LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 8 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 1 | 100.00 1 | 99.81 5 | 100.00 1 | 99.85 12 |
|
LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 21 | 99.85 16 | 99.11 59 | 99.90 1 | 99.78 16 | 99.63 13 | 99.78 15 | 99.67 20 | 99.48 6 | 99.81 163 | 99.30 29 | 99.97 12 | 99.77 22 |
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 11 | 99.90 4 | 99.27 22 | 99.53 7 | 99.76 18 | 99.64 11 | 99.84 11 | 99.83 3 | 99.50 5 | 99.87 89 | 99.36 24 | 99.92 42 | 99.64 50 |
|
UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 18 | 99.34 15 | 99.69 4 | 99.58 42 | 99.90 2 | 99.86 10 | 99.78 8 | 99.58 3 | 99.95 17 | 99.00 47 | 99.95 19 | 99.78 20 |
|
mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 48 | 99.88 9 | 98.61 92 | 99.34 19 | 99.71 21 | 99.27 49 | 99.90 6 | 99.74 12 | 99.68 2 | 99.97 4 | 99.55 16 | 99.99 5 | 99.88 7 |
|
ANet_high | | | 99.57 7 | 99.67 5 | 99.28 83 | 99.89 6 | 98.09 133 | 99.14 53 | 99.93 3 | 99.82 3 | 99.93 3 | 99.81 5 | 99.17 12 | 99.94 26 | 99.31 27 | 100.00 1 | 99.82 14 |
|
jajsoiax | | | 99.58 6 | 99.61 7 | 99.48 51 | 99.87 12 | 98.61 92 | 99.28 36 | 99.66 32 | 99.09 71 | 99.89 8 | 99.68 18 | 99.53 4 | 99.97 4 | 99.50 18 | 99.99 5 | 99.87 9 |
|
v7n | | | 99.53 8 | 99.57 8 | 99.41 60 | 99.88 9 | 98.54 100 | 99.45 10 | 99.61 38 | 99.66 10 | 99.68 27 | 99.66 22 | 98.44 46 | 99.95 17 | 99.73 10 | 99.96 15 | 99.75 29 |
|
test_djsdf | | | 99.52 9 | 99.51 9 | 99.53 34 | 99.86 14 | 98.74 82 | 99.39 16 | 99.56 56 | 99.11 61 | 99.70 23 | 99.73 14 | 99.00 15 | 99.97 4 | 99.26 30 | 99.98 9 | 99.89 6 |
|
PS-MVSNAJss | | | 99.46 12 | 99.49 10 | 99.35 69 | 99.90 4 | 98.15 129 | 99.20 44 | 99.65 33 | 99.48 26 | 99.92 4 | 99.71 16 | 98.07 73 | 99.96 11 | 99.53 17 | 100.00 1 | 99.93 4 |
|
pm-mvs1 | | | 99.44 13 | 99.48 11 | 99.33 76 | 99.80 22 | 98.63 89 | 99.29 32 | 99.63 34 | 99.30 47 | 99.65 32 | 99.60 32 | 99.16 14 | 99.82 150 | 99.07 41 | 99.83 77 | 99.56 82 |
|
anonymousdsp | | | 99.51 10 | 99.47 12 | 99.62 6 | 99.88 9 | 99.08 63 | 99.34 19 | 99.69 24 | 98.93 86 | 99.65 32 | 99.72 15 | 98.93 19 | 99.95 17 | 99.11 39 | 100.00 1 | 99.82 14 |
|
TransMVSNet (Re) | | | 99.44 13 | 99.47 12 | 99.36 64 | 99.80 22 | 98.58 95 | 99.27 38 | 99.57 49 | 99.39 36 | 99.75 18 | 99.62 28 | 99.17 12 | 99.83 140 | 99.06 42 | 99.62 172 | 99.66 45 |
|
test_fmvs3 | | | 99.12 40 | 99.41 14 | 98.25 215 | 99.76 30 | 95.07 265 | 99.05 64 | 99.94 1 | 97.78 158 | 99.82 12 | 99.84 2 | 98.56 40 | 99.71 229 | 99.96 1 | 99.96 15 | 99.97 1 |
|
UA-Net | | | 99.47 11 | 99.40 15 | 99.70 2 | 99.49 100 | 99.29 19 | 99.80 3 | 99.72 20 | 99.82 3 | 99.04 127 | 99.81 5 | 98.05 76 | 99.96 11 | 98.85 55 | 99.99 5 | 99.86 11 |
|
TDRefinement | | | 99.42 16 | 99.38 16 | 99.55 23 | 99.76 30 | 99.33 16 | 99.68 5 | 99.71 21 | 99.38 37 | 99.53 45 | 99.61 30 | 98.64 33 | 99.80 170 | 98.24 91 | 99.84 70 | 99.52 103 |
|
Vis-MVSNet |  | | 99.34 22 | 99.36 17 | 99.27 86 | 99.73 36 | 98.26 118 | 99.17 49 | 99.78 16 | 99.11 61 | 99.27 92 | 99.48 53 | 98.82 24 | 99.95 17 | 98.94 50 | 99.93 31 | 99.59 67 |
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
nrg030 | | | 99.40 18 | 99.35 18 | 99.54 27 | 99.58 65 | 99.13 55 | 98.98 71 | 99.48 83 | 99.68 8 | 99.46 55 | 99.26 89 | 98.62 36 | 99.73 221 | 99.17 38 | 99.92 42 | 99.76 26 |
|
DTE-MVSNet | | | 99.43 15 | 99.35 18 | 99.66 4 | 99.71 44 | 99.30 17 | 99.31 26 | 99.51 72 | 99.64 11 | 99.56 38 | 99.46 55 | 98.23 58 | 99.97 4 | 98.78 58 | 99.93 31 | 99.72 32 |
|
PEN-MVS | | | 99.41 17 | 99.34 20 | 99.62 6 | 99.73 36 | 99.14 52 | 99.29 32 | 99.54 65 | 99.62 16 | 99.56 38 | 99.42 63 | 98.16 69 | 99.96 11 | 98.78 58 | 99.93 31 | 99.77 22 |
|
PS-CasMVS | | | 99.40 18 | 99.33 21 | 99.62 6 | 99.71 44 | 99.10 60 | 99.29 32 | 99.53 68 | 99.53 23 | 99.46 55 | 99.41 66 | 98.23 58 | 99.95 17 | 98.89 54 | 99.95 19 | 99.81 16 |
|
MIMVSNet1 | | | 99.38 20 | 99.32 22 | 99.55 23 | 99.86 14 | 99.19 37 | 99.41 13 | 99.59 40 | 99.59 19 | 99.71 21 | 99.57 35 | 97.12 142 | 99.90 52 | 99.21 35 | 99.87 63 | 99.54 93 |
|
OurMVSNet-221017-0 | | | 99.37 21 | 99.31 23 | 99.53 34 | 99.91 3 | 98.98 65 | 99.63 6 | 99.58 42 | 99.44 31 | 99.78 15 | 99.76 10 | 96.39 182 | 99.92 39 | 99.44 22 | 99.92 42 | 99.68 41 |
|
VPA-MVSNet | | | 99.30 24 | 99.30 24 | 99.28 83 | 99.49 100 | 98.36 114 | 99.00 68 | 99.45 94 | 99.63 13 | 99.52 47 | 99.44 60 | 98.25 56 | 99.88 71 | 99.09 40 | 99.84 70 | 99.62 54 |
|
Anonymous20231211 | | | 99.27 25 | 99.27 25 | 99.26 88 | 99.29 143 | 98.18 126 | 99.49 8 | 99.51 72 | 99.70 7 | 99.80 13 | 99.68 18 | 96.84 157 | 99.83 140 | 99.21 35 | 99.91 48 | 99.77 22 |
|
FC-MVSNet-test | | | 99.27 25 | 99.25 26 | 99.34 72 | 99.77 27 | 98.37 111 | 99.30 31 | 99.57 49 | 99.61 18 | 99.40 67 | 99.50 49 | 97.12 142 | 99.85 110 | 99.02 46 | 99.94 27 | 99.80 17 |
|
ACMH | | 96.65 7 | 99.25 27 | 99.24 27 | 99.26 88 | 99.72 42 | 98.38 109 | 99.07 61 | 99.55 60 | 98.30 118 | 99.65 32 | 99.45 59 | 99.22 9 | 99.76 205 | 98.44 82 | 99.77 109 | 99.64 50 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
WR-MVS_H | | | 99.33 23 | 99.22 28 | 99.65 5 | 99.71 44 | 99.24 25 | 99.32 22 | 99.55 60 | 99.46 29 | 99.50 51 | 99.34 77 | 97.30 131 | 99.93 31 | 98.90 52 | 99.93 31 | 99.77 22 |
|
KD-MVS_self_test | | | 99.25 27 | 99.18 29 | 99.44 57 | 99.63 62 | 99.06 64 | 98.69 91 | 99.54 65 | 99.31 45 | 99.62 36 | 99.53 45 | 97.36 129 | 99.86 98 | 99.24 34 | 99.71 139 | 99.39 161 |
|
test_vis3_rt | | | 99.14 35 | 99.17 30 | 99.07 117 | 99.78 25 | 98.38 109 | 98.92 75 | 99.94 1 | 97.80 156 | 99.91 5 | 99.67 20 | 97.15 141 | 98.91 361 | 99.76 8 | 99.56 195 | 99.92 5 |
|
FMVSNet1 | | | 99.17 33 | 99.17 30 | 99.17 99 | 99.55 80 | 98.24 120 | 99.20 44 | 99.44 98 | 99.21 52 | 99.43 60 | 99.55 40 | 97.82 92 | 99.86 98 | 98.42 84 | 99.89 59 | 99.41 149 |
|
testf1 | | | 99.25 27 | 99.16 32 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 89 | 99.69 24 | 98.90 88 | 99.43 60 | 99.35 73 | 98.86 21 | 99.67 248 | 97.81 117 | 99.81 84 | 99.24 207 |
|
APD_test2 | | | 99.25 27 | 99.16 32 | 99.51 43 | 99.89 6 | 99.63 3 | 98.71 89 | 99.69 24 | 98.90 88 | 99.43 60 | 99.35 73 | 98.86 21 | 99.67 248 | 97.81 117 | 99.81 84 | 99.24 207 |
|
v8 | | | 99.01 48 | 99.16 32 | 98.57 181 | 99.47 109 | 96.31 228 | 98.90 76 | 99.47 89 | 99.03 77 | 99.52 47 | 99.57 35 | 96.93 153 | 99.81 163 | 99.60 12 | 99.98 9 | 99.60 61 |
|
casdiffmvs_mvg |  | | 99.12 40 | 99.16 32 | 98.99 131 | 99.43 119 | 97.73 174 | 98.00 168 | 99.62 35 | 99.22 51 | 99.55 40 | 99.22 97 | 98.93 19 | 99.75 212 | 98.66 69 | 99.81 84 | 99.50 108 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
Gipuma |  | | 99.03 47 | 99.16 32 | 98.64 170 | 99.94 2 | 98.51 102 | 99.32 22 | 99.75 19 | 99.58 21 | 98.60 195 | 99.62 28 | 98.22 61 | 99.51 308 | 97.70 125 | 99.73 127 | 97.89 330 |
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
mvsmamba | | | 99.24 31 | 99.15 37 | 99.49 48 | 99.83 19 | 98.85 74 | 99.41 13 | 99.55 60 | 99.54 22 | 99.40 67 | 99.52 47 | 95.86 208 | 99.91 47 | 99.32 26 | 99.95 19 | 99.70 38 |
|
XXY-MVS | | | 99.14 35 | 99.15 37 | 99.10 111 | 99.76 30 | 97.74 172 | 98.85 81 | 99.62 35 | 98.48 110 | 99.37 74 | 99.49 52 | 98.75 27 | 99.86 98 | 98.20 94 | 99.80 95 | 99.71 33 |
|
dcpmvs_2 | | | 98.78 78 | 99.11 39 | 97.78 247 | 99.56 76 | 93.67 308 | 99.06 62 | 99.86 11 | 99.50 24 | 99.66 29 | 99.26 89 | 97.21 139 | 99.99 2 | 98.00 107 | 99.91 48 | 99.68 41 |
|
v10 | | | 98.97 54 | 99.11 39 | 98.55 186 | 99.44 114 | 96.21 230 | 98.90 76 | 99.55 60 | 98.73 96 | 99.48 52 | 99.60 32 | 96.63 173 | 99.83 140 | 99.70 11 | 99.99 5 | 99.61 60 |
|
CS-MVS | | | 99.13 38 | 99.10 41 | 99.24 93 | 99.06 197 | 99.15 47 | 99.36 18 | 99.88 9 | 99.36 41 | 98.21 228 | 98.46 247 | 98.68 32 | 99.93 31 | 99.03 45 | 99.85 66 | 98.64 299 |
|
CS-MVS-test | | | 99.13 38 | 99.09 42 | 99.26 88 | 99.13 182 | 98.97 66 | 99.31 26 | 99.88 9 | 99.44 31 | 98.16 231 | 98.51 239 | 98.64 33 | 99.93 31 | 98.91 51 | 99.85 66 | 98.88 268 |
|
FIs | | | 99.14 35 | 99.09 42 | 99.29 81 | 99.70 50 | 98.28 117 | 99.13 54 | 99.52 71 | 99.48 26 | 99.24 101 | 99.41 66 | 96.79 163 | 99.82 150 | 98.69 67 | 99.88 60 | 99.76 26 |
|
CP-MVSNet | | | 99.21 32 | 99.09 42 | 99.56 21 | 99.65 57 | 98.96 70 | 99.13 54 | 99.34 134 | 99.42 34 | 99.33 81 | 99.26 89 | 97.01 150 | 99.94 26 | 98.74 62 | 99.93 31 | 99.79 18 |
|
TranMVSNet+NR-MVSNet | | | 99.17 33 | 99.07 45 | 99.46 56 | 99.37 131 | 98.87 73 | 98.39 128 | 99.42 107 | 99.42 34 | 99.36 76 | 99.06 124 | 98.38 49 | 99.95 17 | 98.34 87 | 99.90 55 | 99.57 78 |
|
DROMVSNet | | | 99.09 42 | 99.05 46 | 99.20 97 | 99.28 144 | 98.93 71 | 99.24 40 | 99.84 12 | 99.08 73 | 98.12 236 | 98.37 255 | 98.72 29 | 99.90 52 | 99.05 43 | 99.77 109 | 98.77 285 |
|
baseline | | | 98.96 56 | 99.02 47 | 98.76 160 | 99.38 125 | 97.26 195 | 98.49 116 | 99.50 74 | 98.86 91 | 99.19 106 | 99.06 124 | 98.23 58 | 99.69 236 | 98.71 65 | 99.76 120 | 99.33 187 |
|
EG-PatchMatch MVS | | | 98.99 50 | 99.01 48 | 98.94 136 | 99.50 93 | 97.47 185 | 98.04 162 | 99.59 40 | 98.15 136 | 99.40 67 | 99.36 72 | 98.58 39 | 99.76 205 | 98.78 58 | 99.68 152 | 99.59 67 |
|
bld_raw_dy_0_64 | | | 99.07 45 | 99.00 49 | 99.29 81 | 99.85 16 | 98.18 126 | 99.11 57 | 99.40 110 | 99.33 43 | 99.38 71 | 99.44 60 | 95.21 225 | 99.97 4 | 99.31 27 | 99.98 9 | 99.73 31 |
|
casdiffmvs |  | | 98.95 57 | 99.00 49 | 98.81 150 | 99.38 125 | 97.33 191 | 97.82 185 | 99.57 49 | 99.17 59 | 99.35 78 | 99.17 108 | 98.35 53 | 99.69 236 | 98.46 81 | 99.73 127 | 99.41 149 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
ACMH+ | | 96.62 9 | 99.08 44 | 99.00 49 | 99.33 76 | 99.71 44 | 98.83 76 | 98.60 99 | 99.58 42 | 99.11 61 | 99.53 45 | 99.18 104 | 98.81 25 | 99.67 248 | 96.71 193 | 99.77 109 | 99.50 108 |
|
GeoE | | | 99.05 46 | 98.99 52 | 99.25 91 | 99.44 114 | 98.35 115 | 98.73 86 | 99.56 56 | 98.42 111 | 98.91 150 | 98.81 193 | 98.94 18 | 99.91 47 | 98.35 86 | 99.73 127 | 99.49 112 |
