This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 196100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32499.34 121100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8499.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
test_f99.75 3299.88 699.37 21999.96 798.21 29899.51 89100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22799.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17699.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28699.30 13499.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21499.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17699.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31199.48 95100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 23999.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20399.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22299.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32199.49 94100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19699.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22299.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30199.52 85100.00 199.86 45100.00 199.88 4298.99 10299.96 5499.97 499.96 7099.95 11
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20099.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16299.93 9499.59 5199.98 4199.76 66
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 333
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15399.94 7799.58 5499.98 4199.77 60
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14599.84 25599.88 2999.99 1699.71 76
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11499.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 71
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14199.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7399.82 6799.39 14499.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7299.82 6799.46 13199.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
test_fmvs199.48 8799.65 5098.97 28799.54 21597.16 34799.11 20099.98 1199.78 6899.96 2399.81 7998.72 13799.97 3399.95 1299.97 5699.79 54
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17799.87 20399.51 6499.97 5699.86 32
DSMNet-mixed99.48 8799.65 5098.95 29099.71 14397.27 34499.50 9099.82 6799.59 11699.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7599.97 1899.95 2099.96 2399.76 11198.44 17899.99 799.34 8899.96 7099.78 56
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10499.90 15799.24 10499.97 5699.53 187
EU-MVSNet99.39 11599.62 5598.72 31899.88 4496.44 36199.56 8099.85 5499.90 2999.90 4999.85 5698.09 21499.83 27099.58 5499.95 8399.90 20
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12099.91 13999.47 6899.88 13499.70 79
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10499.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22699.92 11699.65 4699.98 4199.62 138
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19299.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14399.97 3399.30 9799.95 8399.80 47
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15599.71 12699.27 15899.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9899.89 4099.43 13999.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11699.79 8699.83 5699.88 6199.85 5698.42 18199.90 15799.60 5099.73 22399.49 210
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30199.87 4199.91 4499.87 4798.04 21899.96 5499.68 4499.99 1699.90 20
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 15999.96 5499.29 10099.94 9499.83 40
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11299.71 33498.41 18099.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 19999.85 24099.37 8399.93 10199.83 40
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23099.65 15799.15 18699.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10599.84 7699.71 13898.62 14999.96 5499.30 9799.96 7099.86 32
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7598.70 34699.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
new-patchmatchnet99.35 12599.57 7198.71 32099.82 7296.62 35998.55 29199.75 10599.50 12299.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22599.86 22299.42 7799.96 7099.80 47
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21599.61 17599.15 18699.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21899.60 18799.18 17499.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14899.76 10099.32 15299.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20099.62 16899.18 17499.89 5399.72 13098.66 14599.87 20399.88 2999.97 5699.66 104
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11099.59 19399.24 16499.86 7199.70 14598.55 16099.82 27999.79 3799.95 8399.60 152
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22599.89 4099.60 11499.82 8199.62 19698.81 12099.89 17599.43 7299.86 15399.47 218
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8099.79 8698.77 23599.80 9299.85 5699.64 2899.85 24098.70 16699.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20399.61 17599.20 17299.84 7699.73 12398.67 14399.84 25599.86 3199.98 4199.64 122
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11799.85 7399.69 15198.18 21099.94 7799.28 10299.95 8399.83 40
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27199.24 15599.46 25499.68 9099.80 9299.66 17198.99 10299.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26899.24 15599.46 25499.67 9499.79 9799.65 17698.97 10699.89 17599.15 11999.89 12499.71 76
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26099.66 14899.42 14399.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18699.58 20299.25 16299.81 8899.62 19698.24 20199.84 25599.83 3299.97 5699.64 122
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13499.63 16599.61 10899.71 13299.56 23398.76 13099.96 5499.14 12599.92 10599.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30898.85 25299.76 10099.62 10599.83 8099.64 17898.54 16299.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27398.99 23599.96 2399.03 19999.95 3199.12 33198.75 13299.84 25599.82 3599.82 17999.77 60
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21899.87 4699.71 8099.47 21899.79 9398.24 20199.98 2099.38 8099.96 7099.83 40
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27297.90 35699.59 19399.27 15899.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33299.90 3898.95 20799.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10299.57 20499.66 9899.78 10199.83 6697.85 23399.86 22299.44 7199.96 7099.61 148
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30899.26 14899.46 25499.62 10599.75 11499.67 16698.54 16299.85 24099.15 11999.92 10599.68 89
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28699.77 1599.80 8099.73 7499.63 15999.30 30198.02 22099.98 2099.43 7299.69 23899.55 174
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7899.61 17599.54 11899.80 9299.64 17897.79 23799.95 6399.21 10799.94 9499.84 36
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12699.77 9599.53 12099.77 10699.76 11199.26 7099.78 30897.77 23699.88 13499.60 152
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8599.81 7699.87 4199.81 8899.79 9396.78 28199.99 799.83 3299.51 29199.86 32
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29599.97 3399.59 5199.98 4199.55 174
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20899.59 19399.17 17999.81 8899.61 20598.41 18299.69 34399.32 9399.94 9499.53 187
mvs_anonymous99.28 13999.39 10198.94 29199.19 32397.81 32699.02 22599.55 21599.78 6899.85 7399.80 8398.24 20199.86 22299.57 5699.50 29499.15 295
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14199.61 17599.87 4199.74 12299.76 11198.69 13999.87 20398.20 19899.80 19399.75 69
