This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4599.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17998.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator96.53 297.61 8397.64 7297.50 13197.74 24293.65 17798.49 2298.88 8596.86 8797.11 17798.55 6995.82 10899.73 8195.94 9299.42 14099.13 143
3Dnovator+96.13 397.73 7597.59 7998.15 8198.11 19295.60 9198.04 4898.70 13998.13 3996.93 19398.45 7695.30 13399.62 14895.64 10898.96 21999.24 123
DeepC-MVS95.41 497.82 6997.70 6298.16 7898.78 11095.72 8396.23 14799.02 5293.92 20898.62 5298.99 3997.69 2399.62 14896.18 7899.87 2499.15 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS94.58 596.90 12596.43 15298.31 6697.48 26197.23 4192.56 30798.60 15792.84 24498.54 6097.40 19296.64 7798.78 30694.40 17699.41 14698.93 180
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6597.35 3697.96 5199.16 2098.34 3298.78 4598.52 7197.32 3599.45 19894.08 18999.67 5899.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS_fast94.34 796.74 13796.51 14997.44 14297.69 24594.15 15596.02 15898.43 17393.17 23297.30 16697.38 19895.48 12599.28 24993.74 20399.34 16398.88 193
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft94.22 895.48 19395.20 19396.32 20797.16 28691.96 21697.74 6698.84 9987.26 30494.36 28298.01 13293.95 17399.67 12890.70 26698.75 24497.35 304
ACMH93.61 998.44 2298.76 1397.51 12899.43 3393.54 17998.23 3599.05 4397.40 7399.37 1899.08 3498.79 599.47 19197.74 3199.71 5199.50 45
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+93.58 1098.23 3298.31 2997.98 9499.39 3895.22 11697.55 7799.20 1698.21 3799.25 2598.51 7298.21 1199.40 21594.79 15999.72 4899.32 98
ACMM93.33 1198.05 4197.79 5598.85 2599.15 7397.55 2796.68 12798.83 10695.21 16098.36 7898.13 11398.13 1499.62 14896.04 8599.54 9499.39 85
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS93.32 1294.93 21694.23 23897.04 16698.18 18094.51 14095.22 21198.73 12981.22 34796.25 22895.95 28693.80 17798.98 28989.89 28398.87 23197.62 294
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.54 1397.47 9497.10 11198.55 5099.04 9296.70 5296.24 14698.89 7993.71 21397.97 12797.75 16297.44 3099.63 14093.22 21599.70 5499.32 98
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft91.80 1493.64 26593.05 26495.42 24797.31 27991.21 22795.08 21996.68 29081.56 34496.88 19796.41 26090.44 24199.25 25485.39 33397.67 29695.80 340
HY-MVS91.43 1592.58 28291.81 28894.90 26696.49 30388.87 26397.31 9194.62 31885.92 31790.50 34696.84 23485.05 29099.40 21583.77 34595.78 33696.43 332
PLCcopyleft91.02 1694.05 25592.90 26797.51 12898.00 20295.12 12194.25 25398.25 19786.17 31491.48 34095.25 30291.01 23399.19 26085.02 33796.69 32298.22 258
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft89.60 1796.71 14296.97 11995.95 22499.51 2397.81 1797.42 8897.49 26097.93 4495.95 23998.58 6596.88 6696.91 35889.59 28799.36 15593.12 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PCF-MVS89.43 1892.12 29290.64 30696.57 19497.80 22593.48 18189.88 34998.45 17074.46 36496.04 23695.68 29290.71 23899.31 24073.73 36299.01 21796.91 315
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet86.72 1991.10 30390.97 30091.49 33097.56 25678.04 35687.17 35794.60 31984.65 33392.34 33492.20 34687.37 27898.47 33385.17 33697.69 29497.96 279
IB-MVS85.98 2088.63 32386.95 33293.68 29895.12 33884.82 32990.85 33790.17 35987.55 30388.48 35791.34 35558.01 36899.59 15787.24 32093.80 35096.63 329
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_081.89 2184.49 33483.21 33788.34 34595.76 32774.97 36783.49 36192.70 33878.47 35787.94 35986.90 36583.38 30196.63 36373.44 36366.86 36993.40 356
MVEpermissive73.61 2286.48 33385.92 33588.18 34696.23 31185.28 32181.78 36475.79 37186.01 31582.53 36791.88 34992.74 19887.47 36971.42 36694.86 34491.78 360
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary73.10 2392.74 28091.39 29296.77 18193.57 35794.67 13694.21 25797.67 24880.36 35193.61 30796.60 25082.85 30297.35 35684.86 33898.78 24198.29 253
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_blank0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
DVP-MVS++.97.96 4697.90 4598.12 8397.75 23995.40 10199.03 798.89 7996.62 9298.62 5298.30 9096.97 5699.75 6595.70 10199.25 18399.21 126
FOURS199.59 1498.20 499.03 799.25 1298.96 1898.87 40
MSC_two_6792asdad98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
PC_three_145287.24 30598.37 7597.44 18997.00 5496.78 36192.01 22999.25 18399.21 126
No_MVS98.22 7497.75 23995.34 10898.16 21299.75 6595.87 9799.51 10799.57 32
test_one_060199.05 9195.50 9898.87 8797.21 7998.03 12098.30 9096.93 60
eth-test20.00 378
eth-test0.00 378
GeoE97.75 7497.70 6297.89 9998.88 10294.53 13997.10 10498.98 6695.75 14097.62 14797.59 17697.61 2799.77 5396.34 7499.44 12999.36 93
test_method66.88 33566.13 33869.11 35162.68 37425.73 37649.76 36596.04 29714.32 37064.27 37191.69 35273.45 34788.05 36876.06 36166.94 36893.54 354
Anonymous2024052197.07 11497.51 8595.76 23299.35 4288.18 27697.78 6198.40 18097.11 8098.34 8199.04 3789.58 25399.79 3998.09 1899.93 1099.30 104
h-mvs3396.29 16095.63 18498.26 6998.50 14796.11 7296.90 11397.09 27496.58 9697.21 17098.19 10884.14 29699.78 4395.89 9596.17 33198.89 189
hse-mvs295.77 18295.09 19897.79 10697.84 21795.51 9595.66 18095.43 31396.58 9697.21 17096.16 27384.14 29699.54 17395.89 9596.92 31498.32 246
CL-MVSNet_self_test95.04 21294.79 21595.82 23097.51 26089.79 24891.14 33396.82 28493.05 23596.72 20396.40 26290.82 23699.16 26691.95 23198.66 25298.50 230
KD-MVS_2432*160088.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
KD-MVS_self_test97.86 6598.07 3697.25 15699.22 5892.81 19697.55 7798.94 7497.10 8198.85 4198.88 4795.03 14099.67 12897.39 4399.65 6199.26 117
AUN-MVS93.95 25892.69 27597.74 11097.80 22595.38 10395.57 18795.46 31291.26 26792.64 33096.10 27974.67 33999.55 17093.72 20596.97 31398.30 250
ZD-MVS98.43 15595.94 7898.56 16190.72 27296.66 20697.07 21995.02 14199.74 7591.08 25098.93 225
test117298.08 3997.76 5999.05 698.78 11098.07 797.41 8998.85 9497.57 6198.15 10497.96 13696.60 8099.76 5895.30 13099.18 19399.33 97
SR-MVS-dyc-post98.14 3497.84 5199.02 998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.60 8099.76 5895.49 11499.20 18899.26 117
RE-MVS-def97.88 4998.81 10598.05 997.55 7798.86 9097.77 4798.20 9798.07 12196.94 5895.49 11499.20 18899.26 117
SED-MVS97.94 5297.90 4598.07 8699.22 5895.35 10696.79 11898.83 10696.11 11599.08 3198.24 10197.87 2099.72 8595.44 12199.51 10799.14 140
IU-MVS99.22 5895.40 10198.14 21585.77 32098.36 7895.23 13599.51 10799.49 53
OPU-MVS97.64 11998.01 19895.27 11196.79 11897.35 20196.97 5698.51 33291.21 24999.25 18399.14 140
test_241102_TWO98.83 10696.11 11598.62 5298.24 10196.92 6299.72 8595.44 12199.49 11599.49 53
test_241102_ONE99.22 5895.35 10698.83 10696.04 12099.08 3198.13 11397.87 2099.33 236
