This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28199.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3499.87 3199.99 16100.00 1
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19699.98 1100.00 199.98 4
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 206100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_vis1_n_192099.72 3899.88 799.27 25499.93 2497.84 33299.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 7999.95 1299.98 4199.94 16
test_f99.75 3499.88 799.37 22699.96 798.21 30699.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 7999.97 499.99 1699.97 9
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3499.75 41100.00 199.84 39
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6499.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 23899.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18699.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_cas_vis1_n_192099.76 3399.86 1399.45 19899.93 2498.40 29499.30 14399.98 1299.94 2399.99 799.89 3899.80 1599.97 3499.96 999.97 5599.97 9
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16399.65 5099.97 5599.69 88
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22499.98 1299.99 399.98 1399.90 3399.88 899.92 12399.93 1999.99 1699.98 4
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18699.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_fmvs299.72 3899.85 1799.34 23399.91 3098.08 32099.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25099.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24099.79 1299.97 19100.00 199.43 23499.94 1999.64 2899.94 7999.83 3399.99 1699.98 4
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21499.98 1299.99 399.98 1399.91 2899.68 2699.93 9799.93 1999.99 1699.99 2
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13199.93 2599.95 3299.89 3899.71 2299.96 5599.51 6899.97 5599.84 39
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 5999.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23399.96 2599.99 399.97 2099.84 6999.78 1799.92 12399.92 2199.99 1699.92 22
test_fmvs1_n99.68 4799.81 2599.28 25199.95 1597.93 32999.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8499.73 7899.97 2099.92 2599.77 1999.98 2199.43 76100.00 199.90 24
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7299.84 5599.94 3599.91 2899.13 8899.96 5599.83 3399.99 1699.83 43
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20699.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23399.96 2599.99 399.97 2099.84 6999.58 3899.93 9799.92 2199.98 4199.93 18
test_vis1_n99.68 4799.79 2999.36 23099.94 1898.18 30999.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5599.97 499.96 6899.95 13
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21099.54 6399.92 10599.63 134
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21199.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9099.97 1699.89 5399.89 3899.53 4599.99 899.36 8999.96 6899.65 119
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8199.96 6899.65 119
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 5999.70 8999.92 4399.93 2199.45 4999.97 3499.36 89100.00 199.85 37
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21099.59 5599.74 22399.71 79
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13799.91 2899.15 8399.97 3499.50 70100.00 199.90 24
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 281
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9299.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 5999.80 6899.93 3899.93 2198.54 17099.93 9799.59 5599.98 4199.76 68
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 17999.41 28699.51 4799.95 6499.66 4899.89 12698.96 347
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 21999.38 29699.57 4099.95 6499.69 4599.90 11699.15 305
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19698.93 15499.95 8199.60 159
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10499.64 10799.93 3899.85 6398.66 15499.84 26299.88 2999.99 1699.71 79
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 10999.60 12299.92 4399.87 5298.75 14199.86 22999.90 2599.99 1699.73 73
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21799.39 29499.57 4099.93 9799.64 5299.86 15599.20 294
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15099.90 4399.71 8499.79 9999.73 13599.54 4399.84 26299.36 8999.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7299.39 15799.82 8299.84 6999.38 5699.91 14599.38 8599.93 10199.80 50
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7299.46 14199.75 11999.56 24699.63 3099.95 6499.43 7699.88 13599.62 145
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13699.93 2599.78 10399.68 17699.10 9099.78 31599.45 7499.96 6899.83 43
test_fmvs199.48 9199.65 5298.97 29599.54 22197.16 35599.11 21199.98 1299.78 7299.96 2499.81 8798.72 14699.97 3499.95 1299.97 5599.79 57
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9699.90 3199.82 8299.83 7398.45 18599.87 21099.51 6899.97 5599.86 34
DSMNet-mixed99.48 9199.65 5298.95 29899.71 14497.27 35299.50 9699.82 7299.59 12499.41 24399.85 6399.62 33100.00 199.53 6699.89 12699.59 166
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 25999.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9399.96 6899.78 59
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13699.67 9899.82 8299.83 7398.98 11199.90 16399.24 10899.97 5599.53 194
EU-MVSNet99.39 12299.62 5798.72 32699.88 4396.44 37099.56 8499.85 5999.90 3199.90 4999.85 6398.09 22399.83 27799.58 5899.95 8199.90 24
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14399.85 5299.80 9399.81 8798.81 12999.91 14599.47 7299.88 13599.70 82
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8499.71 8499.72 13299.69 16599.15 8399.83 27799.32 9899.94 9499.53 194
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 9999.78 7299.93 3899.89 3897.94 23499.92 12399.65 5099.98 4199.62 145
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20299.85 5999.79 7099.76 11499.72 14299.33 6399.82 28799.21 11299.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13199.72 8299.84 7799.78 11098.67 15299.97 3499.30 10199.95 8199.80 50
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16499.71 13199.27 17299.93 3899.90 3399.70 2499.93 9798.99 14299.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15299.88 6299.80 9099.26 7299.90 16398.81 16299.88 13599.32 266
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9099.83 6099.88 6299.85 6398.42 18999.90 16399.60 5499.73 22899.49 216
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 11999.70 8999.84 7799.73 13598.56 16799.96 5599.29 10499.94 9499.83 43
Gipumacopyleft99.57 7199.59 6699.49 18699.98 399.71 8599.72 3099.84 6599.81 6599.94 3599.78 11098.91 12199.71 34298.41 19099.95 8199.05 334
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSMamba_PlusPlus99.55 7799.58 6999.47 19299.68 16499.40 17599.52 8999.70 13699.92 2899.77 11199.86 5998.28 20599.96 5599.54 6399.90 11699.05 334
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 10999.86 4699.74 12799.79 10098.27 20799.85 24799.37 8899.93 10199.83 43
v124099.56 7499.58 6999.51 18299.80 8699.00 24199.00 24199.65 16699.15 19899.90 4999.75 12799.09 9299.88 19699.90 2599.96 6899.67 102
