This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 899.78 6100.00 199.92 1100.00 199.87 9
mvs_tets99.90 299.90 299.90 499.96 499.79 3699.72 1999.88 1699.92 699.98 399.93 1399.94 199.98 799.77 12100.00 199.92 3
jajsoiax99.89 399.89 399.89 799.96 499.78 3999.70 2299.86 2099.89 1199.98 399.90 2199.94 199.98 799.75 13100.00 199.90 4
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 44100.00 199.90 7100.00 199.97 999.61 1799.97 1799.75 13100.00 199.84 14
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 499.96 199.92 699.90 799.97 699.87 3199.81 599.95 4599.54 2699.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.86 699.86 699.83 2199.94 1099.90 499.83 699.91 999.85 2099.94 1199.95 1199.73 899.90 12999.65 1699.97 3099.69 52
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9399.93 499.95 1099.89 2599.71 999.96 3599.51 3099.97 3099.84 14
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4199.68 3199.85 2499.95 399.98 399.92 1699.28 4199.98 799.75 13100.00 199.94 2
test_djsdf99.84 899.81 999.91 299.94 1099.84 1899.77 1199.80 4799.73 4099.97 699.92 1699.77 799.98 799.43 37100.00 199.90 4
v7n99.82 1099.80 1099.88 1199.96 499.84 1899.82 899.82 3799.84 2399.94 1199.91 1999.13 5799.96 3599.83 999.99 1299.83 18
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2299.76 1399.87 1899.73 4099.89 2699.87 3199.63 1499.87 17099.54 2699.92 7499.63 95
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 799.73 1699.85 2499.70 4899.92 1899.93 1399.45 2299.97 1799.36 49100.00 199.85 13
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1299.75 1499.86 2099.70 4899.91 2099.89 2599.60 1999.87 17099.59 2099.74 18499.71 46
UA-Net99.78 1399.76 1499.86 1699.72 10899.71 6599.91 399.95 499.96 299.71 10099.91 1999.15 5399.97 1799.50 32100.00 199.90 4
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8399.69 2899.92 699.67 5699.77 7399.75 8099.61 1799.98 799.35 5099.98 2199.72 43
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2299.83 699.85 2499.80 3299.93 1499.93 1398.54 13399.93 7199.59 2099.98 2199.76 37
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1299.86 599.92 699.69 5199.78 6899.92 1699.37 3199.88 15798.93 11199.95 4999.60 119
v899.68 2399.69 1899.65 10099.80 5699.40 14799.66 3999.76 6699.64 6499.93 1499.85 3798.66 11899.84 22599.88 699.99 1299.71 46
v1099.69 2199.69 1899.66 9599.81 5199.39 14999.66 3999.75 7399.60 7899.92 1899.87 3198.75 10799.86 19099.90 299.99 1299.73 42
XXY-MVS99.71 1899.67 2099.81 2699.89 2199.72 6399.59 5999.82 3799.39 10999.82 5099.84 4299.38 2999.91 10899.38 4699.93 7099.80 24
GeoE99.69 2199.66 2199.78 3799.76 8499.76 4799.60 5899.82 3799.46 9899.75 8099.56 19599.63 1499.95 4599.43 3799.88 10099.62 106
nrg03099.70 1999.66 2199.82 2399.76 8499.84 1899.61 5399.70 9799.93 499.78 6899.68 12499.10 5899.78 27399.45 3599.96 4299.83 18
FC-MVSNet-test99.70 1999.65 2399.86 1699.88 2499.86 1199.72 1999.78 5899.90 799.82 5099.83 4398.45 14899.87 17099.51 3099.97 3099.86 11
DSMNet-mixed99.48 5499.65 2398.95 25899.71 11197.27 30899.50 6899.82 3799.59 8099.41 19899.85 3799.62 16100.00 199.53 2899.89 9299.59 128
FMVSNet199.66 2599.63 2599.73 7099.78 7299.77 4199.68 3199.70 9799.67 5699.82 5099.83 4398.98 7399.90 12999.24 6699.97 3099.53 158
EU-MVSNet99.39 8099.62 2698.72 28599.88 2496.44 32499.56 6499.85 2499.90 799.90 2299.85 3798.09 18399.83 23699.58 2399.95 4999.90 4
VPA-MVSNet99.66 2599.62 2699.79 3499.68 13099.75 5099.62 4799.69 10399.85 2099.80 6099.81 5298.81 9299.91 10899.47 3499.88 10099.70 49
baseline99.63 3199.62 2699.66 9599.80 5699.62 9699.44 7899.80 4799.71 4499.72 9599.69 11399.15 5399.83 23699.32 5699.94 6299.53 158
MIMVSNet199.66 2599.62 2699.80 2999.94 1099.87 899.69 2899.77 6199.78 3599.93 1499.89 2597.94 19599.92 9099.65 1699.98 2199.62 106
casdiffmvs99.63 3199.61 3099.67 8899.79 6699.59 10799.13 16599.85 2499.79 3499.76 7599.72 9399.33 3699.82 24699.21 6999.94 6299.59 128
DTE-MVSNet99.68 2399.61 3099.88 1199.80 5699.87 899.67 3599.71 9399.72 4399.84 4399.78 6698.67 11699.97 1799.30 5999.95 4999.80 24
DeepC-MVS98.90 499.62 3499.61 3099.67 8899.72 10899.44 13599.24 12899.71 9399.27 12499.93 1499.90 2199.70 1199.93 7198.99 9999.99 1299.64 90
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_2432*160099.63 3199.59 3399.76 4699.84 3499.90 499.37 9099.79 5399.83 2699.88 3299.85 3798.42 15199.90 12999.60 1999.73 19199.49 181
PEN-MVS99.66 2599.59 3399.89 799.83 3899.87 899.66 3999.73 8199.70 4899.84 4399.73 8798.56 13099.96 3599.29 6299.94 6299.83 18
Gipumacopyleft99.57 3899.59 3399.49 15999.98 399.71 6599.72 1999.84 3099.81 2999.94 1199.78 6698.91 8299.71 29898.41 14399.95 4999.05 289
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
FIs99.65 3099.58 3699.84 1999.84 3499.85 1299.66 3999.75 7399.86 1699.74 8999.79 6098.27 16899.85 20899.37 4899.93 7099.83 18
v124099.56 4199.58 3699.51 15399.80 5699.00 21599.00 19199.65 12699.15 14799.90 2299.75 8099.09 6099.88 15799.90 299.96 4299.67 65
PS-CasMVS99.66 2599.58 3699.89 799.80 5699.85 1299.66 3999.73 8199.62 6899.84 4399.71 10098.62 12299.96 3599.30 5999.96 4299.86 11
new-patchmatchnet99.35 8999.57 3998.71 28799.82 4496.62 32298.55 25199.75 7399.50 8799.88 3299.87 3199.31 3799.88 15799.43 37100.00 199.62 106
Anonymous2023121199.62 3499.57 3999.76 4699.61 14699.60 10499.81 999.73 8199.82 2899.90 2299.90 2197.97 19499.86 19099.42 4399.96 4299.80 24
v192192099.56 4199.57 3999.55 14399.75 9599.11 20499.05 18299.61 14499.15 14799.88 3299.71 10099.08 6399.87 17099.90 299.97 3099.66 75
v119299.57 3899.57 3999.57 13699.77 8099.22 19099.04 18499.60 15599.18 13899.87 3899.72 9399.08 6399.85 20899.89 599.98 2199.66 75
EG-PatchMatch MVS99.57 3899.56 4399.62 12099.77 8099.33 16599.26 12099.76 6699.32 11899.80 6099.78 6699.29 3999.87 17099.15 8399.91 8399.66 75
CS-MVS99.52 4999.54 4499.47 16599.51 19199.85 1299.62 4799.93 599.75 3899.34 21299.13 29499.39 2499.91 10899.43 3799.75 17598.66 316
v14419299.55 4499.54 4499.58 13199.78 7299.20 19699.11 17199.62 13799.18 13899.89 2699.72 9398.66 11899.87 17099.88 699.97 3099.66 75
V4299.56 4199.54 4499.63 11199.79 6699.46 12899.39 8499.59 16299.24 13099.86 3999.70 10798.55 13199.82 24699.79 1199.95 4999.60 119