xxxxxxxxxxxxxcwj97.24 11097.03 11797.89 9998.48 15094.71 13294.53 24599.07 4095.02 17197.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
SF-MVS97.60 8497.39 9298.22 7498.93 9895.69 8597.05 10799.10 3195.32 15797.83 14297.88 14896.44 9099.72 8594.59 16999.39 14999.25 121
ETH3D cwj APD-0.1696.23 16395.61 18698.09 8597.91 20895.65 9094.94 22898.74 12791.31 26696.02 23797.08 21894.05 17199.69 11691.51 24298.94 22398.93 180
cl2293.25 27492.84 27094.46 28594.30 34786.00 31291.09 33596.64 29190.74 27195.79 24696.31 26778.24 32098.77 30794.15 18798.34 26798.62 221
miper_ehance_all_eth94.69 22994.70 21794.64 27695.77 32686.22 31091.32 32998.24 19891.67 25997.05 18396.65 24888.39 26799.22 25994.88 15498.34 26798.49 231
miper_enhance_ethall93.14 27692.78 27394.20 29293.65 35585.29 32089.97 34597.85 23685.05 32996.15 23494.56 31685.74 28699.14 26893.74 20398.34 26798.17 263
ZNCC-MVS97.92 5697.62 7698.83 2699.32 4697.24 4097.45 8498.84 9995.76 13896.93 19397.43 19097.26 4099.79 3996.06 8299.53 9799.45 68
ETH3 D test640094.77 22393.87 25297.47 13698.12 19193.73 17194.56 24498.70 13985.45 32594.70 27395.93 28891.77 22799.63 14086.45 32499.14 19699.05 163
cl____94.73 22494.64 22095.01 26195.85 32387.00 30091.33 32798.08 22293.34 22297.10 17897.33 20384.01 29999.30 24395.14 14399.56 8598.71 214
DIV-MVS_self_test94.73 22494.64 22095.01 26195.86 32287.00 30091.33 32798.08 22293.34 22297.10 17897.34 20284.02 29899.31 24095.15 14299.55 9198.72 212
eth_miper_zixun_eth94.89 21894.93 20694.75 27495.99 32086.12 31191.35 32698.49 16793.40 21997.12 17697.25 20986.87 28299.35 23195.08 14898.82 23898.78 204
9.1496.69 13498.53 14296.02 15898.98 6693.23 22697.18 17297.46 18796.47 8899.62 14892.99 21999.32 172
testtj96.69 14396.13 16398.36 6198.46 15496.02 7696.44 13398.70 13994.26 19696.79 19897.13 21394.07 17099.75 6590.53 27198.80 23999.31 103
uanet_test0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ETH3D-3000-0.196.89 12796.46 15198.16 7898.62 13195.69 8595.96 16398.98 6693.36 22197.04 18497.31 20594.93 14499.63 14092.60 22299.34 16399.17 133
save fliter98.48 15094.71 13294.53 24598.41 17895.02 171
ET-MVSNet_ETH3D91.12 30289.67 31495.47 24596.41 30589.15 26091.54 32390.23 35889.07 28686.78 36492.84 33869.39 35999.44 20194.16 18696.61 32497.82 286
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6499.18 599.20 1699.67 299.73 399.65 499.15 399.86 2097.22 4699.92 1499.77 8
EIA-MVS96.04 17195.77 18096.85 17697.80 22592.98 19296.12 15299.16 2094.65 18293.77 29991.69 35295.68 11799.67 12894.18 18598.85 23597.91 282
miper_refine_blended88.93 32187.74 32692.49 32188.04 37181.99 34489.63 35195.62 30691.35 26495.06 26393.11 33056.58 37198.63 32185.19 33495.07 34196.85 318
miper_lstm_enhance94.81 22294.80 21494.85 26996.16 31586.45 30791.14 33398.20 20393.49 21797.03 18597.37 20084.97 29299.26 25295.28 13199.56 8598.83 198
ETV-MVS96.13 16895.90 17696.82 17897.76 23793.89 16395.40 19598.95 7395.87 13295.58 25591.00 35896.36 9599.72 8593.36 21098.83 23796.85 318
CS-MVS95.98 17596.24 15895.20 25497.26 28089.88 24695.84 17199.39 993.89 20994.28 28395.15 30494.81 14699.62 14896.11 8199.40 14796.10 336
D2MVS95.18 20695.17 19595.21 25397.76 23787.76 28894.15 26097.94 23189.77 28296.99 18897.68 17187.45 27799.14 26895.03 15199.81 3098.74 209
DVP-MVScopyleft97.78 7297.65 6998.16 7899.24 5395.51 9596.74 12198.23 19995.92 12898.40 7298.28 9597.06 5099.71 9995.48 11799.52 10299.26 117
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9298.40 7298.28 9597.10 4599.71 9995.70 10199.62 6699.58 28
test_0728_SECOND98.25 7299.23 5595.49 9996.74 12198.89 7999.75 6595.48 11799.52 10299.53 41
test072699.24 5395.51 9596.89 11498.89 7995.92 12898.64 5198.31 8697.06 50
SR-MVS98.00 4597.66 6799.01 1198.77 11297.93 1197.38 9098.83 10697.32 7598.06 11697.85 15196.65 7599.77 5395.00 15299.11 20499.32 98
DPM-MVS93.68 26392.77 27496.42 20297.91 20892.54 19991.17 33297.47 26384.99 33193.08 32194.74 31389.90 25099.00 28587.54 31698.09 27797.72 290
GST-MVS97.82 6997.49 8898.81 2999.23 5597.25 3997.16 9998.79 11695.96 12597.53 15097.40 19296.93 6099.77 5395.04 14999.35 16099.42 80
test_yl94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
thisisatest053092.71 28191.76 28995.56 24198.42 15688.23 27496.03 15787.35 36494.04 20496.56 21195.47 29964.03 36599.77 5394.78 16199.11 20498.68 217
Anonymous2024052997.96 4698.04 3997.71 11298.69 12394.28 15197.86 5898.31 19398.79 2299.23 2698.86 4995.76 11599.61 15595.49 11499.36 15599.23 124
Anonymous20240521196.34 15995.98 17297.43 14398.25 17193.85 16696.74 12194.41 32197.72 5498.37 7598.03 12987.15 27999.53 17594.06 19099.07 21098.92 184
DCV-MVSNet94.40 24194.00 24795.59 23796.95 29289.52 25294.75 23895.55 31096.18 11396.79 19896.14 27681.09 30899.18 26190.75 26197.77 28698.07 267
tttt051793.31 27292.56 27995.57 23998.71 11987.86 28397.44 8587.17 36595.79 13797.47 16096.84 23464.12 36499.81 3296.20 7799.32 17299.02 167
our_test_394.20 25094.58 22793.07 31096.16 31581.20 34890.42 34196.84 28290.72 27297.14 17497.13 21390.47 24099.11 27394.04 19498.25 27198.91 185
thisisatest051590.43 30889.18 32094.17 29497.07 28985.44 31789.75 35087.58 36388.28 29793.69 30491.72 35165.27 36399.58 15990.59 26998.67 25097.50 299
ppachtmachnet_test94.49 24094.84 21193.46 30296.16 31582.10 34390.59 33997.48 26290.53 27497.01 18797.59 17691.01 23399.36 22893.97 19799.18 19398.94 176
SMA-MVScopyleft97.48 9397.11 11098.60 4698.83 10496.67 5396.74 12198.73 12991.61 26098.48 6598.36 8196.53 8399.68 12395.17 13899.54 9499.45 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.06 271
DPE-MVScopyleft97.64 8097.35 9598.50 5198.85 10396.18 6895.21 21298.99 6395.84 13598.78 4598.08 11996.84 6999.81 3293.98 19699.57 8299.52 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.03 9396.07 7398.08 114
test_part196.77 13696.53 14697.47 13698.04 19492.92 19497.93 5398.85 9498.83 2199.30 2199.07 3579.25 31599.79 3997.59 3599.93 1099.69 20
thres100view90091.76 29791.26 29693.26 30598.21 17584.50 33196.39 13590.39 35596.87 8696.33 22193.08 33473.44 34899.42 20478.85 35697.74 28995.85 338
tfpnnormal97.72 7697.97 4196.94 17099.26 4992.23 20697.83 6098.45 17098.25 3599.13 3098.66 6196.65 7599.69 11693.92 19899.62 6698.91 185
tfpn200view991.55 29991.00 29893.21 30898.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28995.85 338
c3_l95.20 20595.32 19194.83 27196.19 31386.43 30891.83 32098.35 18993.47 21897.36 16597.26 20888.69 26399.28 24995.41 12799.36 15598.78 204
CHOSEN 280x42089.98 31389.19 31992.37 32595.60 33081.13 34986.22 35997.09 27481.44 34687.44 36193.15 32973.99 34099.47 19188.69 30099.07 21096.52 331
CANet95.86 18095.65 18396.49 19896.41 30590.82 23394.36 24898.41 17894.94 17392.62 33296.73 24392.68 20099.71 9995.12 14699.60 7598.94 176
Fast-Effi-MVS+-dtu96.44 15696.12 16497.39 14797.18 28594.39 14495.46 18998.73 12996.03 12294.72 27194.92 31196.28 9899.69 11693.81 20197.98 28098.09 264
