This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18099.30 4099.97 1999.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22199.33 9097.95 9999.90 6597.16 16899.67 17399.44 152
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 25899.28 9797.11 16099.84 14096.84 20099.32 25399.47 142
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17799.46 10697.56 19699.54 5799.50 5898.97 2399.84 14098.06 11999.92 5299.49 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16498.01 18899.23 9698.39 32798.97 6795.03 36499.18 21196.88 25599.33 9698.78 21598.16 8499.28 37396.74 20899.62 18799.44 152
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29897.23 20497.76 20999.09 23097.31 22398.75 19398.66 23697.56 12899.64 28796.10 25799.55 21399.39 172
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22998.32 33097.16 21298.86 8599.37 13789.48 38896.29 35399.15 13096.56 19199.90 6592.90 34499.20 27397.89 361
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7199.22 1599.76 22398.44 9799.77 12399.64 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6199.18 12098.81 3299.67 26896.71 21399.77 12399.50 121
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9699.19 11698.40 6399.72 24795.98 26099.76 13599.42 159
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 28695.95 29698.65 17998.93 23398.09 13496.93 27999.28 18383.58 40198.13 25397.78 31596.13 21099.40 35493.52 33399.29 26098.45 330
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16699.37 13797.62 18799.04 14298.96 17798.84 3099.79 20097.43 15599.65 17999.49 125
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8996.94 35392.28 36795.17 37598.57 25189.90 32599.75 23091.20 37297.33 37498.10 352
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32697.15 21397.37 24998.62 29983.86 40098.65 20498.37 27394.29 27299.68 26588.41 38698.62 33096.60 391
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21799.38 13395.76 30098.81 18698.82 20898.36 6599.82 16794.75 29599.77 12399.48 135
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30599.06 23390.94 38195.59 36497.38 33994.41 26799.59 30490.93 37698.04 35699.05 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25588.57 38692.50 39897.72 33092.69 36296.49 35096.44 35993.72 28599.43 35093.61 33099.28 26198.71 306
PCF-MVS92.86 1894.36 33493.00 35198.42 21898.70 27897.56 18693.16 39699.11 22779.59 40597.55 29497.43 33692.19 30699.73 24079.85 40599.45 23697.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38391.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7593.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 20597.94 19597.65 27999.71 4597.94 15698.52 11698.68 29498.99 9297.52 29799.35 8497.41 14298.18 40091.59 36599.67 17396.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35884.34 40690.24 40297.42 33690.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25591.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24595.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27299.12 22588.90 39197.83 27598.86 19989.51 32798.90 39291.92 35899.51 22498.92 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19699.50 5896.17 20799.94 3599.27 4299.78 11798.57 322
MGCFI-Net98.34 16098.28 15798.51 20698.47 31697.59 18598.96 7299.48 9699.18 7097.40 30795.50 37698.66 4399.50 33498.18 11098.71 32098.44 332
testing9193.32 35292.27 35596.47 33797.54 36991.25 37096.17 32296.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 324
testing1193.08 35692.02 36096.26 34397.56 36790.83 37796.32 31195.70 37396.47 27592.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 341
testing9993.04 35791.98 36396.23 34597.53 37190.70 37996.35 30995.94 37096.87 25693.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 337
UWE-MVS92.38 36491.76 36794.21 37597.16 38484.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 344
ETVMVS92.60 36191.08 37097.18 30997.70 36293.65 33296.54 29795.70 37396.51 27194.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 337
sasdasda98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
testing22291.96 36990.37 37396.72 33397.47 37792.59 34796.11 32494.76 37996.83 25892.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
WB-MVSnew95.73 31395.57 30796.23 34596.70 39490.70 37996.07 32693.86 38995.60 30497.04 32095.45 38296.00 21699.55 31891.04 37498.31 33898.43 334
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20299.76 2998.70 11299.78 2899.11 13698.79 3499.95 2399.85 599.96 2399.83 20
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 19999.76 2998.73 10999.82 2199.09 14298.81 3299.95 2399.86 499.96 2399.83 20
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18499.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19599.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20399.82 2298.21 14599.81 2599.53 5498.46 6099.84 14099.70 2199.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21199.81 2398.55 12599.85 1999.55 4898.60 4999.84 14099.69 2399.98 1299.89 11
MM98.22 17797.99 19098.91 14698.66 29396.97 21997.89 19194.44 38299.54 2998.95 15799.14 13393.50 28699.92 5199.80 1199.96 2399.85 18
WAC-MVS90.90 37591.37 369
Syy-MVS96.04 30395.56 30897.49 29597.10 38694.48 30196.18 32096.58 36095.65 30294.77 37992.29 40591.27 31599.36 35998.17 11298.05 35498.63 316
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20699.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16499.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38690.90 37596.18 32096.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 316
testing393.51 34992.09 35897.75 27198.60 30094.40 30397.32 25395.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 244
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 29899.74 999.67 4399.24 10694.57 26499.95 2399.11 5399.24 26799.82 23
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21799.84 1899.29 5599.92 899.57 4199.60 599.96 1299.74 1799.98 1299.89 11
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28599.65 1799.52 6399.00 16794.34 27099.93 4298.65 8598.83 31299.76 37
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17899.85 1599.24 5999.92 899.50 5899.39 1199.95 2399.89 399.98 1298.71 306
dmvs_re95.98 30695.39 31597.74 27398.86 24997.45 19298.37 13895.69 37597.95 16496.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12699.92 5299.57 88
dmvs_testset92.94 35892.21 35795.13 36798.59 30390.99 37497.65 22392.09 39796.95 25194.00 39093.55 39892.34 30596.97 40572.20 40892.52 40397.43 381
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16499.92 5299.57 88
