This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 3099.67 2799.48 999.81 19099.30 4699.97 2099.77 40
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 9498.73 9399.05 12998.76 27497.81 17399.25 4099.30 18098.57 13198.55 22999.33 9897.95 10799.90 6897.16 17999.67 18299.44 164
3Dnovator+97.89 398.69 11498.51 12799.24 9798.81 26998.40 10999.02 6699.19 21598.99 10098.07 27099.28 10797.11 16899.84 14996.84 21199.32 26399.47 154
DeepC-MVS97.60 498.97 7398.93 7399.10 11699.35 15497.98 15398.01 18399.46 11397.56 20999.54 6099.50 6498.97 2399.84 14998.06 12799.92 5799.49 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 17098.01 19599.23 9998.39 33698.97 7095.03 37999.18 21996.88 26999.33 10398.78 22698.16 9199.28 38596.74 21999.62 19699.44 164
DeepC-MVS_fast96.85 698.30 17398.15 18198.75 17698.61 30797.23 20797.76 21999.09 23897.31 23798.75 20198.66 24797.56 13699.64 29796.10 27099.55 22399.39 184
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 27496.68 28598.32 23798.32 33997.16 21598.86 8699.37 14589.48 40396.29 36799.15 14196.56 19999.90 6892.90 35899.20 28597.89 375
ACMH96.65 799.25 3699.24 4599.26 9299.72 4298.38 11199.07 6199.55 8098.30 14899.65 4999.45 7799.22 1599.76 23398.44 10599.77 12999.64 69
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 6499.00 6799.33 8099.71 4598.83 7998.60 10999.58 6299.11 7999.53 6499.18 13198.81 3399.67 27896.71 22499.77 12999.50 133
COLMAP_ROBcopyleft96.50 1098.99 6998.85 8399.41 6299.58 7799.10 6498.74 9299.56 7699.09 8999.33 10399.19 12798.40 6699.72 25795.98 27399.76 14199.42 171
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 29695.95 30798.65 18698.93 24298.09 13796.93 29299.28 19183.58 41698.13 26597.78 32996.13 21799.40 36693.52 34799.29 27098.45 343
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 8098.73 9399.48 5399.55 9499.14 5698.07 17299.37 14597.62 20199.04 15098.96 18898.84 3199.79 21097.43 16699.65 18899.49 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 31995.35 32997.55 29997.95 35994.79 29898.81 9196.94 36792.28 38295.17 38998.57 26389.90 33499.75 24091.20 38697.33 38898.10 366
OpenMVS_ROBcopyleft95.38 1495.84 32295.18 33597.81 27298.41 33597.15 21697.37 26298.62 31083.86 41598.65 21298.37 28794.29 27999.68 27588.41 40198.62 34296.60 406
ACMP95.32 1598.41 15798.09 18699.36 6699.51 10698.79 8297.68 22799.38 14195.76 31598.81 19498.82 21998.36 6899.82 17694.75 30999.77 12999.48 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29995.73 31198.85 15698.75 27697.91 16096.42 31899.06 24190.94 39695.59 37897.38 35394.41 27499.59 31490.93 39098.04 36999.05 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32695.70 31295.57 37398.83 26488.57 40092.50 41397.72 34292.69 37796.49 36496.44 37393.72 29299.43 36293.61 34499.28 27198.71 320
PCF-MVS92.86 1894.36 34893.00 36598.42 22798.70 28797.56 18993.16 41199.11 23579.59 42097.55 30797.43 35092.19 31399.73 25079.85 42099.45 24697.97 374
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 38290.90 38696.27 35497.22 39691.24 38294.36 39893.33 40792.37 38092.24 41594.58 40766.20 42199.89 8093.16 35594.63 41397.66 388
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 21397.94 20397.65 28799.71 4597.94 15998.52 11898.68 30598.99 10097.52 31099.35 9297.41 15098.18 41491.59 37999.67 18296.82 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 38790.30 39093.70 39697.72 36884.34 42090.24 41797.42 34990.20 40093.79 40793.09 41590.90 32798.89 40586.57 40972.76 42497.87 377
MVEpermissive83.40 2292.50 37791.92 37994.25 38898.83 26491.64 37292.71 41283.52 42695.92 31186.46 42495.46 39395.20 25295.40 42280.51 41998.64 33995.73 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 30795.44 32498.84 15796.25 41698.69 9097.02 28599.12 23388.90 40697.83 28898.86 21089.51 33698.90 40491.92 37299.51 23498.92 289
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
fmvsm_s_conf0.5_n_399.22 4199.37 2698.78 16999.46 12796.58 24497.65 23399.72 3799.47 3799.86 1999.50 6498.94 2599.89 8099.75 1999.97 2099.86 23
fmvsm_s_conf0.5_n_299.14 5199.31 3598.63 19299.49 11696.08 25997.38 26099.81 2699.48 3499.84 2299.57 4698.46 6299.89 8099.82 899.97 2099.91 13
fmvsm_s_conf0.1_n_299.20 4499.38 2498.65 18699.69 5496.08 25997.49 25399.90 1199.53 3199.88 1799.64 3498.51 5899.90 6899.83 799.98 1299.97 4
GDP-MVS97.50 23997.11 25898.67 18599.02 22996.85 23098.16 15999.71 3998.32 14698.52 23498.54 26583.39 38099.95 2498.79 8099.56 21999.19 244
BP-MVS197.40 25196.97 26498.71 18299.07 21696.81 23298.34 14497.18 35798.58 13098.17 25898.61 25884.01 37699.94 3798.97 6999.78 12399.37 193
reproduce_monomvs95.00 34295.25 33194.22 38997.51 38883.34 42197.86 20598.44 31898.51 13699.29 11299.30 10467.68 41699.56 32598.89 7599.81 10299.77 40
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25599.80 998.33 7399.91 6299.56 3299.95 3399.97 4
reproduce_model99.15 5098.97 7199.67 499.33 15799.44 1098.15 16099.47 11099.12 7899.52 6699.32 10298.31 7499.90 6897.78 14699.73 14899.66 63
reproduce-ours99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
our_new_method99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
mvs5depth99.30 2999.59 998.44 22599.65 6495.35 28299.82 399.94 299.83 499.42 8699.94 298.13 9499.96 1299.63 2799.96 26100.00 1
MVStest195.86 32095.60 31696.63 34495.87 42091.70 37197.93 19398.94 26098.03 17199.56 5699.66 2971.83 40998.26 41399.35 4399.24 27799.91 13
ttmdpeth97.91 20598.02 19497.58 29498.69 29294.10 32098.13 16298.90 26997.95 17797.32 32599.58 4495.95 23198.75 40796.41 25099.22 28199.87 20
WBMVS95.18 33794.78 34396.37 35097.68 37689.74 39795.80 35598.73 30297.54 21298.30 24998.44 28070.06 41099.82 17696.62 22999.87 7999.54 116
dongtai76.24 39175.95 39477.12 40792.39 42567.91 43190.16 41859.44 43282.04 41889.42 42094.67 40649.68 43081.74 42548.06 42577.66 42381.72 421
kuosan69.30 39268.95 39570.34 40887.68 42965.00 43291.11 41659.90 43169.02 42174.46 42688.89 42348.58 43168.03 42728.61 42672.33 42577.99 422
MVSMamba_PlusPlus98.83 9098.98 7098.36 23499.32 15896.58 24498.90 8099.41 13499.75 898.72 20499.50 6496.17 21599.94 3799.27 4899.78 12398.57 336
MGCFI-Net98.34 16698.28 16398.51 21598.47 32597.59 18898.96 7499.48 10299.18 7497.40 32095.50 39098.66 4499.50 34698.18 11898.71 33298.44 346
testing9193.32 36692.27 37096.47 34897.54 38191.25 38196.17 33596.76 37197.18 25393.65 40993.50 41365.11 42399.63 30093.04 35697.45 37998.53 337
testing1193.08 37192.02 37596.26 35597.56 37990.83 38996.32 32495.70 38896.47 28992.66 41393.73 41064.36 42499.59 31493.77 34297.57 37598.37 355
testing9993.04 37291.98 37896.23 35797.53 38390.70 39196.35 32295.94 38496.87 27093.41 41093.43 41463.84 42599.59 31493.24 35497.19 38998.40 351
UBG93.25 36892.32 36996.04 36497.72 36890.16 39495.92 34995.91 38596.03 30693.95 40693.04 41669.60 41299.52 34090.72 39497.98 37098.45 343
UWE-MVS92.38 37991.76 38294.21 39097.16 39784.65 41695.42 36988.45 42195.96 30996.17 36895.84 38566.36 41999.71 25891.87 37498.64 33998.28 358
ETVMVS92.60 37691.08 38597.18 31997.70 37393.65 34296.54 31095.70 38896.51 28594.68 39592.39 41961.80 42699.50 34686.97 40697.41 38298.40 351
sasdasda98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
testing22291.96 38490.37 38896.72 34397.47 39092.59 35796.11 33794.76 39496.83 27292.90 41292.87 41757.92 42799.55 32986.93 40797.52 37698.00 373
