This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB93.87 197.93 398.16 297.26 2798.81 2793.86 3299.07 298.98 797.01 1698.92 698.78 1495.22 4098.61 17296.85 499.77 999.31 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+92.74 295.86 5895.77 6996.13 5396.81 16390.79 7496.30 5697.82 9496.13 2994.74 18297.23 10591.33 13899.16 8693.25 7898.30 19298.46 124
3Dnovator92.54 394.80 10294.90 10294.47 12795.47 25987.06 14196.63 3197.28 14391.82 11194.34 19397.41 8790.60 16198.65 16992.47 10198.11 21097.70 193
DeepC-MVS91.39 495.43 7495.33 8795.71 7397.67 11790.17 8193.86 15098.02 7587.35 21296.22 10497.99 5394.48 7099.05 10192.73 9499.68 1797.93 168
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft91.06 596.75 1796.62 2497.13 2998.38 6094.31 1896.79 2598.32 2696.69 2096.86 7497.56 7595.48 2798.77 14790.11 16599.44 4898.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepPCF-MVS90.46 694.20 12993.56 15496.14 5295.96 22892.96 4489.48 29697.46 12585.14 25196.23 10395.42 22193.19 9498.08 22390.37 15298.76 14697.38 218
DeepC-MVS_fast89.96 793.73 14393.44 15794.60 11996.14 21487.90 12593.36 16797.14 15185.53 24493.90 20895.45 21991.30 14098.59 17689.51 17898.62 16097.31 221
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft89.45 892.27 19292.13 19092.68 19494.53 29084.10 20495.70 7997.03 15982.44 29091.14 28796.42 16388.47 18598.38 19785.95 25097.47 24995.55 304
ACMM88.83 996.30 4396.07 5296.97 3598.39 5992.95 4594.74 11698.03 7390.82 13997.15 5996.85 13596.25 1499.00 10893.10 8399.33 6598.95 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS88.58 1092.49 18491.75 20094.73 10996.50 18389.69 8692.91 17997.68 10578.02 33192.79 24494.10 26890.85 15297.96 23584.76 26898.16 20696.54 251
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+88.43 1196.48 3196.82 1695.47 8098.54 4689.06 10195.65 8298.61 1496.10 3098.16 2597.52 8096.90 798.62 17190.30 15699.60 2598.72 94
ACMH88.36 1296.59 2897.43 694.07 14098.56 4185.33 18896.33 4998.30 2994.66 4598.72 1098.30 3797.51 598.00 23194.87 3199.59 2798.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP88.15 1395.71 6395.43 8296.54 4698.17 7591.73 6194.24 13598.08 6189.46 16696.61 8696.47 15995.85 1899.12 9290.45 14899.56 3498.77 88
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft87.21 1494.97 9495.33 8793.91 14898.97 1797.16 395.54 8995.85 22596.47 2593.40 22097.46 8695.31 3595.47 34586.18 24998.78 14489.11 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft85.34 1590.40 22888.92 25894.85 10496.53 18290.02 8291.58 23696.48 20080.16 31086.14 35792.18 31985.73 22998.25 21076.87 34294.61 33196.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft85.12 1689.52 25589.05 25490.92 26394.58 28981.21 24591.10 24793.41 29077.03 33793.41 21893.99 27483.23 25197.80 25179.93 31794.80 32693.74 352
PCF-MVS84.52 1789.12 26287.71 28593.34 17296.06 22085.84 17786.58 35597.31 13868.46 38893.61 21493.89 27887.51 20198.52 18467.85 38898.11 21095.66 299
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS82.50 1886.81 31385.93 31589.47 29893.63 30977.93 30294.02 14491.58 32475.68 34383.64 37793.64 28377.40 30397.42 27971.70 37492.07 37493.05 365
IB-MVS77.21 1983.11 33981.05 35189.29 30391.15 36275.85 33285.66 36786.00 36479.70 31482.02 39086.61 37948.26 39998.39 19477.84 33392.22 37293.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet76.22 2082.89 34382.37 34284.48 36593.96 30264.38 39778.60 39688.61 34071.50 37184.43 37186.36 38274.27 32494.60 35969.87 38493.69 35194.46 335
PVSNet_070.34 2174.58 37272.96 37579.47 38390.63 36866.24 38773.26 39983.40 38563.67 40078.02 40078.35 40372.53 32989.59 39256.68 40260.05 40782.57 401
CMPMVSbinary68.83 2287.28 30385.67 31792.09 21888.77 38985.42 18790.31 27194.38 27070.02 38288.00 34093.30 29373.78 32794.03 36875.96 35196.54 28396.83 243
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive59.87 2373.86 37372.65 37677.47 38587.00 40074.35 34461.37 40560.93 41167.27 39069.69 40686.49 38181.24 27772.33 40856.45 40483.45 39885.74 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai53.72 37453.79 37753.51 39179.69 41236.70 41577.18 39732.53 41771.69 36968.63 40760.79 40626.65 41573.11 40730.67 41036.29 40950.73 405
kuosan43.63 37644.25 38041.78 39266.04 41434.37 41675.56 39832.62 41653.25 40750.46 41051.18 40725.28 41649.13 41013.44 41130.41 41041.84 407
MVSMamba_PlusPlus94.82 10195.89 6191.62 23497.82 10178.88 28896.52 3597.60 11397.14 1494.23 19498.48 3087.01 21099.71 395.43 2498.80 14096.28 267
MGCFI-Net94.44 11694.67 11693.75 15595.56 25585.47 18595.25 9898.24 3691.53 12495.04 16992.21 31894.94 5598.54 18291.56 12697.66 24097.24 224
testing9183.56 33782.45 34186.91 34192.92 32367.29 37986.33 35888.07 34886.22 22784.26 37285.76 38548.15 40097.17 29276.27 34894.08 34696.27 269
testing1181.98 35180.52 35886.38 35092.69 32567.13 38085.79 36584.80 37882.16 29381.19 39585.41 38845.24 40296.88 30874.14 36093.24 35895.14 313
testing9982.94 34281.72 34586.59 34492.55 32866.53 38586.08 36285.70 36785.47 24783.95 37485.70 38645.87 40197.07 29876.58 34593.56 35396.17 276
UWE-MVS80.29 36479.10 36583.87 37091.97 34759.56 40486.50 35777.43 40575.40 34787.79 34588.10 37044.08 40696.90 30764.23 39496.36 28795.14 313
ETVMVS79.85 36677.94 37385.59 35492.97 32166.20 38886.13 36180.99 39481.41 29983.52 37983.89 39441.81 41194.98 35756.47 40394.25 33995.61 303
sasdasda94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
testing22280.54 36278.53 36986.58 34592.54 33068.60 37786.24 35982.72 38683.78 27182.68 38584.24 39339.25 41295.94 33660.25 39995.09 31895.20 309
WB-MVSnew84.20 33283.89 33185.16 36091.62 35666.15 38988.44 32381.00 39376.23 34287.98 34187.77 37284.98 23993.35 37362.85 39894.10 34595.98 282
fmvsm_l_conf0.5_n_a93.59 14693.63 14993.49 16996.10 21785.66 18292.32 20696.57 19381.32 30195.63 13397.14 11490.19 16797.73 26295.37 2898.03 21797.07 230
fmvsm_l_conf0.5_n93.79 14193.81 14093.73 15696.16 21186.26 16692.46 19796.72 18481.69 29895.77 12497.11 11790.83 15397.82 24995.58 1997.99 22197.11 229
fmvsm_s_conf0.1_n_a94.26 12594.37 12493.95 14697.36 13485.72 18094.15 13995.44 24183.25 27695.51 13898.05 4692.54 11397.19 29195.55 2097.46 25098.94 64
fmvsm_s_conf0.1_n94.19 13194.41 12193.52 16797.22 14184.37 19693.73 15495.26 24884.45 26395.76 12598.00 5191.85 12697.21 28895.62 1797.82 23198.98 58
fmvsm_s_conf0.5_n_a94.02 13594.08 13793.84 15296.72 16685.73 17993.65 15895.23 24983.30 27495.13 16397.56 7592.22 11897.17 29295.51 2197.41 25298.64 109
fmvsm_s_conf0.5_n94.00 13694.20 13293.42 17196.69 16784.37 19693.38 16695.13 25184.50 26295.40 14597.55 7991.77 12997.20 28995.59 1897.79 23298.69 101
MM94.41 11894.14 13495.22 9395.84 23587.21 13794.31 13490.92 32994.48 4992.80 24397.52 8085.27 23599.49 2696.58 899.57 3398.97 60
WAC-MVS61.25 40274.55 356
Syy-MVS84.81 32684.93 32084.42 36691.71 35363.36 40085.89 36381.49 39081.03 30285.13 36381.64 39977.44 30295.00 35485.94 25194.12 34394.91 323
test_fmvsmconf0.1_n95.61 6695.72 7195.26 8996.85 15989.20 9893.51 16098.60 1585.68 23997.42 5098.30 3795.34 3398.39 19496.85 498.98 11298.19 141
test_fmvsmconf0.01_n95.90 5596.09 4995.31 8897.30 13789.21 9794.24 13598.76 1286.25 22697.56 4098.66 1995.73 1998.44 19397.35 398.99 11198.27 135
myMVS_eth3d79.62 36778.26 37083.72 37191.71 35361.25 40285.89 36381.49 39081.03 30285.13 36381.64 39932.12 41395.00 35471.17 38094.12 34394.91 323
testing383.66 33582.52 34087.08 33795.84 23565.84 39089.80 28877.17 40688.17 19690.84 29088.63 36530.95 41498.11 22184.05 27497.19 25997.28 223
SSC-MVS90.16 23992.96 16581.78 37897.88 9748.48 41090.75 25487.69 35196.02 3496.70 8197.63 7185.60 23397.80 25185.73 25398.60 16399.06 48
test_fmvsmconf_n95.43 7495.50 7895.22 9396.48 18689.19 9993.23 17098.36 2385.61 24296.92 7298.02 5095.23 3998.38 19796.69 798.95 12198.09 149
WB-MVS89.44 25792.15 18981.32 37997.73 11048.22 41189.73 28987.98 34995.24 3996.05 11296.99 12785.18 23696.95 30282.45 28997.97 22398.78 85
