This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8399.36 1499.92 3499.64 39
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1799.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2299.66 1199.68 1999.66 1798.44 3999.95 1599.73 299.96 1499.75 22
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1899.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1999.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1398.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15399.66 34
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7499.84 5699.52 93
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11099.17 3799.78 499.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6799.68 999.46 4399.26 6998.62 2999.73 22199.17 2699.92 3499.76 20
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5599.64 1299.56 2899.46 4398.23 5299.97 398.78 4499.93 2599.72 25
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4899.62 1799.56 2899.42 4998.16 6099.96 898.78 4499.93 2599.77 16
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5199.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13499.90 4999.21 2399.87 5299.54 83
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17699.92 3599.44 1399.92 3499.68 31
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7899.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5599.70 899.80 999.68 1496.84 14999.83 13699.21 2399.91 4099.77 16
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13499.85 10599.02 3299.94 2199.80 12
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4498.30 11199.65 2299.45 4799.22 999.76 20698.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4499.46 2799.50 3999.34 6097.30 12399.93 2898.90 3799.93 2599.77 16
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 4899.31 3999.62 2799.53 3397.36 12199.86 9199.24 2299.71 11799.39 150
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11299.20 3299.44 8199.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
v899.01 3799.16 3098.57 18499.47 9496.31 22898.90 5999.47 7399.03 6899.52 3599.57 2796.93 14599.81 15999.60 499.98 999.60 49
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9799.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30497.70 10799.73 10697.89 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6499.62 2098.48 10299.37 5699.49 3998.75 2499.86 9198.20 7799.80 7799.71 26
v1098.97 4499.11 3398.55 18999.44 10096.21 23098.90 5999.55 4498.73 8899.48 4099.60 2596.63 16599.83 13699.70 399.99 599.61 48
FIs99.14 3299.09 3499.29 7799.70 3698.28 10999.13 4199.52 5499.48 2499.24 8099.41 5196.79 15599.82 14698.69 5299.88 4999.76 20
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11899.42 3099.33 6299.26 6997.01 14199.94 2398.74 4999.93 2599.79 13
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9099.42 3099.36 5899.06 10198.38 4299.95 1598.34 7199.90 4499.57 66
baseline98.96 4699.02 3798.76 16199.38 10897.26 19498.49 9499.50 5798.86 8299.19 8699.06 10198.23 5299.69 23698.71 5199.76 9999.33 178
EG-PatchMatch MVS98.99 3999.01 3898.94 13499.50 7797.47 18398.04 13999.59 2498.15 12899.40 5299.36 5798.58 3299.76 20698.78 4499.68 13399.59 55
casdiffmvs98.95 4799.00 3998.81 15199.38 10897.33 18997.82 16399.57 3399.17 5399.35 5999.17 8498.35 4699.69 23698.46 6499.73 10699.41 141
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2699.11 5699.53 3399.18 8098.81 2299.67 24896.71 17199.77 9099.50 100
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10798.73 7099.56 4098.42 10498.91 13698.81 17398.94 1899.91 4598.35 7099.73 10699.49 104
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14599.46 7597.56 16599.54 3099.50 3698.97 1699.84 12298.06 8599.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tfpnnormal98.90 5398.90 4398.91 13899.67 4097.82 16299.00 5299.44 8199.45 2899.51 3899.24 7298.20 5799.86 9195.92 22099.69 12899.04 233
Anonymous2024052198.69 8198.87 4498.16 22499.77 2095.11 26199.08 4499.44 8199.34 3799.33 6299.55 2994.10 25099.94 2399.25 2099.96 1499.42 138
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11799.01 5098.99 22399.25 4499.54 3099.37 5497.04 13799.80 16897.89 9399.52 18999.35 170
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9297.47 20199.57 3399.37 3499.21 8499.61 2396.76 15899.83 13698.06 8599.83 6299.71 26
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4099.09 6599.33 6299.19 7898.40 4199.72 22995.98 21899.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17898.43 10299.35 11299.47 2699.28 7199.05 10896.72 16199.82 14698.09 8399.36 21799.59 55
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 16899.10 6299.72 1398.76 18196.38 17899.86 9198.00 9099.82 6599.50 100
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5797.33 18998.94 13398.86 15998.75 2499.82 14697.53 11399.71 11799.56 71
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10198.46 9999.33 12399.63 1499.48 4099.15 9097.23 13199.75 21397.17 12899.66 14499.63 43
APDe-MVS98.99 3998.79 5299.60 1399.21 13699.15 4598.87 6199.48 6797.57 16399.35 5999.24 7297.83 8099.89 5897.88 9699.70 12299.75 22
V4298.78 6698.78 5398.76 16199.44 10097.04 20798.27 11399.19 17397.87 14399.25 7999.16 8696.84 14999.78 19399.21 2399.84 5699.46 122
abl_698.99 3998.78 5399.61 999.45 9899.46 398.60 7999.50 5798.59 9699.24 8099.04 11198.54 3499.89 5896.45 19399.62 15399.50 100
test20.0398.78 6698.77 5598.78 15899.46 9597.20 20097.78 16599.24 16299.04 6799.41 4998.90 14697.65 9399.76 20697.70 10799.79 8299.39 150
new-patchmatchnet98.35 13298.74 5697.18 27799.24 12992.23 32096.42 26899.48 6798.30 11199.69 1799.53 3397.44 11699.82 14698.84 4299.77 9099.49 104
3Dnovator98.27 298.81 6198.73 5799.05 12098.76 23697.81 16499.25 3099.30 13998.57 10098.55 18999.33 6297.95 7699.90 4997.16 12999.67 13999.44 131
ACMM96.08 1298.91 5198.73 5799.48 5099.55 6599.14 4898.07 13399.37 10297.62 15899.04 11198.96 13498.84 2099.79 18197.43 11799.65 14599.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SED-MVS98.91 5198.72 5999.49 4899.49 8499.17 3698.10 13099.31 13098.03 13299.66 2099.02 11598.36 4399.88 6796.91 14799.62 15399.41 141
PM-MVS98.82 5998.72 5999.12 10299.64 4698.54 9597.98 14899.68 1497.62 15899.34 6199.18 8097.54 10399.77 19997.79 9999.74 10399.04 233
EI-MVSNet-UG-set98.69 8198.71 6198.62 17699.10 16696.37 22597.23 21798.87 23999.20 4899.19 8698.99 12597.30 12399.85 10598.77 4799.79 8299.65 38
UniMVSNet (Re)98.87 5598.71 6199.35 6999.24 12998.73 7997.73 17399.38 9898.93 7999.12 9398.73 18496.77 15699.86 9198.63 5499.80 7799.46 122
test_040298.76 6998.71 6198.93 13599.56 6298.14 12598.45 10199.34 11899.28 4298.95 12798.91 14398.34 4799.79 18195.63 23799.91 4098.86 261
