This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18699.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27097.81 17399.25 4099.30 17698.57 12898.55 22699.33 9597.95 10499.90 6797.16 17599.67 17999.44 161
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26598.40 10999.02 6699.19 21198.99 9798.07 26699.28 10497.11 16599.84 14596.84 20799.32 25999.47 151
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18299.46 10997.56 20599.54 5799.50 6298.97 2399.84 14598.06 12399.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33298.97 7095.03 37599.18 21596.88 26599.33 10098.78 22398.16 8899.28 38196.74 21599.62 19399.44 161
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30397.23 20797.76 21899.09 23497.31 23398.75 19898.66 24497.56 13399.64 29396.10 26699.55 21999.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 27096.68 28198.32 23398.32 33597.16 21598.86 8699.37 14189.48 39996.29 36399.15 13896.56 19699.90 6792.90 35499.20 28197.89 371
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7698.30 14499.65 4699.45 7499.22 1599.76 22998.44 10199.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5899.11 7699.53 6199.18 12898.81 3299.67 27496.71 22099.77 12699.50 130
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7299.09 8699.33 10099.19 12498.40 6399.72 25395.98 26999.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 29295.95 30398.65 18498.93 23898.09 13796.93 28899.28 18783.58 41298.13 26197.78 32596.13 21499.40 36293.52 34399.29 26698.45 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17199.37 14197.62 19799.04 14798.96 18598.84 3099.79 20697.43 16299.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 31595.35 32597.55 29597.95 35594.79 29498.81 9196.94 36392.28 37895.17 38598.57 26089.90 33199.75 23691.20 38297.33 38498.10 362
OpenMVS_ROBcopyleft95.38 1495.84 31895.18 33197.81 26898.41 33197.15 21697.37 25898.62 30683.86 41198.65 20998.37 28394.29 27699.68 27188.41 39798.62 33896.60 402
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22699.38 13795.76 31198.81 19198.82 21698.36 6599.82 17294.75 30599.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29595.73 30798.85 15698.75 27297.91 16096.42 31499.06 23790.94 39295.59 37497.38 34994.41 27199.59 31090.93 38698.04 36599.05 259
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32295.70 30895.57 36998.83 26088.57 39692.50 40997.72 33892.69 37396.49 36096.44 36993.72 28999.43 35893.61 34099.28 26798.71 316
PCF-MVS92.86 1894.36 34493.00 36198.42 22398.70 28397.56 18993.16 40799.11 23179.59 41697.55 30397.43 34692.19 31099.73 24679.85 41699.45 24297.97 370
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 37890.90 38296.27 35097.22 39291.24 37894.36 39493.33 40392.37 37692.24 41194.58 40366.20 41799.89 7893.16 35194.63 40997.66 384
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 21097.94 20097.65 28399.71 4597.94 15998.52 11898.68 30198.99 9797.52 30699.35 8997.41 14798.18 41091.59 37599.67 17996.82 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 38390.30 38693.70 39297.72 36484.34 41690.24 41397.42 34590.20 39693.79 40393.09 41190.90 32498.89 40186.57 40572.76 42097.87 373
MVEpermissive83.40 2292.50 37391.92 37594.25 38498.83 26091.64 36892.71 40883.52 42295.92 30786.46 42095.46 38995.20 24995.40 41880.51 41598.64 33595.73 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 30395.44 32098.84 15796.25 41298.69 9097.02 28199.12 22988.90 40297.83 28498.86 20789.51 33398.90 40091.92 36899.51 23098.92 285
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BP-MVS197.40 24796.97 26098.71 18199.07 21396.81 23198.34 14497.18 35398.58 12798.17 25498.61 25584.01 37399.94 3698.97 6699.78 12099.37 190
reproduce_monomvs95.00 33895.25 32794.22 38597.51 38483.34 41797.86 20498.44 31498.51 13399.29 10999.30 10167.68 41299.56 32198.89 7299.81 9999.77 37
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25199.80 998.33 7099.91 6199.56 2999.95 3099.97 4
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 15999.47 10699.12 7599.52 6399.32 9998.31 7199.90 6797.78 14299.73 14599.66 60
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18399.42 12699.05 9199.48 7099.27 10698.29 7399.89 7897.61 15299.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18399.42 12699.05 9199.48 7099.27 10698.29 7399.89 7897.61 15299.71 15899.62 70
mmdepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
monomultidepth0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
mvs5depth99.30 2999.59 998.44 22199.65 6395.35 27899.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
MVStest195.86 31695.60 31296.63 34095.87 41691.70 36797.93 19298.94 25698.03 16799.56 5399.66 2971.83 40598.26 40999.35 4099.24 27399.91 12
ttmdpeth97.91 20298.02 19197.58 29098.69 28894.10 31698.13 16198.90 26597.95 17397.32 32199.58 4395.95 22898.75 40396.41 24699.22 27799.87 18
WBMVS95.18 33394.78 33996.37 34697.68 37289.74 39395.80 35198.73 29897.54 20898.30 24598.44 27670.06 40699.82 17296.62 22599.87 7699.54 113
dongtai76.24 38775.95 39077.12 40392.39 42167.91 42790.16 41459.44 42882.04 41489.42 41694.67 40249.68 42681.74 42148.06 42177.66 41981.72 417
kuosan69.30 38868.95 39170.34 40487.68 42565.00 42891.11 41259.90 42769.02 41774.46 42288.89 41948.58 42768.03 42328.61 42272.33 42177.99 418
MVSMamba_PlusPlus98.83 8798.98 6798.36 23099.32 15596.58 24398.90 8099.41 13099.75 898.72 20199.50 6296.17 21299.94 3699.27 4599.78 12098.57 332
MGCFI-Net98.34 16398.28 16098.51 21198.47 32197.59 18898.96 7499.48 9899.18 7197.40 31695.50 38698.66 4399.50 34298.18 11498.71 32898.44 342
testing9193.32 36292.27 36696.47 34497.54 37791.25 37796.17 33196.76 36797.18 24993.65 40593.50 40965.11 41999.63 29693.04 35297.45 37598.53 333
testing1193.08 36792.02 37196.26 35197.56 37590.83 38596.32 32095.70 38496.47 28592.66 40993.73 40664.36 42099.59 31093.77 33897.57 37198.37 351
testing9993.04 36891.98 37496.23 35397.53 37990.70 38796.35 31895.94 38096.87 26693.41 40693.43 41063.84 42199.59 31093.24 35097.19 38598.40 347
UBG93.25 36492.32 36596.04 36097.72 36490.16 39095.92 34595.91 38196.03 30293.95 40293.04 41269.60 40899.52 33690.72 39097.98 36698.45 339
UWE-MVS92.38 37591.76 37894.21 38697.16 39384.65 41295.42 36588.45 41795.96 30596.17 36495.84 38166.36 41599.71 25491.87 37098.64 33598.28 354
ETVMVS92.60 37291.08 38197.18 31597.70 36993.65 33896.54 30695.70 38496.51 28194.68 39192.39 41561.80 42299.50 34286.97 40297.41 37898.40 347
sasdasda98.34 16398.26 16498.58 19798.46 32397.82 17098.96 7499.46 10999.19 6997.46 31195.46 38998.59 5099.46 35398.08 12198.71 32898.46 336
testing22291.96 38090.37 38496.72 33997.47 38692.59 35396.11 33394.76 39096.83 26892.90 40892.87 41357.92 42399.55 32586.93 40397.52 37298.00 369
WB-MVSnew95.73 32195.57 31596.23 35396.70 40390.70 38796.07 33593.86 40095.60 31597.04 33095.45 39296.00 22099.55 32591.04 38498.31 34798.43 344