WB-MVSnew95.73 32595.57 31996.23 35796.70 40790.70 39196.07 33993.86 40495.60 31997.04 33495.45 39696.00 22399.55 32991.04 38898.31 35198.43 348
fmvsm_l_conf0.5_n_a99.19 4599.27 4198.94 14499.65 6497.05 21897.80 21299.76 3398.70 12099.78 3099.11 14798.79 3599.95 2499.85 599.96 2699.83 27
fmvsm_l_conf0.5_n99.21 4299.28 4099.02 13499.64 7097.28 20497.82 20999.76 3398.73 11799.82 2499.09 15398.81 3399.95 2499.86 499.96 2699.83 27
fmvsm_s_conf0.1_n_a99.17 4699.30 3898.80 16399.75 3396.59 24297.97 19299.86 1698.22 15699.88 1799.71 1998.59 5199.84 14999.73 2199.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4999.33 3198.64 18899.71 4596.10 25497.87 20499.85 1898.56 13499.90 1299.68 2298.69 4299.85 13199.72 2399.98 1299.97 4
fmvsm_s_conf0.5_n_a99.10 5999.20 4798.78 16999.55 9496.59 24297.79 21399.82 2598.21 15799.81 2799.53 6098.46 6299.84 14999.70 2499.97 2099.90 15
fmvsm_s_conf0.5_n99.09 6099.26 4398.61 19799.55 9496.09 25797.74 22199.81 2698.55 13599.85 2199.55 5498.60 5099.84 14999.69 2699.98 1299.89 16
MM98.22 18397.99 19798.91 15098.66 30296.97 22297.89 20094.44 39799.54 3098.95 16599.14 14493.50 29399.92 5399.80 1399.96 2699.85 25
WAC-MVS90.90 38791.37 383
Syy-MVS96.04 31495.56 32097.49 30597.10 39994.48 30996.18 33396.58 37495.65 31794.77 39392.29 42091.27 32399.36 37198.17 12098.05 36798.63 330
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5499.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 4099.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
myMVS_eth3d91.92 38590.45 38796.30 35297.10 39990.90 38796.18 33396.58 37495.65 31794.77 39392.29 42053.88 42899.36 37189.59 39998.05 36798.63 330
testing393.51 36392.09 37397.75 27998.60 30994.40 31197.32 26695.26 39297.56 20996.79 35195.50 39053.57 42999.77 22795.26 29998.97 31699.08 259
SSC-MVS98.71 10798.74 9198.62 19499.72 4296.08 25998.74 9298.64 30999.74 1099.67 4599.24 11894.57 27199.95 2499.11 5899.24 27799.82 30
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5999.92 899.57 4699.60 599.96 1299.74 2099.98 1299.89 16
WB-MVS98.52 14898.55 12298.43 22699.65 6495.59 27198.52 11898.77 29599.65 1899.52 6699.00 17894.34 27799.93 4498.65 9398.83 32499.76 45
test_fmvsmvis_n_192099.26 3599.49 1398.54 21299.66 6396.97 22298.00 18499.85 1899.24 6399.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 320
dmvs_re95.98 31795.39 32797.74 28198.86 25897.45 19598.37 14095.69 39097.95 17796.56 35895.95 38090.70 32897.68 41788.32 40296.13 40498.11 365
SDMVSNet99.23 4099.32 3398.96 14199.68 5797.35 20098.84 8999.48 10299.69 1399.63 5299.68 2299.03 2199.96 1297.97 13499.92 5799.57 99
dmvs_testset92.94 37392.21 37295.13 38198.59 31290.99 38697.65 23392.09 41296.95 26594.00 40493.55 41292.34 31296.97 42072.20 42392.52 41897.43 395
sd_testset99.28 3299.31 3599.19 10399.68 5798.06 14699.41 1499.30 18099.69 1399.63 5299.68 2299.25 1499.96 1297.25 17599.92 5799.57 99
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6499.93 699.30 10499.42 1099.96 1299.85 599.99 599.29 222
test_cas_vis1_n_192098.33 16998.68 10497.27 31699.69 5492.29 36598.03 17899.85 1897.62 20199.96 499.62 3793.98 28699.74 24599.52 3699.86 8399.79 35
test_vis1_n_192098.40 15998.92 7496.81 33999.74 3590.76 39098.15 16099.91 998.33 14499.89 1599.55 5495.07 25699.88 9499.76 1799.93 4699.79 35
test_vis1_n98.31 17298.50 12997.73 28399.76 2994.17 31898.68 10299.91 996.31 29599.79 2999.57 4692.85 30599.42 36499.79 1499.84 8899.60 82
test_fmvs1_n98.09 19498.28 16397.52 30299.68 5793.47 34498.63 10599.93 595.41 32899.68 4399.64 3491.88 31899.48 35299.82 899.87 7999.62 73
mvsany_test197.60 23397.54 23197.77 27597.72 36895.35 28295.36 37197.13 36094.13 35699.71 3799.33 9897.93 10899.30 38197.60 15898.94 31998.67 328
APD_test198.83 9098.66 10799.34 7599.78 2399.47 998.42 13699.45 11798.28 15398.98 15799.19 12797.76 11999.58 32096.57 23499.55 22398.97 280
test_vis1_rt97.75 22397.72 21997.83 27098.81 26996.35 24997.30 26899.69 4394.61 34397.87 28498.05 31496.26 21398.32 41298.74 8698.18 35698.82 302
test_vis3_rt99.14 5199.17 4999.07 12299.78 2398.38 11198.92 7999.94 297.80 19099.91 1199.67 2797.15 16598.91 40399.76 1799.56 21999.92 12
test_fmvs298.70 11198.97 7197.89 26799.54 9994.05 32198.55 11499.92 796.78 27599.72 3599.78 1096.60 19899.67 27899.91 299.90 7099.94 10
test_fmvs197.72 22597.94 20397.07 32698.66 30292.39 36297.68 22799.81 2695.20 33299.54 6099.44 7891.56 32199.41 36599.78 1699.77 12999.40 183
test_fmvs399.12 5799.41 2198.25 24399.76 2995.07 29499.05 6499.94 297.78 19299.82 2499.84 398.56 5599.71 25899.96 199.96 2699.97 4
mvsany_test398.87 8598.92 7498.74 18099.38 14396.94 22698.58 11199.10 23696.49 28799.96 499.81 698.18 8799.45 35998.97 6999.79 11899.83 27
testf199.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
APD_test299.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
test_f98.67 12298.87 7998.05 26099.72 4295.59 27198.51 12399.81 2696.30 29799.78 3099.82 596.14 21698.63 40999.82 899.93 4699.95 9
FE-MVS95.66 32794.95 34097.77 27598.53 32195.28 28599.40 1696.09 38193.11 37197.96 27899.26 11379.10 39899.77 22792.40 37098.71 33298.27 359
FA-MVS(test-final)96.99 28396.82 27697.50 30498.70 28794.78 29999.34 2096.99 36395.07 33398.48 23799.33 9888.41 34799.65 29496.13 26998.92 32198.07 368
balanced_conf0398.63 12898.72 9598.38 23198.66 30296.68 24198.90 8099.42 13098.99 10098.97 16199.19 12795.81 23699.85 13198.77 8499.77 12998.60 332
MonoMVSNet96.25 30996.53 29695.39 37896.57 40991.01 38598.82 9097.68 34598.57 13198.03 27599.37 8790.92 32697.78 41694.99 30393.88 41697.38 396
patch_mono-298.51 14998.63 11198.17 24999.38 14394.78 29997.36 26399.69 4398.16 16798.49 23699.29 10697.06 16999.97 598.29 11399.91 6499.76 45
EGC-MVSNET85.24 38880.54 39199.34 7599.77 2699.20 3899.08 5899.29 18812.08 42620.84 42799.42 8097.55 13799.85 13197.08 18799.72 15698.96 282
test250692.39 37891.89 38093.89 39499.38 14382.28 42499.32 2366.03 43099.08 9198.77 19899.57 4666.26 42099.84 14998.71 8999.95 3399.54 116
test111196.49 30296.82 27695.52 37499.42 13887.08 40899.22 4287.14 42299.11 7999.46 7899.58 4488.69 34199.86 11998.80 7999.95 3399.62 73
ECVR-MVScopyleft96.42 30496.61 29095.85 36699.38 14388.18 40499.22 4286.00 42499.08 9199.36 9899.57 4688.47 34699.82 17698.52 10299.95 3399.54 116
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
tt080598.69 11498.62 11398.90 15399.75 3399.30 2199.15 5396.97 36498.86 11298.87 18597.62 34098.63 4798.96 40099.41 4198.29 35298.45 343
DVP-MVS++98.90 8298.70 10199.51 4698.43 33199.15 5199.43 1299.32 16798.17 16499.26 11999.02 16698.18 8799.88 9497.07 18899.45 24699.49 137
FOURS199.73 3699.67 399.43 1299.54 8499.43 4499.26 119
MSC_two_6792asdad99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
PC_three_145293.27 36899.40 9198.54 26598.22 8397.00 41995.17 30099.45 24699.49 137
No_MVS99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
test_one_060199.39 14299.20 3899.31 17298.49 13798.66 21199.02 16697.64 129
eth-test20.00 434
eth-test0.00 434
GeoE99.05 6598.99 6999.25 9599.44 13298.35 11798.73 9699.56 7698.42 14098.91 17598.81 22198.94 2599.91 6298.35 10999.73 14899.49 137
test_method79.78 38979.50 39280.62 40580.21 43045.76 43370.82 42198.41 32231.08 42580.89 42597.71 33384.85 36797.37 41891.51 38180.03 42298.75 317
Anonymous2024052198.69 11498.87 7998.16 25199.77 2695.11 29399.08 5899.44 12199.34 5399.33 10399.55 5494.10 28599.94 3799.25 5199.96 2699.42 171
