This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 3798.61 16996.85 299.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+92.74 295.86 5695.77 6596.13 5396.81 15790.79 7396.30 5497.82 8796.13 2694.74 16997.23 9791.33 12899.16 8293.25 6898.30 18798.46 119
3Dnovator92.54 394.80 9894.90 9894.47 12595.47 24287.06 13896.63 3197.28 13491.82 10794.34 18097.41 7990.60 15098.65 16692.47 9098.11 20597.70 186
DeepC-MVS91.39 495.43 7195.33 8295.71 7497.67 11590.17 8093.86 14498.02 6887.35 20596.22 10197.99 4894.48 6599.05 9892.73 8499.68 1897.93 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2196.69 1796.86 7297.56 7095.48 2698.77 14590.11 15499.44 4998.31 128
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepPCF-MVS90.46 694.20 12293.56 14296.14 5295.96 21792.96 4389.48 28097.46 11585.14 24096.23 10095.42 20693.19 8998.08 21590.37 14198.76 14297.38 211
DeepC-MVS_fast89.96 793.73 13393.44 14594.60 11796.14 20487.90 12393.36 15797.14 14285.53 23493.90 19395.45 20491.30 13098.59 17389.51 16798.62 15697.31 214
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft89.45 892.27 17892.13 17492.68 18594.53 27484.10 19495.70 7697.03 15082.44 27491.14 27196.42 14988.47 17398.38 19185.95 23897.47 23795.55 284
ACMM88.83 996.30 4296.07 4996.97 3498.39 6292.95 4494.74 11198.03 6690.82 13497.15 5796.85 12396.25 1499.00 10593.10 7399.33 6598.95 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS88.58 1092.49 17091.75 18494.73 10696.50 17589.69 8692.91 16897.68 9878.02 30892.79 23094.10 25590.85 14297.96 22784.76 25498.16 20196.54 239
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 9895.65 7998.61 1196.10 2798.16 2397.52 7396.90 798.62 16890.30 14599.60 2698.72 92
ACMH88.36 1296.59 2797.43 594.07 13798.56 4285.33 18096.33 4798.30 2494.66 4098.72 898.30 3497.51 598.00 22394.87 2199.59 2898.86 74
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP88.15 1395.71 6195.43 7696.54 4598.17 7791.73 6094.24 13198.08 5489.46 16096.61 8396.47 14695.85 1899.12 9090.45 13799.56 3598.77 86
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft87.21 1494.97 9195.33 8293.91 14498.97 1797.16 295.54 8595.85 21596.47 2293.40 20697.46 7895.31 3395.47 32486.18 23798.78 14089.11 362
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft85.34 1590.40 21488.92 24294.85 10196.53 17490.02 8191.58 22396.48 18980.16 28786.14 33992.18 30585.73 21698.25 20376.87 32594.61 31396.30 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft85.12 1689.52 24089.05 23890.92 25094.58 27381.21 23591.10 23493.41 27977.03 31493.41 20493.99 26183.23 23397.80 24279.93 30094.80 30893.74 327
PCF-MVS84.52 1789.12 24687.71 27093.34 16296.06 20985.84 17286.58 33897.31 12968.46 36293.61 20093.89 26587.51 18998.52 18067.85 36698.11 20595.66 280
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS82.50 1886.81 29885.93 30089.47 28593.63 29377.93 28994.02 13891.58 31275.68 31983.64 35593.64 27077.40 28597.42 26871.70 35392.07 34993.05 340
IB-MVS77.21 1983.11 32081.05 33189.29 29091.15 33775.85 31985.66 34286.00 34879.70 29182.02 36686.61 36148.26 38298.39 18977.84 31692.22 34793.63 330
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet76.22 2082.89 32382.37 32384.48 34593.96 28664.38 37778.60 37188.61 32671.50 34584.43 35186.36 36474.27 30694.60 33569.87 36293.69 32894.46 310
PVSNet_070.34 2174.58 34772.96 35079.47 35890.63 34366.24 37073.26 37283.40 36763.67 37478.02 37578.35 37872.53 31189.59 36756.68 37760.05 38282.57 376
CMPMVSbinary68.83 2287.28 28885.67 30292.09 20888.77 36485.42 17990.31 25794.38 25970.02 35688.00 32493.30 28073.78 30994.03 34475.96 33296.54 26896.83 231
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive59.87 2373.86 34872.65 35177.47 36087.00 37574.35 33161.37 37860.93 38667.27 36469.69 38186.49 36381.24 25872.33 38256.45 37883.45 37385.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvsmvis_n_192095.08 8895.40 7894.13 13596.66 16187.75 12793.44 15598.49 1385.57 23398.27 2097.11 10794.11 7197.75 24996.26 798.72 14596.89 228
dmvs_re84.69 31283.94 31486.95 32692.24 31482.93 21289.51 27987.37 33884.38 25285.37 34285.08 36972.44 31286.59 37468.05 36591.03 35791.33 354
SDMVSNet94.43 11195.02 9592.69 18497.93 9682.88 21391.92 21195.99 21193.65 6295.51 13198.63 1994.60 6096.48 29987.57 21199.35 6098.70 96
dmvs_testset78.23 34678.99 34475.94 36191.99 32555.34 38588.86 29678.70 37882.69 26981.64 36979.46 37675.93 30085.74 37648.78 38182.85 37586.76 369
sd_testset93.94 12894.39 11592.61 19097.93 9683.24 20493.17 16195.04 24193.65 6295.51 13198.63 1994.49 6495.89 31681.72 28099.35 6098.70 96
test_fmvsm_n_192094.72 10094.74 10694.67 10996.30 19188.62 10893.19 16098.07 5785.63 23197.08 6097.35 8890.86 14197.66 25595.70 1298.48 17197.74 184
test_cas_vis1_n_192088.25 26888.27 25788.20 31292.19 31878.92 27689.45 28195.44 23275.29 32593.23 21595.65 19671.58 31790.23 36488.05 20293.55 33095.44 286
test_vis1_n_192089.45 24189.85 22788.28 31093.59 29476.71 31090.67 24497.78 9379.67 29290.30 28596.11 17376.62 29792.17 35490.31 14493.57 32995.96 264
test_vis1_n89.01 25189.01 24089.03 29492.57 30982.46 21892.62 17996.06 20673.02 33890.40 28295.77 19174.86 30489.68 36690.78 13094.98 30294.95 297
test_fmvs1_n88.73 26188.38 25289.76 28192.06 32282.53 21692.30 19696.59 18271.14 34792.58 23795.41 20968.55 32689.57 36891.12 12195.66 28597.18 218
mvsany_test183.91 31782.93 32186.84 32886.18 37785.93 16981.11 36775.03 38270.80 35288.57 31794.63 23883.08 23587.38 37280.39 29086.57 36887.21 368
APD_test195.91 5395.42 7797.36 2398.82 2696.62 695.64 8097.64 10093.38 6695.89 11697.23 9793.35 8497.66 25588.20 19698.66 15597.79 178
test_vis1_rt85.58 30584.58 30788.60 30387.97 36786.76 14585.45 34493.59 27366.43 36687.64 32889.20 34679.33 26885.38 37781.59 28189.98 36193.66 329
test_vis3_rt90.40 21490.03 22391.52 22792.58 30888.95 10090.38 25497.72 9773.30 33597.79 3097.51 7577.05 29087.10 37389.03 18394.89 30498.50 115
test_fmvs290.62 20990.40 21691.29 23691.93 32685.46 17892.70 17596.48 18974.44 32894.91 16297.59 6875.52 30290.57 36093.44 5896.56 26797.84 172
test_fmvs187.59 28187.27 27788.54 30488.32 36681.26 23390.43 25395.72 21870.55 35391.70 26194.63 23868.13 32789.42 36990.59 13495.34 29594.94 299
test_fmvs392.42 17292.40 17092.46 19793.80 29287.28 13393.86 14497.05 14976.86 31596.25 9898.66 1882.87 23891.26 35895.44 1796.83 25998.82 78
mvsany_test389.11 24788.21 26291.83 21391.30 33690.25 7988.09 30878.76 37776.37 31896.43 8798.39 3283.79 22890.43 36386.57 22894.20 32194.80 301
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 1994.96 3697.30 5297.93 5096.05 1697.90 23089.32 17099.23 8598.19 136
test_f86.65 29987.13 28285.19 34090.28 34986.11 16686.52 33991.66 31069.76 35795.73 12497.21 10169.51 32481.28 38089.15 18094.40 31588.17 366
FE-MVS89.06 24888.29 25591.36 23294.78 26279.57 26396.77 2890.99 31584.87 24792.96 22596.29 16260.69 36598.80 13880.18 29597.11 24795.71 276
FA-MVS(test-final)91.81 18591.85 18191.68 22194.95 25579.99 25296.00 6293.44 27887.80 19694.02 18897.29 9377.60 28398.45 18888.04 20397.49 23596.61 238