|
test_fmvs2 | | | 98.70 90 | 98.97 53 | 97.89 240 | 99.54 83 | 94.05 290 | 98.55 105 | 99.92 5 | 96.78 235 | 99.72 19 | 99.78 8 | 96.60 174 | 99.67 248 | 99.91 2 | 99.90 55 | 99.94 3 |
|
RRT_MVS | | | 99.09 42 | 98.94 54 | 99.55 23 | 99.87 12 | 98.82 78 | 99.48 9 | 98.16 301 | 99.49 25 | 99.59 37 | 99.65 24 | 94.79 242 | 99.95 17 | 99.45 21 | 99.96 15 | 99.88 7 |
|
DeepC-MVS | | 97.60 4 | 98.97 54 | 98.93 55 | 99.10 111 | 99.35 136 | 97.98 148 | 98.01 167 | 99.46 91 | 97.56 175 | 99.54 41 | 99.50 49 | 98.97 16 | 99.84 126 | 98.06 102 | 99.92 42 | 99.49 112 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
test_vis1_n_1920 | | | 98.40 136 | 98.92 56 | 96.81 305 | 99.74 35 | 90.76 348 | 98.15 148 | 99.91 6 | 98.33 115 | 99.89 8 | 99.55 40 | 95.07 230 | 99.88 71 | 99.76 8 | 99.93 31 | 99.79 18 |
|
mvsany_test3 | | | 98.87 66 | 98.92 56 | 98.74 166 | 99.38 125 | 96.94 212 | 98.58 102 | 99.10 211 | 96.49 246 | 99.96 2 | 99.81 5 | 98.18 65 | 99.45 319 | 98.97 49 | 99.79 100 | 99.83 13 |
|
tfpnnormal | | | 98.90 63 | 98.90 58 | 98.91 140 | 99.67 55 | 97.82 165 | 99.00 68 | 99.44 98 | 99.45 30 | 99.51 50 | 99.24 94 | 98.20 64 | 99.86 98 | 95.92 241 | 99.69 147 | 99.04 239 |
|
test_f | | | 98.67 101 | 98.87 59 | 98.05 232 | 99.72 42 | 95.59 244 | 98.51 113 | 99.81 14 | 96.30 255 | 99.78 15 | 99.82 4 | 96.14 191 | 98.63 366 | 99.82 3 | 99.93 31 | 99.95 2 |
|
Anonymous20240521 | | | 98.69 93 | 98.87 59 | 98.16 223 | 99.77 27 | 95.11 264 | 99.08 58 | 99.44 98 | 99.34 42 | 99.33 81 | 99.55 40 | 94.10 258 | 99.94 26 | 99.25 32 | 99.96 15 | 99.42 146 |
|
Anonymous20240529 | | | 98.93 59 | 98.87 59 | 99.12 107 | 99.19 165 | 98.22 125 | 99.01 66 | 98.99 233 | 99.25 50 | 99.54 41 | 99.37 69 | 97.04 146 | 99.80 170 | 97.89 111 | 99.52 207 | 99.35 180 |
|
Baseline_NR-MVSNet | | | 98.98 53 | 98.86 62 | 99.36 64 | 99.82 21 | 98.55 97 | 97.47 223 | 99.57 49 | 99.37 38 | 99.21 104 | 99.61 30 | 96.76 166 | 99.83 140 | 98.06 102 | 99.83 77 | 99.71 33 |
|
COLMAP_ROB |  | 96.50 10 | 98.99 50 | 98.85 63 | 99.41 60 | 99.58 65 | 99.10 60 | 98.74 84 | 99.56 56 | 99.09 71 | 99.33 81 | 99.19 101 | 98.40 48 | 99.72 228 | 95.98 239 | 99.76 120 | 99.42 146 |
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
VPNet | | | 98.87 66 | 98.83 64 | 99.01 129 | 99.70 50 | 97.62 180 | 98.43 124 | 99.35 128 | 99.47 28 | 99.28 90 | 99.05 131 | 96.72 169 | 99.82 150 | 98.09 100 | 99.36 232 | 99.59 67 |
|
NR-MVSNet | | | 98.95 57 | 98.82 65 | 99.36 64 | 99.16 175 | 98.72 87 | 99.22 41 | 99.20 184 | 99.10 68 | 99.72 19 | 98.76 201 | 96.38 184 | 99.86 98 | 98.00 107 | 99.82 80 | 99.50 108 |
|
HPM-MVS_fast | | | 99.01 48 | 98.82 65 | 99.57 16 | 99.71 44 | 99.35 12 | 99.00 68 | 99.50 74 | 97.33 199 | 98.94 147 | 98.86 181 | 98.75 27 | 99.82 150 | 97.53 132 | 99.71 139 | 99.56 82 |
|
DP-MVS | | | 98.93 59 | 98.81 67 | 99.28 83 | 99.21 158 | 98.45 106 | 98.46 121 | 99.33 139 | 99.63 13 | 99.48 52 | 99.15 114 | 97.23 137 | 99.75 212 | 97.17 147 | 99.66 163 | 99.63 53 |
|
APDe-MVS | | | 98.99 50 | 98.79 68 | 99.60 11 | 99.21 158 | 99.15 47 | 98.87 78 | 99.48 83 | 97.57 173 | 99.35 78 | 99.24 94 | 97.83 89 | 99.89 62 | 97.88 114 | 99.70 144 | 99.75 29 |
|
V42 | | | 98.78 78 | 98.78 69 | 98.76 160 | 99.44 114 | 97.04 207 | 98.27 136 | 99.19 188 | 97.87 151 | 99.25 100 | 99.16 110 | 96.84 157 | 99.78 194 | 99.21 35 | 99.84 70 | 99.46 131 |
|
test20.03 | | | 98.78 78 | 98.77 70 | 98.78 157 | 99.46 110 | 97.20 200 | 97.78 187 | 99.24 178 | 99.04 76 | 99.41 64 | 98.90 171 | 97.65 102 | 99.76 205 | 97.70 125 | 99.79 100 | 99.39 161 |
|
new-patchmatchnet | | | 98.35 142 | 98.74 71 | 97.18 286 | 99.24 151 | 92.23 332 | 96.42 281 | 99.48 83 | 98.30 118 | 99.69 25 | 99.53 45 | 97.44 125 | 99.82 150 | 98.84 56 | 99.77 109 | 99.49 112 |
|
3Dnovator | | 98.27 2 | 98.81 74 | 98.73 72 | 99.05 124 | 98.76 248 | 97.81 167 | 99.25 39 | 99.30 154 | 98.57 107 | 98.55 204 | 99.33 79 | 97.95 84 | 99.90 52 | 97.16 148 | 99.67 158 | 99.44 139 |
|
ACMM | | 96.08 12 | 98.91 61 | 98.73 72 | 99.48 51 | 99.55 80 | 99.14 52 | 98.07 157 | 99.37 119 | 97.62 168 | 99.04 127 | 98.96 157 | 98.84 23 | 99.79 183 | 97.43 136 | 99.65 164 | 99.49 112 |
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
SED-MVS | | | 98.91 61 | 98.72 74 | 99.49 48 | 99.49 100 | 99.17 39 | 98.10 154 | 99.31 146 | 98.03 140 | 99.66 29 | 99.02 136 | 98.36 50 | 99.88 71 | 96.91 169 | 99.62 172 | 99.41 149 |
|
PM-MVS | | | 98.82 72 | 98.72 74 | 99.12 107 | 99.64 60 | 98.54 100 | 97.98 170 | 99.68 29 | 97.62 168 | 99.34 80 | 99.18 104 | 97.54 114 | 99.77 200 | 97.79 119 | 99.74 124 | 99.04 239 |
|
EI-MVSNet-UG-set | | | 98.69 93 | 98.71 76 | 98.62 174 | 99.10 186 | 96.37 225 | 97.23 238 | 98.87 248 | 99.20 54 | 99.19 106 | 98.99 148 | 97.30 131 | 99.85 110 | 98.77 61 | 99.79 100 | 99.65 49 |
|
UniMVSNet (Re) | | | 98.87 66 | 98.71 76 | 99.35 69 | 99.24 151 | 98.73 85 | 97.73 194 | 99.38 115 | 98.93 86 | 99.12 112 | 98.73 204 | 96.77 164 | 99.86 98 | 98.63 71 | 99.80 95 | 99.46 131 |
|
test_0402 | | | 98.76 82 | 98.71 76 | 98.93 137 | 99.56 76 | 98.14 131 | 98.45 123 | 99.34 134 | 99.28 48 | 98.95 141 | 98.91 168 | 98.34 54 | 99.79 183 | 95.63 256 | 99.91 48 | 98.86 270 |
|
DVP-MVS++ | | | 98.90 63 | 98.70 79 | 99.51 43 | 98.43 298 | 99.15 47 | 99.43 11 | 99.32 141 | 98.17 132 | 99.26 96 | 99.02 136 | 98.18 65 | 99.88 71 | 97.07 157 | 99.45 221 | 99.49 112 |
|
EI-MVSNet-Vis-set | | | 98.68 98 | 98.70 79 | 98.63 173 | 99.09 189 | 96.40 224 | 97.23 238 | 98.86 253 | 99.20 54 | 99.18 110 | 98.97 154 | 97.29 133 | 99.85 110 | 98.72 64 | 99.78 105 | 99.64 50 |
|
IterMVS-LS | | | 98.55 119 | 98.70 79 | 98.09 225 | 99.48 107 | 94.73 273 | 97.22 241 | 99.39 113 | 98.97 82 | 99.38 71 | 99.31 83 | 96.00 198 | 99.93 31 | 98.58 72 | 99.97 12 | 99.60 61 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
SD-MVS | | | 98.40 136 | 98.68 82 | 97.54 269 | 98.96 213 | 97.99 145 | 97.88 178 | 99.36 123 | 98.20 129 | 99.63 35 | 99.04 133 | 98.76 26 | 95.33 376 | 96.56 205 | 99.74 124 | 99.31 193 |
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
UniMVSNet_NR-MVSNet | | | 98.86 69 | 98.68 82 | 99.40 62 | 99.17 173 | 98.74 82 | 97.68 198 | 99.40 110 | 99.14 60 | 99.06 120 | 98.59 231 | 96.71 170 | 99.93 31 | 98.57 74 | 99.77 109 | 99.53 100 |
|
APD_test1 | | | 98.83 71 | 98.66 84 | 99.34 72 | 99.78 25 | 99.47 6 | 98.42 126 | 99.45 94 | 98.28 123 | 98.98 134 | 99.19 101 | 97.76 95 | 99.58 287 | 96.57 201 | 99.55 198 | 98.97 252 |
|
v1192 | | | 98.60 111 | 98.66 84 | 98.41 202 | 99.27 146 | 95.88 238 | 97.52 217 | 99.36 123 | 97.41 192 | 99.33 81 | 99.20 100 | 96.37 185 | 99.82 150 | 99.57 14 | 99.92 42 | 99.55 89 |
|
v1144 | | | 98.60 111 | 98.66 84 | 98.41 202 | 99.36 132 | 95.90 237 | 97.58 211 | 99.34 134 | 97.51 178 | 99.27 92 | 99.15 114 | 96.34 187 | 99.80 170 | 99.47 20 | 99.93 31 | 99.51 105 |
|
MTAPA | | | 98.88 65 | 98.64 87 | 99.61 9 | 99.67 55 | 99.36 11 | 98.43 124 | 99.20 184 | 98.83 95 | 98.89 153 | 98.90 171 | 96.98 152 | 99.92 39 | 97.16 148 | 99.70 144 | 99.56 82 |
|
patch_mono-2 | | | 98.51 126 | 98.63 88 | 98.17 221 | 99.38 125 | 94.78 270 | 97.36 229 | 99.69 24 | 98.16 135 | 98.49 210 | 99.29 84 | 97.06 145 | 99.97 4 | 98.29 90 | 99.91 48 | 99.76 26 |
|
DU-MVS | | | 98.82 72 | 98.63 88 | 99.39 63 | 99.16 175 | 98.74 82 | 97.54 215 | 99.25 173 | 98.84 94 | 99.06 120 | 98.76 201 | 96.76 166 | 99.93 31 | 98.57 74 | 99.77 109 | 99.50 108 |
|
tt0805 | | | 98.69 93 | 98.62 90 | 98.90 142 | 99.75 34 | 99.30 17 | 99.15 52 | 96.97 332 | 98.86 91 | 98.87 161 | 97.62 308 | 98.63 35 | 98.96 358 | 99.41 23 | 98.29 316 | 98.45 307 |
|
v1240 | | | 98.55 119 | 98.62 90 | 98.32 209 | 99.22 156 | 95.58 245 | 97.51 219 | 99.45 94 | 97.16 219 | 99.45 58 | 99.24 94 | 96.12 193 | 99.85 110 | 99.60 12 | 99.88 60 | 99.55 89 |
|
v2v482 | | | 98.56 115 | 98.62 90 | 98.37 206 | 99.42 120 | 95.81 241 | 97.58 211 | 99.16 199 | 97.90 149 | 99.28 90 | 99.01 145 | 95.98 202 | 99.79 183 | 99.33 25 | 99.90 55 | 99.51 105 |
|
SixPastTwentyTwo | | | 98.75 83 | 98.62 90 | 99.16 102 | 99.83 19 | 97.96 152 | 99.28 36 | 98.20 298 | 99.37 38 | 99.70 23 | 99.65 24 | 92.65 280 | 99.93 31 | 99.04 44 | 99.84 70 | 99.60 61 |
|
APD-MVS_3200maxsize | | | 98.84 70 | 98.61 94 | 99.53 34 | 99.19 165 | 99.27 22 | 98.49 116 | 99.33 139 | 98.64 98 | 99.03 130 | 98.98 152 | 97.89 86 | 99.85 110 | 96.54 209 | 99.42 225 | 99.46 131 |
|
v1921920 | | | 98.54 121 | 98.60 95 | 98.38 205 | 99.20 162 | 95.76 243 | 97.56 213 | 99.36 123 | 97.23 214 | 99.38 71 | 99.17 108 | 96.02 196 | 99.84 126 | 99.57 14 | 99.90 55 | 99.54 93 |
|
v148 | | | 98.45 131 | 98.60 95 | 98.00 235 | 99.44 114 | 94.98 266 | 97.44 225 | 99.06 216 | 98.30 118 | 99.32 87 | 98.97 154 | 96.65 172 | 99.62 272 | 98.37 85 | 99.85 66 | 99.39 161 |
|
RE-MVS-def | | | | 98.58 97 | | 99.20 162 | 99.38 8 | 98.48 119 | 99.30 154 | 98.64 98 | 98.95 141 | 98.96 157 | 97.75 96 | | 96.56 205 | 99.39 228 | 99.45 135 |
|
v144192 | | | 98.54 121 | 98.57 98 | 98.45 198 | 99.21 158 | 95.98 235 | 97.63 204 | 99.36 123 | 97.15 221 | 99.32 87 | 99.18 104 | 95.84 209 | 99.84 126 | 99.50 18 | 99.91 48 | 99.54 93 |
|
SR-MVS-dyc-post | | | 98.81 74 | 98.55 99 | 99.57 16 | 99.20 162 | 99.38 8 | 98.48 119 | 99.30 154 | 98.64 98 | 98.95 141 | 98.96 157 | 97.49 123 | 99.86 98 | 96.56 205 | 99.39 228 | 99.45 135 |
|
SteuartSystems-ACMMP | | | 98.79 76 | 98.54 100 | 99.54 27 | 99.73 36 | 99.16 43 | 98.23 139 | 99.31 146 | 97.92 147 | 98.90 151 | 98.90 171 | 98.00 79 | 99.88 71 | 96.15 232 | 99.72 134 | 99.58 73 |
Skip Steuart: Steuart Systems R&D Blog. |
HPM-MVS |  | | 98.79 76 | 98.53 101 | 99.59 15 | 99.65 57 | 99.29 19 | 99.16 50 | 99.43 104 | 96.74 237 | 98.61 193 | 98.38 254 | 98.62 36 | 99.87 89 | 96.47 213 | 99.67 158 | 99.59 67 |
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