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21199.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20899.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24197.97 19199.86 1598.22 15299.88 1799.71 1998.59 5099.84 14599.73 1899.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18599.71 4596.10 25297.87 20399.85 1798.56 13199.90 1299.68 2298.69 4199.85 12799.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24197.79 21299.82 2498.21 15399.81 2499.53 5898.46 6099.84 14599.70 2199.97 1999.90 13
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19399.55 9396.09 25597.74 22099.81 2598.55 13299.85 1999.55 5298.60 4999.84 14599.69 2399.98 1299.89 14
MM98.22 18097.99 19498.91 15098.66 29896.97 22297.89 19994.44 39399.54 3098.95 16299.14 14193.50 29099.92 5299.80 1199.96 2399.85 22
WAC-MVS90.90 38391.37 379
Syy-MVS96.04 31095.56 31697.49 30197.10 39594.48 30596.18 32996.58 37095.65 31394.77 38992.29 41691.27 32099.36 36798.17 11698.05 36398.63 326
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21599.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 16999.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
myMVS_eth3d91.92 38190.45 38396.30 34897.10 39590.90 38396.18 32996.58 37095.65 31394.77 38992.29 41653.88 42499.36 36789.59 39598.05 36398.63 326
testing393.51 35992.09 36997.75 27598.60 30594.40 30797.32 26295.26 38897.56 20596.79 34795.50 38653.57 42599.77 22395.26 29598.97 31299.08 255
SSC-MVS98.71 10498.74 8898.62 19099.72 4296.08 25798.74 9298.64 30599.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27399.82 27
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22699.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
WB-MVS98.52 14598.55 11998.43 22299.65 6395.59 26798.52 11898.77 29199.65 1899.52 6399.00 17594.34 27499.93 4398.65 8998.83 32099.76 42
test_fmvsmvis_n_192099.26 3599.49 1398.54 20899.66 6296.97 22298.00 18399.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 316
dmvs_re95.98 31395.39 32397.74 27798.86 25497.45 19598.37 14095.69 38697.95 17396.56 35495.95 37690.70 32597.68 41388.32 39896.13 40098.11 361
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9899.69 1399.63 4999.68 2299.03 2199.96 1297.97 13099.92 5499.57 96
dmvs_testset92.94 36992.21 36895.13 37798.59 30890.99 38297.65 23292.09 40896.95 26194.00 40093.55 40892.34 30996.97 41672.20 41992.52 41497.43 391
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17699.69 1399.63 4999.68 2299.25 1499.96 1297.25 17199.92 5499.57 96
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19299.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
test_cas_vis1_n_192098.33 16698.68 10197.27 31299.69 5492.29 36198.03 17799.85 1797.62 19799.96 499.62 3693.98 28399.74 24199.52 3399.86 8099.79 32
test_vis1_n_192098.40 15698.92 7196.81 33599.74 3590.76 38698.15 15999.91 998.33 14199.89 1599.55 5295.07 25399.88 9099.76 1599.93 4399.79 32
test_vis1_n98.31 16998.50 12697.73 27999.76 2994.17 31498.68 10299.91 996.31 29199.79 2699.57 4592.85 30299.42 36099.79 1299.84 8599.60 79
test_fmvs1_n98.09 19198.28 16097.52 29899.68 5693.47 34098.63 10599.93 595.41 32499.68 4099.64 3491.88 31599.48 34899.82 799.87 7699.62 70
mvsany_test197.60 23097.54 22897.77 27197.72 36495.35 27895.36 36797.13 35694.13 35299.71 3499.33 9597.93 10599.30 37797.60 15498.94 31598.67 324
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11398.28 14998.98 15499.19 12497.76 11699.58 31696.57 23099.55 21998.97 276
test_vis1_rt97.75 22097.72 21697.83 26698.81 26596.35 24797.30 26499.69 3994.61 33997.87 28098.05 31096.26 21098.32 40898.74 8298.18 35298.82 298
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18699.91 1199.67 2797.15 16298.91 39999.76 1599.56 21699.92 11
test_fmvs298.70 10898.97 6897.89 26399.54 9894.05 31798.55 11499.92 796.78 27199.72 3299.78 1096.60 19599.67 27499.91 299.90 6799.94 9
test_fmvs197.72 22297.94 20097.07 32298.66 29892.39 35897.68 22699.81 2595.20 32899.54 5799.44 7591.56 31899.41 36199.78 1499.77 12699.40 180
test_fmvs399.12 5499.41 2198.25 23999.76 2995.07 29099.05 6499.94 297.78 18899.82 2199.84 398.56 5499.71 25499.96 199.96 2399.97 4
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23296.49 28399.96 499.81 698.18 8499.45 35598.97 6699.79 11599.83 24
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27497.81 13999.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 3998.90 10699.43 8099.35 8998.86 2899.67 27497.81 13999.81 9999.24 229
test_f98.67 11998.87 7698.05 25699.72 4295.59 26798.51 12399.81 2596.30 29399.78 2799.82 596.14 21398.63 40599.82 799.93 4399.95 8
FE-MVS95.66 32394.95 33697.77 27198.53 31795.28 28199.40 1696.09 37793.11 36797.96 27499.26 11079.10 39499.77 22392.40 36698.71 32898.27 355
FA-MVS(test-final)96.99 27996.82 27297.50 30098.70 28394.78 29599.34 2096.99 35995.07 32998.48 23399.33 9588.41 34499.65 29096.13 26598.92 31798.07 364
balanced_conf0398.63 12598.72 9298.38 22798.66 29896.68 24098.90 8099.42 12698.99 9798.97 15899.19 12495.81 23399.85 12798.77 8099.77 12698.60 328
MonoMVSNet96.25 30596.53 29295.39 37496.57 40591.01 38198.82 9097.68 34198.57 12898.03 27199.37 8490.92 32397.78 41294.99 29993.88 41297.38 392
patch_mono-298.51 14698.63 10898.17 24599.38 14094.78 29597.36 25999.69 3998.16 16398.49 23299.29 10397.06 16699.97 598.29 10999.91 6199.76 42
EGC-MVSNET85.24 38480.54 38799.34 7599.77 2699.20 3899.08 5899.29 18412.08 42220.84 42399.42 7797.55 13499.85 12797.08 18399.72 15398.96 278
test250692.39 37491.89 37693.89 39099.38 14082.28 42099.32 2366.03 42699.08 8898.77 19599.57 4566.26 41699.84 14598.71 8599.95 3099.54 113
test111196.49 29896.82 27295.52 37099.42 13587.08 40499.22 4287.14 41899.11 7699.46 7599.58 4388.69 33899.86 11598.80 7699.95 3099.62 70
ECVR-MVScopyleft96.42 30096.61 28695.85 36299.38 14088.18 40099.22 4286.00 42099.08 8899.36 9599.57 4588.47 34399.82 17298.52 9899.95 3099.54 113
test_blank0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36098.86 10998.87 18297.62 33698.63 4698.96 39699.41 3898.29 34898.45 339
DVP-MVS++98.90 7998.70 9899.51 4698.43 32799.15 5199.43 1299.32 16398.17 16099.26 11699.02 16398.18 8499.88 9097.07 18499.45 24299.49 134
FOURS199.73 3699.67 399.43 1299.54 8099.43 4199.26 116
MSC_two_6792asdad99.32 8298.43 32798.37 11398.86 27699.89 7897.14 17899.60 20099.71 49
PC_three_145293.27 36499.40 8898.54 26298.22 8097.00 41595.17 29699.45 24299.49 134
No_MVS99.32 8298.43 32798.37 11398.86 27699.89 7897.14 17899.60 20099.71 49
test_one_060199.39 13999.20 3899.31 16898.49 13498.66 20899.02 16397.64 126
eth-test20.00 430
eth-test0.00 430
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7298.42 13798.91 17298.81 21898.94 2599.91 6198.35 10599.73 14599.49 134
test_method79.78 38579.50 38880.62 40180.21 42645.76 42970.82 41798.41 31831.08 42180.89 42197.71 32984.85 36497.37 41491.51 37780.03 41898.75 313
Anonymous2024052198.69 11198.87 7698.16 24799.77 2695.11 28999.08 5899.44 11799.34 5099.33 10099.55 5294.10 28299.94 3699.25 4899.96 2399.42 168
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30899.11 7698.58 22199.02 16388.65 34199.96 1298.11 11896.34 39699.49 134
hse-mvs297.46 24097.07 25598.64 18598.73 27497.33 20197.45 25497.64 34499.11 7698.58 22197.98 31488.65 34199.79 20698.11 11897.39 37998.81 302
CL-MVSNet_self_test97.44 24397.22 24898.08 25298.57 31295.78 26594.30 39598.79 28896.58 28098.60 21798.19 29994.74 26699.64 29396.41 24698.84 31998.82 298