Effi-MVS+-dtu96.81 13396.09 16698.99 1396.90 29698.69 296.42 13498.09 22095.86 13395.15 26295.54 29794.26 16599.81 3294.06 19098.51 26398.47 232
CANet_DTU94.65 23394.21 24095.96 22295.90 32189.68 24993.92 27297.83 24093.19 22890.12 34995.64 29488.52 26499.57 16593.27 21499.47 12198.62 221
MVS_030495.50 19095.05 20296.84 17796.28 30893.12 18997.00 11096.16 29495.03 17089.22 35497.70 16890.16 24899.48 18894.51 17199.34 16397.93 281
MP-MVS-pluss97.69 7897.36 9498.70 3999.50 2696.84 4895.38 19798.99 6392.45 24998.11 10898.31 8697.25 4199.77 5396.60 6399.62 6699.48 58
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.45 9596.92 12399.03 899.26 4997.70 1997.66 6998.89 7995.65 14298.51 6296.46 25892.15 21499.81 3295.14 14398.58 26099.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.80 32298.06 271
sam_mvs77.38 326
IterMVS-SCA-FT95.86 18096.19 16194.85 26997.68 24685.53 31692.42 31097.63 25696.99 8298.36 7898.54 7087.94 27099.75 6597.07 5699.08 20899.27 116
TSAR-MVS + MP.97.42 9797.23 10498.00 9399.38 3995.00 12397.63 7298.20 20393.00 23798.16 10298.06 12695.89 10399.72 8595.67 10499.10 20699.28 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
OPM-MVS97.54 8897.25 10198.41 5799.11 8396.61 5695.24 21098.46 16994.58 18798.10 11198.07 12197.09 4799.39 22095.16 14099.44 12999.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.89 6197.63 7498.67 4199.35 4296.84 4896.36 13898.79 11695.07 16897.88 13698.35 8297.24 4299.72 8596.05 8499.58 7999.45 68
ambc96.56 19598.23 17491.68 22297.88 5798.13 21798.42 7198.56 6894.22 16799.04 28194.05 19399.35 16098.95 174
zzz-MVS98.01 4497.66 6799.06 499.44 3197.90 1295.66 18098.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
MTGPAbinary98.73 129
mvs-test196.20 16495.50 18998.32 6496.90 29698.16 595.07 22098.09 22095.86 13393.63 30594.32 32394.26 16599.71 9994.06 19097.27 31297.07 308
CS-MVS-test96.62 14896.59 13896.69 18697.88 21293.16 18897.21 9899.53 695.61 14593.72 30195.33 30195.49 12399.69 11695.37 12899.19 19297.22 305
Effi-MVS+96.19 16596.01 16996.71 18497.43 26792.19 21096.12 15299.10 3195.45 15293.33 31894.71 31497.23 4399.56 16693.21 21697.54 30198.37 239
xiu_mvs_v2_base94.22 24694.63 22292.99 31497.32 27884.84 32892.12 31597.84 23891.96 25594.17 28693.43 32896.07 10099.71 9991.27 24697.48 30494.42 351
xiu_mvs_v1_base95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
new-patchmatchnet95.67 18596.58 14092.94 31697.48 26180.21 35192.96 29898.19 20894.83 17798.82 4398.79 5193.31 18699.51 18395.83 9999.04 21499.12 148
pmmvs699.07 499.24 498.56 4999.81 296.38 6298.87 999.30 1199.01 1699.63 999.66 399.27 299.68 12397.75 3099.89 2299.62 25
pmmvs594.63 23494.34 23695.50 24397.63 25288.34 27394.02 26697.13 27287.15 30795.22 26197.15 21287.50 27699.27 25193.99 19599.26 18298.88 193
test_post194.98 22710.37 37276.21 33499.04 28189.47 289
test_post10.87 37176.83 33099.07 278
Fast-Effi-MVS+95.49 19195.07 19996.75 18297.67 24992.82 19594.22 25698.60 15791.61 26093.42 31692.90 33796.73 7399.70 10892.60 22297.89 28597.74 289
patchmatchnet-post96.84 23477.36 32799.42 204
Anonymous2023121198.55 1798.76 1397.94 9698.79 10894.37 14698.84 1099.15 2499.37 399.67 699.43 1195.61 12099.72 8598.12 1699.86 2599.73 15
pmmvs-eth3d96.49 15396.18 16297.42 14498.25 17194.29 14894.77 23798.07 22689.81 28197.97 12798.33 8493.11 18999.08 27795.46 12099.84 2898.89 189
GG-mvs-BLEND90.60 33691.00 36884.21 33598.23 3572.63 37582.76 36684.11 36656.14 37396.79 36072.20 36492.09 35590.78 363
xiu_mvs_v1_base_debi95.62 18695.96 17394.60 27998.01 19888.42 27093.99 26898.21 20092.98 23895.91 24194.53 31796.39 9299.72 8595.43 12498.19 27295.64 342
Anonymous2023120695.27 20395.06 20195.88 22898.72 11689.37 25595.70 17697.85 23688.00 30096.98 19097.62 17491.95 22199.34 23389.21 29299.53 9798.94 176
MTAPA98.14 3497.84 5199.06 499.44 3197.90 1297.25 9498.73 12997.69 5797.90 13397.96 13695.81 11299.82 2996.13 7999.61 7299.45 68
MTMP96.55 12974.60 372
gm-plane-assit91.79 36771.40 37181.67 34390.11 36298.99 28784.86 338
test9_res91.29 24598.89 23099.00 168
MVP-Stereo95.69 18395.28 19296.92 17198.15 18693.03 19195.64 18598.20 20390.39 27596.63 20897.73 16591.63 22899.10 27591.84 23697.31 31098.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.84 21795.23 11393.62 28198.39 18186.81 31093.78 29795.99 28194.68 15199.52 179
train_agg95.46 19594.66 21897.88 10197.84 21795.23 11393.62 28198.39 18187.04 30893.78 29795.99 28194.58 15699.52 17991.76 23898.90 22798.89 189
gg-mvs-nofinetune88.28 32686.96 33192.23 32892.84 36484.44 33298.19 4174.60 37299.08 1087.01 36399.47 856.93 37098.23 34678.91 35595.61 33894.01 353
SCA93.38 27193.52 25792.96 31596.24 30981.40 34793.24 29494.00 32391.58 26294.57 27596.97 22687.94 27099.42 20489.47 28997.66 29798.06 271
Patchmatch-test93.60 26693.25 26294.63 27796.14 31887.47 29296.04 15694.50 32093.57 21596.47 21596.97 22676.50 33198.61 32390.67 26798.41 26697.81 288
test_897.81 22195.07 12293.54 28498.38 18387.04 30893.71 30295.96 28594.58 15699.52 179
MS-PatchMatch94.83 22094.91 20894.57 28296.81 29887.10 29994.23 25597.34 26588.74 29297.14 17497.11 21691.94 22298.23 34692.99 21997.92 28298.37 239
Patchmatch-RL test94.66 23294.49 23095.19 25598.54 14188.91 26292.57 30698.74 12791.46 26398.32 8697.75 16277.31 32898.81 30496.06 8299.61 7297.85 284
cdsmvs_eth3d_5k24.22 33732.30 3400.00 3550.00 3780.00 3790.00 36698.10 2190.00 3730.00 37495.06 30797.54 290.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas7.98 34010.65 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 37395.82 1080.00 3740.00 3720.00 3720.00 370
agg_prior195.39 19894.60 22497.75 10997.80 22594.96 12493.39 28998.36 18587.20 30693.49 31195.97 28494.65 15399.53 17591.69 24098.86 23398.77 207
agg_prior290.34 27898.90 22799.10 156
agg_prior97.80 22594.96 12498.36 18593.49 31199.53 175
tmp_tt57.23 33662.50 33941.44 35234.77 37549.21 37583.93 36060.22 37615.31 36971.11 37079.37 36770.09 35844.86 37164.76 36782.93 36730.25 367
canonicalmvs97.23 11197.21 10697.30 15297.65 25094.39 14497.84 5999.05 4397.42 6996.68 20593.85 32797.63 2699.33 23696.29 7598.47 26498.18 262
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3898.65 1699.19 1895.62 14499.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
alignmvs96.01 17395.52 18897.50 13197.77 23694.71 13296.07 15496.84 28297.48 6796.78 20294.28 32485.50 28899.40 21596.22 7698.73 24898.40 235
nrg03098.54 1898.62 2198.32 6499.22 5895.66 8997.90 5699.08 3798.31 3399.02 3498.74 5597.68 2499.61 15597.77 2999.85 2799.70 18
v14419296.69 14396.90 12596.03 21998.25 17188.92 26195.49 18898.77 12193.05 23598.09 11298.29 9492.51 20999.70 10898.11 1799.56 8599.47 61
FIs97.93 5598.07 3697.48 13599.38 3992.95 19398.03 5099.11 2998.04 4298.62 5298.66 6193.75 17899.78 4397.23 4599.84 2899.73 15
