This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2299.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2599.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 47100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2799.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2199.94 1199.95 1299.73 899.90 13299.65 1699.97 3099.69 54
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3199.97 3099.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3499.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4099.97 699.92 1799.77 799.98 799.43 38100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2499.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4099.89 2699.87 3299.63 1499.87 17499.54 2799.92 7499.63 97
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 1999.85 2699.70 4999.92 1899.93 1499.45 2399.97 1799.36 50100.00 199.85 13
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 4999.91 2099.89 2699.60 1999.87 17499.59 2199.74 18599.71 48
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10199.91 2099.15 5599.97 1799.50 33100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3199.92 799.67 5899.77 7399.75 8199.61 1799.98 799.35 5199.98 2199.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3399.93 1499.93 1498.54 13899.93 7199.59 2199.98 2199.76 39
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5299.78 6899.92 1799.37 3199.88 16198.93 11399.95 4999.60 123
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4299.76 6899.64 6699.93 1499.85 3898.66 12299.84 23099.88 699.99 1299.71 48
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4299.75 7599.60 8099.92 1899.87 3298.75 11199.86 19499.90 299.99 1299.73 44
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1699.51 17799.39 24999.57 2099.93 7199.64 1899.86 11699.20 260
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6299.82 3999.39 11299.82 5099.84 4399.38 2999.91 11299.38 4799.93 7099.80 24
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6099.82 3999.46 10199.75 8199.56 19899.63 1499.95 4599.43 3899.88 10099.62 108
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5599.70 10099.93 499.78 6899.68 12599.10 6099.78 27899.45 3699.96 4299.83 18
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2299.78 6099.90 799.82 5099.83 4498.45 15399.87 17499.51 3199.97 3099.86 11
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7199.82 3999.59 8299.41 20299.85 3899.62 16100.00 199.53 2999.89 9299.59 132
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3499.70 10099.67 5899.82 5099.83 4498.98 7799.90 13299.24 6799.97 3099.53 162
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 6799.85 2699.90 799.90 2299.85 3898.09 18899.83 24199.58 2499.95 4999.90 4
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5099.69 10699.85 2199.80 6099.81 5398.81 9699.91 11299.47 3599.88 10099.70 51
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8199.80 4999.71 4499.72 9699.69 11499.15 5599.83 24199.32 5799.94 6299.53 162
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3199.77 6399.78 3699.93 1499.89 2697.94 20099.92 9199.65 1699.98 2199.62 108
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 16999.85 2699.79 3599.76 7599.72 9499.33 3699.82 25199.21 7099.94 6299.59 132
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 3899.71 9599.72 4399.84 4399.78 6798.67 12099.97 1799.30 6099.95 4999.80 24
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13299.71 9599.27 12799.93 1499.90 2299.70 1199.93 7198.99 10199.99 1299.64 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9399.79 5599.83 2799.88 3299.85 3898.42 15699.90 13299.60 2099.73 19299.49 185
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4299.73 8399.70 4999.84 4399.73 8898.56 13599.96 3599.29 6399.94 6299.83 18
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2299.84 3299.81 3099.94 1199.78 6798.91 8699.71 30398.41 14599.95 4999.05 294
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4299.75 7599.86 1699.74 9099.79 6198.27 17399.85 21399.37 4999.93 7099.83 18
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19599.65 12999.15 15299.90 2299.75 8199.09 6299.88 16199.90 299.96 4299.67 67
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4299.73 8399.62 7099.84 4399.71 10198.62 12699.96 3599.30 6099.96 4299.86 11
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25599.75 7599.50 9099.88 3299.87 3299.31 3799.88 16199.43 38100.00 199.62 108
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 2999.90 2299.90 2297.97 19999.86 19499.42 4399.96 4299.80 24
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18699.61 14799.15 15299.88 3299.71 10199.08 6699.87 17499.90 299.97 3099.66 77
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 18899.60 15999.18 14299.87 3899.72 9499.08 6699.85 21399.89 599.98 2199.66 77
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12499.76 6899.32 12199.80 6099.78 6799.29 3999.87 17499.15 8499.91 8399.66 77
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17599.62 14099.18 14299.89 2699.72 9498.66 12299.87 17499.88 699.97 3099.66 77
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 8799.59 16699.24 13399.86 3999.70 10898.55 13699.82 25199.79 1199.95 4999.60 123
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19199.89 1599.60 8099.82 5099.62 16198.81 9699.89 14799.43 3899.86 11699.47 195
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 6799.79 5598.77 19999.80 6099.85 3899.64 1399.85 21398.70 13199.89 9299.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17699.61 14799.20 14099.84 4399.73 8898.67 12099.84 23099.86 899.98 2199.64 92
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 3899.75 7599.58 8399.85 4099.69 11498.18 18499.94 5799.28 6599.95 4999.83 18
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 16798.65 25599.24 13299.46 23399.68 5499.80 6099.66 13598.99 7699.89 14799.19 7599.90 8499.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 16798.66 25299.24 13299.46 23399.67 5899.79 6599.65 14098.97 7999.89 14799.15 8499.89 9299.71 48
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 22799.66 11899.42 11199.75 8199.66 13599.20 5099.76 28898.98 10399.99 1299.36 229
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16399.58 17599.25 13199.81 5799.62 16198.24 17599.84 23099.83 999.97 3099.64 92
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 15799.64 9599.30 11199.63 13799.61 7499.71 10199.56 19898.76 10999.96 3599.14 9099.92 7499.68 60
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 21999.76 6899.62 7099.83 4899.64 14298.54 13899.97 1799.15 8499.99 1299.68 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29699.90 1498.95 17499.78 6899.58 18799.57 2099.93 7199.48 3499.95 4999.79 30
TAMVS99.49 5299.45 5799.63 11599.48 21299.42 14999.45 7899.57 17799.66 6299.78 6899.83 4497.85 20999.86 19499.44 3799.96 4299.61 119
Regformer-499.45 6399.44 5999.50 16199.52 18998.94 23099.17 15399.53 20399.64 6699.76 7599.60 17998.96 8299.90 13298.91 11499.84 12499.67 67
EI-MVSNet99.38 8499.44 5999.21 23799.58 15798.09 28899.26 12499.46 23399.62 7099.75 8199.67 13198.54 13899.85 21399.15 8499.92 7499.68 60
MVSFormer99.41 7499.44 5999.31 21999.57 16798.40 26999.77 1199.80 4999.73 4099.63 12799.30 27198.02 19499.98 799.43 3899.69 20799.55 149
CS-MVS99.40 7799.43 6299.29 22299.44 22799.72 6799.36 9699.91 1099.71 4499.28 23098.83 33999.22 4899.86 19499.40 4599.77 17198.29 341
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6599.61 14799.54 8499.80 6099.64 14297.79 21399.95 4599.21 7099.94 6299.84 14
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10499.77 6399.53 8699.77 7399.76 7799.26 4599.78 27897.77 20199.88 10099.60 123
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5099.76 6899.85 2199.82 5099.88 2996.39 27099.97 1799.59 2199.98 2199.55 149
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18099.59 16699.17 14699.81 5799.61 17098.41 15799.69 31199.32 5799.94 6299.53 162
Regformer-399.41 7499.41 6699.40 19599.52 18998.70 24899.17 15399.44 23899.62 7099.75 8199.60 17998.90 8999.85 21398.89 11599.84 12499.65 85
CS-MVS-test99.43 6699.40 6899.53 15399.51 19499.84 1999.60 6099.94 699.52 8899.10 26198.89 33599.24 4699.90 13299.11 9299.66 22398.84 315
mvs_anonymous99.28 10999.39 6998.94 26499.19 29397.81 30099.02 19199.55 18899.78 3699.85 4099.80 5598.24 17599.86 19499.57 2599.50 26699.15 271
