This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17799.30 4199.97 1999.77 34
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 8598.73 8499.05 12698.76 26597.81 17099.25 3999.30 17298.57 12098.55 21899.33 8897.95 9999.90 6397.16 16899.67 17499.44 153
3Dnovator+97.89 398.69 10598.51 11799.24 9498.81 26098.40 10699.02 6499.19 20798.99 9198.07 25599.28 9597.11 15999.84 13596.84 20099.32 25499.47 143
DeepC-MVS97.60 498.97 6598.93 6699.10 11399.35 15097.98 15098.01 17299.46 10697.56 19599.54 5599.50 5898.97 2399.84 13598.06 11799.92 5499.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9698.39 32498.97 6695.03 36499.18 21196.88 25399.33 9598.78 21398.16 8499.28 37396.74 20899.62 18899.44 153
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17298.61 29597.23 20497.76 20599.09 23097.31 22298.75 19298.66 23497.56 12799.64 28796.10 25799.55 21499.39 173
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22598.32 32797.16 21298.86 8199.37 13689.48 38896.29 35399.15 12596.56 19099.90 6392.90 34499.20 27497.89 360
ACMH96.65 799.25 3399.24 3999.26 8999.72 4398.38 10899.07 6099.55 7298.30 13399.65 4599.45 6999.22 1599.76 22298.44 9499.77 12499.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 5699.00 6299.33 7799.71 4698.83 7698.60 10299.58 5499.11 7299.53 5999.18 11598.81 3299.67 26896.71 21399.77 12499.50 122
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 5999.58 7699.10 6098.74 8699.56 6899.09 8299.33 9599.19 11298.40 6399.72 24795.98 26099.76 13599.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 28695.95 29698.65 18098.93 23298.09 13496.93 27799.28 18383.58 40198.13 25097.78 31396.13 20799.40 35493.52 33399.29 26198.45 328
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7298.73 8499.48 5099.55 9299.14 5298.07 16199.37 13697.62 18599.04 14198.96 17498.84 3099.79 19997.43 15599.65 18099.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34894.79 29098.81 8596.94 35392.28 36795.17 37598.57 24989.90 32599.75 23091.20 37297.33 37498.10 351
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26398.41 32397.15 21397.37 24898.62 30083.86 40098.65 20198.37 27194.29 27499.68 26588.41 38698.62 33096.60 391
ACMP95.32 1598.41 14898.09 17799.36 6399.51 10498.79 7997.68 21399.38 13195.76 29998.81 18598.82 20798.36 6599.82 16294.75 29599.77 12499.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30399.06 23390.94 38195.59 36497.38 33894.41 26999.59 30490.93 37698.04 35699.05 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25488.57 38692.50 39897.72 33192.69 36296.49 35096.44 35993.72 28799.43 35093.61 33099.28 26298.71 305
PCF-MVS92.86 1894.36 33493.00 35198.42 21798.70 27897.56 18693.16 39699.11 22779.59 40597.55 29397.43 33592.19 30799.73 24079.85 40599.45 23797.97 359
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38491.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7393.16 34194.63 39997.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 20597.94 19397.65 27999.71 4697.94 15698.52 11198.68 29598.99 9197.52 29699.35 8297.41 14198.18 40091.59 36599.67 17496.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35984.34 40690.24 40297.42 33790.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 362
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25491.64 36192.71 39783.52 41195.92 29586.46 40995.46 37995.20 24795.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27099.12 22588.90 39197.83 27498.86 19889.51 32798.90 39291.92 35899.51 22598.92 275
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
MVSMamba_pp98.01 19397.90 19798.32 22597.95 34896.59 23597.57 23099.38 13196.07 28797.99 26199.01 16095.57 23599.80 18497.76 14099.82 9498.57 320
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18598.96 7199.48 9699.18 6997.40 30695.50 37698.66 4399.50 33498.18 10898.71 32098.44 330
testing9193.32 35292.27 35596.47 33797.54 37091.25 37096.17 32096.76 35797.18 23893.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 322
testing1193.08 35692.02 36096.26 34397.56 36890.83 37796.32 30995.70 37396.47 27392.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 339
testing9993.04 35791.98 36396.23 34597.53 37290.70 37996.35 30795.94 37096.87 25493.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 335
UWE-MVS92.38 36491.76 36794.21 37597.16 38584.65 40295.42 35388.45 40695.96 29396.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 342
ETVMVS92.60 36191.08 37097.18 30997.70 36393.65 33296.54 29595.70 37396.51 26994.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 335
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16798.96 7199.46 10699.19 6797.46 30195.46 37998.59 5099.46 34598.08 11598.71 32098.46 325
testing22291.96 36990.37 37396.72 33397.47 37892.59 34796.11 32294.76 37996.83 25692.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 358
WB-MVSnew95.73 31395.57 30796.23 34596.70 39590.70 37996.07 32493.86 38995.60 30397.04 32095.45 38296.00 21499.55 31891.04 37498.31 33898.43 332
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14199.65 6497.05 21697.80 19899.76 2898.70 11099.78 2699.11 13298.79 3499.95 2299.85 599.96 2499.83 21
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13199.64 6997.28 20197.82 19599.76 2898.73 10799.82 2199.09 13898.81 3299.95 2299.86 499.96 2499.83 21
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 15999.75 3496.59 23597.97 17999.86 1398.22 14199.88 1799.71 1798.59 5099.84 13599.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4696.10 24897.87 19199.85 1598.56 12299.90 1299.68 2098.69 4199.85 11899.72 2199.98 1299.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16599.55 9296.59 23597.79 19999.82 2298.21 14299.81 2399.53 5398.46 6099.84 13599.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9296.09 25197.74 20799.81 2398.55 12399.85 1999.55 4798.60 4999.84 13599.69 2499.98 1299.89 11
MM98.22 17497.99 18898.91 14698.66 29196.97 22097.89 18794.44 38299.54 2798.95 15599.14 12893.50 28899.92 4999.80 1299.96 2499.85 18
WAC-MVS90.90 37591.37 369
Syy-MVS96.04 30395.56 30897.49 29597.10 38794.48 30196.18 31896.58 36095.65 30194.77 37992.29 40591.27 31699.36 35998.17 11098.05 35498.63 315
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2498.11 13197.77 20299.90 999.33 4999.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 15999.95 199.45 3599.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38790.90 37596.18 31896.58 36095.65 30194.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 315
testing393.51 34992.09 35897.75 27098.60 29794.40 30397.32 25295.26 37797.56 19596.79 33795.50 37653.57 41499.77 21695.26 28698.97 30499.08 246
SSC-MVS98.71 9898.74 8298.62 18699.72 4396.08 25398.74 8698.64 29999.74 699.67 4199.24 10494.57 26699.95 2299.11 5199.24 26899.82 24
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6998.10 13397.68 21399.84 1899.29 5499.92 899.57 4199.60 599.96 1199.74 1899.98 1299.89 11
WB-MVS98.52 13898.55 11298.43 21699.65 6495.59 26498.52 11198.77 28699.65 1499.52 6199.00 16494.34 27299.93 3998.65 8298.83 31299.76 38
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6396.97 22098.00 17399.85 1599.24 5899.92 899.50 5899.39 1199.95 2299.89 399.98 1298.71 305
dmvs_re95.98 30695.39 31597.74 27298.86 24897.45 19298.37 13395.69 37597.95 16196.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 350