v192192096.72 14096.96 12195.99 22098.21 17588.79 26695.42 19298.79 11693.22 22798.19 10098.26 10092.68 20099.70 10898.34 1599.55 9199.49 53
UA-Net98.88 798.76 1399.22 299.11 8397.89 1499.47 399.32 1099.08 1097.87 13999.67 296.47 8899.92 497.88 2399.98 299.85 3
v119296.83 13197.06 11596.15 21698.28 16689.29 25695.36 19898.77 12193.73 21298.11 10898.34 8393.02 19499.67 12898.35 1499.58 7999.50 45
FC-MVSNet-test98.16 3398.37 2797.56 12399.49 2793.10 19098.35 2899.21 1498.43 2998.89 3998.83 5094.30 16499.81 3297.87 2499.91 1799.77 8
v114496.84 12897.08 11396.13 21798.42 15689.28 25795.41 19498.67 14794.21 19897.97 12798.31 8693.06 19099.65 13598.06 1999.62 6699.45 68
sosnet-low-res0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
HFP-MVS97.94 5297.64 7298.83 2699.15 7397.50 2997.59 7498.84 9996.05 11897.49 15597.54 17997.07 4899.70 10895.61 11099.46 12499.30 104
v14896.58 15096.97 11995.42 24798.63 13087.57 29095.09 21797.90 23395.91 13098.24 9597.96 13693.42 18499.39 22096.04 8599.52 10299.29 111
sosnet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
AllTest97.20 11296.92 12398.06 8899.08 8596.16 6997.14 10299.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
TestCases98.06 8899.08 8596.16 6999.16 2094.35 19397.78 14598.07 12195.84 10599.12 27091.41 24399.42 14098.91 185
v7n98.73 1198.99 597.95 9599.64 1194.20 15498.67 1399.14 2699.08 1099.42 1599.23 2196.53 8399.91 1299.27 299.93 1099.73 15
region2R97.92 5697.59 7998.92 2299.22 5897.55 2797.60 7398.84 9996.00 12397.22 16897.62 17496.87 6799.76 5895.48 11799.43 13799.46 63
bset_n11_16_dypcd94.53 23993.95 25096.25 21097.56 25689.85 24788.52 35591.32 34794.90 17697.51 15296.38 26482.34 30499.78 4397.22 4699.80 3399.12 148
RRT_MVS94.90 21794.07 24497.39 14793.18 35893.21 18795.26 20797.49 26093.94 20798.25 9397.85 15172.96 35099.84 2597.90 2299.78 3899.14 140
PS-MVSNAJss98.53 1998.63 1998.21 7799.68 994.82 12898.10 4599.21 1496.91 8599.75 299.45 995.82 10899.92 498.80 499.96 499.89 1
PS-MVSNAJ94.10 25294.47 23193.00 31397.35 27184.88 32791.86 31997.84 23891.96 25594.17 28692.50 34495.82 10899.71 9991.27 24697.48 30494.40 352
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 6098.45 2599.12 2895.83 13699.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
mvs_tets98.90 598.94 698.75 3399.69 896.48 6098.54 2099.22 1396.23 11199.71 499.48 798.77 699.93 298.89 399.95 599.84 5
#test#97.62 8297.22 10598.83 2699.15 7397.50 2996.81 11798.84 9994.25 19797.49 15597.54 17997.07 4899.70 10894.37 17799.46 12499.30 104
EI-MVSNet-UG-set97.32 10597.40 9197.09 16397.34 27592.01 21595.33 20197.65 25297.74 5198.30 9098.14 11295.04 13999.69 11697.55 3799.52 10299.58 28
EI-MVSNet-Vis-set97.32 10597.39 9297.11 16197.36 27092.08 21395.34 20097.65 25297.74 5198.29 9198.11 11795.05 13799.68 12397.50 3999.50 11199.56 35
Regformer-397.25 10997.29 9897.11 16197.35 27192.32 20495.26 20797.62 25797.67 5998.17 10197.89 14695.05 13799.56 16697.16 5299.42 14099.46 63
Regformer-497.53 9097.47 9097.71 11297.35 27193.91 16295.26 20798.14 21597.97 4398.34 8197.89 14695.49 12399.71 9997.41 4199.42 14099.51 44
Regformer-197.27 10797.16 10897.61 12197.21 28393.86 16594.85 23398.04 22997.62 6098.03 12097.50 18495.34 13099.63 14096.52 6799.31 17499.35 95
Regformer-297.41 9897.24 10397.93 9797.21 28394.72 13194.85 23398.27 19497.74 5198.11 10897.50 18495.58 12199.69 11696.57 6699.31 17499.37 92
HPM-MVS++copyleft96.99 11796.38 15398.81 2998.64 12697.59 2495.97 16298.20 20395.51 15095.06 26396.53 25494.10 16999.70 10894.29 18199.15 19599.13 143
test_prior495.38 10393.61 283
XVS97.96 4697.63 7498.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22297.64 17296.49 8699.72 8595.66 10699.37 15299.45 68
v124096.74 13797.02 11895.91 22798.18 18088.52 26995.39 19698.88 8593.15 23398.46 6898.40 8092.80 19799.71 9998.45 1399.49 11599.49 53
test_prior395.91 17795.39 19097.46 13997.79 23194.26 15293.33 29298.42 17694.21 19894.02 29296.25 26993.64 18099.34 23391.90 23298.96 21998.79 202
pm-mvs198.47 2198.67 1797.86 10299.52 2294.58 13898.28 3299.00 6097.57 6199.27 2499.22 2298.32 999.50 18497.09 5499.75 4399.50 45
test_prior293.33 29294.21 19894.02 29296.25 26993.64 18091.90 23298.96 219
X-MVStestdata92.86 27890.83 30398.94 1899.15 7397.66 2097.77 6298.83 10697.42 6996.32 22236.50 36896.49 8699.72 8595.66 10699.37 15299.45 68
test_prior97.46 13997.79 23194.26 15298.42 17699.34 23398.79 202
旧先验293.35 29177.95 36095.77 25098.67 31990.74 264
新几何293.43 286
新几何197.25 15698.29 16494.70 13597.73 24477.98 35894.83 27096.67 24792.08 21899.45 19888.17 30898.65 25497.61 295
旧先验197.80 22593.87 16497.75 24397.04 22293.57 18298.68 24998.72 212
无先验93.20 29597.91 23280.78 34899.40 21587.71 31097.94 280
原ACMM292.82 300
原ACMM196.58 19298.16 18492.12 21198.15 21485.90 31893.49 31196.43 25992.47 21099.38 22387.66 31398.62 25698.23 257
test22298.17 18293.24 18692.74 30497.61 25875.17 36394.65 27496.69 24690.96 23598.66 25297.66 293
testdata299.46 19487.84 309
segment_acmp95.34 130
testdata95.70 23698.16 18490.58 23897.72 24580.38 35095.62 25397.02 22392.06 21998.98 28989.06 29698.52 26197.54 297
testdata192.77 30193.78 211
v897.60 8498.06 3896.23 21198.71 11989.44 25497.43 8798.82 11497.29 7798.74 4899.10 3293.86 17499.68 12398.61 1099.94 899.56 35
131492.38 28692.30 28292.64 32095.42 33585.15 32395.86 16896.97 27985.40 32690.62 34393.06 33591.12 23297.80 35386.74 32295.49 34094.97 349
112194.26 24493.26 26197.27 15398.26 17094.73 13095.86 16897.71 24677.96 35994.53 27796.71 24491.93 22399.40 21587.71 31098.64 25597.69 292
LFMVS95.32 20194.88 20996.62 18998.03 19591.47 22597.65 7090.72 35499.11 997.89 13598.31 8679.20 31699.48 18893.91 19999.12 20398.93 180
VDD-MVS97.37 10197.25 10197.74 11098.69 12394.50 14297.04 10895.61 30898.59 2698.51 6298.72 5692.54 20799.58 15996.02 8799.49 11599.12 148
VDDNet96.98 12096.84 12697.41 14599.40 3793.26 18597.94 5295.31 31499.26 798.39 7499.18 2787.85 27599.62 14895.13 14599.09 20799.35 95
v1097.55 8797.97 4196.31 20898.60 13489.64 25097.44 8599.02 5296.60 9498.72 5099.16 2993.48 18399.72 8598.76 699.92 1499.58 28
VPNet97.26 10897.49 8896.59 19199.47 2890.58 23896.27 14298.53 16397.77 4798.46 6898.41 7894.59 15599.68 12394.61 16599.29 17899.52 42
MVS90.02 31189.20 31892.47 32394.71 34286.90 30295.86 16896.74 28864.72 36790.62 34392.77 33992.54 20798.39 33879.30 35495.56 33992.12 359
v2v48296.78 13597.06 11595.95 22498.57 13888.77 26795.36 19898.26 19695.18 16397.85 14198.23 10392.58 20499.63 14097.80 2799.69 5599.45 68
V4297.04 11597.16 10896.68 18898.59 13691.05 22896.33 14098.36 18594.60 18497.99 12398.30 9093.32 18599.62 14897.40 4299.53 9799.38 87
SD-MVS97.37 10197.70 6296.35 20598.14 18795.13 12096.54 13098.92 7695.94 12799.19 2898.08 11997.74 2295.06 36495.24 13499.54 9498.87 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS92.83 27992.15 28494.87 26896.97 29187.27 29790.03 34496.12 29591.83 25894.05 29194.57 31576.01 33598.97 29392.46 22697.34 30998.36 244
