This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18798.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27093.65 18098.49 2898.88 11796.86 10197.11 20598.55 10795.82 13099.73 8795.94 12599.42 17199.13 162
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22495.60 9598.04 5998.70 16798.13 5096.93 22298.45 11895.30 15299.62 15695.64 14298.96 24299.24 144
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18099.02 8193.92 23098.62 7898.99 6197.69 2999.62 15696.18 11299.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29697.23 4492.56 34998.60 18392.84 27098.54 8597.40 23396.64 9398.78 33294.40 21399.41 17598.93 199
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4298.34 4098.78 6698.52 11097.32 4599.45 21094.08 22599.67 8399.13 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27494.15 15996.02 19598.43 20093.17 25897.30 19197.38 23995.48 14499.28 26693.74 23899.34 19098.88 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22197.16 31891.96 23097.74 8498.84 13087.26 35194.36 32398.01 18393.95 19099.67 13590.70 30698.75 26697.35 350
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7197.40 8499.37 2499.08 5598.79 699.47 20297.74 5499.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3798.21 4899.25 3298.51 11298.21 1499.40 22894.79 19699.72 7099.32 122
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15598.83 13695.21 18298.36 10698.13 16498.13 1899.62 15696.04 11799.54 12599.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
TAPA-MVS93.32 1294.93 24394.23 27097.04 17598.18 21194.51 14395.22 25498.73 15881.22 39696.25 26595.95 32393.80 19498.98 31589.89 32298.87 25397.62 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 17998.89 11093.71 23497.97 15497.75 20897.44 4099.63 15193.22 25399.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVS_ROBcopyleft91.80 1493.64 29593.05 29595.42 26597.31 31391.21 24595.08 26196.68 31381.56 39396.88 22696.41 30090.44 26599.25 27285.39 37597.67 33195.80 387
HY-MVS91.43 1592.58 31591.81 32194.90 28896.49 33788.87 28497.31 11294.62 34885.92 36690.50 38996.84 27485.05 32199.40 22883.77 38795.78 38196.43 378
PLCcopyleft91.02 1694.05 28392.90 29997.51 13098.00 23395.12 12594.25 29298.25 22286.17 36391.48 38395.25 33991.01 25599.19 28285.02 37996.69 36398.22 286
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMVScopyleft89.60 1796.71 16596.97 14495.95 23899.51 2897.81 2097.42 11097.49 28297.93 5695.95 27798.58 10396.88 8096.91 39989.59 32699.36 18293.12 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PCF-MVS89.43 1892.12 32490.64 34496.57 20697.80 25593.48 18489.88 39998.45 19774.46 41396.04 27595.68 32990.71 26099.31 25773.73 41199.01 24096.91 361
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet86.72 1991.10 34190.97 33791.49 37697.56 29178.04 40187.17 40694.60 34984.65 38292.34 37592.20 38687.37 30498.47 36585.17 37897.69 32997.96 312
IB-MVS85.98 2088.63 36686.95 37793.68 33195.12 38484.82 35890.85 38690.17 39987.55 35088.48 40591.34 39558.01 40799.59 16687.24 36193.80 39896.63 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PVSNet_081.89 2184.49 38283.21 38588.34 39395.76 36974.97 41683.49 41292.70 37178.47 40687.94 40786.90 41483.38 33696.63 40573.44 41266.86 41893.40 405
MVEpermissive73.61 2286.48 38185.92 38088.18 39596.23 34485.28 34881.78 41575.79 41986.01 36482.53 41591.88 38992.74 21787.47 41871.42 41594.86 39191.78 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary73.10 2392.74 31391.39 32796.77 19493.57 40794.67 13694.21 29697.67 27180.36 40093.61 34696.60 28982.85 33997.35 39384.86 38098.78 26398.29 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
reproduce_monomvs92.05 32792.26 31491.43 37795.42 37875.72 41395.68 22097.05 29894.47 21197.95 15798.35 13055.58 41599.05 30596.36 10399.44 15999.51 64
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8798.53 2999.86 2899.95 2
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6098.42 3799.03 4398.71 8996.93 7399.83 3497.09 7799.63 9099.56 50
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
mvs5depth98.06 5298.58 2696.51 20998.97 11489.65 26899.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
MVStest191.89 33091.45 32593.21 34289.01 41984.87 35595.82 21395.05 34391.50 29698.75 7299.19 3857.56 40895.11 40897.78 5198.37 29799.64 35
ttmdpeth94.05 28394.15 27593.75 32895.81 36585.32 34596.00 19794.93 34592.07 28294.19 32699.09 5385.73 31696.41 40690.98 29198.52 28699.53 57
WBMVS91.11 34090.72 34292.26 36895.99 35577.98 40391.47 37295.90 32491.63 29195.90 28296.45 29859.60 40599.46 20589.97 32199.59 10699.33 121
dongtai63.43 38563.37 38863.60 40183.91 42353.17 42585.14 40943.40 42777.91 40980.96 41779.17 41736.36 42577.10 41937.88 42045.63 41960.54 416
kuosan54.81 38754.94 39054.42 40274.43 42450.03 42684.98 41044.27 42661.80 41762.49 42170.43 41835.16 42658.04 42119.30 42141.61 42055.19 417
MVSMamba_PlusPlus97.43 11897.98 6095.78 24698.88 12689.70 26698.03 6198.85 12699.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12197.73 330
MGCFI-Net97.20 13297.23 12897.08 17197.68 27593.71 17597.79 7799.09 6097.40 8496.59 24493.96 36197.67 3199.35 24796.43 10098.50 29098.17 292
testing9189.67 35788.55 36293.04 34695.90 35881.80 38392.71 34693.71 35593.71 23490.18 39390.15 40457.11 40999.22 28087.17 36296.32 37198.12 294
testing1188.93 36387.63 37192.80 35695.87 36081.49 38592.48 35191.54 38291.62 29288.27 40690.24 40255.12 41999.11 29787.30 36096.28 37397.81 324
testing9989.21 36188.04 36792.70 35995.78 36781.00 39092.65 34792.03 37693.20 25389.90 39790.08 40655.25 41699.14 29087.54 35595.95 37797.97 311
UBG88.29 36987.17 37391.63 37596.08 35378.21 39991.61 36991.50 38389.67 32489.71 39888.97 40859.01 40698.91 32181.28 39596.72 36297.77 327
UWE-MVS87.57 37686.72 37890.13 38795.21 38173.56 41791.94 36583.78 41688.73 33793.00 36192.87 37555.22 41799.25 27281.74 39297.96 31397.59 340
ETVMVS87.62 37585.75 38293.22 34196.15 35183.26 37192.94 33890.37 39691.39 29990.37 39088.45 40951.93 42198.64 34973.76 41096.38 36997.75 328
sasdasda97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
testing22287.35 37785.50 38492.93 35395.79 36682.83 37392.40 35790.10 40092.80 27188.87 40389.02 40748.34 42298.70 34175.40 40996.74 36097.27 352
WB-MVSnew91.50 33691.29 32992.14 37094.85 38780.32 39293.29 33288.77 40488.57 33994.03 33392.21 38592.56 22498.28 37880.21 39997.08 34997.81 324
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21199.32 2793.22 25198.91 5698.49 11396.31 11299.64 14799.07 1299.76 5799.40 105
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 20899.41 2693.36 24599.00 4798.44 12096.46 10599.65 14399.09 1199.76 5799.45 90
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15899.15 4693.68 23798.89 5799.30 2996.42 10799.37 24099.03 1399.83 4299.66 30
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18799.09 9591.43 24196.37 16899.11 5294.19 22099.01 4599.25 3296.30 11399.38 23599.00 1499.88 2499.73 22
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 17899.06 6793.67 23898.64 7699.00 5996.23 11799.36 24398.99 1599.80 5099.53 57
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19198.79 13691.44 24096.14 18799.06 6794.19 22098.82 6398.98 6296.22 11899.38 23598.98 1699.86 2899.58 39
MM96.87 15196.62 16397.62 12297.72 27293.30 19096.39 16492.61 37397.90 5896.76 23398.64 9890.46 26399.81 4099.16 999.94 899.76 18
WAC-MVS79.32 39585.41 374
Syy-MVS92.09 32591.80 32292.93 35395.19 38282.65 37592.46 35291.35 38490.67 31091.76 38187.61 41185.64 31898.50 36294.73 20196.84 35597.65 335