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18599.83 2099.22 6099.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 209
test_cas_vis1_n_192098.33 16398.68 9797.27 30699.69 5492.29 35598.03 17299.85 1597.62 18799.96 499.62 3393.98 27999.74 23599.52 3199.86 7799.79 28
test_vis1_n_192098.40 15298.92 6996.81 32999.74 3590.76 37898.15 15699.91 798.33 13399.89 1599.55 4895.07 24999.88 8499.76 1599.93 4199.79 28
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28199.79 2799.57 4192.85 29899.42 35299.79 1299.84 8399.60 71
test_fmvs1_n98.09 18898.28 15797.52 29299.68 5693.47 33498.63 10399.93 495.41 31399.68 4199.64 3191.88 31199.48 34099.82 799.87 7499.62 64
mvsany_test197.60 22597.54 22397.77 26797.72 35895.35 27595.36 35697.13 34694.13 34199.71 3599.33 9097.93 10099.30 36997.60 14798.94 30798.67 314
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 14999.19 11697.76 11199.58 31096.57 22299.55 21398.97 265
test_vis1_rt97.75 21597.72 21197.83 26298.81 26096.35 24497.30 25599.69 3894.61 32897.87 27198.05 30096.26 20598.32 39998.74 7898.18 34398.82 288
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17699.91 1199.67 2597.15 15798.91 39199.76 1599.56 21099.92 9
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31298.55 11299.92 696.78 26199.72 3399.78 896.60 19099.67 26899.91 299.90 6599.94 7
test_fmvs197.72 21797.94 19597.07 31698.66 29392.39 35297.68 21799.81 2395.20 31799.54 5799.44 7291.56 31399.41 35399.78 1499.77 12399.40 171
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 17899.82 2199.84 298.56 5499.71 24899.96 199.96 2399.97 3
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27399.96 499.81 598.18 8099.45 34798.97 6499.79 11299.83 20
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28399.78 2899.82 496.14 20998.63 39699.82 799.93 4199.95 6
FE-MVS95.66 31594.95 32797.77 26798.53 31295.28 27799.40 1596.09 36793.11 35697.96 26599.26 10179.10 38799.77 21792.40 35698.71 32098.27 345
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22899.33 9088.41 33899.65 28496.13 25698.92 30998.07 354
balanced_conf0398.63 12198.72 8898.38 22298.66 29396.68 23598.90 7899.42 12398.99 9298.97 15399.19 11695.81 22899.85 12298.77 7699.77 12398.60 318
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19398.72 19699.20 11495.48 23999.86 10997.76 14299.78 11798.57 322
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25099.69 3898.16 15598.49 22799.29 9697.06 16199.97 598.29 10599.91 5999.76 37
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2699.20 3599.08 5799.29 18012.08 41120.84 41299.42 7497.55 12999.85 12297.08 17699.72 14998.96 267
test250692.39 36391.89 36593.89 37999.38 13882.28 40999.32 2266.03 41599.08 8598.77 19099.57 4166.26 40599.84 14098.71 8199.95 2999.54 105
test111196.49 29296.82 26695.52 36199.42 13387.08 39499.22 4187.14 40799.11 7399.46 7299.58 4088.69 33299.86 10998.80 7299.95 2999.62 64
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13888.18 39099.22 4186.00 40999.08 8599.36 9199.57 4188.47 33799.82 16798.52 9499.95 2999.54 105
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35098.86 10498.87 17797.62 32698.63 4698.96 38899.41 3698.29 33998.45 330
DVP-MVS++98.90 7598.70 9499.51 4398.43 32299.15 4899.43 1199.32 15998.17 15299.26 11199.02 15598.18 8099.88 8497.07 17799.45 23699.49 125
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 111
MSC_two_6792asdad99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
PC_three_145293.27 35399.40 8498.54 25398.22 7697.00 40495.17 28799.45 23699.49 125
No_MVS99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20399.02 15597.64 121
eth-test20.00 419
eth-test0.00 419
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16798.81 21098.94 2599.91 6098.35 10199.73 14299.49 125
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31031.08 41080.89 41097.71 31984.85 35897.37 40391.51 36780.03 40798.75 303
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9699.55 4894.10 27899.94 3599.25 4699.96 2399.42 159
h-mvs3397.77 21497.33 23899.10 11399.21 17497.84 16398.35 14098.57 30199.11 7398.58 21699.02 15588.65 33599.96 1298.11 11496.34 38699.49 125
hse-mvs297.46 23597.07 25098.64 18098.73 26997.33 19897.45 24597.64 33599.11 7398.58 21697.98 30488.65 33599.79 20098.11 11497.39 36998.81 292
CL-MVSNet_self_test97.44 23897.22 24398.08 24898.57 30795.78 26294.30 38498.79 28296.58 27098.60 21298.19 28994.74 26299.64 28796.41 23898.84 31198.82 288
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5497.36 14599.86 10999.24 4899.71 15499.39 172
AUN-MVS96.24 30095.45 31198.60 19098.70 27897.22 20697.38 24897.65 33395.95 29595.53 37197.96 30882.11 37799.79 20096.31 24397.44 36698.80 297
ZD-MVS99.01 22198.84 7599.07 23294.10 34298.05 26198.12 29396.36 20299.86 10992.70 35299.19 276
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.49 13999.86 10996.56 22699.39 24399.45 148
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.75 11296.56 22699.39 24399.45 148
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16299.31 16498.03 15999.66 4499.02 15598.36 6599.88 8496.91 18999.62 18799.41 162
IU-MVS99.49 11399.15 4898.87 26592.97 35799.41 8196.76 20699.62 18799.66 55
OPU-MVS98.82 15598.59 30398.30 11598.10 16298.52 25698.18 8098.75 39594.62 29999.48 23399.41 162
test_241102_TWO99.30 17298.03 15999.26 11199.02 15597.51 13599.88 8496.91 18999.60 19499.66 55
test_241102_ONE99.49 11399.17 4099.31 16497.98 16199.66 4498.90 18998.36 6599.48 340
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26298.83 18198.90 18997.80 10999.82 16795.68 27699.52 22299.38 179
cl2295.79 31195.39 31596.98 31996.77 39392.79 34494.40 38298.53 30394.59 32997.89 26998.17 29082.82 37499.24 37596.37 23999.03 29498.92 274
miper_ehance_all_eth97.06 26697.03 25297.16 31397.83 35493.06 33894.66 37499.09 23095.99 29398.69 19998.45 26692.73 30199.61 29996.79 20299.03 29498.82 288
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26291.14 37998.30 24097.35 34290.58 32099.58 31096.31 24399.03 29498.60 318
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22698.11 25598.39 27098.00 9499.87 10196.86 19999.64 18199.55 101
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33099.06 6199.86 1399.50 3199.66 4499.26 10197.21 15599.99 298.00 12499.91 5999.68 51
cl____97.02 26996.83 26597.58 28597.82 35594.04 31494.66 37499.16 21897.04 24698.63 20698.71 22588.68 33499.69 25697.00 18199.81 9799.00 260
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35594.03 31594.66 37499.16 21897.04 24698.63 20698.71 22588.69 33299.69 25697.00 18199.81 9799.01 256
