| LTVRE_ROB | | 98.40 1 | 99.67 3 | 99.71 2 | 99.56 25 | 99.85 16 | 99.11 63 | 99.90 1 | 99.78 31 | 99.63 21 | 99.78 30 | 99.67 27 | 99.48 9 | 99.81 190 | 99.30 46 | 99.97 20 | 99.77 40 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| 3Dnovator | | 98.27 2 | 98.81 94 | 98.73 93 | 99.05 129 | 98.76 274 | 97.81 173 | 99.25 40 | 99.30 180 | 98.57 131 | 98.55 229 | 99.33 98 | 97.95 107 | 99.90 68 | 97.16 179 | 99.67 182 | 99.44 164 |
|
| 3Dnovator+ | | 97.89 3 | 98.69 114 | 98.51 127 | 99.24 97 | 98.81 269 | 98.40 109 | 99.02 66 | 99.19 215 | 98.99 100 | 98.07 270 | 99.28 107 | 97.11 168 | 99.84 149 | 96.84 211 | 99.32 263 | 99.47 154 |
|
| DeepC-MVS | | 97.60 4 | 98.97 73 | 98.93 73 | 99.10 116 | 99.35 154 | 97.98 153 | 98.01 183 | 99.46 113 | 97.56 209 | 99.54 60 | 99.50 64 | 98.97 23 | 99.84 149 | 98.06 127 | 99.92 57 | 99.49 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepPCF-MVS | | 96.93 5 | 98.32 170 | 98.01 195 | 99.23 99 | 98.39 336 | 98.97 70 | 95.03 379 | 99.18 219 | 96.88 269 | 99.33 103 | 98.78 226 | 98.16 91 | 99.28 385 | 96.74 219 | 99.62 196 | 99.44 164 |
|
| DeepC-MVS_fast | | 96.85 6 | 98.30 173 | 98.15 181 | 98.75 176 | 98.61 307 | 97.23 207 | 97.76 219 | 99.09 238 | 97.31 237 | 98.75 201 | 98.66 247 | 97.56 136 | 99.64 297 | 96.10 270 | 99.55 223 | 99.39 184 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OpenMVS |  | 96.65 7 | 97.09 274 | 96.68 285 | 98.32 237 | 98.32 339 | 97.16 215 | 98.86 86 | 99.37 145 | 89.48 403 | 96.29 367 | 99.15 141 | 96.56 199 | 99.90 68 | 92.90 358 | 99.20 285 | 97.89 375 |
|
| ACMH | | 96.65 7 | 99.25 36 | 99.24 45 | 99.26 92 | 99.72 42 | 98.38 111 | 99.07 61 | 99.55 80 | 98.30 148 | 99.65 49 | 99.45 77 | 99.22 15 | 99.76 233 | 98.44 105 | 99.77 129 | 99.64 69 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 96.62 9 | 99.08 64 | 99.00 67 | 99.33 80 | 99.71 45 | 98.83 79 | 98.60 109 | 99.58 62 | 99.11 79 | 99.53 64 | 99.18 131 | 98.81 33 | 99.67 278 | 96.71 224 | 99.77 129 | 99.50 133 |
|
| COLMAP_ROB |  | 96.50 10 | 98.99 69 | 98.85 83 | 99.41 62 | 99.58 77 | 99.10 64 | 98.74 92 | 99.56 76 | 99.09 89 | 99.33 103 | 99.19 127 | 98.40 66 | 99.72 257 | 95.98 273 | 99.76 141 | 99.42 171 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| TAPA-MVS | | 96.21 11 | 96.63 296 | 95.95 307 | 98.65 186 | 98.93 242 | 98.09 137 | 96.93 292 | 99.28 191 | 83.58 416 | 98.13 265 | 97.78 329 | 96.13 217 | 99.40 366 | 93.52 347 | 99.29 270 | 98.45 343 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMM | | 96.08 12 | 98.91 80 | 98.73 93 | 99.48 53 | 99.55 94 | 99.14 56 | 98.07 172 | 99.37 145 | 97.62 201 | 99.04 150 | 98.96 188 | 98.84 31 | 99.79 210 | 97.43 166 | 99.65 188 | 99.49 137 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HY-MVS | | 95.94 13 | 95.90 319 | 95.35 329 | 97.55 299 | 97.95 359 | 94.79 298 | 98.81 91 | 96.94 367 | 92.28 382 | 95.17 389 | 98.57 263 | 89.90 334 | 99.75 240 | 91.20 386 | 97.33 388 | 98.10 366 |
|
| OpenMVS_ROB |  | 95.38 14 | 95.84 322 | 95.18 335 | 97.81 272 | 98.41 335 | 97.15 216 | 97.37 262 | 98.62 310 | 83.86 415 | 98.65 212 | 98.37 287 | 94.29 279 | 99.68 275 | 88.41 401 | 98.62 342 | 96.60 406 |
|
| ACMP | | 95.32 15 | 98.41 157 | 98.09 186 | 99.36 66 | 99.51 106 | 98.79 82 | 97.68 227 | 99.38 141 | 95.76 315 | 98.81 194 | 98.82 219 | 98.36 68 | 99.82 176 | 94.75 309 | 99.77 129 | 99.48 147 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| PLC |  | 94.65 16 | 96.51 299 | 95.73 311 | 98.85 156 | 98.75 276 | 97.91 160 | 96.42 318 | 99.06 241 | 90.94 396 | 95.59 378 | 97.38 353 | 94.41 274 | 99.59 314 | 90.93 390 | 98.04 369 | 99.05 263 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PVSNet | | 93.40 17 | 95.67 326 | 95.70 312 | 95.57 373 | 98.83 264 | 88.57 400 | 92.50 413 | 97.72 342 | 92.69 377 | 96.49 364 | 96.44 373 | 93.72 292 | 99.43 362 | 93.61 344 | 99.28 271 | 98.71 320 |
|
| PCF-MVS | | 92.86 18 | 94.36 348 | 93.00 365 | 98.42 227 | 98.70 287 | 97.56 189 | 93.16 411 | 99.11 235 | 79.59 420 | 97.55 307 | 97.43 350 | 92.19 313 | 99.73 250 | 79.85 420 | 99.45 246 | 97.97 374 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| IB-MVS | | 91.63 19 | 92.24 382 | 90.90 386 | 96.27 354 | 97.22 396 | 91.24 382 | 94.36 398 | 93.33 407 | 92.37 380 | 92.24 415 | 94.58 407 | 66.20 421 | 99.89 80 | 93.16 355 | 94.63 413 | 97.66 388 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| PMVS |  | 91.26 20 | 97.86 213 | 97.94 203 | 97.65 287 | 99.71 45 | 97.94 159 | 98.52 118 | 98.68 305 | 98.99 100 | 97.52 310 | 99.35 92 | 97.41 150 | 98.18 414 | 91.59 379 | 99.67 182 | 96.82 403 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PVSNet_0 | | 89.98 21 | 91.15 387 | 90.30 390 | 93.70 396 | 97.72 368 | 84.34 420 | 90.24 417 | 97.42 349 | 90.20 400 | 93.79 407 | 93.09 415 | 90.90 327 | 98.89 405 | 86.57 409 | 72.76 424 | 97.87 377 |
|
| MVE |  | 83.40 22 | 92.50 377 | 91.92 379 | 94.25 388 | 98.83 264 | 91.64 372 | 92.71 412 | 83.52 426 | 95.92 311 | 86.46 424 | 95.46 393 | 95.20 252 | 95.40 422 | 80.51 419 | 98.64 339 | 95.73 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| CMPMVS |  | 75.91 23 | 96.29 307 | 95.44 324 | 98.84 157 | 96.25 416 | 98.69 90 | 97.02 285 | 99.12 233 | 88.90 406 | 97.83 288 | 98.86 210 | 89.51 336 | 98.90 404 | 91.92 372 | 99.51 234 | 98.92 289 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| fmvsm_s_conf0.5_n_3 | | | 99.22 41 | 99.37 26 | 98.78 169 | 99.46 127 | 96.58 244 | 97.65 233 | 99.72 37 | 99.47 37 | 99.86 19 | 99.50 64 | 98.94 25 | 99.89 80 | 99.75 19 | 99.97 20 | 99.86 23 |
|
| fmvsm_s_conf0.5_n_2 | | | 99.14 51 | 99.31 35 | 98.63 192 | 99.49 116 | 96.08 259 | 97.38 260 | 99.81 26 | 99.48 34 | 99.84 22 | 99.57 46 | 98.46 62 | 99.89 80 | 99.82 8 | 99.97 20 | 99.91 13 |
|
| fmvsm_s_conf0.1_n_2 | | | 99.20 44 | 99.38 24 | 98.65 186 | 99.69 54 | 96.08 259 | 97.49 253 | 99.90 11 | 99.53 31 | 99.88 17 | 99.64 34 | 98.51 58 | 99.90 68 | 99.83 7 | 99.98 12 | 99.97 4 |
|
| GDP-MVS | | | 97.50 239 | 97.11 258 | 98.67 185 | 99.02 229 | 96.85 230 | 98.16 159 | 99.71 39 | 98.32 146 | 98.52 234 | 98.54 265 | 83.39 380 | 99.95 24 | 98.79 80 | 99.56 219 | 99.19 244 |
|
| BP-MVS1 | | | 97.40 251 | 96.97 264 | 98.71 182 | 99.07 216 | 96.81 232 | 98.34 144 | 97.18 357 | 98.58 130 | 98.17 258 | 98.61 258 | 84.01 376 | 99.94 37 | 98.97 69 | 99.78 123 | 99.37 193 |
|
| reproduce_monomvs | | | 95.00 342 | 95.25 331 | 94.22 389 | 97.51 388 | 83.34 421 | 97.86 205 | 98.44 318 | 98.51 136 | 99.29 112 | 99.30 104 | 67.68 416 | 99.56 325 | 98.89 75 | 99.81 102 | 99.77 40 |
|
| mmtdpeth | | | 99.30 29 | 99.42 20 | 98.92 149 | 99.58 77 | 96.89 229 | 99.48 10 | 99.92 7 | 99.92 2 | 98.26 255 | 99.80 9 | 98.33 73 | 99.91 62 | 99.56 32 | 99.95 33 | 99.97 4 |
|
| reproduce_model | | | 99.15 50 | 98.97 71 | 99.67 4 | 99.33 157 | 99.44 10 | 98.15 160 | 99.47 110 | 99.12 78 | 99.52 66 | 99.32 102 | 98.31 74 | 99.90 68 | 97.78 146 | 99.73 148 | 99.66 63 |
|
| reproduce-ours | | | 99.09 60 | 98.90 76 | 99.67 4 | 99.27 167 | 99.49 6 | 98.00 184 | 99.42 130 | 99.05 94 | 99.48 73 | 99.27 109 | 98.29 76 | 99.89 80 | 97.61 156 | 99.71 161 | 99.62 73 |
|
| our_new_method | | | 99.09 60 | 98.90 76 | 99.67 4 | 99.27 167 | 99.49 6 | 98.00 184 | 99.42 130 | 99.05 94 | 99.48 73 | 99.27 109 | 98.29 76 | 99.89 80 | 97.61 156 | 99.71 161 | 99.62 73 |
|
| mmdepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| monomultidepth | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| mvs5depth | | | 99.30 29 | 99.59 9 | 98.44 225 | 99.65 64 | 95.35 282 | 99.82 3 | 99.94 2 | 99.83 4 | 99.42 86 | 99.94 2 | 98.13 94 | 99.96 12 | 99.63 27 | 99.96 26 | 100.00 1 |
|
| MVStest1 | | | 95.86 320 | 95.60 316 | 96.63 344 | 95.87 420 | 91.70 371 | 97.93 193 | 98.94 260 | 98.03 171 | 99.56 56 | 99.66 29 | 71.83 409 | 98.26 413 | 99.35 43 | 99.24 277 | 99.91 13 |
|
| ttmdpeth | | | 97.91 205 | 98.02 194 | 97.58 294 | 98.69 292 | 94.10 320 | 98.13 162 | 98.90 269 | 97.95 177 | 97.32 325 | 99.58 44 | 95.95 231 | 98.75 407 | 96.41 250 | 99.22 281 | 99.87 20 |
|
| WBMVS | | | 95.18 337 | 94.78 343 | 96.37 350 | 97.68 376 | 89.74 397 | 95.80 355 | 98.73 302 | 97.54 212 | 98.30 249 | 98.44 280 | 70.06 410 | 99.82 176 | 96.62 229 | 99.87 79 | 99.54 116 |
|
| dongtai | | | 76.24 391 | 75.95 394 | 77.12 407 | 92.39 425 | 67.91 431 | 90.16 418 | 59.44 432 | 82.04 418 | 89.42 420 | 94.67 406 | 49.68 430 | 81.74 425 | 48.06 425 | 77.66 423 | 81.72 421 |
|
| kuosan | | | 69.30 392 | 68.95 395 | 70.34 408 | 87.68 429 | 65.00 432 | 91.11 416 | 59.90 431 | 69.02 421 | 74.46 426 | 88.89 423 | 48.58 431 | 68.03 427 | 28.61 426 | 72.33 425 | 77.99 422 |
|
| MVSMamba_PlusPlus | | | 98.83 90 | 98.98 70 | 98.36 234 | 99.32 158 | 96.58 244 | 98.90 80 | 99.41 134 | 99.75 8 | 98.72 204 | 99.50 64 | 96.17 215 | 99.94 37 | 99.27 48 | 99.78 123 | 98.57 336 |
|
| MGCFI-Net | | | 98.34 166 | 98.28 163 | 98.51 215 | 98.47 325 | 97.59 188 | 98.96 74 | 99.48 102 | 99.18 74 | 97.40 320 | 95.50 390 | 98.66 44 | 99.50 346 | 98.18 118 | 98.71 332 | 98.44 346 |
|
| testing91 | | | 93.32 366 | 92.27 370 | 96.47 348 | 97.54 381 | 91.25 381 | 96.17 335 | 96.76 371 | 97.18 253 | 93.65 409 | 93.50 413 | 65.11 423 | 99.63 300 | 93.04 356 | 97.45 379 | 98.53 337 |
|
| testing11 | | | 93.08 371 | 92.02 375 | 96.26 355 | 97.56 379 | 90.83 389 | 96.32 324 | 95.70 388 | 96.47 289 | 92.66 413 | 93.73 410 | 64.36 424 | 99.59 314 | 93.77 342 | 97.57 375 | 98.37 355 |
|
| testing99 | | | 93.04 372 | 91.98 378 | 96.23 357 | 97.53 383 | 90.70 391 | 96.35 322 | 95.94 384 | 96.87 270 | 93.41 410 | 93.43 414 | 63.84 425 | 99.59 314 | 93.24 354 | 97.19 389 | 98.40 351 |
|
| UBG | | | 93.25 368 | 92.32 369 | 96.04 364 | 97.72 368 | 90.16 394 | 95.92 349 | 95.91 385 | 96.03 306 | 93.95 406 | 93.04 416 | 69.60 412 | 99.52 340 | 90.72 394 | 97.98 370 | 98.45 343 |
|
| UWE-MVS | | | 92.38 379 | 91.76 382 | 94.21 390 | 97.16 397 | 84.65 416 | 95.42 369 | 88.45 421 | 95.96 309 | 96.17 368 | 95.84 385 | 66.36 419 | 99.71 258 | 91.87 374 | 98.64 339 | 98.28 358 |
|
| ETVMVS | | | 92.60 376 | 91.08 385 | 97.18 319 | 97.70 373 | 93.65 342 | 96.54 310 | 95.70 388 | 96.51 285 | 94.68 395 | 92.39 419 | 61.80 426 | 99.50 346 | 86.97 406 | 97.41 382 | 98.40 351 |
|
| sasdasda | | | 98.34 166 | 98.26 167 | 98.58 201 | 98.46 327 | 97.82 170 | 98.96 74 | 99.46 113 | 99.19 72 | 97.46 315 | 95.46 393 | 98.59 51 | 99.46 357 | 98.08 125 | 98.71 332 | 98.46 340 |
|
| testing222 | | | 91.96 384 | 90.37 388 | 96.72 343 | 97.47 390 | 92.59 357 | 96.11 337 | 94.76 394 | 96.83 272 | 92.90 412 | 92.87 417 | 57.92 427 | 99.55 329 | 86.93 407 | 97.52 376 | 98.00 373 |
|
| WB-MVSnew | | | 95.73 325 | 95.57 319 | 96.23 357 | 96.70 407 | 90.70 391 | 96.07 339 | 93.86 404 | 95.60 319 | 97.04 334 | 95.45 396 | 96.00 223 | 99.55 329 | 91.04 388 | 98.31 351 | 98.43 348 |
|
| fmvsm_l_conf0.5_n_a | | | 99.19 45 | 99.27 41 | 98.94 144 | 99.65 64 | 97.05 218 | 97.80 212 | 99.76 33 | 98.70 120 | 99.78 30 | 99.11 147 | 98.79 35 | 99.95 24 | 99.85 5 | 99.96 26 | 99.83 27 |
|
| fmvsm_l_conf0.5_n | | | 99.21 42 | 99.28 40 | 99.02 134 | 99.64 70 | 97.28 204 | 97.82 209 | 99.76 33 | 98.73 117 | 99.82 24 | 99.09 153 | 98.81 33 | 99.95 24 | 99.86 4 | 99.96 26 | 99.83 27 |
|