iter_conf_final90.23 22389.32 23492.95 17394.65 27181.46 23094.32 13095.40 23685.61 23292.84 22895.37 21254.58 37499.13 8792.16 9498.94 12098.25 131
bld_raw_dy_0_6494.27 11794.15 12494.65 11298.55 4586.28 16295.80 7395.55 22888.41 18597.09 5998.08 4278.69 27398.87 12495.63 1399.53 3798.81 80
patch_mono-292.46 17192.72 16291.71 21996.65 16278.91 27788.85 29797.17 14083.89 25692.45 24296.76 12989.86 16397.09 28090.24 14998.59 15999.12 43
EGC-MVSNET80.97 33775.73 34996.67 4298.85 2494.55 1596.83 2396.60 1802.44 3845.32 38598.25 3592.24 11198.02 22191.85 10599.21 8997.45 202
test250685.42 30684.57 30887.96 31597.81 10266.53 36996.14 5856.35 38789.04 16993.55 20298.10 4042.88 38998.68 16288.09 20199.18 9398.67 99
test111190.39 21690.61 21089.74 28298.04 8871.50 35195.59 8179.72 37689.41 16195.94 11298.14 3770.79 32098.81 13588.52 19499.32 6798.90 70
ECVR-MVScopyleft90.12 22690.16 21990.00 27897.81 10272.68 34595.76 7578.54 37989.04 16995.36 14098.10 4070.51 32198.64 16787.10 21999.18 9398.67 99
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
tt080595.42 7395.93 5693.86 14798.75 3288.47 11497.68 994.29 26196.48 2195.38 13793.63 27194.89 5297.94 22995.38 1996.92 25695.17 289
DVP-MVS++95.93 5296.34 3494.70 10896.54 17186.66 15098.45 498.22 3393.26 6897.54 3997.36 8593.12 9299.38 5493.88 3898.68 15198.04 146
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
PC_three_145275.31 32495.87 11795.75 19292.93 9896.34 30887.18 21898.68 15198.04 146
No_MVS95.90 6596.54 17189.57 8896.87 16499.41 3894.06 3599.30 7098.72 92
test_one_060198.26 7187.14 13698.18 3894.25 4596.99 6897.36 8595.13 40
eth-test20.00 392
eth-test0.00 392
GeoE94.55 10794.68 11094.15 13397.23 13585.11 18294.14 13597.34 12788.71 17895.26 14695.50 20294.65 5899.12 9090.94 12698.40 17498.23 132
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3216.82 38241.10 38478.41 37754.41 37570.69 38350.12 38051.26 38381.72 377
Anonymous2024052192.86 15993.57 14190.74 25796.57 16875.50 32394.15 13495.60 22189.38 16295.90 11597.90 5680.39 26397.96 22792.60 8899.68 1898.75 87
h-mvs3392.89 15691.99 17795.58 7796.97 14590.55 7693.94 14294.01 26989.23 16593.95 19096.19 16976.88 29499.14 8591.02 12395.71 28497.04 222
hse-mvs292.24 17991.20 19695.38 8396.16 20290.65 7592.52 18292.01 30789.23 16593.95 19092.99 28776.88 29498.69 16091.02 12396.03 27696.81 232
CL-MVSNet_self_test90.04 23289.90 22690.47 26395.24 25077.81 29286.60 33792.62 29485.64 23093.25 21493.92 26383.84 22796.06 31379.93 30098.03 21297.53 198
KD-MVS_2432*160082.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
KD-MVS_self_test94.10 12494.73 10792.19 20297.66 11679.49 26594.86 10897.12 14589.59 15996.87 7197.65 6590.40 15498.34 19589.08 18299.35 6098.75 87
AUN-MVS90.05 23188.30 25495.32 8896.09 20790.52 7792.42 18992.05 30682.08 27788.45 31892.86 28965.76 34298.69 16088.91 18696.07 27596.75 236
ZD-MVS97.23 13590.32 7897.54 10984.40 25194.78 16795.79 18792.76 10499.39 4888.72 19198.40 174
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11294.85 5399.42 3293.49 5298.84 12998.00 151
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 4895.66 3297.00 6697.03 11295.40 2893.49 5298.84 12998.00 151
SED-MVS96.00 5196.41 3294.76 10598.51 5186.97 14095.21 9498.10 5191.95 9597.63 3597.25 9596.48 1099.35 5993.29 6599.29 7397.95 159
IU-MVS98.51 5186.66 15096.83 16772.74 34095.83 11893.00 7799.29 7398.64 106
OPU-MVS95.15 9396.84 15489.43 9295.21 9495.66 19593.12 9298.06 21686.28 23698.61 15797.95 159
test_241102_TWO98.10 5191.95 9597.54 3997.25 9595.37 2999.35 5993.29 6599.25 8298.49 117
test_241102_ONE98.51 5186.97 14098.10 5191.85 10197.63 3597.03 11296.48 1098.95 113
SF-MVS95.88 5595.88 5895.87 6898.12 7989.65 8795.58 8398.56 1291.84 10496.36 9096.68 13794.37 6799.32 6892.41 9199.05 10598.64 106
cl2289.02 24988.50 24990.59 26189.76 35376.45 31386.62 33694.03 26682.98 26692.65 23492.49 29872.05 31597.53 26088.93 18497.02 25097.78 179
miper_ehance_all_eth90.48 21190.42 21590.69 25891.62 33276.57 31286.83 32996.18 20383.38 25894.06 18592.66 29782.20 24698.04 21789.79 16297.02 25097.45 202
miper_enhance_ethall88.42 26587.87 26890.07 27588.67 36575.52 32285.10 34695.59 22575.68 31992.49 23989.45 34378.96 27097.88 23487.86 20897.02 25096.81 232
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4591.74 11295.34 14196.36 15895.68 2099.44 2894.41 2899.28 7898.97 60
dcpmvs_293.96 12795.01 9690.82 25597.60 11874.04 33593.68 15098.85 789.80 15597.82 2997.01 11591.14 13899.21 7790.56 13598.59 15999.19 36
cl____90.65 20790.56 21290.91 25291.85 32776.98 30586.75 33195.36 23785.53 23494.06 18594.89 22777.36 28897.98 22690.27 14798.98 11297.76 181
DIV-MVS_self_test90.65 20790.56 21290.91 25291.85 32776.99 30486.75 33195.36 23785.52 23694.06 18594.89 22777.37 28797.99 22590.28 14698.97 11697.76 181
eth_miper_zixun_eth90.72 20490.61 21091.05 24492.04 32376.84 30886.91 32696.67 17785.21 23894.41 17693.92 26379.53 26798.26 20289.76 16397.02 25098.06 143
9.1494.81 10197.49 12594.11 13698.37 1887.56 20495.38 13796.03 17794.66 5799.08 9390.70 13298.97 116
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
save fliter97.46 12888.05 12192.04 20497.08 14787.63 202
ET-MVSNet_ETH3D86.15 30184.27 31191.79 21593.04 30381.28 23287.17 32286.14 34679.57 29383.65 35488.66 34957.10 36998.18 20987.74 20995.40 29295.90 269
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13197.70 897.54 10998.16 298.94 299.33 297.84 499.08 9390.73 13199.73 1399.59 13
EIA-MVS92.35 17592.03 17593.30 16495.81 22683.97 19692.80 17198.17 4287.71 19989.79 29687.56 35591.17 13799.18 8187.97 20597.27 24296.77 234
miper_refine_blended82.17 32880.75 33586.42 33182.04 38570.09 35881.75 36590.80 31782.56 27090.37 28389.30 34442.90 38796.11 31174.47 33792.55 34493.06 338
miper_lstm_enhance89.90 23489.80 22890.19 27491.37 33577.50 29683.82 35995.00 24284.84 24893.05 22194.96 22576.53 29995.20 33289.96 15998.67 15397.86 169
ETV-MVS92.99 15392.74 15993.72 15095.86 22386.30 16192.33 19397.84 8591.70 11592.81 22986.17 36592.22 11299.19 8088.03 20497.73 22495.66 280
CS-MVS95.77 5895.58 7196.37 5096.84 15491.72 6196.73 2999.06 594.23 4692.48 24094.79 23393.56 7699.49 2493.47 5599.05 10597.89 166
D2MVS89.93 23389.60 23390.92 25094.03 28578.40 28488.69 30294.85 24678.96 30293.08 21995.09 22074.57 30596.94 28588.19 19798.96 11897.41 205
DVP-MVScopyleft95.82 5796.18 4294.72 10798.51 5186.69 14895.20 9697.00 15291.85 10197.40 5097.35 8895.58 2399.34 6293.44 5899.31 6898.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 6897.40 5097.35 8894.69 5699.34 6293.88 3899.42 5198.89 71
test_0728_SECOND94.88 10098.55 4586.72 14795.20 9698.22 3399.38 5493.44 5899.31 6898.53 114
test072698.51 5186.69 14895.34 8998.18 3891.85 10197.63 3597.37 8295.58 23
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 5795.17 3596.82 7496.73 13495.09 4499.43 3192.99 7898.71 14798.50 115
DPM-MVS89.35 24288.40 25192.18 20596.13 20684.20 19286.96 32596.15 20575.40 32387.36 33291.55 31783.30 23298.01 22282.17 27696.62 26694.32 314
