This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18187.58 573.06 5991.34 9389.01 34
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9087.03 1067.39 9991.26 9483.50 136
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15174.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18685.32 17365.54 12387.79 265.61 11691.14 9983.35 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
3Dnovator65.95 1171.50 15071.22 16072.34 15673.16 24163.09 12078.37 9478.32 16957.67 15072.22 22884.61 18054.77 22178.47 17060.82 15781.07 25975.45 270
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17383.39 19766.91 10680.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15473.04 15981.50 10245.34 28479.66 11984.35 18565.15 12882.65 9848.70 25889.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23767.58 9494.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19578.29 9577.35 18348.85 25670.22 25283.52 19552.65 23376.93 19855.31 20581.99 24575.49 269
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13568.63 7578.18 9881.24 10954.57 18667.09 29280.63 23659.44 18281.74 11446.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22767.14 26943.74 29870.61 24879.22 26047.90 26772.66 24348.75 25773.84 32871.21 314
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21661.42 30365.18 28447.57 26755.83 36267.15 36923.77 39079.60 15243.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28339.24 33554.69 36978.14 27644.28 28367.18 29833.75 36270.79 34873.95 285
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20668.07 23368.00 26733.88 36365.87 29681.25 22737.91 32267.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33554.20 35230.34 37269.87 35565.71 352
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30545.12 37623.15 39734.96 40241.16 398
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31827.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 23957.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29052.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25056.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
UWE-MVS52.94 32352.70 32653.65 32873.56 23227.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30154.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27556.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31661.38 13470.03 20369.15 26038.59 33968.41 27780.36 24056.56 21668.32 28566.10 11077.45 29676.46 263
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 31362.04 12670.69 19669.85 25539.46 33269.59 26081.09 22958.15 19568.73 28067.51 9678.16 29277.07 262
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26561.17 13874.00 15457.18 32540.77 32368.83 27580.88 23263.11 14167.61 29266.94 10674.72 31682.33 178
fmvsm_s_conf0.1_n66.60 21665.54 22569.77 19268.99 29559.15 16172.12 16756.74 33040.72 32568.25 28180.14 24661.18 16666.92 29967.34 10374.40 32183.23 150
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28961.16 13973.34 15756.83 32840.96 32068.36 27880.08 24762.84 14267.57 29366.90 10874.50 32081.78 186
fmvsm_s_conf0.5_n66.34 22165.27 22869.57 19568.20 30359.14 16371.66 17956.48 33140.92 32167.78 28379.46 25561.23 16366.90 30067.39 9974.32 32482.66 167
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16171.22 4072.40 22588.70 10460.51 17287.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 39936.10 350
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29558.05 34964.07 37446.22 27158.83 33946.16 28272.36 33768.12 337
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14779.34 14945.58 27975.54 17883.91 19067.19 10373.88 23573.26 5786.86 18683.63 135
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 12879.90 13946.03 27776.48 16785.02 17767.96 9973.97 23274.47 4987.22 18183.90 127
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29558.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
testing358.28 29258.38 29058.00 30977.45 17726.12 39360.78 30943.00 38656.02 16770.18 25375.76 29213.27 41167.24 29748.02 26780.89 26080.65 210
SSC-MVS61.79 26666.08 21948.89 35576.91 18410.00 40953.56 35647.37 37468.20 5876.56 16389.21 8954.13 22657.59 34554.75 20974.07 32579.08 234
test_fmvsmconf_n72.91 13372.40 14374.46 10768.62 29866.12 9674.21 15278.80 15945.64 27874.62 19283.25 20566.80 11173.86 23672.97 6086.66 19283.39 143
WB-MVS60.04 28064.19 24247.59 35776.09 19610.22 40852.44 36146.74 37565.17 8474.07 20287.48 12453.48 22955.28 34849.36 25272.84 33377.28 255
test_fmvsmvis_n_192072.36 14272.49 14071.96 16071.29 26364.06 11372.79 16181.82 9740.23 32981.25 10381.04 23070.62 7568.69 28169.74 7983.60 23483.14 152
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 33044.40 38129.15 38268.23 36258.75 379
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23851.42 22668.93 27082.72 21165.62 12262.22 32854.41 21584.67 21677.28 255
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31551.79 37856.48 39139.44 31449.91 36021.42 40055.35 39650.85 387
sd_testset63.55 24765.38 22758.07 30873.04 24838.83 32357.41 33165.44 28251.42 22668.93 27082.72 21163.76 13858.11 34341.05 31284.67 21677.28 255
test_fmvsm_n_192069.63 17168.45 18973.16 13070.56 27265.86 9870.26 20178.35 16837.69 34574.29 19778.89 26761.10 16768.10 28765.87 11479.07 28085.53 83
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24551.44 36554.61 34026.95 38763.95 31160.85 38437.86 32444.97 37745.53 28762.97 37759.72 377
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29330.56 38059.87 34160.68 38540.16 30847.47 36748.25 26562.46 37861.58 373
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22056.75 33460.53 31025.68 39059.74 34257.86 39029.40 37147.41 36843.10 30063.66 37564.08 363
