This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB93.87 197.93 298.16 297.26 2898.81 2893.86 3499.07 298.98 697.01 1398.92 498.78 1495.22 3998.61 18396.85 299.77 1099.31 29
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+92.74 295.86 5995.77 6796.13 5796.81 16290.79 7796.30 5497.82 9296.13 2594.74 17297.23 9391.33 13499.16 8993.25 7098.30 19398.46 123
3Dnovator92.54 394.80 10394.90 9894.47 13695.47 24787.06 14896.63 3097.28 13991.82 10994.34 18397.41 7690.60 15698.65 18092.47 9398.11 21497.70 193
DeepC-MVS91.39 495.43 7495.33 8295.71 8297.67 11590.17 8593.86 14798.02 7087.35 21496.22 10397.99 4794.48 6499.05 10792.73 8799.68 1997.93 170
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
COLMAP_ROBcopyleft91.06 596.75 1896.62 2397.13 3098.38 6494.31 1996.79 2598.32 2396.69 1796.86 7197.56 6795.48 2798.77 15990.11 15599.44 4998.31 132
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepPCF-MVS90.46 694.20 12893.56 14696.14 5695.96 22292.96 4789.48 28497.46 11985.14 24796.23 10295.42 20693.19 8898.08 23190.37 14298.76 14697.38 219
DeepC-MVS_fast89.96 793.73 13893.44 14994.60 12896.14 20887.90 13293.36 16197.14 14785.53 24193.90 19695.45 20491.30 13698.59 18789.51 16898.62 15797.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft89.45 892.27 18692.13 18092.68 19794.53 28084.10 20395.70 7797.03 15582.44 28091.14 27396.42 14688.47 18298.38 20785.95 24097.47 24895.55 290
ACMM88.83 996.30 4596.07 5296.97 3798.39 6392.95 4894.74 11498.03 6890.82 13797.15 5696.85 11796.25 1599.00 11693.10 7699.33 6498.95 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS88.58 1092.49 17891.75 19294.73 11896.50 18089.69 9492.91 17097.68 10278.02 31592.79 23394.10 25790.85 14897.96 24384.76 25698.16 20896.54 245
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMH+88.43 1196.48 3296.82 1695.47 9098.54 4789.06 10695.65 8098.61 1196.10 2698.16 2397.52 7096.90 798.62 18290.30 14699.60 2798.72 96
ACMH88.36 1296.59 2997.43 594.07 14898.56 4185.33 18896.33 4798.30 2694.66 4298.72 898.30 3397.51 598.00 23994.87 1799.59 2998.86 76
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP88.15 1395.71 6495.43 7896.54 4998.17 7891.73 6494.24 13398.08 5689.46 16596.61 8296.47 14295.85 1999.12 9890.45 13899.56 3598.77 89
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft87.21 1494.97 9295.33 8293.91 15698.97 1797.16 295.54 8595.85 21996.47 2193.40 21097.46 7495.31 3595.47 33586.18 23998.78 14489.11 364
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PLCcopyleft85.34 1590.40 22388.92 24994.85 11396.53 17990.02 8691.58 22996.48 19480.16 29386.14 34092.18 30785.73 22598.25 21976.87 32794.61 31996.30 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft85.12 1689.52 24989.05 24690.92 25994.58 27981.21 23891.10 24093.41 28277.03 32193.41 20893.99 26383.23 24297.80 25879.93 30294.80 31493.74 331
PCF-MVS84.52 1789.12 25487.71 27593.34 17496.06 21485.84 18286.58 34097.31 13468.46 36293.61 20493.89 26787.51 19898.52 19567.85 36798.11 21495.66 286
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HY-MVS82.50 1886.81 30285.93 30489.47 29393.63 29977.93 29194.02 14191.58 31675.68 32683.64 35593.64 27377.40 29397.42 28171.70 35592.07 35393.05 343
IB-MVS77.21 1983.11 32181.05 33289.29 29891.15 34075.85 32085.66 34486.00 35079.70 29782.02 36786.61 36348.26 38298.39 20577.84 31892.22 35193.63 333
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet76.22 2082.89 32482.37 32484.48 34693.96 29264.38 37878.60 37188.61 33071.50 34884.43 35186.36 36674.27 31094.60 34669.87 36493.69 33494.46 313
PVSNet_070.34 2174.58 34772.96 35079.47 35990.63 34666.24 37173.26 37283.40 36963.67 37478.02 37578.35 37872.53 31589.59 37456.68 37860.05 38282.57 376
CMPMVSbinary68.83 2287.28 29285.67 30692.09 21988.77 36785.42 18790.31 26194.38 26470.02 35688.00 32693.30 28273.78 31394.03 35575.96 33496.54 27796.83 237
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVEpermissive59.87 2373.86 34872.65 35177.47 36187.00 37674.35 33261.37 37860.93 38667.27 36569.69 38186.49 36581.24 26772.33 38256.45 37983.45 37485.74 371
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FMVS292.42 18092.40 17692.46 20893.80 29887.28 14293.86 14797.05 15476.86 32296.25 10098.66 1882.87 24691.26 36895.44 1496.83 26998.82 81
mvsany_test89.11 25588.21 26791.83 22491.30 33990.25 8488.09 31078.76 37976.37 32596.43 8698.39 3083.79 23790.43 37286.57 23094.20 32794.80 304
FMVS196.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
APD_test96.77 1696.49 2897.60 999.01 1496.70 396.31 5098.33 2194.96 3897.30 5197.93 4996.05 1797.90 24589.32 17199.23 8498.19 143
FMVS86.65 30387.13 28685.19 34190.28 35286.11 17786.52 34191.66 31469.76 35795.73 12897.21 9669.51 32681.28 38089.15 18194.40 32188.17 368
FE-MVS89.06 25688.29 26191.36 24294.78 26779.57 26696.77 2790.99 31984.87 25492.96 22896.29 15960.69 36598.80 15080.18 29797.11 25895.71 282
FA-MVS(test-final)91.81 19491.85 18791.68 23294.95 26079.99 25596.00 6393.44 28187.80 20494.02 19197.29 8977.60 29198.45 20488.04 20597.49 24696.61 244
iter_conf_final90.23 23289.32 24192.95 18694.65 27781.46 23494.32 13295.40 24085.61 24092.84 23195.37 21154.58 37499.13 9492.16 9798.94 12398.25 137
bld_raw_dy_0_6494.27 12394.15 12994.65 12398.55 4486.28 17295.80 7495.55 23288.41 19297.09 5898.08 4178.69 28198.87 13695.63 1099.53 3798.81 83
patch_mono-292.46 17992.72 16891.71 23096.65 16678.91 27988.85 29997.17 14583.89 26392.45 24496.76 12489.86 17197.09 29390.24 15098.59 16099.12 44
EGC-MVSNET80.97 33875.73 34996.67 4698.85 2594.55 1796.83 2296.60 1862.44 3845.32 38598.25 3492.24 11298.02 23791.85 10999.21 8997.45 210
test250685.42 30984.57 31187.96 31897.81 10266.53 37096.14 5856.35 38789.04 17693.55 20698.10 3942.88 38998.68 17588.09 20399.18 9398.67 100
test111190.39 22490.61 21989.74 29098.04 8971.50 35295.59 8179.72 37889.41 16695.94 11798.14 3670.79 32298.81 14788.52 19599.32 6698.90 72
ECVR-MVScopyleft90.12 23590.16 22790.00 28797.81 10272.68 34695.76 7678.54 38089.04 17695.36 14298.10 3970.51 32398.64 18187.10 22199.18 9398.67 100
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DVP-MVS++95.93 5596.34 3694.70 12096.54 17686.66 16098.45 498.22 3593.26 7297.54 3997.36 8293.12 9199.38 5893.88 3798.68 15398.04 155
FOURS199.21 394.68 1498.45 498.81 897.73 698.27 20
MSC_two_6792asdad95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
PC_three_145275.31 33195.87 12195.75 18892.93 9796.34 32087.18 22098.68 15398.04 155
No_MVS95.90 7096.54 17689.57 9696.87 17099.41 4094.06 3399.30 6998.72 96
test_one_060198.26 7287.14 14698.18 3994.25 5096.99 6697.36 8295.13 42
eth-test20.00 392
eth-test0.00 392
GeoE94.55 11194.68 10994.15 14597.23 13785.11 19094.14 13797.34 13288.71 18595.26 14895.50 20194.65 5999.12 9890.94 12998.40 17698.23 138
test_method50.44 34948.94 35254.93 36439.68 38812.38 39028.59 37990.09 3256.82 38241.10 38478.41 37754.41 37570.69 38350.12 38151.26 38381.72 377
Anonymous2024052192.86 16693.57 14590.74 26696.57 17375.50 32494.15 13695.60 22589.38 16795.90 12097.90 5580.39 27297.96 24392.60 9199.68 1998.75 90
h-mvs3392.89 16391.99 18395.58 8696.97 14990.55 8093.94 14594.01 27389.23 17293.95 19396.19 16676.88 30199.14 9291.02 12695.71 29397.04 229
