This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25587.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepPCF-MVS90.46 694.20 12793.56 15296.14 5295.96 22892.96 4389.48 29397.46 11885.14 24996.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
DeepC-MVS_fast89.96 793.73 14293.44 15594.60 12196.14 21487.90 12693.36 16497.14 14585.53 24293.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft89.45 892.27 18892.13 18692.68 19594.53 28784.10 20495.70 7697.03 15382.44 28891.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 301
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS88.58 1092.49 18091.75 19694.73 11096.50 18389.69 8692.91 17697.68 10178.02 32892.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 34286.18 24798.78 14489.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft85.34 1590.40 22488.92 25494.85 10596.53 18290.02 8191.58 23396.48 19480.16 30786.14 35492.18 31785.73 22598.25 20776.87 33994.61 32896.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft85.12 1689.52 25189.05 25090.92 26094.58 28681.21 24591.10 24493.41 28877.03 33493.41 21593.99 27383.23 24697.80 24879.93 31494.80 32393.74 349
PCF-MVS84.52 1789.12 25887.71 28293.34 17296.06 22085.84 17786.58 35297.31 13268.46 38493.61 21193.89 27787.51 19898.52 18167.85 38598.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29994.02 14191.58 32175.68 34083.64 37493.64 28277.40 29997.42 27671.70 37192.07 37193.05 362
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 31182.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29964.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32094.60 35669.87 38193.69 34894.46 332
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32589.59 38956.68 39960.05 40482.57 398
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21888.77 38685.42 18790.31 26894.38 26870.02 37888.00 33793.30 29273.78 32394.03 36575.96 34896.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27172.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22484.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 267
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 29181.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 310
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24583.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 273
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34288.10 36744.08 40396.90 30464.23 39196.36 28595.14 310
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29683.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 300
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26982.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 306
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 32081.00 39076.23 33987.98 33887.77 36984.98 23493.35 37062.85 39594.10 34295.98 279
fmvsm_l_conf0.5_n_a93.59 14593.63 14793.49 16996.10 21785.66 18392.32 20396.57 18781.32 29895.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
fmvsm_l_conf0.5_n93.79 14093.81 13793.73 15696.16 21186.26 16792.46 19496.72 17881.69 29595.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
fmvsm_s_conf0.1_n_a94.26 12394.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27395.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
fmvsm_s_conf0.1_n94.19 12994.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 26195.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
fmvsm_s_conf0.5_n_a94.02 13394.08 13493.84 15396.72 16685.73 18093.65 15595.23 24683.30 27195.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
fmvsm_s_conf0.5_n94.00 13494.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 26095.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
MM94.41 11594.14 13195.22 9495.84 23587.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
WAC-MVS61.25 39974.55 353
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29985.13 36081.64 39677.44 29895.00 35185.94 24994.12 34094.91 320
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23697.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29985.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
testing383.66 33282.52 33787.08 33495.84 23565.84 38789.80 28577.17 40388.17 19390.84 28788.63 36230.95 41198.11 21884.05 27197.19 25797.28 226
SSC-MVS90.16 23592.96 16381.78 37597.88 9948.48 40790.75 25187.69 34896.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23996.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
WB-MVS89.44 25392.15 18581.32 37697.73 11048.22 40889.73 28687.98 34695.24 3696.05 11396.99 12785.18 23196.95 29982.45 28697.97 22398.78 88
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24198.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22289.51 29287.37 35184.38 26385.37 35785.08 38772.44 32686.59 39668.05 38491.03 37991.33 376
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31687.57 22199.35 6198.70 101