MSLP-MVS++96.42 15896.71 13395.57 23997.82 22090.56 24095.71 17598.84 9994.72 18096.71 20497.39 19694.91 14598.10 35095.28 13199.02 21598.05 274
APDe-MVS98.14 3498.03 4098.47 5498.72 11696.04 7498.07 4799.10 3195.96 12598.59 5798.69 5996.94 5899.81 3296.64 6299.58 7999.57 32
APD-MVS_3200maxsize98.13 3797.90 4598.79 3198.79 10897.31 3797.55 7798.92 7697.72 5498.25 9398.13 11397.10 4599.75 6595.44 12199.24 18699.32 98
ADS-MVSNet291.47 30090.51 30894.36 28895.51 33185.63 31495.05 22395.70 30483.46 33892.69 32796.84 23479.15 31799.41 21385.66 33090.52 35698.04 275
EI-MVSNet96.63 14796.93 12295.74 23397.26 28088.13 27995.29 20597.65 25296.99 8297.94 13098.19 10892.55 20599.58 15996.91 6099.56 8599.50 45
Regformer0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
CVMVSNet92.33 28892.79 27190.95 33497.26 28075.84 36495.29 20592.33 34081.86 34296.27 22698.19 10881.44 30698.46 33494.23 18498.29 27098.55 228
pmmvs494.82 22194.19 24196.70 18597.42 26892.75 19892.09 31796.76 28686.80 31195.73 25197.22 21089.28 26098.89 29793.28 21399.14 19698.46 234
EU-MVSNet94.25 24594.47 23193.60 29998.14 18782.60 34197.24 9692.72 33785.08 32898.48 6598.94 4382.59 30398.76 30997.47 4099.53 9799.44 78
VNet96.84 12896.83 12796.88 17498.06 19392.02 21496.35 13997.57 25997.70 5697.88 13697.80 15892.40 21199.54 17394.73 16498.96 21999.08 157
test-LLR89.97 31489.90 31290.16 33894.24 34974.98 36589.89 34689.06 36092.02 25389.97 35090.77 35973.92 34298.57 32691.88 23497.36 30796.92 313
TESTMET0.1,187.20 33286.57 33489.07 34293.62 35672.84 36989.89 34687.01 36685.46 32489.12 35590.20 36156.00 37497.72 35490.91 25596.92 31496.64 327
test-mter87.92 32987.17 33090.16 33894.24 34974.98 36589.89 34689.06 36086.44 31389.97 35090.77 35954.96 37598.57 32691.88 23497.36 30796.92 313
VPA-MVSNet98.27 2998.46 2497.70 11499.06 8893.80 16897.76 6499.00 6098.40 3099.07 3398.98 4096.89 6499.75 6597.19 5199.79 3599.55 37
ACMMPR97.95 5097.62 7698.94 1899.20 6697.56 2697.59 7498.83 10696.05 11897.46 16197.63 17396.77 7199.76 5895.61 11099.46 12499.49 53
testgi96.07 16996.50 15094.80 27299.26 4987.69 28995.96 16398.58 16095.08 16798.02 12296.25 26997.92 1697.60 35588.68 30198.74 24599.11 152
test20.0396.58 15096.61 13796.48 19998.49 14891.72 22195.68 17997.69 24796.81 8898.27 9297.92 14494.18 16898.71 31390.78 26099.66 6099.00 168
thres600view792.03 29391.43 29193.82 29598.19 17784.61 33096.27 14290.39 35596.81 8896.37 22093.11 33073.44 34899.49 18580.32 35297.95 28197.36 302
ADS-MVSNet90.95 30690.26 31093.04 31195.51 33182.37 34295.05 22393.41 32983.46 33892.69 32796.84 23479.15 31798.70 31485.66 33090.52 35698.04 275
MP-MVScopyleft97.64 8097.18 10799.00 1299.32 4697.77 1897.49 8398.73 12996.27 10895.59 25497.75 16296.30 9699.78 4393.70 20699.48 11999.45 68
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs12.33 33915.23 3423.64 3545.77 3772.23 37888.99 3533.62 3772.30 3725.29 37213.09 3694.52 3771.95 3725.16 3718.32 3716.75 369
thres40091.68 29891.00 29893.71 29798.02 19684.35 33395.70 17690.79 35296.26 10995.90 24492.13 34773.62 34599.42 20478.85 35697.74 28997.36 302
test12312.59 33815.49 3413.87 3536.07 3762.55 37790.75 3382.59 3782.52 3715.20 37313.02 3704.96 3761.85 3735.20 3709.09 3707.23 368
thres20091.00 30590.42 30992.77 31897.47 26583.98 33694.01 26791.18 35095.12 16695.44 25691.21 35673.93 34199.31 24077.76 35997.63 29995.01 348
test0.0.03 190.11 31089.21 31792.83 31793.89 35386.87 30391.74 32188.74 36292.02 25394.71 27291.14 35773.92 34294.48 36583.75 34692.94 35197.16 306
pmmvs390.00 31288.90 32193.32 30394.20 35185.34 31891.25 33092.56 33978.59 35693.82 29695.17 30367.36 36298.69 31589.08 29598.03 27995.92 337
EMVS89.06 32089.22 31688.61 34493.00 36277.34 36082.91 36390.92 35194.64 18392.63 33191.81 35076.30 33397.02 35783.83 34496.90 31691.48 362
E-PMN89.52 31889.78 31388.73 34393.14 36077.61 35883.26 36292.02 34194.82 17893.71 30293.11 33075.31 33796.81 35985.81 32796.81 31991.77 361
PGM-MVS97.88 6297.52 8498.96 1699.20 6697.62 2297.09 10599.06 4195.45 15297.55 14997.94 14197.11 4499.78 4394.77 16299.46 12499.48 58
LCM-MVSNet-Re97.33 10497.33 9697.32 15198.13 19093.79 16996.99 11199.65 396.74 9099.47 1398.93 4496.91 6399.84 2590.11 27999.06 21398.32 246
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
MCST-MVS96.24 16295.80 17897.56 12398.75 11394.13 15694.66 24098.17 20990.17 27896.21 23096.10 27995.14 13699.43 20394.13 18898.85 23599.13 143
mvs_anonymous95.36 19996.07 16893.21 30896.29 30781.56 34694.60 24297.66 25093.30 22496.95 19298.91 4693.03 19399.38 22396.60 6397.30 31198.69 215
MVS_Test96.27 16196.79 13194.73 27596.94 29486.63 30596.18 14998.33 19094.94 17396.07 23598.28 9595.25 13499.26 25297.21 4897.90 28498.30 250
MDA-MVSNet-bldmvs95.69 18395.67 18295.74 23398.48 15088.76 26892.84 29997.25 26696.00 12397.59 14897.95 14091.38 23099.46 19493.16 21796.35 32898.99 171
CDPH-MVS95.45 19694.65 21997.84 10498.28 16694.96 12493.73 27998.33 19085.03 33095.44 25696.60 25095.31 13299.44 20190.01 28199.13 20099.11 152
test1297.46 13997.61 25394.07 15797.78 24293.57 30993.31 18699.42 20498.78 24198.89 189
casdiffmvs97.50 9197.81 5496.56 19598.51 14491.04 22995.83 17299.09 3697.23 7898.33 8598.30 9097.03 5299.37 22696.58 6599.38 15199.28 112
diffmvs96.04 17196.23 15995.46 24697.35 27188.03 28193.42 28799.08 3794.09 20396.66 20696.93 22993.85 17599.29 24796.01 8998.67 25099.06 161
baseline289.65 31788.44 32493.25 30695.62 32982.71 33993.82 27585.94 36788.89 29087.35 36292.54 34371.23 35499.33 23686.01 32594.60 34797.72 290
baseline193.14 27692.64 27794.62 27897.34 27587.20 29896.67 12893.02 33294.71 18196.51 21495.83 28981.64 30598.60 32590.00 28288.06 36198.07 267
YYNet194.73 22494.84 21194.41 28797.47 26585.09 32590.29 34295.85 30392.52 24697.53 15097.76 15991.97 22099.18 26193.31 21296.86 31798.95 174
PMMVS293.66 26494.07 24492.45 32497.57 25480.67 35086.46 35896.00 29893.99 20597.10 17897.38 19889.90 25097.82 35288.76 29899.47 12198.86 196
MDA-MVSNet_test_wron94.73 22494.83 21394.42 28697.48 26185.15 32390.28 34395.87 30292.52 24697.48 15897.76 15991.92 22499.17 26593.32 21196.80 32098.94 176
tpmvs90.79 30790.87 30190.57 33792.75 36576.30 36295.79 17393.64 32791.04 27091.91 33896.26 26877.19 32998.86 30189.38 29189.85 35996.56 330
PM-MVS97.36 10397.10 11198.14 8298.91 10096.77 5096.20 14898.63 15593.82 21098.54 6098.33 8493.98 17299.05 28095.99 9099.45 12898.61 223
HQP_MVS96.66 14696.33 15697.68 11798.70 12194.29 14896.50 13198.75 12596.36 10596.16 23296.77 24091.91 22599.46 19492.59 22499.20 18899.28 112
plane_prior798.70 12194.67 136
plane_prior698.38 15894.37 14691.91 225
plane_prior598.75 12599.46 19492.59 22499.20 18899.28 112
plane_prior496.77 240
plane_prior394.51 14095.29 15996.16 232
plane_prior296.50 13196.36 105