DP-MVS99.48 5499.39 6999.74 6399.57 16799.62 10199.29 11899.61 14799.87 1499.74 9099.76 7798.69 11699.87 17498.20 16399.80 15699.75 42
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6299.78 6099.71 4499.90 2299.69 11498.85 9499.90 13297.25 24799.78 16799.15 271
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21099.91 1097.97 26999.79 6599.73 8899.05 7199.97 1799.15 8499.99 1299.68 60
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 16999.65 12998.99 16899.64 12399.72 9499.39 2599.86 19498.23 16099.81 15199.60 123
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7599.70 10099.81 3099.69 10699.58 18797.66 22599.86 19499.17 8099.44 27499.67 67
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22299.86 2299.68 5499.65 12199.88 2997.67 22199.87 17499.03 9899.86 11699.76 39
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 8999.78 6099.53 8699.67 11399.78 6799.19 5199.86 19497.32 23799.87 10999.55 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS99.48 5499.36 7799.85 1899.55 17899.81 3199.50 7199.69 10698.99 16899.75 8199.71 10198.79 10399.93 7198.46 14399.85 12099.80 24
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24199.42 14999.70 2599.56 18299.23 13599.35 21399.80 5599.17 5399.95 4598.21 16299.84 12499.59 132
Anonymous2024052999.42 7099.34 7999.65 10499.53 18499.60 10999.63 4999.39 25599.47 9799.76 7599.78 6798.13 18699.86 19498.70 13199.68 21299.49 185
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
UGNet99.38 8499.34 7999.49 16498.90 32798.90 23899.70 2599.35 26699.86 1698.57 31299.81 5398.50 14899.93 7199.38 4799.98 2199.66 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25399.81 4899.61 7499.48 18199.41 24298.47 14999.86 19498.97 10599.90 8499.53 162
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 11999.74 8099.23 13599.72 9699.53 21097.63 22799.88 16199.11 9299.84 12499.48 190
MVS_Test99.28 10999.31 8599.19 24099.35 25198.79 24499.36 9699.49 22399.17 14699.21 24499.67 13198.78 10599.66 33199.09 9499.66 22399.10 281
NR-MVSNet99.40 7799.31 8599.68 8999.43 23099.55 12199.73 1999.50 21899.46 10199.88 3299.36 25797.54 22999.87 17498.97 10599.87 10999.63 97
GBi-Net99.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
test199.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
SD-MVS99.01 18099.30 9098.15 31299.50 20199.40 15498.94 21099.61 14799.22 13999.75 8199.82 5099.54 2295.51 37197.48 22999.87 10999.54 157
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 6999.70 10098.35 24399.51 17799.50 21999.31 3799.88 16198.18 16799.84 12499.69 54
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2599.14 30699.65 6499.89 2699.90 2296.20 27599.94 5799.42 4399.92 7499.67 67
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23499.88 1898.66 20799.96 899.79 6197.45 23299.93 7199.34 5299.99 1299.78 32
DELS-MVS99.34 9799.30 9099.48 16899.51 19499.36 16598.12 29299.53 20399.36 11699.41 20299.61 17099.22 4899.87 17499.21 7099.68 21299.20 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 20899.86 2298.85 18899.81 5799.73 8898.40 16199.92 9198.36 14899.83 13499.17 267
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8399.85 2698.79 19699.41 20299.60 17998.92 8499.92 9198.02 17799.92 7499.43 212
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14299.54 19499.13 15499.82 5099.63 15298.91 8699.92 9197.85 19699.70 20499.58 137
FMVSNet299.35 9299.28 9799.55 14799.49 20699.35 16999.45 7899.57 17799.44 10499.70 10399.74 8497.21 24499.87 17499.03 9899.94 6299.44 206
ab-mvs99.33 10199.28 9799.47 17099.57 16799.39 15699.78 1099.43 24298.87 18699.57 15199.82 5098.06 19199.87 17498.69 13399.73 19299.15 271
Regformer-199.32 10399.27 10099.47 17099.41 23698.95 22998.99 20099.48 22599.48 9299.66 11799.52 21298.78 10599.87 17498.36 14899.74 18599.60 123
Regformer-299.34 9799.27 10099.53 15399.41 23699.10 21598.99 20099.53 20399.47 9799.66 11799.52 21298.80 10099.89 14798.31 15499.74 18599.60 123
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22099.89 1598.38 23699.75 8199.04 31399.36 3499.86 19499.08 9599.25 30199.45 201
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19499.58 11598.98 20499.60 15999.43 10999.70 10399.36 25797.70 21699.88 16199.20 7399.87 10999.59 132
DVP-MVS++.99.38 8499.25 10499.77 4099.03 31799.77 4399.74 1699.61 14799.18 14299.76 7599.61 17099.00 7499.92 9197.72 20799.60 24299.62 108
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 21799.56 11898.97 20699.61 14799.43 10999.67 11399.28 27697.85 20999.95 4599.17 8099.81 15199.65 85
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12499.35 26698.77 19999.57 15199.70 10899.27 4499.88 16197.71 20999.75 17799.65 85
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25199.47 13199.62 5099.50 21899.44 10499.12 25899.78 6798.77 10899.94 5797.87 19399.72 19899.62 108
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10199.76 6899.07 16199.65 12199.63 15299.09 6299.92 9197.13 25599.76 17499.58 137
DU-MVS99.33 10199.21 10999.71 8399.43 23099.56 11898.83 22299.53 20399.38 11399.67 11399.36 25797.67 22199.95 4599.17 8099.81 15199.63 97
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10199.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 22799.41 24598.55 21899.68 10899.69 11498.13 18699.87 17498.82 12099.98 2199.24 250
ETV-MVS99.18 14399.18 11299.16 24399.34 26199.28 18099.12 17399.79 5599.48 9298.93 27598.55 35299.40 2499.93 7198.51 14199.52 26398.28 342
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16399.31 27599.16 14899.62 13599.61 17098.35 16599.91 11297.88 19099.72 19899.61 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 29999.84 3299.84 2499.89 2699.73 8896.01 27999.99 599.33 55100.00 199.63 97
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18499.75 5499.27 12299.61 14799.19 14199.57 15199.64 14298.76 10999.90 13297.29 23999.62 23299.56 146
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30199.83 3499.83 2799.85 4099.74 8496.10 27899.99 599.27 66100.00 199.63 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26699.76 5099.34 9999.97 298.93 17899.91 2099.79 6198.68 11799.93 7196.80 27299.56 24999.30 241
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24099.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 14899.60 15998.55 21899.57 15199.67 13199.03 7399.94 5797.01 25999.80 15699.69 54
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 11999.68 10999.54 8499.40 20799.56 19899.07 6899.82 25196.01 30899.96 4299.11 279
RE-MVS-def99.13 12199.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.57 13397.27 24299.61 23999.54 157
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 24999.48 22598.50 22499.52 17299.63 15299.14 5799.76 28897.89 18999.77 17199.51 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25199.11 21198.96 20799.54 19499.46 10199.61 14199.70 10896.31 27299.83 24199.34 5299.88 10099.55 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 29399.13 12192.93 35199.69 12399.49 12899.52 6999.77 6397.97 26999.96 899.79 6199.84 399.94 5795.85 31699.82 14379.36 367
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 32999.68 10999.08 15999.78 6899.62 16198.65 12499.88 16198.02 17799.96 4299.48 190
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28299.69 8199.05 18699.82 3999.50 9098.97 27199.05 31098.98 7799.98 798.20 16399.24 30398.62 323
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 27799.22 19798.99 20099.40 25299.08 15999.58 14899.64 14298.90 8999.83 24197.44 23199.75 17799.63 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.41 15799.91 11297.27 24299.61 23999.54 157
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 20899.53 20398.27 25299.53 17099.73 8898.75 11199.87 17497.70 21199.83 13499.68 60
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 24798.09 28898.13 29199.51 21499.47 9799.42 19498.54 35399.38 2999.97 1798.83 11899.33 29298.24 344
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25599.73 8398.82 19299.72 9699.62 16196.56 26199.82 25199.32 5799.95 4999.56 146
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29899.47 23298.47 14999.88 16197.62 21999.73 19299.67 67
VDD-MVS99.20 13699.11 12899.44 17999.43 23098.98 22499.50 7198.32 34299.80 3399.56 15899.69 11496.99 25499.85 21398.99 10199.73 19299.50 180
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28199.39 25598.70 20599.74 9099.30 27198.54 13899.97 1798.48 14299.82 14399.55 149
jason: jason.