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7399.78 9299.71 8099.90 4999.69 15198.85 11899.90 15797.25 28599.78 20399.15 295
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26898.94 24499.91 3397.97 30999.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19299.65 15798.99 20199.64 15599.72 13099.39 5099.86 22298.23 19599.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9599.70 13199.81 6199.69 13999.58 22197.66 24999.86 22299.17 11699.44 30199.67 95
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25599.86 4999.68 9099.65 15499.88 4297.67 24599.87 20399.03 13399.86 15399.76 66
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11299.78 9299.53 12099.67 14899.78 10199.19 7799.86 22297.32 27499.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9099.69 13798.99 20199.75 11499.71 13898.79 12599.93 9498.46 17899.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 20999.23 16699.35 24699.80 8399.17 7999.95 6398.21 19799.84 16299.59 159
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27599.47 12899.76 10899.78 10198.13 21299.86 22298.70 16699.68 24399.49 210
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29799.59 18698.23 29598.47 30199.66 14899.61 10899.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 367
UGNet99.38 11799.34 11199.49 18198.90 35998.90 24999.70 3599.35 28499.86 4598.57 34499.81 7998.50 17299.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9899.81 7699.82 5899.71 13299.72 13096.60 28599.98 2099.75 3999.23 33199.82 46
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 28999.81 7699.61 10899.48 21699.41 27298.47 17399.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14399.74 11099.23 16699.72 12799.53 24497.63 25199.88 18999.11 12799.84 16299.48 214
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 11999.49 24799.17 17999.21 27799.67 16698.78 12799.66 36499.09 12999.66 25299.10 306
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24399.46 13199.88 6199.36 28897.54 25299.87 20398.97 14099.87 14599.63 127
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13499.62 16899.83 6697.21 26699.90 15798.96 14299.90 11599.53 187
SD-MVS99.01 20999.30 12398.15 34399.50 23499.40 17198.94 24499.61 17599.22 17199.75 11499.82 7399.54 4195.51 40797.48 26599.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8599.70 13198.35 28399.51 21199.50 25199.31 6299.88 18998.18 20299.84 16299.69 83
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32599.65 10099.89 5399.90 2996.20 30199.94 7799.42 7799.92 10599.67 95
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26799.88 4498.66 24699.96 2399.79 9397.45 25599.93 9499.34 8899.99 1699.78 56
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32899.53 23099.36 14899.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24299.86 4998.85 22299.81 8899.73 12398.40 18699.92 11698.36 18399.83 17099.17 291
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10699.85 5498.79 23199.41 23699.60 21398.92 11099.92 11698.02 21199.92 10599.43 234
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12699.74 11099.18 17499.69 13999.75 11698.41 18299.84 25597.85 23199.70 23499.10 306
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16699.54 22199.13 18899.82 8199.63 18998.91 11299.92 11697.85 23199.70 23499.58 164
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10299.57 20499.44 13499.70 13699.74 11997.21 26699.87 20399.03 13399.94 9499.44 228
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26298.87 21999.57 18599.82 7398.06 21799.87 20398.69 16899.73 22399.15 295
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25399.89 4098.38 27699.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23899.60 18799.43 13999.70 13699.36 28897.70 24199.88 18999.20 11099.87 14599.59 159
DVP-MVS++99.38 11799.25 13699.77 5799.03 34999.77 5499.74 2499.61 17599.18 17499.76 10899.61 20599.00 10099.92 11697.72 24299.60 26999.62 138
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 23999.61 17599.43 13999.67 14899.28 30597.85 23399.95 6399.17 11699.81 18899.65 112
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14899.35 28498.77 23599.57 18599.70 14599.27 6999.88 18997.71 24499.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24399.44 13499.12 29099.78 10198.77 12999.94 7797.87 22899.72 22999.62 138
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25599.53 23099.38 14599.67 14899.36 28897.67 24599.95 6399.17 11699.81 18899.63 127
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12499.53 23099.27 15899.42 23099.63 18998.21 20699.95 6397.83 23599.79 19899.65 112
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26099.41 26598.55 25799.68 14299.69 15198.13 21299.87 20398.82 15399.98 4199.24 273
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19699.79 8699.48 12498.93 30698.55 37999.40 4999.93 9498.51 17699.52 29098.28 379
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18699.31 29399.16 18299.62 16899.61 20598.35 19099.91 13997.88 22599.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 21199.16 14598.51 32799.75 12895.90 37198.07 33599.84 6099.84 5399.89 5399.73 12396.01 30499.99 799.33 91100.00 199.63 127
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14699.61 17599.19 17399.57 18599.64 17898.76 13099.90 15797.29 27699.62 25999.56 171
IterMVS98.97 21599.16 14598.42 33199.74 13495.64 37498.06 33799.83 6299.83 5699.85 7399.74 11996.10 30399.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12199.97 1898.93 21199.91 4499.79 9398.68 14099.93 9496.80 30899.56 27699.30 265
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17199.60 18798.55 25799.57 18599.67 16699.03 9999.94 7797.01 29599.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14399.68 14099.54 11899.40 24199.56 23399.07 9499.82 27996.01 34799.96 7099.11 304
RE-MVS-def99.13 15199.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.57 15797.27 27999.61 26699.54 182
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28599.48 24898.50 26499.52 20699.63 18999.14 8499.76 31897.89 22499.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24199.54 22199.46 13199.61 17499.70 14596.31 29799.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 32099.13 15192.93 38799.69 15599.49 14599.52 8599.77 9597.97 30999.96 2399.79 9399.84 1299.94 7795.85 35699.82 17979.36 403
ppachtmachnet_test98.89 23099.12 15598.20 34299.66 16995.24 38097.63 36699.68 14099.08 19399.78 10199.62 19698.65 14799.88 18998.02 21199.96 7099.48 214
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21599.82 6799.50 12298.97 30299.05 33998.98 10499.98 2098.20 19899.24 32998.62 359
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23599.40 27299.08 19399.58 18299.64 17898.90 11599.83 27097.44 26799.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14899.62 16899.16 18299.52 20699.64 17898.41 18299.91 13997.27 27999.61 26699.54 182
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24299.53 23098.27 29299.53 20499.73 12398.75 13299.87 20397.70 24799.83 17099.68 89
xiu_mvs_v2_base99.02 20599.11 15898.77 31599.37 27698.09 30898.13 32799.51 23999.47 12899.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 381
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29199.73 11498.82 22699.72 12799.62 19696.56 28699.82 27999.32 9399.95 8399.56 171
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32999.47 26298.47 17399.88 18997.62 25599.73 22399.67 95
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9098.32 36899.80 6499.56 19299.69 15196.99 27699.85 24098.99 13699.73 22399.50 205
jason99.16 17999.11 15899.32 23399.75 12898.44 28398.26 31799.39 27598.70 24399.74 12299.30 30198.54 16299.97 3398.48 17799.82 17999.55 174
jason: jason.
