This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 20100.00 199.87 28
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27299.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18899.98 1100.00 199.98 3
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4199.92 2699.98 1399.93 1799.94 499.98 1999.77 36100.00 199.92 18
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4699.89 3499.98 1399.90 2999.94 499.98 1999.75 37100.00 199.90 20
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3499.88 699.27 24599.93 2697.84 32099.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 17799.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
test_f99.75 3099.88 699.37 21999.96 798.21 29699.51 90100.00 199.94 22100.00 199.93 1799.58 3499.94 7699.97 499.99 1699.97 7
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 28100.00 199.97 1199.61 3199.97 3299.75 37100.00 199.84 34
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 2899.97 1999.87 4799.81 1499.95 6299.54 5899.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4599.55 13799.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 2999.86 1299.45 19199.93 2698.40 28499.30 13599.98 1199.94 2299.99 799.89 3499.80 1599.97 3299.96 999.97 5499.97 7
pmmvs699.86 999.86 1299.83 3299.94 1999.90 799.83 699.91 3299.85 4999.94 3299.95 1399.73 2199.90 15799.65 4499.97 5499.69 82
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 1899.99 1699.98 3
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 45
test_fmvs299.72 3499.85 1699.34 22699.91 3298.08 30999.48 96100.00 199.90 2899.99 799.91 2499.50 4499.98 1999.98 199.99 1699.96 10
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 23899.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1599.99 1699.93 15
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20299.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 1899.99 1699.99 1
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12399.93 2499.95 3099.89 3499.71 2299.96 5399.51 6399.97 5499.84 34
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5199.95 1899.98 1399.92 2199.28 6499.98 1999.75 37100.00 199.94 13
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5799.78 4999.03 22199.96 2399.99 299.97 1999.84 6299.78 1799.92 11599.92 2099.99 1699.92 18
test_fmvs1_n99.68 4499.81 2399.28 24299.95 1597.93 31899.49 95100.00 199.82 5799.99 799.89 3499.21 7399.98 1999.97 499.98 3999.93 15
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7799.73 7499.97 1999.92 2199.77 1999.98 1999.43 71100.00 199.90 20
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6499.84 5299.94 3299.91 2499.13 8499.96 5399.83 3099.99 1699.83 38
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5799.82 3599.03 22199.96 2399.99 299.97 1999.84 6299.58 3499.93 9399.92 2099.98 3999.93 15
test_vis1_n99.68 4499.79 2799.36 22399.94 1998.18 29999.52 86100.00 199.86 44100.00 199.88 4298.99 10099.96 5399.97 499.96 6999.95 11
pm-mvs199.79 2499.79 2799.78 5399.91 3299.83 2999.76 1999.87 4399.73 7499.89 5299.87 4799.63 2899.87 20299.54 5899.92 10499.63 126
sd_testset99.78 2599.78 3099.80 4499.80 8599.76 6299.80 1099.79 8399.97 1499.89 5299.89 3499.53 4199.99 899.36 8499.96 6999.65 111
SDMVSNet99.77 2899.77 3199.76 6399.80 8599.65 10799.63 6199.86 4699.97 1499.89 5299.89 3499.52 4299.99 899.42 7699.96 6999.65 111
anonymousdsp99.80 2399.77 3199.90 899.96 799.88 1299.73 2799.85 5199.70 8599.92 3999.93 1799.45 4599.97 3299.36 84100.00 199.85 33
TransMVSNet (Re)99.78 2599.77 3199.81 3999.91 3299.85 1999.75 2299.86 4699.70 8599.91 4299.89 3499.60 3399.87 20299.59 4999.74 21699.71 75
UA-Net99.78 2599.76 3499.86 2599.72 13999.71 8499.91 399.95 2899.96 1699.71 13199.91 2499.15 7999.97 3299.50 65100.00 199.90 20
Vis-MVSNetpermissive99.75 3099.74 3599.79 5099.88 4599.66 10299.69 4299.92 2999.67 9499.77 10499.75 11799.61 3199.98 1999.35 8799.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 3099.71 3699.84 3099.96 799.83 2999.83 699.85 5199.80 6399.93 3599.93 1798.54 16099.93 9399.59 4999.98 3999.76 65
CS-MVS99.67 5099.70 3799.58 15599.53 22099.84 2499.79 1199.96 2399.90 2899.61 17399.41 27299.51 4399.95 6299.66 4399.89 12398.96 331
CS-MVS-test99.68 4499.70 3799.64 12799.57 20099.83 2999.78 1299.97 1899.92 2699.50 21299.38 28299.57 3699.95 6299.69 4199.90 11499.15 295
mvsmamba99.74 3399.70 3799.85 2799.93 2699.83 2999.76 1999.81 7399.96 1699.91 4299.81 7998.60 15199.94 7699.58 5299.98 3999.77 59
TDRefinement99.72 3499.70 3799.77 5699.90 3899.85 1999.86 599.92 2999.69 8899.78 9999.92 2199.37 5499.88 18898.93 14899.95 8299.60 151
v899.68 4499.69 4199.65 12099.80 8599.40 17099.66 5399.76 9799.64 10299.93 3599.85 5698.66 14399.84 25299.88 2799.99 1699.71 75
v1099.69 4199.69 4199.66 11599.81 7999.39 17299.66 5399.75 10299.60 11499.92 3999.87 4798.75 13099.86 22099.90 2399.99 1699.73 70
EC-MVSNet99.69 4199.69 4199.68 10599.71 14299.91 499.76 1999.96 2399.86 4499.51 21099.39 28099.57 3699.93 9399.64 4699.86 15199.20 284
casdiffmvs_mvgpermissive99.68 4499.68 4499.69 10399.81 7999.59 12799.29 14299.90 3599.71 8099.79 9599.73 12499.54 3999.84 25299.36 8499.96 6999.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS99.71 3799.67 4599.81 3999.89 4099.72 8299.59 7499.82 6499.39 14499.82 7999.84 6299.38 5299.91 13999.38 7999.93 10099.80 45
GeoE99.69 4199.66 4699.78 5399.76 11699.76 6299.60 7399.82 6499.46 13199.75 11399.56 23399.63 2899.95 6299.43 7199.88 13299.62 137
nrg03099.70 3899.66 4699.82 3699.76 11699.84 2499.61 6899.70 12999.93 2499.78 9999.68 16399.10 8599.78 30399.45 6999.96 6999.83 38
test_fmvs199.48 8699.65 4898.97 28599.54 21497.16 34299.11 20099.98 1199.78 6899.96 2399.81 7998.72 13599.97 3299.95 1299.97 5499.79 52
bld_raw_dy_0_6499.70 3899.65 4899.85 2799.95 1599.77 5499.66 5399.71 12399.95 1899.91 4299.77 10898.35 188100.00 199.54 5899.99 1699.79 52
FC-MVSNet-test99.70 3899.65 4899.86 2599.88 4599.86 1899.72 3099.78 8999.90 2899.82 7999.83 6698.45 17599.87 20299.51 6399.97 5499.86 30
DSMNet-mixed99.48 8699.65 4898.95 28799.71 14297.27 33999.50 9199.82 6499.59 11699.41 23599.85 5699.62 30100.00 199.53 6199.89 12399.59 158
dcpmvs_299.61 6699.64 5299.53 17399.79 9798.82 25199.58 7699.97 1899.95 1899.96 2399.76 11298.44 17699.99 899.34 8899.96 6999.78 55
FMVSNet199.66 5299.63 5399.73 8799.78 10499.77 5499.68 4599.70 12999.67 9499.82 7999.83 6698.98 10299.90 15799.24 10499.97 5499.53 187
EU-MVSNet99.39 11499.62 5498.72 31499.88 4596.44 35699.56 8199.85 5199.90 2899.90 4899.85 5698.09 21399.83 26799.58 5299.95 8299.90 20
VPA-MVSNet99.66 5299.62 5499.79 5099.68 16299.75 6899.62 6399.69 13599.85 4999.80 9099.81 7998.81 11899.91 13999.47 6799.88 13299.70 78
baseline99.63 5899.62 5499.66 11599.80 8599.62 11699.44 10599.80 7799.71 8099.72 12699.69 15299.15 7999.83 26799.32 9399.94 9399.53 187
MIMVSNet199.66 5299.62 5499.80 4499.94 1999.87 1599.69 4299.77 9299.78 6899.93 3599.89 3497.94 22599.92 11599.65 4499.98 3999.62 137
casdiffmvspermissive99.63 5899.61 5899.67 10899.79 9799.59 12799.13 19399.85 5199.79 6699.76 10699.72 13199.33 5999.82 27699.21 10799.94 9399.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DTE-MVSNet99.68 4499.61 5899.88 1799.80 8599.87 1599.67 4999.71 12399.72 7899.84 7499.78 10198.67 14199.97 3299.30 9799.95 8299.80 45