EI-MVSNet-Vis-set98.68 8598.70 6498.63 17499.09 16996.40 22497.23 21798.86 24499.20 4899.18 9098.97 13197.29 12599.85 10598.72 5099.78 8699.64 39
IterMVS-LS98.55 10898.70 6498.09 22699.48 9294.73 26797.22 22099.39 9698.97 7499.38 5499.31 6496.00 19099.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Regformer-498.73 7498.68 6698.89 14199.02 18597.22 19797.17 22599.06 20399.21 4599.17 9198.85 16297.45 11599.86 9198.48 6399.70 12299.60 49
SD-MVS98.40 12798.68 6697.54 26298.96 19697.99 13997.88 15699.36 10698.20 12399.63 2599.04 11198.76 2395.33 36396.56 18399.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet98.86 5798.68 6699.40 6299.17 15298.74 7697.68 17799.40 9499.14 5499.06 10498.59 21496.71 16299.93 2898.57 5799.77 9099.53 89
v119298.60 9998.66 6998.41 20499.27 12495.88 23797.52 19599.36 10697.41 18299.33 6299.20 7796.37 17999.82 14699.57 699.92 3499.55 79
v114498.60 9998.66 6998.41 20499.36 11195.90 23697.58 18999.34 11897.51 16899.27 7399.15 9096.34 18199.80 16899.47 1299.93 2599.51 96
MTAPA98.88 5498.64 7199.61 999.67 4099.36 998.43 10299.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
DU-MVS98.82 5998.63 7299.39 6399.16 15498.74 7697.54 19399.25 15798.84 8499.06 10498.76 18196.76 15899.93 2898.57 5799.77 9099.50 100
v124098.55 10898.62 7398.32 21199.22 13495.58 24397.51 19799.45 7897.16 20999.45 4599.24 7296.12 18599.85 10599.60 499.88 4999.55 79
v2v48298.56 10498.62 7398.37 20899.42 10595.81 24097.58 18999.16 18697.90 14199.28 7199.01 12295.98 19499.79 18199.33 1599.90 4499.51 96
SixPastTwentyTwo98.75 7198.62 7399.16 9799.83 1597.96 14899.28 2798.20 29099.37 3499.70 1599.65 1992.65 27299.93 2899.04 3199.84 5699.60 49
Regformer-398.61 9698.61 7698.63 17499.02 18596.53 22297.17 22598.84 24699.13 5599.10 9898.85 16297.24 13099.79 18198.41 6899.70 12299.57 66
APD-MVS_3200maxsize98.84 5898.61 7699.53 3699.19 14399.27 2098.49 9499.33 12398.64 9099.03 11498.98 12997.89 7799.85 10596.54 18799.42 20899.46 122
CS-MVS98.61 9698.60 7898.65 16998.82 22898.21 11898.79 6799.77 698.34 10797.55 25697.69 28898.27 4999.87 8398.52 6199.62 15397.88 316
v192192098.54 11198.60 7898.38 20799.20 14095.76 24297.56 19199.36 10697.23 20499.38 5499.17 8496.02 18899.84 12299.57 699.90 4499.54 83
v14898.45 12198.60 7898.00 23599.44 10094.98 26297.44 20499.06 20398.30 11199.32 6898.97 13196.65 16499.62 26898.37 6999.85 5499.39 150
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.75 8796.56 18399.39 21299.45 126
v14419298.54 11198.57 8298.45 20199.21 13695.98 23497.63 18299.36 10697.15 21199.32 6899.18 8095.84 20199.84 12299.50 1099.91 4099.54 83
SR-MVS-dyc-post98.81 6198.55 8399.57 1899.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.49 11299.86 9196.56 18399.39 21299.45 126
SteuartSystems-ACMMP98.79 6398.54 8499.54 2999.73 2499.16 4098.23 11699.31 13097.92 13998.90 13798.90 14698.00 7099.88 6796.15 21299.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft98.79 6398.53 8599.59 1799.65 4399.29 1799.16 3899.43 8796.74 22698.61 17798.38 23798.62 2999.87 8396.47 19199.67 13999.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS98.77 6898.52 8699.52 4199.50 7799.21 2698.02 14298.84 24697.97 13599.08 10199.02 11597.61 9899.88 6796.99 14199.63 15099.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
zzz-MVS98.79 6398.52 8699.61 999.67 4099.36 997.33 21099.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26797.20 22198.87 23998.97 7499.06 10499.02 11596.00 19099.80 16898.58 5599.82 6599.60 49
3Dnovator+97.89 398.69 8198.51 8899.24 8998.81 23198.40 10299.02 4999.19 17398.99 7198.07 22299.28 6597.11 13699.84 12296.84 15899.32 22399.47 120
EU-MVSNet97.66 19198.50 9095.13 32599.63 4885.84 35298.35 10998.21 28998.23 11999.54 3099.46 4395.02 22399.68 24598.24 7499.87 5299.87 4
CSCG98.68 8598.50 9099.20 9299.45 9898.63 8498.56 8499.57 3397.87 14398.85 14898.04 26697.66 9299.84 12296.72 16999.81 6999.13 222
ACMMPcopyleft98.75 7198.50 9099.52 4199.56 6299.16 4098.87 6199.37 10297.16 20998.82 15599.01 12297.71 8999.87 8396.29 20499.69 12899.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test117298.76 6998.49 9399.57 1899.18 15099.37 898.39 10599.31 13098.43 10398.90 13798.88 15597.49 11299.86 9196.43 19599.37 21699.48 112
TSAR-MVS + MP.98.63 9398.49 9399.06 11899.64 4697.90 15398.51 9298.94 22696.96 21799.24 8098.89 15497.83 8099.81 15996.88 15499.49 20099.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP98.75 7198.48 9599.57 1899.58 5199.29 1797.82 16399.25 15796.94 21898.78 15899.12 9498.02 6899.84 12297.13 13399.67 13999.59 55
LCM-MVSNet-Re98.64 9198.48 9599.11 10498.85 22098.51 9798.49 9499.83 398.37 10599.69 1799.46 4398.21 5699.92 3594.13 27799.30 22898.91 256
GBi-Net98.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
test198.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
Regformer-298.60 9998.46 9999.02 12698.85 22097.71 17296.91 24199.09 19998.98 7399.01 11598.64 20397.37 12099.84 12297.75 10699.57 17499.52 93
LPG-MVS_test98.71 7698.46 9999.47 5399.57 5598.97 6298.23 11699.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
XVS98.72 7598.45 10199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25898.63 20797.50 10999.83 13696.79 16099.53 18699.56 71
UGNet98.53 11398.45 10198.79 15597.94 31196.96 21099.08 4498.54 27599.10 6296.82 29699.47 4296.55 16899.84 12298.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HFP-MVS98.71 7698.44 10399.51 4599.49 8499.16 4098.52 8899.31 13097.47 17298.58 18398.50 22497.97 7499.85 10596.57 18099.59 16499.53 89
Regformer-198.55 10898.44 10398.87 14398.85 22097.29 19196.91 24198.99 22398.97 7498.99 11998.64 20397.26 12999.81 15997.79 9999.57 17499.51 96
SR-MVS98.71 7698.43 10599.57 1899.18 15099.35 1198.36 10899.29 14698.29 11498.88 14498.85 16297.53 10599.87 8396.14 21399.31 22599.48 112
MVSFormer98.26 14298.43 10597.77 24498.88 21593.89 29399.39 1199.56 4099.11 5698.16 21498.13 25693.81 25399.97 399.26 1899.57 17499.43 135
ACMMPR98.70 7998.42 10799.54 2999.52 7299.14 4898.52 8899.31 13097.47 17298.56 18798.54 21897.75 8799.88 6796.57 18099.59 16499.58 61
CP-MVS98.70 7998.42 10799.52 4199.36 11199.12 5398.72 7199.36 10697.54 16798.30 20798.40 23397.86 7999.89 5896.53 18899.72 11399.56 71
ZNCC-MVS98.68 8598.40 10999.54 2999.57 5599.21 2698.46 9999.29 14697.28 19598.11 21998.39 23598.00 7099.87 8396.86 15799.64 14799.55 79
region2R98.69 8198.40 10999.54 2999.53 7099.17 3698.52 8899.31 13097.46 17798.44 19798.51 22197.83 8099.88 6796.46 19299.58 17099.58 61
FMVSNet298.49 11798.40 10998.75 16398.90 20997.14 20698.61 7899.13 19398.59 9699.19 8699.28 6594.14 24699.82 14697.97 9199.80 7799.29 191