LS3D99.24 14999.11 15899.61 14798.38 39299.79 4699.57 7899.68 14099.61 10899.15 28599.71 13898.70 13899.91 13997.54 26199.68 24399.13 303
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25599.72 12398.36 27899.60 17799.71 13898.92 11099.91 13997.08 29399.84 16299.40 239
our_test_398.85 23499.09 16798.13 34499.66 16994.90 38497.72 36299.58 20299.07 19599.64 15599.62 19698.19 20899.93 9498.41 18099.95 8399.55 174
MSLP-MVS++99.05 19999.09 16798.91 29799.21 31898.36 29198.82 25999.47 25198.85 22298.90 31299.56 23398.78 12799.09 39998.57 17399.68 24399.26 270
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21199.55 21598.63 24999.31 25899.68 16298.19 20899.78 30898.18 20299.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13199.59 19398.36 27899.36 24599.37 28498.80 12499.91 13997.43 26899.75 21199.68 89
PS-MVSNAJ99.00 21199.08 16998.76 31699.37 27698.10 30798.00 34399.51 23999.47 12899.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 385
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9099.65 15798.07 30399.52 20699.69 15198.57 15799.92 11697.18 29099.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19699.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32499.35 24699.25 31299.23 7399.92 11697.21 28899.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34199.25 30798.78 23399.58 18299.44 26998.24 20199.76 31898.74 16399.93 10199.22 278
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12499.31 29399.67 9499.47 21899.57 22996.48 28999.84 25599.15 11999.30 32099.47 218
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13199.59 19398.36 27899.35 24699.38 28298.61 15199.93 9497.43 26899.75 21199.67 95
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35799.74 11098.36 27899.66 15299.68 16299.71 2299.90 15796.84 30799.88 13499.43 234
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21597.79 37999.99 299.48 21699.59 21896.29 29999.95 6399.94 1699.98 4199.88 25
CANet99.11 19099.05 17999.28 24298.83 36698.56 27698.71 27499.41 26599.25 16299.23 27299.22 31997.66 24999.94 7799.19 11199.97 5699.33 256
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13199.59 19398.41 27299.32 25499.36 28898.73 13699.93 9497.29 27699.74 21899.67 95
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 27999.80 8697.83 32598.89 24799.72 12399.29 15499.63 15999.70 14596.47 29099.89 17598.17 20499.82 17999.50 205
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18299.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11299.62 16898.38 27699.06 29899.27 30798.79 12599.94 7797.51 26499.82 17999.66 104
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14399.56 20998.19 29799.14 28799.29 30498.84 11999.92 11697.53 26399.80 19399.64 122
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32499.29 29798.18 29899.63 15999.62 19699.18 7899.68 35598.20 19899.74 21899.30 265
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21895.32 39799.99 299.68 14299.57 22998.30 19699.97 3399.94 1699.98 4199.88 25
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35599.73 11498.68 24499.31 25899.48 25899.09 8999.66 36497.70 24799.77 20799.29 268
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10499.82 6798.33 28899.50 21399.78 10197.90 22899.65 37096.78 30999.83 17099.44 228
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35399.71 12698.76 23899.08 29499.47 26299.17 7999.54 38597.85 23199.76 20999.54 182
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38499.47 25198.72 24099.66 15299.70 14599.29 6499.63 37398.07 21099.81 18899.62 138
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12199.79 8698.41 27298.84 31998.89 36398.75 13299.84 25598.15 20699.51 29198.89 343
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18299.72 12397.99 30799.42 23099.60 21398.81 12099.93 9496.91 30199.74 21899.66 104
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31498.58 28599.82 6797.62 32899.34 24999.71 13898.52 16999.77 31697.98 21699.97 5699.52 198
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17199.60 18798.85 22299.47 21899.58 22198.38 18799.92 11696.92 30099.54 28599.57 169
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19299.52 23597.40 34099.57 18599.64 17898.93 10999.83 27097.61 25799.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11299.54 22198.34 28799.01 30099.50 25198.53 16699.93 9497.18 29099.78 20399.66 104
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31099.48 12499.56 19299.77 10894.89 31499.93 9498.72 16599.89 12499.63 127
YYNet198.95 22298.99 20098.84 30899.64 17397.14 34998.22 32099.32 28998.92 21399.59 18099.66 17197.40 25799.83 27098.27 19299.90 11599.55 174
MDA-MVSNet_test_wron98.95 22298.99 20098.85 30699.64 17397.16 34798.23 31999.33 28798.93 21199.56 19299.66 17197.39 25999.83 27098.29 18899.88 13499.55 174
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11699.84 6199.64 11098.25 31899.73 11498.39 27599.63 15999.43 27099.70 2499.90 15797.34 27398.64 36599.44 228
MSDG99.08 19498.98 20399.37 21999.60 18299.13 22397.54 37099.74 11098.84 22599.53 20499.55 24099.10 8799.79 30597.07 29499.86 15399.18 289
Effi-MVS+99.06 19698.97 20499.34 22699.31 29798.98 23898.31 31399.91 3398.81 22898.79 32698.94 35899.14 8499.84 25598.79 15798.74 35999.20 284
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33898.19 29998.76 26999.33 28798.49 26699.44 22499.58 22198.21 20699.69 34398.20 19899.62 25999.39 241
GST-MVS99.16 17998.96 20699.75 7499.73 13799.73 7699.20 16699.55 21598.22 29499.32 25499.35 29398.65 14799.91 13996.86 30499.74 21899.62 138
PHI-MVS99.11 19098.95 20799.59 15299.13 33199.59 12899.17 17699.65 15797.88 31799.25 26899.46 26598.97 10699.80 30297.26 28199.82 17999.37 246
SF-MVS99.10 19398.93 20899.62 14499.58 19199.51 14399.13 19299.65 15797.97 30999.42 23099.61 20598.86 11799.87 20396.45 33199.68 24399.49 210
WR-MVS99.11 19098.93 20899.66 11699.30 30199.42 16598.42 30699.37 28099.04 19899.57 18599.20 32396.89 27899.86 22298.66 17099.87 14599.70 79
