MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 78 | 92.83 71 | 64.03 178 | 93.06 96 | 94.33 46 | 82.19 21 | 93.65 3 | 96.15 25 | 85.89 1 | 97.19 74 | 91.02 20 | 97.75 1 | 96.43 25 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 8 | 89.33 1 | 85.77 40 | 96.26 22 | 72.84 26 | 99.38 1 | 92.64 6 | 95.93 9 | 97.08 9 |
|
DeepPCF-MVS | | 81.17 1 | 89.72 8 | 91.38 3 | 84.72 115 | 93.00 69 | 58.16 279 | 96.72 7 | 94.41 40 | 86.50 6 | 90.25 18 | 97.83 1 | 75.46 14 | 98.67 23 | 92.78 5 | 95.49 12 | 97.32 6 |
|
DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 13 | 97.31 4 | 69.91 35 | 93.96 62 | 94.37 44 | 72.48 155 | 92.07 6 | 96.85 11 | 83.82 2 | 99.15 2 | 91.53 16 | 97.42 4 | 97.55 4 |
|
patch_mono-2 | | | 89.71 9 | 90.99 5 | 85.85 81 | 96.04 24 | 63.70 187 | 95.04 38 | 95.19 13 | 86.74 5 | 91.53 11 | 95.15 49 | 73.86 20 | 97.58 53 | 93.38 3 | 92.00 65 | 96.28 31 |
|
CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 18 | 96.76 8 | 70.65 24 | 96.47 12 | 94.83 23 | 84.83 9 | 89.07 22 | 96.80 14 | 70.86 34 | 99.06 15 | 92.64 6 | 95.71 10 | 96.12 34 |
|
DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 143 | 76.68 2 | 97.29 1 | 95.35 10 | 82.87 15 | 91.58 10 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 77 | 97.64 2 | 97.94 1 |
|
SED-MVS | | | 89.94 7 | 90.36 8 | 88.70 15 | 96.45 12 | 69.38 45 | 96.89 4 | 94.44 38 | 71.65 184 | 92.11 4 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 8 | 95.36 13 | 97.62 2 |
|
DELS-MVS | | | 90.05 6 | 90.09 9 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 3 | 94.40 42 | 88.32 2 | 85.71 41 | 94.91 55 | 74.11 19 | 98.91 17 | 87.26 45 | 95.94 8 | 97.03 10 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
CANet | | | 89.61 10 | 89.99 10 | 88.46 19 | 94.39 39 | 69.71 41 | 96.53 11 | 93.78 57 | 86.89 4 | 89.68 19 | 95.78 29 | 65.94 56 | 99.10 9 | 92.99 4 | 93.91 38 | 96.58 17 |
|
HPM-MVS++ |  | | 89.37 12 | 89.95 11 | 87.64 28 | 95.10 30 | 68.23 75 | 95.24 31 | 94.49 36 | 82.43 19 | 88.90 23 | 96.35 20 | 71.89 33 | 98.63 24 | 88.76 33 | 96.40 6 | 96.06 35 |
|
DVP-MVS |  | | 89.41 11 | 89.73 12 | 88.45 20 | 96.40 15 | 69.99 31 | 96.64 8 | 94.52 34 | 71.92 171 | 90.55 16 | 96.93 9 | 73.77 21 | 99.08 11 | 91.91 14 | 94.90 20 | 96.29 29 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
NCCC | | | 89.07 13 | 89.46 13 | 87.91 23 | 96.60 10 | 69.05 54 | 96.38 13 | 94.64 31 | 84.42 10 | 86.74 32 | 96.20 23 | 66.56 52 | 98.76 22 | 89.03 32 | 94.56 30 | 95.92 40 |
|
DPE-MVS |  | | 88.77 14 | 89.21 14 | 87.45 35 | 96.26 20 | 67.56 90 | 94.17 51 | 94.15 51 | 68.77 234 | 90.74 14 | 97.27 2 | 76.09 12 | 98.49 27 | 90.58 23 | 94.91 19 | 96.30 28 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
TSAR-MVS + MP. | | | 88.11 17 | 88.64 15 | 86.54 61 | 91.73 102 | 68.04 79 | 90.36 202 | 93.55 70 | 82.89 14 | 91.29 12 | 92.89 105 | 72.27 30 | 96.03 121 | 87.99 36 | 94.77 24 | 95.54 50 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
EPNet | | | 87.84 21 | 88.38 16 | 86.23 71 | 93.30 60 | 66.05 127 | 95.26 30 | 94.84 22 | 87.09 3 | 88.06 25 | 94.53 64 | 66.79 49 | 97.34 65 | 83.89 73 | 91.68 70 | 95.29 61 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
TSAR-MVS + GP. | | | 87.96 18 | 88.37 17 | 86.70 55 | 93.51 56 | 65.32 145 | 95.15 34 | 93.84 56 | 78.17 70 | 85.93 39 | 94.80 58 | 75.80 13 | 98.21 32 | 89.38 26 | 88.78 98 | 96.59 15 |
|
SMA-MVS |  | | 88.14 15 | 88.29 18 | 87.67 27 | 93.21 63 | 68.72 62 | 93.85 69 | 94.03 53 | 74.18 120 | 91.74 9 | 96.67 15 | 65.61 60 | 98.42 31 | 89.24 29 | 96.08 7 | 95.88 41 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepC-MVS_fast | | 79.48 2 | 87.95 19 | 88.00 19 | 87.79 26 | 95.86 27 | 68.32 70 | 95.74 19 | 94.11 52 | 83.82 12 | 83.49 61 | 96.19 24 | 64.53 72 | 98.44 29 | 83.42 76 | 94.88 23 | 96.61 14 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
APDe-MVS | | | 87.54 23 | 87.84 20 | 86.65 56 | 96.07 23 | 66.30 123 | 94.84 43 | 93.78 57 | 69.35 225 | 88.39 24 | 96.34 21 | 67.74 44 | 97.66 48 | 90.62 22 | 93.44 47 | 96.01 38 |
|
lupinMVS | | | 87.74 22 | 87.77 21 | 87.63 32 | 89.24 155 | 71.18 19 | 96.57 10 | 92.90 96 | 82.70 18 | 87.13 29 | 95.27 43 | 64.99 64 | 95.80 126 | 89.34 27 | 91.80 68 | 95.93 39 |
|
9.14 | | | | 87.63 22 | | 93.86 47 | | 94.41 49 | 94.18 49 | 72.76 150 | 86.21 35 | 96.51 17 | 66.64 50 | 97.88 41 | 90.08 24 | 94.04 35 | |
|
PS-MVSNAJ | | | 88.14 15 | 87.61 23 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 18 | 93.26 81 | 83.86 11 | 89.55 20 | 96.06 26 | 53.55 191 | 97.89 40 | 91.10 18 | 93.31 49 | 94.54 90 |
|
dcpmvs_2 | | | 87.37 25 | 87.55 24 | 86.85 48 | 95.04 32 | 68.20 76 | 90.36 202 | 90.66 184 | 79.37 50 | 81.20 76 | 93.67 89 | 74.73 15 | 96.55 105 | 90.88 21 | 92.00 65 | 95.82 42 |
|
SD-MVS | | | 87.49 24 | 87.49 25 | 87.50 34 | 93.60 53 | 68.82 60 | 93.90 66 | 92.63 107 | 76.86 88 | 87.90 26 | 95.76 30 | 66.17 53 | 97.63 50 | 89.06 31 | 91.48 74 | 96.05 36 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
train_agg | | | 87.21 27 | 87.42 26 | 86.60 57 | 94.18 41 | 67.28 97 | 94.16 52 | 93.51 71 | 71.87 176 | 85.52 43 | 95.33 38 | 68.19 39 | 97.27 72 | 89.09 30 | 94.90 20 | 95.25 67 |
|
xiu_mvs_v2_base | | | 87.92 20 | 87.38 27 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 19 | 93.12 89 | 83.53 13 | 89.55 20 | 95.95 27 | 53.45 195 | 97.68 45 | 91.07 19 | 92.62 56 | 94.54 90 |
|
SF-MVS | | | 87.03 29 | 87.09 28 | 86.84 49 | 92.70 77 | 67.45 95 | 93.64 78 | 93.76 60 | 70.78 208 | 86.25 34 | 96.44 19 | 66.98 47 | 97.79 43 | 88.68 34 | 94.56 30 | 95.28 63 |
|
CS-MVS-test | | | 86.14 40 | 87.01 29 | 83.52 147 | 92.63 80 | 59.36 267 | 95.49 25 | 91.92 131 | 80.09 40 | 85.46 45 | 95.53 35 | 61.82 103 | 95.77 129 | 86.77 51 | 93.37 48 | 95.41 52 |
|
alignmvs | | | 87.28 26 | 86.97 30 | 88.24 22 | 91.30 114 | 71.14 21 | 95.61 23 | 93.56 69 | 79.30 51 | 87.07 31 | 95.25 45 | 68.43 37 | 96.93 94 | 87.87 37 | 84.33 133 | 96.65 13 |
|
SteuartSystems-ACMMP | | | 86.82 33 | 86.90 31 | 86.58 59 | 90.42 129 | 66.38 120 | 96.09 15 | 93.87 55 | 77.73 77 | 84.01 59 | 95.66 31 | 63.39 87 | 97.94 37 | 87.40 43 | 93.55 46 | 95.42 51 |
Skip Steuart: Steuart Systems R&D Blog. |
PVSNet_Blended | | | 86.73 34 | 86.86 32 | 86.31 70 | 93.76 49 | 67.53 92 | 96.33 14 | 93.61 67 | 82.34 20 | 81.00 81 | 93.08 99 | 63.19 90 | 97.29 68 | 87.08 47 | 91.38 76 | 94.13 103 |
|
PHI-MVS | | | 86.83 32 | 86.85 33 | 86.78 53 | 93.47 57 | 65.55 141 | 95.39 28 | 95.10 16 | 71.77 181 | 85.69 42 | 96.52 16 | 62.07 99 | 98.77 21 | 86.06 56 | 95.60 11 | 96.03 37 |
|
CS-MVS | | | 85.80 45 | 86.65 34 | 83.27 155 | 92.00 94 | 58.92 272 | 95.31 29 | 91.86 136 | 79.97 41 | 84.82 50 | 95.40 36 | 62.26 97 | 95.51 147 | 86.11 55 | 92.08 64 | 95.37 55 |
|
MG-MVS | | | 87.11 28 | 86.27 35 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 41 | 94.49 36 | 78.74 65 | 83.87 60 | 92.94 103 | 64.34 73 | 96.94 92 | 75.19 132 | 94.09 34 | 95.66 45 |
|
CSCG | | | 86.87 30 | 86.26 36 | 88.72 14 | 95.05 31 | 70.79 23 | 93.83 73 | 95.33 11 | 68.48 238 | 77.63 116 | 94.35 73 | 73.04 24 | 98.45 28 | 84.92 64 | 93.71 43 | 96.92 11 |
|
canonicalmvs | | | 86.85 31 | 86.25 37 | 88.66 17 | 91.80 101 | 71.92 14 | 93.54 83 | 91.71 144 | 80.26 39 | 87.55 27 | 95.25 45 | 63.59 85 | 96.93 94 | 88.18 35 | 84.34 132 | 97.11 8 |
|
jason | | | 86.40 35 | 86.17 38 | 87.11 42 | 86.16 219 | 70.54 26 | 95.71 22 | 92.19 122 | 82.00 23 | 84.58 52 | 94.34 74 | 61.86 101 | 95.53 146 | 87.76 38 | 90.89 82 | 95.27 64 |
jason: jason. |
ETV-MVS | | | 86.01 42 | 86.11 39 | 85.70 87 | 90.21 134 | 67.02 106 | 93.43 88 | 91.92 131 | 81.21 32 | 84.13 58 | 94.07 83 | 60.93 110 | 95.63 137 | 89.28 28 | 89.81 90 | 94.46 96 |
|
APD-MVS |  | | 85.93 43 | 85.99 40 | 85.76 85 | 95.98 26 | 65.21 148 | 93.59 81 | 92.58 109 | 66.54 251 | 86.17 36 | 95.88 28 | 63.83 79 | 97.00 84 | 86.39 53 | 92.94 53 | 95.06 71 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MSLP-MVS++ | | | 86.27 37 | 85.91 41 | 87.35 37 | 92.01 93 | 68.97 57 | 95.04 38 | 92.70 101 | 79.04 59 | 81.50 74 | 96.50 18 | 58.98 132 | 96.78 97 | 83.49 75 | 93.93 37 | 96.29 29 |
|
WTY-MVS | | | 86.32 36 | 85.81 42 | 87.85 24 | 92.82 73 | 69.37 47 | 95.20 32 | 95.25 12 | 82.71 17 | 81.91 71 | 94.73 59 | 67.93 43 | 97.63 50 | 79.55 102 | 82.25 145 | 96.54 18 |
|
ACMMP_NAP | | | 86.05 41 | 85.80 43 | 86.80 52 | 91.58 106 | 67.53 92 | 91.79 149 | 93.49 74 | 74.93 111 | 84.61 51 | 95.30 40 | 59.42 126 | 97.92 38 | 86.13 54 | 94.92 18 | 94.94 76 |
|
MVS_111021_HR | | | 86.19 39 | 85.80 43 | 87.37 36 | 93.17 65 | 69.79 38 | 93.99 61 | 93.76 60 | 79.08 58 | 78.88 105 | 93.99 84 | 62.25 98 | 98.15 34 | 85.93 57 | 91.15 80 | 94.15 102 |
|
VNet | | | 86.20 38 | 85.65 45 | 87.84 25 | 93.92 46 | 69.99 31 | 95.73 21 | 95.94 6 | 78.43 67 | 86.00 38 | 93.07 100 | 58.22 136 | 97.00 84 | 85.22 60 | 84.33 133 | 96.52 19 |
|
CDPH-MVS | | | 85.71 46 | 85.46 46 | 86.46 63 | 94.75 34 | 67.19 99 | 93.89 67 | 92.83 98 | 70.90 204 | 83.09 64 | 95.28 41 | 63.62 83 | 97.36 63 | 80.63 96 | 94.18 33 | 94.84 80 |
|
PAPM | | | 85.89 44 | 85.46 46 | 87.18 40 | 88.20 183 | 72.42 13 | 92.41 123 | 92.77 99 | 82.11 22 | 80.34 86 | 93.07 100 | 68.27 38 | 95.02 158 | 78.39 115 | 93.59 45 | 94.09 105 |
|
DeepC-MVS | | 77.85 3 | 85.52 48 | 85.24 48 | 86.37 67 | 88.80 165 | 66.64 114 | 92.15 129 | 93.68 65 | 81.07 33 | 76.91 126 | 93.64 90 | 62.59 95 | 98.44 29 | 85.50 58 | 92.84 55 | 94.03 109 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
casdiffmvs_mvg |  | | 85.66 47 | 85.18 49 | 87.09 43 | 88.22 182 | 69.35 48 | 93.74 76 | 91.89 134 | 81.47 27 | 80.10 88 | 91.45 132 | 64.80 68 | 96.35 108 | 87.23 46 | 87.69 106 | 95.58 48 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MP-MVS-pluss | | | 85.24 51 | 85.13 50 | 85.56 90 | 91.42 111 | 65.59 139 | 91.54 159 | 92.51 111 | 74.56 114 | 80.62 84 | 95.64 32 | 59.15 130 | 97.00 84 | 86.94 49 | 93.80 39 | 94.07 107 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