test_fmvsmvis_n_192095.08 9195.40 8494.13 13896.66 16987.75 12993.44 16498.49 1785.57 24398.27 2297.11 11794.11 7697.75 25996.26 1198.72 14996.89 240
dmvs_re84.69 32883.94 33086.95 34092.24 33582.93 22289.51 29587.37 35484.38 26585.37 36085.08 39072.44 33086.59 39968.05 38791.03 38291.33 379
SDMVSNet94.43 11795.02 9992.69 19397.93 9482.88 22391.92 22495.99 22293.65 6895.51 13898.63 2194.60 6596.48 31987.57 22399.35 6098.70 98
dmvs_testset78.23 37178.99 36675.94 38691.99 34655.34 40988.86 31278.70 40182.69 28581.64 39379.46 40175.93 31885.74 40148.78 40782.85 40086.76 394
sd_testset93.94 13894.39 12292.61 20097.93 9483.24 21493.17 17295.04 25393.65 6895.51 13898.63 2194.49 6995.89 33781.72 29799.35 6098.70 98
test_fmvsm_n_192094.72 10494.74 11094.67 11396.30 20088.62 11093.19 17198.07 6485.63 24197.08 6197.35 9690.86 15197.66 26695.70 1698.48 17697.74 191
test_cas_vis1_n_192088.25 28388.27 27388.20 32592.19 33978.92 28689.45 29795.44 24175.29 35093.23 22995.65 21171.58 33590.23 38988.05 21493.55 35495.44 306
test_vis1_n_192089.45 25689.85 24388.28 32393.59 31076.71 32390.67 25897.78 10079.67 31590.30 30196.11 18876.62 31592.17 37990.31 15593.57 35295.96 283
test_vis1_n89.01 26789.01 25689.03 30792.57 32782.46 22892.62 19096.06 21773.02 36390.40 29895.77 20674.86 32289.68 39190.78 14194.98 32094.95 320
test_fmvs1_n88.73 27688.38 26889.76 29492.06 34382.53 22692.30 20996.59 19271.14 37392.58 25195.41 22468.55 34589.57 39391.12 13395.66 30197.18 228
mvsany_test183.91 33482.93 33886.84 34386.18 40285.93 17481.11 39275.03 40770.80 37888.57 33394.63 25183.08 25387.38 39780.39 30786.57 39387.21 393
APD_test195.91 5495.42 8397.36 2498.82 2596.62 795.64 8397.64 10793.38 7295.89 12097.23 10593.35 8997.66 26688.20 20898.66 15997.79 185
test_vis1_rt85.58 32084.58 32388.60 31687.97 39286.76 14985.45 36993.59 28466.43 39287.64 34689.20 36179.33 28685.38 40281.59 29889.98 38693.66 354
test_vis3_rt90.40 22890.03 23991.52 23992.58 32688.95 10390.38 26897.72 10473.30 36097.79 3197.51 8377.05 30887.10 39889.03 19594.89 32298.50 120
test_fmvs290.62 22390.40 23291.29 24891.93 34885.46 18692.70 18696.48 20074.44 35394.91 17597.59 7375.52 32090.57 38593.44 6896.56 28297.84 179
test_fmvs187.59 29687.27 29288.54 31788.32 39181.26 24390.43 26795.72 22870.55 37991.70 27694.63 25168.13 34689.42 39490.59 14595.34 31194.94 322
test_fmvs392.42 18692.40 18492.46 20793.80 30887.28 13593.86 15097.05 15876.86 33896.25 10198.66 1982.87 25691.26 38395.44 2396.83 27498.82 80
mvsany_test389.11 26388.21 27891.83 22491.30 36190.25 8088.09 32578.76 40076.37 34196.43 9098.39 3583.79 24790.43 38886.57 24094.20 34094.80 326
testf196.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
APD_test296.77 1596.49 2897.60 999.01 1496.70 496.31 5298.33 2494.96 4197.30 5497.93 5596.05 1697.90 23889.32 18199.23 8498.19 141
test_f86.65 31487.13 29785.19 35990.28 37486.11 17086.52 35691.66 32269.76 38395.73 13097.21 10969.51 34381.28 40589.15 19294.40 33388.17 391
FE-MVS89.06 26488.29 27191.36 24494.78 27979.57 27396.77 2790.99 32784.87 25892.96 23996.29 17660.69 38498.80 14080.18 31297.11 26295.71 295
FA-MVS(test-final)91.81 19991.85 19791.68 23294.95 27279.99 26296.00 6693.44 28987.80 20394.02 20397.29 10177.60 30098.45 19288.04 21597.49 24796.61 250
balanced_conf0393.45 15094.17 13391.28 24995.81 23978.40 29696.20 6097.48 12488.56 18995.29 15497.20 11085.56 23499.21 8092.52 10098.91 12396.24 271
bld_raw_conf0392.59 18092.96 16591.47 24095.85 23478.88 28896.52 3597.60 11383.31 27394.23 19496.75 14384.27 24399.26 7689.30 18398.80 14096.28 267
patch_mono-292.46 18592.72 17691.71 23096.65 17078.91 28788.85 31397.17 14983.89 26992.45 25696.76 14189.86 17597.09 29690.24 16098.59 16499.12 41
EGC-MVSNET80.97 35875.73 37496.67 4398.85 2394.55 1696.83 2296.60 1902.44 4115.32 41298.25 3992.24 11798.02 22991.85 11599.21 8897.45 209
test250685.42 32184.57 32487.96 32897.81 10366.53 38596.14 6156.35 41289.04 17593.55 21698.10 4342.88 41098.68 16488.09 21399.18 9298.67 102
test111190.39 23090.61 22689.74 29598.04 8671.50 36495.59 8479.72 39989.41 16795.94 11698.14 4170.79 33898.81 13788.52 20699.32 6798.90 72
ECVR-MVScopyleft90.12 24190.16 23590.00 29197.81 10372.68 35895.76 7878.54 40289.04 17595.36 14998.10 4370.51 34098.64 17087.10 23199.18 9298.67 102
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080595.42 7795.93 5993.86 15198.75 3188.47 11697.68 994.29 27296.48 2495.38 14693.63 28494.89 5797.94 23795.38 2796.92 27195.17 310
DVP-MVS++95.93 5396.34 3694.70 11196.54 17986.66 15498.45 498.22 4093.26 7497.54 4197.36 9393.12 9799.38 5693.88 4898.68 15598.04 153
FOURS199.21 394.68 1398.45 498.81 1097.73 798.27 22
MSC_two_6792asdad95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
PC_three_145275.31 34995.87 12195.75 20792.93 10396.34 32887.18 23098.68 15598.04 153
No_MVS95.90 6496.54 17989.57 8896.87 17399.41 4094.06 4599.30 7098.72 94
test_one_060198.26 6887.14 13998.18 4594.25 5196.99 6997.36 9395.13 43
eth-test20.00 419
eth-test0.00 419
GeoE94.55 11294.68 11594.15 13697.23 13985.11 19094.14 14197.34 13688.71 18495.26 15695.50 21794.65 6399.12 9290.94 13898.40 17998.23 137
test_method50.44 37548.94 37854.93 38939.68 41512.38 41828.59 40690.09 3346.82 40941.10 41178.41 40254.41 39370.69 40950.12 40651.26 40881.72 402
Anonymous2024052192.86 17293.57 15390.74 27096.57 17675.50 33694.15 13995.60 23189.38 16895.90 11997.90 6180.39 28197.96 23592.60 9899.68 1798.75 89
h-mvs3392.89 16891.99 19395.58 7696.97 15090.55 7793.94 14894.01 28089.23 17193.95 20596.19 18476.88 31299.14 8991.02 13595.71 30097.04 234
hse-mvs292.24 19391.20 21295.38 8296.16 21190.65 7692.52 19392.01 31989.23 17193.95 20592.99 30076.88 31298.69 16291.02 13596.03 29296.81 244
CL-MVSNet_self_test90.04 24789.90 24290.47 27695.24 26777.81 30586.60 35492.62 30585.64 24093.25 22893.92 27683.84 24696.06 33379.93 31798.03 21797.53 205
KD-MVS_2432*160082.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
KD-MVS_self_test94.10 13294.73 11192.19 21297.66 11879.49 27594.86 11397.12 15489.59 16596.87 7397.65 6990.40 16598.34 20289.08 19499.35 6098.75 89
AUN-MVS90.05 24688.30 27095.32 8796.09 21890.52 7892.42 20192.05 31882.08 29488.45 33492.86 30265.76 36198.69 16288.91 19896.07 29196.75 248
ZD-MVS97.23 13990.32 7997.54 11884.40 26494.78 18095.79 20292.76 10999.39 5088.72 20398.40 179
SR-MVS-dyc-post96.84 896.60 2697.56 1198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12394.85 5899.42 3493.49 6298.84 13198.00 158
RE-MVS-def96.66 2198.07 8195.27 1096.37 4698.12 5595.66 3697.00 6797.03 12395.40 2993.49 6298.84 13198.00 158
SED-MVS96.00 5296.41 3494.76 10898.51 4986.97 14495.21 9998.10 5891.95 9997.63 3697.25 10396.48 1099.35 6093.29 7599.29 7397.95 166
IU-MVS98.51 4986.66 15496.83 17672.74 36595.83 12293.00 8799.29 7398.64 109
OPU-MVS95.15 9696.84 16089.43 9295.21 9995.66 21093.12 9798.06 22486.28 24898.61 16197.95 166
test_241102_TWO98.10 5891.95 9997.54 4197.25 10395.37 3099.35 6093.29 7599.25 8198.49 122
test_241102_ONE98.51 4986.97 14498.10 5891.85 10597.63 3697.03 12396.48 1098.95 116
SF-MVS95.88 5795.88 6295.87 6798.12 7789.65 8795.58 8798.56 1691.84 10896.36 9396.68 15094.37 7299.32 6992.41 10299.05 10498.64 109
cl2289.02 26588.50 26590.59 27489.76 37876.45 32686.62 35394.03 27782.98 28392.65 24892.49 31172.05 33397.53 27188.93 19697.02 26597.78 186
miper_ehance_all_eth90.48 22590.42 23190.69 27191.62 35676.57 32586.83 34696.18 21483.38 27294.06 20092.66 31082.20 26598.04 22589.79 17397.02 26597.45 209
miper_enhance_ethall88.42 28087.87 28390.07 28888.67 39075.52 33585.10 37195.59 23575.68 34392.49 25389.45 35878.96 28897.88 24287.86 22097.02 26596.81 244
ZNCC-MVS96.42 3696.20 4397.07 3198.80 2992.79 4796.08 6598.16 5291.74 11695.34 15096.36 17295.68 2199.44 3094.41 3899.28 7898.97 60
