This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 66
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21499.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 315
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22599.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 102
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19299.66 60
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 218
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6099.56 2999.95 3099.97 4
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18799.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7399.99 599.86 21
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 266
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10999.84 8599.52 124
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6799.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24599.17 5499.92 5499.76 42
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7699.93 4399.72 48
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7699.93 4399.77 37
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12999.92 5499.57 96
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 113
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17099.92 5499.57 96
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 56
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15199.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 70
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20799.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21099.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21999.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14399.65 4699.45 7499.22 1599.76 22898.44 10099.77 12599.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21199.82 2498.21 15299.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15799.39 181
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18599.91 1199.67 2797.15 16298.91 39899.76 1599.56 21599.92 11
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10299.89 7199.41 171
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13899.81 9999.24 228
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 79
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 12098.93 2699.75 23598.66 8799.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34097.70 14799.73 14497.89 370
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13499.37 9399.49 6798.75 3699.86 11498.20 11299.80 11099.71 49
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12799.91 6199.68 56
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 78
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25398.46 27398.68 4299.93 4299.03 6299.85 8198.64 324
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25698.51 26598.64 4499.93 4298.91 6899.85 8198.88 292
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17198.69 8699.88 7399.76 42
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8199.93 4399.79 32
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10599.90 6799.57 96
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26198.37 28298.72 3899.90 6699.05 6099.77 12598.77 309
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26198.71 8499.76 13799.33 207
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16399.40 8899.36 8898.58 5399.76 22898.78 7699.68 17299.59 85
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20799.57 6599.17 7299.35 9799.17 13298.35 6899.69 26198.46 9999.73 14499.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27396.71 21999.77 12599.50 130
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13698.91 17298.81 21898.94 2599.91 6098.35 10499.73 14499.49 134
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 331
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14199.73 14499.66 60
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 27099.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20499.54 5799.50 6298.97 2399.84 14498.06 12299.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 14099.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28299.96 499.81 698.18 8499.45 35498.97 6699.79 11599.83 24
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10698.29 7399.89 7797.61 15199.71 15799.62 70
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11495.92 27099.69 16799.04 262
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29299.78 2799.82 596.14 21398.63 40499.82 799.93 4399.95 8
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13299.52 22799.35 200
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25299.57 6599.37 4699.21 12499.61 3996.76 18799.83 16198.06 12299.83 9299.71 49
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25295.98 26899.76 13799.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17198.09 11999.36 25299.59 85
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11498.00 12799.82 9599.50 130
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22998.94 16998.86 20798.75 3699.82 17197.53 15799.71 15799.56 102
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23597.17 17399.66 18399.63 69
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20299.35 9799.24 11597.83 10999.89 7797.88 13599.70 16499.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 18099.25 12099.16 13496.84 17899.78 21699.21 5199.84 8599.46 153
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21299.24 20199.04 9399.41 8598.90 19797.65 12399.76 22897.70 14799.79 11599.39 181
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27299.82 27
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31399.48 9898.30 14399.69 3899.53 5897.44 14699.82 17198.84 7499.77 12599.49 134
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22699.33 9597.95 10499.90 6697.16 17499.67 17899.44 161
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19699.04 14798.96 18598.84 3099.79 20597.43 16199.65 18499.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12698.77 7999.77 12598.60 327
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16699.66 4399.02 16398.36 6599.88 8996.91 19599.62 19299.41 171
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19699.34 9999.18 12897.54 13599.77 22297.79 14099.74 14199.04 262
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26898.87 27199.20 6599.19 12698.99 17697.30 15299.85 12698.77 7999.79 11599.65 65
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22199.38 13798.93 10499.12 13298.73 23096.77 18599.86 11498.63 9099.80 11099.46 153
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20595.63 28599.91 6198.86 294
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15999.26 11699.02 16398.18 8499.88 8997.07 18399.45 24199.49 134
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26898.86 27699.20 6599.18 13098.97 18297.29 15499.85 12698.72 8399.78 12099.64 66
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27199.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9199.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19699.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15699.63 4999.04 16098.76 3595.33 41896.56 23399.74 14199.31 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22599.40 13399.14 7499.06 14098.59 25796.71 19199.93 4298.57 9399.77 12599.53 121
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14898.98 15499.19 12497.76 11699.58 31596.57 22999.55 21898.97 275
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24699.36 14597.41 22299.33 10099.20 12396.37 20699.82 17199.57 2799.92 5499.55 109
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 24099.34 15697.51 20999.27 11299.15 13896.34 20899.80 19299.47 3699.93 4399.51 127
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5197.16 17499.70 16499.56 102
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25899.69 3998.16 16298.49 23299.29 10397.06 16699.97 598.29 10899.91 6199.76 42
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24499.25 19698.84 11299.06 14098.76 22796.76 18799.93 4298.57 9399.77 12599.50 130
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35998.86 10998.87 18297.62 33598.63 4698.96 39599.41 3898.29 34798.45 338
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24899.45 11397.16 25099.45 7899.24 11596.12 21599.85 12699.60 2599.88 7399.55 109
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 24099.16 22297.90 17899.28 11099.01 17295.98 22599.79 20599.33 4199.90 6799.51 127
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 79
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12696.54 23799.42 24599.46 153
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24299.36 14597.23 24499.38 9199.17 13296.02 21899.84 14499.57 2799.90 6799.54 113
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25499.06 23798.30 14399.32 10698.97 18296.65 19399.62 29898.37 10399.85 8199.39 181
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23399.39 24899.45 157
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23399.36 14597.15 25299.32 10699.18 12895.84 23299.84 14499.50 3499.91 6199.54 113
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4298.65 8898.83 31999.76 42
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11496.56 23399.39 24899.45 157
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17698.90 17398.90 19798.00 9999.88 8996.15 26199.72 15299.58 91
Skip Steuart: Steuart Systems R&D Blog.