DeepC-MVS98.90 499.62 6499.61 5899.67 10899.72 13999.44 15799.24 15799.71 12399.27 15899.93 3599.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf199.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
APD_test299.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
KD-MVS_self_test99.63 5899.59 6399.76 6399.84 6099.90 799.37 11799.79 8399.83 5599.88 6099.85 5698.42 17999.90 15799.60 4899.73 22199.49 210
RRT_MVS99.67 5099.59 6399.91 299.94 1999.88 1299.78 1299.27 30099.87 4099.91 4299.87 4798.04 21799.96 5399.68 4299.99 1699.90 20
PEN-MVS99.66 5299.59 6399.89 1199.83 6499.87 1599.66 5399.73 11199.70 8599.84 7499.73 12498.56 15799.96 5399.29 10099.94 9399.83 38
Gipumacopyleft99.57 6999.59 6399.49 18099.98 399.71 8499.72 3099.84 5799.81 6099.94 3299.78 10198.91 11099.71 32898.41 18099.95 8299.05 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 5799.58 6799.84 3099.84 6099.85 1999.66 5399.75 10299.86 4499.74 12199.79 9398.27 19899.85 23799.37 8299.93 10099.83 38
v124099.56 7299.58 6799.51 17799.80 8599.00 23399.00 22999.65 15599.15 18499.90 4899.75 11799.09 8799.88 18899.90 2399.96 6999.67 94
PS-CasMVS99.66 5299.58 6799.89 1199.80 8599.85 1999.66 5399.73 11199.62 10599.84 7499.71 13998.62 14799.96 5399.30 9799.96 6999.86 30
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 34599.72 7899.91 4299.60 21299.43 4699.81 29199.81 3499.53 28599.73 70
new-patchmatchnet99.35 12499.57 7098.71 31699.82 7196.62 35498.55 28799.75 10299.50 12299.88 6099.87 4799.31 6099.88 18899.43 71100.00 199.62 137
Anonymous2023121199.62 6499.57 7099.76 6399.61 17999.60 12599.81 999.73 11199.82 5799.90 4899.90 2997.97 22499.86 22099.42 7699.96 6999.80 45
v192192099.56 7299.57 7099.55 16799.75 12799.11 22299.05 21499.61 17399.15 18499.88 6099.71 13999.08 9099.87 20299.90 2399.97 5499.66 103
v119299.57 6999.57 7099.57 16199.77 11299.22 20999.04 21799.60 18599.18 17399.87 6899.72 13199.08 9099.85 23799.89 2699.98 3999.66 103
EG-PatchMatch MVS99.57 6999.56 7599.62 14399.77 11299.33 18799.26 14999.76 9799.32 15299.80 9099.78 10199.29 6299.87 20299.15 11999.91 11399.66 103
v14419299.55 7599.54 7699.58 15599.78 10499.20 21499.11 20099.62 16699.18 17399.89 5299.72 13198.66 14399.87 20299.88 2799.97 5499.66 103
V4299.56 7299.54 7699.63 13499.79 9799.46 15099.39 11199.59 19199.24 16499.86 6999.70 14698.55 15899.82 27699.79 3599.95 8299.60 151
test20.0399.55 7599.54 7699.58 15599.79 9799.37 17799.02 22499.89 3799.60 11499.82 7999.62 19598.81 11899.89 17499.43 7199.86 15199.47 218
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11699.56 8199.79 8398.77 23099.80 9099.85 5699.64 2799.85 23798.70 16699.89 12399.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 7799.53 8099.59 15199.79 9799.28 19599.10 20299.61 17399.20 17199.84 7499.73 12498.67 14199.84 25299.86 2999.98 3999.64 121
WR-MVS_H99.61 6699.53 8099.87 2199.80 8599.83 2999.67 4999.75 10299.58 11799.85 7199.69 15298.18 20999.94 7699.28 10299.95 8299.83 38
EI-MVSNet-UG-set99.48 8699.50 8299.42 20099.57 20098.65 26999.24 15799.46 25399.68 9099.80 9099.66 17198.99 10099.89 17499.19 11199.90 11499.72 72
EI-MVSNet-Vis-set99.47 9399.49 8399.42 20099.57 20098.66 26699.24 15799.46 25399.67 9499.79 9599.65 17698.97 10499.89 17499.15 11999.89 12399.71 75
pmmvs-eth3d99.48 8699.47 8499.51 17799.77 11299.41 16998.81 25999.66 14699.42 14399.75 11399.66 17199.20 7499.76 31398.98 13899.99 1699.36 249
v2v48299.50 8299.47 8499.58 15599.78 10499.25 20299.14 18799.58 20199.25 16299.81 8699.62 19598.24 20099.84 25299.83 3099.97 5499.64 121
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19099.64 11099.30 13599.63 16399.61 10899.71 13199.56 23398.76 12899.96 5399.14 12599.92 10499.68 88
IterMVS-LS99.41 10899.47 8499.25 25199.81 7998.09 30698.85 25199.76 9799.62 10599.83 7899.64 17898.54 16099.97 3299.15 11999.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_rt99.45 9699.46 8899.41 20799.71 14298.63 27198.99 23499.96 2399.03 19799.95 3099.12 33198.75 13099.84 25299.82 3399.82 17799.77 59
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22299.04 21799.87 4399.71 8099.47 21799.79 9398.24 20099.98 1999.38 7999.96 6999.83 38
mvsany_test199.44 9899.45 9099.40 20999.37 27598.64 27097.90 34799.59 19199.27 15899.92 3999.82 7399.74 2099.93 9399.55 5799.87 14399.63 126
PMMVS299.48 8699.45 9099.57 16199.76 11698.99 23498.09 32599.90 3598.95 20499.78 9999.58 22099.57 3699.93 9399.48 6699.95 8299.79 52
TAMVS99.49 8499.45 9099.63 13499.48 24399.42 16499.45 10399.57 20399.66 9899.78 9999.83 6697.85 23299.86 22099.44 7099.96 6999.61 147
EI-MVSNet99.38 11699.44 9399.21 25599.58 19098.09 30699.26 14999.46 25399.62 10599.75 11399.67 16798.54 16099.85 23799.15 11999.92 10499.68 88
MVSFormer99.41 10899.44 9399.31 23699.57 20098.40 28499.77 1599.80 7799.73 7499.63 15899.30 30198.02 21999.98 1999.43 7199.69 23699.55 173
CP-MVSNet99.54 7799.43 9599.87 2199.76 11699.82 3599.57 7999.61 17399.54 11899.80 9099.64 17897.79 23699.95 6299.21 10799.94 9399.84 34
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6299.32 12799.77 9299.53 12099.77 10499.76 11299.26 6899.78 30397.77 23499.88 13299.60 151
SSC-MVS99.52 8099.42 9799.83 3299.86 5399.65 10799.52 8699.81 7399.87 4099.81 8699.79 9396.78 27999.99 899.83 3099.51 28999.86 30
Anonymous2024052199.44 9899.42 9799.49 18099.89 4098.96 23999.62 6399.76 9799.85 4999.82 7999.88 4296.39 29399.97 3299.59 4999.98 3999.55 173
v14899.40 11099.41 9999.39 21399.76 11698.94 24099.09 20799.59 19199.17 17899.81 8699.61 20498.41 18099.69 33699.32 9399.94 9399.53 187
mvs_anonymous99.28 13899.39 10098.94 28899.19 32297.81 32299.02 22499.55 21499.78 6899.85 7199.80 8398.24 20099.86 22099.57 5499.50 29299.15 295
DP-MVS99.48 8699.39 10099.74 7899.57 20099.62 11699.29 14299.61 17399.87 4099.74 12199.76 11298.69 13799.87 20298.20 19699.80 19199.75 68
tfpnnormal99.43 10199.38 10299.60 14999.87 5099.75 6899.59 7499.78 8999.71 8099.90 4899.69 15298.85 11699.90 15797.25 28199.78 20199.15 295
PVSNet_Blended_VisFu99.40 11099.38 10299.44 19499.90 3898.66 26698.94 24399.91 3297.97 30099.79 9599.73 12499.05 9599.97 3299.15 11999.99 1699.68 88
ACMM98.09 1199.46 9499.38 10299.72 9399.80 8599.69 9599.13 19399.65 15598.99 19999.64 15499.72 13199.39 4899.86 22098.23 19399.81 18699.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9499.37 10599.71 9899.82 7199.59 12799.48 9699.70 12999.81 6099.69 13899.58 22097.66 24799.86 22099.17 11699.44 29999.67 94
Baseline_NR-MVSNet99.49 8499.37 10599.82 3699.91 3299.84 2498.83 25499.86 4699.68 9099.65 15399.88 4297.67 24399.87 20299.03 13399.86 15199.76 65
COLMAP_ROBcopyleft98.06 1299.45 9699.37 10599.70 10299.83 6499.70 9199.38 11399.78 8999.53 12099.67 14799.78 10199.19 7599.86 22097.32 27199.87 14399.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft99.48 8699.36 10899.85 2799.55 21299.81 4099.50 9199.69 13598.99 19999.75 11399.71 13998.79 12399.93 9398.46 17899.85 15599.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator99.15 299.43 10199.36 10899.65 12099.39 27099.42 16499.70 3599.56 20899.23 16699.35 24599.80 8399.17 7799.95 6298.21 19599.84 16099.59 158
Anonymous2024052999.42 10499.34 11099.65 12099.53 22099.60 12599.63 6199.39 27499.47 12899.76 10699.78 10198.13 21199.86 22098.70 16699.68 24199.49 210
xiu_mvs_v1_base_debu99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base_debi99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
