This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
v7n98.73 1198.99 597.95 9899.64 1494.20 15598.67 1599.14 4799.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12099.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
ANet_high98.31 3198.94 696.41 21199.33 5389.64 26197.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4699.93 397.71 5299.91 1999.70 26
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4099.59 15997.21 6899.76 5899.40 100
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4299.92 597.79 4899.93 1199.79 10
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4699.92 597.64 5699.92 1699.75 19
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14699.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14798.84 1199.15 4499.37 399.67 799.43 1595.61 13599.72 8798.12 3499.86 3199.73 22
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9899.92 597.88 4299.98 299.85 3
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17898.23 4699.05 6697.40 7999.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14399.82 195.44 16599.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7596.50 10899.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8497.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18498.20 5198.87 11198.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15599.35 2599.37 1997.38 4199.90 1498.59 2899.91 1999.77 12
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 13999.89 1897.95 4199.91 1999.75 19
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17399.73 395.05 18199.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
test_fmvsmvis_n_192098.08 4598.47 2696.93 17699.03 10793.29 18696.32 16399.65 995.59 15799.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 305
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16897.76 7599.00 8498.40 3399.07 4298.98 5896.89 7399.75 6797.19 7199.79 5399.55 52
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12199.05 1399.01 4498.65 9195.37 14299.90 1497.57 5799.91 1999.77 12
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10398.49 3199.38 2299.14 4695.44 14199.84 3096.47 9199.80 5199.47 79
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18899.64 1294.99 18499.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19198.35 3599.21 3398.43 3298.89 5498.83 7494.30 17499.81 3697.87 4399.91 1999.77 12
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8297.82 16699.11 4796.75 8399.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9199.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18699.72 7199.32 115
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 8998.82 31896.38 9499.50 13996.98 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14199.05 6698.67 2498.84 5998.45 11097.58 3699.88 2096.45 9299.86 3199.54 53
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16396.17 17799.57 1495.66 15299.52 1598.71 8497.04 6099.64 14099.21 799.87 2998.69 228
SDMVSNet97.97 5298.26 3997.11 16299.41 4292.21 21396.92 12698.60 17498.58 2898.78 6499.39 1697.80 2599.62 14994.98 18099.86 3199.52 58
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7395.88 14297.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18197.96 6298.25 21398.58 2898.78 6499.39 1698.21 1499.56 16892.65 25099.86 3199.52 58
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17398.57 16192.10 22195.97 19199.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4399.45 20394.08 21599.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17298.23 4698.66 16697.41 7899.00 4699.19 3695.47 13999.73 8295.83 12399.76 5899.30 120
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6892.81 19697.55 9198.94 9797.10 8898.85 5798.88 7195.03 15299.67 12897.39 6499.65 8799.26 132
FIs97.93 6598.07 4597.48 13599.38 4892.95 19498.03 6199.11 5098.04 4898.62 7698.66 8893.75 18899.78 4797.23 6699.84 4099.73 22
v897.60 10098.06 4796.23 21798.71 14289.44 26597.43 10198.82 13597.29 8498.74 7099.10 4893.86 18499.68 12298.61 2799.94 899.56 50
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9797.71 6198.85 5799.10 4891.35 24399.83 3298.47 3099.90 2499.64 35
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15397.86 6998.31 21098.79 2299.23 3298.86 7395.76 13099.61 15695.49 14099.36 17799.23 138
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13698.59 8098.69 8696.94 6799.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18299.09 9791.43 23696.37 15999.11 5094.19 20999.01 4499.25 3196.30 10899.38 22899.00 1499.88 2799.73 22
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8192.51 20496.57 14899.15 4493.68 22698.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26397.19 24196.88 7599.86 2497.50 6099.73 6798.41 253
dcpmvs_297.12 12797.99 5494.51 30299.11 9484.00 35897.75 7699.65 997.38 8099.14 3798.42 11395.16 14899.96 295.52 13999.78 5699.58 39
tfpnnormal97.72 9097.97 5596.94 17599.26 5992.23 21297.83 7198.45 18898.25 3999.13 3898.66 8896.65 8699.69 11793.92 22399.62 9298.91 197
v1097.55 10497.97 5596.31 21598.60 15789.64 26197.44 9999.02 7596.60 10198.72 7299.16 4393.48 19399.72 8798.76 2199.92 1699.58 39
test_040297.84 7797.97 5597.47 13699.19 7994.07 15896.71 14298.73 14998.66 2598.56 8298.41 11496.84 7999.69 11794.82 18499.81 4898.64 232
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26797.01 25396.99 6499.82 3497.66 5599.64 8998.39 256
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10396.62 9998.62 7698.30 12896.97 6599.75 6795.70 12699.25 20399.21 140
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13498.83 12796.11 12699.08 4098.24 14097.87 2399.72 8795.44 14799.51 13599.14 154
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9198.92 10097.72 5998.25 11898.13 15397.10 5499.75 6795.44 14799.24 20699.32 115
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18698.79 13191.44 23596.14 17899.06 6294.19 20998.82 6198.98 5896.22 11399.38 22898.98 1699.86 3199.58 39
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11698.79 13798.98 1798.74 7098.49 10595.80 12999.49 19195.04 17499.44 15599.11 164
RE-MVS-def97.88 6498.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.94 6795.49 14099.20 20899.26 132
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 14997.79 5399.42 2097.83 18894.40 17299.78 4795.91 11899.76 5899.46 81
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.60 9199.76 6195.49 14099.20 20899.26 132
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28496.92 25996.81 8199.87 2296.87 8299.76 5898.51 246
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10798.73 14997.69 6397.90 15797.96 17695.81 12899.82 3496.13 10499.61 9899.45 85
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12992.51 20496.25 16999.06 6293.67 22798.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 56
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16697.41 18497.50 21697.98 1999.79 4495.58 13899.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15198.92 11892.71 20195.89 19999.41 2493.36 23499.00 4698.44 11296.46 10099.65 13699.09 1199.76 5899.45 85