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 11999.62 11299.84 7799.71 15098.62 15899.96 5599.30 10199.96 6899.86 34
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35899.72 8299.91 4699.60 22799.43 5099.81 30299.81 3899.53 29599.73 73
new-patchmatchnet99.35 13299.57 7398.71 32899.82 7296.62 36798.55 30399.75 10999.50 13199.88 6299.87 5299.31 6499.88 19699.43 76100.00 199.62 145
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 11999.82 6299.90 4999.90 3397.97 23399.86 22999.42 8199.96 6899.80 50
v192192099.56 7499.57 7399.55 17199.75 12999.11 22999.05 22599.61 18699.15 19899.88 6299.71 15099.08 9599.87 21099.90 2599.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23099.60 19799.18 18799.87 7099.72 14299.08 9599.85 24799.89 2899.98 4199.66 111
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15799.76 10499.32 16699.80 9399.78 11099.29 6699.87 21099.15 12499.91 11599.66 111
ttmdpeth99.48 9199.55 7999.29 24899.76 11798.16 31199.33 13299.95 3099.79 7099.36 25399.89 3899.13 8899.77 32399.09 13499.64 26199.93 18
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21199.62 17999.18 18799.89 5399.72 14298.66 15499.87 21099.88 2999.97 5599.66 111
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20399.24 17899.86 7199.70 15898.55 16899.82 28799.79 3999.95 8199.60 159
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23699.89 4599.60 12299.82 8299.62 21098.81 12999.89 18299.43 7699.86 15599.47 224
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9098.77 24899.80 9399.85 6399.64 2899.85 24798.70 17499.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21499.61 18699.20 18599.84 7799.73 13598.67 15299.84 26299.86 3299.98 4199.64 129
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 10999.58 12599.85 7499.69 16598.18 21999.94 7999.28 10699.95 8199.83 43
balanced_conf0399.50 8599.50 8699.50 18499.42 27399.49 14799.52 8999.75 10999.86 4699.78 10399.71 15098.20 21699.90 16399.39 8499.88 13599.10 316
EI-MVSNet-UG-set99.48 9199.50 8699.42 20899.57 20598.65 27799.24 16499.46 26599.68 9499.80 9399.66 18598.99 10999.89 18299.19 11699.90 11699.72 76
EI-MVSNet-Vis-set99.47 9999.49 8899.42 20899.57 20598.66 27499.24 16499.46 26599.67 9899.79 9999.65 19098.97 11399.89 18299.15 12499.89 12699.71 79
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27199.66 15699.42 15699.75 11999.66 18599.20 7899.76 32698.98 14499.99 1699.36 256
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19699.58 21299.25 17699.81 8999.62 21098.24 20999.84 26299.83 3399.97 5599.64 129
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14399.63 17699.61 11699.71 13799.56 24698.76 13999.96 5599.14 13099.92 10599.68 94
IterMVS-LS99.41 11699.47 8999.25 26099.81 8098.09 31798.85 26399.76 10499.62 11299.83 8199.64 19298.54 17099.97 3499.15 12499.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_rt99.45 10499.46 9399.41 21599.71 14498.63 28098.99 24699.96 2599.03 21199.95 3299.12 34598.75 14199.84 26299.82 3799.82 18199.77 63
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 22999.04 23099.87 5199.71 8499.47 22499.79 10098.24 20999.98 2199.38 8599.96 6899.83 43
mvsany_test199.44 10699.45 9599.40 21799.37 28298.64 27997.90 36999.59 20399.27 17299.92 4399.82 8099.74 2099.93 9799.55 6299.87 14799.63 134
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24298.09 34699.90 4398.95 21999.78 10399.58 23599.57 4099.93 9799.48 7199.95 8199.79 57
TAMVS99.49 8999.45 9599.63 13999.48 25099.42 16899.45 10999.57 21499.66 10299.78 10399.83 7397.85 24199.86 22999.44 7599.96 6899.61 155
EI-MVSNet99.38 12499.44 9899.21 26499.58 19598.09 31799.26 15799.46 26599.62 11299.75 11999.67 18098.54 17099.85 24799.15 12499.92 10599.68 94
MVSFormer99.41 11699.44 9899.31 24499.57 20598.40 29499.77 1699.80 8499.73 7899.63 16499.30 31598.02 22899.98 2199.43 7699.69 24399.55 181
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18699.54 12699.80 9399.64 19297.79 24599.95 6499.21 11299.94 9499.84 39
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13599.77 9999.53 12899.77 11199.76 12299.26 7299.78 31597.77 24799.88 13599.60 159
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8199.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 29999.86 34
Anonymous2024052199.44 10699.42 10299.49 18699.89 3898.96 24799.62 6499.76 10499.85 5299.82 8299.88 4796.39 30399.97 3499.59 5599.98 4199.55 181
v14899.40 11899.41 10499.39 22099.76 11798.94 24999.09 21899.59 20399.17 19299.81 8999.61 21998.41 19099.69 35199.32 9899.94 9499.53 194
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20699.68 14699.49 13399.80 9399.79 10099.01 10699.93 9798.24 20399.82 18199.73 73
mvs_anonymous99.28 14699.39 10698.94 29999.19 33197.81 33499.02 23699.55 22599.78 7299.85 7499.80 9098.24 20999.86 22999.57 5999.50 30299.15 305
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15099.61 18699.87 4399.74 12799.76 12298.69 14899.87 21098.20 20799.80 19899.75 71
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9699.71 8499.90 4999.69 16598.85 12799.90 16397.25 29799.78 20899.15 305
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20299.90 3698.66 27498.94 25599.91 3897.97 32299.79 9999.73 13599.05 10299.97 3499.15 12499.99 1699.68 94
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20299.65 16698.99 21399.64 16099.72 14299.39 5299.86 22998.23 20499.81 19199.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13699.81 6599.69 14499.58 23597.66 25799.86 22999.17 12199.44 30999.67 102
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26699.86 5499.68 9499.65 15999.88 4797.67 25399.87 21099.03 13999.86 15599.76 68
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9699.53 12899.67 15299.78 11099.19 7999.86 22997.32 28699.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14398.99 21399.75 11999.71 15098.79 13499.93 9798.46 18899.85 15999.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27799.42 16899.70 3599.56 21999.23 18099.35 25599.80 9099.17 8199.95 6498.21 20699.84 16499.59 166
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22599.65 16699.45 14499.78 10399.78 11098.93 11699.93 9798.11 21799.81 19199.70 82
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28699.47 13899.76 11499.78 11098.13 22199.86 22998.70 17499.68 24899.49 216
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30599.59 19098.23 30398.47 31499.66 15699.61 11699.68 14798.94 37199.39 5299.97 3499.18 11899.55 28898.51 384
UGNet99.38 12499.34 11899.49 18698.90 37098.90 25599.70 3599.35 29599.86 4698.57 35699.81 8798.50 18099.93 9799.38 8599.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8199.82 6299.71 13799.72 14296.60 29399.98 2199.75 4199.23 33999.82 49
diffmvspermissive99.34 13799.32 12399.39 22099.67 17098.77 26598.57 30199.81 8199.61 11699.48 22299.41 28698.47 18199.86 22998.97 14699.90 11699.53 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120699.35 13299.31 12599.47 19299.74 13599.06 23999.28 15299.74 11599.23 18099.72 13299.53 25797.63 25999.88 19699.11 13299.84 16499.48 220
MVS_Test99.28 14699.31 12599.19 26799.35 28898.79 26399.36 12799.49 25899.17 19299.21 28799.67 18098.78 13699.66 37399.09 13499.66 25799.10 316
NR-MVSNet99.40 11899.31 12599.68 10999.43 26899.55 14099.73 2799.50 25499.46 14199.88 6299.36 30297.54 26099.87 21098.97 14699.87 14799.63 134