DVP-MVS |  | | 98.77 81 | 98.52 102 | 99.52 39 | 99.50 93 | 99.21 28 | 98.02 164 | 98.84 257 | 97.97 143 | 99.08 118 | 99.02 136 | 97.61 108 | 99.88 71 | 96.99 163 | 99.63 169 | 99.48 122 |
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
EI-MVSNet | | | 98.40 136 | 98.51 103 | 98.04 233 | 99.10 186 | 94.73 273 | 97.20 242 | 98.87 248 | 98.97 82 | 99.06 120 | 99.02 136 | 96.00 198 | 99.80 170 | 98.58 72 | 99.82 80 | 99.60 61 |
|
3Dnovator+ | | 97.89 3 | 98.69 93 | 98.51 103 | 99.24 93 | 98.81 243 | 98.40 107 | 99.02 65 | 99.19 188 | 98.99 80 | 98.07 240 | 99.28 85 | 97.11 144 | 99.84 126 | 96.84 180 | 99.32 238 | 99.47 129 |
|
test_vis1_n | | | 98.31 146 | 98.50 105 | 97.73 254 | 99.76 30 | 94.17 288 | 98.68 92 | 99.91 6 | 96.31 253 | 99.79 14 | 99.57 35 | 92.85 277 | 99.42 324 | 99.79 6 | 99.84 70 | 99.60 61 |
|
EU-MVSNet | | | 97.66 201 | 98.50 105 | 95.13 337 | 99.63 62 | 85.84 365 | 98.35 131 | 98.21 297 | 98.23 125 | 99.54 41 | 99.46 55 | 95.02 231 | 99.68 245 | 98.24 91 | 99.87 63 | 99.87 9 |
|
CSCG | | | 98.68 98 | 98.50 105 | 99.20 97 | 99.45 113 | 98.63 89 | 98.56 104 | 99.57 49 | 97.87 151 | 98.85 162 | 98.04 283 | 97.66 101 | 99.84 126 | 96.72 191 | 99.81 84 | 99.13 229 |
|
ACMMP |  | | 98.75 83 | 98.50 105 | 99.52 39 | 99.56 76 | 99.16 43 | 98.87 78 | 99.37 119 | 97.16 219 | 98.82 169 | 99.01 145 | 97.71 98 | 99.87 89 | 96.29 224 | 99.69 147 | 99.54 93 |
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
TSAR-MVS + MP. | | | 98.63 107 | 98.49 109 | 99.06 123 | 99.64 60 | 97.90 156 | 98.51 113 | 98.94 235 | 96.96 227 | 99.24 101 | 98.89 177 | 97.83 89 | 99.81 163 | 96.88 176 | 99.49 217 | 99.48 122 |
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
ACMMP_NAP | | | 98.75 83 | 98.48 110 | 99.57 16 | 99.58 65 | 99.29 19 | 97.82 185 | 99.25 173 | 96.94 228 | 98.78 172 | 99.12 118 | 98.02 77 | 99.84 126 | 97.13 153 | 99.67 158 | 99.59 67 |
|
LCM-MVSNet-Re | | | 98.64 105 | 98.48 110 | 99.11 109 | 98.85 235 | 98.51 102 | 98.49 116 | 99.83 13 | 98.37 112 | 99.69 25 | 99.46 55 | 98.21 63 | 99.92 39 | 94.13 295 | 99.30 243 | 98.91 264 |
|
GBi-Net | | | 98.65 103 | 98.47 112 | 99.17 99 | 98.90 225 | 98.24 120 | 99.20 44 | 99.44 98 | 98.59 104 | 98.95 141 | 99.55 40 | 94.14 254 | 99.86 98 | 97.77 120 | 99.69 147 | 99.41 149 |
|
test1 | | | 98.65 103 | 98.47 112 | 99.17 99 | 98.90 225 | 98.24 120 | 99.20 44 | 99.44 98 | 98.59 104 | 98.95 141 | 99.55 40 | 94.14 254 | 99.86 98 | 97.77 120 | 99.69 147 | 99.41 149 |
|
LPG-MVS_test | | | 98.71 87 | 98.46 114 | 99.47 54 | 99.57 69 | 98.97 66 | 98.23 139 | 99.48 83 | 96.60 242 | 99.10 116 | 99.06 124 | 98.71 30 | 99.83 140 | 95.58 259 | 99.78 105 | 99.62 54 |
|
XVS | | | 98.72 86 | 98.45 115 | 99.53 34 | 99.46 110 | 99.21 28 | 98.65 93 | 99.34 134 | 98.62 102 | 97.54 276 | 98.63 225 | 97.50 120 | 99.83 140 | 96.79 182 | 99.53 204 | 99.56 82 |
|
UGNet | | | 98.53 123 | 98.45 115 | 98.79 154 | 97.94 326 | 96.96 210 | 99.08 58 | 98.54 283 | 99.10 68 | 96.82 313 | 99.47 54 | 96.55 176 | 99.84 126 | 98.56 77 | 99.94 27 | 99.55 89 |
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
HFP-MVS | | | 98.71 87 | 98.44 117 | 99.51 43 | 99.49 100 | 99.16 43 | 98.52 109 | 99.31 146 | 97.47 182 | 98.58 199 | 98.50 243 | 97.97 83 | 99.85 110 | 96.57 201 | 99.59 183 | 99.53 100 |
|
SR-MVS | | | 98.71 87 | 98.43 118 | 99.57 16 | 99.18 172 | 99.35 12 | 98.36 130 | 99.29 161 | 98.29 121 | 98.88 157 | 98.85 184 | 97.53 116 | 99.87 89 | 96.14 233 | 99.31 240 | 99.48 122 |
|
MVSFormer | | | 98.26 153 | 98.43 118 | 97.77 248 | 98.88 231 | 93.89 302 | 99.39 16 | 99.56 56 | 99.11 61 | 98.16 231 | 98.13 273 | 93.81 261 | 99.97 4 | 99.26 30 | 99.57 192 | 99.43 143 |
|
ACMMPR | | | 98.70 90 | 98.42 120 | 99.54 27 | 99.52 88 | 99.14 52 | 98.52 109 | 99.31 146 | 97.47 182 | 98.56 202 | 98.54 235 | 97.75 96 | 99.88 71 | 96.57 201 | 99.59 183 | 99.58 73 |
|
CP-MVS | | | 98.70 90 | 98.42 120 | 99.52 39 | 99.36 132 | 99.12 57 | 98.72 87 | 99.36 123 | 97.54 177 | 98.30 223 | 98.40 251 | 97.86 88 | 99.89 62 | 96.53 210 | 99.72 134 | 99.56 82 |
|
ZNCC-MVS | | | 98.68 98 | 98.40 122 | 99.54 27 | 99.57 69 | 99.21 28 | 98.46 121 | 99.29 161 | 97.28 205 | 98.11 237 | 98.39 252 | 98.00 79 | 99.87 89 | 96.86 179 | 99.64 166 | 99.55 89 |
|
region2R | | | 98.69 93 | 98.40 122 | 99.54 27 | 99.53 86 | 99.17 39 | 98.52 109 | 99.31 146 | 97.46 187 | 98.44 214 | 98.51 239 | 97.83 89 | 99.88 71 | 96.46 214 | 99.58 188 | 99.58 73 |
|
FMVSNet2 | | | 98.49 127 | 98.40 122 | 98.75 162 | 98.90 225 | 97.14 206 | 98.61 98 | 99.13 206 | 98.59 104 | 99.19 106 | 99.28 85 | 94.14 254 | 99.82 150 | 97.97 109 | 99.80 95 | 99.29 198 |
|
VDD-MVS | | | 98.56 115 | 98.39 125 | 99.07 117 | 99.13 182 | 98.07 139 | 98.59 100 | 97.01 330 | 99.59 19 | 99.11 113 | 99.27 87 | 94.82 237 | 99.79 183 | 98.34 87 | 99.63 169 | 99.34 182 |
|
testgi | | | 98.32 144 | 98.39 125 | 98.13 224 | 99.57 69 | 95.54 246 | 97.78 187 | 99.49 81 | 97.37 196 | 99.19 106 | 97.65 305 | 98.96 17 | 99.49 310 | 96.50 212 | 98.99 284 | 99.34 182 |
|
LS3D | | | 98.63 107 | 98.38 127 | 99.36 64 | 97.25 355 | 99.38 8 | 99.12 56 | 99.32 141 | 99.21 52 | 98.44 214 | 98.88 178 | 97.31 130 | 99.80 170 | 96.58 199 | 99.34 236 | 98.92 261 |
|
PGM-MVS | | | 98.66 102 | 98.37 128 | 99.55 23 | 99.53 86 | 99.18 38 | 98.23 139 | 99.49 81 | 97.01 226 | 98.69 182 | 98.88 178 | 98.00 79 | 99.89 62 | 95.87 245 | 99.59 183 | 99.58 73 |
|
MVS_Test | | | 98.18 161 | 98.36 129 | 97.67 256 | 98.48 293 | 94.73 273 | 98.18 144 | 99.02 227 | 97.69 163 | 98.04 244 | 99.11 119 | 97.22 138 | 99.56 292 | 98.57 74 | 98.90 292 | 98.71 291 |
|
ab-mvs | | | 98.41 134 | 98.36 129 | 98.59 178 | 99.19 165 | 97.23 196 | 99.32 22 | 98.81 262 | 97.66 165 | 98.62 191 | 99.40 68 | 96.82 160 | 99.80 170 | 95.88 242 | 99.51 209 | 98.75 288 |
|
RPSCF | | | 98.62 109 | 98.36 129 | 99.42 58 | 99.65 57 | 99.42 7 | 98.55 105 | 99.57 49 | 97.72 162 | 98.90 151 | 99.26 89 | 96.12 193 | 99.52 304 | 95.72 252 | 99.71 139 | 99.32 189 |
|
pmmvs-eth3d | | | 98.47 129 | 98.34 132 | 98.86 144 | 99.30 142 | 97.76 170 | 97.16 245 | 99.28 164 | 95.54 274 | 99.42 63 | 99.19 101 | 97.27 134 | 99.63 270 | 97.89 111 | 99.97 12 | 99.20 214 |
|
mPP-MVS | | | 98.64 105 | 98.34 132 | 99.54 27 | 99.54 83 | 99.17 39 | 98.63 95 | 99.24 178 | 97.47 182 | 98.09 239 | 98.68 213 | 97.62 107 | 99.89 62 | 96.22 227 | 99.62 172 | 99.57 78 |
|
XVG-OURS | | | 98.53 123 | 98.34 132 | 99.11 109 | 99.50 93 | 98.82 78 | 95.97 298 | 99.50 74 | 97.30 203 | 99.05 125 | 98.98 152 | 99.35 7 | 99.32 336 | 95.72 252 | 99.68 152 | 99.18 221 |
|
XVG-ACMP-BASELINE | | | 98.56 115 | 98.34 132 | 99.22 96 | 99.54 83 | 98.59 94 | 97.71 195 | 99.46 91 | 97.25 208 | 98.98 134 | 98.99 148 | 97.54 114 | 99.84 126 | 95.88 242 | 99.74 124 | 99.23 209 |
|
OPM-MVS | | | 98.56 115 | 98.32 136 | 99.25 91 | 99.41 122 | 98.73 85 | 97.13 247 | 99.18 192 | 97.10 222 | 98.75 178 | 98.92 167 | 98.18 65 | 99.65 264 | 96.68 195 | 99.56 195 | 99.37 170 |
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
GST-MVS | | | 98.61 110 | 98.30 137 | 99.52 39 | 99.51 90 | 99.20 34 | 98.26 137 | 99.25 173 | 97.44 190 | 98.67 184 | 98.39 252 | 97.68 99 | 99.85 110 | 96.00 237 | 99.51 209 | 99.52 103 |
|
VNet | | | 98.42 133 | 98.30 137 | 98.79 154 | 98.79 247 | 97.29 193 | 98.23 139 | 98.66 277 | 99.31 45 | 98.85 162 | 98.80 194 | 94.80 240 | 99.78 194 | 98.13 96 | 99.13 268 | 99.31 193 |
|
test_fmvs1_n | | | 98.09 167 | 98.28 139 | 97.52 271 | 99.68 53 | 93.47 311 | 98.63 95 | 99.93 3 | 95.41 281 | 99.68 27 | 99.64 26 | 91.88 288 | 99.48 313 | 99.82 3 | 99.87 63 | 99.62 54 |
|
XVG-OURS-SEG-HR | | | 98.49 127 | 98.28 139 | 99.14 105 | 99.49 100 | 98.83 76 | 96.54 274 | 99.48 83 | 97.32 201 | 99.11 113 | 98.61 229 | 99.33 8 | 99.30 339 | 96.23 226 | 98.38 313 | 99.28 199 |
|
SF-MVS | | | 98.53 123 | 98.27 141 | 99.32 78 | 99.31 139 | 98.75 81 | 98.19 143 | 99.41 108 | 96.77 236 | 98.83 166 | 98.90 171 | 97.80 93 | 99.82 150 | 95.68 255 | 99.52 207 | 99.38 168 |
|
DPE-MVS |  | | 98.59 113 | 98.26 142 | 99.57 16 | 99.27 146 | 99.15 47 | 97.01 250 | 99.39 113 | 97.67 164 | 99.44 59 | 98.99 148 | 97.53 116 | 99.89 62 | 95.40 263 | 99.68 152 | 99.66 45 |
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
canonicalmvs | | | 98.34 143 | 98.26 142 | 98.58 179 | 98.46 295 | 97.82 165 | 98.96 72 | 99.46 91 | 99.19 58 | 97.46 283 | 95.46 357 | 98.59 38 | 99.46 318 | 98.08 101 | 98.71 301 | 98.46 305 |
|
diffmvs |  | | 98.22 157 | 98.24 144 | 98.17 221 | 99.00 206 | 95.44 251 | 96.38 283 | 99.58 42 | 97.79 157 | 98.53 207 | 98.50 243 | 96.76 166 | 99.74 217 | 97.95 110 | 99.64 166 | 99.34 182 |
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
MP-MVS-pluss | | | 98.57 114 | 98.23 145 | 99.60 11 | 99.69 52 | 99.35 12 | 97.16 245 | 99.38 115 | 94.87 292 | 98.97 138 | 98.99 148 | 98.01 78 | 99.88 71 | 97.29 142 | 99.70 144 | 99.58 73 |
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
Anonymous20231206 | | | 98.21 158 | 98.21 146 | 98.20 219 | 99.51 90 | 95.43 252 | 98.13 149 | 99.32 141 | 96.16 258 | 98.93 148 | 98.82 191 | 96.00 198 | 99.83 140 | 97.32 141 | 99.73 127 | 99.36 176 |
|
AllTest | | | 98.44 132 | 98.20 147 | 99.16 102 | 99.50 93 | 98.55 97 | 98.25 138 | 99.58 42 | 96.80 233 | 98.88 157 | 99.06 124 | 97.65 102 | 99.57 289 | 94.45 283 | 99.61 177 | 99.37 170 |
|
DELS-MVS | | | 98.27 151 | 98.20 147 | 98.48 195 | 98.86 233 | 96.70 220 | 95.60 315 | 99.20 184 | 97.73 160 | 98.45 213 | 98.71 207 | 97.50 120 | 99.82 150 | 98.21 93 | 99.59 183 | 98.93 260 |
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
WR-MVS | | | 98.40 136 | 98.19 149 | 99.03 127 | 99.00 206 | 97.65 177 | 96.85 260 | 98.94 235 | 98.57 107 | 98.89 153 | 98.50 243 | 95.60 214 | 99.85 110 | 97.54 131 | 99.85 66 | 99.59 67 |
|
IterMVS-SCA-FT | | | 97.85 189 | 98.18 150 | 96.87 301 | 99.27 146 | 91.16 347 | 95.53 317 | 99.25 173 | 99.10 68 | 99.41 64 | 99.35 73 | 93.10 270 | 99.96 11 | 98.65 70 | 99.94 27 | 99.49 112 |
