| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 41 | 99.71 9 | 96.99 48 | 99.69 2 | 99.57 17 | 99.02 19 | 99.62 13 | 99.36 23 | 98.53 9 | 99.52 187 | 98.58 28 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| 3Dnovator | | 96.53 2 | 97.61 103 | 97.64 96 | 97.50 134 | 97.74 270 | 93.65 180 | 98.49 28 | 98.88 117 | 96.86 101 | 97.11 205 | 98.55 107 | 95.82 130 | 99.73 87 | 95.94 125 | 99.42 171 | 99.13 162 |
|
| 3Dnovator+ | | 96.13 3 | 97.73 92 | 97.59 103 | 98.15 83 | 98.11 224 | 95.60 95 | 98.04 59 | 98.70 167 | 98.13 50 | 96.93 222 | 98.45 118 | 95.30 152 | 99.62 156 | 95.64 142 | 98.96 242 | 99.24 144 |
|
| DeepC-MVS | | 95.41 4 | 97.82 85 | 97.70 86 | 98.16 81 | 98.78 139 | 95.72 89 | 96.23 180 | 99.02 81 | 93.92 230 | 98.62 78 | 98.99 61 | 97.69 29 | 99.62 156 | 96.18 112 | 99.87 26 | 99.15 157 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepPCF-MVS | | 94.58 5 | 96.90 148 | 96.43 178 | 98.31 69 | 97.48 296 | 97.23 44 | 92.56 349 | 98.60 183 | 92.84 270 | 98.54 85 | 97.40 233 | 96.64 93 | 98.78 332 | 94.40 213 | 99.41 175 | 98.93 199 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 40 | 98.11 48 | 98.64 47 | 99.21 73 | 97.35 39 | 97.96 64 | 99.16 42 | 98.34 40 | 98.78 66 | 98.52 110 | 97.32 45 | 99.45 210 | 94.08 225 | 99.67 83 | 99.13 162 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS_fast | | 94.34 7 | 96.74 160 | 96.51 175 | 97.44 142 | 97.69 274 | 94.15 159 | 96.02 195 | 98.43 200 | 93.17 258 | 97.30 191 | 97.38 239 | 95.48 144 | 99.28 266 | 93.74 238 | 99.34 190 | 98.88 211 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| OpenMVS |  | 94.22 8 | 95.48 219 | 95.20 221 | 96.32 221 | 97.16 318 | 91.96 230 | 97.74 84 | 98.84 130 | 87.26 351 | 94.36 323 | 98.01 183 | 93.95 190 | 99.67 135 | 90.70 306 | 98.75 266 | 97.35 350 |
|
| ACMH | | 93.61 9 | 98.44 29 | 98.76 14 | 97.51 130 | 99.43 37 | 93.54 182 | 98.23 46 | 99.05 71 | 97.40 84 | 99.37 24 | 99.08 55 | 98.79 6 | 99.47 202 | 97.74 54 | 99.71 73 | 99.50 67 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| ACMH+ | | 93.58 10 | 98.23 41 | 98.31 39 | 97.98 99 | 99.39 44 | 95.22 120 | 97.55 99 | 99.20 37 | 98.21 48 | 99.25 32 | 98.51 112 | 98.21 14 | 99.40 228 | 94.79 196 | 99.72 70 | 99.32 122 |
|
| ACMM | | 93.33 11 | 98.05 53 | 97.79 79 | 98.85 28 | 99.15 83 | 97.55 30 | 96.68 155 | 98.83 136 | 95.21 182 | 98.36 106 | 98.13 164 | 98.13 18 | 99.62 156 | 96.04 117 | 99.54 125 | 99.39 110 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| TAPA-MVS | | 93.32 12 | 94.93 243 | 94.23 270 | 97.04 175 | 98.18 211 | 94.51 143 | 95.22 254 | 98.73 158 | 81.22 396 | 96.25 265 | 95.95 323 | 93.80 194 | 98.98 315 | 89.89 322 | 98.87 253 | 97.62 337 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ACMP | | 92.54 13 | 97.47 114 | 97.10 135 | 98.55 53 | 99.04 106 | 96.70 55 | 96.24 179 | 98.89 110 | 93.71 234 | 97.97 154 | 97.75 208 | 97.44 40 | 99.63 151 | 93.22 253 | 99.70 76 | 99.32 122 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| OpenMVS_ROB |  | 91.80 14 | 93.64 295 | 93.05 295 | 95.42 265 | 97.31 313 | 91.21 245 | 95.08 261 | 96.68 313 | 81.56 393 | 96.88 226 | 96.41 300 | 90.44 265 | 99.25 272 | 85.39 375 | 97.67 331 | 95.80 387 |
|
| HY-MVS | | 91.43 15 | 92.58 315 | 91.81 321 | 94.90 288 | 96.49 337 | 88.87 284 | 97.31 112 | 94.62 348 | 85.92 366 | 90.50 389 | 96.84 274 | 85.05 321 | 99.40 228 | 83.77 387 | 95.78 381 | 96.43 378 |
|