plane_prior198.49 148
plane_prior94.29 14895.42 19294.31 19598.93 225
PS-CasMVS98.73 1198.85 1098.39 5999.55 1895.47 10098.49 2299.13 2799.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
UniMVSNet_NR-MVSNet97.83 6797.65 6998.37 6098.72 11695.78 8195.66 18099.02 5298.11 4098.31 8897.69 17094.65 15399.85 2297.02 5799.71 5199.48 58
PEN-MVS98.75 1098.85 1098.44 5599.58 1595.67 8898.45 2599.15 2499.33 599.30 2199.00 3897.27 3899.92 497.64 3499.92 1499.75 13
TransMVSNet (Re)98.38 2598.67 1797.51 12899.51 2393.39 18398.20 4098.87 8798.23 3699.48 1299.27 1998.47 899.55 17096.52 6799.53 9799.60 26
DTE-MVSNet98.79 898.86 898.59 4799.55 1896.12 7198.48 2499.10 3199.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
DU-MVS97.79 7197.60 7898.36 6198.73 11495.78 8195.65 18398.87 8797.57 6198.31 8897.83 15394.69 14999.85 2297.02 5799.71 5199.46 63
UniMVSNet (Re)97.83 6797.65 6998.35 6398.80 10795.86 8095.92 16799.04 4997.51 6698.22 9697.81 15794.68 15199.78 4397.14 5399.75 4399.41 82
CP-MVSNet98.42 2398.46 2498.30 6799.46 2995.22 11698.27 3498.84 9999.05 1399.01 3598.65 6395.37 12999.90 1397.57 3699.91 1799.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2396.61 5698.55 1999.17 1999.05 1399.17 2998.79 5195.47 12699.89 1697.95 2199.91 1799.75 13
WR-MVS96.90 12596.81 12897.16 15898.56 13992.20 20994.33 24998.12 21897.34 7498.20 9797.33 20392.81 19699.75 6594.79 15999.81 3099.54 38
NR-MVSNet97.96 4697.86 5098.26 6998.73 11495.54 9398.14 4398.73 12997.79 4699.42 1597.83 15394.40 16299.78 4395.91 9499.76 3999.46 63
Baseline_NR-MVSNet97.72 7697.79 5597.50 13199.56 1693.29 18495.44 19098.86 9098.20 3898.37 7599.24 2094.69 14999.55 17095.98 9199.79 3599.65 23
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8795.87 7996.73 12599.05 4398.67 2498.84 4298.45 7697.58 2899.88 1896.45 7199.86 2599.54 38
TSAR-MVS + GP.96.47 15596.12 16497.49 13497.74 24295.23 11394.15 26096.90 28193.26 22598.04 11996.70 24594.41 16198.89 29794.77 16299.14 19698.37 239
abl_698.42 2398.19 3299.09 399.16 7098.10 697.73 6899.11 2997.76 5098.62 5298.27 9997.88 1999.80 3895.67 10499.50 11199.38 87
n20.00 379
nn0.00 379
mPP-MVS97.91 5997.53 8399.04 799.22 5897.87 1597.74 6698.78 12096.04 12097.10 17897.73 16596.53 8399.78 4395.16 14099.50 11199.46 63
door-mid98.17 209
XVG-OURS-SEG-HR97.38 10097.07 11498.30 6799.01 9497.41 3594.66 24099.02 5295.20 16198.15 10497.52 18298.83 498.43 33594.87 15596.41 32799.07 159
DWT-MVSNet_test87.92 32986.77 33391.39 33193.18 35878.62 35495.10 21591.42 34685.58 32188.00 35888.73 36360.60 36798.90 29590.60 26887.70 36296.65 326
MVSFormer96.14 16796.36 15495.49 24497.68 24687.81 28698.67 1399.02 5296.50 10094.48 28096.15 27486.90 28099.92 498.73 799.13 20098.74 209
jason94.39 24394.04 24695.41 24998.29 16487.85 28592.74 30496.75 28785.38 32795.29 25996.15 27488.21 26999.65 13594.24 18399.34 16398.74 209
jason: jason.
lupinMVS93.77 25993.28 26095.24 25297.68 24687.81 28692.12 31596.05 29684.52 33494.48 28095.06 30786.90 28099.63 14093.62 20899.13 20098.27 254
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6698.67 1399.02 5296.50 10099.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 2097.48 3198.35 2899.03 5095.88 13197.88 13698.22 10698.15 1299.74 7596.50 6999.62 6699.42 80
RRT_test8_iter0592.46 28492.52 28092.29 32795.33 33677.43 35995.73 17498.55 16294.41 19097.46 16197.72 16757.44 36999.74 7596.92 5999.14 19699.69 20
K. test v396.44 15696.28 15796.95 16999.41 3691.53 22397.65 7090.31 35798.89 1998.93 3899.36 1484.57 29599.92 497.81 2699.56 8599.39 85
lessismore_v097.05 16599.36 4192.12 21184.07 36998.77 4798.98 4085.36 28999.74 7597.34 4499.37 15299.30 104
SixPastTwentyTwo97.49 9297.57 8197.26 15599.56 1692.33 20398.28 3296.97 27998.30 3499.45 1499.35 1688.43 26699.89 1698.01 2099.76 3999.54 38
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6399.17 699.05 4398.05 4199.61 1199.52 593.72 17999.88 1898.72 999.88 2399.65 23
HPM-MVScopyleft98.11 3897.83 5398.92 2299.42 3597.46 3298.57 1799.05 4395.43 15497.41 16497.50 18497.98 1599.79 3995.58 11399.57 8299.50 45
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 11396.74 13298.26 6998.99 9597.45 3393.82 27599.05 4395.19 16298.32 8697.70 16895.22 13598.41 33694.27 18298.13 27598.93 180
XVG-ACMP-BASELINE97.58 8697.28 10098.49 5299.16 7096.90 4796.39 13598.98 6695.05 16998.06 11698.02 13095.86 10499.56 16694.37 17799.64 6399.00 168
LPG-MVS_test97.94 5297.67 6698.74 3599.15 7397.02 4397.09 10599.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
LGP-MVS_train98.74 3599.15 7397.02 4399.02 5295.15 16498.34 8198.23 10397.91 1799.70 10894.41 17499.73 4599.50 45
baseline97.44 9697.78 5896.43 20198.52 14390.75 23696.84 11599.03 5096.51 9997.86 14098.02 13096.67 7499.36 22897.09 5499.47 12199.19 130
test1198.08 222
door97.81 241
EPNet_dtu91.39 30190.75 30493.31 30490.48 37082.61 34094.80 23592.88 33493.39 22081.74 36894.90 31281.36 30799.11 27388.28 30698.87 23198.21 259
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.10 25293.41 25996.18 21599.16 7090.04 24392.15 31498.68 14479.90 35296.22 22997.83 15387.92 27499.42 20489.18 29399.65 6199.08 157
EPNet93.72 26192.62 27897.03 16787.61 37392.25 20596.27 14291.28 34896.74 9087.65 36097.39 19685.00 29199.64 13892.14 22899.48 11999.20 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS92.47 201
HQP-NCC97.85 21394.26 25093.18 22992.86 324
ACMP_Plane97.85 21394.26 25093.18 22992.86 324
APD-MVScopyleft97.00 11696.53 14698.41 5798.55 14096.31 6596.32 14198.77 12192.96 24297.44 16397.58 17895.84 10599.74 7591.96 23099.35 16099.19 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS90.51 273
HQP4-MVS92.87 32399.23 25799.06 161
HQP3-MVS98.43 17398.74 245
HQP2-MVS90.33 242
CNVR-MVS96.92 12396.55 14398.03 9298.00 20295.54 9394.87 23198.17 20994.60 18496.38 21997.05 22195.67 11899.36 22895.12 14699.08 20899.19 130
NCCC96.52 15295.99 17198.10 8497.81 22195.68 8795.00 22698.20 20395.39 15595.40 25896.36 26593.81 17699.45 19893.55 20998.42 26599.17 133
114514_t93.96 25693.22 26396.19 21499.06 8890.97 23195.99 16098.94 7473.88 36593.43 31596.93 22992.38 21299.37 22689.09 29499.28 17998.25 256
CP-MVS97.92 5697.56 8298.99 1398.99 9597.82 1697.93 5398.96 7196.11 11596.89 19697.45 18896.85 6899.78 4395.19 13699.63 6599.38 87
DSMNet-mixed92.19 29091.83 28793.25 30696.18 31483.68 33896.27 14293.68 32676.97 36292.54 33399.18 2789.20 26298.55 32983.88 34398.60 25997.51 298
tpm288.47 32487.69 32890.79 33594.98 34077.34 36095.09 21791.83 34377.51 36189.40 35296.41 26067.83 36198.73 31183.58 34792.60 35496.29 334
NP-MVS98.14 18793.72 17295.08 305
EG-PatchMatch MVS97.69 7897.79 5597.40 14699.06 8893.52 18095.96 16398.97 7094.55 18898.82 4398.76 5497.31 3699.29 24797.20 5099.44 12999.38 87
tpm cat188.01 32887.33 32990.05 34094.48 34576.28 36394.47 24794.35 32273.84 36689.26 35395.61 29673.64 34498.30 34484.13 34186.20 36495.57 345
