This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1399.11 5599.90 199.78 499.63 1499.78 1099.67 1699.48 699.81 15999.30 1799.97 1199.77 16
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 6198.73 5799.05 12098.76 23697.81 16499.25 3099.30 13998.57 10098.55 18999.33 6297.95 7699.90 4997.16 12999.67 13999.44 131
3Dnovator+97.89 398.69 8198.51 8899.24 8998.81 23198.40 10299.02 4999.19 17398.99 7198.07 22299.28 6597.11 13699.84 12296.84 15899.32 22399.47 120
DeepC-MVS97.60 498.97 4498.93 4299.10 10699.35 11597.98 14398.01 14599.46 7597.56 16599.54 3099.50 3698.97 1699.84 12298.06 8599.92 3499.49 104
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 13498.01 15699.23 9098.39 28798.97 6295.03 32099.18 17796.88 22199.33 6298.78 17798.16 6099.28 33596.74 16699.62 15399.44 131
DeepC-MVS_fast96.85 698.30 13698.15 14398.75 16398.61 26597.23 19597.76 17099.09 19997.31 19298.75 16398.66 19897.56 10299.64 26396.10 21599.55 18199.39 150
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 23396.68 24298.32 21198.32 29097.16 20498.86 6399.37 10289.48 34296.29 31499.15 9096.56 16799.90 4992.90 30499.20 24297.89 314
ACMH96.65 799.25 2799.24 2699.26 8599.72 2998.38 10499.07 4699.55 4498.30 11199.65 2299.45 4799.22 999.76 20698.44 6599.77 9099.64 39
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 3499.00 3999.33 7499.71 3098.83 7098.60 7999.58 2699.11 5699.53 3399.18 8098.81 2299.67 24896.71 17199.77 9099.50 100
COLMAP_ROBcopyleft96.50 1098.99 3998.85 4799.41 6099.58 5199.10 5698.74 6899.56 4099.09 6599.33 6299.19 7898.40 4199.72 22995.98 21899.76 9999.42 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 25895.95 26698.65 16998.93 20198.09 12796.93 23899.28 14883.58 35798.13 21797.78 28196.13 18499.40 31993.52 29499.29 23098.45 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 5198.73 5799.48 5099.55 6599.14 4898.07 13399.37 10297.62 15899.04 11198.96 13498.84 2099.79 18197.43 11799.65 14599.49 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 27795.35 28597.55 26197.95 31094.79 26598.81 6696.94 32392.28 31995.17 33798.57 21689.90 28999.75 21391.20 33197.33 33198.10 307
OpenMVS_ROBcopyleft95.38 1495.84 27995.18 29097.81 24298.41 28697.15 20597.37 20798.62 27283.86 35698.65 17198.37 23994.29 24499.68 24588.41 34498.62 29596.60 346
ACMP95.32 1598.41 12598.09 14899.36 6499.51 7498.79 7497.68 17799.38 9895.76 26098.81 15798.82 17198.36 4399.82 14694.75 25499.77 9099.48 112
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 26195.73 27098.85 14698.75 23897.91 15296.42 26899.06 20390.94 33595.59 32597.38 30794.41 24099.59 27990.93 33498.04 31699.05 229
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 28295.70 27195.57 31898.83 22588.57 34192.50 35497.72 30492.69 31496.49 31096.44 32893.72 25699.43 31793.61 29199.28 23198.71 280
PCF-MVS92.86 1894.36 30293.00 31998.42 20398.70 24997.56 17993.16 35299.11 19779.59 36097.55 25697.43 30492.19 27599.73 22179.85 36099.45 20697.97 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 32890.90 33296.27 30497.22 34091.24 33394.36 33993.33 35292.37 31792.24 35694.58 35566.20 36999.89 5893.16 30294.63 35497.66 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 17497.94 16297.65 25199.71 3097.94 15198.52 8898.68 26898.99 7197.52 26099.35 5897.41 11798.18 35891.59 32599.67 13996.82 343
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 33190.30 33493.70 33797.72 32084.34 36090.24 35897.42 31090.20 33993.79 35093.09 36090.90 28398.89 35386.57 34972.76 36397.87 317
MVEpermissive83.40 2292.50 32591.92 32894.25 33298.83 22591.64 32492.71 35383.52 36695.92 25586.46 36495.46 34495.20 21995.40 36280.51 35998.64 29395.73 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 26895.44 28198.84 14796.25 35598.69 8297.02 23199.12 19588.90 34597.83 23698.86 15989.51 29198.90 35291.92 31999.51 19298.92 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GeoE99.05 3598.99 4199.25 8799.44 10098.35 10798.73 7099.56 4098.42 10498.91 13698.81 17398.94 1899.91 4598.35 7099.73 10699.49 104
test_method79.78 33279.50 33580.62 34680.21 36745.76 36970.82 36198.41 28331.08 36480.89 36597.71 28584.85 32097.37 36091.51 32780.03 36298.75 277
Anonymous2024052198.69 8198.87 4498.16 22499.77 2095.11 26199.08 4499.44 8199.34 3799.33 6299.55 2994.10 25099.94 2399.25 2099.96 1499.42 138
hse-mvs397.77 18597.33 20699.10 10699.21 13697.84 15898.35 10998.57 27499.11 5698.58 18399.02 11588.65 29999.96 898.11 8096.34 34299.49 104
hse-mvs297.46 20597.07 21898.64 17198.73 24097.33 18997.45 20397.64 30999.11 5698.58 18397.98 26988.65 29999.79 18198.11 8097.39 32698.81 267
CL-MVSNet_2432*160097.44 20897.22 21198.08 22998.57 27295.78 24194.30 34098.79 25596.58 23398.60 17998.19 25494.74 23599.64 26396.41 19798.84 28198.82 264
KD-MVS_2432*160092.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
DIV-MVS_2432*160099.25 2799.18 2899.44 5699.63 4899.06 6098.69 7399.54 4899.31 3999.62 2799.53 3397.36 12199.86 9199.24 2299.71 11799.39 150
AUN-MVS96.24 27195.45 28098.60 17998.70 24997.22 19797.38 20697.65 30795.95 25495.53 33397.96 27382.11 34199.79 18196.31 20297.44 32498.80 272
ZD-MVS99.01 18798.84 6999.07 20294.10 29698.05 22598.12 25996.36 18099.86 9192.70 31299.19 246
test117298.76 6998.49 9399.57 1899.18 15099.37 898.39 10599.31 13098.43 10398.90 13798.88 15597.49 11299.86 9196.43 19599.37 21699.48 112
SR-MVS-dyc-post98.81 6198.55 8399.57 1899.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.49 11299.86 9196.56 18399.39 21299.45 126
RE-MVS-def98.58 8199.20 14099.38 598.48 9799.30 13998.64 9098.95 12798.96 13497.75 8796.56 18399.39 21299.45 126
SED-MVS98.91 5198.72 5999.49 4899.49 8499.17 3698.10 13099.31 13098.03 13299.66 2099.02 11598.36 4399.88 6796.91 14799.62 15399.41 141
IU-MVS99.49 8499.15 4598.87 23992.97 30999.41 4996.76 16499.62 15399.66 34
OPU-MVS98.82 14998.59 26998.30 10898.10 13098.52 22098.18 5898.75 35594.62 25899.48 20299.41 141
test_241102_TWO99.30 13998.03 13299.26 7799.02 11597.51 10899.88 6796.91 14799.60 16299.66 34
test_241102_ONE99.49 8499.17 3699.31 13097.98 13499.66 2098.90 14698.36 4399.48 309
xxxxxxxxxxxxxcwj98.44 12298.24 13099.06 11899.11 16297.97 14496.53 26099.54 4898.24 11798.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
SF-MVS98.53 11398.27 12799.32 7699.31 11898.75 7598.19 12099.41 9196.77 22598.83 15198.90 14697.80 8499.82 14695.68 23499.52 18999.38 157
ETH3D cwj APD-0.1697.55 19897.00 22299.19 9398.51 27898.64 8396.85 24499.13 19394.19 29497.65 24798.40 23395.78 20299.81 15993.37 29999.16 24999.12 223
cl-mvsnet295.79 28095.39 28496.98 28596.77 34792.79 31094.40 33898.53 27694.59 28397.89 23298.17 25582.82 33699.24 33796.37 19899.03 26798.92 253