LS3D99.24 11999.11 12899.61 12798.38 35699.79 3899.57 6599.68 10999.61 7499.15 25399.71 10198.70 11599.91 11297.54 22599.68 21299.13 278
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22299.72 9298.36 23899.60 14399.71 10198.92 8499.91 11297.08 25799.84 12499.40 218
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32599.58 17599.07 16199.64 12399.62 16198.19 18299.93 7198.41 14599.95 4999.55 149
MSLP-MVS++99.05 17099.09 13798.91 27099.21 28898.36 27398.82 22699.47 22998.85 18898.90 28199.56 19898.78 10599.09 36498.57 13899.68 21299.26 247
MVP-Stereo99.16 14899.08 13999.43 18399.48 21299.07 21999.08 18399.55 18898.63 21099.31 22499.68 12598.19 18299.78 27898.18 16799.58 24799.45 201
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 10899.59 16698.36 23899.36 21199.37 25298.80 10099.91 11297.43 23299.75 17799.68 60
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 24798.10 28798.00 30699.51 21499.47 9799.41 20298.50 35599.28 4199.97 1798.83 11899.34 29098.20 348
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7199.65 12998.07 26399.52 17299.69 11498.57 13399.92 9197.18 25299.79 16199.63 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17399.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5599.67 11497.72 28399.35 21399.25 28399.23 4799.92 9197.21 25099.82 14399.67 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 15499.06 14599.36 20899.57 16799.10 21598.01 30499.25 28998.78 19899.58 14899.44 23998.24 17599.76 28898.74 12899.93 7099.22 255
VNet99.18 14399.06 14599.56 14499.24 28499.36 16599.33 10199.31 27599.67 5899.47 18399.57 19596.48 26499.84 23099.15 8499.30 29599.47 195
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 10899.59 16698.36 23899.35 21399.38 25198.61 12899.93 7197.43 23299.75 17799.67 67
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32099.74 8098.36 23899.66 11799.68 12599.71 999.90 13296.84 27099.88 10099.43 212
test117299.23 12099.05 14999.74 6399.52 18999.75 5499.20 14299.61 14798.97 17099.48 18199.58 18798.41 15799.91 11297.15 25499.55 25399.57 143
CANet99.11 16099.05 14999.28 22598.83 33698.56 25898.71 24399.41 24599.25 13199.23 23899.22 29097.66 22599.94 5799.19 7599.97 3099.33 235
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 10899.59 16698.41 23299.32 22099.36 25798.73 11499.93 7197.29 23999.74 18599.67 67
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21299.72 9299.29 12399.63 12799.70 10896.47 26599.89 14798.17 16999.82 14399.50 180
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 15999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 8999.62 14098.38 23699.06 26799.27 27898.79 10399.94 5797.51 22899.82 14399.66 77
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 11999.56 18298.19 25799.14 25599.29 27498.84 9599.92 9197.53 22799.80 15699.64 92
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26199.16 20698.15 28899.29 28098.18 25899.63 12799.62 16199.18 5299.68 32298.20 16399.74 18599.30 241
MVS_111021_LR99.13 15499.03 15799.42 18599.58 15799.32 17497.91 31999.73 8398.68 20699.31 22499.48 22799.09 6299.66 33197.70 21199.77 17199.29 244
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8199.82 3998.33 24899.50 17999.78 6797.90 20399.65 33896.78 27399.83 13499.44 206
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20199.11 21197.92 31799.71 9598.76 20299.08 26399.47 23299.17 5399.54 35197.85 19699.76 17499.54 157
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28699.75 5497.25 34799.47 22998.72 20499.66 11799.70 10899.29 3999.63 34198.07 17699.81 15199.62 108
EIA-MVS99.12 15699.01 16199.45 17799.36 24999.62 10199.34 9999.79 5598.41 23298.84 28898.89 33598.75 11199.84 23098.15 17199.51 26498.89 309
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 15999.72 9297.99 26799.42 19499.60 17998.81 9699.93 7196.91 26499.74 18599.66 77
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 17997.99 29298.58 24999.82 3997.62 28799.34 21699.71 10198.52 14599.77 28697.98 18299.97 3099.52 172
SR-MVS99.19 13999.00 16499.74 6399.51 19499.72 6799.18 14899.60 15998.85 18899.47 18399.58 18798.38 16299.92 9196.92 26399.54 25999.57 143
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22299.73 6399.13 16999.52 21197.40 30099.57 15199.64 14298.93 8399.83 24197.61 22199.79 16199.63 97
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 17699.00 16499.09 25199.10 30998.70 24899.61 5599.66 11899.63 6998.64 30697.65 36699.04 7299.54 35198.79 12298.92 31899.04 295
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 8999.54 19498.34 24799.01 26999.50 21998.53 14299.93 7197.18 25299.78 16799.66 77
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2599.24 29299.48 9299.56 15899.77 7494.89 28999.93 7198.72 13099.89 9299.63 97
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28499.32 27198.92 18099.59 14699.66 13597.40 23499.83 24198.27 15799.90 8499.55 149
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28399.33 26998.93 17899.56 15899.66 13597.39 23699.83 24198.29 15599.88 10099.55 149
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28299.73 8398.39 23599.63 12799.43 24099.70 1199.90 13297.34 23698.64 33399.44 206
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33399.74 8098.84 19199.53 17099.55 20599.10 6099.79 27597.07 25899.86 11699.18 265
Effi-MVS+99.06 16798.97 17399.34 21099.31 26898.98 22498.31 27799.91 1098.81 19398.79 29498.94 33099.14 5799.84 23098.79 12298.74 32999.20 260
MS-PatchMatch99.00 18298.97 17399.09 25199.11 30898.19 28098.76 23799.33 26998.49 22699.44 18899.58 18798.21 17999.69 31198.20 16399.62 23299.39 221
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18499.25 18898.29 27899.76 6899.07 16199.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14299.55 18898.22 25499.32 22099.35 26298.65 12499.91 11296.86 26799.74 18599.62 108