SDMVSNet99.23 3899.32 2898.96 13899.68 5797.35 19798.84 8499.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12499.92 5499.57 90
dmvs_testset92.94 35892.21 35795.13 36798.59 30090.99 37497.65 21992.09 39796.95 24994.00 39093.55 39892.34 30696.97 40572.20 40892.52 40397.43 380
sd_testset99.28 2999.31 3099.19 10099.68 5798.06 14399.41 1299.30 17299.69 999.63 4899.68 2099.25 1499.96 1197.25 16499.92 5499.57 90
test_fmvsm_n_192099.33 2699.45 1898.99 13499.57 8097.73 17797.93 18099.83 2099.22 5999.93 699.30 9399.42 1099.96 1199.85 599.99 599.29 210
test_cas_vis1_n_192098.33 16098.68 9497.27 30699.69 5592.29 35598.03 16799.85 1597.62 18599.96 499.62 3393.98 28199.74 23599.52 3199.86 7899.79 29
test_vis1_n_192098.40 15098.92 6796.81 32999.74 3690.76 37898.15 15199.91 798.33 13099.89 1599.55 4795.07 25199.88 8299.76 1699.93 4399.79 29
test_vis1_n98.31 16398.50 11997.73 27499.76 3094.17 31098.68 9599.91 796.31 27999.79 2599.57 4192.85 30099.42 35299.79 1399.84 8399.60 73
test_fmvs1_n98.09 18698.28 15497.52 29299.68 5793.47 33498.63 9899.93 495.41 31299.68 3999.64 3191.88 31299.48 34099.82 899.87 7599.62 66
mvsany_test197.60 22697.54 22497.77 26697.72 35995.35 27595.36 35597.13 34694.13 34199.71 3399.33 8897.93 10099.30 36997.60 14598.94 30798.67 313
APD_test198.83 8298.66 9799.34 7299.78 2499.47 698.42 12999.45 11098.28 13898.98 14899.19 11297.76 11099.58 31096.57 22299.55 21498.97 266
test_vis1_rt97.75 21697.72 21197.83 26198.81 26096.35 24397.30 25499.69 3694.61 32897.87 26998.05 29896.26 20498.32 39998.74 7598.18 34398.82 287
test_vis3_rt99.14 4699.17 4399.07 11999.78 2498.38 10898.92 7699.94 297.80 17399.91 1199.67 2597.15 15698.91 39199.76 1699.56 21199.92 9
test_fmvs298.70 10298.97 6597.89 25899.54 9794.05 31298.55 10799.92 696.78 25999.72 3199.78 896.60 18999.67 26899.91 299.90 6799.94 7
test_fmvs197.72 21897.94 19397.07 31698.66 29192.39 35297.68 21399.81 2395.20 31799.54 5599.44 7091.56 31499.41 35399.78 1599.77 12499.40 172
test_fmvs399.12 5199.41 1998.25 23499.76 3095.07 28699.05 6399.94 297.78 17699.82 2199.84 298.56 5499.71 24899.96 199.96 2499.97 3
mvsany_test398.87 7798.92 6798.74 17699.38 13996.94 22498.58 10499.10 22896.49 27199.96 499.81 598.18 8099.45 34798.97 6299.79 11499.83 21
testf199.25 3399.16 4599.51 4299.89 699.63 398.71 9299.69 3698.90 9999.43 7599.35 8298.86 2899.67 26897.81 13399.81 9999.24 220
APD_test299.25 3399.16 4599.51 4299.89 699.63 398.71 9299.69 3698.90 9999.43 7599.35 8298.86 2899.67 26897.81 13399.81 9999.24 220
test_f98.67 11398.87 7098.05 25199.72 4395.59 26498.51 11699.81 2396.30 28199.78 2699.82 496.14 20698.63 39699.82 899.93 4399.95 6
FE-MVS95.66 31594.95 32797.77 26698.53 30995.28 27799.40 1596.09 36793.11 35697.96 26399.26 9979.10 38799.77 21692.40 35698.71 32098.27 343
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22599.33 8888.41 33899.65 28496.13 25698.92 30998.07 353
iter_conf05_1197.26 25097.11 25097.69 27697.89 35395.88 25795.06 36399.03 24195.33 31397.39 30897.10 34995.79 22799.76 22296.68 21599.74 13997.43 380
bld_raw_dy_0_6497.85 21097.71 21298.26 23398.31 32896.74 23295.53 34699.31 16397.79 17497.85 27297.56 32795.70 23099.82 16297.52 15199.84 8398.22 344
patch_mono-298.51 13998.63 10198.17 24099.38 13994.78 29197.36 24999.69 3698.16 15298.49 22499.29 9497.06 16099.97 498.29 10399.91 6199.76 38
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2799.20 3499.08 5799.29 18012.08 41120.84 41299.42 7297.55 12899.85 11897.08 17699.72 15098.96 268
test250692.39 36391.89 36593.89 37999.38 13982.28 40999.32 2266.03 41599.08 8498.77 18999.57 4166.26 40599.84 13598.71 7899.95 3199.54 107
test111196.49 29296.82 26695.52 36199.42 13487.08 39499.22 4187.14 40799.11 7299.46 7099.58 4088.69 33299.86 10698.80 7099.95 3199.62 66
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13988.18 39099.22 4186.00 40999.08 8499.36 9099.57 4188.47 33799.82 16298.52 9199.95 3199.54 107
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080598.69 10598.62 10398.90 14999.75 3499.30 1799.15 5296.97 35098.86 10298.87 17697.62 32498.63 4698.96 38899.41 3698.29 33998.45 328
DVP-MVS++98.90 7498.70 9199.51 4298.43 31999.15 4799.43 1099.32 15898.17 14999.26 11099.02 15198.18 8099.88 8297.07 17799.45 23799.49 126
FOURS199.73 3799.67 299.43 1099.54 7799.43 3999.26 110
MSC_two_6792asdad99.32 7998.43 31998.37 11098.86 27199.89 7397.14 17199.60 19599.71 45
PC_three_145293.27 35399.40 8298.54 25198.22 7697.00 40495.17 28799.45 23799.49 126
No_MVS99.32 7998.43 31998.37 11098.86 27199.89 7397.14 17199.60 19599.71 45
test_one_060199.39 13899.20 3499.31 16398.49 12498.66 20099.02 15197.64 120
eth-test20.00 419
eth-test0.00 419
GeoE99.05 5798.99 6499.25 9299.44 12898.35 11498.73 8999.56 6898.42 12698.91 16698.81 20998.94 2599.91 5898.35 9899.73 14399.49 126
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31131.08 41080.89 41097.71 31784.85 35897.37 40391.51 36780.03 40798.75 302
Anonymous2024052198.69 10598.87 7098.16 24299.77 2795.11 28599.08 5799.44 11499.34 4899.33 9599.55 4794.10 28099.94 3499.25 4499.96 2499.42 160
h-mvs3397.77 21597.33 23999.10 11399.21 17397.84 16398.35 13598.57 30299.11 7298.58 21399.02 15188.65 33599.96 1198.11 11296.34 38699.49 126
hse-mvs297.46 23597.07 25198.64 18198.73 26997.33 19897.45 24497.64 33699.11 7298.58 21397.98 30288.65 33599.79 19998.11 11297.39 36998.81 291
CL-MVSNet_self_test97.44 23897.22 24398.08 24798.57 30495.78 26294.30 38498.79 28396.58 26898.60 20998.19 28794.74 26499.64 28796.41 23898.84 31198.82 287
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 30997.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 355
KD-MVS_self_test99.25 3399.18 4299.44 5699.63 7399.06 6498.69 9499.54 7799.31 5199.62 5199.53 5397.36 14499.86 10699.24 4699.71 15599.39 173
AUN-MVS96.24 30095.45 31198.60 19198.70 27897.22 20697.38 24797.65 33495.95 29495.53 37197.96 30682.11 37799.79 19996.31 24397.44 36698.80 296
ZD-MVS99.01 22098.84 7599.07 23294.10 34298.05 25898.12 29196.36 20199.86 10692.70 35299.19 277
SR-MVS-dyc-post98.81 8598.55 11299.57 1699.20 17799.38 898.48 12299.30 17298.64 11198.95 15598.96 17497.49 13899.86 10696.56 22699.39 24499.45 149
RE-MVS-def98.58 11099.20 17799.38 898.48 12299.30 17298.64 11198.95 15598.96 17497.75 11196.56 22699.39 24499.45 149
SED-MVS98.91 7298.72 8699.49 4799.49 11499.17 3998.10 15799.31 16398.03 15699.66 4299.02 15198.36 6599.88 8296.91 18999.62 18899.41 163
IU-MVS99.49 11499.15 4798.87 26692.97 35799.41 7996.76 20699.62 18899.66 57
OPU-MVS98.82 15598.59 30098.30 11598.10 15798.52 25498.18 8098.75 39594.62 29999.48 23499.41 163
test_241102_TWO99.30 17298.03 15699.26 11099.02 15197.51 13499.88 8296.91 18999.60 19599.66 57
test_241102_ONE99.49 11499.17 3999.31 16397.98 15899.66 4298.90 18798.36 6599.48 340
SF-MVS98.53 13598.27 15799.32 7999.31 15398.75 8098.19 14699.41 12496.77 26098.83 18098.90 18797.80 10899.82 16295.68 27699.52 22399.38 180
cl2295.79 31195.39 31596.98 31996.77 39492.79 34494.40 38298.53 30494.59 32997.89 26798.17 28882.82 37499.24 37596.37 23999.03 29598.92 275
miper_ehance_all_eth97.06 26697.03 25397.16 31397.83 35593.06 33894.66 37499.09 23095.99 29298.69 19698.45 26492.73 30299.61 29996.79 20299.03 29598.82 287
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26391.14 37998.30 23897.35 34190.58 32099.58 31096.31 24399.03 29598.60 317
ZNCC-MVS98.68 11098.40 13699.54 2699.57 8099.21 2898.46 12499.29 18097.28 22598.11 25298.39 26898.00 9499.87 9996.86 19999.64 18299.55 103
