This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 2999.67 2799.48 999.81 18999.30 4599.97 2099.77 39
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 9398.73 9299.05 12998.76 27397.81 17399.25 4099.30 17998.57 13098.55 22899.33 9797.95 10699.90 6897.16 17899.67 18199.44 163
3Dnovator+97.89 398.69 11398.51 12699.24 9798.81 26898.40 10999.02 6699.19 21498.99 9998.07 26999.28 10697.11 16799.84 14896.84 21099.32 26299.47 153
DeepC-MVS97.60 498.97 7298.93 7299.10 11699.35 15397.98 15398.01 18399.46 11297.56 20899.54 5999.50 6498.97 2399.84 14898.06 12699.92 5699.49 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16998.01 19499.23 9998.39 33598.97 7095.03 37899.18 21896.88 26899.33 10298.78 22598.16 9099.28 38496.74 21899.62 19599.44 163
DeepC-MVS_fast96.85 698.30 17298.15 18098.75 17598.61 30697.23 20797.76 21999.09 23797.31 23698.75 20098.66 24697.56 13599.64 29696.10 26999.55 22299.39 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 27396.68 28498.32 23698.32 33897.16 21598.86 8699.37 14489.48 40296.29 36699.15 14096.56 19899.90 6892.90 35799.20 28497.89 374
ACMH96.65 799.25 3699.24 4499.26 9299.72 4298.38 11199.07 6199.55 7998.30 14799.65 4899.45 7699.22 1599.76 23298.44 10499.77 12899.64 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 6399.00 6699.33 8099.71 4598.83 7998.60 10999.58 6199.11 7899.53 6399.18 13098.81 3299.67 27796.71 22399.77 12899.50 132
COLMAP_ROBcopyleft96.50 1098.99 6898.85 8299.41 6299.58 7799.10 6498.74 9299.56 7599.09 8899.33 10299.19 12698.40 6599.72 25695.98 27299.76 14099.42 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 29595.95 30698.65 18598.93 24198.09 13796.93 29199.28 19083.58 41598.13 26497.78 32896.13 21699.40 36593.52 34699.29 26998.45 342
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7998.73 9299.48 5399.55 9499.14 5698.07 17299.37 14497.62 20099.04 14998.96 18798.84 3099.79 20997.43 16599.65 18799.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 31895.35 32897.55 29897.95 35894.79 29798.81 9196.94 36692.28 38195.17 38898.57 26289.90 33399.75 23991.20 38597.33 38798.10 365
OpenMVS_ROBcopyleft95.38 1495.84 32195.18 33497.81 27198.41 33497.15 21697.37 26198.62 30983.86 41498.65 21198.37 28694.29 27899.68 27488.41 40098.62 34196.60 405
ACMP95.32 1598.41 15698.09 18599.36 6699.51 10698.79 8297.68 22799.38 14095.76 31498.81 19398.82 21898.36 6799.82 17594.75 30899.77 12899.48 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29895.73 31098.85 15698.75 27597.91 16096.42 31799.06 24090.94 39595.59 37797.38 35294.41 27399.59 31390.93 38998.04 36899.05 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32595.70 31195.57 37298.83 26388.57 39992.50 41297.72 34192.69 37696.49 36396.44 37293.72 29199.43 36193.61 34399.28 27098.71 319
PCF-MVS92.86 1894.36 34793.00 36498.42 22698.70 28697.56 18993.16 41099.11 23479.59 41997.55 30697.43 34992.19 31299.73 24979.85 41999.45 24597.97 373
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 38190.90 38596.27 35397.22 39591.24 38194.36 39793.33 40692.37 37992.24 41494.58 40666.20 42099.89 8093.16 35494.63 41297.66 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 21297.94 20297.65 28699.71 4597.94 15998.52 11898.68 30498.99 9997.52 30999.35 9197.41 14998.18 41391.59 37899.67 18196.82 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 38690.30 38993.70 39597.72 36784.34 41990.24 41697.42 34890.20 39993.79 40693.09 41490.90 32698.89 40486.57 40872.76 42397.87 376
MVEpermissive83.40 2292.50 37691.92 37894.25 38798.83 26391.64 37192.71 41183.52 42595.92 31086.46 42395.46 39295.20 25195.40 42180.51 41898.64 33895.73 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 30695.44 32398.84 15796.25 41598.69 9097.02 28499.12 23288.90 40597.83 28798.86 20989.51 33598.90 40391.92 37199.51 23398.92 288
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
fmvsm_s_conf0.5_n_299.14 5099.31 3498.63 19199.49 11696.08 25897.38 25999.81 2699.48 3499.84 2199.57 4698.46 6199.89 8099.82 899.97 2099.91 13
fmvsm_s_conf0.1_n_299.20 4399.38 2498.65 18599.69 5496.08 25897.49 25299.90 1199.53 3199.88 1799.64 3498.51 5799.90 6899.83 799.98 1299.97 4
GDP-MVS97.50 23897.11 25798.67 18499.02 22896.85 23098.16 15999.71 3898.32 14598.52 23398.54 26483.39 37999.95 2498.79 7999.56 21899.19 243
BP-MVS197.40 25096.97 26398.71 18199.07 21596.81 23298.34 14497.18 35698.58 12998.17 25798.61 25784.01 37599.94 3798.97 6899.78 12299.37 192
reproduce_monomvs95.00 34195.25 33094.22 38897.51 38783.34 42097.86 20598.44 31798.51 13599.29 11199.30 10367.68 41599.56 32498.89 7499.81 10199.77 39
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25499.80 998.33 7299.91 6299.56 3199.95 3299.97 4
reproduce_model99.15 4998.97 7099.67 499.33 15699.44 1098.15 16099.47 10999.12 7799.52 6599.32 10198.31 7399.90 6897.78 14599.73 14799.66 62
reproduce-ours99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
our_new_method99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
mvs5depth99.30 2999.59 998.44 22499.65 6495.35 28199.82 399.94 299.83 499.42 8599.94 298.13 9399.96 1299.63 2699.96 25100.00 1
MVStest195.86 31995.60 31596.63 34395.87 41991.70 37097.93 19398.94 25998.03 17099.56 5599.66 2971.83 40898.26 41299.35 4299.24 27699.91 13
ttmdpeth97.91 20498.02 19397.58 29398.69 29194.10 31998.13 16298.90 26897.95 17697.32 32499.58 4495.95 23098.75 40696.41 24999.22 28099.87 20
WBMVS95.18 33694.78 34296.37 34997.68 37589.74 39695.80 35498.73 30197.54 21198.30 24898.44 27970.06 40999.82 17596.62 22899.87 7899.54 115
dongtai76.24 39075.95 39377.12 40692.39 42467.91 43090.16 41759.44 43182.04 41789.42 41994.67 40549.68 42981.74 42448.06 42477.66 42281.72 420
kuosan69.30 39168.95 39470.34 40787.68 42865.00 43191.11 41559.90 43069.02 42074.46 42588.89 42248.58 43068.03 42628.61 42572.33 42477.99 421
MVSMamba_PlusPlus98.83 8998.98 6998.36 23399.32 15796.58 24498.90 8099.41 13399.75 898.72 20399.50 6496.17 21499.94 3799.27 4799.78 12298.57 335
MGCFI-Net98.34 16598.28 16298.51 21498.47 32497.59 18898.96 7499.48 10199.18 7397.40 31995.50 38998.66 4399.50 34598.18 11798.71 33198.44 345
testing9193.32 36592.27 36996.47 34797.54 38091.25 38096.17 33496.76 37097.18 25293.65 40893.50 41265.11 42299.63 29993.04 35597.45 37898.53 336
testing1193.08 37092.02 37496.26 35497.56 37890.83 38896.32 32395.70 38796.47 28892.66 41293.73 40964.36 42399.59 31393.77 34197.57 37498.37 354
testing9993.04 37191.98 37796.23 35697.53 38290.70 39096.35 32195.94 38396.87 26993.41 40993.43 41363.84 42499.59 31393.24 35397.19 38898.40 350
UBG93.25 36792.32 36896.04 36397.72 36790.16 39395.92 34895.91 38496.03 30593.95 40593.04 41569.60 41199.52 33990.72 39397.98 36998.45 342
UWE-MVS92.38 37891.76 38194.21 38997.16 39684.65 41595.42 36888.45 42095.96 30896.17 36795.84 38466.36 41899.71 25791.87 37398.64 33898.28 357
ETVMVS92.60 37591.08 38497.18 31897.70 37293.65 34196.54 30995.70 38796.51 28494.68 39492.39 41861.80 42599.50 34586.97 40597.41 38198.40 350
sasdasda98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
testing22291.96 38390.37 38796.72 34297.47 38992.59 35696.11 33694.76 39396.83 27192.90 41192.87 41657.92 42699.55 32886.93 40697.52 37598.00 372
WB-MVSnew95.73 32495.57 31896.23 35696.70 40690.70 39096.07 33893.86 40395.60 31897.04 33395.45 39596.00 22299.55 32891.04 38798.31 35098.43 347
