This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSP-MVS90.38 591.87 185.88 8992.83 7964.03 19393.06 11294.33 5482.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 31196.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18792.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6673.86 2197.58 5993.38 1492.00 6996.28 37
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21792.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7374.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 7099.10 992.99 1793.91 4296.58 21
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2688.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20390.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26690.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22493.43 8784.06 1486.20 4990.17 18172.42 3196.98 10193.09 1695.92 1097.29 7
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23093.55 8082.89 2191.29 1692.89 12472.27 3396.03 14787.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 23163.55 21093.69 8791.08 19484.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 118
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 8266.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9585.93 5394.80 7675.80 1398.21 3489.38 4188.78 10696.59 19
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 15091.74 1296.67 2165.61 7498.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 23264.37 18394.30 5588.45 29580.51 5192.70 496.86 1569.98 4497.15 8995.83 488.08 11494.65 102
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22964.19 19094.41 5288.14 30480.24 5992.54 596.97 1069.52 4697.17 8595.89 388.51 10994.56 105
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8898.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25788.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11082.70 2487.13 4095.27 5964.99 7995.80 15289.34 4291.80 7295.93 45
9.1487.63 2893.86 4894.41 5294.18 5772.76 18286.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9383.86 1589.55 2996.06 3653.55 22397.89 4391.10 3293.31 5394.54 108
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23090.66 20679.37 7381.20 9793.67 10874.73 1596.55 12390.88 3592.00 6995.82 48
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12276.86 11587.90 3595.76 4166.17 6797.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20885.52 5795.33 5468.19 5097.27 8089.09 4594.90 2295.25 76
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10183.53 1889.55 2995.95 3853.45 22797.68 5091.07 3392.62 6094.54 108
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 26262.55 23594.26 5789.78 23983.81 1787.78 3696.33 2965.33 7696.98 10194.40 1187.55 12094.95 87
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 6970.78 24186.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
SPE-MVS-test86.14 5187.01 3683.52 17592.63 8759.36 30095.49 2791.92 15080.09 6085.46 5995.53 4961.82 12695.77 15586.77 6993.37 5295.41 60
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 7979.30 7487.07 4295.25 6168.43 4896.93 10987.87 5384.33 15196.65 17
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22463.54 21194.74 4790.02 23382.52 2590.14 2596.92 1362.93 11497.84 4695.28 882.26 16893.07 163
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13396.09 1793.87 6477.73 10284.01 7495.66 4363.39 10597.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2881.00 10293.08 11863.19 10997.29 7687.08 6591.38 8094.13 126
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21385.69 5696.52 2362.07 12298.77 2386.06 7495.60 1296.03 43
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3681.50 9392.12 14373.58 2596.28 13284.37 9085.20 14295.51 58
CS-MVS85.80 5886.65 4383.27 18392.00 10658.92 30495.31 3191.86 15579.97 6184.82 6595.40 5262.26 12095.51 17386.11 7392.08 6895.37 63
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4380.69 10592.21 14272.30 3296.46 12885.18 8083.43 15894.82 95
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8983.87 7592.94 12264.34 8996.94 10775.19 16194.09 3895.66 52
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 27077.63 14394.35 9173.04 2698.45 3084.92 8493.71 4796.92 14
sasdasda86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
canonicalmvs86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
jason86.40 4586.17 4987.11 5186.16 24770.54 3295.71 2492.19 13882.00 3184.58 6794.34 9261.86 12495.53 17287.76 5490.89 8695.27 73
jason: jason.
ETV-MVS86.01 5386.11 5085.70 9990.21 15067.02 11893.43 10391.92 15081.21 4584.13 7394.07 10160.93 13495.63 16389.28 4389.81 9694.46 114
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25663.58 20893.79 8389.32 25781.42 4190.21 2396.91 1462.41 11997.67 5194.48 1080.56 18792.90 169
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31662.33 24093.84 8088.81 28383.50 1987.00 4396.01 3763.36 10696.93 10994.04 1287.29 12394.61 104
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12466.54 28486.17 5095.88 3963.83 9597.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29963.48 21394.03 6889.46 25181.69 3489.86 2696.74 2061.85 12597.75 4994.74 982.01 17492.81 171
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10568.97 6695.04 4092.70 11579.04 8481.50 9396.50 2558.98 15996.78 11583.49 10093.93 4196.29 35
WTY-MVS86.32 4785.81 5687.85 2992.82 8169.37 5795.20 3495.25 1782.71 2381.91 9094.73 7767.93 5497.63 5679.55 13082.25 16996.54 22
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11967.53 10491.79 17093.49 8474.93 14184.61 6695.30 5659.42 15097.92 4186.13 7294.92 2094.94 88
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8178.88 13193.99 10262.25 12198.15 3685.93 7591.15 8494.15 125
MGCFI-Net85.59 6485.73 5985.17 11791.41 12762.44 23692.87 12091.31 18079.65 6786.99 4495.14 6762.90 11596.12 13987.13 6484.13 15696.96 13
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9286.00 5293.07 11958.22 16697.00 9785.22 7884.33 15196.52 23
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5480.60 10791.95 14771.73 3796.50 12680.02 12782.22 17095.13 79
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11270.90 23783.09 8195.28 5763.62 10097.36 7180.63 12294.18 3794.84 92
PAPM85.89 5785.46 6287.18 4988.20 20372.42 1592.41 14292.77 11382.11 3080.34 11193.07 11968.27 4995.02 18578.39 14393.59 4994.09 128
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5680.53 10891.93 14870.43 4196.51 12580.32 12582.13 17295.37 63
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18566.64 12792.15 14993.68 7581.07 4676.91 15393.64 10962.59 11798.44 3185.50 7692.84 5994.03 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 20269.35 5893.74 8691.89 15381.47 3780.10 11391.45 15764.80 8496.35 13087.23 6387.69 11895.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12465.59 15291.54 18092.51 12674.56 14480.62 10695.64 4459.15 15497.00 9786.94 6793.80 4394.07 130
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16179.94 11594.68 7960.61 13798.03 3882.63 10693.72 4694.52 110
EC-MVSNet84.53 8085.04 6983.01 18789.34 16761.37 26194.42 5191.09 19277.91 9983.24 7794.20 9758.37 16495.40 17485.35 7791.41 7992.27 188
