This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32498.97 6695.03 35799.18 20696.88 25199.33 9798.78 21498.16 8299.28 36696.74 20699.62 18799.44 155
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29697.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 26096.68 27098.32 22598.32 32797.16 21298.86 8199.37 13289.48 38196.29 35099.15 12796.56 18899.90 6592.90 33899.20 27397.89 354
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 28295.95 29398.65 18198.93 23398.09 13696.93 27699.28 17883.58 39498.13 25397.78 31496.13 20599.40 34793.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8596.94 35092.28 36095.17 37198.57 25089.90 32099.75 22991.20 36597.33 36898.10 345
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32397.15 21397.37 24798.62 29683.86 39398.65 20498.37 27294.29 26999.68 26388.41 37998.62 32696.60 384
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29398.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 28695.73 29798.85 15498.75 26897.91 15996.42 30299.06 23090.94 37495.59 36097.38 33894.41 26499.59 30190.93 36998.04 35299.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 31195.70 29895.57 35498.83 25588.57 38092.50 39197.72 32892.69 35596.49 34796.44 35893.72 28299.43 34393.61 32699.28 26198.71 308
PCF-MVS92.86 1894.36 33193.00 34898.42 21798.70 27997.56 18693.16 38999.11 22379.59 39797.55 29397.43 33592.19 30299.73 23979.85 39899.45 23697.97 353
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 36090.90 36496.27 33897.22 37891.24 36794.36 37693.33 38692.37 35892.24 39394.58 38866.20 40299.89 7593.16 33694.63 39297.66 367
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 20297.94 19197.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39391.59 35899.67 17396.82 381
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 36590.30 36893.70 37497.72 35684.34 39990.24 39497.42 33490.20 37893.79 38893.09 39390.90 31398.89 38686.57 38772.76 40197.87 356
MVEpermissive83.40 2292.50 35691.92 35894.25 36898.83 25591.64 35892.71 39083.52 40495.92 28986.46 40195.46 37695.20 24195.40 40080.51 39798.64 32495.73 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15596.25 39598.69 8897.02 26999.12 22188.90 38497.83 27498.86 19989.51 32298.90 38591.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ETVMVS92.60 35591.08 36397.18 30697.70 36093.65 32996.54 29495.70 36896.51 26694.68 37792.39 39661.80 40499.50 32986.97 38497.41 36298.40 333
testing22291.96 36290.37 36696.72 33097.47 37292.59 34496.11 31894.76 37396.83 25392.90 39192.87 39457.92 40599.55 31386.93 38597.52 35798.00 352
WB-MVSnew95.73 31095.57 30496.23 34096.70 38890.70 37496.07 32093.86 38395.60 29797.04 31795.45 37896.00 21299.55 31391.04 36798.31 33498.43 330
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
MM98.22 17397.99 18698.91 14898.66 29296.97 21997.89 18894.44 37699.54 2798.95 15799.14 13093.50 28399.92 5199.80 1299.96 2599.85 19
WAC-MVS90.90 37191.37 362
Syy-MVS96.04 30095.56 30597.49 29297.10 38094.48 29896.18 31596.58 35695.65 29594.77 37592.29 39791.27 31199.36 35298.17 11298.05 35098.63 318
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
myMVS_eth3d91.92 36390.45 36596.30 33697.10 38090.90 37196.18 31596.58 35695.65 29594.77 37592.29 39753.88 40699.36 35289.59 37798.05 35098.63 318
testing393.51 34692.09 35497.75 26898.60 29894.40 30097.32 25195.26 37197.56 19496.79 33495.50 37453.57 40799.77 21695.26 28398.97 30399.08 249
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26199.95 2399.11 5399.24 26799.82 25
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26799.93 4198.65 8598.83 31199.76 39
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
dmvs_re95.98 30395.39 31297.74 27098.86 24997.45 19298.37 13395.69 36997.95 16296.56 34195.95 36590.70 31497.68 39588.32 38096.13 38398.11 344
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
dmvs_testset92.94 35292.21 35395.13 36198.59 30190.99 37097.65 22192.09 39196.95 24794.00 38693.55 39292.34 30196.97 39872.20 40192.52 39697.43 374
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35298.03 16899.85 1597.62 18699.96 499.62 3493.98 27699.74 23499.52 3199.86 8199.79 30
test_vis1_n_192098.40 15198.92 6996.81 32699.74 3890.76 37398.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8499.76 1699.93 4499.79 30
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27599.79 2599.57 4292.85 29599.42 34599.79 1399.84 8699.60 75
test_fmvs1_n98.09 18598.28 15597.52 28999.68 5993.47 33198.63 9899.93 495.41 30699.68 3999.64 3291.88 30799.48 33499.82 899.87 7899.62 68
mvsany_test197.60 22297.54 22097.77 26497.72 35695.35 27195.36 34997.13 34394.13 33499.71 3399.33 9097.93 9899.30 36297.60 14598.94 30698.67 316
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
test_vis1_rt97.75 21297.72 20897.83 25998.81 26196.35 23997.30 25399.69 3694.61 32197.87 27098.05 29996.26 20298.32 39298.74 7798.18 33998.82 290
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38499.76 1699.56 21099.92 9