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32099.59 2099.11 9599.27 6794.82 22999.79 18198.34 7199.63 15099.34 172
testgi98.32 13498.39 11298.13 22599.57 5595.54 24497.78 16599.49 6597.37 18699.19 8697.65 29098.96 1799.49 30696.50 19098.99 27499.34 172
LS3D98.63 9398.38 11499.36 6497.25 33999.38 599.12 4399.32 12599.21 4598.44 19798.88 15597.31 12299.80 16896.58 17899.34 22198.92 253
PGM-MVS98.66 8898.37 11599.55 2699.53 7099.18 3598.23 11699.49 6597.01 21698.69 16798.88 15598.00 7099.89 5895.87 22499.59 16499.58 61
MVS_Test98.18 15098.36 11697.67 24998.48 28094.73 26798.18 12199.02 21697.69 15398.04 22699.11 9697.22 13299.56 28898.57 5798.90 28098.71 280
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19599.32 1598.81 25297.66 15598.62 17599.40 5396.82 15299.80 16895.88 22199.51 19298.75 277
RPSCF98.62 9598.36 11699.42 5799.65 4399.42 498.55 8599.57 3397.72 15298.90 13799.26 6996.12 18599.52 30095.72 23199.71 11799.32 180
pmmvs-eth3d98.47 11998.34 11998.86 14599.30 12197.76 16797.16 22799.28 14895.54 26399.42 4899.19 7897.27 12699.63 26697.89 9399.97 1199.20 207
mPP-MVS98.64 9198.34 11999.54 2999.54 6899.17 3698.63 7699.24 16297.47 17298.09 22198.68 19397.62 9799.89 5896.22 20799.62 15399.57 66
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28599.50 5797.30 19399.05 10998.98 12999.35 799.32 32995.72 23199.68 13399.18 214
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 8997.71 17499.46 7597.25 19898.98 12198.99 12597.54 10399.84 12295.88 22199.74 10399.23 202
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 22999.18 17797.10 21298.75 16398.92 14298.18 5899.65 26196.68 17399.56 17999.37 160
GST-MVS98.61 9698.30 12499.52 4199.51 7499.20 3298.26 11499.25 15797.44 18098.67 16998.39 23597.68 9099.85 10596.00 21699.51 19299.52 93
VNet98.42 12498.30 12498.79 15598.79 23597.29 19198.23 11698.66 26999.31 3998.85 14898.80 17494.80 23299.78 19398.13 7999.13 25699.31 184
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 25999.48 6797.32 19199.11 9598.61 21299.33 899.30 33296.23 20698.38 30099.28 192
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9196.77 22598.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23299.39 9697.67 15499.44 4698.99 12597.53 10599.89 5895.40 24499.68 13399.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
canonicalmvs98.34 13398.26 12898.58 18198.46 28297.82 16298.96 5699.46 7599.19 5297.46 26595.46 34498.59 3199.46 31398.08 8498.71 28998.46 292
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26099.54 4898.24 11798.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
diffmvs98.22 14698.24 13098.17 22399.00 18895.44 24996.38 27099.58 2697.79 14998.53 19298.50 22496.76 15899.74 21797.95 9299.64 14799.34 172
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22799.38 9894.87 27998.97 12498.99 12598.01 6999.88 6797.29 12399.70 12299.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Anonymous2023120698.21 14798.21 13398.20 22199.51 7495.43 25098.13 12599.32 12596.16 24698.93 13498.82 17196.00 19099.83 13697.32 12299.73 10699.36 166
AllTest98.44 12298.20 13499.16 9799.50 7798.55 9298.25 11599.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
DELS-MVS98.27 14098.20 13498.48 19898.86 21896.70 21995.60 30499.20 16897.73 15198.45 19698.71 18797.50 10999.82 14698.21 7699.59 16498.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS98.40 12798.19 13699.03 12399.00 18897.65 17596.85 24498.94 22698.57 10098.89 14098.50 22495.60 20799.85 10597.54 11299.85 5499.59 55
IterMVS-SCA-FT97.85 17998.18 13796.87 29199.27 12491.16 33595.53 30699.25 15799.10 6299.41 4999.35 5893.10 26399.96 898.65 5399.94 2199.49 104
xiu_mvs_v1_base_debu97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
xiu_mvs_v1_base_debi97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
#test#98.50 11698.16 14199.51 4599.49 8499.16 4098.03 14099.31 13096.30 24398.58 18398.50 22497.97 7499.85 10595.68 23499.59 16499.53 89
mvs_anonymous97.83 18298.16 14196.87 29198.18 29991.89 32297.31 21298.90 23497.37 18698.83 15199.46 4396.28 18299.79 18198.90 3798.16 30898.95 247
PVSNet_Blended_VisFu98.17 15298.15 14398.22 22099.73 2495.15 25897.36 20899.68 1494.45 28898.99 11999.27 6796.87 14899.94 2397.13 13399.91 4099.57 66
DeepC-MVS_fast96.85 698.30 13698.15 14398.75 16398.61 26597.23 19597.76 17099.09 19997.31 19298.75 16398.66 19897.56 10299.64 26396.10 21599.55 18199.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++98.02 16098.14 14597.64 25398.58 27095.19 25797.48 19999.23 16497.47 17297.90 23198.62 20997.04 13798.81 35497.55 11099.41 20998.94 251
MVS_111021_LR98.30 13698.12 14698.83 14899.16 15498.03 13796.09 28299.30 13997.58 16298.10 22098.24 24998.25 5099.34 32696.69 17299.65 14599.12 223
IterMVS97.73 18698.11 14796.57 29899.24 12990.28 33695.52 30899.21 16698.86 8299.33 6299.33 6293.11 26299.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu98.27 14098.09 14898.81 15198.43 28598.11 12697.61 18599.50 5798.64 9097.39 27097.52 29898.12 6399.95 1596.90 15298.71 28998.38 298
MP-MVScopyleft98.46 12098.09 14899.54 2999.57 5599.22 2598.50 9399.19 17397.61 16097.58 25398.66 19897.40 11899.88 6794.72 25799.60 16299.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP95.32 1598.41 12598.09 14899.36 6499.51 7498.79 7497.68 17799.38 9895.76 26098.81 15798.82 17198.36 4399.82 14694.75 25499.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMMVS298.07 15798.08 15198.04 23399.41 10694.59 27394.59 33499.40 9497.50 16998.82 15598.83 16896.83 15199.84 12297.50 11599.81 6999.71 26
MVS_111021_HR98.25 14498.08 15198.75 16399.09 16997.46 18495.97 28599.27 15197.60 16197.99 22898.25 24898.15 6299.38 32396.87 15599.57 17499.42 138
TAMVS98.24 14598.05 15398.80 15399.07 17397.18 20297.88 15698.81 25296.66 23099.17 9199.21 7594.81 23199.77 19996.96 14599.88 4999.44 131
EPP-MVSNet98.30 13698.04 15499.07 11399.56 6297.83 15999.29 2398.07 29699.03 6898.59 18199.13 9392.16 27699.90 4996.87 15599.68 13399.49 104
SMA-MVScopyleft98.40 12798.03 15599.51 4599.16 15499.21 2698.05 13799.22 16594.16 29598.98 12199.10 9897.52 10799.79 18196.45 19399.64 14799.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS96.93 598.32 13498.01 15699.23 9098.39 28798.97 6295.03 32099.18 17796.88 22199.33 6298.78 17798.16 6099.28 33596.74 16699.62 15399.44 131
MSP-MVS98.40 12798.00 15799.61 999.57 5599.25 2298.57 8399.35 11297.55 16699.31 7097.71 28594.61 23699.88 6796.14 21399.19 24699.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TSAR-MVS + GP.98.18 15097.98 15898.77 16098.71 24597.88 15496.32 27398.66 26996.33 24099.23 8398.51 22197.48 11499.40 31997.16 12999.46 20499.02 236
TinyColmap97.89 17097.98 15897.60 25598.86 21894.35 27696.21 27899.44 8197.45 17999.06 10498.88 15597.99 7399.28 33594.38 27099.58 17099.18 214
