This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18599.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 26997.81 17399.25 4099.30 17698.57 12798.55 22599.33 9597.95 10499.90 6697.16 17399.67 17799.44 160
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26498.40 10999.02 6699.19 21198.99 9798.07 26499.28 10397.11 16599.84 14496.84 20599.32 25799.47 150
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18199.46 10997.56 20399.54 5799.50 6298.97 2399.84 14498.06 12199.92 5499.49 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33198.97 7095.03 37399.18 21596.88 26399.33 10098.78 22298.16 8899.28 37996.74 21399.62 19199.44 160
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30297.23 20797.76 21699.09 23497.31 23198.75 19798.66 24397.56 13399.64 29296.10 26499.55 21799.39 180
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 26996.68 28098.32 23298.32 33497.16 21598.86 8699.37 14189.48 39796.29 36199.15 13796.56 19699.90 6692.90 35299.20 27997.89 369
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14299.65 4699.45 7499.22 1599.76 22898.44 9999.77 12499.64 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12798.81 3299.67 27396.71 21899.77 12499.50 129
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12398.40 6399.72 25295.98 26799.76 13699.42 167
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 29195.95 30298.65 18398.93 23798.09 13796.93 28699.28 18783.58 41098.13 25997.78 32396.13 21499.40 36093.52 34199.29 26498.45 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17099.37 14197.62 19599.04 14698.96 18498.84 3099.79 20597.43 16099.65 18399.49 133
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 31495.35 32497.55 29497.95 35494.79 29398.81 9196.94 36192.28 37695.17 38398.57 25889.90 33199.75 23591.20 38097.33 38298.10 360
OpenMVS_ROBcopyleft95.38 1495.84 31795.18 32997.81 26798.41 33097.15 21697.37 25698.62 30683.86 40998.65 20898.37 28194.29 27699.68 27088.41 39598.62 33696.60 400
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22499.38 13795.76 30998.81 19098.82 21598.36 6599.82 17194.75 30399.77 12499.48 143
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29495.73 30698.85 15698.75 27197.91 16096.42 31299.06 23790.94 39095.59 37297.38 34794.41 27199.59 30990.93 38498.04 36399.05 257
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32195.70 30795.57 36898.83 25988.57 39592.50 40797.72 33792.69 37196.49 35896.44 36793.72 28999.43 35693.61 33899.28 26598.71 314
PCF-MVS92.86 1894.36 34293.00 35998.42 22298.70 28297.56 18993.16 40599.11 23179.59 41497.55 30197.43 34492.19 31099.73 24579.85 41499.45 24097.97 368
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 37690.90 38096.27 34997.22 39091.24 37794.36 39293.33 40192.37 37492.24 40994.58 40166.20 41599.89 7793.16 34994.63 40797.66 382
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 21097.94 20097.65 28299.71 4597.94 15998.52 11898.68 30198.99 9797.52 30499.35 8997.41 14798.18 40891.59 37399.67 17796.82 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 38190.30 38493.70 39097.72 36384.34 41590.24 41197.42 34490.20 39493.79 40193.09 40990.90 32498.89 39986.57 40372.76 41897.87 371
MVEpermissive83.40 2292.50 37191.92 37394.25 38398.83 25991.64 36792.71 40683.52 42095.92 30586.46 41895.46 38795.20 24995.40 41680.51 41398.64 33395.73 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 30295.44 31998.84 15796.25 41098.69 9097.02 27999.12 22988.90 40097.83 28298.86 20689.51 33398.90 39891.92 36699.51 22898.92 283
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25099.80 998.33 7099.91 6099.56 2999.95 3099.97 4
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15899.47 10699.12 7599.52 6399.32 9998.31 7199.90 6697.78 14099.73 14399.66 59
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10598.29 7399.89 7797.61 15099.71 15699.62 69
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18299.42 12699.05 9199.48 7099.27 10598.29 7399.89 7797.61 15099.71 15699.62 69
mmdepth0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
monomultidepth0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
mvs5depth99.30 2999.59 998.44 22099.65 6395.35 27799.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
MVStest195.86 31595.60 31196.63 33995.87 41491.70 36697.93 19198.94 25698.03 16599.56 5399.66 2971.83 40498.26 40799.35 4099.24 27199.91 12
ttmdpeth97.91 20298.02 19197.58 28998.69 28794.10 31598.13 16098.90 26597.95 17197.32 31999.58 4395.95 22898.75 40196.41 24499.22 27599.87 18
WBMVS95.18 33294.78 33796.37 34597.68 37189.74 39295.80 34998.73 29897.54 20698.30 24498.44 27470.06 40599.82 17196.62 22399.87 7699.54 112
dongtai76.24 38575.95 38877.12 40192.39 41967.91 42590.16 41259.44 42682.04 41289.42 41494.67 40049.68 42481.74 41948.06 41977.66 41781.72 415
kuosan69.30 38668.95 38970.34 40287.68 42365.00 42691.11 41059.90 42569.02 41574.46 42088.89 41748.58 42568.03 42128.61 42072.33 41977.99 416
MVSMamba_PlusPlus98.83 8798.98 6798.36 22999.32 15596.58 24298.90 8099.41 13099.75 898.72 20099.50 6296.17 21299.94 3699.27 4599.78 11998.57 330
MGCFI-Net98.34 16398.28 16098.51 21098.47 32097.59 18898.96 7499.48 9899.18 7197.40 31495.50 38498.66 4399.50 34098.18 11298.71 32698.44 340
testing9193.32 36092.27 36496.47 34397.54 37691.25 37696.17 32996.76 36597.18 24793.65 40393.50 40765.11 41799.63 29593.04 35097.45 37398.53 331
testing1193.08 36592.02 36996.26 35097.56 37490.83 38496.32 31895.70 38296.47 28392.66 40793.73 40464.36 41899.59 30993.77 33697.57 36998.37 349
testing9993.04 36691.98 37296.23 35297.53 37890.70 38696.35 31695.94 37896.87 26493.41 40493.43 40863.84 41999.59 30993.24 34897.19 38398.40 345
UBG93.25 36292.32 36396.04 35997.72 36390.16 38995.92 34395.91 37996.03 30093.95 40093.04 41069.60 40799.52 33490.72 38897.98 36498.45 337
UWE-MVS92.38 37391.76 37694.21 38497.16 39184.65 41195.42 36388.45 41595.96 30396.17 36295.84 37966.36 41399.71 25391.87 36898.64 33398.28 352
ETVMVS92.60 37091.08 37997.18 31497.70 36893.65 33796.54 30495.70 38296.51 27994.68 38992.39 41361.80 42099.50 34086.97 40097.41 37698.40 345
sasdasda98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 30995.46 38798.59 5099.46 35198.08 11998.71 32698.46 334
testing22291.96 37890.37 38296.72 33897.47 38492.59 35296.11 33194.76 38896.83 26692.90 40692.87 41157.92 42199.55 32386.93 40197.52 37098.00 367
WB-MVSnew95.73 32095.57 31496.23 35296.70 40190.70 38696.07 33393.86 39895.60 31397.04 32895.45 39096.00 22099.55 32391.04 38298.31 34598.43 342
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 20999.76 3198.70 11799.78 2799.11 14398.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20699.76 3198.73 11499.82 2199.09 14998.81 3299.95 2499.86 499.96 2399.83 24
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24097.97 19099.86 1598.22 15099.88 1799.71 1998.59 5099.84 14499.73 1899.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18499.71 4596.10 25197.87 20299.85 1798.56 13099.90 1299.68 2298.69 4199.85 12699.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24097.79 21099.82 2498.21 15199.81 2499.53 5898.46 6099.84 14499.70 2199.97 1999.90 13
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19299.55 9396.09 25497.74 21899.81 2598.55 13199.85 1999.55 5298.60 4999.84 14499.69 2399.98 1299.89 14