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8864.27 18893.24 10792.27 13173.13 17279.63 11994.43 8561.90 12397.17 8585.00 8292.56 6194.06 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EIA-MVS84.84 7584.88 7184.69 13591.30 12962.36 23993.85 7792.04 14379.45 7079.33 12494.28 9562.42 11896.35 13080.05 12691.25 8395.38 62
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 20069.07 6293.04 11491.76 16081.27 4480.84 10492.07 14564.23 9096.06 14584.98 8387.43 12295.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32663.50 21292.79 12288.73 28680.46 5289.84 2796.65 2260.96 13397.57 6193.80 1380.14 18992.53 178
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5580.38 11092.27 13968.73 4795.19 18275.94 15583.27 16094.81 96
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10776.59 12279.03 12795.00 6861.59 12797.61 5878.16 14489.00 10595.63 53
baseline85.01 7284.44 7686.71 6488.33 19768.73 7190.24 23591.82 15981.05 4781.18 9892.50 13163.69 9896.08 14484.45 8986.71 13295.32 68
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9772.19 19779.22 12594.93 7159.04 15797.67 5181.55 11292.21 6494.49 113
GST-MVS84.63 7984.29 7885.66 10092.82 8165.27 15993.04 11493.13 10073.20 17078.89 12894.18 9859.41 15197.85 4581.45 11492.48 6393.86 140
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9972.19 19778.85 13394.86 7456.69 18697.45 6581.55 11292.20 6594.02 133
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10872.16 20078.86 13294.84 7556.97 18197.53 6381.38 11692.11 6794.24 120
diffmvspermissive84.28 8483.83 8185.61 10187.40 22268.02 9190.88 21089.24 26080.54 5081.64 9292.52 13059.83 14594.52 20987.32 6185.11 14394.29 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ETVMVS84.22 8883.71 8285.76 9692.58 8968.25 8592.45 14195.53 1479.54 6979.46 12191.64 15570.29 4294.18 22169.16 21682.76 16694.84 92
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8463.56 20991.76 17394.81 3179.65 6777.87 14094.09 9963.35 10797.90 4279.35 13279.36 19690.74 214
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 15174.04 887.84 28292.69 11762.18 32281.47 9587.64 21971.47 3896.28 13284.69 8694.74 3196.47 28
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36961.72 25492.17 14887.24 31782.36 2784.91 6495.41 5155.60 19996.83 11492.85 1885.87 13894.21 121
CANet_DTU84.09 9183.52 8585.81 9390.30 14866.82 12291.87 16689.01 27585.27 986.09 5193.74 10647.71 28196.98 10177.90 14689.78 9893.65 145
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 15366.59 13093.77 8491.73 16177.43 11077.08 15289.81 18863.77 9796.97 10479.67 12988.21 11292.60 175
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 30263.72 20191.37 18983.99 35181.42 4177.68 14295.74 4258.37 16497.58 5993.38 1486.87 12693.00 166
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13794.31 9455.25 20197.41 6879.16 13491.58 7693.95 135
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15575.14 692.07 15592.32 12981.87 3275.68 16288.27 20560.18 14098.60 2780.46 12490.27 9494.96 86
PVSNet_BlendedMVS83.38 10683.43 9183.22 18493.76 5067.53 10494.06 6393.61 7779.13 7981.00 10285.14 25163.19 10997.29 7687.08 6573.91 24084.83 310
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14579.16 12695.61 4553.99 21898.88 2269.62 21093.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline283.68 10283.42 9384.48 14587.37 22366.00 14290.06 23995.93 879.71 6669.08 24290.39 17577.92 696.28 13278.91 13881.38 18091.16 210
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 13071.03 23577.41 14694.92 7255.21 20496.19 13681.32 11790.70 8893.91 137
MTAPA83.91 9483.38 9585.50 10391.89 11165.16 16381.75 33392.23 13275.32 13680.53 10895.21 6456.06 19597.16 8884.86 8592.55 6294.18 122
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9567.74 9784.65 30894.50 4379.15 7882.23 8887.93 21466.88 6096.94 10780.53 12382.20 17196.39 33
reproduce-ours83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
our_new_method83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
MVS_Test84.16 9083.20 9987.05 5491.56 12069.82 4589.99 24492.05 14277.77 10182.84 8386.57 23663.93 9496.09 14174.91 16689.18 10295.25 76
test_yl84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
DCV-MVSNet84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
ET-MVSNet_ETH3D84.01 9283.15 10286.58 7090.78 14170.89 2894.74 4794.62 4081.44 4058.19 33793.64 10973.64 2492.35 28682.66 10578.66 20496.50 27
reproduce_model83.15 11082.96 10383.73 16892.02 10259.74 29290.37 22992.08 14163.70 30682.86 8295.48 5058.62 16197.17 8583.06 10388.42 11094.26 118
EI-MVSNet-UG-set83.14 11182.96 10383.67 17392.28 9363.19 22091.38 18894.68 3779.22 7676.60 15593.75 10562.64 11697.76 4878.07 14578.01 20790.05 223
HPM-MVScopyleft83.25 10882.95 10584.17 15592.25 9462.88 23090.91 20791.86 15570.30 24677.12 15093.96 10356.75 18496.28 13282.04 10991.34 8293.34 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test250683.29 10782.92 10684.37 14988.39 19563.18 22192.01 15891.35 17977.66 10478.49 13691.42 15864.58 8795.09 18473.19 17489.23 10094.85 89
MVSFormer83.75 9982.88 10786.37 7889.24 17571.18 2489.07 26290.69 20365.80 28987.13 4094.34 9264.99 7992.67 27372.83 17891.80 7295.27 73
MVS84.66 7882.86 10890.06 290.93 13674.56 787.91 28095.54 1368.55 26872.35 20494.71 7859.78 14698.90 2081.29 11894.69 3296.74 16
Effi-MVS+83.82 9682.76 10986.99 5689.56 16369.40 5391.35 19186.12 32972.59 18483.22 8092.81 12859.60 14896.01 14981.76 11187.80 11795.56 56
LFMVS84.34 8382.73 11089.18 1394.76 3373.25 1194.99 4291.89 15371.90 20582.16 8993.49 11347.98 27797.05 9282.55 10784.82 14597.25 8
PGM-MVS83.25 10882.70 11184.92 12292.81 8364.07 19290.44 22592.20 13671.28 22977.23 14994.43 8555.17 20597.31 7579.33 13391.38 8093.37 151
SR-MVS82.81 11682.58 11283.50 17893.35 6361.16 26492.23 14791.28 18464.48 29881.27 9695.28 5753.71 22295.86 15182.87 10488.77 10793.49 149
h-mvs3383.01 11382.56 11384.35 15089.34 16762.02 24692.72 12593.76 6981.45 3882.73 8592.25 14160.11 14197.13 9087.69 5562.96 31993.91 137
thisisatest051583.41 10582.49 11486.16 8389.46 16668.26 8393.54 9594.70 3674.31 14875.75 16090.92 16572.62 2996.52 12469.64 20881.50 17993.71 143
mPP-MVS82.96 11582.44 11584.52 14392.83 7962.92 22892.76 12391.85 15771.52 22575.61 16594.24 9653.48 22696.99 10078.97 13790.73 8793.64 146
sss82.71 11982.38 11683.73 16889.25 17259.58 29592.24 14694.89 2877.96 9779.86 11692.38 13656.70 18597.05 9277.26 14980.86 18494.55 106
CLD-MVS82.73 11782.35 11783.86 16487.90 21067.65 10095.45 2892.18 13985.06 1072.58 19792.27 13952.46 23495.78 15384.18 9179.06 19988.16 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVSTER82.47 12282.05 11883.74 16692.68 8669.01 6491.90 16593.21 9479.83 6272.14 20585.71 24774.72 1694.72 19675.72 15772.49 25087.50 256
PMMVS81.98 13282.04 11981.78 22189.76 15956.17 33091.13 20390.69 20377.96 9780.09 11493.57 11146.33 29194.99 18781.41 11587.46 12194.17 123
test_vis1_n_192081.66 13682.01 12080.64 24882.24 30455.09 33894.76 4686.87 31981.67 3584.40 6994.63 8038.17 32894.67 20091.98 2783.34 15992.16 192
TESTMET0.1,182.41 12381.98 12183.72 17088.08 20463.74 19992.70 12793.77 6879.30 7477.61 14487.57 22158.19 16794.08 22573.91 17286.68 13393.33 154
PAPM_NR82.97 11481.84 12286.37 7894.10 4466.76 12587.66 28692.84 11169.96 25074.07 18193.57 11163.10 11297.50 6470.66 20390.58 9094.85 89
VDD-MVS83.06 11281.81 12386.81 6190.86 13967.70 9895.40 2991.50 17475.46 13381.78 9192.34 13840.09 31897.13 9086.85 6882.04 17395.60 54
