This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 999.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2399.08 1099.42 1599.23 2196.53 7999.91 1299.27 299.93 1099.73 15
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10799.71 499.48 798.77 699.93 298.89 399.95 599.84 5
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24397.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15297.21 4799.76 3999.40 81
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2499.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2199.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2199.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 899.08 1097.87 13599.67 296.47 8499.92 497.88 2399.98 299.85 3
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17398.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18697.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17997.09 5399.75 4399.50 43
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17798.20 3798.87 8398.23 3599.48 1299.27 1998.47 899.55 16596.52 6799.53 9699.60 26
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1196.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3498.31 3299.02 3498.74 5597.68 2499.61 15097.77 2999.85 2799.70 18
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17499.88 1898.72 999.88 2399.65 23
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16297.76 6199.00 5798.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9499.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7698.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18398.35 2699.21 1198.43 2898.89 3998.83 5094.30 15999.81 3197.87 2499.91 1799.77 8
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15299.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7499.20 1398.21 3699.25 2598.51 7298.21 1199.40 21094.79 15499.72 4899.32 96
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 2898.76 2296.79 19499.34 1796.61 7498.82 29796.38 7299.50 10896.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4098.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6599.11 2697.76 4998.62 5198.27 9797.88 1999.80 3795.67 10099.50 10899.38 85
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1798.34 3198.78 4498.52 7197.32 3599.45 19394.08 18499.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16798.23 3298.66 14497.41 7099.00 3699.19 2495.47 12299.73 7895.83 9699.76 3999.30 102
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 18997.55 7498.94 7197.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
FIs97.93 5498.07 3697.48 13199.38 3892.95 18698.03 4799.11 2698.04 4198.62 5198.66 6193.75 17399.78 4297.23 4499.84 2899.73 15
v897.60 8298.06 3896.23 20798.71 11789.44 24797.43 8498.82 10997.29 7598.74 4799.10 3293.86 16999.68 11998.61 1099.94 899.56 33
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 18898.79 2199.23 2698.86 4995.76 11299.61 15095.49 11099.36 15299.23 122
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 2895.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
tfpnnormal97.72 7497.97 4196.94 16699.26 4892.23 20097.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 11393.92 19399.62 6598.91 181
v1097.55 8597.97 4196.31 20498.60 13189.64 24397.44 8299.02 4996.60 9098.72 4999.16 2993.48 17899.72 8298.76 699.92 1499.58 28
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12498.66 2498.56 5798.41 7896.84 6599.69 11394.82 15299.81 3098.64 214
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10196.11 11199.08 3198.24 9997.87 2099.72 8295.44 11799.51 10699.14 136
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7498.92 7397.72 5398.25 9098.13 11197.10 4599.75 6595.44 11799.24 18199.32 96
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11198.98 1798.74 4798.49 7395.80 11199.49 18095.04 14499.44 12699.11 148
RE-MVS-def97.88 4798.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.94 5595.49 11099.20 18399.26 115
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12497.79 4599.42 1597.83 15194.40 15799.78 4295.91 9399.76 3999.46 61
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.60 7699.76 5795.49 11099.20 18399.26 115
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 15097.41 16097.50 18297.98 1599.79 3895.58 10999.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22395.83 16899.09 3397.23 7698.33 8298.30 9097.03 5299.37 22196.58 6599.38 14899.28 110
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17895.44 18698.86 8598.20 3798.37 7399.24 2094.69 14499.55 16595.98 9099.79 3599.65 23
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17495.96 16098.97 6794.55 18498.82 4298.76 5497.31 3699.29 24297.20 4999.44 12699.38 85
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10195.21 15698.36 7598.13 11198.13 1499.62 14496.04 8499.54 9399.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 9497.78 5696.43 19798.52 14090.75 23096.84 11299.03 4796.51 9597.86 13698.02 12896.67 7099.36 22397.09 5399.47 11899.19 126
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8698.85 8997.57 6098.15 10197.96 13496.60 7699.76 5795.30 12599.18 18799.33 95
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7596.58 9298.08 11197.87 14897.02 5399.76 5795.25 12899.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 6895.75 13797.91 12898.06 12496.89 6099.76 5795.32 12499.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6395.75 13797.62 14397.59 17497.61 2799.77 5296.34 7499.44 12699.36 91
SD-MVS97.37 9997.70 6096.35 20198.14 18495.13 11496.54 12798.92 7395.94 12499.19 2898.08 11797.74 2295.06 35895.24 12999.54 9398.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 8697.70 6097.07 16099.46 2892.21 20197.22 9599.00 5794.93 17198.58 5698.92 4597.31 3699.41 20894.44 16799.43 13499.59 27
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 4993.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8798.83 10197.32 7398.06 11397.85 14996.65 7199.77 5295.00 14799.11 19899.32 96
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17698.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19495.92 12598.40 7098.28 9397.06 5099.71 9695.48 11399.52 10199.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17699.02 4998.11 3998.31 8597.69 16894.65 14899.85 2297.02 5699.71 5199.48 56