MM98.22 18097.99 19498.91 15098.66 29796.97 22297.89 19894.44 39199.54 3098.95 16199.14 14093.50 29099.92 5199.80 1199.96 2399.85 22
WAC-MVS90.90 38291.37 377
Syy-MVS96.04 30995.56 31597.49 30097.10 39394.48 30496.18 32796.58 36895.65 31194.77 38792.29 41491.27 32099.36 36598.17 11498.05 36198.63 324
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21399.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16899.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
myMVS_eth3d91.92 37990.45 38196.30 34797.10 39390.90 38296.18 32796.58 36895.65 31194.77 38792.29 41453.88 42299.36 36589.59 39398.05 36198.63 324
testing393.51 35792.09 36797.75 27498.60 30494.40 30697.32 26095.26 38697.56 20396.79 34595.50 38453.57 42399.77 22295.26 29398.97 31099.08 253
SSC-MVS98.71 10498.74 8898.62 18999.72 4296.08 25698.74 9298.64 30599.74 1099.67 4299.24 11494.57 26899.95 2499.11 5599.24 27199.82 27
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22499.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
WB-MVS98.52 14598.55 11998.43 22199.65 6395.59 26698.52 11898.77 29199.65 1899.52 6399.00 17494.34 27499.93 4298.65 8798.83 31899.76 41
test_fmvsmvis_n_192099.26 3599.49 1398.54 20799.66 6296.97 22298.00 18299.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 314
dmvs_re95.98 31295.39 32297.74 27698.86 25397.45 19598.37 14095.69 38497.95 17196.56 35295.95 37490.70 32597.68 41188.32 39696.13 39898.11 359
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 12899.92 5499.57 95
dmvs_testset92.94 36792.21 36695.13 37698.59 30790.99 38197.65 23092.09 40696.95 25994.00 39893.55 40692.34 30996.97 41472.20 41792.52 41297.43 389
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 16999.92 5499.57 95
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19199.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 217
test_cas_vis1_n_192098.33 16698.68 10197.27 31199.69 5492.29 36098.03 17699.85 1797.62 19599.96 499.62 3693.98 28399.74 24099.52 3399.86 8099.79 32
test_vis1_n_192098.40 15698.92 7196.81 33499.74 3590.76 38598.15 15899.91 998.33 13999.89 1599.55 5295.07 25399.88 8999.76 1599.93 4399.79 32
test_vis1_n98.31 16998.50 12697.73 27899.76 2994.17 31398.68 10299.91 996.31 28999.79 2699.57 4592.85 30299.42 35899.79 1299.84 8599.60 78
test_fmvs1_n98.09 19198.28 16097.52 29799.68 5693.47 33998.63 10599.93 595.41 32299.68 4099.64 3491.88 31599.48 34699.82 799.87 7699.62 69
mvsany_test197.60 23097.54 22897.77 27097.72 36395.35 27795.36 36597.13 35494.13 35099.71 3499.33 9597.93 10599.30 37597.60 15298.94 31398.67 322
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14798.98 15399.19 12397.76 11699.58 31596.57 22899.55 21798.97 274
test_vis1_rt97.75 22097.72 21697.83 26598.81 26496.35 24697.30 26299.69 3994.61 33797.87 27898.05 30896.26 21098.32 40698.74 8098.18 35098.82 296
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18499.91 1199.67 2797.15 16298.91 39799.76 1599.56 21499.92 11
test_fmvs298.70 10898.97 6897.89 26299.54 9894.05 31698.55 11499.92 796.78 26999.72 3299.78 1096.60 19599.67 27399.91 299.90 6799.94 9
test_fmvs197.72 22297.94 20097.07 32198.66 29792.39 35797.68 22499.81 2595.20 32699.54 5799.44 7591.56 31899.41 35999.78 1499.77 12499.40 179
test_fmvs399.12 5499.41 2198.25 23899.76 2995.07 28999.05 6499.94 297.78 18699.82 2199.84 398.56 5499.71 25399.96 199.96 2399.97 4
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28199.96 499.81 698.18 8499.45 35398.97 6699.79 11499.83 24
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13799.81 9999.24 227
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27397.81 13799.81 9999.24 227
test_f98.67 11998.87 7698.05 25599.72 4295.59 26698.51 12399.81 2596.30 29199.78 2799.82 596.14 21398.63 40399.82 799.93 4399.95 8
FE-MVS95.66 32294.95 33497.77 27098.53 31695.28 28099.40 1696.09 37593.11 36597.96 27299.26 10979.10 39399.77 22292.40 36498.71 32698.27 353
FA-MVS(test-final)96.99 27896.82 27197.50 29998.70 28294.78 29499.34 2096.99 35795.07 32798.48 23299.33 9588.41 34499.65 28996.13 26398.92 31598.07 362
balanced_conf0398.63 12598.72 9298.38 22698.66 29796.68 23998.90 8099.42 12698.99 9798.97 15799.19 12395.81 23399.85 12698.77 7899.77 12498.60 326
MonoMVSNet96.25 30496.53 29195.39 37396.57 40391.01 38098.82 9097.68 34098.57 12798.03 26999.37 8490.92 32397.78 41094.99 29793.88 41097.38 390
patch_mono-298.51 14698.63 10898.17 24499.38 14094.78 29497.36 25799.69 3998.16 16198.49 23199.29 10297.06 16699.97 598.29 10799.91 6199.76 41
EGC-MVSNET85.24 38280.54 38599.34 7599.77 2699.20 3899.08 5899.29 18412.08 42020.84 42199.42 7797.55 13499.85 12697.08 18199.72 15198.96 276
test250692.39 37291.89 37493.89 38899.38 14082.28 41899.32 2366.03 42499.08 8898.77 19499.57 4566.26 41499.84 14498.71 8399.95 3099.54 112
test111196.49 29796.82 27195.52 36999.42 13587.08 40399.22 4287.14 41699.11 7699.46 7599.58 4388.69 33899.86 11498.80 7499.95 3099.62 69
ECVR-MVScopyleft96.42 29996.61 28595.85 36199.38 14088.18 39999.22 4286.00 41899.08 8899.36 9599.57 4588.47 34399.82 17198.52 9699.95 3099.54 112
test_blank0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 35898.86 10998.87 18197.62 33498.63 4698.96 39499.41 3898.29 34698.45 337
DVP-MVS++98.90 7998.70 9899.51 4698.43 32699.15 5199.43 1299.32 16398.17 15899.26 11599.02 16298.18 8499.88 8997.07 18299.45 24099.49 133
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 115
MSC_two_6792asdad99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17699.60 19899.71 48
PC_three_145293.27 36299.40 8898.54 26098.22 8097.00 41395.17 29499.45 24099.49 133
No_MVS99.32 8298.43 32698.37 11398.86 27699.89 7797.14 17699.60 19899.71 48
test_one_060199.39 13999.20 3899.31 16898.49 13298.66 20799.02 16297.64 126
eth-test20.00 428
eth-test0.00 428
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13598.91 17198.81 21798.94 2599.91 6098.35 10399.73 14399.49 133
test_method79.78 38379.50 38680.62 39980.21 42445.76 42770.82 41598.41 31731.08 41980.89 41997.71 32784.85 36497.37 41291.51 37580.03 41698.75 311
Anonymous2024052198.69 11198.87 7698.16 24699.77 2695.11 28899.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 167
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22099.02 16288.65 34199.96 1298.11 11696.34 39499.49 133
hse-mvs297.46 24097.07 25598.64 18498.73 27397.33 20197.45 25297.64 34399.11 7698.58 22097.98 31288.65 34199.79 20598.11 11697.39 37798.81 300
CL-MVSNet_self_test97.44 24397.22 24898.08 25198.57 31195.78 26494.30 39398.79 28896.58 27898.60 21698.19 29794.74 26699.64 29296.41 24498.84 31798.82 296
KD-MVS_2432*160092.87 36891.99 37095.51 37091.37 42089.27 39394.07 39598.14 32795.42 31997.25 32196.44 36767.86 40999.24 38191.28 37896.08 39998.02 364
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11499.24 5099.71 15699.39 180
AUN-MVS96.24 30695.45 31898.60 19498.70 28297.22 20997.38 25597.65 34195.95 30495.53 37997.96 31682.11 38399.79 20596.31 25097.44 37498.80 305
ZD-MVS99.01 22598.84 7899.07 23694.10 35198.05 26798.12 30196.36 20799.86 11492.70 36099.19 282
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16198.96 18497.49 14499.86 11496.56 23299.39 24799.45 156
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16198.96 18497.75 11796.56 23299.39 24799.45 156
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16699.31 16898.03 16599.66 4399.02 16298.36 6599.88 8996.91 19499.62 19199.41 170