PHI-MVS99.11 16098.95 17799.59 13199.13 30199.59 11299.17 15399.65 12997.88 27599.25 23499.46 23598.97 7999.80 27297.26 24499.82 14399.37 226
SF-MVS99.10 16498.93 17899.62 12499.58 15799.51 12699.13 16999.65 12997.97 26999.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
WR-MVS99.11 16098.93 17899.66 9999.30 27299.42 14998.42 27099.37 26299.04 16699.57 15199.20 29496.89 25699.86 19498.66 13599.87 10999.70 51
USDC98.96 18998.93 17899.05 25799.54 17997.99 29297.07 35399.80 4998.21 25599.75 8199.77 7498.43 15499.64 34097.90 18899.88 10099.51 174
TinyColmap98.97 18698.93 17899.07 25599.46 22298.19 28097.75 32499.75 7598.79 19699.54 16599.70 10898.97 7999.62 34296.63 28399.83 13499.41 216
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 16799.77 4398.74 23899.60 15998.55 21899.76 7599.69 11498.23 17899.92 9196.39 29499.75 17799.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33099.78 4199.15 16199.66 11899.34 11798.92 27899.24 28897.69 21899.98 798.11 17399.28 29798.81 317
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24599.63 13796.84 32199.44 18899.58 18798.81 9699.91 11297.70 21199.82 14399.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 24899.77 6398.32 24999.39 20899.41 24298.62 12699.84 23096.62 28499.84 12498.69 321
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17699.59 16697.60 28899.36 21199.37 25298.80 10099.91 11296.84 27099.75 17799.68 60
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 28899.50 21897.98 26899.62 13599.54 20798.15 18599.94 5797.55 22499.84 12498.95 304
CVMVSNet98.61 22998.88 18897.80 32199.58 15793.60 35699.26 12499.64 13599.66 6299.72 9699.67 13193.26 30599.93 7199.30 6099.81 15199.87 9
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24499.50 12799.04 18899.79 5597.17 31198.62 30798.74 34599.34 3599.95 4598.32 15399.41 28098.92 307
lupinMVS98.96 18998.87 18999.24 23499.57 16798.40 26998.12 29299.18 30298.28 25199.63 12799.13 29998.02 19499.97 1798.22 16199.69 20799.35 232
CANet_DTU98.91 19598.85 19199.09 25198.79 34298.13 28398.18 28599.31 27599.48 9298.86 28699.51 21696.56 26199.95 4599.05 9799.95 4999.19 263
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 1999.15 30599.37 11499.61 14199.71 10194.73 29299.81 26797.70 21199.88 10099.58 137
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26099.82 3997.65 28699.43 19299.16 29796.42 26799.91 11299.07 9699.84 12499.80 24
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21399.66 11897.11 31599.47 18399.60 17999.07 6899.89 14796.18 30399.85 12099.58 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10499.50 21898.35 24398.97 27199.48 22798.37 16399.92 9195.95 31499.75 17799.63 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5098.68 32699.81 3099.38 20999.80 5594.25 29699.85 21398.79 12299.32 29399.59 132
MCST-MVS99.02 17698.81 19799.65 10499.58 15799.49 12898.58 24999.07 30998.40 23499.04 26899.25 28398.51 14799.80 27297.31 23899.51 26499.65 85
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14299.47 22999.71 4499.42 19499.82 5098.09 18899.47 35893.88 35099.85 12099.07 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 18598.80 19999.56 14499.25 28299.43 14698.54 25899.27 28498.58 21598.80 29399.43 24098.53 14299.70 30597.22 24999.59 24699.54 157
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 9899.57 17798.54 22199.54 16598.99 32096.81 25899.93 7196.97 26199.53 26199.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 19798.77 20199.27 22799.48 21298.44 26698.72 24199.32 27197.94 27399.37 21099.35 26296.31 27299.91 11298.85 11799.63 23199.47 195
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29699.80 4997.14 31399.46 18699.40 24596.11 27799.89 14799.01 10099.84 12499.84 14
OMC-MVS98.90 19798.72 20399.44 17999.39 24199.42 14998.58 24999.64 13597.31 30599.44 18899.62 16198.59 13099.69 31196.17 30499.79 16199.22 255
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 30996.84 32697.52 33799.54 19498.94 17599.58 14899.48 22796.25 27499.76 28898.01 18099.93 7099.21 257
c3_l98.72 22098.71 20498.72 29099.12 30397.22 31797.68 32899.56 18298.90 18299.54 16599.48 22796.37 27199.73 29797.88 19099.88 10099.21 257
MVS_030498.88 20198.71 20499.39 19898.85 33498.91 23799.45 7899.30 27898.56 21697.26 35699.68 12596.18 27699.96 3599.17 8099.94 6299.29 244
mvs-test198.83 20698.70 20799.22 23698.89 33099.65 9398.88 21399.66 11899.34 11798.29 32398.94 33097.69 21899.96 3598.11 17398.54 33798.04 352
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 18999.71 7098.86 21799.19 30198.47 22898.59 31099.06 30998.08 19099.91 11296.94 26299.60 24299.60 123
HQP_MVS98.90 19798.68 20999.55 14799.58 15799.24 19398.80 23099.54 19498.94 17599.14 25599.25 28397.24 24299.82 25195.84 31799.78 16799.60 123
9.1498.64 21099.45 22598.81 22799.60 15997.52 29499.28 23099.56 19898.53 14299.83 24195.36 33099.64 229
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 29999.83 3498.64 20999.89 2699.60 17992.57 311100.00 199.33 5599.97 3099.72 45
FMVSNet398.80 21098.63 21299.32 21699.13 30198.72 24799.10 17699.48 22599.23 13599.62 13599.64 14292.57 31199.86 19498.96 10799.90 8499.39 221
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29197.33 31497.78 32399.66 11899.01 16799.59 14699.50 21994.62 29399.85 21398.12 17299.90 8499.26 247
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1694.97 36699.78 3699.88 3299.88 2993.66 30399.97 1799.61 1999.95 4999.64 92
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32397.07 32097.49 33899.52 21198.50 22499.52 17299.37 25296.41 26999.71 30397.86 19499.62 23299.00 302