USDC98.96 21998.93 20899.05 28199.54 21597.99 31497.07 39099.80 8098.21 29599.75 11499.77 10898.43 17999.64 37297.90 22399.88 13499.51 200
TinyColmap98.97 21598.93 20899.07 27999.46 25498.19 29997.75 36199.75 10598.79 23199.54 19999.70 14598.97 10699.62 37496.63 32099.83 17099.41 238
DPE-MVScopyleft99.14 18398.92 21299.82 3799.57 20199.77 5498.74 27099.60 18798.55 25799.76 10899.69 15198.23 20599.92 11696.39 33399.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 19598.92 21299.52 17698.89 36299.78 4999.15 18499.66 14899.34 14998.92 30999.24 31797.69 24399.98 2098.11 20899.28 32398.81 350
MP-MVS-pluss99.14 18398.92 21299.80 4599.83 6599.83 2998.61 27899.63 16596.84 36099.44 22499.58 22198.81 12099.91 13997.70 24799.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 20998.92 21299.27 24599.71 14399.28 19698.59 28399.77 9598.32 28999.39 24299.41 27298.62 14999.84 25596.62 32199.84 16298.69 357
bld_raw_dy_0_6498.97 21598.90 21699.17 26299.07 34399.24 20799.24 15599.93 2999.23 16699.87 6999.03 34595.48 31099.81 29498.29 18899.99 1698.47 372
new_pmnet98.88 23198.89 21798.84 30899.70 15197.62 33398.15 32499.50 24397.98 30899.62 16899.54 24298.15 21199.94 7797.55 26099.84 16298.95 335
CVMVSNet98.61 25398.88 21897.80 35599.58 19193.60 39299.26 14899.64 16399.66 9899.72 12799.67 16693.26 33399.93 9499.30 9799.81 18899.87 30
Fast-Effi-MVS+99.02 20598.87 21999.46 18999.38 27499.50 14499.04 21899.79 8697.17 35198.62 33998.74 37199.34 6099.95 6398.32 18799.41 30698.92 339
lupinMVS98.96 21998.87 21999.24 25399.57 20198.40 28698.12 32899.18 32198.28 29199.63 15999.13 32798.02 22099.97 3398.22 19699.69 23899.35 252
CANet_DTU98.91 22598.85 22199.09 27598.79 37298.13 30398.18 32199.31 29399.48 12498.86 31799.51 24896.56 28699.95 6399.05 13299.95 8399.19 287
IS-MVSNet99.03 20398.85 22199.55 16899.80 8699.25 20399.73 2799.15 32499.37 14699.61 17499.71 13894.73 31899.81 29497.70 24799.88 13499.58 164
1112_ss99.05 19998.84 22399.67 10999.66 16999.29 19498.52 29799.82 6797.65 32799.43 22899.16 32596.42 29299.91 13999.07 13199.84 16299.80 47
ACMP97.51 1499.05 19998.84 22399.67 10999.78 10599.55 13898.88 24899.66 14897.11 35599.47 21899.60 21399.07 9499.89 17596.18 34299.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 19698.83 22599.76 6499.76 11799.71 8399.32 12699.50 24398.35 28398.97 30299.48 25898.37 18899.92 11695.95 35399.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 21598.82 22699.42 20199.71 14398.81 25599.62 6298.68 34799.81 6199.38 24399.80 8394.25 32299.85 24098.79 15799.32 31899.59 159
MCST-MVS99.02 20598.81 22799.65 12199.58 19199.49 14598.58 28599.07 32998.40 27499.04 29999.25 31298.51 17199.80 30297.31 27599.51 29199.65 112
PMVScopyleft92.94 2198.82 23698.81 22798.85 30699.84 6197.99 31499.20 16699.47 25199.71 8099.42 23099.82 7398.09 21499.47 39293.88 38899.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 21498.80 22999.56 16599.25 31199.43 16298.54 29499.27 30198.58 25598.80 32499.43 27098.53 16699.70 33797.22 28799.59 27399.54 182
MSP-MVS99.04 20298.79 23099.81 4099.78 10599.73 7699.35 12099.57 20498.54 26099.54 19998.99 34996.81 28099.93 9496.97 29899.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 22798.77 23199.27 24599.48 24498.44 28398.72 27299.32 28997.94 31399.37 24499.35 29396.31 29799.91 13998.85 15099.63 25899.47 218
Test_1112_low_res98.95 22298.73 23299.63 13599.68 16399.15 22298.09 33299.80 8097.14 35399.46 22299.40 27696.11 30299.89 17599.01 13599.84 16299.84 36
OMC-MVS98.90 22798.72 23399.44 19599.39 27199.42 16598.58 28599.64 16397.31 34599.44 22499.62 19698.59 15499.69 34396.17 34399.79 19899.22 278
eth_miper_zixun_eth98.68 25098.71 23498.60 32399.10 33996.84 35697.52 37499.54 22198.94 20899.58 18299.48 25896.25 30099.76 31898.01 21499.93 10199.21 280
c3_l98.72 24698.71 23498.72 31899.12 33397.22 34697.68 36599.56 20998.90 21599.54 19999.48 25896.37 29699.73 32897.88 22599.88 13499.21 280
HPM-MVS++copyleft98.96 21998.70 23699.74 7999.52 22699.71 8398.86 25099.19 32098.47 26898.59 34299.06 33898.08 21699.91 13996.94 29999.60 26999.60 152
HQP_MVS98.90 22798.68 23799.55 16899.58 19199.24 20798.80 26399.54 22198.94 20899.14 28799.25 31297.24 26499.82 27995.84 35799.78 20399.60 152
9.1498.64 23899.45 25898.81 26099.60 18797.52 33499.28 26599.56 23398.53 16699.83 27095.36 36899.64 256
HyFIR lowres test98.91 22598.64 23899.73 8899.85 5899.47 14798.07 33599.83 6298.64 24899.89 5399.60 21392.57 340100.00 199.33 9199.97 5699.72 73
FMVSNet398.80 23898.63 24099.32 23399.13 33198.72 26399.10 20399.48 24899.23 16699.62 16899.64 17892.57 34099.86 22298.96 14299.90 11599.39 241
miper_lstm_enhance98.65 25298.60 24198.82 31399.20 32197.33 34397.78 36099.66 14899.01 20099.59 18099.50 25194.62 31999.85 24098.12 20799.90 11599.26 270
K. test v398.87 23298.60 24199.69 10499.93 2599.46 15199.74 2494.97 39899.78 6899.88 6199.88 4293.66 33099.97 3399.61 4999.95 8399.64 122
miper_ehance_all_eth98.59 25898.59 24398.59 32498.98 35597.07 35097.49 37599.52 23598.50 26499.52 20699.37 28496.41 29499.71 33497.86 22999.62 25999.00 331
APD-MVScopyleft98.87 23298.59 24399.71 9999.50 23499.62 11799.01 22799.57 20496.80 36299.54 19999.63 18998.29 19799.91 13995.24 36999.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 24898.59 24399.02 28399.54 21597.99 31497.58 36999.82 6795.70 37699.34 24998.98 35298.52 16999.77 31697.98 21699.83 17099.30 265
Vis-MVSNet (Re-imp)98.77 24098.58 24699.34 22699.78 10598.88 25199.61 6799.56 20999.11 19299.24 27199.56 23393.00 33899.78 30897.43 26899.89 12499.35 252
NCCC98.82 23698.57 24799.58 15699.21 31899.31 19198.61 27899.25 30798.65 24798.43 35199.26 31097.86 23199.81 29496.55 32299.27 32699.61 148
UnsupCasMVSNet_eth98.83 23598.57 24799.59 15299.68 16399.45 15698.99 23599.67 14499.48 12499.55 19799.36 28894.92 31399.86 22298.95 14696.57 39899.45 223