IU-MVS99.49 11599.15 5198.87 27192.97 36699.41 8596.76 21199.62 19199.66 59
OPU-MVS98.82 15998.59 30798.30 11898.10 16698.52 26398.18 8498.75 40194.62 30799.48 23799.41 170
test_241102_TWO99.30 17698.03 16599.26 11599.02 16297.51 14099.88 8996.91 19499.60 19899.66 59
test_241102_ONE99.49 11599.17 4399.31 16897.98 16899.66 4398.90 19698.36 6599.48 346
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15399.41 13096.77 27098.83 18598.90 19697.80 11499.82 17195.68 28399.52 22699.38 187
cl2295.79 31895.39 32296.98 32496.77 40092.79 34994.40 39198.53 31094.59 33897.89 27698.17 29882.82 38099.24 38196.37 24699.03 30098.92 283
miper_ehance_all_eth97.06 27197.03 25797.16 31897.83 35993.06 34394.66 38399.09 23495.99 30298.69 20298.45 27392.73 30599.61 30496.79 20799.03 30098.82 296
miper_enhance_ethall96.01 31095.74 30596.81 33496.41 40892.27 36193.69 40298.89 26891.14 38898.30 24497.35 35090.58 32699.58 31596.31 25099.03 30098.60 326
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23498.11 26198.39 27898.00 9999.87 10696.86 20499.64 18599.55 108
dcpmvs_298.78 9599.11 5497.78 26999.56 8993.67 33599.06 6299.86 1599.50 3299.66 4399.26 10997.21 16099.99 298.00 12699.91 6199.68 55
cl____97.02 27496.83 27097.58 28997.82 36094.04 31894.66 38399.16 22297.04 25498.63 21098.71 23288.68 34099.69 26197.00 18699.81 9999.00 269
DIV-MVS_self_test97.02 27496.84 26997.58 28997.82 36094.03 31994.66 38399.16 22297.04 25498.63 21098.71 23288.69 33899.69 26197.00 18699.81 9999.01 265
eth_miper_zixun_eth97.23 26097.25 24697.17 31698.00 35392.77 35094.71 38099.18 21597.27 23598.56 22398.74 22891.89 31499.69 26197.06 18499.81 9999.05 257
9.1497.78 21099.07 21397.53 24499.32 16395.53 31698.54 22798.70 23597.58 13199.76 22894.32 32099.46 238
uanet_test0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
DCPMVS0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
save fliter99.11 20497.97 15496.53 30699.02 24898.24 148
ET-MVSNet_ETH3D94.30 34593.21 35597.58 28998.14 34694.47 30594.78 37993.24 40294.72 33589.56 41395.87 37778.57 39699.81 18596.91 19497.11 38698.46 334
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
EIA-MVS98.00 19797.74 21398.80 16398.72 27598.09 13798.05 17399.60 5597.39 22396.63 34995.55 38297.68 12099.80 19296.73 21599.27 26698.52 332
miper_refine_blended92.87 36891.99 37095.51 37091.37 42089.27 39394.07 39598.14 32795.42 31997.25 32196.44 36767.86 40999.24 38191.28 37896.08 39998.02 364
miper_lstm_enhance97.18 26497.16 25197.25 31398.16 34492.85 34895.15 37199.31 16897.25 23798.74 19998.78 22290.07 32999.78 21697.19 17199.80 10999.11 252
ETV-MVS98.03 19497.86 20798.56 20398.69 28798.07 14397.51 24799.50 8998.10 16397.50 30695.51 38398.41 6299.88 8996.27 25399.24 27197.71 381
CS-MVS99.13 5299.10 5699.24 9799.06 21799.15 5199.36 1999.88 1399.36 4998.21 25298.46 27298.68 4299.93 4299.03 6299.85 8198.64 323
D2MVS97.84 21697.84 20897.83 26599.14 20094.74 29696.94 28498.88 26995.84 30798.89 17498.96 18494.40 27299.69 26197.55 15399.95 3099.05 257
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17898.84 28097.97 16999.08 13799.02 16297.61 12999.88 8996.99 18899.63 18899.48 143
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15899.08 13799.02 16297.89 10699.88 8997.07 18299.71 15699.70 53
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17899.32 16399.88 8996.99 18899.63 18899.68 55
test072699.50 10899.21 3298.17 15799.35 15097.97 16999.26 11599.06 15097.61 129
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14598.88 17798.85 20997.53 13799.87 10696.14 26199.31 25999.48 143
DPM-MVS96.32 30195.59 31398.51 21098.76 26997.21 21094.54 38998.26 32191.94 37896.37 35997.25 35193.06 29799.43 35691.42 37698.74 32298.89 288
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14799.25 19697.44 22098.67 20598.39 27897.68 12099.85 12696.00 26599.51 22899.52 123
test_yl96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26397.36 34698.21 15198.17 25397.86 31986.27 35299.55 32394.87 30198.32 34398.89 288
thisisatest053095.27 33094.45 34097.74 27699.19 18594.37 30797.86 20390.20 41297.17 24898.22 25197.65 33173.53 40399.90 6696.90 19999.35 25398.95 277
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19297.89 13199.52 22699.35 199
Anonymous20240521197.90 20397.50 23199.08 12098.90 24598.25 12198.53 11796.16 37398.87 10899.11 13298.86 20690.40 32899.78 21697.36 16399.31 25999.19 239
DCV-MVSNet96.69 28796.29 29797.90 26098.28 33695.24 28197.29 26397.36 34698.21 15198.17 25397.86 31986.27 35299.55 32394.87 30198.32 34398.89 288
tttt051795.64 32394.98 33297.64 28499.36 14793.81 33098.72 9790.47 41198.08 16498.67 20598.34 28573.88 40299.92 5197.77 14199.51 22899.20 234
our_test_397.39 24797.73 21596.34 34698.70 28289.78 39194.61 38698.97 25596.50 28099.04 14698.85 20995.98 22599.84 14497.26 16899.67 17799.41 170
thisisatest051594.12 34993.16 35696.97 32598.60 30492.90 34793.77 40190.61 41094.10 35196.91 33595.87 37774.99 40199.80 19294.52 31099.12 29398.20 355
ppachtmachnet_test97.50 23697.74 21396.78 33698.70 28291.23 37894.55 38899.05 24096.36 28699.21 12398.79 22096.39 20399.78 21696.74 21399.82 9599.34 201
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17399.22 20494.16 34998.98 15399.10 14697.52 13999.79 20596.45 24299.64 18599.53 120
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 300
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28099.39 13597.67 19199.44 7998.99 17597.53 13799.89 7795.40 29199.68 17199.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14799.10 6499.05 144
thres100view90094.19 34693.67 35095.75 36499.06 21791.35 37298.03 17694.24 39598.33 13997.40 31494.98 39579.84 38799.62 29883.05 40898.08 35896.29 401
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11498.20 8399.86 11495.92 26999.69 16699.04 261
tfpn200view994.03 35093.44 35295.78 36398.93 23791.44 37097.60 23694.29 39397.94 17397.10 32494.31 40279.67 38999.62 29883.05 40898.08 35896.29 401
c3_l97.36 24897.37 23997.31 30898.09 34993.25 34195.01 37499.16 22297.05 25398.77 19498.72 23192.88 30099.64 29296.93 19399.76 13699.05 257
CHOSEN 280x42095.51 32795.47 31695.65 36798.25 33888.27 39893.25 40498.88 26993.53 35994.65 39097.15 35486.17 35499.93 4297.41 16199.93 4398.73 313
CANet97.87 20997.76 21198.19 24397.75 36295.51 27196.76 29599.05 24097.74 18796.93 33298.21 29595.59 23999.89 7797.86 13699.93 4399.19 239
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32698.11 13497.61 23599.50 8998.64 11897.39 31697.52 33998.12 9299.95 2496.90 19998.71 32698.38 347
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35299.49 698.02 17899.16 22298.29 14597.64 29397.99 31196.44 20299.95 2496.66 22198.93 31498.60 326
CANet_DTU97.26 25697.06 25697.84 26497.57 37394.65 30196.19 32698.79 28897.23 24395.14 38498.24 29293.22 29299.84 14497.34 16499.84 8599.04 261
MVS_030497.44 24397.01 25998.72 18096.42 40796.74 23597.20 27191.97 40798.46 13498.30 24498.79 22092.74 30499.91 6099.30 4399.94 3899.52 123
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27599.38 13794.87 33398.97 15798.99 17598.01 9899.88 8997.29 16699.70 16399.58 90
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20599.31 10897.71 32794.61 26799.88 8996.14 26199.19 28299.70 53
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36698.81 300