GBi-Net99.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
test199.42 11299.31 12599.73 9099.49 24599.77 5699.68 4699.70 13699.44 14699.62 17399.83 7397.21 27499.90 16398.96 14899.90 11699.53 194
SD-MVS99.01 21999.30 13098.15 35499.50 24099.40 17598.94 25599.61 18699.22 18499.75 11999.82 8099.54 4395.51 42197.48 27799.87 14799.54 189
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13698.35 29699.51 21799.50 26499.31 6499.88 19698.18 21199.84 16499.69 88
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33699.65 10599.89 5399.90 3396.20 31099.94 7999.42 8199.92 10599.67 102
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 27899.88 4998.66 25999.96 2499.79 10097.45 26399.93 9799.34 9399.99 1699.78 59
DELS-MVS99.34 13799.30 13099.48 19099.51 23499.36 18798.12 34299.53 24099.36 16299.41 24399.61 21999.22 7699.87 21099.21 11299.68 24899.20 294
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25399.86 5498.85 23499.81 8999.73 13598.40 19499.92 12398.36 19399.83 17299.17 301
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 5998.79 24499.41 24399.60 22798.92 11999.92 12398.02 22299.92 10599.43 240
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13599.74 11599.18 18799.69 14499.75 12798.41 19099.84 26297.85 24299.70 23999.10 316
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17499.54 23199.13 20099.82 8299.63 20398.91 12199.92 12397.85 24299.70 23999.58 171
FMVSNet299.35 13299.28 13799.55 17199.49 24599.35 19099.45 10999.57 21499.44 14699.70 14199.74 13197.21 27499.87 21099.03 13999.94 9499.44 234
ab-mvs99.33 14099.28 13799.47 19299.57 20599.39 17899.78 1499.43 27398.87 23199.57 19099.82 8098.06 22699.87 21098.69 17699.73 22899.15 305
testgi99.29 14599.26 14199.37 22699.75 12998.81 26098.84 26499.89 4598.38 28999.75 11999.04 35599.36 6199.86 22999.08 13699.25 33599.45 229
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23499.58 13498.98 24999.60 19799.43 15299.70 14199.36 30297.70 24999.88 19699.20 11599.87 14799.59 166
DVP-MVS++99.38 12499.25 14399.77 5999.03 35999.77 5699.74 2499.61 18699.18 18799.76 11499.61 21999.00 10799.92 12397.72 25399.60 27599.62 145
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25699.56 13798.97 25099.61 18699.43 15299.67 15299.28 31997.85 24199.95 6499.17 12199.81 19199.65 119
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15799.35 29598.77 24899.57 19099.70 15899.27 7199.88 19697.71 25599.75 21699.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 28899.47 15099.62 6499.50 25499.44 14699.12 30099.78 11098.77 13899.94 7997.87 23999.72 23499.62 145
DU-MVS99.33 14099.21 14799.71 10199.43 26899.56 13798.83 26699.53 24099.38 15899.67 15299.36 30297.67 25399.95 6499.17 12199.81 19199.63 134
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13299.53 24099.27 17299.42 23799.63 20398.21 21499.95 6497.83 24699.79 20399.65 119
D2MVS99.22 16599.19 14999.29 24899.69 15698.74 26798.81 27199.41 27698.55 27099.68 14799.69 16598.13 22199.87 21098.82 16099.98 4199.24 281
ETV-MVS99.18 17999.18 15099.16 27099.34 29799.28 20199.12 20699.79 9099.48 13498.93 31698.55 39299.40 5199.93 9798.51 18699.52 29898.28 394
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19699.31 30499.16 19499.62 17399.61 21998.35 19899.91 14597.88 23699.72 23499.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 22199.16 15298.51 33699.75 12995.90 38298.07 34999.84 6599.84 5599.89 5399.73 13596.01 31399.99 899.33 96100.00 199.63 134
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15599.61 18699.19 18699.57 19099.64 19298.76 13999.90 16397.29 28899.62 26599.56 178
IterMVS98.97 22599.16 15298.42 34199.74 13595.64 38698.06 35199.83 6799.83 6099.85 7499.74 13196.10 31299.99 899.27 107100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30299.76 6399.34 12999.97 1998.93 22399.91 4699.79 10098.68 14999.93 9796.80 32199.56 28499.30 272
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18199.60 19798.55 27099.57 19099.67 18099.03 10599.94 7997.01 30799.80 19899.69 88
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 16599.14 15699.45 19899.79 9899.43 16599.28 15299.68 14699.54 12699.40 24899.56 24699.07 9799.82 28796.01 36099.96 6899.11 314
RE-MVS-def99.13 15899.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.57 16597.27 29199.61 27299.54 189
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29799.48 25998.50 27799.52 21199.63 20399.14 8699.76 32697.89 23599.77 21299.51 206
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet99.22 16599.13 15899.50 18499.35 28899.11 22998.96 25299.54 23199.46 14199.61 17999.70 15896.31 30699.83 27799.34 9399.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 33099.13 15892.93 40099.69 15699.49 14799.52 8999.77 9997.97 32299.96 2499.79 10099.84 1299.94 7995.85 36999.82 18179.36 418
ppachtmachnet_test98.89 23999.12 16298.20 35399.66 17195.24 39297.63 37999.68 14699.08 20599.78 10399.62 21098.65 15699.88 19698.02 22299.96 6899.48 220
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20699.25 31999.69 9699.05 22599.82 7299.50 13198.97 31299.05 35398.98 11199.98 2198.20 20799.24 33798.62 375
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31399.22 21598.99 24699.40 28399.08 20599.58 18799.64 19298.90 12499.83 27797.44 27999.75 21699.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15799.62 17999.16 19499.52 21199.64 19298.41 19099.91 14597.27 29199.61 27299.54 189
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25399.53 24098.27 30599.53 20999.73 13598.75 14199.87 21097.70 25899.83 17299.68 94
xiu_mvs_v2_base99.02 21399.11 16598.77 32399.37 28298.09 31798.13 34199.51 25099.47 13899.42 23798.54 39399.38 5699.97 3498.83 15899.33 32498.24 396
pmmvs599.19 17599.11 16599.42 20899.76 11798.88 25698.55 30399.73 11998.82 23999.72 13299.62 21096.56 29499.82 28799.32 9899.95 8199.56 178
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33999.47 27598.47 18199.88 19697.62 26799.73 22899.67 102
VDD-MVS99.20 17299.11 16599.44 20299.43 26898.98 24399.50 9698.32 38199.80 6899.56 19799.69 16596.99 28499.85 24798.99 14299.73 22899.50 211
jason99.16 18599.11 16599.32 24199.75 12998.44 29198.26 33199.39 28698.70 25699.74 12799.30 31598.54 17099.97 3498.48 18799.82 18199.55 181
jason: jason.
LS3D99.24 15699.11 16599.61 15198.38 40599.79 4899.57 8299.68 14699.61 11699.15 29599.71 15098.70 14799.91 14597.54 27399.68 24899.13 313
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26699.72 12898.36 29199.60 18299.71 15098.92 11999.91 14597.08 30599.84 16499.40 246
our_test_398.85 24399.09 17498.13 35599.66 17194.90 39697.72 37599.58 21299.07 20799.64 16099.62 21098.19 21799.93 9798.41 19099.95 8199.55 181
MSLP-MVS++99.05 20799.09 17498.91 30599.21 32698.36 29998.82 27099.47 26298.85 23498.90 32299.56 24698.78 13699.09 41198.57 18399.68 24899.26 278
MVP-Stereo99.16 18599.08 17699.43 20699.48 25099.07 23799.08 22199.55 22598.63 26299.31 26999.68 17698.19 21799.78 31598.18 21199.58 28199.45 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14099.59 20398.36 29199.36 25399.37 29898.80 13399.91 14597.43 28099.75 21699.68 94
PS-MVSNAJ99.00 22199.08 17698.76 32499.37 28298.10 31698.00 35799.51 25099.47 13899.41 24398.50 39599.28 6899.97 3498.83 15899.34 32398.20 400