dcpmvs_298.78 8999.11 5297.78 26599.56 8893.67 33099.06 6199.86 1399.50 3099.66 4299.26 9997.21 15499.99 298.00 12299.91 6199.68 53
cl____97.02 26996.83 26597.58 28597.82 35694.04 31494.66 37499.16 21897.04 24598.63 20398.71 22388.68 33499.69 25697.00 18199.81 9999.00 261
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35694.03 31594.66 37499.16 21897.04 24598.63 20398.71 22388.69 33299.69 25697.00 18199.81 9999.01 258
eth_miper_zixun_eth97.23 25597.25 24197.17 31198.00 34792.77 34594.71 37199.18 21197.27 22698.56 21698.74 21991.89 31199.69 25697.06 17999.81 9999.05 250
9.1497.78 20599.07 20897.53 23499.32 15895.53 30698.54 22098.70 22697.58 12599.76 22294.32 31299.46 235
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter99.11 19997.97 15196.53 29799.02 24598.24 139
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 33994.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 17796.91 18997.11 37898.46 325
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2299.00 6099.95 3199.78 32
EIA-MVS98.00 19497.74 20898.80 15998.72 27198.09 13498.05 16499.60 5197.39 21496.63 34195.55 37497.68 11499.80 18496.73 21099.27 26398.52 323
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 30997.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 355
miper_lstm_enhance97.18 25997.16 24697.25 30898.16 33892.85 34395.15 36199.31 16397.25 22898.74 19498.78 21390.07 32399.78 21097.19 16699.80 10999.11 245
ETV-MVS98.03 19097.86 20298.56 20098.69 28398.07 14097.51 23899.50 8798.10 15497.50 29895.51 37598.41 6299.88 8296.27 24699.24 26897.71 372
CS-MVS99.13 4999.10 5499.24 9499.06 21299.15 4799.36 1899.88 1199.36 4798.21 24398.46 26398.68 4299.93 3999.03 5899.85 7998.64 314
D2MVS97.84 21297.84 20397.83 26199.14 19594.74 29396.94 27598.88 26495.84 29798.89 16998.96 17494.40 27099.69 25697.55 14699.95 3199.05 250
DVP-MVScopyleft98.77 9298.52 11699.52 3899.50 10799.21 2898.02 16998.84 27597.97 15999.08 13299.02 15197.61 12399.88 8296.99 18399.63 18599.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14999.08 13299.02 15197.89 10199.88 8297.07 17799.71 15599.70 50
test_0728_SECOND99.60 1199.50 10799.23 2698.02 16999.32 15899.88 8296.99 18399.63 18599.68 53
test072699.50 10799.21 2898.17 15099.35 14597.97 15999.26 11099.06 13997.61 123
SR-MVS98.71 9898.43 13299.57 1699.18 18799.35 1298.36 13499.29 18098.29 13698.88 17298.85 20197.53 13199.87 9996.14 25499.31 25699.48 136
DPM-MVS96.32 29695.59 30698.51 20798.76 26597.21 20794.54 38098.26 31591.94 36996.37 35197.25 34293.06 29599.43 35091.42 36898.74 31698.89 279
GST-MVS98.61 12298.30 15299.52 3899.51 10499.20 3498.26 14099.25 19297.44 21198.67 19898.39 26897.68 11499.85 11896.00 25899.51 22599.52 117
test_yl96.69 28296.29 29197.90 25698.28 33095.24 27897.29 25597.36 33998.21 14298.17 24497.86 30986.27 34699.55 31894.87 29398.32 33698.89 279
thisisatest053095.27 32394.45 33297.74 27299.19 18094.37 30497.86 19290.20 40397.17 23998.22 24297.65 32173.53 39799.90 6396.90 19499.35 25098.95 269
Anonymous2024052998.93 7098.87 7099.12 10999.19 18098.22 12499.01 6598.99 25199.25 5799.54 5599.37 7897.04 16199.80 18497.89 12799.52 22399.35 192
Anonymous20240521197.90 19997.50 22799.08 11798.90 24098.25 11898.53 11096.16 36598.87 10199.11 12798.86 19890.40 32299.78 21097.36 15899.31 25699.19 232
DCV-MVSNet96.69 28296.29 29197.90 25698.28 33095.24 27897.29 25597.36 33998.21 14298.17 24497.86 30986.27 34699.55 31894.87 29398.32 33698.89 279
tttt051795.64 31694.98 32597.64 28199.36 14693.81 32698.72 9090.47 40298.08 15598.67 19898.34 27573.88 39699.92 4997.77 13699.51 22599.20 227
our_test_397.39 24197.73 21096.34 33998.70 27889.78 38394.61 37798.97 25296.50 27099.04 14198.85 20195.98 21999.84 13597.26 16399.67 17499.41 163
thisisatest051594.12 34193.16 34896.97 32098.60 29792.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18494.52 30299.12 28898.20 346
ppachtmachnet_test97.50 23197.74 20896.78 33198.70 27891.23 37294.55 37999.05 23696.36 27699.21 11898.79 21296.39 19799.78 21096.74 20899.82 9499.34 194
SMA-MVScopyleft98.40 15098.03 18499.51 4299.16 19099.21 2898.05 16499.22 20094.16 34098.98 14899.10 13597.52 13399.79 19996.45 23699.64 18299.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 291
DPE-MVScopyleft98.59 12598.26 15899.57 1699.27 16099.15 4797.01 27199.39 12997.67 18199.44 7498.99 16597.53 13199.89 7395.40 28499.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14699.10 6099.05 139
thres100view90094.19 33893.67 34295.75 35699.06 21291.35 36698.03 16794.24 38698.33 13097.40 30694.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
tfpnnormal98.90 7498.90 6998.91 14699.67 6197.82 16799.00 6799.44 11499.45 3599.51 6599.24 10498.20 7999.86 10695.92 26299.69 16399.04 254
tfpn200view994.03 34293.44 34495.78 35598.93 23291.44 36497.60 22594.29 38497.94 16297.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
c3_l97.36 24297.37 23597.31 30398.09 34293.25 33695.01 36599.16 21897.05 24498.77 18998.72 22292.88 29899.64 28796.93 18899.76 13599.05 250
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33288.27 38993.25 39598.88 26493.53 35094.65 38297.15 34586.17 34899.93 3997.41 15699.93 4398.73 304
CANet97.87 20497.76 20698.19 23997.75 35895.51 26996.76 28699.05 23697.74 17796.93 32498.21 28595.59 23499.89 7397.86 13299.93 4399.19 232
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15798.43 31998.11 13197.61 22499.50 8798.64 11197.39 30897.52 33098.12 8799.95 2296.90 19498.71 32098.38 337
Effi-MVS+-dtu98.26 17097.90 19799.35 6998.02 34599.49 598.02 16999.16 21898.29 13697.64 28597.99 30196.44 19699.95 2296.66 21798.93 30898.60 317
CANet_DTU97.26 25097.06 25297.84 26097.57 36794.65 29896.19 31798.79 28397.23 23495.14 37698.24 28293.22 29099.84 13597.34 15999.84 8399.04 254
MVS_030498.10 18397.88 20098.76 16998.82 25796.50 23997.90 18591.35 40099.56 2698.32 23799.13 12996.06 21099.93 3999.84 799.97 1999.85 18
MP-MVS-pluss98.57 12698.23 16299.60 1199.69 5599.35 1297.16 26699.38 13194.87 32498.97 15298.99 16598.01 9399.88 8297.29 16199.70 16099.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15098.00 18799.61 999.57 8099.25 2498.57 10599.35 14597.55 19799.31 10397.71 31794.61 26599.88 8296.14 25499.19 27799.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36098.81 291
sam_mvs84.29 366
IterMVS-SCA-FT97.85 21098.18 16796.87 32599.27 16091.16 37395.53 34699.25 19299.10 7999.41 7999.35 8293.10 29399.96 1198.65 8299.94 3999.49 126
TSAR-MVS + MP.98.63 11998.49 12399.06 12599.64 6997.90 15898.51 11698.94 25396.96 24899.24 11598.89 19397.83 10499.81 17796.88 19699.49 23399.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 20598.17 16896.92 32298.98 22593.91 32196.45 30099.17 21597.85 17098.41 23197.14 34698.47 5799.92 4998.02 11999.05 29196.92 385
OPM-MVS98.56 12798.32 15199.25 9299.41 13698.73 8497.13 26899.18 21197.10 24398.75 19298.92 18398.18 8099.65 28496.68 21599.56 21199.37 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 9498.48 12499.57 1699.58 7699.29 1997.82 19599.25 19296.94 25098.78 18699.12 13198.02 9299.84 13597.13 17399.67 17499.59 79
ambc98.24 23698.82 25795.97 25598.62 10099.00 25099.27 10699.21 10996.99 16699.50 33496.55 22999.50 23299.26 216
MTGPAbinary99.20 203
CS-MVS-test99.13 4999.09 5599.26 8999.13 19798.97 6699.31 2699.88 1199.44 3798.16 24698.51 25598.64 4499.93 3998.91 6499.85 7998.88 282