VDDNet98.21 14797.95 16099.01 12799.58 5197.74 17099.01 5097.29 31699.67 1098.97 12499.50 3690.45 28599.80 16897.88 9699.20 24299.48 112
PHI-MVS98.29 13997.95 16099.34 7298.44 28499.16 4098.12 12799.38 9896.01 25298.06 22398.43 23197.80 8499.67 24895.69 23399.58 17099.20 207
PMVScopyleft91.26 2097.86 17497.94 16297.65 25199.71 3097.94 15198.52 8898.68 26898.99 7197.52 26099.35 5897.41 11798.18 35891.59 32599.67 13996.82 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVP-Stereo98.08 15697.92 16398.57 18498.96 19696.79 21597.90 15599.18 17796.41 23898.46 19598.95 13895.93 19799.60 27596.51 18998.98 27699.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs97.94 16697.91 16498.06 23199.44 10094.96 26396.63 25799.15 19298.35 10698.83 15199.11 9694.31 24399.85 10596.60 17798.72 28799.37 160
Effi-MVS+-dtu98.26 14297.90 16599.35 6998.02 30799.49 298.02 14299.16 18698.29 11497.64 24897.99 26896.44 17499.95 1596.66 17498.93 27998.60 287
IS-MVSNet98.19 14997.90 16599.08 11099.57 5597.97 14499.31 1898.32 28599.01 7098.98 12199.03 11491.59 28099.79 18195.49 24299.80 7799.48 112
CNVR-MVS98.17 15297.87 16799.07 11398.67 25898.24 11297.01 23298.93 22897.25 19897.62 24998.34 24297.27 12699.57 28596.42 19699.33 22299.39 150
ETV-MVS98.03 15897.86 16898.56 18898.69 25398.07 13397.51 19799.50 5798.10 12997.50 26295.51 34298.41 4099.88 6796.27 20599.24 23797.71 328
D2MVS97.84 18097.84 16997.83 24199.14 15994.74 26696.94 23698.88 23795.84 25798.89 14098.96 13494.40 24199.69 23697.55 11099.95 1699.05 229
Effi-MVS+98.02 16097.82 17098.62 17698.53 27797.19 20197.33 21099.68 1497.30 19396.68 29997.46 30398.56 3399.80 16896.63 17698.20 30598.86 261
9.1497.78 17199.07 17397.53 19499.32 12595.53 26598.54 19198.70 19097.58 10099.76 20694.32 27199.46 204
CANet97.87 17397.76 17298.19 22297.75 31995.51 24696.76 25099.05 20797.74 15096.93 28598.21 25295.59 20899.89 5897.86 9899.93 2599.19 212
MS-PatchMatch97.68 18997.75 17397.45 26798.23 29793.78 29697.29 21398.84 24696.10 24898.64 17298.65 20096.04 18799.36 32496.84 15899.14 25399.20 207
EIA-MVS98.00 16297.74 17498.80 15398.72 24298.09 12798.05 13799.60 2397.39 18496.63 30195.55 34197.68 9099.80 16896.73 16899.27 23298.52 290
ppachtmachnet_test97.50 20097.74 17496.78 29698.70 24991.23 33494.55 33599.05 20796.36 23999.21 8498.79 17696.39 17699.78 19396.74 16699.82 6599.34 172
our_test_397.39 21197.73 17696.34 30298.70 24989.78 33894.61 33398.97 22596.50 23499.04 11198.85 16295.98 19499.84 12297.26 12599.67 13999.41 141
LF4IMVS97.90 16897.69 17798.52 19399.17 15297.66 17497.19 22499.47 7396.31 24297.85 23598.20 25396.71 16299.52 30094.62 25899.72 11398.38 298
YYNet197.60 19597.67 17897.39 27199.04 18093.04 30795.27 31398.38 28497.25 19898.92 13598.95 13895.48 21499.73 22196.99 14198.74 28599.41 141
HQP_MVS97.99 16597.67 17898.93 13599.19 14397.65 17597.77 16899.27 15198.20 12397.79 23997.98 26994.90 22599.70 23294.42 26699.51 19299.45 126
APD-MVScopyleft98.10 15497.67 17899.42 5799.11 16298.93 6697.76 17099.28 14894.97 27698.72 16698.77 17997.04 13799.85 10593.79 28899.54 18299.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDA-MVSNet_test_wron97.60 19597.66 18197.41 27099.04 18093.09 30395.27 31398.42 28197.26 19798.88 14498.95 13895.43 21599.73 22197.02 13898.72 28799.41 141
K. test v398.00 16297.66 18199.03 12399.79 1997.56 17999.19 3692.47 35499.62 1799.52 3599.66 1789.61 29099.96 899.25 2099.81 6999.56 71
HPM-MVS++copyleft98.10 15497.64 18399.48 5099.09 16999.13 5197.52 19598.75 26297.46 17796.90 29197.83 27996.01 18999.84 12295.82 22899.35 21999.46 122
MCST-MVS98.00 16297.63 18499.10 10699.24 12998.17 12296.89 24398.73 26595.66 26197.92 22997.70 28797.17 13399.66 25696.18 21199.23 23899.47 120
ETH3D-3000-0.198.03 15897.62 18599.29 7799.11 16298.80 7397.47 20199.32 12595.54 26398.43 20098.62 20996.61 16699.77 19993.95 28299.49 20099.30 187
wuyk23d96.06 27397.62 18591.38 34498.65 26498.57 9198.85 6496.95 32296.86 22299.90 499.16 8699.18 1198.40 35789.23 34299.77 9077.18 361
DSMNet-mixed97.42 20997.60 18796.87 29199.15 15891.46 32698.54 8699.12 19592.87 31297.58 25399.63 2096.21 18399.90 4995.74 23099.54 18299.27 194
UnsupCasMVSNet_eth97.89 17097.60 18798.75 16399.31 11897.17 20397.62 18399.35 11298.72 8998.76 16298.68 19392.57 27399.74 21797.76 10595.60 34999.34 172
PVSNet_BlendedMVS97.55 19897.53 18997.60 25598.92 20593.77 29796.64 25699.43 8794.49 28497.62 24999.18 8096.82 15299.67 24894.73 25599.93 2599.36 166
MSDG97.71 18797.52 19098.28 21698.91 20896.82 21494.42 33799.37 10297.65 15698.37 20698.29 24797.40 11899.33 32894.09 27899.22 23998.68 286
Anonymous20240521197.90 16897.50 19199.08 11098.90 20998.25 11198.53 8796.16 33298.87 8199.11 9598.86 15990.40 28699.78 19397.36 12099.31 22599.19 212
xiu_mvs_v2_base97.16 23097.49 19296.17 30798.54 27592.46 31595.45 31098.84 24697.25 19897.48 26496.49 32598.31 4899.90 4996.34 20198.68 29196.15 351
pmmvs597.64 19297.49 19298.08 22999.14 15995.12 26096.70 25499.05 20793.77 30198.62 17598.83 16893.23 25999.75 21398.33 7399.76 9999.36 166
OMC-MVS97.88 17297.49 19299.04 12298.89 21498.63 8496.94 23699.25 15795.02 27498.53 19298.51 22197.27 12699.47 31193.50 29699.51 19299.01 237
mvs-test197.83 18297.48 19598.89 14198.02 30799.20 3297.20 22199.16 18698.29 11496.46 31197.17 31396.44 17499.92 3596.66 17497.90 31897.54 334
NCCC97.86 17497.47 19699.05 12098.61 26598.07 13396.98 23498.90 23497.63 15797.04 28297.93 27495.99 19399.66 25695.31 24598.82 28399.43 135
test_part197.91 16797.46 19799.27 8298.80 23398.18 12099.07 4699.36 10699.75 599.63 2599.49 3982.20 34099.89 5898.87 4099.95 1699.74 24
USDC97.41 21097.40 19897.44 26898.94 19993.67 29995.17 31699.53 5194.03 29898.97 12499.10 9895.29 21799.34 32695.84 22799.73 10699.30 187
PS-MVSNAJ97.08 23497.39 19996.16 30998.56 27392.46 31595.24 31598.85 24597.25 19897.49 26395.99 33498.07 6499.90 4996.37 19898.67 29296.12 352
Fast-Effi-MVS+97.67 19097.38 20098.57 18498.71 24597.43 18697.23 21799.45 7894.82 28096.13 31596.51 32498.52 3599.91 4596.19 20998.83 28298.37 300
cl_fuxian97.36 21297.37 20197.31 27298.09 30493.25 30295.01 32199.16 18697.05 21398.77 16198.72 18692.88 26899.64 26396.93 14699.76 9999.05 229
CPTT-MVS97.84 18097.36 20299.27 8299.31 11898.46 10098.29 11199.27 15194.90 27897.83 23698.37 23994.90 22599.84 12293.85 28799.54 18299.51 96
MVS_030497.64 19297.35 20398.52 19397.87 31596.69 22098.59 8198.05 29897.44 18093.74 35298.85 16293.69 25799.88 6798.11 8099.81 6998.98 242
jason97.45 20797.35 20397.76 24599.24 12993.93 28995.86 29398.42 28194.24 29298.50 19498.13 25694.82 22999.91 4597.22 12699.73 10699.43 135
jason: jason.