|
xiu_mvs_v1_base_debu | | | 97.86 184 | 98.17 151 | 96.92 298 | 98.98 210 | 93.91 299 | 96.45 278 | 99.17 196 | 97.85 153 | 98.41 217 | 97.14 329 | 98.47 43 | 99.92 39 | 98.02 104 | 99.05 274 | 96.92 353 |
|
xiu_mvs_v1_base | | | 97.86 184 | 98.17 151 | 96.92 298 | 98.98 210 | 93.91 299 | 96.45 278 | 99.17 196 | 97.85 153 | 98.41 217 | 97.14 329 | 98.47 43 | 99.92 39 | 98.02 104 | 99.05 274 | 96.92 353 |
|
xiu_mvs_v1_base_debi | | | 97.86 184 | 98.17 151 | 96.92 298 | 98.98 210 | 93.91 299 | 96.45 278 | 99.17 196 | 97.85 153 | 98.41 217 | 97.14 329 | 98.47 43 | 99.92 39 | 98.02 104 | 99.05 274 | 96.92 353 |
|
mvs_anonymous | | | 97.83 192 | 98.16 154 | 96.87 301 | 98.18 315 | 91.89 334 | 97.31 232 | 98.90 243 | 97.37 196 | 98.83 166 | 99.46 55 | 96.28 188 | 99.79 183 | 98.90 52 | 98.16 323 | 98.95 255 |
|
PVSNet_Blended_VisFu | | | 98.17 163 | 98.15 155 | 98.22 218 | 99.73 36 | 95.15 261 | 97.36 229 | 99.68 29 | 94.45 302 | 98.99 133 | 99.27 87 | 96.87 156 | 99.94 26 | 97.13 153 | 99.91 48 | 99.57 78 |
|
DeepC-MVS_fast | | 96.85 6 | 98.30 147 | 98.15 155 | 98.75 162 | 98.61 277 | 97.23 196 | 97.76 191 | 99.09 213 | 97.31 202 | 98.75 178 | 98.66 218 | 97.56 112 | 99.64 267 | 96.10 236 | 99.55 198 | 99.39 161 |
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
MSLP-MVS++ | | | 98.02 171 | 98.14 157 | 97.64 260 | 98.58 282 | 95.19 260 | 97.48 221 | 99.23 180 | 97.47 182 | 97.90 250 | 98.62 227 | 97.04 146 | 98.81 364 | 97.55 129 | 99.41 226 | 98.94 259 |
|
MVS_111021_LR | | | 98.30 147 | 98.12 158 | 98.83 147 | 99.16 175 | 98.03 143 | 96.09 295 | 99.30 154 | 97.58 172 | 98.10 238 | 98.24 266 | 98.25 56 | 99.34 333 | 96.69 194 | 99.65 164 | 99.12 230 |
|
IterMVS | | | 97.73 195 | 98.11 159 | 96.57 309 | 99.24 151 | 90.28 349 | 95.52 319 | 99.21 182 | 98.86 91 | 99.33 81 | 99.33 79 | 93.11 269 | 99.94 26 | 98.49 80 | 99.94 27 | 99.48 122 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
Fast-Effi-MVS+-dtu | | | 98.27 151 | 98.09 160 | 98.81 150 | 98.43 298 | 98.11 132 | 97.61 207 | 99.50 74 | 98.64 98 | 97.39 288 | 97.52 313 | 98.12 72 | 99.95 17 | 96.90 174 | 98.71 301 | 98.38 312 |
|
MP-MVS |  | | 98.46 130 | 98.09 160 | 99.54 27 | 99.57 69 | 99.22 27 | 98.50 115 | 99.19 188 | 97.61 170 | 97.58 272 | 98.66 218 | 97.40 127 | 99.88 71 | 94.72 276 | 99.60 179 | 99.54 93 |
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
ACMP | | 95.32 15 | 98.41 134 | 98.09 160 | 99.36 64 | 99.51 90 | 98.79 80 | 97.68 198 | 99.38 115 | 95.76 271 | 98.81 171 | 98.82 191 | 98.36 50 | 99.82 150 | 94.75 273 | 99.77 109 | 99.48 122 |
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
PMMVS2 | | | 98.07 169 | 98.08 163 | 98.04 233 | 99.41 122 | 94.59 279 | 94.59 346 | 99.40 110 | 97.50 179 | 98.82 169 | 98.83 188 | 96.83 159 | 99.84 126 | 97.50 134 | 99.81 84 | 99.71 33 |
|
MVS_111021_HR | | | 98.25 155 | 98.08 163 | 98.75 162 | 99.09 189 | 97.46 186 | 95.97 298 | 99.27 167 | 97.60 171 | 97.99 246 | 98.25 265 | 98.15 71 | 99.38 330 | 96.87 177 | 99.57 192 | 99.42 146 |
|
TAMVS | | | 98.24 156 | 98.05 165 | 98.80 152 | 99.07 193 | 97.18 202 | 97.88 178 | 98.81 262 | 96.66 241 | 99.17 111 | 99.21 98 | 94.81 239 | 99.77 200 | 96.96 167 | 99.88 60 | 99.44 139 |
|
EPP-MVSNet | | | 98.30 147 | 98.04 166 | 99.07 117 | 99.56 76 | 97.83 162 | 99.29 32 | 98.07 305 | 99.03 77 | 98.59 197 | 99.13 117 | 92.16 284 | 99.90 52 | 96.87 177 | 99.68 152 | 99.49 112 |
|
SMA-MVS |  | | 98.40 136 | 98.03 167 | 99.51 43 | 99.16 175 | 99.21 28 | 98.05 160 | 99.22 181 | 94.16 308 | 98.98 134 | 99.10 121 | 97.52 118 | 99.79 183 | 96.45 215 | 99.64 166 | 99.53 100 |
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
DeepPCF-MVS | | 96.93 5 | 98.32 144 | 98.01 168 | 99.23 95 | 98.39 303 | 98.97 66 | 95.03 332 | 99.18 192 | 96.88 231 | 99.33 81 | 98.78 197 | 98.16 69 | 99.28 343 | 96.74 188 | 99.62 172 | 99.44 139 |
|
MSP-MVS | | | 98.40 136 | 98.00 169 | 99.61 9 | 99.57 69 | 99.25 24 | 98.57 103 | 99.35 128 | 97.55 176 | 99.31 89 | 97.71 301 | 94.61 245 | 99.88 71 | 96.14 233 | 99.19 260 | 99.70 38 |
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
TSAR-MVS + GP. | | | 98.18 161 | 97.98 170 | 98.77 159 | 98.71 257 | 97.88 157 | 96.32 286 | 98.66 277 | 96.33 251 | 99.23 103 | 98.51 239 | 97.48 124 | 99.40 326 | 97.16 148 | 99.46 219 | 99.02 242 |
|
TinyColmap | | | 97.89 180 | 97.98 170 | 97.60 262 | 98.86 233 | 94.35 283 | 96.21 291 | 99.44 98 | 97.45 189 | 99.06 120 | 98.88 178 | 97.99 82 | 99.28 343 | 94.38 289 | 99.58 188 | 99.18 221 |
|
VDDNet | | | 98.21 158 | 97.95 172 | 99.01 129 | 99.58 65 | 97.74 172 | 99.01 66 | 97.29 325 | 99.67 9 | 98.97 138 | 99.50 49 | 90.45 295 | 99.80 170 | 97.88 114 | 99.20 257 | 99.48 122 |
|
PHI-MVS | | | 98.29 150 | 97.95 172 | 99.34 72 | 98.44 297 | 99.16 43 | 98.12 151 | 99.38 115 | 96.01 264 | 98.06 241 | 98.43 249 | 97.80 93 | 99.67 248 | 95.69 254 | 99.58 188 | 99.20 214 |
|
test_fmvs1 | | | 97.72 196 | 97.94 174 | 97.07 292 | 98.66 274 | 92.39 328 | 97.68 198 | 99.81 14 | 95.20 285 | 99.54 41 | 99.44 60 | 91.56 290 | 99.41 325 | 99.78 7 | 99.77 109 | 99.40 158 |
|
PMVS |  | 91.26 20 | 97.86 184 | 97.94 174 | 97.65 258 | 99.71 44 | 97.94 154 | 98.52 109 | 98.68 276 | 98.99 80 | 97.52 278 | 99.35 73 | 97.41 126 | 98.18 370 | 91.59 339 | 99.67 158 | 96.82 356 |
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
MVP-Stereo | | | 98.08 168 | 97.92 176 | 98.57 181 | 98.96 213 | 96.79 216 | 97.90 177 | 99.18 192 | 96.41 249 | 98.46 212 | 98.95 161 | 95.93 205 | 99.60 279 | 96.51 211 | 98.98 286 | 99.31 193 |
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
MDA-MVSNet-bldmvs | | | 97.94 177 | 97.91 177 | 98.06 230 | 99.44 114 | 94.96 267 | 96.63 272 | 99.15 204 | 98.35 113 | 98.83 166 | 99.11 119 | 94.31 251 | 99.85 110 | 96.60 198 | 98.72 299 | 99.37 170 |
|
Effi-MVS+-dtu | | | 98.26 153 | 97.90 178 | 99.35 69 | 98.02 323 | 99.49 5 | 98.02 164 | 99.16 199 | 98.29 121 | 97.64 267 | 97.99 285 | 96.44 181 | 99.95 17 | 96.66 196 | 98.93 290 | 98.60 300 |
|
IS-MVSNet | | | 98.19 160 | 97.90 178 | 99.08 115 | 99.57 69 | 97.97 149 | 99.31 26 | 98.32 293 | 99.01 79 | 98.98 134 | 99.03 135 | 91.59 289 | 99.79 183 | 95.49 261 | 99.80 95 | 99.48 122 |
|
CNVR-MVS | | | 98.17 163 | 97.87 180 | 99.07 117 | 98.67 269 | 98.24 120 | 97.01 250 | 98.93 237 | 97.25 208 | 97.62 268 | 98.34 259 | 97.27 134 | 99.57 289 | 96.42 216 | 99.33 237 | 99.39 161 |
|
ETV-MVS | | | 98.03 170 | 97.86 181 | 98.56 185 | 98.69 266 | 98.07 139 | 97.51 219 | 99.50 74 | 98.10 137 | 97.50 280 | 95.51 355 | 98.41 47 | 99.88 71 | 96.27 225 | 99.24 252 | 97.71 342 |
|
D2MVS | | | 97.84 190 | 97.84 182 | 97.83 243 | 99.14 180 | 94.74 272 | 96.94 254 | 98.88 246 | 95.84 269 | 98.89 153 | 98.96 157 | 94.40 249 | 99.69 236 | 97.55 129 | 99.95 19 | 99.05 235 |
|
Effi-MVS+ | | | 98.02 171 | 97.82 183 | 98.62 174 | 98.53 289 | 97.19 201 | 97.33 231 | 99.68 29 | 97.30 203 | 96.68 316 | 97.46 317 | 98.56 40 | 99.80 170 | 96.63 197 | 98.20 319 | 98.86 270 |
|
9.14 | | | | 97.78 184 | | 99.07 193 | | 97.53 216 | 99.32 141 | 95.53 275 | 98.54 206 | 98.70 210 | 97.58 110 | 99.76 205 | 94.32 290 | 99.46 219 | |
|
CANet | | | 97.87 183 | 97.76 185 | 98.19 220 | 97.75 335 | 95.51 248 | 96.76 265 | 99.05 219 | 97.74 159 | 96.93 302 | 98.21 269 | 95.59 215 | 99.89 62 | 97.86 116 | 99.93 31 | 99.19 219 |
|
MS-PatchMatch | | | 97.68 199 | 97.75 186 | 97.45 276 | 98.23 313 | 93.78 305 | 97.29 234 | 98.84 257 | 96.10 260 | 98.64 188 | 98.65 220 | 96.04 195 | 99.36 331 | 96.84 180 | 99.14 266 | 99.20 214 |
|
EIA-MVS | | | 98.00 173 | 97.74 187 | 98.80 152 | 98.72 254 | 98.09 133 | 98.05 160 | 99.60 39 | 97.39 194 | 96.63 318 | 95.55 354 | 97.68 99 | 99.80 170 | 96.73 190 | 99.27 247 | 98.52 303 |
|
ppachtmachnet_test | | | 97.50 210 | 97.74 187 | 96.78 307 | 98.70 261 | 91.23 346 | 94.55 347 | 99.05 219 | 96.36 250 | 99.21 104 | 98.79 196 | 96.39 182 | 99.78 194 | 96.74 188 | 99.82 80 | 99.34 182 |
|
our_test_3 | | | 97.39 220 | 97.73 189 | 96.34 313 | 98.70 261 | 89.78 351 | 94.61 345 | 98.97 234 | 96.50 245 | 99.04 127 | 98.85 184 | 95.98 202 | 99.84 126 | 97.26 144 | 99.67 158 | 99.41 149 |
|
test_vis1_rt | | | 97.75 194 | 97.72 190 | 97.83 243 | 98.81 243 | 96.35 226 | 97.30 233 | 99.69 24 | 94.61 296 | 97.87 252 | 98.05 282 | 96.26 189 | 98.32 369 | 98.74 62 | 98.18 320 | 98.82 273 |
|
LF4IMVS | | | 97.90 178 | 97.69 191 | 98.52 190 | 99.17 173 | 97.66 176 | 97.19 244 | 99.47 89 | 96.31 253 | 97.85 255 | 98.20 270 | 96.71 170 | 99.52 304 | 94.62 277 | 99.72 134 | 98.38 312 |
|
YYNet1 | | | 97.60 205 | 97.67 192 | 97.39 280 | 99.04 201 | 93.04 318 | 95.27 325 | 98.38 292 | 97.25 208 | 98.92 149 | 98.95 161 | 95.48 220 | 99.73 221 | 96.99 163 | 98.74 297 | 99.41 149 |
|
HQP_MVS | | | 97.99 176 | 97.67 192 | 98.93 137 | 99.19 165 | 97.65 177 | 97.77 189 | 99.27 167 | 98.20 129 | 97.79 259 | 97.98 286 | 94.90 233 | 99.70 232 | 94.42 285 | 99.51 209 | 99.45 135 |
|
APD-MVS |  | | 98.10 165 | 97.67 192 | 99.42 58 | 99.11 184 | 98.93 71 | 97.76 191 | 99.28 164 | 94.97 289 | 98.72 181 | 98.77 199 | 97.04 146 | 99.85 110 | 93.79 305 | 99.54 200 | 99.49 112 |
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
MDA-MVSNet_test_wron | | | 97.60 205 | 97.66 195 | 97.41 279 | 99.04 201 | 93.09 314 | 95.27 325 | 98.42 289 | 97.26 207 | 98.88 157 | 98.95 161 | 95.43 221 | 99.73 221 | 97.02 160 | 98.72 299 | 99.41 149 |
|
K. test v3 | | | 98.00 173 | 97.66 195 | 99.03 127 | 99.79 24 | 97.56 181 | 99.19 48 | 92.47 365 | 99.62 16 | 99.52 47 | 99.66 22 | 89.61 300 | 99.96 11 | 99.25 32 | 99.81 84 | 99.56 82 |
|
HPM-MVS++ |  | | 98.10 165 | 97.64 197 | 99.48 51 | 99.09 189 | 99.13 55 | 97.52 217 | 98.75 271 | 97.46 187 | 96.90 308 | 97.83 296 | 96.01 197 | 99.84 126 | 95.82 249 | 99.35 234 | 99.46 131 |
|