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21455.80 34265.90 27624.96 39265.39 29960.64 38627.69 37548.46 36345.88 28567.99 36465.46 353
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22236.54 39524.37 40819.56 40145.76 39153.46 39432.99 34237.97 39726.17 38635.52 40144.99 396
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11679.71 14165.50 7582.99 7988.60 10866.94 10572.35 25059.77 16988.54 15879.56 225
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 20939.91 38967.56 26821.84 40051.94 37750.79 39833.83 33739.77 39335.25 35561.50 38162.38 370
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 21844.34 38378.17 17223.62 39668.95 26962.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22156.70 33565.80 27726.22 38969.42 26165.25 37231.82 35249.98 35849.63 25070.36 35170.71 318
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23054.11 35364.96 28624.64 39463.66 31659.61 38928.33 37448.45 36445.38 29067.30 36862.66 368
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24058.76 32266.22 27427.54 38476.66 16068.69 35925.32 38651.31 35453.42 22773.38 33077.97 251
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17242.47 38523.85 40923.30 39764.80 30362.17 38127.12 37640.59 39229.17 38148.11 39957.69 381
testf175.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD_test275.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 28963.15 37731.82 35230.60 40139.19 32262.28 37945.53 395
FE-MVS68.29 19366.96 21272.26 15874.16 22654.24 19277.55 10373.42 21657.65 15272.66 22084.91 17832.02 35181.49 11648.43 26281.85 24881.04 195
FA-MVS(test-final)71.27 15171.06 16171.92 16173.96 22852.32 20476.45 11776.12 19559.07 13774.04 20486.18 15852.18 23579.43 15559.75 17081.76 25084.03 124
iter_conf05_1166.64 21565.20 23070.94 17073.28 23846.89 25766.09 25977.03 18843.44 30263.43 32074.09 31547.19 27083.26 8756.25 19486.01 19882.66 167
bld_raw_dy_0_6469.94 16769.64 17270.84 17173.28 23846.85 25875.82 13186.52 1640.43 32881.41 10074.77 30148.70 26283.01 9356.25 19489.59 13882.66 167
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18160.84 30864.11 29441.23 31664.04 30978.22 27460.00 17648.80 36154.17 21983.71 23271.37 310
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2640.60 4051.13 40791.61 2865.32 12774.15 23164.01 12688.28 16078.17 245
test250661.23 27060.85 27162.38 27678.80 15827.88 38667.33 24437.42 40054.23 19167.55 28788.68 10617.87 40474.39 22746.33 28189.41 14384.86 96
test111164.62 23565.19 23162.93 27179.01 15629.91 37865.45 27054.41 34254.09 19671.47 24188.48 11037.02 32774.29 22946.83 27889.94 13084.58 109
ECVR-MVScopyleft64.82 23265.22 22963.60 26178.80 15831.14 37266.97 24956.47 33254.23 19169.94 25688.68 10637.23 32674.81 22245.28 29189.41 14384.86 96
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
tt080576.12 8478.43 6869.20 20181.32 12541.37 30276.72 11477.64 18063.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11383.49 137
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
PC_three_145246.98 27181.83 9286.28 15466.55 11584.47 7163.31 13890.78 11383.49 137
No_MVS79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14656.32 16576.35 17183.36 20170.76 7477.96 18663.32 13781.84 24983.18 151
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
Anonymous2024052163.55 24766.07 22055.99 31866.18 32644.04 28168.77 22368.80 26146.99 27072.57 22185.84 16939.87 31050.22 35753.40 22892.23 8173.71 288
h-mvs3373.08 12471.61 15477.48 7483.89 8872.89 4470.47 19871.12 24654.28 18977.89 13783.41 19649.04 25680.98 12863.62 13390.77 11578.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10071.77 4769.19 21571.45 23654.28 18977.89 13778.26 27349.04 25679.23 15663.62 13389.13 15180.92 200
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28751.21 23167.46 28881.01 23150.75 24463.51 32338.47 32988.12 16382.75 164
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20350.84 23577.12 14885.42 17256.84 21369.44 27551.07 23891.16 9785.08 91
AUN-MVS70.22 16267.88 19977.22 8082.96 10471.61 4869.08 21671.39 23749.17 25371.70 23278.07 27837.62 32579.21 15761.81 14489.15 14980.82 203
ZD-MVS83.91 8669.36 6981.09 11458.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 154
IU-MVS86.12 5360.90 14480.38 13045.49 28281.31 10175.64 4194.39 4184.65 102
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10886.01 3161.72 14789.79 13483.08 154
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 148
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
cl2267.14 20966.51 21569.03 20563.20 34543.46 28766.88 25276.25 19449.22 25274.48 19477.88 27945.49 27577.40 19460.64 15884.59 22086.24 69
miper_ehance_all_eth68.36 19068.16 19668.98 20665.14 33543.34 28867.07 24778.92 15649.11 25476.21 17277.72 28053.48 22977.92 18761.16 15284.59 22085.68 82
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17642.52 30873.42 21172.79 32349.66 25077.68 19158.12 18084.59 22084.54 110
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21371.97 17179.36 14850.34 23982.81 8383.63 19464.38 13467.27 29661.54 14883.71 23280.71 209
cl____68.26 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.42 21548.74 26075.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19468.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.43 21448.74 26075.38 21260.94 15589.81 13285.81 76
eth_miper_zixun_eth69.42 17668.73 18771.50 16667.99 30646.42 26367.58 23778.81 15750.72 23678.13 13580.34 24150.15 24980.34 14060.18 16284.65 21887.74 50
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
save fliter87.00 3967.23 8679.24 8577.94 17756.65 163
ET-MVSNet_ETH3D63.32 25060.69 27371.20 16970.15 28155.66 18365.02 27564.32 29243.28 30768.99 26772.05 32825.46 38478.19 18354.16 22082.80 23979.74 224