| PLC |  | 91.02 16 | 94.05 283 | 92.90 299 | 97.51 130 | 98.00 233 | 95.12 125 | 94.25 292 | 98.25 222 | 86.17 363 | 91.48 383 | 95.25 339 | 91.01 255 | 99.19 282 | 85.02 379 | 96.69 363 | 98.22 286 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| PMVS |  | 89.60 17 | 96.71 165 | 96.97 144 | 95.95 238 | 99.51 28 | 97.81 20 | 97.42 110 | 97.49 282 | 97.93 56 | 95.95 277 | 98.58 103 | 96.88 80 | 96.91 399 | 89.59 326 | 99.36 182 | 93.12 407 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PCF-MVS | | 89.43 18 | 92.12 324 | 90.64 344 | 96.57 206 | 97.80 255 | 93.48 184 | 89.88 399 | 98.45 197 | 74.46 413 | 96.04 275 | 95.68 329 | 90.71 260 | 99.31 257 | 73.73 411 | 99.01 240 | 96.91 361 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PVSNet | | 86.72 19 | 91.10 341 | 90.97 337 | 91.49 376 | 97.56 291 | 78.04 401 | 87.17 406 | 94.60 349 | 84.65 382 | 92.34 375 | 92.20 386 | 87.37 304 | 98.47 365 | 85.17 378 | 97.69 329 | 97.96 312 |
|
| IB-MVS | | 85.98 20 | 88.63 366 | 86.95 377 | 93.68 331 | 95.12 384 | 84.82 358 | 90.85 386 | 90.17 399 | 87.55 350 | 88.48 405 | 91.34 395 | 58.01 407 | 99.59 166 | 87.24 361 | 93.80 398 | 96.63 374 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| PVSNet_0 | | 81.89 21 | 84.49 382 | 83.21 385 | 88.34 393 | 95.76 369 | 74.97 416 | 83.49 412 | 92.70 371 | 78.47 406 | 87.94 407 | 86.90 414 | 83.38 336 | 96.63 405 | 73.44 412 | 66.86 418 | 93.40 405 |
|
| MVE |  | 73.61 22 | 86.48 381 | 85.92 380 | 88.18 395 | 96.23 344 | 85.28 348 | 81.78 415 | 75.79 419 | 86.01 364 | 82.53 415 | 91.88 389 | 92.74 217 | 87.47 418 | 71.42 415 | 94.86 391 | 91.78 409 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| CMPMVS |  | 73.10 23 | 92.74 313 | 91.39 327 | 96.77 194 | 93.57 407 | 94.67 136 | 94.21 296 | 97.67 271 | 80.36 400 | 93.61 346 | 96.60 289 | 82.85 339 | 97.35 393 | 84.86 380 | 98.78 263 | 98.29 280 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| reproduce_monomvs | | | 92.05 327 | 92.26 314 | 91.43 377 | 95.42 378 | 75.72 413 | 95.68 220 | 97.05 298 | 94.47 211 | 97.95 157 | 98.35 130 | 55.58 415 | 99.05 305 | 96.36 103 | 99.44 159 | 99.51 64 |
|
| mmtdpeth | | | 98.33 33 | 98.53 28 | 97.71 114 | 99.07 98 | 93.44 185 | 98.80 12 | 99.78 4 | 99.10 13 | 96.61 243 | 99.63 7 | 95.42 148 | 99.73 87 | 98.53 29 | 99.86 28 | 99.95 2 |
|
| reproduce_model | | | 98.54 22 | 98.33 38 | 99.15 4 | 99.06 100 | 98.04 12 | 97.04 129 | 99.09 60 | 98.42 37 | 99.03 43 | 98.71 89 | 96.93 73 | 99.83 34 | 97.09 77 | 99.63 90 | 99.56 50 |
|
| reproduce-ours | | | 98.48 26 | 98.27 43 | 99.12 5 | 98.99 110 | 98.02 13 | 96.81 141 | 99.02 81 | 98.29 44 | 98.97 51 | 98.61 100 | 97.27 48 | 99.82 36 | 96.86 88 | 99.61 98 | 99.51 64 |
|
| our_new_method | | | 98.48 26 | 98.27 43 | 99.12 5 | 98.99 110 | 98.02 13 | 96.81 141 | 99.02 81 | 98.29 44 | 98.97 51 | 98.61 100 | 97.27 48 | 99.82 36 | 96.86 88 | 99.61 98 | 99.51 64 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| mvs5depth | | | 98.06 52 | 98.58 26 | 96.51 209 | 98.97 114 | 89.65 268 | 99.43 4 | 99.81 2 | 99.30 7 | 98.36 106 | 99.86 2 | 93.15 206 | 99.88 21 | 98.50 30 | 99.84 38 | 99.99 1 |
|
| MVStest1 | | | 91.89 330 | 91.45 325 | 93.21 342 | 89.01 419 | 84.87 355 | 95.82 213 | 95.05 343 | 91.50 296 | 98.75 72 | 99.19 38 | 57.56 408 | 95.11 408 | 97.78 51 | 98.37 297 | 99.64 35 |
|
| ttmdpeth | | | 94.05 283 | 94.15 275 | 93.75 328 | 95.81 365 | 85.32 345 | 96.00 197 | 94.93 345 | 92.07 282 | 94.19 326 | 99.09 53 | 85.73 316 | 96.41 406 | 90.98 291 | 98.52 286 | 99.53 57 |
|
| WBMVS | | | 91.11 340 | 90.72 342 | 92.26 368 | 95.99 355 | 77.98 403 | 91.47 372 | 95.90 324 | 91.63 291 | 95.90 282 | 96.45 298 | 59.60 405 | 99.46 205 | 89.97 321 | 99.59 106 | 99.33 121 |
|
| dongtai | | | 63.43 385 | 63.37 388 | 63.60 401 | 83.91 423 | 53.17 425 | 85.14 409 | 43.40 427 | 77.91 409 | 80.96 417 | 79.17 417 | 36.36 425 | 77.10 419 | 37.88 420 | 45.63 419 | 60.54 416 |
|
| kuosan | | | 54.81 387 | 54.94 390 | 54.42 402 | 74.43 424 | 50.03 426 | 84.98 410 | 44.27 426 | 61.80 417 | 62.49 421 | 70.43 418 | 35.16 426 | 58.04 421 | 19.30 421 | 41.61 420 | 55.19 417 |
|
| MVSMamba_PlusPlus | | | 97.43 118 | 97.98 60 | 95.78 246 | 98.88 126 | 89.70 266 | 98.03 61 | 98.85 126 | 99.18 11 | 96.84 227 | 99.12 50 | 93.04 209 | 99.91 14 | 98.38 32 | 99.55 121 | 97.73 330 |