eth_miper_zixun_eth97.23 25597.25 24197.17 31198.00 34892.77 34594.71 37199.18 21197.27 22798.56 21998.74 22191.89 31099.69 25697.06 17999.81 9799.05 248
9.1497.78 20599.07 20997.53 23799.32 15995.53 30798.54 22398.70 22897.58 12699.76 22394.32 31299.46 234
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
save fliter99.11 20097.97 15196.53 29999.02 24498.24 142
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34194.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 18096.91 18997.11 37898.46 327
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 2999.78 31
EIA-MVS98.00 19497.74 20898.80 15998.72 27198.09 13498.05 16999.60 5397.39 21596.63 34195.55 37497.68 11599.80 18796.73 21099.27 26298.52 325
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_lstm_enhance97.18 25997.16 24697.25 30898.16 34092.85 34395.15 36299.31 16497.25 22998.74 19598.78 21590.07 32399.78 21197.19 16699.80 10799.11 243
ETV-MVS98.03 19197.86 20298.56 19998.69 28398.07 14097.51 24099.50 8798.10 15797.50 29995.51 37598.41 6299.88 8496.27 24699.24 26797.71 373
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24698.46 26598.68 4299.93 4299.03 6099.85 7998.64 315
D2MVS97.84 21197.84 20397.83 26299.14 19694.74 29396.94 27798.88 26395.84 29898.89 17098.96 17794.40 26899.69 25697.55 14899.95 2999.05 248
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17498.84 27497.97 16299.08 13399.02 15597.61 12499.88 8496.99 18399.63 18499.48 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15299.08 13399.02 15597.89 10199.88 8497.07 17799.71 15499.70 49
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17499.32 15999.88 8496.99 18399.63 18499.68 51
test072699.50 10699.21 2998.17 15599.35 14697.97 16299.26 11199.06 14397.61 124
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17398.85 20297.53 13299.87 10196.14 25499.31 25599.48 135
DPM-MVS96.32 29695.59 30698.51 20698.76 26597.21 20794.54 38098.26 31491.94 36996.37 35197.25 34393.06 29399.43 35091.42 36898.74 31698.89 279
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21298.67 20198.39 27097.68 11599.85 12296.00 25899.51 22499.52 115
test_yl96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
thisisatest053095.27 32394.45 33297.74 27399.19 18194.37 30497.86 19690.20 40397.17 24098.22 24597.65 32373.53 39799.90 6596.90 19499.35 24998.95 268
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5799.37 8097.04 16299.80 18797.89 12999.52 22299.35 191
Anonymous20240521197.90 19997.50 22699.08 11798.90 24198.25 11898.53 11596.16 36598.87 10399.11 12898.86 19990.40 32299.78 21197.36 15899.31 25599.19 231
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
tttt051795.64 31694.98 32597.64 28199.36 14593.81 32698.72 9590.47 40298.08 15898.67 20198.34 27773.88 39699.92 5197.77 13899.51 22499.20 226
our_test_397.39 24297.73 21096.34 33998.70 27889.78 38394.61 37798.97 25196.50 27299.04 14298.85 20295.98 22199.84 14097.26 16399.67 17399.41 162
thisisatest051594.12 34193.16 34896.97 32098.60 30092.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18794.52 30299.12 28798.20 347
ppachtmachnet_test97.50 23197.74 20896.78 33198.70 27891.23 37294.55 37999.05 23696.36 27899.21 11998.79 21396.39 19899.78 21196.74 20899.82 9399.34 193
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 16999.22 20094.16 34098.98 14999.10 13997.52 13499.79 20096.45 23699.64 18199.53 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 292
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27399.39 13197.67 18399.44 7698.99 16897.53 13299.89 7595.40 28499.68 16799.66 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14599.10 6199.05 140
thres100view90094.19 33893.67 34295.75 35699.06 21391.35 36698.03 17294.24 38698.33 13397.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6799.24 10698.20 7999.86 10995.92 26299.69 16299.04 252
tfpn200view994.03 34293.44 34495.78 35598.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
c3_l97.36 24397.37 23497.31 30398.09 34493.25 33695.01 36599.16 21897.05 24598.77 19098.72 22492.88 29699.64 28796.93 18899.76 13599.05 248
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33488.27 38993.25 39598.88 26393.53 35094.65 38297.15 34686.17 34899.93 4297.41 15699.93 4198.73 305
CANet97.87 20497.76 20698.19 24097.75 35795.51 26996.76 28899.05 23697.74 17996.93 32498.21 28795.59 23499.89 7597.86 13499.93 4199.19 231
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32298.11 13197.61 22899.50 8798.64 11397.39 30997.52 33198.12 8799.95 2396.90 19498.71 32098.38 339
Effi-MVS+-dtu98.26 17397.90 19999.35 6998.02 34799.49 698.02 17499.16 21898.29 13997.64 28697.99 30396.44 19799.95 2396.66 21698.93 30898.60 318
CANet_DTU97.26 25197.06 25197.84 26197.57 36694.65 29896.19 31998.79 28297.23 23595.14 37698.24 28493.22 28899.84 14097.34 15999.84 8399.04 252
MVS_030497.44 23897.01 25498.72 17696.42 39996.74 23197.20 26491.97 39898.46 12898.30 24098.79 21392.74 30099.91 6099.30 4099.94 3699.52 115
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 26899.38 13394.87 32498.97 15398.99 16898.01 9399.88 8497.29 16199.70 15999.58 83
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15298.00 18999.61 999.57 7999.25 2598.57 11099.35 14697.55 19899.31 10497.71 31994.61 26399.88 8496.14 25499.19 27699.70 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36098.81 292
sam_mvs84.29 366
IterMVS-SCA-FT97.85 21098.18 17096.87 32599.27 16291.16 37395.53 34899.25 19299.10 8099.41 8199.35 8493.10 29199.96 1298.65 8599.94 3699.49 125
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25099.24 11698.89 19597.83 10499.81 18096.88 19699.49 23299.48 135
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27099.18 21197.10 24498.75 19398.92 18598.18 8099.65 28496.68 21599.56 21099.37 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 19999.25 19296.94 25298.78 18799.12 13598.02 9299.84 14097.13 17399.67 17399.59 77
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10799.21 11296.99 16799.50 33496.55 22999.50 23199.26 215
MTGPAbinary99.20 203
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 24998.51 25798.64 4499.93 4298.91 6699.85 7998.88 282
Effi-MVS+98.02 19297.82 20498.62 18598.53 31297.19 20997.33 25299.68 4397.30 22496.68 33997.46 33598.56 5499.80 18796.63 21798.20 34298.86 285
xiu_mvs_v2_base97.16 26197.49 22796.17 34898.54 31092.46 35095.45 35298.84 27497.25 22997.48 30196.49 35698.31 7099.90 6596.34 24298.68 32596.15 396