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14871.70 23072.33 3585.50 5093.65 377.98 2176.88 20054.60 21291.64 8689.08 32
EIA-MVS68.59 18867.16 20872.90 14175.18 20755.64 18469.39 21181.29 10752.44 21364.53 30470.69 33660.33 17482.30 10454.27 21876.31 30380.75 206
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24744.04 29373.06 21578.84 26839.72 31160.33 33355.82 20084.64 21982.88 159
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17973.34 15784.67 5262.04 11572.19 22970.81 33565.90 12085.24 5658.64 17684.96 21481.95 183
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8660.39 12674.15 19983.30 20369.65 8482.07 10869.27 8186.75 19087.36 55
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24356.29 33769.58 25739.32 33370.07 25578.19 27534.93 33472.68 24253.44 22683.74 23081.00 198
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12672.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 119
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 148
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 153
DPM-MVS69.98 16669.22 17872.26 15882.69 10858.82 16570.53 19781.23 11047.79 26564.16 30880.21 24251.32 24283.12 9060.14 16484.95 21574.83 276
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 121
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
thisisatest053067.05 21265.16 23272.73 14773.10 24550.55 21271.26 18863.91 29550.22 24274.46 19580.75 23426.81 37780.25 14259.43 17286.50 19387.37 54
Anonymous2024052972.56 13973.79 11668.86 21176.89 18745.21 27368.80 22277.25 18667.16 6176.89 15390.44 5665.95 11974.19 23050.75 24090.00 12787.18 59
Anonymous20240521166.02 22266.89 21363.43 26574.22 22438.14 32959.00 31966.13 27563.33 10769.76 25985.95 16851.88 23670.50 26944.23 29487.52 17181.64 188
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
tttt051769.46 17567.79 20174.46 10775.34 20452.72 20175.05 13563.27 29954.69 18378.87 12784.37 18426.63 37881.15 12163.95 12887.93 16889.51 25
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32763.85 31269.91 34740.04 30958.22 34243.49 29975.29 31471.03 317
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32263.58 31769.12 35126.28 38078.34 17748.83 25682.13 24480.26 217
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32465.80 29772.57 32441.23 29963.92 32046.87 27782.42 24278.33 241
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS70.05 322
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part285.90 5766.44 9184.61 62
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 24932.07 34972.09 25235.61 35281.73 25177.08 260
tfpnnormal66.48 21867.93 19762.16 27873.40 23636.65 33863.45 29064.99 28555.97 16872.82 21987.80 12357.06 21169.10 27948.31 26487.54 17080.72 208
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25177.08 260
c3_l69.82 17069.89 17069.61 19466.24 32443.48 28668.12 23279.61 14451.43 22577.72 14180.18 24554.61 22478.15 18463.62 13387.50 17287.20 58
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20533.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
CANet73.00 12971.84 14976.48 8775.82 20161.28 13674.81 13980.37 13163.17 10862.43 32480.50 23861.10 16785.16 6064.00 12784.34 22483.01 157
Fast-Effi-MVS+-dtu70.00 16568.74 18673.77 12073.47 23464.53 11071.36 18478.14 17455.81 17168.84 27474.71 30465.36 12675.75 20952.00 23179.00 28181.03 196
Effi-MVS+-dtu75.43 9172.28 14584.91 277.05 17883.58 178.47 9377.70 17957.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15674.50 21152.05 21854.78 36775.44 29843.99 28470.42 27153.49 22578.41 28880.59 212
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20766.93 6269.11 26488.95 10057.84 20486.12 2976.63 3789.77 13585.28 86
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21087.10 879.75 783.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs131.41 35570.05 322
sam_mvs31.21 359
IterMVS-SCA-FT67.68 20166.07 22072.49 15373.34 23758.20 17163.80 28765.55 28148.10 26076.91 15282.64 21345.20 27678.84 16361.20 15177.89 29480.44 215
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10651.71 22177.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 146
ambc70.10 18777.74 17250.21 21774.28 15177.93 17879.26 12388.29 11554.11 22779.77 14964.43 12291.10 10280.30 216
MTGPAbinary80.63 124
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25480.80 23366.74 11281.96 10961.74 14689.40 14585.69 81
Effi-MVS+72.10 14572.28 14571.58 16374.21 22550.33 21574.72 14482.73 8462.62 11170.77 24676.83 28769.96 8180.97 12960.20 16178.43 28783.45 142
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17351.32 20863.63 28972.31 22845.06 28961.70 32569.66 34862.56 14573.93 23449.06 25573.91 32672.31 302
xiu_mvs_v1_base67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31764.28 30779.82 25044.77 27948.43 36536.24 34887.61 16978.03 248
pmmvs671.82 14773.66 11866.31 24175.94 20042.01 29866.99 24872.53 22563.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 11987.22 56
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30038.08 32057.37 34634.02 35974.40 32166.88 345
test_post166.63 2542.08 40530.66 36459.33 33740.34 317
test_post1.99 40630.91 36254.76 350
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21848.61 23466.06 26078.32 16950.62 23771.48 24075.54 29568.75 8979.59 15350.55 24378.73 28482.86 161
patchmatchnet-post68.99 35231.32 35669.38 276
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27174.73 14380.19 13468.80 5382.95 8092.91 866.26 11676.76 20258.41 17992.77 7289.30 27
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20260.18 15369.49 20962.05 30538.81 33874.13 20082.23 21743.76 28668.65 28242.53 30280.63 26674.63 277