DP-MVS Recon82.73 11781.65 12485.98 8697.31 467.06 11595.15 3691.99 14769.08 26376.50 15793.89 10454.48 21398.20 3570.76 20185.66 14092.69 172
MVS_111021_LR82.02 13181.52 12583.51 17788.42 19362.88 23089.77 24788.93 27976.78 11875.55 16693.10 11650.31 25395.38 17683.82 9687.02 12592.26 189
EPP-MVSNet81.79 13481.52 12582.61 19788.77 18660.21 28693.02 11693.66 7668.52 26972.90 19190.39 17572.19 3494.96 18874.93 16579.29 19892.67 173
APD-MVS_3200maxsize81.64 13781.32 12782.59 19892.36 9158.74 30691.39 18691.01 19963.35 31079.72 11894.62 8151.82 23796.14 13879.71 12887.93 11592.89 170
RRT-MVS82.61 12181.16 12886.96 5791.10 13368.75 7087.70 28592.20 13676.97 11372.68 19387.10 23051.30 24696.41 12983.56 9987.84 11695.74 50
CostFormer82.33 12481.15 12985.86 9189.01 18068.46 7782.39 33093.01 10575.59 13180.25 11281.57 29472.03 3594.96 18879.06 13677.48 21594.16 124
xiu_mvs_v1_base_debu82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base_debi82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
hse-mvs281.12 14681.11 13381.16 23586.52 23957.48 31989.40 25591.16 18781.45 3882.73 8590.49 17360.11 14194.58 20187.69 5560.41 34691.41 202
baseline181.84 13381.03 13484.28 15391.60 11866.62 12891.08 20491.66 16881.87 3274.86 17291.67 15469.98 4494.92 19171.76 19364.75 30691.29 208
UWE-MVS80.81 15281.01 13580.20 25889.33 16957.05 32491.91 16494.71 3575.67 13075.01 17189.37 19263.13 11191.44 31167.19 23682.80 16592.12 193
WBMVS81.67 13580.98 13683.72 17093.07 7369.40 5394.33 5493.05 10376.84 11672.05 20784.14 26274.49 1893.88 23972.76 18168.09 27987.88 252
3Dnovator73.91 682.69 12080.82 13788.31 2689.57 16271.26 2292.60 13494.39 5178.84 8667.89 26292.48 13448.42 27298.52 2868.80 22194.40 3695.15 78
CDS-MVSNet81.43 14080.74 13883.52 17586.26 24464.45 17792.09 15390.65 20775.83 12973.95 18389.81 18863.97 9392.91 26371.27 19682.82 16393.20 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba81.55 13880.72 13984.03 16191.42 12466.93 12083.08 32489.13 26878.55 9167.50 26787.02 23151.79 23990.07 32787.48 5890.49 9295.10 81
SR-MVS-dyc-post81.06 14780.70 14082.15 21292.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8351.26 24795.61 16578.77 14086.77 13092.28 185
ACMMPcopyleft81.49 13980.67 14183.93 16391.71 11662.90 22992.13 15092.22 13571.79 21271.68 21393.49 11350.32 25296.96 10578.47 14284.22 15591.93 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HQP-MVS81.14 14480.64 14282.64 19687.54 21863.66 20694.06 6391.70 16679.80 6374.18 17790.30 17751.63 24295.61 16577.63 14778.90 20088.63 241
test_cas_vis1_n_192080.45 15880.61 14379.97 26778.25 35257.01 32694.04 6788.33 29879.06 8382.81 8493.70 10738.65 32391.63 30390.82 3679.81 19191.27 209
3Dnovator+73.60 782.10 13080.60 14486.60 6890.89 13866.80 12495.20 3493.44 8674.05 15267.42 26992.49 13349.46 26297.65 5570.80 20091.68 7495.33 66
API-MVS82.28 12580.53 14587.54 4196.13 2270.59 3193.63 9191.04 19865.72 29175.45 16792.83 12756.11 19498.89 2164.10 26589.75 9993.15 159
RE-MVS-def80.48 14692.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8349.30 26478.77 14086.77 13092.28 185
IB-MVS77.80 482.18 12680.46 14787.35 4589.14 17770.28 3595.59 2695.17 2178.85 8570.19 23085.82 24570.66 4097.67 5172.19 19066.52 29194.09 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ECVR-MVScopyleft81.29 14280.38 14884.01 16288.39 19561.96 24892.56 13986.79 32177.66 10476.63 15491.42 15846.34 29095.24 18174.36 17089.23 10094.85 89
thisisatest053081.15 14380.07 14984.39 14888.26 19965.63 15191.40 18494.62 4071.27 23070.93 22089.18 19472.47 3096.04 14665.62 25476.89 22191.49 199
test111180.84 15180.02 15083.33 18187.87 21160.76 27292.62 13286.86 32077.86 10075.73 16191.39 16046.35 28994.70 19972.79 18088.68 10894.52 110
Fast-Effi-MVS+81.14 14480.01 15184.51 14490.24 14965.86 14694.12 6289.15 26673.81 16075.37 16888.26 20657.26 17494.53 20866.97 23984.92 14493.15 159
mvs_anonymous81.36 14179.99 15285.46 10490.39 14768.40 7886.88 29790.61 20874.41 14570.31 22984.67 25663.79 9692.32 28873.13 17585.70 13995.67 51
Vis-MVSNetpermissive80.92 15079.98 15383.74 16688.48 19061.80 25093.44 10288.26 30373.96 15677.73 14191.76 15149.94 25794.76 19365.84 25190.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 14979.86 15484.13 15683.69 28868.83 6893.23 10891.20 18575.55 13275.06 17088.22 20963.04 11394.74 19581.88 11066.88 28888.82 239
1112_ss80.56 15579.83 15582.77 19188.65 18760.78 27092.29 14488.36 29772.58 18572.46 20194.95 6965.09 7893.42 25066.38 24577.71 20994.10 127
HQP_MVS80.34 16079.75 15682.12 21486.94 23362.42 23793.13 11091.31 18078.81 8772.53 19889.14 19650.66 25095.55 17076.74 15078.53 20588.39 247
UA-Net80.02 16779.65 15781.11 23789.33 16957.72 31586.33 30189.00 27877.44 10981.01 10189.15 19559.33 15295.90 15061.01 28684.28 15389.73 229
Vis-MVSNet (Re-imp)79.24 18079.57 15878.24 29488.46 19152.29 34990.41 22789.12 26974.24 14969.13 24091.91 14965.77 7290.09 32659.00 29888.09 11392.33 182
test-LLR80.10 16579.56 15981.72 22386.93 23561.17 26292.70 12791.54 17171.51 22675.62 16386.94 23253.83 21992.38 28372.21 18884.76 14791.60 197
HyFIR lowres test81.03 14879.56 15985.43 10587.81 21468.11 8990.18 23690.01 23470.65 24372.95 19086.06 24363.61 10194.50 21075.01 16479.75 19393.67 144
HPM-MVS_fast80.25 16279.55 16182.33 20491.55 12159.95 28991.32 19389.16 26565.23 29574.71 17493.07 11947.81 28095.74 15674.87 16888.23 11191.31 207
TAMVS80.37 15979.45 16283.13 18685.14 26563.37 21491.23 19790.76 20274.81 14372.65 19588.49 20060.63 13692.95 25869.41 21281.95 17593.08 162
FIs79.47 17779.41 16379.67 27485.95 25059.40 29791.68 17793.94 6378.06 9668.96 24688.28 20466.61 6391.77 29966.20 24874.99 23087.82 253
IS-MVSNet80.14 16479.41 16382.33 20487.91 20960.08 28891.97 16288.27 30172.90 18071.44 21791.73 15361.44 12893.66 24562.47 27986.53 13493.24 155
test-mter79.96 16879.38 16581.72 22386.93 23561.17 26292.70 12791.54 17173.85 15875.62 16386.94 23249.84 25992.38 28372.21 18884.76 14791.60 197
BH-w/o80.49 15779.30 16684.05 16090.83 14064.36 18593.60 9289.42 25474.35 14769.09 24190.15 18355.23 20395.61 16564.61 26286.43 13692.17 191
EPNet_dtu78.80 19079.26 16777.43 30288.06 20549.71 36491.96 16391.95 14977.67 10376.56 15691.28 16258.51 16290.20 32456.37 30680.95 18392.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CPTT-MVS79.59 17379.16 16880.89 24691.54 12259.80 29192.10 15288.54 29460.42 33672.96 18993.28 11548.27 27392.80 26778.89 13986.50 13590.06 222
tpmrst80.57 15479.14 16984.84 12590.10 15268.28 8281.70 33489.72 24677.63 10675.96 15979.54 32664.94 8192.71 27075.43 15977.28 21893.55 147
reproduce_monomvs79.49 17679.11 17080.64 24892.91 7761.47 25991.17 20293.28 9283.09 2064.04 29982.38 28166.19 6694.57 20381.19 11957.71 35485.88 293
131480.70 15378.95 17185.94 8887.77 21667.56 10287.91 28092.55 12572.17 19967.44 26893.09 11750.27 25497.04 9571.68 19587.64 11993.23 156
SDMVSNet80.26 16178.88 17284.40 14789.25 17267.63 10185.35 30493.02 10476.77 11970.84 22187.12 22847.95 27896.09 14185.04 8174.55 23189.48 233
UGNet79.87 17078.68 17383.45 18089.96 15461.51 25792.13 15090.79 20176.83 11778.85 13386.33 24038.16 32996.17 13767.93 22887.17 12492.67 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PVSNet73.49 880.05 16678.63 17484.31 15190.92 13764.97 16892.47 14091.05 19779.18 7772.43 20290.51 17237.05 34394.06 22768.06 22586.00 13793.90 139