ZNCC-MVS | | | 85.33 50 | 85.08 51 | 86.06 73 | 93.09 68 | 65.65 137 | 93.89 67 | 93.41 78 | 73.75 131 | 79.94 90 | 94.68 61 | 60.61 113 | 98.03 36 | 82.63 80 | 93.72 42 | 94.52 92 |
|
DROMVSNet | | | 84.53 60 | 85.04 52 | 83.01 159 | 89.34 150 | 61.37 232 | 94.42 48 | 91.09 171 | 77.91 74 | 83.24 62 | 94.20 79 | 58.37 135 | 95.40 148 | 85.35 59 | 91.41 75 | 92.27 159 |
|
MP-MVS |  | | 85.02 53 | 84.97 53 | 85.17 102 | 92.60 81 | 64.27 174 | 93.24 91 | 92.27 116 | 73.13 142 | 79.63 94 | 94.43 67 | 61.90 100 | 97.17 75 | 85.00 62 | 92.56 57 | 94.06 108 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
EIA-MVS | | | 84.84 56 | 84.88 54 | 84.69 116 | 91.30 114 | 62.36 214 | 93.85 69 | 92.04 126 | 79.45 48 | 79.33 98 | 94.28 77 | 62.42 96 | 96.35 108 | 80.05 99 | 91.25 79 | 95.38 54 |
|
casdiffmvs |  | | 85.37 49 | 84.87 55 | 86.84 49 | 88.25 180 | 69.07 53 | 93.04 98 | 91.76 141 | 81.27 31 | 80.84 83 | 92.07 123 | 64.23 74 | 96.06 119 | 84.98 63 | 87.43 109 | 95.39 53 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
PAPR | | | 85.15 52 | 84.47 56 | 87.18 40 | 96.02 25 | 68.29 71 | 91.85 147 | 93.00 93 | 76.59 93 | 79.03 101 | 95.00 50 | 61.59 104 | 97.61 52 | 78.16 116 | 89.00 97 | 95.63 46 |
|
baseline | | | 85.01 54 | 84.44 57 | 86.71 54 | 88.33 177 | 68.73 61 | 90.24 207 | 91.82 140 | 81.05 34 | 81.18 77 | 92.50 112 | 63.69 82 | 96.08 118 | 84.45 68 | 86.71 117 | 95.32 59 |
|
HFP-MVS | | | 84.73 57 | 84.40 58 | 85.72 86 | 93.75 51 | 65.01 154 | 93.50 85 | 93.19 85 | 72.19 165 | 79.22 99 | 94.93 53 | 59.04 131 | 97.67 46 | 81.55 87 | 92.21 60 | 94.49 95 |
|
GST-MVS | | | 84.63 59 | 84.29 59 | 85.66 88 | 92.82 73 | 65.27 146 | 93.04 98 | 93.13 88 | 73.20 140 | 78.89 102 | 94.18 80 | 59.41 127 | 97.85 42 | 81.45 89 | 92.48 59 | 93.86 117 |
|
ACMMPR | | | 84.37 61 | 84.06 60 | 85.28 98 | 93.56 54 | 64.37 170 | 93.50 85 | 93.15 87 | 72.19 165 | 78.85 107 | 94.86 56 | 56.69 156 | 97.45 57 | 81.55 87 | 92.20 61 | 94.02 110 |
|
region2R | | | 84.36 62 | 84.03 61 | 85.36 96 | 93.54 55 | 64.31 172 | 93.43 88 | 92.95 94 | 72.16 168 | 78.86 106 | 94.84 57 | 56.97 151 | 97.53 55 | 81.38 91 | 92.11 63 | 94.24 98 |
|
diffmvs |  | | 84.28 64 | 83.83 62 | 85.61 89 | 87.40 199 | 68.02 80 | 90.88 187 | 89.24 233 | 80.54 37 | 81.64 73 | 92.52 111 | 59.83 121 | 94.52 182 | 87.32 44 | 85.11 126 | 94.29 97 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
EI-MVSNet-Vis-set | | | 83.77 76 | 83.67 63 | 84.06 134 | 92.79 76 | 63.56 192 | 91.76 152 | 94.81 24 | 79.65 47 | 77.87 114 | 94.09 81 | 63.35 88 | 97.90 39 | 79.35 104 | 79.36 165 | 90.74 183 |
|
CANet_DTU | | | 84.09 70 | 83.52 64 | 85.81 82 | 90.30 132 | 66.82 109 | 91.87 145 | 89.01 246 | 85.27 7 | 86.09 37 | 93.74 88 | 47.71 244 | 96.98 88 | 77.90 118 | 89.78 92 | 93.65 122 |
|
PVSNet_Blended_VisFu | | | 83.97 72 | 83.50 65 | 85.39 95 | 90.02 136 | 66.59 117 | 93.77 74 | 91.73 142 | 77.43 85 | 77.08 125 | 89.81 162 | 63.77 81 | 96.97 89 | 79.67 101 | 88.21 102 | 92.60 147 |
|
XVS | | | 83.87 74 | 83.47 66 | 85.05 103 | 93.22 61 | 63.78 182 | 92.92 103 | 92.66 104 | 73.99 123 | 78.18 111 | 94.31 76 | 55.25 169 | 97.41 60 | 79.16 106 | 91.58 72 | 93.95 112 |
|
CHOSEN 1792x2688 | | | 84.98 55 | 83.45 67 | 89.57 10 | 89.94 138 | 75.14 5 | 92.07 135 | 92.32 114 | 81.87 24 | 75.68 135 | 88.27 179 | 60.18 116 | 98.60 25 | 80.46 98 | 90.27 89 | 94.96 75 |
|
PVSNet_BlendedMVS | | | 83.38 81 | 83.43 68 | 83.22 156 | 93.76 49 | 67.53 92 | 94.06 57 | 93.61 67 | 79.13 56 | 81.00 81 | 85.14 215 | 63.19 90 | 97.29 68 | 87.08 47 | 73.91 208 | 84.83 278 |
|
MAR-MVS | | | 84.18 68 | 83.43 68 | 86.44 64 | 96.25 21 | 65.93 132 | 94.28 50 | 94.27 48 | 74.41 115 | 79.16 100 | 95.61 33 | 53.99 186 | 98.88 20 | 69.62 181 | 93.26 50 | 94.50 94 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
baseline2 | | | 83.68 79 | 83.42 70 | 84.48 123 | 87.37 200 | 66.00 129 | 90.06 211 | 95.93 7 | 79.71 46 | 69.08 210 | 90.39 150 | 77.92 6 | 96.28 110 | 78.91 110 | 81.38 153 | 91.16 179 |
|
CP-MVS | | | 83.71 78 | 83.40 71 | 84.65 117 | 93.14 66 | 63.84 180 | 94.59 46 | 92.28 115 | 71.03 202 | 77.41 119 | 94.92 54 | 55.21 172 | 96.19 112 | 81.32 92 | 90.70 84 | 93.91 114 |
|
MTAPA | | | 83.91 73 | 83.38 72 | 85.50 91 | 91.89 99 | 65.16 150 | 81.75 299 | 92.23 117 | 75.32 106 | 80.53 85 | 95.21 47 | 56.06 164 | 97.16 76 | 84.86 65 | 92.55 58 | 94.18 99 |
|
HY-MVS | | 76.49 5 | 84.28 64 | 83.36 73 | 87.02 46 | 92.22 87 | 67.74 86 | 84.65 277 | 94.50 35 | 79.15 55 | 82.23 69 | 87.93 186 | 66.88 48 | 96.94 92 | 80.53 97 | 82.20 146 | 96.39 27 |
|
MVS_Test | | | 84.16 69 | 83.20 74 | 87.05 45 | 91.56 107 | 69.82 37 | 89.99 216 | 92.05 125 | 77.77 76 | 82.84 65 | 86.57 200 | 63.93 78 | 96.09 116 | 74.91 137 | 89.18 96 | 95.25 67 |
|
test_yl | | | 84.28 64 | 83.16 75 | 87.64 28 | 94.52 37 | 69.24 49 | 95.78 16 | 95.09 17 | 69.19 228 | 81.09 78 | 92.88 106 | 57.00 149 | 97.44 58 | 81.11 94 | 81.76 149 | 96.23 32 |
|
DCV-MVSNet | | | 84.28 64 | 83.16 75 | 87.64 28 | 94.52 37 | 69.24 49 | 95.78 16 | 95.09 17 | 69.19 228 | 81.09 78 | 92.88 106 | 57.00 149 | 97.44 58 | 81.11 94 | 81.76 149 | 96.23 32 |
|
ET-MVSNet_ETH3D | | | 84.01 71 | 83.15 77 | 86.58 59 | 90.78 125 | 70.89 22 | 94.74 45 | 94.62 32 | 81.44 30 | 58.19 301 | 93.64 90 | 73.64 23 | 92.35 257 | 82.66 79 | 78.66 173 | 96.50 23 |
|
EI-MVSNet-UG-set | | | 83.14 86 | 82.96 78 | 83.67 145 | 92.28 85 | 63.19 197 | 91.38 168 | 94.68 29 | 79.22 53 | 76.60 128 | 93.75 87 | 62.64 94 | 97.76 44 | 78.07 117 | 78.01 176 | 90.05 192 |
|
HPM-MVS |  | | 83.25 84 | 82.95 79 | 84.17 132 | 92.25 86 | 62.88 207 | 90.91 184 | 91.86 136 | 70.30 214 | 77.12 123 | 93.96 85 | 56.75 154 | 96.28 110 | 82.04 84 | 91.34 78 | 93.34 129 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
test2506 | | | 83.29 82 | 82.92 80 | 84.37 126 | 88.39 175 | 63.18 198 | 92.01 138 | 91.35 159 | 77.66 79 | 78.49 110 | 91.42 133 | 64.58 71 | 95.09 157 | 73.19 144 | 89.23 94 | 94.85 77 |
|
MVSFormer | | | 83.75 77 | 82.88 81 | 86.37 67 | 89.24 155 | 71.18 19 | 89.07 235 | 90.69 181 | 65.80 256 | 87.13 29 | 94.34 74 | 64.99 64 | 92.67 243 | 72.83 148 | 91.80 68 | 95.27 64 |
|
MVS | | | 84.66 58 | 82.86 82 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 251 | 95.54 9 | 68.55 236 | 72.35 176 | 94.71 60 | 59.78 122 | 98.90 18 | 81.29 93 | 94.69 29 | 96.74 12 |
|
Effi-MVS+ | | | 83.82 75 | 82.76 83 | 86.99 47 | 89.56 146 | 69.40 44 | 91.35 170 | 86.12 292 | 72.59 152 | 83.22 63 | 92.81 109 | 59.60 124 | 96.01 123 | 81.76 86 | 87.80 105 | 95.56 49 |
|
LFMVS | | | 84.34 63 | 82.73 84 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 40 | 91.89 134 | 71.90 173 | 82.16 70 | 93.49 94 | 47.98 241 | 97.05 79 | 82.55 81 | 84.82 128 | 97.25 7 |
|
iter_conf05 | | | 83.27 83 | 82.70 85 | 84.98 106 | 93.32 59 | 71.84 15 | 94.16 52 | 81.76 322 | 82.74 16 | 73.83 157 | 88.40 175 | 72.77 27 | 94.61 173 | 82.10 83 | 75.21 200 | 88.48 212 |
|
PGM-MVS | | | 83.25 84 | 82.70 85 | 84.92 107 | 92.81 75 | 64.07 177 | 90.44 198 | 92.20 121 | 71.28 196 | 77.23 122 | 94.43 67 | 55.17 173 | 97.31 67 | 79.33 105 | 91.38 76 | 93.37 128 |
|
SR-MVS | | | 82.81 91 | 82.58 87 | 83.50 150 | 93.35 58 | 61.16 235 | 92.23 128 | 91.28 163 | 64.48 265 | 81.27 75 | 95.28 41 | 53.71 190 | 95.86 125 | 82.87 78 | 88.77 99 | 93.49 126 |
|
h-mvs33 | | | 83.01 88 | 82.56 88 | 84.35 127 | 89.34 150 | 62.02 219 | 92.72 108 | 93.76 60 | 81.45 28 | 82.73 66 | 92.25 121 | 60.11 117 | 97.13 77 | 87.69 39 | 62.96 284 | 93.91 114 |
|
thisisatest0515 | | | 83.41 80 | 82.49 89 | 86.16 72 | 89.46 149 | 68.26 73 | 93.54 83 | 94.70 28 | 74.31 118 | 75.75 133 | 90.92 140 | 72.62 28 | 96.52 106 | 69.64 179 | 81.50 152 | 93.71 120 |
|
mPP-MVS | | | 82.96 90 | 82.44 90 | 84.52 121 | 92.83 71 | 62.92 205 | 92.76 106 | 91.85 138 | 71.52 192 | 75.61 138 | 94.24 78 | 53.48 194 | 96.99 87 | 78.97 109 | 90.73 83 | 93.64 123 |
|
sss | | | 82.71 94 | 82.38 91 | 83.73 142 | 89.25 154 | 59.58 262 | 92.24 127 | 94.89 21 | 77.96 72 | 79.86 91 | 92.38 117 | 56.70 155 | 97.05 79 | 77.26 121 | 80.86 157 | 94.55 88 |
|
CLD-MVS | | | 82.73 92 | 82.35 92 | 83.86 138 | 87.90 190 | 67.65 89 | 95.45 26 | 92.18 123 | 85.06 8 | 72.58 169 | 92.27 120 | 52.46 202 | 95.78 127 | 84.18 69 | 79.06 168 | 88.16 218 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
MVSTER | | | 82.47 96 | 82.05 93 | 83.74 140 | 92.68 78 | 69.01 55 | 91.90 144 | 93.21 82 | 79.83 42 | 72.14 177 | 85.71 212 | 74.72 16 | 94.72 168 | 75.72 128 | 72.49 219 | 87.50 223 |
|
PMMVS | | | 81.98 106 | 82.04 94 | 81.78 191 | 89.76 142 | 56.17 298 | 91.13 180 | 90.69 181 | 77.96 72 | 80.09 89 | 93.57 92 | 46.33 253 | 94.99 159 | 81.41 90 | 87.46 108 | 94.17 100 |
|
test_vis1_n_1920 | | | 81.66 110 | 82.01 95 | 80.64 217 | 82.24 271 | 55.09 306 | 94.76 44 | 86.87 282 | 81.67 26 | 84.40 54 | 94.63 62 | 38.17 288 | 94.67 172 | 91.98 13 | 83.34 139 | 92.16 163 |
|
TESTMET0.1,1 | | | 82.41 97 | 81.98 96 | 83.72 143 | 88.08 184 | 63.74 184 | 92.70 110 | 93.77 59 | 79.30 51 | 77.61 117 | 87.57 191 | 58.19 137 | 94.08 197 | 73.91 143 | 86.68 118 | 93.33 131 |
|
PAPM_NR | | | 82.97 89 | 81.84 97 | 86.37 67 | 94.10 44 | 66.76 112 | 87.66 256 | 92.84 97 | 69.96 218 | 74.07 154 | 93.57 92 | 63.10 92 | 97.50 56 | 70.66 172 | 90.58 86 | 94.85 77 |
|
VDD-MVS | | | 83.06 87 | 81.81 98 | 86.81 51 | 90.86 123 | 67.70 87 | 95.40 27 | 91.50 154 | 75.46 103 | 81.78 72 | 92.34 119 | 40.09 278 | 97.13 77 | 86.85 50 | 82.04 147 | 95.60 47 |
|
DP-MVS Recon | | | 82.73 92 | 81.65 99 | 85.98 75 | 97.31 4 | 67.06 103 | 95.15 34 | 91.99 128 | 69.08 231 | 76.50 130 | 93.89 86 | 54.48 181 | 98.20 33 | 70.76 170 | 85.66 124 | 92.69 144 |