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25699.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
test_fmvs197.72 21497.94 19197.07 31398.66 29292.39 34997.68 21599.81 2395.20 31099.54 5699.44 7191.56 30999.41 34699.78 1599.77 12499.40 174
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26899.96 499.81 598.18 7899.45 34098.97 6499.79 11599.83 22
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27799.78 2699.82 496.14 20498.63 38999.82 899.93 4499.95 6
FE-MVS95.66 31294.95 32497.77 26498.53 31095.28 27399.40 1696.09 36393.11 34997.96 26599.26 10179.10 38399.77 21692.40 35098.71 31998.27 338
FA-MVS(test-final)96.99 26996.82 26197.50 29198.70 27994.78 28799.34 2096.99 34695.07 31198.48 22899.33 9088.41 33399.65 28296.13 25398.92 30898.07 347
iter_conf_final97.10 25896.65 27598.45 21398.53 31096.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38199.87 10198.68 8399.91 6399.40 174
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 24099.97 499.31 4199.98 1299.73 45
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
EGC-MVSNET85.24 36680.54 36999.34 7399.77 2999.20 3499.08 5999.29 17512.08 40220.84 40399.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
test250692.39 35791.89 35993.89 37299.38 14182.28 40299.32 2366.03 40899.08 8498.77 19299.57 4266.26 40199.84 13998.71 8099.95 3299.54 109
test111196.49 28996.82 26195.52 35599.42 13687.08 38899.22 4287.14 40099.11 7299.46 7199.58 4188.69 32799.86 11098.80 7299.95 3299.62 68
ECVR-MVScopyleft96.42 29196.61 27695.85 34799.38 14188.18 38499.22 4286.00 40299.08 8499.36 9299.57 4288.47 33299.82 16698.52 9499.95 3299.54 109
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 38199.41 3798.29 33598.45 327
DVP-MVS++98.90 7698.70 9399.51 4398.43 31999.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
PC_three_145293.27 34699.40 8398.54 25298.22 7497.00 39795.17 28499.45 23699.49 128
No_MVS99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
eth-test20.00 410
eth-test0.00 410
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
test_method79.78 36779.50 37080.62 38380.21 40645.76 40970.82 39798.41 30731.08 40180.89 40297.71 31884.85 35397.37 39691.51 36080.03 40098.75 305
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27599.94 3699.25 4699.96 2599.42 162
h-mvs3397.77 21197.33 23599.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 33099.96 1298.11 11496.34 37999.49 128
hse-mvs297.46 23197.07 24698.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 33099.79 19998.11 11497.39 36398.81 294
CL-MVSNet_self_test97.44 23497.22 23998.08 24498.57 30595.78 25894.30 37798.79 27996.58 26598.60 21298.19 28894.74 25999.64 28596.41 23598.84 31098.82 290
KD-MVS_2432*160092.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
AUN-MVS96.24 29795.45 30898.60 19298.70 27997.22 20697.38 24697.65 33195.95 28895.53 36797.96 30782.11 37299.79 19996.31 24097.44 36098.80 299
ZD-MVS99.01 22198.84 7599.07 22994.10 33598.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
IU-MVS99.49 11699.15 4798.87 26292.97 35099.41 8096.76 20499.62 18799.66 59
OPU-MVS98.82 15798.59 30198.30 11698.10 15898.52 25598.18 7898.75 38894.62 29699.48 23399.41 165
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 334
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25798.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
cl2295.79 30895.39 31296.98 31696.77 38792.79 34194.40 37598.53 30094.59 32297.89 26998.17 28982.82 36999.24 36896.37 23699.03 29498.92 278
miper_ehance_all_eth97.06 26297.03 24897.16 31097.83 35293.06 33594.66 36799.09 22795.99 28798.69 19998.45 26592.73 29799.61 29696.79 20099.03 29498.82 290
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39392.27 35393.69 38698.89 25991.14 37298.30 24197.35 34190.58 31599.58 30596.31 24099.03 29498.60 320
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
cl____97.02 26596.83 26097.58 28297.82 35394.04 31194.66 36799.16 21397.04 24398.63 20698.71 22488.68 32999.69 25497.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26596.84 25997.58 28297.82 35394.03 31294.66 36799.16 21397.04 24398.63 20698.71 22488.69 32799.69 25497.00 17999.81 10099.01 261
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34592.77 34294.71 36499.18 20697.27 22598.56 21998.74 22091.89 30699.69 25497.06 17799.81 10099.05 253
9.1497.78 20299.07 20997.53 23599.32 15495.53 30098.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
save fliter99.11 20097.97 15396.53 29699.02 24198.24 139
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33894.47 29994.78 36393.24 38794.72 31989.56 39795.87 36878.57 38699.81 17996.91 18797.11 37198.46 325
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
EIA-MVS98.00 19197.74 20598.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33895.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
miper_refine_blended92.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33792.85 34095.15 35599.31 15997.25 22798.74 19798.78 21490.07 31899.78 21097.19 16499.80 11099.11 248
ETV-MVS98.03 18897.86 19998.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 366