miper_ehance_all_eth97.06 23697.03 22097.16 28097.83 31693.06 30494.66 33099.09 19995.99 25398.69 16798.45 23092.73 27199.61 27496.79 16099.03 26798.82 264
miper_enhance_ethall96.01 27495.74 26996.81 29596.41 35392.27 31993.69 34998.89 23691.14 33398.30 20797.35 31090.58 28499.58 28496.31 20299.03 26798.60 287
ZNCC-MVS98.68 8598.40 10999.54 2999.57 5599.21 2698.46 9999.29 14697.28 19598.11 21998.39 23598.00 7099.87 8396.86 15799.64 14799.55 79
ETH3 D test640096.46 26595.59 27699.08 11098.88 21598.21 11896.53 26099.18 17788.87 34697.08 27997.79 28093.64 25899.77 19988.92 34399.40 21199.28 192
cl-mvsnet____97.02 24096.83 23497.58 25797.82 31794.04 28394.66 33099.16 18697.04 21498.63 17398.71 18788.68 29899.69 23697.00 13999.81 6999.00 240
cl-mvsnet197.02 24096.84 23397.58 25797.82 31794.03 28494.66 33099.16 18697.04 21498.63 17398.71 18788.69 29799.69 23697.00 13999.81 6999.01 237
eth_miper_zixun_eth97.23 22497.25 20897.17 27898.00 30992.77 31194.71 32799.18 17797.27 19698.56 18798.74 18391.89 27999.69 23697.06 13799.81 6999.05 229
9.1497.78 17199.07 17397.53 19499.32 12595.53 26598.54 19198.70 19097.58 10099.76 20694.32 27199.46 204
testtj97.79 18497.25 20899.42 5799.03 18398.85 6897.78 16599.18 17795.83 25898.12 21898.50 22495.50 21299.86 9192.23 31899.07 26299.54 83
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ETH3D-3000-0.198.03 15897.62 18599.29 7799.11 16298.80 7397.47 20199.32 12595.54 26398.43 20098.62 20996.61 16699.77 19993.95 28299.49 20099.30 187
save fliter99.11 16297.97 14496.53 26099.02 21698.24 117
ET-MVSNet_ETH3D94.30 30593.21 31597.58 25798.14 30194.47 27494.78 32693.24 35394.72 28189.56 36095.87 33778.57 35399.81 15996.91 14797.11 33498.46 292
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1499.34 1499.69 499.58 2699.90 299.86 799.78 599.58 399.95 1599.00 3399.95 1699.78 14
EIA-MVS98.00 16297.74 17498.80 15398.72 24298.09 12798.05 13799.60 2397.39 18496.63 30195.55 34197.68 9099.80 16896.73 16899.27 23298.52 290
miper_refine_blended92.87 32291.99 32695.51 32091.37 36489.27 33994.07 34298.14 29395.42 26897.25 27496.44 32867.86 36499.24 33791.28 32996.08 34698.02 310
miper_lstm_enhance97.18 22897.16 21497.25 27698.16 30092.85 30995.15 31899.31 13097.25 19898.74 16598.78 17790.07 28799.78 19397.19 12799.80 7799.11 225
ETV-MVS98.03 15897.86 16898.56 18898.69 25398.07 13397.51 19799.50 5798.10 12997.50 26295.51 34298.41 4099.88 6796.27 20599.24 23797.71 328
CS-MVS98.61 9698.60 7898.65 16998.82 22898.21 11898.79 6799.77 698.34 10797.55 25697.69 28898.27 4999.87 8398.52 6199.62 15397.88 316
D2MVS97.84 18097.84 16997.83 24199.14 15994.74 26696.94 23698.88 23795.84 25798.89 14098.96 13494.40 24199.69 23697.55 11099.95 1699.05 229
DVP-MVS98.77 6898.52 8699.52 4199.50 7799.21 2698.02 14298.84 24697.97 13599.08 10199.02 11597.61 9899.88 6796.99 14199.63 15099.48 112
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 12699.08 10199.02 11597.89 7799.88 6797.07 13699.71 11799.70 29
test_0728_SECOND99.60 1399.50 7799.23 2498.02 14299.32 12599.88 6796.99 14199.63 15099.68 31
test072699.50 7799.21 2698.17 12499.35 11297.97 13599.26 7799.06 10197.61 98
SR-MVS98.71 7698.43 10599.57 1899.18 15099.35 1198.36 10899.29 14698.29 11498.88 14498.85 16297.53 10599.87 8396.14 21399.31 22599.48 112
DPM-MVS96.32 26795.59 27698.51 19598.76 23697.21 19994.54 33698.26 28791.94 32296.37 31297.25 31193.06 26599.43 31791.42 32898.74 28598.89 257
GST-MVS98.61 9698.30 12499.52 4199.51 7499.20 3298.26 11499.25 15797.44 18098.67 16998.39 23597.68 9099.85 10596.00 21699.51 19299.52 93
test_yl96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
thisisatest053095.27 29094.45 30097.74 24799.19 14394.37 27597.86 15990.20 36197.17 20898.22 21197.65 29073.53 36099.90 4996.90 15299.35 21998.95 247
Anonymous2024052998.93 4998.87 4499.12 10299.19 14398.22 11799.01 5098.99 22399.25 4499.54 3099.37 5497.04 13799.80 16897.89 9399.52 18999.35 170
Anonymous20240521197.90 16897.50 19199.08 11098.90 20998.25 11198.53 8796.16 33298.87 8199.11 9598.86 15990.40 28699.78 19397.36 12099.31 22599.19 212
DCV-MVSNet96.69 25496.29 26097.90 23798.28 29295.24 25497.29 21397.36 31298.21 12098.17 21297.86 27686.27 30899.55 29194.87 25298.32 30198.89 257
tttt051795.64 28394.98 29497.64 25399.36 11193.81 29598.72 7190.47 36098.08 13098.67 16998.34 24273.88 35999.92 3597.77 10199.51 19299.20 207
our_test_397.39 21197.73 17696.34 30298.70 24989.78 33894.61 33398.97 22596.50 23499.04 11198.85 16295.98 19499.84 12297.26 12599.67 13999.41 141
thisisatest051594.12 30993.16 31696.97 28698.60 26792.90 30893.77 34890.61 35994.10 29696.91 28895.87 33774.99 35899.80 16894.52 26199.12 25998.20 303
ppachtmachnet_test97.50 20097.74 17496.78 29698.70 24991.23 33494.55 33599.05 20796.36 23999.21 8498.79 17696.39 17699.78 19396.74 16699.82 6599.34 172
SMA-MVScopyleft98.40 12798.03 15599.51 4599.16 15499.21 2698.05 13799.22 16594.16 29598.98 12199.10 9897.52 10799.79 18196.45 19399.64 14799.53 89
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 267
DPE-MVScopyleft98.59 10298.26 12899.57 1899.27 12499.15 4597.01 23299.39 9697.67 15499.44 4698.99 12597.53 10599.89 5895.40 24499.68 13399.66 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 11199.10 5699.05 109
test_part197.91 16797.46 19799.27 8298.80 23398.18 12099.07 4699.36 10699.75 599.63 2599.49 3982.20 34099.89 5898.87 4099.95 1699.74 24
thres100view90094.19 30693.67 31095.75 31499.06 17791.35 32998.03 14094.24 34698.33 10997.40 26994.98 35079.84 34599.62 26883.05 35498.08 31396.29 347
tfpnnormal98.90 5398.90 4398.91 13899.67 4097.82 16299.00 5299.44 8199.45 2899.51 3899.24 7298.20 5799.86 9195.92 22099.69 12899.04 233
tfpn200view994.03 31093.44 31295.78 31398.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31396.29 347
cl_fuxian97.36 21297.37 20197.31 27298.09 30493.25 30295.01 32199.16 18697.05 21398.77 16198.72 18692.88 26899.64 26396.93 14699.76 9999.05 229
CHOSEN 280x42095.51 28795.47 27895.65 31798.25 29488.27 34493.25 35198.88 23793.53 30494.65 34197.15 31586.17 31099.93 2897.41 11899.93 2598.73 279
CANet97.87 17397.76 17298.19 22297.75 31995.51 24696.76 25099.05 20797.74 15096.93 28598.21 25295.59 20899.89 5897.86 9899.93 2599.19 212
Fast-Effi-MVS+-dtu98.27 14098.09 14898.81 15198.43 28598.11 12697.61 18599.50 5798.64 9097.39 27097.52 29898.12 6399.95 1596.90 15298.71 28998.38 298
Effi-MVS+-dtu98.26 14297.90 16599.35 6998.02 30799.49 298.02 14299.16 18698.29 11497.64 24897.99 26896.44 17499.95 1596.66 17498.93 27998.60 287
CANet_DTU97.26 22097.06 21997.84 24097.57 32694.65 27196.19 28098.79 25597.23 20495.14 33898.24 24993.22 26099.84 12297.34 12199.84 5699.04 233
MVS_030497.64 19297.35 20398.52 19397.87 31596.69 22098.59 8198.05 29897.44 18093.74 35298.85 16293.69 25799.88 6798.11 8099.81 6998.98 242