UGNet99.38 11699.34 11099.49 18098.90 35698.90 24699.70 3599.35 28399.86 4498.57 34199.81 7998.50 17099.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS99.44 9899.32 11599.80 4499.81 7999.61 12299.47 9999.81 7399.82 5799.71 13199.72 13196.60 28399.98 1999.75 3799.23 32999.82 44
diffmvspermissive99.34 12999.32 11599.39 21399.67 16798.77 25798.57 28599.81 7399.61 10899.48 21599.41 27298.47 17199.86 22098.97 14099.90 11499.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120699.35 12499.31 11799.47 18699.74 13399.06 23299.28 14499.74 10799.23 16699.72 12699.53 24497.63 24999.88 18899.11 12799.84 16099.48 214
MVS_Test99.28 13899.31 11799.19 25899.35 28098.79 25599.36 12099.49 24699.17 17899.21 27599.67 16798.78 12599.66 35599.09 12999.66 25099.10 306
NR-MVSNet99.40 11099.31 11799.68 10599.43 26299.55 13799.73 2799.50 24299.46 13199.88 6099.36 28897.54 25099.87 20298.97 14099.87 14399.63 126
GBi-Net99.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
test199.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
SD-MVS99.01 20799.30 12298.15 33899.50 23399.40 17098.94 24399.61 17399.22 17099.75 11399.82 7399.54 3995.51 39897.48 26399.87 14399.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 10199.30 12299.80 4499.83 6499.81 4099.52 8699.70 12998.35 27499.51 21099.50 25199.31 6099.88 18898.18 20099.84 16099.69 82
SixPastTwentyTwo99.42 10499.30 12299.76 6399.92 3199.67 10099.70 3599.14 32499.65 10099.89 5299.90 2996.20 29999.94 7699.42 7699.92 10499.67 94
CHOSEN 1792x268899.39 11499.30 12299.65 12099.88 4599.25 20298.78 26699.88 4198.66 23999.96 2399.79 9397.45 25399.93 9399.34 8899.99 1699.78 55
DELS-MVS99.34 12999.30 12299.48 18499.51 22799.36 18198.12 32199.53 22999.36 14899.41 23599.61 20499.22 7299.87 20299.21 10799.68 24199.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 12299.29 12799.58 15599.83 6499.66 10298.95 24199.86 4698.85 21899.81 8699.73 12498.40 18499.92 11598.36 18399.83 16899.17 291
CSCG99.37 11999.29 12799.60 14999.71 14299.46 15099.43 10799.85 5198.79 22699.41 23599.60 21298.92 10899.92 11598.02 20999.92 10499.43 234
APD_test199.36 12299.28 12999.61 14699.89 4099.89 1099.32 12799.74 10799.18 17399.69 13899.75 11798.41 18099.84 25297.85 22999.70 23299.10 306
SED-MVS99.40 11099.28 12999.77 5699.69 15499.82 3599.20 16799.54 22099.13 18699.82 7999.63 18898.91 11099.92 11597.85 22999.70 23299.58 163
FMVSNet299.35 12499.28 12999.55 16799.49 23899.35 18499.45 10399.57 20399.44 13499.70 13599.74 12097.21 26499.87 20299.03 13399.94 9399.44 228
ab-mvs99.33 13299.28 12999.47 18699.57 20099.39 17299.78 1299.43 26198.87 21699.57 18499.82 7398.06 21699.87 20298.69 16899.73 22199.15 295
testgi99.29 13799.26 13399.37 21999.75 12798.81 25298.84 25299.89 3798.38 26799.75 11399.04 34199.36 5799.86 22099.08 13099.25 32599.45 223
UniMVSNet (Re)99.37 11999.26 13399.68 10599.51 22799.58 13198.98 23799.60 18599.43 13999.70 13599.36 28897.70 23999.88 18899.20 11099.87 14399.59 158
DVP-MVS++99.38 11699.25 13599.77 5699.03 34699.77 5499.74 2499.61 17399.18 17399.76 10699.61 20499.00 9899.92 11597.72 24099.60 26799.62 137
UniMVSNet_NR-MVSNet99.37 11999.25 13599.72 9399.47 24999.56 13498.97 23899.61 17399.43 13999.67 14799.28 30597.85 23299.95 6299.17 11699.81 18699.65 111
TSAR-MVS + MP.99.34 12999.24 13799.63 13499.82 7199.37 17799.26 14999.35 28398.77 23099.57 18499.70 14699.27 6799.88 18897.71 24299.75 20999.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 12499.24 13799.67 10899.35 28099.47 14699.62 6399.50 24299.44 13499.12 28899.78 10198.77 12799.94 7697.87 22699.72 22799.62 137
DU-MVS99.33 13299.21 13999.71 9899.43 26299.56 13498.83 25499.53 22999.38 14599.67 14799.36 28897.67 24399.95 6299.17 11699.81 18699.63 126
MTAPA99.35 12499.20 14099.80 4499.81 7999.81 4099.33 12599.53 22999.27 15899.42 22999.63 18898.21 20599.95 6297.83 23399.79 19699.65 111
D2MVS99.22 15799.19 14199.29 24099.69 15498.74 26098.81 25999.41 26498.55 24999.68 14199.69 15298.13 21199.87 20298.82 15399.98 3999.24 273
ETV-MVS99.18 17199.18 14299.16 26199.34 28899.28 19599.12 19799.79 8399.48 12498.93 30498.55 37799.40 4799.93 9398.51 17699.52 28898.28 370
DVP-MVScopyleft99.32 13499.17 14399.77 5699.69 15499.80 4499.14 18799.31 29299.16 18099.62 16799.61 20498.35 18899.91 13997.88 22399.72 22799.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 20999.16 14498.51 32299.75 12795.90 36698.07 32899.84 5799.84 5299.89 5299.73 12496.01 30299.99 899.33 91100.00 199.63 126
APD-MVS_3200maxsize99.31 13599.16 14499.74 7899.53 22099.75 6899.27 14799.61 17399.19 17299.57 18499.64 17898.76 12899.90 15797.29 27399.62 25799.56 170
IterMVS98.97 21399.16 14498.42 32699.74 13395.64 36998.06 33099.83 5999.83 5599.85 7199.74 12096.10 30199.99 899.27 103100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 13899.15 14799.67 10899.33 29399.76 6299.34 12299.97 1898.93 20899.91 4299.79 9398.68 13899.93 9396.80 30399.56 27499.30 265
SteuartSystems-ACMMP99.30 13699.14 14899.76 6399.87 5099.66 10299.18 17299.60 18598.55 24999.57 18499.67 16799.03 9799.94 7697.01 29199.80 19199.69 82
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 15799.14 14899.45 19199.79 9799.43 16199.28 14499.68 13899.54 11899.40 24099.56 23399.07 9299.82 27696.01 33999.96 6999.11 304
RE-MVS-def99.13 15099.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.57 15597.27 27699.61 26499.54 181
OPM-MVS99.26 14499.13 15099.63 13499.70 15099.61 12298.58 28199.48 24798.50 25599.52 20599.63 18899.14 8299.76 31397.89 22299.77 20599.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet99.22 15799.13 15099.50 17999.35 28099.11 22298.96 24099.54 22099.46 13199.61 17399.70 14696.31 29599.83 26799.34 8899.88 13299.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 31699.13 15092.93 37899.69 15499.49 14499.52 8699.77 9297.97 30099.96 2399.79 9399.84 1299.94 7695.85 34799.82 17779.36 394
ppachtmachnet_test98.89 22799.12 15498.20 33799.66 16895.24 37397.63 35799.68 13899.08 19199.78 9999.62 19598.65 14599.88 18898.02 20999.96 6999.48 214
Fast-Effi-MVS+-dtu99.20 16499.12 15499.43 19899.25 31099.69 9599.05 21499.82 6499.50 12298.97 30099.05 33998.98 10299.98 1998.20 19699.24 32798.62 353
DeepC-MVS_fast98.47 599.23 14999.12 15499.56 16499.28 30599.22 20998.99 23499.40 27199.08 19199.58 18199.64 17898.90 11399.83 26797.44 26599.75 20999.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 14299.11 15799.73 8799.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.41 18099.91 13997.27 27699.61 26499.54 181
ACMMP_NAP99.28 13899.11 15799.79 5099.75 12799.81 4098.95 24199.53 22998.27 28399.53 20399.73 12498.75 13099.87 20297.70 24599.83 16899.68 88
xiu_mvs_v2_base99.02 20399.11 15798.77 31199.37 27598.09 30698.13 32099.51 23899.47 12899.42 22998.54 37899.38 5299.97 3298.83 15199.33 31498.24 372
pmmvs599.19 16799.11 15799.42 20099.76 11698.88 24898.55 28799.73 11198.82 22299.72 12699.62 19596.56 28499.82 27699.32 9399.95 8299.56 170
XVS99.27 14299.11 15799.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32699.47 26298.47 17199.88 18897.62 25399.73 22199.67 94
VDD-MVS99.20 16499.11 15799.44 19499.43 26298.98 23599.50 9198.32 36499.80 6399.56 19199.69 15296.99 27499.85 23798.99 13699.73 22199.50 205
jason99.16 17799.11 15799.32 23399.75 12798.44 28198.26 31099.39 27498.70 23799.74 12199.30 30198.54 16099.97 3298.48 17799.82 17799.55 173
jason: jason.