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
D2MVS97.84 20897.84 20097.83 25999.14 19694.74 28996.94 27498.88 26095.84 29198.89 17098.96 17594.40 26599.69 25497.55 14699.95 3299.05 253
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
DPM-MVS96.32 29395.59 30398.51 20798.76 26697.21 20794.54 37398.26 31191.94 36296.37 34897.25 34293.06 29099.43 34391.42 36198.74 31598.89 282
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
test_yl96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
thisisatest053095.27 32094.45 32997.74 27099.19 18194.37 30197.86 19490.20 39797.17 23798.22 24597.65 32273.53 39499.90 6596.90 19299.35 24998.95 272
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
Anonymous20240521197.90 19697.50 22399.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31799.78 21097.36 15699.31 25599.19 236
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
tttt051795.64 31394.98 32297.64 27899.36 14893.81 32398.72 9090.47 39698.08 15698.67 20198.34 27673.88 39399.92 5197.77 13799.51 22499.20 231
our_test_397.39 23797.73 20796.34 33598.70 27989.78 37794.61 37098.97 24896.50 26799.04 14398.85 20295.98 21799.84 13997.26 16199.67 17399.41 165
thisisatest051594.12 33893.16 34596.97 31798.60 29892.90 33993.77 38590.61 39594.10 33596.91 32495.87 36874.99 39299.80 18694.52 29999.12 28798.20 340
ppachtmachnet_test97.50 22797.74 20596.78 32898.70 27991.23 36894.55 37299.05 23396.36 27299.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33398.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 294
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14899.10 6099.05 141
thres100view90094.19 33593.67 33995.75 35099.06 21391.35 36398.03 16894.24 38098.33 13097.40 30594.98 38379.84 37699.62 29083.05 39298.08 34796.29 385
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
tfpn200view994.03 33993.44 34195.78 34998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34796.29 385
c3_l97.36 23897.37 23197.31 30098.09 34193.25 33395.01 35899.16 21397.05 24298.77 19298.72 22392.88 29399.64 28596.93 18699.76 13599.05 253
CHOSEN 280x42095.51 31795.47 30695.65 35398.25 33188.27 38393.25 38898.88 26093.53 34394.65 37897.15 34586.17 34399.93 4197.41 15499.93 4498.73 307
CANet97.87 20197.76 20398.19 23697.75 35595.51 26596.76 28599.05 23397.74 17796.93 32198.21 28695.59 23099.89 7597.86 13399.93 4499.19 236
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31998.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 334
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34499.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31498.79 27997.23 23395.14 37298.24 28393.22 28599.84 13997.34 15799.84 8699.04 257
MVS_030498.10 18297.88 19798.76 17198.82 25896.50 23597.90 18691.35 39499.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31798.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 26099.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 35598.81 294
sam_mvs84.29 361
IterMVS-SCA-FT97.85 20798.18 16696.87 32299.27 16291.16 36995.53 34299.25 18799.10 7999.41 8099.35 8493.10 28899.96 1298.65 8599.94 4099.49 128
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32996.55 22699.50 23199.26 220
MTGPAbinary99.20 198
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
Effi-MVS+98.02 18997.82 20198.62 18798.53 31097.19 20997.33 25099.68 4197.30 22296.68 33697.46 33498.56 5299.80 18696.63 21598.20 33898.86 287
xiu_mvs_v2_base97.16 25697.49 22496.17 34298.54 30892.46 34795.45 34698.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 389
xiu_mvs_v1_base97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35496.42 30299.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
pmmvs597.64 22097.49 22498.08 24499.14 19695.12 28096.70 28999.05 23393.77 34098.62 20898.83 20593.23 28499.75 22998.33 10599.76 13599.36 192
test_post197.59 22920.48 40483.07 36799.66 27794.16 310
test_post21.25 40383.86 36399.70 250
Fast-Effi-MVS+97.67 21897.38 23098.57 19698.71 27597.43 19497.23 25899.45 10794.82 31896.13 35196.51 35498.52 5499.91 6096.19 24798.83 31198.37 336
patchmatchnet-post98.77 21684.37 35899.85 122
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29999.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
GG-mvs-BLEND94.76 36494.54 40192.13 35599.31 2780.47 40688.73 39991.01 39967.59 39998.16 39482.30 39694.53 39393.98 396
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
Anonymous2023120698.21 17598.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 28098.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
MTMP97.93 18191.91 392
gm-plane-assit94.83 40081.97 40388.07 38794.99 38299.60 29791.76 354
test9_res93.28 33599.15 28199.38 184
MVP-Stereo98.08 18697.92 19398.57 19698.96 22996.79 22797.90 18699.18 20696.41 27198.46 22998.95 17995.93 22099.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 27598.08 14095.96 32599.03 23891.40 36895.85 35797.53 32896.52 19099.76 222
train_agg97.10 25896.45 28399.07 12198.71 27598.08 14095.96 32599.03 23891.64 36395.85 35797.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