|
MVS_111021_LR | | | 82.02 105 | 81.52 100 | 83.51 149 | 88.42 173 | 62.88 207 | 89.77 220 | 88.93 248 | 76.78 91 | 75.55 139 | 93.10 97 | 50.31 218 | 95.38 150 | 83.82 74 | 87.02 111 | 92.26 160 |
|
EPP-MVSNet | | | 81.79 108 | 81.52 100 | 82.61 168 | 88.77 166 | 60.21 254 | 93.02 100 | 93.66 66 | 68.52 237 | 72.90 164 | 90.39 150 | 72.19 31 | 94.96 160 | 74.93 136 | 79.29 167 | 92.67 145 |
|
APD-MVS_3200maxsize | | | 81.64 111 | 81.32 102 | 82.59 169 | 92.36 83 | 58.74 274 | 91.39 166 | 91.01 177 | 63.35 274 | 79.72 93 | 94.62 63 | 51.82 205 | 96.14 114 | 79.71 100 | 87.93 104 | 92.89 143 |
|
CostFormer | | | 82.33 98 | 81.15 103 | 85.86 80 | 89.01 160 | 68.46 67 | 82.39 297 | 93.01 91 | 75.59 101 | 80.25 87 | 81.57 258 | 72.03 32 | 94.96 160 | 79.06 108 | 77.48 184 | 94.16 101 |
|
xiu_mvs_v1_base_debu | | | 82.16 101 | 81.12 104 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 118 | 90.44 190 | 73.12 143 | 84.20 55 | 94.36 69 | 38.04 291 | 95.73 131 | 84.12 70 | 86.81 112 | 91.33 173 |
|
xiu_mvs_v1_base | | | 82.16 101 | 81.12 104 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 118 | 90.44 190 | 73.12 143 | 84.20 55 | 94.36 69 | 38.04 291 | 95.73 131 | 84.12 70 | 86.81 112 | 91.33 173 |
|
xiu_mvs_v1_base_debi | | | 82.16 101 | 81.12 104 | 85.26 99 | 86.42 213 | 68.72 62 | 92.59 118 | 90.44 190 | 73.12 143 | 84.20 55 | 94.36 69 | 38.04 291 | 95.73 131 | 84.12 70 | 86.81 112 | 91.33 173 |
|
hse-mvs2 | | | 81.12 119 | 81.11 107 | 81.16 204 | 86.52 212 | 57.48 289 | 89.40 228 | 91.16 166 | 81.45 28 | 82.73 66 | 90.49 148 | 60.11 117 | 94.58 175 | 87.69 39 | 60.41 311 | 91.41 172 |
|
baseline1 | | | 81.84 107 | 81.03 108 | 84.28 130 | 91.60 105 | 66.62 115 | 91.08 181 | 91.66 148 | 81.87 24 | 74.86 144 | 91.67 130 | 69.98 36 | 94.92 163 | 71.76 162 | 64.75 273 | 91.29 178 |
|
iter_conf_final | | | 81.74 109 | 80.93 109 | 84.18 131 | 92.66 79 | 69.10 52 | 92.94 102 | 82.80 320 | 79.01 60 | 74.85 145 | 88.40 175 | 61.83 102 | 94.61 173 | 79.36 103 | 76.52 193 | 88.83 203 |
|
3Dnovator | | 73.91 6 | 82.69 95 | 80.82 110 | 88.31 21 | 89.57 145 | 71.26 18 | 92.60 116 | 94.39 43 | 78.84 62 | 67.89 230 | 92.48 115 | 48.42 236 | 98.52 26 | 68.80 191 | 94.40 32 | 95.15 69 |
|
CDS-MVSNet | | | 81.43 113 | 80.74 111 | 83.52 147 | 86.26 217 | 64.45 164 | 92.09 133 | 90.65 185 | 75.83 100 | 73.95 156 | 89.81 162 | 63.97 77 | 92.91 233 | 71.27 165 | 82.82 142 | 93.20 134 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
SR-MVS-dyc-post | | | 81.06 120 | 80.70 112 | 82.15 182 | 92.02 91 | 58.56 276 | 90.90 185 | 90.45 187 | 62.76 281 | 78.89 102 | 94.46 65 | 51.26 212 | 95.61 139 | 78.77 112 | 86.77 115 | 92.28 156 |
|
ACMMP |  | | 81.49 112 | 80.67 113 | 83.93 137 | 91.71 103 | 62.90 206 | 92.13 130 | 92.22 120 | 71.79 180 | 71.68 184 | 93.49 94 | 50.32 217 | 96.96 90 | 78.47 114 | 84.22 137 | 91.93 165 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
HQP-MVS | | | 81.14 117 | 80.64 114 | 82.64 167 | 87.54 195 | 63.66 190 | 94.06 57 | 91.70 146 | 79.80 43 | 74.18 150 | 90.30 152 | 51.63 209 | 95.61 139 | 77.63 119 | 78.90 169 | 88.63 208 |
|
3Dnovator+ | | 73.60 7 | 82.10 104 | 80.60 115 | 86.60 57 | 90.89 122 | 66.80 111 | 95.20 32 | 93.44 76 | 74.05 122 | 67.42 236 | 92.49 114 | 49.46 226 | 97.65 49 | 70.80 169 | 91.68 70 | 95.33 57 |
|
API-MVS | | | 82.28 99 | 80.53 116 | 87.54 33 | 96.13 22 | 70.59 25 | 93.63 79 | 91.04 176 | 65.72 258 | 75.45 140 | 92.83 108 | 56.11 163 | 98.89 19 | 64.10 233 | 89.75 93 | 93.15 135 |
|
RE-MVS-def | | | | 80.48 117 | | 92.02 91 | 58.56 276 | 90.90 185 | 90.45 187 | 62.76 281 | 78.89 102 | 94.46 65 | 49.30 228 | | 78.77 112 | 86.77 115 | 92.28 156 |
|
IB-MVS | | 77.80 4 | 82.18 100 | 80.46 118 | 87.35 37 | 89.14 157 | 70.28 29 | 95.59 24 | 95.17 15 | 78.85 61 | 70.19 198 | 85.82 210 | 70.66 35 | 97.67 46 | 72.19 159 | 66.52 259 | 94.09 105 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
ECVR-MVS |  | | 81.29 115 | 80.38 119 | 84.01 136 | 88.39 175 | 61.96 221 | 92.56 121 | 86.79 284 | 77.66 79 | 76.63 127 | 91.42 133 | 46.34 252 | 95.24 155 | 74.36 141 | 89.23 94 | 94.85 77 |
|
thisisatest0530 | | | 81.15 116 | 80.07 120 | 84.39 125 | 88.26 179 | 65.63 138 | 91.40 164 | 94.62 32 | 71.27 197 | 70.93 190 | 89.18 166 | 72.47 29 | 96.04 120 | 65.62 222 | 76.89 190 | 91.49 169 |
|
test1111 | | | 80.84 124 | 80.02 121 | 83.33 153 | 87.87 191 | 60.76 243 | 92.62 115 | 86.86 283 | 77.86 75 | 75.73 134 | 91.39 135 | 46.35 251 | 94.70 171 | 72.79 150 | 88.68 100 | 94.52 92 |
|
Fast-Effi-MVS+ | | | 81.14 117 | 80.01 122 | 84.51 122 | 90.24 133 | 65.86 133 | 94.12 56 | 89.15 239 | 73.81 130 | 75.37 141 | 88.26 180 | 57.26 144 | 94.53 181 | 66.97 207 | 84.92 127 | 93.15 135 |
|
mvs_anonymous | | | 81.36 114 | 79.99 123 | 85.46 92 | 90.39 131 | 68.40 68 | 86.88 268 | 90.61 186 | 74.41 115 | 70.31 197 | 84.67 221 | 63.79 80 | 92.32 258 | 73.13 145 | 85.70 123 | 95.67 44 |
|
Vis-MVSNet |  | | 80.92 123 | 79.98 124 | 83.74 140 | 88.48 170 | 61.80 223 | 93.44 87 | 88.26 269 | 73.96 126 | 77.73 115 | 91.76 127 | 49.94 222 | 94.76 165 | 65.84 219 | 90.37 88 | 94.65 87 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
nrg030 | | | 80.93 122 | 79.86 125 | 84.13 133 | 83.69 257 | 68.83 59 | 93.23 92 | 91.20 164 | 75.55 102 | 75.06 143 | 88.22 183 | 63.04 93 | 94.74 167 | 81.88 85 | 66.88 256 | 88.82 206 |
|
1112_ss | | | 80.56 127 | 79.83 126 | 82.77 163 | 88.65 167 | 60.78 241 | 92.29 125 | 88.36 264 | 72.58 153 | 72.46 173 | 94.95 51 | 65.09 63 | 93.42 221 | 66.38 213 | 77.71 178 | 94.10 104 |
|
HQP_MVS | | | 80.34 131 | 79.75 127 | 82.12 184 | 86.94 206 | 62.42 212 | 93.13 94 | 91.31 160 | 78.81 63 | 72.53 170 | 89.14 168 | 50.66 215 | 95.55 144 | 76.74 122 | 78.53 174 | 88.39 215 |
|
UA-Net | | | 80.02 137 | 79.65 128 | 81.11 206 | 89.33 152 | 57.72 284 | 86.33 271 | 89.00 247 | 77.44 84 | 81.01 80 | 89.15 167 | 59.33 128 | 95.90 124 | 61.01 253 | 84.28 135 | 89.73 197 |
|
Vis-MVSNet (Re-imp) | | | 79.24 149 | 79.57 129 | 78.24 261 | 88.46 171 | 52.29 318 | 90.41 200 | 89.12 241 | 74.24 119 | 69.13 208 | 91.91 125 | 65.77 58 | 90.09 293 | 59.00 265 | 88.09 103 | 92.33 153 |
|
test-LLR | | | 80.10 135 | 79.56 130 | 81.72 193 | 86.93 208 | 61.17 233 | 92.70 110 | 91.54 151 | 71.51 193 | 75.62 136 | 86.94 197 | 53.83 187 | 92.38 254 | 72.21 157 | 84.76 130 | 91.60 167 |
|
HyFIR lowres test | | | 81.03 121 | 79.56 130 | 85.43 93 | 87.81 192 | 68.11 78 | 90.18 208 | 90.01 210 | 70.65 210 | 72.95 163 | 86.06 208 | 63.61 84 | 94.50 183 | 75.01 135 | 79.75 163 | 93.67 121 |
|
HPM-MVS_fast | | | 80.25 132 | 79.55 132 | 82.33 175 | 91.55 108 | 59.95 257 | 91.32 172 | 89.16 238 | 65.23 262 | 74.71 147 | 93.07 100 | 47.81 243 | 95.74 130 | 74.87 139 | 88.23 101 | 91.31 177 |
|
TAMVS | | | 80.37 130 | 79.45 133 | 83.13 158 | 85.14 234 | 63.37 193 | 91.23 175 | 90.76 180 | 74.81 113 | 72.65 167 | 88.49 172 | 60.63 112 | 92.95 228 | 69.41 183 | 81.95 148 | 93.08 138 |
|
FIs | | | 79.47 146 | 79.41 134 | 79.67 240 | 85.95 222 | 59.40 264 | 91.68 156 | 93.94 54 | 78.06 71 | 68.96 213 | 88.28 178 | 66.61 51 | 91.77 269 | 66.20 216 | 74.99 201 | 87.82 220 |
|
IS-MVSNet | | | 80.14 134 | 79.41 134 | 82.33 175 | 87.91 189 | 60.08 256 | 91.97 142 | 88.27 267 | 72.90 148 | 71.44 187 | 91.73 129 | 61.44 105 | 93.66 216 | 62.47 246 | 86.53 119 | 93.24 132 |
|
test-mter | | | 79.96 138 | 79.38 136 | 81.72 193 | 86.93 208 | 61.17 233 | 92.70 110 | 91.54 151 | 73.85 128 | 75.62 136 | 86.94 197 | 49.84 224 | 92.38 254 | 72.21 157 | 84.76 130 | 91.60 167 |
|
BH-w/o | | | 80.49 129 | 79.30 137 | 84.05 135 | 90.83 124 | 64.36 171 | 93.60 80 | 89.42 228 | 74.35 117 | 69.09 209 | 90.15 157 | 55.23 171 | 95.61 139 | 64.61 230 | 86.43 121 | 92.17 162 |
|
EPNet_dtu | | | 78.80 159 | 79.26 138 | 77.43 269 | 88.06 185 | 49.71 331 | 91.96 143 | 91.95 130 | 77.67 78 | 76.56 129 | 91.28 137 | 58.51 134 | 90.20 291 | 56.37 273 | 80.95 156 | 92.39 151 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CPTT-MVS | | | 79.59 143 | 79.16 139 | 80.89 215 | 91.54 109 | 59.80 259 | 92.10 132 | 88.54 262 | 60.42 299 | 72.96 162 | 93.28 96 | 48.27 237 | 92.80 237 | 78.89 111 | 86.50 120 | 90.06 191 |
|
tpmrst | | | 80.57 126 | 79.14 140 | 84.84 110 | 90.10 135 | 68.28 72 | 81.70 300 | 89.72 221 | 77.63 81 | 75.96 132 | 79.54 290 | 64.94 66 | 92.71 240 | 75.43 130 | 77.28 187 | 93.55 124 |
|
1314 | | | 80.70 125 | 78.95 141 | 85.94 77 | 87.77 193 | 67.56 90 | 87.91 251 | 92.55 110 | 72.17 167 | 67.44 235 | 93.09 98 | 50.27 219 | 97.04 82 | 71.68 164 | 87.64 107 | 93.23 133 |
|
UGNet | | | 79.87 140 | 78.68 142 | 83.45 152 | 89.96 137 | 61.51 229 | 92.13 130 | 90.79 179 | 76.83 90 | 78.85 107 | 86.33 204 | 38.16 289 | 96.17 113 | 67.93 198 | 87.17 110 | 92.67 145 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
PVSNet | | 73.49 8 | 80.05 136 | 78.63 143 | 84.31 128 | 90.92 121 | 64.97 155 | 92.47 122 | 91.05 175 | 79.18 54 | 72.43 174 | 90.51 147 | 37.05 303 | 94.06 199 | 68.06 195 | 86.00 122 | 93.90 116 |
|
Test_1112_low_res | | | 79.56 144 | 78.60 144 | 82.43 171 | 88.24 181 | 60.39 251 | 92.09 133 | 87.99 273 | 72.10 169 | 71.84 180 | 87.42 193 | 64.62 70 | 93.04 225 | 65.80 220 | 77.30 186 | 93.85 118 |
|
tttt0517 | | | 79.50 145 | 78.53 145 | 82.41 174 | 87.22 202 | 61.43 231 | 89.75 221 | 94.76 25 | 69.29 226 | 67.91 228 | 88.06 185 | 72.92 25 | 95.63 137 | 62.91 242 | 73.90 209 | 90.16 190 |
|
thres200 | | | 79.66 142 | 78.33 146 | 83.66 146 | 92.54 82 | 65.82 135 | 93.06 96 | 96.31 3 | 74.90 112 | 73.30 160 | 88.66 170 | 59.67 123 | 95.61 139 | 47.84 307 | 78.67 172 | 89.56 200 |
|
ab-mvs | | | 80.18 133 | 78.31 147 | 85.80 83 | 88.44 172 | 65.49 144 | 83.00 294 | 92.67 103 | 71.82 179 | 77.36 120 | 85.01 216 | 54.50 178 | 96.59 101 | 76.35 126 | 75.63 198 | 95.32 59 |