GST-MVS96.24 4395.99 5397.00 3398.65 3492.71 4795.69 7898.01 6992.08 9395.74 12296.28 16495.22 3799.42 3293.17 7199.06 10298.88 73
test_yl90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
thisisatest053088.69 26287.52 27392.20 20196.33 18779.36 26792.81 17084.01 36486.44 21693.67 19892.68 29653.62 37899.25 7489.65 16698.45 17298.00 151
Anonymous2024052995.50 6895.83 6294.50 12297.33 13385.93 16995.19 9896.77 17296.64 1997.61 3898.05 4493.23 8898.79 13988.60 19399.04 11098.78 84
Anonymous20240521192.58 16792.50 16792.83 18096.55 17083.22 20692.43 18891.64 31194.10 4995.59 12896.64 13981.88 25297.50 26285.12 24798.52 16697.77 180
DCV-MVSNet90.11 22789.73 23191.26 23794.09 28379.82 25690.44 25092.65 29290.90 13093.19 21793.30 28073.90 30798.03 21882.23 27496.87 25795.93 266
tttt051789.81 23688.90 24492.55 19397.00 14479.73 26095.03 10383.65 36589.88 15395.30 14394.79 23353.64 37799.39 4891.99 10098.79 13998.54 113
our_test_387.55 28287.59 27287.44 32291.76 32970.48 35583.83 35890.55 32079.79 28992.06 25792.17 30678.63 27695.63 31984.77 25394.73 30996.22 255
thisisatest051584.72 31182.99 32089.90 27992.96 30575.33 32484.36 35483.42 36677.37 31188.27 32186.65 36053.94 37698.72 15182.56 27097.40 23995.67 279
ppachtmachnet_test88.61 26388.64 24788.50 30691.76 32970.99 35484.59 35292.98 28479.30 29992.38 24693.53 27679.57 26697.45 26686.50 23297.17 24597.07 219
SMA-MVScopyleft95.77 5895.54 7296.47 4998.27 7091.19 6695.09 9997.79 9286.48 21597.42 4997.51 7594.47 6699.29 6993.55 5099.29 7398.93 64
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.75 304
DPE-MVScopyleft95.89 5495.88 5895.92 6497.93 9689.83 8593.46 15398.30 2492.37 8397.75 3296.95 11695.14 3999.51 2091.74 10899.28 7898.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.21 7589.41 9396.72 78
thres100view90087.35 28786.89 28688.72 30096.14 20473.09 34193.00 16585.31 35692.13 9293.26 21290.96 32463.42 35498.28 19871.27 35696.54 26894.79 302
tfpnnormal94.27 11794.87 10092.48 19597.71 11080.88 23994.55 12295.41 23493.70 5896.67 8097.72 6191.40 12798.18 20987.45 21399.18 9398.36 124
tfpn200view987.05 29586.52 29488.67 30195.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26894.79 302
c3_l91.32 19791.42 19191.00 24892.29 31376.79 30987.52 31796.42 19185.76 22894.72 17193.89 26582.73 24198.16 21190.93 12798.55 16298.04 146
CHOSEN 280x42080.04 34277.97 34886.23 33490.13 35074.53 32972.87 37489.59 32366.38 36776.29 37785.32 36856.96 37095.36 32769.49 36394.72 31088.79 364
CANet92.38 17491.99 17793.52 16093.82 29183.46 20191.14 23297.00 15289.81 15486.47 33794.04 25787.90 18499.21 7789.50 16898.27 18997.90 164
Fast-Effi-MVS+-dtu92.77 16292.16 17294.58 12094.66 27088.25 11792.05 20396.65 17889.62 15890.08 28891.23 31992.56 10798.60 17186.30 23596.27 27396.90 227
Effi-MVS+-dtu93.90 13192.60 16597.77 394.74 26596.67 594.00 13995.41 23489.94 15191.93 25992.13 30790.12 15798.97 11087.68 21097.48 23697.67 189
CANet_DTU89.85 23589.17 23691.87 21292.20 31780.02 25190.79 24095.87 21486.02 22382.53 36291.77 31280.01 26498.57 17585.66 24097.70 22797.01 223
MVS_030493.92 12993.68 13694.64 11395.94 22085.83 17394.34 12788.14 33392.98 7491.09 27297.68 6286.73 20599.36 5796.64 499.59 2898.72 92
MP-MVS-pluss96.08 4895.92 5796.57 4499.06 1091.21 6593.25 15898.32 2187.89 19496.86 7297.38 8195.55 2599.39 4895.47 1699.47 4299.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.34 7794.63 11297.48 1498.67 3394.05 2396.41 4398.18 3891.26 12395.12 15295.15 21686.60 20899.50 2193.43 6196.81 26098.89 71
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs166.64 33894.75 304
sam_mvs66.41 339
IterMVS-SCA-FT91.65 18891.55 18691.94 21193.89 28879.22 27187.56 31493.51 27691.53 11995.37 13996.62 14078.65 27498.90 11791.89 10494.95 30397.70 186
TSAR-MVS + MP.94.96 9294.75 10495.57 7898.86 2288.69 10596.37 4496.81 16885.23 23794.75 16897.12 10691.85 11999.40 4593.45 5798.33 18498.62 109
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
OPM-MVS95.61 6495.45 7496.08 5498.49 5891.00 6892.65 17897.33 12890.05 15096.77 7796.85 12395.04 4598.56 17692.77 8199.06 10298.70 96
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6690.42 14596.37 8997.35 8895.68 2099.25 7494.44 2799.34 6398.80 82
ambc92.98 17096.88 15183.01 21195.92 6896.38 19396.41 8897.48 7788.26 17597.80 24289.96 15998.93 12198.12 142
MTGPAbinary97.62 102
CS-MVS-test95.32 7895.10 9395.96 5896.86 15390.75 7496.33 4799.20 293.99 5091.03 27393.73 26993.52 7899.55 1891.81 10699.45 4697.58 193
Effi-MVS+92.79 16092.74 15992.94 17595.10 25283.30 20394.00 13997.53 11191.36 12289.35 30290.65 33194.01 7298.66 16487.40 21595.30 29696.88 230
xiu_mvs_v2_base89.00 25289.19 23588.46 30894.86 25874.63 32786.97 32495.60 22180.88 28287.83 32688.62 35091.04 13998.81 13582.51 27294.38 31691.93 350
xiu_mvs_v1_base91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
new-patchmatchnet88.97 25390.79 20683.50 35094.28 27955.83 38485.34 34593.56 27586.18 22095.47 13395.73 19383.10 23496.51 29885.40 24298.06 20998.16 138
pmmvs696.80 1297.36 995.15 9399.12 887.82 12696.68 3097.86 8296.10 2798.14 2499.28 397.94 398.21 20591.38 11999.69 1499.42 19
pmmvs587.87 27387.14 28190.07 27593.26 29976.97 30688.89 29592.18 30073.71 33388.36 31993.89 26576.86 29696.73 29380.32 29196.81 26096.51 241
test_post190.21 2595.85 38665.36 34496.00 31479.61 304
test_post6.07 38565.74 34395.84 317
Fast-Effi-MVS+91.28 19890.86 20392.53 19495.45 24382.53 21689.25 29096.52 18785.00 24489.91 29288.55 35192.94 9798.84 12884.72 25595.44 29196.22 255
patchmatchnet-post91.71 31366.22 34197.59 258
Anonymous2023121196.60 2597.13 1295.00 9697.46 12886.35 16097.11 1998.24 3197.58 898.72 898.97 793.15 9199.15 8393.18 7099.74 1299.50 17
pmmvs-eth3d91.54 19190.73 20893.99 13895.76 22987.86 12590.83 23993.98 27078.23 30794.02 18896.22 16882.62 24496.83 29086.57 22898.33 18497.29 215
GG-mvs-BLEND83.24 35185.06 38171.03 35394.99 10665.55 38574.09 37975.51 37944.57 38494.46 33759.57 37687.54 36684.24 372
xiu_mvs_v1_base_debi91.47 19391.52 18791.33 23395.69 23281.56 22789.92 26996.05 20883.22 26091.26 26790.74 32691.55 12498.82 13089.29 17395.91 27993.62 331
Anonymous2023120688.77 25988.29 25590.20 27396.31 18978.81 28089.56 27893.49 27774.26 33092.38 24695.58 20082.21 24595.43 32672.07 35098.75 14496.34 250
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10294.46 4496.29 9596.94 11793.56 7699.37 5694.29 3199.42 5198.99 55
MTMP94.82 10954.62 388
gm-plane-assit87.08 37459.33 38171.22 34683.58 37297.20 27773.95 340
test9_res88.16 19998.40 17497.83 173
MVP-Stereo90.07 23088.92 24293.54 15796.31 18986.49 15390.93 23795.59 22579.80 28891.48 26395.59 19780.79 26097.39 27178.57 31391.19 35496.76 235
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST996.45 17889.46 9090.60 24696.92 15979.09 30090.49 27994.39 24691.31 12998.88 120
train_agg92.71 16491.83 18295.35 8496.45 17889.46 9090.60 24696.92 15979.37 29590.49 27994.39 24691.20 13498.88 12088.66 19298.43 17397.72 185
gg-mvs-nofinetune82.10 33081.02 33285.34 33887.46 37171.04 35294.74 11167.56 38496.44 2379.43 37498.99 645.24 38396.15 30967.18 36892.17 34888.85 363