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18299.73 595.05 19199.60 1599.34 2698.68 899.72 9399.21 799.85 3699.76 18
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15499.82 195.44 17499.64 1199.52 998.96 499.74 8199.38 399.86 2899.81 9
myMVS_eth3d87.16 38085.61 38391.82 37395.19 38279.32 39592.46 35291.35 38490.67 31091.76 38187.61 41141.96 42398.50 36282.66 39096.84 35597.65 335
testing389.72 35688.26 36594.10 32397.66 28084.30 36594.80 27388.25 40694.66 20395.07 30592.51 38241.15 42499.43 21591.81 27698.44 29498.55 250
SSC-MVS95.92 19897.03 14192.58 36199.28 5578.39 39896.68 15595.12 34298.90 2399.11 3998.66 9491.36 25199.68 12795.00 18799.16 21999.67 28
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19799.64 1594.99 19499.43 2099.18 4298.51 1099.71 10799.13 1099.84 3899.67 28
WB-MVS95.50 21696.62 16392.11 37199.21 7377.26 40896.12 18895.40 33898.62 3098.84 6198.26 14991.08 25499.50 19293.37 24698.70 27299.58 39
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17299.65 1295.59 16599.71 599.01 5897.66 3399.60 16599.44 299.83 4297.90 316
dmvs_re92.08 32691.27 33194.51 30897.16 31892.79 20595.65 22492.64 37294.11 22492.74 36790.98 39983.41 33594.44 41380.72 39794.07 39696.29 380
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18398.58 3298.78 6699.39 1897.80 2599.62 15694.98 19099.86 2899.52 60
dmvs_testset87.30 37886.99 37588.24 39496.71 33177.48 40594.68 27986.81 41192.64 27489.61 39987.01 41385.91 31493.12 41461.04 41888.49 41094.13 401
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22298.58 3298.78 6699.39 1898.21 1499.56 17592.65 26099.86 2899.52 60
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18699.57 1795.66 16099.52 1698.71 8997.04 6499.64 14799.21 799.87 2698.69 236
test_cas_vis1_n_192095.34 22595.67 21194.35 31498.21 20586.83 32995.61 22899.26 3290.45 31398.17 13098.96 6584.43 32798.31 37696.74 9099.17 21897.90 316
test_vis1_n_192095.77 20596.41 17993.85 32598.55 16984.86 35695.91 20799.71 692.72 27397.67 17498.90 7387.44 30398.73 33797.96 4298.85 25697.96 312
test_vis1_n95.67 21095.89 20495.03 28098.18 21189.89 26496.94 13499.28 3188.25 34498.20 12598.92 6986.69 30997.19 39497.70 5798.82 26098.00 310
test_fmvs1_n95.21 23195.28 21994.99 28398.15 21889.13 28196.81 14199.43 2386.97 35797.21 19798.92 6983.00 33897.13 39598.09 3898.94 24598.72 232
mvsany_test193.47 29993.03 29694.79 29594.05 40292.12 22390.82 38790.01 40185.02 37897.26 19498.28 14493.57 19897.03 39692.51 26495.75 38395.23 395
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6396.57 11398.07 14398.38 12796.22 11899.14 29094.71 20399.31 20098.52 253
test_vis1_rt94.03 28593.65 28695.17 27495.76 36993.42 18793.97 31098.33 21584.68 38193.17 35895.89 32592.53 22994.79 41093.50 24594.97 38997.31 351
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31599.27 3099.33 2894.04 18696.03 40797.14 7597.83 32099.78 12
test_fmvs296.38 18196.45 17796.16 22997.85 24291.30 24296.81 14199.45 2189.24 32898.49 9099.38 2088.68 28797.62 39198.83 1899.32 19799.57 46
test_fmvs194.51 26794.60 25494.26 31995.91 35787.92 30595.35 24599.02 8186.56 36196.79 22898.52 11082.64 34097.00 39897.87 4598.71 27197.88 318
test_fmvs397.38 12197.56 10696.84 18998.63 15892.81 20297.60 9499.61 1690.87 30698.76 7199.66 494.03 18797.90 38699.24 699.68 8199.81 9
mvsany_test396.21 18695.93 20297.05 17397.40 30494.33 15295.76 21594.20 35389.10 32999.36 2599.60 893.97 18997.85 38795.40 16498.63 27998.99 189
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
test_f95.82 20395.88 20595.66 25297.61 28793.21 19595.61 22898.17 23586.98 35698.42 9899.47 1390.46 26394.74 41197.71 5598.45 29399.03 182
FE-MVS92.95 31092.22 31595.11 27597.21 31688.33 29598.54 2393.66 35989.91 32196.21 26798.14 16270.33 39599.50 19287.79 34998.24 30397.51 343
FA-MVS(test-final)94.91 24494.89 23794.99 28397.51 29488.11 30398.27 4495.20 34192.40 28096.68 23698.60 10283.44 33499.28 26693.34 24898.53 28597.59 340
balanced_conf0396.88 15097.29 12395.63 25397.66 28089.47 27397.95 6698.89 11095.94 14597.77 17398.55 10792.23 23499.68 12797.05 8199.61 9897.73 330
MonoMVSNet93.30 30493.96 28291.33 37994.14 40081.33 38797.68 8996.69 31295.38 17796.32 25898.42 12184.12 33096.76 40390.78 29992.12 40395.89 384
patch_mono-296.59 17096.93 14795.55 25998.88 12687.12 32394.47 28599.30 2994.12 22396.65 24198.41 12394.98 16299.87 2495.81 13499.78 5599.66 30
EGC-MVSNET83.08 38377.93 38698.53 5499.57 1997.55 3098.33 3898.57 1884.71 42110.38 42298.90 7395.60 14299.50 19295.69 13799.61 9898.55 250
test250689.86 35489.16 35991.97 37298.95 11576.83 40998.54 2361.07 42496.20 12897.07 21299.16 4655.19 41899.69 12296.43 10099.83 4299.38 112
test111194.53 26694.81 24393.72 32999.06 10081.94 38298.31 3983.87 41596.37 12098.49 9099.17 4581.49 34399.73 8796.64 9199.86 2899.49 75
ECVR-MVScopyleft94.37 27294.48 26194.05 32498.95 11583.10 37298.31 3982.48 41796.20 12898.23 12399.16 4681.18 34699.66 14195.95 12499.83 4299.38 112
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32898.31 4197.09 21195.45 33797.17 5698.50 36298.67 2597.45 34396.48 377
DVP-MVS++97.96 5997.90 6598.12 8697.75 26795.40 10599.03 898.89 11096.62 10698.62 7898.30 13996.97 6999.75 7295.70 13599.25 20899.21 147
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 59
MSC_two_6792asdad98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
PC_three_145287.24 35298.37 10397.44 23097.00 6796.78 40292.01 26999.25 20899.21 147
No_MVS98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
test_one_060199.05 10595.50 10298.87 11997.21 9398.03 14898.30 13996.93 73
eth-test20.00 429
eth-test0.00 429
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9895.75 15897.62 17597.59 22097.61 3799.77 6196.34 10599.44 15999.36 118
test_method66.88 38466.13 38769.11 40062.68 42525.73 42849.76 41696.04 31914.32 42064.27 42091.69 39273.45 38588.05 41776.06 40866.94 41793.54 403
Anonymous2024052197.07 13697.51 11195.76 24799.35 4988.18 29897.78 7898.40 20697.11 9498.34 11099.04 5789.58 27699.79 4798.09 3899.93 1199.30 127
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29596.58 11097.21 19798.19 15884.14 32899.78 5195.89 12896.17 37598.89 207
hse-mvs295.77 20595.09 22797.79 10997.84 24795.51 9995.66 22295.43 33796.58 11097.21 19796.16 31184.14 32899.54 18295.89 12896.92 35198.32 273
CL-MVSNet_self_test95.04 23994.79 24595.82 24497.51 29489.79 26591.14 38296.82 30693.05 26196.72 23496.40 30290.82 25899.16 28891.95 27198.66 27698.50 256
KD-MVS_2432*160088.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10597.10 9598.85 6098.88 7595.03 15999.67 13597.39 6799.65 8699.26 139
AUN-MVS93.95 28892.69 30797.74 11297.80 25595.38 10795.57 23195.46 33691.26 30292.64 37196.10 31774.67 37799.55 17993.72 24096.97 35098.30 277
ZD-MVS98.43 18695.94 8398.56 18990.72 30896.66 23997.07 25895.02 16099.74 8191.08 28898.93 247
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.60 9699.76 6695.49 14999.20 21399.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.94 7195.49 14999.20 21399.26 139
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13696.11 13399.08 4098.24 15197.87 2399.72 9395.44 15799.51 13999.14 160
IU-MVS99.22 6695.40 10598.14 24285.77 36998.36 10695.23 17099.51 13999.49 75
OPU-MVS97.64 12198.01 22995.27 11596.79 14597.35 24296.97 6998.51 36191.21 28799.25 20899.14 160
test_241102_TWO98.83 13696.11 13398.62 7898.24 15196.92 7699.72 9395.44 15799.49 14699.49 75