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16698.07 31699.52 21199.69 16598.57 16599.92 12397.18 30299.79 20399.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20699.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15197.72 33799.35 25599.25 32699.23 7599.92 12397.21 30099.82 18199.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 19199.06 18299.36 23099.57 20599.10 23498.01 35599.25 31798.78 24699.58 18799.44 28298.24 20999.76 32698.74 17199.93 10199.22 287
VNet99.18 17999.06 18299.56 16899.24 32199.36 18799.33 13299.31 30499.67 9899.47 22499.57 24296.48 29799.84 26299.15 12499.30 32899.47 224
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14099.59 20398.36 29199.35 25599.38 29698.61 16099.93 9797.43 28099.75 21699.67 102
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37099.74 11598.36 29199.66 15799.68 17699.71 2299.90 16396.84 31999.88 13599.43 240
MM99.18 17999.05 18699.55 17199.35 28898.81 26099.05 22597.79 39399.99 399.48 22299.59 23296.29 30899.95 6499.94 1699.98 4199.88 28
CANet99.11 19699.05 18699.28 25198.83 37998.56 28498.71 28699.41 27699.25 17699.23 28299.22 33397.66 25799.94 7999.19 11699.97 5599.33 263
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14099.59 20398.41 28599.32 26499.36 30298.73 14599.93 9797.29 28899.74 22399.67 102
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28699.80 8697.83 33398.89 25899.72 12899.29 16899.63 16499.70 15896.47 29899.89 18298.17 21399.82 18199.50 211
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19299.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 17998.38 28999.06 30899.27 32198.79 13499.94 7997.51 27699.82 18199.66 111
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15299.56 21998.19 31099.14 29799.29 31898.84 12899.92 12397.53 27599.80 19899.64 129
TSAR-MVS + GP.99.12 19399.04 19299.38 22399.34 29799.16 22498.15 33899.29 30898.18 31199.63 16499.62 21099.18 8099.68 36398.20 20799.74 22399.30 272
MVS_111021_LR99.13 19199.03 19499.42 20899.58 19599.32 19597.91 36899.73 11998.68 25799.31 26999.48 27199.09 9299.66 37397.70 25899.77 21299.29 275
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7298.33 30199.50 21999.78 11097.90 23699.65 37996.78 32299.83 17299.44 234
MVS_111021_HR99.12 19399.02 19599.40 21799.50 24099.11 22997.92 36699.71 13198.76 25199.08 30499.47 27599.17 8199.54 39697.85 24299.76 21499.54 189
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32499.75 6997.25 39799.47 26298.72 25399.66 15799.70 15899.29 6699.63 38298.07 22199.81 19199.62 145
MGCFI-Net99.02 21399.01 19899.06 28899.11 34798.60 28299.63 6199.67 15199.63 10998.58 35497.65 41099.07 9799.57 39298.85 15698.92 35799.03 338
EIA-MVS99.12 19399.01 19899.45 19899.36 28599.62 11999.34 12999.79 9098.41 28598.84 32998.89 37598.75 14199.84 26298.15 21599.51 29998.89 358
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19299.72 12897.99 32099.42 23799.60 22798.81 12999.93 9796.91 31399.74 22399.66 111
PVSNet_BlendedMVS99.03 21199.01 19899.09 28199.54 22197.99 32398.58 29799.82 7297.62 34199.34 25999.71 15098.52 17799.77 32397.98 22799.97 5599.52 204
sasdasda99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
SR-MVS99.19 17599.00 20299.74 8199.51 23499.72 8399.18 18199.60 19798.85 23499.47 22499.58 23598.38 19599.92 12396.92 31299.54 29399.57 176
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26099.73 7899.13 20299.52 24597.40 35399.57 19099.64 19298.93 11699.83 27797.61 26999.79 20399.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 21399.00 20299.09 28199.10 34998.70 26999.61 7099.66 15699.63 10998.64 34897.65 41099.04 10399.54 39698.79 16498.92 35799.04 336
RRT-MVS99.08 20099.00 20299.33 23699.27 31598.65 27799.62 6499.93 3299.66 10299.67 15299.82 8095.27 32399.93 9798.64 18099.09 34599.41 244
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23198.34 30099.01 31099.50 26498.53 17499.93 9797.18 30299.78 20899.66 111
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32099.48 13499.56 19799.77 11994.89 32599.93 9798.72 17399.89 12699.63 134
YYNet198.95 23198.99 20998.84 31699.64 17697.14 35798.22 33499.32 30098.92 22599.59 18599.66 18597.40 26599.83 27798.27 20099.90 11699.55 181
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31499.64 17697.16 35598.23 33399.33 29898.93 22399.56 19799.66 18597.39 26799.83 27798.29 19899.88 13599.55 181
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33299.73 11998.39 28899.63 16499.43 28399.70 2499.90 16397.34 28598.64 37799.44 234
MSDG99.08 20098.98 21299.37 22699.60 18599.13 22797.54 38399.74 11598.84 23799.53 20999.55 25399.10 9099.79 31297.07 30699.86 15599.18 299
Effi-MVS+99.06 20498.97 21399.34 23399.31 30498.98 24398.31 32799.91 3898.81 24198.79 33698.94 37199.14 8699.84 26298.79 16498.74 37099.20 294
MS-PatchMatch99.00 22198.97 21399.09 28199.11 34798.19 30798.76 28099.33 29898.49 27999.44 23099.58 23598.21 21499.69 35198.20 20799.62 26599.39 248
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17499.55 22598.22 30799.32 26499.35 30798.65 15699.91 14596.86 31699.74 22399.62 145
mvsmamba99.08 20098.95 21699.45 19899.36 28599.18 22399.39 11798.81 35399.37 15999.35 25599.70 15896.36 30599.94 7998.66 17899.59 27999.22 287
PHI-MVS99.11 19698.95 21699.59 15699.13 34099.59 13099.17 18699.65 16697.88 33099.25 27899.46 27898.97 11399.80 30997.26 29399.82 18199.37 253
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20299.65 16697.97 32299.42 23799.61 21998.86 12699.87 21096.45 34499.68 24899.49 216
WR-MVS99.11 19698.93 21899.66 11999.30 30899.42 16898.42 32099.37 29199.04 21099.57 19099.20 33796.89 28699.86 22998.66 17899.87 14799.70 82
USDC98.96 22898.93 21899.05 28999.54 22197.99 32397.07 40399.80 8498.21 30899.75 11999.77 11998.43 18799.64 38197.90 23499.88 13599.51 206
TinyColmap98.97 22598.93 21899.07 28699.46 26098.19 30797.75 37499.75 10998.79 24499.54 20499.70 15898.97 11399.62 38396.63 33399.83 17299.41 244
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28299.60 19798.55 27099.76 11499.69 16598.23 21399.92 12396.39 34699.75 21699.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37399.78 5199.15 19499.66 15699.34 16398.92 31999.24 33197.69 25199.98 2198.11 21799.28 33198.81 365
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29099.63 17696.84 37399.44 23099.58 23598.81 12999.91 14597.70 25899.82 18199.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 21998.92 22299.27 25499.71 14499.28 20198.59 29599.77 9998.32 30299.39 25099.41 28698.62 15899.84 26296.62 33499.84 16498.69 373
new_pmnet98.88 24098.89 22698.84 31699.70 15297.62 34198.15 33899.50 25497.98 32199.62 17399.54 25598.15 22099.94 7997.55 27299.84 16498.95 349
CVMVSNet98.61 26298.88 22797.80 36799.58 19593.60 40499.26 15799.64 17499.66 10299.72 13299.67 18093.26 34399.93 9799.30 10199.81 19199.87 32
Fast-Effi-MVS+99.02 21398.87 22899.46 19599.38 28099.50 14699.04 23099.79 9097.17 36498.62 35098.74 38499.34 6299.95 6498.32 19799.41 31498.92 354
lupinMVS98.96 22898.87 22899.24 26299.57 20598.40 29498.12 34299.18 33198.28 30499.63 16499.13 34198.02 22899.97 3498.22 20599.69 24399.35 259
CANet_DTU98.91 23498.85 23099.09 28198.79 38598.13 31298.18 33599.31 30499.48 13498.86 32799.51 26196.56 29499.95 6499.05 13899.95 8199.19 297