SCA87.43 28587.21 27988.10 31492.01 32471.98 34989.43 28288.11 33482.26 27688.71 31392.83 29078.65 27497.59 25879.61 30493.30 33394.75 304
Patchmatch-test86.10 30286.01 29986.38 33390.63 34374.22 33489.57 27786.69 34285.73 22989.81 29592.83 29065.24 34691.04 35977.82 31895.78 28393.88 324
test_896.37 18089.14 9790.51 24996.89 16279.37 29590.42 28194.36 24891.20 13498.82 130
MS-PatchMatch88.05 27187.75 26988.95 29593.28 29777.93 28987.88 31092.49 29775.42 32292.57 23893.59 27480.44 26294.24 34381.28 28492.75 34194.69 307
Patchmatch-RL test88.81 25888.52 24889.69 28495.33 24979.94 25386.22 34092.71 29178.46 30595.80 11994.18 25366.25 34095.33 32989.22 17898.53 16593.78 325
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2270.00 3870.00 38891.15 32093.43 810.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1430.00 3880.00 3860.00 3860.00 384
agg_prior287.06 22198.36 18397.98 155
agg_prior96.20 19988.89 10396.88 16390.21 28698.78 142
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
canonicalmvs94.59 10594.69 10894.30 13095.60 23987.03 13995.59 8198.24 3191.56 11895.21 15192.04 30994.95 5098.66 16491.45 11797.57 23397.20 217
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10487.68 20198.45 1898.77 1594.20 6999.50 2196.70 399.40 5699.53 15
alignmvs93.26 14492.85 15694.50 12295.70 23187.45 13093.45 15495.76 21691.58 11795.25 14892.42 30381.96 25098.72 15191.61 11297.87 22197.33 213
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11295.77 7498.29 2792.68 7698.03 2697.91 5495.13 4098.95 11393.85 4099.49 4199.36 24
v14419293.20 14993.54 14392.16 20696.05 21078.26 28691.95 20797.14 14284.98 24595.96 11096.11 17387.08 19799.04 10193.79 4198.84 12999.17 37
FIs94.90 9495.35 8093.55 15598.28 6981.76 22595.33 9098.14 4693.05 7397.07 6197.18 10287.65 18699.29 6991.72 10999.69 1499.61 11
v192192093.26 14493.61 13992.19 20296.04 21478.31 28591.88 21497.24 13685.17 23996.19 10596.19 16986.76 20499.05 9894.18 3398.84 12999.22 33
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3696.95 1495.46 13599.23 493.45 7999.57 1495.34 2099.89 299.63 9
v119293.49 13793.78 13192.62 18996.16 20279.62 26191.83 21897.22 13886.07 22296.10 10896.38 15687.22 19399.02 10394.14 3498.88 12499.22 33
FC-MVSNet-test95.32 7895.88 5893.62 15298.49 5881.77 22495.90 6998.32 2193.93 5397.53 4197.56 7088.48 17299.40 4592.91 8099.83 599.68 4
v114493.50 13693.81 12992.57 19296.28 19279.61 26291.86 21796.96 15586.95 21395.91 11496.32 16087.65 18698.96 11193.51 5198.88 12499.13 41
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7292.35 8595.63 12796.47 14695.37 2999.27 7393.78 4299.14 9898.48 118
v14892.87 15893.29 14791.62 22396.25 19677.72 29491.28 23095.05 24089.69 15695.93 11396.04 17687.34 19198.38 19190.05 15797.99 21598.78 84
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
AllTest94.88 9594.51 11496.00 5698.02 8992.17 5095.26 9398.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
TestCases96.00 5698.02 8992.17 5098.43 1590.48 14295.04 15796.74 13292.54 10897.86 23885.11 24898.98 11297.98 155
v7n96.82 997.31 1095.33 8698.54 4886.81 14496.83 2398.07 5796.59 2098.46 1798.43 3192.91 9999.52 1996.25 899.76 1099.65 8
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7592.26 8895.28 14596.57 14395.02 4799.41 3893.63 4699.11 10098.94 63
iter_conf0588.94 25588.09 26591.50 22892.74 30776.97 30692.80 17195.92 21282.82 26893.65 19995.37 21249.41 38199.13 8790.82 12899.28 7898.40 123
RRT_MVS95.41 7495.20 8996.05 5598.86 2288.92 10197.49 1194.48 25793.12 7097.94 2798.54 2481.19 25999.63 695.48 1599.69 1499.60 12
PS-MVSNAJss96.01 5096.04 5195.89 6798.82 2688.51 11395.57 8497.88 8188.72 17798.81 698.86 1090.77 14399.60 995.43 1899.53 3799.57 14
PS-MVSNAJ88.86 25788.99 24188.48 30794.88 25674.71 32586.69 33395.60 22180.88 28287.83 32687.37 35890.77 14398.82 13082.52 27194.37 31791.93 350
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 11886.96 21298.71 1098.72 1795.36 3199.56 1795.92 1099.45 4699.32 27
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10487.57 20398.80 798.90 996.50 999.59 1396.15 999.47 4299.40 21
EI-MVSNet-UG-set94.35 11494.27 12294.59 11892.46 31185.87 17192.42 18994.69 25393.67 6196.13 10695.84 18591.20 13498.86 12593.78 4298.23 19499.03 51
EI-MVSNet-Vis-set94.36 11394.28 12094.61 11492.55 31085.98 16892.44 18794.69 25393.70 5896.12 10795.81 18691.24 13198.86 12593.76 4598.22 19698.98 59
HPM-MVS++copyleft95.02 8994.39 11596.91 3797.88 9993.58 3794.09 13796.99 15491.05 12992.40 24595.22 21591.03 14099.25 7492.11 9598.69 15097.90 164
test_prior489.91 8290.74 241
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17896.49 14594.56 6199.39 4893.57 4899.05 10598.93 64
v124093.29 14293.71 13492.06 20996.01 21577.89 29191.81 21997.37 12085.12 24196.69 7996.40 15186.67 20699.07 9794.51 2598.76 14299.22 33
pm-mvs195.43 7195.94 5493.93 14398.38 6385.08 18395.46 8797.12 14591.84 10497.28 5498.46 2995.30 3497.71 25290.17 15299.42 5198.99 55
test_prior290.21 25989.33 16490.77 27594.81 23090.41 15388.21 19598.55 162
X-MVStestdata90.70 20588.45 25097.44 1698.56 4293.99 2696.50 3697.95 7794.58 4194.38 17826.89 38294.56 6199.39 4893.57 4899.05 10598.93 64
test_prior94.61 11495.95 21887.23 13497.36 12598.68 16297.93 161
旧先验290.00 26768.65 36192.71 23396.52 29785.15 245
新几何290.02 266
新几何193.17 16797.16 13987.29 13294.43 25867.95 36391.29 26694.94 22686.97 19998.23 20481.06 28897.75 22393.98 321
旧先验196.20 19984.17 19394.82 24895.57 20189.57 16597.89 22096.32 251
无先验89.94 26895.75 21770.81 35198.59 17381.17 28794.81 300
原ACMM289.34 285
原ACMM192.87 17896.91 15084.22 19197.01 15176.84 31689.64 29994.46 24488.00 18198.70 15881.53 28298.01 21495.70 278
test22296.95 14685.27 18188.83 29893.61 27265.09 37190.74 27694.85 22984.62 22497.36 24093.91 322
testdata298.03 21880.24 294
segment_acmp92.14 114
testdata91.03 24596.87 15282.01 22194.28 26271.55 34492.46 24195.42 20685.65 21897.38 27382.64 26997.27 24293.70 328
testdata188.96 29488.44 184
v894.65 10495.29 8492.74 18296.65 16279.77 25994.59 11697.17 14091.86 10097.47 4697.93 5088.16 17799.08 9394.32 2999.47 4299.38 22
131486.46 30086.33 29786.87 32791.65 33174.54 32891.94 20994.10 26574.28 32984.78 34887.33 35983.03 23695.00 33378.72 31191.16 35591.06 357
LFMVS91.33 19691.16 19991.82 21496.27 19379.36 26795.01 10485.61 35396.04 3094.82 16597.06 11072.03 31698.46 18784.96 25198.70 14997.65 190
VDD-MVS94.37 11294.37 11794.40 12897.49 12586.07 16793.97 14193.28 28094.49 4396.24 9997.78 5887.99 18298.79 13988.92 18599.14 9898.34 125
VDDNet94.03 12694.27 12293.31 16398.87 2182.36 21995.51 8691.78 30997.19 1296.32 9298.60 2184.24 22598.75 14687.09 22098.83 13498.81 80
v1094.68 10395.27 8692.90 17796.57 16880.15 24494.65 11597.57 10790.68 13897.43 4798.00 4788.18 17699.15 8394.84 2299.55 3699.41 20
VPNet93.08 15093.76 13291.03 24598.60 3975.83 32191.51 22495.62 22091.84 10495.74 12297.10 10889.31 16798.32 19685.07 25099.06 10298.93 64
MVS84.98 31084.30 31087.01 32491.03 33877.69 29591.94 20994.16 26459.36 37784.23 35287.50 35785.66 21796.80 29171.79 35193.05 33986.54 370