|
| MGCFI-Net | | | 97.20 132 | 97.23 128 | 97.08 171 | 97.68 275 | 93.71 175 | 97.79 77 | 99.09 60 | 97.40 84 | 96.59 244 | 93.96 361 | 97.67 31 | 99.35 247 | 96.43 100 | 98.50 290 | 98.17 292 |
|
| testing91 | | | 89.67 357 | 88.55 362 | 93.04 346 | 95.90 358 | 81.80 383 | 92.71 346 | 93.71 355 | 93.71 234 | 90.18 393 | 90.15 404 | 57.11 409 | 99.22 280 | 87.17 362 | 96.32 371 | 98.12 294 |
|
| testing11 | | | 88.93 363 | 87.63 371 | 92.80 356 | 95.87 360 | 81.49 385 | 92.48 351 | 91.54 382 | 91.62 292 | 88.27 406 | 90.24 402 | 55.12 419 | 99.11 297 | 87.30 360 | 96.28 373 | 97.81 324 |
|
| testing99 | | | 89.21 361 | 88.04 367 | 92.70 359 | 95.78 367 | 81.00 390 | 92.65 347 | 92.03 376 | 93.20 253 | 89.90 397 | 90.08 406 | 55.25 416 | 99.14 290 | 87.54 355 | 95.95 377 | 97.97 311 |
|
| UBG | | | 88.29 369 | 87.17 373 | 91.63 375 | 96.08 353 | 78.21 399 | 91.61 369 | 91.50 383 | 89.67 324 | 89.71 398 | 88.97 408 | 59.01 406 | 98.91 321 | 81.28 395 | 96.72 362 | 97.77 327 |
|
| UWE-MVS | | | 87.57 376 | 86.72 378 | 90.13 387 | 95.21 381 | 73.56 417 | 91.94 365 | 83.78 416 | 88.73 337 | 93.00 361 | 92.87 375 | 55.22 417 | 99.25 272 | 81.74 392 | 97.96 313 | 97.59 340 |
|
| ETVMVS | | | 87.62 375 | 85.75 382 | 93.22 341 | 96.15 351 | 83.26 371 | 92.94 338 | 90.37 396 | 91.39 299 | 90.37 390 | 88.45 409 | 51.93 421 | 98.64 349 | 73.76 410 | 96.38 369 | 97.75 328 |
|
| sasdasda | | | 97.23 130 | 97.21 130 | 97.30 153 | 97.65 282 | 94.39 147 | 97.84 74 | 99.05 71 | 97.42 79 | 96.68 236 | 93.85 363 | 97.63 35 | 99.33 252 | 96.29 106 | 98.47 291 | 98.18 290 |
|
| testing222 | | | 87.35 377 | 85.50 384 | 92.93 353 | 95.79 366 | 82.83 373 | 92.40 357 | 90.10 400 | 92.80 271 | 88.87 403 | 89.02 407 | 48.34 422 | 98.70 341 | 75.40 409 | 96.74 360 | 97.27 352 |
|
| WB-MVSnew | | | 91.50 336 | 91.29 329 | 92.14 370 | 94.85 387 | 80.32 392 | 93.29 332 | 88.77 404 | 88.57 339 | 94.03 333 | 92.21 385 | 92.56 224 | 98.28 378 | 80.21 399 | 97.08 349 | 97.81 324 |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 104 | 97.76 83 | 97.11 166 | 98.92 122 | 92.28 215 | 95.83 211 | 99.32 27 | 93.22 251 | 98.91 56 | 98.49 113 | 96.31 112 | 99.64 147 | 99.07 12 | 99.76 57 | 99.40 105 |
|
| fmvsm_l_conf0.5_n | | | 97.68 98 | 97.81 77 | 97.27 155 | 98.92 122 | 92.71 207 | 95.89 208 | 99.41 26 | 93.36 245 | 99.00 47 | 98.44 120 | 96.46 105 | 99.65 143 | 99.09 11 | 99.76 57 | 99.45 90 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 87 | 98.01 57 | 97.18 161 | 99.17 79 | 92.51 210 | 96.57 158 | 99.15 46 | 93.68 237 | 98.89 57 | 99.30 29 | 96.42 107 | 99.37 240 | 99.03 13 | 99.83 42 | 99.66 30 |
|
| fmvsm_s_conf0.1_n | | | 97.73 92 | 98.02 56 | 96.85 187 | 99.09 95 | 91.43 241 | 96.37 168 | 99.11 52 | 94.19 220 | 99.01 45 | 99.25 32 | 96.30 113 | 99.38 235 | 99.00 14 | 99.88 24 | 99.73 22 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 99 | 97.83 75 | 97.13 165 | 98.80 134 | 92.51 210 | 96.25 178 | 99.06 67 | 93.67 238 | 98.64 76 | 99.00 59 | 96.23 117 | 99.36 243 | 98.99 15 | 99.80 50 | 99.53 57 |
|
| fmvsm_s_conf0.5_n | | | 97.62 102 | 97.89 68 | 96.80 191 | 98.79 136 | 91.44 240 | 96.14 187 | 99.06 67 | 94.19 220 | 98.82 63 | 98.98 62 | 96.22 118 | 99.38 235 | 98.98 16 | 99.86 28 | 99.58 39 |
|
| MM | | | 96.87 151 | 96.62 163 | 97.62 122 | 97.72 272 | 93.30 190 | 96.39 164 | 92.61 373 | 97.90 58 | 96.76 233 | 98.64 98 | 90.46 263 | 99.81 40 | 99.16 9 | 99.94 8 | 99.76 18 |
|
| WAC-MVS | | | | | | | 79.32 395 | | | | | | | | 85.41 374 | | |
|
| Syy-MVS | | | 92.09 325 | 91.80 322 | 92.93 353 | 95.19 382 | 82.65 375 | 92.46 352 | 91.35 384 | 90.67 310 | 91.76 381 | 87.61 411 | 85.64 318 | 98.50 362 | 94.73 201 | 96.84 355 | 97.65 335 |
|