sam_mvs84.29 372
IterMVS-SCA-FT97.85 21598.18 17396.87 33099.27 16491.16 37995.53 35799.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8799.94 3899.49 133
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 25899.24 12098.89 20297.83 10999.81 18596.88 20199.49 23699.48 143
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32798.98 23093.91 32596.45 30999.17 21997.85 18198.41 23897.14 35598.47 5799.92 5198.02 12399.05 29696.92 394
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27799.18 21597.10 25298.75 19798.92 19298.18 8499.65 28996.68 22099.56 21499.37 189
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20699.25 19696.94 26098.78 19199.12 14298.02 9799.84 14497.13 17899.67 17799.59 84
ambc98.24 24098.82 26295.97 25898.62 10799.00 25399.27 11199.21 12096.99 17299.50 34096.55 23599.50 23599.26 223
MTGPAbinary99.20 207
CS-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25598.51 26498.64 4499.93 4298.91 6899.85 8198.88 291
Effi-MVS+98.02 19597.82 20998.62 18998.53 31697.19 21297.33 25999.68 4497.30 23296.68 34797.46 34398.56 5499.80 19296.63 22298.20 34998.86 293
xiu_mvs_v2_base97.16 26697.49 23296.17 35598.54 31492.46 35595.45 36198.84 28097.25 23797.48 30896.49 36498.31 7199.90 6696.34 24998.68 33196.15 405
xiu_mvs_v1_base97.86 21098.17 17496.92 32798.98 23093.91 32596.45 30999.17 21997.85 18198.41 23897.14 35598.47 5799.92 5198.02 12399.05 29696.92 394
new-patchmatchnet98.35 16298.74 8897.18 31499.24 17192.23 36296.42 31299.48 9898.30 14299.69 3899.53 5897.44 14699.82 17198.84 7399.77 12499.49 133
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10699.36 3999.92 5499.64 65
pmmvs597.64 22897.49 23298.08 25199.14 20095.12 28796.70 29999.05 24093.77 35698.62 21298.83 21293.23 29199.75 23598.33 10699.76 13699.36 195
test_post197.59 23820.48 42283.07 37899.66 28494.16 321
test_post21.25 42183.86 37499.70 257
Fast-Effi-MVS+97.67 22697.38 23898.57 19998.71 27897.43 19797.23 26799.45 11394.82 33496.13 36396.51 36398.52 5699.91 6096.19 25798.83 31898.37 349
patchmatchnet-post98.77 22484.37 36999.85 126
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16199.21 5199.91 6199.77 37
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27599.28 18795.54 31599.42 8399.19 12397.27 15599.63 29597.89 13199.97 1999.20 234
GG-mvs-BLEND94.76 37994.54 41792.13 36399.31 2780.47 42288.73 41691.01 41667.59 41198.16 40982.30 41294.53 40893.98 412
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32798.98 23093.91 32596.45 30999.17 21997.85 18198.41 23897.14 35598.47 5799.92 5198.02 12399.05 29696.92 394
Anonymous2023120698.21 18298.21 16998.20 24299.51 10595.43 27598.13 16099.32 16396.16 29498.93 16998.82 21596.00 22099.83 16197.32 16599.73 14399.36 195
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17498.90 19696.98 17399.92 5197.16 17399.70 16399.56 101
MTMP97.93 19191.91 408
gm-plane-assit94.83 41681.97 41988.07 40394.99 39499.60 30591.76 369
test9_res93.28 34799.15 28799.38 187
MVP-Stereo98.08 19297.92 20298.57 19998.96 23396.79 23197.90 19799.18 21596.41 28598.46 23398.95 18895.93 22999.60 30596.51 23898.98 30999.31 212
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27898.08 14195.96 33899.03 24591.40 38495.85 36997.53 33796.52 19899.76 228
train_agg97.10 26896.45 29399.07 12298.71 27898.08 14195.96 33899.03 24591.64 37995.85 36997.53 33796.47 20099.76 22893.67 33799.16 28599.36 195
gg-mvs-nofinetune92.37 37491.20 37895.85 36195.80 41592.38 35899.31 2781.84 42199.75 891.83 41099.74 1568.29 40899.02 39187.15 39997.12 38596.16 404
SCA96.41 30096.66 28395.67 36598.24 33988.35 39795.85 34796.88 36396.11 29597.67 29298.67 24093.10 29599.85 12694.16 32199.22 27598.81 300
Patchmatch-test96.55 29396.34 29597.17 31698.35 33293.06 34398.40 13797.79 33597.33 22898.41 23898.67 24083.68 37599.69 26195.16 29599.31 25998.77 308
test_898.67 29298.01 14995.91 34499.02 24891.64 37995.79 37197.50 34096.47 20099.76 228
MS-PatchMatch97.68 22597.75 21297.45 30398.23 34193.78 33197.29 26398.84 28096.10 29698.64 20998.65 24596.04 21799.36 36596.84 20599.14 28899.20 234
Patchmatch-RL test97.26 25697.02 25897.99 25999.52 10395.53 27096.13 33099.71 3697.47 21299.27 11199.16 13384.30 37199.62 29897.89 13199.77 12498.81 300
cdsmvs_eth3d_5k24.66 38732.88 3900.00 4050.00 4280.00 4300.00 41699.10 2320.00 4230.00 42497.58 33599.21 160.00 4240.00 4230.00 4220.00 420
pcd_1.5k_mvsjas8.17 39010.90 3930.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 42398.07 930.00 4240.00 4230.00 4220.00 420
agg_prior292.50 36399.16 28599.37 189
agg_prior98.68 29197.99 15099.01 25195.59 37299.77 222
tmp_tt78.77 38478.73 38778.90 40058.45 42574.76 42494.20 39478.26 42339.16 41886.71 41792.82 41280.50 38575.19 42086.16 40492.29 41386.74 414
canonicalmvs98.34 16398.26 16498.58 19698.46 32297.82 17098.96 7499.46 10999.19 6997.46 30995.46 38798.59 5099.46 35198.08 11998.71 32698.46 334
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
alignmvs97.35 24996.88 26698.78 16998.54 31498.09 13797.71 22197.69 33999.20 6597.59 29795.90 37688.12 34699.55 32398.18 11298.96 31198.70 317
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 10998.62 4799.73 24599.17 5499.92 5499.76 41
v14419298.54 14098.57 11898.45 21899.21 17895.98 25797.63 23299.36 14597.15 25199.32 10699.18 12795.84 23299.84 14499.50 3499.91 6199.54 112
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12099.41 8196.79 18499.82 17198.69 8599.88 7399.76 41
v192192098.54 14098.60 11598.38 22699.20 18295.76 26597.56 24199.36 14597.23 24399.38 9199.17 13196.02 21899.84 14499.57 2799.90 6799.54 112
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14699.81 698.05 9699.96 1298.85 7299.99 599.86 21
v119298.60 13098.66 10498.41 22399.27 16495.88 26097.52 24599.36 14597.41 22199.33 10099.20 12296.37 20699.82 17199.57 2799.92 5499.55 108
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12699.02 6399.94 3899.80 31
v114498.60 13098.66 10498.41 22399.36 14795.90 25997.58 23999.34 15697.51 20899.27 11199.15 13796.34 20899.80 19299.47 3699.93 4399.51 126
sosnet-low-res0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21298.58 22098.50 26897.97 10399.85 12696.57 22899.59 20299.53 120
v14898.45 15198.60 11598.00 25899.44 12994.98 29097.44 25399.06 23798.30 14299.32 10698.97 18196.65 19399.62 29898.37 10299.85 8199.39 180
sosnet0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
uncertanet0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14899.58 5896.80 26798.88 17799.06 15097.65 12399.57 31794.45 31399.61 19699.37 189
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26798.88 17799.06 15097.65 12399.57 31794.45 31399.61 19699.37 189
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 45
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21798.44 23598.51 26497.83 10999.88 8996.46 24199.58 20799.58 90
RRT-MVS97.88 20797.98 19597.61 28698.15 34593.77 33298.97 7399.64 4999.16 7398.69 20299.42 7791.60 31699.89 7797.63 14998.52 34099.16 248
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 265
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
PS-MVSNAJ97.08 27097.39 23796.16 35798.56 31292.46 35595.24 36898.85 27997.25 23797.49 30795.99 37398.07 9399.90 6696.37 24698.67 33296.12 406
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