dcpmvs_293.96 13795.01 10090.82 26897.60 12074.04 34893.68 15798.85 989.80 16197.82 3097.01 12691.14 14899.21 8090.56 14698.59 16499.19 34
cl____90.65 22190.56 22890.91 26591.85 34976.98 31986.75 34895.36 24685.53 24494.06 20094.89 24077.36 30697.98 23490.27 15898.98 11297.76 188
DIV-MVS_self_test90.65 22190.56 22890.91 26591.85 34976.99 31886.75 34895.36 24685.52 24694.06 20094.89 24077.37 30597.99 23390.28 15798.97 11797.76 188
eth_miper_zixun_eth90.72 21890.61 22691.05 25792.04 34476.84 32186.91 34396.67 18785.21 24994.41 18993.92 27679.53 28598.26 20989.76 17497.02 26598.06 150
9.1494.81 10597.49 12794.11 14298.37 2287.56 21195.38 14696.03 19294.66 6299.08 9690.70 14398.97 117
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter97.46 13088.05 12392.04 21797.08 15687.63 209
ET-MVSNet_ETH3D86.15 31684.27 32791.79 22693.04 31981.28 24287.17 33986.14 36279.57 31683.65 37688.66 36457.10 38898.18 21687.74 22195.40 30895.90 288
UniMVSNet_ETH3D97.13 697.72 495.35 8399.51 287.38 13397.70 897.54 11898.16 398.94 499.33 297.84 499.08 9690.73 14299.73 1399.59 12
EIA-MVS92.35 18992.03 19193.30 17495.81 23983.97 20692.80 18398.17 4987.71 20689.79 31287.56 37391.17 14799.18 8587.97 21797.27 25696.77 246
miper_refine_blended82.17 34880.75 35586.42 34882.04 41070.09 37181.75 39090.80 33082.56 28690.37 29989.30 35942.90 40896.11 33174.47 35792.55 36993.06 363
miper_lstm_enhance89.90 24989.80 24490.19 28791.37 36077.50 31083.82 38495.00 25484.84 25993.05 23594.96 23876.53 31795.20 35389.96 17098.67 15797.86 176
ETV-MVS92.99 16592.74 17393.72 15795.86 23386.30 16592.33 20597.84 9291.70 11992.81 24286.17 38392.22 11899.19 8488.03 21697.73 23495.66 299
CS-MVS95.77 6095.58 7696.37 5196.84 16091.72 6296.73 2899.06 694.23 5292.48 25494.79 24693.56 8199.49 2693.47 6599.05 10497.89 173
D2MVS89.93 24889.60 24990.92 26394.03 30178.40 29688.69 31894.85 25878.96 32593.08 23395.09 23374.57 32396.94 30388.19 20998.96 11997.41 212
DVP-MVScopyleft95.82 5996.18 4494.72 11098.51 4986.69 15295.20 10197.00 16191.85 10597.40 5297.35 9695.58 2499.34 6393.44 6899.31 6898.13 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7497.40 5297.35 9694.69 6199.34 6393.88 4899.42 5098.89 73
test_0728_SECOND94.88 10398.55 4486.72 15195.20 10198.22 4099.38 5693.44 6899.31 6898.53 119
test072698.51 4986.69 15295.34 9398.18 4591.85 10597.63 3697.37 9095.58 24
SR-MVS96.70 2096.42 3197.54 1298.05 8394.69 1296.13 6298.07 6495.17 4096.82 7696.73 14795.09 4799.43 3392.99 8898.71 15198.50 120
DPM-MVS89.35 25888.40 26792.18 21596.13 21684.20 20286.96 34296.15 21675.40 34787.36 35091.55 33283.30 25098.01 23082.17 29396.62 28194.32 339
GST-MVS96.24 4495.99 5697.00 3498.65 3392.71 4895.69 8198.01 7692.08 9795.74 12896.28 17895.22 4099.42 3493.17 8199.06 10198.88 75
test_yl90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
thisisatest053088.69 27787.52 28892.20 21196.33 19679.36 27792.81 18284.01 38286.44 22393.67 21392.68 30953.62 39699.25 7789.65 17798.45 17798.00 158
Anonymous2024052995.50 7195.83 6694.50 12497.33 13685.93 17495.19 10396.77 18196.64 2297.61 3998.05 4693.23 9398.79 14188.60 20599.04 10998.78 85
Anonymous20240521192.58 18192.50 18192.83 18996.55 17883.22 21692.43 20091.64 32394.10 5595.59 13596.64 15281.88 27197.50 27385.12 26198.52 17197.77 187
DCV-MVSNet90.11 24289.73 24791.26 25094.09 29979.82 26690.44 26492.65 30390.90 13593.19 23193.30 29373.90 32598.03 22682.23 29196.87 27295.93 285
tttt051789.81 25188.90 26092.55 20397.00 14979.73 27095.03 10883.65 38389.88 15995.30 15294.79 24653.64 39599.39 5091.99 11098.79 14398.54 117
our_test_387.55 29787.59 28787.44 33591.76 35170.48 36883.83 38390.55 33379.79 31292.06 27292.17 32078.63 29395.63 34084.77 26794.73 32796.22 272
thisisatest051584.72 32782.99 33789.90 29292.96 32275.33 33784.36 37983.42 38477.37 33488.27 33786.65 37853.94 39498.72 15382.56 28697.40 25395.67 298
ppachtmachnet_test88.61 27888.64 26388.50 31991.76 35170.99 36784.59 37792.98 29579.30 32292.38 26093.53 28979.57 28497.45 27786.50 24497.17 26097.07 230
SMA-MVScopyleft95.77 6095.54 7796.47 5098.27 6791.19 6795.09 10497.79 9986.48 22297.42 5097.51 8394.47 7199.29 7193.55 6099.29 7398.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.75 329
DPE-MVScopyleft95.89 5695.88 6295.92 6397.93 9489.83 8593.46 16298.30 2992.37 8797.75 3396.95 12895.14 4299.51 2291.74 11899.28 7898.41 127
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.21 7389.41 9396.72 80
thres100view90087.35 30286.89 30188.72 31396.14 21473.09 35493.00 17685.31 37392.13 9693.26 22690.96 33963.42 37398.28 20571.27 37796.54 28394.79 327
tfpnnormal94.27 12494.87 10492.48 20597.71 11280.88 24994.55 12795.41 24493.70 6496.67 8397.72 6691.40 13798.18 21687.45 22599.18 9298.36 128
tfpn200view987.05 31086.52 30988.67 31495.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28394.79 327
c3_l91.32 21191.42 20791.00 26192.29 33476.79 32287.52 33496.42 20285.76 23794.72 18493.89 27882.73 25998.16 21890.93 13998.55 16798.04 153
CHOSEN 280x42080.04 36577.97 37286.23 35290.13 37574.53 34272.87 40189.59 33766.38 39376.29 40285.32 38956.96 38995.36 34869.49 38594.72 32888.79 389
CANet92.38 18891.99 19393.52 16793.82 30783.46 21191.14 24597.00 16189.81 16086.47 35594.04 27087.90 19699.21 8089.50 17998.27 19497.90 171
Fast-Effi-MVS+-dtu92.77 17592.16 18794.58 12294.66 28788.25 11992.05 21696.65 18889.62 16490.08 30491.23 33492.56 11298.60 17486.30 24796.27 28996.90 239
Effi-MVS+-dtu93.90 14092.60 17997.77 494.74 28296.67 694.00 14595.41 24489.94 15791.93 27492.13 32190.12 16998.97 11387.68 22297.48 24897.67 196
CANet_DTU89.85 25089.17 25291.87 22392.20 33880.02 26190.79 25395.87 22486.02 23282.53 38691.77 32780.01 28298.57 17885.66 25497.70 23797.01 235
MVS_030492.88 16992.27 18594.69 11292.35 33286.03 17292.88 18189.68 33690.53 14791.52 27896.43 16282.52 26399.32 6995.01 3099.54 3698.71 97
MP-MVS-pluss96.08 4995.92 6096.57 4599.06 1091.21 6693.25 16898.32 2687.89 20196.86 7497.38 8995.55 2699.39 5095.47 2299.47 4199.11 42
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.34 8094.63 11897.48 1598.67 3294.05 2496.41 4598.18 4591.26 12995.12 16495.15 22986.60 22199.50 2393.43 7196.81 27598.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs166.64 35794.75 329
sam_mvs66.41 358
IterMVS-SCA-FT91.65 20291.55 20291.94 22193.89 30479.22 28187.56 33193.51 28791.53 12495.37 14896.62 15378.65 29198.90 12091.89 11494.95 32197.70 193
TSAR-MVS + MP.94.96 9594.75 10895.57 7798.86 2288.69 10796.37 4696.81 17785.23 24894.75 18197.12 11691.85 12699.40 4793.45 6798.33 18998.62 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
OPM-MVS95.61 6695.45 8096.08 5498.49 5691.00 6992.65 18997.33 13790.05 15696.77 7996.85 13595.04 4898.56 17992.77 9199.06 10198.70 98
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP96.21 4596.12 4896.49 4998.90 1991.42 6494.57 12498.03 7390.42 15196.37 9297.35 9695.68 2199.25 7794.44 3799.34 6398.80 83
ambc92.98 18096.88 15683.01 22195.92 7296.38 20496.41 9197.48 8588.26 18797.80 25189.96 17098.93 12298.12 148
MTGPAbinary97.62 109
CS-MVS-test95.32 8195.10 9795.96 5796.86 15890.75 7596.33 4999.20 393.99 5691.03 28893.73 28293.52 8399.55 2091.81 11699.45 4597.58 200
Effi-MVS+92.79 17392.74 17392.94 18495.10 26983.30 21394.00 14597.53 12091.36 12889.35 31890.65 34694.01 7798.66 16687.40 22795.30 31296.88 242
xiu_mvs_v2_base89.00 26889.19 25188.46 32194.86 27574.63 34086.97 34195.60 23180.88 30587.83 34388.62 36691.04 14998.81 13782.51 28894.38 33491.93 375
xiu_mvs_v1_base91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
new-patchmatchnet88.97 26990.79 22283.50 37394.28 29555.83 40885.34 37093.56 28686.18 22995.47 14195.73 20883.10 25296.51 31885.40 25698.06 21498.16 144
pmmvs696.80 1397.36 1095.15 9699.12 887.82 12896.68 2997.86 8996.10 3098.14 2699.28 397.94 398.21 21291.38 13199.69 1499.42 18
pmmvs587.87 28887.14 29690.07 28893.26 31576.97 32088.89 31192.18 31273.71 35888.36 33593.89 27876.86 31496.73 31380.32 30896.81 27596.51 253