KD-MVS_2432*160092.87 37091.99 37295.51 37191.37 42289.27 39494.07 39798.14 32895.42 32197.25 32396.44 36967.86 41099.24 38391.28 38096.08 40198.02 366
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8099.31 5399.62 5299.53 5897.36 15099.86 11599.24 5099.71 15899.39 181
AUN-MVS96.24 30795.45 31998.60 19598.70 28397.22 20997.38 25797.65 34295.95 30695.53 38197.96 31882.11 38499.79 20696.31 25297.44 37698.80 307
ZD-MVS99.01 22698.84 7899.07 23694.10 35398.05 26998.12 30396.36 20799.86 11592.70 36299.19 284
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.49 14499.86 11596.56 23499.39 24999.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17698.64 11898.95 16298.96 18597.75 11796.56 23499.39 24999.45 157
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16799.31 16898.03 16799.66 4399.02 16398.36 6599.88 9096.91 19699.62 19399.41 171
IU-MVS99.49 11599.15 5198.87 27192.97 36899.41 8596.76 21399.62 19399.66 60
OPU-MVS98.82 15998.59 30898.30 11898.10 16798.52 26598.18 8498.75 40394.62 30999.48 23999.41 171
test_241102_TWO99.30 17698.03 16799.26 11699.02 16397.51 14099.88 9096.91 19699.60 20099.66 60
test_241102_ONE99.49 11599.17 4399.31 16897.98 17099.66 4398.90 19798.36 6599.48 348
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13096.77 27298.83 18698.90 19797.80 11499.82 17295.68 28599.52 22899.38 188
cl2295.79 31995.39 32396.98 32596.77 40292.79 35094.40 39398.53 31094.59 34097.89 27898.17 30082.82 38199.24 38396.37 24899.03 30298.92 285
miper_ehance_all_eth97.06 27297.03 25797.16 31997.83 36093.06 34494.66 38599.09 23495.99 30498.69 20398.45 27592.73 30599.61 30596.79 20999.03 30298.82 298
miper_enhance_ethall96.01 31195.74 30696.81 33596.41 41092.27 36293.69 40498.89 26891.14 39098.30 24597.35 35290.58 32699.58 31696.31 25299.03 30298.60 328
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18497.28 23698.11 26398.39 28098.00 9999.87 10796.86 20699.64 18799.55 109
dcpmvs_298.78 9599.11 5497.78 27099.56 8993.67 33699.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12899.91 6199.68 56
cl____97.02 27596.83 27197.58 29097.82 36194.04 31994.66 38599.16 22297.04 25698.63 21198.71 23388.68 34099.69 26297.00 18899.81 9999.00 271
DIV-MVS_self_test97.02 27596.84 27097.58 29097.82 36194.03 32094.66 38599.16 22297.04 25698.63 21198.71 23388.69 33899.69 26297.00 18899.81 9999.01 267
eth_miper_zixun_eth97.23 26197.25 24697.17 31798.00 35492.77 35194.71 38299.18 21597.27 23798.56 22498.74 22991.89 31499.69 26297.06 18699.81 9999.05 259
9.1497.78 21099.07 21397.53 24699.32 16395.53 31898.54 22898.70 23697.58 13199.76 22994.32 32299.46 240
uanet_test0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
DCPMVS0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
save fliter99.11 20497.97 15496.53 30899.02 24898.24 150
ET-MVSNet_ETH3D94.30 34793.21 35797.58 29098.14 34794.47 30694.78 38193.24 40494.72 33789.56 41595.87 37978.57 39799.81 18696.91 19697.11 38898.46 336
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5899.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
EIA-MVS98.00 19797.74 21398.80 16398.72 27698.09 13798.05 17499.60 5597.39 22596.63 35195.55 38497.68 12099.80 19396.73 21799.27 26898.52 334
miper_refine_blended92.87 37091.99 37295.51 37191.37 42289.27 39494.07 39798.14 32895.42 32197.25 32396.44 36967.86 41099.24 38391.28 38096.08 40198.02 366
miper_lstm_enhance97.18 26597.16 25197.25 31498.16 34592.85 34995.15 37399.31 16897.25 23998.74 20098.78 22390.07 32999.78 21797.19 17399.80 11099.11 254
ETV-MVS98.03 19497.86 20798.56 20498.69 28898.07 14397.51 24999.50 8998.10 16597.50 30895.51 38598.41 6299.88 9096.27 25599.24 27397.71 383
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25398.46 27498.68 4299.93 4399.03 6299.85 8198.64 325
D2MVS97.84 21697.84 20897.83 26699.14 20094.74 29796.94 28698.88 26995.84 30998.89 17598.96 18594.40 27299.69 26297.55 15599.95 3099.05 259
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 17998.84 28097.97 17199.08 13899.02 16397.61 12999.88 9096.99 19099.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 16099.08 13899.02 16397.89 10699.88 9097.07 18499.71 15899.70 54
test_0728_SECOND99.60 1499.50 10899.23 3098.02 17999.32 16399.88 9096.99 19099.63 19099.68 56
test072699.50 10899.21 3298.17 15899.35 15097.97 17199.26 11699.06 15197.61 129
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18498.29 14798.88 17898.85 21097.53 13799.87 10796.14 26399.31 26199.48 144
DPM-MVS96.32 30295.59 31498.51 21198.76 27097.21 21094.54 39198.26 32291.94 38096.37 36197.25 35393.06 29799.43 35891.42 37898.74 32498.89 290
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19697.44 22298.67 20698.39 28097.68 12099.85 12796.00 26799.51 23099.52 124
test_yl96.69 28896.29 29897.90 26198.28 33795.24 28297.29 26597.36 34798.21 15398.17 25497.86 32186.27 35299.55 32594.87 30398.32 34598.89 290
thisisatest053095.27 33194.45 34297.74 27799.19 18594.37 30897.86 20490.20 41497.17 25098.22 25297.65 33373.53 40499.90 6796.90 20199.35 25598.95 279
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25499.25 5999.54 5799.37 8497.04 16799.80 19397.89 13399.52 22899.35 201
Anonymous20240521197.90 20397.50 23199.08 12098.90 24698.25 12198.53 11796.16 37598.87 10899.11 13398.86 20790.40 32899.78 21797.36 16599.31 26199.19 241
DCV-MVSNet96.69 28896.29 29897.90 26198.28 33795.24 28297.29 26597.36 34798.21 15398.17 25497.86 32186.27 35299.55 32594.87 30398.32 34598.89 290
tttt051795.64 32494.98 33497.64 28599.36 14793.81 33198.72 9790.47 41398.08 16698.67 20698.34 28773.88 40399.92 5297.77 14399.51 23099.20 236
our_test_397.39 24897.73 21596.34 34798.70 28389.78 39294.61 38898.97 25596.50 28299.04 14798.85 21095.98 22599.84 14597.26 17099.67 17999.41 171
thisisatest051594.12 35193.16 35896.97 32698.60 30592.90 34893.77 40390.61 41294.10 35396.91 33795.87 37974.99 40299.80 19394.52 31299.12 29598.20 357
ppachtmachnet_test97.50 23697.74 21396.78 33798.70 28391.23 37994.55 39099.05 24096.36 28899.21 12498.79 22196.39 20399.78 21796.74 21599.82 9599.34 203
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17499.22 20494.16 35198.98 15499.10 14797.52 13999.79 20696.45 24499.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 302
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28299.39 13597.67 19399.44 7998.99 17697.53 13799.89 7895.40 29399.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14799.10 6499.05 145
thres100view90094.19 34893.67 35295.75 36599.06 21891.35 37398.03 17794.24 39798.33 14197.40 31694.98 39779.84 38899.62 29983.05 41098.08 36096.29 403
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11799.45 3799.51 6899.24 11598.20 8399.86 11595.92 27199.69 16899.04 263
tfpn200view994.03 35293.44 35495.78 36498.93 23891.44 37197.60 23894.29 39597.94 17597.10 32694.31 40479.67 39099.62 29983.05 41098.08 36096.29 403
c3_l97.36 24997.37 23997.31 30998.09 35093.25 34295.01 37699.16 22297.05 25598.77 19598.72 23292.88 30099.64 29396.93 19599.76 13899.05 259
CHOSEN 280x42095.51 32895.47 31795.65 36898.25 33988.27 39993.25 40698.88 26993.53 36194.65 39297.15 35686.17 35499.93 4397.41 16399.93 4398.73 315