MCST-MVS | | | 98.00 173 | 97.63 198 | 99.10 111 | 99.24 151 | 98.17 128 | 96.89 259 | 98.73 274 | 95.66 272 | 97.92 248 | 97.70 303 | 97.17 140 | 99.66 259 | 96.18 231 | 99.23 253 | 99.47 129 |
|
wuyk23d | | | 96.06 282 | 97.62 199 | 91.38 356 | 98.65 276 | 98.57 96 | 98.85 81 | 96.95 334 | 96.86 232 | 99.90 6 | 99.16 110 | 99.18 11 | 98.40 368 | 89.23 356 | 99.77 109 | 77.18 374 |
|
DSMNet-mixed | | | 97.42 218 | 97.60 200 | 96.87 301 | 99.15 179 | 91.46 338 | 98.54 107 | 99.12 207 | 92.87 328 | 97.58 272 | 99.63 27 | 96.21 190 | 99.90 52 | 95.74 251 | 99.54 200 | 99.27 200 |
|
UnsupCasMVSNet_eth | | | 97.89 180 | 97.60 200 | 98.75 162 | 99.31 139 | 97.17 203 | 97.62 205 | 99.35 128 | 98.72 97 | 98.76 177 | 98.68 213 | 92.57 281 | 99.74 217 | 97.76 124 | 95.60 363 | 99.34 182 |
|
mvsany_test1 | | | 97.60 205 | 97.54 202 | 97.77 248 | 97.72 336 | 95.35 254 | 95.36 324 | 97.13 328 | 94.13 309 | 99.71 21 | 99.33 79 | 97.93 85 | 99.30 339 | 97.60 128 | 98.94 289 | 98.67 298 |
|
PVSNet_BlendedMVS | | | 97.55 209 | 97.53 203 | 97.60 262 | 98.92 221 | 93.77 306 | 96.64 271 | 99.43 104 | 94.49 298 | 97.62 268 | 99.18 104 | 96.82 160 | 99.67 248 | 94.73 274 | 99.93 31 | 99.36 176 |
|
MSDG | | | 97.71 197 | 97.52 204 | 98.28 214 | 98.91 224 | 96.82 215 | 94.42 349 | 99.37 119 | 97.65 166 | 98.37 222 | 98.29 264 | 97.40 127 | 99.33 335 | 94.09 296 | 99.22 254 | 98.68 297 |
|
Anonymous202405211 | | | 97.90 178 | 97.50 205 | 99.08 115 | 98.90 225 | 98.25 119 | 98.53 108 | 96.16 344 | 98.87 90 | 99.11 113 | 98.86 181 | 90.40 296 | 99.78 194 | 97.36 139 | 99.31 240 | 99.19 219 |
|
xiu_mvs_v2_base | | | 97.16 239 | 97.49 206 | 96.17 318 | 98.54 287 | 92.46 326 | 95.45 321 | 98.84 257 | 97.25 208 | 97.48 282 | 96.49 338 | 98.31 55 | 99.90 52 | 96.34 221 | 98.68 304 | 96.15 364 |
|
pmmvs5 | | | 97.64 202 | 97.49 206 | 98.08 228 | 99.14 180 | 95.12 263 | 96.70 269 | 99.05 219 | 93.77 315 | 98.62 191 | 98.83 188 | 93.23 266 | 99.75 212 | 98.33 89 | 99.76 120 | 99.36 176 |
|
OMC-MVS | | | 97.88 182 | 97.49 206 | 99.04 126 | 98.89 230 | 98.63 89 | 96.94 254 | 99.25 173 | 95.02 287 | 98.53 207 | 98.51 239 | 97.27 134 | 99.47 316 | 93.50 312 | 99.51 209 | 99.01 243 |
|
NCCC | | | 97.86 184 | 97.47 209 | 99.05 124 | 98.61 277 | 98.07 139 | 96.98 252 | 98.90 243 | 97.63 167 | 97.04 299 | 97.93 291 | 95.99 201 | 99.66 259 | 95.31 264 | 98.82 295 | 99.43 143 |
|
USDC | | | 97.41 219 | 97.40 210 | 97.44 277 | 98.94 215 | 93.67 308 | 95.17 328 | 99.53 68 | 94.03 312 | 98.97 138 | 99.10 121 | 95.29 223 | 99.34 333 | 95.84 248 | 99.73 127 | 99.30 196 |
|
PS-MVSNAJ | | | 97.08 244 | 97.39 211 | 96.16 320 | 98.56 285 | 92.46 326 | 95.24 327 | 98.85 256 | 97.25 208 | 97.49 281 | 95.99 347 | 98.07 73 | 99.90 52 | 96.37 218 | 98.67 305 | 96.12 365 |
|
Fast-Effi-MVS+ | | | 97.67 200 | 97.38 212 | 98.57 181 | 98.71 257 | 97.43 188 | 97.23 238 | 99.45 94 | 94.82 293 | 96.13 330 | 96.51 337 | 98.52 42 | 99.91 47 | 96.19 229 | 98.83 294 | 98.37 314 |
|
c3_l | | | 97.36 221 | 97.37 213 | 97.31 281 | 98.09 320 | 93.25 313 | 95.01 333 | 99.16 199 | 97.05 223 | 98.77 175 | 98.72 206 | 92.88 275 | 99.64 267 | 96.93 168 | 99.76 120 | 99.05 235 |
|
CPTT-MVS | | | 97.84 190 | 97.36 214 | 99.27 86 | 99.31 139 | 98.46 105 | 98.29 134 | 99.27 167 | 94.90 291 | 97.83 256 | 98.37 255 | 94.90 233 | 99.84 126 | 93.85 304 | 99.54 200 | 99.51 105 |
|
MVS_0304 | | | 97.64 202 | 97.35 215 | 98.52 190 | 97.87 331 | 96.69 221 | 98.59 100 | 98.05 307 | 97.44 190 | 93.74 365 | 98.85 184 | 93.69 265 | 99.88 71 | 98.11 97 | 99.81 84 | 98.98 248 |
|
jason | | | 97.45 216 | 97.35 215 | 97.76 251 | 99.24 151 | 93.93 298 | 95.86 306 | 98.42 289 | 94.24 306 | 98.50 209 | 98.13 273 | 94.82 237 | 99.91 47 | 97.22 145 | 99.73 127 | 99.43 143 |
jason: jason. |
CDS-MVSNet | | | 97.69 198 | 97.35 215 | 98.69 167 | 98.73 252 | 97.02 209 | 96.92 258 | 98.75 271 | 95.89 268 | 98.59 197 | 98.67 215 | 92.08 286 | 99.74 217 | 96.72 191 | 99.81 84 | 99.32 189 |
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
h-mvs33 | | | 97.77 193 | 97.33 218 | 99.10 111 | 99.21 158 | 97.84 161 | 98.35 131 | 98.57 282 | 99.11 61 | 98.58 199 | 99.02 136 | 88.65 309 | 99.96 11 | 98.11 97 | 96.34 356 | 99.49 112 |
|
pmmvs4 | | | 97.58 208 | 97.28 219 | 98.51 192 | 98.84 236 | 96.93 213 | 95.40 323 | 98.52 285 | 93.60 317 | 98.61 193 | 98.65 220 | 95.10 229 | 99.60 279 | 96.97 166 | 99.79 100 | 98.99 247 |
|
eth_miper_zixun_eth | | | 97.23 233 | 97.25 220 | 97.17 287 | 98.00 324 | 92.77 322 | 94.71 339 | 99.18 192 | 97.27 206 | 98.56 202 | 98.74 203 | 91.89 287 | 99.69 236 | 97.06 159 | 99.81 84 | 99.05 235 |
|
FMVSNet3 | | | 97.50 210 | 97.24 221 | 98.29 213 | 98.08 321 | 95.83 240 | 97.86 182 | 98.91 242 | 97.89 150 | 98.95 141 | 98.95 161 | 87.06 315 | 99.81 163 | 97.77 120 | 99.69 147 | 99.23 209 |
|
CL-MVSNet_self_test | | | 97.44 217 | 97.22 222 | 98.08 228 | 98.57 284 | 95.78 242 | 94.30 352 | 98.79 265 | 96.58 244 | 98.60 195 | 98.19 271 | 94.74 244 | 99.64 267 | 96.41 217 | 98.84 293 | 98.82 273 |
|
CVMVSNet | | | 96.25 279 | 97.21 223 | 93.38 353 | 99.10 186 | 80.56 379 | 97.20 242 | 98.19 300 | 96.94 228 | 99.00 132 | 99.02 136 | 89.50 302 | 99.80 170 | 96.36 220 | 99.59 183 | 99.78 20 |
|
N_pmnet | | | 97.63 204 | 97.17 224 | 98.99 131 | 99.27 146 | 97.86 159 | 95.98 297 | 93.41 362 | 95.25 283 | 99.47 54 | 98.90 171 | 95.63 213 | 99.85 110 | 96.91 169 | 99.73 127 | 99.27 200 |
|
miper_lstm_enhance | | | 97.18 237 | 97.16 225 | 97.25 285 | 98.16 316 | 92.85 320 | 95.15 330 | 99.31 146 | 97.25 208 | 98.74 180 | 98.78 197 | 90.07 297 | 99.78 194 | 97.19 146 | 99.80 95 | 99.11 231 |
|
Vis-MVSNet (Re-imp) | | | 97.46 214 | 97.16 225 | 98.34 208 | 99.55 80 | 96.10 231 | 98.94 73 | 98.44 288 | 98.32 117 | 98.16 231 | 98.62 227 | 88.76 305 | 99.73 221 | 93.88 302 | 99.79 100 | 99.18 221 |
|
CLD-MVS | | | 97.49 212 | 97.16 225 | 98.48 195 | 99.07 193 | 97.03 208 | 94.71 339 | 99.21 182 | 94.46 300 | 98.06 241 | 97.16 327 | 97.57 111 | 99.48 313 | 94.46 282 | 99.78 105 | 98.95 255 |
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
CHOSEN 1792x2688 | | | 97.49 212 | 97.14 228 | 98.54 189 | 99.68 53 | 96.09 233 | 96.50 276 | 99.62 35 | 91.58 340 | 98.84 165 | 98.97 154 | 92.36 282 | 99.88 71 | 96.76 186 | 99.95 19 | 99.67 44 |
|
hse-mvs2 | | | 97.46 214 | 97.07 229 | 98.64 170 | 98.73 252 | 97.33 191 | 97.45 224 | 97.64 318 | 99.11 61 | 98.58 199 | 97.98 286 | 88.65 309 | 99.79 183 | 98.11 97 | 97.39 340 | 98.81 277 |
|
CANet_DTU | | | 97.26 229 | 97.06 230 | 97.84 242 | 97.57 343 | 94.65 277 | 96.19 293 | 98.79 265 | 97.23 214 | 95.14 351 | 98.24 266 | 93.22 267 | 99.84 126 | 97.34 140 | 99.84 70 | 99.04 239 |
|
miper_ehance_all_eth | | | 97.06 245 | 97.03 231 | 97.16 289 | 97.83 332 | 93.06 315 | 94.66 342 | 99.09 213 | 95.99 265 | 98.69 182 | 98.45 248 | 92.73 279 | 99.61 278 | 96.79 182 | 99.03 278 | 98.82 273 |
|
Patchmatch-RL test | | | 97.26 229 | 97.02 232 | 97.99 236 | 99.52 88 | 95.53 247 | 96.13 294 | 99.71 21 | 97.47 182 | 99.27 92 | 99.16 110 | 84.30 339 | 99.62 272 | 97.89 111 | 99.77 109 | 98.81 277 |
|
Patchmtry | | | 97.35 222 | 96.97 233 | 98.50 194 | 97.31 354 | 96.47 223 | 98.18 144 | 98.92 240 | 98.95 85 | 98.78 172 | 99.37 69 | 85.44 330 | 99.85 110 | 95.96 240 | 99.83 77 | 99.17 225 |
|
RPMNet | | | 97.02 248 | 96.93 234 | 97.30 282 | 97.71 338 | 94.22 284 | 98.11 152 | 99.30 154 | 99.37 38 | 96.91 305 | 99.34 77 | 86.72 317 | 99.87 89 | 97.53 132 | 97.36 343 | 97.81 335 |
|
sss | | | 97.21 234 | 96.93 234 | 98.06 230 | 98.83 238 | 95.22 259 | 96.75 266 | 98.48 287 | 94.49 298 | 97.27 291 | 97.90 292 | 92.77 278 | 99.80 170 | 96.57 201 | 99.32 238 | 99.16 228 |
|
UnsupCasMVSNet_bld | | | 97.30 226 | 96.92 236 | 98.45 198 | 99.28 144 | 96.78 219 | 96.20 292 | 99.27 167 | 95.42 278 | 98.28 225 | 98.30 263 | 93.16 268 | 99.71 229 | 94.99 268 | 97.37 341 | 98.87 269 |
|
DP-MVS Recon | | | 97.33 224 | 96.92 236 | 98.57 181 | 99.09 189 | 97.99 145 | 96.79 262 | 99.35 128 | 93.18 322 | 97.71 263 | 98.07 281 | 95.00 232 | 99.31 337 | 93.97 298 | 99.13 268 | 98.42 311 |
|
API-MVS | | | 97.04 247 | 96.91 238 | 97.42 278 | 97.88 330 | 98.23 124 | 98.18 144 | 98.50 286 | 97.57 173 | 97.39 288 | 96.75 334 | 96.77 164 | 99.15 352 | 90.16 353 | 99.02 281 | 94.88 370 |
|
alignmvs | | | 97.35 222 | 96.88 239 | 98.78 157 | 98.54 287 | 98.09 133 | 97.71 195 | 97.69 315 | 99.20 54 | 97.59 271 | 95.90 349 | 88.12 314 | 99.55 295 | 98.18 95 | 98.96 287 | 98.70 293 |
|
lupinMVS | | | 97.06 245 | 96.86 240 | 97.65 258 | 98.88 231 | 93.89 302 | 95.48 320 | 97.97 308 | 93.53 318 | 98.16 231 | 97.58 309 | 93.81 261 | 99.91 47 | 96.77 185 | 99.57 192 | 99.17 225 |
|
1112_ss | | | 97.29 228 | 96.86 240 | 98.58 179 | 99.34 138 | 96.32 227 | 96.75 266 | 99.58 42 | 93.14 323 | 96.89 309 | 97.48 315 | 92.11 285 | 99.86 98 | 96.91 169 | 99.54 200 | 99.57 78 |
|
DIV-MVS_self_test | | | 97.02 248 | 96.84 242 | 97.58 264 | 97.82 333 | 94.03 293 | 94.66 342 | 99.16 199 | 97.04 224 | 98.63 189 | 98.71 207 | 88.69 306 | 99.69 236 | 97.00 161 | 99.81 84 | 99.01 243 |
|
cl____ | | | 97.02 248 | 96.83 243 | 97.58 264 | 97.82 333 | 94.04 292 | 94.66 342 | 99.16 199 | 97.04 224 | 98.63 189 | 98.71 207 | 88.68 308 | 99.69 236 | 97.00 161 | 99.81 84 | 99.00 246 |
|
FA-MVS(test-final) | | | 96.99 252 | 96.82 244 | 97.50 273 | 98.70 261 | 94.78 270 | 99.34 19 | 96.99 331 | 95.07 286 | 98.48 211 | 99.33 79 | 88.41 312 | 99.65 264 | 96.13 235 | 98.92 291 | 98.07 324 |
|
test1111 | | | 96.49 272 | 96.82 244 | 95.52 331 | 99.42 120 | 87.08 362 | 99.22 41 | 87.14 375 | 99.11 61 | 99.46 55 | 99.58 34 | 88.69 306 | 99.86 98 | 98.80 57 | 99.95 19 | 99.62 54 |
|
QAPM | | | 97.31 225 | 96.81 246 | 98.82 148 | 98.80 246 | 97.49 184 | 99.06 62 | 99.19 188 | 90.22 352 | 97.69 265 | 99.16 110 | 96.91 154 | 99.90 52 | 90.89 350 | 99.41 226 | 99.07 233 |
|