EI-MVSNet-UG-set98.69 11198.71 9598.62 18999.10 20696.37 24597.23 26798.87 27199.20 6599.19 12598.99 17597.30 15299.85 12698.77 7899.79 11499.65 64
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18899.09 20996.40 24497.23 26798.86 27699.20 6599.18 12998.97 18197.29 15499.85 12698.72 8299.78 11999.64 65
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24598.75 29597.46 21796.90 33897.83 32296.01 21999.84 14495.82 27799.35 25399.46 152
test_prior497.97 15495.86 345
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30298.63 25097.50 14199.83 16196.79 20799.53 22399.56 101
v124098.55 13898.62 11098.32 23299.22 17695.58 26897.51 24799.45 11397.16 24999.45 7899.24 11496.12 21599.85 12699.60 2599.88 7399.55 108
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17199.07 5899.83 9299.56 101
test_prior295.74 35196.48 28296.11 36497.63 33395.92 23094.16 32199.20 279
X-MVStestdata94.32 34392.59 36199.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30245.85 41897.50 14199.83 16196.79 20799.53 22399.56 101
test_prior98.95 14398.69 28797.95 15899.03 24599.59 30999.30 215
旧先验295.76 35088.56 40297.52 30499.66 28494.48 311
新几何295.93 341
新几何198.91 15098.94 23597.76 17698.76 29287.58 40496.75 34698.10 30394.80 26399.78 21692.73 35999.00 30599.20 234
旧先验198.82 26297.45 19598.76 29298.34 28595.50 24399.01 30499.23 229
无先验95.74 35198.74 29789.38 39899.73 24592.38 36599.22 233
原ACMM295.53 357
原ACMM198.35 23098.90 24596.25 24998.83 28492.48 37396.07 36698.10 30395.39 24699.71 25392.61 36298.99 30799.08 253
test22298.92 24196.93 22795.54 35698.78 29085.72 40796.86 34198.11 30294.43 27099.10 29599.23 229
testdata299.79 20592.80 357
segment_acmp97.02 170
testdata98.09 24898.93 23795.40 27698.80 28790.08 39597.45 31198.37 28195.26 24899.70 25793.58 34098.95 31299.17 245
testdata195.44 36296.32 288
v899.01 6499.16 4898.57 19999.47 12496.31 24898.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18599.60 2599.98 1299.60 78
131495.74 31995.60 31196.17 35597.53 37892.75 35198.07 17098.31 32091.22 38694.25 39396.68 36195.53 24099.03 39091.64 37297.18 38496.74 398
LFMVS97.20 26296.72 27798.64 18498.72 27596.95 22598.93 7894.14 39799.74 1098.78 19199.01 17184.45 36899.73 24597.44 15999.27 26699.25 224
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35699.59 2799.11 13299.27 10594.82 26099.79 20598.34 10499.63 18899.34 201
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35099.67 1698.97 15799.50 6290.45 32799.80 19297.88 13499.20 27999.48 143
v1098.97 7099.11 5498.55 20499.44 12996.21 25098.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16199.70 2199.99 599.61 77
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 10999.05 15796.72 19099.82 17198.09 11899.36 25199.59 84
MVS93.19 36392.09 36796.50 34296.91 39694.03 31998.07 17098.06 33168.01 41694.56 39296.48 36595.96 22799.30 37583.84 40796.89 38996.17 403
v2v48298.56 13498.62 11098.37 22899.42 13595.81 26397.58 23999.16 22297.90 17799.28 10999.01 17195.98 22599.79 20599.33 4199.90 6799.51 126
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14699.19 21197.87 17999.25 11999.16 13396.84 17899.78 21699.21 5199.84 8599.46 152
SD-MVS98.40 15698.68 10197.54 29598.96 23397.99 15097.88 19999.36 14598.20 15599.63 4999.04 15998.76 3595.33 41796.56 23299.74 14099.31 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 31595.32 32597.49 30098.60 30494.15 31493.83 40097.93 33395.49 31796.68 34797.42 34583.21 37699.30 37596.22 25598.55 33999.01 265
MSLP-MVS++98.02 19598.14 18097.64 28498.58 30995.19 28497.48 24999.23 20397.47 21297.90 27598.62 25297.04 16798.81 40097.55 15399.41 24598.94 281
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20199.35 9799.24 11497.83 10999.89 7797.88 13499.70 16399.75 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 14998.98 17997.89 10699.85 12696.54 23699.42 24499.46 152
ADS-MVSNet295.43 32894.98 33296.76 33798.14 34691.74 36597.92 19497.76 33690.23 39196.51 35598.91 19385.61 35999.85 12692.88 35396.90 38798.69 318
EI-MVSNet98.40 15698.51 12498.04 25699.10 20694.73 29797.20 27198.87 27198.97 10099.06 13999.02 16296.00 22099.80 19298.58 9099.82 9599.60 78
Regformer0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
CVMVSNet96.25 30497.21 24993.38 39499.10 20680.56 42197.20 27198.19 32696.94 26099.00 15199.02 16289.50 33499.80 19296.36 24899.59 20299.78 35
pmmvs497.58 23397.28 24498.51 21098.84 25796.93 22795.40 36498.52 31193.60 35898.61 21498.65 24595.10 25299.60 30596.97 19199.79 11498.99 270
EU-MVSNet97.66 22798.50 12695.13 37699.63 7385.84 40698.35 14298.21 32398.23 14999.54 5799.46 7095.02 25499.68 27098.24 10899.87 7699.87 18
VNet98.42 15398.30 15898.79 16698.79 26897.29 20398.23 14998.66 30299.31 5398.85 18298.80 21894.80 26399.78 21698.13 11599.13 29099.31 212
test-LLR93.90 35293.85 34694.04 38596.53 40484.62 41294.05 39792.39 40496.17 29294.12 39595.07 39182.30 38199.67 27395.87 27398.18 35097.82 372
TESTMET0.1,192.19 37791.77 37593.46 39296.48 40682.80 41794.05 39791.52 40994.45 34394.00 39894.88 39766.65 41299.56 32095.78 27898.11 35698.02 364
test-mter92.33 37591.76 37694.04 38596.53 40484.62 41294.05 39792.39 40494.00 35494.12 39595.07 39165.63 41699.67 27395.87 27398.18 35097.82 372
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 8999.09 5799.84 8599.62 69
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21298.56 22398.54 26097.75 11799.88 8996.57 22899.59 20299.58 90
testgi98.32 16798.39 14698.13 24799.57 8195.54 26997.78 21199.49 9697.37 22599.19 12597.65 33198.96 2499.49 34396.50 23998.99 30799.34 201
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21199.24 20199.04 9399.41 8598.90 19697.65 12399.76 22897.70 14699.79 11499.39 180
thres600view794.45 34193.83 34796.29 34899.06 21791.53 36897.99 18694.24 39598.34 13897.44 31295.01 39379.84 38799.67 27384.33 40698.23 34797.66 382
ADS-MVSNet95.24 33194.93 33596.18 35498.14 34690.10 39097.92 19497.32 34990.23 39196.51 35598.91 19385.61 35999.74 24092.88 35396.90 38798.69 318
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 19897.58 29898.66 24397.40 14899.88 8994.72 30699.60 19899.54 112
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 38820.53 3916.87 40412.05 4264.20 42993.62 4036.73 4274.62 42210.41 42224.33 4198.28 4273.56 4239.69 42215.07 42012.86 419
thres40094.14 34893.44 35296.24 35198.93 23791.44 37097.60 23694.29 39397.94 17397.10 32494.31 40279.67 38999.62 29883.05 40898.08 35897.66 382
test12317.04 38920.11 3927.82 40310.25 4274.91 42894.80 3784.47 4284.93 42110.00 42324.28 4209.69 4263.64 42210.14 42112.43 42114.92 418
thres20093.72 35593.14 35795.46 37298.66 29791.29 37496.61 30394.63 39097.39 22396.83 34293.71 40579.88 38699.56 32082.40 41198.13 35595.54 410
test0.0.03 194.51 34093.69 34996.99 32396.05 41193.61 33894.97 37593.49 39996.17 29297.57 30094.88 39782.30 38199.01 39393.60 33994.17 40998.37 349
pmmvs395.03 33594.40 34196.93 32697.70 36892.53 35495.08 37297.71 33888.57 40197.71 28998.08 30679.39 39199.82 17196.19 25799.11 29498.43 342
EMVS93.83 35394.02 34593.23 39596.83 39984.96 40989.77 41496.32 37297.92 17597.43 31396.36 37086.17 35498.93 39687.68 39897.73 36795.81 408
E-PMN94.17 34794.37 34293.58 39196.86 39785.71 40890.11 41397.07 35598.17 15897.82 28497.19 35284.62 36798.94 39589.77 39197.68 36896.09 407
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 14999.49 9697.01 25798.69 20298.88 20398.00 9999.89 7795.87 27399.59 20299.58 90
