This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18199.30 4199.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22299.33 9297.95 9999.90 6597.16 16999.67 17499.44 155
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 26099.28 9997.11 16099.84 14096.84 20199.32 25499.47 145
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17899.46 10697.56 19899.54 5899.50 6098.97 2399.84 14098.06 12099.92 5299.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16498.01 18999.23 9698.39 32898.97 6795.03 36899.18 21196.88 25899.33 9798.78 21798.16 8499.28 37596.74 20999.62 18899.44 155
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29997.23 20497.76 21199.09 23097.31 22698.75 19498.66 23897.56 12899.64 28896.10 26099.55 21499.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 26596.68 27698.32 22998.32 33197.16 21298.86 8599.37 13789.48 39296.29 35699.15 13296.56 19199.90 6592.90 34799.20 27697.89 365
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7399.22 1599.76 22498.44 9899.77 12499.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6299.18 12298.81 3299.67 26996.71 21499.77 12499.50 124
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9799.19 11898.40 6399.72 24895.98 26399.76 13699.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 28795.95 29798.65 17998.93 23398.09 13496.93 28199.28 18383.58 40598.13 25597.78 31896.13 21099.40 35693.52 33699.29 26198.45 333
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16799.37 13797.62 18999.04 14398.96 17998.84 3099.79 20197.43 15699.65 18099.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 30995.35 31997.55 29097.95 35094.79 29098.81 8996.94 35692.28 37195.17 37898.57 25389.90 32699.75 23191.20 37597.33 37898.10 356
OpenMVS_ROBcopyleft95.38 1495.84 31295.18 32497.81 26498.41 32797.15 21397.37 25198.62 30283.86 40498.65 20598.37 27694.29 27399.68 26688.41 39098.62 33396.60 395
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21999.38 13395.76 30498.81 18798.82 21098.36 6599.82 16794.75 29899.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29095.73 30198.85 15298.75 26797.91 15796.42 30799.06 23390.94 38595.59 36797.38 34294.41 26899.59 30590.93 37998.04 35999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 31695.70 30295.57 36498.83 25588.57 39092.50 40297.72 33392.69 36696.49 35396.44 36293.72 28699.43 35293.61 33399.28 26298.71 309
PCF-MVS92.86 1894.36 33793.00 35498.42 21898.70 27897.56 18693.16 40099.11 22779.59 40997.55 29697.43 33992.19 30799.73 24179.85 40999.45 23797.97 364
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 37190.90 37596.27 34597.22 38691.24 37394.36 38793.33 39692.37 36992.24 40494.58 39666.20 41099.89 7593.16 34494.63 40397.66 378
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 20697.94 19697.65 27999.71 4597.94 15698.52 11698.68 29798.99 9297.52 29999.35 8697.41 14298.18 40491.59 36899.67 17496.82 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 37690.30 37993.70 38597.72 35984.34 41090.24 40697.42 33990.20 38993.79 39693.09 40490.90 31998.89 39586.57 39872.76 41397.87 367
MVEpermissive83.40 2292.50 36691.92 36894.25 37898.83 25591.64 36392.71 40183.52 41595.92 30086.46 41395.46 38295.20 24695.40 41180.51 40898.64 33095.73 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 29895.44 31498.84 15396.25 40598.69 8797.02 27499.12 22588.90 39597.83 27798.86 20189.51 32898.90 39491.92 36199.51 22598.92 277
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVStest195.86 31095.60 30696.63 33595.87 40991.70 36297.93 18698.94 25298.03 15999.56 5499.66 2771.83 39998.26 40399.35 3899.24 26899.91 10
m2depth97.91 19998.02 18897.58 28598.69 28394.10 31298.13 15798.90 26197.95 16597.32 31499.58 4195.95 22498.75 39796.41 24099.22 27299.87 16
WBMVS95.18 32794.78 33296.37 34197.68 36789.74 38795.80 34498.73 29497.54 20198.30 24198.44 26970.06 40099.82 16796.62 21999.87 7499.54 107
dongtai76.24 38075.95 38377.12 39692.39 41467.91 42090.16 40759.44 42182.04 40789.42 40994.67 39549.68 41981.74 41448.06 41477.66 41281.72 410
kuosan69.30 38168.95 38470.34 39787.68 41865.00 42191.11 40559.90 42069.02 41074.46 41588.89 41248.58 42068.03 41628.61 41572.33 41477.99 411
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19799.50 6096.17 20799.94 3599.27 4399.78 11898.57 325
MGCFI-Net98.34 16098.28 15798.51 20698.47 31797.59 18598.96 7299.48 9699.18 7097.40 30995.50 37998.66 4399.50 33698.18 11198.71 32398.44 336
testing9193.32 35592.27 35996.47 33997.54 37291.25 37296.17 32496.76 36097.18 24293.65 39893.50 40265.11 41299.63 29193.04 34597.45 36998.53 327
testing1193.08 36092.02 36496.26 34697.56 37090.83 37996.32 31395.70 37796.47 27892.66 40293.73 39964.36 41399.59 30593.77 33197.57 36598.37 345
testing9993.04 36191.98 36796.23 34897.53 37490.70 38196.35 31195.94 37396.87 25993.41 39993.43 40363.84 41499.59 30593.24 34397.19 37998.40 341
UBG93.25 35792.32 35896.04 35597.72 35990.16 38495.92 33895.91 37496.03 29593.95 39593.04 40569.60 40299.52 33090.72 38397.98 36098.45 333
UWE-MVS92.38 36891.76 37194.21 37997.16 38784.65 40695.42 35888.45 41095.96 29896.17 35795.84 37466.36 40899.71 24991.87 36398.64 33098.28 348
ETVMVS92.60 36591.08 37497.18 31097.70 36493.65 33396.54 29995.70 37796.51 27494.68 38492.39 40861.80 41599.50 33686.97 39597.41 37298.40 341
sasdasda98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
testing22291.96 37390.37 37796.72 33497.47 38092.59 34896.11 32694.76 38396.83 26192.90 40192.87 40657.92 41699.55 31986.93 39697.52 36698.00 363
WB-MVSnew95.73 31595.57 30996.23 34896.70 39790.70 38196.07 32893.86 39395.60 30897.04 32395.45 38596.00 21699.55 31991.04 37798.31 34198.43 338
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20499.76 2998.70 11299.78 2899.11 13898.79 3499.95 2399.85 599.96 2399.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 20199.76 2998.73 10999.82 2199.09 14498.81 3299.95 2399.86 499.96 2399.83 22
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18599.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19799.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20599.82 2298.21 14599.81 2599.53 5698.46 6099.84 14099.70 2199.97 1999.90 11
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21399.81 2398.55 12599.85 1999.55 5098.60 4999.84 14099.69 2399.98 1299.89 12
MM98.22 17797.99 19198.91 14698.66 29496.97 21997.89 19394.44 38699.54 2998.95 15899.14 13593.50 28799.92 5199.80 1199.96 2399.85 20
WAC-MVS90.90 37791.37 372
Syy-MVS96.04 30495.56 31097.49 29697.10 38994.48 30196.18 32296.58 36395.65 30694.77 38292.29 40991.27 31699.36 36198.17 11398.05 35798.63 319
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20899.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16599.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
myMVS_eth3d91.92 37490.45 37696.30 34397.10 38990.90 37796.18 32296.58 36395.65 30694.77 38292.29 40953.88 41799.36 36189.59 38898.05 35798.63 319