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27298.61 21598.38 28198.62 4799.87 10696.47 24199.67 17899.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 17099.08 13899.02 16397.61 12999.88 8996.99 18999.63 18999.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27298.87 27198.97 10099.06 14099.02 16396.00 22099.80 19298.58 9199.82 9599.60 79
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26599.28 10497.11 16599.84 14496.84 20699.32 25899.47 151
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 29099.79 2699.57 4592.85 30299.42 35999.79 1299.84 8599.60 79
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32498.23 15099.54 5799.46 7095.02 25499.68 27098.24 10999.87 7699.87 18
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18098.85 18398.04 31097.66 12299.84 14496.72 21799.81 9999.13 251
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25098.82 18999.01 17297.71 11999.87 10696.29 25399.69 16799.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25999.24 12198.89 20397.83 10999.81 18596.88 20299.49 23799.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20799.25 19696.94 26198.78 19299.12 14398.02 9799.84 14497.13 17999.67 17899.59 85
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13799.69 3899.46 7098.21 8299.92 5194.13 32699.30 26398.91 287
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11497.77 14299.69 16799.41 171
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30398.63 25197.50 14199.83 16196.79 20899.53 22499.56 102
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34499.47 6996.55 19799.84 14498.56 9699.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21398.58 22198.50 26997.97 10399.85 12696.57 22999.59 20399.53 121
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14698.88 17898.85 21097.53 13799.87 10696.14 26299.31 26099.48 144
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25698.13 30093.81 28699.97 599.26 4699.57 21299.43 165
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21398.56 22498.54 26197.75 11799.88 8996.57 22999.59 20399.58 91
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20798.30 24598.40 27897.86 10899.89 7796.53 23899.72 15299.56 102
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23598.11 26298.39 27998.00 9999.87 10696.86 20599.64 18699.55 109
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21898.44 23698.51 26597.83 10999.88 8996.46 24299.58 20899.58 91
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17197.97 12999.80 11099.29 218
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35799.59 2799.11 13399.27 10694.82 26099.79 20598.34 10599.63 18999.34 202
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21299.49 9697.37 22699.19 12697.65 33298.96 2499.49 34496.50 24098.99 30899.34 202
LS3D98.63 12598.38 14899.36 6697.25 39099.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19296.58 22799.34 25698.92 284
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25898.69 20398.88 20498.00 9999.89 7795.87 27499.59 20399.58 91
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19198.04 26999.11 14497.22 15999.56 32098.57 9398.90 31798.71 315
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19398.62 21399.40 8396.82 18199.80 19295.88 27199.51 22998.75 312
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19098.90 17399.26 11096.12 21599.52 33595.72 28199.71 15799.32 209
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27699.28 18795.54 31699.42 8399.19 12497.27 15599.63 29597.89 13299.97 1999.20 235
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21398.09 26498.68 23997.62 12899.89 7796.22 25699.62 19299.57 96
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33799.50 8997.30 23399.05 14598.98 18099.35 1299.32 37395.72 28199.68 17299.18 242
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22299.46 10997.25 23898.98 15498.99 17697.54 13599.84 14495.88 27199.74 14199.23 230
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27899.18 21597.10 25398.75 19898.92 19398.18 8499.65 28996.68 22199.56 21599.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22198.67 20698.39 27997.68 12099.85 12696.00 26699.51 22999.52 124
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18398.80 21994.80 26399.78 21698.13 11699.13 29199.31 213
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31595.50 38598.66 4399.50 34198.18 11398.71 32798.44 341
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32399.68 4099.64 3491.88 31599.48 34799.82 799.87 7699.62 70
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30599.48 9897.32 23199.11 13398.61 25599.33 1399.30 37696.23 25598.38 34399.28 220
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27198.83 18698.90 19797.80 11499.82 17195.68 28499.52 22799.38 188
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28199.39 13597.67 19299.44 7998.99 17697.53 13799.89 7795.40 29299.68 17299.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 31095.46 38898.59 5099.46 35298.08 12098.71 32798.46 335
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31599.58 5897.79 18698.53 22998.50 26996.76 18799.74 24097.95 13199.64 18699.34 202
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27699.38 13794.87 33498.97 15898.99 17698.01 9899.88 8997.29 16799.70 16499.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29598.93 17098.82 21696.00 22099.83 16197.32 16699.73 14499.36 196
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35699.20 20797.73 18998.45 23598.71 23397.50 14199.82 17198.21 11199.59 20398.93 283
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29198.94 25698.57 12798.89 17598.50 26995.60 23899.85 12697.54 15699.85 8199.59 85
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35899.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8899.94 3899.49 134
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 31099.17 21997.85 18298.41 23997.14 35698.47 5799.92 5198.02 12499.05 29796.92 395
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26298.90 26597.37 22698.83 18699.46 7096.28 20999.79 20598.90 6998.16 35498.95 278
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25899.68 4494.45 34498.99 15399.27 10696.87 17799.94 3697.13 17999.91 6199.57 96
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21799.09 23497.31 23298.75 19898.66 24497.56 13399.64 29296.10 26599.55 21899.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 25099.23 20397.47 21397.90 27698.62 25397.04 16798.81 40197.55 15499.41 24698.94 282
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33399.30 17697.58 20198.10 26398.24 29398.25 7599.34 37096.69 22099.65 18499.12 252
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 36099.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9899.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23699.50 8998.64 11897.39 31797.52 34098.12 9299.95 2496.90 20098.71 32798.38 348
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19997.58 29998.66 24497.40 14899.88 8994.72 30799.60 19999.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22599.38 13795.76 31098.81 19198.82 21698.36 6599.82 17194.75 30499.77 12599.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38899.40 13397.50 21098.82 18998.83 21396.83 18099.84 14497.50 15999.81 9999.71 49