| fmvsm_s_conf0.1_n_a | | | 99.17 46 | 99.30 38 | 98.80 163 | 99.75 33 | 96.59 242 | 97.97 192 | 99.86 16 | 98.22 156 | 99.88 17 | 99.71 19 | 98.59 51 | 99.84 149 | 99.73 21 | 99.98 12 | 99.98 3 |
|
| fmvsm_s_conf0.1_n | | | 99.16 49 | 99.33 31 | 98.64 188 | 99.71 45 | 96.10 254 | 97.87 204 | 99.85 18 | 98.56 134 | 99.90 12 | 99.68 22 | 98.69 42 | 99.85 131 | 99.72 23 | 99.98 12 | 99.97 4 |
|
| fmvsm_s_conf0.5_n_a | | | 99.10 59 | 99.20 47 | 98.78 169 | 99.55 94 | 96.59 242 | 97.79 213 | 99.82 25 | 98.21 157 | 99.81 27 | 99.53 60 | 98.46 62 | 99.84 149 | 99.70 24 | 99.97 20 | 99.90 15 |
|
| fmvsm_s_conf0.5_n | | | 99.09 60 | 99.26 43 | 98.61 197 | 99.55 94 | 96.09 257 | 97.74 221 | 99.81 26 | 98.55 135 | 99.85 21 | 99.55 54 | 98.60 50 | 99.84 149 | 99.69 26 | 99.98 12 | 99.89 16 |
|
| MM | | | 98.22 183 | 97.99 197 | 98.91 150 | 98.66 302 | 96.97 222 | 97.89 200 | 94.44 397 | 99.54 30 | 98.95 165 | 99.14 144 | 93.50 293 | 99.92 53 | 99.80 13 | 99.96 26 | 99.85 25 |
|
| WAC-MVS | | | | | | | 90.90 387 | | | | | | | | 91.37 383 | | |
|
| Syy-MVS | | | 96.04 314 | 95.56 320 | 97.49 305 | 97.10 399 | 94.48 309 | 96.18 333 | 96.58 374 | 95.65 317 | 94.77 393 | 92.29 420 | 91.27 323 | 99.36 371 | 98.17 120 | 98.05 367 | 98.63 330 |
|
| test_fmvsmconf0.1_n | | | 99.49 12 | 99.54 11 | 99.34 75 | 99.78 23 | 98.11 134 | 97.77 216 | 99.90 11 | 99.33 54 | 99.97 3 | 99.66 29 | 99.71 3 | 99.96 12 | 99.79 14 | 99.99 5 | 99.96 8 |
|
| test_fmvsmconf0.01_n | | | 99.57 7 | 99.63 7 | 99.36 66 | 99.87 12 | 98.13 133 | 98.08 170 | 99.95 1 | 99.45 40 | 99.98 2 | 99.75 13 | 99.80 1 | 99.97 5 | 99.82 8 | 99.99 5 | 99.99 2 |
|
| myMVS_eth3d | | | 91.92 385 | 90.45 387 | 96.30 352 | 97.10 399 | 90.90 387 | 96.18 333 | 96.58 374 | 95.65 317 | 94.77 393 | 92.29 420 | 53.88 428 | 99.36 371 | 89.59 399 | 98.05 367 | 98.63 330 |
|
| testing3 | | | 93.51 363 | 92.09 373 | 97.75 279 | 98.60 309 | 94.40 311 | 97.32 266 | 95.26 392 | 97.56 209 | 96.79 351 | 95.50 390 | 53.57 429 | 99.77 227 | 95.26 299 | 98.97 316 | 99.08 259 |
|
| SSC-MVS | | | 98.71 107 | 98.74 91 | 98.62 194 | 99.72 42 | 96.08 259 | 98.74 92 | 98.64 309 | 99.74 10 | 99.67 45 | 99.24 118 | 94.57 271 | 99.95 24 | 99.11 58 | 99.24 277 | 99.82 30 |
|
| test_fmvsmconf_n | | | 99.44 15 | 99.48 15 | 99.31 85 | 99.64 70 | 98.10 136 | 97.68 227 | 99.84 21 | 99.29 59 | 99.92 8 | 99.57 46 | 99.60 5 | 99.96 12 | 99.74 20 | 99.98 12 | 99.89 16 |
|
| WB-MVS | | | 98.52 148 | 98.55 122 | 98.43 226 | 99.65 64 | 95.59 271 | 98.52 118 | 98.77 295 | 99.65 18 | 99.52 66 | 99.00 178 | 94.34 277 | 99.93 44 | 98.65 93 | 98.83 324 | 99.76 45 |
|
| test_fmvsmvis_n_1920 | | | 99.26 35 | 99.49 13 | 98.54 212 | 99.66 63 | 96.97 222 | 98.00 184 | 99.85 18 | 99.24 63 | 99.92 8 | 99.50 64 | 99.39 11 | 99.95 24 | 99.89 3 | 99.98 12 | 98.71 320 |
|
| dmvs_re | | | 95.98 317 | 95.39 327 | 97.74 281 | 98.86 258 | 97.45 195 | 98.37 140 | 95.69 390 | 97.95 177 | 96.56 358 | 95.95 380 | 90.70 328 | 97.68 417 | 88.32 402 | 96.13 404 | 98.11 365 |
|
| SDMVSNet | | | 99.23 40 | 99.32 33 | 98.96 141 | 99.68 57 | 97.35 200 | 98.84 89 | 99.48 102 | 99.69 13 | 99.63 52 | 99.68 22 | 99.03 21 | 99.96 12 | 97.97 134 | 99.92 57 | 99.57 99 |
|
| dmvs_testset | | | 92.94 373 | 92.21 372 | 95.13 381 | 98.59 312 | 90.99 386 | 97.65 233 | 92.09 412 | 96.95 265 | 94.00 404 | 93.55 412 | 92.34 312 | 96.97 420 | 72.20 423 | 92.52 418 | 97.43 395 |
|
| sd_testset | | | 99.28 32 | 99.31 35 | 99.19 103 | 99.68 57 | 98.06 146 | 99.41 14 | 99.30 180 | 99.69 13 | 99.63 52 | 99.68 22 | 99.25 14 | 99.96 12 | 97.25 175 | 99.92 57 | 99.57 99 |
|
| test_fmvsm_n_1920 | | | 99.33 27 | 99.45 19 | 98.99 137 | 99.57 82 | 97.73 180 | 97.93 193 | 99.83 23 | 99.22 64 | 99.93 6 | 99.30 104 | 99.42 10 | 99.96 12 | 99.85 5 | 99.99 5 | 99.29 222 |
|
| test_cas_vis1_n_1920 | | | 98.33 169 | 98.68 104 | 97.27 316 | 99.69 54 | 92.29 365 | 98.03 178 | 99.85 18 | 97.62 201 | 99.96 4 | 99.62 37 | 93.98 286 | 99.74 245 | 99.52 36 | 99.86 83 | 99.79 35 |
|
| test_vis1_n_1920 | | | 98.40 159 | 98.92 74 | 96.81 339 | 99.74 35 | 90.76 390 | 98.15 160 | 99.91 9 | 98.33 144 | 99.89 15 | 99.55 54 | 95.07 256 | 99.88 94 | 99.76 17 | 99.93 46 | 99.79 35 |
|
| test_vis1_n | | | 98.31 172 | 98.50 129 | 97.73 283 | 99.76 29 | 94.17 318 | 98.68 102 | 99.91 9 | 96.31 295 | 99.79 29 | 99.57 46 | 92.85 305 | 99.42 364 | 99.79 14 | 99.84 88 | 99.60 82 |
|
| test_fmvs1_n | | | 98.09 194 | 98.28 163 | 97.52 302 | 99.68 57 | 93.47 344 | 98.63 105 | 99.93 5 | 95.41 328 | 99.68 43 | 99.64 34 | 91.88 318 | 99.48 352 | 99.82 8 | 99.87 79 | 99.62 73 |
|
| mvsany_test1 | | | 97.60 233 | 97.54 231 | 97.77 275 | 97.72 368 | 95.35 282 | 95.36 371 | 97.13 360 | 94.13 356 | 99.71 37 | 99.33 98 | 97.93 108 | 99.30 381 | 97.60 158 | 98.94 319 | 98.67 328 |
|
| APD_test1 | | | 98.83 90 | 98.66 107 | 99.34 75 | 99.78 23 | 99.47 9 | 98.42 136 | 99.45 117 | 98.28 153 | 98.98 157 | 99.19 127 | 97.76 119 | 99.58 320 | 96.57 234 | 99.55 223 | 98.97 280 |
|
| test_vis1_rt | | | 97.75 223 | 97.72 219 | 97.83 270 | 98.81 269 | 96.35 249 | 97.30 268 | 99.69 43 | 94.61 343 | 97.87 284 | 98.05 314 | 96.26 213 | 98.32 412 | 98.74 86 | 98.18 356 | 98.82 302 |
|
| test_vis3_rt | | | 99.14 51 | 99.17 49 | 99.07 122 | 99.78 23 | 98.38 111 | 98.92 79 | 99.94 2 | 97.80 190 | 99.91 11 | 99.67 27 | 97.15 165 | 98.91 403 | 99.76 17 | 99.56 219 | 99.92 12 |
|
| test_fmvs2 | | | 98.70 111 | 98.97 71 | 97.89 267 | 99.54 99 | 94.05 321 | 98.55 114 | 99.92 7 | 96.78 275 | 99.72 35 | 99.78 10 | 96.60 198 | 99.67 278 | 99.91 2 | 99.90 70 | 99.94 10 |
|
| test_fmvs1 | | | 97.72 225 | 97.94 203 | 97.07 326 | 98.66 302 | 92.39 362 | 97.68 227 | 99.81 26 | 95.20 332 | 99.54 60 | 99.44 78 | 91.56 321 | 99.41 365 | 99.78 16 | 99.77 129 | 99.40 183 |
|
| test_fmvs3 | | | 99.12 57 | 99.41 21 | 98.25 243 | 99.76 29 | 95.07 294 | 99.05 64 | 99.94 2 | 97.78 192 | 99.82 24 | 99.84 3 | 98.56 55 | 99.71 258 | 99.96 1 | 99.96 26 | 99.97 4 |
|
| mvsany_test3 | | | 98.87 85 | 98.92 74 | 98.74 180 | 99.38 143 | 96.94 226 | 98.58 111 | 99.10 236 | 96.49 287 | 99.96 4 | 99.81 6 | 98.18 87 | 99.45 359 | 98.97 69 | 99.79 118 | 99.83 27 |
|
| testf1 | | | 99.25 36 | 99.16 51 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 43 | 98.90 109 | 99.43 83 | 99.35 92 | 98.86 29 | 99.67 278 | 97.81 143 | 99.81 102 | 99.24 232 |
|
| APD_test2 | | | 99.25 36 | 99.16 51 | 99.51 46 | 99.89 6 | 99.63 4 | 98.71 99 | 99.69 43 | 98.90 109 | 99.43 83 | 99.35 92 | 98.86 29 | 99.67 278 | 97.81 143 | 99.81 102 | 99.24 232 |
|
| test_f | | | 98.67 122 | 98.87 79 | 98.05 260 | 99.72 42 | 95.59 271 | 98.51 123 | 99.81 26 | 96.30 297 | 99.78 30 | 99.82 5 | 96.14 216 | 98.63 409 | 99.82 8 | 99.93 46 | 99.95 9 |
|
| FE-MVS | | | 95.66 327 | 94.95 340 | 97.77 275 | 98.53 321 | 95.28 285 | 99.40 16 | 96.09 381 | 93.11 371 | 97.96 278 | 99.26 113 | 79.10 398 | 99.77 227 | 92.40 370 | 98.71 332 | 98.27 359 |
|
| FA-MVS(test-final) | | | 96.99 283 | 96.82 276 | 97.50 304 | 98.70 287 | 94.78 299 | 99.34 20 | 96.99 363 | 95.07 333 | 98.48 237 | 99.33 98 | 88.41 347 | 99.65 294 | 96.13 269 | 98.92 321 | 98.07 368 |
|
| balanced_conf03 | | | 98.63 128 | 98.72 95 | 98.38 231 | 98.66 302 | 96.68 241 | 98.90 80 | 99.42 130 | 98.99 100 | 98.97 161 | 99.19 127 | 95.81 236 | 99.85 131 | 98.77 84 | 99.77 129 | 98.60 332 |
|
| MonoMVSNet | | | 96.25 309 | 96.53 296 | 95.39 378 | 96.57 409 | 91.01 385 | 98.82 90 | 97.68 345 | 98.57 131 | 98.03 275 | 99.37 87 | 90.92 326 | 97.78 416 | 94.99 303 | 93.88 416 | 97.38 396 |
|
| patch_mono-2 | | | 98.51 149 | 98.63 111 | 98.17 249 | 99.38 143 | 94.78 299 | 97.36 263 | 99.69 43 | 98.16 167 | 98.49 236 | 99.29 106 | 97.06 169 | 99.97 5 | 98.29 113 | 99.91 64 | 99.76 45 |
|
| EGC-MVSNET | | | 85.24 388 | 80.54 391 | 99.34 75 | 99.77 26 | 99.20 38 | 99.08 58 | 99.29 188 | 12.08 426 | 20.84 427 | 99.42 80 | 97.55 137 | 99.85 131 | 97.08 187 | 99.72 156 | 98.96 282 |
|
| test2506 | | | 92.39 378 | 91.89 380 | 93.89 394 | 99.38 143 | 82.28 424 | 99.32 23 | 66.03 430 | 99.08 91 | 98.77 198 | 99.57 46 | 66.26 420 | 99.84 149 | 98.71 89 | 99.95 33 | 99.54 116 |
|
| test1111 | | | 96.49 302 | 96.82 276 | 95.52 374 | 99.42 138 | 87.08 408 | 99.22 42 | 87.14 422 | 99.11 79 | 99.46 78 | 99.58 44 | 88.69 341 | 99.86 119 | 98.80 79 | 99.95 33 | 99.62 73 |
|
| ECVR-MVS |  | | 96.42 304 | 96.61 290 | 95.85 366 | 99.38 143 | 88.18 404 | 99.22 42 | 86.00 424 | 99.08 91 | 99.36 98 | 99.57 46 | 88.47 346 | 99.82 176 | 98.52 102 | 99.95 33 | 99.54 116 |
|
| test_blank | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| tt0805 | | | 98.69 114 | 98.62 113 | 98.90 153 | 99.75 33 | 99.30 21 | 99.15 53 | 96.97 364 | 98.86 112 | 98.87 185 | 97.62 340 | 98.63 47 | 98.96 400 | 99.41 41 | 98.29 352 | 98.45 343 |
|
| DVP-MVS++ | | | 98.90 82 | 98.70 101 | 99.51 46 | 98.43 331 | 99.15 51 | 99.43 12 | 99.32 167 | 98.17 164 | 99.26 119 | 99.02 166 | 98.18 87 | 99.88 94 | 97.07 188 | 99.45 246 | 99.49 137 |
|
| FOURS1 | | | | | | 99.73 36 | 99.67 3 | 99.43 12 | 99.54 84 | 99.43 44 | 99.26 119 | | | | | | |
|
| MSC_two_6792asdad | | | | | 99.32 82 | 98.43 331 | 98.37 113 | | 98.86 280 | | | | | 99.89 80 | 97.14 182 | 99.60 203 | 99.71 52 |
|
| PC_three_1452 | | | | | | | | | | 93.27 368 | 99.40 91 | 98.54 265 | 98.22 83 | 97.00 419 | 95.17 300 | 99.45 246 | 99.49 137 |
|
| No_MVS | | | | | 99.32 82 | 98.43 331 | 98.37 113 | | 98.86 280 | | | | | 99.89 80 | 97.14 182 | 99.60 203 | 99.71 52 |
|
| test_one_0601 | | | | | | 99.39 142 | 99.20 38 | | 99.31 172 | 98.49 137 | 98.66 211 | 99.02 166 | 97.64 129 | | | | |
|
| eth-test2 | | | | | | 0.00 434 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 434 | | | | | | | | | | | |
|
| GeoE | | | 99.05 65 | 98.99 69 | 99.25 95 | 99.44 132 | 98.35 117 | 98.73 96 | 99.56 76 | 98.42 140 | 98.91 175 | 98.81 221 | 98.94 25 | 99.91 62 | 98.35 109 | 99.73 148 | 99.49 137 |
|
| test_method | | | 79.78 389 | 79.50 392 | 80.62 405 | 80.21 430 | 45.76 433 | 70.82 421 | 98.41 322 | 31.08 425 | 80.89 425 | 97.71 333 | 84.85 367 | 97.37 418 | 91.51 381 | 80.03 422 | 98.75 317 |
|
| Anonymous20240521 | | | 98.69 114 | 98.87 79 | 98.16 251 | 99.77 26 | 95.11 293 | 99.08 58 | 99.44 121 | 99.34 53 | 99.33 103 | 99.55 54 | 94.10 285 | 99.94 37 | 99.25 51 | 99.96 26 | 99.42 171 |
|
| h-mvs33 | | | 97.77 222 | 97.33 246 | 99.10 116 | 99.21 181 | 97.84 166 | 98.35 142 | 98.57 312 | 99.11 79 | 98.58 224 | 99.02 166 | 88.65 344 | 99.96 12 | 98.11 122 | 96.34 400 | 99.49 137 |
|
| hse-mvs2 | | | 97.46 244 | 97.07 259 | 98.64 188 | 98.73 278 | 97.33 201 | 97.45 257 | 97.64 348 | 99.11 79 | 98.58 224 | 97.98 318 | 88.65 344 | 99.79 210 | 98.11 122 | 97.39 383 | 98.81 306 |
|
| CL-MVSNet_self_test | | | 97.44 247 | 97.22 251 | 98.08 256 | 98.57 316 | 95.78 269 | 94.30 399 | 98.79 292 | 96.58 284 | 98.60 220 | 98.19 303 | 94.74 269 | 99.64 297 | 96.41 250 | 98.84 323 | 98.82 302 |
|
| KD-MVS_2432*1600 | | | 92.87 374 | 91.99 376 | 95.51 375 | 91.37 426 | 89.27 398 | 94.07 401 | 98.14 332 | 95.42 325 | 97.25 327 | 96.44 373 | 67.86 414 | 99.24 387 | 91.28 384 | 96.08 405 | 98.02 370 |
|
| KD-MVS_self_test | | | 99.25 36 | 99.18 48 | 99.44 59 | 99.63 74 | 99.06 68 | 98.69 101 | 99.54 84 | 99.31 56 | 99.62 55 | 99.53 60 | 97.36 153 | 99.86 119 | 99.24 53 | 99.71 161 | 99.39 184 |