SteuartSystems-ACMMP98.02 4397.76 5998.79 3199.43 3397.21 4297.15 10098.90 7896.58 9698.08 11497.87 15097.02 5399.76 5895.25 13399.59 7799.40 83
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.75 31689.25 31591.26 33394.69 34378.00 35795.32 20291.98 34281.50 34590.55 34596.96 22871.06 35598.89 29788.59 30292.63 35396.87 316
CR-MVSNet93.29 27392.79 27194.78 27395.44 33388.15 27796.18 14997.20 26884.94 33294.10 28898.57 6677.67 32399.39 22095.17 13895.81 33396.81 322
JIA-IIPM91.79 29690.69 30595.11 25793.80 35490.98 23094.16 25991.78 34496.38 10490.30 34899.30 1872.02 35298.90 29588.28 30690.17 35895.45 346
Patchmtry95.03 21494.59 22696.33 20694.83 34190.82 23396.38 13797.20 26896.59 9597.49 15598.57 6677.67 32399.38 22392.95 22199.62 6698.80 201
PatchT93.75 26093.57 25694.29 29195.05 33987.32 29696.05 15592.98 33397.54 6594.25 28498.72 5675.79 33699.24 25595.92 9395.81 33396.32 333
tpmrst90.31 30990.61 30789.41 34194.06 35272.37 37095.06 22293.69 32488.01 29992.32 33596.86 23277.45 32598.82 30291.04 25187.01 36397.04 310
BH-w/o92.14 29191.94 28592.73 31997.13 28785.30 31992.46 30995.64 30589.33 28594.21 28592.74 34089.60 25298.24 34581.68 34994.66 34594.66 350
tpm91.08 30490.85 30291.75 32995.33 33678.09 35595.03 22591.27 34988.75 29193.53 31097.40 19271.24 35399.30 24391.25 24893.87 34997.87 283
DELS-MVS96.17 16696.23 15995.99 22097.55 25890.04 24392.38 31298.52 16494.13 20196.55 21397.06 22094.99 14299.58 15995.62 10999.28 17998.37 239
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned94.69 22994.75 21694.52 28497.95 20787.53 29194.07 26597.01 27793.99 20597.10 17895.65 29392.65 20298.95 29487.60 31496.74 32197.09 307
RPMNet94.68 23194.60 22494.90 26695.44 33388.15 27796.18 14998.86 9097.43 6894.10 28898.49 7379.40 31499.76 5895.69 10395.81 33396.81 322
MVSTER94.21 24893.93 25195.05 26095.83 32486.46 30695.18 21397.65 25292.41 25097.94 13098.00 13472.39 35199.58 15996.36 7399.56 8599.12 148
CPTT-MVS96.69 14396.08 16798.49 5298.89 10196.64 5597.25 9498.77 12192.89 24396.01 23897.13 21392.23 21399.67 12892.24 22799.34 16399.17 133
GBi-Net96.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
PVSNet_Blended_VisFu95.95 17695.80 17896.42 20299.28 4890.62 23795.31 20399.08 3788.40 29596.97 19198.17 11192.11 21699.78 4393.64 20799.21 18798.86 196
PVSNet_BlendedMVS95.02 21594.93 20695.27 25197.79 23187.40 29494.14 26298.68 14488.94 28994.51 27898.01 13293.04 19199.30 24389.77 28599.49 11599.11 152
UnsupCasMVSNet_eth95.91 17795.73 18196.44 20098.48 15091.52 22495.31 20398.45 17095.76 13897.48 15897.54 17989.53 25698.69 31594.43 17394.61 34699.13 143
UnsupCasMVSNet_bld94.72 22894.26 23796.08 21898.62 13190.54 24193.38 29098.05 22890.30 27697.02 18696.80 23989.54 25499.16 26688.44 30396.18 33098.56 226
PVSNet_Blended93.96 25693.65 25594.91 26497.79 23187.40 29491.43 32498.68 14484.50 33594.51 27894.48 32093.04 19199.30 24389.77 28598.61 25798.02 277
FMVSNet593.39 27092.35 28196.50 19795.83 32490.81 23597.31 9198.27 19492.74 24596.27 22698.28 9562.23 36699.67 12890.86 25699.36 15599.03 165
test196.99 11796.80 12997.56 12397.96 20493.67 17398.23 3598.66 14995.59 14797.99 12399.19 2489.51 25799.73 8194.60 16699.44 12999.30 104
new_pmnet92.34 28791.69 29094.32 28996.23 31189.16 25992.27 31392.88 33484.39 33795.29 25996.35 26685.66 28796.74 36284.53 34097.56 30097.05 309
FMVSNet395.26 20494.94 20496.22 21396.53 30290.06 24295.99 16097.66 25094.11 20297.99 12397.91 14580.22 31399.63 14094.60 16699.44 12998.96 173
dp88.08 32788.05 32588.16 34792.85 36368.81 37294.17 25892.88 33485.47 32391.38 34196.14 27668.87 36098.81 30486.88 32183.80 36696.87 316
FMVSNet296.72 14096.67 13696.87 17597.96 20491.88 21797.15 10098.06 22795.59 14798.50 6498.62 6489.51 25799.65 13594.99 15399.60 7599.07 159
FMVSNet197.95 5098.08 3597.56 12399.14 8193.67 17398.23 3598.66 14997.41 7299.00 3699.19 2495.47 12699.73 8195.83 9999.76 3999.30 104
N_pmnet95.18 20694.23 23898.06 8897.85 21396.55 5892.49 30891.63 34589.34 28498.09 11297.41 19190.33 24299.06 27991.58 24199.31 17498.56 226
cascas91.89 29591.35 29393.51 30194.27 34885.60 31588.86 35498.61 15679.32 35492.16 33691.44 35489.22 26198.12 34990.80 25997.47 30696.82 321
BH-RMVSNet94.56 23794.44 23494.91 26497.57 25487.44 29393.78 27896.26 29393.69 21496.41 21896.50 25792.10 21799.00 28585.96 32697.71 29298.31 248
UGNet96.81 13396.56 14297.58 12296.64 29993.84 16797.75 6597.12 27396.47 10393.62 30698.88 4793.22 18899.53 17595.61 11099.69 5599.36 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS93.55 26793.00 26695.19 25597.81 22187.86 28393.89 27396.00 29889.02 28794.07 29095.44 30086.27 28399.33 23687.69 31296.82 31898.39 237
XXY-MVS97.54 8897.70 6297.07 16499.46 2992.21 20797.22 9799.00 6094.93 17598.58 5898.92 4597.31 3699.41 21394.44 17299.43 13799.59 27
DROMVSNet97.90 6097.94 4497.79 10698.66 12595.14 11998.31 3199.66 297.57 6195.95 23997.01 22596.99 5599.82 2997.66 3399.64 6398.39 237
sss94.22 24693.72 25495.74 23397.71 24489.95 24593.84 27496.98 27888.38 29693.75 30095.74 29087.94 27098.89 29791.02 25298.10 27698.37 239
Test_1112_low_res93.53 26892.86 26895.54 24298.60 13488.86 26492.75 30298.69 14282.66 34192.65 32996.92 23184.75 29399.56 16690.94 25497.76 28898.19 261
1112_ss94.12 25193.42 25896.23 21198.59 13690.85 23294.24 25498.85 9485.49 32292.97 32294.94 30986.01 28599.64 13891.78 23797.92 28298.20 260
ab-mvs-re7.91 34110.55 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37494.94 3090.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs96.59 14996.59 13896.60 19098.64 12692.21 20798.35 2897.67 24894.45 18996.99 18898.79 5194.96 14399.49 18590.39 27699.07 21098.08 265
TR-MVS92.54 28392.20 28393.57 30096.49 30386.66 30493.51 28594.73 31789.96 28094.95 26793.87 32690.24 24798.61 32381.18 35194.88 34395.45 346
MDTV_nov1_ep13_2view57.28 37494.89 23080.59 34994.02 29278.66 31985.50 33297.82 286
MDTV_nov1_ep1391.28 29494.31 34673.51 36894.80 23593.16 33186.75 31293.45 31497.40 19276.37 33298.55 32988.85 29796.43 326
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5198.76 1198.89 7998.49 2899.38 1799.14 3095.44 12899.84 2596.47 7099.80 3399.47 61
MIMVSNet93.42 26992.86 26895.10 25898.17 18288.19 27598.13 4493.69 32492.07 25295.04 26698.21 10780.95 31099.03 28481.42 35098.06 27898.07 267
IterMVS-LS96.92 12397.29 9895.79 23198.51 14488.13 27995.10 21598.66 14996.99 8298.46 6898.68 6092.55 20599.74 7596.91 6099.79 3599.50 45
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.88 21994.12 24397.14 16097.64 25193.57 17893.96 27197.06 27690.05 27996.30 22596.55 25286.10 28499.47 19190.10 28099.31 17498.40 235
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.52 102