PatchMatch-RL | | | 97.24 232 | 96.78 247 | 98.61 176 | 99.03 204 | 97.83 162 | 96.36 284 | 99.06 216 | 93.49 320 | 97.36 290 | 97.78 297 | 95.75 210 | 99.49 310 | 93.44 313 | 98.77 296 | 98.52 303 |
|
new_pmnet | | | 96.99 252 | 96.76 248 | 97.67 256 | 98.72 254 | 94.89 268 | 95.95 302 | 98.20 298 | 92.62 331 | 98.55 204 | 98.54 235 | 94.88 236 | 99.52 304 | 93.96 299 | 99.44 224 | 98.59 302 |
|
BH-untuned | | | 96.83 257 | 96.75 249 | 97.08 290 | 98.74 251 | 93.33 312 | 96.71 268 | 98.26 295 | 96.72 238 | 98.44 214 | 97.37 322 | 95.20 226 | 99.47 316 | 91.89 334 | 97.43 339 | 98.44 309 |
|
LFMVS | | | 97.20 235 | 96.72 250 | 98.64 170 | 98.72 254 | 96.95 211 | 98.93 74 | 94.14 360 | 99.74 6 | 98.78 172 | 99.01 145 | 84.45 336 | 99.73 221 | 97.44 135 | 99.27 247 | 99.25 204 |
|
CNLPA | | | 97.17 238 | 96.71 251 | 98.55 186 | 98.56 285 | 98.05 142 | 96.33 285 | 98.93 237 | 96.91 230 | 97.06 298 | 97.39 320 | 94.38 250 | 99.45 319 | 91.66 336 | 99.18 262 | 98.14 321 |
|
AdaColmap |  | | 97.14 240 | 96.71 251 | 98.46 197 | 98.34 305 | 97.80 168 | 96.95 253 | 98.93 237 | 95.58 273 | 96.92 303 | 97.66 304 | 95.87 207 | 99.53 300 | 90.97 347 | 99.14 266 | 98.04 325 |
|
PVSNet_Blended | | | 96.88 255 | 96.68 253 | 97.47 275 | 98.92 221 | 93.77 306 | 94.71 339 | 99.43 104 | 90.98 348 | 97.62 268 | 97.36 323 | 96.82 160 | 99.67 248 | 94.73 274 | 99.56 195 | 98.98 248 |
|
F-COLMAP | | | 97.30 226 | 96.68 253 | 99.14 105 | 99.19 165 | 98.39 108 | 97.27 237 | 99.30 154 | 92.93 326 | 96.62 319 | 98.00 284 | 95.73 211 | 99.68 245 | 92.62 328 | 98.46 312 | 99.35 180 |
|
OpenMVS |  | 96.65 7 | 97.09 243 | 96.68 253 | 98.32 209 | 98.32 306 | 97.16 204 | 98.86 80 | 99.37 119 | 89.48 356 | 96.29 329 | 99.15 114 | 96.56 175 | 99.90 52 | 92.90 319 | 99.20 257 | 97.89 330 |
|
SCA | | | 96.41 275 | 96.66 256 | 95.67 327 | 98.24 311 | 88.35 356 | 95.85 308 | 96.88 337 | 96.11 259 | 97.67 266 | 98.67 215 | 93.10 270 | 99.85 110 | 94.16 291 | 99.22 254 | 98.81 277 |
|
CDPH-MVS | | | 97.26 229 | 96.66 256 | 99.07 117 | 99.00 206 | 98.15 129 | 96.03 296 | 99.01 230 | 91.21 346 | 97.79 259 | 97.85 295 | 96.89 155 | 99.69 236 | 92.75 325 | 99.38 231 | 99.39 161 |
|
iter_conf_final | | | 97.10 241 | 96.65 258 | 98.45 198 | 98.53 289 | 96.08 234 | 98.30 133 | 99.11 209 | 98.10 137 | 98.85 162 | 98.95 161 | 79.38 360 | 99.87 89 | 98.68 68 | 99.91 48 | 99.40 158 |
|
ECVR-MVS |  | | 96.42 274 | 96.61 259 | 95.85 323 | 99.38 125 | 88.18 358 | 99.22 41 | 86.00 377 | 99.08 73 | 99.36 76 | 99.57 35 | 88.47 311 | 99.82 150 | 98.52 78 | 99.95 19 | 99.54 93 |
|
MG-MVS | | | 96.77 260 | 96.61 259 | 97.26 284 | 98.31 307 | 93.06 315 | 95.93 303 | 98.12 304 | 96.45 248 | 97.92 248 | 98.73 204 | 93.77 263 | 99.39 328 | 91.19 346 | 99.04 277 | 99.33 187 |
|
HyFIR lowres test | | | 97.19 236 | 96.60 261 | 98.96 134 | 99.62 64 | 97.28 194 | 95.17 328 | 99.50 74 | 94.21 307 | 99.01 131 | 98.32 262 | 86.61 318 | 99.99 2 | 97.10 155 | 99.84 70 | 99.60 61 |
|
BH-RMVSNet | | | 96.83 257 | 96.58 262 | 97.58 264 | 98.47 294 | 94.05 290 | 96.67 270 | 97.36 321 | 96.70 240 | 97.87 252 | 97.98 286 | 95.14 228 | 99.44 321 | 90.47 352 | 98.58 310 | 99.25 204 |
|
MVSTER | | | 96.86 256 | 96.55 263 | 97.79 246 | 97.91 328 | 94.21 286 | 97.56 213 | 98.87 248 | 97.49 181 | 99.06 120 | 99.05 131 | 80.72 352 | 99.80 170 | 98.44 82 | 99.82 80 | 99.37 170 |
|
Test_1112_low_res | | | 96.99 252 | 96.55 263 | 98.31 211 | 99.35 136 | 95.47 250 | 95.84 309 | 99.53 68 | 91.51 342 | 96.80 314 | 98.48 246 | 91.36 291 | 99.83 140 | 96.58 199 | 99.53 204 | 99.62 54 |
|
HQP-MVS | | | 97.00 251 | 96.49 265 | 98.55 186 | 98.67 269 | 96.79 216 | 96.29 287 | 99.04 222 | 96.05 261 | 95.55 342 | 96.84 332 | 93.84 259 | 99.54 298 | 92.82 322 | 99.26 250 | 99.32 189 |
|
train_agg | | | 97.10 241 | 96.45 266 | 99.07 117 | 98.71 257 | 98.08 137 | 95.96 300 | 99.03 224 | 91.64 338 | 95.85 336 | 97.53 311 | 96.47 179 | 99.76 205 | 93.67 306 | 99.16 263 | 99.36 176 |
|
PatchT | | | 96.65 264 | 96.35 267 | 97.54 269 | 97.40 351 | 95.32 255 | 97.98 170 | 96.64 340 | 99.33 43 | 96.89 309 | 99.42 63 | 84.32 338 | 99.81 163 | 97.69 127 | 97.49 336 | 97.48 348 |
|
Patchmatch-test | | | 96.55 267 | 96.34 268 | 97.17 287 | 98.35 304 | 93.06 315 | 98.40 127 | 97.79 311 | 97.33 199 | 98.41 217 | 98.67 215 | 83.68 343 | 99.69 236 | 95.16 266 | 99.31 240 | 98.77 285 |
|
PAPM_NR | | | 96.82 259 | 96.32 269 | 98.30 212 | 99.07 193 | 96.69 221 | 97.48 221 | 98.76 268 | 95.81 270 | 96.61 320 | 96.47 340 | 94.12 257 | 99.17 350 | 90.82 351 | 97.78 333 | 99.06 234 |
|
test_yl | | | 96.69 261 | 96.29 270 | 97.90 238 | 98.28 308 | 95.24 257 | 97.29 234 | 97.36 321 | 98.21 126 | 98.17 229 | 97.86 293 | 86.27 320 | 99.55 295 | 94.87 271 | 98.32 314 | 98.89 265 |
|
DCV-MVSNet | | | 96.69 261 | 96.29 270 | 97.90 238 | 98.28 308 | 95.24 257 | 97.29 234 | 97.36 321 | 98.21 126 | 98.17 229 | 97.86 293 | 86.27 320 | 99.55 295 | 94.87 271 | 98.32 314 | 98.89 265 |
|
WTY-MVS | | | 96.67 263 | 96.27 272 | 97.87 241 | 98.81 243 | 94.61 278 | 96.77 264 | 97.92 310 | 94.94 290 | 97.12 294 | 97.74 300 | 91.11 292 | 99.82 150 | 93.89 301 | 98.15 324 | 99.18 221 |
|
MIMVSNet | | | 96.62 266 | 96.25 273 | 97.71 255 | 99.04 201 | 94.66 276 | 99.16 50 | 96.92 336 | 97.23 214 | 97.87 252 | 99.10 121 | 86.11 324 | 99.65 264 | 91.65 337 | 99.21 256 | 98.82 273 |
|
iter_conf05 | | | 96.54 268 | 96.07 274 | 97.92 237 | 97.90 329 | 94.50 280 | 97.87 181 | 99.14 205 | 97.73 160 | 98.89 153 | 98.95 161 | 75.75 370 | 99.87 89 | 98.50 79 | 99.92 42 | 99.40 158 |
|
PMMVS | | | 96.51 269 | 95.98 275 | 98.09 225 | 97.53 346 | 95.84 239 | 94.92 335 | 98.84 257 | 91.58 340 | 96.05 334 | 95.58 353 | 95.68 212 | 99.66 259 | 95.59 258 | 98.09 327 | 98.76 287 |
|
CR-MVSNet | | | 96.28 278 | 95.95 276 | 97.28 283 | 97.71 338 | 94.22 284 | 98.11 152 | 98.92 240 | 92.31 334 | 96.91 305 | 99.37 69 | 85.44 330 | 99.81 163 | 97.39 138 | 97.36 343 | 97.81 335 |
|
TAPA-MVS | | 96.21 11 | 96.63 265 | 95.95 276 | 98.65 169 | 98.93 217 | 98.09 133 | 96.93 256 | 99.28 164 | 83.58 369 | 98.13 235 | 97.78 297 | 96.13 192 | 99.40 326 | 93.52 310 | 99.29 245 | 98.45 307 |
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
114514_t | | | 96.50 271 | 95.77 278 | 98.69 167 | 99.48 107 | 97.43 188 | 97.84 184 | 99.55 60 | 81.42 371 | 96.51 323 | 98.58 232 | 95.53 216 | 99.67 248 | 93.41 314 | 99.58 188 | 98.98 248 |
|
miper_enhance_ethall | | | 96.01 283 | 95.74 279 | 96.81 305 | 96.41 368 | 92.27 331 | 93.69 361 | 98.89 245 | 91.14 347 | 98.30 223 | 97.35 324 | 90.58 294 | 99.58 287 | 96.31 222 | 99.03 278 | 98.60 300 |
|
PLC |  | 94.65 16 | 96.51 269 | 95.73 280 | 98.85 145 | 98.75 250 | 97.91 155 | 96.42 281 | 99.06 216 | 90.94 349 | 95.59 339 | 97.38 321 | 94.41 248 | 99.59 283 | 90.93 348 | 98.04 331 | 99.05 235 |
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
PVSNet | | 93.40 17 | 95.67 291 | 95.70 281 | 95.57 330 | 98.83 238 | 88.57 354 | 92.50 366 | 97.72 313 | 92.69 330 | 96.49 326 | 96.44 341 | 93.72 264 | 99.43 322 | 93.61 307 | 99.28 246 | 98.71 291 |
|
MAR-MVS | | | 96.47 273 | 95.70 281 | 98.79 154 | 97.92 327 | 99.12 57 | 98.28 135 | 98.60 281 | 92.16 336 | 95.54 345 | 96.17 345 | 94.77 243 | 99.52 304 | 89.62 355 | 98.23 317 | 97.72 341 |
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
PatchmatchNet |  | | 95.58 294 | 95.67 283 | 95.30 336 | 97.34 353 | 87.32 361 | 97.65 203 | 96.65 339 | 95.30 282 | 97.07 297 | 98.69 211 | 84.77 333 | 99.75 212 | 94.97 269 | 98.64 306 | 98.83 272 |
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
MVS-HIRNet | | | 94.32 312 | 95.62 284 | 90.42 357 | 98.46 295 | 75.36 380 | 96.29 287 | 89.13 374 | 95.25 283 | 95.38 348 | 99.75 11 | 92.88 275 | 99.19 349 | 94.07 297 | 99.39 228 | 96.72 358 |
|
1314 | | | 95.74 290 | 95.60 285 | 96.17 318 | 97.53 346 | 92.75 323 | 98.07 157 | 98.31 294 | 91.22 345 | 94.25 357 | 96.68 335 | 95.53 216 | 99.03 354 | 91.64 338 | 97.18 346 | 96.74 357 |
|
DPM-MVS | | | 96.32 276 | 95.59 286 | 98.51 192 | 98.76 248 | 97.21 199 | 94.54 348 | 98.26 295 | 91.94 337 | 96.37 327 | 97.25 325 | 93.06 272 | 99.43 322 | 91.42 342 | 98.74 297 | 98.89 265 |
|
CHOSEN 280x420 | | | 95.51 297 | 95.47 287 | 95.65 329 | 98.25 310 | 88.27 357 | 93.25 363 | 98.88 246 | 93.53 318 | 94.65 354 | 97.15 328 | 86.17 322 | 99.93 31 | 97.41 137 | 99.93 31 | 98.73 290 |
|
tpmrst | | | 95.07 303 | 95.46 288 | 93.91 346 | 97.11 357 | 84.36 372 | 97.62 205 | 96.96 333 | 94.98 288 | 96.35 328 | 98.80 194 | 85.46 329 | 99.59 283 | 95.60 257 | 96.23 358 | 97.79 338 |
|
AUN-MVS | | | 96.24 280 | 95.45 289 | 98.60 177 | 98.70 261 | 97.22 198 | 97.38 227 | 97.65 316 | 95.95 266 | 95.53 346 | 97.96 290 | 82.11 351 | 99.79 183 | 96.31 222 | 97.44 338 | 98.80 282 |
|
baseline1 | | | 95.96 285 | 95.44 290 | 97.52 271 | 98.51 292 | 93.99 296 | 98.39 128 | 96.09 346 | 98.21 126 | 98.40 221 | 97.76 299 | 86.88 316 | 99.63 270 | 95.42 262 | 89.27 374 | 98.95 255 |
|
EPNet | | | 96.14 281 | 95.44 290 | 98.25 215 | 90.76 380 | 95.50 249 | 97.92 174 | 94.65 353 | 98.97 82 | 92.98 366 | 98.85 184 | 89.12 304 | 99.87 89 | 95.99 238 | 99.68 152 | 99.39 161 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
CMPMVS |  | 75.91 23 | 96.29 277 | 95.44 290 | 98.84 146 | 96.25 370 | 98.69 88 | 97.02 249 | 99.12 207 | 88.90 359 | 97.83 256 | 98.86 181 | 89.51 301 | 98.90 362 | 91.92 333 | 99.51 209 | 98.92 261 |
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
cl22 | | | 95.79 289 | 95.39 293 | 96.98 295 | 96.77 363 | 92.79 321 | 94.40 350 | 98.53 284 | 94.59 297 | 97.89 251 | 98.17 272 | 82.82 348 | 99.24 345 | 96.37 218 | 99.03 278 | 98.92 261 |
|
HY-MVS | | 95.94 13 | 95.90 286 | 95.35 294 | 97.55 268 | 97.95 325 | 94.79 269 | 98.81 83 | 96.94 335 | 92.28 335 | 95.17 350 | 98.57 233 | 89.90 299 | 99.75 212 | 91.20 345 | 97.33 345 | 98.10 322 |
|