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25698.51 10498.49 12699.83 2298.37 13699.69 3899.46 7098.21 8299.92 5194.13 32599.30 26298.91 286
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 28998.73 29895.66 31097.92 27397.70 32997.17 16199.66 28496.18 25999.23 27499.47 150
mvs_anonymous97.83 21898.16 17796.87 33098.18 34391.89 36497.31 26198.90 26597.37 22598.83 18599.46 7096.28 20999.79 20598.90 6998.16 35398.95 277
MVS_Test98.18 18598.36 15097.67 28098.48 31994.73 29798.18 15499.02 24897.69 19098.04 26899.11 14397.22 15999.56 32098.57 9298.90 31698.71 314
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25399.44 12994.96 29196.63 30299.15 22798.35 13798.83 18599.11 14394.31 27599.85 12696.60 22598.72 32499.37 189
CDPH-MVS97.26 25696.66 28399.07 12299.00 22698.15 13096.03 33499.01 25191.21 38797.79 28597.85 32196.89 17699.69 26192.75 35899.38 25099.39 180
test1298.93 14698.58 30997.83 16798.66 30296.53 35395.51 24299.69 26199.13 29099.27 220
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20699.57 6599.17 7299.35 9799.17 13198.35 6899.69 26198.46 9899.73 14399.41 170
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 18098.24 16798.17 24499.00 22695.44 27496.38 31499.58 5897.79 18598.53 22898.50 26896.76 18799.74 24097.95 13099.64 18599.34 201
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 35492.83 36096.42 34497.70 36891.28 37596.84 29189.77 41393.96 35592.44 40895.93 37579.14 39299.77 22292.94 35196.76 39198.21 354
baseline195.96 31395.44 31997.52 29798.51 31893.99 32298.39 13896.09 37598.21 15198.40 24297.76 32586.88 34899.63 29595.42 29089.27 41598.95 277
YYNet197.60 23097.67 21897.39 30799.04 22193.04 34695.27 36698.38 31897.25 23798.92 17098.95 18895.48 24499.73 24596.99 18898.74 32299.41 170
PMMVS298.07 19398.08 18698.04 25699.41 13794.59 30394.59 38799.40 13397.50 20998.82 18898.83 21296.83 18099.84 14497.50 15899.81 9999.71 48
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30699.04 22193.09 34295.27 36698.42 31597.26 23698.88 17798.95 18895.43 24599.73 24597.02 18598.72 32499.41 170
tpmvs95.02 33695.25 32694.33 38296.39 40985.87 40598.08 16896.83 36495.46 31895.51 38098.69 23685.91 35799.53 33094.16 32196.23 39697.58 385
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18799.68 4497.62 19599.34 9999.18 12797.54 13599.77 22297.79 13999.74 14099.04 261
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21399.27 19098.20 15597.79 28597.98 31294.90 25699.70 25794.42 31599.51 22899.45 156
plane_prior799.19 18597.87 163
plane_prior698.99 22997.70 18294.90 256
plane_prior599.27 19099.70 25794.42 31599.51 22899.45 156
plane_prior497.98 312
plane_prior397.78 17597.41 22197.79 285
plane_prior297.77 21398.20 155
plane_prior199.05 220
plane_prior97.65 18497.07 27896.72 27299.36 251
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7199.95 3099.81 30
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22499.40 13399.14 7499.06 13998.59 25696.71 19199.93 4298.57 9299.77 12499.53 120
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7599.93 4399.77 37
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16199.06 5999.62 19199.66 59
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7599.93 4399.72 47
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24399.25 19698.84 11299.06 13998.76 22696.76 18799.93 4298.57 9299.77 12499.50 129
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22099.38 13798.93 10499.12 13198.73 22996.77 18599.86 11498.63 8999.80 10999.46 152
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 10997.01 17199.94 3698.74 8099.93 4399.79 32
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4298.90 6999.93 4399.77 37
WR-MVS98.40 15698.19 17299.03 13299.00 22697.65 18496.85 29098.94 25698.57 12798.89 17498.50 26895.60 23899.85 12697.54 15599.85 8199.59 84
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22696.38 20599.86 11498.00 12699.82 9599.50 129
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25199.57 6599.37 4699.21 12399.61 3996.76 18799.83 16198.06 12199.83 9299.71 48
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15098.38 6499.95 2498.34 10499.90 6799.57 95
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27897.88 16296.32 31898.66 30296.33 28799.23 12298.51 26497.48 14599.40 36097.16 17399.46 23899.02 264
n20.00 429
nn0.00 429
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21298.09 26398.68 23897.62 12899.89 7796.22 25599.62 19199.57 95
door-mid99.57 65
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30499.48 9897.32 23099.11 13298.61 25499.33 1399.30 37596.23 25498.38 34299.28 219
mvsmamba97.57 23497.26 24598.51 21098.69 28796.73 23698.74 9297.25 35197.03 25697.88 27799.23 11890.95 32299.87 10696.61 22499.00 30598.91 286
MVSFormer98.26 17698.43 13997.77 27098.88 25193.89 32899.39 1799.56 7299.11 7698.16 25598.13 29993.81 28699.97 599.26 4699.57 21199.43 164
jason97.45 24297.35 24197.76 27399.24 17193.93 32495.86 34598.42 31594.24 34798.50 23098.13 29994.82 26099.91 6097.22 17099.73 14399.43 164
jason: jason.
lupinMVS97.06 27196.86 26797.65 28298.88 25193.89 32895.48 36097.97 33293.53 35998.16 25597.58 33593.81 28699.91 6096.77 21099.57 21199.17 245
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 22898.94 16898.86 20698.75 3699.82 17197.53 15699.71 15699.56 101
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40399.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 101
lessismore_v098.97 14099.73 3697.53 19186.71 41799.37 9399.52 6189.93 33099.92 5198.99 6599.72 15199.44 160
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32499.37 4699.70 3699.65 3392.65 30699.93 4299.04 6199.84 8599.60 78
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5199.44 3799.92 5499.68 55
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27198.61 21498.38 28098.62 4799.87 10696.47 24099.67 17799.59 84
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33699.50 8997.30 23299.05 14498.98 17999.35 1299.32 37295.72 28099.68 17199.18 241
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22199.46 10997.25 23798.98 15398.99 17597.54 13599.84 14495.88 27099.74 14099.23 229
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18299.62 5199.22 6199.55 5699.22 11998.93 2699.75 23598.66 8699.81 9999.50 129
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 14999.48 9896.60 27699.10 13599.06 15098.71 3999.83 16195.58 28799.78 11999.62 69
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27699.10 13599.06 15098.71 3999.83 16195.58 28799.78 11999.62 69
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12599.06 15098.23 7799.69 26198.71 8399.76 13699.33 206
test1198.87 271
door99.41 130
EPNet_dtu94.93 33794.78 33795.38 37493.58 41887.68 40196.78 29395.69 38497.35 22789.14 41598.09 30588.15 34599.49 34394.95 30099.30 26298.98 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23897.14 25498.54 20799.68 5696.09 25496.50 30799.62 5191.58 38198.84 18498.97 18192.36 30899.88 8996.76 21199.95 3099.67 58
EPNet96.14 30795.44 31998.25 23890.76 42295.50 27297.92 19494.65 38998.97 10092.98 40598.85 20989.12 33699.87 10695.99 26699.68 17199.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 231
HQP-NCC98.67 29296.29 32096.05 29795.55 375
ACMP_Plane98.67 29296.29 32096.05 29795.55 375