|
VDDNet | | | 80.50 128 | 78.26 148 | 87.21 39 | 86.19 218 | 69.79 38 | 94.48 47 | 91.31 160 | 60.42 299 | 79.34 97 | 90.91 141 | 38.48 286 | 96.56 104 | 82.16 82 | 81.05 155 | 95.27 64 |
|
EI-MVSNet | | | 78.97 154 | 78.22 149 | 81.25 201 | 85.33 230 | 62.73 210 | 89.53 225 | 93.21 82 | 72.39 160 | 72.14 177 | 90.13 158 | 60.99 108 | 94.72 168 | 67.73 200 | 72.49 219 | 86.29 247 |
|
OPM-MVS | | | 79.00 153 | 78.09 150 | 81.73 192 | 83.52 260 | 63.83 181 | 91.64 158 | 90.30 197 | 76.36 96 | 71.97 179 | 89.93 161 | 46.30 254 | 95.17 156 | 75.10 133 | 77.70 179 | 86.19 251 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
FC-MVSNet-test | | | 77.99 174 | 78.08 151 | 77.70 264 | 84.89 239 | 55.51 303 | 90.27 205 | 93.75 63 | 76.87 87 | 66.80 246 | 87.59 190 | 65.71 59 | 90.23 290 | 62.89 243 | 73.94 207 | 87.37 227 |
|
VPA-MVSNet | | | 79.03 152 | 78.00 152 | 82.11 187 | 85.95 222 | 64.48 163 | 93.22 93 | 94.66 30 | 75.05 110 | 74.04 155 | 84.95 217 | 52.17 204 | 93.52 218 | 74.90 138 | 67.04 255 | 88.32 217 |
|
miper_enhance_ethall | | | 78.86 157 | 77.97 153 | 81.54 196 | 88.00 188 | 65.17 149 | 91.41 162 | 89.15 239 | 75.19 108 | 68.79 216 | 83.98 230 | 67.17 46 | 92.82 235 | 72.73 151 | 65.30 264 | 86.62 244 |
|
tpm2 | | | 79.80 141 | 77.95 154 | 85.34 97 | 88.28 178 | 68.26 73 | 81.56 302 | 91.42 157 | 70.11 216 | 77.59 118 | 80.50 276 | 67.40 45 | 94.26 191 | 67.34 203 | 77.35 185 | 93.51 125 |
|
OMC-MVS | | | 78.67 164 | 77.91 155 | 80.95 213 | 85.76 226 | 57.40 291 | 88.49 244 | 88.67 257 | 73.85 128 | 72.43 174 | 92.10 122 | 49.29 229 | 94.55 180 | 72.73 151 | 77.89 177 | 90.91 182 |
|
114514_t | | | 79.17 150 | 77.67 156 | 83.68 144 | 95.32 29 | 65.53 142 | 92.85 105 | 91.60 150 | 63.49 272 | 67.92 227 | 90.63 145 | 46.65 248 | 95.72 135 | 67.01 206 | 83.54 138 | 89.79 195 |
|
BH-RMVSNet | | | 79.46 147 | 77.65 157 | 84.89 108 | 91.68 104 | 65.66 136 | 93.55 82 | 88.09 271 | 72.93 147 | 73.37 159 | 91.12 139 | 46.20 255 | 96.12 115 | 56.28 274 | 85.61 125 | 92.91 142 |
|
PCF-MVS | | 73.15 9 | 79.29 148 | 77.63 158 | 84.29 129 | 86.06 220 | 65.96 131 | 87.03 263 | 91.10 170 | 69.86 220 | 69.79 205 | 90.64 143 | 57.54 143 | 96.59 101 | 64.37 232 | 82.29 144 | 90.32 188 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
UniMVSNet_NR-MVSNet | | | 78.15 172 | 77.55 159 | 79.98 232 | 84.46 246 | 60.26 252 | 92.25 126 | 93.20 84 | 77.50 83 | 68.88 214 | 86.61 199 | 66.10 54 | 92.13 261 | 66.38 213 | 62.55 288 | 87.54 222 |
|
VPNet | | | 78.82 158 | 77.53 160 | 82.70 165 | 84.52 244 | 66.44 119 | 93.93 64 | 92.23 117 | 80.46 38 | 72.60 168 | 88.38 177 | 49.18 230 | 93.13 224 | 72.47 155 | 63.97 281 | 88.55 211 |
|
GeoE | | | 78.90 156 | 77.43 161 | 83.29 154 | 88.95 161 | 62.02 219 | 92.31 124 | 86.23 290 | 70.24 215 | 71.34 188 | 89.27 165 | 54.43 182 | 94.04 202 | 63.31 238 | 80.81 159 | 93.81 119 |
|
AUN-MVS | | | 78.37 168 | 77.43 161 | 81.17 203 | 86.60 211 | 57.45 290 | 89.46 227 | 91.16 166 | 74.11 121 | 74.40 149 | 90.49 148 | 55.52 168 | 94.57 177 | 74.73 140 | 60.43 310 | 91.48 170 |
|
tfpn200view9 | | | 78.79 160 | 77.43 161 | 82.88 161 | 92.21 88 | 64.49 161 | 92.05 136 | 96.28 4 | 73.48 137 | 71.75 182 | 88.26 180 | 60.07 119 | 95.32 151 | 45.16 318 | 77.58 181 | 88.83 203 |
|
thres400 | | | 78.68 162 | 77.43 161 | 82.43 171 | 92.21 88 | 64.49 161 | 92.05 136 | 96.28 4 | 73.48 137 | 71.75 182 | 88.26 180 | 60.07 119 | 95.32 151 | 45.16 318 | 77.58 181 | 87.48 224 |
|
QAPM | | | 79.95 139 | 77.39 165 | 87.64 28 | 89.63 144 | 71.41 17 | 93.30 90 | 93.70 64 | 65.34 261 | 67.39 238 | 91.75 128 | 47.83 242 | 98.96 16 | 57.71 269 | 89.81 90 | 92.54 149 |
|
TR-MVS | | | 78.77 161 | 77.37 166 | 82.95 160 | 90.49 128 | 60.88 239 | 93.67 77 | 90.07 206 | 70.08 217 | 74.51 148 | 91.37 136 | 45.69 258 | 95.70 136 | 60.12 259 | 80.32 160 | 92.29 155 |
|
FA-MVS(test-final) | | | 79.12 151 | 77.23 167 | 84.81 112 | 90.54 127 | 63.98 179 | 81.35 305 | 91.71 144 | 71.09 201 | 74.85 145 | 82.94 239 | 52.85 198 | 97.05 79 | 67.97 196 | 81.73 151 | 93.41 127 |
|
BH-untuned | | | 78.68 162 | 77.08 168 | 83.48 151 | 89.84 139 | 63.74 184 | 92.70 110 | 88.59 260 | 71.57 190 | 66.83 245 | 88.65 171 | 51.75 207 | 95.39 149 | 59.03 264 | 84.77 129 | 91.32 176 |
|
tpm | | | 78.58 165 | 77.03 169 | 83.22 156 | 85.94 224 | 64.56 159 | 83.21 291 | 91.14 169 | 78.31 68 | 73.67 158 | 79.68 288 | 64.01 76 | 92.09 263 | 66.07 217 | 71.26 229 | 93.03 139 |
|
thres100view900 | | | 78.37 168 | 77.01 170 | 82.46 170 | 91.89 99 | 63.21 196 | 91.19 179 | 96.33 1 | 72.28 163 | 70.45 194 | 87.89 187 | 60.31 114 | 95.32 151 | 45.16 318 | 77.58 181 | 88.83 203 |
|
AdaColmap |  | | 78.94 155 | 77.00 171 | 84.76 113 | 96.34 17 | 65.86 133 | 92.66 114 | 87.97 274 | 62.18 286 | 70.56 191 | 92.37 118 | 43.53 267 | 97.35 64 | 64.50 231 | 82.86 141 | 91.05 181 |
|
CHOSEN 280x420 | | | 77.35 184 | 76.95 172 | 78.55 256 | 87.07 205 | 62.68 211 | 69.71 343 | 82.95 318 | 68.80 233 | 71.48 186 | 87.27 196 | 66.03 55 | 84.00 333 | 76.47 125 | 82.81 143 | 88.95 202 |
|
cl22 | | | 77.94 176 | 76.78 173 | 81.42 198 | 87.57 194 | 64.93 157 | 90.67 193 | 88.86 251 | 72.45 157 | 67.63 234 | 82.68 243 | 64.07 75 | 92.91 233 | 71.79 160 | 65.30 264 | 86.44 245 |
|
UniMVSNet (Re) | | | 77.58 181 | 76.78 173 | 79.98 232 | 84.11 252 | 60.80 240 | 91.76 152 | 93.17 86 | 76.56 94 | 69.93 204 | 84.78 220 | 63.32 89 | 92.36 256 | 64.89 229 | 62.51 290 | 86.78 239 |
|
thres600view7 | | | 78.00 173 | 76.66 175 | 82.03 189 | 91.93 96 | 63.69 188 | 91.30 173 | 96.33 1 | 72.43 158 | 70.46 193 | 87.89 187 | 60.31 114 | 94.92 163 | 42.64 330 | 76.64 191 | 87.48 224 |
|
MS-PatchMatch | | | 77.90 178 | 76.50 176 | 82.12 184 | 85.99 221 | 69.95 34 | 91.75 154 | 92.70 101 | 73.97 125 | 62.58 280 | 84.44 225 | 41.11 275 | 95.78 127 | 63.76 236 | 92.17 62 | 80.62 323 |
|
miper_ehance_all_eth | | | 77.60 180 | 76.44 177 | 81.09 210 | 85.70 227 | 64.41 168 | 90.65 194 | 88.64 259 | 72.31 161 | 67.37 239 | 82.52 244 | 64.77 69 | 92.64 247 | 70.67 171 | 65.30 264 | 86.24 249 |
|
XXY-MVS | | | 77.94 176 | 76.44 177 | 82.43 171 | 82.60 268 | 64.44 165 | 92.01 138 | 91.83 139 | 73.59 136 | 70.00 201 | 85.82 210 | 54.43 182 | 94.76 165 | 69.63 180 | 68.02 249 | 88.10 219 |
|
PS-MVSNAJss | | | 77.26 185 | 76.31 179 | 80.13 228 | 80.64 285 | 59.16 269 | 90.63 197 | 91.06 174 | 72.80 149 | 68.58 220 | 84.57 223 | 53.55 191 | 93.96 207 | 72.97 146 | 71.96 223 | 87.27 232 |
|
MVP-Stereo | | | 77.12 187 | 76.23 180 | 79.79 238 | 81.72 276 | 66.34 122 | 89.29 229 | 90.88 178 | 70.56 212 | 62.01 283 | 82.88 240 | 49.34 227 | 94.13 194 | 65.55 224 | 93.80 39 | 78.88 336 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
GA-MVS | | | 78.33 170 | 76.23 180 | 84.65 117 | 83.65 258 | 66.30 123 | 91.44 160 | 90.14 204 | 76.01 98 | 70.32 196 | 84.02 229 | 42.50 271 | 94.72 168 | 70.98 167 | 77.00 189 | 92.94 141 |
|
FMVSNet3 | | | 77.73 179 | 76.04 182 | 82.80 162 | 91.20 117 | 68.99 56 | 91.87 145 | 91.99 128 | 73.35 139 | 67.04 241 | 83.19 238 | 56.62 157 | 92.14 260 | 59.80 261 | 69.34 238 | 87.28 231 |
|
EPMVS | | | 78.49 167 | 75.98 183 | 86.02 74 | 91.21 116 | 69.68 42 | 80.23 314 | 91.20 164 | 75.25 107 | 72.48 172 | 78.11 298 | 54.65 177 | 93.69 215 | 57.66 270 | 83.04 140 | 94.69 83 |
|
OpenMVS |  | 70.45 11 | 78.54 166 | 75.92 184 | 86.41 66 | 85.93 225 | 71.68 16 | 92.74 107 | 92.51 111 | 66.49 252 | 64.56 261 | 91.96 124 | 43.88 266 | 98.10 35 | 54.61 279 | 90.65 85 | 89.44 201 |
|
DU-MVS | | | 76.86 188 | 75.84 185 | 79.91 234 | 82.96 266 | 60.26 252 | 91.26 174 | 91.54 151 | 76.46 95 | 68.88 214 | 86.35 202 | 56.16 161 | 92.13 261 | 66.38 213 | 62.55 288 | 87.35 229 |
|
cascas | | | 78.18 171 | 75.77 186 | 85.41 94 | 87.14 204 | 69.11 51 | 92.96 101 | 91.15 168 | 66.71 250 | 70.47 192 | 86.07 207 | 37.49 297 | 96.48 107 | 70.15 175 | 79.80 162 | 90.65 184 |
|
WR-MVS | | | 76.76 193 | 75.74 187 | 79.82 237 | 84.60 242 | 62.27 217 | 92.60 116 | 92.51 111 | 76.06 97 | 67.87 231 | 85.34 213 | 56.76 153 | 90.24 289 | 62.20 247 | 63.69 283 | 86.94 237 |
|
mvsmamba | | | 76.85 190 | 75.71 188 | 80.25 225 | 83.07 265 | 59.16 269 | 91.44 160 | 80.64 327 | 76.84 89 | 67.95 226 | 86.33 204 | 46.17 256 | 94.24 192 | 76.06 127 | 72.92 215 | 87.36 228 |
|
v2v482 | | | 77.42 183 | 75.65 189 | 82.73 164 | 80.38 287 | 67.13 102 | 91.85 147 | 90.23 201 | 75.09 109 | 69.37 206 | 83.39 236 | 53.79 189 | 94.44 184 | 71.77 161 | 65.00 270 | 86.63 243 |
|
c3_l | | | 76.83 192 | 75.47 190 | 80.93 214 | 85.02 237 | 64.18 176 | 90.39 201 | 88.11 270 | 71.66 183 | 66.65 247 | 81.64 256 | 63.58 86 | 92.56 248 | 69.31 185 | 62.86 285 | 86.04 256 |
|
Anonymous202405211 | | | 77.96 175 | 75.33 191 | 85.87 79 | 93.73 52 | 64.52 160 | 94.85 42 | 85.36 298 | 62.52 284 | 76.11 131 | 90.18 155 | 29.43 330 | 97.29 68 | 68.51 193 | 77.24 188 | 95.81 43 |
|
Effi-MVS+-dtu | | | 76.14 198 | 75.28 192 | 78.72 255 | 83.22 262 | 55.17 305 | 89.87 217 | 87.78 275 | 75.42 104 | 67.98 225 | 81.43 260 | 45.08 262 | 92.52 250 | 75.08 134 | 71.63 224 | 88.48 212 |
|
IterMVS-LS | | | 76.49 195 | 75.18 193 | 80.43 220 | 84.49 245 | 62.74 209 | 90.64 195 | 88.80 252 | 72.40 159 | 65.16 255 | 81.72 254 | 60.98 109 | 92.27 259 | 67.74 199 | 64.65 275 | 86.29 247 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
v1144 | | | 76.73 194 | 74.88 194 | 82.27 177 | 80.23 292 | 66.60 116 | 91.68 156 | 90.21 203 | 73.69 133 | 69.06 211 | 81.89 251 | 52.73 200 | 94.40 185 | 69.21 186 | 65.23 267 | 85.80 262 |
|
cl____ | | | 76.07 199 | 74.67 195 | 80.28 223 | 85.15 233 | 61.76 225 | 90.12 209 | 88.73 255 | 71.16 198 | 65.43 252 | 81.57 258 | 61.15 106 | 92.95 228 | 66.54 210 | 62.17 292 | 86.13 254 |
|