| test_fmvsmconf0.1_n | | | 98.41 31 | 98.54 27 | 98.03 95 | 99.16 80 | 94.61 139 | 96.18 182 | 99.73 5 | 95.05 191 | 99.60 15 | 99.34 26 | 98.68 8 | 99.72 93 | 99.21 7 | 99.85 36 | 99.76 18 |
|
| test_fmvsmconf0.01_n | | | 98.57 18 | 98.74 17 | 98.06 90 | 99.39 44 | 94.63 138 | 96.70 154 | 99.82 1 | 95.44 174 | 99.64 11 | 99.52 9 | 98.96 4 | 99.74 81 | 99.38 3 | 99.86 28 | 99.81 9 |
|
| myMVS_eth3d | | | 87.16 380 | 85.61 383 | 91.82 373 | 95.19 382 | 79.32 395 | 92.46 352 | 91.35 384 | 90.67 310 | 91.76 381 | 87.61 411 | 41.96 423 | 98.50 362 | 82.66 390 | 96.84 355 | 97.65 335 |
|
| testing3 | | | 89.72 356 | 88.26 365 | 94.10 323 | 97.66 280 | 84.30 365 | 94.80 273 | 88.25 406 | 94.66 203 | 95.07 305 | 92.51 382 | 41.15 424 | 99.43 215 | 91.81 276 | 98.44 294 | 98.55 250 |
|
| SSC-MVS | | | 95.92 198 | 97.03 141 | 92.58 361 | 99.28 55 | 78.39 398 | 96.68 155 | 95.12 342 | 98.90 23 | 99.11 39 | 98.66 94 | 91.36 251 | 99.68 127 | 95.00 187 | 99.16 219 | 99.67 28 |
|
| test_fmvsmconf_n | | | 98.30 37 | 98.41 35 | 97.99 98 | 98.94 118 | 94.60 140 | 96.00 197 | 99.64 15 | 94.99 194 | 99.43 20 | 99.18 42 | 98.51 10 | 99.71 107 | 99.13 10 | 99.84 38 | 99.67 28 |
|
| WB-MVS | | | 95.50 216 | 96.62 163 | 92.11 371 | 99.21 73 | 77.26 408 | 96.12 188 | 95.40 338 | 98.62 30 | 98.84 61 | 98.26 149 | 91.08 254 | 99.50 192 | 93.37 246 | 98.70 272 | 99.58 39 |
|
| test_fmvsmvis_n_1920 | | | 98.08 49 | 98.47 29 | 96.93 181 | 99.03 107 | 93.29 191 | 96.32 172 | 99.65 12 | 95.59 165 | 99.71 5 | 99.01 58 | 97.66 33 | 99.60 165 | 99.44 2 | 99.83 42 | 97.90 316 |
|
| dmvs_re | | | 92.08 326 | 91.27 331 | 94.51 308 | 97.16 318 | 92.79 205 | 95.65 224 | 92.64 372 | 94.11 224 | 92.74 367 | 90.98 399 | 83.41 335 | 94.44 413 | 80.72 397 | 94.07 396 | 96.29 380 |
|
| SDMVSNet | | | 97.97 57 | 98.26 45 | 97.11 166 | 99.41 40 | 92.21 218 | 96.92 135 | 98.60 183 | 98.58 32 | 98.78 66 | 99.39 18 | 97.80 25 | 99.62 156 | 94.98 190 | 99.86 28 | 99.52 60 |
|
| dmvs_testset | | | 87.30 378 | 86.99 375 | 88.24 394 | 96.71 331 | 77.48 405 | 94.68 279 | 86.81 411 | 92.64 274 | 89.61 399 | 87.01 413 | 85.91 314 | 93.12 414 | 61.04 418 | 88.49 410 | 94.13 401 |
|
| sd_testset | | | 97.97 57 | 98.12 47 | 97.51 130 | 99.41 40 | 93.44 185 | 97.96 64 | 98.25 222 | 98.58 32 | 98.78 66 | 99.39 18 | 98.21 14 | 99.56 175 | 92.65 260 | 99.86 28 | 99.52 60 |
|
| test_fmvsm_n_1920 | | | 98.08 49 | 98.29 42 | 97.43 143 | 98.88 126 | 93.95 166 | 96.17 186 | 99.57 17 | 95.66 160 | 99.52 16 | 98.71 89 | 97.04 64 | 99.64 147 | 99.21 7 | 99.87 26 | 98.69 236 |
|
| test_cas_vis1_n_1920 | | | 95.34 225 | 95.67 211 | 94.35 314 | 98.21 205 | 86.83 329 | 95.61 228 | 99.26 32 | 90.45 313 | 98.17 130 | 98.96 65 | 84.43 327 | 98.31 376 | 96.74 90 | 99.17 218 | 97.90 316 |
|
| test_vis1_n_1920 | | | 95.77 205 | 96.41 179 | 93.85 325 | 98.55 169 | 84.86 356 | 95.91 207 | 99.71 6 | 92.72 273 | 97.67 174 | 98.90 73 | 87.44 303 | 98.73 337 | 97.96 42 | 98.85 256 | 97.96 312 |
|
| test_vis1_n | | | 95.67 210 | 95.89 204 | 95.03 280 | 98.18 211 | 89.89 264 | 96.94 134 | 99.28 31 | 88.25 344 | 98.20 125 | 98.92 69 | 86.69 309 | 97.19 394 | 97.70 57 | 98.82 260 | 98.00 310 |
|
| test_fmvs1_n | | | 95.21 231 | 95.28 219 | 94.99 283 | 98.15 218 | 89.13 281 | 96.81 141 | 99.43 23 | 86.97 357 | 97.21 197 | 98.92 69 | 83.00 338 | 97.13 395 | 98.09 38 | 98.94 245 | 98.72 232 |
|
| mvsany_test1 | | | 93.47 299 | 93.03 296 | 94.79 295 | 94.05 402 | 92.12 223 | 90.82 387 | 90.01 401 | 85.02 378 | 97.26 194 | 98.28 144 | 93.57 198 | 97.03 396 | 92.51 264 | 95.75 383 | 95.23 395 |
|
| APD_test1 | | | 97.95 63 | 97.68 90 | 98.75 35 | 99.60 16 | 98.60 6 | 97.21 119 | 99.08 63 | 96.57 113 | 98.07 143 | 98.38 127 | 96.22 118 | 99.14 290 | 94.71 203 | 99.31 200 | 98.52 253 |
|
| test_vis1_rt | | | 94.03 285 | 93.65 286 | 95.17 274 | 95.76 369 | 93.42 187 | 93.97 310 | 98.33 215 | 84.68 381 | 93.17 358 | 95.89 325 | 92.53 229 | 94.79 410 | 93.50 245 | 94.97 389 | 97.31 351 |