LS3D99.24 14899.11 15799.61 14698.38 38399.79 4699.57 7999.68 13899.61 10899.15 28399.71 13998.70 13699.91 13997.54 25999.68 24199.13 303
XVG-ACMP-BASELINE99.23 14999.10 16599.63 13499.82 7199.58 13198.83 25499.72 12098.36 26999.60 17699.71 13998.92 10899.91 13997.08 28999.84 16099.40 239
our_test_398.85 23199.09 16698.13 33999.66 16894.90 37697.72 35399.58 20199.07 19399.64 15499.62 19598.19 20799.93 9398.41 18099.95 8299.55 173
MSLP-MVS++99.05 19799.09 16698.91 29499.21 31798.36 28998.82 25899.47 25098.85 21898.90 31099.56 23398.78 12599.09 39098.57 17399.68 24199.26 270
MVP-Stereo99.16 17799.08 16899.43 19899.48 24399.07 23099.08 21099.55 21498.63 24299.31 25799.68 16398.19 20799.78 30398.18 20099.58 27299.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 14599.08 16899.76 6399.73 13699.70 9199.31 13299.59 19198.36 26999.36 24499.37 28498.80 12299.91 13997.43 26699.75 20999.68 88
PS-MVSNAJ99.00 20999.08 16898.76 31299.37 27598.10 30598.00 33599.51 23899.47 12899.41 23598.50 38099.28 6499.97 3298.83 15199.34 31398.20 376
ACMMPcopyleft99.25 14599.08 16899.74 7899.79 9799.68 9899.50 9199.65 15598.07 29499.52 20599.69 15298.57 15599.92 11597.18 28699.79 19699.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 16299.07 17299.63 13499.78 10499.64 11099.12 19799.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
HPM-MVScopyleft99.25 14599.07 17299.78 5399.81 7999.75 6899.61 6899.67 14297.72 31599.35 24599.25 31299.23 7199.92 11597.21 28499.82 17799.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 18399.06 17499.36 22399.57 20099.10 22798.01 33399.25 30698.78 22899.58 18199.44 26998.24 20099.76 31398.74 16399.93 10099.22 278
VNet99.18 17199.06 17499.56 16499.24 31299.36 18199.33 12599.31 29299.67 9499.47 21799.57 22996.48 28799.84 25299.15 11999.30 31899.47 218
ACMMPR99.23 14999.06 17499.76 6399.74 13399.69 9599.31 13299.59 19198.36 26999.35 24599.38 28298.61 14999.93 9397.43 26699.75 20999.67 94
XVG-OURS99.21 16299.06 17499.65 12099.82 7199.62 11697.87 34899.74 10798.36 26999.66 15199.68 16399.71 2299.90 15796.84 30299.88 13299.43 234
CANet99.11 18899.05 17899.28 24298.83 36398.56 27498.71 27399.41 26499.25 16299.23 27099.22 31997.66 24799.94 7699.19 11199.97 5499.33 256
region2R99.23 14999.05 17899.77 5699.76 11699.70 9199.31 13299.59 19198.41 26399.32 25399.36 28898.73 13499.93 9397.29 27399.74 21699.67 94
MDA-MVSNet-bldmvs99.06 19499.05 17899.07 27799.80 8597.83 32198.89 24699.72 12099.29 15499.63 15899.70 14696.47 28899.89 17498.17 20299.82 17799.50 205
LPG-MVS_test99.22 15799.05 17899.74 7899.82 7199.63 11499.16 18399.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
CP-MVS99.23 14999.05 17899.75 7399.66 16899.66 10299.38 11399.62 16698.38 26799.06 29699.27 30798.79 12399.94 7697.51 26299.82 17799.66 103
ZNCC-MVS99.22 15799.04 18399.77 5699.76 11699.73 7799.28 14499.56 20898.19 28899.14 28599.29 30498.84 11799.92 11597.53 26199.80 19199.64 121
TSAR-MVS + GP.99.12 18599.04 18399.38 21699.34 28899.16 21798.15 31799.29 29698.18 28999.63 15899.62 19599.18 7699.68 34698.20 19699.74 21699.30 265
MVS_030499.17 17599.03 18599.59 15199.44 25898.90 24699.04 21795.32 38999.99 299.68 14199.57 22998.30 19599.97 3299.94 1599.98 3999.88 25
MVS_111021_LR99.13 18399.03 18599.42 20099.58 19099.32 18997.91 34699.73 11198.68 23899.31 25799.48 25899.09 8799.66 35597.70 24599.77 20599.29 268
RPSCF99.18 17199.02 18799.64 12799.83 6499.85 1999.44 10599.82 6498.33 27999.50 21299.78 10197.90 22799.65 36196.78 30499.83 16899.44 228
MVS_111021_HR99.12 18599.02 18799.40 20999.50 23399.11 22297.92 34499.71 12398.76 23399.08 29299.47 26299.17 7799.54 37697.85 22999.76 20799.54 181
DeepPCF-MVS98.42 699.18 17199.02 18799.67 10899.22 31599.75 6897.25 37599.47 25098.72 23599.66 15199.70 14699.29 6299.63 36498.07 20899.81 18699.62 137
EIA-MVS99.12 18599.01 19099.45 19199.36 27899.62 11699.34 12299.79 8398.41 26398.84 31798.89 36198.75 13099.84 25298.15 20499.51 28998.89 338
PGM-MVS99.20 16499.01 19099.77 5699.75 12799.71 8499.16 18399.72 12097.99 29899.42 22999.60 21298.81 11899.93 9396.91 29699.74 21699.66 103
PVSNet_BlendedMVS99.03 20199.01 19099.09 27399.54 21497.99 31198.58 28199.82 6497.62 31999.34 24899.71 13998.52 16799.77 31197.98 21499.97 5499.52 198
SR-MVS99.19 16799.00 19399.74 7899.51 22799.72 8299.18 17299.60 18598.85 21899.47 21799.58 22098.38 18599.92 11596.92 29599.54 28399.57 168
SMA-MVScopyleft99.19 16799.00 19399.73 8799.46 25399.73 7799.13 19399.52 23497.40 33199.57 18499.64 17898.93 10799.83 26797.61 25599.79 19699.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 20399.00 19399.09 27399.10 33898.70 26299.61 6899.66 14699.63 10498.64 33597.65 39399.04 9699.54 37698.79 15798.92 34499.04 323
mPP-MVS99.19 16799.00 19399.76 6399.76 11699.68 9899.38 11399.54 22098.34 27899.01 29899.50 25198.53 16499.93 9397.18 28699.78 20199.66 103
EPP-MVSNet99.17 17599.00 19399.66 11599.80 8599.43 16199.70 3599.24 30999.48 12499.56 19199.77 10894.89 31199.93 9398.72 16599.89 12399.63 126
YYNet198.95 21998.99 19898.84 30499.64 17297.14 34498.22 31399.32 28898.92 21099.59 17999.66 17197.40 25599.83 26798.27 19099.90 11499.55 173
MDA-MVSNet_test_wron98.95 21998.99 19898.85 30299.64 17297.16 34298.23 31299.33 28698.93 20899.56 19199.66 17197.39 25799.83 26798.29 18899.88 13299.55 173
XVG-OURS-SEG-HR99.16 17798.99 19899.66 11599.84 6099.64 11098.25 31199.73 11198.39 26699.63 15899.43 27099.70 2499.90 15797.34 27098.64 36199.44 228
MSDG99.08 19298.98 20199.37 21999.60 18199.13 22097.54 36199.74 10798.84 22199.53 20399.55 24099.10 8599.79 30097.07 29099.86 15199.18 289
Effi-MVS+99.06 19498.97 20299.34 22699.31 29698.98 23598.31 30799.91 3298.81 22398.79 32398.94 35799.14 8299.84 25298.79 15798.74 35599.20 284
MS-PatchMatch99.00 20998.97 20299.09 27399.11 33798.19 29798.76 26899.33 28698.49 25799.44 22399.58 22098.21 20599.69 33698.20 19699.62 25799.39 241
GST-MVS99.16 17798.96 20499.75 7399.73 13699.73 7799.20 16799.55 21498.22 28599.32 25399.35 29398.65 14599.91 13996.86 29999.74 21699.62 137
PHI-MVS99.11 18898.95 20599.59 15199.13 33099.59 12799.17 17799.65 15597.88 30899.25 26699.46 26598.97 10499.80 29797.26 27899.82 17799.37 246
SF-MVS99.10 19198.93 20699.62 14399.58 19099.51 14299.13 19399.65 15597.97 30099.42 22999.61 20498.86 11599.87 20296.45 32399.68 24199.49 210
WR-MVS99.11 18898.93 20699.66 11599.30 30099.42 16498.42 30199.37 27999.04 19699.57 18499.20 32396.89 27699.86 22098.66 17099.87 14399.70 78
USDC98.96 21698.93 20699.05 27999.54 21497.99 31197.07 38199.80 7798.21 28699.75 11399.77 10898.43 17799.64 36397.90 22199.88 13299.51 200
TinyColmap98.97 21398.93 20699.07 27799.46 25398.19 29797.75 35299.75 10298.79 22699.54 19899.70 14698.97 10499.62 36596.63 31499.83 16899.41 238
DPE-MVScopyleft99.14 18198.92 21099.82 3699.57 20099.77 5498.74 26999.60 18598.55 24999.76 10699.69 15298.23 20499.92 11596.39 32599.75 20999.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 19398.92 21099.52 17598.89 35999.78 4999.15 18599.66 14699.34 14998.92 30799.24 31797.69 24199.98 1998.11 20699.28 32198.81 345