testing393.51 35292.09 36297.75 27198.60 30194.40 30397.32 25595.26 38197.56 19896.79 34095.50 37953.57 41899.77 21895.26 28998.97 30799.08 247
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 30199.74 999.67 4399.24 10894.57 26599.95 2399.11 5499.24 26899.82 25
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21999.84 1899.29 5599.92 899.57 4399.60 599.96 1299.74 1799.98 1299.89 12
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28799.65 1799.52 6499.00 16994.34 27199.93 4298.65 8698.83 31599.76 39
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17999.85 1599.24 5999.92 899.50 6099.39 1199.95 2399.89 399.98 1298.71 309
dmvs_re95.98 30795.39 31797.74 27398.86 24997.45 19298.37 13895.69 37997.95 16596.56 34795.95 36990.70 32097.68 40688.32 39196.13 39498.11 355
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12799.92 5299.57 90
dmvs_testset92.94 36292.21 36195.13 37198.59 30490.99 37697.65 22592.09 40196.95 25494.00 39393.55 40192.34 30696.97 40972.20 41292.52 40797.43 385
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16599.92 5299.57 90
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18699.83 2099.22 6099.93 699.30 9799.42 1099.96 1299.85 599.99 599.29 212
test_cas_vis1_n_192098.33 16398.68 9797.27 30799.69 5492.29 35698.03 17399.85 1597.62 18999.96 499.62 3493.98 28099.74 23699.52 3199.86 7899.79 30
test_vis1_n_192098.40 15298.92 6996.81 33099.74 3590.76 38098.15 15699.91 798.33 13399.89 1599.55 5095.07 25099.88 8499.76 1599.93 4199.79 30
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28499.79 2799.57 4392.85 29999.42 35499.79 1299.84 8499.60 73
test_fmvs1_n98.09 18898.28 15797.52 29399.68 5693.47 33598.63 10399.93 495.41 31799.68 4199.64 3291.88 31299.48 34299.82 799.87 7499.62 66
mvsany_test197.60 22697.54 22497.77 26797.72 35995.35 27595.36 36097.13 34994.13 34599.71 3599.33 9297.93 10099.30 37197.60 14898.94 31098.67 317
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 15099.19 11897.76 11199.58 31196.57 22499.55 21498.97 268
test_vis1_rt97.75 21697.72 21297.83 26298.81 26096.35 24497.30 25799.69 3894.61 33297.87 27398.05 30396.26 20598.32 40298.74 7998.18 34698.82 291
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17899.91 1199.67 2597.15 15798.91 39399.76 1599.56 21199.92 9
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31398.55 11299.92 696.78 26499.72 3399.78 896.60 19099.67 26999.91 299.90 6599.94 7
test_fmvs197.72 21897.94 19697.07 31798.66 29492.39 35397.68 21999.81 2395.20 32199.54 5899.44 7491.56 31499.41 35599.78 1499.77 12499.40 174
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 18099.82 2199.84 298.56 5499.71 24999.96 199.96 2399.97 3
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27699.96 499.81 598.18 8099.45 34998.97 6599.79 11399.83 22
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28699.78 2899.82 496.14 20998.63 39999.82 799.93 4199.95 6
FE-MVS95.66 31794.95 32997.77 26798.53 31395.28 27799.40 1596.09 37093.11 36097.96 26799.26 10379.10 38899.77 21892.40 35998.71 32398.27 349
FA-MVS(test-final)96.99 27496.82 26797.50 29598.70 27894.78 29199.34 1996.99 35295.07 32298.48 22999.33 9288.41 33999.65 28596.13 25998.92 31298.07 358
balanced_conf0398.63 12198.72 8898.38 22298.66 29496.68 23598.90 7899.42 12398.99 9298.97 15499.19 11895.81 22999.85 12298.77 7799.77 12498.60 321
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19598.72 19799.20 11695.48 24099.86 10997.76 14399.78 11898.57 325
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25299.69 3898.16 15598.49 22899.29 9897.06 16199.97 598.29 10699.91 5999.76 39
EGC-MVSNET85.24 37780.54 38099.34 7299.77 2699.20 3599.08 5799.29 18012.08 41520.84 41699.42 7697.55 12999.85 12297.08 17799.72 15098.96 270
test250692.39 36791.89 36993.89 38399.38 13882.28 41399.32 2266.03 41999.08 8598.77 19199.57 4366.26 40999.84 14098.71 8299.95 2999.54 107
test111196.49 29396.82 26795.52 36599.42 13387.08 39899.22 4187.14 41199.11 7399.46 7399.58 4188.69 33399.86 10998.80 7399.95 2999.62 66
ECVR-MVScopyleft96.42 29596.61 28195.85 35799.38 13888.18 39499.22 4186.00 41399.08 8599.36 9299.57 4388.47 33899.82 16798.52 9599.95 2999.54 107
test_blank0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35398.86 10498.87 17897.62 32998.63 4698.96 39099.41 3698.29 34298.45 333
DVP-MVS++98.90 7598.70 9499.51 4398.43 32399.15 4899.43 1199.32 15998.17 15299.26 11299.02 15798.18 8099.88 8497.07 17899.45 23799.49 128
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 112
MSC_two_6792asdad99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
PC_three_145293.27 35799.40 8598.54 25598.22 7697.00 40895.17 29099.45 23799.49 128
No_MVS99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20499.02 15797.64 121
eth-test20.00 423
eth-test0.00 423
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16898.81 21298.94 2599.91 6098.35 10299.73 14399.49 128
test_method79.78 37879.50 38180.62 39480.21 41945.76 42270.82 41098.41 31331.08 41480.89 41497.71 32284.85 35997.37 40791.51 37080.03 41198.75 306
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9799.55 5094.10 27999.94 3599.25 4799.96 2399.42 162
h-mvs3397.77 21597.33 23999.10 11399.21 17497.84 16398.35 14098.57 30499.11 7398.58 21799.02 15788.65 33699.96 1298.11 11596.34 39099.49 128
hse-mvs297.46 23697.07 25198.64 18098.73 26997.33 19897.45 24797.64 33899.11 7398.58 21797.98 30788.65 33699.79 20198.11 11597.39 37398.81 295
CL-MVSNet_self_test97.44 23997.22 24498.08 24898.57 30895.78 26294.30 38898.79 28496.58 27398.60 21398.19 29294.74 26399.64 28896.41 24098.84 31498.82 291
KD-MVS_2432*160092.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5697.36 14599.86 10999.24 4999.71 15599.39 175
AUN-MVS96.24 30195.45 31398.60 19098.70 27897.22 20697.38 25097.65 33695.95 29995.53 37497.96 31182.11 37899.79 20196.31 24697.44 37098.80 300
ZD-MVS99.01 22198.84 7599.07 23294.10 34698.05 26398.12 29696.36 20299.86 10992.70 35599.19 279
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.49 13999.86 10996.56 22899.39 24499.45 151
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.75 11296.56 22899.39 24499.45 151
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16399.31 16498.03 15999.66 4499.02 15798.36 6599.88 8496.91 19099.62 18899.41 165
IU-MVS99.49 11399.15 4898.87 26792.97 36199.41 8296.76 20799.62 18899.66 57
OPU-MVS98.82 15598.59 30498.30 11598.10 16398.52 25898.18 8098.75 39794.62 30299.48 23499.41 165
test_241102_TWO99.30 17298.03 15999.26 11299.02 15797.51 13599.88 8496.91 19099.60 19599.66 57
test_241102_ONE99.49 11399.17 4099.31 16497.98 16299.66 4498.90 19198.36 6599.48 342
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26598.83 18298.90 19197.80 10999.82 16795.68 27999.52 22399.38 182
cl2295.79 31395.39 31796.98 32096.77 39692.79 34594.40 38698.53 30694.59 33397.89 27198.17 29382.82 37599.24 37796.37 24299.03 29798.92 277