Test_1112_low_res79.56 17478.60 17582.43 20088.24 20160.39 28392.09 15387.99 30872.10 20171.84 20987.42 22364.62 8693.04 25465.80 25277.30 21793.85 141
tttt051779.50 17578.53 17682.41 20387.22 22661.43 26089.75 24894.76 3269.29 25867.91 26088.06 21372.92 2795.63 16362.91 27573.90 24190.16 221
thres20079.66 17278.33 17783.66 17492.54 9065.82 14893.06 11296.31 374.90 14273.30 18788.66 19859.67 14795.61 16547.84 34178.67 20389.56 232
ab-mvs80.18 16378.31 17885.80 9488.44 19265.49 15783.00 32792.67 11871.82 21177.36 14785.01 25254.50 21096.59 11976.35 15475.63 22895.32 68
VDDNet80.50 15678.26 17987.21 4786.19 24569.79 4794.48 5091.31 18060.42 33679.34 12390.91 16638.48 32696.56 12282.16 10881.05 18295.27 73
EI-MVSNet78.97 18578.22 18081.25 23285.33 26062.73 23389.53 25293.21 9472.39 19272.14 20590.13 18460.99 13194.72 19667.73 23072.49 25086.29 279
OPM-MVS79.00 18478.09 18181.73 22283.52 29163.83 19691.64 17990.30 22076.36 12571.97 20889.93 18746.30 29295.17 18375.10 16277.70 21086.19 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test77.99 20578.08 18277.70 29784.89 27055.51 33590.27 23393.75 7276.87 11466.80 27987.59 22065.71 7390.23 32362.89 27673.94 23987.37 260
VPA-MVSNet79.03 18378.00 18382.11 21785.95 25064.48 17693.22 10994.66 3875.05 14074.04 18284.95 25352.17 23693.52 24774.90 16767.04 28788.32 249
miper_enhance_ethall78.86 18877.97 18481.54 22788.00 20865.17 16291.41 18289.15 26675.19 13868.79 24983.98 26567.17 5892.82 26572.73 18265.30 29786.62 276
tpm279.80 17177.95 18585.34 11088.28 19868.26 8381.56 33691.42 17770.11 24877.59 14580.50 31267.40 5794.26 21967.34 23377.35 21693.51 148
OMC-MVS78.67 19577.91 18680.95 24485.76 25557.40 32188.49 27188.67 28973.85 15872.43 20292.10 14449.29 26594.55 20772.73 18277.89 20890.91 213
114514_t79.17 18177.67 18783.68 17295.32 2965.53 15592.85 12191.60 17063.49 30867.92 25990.63 17046.65 28695.72 16167.01 23883.54 15789.79 227
BH-RMVSNet79.46 17877.65 18884.89 12391.68 11765.66 14993.55 9488.09 30672.93 17773.37 18691.12 16446.20 29396.12 13956.28 30785.61 14192.91 168
PCF-MVS73.15 979.29 17977.63 18984.29 15286.06 24865.96 14487.03 29391.10 19169.86 25269.79 23790.64 16857.54 17396.59 11964.37 26482.29 16790.32 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet_NR-MVSNet78.15 20377.55 19079.98 26584.46 27760.26 28492.25 14593.20 9677.50 10868.88 24786.61 23566.10 6892.13 29166.38 24562.55 32387.54 255
VPNet78.82 18977.53 19182.70 19484.52 27566.44 13293.93 7292.23 13280.46 5272.60 19688.38 20349.18 26693.13 25372.47 18663.97 31688.55 244
GeoE78.90 18777.43 19283.29 18288.95 18162.02 24692.31 14386.23 32770.24 24771.34 21889.27 19354.43 21494.04 23063.31 27180.81 18693.81 142
AUN-MVS78.37 19977.43 19281.17 23486.60 23857.45 32089.46 25491.16 18774.11 15174.40 17690.49 17355.52 20094.57 20374.73 16960.43 34591.48 200
tfpn200view978.79 19177.43 19282.88 18992.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21288.83 237
thres40078.68 19377.43 19282.43 20092.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21287.48 257
QAPM79.95 16977.39 19687.64 3489.63 16171.41 2093.30 10693.70 7465.34 29467.39 27191.75 15247.83 27998.96 1657.71 30289.81 9692.54 177
TR-MVS78.77 19277.37 19782.95 18890.49 14460.88 26893.67 8890.07 22970.08 24974.51 17591.37 16145.69 29595.70 16260.12 29280.32 18892.29 184
FA-MVS(test-final)79.12 18277.23 19884.81 12990.54 14363.98 19481.35 33991.71 16371.09 23474.85 17382.94 27452.85 23097.05 9267.97 22681.73 17893.41 150
BH-untuned78.68 19377.08 19983.48 17989.84 15663.74 19992.70 12788.59 29271.57 22366.83 27888.65 19951.75 24095.39 17559.03 29784.77 14691.32 206
tpm78.58 19677.03 20083.22 18485.94 25264.56 17283.21 32391.14 19078.31 9373.67 18479.68 32464.01 9292.09 29366.07 24971.26 26093.03 164
thres100view90078.37 19977.01 20182.46 19991.89 11163.21 21991.19 20196.33 172.28 19570.45 22687.89 21560.31 13895.32 17745.16 35277.58 21288.83 237
AdaColmapbinary78.94 18677.00 20284.76 13196.34 1765.86 14692.66 13187.97 31062.18 32270.56 22392.37 13743.53 30697.35 7264.50 26382.86 16291.05 212
CHOSEN 280x42077.35 21576.95 20378.55 28987.07 23062.68 23469.71 38582.95 35868.80 26571.48 21687.27 22766.03 6984.00 36976.47 15382.81 16488.95 236
cl2277.94 20776.78 20481.42 22987.57 21764.93 17090.67 21988.86 28272.45 18967.63 26682.68 27864.07 9192.91 26371.79 19165.30 29786.44 277
UniMVSNet (Re)77.58 21276.78 20479.98 26584.11 28360.80 26991.76 17393.17 9876.56 12369.93 23684.78 25563.32 10892.36 28564.89 26162.51 32586.78 271
thres600view778.00 20476.66 20682.03 21991.93 10863.69 20491.30 19496.33 172.43 19070.46 22587.89 21560.31 13894.92 19142.64 36476.64 22287.48 257
MS-PatchMatch77.90 20976.50 20782.12 21485.99 24969.95 4191.75 17592.70 11573.97 15562.58 31584.44 26041.11 31595.78 15363.76 26892.17 6680.62 357
miper_ehance_all_eth77.60 21176.44 20881.09 24185.70 25764.41 18190.65 22088.64 29172.31 19367.37 27282.52 27964.77 8592.64 27670.67 20265.30 29786.24 281
XXY-MVS77.94 20776.44 20882.43 20082.60 30164.44 17892.01 15891.83 15873.59 16670.00 23385.82 24554.43 21494.76 19369.63 20968.02 28188.10 251
PS-MVSNAJss77.26 21676.31 21080.13 26080.64 32059.16 30290.63 22391.06 19672.80 18168.58 25384.57 25853.55 22393.96 23572.97 17671.96 25487.27 264
MVP-Stereo77.12 21976.23 21179.79 27281.72 30966.34 13589.29 25690.88 20070.56 24462.01 31882.88 27549.34 26394.13 22265.55 25693.80 4378.88 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GA-MVS78.33 20176.23 21184.65 13783.65 28966.30 13691.44 18190.14 22776.01 12770.32 22884.02 26442.50 31094.72 19670.98 19877.00 22092.94 167
WB-MVSnew77.14 21876.18 21380.01 26486.18 24663.24 21791.26 19594.11 6071.72 21573.52 18587.29 22645.14 30093.00 25656.98 30479.42 19483.80 318
FMVSNet377.73 21076.04 21482.80 19091.20 13268.99 6591.87 16691.99 14773.35 16967.04 27483.19 27356.62 18792.14 29059.80 29469.34 26787.28 263
EPMVS78.49 19875.98 21586.02 8591.21 13169.68 5180.23 34891.20 18575.25 13772.48 20078.11 33554.65 20993.69 24457.66 30383.04 16194.69 98
OpenMVScopyleft70.45 1178.54 19775.92 21686.41 7785.93 25371.68 1892.74 12492.51 12666.49 28564.56 29391.96 14643.88 30598.10 3754.61 31290.65 8989.44 235
DU-MVS76.86 22375.84 21779.91 26882.96 29760.26 28491.26 19591.54 17176.46 12468.88 24786.35 23856.16 19292.13 29166.38 24562.55 32387.35 261
cascas78.18 20275.77 21885.41 10687.14 22869.11 6192.96 11791.15 18966.71 28370.47 22486.07 24237.49 33796.48 12770.15 20679.80 19290.65 215
WR-MVS76.76 22775.74 21979.82 27184.60 27362.27 24392.60 13492.51 12676.06 12667.87 26385.34 24956.76 18390.24 32262.20 28063.69 31886.94 269
v2v48277.42 21475.65 22082.73 19280.38 32267.13 11491.85 16890.23 22475.09 13969.37 23883.39 27153.79 22194.44 21171.77 19265.00 30386.63 275
c3_l76.83 22675.47 22180.93 24585.02 26864.18 19190.39 22888.11 30571.66 21666.65 28081.64 29263.58 10492.56 27769.31 21462.86 32086.04 287
sd_testset77.08 22075.37 22282.20 21089.25 17262.11 24582.06 33189.09 27176.77 11970.84 22187.12 22841.43 31495.01 18667.23 23574.55 23189.48 233
dmvs_re76.93 22275.36 22381.61 22587.78 21560.71 27580.00 35287.99 30879.42 7169.02 24489.47 19146.77 28494.32 21363.38 27074.45 23489.81 226