|
| AUN-MVS | | | 96.24 311 | 95.45 323 | 98.60 199 | 98.70 287 | 97.22 209 | 97.38 260 | 97.65 346 | 95.95 310 | 95.53 385 | 97.96 322 | 82.11 388 | 99.79 210 | 96.31 256 | 97.44 380 | 98.80 311 |
|
| ZD-MVS | | | | | | 99.01 230 | 98.84 78 | | 99.07 240 | 94.10 357 | 98.05 273 | 98.12 307 | 96.36 210 | 99.86 119 | 92.70 366 | 99.19 288 | |
|
| SR-MVS-dyc-post | | | 98.81 94 | 98.55 122 | 99.57 20 | 99.20 185 | 99.38 12 | 98.48 129 | 99.30 180 | 98.64 121 | 98.95 165 | 98.96 188 | 97.49 147 | 99.86 119 | 96.56 238 | 99.39 253 | 99.45 160 |
|
| RE-MVS-def | | | | 98.58 120 | | 99.20 185 | 99.38 12 | 98.48 129 | 99.30 180 | 98.64 121 | 98.95 165 | 98.96 188 | 97.75 120 | | 96.56 238 | 99.39 253 | 99.45 160 |
|
| SED-MVS | | | 98.91 80 | 98.72 95 | 99.49 51 | 99.49 116 | 99.17 43 | 98.10 168 | 99.31 172 | 98.03 171 | 99.66 46 | 99.02 166 | 98.36 68 | 99.88 94 | 96.91 200 | 99.62 196 | 99.41 174 |
|
| IU-MVS | | | | | | 99.49 116 | 99.15 51 | | 98.87 275 | 92.97 372 | 99.41 88 | | | | 96.76 217 | 99.62 196 | 99.66 63 |
|
| OPU-MVS | | | | | 98.82 159 | 98.59 312 | 98.30 118 | 98.10 168 | | | | 98.52 269 | 98.18 87 | 98.75 407 | 94.62 313 | 99.48 243 | 99.41 174 |
|
| test_241102_TWO | | | | | | | | | 99.30 180 | 98.03 171 | 99.26 119 | 99.02 166 | 97.51 143 | 99.88 94 | 96.91 200 | 99.60 203 | 99.66 63 |
|
| test_241102_ONE | | | | | | 99.49 116 | 99.17 43 | | 99.31 172 | 97.98 174 | 99.66 46 | 98.90 200 | 98.36 68 | 99.48 352 | | | |
|
| SF-MVS | | | 98.53 145 | 98.27 166 | 99.32 82 | 99.31 159 | 98.75 83 | 98.19 154 | 99.41 134 | 96.77 276 | 98.83 189 | 98.90 200 | 97.80 117 | 99.82 176 | 95.68 289 | 99.52 232 | 99.38 191 |
|
| cl22 | | | 95.79 323 | 95.39 327 | 96.98 329 | 96.77 406 | 92.79 354 | 94.40 397 | 98.53 314 | 94.59 344 | 97.89 282 | 98.17 304 | 82.82 385 | 99.24 387 | 96.37 252 | 99.03 306 | 98.92 289 |
|
| miper_ehance_all_eth | | | 97.06 276 | 97.03 261 | 97.16 323 | 97.83 364 | 93.06 348 | 94.66 389 | 99.09 238 | 95.99 308 | 98.69 206 | 98.45 279 | 92.73 308 | 99.61 309 | 96.79 213 | 99.03 306 | 98.82 302 |
|
| miper_enhance_ethall | | | 96.01 315 | 95.74 310 | 96.81 339 | 96.41 414 | 92.27 366 | 93.69 408 | 98.89 272 | 91.14 394 | 98.30 249 | 97.35 356 | 90.58 329 | 99.58 320 | 96.31 256 | 99.03 306 | 98.60 332 |
|
| ZNCC-MVS | | | 98.68 119 | 98.40 146 | 99.54 30 | 99.57 82 | 99.21 32 | 98.46 131 | 99.29 188 | 97.28 240 | 98.11 267 | 98.39 284 | 98.00 102 | 99.87 111 | 96.86 210 | 99.64 190 | 99.55 112 |
|
| dcpmvs_2 | | | 98.78 98 | 99.11 57 | 97.78 274 | 99.56 90 | 93.67 340 | 99.06 62 | 99.86 16 | 99.50 33 | 99.66 46 | 99.26 113 | 97.21 163 | 99.99 2 | 98.00 132 | 99.91 64 | 99.68 59 |
|
| cl____ | | | 97.02 279 | 96.83 275 | 97.58 294 | 97.82 365 | 94.04 323 | 94.66 389 | 99.16 226 | 97.04 260 | 98.63 214 | 98.71 236 | 88.68 343 | 99.69 266 | 97.00 192 | 99.81 102 | 99.00 275 |
|
| DIV-MVS_self_test | | | 97.02 279 | 96.84 274 | 97.58 294 | 97.82 365 | 94.03 324 | 94.66 389 | 99.16 226 | 97.04 260 | 98.63 214 | 98.71 236 | 88.69 341 | 99.69 266 | 97.00 192 | 99.81 102 | 99.01 271 |
|
| eth_miper_zixun_eth | | | 97.23 265 | 97.25 249 | 97.17 321 | 98.00 358 | 92.77 355 | 94.71 386 | 99.18 219 | 97.27 241 | 98.56 227 | 98.74 232 | 91.89 317 | 99.69 266 | 97.06 190 | 99.81 102 | 99.05 263 |
|
| 9.14 | | | | 97.78 213 | | 99.07 216 | | 97.53 248 | 99.32 167 | 95.53 322 | 98.54 231 | 98.70 239 | 97.58 134 | 99.76 233 | 94.32 326 | 99.46 244 | |
|
| uanet_test | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| DCPMVS | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| save fliter | | | | | | 99.11 207 | 97.97 154 | 96.53 312 | 99.02 252 | 98.24 154 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 94.30 351 | 93.21 361 | 97.58 294 | 98.14 351 | 94.47 310 | 94.78 385 | 93.24 408 | 94.72 341 | 89.56 419 | 95.87 383 | 78.57 401 | 99.81 190 | 96.91 200 | 97.11 392 | 98.46 340 |
|
| UniMVSNet_ETH3D | | | 99.69 2 | 99.69 4 | 99.69 3 | 99.84 17 | 99.34 19 | 99.69 5 | 99.58 62 | 99.90 3 | 99.86 19 | 99.78 10 | 99.58 6 | 99.95 24 | 99.00 67 | 99.95 33 | 99.78 38 |
|
| EIA-MVS | | | 98.00 200 | 97.74 216 | 98.80 163 | 98.72 280 | 98.09 137 | 98.05 175 | 99.60 59 | 97.39 229 | 96.63 355 | 95.55 388 | 97.68 123 | 99.80 197 | 96.73 221 | 99.27 272 | 98.52 338 |
|
| miper_refine_blended | | | 92.87 374 | 91.99 376 | 95.51 375 | 91.37 426 | 89.27 398 | 94.07 401 | 98.14 332 | 95.42 325 | 97.25 327 | 96.44 373 | 67.86 414 | 99.24 387 | 91.28 384 | 96.08 405 | 98.02 370 |
|
| miper_lstm_enhance | | | 97.18 269 | 97.16 254 | 97.25 318 | 98.16 349 | 92.85 353 | 95.15 377 | 99.31 172 | 97.25 243 | 98.74 203 | 98.78 226 | 90.07 332 | 99.78 221 | 97.19 177 | 99.80 113 | 99.11 258 |
|
| ETV-MVS | | | 98.03 197 | 97.86 210 | 98.56 208 | 98.69 292 | 98.07 143 | 97.51 251 | 99.50 93 | 98.10 169 | 97.50 312 | 95.51 389 | 98.41 65 | 99.88 94 | 96.27 259 | 99.24 277 | 97.71 387 |
|
| CS-MVS | | | 99.13 55 | 99.10 59 | 99.24 97 | 99.06 221 | 99.15 51 | 99.36 19 | 99.88 14 | 99.36 52 | 98.21 257 | 98.46 278 | 98.68 43 | 99.93 44 | 99.03 65 | 99.85 84 | 98.64 329 |
|
| D2MVS | | | 97.84 219 | 97.84 211 | 97.83 270 | 99.14 203 | 94.74 301 | 96.94 290 | 98.88 273 | 95.84 313 | 98.89 178 | 98.96 188 | 94.40 275 | 99.69 266 | 97.55 159 | 99.95 33 | 99.05 263 |
|
| DVP-MVS |  | | 98.77 101 | 98.52 126 | 99.52 42 | 99.50 109 | 99.21 32 | 98.02 180 | 98.84 284 | 97.97 175 | 99.08 141 | 99.02 166 | 97.61 132 | 99.88 94 | 96.99 194 | 99.63 193 | 99.48 147 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 98.17 164 | 99.08 141 | 99.02 166 | 97.89 109 | 99.88 94 | 97.07 188 | 99.71 161 | 99.70 57 |
|
| test_0728_SECOND | | | | | 99.60 14 | 99.50 109 | 99.23 30 | 98.02 180 | 99.32 167 | | | | | 99.88 94 | 96.99 194 | 99.63 193 | 99.68 59 |
|
| test0726 | | | | | | 99.50 109 | 99.21 32 | 98.17 158 | 99.35 154 | 97.97 175 | 99.26 119 | 99.06 154 | 97.61 132 | | | | |
|
| SR-MVS | | | 98.71 107 | 98.43 142 | 99.57 20 | 99.18 195 | 99.35 16 | 98.36 141 | 99.29 188 | 98.29 151 | 98.88 181 | 98.85 213 | 97.53 140 | 99.87 111 | 96.14 267 | 99.31 265 | 99.48 147 |
|
| DPM-MVS | | | 96.32 306 | 95.59 318 | 98.51 215 | 98.76 274 | 97.21 210 | 94.54 395 | 98.26 326 | 91.94 384 | 96.37 365 | 97.25 357 | 93.06 300 | 99.43 362 | 91.42 382 | 98.74 328 | 98.89 294 |
|
| GST-MVS | | | 98.61 132 | 98.30 161 | 99.52 42 | 99.51 106 | 99.20 38 | 98.26 148 | 99.25 200 | 97.44 226 | 98.67 209 | 98.39 284 | 97.68 123 | 99.85 131 | 96.00 271 | 99.51 234 | 99.52 127 |
|
| test_yl | | | 96.69 292 | 96.29 302 | 97.90 265 | 98.28 341 | 95.24 286 | 97.29 269 | 97.36 351 | 98.21 157 | 98.17 258 | 97.86 325 | 86.27 355 | 99.55 329 | 94.87 307 | 98.32 349 | 98.89 294 |
|
| thisisatest0530 | | | 95.27 335 | 94.45 346 | 97.74 281 | 99.19 188 | 94.37 312 | 97.86 205 | 90.20 418 | 97.17 254 | 98.22 256 | 97.65 337 | 73.53 408 | 99.90 68 | 96.90 205 | 99.35 259 | 98.95 283 |
|
| Anonymous20240529 | | | 98.93 78 | 98.87 79 | 99.12 112 | 99.19 188 | 98.22 127 | 99.01 67 | 98.99 258 | 99.25 62 | 99.54 60 | 99.37 87 | 97.04 170 | 99.80 197 | 97.89 137 | 99.52 232 | 99.35 204 |
|
| Anonymous202405211 | | | 97.90 206 | 97.50 234 | 99.08 120 | 98.90 250 | 98.25 121 | 98.53 117 | 96.16 379 | 98.87 111 | 99.11 136 | 98.86 210 | 90.40 331 | 99.78 221 | 97.36 169 | 99.31 265 | 99.19 244 |
|
| DCV-MVSNet | | | 96.69 292 | 96.29 302 | 97.90 265 | 98.28 341 | 95.24 286 | 97.29 269 | 97.36 351 | 98.21 157 | 98.17 258 | 97.86 325 | 86.27 355 | 99.55 329 | 94.87 307 | 98.32 349 | 98.89 294 |
|
| tttt0517 | | | 95.64 328 | 94.98 338 | 97.64 289 | 99.36 150 | 93.81 335 | 98.72 97 | 90.47 417 | 98.08 170 | 98.67 209 | 98.34 291 | 73.88 407 | 99.92 53 | 97.77 147 | 99.51 234 | 99.20 239 |
|
| our_test_3 | | | 97.39 252 | 97.73 218 | 96.34 351 | 98.70 287 | 89.78 396 | 94.61 392 | 98.97 259 | 96.50 286 | 99.04 150 | 98.85 213 | 95.98 228 | 99.84 149 | 97.26 174 | 99.67 182 | 99.41 174 |
|
| thisisatest0515 | | | 94.12 355 | 93.16 362 | 96.97 330 | 98.60 309 | 92.90 352 | 93.77 407 | 90.61 416 | 94.10 357 | 96.91 341 | 95.87 383 | 74.99 406 | 99.80 197 | 94.52 316 | 99.12 299 | 98.20 361 |
|
| ppachtmachnet_test | | | 97.50 239 | 97.74 216 | 96.78 341 | 98.70 287 | 91.23 383 | 94.55 394 | 99.05 244 | 96.36 292 | 99.21 127 | 98.79 224 | 96.39 206 | 99.78 221 | 96.74 219 | 99.82 98 | 99.34 206 |
|
| SMA-MVS |  | | 98.40 159 | 98.03 193 | 99.51 46 | 99.16 198 | 99.21 32 | 98.05 175 | 99.22 208 | 94.16 355 | 98.98 157 | 99.10 150 | 97.52 142 | 99.79 210 | 96.45 248 | 99.64 190 | 99.53 124 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| GSMVS | | | | | | | | | | | | | | | | | 98.81 306 |
|
| DPE-MVS |  | | 98.59 135 | 98.26 167 | 99.57 20 | 99.27 167 | 99.15 51 | 97.01 286 | 99.39 139 | 97.67 197 | 99.44 82 | 98.99 179 | 97.53 140 | 99.89 80 | 95.40 297 | 99.68 176 | 99.66 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.36 150 | 99.10 64 | | | | 99.05 148 | | | | | | |
|
| thres100view900 | | | 94.19 352 | 93.67 356 | 95.75 369 | 99.06 221 | 91.35 377 | 98.03 178 | 94.24 401 | 98.33 144 | 97.40 320 | 94.98 401 | 79.84 392 | 99.62 303 | 83.05 414 | 98.08 364 | 96.29 407 |
|
| tfpnnormal | | | 98.90 82 | 98.90 76 | 98.91 150 | 99.67 61 | 97.82 170 | 99.00 69 | 99.44 121 | 99.45 40 | 99.51 71 | 99.24 118 | 98.20 86 | 99.86 119 | 95.92 275 | 99.69 171 | 99.04 267 |
|
| tfpn200view9 | | | 94.03 356 | 93.44 358 | 95.78 368 | 98.93 242 | 91.44 375 | 97.60 240 | 94.29 399 | 97.94 179 | 97.10 330 | 94.31 408 | 79.67 394 | 99.62 303 | 83.05 414 | 98.08 364 | 96.29 407 |
|
| c3_l | | | 97.36 253 | 97.37 242 | 97.31 313 | 98.09 354 | 93.25 346 | 95.01 380 | 99.16 226 | 97.05 259 | 98.77 198 | 98.72 235 | 92.88 303 | 99.64 297 | 96.93 199 | 99.76 141 | 99.05 263 |
|
| CHOSEN 280x420 | | | 95.51 332 | 95.47 321 | 95.65 372 | 98.25 343 | 88.27 403 | 93.25 410 | 98.88 273 | 93.53 365 | 94.65 396 | 97.15 360 | 86.17 357 | 99.93 44 | 97.41 167 | 99.93 46 | 98.73 319 |
|
| CANet | | | 97.87 212 | 97.76 214 | 98.19 248 | 97.75 367 | 95.51 276 | 96.76 301 | 99.05 244 | 97.74 193 | 96.93 338 | 98.21 301 | 95.59 242 | 99.89 80 | 97.86 142 | 99.93 46 | 99.19 244 |
|
| Fast-Effi-MVS+-dtu | | | 98.27 177 | 98.09 186 | 98.81 161 | 98.43 331 | 98.11 134 | 97.61 239 | 99.50 93 | 98.64 121 | 97.39 322 | 97.52 345 | 98.12 95 | 99.95 24 | 96.90 205 | 98.71 332 | 98.38 353 |
|
| Effi-MVS+-dtu | | | 98.26 179 | 97.90 207 | 99.35 72 | 98.02 357 | 99.49 6 | 98.02 180 | 99.16 226 | 98.29 151 | 97.64 299 | 97.99 317 | 96.44 205 | 99.95 24 | 96.66 227 | 98.93 320 | 98.60 332 |
|
| CANet_DTU | | | 97.26 261 | 97.06 260 | 97.84 269 | 97.57 378 | 94.65 306 | 96.19 332 | 98.79 292 | 97.23 249 | 95.14 390 | 98.24 298 | 93.22 295 | 99.84 149 | 97.34 170 | 99.84 88 | 99.04 267 |
|
| MVS_0304 | | | 97.44 247 | 97.01 263 | 98.72 181 | 96.42 413 | 96.74 237 | 97.20 277 | 91.97 413 | 98.46 139 | 98.30 249 | 98.79 224 | 92.74 307 | 99.91 62 | 99.30 46 | 99.94 41 | 99.52 127 |
|