casdiffmvspermissive97.50 10797.81 7196.56 20298.51 17091.04 24195.83 20299.09 5797.23 8598.33 11098.30 12897.03 6199.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30397.99 4999.15 3699.35 2389.84 26799.90 1498.64 2699.90 2499.82 6
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18695.44 22398.86 11498.20 4298.37 10199.24 3294.69 16099.55 17395.98 11499.79 5399.65 33
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 17995.96 19398.97 9394.55 20098.82 6198.76 8097.31 4499.29 25697.20 7099.44 15599.38 106
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14498.83 12795.21 17298.36 10498.13 15398.13 1899.62 14996.04 10899.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline97.44 11297.78 7796.43 20898.52 16890.75 24896.84 12999.03 7396.51 10797.86 16398.02 17096.67 8599.36 23797.09 7499.47 14899.19 145
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16298.92 11892.28 21095.83 20299.32 2593.22 24098.91 5398.49 10596.31 10799.64 14099.07 1299.76 5899.40 100
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11398.90 10296.58 10398.08 13897.87 18697.02 6299.76 6195.25 15899.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9495.75 15097.91 15698.06 16696.89 7399.76 6195.32 15599.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11798.98 9095.75 15097.62 17097.59 20997.61 3599.77 5696.34 9699.44 15599.36 112
SD-MVS97.37 11897.70 8196.35 21298.14 21595.13 12296.54 15098.92 10095.94 13899.19 3498.08 15997.74 2895.06 39695.24 15999.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XXY-MVS97.54 10597.70 8197.07 16799.46 3692.21 21397.22 11099.00 8494.93 18798.58 8198.92 6597.31 4499.41 21994.44 19999.43 16399.59 38
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17199.02 7593.92 21998.62 7698.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11199.08 5896.57 10698.07 14098.38 11896.22 11399.14 28294.71 19399.31 19598.52 245
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11899.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10398.83 12797.32 8298.06 14197.85 18796.65 8699.77 5695.00 17799.11 22299.32 115
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13798.23 21695.92 13998.40 9898.28 13397.06 5899.71 10295.48 14399.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21199.02 7598.11 4498.31 11397.69 20394.65 16499.85 2797.02 7799.71 7499.48 76
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19799.04 7297.51 7298.22 12197.81 19294.68 16299.78 4797.14 7299.75 6599.41 99
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8898.84 12196.05 12997.49 17797.54 21297.07 5799.70 11095.61 13599.46 15199.30 120
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17698.49 2898.88 10996.86 9497.11 19998.55 10095.82 12499.73 8295.94 11699.42 16699.13 156
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16098.79 13795.07 18097.88 15998.35 12097.24 5099.72 8796.05 10799.58 10599.45 85
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24997.64 20596.49 9699.72 8795.66 13199.37 17499.45 85
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9898.84 12195.76 14896.93 21797.43 22097.26 4899.79 4496.06 10599.53 12599.45 85
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8898.83 12796.05 12997.46 18297.63 20696.77 8299.76 6195.61 13599.46 15199.49 70
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21398.87 11197.57 6798.31 11397.83 18894.69 16099.85 2797.02 7799.71 7499.46 81
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8698.84 12196.00 13497.22 18997.62 20796.87 7799.76 6195.48 14399.43 16399.46 81
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15898.13 4396.93 21798.45 11095.30 14599.62 14995.64 13398.96 23799.24 137
SixPastTwentyTwo97.49 10897.57 10097.26 15399.56 2192.33 20898.28 4296.97 29298.30 3899.45 1899.35 2388.43 28499.89 1898.01 3999.76 5899.54 53
test_fmvs397.38 11697.56 10196.84 18498.63 15392.81 19697.60 8699.61 1390.87 29298.76 6999.66 394.03 18097.90 37699.24 699.68 8299.81 8
tt080597.44 11297.56 10197.11 16299.55 2396.36 6398.66 1895.66 31898.31 3697.09 20595.45 32597.17 5298.50 35298.67 2597.45 33296.48 365
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9496.11 12696.89 22097.45 21896.85 7899.78 4795.19 16199.63 9199.38 106
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7898.78 14196.04 13197.10 20097.73 20096.53 9399.78 4795.16 16599.50 13999.46 81
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11899.06 6295.45 16397.55 17297.94 17997.11 5399.78 4794.77 18999.46 15199.48 76
Anonymous2024052197.07 12997.51 10695.76 23999.35 5188.18 29197.78 7298.40 19797.11 8798.34 10799.04 5389.58 26999.79 4498.09 3699.93 1199.30 120
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9099.06 6296.19 12398.48 9098.70 8594.72 15999.24 26894.37 20499.33 19099.17 148
LS3D97.77 8697.50 10898.57 4796.24 33597.58 2498.45 3198.85 11898.58 2897.51 17597.94 17995.74 13199.63 14495.19 16198.97 23698.51 246
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11298.79 13795.96 13697.53 17397.40 22296.93 6999.77 5695.04 17499.35 18299.42 97
VPNet97.26 12497.49 10996.59 19899.47 3590.58 25096.27 16598.53 18197.77 5498.46 9398.41 11494.59 16599.68 12294.61 19499.29 19899.52 58
EI-MVSNet-UG-set97.32 12297.40 11197.09 16697.34 30192.01 22495.33 23597.65 26797.74 5798.30 11598.14 15195.04 15199.69 11797.55 5899.52 13099.58 39
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12099.10 5295.32 16997.83 16597.88 18596.44 10199.72 8794.59 19899.39 17299.25 136
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16297.36 29892.08 22295.34 23497.65 26797.74 5798.29 11698.11 15795.05 15099.68 12297.50 6099.50 13999.56 50
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23098.99 8792.45 26898.11 13398.31 12497.25 4999.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24398.99 8795.84 14598.78 6498.08 15996.84 7999.81 3693.98 22199.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 16996.99 12399.65 996.74 9799.47 1798.93 6496.91 7299.84 3090.11 30699.06 23198.32 265
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10698.99 8796.35 11698.13 13295.95 31195.99 11799.66 13494.36 20699.73 6798.59 238
IterMVS-LS96.92 13997.29 11895.79 23898.51 17088.13 29495.10 24698.66 16696.99 8998.46 9398.68 8792.55 21799.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15598.98 9095.05 18198.06 14198.02 17095.86 12099.56 16894.37 20499.64 8999.00 180
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24198.46 18794.58 19998.10 13598.07 16197.09 5699.39 22595.16 16599.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12195.61 32298.59 2798.51 8598.72 8292.54 21999.58 16196.02 11099.49 14299.12 161
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8598.20 22193.00 25298.16 12898.06 16695.89 11999.72 8795.67 13099.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
MP-MVScopyleft97.64 9697.18 12499.00 999.32 5597.77 1797.49 9798.73 14996.27 11795.59 28297.75 19796.30 10899.78 4793.70 23199.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