GA-MVS | | | 95.86 287 | 95.32 295 | 97.49 274 | 98.60 279 | 94.15 289 | 93.83 359 | 97.93 309 | 95.49 276 | 96.68 316 | 97.42 319 | 83.21 344 | 99.30 339 | 96.22 227 | 98.55 311 | 99.01 243 |
|
tpmvs | | | 95.02 305 | 95.25 296 | 94.33 342 | 96.39 369 | 85.87 364 | 98.08 156 | 96.83 338 | 95.46 277 | 95.51 347 | 98.69 211 | 85.91 325 | 99.53 300 | 94.16 291 | 96.23 358 | 97.58 346 |
|
MDTV_nov1_ep13 | | | | 95.22 297 | | 97.06 358 | 83.20 374 | 97.74 193 | 96.16 344 | 94.37 304 | 96.99 301 | 98.83 188 | 83.95 341 | 99.53 300 | 93.90 300 | 97.95 332 | |
|
FMVSNet5 | | | 96.01 283 | 95.20 298 | 98.41 202 | 97.53 346 | 96.10 231 | 98.74 84 | 99.50 74 | 97.22 217 | 98.03 245 | 99.04 133 | 69.80 374 | 99.88 71 | 97.27 143 | 99.71 139 | 99.25 204 |
|
OpenMVS_ROB |  | 95.38 14 | 95.84 288 | 95.18 299 | 97.81 245 | 98.41 302 | 97.15 205 | 97.37 228 | 98.62 280 | 83.86 368 | 98.65 187 | 98.37 255 | 94.29 252 | 99.68 245 | 88.41 357 | 98.62 308 | 96.60 359 |
|
TR-MVS | | | 95.55 295 | 95.12 300 | 96.86 304 | 97.54 345 | 93.94 297 | 96.49 277 | 96.53 341 | 94.36 305 | 97.03 300 | 96.61 336 | 94.26 253 | 99.16 351 | 86.91 361 | 96.31 357 | 97.47 349 |
|
JIA-IIPM | | | 95.52 296 | 95.03 301 | 97.00 293 | 96.85 361 | 94.03 293 | 96.93 256 | 95.82 349 | 99.20 54 | 94.63 355 | 99.71 16 | 83.09 345 | 99.60 279 | 94.42 285 | 94.64 367 | 97.36 350 |
|
tttt0517 | | | 95.64 293 | 94.98 302 | 97.64 260 | 99.36 132 | 93.81 304 | 98.72 87 | 90.47 371 | 98.08 139 | 98.67 184 | 98.34 259 | 73.88 372 | 99.92 39 | 97.77 120 | 99.51 209 | 99.20 214 |
|
ADS-MVSNet2 | | | 95.43 298 | 94.98 302 | 96.76 308 | 98.14 317 | 91.74 335 | 97.92 174 | 97.76 312 | 90.23 350 | 96.51 323 | 98.91 168 | 85.61 327 | 99.85 110 | 92.88 320 | 96.90 349 | 98.69 294 |
|
FE-MVS | | | 95.66 292 | 94.95 304 | 97.77 248 | 98.53 289 | 95.28 256 | 99.40 15 | 96.09 346 | 93.11 324 | 97.96 247 | 99.26 89 | 79.10 362 | 99.77 200 | 92.40 331 | 98.71 301 | 98.27 316 |
|
ADS-MVSNet | | | 95.24 301 | 94.93 305 | 96.18 317 | 98.14 317 | 90.10 350 | 97.92 174 | 97.32 324 | 90.23 350 | 96.51 323 | 98.91 168 | 85.61 327 | 99.74 217 | 92.88 320 | 96.90 349 | 98.69 294 |
|
BH-w/o | | | 95.13 302 | 94.89 306 | 95.86 322 | 98.20 314 | 91.31 342 | 95.65 313 | 97.37 320 | 93.64 316 | 96.52 322 | 95.70 352 | 93.04 273 | 99.02 355 | 88.10 358 | 95.82 362 | 97.24 351 |
|
EPNet_dtu | | | 94.93 306 | 94.78 307 | 95.38 335 | 93.58 377 | 87.68 360 | 96.78 263 | 95.69 351 | 97.35 198 | 89.14 373 | 98.09 279 | 88.15 313 | 99.49 310 | 94.95 270 | 99.30 243 | 98.98 248 |
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
PAPR | | | 95.29 299 | 94.47 308 | 97.75 252 | 97.50 350 | 95.14 262 | 94.89 336 | 98.71 275 | 91.39 344 | 95.35 349 | 95.48 356 | 94.57 246 | 99.14 353 | 84.95 364 | 97.37 341 | 98.97 252 |
|
thisisatest0530 | | | 95.27 300 | 94.45 309 | 97.74 253 | 99.19 165 | 94.37 282 | 97.86 182 | 90.20 372 | 97.17 218 | 98.22 227 | 97.65 305 | 73.53 373 | 99.90 52 | 96.90 174 | 99.35 234 | 98.95 255 |
|
pmmvs3 | | | 95.03 304 | 94.40 310 | 96.93 297 | 97.70 340 | 92.53 325 | 95.08 331 | 97.71 314 | 88.57 360 | 97.71 263 | 98.08 280 | 79.39 359 | 99.82 150 | 96.19 229 | 99.11 272 | 98.43 310 |
|
E-PMN | | | 94.17 316 | 94.37 311 | 93.58 350 | 96.86 360 | 85.71 367 | 90.11 370 | 97.07 329 | 98.17 132 | 97.82 258 | 97.19 326 | 84.62 335 | 98.94 359 | 89.77 354 | 97.68 335 | 96.09 366 |
|
tpm | | | 94.67 308 | 94.34 312 | 95.66 328 | 97.68 342 | 88.42 355 | 97.88 178 | 94.90 352 | 94.46 300 | 96.03 335 | 98.56 234 | 78.66 363 | 99.79 183 | 95.88 242 | 95.01 366 | 98.78 284 |
|
cascas | | | 94.79 307 | 94.33 313 | 96.15 321 | 96.02 373 | 92.36 330 | 92.34 368 | 99.26 172 | 85.34 367 | 95.08 352 | 94.96 364 | 92.96 274 | 98.53 367 | 94.41 288 | 98.59 309 | 97.56 347 |
|
EMVS | | | 93.83 322 | 94.02 314 | 93.23 354 | 96.83 362 | 84.96 368 | 89.77 371 | 96.32 343 | 97.92 147 | 97.43 286 | 96.36 344 | 86.17 322 | 98.93 360 | 87.68 359 | 97.73 334 | 95.81 367 |
|
test-LLR | | | 93.90 321 | 93.85 315 | 94.04 344 | 96.53 365 | 84.62 370 | 94.05 356 | 92.39 366 | 96.17 256 | 94.12 359 | 95.07 359 | 82.30 349 | 99.67 248 | 95.87 245 | 98.18 320 | 97.82 333 |
|
thres600view7 | | | 94.45 310 | 93.83 316 | 96.29 314 | 99.06 197 | 91.53 337 | 97.99 169 | 94.24 358 | 98.34 114 | 97.44 285 | 95.01 361 | 79.84 355 | 99.67 248 | 84.33 365 | 98.23 317 | 97.66 343 |
|
CostFormer | | | 93.97 320 | 93.78 317 | 94.51 341 | 97.53 346 | 85.83 366 | 97.98 170 | 95.96 348 | 89.29 358 | 94.99 353 | 98.63 225 | 78.63 364 | 99.62 272 | 94.54 279 | 96.50 354 | 98.09 323 |
|
test0.0.03 1 | | | 94.51 309 | 93.69 318 | 96.99 294 | 96.05 371 | 93.61 310 | 94.97 334 | 93.49 361 | 96.17 256 | 97.57 274 | 94.88 365 | 82.30 349 | 99.01 357 | 93.60 308 | 94.17 370 | 98.37 314 |
|
thres100view900 | | | 94.19 315 | 93.67 319 | 95.75 326 | 99.06 197 | 91.35 341 | 98.03 163 | 94.24 358 | 98.33 115 | 97.40 287 | 94.98 363 | 79.84 355 | 99.62 272 | 83.05 367 | 98.08 328 | 96.29 360 |
|
dp | | | 93.47 326 | 93.59 320 | 93.13 355 | 96.64 364 | 81.62 378 | 97.66 201 | 96.42 342 | 92.80 329 | 96.11 331 | 98.64 223 | 78.55 366 | 99.59 283 | 93.31 315 | 92.18 373 | 98.16 320 |
|
tfpn200view9 | | | 94.03 319 | 93.44 321 | 95.78 325 | 98.93 217 | 91.44 339 | 97.60 208 | 94.29 356 | 97.94 145 | 97.10 295 | 94.31 369 | 79.67 357 | 99.62 272 | 83.05 367 | 98.08 328 | 96.29 360 |
|
thres400 | | | 94.14 317 | 93.44 321 | 96.24 316 | 98.93 217 | 91.44 339 | 97.60 208 | 94.29 356 | 97.94 145 | 97.10 295 | 94.31 369 | 79.67 357 | 99.62 272 | 83.05 367 | 98.08 328 | 97.66 343 |
|
EPMVS | | | 93.72 324 | 93.27 323 | 95.09 338 | 96.04 372 | 87.76 359 | 98.13 149 | 85.01 378 | 94.69 295 | 96.92 303 | 98.64 223 | 78.47 367 | 99.31 337 | 95.04 267 | 96.46 355 | 98.20 318 |
|
ET-MVSNet_ETH3D | | | 94.30 314 | 93.21 324 | 97.58 264 | 98.14 317 | 94.47 281 | 94.78 338 | 93.24 364 | 94.72 294 | 89.56 372 | 95.87 350 | 78.57 365 | 99.81 163 | 96.91 169 | 97.11 348 | 98.46 305 |
|
thisisatest0515 | | | 94.12 318 | 93.16 325 | 96.97 296 | 98.60 279 | 92.90 319 | 93.77 360 | 90.61 370 | 94.10 310 | 96.91 305 | 95.87 350 | 74.99 371 | 99.80 170 | 94.52 280 | 99.12 271 | 98.20 318 |
|
thres200 | | | 93.72 324 | 93.14 326 | 95.46 334 | 98.66 274 | 91.29 343 | 96.61 273 | 94.63 354 | 97.39 194 | 96.83 312 | 93.71 371 | 79.88 354 | 99.56 292 | 82.40 370 | 98.13 325 | 95.54 369 |
|
tpm cat1 | | | 93.29 328 | 93.13 327 | 93.75 348 | 97.39 352 | 84.74 369 | 97.39 226 | 97.65 316 | 83.39 370 | 94.16 358 | 98.41 250 | 82.86 347 | 99.39 328 | 91.56 340 | 95.35 365 | 97.14 352 |
|
PCF-MVS | | 92.86 18 | 94.36 311 | 93.00 328 | 98.42 201 | 98.70 261 | 97.56 181 | 93.16 364 | 99.11 209 | 79.59 372 | 97.55 275 | 97.43 318 | 92.19 283 | 99.73 221 | 79.85 373 | 99.45 221 | 97.97 329 |
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
baseline2 | | | 93.73 323 | 92.83 329 | 96.42 312 | 97.70 340 | 91.28 344 | 96.84 261 | 89.77 373 | 93.96 314 | 92.44 367 | 95.93 348 | 79.14 361 | 99.77 200 | 92.94 318 | 96.76 353 | 98.21 317 |
|
X-MVStestdata | | | 94.32 312 | 92.59 330 | 99.53 34 | 99.46 110 | 99.21 28 | 98.65 93 | 99.34 134 | 98.62 102 | 97.54 276 | 45.85 375 | 97.50 120 | 99.83 140 | 96.79 182 | 99.53 204 | 99.56 82 |
|
tpm2 | | | 93.09 330 | 92.58 331 | 94.62 340 | 97.56 344 | 86.53 363 | 97.66 201 | 95.79 350 | 86.15 365 | 94.07 361 | 98.23 268 | 75.95 368 | 99.53 300 | 90.91 349 | 96.86 352 | 97.81 335 |
|
FPMVS | | | 93.44 327 | 92.23 332 | 97.08 290 | 99.25 150 | 97.86 159 | 95.61 314 | 97.16 327 | 92.90 327 | 93.76 364 | 98.65 220 | 75.94 369 | 95.66 374 | 79.30 374 | 97.49 336 | 97.73 340 |
|
MVS | | | 93.19 329 | 92.09 333 | 96.50 311 | 96.91 359 | 94.03 293 | 98.07 157 | 98.06 306 | 68.01 373 | 94.56 356 | 96.48 339 | 95.96 204 | 99.30 339 | 83.84 366 | 96.89 351 | 96.17 362 |
|
KD-MVS_2432*1600 | | | 92.87 331 | 91.99 334 | 95.51 332 | 91.37 378 | 89.27 352 | 94.07 354 | 98.14 302 | 95.42 278 | 97.25 292 | 96.44 341 | 67.86 376 | 99.24 345 | 91.28 343 | 96.08 360 | 98.02 326 |
|
miper_refine_blended | | | 92.87 331 | 91.99 334 | 95.51 332 | 91.37 378 | 89.27 352 | 94.07 354 | 98.14 302 | 95.42 278 | 97.25 292 | 96.44 341 | 67.86 376 | 99.24 345 | 91.28 343 | 96.08 360 | 98.02 326 |
|
MVE |  | 83.40 22 | 92.50 333 | 91.92 336 | 94.25 343 | 98.83 238 | 91.64 336 | 92.71 365 | 83.52 379 | 95.92 267 | 86.46 376 | 95.46 357 | 95.20 226 | 95.40 375 | 80.51 372 | 98.64 306 | 95.73 368 |
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
test2506 | | | 92.39 334 | 91.89 337 | 93.89 347 | 99.38 125 | 82.28 376 | 99.32 22 | 66.03 383 | 99.08 73 | 98.77 175 | 99.57 35 | 66.26 380 | 99.84 126 | 98.71 65 | 99.95 19 | 99.54 93 |
|
TESTMET0.1,1 | | | 92.19 338 | 91.77 338 | 93.46 351 | 96.48 367 | 82.80 375 | 94.05 356 | 91.52 369 | 94.45 302 | 94.00 362 | 94.88 365 | 66.65 379 | 99.56 292 | 95.78 250 | 98.11 326 | 98.02 326 |
|
test-mter | | | 92.33 336 | 91.76 339 | 94.04 344 | 96.53 365 | 84.62 370 | 94.05 356 | 92.39 366 | 94.00 313 | 94.12 359 | 95.07 359 | 65.63 382 | 99.67 248 | 95.87 245 | 98.18 320 | 97.82 333 |
|
gg-mvs-nofinetune | | | 92.37 335 | 91.20 340 | 95.85 323 | 95.80 374 | 92.38 329 | 99.31 26 | 81.84 380 | 99.75 5 | 91.83 369 | 99.74 12 | 68.29 375 | 99.02 355 | 87.15 360 | 97.12 347 | 96.16 363 |
|
IB-MVS | | 91.63 19 | 92.24 337 | 90.90 341 | 96.27 315 | 97.22 356 | 91.24 345 | 94.36 351 | 93.33 363 | 92.37 333 | 92.24 368 | 94.58 368 | 66.20 381 | 99.89 62 | 93.16 317 | 94.63 368 | 97.66 343 |
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
PAPM | | | 91.88 339 | 90.34 342 | 96.51 310 | 98.06 322 | 92.56 324 | 92.44 367 | 97.17 326 | 86.35 364 | 90.38 371 | 96.01 346 | 86.61 318 | 99.21 348 | 70.65 376 | 95.43 364 | 97.75 339 |
|
PVSNet_0 | | 89.98 21 | 91.15 340 | 90.30 343 | 93.70 349 | 97.72 336 | 84.34 373 | 90.24 369 | 97.42 319 | 90.20 353 | 93.79 363 | 93.09 372 | 90.90 293 | 98.89 363 | 86.57 362 | 72.76 376 | 97.87 332 |
|