CANet97.87 20997.76 21198.19 24497.75 36395.51 27296.76 29799.05 24097.74 18996.93 33498.21 29795.59 23999.89 7897.86 13899.93 4399.19 241
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32798.11 13497.61 23799.50 8998.64 11897.39 31897.52 34198.12 9299.95 2496.90 20198.71 32898.38 349
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35399.49 698.02 17999.16 22298.29 14797.64 29597.99 31396.44 20299.95 2496.66 22398.93 31698.60 328
CANet_DTU97.26 25797.06 25697.84 26597.57 37494.65 30296.19 32898.79 28897.23 24595.14 38698.24 29493.22 29299.84 14597.34 16699.84 8599.04 263
MVS_030497.44 24397.01 25998.72 18096.42 40996.74 23697.20 27391.97 40998.46 13698.30 24598.79 22192.74 30499.91 6199.30 4399.94 3899.52 124
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27799.38 13794.87 33598.97 15898.99 17698.01 9899.88 9097.29 16899.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15097.55 20799.31 10897.71 32994.61 26799.88 9096.14 26399.19 28499.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36698.81 302
sam_mvs84.29 372
IterMVS-SCA-FT97.85 21598.18 17396.87 33199.27 16491.16 38095.53 35999.25 19699.10 8399.41 8599.35 8993.10 29599.96 1298.65 8999.94 3899.49 134
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25696.96 26099.24 12198.89 20397.83 10999.81 18696.88 20399.49 23899.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32898.98 23193.91 32696.45 31199.17 21997.85 18398.41 23997.14 35798.47 5799.92 5298.02 12599.05 29896.92 396
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 27999.18 21597.10 25498.75 19898.92 19398.18 8499.65 29096.68 22299.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20899.25 19696.94 26298.78 19299.12 14398.02 9799.84 14597.13 18099.67 17999.59 85
ambc98.24 24198.82 26395.97 25998.62 10799.00 25399.27 11299.21 12196.99 17299.50 34296.55 23799.50 23799.26 225
MTGPAbinary99.20 207
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25798.51 26698.64 4499.93 4398.91 6999.85 8198.88 293
Effi-MVS+98.02 19597.82 20998.62 19098.53 31797.19 21297.33 26199.68 4497.30 23496.68 34997.46 34598.56 5499.80 19396.63 22498.20 35198.86 295
xiu_mvs_v2_base97.16 26797.49 23296.17 35698.54 31592.46 35695.45 36398.84 28097.25 23997.48 31096.49 36698.31 7199.90 6796.34 25198.68 33396.15 407
xiu_mvs_v1_base97.86 21098.17 17496.92 32898.98 23193.91 32696.45 31199.17 21997.85 18398.41 23997.14 35798.47 5799.92 5298.02 12599.05 29896.92 396
new-patchmatchnet98.35 16298.74 8897.18 31599.24 17192.23 36396.42 31499.48 9898.30 14499.69 3899.53 5897.44 14699.82 17298.84 7599.77 12699.49 134
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10799.36 3999.92 5499.64 66
pmmvs597.64 22897.49 23298.08 25299.14 20095.12 28896.70 30199.05 24093.77 35898.62 21398.83 21393.23 29199.75 23698.33 10899.76 13899.36 197
test_post197.59 24020.48 42483.07 37999.66 28594.16 323
test_post21.25 42383.86 37599.70 258
Fast-Effi-MVS+97.67 22697.38 23898.57 20098.71 27997.43 19797.23 26999.45 11394.82 33696.13 36596.51 36598.52 5699.91 6196.19 25998.83 32098.37 351
patchmatchnet-post98.77 22584.37 36999.85 127
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8799.70 1299.80 2599.68 2296.84 17899.83 16299.21 5199.91 6199.77 37
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27799.28 18795.54 31799.42 8399.19 12497.27 15599.63 29697.89 13399.97 1999.20 236
GG-mvs-BLEND94.76 38094.54 41992.13 36499.31 2780.47 42488.73 41891.01 41867.59 41398.16 41182.30 41494.53 41093.98 414
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32898.98 23193.91 32696.45 31199.17 21997.85 18398.41 23997.14 35798.47 5799.92 5298.02 12599.05 29896.92 396
Anonymous2023120698.21 18298.21 16998.20 24399.51 10595.43 27698.13 16199.32 16396.16 29698.93 17098.82 21696.00 22099.83 16297.32 16799.73 14599.36 197
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20798.83 11398.89 17598.90 19796.98 17399.92 5297.16 17599.70 16599.56 102
MTMP97.93 19291.91 410
gm-plane-assit94.83 41881.97 42188.07 40594.99 39699.60 30691.76 371
test9_res93.28 34999.15 28999.38 188
MVP-Stereo98.08 19297.92 20298.57 20098.96 23496.79 23297.90 19899.18 21596.41 28798.46 23498.95 18995.93 22999.60 30696.51 24098.98 31199.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27998.08 14195.96 34099.03 24591.40 38695.85 37197.53 33996.52 19899.76 229
train_agg97.10 26996.45 29499.07 12298.71 27998.08 14195.96 34099.03 24591.64 38195.85 37197.53 33996.47 20099.76 22993.67 33999.16 28799.36 197
gg-mvs-nofinetune92.37 37691.20 38095.85 36295.80 41792.38 35999.31 2781.84 42399.75 891.83 41299.74 1568.29 40999.02 39387.15 40197.12 38796.16 406
SCA96.41 30196.66 28495.67 36698.24 34088.35 39895.85 34996.88 36596.11 29797.67 29498.67 24193.10 29599.85 12794.16 32399.22 27798.81 302
Patchmatch-test96.55 29496.34 29697.17 31798.35 33393.06 34498.40 13797.79 33697.33 23098.41 23998.67 24183.68 37699.69 26295.16 29799.31 26198.77 310
test_898.67 29398.01 14995.91 34699.02 24891.64 38195.79 37397.50 34296.47 20099.76 229
MS-PatchMatch97.68 22597.75 21297.45 30498.23 34293.78 33297.29 26598.84 28096.10 29898.64 21098.65 24696.04 21799.36 36796.84 20799.14 29099.20 236
Patchmatch-RL test97.26 25797.02 25897.99 26099.52 10395.53 27196.13 33299.71 3697.47 21499.27 11299.16 13484.30 37199.62 29997.89 13399.77 12698.81 302
cdsmvs_eth3d_5k24.66 38932.88 3920.00 4070.00 4300.00 4320.00 41899.10 2320.00 4250.00 42697.58 33799.21 160.00 4260.00 4250.00 4240.00 422
pcd_1.5k_mvsjas8.17 39210.90 3950.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 42598.07 930.00 4260.00 4250.00 4240.00 422
agg_prior292.50 36599.16 28799.37 190
agg_prior98.68 29297.99 15099.01 25195.59 37499.77 223
tmp_tt78.77 38678.73 38978.90 40258.45 42774.76 42694.20 39678.26 42539.16 42086.71 41992.82 41480.50 38675.19 42286.16 40692.29 41586.74 416
canonicalmvs98.34 16398.26 16498.58 19798.46 32397.82 17098.96 7499.46 10999.19 6997.46 31195.46 38998.59 5099.46 35398.08 12198.71 32898.46 336
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 3998.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
alignmvs97.35 25096.88 26798.78 16998.54 31598.09 13797.71 22397.69 34099.20 6597.59 29995.90 37888.12 34699.55 32598.18 11498.96 31398.70 319
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9899.68 1599.46 7599.26 11098.62 4799.73 24699.17 5499.92 5499.76 42
v14419298.54 14098.57 11898.45 21999.21 17895.98 25897.63 23499.36 14597.15 25399.32 10699.18 12895.84 23299.84 14599.50 3499.91 6199.54 113
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8699.48 3399.24 12199.41 8196.79 18499.82 17298.69 8799.88 7399.76 42
v192192098.54 14098.60 11598.38 22799.20 18295.76 26697.56 24399.36 14597.23 24599.38 9199.17 13296.02 21899.84 14599.57 2799.90 6799.54 113
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
v119298.60 13098.66 10498.41 22499.27 16495.88 26197.52 24799.36 14597.41 22399.33 10099.20 12396.37 20699.82 17299.57 2799.92 5499.55 109
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6599.61 2699.40 8899.50 6297.12 16399.85 12799.02 6399.94 3899.80 31