V4297.04 13097.16 12596.68 19598.59 15991.05 24096.33 16298.36 20294.60 19697.99 14798.30 12893.32 19599.62 14997.40 6399.53 12599.38 106
SMA-MVScopyleft97.48 10997.11 12698.60 4598.83 12696.67 5396.74 13798.73 14991.61 28198.48 9098.36 11996.53 9399.68 12295.17 16399.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PM-MVS97.36 12097.10 12798.14 8298.91 12096.77 4996.20 17298.63 17293.82 22098.54 8398.33 12293.98 18199.05 29795.99 11399.45 15498.61 237
ACMP92.54 1397.47 11097.10 12798.55 4999.04 10696.70 5196.24 17098.89 10393.71 22397.97 15197.75 19797.44 3899.63 14493.22 24399.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v114496.84 14497.08 12996.13 22498.42 18289.28 26895.41 22798.67 16494.21 20797.97 15198.31 12493.06 20099.65 13698.06 3899.62 9299.45 85
XVG-OURS-SEG-HR97.38 11697.07 13098.30 6899.01 10997.41 3494.66 26899.02 7595.20 17398.15 13097.52 21498.83 598.43 35794.87 18296.41 35699.07 171
v119296.83 14797.06 13196.15 22398.28 19289.29 26795.36 23198.77 14293.73 22298.11 13398.34 12193.02 20499.67 12898.35 3299.58 10599.50 62
v2v48296.78 15197.06 13195.95 23198.57 16188.77 28195.36 23198.26 21295.18 17597.85 16498.23 14292.58 21599.63 14497.80 4799.69 7899.45 85
SSC-MVS95.92 19197.03 13392.58 35299.28 5778.39 38896.68 14495.12 33198.90 1999.11 3998.66 8891.36 24299.68 12295.00 17799.16 21499.67 28
v124096.74 15297.02 13495.91 23498.18 20688.52 28395.39 22998.88 10993.15 24898.46 9398.40 11792.80 20799.71 10298.45 3199.49 14299.49 70
test_vis3_rt97.04 13096.98 13597.23 15698.44 18095.88 8096.82 13199.67 690.30 30199.27 2999.33 2794.04 17996.03 39597.14 7297.83 31099.78 11
v14896.58 16596.97 13695.42 25798.63 15387.57 30795.09 24797.90 24995.91 14198.24 11997.96 17693.42 19499.39 22596.04 10899.52 13099.29 126
PMVScopyleft89.60 1796.71 15796.97 13695.95 23199.51 3097.81 1697.42 10297.49 27497.93 5095.95 26798.58 9696.88 7596.91 38989.59 31499.36 17793.12 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
v192192096.72 15596.96 13895.99 22798.21 20088.79 28095.42 22598.79 13793.22 24098.19 12698.26 13892.68 21199.70 11098.34 3399.55 11899.49 70
patch_mono-296.59 16396.93 13995.55 25098.88 12287.12 31794.47 27399.30 2794.12 21296.65 23498.41 11494.98 15599.87 2295.81 12599.78 5699.66 30
EI-MVSNet96.63 16196.93 13995.74 24097.26 30688.13 29495.29 23997.65 26796.99 8997.94 15498.19 14792.55 21799.58 16196.91 8099.56 11199.50 62
MSP-MVS97.45 11196.92 14199.03 599.26 5997.70 1897.66 8298.89 10395.65 15398.51 8596.46 28692.15 22799.81 3695.14 16898.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AllTest97.20 12696.92 14198.06 8899.08 9896.16 7097.14 11599.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
v14419296.69 15896.90 14396.03 22698.25 19688.92 27595.49 22198.77 14293.05 25098.09 13698.29 13292.51 22299.70 11098.11 3599.56 11199.47 79
VDDNet96.98 13696.84 14497.41 14399.40 4593.26 18897.94 6495.31 32999.26 798.39 10099.18 3987.85 29399.62 14995.13 17099.09 22599.35 114
VNet96.84 14496.83 14596.88 18098.06 22092.02 22396.35 16197.57 27397.70 6297.88 15997.80 19392.40 22499.54 17694.73 19198.96 23799.08 169
WR-MVS96.90 14196.81 14697.16 15898.56 16392.20 21694.33 27698.12 23697.34 8198.20 12297.33 23392.81 20699.75 6794.79 18699.81 4899.54 53
GBi-Net96.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
test196.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
MVS_Test96.27 17796.79 14994.73 29296.94 31986.63 32596.18 17398.33 20694.94 18596.07 26398.28 13395.25 14699.26 26297.21 6897.90 30898.30 269
XVG-OURS97.12 12796.74 15098.26 7098.99 11097.45 3293.82 30399.05 6695.19 17498.32 11197.70 20295.22 14798.41 35894.27 20898.13 29898.93 193
MSLP-MVS++96.42 17396.71 15195.57 24797.82 24690.56 25295.71 20698.84 12194.72 19196.71 22997.39 22694.91 15798.10 37495.28 15699.02 23398.05 294
9.1496.69 15298.53 16796.02 18698.98 9093.23 23997.18 19497.46 21796.47 9899.62 14992.99 24799.32 192
IS-MVSNet96.93 13896.68 15397.70 11399.25 6294.00 16198.57 2096.74 30198.36 3498.14 13197.98 17588.23 28699.71 10293.10 24699.72 7199.38 106
FMVSNet296.72 15596.67 15496.87 18197.96 23091.88 22697.15 11398.06 24495.59 15798.50 8798.62 9489.51 27399.65 13694.99 17999.60 10199.07 171
MM96.87 14396.62 15597.62 11997.72 26893.30 18596.39 15592.61 36197.90 5296.76 22798.64 9290.46 25599.81 3699.16 999.94 899.76 17
WB-MVS95.50 20796.62 15592.11 36199.21 7577.26 39696.12 17995.40 32898.62 2698.84 5998.26 13891.08 24699.50 18693.37 23698.70 26799.58 39
test20.0396.58 16596.61 15796.48 20698.49 17491.72 23095.68 21097.69 26296.81 9598.27 11797.92 18294.18 17798.71 33090.78 28999.66 8699.00 180
ab-mvs96.59 16396.59 15896.60 19798.64 14992.21 21398.35 3597.67 26394.45 20196.99 21298.79 7594.96 15699.49 19190.39 30399.07 22898.08 285
new-patchmatchnet95.67 20196.58 15992.94 34397.48 28880.21 38392.96 32598.19 22694.83 18898.82 6198.79 7593.31 19699.51 18595.83 12399.04 23299.12 161
EPP-MVSNet96.84 14496.58 15997.65 11799.18 8093.78 17098.68 1496.34 30697.91 5197.30 18698.06 16688.46 28399.85 2793.85 22599.40 17199.32 115
UGNet96.81 14996.56 16197.58 12196.64 32493.84 16797.75 7697.12 28696.47 11193.62 33298.88 7193.22 19899.53 17895.61 13599.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CNVR-MVS96.92 13996.55 16298.03 9398.00 22895.54 9594.87 25998.17 22794.60 19696.38 24697.05 24995.67 13399.36 23795.12 17199.08 22699.19 145
MVS_111021_LR96.82 14896.55 16297.62 11998.27 19495.34 11093.81 30598.33 20694.59 19896.56 23896.63 27796.61 8998.73 32794.80 18599.34 18598.78 215
MVS_111021_HR96.73 15496.54 16497.27 15198.35 18793.66 17593.42 31598.36 20294.74 19096.58 23696.76 27196.54 9298.99 30494.87 18299.27 20199.15 151
APD-MVScopyleft97.00 13296.53 16598.41 5998.55 16496.31 6696.32 16398.77 14292.96 25797.44 18397.58 21195.84 12199.74 7691.96 26199.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PHI-MVS96.96 13796.53 16598.25 7397.48 28896.50 5996.76 13698.85 11893.52 22996.19 25996.85 26295.94 11899.42 21093.79 22799.43 16398.83 210
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 13997.69 27094.15 15696.02 18698.43 19193.17 24797.30 18697.38 22895.48 13899.28 25893.74 22899.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi96.07 18496.50 16894.80 28899.26 5987.69 30695.96 19398.58 17895.08 17998.02 14696.25 29697.92 2097.60 38288.68 32898.74 26299.11 164
test_fmvs296.38 17496.45 16996.16 22297.85 23891.30 23796.81 13299.45 1989.24 31598.49 8899.38 1888.68 28097.62 38198.83 1899.32 19299.57 46
DeepPCF-MVS94.58 596.90 14196.43 17098.31 6797.48 28897.23 4092.56 33798.60 17492.84 25998.54 8397.40 22296.64 8898.78 32294.40 20399.41 17098.93 193
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16484.86 34895.91 19899.71 492.72 26297.67 16998.90 6987.44 29698.73 32797.96 4098.85 25197.96 301
MVS_030496.62 16296.40 17297.28 15097.91 23492.30 20996.47 15389.74 38897.52 7195.38 28898.63 9392.76 20899.81 3699.28 499.93 1199.75 19