test_241102_ONE99.22 6695.35 11098.83 13696.04 13899.08 4098.13 16497.87 2399.33 252
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5595.32 17997.83 16997.88 19596.44 10699.72 9394.59 20899.39 17799.25 143
cl2293.25 30692.84 30294.46 31094.30 39586.00 33891.09 38496.64 31490.74 30795.79 28596.31 30678.24 35898.77 33394.15 22398.34 29898.62 243
miper_ehance_all_eth94.69 25694.70 24794.64 29995.77 36886.22 33691.32 37898.24 22491.67 29097.05 21396.65 28788.39 29199.22 28094.88 19198.34 29898.49 257
miper_enhance_ethall93.14 30892.78 30594.20 32093.65 40585.29 34789.97 39597.85 26085.05 37696.15 27294.56 35285.74 31599.14 29093.74 23898.34 29898.17 292
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13095.76 15696.93 22297.43 23197.26 5299.79 4796.06 11499.53 12999.45 90
dcpmvs_297.12 13497.99 5994.51 30899.11 9284.00 36797.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 14899.78 5599.58 39
cl____94.73 25194.64 25095.01 28195.85 36287.00 32591.33 37698.08 24793.34 24697.10 20697.33 24484.01 33299.30 26095.14 17899.56 11598.71 235
DIV-MVS_self_test94.73 25194.64 25095.01 28195.86 36187.00 32591.33 37698.08 24793.34 24697.10 20697.34 24384.02 33199.31 25795.15 17799.55 12198.72 232
eth_miper_zixun_eth94.89 24694.93 23494.75 29795.99 35586.12 33791.35 37598.49 19493.40 24397.12 20497.25 24986.87 30899.35 24795.08 18398.82 26098.78 223
9.1496.69 16098.53 17296.02 19598.98 9893.23 25097.18 20097.46 22896.47 10399.62 15692.99 25799.32 197
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
save fliter98.48 18194.71 13394.53 28498.41 20495.02 193
ET-MVSNet_ETH3D91.12 33989.67 35295.47 26396.41 33989.15 28091.54 37190.23 39889.07 33086.78 41292.84 37669.39 39799.44 21394.16 22296.61 36597.82 322
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3799.67 299.73 499.65 699.15 399.86 2697.22 7099.92 1499.77 13
EIA-MVS96.04 19395.77 20996.85 18797.80 25592.98 19896.12 18899.16 4294.65 20493.77 34091.69 39295.68 13899.67 13594.18 22198.85 25697.91 315
miper_refine_blended88.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
miper_lstm_enhance94.81 25094.80 24494.85 29196.16 34886.45 33391.14 38298.20 22993.49 24197.03 21497.37 24184.97 32399.26 27095.28 16699.56 11598.83 216
ETV-MVS96.13 19095.90 20396.82 19097.76 26593.89 16795.40 23998.95 10495.87 15195.58 29591.00 39896.36 11199.72 9393.36 24798.83 25996.85 364
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27397.19 25296.88 8099.86 2697.50 6399.73 6698.41 261
D2MVS95.18 23395.17 22495.21 27197.76 26587.76 31294.15 29997.94 25589.77 32396.99 21797.68 21587.45 30299.14 29095.03 18699.81 4798.74 229
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14898.23 22595.92 14798.40 10098.28 14497.06 6299.71 10795.48 15399.52 13499.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10795.70 13599.62 9299.58 39
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14898.89 11099.75 7295.48 15399.52 13499.53 57
test072699.24 6195.51 9996.89 13798.89 11095.92 14798.64 7698.31 13597.06 62
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13697.32 8898.06 14497.85 19796.65 9199.77 6195.00 18799.11 22799.32 122
DPM-MVS93.68 29392.77 30696.42 21597.91 23992.54 20891.17 38197.47 28484.99 37993.08 36094.74 34989.90 27399.00 31187.54 35598.09 30997.72 332
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14695.96 14397.53 17897.40 23396.93 7399.77 6195.04 18499.35 18799.42 102
test_yl94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
thisisatest053092.71 31491.76 32395.56 25898.42 18788.23 29696.03 19487.35 40894.04 22796.56 24795.47 33664.03 40399.77 6194.78 19899.11 22798.68 239
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 21998.79 2699.23 3398.86 7795.76 13699.61 16395.49 14999.36 18299.23 145
Anonymous20240521196.34 18295.98 19897.43 14398.25 20193.85 16996.74 14894.41 35197.72 6598.37 10398.03 18087.15 30599.53 18494.06 22699.07 23398.92 202
DCV-MVSNet94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
tttt051793.31 30392.56 31195.57 25698.71 14787.86 30797.44 10787.17 40995.79 15597.47 18696.84 27464.12 40299.81 4096.20 11199.32 19799.02 185
our_test_394.20 27894.58 25793.07 34596.16 34881.20 38890.42 39196.84 30490.72 30897.14 20297.13 25490.47 26299.11 29794.04 22998.25 30298.91 203
thisisatest051590.43 34689.18 35894.17 32297.07 32285.44 34389.75 40087.58 40788.28 34393.69 34491.72 39165.27 40199.58 16890.59 30898.67 27497.50 345
ppachtmachnet_test94.49 26894.84 24093.46 33596.16 34882.10 37990.59 38997.48 28390.53 31297.01 21697.59 22091.01 25599.36 24393.97 23299.18 21798.94 195
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14898.73 15891.61 29398.48 9298.36 12996.53 9899.68 12795.17 17399.54 12599.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS98.06 302
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25598.99 9595.84 15398.78 6698.08 17096.84 8499.81 4093.98 23199.57 11299.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.03 10796.07 7898.08 141
thres100view90091.76 33391.26 33393.26 33898.21 20584.50 36096.39 16490.39 39496.87 10096.33 25793.08 37173.44 38699.42 21778.85 40397.74 32495.85 385
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19798.25 4699.13 3898.66 9496.65 9199.69 12293.92 23399.62 9298.91 203
tfpn200view991.55 33591.00 33593.21 34298.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32495.85 385
c3_l95.20 23295.32 21894.83 29396.19 34686.43 33491.83 36798.35 21493.47 24297.36 19097.26 24888.69 28699.28 26695.41 16399.36 18298.78 223
CHOSEN 280x42089.98 35189.19 35792.37 36695.60 37381.13 38986.22 40897.09 29581.44 39587.44 40993.15 36673.99 37899.47 20288.69 33999.07 23396.52 376
CANet95.86 20195.65 21396.49 21196.41 33990.82 25194.36 28798.41 20494.94 19592.62 37396.73 28392.68 21999.71 10795.12 18199.60 10498.94 195
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31794.39 14795.46 23398.73 15896.03 14094.72 31494.92 34796.28 11699.69 12293.81 23697.98 31298.09 295
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 32998.69 596.42 16398.09 24695.86 15295.15 30495.54 33494.26 18299.81 4094.06 22698.51 28998.47 258
CANet_DTU94.65 26094.21 27295.96 23695.90 35889.68 26793.92 31297.83 26493.19 25490.12 39495.64 33188.52 28899.57 17493.27 25299.47 15298.62 243
MVS_030495.71 20795.18 22397.33 15194.85 38792.82 20095.36 24290.89 39095.51 16995.61 29397.82 20188.39 29199.78 5198.23 3599.91 1799.40 105
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24198.99 9592.45 27898.11 13698.31 13597.25 5399.77 6196.60 9399.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11095.65 16198.51 8796.46 29792.15 23699.81 4095.14 17898.58 28499.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs177.80 36098.06 302
sam_mvs77.38 364
IterMVS-SCA-FT95.86 20196.19 18894.85 29197.68 27585.53 34292.42 35597.63 27996.99 9698.36 10698.54 10987.94 29599.75 7297.07 8099.08 23199.27 138
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 22993.00 26398.16 13198.06 17795.89 12599.72 9395.67 13999.10 22999.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25398.46 19694.58 20998.10 13898.07 17297.09 6099.39 23295.16 17599.44 15999.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 16998.79 14695.07 19097.88 16398.35 13097.24 5499.72 9396.05 11699.58 10999.45 90
ambc96.56 20798.23 20491.68 23697.88 7298.13 24398.42 9898.56 10694.22 18399.04 30794.05 22899.35 18798.95 193
MTGPAbinary98.73 158
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29796.92 27096.81 8699.87 2496.87 8799.76 5798.51 254