Effi-MVS+98.02 19197.82 20498.62 18698.53 30997.19 20997.33 25199.68 4197.30 22396.68 33997.46 33498.56 5499.80 18496.63 21898.20 34298.86 284
xiu_mvs_v2_base97.16 26197.49 22896.17 34898.54 30792.46 35095.45 35198.84 27597.25 22897.48 30096.49 35698.31 7099.90 6396.34 24298.68 32596.15 396
xiu_mvs_v1_base97.86 20598.17 16896.92 32298.98 22593.91 32196.45 30099.17 21597.85 17098.41 23197.14 34698.47 5799.92 4998.02 11999.05 29196.92 385
new-patchmatchnet98.35 15698.74 8297.18 30999.24 16692.23 35796.42 30399.48 9698.30 13399.69 3799.53 5397.44 14099.82 16298.84 6999.77 12499.49 126
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3799.92 5499.64 62
pmmvs597.64 22497.49 22898.08 24799.14 19595.12 28496.70 29099.05 23693.77 34798.62 20598.83 20493.23 28999.75 23098.33 10199.76 13599.36 188
test_post197.59 22720.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
Fast-Effi-MVS+97.67 22297.38 23498.57 19698.71 27497.43 19497.23 25999.45 11094.82 32596.13 35596.51 35598.52 5699.91 5896.19 25098.83 31298.37 339
patchmatchnet-post98.77 21584.37 36399.85 118
Anonymous2023121199.27 3099.27 3599.26 8999.29 15798.18 12599.49 899.51 8499.70 899.80 2499.68 2096.84 17299.83 15299.21 4799.91 6199.77 34
pmmvs-eth3d98.47 14298.34 14798.86 15199.30 15697.76 17397.16 26699.28 18395.54 30599.42 7899.19 11297.27 14999.63 29097.89 12799.97 1999.20 227
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
xiu_mvs_v1_base_debi97.86 20598.17 16896.92 32298.98 22593.91 32196.45 30099.17 21597.85 17098.41 23197.14 34698.47 5799.92 4998.02 11999.05 29196.92 385
Anonymous2023120698.21 17698.21 16398.20 23899.51 10495.43 27398.13 15299.32 15896.16 28498.93 16498.82 20796.00 21499.83 15297.32 16099.73 14399.36 188
MTAPA98.88 7698.64 10099.61 999.67 6199.36 1198.43 12799.20 20398.83 10698.89 16998.90 18796.98 16799.92 4997.16 16899.70 16099.56 96
MTMP97.93 18091.91 398
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
test9_res93.28 33999.15 28299.38 180
MVP-Stereo98.08 18897.92 19598.57 19698.96 22896.79 22897.90 18599.18 21196.41 27598.46 22698.95 17995.93 22299.60 30096.51 23298.98 30399.31 205
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27498.08 13895.96 32999.03 24191.40 37595.85 36197.53 32896.52 19299.76 222
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 32999.03 24191.64 37095.85 36197.53 32896.47 19499.76 22293.67 32999.16 28099.36 188
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 591.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
SCA96.41 29596.66 27895.67 35798.24 33388.35 38895.85 33796.88 35596.11 28597.67 28498.67 23193.10 29399.85 11894.16 31399.22 27198.81 291
Patchmatch-test96.55 28896.34 28997.17 31198.35 32593.06 33898.40 13097.79 32997.33 21998.41 23198.67 23183.68 36999.69 25695.16 28899.31 25698.77 299
test_898.67 28698.01 14695.91 33499.02 24591.64 37095.79 36397.50 33196.47 19499.76 222
MS-PatchMatch97.68 22197.75 20797.45 29898.23 33593.78 32797.29 25598.84 27596.10 28698.64 20298.65 23696.04 21199.36 35996.84 20099.14 28399.20 227
Patchmatch-RL test97.26 25097.02 25497.99 25599.52 10295.53 26896.13 32199.71 3397.47 20399.27 10699.16 12184.30 36599.62 29397.89 12799.77 12498.81 291
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2280.00 4140.00 41597.58 32599.21 160.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
agg_prior292.50 35599.16 28099.37 182
agg_prior98.68 28597.99 14799.01 24895.59 36499.77 216
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16798.96 7199.46 10699.19 6797.46 30195.46 37998.59 5099.46 34598.08 11598.71 32098.46 325
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 1999.69 3698.93 9799.65 4599.72 1698.93 2699.95 2299.11 51100.00 199.82 24
alignmvs97.35 24396.88 26198.78 16598.54 30798.09 13497.71 21097.69 33399.20 6397.59 28995.90 36888.12 34099.55 31898.18 10898.96 30598.70 308
nrg03099.40 2199.35 2399.54 2699.58 7699.13 5598.98 7099.48 9699.68 1199.46 7099.26 9998.62 4799.73 24099.17 5099.92 5499.76 38
v14419298.54 13398.57 11198.45 21499.21 17395.98 25497.63 22199.36 14097.15 24299.32 10199.18 11595.84 22699.84 13599.50 3299.91 6199.54 107
FIs99.14 4699.09 5599.29 8399.70 5398.28 11699.13 5499.52 8399.48 3199.24 11599.41 7596.79 17899.82 16298.69 8099.88 7299.76 38
v192192098.54 13398.60 10898.38 22199.20 17795.76 26397.56 23199.36 14097.23 23499.38 8699.17 11996.02 21299.84 13599.57 2799.90 6799.54 107
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3299.82 399.04 14199.81 598.05 9199.96 1198.85 6899.99 599.86 17
v119298.60 12398.66 9798.41 21899.27 16095.88 25797.52 23699.36 14097.41 21299.33 9599.20 11196.37 20099.82 16299.57 2799.92 5499.55 103
FC-MVSNet-test99.27 3099.25 3899.34 7299.77 2798.37 11099.30 3199.57 6199.61 2299.40 8299.50 5897.12 15799.85 11899.02 5999.94 3999.80 28
v114498.60 12398.66 9798.41 21899.36 14695.90 25697.58 22899.34 15197.51 19999.27 10699.15 12596.34 20299.80 18499.47 3499.93 4399.51 119
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS98.71 9898.44 13199.51 4299.49 11499.16 4398.52 11199.31 16397.47 20398.58 21398.50 25997.97 9899.85 11896.57 22299.59 19999.53 114
v14898.45 14598.60 10898.00 25499.44 12894.98 28797.44 24599.06 23398.30 13399.32 10198.97 17196.65 18799.62 29398.37 9799.85 7999.39 173
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest98.44 14698.20 16499.16 10499.50 10798.55 9698.25 14199.58 5496.80 25798.88 17299.06 13997.65 11799.57 31294.45 30599.61 19399.37 182
TestCases99.16 10499.50 10798.55 9699.58 5496.80 25798.88 17299.06 13997.65 11799.57 31294.45 30599.61 19399.37 182
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 999.61 5099.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2499.75 42
region2R98.69 10598.40 13699.54 2699.53 10099.17 3998.52 11199.31 16397.46 20898.44 22898.51 25597.83 10499.88 8296.46 23599.58 20499.58 85
iter_conf0598.46 14398.38 14198.70 17799.27 16097.15 21397.51 23899.51 8497.57 19198.95 15598.89 19395.48 24099.82 16298.30 10299.96 2499.14 242
mamv498.09 18698.01 18598.31 22898.02 34596.58 23897.53 23499.41 12497.57 19197.89 26798.96 17495.45 24299.80 18497.48 15399.78 11998.57 320
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4599.48 3199.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
PS-MVSNAJ97.08 26597.39 23396.16 35098.56 30592.46 35095.24 35898.85 27497.25 22897.49 29995.99 36598.07 8899.90 6396.37 23998.67 32696.12 397
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 15
mvs_tets99.63 599.67 599.49 4799.88 998.61 9199.34 1999.71 3399.27 5699.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
EI-MVSNet-UG-set98.69 10598.71 8898.62 18699.10 20196.37 24297.23 25998.87 26699.20 6399.19 12098.99 16597.30 14699.85 11898.77 7499.79 11499.65 61
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18599.09 20496.40 24197.23 25998.86 27199.20 6399.18 12498.97 17197.29 14899.85 11898.72 7799.78 11999.64 62
HPM-MVS++copyleft98.10 18397.64 21999.48 5099.09 20499.13 5597.52 23698.75 29097.46 20896.90 33097.83 31296.01 21399.84 13595.82 27099.35 25099.46 145
test_prior497.97 15195.86 335
XVS98.72 9798.45 12999.53 3399.46 12499.21 2898.65 9699.34 15198.62 11597.54 29498.63 24197.50 13599.83 15296.79 20299.53 22099.56 96
v124098.55 13198.62 10398.32 22599.22 17195.58 26697.51 23899.45 11097.16 24099.45 7399.24 10496.12 20899.85 11899.60 2599.88 7299.55 103