HPM-MVS++copyleft96.99 13396.38 17398.81 2798.64 14997.59 2395.97 19198.20 22195.51 16195.06 29496.53 28294.10 17899.70 11094.29 20799.15 21599.13 156
MVSFormer96.14 18296.36 17495.49 25397.68 27187.81 30398.67 1599.02 7596.50 10894.48 30996.15 30086.90 30099.92 598.73 2299.13 21898.74 221
TinyColmap96.00 18996.34 17594.96 27997.90 23687.91 29994.13 29098.49 18594.41 20298.16 12897.76 19496.29 11098.68 33690.52 29999.42 16698.30 269
HQP_MVS96.66 16096.33 17697.68 11698.70 14494.29 15096.50 15198.75 14696.36 11496.16 26096.77 26991.91 23799.46 19992.59 25299.20 20899.28 127
K. test v396.44 17196.28 17796.95 17499.41 4291.53 23297.65 8390.31 38398.89 2098.93 5099.36 2184.57 31899.92 597.81 4699.56 11199.39 104
diffmvspermissive96.04 18696.23 17895.46 25597.35 29988.03 29793.42 31599.08 5894.09 21596.66 23296.93 25793.85 18599.29 25696.01 11298.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS96.17 18196.23 17895.99 22797.55 28490.04 25592.38 34698.52 18294.13 21196.55 24097.06 24894.99 15499.58 16195.62 13499.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 34397.63 27196.99 8998.36 10498.54 10187.94 28899.75 6797.07 7699.08 22699.27 131
pmmvs-eth3d96.49 16896.18 18197.42 14298.25 19694.29 15094.77 26498.07 24389.81 30997.97 15198.33 12293.11 19999.08 29495.46 14699.84 4098.89 201
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14597.18 30994.39 14595.46 22298.73 14996.03 13394.72 30294.92 33596.28 11199.69 11793.81 22697.98 30398.09 284
TSAR-MVS + GP.96.47 17096.12 18297.49 13497.74 26695.23 11594.15 28796.90 29493.26 23898.04 14496.70 27394.41 17198.89 31394.77 18999.14 21698.37 258
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32198.69 496.42 15498.09 23895.86 14495.15 29295.54 32294.26 17599.81 3694.06 21698.51 28398.47 250
CPTT-MVS96.69 15896.08 18598.49 5298.89 12196.64 5597.25 10798.77 14292.89 25896.01 26697.13 24392.23 22699.67 12892.24 25699.34 18599.17 148
mvs_anonymous95.36 21596.07 18693.21 33496.29 33481.56 37594.60 27097.66 26593.30 23796.95 21698.91 6893.03 20399.38 22896.60 8697.30 33798.69 228
Effi-MVS+96.19 18096.01 18796.71 19297.43 29492.19 21796.12 17999.10 5295.45 16393.33 34394.71 33897.23 5199.56 16893.21 24497.54 32698.37 258
OMC-MVS96.48 16996.00 18897.91 10098.30 18996.01 7894.86 26098.60 17491.88 27797.18 19497.21 24096.11 11599.04 29890.49 30299.34 18598.69 228
NCCC96.52 16795.99 18998.10 8597.81 24795.68 8995.00 25598.20 22195.39 16795.40 28796.36 29293.81 18699.45 20393.55 23498.42 28799.17 148
Anonymous20240521196.34 17595.98 19097.43 14098.25 19693.85 16696.74 13794.41 33997.72 5998.37 10198.03 16987.15 29999.53 17894.06 21699.07 22898.92 196
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
mvsany_test396.21 17995.93 19497.05 16897.40 29694.33 14995.76 20594.20 34189.10 31699.36 2499.60 693.97 18297.85 37795.40 15498.63 27498.99 183
ETV-MVS96.13 18395.90 19596.82 18597.76 26193.89 16495.40 22898.95 9695.87 14395.58 28391.00 38696.36 10699.72 8793.36 23798.83 25496.85 352
test_vis1_n95.67 20195.89 19695.03 27498.18 20689.89 25896.94 12599.28 2988.25 33198.20 12298.92 6586.69 30397.19 38497.70 5498.82 25598.00 299
test_f95.82 19695.88 19795.66 24497.61 27993.21 19095.61 21798.17 22786.98 34398.42 9699.47 1190.46 25594.74 39897.71 5298.45 28599.03 176
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34497.47 27695.49 16298.06 14198.49 10587.94 28899.58 16196.02 11099.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MCST-MVS96.24 17895.80 19997.56 12298.75 13694.13 15794.66 26898.17 22790.17 30496.21 25796.10 30595.14 14999.43 20894.13 21498.85 25199.13 156
PVSNet_Blended_VisFu95.95 19095.80 19996.42 20999.28 5790.62 24995.31 23799.08 5888.40 32896.97 21598.17 15092.11 22999.78 4793.64 23299.21 20798.86 208
EIA-MVS96.04 18695.77 20196.85 18297.80 25192.98 19396.12 17999.16 4094.65 19493.77 32791.69 38095.68 13299.67 12894.18 21198.85 25197.91 304
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20798.48 17691.52 23395.31 23798.45 18895.76 14897.48 17997.54 21289.53 27298.69 33394.43 20094.61 38199.13 156
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20086.83 32395.61 21799.26 3090.45 29998.17 12798.96 6184.43 31998.31 36696.74 8399.17 21397.90 305
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24098.48 17688.76 28292.84 32797.25 27996.00 13497.59 17197.95 17891.38 24199.46 19993.16 24596.35 35898.99 183
CANet95.86 19495.65 20596.49 20596.41 33290.82 24594.36 27598.41 19594.94 18592.62 36196.73 27292.68 21199.71 10295.12 17199.60 10198.94 189
h-mvs3396.29 17695.63 20698.26 7098.50 17396.11 7396.90 12797.09 28796.58 10397.21 19198.19 14784.14 32099.78 4795.89 11996.17 36398.89 201
LF4IMVS96.07 18495.63 20697.36 14698.19 20395.55 9495.44 22398.82 13592.29 27195.70 28096.55 28092.63 21498.69 33391.75 27099.33 19097.85 309
QAPM95.88 19395.57 20896.80 18697.90 23691.84 22898.18 5398.73 14988.41 32796.42 24498.13 15394.73 15899.75 6788.72 32698.94 24098.81 212
alignmvs96.01 18895.52 20997.50 13197.77 26094.71 13196.07 18296.84 29597.48 7396.78 22694.28 34885.50 31199.40 22196.22 10098.73 26598.40 254
c3_l95.20 22395.32 21094.83 28796.19 33986.43 32891.83 35598.35 20593.47 23197.36 18597.26 23788.69 27999.28 25895.41 15399.36 17798.78 215
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21389.13 27396.81 13299.43 2186.97 34497.21 19198.92 6583.00 32897.13 38598.09 3698.94 24098.72 224
MVP-Stereo95.69 19995.28 21196.92 17798.15 21393.03 19295.64 21698.20 22190.39 30096.63 23597.73 20091.63 23999.10 29291.84 26697.31 33698.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
wuyk23d93.25 29795.20 21387.40 38496.07 34795.38 10597.04 12194.97 33395.33 16899.70 698.11 15798.14 1791.94 40277.76 39399.68 8274.89 402
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21497.16 31091.96 22597.74 7898.84 12187.26 33894.36 31198.01 17293.95 18399.67 12890.70 29598.75 26197.35 336
D2MVS95.18 22495.17 21595.21 26497.76 26187.76 30594.15 28797.94 24789.77 31096.99 21297.68 20487.45 29599.14 28295.03 17699.81 4898.74 221
bld_raw_dy_0_6495.16 22795.16 21695.15 26896.54 32689.06 27496.63 14799.54 1789.68 31198.72 7294.50 34488.64 28199.38 22892.24 25699.93 1197.03 343
DP-MVS Recon95.55 20695.13 21796.80 18698.51 17093.99 16294.60 27098.69 15990.20 30395.78 27696.21 29892.73 21098.98 30690.58 29898.86 25097.42 333
MSDG95.33 21795.13 21795.94 23397.40 29691.85 22791.02 37298.37 20195.30 17096.31 25195.99 30794.51 16998.38 36189.59 31497.65 32397.60 325
hse-mvs295.77 19795.09 21997.79 10797.84 24395.51 9795.66 21195.43 32796.58 10397.21 19196.16 29984.14 32099.54 17695.89 11996.92 34098.32 265
Fast-Effi-MVS+95.49 20895.07 22096.75 19097.67 27492.82 19594.22 28398.60 17491.61 28193.42 34192.90 36296.73 8499.70 11092.60 25197.89 30997.74 317
CLD-MVS95.47 21195.07 22096.69 19498.27 19492.53 20391.36 36198.67 16491.22 28995.78 27694.12 34995.65 13498.98 30690.81 28799.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023120695.27 22095.06 22295.88 23598.72 13989.37 26695.70 20797.85 25288.00 33496.98 21497.62 20791.95 23499.34 24389.21 31999.53 12598.94 189