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20199.62 10199.01 19399.57 17796.80 32399.54 16599.63 15298.29 17199.91 11295.24 33199.71 20299.61 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 22298.59 21599.02 25999.54 17997.99 29297.58 33299.82 3995.70 33999.34 21698.98 32398.52 14599.77 28697.98 18299.83 13499.30 241
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5599.56 18299.11 15899.24 23799.56 19893.00 30999.78 27897.43 23299.89 9299.35 232
NCCC98.82 20898.57 21999.58 13599.21 28899.31 17598.61 24599.25 28998.65 20898.43 32099.26 28197.86 20799.81 26796.55 28599.27 30099.61 119
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20099.67 11499.48 9299.55 16399.36 25794.92 28899.86 19498.95 11196.57 36299.45 201
CLD-MVS98.76 21498.57 21999.33 21299.57 16798.97 22697.53 33599.55 18896.41 32799.27 23299.13 29999.07 6899.78 27896.73 27699.89 9299.23 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28698.66 25297.14 35099.51 21498.09 26299.54 16599.27 27896.87 25799.74 29498.43 14498.96 31599.03 296
RRT_MVS98.75 21598.54 22399.41 19398.14 36598.61 25698.98 20499.66 11899.31 12299.84 4399.75 8191.98 31799.98 799.20 7399.95 4999.62 108
Patchmtry98.78 21198.54 22399.49 16498.89 33099.19 20499.32 10499.67 11499.65 6499.72 9699.79 6191.87 32099.95 4598.00 18199.97 3099.33 235
RPMNet98.60 23198.53 22598.83 28299.05 31498.12 28499.30 11199.62 14099.86 1699.16 25199.74 8492.53 31399.92 9198.75 12798.77 32598.44 336
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27394.65 36798.35 24399.79 6599.68 12598.03 19299.93 7198.28 15699.92 7499.44 206
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 21799.53 12398.77 23599.60 15997.33 30499.23 23899.50 21997.91 20299.83 24195.02 33599.67 21999.41 216
PatchMatch-RL98.68 22498.47 22899.30 22199.44 22799.28 18098.14 29099.54 19497.12 31499.11 25999.25 28397.80 21299.70 30596.51 28899.30 29598.93 306
Anonymous20240521198.75 21598.46 22999.63 11599.34 26199.66 8899.47 7797.65 35199.28 12699.56 15899.50 21993.15 30699.84 23098.62 13699.58 24799.40 218
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36196.80 35999.71 4499.73 9499.54 20795.14 28799.96 3599.39 4699.95 4999.79 30
F-COLMAP98.74 21798.45 23099.62 12499.57 16799.47 13198.84 22099.65 12996.31 33098.93 27599.19 29697.68 22099.87 17496.52 28799.37 28799.53 162
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 14899.55 18896.49 32699.27 23299.37 25297.11 25099.92 9195.74 32199.67 21999.62 108
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22296.26 33396.70 35899.34 26897.68 28599.00 27099.13 29997.40 23499.72 29997.59 22399.68 21299.08 287
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.87 29999.78 27897.97 18499.89 9299.18 265
cl____98.54 24198.41 23598.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.85 30099.78 27897.97 18499.89 9299.17 267
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26195.89 34096.94 35599.44 23898.80 19599.25 23499.52 21293.51 30499.98 798.94 11299.98 2199.32 238
API-MVS98.38 25898.39 23798.35 30498.83 33699.26 18499.14 16399.18 30298.59 21498.66 30598.78 34398.61 12899.57 35094.14 34599.56 24996.21 364
MG-MVS98.52 24398.39 23798.94 26499.15 29897.39 31398.18 28599.21 30098.89 18599.23 23899.63 15297.37 23899.74 29494.22 34499.61 23999.69 54
WTY-MVS98.59 23498.37 23999.26 22999.43 23098.40 26998.74 23899.13 30898.10 26099.21 24499.24 28894.82 29099.90 13297.86 19498.77 32599.49 185
SCA98.11 27498.36 24097.36 33299.20 29192.99 35998.17 28798.49 33698.24 25399.10 26199.57 19596.01 27999.94 5796.86 26799.62 23299.14 275
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28099.87 2098.91 18199.74 9099.72 9490.57 33799.79 27598.55 13999.85 12099.11 279
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30399.22 19798.67 24499.42 24497.84 28098.81 29199.27 27897.32 24099.81 26795.14 33299.53 26199.10 281
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12299.44 23899.68 5499.32 22099.49 22492.50 314100.00 199.24 6796.51 36399.65 85
test_prior398.62 22898.34 24399.46 17399.35 25199.22 19797.95 31399.39 25597.87 27698.05 33699.05 31097.90 20399.69 31195.99 31099.49 26899.48 190
CNLPA98.57 23698.34 24399.28 22599.18 29599.10 21598.34 27399.41 24598.48 22798.52 31598.98 32397.05 25299.78 27895.59 32399.50 26698.96 303
PatchT98.45 25298.32 24698.83 28298.94 32598.29 27599.24 13298.82 32199.84 2499.08 26399.76 7791.37 32399.94 5798.82 12099.00 31498.26 343
hse-mvs298.52 24398.30 24799.16 24399.29 27498.60 25798.77 23599.02 31399.68 5499.32 22099.04 31392.50 31499.85 21399.24 6797.87 35499.03 296
PMMVS98.49 24898.29 24899.11 24998.96 32498.42 26897.54 33399.32 27197.53 29398.47 31998.15 36197.88 20699.82 25197.46 23099.24 30399.09 284
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 17799.37 16297.97 31299.68 10997.49 29699.08 26399.35 26295.41 28699.82 25197.70 21198.19 34699.01 301
test_part198.63 22798.26 25099.75 5799.40 23999.49 12899.67 3899.68 10999.86 1699.88 3299.86 3786.73 35799.93 7199.34 5299.97 3099.81 23
112198.56 23798.24 25199.52 15599.49 20699.24 19399.30 11199.22 29695.77 33798.52 31599.29 27497.39 23699.85 21395.79 31999.34 29099.46 199
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20699.46 13598.56 25499.63 13794.86 35098.85 28799.37 25297.81 21199.59 34896.08 30599.44 27498.88 310
MVSTER98.47 25098.22 25399.24 23499.06 31398.35 27499.08 18399.46 23399.27 12799.75 8199.66 13588.61 34799.85 21399.14 9099.92 7499.52 172
MVS-HIRNet97.86 28298.22 25396.76 34099.28 27791.53 36898.38 27292.60 37299.13 15499.31 22499.96 1197.18 24899.68 32298.34 15199.83 13499.07 292
CDPH-MVS98.56 23798.20 25599.61 12799.50 20199.46 13598.32 27699.41 24595.22 34499.21 24499.10 30698.34 16799.82 25195.09 33499.66 22399.56 146
CR-MVSNet98.35 26298.20 25598.83 28299.05 31498.12 28499.30 11199.67 11497.39 30199.16 25199.79 6191.87 32099.91 11298.78 12598.77 32598.44 336