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4697.51 6498.22 9397.81 15594.68 14699.78 4297.14 5299.75 4399.41 80
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7198.84 9496.05 11497.49 15197.54 17797.07 4899.70 10595.61 10699.46 12199.30 102
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17198.49 2098.88 8196.86 8497.11 17398.55 6995.82 10599.73 7895.94 9199.42 13799.13 139
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11195.07 16497.88 13298.35 8297.24 4299.72 8296.05 8399.58 7899.45 66
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21897.64 17096.49 8299.72 8295.66 10299.37 14999.45 66
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8198.84 9495.76 13596.93 18997.43 18797.26 4099.79 3896.06 8199.53 9699.45 66
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7198.83 10196.05 11497.46 15797.63 17196.77 6799.76 5795.61 10699.46 12199.49 51
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 17998.87 8397.57 6098.31 8597.83 15194.69 14499.85 2297.02 5699.71 5199.46 61
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7098.84 9496.00 11997.22 16497.62 17296.87 6399.76 5795.48 11399.43 13499.46 61
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 18995.60 9098.04 4598.70 13498.13 3896.93 18998.45 7695.30 12999.62 14495.64 10498.96 21399.24 121
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27298.30 3399.45 1499.35 1688.43 26199.89 1698.01 2099.76 3999.54 36
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 6896.11 11196.89 19297.45 18696.85 6499.78 4295.19 13199.63 6499.38 85
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6398.78 11596.04 11697.10 17497.73 16396.53 7999.78 4295.16 13599.50 10899.46 61
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 3895.45 14897.55 14597.94 13997.11 4499.78 4294.77 15799.46 12199.48 56
Anonymous2024052197.07 11297.51 8395.76 22899.35 4188.18 26997.78 5898.40 17597.11 7798.34 7899.04 3789.58 24899.79 3898.09 1899.93 1099.30 102
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7399.06 3896.19 10898.48 6398.70 5894.72 14399.24 25094.37 17299.33 16799.17 129
LS3D97.77 7197.50 8598.57 4896.24 30297.58 2498.45 2398.85 8998.58 2697.51 14897.94 13995.74 11399.63 13695.19 13198.97 21298.51 225
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11195.96 12297.53 14697.40 18996.93 5799.77 5295.04 14499.35 15799.42 78
VPNet97.26 10697.49 8696.59 18699.47 2790.58 23296.27 13998.53 15897.77 4698.46 6698.41 7894.59 15099.68 11994.61 16099.29 17599.52 40
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20398.14 20897.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13799.51 42
EI-MVSNet-UG-set97.32 10397.40 8997.09 15997.34 26992.01 20995.33 19797.65 24597.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10199.58 28
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10499.10 2895.32 15397.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
EI-MVSNet-Vis-set97.32 10397.39 9097.11 15797.36 26492.08 20795.34 19697.65 24597.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10899.56 33
MP-MVS-pluss97.69 7697.36 9298.70 3999.50 2596.84 4795.38 19398.99 6092.45 24498.11 10598.31 8697.25 4199.77 5296.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVScopyleft97.64 7897.35 9398.50 5198.85 10196.18 6795.21 20898.99 6095.84 13298.78 4498.08 11796.84 6599.81 3193.98 19199.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LCM-MVSNet-Re97.33 10297.33 9497.32 14798.13 18793.79 16396.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27399.06 20798.32 241
CSCG97.40 9797.30 9597.69 11298.95 9594.83 12197.28 9198.99 6096.35 10398.13 10495.95 28295.99 9899.66 13094.36 17599.73 4598.59 220
Regformer-397.25 10797.29 9697.11 15797.35 26592.32 19895.26 20397.62 25097.67 5898.17 9897.89 14495.05 13399.56 16197.16 5199.42 13799.46 61
IterMVS-LS96.92 12297.29 9695.79 22798.51 14188.13 27295.10 21198.66 14496.99 7998.46 6698.68 6092.55 20099.74 7296.91 5999.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5299.16 6996.90 4696.39 13298.98 6395.05 16598.06 11398.02 12895.86 10199.56 16194.37 17299.64 6399.00 164
OPM-MVS97.54 8697.25 9998.41 5799.11 8296.61 5595.24 20698.46 16494.58 18398.10 10898.07 11997.09 4799.39 21595.16 13599.44 12699.21 124
VDD-MVS97.37 9997.25 9997.74 10698.69 12194.50 13697.04 10595.61 30198.59 2598.51 6098.72 5692.54 20299.58 15496.02 8699.49 11299.12 144
Regformer-297.41 9697.24 10197.93 9497.21 27694.72 12594.85 22998.27 18997.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17199.37 90
TSAR-MVS + MP.97.42 9597.23 10298.00 9099.38 3895.00 11797.63 6998.20 19893.00 23298.16 9998.06 12495.89 10099.72 8295.67 10099.10 20099.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11498.84 9494.25 19397.49 15197.54 17797.07 4899.70 10594.37 17299.46 12199.30 102
canonicalmvs97.23 10997.21 10497.30 14897.65 24494.39 13897.84 5699.05 4097.42 6796.68 20193.85 32297.63 2699.33 23196.29 7598.47 25898.18 257
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 8098.73 12496.27 10495.59 24997.75 16096.30 9299.78 4293.70 20199.48 11699.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
Regformer-197.27 10597.16 10697.61 11797.21 27693.86 15994.85 22998.04 22297.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17199.35 93
V4297.04 11397.16 10696.68 18398.59 13391.05 22296.33 13798.36 18094.60 18097.99 11998.30 9093.32 18099.62 14497.40 4199.53 9699.38 85
SMA-MVScopyleft97.48 9197.11 10898.60 4698.83 10296.67 5296.74 11898.73 12491.61 25598.48 6398.36 8196.53 7999.68 11995.17 13399.54 9399.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PM-MVS97.36 10197.10 10998.14 8098.91 9896.77 4996.20 14598.63 15093.82 20598.54 5898.33 8493.98 16799.05 27595.99 8999.45 12598.61 219
ACMP92.54 1397.47 9297.10 10998.55 5099.04 9096.70 5196.24 14398.89 7693.71 20897.97 12397.75 16097.44 3099.63 13693.22 21099.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 12797.08 11196.13 21398.42 15389.28 25095.41 19098.67 14294.21 19497.97 12398.31 8693.06 18599.65 13198.06 1999.62 6599.45 66
CS-MVS96.95 12097.07 11296.59 18697.86 20992.74 19297.38 8799.52 595.98 12194.89 26595.89 28596.05 9799.76 5796.65 6199.42 13797.26 300