MP-MVS-pluss98.57 10398.23 13299.60 1399.69 3899.35 1197.16 22799.38 9894.87 27998.97 12498.99 12598.01 6999.88 6797.29 12399.70 12299.58 61
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 12798.00 15799.61 999.57 5599.25 2298.57 8399.35 11297.55 16699.31 7097.71 28594.61 23699.88 6796.14 21399.19 24699.70 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 32298.81 267
sam_mvs84.29 328
IterMVS-SCA-FT97.85 17998.18 13796.87 29199.27 12491.16 33595.53 30699.25 15799.10 6299.41 4999.35 5893.10 26399.96 898.65 5399.94 2199.49 104
TSAR-MVS + MP.98.63 9398.49 9399.06 11899.64 4697.90 15398.51 9298.94 22696.96 21799.24 8098.89 15497.83 8099.81 15996.88 15499.49 20099.48 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
OPM-MVS98.56 10498.32 12399.25 8799.41 10698.73 7997.13 22999.18 17797.10 21298.75 16398.92 14298.18 5899.65 26196.68 17399.56 17999.37 160
ACMMP_NAP98.75 7198.48 9599.57 1899.58 5199.29 1797.82 16399.25 15796.94 21898.78 15899.12 9498.02 6899.84 12297.13 13399.67 13999.59 55
ambc98.24 21998.82 22895.97 23598.62 7799.00 22299.27 7399.21 7596.99 14299.50 30596.55 18699.50 19999.26 197
zzz-MVS98.79 6398.52 8699.61 999.67 4099.36 997.33 21099.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
MTGPAbinary99.20 168
mvs-test197.83 18297.48 19598.89 14198.02 30799.20 3297.20 22199.16 18698.29 11496.46 31197.17 31396.44 17499.92 3596.66 17497.90 31897.54 334
Effi-MVS+98.02 16097.82 17098.62 17698.53 27797.19 20197.33 21099.68 1497.30 19396.68 29997.46 30398.56 3399.80 16896.63 17698.20 30598.86 261
xiu_mvs_v2_base97.16 23097.49 19296.17 30798.54 27592.46 31595.45 31098.84 24697.25 19897.48 26496.49 32598.31 4899.90 4996.34 20198.68 29196.15 351
xiu_mvs_v1_base97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
new-patchmatchnet98.35 13298.74 5697.18 27799.24 12992.23 32096.42 26899.48 6798.30 11199.69 1799.53 3397.44 11699.82 14698.84 4299.77 9099.49 104
pmmvs699.67 399.70 399.60 1399.90 499.27 2099.53 799.76 799.64 1299.84 899.83 299.50 599.87 8399.36 1499.92 3499.64 39
pmmvs597.64 19297.49 19298.08 22999.14 15995.12 26096.70 25499.05 20793.77 30198.62 17598.83 16893.23 25999.75 21398.33 7399.76 9999.36 166
test_post197.59 18820.48 36783.07 33499.66 25694.16 272
test_post21.25 36683.86 33099.70 232
Fast-Effi-MVS+97.67 19097.38 20098.57 18498.71 24597.43 18697.23 21799.45 7894.82 28096.13 31596.51 32498.52 3599.91 4596.19 20998.83 28298.37 300
patchmatchnet-post98.77 17984.37 32599.85 105
Anonymous2023121199.27 2599.27 2499.26 8599.29 12298.18 12099.49 899.51 5599.70 899.80 999.68 1496.84 14999.83 13699.21 2399.91 4099.77 16
pmmvs-eth3d98.47 11998.34 11998.86 14599.30 12197.76 16797.16 22799.28 14895.54 26399.42 4899.19 7897.27 12699.63 26697.89 9399.97 1199.20 207
GG-mvs-BLEND94.76 32894.54 36292.13 32199.31 1880.47 36888.73 36291.01 36267.59 36698.16 35982.30 35894.53 35593.98 358
xiu_mvs_v1_base_debi97.86 17498.17 13896.92 28898.98 19393.91 29096.45 26599.17 18397.85 14598.41 20197.14 31698.47 3699.92 3598.02 8799.05 26396.92 340
Anonymous2023120698.21 14798.21 13398.20 22199.51 7495.43 25098.13 12599.32 12596.16 24698.93 13498.82 17196.00 19099.83 13697.32 12299.73 10699.36 166
MTAPA98.88 5498.64 7199.61 999.67 4099.36 998.43 10299.20 16898.83 8598.89 14098.90 14696.98 14399.92 3597.16 12999.70 12299.56 71
MTMP97.93 15191.91 357
gm-plane-assit94.83 36181.97 36388.07 34994.99 34999.60 27591.76 321
test9_res93.28 30199.15 25299.38 157
MVP-Stereo98.08 15697.92 16398.57 18498.96 19696.79 21597.90 15599.18 17796.41 23898.46 19598.95 13895.93 19799.60 27596.51 18998.98 27699.31 184
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 24598.08 13195.96 28799.03 21291.40 32995.85 32297.53 29696.52 16999.76 206
train_agg97.10 23296.45 25599.07 11398.71 24598.08 13195.96 28799.03 21291.64 32495.85 32297.53 29696.47 17299.76 20693.67 29099.16 24999.36 166
gg-mvs-nofinetune92.37 32691.20 33195.85 31295.80 36092.38 31799.31 1881.84 36799.75 591.83 35799.74 868.29 36399.02 34787.15 34797.12 33396.16 350
SCA96.41 26696.66 24595.67 31598.24 29588.35 34395.85 29596.88 32596.11 24797.67 24698.67 19593.10 26399.85 10594.16 27299.22 23998.81 267
Patchmatch-test96.55 26096.34 25897.17 27898.35 28893.06 30498.40 10497.79 30297.33 18998.41 20198.67 19583.68 33199.69 23695.16 24699.31 22598.77 275
test_898.67 25898.01 13895.91 29299.02 21691.64 32495.79 32497.50 29996.47 17299.76 206
MS-PatchMatch97.68 18997.75 17397.45 26798.23 29793.78 29697.29 21398.84 24696.10 24898.64 17298.65 20096.04 18799.36 32496.84 15899.14 25399.20 207
Patchmatch-RL test97.26 22097.02 22197.99 23699.52 7295.53 24596.13 28199.71 1097.47 17299.27 7399.16 8684.30 32799.62 26897.89 9399.77 9098.81 267
cdsmvs_eth3d_5k24.66 33432.88 3370.00 3500.00 3710.00 3720.00 36299.10 1980.00 3670.00 36897.58 29499.21 100.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas8.17 33710.90 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36898.07 640.00 3680.00 3660.00 3660.00 364
agg_prior197.06 23696.40 25699.03 12398.68 25697.99 13995.76 29799.01 21991.73 32395.59 32597.50 29996.49 17199.77 19993.71 28999.14 25399.34 172
agg_prior292.50 31599.16 24999.37 160
agg_prior98.68 25697.99 13999.01 21995.59 32599.77 199
tmp_tt78.77 33378.73 33678.90 34758.45 36874.76 36894.20 34178.26 36939.16 36386.71 36392.82 36180.50 34375.19 36586.16 35092.29 35986.74 360
canonicalmvs98.34 13398.26 12898.58 18198.46 28297.82 16298.96 5699.46 7599.19 5297.46 26595.46 34498.59 3199.46 31398.08 8498.71 28998.46 292
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 5999.34 1399.69 1398.93 7999.65 2299.72 1198.93 1999.95 1599.11 27100.00 199.82 9
alignmvs97.35 21396.88 23098.78 15898.54 27598.09 12797.71 17497.69 30699.20 4897.59 25295.90 33688.12 30299.55 29198.18 7898.96 27798.70 282
nrg03099.40 1899.35 1799.54 2999.58 5199.13 5198.98 5599.48 6799.68 999.46 4399.26 6998.62 2999.73 22199.17 2699.92 3499.76 20
v14419298.54 11198.57 8298.45 20199.21 13695.98 23497.63 18299.36 10697.15 21199.32 6899.18 8095.84 20199.84 12299.50 1099.91 4099.54 83
FIs99.14 3299.09 3499.29 7799.70 3698.28 10999.13 4199.52 5499.48 2499.24 8099.41 5196.79 15599.82 14698.69 5299.88 4999.76 20
v192192098.54 11198.60 7898.38 20799.20 14095.76 24297.56 19199.36 10697.23 20499.38 5499.17 8496.02 18899.84 12299.57 699.90 4499.54 83
UA-Net99.47 1199.40 1499.70 299.49 8499.29 1799.80 399.72 999.82 399.04 11199.81 398.05 6799.96 898.85 4199.99 599.86 6
v119298.60 9998.66 6998.41 20499.27 12495.88 23797.52 19599.36 10697.41 18299.33 6299.20 7796.37 17999.82 14699.57 699.92 3499.55 79
