22697.34 30998.36 244
BH-w/o92.14 29191.94 28592.73 31997.13 28785.30 31992.46 30995.64 30589.33 28594.21 28592.74 34089.60 25298.24 34581.68 34994.66 34594.66 350
PatchmatchNetpermissive91.98 29491.87 28692.30 32694.60 34479.71 35295.12 21493.59 32889.52 28393.61 30797.02 22377.94 32199.18 26190.84 25794.57 34898.01 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 29091.83 28793.25 30696.18 31483.68 33896.27 14293.68 32676.97 36292.54 33399.18 2789.20 26298.55 32983.88 34398.60 25997.51 298
HY-MVS91.43 1592.58 28291.81 28894.90 26696.49 30388.87 26397.31 9194.62 31885.92 31790.50 34696.84 23485.05 29099.40 21583.77 34595.78 33696.43 332
thisisatest053092.71 28191.76 28995.56 24198.42 15688.23 27496.03 15787.35 36494.04 20496.56 21195.47 29964.03 36599.77 5394.78 16199.11 20498.68 217
new_pmnet92.34 28791.69 29094.32 28996.23 31189.16 25992.27 31392.88 33484.39 33795.29 25996.35 26685.66 28796.74 36284.53 34097.56 30097.05 309
thres600view792.03 29391.43 29193.82 29598.19 17784.61 33096.27 14290.39 35596.81 8896.37 22093.11 33073.44 34899.49 18580.32 35297.95 28197.36 302
CMPMVSbinary73.10 2392.74 28091.39 29296.77 18193.57 35794.67 13694.21 25797.67 24880.36 35193.61 30796.60 25082.85 30297.35 35684.86 33898.78 24198.29 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 29591.35 29393.51 30194.27 34885.60 31588.86 35498.61 15679.32 35492.16 33691.44 35489.22 26198.12 34990.80 25997.47 30696.82 321
MDTV_nov1_ep1391.28 29494.31 34673.51 36894.80 23593.16 33186.75 31293.45 31497.40 19276.37 33298.55 32988.85 29796.43 326
PAPR92.22 28991.27 29595.07 25995.73 32888.81 26591.97 31897.87 23585.80 31990.91 34292.73 34191.16 23198.33 34379.48 35395.76 33798.08 265
thres100view90091.76 29791.26 29693.26 30598.21 17584.50 33196.39 13590.39 35596.87 8696.33 22193.08 33473.44 34899.42 20478.85 35697.74 28995.85 338
PMMVS92.39 28591.08 29796.30 20993.12 36192.81 19690.58 34095.96 30079.17 35591.85 33992.27 34590.29 24698.66 32089.85 28496.68 32397.43 300
tfpn200view991.55 29991.00 29893.21 30898.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28995.85 338
thres40091.68 29891.00 29893.71 29798.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28997.36 302
PVSNet86.72 1991.10 30390.97 30091.49 33097.56 25678.04 35687.17 35794.60 31984.65 33392.34 33492.20 34687.37 27898.47 33385.17 33697.69 29497.96 279
tpmvs90.79 30790.87 30190.57 33792.75 36576.30 36295.79 17393.64 32791.04 27091.91 33896.26 26877.19 32998.86 30189.38 29189.85 35996.56 330
tpm91.08 30490.85 30291.75 32995.33 33678.09 35595.03 22591.27 34988.75 29193.53 31097.40 19271.24 35399.30 24391.25 24893.87 34997.87 283
X-MVStestdata92.86 27890.83 30398.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22236.50 36896.49 8699.72 8595.66 10699.37 15299.45 68
EPNet_dtu91.39 30190.75 30493.31 30490.48 37082.61 34094.80 23592.88 33493.39 22081.74 36894.90 31281.36 30799.11 27388.28 30698.87 23198.21 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 29690.69 30595.11 25793.80 35490.98 23094.16 25991.78 34496.38 10490.30 34899.30 1872.02 35298.90 29588.28 30690.17 35895.45 346
PCF-MVS89.43 1892.12 29290.64 30696.57 19497.80 22593.48 18189.88 34998.45 17074.46 36496.04 23695.68 29290.71 23899.31 24073.73 36299.01 21796.91 315