miper_ehance_all_eth97.06 26797.03 25397.16 31497.83 35593.06 33994.66 37899.09 23095.99 29798.69 20098.45 26892.73 30299.61 30096.79 20399.03 29798.82 291
miper_enhance_ethall96.01 30595.74 30096.81 33096.41 40392.27 35793.69 39798.89 26491.14 38398.30 24197.35 34590.58 32199.58 31196.31 24699.03 29798.60 321
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22998.11 25798.39 27398.00 9499.87 10196.86 20099.64 18299.55 103
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33199.06 6199.86 1399.50 3199.66 4499.26 10397.21 15599.99 298.00 12599.91 5999.68 53
cl____97.02 27096.83 26697.58 28597.82 35694.04 31594.66 37899.16 21897.04 24998.63 20798.71 22788.68 33599.69 25797.00 18299.81 9899.00 263
DIV-MVS_self_test97.02 27096.84 26597.58 28597.82 35694.03 31694.66 37899.16 21897.04 24998.63 20798.71 22788.69 33399.69 25797.00 18299.81 9899.01 259
eth_miper_zixun_eth97.23 25697.25 24297.17 31298.00 34992.77 34694.71 37599.18 21197.27 23098.56 22098.74 22391.89 31199.69 25797.06 18099.81 9899.05 251
9.1497.78 20699.07 20997.53 23999.32 15995.53 31198.54 22498.70 23097.58 12699.76 22494.32 31599.46 235
uanet_test0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
save fliter99.11 20097.97 15196.53 30199.02 24498.24 142
ET-MVSNet_ETH3D94.30 34093.21 35097.58 28598.14 34294.47 30294.78 37493.24 39794.72 33089.56 40895.87 37278.57 39199.81 18196.91 19097.11 38298.46 330
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6399.95 2999.78 33
EIA-MVS98.00 19497.74 20998.80 15998.72 27198.09 13498.05 17099.60 5397.39 21896.63 34495.55 37797.68 11599.80 18896.73 21199.27 26398.52 328
miper_refine_blended92.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
miper_lstm_enhance97.18 26097.16 24797.25 30998.16 34192.85 34495.15 36699.31 16497.25 23298.74 19698.78 21790.07 32499.78 21297.19 16799.80 10899.11 246
ETV-MVS98.03 19197.86 20398.56 19998.69 28398.07 14097.51 24299.50 8798.10 15797.50 30195.51 37898.41 6299.88 8496.27 24999.24 26897.71 377
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24898.46 26798.68 4299.93 4299.03 6199.85 8098.64 318
D2MVS97.84 21297.84 20497.83 26299.14 19694.74 29396.94 27998.88 26595.84 30298.89 17198.96 17994.40 26999.69 25797.55 14999.95 2999.05 251
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17598.84 27697.97 16399.08 13499.02 15797.61 12499.88 8496.99 18499.63 18599.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15299.08 13499.02 15797.89 10199.88 8497.07 17899.71 15599.70 51
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17599.32 15999.88 8496.99 18499.63 18599.68 53
test072699.50 10699.21 2998.17 15599.35 14697.97 16399.26 11299.06 14597.61 124
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17498.85 20497.53 13299.87 10196.14 25799.31 25699.48 138
DPM-MVS96.32 29795.59 30898.51 20698.76 26597.21 20794.54 38498.26 31791.94 37396.37 35497.25 34693.06 29499.43 35291.42 37198.74 31998.89 282
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21598.67 20298.39 27397.68 11599.85 12296.00 26199.51 22599.52 118
test_yl96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
thisisatest053095.27 32594.45 33597.74 27399.19 18194.37 30497.86 19890.20 40797.17 24398.22 24797.65 32673.53 39899.90 6596.90 19599.35 25098.95 271
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5899.37 8297.04 16299.80 18897.89 13099.52 22399.35 194
Anonymous20240521197.90 20097.50 22799.08 11798.90 24198.25 11898.53 11596.16 36898.87 10399.11 12998.86 20190.40 32399.78 21297.36 15999.31 25699.19 234
DCV-MVSNet96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
tttt051795.64 31894.98 32797.64 28199.36 14593.81 32798.72 9590.47 40698.08 15898.67 20298.34 28073.88 39799.92 5197.77 13999.51 22599.20 229
our_test_397.39 24397.73 21196.34 34298.70 27889.78 38694.61 38198.97 25196.50 27599.04 14398.85 20495.98 22199.84 14097.26 16499.67 17499.41 165
thisisatest051594.12 34493.16 35196.97 32198.60 30192.90 34393.77 39690.61 40594.10 34696.91 33095.87 37274.99 39699.80 18894.52 30599.12 29098.20 351
ppachtmachnet_test97.50 23297.74 20996.78 33298.70 27891.23 37494.55 38399.05 23696.36 28199.21 12098.79 21596.39 19899.78 21296.74 20999.82 9499.34 196
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 17099.22 20094.16 34498.98 15099.10 14197.52 13499.79 20196.45 23899.64 18299.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 295
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27599.39 13197.67 18599.44 7798.99 17097.53 13299.89 7595.40 28799.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14599.10 6199.05 141
thres100view90094.19 34193.67 34595.75 36099.06 21391.35 36898.03 17394.24 39098.33 13397.40 30994.98 39079.84 38299.62 29483.05 40398.08 35496.29 396
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6899.24 10898.20 7999.86 10995.92 26599.69 16399.04 255
tfpn200view994.03 34593.44 34795.78 35998.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35496.29 396
c3_l97.36 24497.37 23597.31 30498.09 34593.25 33795.01 36999.16 21897.05 24898.77 19198.72 22692.88 29799.64 28896.93 18999.76 13699.05 251
CHOSEN 280x42095.51 32295.47 31195.65 36398.25 33588.27 39393.25 39998.88 26593.53 35494.65 38597.15 34986.17 34999.93 4297.41 15799.93 4198.73 308
CANet97.87 20597.76 20798.19 24097.75 35895.51 26996.76 29099.05 23697.74 18196.93 32798.21 29095.59 23599.89 7597.86 13599.93 4199.19 234
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32398.11 13197.61 23099.50 8798.64 11397.39 31197.52 33498.12 8799.95 2396.90 19598.71 32398.38 343
Effi-MVS+-dtu98.26 17397.90 20099.35 6998.02 34899.49 698.02 17599.16 21898.29 13997.64 28897.99 30696.44 19799.95 2396.66 21798.93 31198.60 321
CANet_DTU97.26 25297.06 25297.84 26197.57 36994.65 29896.19 32198.79 28497.23 23895.14 37998.24 28793.22 28999.84 14097.34 16099.84 8499.04 255
MVS_030497.44 23997.01 25598.72 17696.42 40296.74 23197.20 26691.97 40298.46 12898.30 24198.79 21592.74 30199.91 6099.30 4199.94 3699.52 118
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 27099.38 13394.87 32898.97 15498.99 17098.01 9399.88 8497.29 16299.70 16099.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15298.00 19099.61 999.57 7999.25 2598.57 11099.35 14697.55 20099.31 10597.71 32294.61 26499.88 8496.14 25799.19 27999.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36198.81 295
sam_mvs84.29 367
IterMVS-SCA-FT97.85 21198.18 17096.87 32699.27 16291.16 37595.53 35299.25 19299.10 8099.41 8299.35 8693.10 29299.96 1298.65 8699.94 3699.49 128
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25399.24 11798.89 19797.83 10499.81 18196.88 19799.49 23399.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27299.18 21197.10 24798.75 19498.92 18798.18 8099.65 28596.68 21699.56 21199.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 20199.25 19296.94 25598.78 18899.12 13798.02 9299.84 14097.13 17499.67 17499.59 79