pm-mvs199.44 1599.48 1499.33 7799.80 2198.63 8899.29 3299.63 4699.30 5399.65 4599.60 3899.16 2099.82 16299.07 5499.83 9199.56 96
test_prior295.74 34096.48 27296.11 35697.63 32395.92 22394.16 31399.20 274
X-MVStestdata94.32 33592.59 35399.53 3399.46 12499.21 2898.65 9699.34 15198.62 11597.54 29445.85 40997.50 13599.83 15296.79 20299.53 22099.56 96
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30499.30 208
旧先验295.76 33988.56 39397.52 29699.66 27994.48 303
新几何295.93 332
新几何198.91 14698.94 23097.76 17398.76 28787.58 39596.75 33898.10 29394.80 26199.78 21092.73 35199.00 30099.20 227
旧先验198.82 25797.45 19298.76 28798.34 27595.50 23999.01 29999.23 222
无先验95.74 34098.74 29289.38 38999.73 24092.38 35799.22 226
原ACMM295.53 346
原ACMM198.35 22398.90 24096.25 24698.83 27992.48 36496.07 35898.10 29395.39 24499.71 24892.61 35498.99 30199.08 246
test22298.92 23696.93 22595.54 34598.78 28585.72 39896.86 33398.11 29294.43 26899.10 29099.23 222
testdata299.79 19992.80 349
segment_acmp97.02 164
testdata98.09 24498.93 23295.40 27498.80 28290.08 38697.45 30398.37 27195.26 24699.70 25293.58 33298.95 30699.17 238
testdata195.44 35296.32 278
v899.01 5999.16 4598.57 19699.47 12396.31 24598.90 7799.47 10499.03 8899.52 6199.57 4196.93 16899.81 17799.60 2599.98 1299.60 73
131495.74 31295.60 30596.17 34897.53 37292.75 34698.07 16198.31 31491.22 37794.25 38596.68 35395.53 23699.03 38491.64 36497.18 37696.74 389
LFMVS97.20 25796.72 27298.64 18198.72 27196.95 22398.93 7594.14 38899.74 698.78 18699.01 16084.45 36299.73 24097.44 15499.27 26399.25 217
VDD-MVS98.56 12798.39 13999.07 11999.13 19798.07 14098.59 10397.01 34899.59 2399.11 12799.27 9794.82 25899.79 19998.34 9999.63 18599.34 194
VDDNet98.21 17697.95 19199.01 13299.58 7697.74 17599.01 6597.29 34399.67 1298.97 15299.50 5890.45 32199.80 18497.88 13099.20 27499.48 136
v1098.97 6599.11 5298.55 20199.44 12896.21 24798.90 7799.55 7298.73 10799.48 6799.60 3896.63 18899.83 15299.70 2299.99 599.61 72
VPNet98.87 7798.83 7599.01 13299.70 5397.62 18498.43 12799.35 14599.47 3399.28 10499.05 14696.72 18499.82 16298.09 11499.36 24899.59 79
MVS93.19 35492.09 35896.50 33696.91 39094.03 31598.07 16198.06 32568.01 40794.56 38496.48 35795.96 22199.30 36983.84 39896.89 38196.17 394
v2v48298.56 12798.62 10398.37 22299.42 13495.81 26197.58 22899.16 21897.90 16699.28 10499.01 16095.98 21999.79 19999.33 3899.90 6799.51 119
V4298.78 8998.78 8098.76 16999.44 12897.04 21798.27 13999.19 20797.87 16899.25 11499.16 12196.84 17299.78 21099.21 4799.84 8399.46 145
SD-MVS98.40 15098.68 9497.54 29098.96 22897.99 14797.88 18899.36 14098.20 14699.63 4899.04 14898.76 3595.33 40896.56 22699.74 13999.31 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 30995.32 31897.49 29598.60 29794.15 31193.83 39197.93 32795.49 30796.68 33997.42 33683.21 37099.30 36996.22 24898.55 33399.01 258
MSLP-MVS++98.02 19198.14 17497.64 28198.58 30295.19 28197.48 24199.23 19997.47 20397.90 26698.62 24397.04 16198.81 39497.55 14699.41 24298.94 273
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17399.15 4798.87 7999.48 9697.57 19199.35 9299.24 10497.83 10499.89 7397.88 13099.70 16099.75 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8198.61 10799.53 3399.19 18099.27 2298.49 11999.33 15698.64 11199.03 14498.98 16997.89 10199.85 11896.54 23099.42 24199.46 145
ADS-MVSNet295.43 32194.98 32596.76 33298.14 33991.74 36097.92 18297.76 33090.23 38296.51 34798.91 18485.61 35399.85 11892.88 34596.90 37998.69 309
EI-MVSNet98.40 15098.51 11798.04 25299.10 20194.73 29497.20 26398.87 26698.97 9399.06 13499.02 15196.00 21499.80 18498.58 8599.82 9499.60 73
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet96.25 29997.21 24493.38 38599.10 20180.56 41297.20 26398.19 32096.94 25099.00 14699.02 15189.50 32899.80 18496.36 24199.59 19999.78 32
pmmvs497.58 22997.28 24098.51 20798.84 25296.93 22595.40 35498.52 30593.60 34998.61 20798.65 23695.10 25099.60 30096.97 18699.79 11498.99 262
EU-MVSNet97.66 22398.50 11995.13 36799.63 7385.84 39798.35 13598.21 31798.23 14099.54 5599.46 6595.02 25299.68 26598.24 10499.87 7599.87 15
VNet98.42 14798.30 15298.79 16298.79 26497.29 20098.23 14298.66 29699.31 5198.85 17798.80 21094.80 26199.78 21098.13 11199.13 28599.31 205
test-LLR93.90 34493.85 33894.04 37696.53 39784.62 40394.05 38892.39 39596.17 28294.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 363
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39982.80 40894.05 38891.52 39994.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 355
test-mter92.33 36691.76 36794.04 37696.53 39784.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 363
VPA-MVSNet99.30 2899.30 3299.28 8499.49 11498.36 11399.00 6799.45 11099.63 1799.52 6199.44 7098.25 7199.88 8299.09 5399.84 8399.62 66
ACMMPR98.70 10298.42 13499.54 2699.52 10299.14 5298.52 11199.31 16397.47 20398.56 21698.54 25197.75 11199.88 8296.57 22299.59 19999.58 85
testgi98.32 16198.39 13998.13 24399.57 8095.54 26797.78 20099.49 9497.37 21699.19 12097.65 32198.96 2499.49 33796.50 23398.99 30199.34 194
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20897.78 20099.24 19799.04 8799.41 7998.90 18797.65 11799.76 22297.70 14299.79 11499.39 173
thres600view794.45 33393.83 33996.29 34199.06 21291.53 36297.99 17594.24 38698.34 12997.44 30495.01 38579.84 38199.67 26884.33 39798.23 34097.66 373
ADS-MVSNet95.24 32494.93 32896.18 34798.14 33990.10 38297.92 18297.32 34290.23 38296.51 34798.91 18485.61 35399.74 23592.88 34596.90 37998.69 309
MP-MVScopyleft98.46 14398.09 17799.54 2699.57 8099.22 2798.50 11899.19 20797.61 18897.58 29098.66 23497.40 14299.88 8294.72 29899.60 19599.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
thres40094.14 34093.44 34496.24 34498.93 23291.44 36497.60 22594.29 38497.94 16297.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 373
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
thres20093.72 34793.14 34995.46 36498.66 29191.29 36896.61 29494.63 38197.39 21496.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28297.57 29294.88 38982.30 37599.01 38793.60 33194.17 40198.37 339
pmmvs395.03 32794.40 33396.93 32197.70 36392.53 34995.08 36297.71 33288.57 39297.71 28198.08 29679.39 38599.82 16296.19 25099.11 28998.43 332
EMVS93.83 34594.02 33793.23 38696.83 39384.96 40089.77 40596.32 36497.92 16497.43 30596.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
E-PMN94.17 33994.37 33493.58 38296.86 39185.71 39990.11 40497.07 34798.17 14997.82 27697.19 34384.62 36198.94 38989.77 38297.68 36096.09 398
PGM-MVS98.66 11498.37 14399.55 2399.53 10099.18 3898.23 14299.49 9497.01 24798.69 19698.88 19598.00 9499.89 7395.87 26699.59 19999.58 85
LCM-MVSNet-Re98.64 11798.48 12499.11 11198.85 25198.51 10198.49 11999.83 2098.37 12799.69 3799.46 6598.21 7899.92 4994.13 31799.30 25998.91 278
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 18
MCST-MVS98.00 19497.63 22099.10 11399.24 16698.17 12696.89 28098.73 29395.66 30097.92 26497.70 31997.17 15599.66 27996.18 25299.23 27099.47 143
mvs_anonymous97.83 21498.16 17196.87 32598.18 33791.89 35997.31 25398.90 26197.37 21698.83 18099.46 6596.28 20399.79 19998.90 6598.16 34698.95 269
MVS_Test98.18 17998.36 14497.67 27798.48 31294.73 29498.18 14799.02 24597.69 18098.04 25999.11 13297.22 15399.56 31598.57 8798.90 31098.71 305
MDA-MVSNet-bldmvs97.94 19897.91 19698.06 24999.44 12894.96 28896.63 29399.15 22398.35 12898.83 18099.11 13294.31 27399.85 11896.60 21998.72 31899.37 182