hse-mvs292.24 18791.20 20595.38 9296.16 20690.65 7992.52 18292.01 31189.23 17293.95 19392.99 28976.88 30198.69 17391.02 12696.03 28596.81 238
CL-MVSNet_self_test90.04 24189.90 23490.47 27295.24 25577.81 29486.60 33992.62 29785.64 23993.25 21893.92 26583.84 23696.06 32579.93 30298.03 22197.53 206
KD-MVS_2432*160082.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
KD-MVS_self_test94.10 13094.73 10692.19 21397.66 11679.49 26894.86 11097.12 15089.59 16496.87 7097.65 6390.40 16198.34 21189.08 18399.35 6198.75 90
AUN-MVS90.05 24088.30 26095.32 9896.09 21290.52 8192.42 18992.05 31082.08 28388.45 32092.86 29165.76 34298.69 17388.91 18696.07 28496.75 242
ZD-MVS97.23 13790.32 8397.54 11384.40 25994.78 17095.79 18492.76 10399.39 5288.72 19298.40 176
test117296.79 1596.52 2797.60 998.03 9094.87 1296.07 6298.06 6295.76 3296.89 6996.85 11794.85 5499.42 3393.35 6598.81 14098.53 117
SR-MVS-dyc-post96.84 896.60 2597.56 1298.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10594.85 5499.42 3393.49 5198.84 13298.00 160
RE-MVS-def96.66 2098.07 8495.27 1096.37 4498.12 4995.66 3397.00 6497.03 10595.40 2993.49 5198.84 13298.00 160
SED-MVS96.00 5496.41 3494.76 11798.51 5186.97 15195.21 9598.10 5291.95 9797.63 3497.25 9196.48 1199.35 6393.29 6799.29 7297.95 168
IU-MVS98.51 5186.66 16096.83 17372.74 34395.83 12293.00 8099.29 7298.64 106
OPU-MVS95.15 10496.84 15889.43 10095.21 9595.66 19193.12 9198.06 23286.28 23898.61 15897.95 168
test_241102_TWO98.10 5291.95 9797.54 3997.25 9195.37 3099.35 6393.29 6799.25 8198.49 120
test_241102_ONE98.51 5186.97 15198.10 5291.85 10397.63 3497.03 10596.48 1198.95 124
xxxxxxxxxxxxxcwj95.03 8994.93 9795.33 9597.46 12988.05 12992.04 20798.42 1687.63 21096.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
SF-MVS95.88 5895.88 6095.87 7398.12 8089.65 9595.58 8398.56 1291.84 10696.36 9096.68 13294.37 6699.32 7292.41 9499.05 10698.64 106
ETH3D cwj APD-0.1693.99 13393.38 15195.80 7696.82 16089.92 8892.72 17598.02 7084.73 25793.65 20295.54 20091.68 12699.22 8388.78 18998.49 17398.26 136
cl2289.02 25788.50 25690.59 27089.76 35676.45 31486.62 33894.03 27082.98 27392.65 23792.49 30072.05 31897.53 27388.93 18497.02 26197.78 187
miper_ehance_all_eth90.48 22090.42 22490.69 26791.62 33576.57 31386.83 33196.18 20883.38 26594.06 18892.66 29982.20 25598.04 23389.79 16397.02 26197.45 210
miper_enhance_ethall88.42 27187.87 27390.07 28488.67 36875.52 32385.10 34795.59 22975.68 32692.49 24189.45 34678.96 27897.88 24987.86 21097.02 26196.81 238
ZNCC-MVS96.42 3896.20 4397.07 3298.80 3092.79 5096.08 6198.16 4691.74 11495.34 14396.36 15595.68 2199.44 2894.41 2499.28 7798.97 62
ETH3 D test640091.91 19291.25 20493.89 15796.59 17184.41 19692.10 20497.72 10178.52 31191.82 26293.78 27188.70 17999.13 9483.61 26498.39 17998.14 147
dcpmvs_293.96 13495.01 9590.82 26497.60 11974.04 33693.68 15498.85 789.80 15997.82 2997.01 10891.14 14599.21 8490.56 13698.59 16099.19 37
cl____90.65 21790.56 22190.91 26191.85 33076.98 30786.75 33395.36 24185.53 24194.06 18894.89 22977.36 29697.98 24290.27 14898.98 11597.76 189
DIV-MVS_self_test90.65 21790.56 22190.91 26191.85 33076.99 30686.75 33395.36 24185.52 24394.06 18894.89 22977.37 29597.99 24190.28 14798.97 11997.76 189
eth_miper_zixun_eth90.72 21490.61 21991.05 25392.04 32876.84 31086.91 32896.67 18385.21 24594.41 17993.92 26579.53 27698.26 21889.76 16497.02 26198.06 152
9.1494.81 10197.49 12694.11 13898.37 1887.56 21395.38 14096.03 17394.66 5899.08 10290.70 13498.97 119
testtj94.81 10294.42 11896.01 6097.23 13790.51 8294.77 11397.85 8991.29 12594.92 16595.66 19191.71 12599.40 4788.07 20498.25 19898.11 151
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ETH3D-3000-0.194.86 9894.55 11495.81 7497.61 11889.72 9394.05 14098.37 1888.09 19895.06 15995.85 17992.58 10699.10 10190.33 14598.99 11498.62 110
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
save fliter97.46 12988.05 12992.04 20797.08 15287.63 210
ET-MVSNet_ETH3D86.15 30584.27 31491.79 22693.04 30981.28 23687.17 32486.14 34879.57 29983.65 35488.66 35157.10 36998.18 22587.74 21195.40 30195.90 275
UniMVSNet_ETH3D97.13 697.72 395.35 9399.51 287.38 14097.70 897.54 11398.16 298.94 299.33 297.84 499.08 10290.73 13399.73 1499.59 13
EIA-MVS92.35 18392.03 18193.30 17795.81 23183.97 20592.80 17398.17 4387.71 20789.79 29987.56 35791.17 14499.18 8887.97 20797.27 25396.77 240
miper_refine_blended82.17 32980.75 33686.42 33282.04 38570.09 35981.75 36690.80 32182.56 27690.37 28589.30 34742.90 38796.11 32374.47 33992.55 34893.06 341
miper_lstm_enhance89.90 24389.80 23590.19 28391.37 33877.50 29883.82 36095.00 24584.84 25593.05 22494.96 22676.53 30595.20 34389.96 16098.67 15597.86 179
ETV-MVS92.99 16092.74 16593.72 16295.86 22886.30 17192.33 19597.84 9091.70 11792.81 23286.17 36792.22 11399.19 8788.03 20697.73 23495.66 286
CS-MVS95.77 6195.58 7296.37 5496.84 15891.72 6596.73 2899.06 594.23 5192.48 24294.79 23693.56 7599.49 2493.47 5599.05 10697.89 176
D2MVS89.93 24289.60 24090.92 25994.03 29178.40 28688.69 30494.85 24978.96 30893.08 22295.09 21974.57 30996.94 29888.19 19998.96 12197.41 213
DVP-MVScopyleft95.82 6096.18 4494.72 11998.51 5186.69 15895.20 9797.00 15791.85 10397.40 4997.35 8595.58 2499.34 6693.44 5999.31 6798.13 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7297.40 4997.35 8594.69 5799.34 6693.88 3799.42 5198.89 73
test_0728_SECOND94.88 11298.55 4486.72 15795.20 9798.22 3599.38 5893.44 5999.31 6798.53 117
test072698.51 5186.69 15895.34 9098.18 3991.85 10397.63 3497.37 7995.58 24
SR-MVS96.70 2196.42 3197.54 1398.05 8694.69 1396.13 5998.07 5995.17 3796.82 7396.73 12995.09 4699.43 3292.99 8198.71 14998.50 119
DPM-MVS89.35 25088.40 25892.18 21696.13 21184.20 20186.96 32796.15 21075.40 33087.36 33391.55 31983.30 24198.01 23882.17 28096.62 27694.32 317
GST-MVS96.24 4695.99 5697.00 3698.65 3392.71 5195.69 7998.01 7292.08 9595.74 12696.28 16195.22 3999.42 3393.17 7399.06 10398.88 75
test_yl90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
thisisatest053088.69 26887.52 27892.20 21296.33 19279.36 27092.81 17284.01 36686.44 22593.67 20192.68 29853.62 37899.25 8089.65 16798.45 17498.00 160
Anonymous2024052995.50 7195.83 6494.50 13397.33 13585.93 18095.19 9996.77 17896.64 1997.61 3798.05 4393.23 8798.79 15188.60 19499.04 11298.78 87
Anonymous20240521192.58 17592.50 17392.83 19396.55 17583.22 21392.43 18891.64 31594.10 5495.59 13396.64 13581.88 26197.50 27585.12 24998.52 16897.77 188
DCV-MVSNet90.11 23689.73 23891.26 24694.09 28979.82 25990.44 25592.65 29590.90 13393.19 22093.30 28273.90 31198.03 23482.23 27896.87 26795.93 272
tttt051789.81 24588.90 25192.55 20497.00 14879.73 26395.03 10583.65 36789.88 15795.30 14594.79 23653.64 37799.39 5291.99 10398.79 14398.54 116
our_test_387.55 28687.59 27787.44 32591.76 33270.48 35683.83 35990.55 32479.79 29592.06 25992.17 30878.63 28495.63 33084.77 25594.73 31596.22 261
thisisatest051584.72 31482.99 32289.90 28892.96 31175.33 32584.36 35583.42 36877.37 31888.27 32386.65 36253.94 37698.72 16582.56 27497.40 25095.67 285
ppachtmachnet_test88.61 26988.64 25488.50 31191.76 33270.99 35584.59 35392.98 28779.30 30592.38 24893.53 27879.57 27597.45 27986.50 23497.17 25697.07 226