test20.0399.55 4499.54 4499.58 13199.79 6699.37 15599.02 18799.89 1399.60 7899.82 5099.62 16098.81 9299.89 14399.43 3799.86 11699.47 191
ACMH98.42 699.59 3799.54 4499.72 7699.86 3099.62 9699.56 6499.79 5398.77 19499.80 6099.85 3799.64 1399.85 20898.70 12999.89 9299.70 49
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v114499.54 4699.53 4999.59 12799.79 6699.28 17399.10 17299.61 14499.20 13699.84 4399.73 8798.67 11699.84 22599.86 899.98 2199.64 90
WR-MVS_H99.61 3699.53 4999.87 1499.80 5699.83 2299.67 3599.75 7399.58 8199.85 4099.69 11398.18 17999.94 5799.28 6499.95 4999.83 18
EI-MVSNet-UG-set99.48 5499.50 5199.42 18199.57 16498.65 24899.24 12899.46 22899.68 5299.80 6099.66 13498.99 7299.89 14399.19 7499.90 8499.72 43
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18199.57 16498.66 24599.24 12899.46 22899.67 5699.79 6599.65 13998.97 7599.89 14399.15 8399.89 9299.71 46
pmmvs-eth3d99.48 5499.47 5399.51 15399.77 8099.41 14698.81 22399.66 11599.42 10899.75 8099.66 13499.20 4899.76 28398.98 10199.99 1299.36 225
v2v48299.50 5099.47 5399.58 13199.78 7299.25 18199.14 15999.58 17199.25 12899.81 5799.62 16098.24 17099.84 22599.83 999.97 3099.64 90
TranMVSNet+NR-MVSNet99.54 4699.47 5399.76 4699.58 15499.64 9099.30 10799.63 13499.61 7299.71 10099.56 19598.76 10599.96 3599.14 8999.92 7499.68 58
IterMVS-LS99.41 7399.47 5399.25 22799.81 5198.09 28198.85 21599.76 6699.62 6899.83 4899.64 14198.54 13399.97 1799.15 8399.99 1299.68 58
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PMMVS299.48 5499.45 5799.57 13699.76 8498.99 21698.09 29299.90 1298.95 16999.78 6899.58 18499.57 2099.93 7199.48 3399.95 4999.79 30
TAMVS99.49 5299.45 5799.63 11199.48 20999.42 14299.45 7599.57 17399.66 6099.78 6899.83 4397.85 20499.86 19099.44 3699.96 4299.61 115
Regformer-499.45 6399.44 5999.50 15699.52 18698.94 22399.17 14999.53 19899.64 6499.76 7599.60 17698.96 7899.90 12998.91 11299.84 12399.67 65
EI-MVSNet99.38 8299.44 5999.21 23299.58 15498.09 28199.26 12099.46 22899.62 6899.75 8099.67 13098.54 13399.85 20899.15 8399.92 7499.68 58
MVSFormer99.41 7399.44 5999.31 21599.57 16498.40 26299.77 1199.80 4799.73 4099.63 12599.30 26698.02 18999.98 799.43 3799.69 20699.55 145
CP-MVSNet99.54 4699.43 6299.87 1499.76 8499.82 2699.57 6299.61 14499.54 8299.80 6099.64 14197.79 20899.95 4599.21 6999.94 6299.84 14
ACMH+98.40 899.50 5099.43 6299.71 8099.86 3099.76 4799.32 10099.77 6199.53 8499.77 7399.76 7699.26 4599.78 27397.77 19999.88 10099.60 119
Anonymous2024052199.44 6599.42 6499.49 15999.89 2198.96 22199.62 4799.76 6699.85 2099.82 5099.88 2896.39 26599.97 1799.59 2099.98 2199.55 145
v14899.40 7699.41 6599.39 19499.76 8498.94 22399.09 17699.59 16299.17 14199.81 5799.61 16998.41 15299.69 30699.32 5699.94 6299.53 158
Regformer-399.41 7399.41 6599.40 19199.52 18698.70 24199.17 14999.44 23399.62 6899.75 8099.60 17698.90 8599.85 20898.89 11399.84 12399.65 83
mvs_anonymous99.28 10699.39 6798.94 25999.19 28997.81 29399.02 18799.55 18499.78 3599.85 4099.80 5498.24 17099.86 19099.57 2499.50 26099.15 266
DP-MVS99.48 5499.39 6799.74 6299.57 16499.62 9699.29 11499.61 14499.87 1499.74 8999.76 7698.69 11299.87 17098.20 16199.80 15599.75 40
tfpnnormal99.43 6699.38 6999.60 12599.87 2899.75 5099.59 5999.78 5899.71 4499.90 2299.69 11398.85 9099.90 12997.25 24299.78 16699.15 266
PVSNet_Blended_VisFu99.40 7699.38 6999.44 17599.90 1998.66 24598.94 20699.91 997.97 26499.79 6599.73 8799.05 6899.97 1799.15 8399.99 1299.68 58
ACMM98.09 1199.46 6199.38 6999.72 7699.80 5699.69 7699.13 16599.65 12698.99 16399.64 12199.72 9399.39 2499.86 19098.23 15899.81 15099.60 119
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet99.46 6199.37 7299.71 8099.82 4499.59 10799.48 7299.70 9799.81 2999.69 10599.58 18497.66 22099.86 19099.17 7999.44 26899.67 65
Baseline_NR-MVSNet99.49 5299.37 7299.82 2399.91 1599.84 1898.83 21899.86 2099.68 5299.65 11999.88 2897.67 21699.87 17099.03 9699.86 11699.76 37
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7299.70 8499.83 3899.70 7299.38 8699.78 5899.53 8499.67 11199.78 6699.19 4999.86 19097.32 23299.87 10999.55 145
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
APDe-MVS99.48 5499.36 7599.85 1899.55 17599.81 2999.50 6899.69 10398.99 16399.75 8099.71 10098.79 9999.93 7198.46 14199.85 11999.80 24
3Dnovator99.15 299.43 6699.36 7599.65 10099.39 23799.42 14299.70 2299.56 17899.23 13299.35 20999.80 5499.17 5199.95 4598.21 16099.84 12399.59 128
Anonymous2024052999.42 6999.34 7799.65 10099.53 18199.60 10499.63 4699.39 25099.47 9499.76 7599.78 6698.13 18199.86 19098.70 12999.68 20999.49 181
xiu_mvs_v1_base_debu99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
xiu_mvs_v1_base_debi99.23 11799.34 7798.91 26599.59 15198.23 27098.47 26099.66 11599.61 7299.68 10798.94 32699.39 2499.97 1799.18 7699.55 24798.51 326
UGNet99.38 8299.34 7799.49 15998.90 32098.90 23199.70 2299.35 26199.86 1698.57 30699.81 5298.50 14399.93 7199.38 4699.98 2199.66 75
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
diffmvs99.34 9499.32 8299.39 19499.67 13598.77 23898.57 24999.81 4699.61 7299.48 17799.41 23998.47 14499.86 19098.97 10399.90 8499.53 158
Anonymous2023120699.35 8999.31 8399.47 16599.74 10199.06 21499.28 11599.74 7899.23 13299.72 9599.53 20797.63 22299.88 15799.11 9199.84 12399.48 186
MVS_Test99.28 10699.31 8399.19 23599.35 24798.79 23799.36 9399.49 21899.17 14199.21 23999.67 13098.78 10199.66 32699.09 9299.66 22099.10 276
NR-MVSNet99.40 7699.31 8399.68 8699.43 22699.55 11699.73 1699.50 21399.46 9899.88 3299.36 25297.54 22499.87 17098.97 10399.87 10999.63 95
GBi-Net99.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
test199.42 6999.31 8399.73 7099.49 20399.77 4199.68 3199.70 9799.44 10199.62 13299.83 4397.21 23999.90 12998.96 10599.90 8499.53 158
SD-MVS99.01 17799.30 8898.15 30799.50 19899.40 14798.94 20699.61 14499.22 13599.75 8099.82 4999.54 2195.51 36597.48 22499.87 10999.54 153
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.43 6699.30 8899.80 2999.83 3899.81 2999.52 6699.70 9798.35 23899.51 17499.50 21699.31 3799.88 15798.18 16599.84 12399.69 52
SixPastTwentyTwo99.42 6999.30 8899.76 4699.92 1499.67 8199.70 2299.14 29999.65 6299.89 2699.90 2196.20 27099.94 5799.42 4399.92 7499.67 65