Effi-MVS+96.19 18796.01 19596.71 19797.43 30292.19 22296.12 18899.10 5595.45 17293.33 35694.71 35097.23 5599.56 17593.21 25497.54 33798.37 266
xiu_mvs_v2_base94.22 27494.63 25292.99 35097.32 31284.84 35792.12 36197.84 26291.96 28694.17 32793.43 36596.07 12199.71 10791.27 28497.48 34094.42 399
xiu_mvs_v1_base95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
new-patchmatchnet95.67 21096.58 16792.94 35297.48 29680.21 39392.96 33798.19 23494.83 19898.82 6398.79 7993.31 20399.51 19195.83 13299.04 23799.12 167
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12797.75 5399.89 2399.62 36
pmmvs594.63 26194.34 26895.50 26197.63 28688.34 29494.02 30597.13 29387.15 35395.22 30397.15 25387.50 30199.27 26993.99 23099.26 20798.88 211
test_post194.98 26810.37 42376.21 37299.04 30789.47 328
test_post10.87 42276.83 36899.07 303
Fast-Effi-MVS+95.49 21795.07 22896.75 19597.67 27992.82 20094.22 29598.60 18391.61 29393.42 35492.90 37496.73 8999.70 11592.60 26197.89 31897.74 329
patchmatchnet-post96.84 27477.36 36599.42 217
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4699.37 499.67 899.43 1795.61 14199.72 9398.12 3699.86 2899.73 22
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20194.29 15394.77 27698.07 25189.81 32297.97 15498.33 13393.11 20799.08 30295.46 15699.84 3898.89 207
GG-mvs-BLEND90.60 38391.00 41684.21 36698.23 4672.63 42382.76 41484.11 41556.14 41396.79 40172.20 41392.09 40490.78 412
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
Anonymous2023120695.27 22995.06 23095.88 24298.72 14489.37 27595.70 21797.85 26088.00 34796.98 21997.62 21891.95 24399.34 25089.21 33199.53 12998.94 195
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15897.69 6897.90 16197.96 18795.81 13499.82 3696.13 11399.61 9899.45 90
MTMP96.55 15974.60 420
gm-plane-assit91.79 41571.40 42181.67 39290.11 40598.99 31384.86 380
test9_res91.29 28398.89 25299.00 186
MVP-Stereo95.69 20895.28 21996.92 18298.15 21893.03 19795.64 22798.20 22990.39 31496.63 24297.73 21191.63 24899.10 30091.84 27597.31 34798.63 242
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST997.84 24795.23 11793.62 32198.39 20786.81 35893.78 33895.99 31994.68 16999.52 187
train_agg95.46 22194.66 24897.88 10497.84 24795.23 11793.62 32198.39 20787.04 35493.78 33895.99 31994.58 17399.52 18791.76 27898.90 24998.89 207
gg-mvs-nofinetune88.28 37086.96 37692.23 36992.84 41284.44 36298.19 5274.60 42099.08 1487.01 41199.47 1356.93 41098.23 38078.91 40295.61 38494.01 402
SCA93.38 30293.52 28992.96 35196.24 34281.40 38693.24 33394.00 35491.58 29594.57 31796.97 26587.94 29599.42 21789.47 32897.66 33398.06 302
Patchmatch-test93.60 29693.25 29394.63 30096.14 35287.47 31696.04 19394.50 35093.57 23996.47 25196.97 26576.50 36998.61 35290.67 30798.41 29697.81 324
test_897.81 25195.07 12693.54 32498.38 20987.04 35493.71 34295.96 32294.58 17399.52 187
MS-PatchMatch94.83 24894.91 23694.57 30596.81 33087.10 32494.23 29497.34 28688.74 33697.14 20297.11 25691.94 24498.23 38092.99 25797.92 31598.37 266
Patchmatch-RL test94.66 25994.49 26095.19 27298.54 17188.91 28392.57 34898.74 15791.46 29898.32 11497.75 20877.31 36698.81 33096.06 11499.61 9897.85 320
cdsmvs_eth3d_5k24.22 38832.30 3910.00 4060.00 4290.00 4310.00 41798.10 2450.00 4240.00 42595.06 34397.54 390.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.98 39110.65 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42495.82 1300.00 4250.00 4240.00 4230.00 421
agg_prior290.34 31698.90 24999.10 174
agg_prior97.80 25594.96 12898.36 21193.49 35099.53 184
tmp_tt57.23 38662.50 38941.44 40334.77 42649.21 42783.93 41160.22 42515.31 41971.11 41979.37 41670.09 39644.86 42264.76 41682.93 41630.25 418
canonicalmvs97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 3995.62 16399.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
alignmvs96.01 19595.52 21797.50 13497.77 26494.71 13396.07 19196.84 30497.48 7796.78 23294.28 35985.50 31999.40 22896.22 11098.73 27098.40 262
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6398.31 4199.02 4498.74 8597.68 3099.61 16397.77 5299.85 3699.70 26
v14419296.69 16696.90 15196.03 23398.25 20188.92 28295.49 23298.77 15193.05 26198.09 13998.29 14392.51 23099.70 11598.11 3799.56 11599.47 84
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5298.04 5598.62 7898.66 9493.75 19599.78 5197.23 6999.84 3899.73 22
v192192096.72 16396.96 14695.99 23498.21 20588.79 28795.42 23698.79 14693.22 25198.19 12998.26 14992.68 21999.70 11598.34 3499.55 12199.49 75
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4499.98 299.85 5
v119296.83 15597.06 13996.15 23098.28 19789.29 27695.36 24298.77 15193.73 23398.11 13698.34 13293.02 21399.67 13598.35 3399.58 10999.50 67
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3598.43 3698.89 5798.83 7894.30 18199.81 4097.87 4599.91 1799.77 13
v114496.84 15297.08 13796.13 23198.42 18789.28 27795.41 23898.67 17394.21 21897.97 15498.31 13593.06 20899.65 14398.06 4099.62 9299.45 90
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13096.05 13697.49 18297.54 22397.07 6199.70 11595.61 14499.46 15599.30 127
v14896.58 17296.97 14495.42 26598.63 15887.57 31495.09 25997.90 25795.91 14998.24 12297.96 18793.42 20199.39 23296.04 11799.52 13499.29 133
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
TestCases98.06 9099.08 9696.16 7499.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 4999.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13096.00 14197.22 19597.62 21896.87 8299.76 6695.48 15399.43 16899.46 86
RRT-MVS95.78 20496.25 18594.35 31496.68 33284.47 36197.72 8699.11 5297.23 9197.27 19398.72 8686.39 31099.79 4795.49 14997.67 33198.80 220
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 216
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3596.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
PS-MVSNAJ94.10 28094.47 26293.00 34997.35 30784.88 35491.86 36697.84 26291.96 28694.17 32792.50 38395.82 13099.71 10791.27 28497.48 34094.40 400
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5195.83 15499.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3496.23 12799.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 30992.01 22995.33 24797.65 27597.74 6398.30 11898.14 16295.04 15899.69 12297.55 6199.52 13499.58 39
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30692.08 22795.34 24697.65 27597.74 6398.29 11998.11 16895.05 15799.68 12797.50 6399.50 14399.56 50
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20198.20 22995.51 16995.06 30696.53 29394.10 18599.70 11594.29 21799.15 22099.13 162
test_prior495.38 10793.61 323
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25897.64 21696.49 10199.72 9395.66 14099.37 17999.45 90
v124096.74 16097.02 14295.91 24198.18 21188.52 29095.39 24098.88 11793.15 25998.46 9598.40 12692.80 21699.71 10798.45 3199.49 14699.49 75
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9297.57 7299.27 3099.22 3598.32 1299.50 19297.09 7799.75 6499.50 67
test_prior293.33 33194.21 21894.02 33496.25 30893.64 19791.90 27298.96 242
X-MVStestdata92.86 31190.83 34098.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25836.50 41996.49 10199.72 9395.66 14099.37 17999.45 90
test_prior97.46 14097.79 26094.26 15798.42 20399.34 25098.79 222
旧先验293.35 33077.95 40895.77 28998.67 34790.74 304
新几何293.43 326
新几何197.25 15898.29 19594.70 13597.73 26877.98 40794.83 31396.67 28692.08 24099.45 21088.17 34798.65 27897.61 338
旧先验197.80 25593.87 16897.75 26797.04 26193.57 19898.68 27398.72 232
无先验93.20 33497.91 25680.78 39799.40 22887.71 35097.94 314