DIV-MVS_self_test | | | 76.07 199 | 74.67 195 | 80.28 223 | 85.14 234 | 61.75 226 | 90.12 209 | 88.73 255 | 71.16 198 | 65.42 253 | 81.60 257 | 61.15 106 | 92.94 232 | 66.54 210 | 62.16 294 | 86.14 252 |
|
PatchmatchNet |  | | 77.46 182 | 74.63 197 | 85.96 76 | 89.55 147 | 70.35 28 | 79.97 318 | 89.55 224 | 72.23 164 | 70.94 189 | 76.91 309 | 57.03 147 | 92.79 238 | 54.27 281 | 81.17 154 | 94.74 82 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
NR-MVSNet | | | 76.05 202 | 74.59 198 | 80.44 219 | 82.96 266 | 62.18 218 | 90.83 189 | 91.73 142 | 77.12 86 | 60.96 287 | 86.35 202 | 59.28 129 | 91.80 268 | 60.74 254 | 61.34 303 | 87.35 229 |
|
LPG-MVS_test | | | 75.82 208 | 74.58 199 | 79.56 244 | 84.31 249 | 59.37 265 | 90.44 198 | 89.73 219 | 69.49 223 | 64.86 256 | 88.42 173 | 38.65 284 | 94.30 187 | 72.56 153 | 72.76 216 | 85.01 276 |
|
V42 | | | 76.46 196 | 74.55 200 | 82.19 181 | 79.14 304 | 67.82 84 | 90.26 206 | 89.42 228 | 73.75 131 | 68.63 219 | 81.89 251 | 51.31 211 | 94.09 196 | 71.69 163 | 64.84 271 | 84.66 279 |
|
TranMVSNet+NR-MVSNet | | | 75.86 207 | 74.52 201 | 79.89 235 | 82.44 269 | 60.64 248 | 91.37 169 | 91.37 158 | 76.63 92 | 67.65 233 | 86.21 206 | 52.37 203 | 91.55 273 | 61.84 249 | 60.81 306 | 87.48 224 |
|
v148 | | | 76.19 197 | 74.47 202 | 81.36 199 | 80.05 293 | 64.44 165 | 91.75 154 | 90.23 201 | 73.68 134 | 67.13 240 | 80.84 271 | 55.92 166 | 93.86 213 | 68.95 189 | 61.73 299 | 85.76 265 |
|
eth_miper_zixun_eth | | | 75.96 206 | 74.40 203 | 80.66 216 | 84.66 241 | 63.02 200 | 89.28 230 | 88.27 267 | 71.88 175 | 65.73 250 | 81.65 255 | 59.45 125 | 92.81 236 | 68.13 194 | 60.53 308 | 86.14 252 |
|
gg-mvs-nofinetune | | | 77.18 186 | 74.31 204 | 85.80 83 | 91.42 111 | 68.36 69 | 71.78 337 | 94.72 27 | 49.61 340 | 77.12 123 | 45.92 361 | 77.41 8 | 93.98 206 | 67.62 201 | 93.16 51 | 95.05 72 |
|
CVMVSNet | | | 74.04 228 | 74.27 205 | 73.33 304 | 85.33 230 | 43.94 352 | 89.53 225 | 88.39 263 | 54.33 328 | 70.37 195 | 90.13 158 | 49.17 231 | 84.05 331 | 61.83 250 | 79.36 165 | 91.99 164 |
|
ACMP | | 71.68 10 | 75.58 213 | 74.23 206 | 79.62 242 | 84.97 238 | 59.64 260 | 90.80 190 | 89.07 244 | 70.39 213 | 62.95 276 | 87.30 195 | 38.28 287 | 93.87 211 | 72.89 147 | 71.45 227 | 85.36 271 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
Anonymous20240529 | | | 76.84 191 | 74.15 207 | 84.88 109 | 91.02 118 | 64.95 156 | 93.84 72 | 91.09 171 | 53.57 329 | 73.00 161 | 87.42 193 | 35.91 307 | 97.32 66 | 69.14 187 | 72.41 221 | 92.36 152 |
|
X-MVStestdata | | | 76.86 188 | 74.13 208 | 85.05 103 | 93.22 61 | 63.78 182 | 92.92 103 | 92.66 104 | 73.99 123 | 78.18 111 | 10.19 376 | 55.25 169 | 97.41 60 | 79.16 106 | 91.58 72 | 93.95 112 |
|
v144192 | | | 76.05 202 | 74.03 209 | 82.12 184 | 79.50 298 | 66.55 118 | 91.39 166 | 89.71 222 | 72.30 162 | 68.17 223 | 81.33 263 | 51.75 207 | 94.03 204 | 67.94 197 | 64.19 277 | 85.77 263 |
|
FMVSNet2 | | | 76.07 199 | 74.01 210 | 82.26 179 | 88.85 162 | 67.66 88 | 91.33 171 | 91.61 149 | 70.84 205 | 65.98 249 | 82.25 247 | 48.03 238 | 92.00 265 | 58.46 266 | 68.73 244 | 87.10 234 |
|
v1192 | | | 75.98 204 | 73.92 211 | 82.15 182 | 79.73 294 | 66.24 125 | 91.22 176 | 89.75 216 | 72.67 151 | 68.49 221 | 81.42 261 | 49.86 223 | 94.27 189 | 67.08 205 | 65.02 269 | 85.95 259 |
|
GBi-Net | | | 75.65 210 | 73.83 212 | 81.10 207 | 88.85 162 | 65.11 151 | 90.01 213 | 90.32 193 | 70.84 205 | 67.04 241 | 80.25 281 | 48.03 238 | 91.54 274 | 59.80 261 | 69.34 238 | 86.64 240 |
|
test1 | | | 75.65 210 | 73.83 212 | 81.10 207 | 88.85 162 | 65.11 151 | 90.01 213 | 90.32 193 | 70.84 205 | 67.04 241 | 80.25 281 | 48.03 238 | 91.54 274 | 59.80 261 | 69.34 238 | 86.64 240 |
|
test_fmvs1 | | | 74.07 227 | 73.69 214 | 75.22 288 | 78.91 308 | 47.34 341 | 89.06 237 | 74.69 341 | 63.68 271 | 79.41 96 | 91.59 131 | 24.36 339 | 87.77 313 | 85.22 60 | 76.26 195 | 90.55 187 |
|
PLC |  | 68.80 14 | 75.23 216 | 73.68 215 | 79.86 236 | 92.93 70 | 58.68 275 | 90.64 195 | 88.30 265 | 60.90 296 | 64.43 265 | 90.53 146 | 42.38 272 | 94.57 177 | 56.52 272 | 76.54 192 | 86.33 246 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
TAPA-MVS | | 70.22 12 | 74.94 220 | 73.53 216 | 79.17 249 | 90.40 130 | 52.07 319 | 89.19 233 | 89.61 223 | 62.69 283 | 70.07 199 | 92.67 110 | 48.89 235 | 94.32 186 | 38.26 344 | 79.97 161 | 91.12 180 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
v1921920 | | | 75.63 212 | 73.49 217 | 82.06 188 | 79.38 299 | 66.35 121 | 91.07 183 | 89.48 225 | 71.98 170 | 67.99 224 | 81.22 266 | 49.16 232 | 93.90 210 | 66.56 209 | 64.56 276 | 85.92 261 |
|
Fast-Effi-MVS+-dtu | | | 75.04 218 | 73.37 218 | 80.07 229 | 80.86 281 | 59.52 263 | 91.20 178 | 85.38 297 | 71.90 173 | 65.20 254 | 84.84 219 | 41.46 274 | 92.97 227 | 66.50 212 | 72.96 214 | 87.73 221 |
|
v8 | | | 75.35 214 | 73.26 219 | 81.61 195 | 80.67 284 | 66.82 109 | 89.54 224 | 89.27 232 | 71.65 184 | 63.30 274 | 80.30 280 | 54.99 175 | 94.06 199 | 67.33 204 | 62.33 291 | 83.94 284 |
|
XVG-OURS-SEG-HR | | | 74.70 222 | 73.08 220 | 79.57 243 | 78.25 316 | 57.33 292 | 80.49 310 | 87.32 278 | 63.22 276 | 68.76 217 | 90.12 160 | 44.89 263 | 91.59 272 | 70.55 173 | 74.09 206 | 89.79 195 |
|
FE-MVS | | | 75.97 205 | 73.02 221 | 84.82 111 | 89.78 140 | 65.56 140 | 77.44 329 | 91.07 173 | 64.55 264 | 72.66 166 | 79.85 286 | 46.05 257 | 96.69 99 | 54.97 278 | 80.82 158 | 92.21 161 |
|
v1240 | | | 75.21 217 | 72.98 222 | 81.88 190 | 79.20 301 | 66.00 129 | 90.75 192 | 89.11 242 | 71.63 188 | 67.41 237 | 81.22 266 | 47.36 245 | 93.87 211 | 65.46 225 | 64.72 274 | 85.77 263 |
|
RRT_MVS | | | 74.44 223 | 72.97 223 | 78.84 254 | 82.36 270 | 57.66 286 | 89.83 219 | 88.79 254 | 70.61 211 | 64.58 260 | 84.89 218 | 39.24 280 | 92.65 246 | 70.11 176 | 66.34 260 | 86.21 250 |
|
Baseline_NR-MVSNet | | | 73.99 229 | 72.83 224 | 77.48 268 | 80.78 282 | 59.29 268 | 91.79 149 | 84.55 305 | 68.85 232 | 68.99 212 | 80.70 272 | 56.16 161 | 92.04 264 | 62.67 244 | 60.98 305 | 81.11 317 |
|
SCA | | | 75.82 208 | 72.76 225 | 85.01 105 | 86.63 210 | 70.08 30 | 81.06 307 | 89.19 236 | 71.60 189 | 70.01 200 | 77.09 307 | 45.53 259 | 90.25 286 | 60.43 256 | 73.27 211 | 94.68 84 |
|
ACMM | | 69.62 13 | 74.34 224 | 72.73 226 | 79.17 249 | 84.25 251 | 57.87 282 | 90.36 202 | 89.93 211 | 63.17 278 | 65.64 251 | 86.04 209 | 37.79 295 | 94.10 195 | 65.89 218 | 71.52 226 | 85.55 268 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
test0.0.03 1 | | | 72.76 242 | 72.71 227 | 72.88 308 | 80.25 291 | 47.99 337 | 91.22 176 | 89.45 226 | 71.51 193 | 62.51 281 | 87.66 189 | 53.83 187 | 85.06 328 | 50.16 294 | 67.84 252 | 85.58 266 |
|
MDTV_nov1_ep13 | | | | 72.61 228 | | 89.06 158 | 68.48 66 | 80.33 312 | 90.11 205 | 71.84 178 | 71.81 181 | 75.92 317 | 53.01 197 | 93.92 209 | 48.04 304 | 73.38 210 | |
|
test_djsdf | | | 73.76 233 | 72.56 229 | 77.39 270 | 77.00 325 | 53.93 311 | 89.07 235 | 90.69 181 | 65.80 256 | 63.92 267 | 82.03 250 | 43.14 270 | 92.67 243 | 72.83 148 | 68.53 245 | 85.57 267 |
|
v10 | | | 74.77 221 | 72.54 230 | 81.46 197 | 80.33 290 | 66.71 113 | 89.15 234 | 89.08 243 | 70.94 203 | 63.08 275 | 79.86 285 | 52.52 201 | 94.04 202 | 65.70 221 | 62.17 292 | 83.64 286 |
|
XVG-OURS | | | 74.25 226 | 72.46 231 | 79.63 241 | 78.45 314 | 57.59 288 | 80.33 312 | 87.39 277 | 63.86 269 | 68.76 217 | 89.62 164 | 40.50 277 | 91.72 270 | 69.00 188 | 74.25 204 | 89.58 198 |
|
CNLPA | | | 74.31 225 | 72.30 232 | 80.32 221 | 91.49 110 | 61.66 227 | 90.85 188 | 80.72 326 | 56.67 321 | 63.85 269 | 90.64 143 | 46.75 247 | 90.84 281 | 53.79 283 | 75.99 197 | 88.47 214 |
|
tpm cat1 | | | 75.30 215 | 72.21 233 | 84.58 120 | 88.52 168 | 67.77 85 | 78.16 327 | 88.02 272 | 61.88 291 | 68.45 222 | 76.37 313 | 60.65 111 | 94.03 204 | 53.77 284 | 74.11 205 | 91.93 165 |
|
dp | | | 75.01 219 | 72.09 234 | 83.76 139 | 89.28 153 | 66.22 126 | 79.96 319 | 89.75 216 | 71.16 198 | 67.80 232 | 77.19 306 | 51.81 206 | 92.54 249 | 50.39 292 | 71.44 228 | 92.51 150 |
|
D2MVS | | | 73.80 231 | 72.02 235 | 79.15 251 | 79.15 303 | 62.97 201 | 88.58 243 | 90.07 206 | 72.94 146 | 59.22 295 | 78.30 295 | 42.31 273 | 92.70 242 | 65.59 223 | 72.00 222 | 81.79 314 |
|
test_fmvs1_n | | | 72.69 246 | 71.92 236 | 74.99 291 | 71.15 343 | 47.08 343 | 87.34 261 | 75.67 336 | 63.48 273 | 78.08 113 | 91.17 138 | 20.16 351 | 87.87 310 | 84.65 66 | 75.57 199 | 90.01 193 |
|
LCM-MVSNet-Re | | | 72.93 239 | 71.84 237 | 76.18 284 | 88.49 169 | 48.02 336 | 80.07 317 | 70.17 351 | 73.96 126 | 52.25 324 | 80.09 284 | 49.98 221 | 88.24 306 | 67.35 202 | 84.23 136 | 92.28 156 |
|
pmmvs4 | | | 73.92 230 | 71.81 238 | 80.25 225 | 79.17 302 | 65.24 147 | 87.43 259 | 87.26 280 | 67.64 244 | 63.46 272 | 83.91 231 | 48.96 234 | 91.53 277 | 62.94 241 | 65.49 263 | 83.96 283 |
|
miper_lstm_enhance | | | 73.05 237 | 71.73 239 | 77.03 275 | 83.80 255 | 58.32 278 | 81.76 298 | 88.88 249 | 69.80 221 | 61.01 286 | 78.23 297 | 57.19 145 | 87.51 317 | 65.34 226 | 59.53 313 | 85.27 274 |
|
pmmvs5 | | | 73.35 234 | 71.52 240 | 78.86 253 | 78.64 312 | 60.61 249 | 91.08 181 | 86.90 281 | 67.69 241 | 63.32 273 | 83.64 232 | 44.33 265 | 90.53 283 | 62.04 248 | 66.02 262 | 85.46 269 |
|
jajsoiax | | | 73.05 237 | 71.51 241 | 77.67 265 | 77.46 322 | 54.83 307 | 88.81 239 | 90.04 209 | 69.13 230 | 62.85 278 | 83.51 234 | 31.16 325 | 92.75 239 | 70.83 168 | 69.80 234 | 85.43 270 |
|
mvs_tets | | | 72.71 244 | 71.11 242 | 77.52 266 | 77.41 323 | 54.52 309 | 88.45 245 | 89.76 215 | 68.76 235 | 62.70 279 | 83.26 237 | 29.49 329 | 92.71 240 | 70.51 174 | 69.62 236 | 85.34 272 |
|
pm-mvs1 | | | 72.89 240 | 71.09 243 | 78.26 260 | 79.10 305 | 57.62 287 | 90.80 190 | 89.30 231 | 67.66 242 | 62.91 277 | 81.78 253 | 49.11 233 | 92.95 228 | 60.29 258 | 58.89 316 | 84.22 282 |
|