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30978.70 39882.69 28381.64 39079.46 39875.93 31485.74 39848.78 40482.85 39786.76 391
sd_testset93.94 13694.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 101
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23897.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28689.45 29495.44 23775.29 34793.23 22695.65 20871.58 33190.23 38688.05 21293.55 35195.44 303
test_vis1_n_192089.45 25289.85 23988.28 32093.59 30776.71 32090.67 25597.78 9679.67 31290.30 29896.11 18576.62 31192.17 37690.31 15493.57 34995.96 280
test_vis1_n89.01 26389.01 25289.03 30492.57 32582.46 22892.62 18796.06 21173.02 36090.40 29595.77 20374.86 31889.68 38890.78 14094.98 31794.95 317
test_fmvs1_n88.73 27388.38 26489.76 29192.06 34082.53 22692.30 20696.59 18671.14 36992.58 24995.41 22168.55 34089.57 39091.12 13195.66 29997.18 229
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17481.11 38975.03 40470.80 37488.57 33094.63 25083.08 24887.38 39480.39 30486.57 39087.21 390
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28266.43 38887.64 34389.20 35879.33 28185.38 39981.59 29589.98 38393.66 351
test_vis3_rt90.40 22490.03 23591.52 23792.58 32488.95 10390.38 26597.72 10073.30 35797.79 3097.51 8477.05 30487.10 39589.03 19394.89 31998.50 122
test_fmvs290.62 21990.40 22891.29 24691.93 34585.46 18692.70 18396.48 19474.44 35094.91 17397.59 7475.52 31690.57 38293.44 6896.56 28097.84 182
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24390.43 26495.72 22370.55 37591.70 27394.63 25068.13 34189.42 39190.59 14495.34 30994.94 319
test_fmvs392.42 18292.40 18192.46 20793.80 30587.28 13693.86 14797.05 15276.86 33596.25 10298.66 1882.87 25191.26 38095.44 2696.83 27298.82 82
mvsany_test389.11 25988.21 27491.83 22391.30 35890.25 7988.09 32278.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23894.20 33794.80 323
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
test_f86.65 31187.13 29485.19 35690.28 37186.11 17186.52 35391.66 31969.76 37995.73 13197.21 11069.51 33881.28 40289.15 19094.40 33088.17 388
FE-MVS89.06 26088.29 26791.36 24294.78 27579.57 27396.77 2890.99 32484.87 25692.96 23696.29 17460.69 37998.80 13980.18 30997.11 26095.71 292
FA-MVS(test-final)91.81 19591.85 19391.68 23194.95 26879.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29698.45 18988.04 21397.49 24596.61 251
iter_conf_final90.23 23389.32 24692.95 18394.65 28481.46 24094.32 13095.40 24285.61 23992.84 23995.37 22454.58 38899.13 8892.16 10498.94 12498.25 139
bld_raw_dy_0_6494.27 12194.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28698.87 12595.63 1799.53 3898.81 84
patch_mono-292.46 18192.72 17391.71 22996.65 17078.91 28788.85 31097.17 14383.89 26792.45 25496.76 14189.86 17297.09 29390.24 15998.59 16499.12 43
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1842.44 4065.32 40798.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
test250685.42 31884.57 32187.96 32597.81 10366.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16388.09 21199.18 9498.67 105
test111190.39 22690.61 22289.74 29298.04 8871.50 36195.59 8179.72 39689.41 16495.94 11798.14 3970.79 33498.81 13688.52 20499.32 6898.90 74
ECVR-MVScopyleft90.12 23790.16 23190.00 28897.81 10372.68 35595.76 7578.54 39989.04 17295.36 15098.10 4270.51 33598.64 16887.10 22999.18 9498.67 105
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 307
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
PC_three_145275.31 34695.87 12295.75 20492.93 10196.34 32587.18 22898.68 15598.04 156
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 414
eth-test0.00 414
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
Anonymous2024052192.86 16993.57 15190.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27697.96 23292.60 9899.68 1898.75 92
h-mvs3392.89 16691.99 18995.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30899.14 8691.02 13395.71 29897.04 235
hse-mvs292.24 18991.20 20895.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30898.69 16191.02 13396.03 29096.81 245
CL-MVSNet_self_test90.04 24389.90 23890.47 27395.24 26377.81 30286.60 35192.62 30385.64 23793.25 22593.92 27583.84 24096.06 33079.93 31498.03 21797.53 208
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
KD-MVS_self_test94.10 13094.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
AUN-MVS90.05 24288.30 26695.32 8896.09 21890.52 7792.42 19892.05 31582.08 29288.45 33192.86 30165.76 35698.69 16188.91 19696.07 28996.75 249
ZD-MVS97.23 13990.32 7897.54 11284.40 26294.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
IU-MVS98.51 5186.66 15496.83 17072.74 36295.83 12393.00 8799.29 7498.64 112
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
cl2289.02 26188.50 26190.59 27189.76 37576.45 32386.62 35094.03 27582.98 28092.65 24692.49 31072.05 32997.53 26888.93 19497.02 26397.78 189