SMA-MVScopyleft95.77 6195.54 7396.47 5398.27 7191.19 7095.09 10197.79 9786.48 22497.42 4897.51 7294.47 6599.29 7493.55 4999.29 7298.93 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.75 307
DPE-MVScopyleft95.89 5695.88 6095.92 6997.93 9889.83 9293.46 15898.30 2692.37 8597.75 3196.95 10995.14 4199.51 2091.74 11299.28 7798.41 126
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part298.21 7689.41 10196.72 77
test_part194.39 11694.55 11493.92 15596.14 20882.86 21995.54 8598.09 5595.36 3698.27 2098.36 3175.91 30699.44 2893.41 6299.84 399.47 18
thres100view90087.35 29186.89 29088.72 30796.14 20873.09 34293.00 16785.31 35892.13 9493.26 21690.96 32663.42 35498.28 21471.27 35896.54 27794.79 305
tfpnnormal94.27 12394.87 10092.48 20697.71 11080.88 24294.55 12595.41 23793.70 6496.67 7997.72 6091.40 13298.18 22587.45 21599.18 9398.36 128
tfpn200view987.05 29986.52 29888.67 30895.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27794.79 305
c3_l91.32 20691.42 19991.00 25792.29 32176.79 31187.52 31996.42 19585.76 23794.72 17493.89 26782.73 24998.16 22790.93 13098.55 16398.04 155
CHOSEN 280x42080.04 34377.97 34886.23 33590.13 35374.53 33072.87 37489.59 32766.38 36776.29 37785.32 37056.96 37095.36 33869.49 36594.72 31688.79 366
CANet92.38 18291.99 18393.52 17193.82 29783.46 21091.14 23897.00 15789.81 15886.47 33894.04 25987.90 19399.21 8489.50 16998.27 19597.90 174
Fast-Effi-MVS+-dtu92.77 16992.16 17894.58 13194.66 27688.25 12592.05 20696.65 18489.62 16290.08 29091.23 32192.56 10798.60 18586.30 23796.27 28296.90 234
Effi-MVS+-dtu93.90 13692.60 17197.77 494.74 27096.67 594.00 14295.41 23789.94 15491.93 26192.13 30990.12 16498.97 12187.68 21297.48 24797.67 196
CANet_DTU89.85 24489.17 24491.87 22392.20 32480.02 25490.79 24695.87 21886.02 23282.53 36291.77 31480.01 27398.57 19085.66 24297.70 23897.01 230
MVS_030490.96 21090.15 23093.37 17393.17 30587.06 14893.62 15592.43 30289.60 16382.25 36395.50 20182.56 25397.83 25684.41 26097.83 23295.22 294
MP-MVS-pluss96.08 5195.92 5996.57 4899.06 1091.21 6993.25 16298.32 2387.89 20296.86 7197.38 7895.55 2699.39 5295.47 1399.47 4299.11 45
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS95.34 7994.63 11297.48 1698.67 3294.05 2596.41 4398.18 3991.26 12695.12 15495.15 21586.60 21799.50 2193.43 6196.81 27098.89 73
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs166.64 33894.75 307
sam_mvs66.41 339
IterMVS-SCA-FT91.65 19791.55 19491.94 22293.89 29479.22 27487.56 31693.51 27991.53 12195.37 14196.62 13678.65 28298.90 12891.89 10894.95 31097.70 193
TSAR-MVS + MP.94.96 9394.75 10495.57 8798.86 2388.69 11496.37 4496.81 17485.23 24494.75 17197.12 10091.85 12299.40 4793.45 5798.33 18898.62 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
OPM-MVS95.61 6795.45 7696.08 5898.49 5991.00 7292.65 17997.33 13390.05 15396.77 7696.85 11795.04 4798.56 19192.77 8499.06 10398.70 99
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP96.21 4796.12 4996.49 5298.90 2091.42 6794.57 12298.03 6890.42 14896.37 8997.35 8595.68 2199.25 8094.44 2399.34 6298.80 85
ambc92.98 18396.88 15583.01 21895.92 6996.38 19896.41 8797.48 7388.26 18497.80 25889.96 16098.93 12498.12 150
zzz-MVS96.47 3396.14 4797.47 1798.95 1894.05 2593.69 15297.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
MTGPAbinary97.62 105
mvs-test193.07 15891.80 19096.89 4194.74 27095.83 892.17 20295.41 23789.94 15489.85 29690.59 33490.12 16498.88 13187.68 21295.66 29495.97 270
CS-MVS-test95.32 8095.10 9395.96 6396.86 15790.75 7896.33 4799.20 293.99 5591.03 27493.73 27293.52 7899.55 1891.81 11099.45 4697.58 201
Effi-MVS+92.79 16792.74 16592.94 18895.10 25783.30 21294.00 14297.53 11591.36 12489.35 30590.65 33394.01 7198.66 17887.40 21795.30 30496.88 236
xiu_mvs_v2_base89.00 25989.19 24388.46 31394.86 26374.63 32886.97 32695.60 22580.88 28887.83 32888.62 35291.04 14698.81 14782.51 27694.38 32291.93 353
xiu_mvs_v1_base91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
new-patchmatchnet88.97 26090.79 21583.50 35194.28 28555.83 38585.34 34693.56 27886.18 22995.47 13695.73 18983.10 24396.51 31185.40 24498.06 21898.16 145
pmmvs696.80 1397.36 995.15 10499.12 887.82 13596.68 2997.86 8696.10 2698.14 2499.28 397.94 398.21 22191.38 12399.69 1599.42 20
pmmvs587.87 27887.14 28590.07 28493.26 30476.97 30888.89 29892.18 30473.71 33888.36 32193.89 26776.86 30396.73 30680.32 29396.81 27096.51 247
test_post190.21 2635.85 38665.36 34496.00 32679.61 306
test_post6.07 38565.74 34395.84 328
Fast-Effi-MVS+91.28 20790.86 21292.53 20595.45 24882.53 22289.25 29396.52 19285.00 25189.91 29488.55 35392.94 9698.84 14084.72 25795.44 30096.22 261
patchmatchnet-post91.71 31566.22 34197.59 271
Anonymous2023121196.60 2797.13 1295.00 10897.46 12986.35 17097.11 1898.24 3397.58 898.72 898.97 793.15 9099.15 9093.18 7299.74 1399.50 17
pmmvs-eth3d91.54 20090.73 21793.99 14995.76 23487.86 13490.83 24593.98 27478.23 31494.02 19196.22 16582.62 25296.83 30386.57 23098.33 18897.29 223
GG-mvs-BLEND83.24 35285.06 38171.03 35494.99 10865.55 38574.09 37975.51 37944.57 38494.46 34859.57 37787.54 36884.24 372
xiu_mvs_v1_base_debi91.47 20291.52 19591.33 24395.69 23781.56 23189.92 27496.05 21283.22 26791.26 26990.74 32891.55 12998.82 14289.29 17495.91 28893.62 334
Anonymous2023120688.77 26688.29 26190.20 28296.31 19478.81 28289.56 28393.49 28074.26 33592.38 24895.58 19682.21 25495.43 33772.07 35298.75 14896.34 256
MTAPA96.65 2496.38 3597.47 1798.95 1894.05 2595.88 7197.62 10594.46 4796.29 9696.94 11093.56 7599.37 6094.29 2799.42 5198.99 56
MTMP94.82 11154.62 388
gm-plane-assit87.08 37559.33 38271.22 34983.58 37397.20 29073.95 342
test9_res88.16 20198.40 17697.83 182
MVP-Stereo90.07 23988.92 24993.54 16996.31 19486.49 16390.93 24395.59 22979.80 29491.48 26595.59 19380.79 26997.39 28478.57 31591.19 35896.76 241
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST996.45 18389.46 9890.60 25196.92 16479.09 30690.49 28294.39 24891.31 13598.88 131
train_agg92.71 17191.83 18895.35 9396.45 18389.46 9890.60 25196.92 16479.37 30190.49 28294.39 24891.20 14198.88 13188.66 19398.43 17597.72 192
gg-mvs-nofinetune82.10 33181.02 33385.34 33987.46 37271.04 35394.74 11467.56 38496.44 2279.43 37498.99 645.24 38396.15 32167.18 36992.17 35288.85 365
SCA87.43 28987.21 28388.10 31792.01 32971.98 35089.43 28588.11 33782.26 28288.71 31692.83 29278.65 28297.59 27179.61 30693.30 33794.75 307
Patchmatch-test86.10 30686.01 30386.38 33490.63 34674.22 33589.57 28286.69 34485.73 23889.81 29892.83 29265.24 34691.04 36977.82 32095.78 29293.88 328
test_896.37 18589.14 10590.51 25496.89 16779.37 30190.42 28494.36 25091.20 14198.82 142
MS-PatchMatch88.05 27687.75 27488.95 30293.28 30277.93 29187.88 31292.49 30075.42 32992.57 24093.59 27680.44 27194.24 35481.28 28692.75 34594.69 310
Patchmatch-RL test88.81 26588.52 25589.69 29295.33 25479.94 25686.22 34292.71 29478.46 31295.80 12394.18 25566.25 34095.33 34089.22 17998.53 16793.78 329
cdsmvs_eth3d_5k23.35 35131.13 3540.00 3690.00 3920.00 3930.00 38095.58 2310.00 3870.00 38891.15 32293.43 810.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas7.56 35410.09 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38790.77 1490.00 3880.00 3860.00 3860.00 384
agg_prior192.60 17491.76 19195.10 10696.20 20288.89 11190.37 25896.88 16879.67 29890.21 28794.41 24691.30 13698.78 15588.46 19698.37 18697.64 198