fmvsm_l_conf0.5_n_a99.19 4499.27 4098.94 14499.65 6497.05 21897.80 21299.76 3398.70 11999.78 2999.11 14698.79 3499.95 2499.85 599.96 2599.83 26
fmvsm_l_conf0.5_n99.21 4199.28 3999.02 13499.64 7097.28 20497.82 20999.76 3398.73 11699.82 2399.09 15298.81 3299.95 2499.86 499.96 2599.83 26
fmvsm_s_conf0.1_n_a99.17 4599.30 3798.80 16399.75 3396.59 24297.97 19299.86 1698.22 15599.88 1799.71 1998.59 5099.84 14899.73 2099.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4899.33 3098.64 18799.71 4596.10 25397.87 20499.85 1898.56 13399.90 1299.68 2298.69 4199.85 13099.72 2299.98 1299.97 4
fmvsm_s_conf0.5_n_a99.10 5899.20 4698.78 16999.55 9496.59 24297.79 21399.82 2598.21 15699.81 2699.53 6098.46 6199.84 14899.70 2399.97 2099.90 15
fmvsm_s_conf0.5_n99.09 5999.26 4298.61 19699.55 9496.09 25697.74 22199.81 2698.55 13499.85 2099.55 5498.60 4999.84 14899.69 2599.98 1299.89 16
MM98.22 18297.99 19698.91 15098.66 30196.97 22297.89 20094.44 39699.54 3098.95 16499.14 14393.50 29299.92 5399.80 1399.96 2599.85 24
WAC-MVS90.90 38691.37 382
Syy-MVS96.04 31395.56 31997.49 30497.10 39894.48 30896.18 33296.58 37395.65 31694.77 39292.29 41991.27 32299.36 37098.17 11998.05 36698.63 329
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5399.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3999.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
myMVS_eth3d91.92 38490.45 38696.30 35197.10 39890.90 38696.18 33296.58 37395.65 31694.77 39292.29 41953.88 42799.36 37089.59 39898.05 36698.63 329
testing393.51 36292.09 37297.75 27898.60 30894.40 31097.32 26595.26 39197.56 20896.79 35095.50 38953.57 42899.77 22695.26 29898.97 31599.08 258
SSC-MVS98.71 10698.74 9098.62 19399.72 4296.08 25898.74 9298.64 30899.74 1099.67 4499.24 11794.57 27099.95 2499.11 5799.24 27699.82 29
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5899.92 899.57 4699.60 599.96 1299.74 1999.98 1299.89 16
WB-MVS98.52 14798.55 12198.43 22599.65 6495.59 27098.52 11898.77 29499.65 1899.52 6599.00 17794.34 27699.93 4498.65 9298.83 32399.76 44
test_fmvsmvis_n_192099.26 3599.49 1398.54 21199.66 6396.97 22298.00 18499.85 1899.24 6299.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 319
dmvs_re95.98 31695.39 32697.74 28098.86 25797.45 19598.37 14095.69 38997.95 17696.56 35795.95 37990.70 32797.68 41688.32 40196.13 40398.11 364
SDMVSNet99.23 4099.32 3298.96 14199.68 5797.35 20098.84 8999.48 10199.69 1399.63 5199.68 2299.03 2199.96 1297.97 13399.92 5699.57 98
dmvs_testset92.94 37292.21 37195.13 38098.59 31190.99 38597.65 23392.09 41196.95 26494.00 40393.55 41192.34 31196.97 41972.20 42292.52 41797.43 394
sd_testset99.28 3299.31 3499.19 10399.68 5798.06 14699.41 1499.30 17999.69 1399.63 5199.68 2299.25 1499.96 1297.25 17499.92 5699.57 98
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6399.93 699.30 10399.42 1099.96 1299.85 599.99 599.29 221
test_cas_vis1_n_192098.33 16898.68 10397.27 31599.69 5492.29 36498.03 17899.85 1897.62 20099.96 499.62 3793.98 28599.74 24499.52 3599.86 8299.79 34
test_vis1_n_192098.40 15898.92 7396.81 33899.74 3590.76 38998.15 16099.91 998.33 14399.89 1599.55 5495.07 25599.88 9399.76 1799.93 4599.79 34
test_vis1_n98.31 17198.50 12897.73 28299.76 2994.17 31798.68 10299.91 996.31 29499.79 2899.57 4692.85 30499.42 36399.79 1499.84 8799.60 81
test_fmvs1_n98.09 19398.28 16297.52 30199.68 5793.47 34398.63 10599.93 595.41 32799.68 4299.64 3491.88 31799.48 35199.82 899.87 7899.62 72
mvsany_test197.60 23297.54 23097.77 27497.72 36795.35 28195.36 37097.13 35994.13 35599.71 3699.33 9797.93 10799.30 38097.60 15798.94 31898.67 327
APD_test198.83 8998.66 10699.34 7599.78 2399.47 998.42 13699.45 11698.28 15298.98 15699.19 12697.76 11899.58 31996.57 23399.55 22298.97 279
test_vis1_rt97.75 22297.72 21897.83 26998.81 26896.35 24897.30 26799.69 4294.61 34297.87 28398.05 31396.26 21298.32 41198.74 8598.18 35598.82 301
test_vis3_rt99.14 5099.17 4899.07 12299.78 2398.38 11198.92 7999.94 297.80 18999.91 1199.67 2797.15 16498.91 40299.76 1799.56 21899.92 12
test_fmvs298.70 11098.97 7097.89 26699.54 9994.05 32098.55 11499.92 796.78 27499.72 3499.78 1096.60 19799.67 27799.91 299.90 6999.94 10
test_fmvs197.72 22497.94 20297.07 32598.66 30192.39 36197.68 22799.81 2695.20 33199.54 5999.44 7791.56 32099.41 36499.78 1699.77 12899.40 182
test_fmvs399.12 5699.41 2198.25 24299.76 2995.07 29399.05 6499.94 297.78 19199.82 2399.84 398.56 5499.71 25799.96 199.96 2599.97 4
mvsany_test398.87 8498.92 7398.74 17999.38 14296.94 22698.58 11199.10 23596.49 28699.96 499.81 698.18 8699.45 35898.97 6899.79 11799.83 26
testf199.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
APD_test299.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
test_f98.67 12198.87 7898.05 25999.72 4295.59 27098.51 12399.81 2696.30 29699.78 2999.82 596.14 21598.63 40899.82 899.93 4599.95 9
FE-MVS95.66 32694.95 33997.77 27498.53 32095.28 28499.40 1696.09 38093.11 37097.96 27799.26 11279.10 39799.77 22692.40 36998.71 33198.27 358
FA-MVS(test-final)96.99 28296.82 27597.50 30398.70 28694.78 29899.34 2096.99 36295.07 33298.48 23699.33 9788.41 34699.65 29396.13 26898.92 32098.07 367
balanced_conf0398.63 12798.72 9498.38 23098.66 30196.68 24198.90 8099.42 12998.99 9998.97 16099.19 12695.81 23599.85 13098.77 8399.77 12898.60 331
MonoMVSNet96.25 30896.53 29595.39 37796.57 40891.01 38498.82 9097.68 34498.57 13098.03 27499.37 8690.92 32597.78 41594.99 30293.88 41597.38 395
patch_mono-298.51 14898.63 11098.17 24899.38 14294.78 29897.36 26299.69 4298.16 16698.49 23599.29 10597.06 16899.97 598.29 11299.91 6399.76 44
EGC-MVSNET85.24 38780.54 39099.34 7599.77 2699.20 3899.08 5899.29 18712.08 42520.84 42699.42 7997.55 13699.85 13097.08 18699.72 15598.96 281
test250692.39 37791.89 37993.89 39399.38 14282.28 42399.32 2366.03 42999.08 9098.77 19799.57 4666.26 41999.84 14898.71 8899.95 3299.54 115
test111196.49 30196.82 27595.52 37399.42 13787.08 40799.22 4287.14 42199.11 7899.46 7799.58 4488.69 34099.86 11898.80 7899.95 3299.62 72
ECVR-MVScopyleft96.42 30396.61 28995.85 36599.38 14288.18 40399.22 4286.00 42399.08 9099.36 9799.57 4688.47 34599.82 17598.52 10199.95 3299.54 115
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
tt080598.69 11398.62 11298.90 15399.75 3399.30 2199.15 5396.97 36398.86 11198.87 18497.62 33998.63 4698.96 39999.41 4098.29 35198.45 342
DVP-MVS++98.90 8198.70 10099.51 4698.43 33099.15 5199.43 1299.32 16698.17 16399.26 11899.02 16598.18 8699.88 9397.07 18799.45 24599.49 136
FOURS199.73 3699.67 399.43 1299.54 8399.43 4399.26 118
MSC_two_6792asdad99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
PC_three_145293.27 36799.40 9098.54 26498.22 8297.00 41895.17 29999.45 24599.49 136
No_MVS99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
test_one_060199.39 14199.20 3899.31 17198.49 13698.66 21099.02 16597.64 128
eth-test20.00 433
eth-test0.00 433
GeoE99.05 6498.99 6899.25 9599.44 13198.35 11798.73 9699.56 7598.42 13998.91 17498.81 22098.94 2599.91 6298.35 10899.73 14799.49 136
test_method79.78 38879.50 39180.62 40480.21 42945.76 43270.82 42098.41 32131.08 42480.89 42497.71 33284.85 36697.37 41791.51 38080.03 42198.75 316
Anonymous2024052198.69 11398.87 7898.16 25099.77 2695.11 29299.08 5899.44 12099.34 5299.33 10299.55 5494.10 28499.94 3799.25 5099.96 2599.42 170