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20842.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
xiu_mvs_v1_base_debi67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26042.52 29544.29 38227.95 38481.88 24766.88 345
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12472.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
MTMP84.83 3119.26 410
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24138.70 325
test9_res72.12 6991.37 9277.40 254
MVP-Stereo61.56 26859.22 28168.58 21679.28 14660.44 15169.20 21471.57 23243.58 30056.42 35978.37 27239.57 31376.46 20534.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST985.47 6369.32 7076.42 11878.69 16253.73 20376.97 14986.74 13866.84 10781.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16254.00 19876.97 14986.74 13866.60 11381.10 12372.50 6691.56 8977.15 258
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21741.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30661.00 33373.48 31745.20 27669.38 27640.34 31770.31 35270.05 322
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36533.87 39929.29 37972.61 33567.39 341
test_885.09 6967.89 7976.26 12378.66 16454.00 19876.89 15386.72 14066.60 11380.89 133
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23161.00 30762.93 30035.98 35358.36 34768.93 35536.71 32966.59 30637.62 33663.30 37657.39 382
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19059.63 31647.51 37341.05 31974.58 19374.30 30931.06 36065.31 31351.61 23379.85 27267.39 341
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2540.00 4090.00 41074.25 31068.16 950.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
agg_prior270.70 7490.93 10778.55 240
agg_prior84.44 8166.02 9778.62 16576.95 15180.34 140
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3834.57 40711.61 40527.37 4031.96 403
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19550.51 23889.19 1090.88 4271.45 6777.78 19073.38 5690.60 11890.90 18
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24269.85 20779.62 14253.94 20176.54 16582.00 21859.00 18774.68 22357.32 18487.21 18284.72 101
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8854.55 18783.50 7589.21 8971.51 6575.74 21061.24 15092.34 7988.94 37
v14419272.99 13073.06 13172.77 14474.58 22047.48 25071.90 17680.44 12951.57 22381.46 9984.11 18858.04 20182.12 10767.98 9187.47 17388.70 43
FIs72.56 13973.80 11568.84 21278.74 16037.74 33371.02 19079.83 14056.12 16680.88 11089.45 8458.18 19378.28 17956.63 18893.36 6490.51 21
v192192072.96 13272.98 13372.89 14274.67 21647.58 24971.92 17580.69 12151.70 22281.69 9783.89 19156.58 21582.25 10568.34 8587.36 17588.82 40
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13875.34 1579.80 11894.91 269.79 8380.25 14272.63 6394.46 3688.78 42
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16581.73 9952.76 21181.85 9184.56 18157.12 20982.24 10668.58 8387.33 17789.06 33
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 14936.57 33971.82 17879.54 14757.63 15382.57 8690.38 6459.38 18478.99 16157.91 18294.56 3491.23 14
v114473.29 12073.39 12273.01 13474.12 22748.11 23972.01 17081.08 11553.83 20281.77 9384.68 17958.07 20081.91 11068.10 8786.86 18688.99 36
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 162
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 21972.70 22354.79 18178.59 12884.12 18754.69 22276.74 20359.40 17382.20 24386.79 63
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 8970.72 4487.54 2192.44 1468.00 9881.34 11772.84 6191.72 8491.69 10
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 126
iter_conf0567.34 20865.62 22472.50 15269.82 28447.06 25672.19 16676.86 18945.32 28572.86 21782.85 20920.53 39683.73 7861.13 15389.02 15486.70 65
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13357.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14553.48 20686.29 3692.43 1562.39 14980.25 14267.90 9390.61 11787.77 49
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17151.42 20763.33 29272.33 22745.09 28861.60 32668.04 36262.39 14973.95 23349.07 25473.87 32772.34 301
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19551.33 22987.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19351.98 21987.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16972.02 16971.50 23463.53 10278.58 13071.39 33465.98 11878.53 16867.30 10480.18 26989.23 29
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16472.24 16471.56 23363.92 9678.59 12871.59 33066.22 11778.60 16767.58 9480.32 26789.00 35
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13564.71 9178.11 13688.39 11265.46 12583.14 8977.64 2991.20 9678.94 235
test_prior470.14 6377.57 101
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
v124073.06 12673.14 12872.84 14374.74 21547.27 25471.88 17781.11 11251.80 22082.28 8884.21 18656.22 21882.34 10368.82 8287.17 18488.91 38
pm-mvs168.40 18969.85 17164.04 25873.10 24539.94 31464.61 28070.50 25155.52 17373.97 20589.33 8563.91 13768.38 28449.68 24988.02 16583.81 129
test_prior275.57 13258.92 13976.53 16686.78 13667.83 10069.81 7792.76 73
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40373.86 5286.31 1978.84 1994.03 5384.64 103
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 171
旧先验271.17 18945.11 28778.54 13161.28 33159.19 174
新几何271.33 185
新几何169.99 18988.37 3471.34 5162.08 30443.85 29474.99 18486.11 16352.85 23270.57 26850.99 23983.23 23768.05 339
旧先验184.55 7860.36 15263.69 29687.05 13054.65 22383.34 23669.66 327
无先验74.82 13870.94 24847.75 26676.85 20154.47 21372.09 305
原ACMM274.78 142
原ACMM173.90 11885.90 5765.15 10681.67 10050.97 23374.25 19886.16 16061.60 15783.54 8156.75 18791.08 10373.00 293