MP-MVS-pluss99.14 18198.92 21099.80 4499.83 6499.83 2998.61 27599.63 16396.84 35199.44 22399.58 22098.81 11899.91 13997.70 24599.82 17799.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 20798.92 21099.27 24599.71 14299.28 19598.59 28099.77 9298.32 28099.39 24199.41 27298.62 14799.84 25296.62 31599.84 16098.69 351
new_pmnet98.88 22898.89 21498.84 30499.70 15097.62 32998.15 31799.50 24297.98 29999.62 16799.54 24298.15 21099.94 7697.55 25899.84 16098.95 333
CVMVSNet98.61 25198.88 21597.80 34799.58 19093.60 38399.26 14999.64 16199.66 9899.72 12699.67 16793.26 32999.93 9399.30 9799.81 18699.87 28
Fast-Effi-MVS+99.02 20398.87 21699.46 18899.38 27399.50 14399.04 21799.79 8397.17 34298.62 33698.74 36999.34 5899.95 6298.32 18799.41 30498.92 336
lupinMVS98.96 21698.87 21699.24 25399.57 20098.40 28498.12 32199.18 32098.28 28299.63 15899.13 32798.02 21999.97 3298.22 19499.69 23699.35 252
CANet_DTU98.91 22298.85 21899.09 27398.79 36898.13 30198.18 31499.31 29299.48 12498.86 31599.51 24896.56 28499.95 6299.05 13299.95 8299.19 287
IS-MVSNet99.03 20198.85 21899.55 16799.80 8599.25 20299.73 2799.15 32399.37 14699.61 17399.71 13994.73 31499.81 29197.70 24599.88 13299.58 163
1112_ss99.05 19798.84 22099.67 10899.66 16899.29 19398.52 29299.82 6497.65 31899.43 22799.16 32596.42 29099.91 13999.07 13199.84 16099.80 45
ACMP97.51 1499.05 19798.84 22099.67 10899.78 10499.55 13798.88 24799.66 14697.11 34699.47 21799.60 21299.07 9299.89 17496.18 33499.85 15599.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 19498.83 22299.76 6399.76 11699.71 8499.32 12799.50 24298.35 27498.97 30099.48 25898.37 18699.92 11595.95 34599.75 20999.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 21398.82 22399.42 20099.71 14298.81 25299.62 6398.68 34699.81 6099.38 24299.80 8394.25 31899.85 23798.79 15799.32 31699.59 158
MCST-MVS99.02 20398.81 22499.65 12099.58 19099.49 14498.58 28199.07 32898.40 26599.04 29799.25 31298.51 16999.80 29797.31 27299.51 28999.65 111
PMVScopyleft92.94 2198.82 23398.81 22498.85 30299.84 6097.99 31199.20 16799.47 25099.71 8099.42 22999.82 7398.09 21399.47 38393.88 37999.85 15599.07 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 21298.80 22699.56 16499.25 31099.43 16198.54 29099.27 30098.58 24798.80 32299.43 27098.53 16499.70 33097.22 28399.59 27199.54 181
MSP-MVS99.04 20098.79 22799.81 3999.78 10499.73 7799.35 12199.57 20398.54 25299.54 19898.99 34896.81 27899.93 9396.97 29399.53 28599.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 22498.77 22899.27 24599.48 24398.44 28198.72 27199.32 28897.94 30499.37 24399.35 29396.31 29599.91 13998.85 15099.63 25699.47 218
Test_1112_low_res98.95 21998.73 22999.63 13499.68 16299.15 21998.09 32599.80 7797.14 34499.46 22199.40 27696.11 30099.89 17499.01 13599.84 16099.84 34
OMC-MVS98.90 22498.72 23099.44 19499.39 27099.42 16498.58 28199.64 16197.31 33699.44 22399.62 19598.59 15299.69 33696.17 33599.79 19699.22 278
eth_miper_zixun_eth98.68 24898.71 23198.60 31899.10 33896.84 35197.52 36599.54 22098.94 20599.58 18199.48 25896.25 29899.76 31398.01 21299.93 10099.21 280
c3_l98.72 24498.71 23198.72 31499.12 33297.22 34197.68 35699.56 20898.90 21299.54 19899.48 25896.37 29499.73 32297.88 22399.88 13299.21 280
HPM-MVS++copyleft98.96 21698.70 23399.74 7899.52 22599.71 8498.86 24999.19 31998.47 25998.59 33999.06 33898.08 21599.91 13996.94 29499.60 26799.60 151
HQP_MVS98.90 22498.68 23499.55 16799.58 19099.24 20698.80 26299.54 22098.94 20599.14 28599.25 31297.24 26299.82 27695.84 34899.78 20199.60 151
9.1498.64 23599.45 25798.81 25999.60 18597.52 32599.28 26399.56 23398.53 16499.83 26795.36 35999.64 254
HyFIR lowres test98.91 22298.64 23599.73 8799.85 5799.47 14698.07 32899.83 5998.64 24199.89 5299.60 21292.57 336100.00 199.33 9199.97 5499.72 72
FMVSNet398.80 23598.63 23799.32 23399.13 33098.72 26199.10 20299.48 24799.23 16699.62 16799.64 17892.57 33699.86 22098.96 14299.90 11499.39 241
miper_lstm_enhance98.65 25098.60 23898.82 30999.20 32097.33 33897.78 35199.66 14699.01 19899.59 17999.50 25194.62 31599.85 23798.12 20599.90 11499.26 270
K. test v398.87 22998.60 23899.69 10399.93 2699.46 15099.74 2494.97 39099.78 6899.88 6099.88 4293.66 32699.97 3299.61 4799.95 8299.64 121
miper_ehance_all_eth98.59 25698.59 24098.59 31998.98 35297.07 34597.49 36699.52 23498.50 25599.52 20599.37 28496.41 29299.71 32897.86 22799.62 25799.00 330
APD-MVScopyleft98.87 22998.59 24099.71 9899.50 23399.62 11699.01 22699.57 20396.80 35399.54 19899.63 18898.29 19699.91 13995.24 36099.71 23099.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 24698.59 24099.02 28199.54 21497.99 31197.58 36099.82 6495.70 36799.34 24898.98 35198.52 16799.77 31197.98 21499.83 16899.30 265
Vis-MVSNet (Re-imp)98.77 23798.58 24399.34 22699.78 10498.88 24899.61 6899.56 20899.11 19099.24 26999.56 23393.00 33499.78 30397.43 26699.89 12399.35 252
NCCC98.82 23398.57 24499.58 15599.21 31799.31 19098.61 27599.25 30698.65 24098.43 34799.26 31097.86 23099.81 29196.55 31699.27 32499.61 147
UnsupCasMVSNet_eth98.83 23298.57 24499.59 15199.68 16299.45 15598.99 23499.67 14299.48 12499.55 19699.36 28894.92 31099.86 22098.95 14696.57 38999.45 223
CLD-MVS98.76 23898.57 24499.33 22999.57 20098.97 23797.53 36399.55 21496.41 35699.27 26499.13 32799.07 9299.78 30396.73 30799.89 12399.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test98.71 24598.56 24799.15 26399.22 31598.66 26697.14 37899.51 23898.09 29399.54 19899.27 30796.87 27799.74 31998.43 17998.96 34199.03 324
iter_conf_final98.75 23998.54 24899.40 20999.33 29398.75 25899.26 14999.59 19199.80 6399.76 10699.58 22090.17 36599.92 11599.37 8299.97 5499.54 181
Patchmtry98.78 23698.54 24899.49 18098.89 35999.19 21599.32 12799.67 14299.65 10099.72 12699.79 9391.87 34499.95 6298.00 21399.97 5499.33 256
RPMNet98.60 25398.53 25098.83 30699.05 34398.12 30299.30 13599.62 16699.86 4499.16 28199.74 12092.53 33899.92 11598.75 16298.77 35198.44 365
N_pmnet98.73 24398.53 25099.35 22599.72 13998.67 26398.34 30494.65 39198.35 27499.79 9599.68 16398.03 21899.93 9398.28 18999.92 10499.44 228
dmvs_re98.69 24798.48 25299.31 23699.55 21299.42 16499.54 8498.38 36299.32 15298.72 32998.71 37096.76 28099.21 38896.01 33999.35 31299.31 263
PatchMatch-RL98.68 24898.47 25399.30 23999.44 25899.28 19598.14 31999.54 22097.12 34599.11 28999.25 31297.80 23599.70 33096.51 31999.30 31898.93 335
Anonymous20240521198.75 23998.46 25499.63 13499.34 28899.66 10299.47 9997.65 37499.28 15799.56 19199.50 25193.15 33099.84 25298.62 17199.58 27299.40 239
F-COLMAP98.74 24198.45 25599.62 14399.57 20099.47 14698.84 25299.65 15596.31 35998.93 30499.19 32497.68 24299.87 20296.52 31899.37 30999.53 187
CPTT-MVS98.74 24198.44 25699.64 12799.61 17999.38 17499.18 17299.55 21496.49 35599.27 26499.37 28497.11 27099.92 11595.74 35199.67 24799.62 137
PVSNet97.47 1598.42 27598.44 25698.35 32999.46 25396.26 36096.70 38699.34 28597.68 31799.00 29999.13 32797.40 25599.72 32497.59 25799.68 24199.08 315