h-mvs3397.77 22197.33 24599.10 11699.21 18097.84 16698.35 14298.57 31199.11 7898.58 22399.02 16588.65 34399.96 1298.11 12196.34 39999.49 136
hse-mvs297.46 24397.07 25898.64 18798.73 27797.33 20197.45 25697.64 34799.11 7898.58 22397.98 31788.65 34399.79 20998.11 12197.39 38298.81 305
CL-MVSNet_self_test97.44 24697.22 25098.08 25598.57 31595.78 26894.30 39898.79 29196.58 28398.60 21998.19 30294.74 26899.64 29696.41 24998.84 32298.82 301
KD-MVS_2432*160092.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
KD-MVS_self_test99.25 3699.18 4799.44 5999.63 7499.06 6898.69 10199.54 8399.31 5599.62 5499.53 6097.36 15299.86 11899.24 5299.71 16099.39 183
AUN-MVS96.24 31095.45 32298.60 19898.70 28697.22 20997.38 25997.65 34595.95 30995.53 38497.96 32182.11 38799.79 20996.31 25597.44 37998.80 310
ZD-MVS99.01 22998.84 7899.07 23994.10 35698.05 27298.12 30696.36 20999.86 11892.70 36599.19 287
SR-MVS-dyc-post98.81 9398.55 12199.57 2099.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.49 14699.86 11896.56 23799.39 25299.45 159
RE-MVS-def98.58 11999.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.75 11996.56 23799.39 25299.45 159
SED-MVS98.91 7998.72 9499.49 5199.49 11699.17 4398.10 16899.31 17198.03 17099.66 4599.02 16598.36 6799.88 9396.91 19999.62 19599.41 173
IU-MVS99.49 11699.15 5198.87 27492.97 37199.41 8796.76 21699.62 19599.66 62
OPU-MVS98.82 15998.59 31198.30 11898.10 16898.52 26898.18 8698.75 40694.62 31299.48 24299.41 173
test_241102_TWO99.30 17998.03 17099.26 11899.02 16597.51 14299.88 9396.91 19999.60 20299.66 62
test_241102_ONE99.49 11699.17 4399.31 17197.98 17399.66 4598.90 19998.36 6799.48 351
SF-MVS98.53 14498.27 16599.32 8299.31 15898.75 8398.19 15499.41 13396.77 27598.83 18898.90 19997.80 11699.82 17595.68 28899.52 23199.38 190
cl2295.79 32295.39 32696.98 32896.77 40592.79 35394.40 39698.53 31394.59 34397.89 28198.17 30382.82 38499.24 38696.37 25199.03 30598.92 288
miper_ehance_all_eth97.06 27597.03 26097.16 32297.83 36393.06 34794.66 38899.09 23795.99 30798.69 20598.45 27892.73 30799.61 30896.79 21299.03 30598.82 301
miper_enhance_ethall96.01 31495.74 30996.81 33896.41 41392.27 36593.69 40798.89 27191.14 39398.30 24897.35 35590.58 32899.58 31996.31 25599.03 30598.60 331
ZNCC-MVS98.68 11898.40 14599.54 3099.57 8299.21 3298.46 13199.29 18797.28 23998.11 26698.39 28398.00 10199.87 11096.86 20999.64 18999.55 111
dcpmvs_298.78 9799.11 5697.78 27399.56 9093.67 33999.06 6299.86 1699.50 3399.66 4599.26 11297.21 16299.99 298.00 13199.91 6399.68 58
cl____97.02 27896.83 27497.58 29397.82 36494.04 32294.66 38899.16 22597.04 25998.63 21398.71 23588.68 34299.69 26597.00 19199.81 10199.00 274
DIV-MVS_self_test97.02 27896.84 27397.58 29397.82 36494.03 32394.66 38899.16 22597.04 25998.63 21398.71 23588.69 34099.69 26597.00 19199.81 10199.01 270
eth_miper_zixun_eth97.23 26497.25 24897.17 32098.00 35792.77 35494.71 38599.18 21897.27 24098.56 22698.74 23191.89 31699.69 26597.06 18999.81 10199.05 262
9.1497.78 21299.07 21597.53 24799.32 16695.53 32198.54 23098.70 23897.58 13399.76 23294.32 32599.46 243
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
save fliter99.11 20697.97 15496.53 31199.02 25198.24 153
ET-MVSNet_ETH3D94.30 35093.21 36097.58 29398.14 35094.47 30994.78 38493.24 40794.72 34089.56 41895.87 38278.57 40099.81 18996.91 19997.11 39198.46 339
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6199.90 399.86 1999.78 1099.58 699.95 2499.00 6699.95 3299.78 37
EIA-MVS98.00 19997.74 21598.80 16398.72 27998.09 13798.05 17599.60 5897.39 22896.63 35495.55 38797.68 12299.80 19696.73 22099.27 27198.52 337
miper_refine_blended92.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
miper_lstm_enhance97.18 26897.16 25397.25 31798.16 34892.85 35295.15 37699.31 17197.25 24298.74 20298.78 22590.07 33199.78 22097.19 17699.80 11299.11 257
ETV-MVS98.03 19697.86 20998.56 20798.69 29198.07 14397.51 25099.50 9298.10 16897.50 31195.51 38898.41 6499.88 9396.27 25899.24 27697.71 386
CS-MVS99.13 5499.10 5899.24 9799.06 22099.15 5199.36 1999.88 1499.36 5198.21 25698.46 27798.68 4299.93 4499.03 6499.85 8398.64 328
D2MVS97.84 21897.84 21097.83 26999.14 20294.74 30096.94 28998.88 27295.84 31298.89 17798.96 18794.40 27499.69 26597.55 15899.95 3299.05 262
DVP-MVScopyleft98.77 10098.52 12599.52 4299.50 10999.21 3298.02 18098.84 28397.97 17499.08 14099.02 16597.61 13199.88 9396.99 19399.63 19299.48 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 16399.08 14099.02 16597.89 10899.88 9397.07 18799.71 16099.70 56
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16699.88 9396.99 19399.63 19299.68 58
test072699.50 10999.21 3298.17 15899.35 15397.97 17499.26 11899.06 15397.61 131
SR-MVS98.71 10698.43 14199.57 2099.18 19499.35 1698.36 14199.29 18798.29 15098.88 18098.85 21297.53 13999.87 11096.14 26699.31 26499.48 146
DPM-MVS96.32 30595.59 31798.51 21498.76 27397.21 21094.54 39498.26 32591.94 38396.37 36497.25 35693.06 29999.43 36191.42 38198.74 32798.89 293
GST-MVS98.61 13198.30 16099.52 4299.51 10699.20 3898.26 14899.25 19997.44 22598.67 20898.39 28397.68 12299.85 13096.00 27099.51 23399.52 126
test_yl96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
thisisatest053095.27 33494.45 34597.74 28099.19 18794.37 31197.86 20590.20 41797.17 25398.22 25597.65 33673.53 40799.90 6896.90 20499.35 25898.95 282
Anonymous2024052998.93 7798.87 7899.12 11299.19 18798.22 12799.01 6798.99 25799.25 6199.54 5999.37 8697.04 16999.80 19697.89 13699.52 23199.35 203
Anonymous20240521197.90 20597.50 23399.08 12098.90 24998.25 12198.53 11796.16 37898.87 11099.11 13598.86 20990.40 33099.78 22097.36 16899.31 26499.19 243
DCV-MVSNet96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
tttt051795.64 32794.98 33797.64 28899.36 14993.81 33498.72 9790.47 41698.08 16998.67 20898.34 29073.88 40699.92 5397.77 14699.51 23399.20 238
our_test_397.39 25197.73 21796.34 35098.70 28689.78 39594.61 39198.97 25896.50 28599.04 14998.85 21295.98 22799.84 14897.26 17399.67 18199.41 173
thisisatest051594.12 35493.16 36196.97 32998.60 30892.90 35193.77 40690.61 41594.10 35696.91 34095.87 38274.99 40599.80 19694.52 31599.12 29898.20 360
ppachtmachnet_test97.50 23897.74 21596.78 34098.70 28691.23 38294.55 39399.05 24396.36 29199.21 12698.79 22396.39 20599.78 22096.74 21899.82 9799.34 205
SMA-MVScopyleft98.40 15898.03 19299.51 4699.16 19799.21 3298.05 17599.22 20794.16 35498.98 15699.10 14997.52 14199.79 20996.45 24799.64 18999.53 123
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 305
DPE-MVScopyleft98.59 13498.26 16699.57 2099.27 16699.15 5197.01 28599.39 13897.67 19699.44 8198.99 17897.53 13999.89 8095.40 29699.68 17599.66 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14999.10 6499.05 147
thres100view90094.19 35193.67 35595.75 36899.06 22091.35 37698.03 17894.24 40098.33 14397.40 31994.98 40079.84 39199.62 30283.05 41398.08 36396.29 406
tfpnnormal98.90 8198.90 7598.91 15099.67 6197.82 17099.00 6999.44 12099.45 3999.51 7099.24 11798.20 8599.86 11895.92 27499.69 17099.04 266
tfpn200view994.03 35593.44 35795.78 36798.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36396.29 406
c3_l97.36 25297.37 24197.31 31298.09 35393.25 34595.01 37999.16 22597.05 25898.77 19798.72 23492.88 30299.64 29696.93 19899.76 14099.05 262
CHOSEN 280x42095.51 33195.47 32095.65 37198.25 34288.27 40293.25 40998.88 27293.53 36494.65 39597.15 35986.17 35699.93 4497.41 16699.93 4598.73 318