CDS-MVSNet97.69 18897.35 20398.69 16798.73 24097.02 20996.92 24098.75 26295.89 25698.59 18198.67 19592.08 27899.74 21796.72 16999.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
hse-mvs397.77 18597.33 20699.10 10699.21 13697.84 15898.35 10998.57 27499.11 5698.58 18399.02 11588.65 29999.96 898.11 8096.34 34299.49 104
pmmvs497.58 19797.28 20798.51 19598.84 22396.93 21295.40 31298.52 27793.60 30398.61 17798.65 20095.10 22299.60 27596.97 14499.79 8298.99 241
eth_miper_zixun_eth97.23 22497.25 20897.17 27898.00 30992.77 31194.71 32799.18 17797.27 19698.56 18798.74 18391.89 27999.69 23697.06 13799.81 6999.05 229
testtj97.79 18497.25 20899.42 5799.03 18398.85 6897.78 16599.18 17795.83 25898.12 21898.50 22495.50 21299.86 9192.23 31899.07 26299.54 83
FMVSNet397.50 20097.24 21098.29 21598.08 30595.83 23997.86 15998.91 23397.89 14298.95 12798.95 13887.06 30399.81 15997.77 10199.69 12899.23 202
CL-MVSNet_2432*160097.44 20897.22 21198.08 22998.57 27295.78 24194.30 34098.79 25596.58 23398.60 17998.19 25494.74 23599.64 26396.41 19798.84 28198.82 264
CVMVSNet96.25 27097.21 21293.38 34199.10 16680.56 36597.20 22198.19 29296.94 21899.00 11899.02 11589.50 29299.80 16896.36 20099.59 16499.78 14
N_pmnet97.63 19497.17 21398.99 12999.27 12497.86 15695.98 28493.41 35195.25 27299.47 4298.90 14695.63 20699.85 10596.91 14799.73 10699.27 194
miper_lstm_enhance97.18 22897.16 21497.25 27698.16 30092.85 30995.15 31899.31 13097.25 19898.74 16598.78 17790.07 28799.78 19397.19 12799.80 7799.11 225
Vis-MVSNet (Re-imp)97.46 20597.16 21498.34 21099.55 6596.10 23198.94 5798.44 28098.32 11098.16 21498.62 20988.76 29699.73 22193.88 28599.79 8299.18 214
CLD-MVS97.49 20297.16 21498.48 19899.07 17397.03 20894.71 32799.21 16694.46 28698.06 22397.16 31497.57 10199.48 30994.46 26399.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268897.49 20297.14 21798.54 19299.68 3996.09 23396.50 26399.62 2091.58 32698.84 15098.97 13192.36 27499.88 6796.76 16499.95 1699.67 33
hse-mvs297.46 20597.07 21898.64 17198.73 24097.33 18997.45 20397.64 30999.11 5698.58 18397.98 26988.65 29999.79 18198.11 8097.39 32698.81 267
CANet_DTU97.26 22097.06 21997.84 24097.57 32694.65 27196.19 28098.79 25597.23 20495.14 33898.24 24993.22 26099.84 12297.34 12199.84 5699.04 233
miper_ehance_all_eth97.06 23697.03 22097.16 28097.83 31693.06 30494.66 33099.09 19995.99 25398.69 16798.45 23092.73 27199.61 27496.79 16099.03 26798.82 264
Patchmatch-RL test97.26 22097.02 22197.99 23699.52 7295.53 24596.13 28199.71 1097.47 17299.27 7399.16 8684.30 32799.62 26897.89 9399.77 9098.81 267
ETH3D cwj APD-0.1697.55 19897.00 22299.19 9398.51 27898.64 8396.85 24499.13 19394.19 29497.65 24798.40 23395.78 20299.81 15993.37 29999.16 24999.12 223
test_prior397.48 20497.00 22298.95 13298.69 25397.95 14995.74 29999.03 21296.48 23596.11 31697.63 29295.92 19899.59 27994.16 27299.20 24299.30 187
Patchmtry97.35 21396.97 22498.50 19797.31 33896.47 22398.18 12198.92 23198.95 7898.78 15899.37 5485.44 31899.85 10595.96 21999.83 6299.17 218
RPMNet97.02 24096.93 22597.30 27397.71 32194.22 27798.11 12899.30 13999.37 3496.91 28899.34 6086.72 30599.87 8397.53 11397.36 32997.81 321
sss97.21 22596.93 22598.06 23198.83 22595.22 25696.75 25198.48 27994.49 28497.27 27397.90 27592.77 27099.80 16896.57 18099.32 22399.16 221
UnsupCasMVSNet_bld97.30 21796.92 22798.45 20199.28 12396.78 21896.20 27999.27 15195.42 26898.28 20998.30 24693.16 26199.71 23094.99 24997.37 32798.87 260
DP-MVS Recon97.33 21596.92 22798.57 18499.09 16997.99 13996.79 24799.35 11293.18 30797.71 24398.07 26595.00 22499.31 33093.97 28099.13 25698.42 297
API-MVS97.04 23996.91 22997.42 26997.88 31498.23 11698.18 12198.50 27897.57 16397.39 27096.75 32196.77 15699.15 34490.16 33999.02 27094.88 357
alignmvs97.35 21396.88 23098.78 15898.54 27598.09 12797.71 17497.69 30699.20 4897.59 25295.90 33688.12 30299.55 29198.18 7898.96 27798.70 282
lupinMVS97.06 23696.86 23197.65 25198.88 21593.89 29395.48 30997.97 29993.53 30498.16 21497.58 29493.81 25399.91 4596.77 16399.57 17499.17 218
1112_ss97.29 21996.86 23198.58 18199.34 11796.32 22796.75 25199.58 2693.14 30896.89 29297.48 30192.11 27799.86 9196.91 14799.54 18299.57 66
cl-mvsnet197.02 24096.84 23397.58 25797.82 31794.03 28494.66 33099.16 18697.04 21498.63 17398.71 18788.69 29799.69 23697.00 13999.81 6999.01 237
cl-mvsnet____97.02 24096.83 23497.58 25797.82 31794.04 28394.66 33099.16 18697.04 21498.63 17398.71 18788.68 29899.69 23697.00 13999.81 6999.00 240
QAPM97.31 21696.81 23598.82 14998.80 23397.49 18299.06 4899.19 17390.22 33897.69 24599.16 8696.91 14699.90 4990.89 33699.41 20999.07 227
PatchMatch-RL97.24 22396.78 23698.61 17899.03 18397.83 15996.36 27199.06 20393.49 30697.36 27297.78 28195.75 20399.49 30693.44 29798.77 28498.52 290
new_pmnet96.99 24496.76 23797.67 24998.72 24294.89 26495.95 28998.20 29092.62 31598.55 18998.54 21894.88 22899.52 30093.96 28199.44 20798.59 289
BH-untuned96.83 24996.75 23897.08 28198.74 23993.33 30196.71 25398.26 28796.72 22798.44 19797.37 30895.20 21999.47 31191.89 32097.43 32598.44 295
LFMVS97.20 22696.72 23998.64 17198.72 24296.95 21198.93 5894.14 34899.74 798.78 15899.01 12284.45 32499.73 22197.44 11699.27 23299.25 198
CNLPA97.17 22996.71 24098.55 18998.56 27398.05 13696.33 27298.93 22896.91 22097.06 28197.39 30694.38 24299.45 31591.66 32299.18 24898.14 306
AdaColmapbinary97.14 23196.71 24098.46 20098.34 28997.80 16596.95 23598.93 22895.58 26296.92 28697.66 28995.87 20099.53 29690.97 33399.14 25398.04 309
PVSNet_Blended96.88 24796.68 24297.47 26698.92 20593.77 29794.71 32799.43 8790.98 33497.62 24997.36 30996.82 15299.67 24894.73 25599.56 17998.98 242
F-COLMAP97.30 21796.68 24299.14 10099.19 14398.39 10397.27 21699.30 13992.93 31096.62 30298.00 26795.73 20499.68 24592.62 31398.46 29999.35 170
OpenMVScopyleft96.65 797.09 23396.68 24298.32 21198.32 29097.16 20498.86 6399.37 10289.48 34296.29 31499.15 9096.56 16799.90 4992.90 30499.20 24297.89 314
SCA96.41 26696.66 24595.67 31598.24 29588.35 34395.85 29596.88 32596.11 24797.67 24698.67 19593.10 26399.85 10594.16 27299.22 23998.81 267