v2v48293.29 14293.63 13892.29 19896.35 18578.82 27991.77 22196.28 19588.45 18395.70 12696.26 16686.02 21498.90 11793.02 7698.81 13799.14 40
V4293.43 13993.58 14092.97 17195.34 24881.22 23492.67 17696.49 18887.25 20796.20 10396.37 15787.32 19298.85 12792.39 9298.21 19798.85 77
SD-MVS95.19 8595.73 6693.55 15596.62 16688.88 10494.67 11398.05 6191.26 12397.25 5696.40 15195.42 2794.36 34092.72 8599.19 9197.40 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS87.70 27686.82 28790.31 26793.27 29877.22 30184.72 35192.79 28985.11 24289.82 29490.07 33266.80 33597.76 24884.56 25694.27 32095.96 264
MSLP-MVS++93.25 14693.88 12891.37 23196.34 18682.81 21493.11 16297.74 9589.37 16394.08 18395.29 21490.40 15496.35 30690.35 14298.25 19294.96 296
APDe-MVS96.46 3196.64 2195.93 6297.68 11489.38 9596.90 2298.41 1792.52 8097.43 4797.92 5395.11 4299.50 2194.45 2699.30 7098.92 68
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 2895.51 3496.99 6897.05 11195.63 2299.39 4893.31 6498.88 12498.75 87
ADS-MVSNet284.01 31682.20 32589.41 28789.04 36176.37 31587.57 31290.98 31672.71 34184.46 34992.45 29968.08 32896.48 29970.58 36083.97 37195.38 287
EI-MVSNet92.99 15393.26 15192.19 20292.12 32079.21 27292.32 19494.67 25591.77 11095.24 14995.85 18387.14 19698.49 18291.99 10098.26 19098.86 74
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet85.16 30884.72 30586.48 32992.12 32070.19 35692.32 19488.17 33256.15 37990.64 27895.85 18367.97 33096.69 29488.78 18990.52 35892.56 345
pmmvs488.95 25487.70 27192.70 18394.30 27885.60 17687.22 32092.16 30274.62 32789.75 29894.19 25277.97 28196.41 30282.71 26896.36 27296.09 259
EU-MVSNet87.39 28686.71 29089.44 28693.40 29676.11 31694.93 10790.00 32257.17 37895.71 12597.37 8264.77 34897.68 25492.67 8694.37 31794.52 309
VNet92.67 16592.96 15391.79 21596.27 19380.15 24491.95 20794.98 24392.19 9194.52 17596.07 17587.43 19097.39 27184.83 25298.38 17897.83 173
test-LLR83.58 31883.17 31884.79 34389.68 35566.86 36783.08 36084.52 36183.07 26482.85 36084.78 37062.86 35793.49 34782.85 26694.86 30594.03 319
TESTMET0.1,179.09 34478.04 34782.25 35387.52 37064.03 37883.08 36080.62 37370.28 35580.16 37283.22 37344.13 38590.56 36179.95 29893.36 33192.15 348
test-mter81.21 33580.01 34284.79 34389.68 35566.86 36783.08 36084.52 36173.85 33282.85 36084.78 37043.66 38693.49 34782.85 26694.86 30594.03 319
VPA-MVSNet95.14 8695.67 6893.58 15497.76 10583.15 20894.58 11897.58 10693.39 6597.05 6498.04 4593.25 8798.51 18189.75 16499.59 2899.08 48
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7592.35 8595.57 12996.61 14194.93 5199.41 3893.78 4299.15 9799.00 53
testgi90.38 21791.34 19487.50 32197.49 12571.54 35089.43 28295.16 23988.38 18694.54 17494.68 23792.88 10193.09 35071.60 35497.85 22297.88 167
test20.0390.80 20290.85 20490.63 26095.63 23779.24 27089.81 27392.87 28689.90 15294.39 17796.40 15185.77 21595.27 33173.86 34199.05 10597.39 209
thres600view787.66 27887.10 28489.36 28996.05 21073.17 33992.72 17385.31 35691.89 9993.29 20990.97 32363.42 35498.39 18973.23 34496.99 25596.51 241
ADS-MVSNet82.25 32681.55 32784.34 34689.04 36165.30 37187.57 31285.13 36072.71 34184.46 34992.45 29968.08 32892.33 35370.58 36083.97 37195.38 287
MP-MVScopyleft96.14 4695.68 6797.51 1398.81 2894.06 2196.10 6097.78 9392.73 7593.48 20396.72 13594.23 6899.42 3291.99 10099.29 7399.05 50
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
thres40087.20 29186.52 29489.24 29395.77 22772.94 34291.89 21286.00 34890.84 13292.61 23589.80 33563.93 35198.28 19871.27 35696.54 26896.51 241
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3631.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
thres20085.85 30385.18 30487.88 31894.44 27572.52 34689.08 29286.21 34588.57 18291.44 26488.40 35264.22 34998.00 22368.35 36495.88 28293.12 337
test0.0.03 182.48 32581.47 32985.48 33789.70 35473.57 33884.73 34981.64 37083.07 26488.13 32386.61 36162.86 35789.10 37166.24 37090.29 35993.77 326
pmmvs380.83 33878.96 34586.45 33087.23 37277.48 29784.87 34882.31 36863.83 37385.03 34589.50 34249.66 38093.10 34973.12 34695.10 30088.78 365
EMVS80.35 34180.28 34080.54 35684.73 38269.07 36272.54 37580.73 37287.80 19681.66 36881.73 37562.89 35689.84 36575.79 33394.65 31282.71 375
E-PMN80.72 33980.86 33480.29 35785.11 38068.77 36372.96 37381.97 36987.76 19883.25 35983.01 37462.22 36089.17 37077.15 32494.31 31982.93 374
PGM-MVS96.32 4095.94 5497.43 1898.59 4193.84 3295.33 9098.30 2491.40 12195.76 12096.87 12295.26 3599.45 2692.77 8199.21 8999.00 53
LCM-MVSNet-Re94.20 12294.58 11393.04 16895.91 22183.13 20993.79 14699.19 392.00 9498.84 598.04 4593.64 7599.02 10381.28 28498.54 16496.96 225
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
MCST-MVS92.91 15592.51 16694.10 13697.52 12385.72 17591.36 22997.13 14480.33 28692.91 22794.24 25091.23 13298.72 15189.99 15897.93 21897.86 169
mvs_anonymous90.37 21891.30 19587.58 32092.17 31968.00 36489.84 27294.73 25283.82 25793.22 21697.40 8087.54 18897.40 27087.94 20695.05 30197.34 212
MVS_Test92.57 16993.29 14790.40 26693.53 29575.85 31992.52 18296.96 15588.73 17692.35 24896.70 13690.77 14398.37 19492.53 8995.49 28996.99 224
MDA-MVSNet-bldmvs91.04 19990.88 20291.55 22594.68 26980.16 24385.49 34392.14 30390.41 14694.93 16195.79 18785.10 22096.93 28785.15 24594.19 32397.57 194
CDPH-MVS92.67 16591.83 18295.18 9296.94 14788.46 11590.70 24397.07 14877.38 31092.34 25095.08 22192.67 10698.88 12085.74 23998.57 16198.20 135
test1294.43 12795.95 21886.75 14696.24 19889.76 29789.79 16498.79 13997.95 21797.75 183
casdiffmvspermissive94.32 11694.80 10292.85 17996.05 21081.44 23192.35 19298.05 6191.53 11995.75 12196.80 12693.35 8498.49 18291.01 12598.32 18698.64 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive91.74 18691.93 17991.15 24393.06 30278.17 28788.77 30097.51 11486.28 21892.42 24493.96 26288.04 18097.46 26590.69 13396.67 26597.82 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.38 31981.54 32888.90 29691.38 33472.84 34488.78 29981.22 37178.97 30179.82 37387.56 35561.73 36197.80 24274.30 33990.05 36096.05 262
baseline187.62 28087.31 27588.54 30494.71 26874.27 33393.10 16388.20 33186.20 21992.18 25493.04 28573.21 31095.52 32179.32 30785.82 36995.83 271
YYNet188.17 26988.24 25987.93 31692.21 31673.62 33780.75 36888.77 32582.51 27394.99 15995.11 21982.70 24293.70 34583.33 26293.83 32596.48 245
PMMVS281.31 33383.44 31674.92 36290.52 34546.49 38769.19 37685.23 35984.30 25387.95 32594.71 23676.95 29384.36 37964.07 37298.09 20793.89 323
MDA-MVSNet_test_wron88.16 27088.23 26087.93 31692.22 31573.71 33680.71 36988.84 32482.52 27294.88 16495.14 21782.70 24293.61 34683.28 26393.80 32696.46 246
tpmvs84.22 31583.97 31384.94 34187.09 37365.18 37291.21 23188.35 32882.87 26785.21 34390.96 32465.24 34696.75 29279.60 30685.25 37092.90 342
PM-MVS93.33 14192.67 16395.33 8696.58 16794.06 2192.26 19892.18 30085.92 22596.22 10196.61 14185.64 21995.99 31590.35 14298.23 19495.93 266
HQP_MVS94.26 11993.93 12795.23 9197.71 11088.12 11994.56 12097.81 8891.74 11293.31 20795.59 19786.93 20098.95 11389.26 17698.51 16898.60 110