MIMVSNet98.43 25398.20 25599.11 24999.53 18498.38 27299.58 6498.61 33098.96 17399.33 21899.76 7790.92 33099.81 26797.38 23599.76 17499.15 271
LFMVS98.46 25198.19 25899.26 22999.24 28498.52 26199.62 5096.94 35899.87 1499.31 22499.58 18791.04 32899.81 26798.68 13499.42 27999.45 201
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 35899.56 11899.01 19399.59 16695.44 34199.57 15199.80 5595.64 28399.46 36096.47 29199.92 7499.21 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testtj98.56 23798.17 26099.72 7999.45 22599.60 10998.88 21399.50 21896.88 31899.18 25099.48 22797.08 25199.92 9193.69 35199.38 28399.63 97
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31699.39 15698.47 26499.47 22996.70 32598.78 29699.33 26697.62 22899.86 19494.69 34099.38 28399.28 246
BH-RMVSNet98.41 25598.14 26299.21 23799.21 28898.47 26398.60 24798.26 34398.35 24398.93 27599.31 26997.20 24799.66 33194.32 34299.10 30899.51 174
114514_t98.49 24898.11 26399.64 11199.73 10599.58 11599.24 13299.76 6889.94 36399.42 19499.56 19897.76 21599.86 19497.74 20699.82 14399.47 195
BH-untuned98.22 27198.09 26498.58 29699.38 24497.24 31698.55 25598.98 31697.81 28199.20 24998.76 34497.01 25399.65 33894.83 33698.33 34198.86 312
tpmrst97.73 28798.07 26596.73 34298.71 34892.00 36399.10 17698.86 31898.52 22298.92 27899.54 20791.90 31899.82 25198.02 17799.03 31298.37 338
PAPM_NR98.36 25998.04 26699.33 21299.48 21298.93 23498.79 23399.28 28397.54 29298.56 31398.57 35097.12 24999.69 31194.09 34698.90 32099.38 223
HQP-MVS98.36 25998.02 26799.39 19899.31 26898.94 23097.98 30999.37 26297.45 29798.15 33098.83 33996.67 25999.70 30594.73 33799.67 21999.53 162
QAPM98.40 25797.99 26899.65 10499.39 24199.47 13199.67 3899.52 21191.70 36098.78 29699.80 5598.55 13699.95 4594.71 33999.75 17799.53 162
PLCcopyleft97.35 1698.36 25997.99 26899.48 16899.32 26799.24 19398.50 26299.51 21495.19 34698.58 31198.96 32896.95 25599.83 24195.63 32299.25 30199.37 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 27597.98 27098.48 29999.27 27996.48 33099.40 8599.07 30998.81 19399.23 23899.57 19590.11 34199.87 17496.69 27799.64 22999.09 284
alignmvs98.28 26597.96 27199.25 23299.12 30398.93 23499.03 19098.42 33899.64 6698.72 30197.85 36490.86 33399.62 34298.88 11699.13 30699.19 263
test_yl98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
DCV-MVSNet98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
train_agg98.35 26297.95 27299.57 14099.35 25199.35 16998.11 29499.41 24594.90 34897.92 34198.99 32098.02 19499.85 21395.38 32999.44 27499.50 180
HY-MVS98.23 998.21 27297.95 27298.99 26099.03 31798.24 27699.61 5598.72 32596.81 32298.73 30099.51 21694.06 29799.86 19496.91 26498.20 34498.86 312
miper_enhance_ethall98.03 27897.94 27698.32 30698.27 35996.43 33296.95 35499.41 24596.37 32999.43 19298.96 32894.74 29199.69 31197.71 20999.62 23298.83 316
DPM-MVS98.28 26597.94 27699.32 21699.36 24999.11 21197.31 34598.78 32396.88 31898.84 28899.11 30597.77 21499.61 34694.03 34899.36 28899.23 253
agg_prior198.33 26497.92 27899.57 14099.35 25199.36 16597.99 30899.39 25594.85 35197.76 35098.98 32398.03 19299.85 21395.49 32599.44 27499.51 174
JIA-IIPM98.06 27797.92 27898.50 29898.59 35197.02 32198.80 23098.51 33499.88 1397.89 34399.87 3291.89 31999.90 13298.16 17097.68 35698.59 325
MAR-MVS98.24 26997.92 27899.19 24098.78 34499.65 9399.17 15399.14 30695.36 34298.04 33898.81 34297.47 23199.72 29995.47 32799.06 30998.21 346
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 28097.90 28198.27 31098.90 32797.45 31199.30 11199.06 31194.98 34797.21 35799.12 30398.43 15499.67 32795.58 32498.56 33697.71 356
OpenMVScopyleft98.12 1098.23 27097.89 28299.26 22999.19 29399.26 18499.65 4799.69 10691.33 36198.14 33499.77 7498.28 17299.96 3595.41 32899.55 25398.58 327
pmmvs398.08 27697.80 28398.91 27099.41 23697.69 30597.87 32099.66 11895.87 33599.50 17999.51 21690.35 33999.97 1798.55 13999.47 27199.08 287
PatchmatchNetpermissive97.65 29097.80 28397.18 33798.82 33992.49 36199.17 15398.39 34098.12 25998.79 29499.58 18790.71 33599.89 14797.23 24899.41 28099.16 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 29197.79 28597.11 33996.67 37092.31 36298.51 26198.04 34499.24 13395.77 36599.47 23293.78 30299.66 33198.98 10399.62 23299.37 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 27397.77 28699.18 24294.57 37397.99 29299.24 13297.96 34699.74 3997.29 35599.62 16193.13 30799.97 1798.59 13799.83 13499.58 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 28798.70 34990.83 37199.15 16198.02 34598.51 22398.82 29099.61 17090.98 32999.66 33196.89 26698.92 318
tpmvs97.39 29897.69 28896.52 34598.41 35591.76 36599.30 11198.94 31797.74 28297.85 34699.55 20592.40 31699.73 29796.25 30098.73 33198.06 351
GA-MVS97.99 28197.68 28998.93 26799.52 18998.04 29197.19 34999.05 31298.32 24998.81 29198.97 32689.89 34499.41 36198.33 15299.05 31099.34 234
ADS-MVSNet97.72 28997.67 29097.86 31999.14 29994.65 35099.22 13998.86 31896.97 31698.25 32699.64 14290.90 33199.84 23096.51 28899.56 24999.08 287
ADS-MVSNet297.78 28597.66 29198.12 31499.14 29995.36 34499.22 13998.75 32496.97 31698.25 32699.64 14290.90 33199.94 5796.51 28899.56 24999.08 287
TAPA-MVS97.92 1398.03 27897.55 29299.46 17399.47 21799.44 14298.50 26299.62 14086.79 36499.07 26699.26 28198.26 17499.62 34297.28 24199.73 19299.31 240
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 30597.43 29396.27 34798.79 34291.62 36795.54 36399.01 31599.44 10498.88 28299.12 30392.78 31099.68 32294.30 34399.03 31297.50 357
AUN-MVS97.82 28397.38 29499.14 24699.27 27998.53 25998.72 24199.02 31398.10 26097.18 35899.03 31789.26 34699.85 21397.94 18697.91 35299.03 296
baseline197.73 28797.33 29598.96 26299.30 27297.73 30399.40 8598.42 33899.33 12099.46 18699.21 29291.18 32699.82 25198.35 15091.26 36899.32 238