miper_ehance_all_eth90.48 22190.42 22790.69 26891.62 35376.57 32286.83 34396.18 20883.38 27094.06 19692.66 30982.20 25998.04 22289.79 17297.02 26397.45 212
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23075.68 34092.49 25189.45 35578.96 28397.88 23987.86 21897.02 26396.81 245
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
dcpmvs_293.96 13595.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
cl____90.65 21790.56 22490.91 26291.85 34676.98 31586.75 34595.36 24385.53 24294.06 19694.89 23977.36 30297.98 23190.27 15798.98 11497.76 191
DIV-MVS_self_test90.65 21790.56 22490.91 26291.85 34676.99 31486.75 34595.36 24385.52 24494.06 19694.89 23977.37 30197.99 23090.28 15698.97 11997.76 191
eth_miper_zixun_eth90.72 21490.61 22291.05 25492.04 34176.84 31886.91 34096.67 18185.21 24794.41 18793.92 27579.53 28098.26 20689.76 17397.02 26398.06 153
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22593.04 31681.28 24287.17 33686.14 35979.57 31383.65 37388.66 36157.10 38398.18 21387.74 21995.40 30695.90 285
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
EIA-MVS92.35 18592.03 18793.30 17495.81 23983.97 20692.80 17998.17 4587.71 20389.79 30987.56 37091.17 14499.18 8287.97 21597.27 25496.77 247
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28490.37 29689.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_lstm_enhance89.90 24589.80 24090.19 28491.37 35777.50 30683.82 38195.00 25184.84 25793.05 23294.96 23776.53 31395.20 35089.96 16998.67 15797.86 179
ETV-MVS92.99 16392.74 17093.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 38092.22 11699.19 8188.03 21497.73 23495.66 296
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
D2MVS89.93 24489.60 24590.92 26094.03 29878.40 29488.69 31594.85 25578.96 32293.08 23095.09 23274.57 31996.94 30088.19 20798.96 12197.41 215
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
DPM-MVS89.35 25488.40 26392.18 21596.13 21684.20 20286.96 33996.15 21075.40 34487.36 34791.55 32983.30 24598.01 22782.17 29096.62 27994.32 336
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
test_yl90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
thisisatest053088.69 27487.52 28592.20 21196.33 19679.36 27792.81 17884.01 37986.44 22093.67 20992.68 30853.62 39299.25 7589.65 17698.45 17798.00 161
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
Anonymous20240521192.58 17792.50 17892.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26597.50 27085.12 25998.52 17197.77 190
DCV-MVSNet90.11 23889.73 24391.26 24794.09 29679.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32198.03 22382.23 28896.87 27095.93 282
tttt051789.81 24788.90 25692.55 20397.00 14979.73 27095.03 10383.65 38089.88 15695.30 15394.79 24553.64 39199.39 4991.99 11098.79 14398.54 120
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30992.06 26992.17 31878.63 28995.63 33784.77 26594.73 32496.22 269
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33486.65 37553.94 39098.72 15282.56 28397.40 25195.67 295
ppachtmachnet_test88.61 27588.64 25988.50 31691.76 34870.99 36484.59 37492.98 29379.30 31992.38 25893.53 28879.57 27997.45 27486.50 24297.17 25897.07 231
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.75 326
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.21 7589.41 9396.72 81
thres100view90087.35 29986.89 29888.72 31096.14 21473.09 35193.00 17385.31 37092.13 9593.26 22390.96 33663.42 36898.28 20271.27 37496.54 28194.79 324
tfpnnormal94.27 12194.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
tfpn200view987.05 30786.52 30688.67 31195.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28194.79 324
c3_l91.32 20791.42 20391.00 25892.29 33176.79 31987.52 33196.42 19685.76 23494.72 18293.89 27782.73 25498.16 21590.93 13798.55 16798.04 156
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38495.36 34569.49 38294.72 32588.79 386
CANet92.38 18491.99 18993.52 16793.82 30483.46 21191.14 24297.00 15589.81 15786.47 35294.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
Fast-Effi-MVS+-dtu92.77 17292.16 18394.58 12494.66 28388.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28796.90 240
Effi-MVS+-dtu93.90 13992.60 17697.77 394.74 27896.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
CANet_DTU89.85 24689.17 24891.87 22292.20 33580.02 26190.79 25095.87 21986.02 22982.53 38391.77 32480.01 27798.57 17685.66 25297.70 23797.01 236
MVS_030493.92 13793.68 14594.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs166.64 35294.75 326
sam_mvs66.41 353
IterMVS-SCA-FT91.65 19891.55 19891.94 22193.89 30179.22 28187.56 32893.51 28591.53 12295.37 14996.62 15278.65 28798.90 11891.89 11494.95 31897.70 196
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24694.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
MTGPAbinary97.62 105
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