DIV-MVS_self_test98.54 26198.42 25898.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.87 32199.78 30397.97 21699.89 12399.18 289
cl____98.54 26198.41 25998.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.85 32299.78 30397.97 21699.89 12399.17 291
CHOSEN 280x42098.41 27698.41 25998.40 32799.34 28895.89 36796.94 38399.44 25898.80 22599.25 26699.52 24693.51 32899.98 1998.94 14799.98 3999.32 259
API-MVS98.38 27998.39 26198.35 32998.83 36399.26 19999.14 18799.18 32098.59 24698.66 33498.78 36798.61 14999.57 37394.14 37499.56 27496.21 391
MG-MVS98.52 26398.39 26198.94 28899.15 32797.39 33798.18 31499.21 31698.89 21599.23 27099.63 18897.37 25899.74 31994.22 37399.61 26499.69 82
WTY-MVS98.59 25698.37 26399.26 24899.43 26298.40 28498.74 26999.13 32698.10 29199.21 27599.24 31794.82 31299.90 15797.86 22798.77 35199.49 210
SCA98.11 29598.36 26497.36 35799.20 32092.99 38598.17 31698.49 35798.24 28499.10 29199.57 22996.01 30299.94 7696.86 29999.62 25799.14 300
Patchmatch-RL test98.60 25398.36 26499.33 22999.77 11299.07 23098.27 30999.87 4398.91 21199.74 12199.72 13190.57 36199.79 30098.55 17499.85 15599.11 304
AdaColmapbinary98.60 25398.35 26699.38 21699.12 33299.22 20998.67 27499.42 26397.84 31298.81 32099.27 30797.32 26099.81 29195.14 36299.53 28599.10 306
h-mvs3398.61 25198.34 26799.44 19499.60 18198.67 26399.27 14799.44 25899.68 9099.32 25399.49 25592.50 339100.00 199.24 10496.51 39099.65 111
CNLPA98.57 25898.34 26799.28 24299.18 32499.10 22798.34 30499.41 26498.48 25898.52 34398.98 35197.05 27299.78 30395.59 35399.50 29298.96 331
FA-MVS(test-final)98.52 26398.32 26999.10 27299.48 24398.67 26399.77 1598.60 35297.35 33499.63 15899.80 8393.07 33299.84 25297.92 21999.30 31898.78 348
PatchT98.45 27398.32 26998.83 30698.94 35498.29 29199.24 15798.82 34099.84 5299.08 29299.76 11291.37 34799.94 7698.82 15399.00 34098.26 371
hse-mvs298.52 26398.30 27199.16 26199.29 30298.60 27398.77 26799.02 33299.68 9099.32 25399.04 34192.50 33999.85 23799.24 10497.87 38199.03 324
PMMVS98.49 26898.29 27299.11 27098.96 35398.42 28397.54 36199.32 28897.53 32498.47 34698.15 38697.88 22999.82 27697.46 26499.24 32799.09 310
UnsupCasMVSNet_bld98.55 26098.27 27399.40 20999.56 21199.37 17797.97 34099.68 13897.49 32799.08 29299.35 29395.41 30999.82 27697.70 24598.19 37499.01 329
iter_conf0598.46 27198.23 27499.15 26399.04 34597.99 31199.10 20299.61 17399.79 6699.76 10699.58 22087.88 37599.92 11599.31 9699.97 5499.53 187
DP-MVS Recon98.50 26698.23 27499.31 23699.49 23899.46 15098.56 28699.63 16394.86 37898.85 31699.37 28497.81 23499.59 37196.08 33699.44 29998.88 339
MVSTER98.47 27098.22 27699.24 25399.06 34298.35 29099.08 21099.46 25399.27 15899.75 11399.66 17188.61 37399.85 23799.14 12599.92 10499.52 198
MVS-HIRNet97.86 30398.22 27696.76 36699.28 30591.53 39398.38 30392.60 39699.13 18699.31 25799.96 1297.18 26899.68 34698.34 18599.83 16899.07 320
CDPH-MVS98.56 25998.20 27899.61 14699.50 23399.46 15098.32 30699.41 26495.22 37299.21 27599.10 33598.34 19199.82 27695.09 36499.66 25099.56 170
CR-MVSNet98.35 28398.20 27898.83 30699.05 34398.12 30299.30 13599.67 14297.39 33299.16 28199.79 9391.87 34499.91 13998.78 16098.77 35198.44 365
MIMVSNet98.43 27498.20 27899.11 27099.53 22098.38 28899.58 7698.61 35098.96 20399.33 25099.76 11290.92 35499.81 29197.38 26999.76 20799.15 295
LFMVS98.46 27198.19 28199.26 24899.24 31298.52 27799.62 6396.94 38199.87 4099.31 25799.58 22091.04 35299.81 29198.68 16999.42 30399.45 223
CMPMVSbinary77.52 2398.50 26698.19 28199.41 20798.33 38599.56 13499.01 22699.59 19195.44 36999.57 18499.80 8395.64 30599.46 38596.47 32299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test111197.74 30898.16 28396.49 37199.60 18189.86 40199.71 3491.21 39799.89 3499.88 6099.87 4793.73 32599.90 15799.56 5599.99 1699.70 78
BH-RMVSNet98.41 27698.14 28499.21 25599.21 31798.47 27898.60 27798.26 36598.35 27498.93 30499.31 29997.20 26799.66 35594.32 37199.10 33499.51 200
114514_t98.49 26898.11 28599.64 12799.73 13699.58 13199.24 15799.76 9789.94 38999.42 22999.56 23397.76 23899.86 22097.74 23999.82 17799.47 218
BH-untuned98.22 29198.09 28698.58 32199.38 27397.24 34098.55 28798.98 33597.81 31399.20 28098.76 36897.01 27399.65 36194.83 36598.33 36998.86 341
tpmrst97.73 30998.07 28796.73 36898.71 37492.00 38999.10 20298.86 33798.52 25398.92 30799.54 24291.90 34299.82 27698.02 20999.03 33898.37 367
ECVR-MVScopyleft97.73 30998.04 28896.78 36599.59 18590.81 39799.72 3090.43 39999.89 3499.86 6999.86 5493.60 32799.89 17499.46 6899.99 1699.65 111
PAPM_NR98.36 28098.04 28899.33 22999.48 24398.93 24398.79 26599.28 29997.54 32398.56 34298.57 37597.12 26999.69 33694.09 37598.90 34699.38 243
HQP-MVS98.36 28098.02 29099.39 21399.31 29698.94 24097.98 33799.37 27997.45 32898.15 35698.83 36496.67 28199.70 33094.73 36699.67 24799.53 187
QAPM98.40 27897.99 29199.65 12099.39 27099.47 14699.67 4999.52 23491.70 38698.78 32599.80 8398.55 15899.95 6294.71 36899.75 20999.53 187
PLCcopyleft97.35 1698.36 28097.99 29199.48 18499.32 29599.24 20698.50 29499.51 23895.19 37498.58 34098.96 35596.95 27599.83 26795.63 35299.25 32599.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 29697.98 29398.48 32499.27 30796.48 35599.40 10999.07 32898.81 22399.23 27099.57 22990.11 36699.87 20296.69 30899.64 25499.09 310
alignmvs98.28 28597.96 29499.25 25199.12 33298.93 24399.03 22198.42 35999.64 10298.72 32997.85 39090.86 35799.62 36598.88 14999.13 33199.19 287
test_yl98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
DCV-MVSNet98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
train_agg98.35 28397.95 29599.57 16199.35 28099.35 18498.11 32399.41 26494.90 37697.92 36698.99 34898.02 21999.85 23795.38 35899.44 29999.50 205
HY-MVS98.23 998.21 29297.95 29598.99 28399.03 34698.24 29299.61 6898.72 34496.81 35298.73 32899.51 24894.06 31999.86 22096.91 29698.20 37298.86 341
miper_enhance_ethall98.03 29997.94 29998.32 33298.27 38696.43 35796.95 38299.41 26496.37 35899.43 22798.96 35594.74 31399.69 33697.71 24299.62 25798.83 344
DPM-MVS98.28 28597.94 29999.32 23399.36 27899.11 22297.31 37398.78 34296.88 34998.84 31799.11 33497.77 23799.61 36994.03 37799.36 31099.23 276
JIA-IIPM98.06 29897.92 30198.50 32398.59 37797.02 34698.80 26298.51 35599.88 3997.89 36899.87 4791.89 34399.90 15798.16 20397.68 38398.59 355
MAR-MVS98.24 28997.92 30199.19 25898.78 37099.65 10799.17 17799.14 32495.36 37098.04 36398.81 36697.47 25299.72 32495.47 35699.06 33598.21 374
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 30197.90 30398.27 33698.90 35697.45 33599.30 13599.06 33094.98 37597.21 38299.12 33198.43 17799.67 35195.58 35498.56 36497.71 383
OpenMVScopyleft98.12 1098.23 29097.89 30499.26 24899.19 32299.26 19999.65 5999.69 13591.33 38798.14 36099.77 10898.28 19799.96 5395.41 35799.55 27898.58 357
Syy-MVS98.17 29397.85 30599.15 26398.50 38098.79 25598.60 27799.21 31697.89 30696.76 38596.37 40295.47 30899.57 37399.10 12898.73 35799.09 310
pmmvs398.08 29797.80 30698.91 29499.41 26897.69 32897.87 34899.66 14695.87 36399.50 21299.51 24890.35 36399.97 3298.55 17499.47 29699.08 315