|
| test_vis3_rt | | | 97.04 137 | 96.98 143 | 97.23 160 | 98.44 185 | 95.88 84 | 96.82 140 | 99.67 9 | 90.30 315 | 99.27 30 | 99.33 28 | 94.04 186 | 96.03 407 | 97.14 75 | 97.83 320 | 99.78 12 |
|
| test_fmvs2 | | | 96.38 181 | 96.45 177 | 96.16 229 | 97.85 242 | 91.30 242 | 96.81 141 | 99.45 21 | 89.24 328 | 98.49 90 | 99.38 20 | 88.68 287 | 97.62 391 | 98.83 18 | 99.32 197 | 99.57 46 |
|
| test_fmvs1 | | | 94.51 267 | 94.60 254 | 94.26 319 | 95.91 357 | 87.92 305 | 95.35 245 | 99.02 81 | 86.56 361 | 96.79 228 | 98.52 110 | 82.64 340 | 97.00 398 | 97.87 45 | 98.71 271 | 97.88 318 |
|
| test_fmvs3 | | | 97.38 121 | 97.56 106 | 96.84 189 | 98.63 158 | 92.81 202 | 97.60 94 | 99.61 16 | 90.87 306 | 98.76 71 | 99.66 4 | 94.03 187 | 97.90 386 | 99.24 6 | 99.68 81 | 99.81 9 |
|
| mvsany_test3 | | | 96.21 186 | 95.93 202 | 97.05 173 | 97.40 304 | 94.33 152 | 95.76 215 | 94.20 353 | 89.10 329 | 99.36 25 | 99.60 8 | 93.97 189 | 97.85 387 | 95.40 164 | 98.63 279 | 98.99 189 |
|
| testf1 | | | 98.57 18 | 98.45 32 | 98.93 22 | 99.79 3 | 98.78 3 | 97.69 87 | 99.42 24 | 97.69 68 | 98.92 54 | 98.77 82 | 97.80 25 | 99.25 272 | 96.27 108 | 99.69 77 | 98.76 227 |
|
| APD_test2 | | | 98.57 18 | 98.45 32 | 98.93 22 | 99.79 3 | 98.78 3 | 97.69 87 | 99.42 24 | 97.69 68 | 98.92 54 | 98.77 82 | 97.80 25 | 99.25 272 | 96.27 108 | 99.69 77 | 98.76 227 |
|
| test_f | | | 95.82 203 | 95.88 205 | 95.66 252 | 97.61 287 | 93.21 195 | 95.61 228 | 98.17 235 | 86.98 356 | 98.42 98 | 99.47 13 | 90.46 263 | 94.74 411 | 97.71 55 | 98.45 293 | 99.03 182 |
|
| FE-MVS | | | 92.95 310 | 92.22 315 | 95.11 275 | 97.21 316 | 88.33 295 | 98.54 23 | 93.66 359 | 89.91 321 | 96.21 267 | 98.14 162 | 70.33 395 | 99.50 192 | 87.79 349 | 98.24 303 | 97.51 343 |
|
| FA-MVS(test-final) | | | 94.91 244 | 94.89 237 | 94.99 283 | 97.51 294 | 88.11 303 | 98.27 44 | 95.20 341 | 92.40 280 | 96.68 236 | 98.60 102 | 83.44 334 | 99.28 266 | 93.34 248 | 98.53 285 | 97.59 340 |
|
| balanced_conf03 | | | 96.88 150 | 97.29 123 | 95.63 253 | 97.66 280 | 89.47 273 | 97.95 66 | 98.89 110 | 95.94 145 | 97.77 173 | 98.55 107 | 92.23 234 | 99.68 127 | 97.05 81 | 99.61 98 | 97.73 330 |
|
| MonoMVSNet | | | 93.30 304 | 93.96 282 | 91.33 379 | 94.14 400 | 81.33 387 | 97.68 89 | 96.69 312 | 95.38 177 | 96.32 258 | 98.42 121 | 84.12 330 | 96.76 403 | 90.78 299 | 92.12 403 | 95.89 384 |
|
| patch_mono-2 | | | 96.59 170 | 96.93 147 | 95.55 259 | 98.88 126 | 87.12 323 | 94.47 285 | 99.30 29 | 94.12 223 | 96.65 241 | 98.41 123 | 94.98 162 | 99.87 24 | 95.81 134 | 99.78 55 | 99.66 30 |
|
| EGC-MVSNET | | | 83.08 383 | 77.93 386 | 98.53 54 | 99.57 19 | 97.55 30 | 98.33 38 | 98.57 188 | 4.71 421 | 10.38 422 | 98.90 73 | 95.60 142 | 99.50 192 | 95.69 137 | 99.61 98 | 98.55 250 |
|
| test2506 | | | 89.86 354 | 89.16 359 | 91.97 372 | 98.95 115 | 76.83 409 | 98.54 23 | 61.07 424 | 96.20 128 | 97.07 212 | 99.16 46 | 55.19 418 | 99.69 122 | 96.43 100 | 99.83 42 | 99.38 112 |
|
| test1111 | | | 94.53 266 | 94.81 243 | 93.72 329 | 99.06 100 | 81.94 382 | 98.31 39 | 83.87 415 | 96.37 120 | 98.49 90 | 99.17 45 | 81.49 343 | 99.73 87 | 96.64 91 | 99.86 28 | 99.49 75 |
|
| ECVR-MVS |  | | 94.37 272 | 94.48 261 | 94.05 324 | 98.95 115 | 83.10 372 | 98.31 39 | 82.48 417 | 96.20 128 | 98.23 123 | 99.16 46 | 81.18 346 | 99.66 141 | 95.95 124 | 99.83 42 | 99.38 112 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| tt0805 | | | 97.44 116 | 97.56 106 | 97.11 166 | 99.55 22 | 96.36 67 | 98.66 18 | 95.66 328 | 98.31 41 | 97.09 211 | 95.45 337 | 97.17 56 | 98.50 362 | 98.67 25 | 97.45 343 | 96.48 377 |
|
| DVP-MVS++ | | | 97.96 59 | 97.90 65 | 98.12 86 | 97.75 267 | 95.40 105 | 99.03 8 | 98.89 110 | 96.62 106 | 98.62 78 | 98.30 139 | 96.97 69 | 99.75 72 | 95.70 135 | 99.25 208 | 99.21 147 |
|