agg_prior287.06 22398.36 18797.98 164
agg_prior96.20 20288.89 11196.88 16890.21 28798.78 155
tmp_tt37.97 35044.33 35318.88 36611.80 38921.54 38963.51 37745.66 3904.23 38351.34 38350.48 38159.08 36722.11 38544.50 38268.35 38113.00 381
canonicalmvs94.59 10994.69 10794.30 14295.60 24487.03 15095.59 8198.24 3391.56 12095.21 15392.04 31194.95 5298.66 17891.45 12197.57 24497.20 225
anonymousdsp96.74 1996.42 3197.68 798.00 9394.03 2896.97 1997.61 10887.68 20998.45 1898.77 1594.20 6999.50 2196.70 399.40 5799.53 15
alignmvs93.26 15092.85 16194.50 13395.70 23687.45 13893.45 15995.76 22191.58 11995.25 15092.42 30581.96 25998.72 16591.61 11697.87 23097.33 221
nrg03096.32 4396.55 2695.62 8497.83 10188.55 12095.77 7598.29 2992.68 7898.03 2697.91 5395.13 4298.95 12493.85 3999.49 4199.36 25
v14419293.20 15593.54 14792.16 21796.05 21578.26 28891.95 21197.14 14784.98 25295.96 11496.11 17087.08 20699.04 11093.79 4098.84 13299.17 38
FIs94.90 9595.35 8093.55 16798.28 7081.76 22995.33 9198.14 4793.05 7697.07 5997.18 9787.65 19599.29 7491.72 11399.69 1599.61 11
v192192093.26 15093.61 14392.19 21396.04 21978.31 28791.88 21897.24 14185.17 24696.19 10796.19 16686.76 21499.05 10794.18 3198.84 13299.22 34
UA-Net97.35 497.24 1197.69 598.22 7593.87 3398.42 698.19 3896.95 1495.46 13899.23 493.45 7999.57 1495.34 1699.89 299.63 9
v119293.49 14293.78 13692.62 20196.16 20679.62 26491.83 22497.22 14386.07 23196.10 11196.38 15387.22 20299.02 11394.14 3298.88 12799.22 34
FC-MVSNet-test95.32 8095.88 6093.62 16498.49 5981.77 22895.90 7098.32 2393.93 5997.53 4197.56 6788.48 18199.40 4792.91 8399.83 699.68 4
v114493.50 14193.81 13492.57 20396.28 19679.61 26591.86 22396.96 16086.95 22295.91 11996.32 15787.65 19598.96 12293.51 5098.88 12799.13 42
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
HFP-MVS96.39 4196.17 4697.04 3398.51 5193.37 4296.30 5497.98 7592.35 8795.63 13196.47 14295.37 3099.27 7893.78 4199.14 9898.48 121
v14892.87 16593.29 15291.62 23496.25 20077.72 29691.28 23695.05 24489.69 16095.93 11896.04 17287.34 20098.38 20790.05 15897.99 22498.78 87
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
AllTest94.88 9794.51 11796.00 6198.02 9192.17 5495.26 9498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
TestCases96.00 6198.02 9192.17 5498.43 1490.48 14595.04 16096.74 12792.54 10897.86 25385.11 25098.98 11597.98 164
v7n96.82 1097.31 1095.33 9598.54 4786.81 15596.83 2298.07 5996.59 2098.46 1798.43 2992.91 9899.52 1996.25 699.76 1199.65 8
region2R96.41 3996.09 5097.38 2598.62 3593.81 3896.32 4997.96 7992.26 9095.28 14796.57 13995.02 4999.41 4093.63 4599.11 10198.94 65
iter_conf0588.94 26288.09 27091.50 23892.74 31776.97 30892.80 17395.92 21582.82 27593.65 20295.37 21149.41 38199.13 9490.82 13199.28 7798.40 127
RRT_MVS95.41 7695.20 8996.05 5998.86 2388.92 10997.49 1094.48 26193.12 7497.94 2798.54 2281.19 26899.63 695.48 1299.69 1599.60 12
PS-MVSNAJss96.01 5396.04 5495.89 7298.82 2788.51 12295.57 8497.88 8588.72 18498.81 698.86 1090.77 14999.60 995.43 1599.53 3799.57 14
PS-MVSNAJ88.86 26488.99 24888.48 31294.88 26174.71 32686.69 33595.60 22580.88 28887.83 32887.37 36090.77 14998.82 14282.52 27594.37 32391.93 353
jajsoiax96.59 2996.42 3197.12 3198.76 3192.49 5396.44 4197.42 12286.96 22198.71 1098.72 1795.36 3399.56 1795.92 899.45 4699.32 28
mvs_tets96.83 996.71 1997.17 2998.83 2692.51 5296.58 3397.61 10887.57 21298.80 798.90 996.50 1099.59 1396.15 799.47 4299.40 22
#test#95.89 5695.51 7497.04 3398.51 5193.37 4295.14 10097.98 7589.34 16995.63 13196.47 14295.37 3099.27 7891.99 10399.14 9898.48 121
EI-MVSNet-UG-set94.35 11994.27 12694.59 12992.46 31985.87 18192.42 18994.69 25793.67 6896.13 10995.84 18291.20 14198.86 13793.78 4198.23 20199.03 52
EI-MVSNet-Vis-set94.36 11894.28 12494.61 12492.55 31885.98 17992.44 18794.69 25793.70 6496.12 11095.81 18391.24 13898.86 13793.76 4498.22 20398.98 61
Regformer-394.28 12294.23 12894.46 13792.78 31586.28 17292.39 19194.70 25693.69 6795.97 11395.56 19891.34 13398.48 20193.45 5798.14 21098.62 110
Regformer-494.90 9594.67 11095.59 8592.78 31589.02 10792.39 19195.91 21694.50 4596.41 8795.56 19892.10 11699.01 11594.23 2998.14 21098.74 93
Regformer-194.55 11194.33 12295.19 10292.83 31388.54 12191.87 21995.84 22093.99 5595.95 11595.04 22292.00 11898.79 15193.14 7598.31 19198.23 138
Regformer-294.86 9894.55 11495.77 7892.83 31389.98 8791.87 21996.40 19694.38 4996.19 10795.04 22292.47 11199.04 11093.49 5198.31 19198.28 134
HPM-MVS++copyleft95.02 9094.39 11996.91 4097.88 9993.58 4094.09 13996.99 15991.05 13292.40 24795.22 21491.03 14799.25 8092.11 9898.69 15297.90 174
test_prior489.91 8990.74 247
XVS96.49 3196.18 4497.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18196.49 14194.56 6199.39 5293.57 4799.05 10698.93 66
v124093.29 14793.71 13992.06 22096.01 22077.89 29391.81 22597.37 12485.12 24896.69 7896.40 14886.67 21599.07 10694.51 2198.76 14699.22 34
test_prior393.29 14792.85 16194.61 12495.95 22387.23 14390.21 26397.36 12989.33 17090.77 27794.81 23290.41 15998.68 17588.21 19798.55 16397.93 170
pm-mvs195.43 7495.94 5793.93 15498.38 6485.08 19195.46 8897.12 15091.84 10697.28 5398.46 2795.30 3697.71 26790.17 15399.42 5198.99 56
test_prior290.21 26389.33 17090.77 27794.81 23290.41 15988.21 19798.55 163
X-MVStestdata90.70 21588.45 25797.44 1998.56 4193.99 2996.50 3697.95 8194.58 4394.38 18126.89 38294.56 6199.39 5293.57 4799.05 10698.93 66
test_prior94.61 12495.95 22387.23 14397.36 12998.68 17597.93 170
旧先验290.00 27268.65 36192.71 23696.52 31085.15 247
新几何290.02 271
新几何193.17 18097.16 14287.29 14194.43 26267.95 36391.29 26894.94 22786.97 20898.23 22081.06 29197.75 23393.98 325
旧先验196.20 20284.17 20294.82 25195.57 19789.57 17397.89 22996.32 257
无先验89.94 27395.75 22270.81 35398.59 18781.17 28994.81 303
原ACMM289.34 288
原ACMM192.87 19196.91 15484.22 20097.01 15676.84 32389.64 30294.46 24588.00 19098.70 17181.53 28498.01 22395.70 284
test22296.95 15085.27 18988.83 30093.61 27665.09 37190.74 27994.85 23184.62 23397.36 25193.91 326
testdata298.03 23480.24 296
segment_acmp92.14 115
testdata91.03 25496.87 15682.01 22594.28 26671.55 34792.46 24395.42 20685.65 22797.38 28682.64 27397.27 25393.70 332
testdata188.96 29788.44 191
v894.65 10895.29 8492.74 19596.65 16679.77 26294.59 11997.17 14591.86 10297.47 4597.93 4988.16 18699.08 10294.32 2599.47 4299.38 23
131486.46 30486.33 30186.87 32991.65 33474.54 32991.94 21394.10 26974.28 33484.78 34887.33 36183.03 24495.00 34478.72 31391.16 35991.06 359
112190.26 23189.23 24293.34 17497.15 14487.40 13991.94 21394.39 26367.88 36491.02 27594.91 22886.91 21198.59 18781.17 28997.71 23794.02 324
LFMVS91.33 20591.16 20891.82 22596.27 19779.36 27095.01 10685.61 35596.04 2994.82 16897.06 10372.03 31998.46 20384.96 25398.70 15197.65 197
VDD-MVS94.37 11794.37 12094.40 14097.49 12686.07 17893.97 14493.28 28394.49 4696.24 10197.78 5787.99 19198.79 15188.92 18599.14 9898.34 129
VDDNet94.03 13294.27 12693.31 17698.87 2282.36 22395.51 8791.78 31397.19 1296.32 9398.60 1984.24 23498.75 16087.09 22298.83 13798.81 83
v1094.68 10795.27 8692.90 19096.57 17380.15 24794.65 11897.57 11190.68 14197.43 4698.00 4688.18 18599.15 9094.84 1899.55 3699.41 21
VPNet93.08 15693.76 13791.03 25498.60 3875.83 32291.51 23095.62 22491.84 10695.74 12697.10 10189.31 17598.32 21285.07 25299.06 10398.93 66