| MP-MVS-pluss | | | 98.57 136 | 98.23 171 | 99.60 14 | 99.69 54 | 99.35 16 | 97.16 281 | 99.38 141 | 94.87 339 | 98.97 161 | 98.99 179 | 98.01 101 | 99.88 94 | 97.29 172 | 99.70 168 | 99.58 94 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 98.40 159 | 98.00 196 | 99.61 12 | 99.57 82 | 99.25 28 | 98.57 112 | 99.35 154 | 97.55 211 | 99.31 111 | 97.71 333 | 94.61 270 | 99.88 94 | 96.14 267 | 99.19 288 | 99.70 57 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sam_mvs1 | | | | | | | | | | | | | 84.74 369 | | | | 98.81 306 |
|
| sam_mvs | | | | | | | | | | | | | 84.29 375 | | | | |
|
| IterMVS-SCA-FT | | | 97.85 218 | 98.18 176 | 96.87 335 | 99.27 167 | 91.16 384 | 95.53 363 | 99.25 200 | 99.10 86 | 99.41 88 | 99.35 92 | 93.10 298 | 99.96 12 | 98.65 93 | 99.94 41 | 99.49 137 |
|
| TSAR-MVS + MP. | | | 98.63 128 | 98.49 133 | 99.06 128 | 99.64 70 | 97.90 161 | 98.51 123 | 98.94 260 | 96.96 264 | 99.24 124 | 98.89 206 | 97.83 112 | 99.81 190 | 96.88 207 | 99.49 242 | 99.48 147 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 97.86 213 | 98.17 177 | 96.92 332 | 98.98 235 | 93.91 330 | 96.45 315 | 99.17 223 | 97.85 187 | 98.41 243 | 97.14 361 | 98.47 59 | 99.92 53 | 98.02 129 | 99.05 302 | 96.92 400 |
|
| OPM-MVS | | | 98.56 137 | 98.32 160 | 99.25 95 | 99.41 140 | 98.73 87 | 97.13 283 | 99.18 219 | 97.10 258 | 98.75 201 | 98.92 196 | 98.18 87 | 99.65 294 | 96.68 226 | 99.56 219 | 99.37 193 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMMP_NAP | | | 98.75 103 | 98.48 134 | 99.57 20 | 99.58 77 | 99.29 23 | 97.82 209 | 99.25 200 | 96.94 266 | 98.78 195 | 99.12 146 | 98.02 100 | 99.84 149 | 97.13 184 | 99.67 182 | 99.59 88 |
|
| ambc | | | | | 98.24 245 | 98.82 267 | 95.97 263 | 98.62 107 | 99.00 257 | | 99.27 115 | 99.21 124 | 96.99 175 | 99.50 346 | 96.55 241 | 99.50 241 | 99.26 228 |
|
| MTGPA |  | | | | | | | | 99.20 211 | | | | | | | | |
|
| SPE-MVS-test | | | 99.13 55 | 99.09 60 | 99.26 92 | 99.13 205 | 98.97 70 | 99.31 27 | 99.88 14 | 99.44 42 | 98.16 261 | 98.51 270 | 98.64 45 | 99.93 44 | 98.91 72 | 99.85 84 | 98.88 297 |
|
| Effi-MVS+ | | | 98.02 198 | 97.82 212 | 98.62 194 | 98.53 321 | 97.19 212 | 97.33 265 | 99.68 48 | 97.30 238 | 96.68 353 | 97.46 349 | 98.56 55 | 99.80 197 | 96.63 228 | 98.20 355 | 98.86 299 |
|
| xiu_mvs_v2_base | | | 97.16 271 | 97.49 235 | 96.17 360 | 98.54 319 | 92.46 360 | 95.45 367 | 98.84 284 | 97.25 243 | 97.48 314 | 96.49 370 | 98.31 74 | 99.90 68 | 96.34 255 | 98.68 337 | 96.15 411 |
|
| xiu_mvs_v1_base | | | 97.86 213 | 98.17 177 | 96.92 332 | 98.98 235 | 93.91 330 | 96.45 315 | 99.17 223 | 97.85 187 | 98.41 243 | 97.14 361 | 98.47 59 | 99.92 53 | 98.02 129 | 99.05 302 | 96.92 400 |
|
| new-patchmatchnet | | | 98.35 165 | 98.74 91 | 97.18 319 | 99.24 174 | 92.23 367 | 96.42 318 | 99.48 102 | 98.30 148 | 99.69 41 | 99.53 60 | 97.44 149 | 99.82 176 | 98.84 78 | 99.77 129 | 99.49 137 |
|
| pmmvs6 | | | 99.67 3 | 99.70 3 | 99.60 14 | 99.90 4 | 99.27 26 | 99.53 8 | 99.76 33 | 99.64 19 | 99.84 22 | 99.83 4 | 99.50 8 | 99.87 111 | 99.36 42 | 99.92 57 | 99.64 69 |
|
| pmmvs5 | | | 97.64 231 | 97.49 235 | 98.08 256 | 99.14 203 | 95.12 292 | 96.70 305 | 99.05 244 | 93.77 362 | 98.62 216 | 98.83 216 | 93.23 294 | 99.75 240 | 98.33 112 | 99.76 141 | 99.36 200 |
|
| test_post1 | | | | | | | | 97.59 242 | | | | 20.48 428 | 83.07 383 | 99.66 289 | 94.16 327 | | |
|
| test_post | | | | | | | | | | | | 21.25 427 | 83.86 378 | 99.70 262 | | | |
|
| Fast-Effi-MVS+ | | | 97.67 229 | 97.38 241 | 98.57 204 | 98.71 283 | 97.43 197 | 97.23 273 | 99.45 117 | 94.82 340 | 96.13 369 | 96.51 369 | 98.52 57 | 99.91 62 | 96.19 263 | 98.83 324 | 98.37 355 |
|
| patchmatchnet-post | | | | | | | | | | | | 98.77 228 | 84.37 372 | 99.85 131 | | | |
|
| Anonymous20231211 | | | 99.27 33 | 99.27 41 | 99.26 92 | 99.29 164 | 98.18 128 | 99.49 9 | 99.51 91 | 99.70 12 | 99.80 28 | 99.68 22 | 96.84 181 | 99.83 166 | 99.21 54 | 99.91 64 | 99.77 40 |
|
| pmmvs-eth3d | | | 98.47 152 | 98.34 156 | 98.86 155 | 99.30 162 | 97.76 176 | 97.16 281 | 99.28 191 | 95.54 321 | 99.42 86 | 99.19 127 | 97.27 158 | 99.63 300 | 97.89 137 | 99.97 20 | 99.20 239 |
|
| GG-mvs-BLEND | | | | | 94.76 384 | 94.54 423 | 92.13 368 | 99.31 27 | 80.47 428 | | 88.73 422 | 91.01 422 | 67.59 417 | 98.16 415 | 82.30 418 | 94.53 414 | 93.98 418 |
|
| xiu_mvs_v1_base_debi | | | 97.86 213 | 98.17 177 | 96.92 332 | 98.98 235 | 93.91 330 | 96.45 315 | 99.17 223 | 97.85 187 | 98.41 243 | 97.14 361 | 98.47 59 | 99.92 53 | 98.02 129 | 99.05 302 | 96.92 400 |
|
| Anonymous20231206 | | | 98.21 185 | 98.21 172 | 98.20 247 | 99.51 106 | 95.43 280 | 98.13 162 | 99.32 167 | 96.16 300 | 98.93 173 | 98.82 219 | 96.00 223 | 99.83 166 | 97.32 171 | 99.73 148 | 99.36 200 |
|
| MTAPA | | | 98.88 84 | 98.64 110 | 99.61 12 | 99.67 61 | 99.36 15 | 98.43 134 | 99.20 211 | 98.83 116 | 98.89 178 | 98.90 200 | 96.98 176 | 99.92 53 | 97.16 179 | 99.70 168 | 99.56 105 |
|
| MTMP | | | | | | | | 97.93 193 | 91.91 414 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.83 422 | 81.97 425 | | | 88.07 409 | | 94.99 400 | | 99.60 310 | 91.76 375 | | |
|
| test9_res | | | | | | | | | | | | | | | 93.28 353 | 99.15 293 | 99.38 191 |
|
| MVP-Stereo | | | 98.08 195 | 97.92 205 | 98.57 204 | 98.96 238 | 96.79 233 | 97.90 199 | 99.18 219 | 96.41 291 | 98.46 238 | 98.95 192 | 95.93 232 | 99.60 310 | 96.51 244 | 98.98 315 | 99.31 217 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TEST9 | | | | | | 98.71 283 | 98.08 141 | 95.96 344 | 99.03 249 | 91.40 390 | 95.85 375 | 97.53 343 | 96.52 201 | 99.76 233 | | | |
|
| train_agg | | | 97.10 273 | 96.45 298 | 99.07 122 | 98.71 283 | 98.08 141 | 95.96 344 | 99.03 249 | 91.64 385 | 95.85 375 | 97.53 343 | 96.47 203 | 99.76 233 | 93.67 343 | 99.16 291 | 99.36 200 |
|
| gg-mvs-nofinetune | | | 92.37 380 | 91.20 384 | 95.85 366 | 95.80 421 | 92.38 363 | 99.31 27 | 81.84 427 | 99.75 8 | 91.83 416 | 99.74 15 | 68.29 413 | 99.02 397 | 87.15 405 | 97.12 391 | 96.16 410 |
|
| SCA | | | 96.41 305 | 96.66 288 | 95.67 370 | 98.24 344 | 88.35 402 | 95.85 353 | 96.88 369 | 96.11 301 | 97.67 298 | 98.67 244 | 93.10 298 | 99.85 131 | 94.16 327 | 99.22 281 | 98.81 306 |
|
| Patchmatch-test | | | 96.55 298 | 96.34 300 | 97.17 321 | 98.35 337 | 93.06 348 | 98.40 137 | 97.79 340 | 97.33 234 | 98.41 243 | 98.67 244 | 83.68 379 | 99.69 266 | 95.16 301 | 99.31 265 | 98.77 314 |
|
| test_8 | | | | | | 98.67 297 | 98.01 149 | 95.91 350 | 99.02 252 | 91.64 385 | 95.79 377 | 97.50 346 | 96.47 203 | 99.76 233 | | | |
|
| MS-PatchMatch | | | 97.68 228 | 97.75 215 | 97.45 308 | 98.23 346 | 93.78 336 | 97.29 269 | 98.84 284 | 96.10 302 | 98.64 213 | 98.65 249 | 96.04 220 | 99.36 371 | 96.84 211 | 99.14 294 | 99.20 239 |
|
| Patchmatch-RL test | | | 97.26 261 | 97.02 262 | 97.99 264 | 99.52 104 | 95.53 275 | 96.13 336 | 99.71 39 | 97.47 218 | 99.27 115 | 99.16 137 | 84.30 374 | 99.62 303 | 97.89 137 | 99.77 129 | 98.81 306 |
|
| cdsmvs_eth3d_5k | | | 24.66 393 | 32.88 396 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 99.10 236 | 0.00 429 | 0.00 430 | 97.58 341 | 99.21 16 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| pcd_1.5k_mvsjas | | | 8.17 396 | 10.90 399 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 98.07 96 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| agg_prior2 | | | | | | | | | | | | | | | 92.50 369 | 99.16 291 | 99.37 193 |
|
| agg_prior | | | | | | 98.68 296 | 97.99 150 | | 99.01 255 | | 95.59 378 | | | 99.77 227 | | | |
|
| tmp_tt | | | 78.77 390 | 78.73 393 | 78.90 406 | 58.45 431 | 74.76 430 | 94.20 400 | 78.26 429 | 39.16 424 | 86.71 423 | 92.82 418 | 80.50 390 | 75.19 426 | 86.16 410 | 92.29 419 | 86.74 420 |
|
| canonicalmvs | | | 98.34 166 | 98.26 167 | 98.58 201 | 98.46 327 | 97.82 170 | 98.96 74 | 99.46 113 | 99.19 72 | 97.46 315 | 95.46 393 | 98.59 51 | 99.46 357 | 98.08 125 | 98.71 332 | 98.46 340 |
|
| anonymousdsp | | | 99.51 11 | 99.47 17 | 99.62 9 | 99.88 9 | 99.08 67 | 99.34 20 | 99.69 43 | 98.93 107 | 99.65 49 | 99.72 18 | 98.93 27 | 99.95 24 | 99.11 58 | 100.00 1 | 99.82 30 |
|
| alignmvs | | | 97.35 254 | 96.88 271 | 98.78 169 | 98.54 319 | 98.09 137 | 97.71 224 | 97.69 344 | 99.20 68 | 97.59 303 | 95.90 382 | 88.12 349 | 99.55 329 | 98.18 118 | 98.96 317 | 98.70 323 |
|
| nrg030 | | | 99.40 22 | 99.35 28 | 99.54 30 | 99.58 77 | 99.13 59 | 98.98 72 | 99.48 102 | 99.68 15 | 99.46 78 | 99.26 113 | 98.62 48 | 99.73 250 | 99.17 57 | 99.92 57 | 99.76 45 |
|
| v144192 | | | 98.54 143 | 98.57 121 | 98.45 223 | 99.21 181 | 95.98 262 | 97.63 236 | 99.36 149 | 97.15 257 | 99.32 109 | 99.18 131 | 95.84 235 | 99.84 149 | 99.50 37 | 99.91 64 | 99.54 116 |
|
| FIs | | | 99.14 51 | 99.09 60 | 99.29 86 | 99.70 52 | 98.28 119 | 99.13 55 | 99.52 90 | 99.48 34 | 99.24 124 | 99.41 84 | 96.79 187 | 99.82 176 | 98.69 91 | 99.88 76 | 99.76 45 |
|
| v1921920 | | | 98.54 143 | 98.60 118 | 98.38 231 | 99.20 185 | 95.76 270 | 97.56 245 | 99.36 149 | 97.23 249 | 99.38 94 | 99.17 135 | 96.02 221 | 99.84 149 | 99.57 30 | 99.90 70 | 99.54 116 |
|
| UA-Net | | | 99.47 13 | 99.40 22 | 99.70 2 | 99.49 116 | 99.29 23 | 99.80 4 | 99.72 37 | 99.82 5 | 99.04 150 | 99.81 6 | 98.05 99 | 99.96 12 | 98.85 77 | 99.99 5 | 99.86 23 |
|
| v1192 | | | 98.60 133 | 98.66 107 | 98.41 228 | 99.27 167 | 95.88 265 | 97.52 249 | 99.36 149 | 97.41 227 | 99.33 103 | 99.20 126 | 96.37 209 | 99.82 176 | 99.57 30 | 99.92 57 | 99.55 112 |
|
| FC-MVSNet-test | | | 99.27 33 | 99.25 44 | 99.34 75 | 99.77 26 | 98.37 113 | 99.30 32 | 99.57 69 | 99.61 26 | 99.40 91 | 99.50 64 | 97.12 166 | 99.85 131 | 99.02 66 | 99.94 41 | 99.80 34 |
|
| v1144 | | | 98.60 133 | 98.66 107 | 98.41 228 | 99.36 150 | 95.90 264 | 97.58 243 | 99.34 160 | 97.51 214 | 99.27 115 | 99.15 141 | 96.34 211 | 99.80 197 | 99.47 39 | 99.93 46 | 99.51 130 |
|
| sosnet-low-res | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| HFP-MVS | | | 98.71 107 | 98.44 141 | 99.51 46 | 99.49 116 | 99.16 47 | 98.52 118 | 99.31 172 | 97.47 218 | 98.58 224 | 98.50 274 | 97.97 106 | 99.85 131 | 96.57 234 | 99.59 207 | 99.53 124 |
|
| v148 | | | 98.45 154 | 98.60 118 | 98.00 263 | 99.44 132 | 94.98 295 | 97.44 258 | 99.06 241 | 98.30 148 | 99.32 109 | 98.97 185 | 96.65 196 | 99.62 303 | 98.37 108 | 99.85 84 | 99.39 184 |
|
| sosnet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| uncertanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| AllTest | | | 98.44 155 | 98.20 173 | 99.16 107 | 99.50 109 | 98.55 99 | 98.25 149 | 99.58 62 | 96.80 273 | 98.88 181 | 99.06 154 | 97.65 126 | 99.57 322 | 94.45 319 | 99.61 201 | 99.37 193 |
|
| TestCases | | | | | 99.16 107 | 99.50 109 | 98.55 99 | | 99.58 62 | 96.80 273 | 98.88 181 | 99.06 154 | 97.65 126 | 99.57 322 | 94.45 319 | 99.61 201 | 99.37 193 |
|
| v7n | | | 99.53 9 | 99.57 10 | 99.41 62 | 99.88 9 | 98.54 102 | 99.45 11 | 99.61 58 | 99.66 17 | 99.68 43 | 99.66 29 | 98.44 64 | 99.95 24 | 99.73 21 | 99.96 26 | 99.75 49 |
|
| region2R | | | 98.69 114 | 98.40 146 | 99.54 30 | 99.53 102 | 99.17 43 | 98.52 118 | 99.31 172 | 97.46 223 | 98.44 240 | 98.51 270 | 97.83 112 | 99.88 94 | 96.46 247 | 99.58 212 | 99.58 94 |
|
| RRT-MVS | | | 97.88 210 | 97.98 198 | 97.61 291 | 98.15 350 | 93.77 337 | 98.97 73 | 99.64 53 | 99.16 76 | 98.69 206 | 99.42 80 | 91.60 319 | 99.89 80 | 97.63 155 | 98.52 346 | 99.16 254 |
|
| mamv4 | | | 99.44 15 | 99.39 23 | 99.58 19 | 99.30 162 | 99.74 2 | 99.04 65 | 99.81 26 | 99.77 7 | 99.82 24 | 99.57 46 | 97.82 115 | 99.98 4 | 99.53 34 | 99.89 74 | 99.01 271 |