CHOSEN 1792x268899.39 8099.30 8899.65 10099.88 2499.25 18198.78 23099.88 1698.66 20299.96 899.79 6097.45 22799.93 7199.34 5199.99 1299.78 32
DELS-MVS99.34 9499.30 8899.48 16399.51 19199.36 15898.12 28899.53 19899.36 11399.41 19899.61 16999.22 4799.87 17099.21 6999.68 20999.20 256
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PM-MVS99.36 8799.29 9399.58 13199.83 3899.66 8398.95 20499.86 2098.85 18399.81 5799.73 8798.40 15699.92 9098.36 14699.83 13399.17 262
CSCG99.37 8499.29 9399.60 12599.71 11199.46 12899.43 8099.85 2498.79 19199.41 19899.60 17698.92 8099.92 9098.02 17599.92 7499.43 208
SED-MVS99.40 7699.28 9599.77 4099.69 12199.82 2699.20 13899.54 18999.13 14999.82 5099.63 15198.91 8299.92 9097.85 19499.70 20399.58 133
FMVSNet299.35 8999.28 9599.55 14399.49 20399.35 16299.45 7599.57 17399.44 10199.70 10299.74 8397.21 23999.87 17099.03 9699.94 6299.44 202
ab-mvs99.33 9899.28 9599.47 16599.57 16499.39 14999.78 1099.43 23798.87 18199.57 14899.82 4998.06 18699.87 17098.69 13199.73 19199.15 266
Regformer-199.32 10099.27 9899.47 16599.41 23298.95 22298.99 19699.48 22099.48 8999.66 11599.52 20998.78 10199.87 17098.36 14699.74 18499.60 119
Regformer-299.34 9499.27 9899.53 14999.41 23299.10 20898.99 19699.53 19899.47 9499.66 11599.52 20998.80 9699.89 14398.31 15299.74 18499.60 119
testgi99.29 10599.26 10099.37 20199.75 9598.81 23598.84 21699.89 1398.38 23199.75 8099.04 30999.36 3499.86 19099.08 9399.25 29599.45 197
UniMVSNet (Re)99.37 8499.26 10099.68 8699.51 19199.58 11098.98 20099.60 15599.43 10699.70 10299.36 25297.70 21199.88 15799.20 7299.87 10999.59 128
UniMVSNet_NR-MVSNet99.37 8499.25 10299.72 7699.47 21499.56 11398.97 20299.61 14499.43 10699.67 11199.28 27197.85 20499.95 4599.17 7999.81 15099.65 83
TSAR-MVS + MP.99.34 9499.24 10399.63 11199.82 4499.37 15599.26 12099.35 26198.77 19499.57 14899.70 10799.27 4499.88 15797.71 20499.75 17599.65 83
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
3Dnovator+98.92 399.35 8999.24 10399.67 8899.35 24799.47 12499.62 4799.50 21399.44 10199.12 25399.78 6698.77 10499.94 5797.87 19199.72 19799.62 106
abl_699.36 8799.23 10599.75 5699.71 11199.74 5699.33 9799.76 6699.07 15699.65 11999.63 15199.09 6099.92 9097.13 25099.76 17299.58 133
DU-MVS99.33 9899.21 10699.71 8099.43 22699.56 11398.83 21899.53 19899.38 11099.67 11199.36 25297.67 21699.95 4599.17 7999.81 15099.63 95
MTAPA99.35 8999.20 10799.80 2999.81 5199.81 2999.33 9799.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
D2MVS99.22 12699.19 10899.29 21899.69 12198.74 23998.81 22399.41 24098.55 21399.68 10799.69 11398.13 18199.87 17098.82 11899.98 2199.24 246
ETV-MVS99.18 14099.18 10999.16 23899.34 25799.28 17399.12 16999.79 5399.48 8998.93 26998.55 34699.40 2399.93 7198.51 13999.52 25798.28 336
DVP-MVS99.32 10099.17 11099.77 4099.69 12199.80 3499.14 15999.31 27099.16 14399.62 13299.61 16998.35 16099.91 10897.88 18899.72 19799.61 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
IterMVS-SCA-FT99.00 17999.16 11198.51 29299.75 9595.90 33298.07 29599.84 3099.84 2399.89 2699.73 8796.01 27499.99 599.33 54100.00 199.63 95
APD-MVS_3200maxsize99.31 10299.16 11199.74 6299.53 18199.75 5099.27 11899.61 14499.19 13799.57 14899.64 14198.76 10599.90 12997.29 23499.62 22899.56 142
IterMVS98.97 18399.16 11198.42 29699.74 10195.64 33598.06 29799.83 3299.83 2699.85 4099.74 8396.10 27399.99 599.27 65100.00 199.63 95
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LCM-MVSNet-Re99.28 10699.15 11499.67 8899.33 26299.76 4799.34 9599.97 298.93 17399.91 2099.79 6098.68 11399.93 7196.80 26799.56 24399.30 237
zzz-MVS99.30 10399.14 11599.80 2999.81 5199.81 2998.73 23699.53 19899.27 12499.42 19099.63 15198.21 17499.95 4597.83 19799.79 16099.65 83
SteuartSystems-ACMMP99.30 10399.14 11599.76 4699.87 2899.66 8399.18 14499.60 15598.55 21399.57 14899.67 13099.03 7099.94 5797.01 25499.80 15599.69 52
Skip Steuart: Steuart Systems R&D Blog.
test_040299.22 12699.14 11599.45 17399.79 6699.43 13999.28 11599.68 10699.54 8299.40 20399.56 19599.07 6599.82 24696.01 30299.96 4299.11 274
RE-MVS-def99.13 11899.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.57 12897.27 23799.61 23599.54 153
OPM-MVS99.26 11299.13 11899.63 11199.70 11899.61 10298.58 24599.48 22098.50 21999.52 16999.63 15199.14 5599.76 28397.89 18799.77 17099.51 170
CDS-MVSNet99.22 12699.13 11899.50 15699.35 24799.11 20498.96 20399.54 18999.46 9899.61 13899.70 10796.31 26799.83 23699.34 5199.88 10099.55 145
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
wuyk23d97.58 29099.13 11892.93 34699.69 12199.49 12199.52 6699.77 6197.97 26499.96 899.79 6099.84 399.94 5795.85 31099.82 14279.36 361
ppachtmachnet_test98.89 19799.12 12298.20 30699.66 13695.24 33997.63 32599.68 10699.08 15499.78 6899.62 16098.65 12099.88 15798.02 17599.96 4299.48 186
Fast-Effi-MVS+-dtu99.20 13399.12 12299.43 17999.25 27899.69 7699.05 18299.82 3799.50 8798.97 26599.05 30698.98 7399.98 798.20 16199.24 29798.62 318
DeepC-MVS_fast98.47 599.23 11799.12 12299.56 14099.28 27399.22 19098.99 19699.40 24799.08 15499.58 14599.64 14198.90 8599.83 23697.44 22699.75 17599.63 95
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post99.27 11099.11 12599.73 7099.54 17699.74 5699.26 12099.62 13799.16 14399.52 16999.64 14198.41 15299.91 10897.27 23799.61 23599.54 153
ACMMP_NAP99.28 10699.11 12599.79 3499.75 9599.81 2998.95 20499.53 19898.27 24799.53 16799.73 8798.75 10799.87 17097.70 20699.83 13399.68 58
xiu_mvs_v2_base99.02 17399.11 12598.77 28299.37 24398.09 28198.13 28799.51 20999.47 9499.42 19098.54 34799.38 2999.97 1798.83 11699.33 28698.24 338
pmmvs599.19 13699.11 12599.42 18199.76 8498.88 23298.55 25199.73 8198.82 18799.72 9599.62 16096.56 25699.82 24699.32 5699.95 4999.56 142
XVS99.27 11099.11 12599.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29299.47 22998.47 14499.88 15797.62 21499.73 19199.67 65
VDD-MVS99.20 13399.11 12599.44 17599.43 22698.98 21799.50 6898.32 33599.80 3299.56 15599.69 11396.99 24999.85 20898.99 9999.73 19199.50 176
jason99.16 14599.11 12599.32 21299.75 9598.44 25998.26 27799.39 25098.70 20099.74 8999.30 26698.54 13399.97 1798.48 14099.82 14299.55 145
jason: jason.