Effi-MVS+92.79 17092.74 17092.94 18595.10 26583.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 31096.88 243
xiu_mvs_v2_base89.00 26489.19 24788.46 31894.86 27174.63 33786.97 33895.60 22680.88 30287.83 34088.62 36391.04 14698.81 13682.51 28594.38 33191.93 372
xiu_mvs_v1_base91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
new-patchmatchnet88.97 26590.79 21883.50 37094.28 29255.83 40585.34 36793.56 28486.18 22695.47 14295.73 20583.10 24796.51 31585.40 25498.06 21498.16 147
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30892.18 30973.71 35588.36 33293.89 27776.86 31096.73 31080.32 30596.81 27396.51 254
test_post190.21 2705.85 40865.36 35896.00 33179.61 318
test_post6.07 40765.74 35795.84 335
Fast-Effi-MVS+91.28 20890.86 21592.53 20495.45 25682.53 22689.25 30396.52 19285.00 25389.91 30588.55 36492.94 10098.84 12984.72 26795.44 30596.22 269
patchmatchnet-post91.71 32566.22 35597.59 266
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
pmmvs-eth3d91.54 20190.73 22093.99 14295.76 24287.86 12890.83 24993.98 27978.23 32794.02 19996.22 18082.62 25796.83 30786.57 23898.33 18997.29 225
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10665.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
xiu_mvs_v1_base_debi91.47 20391.52 19991.33 24395.69 24581.56 23789.92 28096.05 21383.22 27491.26 27990.74 33891.55 13198.82 13189.29 18395.91 29393.62 353
Anonymous2023120688.77 27188.29 26790.20 28396.31 19878.81 29089.56 29193.49 28674.26 35292.38 25895.58 21282.21 25895.43 34472.07 36898.75 14896.34 263
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
MTMP94.82 10954.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
test9_res88.16 20998.40 17997.83 183
MVP-Stereo90.07 24188.92 25493.54 16496.31 19886.49 15790.93 24795.59 23079.80 30891.48 27595.59 20980.79 27397.39 27978.57 32791.19 37696.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST996.45 18789.46 9090.60 25796.92 16279.09 32090.49 29294.39 25891.31 13698.88 121
train_agg92.71 17491.83 19495.35 8496.45 18789.46 9090.60 25796.92 16279.37 31590.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11167.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29588.11 34482.26 29088.71 32692.83 30278.65 28797.59 26679.61 31893.30 35494.75 326
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 29086.69 35585.73 23589.81 30892.83 30265.24 36091.04 38177.82 33295.78 29793.88 346
test_896.37 18989.14 10090.51 26096.89 16579.37 31590.42 29494.36 26091.20 14198.82 131
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29987.88 32492.49 30675.42 34392.57 25093.59 28680.44 27594.24 36481.28 29892.75 36394.69 329
Patchmatch-RL test88.81 27088.52 26089.69 29495.33 26279.94 26386.22 35792.71 30078.46 32595.80 12494.18 26566.25 35495.33 34789.22 18898.53 17093.78 347
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2320.00 4090.00 41091.15 33293.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
agg_prior287.06 23198.36 18897.98 165
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38122.11 40744.50 40568.35 40313.00 403
canonicalmvs94.59 10894.69 11194.30 13495.60 25287.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
alignmvs93.26 15492.85 16794.50 12695.70 24487.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26398.72 15291.61 12297.87 22997.33 223
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
v14419293.20 15993.54 15392.16 21696.05 22178.26 29691.95 21797.14 14584.98 25495.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
v192192093.26 15493.61 14992.19 21296.04 22578.31 29591.88 22497.24 13985.17 24896.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
v119293.49 14793.78 14092.62 19996.16 21179.62 27191.83 22897.22 14186.07 22896.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
v114493.50 14693.81 13792.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
v14892.87 16893.29 15791.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
iter_conf0588.94 26788.09 27791.50 23892.74 32276.97 31692.80 17995.92 21782.82 28293.65 21095.37 22449.41 39599.13 8890.82 13899.28 7998.40 130
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27299.63 695.48 2499.69 1499.60 12
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
PS-MVSNAJ88.86 26988.99 25388.48 31794.88 26974.71 33586.69 34795.60 22680.88 30287.83 34087.37 37390.77 15198.82 13182.52 28494.37 33291.93 372
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
EI-MVSNet-UG-set94.35 11894.27 12794.59 12292.46 32985.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11892.55 32685.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
test_prior489.91 8290.74 252
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
v124093.29 15293.71 14392.06 21996.01 22677.89 30191.81 22997.37 12385.12 25096.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