CANet97.87 21197.76 21398.19 24797.75 36695.51 27596.76 30099.05 24397.74 19296.93 33798.21 30095.59 24199.89 8097.86 14199.93 4599.19 243
Fast-Effi-MVS+-dtu98.27 17698.09 18598.81 16198.43 33098.11 13497.61 23899.50 9298.64 12097.39 32197.52 34498.12 9499.95 2496.90 20498.71 33198.38 352
Effi-MVS+-dtu98.26 17897.90 20699.35 7298.02 35699.49 698.02 18099.16 22598.29 15097.64 29897.99 31696.44 20499.95 2496.66 22698.93 31998.60 331
CANet_DTU97.26 26097.06 25997.84 26897.57 37794.65 30596.19 33198.79 29197.23 24895.14 38998.24 29793.22 29499.84 14897.34 16999.84 8799.04 266
MVS_030497.44 24697.01 26298.72 18096.42 41296.74 23797.20 27691.97 41298.46 13898.30 24898.79 22392.74 30699.91 6299.30 4599.94 4099.52 126
MP-MVS-pluss98.57 13598.23 17099.60 1499.69 5499.35 1697.16 28099.38 14094.87 33898.97 16098.99 17898.01 10099.88 9397.29 17199.70 16799.58 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15898.00 19599.61 1299.57 8299.25 2898.57 11299.35 15397.55 21099.31 11097.71 33294.61 26999.88 9396.14 26699.19 28799.70 56
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36898.81 305
sam_mvs84.29 374
IterMVS-SCA-FT97.85 21798.18 17596.87 33499.27 16691.16 38395.53 36299.25 19999.10 8599.41 8799.35 9193.10 29799.96 1298.65 9299.94 4099.49 136
TSAR-MVS + MP.98.63 12798.49 13299.06 12899.64 7097.90 16198.51 12398.94 25996.96 26399.24 12398.89 20597.83 11199.81 18996.88 20699.49 24199.48 146
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
OPM-MVS98.56 13698.32 15999.25 9599.41 13998.73 8797.13 28299.18 21897.10 25798.75 20098.92 19598.18 8699.65 29396.68 22599.56 21899.37 192
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 10298.48 13399.57 2099.58 7799.29 2397.82 20999.25 19996.94 26598.78 19499.12 14598.02 9999.84 14897.13 18399.67 18199.59 87
ambc98.24 24498.82 26695.97 26298.62 10799.00 25699.27 11499.21 12396.99 17499.50 34596.55 24099.50 24099.26 227
MTGPAbinary99.20 210
SPE-MVS-test99.13 5499.09 5999.26 9299.13 20498.97 7099.31 2799.88 1499.44 4198.16 26098.51 26998.64 4499.93 4498.91 7199.85 8398.88 296
Effi-MVS+98.02 19797.82 21198.62 19398.53 32097.19 21297.33 26499.68 4797.30 23796.68 35297.46 34898.56 5499.80 19696.63 22798.20 35498.86 298
xiu_mvs_v2_base97.16 27097.49 23496.17 35998.54 31892.46 35995.45 36698.84 28397.25 24297.48 31396.49 36998.31 7399.90 6896.34 25498.68 33696.15 410
xiu_mvs_v1_base97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
new-patchmatchnet98.35 16498.74 9097.18 31899.24 17392.23 36696.42 31799.48 10198.30 14799.69 4099.53 6097.44 14899.82 17598.84 7799.77 12899.49 136
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2199.83 499.50 899.87 11099.36 4199.92 5699.64 68
pmmvs597.64 23097.49 23498.08 25599.14 20295.12 29196.70 30499.05 24393.77 36198.62 21598.83 21593.23 29399.75 23998.33 11199.76 14099.36 199
test_post197.59 24120.48 42783.07 38299.66 28894.16 326
test_post21.25 42683.86 37799.70 261
Fast-Effi-MVS+97.67 22897.38 24098.57 20398.71 28297.43 19797.23 27299.45 11694.82 33996.13 36896.51 36898.52 5699.91 6296.19 26298.83 32398.37 354
patchmatchnet-post98.77 22784.37 37199.85 130
Anonymous2023121199.27 3399.27 4099.26 9299.29 16398.18 12899.49 999.51 9099.70 1299.80 2799.68 2296.84 18099.83 16599.21 5399.91 6399.77 39
pmmvs-eth3d98.47 15198.34 15598.86 15599.30 16197.76 17697.16 28099.28 19095.54 32099.42 8599.19 12697.27 15799.63 29997.89 13699.97 2099.20 238
GG-mvs-BLEND94.76 38394.54 42292.13 36799.31 2780.47 42788.73 42191.01 42167.59 41698.16 41482.30 41794.53 41393.98 417
xiu_mvs_v1_base_debi97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
Anonymous2023120698.21 18498.21 17198.20 24699.51 10695.43 27998.13 16299.32 16696.16 29998.93 17298.82 21896.00 22299.83 16597.32 17099.73 14799.36 199
MTAPA98.88 8398.64 10999.61 1299.67 6199.36 1598.43 13499.20 21098.83 11598.89 17798.90 19996.98 17599.92 5397.16 17899.70 16799.56 104
MTMP97.93 19391.91 413
gm-plane-assit94.83 42181.97 42488.07 40894.99 39999.60 30991.76 374
test9_res93.28 35299.15 29299.38 190
MVP-Stereo98.08 19497.92 20498.57 20398.96 23796.79 23397.90 19999.18 21896.41 29098.46 23798.95 19195.93 23199.60 30996.51 24398.98 31499.31 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 28298.08 14195.96 34399.03 24891.40 38995.85 37497.53 34296.52 20099.76 232
train_agg97.10 27296.45 29799.07 12298.71 28298.08 14195.96 34399.03 24891.64 38495.85 37497.53 34296.47 20299.76 23293.67 34299.16 29099.36 199
gg-mvs-nofinetune92.37 37991.20 38395.85 36595.80 42092.38 36299.31 2781.84 42699.75 891.83 41599.74 1568.29 41299.02 39687.15 40497.12 39096.16 409
SCA96.41 30496.66 28795.67 36998.24 34388.35 40195.85 35296.88 36896.11 30097.67 29798.67 24393.10 29799.85 13094.16 32699.22 28098.81 305
Patchmatch-test96.55 29796.34 29997.17 32098.35 33693.06 34798.40 13797.79 33997.33 23398.41 24298.67 24383.68 37899.69 26595.16 30099.31 26498.77 313
test_898.67 29698.01 14995.91 34999.02 25191.64 38495.79 37697.50 34596.47 20299.76 232
MS-PatchMatch97.68 22797.75 21497.45 30798.23 34593.78 33597.29 26898.84 28396.10 30198.64 21298.65 24896.04 21999.36 37096.84 21099.14 29399.20 238
Patchmatch-RL test97.26 26097.02 26197.99 26399.52 10495.53 27496.13 33599.71 3897.47 21799.27 11499.16 13684.30 37399.62 30297.89 13699.77 12898.81 305
cdsmvs_eth3d_5k24.66 39232.88 3950.00 4100.00 4330.00 4350.00 42199.10 2350.00 4280.00 42997.58 34099.21 160.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.17 39510.90 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42898.07 950.00 4290.00 4280.00 4270.00 425
agg_prior292.50 36899.16 29099.37 192
agg_prior98.68 29597.99 15099.01 25495.59 37799.77 226
tmp_tt78.77 38978.73 39278.90 40558.45 43074.76 42994.20 39978.26 42839.16 42386.71 42292.82 41780.50 38975.19 42586.16 40992.29 41886.74 419
canonicalmvs98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4298.93 10699.65 4899.72 1898.93 2699.95 2499.11 57100.00 199.82 29
alignmvs97.35 25396.88 27098.78 16998.54 31898.09 13797.71 22497.69 34399.20 6797.59 30295.90 38188.12 34899.55 32898.18 11798.96 31698.70 322
nrg03099.40 2299.35 2799.54 3099.58 7799.13 5998.98 7299.48 10199.68 1599.46 7799.26 11298.62 4799.73 24999.17 5699.92 5699.76 44
v14419298.54 14298.57 12098.45 22299.21 18095.98 26197.63 23599.36 14897.15 25699.32 10899.18 13095.84 23499.84 14899.50 3699.91 6399.54 115
FIs99.14 5099.09 5999.29 8699.70 5298.28 11999.13 5599.52 8999.48 3499.24 12399.41 8396.79 18699.82 17598.69 9099.88 7599.76 44
v192192098.54 14298.60 11798.38 23099.20 18495.76 26997.56 24499.36 14897.23 24899.38 9399.17 13496.02 22099.84 14899.57 2999.90 6999.54 115
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 14999.81 698.05 9899.96 1298.85 7699.99 599.86 23
v119298.60 13298.66 10698.41 22799.27 16695.88 26497.52 24899.36 14897.41 22699.33 10299.20 12596.37 20899.82 17599.57 2999.92 5699.55 111
FC-MVSNet-test99.27 3399.25 4399.34 7599.77 2698.37 11399.30 3299.57 6899.61 2699.40 9099.50 6497.12 16599.85 13099.02 6599.94 4099.80 33
v114498.60 13298.66 10698.41 22799.36 14995.90 26397.58 24299.34 15997.51 21399.27 11499.15 14096.34 21099.80 19699.47 3899.93 4599.51 129
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
HFP-MVS98.71 10698.44 14099.51 4699.49 11699.16 4798.52 11899.31 17197.47 21798.58 22398.50 27397.97 10599.85 13096.57 23399.59 20699.53 123