CDPH-MVS97.26 22096.66 24599.07 11399.00 18898.15 12396.03 28399.01 21991.21 33297.79 23997.85 27896.89 14799.69 23692.75 31099.38 21599.39 150
MG-MVS96.77 25296.61 24797.26 27598.31 29193.06 30495.93 29098.12 29596.45 23797.92 22998.73 18493.77 25599.39 32191.19 33299.04 26699.33 178
HyFIR lowres test97.19 22796.60 24898.96 13199.62 5097.28 19395.17 31699.50 5794.21 29399.01 11598.32 24586.61 30699.99 297.10 13599.84 5699.60 49
BH-RMVSNet96.83 24996.58 24997.58 25798.47 28194.05 28296.67 25597.36 31296.70 22997.87 23397.98 26995.14 22199.44 31690.47 33898.58 29799.25 198
RRT_MVS97.07 23596.57 25098.58 18195.89 35996.33 22697.36 20898.77 25897.85 14599.08 10199.12 9482.30 33799.96 898.82 4399.90 4499.45 126
bset_n11_16_dypcd96.99 24496.56 25198.27 21799.00 18895.25 25392.18 35794.05 34998.75 8799.01 11598.38 23788.98 29599.93 2898.77 4799.92 3499.64 39
MVSTER96.86 24896.55 25297.79 24397.91 31394.21 27997.56 19198.87 23997.49 17199.06 10499.05 10880.72 34299.80 16898.44 6599.82 6599.37 160
Test_1112_low_res96.99 24496.55 25298.31 21399.35 11595.47 24895.84 29699.53 5191.51 32896.80 29798.48 22991.36 28199.83 13696.58 17899.53 18699.62 44
HQP-MVS97.00 24396.49 25498.55 18998.67 25896.79 21596.29 27499.04 21096.05 24995.55 32996.84 31993.84 25199.54 29492.82 30799.26 23599.32 180
train_agg97.10 23296.45 25599.07 11398.71 24598.08 13195.96 28799.03 21291.64 32495.85 32297.53 29696.47 17299.76 20693.67 29099.16 24999.36 166
agg_prior197.06 23696.40 25699.03 12398.68 25697.99 13995.76 29799.01 21991.73 32395.59 32597.50 29996.49 17199.77 19993.71 28999.14 25399.34 172
PatchT96.65 25796.35 25797.54 26297.40 33495.32 25297.98 14896.64 32899.33 3896.89 29299.42 4984.32 32699.81 15997.69 10997.49 32297.48 335
Patchmatch-test96.55 26096.34 25897.17 27898.35 28893.06 30498.40 10497.79 30297.33 18998.41 20198.67 19583.68 33199.69 23695.16 24699.31 22598.77 275
PAPM_NR96.82 25196.32 25998.30 21499.07 17396.69 22097.48 19998.76 25995.81 25996.61 30396.47 32794.12 24999.17 34290.82 33797.78 31999.06 228
test_yl96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
DCV-MVSNet96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
WTY-MVS96.67 25696.27 26297.87 23998.81 23194.61 27296.77 24997.92 30194.94 27797.12 27697.74 28491.11 28299.82 14693.89 28498.15 30999.18 214
MIMVSNet96.62 25996.25 26397.71 24899.04 18094.66 27099.16 3896.92 32497.23 20497.87 23399.10 9886.11 31299.65 26191.65 32399.21 24198.82 264
112196.73 25396.00 26498.91 13898.95 19897.76 16798.07 13398.73 26587.65 35096.54 30498.13 25694.52 23899.73 22192.38 31699.02 27099.24 201
PMMVS96.51 26195.98 26598.09 22697.53 32995.84 23894.92 32398.84 24691.58 32696.05 32095.58 34095.68 20599.66 25695.59 23998.09 31298.76 276
CR-MVSNet96.28 26995.95 26697.28 27497.71 32194.22 27798.11 12898.92 23192.31 31896.91 28899.37 5485.44 31899.81 15997.39 11997.36 32997.81 321
TAPA-MVS96.21 1196.63 25895.95 26698.65 16998.93 20198.09 12796.93 23899.28 14883.58 35798.13 21797.78 28196.13 18499.40 31993.52 29499.29 23098.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
114514_t96.50 26395.77 26898.69 16799.48 9297.43 18697.84 16199.55 4481.42 35996.51 30798.58 21595.53 20999.67 24893.41 29899.58 17098.98 242
miper_enhance_ethall96.01 27495.74 26996.81 29596.41 35392.27 31993.69 34998.89 23691.14 33398.30 20797.35 31090.58 28499.58 28496.31 20299.03 26798.60 287
PLCcopyleft94.65 1696.51 26195.73 27098.85 14698.75 23897.91 15296.42 26899.06 20390.94 33595.59 32597.38 30794.41 24099.59 27990.93 33498.04 31699.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 28295.70 27195.57 31898.83 22588.57 34192.50 35497.72 30492.69 31496.49 31096.44 32893.72 25699.43 31793.61 29199.28 23198.71 280
MAR-MVS96.47 26495.70 27198.79 15597.92 31299.12 5398.28 11298.60 27392.16 32195.54 33296.17 33294.77 23499.52 30089.62 34198.23 30397.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PatchmatchNetpermissive95.58 28495.67 27395.30 32497.34 33687.32 34797.65 18196.65 32795.30 27197.07 28098.69 19184.77 32199.75 21394.97 25098.64 29398.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet94.32 30395.62 27490.42 34598.46 28275.36 36696.29 27489.13 36395.25 27295.38 33599.75 792.88 26899.19 34194.07 27999.39 21296.72 345
131495.74 28195.60 27596.17 30797.53 32992.75 31298.07 13398.31 28691.22 33194.25 34496.68 32295.53 20999.03 34691.64 32497.18 33296.74 344
ETH3 D test640096.46 26595.59 27699.08 11098.88 21598.21 11896.53 26099.18 17788.87 34697.08 27997.79 28093.64 25899.77 19988.92 34399.40 21199.28 192
DPM-MVS96.32 26795.59 27698.51 19598.76 23697.21 19994.54 33698.26 28791.94 32296.37 31297.25 31193.06 26599.43 31791.42 32898.74 28598.89 257
CHOSEN 280x42095.51 28795.47 27895.65 31798.25 29488.27 34493.25 35198.88 23793.53 30494.65 34197.15 31586.17 31099.93 2897.41 11899.93 2598.73 279
tpmrst95.07 29495.46 27993.91 33597.11 34184.36 35997.62 18396.96 32194.98 27596.35 31398.80 17485.46 31799.59 27995.60 23896.23 34497.79 324
AUN-MVS96.24 27195.45 28098.60 17998.70 24997.22 19797.38 20697.65 30795.95 25495.53 33397.96 27382.11 34199.79 18196.31 20297.44 32498.80 272
baseline195.96 27695.44 28197.52 26498.51 27893.99 28798.39 10596.09 33498.21 12098.40 20597.76 28386.88 30499.63 26695.42 24389.27 36198.95 247
EPNet96.14 27295.44 28198.25 21890.76 36695.50 24797.92 15294.65 34198.97 7492.98 35398.85 16289.12 29499.87 8395.99 21799.68 13399.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary75.91 2396.29 26895.44 28198.84 14796.25 35598.69 8297.02 23199.12 19588.90 34597.83 23698.86 15989.51 29198.90 35291.92 31999.51 19298.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
cl-mvsnet295.79 28095.39 28496.98 28596.77 34792.79 31094.40 33898.53 27694.59 28397.89 23298.17 25582.82 33699.24 33796.37 19899.03 26798.92 253
HY-MVS95.94 1395.90 27795.35 28597.55 26197.95 31094.79 26598.81 6696.94 32392.28 31995.17 33798.57 21689.90 28999.75 21391.20 33197.33 33198.10 307