plane_prior797.71 11088.68 106
plane_prior697.21 13788.23 11886.93 200
plane_prior597.81 8898.95 11389.26 17698.51 16898.60 110
plane_prior495.59 197
plane_prior388.43 11690.35 14793.31 207
plane_prior294.56 12091.74 112
plane_prior197.38 130
plane_prior88.12 11993.01 16488.98 17198.06 209
PS-CasMVS96.69 2097.43 594.49 12499.13 684.09 19596.61 3297.97 7497.91 598.64 1398.13 3995.24 3699.65 393.39 6299.84 399.72 2
UniMVSNet_NR-MVSNet95.35 7695.21 8795.76 7197.69 11388.59 11092.26 19897.84 8594.91 3896.80 7595.78 19090.42 15299.41 3891.60 11399.58 3399.29 29
PEN-MVS96.69 2097.39 894.61 11499.16 484.50 18796.54 3498.05 6198.06 498.64 1398.25 3595.01 4899.65 392.95 7999.83 599.68 4
TransMVSNet (Re)95.27 8496.04 5192.97 17198.37 6581.92 22395.07 10196.76 17393.97 5297.77 3198.57 2295.72 1997.90 23088.89 18799.23 8599.08 48
DTE-MVSNet96.74 1797.43 594.67 10999.13 684.68 18696.51 3597.94 8098.14 398.67 1298.32 3395.04 4599.69 293.27 6799.82 799.62 10
DU-MVS95.28 8295.12 9295.75 7297.75 10688.59 11092.58 18097.81 8893.99 5096.80 7595.90 18190.10 15999.41 3891.60 11399.58 3399.26 30
UniMVSNet (Re)95.32 7895.15 9095.80 7097.79 10488.91 10292.91 16898.07 5793.46 6496.31 9395.97 18090.14 15699.34 6292.11 9599.64 2499.16 38
CP-MVSNet96.19 4596.80 1694.38 12998.99 1683.82 19896.31 5097.53 11197.60 798.34 1997.52 7391.98 11799.63 693.08 7599.81 899.70 3
WR-MVS_H96.60 2597.05 1395.24 9099.02 1286.44 15696.78 2798.08 5497.42 998.48 1697.86 5791.76 12199.63 694.23 3299.84 399.66 6
WR-MVS93.49 13793.72 13392.80 18197.57 12180.03 25090.14 26295.68 21993.70 5896.62 8295.39 21087.21 19499.04 10187.50 21299.64 2499.33 26
NR-MVSNet95.28 8295.28 8595.26 8997.75 10687.21 13595.08 10097.37 12093.92 5597.65 3495.90 18190.10 15999.33 6790.11 15499.66 2199.26 30
Baseline_NR-MVSNet94.47 11095.09 9492.60 19198.50 5780.82 24092.08 20296.68 17693.82 5696.29 9598.56 2390.10 15997.75 24990.10 15699.66 2199.24 32
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 12893.75 14797.86 8295.96 3197.48 4597.14 10595.33 3299.44 2890.79 12999.76 1099.38 22
TSAR-MVS + GP.93.07 15292.41 16995.06 9595.82 22490.87 7290.97 23692.61 29588.04 19194.61 17293.79 26888.08 17897.81 24189.41 16998.39 17796.50 244
n20.00 393
nn0.00 393
mPP-MVS96.46 3196.05 5097.69 498.62 3694.65 1396.45 3997.74 9592.59 7995.47 13396.68 13794.50 6399.42 3293.10 7399.26 8198.99 55
door-mid92.13 304
XVG-OURS-SEG-HR95.38 7595.00 9796.51 4698.10 8194.07 2092.46 18698.13 4790.69 13793.75 19596.25 16798.03 297.02 28392.08 9795.55 28798.45 120
mvsmamba95.61 6495.40 7896.22 5198.44 6089.86 8497.14 1797.45 11791.25 12597.49 4398.14 3783.49 22999.45 2695.52 1499.66 2199.36 24
MVSFormer92.18 18092.23 17192.04 21094.74 26580.06 24897.15 1597.37 12088.98 17188.83 30692.79 29277.02 29199.60 996.41 596.75 26396.46 246
jason89.17 24588.32 25391.70 22095.73 23080.07 24788.10 30793.22 28171.98 34390.09 28792.79 29278.53 27798.56 17687.43 21497.06 24896.46 246
jason: jason.
lupinMVS88.34 26787.31 27591.45 22994.74 26580.06 24887.23 31992.27 29971.10 34888.83 30691.15 32077.02 29198.53 17986.67 22696.75 26395.76 274
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12088.98 17198.26 2298.86 1093.35 8499.60 996.41 599.45 4699.66 6
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4293.11 7196.48 8697.36 8596.92 699.34 6294.31 3099.38 5898.92 68
K. test v393.37 14093.27 15093.66 15198.05 8582.62 21594.35 12686.62 34396.05 2997.51 4298.85 1276.59 29899.65 393.21 6998.20 19998.73 91
lessismore_v093.87 14698.05 8583.77 19980.32 37497.13 5897.91 5477.49 28499.11 9292.62 8798.08 20898.74 90
SixPastTwentyTwo94.91 9395.21 8793.98 13998.52 5083.19 20795.93 6794.84 24794.86 3998.49 1598.74 1681.45 25399.60 994.69 2399.39 5799.15 39
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 6994.15 4898.93 399.07 588.07 17999.57 1495.86 1199.69 1499.46 18
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1492.35 8595.95 11196.41 15096.71 899.42 3293.99 3799.36 5999.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.72 10094.12 12596.50 4798.00 9194.23 1891.48 22598.17 4290.72 13695.30 14396.47 14687.94 18396.98 28491.41 11897.61 23298.30 129
XVG-ACMP-BASELINE95.68 6295.34 8196.69 4198.40 6193.04 4194.54 12398.05 6190.45 14496.31 9396.76 12992.91 9998.72 15191.19 12099.42 5198.32 126
casdiffmvs_mvgpermissive95.10 8795.62 6993.53 15896.25 19683.23 20592.66 17798.19 3693.06 7297.49 4397.15 10494.78 5498.71 15792.27 9398.72 14598.65 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 2891.78 10897.07 6197.22 9996.38 1299.28 7192.07 9899.59 2899.11 44
baseline94.26 11994.80 10292.64 18696.08 20880.99 23793.69 14998.04 6590.80 13594.89 16396.32 16093.19 8998.48 18691.68 11198.51 16898.43 121
test1196.65 178
door91.26 313
EPNet_dtu85.63 30484.37 30989.40 28886.30 37674.33 33291.64 22288.26 32984.84 24872.96 38089.85 33371.27 31997.69 25376.60 32797.62 23196.18 257
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268887.19 29285.92 30191.00 24897.13 14179.41 26684.51 35395.60 22164.14 37290.07 28994.81 23078.26 27997.14 27973.34 34395.38 29496.46 246
EPNet89.80 23788.25 25894.45 12683.91 38386.18 16493.87 14387.07 34191.16 12880.64 37194.72 23578.83 27198.89 11985.17 24398.89 12298.28 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS84.89 184
HQP-NCC96.36 18291.37 22687.16 20888.81 308
ACMP_Plane96.36 18291.37 22687.16 20888.81 308
APD-MVScopyleft95.00 9094.69 10895.93 6297.38 13090.88 7194.59 11697.81 8889.22 16795.46 13596.17 17293.42 8299.34 6289.30 17298.87 12797.56 196
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS86.55 230
HQP4-MVS88.81 30898.61 16998.15 139
HQP3-MVS97.31 12997.73 224
HQP2-MVS84.76 222
CNVR-MVS94.58 10694.29 11995.46 8296.94 14789.35 9691.81 21996.80 16989.66 15793.90 19395.44 20592.80 10398.72 15192.74 8398.52 16698.32 126
NCCC94.08 12593.54 14395.70 7596.49 17689.90 8392.39 19196.91 16190.64 13992.33 25194.60 24090.58 15198.96 11190.21 15197.70 22798.23 132
114514_t90.51 21089.80 22892.63 18898.00 9182.24 22093.40 15697.29 13265.84 36989.40 30194.80 23286.99 19898.75 14683.88 26098.61 15796.89 228
CP-MVS96.44 3496.08 4897.54 1198.29 6894.62 1496.80 2598.08 5492.67 7895.08 15696.39 15594.77 5599.42 3293.17 7199.44 4998.58 112
DSMNet-mixed82.21 32781.56 32684.16 34789.57 35770.00 36090.65 24577.66 38154.99 38083.30 35897.57 6977.89 28290.50 36266.86 36995.54 28891.97 349
tpm281.46 33280.35 33984.80 34289.90 35265.14 37390.44 25085.36 35565.82 37082.05 36592.44 30157.94 36896.69 29470.71 35988.49 36492.56 345
NP-MVS96.82 15687.10 13793.40 278
EG-PatchMatch MVS94.54 10894.67 11194.14 13497.87 10086.50 15292.00 20696.74 17488.16 19096.93 7097.61 6793.04 9697.90 23091.60 11398.12 20498.03 149
tpm cat180.61 34079.46 34384.07 34888.78 36365.06 37589.26 28888.23 33062.27 37581.90 36789.66 34162.70 35995.29 33071.72 35280.60 37891.86 352
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 6993.34 6796.64 8196.57 14394.99 4999.36 5793.48 5499.34 6398.82 78
Skip Steuart: Steuart Systems R&D Blog.