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33599.37 15999.61 17999.71 15094.73 32899.81 30297.70 25899.88 13599.58 171
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 30999.82 7297.65 34099.43 23499.16 33996.42 30099.91 14599.07 13799.84 16499.80 50
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 25999.66 15697.11 36899.47 22499.60 22799.07 9799.89 18296.18 35599.85 15999.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13599.50 25498.35 29698.97 31299.48 27198.37 19699.92 12395.95 36699.75 21699.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 22598.82 23599.42 20899.71 14498.81 26099.62 6498.68 35999.81 6599.38 25199.80 9094.25 33299.85 24798.79 16499.32 32699.59 166
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29799.07 34098.40 28799.04 30999.25 32698.51 17999.80 30997.31 28799.51 29999.65 119
PMVScopyleft92.94 2198.82 24598.81 23698.85 31499.84 6197.99 32399.20 17499.47 26299.71 8499.42 23799.82 8098.09 22399.47 40493.88 40199.85 15999.07 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 22498.80 23899.56 16899.25 31999.43 16598.54 30699.27 31298.58 26898.80 33499.43 28398.53 17499.70 34597.22 29999.59 27999.54 189
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21498.54 27399.54 20498.99 36296.81 28899.93 9796.97 31099.53 29599.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 23698.77 24099.27 25499.48 25098.44 29198.72 28499.32 30097.94 32699.37 25299.35 30796.31 30699.91 14598.85 15699.63 26499.47 224
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34699.80 8497.14 36699.46 22899.40 29096.11 31199.89 18299.01 14199.84 16499.84 39
OMC-MVS98.90 23698.72 24299.44 20299.39 27799.42 16898.58 29799.64 17497.31 35899.44 23099.62 21098.59 16299.69 35196.17 35699.79 20399.22 287
eth_miper_zixun_eth98.68 25998.71 24398.60 33299.10 34996.84 36497.52 38799.54 23198.94 22099.58 18799.48 27196.25 30999.76 32698.01 22599.93 10199.21 290
c3_l98.72 25598.71 24398.72 32699.12 34297.22 35497.68 37899.56 21998.90 22799.54 20499.48 27196.37 30499.73 33697.88 23699.88 13599.21 290
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23299.71 8598.86 26199.19 33098.47 28198.59 35399.06 35298.08 22599.91 14596.94 31199.60 27599.60 159
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27499.54 23198.94 22099.14 29799.25 32697.24 27299.82 28795.84 37099.78 20899.60 159
9.1498.64 24799.45 26498.81 27199.60 19797.52 34799.28 27599.56 24698.53 17499.83 27795.36 38199.64 261
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 34999.83 6798.64 26199.89 5399.60 22792.57 350100.00 199.33 9699.97 5599.72 76
FMVSNet398.80 24798.63 24999.32 24199.13 34098.72 26899.10 21499.48 25999.23 18099.62 17399.64 19292.57 35099.86 22998.96 14899.90 11699.39 248
miper_lstm_enhance98.65 26198.60 25098.82 32199.20 32997.33 35197.78 37399.66 15699.01 21299.59 18599.50 26494.62 32999.85 24798.12 21699.90 11699.26 278
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41099.78 7299.88 6299.88 4793.66 34099.97 3499.61 5399.95 8199.64 129
miper_ehance_all_eth98.59 26898.59 25298.59 33398.98 36597.07 35897.49 38899.52 24598.50 27799.52 21199.37 29896.41 30299.71 34297.86 24099.62 26599.00 345
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24099.62 11999.01 23899.57 21496.80 37599.54 20499.63 20398.29 20499.91 14595.24 38299.71 23799.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 25798.59 25299.02 29199.54 22197.99 32397.58 38299.82 7295.70 38999.34 25998.98 36598.52 17799.77 32397.98 22799.83 17299.30 272
Vis-MVSNet (Re-imp)98.77 24998.58 25599.34 23399.78 10598.88 25699.61 7099.56 21999.11 20499.24 28199.56 24693.00 34899.78 31597.43 28099.89 12699.35 259
NCCC98.82 24598.57 25699.58 15999.21 32699.31 19698.61 29099.25 31798.65 26098.43 36399.26 32497.86 23999.81 30296.55 33599.27 33499.61 155
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24699.67 15199.48 13499.55 20299.36 30294.92 32499.86 22998.95 15296.57 41199.45 229
CLD-MVS98.76 25098.57 25699.33 23699.57 20598.97 24597.53 38599.55 22596.41 37899.27 27699.13 34199.07 9799.78 31596.73 32599.89 12699.23 285
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test98.71 25698.56 25999.15 27299.22 32498.66 27497.14 40099.51 25098.09 31599.54 20499.27 32196.87 28799.74 33398.43 18998.96 35499.03 338
Patchmtry98.78 24898.54 26099.49 18698.89 37399.19 22199.32 13599.67 15199.65 10599.72 13299.79 10091.87 35899.95 6498.00 22699.97 5599.33 263
RPMNet98.60 26598.53 26198.83 31899.05 35598.12 31399.30 14399.62 17999.86 4699.16 29399.74 13192.53 35299.92 12398.75 17098.77 36698.44 389
N_pmnet98.73 25498.53 26199.35 23299.72 14198.67 27198.34 32494.65 41198.35 29699.79 9999.68 17698.03 22799.93 9798.28 19999.92 10599.44 234
dmvs_re98.69 25898.48 26399.31 24499.55 21999.42 16899.54 8798.38 37899.32 16698.72 34298.71 38596.76 29099.21 40996.01 36099.35 32299.31 270
PatchMatch-RL98.68 25998.47 26499.30 24799.44 26599.28 20198.14 34099.54 23197.12 36799.11 30199.25 32697.80 24499.70 34596.51 33899.30 32898.93 352
Anonymous20240521198.75 25198.46 26599.63 13999.34 29799.66 10399.47 10597.65 39499.28 17199.56 19799.50 26493.15 34499.84 26298.62 18199.58 28199.40 246
F-COLMAP98.74 25298.45 26699.62 14899.57 20599.47 15098.84 26499.65 16696.31 38198.93 31699.19 33897.68 25299.87 21096.52 33799.37 31999.53 194
CPTT-MVS98.74 25298.44 26799.64 13299.61 18399.38 18099.18 18199.55 22596.49 37799.27 27699.37 29897.11 28099.92 12395.74 37399.67 25499.62 145
PVSNet97.47 1598.42 28698.44 26798.35 34499.46 26096.26 37596.70 40899.34 29797.68 33999.00 31199.13 34197.40 26599.72 33897.59 27199.68 24899.08 327
DIV-MVS_self_test98.54 27398.42 26998.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.87 33599.78 31597.97 22999.89 12699.18 299
cl____98.54 27398.41 27098.92 30399.03 35997.80 33697.46 38999.59 20398.90 22799.60 18299.46 27893.85 33699.78 31597.97 22999.89 12699.17 301
CHOSEN 280x42098.41 28798.41 27098.40 34299.34 29795.89 38396.94 40599.44 27098.80 24399.25 27899.52 25993.51 34299.98 2198.94 15399.98 4199.32 266
API-MVS98.38 29098.39 27298.35 34498.83 37999.26 20599.14 19699.18 33198.59 26798.66 34798.78 38298.61 16099.57 39294.14 39699.56 28496.21 415
MG-MVS98.52 27598.39 27298.94 29999.15 33797.39 35098.18 33599.21 32798.89 23099.23 28299.63 20397.37 26899.74 33394.22 39599.61 27299.69 88
WTY-MVS98.59 26898.37 27499.26 25799.43 26898.40 29498.74 28299.13 33898.10 31399.21 28799.24 33194.82 32699.90 16397.86 24098.77 36699.49 216
SCA98.11 30998.36 27597.36 37899.20 32992.99 40698.17 33798.49 37198.24 30699.10 30399.57 24296.01 31399.94 7996.86 31699.62 26599.14 310
Patchmatch-RL test98.60 26598.36 27599.33 23699.77 11399.07 23798.27 32999.87 5198.91 22699.74 12799.72 14290.57 37599.79 31298.55 18499.85 15999.11 314
AdaColmapbinary98.60 26598.35 27799.38 22399.12 34299.22 21598.67 28799.42 27597.84 33498.81 33299.27 32197.32 27099.81 30295.14 38499.53 29599.10 316
h-mvs3398.61 26298.34 27899.44 20299.60 18598.67 27199.27 15599.44 27099.68 9499.32 26499.49 26892.50 353100.00 199.24 10896.51 41299.65 119
CNLPA98.57 27098.34 27899.28 25199.18 33499.10 23498.34 32499.41 27698.48 28098.52 35898.98 36597.05 28299.78 31595.59 37599.50 30298.96 347
FA-MVS(test-final)98.52 27598.32 28099.10 28099.48 25098.67 27199.77 1698.60 36697.35 35699.63 16499.80 9093.07 34699.84 26297.92 23299.30 32898.78 368