IterMVS95.42 19795.83 17794.20 29297.52 25983.78 33792.41 31197.47 26395.49 15198.06 11698.49 7387.94 27099.58 15996.02 8799.02 21599.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 18995.13 19696.80 17998.51 14493.99 16194.60 24298.69 14290.20 27795.78 24896.21 27292.73 19998.98 28990.58 27098.86 23397.42 301
MVS_111021_LR96.82 13296.55 14397.62 12098.27 16895.34 10893.81 27798.33 19094.59 18696.56 21196.63 24996.61 7898.73 31194.80 15899.34 16398.78 204
DP-MVS97.87 6397.89 4897.81 10598.62 13194.82 12897.13 10398.79 11698.98 1798.74 4898.49 7395.80 11499.49 18595.04 14999.44 12999.11 152
ACMMP++99.55 91
HQP-MVS95.17 20894.58 22796.92 17197.85 21392.47 20194.26 25098.43 17393.18 22992.86 32495.08 30590.33 24299.23 25790.51 27398.74 24599.05 163
QAPM95.88 17995.57 18796.80 17997.90 21091.84 21998.18 4298.73 12988.41 29496.42 21798.13 11394.73 14799.75 6588.72 29998.94 22398.81 200
Vis-MVSNetpermissive98.27 2998.34 2898.07 8699.33 4495.21 11898.04 4899.46 797.32 7597.82 14499.11 3196.75 7299.86 2097.84 2599.36 15599.15 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet88.40 32590.20 31182.99 34997.01 29060.04 37393.11 29785.61 36884.45 33688.72 35699.09 3384.72 29498.23 34682.52 34896.59 32590.69 364
IS-MVSNet96.93 12296.68 13597.70 11499.25 5294.00 16098.57 1796.74 28898.36 3198.14 10697.98 13588.23 26899.71 9993.10 21899.72 4899.38 87
HyFIR lowres test93.72 26192.65 27696.91 17398.93 9891.81 22091.23 33198.52 16482.69 34096.46 21696.52 25680.38 31299.90 1390.36 27798.79 24099.03 165
EPMVS89.26 31988.55 32391.39 33192.36 36679.11 35395.65 18379.86 37088.60 29393.12 32096.53 25470.73 35798.10 35090.75 26189.32 36096.98 311
PAPM_NR94.61 23594.17 24295.96 22298.36 16091.23 22695.93 16697.95 23092.98 23893.42 31694.43 32190.53 23998.38 33987.60 31496.29 32998.27 254
TAMVS95.49 19194.94 20497.16 15898.31 16293.41 18295.07 22096.82 28491.09 26997.51 15297.82 15689.96 24999.42 20488.42 30499.44 12998.64 218
PAPR92.22 28991.27 29595.07 25995.73 32888.81 26591.97 31897.87 23585.80 31990.91 34292.73 34191.16 23198.33 34379.48 35395.76 33798.08 265
RPSCF97.87 6397.51 8598.95 1799.15 7398.43 397.56 7699.06 4196.19 11298.48 6598.70 5894.72 14899.24 25594.37 17799.33 17099.17 133
Vis-MVSNet (Re-imp)95.11 20994.85 21095.87 22999.12 8289.17 25897.54 8294.92 31696.50 10096.58 20997.27 20783.64 30099.48 18888.42 30499.67 5898.97 172
test_040297.84 6697.97 4197.47 13699.19 6894.07 15796.71 12698.73 12998.66 2598.56 5998.41 7896.84 6999.69 11694.82 15799.81 3098.64 218
MVS_111021_HR96.73 13996.54 14597.27 15398.35 16193.66 17693.42 28798.36 18594.74 17996.58 20996.76 24296.54 8298.99 28794.87 15599.27 18199.15 137
CSCG97.40 9997.30 9797.69 11698.95 9794.83 12797.28 9398.99 6396.35 10798.13 10795.95 28695.99 10199.66 13494.36 18099.73 4598.59 224
PatchMatch-RL94.61 23593.81 25397.02 16898.19 17795.72 8393.66 28097.23 26788.17 29894.94 26895.62 29591.43 22998.57 32687.36 31997.68 29596.76 324
API-MVS95.09 21195.01 20395.31 25096.61 30094.02 15996.83 11697.18 27095.60 14695.79 24694.33 32294.54 15898.37 34185.70 32898.52 26193.52 355
Test By Simon94.51 159
TDRefinement98.90 598.86 899.02 999.54 2098.06 899.34 499.44 898.85 2099.00 3699.20 2397.42 3299.59 15797.21 4899.76 3999.40 83
USDC94.56 23794.57 22994.55 28397.78 23586.43 30892.75 30298.65 15485.96 31696.91 19597.93 14390.82 23698.74 31090.71 26599.59 7798.47 232
EPP-MVSNet96.84 12896.58 14097.65 11899.18 6993.78 17098.68 1296.34 29297.91 4597.30 16698.06 12688.46 26599.85 2293.85 20099.40 14799.32 98
PMMVS92.39 28591.08 29796.30 20993.12 36192.81 19690.58 34095.96 30079.17 35591.85 33992.27 34590.29 24698.66 32089.85 28496.68 32397.43 300
PAPM87.64 33185.84 33693.04 31196.54 30184.99 32688.42 35695.57 30979.52 35383.82 36593.05 33680.57 31198.41 33662.29 36892.79 35295.71 341
ACMMPcopyleft98.05 4197.75 6198.93 2199.23 5597.60 2398.09 4698.96 7195.75 14097.91 13298.06 12696.89 6499.76 5895.32 12999.57 8299.43 79
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA95.04 21294.47 23196.75 18297.81 22195.25 11294.12 26497.89 23494.41 19094.57 27595.69 29190.30 24598.35 34286.72 32398.76 24396.64 327
PatchmatchNetpermissive91.98 29491.87 28692.30 32694.60 34479.71 35295.12 21493.59 32889.52 28393.61 30797.02 22377.94 32199.18 26190.84 25794.57 34898.01 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.96 12196.53 14698.25 7297.48 26196.50 5996.76 12098.85 9493.52 21696.19 23196.85 23395.94 10299.42 20493.79 20299.43 13798.83 198
F-COLMAP95.30 20294.38 23598.05 9198.64 12696.04 7495.61 18698.66 14989.00 28893.22 31996.40 26292.90 19599.35 23187.45 31897.53 30298.77 207
ANet_high98.31 2898.94 696.41 20499.33 4489.64 25097.92 5599.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3799.98 299.77 8
wuyk23d93.25 27495.20 19387.40 34896.07 31995.38 10397.04 10894.97 31595.33 15699.70 598.11 11798.14 1391.94 36677.76 35999.68 5774.89 366
OMC-MVS96.48 15496.00 17097.91 9898.30 16396.01 7794.86 23298.60 15791.88 25797.18 17297.21 21196.11 9999.04 28190.49 27599.34 16398.69 215
MG-MVS94.08 25494.00 24794.32 28997.09 28885.89 31393.19 29695.96 30092.52 24694.93 26997.51 18389.54 25498.77 30787.52 31797.71 29298.31 248
AdaColmapbinary95.11 20994.62 22396.58 19297.33 27794.45 14394.92 22998.08 22293.15 23393.98 29595.53 29894.34 16399.10 27585.69 32998.61 25796.20 335
uanet0.00 3420.00 3450.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 3740.00 3730.00 3780.00 3740.00 3720.00 3720.00 370
ITE_SJBPF97.85 10398.64 12696.66 5498.51 16695.63 14397.22 16897.30 20695.52 12298.55 32990.97 25398.90 22798.34 245
DeepMVS_CXcopyleft77.17 35090.94 36985.28 32174.08 37452.51 36880.87 36988.03 36475.25 33870.63 37059.23 36984.94 36575.62 365
TinyColmap96.00 17496.34 15594.96 26397.90 21087.91 28294.13 26398.49 16794.41 19098.16 10297.76 15996.29 9798.68 31890.52 27299.42 14098.30 250
MAR-MVS94.21 24893.03 26597.76 10896.94 29497.44 3496.97 11297.15 27187.89 30292.00 33792.73 34192.14 21599.12 27083.92 34297.51 30396.73 325
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS96.07 16995.63 18497.36 14998.19 17795.55 9295.44 19098.82 11492.29 25195.70 25296.55 25292.63 20398.69 31591.75 23999.33 17097.85 284
MSDG95.33 20095.13 19695.94 22697.40 26991.85 21891.02 33698.37 18495.30 15896.31 22495.99 28194.51 15998.38 33989.59 28797.65 29897.60 296
LS3D97.77 7397.50 8798.57 4896.24 30997.58 2598.45 2598.85 9498.58 2797.51 15297.94 14195.74 11699.63 14095.19 13698.97 21898.51 229
CLD-MVS95.47 19495.07 19996.69 18698.27 16892.53 20091.36 32598.67 14791.22 26895.78 24894.12 32595.65 11998.98 28990.81 25899.72 4898.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS89.92 31588.63 32293.82 29598.37 15996.94 4691.58 32293.34 33088.00 30090.32 34797.10 21770.87 35691.13 36771.91 36596.16 33293.39 357
Gipumacopyleft98.07 4098.31 2997.36 14999.76 596.28 6798.51 2199.10 3198.76 2396.79 19899.34 1796.61 7898.82 30296.38 7299.50 11196.98 311
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015