XVG-OURS-SEG-HR97.38 9897.07 11298.30 6799.01 9297.41 3494.66 23699.02 4995.20 15798.15 10197.52 18098.83 498.43 33094.87 15096.41 32199.07 155
v119296.83 13097.06 11496.15 21298.28 16389.29 24995.36 19498.77 11693.73 20798.11 10598.34 8393.02 18999.67 12498.35 1499.58 7899.50 43
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26095.36 19498.26 19195.18 15997.85 13798.23 10192.58 19999.63 13697.80 2799.69 5599.45 66
xxxxxxxxxxxxxcwj97.24 10897.03 11697.89 9698.48 14794.71 12694.53 24199.07 3795.02 16797.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
v124096.74 13697.02 11795.91 22398.18 17788.52 26295.39 19298.88 8193.15 22898.46 6698.40 8092.80 19299.71 9698.45 1399.49 11299.49 51
v14896.58 14896.97 11895.42 24398.63 12787.57 28395.09 21397.90 22695.91 12798.24 9297.96 13493.42 17999.39 21596.04 8499.52 10199.29 109
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8597.49 25397.93 4395.95 23598.58 6596.88 6296.91 35389.59 28199.36 15293.12 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 13996.96 12095.99 21698.21 17288.79 25995.42 18898.79 11193.22 22298.19 9798.26 9892.68 19599.70 10598.34 1599.55 9099.49 51
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27295.29 20197.65 24596.99 7997.94 12698.19 10692.55 20099.58 15496.91 5999.56 8499.50 43
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6698.89 7695.65 13998.51 6096.46 25492.15 20999.81 3195.14 13898.58 25499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AllTest97.20 11096.92 12298.06 8599.08 8496.16 6897.14 9999.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
v14419296.69 14296.90 12496.03 21598.25 16888.92 25495.49 18498.77 11693.05 23098.09 10998.29 9292.51 20499.70 10598.11 1799.56 8499.47 59
VDDNet96.98 11896.84 12597.41 14199.40 3693.26 17997.94 4995.31 30799.26 798.39 7299.18 2787.85 27099.62 14495.13 14099.09 20199.35 93
VNet96.84 12796.83 12696.88 17098.06 19092.02 20896.35 13697.57 25297.70 5597.88 13297.80 15692.40 20699.54 16894.73 15998.96 21399.08 153
WR-MVS96.90 12496.81 12797.16 15498.56 13692.20 20394.33 24598.12 21197.34 7298.20 9497.33 20092.81 19199.75 6594.79 15499.81 3099.54 36
GBi-Net96.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
test196.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
MVS_Test96.27 15996.79 13094.73 27096.94 28786.63 29896.18 14698.33 18594.94 16996.07 23198.28 9395.25 13099.26 24797.21 4797.90 27898.30 245
XVG-OURS97.12 11196.74 13198.26 6998.99 9397.45 3293.82 27199.05 4095.19 15898.32 8397.70 16695.22 13198.41 33194.27 17798.13 26998.93 176
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23495.71 17198.84 9494.72 17696.71 20097.39 19394.91 14198.10 34595.28 12699.02 20998.05 269
9.1496.69 13398.53 13996.02 15598.98 6393.23 22197.18 16897.46 18596.47 8499.62 14492.99 21499.32 169
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28198.36 3098.14 10397.98 13388.23 26399.71 9693.10 21399.72 4899.38 85
FMVSNet296.72 13996.67 13596.87 17197.96 20191.88 21197.15 9798.06 22095.59 14398.50 6298.62 6489.51 25299.65 13194.99 14899.60 7499.07 155
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17597.69 24096.81 8598.27 8997.92 14294.18 16398.71 30890.78 25499.66 6099.00 164
ab-mvs96.59 14796.59 13796.60 18598.64 12392.21 20198.35 2697.67 24194.45 18596.99 18498.79 5194.96 13999.49 18090.39 27099.07 20498.08 260
new-patchmatchnet95.67 18296.58 13892.94 31197.48 25580.21 34492.96 29498.19 20394.83 17398.82 4298.79 5193.31 18199.51 17895.83 9699.04 20899.12 144
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16498.68 1096.34 28597.91 4497.30 16298.06 12488.46 26099.85 2293.85 19599.40 14599.32 96
UGNet96.81 13296.56 14097.58 11896.64 29293.84 16197.75 6297.12 26696.47 9993.62 30098.88 4793.22 18399.53 17095.61 10699.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 12296.55 14198.03 8998.00 19995.54 9294.87 22798.17 20494.60 18096.38 21597.05 21895.67 11599.36 22395.12 14199.08 20299.19 126
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16595.34 10593.81 27398.33 18594.59 18296.56 20796.63 24596.61 7498.73 30694.80 15399.34 16098.78 200
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17093.42 28398.36 18094.74 17596.58 20596.76 23896.54 7898.99 28294.87 15099.27 17899.15 133
test_part196.77 13596.53 14497.47 13298.04 19192.92 18797.93 5098.85 8998.83 2099.30 2199.07 3579.25 31099.79 3897.59 3499.93 1099.69 20
APD-MVScopyleft97.00 11496.53 14498.41 5798.55 13796.31 6496.32 13898.77 11692.96 23797.44 15997.58 17695.84 10299.74 7291.96 22499.35 15799.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 11996.53 14498.25 7297.48 25596.50 5896.76 11798.85 8993.52 21196.19 22796.85 22995.94 9999.42 19993.79 19799.43 13498.83 194
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 16893.17 22797.30 16297.38 19595.48 12199.28 24493.74 19899.34 16098.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 16796.50 14894.80 26799.26 4887.69 28295.96 16098.58 15595.08 16398.02 11896.25 26597.92 1697.60 35088.68 29598.74 23999.11 148
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6393.36 21697.04 18097.31 20294.93 14099.63 13692.60 21799.34 16099.17 129
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30398.60 15292.84 23998.54 5897.40 18996.64 7398.78 30194.40 17199.41 14498.93 176
HPM-MVS++copyleft96.99 11596.38 15198.81 2998.64 12397.59 2395.97 15998.20 19895.51 14695.06 25896.53 25094.10 16499.70 10594.29 17699.15 18999.13 139
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 27998.67 1199.02 4996.50 9694.48 27696.15 27086.90 27599.92 498.73 799.13 19498.74 205
TinyColmap96.00 17296.34 15394.96 25897.90 20787.91 27594.13 25998.49 16294.41 18698.16 9997.76 15796.29 9398.68 31390.52 26699.42 13798.30 245
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12096.36 10196.16 22896.77 23691.91 22099.46 18992.59 21999.20 18399.28 110
K. test v396.44 15496.28 15596.95 16599.41 3591.53 21797.65 6790.31 35098.89 1898.93 3899.36 1484.57 29099.92 497.81 2699.56 8499.39 83
diffmvs96.04 16996.23 15695.46 24297.35 26588.03 27493.42 28399.08 3494.09 19996.66 20296.93 22593.85 17099.29 24296.01 8898.67 24499.06 157