API-MVS95.09 23095.01 22395.31 26096.61 32594.02 16096.83 13097.18 28395.60 15695.79 27494.33 34794.54 16898.37 36385.70 35798.52 28193.52 391
FMVSNet395.26 22194.94 22496.22 21996.53 32990.06 25495.99 18997.66 26594.11 21397.99 14797.91 18380.22 34299.63 14494.60 19599.44 15598.96 186
TAMVS95.49 20894.94 22497.16 15898.31 18893.41 18395.07 25096.82 29791.09 29097.51 17597.82 19189.96 26499.42 21088.42 33199.44 15598.64 232
eth_miper_zixun_eth94.89 23794.93 22694.75 29195.99 34886.12 33191.35 36298.49 18593.40 23297.12 19897.25 23886.87 30299.35 24195.08 17398.82 25598.78 215
PVSNet_BlendedMVS95.02 23494.93 22695.27 26197.79 25687.40 31294.14 28998.68 16188.94 32094.51 30798.01 17293.04 20199.30 25289.77 31299.49 14299.11 164
MS-PatchMatch94.83 23994.91 22894.57 29996.81 32287.10 31894.23 28297.34 27888.74 32397.14 19697.11 24591.94 23598.23 37092.99 24797.92 30698.37 258
FA-MVS(test-final)94.91 23694.89 22994.99 27797.51 28688.11 29698.27 4495.20 33092.40 27096.68 23098.60 9583.44 32599.28 25893.34 23898.53 28097.59 326
LFMVS95.32 21894.88 23096.62 19698.03 22191.47 23497.65 8390.72 37999.11 997.89 15898.31 12479.20 34499.48 19493.91 22499.12 22198.93 193
Vis-MVSNet (Re-imp)95.11 22894.85 23195.87 23699.12 9389.17 26997.54 9694.92 33496.50 10896.58 23697.27 23683.64 32499.48 19488.42 33199.67 8498.97 185
ppachtmachnet_test94.49 25994.84 23293.46 32796.16 34182.10 37090.59 37697.48 27590.53 29897.01 21197.59 20991.01 24799.36 23793.97 22299.18 21298.94 189
YYNet194.73 24294.84 23294.41 30697.47 29285.09 34590.29 37995.85 31692.52 26597.53 17397.76 19491.97 23399.18 27593.31 24096.86 34398.95 187
MDA-MVSNet_test_wron94.73 24294.83 23494.42 30597.48 28885.15 34390.28 38095.87 31592.52 26597.48 17997.76 19491.92 23699.17 27993.32 23996.80 34898.94 189
test111194.53 25794.81 23593.72 32199.06 10181.94 37398.31 3983.87 40296.37 11398.49 8899.17 4281.49 33399.73 8296.64 8499.86 3199.49 70
miper_lstm_enhance94.81 24194.80 23694.85 28596.16 34186.45 32791.14 36998.20 22193.49 23097.03 20997.37 23084.97 31599.26 26295.28 15699.56 11198.83 210
CL-MVSNet_self_test95.04 23194.79 23795.82 23797.51 28689.79 25991.14 36996.82 29793.05 25096.72 22896.40 29090.82 25099.16 28091.95 26298.66 27198.50 248
BH-untuned94.69 24794.75 23894.52 30197.95 23387.53 30894.07 29297.01 29093.99 21797.10 20095.65 31892.65 21398.95 31187.60 34196.74 34997.09 340
miper_ehance_all_eth94.69 24794.70 23994.64 29395.77 35986.22 33091.32 36598.24 21591.67 27997.05 20796.65 27688.39 28599.22 27294.88 18198.34 28998.49 249
train_agg95.46 21294.66 24097.88 10297.84 24395.23 11593.62 30998.39 19887.04 34193.78 32595.99 30794.58 16699.52 18191.76 26998.90 24498.89 201
CDPH-MVS95.45 21394.65 24197.84 10598.28 19294.96 12693.73 30798.33 20685.03 36495.44 28596.60 27895.31 14499.44 20690.01 30899.13 21899.11 164
cl____94.73 24294.64 24295.01 27595.85 35487.00 31991.33 36398.08 23993.34 23597.10 20097.33 23384.01 32399.30 25295.14 16899.56 11198.71 227
DIV-MVS_self_test94.73 24294.64 24295.01 27595.86 35387.00 31991.33 36398.08 23993.34 23597.10 20097.34 23284.02 32299.31 24995.15 16799.55 11898.72 224
xiu_mvs_v2_base94.22 26594.63 24492.99 34197.32 30484.84 34992.12 34997.84 25491.96 27594.17 31493.43 35396.07 11699.71 10291.27 27597.48 32994.42 386
AdaColmapbinary95.11 22894.62 24596.58 19997.33 30394.45 14494.92 25798.08 23993.15 24893.98 32395.53 32394.34 17399.10 29285.69 35898.61 27696.20 370
test_fmvs194.51 25894.60 24694.26 31295.91 34987.92 29895.35 23399.02 7586.56 34896.79 22298.52 10282.64 33097.00 38897.87 4398.71 26697.88 307
RPMNet94.68 24994.60 24694.90 28295.44 36788.15 29296.18 17398.86 11497.43 7494.10 31698.49 10579.40 34399.76 6195.69 12895.81 36696.81 356
Patchmtry95.03 23394.59 24896.33 21394.83 37890.82 24596.38 15897.20 28196.59 10297.49 17798.57 9777.67 35199.38 22892.95 24999.62 9298.80 213
our_test_394.20 26994.58 24993.07 33696.16 34181.20 37890.42 37896.84 29590.72 29497.14 19697.13 24390.47 25499.11 28994.04 21998.25 29398.91 197
HQP-MVS95.17 22694.58 24996.92 17797.85 23892.47 20694.26 27798.43 19193.18 24492.86 35295.08 32990.33 25899.23 27090.51 30098.74 26299.05 175
USDC94.56 25594.57 25194.55 30097.78 25986.43 32892.75 33098.65 17185.96 35296.91 21997.93 18190.82 25098.74 32690.71 29499.59 10398.47 250
Patchmatch-RL test94.66 25094.49 25295.19 26598.54 16688.91 27692.57 33698.74 14891.46 28498.32 11197.75 19777.31 35698.81 32096.06 10599.61 9897.85 309
ECVR-MVScopyleft94.37 26394.48 25394.05 31798.95 11283.10 36398.31 3982.48 40496.20 12198.23 12099.16 4381.18 33699.66 13495.95 11599.83 4399.38 106
PS-MVSNAJ94.10 27194.47 25493.00 34097.35 29984.88 34791.86 35497.84 25491.96 27594.17 31492.50 37195.82 12499.71 10291.27 27597.48 32994.40 387
EU-MVSNet94.25 26494.47 25493.60 32498.14 21582.60 36897.24 10992.72 35885.08 36298.48 9098.94 6382.59 33198.76 32597.47 6299.53 12599.44 95
CNLPA95.04 23194.47 25496.75 19097.81 24795.25 11494.12 29197.89 25094.41 20294.57 30595.69 31690.30 26198.35 36486.72 35398.76 26096.64 360
BH-RMVSNet94.56 25594.44 25794.91 28097.57 28187.44 31193.78 30696.26 30793.69 22596.41 24596.50 28592.10 23099.00 30285.96 35597.71 31798.31 267
F-COLMAP95.30 21994.38 25898.05 9298.64 14996.04 7595.61 21798.66 16689.00 31993.22 34496.40 29092.90 20599.35 24187.45 34697.53 32798.77 218
pmmvs594.63 25294.34 25995.50 25297.63 27888.34 28794.02 29397.13 28587.15 34095.22 29197.15 24287.50 29499.27 26193.99 22099.26 20298.88 205
UnsupCasMVSNet_bld94.72 24694.26 26096.08 22598.62 15590.54 25393.38 31798.05 24590.30 30197.02 21096.80 26889.54 27099.16 28088.44 33096.18 36298.56 240
N_pmnet95.18 22494.23 26198.06 8897.85 23896.55 5892.49 33891.63 36989.34 31398.09 13697.41 22190.33 25899.06 29691.58 27199.31 19598.56 240
TAPA-MVS93.32 1294.93 23594.23 26197.04 17098.18 20694.51 14195.22 24298.73 14981.22 38396.25 25595.95 31193.80 18798.98 30689.89 31098.87 24897.62 323
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU94.65 25194.21 26395.96 22995.90 35089.68 26093.92 30097.83 25693.19 24390.12 38295.64 31988.52 28299.57 16793.27 24299.47 14898.62 235
pmmvs494.82 24094.19 26496.70 19397.42 29592.75 20092.09 35196.76 29986.80 34695.73 27997.22 23989.28 27698.89 31393.28 24199.14 21698.46 252
PAPM_NR94.61 25394.17 26595.96 22998.36 18691.23 23895.93 19697.95 24692.98 25393.42 34194.43 34690.53 25398.38 36187.60 34196.29 36098.27 273
CDS-MVSNet94.88 23894.12 26697.14 16097.64 27793.57 17793.96 29997.06 28990.05 30696.30 25296.55 28086.10 30599.47 19690.10 30799.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PMMVS293.66 28594.07 26792.45 35697.57 28180.67 38186.46 39496.00 31193.99 21797.10 20097.38 22889.90 26597.82 37888.76 32599.47 14898.86 208
jason94.39 26294.04 26895.41 25998.29 19087.85 30292.74 33296.75 30085.38 36195.29 28996.15 30088.21 28799.65 13694.24 20999.34 18598.74 221
jason: jason.