IterMVS | | | 72.65 247 | 70.83 244 | 78.09 262 | 82.17 272 | 62.96 202 | 87.64 257 | 86.28 288 | 71.56 191 | 60.44 289 | 78.85 293 | 45.42 261 | 86.66 321 | 63.30 239 | 61.83 296 | 84.65 280 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
CR-MVSNet | | | 73.79 232 | 70.82 245 | 82.70 165 | 83.15 263 | 67.96 81 | 70.25 340 | 84.00 310 | 73.67 135 | 69.97 202 | 72.41 328 | 57.82 140 | 89.48 297 | 52.99 287 | 73.13 212 | 90.64 185 |
|
test_vis1_n | | | 71.63 251 | 70.73 246 | 74.31 298 | 69.63 349 | 47.29 342 | 86.91 266 | 72.11 347 | 63.21 277 | 75.18 142 | 90.17 156 | 20.40 349 | 85.76 325 | 84.59 67 | 74.42 203 | 89.87 194 |
|
tt0805 | | | 73.07 236 | 70.73 246 | 80.07 229 | 78.37 315 | 57.05 294 | 87.78 253 | 92.18 123 | 61.23 295 | 67.04 241 | 86.49 201 | 31.35 324 | 94.58 175 | 65.06 228 | 67.12 254 | 88.57 210 |
|
UniMVSNet_ETH3D | | | 72.74 243 | 70.53 248 | 79.36 246 | 78.62 313 | 56.64 296 | 85.01 275 | 89.20 235 | 63.77 270 | 64.84 258 | 84.44 225 | 34.05 312 | 91.86 267 | 63.94 234 | 70.89 231 | 89.57 199 |
|
Anonymous20231211 | | | 73.08 235 | 70.39 249 | 81.13 205 | 90.62 126 | 63.33 194 | 91.40 164 | 90.06 208 | 51.84 334 | 64.46 264 | 80.67 274 | 36.49 305 | 94.07 198 | 63.83 235 | 64.17 278 | 85.98 258 |
|
PatchMatch-RL | | | 72.06 248 | 69.98 250 | 78.28 259 | 89.51 148 | 55.70 302 | 83.49 284 | 83.39 316 | 61.24 294 | 63.72 270 | 82.76 241 | 34.77 310 | 93.03 226 | 53.37 286 | 77.59 180 | 86.12 255 |
|
IterMVS-SCA-FT | | | 71.55 253 | 69.97 251 | 76.32 282 | 81.48 277 | 60.67 247 | 87.64 257 | 85.99 293 | 66.17 254 | 59.50 293 | 78.88 292 | 45.53 259 | 83.65 335 | 62.58 245 | 61.93 295 | 84.63 281 |
|
WR-MVS_H | | | 70.59 257 | 69.94 252 | 72.53 310 | 81.03 280 | 51.43 322 | 87.35 260 | 92.03 127 | 67.38 245 | 60.23 290 | 80.70 272 | 55.84 167 | 83.45 337 | 46.33 314 | 58.58 318 | 82.72 302 |
|
CP-MVSNet | | | 70.50 258 | 69.91 253 | 72.26 313 | 80.71 283 | 51.00 325 | 87.23 262 | 90.30 197 | 67.84 240 | 59.64 292 | 82.69 242 | 50.23 220 | 82.30 345 | 51.28 289 | 59.28 314 | 83.46 291 |
|
FMVSNet1 | | | 72.71 244 | 69.91 253 | 81.10 207 | 83.60 259 | 65.11 151 | 90.01 213 | 90.32 193 | 63.92 268 | 63.56 271 | 80.25 281 | 36.35 306 | 91.54 274 | 54.46 280 | 66.75 257 | 86.64 240 |
|
tpmvs | | | 72.88 241 | 69.76 255 | 82.22 180 | 90.98 119 | 67.05 104 | 78.22 326 | 88.30 265 | 63.10 279 | 64.35 266 | 74.98 320 | 55.09 174 | 94.27 189 | 43.25 324 | 69.57 237 | 85.34 272 |
|
bld_raw_dy_0_64 | | | 71.59 252 | 69.71 256 | 77.22 274 | 77.82 321 | 58.12 280 | 87.71 255 | 73.66 343 | 68.01 239 | 61.90 285 | 84.29 227 | 33.68 313 | 88.43 304 | 69.91 178 | 70.43 232 | 85.11 275 |
|
anonymousdsp | | | 71.14 255 | 69.37 257 | 76.45 281 | 72.95 338 | 54.71 308 | 84.19 279 | 88.88 249 | 61.92 290 | 62.15 282 | 79.77 287 | 38.14 290 | 91.44 279 | 68.90 190 | 67.45 253 | 83.21 295 |
|
PS-CasMVS | | | 69.86 264 | 69.13 258 | 72.07 316 | 80.35 289 | 50.57 327 | 87.02 264 | 89.75 216 | 67.27 246 | 59.19 296 | 82.28 246 | 46.58 249 | 82.24 346 | 50.69 291 | 59.02 315 | 83.39 293 |
|
v7n | | | 71.31 254 | 68.65 259 | 79.28 247 | 76.40 327 | 60.77 242 | 86.71 269 | 89.45 226 | 64.17 267 | 58.77 300 | 78.24 296 | 44.59 264 | 93.54 217 | 57.76 268 | 61.75 298 | 83.52 289 |
|
mvsany_test1 | | | 68.77 272 | 68.56 260 | 69.39 323 | 73.57 336 | 45.88 348 | 80.93 308 | 60.88 364 | 59.65 306 | 71.56 185 | 90.26 154 | 43.22 269 | 75.05 354 | 74.26 142 | 62.70 287 | 87.25 233 |
|
PEN-MVS | | | 69.46 266 | 68.56 260 | 72.17 315 | 79.27 300 | 49.71 331 | 86.90 267 | 89.24 233 | 67.24 249 | 59.08 297 | 82.51 245 | 47.23 246 | 83.54 336 | 48.42 302 | 57.12 319 | 83.25 294 |
|
MIMVSNet | | | 71.64 250 | 68.44 262 | 81.23 202 | 81.97 275 | 64.44 165 | 73.05 336 | 88.80 252 | 69.67 222 | 64.59 259 | 74.79 321 | 32.79 316 | 87.82 311 | 53.99 282 | 76.35 194 | 91.42 171 |
|
F-COLMAP | | | 70.66 256 | 68.44 262 | 77.32 271 | 86.37 216 | 55.91 300 | 88.00 249 | 86.32 287 | 56.94 319 | 57.28 309 | 88.07 184 | 33.58 314 | 92.49 251 | 51.02 290 | 68.37 246 | 83.55 287 |
|
PVSNet_0 | | 68.08 15 | 71.81 249 | 68.32 264 | 82.27 177 | 84.68 240 | 62.31 216 | 88.68 241 | 90.31 196 | 75.84 99 | 57.93 306 | 80.65 275 | 37.85 294 | 94.19 193 | 69.94 177 | 29.05 368 | 90.31 189 |
|
CL-MVSNet_self_test | | | 69.92 262 | 68.09 265 | 75.41 287 | 73.25 337 | 55.90 301 | 90.05 212 | 89.90 212 | 69.96 218 | 61.96 284 | 76.54 310 | 51.05 213 | 87.64 314 | 49.51 298 | 50.59 338 | 82.70 304 |
|
TransMVSNet (Re) | | | 70.07 261 | 67.66 266 | 77.31 272 | 80.62 286 | 59.13 271 | 91.78 151 | 84.94 302 | 65.97 255 | 60.08 291 | 80.44 277 | 50.78 214 | 91.87 266 | 48.84 300 | 45.46 346 | 80.94 319 |
|
tfpnnormal | | | 70.10 260 | 67.36 267 | 78.32 258 | 83.45 261 | 60.97 238 | 88.85 238 | 92.77 99 | 64.85 263 | 60.83 288 | 78.53 294 | 43.52 268 | 93.48 219 | 31.73 360 | 61.70 300 | 80.52 324 |
|
DTE-MVSNet | | | 68.46 276 | 67.33 268 | 71.87 318 | 77.94 319 | 49.00 334 | 86.16 272 | 88.58 261 | 66.36 253 | 58.19 301 | 82.21 248 | 46.36 250 | 83.87 334 | 44.97 321 | 55.17 326 | 82.73 301 |
|
MVS_0304 | | | 68.99 271 | 67.23 269 | 74.28 299 | 80.36 288 | 52.54 316 | 87.01 265 | 86.36 286 | 59.89 305 | 66.22 248 | 73.56 324 | 24.25 340 | 88.03 308 | 57.34 271 | 70.11 233 | 82.27 310 |
|
DP-MVS | | | 69.90 263 | 66.48 270 | 80.14 227 | 95.36 28 | 62.93 203 | 89.56 222 | 76.11 334 | 50.27 339 | 57.69 307 | 85.23 214 | 39.68 279 | 95.73 131 | 33.35 354 | 71.05 230 | 81.78 315 |
|
LS3D | | | 69.17 267 | 66.40 271 | 77.50 267 | 91.92 97 | 56.12 299 | 85.12 274 | 80.37 328 | 46.96 346 | 56.50 311 | 87.51 192 | 37.25 298 | 93.71 214 | 32.52 359 | 79.40 164 | 82.68 305 |
|
KD-MVS_2432*1600 | | | 69.03 269 | 66.37 272 | 77.01 276 | 85.56 228 | 61.06 236 | 81.44 303 | 90.25 199 | 67.27 246 | 58.00 304 | 76.53 311 | 54.49 179 | 87.63 315 | 48.04 304 | 35.77 360 | 82.34 308 |
|
miper_refine_blended | | | 69.03 269 | 66.37 272 | 77.01 276 | 85.56 228 | 61.06 236 | 81.44 303 | 90.25 199 | 67.27 246 | 58.00 304 | 76.53 311 | 54.49 179 | 87.63 315 | 48.04 304 | 35.77 360 | 82.34 308 |
|
Anonymous20231206 | | | 67.53 284 | 65.78 274 | 72.79 309 | 74.95 331 | 47.59 339 | 88.23 247 | 87.32 278 | 61.75 293 | 58.07 303 | 77.29 304 | 37.79 295 | 87.29 319 | 42.91 326 | 63.71 282 | 83.48 290 |
|
MSDG | | | 69.54 265 | 65.73 275 | 80.96 212 | 85.11 236 | 63.71 186 | 84.19 279 | 83.28 317 | 56.95 318 | 54.50 315 | 84.03 228 | 31.50 322 | 96.03 121 | 42.87 328 | 69.13 241 | 83.14 297 |
|
RPMNet | | | 70.42 259 | 65.68 276 | 84.63 119 | 83.15 263 | 67.96 81 | 70.25 340 | 90.45 187 | 46.83 348 | 69.97 202 | 65.10 347 | 56.48 160 | 95.30 154 | 35.79 349 | 73.13 212 | 90.64 185 |
|
FMVSNet5 | | | 68.04 279 | 65.66 277 | 75.18 290 | 84.43 247 | 57.89 281 | 83.54 283 | 86.26 289 | 61.83 292 | 53.64 320 | 73.30 325 | 37.15 301 | 85.08 327 | 48.99 299 | 61.77 297 | 82.56 307 |
|
XVG-ACMP-BASELINE | | | 68.04 279 | 65.53 278 | 75.56 286 | 74.06 335 | 52.37 317 | 78.43 323 | 85.88 294 | 62.03 288 | 58.91 299 | 81.21 268 | 20.38 350 | 91.15 280 | 60.69 255 | 68.18 247 | 83.16 296 |
|
EG-PatchMatch MVS | | | 68.55 274 | 65.41 279 | 77.96 263 | 78.69 311 | 62.93 203 | 89.86 218 | 89.17 237 | 60.55 298 | 50.27 332 | 77.73 301 | 22.60 345 | 94.06 199 | 47.18 310 | 72.65 218 | 76.88 344 |
|
PatchT | | | 69.11 268 | 65.37 280 | 80.32 221 | 82.07 274 | 63.68 189 | 67.96 349 | 87.62 276 | 50.86 337 | 69.37 206 | 65.18 346 | 57.09 146 | 88.53 303 | 41.59 333 | 66.60 258 | 88.74 207 |
|
test_fmvs2 | | | 65.78 294 | 64.84 281 | 68.60 326 | 66.54 354 | 41.71 354 | 83.27 288 | 69.81 352 | 54.38 327 | 67.91 228 | 84.54 224 | 15.35 356 | 81.22 350 | 75.65 129 | 66.16 261 | 82.88 298 |
|
ACMH | | 63.93 17 | 68.62 273 | 64.81 282 | 80.03 231 | 85.22 232 | 63.25 195 | 87.72 254 | 84.66 304 | 60.83 297 | 51.57 327 | 79.43 291 | 27.29 335 | 94.96 160 | 41.76 331 | 64.84 271 | 81.88 313 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
pmmvs6 | | | 67.57 283 | 64.76 283 | 76.00 285 | 72.82 340 | 53.37 313 | 88.71 240 | 86.78 285 | 53.19 330 | 57.58 308 | 78.03 299 | 35.33 309 | 92.41 253 | 55.56 276 | 54.88 328 | 82.21 311 |
|
our_test_3 | | | 68.29 277 | 64.69 284 | 79.11 252 | 78.92 306 | 64.85 158 | 88.40 246 | 85.06 300 | 60.32 301 | 52.68 322 | 76.12 315 | 40.81 276 | 89.80 296 | 44.25 323 | 55.65 324 | 82.67 306 |
|
ACMH+ | | 65.35 16 | 67.65 282 | 64.55 285 | 76.96 278 | 84.59 243 | 57.10 293 | 88.08 248 | 80.79 325 | 58.59 312 | 53.00 321 | 81.09 270 | 26.63 337 | 92.95 228 | 46.51 312 | 61.69 301 | 80.82 320 |
|
USDC | | | 67.43 286 | 64.51 286 | 76.19 283 | 77.94 319 | 55.29 304 | 78.38 324 | 85.00 301 | 73.17 141 | 48.36 339 | 80.37 278 | 21.23 347 | 92.48 252 | 52.15 288 | 64.02 280 | 80.81 321 |
|
Patchmatch-RL test | | | 68.17 278 | 64.49 287 | 79.19 248 | 71.22 342 | 53.93 311 | 70.07 342 | 71.54 350 | 69.22 227 | 56.79 310 | 62.89 350 | 56.58 158 | 88.61 300 | 69.53 182 | 52.61 333 | 95.03 74 |
|
CMPMVS |  | 48.56 21 | 66.77 288 | 64.41 288 | 73.84 301 | 70.65 346 | 50.31 328 | 77.79 328 | 85.73 296 | 45.54 349 | 44.76 349 | 82.14 249 | 35.40 308 | 90.14 292 | 63.18 240 | 74.54 202 | 81.07 318 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
ADS-MVSNet | | | 68.54 275 | 64.38 289 | 81.03 211 | 88.06 185 | 66.90 108 | 68.01 347 | 84.02 309 | 57.57 313 | 64.48 262 | 69.87 338 | 38.68 282 | 89.21 299 | 40.87 335 | 67.89 250 | 86.97 235 |
|
Patchmtry | | | 67.53 284 | 63.93 290 | 78.34 257 | 82.12 273 | 64.38 169 | 68.72 344 | 84.00 310 | 48.23 345 | 59.24 294 | 72.41 328 | 57.82 140 | 89.27 298 | 46.10 315 | 56.68 323 | 81.36 316 |
|
ppachtmachnet_test | | | 67.72 281 | 63.70 291 | 79.77 239 | 78.92 306 | 66.04 128 | 88.68 241 | 82.90 319 | 60.11 303 | 55.45 312 | 75.96 316 | 39.19 281 | 90.55 282 | 39.53 339 | 52.55 334 | 82.71 303 |
|