test22287.30 3769.15 7367.85 23459.59 31441.06 31873.05 21685.72 17148.03 26680.65 26466.92 344
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata64.13 25585.87 5963.34 11861.80 30747.83 26476.42 17086.60 14748.83 25962.31 32754.46 21481.26 25866.74 348
testdata168.34 23057.24 156
v875.07 9775.64 9573.35 12673.42 23547.46 25175.20 13481.45 10460.05 12885.64 4589.26 8758.08 19981.80 11269.71 8087.97 16790.79 19
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22572.63 22433.54 36861.05 33267.29 36843.62 28771.26 26349.49 25167.84 36672.19 304
LFMVS67.06 21167.89 19864.56 25278.02 16738.25 32870.81 19559.60 31365.18 8371.06 24486.56 14843.85 28575.22 21546.35 28089.63 13680.21 218
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23570.83 25061.23 11974.07 20288.69 10559.86 17975.62 21151.11 23790.28 12184.61 106
VDDNet71.60 14973.13 12967.02 23486.29 4741.11 30469.97 20466.50 27368.72 5574.74 18791.70 2559.90 17875.81 20848.58 26091.72 8484.15 123
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8259.02 13885.92 4189.17 9258.56 19182.74 9770.73 7389.14 15091.05 15
VPNet65.58 22567.56 20259.65 29879.72 13930.17 37760.27 31362.14 30254.19 19471.24 24286.63 14558.80 18967.62 29144.17 29590.87 11281.18 192
MVS60.62 27659.97 27762.58 27468.13 30547.28 25368.59 22573.96 21332.19 37059.94 33968.86 35750.48 24677.64 19241.85 30775.74 30662.83 365
v2v48272.55 14172.58 13972.43 15472.92 25046.72 26071.41 18379.13 15255.27 17481.17 10485.25 17555.41 22081.13 12267.25 10585.46 20289.43 26
V4271.06 15370.83 16471.72 16267.25 31447.14 25565.94 26180.35 13251.35 22883.40 7683.23 20659.25 18578.80 16465.91 11380.81 26389.23 29
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25951.33 22969.33 26374.47 30636.83 32874.94 21950.60 24274.72 31680.57 213
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14077.64 19262.95 14088.14 16271.73 308
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 140
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35754.26 35125.93 38855.93 39265.07 356
EI-MVSNet69.61 17369.01 18171.41 16773.94 22949.90 22271.31 18671.32 23958.22 14375.40 18170.44 33758.16 19475.85 20662.51 14179.81 27388.48 44
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
CVMVSNet59.21 28658.44 28961.51 28373.94 22947.76 24771.31 18664.56 29026.91 38860.34 33670.44 33736.24 33167.65 29053.57 22468.66 36169.12 333
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17364.53 28160.22 31136.91 35065.96 29577.27 28439.66 31268.54 28338.87 32474.89 31571.80 307
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16368.27 26626.96 38669.08 26575.71 29332.09 34867.44 29455.59 20378.90 28273.97 284
VNet64.01 24665.15 23460.57 29273.28 23835.61 34857.60 33067.08 27054.61 18566.76 29383.37 19956.28 21766.87 30142.19 30485.20 20979.23 232
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30449.41 38660.47 38729.22 37244.73 37942.09 30572.14 34062.33 371
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
VPA-MVSNet68.71 18670.37 16763.72 26076.13 19538.06 33164.10 28471.48 23556.60 16474.10 20188.31 11464.78 13269.72 27347.69 27190.15 12483.37 145
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 122
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28367.84 28281.17 22851.81 23943.20 38629.30 37879.41 27867.34 343
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24365.07 30283.23 20645.61 27448.11 36630.22 37383.82 22971.07 316
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25132.07 34972.42 24938.61 32783.46 23582.02 181
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35739.31 39425.93 38855.93 39265.07 356
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25182.02 181
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24164.01 31071.46 33232.49 34571.39 26231.31 36979.57 27771.19 315
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30455.81 36367.65 36429.22 37243.77 38525.73 39169.87 35564.62 360
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23655.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27238.00 40248.43 40026.42 37946.27 37037.11 34075.38 31246.03 393
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27439.55 40051.15 39726.00 38145.37 37537.68 33476.41 30145.69 394
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 128
LCM-MVSNet-Re69.10 18171.57 15661.70 28170.37 27734.30 35761.45 30279.62 14256.81 15989.59 888.16 11968.44 9272.94 24042.30 30387.33 17777.85 252
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
MCST-MVS73.42 11673.34 12573.63 12381.28 12659.17 16074.80 14183.13 7945.50 28072.84 21883.78 19365.15 12880.99 12764.54 12189.09 15380.73 207
mvs_anonymous65.08 23065.49 22663.83 25963.79 34237.60 33566.52 25669.82 25643.44 30273.46 21086.08 16458.79 19071.75 25951.90 23275.63 30882.15 180
MVS_Test69.84 16970.71 16567.24 23067.49 31243.25 29069.87 20681.22 11152.69 21271.57 23786.68 14162.09 15374.51 22566.05 11178.74 28383.96 125
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22248.11 37257.24 32453.31 20780.95 10679.39 25749.00 25861.55 33045.92 28480.05 27081.03 196
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19377.68 14387.18 12569.98 8085.37 5168.01 9092.72 7485.08 91
test1276.51 8682.28 11360.94 14381.64 10173.60 20764.88 13085.19 5990.42 12083.38 144
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19284.26 6255.62 17277.46 14587.10 12667.09 10477.81 18863.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive67.42 20667.50 20467.20 23162.26 34945.21 27364.87 27677.04 18748.21 25971.74 23179.70 25258.40 19271.17 26464.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33872.45 24837.14 33964.22 37475.60 268