test_yl94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
DCV-MVSNet94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
MG-MVS94.08 27394.00 26994.32 30997.09 31385.89 33393.19 32395.96 31392.52 26594.93 30097.51 21589.54 27098.77 32387.52 34597.71 31798.31 267
MVSTER94.21 26793.93 27295.05 27395.83 35586.46 32695.18 24497.65 26792.41 26997.94 15498.00 17472.39 37899.58 16196.36 9599.56 11199.12 161
PatchMatch-RL94.61 25393.81 27397.02 17298.19 20395.72 8693.66 30897.23 28088.17 33294.94 29995.62 32091.43 24098.57 34587.36 34797.68 32096.76 358
sss94.22 26593.72 27495.74 24097.71 26989.95 25793.84 30296.98 29188.38 32993.75 32895.74 31587.94 28898.89 31391.02 28198.10 29998.37 258
test_vis1_rt94.03 27593.65 27595.17 26795.76 36093.42 18293.97 29898.33 20684.68 36893.17 34695.89 31392.53 22194.79 39793.50 23594.97 37797.31 337
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25687.40 31291.43 36098.68 16184.50 37194.51 30794.48 34593.04 20199.30 25289.77 31298.61 27698.02 297
PatchT93.75 28193.57 27794.29 31195.05 37587.32 31496.05 18392.98 35497.54 7094.25 31298.72 8275.79 36499.24 26895.92 11795.81 36696.32 367
SCA93.38 29493.52 27892.96 34296.24 33581.40 37793.24 32194.00 34291.58 28394.57 30596.97 25487.94 28899.42 21089.47 31697.66 32298.06 291
1112_ss94.12 27093.42 27996.23 21798.59 15990.85 24494.24 28198.85 11885.49 35792.97 35094.94 33386.01 30699.64 14091.78 26897.92 30698.20 279
CHOSEN 1792x268894.10 27193.41 28096.18 22199.16 8290.04 25592.15 34898.68 16179.90 38896.22 25697.83 18887.92 29299.42 21089.18 32099.65 8799.08 169
iter_conf05_1193.77 27993.29 28195.24 26296.54 32689.14 27291.55 35895.02 33290.16 30593.21 34593.94 35087.37 29799.56 16892.24 25699.56 11197.03 343
lupinMVS93.77 27993.28 28295.24 26297.68 27187.81 30392.12 34996.05 30984.52 37094.48 30995.06 33186.90 30099.63 14493.62 23399.13 21898.27 273
Patchmatch-test93.60 28893.25 28394.63 29496.14 34587.47 30996.04 18494.50 33893.57 22896.47 24296.97 25476.50 35998.61 34290.67 29698.41 28897.81 313
114514_t93.96 27693.22 28496.19 22099.06 10190.97 24395.99 18998.94 9773.88 40093.43 34096.93 25792.38 22599.37 23489.09 32199.28 19998.25 275
iter_conf0593.65 28693.05 28595.46 25596.13 34687.45 31095.95 19598.22 21792.66 26397.04 20897.89 18463.52 39499.72 8796.19 10299.82 4799.21 140
OpenMVS_ROBcopyleft91.80 1493.64 28793.05 28595.42 25797.31 30591.21 23995.08 24996.68 30481.56 38096.88 22196.41 28890.44 25799.25 26485.39 36397.67 32195.80 374
mvsany_test193.47 29193.03 28794.79 28994.05 39092.12 21890.82 37490.01 38785.02 36597.26 18898.28 13393.57 19197.03 38692.51 25495.75 37195.23 382
MAR-MVS94.21 26793.03 28797.76 10996.94 31997.44 3396.97 12497.15 28487.89 33692.00 36692.73 36792.14 22899.12 28683.92 37297.51 32896.73 359
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WTY-MVS93.55 28993.00 28995.19 26597.81 24787.86 30093.89 30196.00 31189.02 31894.07 31895.44 32686.27 30499.33 24587.69 33996.82 34698.39 256
PLCcopyleft91.02 1694.05 27492.90 29097.51 12798.00 22895.12 12394.25 28098.25 21386.17 35091.48 37195.25 32791.01 24799.19 27485.02 36796.69 35198.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Test_1112_low_res93.53 29092.86 29195.54 25198.60 15788.86 27892.75 33098.69 15982.66 37792.65 35896.92 25984.75 31699.56 16890.94 28397.76 31398.19 280
MIMVSNet93.42 29292.86 29195.10 27198.17 20988.19 29098.13 5593.69 34492.07 27295.04 29798.21 14680.95 33999.03 30181.42 38298.06 30198.07 287
cl2293.25 29792.84 29394.46 30494.30 38486.00 33291.09 37196.64 30590.74 29395.79 27496.31 29478.24 34898.77 32394.15 21398.34 28998.62 235
CVMVSNet92.33 31192.79 29490.95 36897.26 30675.84 40095.29 23992.33 36381.86 37896.27 25398.19 14781.44 33498.46 35694.23 21098.29 29298.55 242
CR-MVSNet93.29 29692.79 29494.78 29095.44 36788.15 29296.18 17397.20 28184.94 36794.10 31698.57 9777.67 35199.39 22595.17 16395.81 36696.81 356
miper_enhance_ethall93.14 29992.78 29694.20 31393.65 39385.29 34089.97 38297.85 25285.05 36396.15 26294.56 34085.74 30899.14 28293.74 22898.34 28998.17 282
DPM-MVS93.68 28492.77 29796.42 20997.91 23492.54 20291.17 36897.47 27684.99 36693.08 34894.74 33789.90 26599.00 30287.54 34398.09 30097.72 318
AUN-MVS93.95 27892.69 29897.74 11097.80 25195.38 10595.57 22095.46 32691.26 28892.64 35996.10 30574.67 36799.55 17393.72 23096.97 33998.30 269
HyFIR lowres test93.72 28292.65 29996.91 17998.93 11691.81 22991.23 36798.52 18282.69 37696.46 24396.52 28480.38 34199.90 1490.36 30498.79 25799.03 176
baseline193.14 29992.64 30094.62 29597.34 30187.20 31696.67 14693.02 35394.71 19296.51 24195.83 31481.64 33298.60 34490.00 30988.06 39898.07 287
EPNet93.72 28292.62 30197.03 17187.61 40992.25 21196.27 16591.28 37396.74 9787.65 39597.39 22685.00 31499.64 14092.14 25999.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051793.31 29592.56 30295.57 24798.71 14287.86 30097.44 9987.17 39695.79 14797.47 18196.84 26364.12 39299.81 3696.20 10199.32 19299.02 179
FMVSNet593.39 29392.35 30396.50 20495.83 35590.81 24797.31 10498.27 21192.74 26196.27 25398.28 13362.23 39599.67 12890.86 28599.36 17799.03 176
131492.38 30992.30 30492.64 35195.42 36985.15 34395.86 20096.97 29285.40 36090.62 37493.06 36091.12 24597.80 37986.74 35295.49 37494.97 384
FE-MVS92.95 30192.22 30595.11 26997.21 30888.33 28898.54 2393.66 34789.91 30896.21 25798.14 15170.33 38599.50 18687.79 33798.24 29497.51 329
TR-MVS92.54 30792.20 30693.57 32596.49 33086.66 32493.51 31394.73 33589.96 30794.95 29893.87 35190.24 26398.61 34281.18 38394.88 37895.45 380
GA-MVS92.83 30392.15 30794.87 28496.97 31687.27 31590.03 38196.12 30891.83 27894.05 31994.57 33976.01 36398.97 31092.46 25597.34 33598.36 263
BH-w/o92.14 31491.94 30892.73 34997.13 31285.30 33992.46 34095.64 31989.33 31494.21 31392.74 36689.60 26898.24 36981.68 38194.66 38094.66 385
PatchmatchNetpermissive91.98 31991.87 30992.30 35894.60 38179.71 38495.12 24593.59 34989.52 31293.61 33397.02 25177.94 34999.18 27590.84 28694.57 38398.01 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DSMNet-mixed92.19 31391.83 31093.25 33196.18 34083.68 36196.27 16593.68 34676.97 39792.54 36299.18 3989.20 27898.55 34883.88 37398.60 27897.51 329
HY-MVS91.43 1592.58 30691.81 31194.90 28296.49 33088.87 27797.31 10494.62 33685.92 35390.50 37796.84 26385.05 31399.40 22183.77 37595.78 36996.43 366
Syy-MVS92.09 31691.80 31292.93 34495.19 37282.65 36692.46 34091.35 37190.67 29691.76 36987.61 39885.64 31098.50 35294.73 19196.84 34497.65 321
thisisatest053092.71 30591.76 31395.56 24998.42 18288.23 28996.03 18587.35 39594.04 21696.56 23895.47 32464.03 39399.77 5694.78 18899.11 22298.68 231
new_pmnet92.34 31091.69 31494.32 30996.23 33789.16 27092.27 34792.88 35584.39 37395.29 28996.35 29385.66 30996.74 39384.53 37097.56 32597.05 341