GA-MVS95.86 27895.32 28697.49 26598.60 26794.15 28193.83 34797.93 30095.49 26696.68 29997.42 30583.21 33299.30 33296.22 20798.55 29899.01 237
tpmvs95.02 29695.25 28794.33 33196.39 35485.87 35198.08 13296.83 32695.46 26795.51 33498.69 19185.91 31399.53 29694.16 27296.23 34497.58 332
MDTV_nov1_ep1395.22 28897.06 34283.20 36197.74 17296.16 33294.37 29096.99 28498.83 16883.95 32999.53 29693.90 28397.95 317
FMVSNet596.01 27495.20 28998.41 20497.53 32996.10 23198.74 6899.50 5797.22 20798.03 22799.04 11169.80 36299.88 6797.27 12499.71 11799.25 198
OpenMVS_ROBcopyleft95.38 1495.84 27995.18 29097.81 24298.41 28697.15 20597.37 20798.62 27283.86 35698.65 17198.37 23994.29 24499.68 24588.41 34498.62 29596.60 346
RRT_test8_iter0595.24 29195.13 29195.57 31897.32 33787.02 34997.99 14699.41 9198.06 13199.12 9399.05 10866.85 36799.85 10598.93 3699.47 20399.84 8
TR-MVS95.55 28595.12 29296.86 29497.54 32893.94 28896.49 26496.53 32994.36 29197.03 28396.61 32394.26 24599.16 34386.91 34896.31 34397.47 336
JIA-IIPM95.52 28695.03 29397.00 28396.85 34594.03 28496.93 23895.82 33699.20 4894.63 34299.71 1283.09 33399.60 27594.42 26694.64 35397.36 337
tttt051795.64 28394.98 29497.64 25399.36 11193.81 29598.72 7190.47 36098.08 13098.67 16998.34 24273.88 35999.92 3597.77 10199.51 19299.20 207
ADS-MVSNet295.43 28894.98 29496.76 29798.14 30191.74 32397.92 15297.76 30390.23 33696.51 30798.91 14385.61 31599.85 10592.88 30596.90 33598.69 283
ADS-MVSNet95.24 29194.93 29696.18 30698.14 30190.10 33797.92 15297.32 31590.23 33696.51 30798.91 14385.61 31599.74 21792.88 30596.90 33598.69 283
BH-w/o95.13 29394.89 29795.86 31198.20 29891.31 33095.65 30297.37 31193.64 30296.52 30695.70 33993.04 26699.02 34788.10 34595.82 34897.24 338
EPNet_dtu94.93 29794.78 29895.38 32393.58 36387.68 34696.78 24895.69 33897.35 18889.14 36198.09 26388.15 30199.49 30694.95 25199.30 22898.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPR95.29 28994.47 29997.75 24697.50 33395.14 25994.89 32498.71 26791.39 33095.35 33695.48 34394.57 23799.14 34584.95 35197.37 32798.97 246
thisisatest053095.27 29094.45 30097.74 24799.19 14394.37 27597.86 15990.20 36197.17 20898.22 21197.65 29073.53 36099.90 4996.90 15299.35 21998.95 247
pmmvs395.03 29594.40 30196.93 28797.70 32392.53 31495.08 31997.71 30588.57 34797.71 24398.08 26479.39 34999.82 14696.19 20999.11 26098.43 296
E-PMN94.17 30794.37 30293.58 33896.86 34485.71 35490.11 35997.07 31998.17 12697.82 23897.19 31284.62 32398.94 35089.77 34097.68 32196.09 353
tpm94.67 29994.34 30395.66 31697.68 32588.42 34297.88 15694.90 34094.46 28696.03 32198.56 21778.66 35199.79 18195.88 22195.01 35298.78 274
cascas94.79 29894.33 30496.15 31096.02 35892.36 31892.34 35699.26 15685.34 35595.08 33994.96 35192.96 26798.53 35694.41 26998.59 29697.56 333
EMVS93.83 31394.02 30593.23 34296.83 34684.96 35589.77 36096.32 33197.92 13997.43 26896.36 33186.17 31098.93 35187.68 34697.73 32095.81 354
test-LLR93.90 31293.85 30694.04 33396.53 34984.62 35794.05 34492.39 35596.17 24494.12 34695.07 34682.30 33799.67 24895.87 22498.18 30697.82 319
thres600view794.45 30193.83 30796.29 30399.06 17791.53 32597.99 14694.24 34698.34 10797.44 26795.01 34879.84 34599.67 24884.33 35298.23 30397.66 329
CostFormer93.97 31193.78 30894.51 33097.53 32985.83 35397.98 14895.96 33589.29 34494.99 34098.63 20778.63 35299.62 26894.54 26096.50 34098.09 308
test0.0.03 194.51 30093.69 30996.99 28496.05 35693.61 30094.97 32293.49 35096.17 24497.57 25594.88 35282.30 33799.01 34993.60 29294.17 35798.37 300
thres100view90094.19 30693.67 31095.75 31499.06 17791.35 32998.03 14094.24 34698.33 10997.40 26994.98 35079.84 34599.62 26883.05 35498.08 31396.29 347
dp93.47 31793.59 31193.13 34396.64 34881.62 36497.66 17996.42 33092.80 31396.11 31698.64 20378.55 35499.59 27993.31 30092.18 36098.16 305
tfpn200view994.03 31093.44 31295.78 31398.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31396.29 347
thres40094.14 30893.44 31296.24 30598.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31397.66 329
EPMVS93.72 31593.27 31495.09 32696.04 35787.76 34598.13 12585.01 36594.69 28296.92 28698.64 20378.47 35599.31 33095.04 24796.46 34198.20 303
ET-MVSNet_ETH3D94.30 30593.21 31597.58 25798.14 30194.47 27494.78 32693.24 35394.72 28189.56 36095.87 33778.57 35399.81 15996.91 14797.11 33498.46 292
thisisatest051594.12 30993.16 31696.97 28698.60 26792.90 30893.77 34890.61 35994.10 29696.91 28895.87 33774.99 35899.80 16894.52 26199.12 25998.20 303
thres20093.72 31593.14 31795.46 32298.66 26391.29 33196.61 25894.63 34297.39 18496.83 29593.71 35979.88 34499.56 28882.40 35798.13 31095.54 356
tpm cat193.29 31993.13 31893.75 33697.39 33584.74 35697.39 20597.65 30783.39 35894.16 34598.41 23282.86 33599.39 32191.56 32695.35 35197.14 339
PCF-MVS92.86 1894.36 30293.00 31998.42 20398.70 24997.56 17993.16 35299.11 19779.59 36097.55 25697.43 30492.19 27599.73 22179.85 36099.45 20697.97 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline293.73 31492.83 32096.42 30197.70 32391.28 33296.84 24689.77 36293.96 30092.44 35595.93 33579.14 35099.77 19992.94 30396.76 33998.21 302
X-MVStestdata94.32 30392.59 32199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25845.85 36397.50 10999.83 13696.79 16099.53 18699.56 71
tpm293.09 32192.58 32294.62 32997.56 32786.53 35097.66 17995.79 33786.15 35394.07 34898.23 25175.95 35699.53 29690.91 33596.86 33897.81 321
FPMVS93.44 31892.23 32397.08 28199.25 12897.86 15695.61 30397.16 31892.90 31193.76 35198.65 20075.94 35795.66 36179.30 36197.49 32297.73 326
MVS93.19 32092.09 32496.50 30096.91 34394.03 28498.07 13398.06 29768.01 36194.56 34396.48 32695.96 19699.30 33283.84 35396.89 33796.17 349
DWT-MVSNet_test92.75 32492.05 32594.85 32796.48 35187.21 34897.83 16294.99 33992.22 32092.72 35494.11 35870.75 36199.46 31395.01 24894.33 35697.87 317
KD-MVS_2432*160092.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
miper_refine_blended92.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