v114498.60 13098.66 10498.41 22499.36 14795.90 26097.58 24199.34 15697.51 21099.27 11299.15 13896.34 20899.80 19399.47 3699.93 4399.51 127
sosnet-low-res0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16897.47 21498.58 22198.50 27097.97 10399.85 12796.57 23099.59 20499.53 121
v14898.45 15198.60 11598.00 25999.44 12994.98 29197.44 25599.06 23798.30 14499.32 10698.97 18296.65 19399.62 29998.37 10499.85 8199.39 181
sosnet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
uncertanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5896.80 26998.88 17899.06 15197.65 12399.57 31894.45 31599.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5896.80 26998.88 17899.06 15197.65 12399.57 31894.45 31599.61 19899.37 190
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5499.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16897.46 21998.44 23698.51 26697.83 10999.88 9096.46 24399.58 20999.58 91
RRT-MVS97.88 20797.98 19597.61 28798.15 34693.77 33398.97 7399.64 4999.16 7398.69 20399.42 7791.60 31699.89 7897.63 15198.52 34299.16 250
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 267
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4899.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
PS-MVSNAJ97.08 27197.39 23796.16 35898.56 31392.46 35695.24 37098.85 27997.25 23997.49 30995.99 37598.07 9399.90 6796.37 24898.67 33496.12 408
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4799.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
EI-MVSNet-UG-set98.69 11198.71 9598.62 19099.10 20696.37 24697.23 26998.87 27199.20 6599.19 12698.99 17697.30 15299.85 12798.77 8099.79 11599.65 65
EI-MVSNet-Vis-set98.68 11698.70 9898.63 18999.09 20996.40 24597.23 26998.86 27699.20 6599.18 13098.97 18297.29 15499.85 12798.72 8499.78 12099.64 66
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24798.75 29597.46 21996.90 34097.83 32496.01 21999.84 14595.82 27999.35 25599.46 153
test_prior497.97 15495.86 347
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30498.63 25197.50 14199.83 16296.79 20999.53 22599.56 102
v124098.55 13898.62 11098.32 23399.22 17695.58 26997.51 24999.45 11397.16 25199.45 7899.24 11596.12 21599.85 12799.60 2599.88 7399.55 109
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5099.30 5599.65 4699.60 4199.16 2099.82 17299.07 5899.83 9299.56 102
test_prior295.74 35396.48 28496.11 36697.63 33595.92 23094.16 32399.20 281
X-MVStestdata94.32 34592.59 36399.53 3799.46 12599.21 3298.65 10399.34 15698.62 12297.54 30445.85 42097.50 14199.83 16296.79 20999.53 22599.56 102
test_prior98.95 14398.69 28897.95 15899.03 24599.59 31099.30 217
旧先验295.76 35288.56 40497.52 30699.66 28594.48 313
新几何295.93 343
新几何198.91 15098.94 23697.76 17698.76 29287.58 40696.75 34898.10 30594.80 26399.78 21792.73 36199.00 30799.20 236
旧先验198.82 26397.45 19598.76 29298.34 28795.50 24399.01 30699.23 231
无先验95.74 35398.74 29789.38 40099.73 24692.38 36799.22 235
原ACMM295.53 359
原ACMM198.35 23198.90 24696.25 25098.83 28492.48 37596.07 36898.10 30595.39 24699.71 25492.61 36498.99 30999.08 255
test22298.92 24296.93 22795.54 35898.78 29085.72 40996.86 34398.11 30494.43 27099.10 29799.23 231
testdata299.79 20692.80 359
segment_acmp97.02 170
testdata98.09 24998.93 23895.40 27798.80 28790.08 39797.45 31398.37 28395.26 24899.70 25893.58 34298.95 31499.17 247
testdata195.44 36496.32 290
v899.01 6499.16 4898.57 20099.47 12496.31 24998.90 8099.47 10699.03 9499.52 6399.57 4596.93 17499.81 18699.60 2599.98 1299.60 79
131495.74 32095.60 31296.17 35697.53 37992.75 35298.07 17198.31 32191.22 38894.25 39596.68 36395.53 24099.03 39291.64 37497.18 38696.74 400
LFMVS97.20 26396.72 27898.64 18598.72 27696.95 22598.93 7894.14 39999.74 1098.78 19299.01 17284.45 36899.73 24697.44 16199.27 26899.25 226
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35899.59 2799.11 13399.27 10694.82 26099.79 20698.34 10699.63 19099.34 203
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35199.67 1698.97 15899.50 6290.45 32799.80 19397.88 13699.20 28199.48 144
v1098.97 7099.11 5498.55 20599.44 12996.21 25198.90 8099.55 7698.73 11499.48 7099.60 4196.63 19499.83 16299.70 2199.99 599.61 78
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15099.47 3599.28 11099.05 15896.72 19099.82 17298.09 12099.36 25399.59 85
MVS93.19 36592.09 36996.50 34396.91 39894.03 32098.07 17198.06 33268.01 41894.56 39496.48 36795.96 22799.30 37783.84 40996.89 39196.17 405
v2v48298.56 13498.62 11098.37 22999.42 13595.81 26497.58 24199.16 22297.90 17999.28 11099.01 17295.98 22599.79 20699.33 4199.90 6799.51 127
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21197.87 18199.25 12099.16 13496.84 17899.78 21799.21 5199.84 8599.46 153
SD-MVS98.40 15698.68 10197.54 29698.96 23497.99 15097.88 20099.36 14598.20 15799.63 4999.04 16098.76 3595.33 41996.56 23499.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 31695.32 32697.49 30198.60 30594.15 31593.83 40297.93 33495.49 31996.68 34997.42 34783.21 37799.30 37796.22 25798.55 34199.01 267
MSLP-MVS++98.02 19598.14 18097.64 28598.58 31095.19 28597.48 25199.23 20397.47 21497.90 27798.62 25397.04 16798.81 40297.55 15599.41 24798.94 283
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9897.57 20399.35 9799.24 11597.83 10999.89 7897.88 13699.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16198.64 11899.03 15098.98 18097.89 10699.85 12796.54 23899.42 24699.46 153
ADS-MVSNet295.43 32994.98 33496.76 33898.14 34791.74 36697.92 19597.76 33790.23 39396.51 35798.91 19485.61 35999.85 12792.88 35596.90 38998.69 320
EI-MVSNet98.40 15698.51 12498.04 25799.10 20694.73 29897.20 27398.87 27198.97 10099.06 14099.02 16396.00 22099.80 19398.58 9299.82 9599.60 79
Regformer0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
CVMVSNet96.25 30597.21 24993.38 39699.10 20680.56 42397.20 27398.19 32796.94 26299.00 15299.02 16389.50 33499.80 19396.36 25099.59 20499.78 35
pmmvs497.58 23397.28 24498.51 21198.84 25896.93 22795.40 36698.52 31193.60 36098.61 21598.65 24695.10 25299.60 30696.97 19399.79 11598.99 272
EU-MVSNet97.66 22798.50 12695.13 37799.63 7385.84 40798.35 14298.21 32498.23 15199.54 5799.46 7095.02 25499.68 27198.24 11099.87 7699.87 18
VNet98.42 15398.30 15898.79 16698.79 26997.29 20398.23 15098.66 30299.31 5398.85 18398.80 21994.80 26399.78 21798.13 11799.13 29299.31 214
test-LLR93.90 35493.85 34894.04 38796.53 40684.62 41394.05 39992.39 40696.17 29494.12 39795.07 39382.30 38299.67 27495.87 27598.18 35297.82 374
TESTMET0.1,192.19 37991.77 37793.46 39496.48 40882.80 41994.05 39991.52 41194.45 34594.00 40094.88 39966.65 41499.56 32195.78 28098.11 35898.02 366
test-mter92.33 37791.76 37894.04 38796.53 40684.62 41394.05 39992.39 40694.00 35694.12 39795.07 39365.63 41899.67 27495.87 27598.18 35297.82 374
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11399.63 2199.52 6399.44 7598.25 7599.88 9099.09 5799.84 8599.62 70
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16897.47 21498.56 22498.54 26297.75 11799.88 9096.57 23099.59 20499.58 91
testgi98.32 16798.39 14698.13 24899.57 8195.54 27097.78 21399.49 9697.37 22799.19 12697.65 33398.96 2499.49 34596.50 24198.99 30999.34 203