CLD-MVS98.76 24198.57 24799.33 22999.57 20198.97 24097.53 37299.55 21596.41 36599.27 26699.13 32799.07 9499.78 30896.73 31299.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test98.71 24798.56 25099.15 26599.22 31698.66 26897.14 38799.51 23998.09 30299.54 19999.27 30796.87 27999.74 32598.43 17998.96 34599.03 325
Patchmtry98.78 23998.54 25199.49 18198.89 36299.19 21899.32 12699.67 14499.65 10099.72 12799.79 9391.87 34899.95 6398.00 21599.97 5699.33 256
RPMNet98.60 25598.53 25298.83 31099.05 34698.12 30499.30 13499.62 16899.86 4599.16 28399.74 11992.53 34299.92 11698.75 16298.77 35598.44 374
N_pmnet98.73 24598.53 25299.35 22599.72 14098.67 26598.34 31094.65 39998.35 28399.79 9799.68 16298.03 21999.93 9498.28 19199.92 10599.44 228
dmvs_re98.69 24998.48 25499.31 23699.55 21399.42 16599.54 8398.38 36599.32 15298.72 33298.71 37296.76 28299.21 39796.01 34799.35 31499.31 263
PatchMatch-RL98.68 25098.47 25599.30 23999.44 25999.28 19698.14 32699.54 22197.12 35499.11 29199.25 31297.80 23699.70 33796.51 32599.30 32098.93 337
Anonymous20240521198.75 24298.46 25699.63 13599.34 29099.66 10199.47 9897.65 38099.28 15799.56 19299.50 25193.15 33499.84 25598.62 17199.58 27499.40 239
F-COLMAP98.74 24398.45 25799.62 14499.57 20199.47 14798.84 25399.65 15796.31 36898.93 30699.19 32497.68 24499.87 20396.52 32499.37 31199.53 187
CPTT-MVS98.74 24398.44 25899.64 12899.61 18099.38 17599.18 17199.55 21596.49 36499.27 26699.37 28497.11 27299.92 11695.74 36099.67 24999.62 138
PVSNet97.47 1598.42 27898.44 25898.35 33499.46 25496.26 36596.70 39599.34 28697.68 32699.00 30199.13 32797.40 25799.72 33097.59 25999.68 24399.08 316
DIV-MVS_self_test98.54 26398.42 26098.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.87 32599.78 30897.97 21899.89 12499.18 289
cl____98.54 26398.41 26198.92 29599.03 34997.80 32897.46 37699.59 19398.90 21599.60 17799.46 26593.85 32699.78 30897.97 21899.89 12499.17 291
CHOSEN 280x42098.41 27998.41 26198.40 33299.34 29095.89 37296.94 39299.44 25998.80 23099.25 26899.52 24693.51 33299.98 2098.94 14799.98 4199.32 259
API-MVS98.38 28298.39 26398.35 33498.83 36699.26 20099.14 18699.18 32198.59 25498.66 33798.78 36998.61 15199.57 38294.14 38399.56 27696.21 400
MG-MVS98.52 26698.39 26398.94 29199.15 32897.39 34298.18 32199.21 31798.89 21899.23 27299.63 18997.37 26099.74 32594.22 38299.61 26699.69 83
WTY-MVS98.59 25898.37 26599.26 24899.43 26398.40 28698.74 27099.13 32798.10 30099.21 27799.24 31794.82 31599.90 15797.86 22998.77 35599.49 210
SCA98.11 29998.36 26697.36 36699.20 32192.99 39498.17 32398.49 35998.24 29399.10 29399.57 22996.01 30499.94 7796.86 30499.62 25999.14 300
Patchmatch-RL test98.60 25598.36 26699.33 22999.77 11399.07 23398.27 31599.87 4698.91 21499.74 12299.72 13090.57 36599.79 30598.55 17499.85 15799.11 304
AdaColmapbinary98.60 25598.35 26899.38 21699.12 33399.22 21198.67 27599.42 26497.84 32198.81 32299.27 30797.32 26299.81 29495.14 37199.53 28799.10 306
h-mvs3398.61 25398.34 26999.44 19599.60 18298.67 26599.27 14699.44 25999.68 9099.32 25499.49 25592.50 343100.00 199.24 10496.51 39999.65 112
CNLPA98.57 26098.34 26999.28 24299.18 32599.10 23098.34 31099.41 26598.48 26798.52 34698.98 35297.05 27499.78 30895.59 36299.50 29498.96 333
iter_conf05_1198.54 26398.33 27199.18 26099.07 34399.20 21697.94 35097.59 38199.17 17999.30 26398.92 36294.79 31699.86 22298.29 18899.89 12498.47 372
FA-MVS(test-final)98.52 26698.32 27299.10 27499.48 24498.67 26599.77 1598.60 35497.35 34399.63 15999.80 8393.07 33699.84 25597.92 22199.30 32098.78 353
PatchT98.45 27698.32 27298.83 31098.94 35798.29 29399.24 15598.82 34199.84 5399.08 29499.76 11191.37 35199.94 7798.82 15399.00 34398.26 380
hse-mvs298.52 26698.30 27499.16 26399.29 30398.60 27598.77 26899.02 33399.68 9099.32 25499.04 34192.50 34399.85 24099.24 10497.87 39099.03 325
PMMVS98.49 27198.29 27599.11 27298.96 35698.42 28597.54 37099.32 28997.53 33398.47 34998.15 38997.88 23099.82 27997.46 26699.24 32999.09 310
UnsupCasMVSNet_bld98.55 26298.27 27699.40 21099.56 21299.37 17897.97 34899.68 14097.49 33699.08 29499.35 29395.41 31299.82 27997.70 24798.19 38099.01 330
iter_conf0598.46 27498.23 27799.15 26599.04 34897.99 31499.10 20399.61 17599.79 6699.76 10899.58 22187.88 37899.92 11699.31 9699.97 5699.53 187
DP-MVS Recon98.50 26998.23 27799.31 23699.49 23999.46 15198.56 29099.63 16594.86 38798.85 31899.37 28497.81 23599.59 38096.08 34499.44 30198.88 344
MVSTER98.47 27398.22 27999.24 25399.06 34598.35 29299.08 21199.46 25499.27 15899.75 11499.66 17188.61 37699.85 24099.14 12599.92 10599.52 198
MVS-HIRNet97.86 30798.22 27996.76 37599.28 30691.53 40298.38 30892.60 40599.13 18899.31 25899.96 1297.18 27099.68 35598.34 18599.83 17099.07 321
CDPH-MVS98.56 26198.20 28199.61 14799.50 23499.46 15198.32 31299.41 26595.22 38199.21 27799.10 33598.34 19299.82 27995.09 37399.66 25299.56 171
CR-MVSNet98.35 28698.20 28198.83 31099.05 34698.12 30499.30 13499.67 14497.39 34199.16 28399.79 9391.87 34899.91 13998.78 16098.77 35598.44 374
MIMVSNet98.43 27798.20 28199.11 27299.53 22198.38 29099.58 7598.61 35298.96 20599.33 25199.76 11190.92 35899.81 29497.38 27199.76 20999.15 295
LFMVS98.46 27498.19 28499.26 24899.24 31398.52 27999.62 6296.94 38999.87 4199.31 25899.58 22191.04 35699.81 29498.68 16999.42 30599.45 223
CMPMVSbinary77.52 2398.50 26998.19 28499.41 20898.33 39499.56 13599.01 22799.59 19395.44 37899.57 18599.80 8395.64 30799.46 39496.47 32999.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test111197.74 31298.16 28696.49 38099.60 18289.86 41099.71 3491.21 40699.89 3599.88 6199.87 4793.73 32999.90 15799.56 5799.99 1699.70 79
WB-MVSnew98.34 28898.14 28798.96 28898.14 40197.90 32398.27 31597.26 38898.63 24998.80 32498.00 39297.77 23899.90 15797.37 27298.98 34499.09 310
BH-RMVSNet98.41 27998.14 28799.21 25599.21 31898.47 28098.60 28098.26 36998.35 28398.93 30699.31 29997.20 26999.66 36494.32 38099.10 33699.51 200
114514_t98.49 27198.11 28999.64 12899.73 13799.58 13299.24 15599.76 10089.94 39899.42 23099.56 23397.76 24099.86 22297.74 24199.82 17999.47 218
BH-untuned98.22 29598.09 29098.58 32699.38 27497.24 34598.55 29198.98 33697.81 32299.20 28298.76 37097.01 27599.65 37094.83 37498.33 37398.86 346