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27663.83 31378.47 27041.20 30063.68 32139.44 31968.99 35974.13 283
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30343.88 38341.10 31171.14 34769.21 332
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33229.51 40219.08 40367.85 36550.22 389
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30443.85 38440.98 31371.20 34669.10 334
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 26856.04 36073.60 31631.05 36168.06 28840.64 31564.64 37269.77 326
PM-MVS64.49 23863.61 24867.14 23376.68 18975.15 2768.49 22842.85 38751.17 23277.85 13980.51 23745.76 27266.31 30852.83 22976.35 30259.96 376
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17086.15 2771.09 7190.94 10584.82 98
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 170
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31777.15 11081.28 10879.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26869.26 21378.81 15766.66 6781.74 9586.88 13363.26 13981.07 12556.21 19694.98 2091.05 15
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32077.06 11282.61 8780.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
TransMVSNet (Re)69.62 17271.63 15363.57 26276.51 19035.93 34565.75 26671.29 24161.05 12175.02 18389.90 7865.88 12170.41 27249.79 24789.48 14184.38 117
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33777.16 10981.81 9880.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26869.47 21080.14 13665.22 8281.74 9587.08 12761.82 15581.07 12556.21 19694.98 2091.93 8
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20081.04 11663.67 10079.54 12086.37 15362.83 14381.82 11157.10 18695.25 1490.94 17
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 31976.76 11380.46 12878.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9682.24 9078.21 989.57 992.10 1868.05 9685.59 4866.04 11295.62 994.88 5
WR-MVS71.20 15272.48 14167.36 22984.98 7035.70 34764.43 28268.66 26365.05 8681.49 9886.43 15257.57 20676.48 20450.36 24493.32 6589.90 23
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28365.65 26777.32 18464.32 9375.59 17687.08 12762.45 14881.34 11754.90 20795.63 891.93 8
Baseline_NR-MVSNet70.62 15973.19 12762.92 27276.97 18234.44 35568.84 21870.88 24960.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29670.98 19178.29 17168.67 5683.04 7789.26 8772.99 5880.75 13455.58 20495.47 1091.35 13
TSAR-MVS + GP.73.08 12471.60 15577.54 7378.99 15770.73 5774.96 13669.38 25860.73 12474.39 19678.44 27157.72 20582.78 9660.16 16389.60 13779.11 233
n20.00 415
nn0.00 415
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8372.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
door-mid55.02 338
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20082.35 175
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9253.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
MVSFormer69.93 16869.03 18072.63 15074.93 20959.19 15883.98 3675.72 20052.27 21463.53 31876.74 28843.19 28980.56 13572.28 6778.67 28578.14 246
jason64.47 23962.84 25669.34 19976.91 18459.20 15767.15 24665.67 27835.29 35665.16 30176.74 28844.67 28070.68 26654.74 21079.28 27978.14 246
jason: jason.
lupinMVS63.36 24961.49 26568.97 20774.93 20959.19 15865.80 26564.52 29134.68 36163.53 31874.25 31043.19 28970.62 26753.88 22278.67 28577.10 259
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20052.27 21487.37 2692.25 1668.04 9780.56 13572.28 6791.15 9890.32 22
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30666.16 7184.76 6093.23 549.47 25280.97 12965.66 11586.67 19185.02 93
lessismore_v072.75 14579.60 14156.83 17757.37 32183.80 7289.01 9747.45 26878.74 16664.39 12386.49 19482.69 166
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20264.10 9587.73 1792.24 1750.45 24781.30 11967.41 9791.46 9186.04 73
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9361.89 11688.77 1293.32 457.15 20882.60 9970.08 7692.80 7189.25 28
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10878.37 17674.80 4490.76 11682.40 174
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8780.55 13772.51 6593.37 6383.48 139
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25149.47 22772.94 16084.71 5159.49 13280.90 10988.81 10370.07 7979.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16884.40 5955.95 16976.62 16186.46 15167.20 10278.03 18564.22 12587.27 18087.11 61
test1182.71 85
door52.91 353
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 24869.97 20458.02 31749.73 24747.28 38973.02 32238.14 31962.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13750.93 21054.07 35465.59 28028.56 38261.53 32774.33 30841.09 30266.52 30733.91 36067.69 36772.92 294
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13777.56 10263.57 29760.95 12256.62 35882.75 21051.53 24081.24 12054.36 21790.20 12280.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 234
ACMP_Plane82.37 11077.32 10659.08 13471.58 234
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 132
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 197
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10263.92 9677.51 14486.56 14868.43 9384.82 6573.83 5391.61 8882.26 179
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11765.77 7275.55 17786.25 15767.42 10185.42 5070.10 7590.88 11181.81 185
114514_t73.40 11773.33 12673.64 12284.15 8557.11 17478.20 9780.02 13743.76 29772.55 22286.07 16564.00 13683.35 8660.14 16491.03 10480.45 214
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28138.83 31639.29 39525.32 39360.12 38548.08 390
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23156.77 32933.60 36758.25 34875.52 29730.25 36674.33 22833.27 36369.76 35771.32 311
NP-MVS83.34 9463.07 12185.97 166