| FOURS1 | | | | | | 99.59 17 | 98.20 8 | 99.03 8 | 99.25 33 | 98.96 22 | 98.87 59 | | | | | | |
|
| MSC_two_6792asdad | | | | | 98.22 77 | 97.75 267 | 95.34 112 | | 98.16 239 | | | | | 99.75 72 | 95.87 130 | 99.51 139 | 99.57 46 |
|
| PC_three_1452 | | | | | | | | | | 87.24 352 | 98.37 103 | 97.44 230 | 97.00 67 | 96.78 402 | 92.01 269 | 99.25 208 | 99.21 147 |
|
| No_MVS | | | | | 98.22 77 | 97.75 267 | 95.34 112 | | 98.16 239 | | | | | 99.75 72 | 95.87 130 | 99.51 139 | 99.57 46 |
|
| test_one_0601 | | | | | | 99.05 105 | 95.50 102 | | 98.87 119 | 97.21 93 | 98.03 148 | 98.30 139 | 96.93 73 | | | | |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| GeoE | | | 97.75 91 | 97.70 86 | 97.89 103 | 98.88 126 | 94.53 142 | 97.10 125 | 98.98 98 | 95.75 158 | 97.62 175 | 97.59 220 | 97.61 37 | 99.77 61 | 96.34 105 | 99.44 159 | 99.36 118 |
|
| test_method | | | 66.88 384 | 66.13 387 | 69.11 400 | 62.68 425 | 25.73 428 | 49.76 416 | 96.04 319 | 14.32 420 | 64.27 420 | 91.69 392 | 73.45 385 | 88.05 417 | 76.06 408 | 66.94 417 | 93.54 403 |
|
| Anonymous20240521 | | | 97.07 136 | 97.51 111 | 95.76 247 | 99.35 49 | 88.18 298 | 97.78 78 | 98.40 206 | 97.11 94 | 98.34 110 | 99.04 57 | 89.58 276 | 99.79 47 | 98.09 38 | 99.93 11 | 99.30 127 |
|
| h-mvs33 | | | 96.29 183 | 95.63 214 | 98.26 72 | 98.50 178 | 96.11 77 | 96.90 136 | 97.09 295 | 96.58 110 | 97.21 197 | 98.19 158 | 84.14 328 | 99.78 51 | 95.89 128 | 96.17 375 | 98.89 207 |
|
| hse-mvs2 | | | 95.77 205 | 95.09 227 | 97.79 109 | 97.84 247 | 95.51 99 | 95.66 222 | 95.43 337 | 96.58 110 | 97.21 197 | 96.16 311 | 84.14 328 | 99.54 182 | 95.89 128 | 96.92 351 | 98.32 273 |
|
| CL-MVSNet_self_test | | | 95.04 239 | 94.79 245 | 95.82 244 | 97.51 294 | 89.79 265 | 91.14 382 | 96.82 306 | 93.05 261 | 96.72 234 | 96.40 302 | 90.82 258 | 99.16 288 | 91.95 271 | 98.66 276 | 98.50 256 |
|
| KD-MVS_2432*1600 | | | 88.93 363 | 87.74 368 | 92.49 362 | 88.04 420 | 81.99 380 | 89.63 401 | 95.62 330 | 91.35 300 | 95.06 306 | 93.11 367 | 56.58 411 | 98.63 350 | 85.19 376 | 95.07 387 | 96.85 364 |
|
| KD-MVS_self_test | | | 97.86 80 | 98.07 51 | 97.25 158 | 99.22 66 | 92.81 202 | 97.55 99 | 98.94 105 | 97.10 95 | 98.85 60 | 98.88 75 | 95.03 159 | 99.67 135 | 97.39 67 | 99.65 86 | 99.26 139 |
|
| AUN-MVS | | | 93.95 288 | 92.69 307 | 97.74 112 | 97.80 255 | 95.38 107 | 95.57 231 | 95.46 336 | 91.26 302 | 92.64 371 | 96.10 317 | 74.67 377 | 99.55 179 | 93.72 240 | 96.97 350 | 98.30 277 |
|
| ZD-MVS | | | | | | 98.43 186 | 95.94 83 | | 98.56 189 | 90.72 308 | 96.66 239 | 97.07 258 | 95.02 160 | 99.74 81 | 91.08 288 | 98.93 247 | |
|
| SR-MVS-dyc-post | | | 98.14 43 | 97.84 72 | 99.02 10 | 98.81 132 | 98.05 10 | 97.55 99 | 98.86 122 | 97.77 60 | 98.20 125 | 98.07 172 | 96.60 96 | 99.76 66 | 95.49 149 | 99.20 213 | 99.26 139 |
|
| RE-MVS-def | | | | 97.88 70 | | 98.81 132 | 98.05 10 | 97.55 99 | 98.86 122 | 97.77 60 | 98.20 125 | 98.07 172 | 96.94 71 | | 95.49 149 | 99.20 213 | 99.26 139 |
|
| SED-MVS | | | 97.94 66 | 97.90 65 | 98.07 88 | 99.22 66 | 95.35 110 | 96.79 145 | 98.83 136 | 96.11 133 | 99.08 40 | 98.24 151 | 97.87 23 | 99.72 93 | 95.44 157 | 99.51 139 | 99.14 160 |
|
| IU-MVS | | | | | | 99.22 66 | 95.40 105 | | 98.14 242 | 85.77 369 | 98.36 106 | | | | 95.23 170 | 99.51 139 | 99.49 75 |
|
| OPU-MVS | | | | | 97.64 121 | 98.01 229 | 95.27 115 | 96.79 145 | | | | 97.35 242 | 96.97 69 | 98.51 361 | 91.21 287 | 99.25 208 | 99.14 160 |
|
| test_241102_TWO | | | | | | | | | 98.83 136 | 96.11 133 | 98.62 78 | 98.24 151 | 96.92 76 | 99.72 93 | 95.44 157 | 99.49 146 | 99.49 75 |
|
| test_241102_ONE | | | | | | 99.22 66 | 95.35 110 | | 98.83 136 | 96.04 138 | 99.08 40 | 98.13 164 | 97.87 23 | 99.33 252 | | | |
|
| SF-MVS | | | 97.60 104 | 97.39 117 | 98.22 77 | 98.93 120 | 95.69 91 | 97.05 128 | 99.10 55 | 95.32 179 | 97.83 169 | 97.88 195 | 96.44 106 | 99.72 93 | 94.59 208 | 99.39 177 | 99.25 143 |