MVS84.98 31384.30 31387.01 32791.03 34177.69 29791.94 21394.16 26859.36 37784.23 35287.50 35985.66 22696.80 30471.79 35393.05 34386.54 370
v2v48293.29 14793.63 14292.29 20996.35 19078.82 28191.77 22796.28 20088.45 19095.70 13096.26 16386.02 22398.90 12893.02 7998.81 14099.14 41
V4293.43 14493.58 14492.97 18495.34 25381.22 23792.67 17896.49 19387.25 21696.20 10596.37 15487.32 20198.85 13992.39 9698.21 20498.85 79
SD-MVS95.19 8795.73 6893.55 16796.62 17088.88 11394.67 11698.05 6391.26 12697.25 5596.40 14895.42 2894.36 35192.72 8899.19 9197.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS87.70 28186.82 29190.31 27693.27 30377.22 30384.72 35292.79 29285.11 24989.82 29790.07 33566.80 33597.76 26484.56 25894.27 32695.96 271
MSLP-MVS++93.25 15293.88 13391.37 24196.34 19182.81 22093.11 16497.74 9989.37 16894.08 18695.29 21390.40 16196.35 31890.35 14398.25 19894.96 301
APDe-MVS96.46 3496.64 2295.93 6797.68 11489.38 10396.90 2198.41 1792.52 8297.43 4697.92 5295.11 4499.50 2194.45 2299.30 6998.92 70
APD-MVS_3200maxsize96.82 1096.65 2197.32 2797.95 9793.82 3696.31 5098.25 3095.51 3596.99 6697.05 10495.63 2399.39 5293.31 6698.88 12798.75 90
ADS-MVSNet284.01 31882.20 32689.41 29589.04 36476.37 31687.57 31490.98 32072.71 34484.46 34992.45 30168.08 32896.48 31270.58 36283.97 37295.38 292
EI-MVSNet92.99 16093.26 15692.19 21392.12 32679.21 27592.32 19694.67 25991.77 11295.24 15195.85 17987.14 20598.49 19791.99 10398.26 19698.86 76
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
CVMVSNet85.16 31184.72 30986.48 33092.12 32670.19 35792.32 19688.17 33656.15 37990.64 28195.85 17967.97 33096.69 30788.78 18990.52 36192.56 348
pmmvs488.95 26187.70 27692.70 19694.30 28485.60 18587.22 32292.16 30674.62 33389.75 30194.19 25477.97 28996.41 31482.71 27296.36 28196.09 265
EU-MVSNet87.39 29086.71 29489.44 29493.40 30176.11 31794.93 10990.00 32657.17 37895.71 12997.37 7964.77 34897.68 26992.67 8994.37 32394.52 312
VNet92.67 17292.96 15891.79 22696.27 19780.15 24791.95 21194.98 24692.19 9394.52 17896.07 17187.43 19997.39 28484.83 25498.38 18197.83 182
test-LLR83.58 31983.17 32084.79 34489.68 35866.86 36883.08 36184.52 36383.07 27182.85 36084.78 37162.86 35793.49 35882.85 27094.86 31194.03 322
TESTMET0.1,179.09 34578.04 34782.25 35487.52 37164.03 37983.08 36180.62 37570.28 35580.16 37283.22 37444.13 38590.56 37079.95 30093.36 33592.15 351
test-mter81.21 33680.01 34384.79 34489.68 35866.86 36883.08 36184.52 36373.85 33782.85 36084.78 37143.66 38693.49 35882.85 27094.86 31194.03 322
VPA-MVSNet95.14 8895.67 7093.58 16697.76 10583.15 21594.58 12197.58 11093.39 7097.05 6298.04 4493.25 8698.51 19689.75 16599.59 2999.08 49
ACMMPR96.46 3496.14 4797.41 2398.60 3893.82 3696.30 5497.96 7992.35 8795.57 13496.61 13794.93 5399.41 4093.78 4199.15 9799.00 54
testgi90.38 22591.34 20287.50 32497.49 12671.54 35189.43 28595.16 24388.38 19394.54 17794.68 24092.88 10093.09 36171.60 35697.85 23197.88 177
test20.0390.80 21290.85 21390.63 26995.63 24279.24 27389.81 27892.87 28989.90 15694.39 18096.40 14885.77 22495.27 34273.86 34399.05 10697.39 217
thres600view787.66 28387.10 28889.36 29796.05 21573.17 34092.72 17585.31 35891.89 10193.29 21390.97 32563.42 35498.39 20573.23 34696.99 26696.51 247
ADS-MVSNet82.25 32781.55 32884.34 34789.04 36465.30 37287.57 31485.13 36272.71 34484.46 34992.45 30168.08 32892.33 36470.58 36283.97 37295.38 292
MP-MVScopyleft96.14 4995.68 6997.51 1598.81 2894.06 2396.10 6097.78 9892.73 7793.48 20796.72 13094.23 6899.42 3391.99 10399.29 7299.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs9.02 35311.42 3561.81 3682.77 3911.13 39279.44 3701.90 3911.18 3862.65 3876.80 3831.95 3910.87 3872.62 3853.45 3853.44 383
thres40087.20 29586.52 29889.24 30195.77 23272.94 34391.89 21686.00 35090.84 13592.61 23889.80 33863.93 35198.28 21471.27 35896.54 27796.51 247
test1239.49 35212.01 3551.91 3672.87 3901.30 39182.38 3641.34 3921.36 3852.84 3866.56 3842.45 3900.97 3862.73 3845.56 3843.47 382
thres20085.85 30785.18 30887.88 32194.44 28172.52 34789.08 29586.21 34788.57 18991.44 26688.40 35464.22 34998.00 23968.35 36695.88 29193.12 340
test0.0.03 182.48 32681.47 33085.48 33889.70 35773.57 33984.73 35081.64 37283.07 27188.13 32586.61 36362.86 35789.10 37666.24 37190.29 36293.77 330
pmmvs380.83 33978.96 34586.45 33187.23 37377.48 29984.87 34982.31 37063.83 37385.03 34589.50 34549.66 38093.10 36073.12 34895.10 30888.78 367
EMVS80.35 34280.28 34180.54 35784.73 38269.07 36372.54 37580.73 37487.80 20481.66 36981.73 37662.89 35689.84 37375.79 33594.65 31882.71 375
E-PMN80.72 34080.86 33580.29 35885.11 38068.77 36472.96 37381.97 37187.76 20683.25 35983.01 37562.22 36089.17 37577.15 32694.31 32582.93 374
PGM-MVS96.32 4395.94 5797.43 2198.59 4093.84 3595.33 9198.30 2691.40 12395.76 12496.87 11695.26 3799.45 2692.77 8499.21 8999.00 54
LCM-MVSNet-Re94.20 12894.58 11393.04 18195.91 22683.13 21693.79 14999.19 392.00 9698.84 598.04 4493.64 7499.02 11381.28 28698.54 16696.96 232
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
MCST-MVS92.91 16292.51 17294.10 14797.52 12485.72 18491.36 23597.13 14980.33 29292.91 23094.24 25291.23 13998.72 16589.99 15997.93 22797.86 179
mvs_anonymous90.37 22691.30 20387.58 32392.17 32568.00 36589.84 27794.73 25583.82 26493.22 21997.40 7787.54 19797.40 28387.94 20895.05 30997.34 220
MVS_Test92.57 17793.29 15290.40 27593.53 30075.85 32092.52 18296.96 16088.73 18392.35 25096.70 13190.77 14998.37 21092.53 9295.49 29896.99 231
MDA-MVSNet-bldmvs91.04 20890.88 21191.55 23694.68 27580.16 24685.49 34592.14 30790.41 14994.93 16495.79 18485.10 22996.93 30085.15 24794.19 32997.57 202
CDPH-MVS92.67 17291.83 18895.18 10396.94 15188.46 12390.70 24997.07 15377.38 31792.34 25295.08 22092.67 10598.88 13185.74 24198.57 16298.20 142
test1294.43 13995.95 22386.75 15696.24 20389.76 30089.79 17298.79 15197.95 22697.75 191
casdiffmvs94.32 12194.80 10292.85 19296.05 21581.44 23592.35 19498.05 6391.53 12195.75 12596.80 12193.35 8498.49 19791.01 12898.32 19098.64 106
diffmvs91.74 19591.93 18591.15 25293.06 30878.17 28988.77 30297.51 11886.28 22792.42 24693.96 26488.04 18997.46 27890.69 13596.67 27597.82 184
baseline283.38 32081.54 32988.90 30391.38 33772.84 34588.78 30181.22 37378.97 30779.82 37387.56 35761.73 36197.80 25874.30 34190.05 36396.05 268
baseline187.62 28587.31 28088.54 31094.71 27474.27 33493.10 16588.20 33586.20 22892.18 25693.04 28773.21 31495.52 33279.32 30985.82 37095.83 277
YYNet188.17 27488.24 26487.93 31992.21 32373.62 33880.75 36888.77 32982.51 27994.99 16295.11 21882.70 25093.70 35683.33 26693.83 33196.48 251
PMMVS281.31 33483.44 31874.92 36290.52 34846.49 38769.19 37685.23 36184.30 26087.95 32794.71 23976.95 30084.36 37964.07 37398.09 21693.89 327
MDA-MVSNet_test_wron88.16 27588.23 26587.93 31992.22 32273.71 33780.71 36988.84 32882.52 27894.88 16795.14 21682.70 25093.61 35783.28 26793.80 33296.46 252
tpmvs84.22 31783.97 31684.94 34287.09 37465.18 37391.21 23788.35 33282.87 27485.21 34390.96 32665.24 34696.75 30579.60 30885.25 37192.90 345
PM-MVS93.33 14692.67 16995.33 9596.58 17294.06 2392.26 19992.18 30485.92 23496.22 10396.61 13785.64 22895.99 32790.35 14398.23 20195.93 272