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10899.21 11496.99 16799.50 33696.55 23199.50 23299.26 218
MTGPAbinary99.20 203
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 25198.51 25998.64 4499.93 4298.91 6799.85 8098.88 285
Effi-MVS+98.02 19297.82 20598.62 18598.53 31397.19 20997.33 25499.68 4397.30 22796.68 34297.46 33898.56 5499.80 18896.63 21898.20 34598.86 288
xiu_mvs_v2_base97.16 26297.49 22896.17 35198.54 31192.46 35195.45 35698.84 27697.25 23297.48 30396.49 35998.31 7099.90 6596.34 24598.68 32896.15 400
xiu_mvs_v1_base97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
new-patchmatchnet98.35 15998.74 8497.18 31099.24 16792.23 35896.42 30799.48 9698.30 13699.69 3999.53 5697.44 14199.82 16798.84 7299.77 12499.49 128
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 62
pmmvs597.64 22497.49 22898.08 24899.14 19695.12 28496.70 29499.05 23693.77 35198.62 20998.83 20793.23 28899.75 23198.33 10599.76 13699.36 190
test_post197.59 23320.48 41783.07 37399.66 28094.16 316
test_post21.25 41683.86 36999.70 253
Fast-Effi-MVS+97.67 22297.38 23498.57 19598.71 27497.43 19497.23 26299.45 11094.82 32996.13 35896.51 35898.52 5699.91 6096.19 25398.83 31598.37 345
patchmatchnet-post98.77 21984.37 36499.85 122
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 5099.91 5999.77 35
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 27099.28 18395.54 31099.42 8199.19 11897.27 15099.63 29197.89 13099.97 1999.20 229
GG-mvs-BLEND94.76 37494.54 41292.13 35999.31 2680.47 41788.73 41191.01 41167.59 40698.16 40582.30 40794.53 40493.98 407
xiu_mvs_v1_base_debi97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28998.93 16698.82 21096.00 21699.83 15797.32 16199.73 14399.36 190
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17198.90 19196.98 16899.92 5197.16 16999.70 16099.56 96
MTMP97.93 18691.91 403
gm-plane-assit94.83 41181.97 41488.07 39894.99 38999.60 30191.76 364
test9_res93.28 34299.15 28499.38 182
MVP-Stereo98.08 18997.92 19898.57 19598.96 22996.79 22797.90 19299.18 21196.41 28098.46 23098.95 18395.93 22599.60 30196.51 23498.98 30699.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27498.08 13895.96 33399.03 24191.40 37995.85 36497.53 33296.52 19399.76 224
train_agg97.10 26496.45 28899.07 11998.71 27498.08 13895.96 33399.03 24191.64 37495.85 36497.53 33296.47 19599.76 22493.67 33299.16 28299.36 190
gg-mvs-nofinetune92.37 36991.20 37395.85 35795.80 41092.38 35499.31 2681.84 41699.75 691.83 40599.74 1368.29 40399.02 38787.15 39497.12 38196.16 399
SCA96.41 29696.66 27995.67 36198.24 33688.35 39295.85 34296.88 35896.11 29097.67 28798.67 23593.10 29299.85 12294.16 31699.22 27298.81 295
Patchmatch-test96.55 28996.34 29097.17 31298.35 32993.06 33998.40 13597.79 33197.33 22398.41 23598.67 23583.68 37099.69 25795.16 29199.31 25698.77 303
test_898.67 28998.01 14695.91 33999.02 24491.64 37495.79 36697.50 33596.47 19599.76 224
MS-PatchMatch97.68 22197.75 20897.45 29998.23 33893.78 32897.29 25898.84 27696.10 29198.64 20698.65 24096.04 21399.36 36196.84 20199.14 28599.20 229
Patchmatch-RL test97.26 25297.02 25497.99 25699.52 10195.53 26896.13 32599.71 3497.47 20799.27 10899.16 12884.30 36699.62 29497.89 13099.77 12498.81 295
cdsmvs_eth3d_5k24.66 38232.88 3850.00 4000.00 4230.00 4250.00 41199.10 2280.00 4180.00 41997.58 33099.21 160.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas8.17 38510.90 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 41898.07 880.00 4190.00 4180.00 4170.00 415
agg_prior292.50 35899.16 28299.37 184
agg_prior98.68 28897.99 14799.01 24795.59 36799.77 218
tmp_tt78.77 37978.73 38278.90 39558.45 42074.76 41994.20 38978.26 41839.16 41386.71 41292.82 40780.50 38075.19 41586.16 39992.29 40886.74 409
canonicalmvs98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 54100.00 199.82 25
alignmvs97.35 24596.88 26298.78 16598.54 31198.09 13497.71 21697.69 33599.20 6497.59 29295.90 37188.12 34199.55 31998.18 11198.96 30898.70 312
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7399.26 10398.62 4799.73 24199.17 5399.92 5299.76 39
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22799.36 14197.15 24699.32 10399.18 12295.84 22899.84 14099.50 3299.91 5999.54 107
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11799.41 7996.79 17999.82 16798.69 8499.88 7199.76 39
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23699.36 14197.23 23899.38 8899.17 12696.02 21499.84 14099.57 2699.90 6599.54 107
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1298.85 7199.99 599.86 19
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 24099.36 14197.41 21699.33 9799.20 11696.37 20199.82 16799.57 2699.92 5299.55 103
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8599.50 6097.12 15899.85 12299.02 6299.94 3699.80 29
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23499.34 15297.51 20399.27 10899.15 13296.34 20399.80 18899.47 3499.93 4199.51 121
sosnet-low-res0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20798.58 21798.50 26397.97 9899.85 12296.57 22499.59 19999.53 115
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24899.06 23398.30 13699.32 10398.97 17696.65 18899.62 29498.37 10199.85 8099.39 175
sosnet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
TestCases99.16 10499.50 10698.55 9699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 43
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 21298.44 23298.51 25997.83 10499.88 8496.46 23799.58 20499.58 85
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 6096.17 20799.94 3599.27 4399.86 7898.88 285
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4397.82 10799.98 499.53 2999.89 6999.01 259
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
PS-MVSNAJ97.08 26697.39 23396.16 35398.56 30992.46 35195.24 36398.85 27597.25 23297.49 30295.99 36898.07 8899.90 6596.37 24298.67 32996.12 401
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 15
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26298.87 26799.20 6499.19 12298.99 17097.30 14799.85 12298.77 7799.79 11399.65 61
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26298.86 27299.20 6499.18 12698.97 17697.29 14999.85 12298.72 8199.78 11899.64 62
HPM-MVS++copyleft98.10 18697.64 21999.48 5099.09 20599.13 5697.52 24098.75 29197.46 21296.90 33397.83 31796.01 21599.84 14095.82 27399.35 25099.46 147
test_prior497.97 15195.86 340
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29798.63 24597.50 13699.83 15796.79 20399.53 22099.56 96
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24299.45 11097.16 24499.45 7699.24 10896.12 21199.85 12299.60 2499.88 7199.55 103
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3999.16 2099.82 16799.07 5799.83 9199.56 96
test_prior295.74 34696.48 27796.11 35997.63 32895.92 22694.16 31699.20 276
X-MVStestdata94.32 33892.59 35699.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29745.85 41397.50 13699.83 15796.79 20399.53 22099.56 96