MonoMVSNet98.23 30298.32 28097.99 35898.97 36696.62 36799.49 10098.42 37499.62 11299.40 24899.79 10095.51 32098.58 41797.68 26695.98 41598.76 371
PatchT98.45 28498.32 28098.83 31898.94 36898.29 30199.24 16498.82 35299.84 5599.08 30499.76 12291.37 36199.94 7998.82 16099.00 35298.26 395
hse-mvs298.52 27598.30 28399.16 27099.29 31098.60 28298.77 27999.02 34499.68 9499.32 26499.04 35592.50 35399.85 24799.24 10897.87 40299.03 338
MVS_030498.61 26298.30 28399.52 17997.88 41698.95 24898.76 28094.11 41599.84 5599.32 26499.57 24295.57 31999.95 6499.68 4799.98 4199.68 94
PMMVS98.49 28098.29 28599.11 27898.96 36798.42 29397.54 38399.32 30097.53 34698.47 36198.15 40297.88 23899.82 28797.46 27899.24 33799.09 321
UnsupCasMVSNet_bld98.55 27298.27 28699.40 21799.56 21699.37 18397.97 36299.68 14697.49 34999.08 30499.35 30795.41 32299.82 28797.70 25898.19 39299.01 344
DP-MVS Recon98.50 27898.23 28799.31 24499.49 24599.46 15498.56 30299.63 17694.86 40098.85 32899.37 29897.81 24399.59 39096.08 35799.44 30998.88 359
MVSTER98.47 28298.22 28899.24 26299.06 35498.35 30099.08 22199.46 26599.27 17299.75 11999.66 18588.61 38699.85 24799.14 13099.92 10599.52 204
MVS-HIRNet97.86 31798.22 28896.76 38899.28 31391.53 41598.38 32292.60 41899.13 20099.31 26999.96 1597.18 27899.68 36398.34 19599.83 17299.07 332
CDPH-MVS98.56 27198.20 29099.61 15199.50 24099.46 15498.32 32699.41 27695.22 39499.21 28799.10 34998.34 20099.82 28795.09 38699.66 25799.56 178
CR-MVSNet98.35 29498.20 29098.83 31899.05 35598.12 31399.30 14399.67 15197.39 35499.16 29399.79 10091.87 35899.91 14598.78 16898.77 36698.44 389
MIMVSNet98.43 28598.20 29099.11 27899.53 22798.38 29899.58 7998.61 36498.96 21799.33 26199.76 12290.92 36899.81 30297.38 28399.76 21499.15 305
LFMVS98.46 28398.19 29399.26 25799.24 32198.52 28799.62 6496.94 40299.87 4399.31 26999.58 23591.04 36699.81 30298.68 17799.42 31399.45 229
CMPMVSbinary77.52 2398.50 27898.19 29399.41 21598.33 40799.56 13799.01 23899.59 20395.44 39199.57 19099.80 9095.64 31699.46 40696.47 34299.92 10599.21 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test111197.74 32298.16 29596.49 39399.60 18589.86 42399.71 3491.21 41999.89 3799.88 6299.87 5293.73 33999.90 16399.56 6099.99 1699.70 82
WB-MVSnew98.34 29698.14 29698.96 29698.14 41497.90 33198.27 32997.26 40198.63 26298.80 33498.00 40597.77 24699.90 16397.37 28498.98 35399.09 321
BH-RMVSNet98.41 28798.14 29699.21 26499.21 32698.47 28898.60 29298.26 38298.35 29698.93 31699.31 31397.20 27799.66 37394.32 39399.10 34499.51 206
114514_t98.49 28098.11 29899.64 13299.73 13899.58 13499.24 16499.76 10489.94 41299.42 23799.56 24697.76 24899.86 22997.74 25299.82 18199.47 224
MVStest198.22 30498.09 29998.62 33099.04 35896.23 37699.20 17499.92 3499.44 14699.98 1399.87 5285.87 39999.67 36899.91 2499.57 28399.95 13
BH-untuned98.22 30498.09 29998.58 33599.38 28097.24 35398.55 30398.98 34797.81 33599.20 29298.76 38397.01 28399.65 37994.83 38798.33 38598.86 361
tpmrst97.73 32398.07 30196.73 39098.71 39492.00 41099.10 21498.86 34998.52 27598.92 31999.54 25591.90 35699.82 28798.02 22299.03 35098.37 391
ECVR-MVScopyleft97.73 32398.04 30296.78 38799.59 19090.81 41999.72 3090.43 42199.89 3799.86 7199.86 5993.60 34199.89 18299.46 7399.99 1699.65 119
PAPM_NR98.36 29198.04 30299.33 23699.48 25098.93 25298.79 27799.28 31197.54 34598.56 35798.57 39097.12 27999.69 35194.09 39798.90 36199.38 250
HQP-MVS98.36 29198.02 30499.39 22099.31 30498.94 24997.98 35999.37 29197.45 35098.15 37298.83 37896.67 29199.70 34594.73 38899.67 25499.53 194
QAPM98.40 28997.99 30599.65 12599.39 27799.47 15099.67 5099.52 24591.70 40998.78 33899.80 9098.55 16899.95 6494.71 39099.75 21699.53 194
PLCcopyleft97.35 1698.36 29197.99 30599.48 19099.32 30399.24 21298.50 31199.51 25095.19 39698.58 35498.96 36996.95 28599.83 27795.63 37499.25 33599.37 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 31097.98 30798.48 33899.27 31596.48 36999.40 11599.07 34098.81 24199.23 28299.57 24290.11 37999.87 21096.69 32699.64 26199.09 321
alignmvs98.28 29797.96 30899.25 26099.12 34298.93 25299.03 23398.42 37499.64 10798.72 34297.85 40790.86 37199.62 38398.88 15599.13 34199.19 297
test_yl98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
DCV-MVSNet98.25 29997.95 30999.13 27699.17 33598.47 28899.00 24198.67 36198.97 21599.22 28599.02 36091.31 36299.69 35197.26 29398.93 35599.24 281
train_agg98.35 29497.95 30999.57 16599.35 28899.35 19098.11 34499.41 27694.90 39897.92 38298.99 36298.02 22899.85 24795.38 38099.44 30999.50 211
HY-MVS98.23 998.21 30697.95 30998.99 29399.03 35998.24 30299.61 7098.72 35796.81 37498.73 34199.51 26194.06 33399.86 22996.91 31398.20 39098.86 361
miper_enhance_ethall98.03 31397.94 31398.32 34798.27 40896.43 37196.95 40499.41 27696.37 38099.43 23498.96 36994.74 32799.69 35197.71 25599.62 26598.83 364
DPM-MVS98.28 29797.94 31399.32 24199.36 28599.11 22997.31 39598.78 35596.88 37198.84 32999.11 34897.77 24699.61 38894.03 39999.36 32099.23 285
JIA-IIPM98.06 31297.92 31598.50 33798.59 39897.02 35998.80 27498.51 36999.88 4297.89 38499.87 5291.89 35799.90 16398.16 21497.68 40498.59 378
MAR-MVS98.24 30197.92 31599.19 26798.78 38799.65 10999.17 18699.14 33695.36 39298.04 37998.81 38197.47 26299.72 33895.47 37899.06 34698.21 398
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 31597.90 31798.27 35298.90 37097.45 34799.30 14399.06 34294.98 39797.21 39999.12 34598.43 18799.67 36895.58 37698.56 38097.71 407
OpenMVScopyleft98.12 1098.23 30297.89 31899.26 25799.19 33199.26 20599.65 5999.69 14391.33 41098.14 37699.77 11998.28 20599.96 5595.41 37999.55 28898.58 380
Syy-MVS98.17 30797.85 31999.15 27298.50 40298.79 26398.60 29299.21 32797.89 32896.76 40496.37 42795.47 32199.57 39299.10 13398.73 37399.09 321
pmmvs398.08 31197.80 32098.91 30599.41 27597.69 34097.87 37099.66 15695.87 38599.50 21999.51 26190.35 37799.97 3498.55 18499.47 30699.08 327
PatchmatchNetpermissive97.65 32797.80 32097.18 38498.82 38292.49 40899.17 18698.39 37798.12 31298.79 33699.58 23590.71 37399.89 18297.23 29899.41 31499.16 303
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 32897.79 32297.11 38696.67 42192.31 40998.51 31098.04 38699.24 17895.77 41399.47 27593.78 33899.66 37398.98 14499.62 26599.37 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 30897.77 32399.18 26994.57 42497.99 32399.24 16497.96 38899.74 7797.29 39799.62 21093.13 34599.97 3498.59 18299.83 17299.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 32498.70 39590.83 41899.15 19498.02 38798.51 27698.82 33199.61 21990.98 36799.66 37396.89 31598.92 357
tpmvs97.39 33797.69 32596.52 39298.41 40491.76 41299.30 14398.94 34897.74 33697.85 38799.55 25392.40 35599.73 33696.25 35298.73 37398.06 403
GA-MVS97.99 31697.68 32698.93 30299.52 23298.04 32197.19 39999.05 34398.32 30298.81 33298.97 36789.89 38299.41 40798.33 19699.05 34899.34 262
ADS-MVSNet97.72 32697.67 32797.86 36599.14 33894.65 39799.22 17198.86 34996.97 36998.25 36899.64 19290.90 36999.84 26296.51 33899.56 28499.08 327
ADS-MVSNet297.78 32197.66 32898.12 35699.14 33895.36 38999.22 17198.75 35696.97 36998.25 36899.64 19290.90 36999.94 7996.51 33899.56 28499.08 327
TAPA-MVS97.92 1398.03 31397.55 32999.46 19599.47 25699.44 16198.50 31199.62 17986.79 41399.07 30799.26 32498.26 20899.62 38397.28 29099.73 22899.31 270