test_post190.21 2735.85 41365.36 36396.00 33479.61 321
test_post6.07 41265.74 36295.84 338
Fast-Effi-MVS+91.28 21290.86 21992.53 20495.45 26082.53 22689.25 30696.52 19885.00 25589.91 30888.55 36792.94 10298.84 13084.72 26995.44 30796.22 272
patchmatchnet-post91.71 32866.22 36097.59 269
Anonymous2023121196.60 2697.13 1395.00 9997.46 13086.35 16497.11 1898.24 3697.58 998.72 1098.97 793.15 9699.15 8793.18 8099.74 1299.50 16
pmmvs-eth3d91.54 20590.73 22493.99 14195.76 24387.86 12790.83 25293.98 28178.23 33094.02 20396.22 18382.62 26296.83 31086.57 24098.33 18997.29 222
GG-mvs-BLEND83.24 37485.06 40671.03 36694.99 11165.55 41074.09 40475.51 40444.57 40494.46 36159.57 40187.54 39184.24 397
xiu_mvs_v1_base_debi91.47 20791.52 20391.33 24595.69 24681.56 23889.92 28396.05 21983.22 27791.26 28390.74 34191.55 13498.82 13289.29 18595.91 29593.62 356
Anonymous2023120688.77 27488.29 27190.20 28696.31 19878.81 29289.56 29493.49 28874.26 35592.38 26095.58 21582.21 26495.43 34772.07 37198.75 14896.34 263
MTAPA96.65 2396.38 3597.47 1698.95 1894.05 2495.88 7497.62 10994.46 5096.29 9896.94 12993.56 8199.37 5894.29 4199.42 5098.99 54
MTMP94.82 11454.62 413
gm-plane-assit87.08 39959.33 40571.22 37283.58 39597.20 28973.95 361
test9_res88.16 21198.40 17997.83 180
MVP-Stereo90.07 24588.92 25893.54 16496.31 19886.49 15790.93 25095.59 23579.80 31191.48 27995.59 21280.79 27897.39 28278.57 33091.19 37996.76 247
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST996.45 18789.46 9090.60 26096.92 16879.09 32390.49 29594.39 25991.31 13998.88 123
train_agg92.71 17791.83 19895.35 8396.45 18789.46 9090.60 26096.92 16879.37 31890.49 29594.39 25991.20 14498.88 12388.66 20498.43 17897.72 192
gg-mvs-nofinetune82.10 35081.02 35285.34 35787.46 39671.04 36594.74 11667.56 40996.44 2679.43 39998.99 645.24 40296.15 32967.18 39092.17 37388.85 388
SCA87.43 30087.21 29488.10 32792.01 34571.98 36289.43 29888.11 34782.26 29288.71 32992.83 30378.65 29197.59 26979.61 32193.30 35794.75 329
Patchmatch-test86.10 31786.01 31486.38 35090.63 36874.22 34789.57 29386.69 35885.73 23889.81 31192.83 30365.24 36591.04 38477.82 33595.78 29993.88 349
test_896.37 18989.14 10090.51 26396.89 17179.37 31890.42 29794.36 26191.20 14498.82 132
MS-PatchMatch88.05 28687.75 28488.95 30893.28 31377.93 30287.88 32792.49 30875.42 34692.57 25293.59 28780.44 28094.24 36781.28 30192.75 36694.69 332
Patchmatch-RL test88.81 27388.52 26489.69 29795.33 26679.94 26386.22 36092.71 30278.46 32895.80 12394.18 26666.25 35995.33 35089.22 19098.53 17093.78 350
cdsmvs_eth3d_5k23.35 37831.13 3810.00 3960.00 4190.00 4210.00 40795.58 2370.00 4140.00 41591.15 33593.43 860.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas7.56 38110.09 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41490.77 1540.00 4150.00 4140.00 4130.00 411
agg_prior287.06 23398.36 18897.98 162
agg_prior96.20 20888.89 10596.88 17290.21 30298.78 144
tmp_tt37.97 37744.33 37918.88 39311.80 41621.54 41763.51 40445.66 4154.23 41051.34 40950.48 40859.08 38622.11 41244.50 40868.35 40613.00 408
canonicalmvs94.59 10994.69 11294.30 13295.60 25387.03 14295.59 8498.24 3691.56 12295.21 16192.04 32394.95 5398.66 16691.45 12897.57 24497.20 226
anonymousdsp96.74 1896.42 3197.68 798.00 8994.03 2696.97 1997.61 11187.68 20898.45 2098.77 1594.20 7499.50 2396.70 699.40 5599.53 14
alignmvs93.26 15692.85 17094.50 12495.70 24587.45 13293.45 16395.76 22691.58 12195.25 15892.42 31681.96 26998.72 15391.61 12297.87 22997.33 220
nrg03096.32 4196.55 2795.62 7597.83 10088.55 11495.77 7798.29 3292.68 8098.03 2897.91 5995.13 4398.95 11693.85 5099.49 4099.36 23
v14419293.20 16193.54 15592.16 21696.05 22178.26 29991.95 22097.14 15184.98 25695.96 11496.11 18887.08 20999.04 10493.79 5198.84 13199.17 35
FIs94.90 9795.35 8593.55 16298.28 6681.76 23695.33 9498.14 5393.05 7897.07 6297.18 11187.65 19899.29 7191.72 11999.69 1499.61 11
v192192093.26 15693.61 15192.19 21296.04 22578.31 29891.88 22797.24 14585.17 25096.19 10896.19 18486.76 21899.05 10194.18 4398.84 13199.22 31
UA-Net97.35 597.24 1297.69 598.22 7293.87 3198.42 698.19 4396.95 1795.46 14399.23 493.45 8499.57 1695.34 2999.89 299.63 9
v119293.49 14893.78 14392.62 19996.16 21179.62 27191.83 23197.22 14786.07 23196.10 11196.38 17087.22 20599.02 10694.14 4498.88 12699.22 31
FC-MVSNet-test95.32 8195.88 6293.62 15998.49 5681.77 23595.90 7398.32 2693.93 5997.53 4397.56 7588.48 18499.40 4792.91 9099.83 599.68 4
v114493.50 14793.81 14092.57 20296.28 20179.61 27291.86 23096.96 16486.95 22095.91 11896.32 17487.65 19898.96 11493.51 6198.88 12699.13 39
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS96.39 3996.17 4697.04 3298.51 4993.37 4096.30 5697.98 7992.35 8995.63 13396.47 15995.37 3099.27 7593.78 5299.14 9798.48 123
v14892.87 17193.29 15991.62 23496.25 20577.72 30791.28 24395.05 25289.69 16295.93 11796.04 19187.34 20398.38 19790.05 16897.99 22198.78 85
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest94.88 9894.51 12096.00 5598.02 8792.17 5195.26 9798.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
TestCases96.00 5598.02 8792.17 5198.43 1990.48 14895.04 16996.74 14592.54 11397.86 24685.11 26298.98 11297.98 162
v7n96.82 1097.31 1195.33 8598.54 4686.81 14896.83 2298.07 6496.59 2398.46 1998.43 3492.91 10499.52 2196.25 1299.76 1099.65 8
region2R96.41 3796.09 4997.38 2398.62 3593.81 3696.32 5197.96 8292.26 9295.28 15596.57 15695.02 5099.41 4093.63 5699.11 9998.94 64
iter_conf0595.52 6996.74 1991.88 22297.82 10177.68 30997.26 1398.91 897.14 1499.22 398.48 3087.01 21099.71 395.43 2499.38 5798.25 136
mamv498.21 297.86 399.26 198.24 7199.36 196.10 6399.32 298.75 299.58 298.70 1891.78 12899.88 198.60 199.67 2098.54 117
PS-MVSNAJss96.01 5196.04 5495.89 6698.82 2588.51 11595.57 8897.88 8888.72 18398.81 898.86 1090.77 15499.60 1195.43 2499.53 3799.57 13
PS-MVSNAJ88.86 27288.99 25788.48 32094.88 27374.71 33886.69 35095.60 23180.88 30587.83 34387.37 37690.77 15498.82 13282.52 28794.37 33591.93 375
jajsoiax96.59 2896.42 3197.12 3098.76 3092.49 5096.44 4397.42 12786.96 21998.71 1298.72 1795.36 3299.56 1995.92 1499.45 4599.32 25
mvs_tets96.83 996.71 2097.17 2898.83 2492.51 4996.58 3397.61 11187.57 21098.80 998.90 996.50 999.59 1596.15 1399.47 4199.40 20
EI-MVSNet-UG-set94.35 12194.27 13094.59 12092.46 33185.87 17692.42 20194.69 26593.67 6796.13 10995.84 20091.20 14498.86 12793.78 5298.23 19999.03 50
EI-MVSNet-Vis-set94.36 12094.28 12894.61 11692.55 32885.98 17392.44 19994.69 26593.70 6496.12 11095.81 20191.24 14198.86 12793.76 5598.22 20198.98 58
HPM-MVS++copyleft95.02 9294.39 12296.91 3897.88 9793.58 3894.09 14396.99 16391.05 13492.40 25995.22 22891.03 15099.25 7792.11 10598.69 15497.90 171
test_prior489.91 8390.74 255
XVS96.49 3096.18 4497.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19196.49 15894.56 6699.39 5093.57 5899.05 10498.93 66
v124093.29 15493.71 14692.06 21996.01 22677.89 30491.81 23297.37 12985.12 25296.69 8296.40 16586.67 21999.07 10094.51 3598.76 14699.22 31
pm-mvs195.43 7495.94 5793.93 14798.38 6085.08 19195.46 9197.12 15491.84 10897.28 5698.46 3295.30 3697.71 26390.17 16399.42 5098.99 54
test_prior290.21 27389.33 17090.77 29194.81 24390.41 16488.21 20798.55 167
X-MVStestdata90.70 21988.45 26697.44 1798.56 4193.99 2796.50 3897.95 8494.58 4694.38 19126.89 40994.56 6699.39 5093.57 5899.05 10498.93 66
test_prior94.61 11695.95 22987.23 13697.36 13498.68 16497.93 168
旧先验290.00 28168.65 38792.71 24796.52 31785.15 259
新几何290.02 280
新几何193.17 17797.16 14487.29 13494.43 26967.95 38991.29 28294.94 23986.97 21398.23 21181.06 30597.75 23393.98 346
旧先验196.20 20884.17 20394.82 26095.57 21689.57 17797.89 22896.32 264
无先验89.94 28295.75 22770.81 37798.59 17681.17 30494.81 325
原ACMM289.34 301
原ACMM192.87 18796.91 15584.22 20197.01 16076.84 33989.64 31594.46 25788.00 19398.70 16081.53 29998.01 22095.70 297
test22296.95 15185.27 18988.83 31493.61 28365.09 39790.74 29294.85 24284.62 24297.36 25493.91 347