HQP_MVS94.26 12593.93 13295.23 10197.71 11088.12 12794.56 12397.81 9391.74 11493.31 21195.59 19386.93 20998.95 12489.26 17798.51 17098.60 113
plane_prior797.71 11088.68 115
plane_prior697.21 14088.23 12686.93 209
plane_prior597.81 9398.95 12489.26 17798.51 17098.60 113
plane_prior495.59 193
plane_prior388.43 12490.35 15093.31 211
plane_prior294.56 12391.74 114
plane_prior197.38 132
plane_prior88.12 12793.01 16688.98 17898.06 218
PS-CasMVS96.69 2297.43 594.49 13599.13 684.09 20496.61 3197.97 7897.91 598.64 1398.13 3895.24 3899.65 393.39 6399.84 399.72 2
UniMVSNet_NR-MVSNet95.35 7895.21 8795.76 7997.69 11388.59 11892.26 19997.84 9094.91 4096.80 7495.78 18790.42 15899.41 4091.60 11799.58 3399.29 30
PEN-MVS96.69 2297.39 894.61 12499.16 484.50 19596.54 3498.05 6398.06 498.64 1398.25 3495.01 5099.65 392.95 8299.83 699.68 4
TransMVSNet (Re)95.27 8696.04 5492.97 18498.37 6681.92 22795.07 10396.76 17993.97 5897.77 3098.57 2095.72 2097.90 24588.89 18799.23 8499.08 49
DTE-MVSNet96.74 1997.43 594.67 12199.13 684.68 19496.51 3597.94 8498.14 398.67 1298.32 3295.04 4799.69 293.27 6999.82 899.62 10
DU-MVS95.28 8495.12 9295.75 8097.75 10688.59 11892.58 18097.81 9393.99 5596.80 7495.90 17790.10 16799.41 4091.60 11799.58 3399.26 31
UniMVSNet (Re)95.32 8095.15 9095.80 7697.79 10488.91 11092.91 17098.07 5993.46 6996.31 9495.97 17690.14 16399.34 6692.11 9899.64 2599.16 39
CP-MVSNet96.19 4896.80 1794.38 14198.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 7091.98 12099.63 693.08 7899.81 999.70 3
WR-MVS_H96.60 2797.05 1495.24 10099.02 1286.44 16696.78 2698.08 5697.42 998.48 1697.86 5691.76 12499.63 694.23 2999.84 399.66 6
WR-MVS93.49 14293.72 13892.80 19497.57 12280.03 25390.14 26795.68 22393.70 6496.62 8195.39 20987.21 20399.04 11087.50 21499.64 2599.33 27
NR-MVSNet95.28 8495.28 8595.26 9997.75 10687.21 14595.08 10297.37 12493.92 6197.65 3395.90 17790.10 16799.33 7190.11 15599.66 2299.26 31
Baseline_NR-MVSNet94.47 11595.09 9492.60 20298.50 5880.82 24392.08 20596.68 18293.82 6296.29 9698.56 2190.10 16797.75 26590.10 15799.66 2299.24 33
TranMVSNet+NR-MVSNet96.07 5296.26 4095.50 8998.26 7287.69 13693.75 15097.86 8695.96 3097.48 4497.14 9995.33 3499.44 2890.79 13299.76 1199.38 23
TSAR-MVS + GP.93.07 15892.41 17595.06 10795.82 22990.87 7690.97 24292.61 29888.04 19994.61 17593.79 27088.08 18797.81 25789.41 17098.39 17996.50 250
abl_697.31 597.12 1397.86 398.54 4795.32 996.61 3198.35 2095.81 3197.55 3897.44 7596.51 999.40 4794.06 3399.23 8498.85 79
n20.00 393
nn0.00 393
mPP-MVS96.46 3496.05 5397.69 598.62 3594.65 1596.45 3997.74 9992.59 8195.47 13696.68 13294.50 6399.42 3393.10 7699.26 8098.99 56
door-mid92.13 308
XVG-OURS-SEG-HR95.38 7795.00 9696.51 5098.10 8294.07 2292.46 18698.13 4890.69 14093.75 19896.25 16498.03 297.02 29692.08 10095.55 29698.45 124
mvsmamba95.61 6795.40 7996.22 5598.44 6189.86 9197.14 1697.45 12191.25 12897.49 4398.14 3683.49 23899.45 2695.52 1199.66 2299.36 25
MVSFormer92.18 18892.23 17792.04 22194.74 27080.06 25197.15 1497.37 12488.98 17888.83 30992.79 29477.02 29899.60 996.41 496.75 27396.46 252
jason89.17 25388.32 25991.70 23195.73 23580.07 25088.10 30993.22 28471.98 34690.09 28992.79 29478.53 28598.56 19187.43 21697.06 25996.46 252
jason: jason.
lupinMVS88.34 27387.31 28091.45 23994.74 27080.06 25187.23 32192.27 30371.10 35088.83 30991.15 32277.02 29898.53 19486.67 22896.75 27395.76 280
test_djsdf96.62 2596.49 2897.01 3598.55 4491.77 6397.15 1497.37 12488.98 17898.26 2298.86 1093.35 8499.60 996.41 499.45 4699.66 6
HPM-MVS_fast97.01 796.89 1597.39 2499.12 893.92 3197.16 1398.17 4393.11 7596.48 8597.36 8296.92 699.34 6694.31 2699.38 5998.92 70
K. test v393.37 14593.27 15593.66 16398.05 8682.62 22194.35 12986.62 34596.05 2897.51 4298.85 1276.59 30499.65 393.21 7198.20 20698.73 95
lessismore_v093.87 15998.05 8683.77 20880.32 37697.13 5797.91 5377.49 29299.11 10092.62 9098.08 21798.74 93
SixPastTwentyTwo94.91 9495.21 8793.98 15098.52 5083.19 21495.93 6894.84 25094.86 4198.49 1598.74 1681.45 26299.60 994.69 1999.39 5899.15 40
OurMVSNet-221017-096.80 1396.75 1896.96 3899.03 1191.85 6197.98 798.01 7294.15 5398.93 399.07 588.07 18899.57 1495.86 999.69 1599.46 19
HPM-MVScopyleft96.81 1296.62 2397.36 2698.89 2193.53 4197.51 998.44 1392.35 8795.95 11596.41 14796.71 899.42 3393.99 3699.36 6099.13 42
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS94.72 10594.12 13096.50 5198.00 9394.23 2091.48 23198.17 4390.72 13995.30 14596.47 14287.94 19296.98 29791.41 12297.61 24398.30 133
XVG-ACMP-BASELINE95.68 6595.34 8196.69 4598.40 6293.04 4594.54 12698.05 6390.45 14796.31 9496.76 12492.91 9898.72 16591.19 12499.42 5198.32 130
LPG-MVS_test96.38 4296.23 4196.84 4298.36 6792.13 5695.33 9198.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
LGP-MVS_train96.84 4298.36 6792.13 5698.25 3091.78 11097.07 5997.22 9496.38 1399.28 7692.07 10199.59 2999.11 45
baseline94.26 12594.80 10292.64 19896.08 21380.99 24093.69 15298.04 6790.80 13894.89 16696.32 15793.19 8898.48 20191.68 11598.51 17098.43 125
test1196.65 184
door91.26 317
EPNet_dtu85.63 30884.37 31289.40 29686.30 37774.33 33391.64 22888.26 33384.84 25572.96 38089.85 33671.27 32197.69 26876.60 32997.62 24296.18 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268887.19 29685.92 30591.00 25797.13 14579.41 26984.51 35495.60 22564.14 37290.07 29194.81 23278.26 28797.14 29273.34 34595.38 30396.46 252
EPNet89.80 24688.25 26394.45 13883.91 38386.18 17593.87 14687.07 34391.16 13180.64 37194.72 23878.83 27998.89 13085.17 24598.89 12598.28 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS84.89 192
HQP-NCC96.36 18791.37 23287.16 21788.81 311
ACMP_Plane96.36 18791.37 23287.16 21788.81 311
APD-MVScopyleft95.00 9194.69 10795.93 6797.38 13290.88 7594.59 11997.81 9389.22 17495.46 13896.17 16993.42 8299.34 6689.30 17398.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS86.55 232
HQP4-MVS88.81 31198.61 18398.15 146
HQP3-MVS97.31 13497.73 234
HQP2-MVS84.76 231
CNVR-MVS94.58 11094.29 12395.46 9196.94 15189.35 10491.81 22596.80 17589.66 16193.90 19695.44 20592.80 10298.72 16592.74 8698.52 16898.32 130
NCCC94.08 13193.54 14795.70 8396.49 18189.90 9092.39 19196.91 16690.64 14292.33 25394.60 24190.58 15798.96 12290.21 15297.70 23898.23 138
114514_t90.51 21989.80 23592.63 20098.00 9382.24 22493.40 16097.29 13765.84 36989.40 30494.80 23586.99 20798.75 16083.88 26398.61 15896.89 235
CP-MVS96.44 3796.08 5197.54 1398.29 6994.62 1696.80 2498.08 5692.67 8095.08 15896.39 15294.77 5699.42 3393.17 7399.44 4998.58 115
DSMNet-mixed82.21 32881.56 32784.16 34889.57 36070.00 36190.65 25077.66 38254.99 38083.30 35897.57 6677.89 29090.50 37166.86 37095.54 29791.97 352
tpm281.46 33380.35 34084.80 34389.90 35565.14 37490.44 25585.36 35765.82 37082.05 36692.44 30357.94 36896.69 30770.71 36188.49 36692.56 348
NP-MVS96.82 16087.10 14793.40 280
EG-PatchMatch MVS94.54 11394.67 11094.14 14697.87 10086.50 16292.00 21096.74 18088.16 19796.93 6897.61 6593.04 9597.90 24591.60 11798.12 21398.03 158
tpm cat180.61 34179.46 34484.07 34988.78 36665.06 37689.26 29188.23 33462.27 37581.90 36889.66 34462.70 35995.29 34171.72 35480.60 37891.86 355
SteuartSystems-ACMMP96.40 4096.30 3896.71 4498.63 3491.96 5995.70 7798.01 7293.34 7196.64 8096.57 13994.99 5199.36 6293.48 5499.34 6298.82 81
Skip Steuart: Steuart Systems R&D Blog.