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 30990.61 30789.41 34194.06 35272.37 37095.06 22293.69 32488.01 29992.32 33596.86 23277.45 32598.82 30291.04 25187.01 36397.04 310
ADS-MVSNet291.47 30090.51 30894.36 28895.51 33185.63 31495.05 22395.70 30483.46 33892.69 32796.84 23479.15 31799.41 21385.66 33090.52 35698.04 275
thres20091.00 30590.42 30992.77 31897.47 26583.98 33694.01 26791.18 35095.12 16695.44 25691.21 35673.93 34199.31 24077.76 35997.63 29995.01 348
ADS-MVSNet90.95 30690.26 31093.04 31195.51 33182.37 34295.05 22393.41 32983.46 33892.69 32796.84 23479.15 31798.70 31485.66 33090.52 35698.04 275
MVS-HIRNet88.40 32590.20 31182.99 34997.01 29060.04 37393.11 29785.61 36884.45 33688.72 35699.09 3384.72 29498.23 34682.52 34896.59 32590.69 364
test-LLR89.97 31489.90 31290.16 33894.24 34974.98 36589.89 34689.06 36092.02 25389.97 35090.77 35973.92 34298.57 32691.88 23497.36 30796.92 313
E-PMN89.52 31889.78 31388.73 34393.14 36077.61 35883.26 36292.02 34194.82 17893.71 30293.11 33075.31 33796.81 35985.81 32796.81 31991.77 361
ET-MVSNet_ETH3D91.12 30289.67 31495.47 24596.41 30589.15 26091.54 32390.23 35889.07 28686.78 36492.84 33869.39 35999.44 20194.16 18696.61 32497.82 286
CostFormer89.75 31689.25 31591.26 33394.69 34378.00 35795.32 20291.98 34281.50 34590.55 34596.96 22871.06 35598.89 29788.59 30292.63 35396.87 316
EMVS89.06 32089.22 31688.61 34493.00 36277.34 36082.91 36390.92 35194.64 18392.63 33191.81 35076.30 33397.02 35783.83 34496.90 31691.48 362
test0.0.03 190.11 31089.21 31792.83 31793.89 35386.87 30391.74 32188.74 36292.02 25394.71 27291.14 35773.92 34294.48 36583.75 34692.94 35197.16 306
MVS90.02 31189.20 31892.47 32394.71 34286.90 30295.86 16896.74 28864.72 36790.62 34392.77 33992.54 20798.39 33879.30 35495.56 33992.12 359
CHOSEN 280x42089.98 31389.19 31992.37 32595.60 33081.13 34986.22 35997.09 27481.44 34687.44 36193.15 32973.99 34099.47 19188.69 30099.07 21096.52 331
thisisatest051590.43 30889.18 32094.17 29497.07 28985.44 31789.75 35087.58 36388.28 29793.69 30491.72 35165.27 36399.58 15990.59 26998.67 25097.50 299
pmmvs390.00 31288.90 32193.32 30394.20 35185.34 31891.25 33092.56 33978.59 35693.82 29695.17 30367.36 36298.69 31589.08 29598.03 27995.92 337
FPMVS89.92 31588.63 32293.82 29598.37 15996.94 4691.58 32293.34 33088.00 30090.32 34797.10 21770.87 35691.13 36771.91 36596.16 33293.39 357
EPMVS89.26 31988.55 32391.39 33192.36 36679.11 35395.65 18379.86 37088.60 29393.12 32096.53 25470.73 35798.10 35090.75 26189.32 36096.98 311
baseline289.65 31788.44 32493.25 30695.62 32982.71 33993.82 27585.94 36788.89 29087.35 36292.54 34371.23 35499.33 23686.01 32594.60 34797.72 290
dp88.08 32788.05 32588.16 34792.85 36368.81 37294.17 25892.88 33485.47 32391.38 34196.14 27668.87 36098.81 30486.88 32183.80 36696.87 316
KD-MVS_2432*160088.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
miper_refine_blended88.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
tpm288.47 32487.69 32890.79 33594.98 34077.34 36095.09 21791.83 34377.51 36189.40 35296.41 26067.83 36198.73 31183.58 34792.60 35496.29 334
tpm cat188.01 32887.33 32990.05 34094.48 34576.28 36394.47 24794.35 32273.84 36689.26 35395.61 29673.64 34498.30 34484.13 34186.20 36495.57 345