v14898.45 15398.60 11798.00 26299.44 13194.98 29497.44 25799.06 24098.30 14799.32 10898.97 18496.65 19599.62 30298.37 10799.85 8399.39 183
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
AllTest98.44 15498.20 17299.16 10799.50 10998.55 9998.25 14999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
TestCases99.16 10799.50 10998.55 9999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5799.66 1799.68 4299.66 2998.44 6399.95 2499.73 2099.96 2599.75 48
region2R98.69 11398.40 14599.54 3099.53 10299.17 4398.52 11899.31 17197.46 22298.44 23998.51 26997.83 11199.88 9396.46 24699.58 21199.58 93
RRT-MVS97.88 20997.98 19797.61 29098.15 34993.77 33698.97 7399.64 5299.16 7598.69 20599.42 7991.60 31899.89 8097.63 15498.52 34599.16 253
mamv499.44 1599.39 2399.58 1999.30 16199.74 299.04 6599.81 2699.77 799.82 2399.57 4697.82 11499.98 499.53 3399.89 7399.01 270
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5199.48 3499.92 899.71 1998.07 9599.96 1299.53 33100.00 199.93 11
PS-MVSNAJ97.08 27497.39 23996.16 36198.56 31692.46 35995.24 37398.85 28297.25 24297.49 31295.99 37898.07 9599.90 6896.37 25198.67 33796.12 411
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5099.09 8899.89 1599.68 2299.53 799.97 599.50 3699.99 599.87 20
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3899.27 6099.90 1299.74 1599.68 499.97 599.55 3299.99 599.88 19
EI-MVSNet-UG-set98.69 11398.71 9798.62 19399.10 20896.37 24797.23 27298.87 27499.20 6799.19 12898.99 17897.30 15499.85 13098.77 8399.79 11799.65 67
EI-MVSNet-Vis-set98.68 11898.70 10098.63 19199.09 21196.40 24697.23 27298.86 27999.20 6799.18 13298.97 18497.29 15699.85 13098.72 8799.78 12299.64 68
HPM-MVS++copyleft98.10 19197.64 22599.48 5399.09 21199.13 5997.52 24898.75 29897.46 22296.90 34397.83 32796.01 22199.84 14895.82 28299.35 25899.46 155
test_prior497.97 15495.86 350
XVS98.72 10598.45 13899.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30798.63 25397.50 14399.83 16596.79 21299.53 22899.56 104
v124098.55 14098.62 11298.32 23699.22 17895.58 27297.51 25099.45 11697.16 25499.45 8099.24 11796.12 21799.85 13099.60 2799.88 7599.55 111
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5399.30 5799.65 4899.60 4299.16 2099.82 17599.07 6099.83 9499.56 104
test_prior295.74 35696.48 28796.11 36997.63 33895.92 23294.16 32699.20 284
X-MVStestdata94.32 34892.59 36699.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30745.85 42397.50 14399.83 16596.79 21299.53 22899.56 104
test_prior98.95 14398.69 29197.95 15899.03 24899.59 31399.30 219
旧先验295.76 35588.56 40797.52 30999.66 28894.48 316
新几何295.93 346
新几何198.91 15098.94 23997.76 17698.76 29587.58 40996.75 35198.10 30894.80 26599.78 22092.73 36499.00 31099.20 238
旧先验198.82 26697.45 19598.76 29598.34 29095.50 24599.01 30999.23 233
无先验95.74 35698.74 30089.38 40399.73 24992.38 37099.22 237
原ACMM295.53 362
原ACMM198.35 23498.90 24996.25 25198.83 28792.48 37896.07 37198.10 30895.39 24899.71 25792.61 36798.99 31299.08 258
test22298.92 24596.93 22795.54 36198.78 29385.72 41296.86 34698.11 30794.43 27299.10 30099.23 233
testdata299.79 20992.80 362
segment_acmp97.02 172
testdata98.09 25298.93 24195.40 28098.80 29090.08 40097.45 31698.37 28695.26 25099.70 26193.58 34598.95 31799.17 250
testdata195.44 36796.32 293
v899.01 6699.16 5098.57 20399.47 12696.31 25098.90 8099.47 10999.03 9699.52 6599.57 4696.93 17699.81 18999.60 2799.98 1299.60 81
131495.74 32395.60 31596.17 35997.53 38292.75 35598.07 17298.31 32491.22 39194.25 39896.68 36695.53 24299.03 39591.64 37797.18 38996.74 403
LFMVS97.20 26696.72 28198.64 18798.72 27996.95 22598.93 7894.14 40299.74 1098.78 19499.01 17484.45 37099.73 24997.44 16499.27 27199.25 228
VDD-MVS98.56 13698.39 14899.07 12299.13 20498.07 14398.59 11097.01 36199.59 2799.11 13599.27 10894.82 26299.79 20998.34 10999.63 19299.34 205
VDDNet98.21 18497.95 20099.01 13599.58 7797.74 17899.01 6797.29 35499.67 1698.97 16099.50 6490.45 32999.80 19697.88 13999.20 28499.48 146
v1098.97 7299.11 5698.55 20899.44 13196.21 25298.90 8099.55 7998.73 11699.48 7299.60 4296.63 19699.83 16599.70 2399.99 599.61 80
VPNet98.87 8498.83 8399.01 13599.70 5297.62 18798.43 13499.35 15399.47 3799.28 11299.05 16096.72 19299.82 17598.09 12399.36 25699.59 87
MVS93.19 36892.09 37296.50 34696.91 40194.03 32398.07 17298.06 33568.01 42194.56 39796.48 37095.96 22999.30 38083.84 41296.89 39496.17 408
v2v48298.56 13698.62 11298.37 23299.42 13795.81 26797.58 24299.16 22597.90 18299.28 11299.01 17495.98 22799.79 20999.33 4399.90 6999.51 129
V4298.78 9798.78 8898.76 17399.44 13197.04 21998.27 14799.19 21497.87 18499.25 12299.16 13696.84 18099.78 22099.21 5399.84 8799.46 155
SD-MVS98.40 15898.68 10397.54 29998.96 23797.99 15097.88 20199.36 14898.20 16099.63 5199.04 16298.76 3595.33 42296.56 23799.74 14499.31 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 31995.32 32997.49 30498.60 30894.15 31893.83 40597.93 33795.49 32296.68 35297.42 35083.21 38099.30 38096.22 26098.55 34499.01 270
MSLP-MVS++98.02 19798.14 18297.64 28898.58 31395.19 28897.48 25399.23 20697.47 21797.90 28098.62 25597.04 16998.81 40597.55 15899.41 25098.94 286
APDe-MVScopyleft98.99 6898.79 8799.60 1499.21 18099.15 5198.87 8499.48 10197.57 20699.35 9999.24 11797.83 11199.89 8097.88 13999.70 16799.75 48
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8898.61 11699.53 3799.19 18799.27 2698.49 12699.33 16498.64 12099.03 15298.98 18297.89 10899.85 13096.54 24199.42 24999.46 155
ADS-MVSNet295.43 33294.98 33796.76 34198.14 35091.74 36997.92 19697.76 34090.23 39696.51 36098.91 19685.61 36199.85 13092.88 35896.90 39298.69 323
EI-MVSNet98.40 15898.51 12698.04 26099.10 20894.73 30197.20 27698.87 27498.97 10299.06 14299.02 16596.00 22299.80 19698.58 9599.82 9799.60 81
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
CVMVSNet96.25 30897.21 25193.38 39999.10 20880.56 42697.20 27698.19 33096.94 26599.00 15499.02 16589.50 33699.80 19696.36 25399.59 20699.78 37
pmmvs497.58 23597.28 24698.51 21498.84 26196.93 22795.40 36998.52 31493.60 36398.61 21798.65 24895.10 25499.60 30996.97 19699.79 11798.99 275
EU-MVSNet97.66 22998.50 12895.13 38099.63 7485.84 41098.35 14298.21 32798.23 15499.54 5999.46 7295.02 25699.68 27498.24 11399.87 7899.87 20
VNet98.42 15598.30 16098.79 16698.79 27297.29 20398.23 15098.66 30599.31 5598.85 18598.80 22194.80 26599.78 22098.13 12099.13 29599.31 216
test-LLR93.90 35793.85 35194.04 39096.53 40984.62 41694.05 40292.39 40996.17 29794.12 40095.07 39682.30 38599.67 27795.87 27898.18 35597.82 377
TESTMET0.1,192.19 38291.77 38093.46 39796.48 41182.80 42294.05 40291.52 41494.45 34894.00 40394.88 40266.65 41799.56 32495.78 28398.11 36198.02 369
test-mter92.33 38091.76 38194.04 39096.53 40984.62 41694.05 40292.39 40994.00 35994.12 40095.07 39665.63 42199.67 27795.87 27898.18 35597.82 377
VPA-MVSNet99.30 2999.30 3799.28 8799.49 11698.36 11699.00 6999.45 11699.63 2199.52 6599.44 7798.25 7799.88 9399.09 5999.84 8799.62 72
ACMMPR98.70 11098.42 14399.54 3099.52 10499.14 5698.52 11899.31 17197.47 21798.56 22698.54 26497.75 11999.88 9396.57 23399.59 20699.58 93
testgi98.32 16998.39 14898.13 25199.57 8295.54 27397.78 21499.49 9997.37 23099.19 12897.65 33698.96 2499.49 34896.50 24498.99 31299.34 205
test20.0398.78 9798.77 8998.78 16999.46 12797.20 21197.78 21499.24 20499.04 9599.41 8798.90 19997.65 12599.76 23297.70 15199.79 11799.39 183