h-mvs3397.77 22297.33 24699.10 11699.21 18197.84 16698.35 14298.57 31299.11 7998.58 22499.02 16688.65 34499.96 1298.11 12296.34 40099.49 137
hse-mvs297.46 24497.07 25998.64 18898.73 27897.33 20197.45 25797.64 34899.11 7998.58 22497.98 31888.65 34499.79 21098.11 12297.39 38398.81 306
CL-MVSNet_self_test97.44 24797.22 25198.08 25698.57 31695.78 26994.30 39998.79 29296.58 28498.60 22098.19 30394.74 26999.64 29796.41 25098.84 32398.82 302
KD-MVS_2432*160092.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
KD-MVS_self_test99.25 3699.18 4899.44 5999.63 7499.06 6898.69 10199.54 8499.31 5699.62 5599.53 6097.36 15399.86 11999.24 5399.71 16199.39 184
AUN-MVS96.24 31195.45 32398.60 19998.70 28797.22 20997.38 26097.65 34695.95 31095.53 38597.96 32282.11 38899.79 21096.31 25697.44 38098.80 311
ZD-MVS99.01 23098.84 7899.07 24094.10 35798.05 27398.12 30796.36 21099.86 11992.70 36699.19 288
SR-MVS-dyc-post98.81 9498.55 12299.57 2099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.49 14799.86 11996.56 23899.39 25399.45 160
RE-MVS-def98.58 12099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.75 12096.56 23899.39 25399.45 160
SED-MVS98.91 8098.72 9599.49 5199.49 11699.17 4398.10 16899.31 17298.03 17199.66 4699.02 16698.36 6899.88 9496.91 20099.62 19699.41 174
IU-MVS99.49 11699.15 5198.87 27592.97 37299.41 8896.76 21799.62 19699.66 63
OPU-MVS98.82 15998.59 31298.30 11898.10 16898.52 26998.18 8798.75 40794.62 31399.48 24399.41 174
test_241102_TWO99.30 18098.03 17199.26 11999.02 16697.51 14399.88 9496.91 20099.60 20399.66 63
test_241102_ONE99.49 11699.17 4399.31 17297.98 17499.66 4698.90 20098.36 6899.48 352
SF-MVS98.53 14598.27 16699.32 8299.31 15998.75 8398.19 15499.41 13496.77 27698.83 18998.90 20097.80 11799.82 17695.68 28999.52 23299.38 191
cl2295.79 32395.39 32796.98 32996.77 40692.79 35494.40 39798.53 31494.59 34497.89 28298.17 30482.82 38599.24 38796.37 25299.03 30698.92 289
miper_ehance_all_eth97.06 27697.03 26197.16 32397.83 36493.06 34894.66 38999.09 23895.99 30898.69 20698.45 27992.73 30899.61 30996.79 21399.03 30698.82 302
miper_enhance_ethall96.01 31595.74 31096.81 33996.41 41492.27 36693.69 40898.89 27291.14 39498.30 24997.35 35690.58 32999.58 32096.31 25699.03 30698.60 332
ZNCC-MVS98.68 11998.40 14699.54 3099.57 8299.21 3298.46 13199.29 18897.28 24098.11 26798.39 28498.00 10299.87 11196.86 21099.64 19099.55 112
dcpmvs_298.78 9899.11 5797.78 27499.56 9093.67 34099.06 6299.86 1699.50 3399.66 4699.26 11397.21 16399.99 298.00 13299.91 6499.68 59
cl____97.02 27996.83 27597.58 29497.82 36594.04 32394.66 38999.16 22697.04 26098.63 21498.71 23688.68 34399.69 26697.00 19299.81 10299.00 275
DIV-MVS_self_test97.02 27996.84 27497.58 29497.82 36594.03 32494.66 38999.16 22697.04 26098.63 21498.71 23688.69 34199.69 26697.00 19299.81 10299.01 271
eth_miper_zixun_eth97.23 26597.25 24997.17 32198.00 35892.77 35594.71 38699.18 21997.27 24198.56 22798.74 23291.89 31799.69 26697.06 19099.81 10299.05 263
9.1497.78 21399.07 21697.53 24899.32 16795.53 32298.54 23198.70 23997.58 13499.76 23394.32 32699.46 244
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
save fliter99.11 20797.97 15496.53 31299.02 25298.24 154
ET-MVSNet_ETH3D94.30 35193.21 36197.58 29498.14 35194.47 31094.78 38593.24 40894.72 34189.56 41995.87 38378.57 40199.81 19096.91 20097.11 39298.46 340
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6299.90 399.86 1999.78 1099.58 699.95 2499.00 6799.95 3399.78 38
EIA-MVS98.00 20097.74 21698.80 16398.72 28098.09 13798.05 17599.60 5997.39 22996.63 35595.55 38897.68 12399.80 19796.73 22199.27 27298.52 338
miper_refine_blended92.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
miper_lstm_enhance97.18 26997.16 25497.25 31898.16 34992.85 35395.15 37799.31 17297.25 24398.74 20398.78 22690.07 33299.78 22197.19 17799.80 11399.11 258
ETV-MVS98.03 19797.86 21098.56 20898.69 29298.07 14397.51 25199.50 9398.10 16997.50 31295.51 38998.41 6599.88 9496.27 25999.24 27797.71 387
CS-MVS99.13 5599.10 5999.24 9799.06 22199.15 5199.36 1999.88 1499.36 5298.21 25798.46 27898.68 4399.93 4499.03 6599.85 8498.64 329
D2MVS97.84 21997.84 21197.83 27099.14 20394.74 30196.94 29098.88 27395.84 31398.89 17898.96 18894.40 27599.69 26697.55 15999.95 3399.05 263
DVP-MVScopyleft98.77 10198.52 12699.52 4299.50 10999.21 3298.02 18098.84 28497.97 17599.08 14199.02 16697.61 13299.88 9496.99 19499.63 19399.48 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 16499.08 14199.02 16697.89 10999.88 9497.07 18899.71 16199.70 57
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16799.88 9496.99 19499.63 19399.68 59
test072699.50 10999.21 3298.17 15899.35 15497.97 17599.26 11999.06 15497.61 132
SR-MVS98.71 10798.43 14299.57 2099.18 19599.35 1698.36 14199.29 18898.29 15198.88 18198.85 21397.53 14099.87 11196.14 26799.31 26599.48 147
DPM-MVS96.32 30695.59 31898.51 21598.76 27497.21 21094.54 39598.26 32691.94 38496.37 36597.25 35793.06 30099.43 36291.42 38298.74 32898.89 294
GST-MVS98.61 13298.30 16199.52 4299.51 10699.20 3898.26 14899.25 20097.44 22698.67 20998.39 28497.68 12399.85 13196.00 27199.51 23499.52 127
test_yl96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
thisisatest053095.27 33594.45 34697.74 28199.19 18894.37 31297.86 20590.20 41897.17 25498.22 25697.65 33773.53 40899.90 6896.90 20599.35 25998.95 283
Anonymous2024052998.93 7898.87 7999.12 11299.19 18898.22 12799.01 6798.99 25899.25 6299.54 6099.37 8797.04 17099.80 19797.89 13799.52 23299.35 204
Anonymous20240521197.90 20697.50 23499.08 12098.90 25098.25 12198.53 11796.16 37998.87 11199.11 13698.86 21090.40 33199.78 22197.36 16999.31 26599.19 244
DCV-MVSNet96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
tttt051795.64 32894.98 33897.64 28999.36 15093.81 33598.72 9790.47 41798.08 17098.67 20998.34 29173.88 40799.92 5397.77 14799.51 23499.20 239
our_test_397.39 25297.73 21896.34 35198.70 28789.78 39694.61 39298.97 25996.50 28699.04 15098.85 21395.98 22899.84 14997.26 17499.67 18299.41 174
thisisatest051594.12 35593.16 36296.97 33098.60 30992.90 35293.77 40790.61 41694.10 35796.91 34195.87 38374.99 40699.80 19794.52 31699.12 29998.20 361
ppachtmachnet_test97.50 23997.74 21696.78 34198.70 28791.23 38394.55 39499.05 24496.36 29299.21 12798.79 22496.39 20699.78 22196.74 21999.82 9899.34 206
SMA-MVScopyleft98.40 15998.03 19399.51 4699.16 19899.21 3298.05 17599.22 20894.16 35598.98 15799.10 15097.52 14299.79 21096.45 24899.64 19099.53 124
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 306
DPE-MVScopyleft98.59 13598.26 16799.57 2099.27 16799.15 5197.01 28699.39 13997.67 19799.44 8298.99 17997.53 14099.89 8095.40 29799.68 17699.66 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 15099.10 6499.05 148
thres100view90094.19 35293.67 35695.75 36999.06 22191.35 37798.03 17894.24 40198.33 14497.40 32094.98 40179.84 39299.62 30383.05 41498.08 36496.29 407
tfpnnormal98.90 8298.90 7698.91 15099.67 6197.82 17099.00 6999.44 12199.45 4099.51 7199.24 11898.20 8699.86 11995.92 27599.69 17199.04 267
tfpn200view994.03 35693.44 35895.78 36898.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36496.29 407
c3_l97.36 25397.37 24297.31 31398.09 35493.25 34695.01 38099.16 22697.05 25998.77 19898.72 23592.88 30399.64 29796.93 19999.76 14199.05 263