|
| PS-MVSNAJss | | | 99.46 14 | 99.49 13 | 99.35 72 | 99.90 4 | 98.15 130 | 99.20 45 | 99.65 52 | 99.48 34 | 99.92 8 | 99.71 19 | 98.07 96 | 99.96 12 | 99.53 34 | 100.00 1 | 99.93 11 |
|
| PS-MVSNAJ | | | 97.08 275 | 97.39 240 | 96.16 362 | 98.56 317 | 92.46 360 | 95.24 374 | 98.85 283 | 97.25 243 | 97.49 313 | 95.99 379 | 98.07 96 | 99.90 68 | 96.37 252 | 98.67 338 | 96.12 412 |
|
| jajsoiax | | | 99.58 6 | 99.61 8 | 99.48 53 | 99.87 12 | 98.61 94 | 99.28 37 | 99.66 51 | 99.09 89 | 99.89 15 | 99.68 22 | 99.53 7 | 99.97 5 | 99.50 37 | 99.99 5 | 99.87 20 |
|
| mvs_tets | | | 99.63 5 | 99.67 5 | 99.49 51 | 99.88 9 | 98.61 94 | 99.34 20 | 99.71 39 | 99.27 61 | 99.90 12 | 99.74 15 | 99.68 4 | 99.97 5 | 99.55 33 | 99.99 5 | 99.88 19 |
|
| EI-MVSNet-UG-set | | | 98.69 114 | 98.71 98 | 98.62 194 | 99.10 209 | 96.37 248 | 97.23 273 | 98.87 275 | 99.20 68 | 99.19 129 | 98.99 179 | 97.30 155 | 99.85 131 | 98.77 84 | 99.79 118 | 99.65 68 |
|
| EI-MVSNet-Vis-set | | | 98.68 119 | 98.70 101 | 98.63 192 | 99.09 212 | 96.40 247 | 97.23 273 | 98.86 280 | 99.20 68 | 99.18 133 | 98.97 185 | 97.29 157 | 99.85 131 | 98.72 88 | 99.78 123 | 99.64 69 |
|
| HPM-MVS++ |  | | 98.10 192 | 97.64 226 | 99.48 53 | 99.09 212 | 99.13 59 | 97.52 249 | 98.75 299 | 97.46 223 | 96.90 344 | 97.83 328 | 96.01 222 | 99.84 149 | 95.82 283 | 99.35 259 | 99.46 156 |
|
| test_prior4 | | | | | | | 97.97 154 | 95.86 351 | | | | | | | | | |
|
| XVS | | | 98.72 106 | 98.45 139 | 99.53 37 | 99.46 127 | 99.21 32 | 98.65 103 | 99.34 160 | 98.62 125 | 97.54 308 | 98.63 254 | 97.50 144 | 99.83 166 | 96.79 213 | 99.53 229 | 99.56 105 |
|
| v1240 | | | 98.55 141 | 98.62 113 | 98.32 237 | 99.22 179 | 95.58 273 | 97.51 251 | 99.45 117 | 97.16 255 | 99.45 81 | 99.24 118 | 96.12 218 | 99.85 131 | 99.60 28 | 99.88 76 | 99.55 112 |
|
| pm-mvs1 | | | 99.44 15 | 99.48 15 | 99.33 80 | 99.80 20 | 98.63 91 | 99.29 33 | 99.63 54 | 99.30 58 | 99.65 49 | 99.60 42 | 99.16 20 | 99.82 176 | 99.07 61 | 99.83 95 | 99.56 105 |
|
| test_prior2 | | | | | | | | 95.74 357 | | 96.48 288 | 96.11 370 | 97.63 339 | 95.92 233 | | 94.16 327 | 99.20 285 | |
|
| X-MVStestdata | | | 94.32 349 | 92.59 367 | 99.53 37 | 99.46 127 | 99.21 32 | 98.65 103 | 99.34 160 | 98.62 125 | 97.54 308 | 45.85 424 | 97.50 144 | 99.83 166 | 96.79 213 | 99.53 229 | 99.56 105 |
|
| test_prior | | | | | 98.95 143 | 98.69 292 | 97.95 158 | | 99.03 249 | | | | | 99.59 314 | | | 99.30 220 |
|
| 旧先验2 | | | | | | | | 95.76 356 | | 88.56 408 | 97.52 310 | | | 99.66 289 | 94.48 317 | | |
|
| 新几何2 | | | | | | | | 95.93 347 | | | | | | | | | |
|
| 新几何1 | | | | | 98.91 150 | 98.94 240 | 97.76 176 | | 98.76 296 | 87.58 410 | 96.75 352 | 98.10 309 | 94.80 266 | 99.78 221 | 92.73 365 | 99.00 311 | 99.20 239 |
|
| 旧先验1 | | | | | | 98.82 267 | 97.45 195 | | 98.76 296 | | | 98.34 291 | 95.50 246 | | | 99.01 310 | 99.23 234 |
|
| 无先验 | | | | | | | | 95.74 357 | 98.74 301 | 89.38 404 | | | | 99.73 250 | 92.38 371 | | 99.22 238 |
|
| 原ACMM2 | | | | | | | | 95.53 363 | | | | | | | | | |
|
| 原ACMM1 | | | | | 98.35 235 | 98.90 250 | 96.25 252 | | 98.83 288 | 92.48 379 | 96.07 372 | 98.10 309 | 95.39 249 | 99.71 258 | 92.61 368 | 98.99 313 | 99.08 259 |
|
| test222 | | | | | | 98.92 246 | 96.93 227 | 95.54 362 | 98.78 294 | 85.72 413 | 96.86 347 | 98.11 308 | 94.43 273 | | | 99.10 301 | 99.23 234 |
|
| testdata2 | | | | | | | | | | | | | | 99.79 210 | 92.80 363 | | |
|
| segment_acmp | | | | | | | | | | | | | 97.02 173 | | | | |
|
| testdata | | | | | 98.09 253 | 98.93 242 | 95.40 281 | | 98.80 291 | 90.08 401 | 97.45 317 | 98.37 287 | 95.26 251 | 99.70 262 | 93.58 346 | 98.95 318 | 99.17 251 |
|
| testdata1 | | | | | | | | 95.44 368 | | 96.32 294 | | | | | | | |
|
| v8 | | | 99.01 67 | 99.16 51 | 98.57 204 | 99.47 126 | 96.31 251 | 98.90 80 | 99.47 110 | 99.03 97 | 99.52 66 | 99.57 46 | 96.93 177 | 99.81 190 | 99.60 28 | 99.98 12 | 99.60 82 |
|
| 1314 | | | 95.74 324 | 95.60 316 | 96.17 360 | 97.53 383 | 92.75 356 | 98.07 172 | 98.31 325 | 91.22 392 | 94.25 399 | 96.68 367 | 95.53 243 | 99.03 396 | 91.64 378 | 97.18 390 | 96.74 404 |
|
| LFMVS | | | 97.20 267 | 96.72 282 | 98.64 188 | 98.72 280 | 96.95 225 | 98.93 78 | 94.14 403 | 99.74 10 | 98.78 195 | 99.01 175 | 84.45 371 | 99.73 250 | 97.44 165 | 99.27 272 | 99.25 229 |
|
| VDD-MVS | | | 98.56 137 | 98.39 149 | 99.07 122 | 99.13 205 | 98.07 143 | 98.59 110 | 97.01 362 | 99.59 27 | 99.11 136 | 99.27 109 | 94.82 263 | 99.79 210 | 98.34 110 | 99.63 193 | 99.34 206 |
|
| VDDNet | | | 98.21 185 | 97.95 201 | 99.01 135 | 99.58 77 | 97.74 178 | 99.01 67 | 97.29 355 | 99.67 16 | 98.97 161 | 99.50 64 | 90.45 330 | 99.80 197 | 97.88 140 | 99.20 285 | 99.48 147 |
|
| v10 | | | 98.97 73 | 99.11 57 | 98.55 209 | 99.44 132 | 96.21 253 | 98.90 80 | 99.55 80 | 98.73 117 | 99.48 73 | 99.60 42 | 96.63 197 | 99.83 166 | 99.70 24 | 99.99 5 | 99.61 81 |
|
| VPNet | | | 98.87 85 | 98.83 84 | 99.01 135 | 99.70 52 | 97.62 187 | 98.43 134 | 99.35 154 | 99.47 37 | 99.28 113 | 99.05 161 | 96.72 193 | 99.82 176 | 98.09 124 | 99.36 257 | 99.59 88 |
|
| MVS | | | 93.19 369 | 92.09 373 | 96.50 347 | 96.91 402 | 94.03 324 | 98.07 172 | 98.06 336 | 68.01 422 | 94.56 398 | 96.48 371 | 95.96 230 | 99.30 381 | 83.84 413 | 96.89 395 | 96.17 409 |
|
| v2v482 | | | 98.56 137 | 98.62 113 | 98.37 233 | 99.42 138 | 95.81 268 | 97.58 243 | 99.16 226 | 97.90 183 | 99.28 113 | 99.01 175 | 95.98 228 | 99.79 210 | 99.33 44 | 99.90 70 | 99.51 130 |
|
| V42 | | | 98.78 98 | 98.78 89 | 98.76 174 | 99.44 132 | 97.04 219 | 98.27 147 | 99.19 215 | 97.87 185 | 99.25 123 | 99.16 137 | 96.84 181 | 99.78 221 | 99.21 54 | 99.84 88 | 99.46 156 |
|
| SD-MVS | | | 98.40 159 | 98.68 104 | 97.54 300 | 98.96 238 | 97.99 150 | 97.88 201 | 99.36 149 | 98.20 161 | 99.63 52 | 99.04 163 | 98.76 36 | 95.33 423 | 96.56 238 | 99.74 145 | 99.31 217 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GA-MVS | | | 95.86 320 | 95.32 330 | 97.49 305 | 98.60 309 | 94.15 319 | 93.83 406 | 97.93 338 | 95.49 323 | 96.68 353 | 97.42 351 | 83.21 381 | 99.30 381 | 96.22 261 | 98.55 345 | 99.01 271 |
|
| MSLP-MVS++ | | | 98.02 198 | 98.14 183 | 97.64 289 | 98.58 314 | 95.19 289 | 97.48 254 | 99.23 207 | 97.47 218 | 97.90 281 | 98.62 256 | 97.04 170 | 98.81 406 | 97.55 159 | 99.41 251 | 98.94 287 |
|
| APDe-MVS |  | | 98.99 69 | 98.79 88 | 99.60 14 | 99.21 181 | 99.15 51 | 98.87 84 | 99.48 102 | 97.57 207 | 99.35 100 | 99.24 118 | 97.83 112 | 99.89 80 | 97.88 140 | 99.70 168 | 99.75 49 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS_3200maxsize | | | 98.84 89 | 98.61 117 | 99.53 37 | 99.19 188 | 99.27 26 | 98.49 126 | 99.33 165 | 98.64 121 | 99.03 153 | 98.98 183 | 97.89 109 | 99.85 131 | 96.54 242 | 99.42 250 | 99.46 156 |
|
| ADS-MVSNet2 | | | 95.43 333 | 94.98 338 | 96.76 342 | 98.14 351 | 91.74 370 | 97.92 196 | 97.76 341 | 90.23 397 | 96.51 361 | 98.91 197 | 85.61 362 | 99.85 131 | 92.88 359 | 96.90 393 | 98.69 324 |
|
| EI-MVSNet | | | 98.40 159 | 98.51 127 | 98.04 261 | 99.10 209 | 94.73 302 | 97.20 277 | 98.87 275 | 98.97 103 | 99.06 143 | 99.02 166 | 96.00 223 | 99.80 197 | 98.58 96 | 99.82 98 | 99.60 82 |
|
| Regformer | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| CVMVSNet | | | 96.25 309 | 97.21 252 | 93.38 400 | 99.10 209 | 80.56 427 | 97.20 277 | 98.19 331 | 96.94 266 | 99.00 155 | 99.02 166 | 89.50 337 | 99.80 197 | 96.36 254 | 99.59 207 | 99.78 38 |
|
| pmmvs4 | | | 97.58 236 | 97.28 247 | 98.51 215 | 98.84 262 | 96.93 227 | 95.40 370 | 98.52 315 | 93.60 364 | 98.61 218 | 98.65 249 | 95.10 255 | 99.60 310 | 96.97 197 | 99.79 118 | 98.99 276 |
|
| EU-MVSNet | | | 97.66 230 | 98.50 129 | 95.13 381 | 99.63 74 | 85.84 411 | 98.35 142 | 98.21 328 | 98.23 155 | 99.54 60 | 99.46 73 | 95.02 257 | 99.68 275 | 98.24 114 | 99.87 79 | 99.87 20 |
|
| VNet | | | 98.42 156 | 98.30 161 | 98.79 166 | 98.79 273 | 97.29 203 | 98.23 150 | 98.66 306 | 99.31 56 | 98.85 186 | 98.80 222 | 94.80 266 | 99.78 221 | 98.13 121 | 99.13 296 | 99.31 217 |
|
| test-LLR | | | 93.90 358 | 93.85 352 | 94.04 391 | 96.53 410 | 84.62 417 | 94.05 403 | 92.39 410 | 96.17 298 | 94.12 401 | 95.07 397 | 82.30 386 | 99.67 278 | 95.87 279 | 98.18 356 | 97.82 378 |
|
| TESTMET0.1,1 | | | 92.19 383 | 91.77 381 | 93.46 398 | 96.48 412 | 82.80 423 | 94.05 403 | 91.52 415 | 94.45 349 | 94.00 404 | 94.88 403 | 66.65 418 | 99.56 325 | 95.78 284 | 98.11 362 | 98.02 370 |
|
| test-mter | | | 92.33 381 | 91.76 382 | 94.04 391 | 96.53 410 | 84.62 417 | 94.05 403 | 92.39 410 | 94.00 360 | 94.12 401 | 95.07 397 | 65.63 422 | 99.67 278 | 95.87 279 | 98.18 356 | 97.82 378 |
|
| VPA-MVSNet | | | 99.30 29 | 99.30 38 | 99.28 87 | 99.49 116 | 98.36 116 | 99.00 69 | 99.45 117 | 99.63 21 | 99.52 66 | 99.44 78 | 98.25 78 | 99.88 94 | 99.09 60 | 99.84 88 | 99.62 73 |
|
| ACMMPR | | | 98.70 111 | 98.42 144 | 99.54 30 | 99.52 104 | 99.14 56 | 98.52 118 | 99.31 172 | 97.47 218 | 98.56 227 | 98.54 265 | 97.75 120 | 99.88 94 | 96.57 234 | 99.59 207 | 99.58 94 |
|
| testgi | | | 98.32 170 | 98.39 149 | 98.13 252 | 99.57 82 | 95.54 274 | 97.78 214 | 99.49 100 | 97.37 231 | 99.19 129 | 97.65 337 | 98.96 24 | 99.49 349 | 96.50 245 | 98.99 313 | 99.34 206 |
|
| test20.03 | | | 98.78 98 | 98.77 90 | 98.78 169 | 99.46 127 | 97.20 211 | 97.78 214 | 99.24 205 | 99.04 96 | 99.41 88 | 98.90 200 | 97.65 126 | 99.76 233 | 97.70 152 | 99.79 118 | 99.39 184 |
|
| thres600view7 | | | 94.45 347 | 93.83 353 | 96.29 353 | 99.06 221 | 91.53 373 | 97.99 188 | 94.24 401 | 98.34 143 | 97.44 318 | 95.01 399 | 79.84 392 | 99.67 278 | 84.33 412 | 98.23 353 | 97.66 388 |
|
| ADS-MVSNet | | | 95.24 336 | 94.93 341 | 96.18 359 | 98.14 351 | 90.10 395 | 97.92 196 | 97.32 354 | 90.23 397 | 96.51 361 | 98.91 197 | 85.61 362 | 99.74 245 | 92.88 359 | 96.90 393 | 98.69 324 |
|
| MP-MVS |  | | 98.46 153 | 98.09 186 | 99.54 30 | 99.57 82 | 99.22 31 | 98.50 125 | 99.19 215 | 97.61 204 | 97.58 304 | 98.66 247 | 97.40 151 | 99.88 94 | 94.72 312 | 99.60 203 | 99.54 116 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| testmvs | | | 17.12 394 | 20.53 397 | 6.87 410 | 12.05 432 | 4.20 435 | 93.62 409 | 6.73 433 | 4.62 428 | 10.41 428 | 24.33 425 | 8.28 433 | 3.56 429 | 9.69 428 | 15.07 426 | 12.86 425 |
|
| thres400 | | | 94.14 354 | 93.44 358 | 96.24 356 | 98.93 242 | 91.44 375 | 97.60 240 | 94.29 399 | 97.94 179 | 97.10 330 | 94.31 408 | 79.67 394 | 99.62 303 | 83.05 414 | 98.08 364 | 97.66 388 |
|
| test123 | | | 17.04 395 | 20.11 398 | 7.82 409 | 10.25 433 | 4.91 434 | 94.80 384 | 4.47 434 | 4.93 427 | 10.00 429 | 24.28 426 | 9.69 432 | 3.64 428 | 10.14 427 | 12.43 427 | 14.92 424 |
|
| thres200 | | | 93.72 361 | 93.14 363 | 95.46 377 | 98.66 302 | 91.29 379 | 96.61 309 | 94.63 396 | 97.39 229 | 96.83 348 | 93.71 411 | 79.88 391 | 99.56 325 | 82.40 417 | 98.13 361 | 95.54 416 |
|
| test0.0.03 1 | | | 94.51 346 | 93.69 355 | 96.99 328 | 96.05 417 | 93.61 343 | 94.97 381 | 93.49 405 | 96.17 298 | 97.57 306 | 94.88 403 | 82.30 386 | 99.01 399 | 93.60 345 | 94.17 415 | 98.37 355 |
|
| pmmvs3 | | | 95.03 340 | 94.40 347 | 96.93 331 | 97.70 373 | 92.53 359 | 95.08 378 | 97.71 343 | 88.57 407 | 97.71 295 | 98.08 312 | 79.39 396 | 99.82 176 | 96.19 263 | 99.11 300 | 98.43 348 |