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21399.24 20199.04 9399.41 8598.90 19797.65 12399.76 22997.70 14899.79 11599.39 181
thres600view794.45 34393.83 34996.29 34999.06 21891.53 36997.99 18794.24 39798.34 14097.44 31495.01 39579.84 38899.67 27484.33 40898.23 34997.66 384
ADS-MVSNet95.24 33294.93 33796.18 35598.14 34790.10 39197.92 19597.32 35090.23 39396.51 35798.91 19485.61 35999.74 24192.88 35596.90 38998.69 320
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21197.61 20097.58 30098.66 24497.40 14899.88 9094.72 30899.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 39020.53 3936.87 40612.05 4284.20 43193.62 4056.73 4294.62 42410.41 42424.33 4218.28 4293.56 4259.69 42415.07 42212.86 421
thres40094.14 35093.44 35496.24 35298.93 23891.44 37197.60 23894.29 39597.94 17597.10 32694.31 40479.67 39099.62 29983.05 41098.08 36097.66 384
test12317.04 39120.11 3947.82 40510.25 4294.91 43094.80 3804.47 4304.93 42310.00 42524.28 4229.69 4283.64 42410.14 42312.43 42314.92 420
thres20093.72 35793.14 35995.46 37398.66 29891.29 37596.61 30594.63 39297.39 22596.83 34493.71 40779.88 38799.56 32182.40 41398.13 35795.54 412
test0.0.03 194.51 34293.69 35196.99 32496.05 41393.61 33994.97 37793.49 40196.17 29497.57 30294.88 39982.30 38299.01 39593.60 34194.17 41198.37 351
pmmvs395.03 33694.40 34396.93 32797.70 36992.53 35595.08 37497.71 33988.57 40397.71 29198.08 30879.39 39299.82 17296.19 25999.11 29698.43 344
EMVS93.83 35594.02 34793.23 39796.83 40184.96 41089.77 41696.32 37497.92 17797.43 31596.36 37286.17 35498.93 39887.68 40097.73 36995.81 410
E-PMN94.17 34994.37 34493.58 39396.86 39985.71 40990.11 41597.07 35798.17 16097.82 28697.19 35484.62 36798.94 39789.77 39397.68 37096.09 409
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9697.01 25998.69 20398.88 20498.00 9999.89 7895.87 27599.59 20499.58 91
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25798.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5294.13 32799.30 26498.91 288
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29198.73 29895.66 31297.92 27597.70 33197.17 16199.66 28596.18 26199.23 27699.47 151
mvs_anonymous97.83 21898.16 17796.87 33198.18 34491.89 36597.31 26398.90 26597.37 22798.83 18699.46 7096.28 20999.79 20698.90 7098.16 35598.95 279
MVS_Test98.18 18598.36 15097.67 28198.48 32094.73 29898.18 15599.02 24897.69 19298.04 27099.11 14497.22 15999.56 32198.57 9498.90 31898.71 316
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25499.44 12994.96 29296.63 30499.15 22798.35 13998.83 18699.11 14494.31 27599.85 12796.60 22798.72 32699.37 190
CDPH-MVS97.26 25796.66 28499.07 12299.00 22798.15 13096.03 33699.01 25191.21 38997.79 28797.85 32396.89 17699.69 26292.75 36099.38 25299.39 181
test1298.93 14698.58 31097.83 16798.66 30296.53 35595.51 24299.69 26299.13 29299.27 222
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20899.57 6599.17 7299.35 9799.17 13298.35 6899.69 26298.46 10099.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 18098.24 16798.17 24599.00 22795.44 27596.38 31699.58 5897.79 18798.53 22998.50 27096.76 18799.74 24197.95 13299.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 35692.83 36296.42 34597.70 36991.28 37696.84 29389.77 41593.96 35792.44 41095.93 37779.14 39399.77 22392.94 35396.76 39398.21 356
baseline195.96 31495.44 32097.52 29898.51 31993.99 32398.39 13896.09 37798.21 15398.40 24397.76 32786.88 34899.63 29695.42 29289.27 41798.95 279
YYNet197.60 23097.67 21897.39 30899.04 22293.04 34795.27 36898.38 31997.25 23998.92 17198.95 18995.48 24499.73 24696.99 19098.74 32499.41 171
PMMVS298.07 19398.08 18698.04 25799.41 13794.59 30494.59 38999.40 13397.50 21198.82 18998.83 21396.83 18099.84 14597.50 16099.81 9999.71 49
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30799.04 22293.09 34395.27 36898.42 31697.26 23898.88 17898.95 18995.43 24599.73 24697.02 18798.72 32699.41 171
tpmvs95.02 33795.25 32794.33 38396.39 41185.87 40698.08 16996.83 36695.46 32095.51 38298.69 23785.91 35799.53 33294.16 32396.23 39897.58 387
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18899.68 4497.62 19799.34 9999.18 12897.54 13599.77 22397.79 14199.74 14299.04 263
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21599.27 19098.20 15797.79 28797.98 31494.90 25699.70 25894.42 31799.51 23099.45 157
plane_prior799.19 18597.87 163
plane_prior698.99 23097.70 18294.90 256
plane_prior599.27 19099.70 25894.42 31799.51 23099.45 157
plane_prior497.98 314
plane_prior397.78 17597.41 22397.79 287
plane_prior297.77 21598.20 157
plane_prior199.05 221
plane_prior97.65 18497.07 28096.72 27499.36 253
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8399.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22699.40 13399.14 7499.06 14098.59 25896.71 19199.93 4398.57 9499.77 12699.53 121
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8099.62 2499.56 5399.42 7798.16 8899.96 1298.78 7799.93 4399.77 37
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6599.39 4499.75 3199.62 3699.17 1899.83 16299.06 5999.62 19399.66 60
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8799.64 1999.56 5399.46 7098.23 7799.97 598.78 7799.93 4399.72 48
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24599.25 19698.84 11299.06 14098.76 22796.76 18799.93 4398.57 9499.77 12699.50 130
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22299.38 13798.93 10499.12 13298.73 23096.77 18599.86 11598.63 9199.80 11099.46 153
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15699.42 4299.33 10099.26 11097.01 17199.94 3698.74 8299.93 4399.79 32
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7699.46 3699.50 6999.34 9397.30 15299.93 4398.90 7099.93 4399.77 37
WR-MVS98.40 15698.19 17299.03 13299.00 22797.65 18496.85 29298.94 25698.57 12898.89 17598.50 27095.60 23899.85 12797.54 15799.85 8199.59 85
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20799.10 8399.72 3298.76 22796.38 20599.86 11598.00 12899.82 9599.50 130
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25399.57 6599.37 4699.21 12499.61 3996.76 18799.83 16298.06 12399.83 9299.71 49
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12699.42 4299.36 9599.06 15198.38 6499.95 2498.34 10699.90 6799.57 96
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 27997.88 16296.32 32098.66 30296.33 28999.23 12398.51 26697.48 14599.40 36297.16 17599.46 24099.02 266
n20.00 431
nn0.00 431
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20197.47 21498.09 26598.68 23997.62 12899.89 7896.22 25799.62 19399.57 96
door-mid99.57 65
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30699.48 9897.32 23299.11 13398.61 25599.33 1399.30 37796.23 25698.38 34499.28 221
mvsmamba97.57 23497.26 24598.51 21198.69 28896.73 23798.74 9297.25 35297.03 25897.88 27999.23 11990.95 32299.87 10796.61 22699.00 30798.91 288
MVSFormer98.26 17698.43 13997.77 27198.88 25293.89 32999.39 1799.56 7299.11 7698.16 25798.13 30193.81 28699.97 599.26 4699.57 21399.43 165
jason97.45 24297.35 24197.76 27499.24 17193.93 32595.86 34798.42 31694.24 34998.50 23198.13 30194.82 26099.91 6197.22 17299.73 14599.43 165
jason: jason.