gg-mvs-nofinetune92.37 35891.20 36295.85 34795.80 39992.38 35099.31 2781.84 40599.75 591.83 39499.74 1368.29 39699.02 37887.15 38397.12 37096.16 388
SCA96.41 29296.66 27395.67 35198.24 33288.35 38295.85 33396.88 35296.11 28197.67 28498.67 23293.10 28899.85 12294.16 31099.22 27098.81 294
Patchmatch-test96.55 28496.34 28597.17 30898.35 32593.06 33598.40 13097.79 32697.33 21898.41 23498.67 23283.68 36499.69 25495.16 28599.31 25598.77 302
test_898.67 28798.01 14895.91 33099.02 24191.64 36395.79 35997.50 33196.47 19299.76 222
MS-PatchMatch97.68 21797.75 20497.45 29598.23 33493.78 32497.29 25498.84 27196.10 28298.64 20598.65 23796.04 20999.36 35296.84 19899.14 28299.20 231
Patchmatch-RL test97.26 24697.02 24997.99 25299.52 10495.53 26496.13 31799.71 3397.47 20299.27 10899.16 12384.30 36099.62 29097.89 12899.77 12498.81 294
cdsmvs_eth3d_5k24.66 36932.88 3720.00 3870.00 4100.00 4120.00 39899.10 2250.00 4050.00 40697.58 32699.21 160.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.17 37210.90 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40598.07 860.00 4060.00 4050.00 4040.00 402
agg_prior292.50 34999.16 27999.37 186
agg_prior98.68 28697.99 14999.01 24495.59 36099.77 216
tmp_tt78.77 36878.73 37178.90 38458.45 40774.76 40894.20 37878.26 40739.16 40086.71 40092.82 39580.50 37475.19 40386.16 38892.29 39786.74 398
canonicalmvs98.34 15898.26 15898.58 19498.46 31697.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33998.08 11798.71 31998.46 325
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
alignmvs97.35 23996.88 25698.78 16798.54 30898.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33599.55 31398.18 11198.96 30498.70 311
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22499.84 13999.50 3299.91 6399.54 109
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39199.87 10198.50 9599.92 5599.40 174
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2399.45 3599.96 2599.88 14
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
PS-MVSNAJ97.08 26197.39 22996.16 34498.56 30692.46 34795.24 35298.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 390
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32797.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
test_prior497.97 15395.86 331
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
test_prior295.74 33696.48 26996.11 35297.63 32495.92 22194.16 31099.20 273
X-MVStestdata94.32 33292.59 35099.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 40097.50 13399.83 15696.79 20099.53 21999.56 98
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
旧先验295.76 33588.56 38697.52 29699.66 27794.48 300
新几何295.93 328
新几何198.91 14898.94 23197.76 17498.76 28387.58 38896.75 33598.10 29494.80 25599.78 21092.73 34599.00 29999.20 231
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23499.01 29899.23 226
无先验95.74 33698.74 28889.38 38299.73 23992.38 35199.22 230
原ACMM295.53 342
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35796.07 35498.10 29495.39 23799.71 24792.61 34898.99 30099.08 249
test22298.92 23796.93 22495.54 34198.78 28185.72 39196.86 33098.11 29394.43 26399.10 28999.23 226
testdata299.79 19992.80 343
segment_acmp97.02 162
testdata98.09 24198.93 23395.40 27098.80 27890.08 37997.45 30298.37 27295.26 23999.70 25093.58 32898.95 30599.17 242
testdata195.44 34796.32 274
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
131495.74 30995.60 30296.17 34297.53 36792.75 34398.07 16298.31 31091.22 37094.25 38196.68 35295.53 23199.03 37791.64 35797.18 36996.74 382
LFMVS97.20 25296.72 26798.64 18298.72 27296.95 22298.93 7594.14 38299.74 698.78 18999.01 16284.45 35799.73 23997.44 15299.27 26299.25 221
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25299.79 19998.34 10399.63 18499.34 198
VDDNet98.21 17597.95 18999.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31699.80 18697.88 13199.20 27399.48 138
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
MVS93.19 35092.09 35496.50 33396.91 38394.03 31298.07 16298.06 32268.01 39894.56 38096.48 35695.96 21999.30 36283.84 39196.89 37496.17 387
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21799.79 19999.33 3999.90 7099.51 121
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 40196.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 30695.32 31597.49 29298.60 29894.15 30893.83 38497.93 32495.49 30196.68 33697.42 33683.21 36599.30 36296.22 24598.55 32999.01 261
MSLP-MVS++98.02 18998.14 17397.64 27898.58 30395.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38797.55 14699.41 24198.94 276
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33891.74 35797.92 18397.76 32790.23 37596.51 34498.91 18685.61 34899.85 12292.88 33996.90 37298.69 312
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
CVMVSNet96.25 29697.21 24093.38 37899.10 20280.56 40597.20 26298.19 31696.94 24899.00 14899.02 15389.50 32399.80 18696.36 23899.59 19899.78 33
pmmvs497.58 22597.28 23698.51 20798.84 25396.93 22495.40 34898.52 30193.60 34298.61 21098.65 23795.10 24499.60 29796.97 18499.79 11598.99 265