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33799.27 19097.60 20097.99 27298.25 29298.15 9099.38 36596.87 20399.57 21299.42 168
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27699.17 13199.21 12194.81 26299.77 22296.96 19399.88 7399.44 161
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6696.87 20399.68 17299.49 134
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 35098.98 15499.10 14797.52 13999.79 20596.45 24399.64 18699.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17297.32 32099.58 4395.95 22898.75 40296.41 24599.22 27699.87 18
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37499.18 21596.88 26499.33 10098.78 22398.16 8899.28 38096.74 21499.62 19299.44 161
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20699.31 10897.71 32894.61 26799.88 8996.14 26299.19 28399.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39299.54 3098.95 16299.14 14193.50 29099.92 5199.80 1199.96 2399.85 22
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7797.63 15098.52 34199.16 249
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31998.66 30296.33 28899.23 12398.51 26597.48 14599.40 36197.16 17499.46 23999.02 265
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32599.44 11797.45 22099.06 14098.88 20497.99 10299.28 38094.38 32099.58 20899.18 242
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19297.88 13599.20 28099.48 144
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30298.06 26698.43 27697.80 11499.67 27395.69 28399.58 20899.20 235
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22599.81 2595.20 32799.54 5799.44 7591.56 31899.41 36099.78 1499.77 12599.40 180
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30599.35 8997.41 14798.18 40991.59 37499.67 17896.82 398
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28698.46 23498.95 18995.93 22999.60 30596.51 23998.98 31099.31 213
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30399.15 22798.35 13898.83 18699.11 14494.31 27599.85 12696.60 22698.72 32599.37 190
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14697.64 29497.99 31296.44 20299.95 2496.66 22298.93 31598.60 327
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20595.49 29099.80 11099.48 144
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28198.93 25997.25 23897.62 29598.34 28697.27 15599.57 31796.42 24499.33 25799.39 181
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24899.50 8998.10 16497.50 30795.51 38498.41 6299.88 8996.27 25499.24 27297.71 382
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28598.88 26995.84 30898.89 17598.96 18594.40 27299.69 26197.55 15499.95 3099.05 258
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 26099.68 4497.30 23396.68 34897.46 34498.56 5499.80 19296.63 22398.20 35098.86 294
9.1497.78 21099.07 21397.53 24599.32 16395.53 31798.54 22898.70 23697.58 13199.76 22894.32 32199.46 239
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29699.05 24097.74 18896.93 33398.21 29695.59 23999.89 7797.86 13799.93 4399.19 240
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26498.84 28096.10 29798.64 21098.65 24696.04 21799.36 36696.84 20699.14 28999.20 235
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22496.63 35095.55 38397.68 12099.80 19296.73 21699.27 26798.52 333
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38999.05 24096.36 28799.21 12498.79 22196.39 20399.78 21696.74 21499.82 9599.34 202
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38798.97 25596.50 28199.04 14798.85 21095.98 22599.84 14497.26 16999.67 17899.41 171
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26399.69 3994.61 33897.87 27998.05 30996.26 21098.32 40798.74 8198.18 35198.82 297
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27599.47 10696.31 29097.85 28298.20 29796.71 19199.52 33594.62 30899.72 15298.38 348
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36798.38 31997.25 23898.92 17198.95 18995.48 24499.73 24596.99 18998.74 32399.41 171
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21499.27 19098.20 15697.79 28697.98 31394.90 25699.70 25794.42 31699.51 22999.45 157
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21799.28 18794.97 33198.72 20198.77 22597.04 16799.85 12693.79 33699.54 22099.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36798.42 31697.26 23798.88 17898.95 18995.43 24599.73 24597.02 18698.72 32599.41 171
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40499.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24698.75 29597.46 21896.90 33997.83 32396.01 21999.84 14495.82 27899.35 25499.46 153
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29098.73 29895.66 31197.92 27497.70 33097.17 16199.66 28496.18 26099.23 27599.47 151
wuyk23d96.06 30897.62 22591.38 39898.65 30198.57 9898.85 8796.95 36196.86 26699.90 1299.16 13499.18 1798.40 40689.23 39599.77 12577.18 418
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 37097.58 29999.63 3596.21 21199.90 6695.74 28099.54 22099.27 221
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23499.35 15098.72 11698.76 19798.68 23992.57 30799.74 24097.76 14695.60 40399.34 202
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36697.13 35594.13 35199.71 3499.33 9597.93 10599.30 37697.60 15398.94 31498.67 323
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30299.43 12394.49 34097.62 29599.18 12896.82 18199.67 27394.73 30599.93 4399.36 196
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39199.37 14197.65 19498.37 24498.29 29197.40 14899.33 37294.09 32799.22 27698.68 322
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37498.87 10899.11 13398.86 20790.40 32899.78 21697.36 16499.31 26099.19 240
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36298.84 28097.25 23897.48 30996.49 36598.31 7199.90 6696.34 25098.68 33296.15 406
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 30099.05 24093.77 35798.62 21398.83 21393.23 29199.75 23598.33 10799.76 13799.36 196
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28599.25 19695.02 32998.53 22998.51 26597.27 15599.47 35093.50 34499.51 22999.01 266
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28398.90 26597.63 19597.04 32997.93 31895.99 22499.66 28495.31 29398.82 32199.43 165
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 37099.53 8394.03 35498.97 15899.10 14795.29 24799.34 37095.84 27799.73 14499.30 216
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36998.85 27997.25 23897.49 30895.99 37498.07 9399.90 6696.37 24798.67 33396.12 407
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26899.45 11394.82 33596.13 36496.51 36498.52 5699.91 6096.19 25898.83 31998.37 350
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37599.16 22297.05 25498.77 19598.72 23292.88 30099.64 29296.93 19499.76 13799.05 258
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33397.83 28398.37 28294.90 25699.84 14493.85 33599.54 22099.51 127
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34698.42 31694.24 34898.50 23198.13 30094.82 26099.91 6097.22 17199.73 14499.43 165
jason: jason.