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
reproduce_monomvs97.40 33697.46 33097.20 38399.05 35591.91 41199.20 17499.18 33199.84 5599.86 7199.75 12780.67 40699.83 27799.69 4599.95 8199.85 37
E-PMN97.14 34497.43 33196.27 39598.79 38591.62 41495.54 41399.01 34699.44 14698.88 32399.12 34592.78 34999.68 36394.30 39499.03 35097.50 408
FE-MVS97.85 31897.42 33299.15 27299.44 26598.75 26699.77 1698.20 38495.85 38699.33 26199.80 9088.86 38599.88 19696.40 34599.12 34298.81 365
AUN-MVS97.82 31997.38 33399.14 27599.27 31598.53 28598.72 28499.02 34498.10 31397.18 40099.03 35989.26 38499.85 24797.94 23197.91 40099.03 338
baseline197.73 32397.33 33498.96 29699.30 30897.73 33899.40 11598.42 37499.33 16599.46 22899.21 33591.18 36499.82 28798.35 19491.26 41999.32 266
cl2297.56 33197.28 33598.40 34298.37 40696.75 36597.24 39899.37 29197.31 35899.41 24399.22 33387.30 38899.37 40897.70 25899.62 26599.08 327
EMVS96.96 34797.28 33595.99 39898.76 39091.03 41795.26 41598.61 36499.34 16398.92 31998.88 37693.79 33799.66 37392.87 40299.05 34897.30 412
FMVSNet597.80 32097.25 33799.42 20898.83 37998.97 24599.38 12099.80 8498.87 23199.25 27899.69 16580.60 40899.91 14598.96 14899.90 11699.38 250
tttt051797.62 32897.20 33898.90 31199.76 11797.40 34999.48 10294.36 41299.06 20999.70 14199.49 26884.55 40299.94 7998.73 17299.65 25999.36 256
WBMVS97.50 33397.18 33998.48 33898.85 37795.89 38398.44 31999.52 24599.53 12899.52 21199.42 28580.10 40999.86 22999.24 10899.95 8199.68 94
TR-MVS97.44 33597.15 34098.32 34798.53 40097.46 34698.47 31497.91 39096.85 37298.21 37198.51 39496.42 30099.51 40292.16 40497.29 40797.98 404
dp96.86 34897.07 34196.24 39698.68 39690.30 42299.19 18098.38 37897.35 35698.23 37099.59 23287.23 38999.82 28796.27 35198.73 37398.59 378
PAPR97.56 33197.07 34199.04 29098.80 38398.11 31597.63 37999.25 31794.56 40398.02 38098.25 40097.43 26499.68 36390.90 40898.74 37099.33 263
BH-w/o97.20 34197.01 34397.76 36899.08 35395.69 38598.03 35498.52 36895.76 38897.96 38198.02 40395.62 31799.47 40492.82 40397.25 40898.12 402
tpm cat196.78 35096.98 34496.16 39798.85 37790.59 42199.08 22199.32 30092.37 40697.73 39399.46 27891.15 36599.69 35196.07 35898.80 36398.21 398
thisisatest053097.45 33496.95 34598.94 29999.68 16497.73 33899.09 21894.19 41498.61 26699.56 19799.30 31584.30 40399.93 9798.27 20099.54 29399.16 303
test-LLR97.15 34296.95 34597.74 37098.18 41195.02 39497.38 39196.10 40498.00 31897.81 38998.58 38890.04 38099.91 14597.69 26498.78 36498.31 392
tpm97.15 34296.95 34597.75 36998.91 36994.24 39999.32 13597.96 38897.71 33898.29 36699.32 31186.72 39699.92 12398.10 22096.24 41499.09 321
test0.0.03 197.37 33896.91 34898.74 32597.72 41797.57 34297.60 38197.36 40098.00 31899.21 28798.02 40390.04 38099.79 31298.37 19295.89 41698.86 361
OpenMVS_ROBcopyleft97.31 1797.36 33996.84 34998.89 31299.29 31099.45 15998.87 26099.48 25986.54 41599.44 23099.74 13197.34 26999.86 22991.61 40599.28 33197.37 411
dmvs_testset97.27 34096.83 35098.59 33399.46 26097.55 34399.25 16396.84 40398.78 24697.24 39897.67 40997.11 28098.97 41386.59 41898.54 38199.27 276
cascas96.99 34596.82 35197.48 37497.57 42095.64 38696.43 41099.56 21991.75 40897.13 40297.61 41395.58 31898.63 41596.68 32799.11 34398.18 401
CostFormer96.71 35396.79 35296.46 39498.90 37090.71 42099.41 11498.68 35994.69 40298.14 37699.34 31086.32 39899.80 30997.60 27098.07 39898.88 359
thisisatest051596.98 34696.42 35398.66 32999.42 27397.47 34597.27 39694.30 41397.24 36099.15 29598.86 37785.01 40099.87 21097.10 30499.39 31698.63 374
EPMVS96.53 35696.32 35497.17 38598.18 41192.97 40799.39 11789.95 42298.21 30898.61 35199.59 23286.69 39799.72 33896.99 30899.23 33998.81 365
baseline296.83 34996.28 35598.46 34099.09 35296.91 36298.83 26693.87 41797.23 36196.23 41298.36 39788.12 38799.90 16396.68 32798.14 39598.57 381
tpm296.35 36196.22 35696.73 39098.88 37591.75 41399.21 17398.51 36993.27 40597.89 38499.21 33584.83 40199.70 34596.04 35998.18 39398.75 372
thres600view796.60 35596.16 35797.93 36299.63 17896.09 38099.18 18197.57 39598.77 24898.72 34297.32 41587.04 39199.72 33888.57 41098.62 37897.98 404
MVEpermissive92.54 2296.66 35496.11 35898.31 34999.68 16497.55 34397.94 36495.60 40999.37 15990.68 42098.70 38696.56 29498.61 41686.94 41799.55 28898.77 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 35096.07 35998.91 30599.26 31897.92 33097.70 37796.05 40797.96 32592.37 41998.43 39687.06 39099.90 16398.27 20097.56 40598.91 355
thres100view90096.39 36096.03 36097.47 37599.63 17895.93 38199.18 18197.57 39598.75 25298.70 34597.31 41687.04 39199.67 36887.62 41398.51 38296.81 413
UBG96.53 35695.95 36198.29 35198.87 37696.31 37498.48 31398.07 38598.83 23897.32 39596.54 42579.81 41199.62 38396.84 31998.74 37098.95 349
tfpn200view996.30 36395.89 36297.53 37299.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38296.81 413
thres40096.40 35995.89 36297.92 36399.58 19596.11 37899.00 24197.54 39898.43 28298.52 35896.98 41886.85 39399.67 36887.62 41398.51 38297.98 404
PCF-MVS96.03 1896.73 35295.86 36499.33 23699.44 26599.16 22496.87 40699.44 27086.58 41498.95 31499.40 29094.38 33199.88 19687.93 41299.80 19898.95 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 36495.84 36597.41 37798.24 40993.84 40297.38 39195.84 40898.43 28297.81 38998.56 39179.77 41299.89 18297.77 24798.77 36698.52 383
UWE-MVS96.21 36695.78 36697.49 37398.53 40093.83 40398.04 35293.94 41698.96 21798.46 36298.17 40179.86 41099.87 21096.99 30899.06 34698.78 368
test-mter96.23 36595.73 36797.74 37098.18 41195.02 39497.38 39196.10 40497.90 32797.81 38998.58 38879.12 41599.91 14597.69 26498.78 36498.31 392
thres20096.09 36895.68 36897.33 38099.48 25096.22 37798.53 30897.57 39598.06 31798.37 36596.73 42286.84 39599.61 38886.99 41698.57 37996.16 416
testing396.48 35895.63 36999.01 29299.23 32397.81 33498.90 25799.10 33998.72 25397.84 38897.92 40672.44 42299.85 24797.21 30099.33 32499.35 259
FPMVS96.32 36295.50 37098.79 32299.60 18598.17 31098.46 31898.80 35497.16 36596.28 40999.63 20382.19 40499.09 41188.45 41198.89 36299.10 316
tmp_tt95.75 37795.42 37196.76 38889.90 42694.42 39898.86 26197.87 39278.01 41799.30 27499.69 16597.70 24995.89 41999.29 10498.14 39599.95 13
testing1196.05 37095.41 37297.97 36098.78 38795.27 39198.59 29598.23 38398.86 23396.56 40796.91 42075.20 41899.69 35197.26 29398.29 38798.93 352
KD-MVS_2432*160095.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
miper_refine_blended95.89 37295.41 37297.31 38194.96 42293.89 40097.09 40199.22 32497.23 36198.88 32399.04 35579.23 41399.54 39696.24 35396.81 40998.50 387
testing9196.00 37195.32 37598.02 35798.76 39095.39 38898.38 32298.65 36398.82 23996.84 40396.71 42375.06 41999.71 34296.46 34398.23 38998.98 346
PVSNet_095.53 1995.85 37695.31 37697.47 37598.78 38793.48 40595.72 41299.40 28396.18 38397.37 39497.73 40895.73 31599.58 39195.49 37781.40 42099.36 256
ETVMVS96.14 36795.22 37798.89 31298.80 38398.01 32298.66 28898.35 38098.71 25597.18 40096.31 42974.23 42199.75 33096.64 33298.13 39798.90 356
testing9995.86 37595.19 37897.87 36498.76 39095.03 39398.62 28998.44 37398.68 25796.67 40696.66 42474.31 42099.69 35196.51 33898.03 39998.90 356