testdata298.03 22680.24 311
segment_acmp92.14 121
testdata91.03 25896.87 15782.01 23294.28 27371.55 37092.46 25595.42 22185.65 23197.38 28482.64 28597.27 25693.70 353
testdata188.96 31088.44 191
v894.65 10895.29 8992.74 19196.65 17079.77 26994.59 12197.17 14991.86 10497.47 4797.93 5588.16 18999.08 9694.32 3999.47 4199.38 21
131486.46 31586.33 31286.87 34291.65 35574.54 34191.94 22294.10 27674.28 35484.78 36887.33 37783.03 25495.00 35478.72 32891.16 38091.06 382
LFMVS91.33 21091.16 21591.82 22596.27 20279.36 27795.01 10985.61 37096.04 3394.82 17897.06 12172.03 33498.46 19184.96 26598.70 15397.65 197
VDD-MVS94.37 11994.37 12494.40 13097.49 12786.07 17193.97 14793.28 29194.49 4896.24 10297.78 6387.99 19498.79 14188.92 19799.14 9798.34 129
VDDNet94.03 13494.27 13093.31 17398.87 2182.36 22995.51 9091.78 32197.19 1396.32 9598.60 2384.24 24498.75 14887.09 23298.83 13698.81 82
v1094.68 10795.27 9192.90 18696.57 17680.15 25494.65 12097.57 11690.68 14397.43 4898.00 5188.18 18899.15 8794.84 3299.55 3599.41 19
VPNet93.08 16293.76 14491.03 25898.60 3875.83 33491.51 23795.62 23091.84 10895.74 12897.10 11989.31 17998.32 20385.07 26499.06 10198.93 66
MVS84.98 32584.30 32687.01 33891.03 36377.69 30891.94 22294.16 27559.36 40384.23 37387.50 37585.66 23096.80 31171.79 37293.05 36486.54 395
v2v48293.29 15493.63 14992.29 20896.35 19478.82 29191.77 23496.28 20688.45 19095.70 13296.26 18186.02 22798.90 12093.02 8698.81 13999.14 38
V4293.43 15193.58 15292.97 18195.34 26581.22 24492.67 18796.49 19987.25 21496.20 10696.37 17187.32 20498.85 12992.39 10398.21 20298.85 79
SD-MVS95.19 8895.73 7093.55 16296.62 17488.88 10694.67 11898.05 6891.26 12997.25 5896.40 16595.42 2894.36 36492.72 9599.19 9097.40 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS87.70 29186.82 30290.31 28093.27 31477.22 31584.72 37692.79 30085.11 25389.82 31090.07 34766.80 35497.76 25884.56 27094.27 33895.96 283
MSLP-MVS++93.25 15893.88 13991.37 24396.34 19582.81 22493.11 17397.74 10289.37 16994.08 19895.29 22790.40 16596.35 32690.35 15398.25 19794.96 319
APDe-MVScopyleft96.46 3296.64 2395.93 6197.68 11689.38 9596.90 2198.41 2192.52 8497.43 4897.92 5895.11 4599.50 2394.45 3699.30 7098.92 70
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize96.82 1096.65 2297.32 2697.95 9393.82 3496.31 5298.25 3395.51 3896.99 6997.05 12295.63 2399.39 5093.31 7498.88 12698.75 89
ADS-MVSNet284.01 33382.20 34489.41 30089.04 38676.37 32887.57 32990.98 32872.71 36684.46 36992.45 31268.08 34796.48 31970.58 38283.97 39695.38 307
EI-MVSNet92.99 16593.26 16392.19 21292.12 34179.21 28292.32 20694.67 26791.77 11495.24 15995.85 19887.14 20898.49 18691.99 11098.26 19598.86 76
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet85.16 32384.72 32186.48 34692.12 34170.19 36992.32 20688.17 34656.15 40590.64 29495.85 19867.97 34996.69 31488.78 20190.52 38392.56 370
pmmvs488.95 27087.70 28692.70 19294.30 29485.60 18387.22 33792.16 31474.62 35289.75 31494.19 26577.97 29896.41 32282.71 28496.36 28796.09 277
EU-MVSNet87.39 30186.71 30589.44 29993.40 31276.11 32994.93 11290.00 33557.17 40495.71 13197.37 9064.77 36797.68 26592.67 9694.37 33594.52 334
VNet92.67 17892.96 16591.79 22696.27 20280.15 25491.95 22094.98 25592.19 9594.52 18896.07 19087.43 20297.39 28284.83 26698.38 18397.83 180
test-LLR83.58 33683.17 33584.79 36389.68 38066.86 38383.08 38584.52 37983.07 28182.85 38384.78 39162.86 37693.49 37182.85 28294.86 32394.03 344
TESTMET0.1,179.09 36978.04 37182.25 37687.52 39564.03 39883.08 38580.62 39670.28 38180.16 39783.22 39644.13 40590.56 38679.95 31593.36 35592.15 373
test-mter81.21 35680.01 36384.79 36389.68 38066.86 38383.08 38584.52 37973.85 35782.85 38384.78 39143.66 40793.49 37182.85 28294.86 32394.03 344
VPA-MVSNet95.14 8995.67 7393.58 16197.76 10683.15 21894.58 12397.58 11593.39 7197.05 6598.04 4893.25 9298.51 18589.75 17599.59 2799.08 46
ACMMPR96.46 3296.14 4797.41 2198.60 3893.82 3496.30 5697.96 8292.35 8995.57 13696.61 15494.93 5699.41 4093.78 5299.15 9699.00 52
testgi90.38 23191.34 21087.50 33497.49 12771.54 36389.43 29895.16 25088.38 19294.54 18794.68 25092.88 10693.09 37571.60 37597.85 23097.88 174
test20.0390.80 21690.85 22090.63 27395.63 25179.24 28089.81 28792.87 29789.90 15894.39 19096.40 16585.77 22895.27 35273.86 36299.05 10497.39 216
thres600view787.66 29387.10 29989.36 30296.05 22173.17 35292.72 18485.31 37391.89 10393.29 22390.97 33863.42 37398.39 19473.23 36596.99 27096.51 253
ADS-MVSNet82.25 34681.55 34784.34 36789.04 38665.30 39187.57 32985.13 37772.71 36684.46 36992.45 31268.08 34792.33 37870.58 38283.97 39695.38 307
MP-MVScopyleft96.14 4795.68 7297.51 1498.81 2794.06 2296.10 6397.78 10092.73 7993.48 21796.72 14894.23 7399.42 3491.99 11099.29 7399.05 49
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.02 38011.42 3831.81 3952.77 4181.13 42079.44 3951.90 4181.18 4132.65 4146.80 4101.95 4180.87 4142.62 4133.45 4123.44 410
thres40087.20 30686.52 30989.24 30695.77 24172.94 35591.89 22586.00 36490.84 13792.61 24989.80 35063.93 37098.28 20571.27 37796.54 28396.51 253
test1239.49 37912.01 3821.91 3942.87 4171.30 41982.38 3881.34 4191.36 4122.84 4136.56 4112.45 4170.97 4132.73 4125.56 4113.47 409
thres20085.85 31885.18 31987.88 33194.44 29172.52 35989.08 30886.21 36188.57 18891.44 28088.40 36864.22 36898.00 23168.35 38695.88 29893.12 362
test0.0.03 182.48 34581.47 34985.48 35689.70 37973.57 35184.73 37481.64 38983.07 28188.13 33986.61 37962.86 37689.10 39666.24 39290.29 38493.77 351
pmmvs380.83 35978.96 36786.45 34787.23 39777.48 31184.87 37382.31 38763.83 39985.03 36589.50 35749.66 39893.10 37473.12 36795.10 31788.78 390
EMVS80.35 36380.28 36180.54 38184.73 40769.07 37572.54 40280.73 39587.80 20381.66 39281.73 39862.89 37589.84 39075.79 35294.65 33082.71 400
E-PMN80.72 36080.86 35480.29 38285.11 40568.77 37672.96 40081.97 38887.76 20583.25 38283.01 39762.22 37989.17 39577.15 34194.31 33782.93 399
PGM-MVS96.32 4195.94 5797.43 1998.59 4093.84 3395.33 9498.30 2991.40 12795.76 12596.87 13495.26 3799.45 2992.77 9199.21 8899.00 52
LCM-MVSNet-Re94.20 12994.58 11993.04 17895.91 23183.13 21993.79 15299.19 492.00 9898.84 798.04 4893.64 8099.02 10681.28 30198.54 16996.96 237
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 1
MCST-MVS92.91 16792.51 18094.10 13997.52 12585.72 18091.36 24297.13 15380.33 30992.91 24194.24 26391.23 14298.72 15389.99 16997.93 22697.86 176
mvs_anonymous90.37 23291.30 21187.58 33392.17 34068.00 37889.84 28694.73 26483.82 27093.22 23097.40 8887.54 20097.40 28187.94 21895.05 31997.34 219
MVS_Test92.57 18393.29 15990.40 27993.53 31175.85 33292.52 19396.96 16488.73 18292.35 26296.70 14990.77 15498.37 20192.53 9995.49 30596.99 236
MDA-MVSNet-bldmvs91.04 21390.88 21891.55 23794.68 28680.16 25385.49 36892.14 31590.41 15294.93 17495.79 20285.10 23796.93 30585.15 25994.19 34297.57 201
CDPH-MVS92.67 17891.83 19895.18 9596.94 15288.46 11790.70 25797.07 15777.38 33392.34 26495.08 23492.67 11198.88 12385.74 25298.57 16698.20 140
test1294.43 12995.95 22986.75 15096.24 20989.76 31389.79 17698.79 14197.95 22597.75 190
casdiffmvspermissive94.32 12394.80 10692.85 18896.05 22181.44 24192.35 20498.05 6891.53 12495.75 12796.80 13893.35 8998.49 18691.01 13798.32 19198.64 109
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.74 20091.93 19591.15 25693.06 31878.17 30088.77 31697.51 12386.28 22592.42 25893.96 27588.04 19297.46 27690.69 14496.67 28097.82 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.38 33881.54 34888.90 30991.38 35972.84 35788.78 31581.22 39278.97 32479.82 39887.56 37361.73 38097.80 25174.30 35990.05 38596.05 280
baseline187.62 29587.31 29088.54 31794.71 28574.27 34693.10 17488.20 34586.20 22892.18 26893.04 29873.21 32895.52 34279.32 32485.82 39495.83 290
YYNet188.17 28488.24 27587.93 32992.21 33773.62 35080.75 39388.77 33982.51 28994.99 17295.11 23282.70 26093.70 36983.33 27893.83 34896.48 257