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28998.75 29595.89 30798.59 21998.67 24192.08 31399.74 24096.72 21799.81 9999.32 209
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11796.34 39599.49 134
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36598.52 31193.60 35998.61 21598.65 24695.10 25299.60 30596.97 19299.79 11598.99 271
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35297.03 25797.88 27899.23 11990.95 32299.87 10696.61 22599.00 30698.91 287
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38199.18 21597.27 23698.56 22498.74 22991.89 31499.69 26197.06 18599.81 9999.05 258
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17998.95 16298.95 18987.06 34799.81 18597.77 14299.69 16799.23 230
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39498.79 28896.58 27998.60 21798.19 29894.74 26699.64 29296.41 24598.84 31898.82 297
CVMVSNet96.25 30497.21 24993.38 39599.10 20680.56 42297.20 27298.19 32796.94 26199.00 15299.02 16389.50 33499.80 19296.36 24999.59 20399.78 35
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33693.41 40195.25 32599.47 7498.90 19795.63 23799.85 12696.91 19599.73 14499.27 221
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37299.31 16897.25 23898.74 20098.78 22390.07 32999.78 21697.19 17299.80 11099.11 253
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14298.16 25698.62 25388.76 33799.73 24593.88 33399.79 11599.18 242
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38199.21 20594.46 34298.06 26697.16 35497.57 13299.48 34794.46 31399.78 12098.95 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30899.62 5191.58 38298.84 18598.97 18292.36 30899.88 8996.76 21299.95 3099.67 59
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25397.64 34499.11 7698.58 22197.98 31388.65 34199.79 20598.11 11797.39 37898.81 301
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32798.79 28897.23 24495.14 38598.24 29393.22 29299.84 14497.34 16599.84 8599.04 262
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38499.09 23495.99 30398.69 20398.45 27492.73 30599.61 30496.79 20899.03 30198.82 297
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33199.71 3697.47 21399.27 11299.16 13484.30 37199.62 29897.89 13299.77 12598.81 301
MVS_030497.44 24397.01 25998.72 18096.42 40896.74 23597.20 27291.97 40898.46 13598.30 24598.79 22192.74 30499.91 6099.30 4399.94 3899.52 124
Patchmtry97.35 24996.97 26098.50 21497.31 38996.47 24398.18 15498.92 26298.95 10398.78 19299.37 8485.44 36299.85 12695.96 26999.83 9299.17 246
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33699.34 9386.72 34999.87 10697.53 15797.36 38197.81 375
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29798.48 31394.49 34097.27 32197.90 31992.77 30399.80 19296.57 22999.32 25899.16 249
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32699.27 19095.42 32098.28 24998.30 29093.16 29399.71 25394.99 29897.37 37998.87 293
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29399.35 15093.18 36497.71 29098.07 30895.00 25599.31 37493.97 32999.13 29198.42 345
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20297.39 31796.75 36196.77 18599.15 38990.16 39199.02 30494.88 412
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22297.69 34099.20 6597.59 29895.90 37788.12 34699.55 32498.18 11398.96 31298.70 318
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36197.97 33393.53 36098.16 25697.58 33693.81 28699.91 6096.77 21199.57 21299.17 246
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29799.58 5893.14 36596.89 34097.48 34292.11 31299.86 11496.91 19599.54 22099.57 96
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38499.16 22297.04 25598.63 21198.71 23388.69 33899.69 26197.00 18799.81 9999.01 266
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38499.16 22297.04 25598.63 21198.71 23388.68 34099.69 26197.00 18799.81 9999.00 270
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35895.07 32898.48 23399.33 9588.41 34499.65 28996.13 26498.92 31698.07 363
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41799.11 7699.46 7599.58 4388.69 33899.86 11498.80 7599.95 3099.62 70
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39497.69 29299.16 13496.91 17599.90 6690.89 38799.41 24699.07 256
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31699.06 23793.49 36297.36 31997.78 32495.75 23499.49 34493.44 34598.77 32298.52 333
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34198.20 32592.62 37398.55 22698.54 26194.88 25999.52 33593.96 33099.44 24498.59 330
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29998.26 32296.72 27398.44 23697.37 34995.20 24999.47 35091.89 36897.43 37698.44 341
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39899.74 1098.78 19299.01 17284.45 36899.73 24597.44 16099.27 26799.25 225
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31898.93 25996.91 26397.06 32897.39 34794.38 27399.45 35491.66 37199.18 28598.14 359
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28498.93 25995.58 31596.92 33497.66 33195.87 23199.53 33190.97 38499.14 28998.04 364
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38199.43 12390.98 39097.62 29597.36 35096.82 18199.67 27394.73 30599.56 21598.98 272