CostFormer83.09 32182.21 32485.73 33589.27 36067.01 36590.35 25586.47 34470.42 35483.52 35793.23 28361.18 36296.85 28977.21 32388.26 36593.34 336
CR-MVSNet87.89 27287.12 28390.22 27191.01 33978.93 27492.52 18292.81 28773.08 33789.10 30396.93 11867.11 33297.64 25788.80 18892.70 34294.08 316
JIA-IIPM85.08 30983.04 31991.19 24287.56 36986.14 16589.40 28484.44 36388.98 17182.20 36397.95 4956.82 37196.15 30976.55 32883.45 37391.30 355
Patchmtry90.11 22789.92 22590.66 25990.35 34877.00 30392.96 16692.81 28790.25 14894.74 16996.93 11867.11 33297.52 26185.17 24398.98 11297.46 201
PatchT87.51 28388.17 26385.55 33690.64 34266.91 36692.02 20586.09 34792.20 9089.05 30597.16 10364.15 35096.37 30589.21 17992.98 34093.37 335
tpmrst82.85 32482.93 32182.64 35287.65 36858.99 38290.14 26287.90 33575.54 32183.93 35391.63 31566.79 33795.36 32781.21 28681.54 37793.57 334
BH-w/o87.21 29087.02 28587.79 31994.77 26377.27 30087.90 30993.21 28381.74 27989.99 29188.39 35383.47 23096.93 28771.29 35592.43 34689.15 361
tpm84.38 31484.08 31285.30 33990.47 34663.43 37989.34 28585.63 35277.24 31387.62 32995.03 22361.00 36497.30 27479.26 30891.09 35695.16 290
DELS-MVS92.05 18292.16 17291.72 21894.44 27580.13 24687.62 31197.25 13587.34 20692.22 25393.18 28489.54 16698.73 15089.67 16598.20 19996.30 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned90.68 20690.90 20190.05 27795.98 21679.57 26390.04 26594.94 24587.91 19294.07 18493.00 28687.76 18597.78 24579.19 30995.17 29992.80 343
RPMNet90.31 22290.14 22290.81 25691.01 33978.93 27492.52 18298.12 4891.91 9889.10 30396.89 12168.84 32599.41 3890.17 15292.70 34294.08 316
MVSTER89.32 24388.75 24691.03 24590.10 35176.62 31190.85 23894.67 25582.27 27595.24 14995.79 18761.09 36398.49 18290.49 13698.26 19097.97 158
CPTT-MVS94.74 9994.12 12596.60 4398.15 7893.01 4295.84 7197.66 9989.21 16893.28 21095.46 20388.89 17098.98 10689.80 16198.82 13597.80 177
GBi-Net93.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
PVSNet_Blended_VisFu91.63 18991.20 19692.94 17597.73 10983.95 19792.14 20197.46 11578.85 30492.35 24894.98 22484.16 22699.08 9386.36 23496.77 26295.79 273
PVSNet_BlendedMVS90.35 21989.96 22491.54 22694.81 26078.80 28190.14 26296.93 15779.43 29488.68 31595.06 22286.27 21198.15 21280.27 29298.04 21197.68 188
UnsupCasMVSNet_eth90.33 22090.34 21790.28 26894.64 27280.24 24289.69 27595.88 21385.77 22793.94 19295.69 19481.99 24992.98 35184.21 25891.30 35397.62 191
UnsupCasMVSNet_bld88.50 26488.03 26689.90 27995.52 24178.88 27887.39 31894.02 26879.32 29893.06 22094.02 25980.72 26194.27 34175.16 33593.08 33896.54 239
PVSNet_Blended88.74 26088.16 26490.46 26594.81 26078.80 28186.64 33496.93 15774.67 32688.68 31589.18 34786.27 21198.15 21280.27 29296.00 27794.44 311
FMVSNet587.82 27586.56 29291.62 22392.31 31279.81 25893.49 15294.81 25083.26 25991.36 26596.93 11852.77 37997.49 26476.07 33098.03 21297.55 197
test193.21 14792.96 15393.97 14095.40 24484.29 18895.99 6396.56 18388.63 17995.10 15398.53 2581.31 25598.98 10686.74 22398.38 17898.65 101
new_pmnet81.22 33481.01 33381.86 35490.92 34170.15 35784.03 35680.25 37570.83 35085.97 34089.78 33867.93 33184.65 37867.44 36791.90 35190.78 358
FMVSNet390.78 20390.32 21892.16 20693.03 30479.92 25492.54 18194.95 24486.17 22195.10 15396.01 17869.97 32398.75 14686.74 22398.38 17897.82 175
dp79.28 34378.62 34681.24 35585.97 37856.45 38386.91 32685.26 35872.97 33981.45 37089.17 34856.01 37395.45 32573.19 34576.68 37991.82 353
FMVSNet292.78 16192.73 16192.95 17395.40 24481.98 22294.18 13395.53 23088.63 17996.05 10997.37 8281.31 25598.81 13587.38 21698.67 15398.06 143
FMVSNet194.84 9695.13 9193.97 14097.60 11884.29 18895.99 6396.56 18392.38 8297.03 6598.53 2590.12 15798.98 10688.78 18999.16 9698.65 101
N_pmnet88.90 25687.25 27893.83 14894.40 27793.81 3584.73 34987.09 34079.36 29793.26 21292.43 30279.29 26991.68 35677.50 32197.22 24496.00 263
cascas87.02 29686.28 29889.25 29291.56 33376.45 31384.33 35596.78 17071.01 34986.89 33685.91 36681.35 25496.94 28583.09 26595.60 28694.35 313
BH-RMVSNet90.47 21290.44 21490.56 26295.21 25178.65 28389.15 29193.94 27188.21 18892.74 23294.22 25186.38 20997.88 23478.67 31295.39 29395.14 292
UGNet93.08 15092.50 16794.79 10493.87 28987.99 12295.07 10194.26 26390.64 13987.33 33397.67 6486.89 20298.49 18288.10 20098.71 14797.91 163
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.93 29786.50 29688.24 31194.96 25474.64 32687.19 32192.07 30578.29 30688.32 32091.59 31678.06 28094.27 34174.88 33693.15 33695.80 272
XXY-MVS92.58 16793.16 15290.84 25497.75 10679.84 25591.87 21596.22 20185.94 22495.53 13097.68 6292.69 10594.48 33683.21 26497.51 23498.21 134
EC-MVSNet95.44 7095.62 6994.89 9996.93 14987.69 12896.48 3899.14 493.93 5392.77 23194.52 24393.95 7399.49 2493.62 4799.22 8897.51 199
sss87.23 28986.82 28788.46 30893.96 28677.94 28886.84 32892.78 29077.59 30987.61 33091.83 31178.75 27291.92 35577.84 31694.20 32195.52 285
Test_1112_low_res87.50 28486.58 29190.25 27096.80 15877.75 29387.53 31696.25 19769.73 35886.47 33793.61 27375.67 30197.88 23479.95 29893.20 33495.11 293
1112_ss88.42 26587.41 27491.45 22996.69 16080.99 23789.72 27496.72 17573.37 33487.00 33590.69 32977.38 28698.20 20681.38 28393.72 32795.15 291
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3290.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs92.40 17392.62 16491.74 21797.02 14381.65 22695.84 7195.50 23186.95 21392.95 22697.56 7090.70 14897.50 26279.63 30397.43 23896.06 261
TR-MVS87.70 27687.17 28089.27 29194.11 28279.26 26988.69 30291.86 30881.94 27890.69 27789.79 33782.82 24097.42 26872.65 34891.98 35091.14 356
MDTV_nov1_ep13_2view42.48 38888.45 30667.22 36583.56 35666.80 33572.86 34794.06 318
MDTV_nov1_ep1383.88 31589.42 35961.52 38088.74 30187.41 33773.99 33184.96 34794.01 26065.25 34595.53 32078.02 31493.16 335
MIMVSNet195.52 6795.45 7495.72 7399.14 589.02 9996.23 5796.87 16493.73 5797.87 2898.49 2890.73 14799.05 9886.43 23399.60 2699.10 47
MIMVSNet87.13 29486.54 29388.89 29796.05 21076.11 31694.39 12588.51 32781.37 28088.27 32196.75 13172.38 31395.52 32165.71 37195.47 29095.03 294
IterMVS-LS93.78 13294.28 12092.27 19996.27 19379.21 27291.87 21596.78 17091.77 11096.57 8597.07 10987.15 19598.74 14991.99 10099.03 11198.86 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.55 23888.22 26193.53 15895.37 24786.49 15389.26 28893.59 27379.76 29091.15 27092.31 30477.12 28998.38 19177.51 32097.92 21995.71 276
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref98.82 135
IterMVS90.18 22490.16 21990.21 27293.15 30075.98 31887.56 31492.97 28586.43 21794.09 18296.40 15178.32 27897.43 26787.87 20794.69 31197.23 216