CHOSEN 280x42095.51 33295.47 32195.65 37298.25 34388.27 40393.25 41098.88 27393.53 36594.65 39697.15 36086.17 35799.93 4497.41 16799.93 4698.73 319
CANet97.87 21297.76 21498.19 24897.75 36795.51 27696.76 30199.05 24497.74 19396.93 33898.21 30195.59 24299.89 8097.86 14299.93 4699.19 244
Fast-Effi-MVS+-dtu98.27 17798.09 18698.81 16198.43 33198.11 13497.61 23999.50 9398.64 12197.39 32297.52 34598.12 9599.95 2496.90 20598.71 33298.38 353
Effi-MVS+-dtu98.26 17997.90 20799.35 7298.02 35799.49 698.02 18099.16 22698.29 15197.64 29997.99 31796.44 20599.95 2496.66 22798.93 32098.60 332
CANet_DTU97.26 26197.06 26097.84 26997.57 37894.65 30696.19 33298.79 29297.23 24995.14 39098.24 29893.22 29599.84 14997.34 17099.84 8899.04 267
MVS_030497.44 24797.01 26398.72 18196.42 41396.74 23797.20 27791.97 41398.46 13998.30 24998.79 22492.74 30799.91 6299.30 4699.94 4199.52 127
MP-MVS-pluss98.57 13698.23 17199.60 1499.69 5499.35 1697.16 28199.38 14194.87 33998.97 16198.99 17998.01 10199.88 9497.29 17299.70 16899.58 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15998.00 19699.61 1299.57 8299.25 2898.57 11299.35 15497.55 21199.31 11197.71 33394.61 27099.88 9496.14 26799.19 28899.70 57
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36998.81 306
sam_mvs84.29 375
IterMVS-SCA-FT97.85 21898.18 17696.87 33599.27 16791.16 38495.53 36399.25 20099.10 8699.41 8899.35 9293.10 29899.96 1298.65 9399.94 4199.49 137
TSAR-MVS + MP.98.63 12898.49 13399.06 12899.64 7097.90 16198.51 12398.94 26096.96 26499.24 12498.89 20697.83 11299.81 19096.88 20799.49 24299.48 147
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
OPM-MVS98.56 13798.32 16099.25 9599.41 14098.73 8797.13 28399.18 21997.10 25898.75 20198.92 19698.18 8799.65 29496.68 22699.56 21999.37 193
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 10398.48 13499.57 2099.58 7799.29 2397.82 20999.25 20096.94 26698.78 19599.12 14698.02 10099.84 14997.13 18499.67 18299.59 88
ambc98.24 24598.82 26795.97 26398.62 10799.00 25799.27 11599.21 12496.99 17599.50 34696.55 24199.50 24199.26 228
MTGPAbinary99.20 211
SPE-MVS-test99.13 5599.09 6099.26 9299.13 20598.97 7099.31 2799.88 1499.44 4298.16 26198.51 27098.64 4599.93 4498.91 7299.85 8498.88 297
Effi-MVS+98.02 19897.82 21298.62 19498.53 32197.19 21297.33 26599.68 4897.30 23896.68 35397.46 34998.56 5599.80 19796.63 22898.20 35598.86 299
xiu_mvs_v2_base97.16 27197.49 23596.17 36098.54 31992.46 36095.45 36798.84 28497.25 24397.48 31496.49 37098.31 7499.90 6896.34 25598.68 33796.15 411
xiu_mvs_v1_base97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
new-patchmatchnet98.35 16598.74 9197.18 31999.24 17492.23 36796.42 31899.48 10298.30 14899.69 4199.53 6097.44 14999.82 17698.84 7899.77 12999.49 137
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2299.83 499.50 899.87 11199.36 4299.92 5799.64 69
pmmvs597.64 23197.49 23598.08 25699.14 20395.12 29296.70 30599.05 24493.77 36298.62 21698.83 21693.23 29499.75 24098.33 11299.76 14199.36 200
test_post197.59 24220.48 42883.07 38399.66 28994.16 327
test_post21.25 42783.86 37899.70 262
Fast-Effi-MVS+97.67 22997.38 24198.57 20498.71 28397.43 19797.23 27399.45 11794.82 34096.13 36996.51 36998.52 5799.91 6296.19 26398.83 32498.37 355
patchmatchnet-post98.77 22884.37 37299.85 131
Anonymous2023121199.27 3399.27 4199.26 9299.29 16498.18 12899.49 999.51 9199.70 1299.80 2899.68 2296.84 18199.83 16699.21 5499.91 6499.77 40
pmmvs-eth3d98.47 15298.34 15698.86 15599.30 16297.76 17697.16 28199.28 19195.54 32199.42 8699.19 12797.27 15899.63 30097.89 13799.97 2099.20 239
GG-mvs-BLEND94.76 38494.54 42392.13 36899.31 2780.47 42888.73 42291.01 42267.59 41798.16 41582.30 41894.53 41493.98 418
xiu_mvs_v1_base_debi97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
Anonymous2023120698.21 18598.21 17298.20 24799.51 10695.43 28098.13 16299.32 16796.16 30098.93 17398.82 21996.00 22399.83 16697.32 17199.73 14899.36 200
MTAPA98.88 8498.64 11099.61 1299.67 6199.36 1598.43 13499.20 21198.83 11698.89 17898.90 20096.98 17699.92 5397.16 17999.70 16899.56 105
MTMP97.93 19391.91 414
gm-plane-assit94.83 42281.97 42588.07 40994.99 40099.60 31091.76 375
test9_res93.28 35399.15 29399.38 191
MVP-Stereo98.08 19597.92 20598.57 20498.96 23896.79 23397.90 19999.18 21996.41 29198.46 23898.95 19295.93 23299.60 31096.51 24498.98 31599.31 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 28398.08 14195.96 34499.03 24991.40 39095.85 37597.53 34396.52 20199.76 233
train_agg97.10 27396.45 29899.07 12298.71 28398.08 14195.96 34499.03 24991.64 38595.85 37597.53 34396.47 20399.76 23393.67 34399.16 29199.36 200
gg-mvs-nofinetune92.37 38091.20 38495.85 36695.80 42192.38 36399.31 2781.84 42799.75 891.83 41699.74 1568.29 41399.02 39787.15 40597.12 39196.16 410
SCA96.41 30596.66 28895.67 37098.24 34488.35 40295.85 35396.88 36996.11 30197.67 29898.67 24493.10 29899.85 13194.16 32799.22 28198.81 306
Patchmatch-test96.55 29896.34 30097.17 32198.35 33793.06 34898.40 13797.79 34097.33 23498.41 24398.67 24483.68 37999.69 26695.16 30199.31 26598.77 314
test_898.67 29798.01 14995.91 35099.02 25291.64 38595.79 37797.50 34696.47 20399.76 233
MS-PatchMatch97.68 22897.75 21597.45 30898.23 34693.78 33697.29 26998.84 28496.10 30298.64 21398.65 24996.04 22099.36 37196.84 21199.14 29499.20 239
Patchmatch-RL test97.26 26197.02 26297.99 26499.52 10495.53 27596.13 33699.71 3997.47 21899.27 11599.16 13784.30 37499.62 30397.89 13799.77 12998.81 306
cdsmvs_eth3d_5k24.66 39332.88 3960.00 4110.00 4340.00 4360.00 42299.10 2360.00 4290.00 43097.58 34199.21 160.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.17 39610.90 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42998.07 960.00 4300.00 4290.00 4280.00 426
agg_prior292.50 36999.16 29199.37 193
agg_prior98.68 29697.99 15099.01 25595.59 37899.77 227
tmp_tt78.77 39078.73 39378.90 40658.45 43174.76 43094.20 40078.26 42939.16 42486.71 42392.82 41880.50 39075.19 42686.16 41092.29 41986.74 420
canonicalmvs98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4398.93 10799.65 4999.72 1898.93 2799.95 2499.11 58100.00 199.82 30
alignmvs97.35 25496.88 27198.78 16998.54 31998.09 13797.71 22497.69 34499.20 6897.59 30395.90 38288.12 34999.55 32998.18 11898.96 31798.70 323
nrg03099.40 2299.35 2899.54 3099.58 7799.13 5998.98 7299.48 10299.68 1599.46 7899.26 11398.62 4899.73 25099.17 5799.92 5799.76 45
v14419298.54 14398.57 12198.45 22399.21 18195.98 26297.63 23699.36 14997.15 25799.32 10999.18 13195.84 23599.84 14999.50 3799.91 6499.54 116
FIs99.14 5199.09 6099.29 8699.70 5298.28 11999.13 5599.52 9099.48 3499.24 12499.41 8496.79 18799.82 17698.69 9199.88 7699.76 45
v192192098.54 14398.60 11898.38 23199.20 18595.76 27097.56 24599.36 14997.23 24999.38 9499.17 13596.02 22199.84 14999.57 3099.90 7099.54 116
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 15099.81 698.05 9999.96 1298.85 7799.99 599.86 23
v119298.60 13398.66 10798.41 22899.27 16795.88 26597.52 24999.36 14997.41 22799.33 10399.20 12696.37 20999.82 17699.57 3099.92 5799.55 112
FC-MVSNet-test99.27 3399.25 4499.34 7599.77 2698.37 11399.30 3299.57 6999.61 2699.40 9199.50 6497.12 16699.85 13199.02 6699.94 4199.80 34
v114498.60 13398.66 10798.41 22899.36 15095.90 26497.58 24399.34 16097.51 21499.27 11599.15 14196.34 21199.80 19799.47 3999.93 4699.51 130
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