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26799.30 17692.93 36896.62 35198.00 31195.73 23599.68 27092.62 36298.46 34299.35 200
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39896.29 36299.15 13896.56 19699.90 6692.90 35399.20 28097.89 370
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34896.88 36496.11 29697.67 29398.67 24193.10 29599.85 12694.16 32299.22 27698.81 301
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33599.01 25191.21 38897.79 28697.85 32296.89 17699.69 26192.75 35999.38 25199.39 181
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41999.08 8899.36 9599.57 4588.47 34399.82 17198.52 9799.95 3099.54 113
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34298.12 33096.45 28597.92 27498.73 23093.77 28899.39 36391.19 38299.04 30099.33 207
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 37099.50 8994.21 34999.01 15198.32 28986.61 35099.99 297.10 18199.84 8599.60 79
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30197.36 34796.70 27597.87 27997.98 31395.14 25199.44 35690.47 39098.58 33999.25 225
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24298.87 27197.49 21299.06 14099.05 15880.72 38499.80 19298.44 10099.82 9599.37 190
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34999.53 8391.51 38496.80 34598.48 27291.36 31999.83 16196.58 22799.53 22499.62 70
MonoMVSNet96.25 30496.53 29195.39 37396.57 40491.01 38098.82 9097.68 34198.57 12798.03 27099.37 8490.92 32397.78 41194.99 29893.88 41197.38 391
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32199.04 24396.05 29895.55 37696.84 35993.84 28499.54 32992.82 35699.26 27099.32 209
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33999.03 24591.64 38095.85 37097.53 33896.47 20099.76 22893.67 33899.16 28699.36 196
PatchT96.65 29096.35 29497.54 29597.40 38695.32 27997.98 18796.64 36899.33 5196.89 34099.42 7784.32 37099.81 18597.69 14997.49 37297.48 388
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33697.33 22998.41 23998.67 24183.68 37599.69 26195.16 29699.31 26098.77 309
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 25098.76 29295.81 30996.61 35296.47 36794.12 28199.17 38790.82 38897.78 36799.06 257
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26497.36 34798.21 15298.17 25497.86 32086.27 35299.55 32494.87 30298.32 34498.89 289
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29597.92 33594.94 33297.12 32497.74 32791.11 32199.82 17193.89 33298.15 35599.18 242
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36397.23 24497.87 27999.10 14786.11 35699.65 28991.65 37299.21 27998.82 297
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37798.84 28091.58 38296.05 36895.58 38295.68 23699.66 28495.59 28798.09 35898.76 311
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37696.91 33699.37 8485.44 36299.81 18597.39 16397.36 38197.81 375
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28799.28 18783.58 41198.13 26097.78 32496.13 21499.40 36193.52 34299.29 26598.45 338
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20699.55 7681.42 41496.51 35698.58 25895.53 24099.67 27393.41 34699.58 20898.98 272
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40992.27 36193.69 40398.89 26891.14 38998.30 24597.35 35190.58 32699.58 31596.31 25199.03 30198.60 327
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31399.06 23790.94 39195.59 37397.38 34894.41 27199.59 30990.93 38598.04 36499.05 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40897.72 33892.69 37296.49 35996.44 36893.72 28999.43 35793.61 33999.28 26698.71 315
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37895.54 37996.17 37294.77 26599.52 33589.62 39398.23 34897.72 381
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38887.32 40297.65 23196.65 36795.30 32497.07 32798.69 23784.77 36599.75 23594.97 30098.64 33498.83 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet94.32 34495.62 31090.42 39998.46 32275.36 42396.29 32189.13 41595.25 32595.38 38299.75 1392.88 30099.19 38694.07 32899.39 24896.72 400
MVStest195.86 31595.60 31196.63 33995.87 41591.70 36697.93 19198.94 25698.03 16699.56 5399.66 2971.83 40498.26 40899.35 4099.24 27299.91 12
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32191.22 38794.25 39496.68 36295.53 24099.03 39191.64 37397.18 38596.74 399
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 39098.26 32291.94 37996.37 36097.25 35293.06 29799.43 35791.42 37798.74 32398.89 289
WB-MVSnew95.73 32095.57 31496.23 35296.70 40290.70 38696.07 33493.86 39995.60 31497.04 32995.45 39196.00 22099.55 32491.04 38398.31 34698.43 343
Syy-MVS96.04 30995.56 31597.49 30097.10 39494.48 30496.18 32896.58 36995.65 31294.77 38892.29 41591.27 32099.36 36698.17 11598.05 36298.63 325
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40598.88 26993.53 36094.65 39197.15 35586.17 35499.93 4297.41 16299.93 4398.73 314
tpmrst95.07 33495.46 31793.91 38897.11 39384.36 41497.62 23496.96 36094.98 33096.35 36198.80 21985.46 36199.59 30995.60 28696.23 39797.79 378
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25697.65 34295.95 30595.53 38097.96 31782.11 38399.79 20596.31 25197.44 37598.80 306