|
| cl22 | | | 93.25 306 | 92.84 302 | 94.46 310 | 94.30 395 | 86.00 338 | 91.09 384 | 96.64 314 | 90.74 307 | 95.79 285 | 96.31 306 | 78.24 358 | 98.77 333 | 94.15 223 | 98.34 298 | 98.62 243 |
|
| miper_ehance_all_eth | | | 94.69 256 | 94.70 247 | 94.64 299 | 95.77 368 | 86.22 336 | 91.32 378 | 98.24 224 | 91.67 290 | 97.05 213 | 96.65 287 | 88.39 291 | 99.22 280 | 94.88 191 | 98.34 298 | 98.49 257 |
|
| miper_enhance_ethall | | | 93.14 308 | 92.78 305 | 94.20 320 | 93.65 405 | 85.29 347 | 89.97 395 | 97.85 260 | 85.05 376 | 96.15 272 | 94.56 352 | 85.74 315 | 99.14 290 | 93.74 238 | 98.34 298 | 98.17 292 |
|
| ZNCC-MVS | | | 97.92 70 | 97.62 100 | 98.83 29 | 99.32 53 | 97.24 43 | 97.45 106 | 98.84 130 | 95.76 156 | 96.93 222 | 97.43 231 | 97.26 52 | 99.79 47 | 96.06 114 | 99.53 129 | 99.45 90 |
|
| dcpmvs_2 | | | 97.12 134 | 97.99 59 | 94.51 308 | 99.11 92 | 84.00 367 | 97.75 82 | 99.65 12 | 97.38 86 | 99.14 37 | 98.42 121 | 95.16 155 | 99.96 2 | 95.52 148 | 99.78 55 | 99.58 39 |
|
| cl____ | | | 94.73 251 | 94.64 250 | 95.01 281 | 95.85 362 | 87.00 325 | 91.33 376 | 98.08 247 | 93.34 246 | 97.10 206 | 97.33 244 | 84.01 332 | 99.30 260 | 95.14 178 | 99.56 115 | 98.71 235 |
|
| DIV-MVS_self_test | | | 94.73 251 | 94.64 250 | 95.01 281 | 95.86 361 | 87.00 325 | 91.33 376 | 98.08 247 | 93.34 246 | 97.10 206 | 97.34 243 | 84.02 331 | 99.31 257 | 95.15 177 | 99.55 121 | 98.72 232 |
|
| eth_miper_zixun_eth | | | 94.89 246 | 94.93 234 | 94.75 297 | 95.99 355 | 86.12 337 | 91.35 375 | 98.49 194 | 93.40 243 | 97.12 204 | 97.25 249 | 86.87 308 | 99.35 247 | 95.08 183 | 98.82 260 | 98.78 223 |
|
| 9.14 | | | | 96.69 160 | | 98.53 172 | | 96.02 195 | 98.98 98 | 93.23 250 | 97.18 200 | 97.46 228 | 96.47 103 | 99.62 156 | 92.99 257 | 99.32 197 | |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| save fliter | | | | | | 98.48 181 | 94.71 133 | 94.53 284 | 98.41 204 | 95.02 193 | | | | | | | |
|
| ET-MVSNet_ETH3D | | | 91.12 339 | 89.67 352 | 95.47 263 | 96.41 339 | 89.15 280 | 91.54 371 | 90.23 398 | 89.07 330 | 86.78 412 | 92.84 376 | 69.39 397 | 99.44 213 | 94.16 222 | 96.61 365 | 97.82 322 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 46 | 99.77 5 | 96.34 69 | 99.18 6 | 99.20 37 | 99.67 2 | 99.73 4 | 99.65 6 | 99.15 3 | 99.86 26 | 97.22 70 | 99.92 14 | 99.77 13 |
|
| EIA-MVS | | | 96.04 193 | 95.77 209 | 96.85 187 | 97.80 255 | 92.98 198 | 96.12 188 | 99.16 42 | 94.65 204 | 93.77 340 | 91.69 392 | 95.68 138 | 99.67 135 | 94.18 221 | 98.85 256 | 97.91 315 |
|
| miper_refine_blended | | | 88.93 363 | 87.74 368 | 92.49 362 | 88.04 420 | 81.99 380 | 89.63 401 | 95.62 330 | 91.35 300 | 95.06 306 | 93.11 367 | 56.58 411 | 98.63 350 | 85.19 376 | 95.07 387 | 96.85 364 |
|
| miper_lstm_enhance | | | 94.81 250 | 94.80 244 | 94.85 291 | 96.16 348 | 86.45 333 | 91.14 382 | 98.20 229 | 93.49 241 | 97.03 214 | 97.37 241 | 84.97 323 | 99.26 270 | 95.28 166 | 99.56 115 | 98.83 216 |
|
| ETV-MVS | | | 96.13 190 | 95.90 203 | 96.82 190 | 97.76 265 | 93.89 167 | 95.40 239 | 98.95 104 | 95.87 151 | 95.58 295 | 91.00 398 | 96.36 111 | 99.72 93 | 93.36 247 | 98.83 259 | 96.85 364 |
|
| CS-MVS | | | 98.09 48 | 98.01 57 | 98.32 67 | 98.45 184 | 96.69 56 | 98.52 26 | 99.69 8 | 98.07 53 | 96.07 273 | 97.19 252 | 96.88 80 | 99.86 26 | 97.50 63 | 99.73 66 | 98.41 261 |
|
| D2MVS | | | 95.18 233 | 95.17 224 | 95.21 271 | 97.76 265 | 87.76 312 | 94.15 299 | 97.94 255 | 89.77 323 | 96.99 217 | 97.68 215 | 87.45 302 | 99.14 290 | 95.03 186 | 99.81 47 | 98.74 229 |
|
| DVP-MVS |  | | 97.78 89 | 97.65 93 | 98.16 81 | 99.24 61 | 95.51 99 | 96.74 148 | 98.23 225 | 95.92 147 | 98.40 100 | 98.28 144 | 97.06 62 | 99.71 107 | 95.48 153 | 99.52 134 | 99.26 139 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 96.62 106 | 98.40 100 | 98.28 144 | 97.10 58 | 99.71 107 | 95.70 135 | 99.62 92 | 99.58 39 |