CostFormer83.09 32282.21 32585.73 33689.27 36367.01 36690.35 25986.47 34670.42 35483.52 35793.23 28561.18 36296.85 30277.21 32588.26 36793.34 339
CR-MVSNet87.89 27787.12 28790.22 28091.01 34278.93 27792.52 18292.81 29073.08 34189.10 30696.93 11267.11 33297.64 27088.80 18892.70 34694.08 319
JIA-IIPM85.08 31283.04 32191.19 25187.56 37086.14 17689.40 28784.44 36588.98 17882.20 36497.95 4856.82 37196.15 32176.55 33083.45 37491.30 357
Patchmtry90.11 23689.92 23390.66 26890.35 35177.00 30592.96 16892.81 29090.25 15194.74 17296.93 11267.11 33297.52 27485.17 24598.98 11597.46 209
PatchT87.51 28788.17 26885.55 33790.64 34566.91 36792.02 20986.09 34992.20 9289.05 30897.16 9864.15 35096.37 31789.21 18092.98 34493.37 338
tpmrst82.85 32582.93 32382.64 35387.65 36958.99 38390.14 26787.90 33875.54 32883.93 35391.63 31766.79 33795.36 33881.21 28881.54 37793.57 337
BH-w/o87.21 29487.02 28987.79 32294.77 26877.27 30287.90 31193.21 28681.74 28589.99 29388.39 35583.47 23996.93 30071.29 35792.43 35089.15 363
tpm84.38 31684.08 31585.30 34090.47 34963.43 38089.34 28885.63 35477.24 32087.62 33095.03 22461.00 36497.30 28779.26 31091.09 36095.16 295
DELS-MVS92.05 19092.16 17891.72 22994.44 28180.13 24987.62 31397.25 14087.34 21592.22 25593.18 28689.54 17498.73 16489.67 16698.20 20696.30 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned90.68 21690.90 21090.05 28695.98 22179.57 26690.04 27094.94 24887.91 20094.07 18793.00 28887.76 19497.78 26179.19 31195.17 30792.80 346
RPMNet90.31 23090.14 23190.81 26591.01 34278.93 27792.52 18298.12 4991.91 10089.10 30696.89 11568.84 32799.41 4090.17 15392.70 34694.08 319
MVSTER89.32 25188.75 25391.03 25490.10 35476.62 31290.85 24494.67 25982.27 28195.24 15195.79 18461.09 36398.49 19790.49 13798.26 19697.97 167
CPTT-MVS94.74 10494.12 13096.60 4798.15 7993.01 4695.84 7297.66 10389.21 17593.28 21495.46 20388.89 17898.98 11789.80 16298.82 13897.80 186
GBi-Net93.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
PVSNet_Blended_VisFu91.63 19891.20 20592.94 18897.73 10983.95 20692.14 20397.46 11978.85 31092.35 25094.98 22584.16 23599.08 10286.36 23696.77 27295.79 279
PVSNet_BlendedMVS90.35 22789.96 23291.54 23794.81 26578.80 28390.14 26796.93 16279.43 30088.68 31895.06 22186.27 22098.15 22880.27 29498.04 22097.68 195
UnsupCasMVSNet_eth90.33 22890.34 22590.28 27794.64 27880.24 24589.69 28095.88 21785.77 23693.94 19595.69 19081.99 25892.98 36284.21 26191.30 35797.62 199
UnsupCasMVSNet_bld88.50 27088.03 27189.90 28895.52 24678.88 28087.39 32094.02 27279.32 30493.06 22394.02 26180.72 27094.27 35275.16 33793.08 34296.54 245
PVSNet_Blended88.74 26788.16 26990.46 27494.81 26578.80 28386.64 33696.93 16274.67 33288.68 31889.18 34986.27 22098.15 22880.27 29496.00 28694.44 314
FMVSNet587.82 28086.56 29691.62 23492.31 32079.81 26193.49 15794.81 25383.26 26691.36 26796.93 11252.77 37997.49 27776.07 33298.03 22197.55 205
test193.21 15392.96 15893.97 15195.40 24984.29 19795.99 6496.56 18888.63 18695.10 15598.53 2381.31 26498.98 11786.74 22598.38 18198.65 102
new_pmnet81.22 33581.01 33481.86 35590.92 34470.15 35884.03 35780.25 37770.83 35285.97 34189.78 34167.93 33184.65 37867.44 36891.90 35590.78 360
FMVSNet390.78 21390.32 22692.16 21793.03 31079.92 25792.54 18194.95 24786.17 23095.10 15596.01 17469.97 32598.75 16086.74 22598.38 18197.82 184
dp79.28 34478.62 34681.24 35685.97 37856.45 38486.91 32885.26 36072.97 34281.45 37089.17 35056.01 37395.45 33673.19 34776.68 37991.82 356
FMVSNet292.78 16892.73 16792.95 18695.40 24981.98 22694.18 13595.53 23488.63 18696.05 11297.37 7981.31 26498.81 14787.38 21898.67 15598.06 152
FMVSNet194.84 10095.13 9193.97 15197.60 11984.29 19795.99 6496.56 18892.38 8497.03 6398.53 2390.12 16498.98 11788.78 18999.16 9698.65 102
N_pmnet88.90 26387.25 28293.83 16094.40 28393.81 3884.73 35087.09 34279.36 30393.26 21692.43 30479.29 27791.68 36677.50 32397.22 25596.00 269
cascas87.02 30086.28 30289.25 30091.56 33676.45 31484.33 35696.78 17671.01 35186.89 33785.91 36881.35 26396.94 29883.09 26995.60 29594.35 316
BH-RMVSNet90.47 22190.44 22390.56 27195.21 25678.65 28589.15 29493.94 27588.21 19592.74 23594.22 25386.38 21897.88 24978.67 31495.39 30295.14 297
UGNet93.08 15692.50 17394.79 11693.87 29587.99 13195.07 10394.26 26790.64 14287.33 33497.67 6286.89 21298.49 19788.10 20298.71 14997.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.93 30186.50 30088.24 31594.96 25974.64 32787.19 32392.07 30978.29 31388.32 32291.59 31878.06 28894.27 35274.88 33893.15 34095.80 278
XXY-MVS92.58 17593.16 15790.84 26397.75 10679.84 25891.87 21996.22 20685.94 23395.53 13597.68 6192.69 10494.48 34783.21 26897.51 24598.21 141
DROMVSNet95.44 7395.62 7194.89 11196.93 15387.69 13696.48 3899.14 493.93 5992.77 23494.52 24493.95 7299.49 2493.62 4699.22 8897.51 207
sss87.23 29386.82 29188.46 31393.96 29277.94 29086.84 33092.78 29377.59 31687.61 33191.83 31378.75 28091.92 36577.84 31894.20 32795.52 291
Test_1112_low_res87.50 28886.58 29590.25 27996.80 16377.75 29587.53 31896.25 20269.73 35886.47 33893.61 27575.67 30797.88 24979.95 30093.20 33895.11 298
1112_ss88.42 27187.41 27991.45 23996.69 16580.99 24089.72 27996.72 18173.37 33987.00 33690.69 33177.38 29498.20 22281.38 28593.72 33395.15 296
ab-mvs-re7.56 35410.08 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38890.69 3310.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs92.40 18192.62 17091.74 22897.02 14781.65 23095.84 7295.50 23586.95 22292.95 22997.56 6790.70 15497.50 27579.63 30597.43 24996.06 267
TR-MVS87.70 28187.17 28489.27 29994.11 28879.26 27288.69 30491.86 31281.94 28490.69 28089.79 34082.82 24897.42 28172.65 35091.98 35491.14 358
MDTV_nov1_ep13_2view42.48 38888.45 30867.22 36683.56 35666.80 33572.86 34994.06 321
MDTV_nov1_ep1383.88 31789.42 36261.52 38188.74 30387.41 34073.99 33684.96 34794.01 26265.25 34595.53 33178.02 31693.16 339
MIMVSNet195.52 7095.45 7695.72 8199.14 589.02 10796.23 5796.87 17093.73 6397.87 2898.49 2690.73 15399.05 10786.43 23599.60 2799.10 48
MIMVSNet87.13 29886.54 29788.89 30496.05 21576.11 31794.39 12888.51 33181.37 28688.27 32396.75 12672.38 31695.52 33265.71 37295.47 29995.03 299
IterMVS-LS93.78 13794.28 12492.27 21096.27 19779.21 27591.87 21996.78 17691.77 11296.57 8497.07 10287.15 20498.74 16391.99 10399.03 11398.86 76
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet89.55 24788.22 26693.53 17095.37 25286.49 16389.26 29193.59 27779.76 29691.15 27292.31 30677.12 29798.38 20777.51 32297.92 22895.71 282
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref98.82 138
IterMVS90.18 23390.16 22790.21 28193.15 30675.98 31987.56 31692.97 28886.43 22694.09 18596.40 14878.32 28697.43 28087.87 20994.69 31797.23 224