lupinMVS97.06 27296.86 26897.65 28398.88 25293.89 32995.48 36297.97 33393.53 36198.16 25797.58 33793.81 28699.91 6196.77 21299.57 21399.17 247
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7299.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 8997.33 23098.94 16998.86 20798.75 3699.82 17297.53 15899.71 15899.56 102
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40599.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
lessismore_v098.97 14099.73 3697.53 19186.71 41999.37 9399.52 6189.93 33099.92 5298.99 6599.72 15399.44 161
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32599.37 4699.70 3699.65 3392.65 30699.93 4399.04 6199.84 8599.60 79
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5899.44 3999.78 2799.76 1296.39 20399.92 5299.44 3799.92 5499.68 56
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12396.74 27398.61 21598.38 28298.62 4799.87 10796.47 24299.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33899.50 8997.30 23499.05 14598.98 18099.35 1299.32 37495.72 28299.68 17399.18 243
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22399.46 10997.25 23998.98 15498.99 17697.54 13599.84 14595.88 27299.74 14299.23 231
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18399.62 5199.22 6199.55 5699.22 12098.93 2699.75 23698.66 8899.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9896.60 27899.10 13699.06 15198.71 3999.83 16295.58 28999.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9896.60 27899.10 13699.06 15198.71 3999.83 16295.58 28999.78 12099.62 70
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 8998.86 10999.19 12699.06 15198.23 7799.69 26298.71 8599.76 13899.33 208
test1198.87 271
door99.41 130
EPNet_dtu94.93 33994.78 33995.38 37593.58 42087.68 40296.78 29595.69 38697.35 22989.14 41798.09 30788.15 34599.49 34594.95 30299.30 26498.98 273
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23897.14 25498.54 20899.68 5696.09 25596.50 30999.62 5191.58 38398.84 18598.97 18292.36 30899.88 9096.76 21399.95 3099.67 59
EPNet96.14 30895.44 32098.25 23990.76 42495.50 27397.92 19594.65 39198.97 10092.98 40798.85 21089.12 33699.87 10795.99 26899.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 232
HQP-NCC98.67 29396.29 32296.05 29995.55 377
ACMP_Plane98.67 29396.29 32296.05 29995.55 377
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21899.28 18794.97 33298.72 20198.77 22597.04 16799.85 12793.79 33799.54 22199.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 357
HQP4-MVS95.56 37699.54 33099.32 210
HQP3-MVS99.04 24399.26 271
HQP2-MVS93.84 284
CNVR-MVS98.17 18797.87 20699.07 12298.67 29398.24 12297.01 28298.93 25997.25 23997.62 29698.34 28797.27 15599.57 31896.42 24599.33 25899.39 181
NCCC97.86 21097.47 23599.05 12998.61 30398.07 14396.98 28498.90 26597.63 19697.04 33097.93 31995.99 22499.66 28595.31 29498.82 32299.43 165
114514_t96.50 29795.77 30598.69 18299.48 12297.43 19797.84 20799.55 7681.42 41596.51 35798.58 25995.53 24099.67 27493.41 34799.58 20998.98 273
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14597.54 20898.30 24598.40 27997.86 10899.89 7896.53 23999.72 15399.56 102
DSMNet-mixed97.42 24597.60 22696.87 33199.15 19991.46 37098.54 11699.12 22992.87 37197.58 30099.63 3596.21 21199.90 6795.74 28199.54 22199.27 222
tpm293.09 36692.58 36494.62 38197.56 37586.53 40597.66 23095.79 38386.15 40894.07 39998.23 29675.95 40099.53 33290.91 38796.86 39297.81 376
NP-MVS98.84 25897.39 19996.84 360
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17699.59 5698.15 16499.40 8899.36 8898.58 5399.76 22998.78 7799.68 17399.59 85
tpm cat193.29 36393.13 36093.75 39197.39 38884.74 41197.39 25697.65 34283.39 41394.16 39698.41 27882.86 38099.39 36491.56 37695.35 40697.14 395
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16897.92 17798.90 17398.90 19798.00 9999.88 9096.15 26299.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 35393.78 35094.51 38297.53 37985.83 40897.98 18895.96 37989.29 40194.99 38898.63 25178.63 39699.62 29994.54 31196.50 39498.09 363
CR-MVSNet96.28 30495.95 30397.28 31197.71 36794.22 31098.11 16598.92 26292.31 37796.91 33799.37 8485.44 36299.81 18697.39 16497.36 38297.81 376
JIA-IIPM95.52 32795.03 33397.00 32396.85 40094.03 32096.93 28895.82 38299.20 6594.63 39399.71 1983.09 37899.60 30694.42 31794.64 40897.36 393
Patchmtry97.35 25096.97 26098.50 21597.31 39096.47 24498.18 15598.92 26298.95 10398.78 19299.37 8485.44 36299.85 12795.96 27099.83 9299.17 247
PatchT96.65 29196.35 29597.54 29697.40 38795.32 28097.98 18896.64 36999.33 5196.89 34199.42 7784.32 37099.81 18697.69 15097.49 37397.48 389
tpmrst95.07 33595.46 31893.91 38997.11 39484.36 41597.62 23596.96 36194.98 33196.35 36298.80 21985.46 36199.59 31095.60 28796.23 39897.79 379
BH-w/o95.13 33494.89 33895.86 36198.20 34391.31 37495.65 35597.37 34693.64 35996.52 35695.70 38293.04 29899.02 39388.10 39995.82 40397.24 394
tpm94.67 34194.34 34595.66 36797.68 37288.42 39797.88 20094.90 38994.46 34396.03 37098.56 26178.66 39599.79 20695.88 27295.01 40798.78 309
DELS-MVS98.27 17498.20 17098.48 21698.86 25496.70 23895.60 35799.20 20797.73 19098.45 23598.71 23397.50 14199.82 17298.21 11299.59 20498.93 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 28496.75 27797.08 32098.74 27393.33 34196.71 30098.26 32296.72 27498.44 23697.37 35095.20 24999.47 35191.89 36997.43 37798.44 342
RPMNet97.02 27596.93 26297.30 31097.71 36794.22 31098.11 16599.30 17699.37 4696.91 33799.34 9386.72 34999.87 10797.53 15897.36 38297.81 376
MVSTER96.86 28396.55 29097.79 26997.91 35894.21 31297.56 24398.87 27197.49 21399.06 14099.05 15880.72 38599.80 19398.44 10199.82 9599.37 190
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19094.90 33497.83 28498.37 28394.90 25699.84 14593.85 33699.54 22199.51 127
GBi-Net98.65 12198.47 13399.17 10498.90 24698.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11597.77 14399.69 16899.41 171
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24299.73 3695.15 28697.36 25999.68 4494.45 34598.99 15399.27 10696.87 17799.94 3697.13 18099.91 6199.57 96
PVSNet_BlendedMVS97.55 23597.53 22997.60 28898.92 24293.77 33396.64 30399.43 12394.49 34197.62 29699.18 12896.82 18199.67 27494.73 30699.93 4399.36 197
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23599.35 15098.72 11698.76 19798.68 23992.57 30799.74 24197.76 14795.60 40499.34 203
UnsupCasMVSNet_bld97.30 25496.92 26498.45 21999.28 16296.78 23596.20 32799.27 19095.42 32198.28 24998.30 29193.16 29399.71 25494.99 29997.37 38098.87 294
PVSNet_Blended96.88 28296.68 28197.47 30398.92 24293.77 33394.71 38299.43 12390.98 39197.62 29697.36 35196.82 18199.67 27494.73 30699.56 21698.98 273
FMVSNet596.01 31195.20 33098.41 22497.53 37996.10 25298.74 9299.50 8997.22 24898.03 27199.04 16069.80 40799.88 9097.27 16999.71 15899.25 226
test198.65 12198.47 13399.17 10498.90 24698.24 12299.20 4599.44 11798.59 12498.95 16299.55 5294.14 27899.86 11597.77 14399.69 16899.41 171
new_pmnet96.99 27996.76 27697.67 28198.72 27694.89 29395.95 34298.20 32592.62 37498.55 22698.54 26294.88 25999.52 33693.96 33199.44 24598.59 331
FMVSNet397.50 23697.24 24798.29 23798.08 35195.83 26397.86 20498.91 26497.89 18098.95 16298.95 18987.06 34799.81 18697.77 14399.69 16899.23 231
dp93.47 36093.59 35393.13 39896.64 40481.62 42297.66 23096.42 37392.80 37296.11 36698.64 24978.55 39899.59 31093.31 34892.18 41698.16 359
FMVSNet298.49 14798.40 14398.75 17598.90 24697.14 21798.61 10899.13 22898.59 12499.19 12699.28 10494.14 27899.82 17297.97 13099.80 11099.29 219
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11799.21 6399.43 8099.55 5297.82 11299.86 11598.42 10399.89 7199.41 171
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33793.41 40295.25 32699.47 7498.90 19795.63 23799.85 12796.91 19699.73 14599.27 222
cascas94.79 34094.33 34696.15 35996.02 41592.36 36092.34 41199.26 19585.34 41095.08 38794.96 39892.96 29998.53 40694.41 32098.59 33997.56 388
BH-RMVSNet96.83 28496.58 28997.58 29098.47 32194.05 31796.67 30297.36 34796.70 27697.87 28097.98 31495.14 25199.44 35790.47 39198.58 34099.25 226
UGNet98.53 14298.45 13698.79 16697.94 35696.96 22499.08 5898.54 30999.10 8396.82 34599.47 6996.55 19799.84 14598.56 9799.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 29096.27 30097.87 26498.81 26594.61 30396.77 29697.92 33594.94 33397.12 32597.74 32891.11 32199.82 17293.89 33398.15 35699.18 243
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5198.48 13599.37 9399.49 6798.75 3699.86 11598.20 11399.80 11099.71 49