tpmrst97.73 31398.07 29196.73 37798.71 38192.00 39899.10 20398.86 33898.52 26298.92 30999.54 24291.90 34699.82 27998.02 21199.03 34198.37 376
ECVR-MVScopyleft97.73 31398.04 29296.78 37499.59 18690.81 40699.72 3090.43 40899.89 3599.86 7199.86 5493.60 33199.89 17599.46 6999.99 1699.65 112
PAPM_NR98.36 28398.04 29299.33 22999.48 24498.93 24698.79 26699.28 30097.54 33298.56 34598.57 37797.12 27199.69 34394.09 38498.90 35099.38 243
HQP-MVS98.36 28398.02 29499.39 21399.31 29798.94 24397.98 34599.37 28097.45 33798.15 36098.83 36696.67 28399.70 33794.73 37599.67 24999.53 187
QAPM98.40 28197.99 29599.65 12199.39 27199.47 14799.67 4999.52 23591.70 39598.78 32899.80 8398.55 16099.95 6394.71 37799.75 21199.53 187
PLCcopyleft97.35 1698.36 28397.99 29599.48 18599.32 29699.24 20798.50 29999.51 23995.19 38398.58 34398.96 35696.95 27799.83 27095.63 36199.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 30097.98 29798.48 32999.27 30896.48 36099.40 10899.07 32998.81 22899.23 27299.57 22990.11 36999.87 20396.69 31399.64 25699.09 310
alignmvs98.28 28997.96 29899.25 25199.12 33398.93 24699.03 22298.42 36299.64 10298.72 33297.85 39490.86 36199.62 37498.88 14999.13 33399.19 287
test_yl98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
DCV-MVSNet98.25 29197.95 29999.13 27099.17 32698.47 28099.00 23098.67 34998.97 20399.22 27599.02 34791.31 35299.69 34397.26 28198.93 34699.24 273
train_agg98.35 28697.95 29999.57 16299.35 28199.35 18598.11 33099.41 26594.90 38597.92 37098.99 34998.02 22099.85 24095.38 36799.44 30199.50 205
HY-MVS98.23 998.21 29697.95 29998.99 28599.03 34998.24 29499.61 6798.72 34596.81 36198.73 33199.51 24894.06 32399.86 22296.91 30198.20 37898.86 346
miper_enhance_ethall98.03 30397.94 30398.32 33798.27 39596.43 36296.95 39199.41 26596.37 36799.43 22898.96 35694.74 31799.69 34397.71 24499.62 25998.83 349
DPM-MVS98.28 28997.94 30399.32 23399.36 27999.11 22597.31 38298.78 34396.88 35898.84 31999.11 33497.77 23899.61 37894.03 38699.36 31299.23 276
JIA-IIPM98.06 30297.92 30598.50 32898.59 38597.02 35198.80 26398.51 35799.88 4097.89 37299.87 4791.89 34799.90 15798.16 20597.68 39298.59 361
MAR-MVS98.24 29397.92 30599.19 25898.78 37499.65 10799.17 17699.14 32595.36 37998.04 36798.81 36897.47 25499.72 33095.47 36599.06 33798.21 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 30597.90 30798.27 34198.90 35997.45 33999.30 13499.06 33194.98 38497.21 38699.12 33198.43 17999.67 36095.58 36398.56 36897.71 392
OpenMVScopyleft98.12 1098.23 29497.89 30899.26 24899.19 32399.26 20099.65 5899.69 13791.33 39698.14 36499.77 10898.28 19899.96 5495.41 36699.55 28098.58 363
Syy-MVS98.17 29797.85 30999.15 26598.50 38998.79 25898.60 28099.21 31797.89 31596.76 39196.37 41095.47 31199.57 38299.10 12898.73 36199.09 310
pmmvs398.08 30197.80 31098.91 29799.41 26997.69 33297.87 35799.66 14895.87 37299.50 21399.51 24890.35 36799.97 3398.55 17499.47 29899.08 316
PatchmatchNetpermissive97.65 31797.80 31097.18 37198.82 36992.49 39699.17 17698.39 36498.12 29998.79 32699.58 22190.71 36399.89 17597.23 28699.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 31897.79 31297.11 37396.67 40692.31 39798.51 29898.04 37299.24 16495.77 40099.47 26293.78 32899.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 29897.77 31399.18 26094.57 40997.99 31499.24 15597.96 37499.74 7397.29 38499.62 19693.13 33599.97 3398.59 17299.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 31498.70 38290.83 40599.15 18498.02 37398.51 26398.82 32199.61 20590.98 35799.66 36496.89 30398.92 348
tpmvs97.39 32597.69 31596.52 37998.41 39191.76 39999.30 13498.94 33797.74 32397.85 37599.55 24092.40 34599.73 32896.25 33998.73 36198.06 388
GA-MVS97.99 30697.68 31698.93 29499.52 22698.04 31297.19 38699.05 33298.32 28998.81 32298.97 35489.89 37299.41 39598.33 18699.05 33999.34 255
ADS-MVSNet97.72 31697.67 31797.86 35399.14 32994.65 38599.22 16398.86 33896.97 35698.25 35699.64 17890.90 35999.84 25596.51 32599.56 27699.08 316
ADS-MVSNet297.78 31197.66 31898.12 34599.14 32995.36 37799.22 16398.75 34496.97 35698.25 35699.64 17890.90 35999.94 7796.51 32599.56 27699.08 316
TAPA-MVS97.92 1398.03 30397.55 31999.46 18999.47 25099.44 15898.50 29999.62 16886.79 39999.07 29799.26 31098.26 20099.62 37497.28 27899.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 33297.43 32096.27 38298.79 37291.62 40195.54 39999.01 33599.44 13498.88 31399.12 33192.78 33999.68 35594.30 38199.03 34197.50 393
FE-MVS97.85 30897.42 32199.15 26599.44 25998.75 26199.77 1598.20 37195.85 37399.33 25199.80 8388.86 37599.88 18996.40 33299.12 33498.81 350
AUN-MVS97.82 30997.38 32299.14 26999.27 30898.53 27798.72 27299.02 33398.10 30097.18 38799.03 34589.26 37499.85 24097.94 22097.91 38899.03 325
baseline197.73 31397.33 32398.96 28899.30 30197.73 33099.40 10898.42 36299.33 15199.46 22299.21 32191.18 35499.82 27998.35 18491.26 40499.32 259
cl2297.56 32197.28 32498.40 33298.37 39396.75 35797.24 38599.37 28097.31 34599.41 23699.22 31987.30 37999.37 39697.70 24799.62 25999.08 316
EMVS96.96 33597.28 32495.99 38598.76 37791.03 40495.26 40098.61 35299.34 14998.92 30998.88 36493.79 32799.66 36492.87 38999.05 33997.30 397
FMVSNet597.80 31097.25 32699.42 20198.83 36698.97 24099.38 11299.80 8098.87 21999.25 26899.69 15180.60 39799.91 13998.96 14299.90 11599.38 243
tttt051797.62 31897.20 32798.90 30399.76 11797.40 34199.48 9594.36 40099.06 19799.70 13699.49 25584.55 39299.94 7798.73 16499.65 25499.36 249
TR-MVS97.44 32497.15 32898.32 33798.53 38797.46 33898.47 30197.91 37696.85 35998.21 35998.51 38196.42 29299.51 39092.16 39197.29 39497.98 389
dp96.86 33697.07 32996.24 38398.68 38390.30 40999.19 17098.38 36597.35 34398.23 35899.59 21887.23 38099.82 27996.27 33898.73 36198.59 361
PAPR97.56 32197.07 32999.04 28298.80 37098.11 30697.63 36699.25 30794.56 39098.02 36898.25 38797.43 25699.68 35590.90 39598.74 35999.33 256