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 10958.80 16671.48 18173.64 21454.98 17776.55 16481.77 22261.10 16778.94 16254.87 20880.84 26272.74 298
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25857.28 32232.16 37156.90 35470.39 33932.75 34465.30 31434.29 35858.79 38769.41 330
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23860.22 31137.14 34959.12 34576.34 29032.78 34371.99 25539.12 32369.27 35872.47 300
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23770.93 19256.40 33332.87 36961.35 32886.66 14233.19 34063.22 32448.50 26170.17 35369.62 328
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18659.10 31847.72 37150.85 23450.31 38585.81 17020.10 39863.97 31936.16 34955.41 39564.55 361
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 23956.40 33354.05 19772.04 23086.66 14233.19 34060.17 33443.69 29687.45 17477.42 253
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13129.97 36949.98 35843.62 29774.40 32164.53 362
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33348.69 36239.24 32158.51 38965.89 350
BH-w/o64.81 23364.29 24166.36 24076.08 19854.71 18865.61 26875.23 20550.10 24471.05 24571.86 32954.33 22579.02 16038.20 33176.14 30465.36 354
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26430.20 36842.32 38732.77 36566.36 36966.81 347
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23563.78 28882.13 9154.00 19868.96 26875.17 29958.95 18880.06 14758.55 17782.74 24082.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned69.39 17769.46 17369.18 20277.96 16956.88 17568.47 22977.53 18156.77 16077.79 14079.63 25360.30 17580.20 14546.04 28380.65 26470.47 319
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23770.93 19286.27 2054.66 18461.35 32886.77 13733.29 33985.67 4755.93 19870.17 35369.62 328
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23941.83 31175.40 18179.12 26330.25 36675.85 20656.30 19379.81 27383.03 156
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9468.80 5380.92 10788.52 10972.00 6382.39 10174.80 4493.04 6881.14 193
GBi-Net68.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
PVSNet_Blended_VisFu70.04 16468.88 18273.53 12582.71 10763.62 11674.81 13981.95 9648.53 25867.16 29179.18 26251.42 24178.38 17554.39 21679.72 27678.60 238
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 22865.60 26978.96 15445.50 28059.98 33778.61 26951.82 23778.20 18144.30 29284.11 22678.27 243
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32074.75 30341.82 29745.83 37138.59 32859.42 38667.98 340
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29847.07 36930.68 37160.78 38361.13 374
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 22861.23 30578.96 15442.04 31059.98 33768.86 35751.82 23778.20 18144.30 29277.77 29572.52 299
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 29961.06 33183.38 19825.46 38454.87 34930.11 37481.64 25672.75 297
test168.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25470.38 25251.55 22474.72 18883.27 20437.89 32374.44 22647.12 27385.37 20381.57 189
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
FMVSNet267.48 20368.21 19465.29 24773.14 24238.94 32168.81 22071.21 24554.81 17876.73 15986.48 15048.63 26374.60 22447.98 26886.11 19782.35 175
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17273.03 21761.14 12079.45 12290.36 6760.44 17375.20 21650.20 24588.05 16484.54 110
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32131.03 40029.13 38371.35 34462.70 366
cascas64.59 23662.77 25770.05 18875.27 20550.02 21961.79 30171.61 23142.46 30963.68 31568.89 35649.33 25480.35 13947.82 27084.05 22779.78 223
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19153.90 19664.62 27973.48 21558.01 14573.91 20681.78 22159.09 18678.22 18048.59 25977.96 29378.31 242
UGNet70.20 16369.05 17973.65 12176.24 19363.64 11575.87 12972.53 22561.48 11860.93 33486.14 16152.37 23477.12 19650.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29645.40 37431.28 37064.42 37362.47 369
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31479.43 25656.59 21445.57 37236.92 34371.29 34565.25 355
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19184.52 18269.87 8284.94 6169.76 7889.59 13886.60 67
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30741.91 39031.85 36761.97 38060.35 375
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14338.13 33057.62 32966.98 27134.74 35959.62 34377.56 28242.92 29163.65 32238.66 32670.73 34975.35 273
1112_ss59.48 28458.99 28460.96 29077.84 17042.39 29761.42 30368.45 26537.96 34359.93 34067.46 36545.11 27865.07 31540.89 31471.81 34275.41 271
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23668.79 26249.08 25565.32 30086.26 15658.02 20266.85 30339.33 32079.79 27578.27 243
TR-MVS64.59 23663.54 24967.73 22775.75 20350.83 21163.39 29170.29 25349.33 25171.55 23874.55 30550.94 24378.46 17140.43 31675.69 30773.89 286
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 37032.93 36471.48 309
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29130.77 36359.62 33638.21 33073.33 331
MIMVSNet166.57 21769.23 17758.59 30581.26 12737.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31255.94 36183.86 19241.19 30150.42 35626.05 38775.38 31266.27 349
IterMVS-LS73.01 12873.12 13072.66 14873.79 23149.90 22271.63 18078.44 16758.22 14380.51 11286.63 14558.15 19579.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13358.28 17065.26 27265.66 27944.36 29267.30 29075.54 29543.27 28871.77 25737.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref89.47 142
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20063.81 28662.25 30146.57 27371.51 23980.40 23944.60 28166.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon73.57 11472.69 13776.23 9182.85 10563.39 11774.32 14982.96 8157.75 14870.35 25081.98 21964.34 13584.41 7349.69 24889.95 12980.89 201