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21699.28 18794.97 33098.72 20098.77 22497.04 16799.85 12693.79 33599.54 21999.49 133
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 355
HQP4-MVS95.56 37499.54 32899.32 208
HQP3-MVS99.04 24399.26 269
HQP2-MVS93.84 284
CNVR-MVS98.17 18797.87 20699.07 12298.67 29298.24 12297.01 28098.93 25997.25 23797.62 29498.34 28597.27 15599.57 31796.42 24399.33 25699.39 180
NCCC97.86 21097.47 23599.05 12998.61 30298.07 14396.98 28298.90 26597.63 19497.04 32897.93 31795.99 22499.66 28495.31 29298.82 32099.43 164
114514_t96.50 29695.77 30498.69 18199.48 12297.43 19797.84 20599.55 7681.42 41396.51 35598.58 25795.53 24099.67 27393.41 34599.58 20798.98 271
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20698.30 24498.40 27797.86 10899.89 7796.53 23799.72 15199.56 101
DSMNet-mixed97.42 24597.60 22696.87 33099.15 19991.46 36998.54 11699.12 22992.87 36997.58 29899.63 3596.21 21199.90 6695.74 27999.54 21999.27 220
tpm293.09 36492.58 36294.62 38097.56 37486.53 40497.66 22895.79 38186.15 40694.07 39798.23 29475.95 39999.53 33090.91 38596.86 39097.81 374
NP-MVS98.84 25797.39 19996.84 358
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17599.59 5698.15 16299.40 8899.36 8898.58 5399.76 22898.78 7599.68 17199.59 84
tpm cat193.29 36193.13 35893.75 38997.39 38684.74 41097.39 25497.65 34183.39 41194.16 39498.41 27682.86 37999.39 36291.56 37495.35 40497.14 393
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 14999.31 16897.92 17598.90 17298.90 19698.00 9999.88 8996.15 26099.72 15199.58 90
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 35193.78 34894.51 38197.53 37885.83 40797.98 18795.96 37789.29 39994.99 38698.63 25078.63 39599.62 29894.54 30996.50 39298.09 361
CR-MVSNet96.28 30395.95 30297.28 31097.71 36694.22 30998.11 16498.92 26292.31 37596.91 33599.37 8485.44 36299.81 18597.39 16297.36 38097.81 374
JIA-IIPM95.52 32695.03 33197.00 32296.85 39894.03 31996.93 28695.82 38099.20 6594.63 39199.71 1983.09 37799.60 30594.42 31594.64 40697.36 391
Patchmtry97.35 24996.97 26098.50 21497.31 38896.47 24398.18 15498.92 26298.95 10398.78 19199.37 8485.44 36299.85 12695.96 26899.83 9299.17 245
PatchT96.65 29096.35 29497.54 29597.40 38595.32 27997.98 18796.64 36799.33 5196.89 33999.42 7784.32 37099.81 18597.69 14897.49 37197.48 387
tpmrst95.07 33495.46 31793.91 38797.11 39284.36 41497.62 23396.96 35994.98 32996.35 36098.80 21885.46 36199.59 30995.60 28596.23 39697.79 377
BH-w/o95.13 33394.89 33695.86 36098.20 34291.31 37395.65 35397.37 34593.64 35796.52 35495.70 38093.04 29899.02 39188.10 39795.82 40197.24 392
tpm94.67 33994.34 34395.66 36697.68 37188.42 39697.88 19994.90 38794.46 34196.03 36898.56 25978.66 39499.79 20595.88 27095.01 40598.78 307
DELS-MVS98.27 17498.20 17098.48 21598.86 25396.70 23795.60 35599.20 20797.73 18898.45 23498.71 23297.50 14199.82 17198.21 11099.59 20298.93 282
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 28396.75 27697.08 31998.74 27293.33 34096.71 29898.26 32196.72 27298.44 23597.37 34895.20 24999.47 34991.89 36797.43 37598.44 340
RPMNet97.02 27496.93 26197.30 30997.71 36694.22 30998.11 16499.30 17699.37 4696.91 33599.34 9386.72 34999.87 10697.53 15697.36 38097.81 374
MVSTER96.86 28296.55 28997.79 26897.91 35794.21 31197.56 24198.87 27197.49 21199.06 13999.05 15780.72 38499.80 19298.44 9999.82 9599.37 189
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14499.27 19094.90 33297.83 28298.37 28194.90 25699.84 14493.85 33499.54 21999.51 126
GBi-Net98.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16199.55 5294.14 27899.86 11497.77 14199.69 16699.41 170
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24199.73 3695.15 28597.36 25799.68 4494.45 34398.99 15299.27 10596.87 17799.94 3697.13 17899.91 6199.57 95
PVSNet_BlendedMVS97.55 23597.53 22997.60 28798.92 24193.77 33296.64 30199.43 12394.49 33997.62 29499.18 12796.82 18199.67 27394.73 30499.93 4399.36 195
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23399.35 15098.72 11698.76 19698.68 23892.57 30799.74 24097.76 14595.60 40299.34 201
UnsupCasMVSNet_bld97.30 25396.92 26398.45 21899.28 16296.78 23496.20 32599.27 19095.42 31998.28 24898.30 28993.16 29399.71 25394.99 29797.37 37898.87 292
PVSNet_Blended96.88 28196.68 28097.47 30298.92 24193.77 33294.71 38099.43 12390.98 38997.62 29497.36 34996.82 18199.67 27394.73 30499.56 21498.98 271
FMVSNet596.01 31095.20 32898.41 22397.53 37896.10 25198.74 9299.50 8997.22 24698.03 26999.04 15969.80 40699.88 8997.27 16799.71 15699.25 224
test198.65 12198.47 13399.17 10498.90 24598.24 12299.20 4599.44 11798.59 12498.95 16199.55 5294.14 27899.86 11497.77 14199.69 16699.41 170
new_pmnet96.99 27896.76 27597.67 28098.72 27594.89 29295.95 34098.20 32492.62 37298.55 22598.54 26094.88 25999.52 33493.96 32999.44 24398.59 329
FMVSNet397.50 23697.24 24798.29 23698.08 35095.83 26297.86 20398.91 26497.89 17898.95 16198.95 18887.06 34799.81 18597.77 14199.69 16699.23 229
dp93.47 35893.59 35193.13 39696.64 40281.62 42097.66 22896.42 37192.80 37096.11 36498.64 24878.55 39799.59 30993.31 34692.18 41498.16 357
FMVSNet298.49 14798.40 14398.75 17598.90 24597.14 21798.61 10899.13 22898.59 12499.19 12599.28 10394.14 27899.82 17197.97 12899.80 10999.29 217
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11498.42 10199.89 7199.41 170
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33593.41 40095.25 32499.47 7498.90 19695.63 23799.85 12696.91 19499.73 14399.27 220
cascas94.79 33894.33 34496.15 35896.02 41392.36 35992.34 40999.26 19585.34 40895.08 38594.96 39692.96 29998.53 40494.41 31898.59 33797.56 386
BH-RMVSNet96.83 28396.58 28897.58 28998.47 32094.05 31696.67 30097.36 34696.70 27497.87 27897.98 31295.14 25199.44 35590.47 38998.58 33899.25 224
UGNet98.53 14298.45 13698.79 16697.94 35596.96 22499.08 5898.54 30999.10 8396.82 34399.47 6996.55 19799.84 14498.56 9599.94 3899.55 108
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 28996.27 29997.87 26398.81 26494.61 30296.77 29497.92 33494.94 33197.12 32397.74 32691.11 32199.82 17193.89 33198.15 35499.18 241
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13399.37 9399.49 6798.75 3699.86 11498.20 11199.80 10999.71 48
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26098.37 28198.72 3899.90 6699.05 6099.77 12498.77 308
sss97.21 26196.93 26198.06 25398.83 25995.22 28396.75 29698.48 31394.49 33997.27 32097.90 31892.77 30399.80 19296.57 22899.32 25799.16 248
Test_1112_low_res96.99 27896.55 28998.31 23499.35 15195.47 27395.84 34899.53 8391.51 38396.80 34498.48 27191.36 31999.83 16196.58 22699.53 22399.62 69
1112_ss97.29 25596.86 26798.58 19699.34 15396.32 24796.75 29699.58 5893.14 36496.89 33997.48 34192.11 31299.86 11496.91 19499.54 21999.57 95
ab-mvs-re8.12 39110.83 3940.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 42497.48 3410.00 4280.00 4240.00 4230.00 4220.00 420
ab-mvs98.41 15498.36 15098.59 19599.19 18597.23 20799.32 2398.81 28597.66 19298.62 21299.40 8396.82 18199.80 19295.88 27099.51 22898.75 311
TR-MVS95.55 32595.12 33096.86 33397.54 37693.94 32396.49 30896.53 37094.36 34697.03 33096.61 36294.26 27799.16 38786.91 40296.31 39597.47 388
MDTV_nov1_ep13_2view74.92 42397.69 22390.06 39697.75 28885.78 35893.52 34198.69 318
MDTV_nov1_ep1395.22 32797.06 39583.20 41697.74 21896.16 37394.37 34596.99 33198.83 21283.95 37399.53 33093.90 33097.95 365