EGC-MVSNET | | | 85.24 341 | 80.54 344 | 99.34 72 | 99.77 27 | 99.20 34 | 99.08 58 | 99.29 161 | 12.08 377 | 20.84 378 | 99.42 63 | 97.55 113 | 99.85 110 | 97.08 156 | 99.72 134 | 98.96 254 |
|
test_method | | | 79.78 342 | 79.50 345 | 80.62 358 | 80.21 381 | 45.76 383 | 70.82 372 | 98.41 291 | 31.08 376 | 80.89 377 | 97.71 301 | 84.85 332 | 97.37 372 | 91.51 341 | 80.03 375 | 98.75 288 |
|
tmp_tt | | | 78.77 343 | 78.73 346 | 78.90 359 | 58.45 382 | 74.76 382 | 94.20 353 | 78.26 382 | 39.16 375 | 86.71 375 | 92.82 373 | 80.50 353 | 75.19 378 | 86.16 363 | 92.29 372 | 86.74 373 |
|
cdsmvs_eth3d_5k | | | 24.66 344 | 32.88 347 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 99.10 211 | 0.00 380 | 0.00 381 | 97.58 309 | 99.21 10 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
testmvs | | | 17.12 345 | 20.53 348 | 6.87 361 | 12.05 383 | 4.20 385 | 93.62 362 | 6.73 384 | 4.62 379 | 10.41 379 | 24.33 376 | 8.28 384 | 3.56 380 | 9.69 378 | 15.07 377 | 12.86 376 |
|
test123 | | | 17.04 346 | 20.11 349 | 7.82 360 | 10.25 384 | 4.91 384 | 94.80 337 | 4.47 385 | 4.93 378 | 10.00 380 | 24.28 377 | 9.69 383 | 3.64 379 | 10.14 377 | 12.43 378 | 14.92 375 |
|
pcd_1.5k_mvsjas | | | 8.17 347 | 10.90 350 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 98.07 73 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
ab-mvs-re | | | 8.12 348 | 10.83 351 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 97.48 315 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
test_blank | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet_test | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
DCPMVS | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet-low-res | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
sosnet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uncertanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
Regformer | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
uanet | | | 0.00 349 | 0.00 352 | 0.00 362 | 0.00 385 | 0.00 386 | 0.00 373 | 0.00 386 | 0.00 380 | 0.00 381 | 0.00 380 | 0.00 385 | 0.00 381 | 0.00 379 | 0.00 379 | 0.00 377 |
|
FOURS1 | | | | | | 99.73 36 | 99.67 2 | 99.43 11 | 99.54 65 | 99.43 33 | 99.26 96 | | | | | | |
|
MSC_two_6792asdad | | | | | 99.32 78 | 98.43 298 | 98.37 111 | | 98.86 253 | | | | | 99.89 62 | 97.14 151 | 99.60 179 | 99.71 33 |
|
PC_three_1452 | | | | | | | | | | 93.27 321 | 99.40 67 | 98.54 235 | 98.22 61 | 97.00 373 | 95.17 265 | 99.45 221 | 99.49 112 |
|
No_MVS | | | | | 99.32 78 | 98.43 298 | 98.37 111 | | 98.86 253 | | | | | 99.89 62 | 97.14 151 | 99.60 179 | 99.71 33 |
|
test_one_0601 | | | | | | 99.39 124 | 99.20 34 | | 99.31 146 | 98.49 109 | 98.66 186 | 99.02 136 | 97.64 105 | | | | |
|
eth-test2 | | | | | | 0.00 385 | | | | | | | | | | | |
|
eth-test | | | | | | 0.00 385 | | | | | | | | | | | |
|
ZD-MVS | | | | | | 99.01 205 | 98.84 75 | | 99.07 215 | 94.10 310 | 98.05 243 | 98.12 275 | 96.36 186 | 99.86 98 | 92.70 327 | 99.19 260 | |
|
IU-MVS | | | | | | 99.49 100 | 99.15 47 | | 98.87 248 | 92.97 325 | 99.41 64 | | | | 96.76 186 | 99.62 172 | 99.66 45 |
|
OPU-MVS | | | | | 98.82 148 | 98.59 281 | 98.30 116 | 98.10 154 | | | | 98.52 238 | 98.18 65 | 98.75 365 | 94.62 277 | 99.48 218 | 99.41 149 |
|
test_241102_TWO | | | | | | | | | 99.30 154 | 98.03 140 | 99.26 96 | 99.02 136 | 97.51 119 | 99.88 71 | 96.91 169 | 99.60 179 | 99.66 45 |
|
test_241102_ONE | | | | | | 99.49 100 | 99.17 39 | | 99.31 146 | 97.98 142 | 99.66 29 | 98.90 171 | 98.36 50 | 99.48 313 | | | |
|
save fliter | | | | | | 99.11 184 | 97.97 149 | 96.53 275 | 99.02 227 | 98.24 124 | | | | | | | |
|
test_0728_THIRD | | | | | | | | | | 98.17 132 | 99.08 118 | 99.02 136 | 97.89 86 | 99.88 71 | 97.07 157 | 99.71 139 | 99.70 38 |
|
test_0728_SECOND | | | | | 99.60 11 | 99.50 93 | 99.23 26 | 98.02 164 | 99.32 141 | | | | | 99.88 71 | 96.99 163 | 99.63 169 | 99.68 41 |
|
test0726 | | | | | | 99.50 93 | 99.21 28 | 98.17 147 | 99.35 128 | 97.97 143 | 99.26 96 | 99.06 124 | 97.61 108 | | | | |
|
GSMVS | | | | | | | | | | | | | | | | | 98.81 277 |
|
test_part2 | | | | | | 99.36 132 | 99.10 60 | | | | 99.05 125 | | | | | | |
|
sam_mvs1 | | | | | | | | | | | | | 84.74 334 | | | | 98.81 277 |
|
sam_mvs | | | | | | | | | | | | | 84.29 340 | | | | |
|
ambc | | | | | 98.24 217 | 98.82 241 | 95.97 236 | 98.62 97 | 99.00 232 | | 99.27 92 | 99.21 98 | 96.99 151 | 99.50 309 | 96.55 208 | 99.50 216 | 99.26 203 |
|
MTGPA |  | | | | | | | | 99.20 184 | | | | | | | | |
|
test_post1 | | | | | | | | 97.59 210 | | | | 20.48 379 | 83.07 346 | 99.66 259 | 94.16 291 | | |
|
test_post | | | | | | | | | | | | 21.25 378 | 83.86 342 | 99.70 232 | | | |
|
patchmatchnet-post | | | | | | | | | | | | 98.77 199 | 84.37 337 | 99.85 110 | | | |
|
GG-mvs-BLEND | | | | | 94.76 339 | 94.54 376 | 92.13 333 | 99.31 26 | 80.47 381 | | 88.73 374 | 91.01 374 | 67.59 378 | 98.16 371 | 82.30 371 | 94.53 369 | 93.98 371 |
|
MTMP | | | | | | | | 97.93 173 | 91.91 368 | | | | | | | | |
|
gm-plane-assit | | | | | | 94.83 375 | 81.97 377 | | | 88.07 362 | | 94.99 362 | | 99.60 279 | 91.76 335 | | |
|
test9_res | | | | | | | | | | | | | | | 93.28 316 | 99.15 265 | 99.38 168 |
|
TEST9 | | | | | | 98.71 257 | 98.08 137 | 95.96 300 | 99.03 224 | 91.40 343 | 95.85 336 | 97.53 311 | 96.52 177 | 99.76 205 | | | |
|
test_8 | | | | | | 98.67 269 | 98.01 144 | 95.91 305 | 99.02 227 | 91.64 338 | 95.79 338 | 97.50 314 | 96.47 179 | 99.76 205 | | | |
|
agg_prior2 | | | | | | | | | | | | | | | 92.50 330 | 99.16 263 | 99.37 170 |
|
agg_prior | | | | | | 98.68 268 | 97.99 145 | | 99.01 230 | | 95.59 339 | | | 99.77 200 | | | |
|
TestCases | | | | | 99.16 102 | 99.50 93 | 98.55 97 | | 99.58 42 | 96.80 233 | 98.88 157 | 99.06 124 | 97.65 102 | 99.57 289 | 94.45 283 | 99.61 177 | 99.37 170 |
|
test_prior4 | | | | | | | 97.97 149 | 95.86 306 | | | | | | | | | |
|
test_prior2 | | | | | | | | 95.74 311 | | 96.48 247 | 96.11 331 | 97.63 307 | 95.92 206 | | 94.16 291 | 99.20 257 | |
|
test_prior | | | | | 98.95 135 | 98.69 266 | 97.95 153 | | 99.03 224 | | | | | 99.59 283 | | | 99.30 196 |
|
旧先验2 | | | | | | | | 95.76 310 | | 88.56 361 | 97.52 278 | | | 99.66 259 | 94.48 281 | | |
|
新几何2 | | | | | | | | 95.93 303 | | | | | | | | | |
|
新几何1 | | | | | 98.91 140 | 98.94 215 | 97.76 170 | | 98.76 268 | 87.58 363 | 96.75 315 | 98.10 277 | 94.80 240 | 99.78 194 | 92.73 326 | 99.00 283 | 99.20 214 |
|
旧先验1 | | | | | | 98.82 241 | 97.45 187 | | 98.76 268 | | | 98.34 259 | 95.50 219 | | | 99.01 282 | 99.23 209 |
|
无先验 | | | | | | | | 95.74 311 | 98.74 273 | 89.38 357 | | | | 99.73 221 | 92.38 332 | | 99.22 213 |
|
原ACMM2 | | | | | | | | 95.53 317 | | | | | | | | | |
|
原ACMM1 | | | | | 98.35 207 | 98.90 225 | 96.25 229 | | 98.83 261 | 92.48 332 | 96.07 333 | 98.10 277 | 95.39 222 | 99.71 229 | 92.61 329 | 98.99 284 | 99.08 232 |
|
test222 | | | | | | 98.92 221 | 96.93 213 | 95.54 316 | 98.78 267 | 85.72 366 | 96.86 311 | 98.11 276 | 94.43 247 | | | 99.10 273 | 99.23 209 |
|
testdata2 | | | | | | | | | | | | | | 99.79 183 | 92.80 324 | | |
|
segment_acmp | | | | | | | | | | | | | 97.02 149 | | | | |
|
testdata | | | | | 98.09 225 | 98.93 217 | 95.40 253 | | 98.80 264 | 90.08 354 | 97.45 284 | 98.37 255 | 95.26 224 | 99.70 232 | 93.58 309 | 98.95 288 | 99.17 225 |
|
testdata1 | | | | | | | | 95.44 322 | | 96.32 252 | | | | | | | |
|
test12 | | | | | 98.93 137 | 98.58 282 | 97.83 162 | | 98.66 277 | | 96.53 321 | | 95.51 218 | 99.69 236 | | 99.13 268 | 99.27 200 |
|
plane_prior7 | | | | | | 99.19 165 | 97.87 158 | | | | | | | | | | |
|
plane_prior6 | | | | | | 98.99 209 | 97.70 175 | | | | | | 94.90 233 | | | | |
|
plane_prior5 | | | | | | | | | 99.27 167 | | | | | 99.70 232 | 94.42 285 | 99.51 209 | 99.45 135 |
|
plane_prior4 | | | | | | | | | | | | 97.98 286 | | | | | |
|
plane_prior3 | | | | | | | 97.78 169 | | | 97.41 192 | 97.79 259 | | | | | | |
|
plane_prior2 | | | | | | | | 97.77 189 | | 98.20 129 | | | | | | | |
|
plane_prior1 | | | | | | 99.05 200 | | | | | | | | | | | |
|
plane_prior | | | | | | | 97.65 177 | 97.07 248 | | 96.72 238 | | | | | | 99.36 232 | |
|
n2 | | | | | | | | | 0.00 386 | | | | | | | | |
|
nn | | | | | | | | | 0.00 386 | | | | | | | | |
|
door-mid | | | | | | | | | 99.57 49 | | | | | | | | |
|
lessismore_v0 | | | | | 98.97 133 | 99.73 36 | 97.53 183 | | 86.71 376 | | 99.37 74 | 99.52 47 | 89.93 298 | 99.92 39 | 98.99 48 | 99.72 134 | 99.44 139 |
|
LGP-MVS_train | | | | | 99.47 54 | 99.57 69 | 98.97 66 | | 99.48 83 | 96.60 242 | 99.10 116 | 99.06 124 | 98.71 30 | 99.83 140 | 95.58 259 | 99.78 105 | 99.62 54 |
|
test11 | | | | | | | | | 98.87 248 | | | | | | | | |
|
door | | | | | | | | | 99.41 108 | | | | | | | | |
|
HQP5-MVS | | | | | | | 96.79 216 | | | | | | | | | | |
|
HQP-NCC | | | | | | 98.67 269 | | 96.29 287 | | 96.05 261 | 95.55 342 | | | | | | |
|
ACMP_Plane | | | | | | 98.67 269 | | 96.29 287 | | 96.05 261 | 95.55 342 | | | | | | |
|
BP-MVS | | | | | | | | | | | | | | | 92.82 322 | | |
|
HQP4-MVS | | | | | | | | | | | 95.56 341 | | | 99.54 298 | | | 99.32 189 |
|
HQP3-MVS | | | | | | | | | 99.04 222 | | | | | | | 99.26 250 | |
|
HQP2-MVS | | | | | | | | | | | | | 93.84 259 | | | | |
|
NP-MVS | | | | | | 98.84 236 | 97.39 190 | | | | | 96.84 332 | | | | | |
|
MDTV_nov1_ep13_2view | | | | | | | 74.92 381 | 97.69 197 | | 90.06 355 | 97.75 262 | | 85.78 326 | | 93.52 310 | | 98.69 294 |
|
ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 109 | |
|
ACMMP++ | | | | | | | | | | | | | | | | 99.68 152 | |
|
Test By Simon | | | | | | | | | | | | | 96.52 177 | | | | |
|
ITE_SJBPF | | | | | 98.87 143 | 99.22 156 | 98.48 104 | | 99.35 128 | 97.50 179 | 98.28 225 | 98.60 230 | 97.64 105 | 99.35 332 | 93.86 303 | 99.27 247 | 98.79 283 |
|
DeepMVS_CX |  | | | | 93.44 352 | 98.24 311 | 94.21 286 | | 94.34 355 | 64.28 374 | 91.34 370 | 94.87 367 | 89.45 303 | 92.77 377 | 77.54 375 | 93.14 371 | 93.35 372 |
|