LTVRE_ROB | | 59.60 19 | 66.27 290 | 63.54 292 | 74.45 295 | 84.00 254 | 51.55 321 | 67.08 350 | 83.53 313 | 58.78 310 | 54.94 314 | 80.31 279 | 34.54 311 | 93.23 223 | 40.64 337 | 68.03 248 | 78.58 339 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
ADS-MVSNet2 | | | 66.90 287 | 63.44 293 | 77.26 273 | 88.06 185 | 60.70 246 | 68.01 347 | 75.56 338 | 57.57 313 | 64.48 262 | 69.87 338 | 38.68 282 | 84.10 330 | 40.87 335 | 67.89 250 | 86.97 235 |
|
UnsupCasMVSNet_eth | | | 65.79 293 | 63.10 294 | 73.88 300 | 70.71 345 | 50.29 329 | 81.09 306 | 89.88 213 | 72.58 153 | 49.25 337 | 74.77 322 | 32.57 318 | 87.43 318 | 55.96 275 | 41.04 353 | 83.90 285 |
|
EU-MVSNet | | | 64.01 301 | 63.01 295 | 67.02 332 | 74.40 334 | 38.86 362 | 83.27 288 | 86.19 291 | 45.11 350 | 54.27 316 | 81.15 269 | 36.91 304 | 80.01 352 | 48.79 301 | 57.02 320 | 82.19 312 |
|
OpenMVS_ROB |  | 61.12 18 | 66.39 289 | 62.92 296 | 76.80 280 | 76.51 326 | 57.77 283 | 89.22 231 | 83.41 315 | 55.48 325 | 53.86 319 | 77.84 300 | 26.28 338 | 93.95 208 | 34.90 351 | 68.76 243 | 78.68 338 |
|
testgi | | | 64.48 299 | 62.87 297 | 69.31 324 | 71.24 341 | 40.62 357 | 85.49 273 | 79.92 329 | 65.36 260 | 54.18 317 | 83.49 235 | 23.74 343 | 84.55 329 | 41.60 332 | 60.79 307 | 82.77 300 |
|
test20.03 | | | 63.83 302 | 62.65 298 | 67.38 331 | 70.58 347 | 39.94 358 | 86.57 270 | 84.17 307 | 63.29 275 | 51.86 325 | 77.30 303 | 37.09 302 | 82.47 343 | 38.87 343 | 54.13 330 | 79.73 330 |
|
JIA-IIPM | | | 66.06 291 | 62.45 299 | 76.88 279 | 81.42 279 | 54.45 310 | 57.49 362 | 88.67 257 | 49.36 341 | 63.86 268 | 46.86 360 | 56.06 164 | 90.25 286 | 49.53 297 | 68.83 242 | 85.95 259 |
|
pmmvs-eth3d | | | 65.53 295 | 62.32 300 | 75.19 289 | 69.39 350 | 59.59 261 | 82.80 295 | 83.43 314 | 62.52 284 | 51.30 329 | 72.49 326 | 32.86 315 | 87.16 320 | 55.32 277 | 50.73 337 | 78.83 337 |
|
OurMVSNet-221017-0 | | | 64.68 297 | 62.17 301 | 72.21 314 | 76.08 330 | 47.35 340 | 80.67 309 | 81.02 324 | 56.19 322 | 51.60 326 | 79.66 289 | 27.05 336 | 88.56 302 | 53.60 285 | 53.63 331 | 80.71 322 |
|
RPSCF | | | 64.24 300 | 61.98 302 | 71.01 320 | 76.10 329 | 45.00 349 | 75.83 333 | 75.94 335 | 46.94 347 | 58.96 298 | 84.59 222 | 31.40 323 | 82.00 347 | 47.76 308 | 60.33 312 | 86.04 256 |
|
SixPastTwentyTwo | | | 64.92 296 | 61.78 303 | 74.34 297 | 78.74 310 | 49.76 330 | 83.42 287 | 79.51 331 | 62.86 280 | 50.27 332 | 77.35 302 | 30.92 327 | 90.49 284 | 45.89 316 | 47.06 343 | 82.78 299 |
|
test_0402 | | | 64.54 298 | 61.09 304 | 74.92 292 | 84.10 253 | 60.75 244 | 87.95 250 | 79.71 330 | 52.03 332 | 52.41 323 | 77.20 305 | 32.21 320 | 91.64 271 | 23.14 363 | 61.03 304 | 72.36 352 |
|
Patchmatch-test | | | 65.86 292 | 60.94 305 | 80.62 218 | 83.75 256 | 58.83 273 | 58.91 361 | 75.26 340 | 44.50 352 | 50.95 331 | 77.09 307 | 58.81 133 | 87.90 309 | 35.13 350 | 64.03 279 | 95.12 70 |
|
MDA-MVSNet_test_wron | | | 63.78 303 | 60.16 306 | 74.64 293 | 78.15 317 | 60.41 250 | 83.49 284 | 84.03 308 | 56.17 324 | 39.17 358 | 71.59 334 | 37.22 299 | 83.24 340 | 42.87 328 | 48.73 340 | 80.26 327 |
|
YYNet1 | | | 63.76 304 | 60.14 307 | 74.62 294 | 78.06 318 | 60.19 255 | 83.46 286 | 83.99 312 | 56.18 323 | 39.25 357 | 71.56 335 | 37.18 300 | 83.34 338 | 42.90 327 | 48.70 341 | 80.32 326 |
|
COLMAP_ROB |  | 57.96 20 | 62.98 306 | 59.65 308 | 72.98 307 | 81.44 278 | 53.00 315 | 83.75 282 | 75.53 339 | 48.34 344 | 48.81 338 | 81.40 262 | 24.14 341 | 90.30 285 | 32.95 356 | 60.52 309 | 75.65 347 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
K. test v3 | | | 63.09 305 | 59.61 309 | 73.53 303 | 76.26 328 | 49.38 333 | 83.27 288 | 77.15 333 | 64.35 266 | 47.77 341 | 72.32 330 | 28.73 331 | 87.79 312 | 49.93 296 | 36.69 359 | 83.41 292 |
|
Anonymous20240521 | | | 62.09 307 | 59.08 310 | 71.10 319 | 67.19 353 | 48.72 335 | 83.91 281 | 85.23 299 | 50.38 338 | 47.84 340 | 71.22 337 | 20.74 348 | 85.51 326 | 46.47 313 | 58.75 317 | 79.06 335 |
|
KD-MVS_self_test | | | 60.87 311 | 58.60 311 | 67.68 329 | 66.13 355 | 39.93 359 | 75.63 334 | 84.70 303 | 57.32 316 | 49.57 335 | 68.45 341 | 29.55 328 | 82.87 341 | 48.09 303 | 47.94 342 | 80.25 328 |
|
AllTest | | | 61.66 308 | 58.06 312 | 72.46 311 | 79.57 295 | 51.42 323 | 80.17 315 | 68.61 354 | 51.25 335 | 45.88 343 | 81.23 264 | 19.86 352 | 86.58 322 | 38.98 341 | 57.01 321 | 79.39 332 |
|
UnsupCasMVSNet_bld | | | 61.60 309 | 57.71 313 | 73.29 305 | 68.73 351 | 51.64 320 | 78.61 322 | 89.05 245 | 57.20 317 | 46.11 342 | 61.96 353 | 28.70 332 | 88.60 301 | 50.08 295 | 38.90 357 | 79.63 331 |
|
MDA-MVSNet-bldmvs | | | 61.54 310 | 57.70 314 | 73.05 306 | 79.53 297 | 57.00 295 | 83.08 292 | 81.23 323 | 57.57 313 | 34.91 360 | 72.45 327 | 32.79 316 | 86.26 324 | 35.81 348 | 41.95 351 | 75.89 346 |
|
MIMVSNet1 | | | 60.16 314 | 57.33 315 | 68.67 325 | 69.71 348 | 44.13 351 | 78.92 321 | 84.21 306 | 55.05 326 | 44.63 350 | 71.85 332 | 23.91 342 | 81.54 349 | 32.63 358 | 55.03 327 | 80.35 325 |
|
test_vis1_rt | | | 59.09 317 | 57.31 316 | 64.43 334 | 68.44 352 | 46.02 347 | 83.05 293 | 48.63 371 | 51.96 333 | 49.57 335 | 63.86 349 | 16.30 354 | 80.20 351 | 71.21 166 | 62.79 286 | 67.07 358 |
|
PM-MVS | | | 59.40 315 | 56.59 317 | 67.84 327 | 63.63 357 | 41.86 353 | 76.76 330 | 63.22 361 | 59.01 309 | 51.07 330 | 72.27 331 | 11.72 362 | 83.25 339 | 61.34 251 | 50.28 339 | 78.39 340 |
|
new-patchmatchnet | | | 59.30 316 | 56.48 318 | 67.79 328 | 65.86 356 | 44.19 350 | 82.47 296 | 81.77 321 | 59.94 304 | 43.65 353 | 66.20 345 | 27.67 334 | 81.68 348 | 39.34 340 | 41.40 352 | 77.50 343 |
|
TinyColmap | | | 60.32 312 | 56.42 319 | 72.00 317 | 78.78 309 | 53.18 314 | 78.36 325 | 75.64 337 | 52.30 331 | 41.59 356 | 75.82 318 | 14.76 359 | 88.35 305 | 35.84 347 | 54.71 329 | 74.46 348 |
|
MVS-HIRNet | | | 60.25 313 | 55.55 320 | 74.35 296 | 84.37 248 | 56.57 297 | 71.64 338 | 74.11 342 | 34.44 359 | 45.54 347 | 42.24 366 | 31.11 326 | 89.81 294 | 40.36 338 | 76.10 196 | 76.67 345 |
|
test_fmvs3 | | | 56.82 318 | 54.86 321 | 62.69 336 | 53.59 365 | 35.47 364 | 75.87 332 | 65.64 359 | 43.91 353 | 55.10 313 | 71.43 336 | 6.91 370 | 74.40 357 | 68.64 192 | 52.63 332 | 78.20 341 |
|
DSMNet-mixed | | | 56.78 319 | 54.44 322 | 63.79 335 | 63.21 358 | 29.44 373 | 64.43 353 | 64.10 360 | 42.12 356 | 51.32 328 | 71.60 333 | 31.76 321 | 75.04 355 | 36.23 346 | 65.20 268 | 86.87 238 |
|
LF4IMVS | | | 54.01 322 | 52.12 323 | 59.69 337 | 62.41 360 | 39.91 360 | 68.59 345 | 68.28 356 | 42.96 355 | 44.55 351 | 75.18 319 | 14.09 361 | 68.39 361 | 41.36 334 | 51.68 335 | 70.78 353 |
|
TDRefinement | | | 55.28 321 | 51.58 324 | 66.39 333 | 59.53 362 | 46.15 346 | 76.23 331 | 72.80 345 | 44.60 351 | 42.49 354 | 76.28 314 | 15.29 357 | 82.39 344 | 33.20 355 | 43.75 348 | 70.62 354 |
|
pmmvs3 | | | 55.51 320 | 51.50 325 | 67.53 330 | 57.90 363 | 50.93 326 | 80.37 311 | 73.66 343 | 40.63 357 | 44.15 352 | 64.75 348 | 16.30 354 | 78.97 353 | 44.77 322 | 40.98 355 | 72.69 350 |
|
N_pmnet | | | 50.55 323 | 49.11 326 | 54.88 343 | 77.17 324 | 4.02 383 | 84.36 278 | 2.00 382 | 48.59 342 | 45.86 345 | 68.82 340 | 32.22 319 | 82.80 342 | 31.58 361 | 51.38 336 | 77.81 342 |
|
new_pmnet | | | 49.31 324 | 46.44 327 | 57.93 338 | 62.84 359 | 40.74 356 | 68.47 346 | 62.96 362 | 36.48 358 | 35.09 359 | 57.81 355 | 14.97 358 | 72.18 358 | 32.86 357 | 46.44 344 | 60.88 360 |
|
mvsany_test3 | | | 48.86 325 | 46.35 328 | 56.41 339 | 46.00 371 | 31.67 369 | 62.26 355 | 47.25 372 | 43.71 354 | 45.54 347 | 68.15 342 | 10.84 363 | 64.44 369 | 57.95 267 | 35.44 362 | 73.13 349 |
|
test_f | | | 46.58 326 | 43.45 329 | 55.96 340 | 45.18 372 | 32.05 368 | 61.18 356 | 49.49 370 | 33.39 360 | 42.05 355 | 62.48 352 | 7.00 369 | 65.56 365 | 47.08 311 | 43.21 350 | 70.27 355 |
|
FPMVS | | | 45.64 327 | 43.10 330 | 53.23 345 | 51.42 368 | 36.46 363 | 64.97 352 | 71.91 348 | 29.13 363 | 27.53 363 | 61.55 354 | 9.83 365 | 65.01 367 | 16.00 370 | 55.58 325 | 58.22 361 |
|
EGC-MVSNET | | | 42.35 328 | 38.09 331 | 55.11 342 | 74.57 332 | 46.62 345 | 71.63 339 | 55.77 365 | 0.04 377 | 0.24 378 | 62.70 351 | 14.24 360 | 74.91 356 | 17.59 367 | 46.06 345 | 43.80 363 |
|
test_vis3_rt | | | 40.46 331 | 37.79 332 | 48.47 349 | 44.49 373 | 33.35 367 | 66.56 351 | 32.84 379 | 32.39 361 | 29.65 361 | 39.13 369 | 3.91 377 | 68.65 360 | 50.17 293 | 40.99 354 | 43.40 364 |
|
APD_test1 | | | 40.50 330 | 37.31 333 | 50.09 347 | 51.88 366 | 35.27 365 | 59.45 360 | 52.59 367 | 21.64 366 | 26.12 364 | 57.80 356 | 4.56 374 | 66.56 363 | 22.64 364 | 39.09 356 | 48.43 362 |
|
LCM-MVSNet | | | 40.54 329 | 35.79 334 | 54.76 344 | 36.92 378 | 30.81 370 | 51.41 365 | 69.02 353 | 22.07 365 | 24.63 365 | 45.37 362 | 4.56 374 | 65.81 364 | 33.67 353 | 34.50 363 | 67.67 356 |
|
ANet_high | | | 40.27 332 | 35.20 335 | 55.47 341 | 34.74 379 | 34.47 366 | 63.84 354 | 71.56 349 | 48.42 343 | 18.80 368 | 41.08 367 | 9.52 366 | 64.45 368 | 20.18 365 | 8.66 375 | 67.49 357 |
|
test_method | | | 38.59 333 | 35.16 336 | 48.89 348 | 54.33 364 | 21.35 378 | 45.32 368 | 53.71 366 | 7.41 374 | 28.74 362 | 51.62 358 | 8.70 367 | 52.87 372 | 33.73 352 | 32.89 364 | 72.47 351 |
|
PMMVS2 | | | 37.93 334 | 33.61 337 | 50.92 346 | 46.31 370 | 24.76 376 | 60.55 359 | 50.05 368 | 28.94 364 | 20.93 366 | 47.59 359 | 4.41 376 | 65.13 366 | 25.14 362 | 18.55 370 | 62.87 359 |
|
Gipuma |  | | 34.91 335 | 31.44 338 | 45.30 350 | 70.99 344 | 39.64 361 | 19.85 372 | 72.56 346 | 20.10 368 | 16.16 372 | 21.47 373 | 5.08 373 | 71.16 359 | 13.07 371 | 43.70 349 | 25.08 370 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
testf1 | | | 32.77 336 | 29.47 339 | 42.67 352 | 41.89 375 | 30.81 370 | 52.07 363 | 43.45 373 | 15.45 369 | 18.52 369 | 44.82 363 | 2.12 378 | 58.38 370 | 16.05 368 | 30.87 366 | 38.83 365 |
|