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30599.30 210
旧先验295.76 34588.56 39797.52 29999.66 28094.48 306
新几何295.93 336
新几何198.91 14698.94 23197.76 17398.76 28887.58 39996.75 34198.10 29894.80 26099.78 21292.73 35499.00 30299.20 229
旧先验198.82 25897.45 19298.76 28898.34 28095.50 23999.01 30199.23 224
无先验95.74 34698.74 29389.38 39399.73 24192.38 36099.22 228
原ACMM295.53 352
原ACMM198.35 22698.90 24196.25 24798.83 28092.48 36896.07 36198.10 29895.39 24399.71 24992.61 35798.99 30499.08 247
test22298.92 23796.93 22495.54 35198.78 28685.72 40296.86 33698.11 29794.43 26799.10 29299.23 224
testdata299.79 20192.80 352
segment_acmp97.02 165
testdata98.09 24598.93 23395.40 27498.80 28390.08 39097.45 30698.37 27695.26 24599.70 25393.58 33598.95 30999.17 240
testdata195.44 35796.32 283
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6499.57 4396.93 16999.81 18199.60 2499.98 1299.60 73
131495.74 31495.60 30696.17 35197.53 37492.75 34798.07 16798.31 31691.22 38194.25 38896.68 35695.53 23699.03 38691.64 36797.18 38096.74 393
LFMVS97.20 25896.72 27398.64 18098.72 27196.95 22298.93 7694.14 39299.74 998.78 18899.01 16684.45 36399.73 24197.44 15599.27 26399.25 219
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 35199.59 2699.11 12999.27 10194.82 25799.79 20198.34 10399.63 18599.34 196
VDDNet98.21 17997.95 19499.01 13299.58 7597.74 17599.01 6697.29 34599.67 1598.97 15499.50 6090.45 32299.80 18897.88 13399.20 27699.48 138
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 7099.60 3996.63 18999.83 15799.70 2199.99 599.61 72
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10699.05 15296.72 18599.82 16798.09 11799.36 24899.59 79
MVS93.19 35892.09 36296.50 33896.91 39294.03 31698.07 16798.06 32768.01 41194.56 38796.48 36095.96 22399.30 37183.84 40296.89 38596.17 398
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23499.16 21897.90 17199.28 10699.01 16695.98 22199.79 20199.33 3999.90 6599.51 121
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17399.25 11699.16 12896.84 17399.78 21299.21 5099.84 8499.46 147
SD-MVS98.40 15298.68 9797.54 29198.96 22997.99 14797.88 19499.36 14198.20 14999.63 5099.04 15498.76 3595.33 41296.56 22899.74 14099.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 31095.32 32097.49 29698.60 30194.15 31193.83 39597.93 32995.49 31296.68 34297.42 34083.21 37199.30 37196.22 25198.55 33699.01 259
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30695.19 28197.48 24499.23 19997.47 20797.90 27098.62 24797.04 16298.81 39697.55 14999.41 24298.94 275
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19599.35 9499.24 10897.83 10499.89 7597.88 13399.70 16099.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14698.98 17497.89 10199.85 12296.54 23299.42 24199.46 147
ADS-MVSNet295.43 32394.98 32796.76 33398.14 34291.74 36197.92 18997.76 33290.23 38696.51 35098.91 18885.61 35499.85 12292.88 34896.90 38398.69 313
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26698.87 26798.97 9599.06 13699.02 15796.00 21699.80 18898.58 8999.82 9499.60 73
Regformer0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
CVMVSNet96.25 30097.21 24593.38 38999.10 20280.56 41697.20 26698.19 32296.94 25599.00 14899.02 15789.50 32999.80 18896.36 24499.59 19999.78 33
pmmvs497.58 22997.28 24098.51 20698.84 25396.93 22495.40 35998.52 30793.60 35398.61 21198.65 24095.10 24999.60 30196.97 18799.79 11398.99 264
EU-MVSNet97.66 22398.50 12295.13 37199.63 7285.84 40198.35 14098.21 31998.23 14399.54 5899.46 6995.02 25199.68 26698.24 10799.87 7499.87 16
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29899.31 5298.85 17998.80 21394.80 26099.78 21298.13 11499.13 28799.31 207
test-LLR93.90 34793.85 34194.04 38096.53 39984.62 40794.05 39292.39 39996.17 28794.12 39095.07 38682.30 37699.67 26995.87 26998.18 34697.82 368
TESTMET0.1,192.19 37291.77 37093.46 38796.48 40182.80 41294.05 39291.52 40494.45 33894.00 39394.88 39266.65 40799.56 31695.78 27498.11 35298.02 360
test-mter92.33 37091.76 37194.04 38096.53 39984.62 40794.05 39292.39 39994.00 34994.12 39095.07 38665.63 41199.67 26995.87 26998.18 34697.82 368
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6499.44 7498.25 7199.88 8499.09 5699.84 8499.62 66
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20798.56 22098.54 25597.75 11299.88 8496.57 22499.59 19999.58 85
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20699.49 9497.37 22099.19 12297.65 32698.96 2499.49 33996.50 23598.99 30499.34 196
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20699.24 19799.04 8899.41 8298.90 19197.65 11899.76 22497.70 14599.79 11399.39 175
thres600view794.45 33693.83 34296.29 34499.06 21391.53 36497.99 18194.24 39098.34 13297.44 30795.01 38879.84 38299.67 26984.33 40198.23 34397.66 378
ADS-MVSNet95.24 32694.93 33096.18 35098.14 34290.10 38597.92 18997.32 34490.23 38696.51 35098.91 18885.61 35499.74 23692.88 34896.90 38398.69 313
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19297.58 29398.66 23897.40 14399.88 8494.72 30199.60 19599.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 38320.53 3866.87 39912.05 4214.20 42493.62 3986.73 4224.62 41710.41 41724.33 4148.28 4223.56 4189.69 41715.07 41512.86 414
thres40094.14 34393.44 34796.24 34798.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35497.66 378
test12317.04 38420.11 3877.82 39810.25 4224.91 42394.80 3734.47 4234.93 41610.00 41824.28 4159.69 4213.64 41710.14 41612.43 41614.92 413
thres20093.72 35093.14 35295.46 36898.66 29491.29 37096.61 29894.63 38597.39 21896.83 33793.71 40079.88 38199.56 31682.40 40698.13 35195.54 405
test0.0.03 194.51 33593.69 34496.99 31996.05 40693.61 33494.97 37093.49 39496.17 28797.57 29594.88 39282.30 37699.01 38993.60 33494.17 40598.37 345
pmmvs395.03 33094.40 33696.93 32297.70 36492.53 35095.08 36797.71 33488.57 39697.71 28498.08 30179.39 38699.82 16796.19 25399.11 29198.43 338
EMVS93.83 34894.02 34093.23 39096.83 39584.96 40489.77 40996.32 36797.92 16997.43 30896.36 36586.17 34998.93 39287.68 39397.73 36395.81 403
E-PMN94.17 34294.37 33793.58 38696.86 39385.71 40390.11 40897.07 35098.17 15297.82 27997.19 34784.62 36298.94 39189.77 38697.68 36496.09 402
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 25298.69 20098.88 19898.00 9499.89 7595.87 26999.59 19999.58 85
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6998.21 7899.92 5194.13 32099.30 25998.91 280
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 20
MCST-MVS98.00 19497.63 22099.10 11399.24 16798.17 12696.89 28498.73 29495.66 30597.92 26897.70 32497.17 15699.66 28096.18 25599.23 27199.47 145
mvs_anonymous97.83 21498.16 17496.87 32698.18 34091.89 36097.31 25698.90 26197.37 22098.83 18299.46 6996.28 20499.79 20198.90 6898.16 34998.95 271
MVS_Test98.18 18298.36 14797.67 27798.48 31694.73 29498.18 15299.02 24497.69 18498.04 26499.11 13897.22 15499.56 31698.57 9198.90 31398.71 309