xiu_mvs_v1_base97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
new-patchmatchnet98.35 15998.74 8497.18 30999.24 16792.23 35796.42 30599.48 9698.30 13699.69 3999.53 5497.44 14199.82 16798.84 7199.77 12399.49 125
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 60
pmmvs597.64 22397.49 22798.08 24899.14 19695.12 28496.70 29299.05 23693.77 34798.62 20898.83 20593.23 28799.75 23098.33 10499.76 13599.36 187
test_post197.59 23120.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
Fast-Effi-MVS+97.67 22197.38 23398.57 19598.71 27497.43 19497.23 26099.45 11094.82 32596.13 35596.51 35598.52 5699.91 6096.19 25098.83 31298.37 341
patchmatchnet-post98.77 21784.37 36399.85 122
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 4999.91 5999.77 33
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 26899.28 18395.54 30699.42 8099.19 11697.27 15099.63 29097.89 12999.97 1999.20 226
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
xiu_mvs_v1_base_debi97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28698.93 16598.82 20896.00 21699.83 15797.32 16099.73 14299.36 187
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17098.90 18996.98 16899.92 5197.16 16899.70 15999.56 94
MTMP97.93 18591.91 399
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
test9_res93.28 33999.15 28199.38 179
MVP-Stereo98.08 18997.92 19798.57 19598.96 22996.79 22797.90 19099.18 21196.41 27798.46 22998.95 18195.93 22499.60 30096.51 23298.98 30399.31 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27498.08 13895.96 33199.03 24191.40 37595.85 36197.53 32996.52 19399.76 223
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 33199.03 24191.64 37095.85 36197.53 32996.47 19599.76 22393.67 32999.16 27999.36 187
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 691.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
SCA96.41 29596.66 27895.67 35798.24 33588.35 38895.85 33996.88 35596.11 28797.67 28598.67 23393.10 29199.85 12294.16 31399.22 27098.81 292
Patchmatch-test96.55 28896.34 28997.17 31198.35 32893.06 33898.40 13597.79 32897.33 22098.41 23498.67 23383.68 36999.69 25695.16 28899.31 25598.77 300
test_898.67 28898.01 14695.91 33699.02 24491.64 37095.79 36397.50 33296.47 19599.76 223
MS-PatchMatch97.68 22097.75 20797.45 29898.23 33793.78 32797.29 25698.84 27496.10 28898.64 20598.65 23896.04 21399.36 35996.84 20099.14 28299.20 226
Patchmatch-RL test97.26 25197.02 25397.99 25699.52 10195.53 26896.13 32399.71 3497.47 20499.27 10799.16 12684.30 36599.62 29397.89 12999.77 12398.81 292
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2280.00 4140.00 41597.58 32799.21 160.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
agg_prior292.50 35599.16 27999.37 181
agg_prior98.68 28797.99 14799.01 24795.59 36499.77 217
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
canonicalmvs98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 53100.00 199.82 23
alignmvs97.35 24496.88 26198.78 16598.54 31098.09 13497.71 21497.69 33299.20 6497.59 29095.90 36888.12 34099.55 31898.18 11098.96 30598.70 309
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7299.26 10198.62 4799.73 24099.17 5299.92 5299.76 37
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22599.36 14197.15 24399.32 10299.18 12095.84 22799.84 14099.50 3299.91 5999.54 105
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11699.41 7796.79 17999.82 16798.69 8399.88 7199.76 37
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23499.36 14197.23 23599.38 8799.17 12496.02 21499.84 14099.57 2699.90 6599.54 105
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14299.81 598.05 9199.96 1298.85 7099.99 599.86 17
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 23899.36 14197.41 21399.33 9699.20 11496.37 20199.82 16799.57 2699.92 5299.55 101
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8499.50 5897.12 15899.85 12299.02 6199.94 3699.80 27
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23299.34 15297.51 20099.27 10799.15 13096.34 20399.80 18799.47 3499.93 4199.51 118
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20498.58 21698.50 26197.97 9899.85 12296.57 22299.59 19899.53 112
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24699.06 23398.30 13699.32 10298.97 17496.65 18899.62 29398.37 10099.85 7999.39 172
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
TestCases99.16 10499.50 10698.55 9699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 41
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 20998.44 23198.51 25797.83 10499.88 8496.46 23599.58 20399.58 83
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 5896.17 20799.94 3599.27 4299.86 7798.88 282
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4197.82 10799.98 499.53 2999.89 6999.01 256
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
PS-MVSNAJ97.08 26597.39 23296.16 35098.56 30892.46 35095.24 35998.85 27397.25 22997.49 30095.99 36598.07 8899.90 6596.37 23998.67 32696.12 397
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 15
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 14
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26098.87 26599.20 6499.19 12198.99 16897.30 14799.85 12298.77 7699.79 11299.65 59
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26098.86 27099.20 6499.18 12598.97 17497.29 14999.85 12298.72 8099.78 11799.64 60
HPM-MVS++copyleft98.10 18697.64 21899.48 5099.09 20599.13 5697.52 23898.75 28997.46 20996.90 33097.83 31496.01 21599.84 14095.82 27099.35 24999.46 144
test_prior497.97 15195.86 337
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29598.63 24397.50 13699.83 15796.79 20299.53 21999.56 94
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24099.45 11097.16 24199.45 7599.24 10696.12 21199.85 12299.60 2499.88 7199.55 101
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3899.16 2099.82 16799.07 5699.83 9099.56 94
test_prior295.74 34296.48 27496.11 35697.63 32595.92 22594.16 31399.20 273
X-MVStestdata94.32 33592.59 35399.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29545.85 40997.50 13699.83 15796.79 20299.53 21999.56 94
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30499.30 207
旧先验295.76 34188.56 39397.52 29799.66 27994.48 303
新几何295.93 334
新几何198.91 14698.94 23197.76 17398.76 28687.58 39596.75 33898.10 29594.80 25999.78 21192.73 35199.00 29999.20 226
旧先验198.82 25897.45 19298.76 28698.34 27795.50 23899.01 29899.23 221
无先验95.74 34298.74 29189.38 38999.73 24092.38 35799.22 225
原ACMM295.53 348