X-MVStestdata90.70 21588.45 26297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 40494.56 6499.39 4993.57 5899.05 10698.93 68
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
旧先验290.00 27868.65 38392.71 24596.52 31485.15 257
新几何290.02 277
新几何193.17 17797.16 14487.29 13594.43 26767.95 38591.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 343
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
无先验89.94 27995.75 22270.81 37398.59 17481.17 30194.81 322
原ACMM289.34 298
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33689.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 294
test22296.95 15185.27 18988.83 31193.61 28165.09 39390.74 28994.85 24184.62 23797.36 25293.91 344
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata91.03 25596.87 15782.01 23194.28 27171.55 36692.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 350
testdata188.96 30788.44 187
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21994.10 27474.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
LFMVS91.33 20691.16 21191.82 22496.27 20279.36 27795.01 10485.61 36796.04 3094.82 17697.06 12172.03 33098.46 18884.96 26398.70 15397.65 200
VDD-MVS94.37 11694.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
VDDNet94.03 13294.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23898.75 14787.09 23098.83 13898.81 84
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
VPNet93.08 16093.76 14191.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21994.16 27359.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
v2v48293.29 15293.63 14792.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
V4293.43 14993.58 15092.97 18195.34 26181.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 36192.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 25189.82 30790.07 34466.80 34997.76 25584.56 26894.27 33595.96 280
MSLP-MVS++93.25 15693.88 13691.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 32390.35 15298.25 19794.96 316
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32690.98 32572.71 36384.46 36692.45 31168.08 34296.48 31670.58 37983.97 39395.38 304
EI-MVSNet92.99 16393.26 16192.19 21292.12 33879.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20388.17 34256.15 40190.64 29195.85 19567.97 34496.69 31188.78 19990.52 38092.56 367
pmmvs488.95 26687.70 28392.70 19394.30 29185.60 18487.22 33492.16 31174.62 34989.75 31194.19 26477.97 29496.41 31982.71 28196.36 28596.09 274
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10790.00 33257.17 40095.71 13297.37 9164.77 36297.68 26292.67 9694.37 33294.52 331
VNet92.67 17592.96 16391.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27882.85 38084.78 38862.86 37193.49 36882.85 27994.86 32094.03 341
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
testgi90.38 22791.34 20687.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 37271.60 37297.85 23097.88 177
test20.0390.80 21290.85 21690.63 27095.63 25079.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34973.86 35999.05 10697.39 219
thres600view787.66 29087.10 29689.36 29996.05 22173.17 34992.72 18185.31 37091.89 10293.29 22090.97 33563.42 36898.39 19173.23 36296.99 26896.51 254
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32685.13 37472.71 36384.46 36692.45 31168.08 34292.33 37570.58 37983.97 39395.38 304
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
thres40087.20 30386.52 30689.24 30395.77 24072.94 35291.89 22286.00 36190.84 13592.61 24789.80 34763.93 36598.28 20271.27 37496.54 28196.51 254
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
thres20085.85 31585.18 31687.88 32894.44 28872.52 35689.08 30586.21 35888.57 18591.44 27688.40 36564.22 36398.00 22868.35 38395.88 29693.12 359
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27888.13 33686.61 37662.86 37189.10 39366.24 38990.29 38193.77 348
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 20081.66 38981.73 39562.89 37089.84 38775.79 34994.65 32782.71 397
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20283.25 37983.01 39462.22 37489.17 39277.15 33894.31 33482.93 396
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
LCM-MVSNet-Re94.20 12794.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
MCST-MVS92.91 16592.51 17794.10 14097.52 12585.72 18191.36 23997.13 14780.33 30692.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
mvs_anonymous90.37 22891.30 20787.58 33092.17 33768.00 37589.84 28394.73 26183.82 26893.22 22797.40 8987.54 19797.40 27887.94 21695.05 31697.34 222
MVS_Test92.57 17993.29 15790.40 27693.53 30875.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30396.99 237
MDA-MVSNet-bldmvs91.04 20990.88 21491.55 23594.68 28280.16 25385.49 36592.14 31290.41 14994.93 17295.79 19985.10 23296.93 30285.15 25794.19 33997.57 204
CDPH-MVS92.67 17591.83 19495.18 9696.94 15288.46 11890.70 25497.07 15177.38 33092.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