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37698.21 15298.40 24397.76 32686.88 34899.63 29595.42 29189.27 41698.95 278
EPNet96.14 30795.44 31998.25 23890.76 42395.50 27297.92 19494.65 39098.97 10092.98 40698.85 21089.12 33699.87 10695.99 26799.68 17299.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41198.69 9097.02 28099.12 22988.90 40197.83 28398.86 20789.51 33398.90 39991.92 36799.51 22998.92 284
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38597.95 17296.56 35395.95 37590.70 32597.68 41288.32 39796.13 39998.11 360
cl2295.79 31895.39 32296.98 32496.77 40192.79 34994.40 39298.53 31094.59 33997.89 27798.17 29982.82 38099.24 38296.37 24799.03 30198.92 284
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36292.28 37795.17 38498.57 25989.90 33199.75 23591.20 38197.33 38398.10 361
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40197.93 33495.49 31896.68 34897.42 34683.21 37699.30 37696.22 25698.55 34099.01 266
reproduce_monomvs95.00 33795.25 32694.22 38497.51 38383.34 41697.86 20398.44 31498.51 13299.29 10999.30 10167.68 41199.56 32098.89 7199.81 9999.77 37
tpmvs95.02 33695.25 32694.33 38296.39 41085.87 40598.08 16896.83 36595.46 31995.51 38198.69 23785.91 35799.53 33194.16 32296.23 39797.58 386
MDTV_nov1_ep1395.22 32897.06 39683.20 41797.74 21996.16 37494.37 34696.99 33298.83 21383.95 37399.53 33193.90 33197.95 366
FMVSNet596.01 31095.20 32998.41 22397.53 37896.10 25198.74 9299.50 8997.22 24798.03 27099.04 16069.80 40699.88 8997.27 16899.71 15799.25 225
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 33097.81 26798.41 33097.15 21697.37 25798.62 30683.86 41098.65 20998.37 28294.29 27699.68 27088.41 39698.62 33796.60 401
TR-MVS95.55 32595.12 33196.86 33397.54 37693.94 32396.49 30996.53 37194.36 34797.03 33196.61 36394.26 27799.16 38886.91 40396.31 39697.47 389
JIA-IIPM95.52 32695.03 33297.00 32296.85 39994.03 31996.93 28795.82 38199.20 6594.63 39299.71 1983.09 37799.60 30594.42 31694.64 40797.36 392
tttt051795.64 32394.98 33397.64 28499.36 14793.81 33098.72 9790.47 41298.08 16598.67 20698.34 28673.88 40299.92 5197.77 14299.51 22999.20 235
ADS-MVSNet295.43 32894.98 33396.76 33798.14 34691.74 36597.92 19497.76 33790.23 39296.51 35698.91 19485.61 35999.85 12692.88 35496.90 38898.69 319
FE-MVS95.66 32294.95 33597.77 27098.53 31695.28 28099.40 1696.09 37693.11 36697.96 27399.26 11079.10 39399.77 22292.40 36598.71 32798.27 354
ADS-MVSNet95.24 33194.93 33696.18 35498.14 34690.10 39097.92 19497.32 35090.23 39296.51 35698.91 19485.61 35999.74 24092.88 35496.90 38898.69 319
BH-w/o95.13 33394.89 33795.86 36098.20 34291.31 37395.65 35497.37 34693.64 35896.52 35595.70 38193.04 29899.02 39288.10 39895.82 40297.24 393
WBMVS95.18 33294.78 33896.37 34597.68 37189.74 39295.80 35098.73 29897.54 20798.30 24598.44 27570.06 40599.82 17196.62 22499.87 7699.54 113
EPNet_dtu94.93 33894.78 33895.38 37493.58 41987.68 40196.78 29495.69 38597.35 22889.14 41698.09 30688.15 34599.49 34494.95 30199.30 26398.98 272
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPR95.29 32994.47 34097.75 27497.50 38495.14 28694.89 37898.71 30091.39 38695.35 38395.48 38794.57 26899.14 39084.95 40697.37 37998.97 275
thisisatest053095.27 33094.45 34197.74 27699.19 18594.37 30797.86 20390.20 41397.17 24998.22 25297.65 33273.53 40399.90 6696.90 20099.35 25498.95 278
pmmvs395.03 33594.40 34296.93 32697.70 36892.53 35495.08 37397.71 33988.57 40297.71 29098.08 30779.39 39199.82 17196.19 25899.11 29598.43 343
E-PMN94.17 34894.37 34393.58 39296.86 39885.71 40890.11 41497.07 35698.17 15997.82 28597.19 35384.62 36798.94 39689.77 39297.68 36996.09 408
tpm94.67 34094.34 34495.66 36697.68 37188.42 39697.88 19994.90 38894.46 34296.03 36998.56 26078.66 39499.79 20595.88 27195.01 40698.78 308
cascas94.79 33994.33 34596.15 35896.02 41492.36 35992.34 41099.26 19585.34 40995.08 38694.96 39792.96 29998.53 40594.41 31998.59 33897.56 387
EMVS93.83 35494.02 34693.23 39696.83 40084.96 40989.77 41596.32 37397.92 17697.43 31496.36 37186.17 35498.93 39787.68 39997.73 36895.81 409
test-LLR93.90 35393.85 34794.04 38696.53 40584.62 41294.05 39892.39 40596.17 29394.12 39695.07 39282.30 38199.67 27395.87 27498.18 35197.82 373
thres600view794.45 34293.83 34896.29 34899.06 21791.53 36897.99 18694.24 39698.34 13997.44 31395.01 39479.84 38799.67 27384.33 40798.23 34897.66 383
CostFormer93.97 35293.78 34994.51 38197.53 37885.83 40797.98 18795.96 37889.29 40094.99 38798.63 25178.63 39599.62 29894.54 31096.50 39398.09 362
test0.0.03 194.51 34193.69 35096.99 32396.05 41293.61 33894.97 37693.49 40096.17 29397.57 30194.88 39882.30 38199.01 39493.60 34094.17 41098.37 350
thres100view90094.19 34793.67 35195.75 36499.06 21791.35 37298.03 17694.24 39698.33 14097.40 31594.98 39679.84 38799.62 29883.05 40998.08 35996.29 402
dp93.47 35993.59 35293.13 39796.64 40381.62 42197.66 22996.42 37292.80 37196.11 36598.64 24978.55 39799.59 30993.31 34792.18 41598.16 358
tfpn200view994.03 35193.44 35395.78 36398.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35996.29 402
thres40094.14 34993.44 35396.24 35198.93 23791.44 37097.60 23794.29 39497.94 17497.10 32594.31 40379.67 38999.62 29883.05 40998.08 35997.66 383