thres600view794.45 34693.83 35296.29 35299.06 22091.53 37297.99 18894.24 40098.34 14297.44 31795.01 39879.84 39199.67 27784.33 41198.23 35297.66 387
ADS-MVSNet95.24 33594.93 34096.18 35898.14 35090.10 39497.92 19697.32 35390.23 39696.51 36098.91 19685.61 36199.74 24492.88 35896.90 39298.69 323
MP-MVScopyleft98.46 15298.09 18599.54 3099.57 8299.22 3198.50 12599.19 21497.61 20397.58 30398.66 24697.40 15099.88 9394.72 31199.60 20299.54 115
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 39320.53 3966.87 40912.05 4314.20 43493.62 4086.73 4324.62 42710.41 42724.33 4248.28 4323.56 4289.69 42715.07 42512.86 424
thres40094.14 35393.44 35796.24 35598.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36397.66 387
test12317.04 39420.11 3977.82 40810.25 4324.91 43394.80 3834.47 4334.93 42610.00 42824.28 4259.69 4313.64 42710.14 42612.43 42614.92 423
thres20093.72 36093.14 36295.46 37698.66 30191.29 37896.61 30894.63 39597.39 22896.83 34793.71 41079.88 39099.56 32482.40 41698.13 36095.54 415
test0.0.03 194.51 34593.69 35496.99 32796.05 41693.61 34294.97 38093.49 40496.17 29797.57 30594.88 40282.30 38599.01 39893.60 34494.17 41498.37 354
pmmvs395.03 33994.40 34696.93 33097.70 37292.53 35895.08 37797.71 34288.57 40697.71 29498.08 31179.39 39599.82 17596.19 26299.11 29998.43 347
EMVS93.83 35894.02 35093.23 40096.83 40484.96 41389.77 41996.32 37797.92 18097.43 31896.36 37586.17 35698.93 40187.68 40397.73 37295.81 413
E-PMN94.17 35294.37 34793.58 39696.86 40285.71 41290.11 41897.07 36098.17 16397.82 28997.19 35784.62 36998.94 40089.77 39697.68 37396.09 412
PGM-MVS98.66 12298.37 15199.55 2799.53 10299.18 4298.23 15099.49 9997.01 26298.69 20598.88 20698.00 10199.89 8095.87 27899.59 20699.58 93
LCM-MVSNet-Re98.64 12598.48 13399.11 11498.85 26098.51 10498.49 12699.83 2398.37 14099.69 4099.46 7298.21 8499.92 5394.13 33099.30 26798.91 291
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 24
MCST-MVS98.00 19997.63 22699.10 11699.24 17398.17 12996.89 29498.73 30195.66 31597.92 27897.70 33497.17 16399.66 28896.18 26499.23 27999.47 153
mvs_anonymous97.83 22098.16 17996.87 33498.18 34791.89 36897.31 26698.90 26897.37 23098.83 18899.46 7296.28 21199.79 20998.90 7298.16 35898.95 282
MVS_Test98.18 18798.36 15297.67 28498.48 32394.73 30198.18 15599.02 25197.69 19598.04 27399.11 14697.22 16199.56 32498.57 9798.90 32198.71 319
MDA-MVSNet-bldmvs97.94 20397.91 20598.06 25799.44 13194.96 29596.63 30799.15 23098.35 14198.83 18899.11 14694.31 27799.85 13096.60 23098.72 32999.37 192
CDPH-MVS97.26 26096.66 28799.07 12299.00 23098.15 13096.03 33999.01 25491.21 39297.79 29097.85 32696.89 17899.69 26592.75 36399.38 25599.39 183
test1298.93 14698.58 31397.83 16798.66 30596.53 35895.51 24499.69 26599.13 29599.27 224
casdiffmvspermissive98.95 7599.00 6698.81 16199.38 14297.33 20197.82 20999.57 6899.17 7499.35 9999.17 13498.35 7099.69 26598.46 10399.73 14799.41 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 18298.24 16998.17 24899.00 23095.44 27896.38 31999.58 6197.79 19098.53 23198.50 27396.76 18999.74 24497.95 13599.64 18999.34 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 35992.83 36596.42 34897.70 37291.28 37996.84 29689.77 41893.96 36092.44 41395.93 38079.14 39699.77 22692.94 35696.76 39698.21 359
baseline195.96 31795.44 32397.52 30198.51 32293.99 32698.39 13896.09 38098.21 15698.40 24697.76 33086.88 35099.63 29995.42 29589.27 42098.95 282
YYNet197.60 23297.67 22097.39 31199.04 22493.04 35095.27 37198.38 32297.25 24298.92 17398.95 19195.48 24699.73 24996.99 19398.74 32799.41 173
PMMVS298.07 19598.08 18898.04 26099.41 13994.59 30794.59 39299.40 13697.50 21498.82 19198.83 21596.83 18299.84 14897.50 16399.81 10199.71 51
MDA-MVSNet_test_wron97.60 23297.66 22397.41 31099.04 22493.09 34695.27 37198.42 31997.26 24198.88 18098.95 19195.43 24799.73 24997.02 19098.72 32999.41 173
tpmvs95.02 34095.25 33094.33 38696.39 41485.87 40998.08 17096.83 36995.46 32395.51 38598.69 23985.91 35999.53 33594.16 32696.23 40197.58 390
PM-MVS98.82 9198.72 9499.12 11299.64 7098.54 10297.98 18999.68 4797.62 20099.34 10199.18 13097.54 13799.77 22697.79 14499.74 14499.04 266
HQP_MVS97.99 20297.67 22098.93 14699.19 18797.65 18497.77 21699.27 19398.20 16097.79 29097.98 31794.90 25899.70 26194.42 32099.51 23399.45 159
plane_prior799.19 18797.87 163
plane_prior698.99 23397.70 18294.90 258
plane_prior599.27 19399.70 26194.42 32099.51 23399.45 159
plane_prior497.98 317
plane_prior397.78 17597.41 22697.79 290
plane_prior297.77 21698.20 160
plane_prior199.05 223
plane_prior97.65 18497.07 28396.72 27799.36 256
PS-CasMVS99.40 2299.33 3099.62 999.71 4599.10 6499.29 3399.53 8699.53 3199.46 7799.41 8398.23 7999.95 2498.89 7499.95 3299.81 32
UniMVSNet_NR-MVSNet98.86 8798.68 10399.40 6499.17 19598.74 8497.68 22799.40 13699.14 7699.06 14298.59 26096.71 19399.93 4498.57 9799.77 12899.53 123
PEN-MVS99.41 2199.34 2999.62 999.73 3699.14 5699.29 3399.54 8399.62 2499.56 5599.42 7998.16 9099.96 1298.78 8099.93 4599.77 39
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6899.39 4699.75 3399.62 3799.17 1899.83 16599.06 6199.62 19599.66 62
DTE-MVSNet99.43 1999.35 2799.66 799.71 4599.30 2199.31 2799.51 9099.64 1999.56 5599.46 7298.23 7999.97 598.78 8099.93 4599.72 50
DU-MVS98.82 9198.63 11099.39 6599.16 19798.74 8497.54 24699.25 19998.84 11499.06 14298.76 22996.76 18999.93 4498.57 9799.77 12899.50 132
UniMVSNet (Re)98.87 8498.71 9799.35 7299.24 17398.73 8797.73 22399.38 14098.93 10699.12 13498.73 23296.77 18799.86 11898.63 9499.80 11299.46 155
CP-MVSNet99.21 4199.09 5999.56 2599.65 6498.96 7499.13 5599.34 15999.42 4499.33 10299.26 11297.01 17399.94 3798.74 8599.93 4599.79 34
WR-MVS_H99.33 2799.22 4599.65 899.71 4599.24 2999.32 2399.55 7999.46 3899.50 7199.34 9597.30 15499.93 4498.90 7299.93 4599.77 39
WR-MVS98.40 15898.19 17499.03 13299.00 23097.65 18496.85 29598.94 25998.57 13098.89 17798.50 27395.60 24099.85 13097.54 16099.85 8399.59 87
NR-MVSNet98.95 7598.82 8499.36 6699.16 19798.72 8999.22 4299.20 21099.10 8599.72 3498.76 22996.38 20799.86 11898.00 13199.82 9799.50 132
Baseline_NR-MVSNet98.98 7198.86 8199.36 6699.82 1998.55 9997.47 25599.57 6899.37 4899.21 12699.61 4096.76 18999.83 16598.06 12699.83 9499.71 51
TranMVSNet+NR-MVSNet99.17 4599.07 6299.46 5899.37 14898.87 7798.39 13899.42 12999.42 4499.36 9799.06 15398.38 6699.95 2498.34 10999.90 6999.57 98
TSAR-MVS + GP.98.18 18797.98 19798.77 17298.71 28297.88 16296.32 32398.66 30596.33 29299.23 12598.51 26997.48 14799.40 36597.16 17899.46 24399.02 269
n20.00 434
nn0.00 434
mPP-MVS98.64 12598.34 15599.54 3099.54 9999.17 4398.63 10599.24 20497.47 21798.09 26898.68 24197.62 13099.89 8096.22 26099.62 19599.57 98
door-mid99.57 68
XVG-OURS-SEG-HR98.49 14998.28 16299.14 11099.49 11698.83 7996.54 30999.48 10197.32 23599.11 13598.61 25799.33 1399.30 38096.23 25998.38 34799.28 223
mvsmamba97.57 23697.26 24798.51 21498.69 29196.73 23898.74 9297.25 35597.03 26197.88 28299.23 12190.95 32499.87 11096.61 22999.00 31098.91 291
MVSFormer98.26 17898.43 14197.77 27498.88 25593.89 33299.39 1799.56 7599.11 7898.16 26098.13 30493.81 28899.97 599.26 4899.57 21599.43 167
jason97.45 24597.35 24397.76 27799.24 17393.93 32895.86 35098.42 31994.24 35298.50 23498.13 30494.82 26299.91 6297.22 17599.73 14799.43 167
jason: jason.