原ACMM198.35 22698.90 24196.25 24798.83 27892.48 36496.07 35898.10 29595.39 24299.71 24892.61 35498.99 30199.08 244
test22298.92 23796.93 22495.54 34798.78 28485.72 39896.86 33398.11 29494.43 26699.10 28999.23 221
testdata299.79 20092.80 349
segment_acmp97.02 165
testdata98.09 24598.93 23395.40 27498.80 28190.08 38697.45 30498.37 27395.26 24499.70 25293.58 33298.95 30699.17 237
testdata195.44 35396.32 280
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6399.57 4196.93 16999.81 18099.60 2499.98 1299.60 71
131495.74 31295.60 30596.17 34897.53 37192.75 34698.07 16698.31 31391.22 37794.25 38596.68 35395.53 23599.03 38491.64 36497.18 37696.74 389
LFMVS97.20 25796.72 27298.64 18098.72 27196.95 22298.93 7694.14 38899.74 998.78 18799.01 16484.45 36299.73 24097.44 15499.27 26299.25 216
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 34899.59 2699.11 12899.27 9994.82 25699.79 20098.34 10299.63 18499.34 193
VDDNet98.21 17997.95 19399.01 13299.58 7597.74 17599.01 6697.29 34299.67 1598.97 15399.50 5890.45 32199.80 18797.88 13299.20 27399.48 135
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 6999.60 3896.63 18999.83 15799.70 2199.99 599.61 70
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10599.05 15096.72 18599.82 16798.09 11699.36 24799.59 77
MVS93.19 35492.09 35896.50 33696.91 38994.03 31598.07 16698.06 32468.01 40794.56 38496.48 35795.96 22399.30 36983.84 39896.89 38196.17 394
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23299.16 21897.90 16999.28 10599.01 16495.98 22199.79 20099.33 3899.90 6599.51 118
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17199.25 11599.16 12696.84 17399.78 21199.21 4999.84 8399.46 144
SD-MVS98.40 15298.68 9797.54 29098.96 22997.99 14797.88 19299.36 14198.20 14999.63 5099.04 15298.76 3595.33 40896.56 22699.74 13999.31 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 30995.32 31897.49 29598.60 30094.15 31193.83 39197.93 32695.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 256
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30595.19 28197.48 24299.23 19997.47 20497.90 26898.62 24597.04 16298.81 39497.55 14899.41 24198.94 272
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19399.35 9399.24 10697.83 10499.89 7597.88 13299.70 15999.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14598.98 17297.89 10199.85 12296.54 23099.42 24099.46 144
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34191.74 36097.92 18797.76 32990.23 38296.51 34798.91 18685.61 35399.85 12292.88 34596.90 37998.69 310
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26498.87 26598.97 9599.06 13599.02 15596.00 21699.80 18798.58 8899.82 9399.60 71
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
CVMVSNet96.25 29997.21 24493.38 38599.10 20280.56 41297.20 26498.19 31996.94 25299.00 14799.02 15589.50 32899.80 18796.36 24199.59 19899.78 31
pmmvs497.58 22897.28 23998.51 20698.84 25396.93 22495.40 35598.52 30493.60 34998.61 21098.65 23895.10 24899.60 30096.97 18699.79 11298.99 261
EU-MVSNet97.66 22298.50 12295.13 36799.63 7285.84 39798.35 14098.21 31698.23 14399.54 5799.46 6795.02 25099.68 26598.24 10699.87 7499.87 15
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29599.31 5298.85 17898.80 21194.80 25999.78 21198.13 11399.13 28499.31 204
test-LLR93.90 34493.85 33894.04 37696.53 39684.62 40394.05 38892.39 39596.17 28494.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39882.80 40894.05 38891.52 40094.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
test-mter92.33 36691.76 36794.04 37696.53 39684.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6399.44 7298.25 7199.88 8499.09 5599.84 8399.62 64
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20498.56 21998.54 25397.75 11299.88 8496.57 22299.59 19899.58 83
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20499.49 9497.37 21799.19 12197.65 32398.96 2499.49 33796.50 23398.99 30199.34 193
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20499.24 19799.04 8899.41 8198.90 18997.65 11899.76 22397.70 14499.79 11299.39 172
thres600view794.45 33393.83 33996.29 34199.06 21391.53 36297.99 18094.24 38698.34 13297.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34190.10 38297.92 18797.32 34190.23 38296.51 34798.91 18685.61 35399.74 23592.88 34596.90 37998.69 310
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19097.58 29198.66 23697.40 14399.88 8494.72 29899.60 19499.54 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
thres40094.14 34093.44 34496.24 34498.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
thres20093.72 34793.14 34995.46 36498.66 29391.29 36896.61 29694.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28497.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 341
pmmvs395.03 32794.40 33396.93 32197.70 36292.53 34995.08 36397.71 33188.57 39297.71 28298.08 29879.39 38599.82 16796.19 25099.11 28898.43 334
EMVS93.83 34594.02 33793.23 38696.83 39284.96 40089.77 40596.32 36497.92 16797.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
E-PMN94.17 33994.37 33493.58 38296.86 39085.71 39990.11 40497.07 34798.17 15297.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 24998.69 19998.88 19698.00 9499.89 7595.87 26699.59 19899.58 83
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6798.21 7899.92 5194.13 31799.30 25898.91 277
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 18
MCST-MVS98.00 19497.63 21999.10 11399.24 16798.17 12696.89 28298.73 29295.66 30197.92 26697.70 32197.17 15699.66 27996.18 25299.23 26999.47 142
mvs_anonymous97.83 21398.16 17496.87 32598.18 33991.89 35997.31 25498.90 26097.37 21798.83 18199.46 6796.28 20499.79 20098.90 6798.16 34698.95 268
MVS_Test98.18 18298.36 14797.67 27798.48 31594.73 29498.18 15299.02 24497.69 18298.04 26299.11 13697.22 15499.56 31598.57 9098.90 31098.71 306
MDA-MVSNet-bldmvs97.94 19897.91 19898.06 25099.44 12794.96 28896.63 29599.15 22398.35 13198.83 18199.11 13694.31 27199.85 12296.60 21998.72 31899.37 181
CDPH-MVS97.26 25196.66 27899.07 11999.00 22298.15 12796.03 32799.01 24791.21 37897.79 27897.85 31396.89 17199.69 25692.75 35099.38 24699.39 172
test1298.93 14398.58 30597.83 16498.66 29596.53 34595.51 23799.69 25699.13 28499.27 212
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 19999.57 6399.17 7199.35 9399.17 12498.35 6899.69 25698.46 9699.73 14299.41 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30799.58 5697.79 17798.53 22498.50 26196.76 18299.74 23597.95 12899.64 18199.34 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 34692.83 35296.42 33897.70 36291.28 36996.84 28489.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