PatchmatchNetpermissive97.65 31397.80 30697.18 36298.82 36692.49 38799.17 17798.39 36198.12 29098.79 32399.58 22090.71 35999.89 17497.23 28299.41 30499.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 31497.79 30897.11 36496.67 39692.31 38898.51 29398.04 36799.24 16495.77 39199.47 26293.78 32499.66 35598.98 13899.62 25799.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 29497.77 30999.18 26094.57 39997.99 31199.24 15797.96 36999.74 7397.29 38099.62 19593.13 33199.97 3298.59 17299.83 16899.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 31098.70 37590.83 39699.15 18598.02 36898.51 25498.82 31999.61 20490.98 35399.66 35596.89 29898.92 344
tpmvs97.39 32197.69 31196.52 37098.41 38291.76 39099.30 13598.94 33697.74 31497.85 37199.55 24092.40 34199.73 32296.25 33198.73 35798.06 379
GA-MVS97.99 30297.68 31298.93 29199.52 22598.04 31097.19 37799.05 33198.32 28098.81 32098.97 35389.89 36999.41 38698.33 18699.05 33699.34 255
ADS-MVSNet97.72 31297.67 31397.86 34599.14 32894.65 37799.22 16498.86 33796.97 34798.25 35299.64 17890.90 35599.84 25296.51 31999.56 27499.08 315
ADS-MVSNet297.78 30797.66 31498.12 34099.14 32895.36 37199.22 16498.75 34396.97 34798.25 35299.64 17890.90 35599.94 7696.51 31999.56 27499.08 315
TAPA-MVS97.92 1398.03 29997.55 31599.46 18899.47 24999.44 15798.50 29499.62 16686.79 39099.07 29599.26 31098.26 19999.62 36597.28 27599.73 22199.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 32897.43 31696.27 37398.79 36891.62 39295.54 39099.01 33499.44 13498.88 31199.12 33192.78 33599.68 34694.30 37299.03 33897.50 384
FE-MVS97.85 30497.42 31799.15 26399.44 25898.75 25899.77 1598.20 36695.85 36499.33 25099.80 8388.86 37299.88 18896.40 32499.12 33298.81 345
AUN-MVS97.82 30597.38 31899.14 26799.27 30798.53 27598.72 27199.02 33298.10 29197.18 38399.03 34589.26 37199.85 23797.94 21897.91 37999.03 324
baseline197.73 30997.33 31998.96 28699.30 30097.73 32699.40 10998.42 35999.33 15199.46 22199.21 32191.18 35099.82 27698.35 18491.26 39599.32 259
cl2297.56 31797.28 32098.40 32798.37 38496.75 35297.24 37699.37 27997.31 33699.41 23599.22 31987.30 37699.37 38797.70 24599.62 25799.08 315
EMVS96.96 33197.28 32095.99 37698.76 37291.03 39595.26 39198.61 35099.34 14998.92 30798.88 36293.79 32399.66 35592.87 38099.05 33697.30 388
FMVSNet597.80 30697.25 32299.42 20098.83 36398.97 23799.38 11399.80 7798.87 21699.25 26699.69 15280.60 39499.91 13998.96 14299.90 11499.38 243
tttt051797.62 31497.20 32398.90 30099.76 11697.40 33699.48 9694.36 39299.06 19599.70 13599.49 25584.55 38999.94 7698.73 16499.65 25299.36 249
TR-MVS97.44 32097.15 32498.32 33298.53 37997.46 33498.47 29697.91 37196.85 35098.21 35598.51 37996.42 29099.51 38192.16 38297.29 38597.98 380
dp96.86 33297.07 32596.24 37498.68 37690.30 40099.19 17198.38 36297.35 33498.23 35499.59 21787.23 37799.82 27696.27 33098.73 35798.59 355
PAPR97.56 31797.07 32599.04 28098.80 36798.11 30497.63 35799.25 30694.56 38198.02 36498.25 38597.43 25499.68 34690.90 38698.74 35599.33 256
BH-w/o97.20 32597.01 32797.76 34899.08 34195.69 36898.03 33298.52 35495.76 36697.96 36598.02 38795.62 30699.47 38392.82 38197.25 38698.12 378
tpm cat196.78 33496.98 32896.16 37598.85 36290.59 39999.08 21099.32 28892.37 38497.73 37799.46 26591.15 35199.69 33696.07 33798.80 34898.21 374
thisisatest053097.45 31996.95 32998.94 28899.68 16297.73 32699.09 20794.19 39498.61 24599.56 19199.30 30184.30 39099.93 9398.27 19099.54 28399.16 293
test-LLR97.15 32696.95 32997.74 35098.18 38995.02 37497.38 36996.10 38398.00 29697.81 37398.58 37390.04 36799.91 13997.69 25198.78 34998.31 368
tpm97.15 32696.95 32997.75 34998.91 35594.24 37999.32 12797.96 36997.71 31698.29 35099.32 29786.72 38499.92 11598.10 20796.24 39299.09 310
test0.0.03 197.37 32296.91 33298.74 31397.72 39297.57 33097.60 35997.36 38098.00 29699.21 27598.02 38790.04 36799.79 30098.37 18295.89 39398.86 341
OpenMVS_ROBcopyleft97.31 1797.36 32396.84 33398.89 30199.29 30299.45 15598.87 24899.48 24786.54 39299.44 22399.74 12097.34 25999.86 22091.61 38399.28 32197.37 387
dmvs_testset97.27 32496.83 33498.59 31999.46 25397.55 33199.25 15696.84 38298.78 22897.24 38197.67 39297.11 27098.97 39286.59 39698.54 36599.27 269
cascas96.99 32996.82 33597.48 35397.57 39595.64 36996.43 38899.56 20891.75 38597.13 38497.61 39495.58 30798.63 39496.68 30999.11 33398.18 377
CostFormer96.71 33796.79 33696.46 37298.90 35690.71 39899.41 10898.68 34694.69 38098.14 36099.34 29686.32 38699.80 29797.60 25698.07 37898.88 339
thisisatest051596.98 33096.42 33798.66 31799.42 26797.47 33397.27 37494.30 39397.24 33899.15 28398.86 36385.01 38799.87 20297.10 28899.39 30698.63 352
EPMVS96.53 34096.32 33897.17 36398.18 38992.97 38699.39 11189.95 40098.21 28698.61 33799.59 21786.69 38599.72 32496.99 29299.23 32998.81 345
baseline296.83 33396.28 33998.46 32599.09 34096.91 34998.83 25493.87 39597.23 33996.23 39098.36 38288.12 37499.90 15796.68 30998.14 37698.57 358
tpm296.35 34496.22 34096.73 36898.88 36191.75 39199.21 16698.51 35593.27 38397.89 36899.21 32184.83 38899.70 33096.04 33898.18 37598.75 350
thres600view796.60 33996.16 34197.93 34399.63 17496.09 36499.18 17297.57 37598.77 23098.72 32997.32 39687.04 37999.72 32488.57 38898.62 36297.98 380
MVEpermissive92.54 2296.66 33896.11 34298.31 33499.68 16297.55 33197.94 34295.60 38899.37 14690.68 39798.70 37196.56 28498.61 39586.94 39599.55 27898.77 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 33496.07 34398.91 29499.26 30997.92 31997.70 35596.05 38697.96 30392.37 39698.43 38187.06 37899.90 15798.27 19097.56 38498.91 337
thres100view90096.39 34396.03 34497.47 35499.63 17495.93 36599.18 17297.57 37598.75 23498.70 33297.31 39787.04 37999.67 35187.62 39198.51 36696.81 389
tfpn200view996.30 34695.89 34597.53 35299.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36696.81 389
thres40096.40 34295.89 34597.92 34499.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36697.98 380
PCF-MVS96.03 1896.73 33695.86 34799.33 22999.44 25899.16 21796.87 38499.44 25886.58 39198.95 30299.40 27694.38 31799.88 18887.93 39099.80 19198.95 333
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 34795.84 34897.41 35698.24 38793.84 38297.38 36995.84 38798.43 26097.81 37398.56 37679.77 39599.89 17497.77 23498.77 35198.52 359
test-mter96.23 34895.73 34997.74 35098.18 38995.02 37497.38 36996.10 38397.90 30597.81 37398.58 37379.12 39899.91 13997.69 25198.78 34998.31 368
thres20096.09 34995.68 35097.33 35999.48 24396.22 36198.53 29197.57 37598.06 29598.37 34996.73 40186.84 38399.61 36986.99 39498.57 36396.16 392
testing396.48 34195.63 35199.01 28299.23 31497.81 32298.90 24599.10 32798.72 23597.84 37297.92 38972.44 40199.85 23797.21 28499.33 31499.35 252
FPMVS96.32 34595.50 35298.79 31099.60 18198.17 30098.46 30098.80 34197.16 34396.28 38799.63 18882.19 39199.09 39088.45 38998.89 34799.10 306
tmp_tt95.75 35595.42 35396.76 36689.90 40194.42 37898.86 24997.87 37278.01 39399.30 26299.69 15297.70 23995.89 39799.29 10098.14 37699.95 11