gg-mvs-nofinetune95.87 37495.17 37997.97 36098.19 41096.95 36099.69 4289.23 42399.89 3796.24 41199.94 1981.19 40599.51 40293.99 40098.20 39097.44 409
X-MVStestdata96.09 36894.87 38099.75 7699.71 14499.71 8599.37 12499.61 18699.29 16898.76 33961.30 43098.47 18199.88 19697.62 26799.73 22899.67 102
myMVS_eth3d95.63 37994.73 38198.34 34698.50 40296.36 37298.60 29299.21 32797.89 32896.76 40496.37 42772.10 42399.57 39294.38 39298.73 37399.09 321
PAPM95.61 38094.71 38298.31 34999.12 34296.63 36696.66 40998.46 37290.77 41196.25 41098.68 38793.01 34799.69 35181.60 41997.86 40398.62 375
MVS95.72 37894.63 38398.99 29398.56 39997.98 32899.30 14398.86 34972.71 41997.30 39699.08 35098.34 20099.74 33389.21 40998.33 38599.26 278
testing22295.60 38194.59 38498.61 33198.66 39797.45 34798.54 30697.90 39198.53 27496.54 40896.47 42670.62 42599.81 30295.91 36898.15 39498.56 382
test250694.73 38394.59 38495.15 39999.59 19085.90 42599.75 2274.01 42799.89 3799.71 13799.86 5979.00 41699.90 16399.52 6799.99 1699.65 119
IB-MVS95.41 2095.30 38294.46 38697.84 36698.76 39095.33 39097.33 39496.07 40696.02 38495.37 41697.41 41476.17 41799.96 5597.54 27395.44 41898.22 397
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 38492.32 38789.91 40293.49 42570.18 42890.28 41699.56 21961.71 42095.39 41599.52 25993.90 33499.94 7998.76 16998.27 38899.62 145
dongtai89.37 38588.91 38890.76 40199.19 33177.46 42695.47 41487.82 42592.28 40794.17 41898.82 38071.22 42495.54 42063.85 42097.34 40699.27 276
EGC-MVSNET89.05 38685.52 38999.64 13299.89 3899.78 5199.56 8499.52 24524.19 42149.96 42299.83 7399.15 8399.92 12397.71 25599.85 15999.21 290
kuosan85.65 38784.57 39088.90 40397.91 41577.11 42796.37 41187.62 42685.24 41685.45 42196.83 42169.94 42690.98 42245.90 42195.83 41798.62 375
testmvs28.94 38933.33 39115.79 40526.03 4279.81 43096.77 40715.67 42811.55 42323.87 42450.74 43319.03 4288.53 42423.21 42333.07 42129.03 420
cdsmvs_eth3d_5k24.88 39033.17 3920.00 4060.00 4290.00 4310.00 41799.62 1790.00 4240.00 42599.13 34199.82 130.00 4250.00 4240.00 4230.00 421
test12329.31 38833.05 39318.08 40425.93 42812.24 42997.53 38510.93 42911.78 42224.21 42350.08 43421.04 4278.60 42323.51 42232.43 42233.39 419
pcd_1.5k_mvsjas16.61 39122.14 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 199.28 680.00 4250.00 4240.00 4230.00 421
mmdepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
test_blank8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
sosnet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
Regformer8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
uanet8.33 39211.11 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 425100.00 10.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.26 40211.02 4050.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42599.16 3390.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS96.36 37295.20 383
FOURS199.83 6599.89 1099.74 2499.71 13199.69 9299.63 164
MSC_two_6792asdad99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
PC_three_145297.56 34299.68 14799.41 28699.09 9297.09 41896.66 32999.60 27599.62 145
No_MVS99.74 8199.03 35999.53 14399.23 32199.92 12397.77 24799.69 24399.78 59
test_one_060199.63 17899.76 6399.55 22599.23 18099.31 26999.61 21998.59 162
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.43 26899.61 12599.43 27396.38 37999.11 30199.07 35197.86 23999.92 12394.04 39899.49 304
IU-MVS99.69 15699.77 5699.22 32497.50 34899.69 14497.75 25199.70 23999.77 63
OPU-MVS99.29 24899.12 34299.44 16199.20 17499.40 29099.00 10798.84 41496.54 33699.60 27599.58 171
test_241102_TWO99.54 23199.13 20099.76 11499.63 20398.32 20399.92 12397.85 24299.69 24399.75 71
test_241102_ONE99.69 15699.82 3799.54 23199.12 20399.82 8299.49 26898.91 12199.52 401
save fliter99.53 22799.25 20898.29 32899.38 29099.07 207
test_0728_THIRD99.18 18799.62 17399.61 21998.58 16499.91 14597.72 25399.80 19899.77 63
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19699.61 18699.92 12397.88 23699.72 23499.77 63
test072699.69 15699.80 4699.24 16499.57 21499.16 19499.73 13199.65 19098.35 198
GSMVS99.14 310
test_part299.62 18299.67 10199.55 202
sam_mvs190.81 37299.14 310
sam_mvs90.52 376
ambc99.20 26699.35 28898.53 28599.17 18699.46 26599.67 15299.80 9098.46 18499.70 34597.92 23299.70 23999.38 250
MTGPAbinary99.53 240
test_post199.14 19651.63 43289.54 38399.82 28796.86 316
test_post52.41 43190.25 37899.86 229
patchmatchnet-post99.62 21090.58 37499.94 79
GG-mvs-BLEND97.36 37897.59 41896.87 36399.70 3588.49 42494.64 41797.26 41780.66 40799.12 41091.50 40696.50 41396.08 417
MTMP99.09 21898.59 367
gm-plane-assit97.59 41889.02 42493.47 40498.30 39899.84 26296.38 347
test9_res95.10 38599.44 30999.50 211
TEST999.35 28899.35 19098.11 34499.41 27694.83 40197.92 38298.99 36298.02 22899.85 247
test_899.34 29799.31 19698.08 34899.40 28394.90 39897.87 38698.97 36798.02 22899.84 262
agg_prior294.58 39199.46 30899.50 211
agg_prior99.35 28899.36 18799.39 28697.76 39299.85 247
TestCases99.63 13999.78 10599.64 11299.83 6798.63 26299.63 16499.72 14298.68 14999.75 33096.38 34799.83 17299.51 206
test_prior499.19 22198.00 357
test_prior297.95 36397.87 33198.05 37899.05 35397.90 23695.99 36399.49 304
test_prior99.46 19599.35 28899.22 21599.39 28699.69 35199.48 220
旧先验297.94 36495.33 39398.94 31599.88 19696.75 323
新几何298.04 352
新几何199.52 17999.50 24099.22 21599.26 31495.66 39098.60 35299.28 31997.67 25399.89 18295.95 36699.32 32699.45 229
旧先验199.49 24599.29 19999.26 31499.39 29497.67 25399.36 32099.46 228
无先验98.01 35599.23 32195.83 38799.85 24795.79 37299.44 234
原ACMM297.92 366
原ACMM199.37 22699.47 25698.87 25899.27 31296.74 37698.26 36799.32 31197.93 23599.82 28795.96 36599.38 31799.43 240
test22299.51 23499.08 23697.83 37299.29 30895.21 39598.68 34699.31 31397.28 27199.38 31799.43 240
testdata299.89 18295.99 363
segment_acmp98.37 196
testdata99.42 20899.51 23498.93 25299.30 30796.20 38298.87 32699.40 29098.33 20299.89 18296.29 35099.28 33199.44 234
testdata197.72 37597.86 333
test1299.54 17699.29 31099.33 19399.16 33498.43 36397.54 26099.82 28799.47 30699.48 220
plane_prior799.58 19599.38 180
plane_prior699.47 25699.26 20597.24 272
plane_prior599.54 23199.82 28795.84 37099.78 20899.60 159
plane_prior499.25 326
plane_prior399.31 19698.36 29199.14 297
plane_prior298.80 27498.94 220
plane_prior199.51 234
plane_prior99.24 21298.42 32097.87 33199.71 237
n20.00 430
nn0.00 430
door-mid99.83 67
lessismore_v099.64 13299.86 5399.38 18090.66 42099.89 5399.83 7394.56 33099.97 3499.56 6099.92 10599.57 176
LGP-MVS_train99.74 8199.82 7299.63 11799.73 11997.56 34299.64 16099.69 16599.37 5899.89 18296.66 32999.87 14799.69 88
test1199.29 308
door99.77 99
HQP5-MVS98.94 249
HQP-NCC99.31 30497.98 35997.45 35098.15 372
ACMP_Plane99.31 30497.98 35997.45 35098.15 372
BP-MVS94.73 388
HQP4-MVS98.15 37299.70 34599.53 194
HQP3-MVS99.37 29199.67 254
HQP2-MVS96.67 291
NP-MVS99.40 27699.13 22798.83 378
MDTV_nov1_ep13_2view91.44 41699.14 19697.37 35599.21 28791.78 36096.75 32399.03 338
ACMMP++_ref99.94 94
ACMMP++99.79 203
Test By Simon98.41 190
ITE_SJBPF99.38 22399.63 17899.44 16199.73 11998.56 26999.33 26199.53 25798.88 12599.68 36396.01 36099.65 25999.02 343
DeepMVS_CXcopyleft97.98 35999.69 15696.95 36099.26 31475.51 41895.74 41498.28 39996.47 29899.62 38391.23 40797.89 40197.38 410