cl2297.56 29497.28 29698.40 30298.37 35796.75 32797.24 34899.37 26297.31 30599.41 20299.22 29087.30 34999.37 36297.70 21199.62 23299.08 287
EMVS96.96 30897.28 29695.99 35098.76 34691.03 37095.26 36498.61 33099.34 11798.92 27898.88 33793.79 30199.66 33192.87 35299.05 31097.30 361
RRT_test8_iter0597.35 30197.25 29897.63 32698.81 34093.13 35899.26 12499.89 1599.51 8999.83 4899.68 12579.03 37499.88 16199.53 2999.72 19899.89 8
FMVSNet597.80 28497.25 29899.42 18598.83 33698.97 22699.38 8999.80 4998.87 18699.25 23499.69 11480.60 36999.91 11298.96 10799.90 8499.38 223
tttt051797.62 29197.20 30098.90 27699.76 8597.40 31299.48 7594.36 36899.06 16599.70 10399.49 22484.55 36399.94 5798.73 12999.65 22799.36 229
ETH3 D test640097.76 28697.19 30199.50 16199.38 24499.26 18498.34 27399.49 22392.99 35798.54 31499.20 29495.92 28199.82 25191.14 35899.66 22399.40 218
TR-MVS97.44 29797.15 30298.32 30698.53 35397.46 31098.47 26497.91 34896.85 32098.21 32998.51 35496.42 26799.51 35692.16 35497.29 35897.98 353
dp96.86 30997.07 30396.24 34898.68 35090.30 37499.19 14798.38 34197.35 30398.23 32899.59 18587.23 35099.82 25196.27 29998.73 33198.59 325
PAPR97.56 29497.07 30399.04 25898.80 34198.11 28697.63 32999.25 28994.56 35498.02 33998.25 36097.43 23399.68 32290.90 35998.74 32999.33 235
BH-w/o97.20 30297.01 30597.76 32299.08 31295.69 34198.03 30398.52 33395.76 33897.96 34098.02 36295.62 28499.47 35892.82 35397.25 35998.12 350
tpm cat196.78 31196.98 30696.16 34998.85 33490.59 37399.08 18399.32 27192.37 35897.73 35299.46 23591.15 32799.69 31196.07 30698.80 32298.21 346
thisisatest053097.45 29696.95 30798.94 26499.68 13297.73 30399.09 18094.19 37098.61 21399.56 15899.30 27184.30 36499.93 7198.27 15799.54 25999.16 269
test-LLR97.15 30396.95 30797.74 32498.18 36295.02 34797.38 34196.10 36098.00 26597.81 34798.58 34890.04 34299.91 11297.69 21798.78 32398.31 339
tpm97.15 30396.95 30797.75 32398.91 32694.24 35299.32 10497.96 34697.71 28498.29 32399.32 26786.72 35899.92 9198.10 17596.24 36599.09 284
test0.0.03 197.37 29996.91 31098.74 28997.72 36697.57 30797.60 33197.36 35798.00 26599.21 24498.02 36290.04 34299.79 27598.37 14795.89 36698.86 312
OpenMVS_ROBcopyleft97.31 1797.36 30096.84 31198.89 27799.29 27499.45 14098.87 21699.48 22586.54 36699.44 18899.74 8497.34 23999.86 19491.61 35599.28 29797.37 360
cascas96.99 30696.82 31297.48 32897.57 36995.64 34296.43 36099.56 18291.75 35997.13 35997.61 36795.58 28598.63 36796.68 27899.11 30798.18 349
CostFormer96.71 31496.79 31396.46 34698.90 32790.71 37299.41 8498.68 32694.69 35398.14 33499.34 26586.32 36099.80 27297.60 22298.07 35098.88 310
thisisatest051596.98 30796.42 31498.66 29399.42 23597.47 30997.27 34694.30 36997.24 30799.15 25398.86 33885.01 36199.87 17497.10 25699.39 28298.63 322
EPMVS96.53 31796.32 31597.17 33898.18 36292.97 36099.39 8789.95 37498.21 25598.61 30899.59 18586.69 35999.72 29996.99 26099.23 30598.81 317
baseline296.83 31096.28 31698.46 30099.09 31196.91 32498.83 22293.87 37197.23 30896.23 36498.36 35788.12 34899.90 13296.68 27898.14 34898.57 328
tpm296.35 32096.22 31796.73 34298.88 33391.75 36699.21 14198.51 33493.27 35697.89 34399.21 29284.83 36299.70 30596.04 30798.18 34798.75 320
thres600view796.60 31696.16 31897.93 31799.63 14496.09 33799.18 14897.57 35298.77 19998.72 30197.32 37087.04 35299.72 29988.57 36198.62 33497.98 353
MVEpermissive92.54 2296.66 31596.11 31998.31 30899.68 13297.55 30897.94 31595.60 36599.37 11490.68 37198.70 34696.56 26198.61 36886.94 36899.55 25398.77 319
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 31196.07 32098.91 27099.26 28197.92 29897.70 32796.05 36397.96 27292.37 37098.43 35687.06 35199.90 13298.27 15797.56 35798.91 308
thres100view90096.39 31996.03 32197.47 32999.63 14495.93 33899.18 14897.57 35298.75 20398.70 30397.31 37187.04 35299.67 32787.62 36498.51 33896.81 362
tfpn200view996.30 32295.89 32297.53 32799.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33896.81 362
thres40096.40 31895.89 32297.92 31899.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33897.98 353
PCF-MVS96.03 1896.73 31395.86 32499.33 21299.44 22799.16 20696.87 35699.44 23886.58 36598.95 27399.40 24594.38 29599.88 16187.93 36399.80 15698.95 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 32395.84 32597.41 33198.24 36093.84 35597.38 34195.84 36498.43 22997.81 34798.56 35179.77 37099.89 14797.77 20198.77 32598.52 330
DWT-MVSNet_test96.03 32795.80 32696.71 34498.50 35491.93 36499.25 13197.87 34995.99 33496.81 36097.61 36781.02 36799.66 33197.20 25197.98 35198.54 329
test-mter96.23 32495.73 32797.74 32498.18 36295.02 34797.38 34196.10 36097.90 27497.81 34798.58 34879.12 37399.91 11297.69 21798.78 32398.31 339
thres20096.09 32595.68 32897.33 33499.48 21296.22 33498.53 25997.57 35298.06 26498.37 32296.73 37586.84 35699.61 34686.99 36798.57 33596.16 365
FPMVS96.32 32195.50 32998.79 28699.60 15198.17 28298.46 26998.80 32297.16 31296.28 36199.63 15282.19 36599.09 36488.45 36298.89 32199.10 281
tmp_tt95.75 33295.42 33096.76 34089.90 37594.42 35198.86 21797.87 34978.01 36799.30 22999.69 11497.70 21695.89 37099.29 6398.14 34899.95 1
KD-MVS_2432*160095.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
miper_refine_blended95.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
PVSNet_095.53 1995.85 33195.31 33397.47 32998.78 34493.48 35795.72 36299.40 25296.18 33297.37 35397.73 36595.73 28299.58 34995.49 32581.40 36999.36 229
gg-mvs-nofinetune95.87 33095.17 33497.97 31698.19 36196.95 32299.69 3189.23 37599.89 1196.24 36399.94 1381.19 36699.51 35693.99 34998.20 34497.44 358
X-MVStestdata96.09 32594.87 33599.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29861.30 37698.47 14999.88 16197.62 21999.73 19299.67 67
PAPM95.61 33494.71 33698.31 30899.12 30396.63 32896.66 35998.46 33790.77 36296.25 36298.68 34793.01 30899.69 31181.60 36997.86 35598.62 323