LS3D99.24 11699.11 12599.61 12398.38 34999.79 3699.57 6299.68 10699.61 7299.15 24899.71 10098.70 11199.91 10897.54 22099.68 20999.13 273
XVG-ACMP-BASELINE99.23 11799.10 13399.63 11199.82 4499.58 11098.83 21899.72 9098.36 23399.60 14099.71 10098.92 8099.91 10897.08 25299.84 12399.40 214
our_test_398.85 20299.09 13498.13 30899.66 13694.90 34297.72 32199.58 17199.07 15699.64 12199.62 16098.19 17799.93 7198.41 14399.95 4999.55 145
MSLP-MVS++99.05 16799.09 13498.91 26599.21 28498.36 26698.82 22299.47 22498.85 18398.90 27599.56 19598.78 10199.09 35998.57 13699.68 20999.26 243
MVP-Stereo99.16 14599.08 13699.43 17999.48 20999.07 21299.08 17999.55 18498.63 20599.31 22199.68 12498.19 17799.78 27398.18 16599.58 24199.45 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HFP-MVS99.25 11399.08 13699.76 4699.73 10499.70 7299.31 10499.59 16298.36 23399.36 20799.37 24798.80 9699.91 10897.43 22799.75 17599.68 58
PS-MVSNAJ99.00 17999.08 13698.76 28399.37 24398.10 28098.00 30299.51 20999.47 9499.41 19898.50 34999.28 4199.97 1798.83 11699.34 28498.20 342
ACMMPcopyleft99.25 11399.08 13699.74 6299.79 6699.68 7999.50 6899.65 12698.07 25899.52 16999.69 11398.57 12899.92 9097.18 24799.79 16099.63 95
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
AllTest99.21 13199.07 14099.63 11199.78 7299.64 9099.12 16999.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
HPM-MVScopyleft99.25 11399.07 14099.78 3799.81 5199.75 5099.61 5399.67 11197.72 27899.35 20999.25 27899.23 4699.92 9097.21 24599.82 14299.67 65
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
pmmvs499.13 15199.06 14299.36 20499.57 16499.10 20898.01 30099.25 28498.78 19399.58 14599.44 23698.24 17099.76 28398.74 12699.93 7099.22 251
VNet99.18 14099.06 14299.56 14099.24 28099.36 15899.33 9799.31 27099.67 5699.47 17999.57 19296.48 25999.84 22599.15 8399.30 28999.47 191
ACMMPR99.23 11799.06 14299.76 4699.74 10199.69 7699.31 10499.59 16298.36 23399.35 20999.38 24698.61 12499.93 7197.43 22799.75 17599.67 65
XVG-OURS99.21 13199.06 14299.65 10099.82 4499.62 9697.87 31699.74 7898.36 23399.66 11599.68 12499.71 999.90 12996.84 26599.88 10099.43 208
test117299.23 11799.05 14699.74 6299.52 18699.75 5099.20 13899.61 14498.97 16599.48 17799.58 18498.41 15299.91 10897.15 24999.55 24799.57 139
CANet99.11 15799.05 14699.28 22098.83 32998.56 25198.71 23999.41 24099.25 12899.23 23399.22 28597.66 22099.94 5799.19 7499.97 3099.33 231
region2R99.23 11799.05 14699.77 4099.76 8499.70 7299.31 10499.59 16298.41 22799.32 21799.36 25298.73 11099.93 7197.29 23499.74 18499.67 65
MDA-MVSNet-bldmvs99.06 16499.05 14699.07 25099.80 5697.83 29298.89 20899.72 9099.29 12099.63 12599.70 10796.47 26099.89 14398.17 16799.82 14299.50 176
LPG-MVS_test99.22 12699.05 14699.74 6299.82 4499.63 9499.16 15599.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
CP-MVS99.23 11799.05 14699.75 5699.66 13699.66 8399.38 8699.62 13798.38 23199.06 26199.27 27398.79 9999.94 5797.51 22399.82 14299.66 75
ZNCC-MVS99.22 12699.04 15299.77 4099.76 8499.73 5999.28 11599.56 17898.19 25299.14 25099.29 26998.84 9199.92 9097.53 22299.80 15599.64 90
TSAR-MVS + GP.99.12 15399.04 15299.38 19899.34 25799.16 19998.15 28499.29 27598.18 25399.63 12599.62 16099.18 5099.68 31798.20 16199.74 18499.30 237
MVS_111021_LR99.13 15199.03 15499.42 18199.58 15499.32 16797.91 31599.73 8198.68 20199.31 22199.48 22499.09 6099.66 32697.70 20699.77 17099.29 240
RPSCF99.18 14099.02 15599.64 10799.83 3899.85 1299.44 7899.82 3798.33 24399.50 17599.78 6697.90 19899.65 33396.78 26899.83 13399.44 202
MVS_111021_HR99.12 15399.02 15599.40 19199.50 19899.11 20497.92 31399.71 9398.76 19799.08 25799.47 22999.17 5199.54 34697.85 19499.76 17299.54 153
DeepPCF-MVS98.42 699.18 14099.02 15599.67 8899.22 28299.75 5097.25 34399.47 22498.72 19999.66 11599.70 10799.29 3999.63 33698.07 17499.81 15099.62 106
EIA-MVS99.12 15399.01 15899.45 17399.36 24599.62 9699.34 9599.79 5398.41 22798.84 28298.89 33198.75 10799.84 22598.15 16999.51 25898.89 304
PGM-MVS99.20 13399.01 15899.77 4099.75 9599.71 6599.16 15599.72 9097.99 26299.42 19099.60 17698.81 9299.93 7196.91 25999.74 18499.66 75
PVSNet_BlendedMVS99.03 17199.01 15899.09 24699.54 17697.99 28598.58 24599.82 3797.62 28299.34 21299.71 10098.52 14099.77 28197.98 18099.97 3099.52 168
SR-MVS99.19 13699.00 16199.74 6299.51 19199.72 6399.18 14499.60 15598.85 18399.47 17999.58 18498.38 15799.92 9096.92 25899.54 25399.57 139
SMA-MVScopyleft99.19 13699.00 16199.73 7099.46 21999.73 5999.13 16599.52 20697.40 29499.57 14899.64 14198.93 7999.83 23697.61 21699.79 16099.63 95
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
canonicalmvs99.02 17399.00 16199.09 24699.10 30598.70 24199.61 5399.66 11599.63 6798.64 30097.65 36099.04 6999.54 34698.79 12098.92 31299.04 290
mPP-MVS99.19 13699.00 16199.76 4699.76 8499.68 7999.38 8699.54 18998.34 24299.01 26399.50 21698.53 13799.93 7197.18 24799.78 16699.66 75
EPP-MVSNet99.17 14499.00 16199.66 9599.80 5699.43 13999.70 2299.24 28799.48 8999.56 15599.77 7394.89 28499.93 7198.72 12899.89 9299.63 95
YYNet198.95 18998.99 16698.84 27599.64 14097.14 31298.22 28099.32 26698.92 17599.59 14399.66 13497.40 22999.83 23698.27 15599.90 8499.55 145
MDA-MVSNet_test_wron98.95 18998.99 16698.85 27399.64 14097.16 31198.23 27999.33 26498.93 17399.56 15599.66 13497.39 23199.83 23698.29 15399.88 10099.55 145
XVG-OURS-SEG-HR99.16 14598.99 16699.66 9599.84 3499.64 9098.25 27899.73 8198.39 23099.63 12599.43 23799.70 1199.90 12997.34 23198.64 32799.44 202
MSDG99.08 16298.98 16999.37 20199.60 14899.13 20297.54 32999.74 7898.84 18699.53 16799.55 20299.10 5899.79 27097.07 25399.86 11699.18 260
Effi-MVS+99.06 16498.97 17099.34 20699.31 26498.98 21798.31 27399.91 998.81 18898.79 28898.94 32699.14 5599.84 22598.79 12098.74 32399.20 256
MS-PatchMatch99.00 17998.97 17099.09 24699.11 30498.19 27398.76 23399.33 26498.49 22199.44 18499.58 18498.21 17499.69 30698.20 16199.62 22899.39 217
xxxxxxxxxxxxxcwj99.11 15798.96 17299.54 14799.53 18199.25 18198.29 27499.76 6699.07 15699.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
GST-MVS99.16 14598.96 17299.75 5699.73 10499.73 5999.20 13899.55 18498.22 24999.32 21799.35 25798.65 12099.91 10896.86 26299.74 18499.62 106
PHI-MVS99.11 15798.95 17499.59 12799.13 29799.59 10799.17 14999.65 12697.88 27099.25 22999.46 23298.97 7599.80 26797.26 23999.82 14299.37 222
SF-MVS99.10 16198.93 17599.62 12099.58 15499.51 11999.13 16599.65 12697.97 26499.42 19099.61 16998.86 8899.87 17096.45 28699.68 20999.49 181
WR-MVS99.11 15798.93 17599.66 9599.30 26899.42 14298.42 26699.37 25799.04 16199.57 14899.20 28996.89 25199.86 19098.66 13399.87 10999.70 49
USDC98.96 18698.93 17599.05 25299.54 17697.99 28597.07 34999.80 4798.21 25099.75 8099.77 7398.43 14999.64 33597.90 18699.88 10099.51 170
TinyColmap98.97 18398.93 17599.07 25099.46 21998.19 27397.75 32099.75 7398.79 19199.54 16299.70 10798.97 7599.62 33796.63 27799.83 13399.41 212
DPE-MVScopyleft99.14 14998.92 17999.82 2399.57 16499.77 4198.74 23499.60 15598.55 21399.76 7599.69 11398.23 17399.92 9096.39 28899.75 17599.76 37