原ACMM292.82 340
原ACMM196.58 20498.16 21692.12 22398.15 24185.90 36793.49 35096.43 29992.47 23199.38 23587.66 35298.62 28098.23 284
test22298.17 21493.24 19492.74 34497.61 28075.17 41294.65 31696.69 28590.96 25798.66 27697.66 334
testdata299.46 20587.84 348
segment_acmp95.34 150
testdata95.70 25198.16 21690.58 25697.72 26980.38 39995.62 29297.02 26292.06 24198.98 31589.06 33598.52 28697.54 342
testdata192.77 34193.78 232
v897.60 10498.06 5396.23 22498.71 14789.44 27497.43 10998.82 14497.29 9098.74 7399.10 5293.86 19199.68 12798.61 2699.94 899.56 50
131492.38 31892.30 31392.64 36095.42 37885.15 35095.86 20996.97 30185.40 37390.62 38693.06 37291.12 25397.80 38986.74 36495.49 38694.97 397
LFMVS95.32 22794.88 23896.62 20198.03 22691.47 23997.65 9190.72 39399.11 1297.89 16298.31 13579.20 35499.48 20093.91 23499.12 22698.93 199
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33298.59 3198.51 8798.72 8692.54 22799.58 16896.02 11999.49 14699.12 167
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34099.26 998.39 10299.18 4287.85 30099.62 15695.13 18099.09 23099.35 120
v1097.55 10897.97 6196.31 22298.60 16289.64 26997.44 10799.02 8196.60 10898.72 7599.16 4693.48 20099.72 9398.76 2199.92 1499.58 39
VPNet97.26 12997.49 11496.59 20399.47 3390.58 25696.27 17498.53 19097.77 6098.46 9598.41 12394.59 17299.68 12794.61 20499.29 20399.52 60
MVS90.02 34989.20 35692.47 36494.71 39086.90 32795.86 20996.74 31064.72 41690.62 38692.77 37792.54 22798.39 37079.30 40195.56 38592.12 408
v2v48296.78 15997.06 13995.95 23898.57 16688.77 28895.36 24298.26 22195.18 18597.85 16898.23 15392.58 22399.63 15197.80 4999.69 7799.45 90
V4297.04 13797.16 13396.68 20098.59 16491.05 24696.33 17198.36 21194.60 20697.99 15098.30 13993.32 20299.62 15697.40 6699.53 12999.38 112
SD-MVS97.37 12397.70 8696.35 21998.14 22095.13 12496.54 16098.92 10795.94 14599.19 3598.08 17097.74 2895.06 40995.24 16999.54 12598.87 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS92.83 31292.15 31794.87 29096.97 32487.27 32190.03 39496.12 31791.83 28994.05 33294.57 35176.01 37398.97 31992.46 26597.34 34698.36 271
MSLP-MVS++96.42 18096.71 15995.57 25697.82 25090.56 25895.71 21698.84 13094.72 20196.71 23597.39 23794.91 16498.10 38495.28 16699.02 23898.05 305
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5595.96 14398.59 8298.69 9296.94 7199.81 4096.64 9199.58 10999.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10797.72 6598.25 12198.13 16497.10 5899.75 7295.44 15799.24 21199.32 122
ADS-MVSNet291.47 33790.51 34694.36 31395.51 37485.63 34095.05 26495.70 32783.46 38792.69 36896.84 27479.15 35599.41 22685.66 37190.52 40598.04 306
EI-MVSNet96.63 16996.93 14795.74 24897.26 31488.13 30195.29 25197.65 27596.99 9697.94 15898.19 15892.55 22599.58 16896.91 8599.56 11599.50 67
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
CVMVSNet92.33 32092.79 30390.95 38197.26 31475.84 41295.29 25192.33 37581.86 39196.27 26398.19 15881.44 34498.46 36694.23 22098.29 30198.55 250
pmmvs494.82 24994.19 27396.70 19897.42 30392.75 20692.09 36396.76 30886.80 35995.73 29097.22 25089.28 28398.89 32393.28 25199.14 22198.46 260
EU-MVSNet94.25 27394.47 26293.60 33298.14 22082.60 37797.24 11792.72 37085.08 37598.48 9298.94 6782.59 34198.76 33597.47 6599.53 12999.44 100
VNet96.84 15296.83 15396.88 18598.06 22592.02 22896.35 17097.57 28197.70 6797.88 16397.80 20492.40 23299.54 18294.73 20198.96 24299.08 175
test-LLR89.97 35289.90 35090.16 38594.24 39774.98 41489.89 39689.06 40292.02 28489.97 39590.77 40073.92 38098.57 35591.88 27397.36 34496.92 359
TESTMET0.1,187.20 37986.57 37989.07 39093.62 40672.84 41989.89 39687.01 41085.46 37289.12 40290.20 40356.00 41497.72 39090.91 29496.92 35196.64 372
test-mter87.92 37387.17 37390.16 38594.24 39774.98 41489.89 39689.06 40286.44 36289.97 39590.77 40054.96 42098.57 35591.88 27397.36 34496.92 359
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9298.40 3899.07 4298.98 6296.89 7899.75 7297.19 7499.79 5299.55 53
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13696.05 13697.46 18797.63 21796.77 8799.76 6695.61 14499.46 15599.49 75
testgi96.07 19196.50 17694.80 29499.26 5787.69 31395.96 20398.58 18795.08 18998.02 14996.25 30897.92 2097.60 39288.68 34098.74 26799.11 170
test20.0396.58 17296.61 16596.48 21298.49 17991.72 23595.68 22097.69 27096.81 10298.27 12097.92 19394.18 18498.71 34090.78 29999.66 8599.00 186
thres600view792.03 32891.43 32693.82 32698.19 20884.61 35996.27 17490.39 39496.81 10296.37 25693.11 36773.44 38699.49 19780.32 39897.95 31497.36 348
ADS-MVSNet90.95 34490.26 34893.04 34695.51 37482.37 37895.05 26493.41 36283.46 38792.69 36896.84 27479.15 35598.70 34185.66 37190.52 40598.04 306
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15896.27 12495.59 29497.75 20896.30 11399.78 5193.70 24199.48 15099.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs12.33 39015.23 3933.64 4055.77 4282.23 43088.99 4033.62 4282.30 4235.29 42313.09 4204.52 4281.95 4235.16 4238.32 4226.75 420
thres40091.68 33491.00 33593.71 33098.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32497.36 348
test12312.59 38915.49 3923.87 4046.07 4272.55 42990.75 3882.59 4292.52 4225.20 42413.02 4214.96 4271.85 4245.20 4229.09 4217.23 419
thres20091.00 34390.42 34792.77 35797.47 30083.98 36894.01 30691.18 38895.12 18895.44 29891.21 39673.93 37999.31 25777.76 40697.63 33595.01 396
test0.0.03 190.11 34889.21 35592.83 35593.89 40386.87 32891.74 36888.74 40592.02 28494.71 31591.14 39773.92 38094.48 41283.75 38892.94 39997.16 353
pmmvs390.00 35088.90 36093.32 33694.20 39985.34 34491.25 37992.56 37478.59 40593.82 33795.17 34067.36 40098.69 34389.08 33498.03 31195.92 383
EMVS89.06 36289.22 35488.61 39293.00 41077.34 40682.91 41490.92 38994.64 20592.63 37291.81 39076.30 37197.02 39783.83 38696.90 35391.48 411
E-PMN89.52 35989.78 35188.73 39193.14 40877.61 40483.26 41392.02 37794.82 19993.71 34293.11 36775.31 37596.81 40085.81 36896.81 35891.77 410
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6795.45 17297.55 17797.94 19097.11 5799.78 5194.77 19999.46 15599.48 81
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22393.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31799.06 23698.32 273
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28098.17 23590.17 31896.21 26796.10 31795.14 15699.43 21594.13 22498.85 25699.13 162
mvs_anonymous95.36 22496.07 19493.21 34296.29 34181.56 38494.60 28297.66 27393.30 24896.95 22198.91 7293.03 21299.38 23596.60 9397.30 34898.69 236
MVS_Test96.27 18496.79 15794.73 29896.94 32786.63 33196.18 18298.33 21594.94 19596.07 27398.28 14495.25 15399.26 27097.21 7197.90 31798.30 277
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 24898.48 18188.76 28992.84 33997.25 28796.00 14197.59 17697.95 18991.38 25099.46 20593.16 25596.35 37098.99 189
CDPH-MVS95.45 22294.65 24997.84 10798.28 19794.96 12893.73 31998.33 21585.03 37795.44 29896.60 28995.31 15199.44 21390.01 31999.13 22399.11 170
test1297.46 14097.61 28794.07 16197.78 26693.57 34893.31 20399.42 21798.78 26398.89 207
casdiffmvspermissive97.50 11197.81 7796.56 20798.51 17591.04 24795.83 21199.09 6097.23 9198.33 11398.30 13997.03 6599.37 24096.58 9599.38 17899.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive96.04 19396.23 18695.46 26497.35 30788.03 30493.42 32799.08 6394.09 22696.66 23996.93 26893.85 19299.29 26496.01 12198.67 27499.06 179
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline289.65 35888.44 36493.25 33995.62 37282.71 37493.82 31585.94 41288.89 33487.35 41092.54 38171.23 39199.33 25286.01 36694.60 39497.72 332