thres600view792.03 31891.43 31593.82 31998.19 20384.61 35196.27 16590.39 38096.81 9596.37 24793.11 35573.44 37699.49 19180.32 38597.95 30597.36 334
CMPMVSbinary73.10 2392.74 30491.39 31696.77 18993.57 39594.67 13494.21 28497.67 26380.36 38793.61 33396.60 27882.85 32997.35 38384.86 36898.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cascas91.89 32091.35 31793.51 32694.27 38585.60 33588.86 39198.61 17379.32 39092.16 36591.44 38289.22 27798.12 37390.80 28897.47 33196.82 355
WB-MVSnew91.50 32591.29 31892.14 36094.85 37780.32 38293.29 32088.77 39188.57 32694.03 32092.21 37392.56 21698.28 36880.21 38697.08 33897.81 313
MDTV_nov1_ep1391.28 31994.31 38373.51 40594.80 26193.16 35286.75 34793.45 33997.40 22276.37 36098.55 34888.85 32496.43 355
dmvs_re92.08 31791.27 32094.51 30297.16 31092.79 19995.65 21392.64 36094.11 21392.74 35590.98 38783.41 32694.44 40080.72 38494.07 38496.29 368
PAPR92.22 31291.27 32095.07 27295.73 36288.81 27991.97 35297.87 25185.80 35590.91 37392.73 36791.16 24498.33 36579.48 38795.76 37098.08 285
thres100view90091.76 32291.26 32293.26 33098.21 20084.50 35296.39 15590.39 38096.87 9396.33 24893.08 35973.44 37699.42 21078.85 39097.74 31495.85 372
PMMVS92.39 30891.08 32396.30 21693.12 39792.81 19690.58 37795.96 31379.17 39191.85 36892.27 37290.29 26298.66 33889.85 31196.68 35297.43 332
tfpn200view991.55 32491.00 32493.21 33498.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31495.85 372
thres40091.68 32391.00 32493.71 32298.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31497.36 334
PVSNet86.72 1991.10 32990.97 32691.49 36597.56 28378.04 39087.17 39394.60 33784.65 36992.34 36392.20 37487.37 29798.47 35585.17 36697.69 31997.96 301
tpmvs90.79 33390.87 32790.57 37192.75 40176.30 39895.79 20493.64 34891.04 29191.91 36796.26 29577.19 35798.86 31789.38 31889.85 39596.56 363
tpm91.08 33090.85 32891.75 36495.33 37078.09 38995.03 25491.27 37488.75 32293.53 33697.40 22271.24 38099.30 25291.25 27793.87 38597.87 308
X-MVStestdata92.86 30290.83 32998.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24936.50 40496.49 9699.72 8795.66 13199.37 17499.45 85
EPNet_dtu91.39 32790.75 33093.31 32990.48 40682.61 36794.80 26192.88 35593.39 23381.74 40394.90 33681.36 33599.11 28988.28 33398.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 32190.69 33195.11 26993.80 39290.98 24294.16 28691.78 36896.38 11290.30 38099.30 2872.02 37998.90 31288.28 33390.17 39495.45 380
PCF-MVS89.43 1892.12 31590.64 33296.57 20197.80 25193.48 18089.88 38698.45 18874.46 39996.04 26595.68 31790.71 25299.31 24973.73 39899.01 23596.91 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
tpmrst90.31 33590.61 33389.41 37694.06 38972.37 40795.06 25193.69 34488.01 33392.32 36496.86 26177.45 35398.82 31891.04 28087.01 39997.04 342
ADS-MVSNet291.47 32690.51 33494.36 30795.51 36585.63 33495.05 25295.70 31783.46 37492.69 35696.84 26379.15 34599.41 21985.66 35990.52 39298.04 295
thres20091.00 33190.42 33592.77 34897.47 29283.98 35994.01 29491.18 37595.12 17895.44 28591.21 38473.93 36999.31 24977.76 39397.63 32495.01 383
ADS-MVSNet90.95 33290.26 33693.04 33795.51 36582.37 36995.05 25293.41 35083.46 37492.69 35696.84 26379.15 34598.70 33185.66 35990.52 39298.04 295
MVS-HIRNet88.40 35690.20 33782.99 38597.01 31560.04 41093.11 32485.61 40084.45 37288.72 39199.09 5084.72 31798.23 37082.52 37996.59 35490.69 400
test-LLR89.97 34089.90 33890.16 37294.24 38674.98 40189.89 38389.06 38992.02 27389.97 38390.77 38873.92 37098.57 34591.88 26497.36 33396.92 347
E-PMN89.52 34789.78 33988.73 37893.14 39677.61 39283.26 39892.02 36594.82 18993.71 32993.11 35575.31 36596.81 39085.81 35696.81 34791.77 397
ET-MVSNet_ETH3D91.12 32889.67 34095.47 25496.41 33289.15 27191.54 35990.23 38489.07 31786.78 39992.84 36469.39 38799.44 20694.16 21296.61 35397.82 311
CostFormer89.75 34389.25 34191.26 36794.69 38078.00 39195.32 23691.98 36681.50 38190.55 37696.96 25671.06 38298.89 31388.59 32992.63 38996.87 350
EMVS89.06 35089.22 34288.61 37993.00 39877.34 39482.91 39990.92 37694.64 19592.63 36091.81 37876.30 36197.02 38783.83 37496.90 34291.48 398
test0.0.03 190.11 33689.21 34392.83 34693.89 39186.87 32291.74 35688.74 39292.02 27394.71 30391.14 38573.92 37094.48 39983.75 37692.94 38797.16 339
MVS90.02 33789.20 34492.47 35594.71 37986.90 32195.86 20096.74 30164.72 40290.62 37492.77 36592.54 21998.39 36079.30 38895.56 37392.12 395
CHOSEN 280x42089.98 33989.19 34592.37 35795.60 36481.13 37986.22 39597.09 28781.44 38287.44 39693.15 35473.99 36899.47 19688.69 32799.07 22896.52 364
thisisatest051590.43 33489.18 34694.17 31597.07 31485.44 33789.75 38787.58 39488.28 33093.69 33191.72 37965.27 39199.58 16190.59 29798.67 26997.50 331
test250689.86 34289.16 34791.97 36298.95 11276.83 39798.54 2361.07 41196.20 12197.07 20699.16 4355.19 40599.69 11796.43 9399.83 4399.38 106
pmmvs390.00 33888.90 34893.32 32894.20 38885.34 33891.25 36692.56 36278.59 39293.82 32495.17 32867.36 39098.69 33389.08 32298.03 30295.92 371
FPMVS89.92 34188.63 34993.82 31998.37 18596.94 4591.58 35793.34 35188.00 33490.32 37997.10 24670.87 38391.13 40371.91 40196.16 36493.39 393
testing9189.67 34588.55 35093.04 33795.90 35081.80 37492.71 33493.71 34393.71 22390.18 38190.15 39257.11 39799.22 27287.17 35096.32 35998.12 283
EPMVS89.26 34888.55 35091.39 36692.36 40279.11 38795.65 21379.86 40588.60 32593.12 34796.53 28270.73 38498.10 37490.75 29089.32 39696.98 345
baseline289.65 34688.44 35293.25 33195.62 36382.71 36593.82 30385.94 39988.89 32187.35 39792.54 36971.23 38199.33 24586.01 35494.60 38297.72 318
testing389.72 34488.26 35394.10 31697.66 27584.30 35694.80 26188.25 39394.66 19395.07 29392.51 37041.15 41199.43 20891.81 26798.44 28698.55 242
dp88.08 35888.05 35488.16 38392.85 39968.81 40994.17 28592.88 35585.47 35891.38 37296.14 30268.87 38898.81 32086.88 35183.80 40296.87 350
testing9989.21 34988.04 35592.70 35095.78 35881.00 38092.65 33592.03 36493.20 24289.90 38590.08 39455.25 40399.14 28287.54 34395.95 36597.97 300
KD-MVS_2432*160088.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
miper_refine_blended88.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
tpm288.47 35587.69 35890.79 36994.98 37677.34 39495.09 24791.83 36777.51 39689.40 38796.41 28867.83 38998.73 32783.58 37792.60 39096.29 368
testing1188.93 35187.63 35992.80 34795.87 35281.49 37692.48 33991.54 37091.62 28088.27 39390.24 39055.12 40699.11 28987.30 34896.28 36197.81 313
tpm cat188.01 35987.33 36090.05 37594.48 38276.28 39994.47 27394.35 34073.84 40189.26 38895.61 32173.64 37298.30 36784.13 37186.20 40095.57 379
test-mter87.92 36087.17 36190.16 37294.24 38674.98 40189.89 38389.06 38986.44 34989.97 38390.77 38854.96 40798.57 34591.88 26497.36 33396.92 347
dmvs_testset87.30 36586.99 36288.24 38196.71 32377.48 39394.68 26786.81 39892.64 26489.61 38687.01 40085.91 30793.12 40161.04 40588.49 39794.13 388