Anonymous20240521177.96 20675.33 22485.87 9093.73 5364.52 17394.85 4485.36 33662.52 32076.11 15890.18 18029.43 37297.29 7668.51 22377.24 21995.81 49
Effi-MVS+-dtu76.14 23275.28 22578.72 28883.22 29455.17 33789.87 24587.78 31175.42 13467.98 25881.43 29645.08 30192.52 27975.08 16371.63 25588.48 245
IterMVS-LS76.49 22975.18 22680.43 25284.49 27662.74 23290.64 22188.80 28472.40 19165.16 28881.72 29060.98 13292.27 28967.74 22964.65 30886.29 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MonoMVSNet76.99 22175.08 22782.73 19283.32 29363.24 21786.47 30086.37 32379.08 8166.31 28179.30 32849.80 26091.72 30079.37 13165.70 29593.23 156
v114476.73 22874.88 22882.27 20680.23 32666.60 12991.68 17790.21 22673.69 16369.06 24381.89 28752.73 23294.40 21269.21 21565.23 30085.80 294
cl____76.07 23374.67 22980.28 25585.15 26461.76 25290.12 23788.73 28671.16 23165.43 28581.57 29461.15 12992.95 25866.54 24262.17 32786.13 285
DIV-MVS_self_test76.07 23374.67 22980.28 25585.14 26561.75 25390.12 23788.73 28671.16 23165.42 28681.60 29361.15 12992.94 26266.54 24262.16 32986.14 283
PatchmatchNetpermissive77.46 21374.63 23185.96 8789.55 16470.35 3479.97 35389.55 24972.23 19670.94 21976.91 34757.03 17792.79 26854.27 31481.17 18194.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
NR-MVSNet76.05 23674.59 23280.44 25182.96 29762.18 24490.83 21291.73 16177.12 11260.96 32186.35 23859.28 15391.80 29860.74 28761.34 33887.35 261
LPG-MVS_test75.82 24274.58 23379.56 27884.31 28059.37 29890.44 22589.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
V4276.46 23074.55 23482.19 21179.14 34067.82 9590.26 23489.42 25473.75 16168.63 25281.89 28751.31 24594.09 22471.69 19464.84 30484.66 311
TranMVSNet+NR-MVSNet75.86 24174.52 23579.89 26982.44 30360.64 27891.37 18991.37 17876.63 12167.65 26586.21 24152.37 23591.55 30561.84 28260.81 34187.48 257
v14876.19 23174.47 23681.36 23080.05 32864.44 17891.75 17590.23 22473.68 16467.13 27380.84 30755.92 19793.86 24268.95 21961.73 33485.76 297
eth_miper_zixun_eth75.96 24074.40 23780.66 24784.66 27263.02 22389.28 25788.27 30171.88 20765.73 28381.65 29159.45 14992.81 26668.13 22460.53 34386.14 283
gg-mvs-nofinetune77.18 21774.31 23885.80 9491.42 12468.36 7971.78 37994.72 3449.61 37977.12 15045.92 40577.41 893.98 23467.62 23193.16 5595.05 83
CVMVSNet74.04 26174.27 23973.33 33685.33 26043.94 39089.53 25288.39 29654.33 36670.37 22790.13 18449.17 26784.05 36761.83 28379.36 19691.99 194
ACMP71.68 1075.58 24774.23 24079.62 27684.97 26959.64 29390.80 21389.07 27370.39 24562.95 31187.30 22538.28 32793.87 24072.89 17771.45 25885.36 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052976.84 22574.15 24184.88 12491.02 13464.95 16993.84 8091.09 19253.57 36773.00 18887.42 22335.91 34797.32 7469.14 21772.41 25292.36 181
X-MVStestdata76.86 22374.13 24285.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13710.19 42055.25 20197.41 6879.16 13491.58 7693.95 135
v14419276.05 23674.03 24382.12 21479.50 33466.55 13191.39 18689.71 24772.30 19468.17 25681.33 29951.75 24094.03 23267.94 22764.19 31185.77 295
FMVSNet276.07 23374.01 24482.26 20888.85 18267.66 9991.33 19291.61 16970.84 23865.98 28282.25 28348.03 27492.00 29558.46 29968.73 27587.10 266
v119275.98 23873.92 24582.15 21279.73 33066.24 13891.22 19889.75 24172.67 18368.49 25481.42 29749.86 25894.27 21767.08 23765.02 30285.95 290
GBi-Net75.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
test175.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
test_fmvs174.07 26073.69 24875.22 32078.91 34447.34 37789.06 26474.69 38063.68 30779.41 12291.59 15624.36 38287.77 34685.22 7876.26 22590.55 218
PLCcopyleft68.80 1475.23 25073.68 24979.86 27092.93 7658.68 30790.64 22188.30 29960.90 33364.43 29790.53 17142.38 31194.57 20356.52 30576.54 22386.33 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS70.22 1274.94 25473.53 25079.17 28390.40 14652.07 35089.19 26089.61 24862.69 31970.07 23192.67 12948.89 27194.32 21338.26 37879.97 19091.12 211
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v192192075.63 24673.49 25182.06 21879.38 33566.35 13491.07 20689.48 25071.98 20267.99 25781.22 30249.16 26893.90 23866.56 24164.56 30985.92 292
Fast-Effi-MVS+-dtu75.04 25273.37 25280.07 26180.86 31559.52 29691.20 20085.38 33571.90 20565.20 28784.84 25441.46 31392.97 25766.50 24472.96 24687.73 254
v875.35 24873.26 25381.61 22580.67 31966.82 12289.54 25189.27 25971.65 21763.30 30780.30 31654.99 20794.06 22767.33 23462.33 32683.94 316
XVG-OURS-SEG-HR74.70 25673.08 25479.57 27778.25 35257.33 32280.49 34487.32 31463.22 31268.76 25090.12 18644.89 30291.59 30470.55 20474.09 23889.79 227
FE-MVS75.97 23973.02 25584.82 12689.78 15765.56 15377.44 36491.07 19564.55 29772.66 19479.85 32246.05 29496.69 11754.97 31180.82 18592.21 190
v124075.21 25172.98 25681.88 22079.20 33766.00 14290.75 21589.11 27071.63 22167.41 27081.22 30247.36 28293.87 24065.46 25764.72 30785.77 295
Baseline_NR-MVSNet73.99 26272.83 25777.48 30180.78 31759.29 30191.79 17084.55 34468.85 26468.99 24580.70 30856.16 19292.04 29462.67 27760.98 34081.11 351
SCA75.82 24272.76 25885.01 12186.63 23770.08 3781.06 34189.19 26371.60 22270.01 23277.09 34545.53 29690.25 31960.43 28973.27 24394.68 99
myMVS_eth3d72.58 28172.74 25972.10 34887.87 21149.45 36688.07 27689.01 27572.91 17863.11 30888.10 21063.63 9985.54 35932.73 39369.23 27081.32 349
ACMM69.62 1374.34 25772.73 26079.17 28384.25 28257.87 31390.36 23089.93 23563.17 31465.64 28486.04 24437.79 33594.10 22365.89 25071.52 25785.55 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test0.0.03 172.76 27572.71 26172.88 34080.25 32547.99 37391.22 19889.45 25271.51 22662.51 31687.66 21853.83 21985.06 36350.16 32767.84 28485.58 298
MDTV_nov1_ep1372.61 26289.06 17868.48 7680.33 34690.11 22871.84 21071.81 21075.92 35553.01 22993.92 23748.04 33873.38 242
test_djsdf73.76 26672.56 26377.39 30377.00 36253.93 34389.07 26290.69 20365.80 28963.92 30082.03 28643.14 30992.67 27372.83 17868.53 27685.57 299
v1074.77 25572.54 26481.46 22880.33 32466.71 12689.15 26189.08 27270.94 23663.08 31079.86 32152.52 23394.04 23065.70 25362.17 32783.64 319
XVG-OURS74.25 25972.46 26579.63 27578.45 35057.59 31880.33 34687.39 31363.86 30468.76 25089.62 19040.50 31791.72 30069.00 21874.25 23689.58 230
CNLPA74.31 25872.30 26680.32 25391.49 12361.66 25590.85 21180.72 36456.67 35963.85 30290.64 16846.75 28590.84 31453.79 31675.99 22788.47 246
tpm cat175.30 24972.21 26784.58 14188.52 18867.77 9678.16 36288.02 30761.88 32868.45 25576.37 35160.65 13594.03 23253.77 31774.11 23791.93 195
dp75.01 25372.09 26883.76 16589.28 17166.22 13979.96 35489.75 24171.16 23167.80 26477.19 34451.81 23892.54 27850.39 32571.44 25992.51 179
D2MVS73.80 26472.02 26979.15 28579.15 33962.97 22488.58 27090.07 22972.94 17659.22 33178.30 33242.31 31292.70 27265.59 25572.00 25381.79 346
test_fmvs1_n72.69 27971.92 27074.99 32371.15 38247.08 37987.34 29175.67 37563.48 30978.08 13991.17 16320.16 39487.87 34384.65 8775.57 22990.01 224
LCM-MVSNet-Re72.93 27271.84 27176.18 31688.49 18948.02 37280.07 35170.17 39273.96 15652.25 36280.09 32049.98 25688.24 34067.35 23284.23 15492.28 185
pmmvs473.92 26371.81 27280.25 25779.17 33865.24 16087.43 28987.26 31667.64 27663.46 30583.91 26648.96 27091.53 30962.94 27465.49 29683.96 315