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu99.07 16398.92 17999.52 15098.89 32399.78 3999.15 15799.66 11599.34 11498.92 27299.24 28397.69 21399.98 798.11 17199.28 29198.81 311
MP-MVS-pluss99.14 14998.92 17999.80 2999.83 3899.83 2298.61 24199.63 13496.84 31599.44 18499.58 18498.81 9299.91 10897.70 20699.82 14299.67 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LF4IMVS99.01 17798.92 17999.27 22299.71 11199.28 17398.59 24499.77 6198.32 24499.39 20499.41 23998.62 12299.84 22596.62 27899.84 12398.69 315
#test#99.12 15398.90 18399.76 4699.73 10499.70 7299.10 17299.59 16297.60 28399.36 20799.37 24798.80 9699.91 10896.84 26599.75 17599.68 58
new_pmnet98.88 19898.89 18498.84 27599.70 11897.62 29998.15 28499.50 21397.98 26399.62 13299.54 20498.15 18099.94 5797.55 21999.84 12398.95 299
CVMVSNet98.61 22698.88 18597.80 31699.58 15493.60 34999.26 12099.64 13299.66 6099.72 9599.67 13093.26 30099.93 7199.30 5999.81 15099.87 9
Fast-Effi-MVS+99.02 17398.87 18699.46 16999.38 24099.50 12099.04 18499.79 5397.17 30598.62 30198.74 33999.34 3599.95 4598.32 15199.41 27498.92 302
lupinMVS98.96 18698.87 18699.24 22999.57 16498.40 26298.12 28899.18 29598.28 24699.63 12599.13 29498.02 18999.97 1798.22 15999.69 20699.35 228
CANet_DTU98.91 19298.85 18899.09 24698.79 33598.13 27698.18 28199.31 27099.48 8998.86 28099.51 21396.56 25699.95 4599.05 9599.95 4999.19 258
IS-MVSNet99.03 17198.85 18899.55 14399.80 5699.25 18199.73 1699.15 29899.37 11199.61 13899.71 10094.73 28799.81 26297.70 20699.88 10099.58 133
1112_ss99.05 16798.84 19099.67 8899.66 13699.29 17198.52 25699.82 3797.65 28199.43 18899.16 29296.42 26299.91 10899.07 9499.84 12399.80 24
ACMP97.51 1499.05 16798.84 19099.67 8899.78 7299.55 11698.88 20999.66 11597.11 30999.47 17999.60 17699.07 6599.89 14396.18 29799.85 11999.58 133
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MP-MVScopyleft99.06 16498.83 19299.76 4699.76 8499.71 6599.32 10099.50 21398.35 23898.97 26599.48 22498.37 15899.92 9095.95 30899.75 17599.63 95
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
VDDNet98.97 18398.82 19399.42 18199.71 11198.81 23599.62 4798.68 31999.81 2999.38 20599.80 5494.25 29199.85 20898.79 12099.32 28799.59 128
MCST-MVS99.02 17398.81 19499.65 10099.58 15499.49 12198.58 24599.07 30298.40 22999.04 26299.25 27898.51 14299.80 26797.31 23399.51 25899.65 83
PMVScopyleft92.94 2198.82 20598.81 19498.85 27399.84 3497.99 28599.20 13899.47 22499.71 4499.42 19099.82 4998.09 18399.47 35393.88 34499.85 11999.07 287
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CNVR-MVS98.99 18298.80 19699.56 14099.25 27899.43 13998.54 25499.27 27998.58 21098.80 28799.43 23798.53 13799.70 30097.22 24499.59 24099.54 153
MSP-MVS99.04 17098.79 19799.81 2699.78 7299.73 5999.35 9499.57 17398.54 21699.54 16298.99 31696.81 25399.93 7196.97 25699.53 25599.77 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sss98.90 19498.77 19899.27 22299.48 20998.44 25998.72 23799.32 26697.94 26899.37 20699.35 25796.31 26799.91 10898.85 11599.63 22799.47 191
Test_1112_low_res98.95 18998.73 19999.63 11199.68 13099.15 20198.09 29299.80 4797.14 30799.46 18299.40 24196.11 27299.89 14399.01 9899.84 12399.84 14
OMC-MVS98.90 19498.72 20099.44 17599.39 23799.42 14298.58 24599.64 13297.31 29999.44 18499.62 16098.59 12699.69 30696.17 29899.79 16099.22 251
eth_miper_zixun_eth98.68 22198.71 20198.60 28999.10 30596.84 31997.52 33399.54 18998.94 17099.58 14599.48 22496.25 26999.76 28398.01 17899.93 7099.21 253
cl_fuxian98.72 21798.71 20198.72 28599.12 29997.22 31097.68 32499.56 17898.90 17799.54 16299.48 22496.37 26699.73 29297.88 18899.88 10099.21 253
MVS_030498.88 19898.71 20199.39 19498.85 32798.91 23099.45 7599.30 27398.56 21197.26 35099.68 12496.18 27199.96 3599.17 7999.94 6299.29 240
mvs-test198.83 20398.70 20499.22 23198.89 32399.65 8898.88 20999.66 11599.34 11498.29 31798.94 32697.69 21399.96 3598.11 17198.54 33198.04 346
HPM-MVS++copyleft98.96 18698.70 20499.74 6299.52 18699.71 6598.86 21399.19 29498.47 22398.59 30499.06 30598.08 18599.91 10896.94 25799.60 23899.60 119
HQP_MVS98.90 19498.68 20699.55 14399.58 15499.24 18698.80 22699.54 18998.94 17099.14 25099.25 27897.24 23799.82 24695.84 31199.78 16699.60 119
9.1498.64 20799.45 22298.81 22399.60 15597.52 28899.28 22699.56 19598.53 13799.83 23695.36 32499.64 225
HyFIR lowres test98.91 19298.64 20799.73 7099.85 3399.47 12498.07 29599.83 3298.64 20499.89 2699.60 17692.57 306100.00 199.33 5499.97 3099.72 43
FMVSNet398.80 20798.63 20999.32 21299.13 29798.72 24099.10 17299.48 22099.23 13299.62 13299.64 14192.57 30699.86 19098.96 10599.90 8499.39 217
miper_lstm_enhance98.65 22398.60 21098.82 28099.20 28797.33 30797.78 31999.66 11599.01 16299.59 14399.50 21694.62 28899.85 20898.12 17099.90 8499.26 243
K. test v398.87 20098.60 21099.69 8599.93 1399.46 12899.74 1594.97 35999.78 3599.88 3299.88 2893.66 29899.97 1799.61 1899.95 4999.64 90
miper_ehance_all_eth98.59 23198.59 21298.59 29098.98 31697.07 31397.49 33499.52 20698.50 21999.52 16999.37 24796.41 26499.71 29897.86 19299.62 22899.00 297
APD-MVScopyleft98.87 20098.59 21299.71 8099.50 19899.62 9699.01 18999.57 17396.80 31799.54 16299.63 15198.29 16699.91 10895.24 32599.71 20199.61 115
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PVSNet_Blended98.70 21998.59 21299.02 25499.54 17697.99 28597.58 32899.82 3795.70 33399.34 21298.98 31998.52 14099.77 28197.98 18099.83 13399.30 237
Vis-MVSNet (Re-imp)98.77 20998.58 21599.34 20699.78 7298.88 23299.61 5399.56 17899.11 15399.24 23299.56 19593.00 30499.78 27397.43 22799.89 9299.35 228
NCCC98.82 20598.57 21699.58 13199.21 28499.31 16898.61 24199.25 28498.65 20398.43 31499.26 27697.86 20299.81 26296.55 27999.27 29499.61 115
UnsupCasMVSNet_eth98.83 20398.57 21699.59 12799.68 13099.45 13398.99 19699.67 11199.48 8999.55 16099.36 25294.92 28399.86 19098.95 10996.57 35699.45 197
CLD-MVS98.76 21198.57 21699.33 20899.57 16498.97 21997.53 33199.55 18496.41 32199.27 22799.13 29499.07 6599.78 27396.73 27199.89 9299.23 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_2432*160098.71 21898.56 21999.15 24099.22 28298.66 24597.14 34699.51 20998.09 25799.54 16299.27 27396.87 25299.74 28998.43 14298.96 30999.03 291
RRT_MVS98.75 21298.54 22099.41 18998.14 35898.61 24998.98 20099.66 11599.31 11999.84 4399.75 8091.98 31299.98 799.20 7299.95 4999.62 106
Patchmtry98.78 20898.54 22099.49 15998.89 32399.19 19799.32 10099.67 11199.65 6299.72 9599.79 6091.87 31599.95 4598.00 17999.97 3099.33 231
RPMNet98.60 22898.53 22298.83 27799.05 31098.12 27799.30 10799.62 13799.86 1699.16 24699.74 8392.53 30899.92 9098.75 12598.77 31998.44 331
N_pmnet98.73 21698.53 22299.35 20599.72 10898.67 24398.34 26994.65 36098.35 23899.79 6599.68 12498.03 18799.93 7198.28 15499.92 7499.44 202
ETH3D-3000-0.198.77 20998.50 22499.59 12799.47 21499.53 11898.77 23199.60 15597.33 29899.23 23399.50 21697.91 19799.83 23695.02 32999.67 21699.41 212
PatchMatch-RL98.68 22198.47 22599.30 21799.44 22499.28 17398.14 28699.54 18997.12 30899.11 25499.25 27897.80 20799.70 30096.51 28299.30 28998.93 301
Anonymous20240521198.75 21298.46 22699.63 11199.34 25799.66 8399.47 7497.65 34499.28 12399.56 15599.50 21693.15 30199.84 22598.62 13499.58 24199.40 214