MDA-MVSNet-bldmvs97.94 19897.91 19998.06 25099.44 12794.96 28896.63 29799.15 22398.35 13198.83 18299.11 13894.31 27299.85 12296.60 22198.72 32199.37 184
CDPH-MVS97.26 25296.66 27999.07 11999.00 22298.15 12796.03 32999.01 24791.21 38297.79 28097.85 31696.89 17199.69 25792.75 35399.38 24799.39 175
test1298.93 14398.58 30697.83 16498.66 29896.53 34895.51 23899.69 25799.13 28799.27 215
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 20199.57 6399.17 7199.35 9499.17 12698.35 6899.69 25798.46 9799.73 14399.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30999.58 5697.79 17998.53 22598.50 26396.76 18299.74 23697.95 12999.64 18299.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 34992.83 35596.42 34097.70 36491.28 37196.84 28689.77 40893.96 35092.44 40395.93 37079.14 38799.77 21892.94 34696.76 38798.21 350
baseline195.96 30895.44 31497.52 29398.51 31593.99 31998.39 13696.09 37098.21 14598.40 23997.76 32086.88 34399.63 29195.42 28689.27 41098.95 271
YYNet197.60 22697.67 21497.39 30399.04 21793.04 34295.27 36198.38 31497.25 23298.92 16798.95 18395.48 24099.73 24196.99 18498.74 31999.41 165
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 38299.40 12997.50 20498.82 18598.83 20796.83 17599.84 14097.50 15499.81 9899.71 46
MDA-MVSNet_test_wron97.60 22697.66 21797.41 30299.04 21793.09 33895.27 36198.42 31197.26 23198.88 17498.95 18395.43 24299.73 24197.02 18198.72 32199.41 165
tpmvs95.02 33195.25 32194.33 37796.39 40485.87 40098.08 16596.83 35995.46 31395.51 37598.69 23185.91 35299.53 32694.16 31696.23 39297.58 381
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18299.68 4397.62 18999.34 9699.18 12297.54 13099.77 21897.79 13899.74 14099.04 255
HQP_MVS97.99 19797.67 21498.93 14399.19 18197.65 18197.77 20899.27 18698.20 14997.79 28097.98 30794.90 25399.70 25394.42 31099.51 22599.45 151
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 253
plane_prior599.27 18699.70 25394.42 31099.51 22599.45 151
plane_prior497.98 307
plane_prior397.78 17297.41 21697.79 280
plane_prior297.77 20898.20 149
plane_prior199.05 216
plane_prior97.65 18197.07 27396.72 26799.36 248
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7399.41 7998.23 7399.95 2398.89 7099.95 2999.81 28
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21999.40 12999.14 7299.06 13698.59 25196.71 18699.93 4298.57 9199.77 12499.53 115
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7698.16 8499.96 1298.78 7499.93 4199.77 35
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3499.17 1899.83 15799.06 5899.62 18899.66 57
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6998.23 7399.97 598.78 7499.93 4199.72 45
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23899.25 19298.84 10799.06 13698.76 22196.76 18299.93 4298.57 9199.77 12499.50 124
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21599.38 13398.93 9999.12 12898.73 22496.77 18099.86 10998.63 8899.80 10899.46 147
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9799.26 10397.01 16699.94 3598.74 7999.93 4199.79 30
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6999.34 9097.30 14799.93 4298.90 6899.93 4199.77 35
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28598.94 25298.57 12298.89 17198.50 26395.60 23499.85 12297.54 15199.85 8099.59 79
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 22196.38 20099.86 10998.00 12599.82 9499.50 124
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24699.57 6399.37 4599.21 12099.61 3796.76 18299.83 15798.06 12099.83 9199.71 46
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9299.06 14598.38 6499.95 2398.34 10399.90 6599.57 90
TSAR-MVS + GP.98.18 18297.98 19298.77 16898.71 27497.88 15996.32 31398.66 29896.33 28299.23 11998.51 25997.48 14099.40 35697.16 16999.46 23599.02 258
n20.00 424
nn0.00 424
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20798.09 25998.68 23397.62 12399.89 7596.22 25199.62 18899.57 90
door-mid99.57 63
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29999.48 9697.32 22599.11 12998.61 24999.33 1399.30 37196.23 25098.38 33899.28 214
mvsmamba97.57 23097.26 24198.51 20698.69 28396.73 23298.74 9097.25 34697.03 25197.88 27299.23 11290.95 31899.87 10196.61 22099.00 30298.91 280
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32599.39 1699.56 7099.11 7398.16 25198.13 29493.81 28399.97 599.26 4599.57 20899.43 159
jason97.45 23897.35 23797.76 27099.24 16793.93 32195.86 34098.42 31194.24 34298.50 22798.13 29494.82 25799.91 6097.22 16699.73 14399.43 159
jason: jason.
lupinMVS97.06 26796.86 26397.65 27998.88 24793.89 32595.48 35597.97 32893.53 35498.16 25197.58 33093.81 28399.91 6096.77 20699.57 20899.17 240
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4599.98 1299.89 12
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22398.94 16598.86 20198.75 3699.82 16797.53 15299.71 15599.56 96
K. test v398.00 19497.66 21799.03 12999.79 2297.56 18699.19 4892.47 39899.62 2399.52 6499.66 2789.61 32799.96 1299.25 4799.81 9899.56 96
lessismore_v098.97 13799.73 3697.53 18886.71 41299.37 9099.52 5989.93 32599.92 5198.99 6499.72 15099.44 155
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 32099.37 4599.70 3799.65 3192.65 30399.93 4299.04 6099.84 8499.60 73
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 53
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26698.61 21198.38 27598.62 4799.87 10196.47 23699.67 17499.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 33199.50 8797.30 22799.05 14198.98 17499.35 1299.32 36895.72 27699.68 16899.18 236
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21699.46 10697.25 23298.98 15098.99 17097.54 13099.84 14095.88 26699.74 14099.23 224
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17999.62 4999.22 6099.55 5799.22 11398.93 2699.75 23198.66 8599.81 9899.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12299.06 14598.23 7399.69 25798.71 8299.76 13699.33 201
test1198.87 267
door99.41 125
EPNet_dtu94.93 33294.78 33295.38 36993.58 41387.68 39696.78 28895.69 37997.35 22289.14 41098.09 30088.15 34099.49 33994.95 29599.30 25998.98 265
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23497.14 25098.54 20399.68 5696.09 25296.50 30299.62 4991.58 37698.84 18198.97 17692.36 30599.88 8496.76 20799.95 2999.67 56
EPNet96.14 30295.44 31498.25 23590.76 41795.50 27097.92 18994.65 38498.97 9592.98 40098.85 20489.12 33199.87 10195.99 26299.68 16899.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 227
HQP-NCC98.67 28996.29 31596.05 29295.55 370
ACMP_Plane98.67 28996.29 31596.05 29295.55 370
APD-MVScopyleft98.10 18697.67 21499.42 5799.11 20098.93 7297.76 21199.28 18394.97 32598.72 19798.77 21997.04 16299.85 12293.79 33099.54 21699.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 350
HQP4-MVS95.56 36999.54 32499.32 203
HQP3-MVS99.04 23999.26 266
HQP2-MVS93.84 281
CNVR-MVS98.17 18497.87 20299.07 11998.67 28998.24 11997.01 27598.93 25597.25 23297.62 28998.34 28097.27 15099.57 31396.42 23999.33 25399.39 175