casdiffmvspermissive94.32 12094.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.74 19691.93 19191.15 25393.06 31578.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31281.22 38978.97 32179.82 39587.56 37061.73 37597.80 24874.30 35690.05 38296.05 277
baseline187.62 29287.31 28788.54 31494.71 28174.27 34393.10 17188.20 34186.20 22592.18 26693.04 29773.21 32495.52 33979.32 32185.82 39195.83 287
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28794.99 17095.11 23182.70 25593.70 36683.33 27593.83 34596.48 258
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26487.95 33994.71 24876.95 30784.36 40164.07 39298.09 21293.89 345
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28694.88 17595.14 22982.70 25593.61 36783.28 27693.80 34696.46 259
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24188.35 33882.87 28185.21 35890.96 33665.24 36096.75 30979.60 32085.25 39292.90 364
PM-MVS93.33 15192.67 17495.33 8696.58 17594.06 2192.26 20892.18 30985.92 23196.22 10596.61 15385.64 22895.99 33290.35 15298.23 19995.93 282
HQP_MVS94.26 12393.93 13595.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
WR-MVS93.49 14793.72 14292.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
TSAR-MVS + GP.93.07 16292.41 18095.06 9995.82 23790.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
n20.00 415
nn0.00 415
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
door-mid92.13 313
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29792.08 10795.55 30198.45 127
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24299.45 2795.52 2299.66 2199.36 24
MVSFormer92.18 19092.23 18292.04 22094.74 27880.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30599.60 996.41 996.75 27696.46 259
jason89.17 25788.32 26591.70 23095.73 24380.07 25788.10 32193.22 29071.98 36590.09 30092.79 30478.53 29098.56 17787.43 22497.06 26196.46 259
jason: jason.
lupinMVS88.34 27987.31 28791.45 23994.74 27880.06 25887.23 33392.27 30871.10 37088.83 31991.15 33277.02 30598.53 18086.67 23696.75 27695.76 290
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
K. test v393.37 15093.27 16093.66 15898.05 8582.62 22594.35 12686.62 35696.05 2997.51 4398.85 1276.59 31299.65 393.21 7998.20 20498.73 96
lessismore_v093.87 15198.05 8583.77 20980.32 39497.13 6097.91 5977.49 29799.11 9392.62 9798.08 21398.74 95
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26699.60 994.69 3399.39 5899.15 39
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.72 10394.12 13296.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29891.41 12897.61 24298.30 136
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
baseline94.26 12394.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
test1196.65 182
door91.26 322
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23288.26 33984.84 25772.96 40289.85 34571.27 33397.69 26176.60 34197.62 24196.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268887.19 30485.92 31391.00 25897.13 14679.41 27684.51 37595.60 22664.14 39490.07 30294.81 24278.26 29297.14 29273.34 36195.38 30896.46 259
EPNet89.80 24888.25 27094.45 13083.91 40586.18 16993.87 14687.07 35491.16 13180.64 39394.72 24778.83 28498.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS86.55 240
HQP4-MVS88.81 32198.61 17098.15 148
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 235
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
NCCC94.08 13193.54 15395.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
114514_t90.51 22089.80 24092.63 19898.00 9182.24 23093.40 16297.29 13565.84 39189.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25677.66 40154.99 40283.30 37897.57 7577.89 29590.50 38466.86 38895.54 30291.97 371
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26185.36 36965.82 39282.05 38692.44 31357.94 38296.69 31170.71 37888.49 38692.56 367
NP-MVS96.82 16287.10 14193.40 290
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30188.23 34062.27 39781.90 38889.66 35362.70 37395.29 34871.72 37080.60 40091.86 374
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26686.47 35770.42 37683.52 37693.23 29561.18 37696.85 30677.21 33788.26 38793.34 358
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28492.52 19092.81 29673.08 35989.10 31696.93 13067.11 34697.64 26588.80 19892.70 36494.08 338
JIA-IIPM85.08 32183.04 33391.19 25287.56 39186.14 17089.40 29784.44 37888.98 17482.20 38497.95 5456.82 38596.15 32676.55 34383.45 39591.30 377
Patchmtry90.11 23889.92 23790.66 26990.35 37077.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34697.52 26985.17 25598.98 11497.46 211
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21586.09 36092.20 9389.05 31897.16 11264.15 36496.37 32289.21 18992.98 36293.37 357
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27387.90 34775.54 34283.93 37291.63 32766.79 35195.36 34581.21 30081.54 39993.57 356