DELS-MVS96.17 16496.23 15695.99 21697.55 25290.04 23792.38 30898.52 15994.13 19796.55 20997.06 21794.99 13899.58 15495.62 10599.28 17698.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 17796.19 15894.85 26497.68 24085.53 30992.42 30697.63 24996.99 7998.36 7598.54 7087.94 26599.75 6597.07 5599.08 20299.27 114
pmmvs-eth3d96.49 15196.18 15997.42 14098.25 16894.29 14294.77 23398.07 21989.81 27697.97 12398.33 8493.11 18499.08 27295.46 11699.84 2898.89 185
testtj96.69 14296.13 16098.36 6198.46 15196.02 7596.44 13098.70 13494.26 19296.79 19497.13 21094.07 16599.75 6590.53 26598.80 23399.31 101
Fast-Effi-MVS+-dtu96.44 15496.12 16197.39 14397.18 27894.39 13895.46 18598.73 12496.03 11894.72 26794.92 30696.28 9499.69 11393.81 19697.98 27498.09 259
TSAR-MVS + GP.96.47 15396.12 16197.49 13097.74 23695.23 10894.15 25696.90 27493.26 22098.04 11696.70 24194.41 15698.89 29294.77 15799.14 19098.37 234
Effi-MVS+-dtu96.81 13296.09 16398.99 1396.90 28998.69 296.42 13198.09 21395.86 13095.15 25795.54 29494.26 16099.81 3194.06 18598.51 25798.47 228
CPTT-MVS96.69 14296.08 16498.49 5298.89 9996.64 5497.25 9298.77 11692.89 23896.01 23497.13 21092.23 20899.67 12492.24 22299.34 16099.17 129
mvs_anonymous95.36 19696.07 16593.21 30396.29 30081.56 33994.60 23897.66 24393.30 21996.95 18898.91 4693.03 18899.38 21896.60 6397.30 30598.69 211
Effi-MVS+96.19 16396.01 16696.71 18097.43 26192.19 20496.12 14999.10 2895.45 14893.33 31294.71 30997.23 4399.56 16193.21 21197.54 29598.37 234
OMC-MVS96.48 15296.00 16797.91 9598.30 16096.01 7694.86 22898.60 15291.88 25297.18 16897.21 20896.11 9599.04 27690.49 26999.34 16098.69 211
NCCC96.52 15095.99 16898.10 8197.81 21895.68 8695.00 22298.20 19895.39 15195.40 25396.36 26193.81 17199.45 19393.55 20498.42 25999.17 129
Anonymous20240521196.34 15795.98 16997.43 13998.25 16893.85 16096.74 11894.41 31497.72 5398.37 7398.03 12787.15 27499.53 17094.06 18599.07 20498.92 180
xiu_mvs_v1_base_debu95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base_debi95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
ETV-MVS96.13 16695.90 17396.82 17497.76 23493.89 15795.40 19198.95 7095.87 12995.58 25091.00 35396.36 9199.72 8293.36 20598.83 23196.85 313
IterMVS95.42 19495.83 17494.20 28797.52 25383.78 33092.41 30797.47 25695.49 14798.06 11398.49 7387.94 26599.58 15496.02 8699.02 20999.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 16095.80 17597.56 11998.75 11194.13 15094.66 23698.17 20490.17 27396.21 22696.10 27595.14 13299.43 19894.13 18398.85 22999.13 139
PVSNet_Blended_VisFu95.95 17395.80 17596.42 19899.28 4790.62 23195.31 19999.08 3488.40 29096.97 18798.17 10992.11 21199.78 4293.64 20299.21 18298.86 192
EIA-MVS96.04 16995.77 17796.85 17297.80 22292.98 18596.12 14999.16 1794.65 17893.77 29491.69 34795.68 11499.67 12494.18 18098.85 22997.91 277
UnsupCasMVSNet_eth95.91 17495.73 17896.44 19698.48 14791.52 21895.31 19998.45 16595.76 13597.48 15497.54 17789.53 25198.69 31094.43 16894.61 34099.13 139
MDA-MVSNet-bldmvs95.69 18095.67 17995.74 22998.48 14788.76 26192.84 29597.25 25996.00 11997.59 14497.95 13891.38 22599.46 18993.16 21296.35 32298.99 167
CANet95.86 17795.65 18096.49 19496.41 29890.82 22794.36 24498.41 17394.94 16992.62 32696.73 23992.68 19599.71 9695.12 14199.60 7498.94 172
hse-mvs396.29 15895.63 18198.26 6998.50 14496.11 7196.90 11097.09 26796.58 9297.21 16698.19 10684.14 29199.78 4295.89 9496.17 32598.89 185
LF4IMVS96.07 16795.63 18197.36 14598.19 17495.55 9195.44 18698.82 10992.29 24695.70 24796.55 24892.63 19898.69 31091.75 23399.33 16797.85 279
ETH3D cwj APD-0.1696.23 16195.61 18398.09 8297.91 20595.65 8994.94 22498.74 12291.31 26196.02 23397.08 21594.05 16699.69 11391.51 23698.94 21798.93 176
QAPM95.88 17695.57 18496.80 17597.90 20791.84 21398.18 3998.73 12488.41 28996.42 21398.13 11194.73 14299.75 6588.72 29398.94 21798.81 196
alignmvs96.01 17195.52 18597.50 12797.77 23394.71 12696.07 15196.84 27597.48 6596.78 19894.28 31985.50 28399.40 21096.22 7698.73 24298.40 231
mvs-test196.20 16295.50 18698.32 6496.90 28998.16 495.07 21698.09 21395.86 13093.63 29994.32 31894.26 16099.71 9694.06 18597.27 30697.07 303
test_prior395.91 17495.39 18797.46 13597.79 22894.26 14693.33 28898.42 17194.21 19494.02 28796.25 26593.64 17599.34 22891.90 22698.96 21398.79 198
cl_fuxian95.20 20295.32 18894.83 26696.19 30686.43 30191.83 31698.35 18493.47 21397.36 16197.26 20588.69 25899.28 24495.41 12399.36 15298.78 200
MVP-Stereo95.69 18095.28 18996.92 16798.15 18393.03 18495.64 18198.20 19890.39 27096.63 20497.73 16391.63 22399.10 27091.84 23097.31 30498.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 27195.20 19087.40 34396.07 31295.38 10097.04 10594.97 30895.33 15299.70 598.11 11598.14 1391.94 36077.76 35399.68 5774.89 360
OpenMVScopyleft94.22 895.48 19095.20 19096.32 20397.16 27991.96 21097.74 6398.84 9487.26 29994.36 27898.01 13093.95 16899.67 12490.70 26098.75 23897.35 299
D2MVS95.18 20395.17 19295.21 24997.76 23487.76 28194.15 25697.94 22489.77 27796.99 18497.68 16987.45 27299.14 26395.03 14699.81 3098.74 205
DP-MVS Recon95.55 18695.13 19396.80 17598.51 14193.99 15594.60 23898.69 13790.20 27295.78 24396.21 26892.73 19498.98 28490.58 26498.86 22797.42 296
MSDG95.33 19795.13 19395.94 22297.40 26391.85 21291.02 33298.37 17995.30 15496.31 22095.99 27794.51 15498.38 33489.59 28197.65 29297.60 291
hse-mvs295.77 17995.09 19597.79 10397.84 21495.51 9495.66 17695.43 30696.58 9297.21 16696.16 26984.14 29199.54 16895.89 9496.92 30898.32 241
Fast-Effi-MVS+95.49 18895.07 19696.75 17897.67 24392.82 18894.22 25298.60 15291.61 25593.42 31092.90 33296.73 6999.70 10592.60 21797.89 27997.74 284
CLD-MVS95.47 19195.07 19696.69 18298.27 16592.53 19491.36 32198.67 14291.22 26395.78 24394.12 32095.65 11698.98 28490.81 25299.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 20095.06 19895.88 22498.72 11489.37 24895.70 17297.85 22988.00 29596.98 18697.62 17291.95 21699.34 22889.21 28699.53 9698.94 172
MVS_030495.50 18795.05 19996.84 17396.28 30193.12 18297.00 10796.16 28795.03 16689.22 34897.70 16690.16 24399.48 18394.51 16699.34 16097.93 276
API-MVS95.09 20895.01 20095.31 24696.61 29394.02 15396.83 11397.18 26395.60 14295.79 24194.33 31794.54 15398.37 33685.70 32298.52 25593.52 349
FMVSNet395.26 20194.94 20196.22 20996.53 29590.06 23695.99 15797.66 24394.11 19897.99 11997.91 14380.22 30899.63 13694.60 16199.44 12698.96 169