BH-w/o97.20 32997.01 33197.76 35699.08 34295.69 37398.03 34098.52 35695.76 37597.96 36998.02 39095.62 30899.47 39292.82 39097.25 39598.12 387
tpm cat196.78 33896.98 33296.16 38498.85 36590.59 40899.08 21199.32 28992.37 39397.73 38199.46 26591.15 35599.69 34396.07 34598.80 35298.21 383
thisisatest053097.45 32396.95 33398.94 29199.68 16397.73 33099.09 20894.19 40298.61 25399.56 19299.30 30184.30 39399.93 9498.27 19299.54 28599.16 293
test-LLR97.15 33096.95 33397.74 35898.18 39895.02 38297.38 37896.10 39198.00 30597.81 37798.58 37590.04 37099.91 13997.69 25398.78 35398.31 377
tpm97.15 33096.95 33397.75 35798.91 35894.24 38799.32 12697.96 37497.71 32598.29 35499.32 29786.72 38799.92 11698.10 20996.24 40199.09 310
test0.0.03 197.37 32696.91 33698.74 31797.72 40297.57 33497.60 36897.36 38798.00 30599.21 27798.02 39090.04 37099.79 30598.37 18295.89 40298.86 346
OpenMVS_ROBcopyleft97.31 1797.36 32796.84 33798.89 30499.29 30399.45 15698.87 24999.48 24886.54 40199.44 22499.74 11997.34 26199.86 22291.61 39299.28 32397.37 396
dmvs_testset97.27 32896.83 33898.59 32499.46 25497.55 33599.25 15496.84 39098.78 23397.24 38597.67 39697.11 27298.97 40186.59 40598.54 36999.27 269
cascas96.99 33396.82 33997.48 36297.57 40595.64 37496.43 39799.56 20991.75 39497.13 38997.61 39895.58 30998.63 40396.68 31499.11 33598.18 386
CostFormer96.71 34196.79 34096.46 38198.90 35990.71 40799.41 10798.68 34794.69 38998.14 36499.34 29686.32 38999.80 30297.60 25898.07 38698.88 344
thisisatest051596.98 33496.42 34198.66 32199.42 26897.47 33797.27 38394.30 40197.24 34799.15 28598.86 36585.01 39099.87 20397.10 29299.39 30898.63 358
EPMVS96.53 34496.32 34297.17 37298.18 39892.97 39599.39 11089.95 40998.21 29598.61 34099.59 21886.69 38899.72 33096.99 29699.23 33198.81 350
baseline296.83 33796.28 34398.46 33099.09 34196.91 35498.83 25593.87 40497.23 34896.23 39998.36 38488.12 37799.90 15796.68 31498.14 38398.57 364
tpm296.35 34896.22 34496.73 37798.88 36491.75 40099.21 16598.51 35793.27 39297.89 37299.21 32184.83 39199.70 33796.04 34698.18 38198.75 356
thres600view796.60 34396.16 34597.93 35099.63 17596.09 36999.18 17197.57 38298.77 23598.72 33297.32 40087.04 38299.72 33088.57 39798.62 36697.98 389
MVEpermissive92.54 2296.66 34296.11 34698.31 33999.68 16397.55 33597.94 35095.60 39699.37 14690.68 40698.70 37396.56 28698.61 40486.94 40499.55 28098.77 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 33896.07 34798.91 29799.26 31097.92 32297.70 36496.05 39497.96 31292.37 40598.43 38387.06 38199.90 15798.27 19297.56 39398.91 340
thres100view90096.39 34796.03 34897.47 36399.63 17595.93 37099.18 17197.57 38298.75 23998.70 33597.31 40187.04 38299.67 36087.62 40098.51 37096.81 398
tfpn200view996.30 35095.89 34997.53 36099.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37096.81 398
thres40096.40 34695.89 34997.92 35199.58 19196.11 36799.00 23097.54 38598.43 26998.52 34696.98 40386.85 38499.67 36087.62 40098.51 37097.98 389
PCF-MVS96.03 1896.73 34095.86 35199.33 22999.44 25999.16 22096.87 39399.44 25986.58 40098.95 30499.40 27694.38 32199.88 18987.93 39999.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 35195.84 35297.41 36598.24 39693.84 39097.38 37895.84 39598.43 26997.81 37798.56 37879.77 39999.89 17597.77 23698.77 35598.52 366
UWE-MVS96.21 35395.78 35397.49 36198.53 38793.83 39198.04 33893.94 40398.96 20598.46 35098.17 38879.86 39899.87 20396.99 29699.06 33798.78 353
test-mter96.23 35295.73 35497.74 35898.18 39895.02 38297.38 37896.10 39197.90 31497.81 37798.58 37579.12 40299.91 13997.69 25398.78 35398.31 377
thres20096.09 35595.68 35597.33 36899.48 24496.22 36698.53 29697.57 38298.06 30498.37 35396.73 40686.84 38699.61 37886.99 40398.57 36796.16 401
testing396.48 34595.63 35699.01 28499.23 31597.81 32698.90 24699.10 32898.72 24097.84 37697.92 39372.44 40999.85 24097.21 28899.33 31699.35 252
FPMVS96.32 34995.50 35798.79 31499.60 18298.17 30298.46 30598.80 34297.16 35296.28 39699.63 18982.19 39499.09 39988.45 39898.89 35199.10 306
tmp_tt95.75 36495.42 35896.76 37589.90 41194.42 38698.86 25097.87 37878.01 40299.30 26399.69 15197.70 24195.89 40699.29 10098.14 38399.95 11
testing1196.05 35795.41 35997.97 34898.78 37495.27 37998.59 28398.23 37098.86 22196.56 39496.91 40575.20 40599.69 34397.26 28198.29 37598.93 337
KD-MVS_2432*160095.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
miper_refine_blended95.89 35995.41 35997.31 36994.96 40793.89 38897.09 38899.22 31497.23 34898.88 31399.04 34179.23 40099.54 38596.24 34096.81 39698.50 370
testing9196.00 35895.32 36298.02 34698.76 37795.39 37698.38 30898.65 35198.82 22696.84 39096.71 40775.06 40699.71 33496.46 33098.23 37798.98 332
PVSNet_095.53 1995.85 36395.31 36397.47 36398.78 37493.48 39395.72 39899.40 27296.18 37097.37 38297.73 39595.73 30699.58 38195.49 36481.40 40599.36 249
ETVMVS96.14 35495.22 36498.89 30498.80 37098.01 31398.66 27698.35 36798.71 24297.18 38796.31 41274.23 40899.75 32296.64 31998.13 38598.90 341
testing9995.86 36295.19 36597.87 35298.76 37795.03 38198.62 27798.44 36198.68 24496.67 39396.66 40874.31 40799.69 34396.51 32598.03 38798.90 341
gg-mvs-nofinetune95.87 36195.17 36697.97 34898.19 39796.95 35299.69 4289.23 41099.89 3596.24 39899.94 1681.19 39599.51 39093.99 38798.20 37897.44 394
X-MVStestdata96.09 35594.87 36799.75 7499.71 14399.71 8399.37 11699.61 17599.29 15498.76 32961.30 41398.47 17399.88 18997.62 25599.73 22399.67 95
myMVS_eth3d95.63 36694.73 36898.34 33698.50 38996.36 36398.60 28099.21 31797.89 31596.76 39196.37 41072.10 41099.57 38294.38 37998.73 36199.09 310
PAPM95.61 36794.71 36998.31 33999.12 33396.63 35896.66 39698.46 36090.77 39796.25 39798.68 37493.01 33799.69 34381.60 40697.86 39198.62 359
MVS95.72 36594.63 37098.99 28598.56 38697.98 32099.30 13498.86 33872.71 40497.30 38399.08 33698.34 19299.74 32589.21 39698.33 37399.26 270
testing22295.60 36894.59 37198.61 32298.66 38497.45 33998.54 29497.90 37798.53 26196.54 39596.47 40970.62 41199.81 29495.91 35598.15 38298.56 365