lupinMVS97.06 27596.86 27197.65 28698.88 25593.89 33295.48 36597.97 33693.53 36498.16 26097.58 34093.81 28899.91 6296.77 21599.57 21599.17 250
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7599.11 7899.70 3899.73 1799.00 2299.97 599.26 4899.98 1299.89 16
HPM-MVS_fast99.01 6698.82 8499.57 2099.71 4599.35 1699.00 6999.50 9297.33 23398.94 17198.86 20998.75 3699.82 17597.53 16199.71 16099.56 104
K. test v398.00 19997.66 22399.03 13299.79 2297.56 18999.19 4992.47 40899.62 2499.52 6599.66 2989.61 33499.96 1299.25 5099.81 10199.56 104
lessismore_v098.97 14099.73 3697.53 19186.71 42299.37 9599.52 6389.93 33299.92 5398.99 6799.72 15599.44 163
SixPastTwentyTwo98.75 10298.62 11299.16 10799.83 1897.96 15799.28 3798.20 32899.37 4899.70 3899.65 3392.65 30899.93 4499.04 6399.84 8799.60 81
OurMVSNet-221017-099.37 2599.31 3499.53 3799.91 398.98 6999.63 799.58 6199.44 4199.78 2999.76 1296.39 20599.92 5399.44 3999.92 5699.68 58
HPM-MVScopyleft98.79 9598.53 12499.59 1899.65 6499.29 2399.16 5199.43 12696.74 27698.61 21798.38 28598.62 4799.87 11096.47 24599.67 18199.59 87
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 14498.34 15599.11 11499.50 10998.82 8195.97 34199.50 9297.30 23799.05 14798.98 18299.35 1299.32 37795.72 28599.68 17599.18 246
XVG-ACMP-BASELINE98.56 13698.34 15599.22 10099.54 9998.59 9697.71 22499.46 11297.25 24298.98 15698.99 17897.54 13799.84 14895.88 27599.74 14499.23 233
casdiffmvs_mvgpermissive99.12 5699.16 5098.99 13799.43 13697.73 18098.00 18499.62 5499.22 6399.55 5899.22 12298.93 2699.75 23998.66 9199.81 10199.50 132
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10698.46 13799.47 5699.57 8298.97 7098.23 15099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
baseline98.96 7499.02 6498.76 17399.38 14297.26 20698.49 12699.50 9298.86 11199.19 12899.06 15398.23 7999.69 26598.71 8899.76 14099.33 210
test1198.87 274
door99.41 133
EPNet_dtu94.93 34294.78 34295.38 37893.58 42387.68 40596.78 29895.69 38997.35 23289.14 42098.09 31088.15 34799.49 34894.95 30599.30 26798.98 276
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 24197.14 25698.54 21199.68 5796.09 25696.50 31299.62 5491.58 38698.84 18798.97 18492.36 31099.88 9396.76 21699.95 3299.67 61
EPNet96.14 31195.44 32398.25 24290.76 42795.50 27697.92 19694.65 39498.97 10292.98 41098.85 21289.12 33899.87 11095.99 27199.68 17599.39 183
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 233
HQP-NCC98.67 29696.29 32596.05 30295.55 380
ACMP_Plane98.67 29696.29 32596.05 30295.55 380
APD-MVScopyleft98.10 19197.67 22099.42 6099.11 20698.93 7597.76 21999.28 19094.97 33598.72 20398.77 22797.04 16999.85 13093.79 34099.54 22499.49 136
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 360
HQP4-MVS95.56 37999.54 33399.32 212
HQP3-MVS99.04 24699.26 274
HQP2-MVS93.84 286
CNVR-MVS98.17 18997.87 20899.07 12298.67 29698.24 12297.01 28598.93 26297.25 24297.62 29998.34 29097.27 15799.57 32196.42 24899.33 26199.39 183
NCCC97.86 21297.47 23799.05 12998.61 30698.07 14396.98 28798.90 26897.63 19997.04 33397.93 32295.99 22699.66 28895.31 29798.82 32599.43 167
114514_t96.50 30095.77 30898.69 18299.48 12497.43 19797.84 20899.55 7981.42 41896.51 36098.58 26195.53 24299.67 27793.41 35099.58 21198.98 276
CP-MVS98.70 11098.42 14399.52 4299.36 14999.12 6198.72 9799.36 14897.54 21198.30 24898.40 28297.86 11099.89 8096.53 24299.72 15599.56 104
DSMNet-mixed97.42 24897.60 22896.87 33499.15 20191.46 37398.54 11699.12 23292.87 37497.58 30399.63 3696.21 21399.90 6895.74 28499.54 22499.27 224
tpm293.09 36992.58 36794.62 38497.56 37886.53 40897.66 23195.79 38686.15 41194.07 40298.23 29975.95 40399.53 33590.91 39096.86 39597.81 379
NP-MVS98.84 26197.39 19996.84 363
EG-PatchMatch MVS98.99 6899.01 6598.94 14499.50 10997.47 19398.04 17799.59 5998.15 16799.40 9099.36 9098.58 5399.76 23298.78 8099.68 17599.59 87
tpm cat193.29 36693.13 36393.75 39497.39 39184.74 41497.39 25897.65 34583.39 41694.16 39998.41 28182.86 38399.39 36791.56 37995.35 40997.14 398
SteuartSystems-ACMMP98.79 9598.54 12399.54 3099.73 3699.16 4798.23 15099.31 17197.92 18098.90 17598.90 19998.00 10199.88 9396.15 26599.72 15599.58 93
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 35693.78 35394.51 38597.53 38285.83 41197.98 18995.96 38289.29 40494.99 39198.63 25378.63 39999.62 30294.54 31496.50 39798.09 366
CR-MVSNet96.28 30795.95 30697.28 31497.71 37094.22 31398.11 16698.92 26592.31 38096.91 34099.37 8685.44 36499.81 18997.39 16797.36 38597.81 379
JIA-IIPM95.52 33095.03 33697.00 32696.85 40394.03 32396.93 29195.82 38599.20 6794.63 39699.71 1983.09 38199.60 30994.42 32094.64 41197.36 396
Patchmtry97.35 25396.97 26398.50 21897.31 39396.47 24598.18 15598.92 26598.95 10598.78 19499.37 8685.44 36499.85 13095.96 27399.83 9499.17 250
PatchT96.65 29496.35 29897.54 29997.40 39095.32 28397.98 18996.64 37299.33 5396.89 34499.42 7984.32 37299.81 18997.69 15397.49 37697.48 392
tpmrst95.07 33895.46 32193.91 39297.11 39784.36 41897.62 23696.96 36494.98 33496.35 36598.80 22185.46 36399.59 31395.60 29096.23 40197.79 382
BH-w/o95.13 33794.89 34195.86 36498.20 34691.31 37795.65 35897.37 34993.64 36296.52 35995.70 38593.04 30099.02 39688.10 40295.82 40697.24 397
tpm94.67 34494.34 34895.66 37097.68 37588.42 40097.88 20194.90 39294.46 34696.03 37398.56 26378.66 39899.79 20995.88 27595.01 41098.78 312
DELS-MVS98.27 17698.20 17298.48 21998.86 25796.70 23995.60 36099.20 21097.73 19398.45 23898.71 23597.50 14399.82 17598.21 11599.59 20698.93 287
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 28796.75 28097.08 32398.74 27693.33 34496.71 30398.26 32596.72 27798.44 23997.37 35395.20 25199.47 35491.89 37297.43 38098.44 345
RPMNet97.02 27896.93 26597.30 31397.71 37094.22 31398.11 16699.30 17999.37 4896.91 34099.34 9586.72 35199.87 11097.53 16197.36 38597.81 379
MVSTER96.86 28696.55 29397.79 27297.91 36194.21 31597.56 24498.87 27497.49 21699.06 14299.05 16080.72 38899.80 19698.44 10499.82 9799.37 192
CPTT-MVS97.84 21897.36 24299.27 9099.31 15898.46 10798.29 14599.27 19394.90 33797.83 28798.37 28694.90 25899.84 14893.85 33999.54 22499.51 129
GBi-Net98.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
PVSNet_Blended_VisFu98.17 18998.15 18098.22 24599.73 3695.15 28997.36 26299.68 4794.45 34898.99 15599.27 10896.87 17999.94 3797.13 18399.91 6399.57 98
PVSNet_BlendedMVS97.55 23797.53 23197.60 29198.92 24593.77 33696.64 30699.43 12694.49 34497.62 29999.18 13096.82 18399.67 27794.73 30999.93 4599.36 199
UnsupCasMVSNet_eth97.89 20797.60 22898.75 17599.31 15897.17 21497.62 23699.35 15398.72 11898.76 19998.68 24192.57 30999.74 24497.76 15095.60 40799.34 205
UnsupCasMVSNet_bld97.30 25796.92 26798.45 22299.28 16496.78 23696.20 33099.27 19395.42 32498.28 25298.30 29493.16 29599.71 25794.99 30297.37 38398.87 297
PVSNet_Blended96.88 28596.68 28497.47 30698.92 24593.77 33694.71 38599.43 12690.98 39497.62 29997.36 35496.82 18399.67 27794.73 30999.56 21898.98 276
FMVSNet596.01 31495.20 33398.41 22797.53 38296.10 25398.74 9299.50 9297.22 25198.03 27499.04 16269.80 41099.88 9397.27 17299.71 16099.25 228
test198.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
new_pmnet96.99 28296.76 27997.67 28498.72 27994.89 29695.95 34598.20 32892.62 37798.55 22898.54 26494.88 26199.52 33993.96 33499.44 24898.59 334
FMVSNet397.50 23897.24 24998.29 24098.08 35495.83 26697.86 20598.91 26797.89 18398.95 16498.95 19187.06 34999.81 18997.77 14699.69 17099.23 233
dp93.47 36393.59 35693.13 40196.64 40781.62 42597.66 23196.42 37692.80 37596.11 36998.64 25178.55 40199.59 31393.31 35192.18 41998.16 362
FMVSNet298.49 14998.40 14598.75 17598.90 24997.14 21798.61 10899.13 23198.59 12699.19 12899.28 10694.14 28099.82 17597.97 13399.80 11299.29 221
FMVSNet199.17 4599.17 4899.17 10499.55 9498.24 12299.20 4599.44 12099.21 6599.43 8299.55 5497.82 11499.86 11898.42 10699.89 7399.41 173
N_pmnet97.63 23197.17 25298.99 13799.27 16697.86 16495.98 34093.41 40595.25 32999.47 7698.90 19995.63 23999.85 13096.91 19999.73 14799.27 224
cascas94.79 34394.33 34996.15 36296.02 41892.36 36392.34 41499.26 19885.34 41395.08 39094.96 40192.96 30198.53 40994.41 32398.59 34297.56 391
BH-RMVSNet96.83 28796.58 29297.58 29398.47 32494.05 32096.67 30597.36 35096.70 27997.87 28397.98 31795.14 25399.44 36090.47 39498.58 34399.25 228
UGNet98.53 14498.45 13898.79 16697.94 35996.96 22499.08 5898.54 31299.10 8596.82 34899.47 7196.55 19999.84 14898.56 10099.94 4099.55 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 29396.27 30397.87 26798.81 26894.61 30696.77 29997.92 33894.94 33697.12 32897.74 33191.11 32399.82 17593.89 33698.15 35999.18 246
XXY-MVS99.14 5099.15 5599.10 11699.76 2997.74 17898.85 8799.62 5498.48 13799.37 9599.49 6998.75 3699.86 11898.20 11699.80 11299.71 51