miper_lstm_enhance73.05 27071.73 27377.03 30783.80 28658.32 31081.76 33288.88 28069.80 25361.01 32078.23 33457.19 17587.51 35065.34 25859.53 34885.27 307
pmmvs573.35 26771.52 27478.86 28778.64 34860.61 27991.08 20486.90 31867.69 27363.32 30683.64 26744.33 30490.53 31662.04 28166.02 29385.46 302
jajsoiax73.05 27071.51 27577.67 29877.46 35954.83 33988.81 26690.04 23269.13 26262.85 31383.51 26931.16 36692.75 26970.83 19969.80 26385.43 303
mvs_tets72.71 27771.11 27677.52 29977.41 36054.52 34188.45 27289.76 24068.76 26762.70 31483.26 27229.49 37192.71 27070.51 20569.62 26585.34 305
pm-mvs172.89 27371.09 27778.26 29379.10 34157.62 31790.80 21389.30 25867.66 27462.91 31281.78 28949.11 26992.95 25860.29 29158.89 35184.22 314
testing370.38 29370.83 27869.03 36085.82 25443.93 39190.72 21890.56 20968.06 27160.24 32586.82 23464.83 8384.12 36526.33 40164.10 31379.04 370
IterMVS72.65 28070.83 27878.09 29582.17 30562.96 22587.64 28786.28 32571.56 22460.44 32478.85 33045.42 29886.66 35463.30 27261.83 33184.65 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CR-MVSNet73.79 26570.82 28082.70 19483.15 29567.96 9270.25 38284.00 34973.67 16569.97 23472.41 36757.82 17089.48 33152.99 32073.13 24490.64 216
test_vis1_n71.63 28570.73 28174.31 33069.63 38847.29 37886.91 29572.11 38663.21 31375.18 16990.17 18120.40 39285.76 35884.59 8874.42 23589.87 225
tt080573.07 26970.73 28180.07 26178.37 35157.05 32487.78 28392.18 13961.23 33267.04 27486.49 23731.35 36594.58 20165.06 26067.12 28688.57 243
UniMVSNet_ETH3D72.74 27670.53 28379.36 28078.62 34956.64 32885.01 30689.20 26263.77 30564.84 29184.44 26034.05 35491.86 29763.94 26670.89 26289.57 231
Anonymous2023121173.08 26870.39 28481.13 23690.62 14263.33 21591.40 18490.06 23151.84 37264.46 29680.67 31036.49 34594.07 22663.83 26764.17 31285.98 289
PatchMatch-RL72.06 28269.98 28578.28 29289.51 16555.70 33483.49 31683.39 35661.24 33163.72 30382.76 27634.77 35193.03 25553.37 31977.59 21186.12 286
IterMVS-SCA-FT71.55 28669.97 28676.32 31481.48 31160.67 27787.64 28785.99 33066.17 28759.50 32978.88 32945.53 29683.65 37162.58 27861.93 33084.63 313
WR-MVS_H70.59 29069.94 28772.53 34281.03 31451.43 35487.35 29092.03 14667.38 27760.23 32680.70 30855.84 19883.45 37346.33 34858.58 35382.72 335
CP-MVSNet70.50 29169.91 28872.26 34580.71 31851.00 35887.23 29290.30 22067.84 27259.64 32882.69 27750.23 25582.30 38151.28 32259.28 34983.46 324
FMVSNet172.71 27769.91 28881.10 23883.60 29065.11 16490.01 24190.32 21663.92 30363.56 30480.25 31736.35 34691.54 30654.46 31366.75 28986.64 272
tpmvs72.88 27469.76 29082.22 20990.98 13567.05 11678.22 36188.30 29963.10 31564.35 29874.98 35855.09 20694.27 21743.25 35869.57 26685.34 305
Syy-MVS69.65 29969.52 29170.03 35687.87 21143.21 39288.07 27689.01 27572.91 17863.11 30888.10 21045.28 29985.54 35922.07 40669.23 27081.32 349
anonymousdsp71.14 28869.37 29276.45 31372.95 37754.71 34084.19 31188.88 28061.92 32762.15 31779.77 32338.14 33091.44 31168.90 22067.45 28583.21 328
PS-CasMVS69.86 29869.13 29372.07 34980.35 32350.57 36087.02 29489.75 24167.27 27859.19 33282.28 28246.58 28782.24 38250.69 32459.02 35083.39 326
v7n71.31 28768.65 29479.28 28176.40 36460.77 27186.71 29889.45 25264.17 30258.77 33678.24 33344.59 30393.54 24657.76 30161.75 33383.52 322
mvsany_test168.77 30668.56 29569.39 35873.57 37545.88 38680.93 34260.88 40659.65 34271.56 21490.26 17943.22 30875.05 39374.26 17162.70 32287.25 265
PEN-MVS69.46 30168.56 29572.17 34779.27 33649.71 36486.90 29689.24 26067.24 28159.08 33382.51 28047.23 28383.54 37248.42 33657.12 35583.25 327
MIMVSNet71.64 28468.44 29781.23 23381.97 30864.44 17873.05 37688.80 28469.67 25464.59 29274.79 36032.79 35787.82 34453.99 31576.35 22491.42 201
F-COLMAP70.66 28968.44 29777.32 30486.37 24355.91 33288.00 27886.32 32456.94 35757.28 34688.07 21233.58 35592.49 28051.02 32368.37 27783.55 320
PVSNet_068.08 1571.81 28368.32 29982.27 20684.68 27162.31 24288.68 26890.31 21975.84 12857.93 34280.65 31137.85 33494.19 22069.94 20729.05 40890.31 220
CL-MVSNet_self_test69.92 29668.09 30075.41 31973.25 37655.90 33390.05 24089.90 23669.96 25061.96 31976.54 34851.05 24887.64 34749.51 33150.59 37482.70 337
TransMVSNet (Re)70.07 29567.66 30177.31 30580.62 32159.13 30391.78 17284.94 34065.97 28860.08 32780.44 31350.78 24991.87 29648.84 33445.46 38280.94 353
mamv465.18 33267.43 30258.44 37877.88 35849.36 36969.40 38670.99 39148.31 38457.78 34385.53 24859.01 15851.88 41673.67 17364.32 31074.07 386
tfpnnormal70.10 29467.36 30378.32 29183.45 29260.97 26788.85 26592.77 11364.85 29660.83 32278.53 33143.52 30793.48 24831.73 39661.70 33580.52 358
DTE-MVSNet68.46 31067.33 30471.87 35177.94 35649.00 37086.16 30288.58 29366.36 28658.19 33782.21 28446.36 28883.87 37044.97 35555.17 36282.73 334
DP-MVS69.90 29766.48 30580.14 25995.36 2862.93 22689.56 24976.11 37350.27 37857.69 34485.23 25039.68 31995.73 15733.35 38871.05 26181.78 347
dmvs_testset65.55 33066.45 30662.86 37479.87 32922.35 42076.55 36671.74 38877.42 11155.85 34987.77 21751.39 24480.69 38731.51 39965.92 29485.55 300
LS3D69.17 30266.40 30777.50 30091.92 10956.12 33185.12 30580.37 36646.96 38656.50 34887.51 22237.25 33893.71 24332.52 39579.40 19582.68 338
mmtdpeth68.33 31166.37 30874.21 33182.81 30051.73 35184.34 31080.42 36567.01 28271.56 21468.58 38130.52 36992.35 28675.89 15636.21 39778.56 375
KD-MVS_2432*160069.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
miper_refine_blended69.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
Anonymous2023120667.53 31965.78 31172.79 34174.95 37047.59 37588.23 27487.32 31461.75 33058.07 33977.29 34237.79 33587.29 35242.91 36063.71 31783.48 323
MSDG69.54 30065.73 31280.96 24385.11 26763.71 20284.19 31183.28 35756.95 35654.50 35384.03 26331.50 36396.03 14742.87 36269.13 27283.14 330
RPMNet70.42 29265.68 31384.63 13983.15 29567.96 9270.25 38290.45 21046.83 38869.97 23465.10 38856.48 19195.30 18035.79 38373.13 24490.64 216
FMVSNet568.04 31465.66 31475.18 32284.43 27857.89 31283.54 31586.26 32661.83 32953.64 35873.30 36337.15 34185.08 36248.99 33361.77 33282.56 340
XVG-ACMP-BASELINE68.04 31465.53 31575.56 31874.06 37452.37 34878.43 35885.88 33162.03 32558.91 33581.21 30420.38 39391.15 31360.69 28868.18 27883.16 329
EG-PatchMatch MVS68.55 30865.41 31677.96 29678.69 34762.93 22689.86 24689.17 26460.55 33550.27 37177.73 33922.60 38894.06 22747.18 34472.65 24976.88 381
PatchT69.11 30365.37 31780.32 25382.07 30763.68 20567.96 39287.62 31250.86 37669.37 23865.18 38757.09 17688.53 33741.59 36766.60 29088.74 240
test_fmvs265.78 32964.84 31868.60 36266.54 39441.71 39483.27 32069.81 39354.38 36567.91 26084.54 25915.35 39981.22 38675.65 15866.16 29282.88 331
ACMH63.93 1768.62 30764.81 31980.03 26385.22 26363.25 21687.72 28484.66 34260.83 33451.57 36679.43 32727.29 37894.96 18841.76 36564.84 30481.88 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs667.57 31864.76 32076.00 31772.82 37953.37 34588.71 26786.78 32253.19 36857.58 34578.03 33635.33 35092.41 28255.56 30954.88 36482.21 343
our_test_368.29 31264.69 32179.11 28678.92 34264.85 17188.40 27385.06 33860.32 33852.68 36076.12 35340.81 31689.80 33044.25 35755.65 36082.67 339
ACMH+65.35 1667.65 31764.55 32276.96 31084.59 27457.10 32388.08 27580.79 36358.59 34853.00 35981.09 30626.63 38092.95 25846.51 34661.69 33680.82 354