baseline195.96 30795.44 31297.52 29298.51 31493.99 31898.39 13696.09 36798.21 14598.40 23897.76 31786.88 34299.63 29095.42 28389.27 40698.95 268
YYNet197.60 22597.67 21397.39 30299.04 21793.04 34195.27 35798.38 31197.25 22998.92 16698.95 18195.48 23999.73 24096.99 18398.74 31699.41 162
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 37899.40 12997.50 20198.82 18498.83 20596.83 17599.84 14097.50 15399.81 9799.71 44
MDA-MVSNet_test_wron97.60 22597.66 21697.41 30199.04 21793.09 33795.27 35798.42 30897.26 22898.88 17398.95 18195.43 24199.73 24097.02 18098.72 31899.41 162
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16496.83 35695.46 30995.51 37298.69 22985.91 35199.53 32594.16 31396.23 38897.58 377
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18199.68 4397.62 18799.34 9599.18 12097.54 13099.77 21797.79 13799.74 13999.04 252
HQP_MVS97.99 19797.67 21398.93 14399.19 18197.65 18197.77 20699.27 18698.20 14997.79 27897.98 30494.90 25299.70 25294.42 30799.51 22499.45 148
plane_prior799.19 18197.87 160
plane_prior698.99 22597.70 17994.90 252
plane_prior599.27 18699.70 25294.42 30799.51 22499.45 148
plane_prior497.98 304
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20698.20 149
plane_prior199.05 216
plane_prior97.65 18197.07 27196.72 26499.36 247
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7299.41 7798.23 7399.95 2398.89 6999.95 2999.81 26
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21799.40 12999.14 7299.06 13598.59 24996.71 18699.93 4298.57 9099.77 12399.53 112
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7498.16 8499.96 1298.78 7399.93 4199.77 33
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3399.17 1899.83 15799.06 5799.62 18799.66 55
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6798.23 7399.97 598.78 7399.93 4199.72 43
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23699.25 19298.84 10799.06 13598.76 21996.76 18299.93 4298.57 9099.77 12399.50 121
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21399.38 13398.93 9999.12 12798.73 22296.77 18099.86 10998.63 8799.80 10799.46 144
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9699.26 10197.01 16699.94 3598.74 7899.93 4199.79 28
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6899.34 8897.30 14799.93 4298.90 6799.93 4199.77 33
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28398.94 25298.57 12298.89 17098.50 26195.60 23399.85 12297.54 15099.85 7999.59 77
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 21996.38 20099.86 10998.00 12499.82 9399.50 121
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24499.57 6399.37 4599.21 11999.61 3696.76 18299.83 15798.06 11999.83 9099.71 44
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9199.06 14398.38 6499.95 2398.34 10299.90 6599.57 88
TSAR-MVS + GP.98.18 18297.98 19198.77 16898.71 27497.88 15996.32 31198.66 29596.33 27999.23 11898.51 25797.48 14099.40 35497.16 16899.46 23499.02 255
n20.00 420
nn0.00 420
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20498.09 25798.68 23197.62 12399.89 7596.22 24899.62 18799.57 88
door-mid99.57 63
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29799.48 9697.32 22299.11 12898.61 24799.33 1399.30 36996.23 24798.38 33599.28 211
mvsmamba97.57 22997.26 24098.51 20698.69 28396.73 23298.74 9097.25 34397.03 24897.88 27099.23 11090.95 31799.87 10196.61 21899.00 29998.91 277
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32499.39 1699.56 7099.11 7398.16 24998.13 29193.81 28299.97 599.26 4499.57 20799.43 156
jason97.45 23797.35 23697.76 27099.24 16793.93 32095.86 33798.42 30894.24 33898.50 22698.13 29194.82 25699.91 6097.22 16599.73 14299.43 156
jason: jason.
lupinMVS97.06 26696.86 26297.65 27998.88 24793.89 32495.48 35197.97 32593.53 35098.16 24997.58 32793.81 28299.91 6096.77 20599.57 20799.17 237
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4499.98 1299.89 11
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22098.94 16498.86 19998.75 3699.82 16797.53 15199.71 15499.56 94
K. test v398.00 19497.66 21699.03 12999.79 2297.56 18699.19 4892.47 39499.62 2399.52 6399.66 2789.61 32699.96 1299.25 4699.81 9799.56 94
lessismore_v098.97 13799.73 3697.53 18886.71 40899.37 8999.52 5789.93 32499.92 5198.99 6399.72 14999.44 152
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 31799.37 4599.70 3799.65 3092.65 30299.93 4299.04 5999.84 8399.60 71
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 51
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26398.61 21098.38 27298.62 4799.87 10196.47 23499.67 17399.59 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 32999.50 8797.30 22499.05 14098.98 17299.35 1299.32 36695.72 27399.68 16799.18 233
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21499.46 10697.25 22998.98 14998.99 16897.54 13099.84 14095.88 26399.74 13999.23 221
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17899.62 4999.22 6099.55 5699.22 11198.93 2699.75 23098.66 8499.81 9799.50 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12199.06 14398.23 7399.69 25698.71 8199.76 13599.33 198
test1198.87 265
door99.41 125
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28695.69 37597.35 21989.14 40698.09 29788.15 33999.49 33794.95 29299.30 25898.98 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23397.14 24998.54 20399.68 5696.09 25296.50 30099.62 4991.58 37298.84 18098.97 17492.36 30499.88 8496.76 20699.95 2999.67 54
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18794.65 38098.97 9592.98 39698.85 20289.12 33099.87 10195.99 25999.68 16799.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 227
HQP-NCC98.67 28896.29 31396.05 28995.55 367
ACMP_Plane98.67 28896.29 31396.05 28995.55 367
APD-MVScopyleft98.10 18697.67 21399.42 5799.11 20098.93 7297.76 20999.28 18394.97 32198.72 19698.77 21797.04 16299.85 12293.79 32799.54 21599.49 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 200
HQP3-MVS99.04 23999.26 265
HQP2-MVS93.84 280
CNVR-MVS98.17 18497.87 20199.07 11998.67 28898.24 11997.01 27398.93 25497.25 22997.62 28798.34 27797.27 15099.57 31296.42 23799.33 25299.39 172
NCCC97.86 20597.47 23099.05 12698.61 29898.07 14096.98 27598.90 26097.63 18697.04 32097.93 30995.99 22099.66 27995.31 28598.82 31499.43 156
114514_t96.50 29195.77 29898.69 17799.48 12097.43 19497.84 19899.55 7481.42 40496.51 34798.58 25095.53 23599.67 26893.41 33799.58 20398.98 262
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 19998.30 24098.40 26997.86 10399.89 7596.53 23199.72 14999.56 94