FC-MVSNet-test99.27 2599.25 2599.34 7299.77 2098.37 10599.30 2299.57 3399.61 1999.40 5299.50 3697.12 13499.85 10599.02 3299.94 2199.80 12
v114498.60 9998.66 6998.41 20499.36 11195.90 23697.58 18999.34 11897.51 16899.27 7399.15 9096.34 18199.80 16899.47 1299.93 2599.51 96
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
HFP-MVS98.71 7698.44 10399.51 4599.49 8499.16 4098.52 8899.31 13097.47 17298.58 18398.50 22497.97 7499.85 10596.57 18099.59 16499.53 89
v14898.45 12198.60 7898.00 23599.44 10094.98 26297.44 20499.06 20398.30 11199.32 6898.97 13196.65 16499.62 26898.37 6999.85 5499.39 150
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
AllTest98.44 12298.20 13499.16 9799.50 7798.55 9298.25 11599.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
TestCases99.16 9799.50 7798.55 9299.58 2696.80 22398.88 14499.06 10197.65 9399.57 28594.45 26499.61 16099.37 160
v7n99.53 899.57 899.41 6099.88 798.54 9599.45 999.61 2299.66 1199.68 1999.66 1798.44 3999.95 1599.73 299.96 1499.75 22
region2R98.69 8198.40 10999.54 2999.53 7099.17 3698.52 8899.31 13097.46 17798.44 19798.51 22197.83 8099.88 6796.46 19299.58 17099.58 61
bset_n11_16_dypcd96.99 24496.56 25198.27 21799.00 18895.25 25392.18 35794.05 34998.75 8799.01 11598.38 23788.98 29599.93 2898.77 4799.92 3499.64 39
RRT_MVS97.07 23596.57 25098.58 18195.89 35996.33 22697.36 20898.77 25897.85 14599.08 10199.12 9482.30 33799.96 898.82 4399.90 4499.45 126
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12399.20 3299.65 1899.48 2499.92 399.71 1298.07 6499.96 899.53 9100.00 199.93 1
PS-MVSNAJ97.08 23497.39 19996.16 30998.56 27392.46 31595.24 31598.85 24597.25 19897.49 26395.99 33498.07 6499.90 4996.37 19898.67 29296.12 352
jajsoiax99.58 699.61 799.48 5099.87 1098.61 8799.28 2799.66 1799.09 6599.89 699.68 1499.53 499.97 399.50 1099.99 599.87 4
mvs_tets99.63 599.67 599.49 4899.88 798.61 8799.34 1399.71 1099.27 4399.90 499.74 899.68 299.97 399.55 899.99 599.88 3
#test#98.50 11698.16 14199.51 4599.49 8499.16 4098.03 14099.31 13096.30 24398.58 18398.50 22497.97 7499.85 10595.68 23499.59 16499.53 89
EI-MVSNet-UG-set98.69 8198.71 6198.62 17699.10 16696.37 22597.23 21798.87 23999.20 4899.19 8698.99 12597.30 12399.85 10598.77 4799.79 8299.65 38
EI-MVSNet-Vis-set98.68 8598.70 6498.63 17499.09 16996.40 22497.23 21798.86 24499.20 4899.18 9098.97 13197.29 12599.85 10598.72 5099.78 8699.64 39
Regformer-398.61 9698.61 7698.63 17499.02 18596.53 22297.17 22598.84 24699.13 5599.10 9898.85 16297.24 13099.79 18198.41 6899.70 12299.57 66
Regformer-498.73 7498.68 6698.89 14199.02 18597.22 19797.17 22599.06 20399.21 4599.17 9198.85 16297.45 11599.86 9198.48 6399.70 12299.60 49
Regformer-198.55 10898.44 10398.87 14398.85 22097.29 19196.91 24198.99 22398.97 7498.99 11998.64 20397.26 12999.81 15997.79 9999.57 17499.51 96
Regformer-298.60 9998.46 9999.02 12698.85 22097.71 17296.91 24199.09 19998.98 7399.01 11598.64 20397.37 12099.84 12297.75 10699.57 17499.52 93
HPM-MVS++copyleft98.10 15497.64 18399.48 5099.09 16999.13 5197.52 19598.75 26297.46 17796.90 29197.83 27996.01 18999.84 12295.82 22899.35 21999.46 122
test_prior497.97 14495.86 293
XVS98.72 7598.45 10199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25898.63 20797.50 10999.83 13696.79 16099.53 18699.56 71
v124098.55 10898.62 7398.32 21199.22 13495.58 24397.51 19799.45 7897.16 20999.45 4599.24 7296.12 18599.85 10599.60 499.88 4999.55 79
test_prior397.48 20497.00 22298.95 13298.69 25397.95 14995.74 29999.03 21296.48 23596.11 31697.63 29295.92 19899.59 27994.16 27299.20 24299.30 187
pm-mvs199.44 1399.48 1199.33 7499.80 1798.63 8499.29 2399.63 1999.30 4199.65 2299.60 2599.16 1499.82 14699.07 2999.83 6299.56 71
test_prior295.74 29996.48 23596.11 31697.63 29295.92 19894.16 27299.20 242
X-MVStestdata94.32 30392.59 32199.53 3699.46 9599.21 2698.65 7499.34 11898.62 9497.54 25845.85 36397.50 10999.83 13696.79 16099.53 18699.56 71
test_prior98.95 13298.69 25397.95 14999.03 21299.59 27999.30 187
旧先验295.76 29788.56 34897.52 26099.66 25694.48 262
新几何295.93 290
新几何198.91 13898.94 19997.76 16798.76 25987.58 35196.75 29898.10 26194.80 23299.78 19392.73 31199.00 27399.20 207
旧先验198.82 22897.45 18598.76 25998.34 24295.50 21299.01 27299.23 202
无先验95.74 29998.74 26489.38 34399.73 22192.38 31699.22 206
原ACMM295.53 306
原ACMM198.35 20998.90 20996.25 22998.83 25192.48 31696.07 31998.10 26195.39 21699.71 23092.61 31498.99 27499.08 226
test22298.92 20596.93 21295.54 30598.78 25785.72 35496.86 29498.11 26094.43 23999.10 26199.23 202
testdata299.79 18192.80 309
segment_acmp97.02 140
testdata98.09 22698.93 20195.40 25198.80 25490.08 34097.45 26698.37 23995.26 21899.70 23293.58 29398.95 27899.17 218
testdata195.44 31196.32 241
v899.01 3799.16 3098.57 18499.47 9496.31 22898.90 5999.47 7399.03 6899.52 3599.57 2796.93 14599.81 15999.60 499.98 999.60 49
131495.74 28195.60 27596.17 30797.53 32992.75 31298.07 13398.31 28691.22 33194.25 34496.68 32295.53 20999.03 34691.64 32497.18 33296.74 344
112196.73 25396.00 26498.91 13898.95 19897.76 16798.07 13398.73 26587.65 35096.54 30498.13 25694.52 23899.73 22192.38 31699.02 27099.24 201
LFMVS97.20 22696.72 23998.64 17198.72 24296.95 21198.93 5894.14 34899.74 798.78 15899.01 12284.45 32499.73 22197.44 11699.27 23299.25 198
VDD-MVS98.56 10498.39 11299.07 11399.13 16198.07 13398.59 8197.01 32099.59 2099.11 9599.27 6794.82 22999.79 18198.34 7199.63 15099.34 172
VDDNet98.21 14797.95 16099.01 12799.58 5197.74 17099.01 5097.29 31699.67 1098.97 12499.50 3690.45 28599.80 16897.88 9699.20 24299.48 112
v1098.97 4499.11 3398.55 18999.44 10096.21 23098.90 5999.55 4498.73 8899.48 4099.60 2596.63 16599.83 13699.70 399.99 599.61 48
VPNet98.87 5598.83 4899.01 12799.70 3697.62 17898.43 10299.35 11299.47 2699.28 7199.05 10896.72 16199.82 14698.09 8399.36 21799.59 55
MVS93.19 32092.09 32496.50 30096.91 34394.03 28498.07 13398.06 29768.01 36194.56 34396.48 32695.96 19699.30 33283.84 35396.89 33796.17 349
v2v48298.56 10498.62 7398.37 20899.42 10595.81 24097.58 18999.16 18697.90 14199.28 7199.01 12295.98 19499.79 18199.33 1599.90 4499.51 96
V4298.78 6698.78 5398.76 16199.44 10097.04 20798.27 11399.19 17397.87 14399.25 7999.16 8696.84 14999.78 19399.21 2399.84 5699.46 122
SD-MVS98.40 12798.68 6697.54 26298.96 19697.99 13997.88 15699.36 10698.20 12399.63 2599.04 11198.76 2395.33 36396.56 18399.74 10399.31 184
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 27895.32 28697.49 26598.60 26794.15 28193.83 34797.93 30095.49 26696.68 29997.42 30583.21 33299.30 33296.22 20798.55 29899.01 237
MSLP-MVS++98.02 16098.14 14597.64 25398.58 27095.19 25797.48 19999.23 16497.47 17297.90 23198.62 20997.04 13798.81 35497.55 11099.41 20998.94 251
APDe-MVS98.99 3998.79 5299.60 1399.21 13699.15 4598.87 6199.48 6797.57 16399.35 5999.24 7297.83 8099.89 5897.88 9699.70 12299.75 22