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon92.31 18491.88 18693.60 16597.18 14186.87 15491.10 24097.37 12484.92 25392.08 25894.08 25888.59 18098.20 22283.50 26598.14 21095.73 281
MVS_111021_LR93.66 13993.28 15494.80 11596.25 20090.95 7390.21 26395.43 23687.91 20093.74 20094.40 24792.88 10096.38 31690.39 14098.28 19497.07 226
DP-MVS95.62 6695.84 6394.97 10997.16 14288.62 11794.54 12697.64 10496.94 1596.58 8397.32 8893.07 9498.72 16590.45 13898.84 13297.57 202
ACMMP++99.25 81
HQP-MVS92.09 18991.49 19893.88 15896.36 18784.89 19291.37 23297.31 13487.16 21788.81 31193.40 28084.76 23198.60 18586.55 23297.73 23498.14 147
QAPM92.88 16492.77 16393.22 17995.82 22983.31 21196.45 3997.35 13183.91 26293.75 19896.77 12289.25 17698.88 13184.56 25897.02 26197.49 208
Vis-MVSNetpermissive95.50 7195.48 7595.56 8898.11 8189.40 10295.35 8998.22 3592.36 8694.11 18498.07 4292.02 11799.44 2893.38 6497.67 24097.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet78.83 34680.60 33873.51 36393.07 30747.37 38687.10 32578.00 38168.94 36077.53 37697.26 9071.45 32094.62 34563.28 37588.74 36578.55 378
IS-MVSNet94.49 11494.35 12194.92 11098.25 7486.46 16597.13 1794.31 26596.24 2496.28 9996.36 15582.88 24599.35 6388.19 19999.52 4098.96 63
HyFIR lowres test87.19 29685.51 30792.24 21197.12 14680.51 24485.03 34896.06 21166.11 36891.66 26492.98 29070.12 32499.14 9275.29 33695.23 30697.07 226
EPMVS81.17 33780.37 33983.58 35085.58 37965.08 37590.31 26171.34 38377.31 31985.80 34291.30 32059.38 36692.70 36379.99 29982.34 37692.96 344
PAPM_NR91.03 20990.81 21491.68 23296.73 16481.10 23993.72 15196.35 19988.19 19688.77 31592.12 31085.09 23097.25 28882.40 27793.90 33096.68 243
TAMVS90.16 23489.05 24693.49 17296.49 18186.37 16890.34 26092.55 29980.84 29092.99 22694.57 24381.94 26098.20 22273.51 34498.21 20495.90 275
PAPR87.65 28486.77 29390.27 27892.85 31277.38 30088.56 30796.23 20476.82 32484.98 34689.75 34286.08 22297.16 29172.33 35193.35 33696.26 260
RPSCF95.58 6994.89 9997.62 897.58 12196.30 695.97 6797.53 11592.42 8393.41 20897.78 5791.21 14097.77 26291.06 12597.06 25998.80 85
Vis-MVSNet (Re-imp)90.42 22290.16 22791.20 25097.66 11677.32 30194.33 13087.66 33991.20 12992.99 22695.13 21775.40 30898.28 21477.86 31799.19 9197.99 163
test_040295.73 6396.22 4294.26 14398.19 7785.77 18393.24 16397.24 14196.88 1697.69 3297.77 5994.12 7099.13 9491.54 12099.29 7297.88 177
MVS_111021_HR93.63 14093.42 15094.26 14396.65 16686.96 15389.30 29096.23 20488.36 19493.57 20594.60 24193.45 7997.77 26290.23 15198.38 18198.03 158
CSCG94.69 10694.75 10494.52 13297.55 12387.87 13395.01 10697.57 11192.68 7896.20 10593.44 27991.92 12198.78 15589.11 18299.24 8396.92 233
PatchMatch-RL89.18 25288.02 27292.64 19895.90 22792.87 4988.67 30691.06 31880.34 29190.03 29291.67 31683.34 24094.42 34976.35 33194.84 31390.64 361
API-MVS91.52 20191.61 19391.26 24694.16 28686.26 17494.66 11794.82 25191.17 13092.13 25791.08 32490.03 17097.06 29579.09 31297.35 25290.45 362
Test By Simon90.61 155
TDRefinement97.68 397.60 497.93 299.02 1295.95 798.61 398.81 897.41 1097.28 5398.46 2794.62 6098.84 14094.64 2099.53 3798.99 56
USDC89.02 25789.08 24588.84 30595.07 25874.50 33188.97 29696.39 19773.21 34093.27 21596.28 16182.16 25696.39 31577.55 32198.80 14295.62 289
EPP-MVSNet93.91 13593.68 14194.59 12998.08 8385.55 18697.44 1194.03 27094.22 5294.94 16396.19 16682.07 25799.57 1487.28 21998.89 12598.65 102
PMMVS83.00 32381.11 33188.66 30983.81 38486.44 16682.24 36585.65 35361.75 37682.07 36585.64 36979.75 27491.59 36775.99 33393.09 34187.94 369
PAPM81.91 33280.11 34287.31 32693.87 29572.32 34984.02 35893.22 28469.47 35976.13 37889.84 33772.15 31797.23 28953.27 38089.02 36492.37 350
ACMMPcopyleft96.61 2696.34 3697.43 2198.61 3793.88 3296.95 2098.18 3992.26 9096.33 9296.84 12095.10 4599.40 4793.47 5599.33 6499.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA91.72 19691.20 20593.26 17896.17 20591.02 7191.14 23895.55 23290.16 15290.87 27693.56 27786.31 21994.40 35079.92 30497.12 25794.37 315
PatchmatchNetpermissive85.22 31084.64 31086.98 32889.51 36169.83 36290.52 25387.34 34178.87 30987.22 33592.74 29666.91 33496.53 30981.77 28286.88 36994.58 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS94.34 12093.80 13595.95 6495.65 24091.67 6694.82 11197.86 8687.86 20393.04 22594.16 25691.58 12898.78 15590.27 14898.96 12197.41 213
F-COLMAP92.28 18591.06 20995.95 6497.52 12491.90 6093.53 15697.18 14483.98 26188.70 31794.04 25988.41 18398.55 19380.17 29895.99 28797.39 217
ANet_high94.83 10196.28 3990.47 27296.65 16673.16 34194.33 13098.74 1096.39 2398.09 2598.93 893.37 8398.70 17190.38 14199.68 1999.53 15
wuyk23d87.83 27990.79 21578.96 36090.46 35088.63 11692.72 17590.67 32391.65 11898.68 1197.64 6496.06 1677.53 38159.84 37699.41 5670.73 379
OMC-MVS94.22 12793.69 14095.81 7497.25 13691.27 6892.27 19897.40 12387.10 22094.56 17695.42 20693.74 7398.11 23086.62 22998.85 13198.06 152
MG-MVS89.54 24889.80 23588.76 30694.88 26172.47 34889.60 28192.44 30185.82 23589.48 30395.98 17582.85 24797.74 26681.87 28195.27 30596.08 266
AdaColmapbinary91.63 19891.36 20192.47 20795.56 24586.36 16992.24 20196.27 20188.88 18289.90 29592.69 29791.65 12798.32 21277.38 32497.64 24192.72 347
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ITE_SJBPF95.95 6497.34 13493.36 4496.55 19191.93 9994.82 16895.39 20991.99 11997.08 29485.53 24397.96 22597.41 213
DeepMVS_CXcopyleft53.83 36570.38 38764.56 37748.52 38933.01 38165.50 38274.21 38056.19 37246.64 38438.45 38370.07 38050.30 380
TinyColmap92.00 19192.76 16489.71 29195.62 24377.02 30490.72 24896.17 20987.70 20895.26 14896.29 15992.54 10896.45 31381.77 28298.77 14595.66 286
MAR-MVS90.32 22988.87 25294.66 12294.82 26491.85 6194.22 13494.75 25480.91 28787.52 33288.07 35686.63 21697.87 25276.67 32896.21 28394.25 318
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS92.72 17092.02 18294.84 11495.65 24091.99 5892.92 16996.60 18685.08 25092.44 24593.62 27486.80 21396.35 31886.81 22498.25 19896.18 263
MSDG90.82 21190.67 21891.26 24694.16 28683.08 21786.63 33796.19 20790.60 14491.94 26091.89 31289.16 17795.75 32980.96 29294.51 32094.95 302
LS3D96.11 5095.83 6496.95 3994.75 26994.20 2197.34 1297.98 7597.31 1195.32 14496.77 12293.08 9399.20 8691.79 11198.16 20897.44 212
CLD-MVS91.82 19391.41 20093.04 18196.37 18583.65 20986.82 33297.29 13784.65 25892.27 25489.67 34392.20 11497.85 25583.95 26299.47 4297.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS84.50 31583.28 31988.16 31696.32 19394.49 1885.76 34385.47 35683.09 27085.20 34494.26 25163.79 35386.58 37763.72 37491.88 35683.40 373
Gipumacopyleft95.31 8395.80 6693.81 16197.99 9690.91 7496.42 4297.95 8196.69 1791.78 26398.85 1291.77 12395.49 33491.72 11399.08 10295.02 300
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015