MVS95.72 33394.63 33798.99 26098.56 35297.98 29799.30 11198.86 31872.71 36997.30 35499.08 30798.34 16799.74 29489.21 36098.33 34199.26 247
IB-MVS95.41 2095.30 33594.46 33897.84 32098.76 34695.33 34597.33 34496.07 36296.02 33395.37 36897.41 36976.17 37599.96 3597.54 22595.44 36798.22 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 33692.32 33989.91 35293.49 37470.18 37690.28 36599.56 18261.71 37095.39 36799.52 21293.90 29899.94 5798.76 12698.27 34399.62 108
testmvs28.94 33833.33 34015.79 35426.03 3769.81 37896.77 35715.67 37711.55 37223.87 37350.74 37919.03 3778.53 37323.21 37133.07 37029.03 369
cdsmvs_eth3d_5k24.88 33933.17 3410.00 3550.00 3780.00 3790.00 36699.62 1400.00 3730.00 37499.13 29999.82 40.00 3740.00 3720.00 3720.00 370
test12329.31 33733.05 34218.08 35325.93 37712.24 37797.53 33510.93 37811.78 37124.21 37250.08 38021.04 3768.60 37223.51 37032.43 37133.39 368
pcd_1.5k_mvsjas16.61 34022.14 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 199.28 410.00 3740.00 3720.00 3720.00 370
test_blank8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uanet_test8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
sosnet-low-res8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
sosnet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
Regformer8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs-re8.26 34811.02 3510.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.16 2970.00 3780.00 3740.00 3720.00 3720.00 370
FOURS199.83 3899.89 899.74 1699.71 9599.69 5299.63 127
MSC_two_6792asdad99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
PC_three_145297.56 28999.68 10899.41 24299.09 6297.09 36996.66 28099.60 24299.62 108
No_MVS99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
test_one_060199.63 14499.76 5099.55 18899.23 13599.31 22499.61 17098.59 130
eth-test20.00 378
eth-test0.00 378
ZD-MVS99.43 23099.61 10799.43 24296.38 32899.11 25999.07 30897.86 20799.92 9194.04 34799.49 268
IU-MVS99.69 12399.77 4399.22 29697.50 29599.69 10697.75 20599.70 20499.77 35
OPU-MVS99.29 22299.12 30399.44 14299.20 14299.40 24599.00 7498.84 36696.54 28699.60 24299.58 137
test_241102_TWO99.54 19499.13 15499.76 7599.63 15298.32 17099.92 9197.85 19699.69 20799.75 42
test_241102_ONE99.69 12399.82 2899.54 19499.12 15799.82 5099.49 22498.91 8699.52 355
save fliter99.53 18499.25 18898.29 27899.38 26199.07 161
test_0728_THIRD99.18 14299.62 13599.61 17098.58 13299.91 11297.72 20799.80 15699.77 35
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16399.61 14799.92 9197.88 19099.72 19899.77 35
test072699.69 12399.80 3699.24 13299.57 17799.16 14899.73 9499.65 14098.35 165
GSMVS99.14 275
test_part299.62 14899.67 8699.55 163
sam_mvs190.81 33499.14 275
sam_mvs90.52 338
ambc99.20 23999.35 25198.53 25999.17 15399.46 23399.67 11399.80 5598.46 15299.70 30597.92 18799.70 20499.38 223
MTGPAbinary99.53 203
test_post199.14 16351.63 37889.54 34599.82 25196.86 267
test_post52.41 37790.25 34099.86 194
patchmatchnet-post99.62 16190.58 33699.94 57
GG-mvs-BLEND97.36 33297.59 36796.87 32599.70 2588.49 37694.64 36997.26 37280.66 36899.12 36391.50 35696.50 36496.08 366
MTMP99.09 18098.59 332
gm-plane-assit97.59 36789.02 37593.47 35598.30 35899.84 23096.38 295
test9_res95.10 33399.44 27499.50 180
TEST999.35 25199.35 16998.11 29499.41 24594.83 35297.92 34198.99 32098.02 19499.85 213
test_899.34 26199.31 17598.08 29899.40 25294.90 34897.87 34598.97 32698.02 19499.84 230
agg_prior294.58 34199.46 27399.50 180
agg_prior99.35 25199.36 16599.39 25597.76 35099.85 213
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
test_prior499.19 20498.00 306
test_prior297.95 31397.87 27698.05 33699.05 31097.90 20395.99 31099.49 268
test_prior99.46 17399.35 25199.22 19799.39 25599.69 31199.48 190
旧先验297.94 31595.33 34398.94 27499.88 16196.75 274
新几何298.04 302
新几何199.52 15599.50 20199.22 19799.26 28695.66 34098.60 30999.28 27697.67 22199.89 14795.95 31499.32 29399.45 201
旧先验199.49 20699.29 17899.26 28699.39 24997.67 22199.36 28899.46 199
无先验98.01 30499.23 29395.83 33699.85 21395.79 31999.44 206
原ACMM297.92 317
原ACMM199.37 20599.47 21798.87 24199.27 28496.74 32498.26 32599.32 26797.93 20199.82 25195.96 31399.38 28399.43 212
test22299.51 19499.08 21897.83 32299.29 28095.21 34598.68 30499.31 26997.28 24199.38 28399.43 212
testdata299.89 14795.99 310
segment_acmp98.37 163
testdata99.42 18599.51 19498.93 23499.30 27896.20 33198.87 28599.40 24598.33 16999.89 14796.29 29899.28 29799.44 206
testdata197.72 32597.86 279
test1299.54 15199.29 27499.33 17299.16 30498.43 32097.54 22999.82 25199.47 27199.48 190
plane_prior799.58 15799.38 159
plane_prior699.47 21799.26 18497.24 242
plane_prior599.54 19499.82 25195.84 31799.78 16799.60 123
plane_prior499.25 283
plane_prior399.31 17598.36 23899.14 255
plane_prior298.80 23098.94 175
plane_prior199.51 194
plane_prior99.24 19398.42 27097.87 27699.71 202
n20.00 379
nn0.00 379
door-mid99.83 34
lessismore_v099.64 11199.86 3099.38 15990.66 37399.89 2699.83 4494.56 29499.97 1799.56 2699.92 7499.57 143
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
test1199.29 280
door99.77 63
HQP5-MVS98.94 230
HQP-NCC99.31 26897.98 30997.45 29798.15 330
ACMP_Plane99.31 26897.98 30997.45 29798.15 330
BP-MVS94.73 337
HQP4-MVS98.15 33099.70 30599.53 162
HQP3-MVS99.37 26299.67 219
HQP2-MVS96.67 259
NP-MVS99.40 23999.13 20998.83 339
MDTV_nov1_ep13_2view91.44 36999.14 16397.37 30299.21 24491.78 32296.75 27499.03 296
ACMMP++_ref99.94 62
ACMMP++99.79 161
Test By Simon98.41 157
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21699.33 21899.53 21098.88 9199.68 32296.01 30899.65 22799.02 300
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 36895.74 36698.28 35996.47 26599.62 34291.23 35797.89 35397.38 359