APD-MVS_3200maxsize98.84 5898.61 7699.53 3699.19 14399.27 2098.49 9499.33 12398.64 9099.03 11498.98 12997.89 7799.85 10596.54 18799.42 20899.46 122
ADS-MVSNet295.43 28894.98 29496.76 29798.14 30191.74 32397.92 15297.76 30390.23 33696.51 30798.91 14385.61 31599.85 10592.88 30596.90 33598.69 283
EI-MVSNet98.40 12798.51 8898.04 23399.10 16694.73 26797.20 22198.87 23998.97 7499.06 10499.02 11596.00 19099.80 16898.58 5599.82 6599.60 49
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
CVMVSNet96.25 27097.21 21293.38 34199.10 16680.56 36597.20 22198.19 29296.94 21899.00 11899.02 11589.50 29299.80 16896.36 20099.59 16499.78 14
pmmvs497.58 19797.28 20798.51 19598.84 22396.93 21295.40 31298.52 27793.60 30398.61 17798.65 20095.10 22299.60 27596.97 14499.79 8298.99 241
EU-MVSNet97.66 19198.50 9095.13 32599.63 4885.84 35298.35 10998.21 28998.23 11999.54 3099.46 4395.02 22399.68 24598.24 7499.87 5299.87 4
VNet98.42 12498.30 12498.79 15598.79 23597.29 19198.23 11698.66 26999.31 3998.85 14898.80 17494.80 23299.78 19398.13 7999.13 25699.31 184
test-LLR93.90 31293.85 30694.04 33396.53 34984.62 35794.05 34492.39 35596.17 24494.12 34695.07 34682.30 33799.67 24895.87 22498.18 30697.82 319
TESTMET0.1,192.19 32991.77 32993.46 33996.48 35182.80 36294.05 34491.52 35894.45 28894.00 34994.88 35266.65 36899.56 28895.78 22998.11 31198.02 310
test-mter92.33 32791.76 33094.04 33396.53 34984.62 35794.05 34492.39 35594.00 29994.12 34695.07 34665.63 37099.67 24895.87 22498.18 30697.82 319
VPA-MVSNet99.30 2499.30 2399.28 7999.49 8498.36 10699.00 5299.45 7899.63 1499.52 3599.44 4898.25 5099.88 6799.09 2899.84 5699.62 44
ACMMPR98.70 7998.42 10799.54 2999.52 7299.14 4898.52 8899.31 13097.47 17298.56 18798.54 21897.75 8799.88 6796.57 18099.59 16499.58 61
testgi98.32 13498.39 11298.13 22599.57 5595.54 24497.78 16599.49 6597.37 18699.19 8697.65 29098.96 1799.49 30696.50 19098.99 27499.34 172
test20.0398.78 6698.77 5598.78 15899.46 9597.20 20097.78 16599.24 16299.04 6799.41 4998.90 14697.65 9399.76 20697.70 10799.79 8299.39 150
thres600view794.45 30193.83 30796.29 30399.06 17791.53 32597.99 14694.24 34698.34 10797.44 26795.01 34879.84 34599.67 24884.33 35298.23 30397.66 329
ADS-MVSNet95.24 29194.93 29696.18 30698.14 30190.10 33797.92 15297.32 31590.23 33696.51 30798.91 14385.61 31599.74 21792.88 30596.90 33598.69 283
MP-MVScopyleft98.46 12098.09 14899.54 2999.57 5599.22 2598.50 9399.19 17397.61 16097.58 25398.66 19897.40 11899.88 6794.72 25799.60 16299.54 83
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 33520.53 3386.87 34912.05 3694.20 37193.62 3506.73 3704.62 36610.41 36624.33 3648.28 3723.56 3679.69 36515.07 36412.86 363
thres40094.14 30893.44 31296.24 30598.93 20191.44 32797.60 18694.29 34497.94 13797.10 27794.31 35679.67 34799.62 26883.05 35498.08 31397.66 329
test12317.04 33620.11 3397.82 34810.25 3704.91 37094.80 3254.47 3714.93 36510.00 36724.28 3659.69 3713.64 36610.14 36412.43 36514.92 362
thres20093.72 31593.14 31795.46 32298.66 26391.29 33196.61 25894.63 34297.39 18496.83 29593.71 35979.88 34499.56 28882.40 35798.13 31095.54 356
test0.0.03 194.51 30093.69 30996.99 28496.05 35693.61 30094.97 32293.49 35096.17 24497.57 25594.88 35282.30 33799.01 34993.60 29294.17 35798.37 300
pmmvs395.03 29594.40 30196.93 28797.70 32392.53 31495.08 31997.71 30588.57 34797.71 24398.08 26479.39 34999.82 14696.19 20999.11 26098.43 296
EMVS93.83 31394.02 30593.23 34296.83 34684.96 35589.77 36096.32 33197.92 13997.43 26896.36 33186.17 31098.93 35187.68 34697.73 32095.81 354
E-PMN94.17 30794.37 30293.58 33896.86 34485.71 35490.11 35997.07 31998.17 12697.82 23897.19 31284.62 32398.94 35089.77 34097.68 32196.09 353
PGM-MVS98.66 8898.37 11599.55 2699.53 7099.18 3598.23 11699.49 6597.01 21698.69 16798.88 15598.00 7099.89 5895.87 22499.59 16499.58 61
LCM-MVSNet-Re98.64 9198.48 9599.11 10498.85 22098.51 9798.49 9499.83 398.37 10599.69 1799.46 4398.21 5699.92 3594.13 27799.30 22898.91 256
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 7
MCST-MVS98.00 16297.63 18499.10 10699.24 12998.17 12296.89 24398.73 26595.66 26197.92 22997.70 28797.17 13399.66 25696.18 21199.23 23899.47 120
mvs_anonymous97.83 18298.16 14196.87 29198.18 29991.89 32297.31 21298.90 23497.37 18698.83 15199.46 4396.28 18299.79 18198.90 3798.16 30898.95 247
MVS_Test98.18 15098.36 11697.67 24998.48 28094.73 26798.18 12199.02 21697.69 15398.04 22699.11 9697.22 13299.56 28898.57 5798.90 28098.71 280
MDA-MVSNet-bldmvs97.94 16697.91 16498.06 23199.44 10094.96 26396.63 25799.15 19298.35 10698.83 15199.11 9694.31 24399.85 10596.60 17798.72 28799.37 160
CDPH-MVS97.26 22096.66 24599.07 11399.00 18898.15 12396.03 28399.01 21991.21 33297.79 23997.85 27896.89 14799.69 23692.75 31099.38 21599.39 150
test1298.93 13598.58 27097.83 15998.66 26996.53 30595.51 21199.69 23699.13 25699.27 194
casdiffmvs98.95 4799.00 3998.81 15199.38 10897.33 18997.82 16399.57 3399.17 5399.35 5999.17 8498.35 4699.69 23698.46 6499.73 10699.41 141
diffmvs98.22 14698.24 13098.17 22399.00 18895.44 24996.38 27099.58 2697.79 14998.53 19298.50 22496.76 15899.74 21797.95 9299.64 14799.34 172
baseline293.73 31492.83 32096.42 30197.70 32391.28 33296.84 24689.77 36293.96 30092.44 35595.93 33579.14 35099.77 19992.94 30396.76 33998.21 302
baseline195.96 27695.44 28197.52 26498.51 27893.99 28798.39 10596.09 33498.21 12098.40 20597.76 28386.88 30499.63 26695.42 24389.27 36198.95 247
YYNet197.60 19597.67 17897.39 27199.04 18093.04 30795.27 31398.38 28497.25 19898.92 13598.95 13895.48 21499.73 22196.99 14198.74 28599.41 141
PMMVS298.07 15798.08 15198.04 23399.41 10694.59 27394.59 33499.40 9497.50 16998.82 15598.83 16896.83 15199.84 12297.50 11599.81 6999.71 26
MDA-MVSNet_test_wron97.60 19597.66 18197.41 27099.04 18093.09 30395.27 31398.42 28197.26 19798.88 14498.95 13895.43 21599.73 22197.02 13898.72 28799.41 141
tpmvs95.02 29695.25 28794.33 33196.39 35485.87 35198.08 13296.83 32695.46 26795.51 33498.69 19185.91 31399.53 29694.16 27296.23 34497.58 332
PM-MVS98.82 5998.72 5999.12 10299.64 4698.54 9597.98 14899.68 1497.62 15899.34 6199.18 8097.54 10399.77 19997.79 9999.74 10399.04 233
HQP_MVS97.99 16597.67 17898.93 13599.19 14397.65 17597.77 16899.27 15198.20 12397.79 23997.98 26994.90 22599.70 23294.42 26699.51 19299.45 126
plane_prior799.19 14397.87 155
plane_prior698.99 19297.70 17394.90 225
plane_prior599.27 15199.70 23294.42 26699.51 19299.45 126
plane_prior497.98 269
plane_prior397.78 16697.41 18297.79 239
plane_prior297.77 16898.20 123
plane_prior199.05 179
plane_prior97.65 17597.07 23096.72 22799.36 217
PS-CasMVS99.40 1899.33 2099.62 699.71 3099.10 5699.29 2399.53 5199.53 2399.46 4399.41 5198.23 5299.95 1598.89 3999.95 1699.81 11