USDC67.43 32164.51 32376.19 31577.94 35655.29 33678.38 35985.00 33973.17 17148.36 37980.37 31421.23 39092.48 28152.15 32164.02 31580.81 355
Patchmatch-RL test68.17 31364.49 32479.19 28271.22 38153.93 34370.07 38471.54 39069.22 25956.79 34762.89 39256.58 18888.61 33469.53 21152.61 36995.03 85
CMPMVSbinary48.56 2166.77 32364.41 32573.84 33370.65 38550.31 36177.79 36385.73 33445.54 39044.76 38982.14 28535.40 34990.14 32563.18 27374.54 23381.07 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet68.54 30964.38 32681.03 24288.06 20566.90 12168.01 39084.02 34857.57 35064.48 29469.87 37738.68 32189.21 33340.87 36967.89 28286.97 267
Patchmtry67.53 31963.93 32778.34 29082.12 30664.38 18268.72 38784.00 34948.23 38559.24 33072.41 36757.82 17089.27 33246.10 34956.68 35981.36 348
ppachtmachnet_test67.72 31663.70 32879.77 27378.92 34266.04 14188.68 26882.90 35960.11 34055.45 35075.96 35439.19 32090.55 31539.53 37352.55 37082.71 336
LTVRE_ROB59.60 1966.27 32563.54 32974.45 32784.00 28551.55 35367.08 39483.53 35358.78 34654.94 35280.31 31534.54 35293.23 25240.64 37168.03 28078.58 374
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ADS-MVSNet266.90 32263.44 33077.26 30688.06 20560.70 27668.01 39075.56 37757.57 35064.48 29469.87 37738.68 32184.10 36640.87 36967.89 28286.97 267
UnsupCasMVSNet_eth65.79 32863.10 33173.88 33270.71 38450.29 36281.09 34089.88 23772.58 18549.25 37674.77 36132.57 35987.43 35155.96 30841.04 38983.90 317
EU-MVSNet64.01 33863.01 33267.02 36874.40 37338.86 40383.27 32086.19 32845.11 39154.27 35481.15 30536.91 34480.01 38948.79 33557.02 35682.19 344
OpenMVS_ROBcopyleft61.12 1866.39 32462.92 33376.80 31276.51 36357.77 31489.22 25883.41 35555.48 36353.86 35777.84 33726.28 38193.95 23634.90 38568.76 27478.68 373
testgi64.48 33662.87 33469.31 35971.24 38040.62 39785.49 30379.92 36765.36 29354.18 35583.49 27023.74 38584.55 36441.60 36660.79 34282.77 333
test20.0363.83 33962.65 33567.38 36770.58 38639.94 39986.57 29984.17 34663.29 31151.86 36477.30 34137.09 34282.47 37938.87 37754.13 36679.73 364
JIA-IIPM66.06 32662.45 33676.88 31181.42 31354.45 34257.49 40688.67 28949.36 38063.86 30146.86 40456.06 19590.25 31949.53 33068.83 27385.95 290
pmmvs-eth3d65.53 33162.32 33775.19 32169.39 38959.59 29482.80 32883.43 35462.52 32051.30 36872.49 36532.86 35687.16 35355.32 31050.73 37378.83 372
OurMVSNet-221017-064.68 33462.17 33872.21 34676.08 36747.35 37680.67 34381.02 36256.19 36051.60 36579.66 32527.05 37988.56 33653.60 31853.63 36780.71 356
RPSCF64.24 33761.98 33971.01 35476.10 36645.00 38775.83 37175.94 37446.94 38758.96 33484.59 25731.40 36482.00 38347.76 34260.33 34786.04 287
SixPastTwentyTwo64.92 33361.78 34074.34 32978.74 34649.76 36383.42 31979.51 36962.86 31650.27 37177.35 34030.92 36890.49 31745.89 35047.06 37982.78 332
test_040264.54 33561.09 34174.92 32484.10 28460.75 27387.95 27979.71 36852.03 37052.41 36177.20 34332.21 36191.64 30223.14 40461.03 33972.36 392
Patchmatch-test65.86 32760.94 34280.62 25083.75 28758.83 30558.91 40575.26 37944.50 39350.95 37077.09 34558.81 16087.90 34235.13 38464.03 31495.12 80
kuosan60.86 35060.24 34362.71 37581.57 31046.43 38375.70 37285.88 33157.98 34948.95 37769.53 37958.42 16376.53 39128.25 40035.87 39865.15 399
MDA-MVSNet_test_wron63.78 34060.16 34474.64 32578.15 35460.41 28283.49 31684.03 34756.17 36239.17 39971.59 37337.22 33983.24 37642.87 36248.73 37680.26 361
YYNet163.76 34160.14 34574.62 32678.06 35560.19 28783.46 31883.99 35156.18 36139.25 39871.56 37437.18 34083.34 37442.90 36148.70 37780.32 360
COLMAP_ROBcopyleft57.96 2062.98 34359.65 34672.98 33981.44 31253.00 34783.75 31475.53 37848.34 38348.81 37881.40 29824.14 38390.30 31832.95 39060.52 34475.65 384
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
K. test v363.09 34259.61 34773.53 33576.26 36549.38 36883.27 32077.15 37264.35 29947.77 38172.32 36928.73 37387.79 34549.93 32936.69 39683.41 325
Anonymous2024052162.09 34459.08 34871.10 35367.19 39248.72 37183.91 31385.23 33750.38 37747.84 38071.22 37620.74 39185.51 36146.47 34758.75 35279.06 369
KD-MVS_self_test60.87 34958.60 34967.68 36566.13 39539.93 40075.63 37384.70 34157.32 35449.57 37468.45 38229.55 37082.87 37748.09 33747.94 37880.25 362
AllTest61.66 34558.06 35072.46 34379.57 33151.42 35580.17 34968.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
UnsupCasMVSNet_bld61.60 34657.71 35173.29 33768.73 39051.64 35278.61 35789.05 27457.20 35546.11 38261.96 39528.70 37488.60 33550.08 32838.90 39479.63 365
MDA-MVSNet-bldmvs61.54 34757.70 35273.05 33879.53 33357.00 32783.08 32481.23 36157.57 35034.91 40372.45 36632.79 35786.26 35735.81 38241.95 38775.89 383
mvs5depth61.03 34857.65 35371.18 35267.16 39347.04 38172.74 37777.49 37057.47 35360.52 32372.53 36422.84 38788.38 33849.15 33238.94 39378.11 378
MIMVSNet160.16 35357.33 35468.67 36169.71 38744.13 38978.92 35684.21 34555.05 36444.63 39071.85 37123.91 38481.54 38532.63 39455.03 36380.35 359
test_vis1_rt59.09 35657.31 35564.43 37168.44 39146.02 38583.05 32648.63 41551.96 37149.57 37463.86 39116.30 39780.20 38871.21 19762.79 32167.07 398
PM-MVS59.40 35456.59 35667.84 36363.63 39841.86 39376.76 36563.22 40359.01 34551.07 36972.27 37011.72 40683.25 37561.34 28450.28 37578.39 376
new-patchmatchnet59.30 35556.48 35767.79 36465.86 39644.19 38882.47 32981.77 36059.94 34143.65 39366.20 38627.67 37781.68 38439.34 37441.40 38877.50 380
TinyColmap60.32 35156.42 35872.00 35078.78 34553.18 34678.36 36075.64 37652.30 36941.59 39775.82 35614.76 40288.35 33935.84 38154.71 36574.46 385
MVS-HIRNet60.25 35255.55 35974.35 32884.37 27956.57 32971.64 38074.11 38134.44 40245.54 38742.24 41031.11 36789.81 32840.36 37276.10 22676.67 382
dongtai55.18 36155.46 36054.34 38676.03 36836.88 40476.07 36984.61 34351.28 37343.41 39464.61 39056.56 18967.81 40418.09 40928.50 40958.32 402
test_fmvs356.82 35754.86 36162.69 37653.59 40935.47 40675.87 37065.64 40043.91 39455.10 35171.43 3756.91 41474.40 39668.64 22252.63 36878.20 377
DSMNet-mixed56.78 35854.44 36263.79 37263.21 39929.44 41564.43 39764.10 40242.12 39951.32 36771.60 37231.76 36275.04 39436.23 38065.20 30186.87 270
LF4IMVS54.01 36252.12 36359.69 37762.41 40139.91 40168.59 38868.28 39742.96 39744.55 39175.18 35714.09 40468.39 40341.36 36851.68 37170.78 393
TDRefinement55.28 36051.58 36466.39 36959.53 40646.15 38476.23 36872.80 38344.60 39242.49 39576.28 35215.29 40082.39 38033.20 38943.75 38470.62 394
pmmvs355.51 35951.50 36567.53 36657.90 40750.93 35980.37 34573.66 38240.63 40044.15 39264.75 38916.30 39778.97 39044.77 35640.98 39172.69 390
ttmdpeth53.34 36349.96 36663.45 37362.07 40340.04 39872.06 37865.64 40042.54 39851.88 36377.79 33813.94 40576.48 39232.93 39130.82 40773.84 387
N_pmnet50.55 36549.11 36754.88 38477.17 3614.02 42884.36 3092.00 42648.59 38145.86 38568.82 38032.22 36082.80 37831.58 39751.38 37277.81 379
MVStest151.35 36446.89 36864.74 37065.06 39751.10 35767.33 39372.58 38430.20 40635.30 40174.82 35927.70 37669.89 40124.44 40324.57 41073.22 388
new_pmnet49.31 36646.44 36957.93 37962.84 40040.74 39668.47 38962.96 40436.48 40135.09 40257.81 39914.97 40172.18 39832.86 39246.44 38060.88 401
mvsany_test348.86 36746.35 37056.41 38046.00 41531.67 41162.26 39947.25 41643.71 39545.54 38768.15 38310.84 40764.44 41257.95 30035.44 40173.13 389