bset_n11_16_dypcd98.69 22098.45 22799.42 18199.69 12198.52 25496.06 35796.80 35299.71 4499.73 9399.54 20495.14 28299.96 3599.39 4599.95 4999.79 30
F-COLMAP98.74 21498.45 22799.62 12099.57 16499.47 12498.84 21699.65 12696.31 32498.93 26999.19 29197.68 21599.87 17096.52 28199.37 28199.53 158
CPTT-MVS98.74 21498.44 22999.64 10799.61 14699.38 15299.18 14499.55 18496.49 32099.27 22799.37 24797.11 24599.92 9095.74 31599.67 21699.62 106
PVSNet97.47 1598.42 25198.44 22998.35 29999.46 21996.26 32696.70 35499.34 26397.68 28099.00 26499.13 29497.40 22999.72 29497.59 21899.68 20999.08 282
cl-mvsnet198.54 23898.42 23198.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.87 29499.78 27397.97 18299.89 9299.18 260
cl-mvsnet____98.54 23898.41 23298.92 26399.03 31397.80 29497.46 33599.59 16298.90 17799.60 14099.46 23293.85 29599.78 27397.97 18299.89 9299.17 262
CHOSEN 280x42098.41 25298.41 23298.40 29799.34 25795.89 33396.94 35199.44 23398.80 19099.25 22999.52 20993.51 29999.98 798.94 11099.98 2199.32 234
API-MVS98.38 25598.39 23498.35 29998.83 32999.26 17799.14 15999.18 29598.59 20998.66 29998.78 33798.61 12499.57 34594.14 33999.56 24396.21 358
MG-MVS98.52 24098.39 23498.94 25999.15 29497.39 30698.18 28199.21 29398.89 18099.23 23399.63 15197.37 23399.74 28994.22 33899.61 23599.69 52
WTY-MVS98.59 23198.37 23699.26 22499.43 22698.40 26298.74 23499.13 30198.10 25599.21 23999.24 28394.82 28599.90 12997.86 19298.77 31999.49 181
SCA98.11 27198.36 23797.36 32799.20 28792.99 35298.17 28398.49 32998.24 24899.10 25699.57 19296.01 27499.94 5796.86 26299.62 22899.14 270
Patchmatch-RL test98.60 22898.36 23799.33 20899.77 8099.07 21298.27 27699.87 1898.91 17699.74 8999.72 9390.57 33299.79 27098.55 13799.85 11999.11 274
AdaColmapbinary98.60 22898.35 23999.38 19899.12 29999.22 19098.67 24099.42 23997.84 27598.81 28599.27 27397.32 23599.81 26295.14 32699.53 25599.10 276
hse-mvs398.61 22698.34 24099.44 17599.60 14898.67 24399.27 11899.44 23399.68 5299.32 21799.49 22192.50 309100.00 199.24 6696.51 35799.65 83
test_prior398.62 22598.34 24099.46 16999.35 24799.22 19097.95 30999.39 25097.87 27198.05 33099.05 30697.90 19899.69 30695.99 30499.49 26299.48 186
CNLPA98.57 23398.34 24099.28 22099.18 29199.10 20898.34 26999.41 24098.48 22298.52 30998.98 31997.05 24799.78 27395.59 31799.50 26098.96 298
PatchT98.45 24998.32 24398.83 27798.94 31898.29 26899.24 12898.82 31499.84 2399.08 25799.76 7691.37 31899.94 5798.82 11899.00 30898.26 337
hse-mvs298.52 24098.30 24499.16 23899.29 27098.60 25098.77 23199.02 30699.68 5299.32 21799.04 30992.50 30999.85 20899.24 6697.87 34899.03 291
PMMVS98.49 24598.29 24599.11 24498.96 31798.42 26197.54 32999.32 26697.53 28798.47 31398.15 35597.88 20199.82 24697.46 22599.24 29799.09 279
UnsupCasMVSNet_bld98.55 23798.27 24699.40 19199.56 17499.37 15597.97 30899.68 10697.49 29099.08 25799.35 25795.41 28199.82 24697.70 20698.19 34099.01 296
test_part198.63 22498.26 24799.75 5699.40 23599.49 12199.67 3599.68 10699.86 1699.88 3299.86 3686.73 35299.93 7199.34 5199.97 3099.81 23
112198.56 23498.24 24899.52 15099.49 20399.24 18699.30 10799.22 28995.77 33198.52 30999.29 26997.39 23199.85 20895.79 31399.34 28499.46 195
DP-MVS Recon98.50 24298.23 24999.31 21599.49 20399.46 12898.56 25099.63 13494.86 34498.85 28199.37 24797.81 20699.59 34396.08 29999.44 26898.88 305
MVSTER98.47 24798.22 25099.24 22999.06 30998.35 26799.08 17999.46 22899.27 12499.75 8099.66 13488.61 34299.85 20899.14 8999.92 7499.52 168
MVS-HIRNet97.86 27998.22 25096.76 33599.28 27391.53 36198.38 26892.60 36599.13 14999.31 22199.96 1097.18 24399.68 31798.34 14999.83 13399.07 287
CDPH-MVS98.56 23498.20 25299.61 12399.50 19899.46 12898.32 27299.41 24095.22 33899.21 23999.10 30298.34 16299.82 24695.09 32899.66 22099.56 142
CR-MVSNet98.35 25998.20 25298.83 27799.05 31098.12 27799.30 10799.67 11197.39 29599.16 24699.79 6091.87 31599.91 10898.78 12398.77 31998.44 331
MIMVSNet98.43 25098.20 25299.11 24499.53 18198.38 26599.58 6198.61 32398.96 16899.33 21599.76 7690.92 32599.81 26297.38 23099.76 17299.15 266
LFMVS98.46 24898.19 25599.26 22499.24 28098.52 25499.62 4796.94 35199.87 1499.31 22199.58 18491.04 32399.81 26298.68 13299.42 27399.45 197
CMPMVSbinary77.52 2398.50 24298.19 25599.41 18998.33 35199.56 11399.01 18999.59 16295.44 33599.57 14899.80 5495.64 27899.46 35596.47 28599.92 7499.21 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testtj98.56 23498.17 25799.72 7699.45 22299.60 10498.88 20999.50 21396.88 31299.18 24599.48 22497.08 24699.92 9093.69 34599.38 27799.63 95
ETH3D cwj APD-0.1698.50 24298.16 25899.51 15399.04 31299.39 14998.47 26099.47 22496.70 31998.78 29099.33 26197.62 22399.86 19094.69 33499.38 27799.28 242
BH-RMVSNet98.41 25298.14 25999.21 23299.21 28498.47 25698.60 24398.26 33698.35 23898.93 26999.31 26497.20 24299.66 32694.32 33699.10 30299.51 170
114514_t98.49 24598.11 26099.64 10799.73 10499.58 11099.24 12899.76 6689.94 35799.42 19099.56 19597.76 21099.86 19097.74 20299.82 14299.47 191
BH-untuned98.22 26898.09 26198.58 29199.38 24097.24 30998.55 25198.98 30997.81 27699.20 24498.76 33897.01 24899.65 33394.83 33098.33 33598.86 307
tpmrst97.73 28498.07 26296.73 33798.71 34192.00 35699.10 17298.86 31198.52 21798.92 27299.54 20491.90 31399.82 24698.02 17599.03 30698.37 333
PAPM_NR98.36 25698.04 26399.33 20899.48 20998.93 22798.79 22999.28 27897.54 28698.56 30798.57 34497.12 24499.69 30694.09 34098.90 31499.38 219
HQP-MVS98.36 25698.02 26499.39 19499.31 26498.94 22397.98 30599.37 25797.45 29198.15 32498.83 33496.67 25499.70 30094.73 33199.67 21699.53 158
QAPM98.40 25497.99 26599.65 10099.39 23799.47 12499.67 3599.52 20691.70 35498.78 29099.80 5498.55 13199.95 4594.71 33399.75 17599.53 158
PLCcopyleft97.35 1698.36 25697.99 26599.48 16399.32 26399.24 18698.50 25899.51 20995.19 34098.58 30598.96 32496.95 25099.83 23695.63 31699.25 29599.37 222
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Patchmatch-test98.10 27297.98 26798.48 29499.27 27596.48 32399.40 8299.07 30298.81 18899.23 23399.57 19290.11 33699.87 17096.69 27299.64 22599.09 279
alignmvs98.28 26297.96 26899.25 22799.12 29998.93 22799.03 18698.42 33199.64 6498.72 29597.85 35890.86 32899.62 33798.88 11499.13 30099.19 258
test_yl98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
DCV-MVSNet98.25 26497.95 26999.13 24299.17 29298.47 25699.00 19198.67 32198.97 16599.22 23799.02 31491.31 31999.69 30697.26 23998.93 31099.24 246
train_agg98.35 25997.95 26999.57 13699.35 24799.35 16298.11 29099.41 24094.90 34297.92 33598.99 31698.02 18999.85 20895.38 32399.44 26899.50 176
HY-MVS98.23 998.21 26997.95 26998.99 25599.03 31398.24 26999.61 5398.72 31896.81 31698.73 29499.51 21394.06 29299.86 19096.91 25998.20 33898.86 307
miper_enhance_ethall98.03 27597.94 27398.32 30198.27 35296.43 32596.95 35099.41 24096.37 32399.43 18898.96 32494.74 28699.69 30697.71 20499.62 22898.83 310
DPM-MVS98.28 26297.94 27399.32 21299.36 24599.11 20497.31 34198.78 31696.88 31298.84 28299.11 30197.77 20999.61 34194.03 34299.36 28299.23 249
agg_prior198.33 26197.92 27599.57 13699.35 24799.36 15897.99 30499.39 25094.85 34597.76 34498.98 31998.03 18799.85 20895.49 31999.44 26899.51 170