APD_test2 | | | 32.77 336 | 29.47 339 | 42.67 352 | 41.89 375 | 30.81 370 | 52.07 363 | 43.45 373 | 15.45 369 | 18.52 369 | 44.82 363 | 2.12 378 | 58.38 370 | 16.05 368 | 30.87 366 | 38.83 365 |
|
PMVS |  | 26.43 22 | 31.84 338 | 28.16 341 | 42.89 351 | 25.87 381 | 27.58 374 | 50.92 366 | 49.78 369 | 21.37 367 | 14.17 373 | 40.81 368 | 2.01 380 | 66.62 362 | 9.61 373 | 38.88 358 | 34.49 369 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
cdsmvs_eth3d_5k | | | 19.86 343 | 26.47 342 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 93.45 75 | 0.00 380 | 0.00 381 | 95.27 43 | 49.56 225 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
E-PMN | | | 24.61 339 | 24.00 343 | 26.45 356 | 43.74 374 | 18.44 380 | 60.86 357 | 39.66 375 | 15.11 371 | 9.53 375 | 22.10 372 | 6.52 371 | 46.94 374 | 8.31 374 | 10.14 372 | 13.98 372 |
|
tmp_tt | | | 22.26 342 | 23.75 344 | 17.80 358 | 5.23 382 | 12.06 382 | 35.26 369 | 39.48 376 | 2.82 376 | 18.94 367 | 44.20 365 | 22.23 346 | 24.64 377 | 36.30 345 | 9.31 374 | 16.69 371 |
|
EMVS | | | 23.76 341 | 23.20 345 | 25.46 357 | 41.52 377 | 16.90 381 | 60.56 358 | 38.79 378 | 14.62 372 | 8.99 376 | 20.24 375 | 7.35 368 | 45.82 375 | 7.25 375 | 9.46 373 | 13.64 373 |
|
MVE |  | 24.84 23 | 24.35 340 | 19.77 346 | 38.09 354 | 34.56 380 | 26.92 375 | 26.57 370 | 38.87 377 | 11.73 373 | 11.37 374 | 27.44 370 | 1.37 381 | 50.42 373 | 11.41 372 | 14.60 371 | 36.93 367 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
wuyk23d | | | 11.30 344 | 10.95 347 | 12.33 359 | 48.05 369 | 19.89 379 | 25.89 371 | 1.92 383 | 3.58 375 | 3.12 377 | 1.37 377 | 0.64 382 | 15.77 378 | 6.23 376 | 7.77 376 | 1.35 374 |
|
ab-mvs-re | | | 7.91 345 | 10.55 348 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 94.95 51 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
testmvs | | | 7.23 346 | 9.62 349 | 0.06 361 | 0.04 383 | 0.02 385 | 84.98 276 | 0.02 384 | 0.03 378 | 0.18 379 | 1.21 378 | 0.01 384 | 0.02 379 | 0.14 377 | 0.01 377 | 0.13 376 |
|
test123 | | | 6.92 347 | 9.21 350 | 0.08 360 | 0.03 384 | 0.05 384 | 81.65 301 | 0.01 385 | 0.02 379 | 0.14 380 | 0.85 379 | 0.03 383 | 0.02 379 | 0.12 378 | 0.00 378 | 0.16 375 |
|
pcd_1.5k_mvsjas | | | 4.46 348 | 5.95 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 53.55 191 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 378 | 0.00 377 |
|
FOURS1 | | | | | | 93.95 45 | 61.77 224 | 93.96 62 | 91.92 131 | 62.14 287 | 86.57 33 | | | | | | |
|
MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 19 | | | | | 99.07 13 | 92.01 11 | 94.77 24 | 96.51 20 |
|
PC_three_1452 | | | | | | | | | | 80.91 35 | 94.07 2 | 96.83 13 | 83.57 4 | 99.12 5 | 95.70 2 | 97.42 4 | 97.55 4 |
|
No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 19 | | | | | 99.07 13 | 92.01 11 | 94.77 24 | 96.51 20 |
|
test_one_0601 | | | | | | 96.32 18 | 69.74 40 | | 94.18 49 | 71.42 195 | 90.67 15 | 96.85 11 | 74.45 18 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 96.63 9 | 65.50 143 | | 93.50 73 | 70.74 209 | 85.26 48 | 95.19 48 | 64.92 67 | 97.29 68 | 87.51 41 | 93.01 52 | |
|
IU-MVS | | | | | | 96.46 11 | 69.91 35 | | 95.18 14 | 80.75 36 | 95.28 1 | | | | 92.34 8 | 95.36 13 | 96.47 24 |
|
OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 4 | | | | 97.00 8 | 83.82 2 | 99.15 2 | 95.72 1 | 97.63 3 | 97.62 2 |
|
test_241102_TWO | | | | | | | | | 94.41 40 | 71.65 184 | 92.07 6 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 8 | 95.36 13 | 96.59 15 |
|
test_241102_ONE | | | | | | 96.45 12 | 69.38 45 | | 94.44 38 | 71.65 184 | 92.11 4 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
save fliter | | | | | | 93.84 48 | 67.89 83 | 95.05 37 | 92.66 104 | 78.19 69 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 72.48 155 | 90.55 16 | 96.93 9 | 76.24 11 | 99.08 11 | 91.53 16 | 94.99 16 | 96.43 25 |
|
test_0728_SECOND | | | | | 88.70 15 | 96.45 12 | 70.43 27 | 96.64 8 | 94.37 44 | | | | | 99.15 2 | 91.91 14 | 94.90 20 | 96.51 20 |
|
test0726 | | | | | | 96.40 15 | 69.99 31 | 96.76 6 | 94.33 46 | 71.92 171 | 91.89 8 | 97.11 6 | 73.77 21 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 94.68 84 |
|
test_part2 | | | | | | 96.29 19 | 68.16 77 | | | | 90.78 13 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 57.85 139 | | | | 94.68 84 |
|
sam_mvs | | | | | | | | | | | | | 54.91 176 | | | | |
|
ambc | | | | | 69.61 322 | 61.38 361 | 41.35 355 | 49.07 367 | 85.86 295 | | 50.18 334 | 66.40 344 | 10.16 364 | 88.14 307 | 45.73 317 | 44.20 347 | 79.32 334 |
|
MTGPA |  | | | | | | | | 92.23 117 | | | | | | | | |
|
test_post1 | | | | | | | | 78.95 320 | | | | 20.70 374 | 53.05 196 | 91.50 278 | 60.43 256 | | |
|
test_post | | | | | | | | | | | | 23.01 371 | 56.49 159 | 92.67 243 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 67.62 343 | 57.62 142 | 90.25 286 | | | |
|
GG-mvs-BLEND | | | | | 86.53 62 | 91.91 98 | 69.67 43 | 75.02 335 | 94.75 26 | | 78.67 109 | 90.85 142 | 77.91 7 | 94.56 179 | 72.25 156 | 93.74 41 | 95.36 56 |
|
MTMP | | | | | | | | 93.77 74 | 32.52 380 | | | | | | | | |
|
gm-plane-assit | | | | | | 88.42 173 | 67.04 105 | | | 78.62 66 | | 91.83 126 | | 97.37 62 | 76.57 124 | | |
|
test9_res | | | | | | | | | | | | | | | 89.41 25 | 94.96 17 | 95.29 61 |
|
TEST9 | | | | | | 94.18 41 | 67.28 97 | 94.16 52 | 93.51 71 | 71.75 182 | 85.52 43 | 95.33 38 | 68.01 41 | 97.27 72 | | | |
|
test_8 | | | | | | 94.19 40 | 67.19 99 | 94.15 55 | 93.42 77 | 71.87 176 | 85.38 46 | 95.35 37 | 68.19 39 | 96.95 91 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 86.41 52 | 94.75 28 | 95.33 57 |
|
agg_prior | | | | | | 94.16 43 | 66.97 107 | | 93.31 80 | | 84.49 53 | | | 96.75 98 | | | |
|
TestCases | | | | | 72.46 311 | 79.57 295 | 51.42 323 | | 68.61 354 | 51.25 335 | 45.88 343 | 81.23 264 | 19.86 352 | 86.58 322 | 38.98 341 | 57.01 321 | 79.39 332 |
|
test_prior4 | | | | | | | 67.18 101 | 93.92 65 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.10 36 | | 75.40 105 | 85.25 49 | 95.61 33 | 67.94 42 | | 87.47 42 | 94.77 24 | |
|
test_prior | | | | | 86.42 65 | 94.71 35 | 67.35 96 | | 93.10 90 | | | | | 96.84 96 | | | 95.05 72 |
|
旧先验2 | | | | | | | | 92.00 141 | | 59.37 308 | 87.54 28 | | | 93.47 220 | 75.39 131 | | |
|
æ–°å‡ ä½•2 | | | | | | | | 91.41 162 | | | | | | | | | |
|
æ–°å‡ ä½•1 | | | | | 84.73 114 | 92.32 84 | 64.28 173 | | 91.46 156 | 59.56 307 | 79.77 92 | 92.90 104 | 56.95 152 | 96.57 103 | 63.40 237 | 92.91 54 | 93.34 129 |
|
旧先验1 | | | | | | 91.94 95 | 60.74 245 | | 91.50 154 | | | 94.36 69 | 65.23 62 | | | 91.84 67 | 94.55 88 |
|
æ— å…ˆéªŒ | | | | | | | | 92.71 109 | 92.61 108 | 62.03 288 | | | | 97.01 83 | 66.63 208 | | 93.97 111 |
|
原ACMM2 | | | | | | | | 92.01 138 | | | | | | | | | |
|
原ACMM1 | | | | | 84.42 124 | 93.21 63 | 64.27 174 | | 93.40 79 | 65.39 259 | 79.51 95 | 92.50 112 | 58.11 138 | 96.69 99 | 65.27 227 | 93.96 36 | 92.32 154 |
|
test222 | | | | | | 89.77 141 | 61.60 228 | 89.55 223 | 89.42 228 | 56.83 320 | 77.28 121 | 92.43 116 | 52.76 199 | | | 91.14 81 | 93.09 137 |
|
testdata2 | | | | | | | | | | | | | | 96.09 116 | 61.26 252 | | |
|
segment_acmp | | | | | | | | | | | | | 65.94 56 | | | | |
|
testdata | | | | | 81.34 200 | 89.02 159 | 57.72 284 | | 89.84 214 | 58.65 311 | 85.32 47 | 94.09 81 | 57.03 147 | 93.28 222 | 69.34 184 | 90.56 87 | 93.03 139 |
|
testdata1 | | | | | | | | 89.21 232 | | 77.55 82 | | | | | | | |
|
test12 | | | | | 87.09 43 | 94.60 36 | 68.86 58 | | 92.91 95 | | 82.67 68 | | 65.44 61 | 97.55 54 | | 93.69 44 | 94.84 80 |
|
plane_prior7 | | | | | | 86.94 206 | 61.51 229 | | | | | | | | | | |
|
plane_prior6 | | | | | | 87.23 201 | 62.32 215 | | | | | | 50.66 215 | | | | |
|
plane_prior5 | | | | | | | | | 91.31 160 | | | | | 95.55 144 | 76.74 122 | 78.53 174 | 88.39 215 |
|
plane_prior4 | | | | | | | | | | | | 89.14 168 | | | | | |
|
plane_prior3 | | | | | | | 61.95 222 | | | 79.09 57 | 72.53 170 | | | | | | |
|
plane_prior2 | | | | | | | | 93.13 94 | | 78.81 63 | | | | | | | |
|
plane_prior1 | | | | | | 87.15 203 | | | | | | | | | | | |
|
plane_prior | | | | | | | 62.42 212 | 93.85 69 | | 79.38 49 | | | | | | 78.80 171 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 66.01 358 | | | | | | | | |
|
lessismore_v0 | | | | | 73.72 302 | 72.93 339 | 47.83 338 | | 61.72 363 | | 45.86 345 | 73.76 323 | 28.63 333 | 89.81 294 | 47.75 309 | 31.37 365 | 83.53 288 |
|
LGP-MVS_train | | | | | 79.56 244 | 84.31 249 | 59.37 265 | | 89.73 219 | 69.49 223 | 64.86 256 | 88.42 173 | 38.65 284 | 94.30 187 | 72.56 153 | 72.76 216 | 85.01 276 |
|
test11 | | | | | | | | | 93.01 91 | | | | | | | | |
|
door | | | | | | | | | 66.57 357 | | | | | | | | |
|
HQP5-MVS | | | | | | | 63.66 190 | | | | | | | | | | |
|
HQP-NCC | | | | | | 87.54 195 | | 94.06 57 | | 79.80 43 | 74.18 150 | | | | | | |
|
ACMP_Plane | | | | | | 87.54 195 | | 94.06 57 | | 79.80 43 | 74.18 150 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 77.63 119 | | |
|
HQP4-MVS | | | | | | | | | | | 74.18 150 | | | 95.61 139 | | | 88.63 208 |
|
HQP3-MVS | | | | | | | | | 91.70 146 | | | | | | | 78.90 169 | |
|
HQP2-MVS | | | | | | | | | | | | | 51.63 209 | | | | |
|
NP-MVS | | | | | | 87.41 198 | 63.04 199 | | | | | 90.30 152 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 59.90 258 | 80.13 316 | | 67.65 243 | 72.79 165 | | 54.33 184 | | 59.83 260 | | 92.58 148 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 224 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 69.72 235 | |
|
Test By Simon | | | | | | | | | | | | | 54.21 185 | | | | |
|
ITE_SJBPF | | | | | 70.43 321 | 74.44 333 | 47.06 344 | | 77.32 332 | 60.16 302 | 54.04 318 | 83.53 233 | 23.30 344 | 84.01 332 | 43.07 325 | 61.58 302 | 80.21 329 |
|
DeepMVS_CX |  | | | | 34.71 355 | 51.45 367 | 24.73 377 | | 28.48 381 | 31.46 362 | 17.49 371 | 52.75 357 | 5.80 372 | 42.60 376 | 18.18 366 | 19.42 369 | 36.81 368 |
|