WB-MVS46.23 36944.94 37150.11 38962.13 40221.23 42276.48 36755.49 40845.89 38935.78 40061.44 39735.54 34872.83 3979.96 41621.75 41156.27 404
test_f46.58 36843.45 37255.96 38145.18 41632.05 41061.18 40049.49 41433.39 40342.05 39662.48 3947.00 41365.56 40847.08 34543.21 38670.27 395
SSC-MVS44.51 37143.35 37347.99 39361.01 40518.90 42474.12 37554.36 40943.42 39634.10 40460.02 39834.42 35370.39 4009.14 41819.57 41254.68 405
FPMVS45.64 37043.10 37453.23 38751.42 41236.46 40564.97 39671.91 38729.13 40727.53 40761.55 3969.83 40965.01 41016.00 41355.58 36158.22 403
EGC-MVSNET42.35 37238.09 37555.11 38374.57 37146.62 38271.63 38155.77 4070.04 4210.24 42262.70 39314.24 40374.91 39517.59 41046.06 38143.80 407
test_vis3_rt40.46 37537.79 37648.47 39244.49 41733.35 40966.56 39532.84 42332.39 40429.65 40539.13 4133.91 42168.65 40250.17 32640.99 39043.40 408
APD_test140.50 37437.31 37750.09 39051.88 41035.27 40759.45 40452.59 41121.64 41026.12 40857.80 4004.56 41866.56 40622.64 40539.09 39248.43 406
LCM-MVSNet40.54 37335.79 37854.76 38536.92 42230.81 41251.41 40969.02 39422.07 40924.63 40945.37 4064.56 41865.81 40733.67 38734.50 40267.67 396
ANet_high40.27 37635.20 37955.47 38234.74 42334.47 40863.84 39871.56 38948.42 38218.80 41241.08 4119.52 41064.45 41120.18 4078.66 41967.49 397
test_method38.59 37735.16 38048.89 39154.33 40821.35 42145.32 41253.71 4107.41 41828.74 40651.62 4028.70 41152.87 41533.73 38632.89 40372.47 391
PMMVS237.93 37833.61 38150.92 38846.31 41424.76 41860.55 40350.05 41228.94 40820.93 41047.59 4034.41 42065.13 40925.14 40218.55 41462.87 400
Gipumacopyleft34.91 37931.44 38245.30 39470.99 38339.64 40219.85 41672.56 38520.10 41216.16 41621.47 4175.08 41771.16 39913.07 41443.70 38525.08 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf132.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
APD_test232.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
PMVScopyleft26.43 2231.84 38228.16 38542.89 39525.87 42527.58 41650.92 41049.78 41321.37 41114.17 41740.81 4122.01 42466.62 4059.61 41738.88 39534.49 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cdsmvs_eth3d_5k19.86 38726.47 3860.00 4060.00 4290.00 4310.00 41793.45 850.00 4240.00 42595.27 5949.56 2610.00 4250.00 4240.00 4220.00 421
E-PMN24.61 38324.00 38726.45 40043.74 41818.44 42560.86 40139.66 41915.11 4159.53 41922.10 4166.52 41546.94 4188.31 41910.14 41613.98 416
tmp_tt22.26 38623.75 38817.80 4025.23 42612.06 42735.26 41339.48 4202.82 42018.94 41144.20 40922.23 38924.64 42136.30 3799.31 41816.69 415
EMVS23.76 38523.20 38925.46 40141.52 42116.90 42660.56 40238.79 42214.62 4168.99 42020.24 4197.35 41245.82 4197.25 4209.46 41713.64 417
MVEpermissive24.84 2324.35 38419.77 39038.09 39834.56 42426.92 41726.57 41438.87 42111.73 41711.37 41827.44 4141.37 42550.42 41711.41 41514.60 41536.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d11.30 38810.95 39112.33 40348.05 41319.89 42325.89 4151.92 4273.58 4193.12 4211.37 4210.64 42615.77 4226.23 4217.77 4201.35 418
ab-mvs-re7.91 38910.55 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.95 690.00 4290.00 4250.00 4240.00 4220.00 421
testmvs7.23 3909.62 3930.06 4050.04 4270.02 43084.98 3070.02 4280.03 4220.18 4231.21 4220.01 4280.02 4230.14 4220.01 4210.13 420
test1236.92 3919.21 3940.08 4040.03 4280.05 42981.65 3350.01 4290.02 4230.14 4240.85 4230.03 4270.02 4230.12 4230.00 4220.16 419
pcd_1.5k_mvsjas4.46 3925.95 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42453.55 2230.00 4250.00 4240.00 4220.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
WAC-MVS49.45 36631.56 398
FOURS193.95 4661.77 25193.96 7091.92 15062.14 32486.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5771.42 22890.67 1996.85 1674.45 19
eth-test20.00 429
eth-test0.00 429
ZD-MVS96.63 965.50 15693.50 8370.74 24285.26 6295.19 6564.92 8297.29 7687.51 5793.01 56
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21792.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4671.65 21792.11 797.05 776.79 999.11 6
save fliter93.84 4967.89 9495.05 3992.66 11978.19 94
test_0728_THIRD72.48 18790.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5471.92 20391.89 1197.11 673.77 22
GSMVS94.68 99
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 16994.68 99
sam_mvs54.91 208
ambc69.61 35761.38 40441.35 39549.07 41185.86 33350.18 37366.40 38510.16 40888.14 34145.73 35144.20 38379.32 368
MTGPAbinary92.23 132
test_post178.95 35520.70 41853.05 22891.50 31060.43 289
test_post23.01 41556.49 19092.67 273
patchmatchnet-post67.62 38457.62 17290.25 319
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37494.75 3378.67 13590.85 16777.91 794.56 20672.25 18793.74 4595.36 65
MTMP93.77 8432.52 424
gm-plane-assit88.42 19367.04 11778.62 9091.83 15097.37 7076.57 152
test9_res89.41 4094.96 1995.29 70
TEST994.18 4167.28 10994.16 5993.51 8171.75 21485.52 5795.33 5468.01 5297.27 80
test_894.19 4067.19 11194.15 6193.42 8871.87 20885.38 6095.35 5368.19 5096.95 106
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 116
TestCases72.46 34379.57 33151.42 35568.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
test_prior467.18 11393.92 73
test_prior295.10 3875.40 13585.25 6395.61 4567.94 5387.47 5994.77 26
test_prior86.42 7694.71 3567.35 10893.10 10296.84 11395.05 83
旧先验292.00 16159.37 34487.54 3993.47 24975.39 160
新几何291.41 182
新几何184.73 13292.32 9264.28 18791.46 17659.56 34379.77 11792.90 12356.95 18296.57 12163.40 26992.91 5893.34 152
旧先验191.94 10760.74 27491.50 17494.36 8765.23 7791.84 7194.55 106
无先验92.71 12692.61 12362.03 32597.01 9666.63 24093.97 134
原ACMM292.01 158
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29279.51 12092.50 13158.11 16896.69 11765.27 25993.96 4092.32 183
test22289.77 15861.60 25689.55 25089.42 25456.83 35877.28 14892.43 13552.76 23191.14 8593.09 161
testdata296.09 14161.26 285
segment_acmp65.94 70
testdata81.34 23189.02 17957.72 31589.84 23858.65 34785.32 6194.09 9957.03 17793.28 25169.34 21390.56 9193.03 164
testdata189.21 25977.55 107
test1287.09 5294.60 3668.86 6792.91 10982.67 8765.44 7597.55 6293.69 4894.84 92
plane_prior786.94 23361.51 257
plane_prior687.23 22562.32 24150.66 250
plane_prior591.31 18095.55 17076.74 15078.53 20588.39 247
plane_prior489.14 196
plane_prior361.95 24979.09 8072.53 198
plane_prior293.13 11078.81 87
plane_prior187.15 227
plane_prior62.42 23793.85 7779.38 7278.80 202
n20.00 430
nn0.00 430
door-mid66.01 399
lessismore_v073.72 33472.93 37847.83 37461.72 40545.86 38573.76 36228.63 37589.81 32847.75 34331.37 40483.53 321
LGP-MVS_train79.56 27884.31 28059.37 29889.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
test1193.01 105
door66.57 398
HQP5-MVS63.66 206
HQP-NCC87.54 21894.06 6379.80 6374.18 177
ACMP_Plane87.54 21894.06 6379.80 6374.18 177
BP-MVS77.63 147
HQP4-MVS74.18 17795.61 16588.63 241
HQP3-MVS91.70 16678.90 200
HQP2-MVS51.63 242
NP-MVS87.41 22163.04 22290.30 177
MDTV_nov1_ep13_2view59.90 29080.13 35067.65 27572.79 19254.33 21659.83 29392.58 176
ACMMP++_ref71.63 255
ACMMP++69.72 264
Test By Simon54.21 217
ITE_SJBPF70.43 35574.44 37247.06 38077.32 37160.16 33954.04 35683.53 26823.30 38684.01 36843.07 35961.58 33780.21 363
DeepMVS_CXcopyleft34.71 39951.45 41124.73 41928.48 42531.46 40517.49 41552.75 4015.80 41642.60 42018.18 40819.42 41336.81 412