test-mter87.92 32987.17 33090.16 33894.24 34974.98 36589.89 34689.06 36086.44 31389.97 35090.77 35954.96 37598.57 32691.88 23497.36 30796.92 313
gg-mvs-nofinetune88.28 32686.96 33192.23 32892.84 36484.44 33298.19 4174.60 37299.08 1087.01 36399.47 856.93 37098.23 34678.91 35595.61 33894.01 353
IB-MVS85.98 2088.63 32386.95 33293.68 29895.12 33884.82 32990.85 33790.17 35987.55 30388.48 35791.34 35558.01 36899.59 15787.24 32093.80 35096.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 32986.77 33391.39 33193.18 35878.62 35495.10 21591.42 34685.58 32188.00 35888.73 36360.60 36798.90 29590.60 26887.70 36296.65 326
TESTMET0.1,187.20 33286.57 33489.07 34293.62 35672.84 36989.89 34687.01 36685.46 32489.12 35590.20 36156.00 37497.72 35490.91 25596.92 31496.64 327
MVEpermissive73.61 2286.48 33385.92 33588.18 34696.23 31185.28 32181.78 36475.79 37186.01 31582.53 36791.88 34992.74 19887.47 36971.42 36694.86 34491.78 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 33185.84 33693.04 31196.54 30184.99 32688.42 35695.57 30979.52 35383.82 36593.05 33680.57 31198.41 33662.29 36892.79 35295.71 341
PVSNet_081.89 2184.49 33483.21 33788.34 34595.76 32774.97 36783.49 36192.70 33878.47 35787.94 35986.90 36583.38 30196.63 36373.44 36366.86 36993.40 356
test_method66.88 33566.13 33869.11 35162.68 37425.73 37649.76 36596.04 29714.32 37064.27 37191.69 35273.45 34788.05 36876.06 36166.94 36893.54 354
tmp_tt57.23 33662.50 33941.44 35234.77 37549.21 37583.93 36060.22 37615.31 36971.11 37079.37 36770.09 35844.86 37164.76 36782.93 36730.25 367
cdsmvs_eth3d_5k24.22 33732.30 3400.00 3550.00 3780.00 3790.00 36698.10 2190.00 3730.00 37495.06 30797.54 290.00 3740.00 3720.00 3720.00 370
test12312.59 33815.49 3413.87 3536.07 3762.55 37790.75 3382.59 3782.52 3715.20 37313.02 3704.96 3761.85 3735.20 3709.09 3707.23 368
testmvs12.33 33915.23 3423.64 3545.77 3772.23 37888.99 3533.62 3772.30 3725.29 37213.09 3694.52 3771.95 3725.16 3718.32 3716.75 369
pcd_1.5k_mvsjas7.98 34010.65 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37395.82 1080.00 3740.00 3720.00 3720.00 370
ab-mvs-re7.91 34110.55 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37494.94 3090.00 3780.00 3740.00 3720.00 3720.00 370
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
MSC_two_6792asdad98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
PC_three_145287.24 30598.37 7597.44 18997.00 5496.78 36192.01 22999.25 18399.21 126
No_MVS98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
test_one_060199.05 9195.50 9898.87 8797.21 7998.03 12098.30 9096.93 60
eth-test20.00 378
eth-test0.00 378
ZD-MVS98.43 15595.94 7898.56 16190.72 27296.66 20697.07 21995.02 14199.74 7591.08 25098.93 225
IU-MVS99.22 5895.40 10198.14 21585.77 32098.36 7895.23 13599.51 10799.49 53
OPU-MVS97.64 11998.01 19895.27 11196.79 11897.35 20196.97 5698.51 33291.21 24999.25 18399.14 140
test_241102_TWO98.83 10696.11 11598.62 5298.24 10196.92 6299.72 8595.44 12199.49 11599.49 53
test_241102_ONE99.22 5895.35 10698.83 10696.04 12099.08 3198.13 11397.87 2099.33 236
save fliter98.48 15094.71 13294.53 24598.41 17895.02 171
test_0728_THIRD96.62 9298.40 7298.28 9597.10 4599.71 9995.70 10199.62 6699.58 28