MVEpermissive83.40 2292.50 32591.92 32894.25 33298.83 22591.64 32492.71 35383.52 36695.92 25586.46 36495.46 34495.20 21995.40 36280.51 35998.64 29395.73 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
TESTMET0.1,192.19 32991.77 32993.46 33996.48 35182.80 36294.05 34491.52 35894.45 28894.00 34994.88 35266.65 36899.56 28895.78 22998.11 31198.02 310
test-mter92.33 32791.76 33094.04 33396.53 34984.62 35794.05 34492.39 35594.00 29994.12 34695.07 34665.63 37099.67 24895.87 22498.18 30697.82 319
gg-mvs-nofinetune92.37 32691.20 33195.85 31295.80 36092.38 31799.31 1881.84 36799.75 591.83 35799.74 868.29 36399.02 34787.15 34797.12 33396.16 350
IB-MVS91.63 1992.24 32890.90 33296.27 30497.22 34091.24 33394.36 33993.33 35292.37 31792.24 35694.58 35566.20 36999.89 5893.16 30294.63 35497.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PAPM91.88 33090.34 33396.51 29998.06 30692.56 31392.44 35597.17 31786.35 35290.38 35996.01 33386.61 30699.21 34070.65 36395.43 35097.75 325
PVSNet_089.98 2191.15 33190.30 33493.70 33797.72 32084.34 36090.24 35897.42 31090.20 33993.79 35093.09 36090.90 28398.89 35386.57 34972.76 36397.87 317
test_method79.78 33279.50 33580.62 34680.21 36745.76 36970.82 36198.41 28331.08 36480.89 36597.71 28584.85 32097.37 36091.51 32780.03 36298.75 277
tmp_tt78.77 33378.73 33678.90 34758.45 36874.76 36894.20 34178.26 36939.16 36386.71 36392.82 36180.50 34375.19 36586.16 35092.29 35986.74 360
cdsmvs_eth3d_5k24.66 33432.88 3370.00 3500.00 3710.00 3720.00 36299.10 1980.00 3670.00 36897.58 29499.21 100.00 3680.00 3660.00 3660.00 364
testmvs17.12 33520.53 3386.87 34912.05 3694.20 37193.62 3506.73 3704.62 36610.41 36624.33 3648.28 3723.56 3679.69 36515.07 36412.86 363
test12317.04 33620.11 3397.82 34810.25 3704.91 37094.80 3254.47 3714.93 36510.00 36724.28 3659.69 3713.64 36610.14 36412.43 36514.92 362
pcd_1.5k_mvsjas8.17 33710.90 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36898.07 640.00 3680.00 3660.00 3660.00 364
ab-mvs-re8.12 33810.83 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.48 3010.00 3730.00 3680.00 3660.00 3660.00 364
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS99.01 18798.84 6999.07 20294.10 29698.05 22598.12 25996.36 18099.86 9192.70 31299.19 246
IU-MVS99.49 8499.15 4598.87 23992.97 30999.41 4996.76 16499.62 15399.66 34
OPU-MVS98.82 14998.59 26998.30 10898.10 13098.52 22098.18 5898.75 35594.62 25899.48 20299.41 141
test_241102_TWO99.30 13998.03 13299.26 7799.02 11597.51 10899.88 6796.91 14799.60 16299.66 34
test_241102_ONE99.49 8499.17 3699.31 13097.98 13499.66 2098.90 14698.36 4399.48 309
save fliter99.11 16297.97 14496.53 26099.02 21698.24 117
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13699.71 11799.70 29
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14299.32 12599.88 6796.99 14199.63 15099.68 31
test072699.50 7799.21 2698.17 12499.35 11297.97 13599.26 7799.06 10197.61 98
GSMVS98.81 267
test_part299.36 11199.10 5699.05 109
sam_mvs184.74 32298.81 267
sam_mvs84.29 328
ambc98.24 21998.82 22895.97 23598.62 7799.00 22299.27 7399.21 7596.99 14299.50 30596.55 18699.50 19999.26 197
MTGPAbinary99.20 168
test_post197.59 18820.48 36783.07 33499.66 25694.16 272
test_post21.25 36683.86 33099.70 232
patchmatchnet-post98.77 17984.37 32599.85 105
GG-mvs-BLEND94.76 32894.54 36292.13 32199.31 1880.47 36888.73 36291.01 36267.59 36698.16 35982.30 35894.53 35593.98 358
MTMP97.93 15191.91 357
gm-plane-assit94.83 36181.97 36388.07 34994.99 34999.60 27591.76 321
test9_res93.28 30199.15 25299.38 157
TEST998.71 24598.08 13195.96 28799.03 21291.40 32995.85 32297.53 29696.52 16999.76 206
test_898.67 25898.01 13895.91 29299.02 21691.64 32495.79 32497.50 29996.47 17299.76 206
agg_prior292.50 31599.16 24999.37 160
agg_prior98.68 25697.99 13999.01 21995.59 32599.77 199
TestCases99.16 9799.50 7798.55 9299.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
test_prior497.97 14495.86 293
test_prior295.74 29996.48 23596.11 31697.63 29295.92 19894.16 27299.20 242
test_prior98.95 13298.69 25397.95 14999.03 21299.59 27999.30 187
旧先验295.76 29788.56 34897.52 26099.66 25694.48 262
新几何295.93 290
新几何198.91 13898.94 19997.76 16798.76 25987.58 35196.75 29898.10 26194.80 23299.78 19392.73 31199.00 27399.20 207
旧先验198.82 22897.45 18598.76 25998.34 24295.50 21299.01 27299.23 202
无先验95.74 29998.74 26489.38 34399.73 22192.38 31699.22 206
原ACMM295.53 306
原ACMM198.35 20998.90 20996.25 22998.83 25192.48 31696.07 31998.10 26195.39 21699.71 23092.61 31498.99 27499.08 226
test22298.92 20596.93 21295.54 30598.78 25785.72 35496.86 29498.11 26094.43 23999.10 26199.23 202
testdata299.79 18192.80 309
segment_acmp97.02 140
testdata98.09 22698.93 20195.40 25198.80 25490.08 34097.45 26698.37 23995.26 21899.70 23293.58 29398.95 27899.17 218
testdata195.44 31196.32 241
test1298.93 13598.58 27097.83 15998.66 26996.53 30595.51 21199.69 23699.13 25699.27 194
plane_prior799.19 14397.87 155
plane_prior698.99 19297.70 17394.90 225
plane_prior599.27 15199.70 23294.42 26699.51 19299.45 126
plane_prior497.98 269
plane_prior397.78 16697.41 18297.79 239
plane_prior297.77 16898.20 123
plane_prior199.05 179
plane_prior97.65 17597.07 23096.72 22799.36 217
n20.00 372
nn0.00 372
door-mid99.57 33
lessismore_v098.97 13099.73 2497.53 18186.71 36499.37 5699.52 3589.93 28899.92 3598.99 3499.72 11399.44 131
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
test1198.87 239
door99.41 91
HQP5-MVS96.79 215
HQP-NCC98.67 25896.29 27496.05 24995.55 329
ACMP_Plane98.67 25896.29 27496.05 24995.55 329
BP-MVS92.82 307
HQP4-MVS95.56 32899.54 29499.32 180
HQP3-MVS99.04 21099.26 235
HQP2-MVS93.84 251
NP-MVS98.84 22397.39 18896.84 319
MDTV_nov1_ep13_2view74.92 36797.69 17690.06 34197.75 24285.78 31493.52 29498.69 283
ACMMP++_ref99.77 90
ACMMP++99.68 133
Test By Simon96.52 169
ITE_SJBPF98.87 14399.22 13498.48 9999.35 11297.50 16998.28 20998.60 21397.64 9699.35 32593.86 28699.27 23298.79 273
DeepMVS_CXcopyleft93.44 34098.24 29594.21 27994.34 34364.28 36291.34 35894.87 35489.45 29392.77 36477.54 36293.14 35893.35 359