BH-w/o87.21 30287.02 29787.79 32994.77 27677.27 31087.90 32393.21 29281.74 29489.99 30488.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29885.63 36677.24 33387.62 34495.03 23561.00 37897.30 28279.26 32291.09 37895.16 308
DELS-MVS92.05 19292.16 18391.72 22894.44 28880.13 25687.62 32597.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned90.68 21690.90 21390.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31392.80 365
RPMNet90.31 23290.14 23490.81 26691.01 36178.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33999.41 3990.17 16292.70 36494.08 338
MVSTER89.32 25588.75 25891.03 25590.10 37376.62 32190.85 24894.67 26482.27 28995.24 15995.79 19961.09 37798.49 18390.49 14698.26 19597.97 168
CPTT-MVS94.74 10294.12 13296.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
GBi-Net93.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
PVSNet_Blended_VisFu91.63 19991.20 20892.94 18597.73 11083.95 20792.14 21197.46 11878.85 32492.35 26094.98 23684.16 23999.08 9486.36 24496.77 27595.79 289
PVSNet_BlendedMVS90.35 22989.96 23691.54 23694.81 27378.80 29190.14 27396.93 16079.43 31488.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28580.24 25289.69 28895.88 21885.77 23393.94 20395.69 20681.99 26292.98 37384.21 27091.30 37597.62 201
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25478.88 28887.39 33294.02 27779.32 31893.06 23194.02 27180.72 27494.27 36275.16 35193.08 36096.54 252
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27378.80 29186.64 34896.93 16074.67 34888.68 32889.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
FMVSNet587.82 28786.56 30491.62 23392.31 33079.81 26893.49 15894.81 25983.26 27291.36 27796.93 13052.77 39397.49 27276.07 34698.03 21797.55 207
test193.21 15792.96 16393.97 14495.40 25784.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26898.98 10786.74 23398.38 18398.65 107
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34584.65 40067.44 38691.90 37390.78 380
FMVSNet390.78 21390.32 23092.16 21693.03 31779.92 26492.54 18994.95 25386.17 22795.10 16496.01 19069.97 33798.75 14786.74 23398.38 18397.82 185
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38795.45 34373.19 36376.68 40191.82 375
FMVSNet292.78 17192.73 17292.95 18395.40 25781.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26898.81 13687.38 22698.67 15798.06 153
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
N_pmnet88.90 26887.25 29093.83 15494.40 29093.81 3584.73 37187.09 35379.36 31793.26 22392.43 31479.29 28291.68 37877.50 33597.22 25696.00 278
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17371.01 37186.89 35185.91 38181.35 26796.94 30083.09 27895.60 30094.35 335
BH-RMVSNet90.47 22290.44 22690.56 27295.21 26478.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30795.14 310
UGNet93.08 16092.50 17894.79 10893.87 30287.99 12595.07 10194.26 27290.64 14287.33 34897.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.93 30986.50 30888.24 32194.96 26774.64 33687.19 33592.07 31478.29 32688.32 33391.59 32878.06 29394.27 36274.88 35293.15 35895.80 288
XXY-MVS92.58 17793.16 16290.84 26497.75 10779.84 26591.87 22596.22 20685.94 23095.53 13897.68 6792.69 10894.48 35783.21 27797.51 24498.21 142
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
sss87.23 30186.82 29988.46 31893.96 29977.94 29886.84 34292.78 29977.59 32987.61 34591.83 32378.75 28591.92 37777.84 33094.20 33795.52 302
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16477.75 30387.53 33096.25 20269.73 38086.47 35293.61 28575.67 31597.88 23979.95 31293.20 35695.11 313
1112_ss88.42 27787.41 28691.45 23996.69 16780.99 24789.72 28796.72 17873.37 35687.00 35090.69 34177.38 30098.20 21081.38 29793.72 34795.15 309
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3410.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs92.40 18392.62 17591.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 276
TR-MVS87.70 28887.17 29289.27 30194.11 29579.26 27988.69 31591.86 31781.94 29390.69 29089.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
MDTV_nov1_ep13_2view42.48 41188.45 31967.22 38783.56 37566.80 34972.86 36594.06 340
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31487.41 35073.99 35384.96 36494.01 27265.25 35995.53 33878.02 32893.16 357
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
MIMVSNet87.13 30686.54 30588.89 30796.05 22176.11 32694.39 12588.51 33781.37 29788.27 33496.75 14372.38 32795.52 33965.71 39095.47 30495.03 314
IterMVS-LS93.78 14194.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.55 24988.22 27393.53 16595.37 26086.49 15789.26 30193.59 28279.76 31091.15 28292.31 31677.12 30398.38 19477.51 33497.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref98.82 139