KD-MVS_2432*160095.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
miper_refine_blended95.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
PVSNet_095.53 1995.85 35495.31 35697.47 35498.78 37093.48 38495.72 38999.40 27196.18 36197.37 37897.73 39195.73 30499.58 37295.49 35581.40 39699.36 249
gg-mvs-nofinetune95.87 35395.17 35797.97 34298.19 38896.95 34799.69 4289.23 40199.89 3496.24 38999.94 1681.19 39299.51 38193.99 37898.20 37297.44 385
X-MVStestdata96.09 34994.87 35899.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32661.30 40498.47 17199.88 18897.62 25399.73 22199.67 94
myMVS_eth3d95.63 35794.73 35998.34 33198.50 38096.36 35898.60 27799.21 31697.89 30696.76 38596.37 40272.10 40299.57 37394.38 37098.73 35799.09 310
PAPM95.61 35894.71 36098.31 33499.12 33296.63 35396.66 38798.46 35890.77 38896.25 38898.68 37293.01 33399.69 33681.60 39797.86 38298.62 353
MVS95.72 35694.63 36198.99 28398.56 37897.98 31799.30 13598.86 33772.71 39597.30 37999.08 33698.34 19199.74 31989.21 38798.33 36999.26 270
test250694.73 36094.59 36295.15 37799.59 18585.90 40399.75 2274.01 40399.89 3499.71 13199.86 5479.00 39999.90 15799.52 6299.99 1699.65 111
IB-MVS95.41 2095.30 35994.46 36397.84 34698.76 37295.33 37297.33 37296.07 38596.02 36295.37 39497.41 39576.17 40099.96 5397.54 25995.44 39498.22 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 36192.32 36489.91 37993.49 40070.18 40490.28 39299.56 20861.71 39695.39 39399.52 24693.90 32099.94 7698.76 16198.27 37199.62 137
EGC-MVSNET89.05 36285.52 36599.64 12799.89 4099.78 4999.56 8199.52 23424.19 39749.96 39899.83 6699.15 7999.92 11597.71 24299.85 15599.21 280
testmvs28.94 36433.33 36615.79 38126.03 4029.81 40696.77 38515.67 40411.55 39923.87 40050.74 40719.03 4048.53 40023.21 39933.07 39729.03 396
cdsmvs_eth3d_5k24.88 36533.17 3670.00 3820.00 4040.00 4070.00 39399.62 1660.00 4000.00 40199.13 32799.82 130.00 4010.00 4000.00 3990.00 397
test12329.31 36333.05 36818.08 38025.93 40312.24 40597.53 36310.93 40511.78 39824.21 39950.08 40821.04 4038.60 39923.51 39832.43 39833.39 395
pcd_1.5k_mvsjas16.61 36622.14 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 199.28 640.00 4010.00 4000.00 3990.00 397
test_blank8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
sosnet-low-res8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
sosnet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
Regformer8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.26 37511.02 3780.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.16 3250.00 4050.00 4010.00 4000.00 3990.00 397
MM99.55 16798.81 25299.05 21497.79 37399.99 299.48 21599.59 21796.29 29799.95 6299.94 1599.98 3999.88 25
WAC-MVS96.36 35895.20 361
FOURS199.83 6499.89 1099.74 2499.71 12399.69 8899.63 158
MSC_two_6792asdad99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
PC_three_145297.56 32099.68 14199.41 27299.09 8797.09 39696.66 31199.60 26799.62 137
No_MVS99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
test_one_060199.63 17499.76 6299.55 21499.23 16699.31 25799.61 20498.59 152
eth-test20.00 404
eth-test0.00 404
ZD-MVS99.43 26299.61 12299.43 26196.38 35799.11 28999.07 33797.86 23099.92 11594.04 37699.49 294
IU-MVS99.69 15499.77 5499.22 31397.50 32699.69 13897.75 23899.70 23299.77 59
OPU-MVS99.29 24099.12 33299.44 15799.20 16799.40 27699.00 9898.84 39396.54 31799.60 26799.58 163
test_241102_TWO99.54 22099.13 18699.76 10699.63 18898.32 19499.92 11597.85 22999.69 23699.75 68
test_241102_ONE99.69 15499.82 3599.54 22099.12 18999.82 7999.49 25598.91 11099.52 380
save fliter99.53 22099.25 20298.29 30899.38 27899.07 193
test_0728_THIRD99.18 17399.62 16799.61 20498.58 15499.91 13997.72 24099.80 19199.77 59
test_0728_SECOND99.83 3299.70 15099.79 4699.14 18799.61 17399.92 11597.88 22399.72 22799.77 59
test072699.69 15499.80 4499.24 15799.57 20399.16 18099.73 12599.65 17698.35 188
GSMVS99.14 300
test_part299.62 17899.67 10099.55 196
sam_mvs190.81 35899.14 300
sam_mvs90.52 362
ambc99.20 25799.35 28098.53 27599.17 17799.46 25399.67 14799.80 8398.46 17499.70 33097.92 21999.70 23299.38 243
MTGPAbinary99.53 229
test_post199.14 18751.63 40689.54 37099.82 27696.86 299
test_post52.41 40590.25 36499.86 220
patchmatchnet-post99.62 19590.58 36099.94 76
GG-mvs-BLEND97.36 35797.59 39396.87 35099.70 3588.49 40294.64 39597.26 39880.66 39399.12 38991.50 38496.50 39196.08 393
MTMP99.09 20798.59 353
gm-plane-assit97.59 39389.02 40293.47 38298.30 38399.84 25296.38 326
test9_res95.10 36399.44 29999.50 205
TEST999.35 28099.35 18498.11 32399.41 26494.83 37997.92 36698.99 34898.02 21999.85 237
test_899.34 28899.31 19098.08 32799.40 27194.90 37697.87 37098.97 35398.02 21999.84 252
agg_prior294.58 36999.46 29899.50 205
agg_prior99.35 28099.36 18199.39 27497.76 37699.85 237
TestCases99.63 13499.78 10499.64 11099.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
test_prior499.19 21598.00 335
test_prior297.95 34197.87 30998.05 36299.05 33997.90 22795.99 34299.49 294
test_prior99.46 18899.35 28099.22 20999.39 27499.69 33699.48 214
旧先验297.94 34295.33 37198.94 30399.88 18896.75 305
新几何298.04 331
新几何199.52 17599.50 23399.22 20999.26 30395.66 36898.60 33899.28 30597.67 24399.89 17495.95 34599.32 31699.45 223
旧先验199.49 23899.29 19399.26 30399.39 28097.67 24399.36 31099.46 222
无先验98.01 33399.23 31095.83 36599.85 23795.79 35099.44 228
原ACMM297.92 344
原ACMM199.37 21999.47 24998.87 25099.27 30096.74 35498.26 35199.32 29797.93 22699.82 27695.96 34499.38 30799.43 234
test22299.51 22799.08 22997.83 35099.29 29695.21 37398.68 33399.31 29997.28 26199.38 30799.43 234
testdata299.89 17495.99 342
segment_acmp98.37 186
testdata99.42 20099.51 22798.93 24399.30 29596.20 36098.87 31499.40 27698.33 19399.89 17496.29 32999.28 32199.44 228
testdata197.72 35397.86 311
test1299.54 17299.29 30299.33 18799.16 32298.43 34797.54 25099.82 27699.47 29699.48 214
plane_prior799.58 19099.38 174
plane_prior699.47 24999.26 19997.24 262
plane_prior599.54 22099.82 27695.84 34899.78 20199.60 151
plane_prior499.25 312
plane_prior399.31 19098.36 26999.14 285
plane_prior298.80 26298.94 205
plane_prior199.51 227
plane_prior99.24 20698.42 30197.87 30999.71 230
n20.00 406
nn0.00 406
door-mid99.83 59
lessismore_v099.64 12799.86 5399.38 17490.66 39899.89 5299.83 6694.56 31699.97 3299.56 5599.92 10499.57 168
LGP-MVS_train99.74 7899.82 7199.63 11499.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
test1199.29 296
door99.77 92
HQP5-MVS98.94 240
HQP-NCC99.31 29697.98 33797.45 32898.15 356
ACMP_Plane99.31 29697.98 33797.45 32898.15 356
BP-MVS94.73 366
HQP4-MVS98.15 35699.70 33099.53 187
HQP3-MVS99.37 27999.67 247
HQP2-MVS96.67 281
NP-MVS99.40 26999.13 22098.83 364
MDTV_nov1_ep13_2view91.44 39499.14 18797.37 33399.21 27591.78 34696.75 30599.03 324
ACMMP++_ref99.94 93
ACMMP++99.79 196
Test By Simon98.41 180
ITE_SJBPF99.38 21699.63 17499.44 15799.73 11198.56 24899.33 25099.53 24498.88 11499.68 34696.01 33999.65 25299.02 328
DeepMVS_CXcopyleft97.98 34199.69 15496.95 34799.26 30375.51 39495.74 39298.28 38496.47 28899.62 36591.23 38597.89 38097.38 386