UniMVSNet_NR-MVSNet98.86 5798.68 6699.40 6299.17 15298.74 7697.68 17799.40 9499.14 5499.06 10498.59 21496.71 16299.93 2898.57 5799.77 9099.53 89
PEN-MVS99.41 1799.34 1999.62 699.73 2499.14 4899.29 2399.54 4899.62 1799.56 2899.42 4998.16 6099.96 898.78 4499.93 2599.77 16
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 1798.58 9099.27 2999.57 3399.39 3299.75 1299.62 2199.17 1299.83 13699.06 3099.62 15399.66 34
DTE-MVSNet99.43 1599.35 1799.66 499.71 3099.30 1699.31 1899.51 5599.64 1299.56 2899.46 4398.23 5299.97 398.78 4499.93 2599.72 25
DU-MVS98.82 5998.63 7299.39 6399.16 15498.74 7697.54 19399.25 15798.84 8499.06 10498.76 18196.76 15899.93 2898.57 5799.77 9099.50 100
UniMVSNet (Re)98.87 5598.71 6199.35 6999.24 12998.73 7997.73 17399.38 9898.93 7999.12 9398.73 18496.77 15699.86 9198.63 5499.80 7799.46 122
CP-MVSNet99.21 2999.09 3499.56 2499.65 4398.96 6599.13 4199.34 11899.42 3099.33 6299.26 6997.01 14199.94 2398.74 4999.93 2599.79 13
WR-MVS_H99.33 2399.22 2799.65 599.71 3099.24 2399.32 1599.55 4499.46 2799.50 3999.34 6097.30 12399.93 2898.90 3799.93 2599.77 16
WR-MVS98.40 12798.19 13699.03 12399.00 18897.65 17596.85 24498.94 22698.57 10098.89 14098.50 22495.60 20799.85 10597.54 11299.85 5499.59 55
NR-MVSNet98.95 4798.82 4999.36 6499.16 15498.72 8199.22 3199.20 16899.10 6299.72 1398.76 18196.38 17899.86 9198.00 9099.82 6599.50 100
Baseline_NR-MVSNet98.98 4398.86 4699.36 6499.82 1698.55 9297.47 20199.57 3399.37 3499.21 8499.61 2396.76 15899.83 13698.06 8599.83 6299.71 26
TranMVSNet+NR-MVSNet99.17 3099.07 3699.46 5599.37 11098.87 6798.39 10599.42 9099.42 3099.36 5899.06 10198.38 4299.95 1598.34 7199.90 4499.57 66
TSAR-MVS + GP.98.18 15097.98 15898.77 16098.71 24597.88 15496.32 27398.66 26996.33 24099.23 8398.51 22197.48 11499.40 31997.16 12999.46 20499.02 236
abl_698.99 3998.78 5399.61 999.45 9899.46 398.60 7999.50 5798.59 9699.24 8099.04 11198.54 3499.89 5896.45 19399.62 15399.50 100
n20.00 372
nn0.00 372
mPP-MVS98.64 9198.34 11999.54 2999.54 6899.17 3698.63 7699.24 16297.47 17298.09 22198.68 19397.62 9799.89 5896.22 20799.62 15399.57 66
door-mid99.57 33
XVG-OURS-SEG-HR98.49 11798.28 12699.14 10099.49 8498.83 7096.54 25999.48 6797.32 19199.11 9598.61 21299.33 899.30 33296.23 20698.38 30099.28 192
DWT-MVSNet_test92.75 32492.05 32594.85 32796.48 35187.21 34897.83 16294.99 33992.22 32092.72 35494.11 35870.75 36199.46 31395.01 24894.33 35697.87 317
MVSFormer98.26 14298.43 10597.77 24498.88 21593.89 29399.39 1199.56 4099.11 5698.16 21498.13 25693.81 25399.97 399.26 1899.57 17499.43 135
jason97.45 20797.35 20397.76 24599.24 12993.93 28995.86 29398.42 28194.24 29298.50 19498.13 25694.82 22999.91 4597.22 12699.73 10699.43 135
jason: jason.
lupinMVS97.06 23696.86 23197.65 25198.88 21593.89 29395.48 30997.97 29993.53 30498.16 21497.58 29493.81 25399.91 4596.77 16399.57 17499.17 218
test_djsdf99.52 999.51 999.53 3699.86 1198.74 7699.39 1199.56 4099.11 5699.70 1599.73 1099.00 1599.97 399.26 1899.98 999.89 2
HPM-MVS_fast99.01 3798.82 4999.57 1899.71 3099.35 1199.00 5299.50 5797.33 18998.94 13398.86 15998.75 2499.82 14697.53 11399.71 11799.56 71
RRT_test8_iter0595.24 29195.13 29195.57 31897.32 33787.02 34997.99 14699.41 9198.06 13199.12 9399.05 10866.85 36799.85 10598.93 3699.47 20399.84 8
K. test v398.00 16297.66 18199.03 12399.79 1997.56 17999.19 3692.47 35499.62 1799.52 3599.66 1789.61 29099.96 899.25 2099.81 6999.56 71
lessismore_v098.97 13099.73 2497.53 18186.71 36499.37 5699.52 3589.93 28899.92 3598.99 3499.72 11399.44 131
SixPastTwentyTwo98.75 7198.62 7399.16 9799.83 1597.96 14899.28 2798.20 29099.37 3499.70 1599.65 1992.65 27299.93 2899.04 3199.84 5699.60 49
OurMVSNet-221017-099.37 2199.31 2299.53 3699.91 398.98 6199.63 699.58 2699.44 2999.78 1099.76 696.39 17699.92 3599.44 1399.92 3499.68 31
HPM-MVScopyleft98.79 6398.53 8599.59 1799.65 4399.29 1799.16 3899.43 8796.74 22698.61 17798.38 23798.62 2999.87 8396.47 19199.67 13999.59 55
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 11398.34 11999.11 10499.50 7798.82 7295.97 28599.50 5797.30 19399.05 10998.98 12999.35 799.32 32995.72 23199.68 13399.18 214
XVG-ACMP-BASELINE98.56 10498.34 11999.22 9199.54 6898.59 8997.71 17499.46 7597.25 19898.98 12198.99 12597.54 10399.84 12295.88 22199.74 10399.23 202
LPG-MVS_test98.71 7698.46 9999.47 5399.57 5598.97 6298.23 11699.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
LGP-MVS_train99.47 5399.57 5598.97 6299.48 6796.60 23199.10 9899.06 10198.71 2699.83 13695.58 24099.78 8699.62 44
baseline98.96 4699.02 3798.76 16199.38 10897.26 19498.49 9499.50 5798.86 8299.19 8699.06 10198.23 5299.69 23698.71 5199.76 9999.33 178
test1198.87 239
door99.41 91
EPNet_dtu94.93 29794.78 29895.38 32393.58 36387.68 34696.78 24895.69 33897.35 18889.14 36198.09 26388.15 30199.49 30694.95 25199.30 22898.98 242
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 20297.14 21798.54 19299.68 3996.09 23396.50 26399.62 2091.58 32698.84 15098.97 13192.36 27499.88 6796.76 16499.95 1699.67 33
EPNet96.14 27295.44 28198.25 21890.76 36695.50 24797.92 15294.65 34198.97 7492.98 35398.85 16289.12 29499.87 8395.99 21799.68 13399.39 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 215
HQP-NCC98.67 25896.29 27496.05 24995.55 329
ACMP_Plane98.67 25896.29 27496.05 24995.55 329
APD-MVScopyleft98.10 15497.67 17899.42 5799.11 16298.93 6697.76 17099.28 14894.97 27698.72 16698.77 17997.04 13799.85 10593.79 28899.54 18299.49 104
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 307
HQP4-MVS95.56 32899.54 29499.32 180
HQP3-MVS99.04 21099.26 235
HQP2-MVS93.84 251
CNVR-MVS98.17 15297.87 16799.07 11398.67 25898.24 11297.01 23298.93 22897.25 19897.62 24998.34 24297.27 12699.57 28596.42 19699.33 22299.39 150
NCCC97.86 17497.47 19699.05 12098.61 26598.07 13396.98 23498.90 23497.63 15797.04 28297.93 27495.99 19399.66 25695.31 24598.82 28399.43 135
114514_t96.50 26395.77 26898.69 16799.48 9297.43 18697.84 16199.55 4481.42 35996.51 30798.58 21595.53 20999.67 24893.41 29899.58 17098.98 242
CP-MVS98.70 7998.42 10799.52 4199.36 11199.12 5398.72 7199.36 10697.54 16798.30 20798.40 23397.86 7999.89 5896.53 18899.72 11399.56 71
DSMNet-mixed97.42 20997.60 18796.87 29199.15 15891.46 32698.54 8699.12 19592.87 31297.58 25399.63 2096.21 18399.90 4995.74 23099.54 18299.27 194
tpm293.09 32192.58 32294.62 32997.56 32786.53 35097.66 17995.79 33786.15 35394.07 34898.23 25175.95 35699.53 29690.91 33596.86 33897.81 321
NP-MVS98.84 22397.39 18896.84 319
EG-PatchMatch MVS98.99 3999.01 3898.94 13499.50 7797.47 18398.04 13999.59 2498.15 12899.40 5299.36 5798.58 3299.76 20698.78 4499.68 13399.59 55
tpm cat193.29 31993.13 31893.75 33697.39 33584.74 35697.39 20597.65 30783.39 35894.16 34598.41 23282.86 33599.39 32191.56 32695.35 35197.14 339