TAMVS95.49 18894.94 20197.16 15498.31 15993.41 17695.07 21696.82 27791.09 26497.51 14897.82 15489.96 24499.42 19988.42 29899.44 12698.64 214
eth_miper_zixun_eth94.89 21594.93 20394.75 26995.99 31386.12 30491.35 32298.49 16293.40 21497.12 17297.25 20686.87 27799.35 22695.08 14398.82 23298.78 200
PVSNet_BlendedMVS95.02 21294.93 20395.27 24797.79 22887.40 28794.14 25898.68 13988.94 28494.51 27498.01 13093.04 18699.30 23889.77 27999.49 11299.11 148
MS-PatchMatch94.83 21794.91 20594.57 27796.81 29187.10 29294.23 25197.34 25888.74 28797.14 17097.11 21391.94 21798.23 34192.99 21497.92 27698.37 234
LFMVS95.32 19894.88 20696.62 18498.03 19291.47 21997.65 6790.72 34799.11 997.89 13198.31 8679.20 31199.48 18393.91 19499.12 19798.93 176
Vis-MVSNet (Re-imp)95.11 20694.85 20795.87 22599.12 8189.17 25197.54 7994.92 30996.50 9696.58 20597.27 20483.64 29599.48 18388.42 29899.67 5898.97 168
ppachtmachnet_test94.49 23794.84 20893.46 29796.16 30882.10 33690.59 33597.48 25590.53 26997.01 18397.59 17491.01 22899.36 22393.97 19299.18 18798.94 172
YYNet194.73 22194.84 20894.41 28297.47 25985.09 31890.29 33895.85 29692.52 24197.53 14697.76 15791.97 21599.18 25693.31 20796.86 31198.95 170
MDA-MVSNet_test_wron94.73 22194.83 21094.42 28197.48 25585.15 31690.28 33995.87 29592.52 24197.48 15497.76 15791.92 21999.17 26093.32 20696.80 31498.94 172
miper_lstm_enhance94.81 21994.80 21194.85 26496.16 30886.45 30091.14 32998.20 19893.49 21297.03 18197.37 19784.97 28799.26 24795.28 12699.56 8498.83 194
CL-MVSNet_2432*160095.04 20994.79 21295.82 22697.51 25489.79 24191.14 32996.82 27793.05 23096.72 19996.40 25890.82 23199.16 26191.95 22598.66 24698.50 226
BH-untuned94.69 22694.75 21394.52 27997.95 20487.53 28494.07 26197.01 27093.99 20197.10 17495.65 29092.65 19798.95 28987.60 30896.74 31597.09 302
miper_ehance_all_eth94.69 22694.70 21494.64 27195.77 31986.22 30391.32 32598.24 19391.67 25497.05 17996.65 24488.39 26299.22 25494.88 14998.34 26198.49 227
train_agg95.46 19294.66 21597.88 9897.84 21495.23 10893.62 27798.39 17687.04 30293.78 29295.99 27794.58 15199.52 17491.76 23298.90 22198.89 185
CDPH-MVS95.45 19394.65 21697.84 10198.28 16394.96 11893.73 27598.33 18585.03 32495.44 25196.60 24695.31 12899.44 19690.01 27599.13 19499.11 148
cl-mvsnet____94.73 22194.64 21795.01 25695.85 31687.00 29391.33 32398.08 21593.34 21797.10 17497.33 20084.01 29499.30 23895.14 13899.56 8498.71 210
cl-mvsnet194.73 22194.64 21795.01 25695.86 31587.00 29391.33 32398.08 21593.34 21797.10 17497.34 19984.02 29399.31 23595.15 13799.55 9098.72 208
xiu_mvs_v2_base94.22 24394.63 21992.99 30997.32 27284.84 32192.12 31197.84 23191.96 25094.17 28193.43 32396.07 9699.71 9691.27 24097.48 29894.42 345
AdaColmapbinary95.11 20694.62 22096.58 18897.33 27194.45 13794.92 22598.08 21593.15 22893.98 29095.53 29594.34 15899.10 27085.69 32398.61 25196.20 330
agg_prior195.39 19594.60 22197.75 10597.80 22294.96 11893.39 28598.36 18087.20 30093.49 30595.97 28094.65 14899.53 17091.69 23498.86 22798.77 203
RPMNet94.68 22894.60 22194.90 26195.44 32688.15 27096.18 14698.86 8597.43 6694.10 28398.49 7379.40 30999.76 5795.69 9995.81 32796.81 317
Patchmtry95.03 21194.59 22396.33 20294.83 33490.82 22796.38 13497.20 26196.59 9197.49 15198.57 6677.67 31899.38 21892.95 21699.62 6598.80 197
our_test_394.20 24794.58 22493.07 30596.16 30881.20 34190.42 33796.84 27590.72 26797.14 17097.13 21090.47 23599.11 26894.04 18998.25 26598.91 181
HQP-MVS95.17 20594.58 22496.92 16797.85 21092.47 19594.26 24698.43 16893.18 22492.86 31895.08 30090.33 23799.23 25290.51 26798.74 23999.05 159
USDC94.56 23494.57 22694.55 27897.78 23286.43 30192.75 29898.65 14985.96 31096.91 19197.93 14190.82 23198.74 30590.71 25999.59 7698.47 228
Patchmatch-RL test94.66 22994.49 22795.19 25098.54 13888.91 25592.57 30298.74 12291.46 25898.32 8397.75 16077.31 32398.81 29996.06 8199.61 7197.85 279
PS-MVSNAJ94.10 24994.47 22893.00 30897.35 26584.88 32091.86 31597.84 23191.96 25094.17 28192.50 33995.82 10599.71 9691.27 24097.48 29894.40 346
EU-MVSNet94.25 24294.47 22893.60 29498.14 18482.60 33497.24 9492.72 33085.08 32298.48 6398.94 4382.59 29898.76 30497.47 3999.53 9699.44 76
CNLPA95.04 20994.47 22896.75 17897.81 21895.25 10794.12 26097.89 22794.41 18694.57 27195.69 28890.30 24098.35 33786.72 31798.76 23796.64 322
BH-RMVSNet94.56 23494.44 23194.91 25997.57 24887.44 28693.78 27496.26 28693.69 20996.41 21496.50 25392.10 21299.00 28085.96 32097.71 28698.31 243
F-COLMAP95.30 19994.38 23298.05 8898.64 12396.04 7395.61 18298.66 14489.00 28393.22 31396.40 25892.90 19099.35 22687.45 31297.53 29698.77 203
pmmvs594.63 23194.34 23395.50 23997.63 24688.34 26694.02 26297.13 26587.15 30195.22 25697.15 20987.50 27199.27 24693.99 19099.26 17998.88 189
UnsupCasMVSNet_bld94.72 22594.26 23496.08 21498.62 12890.54 23593.38 28698.05 22190.30 27197.02 18296.80 23589.54 24999.16 26188.44 29796.18 32498.56 222
N_pmnet95.18 20394.23 23598.06 8597.85 21096.55 5792.49 30491.63 33889.34 27998.09 10997.41 18890.33 23799.06 27491.58 23599.31 17198.56 222
TAPA-MVS93.32 1294.93 21394.23 23597.04 16298.18 17794.51 13495.22 20798.73 12481.22 34196.25 22495.95 28293.80 17298.98 28489.89 27798.87 22597.62 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 23094.21 23795.96 21895.90 31489.68 24293.92 26897.83 23393.19 22390.12 34395.64 29188.52 25999.57 16093.27 20999.47 11898.62 217
pmmvs494.82 21894.19 23896.70 18197.42 26292.75 19192.09 31396.76 27986.80 30595.73 24697.22 20789.28 25598.89 29293.28 20899.14 19098.46 230
PAPM_NR94.61 23294.17 23995.96 21898.36 15791.23 22095.93 16397.95 22392.98 23393.42 31094.43 31690.53 23498.38 33487.60 30896.29 32398.27 249
CDS-MVSNet94.88 21694.12 24097.14 15697.64 24593.57 17293.96 26797.06 26990.05 27496.30 22196.55 24886.10 27999.47 18690.10 27499.31 17198.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
RRT_MVS94.90 21494.07 24197.39 14393.18 35193.21 18195.26 20397.49 25393.94 20398.25 9097.85 14972.96 34599.84 2597.90 2299.78 3899.14 136
PMMVS293.66 26194.07 24192.45 31997.57 24880.67 34386.46 35496.00 29193.99 20197.10 17497.38 19589.90 24597.82 34788.76 29299.47 11898.86 192
jason94.39 24094.04 24395.41 24598.29 16187.85 27892.74 30096.75 28085.38 32195.29 25496.15 27088.21 26499.65 13194.24 17899.34 16098.74 205
jason: jason.