baseline193.14 30892.64 30994.62 30197.34 30987.20 32296.67 15793.02 36594.71 20296.51 25095.83 32681.64 34298.60 35490.00 32088.06 41198.07 298
YYNet194.73 25194.84 24094.41 31297.47 30085.09 35290.29 39295.85 32692.52 27597.53 17897.76 20591.97 24299.18 28393.31 25096.86 35498.95 193
PMMVS293.66 29494.07 27792.45 36597.57 28980.67 39186.46 40796.00 32093.99 22897.10 20697.38 23989.90 27397.82 38888.76 33799.47 15298.86 214
MDA-MVSNet_test_wron94.73 25194.83 24294.42 31197.48 29685.15 35090.28 39395.87 32592.52 27597.48 18497.76 20591.92 24599.17 28793.32 24996.80 35998.94 195
tpmvs90.79 34590.87 33890.57 38492.75 41376.30 41095.79 21493.64 36091.04 30591.91 37996.26 30777.19 36798.86 32789.38 33089.85 40896.56 375
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18198.63 18193.82 23198.54 8598.33 13393.98 18899.05 30595.99 12299.45 15898.61 245
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16198.75 15596.36 12196.16 27096.77 28091.91 24699.46 20592.59 26299.20 21399.28 134
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15599.46 20592.59 26299.20 21399.28 134
plane_prior496.77 280
plane_prior394.51 14395.29 18196.16 270
plane_prior296.50 16196.36 121
plane_prior198.49 179
plane_prior94.29 15395.42 23694.31 21798.93 247
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5099.22 1099.22 3498.96 6597.35 4499.92 697.79 5099.93 1199.79 11
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22299.02 8198.11 5198.31 11697.69 21494.65 17199.85 2997.02 8299.71 7399.48 81
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4699.33 699.30 2899.00 5997.27 4899.92 697.64 5999.92 1499.75 20
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 11998.23 4799.48 1799.27 3198.47 1199.55 17996.52 9699.53 12999.60 37
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5599.36 599.29 2999.06 5697.27 4899.93 497.71 5599.91 1799.70 26
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22498.87 11997.57 7298.31 11697.83 19894.69 16799.85 2997.02 8299.71 7399.46 86
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20699.04 7897.51 7698.22 12497.81 20394.68 16999.78 5197.14 7599.75 6499.41 104
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13099.05 1799.01 4598.65 9795.37 14999.90 1697.57 6099.91 1799.77 13
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4199.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 28898.12 24497.34 8798.20 12597.33 24492.81 21599.75 7294.79 19699.81 4799.54 54
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15897.79 5999.42 2197.83 19894.40 17999.78 5195.91 12799.76 5799.46 86
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23498.86 12298.20 4998.37 10399.24 3394.69 16799.55 17995.98 12399.79 5299.65 33
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15299.05 7198.67 2898.84 6198.45 11897.58 3899.88 2196.45 9999.86 2899.54 54
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27095.23 11794.15 29996.90 30393.26 24998.04 14796.70 28494.41 17898.89 32394.77 19999.14 22198.37 266
n20.00 430
nn0.00 430
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15096.04 13897.10 20697.73 21196.53 9899.78 5195.16 17599.50 14399.46 86
door-mid98.17 235
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28099.02 8195.20 18398.15 13397.52 22598.83 598.43 36794.87 19296.41 36899.07 177
mvsmamba94.91 24494.41 26696.40 21897.65 28291.30 24297.92 6995.32 33991.50 29695.54 29698.38 12783.06 33799.68 12792.46 26597.84 31998.23 284
MVSFormer96.14 18996.36 18195.49 26297.68 27587.81 31098.67 1599.02 8196.50 11594.48 32196.15 31286.90 30699.92 698.73 2299.13 22398.74 229
jason94.39 27194.04 27895.41 26798.29 19587.85 30992.74 34496.75 30985.38 37495.29 30196.15 31288.21 29499.65 14394.24 21999.34 19098.74 229
jason: jason.
lupinMVS93.77 28993.28 29295.24 27097.68 27587.81 31092.12 36196.05 31884.52 38394.48 32195.06 34386.90 30699.63 15193.62 24399.13 22398.27 281
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8196.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 7995.88 15097.88 16398.22 15698.15 1699.74 8196.50 9799.62 9299.42 102
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23797.65 9190.31 39798.89 2498.93 5399.36 2384.57 32699.92 697.81 4899.56 11599.39 110
lessismore_v097.05 17399.36 4892.12 22384.07 41498.77 7098.98 6285.36 32099.74 8197.34 6899.37 17999.30 127
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30198.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7198.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7195.43 17597.41 18997.50 22797.98 1999.79 4795.58 14799.57 11299.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31599.05 7195.19 18498.32 11497.70 21395.22 15498.41 36894.27 21898.13 30798.93 199
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16498.98 9895.05 19198.06 14498.02 18195.86 12699.56 17594.37 21499.64 8899.00 186
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20199.18 4097.67 7199.00 4798.48 11797.64 3499.50 19296.96 8499.54 12599.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
baseline97.44 11697.78 8296.43 21498.52 17390.75 25496.84 13899.03 7996.51 11497.86 16798.02 18196.67 9099.36 24397.09 7799.47 15299.19 151
test1198.08 247
door97.81 265
EPNet_dtu91.39 33890.75 34193.31 33790.48 41882.61 37694.80 27392.88 36793.39 24481.74 41694.90 34881.36 34599.11 29788.28 34598.87 25398.21 287
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268894.10 28093.41 29196.18 22899.16 8090.04 26192.15 36098.68 17079.90 40196.22 26697.83 19887.92 29999.42 21789.18 33299.65 8699.08 175
EPNet93.72 29192.62 31097.03 17687.61 42292.25 21696.27 17491.28 38696.74 10487.65 40897.39 23785.00 32299.64 14792.14 26899.48 15099.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS92.47 212
HQP-NCC97.85 24294.26 28993.18 25592.86 364
ACMP_Plane97.85 24294.26 28993.18 25592.86 364
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17298.77 15192.96 26897.44 18897.58 22295.84 12799.74 8191.96 27099.35 18799.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS90.51 311
HQP4-MVS92.87 36399.23 27899.06 179
HQP3-MVS98.43 20098.74 267
HQP2-MVS90.33 266
CNVR-MVS96.92 14696.55 17098.03 9598.00 23395.54 9794.87 27198.17 23594.60 20696.38 25597.05 26095.67 13999.36 24395.12 18199.08 23199.19 151
NCCC96.52 17495.99 19798.10 8797.81 25195.68 9295.00 26798.20 22995.39 17695.40 30096.36 30493.81 19399.45 21093.55 24498.42 29599.17 154
114514_t93.96 28693.22 29496.19 22799.06 10090.97 24995.99 19998.94 10573.88 41493.43 35396.93 26892.38 23399.37 24089.09 33399.28 20498.25 283
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10296.11 13396.89 22597.45 22996.85 8399.78 5195.19 17199.63 9099.38 112
DSMNet-mixed92.19 32291.83 32093.25 33996.18 34783.68 37096.27 17493.68 35876.97 41192.54 37499.18 4289.20 28598.55 35883.88 38598.60 28397.51 343
tpm288.47 36787.69 37090.79 38294.98 38677.34 40695.09 25991.83 37977.51 41089.40 40096.41 30067.83 39998.73 33783.58 38992.60 40296.29 380
NP-MVS98.14 22093.72 17495.08 341
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20398.97 10194.55 21098.82 6398.76 8497.31 4699.29 26497.20 7399.44 15999.38 112
tpm cat188.01 37287.33 37290.05 38894.48 39376.28 41194.47 28594.35 35273.84 41589.26 40195.61 33373.64 38298.30 37784.13 38386.20 41395.57 392
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 10996.58 11098.08 14197.87 19697.02 6699.76 6695.25 16899.59 10699.40 105
Skip Steuart: Steuart Systems R&D Blog.