PMMVS281.31 35483.44 33374.92 38790.52 37046.49 41369.19 40385.23 37684.30 26687.95 34294.71 24976.95 31184.36 40464.07 39598.09 21293.89 348
MDA-MVSNet_test_wron88.16 28588.23 27687.93 32992.22 33673.71 34980.71 39488.84 33882.52 28894.88 17795.14 23082.70 26093.61 37083.28 27993.80 34996.46 259
tpmvs84.22 33183.97 32984.94 36187.09 39865.18 39291.21 24488.35 34282.87 28485.21 36190.96 33965.24 36596.75 31279.60 32385.25 39592.90 367
PM-MVS93.33 15392.67 17795.33 8596.58 17594.06 2292.26 21192.18 31285.92 23496.22 10496.61 15485.64 23295.99 33590.35 15398.23 19995.93 285
HQP_MVS94.26 12593.93 13895.23 9297.71 11288.12 12194.56 12597.81 9591.74 11693.31 22195.59 21286.93 21498.95 11689.26 18898.51 17398.60 114
plane_prior797.71 11288.68 108
plane_prior697.21 14288.23 12086.93 214
plane_prior597.81 9598.95 11689.26 18898.51 17398.60 114
plane_prior495.59 212
plane_prior388.43 11890.35 15393.31 221
plane_prior294.56 12591.74 116
plane_prior197.38 132
plane_prior88.12 12193.01 17588.98 17798.06 214
PS-CasMVS96.69 2197.43 694.49 12699.13 684.09 20596.61 3297.97 8197.91 698.64 1598.13 4295.24 3899.65 693.39 7299.84 399.72 2
UniMVSNet_NR-MVSNet95.35 7995.21 9295.76 7097.69 11588.59 11292.26 21197.84 9294.91 4396.80 7795.78 20590.42 16399.41 4091.60 12399.58 3199.29 27
PEN-MVS96.69 2197.39 994.61 11699.16 484.50 19596.54 3498.05 6898.06 598.64 1598.25 3995.01 5199.65 692.95 8999.83 599.68 4
TransMVSNet (Re)95.27 8796.04 5492.97 18198.37 6281.92 23495.07 10696.76 18293.97 5897.77 3298.57 2495.72 2097.90 23888.89 19999.23 8499.08 46
DTE-MVSNet96.74 1897.43 694.67 11399.13 684.68 19496.51 3797.94 8798.14 498.67 1498.32 3695.04 4899.69 593.27 7799.82 799.62 10
DU-MVS95.28 8595.12 9695.75 7197.75 10788.59 11292.58 19197.81 9593.99 5696.80 7795.90 19690.10 17199.41 4091.60 12399.58 3199.26 28
UniMVSNet (Re)95.32 8195.15 9495.80 6997.79 10588.91 10492.91 17998.07 6493.46 7096.31 9695.97 19590.14 16899.34 6392.11 10599.64 2399.16 36
CP-MVSNet96.19 4696.80 1794.38 13198.99 1683.82 20896.31 5297.53 12097.60 898.34 2197.52 8091.98 12499.63 993.08 8599.81 899.70 3
WR-MVS_H96.60 2697.05 1495.24 9199.02 1286.44 16096.78 2698.08 6197.42 1098.48 1897.86 6291.76 13199.63 994.23 4299.84 399.66 6
WR-MVS93.49 14893.72 14592.80 19097.57 12380.03 26090.14 27695.68 22993.70 6496.62 8595.39 22587.21 20699.04 10487.50 22499.64 2399.33 24
NR-MVSNet95.28 8595.28 9095.26 8997.75 10787.21 13795.08 10597.37 12993.92 6197.65 3595.90 19690.10 17199.33 6890.11 16599.66 2199.26 28
Baseline_NR-MVSNet94.47 11595.09 9892.60 20198.50 5580.82 25092.08 21596.68 18693.82 6296.29 9898.56 2590.10 17197.75 25990.10 16799.66 2199.24 30
TranMVSNet+NR-MVSNet96.07 5096.26 4095.50 7998.26 6887.69 13093.75 15397.86 8995.96 3597.48 4697.14 11495.33 3499.44 3090.79 14099.76 1099.38 21
TSAR-MVS + GP.93.07 16492.41 18395.06 9895.82 23790.87 7390.97 24992.61 30688.04 19894.61 18593.79 28188.08 19097.81 25089.41 18098.39 18296.50 256
n20.00 420
nn0.00 420
mPP-MVS96.46 3296.05 5397.69 598.62 3594.65 1496.45 4197.74 10292.59 8395.47 14196.68 15094.50 6899.42 3493.10 8399.26 8098.99 54
door-mid92.13 316
XVG-OURS-SEG-HR95.38 7895.00 10196.51 4798.10 7994.07 2192.46 19798.13 5490.69 14293.75 21096.25 18298.03 297.02 30092.08 10795.55 30398.45 125
mvsmamba90.24 23789.43 25092.64 19595.52 25782.36 22996.64 3092.29 31081.77 29692.14 26996.28 17870.59 33999.10 9584.44 27295.22 31596.47 258
MVSFormer92.18 19492.23 18692.04 22094.74 28280.06 25897.15 1597.37 12988.98 17788.83 32292.79 30577.02 30999.60 1196.41 996.75 27896.46 259
jason89.17 26188.32 26991.70 23195.73 24480.07 25788.10 32493.22 29271.98 36890.09 30392.79 30578.53 29498.56 17987.43 22697.06 26396.46 259
jason: jason.
lupinMVS88.34 28287.31 29091.45 24194.74 28280.06 25887.23 33692.27 31171.10 37488.83 32291.15 33577.02 30998.53 18386.67 23896.75 27895.76 293
test_djsdf96.62 2496.49 2897.01 3398.55 4491.77 6097.15 1597.37 12988.98 17798.26 2498.86 1093.35 8999.60 1196.41 999.45 4599.66 6
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1498.17 4993.11 7696.48 8997.36 9396.92 699.34 6394.31 4099.38 5798.92 70
K. test v393.37 15293.27 16293.66 15898.05 8382.62 22594.35 13186.62 35996.05 3297.51 4498.85 1276.59 31699.65 693.21 7998.20 20498.73 93
lessismore_v093.87 15098.05 8383.77 20980.32 39797.13 6097.91 5977.49 30199.11 9492.62 9798.08 21398.74 92
SixPastTwentyTwo94.91 9695.21 9293.98 14298.52 4883.19 21795.93 7194.84 25994.86 4498.49 1798.74 1681.45 27299.60 1194.69 3399.39 5699.15 37
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5897.98 798.01 7694.15 5498.93 599.07 588.07 19199.57 1695.86 1599.69 1499.46 17
HPM-MVScopyleft96.81 1296.62 2497.36 2498.89 2093.53 3997.51 1098.44 1892.35 8995.95 11596.41 16496.71 899.42 3493.99 4799.36 5999.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.72 10494.12 13596.50 4898.00 8994.23 1991.48 23898.17 4990.72 14195.30 15296.47 15987.94 19596.98 30191.41 13097.61 24398.30 133
XVG-ACMP-BASELINE95.68 6495.34 8696.69 4298.40 5893.04 4294.54 12898.05 6890.45 15096.31 9696.76 14192.91 10498.72 15391.19 13299.42 5098.32 130
casdiffmvs_mvgpermissive95.10 9095.62 7493.53 16596.25 20583.23 21592.66 18898.19 4393.06 7797.49 4597.15 11394.78 5998.71 15992.27 10498.72 14998.65 104
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test96.38 4096.23 4196.84 3998.36 6392.13 5395.33 9498.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
LGP-MVS_train96.84 3998.36 6392.13 5398.25 3391.78 11297.07 6297.22 10796.38 1299.28 7392.07 10899.59 2799.11 42
baseline94.26 12594.80 10692.64 19596.08 21980.99 24793.69 15698.04 7290.80 14094.89 17696.32 17493.19 9498.48 19091.68 12198.51 17398.43 126
test1196.65 188
door91.26 325
EPNet_dtu85.63 31984.37 32589.40 30186.30 40174.33 34591.64 23588.26 34384.84 25972.96 40589.85 34871.27 33797.69 26476.60 34497.62 24296.18 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268887.19 30785.92 31691.00 26197.13 14679.41 27684.51 37895.60 23164.14 39890.07 30594.81 24378.26 29697.14 29573.34 36495.38 31096.46 259
EPNet89.80 25288.25 27494.45 12883.91 40886.18 16893.87 14987.07 35791.16 13380.64 39694.72 24878.83 28998.89 12285.17 25798.89 12498.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23987.16 21588.81 324
ACMP_Plane96.36 19191.37 23987.16 21588.81 324
APD-MVScopyleft95.00 9394.69 11295.93 6197.38 13290.88 7294.59 12197.81 9589.22 17395.46 14396.17 18793.42 8799.34 6389.30 18398.87 12997.56 203
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS86.55 242
HQP4-MVS88.81 32498.61 17298.15 145
HQP3-MVS97.31 13897.73 234
HQP2-MVS84.76 240
CNVR-MVS94.58 11194.29 12795.46 8196.94 15289.35 9691.81 23296.80 17889.66 16393.90 20895.44 22092.80 10898.72 15392.74 9398.52 17198.32 130
NCCC94.08 13393.54 15595.70 7496.49 18489.90 8492.39 20396.91 17090.64 14492.33 26594.60 25390.58 16298.96 11490.21 16297.70 23798.23 137
114514_t90.51 22489.80 24492.63 19898.00 8982.24 23193.40 16597.29 14165.84 39589.40 31794.80 24586.99 21298.75 14883.88 27698.61 16196.89 240
CP-MVS96.44 3596.08 5197.54 1298.29 6594.62 1596.80 2498.08 6192.67 8295.08 16896.39 16994.77 6099.42 3493.17 8199.44 4898.58 116
DSMNet-mixed82.21 34781.56 34684.16 36889.57 38270.00 37390.65 25977.66 40454.99 40683.30 38197.57 7477.89 29990.50 38766.86 39195.54 30491.97 374
tpm281.46 35380.35 36084.80 36289.90 37765.14 39390.44 26485.36 37265.82 39682.05 38992.44 31457.94 38796.69 31470.71 38188.49 38992.56 370
NP-MVS96.82 16287.10 14093.40 291
EG-PatchMatch MVS94.54 11394.67 11694.14 13797.87 9986.50 15692.00 21996.74 18388.16 19796.93 7197.61 7293.04 10197.90 23891.60 12398.12 20998.03 156
tpm cat180.61 36179.46 36484.07 36988.78 38865.06 39589.26 30488.23 34462.27 40181.90 39189.66 35662.70 37895.29 35171.72 37380.60 40391.86 377
SteuartSystems-ACMMP96.40 3896.30 3896.71 4198.63 3491.96 5695.70 7998.01 7693.34 7396.64 8496.57 15694.99 5299.36 5993.48 6499.34 6398.82 80
Skip Steuart: Steuart Systems R&D Blog.