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26298.37 28398.72 3899.90 6799.05 6099.77 12698.77 310
sss97.21 26296.93 26298.06 25498.83 26095.22 28496.75 29898.48 31394.49 34197.27 32297.90 32092.77 30399.80 19396.57 23099.32 25999.16 250
Test_1112_low_res96.99 27996.55 29098.31 23599.35 15195.47 27495.84 35099.53 8391.51 38596.80 34698.48 27391.36 31999.83 16296.58 22899.53 22599.62 70
1112_ss97.29 25696.86 26898.58 19799.34 15396.32 24896.75 29899.58 5893.14 36696.89 34197.48 34392.11 31299.86 11596.91 19699.54 22199.57 96
ab-mvs-re8.12 39310.83 3960.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 42697.48 3430.00 4300.00 4260.00 4250.00 4240.00 422
ab-mvs98.41 15498.36 15098.59 19699.19 18597.23 20799.32 2398.81 28597.66 19498.62 21399.40 8396.82 18199.80 19395.88 27299.51 23098.75 313
TR-MVS95.55 32695.12 33296.86 33497.54 37793.94 32496.49 31096.53 37294.36 34897.03 33296.61 36494.26 27799.16 38986.91 40496.31 39797.47 390
MDTV_nov1_ep13_2view74.92 42597.69 22590.06 39897.75 29085.78 35893.52 34398.69 320
MDTV_nov1_ep1395.22 32997.06 39783.20 41897.74 22096.16 37594.37 34796.99 33398.83 21383.95 37499.53 33293.90 33297.95 367
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5699.59 2799.71 3499.57 4597.12 16399.90 6799.21 5199.87 7699.54 113
MIMVSNet96.62 29396.25 30197.71 28099.04 22294.66 30199.16 5196.92 36497.23 24597.87 28099.10 14786.11 35699.65 29091.65 37399.21 28098.82 298
IterMVS-LS98.55 13898.70 9898.09 24999.48 12294.73 29897.22 27299.39 13598.97 10099.38 9199.31 10096.00 22099.93 4398.58 9299.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27497.02 22196.92 29098.75 29595.89 30898.59 21998.67 24192.08 31399.74 24196.72 21899.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 126
IterMVS97.73 22198.11 18296.57 34199.24 17190.28 38995.52 36199.21 20598.86 10999.33 10099.33 9593.11 29499.94 3698.49 9999.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 25296.92 26498.57 20099.09 20997.99 15096.79 29499.35 15093.18 36597.71 29198.07 30995.00 25599.31 37593.97 33099.13 29298.42 346
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33499.30 17697.58 20298.10 26498.24 29498.25 7599.34 37196.69 22199.65 18599.12 253
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16199.63 2199.48 7099.15 13897.23 15899.75 23697.17 17499.66 18499.63 69
ACMMP++99.68 173
HQP-MVS97.00 27896.49 29398.55 20598.67 29396.79 23296.29 32299.04 24396.05 29995.55 37796.84 36093.84 28499.54 33092.82 35799.26 27199.32 210
QAPM97.31 25396.81 27498.82 15998.80 26897.49 19299.06 6299.19 21190.22 39597.69 29399.16 13496.91 17599.90 6790.89 38899.41 24799.07 257
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 34595.62 31190.42 40098.46 32375.36 42496.29 32289.13 41695.25 32695.38 38399.75 1392.88 30099.19 38794.07 32999.39 24996.72 401
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32099.01 9698.98 15499.03 16291.59 31799.79 20695.49 29199.80 11099.48 144
HyFIR lowres test97.19 26496.60 28898.96 14199.62 7597.28 20495.17 37199.50 8994.21 35099.01 15198.32 29086.61 35099.99 297.10 18299.84 8599.60 79
EPMVS93.72 35793.27 35695.09 37996.04 41487.76 40198.13 16185.01 42194.69 33896.92 33598.64 24978.47 39999.31 37595.04 29896.46 39598.20 357
PAPM_NR96.82 28696.32 29798.30 23699.07 21396.69 23997.48 25198.76 29295.81 31096.61 35396.47 36894.12 28199.17 38890.82 38997.78 36899.06 258
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20098.81 28596.66 27799.17 13199.21 12194.81 26299.77 22396.96 19499.88 7399.44 161
PAPR95.29 33094.47 34197.75 27597.50 38595.14 28794.89 37998.71 30091.39 38795.35 38495.48 38894.57 26899.14 39184.95 40797.37 38098.97 276
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6597.72 19198.90 17399.26 11096.12 21599.52 33695.72 28299.71 15899.32 210
Vis-MVSNet (Re-imp)97.46 24097.16 25198.34 23299.55 9396.10 25298.94 7798.44 31498.32 14398.16 25798.62 25388.76 33799.73 24693.88 33499.79 11599.18 243
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15699.28 5798.95 16298.91 19498.34 6999.79 20695.63 28699.91 6198.86 295
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33899.27 19097.60 20197.99 27398.25 29398.15 9099.38 36696.87 20499.57 21399.42 168
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6597.87 18198.85 18398.04 31197.66 12299.84 14596.72 21899.81 9999.13 252
PatchMatch-RL97.24 26096.78 27598.61 19399.03 22597.83 16796.36 31799.06 23793.49 36397.36 32097.78 32595.75 23499.49 34593.44 34698.77 32398.52 334
API-MVS97.04 27496.91 26697.42 30697.88 35998.23 12698.18 15598.50 31297.57 20397.39 31896.75 36296.77 18599.15 39090.16 39299.02 30594.88 413
Test By Simon96.52 198
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19398.24 11099.84 8599.52 124
USDC97.41 24697.40 23697.44 30598.94 23693.67 33695.17 37199.53 8394.03 35598.97 15899.10 14795.29 24799.34 37195.84 27899.73 14599.30 217
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33199.03 9498.59 21999.13 14292.16 31199.90 6796.87 20499.68 17399.49 134
PMMVS96.51 29595.98 30298.09 24997.53 37995.84 26294.92 37898.84 28091.58 38396.05 36995.58 38395.68 23699.66 28595.59 28898.09 35998.76 312
PAPM91.88 38290.34 38596.51 34298.06 35292.56 35492.44 41097.17 35486.35 40790.38 41496.01 37486.61 35099.21 38670.65 42095.43 40597.75 380
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14197.16 25198.82 18999.01 17297.71 11999.87 10796.29 25499.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26696.71 27998.55 20598.56 31398.05 14796.33 31998.93 25996.91 26497.06 32997.39 34894.38 27399.45 35591.66 37299.18 28698.14 360
PatchmatchNetpermissive95.58 32595.67 31095.30 37697.34 38987.32 40397.65 23296.65 36895.30 32597.07 32898.69 23784.77 36599.75 23694.97 30198.64 33598.83 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17397.95 19899.34 7598.44 32699.16 4798.12 16499.38 13796.01 30398.06 26798.43 27797.80 11499.67 27495.69 28499.58 20999.20 236
F-COLMAP97.30 25496.68 28199.14 11099.19 18598.39 11097.27 26899.30 17692.93 36996.62 35298.00 31295.73 23599.68 27192.62 36398.46 34399.35 201
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3699.31 42100.00 199.82 27
wuyk23d96.06 30997.62 22591.38 39998.65 30298.57 9898.85 8796.95 36296.86 26799.90 1299.16 13499.18 1798.40 40789.23 39699.77 12677.18 419
OMC-MVS97.88 20797.49 23299.04 13198.89 25198.63 9196.94 28699.25 19695.02 33098.53 22998.51 26697.27 15599.47 35193.50 34599.51 23099.01 267
MG-MVS96.77 28796.61 28697.26 31398.31 33693.06 34495.93 34398.12 33096.45 28697.92 27598.73 23093.77 28899.39 36491.19 38399.04 30199.33 208
AdaColmapbinary97.14 26896.71 27998.46 21898.34 33497.80 17496.95 28598.93 25995.58 31696.92 33597.66 33295.87 23199.53 33290.97 38599.14 29098.04 365
uanet0.00 3940.00 3970.00 4070.00 4300.00 4320.00 4180.00 4310.00 4250.00 4260.00 4250.00 4300.00 4260.00 4250.00 4240.00 422
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15097.50 21198.28 24998.60 25797.64 12699.35 37093.86 33599.27 26898.79 308
DeepMVS_CXcopyleft93.44 39598.24 34094.21 31294.34 39464.28 41991.34 41394.87 40189.45 33592.77 42077.54 41893.14 41393.35 415
TinyColmap97.89 20597.98 19597.60 28898.86 25494.35 30996.21 32699.44 11797.45 22199.06 14098.88 20497.99 10299.28 38194.38 32199.58 20999.18 243
MAR-MVS96.47 29995.70 30898.79 16697.92 35799.12 6198.28 14698.60 30792.16 37995.54 38096.17 37394.77 26599.52 33689.62 39498.23 34997.72 382
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20397.69 21798.52 21099.17 19397.66 18397.19 27699.47 10696.31 29197.85 28398.20 29896.71 19199.52 33694.62 30999.72 15398.38 349
MSDG97.71 22397.52 23098.28 23898.91 24596.82 23094.42 39299.37 14197.65 19598.37 24498.29 29297.40 14899.33 37394.09 32899.22 27798.68 323
LS3D98.63 12598.38 14899.36 6697.25 39199.38 1299.12 5799.32 16399.21 6398.44 23698.88 20497.31 15199.80 19396.58 22899.34 25798.92 285
CLD-MVS97.49 23897.16 25198.48 21699.07 21397.03 22094.71 38299.21 20594.46 34398.06 26797.16 35597.57 13299.48 34894.46 31499.78 12098.95 279
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 36192.23 36797.08 32099.25 17097.86 16495.61 35697.16 35592.90 37093.76 40498.65 24675.94 40195.66 41779.30 41797.49 37397.73 381
Gipumacopyleft99.03 6399.16 4898.64 18599.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34197.70 14899.73 14597.89 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015