CostFormer89.75 35589.25 35391.26 38094.69 39178.00 40295.32 24891.98 37881.50 39490.55 38896.96 26771.06 39298.89 32388.59 34192.63 40196.87 362
CR-MVSNet93.29 30592.79 30394.78 29695.44 37688.15 29996.18 18297.20 28984.94 38094.10 32998.57 10477.67 36199.39 23295.17 17395.81 37896.81 368
JIA-IIPM91.79 33290.69 34395.11 27593.80 40490.98 24894.16 29891.78 38096.38 11990.30 39299.30 2972.02 38998.90 32288.28 34590.17 40795.45 393
Patchmtry95.03 24194.59 25696.33 22094.83 38990.82 25196.38 16797.20 28996.59 10997.49 18298.57 10477.67 36199.38 23592.95 25999.62 9298.80 220
PatchT93.75 29093.57 28894.29 31895.05 38587.32 32096.05 19292.98 36697.54 7594.25 32498.72 8675.79 37499.24 27695.92 12695.81 37896.32 379
tpmrst90.31 34790.61 34589.41 38994.06 40172.37 42095.06 26393.69 35688.01 34692.32 37696.86 27277.45 36398.82 32891.04 28987.01 41297.04 356
BH-w/o92.14 32391.94 31892.73 35897.13 32085.30 34692.46 35295.64 32989.33 32794.21 32592.74 37889.60 27598.24 37981.68 39394.66 39294.66 398
tpm91.08 34290.85 33991.75 37495.33 38078.09 40095.03 26691.27 38788.75 33593.53 34997.40 23371.24 39099.30 26091.25 28693.87 39797.87 319
DELS-MVS96.17 18896.23 18695.99 23497.55 29290.04 26192.38 35898.52 19194.13 22296.55 24997.06 25994.99 16199.58 16895.62 14399.28 20498.37 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned94.69 25694.75 24694.52 30797.95 23887.53 31594.07 30497.01 29993.99 22897.10 20695.65 33092.65 22198.95 32087.60 35396.74 36097.09 354
RPMNet94.68 25894.60 25494.90 28895.44 37688.15 29996.18 18298.86 12297.43 7894.10 32998.49 11379.40 35399.76 6695.69 13795.81 37896.81 368
MVSTER94.21 27693.93 28395.05 27995.83 36386.46 33295.18 25697.65 27592.41 27997.94 15898.00 18572.39 38899.58 16896.36 10399.56 11599.12 167
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15192.89 26996.01 27697.13 25492.23 23499.67 13592.24 26799.34 19099.17 154
GBi-Net96.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21599.28 5590.62 25595.31 24999.08 6388.40 34196.97 22098.17 16192.11 23899.78 5193.64 24299.21 21298.86 214
PVSNet_BlendedMVS95.02 24294.93 23495.27 26997.79 26087.40 31894.14 30198.68 17088.94 33394.51 31998.01 18393.04 20999.30 26089.77 32499.49 14699.11 170
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21398.48 18191.52 23895.31 24998.45 19795.76 15697.48 18497.54 22389.53 27998.69 34394.43 21094.61 39399.13 162
UnsupCasMVSNet_bld94.72 25594.26 26996.08 23298.62 16090.54 25993.38 32998.05 25390.30 31597.02 21596.80 27989.54 27799.16 28888.44 34296.18 37498.56 248
PVSNet_Blended93.96 28693.65 28694.91 28697.79 26087.40 31891.43 37398.68 17084.50 38494.51 31994.48 35693.04 20999.30 26089.77 32498.61 28198.02 308
FMVSNet593.39 30192.35 31296.50 21095.83 36390.81 25397.31 11298.27 22092.74 27296.27 26398.28 14462.23 40499.67 13590.86 29599.36 18299.03 182
test196.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
new_pmnet92.34 31991.69 32494.32 31696.23 34489.16 27992.27 35992.88 36784.39 38695.29 30196.35 30585.66 31796.74 40484.53 38297.56 33697.05 355
FMVSNet395.26 23094.94 23296.22 22696.53 33690.06 26095.99 19997.66 27394.11 22497.99 15097.91 19480.22 35299.63 15194.60 20599.44 15998.96 192
dp88.08 37188.05 36688.16 39692.85 41168.81 42294.17 29792.88 36785.47 37191.38 38496.14 31468.87 39898.81 33086.88 36383.80 41596.87 362
FMVSNet296.72 16396.67 16296.87 18697.96 23591.88 23197.15 12198.06 25295.59 16598.50 8998.62 9989.51 28099.65 14394.99 18999.60 10499.07 177
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17597.41 8399.00 4799.19 3895.47 14599.73 8795.83 13299.76 5799.30 127
N_pmnet95.18 23394.23 27098.06 9097.85 24296.55 6292.49 35091.63 38189.34 32698.09 13997.41 23290.33 26699.06 30491.58 28099.31 20098.56 248
cascas91.89 33091.35 32893.51 33494.27 39685.60 34188.86 40498.61 18279.32 40392.16 37791.44 39489.22 28498.12 38390.80 29897.47 34296.82 367
BH-RMVSNet94.56 26494.44 26594.91 28697.57 28987.44 31793.78 31896.26 31693.69 23696.41 25496.50 29692.10 23999.00 31185.96 36797.71 32798.31 275
UGNet96.81 15796.56 16997.58 12496.64 33393.84 17097.75 8297.12 29496.47 11893.62 34598.88 7593.22 20599.53 18495.61 14499.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS93.55 29793.00 29895.19 27297.81 25187.86 30793.89 31396.00 32089.02 33194.07 33195.44 33886.27 31199.33 25287.69 35196.82 35798.39 264
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9294.93 19798.58 8398.92 6997.31 4699.41 22694.44 20999.43 16899.59 38
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27797.01 26496.99 6899.82 3697.66 5899.64 8898.39 264
sss94.22 27493.72 28595.74 24897.71 27389.95 26393.84 31496.98 30088.38 34293.75 34195.74 32787.94 29598.89 32391.02 29098.10 30898.37 266
Test_1112_low_res93.53 29892.86 30095.54 26098.60 16288.86 28592.75 34298.69 16882.66 39092.65 37096.92 27084.75 32499.56 17590.94 29397.76 32398.19 289
1112_ss94.12 27993.42 29096.23 22498.59 16490.85 25094.24 29398.85 12685.49 37092.97 36294.94 34586.01 31399.64 14791.78 27797.92 31598.20 288
ab-mvs-re7.91 39210.55 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.94 3450.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs96.59 17096.59 16696.60 20298.64 15492.21 21898.35 3597.67 27194.45 21296.99 21798.79 7994.96 16399.49 19790.39 31499.07 23398.08 296
TR-MVS92.54 31692.20 31693.57 33396.49 33786.66 33093.51 32594.73 34789.96 32094.95 31093.87 36290.24 27198.61 35281.18 39694.88 39095.45 393
MDTV_nov1_ep13_2view57.28 42494.89 27080.59 39894.02 33478.66 35785.50 37397.82 322
MDTV_nov1_ep1391.28 33094.31 39473.51 41894.80 27393.16 36486.75 36093.45 35297.40 23376.37 37098.55 35888.85 33696.43 367
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11098.49 3599.38 2399.14 4995.44 14799.84 3296.47 9899.80 5099.47 84
MIMVSNet93.42 30092.86 30095.10 27798.17 21488.19 29798.13 5593.69 35692.07 28295.04 30998.21 15780.95 34999.03 31081.42 39498.06 31098.07 298
IterMVS-LS96.92 14697.29 12395.79 24598.51 17588.13 30195.10 25898.66 17596.99 9698.46 9598.68 9392.55 22599.74 8196.91 8599.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet94.88 24794.12 27697.14 16497.64 28593.57 18193.96 31197.06 29790.05 31996.30 26296.55 29186.10 31299.47 20290.10 31899.31 20098.40 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.52 134
IterMVS95.42 22395.83 20694.20 32097.52 29383.78 36992.41 35697.47 28495.49 17198.06 14498.49 11387.94 29599.58 16896.02 11999.02 23899.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 21595.13 22596.80 19198.51 17593.99 16594.60 28298.69 16890.20 31795.78 28796.21 31092.73 21898.98 31590.58 30998.86 25597.42 347