|
| EMVS | | | 93.83 359 | 94.02 351 | 93.23 401 | 96.83 405 | 84.96 414 | 89.77 420 | 96.32 378 | 97.92 181 | 97.43 319 | 96.36 376 | 86.17 357 | 98.93 402 | 87.68 404 | 97.73 373 | 95.81 414 |
|
| E-PMN | | | 94.17 353 | 94.37 348 | 93.58 397 | 96.86 403 | 85.71 413 | 90.11 419 | 97.07 361 | 98.17 164 | 97.82 290 | 97.19 358 | 84.62 370 | 98.94 401 | 89.77 397 | 97.68 374 | 96.09 413 |
|
| PGM-MVS | | | 98.66 123 | 98.37 152 | 99.55 27 | 99.53 102 | 99.18 42 | 98.23 150 | 99.49 100 | 97.01 263 | 98.69 206 | 98.88 207 | 98.00 102 | 99.89 80 | 95.87 279 | 99.59 207 | 99.58 94 |
|
| LCM-MVSNet-Re | | | 98.64 126 | 98.48 134 | 99.11 114 | 98.85 261 | 98.51 104 | 98.49 126 | 99.83 23 | 98.37 141 | 99.69 41 | 99.46 73 | 98.21 85 | 99.92 53 | 94.13 331 | 99.30 268 | 98.91 292 |
|
| LCM-MVSNet | | | 99.93 1 | 99.92 1 | 99.94 1 | 99.99 1 | 99.97 1 | 99.90 1 | 99.89 13 | 99.98 1 | 99.99 1 | 99.96 1 | 99.77 2 | 100.00 1 | 99.81 12 | 100.00 1 | 99.85 25 |
|
| MCST-MVS | | | 98.00 200 | 97.63 227 | 99.10 116 | 99.24 174 | 98.17 129 | 96.89 295 | 98.73 302 | 95.66 316 | 97.92 279 | 97.70 335 | 97.17 164 | 99.66 289 | 96.18 265 | 99.23 280 | 99.47 154 |
|
| mvs_anonymous | | | 97.83 221 | 98.16 180 | 96.87 335 | 98.18 348 | 91.89 369 | 97.31 267 | 98.90 269 | 97.37 231 | 98.83 189 | 99.46 73 | 96.28 212 | 99.79 210 | 98.90 73 | 98.16 359 | 98.95 283 |
|
| MVS_Test | | | 98.18 188 | 98.36 153 | 97.67 285 | 98.48 324 | 94.73 302 | 98.18 155 | 99.02 252 | 97.69 196 | 98.04 274 | 99.11 147 | 97.22 162 | 99.56 325 | 98.57 98 | 98.90 322 | 98.71 320 |
|
| MDA-MVSNet-bldmvs | | | 97.94 204 | 97.91 206 | 98.06 258 | 99.44 132 | 94.96 296 | 96.63 308 | 99.15 231 | 98.35 142 | 98.83 189 | 99.11 147 | 94.31 278 | 99.85 131 | 96.60 231 | 98.72 330 | 99.37 193 |
|
| CDPH-MVS | | | 97.26 261 | 96.66 288 | 99.07 122 | 99.00 231 | 98.15 130 | 96.03 340 | 99.01 255 | 91.21 393 | 97.79 291 | 97.85 327 | 96.89 179 | 99.69 266 | 92.75 364 | 99.38 256 | 99.39 184 |
|
| test12 | | | | | 98.93 146 | 98.58 314 | 97.83 167 | | 98.66 306 | | 96.53 359 | | 95.51 245 | 99.69 266 | | 99.13 296 | 99.27 225 |
|
| casdiffmvs |  | | 98.95 76 | 99.00 67 | 98.81 161 | 99.38 143 | 97.33 201 | 97.82 209 | 99.57 69 | 99.17 75 | 99.35 100 | 99.17 135 | 98.35 71 | 99.69 266 | 98.46 104 | 99.73 148 | 99.41 174 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 98.22 183 | 98.24 170 | 98.17 249 | 99.00 231 | 95.44 279 | 96.38 320 | 99.58 62 | 97.79 191 | 98.53 232 | 98.50 274 | 96.76 190 | 99.74 245 | 97.95 136 | 99.64 190 | 99.34 206 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 93.73 360 | 92.83 366 | 96.42 349 | 97.70 373 | 91.28 380 | 96.84 297 | 89.77 419 | 93.96 361 | 92.44 414 | 95.93 381 | 79.14 397 | 99.77 227 | 92.94 357 | 96.76 397 | 98.21 360 |
|
| baseline1 | | | 95.96 318 | 95.44 324 | 97.52 302 | 98.51 323 | 93.99 327 | 98.39 138 | 96.09 381 | 98.21 157 | 98.40 247 | 97.76 331 | 86.88 351 | 99.63 300 | 95.42 296 | 89.27 421 | 98.95 283 |
|
| YYNet1 | | | 97.60 233 | 97.67 221 | 97.39 312 | 99.04 225 | 93.04 351 | 95.27 372 | 98.38 323 | 97.25 243 | 98.92 174 | 98.95 192 | 95.48 247 | 99.73 250 | 96.99 194 | 98.74 328 | 99.41 174 |
|
| PMMVS2 | | | 98.07 196 | 98.08 189 | 98.04 261 | 99.41 140 | 94.59 308 | 94.59 393 | 99.40 137 | 97.50 215 | 98.82 192 | 98.83 216 | 96.83 183 | 99.84 149 | 97.50 164 | 99.81 102 | 99.71 52 |
|
| MDA-MVSNet_test_wron | | | 97.60 233 | 97.66 224 | 97.41 311 | 99.04 225 | 93.09 347 | 95.27 372 | 98.42 320 | 97.26 242 | 98.88 181 | 98.95 192 | 95.43 248 | 99.73 250 | 97.02 191 | 98.72 330 | 99.41 174 |
|
| tpmvs | | | 95.02 341 | 95.25 331 | 94.33 387 | 96.39 415 | 85.87 410 | 98.08 170 | 96.83 370 | 95.46 324 | 95.51 386 | 98.69 240 | 85.91 360 | 99.53 336 | 94.16 327 | 96.23 402 | 97.58 391 |
|
| PM-MVS | | | 98.82 92 | 98.72 95 | 99.12 112 | 99.64 70 | 98.54 102 | 97.98 189 | 99.68 48 | 97.62 201 | 99.34 102 | 99.18 131 | 97.54 138 | 99.77 227 | 97.79 145 | 99.74 145 | 99.04 267 |
|
| HQP_MVS | | | 97.99 203 | 97.67 221 | 98.93 146 | 99.19 188 | 97.65 184 | 97.77 216 | 99.27 194 | 98.20 161 | 97.79 291 | 97.98 318 | 94.90 259 | 99.70 262 | 94.42 321 | 99.51 234 | 99.45 160 |
|
| plane_prior7 | | | | | | 99.19 188 | 97.87 163 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.99 234 | 97.70 182 | | | | | | 94.90 259 | | | | |
|
| plane_prior5 | | | | | | | | | 99.27 194 | | | | | 99.70 262 | 94.42 321 | 99.51 234 | 99.45 160 |
|
| plane_prior4 | | | | | | | | | | | | 97.98 318 | | | | | |
|
| plane_prior3 | | | | | | | 97.78 175 | | | 97.41 227 | 97.79 291 | | | | | | |
|
| plane_prior2 | | | | | | | | 97.77 216 | | 98.20 161 | | | | | | | |
|
| plane_prior1 | | | | | | 99.05 224 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 97.65 184 | 97.07 284 | | 96.72 278 | | | | | | 99.36 257 | |
|
| PS-CasMVS | | | 99.40 22 | 99.33 31 | 99.62 9 | 99.71 45 | 99.10 64 | 99.29 33 | 99.53 87 | 99.53 31 | 99.46 78 | 99.41 84 | 98.23 80 | 99.95 24 | 98.89 75 | 99.95 33 | 99.81 33 |
|
| UniMVSNet_NR-MVSNet | | | 98.86 88 | 98.68 104 | 99.40 64 | 99.17 196 | 98.74 84 | 97.68 227 | 99.40 137 | 99.14 77 | 99.06 143 | 98.59 261 | 96.71 194 | 99.93 44 | 98.57 98 | 99.77 129 | 99.53 124 |
|
| PEN-MVS | | | 99.41 21 | 99.34 30 | 99.62 9 | 99.73 36 | 99.14 56 | 99.29 33 | 99.54 84 | 99.62 24 | 99.56 56 | 99.42 80 | 98.16 91 | 99.96 12 | 98.78 81 | 99.93 46 | 99.77 40 |
|
| TransMVSNet (Re) | | | 99.44 15 | 99.47 17 | 99.36 66 | 99.80 20 | 98.58 97 | 99.27 39 | 99.57 69 | 99.39 47 | 99.75 34 | 99.62 37 | 99.17 18 | 99.83 166 | 99.06 62 | 99.62 196 | 99.66 63 |
|
| DTE-MVSNet | | | 99.43 19 | 99.35 28 | 99.66 7 | 99.71 45 | 99.30 21 | 99.31 27 | 99.51 91 | 99.64 19 | 99.56 56 | 99.46 73 | 98.23 80 | 99.97 5 | 98.78 81 | 99.93 46 | 99.72 51 |
|
| DU-MVS | | | 98.82 92 | 98.63 111 | 99.39 65 | 99.16 198 | 98.74 84 | 97.54 247 | 99.25 200 | 98.84 115 | 99.06 143 | 98.76 230 | 96.76 190 | 99.93 44 | 98.57 98 | 99.77 129 | 99.50 133 |
|
| UniMVSNet (Re) | | | 98.87 85 | 98.71 98 | 99.35 72 | 99.24 174 | 98.73 87 | 97.73 223 | 99.38 141 | 98.93 107 | 99.12 135 | 98.73 233 | 96.77 188 | 99.86 119 | 98.63 95 | 99.80 113 | 99.46 156 |
|
| CP-MVSNet | | | 99.21 42 | 99.09 60 | 99.56 25 | 99.65 64 | 98.96 74 | 99.13 55 | 99.34 160 | 99.42 45 | 99.33 103 | 99.26 113 | 97.01 174 | 99.94 37 | 98.74 86 | 99.93 46 | 99.79 35 |
|
| WR-MVS_H | | | 99.33 27 | 99.22 46 | 99.65 8 | 99.71 45 | 99.24 29 | 99.32 23 | 99.55 80 | 99.46 39 | 99.50 72 | 99.34 96 | 97.30 155 | 99.93 44 | 98.90 73 | 99.93 46 | 99.77 40 |
|
| WR-MVS | | | 98.40 159 | 98.19 175 | 99.03 132 | 99.00 231 | 97.65 184 | 96.85 296 | 98.94 260 | 98.57 131 | 98.89 178 | 98.50 274 | 95.60 241 | 99.85 131 | 97.54 161 | 99.85 84 | 99.59 88 |
|
| NR-MVSNet | | | 98.95 76 | 98.82 85 | 99.36 66 | 99.16 198 | 98.72 89 | 99.22 42 | 99.20 211 | 99.10 86 | 99.72 35 | 98.76 230 | 96.38 208 | 99.86 119 | 98.00 132 | 99.82 98 | 99.50 133 |
|
| Baseline_NR-MVSNet | | | 98.98 72 | 98.86 82 | 99.36 66 | 99.82 19 | 98.55 99 | 97.47 256 | 99.57 69 | 99.37 49 | 99.21 127 | 99.61 40 | 96.76 190 | 99.83 166 | 98.06 127 | 99.83 95 | 99.71 52 |
|
| TranMVSNet+NR-MVSNet | | | 99.17 46 | 99.07 63 | 99.46 58 | 99.37 149 | 98.87 77 | 98.39 138 | 99.42 130 | 99.42 45 | 99.36 98 | 99.06 154 | 98.38 67 | 99.95 24 | 98.34 110 | 99.90 70 | 99.57 99 |
|
| TSAR-MVS + GP. | | | 98.18 188 | 97.98 198 | 98.77 173 | 98.71 283 | 97.88 162 | 96.32 324 | 98.66 306 | 96.33 293 | 99.23 126 | 98.51 270 | 97.48 148 | 99.40 366 | 97.16 179 | 99.46 244 | 99.02 270 |
|
| n2 | | | | | | | | | 0.00 435 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 435 | | | | | | | | |
|
| mPP-MVS | | | 98.64 126 | 98.34 156 | 99.54 30 | 99.54 99 | 99.17 43 | 98.63 105 | 99.24 205 | 97.47 218 | 98.09 269 | 98.68 242 | 97.62 131 | 99.89 80 | 96.22 261 | 99.62 196 | 99.57 99 |
|
| door-mid | | | | | | | | | 99.57 69 | | | | | | | | |
|
| XVG-OURS-SEG-HR | | | 98.49 150 | 98.28 163 | 99.14 110 | 99.49 116 | 98.83 79 | 96.54 310 | 99.48 102 | 97.32 236 | 99.11 136 | 98.61 258 | 99.33 13 | 99.30 381 | 96.23 260 | 98.38 348 | 99.28 224 |
|
| mvsmamba | | | 97.57 237 | 97.26 248 | 98.51 215 | 98.69 292 | 96.73 238 | 98.74 92 | 97.25 356 | 97.03 262 | 97.88 283 | 99.23 122 | 90.95 325 | 99.87 111 | 96.61 230 | 99.00 311 | 98.91 292 |
|
| MVSFormer | | | 98.26 179 | 98.43 142 | 97.77 275 | 98.88 256 | 93.89 333 | 99.39 17 | 99.56 76 | 99.11 79 | 98.16 261 | 98.13 305 | 93.81 289 | 99.97 5 | 99.26 49 | 99.57 216 | 99.43 168 |
|
| jason | | | 97.45 246 | 97.35 244 | 97.76 278 | 99.24 174 | 93.93 329 | 95.86 351 | 98.42 320 | 94.24 353 | 98.50 235 | 98.13 305 | 94.82 263 | 99.91 62 | 97.22 176 | 99.73 148 | 99.43 168 |
| jason: jason. |
| lupinMVS | | | 97.06 276 | 96.86 272 | 97.65 287 | 98.88 256 | 93.89 333 | 95.48 366 | 97.97 337 | 93.53 365 | 98.16 261 | 97.58 341 | 93.81 289 | 99.91 62 | 96.77 216 | 99.57 216 | 99.17 251 |
|
| test_djsdf | | | 99.52 10 | 99.51 12 | 99.53 37 | 99.86 14 | 98.74 84 | 99.39 17 | 99.56 76 | 99.11 79 | 99.70 39 | 99.73 17 | 99.00 22 | 99.97 5 | 99.26 49 | 99.98 12 | 99.89 16 |
|
| HPM-MVS_fast | | | 99.01 67 | 98.82 85 | 99.57 20 | 99.71 45 | 99.35 16 | 99.00 69 | 99.50 93 | 97.33 234 | 98.94 172 | 98.86 210 | 98.75 37 | 99.82 176 | 97.53 162 | 99.71 161 | 99.56 105 |
|
| K. test v3 | | | 98.00 200 | 97.66 224 | 99.03 132 | 99.79 22 | 97.56 189 | 99.19 49 | 92.47 409 | 99.62 24 | 99.52 66 | 99.66 29 | 89.61 335 | 99.96 12 | 99.25 51 | 99.81 102 | 99.56 105 |
|
| lessismore_v0 | | | | | 98.97 140 | 99.73 36 | 97.53 191 | | 86.71 423 | | 99.37 96 | 99.52 63 | 89.93 333 | 99.92 53 | 98.99 68 | 99.72 156 | 99.44 164 |
|
| SixPastTwentyTwo | | | 98.75 103 | 98.62 113 | 99.16 107 | 99.83 18 | 97.96 157 | 99.28 37 | 98.20 329 | 99.37 49 | 99.70 39 | 99.65 33 | 92.65 309 | 99.93 44 | 99.04 64 | 99.84 88 | 99.60 82 |
|
| OurMVSNet-221017-0 | | | 99.37 25 | 99.31 35 | 99.53 37 | 99.91 3 | 98.98 69 | 99.63 7 | 99.58 62 | 99.44 42 | 99.78 30 | 99.76 12 | 96.39 206 | 99.92 53 | 99.44 40 | 99.92 57 | 99.68 59 |
|
| HPM-MVS |  | | 98.79 96 | 98.53 125 | 99.59 18 | 99.65 64 | 99.29 23 | 99.16 51 | 99.43 127 | 96.74 277 | 98.61 218 | 98.38 286 | 98.62 48 | 99.87 111 | 96.47 246 | 99.67 182 | 99.59 88 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 98.53 145 | 98.34 156 | 99.11 114 | 99.50 109 | 98.82 81 | 95.97 342 | 99.50 93 | 97.30 238 | 99.05 148 | 98.98 183 | 99.35 12 | 99.32 378 | 95.72 286 | 99.68 176 | 99.18 247 |
|
| XVG-ACMP-BASELINE | | | 98.56 137 | 98.34 156 | 99.22 100 | 99.54 99 | 98.59 96 | 97.71 224 | 99.46 113 | 97.25 243 | 98.98 157 | 98.99 179 | 97.54 138 | 99.84 149 | 95.88 276 | 99.74 145 | 99.23 234 |
|
| casdiffmvs_mvg |  | | 99.12 57 | 99.16 51 | 98.99 137 | 99.43 137 | 97.73 180 | 98.00 184 | 99.62 55 | 99.22 64 | 99.55 59 | 99.22 123 | 98.93 27 | 99.75 240 | 98.66 92 | 99.81 102 | 99.50 133 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 98.71 107 | 98.46 138 | 99.47 56 | 99.57 82 | 98.97 70 | 98.23 150 | 99.48 102 | 96.60 282 | 99.10 139 | 99.06 154 | 98.71 40 | 99.83 166 | 95.58 293 | 99.78 123 | 99.62 73 |
|