HFP-MVS98.71 10798.44 14199.51 4699.49 11699.16 4798.52 11899.31 17297.47 21898.58 22498.50 27497.97 10699.85 13196.57 23499.59 20799.53 124
v14898.45 15498.60 11898.00 26399.44 13294.98 29597.44 25899.06 24198.30 14899.32 10998.97 18596.65 19699.62 30398.37 10899.85 8499.39 184
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
AllTest98.44 15598.20 17399.16 10799.50 10998.55 9998.25 14999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
TestCases99.16 10799.50 10998.55 9999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5899.66 1799.68 4399.66 2998.44 6499.95 2499.73 2199.96 2699.75 49
region2R98.69 11498.40 14699.54 3099.53 10299.17 4398.52 11899.31 17297.46 22398.44 24098.51 27097.83 11299.88 9496.46 24799.58 21299.58 94
RRT-MVS97.88 21097.98 19897.61 29198.15 35093.77 33798.97 7399.64 5399.16 7698.69 20699.42 8091.60 31999.89 8097.63 15598.52 34699.16 254
mamv499.44 1599.39 2399.58 1999.30 16299.74 299.04 6599.81 2699.77 799.82 2499.57 4697.82 11599.98 499.53 3499.89 7499.01 271
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5299.48 3499.92 899.71 1998.07 9699.96 1299.53 34100.00 199.93 11
PS-MVSNAJ97.08 27597.39 24096.16 36298.56 31792.46 36095.24 37498.85 28397.25 24397.49 31395.99 37998.07 9699.90 6896.37 25298.67 33896.12 412
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5199.09 8999.89 1599.68 2299.53 799.97 599.50 3799.99 599.87 20
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3999.27 6199.90 1299.74 1599.68 499.97 599.55 3399.99 599.88 19
EI-MVSNet-UG-set98.69 11498.71 9898.62 19499.10 20996.37 24897.23 27398.87 27599.20 6899.19 12998.99 17997.30 15599.85 13198.77 8499.79 11899.65 68
EI-MVSNet-Vis-set98.68 11998.70 10198.63 19299.09 21296.40 24797.23 27398.86 28099.20 6899.18 13398.97 18597.29 15799.85 13198.72 8899.78 12399.64 69
HPM-MVS++copyleft98.10 19297.64 22699.48 5399.09 21299.13 5997.52 24998.75 29997.46 22396.90 34497.83 32896.01 22299.84 14995.82 28399.35 25999.46 156
test_prior497.97 15495.86 351
XVS98.72 10698.45 13999.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30898.63 25497.50 14499.83 16696.79 21399.53 22999.56 105
v124098.55 14198.62 11398.32 23799.22 17995.58 27397.51 25199.45 11797.16 25599.45 8199.24 11896.12 21899.85 13199.60 2899.88 7699.55 112
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5499.30 5899.65 4999.60 4299.16 2099.82 17699.07 6199.83 9599.56 105
test_prior295.74 35796.48 28896.11 37097.63 33995.92 23394.16 32799.20 285
X-MVStestdata94.32 34992.59 36799.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30845.85 42497.50 14499.83 16696.79 21399.53 22999.56 105
test_prior98.95 14398.69 29297.95 15899.03 24999.59 31499.30 220
旧先验295.76 35688.56 40897.52 31099.66 28994.48 317
新几何295.93 347
新几何198.91 15098.94 24097.76 17698.76 29687.58 41096.75 35298.10 30994.80 26699.78 22192.73 36599.00 31199.20 239
旧先验198.82 26797.45 19598.76 29698.34 29195.50 24699.01 31099.23 234
无先验95.74 35798.74 30189.38 40499.73 25092.38 37199.22 238
原ACMM295.53 363
原ACMM198.35 23598.90 25096.25 25298.83 28892.48 37996.07 37298.10 30995.39 24999.71 25892.61 36898.99 31399.08 259
test22298.92 24696.93 22795.54 36298.78 29485.72 41396.86 34798.11 30894.43 27399.10 30199.23 234
testdata299.79 21092.80 363
segment_acmp97.02 173
testdata98.09 25398.93 24295.40 28198.80 29190.08 40197.45 31798.37 28795.26 25199.70 26293.58 34698.95 31899.17 251
testdata195.44 36896.32 294
v899.01 6799.16 5198.57 20499.47 12696.31 25198.90 8099.47 11099.03 9799.52 6699.57 4696.93 17799.81 19099.60 2899.98 1299.60 82
131495.74 32495.60 31696.17 36097.53 38392.75 35698.07 17298.31 32591.22 39294.25 39996.68 36795.53 24399.03 39691.64 37897.18 39096.74 404
LFMVS97.20 26796.72 28298.64 18898.72 28096.95 22598.93 7894.14 40399.74 1098.78 19599.01 17584.45 37199.73 25097.44 16599.27 27299.25 229
VDD-MVS98.56 13798.39 14999.07 12299.13 20598.07 14398.59 11097.01 36299.59 2799.11 13699.27 10994.82 26399.79 21098.34 11099.63 19399.34 206
VDDNet98.21 18597.95 20199.01 13599.58 7797.74 17899.01 6797.29 35599.67 1698.97 16199.50 6490.45 33099.80 19797.88 14099.20 28599.48 147
v1098.97 7399.11 5798.55 20999.44 13296.21 25398.90 8099.55 8098.73 11799.48 7399.60 4296.63 19799.83 16699.70 2499.99 599.61 81
VPNet98.87 8598.83 8499.01 13599.70 5297.62 18798.43 13499.35 15499.47 3799.28 11399.05 16196.72 19399.82 17698.09 12499.36 25799.59 88
MVS93.19 36992.09 37396.50 34796.91 40294.03 32498.07 17298.06 33668.01 42294.56 39896.48 37195.96 23099.30 38183.84 41396.89 39596.17 409
v2v48298.56 13798.62 11398.37 23399.42 13895.81 26897.58 24399.16 22697.90 18399.28 11399.01 17595.98 22899.79 21099.33 4499.90 7099.51 130
V4298.78 9898.78 8998.76 17499.44 13297.04 21998.27 14799.19 21597.87 18599.25 12399.16 13796.84 18199.78 22199.21 5499.84 8899.46 156
SD-MVS98.40 15998.68 10497.54 30098.96 23897.99 15097.88 20199.36 14998.20 16199.63 5299.04 16398.76 3695.33 42396.56 23899.74 14599.31 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 32095.32 33097.49 30598.60 30994.15 31993.83 40697.93 33895.49 32396.68 35397.42 35183.21 38199.30 38196.22 26198.55 34599.01 271
MSLP-MVS++98.02 19898.14 18397.64 28998.58 31495.19 28997.48 25499.23 20797.47 21897.90 28198.62 25697.04 17098.81 40697.55 15999.41 25198.94 287
APDe-MVScopyleft98.99 6998.79 8899.60 1499.21 18199.15 5198.87 8499.48 10297.57 20799.35 10099.24 11897.83 11299.89 8097.88 14099.70 16899.75 49
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8998.61 11799.53 3799.19 18899.27 2698.49 12699.33 16598.64 12199.03 15398.98 18397.89 10999.85 13196.54 24299.42 25099.46 156
ADS-MVSNet295.43 33394.98 33896.76 34298.14 35191.74 37097.92 19697.76 34190.23 39796.51 36198.91 19785.61 36299.85 13192.88 35996.90 39398.69 324
EI-MVSNet98.40 15998.51 12798.04 26199.10 20994.73 30297.20 27798.87 27598.97 10399.06 14399.02 16696.00 22399.80 19798.58 9699.82 9899.60 82
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
CVMVSNet96.25 30997.21 25293.38 40099.10 20980.56 42797.20 27798.19 33196.94 26699.00 15599.02 16689.50 33799.80 19796.36 25499.59 20799.78 38
pmmvs497.58 23697.28 24798.51 21598.84 26296.93 22795.40 37098.52 31593.60 36498.61 21898.65 24995.10 25599.60 31096.97 19799.79 11898.99 276
EU-MVSNet97.66 23098.50 12995.13 38199.63 7485.84 41198.35 14298.21 32898.23 15599.54 6099.46 7395.02 25799.68 27598.24 11499.87 7999.87 20
VNet98.42 15698.30 16198.79 16698.79 27397.29 20398.23 15098.66 30699.31 5698.85 18698.80 22294.80 26699.78 22198.13 12199.13 29699.31 217
test-LLR93.90 35893.85 35294.04 39196.53 41084.62 41794.05 40392.39 41096.17 29894.12 40195.07 39782.30 38699.67 27895.87 27998.18 35697.82 378
TESTMET0.1,192.19 38391.77 38193.46 39896.48 41282.80 42394.05 40391.52 41594.45 34994.00 40494.88 40366.65 41899.56 32595.78 28498.11 36298.02 370
test-mter92.33 38191.76 38294.04 39196.53 41084.62 41794.05 40392.39 41094.00 36094.12 40195.07 39765.63 42299.67 27895.87 27998.18 35697.82 378
VPA-MVSNet99.30 2999.30 3899.28 8799.49 11698.36 11699.00 6999.45 11799.63 2199.52 6699.44 7898.25 7899.88 9499.09 6099.84 8899.62 73
ACMMPR98.70 11198.42 14499.54 3099.52 10499.14 5698.52 11899.31 17297.47 21898.56 22798.54 26597.75 12099.88 9496.57 23499.59 20799.58 94
testgi98.32 17098.39 14998.13 25299.57 8295.54 27497.78 21499.49 10097.37 23199.19 12997.65 33798.96 2499.49 34996.50 24598.99 31399.34 206