DSMNet-mixed97.42 24097.60 22196.87 32599.15 19591.46 36398.54 11499.12 22592.87 36097.58 29199.63 3296.21 20699.90 6595.74 27299.54 21599.27 212
tpm293.09 35592.58 35494.62 37197.56 36786.53 39597.66 22195.79 37286.15 39794.07 38998.23 28675.95 39399.53 32590.91 37796.86 38297.81 366
NP-MVS98.84 25397.39 19696.84 350
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17199.59 5498.15 15699.40 8499.36 8398.58 5399.76 22398.78 7399.68 16799.59 77
tpm cat193.29 35393.13 35093.75 38097.39 37984.74 40197.39 24797.65 33383.39 40294.16 38698.41 26882.86 37399.39 35691.56 36695.35 39697.14 384
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16798.90 16898.90 18998.00 9499.88 8496.15 25399.72 14999.58 83
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 34393.78 34094.51 37297.53 37185.83 39897.98 18195.96 36989.29 39094.99 37898.63 24378.63 38999.62 29394.54 30196.50 38498.09 353
CR-MVSNet96.28 29895.95 29697.28 30597.71 36094.22 30698.11 16098.92 25792.31 36696.91 32799.37 8085.44 35699.81 18097.39 15797.36 37297.81 366
JIA-IIPM95.52 31995.03 32497.00 31796.85 39194.03 31596.93 27995.82 37199.20 6494.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
Patchmtry97.35 24496.97 25598.50 21097.31 38196.47 24198.18 15298.92 25798.95 9898.78 18799.37 8085.44 35699.85 12295.96 26199.83 9099.17 237
PatchT96.65 28596.35 28897.54 29097.40 37895.32 27697.98 18196.64 35999.33 5096.89 33199.42 7484.32 36499.81 18097.69 14697.49 36397.48 379
tpmrst95.07 32695.46 31093.91 37897.11 38584.36 40597.62 22696.96 35194.98 32096.35 35298.80 21185.46 35599.59 30495.60 27896.23 38897.79 369
BH-w/o95.13 32594.89 32995.86 35298.20 33891.31 36795.65 34497.37 33793.64 34896.52 34695.70 37293.04 29499.02 38588.10 38895.82 39397.24 383
tpm94.67 33194.34 33595.66 35897.68 36588.42 38797.88 19294.90 37894.46 33296.03 36098.56 25278.66 38899.79 20095.88 26395.01 39798.78 299
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 34699.20 20397.73 18098.45 23098.71 22597.50 13699.82 16798.21 10899.59 19898.93 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 29198.26 31496.72 26498.44 23197.37 34095.20 24599.47 34391.89 35997.43 36798.44 332
RPMNet97.02 26996.93 25697.30 30497.71 36094.22 30698.11 16099.30 17299.37 4596.91 32799.34 8886.72 34399.87 10197.53 15197.36 37297.81 366
MVSTER96.86 27796.55 28497.79 26597.91 35294.21 30897.56 23498.87 26597.49 20399.06 13599.05 15080.72 37899.80 18798.44 9799.82 9399.37 181
CPTT-MVS97.84 21197.36 23599.27 8799.31 15498.46 10498.29 14299.27 18694.90 32397.83 27598.37 27394.90 25299.84 14093.85 32699.54 21599.51 118
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25099.68 4394.45 33498.99 14899.27 9996.87 17299.94 3597.13 17399.91 5999.57 88
PVSNet_BlendedMVS97.55 23097.53 22497.60 28398.92 23793.77 32896.64 29499.43 12094.49 33097.62 28799.18 12096.82 17699.67 26894.73 29699.93 4199.36 187
UnsupCasMVSNet_eth97.89 20197.60 22198.75 17199.31 15497.17 21197.62 22699.35 14698.72 11198.76 19298.68 23192.57 30399.74 23597.76 14295.60 39499.34 193
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21599.28 16096.78 23096.20 31899.27 18695.42 31098.28 24398.30 28193.16 28999.71 24894.99 29097.37 37098.87 284
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23793.77 32894.71 37199.43 12090.98 38097.62 28797.36 34196.82 17699.67 26894.73 29699.56 21098.98 262
FMVSNet596.01 30495.20 32198.41 21997.53 37196.10 24998.74 9099.50 8797.22 23898.03 26399.04 15269.80 39899.88 8497.27 16299.71 15499.25 216
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33398.20 31792.62 36398.55 22198.54 25394.88 25599.52 32993.96 32199.44 23998.59 321
FMVSNet397.50 23197.24 24298.29 23398.08 34595.83 26097.86 19698.91 25997.89 17098.95 15798.95 18187.06 34199.81 18097.77 13899.69 16299.23 221
dp93.47 35093.59 34393.13 38796.64 39581.62 41197.66 22196.42 36392.80 36196.11 35698.64 24178.55 39199.59 30493.31 33892.18 40598.16 349
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12199.28 9794.14 27499.82 16797.97 12699.80 10799.29 209
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7799.55 4897.82 10799.86 10998.42 9999.89 6999.41 162
N_pmnet97.63 22497.17 24598.99 13499.27 16297.86 16195.98 32893.41 39195.25 31599.47 7198.90 18995.63 23299.85 12296.91 18999.73 14299.27 212
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19185.34 39995.08 37794.96 38892.96 29598.53 39794.41 31098.59 33197.56 378
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31694.05 31296.67 29397.36 33896.70 26697.87 27197.98 30495.14 24799.44 34990.47 38098.58 33299.25 216
UGNet98.53 13898.45 13298.79 16297.94 35096.96 22199.08 5798.54 30299.10 8096.82 33599.47 6696.55 19299.84 14098.56 9399.94 3699.55 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 28496.27 29397.87 26098.81 26094.61 29996.77 28797.92 32794.94 32297.12 31597.74 31891.11 31699.82 16793.89 32398.15 34799.18 233
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 8999.49 6498.75 3699.86 10998.20 10999.80 10799.71 44
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25498.37 27398.72 3899.90 6599.05 5899.77 12398.77 300
sss97.21 25696.93 25698.06 25098.83 25595.22 28096.75 28998.48 30694.49 33097.27 31297.90 31092.77 29999.80 18796.57 22299.32 25399.16 240
Test_1112_low_res96.99 27396.55 28498.31 23199.35 14995.47 27195.84 34099.53 8191.51 37496.80 33698.48 26491.36 31499.83 15796.58 22099.53 21999.62 64
1112_ss97.29 25096.86 26298.58 19299.34 15196.32 24596.75 28999.58 5693.14 35596.89 33197.48 33392.11 30899.86 10996.91 18999.54 21599.57 88
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 27997.66 18498.62 20899.40 7996.82 17699.80 18795.88 26399.51 22498.75 303
TR-MVS95.55 31895.12 32396.86 32897.54 36993.94 31996.49 30196.53 36294.36 33797.03 32296.61 35494.26 27399.16 38186.91 39396.31 38797.47 380
MDTV_nov1_ep13_2view74.92 41497.69 21690.06 38797.75 28185.78 35293.52 33398.69 310
MDTV_nov1_ep1395.22 32097.06 38883.20 40797.74 21196.16 36594.37 33696.99 32398.83 20583.95 36799.53 32593.90 32297.95 357
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4197.12 15899.90 6599.21 4999.87 7499.54 105
MIMVSNet96.62 28796.25 29497.71 27699.04 21794.66 29799.16 5096.92 35497.23 23597.87 27199.10 13986.11 35099.65 28491.65 36399.21 27298.82 288
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26399.39 13198.97 9599.38 8799.31 9496.00 21699.93 4298.58 8899.97 1999.60 71