MVS_111021_LR72.10 14571.82 15072.95 13779.53 14273.90 3670.45 19966.64 27256.87 15876.81 15781.76 22368.78 8871.76 25861.81 14483.74 23073.18 291
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6483.45 8462.45 14392.40 7778.92 236
ACMMP++91.96 83
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23485.96 16758.09 19785.30 5367.38 10189.16 14783.73 133
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20380.37 7178.79 16049.63 24873.51 20885.14 17653.66 22879.12 15855.11 20675.54 30975.11 275
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15362.85 11073.33 21288.41 11162.54 14779.59 15363.94 13082.92 23882.94 158
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22633.96 33655.48 34724.46 39556.79 39138.43 400
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17570.09 4979.17 12488.02 12153.04 23183.60 8058.05 18193.76 5990.79 19
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10154.10 19359.93 31572.24 22933.67 36669.00 26675.63 29438.69 31776.93 19836.60 34475.45 31180.81 205
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38242.04 38937.19 33855.50 39465.78 351
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10566.17 7073.30 21383.31 20259.96 17783.10 9158.45 17881.66 25582.87 160
TAMVS65.31 22763.75 24669.97 19082.23 11459.76 15666.78 25363.37 29845.20 28669.79 25879.37 25847.42 26972.17 25134.48 35785.15 21077.99 250
PAPR69.20 17968.66 18870.82 17275.15 20847.77 24675.31 13381.11 11249.62 24966.33 29479.27 25961.53 15882.96 9448.12 26681.50 25781.74 187
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15059.44 13378.88 12689.80 7971.26 6973.09 23957.45 18380.89 26089.17 31
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24553.87 34453.60 20469.88 25783.37 19940.52 30670.98 26541.40 31086.78 18981.48 190
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16274.60 21075.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 191
MVS_111021_HR72.98 13172.97 13472.99 13580.82 12965.47 10068.81 22072.77 22257.67 15075.76 17482.38 21671.01 7277.17 19561.38 14986.15 19576.32 264
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9562.47 11479.06 12580.19 24461.83 15478.79 16559.83 16887.35 17679.54 228
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19473.59 3961.83 30049.00 36847.30 26961.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18080.99 6176.84 19062.48 11371.24 24277.51 28361.51 15980.96 13252.04 23085.76 20171.22 313
Test By Simon62.56 145
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24074.20 21235.80 35572.25 22784.48 18345.67 27371.95 25637.95 33384.97 21170.42 321
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18465.11 8576.47 16886.80 13449.47 25283.77 7753.89 22192.72 7488.81 41
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19848.08 37342.40 38922.36 39844.01 39853.05 39542.60 29445.49 37331.69 36861.36 38241.79 397
PAPM61.79 26660.37 27566.05 24376.09 19641.87 29969.30 21276.79 19240.64 32653.80 37279.62 25444.38 28282.92 9529.64 37773.11 33273.36 290
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA73.44 11573.03 13274.66 10578.27 16375.29 2675.99 12778.49 16665.39 7875.67 17583.22 20861.23 16366.77 30553.70 22385.33 20681.92 184
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25051.80 35839.89 33058.39 34673.12 32131.69 35458.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7854.16 19573.23 21480.75 23462.19 15283.86 7668.02 8990.92 10883.65 134
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8059.86 13172.27 22684.00 18964.56 13383.07 9251.48 23487.19 18382.56 172
ANet_high67.08 21069.94 16958.51 30657.55 37527.09 38858.43 32576.80 19163.56 10182.40 8791.93 2059.82 18064.98 31650.10 24688.86 15683.46 141
wuyk23d61.97 26366.25 21749.12 35358.19 37460.77 14966.32 25752.97 35255.93 17090.62 586.91 13273.07 5735.98 39820.63 40291.63 8750.62 388
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6683.53 8267.95 9292.44 7689.60 24
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14675.15 20658.41 14268.74 27688.14 12056.08 21983.69 7959.90 16781.71 25479.43 230
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11865.57 7472.54 22381.76 22370.98 7385.26 5447.88 26990.00 12773.37 289
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12766.87 6483.64 7486.18 15870.25 7879.90 14861.12 15488.95 15587.56 53
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
TinyColmap67.98 19669.28 17564.08 25667.98 30746.82 25970.04 20275.26 20453.05 20877.36 14686.79 13559.39 18372.59 24745.64 28688.01 16672.83 296
MAR-MVS67.72 20066.16 21872.40 15574.45 22164.99 10774.87 13777.50 18248.67 25765.78 29868.58 36057.01 21277.79 18946.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS67.50 20267.31 20768.08 22258.86 37061.93 12771.43 18275.90 19944.67 29172.42 22480.20 24357.16 20770.44 27058.99 17586.12 19671.88 306
MSDG67.47 20567.48 20567.46 22870.70 26854.69 18966.90 25178.17 17260.88 12370.41 24974.76 30261.22 16573.18 23847.38 27276.87 29974.49 280
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8685.26 5466.15 10991.24 9587.61 52
CLD-MVS72.88 13472.36 14474.43 11077.03 17954.30 19168.77 22383.43 7652.12 21676.79 15874.44 30769.54 8583.91 7555.88 19993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS59.43 28560.07 27657.51 31177.62 17671.52 4962.33 29950.92 35957.40 15569.40 26280.00 24839.14 31561.92 32937.47 33766.36 36939.09 399
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19480.08 7875.93 19864.24 9473.49 20988.93 10157.89 20362.46 32559.75 17091.55 9062.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015