CostFormer83.09 34082.21 34385.73 35389.27 38567.01 38190.35 26986.47 36070.42 38083.52 37993.23 29661.18 38196.85 30977.21 34088.26 39093.34 361
CR-MVSNet87.89 28787.12 29890.22 28491.01 36478.93 28492.52 19392.81 29873.08 36289.10 31996.93 13067.11 35197.64 26888.80 20092.70 36794.08 341
JIA-IIPM85.08 32483.04 33691.19 25587.56 39486.14 16989.40 30084.44 38188.98 17782.20 38797.95 5456.82 39096.15 32976.55 34683.45 39891.30 380
Patchmtry90.11 24289.92 24190.66 27290.35 37377.00 31792.96 17792.81 29890.25 15494.74 18296.93 13067.11 35197.52 27285.17 25798.98 11297.46 208
PatchT87.51 29888.17 27985.55 35590.64 36766.91 38292.02 21886.09 36392.20 9489.05 32197.16 11264.15 36996.37 32589.21 19192.98 36593.37 360
tpmrst82.85 34482.93 33882.64 37587.65 39358.99 40690.14 27687.90 35075.54 34583.93 37591.63 33066.79 35695.36 34881.21 30381.54 40293.57 359
BH-w/o87.21 30587.02 30087.79 33294.77 28077.27 31487.90 32693.21 29481.74 29789.99 30788.39 36983.47 24896.93 30571.29 37692.43 37189.15 386
tpm84.38 33084.08 32885.30 35890.47 37163.43 39989.34 30185.63 36977.24 33687.62 34795.03 23661.00 38397.30 28579.26 32591.09 38195.16 311
DELS-MVS92.05 19692.16 18791.72 22994.44 29180.13 25687.62 32897.25 14487.34 21392.22 26793.18 29789.54 17898.73 15289.67 17698.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned90.68 22090.90 21790.05 29095.98 22779.57 27390.04 27994.94 25787.91 19994.07 19993.00 29987.76 19797.78 25579.19 32695.17 31692.80 368
RPMNet90.31 23690.14 23890.81 26991.01 36478.93 28492.52 19398.12 5591.91 10289.10 31996.89 13368.84 34499.41 4090.17 16392.70 36794.08 341
MVSTER89.32 25988.75 26291.03 25890.10 37676.62 32490.85 25194.67 26782.27 29195.24 15995.79 20261.09 38298.49 18690.49 14798.26 19597.97 165
CPTT-MVS94.74 10394.12 13596.60 4498.15 7693.01 4395.84 7597.66 10689.21 17493.28 22495.46 21888.89 18298.98 10989.80 17298.82 13797.80 184
GBi-Net93.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
PVSNet_Blended_VisFu91.63 20391.20 21292.94 18497.73 11083.95 20792.14 21497.46 12578.85 32792.35 26294.98 23784.16 24599.08 9686.36 24696.77 27795.79 292
PVSNet_BlendedMVS90.35 23389.96 24091.54 23894.81 27778.80 29390.14 27696.93 16679.43 31788.68 33195.06 23586.27 22498.15 21980.27 30998.04 21697.68 195
UnsupCasMVSNet_eth90.33 23490.34 23390.28 28194.64 28880.24 25289.69 29195.88 22385.77 23693.94 20795.69 20981.99 26892.98 37684.21 27391.30 37897.62 198
UnsupCasMVSNet_bld88.50 27988.03 28189.90 29295.52 25778.88 28887.39 33594.02 27979.32 32193.06 23494.02 27280.72 27994.27 36575.16 35493.08 36396.54 251
PVSNet_Blended88.74 27588.16 28090.46 27894.81 27778.80 29386.64 35196.93 16674.67 35188.68 33189.18 36286.27 22498.15 21980.27 30996.00 29394.44 336
FMVSNet587.82 29086.56 30791.62 23492.31 33379.81 26893.49 16194.81 26283.26 27591.36 28196.93 13052.77 39797.49 27576.07 34998.03 21797.55 204
test193.21 15992.96 16593.97 14395.40 26184.29 19895.99 6796.56 19488.63 18595.10 16598.53 2681.31 27498.98 10986.74 23598.38 18398.65 104
new_pmnet81.22 35581.01 35381.86 37790.92 36670.15 37084.03 38180.25 39870.83 37685.97 35889.78 35367.93 35084.65 40367.44 38991.90 37690.78 383
FMVSNet390.78 21790.32 23492.16 21693.03 32079.92 26492.54 19294.95 25686.17 23095.10 16596.01 19369.97 34298.75 14886.74 23598.38 18397.82 182
dp79.28 36878.62 36881.24 38085.97 40356.45 40786.91 34385.26 37572.97 36481.45 39489.17 36356.01 39295.45 34673.19 36676.68 40491.82 378
FMVSNet292.78 17492.73 17592.95 18395.40 26181.98 23394.18 13895.53 23988.63 18596.05 11297.37 9081.31 27498.81 13787.38 22898.67 15798.06 150
FMVSNet194.84 9995.13 9593.97 14397.60 12084.29 19895.99 6796.56 19492.38 8697.03 6698.53 2690.12 16998.98 10988.78 20199.16 9598.65 104
N_pmnet88.90 27187.25 29393.83 15394.40 29393.81 3684.73 37487.09 35679.36 32093.26 22692.43 31579.29 28791.68 38177.50 33897.22 25896.00 281
cascas87.02 31186.28 31389.25 30591.56 35876.45 32684.33 38096.78 17971.01 37586.89 35485.91 38481.35 27396.94 30383.09 28195.60 30294.35 338
BH-RMVSNet90.47 22690.44 23090.56 27595.21 26878.65 29589.15 30793.94 28288.21 19492.74 24694.22 26486.38 22297.88 24278.67 32995.39 30995.14 313
UGNet93.08 16292.50 18194.79 10793.87 30587.99 12495.07 10694.26 27490.64 14487.33 35197.67 6886.89 21698.49 18688.10 21298.71 15197.91 170
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.93 31286.50 31188.24 32494.96 27174.64 33987.19 33892.07 31778.29 32988.32 33691.59 33178.06 29794.27 36574.88 35593.15 36195.80 291
XXY-MVS92.58 18193.16 16490.84 26797.75 10779.84 26591.87 22896.22 21285.94 23395.53 13797.68 6792.69 11094.48 36083.21 28097.51 24698.21 139
EC-MVSNet95.44 7395.62 7494.89 10296.93 15487.69 13096.48 4099.14 593.93 5992.77 24594.52 25693.95 7899.49 2693.62 5799.22 8797.51 206
sss87.23 30486.82 30288.46 32193.96 30277.94 30186.84 34592.78 30177.59 33287.61 34891.83 32678.75 29091.92 38077.84 33394.20 34095.52 305
Test_1112_low_res87.50 29986.58 30690.25 28396.80 16477.75 30687.53 33396.25 20869.73 38486.47 35593.61 28675.67 31997.88 24279.95 31593.20 35995.11 316
1112_ss88.42 28087.41 28991.45 24196.69 16780.99 24789.72 29096.72 18473.37 35987.00 35390.69 34477.38 30498.20 21381.38 30093.72 35095.15 312
ab-mvs-re7.56 38110.08 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41590.69 3440.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs92.40 18792.62 17891.74 22897.02 14881.65 23795.84 7595.50 24086.95 22092.95 24097.56 7590.70 15997.50 27379.63 32097.43 25196.06 279
TR-MVS87.70 29187.17 29589.27 30494.11 29879.26 27988.69 31891.86 32081.94 29590.69 29389.79 35282.82 25897.42 27972.65 36991.98 37591.14 381
MDTV_nov1_ep13_2view42.48 41488.45 32267.22 39183.56 37866.80 35472.86 36894.06 343
MDTV_nov1_ep1383.88 33289.42 38461.52 40188.74 31787.41 35373.99 35684.96 36794.01 27365.25 36495.53 34178.02 33193.16 360
MIMVSNet195.52 6995.45 8095.72 7299.14 589.02 10296.23 5996.87 17393.73 6397.87 2998.49 2990.73 15899.05 10186.43 24599.60 2599.10 45
MIMVSNet87.13 30986.54 30888.89 31096.05 22176.11 32994.39 13088.51 34181.37 30088.27 33796.75 14372.38 33195.52 34265.71 39395.47 30695.03 317
IterMVS-LS93.78 14294.28 12892.27 20996.27 20279.21 28291.87 22896.78 17991.77 11496.57 8897.07 12087.15 20798.74 15191.99 11099.03 11098.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.55 25388.22 27793.53 16595.37 26486.49 15789.26 30493.59 28479.76 31391.15 28692.31 31777.12 30798.38 19777.51 33797.92 22795.71 295
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref98.82 137
IterMVS90.18 23890.16 23590.21 28593.15 31675.98 33187.56 33192.97 29686.43 22494.09 19796.40 16578.32 29597.43 27887.87 21994.69 32997.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon92.31 19091.88 19693.60 16097.18 14386.87 14791.10 24797.37 12984.92 25792.08 27194.08 26988.59 18398.20 21383.50 27798.14 20895.73 294