test_yl94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
DCV-MVSNet94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
MG-MVS94.08 25194.00 24494.32 28497.09 28185.89 30693.19 29295.96 29392.52 24194.93 26497.51 18189.54 24998.77 30287.52 31197.71 28698.31 243
bset_n11_16_dypcd94.53 23693.95 24796.25 20697.56 25089.85 24088.52 35191.32 34094.90 17297.51 14896.38 26082.34 29999.78 4297.22 4599.80 3399.12 144
MVSTER94.21 24593.93 24895.05 25595.83 31786.46 29995.18 20997.65 24592.41 24597.94 12698.00 13272.39 34699.58 15496.36 7399.56 8499.12 144
ETH3 D test640094.77 22093.87 24997.47 13298.12 18893.73 16594.56 24098.70 13485.45 31994.70 26995.93 28491.77 22299.63 13686.45 31899.14 19099.05 159
PatchMatch-RL94.61 23293.81 25097.02 16498.19 17495.72 8293.66 27697.23 26088.17 29394.94 26395.62 29291.43 22498.57 32187.36 31397.68 28996.76 319
sss94.22 24393.72 25195.74 22997.71 23889.95 23993.84 27096.98 27188.38 29193.75 29595.74 28787.94 26598.89 29291.02 24698.10 27098.37 234
PVSNet_Blended93.96 25393.65 25294.91 25997.79 22887.40 28791.43 32098.68 13984.50 32994.51 27494.48 31593.04 18699.30 23889.77 27998.61 25198.02 272
PatchT93.75 25793.57 25394.29 28695.05 33287.32 28996.05 15292.98 32697.54 6394.25 27998.72 5675.79 33199.24 25095.92 9295.81 32796.32 328
SCA93.38 26893.52 25492.96 31096.24 30281.40 34093.24 29094.00 31691.58 25794.57 27196.97 22287.94 26599.42 19989.47 28397.66 29198.06 266
1112_ss94.12 24893.42 25596.23 20798.59 13390.85 22694.24 25098.85 8985.49 31692.97 31694.94 30486.01 28099.64 13491.78 23197.92 27698.20 255
CHOSEN 1792x268894.10 24993.41 25696.18 21199.16 6990.04 23792.15 31098.68 13979.90 34696.22 22597.83 15187.92 26999.42 19989.18 28799.65 6199.08 153
lupinMVS93.77 25693.28 25795.24 24897.68 24087.81 27992.12 31196.05 28984.52 32894.48 27695.06 30286.90 27599.63 13693.62 20399.13 19498.27 249
112194.26 24193.26 25897.27 14998.26 16794.73 12495.86 16597.71 23977.96 35394.53 27396.71 24091.93 21899.40 21087.71 30498.64 24997.69 287
Patchmatch-test93.60 26393.25 25994.63 27296.14 31187.47 28596.04 15394.50 31393.57 21096.47 21196.97 22276.50 32698.61 31890.67 26198.41 26097.81 283
114514_t93.96 25393.22 26096.19 21099.06 8790.97 22595.99 15798.94 7173.88 35993.43 30996.93 22592.38 20799.37 22189.09 28899.28 17698.25 251
OpenMVS_ROBcopyleft91.80 1493.64 26293.05 26195.42 24397.31 27391.21 22195.08 21596.68 28381.56 33896.88 19396.41 25690.44 23699.25 24985.39 32797.67 29095.80 334
MAR-MVS94.21 24593.03 26297.76 10496.94 28797.44 3396.97 10997.15 26487.89 29792.00 33192.73 33692.14 21099.12 26583.92 33697.51 29796.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 26493.00 26395.19 25097.81 21887.86 27693.89 26996.00 29189.02 28294.07 28595.44 29786.27 27899.33 23187.69 30696.82 31298.39 233
PLCcopyleft91.02 1694.05 25292.90 26497.51 12498.00 19995.12 11594.25 24998.25 19286.17 30891.48 33495.25 29891.01 22899.19 25585.02 33196.69 31698.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 26592.86 26595.54 23898.60 13188.86 25792.75 29898.69 13782.66 33592.65 32396.92 22784.75 28899.56 16190.94 24897.76 28298.19 256
MIMVSNet93.42 26692.86 26595.10 25398.17 17988.19 26898.13 4193.69 31792.07 24795.04 26198.21 10580.95 30599.03 27981.42 34498.06 27298.07 262
cl-mvsnet293.25 27192.84 26794.46 28094.30 34086.00 30591.09 33196.64 28490.74 26695.79 24196.31 26378.24 31598.77 30294.15 18298.34 26198.62 217
CVMVSNet92.33 28592.79 26890.95 32997.26 27475.84 35795.29 20192.33 33381.86 33696.27 22298.19 10681.44 30198.46 32994.23 17998.29 26498.55 224
CR-MVSNet93.29 27092.79 26894.78 26895.44 32688.15 27096.18 14697.20 26184.94 32694.10 28398.57 6677.67 31899.39 21595.17 13395.81 32796.81 317
miper_enhance_ethall93.14 27392.78 27094.20 28793.65 34885.29 31389.97 34197.85 22985.05 32396.15 23094.56 31185.74 28199.14 26393.74 19898.34 26198.17 258
DPM-MVS93.68 26092.77 27196.42 19897.91 20592.54 19391.17 32897.47 25684.99 32593.08 31594.74 30889.90 24599.00 28087.54 31098.09 27197.72 285
AUN-MVS93.95 25592.69 27297.74 10697.80 22295.38 10095.57 18395.46 30591.26 26292.64 32496.10 27574.67 33499.55 16593.72 20096.97 30798.30 245
HyFIR lowres test93.72 25892.65 27396.91 16998.93 9691.81 21491.23 32798.52 15982.69 33496.46 21296.52 25280.38 30799.90 1390.36 27198.79 23499.03 161
baseline193.14 27392.64 27494.62 27397.34 26987.20 29196.67 12593.02 32594.71 17796.51 21095.83 28681.64 30098.60 32090.00 27688.06 35598.07 262
EPNet93.72 25892.62 27597.03 16387.61 36692.25 19996.27 13991.28 34196.74 8787.65 35497.39 19385.00 28699.64 13492.14 22399.48 11699.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 26992.56 27695.57 23598.71 11787.86 27697.44 8287.17 35895.79 13497.47 15696.84 23064.12 35999.81 3196.20 7799.32 16999.02 163
RRT_test8_iter0592.46 28192.52 27792.29 32295.33 32977.43 35295.73 17098.55 15794.41 18697.46 15797.72 16557.44 36499.74 7296.92 5899.14 19099.69 20
FMVSNet593.39 26792.35 27896.50 19395.83 31790.81 22997.31 8998.27 18992.74 24096.27 22298.28 9362.23 36199.67 12490.86 25099.36 15299.03 161
131492.38 28392.30 27992.64 31595.42 32885.15 31695.86 16596.97 27285.40 32090.62 33793.06 33091.12 22797.80 34886.74 31695.49 33494.97 343
TR-MVS92.54 28092.20 28093.57 29596.49 29686.66 29793.51 28194.73 31089.96 27594.95 26293.87 32190.24 24298.61 31881.18 34594.88 33795.45 340
GA-MVS92.83 27692.15 28194.87 26396.97 28487.27 29090.03 34096.12 28891.83 25394.05 28694.57 31076.01 33098.97 28892.46 22197.34 30398.36 239
BH-w/o92.14 28891.94 28292.73 31497.13 28085.30 31292.46 30595.64 29889.33 28094.21 28092.74 33589.60 24798.24 34081.68 34394.66 33994.66 344
PatchmatchNetpermissive91.98 29191.87 28392.30 32194.60 33779.71 34595.12 21093.59 32189.52 27893.61 30197.02 22077.94 31699.18 25690.84 25194.57 34298.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 28791.83 28493.25 30196.18 30783.68 33196.27 13993.68 31976.97 35692.54 32799.18 2789.20 25798.55 32483.88 33798.60 25397.51 293