test250694.73 37094.59 37195.15 38699.59 18685.90 41299.75 2274.01 41299.89 3599.71 13299.86 5479.00 40399.90 15799.52 6399.99 1699.65 112
IB-MVS95.41 2095.30 36994.46 37397.84 35498.76 37795.33 37897.33 38196.07 39396.02 37195.37 40397.41 39976.17 40499.96 5497.54 26195.44 40398.22 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 37192.32 37489.91 38893.49 41070.18 41390.28 40199.56 20961.71 40595.39 40299.52 24693.90 32499.94 7798.76 16198.27 37699.62 138
EGC-MVSNET89.05 37285.52 37599.64 12899.89 3999.78 4999.56 8099.52 23524.19 40649.96 40799.83 6699.15 8199.92 11697.71 24499.85 15799.21 280
testmvs28.94 37433.33 37615.79 39026.03 4129.81 41596.77 39415.67 41311.55 40823.87 40950.74 41619.03 4138.53 40923.21 40833.07 40629.03 405
cdsmvs_eth3d_5k24.88 37533.17 3770.00 3910.00 4140.00 4160.00 40299.62 1680.00 4090.00 41099.13 32799.82 130.00 4100.00 4090.00 4080.00 406
test12329.31 37333.05 37818.08 38925.93 41312.24 41497.53 37210.93 41411.78 40724.21 40850.08 41721.04 4128.60 40823.51 40732.43 40733.39 404
pcd_1.5k_mvsjas16.61 37622.14 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 199.28 660.00 4100.00 4090.00 4080.00 406
test_blank8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
sosnet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
Regformer8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
uanet8.33 37711.11 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 410100.00 10.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re8.26 38511.02 3880.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41099.16 3250.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS96.36 36395.20 370
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
MSC_two_6792asdad99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
PC_three_145297.56 32999.68 14299.41 27299.09 8997.09 40596.66 31699.60 26999.62 138
No_MVS99.74 7999.03 34999.53 14199.23 31199.92 11697.77 23699.69 23899.78 56
test_one_060199.63 17599.76 6199.55 21599.23 16699.31 25899.61 20598.59 154
eth-test20.00 414
eth-test0.00 414
ZD-MVS99.43 26399.61 12399.43 26296.38 36699.11 29199.07 33797.86 23199.92 11694.04 38599.49 296
IU-MVS99.69 15599.77 5499.22 31497.50 33599.69 13997.75 24099.70 23499.77 60
OPU-MVS99.29 24099.12 33399.44 15899.20 16699.40 27699.00 10098.84 40296.54 32399.60 26999.58 164
test_241102_TWO99.54 22199.13 18899.76 10899.63 18998.32 19599.92 11697.85 23199.69 23899.75 69
test_241102_ONE99.69 15599.82 3599.54 22199.12 19199.82 8199.49 25598.91 11299.52 389
save fliter99.53 22199.25 20398.29 31499.38 27999.07 195
test_0728_THIRD99.18 17499.62 16899.61 20598.58 15699.91 13997.72 24299.80 19399.77 60
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18699.61 17599.92 11697.88 22599.72 22999.77 60
test072699.69 15599.80 4499.24 15599.57 20499.16 18299.73 12699.65 17698.35 190
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36299.14 300
sam_mvs90.52 366
ambc99.20 25799.35 28198.53 27799.17 17699.46 25499.67 14899.80 8398.46 17699.70 33797.92 22199.70 23499.38 243
MTGPAbinary99.53 230
test_post199.14 18651.63 41589.54 37399.82 27996.86 304
test_post52.41 41490.25 36899.86 222
patchmatchnet-post99.62 19690.58 36499.94 77
GG-mvs-BLEND97.36 36697.59 40396.87 35599.70 3588.49 41194.64 40497.26 40280.66 39699.12 39891.50 39396.50 40096.08 402
MTMP99.09 20898.59 355
gm-plane-assit97.59 40389.02 41193.47 39198.30 38599.84 25596.38 334
test9_res95.10 37299.44 30199.50 205
TEST999.35 28199.35 18598.11 33099.41 26594.83 38897.92 37098.99 34998.02 22099.85 240
test_899.34 29099.31 19198.08 33499.40 27294.90 38597.87 37498.97 35498.02 22099.84 255
agg_prior294.58 37899.46 30099.50 205
agg_prior99.35 28199.36 18299.39 27597.76 38099.85 240
TestCases99.63 13599.78 10599.64 11099.83 6298.63 24999.63 15999.72 13098.68 14099.75 32296.38 33499.83 17099.51 200
test_prior499.19 21898.00 343
test_prior297.95 34997.87 31898.05 36699.05 33997.90 22895.99 35099.49 296
test_prior99.46 18999.35 28199.22 21199.39 27599.69 34399.48 214
旧先验297.94 35095.33 38098.94 30599.88 18996.75 310
新几何298.04 338
新几何199.52 17699.50 23499.22 21199.26 30495.66 37798.60 34199.28 30597.67 24599.89 17595.95 35399.32 31899.45 223
旧先验199.49 23999.29 19499.26 30499.39 28097.67 24599.36 31299.46 222
无先验98.01 34199.23 31195.83 37499.85 24095.79 35999.44 228
原ACMM297.92 353
原ACMM199.37 21999.47 25098.87 25399.27 30196.74 36398.26 35599.32 29797.93 22799.82 27995.96 35299.38 30999.43 234
test22299.51 22899.08 23297.83 35999.29 29795.21 38298.68 33699.31 29997.28 26399.38 30999.43 234
testdata299.89 17595.99 350
segment_acmp98.37 188
testdata99.42 20199.51 22898.93 24699.30 29696.20 36998.87 31699.40 27698.33 19499.89 17596.29 33799.28 32399.44 228
testdata197.72 36297.86 320
test1299.54 17399.29 30399.33 18899.16 32398.43 35197.54 25299.82 27999.47 29899.48 214
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 264
plane_prior599.54 22199.82 27995.84 35799.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 27899.14 287
plane_prior298.80 26398.94 208
plane_prior199.51 228
plane_prior99.24 20798.42 30697.87 31899.71 232
n20.00 415
nn0.00 415
door-mid99.83 62
lessismore_v099.64 12899.86 5499.38 17590.66 40799.89 5399.83 6694.56 32099.97 3399.56 5799.92 10599.57 169
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 32999.64 15599.69 15199.37 5699.89 17596.66 31699.87 14599.69 83
test1199.29 297
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34597.45 33798.15 360
ACMP_Plane99.31 29797.98 34597.45 33798.15 360
BP-MVS94.73 375
HQP4-MVS98.15 36099.70 33799.53 187
HQP3-MVS99.37 28099.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27099.13 22398.83 366
MDTV_nov1_ep13_2view91.44 40399.14 18697.37 34299.21 27791.78 35096.75 31099.03 325
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 182
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25699.33 25199.53 24498.88 11699.68 35596.01 34799.65 25499.02 329
DeepMVS_CXcopyleft97.98 34799.69 15596.95 35299.26 30475.51 40395.74 40198.28 38696.47 29099.62 37491.23 39497.89 38997.38 395