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon92.31 17691.88 18093.60 15397.18 13886.87 14391.10 23497.37 12084.92 24692.08 25694.08 25688.59 17198.20 20683.50 26198.14 20395.73 275
MVS_111021_LR93.66 13493.28 14994.80 10396.25 19690.95 6990.21 25995.43 23387.91 19293.74 19794.40 24592.88 10196.38 30490.39 13998.28 18897.07 219
DP-MVS95.62 6395.84 6194.97 9797.16 13988.62 10894.54 12397.64 10096.94 1596.58 8497.32 9293.07 9598.72 15190.45 13798.84 12997.57 194
ACMMP++99.25 82
HQP-MVS92.09 18191.49 19093.88 14596.36 18284.89 18491.37 22697.31 12987.16 20888.81 30893.40 27884.76 22298.60 17186.55 23097.73 22498.14 140
QAPM92.88 15792.77 15793.22 16695.82 22483.31 20296.45 3997.35 12683.91 25593.75 19596.77 12789.25 16898.88 12084.56 25697.02 25097.49 200
Vis-MVSNetpermissive95.50 6895.48 7395.56 7998.11 8089.40 9495.35 8898.22 3392.36 8494.11 18198.07 4392.02 11599.44 2893.38 6397.67 22997.85 171
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet78.83 34580.60 33773.51 36393.07 30147.37 38687.10 32378.00 38068.94 36077.53 37697.26 9471.45 31894.62 33463.28 37488.74 36378.55 378
IS-MVSNet94.49 10994.35 11894.92 9898.25 7386.46 15597.13 1894.31 26096.24 2596.28 9796.36 15882.88 23799.35 5988.19 19799.52 4098.96 61
HyFIR lowres test87.19 29285.51 30392.24 20097.12 14280.51 24185.03 34796.06 20666.11 36891.66 26292.98 28870.12 32299.14 8575.29 33495.23 29897.07 219
EPMVS81.17 33680.37 33883.58 34985.58 37965.08 37490.31 25771.34 38377.31 31285.80 34191.30 31859.38 36692.70 35279.99 29782.34 37692.96 341
PAPM_NR91.03 20090.81 20591.68 22196.73 15981.10 23693.72 14896.35 19488.19 18988.77 31292.12 30885.09 22197.25 27582.40 27393.90 32496.68 237
TAMVS90.16 22589.05 23893.49 16196.49 17686.37 15890.34 25692.55 29680.84 28492.99 22394.57 24281.94 25198.20 20673.51 34298.21 19795.90 269
PAPR87.65 27986.77 28990.27 26992.85 30677.38 29888.56 30596.23 19976.82 31784.98 34689.75 33986.08 21397.16 27872.33 34993.35 33296.26 254
RPSCF95.58 6694.89 9997.62 797.58 12096.30 795.97 6697.53 11192.42 8193.41 20497.78 5891.21 13397.77 24691.06 12297.06 24898.80 82
Vis-MVSNet (Re-imp)90.42 21390.16 21991.20 24197.66 11677.32 29994.33 12887.66 33691.20 12692.99 22395.13 21875.40 30398.28 19877.86 31599.19 9197.99 154
test_040295.73 6096.22 4094.26 13198.19 7685.77 17493.24 15997.24 13696.88 1697.69 3397.77 6094.12 7099.13 8791.54 11699.29 7397.88 167
MVS_111021_HR93.63 13593.42 14694.26 13196.65 16286.96 14289.30 28796.23 19988.36 18793.57 20194.60 24093.45 7997.77 24690.23 15098.38 17898.03 149
CSCG94.69 10294.75 10494.52 12197.55 12287.87 12495.01 10497.57 10792.68 7696.20 10393.44 27791.92 11898.78 14289.11 18199.24 8496.92 226
PatchMatch-RL89.18 24488.02 26792.64 18695.90 22292.87 4588.67 30491.06 31480.34 28590.03 29091.67 31483.34 23194.42 33876.35 32994.84 30790.64 359
API-MVS91.52 19291.61 18591.26 23794.16 28086.26 16394.66 11494.82 24891.17 12792.13 25591.08 32290.03 16297.06 28279.09 31097.35 24190.45 360
Test By Simon90.61 149
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5498.46 2994.62 5998.84 12894.64 2499.53 3798.99 55
USDC89.02 24989.08 23788.84 29895.07 25374.50 33088.97 29396.39 19273.21 33693.27 21196.28 16482.16 24796.39 30377.55 31998.80 13895.62 283
EPP-MVSNet93.91 13093.68 13694.59 11898.08 8285.55 17797.44 1294.03 26694.22 4794.94 16096.19 16982.07 24899.57 1487.28 21798.89 12298.65 101
PMMVS83.00 32281.11 33088.66 30283.81 38486.44 15682.24 36485.65 35161.75 37682.07 36485.64 36779.75 26591.59 35775.99 33193.09 33787.94 367
PAPM81.91 33180.11 34187.31 32393.87 28972.32 34884.02 35793.22 28169.47 35976.13 37889.84 33472.15 31497.23 27653.27 37989.02 36292.37 347
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 3892.26 8896.33 9196.84 12595.10 4399.40 4593.47 5599.33 6599.02 52
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA91.72 18791.20 19693.26 16596.17 20191.02 6791.14 23295.55 22890.16 14990.87 27493.56 27586.31 21094.40 33979.92 30297.12 24694.37 312
PatchmatchNetpermissive85.22 30784.64 30686.98 32589.51 35869.83 36190.52 24887.34 33978.87 30387.22 33492.74 29466.91 33496.53 29681.77 27886.88 36794.58 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS94.34 11593.80 13095.95 5995.65 23591.67 6294.82 10997.86 8287.86 19593.04 22294.16 25491.58 12398.78 14290.27 14798.96 11897.41 205
F-COLMAP92.28 17791.06 20095.95 5997.52 12391.90 5693.53 15197.18 13983.98 25488.70 31494.04 25788.41 17498.55 17880.17 29695.99 27897.39 209
ANet_high94.83 9796.28 3790.47 26396.65 16273.16 34094.33 12898.74 1096.39 2498.09 2598.93 893.37 8398.70 15890.38 14099.68 1899.53 15
wuyk23d87.83 27490.79 20678.96 35990.46 34788.63 10792.72 17390.67 31991.65 11698.68 1197.64 6696.06 1577.53 38159.84 37599.41 5570.73 379
OMC-MVS94.22 12193.69 13595.81 6997.25 13491.27 6492.27 19797.40 11987.10 21194.56 17395.42 20693.74 7498.11 21486.62 22798.85 12898.06 143
MG-MVS89.54 23989.80 22888.76 29994.88 25672.47 34789.60 27692.44 29885.82 22689.48 30095.98 17982.85 23997.74 25181.87 27795.27 29796.08 260
AdaColmapbinary91.63 18991.36 19392.47 19695.56 24086.36 15992.24 20096.27 19688.88 17589.90 29392.69 29591.65 12298.32 19677.38 32297.64 23092.72 344
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF95.95 5997.34 13293.36 4096.55 18691.93 9794.82 16595.39 21091.99 11697.08 28185.53 24197.96 21697.41 205
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37648.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380
TinyColmap92.00 18392.76 15889.71 28395.62 23877.02 30290.72 24296.17 20487.70 20095.26 14696.29 16292.54 10896.45 30181.77 27898.77 14195.66 280
MAR-MVS90.32 22188.87 24594.66 11194.82 25991.85 5794.22 13294.75 25180.91 28187.52 33188.07 35486.63 20797.87 23776.67 32696.21 27494.25 315
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS92.72 16392.02 17694.84 10295.65 23591.99 5492.92 16796.60 18085.08 24392.44 24393.62 27286.80 20396.35 30686.81 22298.25 19296.18 257
MSDG90.82 20190.67 20991.26 23794.16 28083.08 21086.63 33596.19 20290.60 14191.94 25891.89 31089.16 16995.75 31880.96 28994.51 31494.95 297
LS3D96.11 4795.83 6296.95 3694.75 26494.20 1997.34 1397.98 7297.31 1195.32 14296.77 12793.08 9499.20 7991.79 10798.16 20197.44 204
CLD-MVS91.82 18491.41 19293.04 16896.37 18083.65 20086.82 33097.29 13284.65 25092.27 25289.67 34092.20 11397.85 24083.95 25999.47 4297.62 191
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.50 31383.28 31788.16 31396.32 18894.49 1685.76 34185.47 35483.09 26385.20 34494.26 24963.79 35386.58 37563.72 37391.88 35283.40 373
Gipumacopyleft95.31 8195.80 6493.81 14997.99 9490.91 7096.42 4297.95 7796.69 1791.78 26098.85 1291.77 12095.49 32391.72 10999.08 10195.02 295
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015