HY-MVS91.43 1592.58 27991.81 28594.90 26196.49 29688.87 25697.31 8994.62 31185.92 31190.50 34096.84 23085.05 28599.40 21083.77 33995.78 33096.43 327
thisisatest053092.71 27891.76 28695.56 23798.42 15388.23 26796.03 15487.35 35794.04 20096.56 20795.47 29664.03 36099.77 5294.78 15699.11 19898.68 213
new_pmnet92.34 28491.69 28794.32 28496.23 30489.16 25292.27 30992.88 32784.39 33195.29 25496.35 26285.66 28296.74 35684.53 33497.56 29497.05 304
thres600view792.03 29091.43 28893.82 29098.19 17484.61 32396.27 13990.39 34896.81 8596.37 21693.11 32573.44 34399.49 18080.32 34697.95 27597.36 297
CMPMVSbinary73.10 2392.74 27791.39 28996.77 17793.57 35094.67 13094.21 25397.67 24180.36 34593.61 30196.60 24682.85 29797.35 35184.86 33298.78 23598.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 29291.35 29093.51 29694.27 34185.60 30888.86 35098.61 15179.32 34892.16 33091.44 34989.22 25698.12 34490.80 25397.47 30096.82 316
MDTV_nov1_ep1391.28 29194.31 33973.51 36194.80 23193.16 32486.75 30693.45 30897.40 18976.37 32798.55 32488.85 29196.43 320
PAPR92.22 28691.27 29295.07 25495.73 32188.81 25891.97 31497.87 22885.80 31390.91 33692.73 33691.16 22698.33 33879.48 34795.76 33198.08 260
thres100view90091.76 29491.26 29393.26 30098.21 17284.50 32496.39 13290.39 34896.87 8396.33 21793.08 32973.44 34399.42 19978.85 35097.74 28395.85 332
PMMVS92.39 28291.08 29496.30 20593.12 35492.81 18990.58 33695.96 29379.17 34991.85 33392.27 34090.29 24198.66 31589.85 27896.68 31797.43 295
tfpn200view991.55 29691.00 29593.21 30398.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28395.85 332
thres40091.68 29591.00 29593.71 29298.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28397.36 297
PVSNet86.72 1991.10 30090.97 29791.49 32597.56 25078.04 34987.17 35394.60 31284.65 32792.34 32892.20 34187.37 27398.47 32885.17 33097.69 28897.96 274
tpmvs90.79 30490.87 29890.57 33292.75 35876.30 35595.79 16993.64 32091.04 26591.91 33296.26 26477.19 32498.86 29689.38 28589.85 35396.56 325
tpm91.08 30190.85 29991.75 32495.33 32978.09 34895.03 22191.27 34288.75 28693.53 30497.40 18971.24 34899.30 23891.25 24293.87 34397.87 278
X-MVStestdata92.86 27590.83 30098.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21836.50 36396.49 8299.72 8295.66 10299.37 14999.45 66
EPNet_dtu91.39 29890.75 30193.31 29990.48 36382.61 33394.80 23192.88 32793.39 21581.74 36294.90 30781.36 30299.11 26888.28 30098.87 22598.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 29390.69 30295.11 25293.80 34790.98 22494.16 25591.78 33796.38 10090.30 34299.30 1872.02 34798.90 29088.28 30090.17 35295.45 340
PCF-MVS89.43 1892.12 28990.64 30396.57 19097.80 22293.48 17589.88 34598.45 16574.46 35896.04 23295.68 28990.71 23399.31 23573.73 35699.01 21196.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 30690.61 30489.41 33694.06 34572.37 36395.06 21893.69 31788.01 29492.32 32996.86 22877.45 32098.82 29791.04 24587.01 35797.04 305
ADS-MVSNet291.47 29790.51 30594.36 28395.51 32485.63 30795.05 21995.70 29783.46 33292.69 32196.84 23079.15 31299.41 20885.66 32490.52 35098.04 270
thres20091.00 30290.42 30692.77 31397.47 25983.98 32994.01 26391.18 34395.12 16295.44 25191.21 35173.93 33699.31 23577.76 35397.63 29395.01 342
ADS-MVSNet90.95 30390.26 30793.04 30695.51 32482.37 33595.05 21993.41 32283.46 33292.69 32196.84 23079.15 31298.70 30985.66 32490.52 35098.04 270
MVS-HIRNet88.40 32290.20 30882.99 34497.01 28360.04 36693.11 29385.61 36184.45 33088.72 35099.09 3384.72 28998.23 34182.52 34296.59 31990.69 358
test-LLR89.97 31189.90 30990.16 33394.24 34274.98 35889.89 34289.06 35392.02 24889.97 34490.77 35473.92 33798.57 32191.88 22897.36 30196.92 308
E-PMN89.52 31589.78 31088.73 33893.14 35377.61 35183.26 35892.02 33494.82 17493.71 29693.11 32575.31 33296.81 35485.81 32196.81 31391.77 355
ET-MVSNet_ETH3D91.12 29989.67 31195.47 24196.41 29889.15 25391.54 31990.23 35189.07 28186.78 35892.84 33369.39 35499.44 19694.16 18196.61 31897.82 281
CostFormer89.75 31389.25 31291.26 32894.69 33678.00 35095.32 19891.98 33581.50 33990.55 33996.96 22471.06 35098.89 29288.59 29692.63 34796.87 311
EMVS89.06 31789.22 31388.61 33993.00 35577.34 35382.91 35990.92 34494.64 17992.63 32591.81 34576.30 32897.02 35283.83 33896.90 31091.48 356
test0.0.03 190.11 30789.21 31492.83 31293.89 34686.87 29691.74 31788.74 35592.02 24894.71 26891.14 35273.92 33794.48 35983.75 34092.94 34597.16 301
MVS90.02 30889.20 31592.47 31894.71 33586.90 29595.86 16596.74 28164.72 36190.62 33792.77 33492.54 20298.39 33379.30 34895.56 33392.12 353
CHOSEN 280x42089.98 31089.19 31692.37 32095.60 32381.13 34286.22 35597.09 26781.44 34087.44 35593.15 32473.99 33599.47 18688.69 29499.07 20496.52 326
thisisatest051590.43 30589.18 31794.17 28997.07 28285.44 31089.75 34687.58 35688.28 29293.69 29891.72 34665.27 35899.58 15490.59 26398.67 24497.50 294
pmmvs390.00 30988.90 31893.32 29894.20 34485.34 31191.25 32692.56 33278.59 35093.82 29195.17 29967.36 35798.69 31089.08 28998.03 27395.92 331
FPMVS89.92 31288.63 31993.82 29098.37 15696.94 4591.58 31893.34 32388.00 29590.32 34197.10 21470.87 35191.13 36171.91 35996.16 32693.39 351
EPMVS89.26 31688.55 32091.39 32692.36 35979.11 34695.65 17979.86 36388.60 28893.12 31496.53 25070.73 35298.10 34590.75 25589.32 35496.98 306
baseline289.65 31488.44 32193.25 30195.62 32282.71 33293.82 27185.94 36088.89 28587.35 35692.54 33871.23 34999.33 23186.01 31994.60 34197.72 285
dp88.08 32488.05 32288.16 34292.85 35668.81 36594.17 25492.88 32785.47 31791.38 33596.14 27268.87 35598.81 29986.88 31583.80 36096.87 311
KD-MVS_2432*160088.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
miper_refine_blended88.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
tpm288.47 32187.69 32590.79 33094.98 33377.34 35395.09 21391.83 33677.51 35589.40 34696.41 25667.83 35698.73 30683.58 34192.60 34896.29 329
tpm cat188.01 32587.33 32690.05 33594.48 33876.28 35694.47 24394.35 31573.84 36089.26 34795.61 29373.64 33998.30 33984.13 33586.20 35895.57 339
test-mter87.92 32687.17 32790.16 33394.24 34274.98 35889.89 34289.06 35386.44 30789.97 34490.77 35454.96 37098.57 32191.88 22897.36 30196.92 308