EPMVS93.72 35693.27 35595.09 37896.04 41387.76 40098.13 16085.01 42094.69 33796.92 33498.64 24978.47 39899.31 37495.04 29796.46 39498.20 356
ET-MVSNet_ETH3D94.30 34693.21 35697.58 28998.14 34694.47 30594.78 38093.24 40394.72 33689.56 41495.87 37878.57 39699.81 18596.91 19597.11 38798.46 335
thisisatest051594.12 35093.16 35796.97 32598.60 30492.90 34793.77 40290.61 41194.10 35296.91 33695.87 37874.99 40199.80 19294.52 31199.12 29498.20 356
thres20093.72 35693.14 35895.46 37298.66 29791.29 37496.61 30494.63 39197.39 22496.83 34393.71 40679.88 38699.56 32082.40 41298.13 35695.54 411
tpm cat193.29 36293.13 35993.75 39097.39 38784.74 41097.39 25597.65 34283.39 41294.16 39598.41 27782.86 37999.39 36391.56 37595.35 40597.14 394
PCF-MVS92.86 1894.36 34393.00 36098.42 22298.70 28297.56 18993.16 40699.11 23179.59 41597.55 30297.43 34592.19 31099.73 24579.85 41599.45 24197.97 369
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline293.73 35592.83 36196.42 34497.70 36891.28 37596.84 29289.77 41493.96 35692.44 40995.93 37679.14 39299.77 22292.94 35296.76 39298.21 355
X-MVStestdata94.32 34492.59 36299.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30345.85 41997.50 14199.83 16196.79 20899.53 22499.56 102
tpm293.09 36592.58 36394.62 38097.56 37486.53 40497.66 22995.79 38286.15 40794.07 39898.23 29575.95 39999.53 33190.91 38696.86 39197.81 375
UBG93.25 36392.32 36496.04 35997.72 36390.16 38995.92 34495.91 38096.03 30193.95 40193.04 41169.60 40799.52 33590.72 38997.98 36598.45 338
testing9193.32 36192.27 36596.47 34397.54 37691.25 37696.17 33096.76 36697.18 24893.65 40493.50 40865.11 41899.63 29593.04 35197.45 37498.53 332
FPMVS93.44 36092.23 36697.08 31999.25 17097.86 16495.61 35597.16 35492.90 36993.76 40398.65 24675.94 40095.66 41679.30 41697.49 37297.73 380
dmvs_testset92.94 36892.21 36795.13 37698.59 30790.99 38197.65 23192.09 40796.95 26094.00 39993.55 40792.34 30996.97 41572.20 41892.52 41397.43 390
testing393.51 35892.09 36897.75 27498.60 30494.40 30697.32 26195.26 38797.56 20496.79 34695.50 38553.57 42499.77 22295.26 29498.97 31199.08 254
MVS93.19 36492.09 36896.50 34296.91 39794.03 31998.07 17098.06 33268.01 41794.56 39396.48 36695.96 22799.30 37683.84 40896.89 39096.17 404
testing1193.08 36692.02 37096.26 35097.56 37490.83 38496.32 31995.70 38396.47 28492.66 40893.73 40564.36 41999.59 30993.77 33797.57 37098.37 350
KD-MVS_2432*160092.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
miper_refine_blended92.87 36991.99 37195.51 37091.37 42189.27 39394.07 39698.14 32895.42 32097.25 32296.44 36867.86 40999.24 38291.28 37996.08 40098.02 365
testing9993.04 36791.98 37396.23 35297.53 37890.70 38696.35 31795.94 37996.87 26593.41 40593.43 40963.84 42099.59 30993.24 34997.19 38498.40 346
MVEpermissive83.40 2292.50 37291.92 37494.25 38398.83 25991.64 36792.71 40783.52 42195.92 30686.46 41995.46 38895.20 24995.40 41780.51 41498.64 33495.73 410
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test250692.39 37391.89 37593.89 38999.38 14082.28 41999.32 2366.03 42599.08 8898.77 19599.57 4566.26 41599.84 14498.71 8499.95 3099.54 113
TESTMET0.1,192.19 37891.77 37693.46 39396.48 40782.80 41894.05 39891.52 41094.45 34494.00 39994.88 39866.65 41399.56 32095.78 27998.11 35798.02 365
UWE-MVS92.38 37491.76 37794.21 38597.16 39284.65 41195.42 36488.45 41695.96 30496.17 36395.84 38066.36 41499.71 25391.87 36998.64 33498.28 353
test-mter92.33 37691.76 37794.04 38696.53 40584.62 41294.05 39892.39 40594.00 35594.12 39695.07 39265.63 41799.67 27395.87 27498.18 35197.82 373
gg-mvs-nofinetune92.37 37591.20 37995.85 36195.80 41692.38 35899.31 2781.84 42299.75 891.83 41199.74 1568.29 40899.02 39287.15 40097.12 38696.16 405
ETVMVS92.60 37191.08 38097.18 31497.70 36893.65 33796.54 30595.70 38396.51 28094.68 39092.39 41461.80 42199.50 34186.97 40197.41 37798.40 346
IB-MVS91.63 1992.24 37790.90 38196.27 34997.22 39191.24 37794.36 39393.33 40292.37 37592.24 41094.58 40266.20 41699.89 7793.16 35094.63 40897.66 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
myMVS_eth3d91.92 38090.45 38296.30 34797.10 39490.90 38296.18 32896.58 36995.65 31294.77 38892.29 41553.88 42399.36 36689.59 39498.05 36298.63 325
testing22291.96 37990.37 38396.72 33897.47 38592.59 35296.11 33294.76 38996.83 26792.90 40792.87 41257.92 42299.55 32486.93 40297.52 37198.00 368
PAPM91.88 38190.34 38496.51 34198.06 35192.56 35392.44 40997.17 35386.35 40690.38 41396.01 37386.61 35099.21 38570.65 41995.43 40497.75 379
PVSNet_089.98 2191.15 38290.30 38593.70 39197.72 36384.34 41590.24 41297.42 34590.20 39593.79 40293.09 41090.90 32498.89 40086.57 40472.76 41997.87 372
EGC-MVSNET85.24 38380.54 38699.34 7599.77 2699.20 3899.08 5899.29 18412.08 42120.84 42299.42 7797.55 13499.85 12697.08 18299.72 15298.96 277
test_method79.78 38479.50 38780.62 40080.21 42545.76 42870.82 41698.41 31831.08 42080.89 42097.71 32884.85 36497.37 41391.51 37680.03 41798.75 312
tmp_tt78.77 38578.73 38878.90 40158.45 42674.76 42594.20 39578.26 42439.16 41986.71 41892.82 41380.50 38575.19 42186.16 40592.29 41486.74 415
dongtai76.24 38675.95 38977.12 40292.39 42067.91 42690.16 41359.44 42782.04 41389.42 41594.67 40149.68 42581.74 42048.06 42077.66 41881.72 416