JIA-IIPM98.06 27497.92 27598.50 29398.59 34497.02 31498.80 22698.51 32799.88 1397.89 33799.87 3191.89 31499.90 12998.16 16897.68 35098.59 320
MAR-MVS98.24 26697.92 27599.19 23598.78 33799.65 8899.17 14999.14 29995.36 33698.04 33298.81 33697.47 22699.72 29495.47 32199.06 30398.21 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
131498.00 27797.90 27898.27 30598.90 32097.45 30499.30 10799.06 30494.98 34197.21 35199.12 29998.43 14999.67 32295.58 31898.56 33097.71 350
OpenMVScopyleft98.12 1098.23 26797.89 27999.26 22499.19 28999.26 17799.65 4499.69 10391.33 35598.14 32899.77 7398.28 16799.96 3595.41 32299.55 24798.58 322
pmmvs398.08 27397.80 28098.91 26599.41 23297.69 29897.87 31699.66 11595.87 32999.50 17599.51 21390.35 33499.97 1798.55 13799.47 26599.08 282
PatchmatchNetpermissive97.65 28797.80 28097.18 33298.82 33292.49 35499.17 14998.39 33398.12 25498.79 28899.58 18490.71 33099.89 14397.23 24399.41 27499.16 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu97.62 28897.79 28297.11 33496.67 36392.31 35598.51 25798.04 33799.24 13095.77 35999.47 22993.78 29799.66 32698.98 10199.62 22899.37 222
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPNet98.13 27097.77 28399.18 23794.57 36697.99 28599.24 12897.96 33999.74 3997.29 34999.62 16093.13 30299.97 1798.59 13599.83 13399.58 133
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1397.73 28498.70 34290.83 36499.15 15798.02 33898.51 21898.82 28499.61 16990.98 32499.66 32696.89 26198.92 312
tpmvs97.39 29597.69 28596.52 34098.41 34891.76 35899.30 10798.94 31097.74 27797.85 34099.55 20292.40 31199.73 29296.25 29498.73 32598.06 345
GA-MVS97.99 27897.68 28698.93 26299.52 18698.04 28497.19 34599.05 30598.32 24498.81 28598.97 32289.89 33999.41 35698.33 15099.05 30499.34 230
ADS-MVSNet97.72 28697.67 28797.86 31499.14 29594.65 34399.22 13598.86 31196.97 31098.25 32099.64 14190.90 32699.84 22596.51 28299.56 24399.08 282
ADS-MVSNet297.78 28297.66 28898.12 30999.14 29595.36 33799.22 13598.75 31796.97 31098.25 32099.64 14190.90 32699.94 5796.51 28299.56 24399.08 282
TAPA-MVS97.92 1398.03 27597.55 28999.46 16999.47 21499.44 13598.50 25899.62 13786.79 35899.07 26099.26 27698.26 16999.62 33797.28 23699.73 19199.31 236
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
E-PMN97.14 30297.43 29096.27 34298.79 33591.62 36095.54 35999.01 30899.44 10198.88 27699.12 29992.78 30599.68 31794.30 33799.03 30697.50 351
AUN-MVS97.82 28097.38 29199.14 24199.27 27598.53 25298.72 23799.02 30698.10 25597.18 35299.03 31389.26 34199.85 20897.94 18497.91 34699.03 291
baseline197.73 28497.33 29298.96 25799.30 26897.73 29699.40 8298.42 33199.33 11799.46 18299.21 28791.18 32199.82 24698.35 14891.26 36299.32 234
cl-mvsnet297.56 29197.28 29398.40 29798.37 35096.75 32097.24 34499.37 25797.31 29999.41 19899.22 28587.30 34499.37 35797.70 20699.62 22899.08 282
EMVS96.96 30597.28 29395.99 34598.76 33991.03 36395.26 36098.61 32399.34 11498.92 27298.88 33293.79 29699.66 32692.87 34699.05 30497.30 355
RRT_test8_iter0597.35 29897.25 29597.63 32198.81 33393.13 35199.26 12099.89 1399.51 8699.83 4899.68 12479.03 36999.88 15799.53 2899.72 19799.89 8
FMVSNet597.80 28197.25 29599.42 18198.83 32998.97 21999.38 8699.80 4798.87 18199.25 22999.69 11380.60 36499.91 10898.96 10599.90 8499.38 219
tttt051797.62 28897.20 29798.90 27199.76 8497.40 30599.48 7294.36 36199.06 16099.70 10299.49 22184.55 35899.94 5798.73 12799.65 22399.36 225
ETH3 D test640097.76 28397.19 29899.50 15699.38 24099.26 17798.34 26999.49 21892.99 35198.54 30899.20 28995.92 27699.82 24691.14 35299.66 22099.40 214
TR-MVS97.44 29497.15 29998.32 30198.53 34697.46 30398.47 26097.91 34196.85 31498.21 32398.51 34896.42 26299.51 35192.16 34897.29 35297.98 347
dp96.86 30697.07 30096.24 34398.68 34390.30 36799.19 14398.38 33497.35 29798.23 32299.59 18287.23 34599.82 24696.27 29398.73 32598.59 320
PAPR97.56 29197.07 30099.04 25398.80 33498.11 27997.63 32599.25 28494.56 34898.02 33398.25 35497.43 22899.68 31790.90 35398.74 32399.33 231
BH-w/o97.20 29997.01 30297.76 31799.08 30895.69 33498.03 29998.52 32695.76 33297.96 33498.02 35695.62 27999.47 35392.82 34797.25 35398.12 344
tpm cat196.78 30896.98 30396.16 34498.85 32790.59 36699.08 17999.32 26692.37 35297.73 34699.46 23291.15 32299.69 30696.07 30098.80 31698.21 340
thisisatest053097.45 29396.95 30498.94 25999.68 13097.73 29699.09 17694.19 36398.61 20899.56 15599.30 26684.30 35999.93 7198.27 15599.54 25399.16 264
test-LLR97.15 30096.95 30497.74 31998.18 35595.02 34097.38 33796.10 35398.00 26097.81 34198.58 34290.04 33799.91 10897.69 21298.78 31798.31 334
tpm97.15 30096.95 30497.75 31898.91 31994.24 34599.32 10097.96 33997.71 27998.29 31799.32 26286.72 35399.92 9098.10 17396.24 35999.09 279
test0.0.03 197.37 29696.91 30798.74 28497.72 35997.57 30097.60 32797.36 35098.00 26099.21 23998.02 35690.04 33799.79 27098.37 14595.89 36098.86 307
OpenMVS_ROBcopyleft97.31 1797.36 29796.84 30898.89 27299.29 27099.45 13398.87 21299.48 22086.54 36099.44 18499.74 8397.34 23499.86 19091.61 34999.28 29197.37 354
cascas96.99 30396.82 30997.48 32397.57 36295.64 33596.43 35699.56 17891.75 35397.13 35397.61 36195.58 28098.63 36296.68 27399.11 30198.18 343
CostFormer96.71 31196.79 31096.46 34198.90 32090.71 36599.41 8198.68 31994.69 34798.14 32899.34 26086.32 35599.80 26797.60 21798.07 34498.88 305
thisisatest051596.98 30496.42 31198.66 28899.42 23197.47 30297.27 34294.30 36297.24 30199.15 24898.86 33385.01 35699.87 17097.10 25199.39 27698.63 317
EPMVS96.53 31496.32 31297.17 33398.18 35592.97 35399.39 8489.95 36798.21 25098.61 30299.59 18286.69 35499.72 29496.99 25599.23 29998.81 311
baseline296.83 30796.28 31398.46 29599.09 30796.91 31798.83 21893.87 36497.23 30296.23 35898.36 35188.12 34399.90 12996.68 27398.14 34298.57 323
tpm296.35 31796.22 31496.73 33798.88 32691.75 35999.21 13798.51 32793.27 35097.89 33799.21 28784.83 35799.70 30096.04 30198.18 34198.75 314
thres600view796.60 31396.16 31597.93 31299.63 14296.09 33099.18 14497.57 34598.77 19498.72 29597.32 36487.04 34799.72 29488.57 35598.62 32897.98 347
MVEpermissive92.54 2296.66 31296.11 31698.31 30399.68 13097.55 30197.94 31195.60 35899.37 11190.68 36598.70 34096.56 25698.61 36386.94 36299.55 24798.77 313
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ET-MVSNet_ETH3D96.78 30896.07 31798.91 26599.26 27797.92 29197.70 32396.05 35697.96 26792.37 36498.43 35087.06 34699.90 12998.27 15597.56 35198.91 303
thres100view90096.39 31696.03 31897.47 32499.63 14295.93 33199.18 14497.57 34598.75 19898.70 29797.31 36587.04 34799.67 32287.62 35898.51 33296.81 356
tfpn200view996.30 31995.89 31997.53 32299.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33296.81 356
thres40096.40 31595.89 31997.92 31399.58 15496.11 32899.00 19197.54 34898.43 22498.52 30996.98 36786.85 34999.67 32287.62 35898.51 33297.98 347
PCF-MVS96.03 1896.73 31095.86 32199.33 20899.44 22499.16 19996.87 35299.44 23386.58 35998.95 26799.40 24194.38 29099.88 15787.93 35799.80 15598.95 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TESTMET0.1,196.24 32095.84 32297.41 32698.24 35393.84 34897.38 33795.84 35798.43 22497.81 34198.56 34579.77 36599.89 14397.77 19998.77 31998.52 325