MVS_111021_LR93.66 14493.28 16194.80 10696.25 20590.95 7090.21 27395.43 24387.91 19993.74 21294.40 25892.88 10696.38 32490.39 15098.28 19397.07 230
DP-MVS95.62 6595.84 6594.97 10097.16 14488.62 11094.54 12897.64 10796.94 1896.58 8797.32 10093.07 10098.72 15390.45 14898.84 13197.57 201
ACMMP++99.25 81
HQP-MVS92.09 19591.49 20693.88 14996.36 19184.89 19291.37 23997.31 13887.16 21588.81 32493.40 29184.76 24098.60 17486.55 24297.73 23498.14 146
QAPM92.88 16992.77 17193.22 17695.82 23783.31 21296.45 4197.35 13583.91 26893.75 21096.77 13989.25 18098.88 12384.56 27097.02 26597.49 207
Vis-MVSNetpermissive95.50 7195.48 7995.56 7898.11 7889.40 9495.35 9298.22 4092.36 8894.11 19698.07 4592.02 12299.44 3093.38 7397.67 23997.85 178
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet78.83 37080.60 35773.51 38893.07 31747.37 41287.10 34078.00 40368.94 38677.53 40197.26 10271.45 33694.62 35863.28 39788.74 38878.55 403
IS-MVSNet94.49 11494.35 12694.92 10198.25 7086.46 15997.13 1794.31 27196.24 2896.28 10096.36 17282.88 25599.35 6088.19 20999.52 3998.96 62
HyFIR lowres test87.19 30785.51 31892.24 21097.12 14780.51 25185.03 37296.06 21766.11 39491.66 27792.98 30170.12 34199.14 8975.29 35395.23 31497.07 230
EPMVS81.17 35780.37 35983.58 37285.58 40465.08 39490.31 27171.34 40877.31 33585.80 35991.30 33359.38 38592.70 37779.99 31482.34 40192.96 366
PAPM_NR91.03 21490.81 22191.68 23296.73 16581.10 24693.72 15596.35 20588.19 19588.77 32892.12 32285.09 23897.25 28682.40 29093.90 34796.68 249
TAMVS90.16 23989.05 25493.49 16996.49 18486.37 16290.34 27092.55 30780.84 30792.99 23794.57 25581.94 27098.20 21373.51 36398.21 20295.90 288
PAPR87.65 29486.77 30490.27 28292.85 32477.38 31288.56 32196.23 21076.82 34084.98 36689.75 35486.08 22697.16 29472.33 37093.35 35696.26 270
RPSCF95.58 6894.89 10397.62 897.58 12296.30 895.97 7097.53 12092.42 8593.41 21897.78 6391.21 14397.77 25691.06 13497.06 26398.80 83
Vis-MVSNet (Re-imp)90.42 22790.16 23591.20 25497.66 11877.32 31394.33 13287.66 35291.20 13192.99 23795.13 23175.40 32198.28 20577.86 33299.19 9097.99 161
test_040295.73 6296.22 4294.26 13498.19 7485.77 17893.24 16997.24 14596.88 1997.69 3497.77 6594.12 7599.13 9191.54 12799.29 7397.88 174
MVS_111021_HR93.63 14593.42 15894.26 13496.65 17086.96 14689.30 30396.23 21088.36 19393.57 21594.60 25393.45 8497.77 25690.23 16198.38 18398.03 156
CSCG94.69 10694.75 10894.52 12397.55 12487.87 12695.01 10997.57 11692.68 8096.20 10693.44 29091.92 12598.78 14489.11 19399.24 8396.92 238
PatchMatch-RL89.18 26088.02 28292.64 19595.90 23292.87 4688.67 32091.06 32680.34 30890.03 30691.67 32983.34 24994.42 36276.35 34794.84 32590.64 384
API-MVS91.52 20691.61 20191.26 25094.16 29686.26 16694.66 11994.82 26091.17 13292.13 27091.08 33790.03 17497.06 29979.09 32797.35 25590.45 385
Test By Simon90.61 160
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1097.41 1197.28 5698.46 3294.62 6498.84 13094.64 3499.53 3798.99 54
USDC89.02 26589.08 25388.84 31195.07 27074.50 34388.97 30996.39 20373.21 36193.27 22596.28 17882.16 26696.39 32377.55 33698.80 14095.62 302
EPP-MVSNet93.91 13993.68 14894.59 12098.08 8085.55 18497.44 1194.03 27794.22 5394.94 17396.19 18482.07 26799.57 1687.28 22998.89 12498.65 104
PMMVS83.00 34181.11 35088.66 31583.81 40986.44 16082.24 38985.65 36861.75 40282.07 38885.64 38779.75 28391.59 38275.99 35093.09 36287.94 392
PAPM81.91 35280.11 36287.31 33693.87 30572.32 36184.02 38293.22 29269.47 38576.13 40389.84 34972.15 33297.23 28753.27 40589.02 38792.37 372
ACMMPcopyleft96.61 2596.34 3697.43 1998.61 3793.88 3096.95 2098.18 4592.26 9296.33 9496.84 13795.10 4699.40 4793.47 6599.33 6599.02 51
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA91.72 20191.20 21293.26 17596.17 21091.02 6891.14 24595.55 23890.16 15590.87 28993.56 28886.31 22394.40 36379.92 31997.12 26194.37 337
PatchmatchNetpermissive85.22 32284.64 32286.98 33989.51 38369.83 37490.52 26287.34 35578.87 32687.22 35292.74 30766.91 35396.53 31681.77 29586.88 39294.58 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS94.34 12293.80 14295.95 5895.65 24991.67 6394.82 11497.86 8987.86 20293.04 23694.16 26791.58 13398.78 14490.27 15898.96 11997.41 212
F-COLMAP92.28 19191.06 21695.95 5897.52 12591.90 5793.53 15997.18 14883.98 26788.70 33094.04 27088.41 18698.55 18180.17 31395.99 29497.39 216
ANet_high94.83 10096.28 3990.47 27696.65 17073.16 35394.33 13298.74 1396.39 2798.09 2798.93 893.37 8898.70 16090.38 15199.68 1799.53 14
wuyk23d87.83 28990.79 22278.96 38490.46 37288.63 10992.72 18490.67 33291.65 12098.68 1397.64 7096.06 1577.53 40659.84 40099.41 5470.73 404
OMC-MVS94.22 12893.69 14795.81 6897.25 13891.27 6592.27 21097.40 12887.10 21894.56 18695.42 22193.74 7998.11 22186.62 23998.85 13098.06 150
MG-MVS89.54 25489.80 24488.76 31294.88 27372.47 36089.60 29292.44 30985.82 23589.48 31695.98 19482.85 25797.74 26181.87 29495.27 31396.08 278
AdaColmapbinary91.63 20391.36 20992.47 20695.56 25586.36 16392.24 21396.27 20788.88 18189.90 30992.69 30891.65 13298.32 20377.38 33997.64 24192.72 369
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF95.95 5897.34 13593.36 4196.55 19791.93 10194.82 17895.39 22591.99 12397.08 29785.53 25597.96 22497.41 212
DeepMVS_CXcopyleft53.83 39070.38 41364.56 39648.52 41433.01 40865.50 40874.21 40556.19 39146.64 41138.45 40970.07 40550.30 406
TinyColmap92.00 19792.76 17289.71 29695.62 25277.02 31690.72 25696.17 21587.70 20795.26 15696.29 17692.54 11396.45 32181.77 29598.77 14595.66 299
MAR-MVS90.32 23588.87 26194.66 11594.82 27691.85 5894.22 13794.75 26380.91 30487.52 34988.07 37186.63 22097.87 24576.67 34396.21 29094.25 340
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS92.72 17692.02 19294.84 10595.65 24991.99 5592.92 17896.60 19085.08 25492.44 25793.62 28586.80 21796.35 32686.81 23498.25 19796.18 274
MSDG90.82 21590.67 22591.26 25094.16 29683.08 22086.63 35296.19 21390.60 14691.94 27391.89 32589.16 18195.75 33980.96 30694.51 33294.95 320
LS3D96.11 4895.83 6696.95 3794.75 28194.20 2097.34 1297.98 7997.31 1295.32 15196.77 13993.08 9999.20 8391.79 11798.16 20697.44 211
CLD-MVS91.82 19891.41 20893.04 17896.37 18983.65 21086.82 34797.29 14184.65 26192.27 26689.67 35592.20 12097.85 24883.95 27599.47 4197.62 198
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.50 32983.28 33488.16 32696.32 19794.49 1785.76 36685.47 37183.09 28085.20 36294.26 26263.79 37286.58 40063.72 39691.88 37783.40 398
Gipumacopyleft95.31 8495.80 6893.81 15497.99 9290.91 7196.42 4497.95 8496.69 2091.78 27598.85 1291.77 12995.49 34491.72 11999.08 10095.02 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015