| LGP-MVS_train | | | | | 99.47 56 | 99.57 82 | 98.97 70 | | 99.48 102 | 96.60 282 | 99.10 139 | 99.06 154 | 98.71 40 | 99.83 166 | 95.58 293 | 99.78 123 | 99.62 73 |
|
| baseline | | | 98.96 75 | 99.02 65 | 98.76 174 | 99.38 143 | 97.26 206 | 98.49 126 | 99.50 93 | 98.86 112 | 99.19 129 | 99.06 154 | 98.23 80 | 99.69 266 | 98.71 89 | 99.76 141 | 99.33 211 |
|
| test11 | | | | | | | | | 98.87 275 | | | | | | | | |
|
| door | | | | | | | | | 99.41 134 | | | | | | | | |
|
| EPNet_dtu | | | 94.93 343 | 94.78 343 | 95.38 379 | 93.58 424 | 87.68 406 | 96.78 299 | 95.69 390 | 97.35 233 | 89.14 421 | 98.09 311 | 88.15 348 | 99.49 349 | 94.95 306 | 99.30 268 | 98.98 277 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 1792x2688 | | | 97.49 242 | 97.14 257 | 98.54 212 | 99.68 57 | 96.09 257 | 96.50 313 | 99.62 55 | 91.58 387 | 98.84 188 | 98.97 185 | 92.36 311 | 99.88 94 | 96.76 217 | 99.95 33 | 99.67 62 |
|
| EPNet | | | 96.14 312 | 95.44 324 | 98.25 243 | 90.76 428 | 95.50 277 | 97.92 196 | 94.65 395 | 98.97 103 | 92.98 411 | 98.85 213 | 89.12 339 | 99.87 111 | 95.99 272 | 99.68 176 | 99.39 184 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HQP5-MVS | | | | | | | 96.79 233 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 98.67 297 | | 96.29 326 | | 96.05 303 | 95.55 381 | | | | | | |
|
| ACMP_Plane | | | | | | 98.67 297 | | 96.29 326 | | 96.05 303 | 95.55 381 | | | | | | |
|
| APD-MVS |  | | 98.10 192 | 97.67 221 | 99.42 60 | 99.11 207 | 98.93 75 | 97.76 219 | 99.28 191 | 94.97 336 | 98.72 204 | 98.77 228 | 97.04 170 | 99.85 131 | 93.79 341 | 99.54 225 | 99.49 137 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BP-MVS | | | | | | | | | | | | | | | 92.82 361 | | |
|
| HQP4-MVS | | | | | | | | | | | 95.56 380 | | | 99.54 334 | | | 99.32 213 |
|
| HQP3-MVS | | | | | | | | | 99.04 247 | | | | | | | 99.26 275 | |
|
| HQP2-MVS | | | | | | | | | | | | | 93.84 287 | | | | |
|
| CNVR-MVS | | | 98.17 190 | 97.87 209 | 99.07 122 | 98.67 297 | 98.24 122 | 97.01 286 | 98.93 263 | 97.25 243 | 97.62 300 | 98.34 291 | 97.27 158 | 99.57 322 | 96.42 249 | 99.33 262 | 99.39 184 |
|
| NCCC | | | 97.86 213 | 97.47 238 | 99.05 129 | 98.61 307 | 98.07 143 | 96.98 288 | 98.90 269 | 97.63 200 | 97.04 334 | 97.93 323 | 95.99 227 | 99.66 289 | 95.31 298 | 98.82 326 | 99.43 168 |
|
| 114514_t | | | 96.50 301 | 95.77 309 | 98.69 183 | 99.48 124 | 97.43 197 | 97.84 208 | 99.55 80 | 81.42 419 | 96.51 361 | 98.58 262 | 95.53 243 | 99.67 278 | 93.41 351 | 99.58 212 | 98.98 277 |
|
| CP-MVS | | | 98.70 111 | 98.42 144 | 99.52 42 | 99.36 150 | 99.12 61 | 98.72 97 | 99.36 149 | 97.54 212 | 98.30 249 | 98.40 283 | 97.86 111 | 99.89 80 | 96.53 243 | 99.72 156 | 99.56 105 |
|
| DSMNet-mixed | | | 97.42 249 | 97.60 229 | 96.87 335 | 99.15 202 | 91.46 374 | 98.54 116 | 99.12 233 | 92.87 375 | 97.58 304 | 99.63 36 | 96.21 214 | 99.90 68 | 95.74 285 | 99.54 225 | 99.27 225 |
|
| tpm2 | | | 93.09 370 | 92.58 368 | 94.62 385 | 97.56 379 | 86.53 409 | 97.66 231 | 95.79 387 | 86.15 412 | 94.07 403 | 98.23 300 | 75.95 404 | 99.53 336 | 90.91 391 | 96.86 396 | 97.81 380 |
|
| NP-MVS | | | | | | 98.84 262 | 97.39 199 | | | | | 96.84 364 | | | | | |
|
| EG-PatchMatch MVS | | | 98.99 69 | 99.01 66 | 98.94 144 | 99.50 109 | 97.47 193 | 98.04 177 | 99.59 60 | 98.15 168 | 99.40 91 | 99.36 91 | 98.58 54 | 99.76 233 | 98.78 81 | 99.68 176 | 99.59 88 |
|
| tpm cat1 | | | 93.29 367 | 93.13 364 | 93.75 395 | 97.39 392 | 84.74 415 | 97.39 259 | 97.65 346 | 83.39 417 | 94.16 400 | 98.41 282 | 82.86 384 | 99.39 368 | 91.56 380 | 95.35 410 | 97.14 399 |
|
| SteuartSystems-ACMMP | | | 98.79 96 | 98.54 124 | 99.54 30 | 99.73 36 | 99.16 47 | 98.23 150 | 99.31 172 | 97.92 181 | 98.90 176 | 98.90 200 | 98.00 102 | 99.88 94 | 96.15 266 | 99.72 156 | 99.58 94 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CostFormer | | | 93.97 357 | 93.78 354 | 94.51 386 | 97.53 383 | 85.83 412 | 97.98 189 | 95.96 383 | 89.29 405 | 94.99 392 | 98.63 254 | 78.63 400 | 99.62 303 | 94.54 315 | 96.50 398 | 98.09 367 |
|
| CR-MVSNet | | | 96.28 308 | 95.95 307 | 97.28 315 | 97.71 371 | 94.22 314 | 98.11 166 | 98.92 266 | 92.31 381 | 96.91 341 | 99.37 87 | 85.44 365 | 99.81 190 | 97.39 168 | 97.36 386 | 97.81 380 |
|
| JIA-IIPM | | | 95.52 331 | 95.03 337 | 97.00 327 | 96.85 404 | 94.03 324 | 96.93 292 | 95.82 386 | 99.20 68 | 94.63 397 | 99.71 19 | 83.09 382 | 99.60 310 | 94.42 321 | 94.64 412 | 97.36 397 |
|
| Patchmtry | | | 97.35 254 | 96.97 264 | 98.50 219 | 97.31 394 | 96.47 246 | 98.18 155 | 98.92 266 | 98.95 106 | 98.78 195 | 99.37 87 | 85.44 365 | 99.85 131 | 95.96 274 | 99.83 95 | 99.17 251 |
|
| PatchT | | | 96.65 295 | 96.35 299 | 97.54 300 | 97.40 391 | 95.32 284 | 97.98 189 | 96.64 373 | 99.33 54 | 96.89 345 | 99.42 80 | 84.32 373 | 99.81 190 | 97.69 154 | 97.49 377 | 97.48 393 |
|
| tpmrst | | | 95.07 339 | 95.46 322 | 93.91 393 | 97.11 398 | 84.36 419 | 97.62 237 | 96.96 365 | 94.98 335 | 96.35 366 | 98.80 222 | 85.46 364 | 99.59 314 | 95.60 291 | 96.23 402 | 97.79 383 |
|
| BH-w/o | | | 95.13 338 | 94.89 342 | 95.86 365 | 98.20 347 | 91.31 378 | 95.65 359 | 97.37 350 | 93.64 363 | 96.52 360 | 95.70 386 | 93.04 301 | 99.02 397 | 88.10 403 | 95.82 407 | 97.24 398 |
|
| tpm | | | 94.67 345 | 94.34 349 | 95.66 371 | 97.68 376 | 88.42 401 | 97.88 201 | 94.90 393 | 94.46 347 | 96.03 374 | 98.56 264 | 78.66 399 | 99.79 210 | 95.88 276 | 95.01 411 | 98.78 313 |
|
| DELS-MVS | | | 98.27 177 | 98.20 173 | 98.48 220 | 98.86 258 | 96.70 239 | 95.60 361 | 99.20 211 | 97.73 194 | 98.45 239 | 98.71 236 | 97.50 144 | 99.82 176 | 98.21 116 | 99.59 207 | 98.93 288 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| BH-untuned | | | 96.83 288 | 96.75 281 | 97.08 324 | 98.74 277 | 93.33 345 | 96.71 304 | 98.26 326 | 96.72 278 | 98.44 240 | 97.37 354 | 95.20 252 | 99.47 355 | 91.89 373 | 97.43 381 | 98.44 346 |
|
| RPMNet | | | 97.02 279 | 96.93 266 | 97.30 314 | 97.71 371 | 94.22 314 | 98.11 166 | 99.30 180 | 99.37 49 | 96.91 341 | 99.34 96 | 86.72 352 | 99.87 111 | 97.53 162 | 97.36 386 | 97.81 380 |
|
| MVSTER | | | 96.86 287 | 96.55 294 | 97.79 273 | 97.91 362 | 94.21 316 | 97.56 245 | 98.87 275 | 97.49 217 | 99.06 143 | 99.05 161 | 80.72 389 | 99.80 197 | 98.44 105 | 99.82 98 | 99.37 193 |
|
| CPTT-MVS | | | 97.84 219 | 97.36 243 | 99.27 90 | 99.31 159 | 98.46 107 | 98.29 145 | 99.27 194 | 94.90 338 | 97.83 288 | 98.37 287 | 94.90 259 | 99.84 149 | 93.85 340 | 99.54 225 | 99.51 130 |
|
| GBi-Net | | | 98.65 124 | 98.47 136 | 99.17 104 | 98.90 250 | 98.24 122 | 99.20 45 | 99.44 121 | 98.59 127 | 98.95 165 | 99.55 54 | 94.14 281 | 99.86 119 | 97.77 147 | 99.69 171 | 99.41 174 |
|
| PVSNet_Blended_VisFu | | | 98.17 190 | 98.15 181 | 98.22 246 | 99.73 36 | 95.15 290 | 97.36 263 | 99.68 48 | 94.45 349 | 98.99 156 | 99.27 109 | 96.87 180 | 99.94 37 | 97.13 184 | 99.91 64 | 99.57 99 |
|
| PVSNet_BlendedMVS | | | 97.55 238 | 97.53 232 | 97.60 292 | 98.92 246 | 93.77 337 | 96.64 307 | 99.43 127 | 94.49 345 | 97.62 300 | 99.18 131 | 96.82 184 | 99.67 278 | 94.73 310 | 99.93 46 | 99.36 200 |
|
| UnsupCasMVSNet_eth | | | 97.89 208 | 97.60 229 | 98.75 176 | 99.31 159 | 97.17 214 | 97.62 237 | 99.35 154 | 98.72 119 | 98.76 200 | 98.68 242 | 92.57 310 | 99.74 245 | 97.76 151 | 95.60 408 | 99.34 206 |
|
| UnsupCasMVSNet_bld | | | 97.30 258 | 96.92 268 | 98.45 223 | 99.28 165 | 96.78 236 | 96.20 331 | 99.27 194 | 95.42 325 | 98.28 253 | 98.30 295 | 93.16 296 | 99.71 258 | 94.99 303 | 97.37 384 | 98.87 298 |
|
| PVSNet_Blended | | | 96.88 286 | 96.68 285 | 97.47 307 | 98.92 246 | 93.77 337 | 94.71 386 | 99.43 127 | 90.98 395 | 97.62 300 | 97.36 355 | 96.82 184 | 99.67 278 | 94.73 310 | 99.56 219 | 98.98 277 |
|
| FMVSNet5 | | | 96.01 315 | 95.20 334 | 98.41 228 | 97.53 383 | 96.10 254 | 98.74 92 | 99.50 93 | 97.22 252 | 98.03 275 | 99.04 163 | 69.80 411 | 99.88 94 | 97.27 173 | 99.71 161 | 99.25 229 |
|
| test1 | | | 98.65 124 | 98.47 136 | 99.17 104 | 98.90 250 | 98.24 122 | 99.20 45 | 99.44 121 | 98.59 127 | 98.95 165 | 99.55 54 | 94.14 281 | 99.86 119 | 97.77 147 | 99.69 171 | 99.41 174 |
|
| new_pmnet | | | 96.99 283 | 96.76 280 | 97.67 285 | 98.72 280 | 94.89 297 | 95.95 346 | 98.20 329 | 92.62 378 | 98.55 229 | 98.54 265 | 94.88 262 | 99.52 340 | 93.96 335 | 99.44 249 | 98.59 335 |
|
| FMVSNet3 | | | 97.50 239 | 97.24 250 | 98.29 241 | 98.08 355 | 95.83 267 | 97.86 205 | 98.91 268 | 97.89 184 | 98.95 165 | 98.95 192 | 87.06 350 | 99.81 190 | 97.77 147 | 99.69 171 | 99.23 234 |
|
| dp | | | 93.47 364 | 93.59 357 | 93.13 402 | 96.64 408 | 81.62 426 | 97.66 231 | 96.42 377 | 92.80 376 | 96.11 370 | 98.64 252 | 78.55 402 | 99.59 314 | 93.31 352 | 92.18 420 | 98.16 363 |
|
| FMVSNet2 | | | 98.49 150 | 98.40 146 | 98.75 176 | 98.90 250 | 97.14 217 | 98.61 108 | 99.13 232 | 98.59 127 | 99.19 129 | 99.28 107 | 94.14 281 | 99.82 176 | 97.97 134 | 99.80 113 | 99.29 222 |
|
| FMVSNet1 | | | 99.17 46 | 99.17 49 | 99.17 104 | 99.55 94 | 98.24 122 | 99.20 45 | 99.44 121 | 99.21 66 | 99.43 83 | 99.55 54 | 97.82 115 | 99.86 119 | 98.42 107 | 99.89 74 | 99.41 174 |
|
| N_pmnet | | | 97.63 232 | 97.17 253 | 98.99 137 | 99.27 167 | 97.86 164 | 95.98 341 | 93.41 406 | 95.25 330 | 99.47 77 | 98.90 200 | 95.63 240 | 99.85 131 | 96.91 200 | 99.73 148 | 99.27 225 |
|
| cascas | | | 94.79 344 | 94.33 350 | 96.15 363 | 96.02 419 | 92.36 364 | 92.34 415 | 99.26 199 | 85.34 414 | 95.08 391 | 94.96 402 | 92.96 302 | 98.53 410 | 94.41 324 | 98.59 343 | 97.56 392 |
|
| BH-RMVSNet | | | 96.83 288 | 96.58 293 | 97.58 294 | 98.47 325 | 94.05 321 | 96.67 306 | 97.36 351 | 96.70 280 | 97.87 284 | 97.98 318 | 95.14 254 | 99.44 361 | 90.47 395 | 98.58 344 | 99.25 229 |
|
| UGNet | | | 98.53 145 | 98.45 139 | 98.79 166 | 97.94 360 | 96.96 224 | 99.08 58 | 98.54 313 | 99.10 86 | 96.82 349 | 99.47 72 | 96.55 200 | 99.84 149 | 98.56 101 | 99.94 41 | 99.55 112 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WTY-MVS | | | 96.67 294 | 96.27 304 | 97.87 268 | 98.81 269 | 94.61 307 | 96.77 300 | 97.92 339 | 94.94 337 | 97.12 329 | 97.74 332 | 91.11 324 | 99.82 176 | 93.89 337 | 98.15 360 | 99.18 247 |
|
| XXY-MVS | | | 99.14 51 | 99.15 56 | 99.10 116 | 99.76 29 | 97.74 178 | 98.85 87 | 99.62 55 | 98.48 138 | 99.37 96 | 99.49 70 | 98.75 37 | 99.86 119 | 98.20 117 | 99.80 113 | 99.71 52 |
|
| EC-MVSNet | | | 99.09 60 | 99.05 64 | 99.20 101 | 99.28 165 | 98.93 75 | 99.24 41 | 99.84 21 | 99.08 91 | 98.12 266 | 98.37 287 | 98.72 39 | 99.90 68 | 99.05 63 | 99.77 129 | 98.77 314 |
|
| sss | | | 97.21 266 | 96.93 266 | 98.06 258 | 98.83 264 | 95.22 288 | 96.75 302 | 98.48 317 | 94.49 345 | 97.27 326 | 97.90 324 | 92.77 306 | 99.80 197 | 96.57 234 | 99.32 263 | 99.16 254 |
|
| Test_1112_low_res | | | 96.99 283 | 96.55 294 | 98.31 239 | 99.35 154 | 95.47 278 | 95.84 354 | 99.53 87 | 91.51 389 | 96.80 350 | 98.48 277 | 91.36 322 | 99.83 166 | 96.58 232 | 99.53 229 | 99.62 73 |
|
| 1112_ss | | | 97.29 260 | 96.86 272 | 98.58 201 | 99.34 156 | 96.32 250 | 96.75 302 | 99.58 62 | 93.14 370 | 96.89 345 | 97.48 347 | 92.11 315 | 99.86 119 | 96.91 200 | 99.54 225 | 99.57 99 |
|