kuosan69.30 38768.95 39070.34 40387.68 42465.00 42791.11 41159.90 42669.02 41674.46 42188.89 41848.58 42668.03 42228.61 42172.33 42077.99 417
cdsmvs_eth3d_5k24.66 38832.88 3910.00 4060.00 4290.00 4310.00 41799.10 2320.00 4240.00 42597.58 33699.21 160.00 4250.00 4240.00 4230.00 421
testmvs17.12 38920.53 3926.87 40512.05 4274.20 43093.62 4046.73 4284.62 42310.41 42324.33 4208.28 4283.56 4249.69 42315.07 42112.86 420
test12317.04 39020.11 3937.82 40410.25 4284.91 42994.80 3794.47 4294.93 42210.00 42424.28 4219.69 4273.64 42310.14 42212.43 42214.92 419
pcd_1.5k_mvsjas8.17 39110.90 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42498.07 930.00 4250.00 4240.00 4230.00 421
ab-mvs-re8.12 39210.83 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42597.48 3420.00 4290.00 4250.00 4240.00 4230.00 421
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS90.90 38291.37 378
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
PC_three_145293.27 36399.40 8898.54 26198.22 8097.00 41495.17 29599.45 24199.49 134
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17799.60 19999.71 49
test_one_060199.39 13999.20 3899.31 16898.49 13398.66 20899.02 16397.64 126
eth-test20.00 429
eth-test0.00 429
ZD-MVS99.01 22598.84 7899.07 23694.10 35298.05 26898.12 30296.36 20799.86 11492.70 36199.19 283
IU-MVS99.49 11599.15 5198.87 27192.97 36799.41 8596.76 21299.62 19299.66 60
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26498.18 8498.75 40294.62 30899.48 23899.41 171
test_241102_TWO99.30 17698.03 16699.26 11699.02 16397.51 14099.88 8996.91 19599.60 19999.66 60
test_241102_ONE99.49 11599.17 4399.31 16897.98 16999.66 4398.90 19798.36 6599.48 347
save fliter99.11 20497.97 15496.53 30799.02 24898.24 149
test_0728_THIRD98.17 15999.08 13899.02 16397.89 10699.88 8997.07 18399.71 15799.70 54
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18999.63 18999.68 56
test072699.50 10899.21 3298.17 15799.35 15097.97 17099.26 11699.06 15197.61 129
GSMVS98.81 301
test_part299.36 14799.10 6499.05 145
sam_mvs184.74 36698.81 301
sam_mvs84.29 372
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11299.21 12196.99 17299.50 34196.55 23699.50 23699.26 224
MTGPAbinary99.20 207
test_post197.59 23920.48 42383.07 37899.66 28494.16 322
test_post21.25 42283.86 37499.70 257
patchmatchnet-post98.77 22584.37 36999.85 126
GG-mvs-BLEND94.76 37994.54 41892.13 36399.31 2780.47 42388.73 41791.01 41767.59 41298.16 41082.30 41394.53 40993.98 413
MTMP97.93 19191.91 409
gm-plane-assit94.83 41781.97 42088.07 40494.99 39599.60 30591.76 370
test9_res93.28 34899.15 28899.38 188
TEST998.71 27898.08 14195.96 33999.03 24591.40 38595.85 37097.53 33896.52 19899.76 228
test_898.67 29298.01 14995.91 34599.02 24891.64 38095.79 37297.50 34196.47 20099.76 228
agg_prior292.50 36499.16 28699.37 190
agg_prior98.68 29197.99 15099.01 25195.59 37399.77 222
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26898.88 17899.06 15197.65 12399.57 31794.45 31499.61 19799.37 190
test_prior497.97 15495.86 346
test_prior295.74 35296.48 28396.11 36597.63 33495.92 23094.16 32299.20 280
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 216
旧先验295.76 35188.56 40397.52 30599.66 28494.48 312
新几何295.93 342
新几何198.91 15098.94 23597.76 17698.76 29287.58 40596.75 34798.10 30494.80 26399.78 21692.73 36099.00 30699.20 235
旧先验198.82 26297.45 19598.76 29298.34 28695.50 24399.01 30599.23 230
无先验95.74 35298.74 29789.38 39999.73 24592.38 36699.22 234
原ACMM295.53 358
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37496.07 36798.10 30495.39 24699.71 25392.61 36398.99 30899.08 254
test22298.92 24196.93 22795.54 35798.78 29085.72 40896.86 34298.11 30394.43 27099.10 29699.23 230
testdata299.79 20592.80 358
segment_acmp97.02 170
testdata98.09 24898.93 23795.40 27698.80 28790.08 39697.45 31298.37 28295.26 24899.70 25793.58 34198.95 31399.17 246
testdata195.44 36396.32 289
test1298.93 14698.58 30997.83 16798.66 30296.53 35495.51 24299.69 26199.13 29199.27 221
plane_prior799.19 18597.87 163
plane_prior698.99 22997.70 18294.90 256
plane_prior599.27 19099.70 25794.42 31699.51 22999.45 157
plane_prior497.98 313
plane_prior397.78 17597.41 22297.79 286
plane_prior297.77 21498.20 156
plane_prior199.05 220
plane_prior97.65 18497.07 27996.72 27399.36 252
n20.00 430
nn0.00 430
door-mid99.57 65
lessismore_v098.97 14099.73 3697.53 19186.71 41899.37 9399.52 6189.93 33099.92 5198.99 6599.72 15299.44 161
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27799.10 13699.06 15198.71 3999.83 16195.58 28899.78 12099.62 70
test1198.87 271
door99.41 130
HQP5-MVS96.79 231
HQP-NCC98.67 29296.29 32196.05 29895.55 376
ACMP_Plane98.67 29296.29 32196.05 29895.55 376
BP-MVS92.82 356
HQP4-MVS95.56 37599.54 32999.32 209
HQP3-MVS99.04 24399.26 270
HQP2-MVS93.84 284
NP-MVS98.84 25797.39 19996.84 359
MDTV_nov1_ep13_2view74.92 42497.69 22490.06 39797.75 28985.78 35893.52 34298.69 319
ACMMP++_ref99.77 125
ACMMP++99.68 172
Test By Simon96.52 198
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21098.28 24998.60 25697.64 12699.35 36993.86 33499.27 26798.79 307
DeepMVS_CXcopyleft93.44 39498.24 33994.21 31194.34 39364.28 41891.34 41294.87 40089.45 33592.77 41977.54 41793.14 41293.35 414