NCCC97.86 20697.47 23199.05 12698.61 29998.07 14096.98 27798.90 26197.63 18897.04 32397.93 31295.99 22099.66 28095.31 28898.82 31799.43 159
114514_t96.50 29295.77 29998.69 17799.48 12097.43 19497.84 20099.55 7481.42 40896.51 35098.58 25295.53 23699.67 26993.41 34099.58 20498.98 265
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 20198.30 24198.40 27297.86 10399.89 7596.53 23399.72 15099.56 96
DSMNet-mixed97.42 24197.60 22296.87 32699.15 19591.46 36598.54 11499.12 22592.87 36497.58 29399.63 3396.21 20699.90 6595.74 27599.54 21699.27 215
tpm293.09 35992.58 35794.62 37597.56 37086.53 39997.66 22395.79 37686.15 40194.07 39298.23 28975.95 39499.53 32690.91 38096.86 38697.81 370
NP-MVS98.84 25397.39 19696.84 353
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17299.59 5498.15 15699.40 8599.36 8598.58 5399.76 22498.78 7499.68 16899.59 79
tpm cat193.29 35693.13 35393.75 38497.39 38284.74 40597.39 24997.65 33683.39 40694.16 38998.41 27182.86 37499.39 35891.56 36995.35 40097.14 388
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16998.90 16998.90 19198.00 9499.88 8496.15 25699.72 15099.58 85
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 34693.78 34394.51 37697.53 37485.83 40297.98 18295.96 37289.29 39494.99 38198.63 24578.63 39099.62 29494.54 30496.50 38898.09 357
CR-MVSNet96.28 29995.95 29797.28 30697.71 36294.22 30698.11 16198.92 25892.31 37096.91 33099.37 8285.44 35799.81 18197.39 15897.36 37697.81 370
JIA-IIPM95.52 32195.03 32697.00 31896.85 39494.03 31696.93 28195.82 37599.20 6494.63 38699.71 1783.09 37299.60 30194.42 31094.64 40297.36 386
Patchmtry97.35 24596.97 25698.50 21097.31 38496.47 24198.18 15298.92 25898.95 9898.78 18899.37 8285.44 35799.85 12295.96 26499.83 9199.17 240
PatchT96.65 28696.35 28997.54 29197.40 38195.32 27697.98 18296.64 36299.33 5096.89 33499.42 7684.32 36599.81 18197.69 14797.49 36797.48 383
tpmrst95.07 32995.46 31293.91 38297.11 38884.36 40997.62 22896.96 35494.98 32496.35 35598.80 21385.46 35699.59 30595.60 28196.23 39297.79 373
BH-w/o95.13 32894.89 33195.86 35698.20 33991.31 36995.65 34897.37 34093.64 35296.52 34995.70 37593.04 29599.02 38788.10 39295.82 39797.24 387
tpm94.67 33494.34 33895.66 36297.68 36788.42 39197.88 19494.90 38294.46 33696.03 36398.56 25478.66 38999.79 20195.88 26695.01 40198.78 302
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 35099.20 20397.73 18298.45 23198.71 22797.50 13699.82 16798.21 10999.59 19998.93 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 27996.75 27297.08 31598.74 26893.33 33696.71 29398.26 31796.72 26798.44 23297.37 34395.20 24699.47 34591.89 36297.43 37198.44 336
RPMNet97.02 27096.93 25797.30 30597.71 36294.22 30698.11 16199.30 17299.37 4596.91 33099.34 9086.72 34499.87 10197.53 15297.36 37697.81 370
MVSTER96.86 27896.55 28597.79 26597.91 35394.21 30897.56 23698.87 26797.49 20699.06 13699.05 15280.72 37999.80 18898.44 9899.82 9499.37 184
CPTT-MVS97.84 21297.36 23699.27 8799.31 15498.46 10498.29 14299.27 18694.90 32797.83 27798.37 27694.90 25399.84 14093.85 32999.54 21699.51 121
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25299.68 4394.45 33898.99 14999.27 10196.87 17299.94 3597.13 17499.91 5999.57 90
PVSNet_BlendedMVS97.55 23197.53 22597.60 28398.92 23793.77 32996.64 29699.43 12094.49 33497.62 28999.18 12296.82 17699.67 26994.73 29999.93 4199.36 190
UnsupCasMVSNet_eth97.89 20297.60 22298.75 17199.31 15497.17 21197.62 22899.35 14698.72 11198.76 19398.68 23392.57 30499.74 23697.76 14395.60 39899.34 196
UnsupCasMVSNet_bld97.30 24996.92 25998.45 21599.28 16096.78 23096.20 32099.27 18695.42 31498.28 24598.30 28493.16 29099.71 24994.99 29397.37 37498.87 287
PVSNet_Blended96.88 27796.68 27697.47 29898.92 23793.77 32994.71 37599.43 12090.98 38497.62 28997.36 34496.82 17699.67 26994.73 29999.56 21198.98 265
FMVSNet596.01 30595.20 32398.41 21997.53 37496.10 24998.74 9099.50 8797.22 24198.03 26599.04 15469.80 40199.88 8497.27 16399.71 15599.25 219
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
new_pmnet96.99 27496.76 27197.67 27798.72 27194.89 28995.95 33598.20 32092.62 36798.55 22298.54 25594.88 25699.52 33093.96 32499.44 24098.59 324
FMVSNet397.50 23297.24 24398.29 23398.08 34695.83 26097.86 19898.91 26097.89 17298.95 15898.95 18387.06 34299.81 18197.77 13999.69 16399.23 224
dp93.47 35393.59 34693.13 39196.64 39881.62 41597.66 22396.42 36692.80 36596.11 35998.64 24378.55 39299.59 30593.31 34192.18 40998.16 353
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12299.28 9994.14 27599.82 16797.97 12799.80 10899.29 212
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7899.55 5097.82 10799.86 10998.42 10099.89 6999.41 165
N_pmnet97.63 22597.17 24698.99 13499.27 16297.86 16195.98 33093.41 39595.25 31999.47 7298.90 19195.63 23399.85 12296.91 19099.73 14399.27 215
cascas94.79 33394.33 33996.15 35496.02 40892.36 35592.34 40499.26 19185.34 40395.08 38094.96 39192.96 29698.53 40094.41 31398.59 33497.56 382
BH-RMVSNet96.83 27996.58 28497.58 28598.47 31794.05 31396.67 29597.36 34196.70 26997.87 27397.98 30795.14 24899.44 35190.47 38498.58 33599.25 219
UGNet98.53 13898.45 13298.79 16297.94 35196.96 22199.08 5798.54 30599.10 8096.82 33899.47 6896.55 19299.84 14098.56 9499.94 3699.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 28596.27 29497.87 26098.81 26094.61 29996.77 28997.92 33094.94 32697.12 31897.74 32191.11 31799.82 16793.89 32698.15 35099.18 236
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 9099.49 6698.75 3699.86 10998.20 11099.80 10899.71 46
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25698.37 27698.72 3899.90 6599.05 5999.77 12498.77 303
sss97.21 25796.93 25798.06 25098.83 25595.22 28096.75 29198.48 30994.49 33497.27 31597.90 31392.77 30099.80 18896.57 22499.32 25499.16 243
Test_1112_low_res96.99 27496.55 28598.31 23199.35 14995.47 27195.84 34399.53 8191.51 37896.80 33998.48 26691.36 31599.83 15796.58 22299.53 22099.62 66
1112_ss97.29 25196.86 26398.58 19299.34 15196.32 24596.75 29199.58 5693.14 35996.89 33497.48 33692.11 30999.86 10996.91 19099.54 21699.57 90
ab-mvs-re8.12 38610.83 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41997.48 3360.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 28197.66 18698.62 20999.40 8196.82 17699.80 18895.88 26699.51 22598.75 306
TR-MVS95.55 32095.12 32596.86 32997.54 37293.94 32096.49 30396.53 36594.36 34197.03 32596.61 35794.26 27499.16 38386.91 39796.31 39197.47 384
MDTV_nov1_ep13_2view74.92 41897.69 21890.06 39197.75 28385.78 35393.52 33698.69 313
MDTV_nov1_ep1395.22 32297.06 39183.20 41197.74 21396.16 36894.37 34096.99 32698.83 20783.95 36899.53 32693.90 32597.95 361
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4397.12 15899.90 6599.21 5099.87 7499.54 107
MIMVSNet96.62 28896.25 29597.71 27699.04 21794.66 29799.16 5096.92 35797.23 23897.87 27399.10 14186.11 35199.65 28591.65 36699.21 27598.82 291