gg-mvs-nofinetune88.28 35786.96 36392.23 35992.84 40084.44 35398.19 5274.60 40799.08 1087.01 39899.47 1156.93 39898.23 37078.91 38995.61 37294.01 389
IB-MVS85.98 2088.63 35486.95 36493.68 32395.12 37484.82 35090.85 37390.17 38587.55 33788.48 39291.34 38358.01 39699.59 15987.24 34993.80 38696.63 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS87.57 36386.72 36590.13 37495.21 37173.56 40491.94 35383.78 40388.73 32493.00 34992.87 36355.22 40499.25 26481.74 38097.96 30497.59 326
TESTMET0.1,187.20 36686.57 36689.07 37793.62 39472.84 40689.89 38387.01 39785.46 35989.12 38990.20 39156.00 40297.72 38090.91 28496.92 34096.64 360
MVEpermissive73.61 2286.48 36885.92 36788.18 38296.23 33785.28 34181.78 40075.79 40686.01 35182.53 40291.88 37792.74 20987.47 40571.42 40294.86 37991.78 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM87.64 36185.84 36893.04 33796.54 32684.99 34688.42 39295.57 32379.52 38983.82 40093.05 36180.57 34098.41 35862.29 40492.79 38895.71 375
ETVMVS87.62 36285.75 36993.22 33396.15 34483.26 36292.94 32690.37 38291.39 28590.37 37888.45 39651.93 40898.64 33973.76 39796.38 35797.75 316
myMVS_eth3d87.16 36785.61 37091.82 36395.19 37279.32 38592.46 34091.35 37190.67 29691.76 36987.61 39841.96 41098.50 35282.66 37896.84 34497.65 321
testing22287.35 36485.50 37192.93 34495.79 35782.83 36492.40 34590.10 38692.80 26088.87 39089.02 39548.34 40998.70 33175.40 39696.74 34997.27 338
PVSNet_081.89 2184.49 36983.21 37288.34 38095.76 36074.97 40383.49 39792.70 35978.47 39387.94 39486.90 40183.38 32796.63 39473.44 39966.86 40593.40 392
EGC-MVSNET83.08 37077.93 37398.53 5099.57 2097.55 2698.33 3898.57 1794.71 40610.38 40798.90 6995.60 13699.50 18695.69 12899.61 9898.55 242
test_method66.88 37166.13 37469.11 38762.68 41025.73 41349.76 40196.04 31014.32 40564.27 40691.69 38073.45 37588.05 40476.06 39566.94 40493.54 390
tmp_tt57.23 37262.50 37541.44 38834.77 41149.21 41283.93 39660.22 41215.31 40471.11 40579.37 40370.09 38644.86 40764.76 40382.93 40330.25 403
cdsmvs_eth3d_5k24.22 37332.30 3760.00 3910.00 4140.00 4160.00 40298.10 2370.00 4090.00 41095.06 33197.54 370.00 4100.00 4090.00 4080.00 406
test12312.59 37415.49 3773.87 3896.07 4122.55 41490.75 3752.59 4142.52 4075.20 40913.02 4064.96 4121.85 4095.20 4079.09 4067.23 404
testmvs12.33 37515.23 3783.64 3905.77 4132.23 41588.99 3903.62 4132.30 4085.29 40813.09 4054.52 4131.95 4085.16 4088.32 4076.75 405
pcd_1.5k_mvsjas7.98 37610.65 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40995.82 1240.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.91 37710.55 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.94 3330.00 4140.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.32 38585.41 362
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
PC_three_145287.24 33998.37 10197.44 21997.00 6396.78 39292.01 26099.25 20399.21 140
No_MVS98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
test_one_060199.05 10595.50 10098.87 11197.21 8698.03 14598.30 12896.93 69
eth-test20.00 414
eth-test0.00 414
ZD-MVS98.43 18195.94 7998.56 18090.72 29496.66 23297.07 24795.02 15399.74 7691.08 27998.93 242
IU-MVS99.22 6895.40 10398.14 23485.77 35698.36 10495.23 16099.51 13599.49 70
OPU-MVS97.64 11898.01 22495.27 11396.79 13497.35 23196.97 6598.51 35191.21 27899.25 20399.14 154
test_241102_TWO98.83 12796.11 12698.62 7698.24 14096.92 7199.72 8795.44 14799.49 14299.49 70
test_241102_ONE99.22 6895.35 10898.83 12796.04 13199.08 4098.13 15397.87 2399.33 245
save fliter98.48 17694.71 13194.53 27298.41 19595.02 183
test_0728_THIRD96.62 9998.40 9898.28 13397.10 5499.71 10295.70 12699.62 9299.58 39
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13798.89 10399.75 6795.48 14399.52 13099.53 56
test072699.24 6395.51 9796.89 12898.89 10395.92 13998.64 7498.31 12497.06 58
GSMVS98.06 291
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35098.06 291
sam_mvs77.38 354
ambc96.56 20298.23 19991.68 23197.88 6898.13 23598.42 9698.56 9994.22 17699.04 29894.05 21899.35 18298.95 187
MTGPAbinary98.73 149
test_post194.98 25610.37 40876.21 36299.04 29889.47 316
test_post10.87 40776.83 35899.07 295
patchmatchnet-post96.84 26377.36 35599.42 210
GG-mvs-BLEND90.60 37091.00 40484.21 35798.23 4672.63 41082.76 40184.11 40256.14 40196.79 39172.20 40092.09 39190.78 399
MTMP96.55 14974.60 407
gm-plane-assit91.79 40371.40 40881.67 37990.11 39398.99 30484.86 368
test9_res91.29 27498.89 24799.00 180
TEST997.84 24395.23 11593.62 30998.39 19886.81 34593.78 32595.99 30794.68 16299.52 181
test_897.81 24795.07 12493.54 31298.38 20087.04 34193.71 32995.96 31094.58 16699.52 181
agg_prior290.34 30598.90 24499.10 168
agg_prior97.80 25194.96 12698.36 20293.49 33799.53 178
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
test_prior495.38 10593.61 311
test_prior293.33 31994.21 20794.02 32196.25 29693.64 19091.90 26398.96 237
test_prior97.46 13797.79 25694.26 15498.42 19499.34 24398.79 214
旧先验293.35 31877.95 39595.77 27898.67 33790.74 293
新几何293.43 314
新几何197.25 15498.29 19094.70 13397.73 26077.98 39494.83 30196.67 27592.08 23199.45 20388.17 33598.65 27397.61 324
旧先验197.80 25193.87 16597.75 25997.04 25093.57 19198.68 26898.72 224
无先验93.20 32297.91 24880.78 38499.40 22187.71 33897.94 303
原ACMM292.82 328
原ACMM196.58 19998.16 21192.12 21898.15 23385.90 35493.49 33796.43 28792.47 22399.38 22887.66 34098.62 27598.23 276
test22298.17 20993.24 18992.74 33297.61 27275.17 39894.65 30496.69 27490.96 24998.66 27197.66 320
testdata299.46 19987.84 336
segment_acmp95.34 143
testdata95.70 24398.16 21190.58 25097.72 26180.38 38695.62 28197.02 25192.06 23298.98 30689.06 32398.52 28197.54 328
testdata192.77 32993.78 221
test1297.46 13797.61 27994.07 15897.78 25893.57 33593.31 19699.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14791.91 237
plane_prior598.75 14699.46 19992.59 25299.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17196.16 260
plane_prior296.50 15196.36 114
plane_prior198.49 174
plane_prior94.29 15095.42 22594.31 20698.93 242
n20.00 415
nn0.00 415
door-mid98.17 227
lessismore_v097.05 16899.36 5092.12 21884.07 40198.77 6898.98 5885.36 31299.74 7697.34 6599.37 17499.30 120
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
test1198.08 239
door97.81 257
HQP5-MVS92.47 206
HQP-NCC97.85 23894.26 27793.18 24492.86 352
ACMP_Plane97.85 23894.26 27793.18 24492.86 352
BP-MVS90.51 300
HQP4-MVS92.87 35199.23 27099.06 173
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 258
NP-MVS98.14 21593.72 17195.08 329
MDTV_nov1_ep13_2view57.28 41194.89 25880.59 38594.02 32178.66 34785.50 36197.82 311
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18495.63 15497.22 18997.30 23595.52 13798.55 34890.97 28298.90 24498.34 264
DeepMVS_CXcopyleft77.17 38690.94 40585.28 34174.08 40952.51 40380.87 40488.03 39775.25 36670.63 40659.23 40684.94 40175.62 401