MVS_111021_LR96.82 15696.55 17097.62 12298.27 19995.34 11293.81 31798.33 21594.59 20896.56 24796.63 28896.61 9498.73 33794.80 19599.34 19098.78 223
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14698.98 2198.74 7398.49 11395.80 13599.49 19795.04 18499.44 15999.11 170
ACMMP++99.55 121
HQP-MVS95.17 23594.58 25796.92 18297.85 24292.47 21294.26 28998.43 20093.18 25592.86 36495.08 34190.33 26699.23 27890.51 31198.74 26799.05 181
QAPM95.88 20095.57 21696.80 19197.90 24091.84 23398.18 5398.73 15888.41 34096.42 25398.13 16494.73 16599.75 7288.72 33898.94 24598.81 219
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4799.36 18299.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet88.40 36890.20 34982.99 39897.01 32360.04 42393.11 33685.61 41384.45 38588.72 40499.09 5384.72 32598.23 38082.52 39196.59 36690.69 413
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31098.36 3998.14 13497.98 18688.23 29399.71 10793.10 25699.72 7099.38 112
HyFIR lowres test93.72 29192.65 30896.91 18498.93 12091.81 23491.23 38098.52 19182.69 38996.46 25296.52 29580.38 35199.90 1690.36 31598.79 26299.03 182
EPMVS89.26 36088.55 36291.39 37892.36 41479.11 39795.65 22479.86 41888.60 33893.12 35996.53 29370.73 39498.10 38490.75 30189.32 40996.98 357
PAPM_NR94.61 26294.17 27495.96 23698.36 19191.23 24495.93 20597.95 25492.98 26493.42 35494.43 35790.53 26198.38 37187.60 35396.29 37298.27 281
TAMVS95.49 21794.94 23297.16 16298.31 19393.41 18895.07 26296.82 30691.09 30497.51 18097.82 20189.96 27299.42 21788.42 34399.44 15998.64 240
PAPR92.22 32191.27 33195.07 27895.73 37188.81 28691.97 36497.87 25985.80 36890.91 38592.73 37991.16 25298.33 37579.48 40095.76 38298.08 296
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6796.19 13098.48 9298.70 9194.72 16699.24 27694.37 21499.33 19599.17 154
Vis-MVSNet (Re-imp)95.11 23694.85 23995.87 24399.12 9189.17 27897.54 10494.92 34696.50 11596.58 24597.27 24783.64 33399.48 20088.42 34399.67 8398.97 191
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15398.73 15898.66 2998.56 8498.41 12396.84 8499.69 12294.82 19499.81 4798.64 240
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32798.36 21194.74 20096.58 24596.76 28296.54 9798.99 31394.87 19299.27 20699.15 157
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9596.35 12398.13 13595.95 32395.99 12299.66 14194.36 21699.73 6698.59 246
PatchMatch-RL94.61 26293.81 28497.02 17798.19 20895.72 8993.66 32097.23 28888.17 34594.94 31195.62 33291.43 24998.57 35587.36 35997.68 33096.76 370
API-MVS95.09 23895.01 23195.31 26896.61 33494.02 16396.83 13997.18 29195.60 16495.79 28594.33 35894.54 17598.37 37385.70 36998.52 28693.52 404
Test By Simon94.51 176
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16697.21 7199.76 5799.40 105
USDC94.56 26494.57 25994.55 30697.78 26386.43 33492.75 34298.65 18085.96 36596.91 22497.93 19290.82 25898.74 33690.71 30599.59 10698.47 258
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31597.91 5797.30 19198.06 17788.46 28999.85 2993.85 23599.40 17699.32 122
PMMVS92.39 31791.08 33496.30 22393.12 40992.81 20290.58 39095.96 32279.17 40491.85 38092.27 38490.29 27098.66 34889.85 32396.68 36497.43 346
PAPM87.64 37485.84 38193.04 34696.54 33584.99 35388.42 40595.57 33379.52 40283.82 41393.05 37380.57 35098.41 36862.29 41792.79 40095.71 388
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10295.75 15897.91 16098.06 17796.89 7899.76 6695.32 16599.57 11299.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA95.04 23994.47 26296.75 19597.81 25195.25 11694.12 30397.89 25894.41 21394.57 31795.69 32890.30 26998.35 37486.72 36598.76 26596.64 372
PatchmatchNetpermissive91.98 32991.87 31992.30 36794.60 39279.71 39495.12 25793.59 36189.52 32593.61 34697.02 26277.94 35999.18 28390.84 29694.57 39598.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS96.96 14496.53 17398.25 7597.48 29696.50 6396.76 14798.85 12693.52 24096.19 26996.85 27395.94 12399.42 21793.79 23799.43 16898.83 216
F-COLMAP95.30 22894.38 26798.05 9498.64 15496.04 7995.61 22898.66 17589.00 33293.22 35796.40 30292.90 21499.35 24787.45 35897.53 33898.77 226
ANet_high98.31 3698.94 696.41 21799.33 5189.64 26997.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6199.98 299.77 13
wuyk23d93.25 30695.20 22187.40 39796.07 35495.38 10797.04 12994.97 34495.33 17899.70 798.11 16898.14 1791.94 41577.76 40699.68 8174.89 415
OMC-MVS96.48 17696.00 19697.91 10298.30 19496.01 8294.86 27298.60 18391.88 28897.18 20097.21 25196.11 12099.04 30790.49 31399.34 19098.69 236
MG-MVS94.08 28294.00 27994.32 31697.09 32185.89 33993.19 33595.96 32292.52 27594.93 31297.51 22689.54 27798.77 33387.52 35797.71 32798.31 275
AdaColmapbinary95.11 23694.62 25396.58 20497.33 31194.45 14694.92 26998.08 24793.15 25993.98 33695.53 33594.34 18099.10 30085.69 37098.61 28196.20 382
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19395.63 16297.22 19597.30 24695.52 14398.55 35890.97 29298.90 24998.34 272
DeepMVS_CXcopyleft77.17 39990.94 41785.28 34874.08 42252.51 41880.87 41888.03 41075.25 37670.63 42059.23 41984.94 41475.62 414
TinyColmap96.00 19696.34 18294.96 28597.90 24087.91 30694.13 30298.49 19494.41 21398.16 13197.76 20596.29 11598.68 34690.52 31099.42 17198.30 277
MAR-MVS94.21 27693.03 29697.76 11196.94 32797.44 3796.97 13397.15 29287.89 34992.00 37892.73 37992.14 23799.12 29483.92 38497.51 33996.73 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS96.07 19195.63 21497.36 14998.19 20895.55 9695.44 23498.82 14492.29 28195.70 29196.55 29192.63 22298.69 34391.75 27999.33 19597.85 320
MSDG95.33 22695.13 22595.94 24097.40 30491.85 23291.02 38598.37 21095.30 18096.31 26195.99 31994.51 17698.38 37189.59 32697.65 33497.60 339
LS3D97.77 9097.50 11398.57 5196.24 34297.58 2898.45 3198.85 12698.58 3297.51 18097.94 19095.74 13799.63 15195.19 17198.97 24198.51 254
CLD-MVS95.47 22095.07 22896.69 19998.27 19992.53 20991.36 37498.67 17391.22 30395.78 28794.12 36095.65 14098.98 31590.81 29799.72 7098.57 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS89.92 35388.63 36193.82 32698.37 19096.94 4991.58 37093.34 36388.00 34790.32 39197.10 25770.87 39391.13 41671.91 41496.16 37693.39 406
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5598.76 2796.79 22899.34 2696.61 9498.82 32896.38 10299.50 14396.98 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015