CDPH-MVS97.26 25096.66 27899.07 11999.00 22198.15 12796.03 32599.01 24891.21 37897.79 27797.85 31196.89 17099.69 25692.75 35099.38 24799.39 173
test1298.93 14398.58 30297.83 16498.66 29696.53 34595.51 23899.69 25699.13 28599.27 213
casdiffmvspermissive98.95 6899.00 6298.81 15799.38 13997.33 19897.82 19599.57 6199.17 7099.35 9299.17 11998.35 6899.69 25698.46 9399.73 14399.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 17498.24 16198.17 24099.00 22195.44 27296.38 30599.58 5497.79 17498.53 22198.50 25996.76 18199.74 23597.95 12699.64 18299.34 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 34692.83 35296.42 33897.70 36391.28 36996.84 28289.77 40493.96 34692.44 39995.93 36779.14 38699.77 21692.94 34396.76 38398.21 345
baseline195.96 30795.44 31297.52 29298.51 31193.99 31898.39 13196.09 36798.21 14298.40 23597.76 31586.88 34299.63 29095.42 28389.27 40698.95 269
YYNet197.60 22697.67 21497.39 30299.04 21693.04 34195.27 35698.38 31297.25 22898.92 16598.95 17995.48 24099.73 24096.99 18398.74 31699.41 163
PMMVS298.07 18998.08 18098.04 25299.41 13694.59 30094.59 37899.40 12797.50 20098.82 18398.83 20496.83 17499.84 13597.50 15299.81 9999.71 45
MDA-MVSNet_test_wron97.60 22697.66 21797.41 30199.04 21693.09 33795.27 35698.42 30997.26 22798.88 17298.95 17995.43 24399.73 24097.02 18098.72 31899.41 163
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 15996.83 35695.46 30895.51 37298.69 22785.91 35199.53 32594.16 31396.23 38897.58 376
PM-MVS98.82 8398.72 8699.12 10999.64 6998.54 9997.98 17699.68 4197.62 18599.34 9499.18 11597.54 12999.77 21697.79 13599.74 13999.04 254
HQP_MVS97.99 19797.67 21498.93 14399.19 18097.65 18197.77 20299.27 18698.20 14697.79 27797.98 30294.90 25499.70 25294.42 30799.51 22599.45 149
plane_prior799.19 18097.87 160
plane_prior698.99 22497.70 17994.90 254
plane_prior599.27 18699.70 25294.42 30799.51 22599.45 149
plane_prior497.98 302
plane_prior397.78 17297.41 21297.79 277
plane_prior297.77 20298.20 146
plane_prior199.05 215
plane_prior97.65 18197.07 26996.72 26299.36 248
PS-CasMVS99.40 2199.33 2699.62 699.71 4699.10 6099.29 3299.53 8099.53 2999.46 7099.41 7598.23 7399.95 2298.89 6799.95 3199.81 27
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6199.17 18898.74 8197.68 21399.40 12799.14 7199.06 13498.59 24796.71 18599.93 3998.57 8799.77 12499.53 114
PEN-MVS99.41 2099.34 2599.62 699.73 3799.14 5299.29 3299.54 7799.62 2099.56 5299.42 7298.16 8499.96 1198.78 7199.93 4399.77 34
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2198.58 9499.27 3899.57 6199.39 4299.75 3099.62 3399.17 1899.83 15299.06 5599.62 18899.66 57
DTE-MVSNet99.43 1899.35 2399.66 499.71 4699.30 1799.31 2699.51 8499.64 1599.56 5299.46 6598.23 7399.97 498.78 7199.93 4399.72 44
DU-MVS98.82 8398.63 10199.39 6299.16 19098.74 8197.54 23399.25 19298.84 10599.06 13498.76 21796.76 18199.93 3998.57 8799.77 12499.50 122
UniMVSNet (Re)98.87 7798.71 8899.35 6999.24 16698.73 8497.73 20999.38 13198.93 9799.12 12698.73 22096.77 17999.86 10698.63 8499.80 10999.46 145
CP-MVSNet99.21 3999.09 5599.56 2199.65 6498.96 7099.13 5499.34 15199.42 4099.33 9599.26 9997.01 16599.94 3498.74 7599.93 4399.79 29
WR-MVS_H99.33 2699.22 4099.65 599.71 4699.24 2599.32 2299.55 7299.46 3499.50 6699.34 8697.30 14699.93 3998.90 6599.93 4399.77 34
WR-MVS98.40 15098.19 16699.03 12999.00 22197.65 18196.85 28198.94 25398.57 12098.89 16998.50 25995.60 23399.85 11897.54 14899.85 7999.59 79
NR-MVSNet98.95 6898.82 7699.36 6399.16 19098.72 8699.22 4199.20 20399.10 7999.72 3198.76 21796.38 19999.86 10698.00 12299.82 9499.50 122
Baseline_NR-MVSNet98.98 6498.86 7399.36 6399.82 2098.55 9697.47 24399.57 6199.37 4499.21 11899.61 3696.76 18199.83 15298.06 11799.83 9199.71 45
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5599.37 14598.87 7398.39 13199.42 12399.42 4099.36 9099.06 13998.38 6499.95 2298.34 9999.90 6799.57 90
TSAR-MVS + GP.98.18 17997.98 18998.77 16898.71 27497.88 15996.32 30998.66 29696.33 27799.23 11798.51 25597.48 13999.40 35497.16 16899.46 23599.02 257
n20.00 420
nn0.00 420
mPP-MVS98.64 11798.34 14799.54 2699.54 9799.17 3998.63 9899.24 19797.47 20398.09 25498.68 22997.62 12299.89 7396.22 24899.62 18899.57 90
door-mid99.57 61
XVG-OURS-SEG-HR98.49 14098.28 15499.14 10799.49 11498.83 7696.54 29599.48 9697.32 22199.11 12798.61 24599.33 1399.30 36996.23 24798.38 33599.28 212
mvsmamba99.24 3799.15 5099.49 4799.83 1898.85 7499.41 1299.55 7299.54 2799.40 8299.52 5695.86 22599.91 5899.32 3999.95 3199.70 50
MVSFormer98.26 17098.43 13297.77 26698.88 24693.89 32499.39 1699.56 6899.11 7298.16 24698.13 28993.81 28499.97 499.26 4299.57 20899.43 157
jason97.45 23797.35 23797.76 26999.24 16693.93 32095.86 33598.42 30994.24 33898.50 22398.13 28994.82 25899.91 5897.22 16599.73 14399.43 157
jason: jason.
lupinMVS97.06 26696.86 26297.65 27998.88 24693.89 32495.48 35097.97 32693.53 35098.16 24697.58 32593.81 28499.91 5896.77 20599.57 20899.17 238
test_djsdf99.52 1099.51 1199.53 3399.86 1498.74 8199.39 1699.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4299.98 1299.89 11
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4699.35 1299.00 6799.50 8797.33 21998.94 16398.86 19898.75 3699.82 16297.53 14999.71 15599.56 96
K. test v398.00 19497.66 21799.03 12999.79 2397.56 18699.19 4892.47 39499.62 2099.52 6199.66 2789.61 32699.96 1199.25 4499.81 9999.56 96
lessismore_v098.97 13799.73 3797.53 18886.71 40899.37 8899.52 5689.93 32499.92 4998.99 6199.72 15099.44 153
SixPastTwentyTwo98.75 9498.62 10399.16 10499.83 1897.96 15499.28 3698.20 31899.37 4499.70 3599.65 3092.65 30399.93 3999.04 5799.84 8399.60 73
OurMVSNet-221017-099.37 2499.31 3099.53 3399.91 398.98 6599.63 699.58 5499.44 3799.78 2699.76 1096.39 19799.92 4999.44 3599.92 5499.68 53
HPM-MVScopyleft98.79 8798.53 11599.59 1599.65 6499.29 1999.16 5099.43 12096.74 26198.61 20798.38 27098.62 4799.87 9996.47 23499.67 17499.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 13598.34 14799.11 11199.50 10798.82 7895.97 32799.50 8797.30 22399.05 13998.98 16999.35 1299.32 36695.72 27399.68 16899.18 234
XVG-ACMP-BASELINE98.56 12798.34 14799.22 9799.54 9798.59 9397.71 21099.46 10697.25 22898.98 14898.99 16597.54 12999.84 13595.88 26399.74 13999.23 222
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13499.43 13397.73 17798.00 17399.62 4799.22 5999.55 5499.22 10898.93 2699.75 23098.66 8199.81 9999.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 9898.46 12899.47 5399.57 8098.97 6698.23 14299.48 9696.60 26699.10 13099.06 13998.71 3999.83 15295.58 28099.78 11999.62 66
LGP-MVS_train99.47 5399.57 8098.97 6699.48 9696.60 26699.10 13099.06 13998.71 3999.83 15295.58 28099.78 11999.62 66
baseline98.96 6799.02 6098.76 16999.38 13997.26 20398.49 11999.50 8798.86 10299.19 12099.06 13998.23 7399.69 25698.71 7899.76 13599.33 199
test1198.87 266
door99.41 124
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28495.69 37597.35 21889.14 40698.09 29588.15 33999.49 33794.95 29299.30 25998.98 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23397.14 24998.54 20499.68 5796.09 25196.50 29899.62 4791.58 37298.84 17998.97 17192.36 30599.88 8296.76 20699.95 3199.67 56
EPNet96.14 30195.44 31298.25 23490.76 41395.50 27097.92 18294.65 38098.97 9392.98 39698.85 20189.12 33099.87 9995.99 25999.68 16899.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 228
HQP-NCC98.67 28696.29 31196.05 28895.55 367
ACMP_Plane98.67 28696.29 31196.05 28895.55 367