test20.0398.78 9898.77 9098.78 16999.46 12797.20 21197.78 21499.24 20599.04 9699.41 8898.90 20097.65 12699.76 23397.70 15299.79 11899.39 184
thres600view794.45 34793.83 35396.29 35399.06 22191.53 37397.99 18894.24 40198.34 14397.44 31895.01 39979.84 39299.67 27884.33 41298.23 35397.66 388
ADS-MVSNet95.24 33694.93 34196.18 35998.14 35190.10 39597.92 19697.32 35490.23 39796.51 36198.91 19785.61 36299.74 24592.88 35996.90 39398.69 324
MP-MVScopyleft98.46 15398.09 18699.54 3099.57 8299.22 3198.50 12599.19 21597.61 20497.58 30498.66 24797.40 15199.88 9494.72 31299.60 20399.54 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 39420.53 3976.87 41012.05 4324.20 43593.62 4096.73 4334.62 42810.41 42824.33 4258.28 4333.56 4299.69 42815.07 42612.86 425
thres40094.14 35493.44 35896.24 35698.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36497.66 388
test12317.04 39520.11 3987.82 40910.25 4334.91 43494.80 3844.47 4344.93 42710.00 42924.28 4269.69 4323.64 42810.14 42712.43 42714.92 424
thres20093.72 36193.14 36395.46 37798.66 30291.29 37996.61 30994.63 39697.39 22996.83 34893.71 41179.88 39199.56 32582.40 41798.13 36195.54 416
test0.0.03 194.51 34693.69 35596.99 32896.05 41793.61 34394.97 38193.49 40596.17 29897.57 30694.88 40382.30 38699.01 39993.60 34594.17 41598.37 355
pmmvs395.03 34094.40 34796.93 33197.70 37392.53 35995.08 37897.71 34388.57 40797.71 29598.08 31279.39 39699.82 17696.19 26399.11 30098.43 348
EMVS93.83 35994.02 35193.23 40196.83 40584.96 41489.77 42096.32 37897.92 18197.43 31996.36 37686.17 35798.93 40287.68 40497.73 37395.81 414
E-PMN94.17 35394.37 34893.58 39796.86 40385.71 41390.11 41997.07 36198.17 16497.82 29097.19 35884.62 37098.94 40189.77 39797.68 37496.09 413
PGM-MVS98.66 12398.37 15299.55 2799.53 10299.18 4298.23 15099.49 10097.01 26398.69 20698.88 20798.00 10299.89 8095.87 27999.59 20799.58 94
LCM-MVSNet-Re98.64 12698.48 13499.11 11498.85 26198.51 10498.49 12699.83 2398.37 14199.69 4199.46 7398.21 8599.92 5394.13 33199.30 26898.91 292
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 25
MCST-MVS98.00 20097.63 22799.10 11699.24 17498.17 12996.89 29598.73 30295.66 31697.92 27997.70 33597.17 16499.66 28996.18 26599.23 28099.47 154
mvs_anonymous97.83 22198.16 18096.87 33598.18 34891.89 36997.31 26798.90 26997.37 23198.83 18999.46 7396.28 21299.79 21098.90 7398.16 35998.95 283
MVS_Test98.18 18898.36 15397.67 28598.48 32494.73 30298.18 15599.02 25297.69 19698.04 27499.11 14797.22 16299.56 32598.57 9898.90 32298.71 320
MDA-MVSNet-bldmvs97.94 20497.91 20698.06 25899.44 13294.96 29696.63 30899.15 23198.35 14298.83 18999.11 14794.31 27899.85 13196.60 23198.72 33099.37 193
CDPH-MVS97.26 26196.66 28899.07 12299.00 23198.15 13096.03 34099.01 25591.21 39397.79 29197.85 32796.89 17999.69 26692.75 36499.38 25699.39 184
test1298.93 14698.58 31497.83 16798.66 30696.53 35995.51 24599.69 26699.13 29699.27 225
casdiffmvspermissive98.95 7699.00 6798.81 16199.38 14397.33 20197.82 20999.57 6999.17 7599.35 10099.17 13598.35 7199.69 26698.46 10499.73 14899.41 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 18398.24 17098.17 24999.00 23195.44 27996.38 32099.58 6297.79 19198.53 23298.50 27496.76 19099.74 24597.95 13699.64 19099.34 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 36092.83 36696.42 34997.70 37391.28 38096.84 29789.77 41993.96 36192.44 41495.93 38179.14 39799.77 22792.94 35796.76 39798.21 360
baseline195.96 31895.44 32497.52 30298.51 32393.99 32798.39 13896.09 38198.21 15798.40 24797.76 33186.88 35199.63 30095.42 29689.27 42198.95 283
YYNet197.60 23397.67 22197.39 31299.04 22593.04 35195.27 37298.38 32397.25 24398.92 17498.95 19295.48 24799.73 25096.99 19498.74 32899.41 174
PMMVS298.07 19698.08 18998.04 26199.41 14094.59 30894.59 39399.40 13797.50 21598.82 19298.83 21696.83 18399.84 14997.50 16499.81 10299.71 52
MDA-MVSNet_test_wron97.60 23397.66 22497.41 31199.04 22593.09 34795.27 37298.42 32097.26 24298.88 18198.95 19295.43 24899.73 25097.02 19198.72 33099.41 174
tpmvs95.02 34195.25 33194.33 38796.39 41585.87 41098.08 17096.83 37095.46 32495.51 38698.69 24085.91 36099.53 33694.16 32796.23 40297.58 391
PM-MVS98.82 9298.72 9599.12 11299.64 7098.54 10297.98 18999.68 4897.62 20199.34 10299.18 13197.54 13899.77 22797.79 14599.74 14599.04 267
HQP_MVS97.99 20397.67 22198.93 14699.19 18897.65 18497.77 21699.27 19498.20 16197.79 29197.98 31894.90 25999.70 26294.42 32199.51 23499.45 160
plane_prior799.19 18897.87 163
plane_prior698.99 23497.70 18294.90 259
plane_prior599.27 19499.70 26294.42 32199.51 23499.45 160
plane_prior497.98 318
plane_prior397.78 17597.41 22797.79 291
plane_prior297.77 21698.20 161
plane_prior199.05 224
plane_prior97.65 18497.07 28496.72 27899.36 257
PS-CasMVS99.40 2299.33 3199.62 999.71 4599.10 6499.29 3399.53 8799.53 3199.46 7899.41 8498.23 8099.95 2498.89 7599.95 3399.81 33
UniMVSNet_NR-MVSNet98.86 8898.68 10499.40 6499.17 19698.74 8497.68 22799.40 13799.14 7799.06 14398.59 26196.71 19499.93 4498.57 9899.77 12999.53 124
PEN-MVS99.41 2199.34 3099.62 999.73 3699.14 5699.29 3399.54 8499.62 2499.56 5699.42 8098.16 9199.96 1298.78 8199.93 4699.77 40
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6999.39 4799.75 3499.62 3799.17 1899.83 16699.06 6299.62 19699.66 63
DTE-MVSNet99.43 1999.35 2899.66 799.71 4599.30 2199.31 2799.51 9199.64 1999.56 5699.46 7398.23 8099.97 598.78 8199.93 4699.72 51
DU-MVS98.82 9298.63 11199.39 6599.16 19898.74 8497.54 24799.25 20098.84 11599.06 14398.76 23096.76 19099.93 4498.57 9899.77 12999.50 133
UniMVSNet (Re)98.87 8598.71 9899.35 7299.24 17498.73 8797.73 22399.38 14198.93 10799.12 13598.73 23396.77 18899.86 11998.63 9599.80 11399.46 156
CP-MVSNet99.21 4299.09 6099.56 2599.65 6498.96 7499.13 5599.34 16099.42 4599.33 10399.26 11397.01 17499.94 3798.74 8699.93 4699.79 35
WR-MVS_H99.33 2799.22 4699.65 899.71 4599.24 2999.32 2399.55 8099.46 3999.50 7299.34 9697.30 15599.93 4498.90 7399.93 4699.77 40
WR-MVS98.40 15998.19 17599.03 13299.00 23197.65 18496.85 29698.94 26098.57 13198.89 17898.50 27495.60 24199.85 13197.54 16199.85 8499.59 88
NR-MVSNet98.95 7698.82 8599.36 6699.16 19898.72 8999.22 4299.20 21199.10 8699.72 3598.76 23096.38 20899.86 11998.00 13299.82 9899.50 133
Baseline_NR-MVSNet98.98 7298.86 8299.36 6699.82 1998.55 9997.47 25699.57 6999.37 4999.21 12799.61 4096.76 19099.83 16698.06 12799.83 9599.71 52
TranMVSNet+NR-MVSNet99.17 4699.07 6399.46 5899.37 14998.87 7798.39 13899.42 13099.42 4599.36 9899.06 15498.38 6799.95 2498.34 11099.90 7099.57 99
TSAR-MVS + GP.98.18 18897.98 19898.77 17398.71 28397.88 16296.32 32498.66 30696.33 29399.23 12698.51 27097.48 14899.40 36697.16 17999.46 24499.02 270
n20.00 435
nn0.00 435
mPP-MVS98.64 12698.34 15699.54 3099.54 9999.17 4398.63 10599.24 20597.47 21898.09 26998.68 24297.62 13199.89 8096.22 26199.62 19699.57 99
door-mid99.57 69
XVG-OURS-SEG-HR98.49 15098.28 16399.14 11099.49 11698.83 7996.54 31099.48 10297.32 23699.11 13698.61 25899.33 1399.30 38196.23 26098.38 34899.28 224
mvsmamba97.57 23797.26 24898.51 21598.69 29296.73 23898.74 9297.25 35697.03 26297.88 28399.23 12290.95 32599.87 11196.61 23099.00 31198.91 292
MVSFormer98.26 17998.43 14297.77 27598.88 25693.89 33399.39 1799.56 7699.11 7998.16 26198.13 30593.81 28999.97 599.26 4999.57 21699.43 168
jason97.45 24697.35 24497.76 27899.24 17493.93 32995.86 35198.42 32094.24 35398.50 23598.13 30594.82 26399.91 6297.22 17699.73 14899.43 168
jason: jason.
lupinMVS97.06 27696.86 27297.65 28798.88 25693.89 33395.48 36697.97 33793.53 36598.16 26197.58 34193.81 28999.91 6296.77 21699.57 21699.17 251
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7699.11 7999.70 3999.73 1799.00 2299.97 599.26 4999.98 1299.89 16
HPM-MVS_fast99.01 6798.82 8599.57 2099.71 4599.35 1699.00 6999.50 9397.33 23498.94 17298.86 21098.75 3799.82 17697.53 16299.71 16199.56 105
K. test v398.00 20097.66 22499.03 13299.79 2297.56 18999.19 4992.47 40999.62 2499.52 6699.66 2989.61 33599.96 1299.25 5199.81 10299.56 105
lessismore_v098.97 14099.73 3697.53 19186.71 42399.37 9699.52 6389.93 33399.92 5398.99 6899.72 15699.44 164
SixPastTwentyTwo98.75 10398.62 11399.16 10799.83 1897.96 15799.28 3798.20 32999.37 4999.70 3999.65 3392.65 30999.93 4499.04 6499.84 8899.60 82
OurMVSNet-221017-099.37 2599.31 3599.53 3799.91 398.98 6999.63 799.58 6299.44 4299.78 3099.76 1296.39 20699.92 5399.44 4099.92 5799.68 59
HPM-MVScopyleft98.79 9698.53 12599.59 1899.65 6499.29 2399.16 5199.43 12796.74 27798.61 21898.38 28698.62 4899.87 11196.47 24699.67 18299.59 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 14598.34 15699.11 11499.50 10998.82 8195.97 34299.50 9397.30 23899.05 14898.98 18399.35 1299.32 37895.72 28699.68 17699.18 247
XVG-ACMP-BASELINE98.56 13798.34 15699.22 10099.54 9998.59 9697.71 22499.46 11397.25 24398.98 15798.99 17997.54 13899.84 14995.88 27699.74 14599.23 234
casdiffmvs_mvgpermissive99.12 5799.16 5198.99 13799.43 13797.73 18098.00 18499.62 5599.22 6499.55 5999.22 12398.93 2799.75 24098.66 9299.81 10299.50 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10798.46 13899.47 5699.57 8298.97 7098.23 15099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
baseline98.96 7599.02 6598.76 17499.38 14397.26 20698.49 12699.50 9398.86 11299.19 12999.06 15498.23 8099.69 26698.71 8999.76 14199.33 211
test1198.87 275
door99.41 134
EPNet_dtu94.93 34394.78 34395.38 37993.58 42487.68 40696.78 29995.69 39097.35 23389.14 42198.09 31188.15 34899.49 34994.95 30699.30 26898.98 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 24297.14 25798.54 21299.68 5796.09 25796.50 31399.62 5591.58 38798.84 18898.97 18592.36 31199.88 9496.76 21799.95 3399.67 62
EPNet96.14 31295.44 32498.25 24390.76 42895.50 27797.92 19694.65 39598.97 10392.98 41198.85 21389.12 33999.87 11195.99 27299.68 17699.39 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 233
HQP-NCC98.67 29796.29 32696.05 30395.55 381
ACMP_Plane98.67 29796.29 32696.05 30395.55 381
APD-MVScopyleft98.10 19297.67 22199.42 6099.11 20798.93 7597.76 21999.28 19194.97 33698.72 20498.77 22897.04 17099.85 13193.79 34199.54 22599.49 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 361
HQP4-MVS95.56 38099.54 33499.32 213
HQP3-MVS99.04 24799.26 275
HQP2-MVS93.84 287
CNVR-MVS98.17 19097.87 20999.07 12298.67 29798.24 12297.01 28698.93 26397.25 24397.62 30098.34 29197.27 15899.57 32296.42 24999.33 26299.39 184
NCCC97.86 21397.47 23899.05 12998.61 30798.07 14396.98 28898.90 26997.63 20097.04 33497.93 32395.99 22799.66 28995.31 29898.82 32699.43 168
114514_t96.50 30195.77 30998.69 18399.48 12497.43 19797.84 20899.55 8081.42 41996.51 36198.58 26295.53 24399.67 27893.41 35199.58 21298.98 277
CP-MVS98.70 11198.42 14499.52 4299.36 15099.12 6198.72 9799.36 14997.54 21298.30 24998.40 28397.86 11199.89 8096.53 24399.72 15699.56 105
DSMNet-mixed97.42 24997.60 22996.87 33599.15 20291.46 37498.54 11699.12 23392.87 37597.58 30499.63 3696.21 21499.90 6895.74 28599.54 22599.27 225
tpm293.09 37092.58 36894.62 38597.56 37986.53 40997.66 23195.79 38786.15 41294.07 40398.23 30075.95 40499.53 33690.91 39196.86 39697.81 380
NP-MVS98.84 26297.39 19996.84 364
EG-PatchMatch MVS98.99 6999.01 6698.94 14499.50 10997.47 19398.04 17799.59 6098.15 16899.40 9199.36 9198.58 5499.76 23398.78 8199.68 17699.59 88
tpm cat193.29 36793.13 36493.75 39597.39 39284.74 41597.39 25997.65 34683.39 41794.16 40098.41 28282.86 38499.39 36891.56 38095.35 41097.14 399
SteuartSystems-ACMMP98.79 9698.54 12499.54 3099.73 3699.16 4798.23 15099.31 17297.92 18198.90 17698.90 20098.00 10299.88 9496.15 26699.72 15699.58 94
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 35793.78 35494.51 38697.53 38385.83 41297.98 18995.96 38389.29 40594.99 39298.63 25478.63 40099.62 30394.54 31596.50 39898.09 367
CR-MVSNet96.28 30895.95 30797.28 31597.71 37194.22 31498.11 16698.92 26692.31 38196.91 34199.37 8785.44 36599.81 19097.39 16897.36 38697.81 380
JIA-IIPM95.52 33195.03 33797.00 32796.85 40494.03 32496.93 29295.82 38699.20 6894.63 39799.71 1983.09 38299.60 31094.42 32194.64 41297.36 397
Patchmtry97.35 25496.97 26498.50 21997.31 39496.47 24698.18 15598.92 26698.95 10698.78 19599.37 8785.44 36599.85 13195.96 27499.83 9599.17 251
PatchT96.65 29596.35 29997.54 30097.40 39195.32 28497.98 18996.64 37399.33 5496.89 34599.42 8084.32 37399.81 19097.69 15497.49 37797.48 393
tpmrst95.07 33995.46 32293.91 39397.11 39884.36 41997.62 23796.96 36594.98 33596.35 36698.80 22285.46 36499.59 31495.60 29196.23 40297.79 383
BH-w/o95.13 33894.89 34295.86 36598.20 34791.31 37895.65 35997.37 35093.64 36396.52 36095.70 38693.04 30199.02 39788.10 40395.82 40797.24 398
tpm94.67 34594.34 34995.66 37197.68 37688.42 40197.88 20194.90 39394.46 34796.03 37498.56 26478.66 39999.79 21095.88 27695.01 41198.78 313
DELS-MVS98.27 17798.20 17398.48 22098.86 25896.70 23995.60 36199.20 21197.73 19498.45 23998.71 23697.50 14499.82 17698.21 11699.59 20798.93 288
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 28896.75 28197.08 32498.74 27793.33 34596.71 30498.26 32696.72 27898.44 24097.37 35495.20 25299.47 35591.89 37397.43 38198.44 346
RPMNet97.02 27996.93 26697.30 31497.71 37194.22 31498.11 16699.30 18099.37 4996.91 34199.34 9686.72 35299.87 11197.53 16297.36 38697.81 380
MVSTER96.86 28796.55 29497.79 27397.91 36294.21 31697.56 24598.87 27597.49 21799.06 14399.05 16180.72 38999.80 19798.44 10599.82 9899.37 193
CPTT-MVS97.84 21997.36 24399.27 9099.31 15998.46 10798.29 14599.27 19494.90 33897.83 28898.37 28794.90 25999.84 14993.85 34099.54 22599.51 130
GBi-Net98.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
PVSNet_Blended_VisFu98.17 19098.15 18198.22 24699.73 3695.15 29097.36 26399.68 4894.45 34998.99 15699.27 10996.87 18099.94 3797.13 18499.91 6499.57 99
PVSNet_BlendedMVS97.55 23897.53 23297.60 29298.92 24693.77 33796.64 30799.43 12794.49 34597.62 30099.18 13196.82 18499.67 27894.73 31099.93 4699.36 200
UnsupCasMVSNet_eth97.89 20897.60 22998.75 17699.31 15997.17 21497.62 23799.35 15498.72 11998.76 20098.68 24292.57 31099.74 24597.76 15195.60 40899.34 206
UnsupCasMVSNet_bld97.30 25896.92 26898.45 22399.28 16596.78 23696.20 33199.27 19495.42 32598.28 25398.30 29593.16 29699.71 25894.99 30397.37 38498.87 298
PVSNet_Blended96.88 28696.68 28597.47 30798.92 24693.77 33794.71 38699.43 12790.98 39597.62 30097.36 35596.82 18499.67 27894.73 31099.56 21998.98 277
FMVSNet596.01 31595.20 33498.41 22897.53 38396.10 25498.74 9299.50 9397.22 25298.03 27599.04 16369.80 41199.88 9497.27 17399.71 16199.25 229
test198.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
new_pmnet96.99 28396.76 28097.67 28598.72 28094.89 29795.95 34698.20 32992.62 37898.55 22998.54 26594.88 26299.52 34093.96 33599.44 24998.59 335
FMVSNet397.50 23997.24 25098.29 24198.08 35595.83 26797.86 20598.91 26897.89 18498.95 16598.95 19287.06 35099.81 19097.77 14799.69 17199.23 234
dp93.47 36493.59 35793.13 40296.64 40881.62 42697.66 23196.42 37792.80 37696.11 37098.64 25278.55 40299.59 31493.31 35292.18 42098.16 363
FMVSNet298.49 15098.40 14698.75 17698.90 25097.14 21798.61 10899.13 23298.59 12799.19 12999.28 10794.14 28199.82 17697.97 13499.80 11399.29 222
FMVSNet199.17 4699.17 4999.17 10499.55 9498.24 12299.20 4599.44 12199.21 6699.43 8399.55 5497.82 11599.86 11998.42 10799.89 7499.41 174
N_pmnet97.63 23297.17 25398.99 13799.27 16797.86 16495.98 34193.41 40695.25 33099.47 7798.90 20095.63 24099.85 13196.91 20099.73 14899.27 225
cascas94.79 34494.33 35096.15 36396.02 41992.36 36492.34 41599.26 19985.34 41495.08 39194.96 40292.96 30298.53 41094.41 32498.59 34397.56 392
BH-RMVSNet96.83 28896.58 29397.58 29498.47 32594.05 32196.67 30697.36 35196.70 28097.87 28497.98 31895.14 25499.44 36190.47 39598.58 34499.25 229
UGNet98.53 14598.45 13998.79 16697.94 36096.96 22499.08 5898.54 31399.10 8696.82 34999.47 7296.55 20099.84 14998.56 10199.94 4199.55 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 29496.27 30497.87 26898.81 26994.61 30796.77 30097.92 33994.94 33797.12 32997.74 33291.11 32499.82 17693.89 33798.15 36099.18 247
XXY-MVS99.14 5199.15 5699.10 11699.76 2997.74 17898.85 8799.62 5598.48 13899.37 9699.49 7098.75 3799.86 11998.20 11799.80 11399.71 52
EC-MVSNet99.09 6099.05 6499.20 10199.28 16598.93 7599.24 4199.84 2199.08 9198.12 26698.37 28798.72 3999.90 6899.05 6399.77 12998.77 314
sss97.21 26696.93 26698.06 25898.83 26495.22 28896.75 30298.48 31794.49 34597.27 32697.90 32492.77 30699.80 19796.57 23499.32 26399.16 254
Test_1112_low_res96.99 28396.55 29498.31 23999.35 15495.47 27895.84 35499.53 8791.51 38996.80 35098.48 27791.36 32299.83 16696.58 23299.53 22999.62 73
1112_ss97.29 26096.86 27298.58 20199.34 15696.32 25096.75 30299.58 6293.14 37096.89 34597.48 34792.11 31599.86 11996.91 20099.54 22599.57 99
ab-mvs-re8.12 39710.83 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43097.48 3470.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs98.41 15798.36 15398.59 20099.19 18897.23 20799.32 2398.81 28997.66 19898.62 21699.40 8696.82 18499.80 19795.88 27699.51 23498.75 317
TR-MVS95.55 33095.12 33696.86 33897.54 38193.94 32896.49 31496.53 37694.36 35297.03 33696.61 36894.26 28099.16 39386.91 40896.31 40197.47 394
MDTV_nov1_ep13_2view74.92 42997.69 22690.06 40297.75 29485.78 36193.52 34798.69 324
MDTV_nov1_ep1395.22 33397.06 40183.20 42297.74 22196.16 37994.37 35196.99 33798.83 21683.95 37799.53 33693.90 33697.95 371
MIMVSNet199.38 2499.32 3399.55 2799.86 1499.19 4199.41 1499.59 6099.59 2799.71 3799.57 4697.12 16699.90 6899.21 5499.87 7999.54 116
MIMVSNet96.62 29796.25 30597.71 28499.04 22594.66 30599.16 5196.92 36897.23 24997.87 28499.10 15086.11 35999.65 29491.65 37799.21 28498.82 302
IterMVS-LS98.55 14198.70 10198.09 25399.48 12494.73 30297.22 27699.39 13998.97 10399.38 9499.31 10396.00 22399.93 4498.58 9699.97 2099.60 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22797.35 24498.69 18398.73 27897.02 22196.92 29498.75 29995.89 31298.59 22298.67 24492.08 31699.74 24596.72 22299.81 10299.32 213
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 129
IterMVS97.73 22498.11 18596.57 34599.24 17490.28 39395.52 36599.21 20998.86 11299.33 10399.33 9893.11 29799.94 3798.49 10399.94 4199.48 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 25696.92 26898.57 20499.09 21297.99 15096.79 29899.35 15493.18 36997.71 29598.07 31395.00 25899.31 37993.97 33499.13 29698.42 350
MVS_111021_LR98.30 17398.12 18498.83 15899.16 19898.03 14896.09 33899.30 18097.58 20698.10 26898.24 29898.25 7899.34 37596.69 22599.65 18899.12 257
DP-MVS98.93 7898.81 8799.28 8799.21 18198.45 10898.46 13199.33 16599.63 2199.48 7399.15 14197.23 16199.75 24097.17 17899.66 18799.63 72
ACMMP++99.68 176
HQP-MVS97.00 28296.49 29798.55 20998.67 29796.79 23396.29 32699.04 24796.05 30395.55 38196.84 36493.84 28799.54 33492.82 36199.26 27599.32 213
QAPM97.31 25796.81 27898.82 15998.80 27297.49 19299.06 6299.19 21590.22 39997.69 29799.16 13796.91 17899.90 6890.89 39299.41 25199.07 261
Vis-MVSNetpermissive99.34 2699.36 2799.27 9099.73 3698.26 12099.17 5099.78 3199.11 7999.27 11599.48 7198.82 3299.95 2498.94 7199.93 4699.59 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 34995.62 31590.42 40498.46 32775.36 42896.29 32689.13 42095.25 33095.38 38799.75 1392.88 30399.19 39194.07 33399.39 25396.72 405
IS-MVSNet98.19 18797.90 20799.08 12099.57 8297.97 15499.31 2798.32 32499.01 9998.98 15799.03 16591.59 32099.79 21095.49 29599.80 11399.48 147
HyFIR lowres test97.19 26896.60 29298.96 14199.62 7697.28 20495.17 37599.50 9394.21 35499.01 15498.32 29486.61 35399.99 297.10 18699.84 8899.60 82
EPMVS93.72 36193.27 36095.09 38396.04 41887.76 40598.13 16285.01 42594.69 34296.92 33998.64 25278.47 40399.31 37995.04 30296.46 39998.20 361
PAPM_NR96.82 29096.32 30198.30 24099.07 21696.69 24097.48 25498.76 29695.81 31496.61 35796.47 37294.12 28499.17 39290.82 39397.78 37299.06 262
TAMVS98.24 18298.05 19198.80 16399.07 21697.18 21397.88 20198.81 28996.66 28199.17 13499.21 12494.81 26599.77 22796.96 19899.88 7699.44 164
PAPR95.29 33494.47 34597.75 27997.50 38995.14 29194.89 38398.71 30491.39 39195.35 38895.48 39294.57 27199.14 39584.95 41197.37 38498.97 280
RPSCF98.62 13198.36 15399.42 6099.65 6499.42 1198.55 11499.57 6997.72 19598.90 17699.26 11396.12 21899.52 34095.72 28699.71 16199.32 213
Vis-MVSNet (Re-imp)97.46 24497.16 25498.34 23699.55 9496.10 25498.94 7798.44 31898.32 14698.16 26198.62 25688.76 34099.73 25093.88 33899.79 11899.18 247
test_040298.76 10298.71 9898.93 14699.56 9098.14 13298.45 13399.34 16099.28 6098.95 16598.91 19798.34 7299.79 21095.63 29099.91 6498.86 299
MVS_111021_HR98.25 18198.08 18998.75 17699.09 21297.46 19495.97 34299.27 19497.60 20597.99 27798.25 29798.15 9399.38 37096.87 20899.57 21699.42 171
CSCG98.68 11998.50 12999.20 10199.45 13198.63 9198.56 11399.57 6997.87 18598.85 18698.04 31597.66 12599.84 14996.72 22299.81 10299.13 256
PatchMatch-RL97.24 26496.78 27998.61 19799.03 22897.83 16796.36 32199.06 24193.49 36797.36 32497.78 32995.75 23799.49 34993.44 35098.77 32798.52 338
API-MVS97.04 27896.91 27097.42 31097.88 36398.23 12698.18 15598.50 31697.57 20797.39 32296.75 36696.77 18899.15 39490.16 39699.02 30994.88 417
Test By Simon96.52 201
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3999.38 4899.53 6499.61 4098.64 4599.80 19798.24 11499.84 8899.52 127
USDC97.41 25097.40 23997.44 30998.94 24093.67 34095.17 37599.53 8794.03 35998.97 16199.10 15095.29 25099.34 37595.84 28299.73 14899.30 220
EPP-MVSNet98.30 17398.04 19299.07 12299.56 9097.83 16799.29 3398.07 33599.03 9798.59 22299.13 14592.16 31499.90 6896.87 20899.68 17699.49 137
PMMVS96.51 29995.98 30698.09 25397.53 38395.84 26694.92 38298.84 28491.58 38796.05 37395.58 38795.68 23999.66 28995.59 29298.09 36398.76 316
PAPM91.88 38690.34 38996.51 34698.06 35692.56 35892.44 41497.17 35886.35 41190.38 41896.01 37886.61 35399.21 39070.65 42495.43 40997.75 384
ACMMPcopyleft98.75 10398.50 12999.52 4299.56 9099.16 4798.87 8499.37 14597.16 25598.82 19299.01 17597.71 12299.87 11196.29 25899.69 17199.54 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 27096.71 28398.55 20998.56 31798.05 14796.33 32398.93 26396.91 26897.06 33397.39 35294.38 27699.45 35991.66 37699.18 29098.14 364
PatchmatchNetpermissive95.58 32995.67 31495.30 38097.34 39387.32 40797.65 23396.65 37295.30 32997.07 33298.69 24084.77 36899.75 24094.97 30598.64 33998.83 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17697.95 20199.34 7598.44 33099.16 4798.12 16599.38 14196.01 30798.06 27198.43 28197.80 11799.67 27895.69 28899.58 21299.20 239
F-COLMAP97.30 25896.68 28599.14 11099.19 18898.39 11097.27 27299.30 18092.93 37396.62 35698.00 31695.73 23899.68 27592.62 36798.46 34799.35 204
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 45100.00 199.82 30
wuyk23d96.06 31397.62 22891.38 40398.65 30698.57 9898.85 8796.95 36696.86 27199.90 1299.16 13799.18 1798.40 41189.23 40099.77 12977.18 423
OMC-MVS97.88 21097.49 23599.04 13198.89 25598.63 9196.94 29099.25 20095.02 33498.53 23298.51 27097.27 15899.47 35593.50 34999.51 23499.01 271
MG-MVS96.77 29196.61 29097.26 31798.31 34093.06 34895.93 34798.12 33496.45 29097.92 27998.73 23393.77 29199.39 36891.19 38799.04 30599.33 211
AdaColmapbinary97.14 27296.71 28398.46 22298.34 33897.80 17496.95 28998.93 26395.58 32096.92 33997.66 33695.87 23499.53 33690.97 38999.14 29498.04 369
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ITE_SJBPF98.87 15499.22 17998.48 10699.35 15497.50 21598.28 25398.60 26097.64 12999.35 37493.86 33999.27 27298.79 312
DeepMVS_CXcopyleft93.44 39998.24 34494.21 31694.34 39864.28 42391.34 41794.87 40589.45 33892.77 42477.54 42293.14 41793.35 419
TinyColmap97.89 20897.98 19897.60 29298.86 25894.35 31396.21 33099.44 12197.45 22599.06 14398.88 20797.99 10599.28 38594.38 32599.58 21299.18 247
MAR-MVS96.47 30395.70 31298.79 16697.92 36199.12 6198.28 14698.60 31192.16 38395.54 38496.17 37794.77 26899.52 34089.62 39898.23 35397.72 386
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20697.69 22098.52 21499.17 19697.66 18397.19 28099.47 11096.31 29597.85 28798.20 30296.71 19499.52 34094.62 31399.72 15698.38 353
MSDG97.71 22697.52 23398.28 24298.91 24996.82 23194.42 39699.37 14597.65 19998.37 24898.29 29697.40 15199.33 37794.09 33299.22 28198.68 327
LS3D98.63 12898.38 15199.36 6697.25 39599.38 1299.12 5799.32 16799.21 6698.44 24098.88 20797.31 15499.80 19796.58 23299.34 26198.92 289
CLD-MVS97.49 24297.16 25498.48 22099.07 21697.03 22094.71 38699.21 20994.46 34798.06 27197.16 35997.57 13599.48 35294.46 31899.78 12398.95 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 36592.23 37197.08 32499.25 17397.86 16495.61 36097.16 35992.90 37493.76 40898.65 24975.94 40595.66 42179.30 42197.49 37797.73 385
Gipumacopyleft99.03 6699.16 5198.64 18899.94 298.51 10499.32 2399.75 3699.58 2998.60 22099.62 3798.22 8399.51 34597.70 15299.73 14897.89 375
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015