EU-MVSNet97.66 21998.50 12195.13 36199.63 7585.84 39198.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26398.24 10799.87 7899.87 16
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25599.78 21098.13 11399.13 28499.31 209
test-LLR93.90 34193.85 33594.04 36996.53 39084.62 39694.05 38192.39 38996.17 27894.12 38395.07 37982.30 37099.67 26695.87 26398.18 33997.82 357
TESTMET0.1,192.19 36191.77 36093.46 37696.48 39282.80 40194.05 38191.52 39394.45 32794.00 38694.88 38566.65 40099.56 31095.78 26898.11 34598.02 349
test-mter92.33 35991.76 36194.04 36996.53 39084.62 39694.05 38192.39 38994.00 33894.12 38395.07 37965.63 40399.67 26695.87 26398.18 33997.82 357
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 33196.50 23098.99 30099.34 198
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
thres600view794.45 33093.83 33696.29 33799.06 21391.53 35997.99 17694.24 38098.34 12997.44 30395.01 38179.84 37699.67 26684.33 39098.23 33697.66 367
ADS-MVSNet95.24 32194.93 32596.18 34198.14 33890.10 37697.92 18397.32 33990.23 37596.51 34498.91 18685.61 34899.74 23492.88 33996.90 37298.69 312
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 37020.53 3736.87 38612.05 4084.20 41193.62 3876.73 4094.62 40410.41 40424.33 4018.28 4093.56 4059.69 40415.07 40212.86 401
thres40094.14 33793.44 34196.24 33998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34797.66 367
test12317.04 37120.11 3747.82 38510.25 4094.91 41094.80 3624.47 4104.93 40310.00 40524.28 4029.69 4083.64 40410.14 40312.43 40314.92 400
thres20093.72 34493.14 34695.46 35898.66 29291.29 36596.61 29394.63 37597.39 21396.83 33193.71 39179.88 37599.56 31082.40 39598.13 34495.54 394
test0.0.03 194.51 32993.69 33896.99 31596.05 39693.61 33094.97 35993.49 38496.17 27897.57 29294.88 38582.30 37099.01 38093.60 32794.17 39498.37 336
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35697.71 32988.57 38597.71 28198.08 29779.39 38099.82 16696.19 24799.11 28898.43 330
EMVS93.83 34294.02 33493.23 37996.83 38684.96 39489.77 39696.32 36097.92 16597.43 30496.36 36186.17 34398.93 38387.68 38297.73 35595.81 392
E-PMN94.17 33694.37 33193.58 37596.86 38485.71 39390.11 39597.07 34498.17 14997.82 27697.19 34384.62 35698.94 38289.77 37597.68 35696.09 391
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
MCST-MVS98.00 19197.63 21699.10 11599.24 16798.17 12896.89 27998.73 28995.66 29497.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
mvs_anonymous97.83 21098.16 17096.87 32298.18 33691.89 35697.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34298.95 272
MVS_Test98.18 17898.36 14597.67 27498.48 31494.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26899.85 12296.60 21698.72 31799.37 186
CDPH-MVS97.26 24696.66 27399.07 12199.00 22298.15 12996.03 32199.01 24491.21 37197.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
test1298.93 14598.58 30397.83 16698.66 29296.53 34295.51 23399.69 25499.13 28499.27 217
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30499.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 34392.83 34996.42 33497.70 36091.28 36696.84 28189.77 39893.96 33992.44 39295.93 36679.14 38299.77 21692.94 33796.76 37698.21 339
baseline195.96 30495.44 30997.52 28998.51 31393.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33799.63 28895.42 28089.27 39998.95 272
YYNet197.60 22297.67 21097.39 29999.04 21793.04 33895.27 35098.38 30897.25 22798.92 16698.95 17995.48 23599.73 23996.99 18198.74 31599.41 165
PMMVS298.07 18798.08 17998.04 24999.41 13894.59 29694.59 37199.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
MDA-MVSNet_test_wron97.60 22297.66 21397.41 29899.04 21793.09 33495.27 35098.42 30597.26 22698.88 17498.95 17995.43 23699.73 23997.02 17898.72 31799.41 165
tpmvs95.02 32595.25 31694.33 36796.39 39485.87 39098.08 16096.83 35395.46 30295.51 36898.69 22885.91 34699.53 32094.16 31096.23 38197.58 370
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
HQP_MVS97.99 19497.67 21098.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24899.70 25094.42 30499.51 22499.45 151
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 248
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25999.36 247
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22999.85 12297.54 14899.85 8299.59 81
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
TSAR-MVS + GP.98.18 17897.98 18798.77 17098.71 27597.88 16196.32 30798.66 29296.33 27399.23 11998.51 25697.48 13799.40 34797.16 16699.46 23499.02 260
n20.00 411
nn0.00 411
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
door-mid99.57 61
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 36296.23 24498.38 33199.28 216
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22399.91 6099.32 4099.95 3299.70 52
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27999.97 499.26 4499.57 20799.43 159
jason97.45 23397.35 23397.76 26799.24 16793.93 31795.86 33198.42 30594.24 33198.50 22698.13 29094.82 25299.91 6097.22 16399.73 14299.43 159
jason: jason.