IterMVS90.18 23490.16 23190.21 28293.15 31375.98 32887.56 32892.97 29486.43 22194.09 19396.40 16378.32 29197.43 27587.87 21794.69 32697.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon92.31 18691.88 19293.60 16097.18 14386.87 14791.10 24497.37 12384.92 25592.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 291
MVS_111021_LR93.66 14393.28 15994.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 32190.39 14998.28 19397.07 231
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
ACMMP++99.25 83
HQP-MVS92.09 19191.49 20293.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23598.60 17286.55 24097.73 23498.14 149
QAPM92.88 16792.77 16893.22 17695.82 23783.31 21296.45 3997.35 12983.91 26693.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33778.00 40068.94 38277.53 39897.26 10371.45 33294.62 35563.28 39488.74 38578.55 400
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 25099.35 6088.19 20799.52 4198.96 64
HyFIR lowres test87.19 30485.51 31592.24 21097.12 14780.51 25185.03 36996.06 21166.11 39091.66 27492.98 30070.12 33699.14 8675.29 35095.23 31297.07 231
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26871.34 40577.31 33285.80 35691.30 33059.38 38092.70 37479.99 31182.34 39892.96 363
PAPM_NR91.03 21090.81 21791.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 34496.68 250
TAMVS90.16 23589.05 25093.49 16996.49 18486.37 16290.34 26792.55 30580.84 30492.99 23494.57 25481.94 26498.20 21073.51 36098.21 20295.90 285
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31896.23 20476.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 268
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 25197.66 11877.32 30994.33 12887.66 34991.20 12992.99 23495.13 23075.40 31798.28 20277.86 32999.19 9297.99 164
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
MVS_111021_HR93.63 14493.42 15694.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
PatchMatch-RL89.18 25688.02 27992.64 19695.90 23392.87 4588.67 31791.06 32380.34 30590.03 30391.67 32683.34 24494.42 35976.35 34494.84 32290.64 381
API-MVS91.52 20291.61 19791.26 24794.16 29386.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29679.09 32497.35 25390.45 382
Test By Simon90.61 157
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
USDC89.02 26189.08 24988.84 30895.07 26674.50 34088.97 30696.39 19773.21 35893.27 22296.28 17682.16 26096.39 32077.55 33398.80 14295.62 299
EPP-MVSNet93.91 13893.68 14594.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26199.57 1487.28 22798.89 12698.65 107
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 27891.59 37975.99 34793.09 35987.94 389
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 29069.47 38176.13 40089.84 34672.15 32897.23 28453.27 40289.02 38492.37 369
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA91.72 19791.20 20893.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 36079.92 31697.12 25994.37 334
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25987.34 35278.87 32387.22 34992.74 30666.91 34896.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS94.34 11993.80 13995.95 5995.65 24891.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
F-COLMAP92.28 18791.06 21295.95 5997.52 12591.90 5693.53 15697.18 14283.98 26588.70 32794.04 26988.41 18398.55 17980.17 31095.99 29297.39 219
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 40359.84 39799.41 5670.73 401
OMC-MVS94.22 12693.69 14495.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
MG-MVS89.54 25089.80 24088.76 30994.88 26972.47 35789.60 28992.44 30785.82 23289.48 31395.98 19182.85 25297.74 25881.87 29195.27 31196.08 275
AdaColmapbinary91.63 19991.36 20592.47 20695.56 25386.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 366
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29485.53 25397.96 22497.41 215
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38646.64 40638.45 40670.07 40250.30 402
TinyColmap92.00 19392.76 16989.71 29395.62 25177.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31881.77 29298.77 14595.66 296
MAR-MVS90.32 23188.87 25794.66 11594.82 27291.85 5794.22 13494.75 26080.91 30187.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS92.72 17392.02 18894.84 10695.65 24891.99 5492.92 17596.60 18485.08 25292.44 25593.62 28486.80 21296.35 32386.81 23298.25 19796.18 271
MSDG90.82 21190.67 22191.26 24794.16 29383.08 22086.63 34996.19 20790.60 14491.94 27091.89 32289.16 17895.75 33680.96 30394.51 32994.95 317
LS3D96.11 4795.83 6396.95 3694.75 27794.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
CLD-MVS91.82 19491.41 20493.04 17896.37 18983.65 21086.82 34497.29 13584.65 25992.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.50 32683.28 33188.16 32396.32 19794.49 1685.76 36385.47 36883.09 27785.20 35994.26 26163.79 36786.58 39763.72 39391.88 37483.40 395
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 34191.72 11999.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015