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 21997.35 23698.69 17798.73 26997.02 21896.92 28198.75 28995.89 29798.59 21498.67 23392.08 30999.74 23596.72 21199.81 9799.32 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 123
IterMVS97.73 21698.11 17996.57 33499.24 16790.28 38195.52 35099.21 20198.86 10499.33 9699.33 9093.11 29099.94 3598.49 9599.94 3699.48 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 24696.92 25898.57 19599.09 20597.99 14796.79 28599.35 14693.18 35497.71 28298.07 29995.00 25199.31 36793.97 32099.13 28498.42 336
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32599.30 17297.58 19298.10 25698.24 28498.25 7199.34 36396.69 21499.65 17999.12 242
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 6999.15 13097.23 15399.75 23097.17 16799.66 17899.63 63
ACMMP++99.68 167
HQP-MVS97.00 27296.49 28698.55 20098.67 28896.79 22796.29 31399.04 23996.05 28995.55 36796.84 35093.84 28099.54 32392.82 34799.26 26599.32 200
QAPM97.31 24796.81 26898.82 15598.80 26397.49 18999.06 6199.19 20790.22 38497.69 28499.16 12696.91 17099.90 6590.89 37899.41 24199.07 246
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10799.48 6598.82 3199.95 2398.94 6599.93 4199.59 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31875.36 41396.29 31389.13 40595.25 31595.38 37399.75 1192.88 29699.19 37994.07 31999.39 24396.72 390
IS-MVSNet98.19 18197.90 19999.08 11799.57 7997.97 15199.31 2698.32 31299.01 9198.98 14999.03 15491.59 31299.79 20095.49 28299.80 10799.48 135
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7497.28 20195.17 36099.50 8794.21 33999.01 14698.32 28086.61 34499.99 297.10 17599.84 8399.60 71
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15785.01 41094.69 32796.92 32598.64 24178.47 39299.31 36795.04 28996.46 38598.20 347
PAPM_NR96.82 28096.32 29098.30 23299.07 20996.69 23497.48 24298.76 28695.81 29996.61 34396.47 35894.12 27799.17 38090.82 37997.78 35899.06 247
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19298.81 27996.66 26799.17 12699.21 11294.81 25899.77 21796.96 18799.88 7199.44 152
PAPR95.29 32294.47 33197.75 27197.50 37695.14 28394.89 36898.71 29391.39 37695.35 37495.48 37894.57 26499.14 38384.95 39697.37 37098.97 265
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18198.90 16899.26 10196.12 21199.52 32995.72 27399.71 15499.32 200
Vis-MVSNet (Re-imp)97.46 23597.16 24698.34 22799.55 9196.10 24998.94 7598.44 30798.32 13598.16 24998.62 24588.76 33199.73 24093.88 32499.79 11299.18 233
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15798.91 18698.34 6999.79 20095.63 27799.91 5998.86 285
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 32999.27 18697.60 19197.99 26498.25 28398.15 8699.38 35896.87 19799.57 20799.42 159
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17198.85 17898.04 30197.66 11799.84 14096.72 21199.81 9799.13 241
PatchMatch-RL97.24 25496.78 26998.61 18899.03 22097.83 16496.36 30899.06 23393.49 35297.36 31197.78 31595.75 22999.49 33793.44 33698.77 31598.52 325
API-MVS97.04 26896.91 26097.42 30097.88 35398.23 12398.18 15298.50 30597.57 19397.39 30996.75 35296.77 18099.15 38290.16 38199.02 29794.88 402
Test By Simon96.52 193
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6199.61 3698.64 4499.80 18798.24 10699.84 8399.52 115
USDC97.41 24197.40 23197.44 29998.94 23193.67 33095.17 36099.53 8194.03 34498.97 15399.10 13995.29 24399.34 36395.84 26999.73 14299.30 207
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32399.03 8998.59 21499.13 13492.16 30799.90 6596.87 19799.68 16799.49 125
PMMVS96.51 28995.98 29598.09 24597.53 37195.84 25994.92 36798.84 27491.58 37296.05 35995.58 37395.68 23199.66 27995.59 27998.09 35098.76 302
PAPM91.88 37190.34 37496.51 33598.06 34692.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24198.82 18499.01 16497.71 11499.87 10196.29 24599.69 16299.54 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26096.71 27398.55 20098.56 30898.05 14496.33 31098.93 25496.91 25497.06 31997.39 33894.38 26999.45 34791.66 36299.18 27898.14 350
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38087.32 39397.65 22396.65 35895.30 31497.07 31898.69 22984.77 35999.75 23094.97 29198.64 32798.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17097.95 19399.34 7298.44 32199.16 4498.12 15999.38 13396.01 29298.06 25998.43 26797.80 10999.67 26895.69 27599.58 20399.20 226
F-COLMAP97.30 24896.68 27599.14 10799.19 18198.39 10797.27 25999.30 17292.93 35896.62 34298.00 30295.73 23099.68 26592.62 35398.46 33499.35 191
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 39100.00 199.82 23
wuyk23d96.06 30297.62 22091.38 38898.65 29798.57 9598.85 8696.95 35296.86 25799.90 1299.16 12699.18 1798.40 39889.23 38599.77 12377.18 408
OMC-MVS97.88 20397.49 22799.04 12898.89 24698.63 8896.94 27799.25 19295.02 31998.53 22498.51 25797.27 15099.47 34393.50 33599.51 22499.01 256
MG-MVS96.77 28196.61 28097.26 30798.31 33193.06 33895.93 33498.12 32296.45 27697.92 26698.73 22293.77 28499.39 35691.19 37399.04 29399.33 198
AdaColmapbinary97.14 26296.71 27398.46 21398.34 32997.80 17196.95 27698.93 25495.58 30596.92 32597.66 32295.87 22699.53 32590.97 37599.14 28298.04 355
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20198.28 24398.60 24897.64 12199.35 36293.86 32599.27 26298.79 298
DeepMVS_CXcopyleft93.44 38498.24 33594.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
TinyColmap97.89 20197.98 19197.60 28398.86 24994.35 30596.21 31799.44 11497.45 21199.06 13598.88 19697.99 9799.28 37394.38 31199.58 20399.18 233
MAR-MVS96.47 29395.70 30198.79 16297.92 35199.12 5898.28 14398.60 30092.16 36895.54 37096.17 36394.77 26199.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 19997.69 21298.52 20599.17 18997.66 18097.19 26799.47 10496.31 28197.85 27498.20 28896.71 18699.52 32994.62 29999.72 14998.38 339
MSDG97.71 21897.52 22598.28 23498.91 24096.82 22694.42 38199.37 13797.65 18598.37 23998.29 28297.40 14399.33 36594.09 31899.22 27098.68 313
LS3D98.63 12198.38 14599.36 6397.25 38299.38 999.12 5699.32 15999.21 6298.44 23198.88 19697.31 14699.80 18796.58 22099.34 25198.92 274
CLD-MVS97.49 23397.16 24698.48 21199.07 20997.03 21794.71 37199.21 20194.46 33298.06 25997.16 34597.57 12799.48 34094.46 30499.78 11798.95 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 35192.23 35697.08 31499.25 16697.86 16195.61 34597.16 34592.90 35993.76 39398.65 23875.94 39495.66 40679.30 40697.49 36397.73 371
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21299.62 3398.22 7699.51 33397.70 14499.73 14297.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015