lupinMVS97.06 26296.86 25797.65 27698.88 24793.89 32195.48 34597.97 32393.53 34398.16 24997.58 32693.81 27999.91 6096.77 20399.57 20799.17 242
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
K. test v398.00 19197.66 21399.03 13199.79 2597.56 18699.19 4992.47 38899.62 2099.52 6299.66 2789.61 32199.96 1299.25 4699.81 10099.56 98
lessismore_v098.97 13999.73 3997.53 18886.71 40199.37 9099.52 5789.93 31999.92 5198.99 6399.72 14999.44 155
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4199.04 5999.84 8699.60 75
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25898.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32399.50 8697.30 22299.05 14198.98 17099.35 1299.32 35995.72 27099.68 16799.18 238
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
test1198.87 262
door99.41 121
EPNet_dtu94.93 32694.78 32795.38 35993.58 40287.68 38696.78 28395.69 36997.35 21789.14 39898.09 29688.15 33499.49 33194.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 22997.14 24598.54 20499.68 5996.09 24796.50 29799.62 4791.58 36598.84 18298.97 17292.36 30099.88 8496.76 20499.95 3299.67 58
EPNet96.14 29895.44 30998.25 23190.76 40595.50 26697.92 18394.65 37498.97 9392.98 39098.85 20289.12 32599.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30896.05 28395.55 363
ACMP_Plane98.67 28796.29 30896.05 28395.55 363
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 20098.93 7197.76 20799.28 17894.97 31498.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 341
HQP4-MVS95.56 36299.54 31899.32 205
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 277
CNVR-MVS98.17 18097.87 19899.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
NCCC97.86 20297.47 22799.05 12898.61 29698.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21699.66 27795.31 28298.82 31399.43 159
114514_t96.50 28895.77 29598.69 17999.48 12397.43 19497.84 19699.55 7281.42 39696.51 34498.58 24995.53 23199.67 26693.41 33399.58 20398.98 266
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
DSMNet-mixed97.42 23597.60 21896.87 32299.15 19591.46 36098.54 10999.12 22192.87 35397.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
tpm293.09 35192.58 35194.62 36597.56 36586.53 38997.66 21995.79 36786.15 39094.07 38598.23 28575.95 38999.53 32090.91 37096.86 37597.81 359
NP-MVS98.84 25397.39 19696.84 349
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
tpm cat193.29 34993.13 34793.75 37397.39 37484.74 39597.39 24597.65 33183.39 39594.16 38298.41 26782.86 36899.39 34991.56 35995.35 38997.14 377
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 34093.78 33794.51 36697.53 36785.83 39297.98 17795.96 36589.29 38394.99 37498.63 24278.63 38599.62 29094.54 29896.50 37798.09 346
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15698.92 25492.31 35996.91 32499.37 8085.44 35199.81 17997.39 15597.36 36697.81 359
JIA-IIPM95.52 31695.03 32197.00 31496.85 38594.03 31296.93 27695.82 36699.20 6594.63 37999.71 1783.09 36699.60 29794.42 30494.64 39197.36 375
Patchmtry97.35 23996.97 25098.50 20997.31 37696.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35199.85 12295.96 25899.83 9399.17 242
PatchT96.65 28196.35 28497.54 28797.40 37395.32 27297.98 17796.64 35599.33 5096.89 32899.42 7484.32 35999.81 17997.69 14497.49 35897.48 372
tpmrst95.07 32395.46 30793.91 37197.11 37984.36 39897.62 22496.96 34894.98 31396.35 34998.80 21185.46 35099.59 30195.60 27596.23 38197.79 362
BH-w/o95.13 32294.89 32695.86 34698.20 33591.31 36495.65 33897.37 33593.64 34196.52 34395.70 37093.04 29199.02 37888.10 38195.82 38697.24 376
tpm94.67 32894.34 33295.66 35297.68 36388.42 38197.88 18994.90 37294.46 32596.03 35698.56 25178.66 38499.79 19995.88 26095.01 39098.78 301
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 34099.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 27496.75 26697.08 31198.74 26993.33 33296.71 28898.26 31196.72 25998.44 23197.37 33995.20 24199.47 33791.89 35397.43 36198.44 329
RPMNet97.02 26596.93 25197.30 30197.71 35894.22 30398.11 15699.30 16799.37 4596.91 32499.34 8886.72 33899.87 10197.53 14997.36 36697.81 359
MVSTER96.86 27396.55 28097.79 26297.91 34994.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37399.80 18698.44 9899.82 9699.37 186
CPTT-MVS97.84 20897.36 23299.27 8999.31 15598.46 10598.29 13899.27 18194.90 31697.83 27498.37 27294.90 24899.84 13993.85 32399.54 21599.51 121
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32798.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