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26599.39 13198.97 9599.38 8899.31 9696.00 21699.93 4298.58 8999.97 1999.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22097.35 23798.69 17798.73 26997.02 21896.92 28398.75 29195.89 30198.59 21598.67 23592.08 31099.74 23696.72 21299.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 124
IterMVS97.73 21798.11 17996.57 33699.24 16790.28 38395.52 35499.21 20198.86 10499.33 9799.33 9293.11 29199.94 3598.49 9699.94 3699.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 24796.92 25998.57 19599.09 20597.99 14796.79 28799.35 14693.18 35897.71 28498.07 30295.00 25299.31 36993.97 32399.13 28798.42 340
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32799.30 17297.58 19498.10 25898.24 28798.25 7199.34 36596.69 21599.65 18099.12 245
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 7099.15 13297.23 15399.75 23197.17 16899.66 17999.63 65
ACMMP++99.68 168
HQP-MVS97.00 27396.49 28798.55 20098.67 28996.79 22796.29 31599.04 23996.05 29295.55 37096.84 35393.84 28199.54 32492.82 35099.26 26699.32 203
QAPM97.31 24896.81 26998.82 15598.80 26397.49 18999.06 6199.19 20790.22 38897.69 28699.16 12896.91 17099.90 6590.89 38199.41 24299.07 249
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10899.48 6798.82 3199.95 2398.94 6699.93 4199.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 33895.62 30590.42 39398.46 31975.36 41796.29 31589.13 40995.25 31995.38 37699.75 1192.88 29799.19 38194.07 32299.39 24496.72 394
IS-MVSNet98.19 18197.90 20099.08 11799.57 7997.97 15199.31 2698.32 31599.01 9198.98 15099.03 15691.59 31399.79 20195.49 28599.80 10899.48 138
HyFIR lowres test97.19 25996.60 28398.96 13899.62 7497.28 20195.17 36499.50 8794.21 34399.01 14798.32 28386.61 34599.99 297.10 17699.84 8499.60 73
EPMVS93.72 35093.27 34995.09 37396.04 40787.76 39598.13 15785.01 41494.69 33196.92 32898.64 24378.47 39399.31 36995.04 29296.46 38998.20 351
PAPM_NR96.82 28196.32 29198.30 23299.07 20996.69 23497.48 24498.76 28895.81 30396.61 34696.47 36194.12 27899.17 38290.82 38297.78 36299.06 250
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19498.81 28196.66 27099.17 12799.21 11494.81 25999.77 21896.96 18899.88 7199.44 155
PAPR95.29 32494.47 33497.75 27197.50 37995.14 28394.89 37298.71 29691.39 38095.35 37795.48 38194.57 26599.14 38584.95 40097.37 37498.97 268
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18398.90 16999.26 10396.12 21199.52 33095.72 27699.71 15599.32 203
Vis-MVSNet (Re-imp)97.46 23697.16 24798.34 22799.55 9196.10 24998.94 7598.44 31098.32 13598.16 25198.62 24788.76 33299.73 24193.88 32799.79 11399.18 236
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15898.91 18898.34 6999.79 20195.63 28099.91 5998.86 288
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 33199.27 18697.60 19397.99 26698.25 28698.15 8699.38 36096.87 19899.57 20899.42 162
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17398.85 17998.04 30497.66 11799.84 14096.72 21299.81 9899.13 244
PatchMatch-RL97.24 25596.78 27098.61 18899.03 22097.83 16496.36 31099.06 23393.49 35697.36 31397.78 31895.75 23099.49 33993.44 33998.77 31898.52 328
API-MVS97.04 26996.91 26197.42 30197.88 35498.23 12398.18 15298.50 30897.57 19597.39 31196.75 35596.77 18099.15 38490.16 38599.02 30094.88 406
Test By Simon96.52 193
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6299.61 3798.64 4499.80 18898.24 10799.84 8499.52 118
USDC97.41 24297.40 23297.44 30098.94 23193.67 33195.17 36499.53 8194.03 34898.97 15499.10 14195.29 24499.34 36595.84 27299.73 14399.30 210
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32699.03 8998.59 21599.13 13692.16 30899.90 6596.87 19899.68 16899.49 128
PMMVS96.51 29095.98 29698.09 24597.53 37495.84 25994.92 37198.84 27691.58 37696.05 36295.58 37695.68 23299.66 28095.59 28298.09 35398.76 305
PAPM91.88 37590.34 37896.51 33798.06 34792.56 34992.44 40397.17 34786.35 40090.38 40796.01 36786.61 34599.21 38070.65 41395.43 39997.75 374
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24498.82 18599.01 16697.71 11499.87 10196.29 24899.69 16399.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26196.71 27498.55 20098.56 30998.05 14496.33 31298.93 25596.91 25797.06 32297.39 34194.38 27099.45 34991.66 36599.18 28198.14 354
PatchmatchNetpermissive95.58 31995.67 30495.30 37097.34 38387.32 39797.65 22596.65 36195.30 31897.07 32198.69 23184.77 36099.75 23194.97 29498.64 33098.83 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17097.95 19499.34 7298.44 32299.16 4498.12 16099.38 13396.01 29698.06 26198.43 27097.80 10999.67 26995.69 27899.58 20499.20 229
F-COLMAP97.30 24996.68 27699.14 10799.19 18198.39 10797.27 26199.30 17292.93 36296.62 34598.00 30595.73 23199.68 26692.62 35698.46 33799.35 194
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 40100.00 199.82 25
wuyk23d96.06 30397.62 22191.38 39298.65 29898.57 9598.85 8696.95 35596.86 26099.90 1299.16 12899.18 1798.40 40189.23 38999.77 12477.18 412
OMC-MVS97.88 20497.49 22899.04 12898.89 24698.63 8896.94 27999.25 19295.02 32398.53 22598.51 25997.27 15099.47 34593.50 33899.51 22599.01 259
MG-MVS96.77 28296.61 28197.26 30898.31 33293.06 33995.93 33698.12 32596.45 27997.92 26898.73 22493.77 28599.39 35891.19 37699.04 29699.33 201
AdaColmapbinary97.14 26396.71 27498.46 21398.34 33097.80 17196.95 27898.93 25595.58 30996.92 32897.66 32595.87 22799.53 32690.97 37899.14 28598.04 359
uanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20498.28 24598.60 25097.64 12199.35 36493.86 32899.27 26398.79 301
DeepMVS_CXcopyleft93.44 38898.24 33694.21 30894.34 38764.28 41291.34 40694.87 39489.45 33092.77 41377.54 41193.14 40693.35 408
TinyColmap97.89 20297.98 19297.60 28398.86 24994.35 30596.21 31999.44 11497.45 21499.06 13698.88 19897.99 9799.28 37594.38 31499.58 20499.18 236
MAR-MVS96.47 29495.70 30298.79 16297.92 35299.12 5898.28 14398.60 30392.16 37295.54 37396.17 36694.77 26299.52 33089.62 38798.23 34397.72 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20097.69 21398.52 20599.17 18997.66 18097.19 26999.47 10496.31 28497.85 27698.20 29196.71 18699.52 33094.62 30299.72 15098.38 343
MSDG97.71 21997.52 22698.28 23498.91 24096.82 22694.42 38599.37 13797.65 18798.37 24098.29 28597.40 14399.33 36794.09 32199.22 27298.68 316
LS3D98.63 12198.38 14599.36 6397.25 38599.38 999.12 5699.32 15999.21 6298.44 23298.88 19897.31 14699.80 18896.58 22299.34 25298.92 277
CLD-MVS97.49 23497.16 24798.48 21199.07 20997.03 21794.71 37599.21 20194.46 33698.06 26197.16 34897.57 12799.48 34294.46 30799.78 11898.95 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 35492.23 36097.08 31599.25 16697.86 16195.61 34997.16 34892.90 36393.76 39798.65 24075.94 39595.66 41079.30 41097.49 36797.73 375
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21399.62 3498.22 7699.51 33597.70 14599.73 14397.89 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015