SteuartSystems-ACMMP98.79 6398.54 8499.54 2999.73 2499.16 4098.23 11699.31 13097.92 13998.90 13798.90 14698.00 7099.88 6796.15 21299.72 11399.58 61
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 31193.78 30894.51 33097.53 32985.83 35397.98 14895.96 33589.29 34494.99 34098.63 20778.63 35299.62 26894.54 26096.50 34098.09 308
CR-MVSNet96.28 26995.95 26697.28 27497.71 32194.22 27798.11 12898.92 23192.31 31896.91 28899.37 5485.44 31899.81 15997.39 11997.36 32997.81 321
JIA-IIPM95.52 28695.03 29397.00 28396.85 34594.03 28496.93 23895.82 33699.20 4894.63 34299.71 1283.09 33399.60 27594.42 26694.64 35397.36 337
Patchmtry97.35 21396.97 22498.50 19797.31 33896.47 22398.18 12198.92 23198.95 7898.78 15899.37 5485.44 31899.85 10595.96 21999.83 6299.17 218
PatchT96.65 25796.35 25797.54 26297.40 33495.32 25297.98 14896.64 32899.33 3896.89 29299.42 4984.32 32699.81 15997.69 10997.49 32297.48 335
tpmrst95.07 29495.46 27993.91 33597.11 34184.36 35997.62 18396.96 32194.98 27596.35 31398.80 17485.46 31799.59 27995.60 23896.23 34497.79 324
BH-w/o95.13 29394.89 29795.86 31198.20 29891.31 33095.65 30297.37 31193.64 30296.52 30695.70 33993.04 26699.02 34788.10 34595.82 34897.24 338
tpm94.67 29994.34 30395.66 31697.68 32588.42 34297.88 15694.90 34094.46 28696.03 32198.56 21778.66 35199.79 18195.88 22195.01 35298.78 274
DELS-MVS98.27 14098.20 13498.48 19898.86 21896.70 21995.60 30499.20 16897.73 15198.45 19698.71 18797.50 10999.82 14698.21 7699.59 16498.93 252
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 24996.75 23897.08 28198.74 23993.33 30196.71 25398.26 28796.72 22798.44 19797.37 30895.20 21999.47 31191.89 32097.43 32598.44 295
RPMNet97.02 24096.93 22597.30 27397.71 32194.22 27798.11 12899.30 13999.37 3496.91 28899.34 6086.72 30599.87 8397.53 11397.36 32997.81 321
MVSTER96.86 24896.55 25297.79 24397.91 31394.21 27997.56 19198.87 23997.49 17199.06 10499.05 10880.72 34299.80 16898.44 6599.82 6599.37 160
CPTT-MVS97.84 18097.36 20299.27 8299.31 11898.46 10098.29 11199.27 15194.90 27897.83 23698.37 23994.90 22599.84 12293.85 28799.54 18299.51 96
GBi-Net98.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
PVSNet_Blended_VisFu98.17 15298.15 14398.22 22099.73 2495.15 25897.36 20899.68 1494.45 28898.99 11999.27 6796.87 14899.94 2397.13 13399.91 4099.57 66
PVSNet_BlendedMVS97.55 19897.53 18997.60 25598.92 20593.77 29796.64 25699.43 8794.49 28497.62 24999.18 8096.82 15299.67 24894.73 25599.93 2599.36 166
UnsupCasMVSNet_eth97.89 17097.60 18798.75 16399.31 11897.17 20397.62 18399.35 11298.72 8998.76 16298.68 19392.57 27399.74 21797.76 10595.60 34999.34 172
UnsupCasMVSNet_bld97.30 21796.92 22798.45 20199.28 12396.78 21896.20 27999.27 15195.42 26898.28 20998.30 24693.16 26199.71 23094.99 24997.37 32798.87 260
PVSNet_Blended96.88 24796.68 24297.47 26698.92 20593.77 29794.71 32799.43 8790.98 33497.62 24997.36 30996.82 15299.67 24894.73 25599.56 17998.98 242
FMVSNet596.01 27495.20 28998.41 20497.53 32996.10 23198.74 6899.50 5797.22 20798.03 22799.04 11169.80 36299.88 6797.27 12499.71 11799.25 198
test198.65 8998.47 9799.17 9498.90 20998.24 11299.20 3299.44 8198.59 9698.95 12799.55 2994.14 24699.86 9197.77 10199.69 12899.41 141
new_pmnet96.99 24496.76 23797.67 24998.72 24294.89 26495.95 28998.20 29092.62 31598.55 18998.54 21894.88 22899.52 30093.96 28199.44 20798.59 289
FMVSNet397.50 20097.24 21098.29 21598.08 30595.83 23997.86 15998.91 23397.89 14298.95 12798.95 13887.06 30399.81 15997.77 10199.69 12899.23 202
dp93.47 31793.59 31193.13 34396.64 34881.62 36497.66 17996.42 33092.80 31396.11 31698.64 20378.55 35499.59 27993.31 30092.18 36098.16 305
FMVSNet298.49 11798.40 10998.75 16398.90 20997.14 20698.61 7899.13 19398.59 9699.19 8699.28 6594.14 24699.82 14697.97 9199.80 7799.29 191
FMVSNet199.17 3099.17 2999.17 9499.55 6598.24 11299.20 3299.44 8199.21 4599.43 4799.55 2997.82 8399.86 9198.42 6799.89 4899.41 141
N_pmnet97.63 19497.17 21398.99 12999.27 12497.86 15695.98 28493.41 35195.25 27299.47 4298.90 14695.63 20699.85 10596.91 14799.73 10699.27 194
cascas94.79 29894.33 30496.15 31096.02 35892.36 31892.34 35699.26 15685.34 35595.08 33994.96 35192.96 26798.53 35694.41 26998.59 29697.56 333
BH-RMVSNet96.83 24996.58 24997.58 25798.47 28194.05 28296.67 25597.36 31296.70 22997.87 23397.98 26995.14 22199.44 31690.47 33898.58 29799.25 198
UGNet98.53 11398.45 10198.79 15597.94 31196.96 21099.08 4498.54 27599.10 6296.82 29699.47 4296.55 16899.84 12298.56 6099.94 2199.55 79
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 25696.27 26297.87 23998.81 23194.61 27296.77 24997.92 30194.94 27797.12 27697.74 28491.11 28299.82 14693.89 28498.15 30999.18 214
XXY-MVS99.14 3299.15 3299.10 10699.76 2297.74 17098.85 6499.62 2098.48 10299.37 5699.49 3998.75 2499.86 9198.20 7799.80 7799.71 26
sss97.21 22596.93 22598.06 23198.83 22595.22 25696.75 25198.48 27994.49 28497.27 27397.90 27592.77 27099.80 16896.57 18099.32 22399.16 221
Test_1112_low_res96.99 24496.55 25298.31 21399.35 11595.47 24895.84 29699.53 5191.51 32896.80 29798.48 22991.36 28199.83 13696.58 17899.53 18699.62 44
1112_ss97.29 21996.86 23198.58 18199.34 11796.32 22796.75 25199.58 2693.14 30896.89 29297.48 30192.11 27799.86 9196.91 14799.54 18299.57 66
ab-mvs-re8.12 33810.83 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36897.48 3010.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs98.41 12598.36 11698.59 18099.19 14397.23 19599.32 1598.81 25297.66 15598.62 17599.40 5396.82 15299.80 16895.88 22199.51 19298.75 277
TR-MVS95.55 28595.12 29296.86 29497.54 32893.94 28896.49 26496.53 32994.36 29197.03 28396.61 32394.26 24599.16 34386.91 34896.31 34397.47 336
MDTV_nov1_ep13_2view74.92 36797.69 17690.06 34197.75 24285.78 31493.52 29498.69 283
MDTV_nov1_ep1395.22 28897.06 34283.20 36197.74 17296.16 33294.37 29096.99 28498.83 16883.95 32999.53 29693.90 28397.95 317
MIMVSNet199.38 2099.32 2199.55 2699.86 1199.19 3499.41 1099.59 2499.59 2099.71 1499.57 2797.12 13499.90 4999.21 2399.87 5299.54 83
MIMVSNet96.62 25996.25 26397.71 24899.04 18094.66 27099.16 3896.92 32497.23 20497.87 23399.10 9886.11 31299.65 26191.65 32399.21 24198.82 264
IterMVS-LS98.55 10898.70 6498.09 22699.48 9294.73 26797.22 22099.39 9698.97 7499.38 5499.31 6496.00 19099.93 2898.58 5599.97 1199.60 49
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 18897.35 20398.69 16798.73 24097.02 20996.92 24098.75 26295.89 25698.59 18198.67 19592.08 27899.74 21796.72 16999.81 6999.32 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 90
IterMVS97.73 18698.11 14796.57 29899.24 12990.28 33695.52 30899.21 16698.86 8299.33 6299.33 6293.11 26299.94 2398.49 6299.94 2199.48 112