| ab-mvs-re | | | 8.12 397 | 10.83 400 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 97.48 347 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| ab-mvs | | | 98.41 157 | 98.36 153 | 98.59 200 | 99.19 188 | 97.23 207 | 99.32 23 | 98.81 289 | 97.66 198 | 98.62 216 | 99.40 86 | 96.82 184 | 99.80 197 | 95.88 276 | 99.51 234 | 98.75 317 |
|
| TR-MVS | | | 95.55 330 | 95.12 336 | 96.86 338 | 97.54 381 | 93.94 328 | 96.49 314 | 96.53 376 | 94.36 352 | 97.03 336 | 96.61 368 | 94.26 280 | 99.16 393 | 86.91 408 | 96.31 401 | 97.47 394 |
|
| MDTV_nov1_ep13_2view | | | | | | | 74.92 429 | 97.69 226 | | 90.06 402 | 97.75 294 | | 85.78 361 | | 93.52 347 | | 98.69 324 |
|
| MDTV_nov1_ep13 | | | | 95.22 333 | | 97.06 401 | 83.20 422 | 97.74 221 | 96.16 379 | 94.37 351 | 96.99 337 | 98.83 216 | 83.95 377 | 99.53 336 | 93.90 336 | 97.95 371 | |
|
| MIMVSNet1 | | | 99.38 24 | 99.32 33 | 99.55 27 | 99.86 14 | 99.19 41 | 99.41 14 | 99.59 60 | 99.59 27 | 99.71 37 | 99.57 46 | 97.12 166 | 99.90 68 | 99.21 54 | 99.87 79 | 99.54 116 |
|
| MIMVSNet | | | 96.62 297 | 96.25 305 | 97.71 284 | 99.04 225 | 94.66 305 | 99.16 51 | 96.92 368 | 97.23 249 | 97.87 284 | 99.10 150 | 86.11 359 | 99.65 294 | 91.65 377 | 99.21 284 | 98.82 302 |
|
| IterMVS-LS | | | 98.55 141 | 98.70 101 | 98.09 253 | 99.48 124 | 94.73 302 | 97.22 276 | 99.39 139 | 98.97 103 | 99.38 94 | 99.31 103 | 96.00 223 | 99.93 44 | 98.58 96 | 99.97 20 | 99.60 82 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 97.69 227 | 97.35 244 | 98.69 183 | 98.73 278 | 97.02 221 | 96.92 294 | 98.75 299 | 95.89 312 | 98.59 222 | 98.67 244 | 92.08 316 | 99.74 245 | 96.72 222 | 99.81 102 | 99.32 213 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.77 129 | |
|
| IterMVS | | | 97.73 224 | 98.11 185 | 96.57 345 | 99.24 174 | 90.28 393 | 95.52 365 | 99.21 209 | 98.86 112 | 99.33 103 | 99.33 98 | 93.11 297 | 99.94 37 | 98.49 103 | 99.94 41 | 99.48 147 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 97.33 256 | 96.92 268 | 98.57 204 | 99.09 212 | 97.99 150 | 96.79 298 | 99.35 154 | 93.18 369 | 97.71 295 | 98.07 313 | 95.00 258 | 99.31 379 | 93.97 334 | 99.13 296 | 98.42 350 |
|
| MVS_111021_LR | | | 98.30 173 | 98.12 184 | 98.83 158 | 99.16 198 | 98.03 148 | 96.09 338 | 99.30 180 | 97.58 206 | 98.10 268 | 98.24 298 | 98.25 78 | 99.34 375 | 96.69 225 | 99.65 188 | 99.12 257 |
|
| DP-MVS | | | 98.93 78 | 98.81 87 | 99.28 87 | 99.21 181 | 98.45 108 | 98.46 131 | 99.33 165 | 99.63 21 | 99.48 73 | 99.15 141 | 97.23 161 | 99.75 240 | 97.17 178 | 99.66 187 | 99.63 72 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.68 176 | |
|
| HQP-MVS | | | 97.00 282 | 96.49 297 | 98.55 209 | 98.67 297 | 96.79 233 | 96.29 326 | 99.04 247 | 96.05 303 | 95.55 381 | 96.84 364 | 93.84 287 | 99.54 334 | 92.82 361 | 99.26 275 | 99.32 213 |
|
| QAPM | | | 97.31 257 | 96.81 278 | 98.82 159 | 98.80 272 | 97.49 192 | 99.06 62 | 99.19 215 | 90.22 399 | 97.69 297 | 99.16 137 | 96.91 178 | 99.90 68 | 90.89 392 | 99.41 251 | 99.07 261 |
|
| Vis-MVSNet |  | | 99.34 26 | 99.36 27 | 99.27 90 | 99.73 36 | 98.26 120 | 99.17 50 | 99.78 31 | 99.11 79 | 99.27 115 | 99.48 71 | 98.82 32 | 99.95 24 | 98.94 71 | 99.93 46 | 99.59 88 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MVS-HIRNet | | | 94.32 349 | 95.62 315 | 90.42 404 | 98.46 327 | 75.36 428 | 96.29 326 | 89.13 420 | 95.25 330 | 95.38 387 | 99.75 13 | 92.88 303 | 99.19 391 | 94.07 333 | 99.39 253 | 96.72 405 |
|
| IS-MVSNet | | | 98.19 187 | 97.90 207 | 99.08 120 | 99.57 82 | 97.97 154 | 99.31 27 | 98.32 324 | 99.01 99 | 98.98 157 | 99.03 165 | 91.59 320 | 99.79 210 | 95.49 295 | 99.80 113 | 99.48 147 |
|
| HyFIR lowres test | | | 97.19 268 | 96.60 292 | 98.96 141 | 99.62 76 | 97.28 204 | 95.17 375 | 99.50 93 | 94.21 354 | 99.01 154 | 98.32 294 | 86.61 353 | 99.99 2 | 97.10 186 | 99.84 88 | 99.60 82 |
|
| EPMVS | | | 93.72 361 | 93.27 360 | 95.09 383 | 96.04 418 | 87.76 405 | 98.13 162 | 85.01 425 | 94.69 342 | 96.92 339 | 98.64 252 | 78.47 403 | 99.31 379 | 95.04 302 | 96.46 399 | 98.20 361 |
|
| PAPM_NR | | | 96.82 290 | 96.32 301 | 98.30 240 | 99.07 216 | 96.69 240 | 97.48 254 | 98.76 296 | 95.81 314 | 96.61 357 | 96.47 372 | 94.12 284 | 99.17 392 | 90.82 393 | 97.78 372 | 99.06 262 |
|
| TAMVS | | | 98.24 182 | 98.05 191 | 98.80 163 | 99.07 216 | 97.18 213 | 97.88 201 | 98.81 289 | 96.66 281 | 99.17 134 | 99.21 124 | 94.81 265 | 99.77 227 | 96.96 198 | 99.88 76 | 99.44 164 |
|
| PAPR | | | 95.29 334 | 94.47 345 | 97.75 279 | 97.50 389 | 95.14 291 | 94.89 383 | 98.71 304 | 91.39 391 | 95.35 388 | 95.48 392 | 94.57 271 | 99.14 395 | 84.95 411 | 97.37 384 | 98.97 280 |
|
| RPSCF | | | 98.62 131 | 98.36 153 | 99.42 60 | 99.65 64 | 99.42 11 | 98.55 114 | 99.57 69 | 97.72 195 | 98.90 176 | 99.26 113 | 96.12 218 | 99.52 340 | 95.72 286 | 99.71 161 | 99.32 213 |
|
| Vis-MVSNet (Re-imp) | | | 97.46 244 | 97.16 254 | 98.34 236 | 99.55 94 | 96.10 254 | 98.94 77 | 98.44 318 | 98.32 146 | 98.16 261 | 98.62 256 | 88.76 340 | 99.73 250 | 93.88 338 | 99.79 118 | 99.18 247 |
|
| test_0402 | | | 98.76 102 | 98.71 98 | 98.93 146 | 99.56 90 | 98.14 132 | 98.45 133 | 99.34 160 | 99.28 60 | 98.95 165 | 98.91 197 | 98.34 72 | 99.79 210 | 95.63 290 | 99.91 64 | 98.86 299 |
|
| MVS_111021_HR | | | 98.25 181 | 98.08 189 | 98.75 176 | 99.09 212 | 97.46 194 | 95.97 342 | 99.27 194 | 97.60 205 | 97.99 277 | 98.25 297 | 98.15 93 | 99.38 370 | 96.87 208 | 99.57 216 | 99.42 171 |
|
| CSCG | | | 98.68 119 | 98.50 129 | 99.20 101 | 99.45 131 | 98.63 91 | 98.56 113 | 99.57 69 | 97.87 185 | 98.85 186 | 98.04 315 | 97.66 125 | 99.84 149 | 96.72 222 | 99.81 102 | 99.13 256 |
|
| PatchMatch-RL | | | 97.24 264 | 96.78 279 | 98.61 197 | 99.03 228 | 97.83 167 | 96.36 321 | 99.06 241 | 93.49 367 | 97.36 324 | 97.78 329 | 95.75 237 | 99.49 349 | 93.44 350 | 98.77 327 | 98.52 338 |
|
| API-MVS | | | 97.04 278 | 96.91 270 | 97.42 310 | 97.88 363 | 98.23 126 | 98.18 155 | 98.50 316 | 97.57 207 | 97.39 322 | 96.75 366 | 96.77 188 | 99.15 394 | 90.16 396 | 99.02 309 | 94.88 417 |
|
| Test By Simon | | | | | | | | | | | | | 96.52 201 | | | | |
|
| TDRefinement | | | 99.42 20 | 99.38 24 | 99.55 27 | 99.76 29 | 99.33 20 | 99.68 6 | 99.71 39 | 99.38 48 | 99.53 64 | 99.61 40 | 98.64 45 | 99.80 197 | 98.24 114 | 99.84 88 | 99.52 127 |
|
| USDC | | | 97.41 250 | 97.40 239 | 97.44 309 | 98.94 240 | 93.67 340 | 95.17 375 | 99.53 87 | 94.03 359 | 98.97 161 | 99.10 150 | 95.29 250 | 99.34 375 | 95.84 282 | 99.73 148 | 99.30 220 |
|
| EPP-MVSNet | | | 98.30 173 | 98.04 192 | 99.07 122 | 99.56 90 | 97.83 167 | 99.29 33 | 98.07 335 | 99.03 97 | 98.59 222 | 99.13 145 | 92.16 314 | 99.90 68 | 96.87 208 | 99.68 176 | 99.49 137 |
|
| PMMVS | | | 96.51 299 | 95.98 306 | 98.09 253 | 97.53 383 | 95.84 266 | 94.92 382 | 98.84 284 | 91.58 387 | 96.05 373 | 95.58 387 | 95.68 239 | 99.66 289 | 95.59 292 | 98.09 363 | 98.76 316 |
|
| PAPM | | | 91.88 386 | 90.34 389 | 96.51 346 | 98.06 356 | 92.56 358 | 92.44 414 | 97.17 358 | 86.35 411 | 90.38 418 | 96.01 378 | 86.61 353 | 99.21 390 | 70.65 424 | 95.43 409 | 97.75 384 |
|
| ACMMP |  | | 98.75 103 | 98.50 129 | 99.52 42 | 99.56 90 | 99.16 47 | 98.87 84 | 99.37 145 | 97.16 255 | 98.82 192 | 99.01 175 | 97.71 122 | 99.87 111 | 96.29 258 | 99.69 171 | 99.54 116 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CNLPA | | | 97.17 270 | 96.71 283 | 98.55 209 | 98.56 317 | 98.05 147 | 96.33 323 | 98.93 263 | 96.91 268 | 97.06 333 | 97.39 352 | 94.38 276 | 99.45 359 | 91.66 376 | 99.18 290 | 98.14 364 |
|
| PatchmatchNet |  | | 95.58 329 | 95.67 314 | 95.30 380 | 97.34 393 | 87.32 407 | 97.65 233 | 96.65 372 | 95.30 329 | 97.07 332 | 98.69 240 | 84.77 368 | 99.75 240 | 94.97 305 | 98.64 339 | 98.83 301 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PHI-MVS | | | 98.29 176 | 97.95 201 | 99.34 75 | 98.44 330 | 99.16 47 | 98.12 165 | 99.38 141 | 96.01 307 | 98.06 271 | 98.43 281 | 97.80 117 | 99.67 278 | 95.69 288 | 99.58 212 | 99.20 239 |
|
| F-COLMAP | | | 97.30 258 | 96.68 285 | 99.14 110 | 99.19 188 | 98.39 110 | 97.27 272 | 99.30 180 | 92.93 373 | 96.62 356 | 98.00 316 | 95.73 238 | 99.68 275 | 92.62 367 | 98.46 347 | 99.35 204 |
|
| ANet_high | | | 99.57 7 | 99.67 5 | 99.28 87 | 99.89 6 | 98.09 137 | 99.14 54 | 99.93 5 | 99.82 5 | 99.93 6 | 99.81 6 | 99.17 18 | 99.94 37 | 99.31 45 | 100.00 1 | 99.82 30 |
|
| wuyk23d | | | 96.06 313 | 97.62 228 | 91.38 403 | 98.65 306 | 98.57 98 | 98.85 87 | 96.95 366 | 96.86 271 | 99.90 12 | 99.16 137 | 99.18 17 | 98.40 411 | 89.23 400 | 99.77 129 | 77.18 423 |
|
| OMC-MVS | | | 97.88 210 | 97.49 235 | 99.04 131 | 98.89 255 | 98.63 91 | 96.94 290 | 99.25 200 | 95.02 334 | 98.53 232 | 98.51 270 | 97.27 158 | 99.47 355 | 93.50 349 | 99.51 234 | 99.01 271 |
|
| MG-MVS | | | 96.77 291 | 96.61 290 | 97.26 317 | 98.31 340 | 93.06 348 | 95.93 347 | 98.12 334 | 96.45 290 | 97.92 279 | 98.73 233 | 93.77 291 | 99.39 368 | 91.19 387 | 99.04 305 | 99.33 211 |
|
| AdaColmap |  | | 97.14 272 | 96.71 283 | 98.46 222 | 98.34 338 | 97.80 174 | 96.95 289 | 98.93 263 | 95.58 320 | 96.92 339 | 97.66 336 | 95.87 234 | 99.53 336 | 90.97 389 | 99.14 294 | 98.04 369 |
|
| uanet | | | 0.00 398 | 0.00 401 | 0.00 411 | 0.00 434 | 0.00 436 | 0.00 422 | 0.00 435 | 0.00 429 | 0.00 430 | 0.00 429 | 0.00 434 | 0.00 430 | 0.00 429 | 0.00 428 | 0.00 426 |
|
| ITE_SJBPF | | | | | 98.87 154 | 99.22 179 | 98.48 106 | | 99.35 154 | 97.50 215 | 98.28 253 | 98.60 260 | 97.64 129 | 99.35 374 | 93.86 339 | 99.27 272 | 98.79 312 |
|
| DeepMVS_CX |  | | | | 93.44 399 | 98.24 344 | 94.21 316 | | 94.34 398 | 64.28 423 | 91.34 417 | 94.87 405 | 89.45 338 | 92.77 424 | 77.54 422 | 93.14 417 | 93.35 419 |
|
| TinyColmap | | | 97.89 208 | 97.98 198 | 97.60 292 | 98.86 258 | 94.35 313 | 96.21 330 | 99.44 121 | 97.45 225 | 99.06 143 | 98.88 207 | 97.99 105 | 99.28 385 | 94.38 325 | 99.58 212 | 99.18 247 |
|
| MAR-MVS | | | 96.47 303 | 95.70 312 | 98.79 166 | 97.92 361 | 99.12 61 | 98.28 146 | 98.60 311 | 92.16 383 | 95.54 384 | 96.17 377 | 94.77 268 | 99.52 340 | 89.62 398 | 98.23 353 | 97.72 386 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LF4IMVS | | | 97.90 206 | 97.69 220 | 98.52 214 | 99.17 196 | 97.66 183 | 97.19 280 | 99.47 110 | 96.31 295 | 97.85 287 | 98.20 302 | 96.71 194 | 99.52 340 | 94.62 313 | 99.72 156 | 98.38 353 |
|
| MSDG | | | 97.71 226 | 97.52 233 | 98.28 242 | 98.91 249 | 96.82 231 | 94.42 396 | 99.37 145 | 97.65 199 | 98.37 248 | 98.29 296 | 97.40 151 | 99.33 377 | 94.09 332 | 99.22 281 | 98.68 327 |
|
| LS3D | | | 98.63 128 | 98.38 151 | 99.36 66 | 97.25 395 | 99.38 12 | 99.12 57 | 99.32 167 | 99.21 66 | 98.44 240 | 98.88 207 | 97.31 154 | 99.80 197 | 96.58 232 | 99.34 261 | 98.92 289 |
|
| CLD-MVS | | | 97.49 242 | 97.16 254 | 98.48 220 | 99.07 216 | 97.03 220 | 94.71 386 | 99.21 209 | 94.46 347 | 98.06 271 | 97.16 359 | 97.57 135 | 99.48 352 | 94.46 318 | 99.78 123 | 98.95 283 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FPMVS | | | 93.44 365 | 92.23 371 | 97.08 324 | 99.25 173 | 97.86 164 | 95.61 360 | 97.16 359 | 92.90 374 | 93.76 408 | 98.65 249 | 75.94 405 | 95.66 421 | 79.30 421 | 97.49 377 | 97.73 385 |
|
| Gipuma |  | | 99.03 66 | 99.16 51 | 98.64 188 | 99.94 2 | 98.51 104 | 99.32 23 | 99.75 36 | 99.58 29 | 98.60 220 | 99.62 37 | 98.22 83 | 99.51 345 | 97.70 152 | 99.73 148 | 97.89 375 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |