This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18799.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27197.81 17399.25 4099.30 17798.57 12898.55 22699.33 9597.95 10499.90 6897.16 17699.67 17999.44 161
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26698.40 10999.02 6699.19 21298.99 9798.07 26799.28 10497.11 16599.84 14696.84 20899.32 26099.47 151
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18399.46 11097.56 20699.54 5799.50 6298.97 2399.84 14698.06 12499.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33398.97 7095.03 37699.18 21696.88 26699.33 10098.78 22398.16 8899.28 38296.74 21699.62 19399.44 161
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30497.23 20797.76 21999.09 23597.31 23498.75 19898.66 24497.56 13399.64 29496.10 26799.55 22099.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft96.65 797.09 27196.68 28298.32 23498.32 33697.16 21598.86 8699.37 14289.48 40096.29 36499.15 13896.56 19699.90 6892.90 35599.20 28297.89 372
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7798.30 14599.65 4699.45 7499.22 1599.76 23098.44 10299.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5999.11 7699.53 6199.18 12898.81 3299.67 27596.71 22199.77 12699.50 130
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7399.09 8699.33 10099.19 12498.40 6399.72 25495.98 27099.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS96.21 1196.63 29395.95 30498.65 18598.93 23998.09 13796.93 28999.28 18883.58 41398.13 26297.78 32696.13 21499.40 36393.52 34499.29 26798.45 340
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17299.37 14297.62 19899.04 14798.96 18598.84 3099.79 20797.43 16399.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HY-MVS95.94 1395.90 31695.35 32697.55 29697.95 35694.79 29598.81 9196.94 36492.28 37995.17 38698.57 26089.90 33199.75 23791.20 38397.33 38598.10 363
OpenMVS_ROBcopyleft95.38 1495.84 31995.18 33297.81 26998.41 33297.15 21697.37 25998.62 30783.86 41298.65 20998.37 28494.29 27699.68 27288.41 39898.62 33996.60 403
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22799.38 13895.76 31298.81 19198.82 21698.36 6599.82 17394.75 30699.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PLCcopyleft94.65 1696.51 29695.73 30898.85 15698.75 27397.91 16096.42 31599.06 23890.94 39395.59 37597.38 35094.41 27199.59 31190.93 38798.04 36699.05 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet93.40 1795.67 32395.70 30995.57 37098.83 26188.57 39792.50 41097.72 33992.69 37496.49 36196.44 37093.72 28999.43 35993.61 34199.28 26898.71 317
PCF-MVS92.86 1894.36 34593.00 36298.42 22498.70 28497.56 18993.16 40899.11 23279.59 41797.55 30497.43 34792.19 31099.73 24779.85 41799.45 24397.97 371
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
IB-MVS91.63 1992.24 37990.90 38396.27 35197.22 39391.24 37994.36 39593.33 40492.37 37792.24 41294.58 40466.20 41899.89 7993.16 35294.63 41097.66 385
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft91.26 2097.86 21097.94 20097.65 28499.71 4597.94 15998.52 11898.68 30298.99 9797.52 30799.35 8997.41 14798.18 41191.59 37699.67 17996.82 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PVSNet_089.98 2191.15 38490.30 38793.70 39397.72 36584.34 41790.24 41497.42 34690.20 39793.79 40493.09 41290.90 32498.89 40286.57 40672.76 42197.87 374
MVEpermissive83.40 2292.50 37491.92 37694.25 38598.83 26191.64 36992.71 40983.52 42395.92 30886.46 42195.46 39095.20 24995.40 41980.51 41698.64 33695.73 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary75.91 2396.29 30495.44 32198.84 15796.25 41398.69 9097.02 28299.12 23088.90 40397.83 28598.86 20789.51 33398.90 40191.92 36999.51 23198.92 286
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GDP-MVS97.50 23697.11 25598.67 18499.02 22696.85 23098.16 15999.71 3698.32 14398.52 23198.54 26283.39 37799.95 2498.79 7799.56 21699.19 241
BP-MVS197.40 24896.97 26198.71 18199.07 21396.81 23298.34 14497.18 35498.58 12798.17 25598.61 25584.01 37399.94 3798.97 6699.78 12099.37 190
reproduce_monomvs95.00 33995.25 32894.22 38697.51 38583.34 41897.86 20598.44 31598.51 13399.29 10999.30 10167.68 41399.56 32298.89 7299.81 9999.77 37
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25299.80 998.33 7099.91 6299.56 2999.95 3099.97 4
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 16099.47 10799.12 7599.52 6399.32 9998.31 7199.90 6897.78 14399.73 14599.66 60
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
mvs5depth99.30 2999.59 998.44 22299.65 6395.35 27999.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
MVStest195.86 31795.60 31396.63 34195.87 41791.70 36897.93 19398.94 25798.03 16899.56 5399.66 2971.83 40698.26 41099.35 4099.24 27499.91 12
ttmdpeth97.91 20298.02 19197.58 29198.69 28994.10 31798.13 16298.90 26697.95 17497.32 32299.58 4395.95 22898.75 40496.41 24799.22 27899.87 18
WBMVS95.18 33494.78 34096.37 34797.68 37389.74 39495.80 35298.73 29997.54 20998.30 24698.44 27770.06 40799.82 17396.62 22699.87 7699.54 113
dongtai76.24 38875.95 39177.12 40492.39 42267.91 42890.16 41559.44 42982.04 41589.42 41794.67 40349.68 42781.74 42248.06 42277.66 42081.72 418
kuosan69.30 38968.95 39270.34 40587.68 42665.00 42991.11 41359.90 42869.02 41874.46 42388.89 42048.58 42868.03 42428.61 42372.33 42277.99 419
MVSMamba_PlusPlus98.83 8798.98 6798.36 23199.32 15596.58 24498.90 8099.41 13199.75 898.72 20199.50 6296.17 21299.94 3799.27 4599.78 12098.57 333
MGCFI-Net98.34 16398.28 16098.51 21298.47 32297.59 18898.96 7499.48 9999.18 7197.40 31795.50 38798.66 4399.50 34398.18 11598.71 32998.44 343
testing9193.32 36392.27 36796.47 34597.54 37891.25 37896.17 33296.76 36897.18 25093.65 40693.50 41065.11 42099.63 29793.04 35397.45 37698.53 334
testing1193.08 36892.02 37296.26 35297.56 37690.83 38696.32 32195.70 38596.47 28692.66 41093.73 40764.36 42199.59 31193.77 33997.57 37298.37 352
testing9993.04 36991.98 37596.23 35497.53 38090.70 38896.35 31995.94 38196.87 26793.41 40793.43 41163.84 42299.59 31193.24 35197.19 38698.40 348
UBG93.25 36592.32 36696.04 36197.72 36590.16 39195.92 34695.91 38296.03 30393.95 40393.04 41369.60 40999.52 33790.72 39197.98 36798.45 340
UWE-MVS92.38 37691.76 37994.21 38797.16 39484.65 41395.42 36688.45 41895.96 30696.17 36595.84 38266.36 41699.71 25591.87 37198.64 33698.28 355
ETVMVS92.60 37391.08 38297.18 31697.70 37093.65 33996.54 30795.70 38596.51 28294.68 39292.39 41661.80 42399.50 34386.97 40397.41 37998.40 348
sasdasda98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
testing22291.96 38190.37 38596.72 34097.47 38792.59 35496.11 33494.76 39196.83 26992.90 40992.87 41457.92 42499.55 32686.93 40497.52 37398.00 370
WB-MVSnew95.73 32295.57 31696.23 35496.70 40490.70 38896.07 33693.86 40195.60 31697.04 33195.45 39396.00 22099.55 32691.04 38598.31 34898.43 345
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21299.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20999.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24297.97 19299.86 1598.22 15399.88 1799.71 1998.59 5099.84 14699.73 1899.98 1299.98 3
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18699.71 4596.10 25397.87 20499.85 1798.56 13199.90 1299.68 2298.69 4199.85 12899.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24297.79 21399.82 2498.21 15499.81 2499.53 5898.46 6099.84 14699.70 2199.97 1999.90 13
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19499.55 9396.09 25697.74 22199.81 2598.55 13299.85 1999.55 5298.60 4999.84 14699.69 2399.98 1299.89 14
MM98.22 18097.99 19498.91 15098.66 29996.97 22297.89 20094.44 39499.54 3098.95 16299.14 14193.50 29099.92 5399.80 1199.96 2399.85 22
WAC-MVS90.90 38491.37 380
Syy-MVS96.04 31195.56 31797.49 30297.10 39694.48 30696.18 33096.58 37195.65 31494.77 39092.29 41791.27 32099.36 36898.17 11798.05 36498.63 327
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
myMVS_eth3d91.92 38290.45 38496.30 34997.10 39690.90 38496.18 33096.58 37195.65 31494.77 39092.29 41753.88 42599.36 36889.59 39698.05 36498.63 327
testing393.51 36092.09 37097.75 27698.60 30694.40 30897.32 26395.26 38997.56 20696.79 34895.50 38753.57 42699.77 22495.26 29698.97 31399.08 256
SSC-MVS98.71 10498.74 8898.62 19199.72 4296.08 25898.74 9298.64 30699.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27499.82 27
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22799.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
WB-MVS98.52 14598.55 11998.43 22399.65 6395.59 26898.52 11898.77 29299.65 1899.52 6399.00 17594.34 27499.93 4498.65 9098.83 32199.76 42
test_fmvsmvis_n_192099.26 3599.49 1398.54 20999.66 6296.97 22298.00 18499.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 317
dmvs_re95.98 31495.39 32497.74 27898.86 25597.45 19598.37 14095.69 38797.95 17496.56 35595.95 37790.70 32597.68 41488.32 39996.13 40198.11 362
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9999.69 1399.63 4999.68 2299.03 2199.96 1297.97 13199.92 5499.57 96
dmvs_testset92.94 37092.21 36995.13 37898.59 30990.99 38397.65 23392.09 40996.95 26294.00 40193.55 40992.34 30996.97 41772.20 42092.52 41597.43 392
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17799.69 1399.63 4999.68 2299.25 1499.96 1297.25 17299.92 5499.57 96
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19399.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
test_cas_vis1_n_192098.33 16698.68 10197.27 31399.69 5492.29 36298.03 17899.85 1797.62 19899.96 499.62 3693.98 28399.74 24299.52 3399.86 8099.79 32
test_vis1_n_192098.40 15698.92 7196.81 33699.74 3590.76 38798.15 16099.91 998.33 14199.89 1599.55 5295.07 25399.88 9199.76 1599.93 4399.79 32
test_vis1_n98.31 16998.50 12697.73 28099.76 2994.17 31598.68 10299.91 996.31 29299.79 2699.57 4592.85 30299.42 36199.79 1299.84 8599.60 79
test_fmvs1_n98.09 19198.28 16097.52 29999.68 5693.47 34198.63 10599.93 595.41 32599.68 4099.64 3491.88 31599.48 34999.82 799.87 7699.62 70
mvsany_test197.60 23097.54 22897.77 27297.72 36595.35 27995.36 36897.13 35794.13 35399.71 3499.33 9597.93 10599.30 37897.60 15598.94 31698.67 325
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11498.28 15098.98 15499.19 12497.76 11699.58 31796.57 23199.55 22098.97 277
test_vis1_rt97.75 22097.72 21697.83 26798.81 26696.35 24897.30 26599.69 4094.61 34097.87 28198.05 31196.26 21098.32 40998.74 8398.18 35398.82 299
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18799.91 1199.67 2797.15 16298.91 40099.76 1599.56 21699.92 11
test_fmvs298.70 10898.97 6897.89 26499.54 9894.05 31898.55 11499.92 796.78 27299.72 3299.78 1096.60 19599.67 27599.91 299.90 6799.94 9
test_fmvs197.72 22297.94 20097.07 32398.66 29992.39 35997.68 22799.81 2595.20 32999.54 5799.44 7591.56 31899.41 36299.78 1499.77 12699.40 180
test_fmvs399.12 5499.41 2198.25 24099.76 2995.07 29199.05 6499.94 297.78 18999.82 2199.84 398.56 5499.71 25599.96 199.96 2399.97 4
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23396.49 28499.96 499.81 698.18 8499.45 35698.97 6699.79 11599.83 24
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
test_f98.67 11998.87 7698.05 25799.72 4295.59 26898.51 12399.81 2596.30 29499.78 2799.82 596.14 21398.63 40699.82 799.93 4399.95 8
FE-MVS95.66 32494.95 33797.77 27298.53 31895.28 28299.40 1696.09 37893.11 36897.96 27599.26 11079.10 39599.77 22492.40 36798.71 32998.27 356
FA-MVS(test-final)96.99 28096.82 27397.50 30198.70 28494.78 29699.34 2096.99 36095.07 33098.48 23499.33 9588.41 34499.65 29196.13 26698.92 31898.07 365
balanced_conf0398.63 12598.72 9298.38 22898.66 29996.68 24198.90 8099.42 12798.99 9798.97 15899.19 12495.81 23399.85 12898.77 8199.77 12698.60 329
MonoMVSNet96.25 30696.53 29395.39 37596.57 40691.01 38298.82 9097.68 34298.57 12898.03 27299.37 8490.92 32397.78 41394.99 30093.88 41397.38 393
patch_mono-298.51 14698.63 10898.17 24699.38 14094.78 29697.36 26099.69 4098.16 16498.49 23399.29 10397.06 16699.97 598.29 11099.91 6199.76 42
EGC-MVSNET85.24 38580.54 38899.34 7599.77 2699.20 3899.08 5899.29 18512.08 42320.84 42499.42 7797.55 13499.85 12897.08 18499.72 15398.96 279
test250692.39 37591.89 37793.89 39199.38 14082.28 42199.32 2366.03 42799.08 8898.77 19599.57 4566.26 41799.84 14698.71 8699.95 3099.54 113
test111196.49 29996.82 27395.52 37199.42 13587.08 40599.22 4287.14 41999.11 7699.46 7599.58 4388.69 33899.86 11698.80 7699.95 3099.62 70
ECVR-MVScopyleft96.42 30196.61 28795.85 36399.38 14088.18 40199.22 4286.00 42199.08 8899.36 9599.57 4588.47 34399.82 17398.52 9999.95 3099.54 113
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36198.86 10998.87 18297.62 33798.63 4698.96 39799.41 3898.29 34998.45 340
DVP-MVS++98.90 7998.70 9899.51 4698.43 32899.15 5199.43 1299.32 16498.17 16199.26 11699.02 16398.18 8499.88 9197.07 18599.45 24399.49 134
FOURS199.73 3699.67 399.43 1299.54 8199.43 4199.26 116
MSC_two_6792asdad99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
PC_three_145293.27 36599.40 8898.54 26298.22 8097.00 41695.17 29799.45 24399.49 134
No_MVS99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
test_one_060199.39 13999.20 3899.31 16998.49 13498.66 20899.02 16397.64 126
eth-test20.00 431
eth-test0.00 431
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7398.42 13798.91 17298.81 21898.94 2599.91 6298.35 10699.73 14599.49 134
test_method79.78 38679.50 38980.62 40280.21 42745.76 43070.82 41898.41 31931.08 42280.89 42297.71 33084.85 36497.37 41591.51 37880.03 41998.75 314
Anonymous2024052198.69 11198.87 7698.16 24899.77 2695.11 29099.08 5899.44 11899.34 5099.33 10099.55 5294.10 28299.94 3799.25 4899.96 2399.42 168
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30999.11 7698.58 22199.02 16388.65 34199.96 1298.11 11996.34 39799.49 134
hse-mvs297.46 24197.07 25698.64 18698.73 27597.33 20197.45 25597.64 34599.11 7698.58 22197.98 31588.65 34199.79 20798.11 11997.39 38098.81 303
CL-MVSNet_self_test97.44 24497.22 24898.08 25398.57 31395.78 26694.30 39698.79 28996.58 28198.60 21798.19 30094.74 26699.64 29496.41 24798.84 32098.82 299
KD-MVS_2432*160092.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8199.31 5399.62 5299.53 5897.36 15099.86 11699.24 5099.71 15899.39 181
AUN-MVS96.24 30895.45 32098.60 19698.70 28497.22 20997.38 25897.65 34395.95 30795.53 38297.96 31982.11 38599.79 20796.31 25397.44 37798.80 308
ZD-MVS99.01 22798.84 7899.07 23794.10 35498.05 27098.12 30496.36 20799.86 11692.70 36399.19 285
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.49 14499.86 11696.56 23599.39 25099.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.75 11796.56 23599.39 25099.45 157
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16899.31 16998.03 16899.66 4399.02 16398.36 6599.88 9196.91 19799.62 19399.41 171
IU-MVS99.49 11599.15 5198.87 27292.97 36999.41 8596.76 21499.62 19399.66 60
OPU-MVS98.82 15998.59 30998.30 11898.10 16898.52 26698.18 8498.75 40494.62 31099.48 24099.41 171
test_241102_TWO99.30 17798.03 16899.26 11699.02 16397.51 14099.88 9196.91 19799.60 20099.66 60
test_241102_ONE99.49 11599.17 4399.31 16997.98 17199.66 4398.90 19798.36 6599.48 349
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13196.77 27398.83 18698.90 19797.80 11499.82 17395.68 28699.52 22999.38 188
cl2295.79 32095.39 32496.98 32696.77 40392.79 35194.40 39498.53 31194.59 34197.89 27998.17 30182.82 38299.24 38496.37 24999.03 30398.92 286
miper_ehance_all_eth97.06 27397.03 25897.16 32097.83 36193.06 34594.66 38699.09 23595.99 30598.69 20398.45 27692.73 30599.61 30696.79 21099.03 30398.82 299
miper_enhance_ethall96.01 31295.74 30796.81 33696.41 41192.27 36393.69 40598.89 26991.14 39198.30 24697.35 35390.58 32699.58 31796.31 25399.03 30398.60 329
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18597.28 23798.11 26498.39 28198.00 9999.87 10896.86 20799.64 18799.55 109
dcpmvs_298.78 9599.11 5497.78 27199.56 8993.67 33799.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12999.91 6199.68 56
cl____97.02 27696.83 27297.58 29197.82 36294.04 32094.66 38699.16 22397.04 25798.63 21198.71 23388.68 34099.69 26397.00 18999.81 9999.00 272
DIV-MVS_self_test97.02 27696.84 27197.58 29197.82 36294.03 32194.66 38699.16 22397.04 25798.63 21198.71 23388.69 33899.69 26397.00 18999.81 9999.01 268
eth_miper_zixun_eth97.23 26297.25 24697.17 31898.00 35592.77 35294.71 38399.18 21697.27 23898.56 22498.74 22991.89 31499.69 26397.06 18799.81 9999.05 260
9.1497.78 21099.07 21397.53 24799.32 16495.53 31998.54 22898.70 23697.58 13199.76 23094.32 32399.46 241
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
save fliter99.11 20497.97 15496.53 30999.02 24998.24 151
ET-MVSNet_ETH3D94.30 34893.21 35897.58 29198.14 34894.47 30794.78 38293.24 40594.72 33889.56 41695.87 38078.57 39899.81 18796.91 19797.11 38998.46 337
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5999.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
EIA-MVS98.00 19797.74 21398.80 16398.72 27798.09 13798.05 17599.60 5697.39 22696.63 35295.55 38597.68 12099.80 19496.73 21899.27 26998.52 335
miper_refine_blended92.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
miper_lstm_enhance97.18 26697.16 25197.25 31598.16 34692.85 35095.15 37499.31 16997.25 24098.74 20098.78 22390.07 32999.78 21897.19 17499.80 11099.11 255
ETV-MVS98.03 19497.86 20798.56 20598.69 28998.07 14397.51 25099.50 9098.10 16697.50 30995.51 38698.41 6299.88 9196.27 25699.24 27497.71 384
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25498.46 27598.68 4299.93 4499.03 6299.85 8198.64 326
D2MVS97.84 21697.84 20897.83 26799.14 20094.74 29896.94 28798.88 27095.84 31098.89 17598.96 18594.40 27299.69 26397.55 15699.95 3099.05 260
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 18098.84 28197.97 17299.08 13899.02 16397.61 12999.88 9196.99 19199.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 16199.08 13899.02 16397.89 10699.88 9197.07 18599.71 15899.70 54
test_0728_SECOND99.60 1499.50 10899.23 3098.02 18099.32 16499.88 9196.99 19199.63 19099.68 56
test072699.50 10899.21 3298.17 15899.35 15197.97 17299.26 11699.06 15197.61 129
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18598.29 14898.88 17898.85 21097.53 13799.87 10896.14 26499.31 26299.48 144
DPM-MVS96.32 30395.59 31598.51 21298.76 27197.21 21094.54 39298.26 32391.94 38196.37 36297.25 35493.06 29799.43 35991.42 37998.74 32598.89 291
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19797.44 22398.67 20698.39 28197.68 12099.85 12896.00 26899.51 23199.52 124
test_yl96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
thisisatest053095.27 33294.45 34397.74 27899.19 18594.37 30997.86 20590.20 41597.17 25198.22 25397.65 33473.53 40599.90 6896.90 20299.35 25698.95 280
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25599.25 5999.54 5799.37 8497.04 16799.80 19497.89 13499.52 22999.35 201
Anonymous20240521197.90 20397.50 23199.08 12098.90 24798.25 12198.53 11796.16 37698.87 10899.11 13398.86 20790.40 32899.78 21897.36 16699.31 26299.19 241
DCV-MVSNet96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
tttt051795.64 32594.98 33597.64 28699.36 14793.81 33298.72 9790.47 41498.08 16798.67 20698.34 28873.88 40499.92 5397.77 14499.51 23199.20 236
our_test_397.39 24997.73 21596.34 34898.70 28489.78 39394.61 38998.97 25696.50 28399.04 14798.85 21095.98 22599.84 14697.26 17199.67 17999.41 171
thisisatest051594.12 35293.16 35996.97 32798.60 30692.90 34993.77 40490.61 41394.10 35496.91 33895.87 38074.99 40399.80 19494.52 31399.12 29698.20 358
ppachtmachnet_test97.50 23697.74 21396.78 33898.70 28491.23 38094.55 39199.05 24196.36 28999.21 12498.79 22196.39 20399.78 21896.74 21699.82 9599.34 203
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17599.22 20594.16 35298.98 15499.10 14797.52 13999.79 20796.45 24599.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.81 303
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28399.39 13697.67 19499.44 7998.99 17697.53 13799.89 7995.40 29499.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.36 14799.10 6499.05 145
thres100view90094.19 34993.67 35395.75 36699.06 21891.35 37498.03 17894.24 39898.33 14197.40 31794.98 39879.84 38999.62 30083.05 41198.08 36196.29 404
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11899.45 3799.51 6899.24 11598.20 8399.86 11695.92 27299.69 16899.04 264
tfpn200view994.03 35393.44 35595.78 36598.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36196.29 404
c3_l97.36 25097.37 23997.31 31098.09 35193.25 34395.01 37799.16 22397.05 25698.77 19598.72 23292.88 30099.64 29496.93 19699.76 13899.05 260
CHOSEN 280x42095.51 32995.47 31895.65 36998.25 34088.27 40093.25 40798.88 27093.53 36294.65 39397.15 35786.17 35499.93 4497.41 16499.93 4398.73 316
CANet97.87 20997.76 21198.19 24597.75 36495.51 27396.76 29899.05 24197.74 19096.93 33598.21 29895.59 23999.89 7997.86 13999.93 4399.19 241
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32898.11 13497.61 23899.50 9098.64 11897.39 31997.52 34298.12 9299.95 2496.90 20298.71 32998.38 350
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35499.49 698.02 18099.16 22398.29 14897.64 29697.99 31496.44 20299.95 2496.66 22498.93 31798.60 329
CANet_DTU97.26 25897.06 25797.84 26697.57 37594.65 30396.19 32998.79 28997.23 24695.14 38798.24 29593.22 29299.84 14697.34 16799.84 8599.04 264
MVS_030497.44 24497.01 26098.72 18096.42 41096.74 23797.20 27491.97 41098.46 13698.30 24698.79 22192.74 30499.91 6299.30 4399.94 3899.52 124
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27899.38 13894.87 33698.97 15898.99 17698.01 9899.88 9197.29 16999.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15197.55 20899.31 10897.71 33094.61 26799.88 9196.14 26499.19 28599.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs184.74 36698.81 303
sam_mvs84.29 372
IterMVS-SCA-FT97.85 21598.18 17396.87 33299.27 16491.16 38195.53 36099.25 19799.10 8399.41 8599.35 8993.10 29599.96 1298.65 9099.94 3899.49 134
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25796.96 26199.24 12198.89 20397.83 10999.81 18796.88 20499.49 23999.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 28099.18 21697.10 25598.75 19898.92 19398.18 8499.65 29196.68 22399.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20999.25 19796.94 26398.78 19299.12 14398.02 9799.84 14697.13 18199.67 17999.59 85
ambc98.24 24298.82 26495.97 26098.62 10799.00 25499.27 11299.21 12196.99 17299.50 34396.55 23899.50 23899.26 225
MTGPAbinary99.20 208
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25898.51 26798.64 4499.93 4498.91 6999.85 8198.88 294
Effi-MVS+98.02 19597.82 20998.62 19198.53 31897.19 21297.33 26299.68 4597.30 23596.68 35097.46 34698.56 5499.80 19496.63 22598.20 35298.86 296
xiu_mvs_v2_base97.16 26897.49 23296.17 35798.54 31692.46 35795.45 36498.84 28197.25 24097.48 31196.49 36798.31 7199.90 6896.34 25298.68 33496.15 408
xiu_mvs_v1_base97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
new-patchmatchnet98.35 16298.74 8897.18 31699.24 17192.23 36496.42 31599.48 9998.30 14599.69 3899.53 5897.44 14699.82 17398.84 7599.77 12699.49 134
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10899.36 3999.92 5499.64 66
pmmvs597.64 22897.49 23298.08 25399.14 20095.12 28996.70 30299.05 24193.77 35998.62 21398.83 21393.23 29199.75 23798.33 10999.76 13899.36 197
test_post197.59 24120.48 42583.07 38099.66 28694.16 324
test_post21.25 42483.86 37599.70 259
Fast-Effi-MVS+97.67 22697.38 23898.57 20198.71 28097.43 19797.23 27099.45 11494.82 33796.13 36696.51 36698.52 5699.91 6296.19 26098.83 32198.37 352
patchmatchnet-post98.77 22584.37 36999.85 128
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8899.70 1299.80 2599.68 2296.84 17899.83 16399.21 5199.91 6199.77 37
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27899.28 18895.54 31899.42 8399.19 12497.27 15599.63 29797.89 13499.97 1999.20 236
GG-mvs-BLEND94.76 38194.54 42092.13 36599.31 2780.47 42588.73 41991.01 41967.59 41498.16 41282.30 41594.53 41193.98 415
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
Anonymous2023120698.21 18298.21 16998.20 24499.51 10595.43 27798.13 16299.32 16496.16 29798.93 17098.82 21696.00 22099.83 16397.32 16899.73 14599.36 197
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20898.83 11398.89 17598.90 19796.98 17399.92 5397.16 17699.70 16599.56 102
MTMP97.93 19391.91 411
gm-plane-assit94.83 41981.97 42288.07 40694.99 39799.60 30791.76 372
test9_res93.28 35099.15 29099.38 188
MVP-Stereo98.08 19297.92 20298.57 20198.96 23596.79 23397.90 19999.18 21696.41 28898.46 23598.95 18995.93 22999.60 30796.51 24198.98 31299.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST998.71 28098.08 14195.96 34199.03 24691.40 38795.85 37297.53 34096.52 19899.76 230
train_agg97.10 27096.45 29599.07 12298.71 28098.08 14195.96 34199.03 24691.64 38295.85 37297.53 34096.47 20099.76 23093.67 34099.16 28899.36 197
gg-mvs-nofinetune92.37 37791.20 38195.85 36395.80 41892.38 36099.31 2781.84 42499.75 891.83 41399.74 1568.29 41099.02 39487.15 40297.12 38896.16 407
SCA96.41 30296.66 28595.67 36798.24 34188.35 39995.85 35096.88 36696.11 29897.67 29598.67 24193.10 29599.85 12894.16 32499.22 27898.81 303
Patchmatch-test96.55 29596.34 29797.17 31898.35 33493.06 34598.40 13797.79 33797.33 23198.41 24098.67 24183.68 37699.69 26395.16 29899.31 26298.77 311
test_898.67 29498.01 14995.91 34799.02 24991.64 38295.79 37497.50 34396.47 20099.76 230
MS-PatchMatch97.68 22597.75 21297.45 30598.23 34393.78 33397.29 26698.84 28196.10 29998.64 21098.65 24696.04 21799.36 36896.84 20899.14 29199.20 236
Patchmatch-RL test97.26 25897.02 25997.99 26199.52 10395.53 27296.13 33399.71 3697.47 21599.27 11299.16 13484.30 37199.62 30097.89 13499.77 12698.81 303
cdsmvs_eth3d_5k24.66 39032.88 3930.00 4080.00 4310.00 4330.00 41999.10 2330.00 4260.00 42797.58 33899.21 160.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.17 39310.90 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42698.07 930.00 4270.00 4260.00 4250.00 423
agg_prior292.50 36699.16 28899.37 190
agg_prior98.68 29397.99 15099.01 25295.59 37599.77 224
tmp_tt78.77 38778.73 39078.90 40358.45 42874.76 42794.20 39778.26 42639.16 42186.71 42092.82 41580.50 38775.19 42386.16 40792.29 41686.74 417
canonicalmvs98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4098.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
alignmvs97.35 25196.88 26898.78 16998.54 31698.09 13797.71 22497.69 34199.20 6597.59 30095.90 37988.12 34699.55 32698.18 11598.96 31498.70 320
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9999.68 1599.46 7599.26 11098.62 4799.73 24799.17 5499.92 5499.76 42
v14419298.54 14098.57 11898.45 22099.21 17895.98 25997.63 23599.36 14697.15 25499.32 10699.18 12895.84 23299.84 14699.50 3499.91 6199.54 113
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8799.48 3399.24 12199.41 8196.79 18499.82 17398.69 8899.88 7399.76 42
v192192098.54 14098.60 11598.38 22899.20 18295.76 26797.56 24499.36 14697.23 24699.38 9199.17 13296.02 21899.84 14699.57 2799.90 6799.54 113
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
v119298.60 13098.66 10498.41 22599.27 16495.88 26297.52 24899.36 14697.41 22499.33 10099.20 12396.37 20699.82 17399.57 2799.92 5499.55 109
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6699.61 2699.40 8899.50 6297.12 16399.85 12899.02 6399.94 3899.80 31
v114498.60 13098.66 10498.41 22599.36 14795.90 26197.58 24299.34 15797.51 21199.27 11299.15 13896.34 20899.80 19499.47 3699.93 4399.51 127
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16997.47 21598.58 22198.50 27197.97 10399.85 12896.57 23199.59 20499.53 121
v14898.45 15198.60 11598.00 26099.44 12994.98 29297.44 25699.06 23898.30 14599.32 10698.97 18296.65 19399.62 30098.37 10599.85 8199.39 181
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5599.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16997.46 22098.44 23798.51 26797.83 10999.88 9196.46 24499.58 20999.58 91
RRT-MVS97.88 20797.98 19597.61 28898.15 34793.77 33498.97 7399.64 5099.16 7398.69 20399.42 7791.60 31699.89 7997.63 15298.52 34399.16 251
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 268
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4999.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
PS-MVSNAJ97.08 27297.39 23796.16 35998.56 31492.46 35795.24 37198.85 28097.25 24097.49 31095.99 37698.07 9399.90 6896.37 24998.67 33596.12 409
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4899.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
EI-MVSNet-UG-set98.69 11198.71 9598.62 19199.10 20696.37 24797.23 27098.87 27299.20 6599.19 12698.99 17697.30 15299.85 12898.77 8199.79 11599.65 65
EI-MVSNet-Vis-set98.68 11698.70 9898.63 19099.09 20996.40 24697.23 27098.86 27799.20 6599.18 13098.97 18297.29 15499.85 12898.72 8599.78 12099.64 66
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24898.75 29697.46 22096.90 34197.83 32596.01 21999.84 14695.82 28099.35 25699.46 153
test_prior497.97 15495.86 348
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30598.63 25197.50 14199.83 16396.79 21099.53 22699.56 102
v124098.55 13898.62 11098.32 23499.22 17695.58 27097.51 25099.45 11497.16 25299.45 7899.24 11596.12 21599.85 12899.60 2599.88 7399.55 109
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5199.30 5599.65 4699.60 4199.16 2099.82 17399.07 5899.83 9299.56 102
test_prior295.74 35496.48 28596.11 36797.63 33695.92 23094.16 32499.20 282
X-MVStestdata94.32 34692.59 36499.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30545.85 42197.50 14199.83 16396.79 21099.53 22699.56 102
test_prior98.95 14398.69 28997.95 15899.03 24699.59 31199.30 217
旧先验295.76 35388.56 40597.52 30799.66 28694.48 314
新几何295.93 344
新几何198.91 15098.94 23797.76 17698.76 29387.58 40796.75 34998.10 30694.80 26399.78 21892.73 36299.00 30899.20 236
旧先验198.82 26497.45 19598.76 29398.34 28895.50 24399.01 30799.23 231
无先验95.74 35498.74 29889.38 40199.73 24792.38 36899.22 235
原ACMM295.53 360
原ACMM198.35 23298.90 24796.25 25198.83 28592.48 37696.07 36998.10 30695.39 24699.71 25592.61 36598.99 31099.08 256
test22298.92 24396.93 22795.54 35998.78 29185.72 41096.86 34498.11 30594.43 27099.10 29899.23 231
testdata299.79 20792.80 360
segment_acmp97.02 170
testdata98.09 25098.93 23995.40 27898.80 28890.08 39897.45 31498.37 28495.26 24899.70 25993.58 34398.95 31599.17 248
testdata195.44 36596.32 291
v899.01 6499.16 4898.57 20199.47 12496.31 25098.90 8099.47 10799.03 9499.52 6399.57 4596.93 17499.81 18799.60 2599.98 1299.60 79
131495.74 32195.60 31396.17 35797.53 38092.75 35398.07 17298.31 32291.22 38994.25 39696.68 36495.53 24099.03 39391.64 37597.18 38796.74 401
LFMVS97.20 26496.72 27998.64 18698.72 27796.95 22598.93 7894.14 40099.74 1098.78 19299.01 17284.45 36899.73 24797.44 16299.27 26999.25 226
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35999.59 2799.11 13399.27 10694.82 26099.79 20798.34 10799.63 19099.34 203
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35299.67 1698.97 15899.50 6290.45 32799.80 19497.88 13799.20 28299.48 144
v1098.97 7099.11 5498.55 20699.44 12996.21 25298.90 8099.55 7798.73 11499.48 7099.60 4196.63 19499.83 16399.70 2199.99 599.61 78
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15199.47 3599.28 11099.05 15896.72 19099.82 17398.09 12199.36 25499.59 85
MVS93.19 36692.09 37096.50 34496.91 39994.03 32198.07 17298.06 33368.01 41994.56 39596.48 36895.96 22799.30 37883.84 41096.89 39296.17 406
v2v48298.56 13498.62 11098.37 23099.42 13595.81 26597.58 24299.16 22397.90 18099.28 11099.01 17295.98 22599.79 20799.33 4199.90 6799.51 127
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21297.87 18299.25 12099.16 13496.84 17899.78 21899.21 5199.84 8599.46 153
SD-MVS98.40 15698.68 10197.54 29798.96 23597.99 15097.88 20199.36 14698.20 15899.63 4999.04 16098.76 3595.33 42096.56 23599.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS95.86 31795.32 32797.49 30298.60 30694.15 31693.83 40397.93 33595.49 32096.68 35097.42 34883.21 37899.30 37896.22 25898.55 34299.01 268
MSLP-MVS++98.02 19598.14 18097.64 28698.58 31195.19 28697.48 25299.23 20497.47 21597.90 27898.62 25397.04 16798.81 40397.55 15699.41 24898.94 284
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9997.57 20499.35 9799.24 11597.83 10999.89 7997.88 13799.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16298.64 11899.03 15098.98 18097.89 10699.85 12896.54 23999.42 24799.46 153
ADS-MVSNet295.43 33094.98 33596.76 33998.14 34891.74 36797.92 19697.76 33890.23 39496.51 35898.91 19485.61 35999.85 12892.88 35696.90 39098.69 321
EI-MVSNet98.40 15698.51 12498.04 25899.10 20694.73 29997.20 27498.87 27298.97 10099.06 14099.02 16396.00 22099.80 19498.58 9399.82 9599.60 79
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
CVMVSNet96.25 30697.21 24993.38 39799.10 20680.56 42497.20 27498.19 32896.94 26399.00 15299.02 16389.50 33499.80 19496.36 25199.59 20499.78 35
pmmvs497.58 23397.28 24498.51 21298.84 25996.93 22795.40 36798.52 31293.60 36198.61 21598.65 24695.10 25299.60 30796.97 19499.79 11598.99 273
EU-MVSNet97.66 22798.50 12695.13 37899.63 7385.84 40898.35 14298.21 32598.23 15299.54 5799.46 7095.02 25499.68 27298.24 11199.87 7699.87 18
VNet98.42 15398.30 15898.79 16698.79 27097.29 20398.23 15098.66 30399.31 5398.85 18398.80 21994.80 26399.78 21898.13 11899.13 29399.31 214
test-LLR93.90 35593.85 34994.04 38896.53 40784.62 41494.05 40092.39 40796.17 29594.12 39895.07 39482.30 38399.67 27595.87 27698.18 35397.82 375
TESTMET0.1,192.19 38091.77 37893.46 39596.48 40982.80 42094.05 40091.52 41294.45 34694.00 40194.88 40066.65 41599.56 32295.78 28198.11 35998.02 367
test-mter92.33 37891.76 37994.04 38896.53 40784.62 41494.05 40092.39 40794.00 35794.12 39895.07 39465.63 41999.67 27595.87 27698.18 35397.82 375
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11499.63 2199.52 6399.44 7598.25 7599.88 9199.09 5799.84 8599.62 70
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16997.47 21598.56 22498.54 26297.75 11799.88 9196.57 23199.59 20499.58 91
testgi98.32 16798.39 14698.13 24999.57 8195.54 27197.78 21499.49 9797.37 22899.19 12697.65 33498.96 2499.49 34696.50 24298.99 31099.34 203
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21499.24 20299.04 9399.41 8598.90 19797.65 12399.76 23097.70 14999.79 11599.39 181
thres600view794.45 34493.83 35096.29 35099.06 21891.53 37097.99 18894.24 39898.34 14097.44 31595.01 39679.84 38999.67 27584.33 40998.23 35097.66 385
ADS-MVSNet95.24 33394.93 33896.18 35698.14 34890.10 39297.92 19697.32 35190.23 39496.51 35898.91 19485.61 35999.74 24292.88 35696.90 39098.69 321
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21297.61 20197.58 30198.66 24497.40 14899.88 9194.72 30999.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs17.12 39120.53 3946.87 40712.05 4294.20 43293.62 4066.73 4304.62 42510.41 42524.33 4228.28 4303.56 4269.69 42515.07 42312.86 422
thres40094.14 35193.44 35596.24 35398.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36197.66 385
test12317.04 39220.11 3957.82 40610.25 4304.91 43194.80 3814.47 4314.93 42410.00 42624.28 4239.69 4293.64 42510.14 42412.43 42414.92 421
thres20093.72 35893.14 36095.46 37498.66 29991.29 37696.61 30694.63 39397.39 22696.83 34593.71 40879.88 38899.56 32282.40 41498.13 35895.54 413
test0.0.03 194.51 34393.69 35296.99 32596.05 41493.61 34094.97 37893.49 40296.17 29597.57 30394.88 40082.30 38399.01 39693.60 34294.17 41298.37 352
pmmvs395.03 33794.40 34496.93 32897.70 37092.53 35695.08 37597.71 34088.57 40497.71 29298.08 30979.39 39399.82 17396.19 26099.11 29798.43 345
EMVS93.83 35694.02 34893.23 39896.83 40284.96 41189.77 41796.32 37597.92 17897.43 31696.36 37386.17 35498.93 39987.68 40197.73 37095.81 411
E-PMN94.17 35094.37 34593.58 39496.86 40085.71 41090.11 41697.07 35898.17 16197.82 28797.19 35584.62 36798.94 39889.77 39497.68 37196.09 410
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9797.01 26098.69 20398.88 20498.00 9999.89 7995.87 27699.59 20499.58 91
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25898.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5394.13 32899.30 26598.91 289
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29298.73 29995.66 31397.92 27697.70 33297.17 16199.66 28696.18 26299.23 27799.47 151
mvs_anonymous97.83 21898.16 17796.87 33298.18 34591.89 36697.31 26498.90 26697.37 22898.83 18699.46 7096.28 20999.79 20798.90 7098.16 35698.95 280
MVS_Test98.18 18598.36 15097.67 28298.48 32194.73 29998.18 15599.02 24997.69 19398.04 27199.11 14497.22 15999.56 32298.57 9598.90 31998.71 317
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25599.44 12994.96 29396.63 30599.15 22898.35 13998.83 18699.11 14494.31 27599.85 12896.60 22898.72 32799.37 190
CDPH-MVS97.26 25896.66 28599.07 12299.00 22898.15 13096.03 33799.01 25291.21 39097.79 28897.85 32496.89 17699.69 26392.75 36199.38 25399.39 181
test1298.93 14698.58 31197.83 16798.66 30396.53 35695.51 24299.69 26399.13 29399.27 222
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20999.57 6699.17 7299.35 9799.17 13298.35 6899.69 26398.46 10199.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive98.22 18098.24 16798.17 24699.00 22895.44 27696.38 31799.58 5997.79 18898.53 22998.50 27196.76 18799.74 24297.95 13399.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline293.73 35792.83 36396.42 34697.70 37091.28 37796.84 29489.77 41693.96 35892.44 41195.93 37879.14 39499.77 22492.94 35496.76 39498.21 357
baseline195.96 31595.44 32197.52 29998.51 32093.99 32498.39 13896.09 37898.21 15498.40 24497.76 32886.88 34899.63 29795.42 29389.27 41898.95 280
YYNet197.60 23097.67 21897.39 30999.04 22293.04 34895.27 36998.38 32097.25 24098.92 17198.95 18995.48 24499.73 24796.99 19198.74 32599.41 171
PMMVS298.07 19398.08 18698.04 25899.41 13794.59 30594.59 39099.40 13497.50 21298.82 18998.83 21396.83 18099.84 14697.50 16199.81 9999.71 49
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30899.04 22293.09 34495.27 36998.42 31797.26 23998.88 17898.95 18995.43 24599.73 24797.02 18898.72 32799.41 171
tpmvs95.02 33895.25 32894.33 38496.39 41285.87 40798.08 17096.83 36795.46 32195.51 38398.69 23785.91 35799.53 33394.16 32496.23 39997.58 388
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18999.68 4597.62 19899.34 9999.18 12897.54 13599.77 22497.79 14299.74 14299.04 264
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21699.27 19198.20 15897.79 28897.98 31594.90 25699.70 25994.42 31899.51 23199.45 157
plane_prior799.19 18597.87 163
plane_prior698.99 23197.70 18294.90 256
plane_prior599.27 19199.70 25994.42 31899.51 23199.45 157
plane_prior497.98 315
plane_prior397.78 17597.41 22497.79 288
plane_prior297.77 21698.20 158
plane_prior199.05 221
plane_prior97.65 18497.07 28196.72 27599.36 254
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8499.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22799.40 13499.14 7499.06 14098.59 25896.71 19199.93 4498.57 9599.77 12699.53 121
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8199.62 2499.56 5399.42 7798.16 8899.96 1298.78 7899.93 4399.77 37
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6699.39 4499.75 3199.62 3699.17 1899.83 16399.06 5999.62 19399.66 60
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8899.64 1999.56 5399.46 7098.23 7799.97 598.78 7899.93 4399.72 48
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24699.25 19798.84 11299.06 14098.76 22796.76 18799.93 4498.57 9599.77 12699.50 130
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22399.38 13898.93 10499.12 13298.73 23096.77 18599.86 11698.63 9299.80 11099.46 153
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15799.42 4299.33 10099.26 11097.01 17199.94 3798.74 8399.93 4399.79 32
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7799.46 3699.50 6999.34 9397.30 15299.93 4498.90 7099.93 4399.77 37
WR-MVS98.40 15698.19 17299.03 13299.00 22897.65 18496.85 29398.94 25798.57 12898.89 17598.50 27195.60 23899.85 12897.54 15899.85 8199.59 85
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20899.10 8399.72 3298.76 22796.38 20599.86 11698.00 12999.82 9599.50 130
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25499.57 6699.37 4699.21 12499.61 3996.76 18799.83 16398.06 12499.83 9299.71 49
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12799.42 4299.36 9599.06 15198.38 6499.95 2498.34 10799.90 6799.57 96
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 28097.88 16296.32 32198.66 30396.33 29099.23 12398.51 26797.48 14599.40 36397.16 17699.46 24199.02 267
n20.00 432
nn0.00 432
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20297.47 21598.09 26698.68 23997.62 12899.89 7996.22 25899.62 19399.57 96
door-mid99.57 66
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30799.48 9997.32 23399.11 13398.61 25599.33 1399.30 37896.23 25798.38 34599.28 221
mvsmamba97.57 23497.26 24598.51 21298.69 28996.73 23898.74 9297.25 35397.03 25997.88 28099.23 11990.95 32299.87 10896.61 22799.00 30898.91 289
MVSFormer98.26 17698.43 13997.77 27298.88 25393.89 33099.39 1799.56 7399.11 7698.16 25898.13 30293.81 28699.97 599.26 4699.57 21399.43 165
jason97.45 24397.35 24197.76 27599.24 17193.93 32695.86 34898.42 31794.24 35098.50 23298.13 30294.82 26099.91 6297.22 17399.73 14599.43 165
jason: jason.
lupinMVS97.06 27396.86 26997.65 28498.88 25393.89 33095.48 36397.97 33493.53 36298.16 25897.58 33893.81 28699.91 6296.77 21399.57 21399.17 248
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7399.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 9097.33 23198.94 16998.86 20798.75 3699.82 17397.53 15999.71 15899.56 102
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40699.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
lessismore_v098.97 14099.73 3697.53 19186.71 42099.37 9399.52 6189.93 33099.92 5398.99 6599.72 15399.44 161
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32699.37 4699.70 3699.65 3392.65 30699.93 4499.04 6199.84 8599.60 79
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5999.44 3999.78 2799.76 1296.39 20399.92 5399.44 3799.92 5499.68 56
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12496.74 27498.61 21598.38 28398.62 4799.87 10896.47 24399.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33999.50 9097.30 23599.05 14598.98 18099.35 1299.32 37595.72 28399.68 17399.18 244
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22499.46 11097.25 24098.98 15498.99 17697.54 13599.84 14695.88 27399.74 14299.23 231
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18499.62 5299.22 6199.55 5699.22 12098.93 2699.75 23798.66 8999.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 9098.86 10999.19 12699.06 15198.23 7799.69 26398.71 8699.76 13899.33 208
test1198.87 272
door99.41 131
EPNet_dtu94.93 34094.78 34095.38 37693.58 42187.68 40396.78 29695.69 38797.35 23089.14 41898.09 30888.15 34599.49 34694.95 30399.30 26598.98 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268897.49 23997.14 25498.54 20999.68 5696.09 25696.50 31099.62 5291.58 38498.84 18598.97 18292.36 30899.88 9196.76 21499.95 3099.67 59
EPNet96.14 30995.44 32198.25 24090.76 42595.50 27497.92 19694.65 39298.97 10092.98 40898.85 21089.12 33699.87 10895.99 26999.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS96.79 233
HQP-NCC98.67 29496.29 32396.05 30095.55 378
ACMP_Plane98.67 29496.29 32396.05 30095.55 378
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21999.28 18894.97 33398.72 20198.77 22597.04 16799.85 12893.79 33899.54 22299.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS92.82 358
HQP4-MVS95.56 37799.54 33199.32 210
HQP3-MVS99.04 24499.26 272
HQP2-MVS93.84 284
CNVR-MVS98.17 18797.87 20699.07 12298.67 29498.24 12297.01 28398.93 26097.25 24097.62 29798.34 28897.27 15599.57 31996.42 24699.33 25999.39 181
NCCC97.86 21097.47 23599.05 12998.61 30498.07 14396.98 28598.90 26697.63 19797.04 33197.93 32095.99 22499.66 28695.31 29598.82 32399.43 165
114514_t96.50 29895.77 30698.69 18299.48 12297.43 19797.84 20899.55 7781.42 41696.51 35898.58 25995.53 24099.67 27593.41 34899.58 20998.98 274
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14697.54 20998.30 24698.40 28097.86 10899.89 7996.53 24099.72 15399.56 102
DSMNet-mixed97.42 24697.60 22696.87 33299.15 19991.46 37198.54 11699.12 23092.87 37297.58 30199.63 3596.21 21199.90 6895.74 28299.54 22299.27 222
tpm293.09 36792.58 36594.62 38297.56 37686.53 40697.66 23195.79 38486.15 40994.07 40098.23 29775.95 40199.53 33390.91 38896.86 39397.81 377
NP-MVS98.84 25997.39 19996.84 361
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17799.59 5798.15 16599.40 8899.36 8898.58 5399.76 23098.78 7899.68 17399.59 85
tpm cat193.29 36493.13 36193.75 39297.39 38984.74 41297.39 25797.65 34383.39 41494.16 39798.41 27982.86 38199.39 36591.56 37795.35 40797.14 396
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16997.92 17898.90 17398.90 19798.00 9999.88 9196.15 26399.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
CostFormer93.97 35493.78 35194.51 38397.53 38085.83 40997.98 18995.96 38089.29 40294.99 38998.63 25178.63 39799.62 30094.54 31296.50 39598.09 364
CR-MVSNet96.28 30595.95 30497.28 31297.71 36894.22 31198.11 16698.92 26392.31 37896.91 33899.37 8485.44 36299.81 18797.39 16597.36 38397.81 377
JIA-IIPM95.52 32895.03 33497.00 32496.85 40194.03 32196.93 28995.82 38399.20 6594.63 39499.71 1983.09 37999.60 30794.42 31894.64 40997.36 394
Patchmtry97.35 25196.97 26198.50 21697.31 39196.47 24598.18 15598.92 26398.95 10398.78 19299.37 8485.44 36299.85 12895.96 27199.83 9299.17 248
PatchT96.65 29296.35 29697.54 29797.40 38895.32 28197.98 18996.64 37099.33 5196.89 34299.42 7784.32 37099.81 18797.69 15197.49 37497.48 390
tpmrst95.07 33695.46 31993.91 39097.11 39584.36 41697.62 23696.96 36294.98 33296.35 36398.80 21985.46 36199.59 31195.60 28896.23 39997.79 380
BH-w/o95.13 33594.89 33995.86 36298.20 34491.31 37595.65 35697.37 34793.64 36096.52 35795.70 38393.04 29899.02 39488.10 40095.82 40497.24 395
tpm94.67 34294.34 34695.66 36897.68 37388.42 39897.88 20194.90 39094.46 34496.03 37198.56 26178.66 39699.79 20795.88 27395.01 40898.78 310
DELS-MVS98.27 17498.20 17098.48 21798.86 25596.70 23995.60 35899.20 20897.73 19198.45 23698.71 23397.50 14199.82 17398.21 11399.59 20498.93 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned96.83 28596.75 27897.08 32198.74 27493.33 34296.71 30198.26 32396.72 27598.44 23797.37 35195.20 24999.47 35291.89 37097.43 37898.44 343
RPMNet97.02 27696.93 26397.30 31197.71 36894.22 31198.11 16699.30 17799.37 4696.91 33899.34 9386.72 34999.87 10897.53 15997.36 38397.81 377
MVSTER96.86 28496.55 29197.79 27097.91 35994.21 31397.56 24498.87 27297.49 21499.06 14099.05 15880.72 38699.80 19498.44 10299.82 9599.37 190
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19194.90 33597.83 28598.37 28494.90 25699.84 14693.85 33799.54 22299.51 127
GBi-Net98.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24399.73 3695.15 28797.36 26099.68 4594.45 34698.99 15399.27 10696.87 17799.94 3797.13 18199.91 6199.57 96
PVSNet_BlendedMVS97.55 23597.53 22997.60 28998.92 24393.77 33496.64 30499.43 12494.49 34297.62 29799.18 12896.82 18199.67 27594.73 30799.93 4399.36 197
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23699.35 15198.72 11698.76 19798.68 23992.57 30799.74 24297.76 14895.60 40599.34 203
UnsupCasMVSNet_bld97.30 25596.92 26598.45 22099.28 16296.78 23696.20 32899.27 19195.42 32298.28 25098.30 29293.16 29399.71 25594.99 30097.37 38198.87 295
PVSNet_Blended96.88 28396.68 28297.47 30498.92 24393.77 33494.71 38399.43 12490.98 39297.62 29797.36 35296.82 18199.67 27594.73 30799.56 21698.98 274
FMVSNet596.01 31295.20 33198.41 22597.53 38096.10 25398.74 9299.50 9097.22 24998.03 27299.04 16069.80 40899.88 9197.27 17099.71 15899.25 226
test198.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
new_pmnet96.99 28096.76 27797.67 28298.72 27794.89 29495.95 34398.20 32692.62 37598.55 22698.54 26294.88 25999.52 33793.96 33299.44 24698.59 332
FMVSNet397.50 23697.24 24798.29 23898.08 35295.83 26497.86 20598.91 26597.89 18198.95 16298.95 18987.06 34799.81 18797.77 14499.69 16899.23 231
dp93.47 36193.59 35493.13 39996.64 40581.62 42397.66 23196.42 37492.80 37396.11 36798.64 24978.55 39999.59 31193.31 34992.18 41798.16 360
FMVSNet298.49 14798.40 14398.75 17598.90 24797.14 21798.61 10899.13 22998.59 12499.19 12699.28 10494.14 27899.82 17397.97 13199.80 11099.29 219
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11899.21 6399.43 8099.55 5297.82 11299.86 11698.42 10499.89 7199.41 171
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33893.41 40395.25 32799.47 7498.90 19795.63 23799.85 12896.91 19799.73 14599.27 222
cascas94.79 34194.33 34796.15 36096.02 41692.36 36192.34 41299.26 19685.34 41195.08 38894.96 39992.96 29998.53 40794.41 32198.59 34097.56 389
BH-RMVSNet96.83 28596.58 29097.58 29198.47 32294.05 31896.67 30397.36 34896.70 27797.87 28197.98 31595.14 25199.44 35890.47 39298.58 34199.25 226
UGNet98.53 14298.45 13698.79 16697.94 35796.96 22499.08 5898.54 31099.10 8396.82 34699.47 6996.55 19799.84 14698.56 9899.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS96.67 29196.27 30197.87 26598.81 26694.61 30496.77 29797.92 33694.94 33497.12 32697.74 32991.11 32199.82 17393.89 33498.15 35799.18 244
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5298.48 13599.37 9399.49 6798.75 3699.86 11698.20 11499.80 11099.71 49
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26398.37 28498.72 3899.90 6899.05 6099.77 12698.77 311
sss97.21 26396.93 26398.06 25598.83 26195.22 28596.75 29998.48 31494.49 34297.27 32397.90 32192.77 30399.80 19496.57 23199.32 26099.16 251
Test_1112_low_res96.99 28096.55 29198.31 23699.35 15195.47 27595.84 35199.53 8491.51 38696.80 34798.48 27491.36 31999.83 16396.58 22999.53 22699.62 70
1112_ss97.29 25796.86 26998.58 19899.34 15396.32 24996.75 29999.58 5993.14 36796.89 34297.48 34492.11 31299.86 11696.91 19799.54 22299.57 96
ab-mvs-re8.12 39410.83 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.48 3440.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs98.41 15498.36 15098.59 19799.19 18597.23 20799.32 2398.81 28697.66 19598.62 21399.40 8396.82 18199.80 19495.88 27399.51 23198.75 314
TR-MVS95.55 32795.12 33396.86 33597.54 37893.94 32596.49 31196.53 37394.36 34997.03 33396.61 36594.26 27799.16 39086.91 40596.31 39897.47 391
MDTV_nov1_ep13_2view74.92 42697.69 22690.06 39997.75 29185.78 35893.52 34498.69 321
MDTV_nov1_ep1395.22 33097.06 39883.20 41997.74 22196.16 37694.37 34896.99 33498.83 21383.95 37499.53 33393.90 33397.95 368
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5799.59 2799.71 3499.57 4597.12 16399.90 6899.21 5199.87 7699.54 113
MIMVSNet96.62 29496.25 30297.71 28199.04 22294.66 30299.16 5196.92 36597.23 24697.87 28199.10 14786.11 35699.65 29191.65 37499.21 28198.82 299
IterMVS-LS98.55 13898.70 9898.09 25099.48 12294.73 29997.22 27399.39 13698.97 10099.38 9199.31 10096.00 22099.93 4498.58 9399.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27597.02 22196.92 29198.75 29695.89 30998.59 21998.67 24192.08 31399.74 24296.72 21999.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.77 126
IterMVS97.73 22198.11 18296.57 34299.24 17190.28 39095.52 36299.21 20698.86 10999.33 10099.33 9593.11 29499.94 3798.49 10099.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon97.33 25396.92 26598.57 20199.09 20997.99 15096.79 29599.35 15193.18 36697.71 29298.07 31095.00 25599.31 37693.97 33199.13 29398.42 347
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33599.30 17797.58 20398.10 26598.24 29598.25 7599.34 37296.69 22299.65 18599.12 254
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16299.63 2199.48 7099.15 13897.23 15899.75 23797.17 17599.66 18499.63 69
ACMMP++99.68 173
HQP-MVS97.00 27996.49 29498.55 20698.67 29496.79 23396.29 32399.04 24496.05 30095.55 37896.84 36193.84 28499.54 33192.82 35899.26 27299.32 210
QAPM97.31 25496.81 27598.82 15998.80 26997.49 19299.06 6299.19 21290.22 39697.69 29499.16 13496.91 17599.90 6890.89 38999.41 24899.07 258
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet94.32 34695.62 31290.42 40198.46 32475.36 42596.29 32389.13 41795.25 32795.38 38499.75 1392.88 30099.19 38894.07 33099.39 25096.72 402
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32199.01 9698.98 15499.03 16291.59 31799.79 20795.49 29299.80 11099.48 144
HyFIR lowres test97.19 26596.60 28998.96 14199.62 7597.28 20495.17 37299.50 9094.21 35199.01 15198.32 29186.61 35099.99 297.10 18399.84 8599.60 79
EPMVS93.72 35893.27 35795.09 38096.04 41587.76 40298.13 16285.01 42294.69 33996.92 33698.64 24978.47 40099.31 37695.04 29996.46 39698.20 358
PAPM_NR96.82 28796.32 29898.30 23799.07 21396.69 24097.48 25298.76 29395.81 31196.61 35496.47 36994.12 28199.17 38990.82 39097.78 36999.06 259
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20198.81 28696.66 27899.17 13199.21 12194.81 26299.77 22496.96 19599.88 7399.44 161
PAPR95.29 33194.47 34297.75 27697.50 38695.14 28894.89 38098.71 30191.39 38895.35 38595.48 38994.57 26899.14 39284.95 40897.37 38198.97 277
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6697.72 19298.90 17399.26 11096.12 21599.52 33795.72 28399.71 15899.32 210
Vis-MVSNet (Re-imp)97.46 24197.16 25198.34 23399.55 9396.10 25398.94 7798.44 31598.32 14398.16 25898.62 25388.76 33799.73 24793.88 33599.79 11599.18 244
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15799.28 5798.95 16298.91 19498.34 6999.79 20795.63 28799.91 6198.86 296
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33999.27 19197.60 20297.99 27498.25 29498.15 9099.38 36796.87 20599.57 21399.42 168
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6697.87 18298.85 18398.04 31297.66 12299.84 14696.72 21999.81 9999.13 253
PatchMatch-RL97.24 26196.78 27698.61 19499.03 22597.83 16796.36 31899.06 23893.49 36497.36 32197.78 32695.75 23499.49 34693.44 34798.77 32498.52 335
API-MVS97.04 27596.91 26797.42 30797.88 36098.23 12698.18 15598.50 31397.57 20497.39 31996.75 36396.77 18599.15 39190.16 39399.02 30694.88 414
Test By Simon96.52 198
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19498.24 11199.84 8599.52 124
USDC97.41 24797.40 23697.44 30698.94 23793.67 33795.17 37299.53 8494.03 35698.97 15899.10 14795.29 24799.34 37295.84 27999.73 14599.30 217
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33299.03 9498.59 21999.13 14292.16 31199.90 6896.87 20599.68 17399.49 134
PMMVS96.51 29695.98 30398.09 25097.53 38095.84 26394.92 37998.84 28191.58 38496.05 37095.58 38495.68 23699.66 28695.59 28998.09 36098.76 313
PAPM91.88 38390.34 38696.51 34398.06 35392.56 35592.44 41197.17 35586.35 40890.38 41596.01 37586.61 35099.21 38770.65 42195.43 40697.75 381
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14297.16 25298.82 18999.01 17297.71 11999.87 10896.29 25599.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA97.17 26796.71 28098.55 20698.56 31498.05 14796.33 32098.93 26096.91 26597.06 33097.39 34994.38 27399.45 35691.66 37399.18 28798.14 361
PatchmatchNetpermissive95.58 32695.67 31195.30 37797.34 39087.32 40497.65 23396.65 36995.30 32697.07 32998.69 23784.77 36599.75 23794.97 30298.64 33698.83 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS98.29 17397.95 19899.34 7598.44 32799.16 4798.12 16599.38 13896.01 30498.06 26898.43 27897.80 11499.67 27595.69 28599.58 20999.20 236
F-COLMAP97.30 25596.68 28299.14 11099.19 18598.39 11097.27 26999.30 17792.93 37096.62 35398.00 31395.73 23599.68 27292.62 36498.46 34499.35 201
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 42100.00 199.82 27
wuyk23d96.06 31097.62 22591.38 40098.65 30398.57 9898.85 8796.95 36396.86 26899.90 1299.16 13499.18 1798.40 40889.23 39799.77 12677.18 420
OMC-MVS97.88 20797.49 23299.04 13198.89 25298.63 9196.94 28799.25 19795.02 33198.53 22998.51 26797.27 15599.47 35293.50 34699.51 23199.01 268
MG-MVS96.77 28896.61 28797.26 31498.31 33793.06 34595.93 34498.12 33196.45 28797.92 27698.73 23093.77 28899.39 36591.19 38499.04 30299.33 208
AdaColmapbinary97.14 26996.71 28098.46 21998.34 33597.80 17496.95 28698.93 26095.58 31796.92 33697.66 33395.87 23199.53 33390.97 38699.14 29198.04 366
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15197.50 21298.28 25098.60 25797.64 12699.35 37193.86 33699.27 26998.79 309
DeepMVS_CXcopyleft93.44 39698.24 34194.21 31394.34 39564.28 42091.34 41494.87 40289.45 33592.77 42177.54 41993.14 41493.35 416
TinyColmap97.89 20597.98 19597.60 28998.86 25594.35 31096.21 32799.44 11897.45 22299.06 14098.88 20497.99 10299.28 38294.38 32299.58 20999.18 244
MAR-MVS96.47 30095.70 30998.79 16697.92 35899.12 6198.28 14698.60 30892.16 38095.54 38196.17 37494.77 26599.52 33789.62 39598.23 35097.72 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 20397.69 21798.52 21199.17 19397.66 18397.19 27799.47 10796.31 29297.85 28498.20 29996.71 19199.52 33794.62 31099.72 15398.38 350
MSDG97.71 22397.52 23098.28 23998.91 24696.82 23194.42 39399.37 14297.65 19698.37 24598.29 29397.40 14899.33 37494.09 32999.22 27898.68 324
LS3D98.63 12598.38 14899.36 6697.25 39299.38 1299.12 5799.32 16499.21 6398.44 23798.88 20497.31 15199.80 19496.58 22999.34 25898.92 286
CLD-MVS97.49 23997.16 25198.48 21799.07 21397.03 22094.71 38399.21 20694.46 34498.06 26897.16 35697.57 13299.48 34994.46 31599.78 12098.95 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS93.44 36292.23 36897.08 32199.25 17097.86 16495.61 35797.16 35692.90 37193.76 40598.65 24675.94 40295.66 41879.30 41897.49 37497.73 382
Gipumacopyleft99.03 6399.16 4898.64 18699.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34297.70 14999.73 14597.89 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015