PVSNet_BlendedMVS97.55 22697.53 22197.60 28098.92 23793.77 32596.64 29199.43 11794.49 32397.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29999.74 23497.76 14195.60 38799.34 198
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21399.28 16096.78 23096.20 31399.27 18195.42 30398.28 24398.30 28093.16 28699.71 24794.99 28797.37 36498.87 286
PVSNet_Blended96.88 27296.68 27097.47 29498.92 23793.77 32594.71 36499.43 11790.98 37397.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
FMVSNet596.01 30195.20 31898.41 21897.53 36796.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39599.88 8497.27 16099.71 15499.25 221
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
new_pmnet96.99 26996.76 26597.67 27498.72 27294.89 28595.95 32798.20 31492.62 35698.55 22198.54 25294.88 25199.52 32493.96 31899.44 23998.59 322
FMVSNet397.50 22797.24 23898.29 22998.08 34295.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33699.81 17997.77 13799.69 16299.23 226
dp93.47 34793.59 34093.13 38096.64 38981.62 40497.66 21996.42 35992.80 35496.11 35298.64 24078.55 38799.59 30193.31 33492.18 39898.16 342
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27199.82 16697.97 12599.80 11099.29 214
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
N_pmnet97.63 22197.17 24198.99 13699.27 16297.86 16395.98 32293.41 38595.25 30899.47 7098.90 18995.63 22899.85 12296.91 18799.73 14299.27 217
cascas94.79 32794.33 33396.15 34596.02 39892.36 35192.34 39399.26 18685.34 39295.08 37394.96 38492.96 29298.53 39094.41 30798.59 32797.56 371
BH-RMVSNet96.83 27496.58 27997.58 28298.47 31594.05 30996.67 29097.36 33696.70 26197.87 27097.98 30395.14 24399.44 34290.47 37398.58 32899.25 221
UGNet98.53 13798.45 13198.79 16497.94 34796.96 22199.08 5998.54 29999.10 7996.82 33299.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 28096.27 28997.87 25798.81 26194.61 29596.77 28497.92 32594.94 31597.12 31297.74 31791.11 31299.82 16693.89 32098.15 34399.18 238
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
sss97.21 25196.93 25198.06 24698.83 25595.22 27696.75 28698.48 30394.49 32397.27 30997.90 30992.77 29699.80 18696.57 21999.32 25399.16 245
Test_1112_low_res96.99 26996.55 28098.31 22799.35 15295.47 26795.84 33499.53 8091.51 36796.80 33398.48 26391.36 31099.83 15696.58 21799.53 21999.62 68
1112_ss97.29 24596.86 25798.58 19499.34 15496.32 24096.75 28699.58 5493.14 34896.89 32897.48 33292.11 30499.86 11096.91 18799.54 21599.57 92
ab-mvs-re8.12 37310.83 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40697.48 3320.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
TR-MVS95.55 31595.12 32096.86 32597.54 36693.94 31696.49 29896.53 35894.36 33097.03 31996.61 35394.26 27099.16 37486.91 38696.31 38097.47 373
MDTV_nov1_ep13_2view74.92 40797.69 21490.06 38097.75 28085.78 34793.52 32998.69 312
MDTV_nov1_ep1395.22 31797.06 38283.20 40097.74 20996.16 36194.37 32996.99 32098.83 20583.95 36299.53 32093.90 31997.95 353
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
MIMVSNet96.62 28396.25 29097.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34599.65 28291.65 35699.21 27298.82 290
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 21697.35 23398.69 17998.73 27097.02 21896.92 27898.75 28695.89 29098.59 21498.67 23292.08 30599.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 124
IterMVS97.73 21398.11 17596.57 33199.24 16790.28 37595.52 34499.21 19698.86 10299.33 9799.33 9093.11 28799.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 24196.92 25398.57 19699.09 20597.99 14996.79 28299.35 14193.18 34797.71 28198.07 29895.00 24799.31 36093.97 31799.13 28498.42 332
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31999.30 16797.58 19198.10 25698.24 28398.25 6999.34 35696.69 21299.65 17999.12 247
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
ACMMP++99.68 167
HQP-MVS97.00 26896.49 28298.55 20198.67 28796.79 22796.29 30899.04 23696.05 28395.55 36396.84 34993.84 27799.54 31892.82 34199.26 26599.32 205
QAPM97.31 24296.81 26398.82 15798.80 26497.49 18999.06 6399.19 20290.22 37797.69 28399.16 12396.91 16799.90 6590.89 37199.41 24199.07 251
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 33295.62 30190.42 38298.46 31675.36 40696.29 30889.13 39995.25 30895.38 36999.75 1192.88 29399.19 37294.07 31699.39 24396.72 383
IS-MVSNet98.19 17797.90 19599.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30899.79 19995.49 27999.80 11099.48 138