gg-mvs-nofinetune88.28 32386.96 32892.23 32392.84 35784.44 32598.19 3874.60 36599.08 1087.01 35799.47 856.93 36598.23 34178.91 34995.61 33294.01 347
IB-MVS85.98 2088.63 32086.95 32993.68 29395.12 33184.82 32290.85 33390.17 35287.55 29888.48 35191.34 35058.01 36399.59 15287.24 31493.80 34496.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DWT-MVSNet_test87.92 32686.77 33091.39 32693.18 35178.62 34795.10 21191.42 33985.58 31588.00 35288.73 35860.60 36298.90 29090.60 26287.70 35696.65 321
TESTMET0.1,187.20 32986.57 33189.07 33793.62 34972.84 36289.89 34287.01 35985.46 31889.12 34990.20 35656.00 36997.72 34990.91 24996.92 30896.64 322
MVEpermissive73.61 2286.48 33085.92 33288.18 34196.23 30485.28 31481.78 36075.79 36486.01 30982.53 36191.88 34492.74 19387.47 36371.42 36094.86 33891.78 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 32885.84 33393.04 30696.54 29484.99 31988.42 35295.57 30279.52 34783.82 35993.05 33180.57 30698.41 33162.29 36292.79 34695.71 335
PVSNet_081.89 2184.49 33183.21 33488.34 34095.76 32074.97 36083.49 35792.70 33178.47 35187.94 35386.90 36083.38 29696.63 35773.44 35766.86 36393.40 350
test_method66.88 33266.13 33569.11 34662.68 36725.73 36949.76 36196.04 29014.32 36464.27 36591.69 34773.45 34288.05 36276.06 35566.94 36293.54 348
tmp_tt57.23 33362.50 33641.44 34734.77 36849.21 36883.93 35660.22 36915.31 36371.11 36479.37 36270.09 35344.86 36564.76 36182.93 36130.25 361
cdsmvs_eth3d_5k24.22 33432.30 3370.00 3500.00 3710.00 3720.00 36298.10 2120.00 3670.00 36895.06 30297.54 290.00 3680.00 3660.00 3660.00 364
test12312.59 33515.49 3383.87 3486.07 3692.55 37090.75 3342.59 3712.52 3655.20 36713.02 3654.96 3711.85 3675.20 3649.09 3647.23 362
testmvs12.33 33615.23 3393.64 3495.77 3702.23 37188.99 3493.62 3702.30 3665.29 36613.09 3644.52 3721.95 3665.16 3658.32 3656.75 363
pcd_1.5k_mvsjas7.98 33710.65 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36895.82 1050.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.91 33810.55 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36894.94 3040.00 3730.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS98.43 15295.94 7798.56 15690.72 26796.66 20297.07 21695.02 13799.74 7291.08 24498.93 219
IU-MVS99.22 5795.40 9998.14 20885.77 31498.36 7595.23 13099.51 10699.49 51
OPU-MVS97.64 11598.01 19595.27 10696.79 11597.35 19896.97 5498.51 32791.21 24399.25 18099.14 136
test_241102_TWO98.83 10196.11 11198.62 5198.24 9996.92 5899.72 8295.44 11799.49 11299.49 51
test_241102_ONE99.22 5795.35 10398.83 10196.04 11699.08 3198.13 11197.87 2099.33 231
save fliter98.48 14794.71 12694.53 24198.41 17395.02 167
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9899.62 6599.58 28
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7699.75 6595.48 11399.52 10199.53 39
test072699.24 5295.51 9496.89 11198.89 7695.92 12598.64 5098.31 8697.06 50
GSMVS98.06 266
test_part299.03 9196.07 7298.08 111
sam_mvs177.80 31798.06 266
sam_mvs77.38 321
ambc96.56 19198.23 17191.68 21697.88 5498.13 21098.42 6998.56 6894.22 16299.04 27694.05 18899.35 15798.95 170
MTGPAbinary98.73 124
test_post194.98 22310.37 36776.21 32999.04 27689.47 283
test_post10.87 36676.83 32599.07 273
patchmatchnet-post96.84 23077.36 32299.42 199
GG-mvs-BLEND90.60 33191.00 36184.21 32898.23 3272.63 36882.76 36084.11 36156.14 36896.79 35572.20 35892.09 34990.78 357
MTMP96.55 12674.60 365
gm-plane-assit91.79 36071.40 36481.67 33790.11 35798.99 28284.86 332
test9_res91.29 23998.89 22499.00 164
TEST997.84 21495.23 10893.62 27798.39 17686.81 30493.78 29295.99 27794.68 14699.52 174
test_897.81 21895.07 11693.54 28098.38 17887.04 30293.71 29695.96 28194.58 15199.52 174
agg_prior290.34 27298.90 22199.10 152
agg_prior97.80 22294.96 11898.36 18093.49 30599.53 170
TestCases98.06 8599.08 8496.16 6899.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
test_prior495.38 10093.61 279
test_prior293.33 28894.21 19494.02 28796.25 26593.64 17591.90 22698.96 213
test_prior97.46 13597.79 22894.26 14698.42 17199.34 22898.79 198
旧先验293.35 28777.95 35495.77 24598.67 31490.74 258
新几何293.43 282
新几何197.25 15298.29 16194.70 12997.73 23777.98 35294.83 26696.67 24392.08 21399.45 19388.17 30298.65 24897.61 290
旧先验197.80 22293.87 15897.75 23697.04 21993.57 17798.68 24398.72 208
无先验93.20 29197.91 22580.78 34299.40 21087.71 30497.94 275
原ACMM292.82 296
原ACMM196.58 18898.16 18192.12 20598.15 20785.90 31293.49 30596.43 25592.47 20599.38 21887.66 30798.62 25098.23 252
test22298.17 17993.24 18092.74 30097.61 25175.17 35794.65 27096.69 24290.96 23098.66 24697.66 288
testdata299.46 18987.84 303
segment_acmp95.34 126
testdata95.70 23298.16 18190.58 23297.72 23880.38 34495.62 24897.02 22092.06 21498.98 28489.06 29098.52 25597.54 292
testdata192.77 29793.78 206
test1297.46 13597.61 24794.07 15197.78 23593.57 30393.31 18199.42 19998.78 23598.89 185
plane_prior798.70 11994.67 130
plane_prior698.38 15594.37 14091.91 220
plane_prior598.75 12099.46 18992.59 21999.20 18399.28 110
plane_prior496.77 236
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior198.49 145
plane_prior94.29 14295.42 18894.31 19198.93 219
n20.00 372
nn0.00 372
door-mid98.17 204
lessismore_v097.05 16199.36 4092.12 20584.07 36298.77 4698.98 4085.36 28499.74 7297.34 4399.37 14999.30 102
LGP-MVS_train98.74 3599.15 7297.02 4299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
test1198.08 215
door97.81 234
HQP5-MVS92.47 195
HQP-NCC97.85 21094.26 24693.18 22492.86 318
ACMP_Plane97.85 21094.26 24693.18 22492.86 318
BP-MVS90.51 267
HQP4-MVS92.87 31799.23 25299.06 157
HQP3-MVS98.43 16898.74 239
HQP2-MVS90.33 237
NP-MVS98.14 18493.72 16695.08 300
MDTV_nov1_ep13_2view57.28 36794.89 22680.59 34394.02 28778.66 31485.50 32697.82 281
ACMMP++_ref99.52 101
ACMMP++99.55 90
Test By Simon94.51 154
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16195.63 14097.22 16497.30 20395.52 11998.55 32490.97 24798.90 22198.34 240
DeepMVS_CXcopyleft77.17 34590.94 36285.28 31474.08 36752.51 36280.87 36388.03 35975.25 33370.63 36459.23 36384.94 35975.62 359