APD-MVScopyleft98.10 18397.67 21499.42 5799.11 19998.93 7197.76 20599.28 18394.97 32198.72 19598.77 21597.04 16199.85 11893.79 32799.54 21699.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 201
HQP3-MVS99.04 23999.26 266
HQP2-MVS93.84 282
CNVR-MVS98.17 18197.87 20199.07 11998.67 28698.24 11997.01 27198.93 25597.25 22897.62 28698.34 27597.27 14999.57 31296.42 23799.33 25399.39 173
NCCC97.86 20597.47 23199.05 12698.61 29598.07 14096.98 27398.90 26197.63 18497.04 32097.93 30795.99 21899.66 27995.31 28598.82 31499.43 157
114514_t96.50 29195.77 29898.69 17899.48 12197.43 19497.84 19499.55 7281.42 40496.51 34798.58 24895.53 23699.67 26893.41 33799.58 20498.98 263
CP-MVS98.70 10298.42 13499.52 3899.36 14699.12 5798.72 9099.36 14097.54 19898.30 23898.40 26797.86 10399.89 7396.53 23199.72 15099.56 96
DSMNet-mixed97.42 23997.60 22296.87 32599.15 19491.46 36398.54 10999.12 22592.87 36097.58 29099.63 3296.21 20599.90 6395.74 27299.54 21699.27 213
tpm293.09 35592.58 35494.62 37197.56 36886.53 39597.66 21795.79 37286.15 39794.07 38998.23 28475.95 39399.53 32590.91 37796.86 38297.81 365
NP-MVS98.84 25297.39 19696.84 350
EG-PatchMatch MVS98.99 6199.01 6198.94 14199.50 10797.47 19098.04 16699.59 5298.15 15399.40 8299.36 8198.58 5399.76 22298.78 7199.68 16899.59 79
tpm cat193.29 35393.13 35093.75 38097.39 38084.74 40197.39 24697.65 33483.39 40294.16 38698.41 26682.86 37399.39 35691.56 36695.35 39697.14 384
SteuartSystems-ACMMP98.79 8798.54 11499.54 2699.73 3799.16 4398.23 14299.31 16397.92 16498.90 16798.90 18798.00 9499.88 8296.15 25399.72 15099.58 85
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 34393.78 34094.51 37297.53 37285.83 39897.98 17695.96 36989.29 39094.99 37898.63 24178.63 38999.62 29394.54 30196.50 38498.09 352
CR-MVSNet96.28 29895.95 29697.28 30597.71 36194.22 30698.11 15598.92 25892.31 36696.91 32799.37 7885.44 35699.81 17797.39 15797.36 37297.81 365
JIA-IIPM95.52 31995.03 32497.00 31796.85 39294.03 31596.93 27795.82 37199.20 6394.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
Patchmtry97.35 24396.97 25598.50 21097.31 38296.47 24098.18 14798.92 25898.95 9698.78 18699.37 7885.44 35699.85 11895.96 26199.83 9199.17 238
PatchT96.65 28596.35 28897.54 29097.40 37995.32 27697.98 17696.64 35999.33 4996.89 33199.42 7284.32 36499.81 17797.69 14497.49 36397.48 378
tpmrst95.07 32695.46 31093.91 37897.11 38684.36 40597.62 22296.96 35194.98 32096.35 35298.80 21085.46 35599.59 30495.60 27896.23 38897.79 368
BH-w/o95.13 32594.89 32995.86 35298.20 33691.31 36795.65 34297.37 33893.64 34896.52 34695.70 37293.04 29699.02 38588.10 38895.82 39397.24 383
tpm94.67 33194.34 33595.66 35897.68 36688.42 38797.88 18894.90 37894.46 33296.03 36098.56 25078.66 38899.79 19995.88 26395.01 39798.78 298
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23395.60 34499.20 20397.73 17898.45 22798.71 22397.50 13599.82 16298.21 10699.59 19998.93 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 28998.26 31596.72 26298.44 22897.37 33995.20 24799.47 34391.89 35997.43 36798.44 330
RPMNet97.02 26996.93 25697.30 30497.71 36194.22 30698.11 15599.30 17299.37 4496.91 32799.34 8686.72 34399.87 9997.53 14997.36 37297.81 365
MVSTER96.86 27796.55 28497.79 26497.91 35294.21 30897.56 23198.87 26697.49 20299.06 13499.05 14680.72 37899.80 18498.44 9499.82 9499.37 182
CPTT-MVS97.84 21297.36 23699.27 8799.31 15398.46 10498.29 13799.27 18694.90 32397.83 27498.37 27194.90 25499.84 13593.85 32699.54 21699.51 119
GBi-Net98.65 11598.47 12699.17 10198.90 24098.24 11999.20 4499.44 11498.59 11798.95 15599.55 4794.14 27699.86 10697.77 13699.69 16399.41 163
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23799.73 3795.15 28297.36 24999.68 4194.45 33498.99 14799.27 9796.87 17199.94 3497.13 17399.91 6199.57 90
PVSNet_BlendedMVS97.55 23097.53 22597.60 28398.92 23693.77 32896.64 29299.43 12094.49 33097.62 28699.18 11596.82 17599.67 26894.73 29699.93 4399.36 188
UnsupCasMVSNet_eth97.89 20197.60 22298.75 17299.31 15397.17 21197.62 22299.35 14598.72 10998.76 19198.68 22992.57 30499.74 23597.76 14095.60 39499.34 194
UnsupCasMVSNet_bld97.30 24796.92 25898.45 21499.28 15896.78 23196.20 31699.27 18695.42 30998.28 24098.30 27993.16 29199.71 24894.99 29097.37 37098.87 283
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23693.77 32894.71 37199.43 12090.98 38097.62 28697.36 34096.82 17599.67 26894.73 29699.56 21198.98 263
FMVSNet596.01 30495.20 32198.41 21897.53 37296.10 24898.74 8699.50 8797.22 23798.03 26099.04 14869.80 39899.88 8297.27 16299.71 15599.25 217
test198.65 11598.47 12699.17 10198.90 24098.24 11999.20 4499.44 11498.59 11798.95 15599.55 4794.14 27699.86 10697.77 13699.69 16399.41 163
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33198.20 31892.62 36398.55 21898.54 25194.88 25799.52 32993.96 32199.44 24098.59 319
FMVSNet397.50 23197.24 24298.29 23198.08 34395.83 26097.86 19298.91 26097.89 16798.95 15598.95 17987.06 34199.81 17797.77 13699.69 16399.23 222
dp93.47 35093.59 34393.13 38796.64 39681.62 41197.66 21796.42 36392.80 36196.11 35698.64 23978.55 39199.59 30493.31 33892.18 40598.16 348
FMVSNet298.49 14098.40 13698.75 17298.90 24097.14 21598.61 10199.13 22498.59 11799.19 12099.28 9594.14 27699.82 16297.97 12499.80 10999.29 210
FMVSNet199.17 4299.17 4399.17 10199.55 9298.24 11999.20 4499.44 11499.21 6199.43 7599.55 4797.82 10799.86 10698.42 9699.89 7199.41 163
N_pmnet97.63 22597.17 24598.99 13499.27 16097.86 16195.98 32693.41 39195.25 31599.47 6998.90 18795.63 23299.85 11896.91 18999.73 14399.27 213
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19185.34 39995.08 37794.96 38892.96 29798.53 39794.41 31098.59 33197.56 377
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31394.05 31296.67 29197.36 33996.70 26497.87 26997.98 30295.14 24999.44 34990.47 38098.58 33299.25 217
UGNet98.53 13598.45 12998.79 16297.94 35096.96 22299.08 5798.54 30399.10 7996.82 33599.47 6496.55 19199.84 13598.56 9099.94 3999.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 28496.27 29397.87 25998.81 26094.61 29996.77 28597.92 32894.94 32297.12 31597.74 31691.11 31799.82 16293.89 32398.15 34799.18 234
XXY-MVS99.14 4699.15 5099.10 11399.76 3097.74 17598.85 8299.62 4798.48 12599.37 8899.49 6298.75 3699.86 10698.20 10799.80 10999.71 45
EC-MVSNet99.09 5499.05 5999.20 9899.28 15898.93 7199.24 4099.84 1899.08 8498.12 25198.37 27198.72 3899.90 6399.05 5699.77 12498.77 299
sss97.21 25696.93 25698.06 24998.83 25495.22 28096.75 28798.48 30794.49 33097.27 31297.90 30892.77 30199.80 18496.57 22299.32 25499.16 241
Test_1112_low_res96.99 27396.55 28498.31 22899.35 15095.47 27195.84 33899.53 8091.51 37496.80 33698.48 26291.36 31599.83 15296.58 22099.53 22099.62 66
1112_ss97.29 24996.86 26298.58 19399.34 15296.32 24496.75 28799.58 5493.14 35596.89 33197.48 33292.11 30999.86 10696.91 18999.54 21699.57 90
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3320.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20499.32 2298.81 28097.66 18298.62 20599.40 7796.82 17599.80 18495.88 26399.51 22598.75 302
TR-MVS95.55 31895.12 32396.86 32897.54 37093.94 31996.49 29996.53 36294.36 33797.03 32296.61 35494.26 27599.16 38186.91 39396.31 38797.47 379
MDTV_nov1_ep13_2view74.92 41497.69 21290.06 38797.75 28085.78 35293.52 33398.69 309
MDTV_nov1_ep1395.22 32097.06 38983.20 40797.74 20796.16 36594.37 33696.99 32398.83 20483.95 36799.53 32593.90 32297.95 357