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 21596.92 22798.57 18499.09 16997.99 13996.79 24799.35 11293.18 30797.71 24398.07 26595.00 22499.31 33093.97 28099.13 25698.42 297
MVS_111021_LR98.30 13698.12 14698.83 14899.16 15498.03 13796.09 28299.30 13997.58 16298.10 22098.24 24998.25 5099.34 32696.69 17299.65 14599.12 223
DP-MVS98.93 4998.81 5199.28 7999.21 13698.45 10198.46 9999.33 12399.63 1499.48 4099.15 9097.23 13199.75 21397.17 12899.66 14499.63 43
ACMMP++99.68 133
HQP-MVS97.00 24396.49 25498.55 18998.67 25896.79 21596.29 27499.04 21096.05 24995.55 32996.84 31993.84 25199.54 29492.82 30799.26 23599.32 180
QAPM97.31 21696.81 23598.82 14998.80 23397.49 18299.06 4899.19 17390.22 33897.69 24599.16 8696.91 14699.90 4990.89 33699.41 20999.07 227
Vis-MVSNetpermissive99.34 2299.36 1699.27 8299.73 2498.26 11099.17 3799.78 499.11 5699.27 7399.48 4198.82 2199.95 1598.94 3599.93 2599.59 55
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 30395.62 27490.42 34598.46 28275.36 36696.29 27489.13 36395.25 27295.38 33599.75 792.88 26899.19 34194.07 27999.39 21296.72 345
IS-MVSNet98.19 14997.90 16599.08 11099.57 5597.97 14499.31 1898.32 28599.01 7098.98 12199.03 11491.59 28099.79 18195.49 24299.80 7799.48 112
HyFIR lowres test97.19 22796.60 24898.96 13199.62 5097.28 19395.17 31699.50 5794.21 29399.01 11598.32 24586.61 30699.99 297.10 13599.84 5699.60 49
EPMVS93.72 31593.27 31495.09 32696.04 35787.76 34598.13 12585.01 36594.69 28296.92 28698.64 20378.47 35599.31 33095.04 24796.46 34198.20 303
PAPM_NR96.82 25196.32 25998.30 21499.07 17396.69 22097.48 19998.76 25995.81 25996.61 30396.47 32794.12 24999.17 34290.82 33797.78 31999.06 228
TAMVS98.24 14598.05 15398.80 15399.07 17397.18 20297.88 15698.81 25296.66 23099.17 9199.21 7594.81 23199.77 19996.96 14599.88 4999.44 131
PAPR95.29 28994.47 29997.75 24697.50 33395.14 25994.89 32498.71 26791.39 33095.35 33695.48 34394.57 23799.14 34584.95 35197.37 32798.97 246
RPSCF98.62 9598.36 11699.42 5799.65 4399.42 498.55 8599.57 3397.72 15298.90 13799.26 6996.12 18599.52 30095.72 23199.71 11799.32 180
Vis-MVSNet (Re-imp)97.46 20597.16 21498.34 21099.55 6596.10 23198.94 5798.44 28098.32 11098.16 21498.62 20988.76 29699.73 22193.88 28599.79 8299.18 214
test_040298.76 6998.71 6198.93 13599.56 6298.14 12598.45 10199.34 11899.28 4298.95 12798.91 14398.34 4799.79 18195.63 23799.91 4098.86 261
MVS_111021_HR98.25 14498.08 15198.75 16399.09 16997.46 18495.97 28599.27 15197.60 16197.99 22898.25 24898.15 6299.38 32396.87 15599.57 17499.42 138
CSCG98.68 8598.50 9099.20 9299.45 9898.63 8498.56 8499.57 3397.87 14398.85 14898.04 26697.66 9299.84 12296.72 16999.81 6999.13 222
PatchMatch-RL97.24 22396.78 23698.61 17899.03 18397.83 15996.36 27199.06 20393.49 30697.36 27297.78 28195.75 20399.49 30693.44 29798.77 28498.52 290
API-MVS97.04 23996.91 22997.42 26997.88 31498.23 11698.18 12198.50 27897.57 16397.39 27096.75 32196.77 15699.15 34490.16 33999.02 27094.88 357
Test By Simon96.52 169
TDRefinement99.42 1699.38 1599.55 2699.76 2299.33 1599.68 599.71 1099.38 3399.53 3399.61 2398.64 2899.80 16898.24 7499.84 5699.52 93
USDC97.41 21097.40 19897.44 26898.94 19993.67 29995.17 31699.53 5194.03 29898.97 12499.10 9895.29 21799.34 32695.84 22799.73 10699.30 187
EPP-MVSNet98.30 13698.04 15499.07 11399.56 6297.83 15999.29 2398.07 29699.03 6898.59 18199.13 9392.16 27699.90 4996.87 15599.68 13399.49 104
PMMVS96.51 26195.98 26598.09 22697.53 32995.84 23894.92 32398.84 24691.58 32696.05 32095.58 34095.68 20599.66 25695.59 23998.09 31298.76 276
PAPM91.88 33090.34 33396.51 29998.06 30692.56 31392.44 35597.17 31786.35 35290.38 35996.01 33386.61 30699.21 34070.65 36395.43 35097.75 325
ACMMPcopyleft98.75 7198.50 9099.52 4199.56 6299.16 4098.87 6199.37 10297.16 20998.82 15599.01 12297.71 8999.87 8396.29 20499.69 12899.54 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 22996.71 24098.55 18998.56 27398.05 13696.33 27298.93 22896.91 22097.06 28197.39 30694.38 24299.45 31591.66 32299.18 24898.14 306
PatchmatchNetpermissive95.58 28495.67 27395.30 32497.34 33687.32 34797.65 18196.65 32795.30 27197.07 28098.69 19184.77 32199.75 21394.97 25098.64 29398.83 263
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 13997.95 16099.34 7298.44 28499.16 4098.12 12799.38 9896.01 25298.06 22398.43 23197.80 8499.67 24895.69 23399.58 17099.20 207
F-COLMAP97.30 21796.68 24299.14 10099.19 14398.39 10397.27 21699.30 13992.93 31096.62 30298.00 26795.73 20499.68 24592.62 31398.46 29999.35 170
ANet_high99.57 799.67 599.28 7999.89 698.09 12799.14 4099.93 199.82 399.93 299.81 399.17 1299.94 2399.31 16100.00 199.82 9
wuyk23d96.06 27397.62 18591.38 34498.65 26498.57 9198.85 6496.95 32296.86 22299.90 499.16 8699.18 1198.40 35789.23 34299.77 9077.18 361
OMC-MVS97.88 17297.49 19299.04 12298.89 21498.63 8496.94 23699.25 15795.02 27498.53 19298.51 22197.27 12699.47 31193.50 29699.51 19299.01 237
MG-MVS96.77 25296.61 24797.26 27598.31 29193.06 30495.93 29098.12 29596.45 23797.92 22998.73 18493.77 25599.39 32191.19 33299.04 26699.33 178
AdaColmapbinary97.14 23196.71 24098.46 20098.34 28997.80 16596.95 23598.93 22895.58 26296.92 28697.66 28995.87 20099.53 29690.97 33399.14 25398.04 309
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ITE_SJBPF98.87 14399.22 13498.48 9999.35 11297.50 16998.28 20998.60 21397.64 9699.35 32593.86 28699.27 23298.79 273
DeepMVS_CXcopyleft93.44 34098.24 29594.21 27994.34 34364.28 36291.34 35894.87 35489.45 29392.77 36477.54 36293.14 35893.35 359
TinyColmap97.89 17097.98 15897.60 25598.86 21894.35 27696.21 27899.44 8197.45 17999.06 10498.88 15597.99 7399.28 33594.38 27099.58 17099.18 214
MAR-MVS96.47 26495.70 27198.79 15597.92 31299.12 5398.28 11298.60 27392.16 32195.54 33296.17 33294.77 23499.52 30089.62 34198.23 30397.72 327
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 16897.69 17798.52 19399.17 15297.66 17497.19 22499.47 7396.31 24297.85 23598.20 25396.71 16299.52 30094.62 25899.72 11398.38 298
MSDG97.71 18797.52 19098.28 21698.91 20896.82 21494.42 33799.37 10297.65 15698.37 20698.29 24797.40 11899.33 32894.09 27899.22 23998.68 286
LS3D98.63 9398.38 11499.36 6497.25 33999.38 599.12 4399.32 12599.21 4598.44 19798.88 15597.31 12299.80 16896.58 17899.34 22198.92 253
CLD-MVS97.49 20297.16 21498.48 19899.07 17397.03 20894.71 32799.21 16694.46 28698.06 22397.16 31497.57 10199.48 30994.46 26399.78 8698.95 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 31892.23 32397.08 28199.25 12897.86 15695.61 30397.16 31892.90 31193.76 35198.65 20075.94 35795.66 36179.30 36197.49 32297.73 326
Gipumacopyleft99.03 3699.16 3098.64 17199.94 298.51 9799.32 1599.75 899.58 2298.60 17999.62 2198.22 5599.51 30497.70 10799.73 10697.89 314
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015