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6699.21 5199.87 7699.54 112
MIMVSNet96.62 29296.25 30097.71 27999.04 22194.66 30099.16 5196.92 36297.23 24397.87 27899.10 14686.11 35699.65 28991.65 37199.21 27898.82 296
IterMVS-LS98.55 13898.70 9898.09 24899.48 12294.73 29797.22 27099.39 13598.97 10099.38 9199.31 10096.00 22099.93 4298.58 9099.97 1999.60 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22497.35 24198.69 18198.73 27397.02 22196.92 28898.75 29595.89 30698.59 21898.67 24092.08 31399.74 24096.72 21699.81 9999.32 208
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 124
IterMVS97.73 22198.11 18296.57 34099.24 17190.28 38895.52 35999.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9799.94 3899.48 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 25196.92 26398.57 19999.09 20997.99 15096.79 29299.35 15093.18 36397.71 28998.07 30795.00 25599.31 37393.97 32899.13 29098.42 344
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33299.30 17697.58 20098.10 26298.24 29298.25 7599.34 36996.69 21999.65 18399.12 251
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13797.23 15899.75 23597.17 17299.66 18299.63 68
ACMMP++99.68 171
HQP-MVS97.00 27796.49 29298.55 20498.67 29296.79 23196.29 32099.04 24396.05 29795.55 37596.84 35893.84 28499.54 32892.82 35599.26 26999.32 208
QAPM97.31 25296.81 27398.82 15998.80 26797.49 19299.06 6299.19 21190.22 39397.69 29199.16 13396.91 17599.90 6690.89 38699.41 24599.07 255
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11199.48 6898.82 3199.95 2498.94 6799.93 4399.59 84
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 34395.62 31090.42 39898.46 32275.36 42296.29 32089.13 41495.25 32495.38 38199.75 1392.88 30099.19 38594.07 32799.39 24796.72 399
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 31999.01 9698.98 15399.03 16191.59 31799.79 20595.49 28999.80 10999.48 143
HyFIR lowres test97.19 26396.60 28798.96 14199.62 7597.28 20495.17 36999.50 8994.21 34899.01 15098.32 28886.61 35099.99 297.10 18099.84 8599.60 78
EPMVS93.72 35593.27 35495.09 37896.04 41287.76 40098.13 16085.01 41994.69 33696.92 33398.64 24878.47 39899.31 37395.04 29696.46 39398.20 355
PAPM_NR96.82 28596.32 29698.30 23599.07 21396.69 23897.48 24998.76 29295.81 30896.61 35196.47 36694.12 28199.17 38690.82 38797.78 36699.06 256
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 19998.81 28596.66 27599.17 13099.21 12094.81 26299.77 22296.96 19299.88 7399.44 160
PAPR95.29 32994.47 33997.75 27497.50 38395.14 28694.89 37798.71 30091.39 38595.35 38295.48 38694.57 26899.14 38984.95 40597.37 37898.97 274
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 18998.90 17299.26 10996.12 21599.52 33495.72 28099.71 15699.32 208
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23199.55 9396.10 25198.94 7798.44 31498.32 14198.16 25598.62 25288.76 33799.73 24593.88 33299.79 11499.18 241
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16198.91 19398.34 6999.79 20595.63 28499.91 6198.86 293
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33699.27 19097.60 19997.99 27198.25 29198.15 9099.38 36496.87 20299.57 21199.42 167
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 17998.85 18298.04 30997.66 12299.84 14496.72 21699.81 9999.13 250
PatchMatch-RL97.24 25996.78 27498.61 19299.03 22497.83 16796.36 31599.06 23793.49 36197.36 31897.78 32395.75 23499.49 34393.44 34498.77 32198.52 332
API-MVS97.04 27396.91 26597.42 30597.88 35898.23 12698.18 15498.50 31297.57 20197.39 31696.75 36096.77 18599.15 38890.16 39099.02 30394.88 411
Test By Simon96.52 198
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19298.24 10899.84 8599.52 123
USDC97.41 24697.40 23697.44 30498.94 23593.67 33595.17 36999.53 8394.03 35398.97 15799.10 14695.29 24799.34 36995.84 27699.73 14399.30 215
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33099.03 9498.59 21899.13 14192.16 31199.90 6696.87 20299.68 17199.49 133
PMMVS96.51 29495.98 30198.09 24897.53 37895.84 26194.92 37698.84 28091.58 38196.05 36795.58 38195.68 23699.66 28495.59 28698.09 35798.76 310
PAPM91.88 38090.34 38396.51 34198.06 35192.56 35392.44 40897.17 35286.35 40590.38 41296.01 37286.61 35099.21 38470.65 41895.43 40397.75 378
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 24998.82 18899.01 17197.71 11999.87 10696.29 25299.69 16699.54 112
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26596.71 27898.55 20498.56 31298.05 14796.33 31798.93 25996.91 26297.06 32797.39 34694.38 27399.45 35391.66 37099.18 28498.14 358
PatchmatchNetpermissive95.58 32495.67 30995.30 37597.34 38787.32 40297.65 23096.65 36695.30 32397.07 32698.69 23684.77 36599.75 23594.97 29998.64 33398.83 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17397.95 19899.34 7598.44 32599.16 4798.12 16399.38 13796.01 30198.06 26598.43 27597.80 11499.67 27395.69 28299.58 20799.20 234
F-COLMAP97.30 25396.68 28099.14 11099.19 18598.39 11097.27 26699.30 17692.93 36796.62 35098.00 31095.73 23599.68 27092.62 36198.46 34199.35 199
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
wuyk23d96.06 30897.62 22591.38 39798.65 30198.57 9898.85 8796.95 36096.86 26599.90 1299.16 13399.18 1798.40 40589.23 39499.77 12477.18 417
OMC-MVS97.88 20797.49 23299.04 13198.89 25098.63 9196.94 28499.25 19695.02 32898.53 22898.51 26497.27 15599.47 34993.50 34399.51 22899.01 265
MG-MVS96.77 28696.61 28597.26 31298.31 33593.06 34395.93 34198.12 32996.45 28497.92 27398.73 22993.77 28899.39 36291.19 38199.04 29999.33 206
AdaColmapbinary97.14 26796.71 27898.46 21798.34 33397.80 17496.95 28398.93 25995.58 31496.92 33397.66 33095.87 23199.53 33090.97 38399.14 28898.04 363
uanet0.00 3920.00 3950.00 4050.00 4280.00 4300.00 4160.00 4290.00 4230.00 4240.00 4230.00 4280.00 4240.00 4230.00 4220.00 420
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 20998.28 24898.60 25597.64 12699.35 36893.86 33399.27 26698.79 306
DeepMVS_CXcopyleft93.44 39398.24 33994.21 31194.34 39264.28 41791.34 41194.87 39989.45 33592.77 41877.54 41693.14 41193.35 413
TinyColmap97.89 20597.98 19597.60 28798.86 25394.35 30896.21 32499.44 11797.45 21999.06 13998.88 20397.99 10299.28 37994.38 31999.58 20799.18 241
MAR-MVS96.47 29895.70 30798.79 16697.92 35699.12 6198.28 14598.60 30792.16 37795.54 37896.17 37194.77 26599.52 33489.62 39298.23 34797.72 380
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20397.69 21798.52 20999.17 19397.66 18397.19 27499.47 10696.31 28997.85 28198.20 29696.71 19199.52 33494.62 30799.72 15198.38 347
MSDG97.71 22397.52 23098.28 23798.91 24496.82 23094.42 39099.37 14197.65 19398.37 24398.29 29097.40 14899.33 37194.09 32699.22 27598.68 321
LS3D98.63 12598.38 14899.36 6697.25 38999.38 1299.12 5799.32 16399.21 6398.44 23598.88 20397.31 15199.80 19296.58 22699.34 25598.92 283
CLD-MVS97.49 23897.16 25198.48 21599.07 21397.03 22094.71 38099.21 20594.46 34198.06 26597.16 35397.57 13299.48 34694.46 31299.78 11998.95 277
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 35992.23 36597.08 31999.25 17097.86 16495.61 35497.16 35392.90 36893.76 40298.65 24575.94 40095.66 41579.30 41597.49 37197.73 379
Gipumacopyleft99.03 6399.16 4898.64 18499.94 298.51 10499.32 2399.75 3499.58 2998.60 21699.62 3698.22 8099.51 33997.70 14699.73 14397.89 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015