MIMVSNet199.38 2399.32 2899.55 2399.86 1499.19 3799.41 1299.59 5299.59 2399.71 3399.57 4197.12 15799.90 6399.21 4799.87 7599.54 107
MIMVSNet96.62 28796.25 29497.71 27599.04 21694.66 29799.16 5096.92 35497.23 23497.87 26999.10 13586.11 35099.65 28491.65 36399.21 27398.82 287
IterMVS-LS98.55 13198.70 9198.09 24499.48 12194.73 29497.22 26299.39 12998.97 9399.38 8699.31 9296.00 21499.93 3998.58 8599.97 1999.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22097.35 23798.69 17898.73 26997.02 21996.92 27998.75 29095.89 29698.59 21198.67 23192.08 31099.74 23596.72 21199.81 9999.32 201
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 124
IterMVS97.73 21798.11 17696.57 33499.24 16690.28 38195.52 34999.21 20198.86 10299.33 9599.33 8893.11 29299.94 3498.49 9299.94 3999.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 24596.92 25898.57 19699.09 20497.99 14796.79 28399.35 14593.18 35497.71 28198.07 29795.00 25399.31 36793.97 32099.13 28598.42 334
MVS_111021_LR98.30 16498.12 17598.83 15499.16 19098.03 14596.09 32399.30 17297.58 19098.10 25398.24 28298.25 7199.34 36396.69 21499.65 18099.12 244
DP-MVS98.93 7098.81 7899.28 8499.21 17398.45 10598.46 12499.33 15699.63 1799.48 6799.15 12597.23 15299.75 23097.17 16799.66 17999.63 65
ACMMP++99.68 168
HQP-MVS97.00 27296.49 28698.55 20198.67 28696.79 22896.29 31199.04 23996.05 28895.55 36796.84 35093.84 28299.54 32392.82 34799.26 26699.32 201
QAPM97.31 24696.81 26898.82 15598.80 26397.49 18999.06 6199.19 20790.22 38497.69 28399.16 12196.91 16999.90 6390.89 37899.41 24299.07 248
Vis-MVSNetpermissive99.34 2599.36 2299.27 8799.73 3798.26 11799.17 4999.78 2699.11 7299.27 10699.48 6398.82 3199.95 2298.94 6399.93 4399.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31575.36 41396.29 31189.13 40595.25 31595.38 37399.75 1192.88 29899.19 37994.07 31999.39 24496.72 390
IS-MVSNet98.19 17897.90 19799.08 11799.57 8097.97 15199.31 2698.32 31399.01 9098.98 14899.03 15091.59 31399.79 19995.49 28299.80 10999.48 136
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7597.28 20195.17 35999.50 8794.21 33999.01 14598.32 27886.61 34499.99 297.10 17599.84 8399.60 73
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15285.01 41094.69 32796.92 32598.64 23978.47 39299.31 36795.04 28996.46 38598.20 346
PAPM_NR96.82 28096.32 29098.30 23099.07 20896.69 23497.48 24198.76 28795.81 29896.61 34396.47 35894.12 27999.17 38090.82 37997.78 35899.06 249
TAMVS98.24 17398.05 18298.80 15999.07 20897.18 21097.88 18898.81 28096.66 26599.17 12599.21 10994.81 26099.77 21696.96 18799.88 7299.44 153
PAPR95.29 32294.47 33197.75 27097.50 37795.14 28394.89 36898.71 29491.39 37695.35 37495.48 37894.57 26699.14 38384.95 39697.37 37098.97 266
RPSCF98.62 12198.36 14499.42 5799.65 6499.42 798.55 10799.57 6197.72 17998.90 16799.26 9996.12 20899.52 32995.72 27399.71 15599.32 201
Vis-MVSNet (Re-imp)97.46 23597.16 24698.34 22499.55 9296.10 24898.94 7498.44 30898.32 13298.16 24698.62 24388.76 33199.73 24093.88 32499.79 11499.18 234
test_040298.76 9398.71 8898.93 14399.56 8898.14 12998.45 12699.34 15199.28 5598.95 15598.91 18498.34 6999.79 19995.63 27799.91 6198.86 284
MVS_111021_HR98.25 17298.08 18098.75 17299.09 20497.46 19195.97 32799.27 18697.60 18997.99 26198.25 28198.15 8699.38 35896.87 19799.57 20899.42 160
CSCG98.68 11098.50 11999.20 9899.45 12798.63 8898.56 10699.57 6197.87 16898.85 17798.04 29997.66 11699.84 13596.72 21199.81 9999.13 243
PatchMatch-RL97.24 25496.78 26998.61 18999.03 21997.83 16496.36 30699.06 23393.49 35297.36 31197.78 31395.75 22899.49 33793.44 33698.77 31598.52 323
API-MVS97.04 26896.91 26097.42 30097.88 35498.23 12398.18 14798.50 30697.57 19197.39 30896.75 35296.77 17999.15 38290.16 38199.02 29894.88 402
Test By Simon96.52 192
TDRefinement99.42 1999.38 2199.55 2399.76 3099.33 1699.68 599.71 3399.38 4399.53 5999.61 3698.64 4499.80 18498.24 10499.84 8399.52 117
USDC97.41 24097.40 23297.44 29998.94 23093.67 33095.17 35999.53 8094.03 34498.97 15299.10 13595.29 24599.34 36395.84 26999.73 14399.30 208
EPP-MVSNet98.30 16498.04 18399.07 11999.56 8897.83 16499.29 3298.07 32499.03 8898.59 21199.13 12992.16 30899.90 6396.87 19799.68 16899.49 126
PMMVS96.51 28995.98 29598.09 24497.53 37295.84 25994.92 36798.84 27591.58 37296.05 35995.58 37395.68 23199.66 27995.59 27998.09 35098.76 301
PAPM91.88 37190.34 37496.51 33598.06 34492.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 369
ACMMPcopyleft98.75 9498.50 11999.52 3899.56 8899.16 4398.87 7999.37 13697.16 24098.82 18399.01 16097.71 11399.87 9996.29 24599.69 16399.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26096.71 27398.55 20198.56 30598.05 14496.33 30898.93 25596.91 25297.06 31997.39 33794.38 27199.45 34791.66 36299.18 27998.14 349
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38187.32 39397.65 21996.65 35895.30 31497.07 31898.69 22784.77 35999.75 23094.97 29198.64 32798.83 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 16797.95 19199.34 7298.44 31899.16 4398.12 15499.38 13196.01 29198.06 25698.43 26597.80 10899.67 26895.69 27599.58 20499.20 227
F-COLMAP97.30 24796.68 27599.14 10799.19 18098.39 10797.27 25899.30 17292.93 35896.62 34298.00 30095.73 22999.68 26592.62 35398.46 33499.35 192
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3499.31 40100.00 199.82 24
wuyk23d96.06 30297.62 22191.38 38898.65 29498.57 9598.85 8296.95 35296.86 25599.90 1299.16 12199.18 1798.40 39889.23 38599.77 12477.18 408
OMC-MVS97.88 20397.49 22899.04 12898.89 24598.63 8896.94 27599.25 19295.02 31998.53 22198.51 25597.27 14999.47 34393.50 33599.51 22599.01 258
MG-MVS96.77 28196.61 28097.26 30798.31 32893.06 33895.93 33298.12 32396.45 27497.92 26498.73 22093.77 28699.39 35691.19 37399.04 29499.33 199
AdaColmapbinary97.14 26296.71 27398.46 21398.34 32697.80 17196.95 27498.93 25595.58 30496.92 32597.66 32095.87 22499.53 32590.97 37599.14 28398.04 354
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF98.87 15099.22 17198.48 10399.35 14597.50 20098.28 24098.60 24697.64 12099.35 36293.86 32599.27 26398.79 297
DeepMVS_CXcopyleft93.44 38498.24 33394.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
TinyColmap97.89 20197.98 18997.60 28398.86 24894.35 30596.21 31599.44 11497.45 21099.06 13498.88 19597.99 9799.28 37394.38 31199.58 20499.18 234
MAR-MVS96.47 29395.70 30198.79 16297.92 35199.12 5798.28 13898.60 30192.16 36895.54 37096.17 36394.77 26399.52 32989.62 38398.23 34097.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 19997.69 21398.52 20699.17 18897.66 18097.19 26599.47 10496.31 27997.85 27298.20 28696.71 18599.52 32994.62 29999.72 15098.38 337
MSDG97.71 21997.52 22698.28 23298.91 23996.82 22794.42 38199.37 13697.65 18398.37 23698.29 28097.40 14299.33 36594.09 31899.22 27198.68 312
LS3D98.63 11998.38 14199.36 6397.25 38399.38 899.12 5699.32 15899.21 6198.44 22898.88 19597.31 14599.80 18496.58 22099.34 25298.92 275
CLD-MVS97.49 23397.16 24698.48 21199.07 20897.03 21894.71 37199.21 20194.46 33298.06 25697.16 34497.57 12699.48 34094.46 30499.78 11998.95 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 35192.23 35697.08 31499.25 16597.86 16195.61 34397.16 34592.90 35993.76 39398.65 23675.94 39495.66 40679.30 40697.49 36397.73 370
Gipumacopyleft99.03 5899.16 4598.64 18199.94 298.51 10199.32 2299.75 3199.58 2598.60 20999.62 3398.22 7699.51 33397.70 14299.73 14397.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015