EC-MVSNet99.09 5999.05 6399.20 10199.28 16498.93 7599.24 4199.84 2199.08 9098.12 26598.37 28698.72 3899.90 6899.05 6299.77 12898.77 313
sss97.21 26596.93 26598.06 25798.83 26395.22 28796.75 30198.48 31694.49 34497.27 32597.90 32392.77 30599.80 19696.57 23399.32 26299.16 253
Test_1112_low_res96.99 28296.55 29398.31 23899.35 15395.47 27795.84 35399.53 8691.51 38896.80 34998.48 27691.36 32199.83 16596.58 23199.53 22899.62 72
1112_ss97.29 25996.86 27198.58 20099.34 15596.32 24996.75 30199.58 6193.14 36996.89 34497.48 34692.11 31499.86 11896.91 19999.54 22499.57 98
ab-mvs-re8.12 39610.83 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42997.48 3460.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs98.41 15698.36 15298.59 19999.19 18797.23 20799.32 2398.81 28897.66 19798.62 21599.40 8596.82 18399.80 19695.88 27599.51 23398.75 316
TR-MVS95.55 32995.12 33596.86 33797.54 38093.94 32796.49 31396.53 37594.36 35197.03 33596.61 36794.26 27999.16 39286.91 40796.31 40097.47 393
MDTV_nov1_ep13_2view74.92 42897.69 22690.06 40197.75 29385.78 36093.52 34698.69 323
MDTV_nov1_ep1395.22 33297.06 40083.20 42197.74 22196.16 37894.37 35096.99 33698.83 21583.95 37699.53 33593.90 33597.95 370
MIMVSNet199.38 2499.32 3299.55 2799.86 1499.19 4199.41 1499.59 5999.59 2799.71 3699.57 4697.12 16599.90 6899.21 5399.87 7899.54 115
MIMVSNet96.62 29696.25 30497.71 28399.04 22494.66 30499.16 5196.92 36797.23 24897.87 28399.10 14986.11 35899.65 29391.65 37699.21 28398.82 301
IterMVS-LS98.55 14098.70 10098.09 25299.48 12494.73 30197.22 27599.39 13898.97 10299.38 9399.31 10296.00 22299.93 4498.58 9599.97 2099.60 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22697.35 24398.69 18298.73 27797.02 22196.92 29398.75 29895.89 31198.59 22198.67 24392.08 31599.74 24496.72 22199.81 10199.32 212
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 128
IterMVS97.73 22398.11 18496.57 34499.24 17390.28 39295.52 36499.21 20898.86 11199.33 10299.33 9793.11 29699.94 3798.49 10299.94 4099.48 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 25596.92 26798.57 20399.09 21197.99 15096.79 29799.35 15393.18 36897.71 29498.07 31295.00 25799.31 37893.97 33399.13 29598.42 349
MVS_111021_LR98.30 17298.12 18398.83 15899.16 19798.03 14896.09 33799.30 17997.58 20598.10 26798.24 29798.25 7799.34 37496.69 22499.65 18799.12 256
DP-MVS98.93 7798.81 8699.28 8799.21 18098.45 10898.46 13199.33 16499.63 2199.48 7299.15 14097.23 16099.75 23997.17 17799.66 18699.63 71
ACMMP++99.68 175
HQP-MVS97.00 28196.49 29698.55 20898.67 29696.79 23396.29 32599.04 24696.05 30295.55 38096.84 36393.84 28699.54 33392.82 36099.26 27499.32 212
QAPM97.31 25696.81 27798.82 15998.80 27197.49 19299.06 6299.19 21490.22 39897.69 29699.16 13696.91 17799.90 6890.89 39199.41 25099.07 260
Vis-MVSNetpermissive99.34 2699.36 2699.27 9099.73 3698.26 12099.17 5099.78 3199.11 7899.27 11499.48 7098.82 3199.95 2498.94 7099.93 4599.59 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 34895.62 31490.42 40398.46 32675.36 42796.29 32589.13 41995.25 32995.38 38699.75 1392.88 30299.19 39094.07 33299.39 25296.72 404
IS-MVSNet98.19 18697.90 20699.08 12099.57 8297.97 15499.31 2798.32 32399.01 9898.98 15699.03 16491.59 31999.79 20995.49 29499.80 11299.48 146
HyFIR lowres test97.19 26796.60 29198.96 14199.62 7697.28 20495.17 37499.50 9294.21 35399.01 15398.32 29386.61 35299.99 297.10 18599.84 8799.60 81
EPMVS93.72 36093.27 35995.09 38296.04 41787.76 40498.13 16285.01 42494.69 34196.92 33898.64 25178.47 40299.31 37895.04 30196.46 39898.20 360
PAPM_NR96.82 28996.32 30098.30 23999.07 21596.69 24097.48 25398.76 29595.81 31396.61 35696.47 37194.12 28399.17 39190.82 39297.78 37199.06 261
TAMVS98.24 18198.05 19098.80 16399.07 21597.18 21397.88 20198.81 28896.66 28099.17 13399.21 12394.81 26499.77 22696.96 19799.88 7599.44 163
PAPR95.29 33394.47 34497.75 27897.50 38895.14 29094.89 38298.71 30391.39 39095.35 38795.48 39194.57 27099.14 39484.95 41097.37 38398.97 279
RPSCF98.62 13098.36 15299.42 6099.65 6499.42 1198.55 11499.57 6897.72 19498.90 17599.26 11296.12 21799.52 33995.72 28599.71 16099.32 212
Vis-MVSNet (Re-imp)97.46 24397.16 25398.34 23599.55 9496.10 25398.94 7798.44 31798.32 14598.16 26098.62 25588.76 33999.73 24993.88 33799.79 11799.18 246
test_040298.76 10198.71 9798.93 14699.56 9098.14 13298.45 13399.34 15999.28 5998.95 16498.91 19698.34 7199.79 20995.63 28999.91 6398.86 298
MVS_111021_HR98.25 18098.08 18898.75 17599.09 21197.46 19495.97 34199.27 19397.60 20497.99 27698.25 29698.15 9299.38 36996.87 20799.57 21599.42 170
CSCG98.68 11898.50 12899.20 10199.45 13098.63 9198.56 11399.57 6897.87 18498.85 18598.04 31497.66 12499.84 14896.72 22199.81 10199.13 255
PatchMatch-RL97.24 26396.78 27898.61 19699.03 22797.83 16796.36 32099.06 24093.49 36697.36 32397.78 32895.75 23699.49 34893.44 34998.77 32698.52 337
API-MVS97.04 27796.91 26997.42 30997.88 36298.23 12698.18 15598.50 31597.57 20697.39 32196.75 36596.77 18799.15 39390.16 39599.02 30894.88 416
Test By Simon96.52 200
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3899.38 4799.53 6399.61 4098.64 4499.80 19698.24 11399.84 8799.52 126
USDC97.41 24997.40 23897.44 30898.94 23993.67 33995.17 37499.53 8694.03 35898.97 16099.10 14995.29 24999.34 37495.84 28199.73 14799.30 219
EPP-MVSNet98.30 17298.04 19199.07 12299.56 9097.83 16799.29 3398.07 33499.03 9698.59 22199.13 14492.16 31399.90 6896.87 20799.68 17599.49 136
PMMVS96.51 29895.98 30598.09 25297.53 38295.84 26594.92 38198.84 28391.58 38696.05 37295.58 38695.68 23899.66 28895.59 29198.09 36298.76 315
PAPM91.88 38590.34 38896.51 34598.06 35592.56 35792.44 41397.17 35786.35 41090.38 41796.01 37786.61 35299.21 38970.65 42395.43 40897.75 383
ACMMPcopyleft98.75 10298.50 12899.52 4299.56 9099.16 4798.87 8499.37 14497.16 25498.82 19199.01 17497.71 12199.87 11096.29 25799.69 17099.54 115
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26996.71 28298.55 20898.56 31698.05 14796.33 32298.93 26296.91 26797.06 33297.39 35194.38 27599.45 35891.66 37599.18 28998.14 363
PatchmatchNetpermissive95.58 32895.67 31395.30 37997.34 39287.32 40697.65 23396.65 37195.30 32897.07 33198.69 23984.77 36799.75 23994.97 30498.64 33898.83 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17597.95 20099.34 7598.44 32999.16 4798.12 16599.38 14096.01 30698.06 27098.43 28097.80 11699.67 27795.69 28799.58 21199.20 238
F-COLMAP97.30 25796.68 28499.14 11099.19 18798.39 11097.27 27199.30 17992.93 37296.62 35598.00 31595.73 23799.68 27492.62 36698.46 34699.35 203
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 44100.00 199.82 29
wuyk23d96.06 31297.62 22791.38 40298.65 30598.57 9898.85 8796.95 36596.86 27099.90 1299.16 13699.18 1798.40 41089.23 39999.77 12877.18 422
OMC-MVS97.88 20997.49 23499.04 13198.89 25498.63 9196.94 28999.25 19995.02 33398.53 23198.51 26997.27 15799.47 35493.50 34899.51 23399.01 270
MG-MVS96.77 29096.61 28997.26 31698.31 33993.06 34795.93 34698.12 33396.45 28997.92 27898.73 23293.77 29099.39 36791.19 38699.04 30499.33 210
AdaColmapbinary97.14 27196.71 28298.46 22198.34 33797.80 17496.95 28898.93 26295.58 31996.92 33897.66 33595.87 23399.53 33590.97 38899.14 29398.04 368
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ITE_SJBPF98.87 15499.22 17898.48 10699.35 15397.50 21498.28 25298.60 25997.64 12899.35 37393.86 33899.27 27198.79 311
DeepMVS_CXcopyleft93.44 39898.24 34394.21 31594.34 39764.28 42291.34 41694.87 40489.45 33792.77 42377.54 42193.14 41693.35 418
TinyColmap97.89 20797.98 19797.60 29198.86 25794.35 31296.21 32999.44 12097.45 22499.06 14298.88 20697.99 10499.28 38494.38 32499.58 21199.18 246
MAR-MVS96.47 30295.70 31198.79 16697.92 36099.12 6198.28 14698.60 31092.16 38295.54 38396.17 37694.77 26799.52 33989.62 39798.23 35297.72 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20597.69 21998.52 21399.17 19597.66 18397.19 27999.47 10996.31 29497.85 28698.20 30196.71 19399.52 33994.62 31299.72 15598.38 352
MSDG97.71 22597.52 23298.28 24198.91 24896.82 23194.42 39599.37 14497.65 19898.37 24798.29 29597.40 15099.33 37694.09 33199.22 28098.68 326
LS3D98.63 12798.38 15099.36 6697.25 39499.38 1299.12 5799.32 16699.21 6598.44 23998.88 20697.31 15399.80 19696.58 23199.34 26098.92 288
CLD-MVS97.49 24197.16 25398.48 21999.07 21597.03 22094.71 38599.21 20894.46 34698.06 27097.16 35897.57 13499.48 35194.46 31799.78 12298.95 282
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 36492.23 37097.08 32399.25 17297.86 16495.61 35997.16 35892.90 37393.76 40798.65 24875.94 40495.66 42079.30 42097.49 37697.73 384
Gipumacopyleft99.03 6599.16 5098.64 18799.94 298.51 10499.32 2399.75 3699.58 2998.60 21999.62 3798.22 8299.51 34497.70 15199.73 14797.89 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015