HyFIR lowres test97.19 25396.60 27898.96 14099.62 7797.28 20195.17 35399.50 8694.21 33299.01 14798.32 27986.61 33999.99 297.10 17399.84 8699.60 75
EPMVS93.72 34493.27 34395.09 36396.04 39787.76 38598.13 15385.01 40394.69 32096.92 32298.64 24078.47 38899.31 36095.04 28696.46 37898.20 340
PAPM_NR96.82 27696.32 28698.30 22899.07 20996.69 23297.48 24098.76 28395.81 29296.61 34096.47 35794.12 27499.17 37390.82 37297.78 35499.06 252
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26299.17 12799.21 11194.81 25499.77 21696.96 18599.88 7599.44 155
PAPR95.29 31994.47 32897.75 26897.50 37195.14 27994.89 36198.71 29091.39 36995.35 37095.48 37594.57 26199.14 37684.95 38997.37 36498.97 269
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32495.72 27099.71 15499.32 205
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32699.73 23993.88 32199.79 11599.18 238
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32399.27 18197.60 19097.99 26498.25 28298.15 8499.38 35196.87 19599.57 20799.42 162
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
PatchMatch-RL97.24 24996.78 26498.61 19099.03 22097.83 16696.36 30599.06 23093.49 34597.36 30897.78 31495.75 22599.49 33193.44 33298.77 31498.52 323
API-MVS97.04 26496.91 25597.42 29797.88 35198.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37590.16 37499.02 29794.88 395
Test By Simon96.52 190
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
USDC97.41 23697.40 22897.44 29698.94 23193.67 32795.17 35399.53 8094.03 33798.97 15499.10 13795.29 23899.34 35695.84 26699.73 14299.30 212
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30399.90 6596.87 19599.68 16799.49 128
PMMVS96.51 28695.98 29298.09 24197.53 36795.84 25594.92 36098.84 27191.58 36596.05 35595.58 37195.68 22799.66 27795.59 27698.09 34698.76 304
PAPM91.88 36490.34 36796.51 33298.06 34392.56 34592.44 39297.17 34186.35 38990.38 39696.01 36386.61 33999.21 37170.65 40295.43 38897.75 363
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 25596.71 26898.55 20198.56 30698.05 14696.33 30698.93 25196.91 25097.06 31697.39 33794.38 26699.45 34091.66 35599.18 27898.14 343
PatchmatchNetpermissive95.58 31495.67 30095.30 36097.34 37587.32 38797.65 22196.65 35495.30 30797.07 31598.69 22884.77 35499.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 16697.95 18999.34 7398.44 31899.16 4398.12 15599.38 12896.01 28698.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
F-COLMAP97.30 24396.68 27099.14 10999.19 18198.39 10897.27 25799.30 16792.93 35196.62 33998.00 30195.73 22699.68 26392.62 34798.46 33099.35 196
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
wuyk23d96.06 29997.62 21791.38 38198.65 29598.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 39189.23 37899.77 12477.18 399
OMC-MVS97.88 20097.49 22499.04 13098.89 24698.63 8996.94 27499.25 18795.02 31298.53 22498.51 25697.27 14799.47 33793.50 33199.51 22499.01 261
MG-MVS96.77 27796.61 27697.26 30498.31 32893.06 33595.93 32898.12 32096.45 27097.92 26698.73 22193.77 28199.39 34991.19 36699.04 29399.33 203
AdaColmapbinary97.14 25796.71 26898.46 21298.34 32697.80 17296.95 27398.93 25195.58 29896.92 32297.66 32195.87 22299.53 32090.97 36899.14 28298.04 348
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35593.86 32299.27 26298.79 300
DeepMVS_CXcopyleft93.44 37798.24 33294.21 30594.34 37764.28 39991.34 39594.87 38789.45 32492.77 40277.54 40093.14 39593.35 397
TinyColmap97.89 19897.98 18797.60 28098.86 24994.35 30296.21 31299.44 11197.45 20999.06 13698.88 19697.99 9599.28 36694.38 30899.58 20399.18 238
MAR-MVS96.47 29095.70 29898.79 16497.92 34899.12 5798.28 13998.60 29792.16 36195.54 36696.17 36294.77 25899.52 32489.62 37698.23 33697.72 365
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 19697.69 20998.52 20699.17 18997.66 18197.19 26499.47 10296.31 27597.85 27398.20 28796.71 18399.52 32494.62 29699.72 14998.38 334
MSDG97.71 21597.52 22298.28 23098.91 24096.82 22694.42 37499.37 13297.65 18498.37 23998.29 28197.40 14099.33 35894.09 31599.22 27098.68 315
LS3D98.63 12198.38 14399.36 6497.25 37799.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
CLD-MVS97.49 22997.16 24298.48 21099.07 20997.03 21794.71 36499.21 19694.46 32598.06 25997.16 34497.57 12499.48 33494.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 34892.23 35297.08 31199.25 16697.86 16395.61 33997.16 34292.90 35293.76 38998.65 23775.94 39095.66 39979.30 39997.49 35897.73 364
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32897.70 14299.73 14297.89 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015