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12198.89 7999.75 6595.48 11799.52 10299.53 41
test072699.24 5395.51 9596.89 11498.89 7995.92 12898.64 5198.31 8697.06 50
GSMVS98.06 271
test_part299.03 9396.07 7398.08 114
sam_mvs177.80 32298.06 271
sam_mvs77.38 326
ambc96.56 19598.23 17491.68 22297.88 5798.13 21798.42 7198.56 6894.22 16799.04 28194.05 19399.35 16098.95 174
MTGPAbinary98.73 129
test_post194.98 22710.37 37276.21 33499.04 28189.47 289
test_post10.87 37176.83 33099.07 278
patchmatchnet-post96.84 23477.36 32799.42 204
GG-mvs-BLEND90.60 33691.00 36884.21 33598.23 3572.63 37582.76 36684.11 36656.14 37396.79 36072.20 36492.09 35590.78 363
MTMP96.55 12974.60 372
gm-plane-assit91.79 36771.40 37181.67 34390.11 36298.99 28784.86 338
test9_res91.29 24598.89 23099.00 168
TEST997.84 21795.23 11393.62 28198.39 18186.81 31093.78 29795.99 28194.68 15199.52 179
test_897.81 22195.07 12293.54 28498.38 18387.04 30893.71 30295.96 28594.58 15699.52 179
agg_prior290.34 27898.90 22799.10 156
agg_prior97.80 22594.96 12498.36 18593.49 31199.53 175
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
test_prior495.38 10393.61 283
test_prior293.33 29294.21 19894.02 29296.25 26993.64 18091.90 23298.96 219
test_prior97.46 13997.79 23194.26 15298.42 17699.34 23398.79 202
旧先验293.35 29177.95 36095.77 25098.67 31990.74 264
新几何293.43 286
新几何197.25 15698.29 16494.70 13597.73 24477.98 35894.83 27096.67 24792.08 21899.45 19888.17 30898.65 25497.61 295
旧先验197.80 22593.87 16497.75 24397.04 22293.57 18298.68 24998.72 212
无先验93.20 29597.91 23280.78 34899.40 21587.71 31097.94 280
原ACMM292.82 300
原ACMM196.58 19298.16 18492.12 21198.15 21485.90 31893.49 31196.43 25992.47 21099.38 22387.66 31398.62 25698.23 257
test22298.17 18293.24 18692.74 30497.61 25875.17 36394.65 27496.69 24690.96 23598.66 25297.66 293
testdata299.46 19487.84 309
segment_acmp95.34 130
testdata95.70 23698.16 18490.58 23897.72 24580.38 35095.62 25397.02 22392.06 21998.98 28989.06 29698.52 26197.54 297
testdata192.77 30193.78 211
test1297.46 13997.61 25394.07 15797.78 24293.57 30993.31 18699.42 20498.78 24198.89 189
plane_prior798.70 12194.67 136
plane_prior698.38 15894.37 14691.91 225
plane_prior598.75 12599.46 19492.59 22499.20 18899.28 112
plane_prior496.77 240
plane_prior394.51 14095.29 15996.16 232
plane_prior296.50 13196.36 105
plane_prior198.49 148
plane_prior94.29 14895.42 19294.31 19598.93 225
n20.00 379
nn0.00 379
door-mid98.17 209
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4085.36 28999.74 7597.34 4499.37 15299.30 104
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
test1198.08 222
door97.81 241
HQP5-MVS92.47 201
HQP-NCC97.85 21394.26 25093.18 22992.86 324
ACMP_Plane97.85 21394.26 25093.18 22992.86 324
BP-MVS90.51 273
HQP4-MVS92.87 32399.23 25799.06 161
HQP3-MVS98.43 17398.74 245
HQP2-MVS90.33 242
NP-MVS98.14 18793.72 17295.08 305
MDTV_nov1_ep13_2view57.28 37494.89 23080.59 34994.02 29278.66 31985.50 33297.82 286
ACMMP++_ref99.52 102
ACMMP++99.55 91
Test By Simon94.51 159
ITE_SJBPF97.85 10398.64 12696.66 5498.51 16695.63 14397.22 16897.30 20695.52 12298.55 32990.97 25398.90 22798.34 245
DeepMVS_CXcopyleft77.17 35090.94 36985.28 32174.08 37452.51 36880.87 36988.03 36475.25 33870.63 37059.23 36984.94 36575.62 365