DWT-MVSNet_test96.03 32495.80 32396.71 33998.50 34791.93 35799.25 12797.87 34295.99 32896.81 35497.61 36181.02 36299.66 32697.20 24697.98 34598.54 324
test-mter96.23 32195.73 32497.74 31998.18 35595.02 34097.38 33796.10 35397.90 26997.81 34198.58 34279.12 36899.91 10897.69 21298.78 31798.31 334
thres20096.09 32295.68 32597.33 32999.48 20996.22 32798.53 25597.57 34598.06 25998.37 31696.73 36986.84 35199.61 34186.99 36198.57 32996.16 359
FPMVS96.32 31895.50 32698.79 28199.60 14898.17 27598.46 26598.80 31597.16 30696.28 35599.63 15182.19 36099.09 35988.45 35698.89 31599.10 276
tmp_tt95.75 32995.42 32796.76 33589.90 36894.42 34498.86 21397.87 34278.01 36199.30 22599.69 11397.70 21195.89 36499.29 6298.14 34299.95 1
KD-MVS_2432*160095.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
miper_refine_blended95.89 32595.41 32897.31 33094.96 36493.89 34697.09 34799.22 28997.23 30298.88 27699.04 30979.23 36699.54 34696.24 29596.81 35498.50 329
PVSNet_095.53 1995.85 32895.31 33097.47 32498.78 33793.48 35095.72 35899.40 24796.18 32697.37 34797.73 35995.73 27799.58 34495.49 31981.40 36399.36 225
gg-mvs-nofinetune95.87 32795.17 33197.97 31198.19 35496.95 31599.69 2889.23 36899.89 1196.24 35799.94 1281.19 36199.51 35193.99 34398.20 33897.44 352
X-MVStestdata96.09 32294.87 33299.75 5699.71 11199.71 6599.37 9099.61 14499.29 12098.76 29261.30 37098.47 14499.88 15797.62 21499.73 19199.67 65
PAPM95.61 33194.71 33398.31 30399.12 29996.63 32196.66 35598.46 33090.77 35696.25 35698.68 34193.01 30399.69 30681.60 36397.86 34998.62 318
MVS95.72 33094.63 33498.99 25598.56 34597.98 29099.30 10798.86 31172.71 36397.30 34899.08 30398.34 16299.74 28989.21 35498.33 33599.26 243
IB-MVS95.41 2095.30 33294.46 33597.84 31598.76 33995.33 33897.33 34096.07 35596.02 32795.37 36297.41 36376.17 37099.96 3597.54 22095.44 36198.22 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_method91.72 33392.32 33689.91 34793.49 36770.18 36990.28 36199.56 17861.71 36495.39 36199.52 20993.90 29399.94 5798.76 12498.27 33799.62 106
testmvs28.94 33533.33 33715.79 34926.03 3699.81 37196.77 35315.67 37011.55 36623.87 36750.74 37319.03 3728.53 36723.21 36533.07 36429.03 363
cdsmvs_eth3d_5k24.88 33633.17 3380.00 3500.00 3710.00 3720.00 36299.62 1370.00 3670.00 36899.13 29499.82 40.00 3680.00 3660.00 3660.00 364
test12329.31 33433.05 33918.08 34825.93 37012.24 37097.53 33110.93 37111.78 36524.21 36650.08 37421.04 3718.60 36623.51 36432.43 36533.39 362
pcd_1.5k_mvsjas16.61 33722.14 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 199.28 410.00 3680.00 3660.00 3660.00 364
uanet_test8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
sosnet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
Regformer8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
uanet8.33 33811.11 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 368100.00 10.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.26 34411.02 3470.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36899.16 2920.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.43 22699.61 10299.43 23796.38 32299.11 25499.07 30497.86 20299.92 9094.04 34199.49 262
IU-MVS99.69 12199.77 4199.22 28997.50 28999.69 10597.75 20199.70 20399.77 33
OPU-MVS99.29 21899.12 29999.44 13599.20 13899.40 24199.00 7198.84 36196.54 28099.60 23899.58 133
test_241102_TWO99.54 18999.13 14999.76 7599.63 15198.32 16599.92 9097.85 19499.69 20699.75 40
test_241102_ONE99.69 12199.82 2699.54 18999.12 15299.82 5099.49 22198.91 8299.52 350
save fliter99.53 18199.25 18198.29 27499.38 25699.07 156
test_0728_THIRD99.18 13899.62 13299.61 16998.58 12799.91 10897.72 20399.80 15599.77 33
test_0728_SECOND99.83 2199.70 11899.79 3699.14 15999.61 14499.92 9097.88 18899.72 19799.77 33
test072699.69 12199.80 3499.24 12899.57 17399.16 14399.73 9399.65 13998.35 160
GSMVS99.14 270
test_part299.62 14599.67 8199.55 160
sam_mvs190.81 32999.14 270
sam_mvs90.52 333
ambc99.20 23499.35 24798.53 25299.17 14999.46 22899.67 11199.80 5498.46 14799.70 30097.92 18599.70 20399.38 219
MTGPAbinary99.53 198
test_post199.14 15951.63 37289.54 34099.82 24696.86 262
test_post52.41 37190.25 33599.86 190
patchmatchnet-post99.62 16090.58 33199.94 57
GG-mvs-BLEND97.36 32797.59 36096.87 31899.70 2288.49 36994.64 36397.26 36680.66 36399.12 35891.50 35096.50 35896.08 360
MTMP99.09 17698.59 325
gm-plane-assit97.59 36089.02 36893.47 34998.30 35299.84 22596.38 289
test9_res95.10 32799.44 26899.50 176
TEST999.35 24799.35 16298.11 29099.41 24094.83 34697.92 33598.99 31698.02 18999.85 208
test_899.34 25799.31 16898.08 29499.40 24794.90 34297.87 33998.97 32298.02 18999.84 225
agg_prior294.58 33599.46 26799.50 176
agg_prior99.35 24799.36 15899.39 25097.76 34499.85 208
TestCases99.63 11199.78 7299.64 9099.83 3298.63 20599.63 12599.72 9398.68 11399.75 28796.38 28999.83 13399.51 170
test_prior499.19 19798.00 302
test_prior297.95 30997.87 27198.05 33099.05 30697.90 19895.99 30499.49 262
test_prior99.46 16999.35 24799.22 19099.39 25099.69 30699.48 186
旧先验297.94 31195.33 33798.94 26899.88 15796.75 269
新几何298.04 298
新几何199.52 15099.50 19899.22 19099.26 28195.66 33498.60 30399.28 27197.67 21699.89 14395.95 30899.32 28799.45 197
旧先验199.49 20399.29 17199.26 28199.39 24597.67 21699.36 28299.46 195
无先验98.01 30099.23 28895.83 33099.85 20895.79 31399.44 202
原ACMM297.92 313
原ACMM199.37 20199.47 21498.87 23499.27 27996.74 31898.26 31999.32 26297.93 19699.82 24695.96 30799.38 27799.43 208
test22299.51 19199.08 21197.83 31899.29 27595.21 33998.68 29899.31 26497.28 23699.38 27799.43 208
testdata299.89 14395.99 304
segment_acmp98.37 158
testdata99.42 18199.51 19198.93 22799.30 27396.20 32598.87 27999.40 24198.33 16499.89 14396.29 29299.28 29199.44 202
testdata197.72 32197.86 274
test1299.54 14799.29 27099.33 16599.16 29798.43 31497.54 22499.82 24699.47 26599.48 186
plane_prior799.58 15499.38 152
plane_prior699.47 21499.26 17797.24 237
plane_prior599.54 18999.82 24695.84 31199.78 16699.60 119
plane_prior499.25 278
plane_prior399.31 16898.36 23399.14 250
plane_prior298.80 22698.94 170
plane_prior199.51 191
plane_prior99.24 18698.42 26697.87 27199.71 201
n20.00 372
nn0.00 372
door-mid99.83 32
lessismore_v099.64 10799.86 3099.38 15290.66 36699.89 2699.83 4394.56 28999.97 1799.56 2599.92 7499.57 139
LGP-MVS_train99.74 6299.82 4499.63 9499.73 8197.56 28499.64 12199.69 11399.37 3199.89 14396.66 27599.87 10999.69 52
test1199.29 275
door99.77 61
HQP5-MVS98.94 223
HQP-NCC99.31 26497.98 30597.45 29198.15 324
ACMP_Plane99.31 26497.98 30597.45 29198.15 324
BP-MVS94.73 331
HQP4-MVS98.15 32499.70 30099.53 158
HQP3-MVS99.37 25799.67 216
HQP2-MVS96.67 254
NP-MVS99.40 23599.13 20298.83 334
MDTV_nov1_ep13_2view91.44 36299.14 15997.37 29699.21 23991.78 31796.75 26999.03 291
ACMMP++_ref99.94 62
ACMMP++99.79 160
Test By Simon98.41 152
ITE_SJBPF99.38 19899.63 14299.44 13599.73 8198.56 21199.33 21599.53 20798.88 8799.68 31796.01 30299.65 22399.02 295
DeepMVS_CXcopyleft97.98 31099.69 12196.95 31599.26 28175.51 36295.74 36098.28 35396.47 26099.62 33791.23 35197.89 34797.38 353