|
| test_0728_SECOND | | | | | 98.25 75 | 99.23 63 | 95.49 103 | 96.74 148 | 98.89 110 | | | | | 99.75 72 | 95.48 153 | 99.52 134 | 99.53 57 |
|
| test0726 | | | | | | 99.24 61 | 95.51 99 | 96.89 137 | 98.89 110 | 95.92 147 | 98.64 76 | 98.31 135 | 97.06 62 | | | | |
|
| SR-MVS | | | 98.00 56 | 97.66 92 | 99.01 12 | 98.77 140 | 97.93 15 | 97.38 111 | 98.83 136 | 97.32 88 | 98.06 144 | 97.85 197 | 96.65 91 | 99.77 61 | 95.00 187 | 99.11 227 | 99.32 122 |
|
| DPM-MVS | | | 93.68 293 | 92.77 306 | 96.42 215 | 97.91 239 | 92.54 208 | 91.17 381 | 97.47 284 | 84.99 379 | 93.08 360 | 94.74 349 | 89.90 273 | 99.00 311 | 87.54 355 | 98.09 309 | 97.72 332 |
|
| GST-MVS | | | 97.82 85 | 97.49 114 | 98.81 31 | 99.23 63 | 97.25 42 | 97.16 120 | 98.79 146 | 95.96 143 | 97.53 178 | 97.40 233 | 96.93 73 | 99.77 61 | 95.04 184 | 99.35 187 | 99.42 102 |
|
| test_yl | | | 94.40 269 | 94.00 279 | 95.59 254 | 96.95 325 | 89.52 271 | 94.75 277 | 95.55 334 | 96.18 131 | 96.79 228 | 96.14 314 | 81.09 347 | 99.18 283 | 90.75 301 | 97.77 321 | 98.07 298 |
|
| thisisatest0530 | | | 92.71 314 | 91.76 323 | 95.56 258 | 98.42 187 | 88.23 296 | 96.03 194 | 87.35 408 | 94.04 227 | 96.56 247 | 95.47 336 | 64.03 403 | 99.77 61 | 94.78 198 | 99.11 227 | 98.68 239 |
|
| Anonymous20240529 | | | 97.96 59 | 98.04 54 | 97.71 114 | 98.69 151 | 94.28 156 | 97.86 73 | 98.31 219 | 98.79 26 | 99.23 33 | 98.86 77 | 95.76 136 | 99.61 163 | 95.49 149 | 99.36 182 | 99.23 145 |
|
| Anonymous202405211 | | | 96.34 182 | 95.98 198 | 97.43 143 | 98.25 201 | 93.85 169 | 96.74 148 | 94.41 351 | 97.72 65 | 98.37 103 | 98.03 180 | 87.15 305 | 99.53 184 | 94.06 226 | 99.07 233 | 98.92 202 |
|
| DCV-MVSNet | | | 94.40 269 | 94.00 279 | 95.59 254 | 96.95 325 | 89.52 271 | 94.75 277 | 95.55 334 | 96.18 131 | 96.79 228 | 96.14 314 | 81.09 347 | 99.18 283 | 90.75 301 | 97.77 321 | 98.07 298 |
|
| tttt0517 | | | 93.31 303 | 92.56 311 | 95.57 256 | 98.71 147 | 87.86 307 | 97.44 107 | 87.17 409 | 95.79 155 | 97.47 186 | 96.84 274 | 64.12 402 | 99.81 40 | 96.20 111 | 99.32 197 | 99.02 185 |
|
| our_test_3 | | | 94.20 278 | 94.58 257 | 93.07 345 | 96.16 348 | 81.20 388 | 90.42 391 | 96.84 304 | 90.72 308 | 97.14 202 | 97.13 254 | 90.47 262 | 99.11 297 | 94.04 229 | 98.25 302 | 98.91 203 |
|
| thisisatest0515 | | | 90.43 346 | 89.18 358 | 94.17 322 | 97.07 322 | 85.44 343 | 89.75 400 | 87.58 407 | 88.28 343 | 93.69 344 | 91.72 391 | 65.27 401 | 99.58 168 | 90.59 308 | 98.67 274 | 97.50 345 |
|
| ppachtmachnet_test | | | 94.49 268 | 94.84 240 | 93.46 335 | 96.16 348 | 82.10 379 | 90.59 389 | 97.48 283 | 90.53 312 | 97.01 216 | 97.59 220 | 91.01 255 | 99.36 243 | 93.97 232 | 99.18 217 | 98.94 195 |
|
| SMA-MVS |  | | 97.48 113 | 97.11 134 | 98.60 49 | 98.83 131 | 96.67 57 | 96.74 148 | 98.73 158 | 91.61 293 | 98.48 92 | 98.36 129 | 96.53 98 | 99.68 127 | 95.17 173 | 99.54 125 | 99.45 90 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| GSMVS | | | | | | | | | | | | | | | | | 98.06 302 |
|
| DPE-MVS |  | | 97.64 100 | 97.35 120 | 98.50 55 | 98.85 130 | 96.18 73 | 95.21 255 | 98.99 95 | 95.84 153 | 98.78 66 | 98.08 170 | 96.84 84 | 99.81 40 | 93.98 231 | 99.57 112 | 99.52 60 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_part2 | | | | | | 99.03 107 | 96.07 78 | | | | 98.08 141 | | | | | | |
|
| thres100view900 | | | 91.76 333 | 91.26 333 | 93.26 338 | 98.21 205 | 84.50 360 | 96.39 164 | 90.39 394 | 96.87 100 | 96.33 257 | 93.08 371 | 73.44 386 | 99.42 217 | 78.85 403 | 97.74 324 | 95.85 385 |
|
| tfpnnormal | | | 97.72 94 | 97.97 61 | 96.94 180 | 99.26 57 | 92.23 217 | 97.83 76 | 98.45 197 | 98.25 46 | 99.13 38 | 98.66 94 | 96.65 91 | 99.69 122 | 93.92 233 | 99.62 92 | 98.91 203 |
|
| tfpn200view9 | | | 91.55 335 | 91.00 335 | 93.21 342 | 98.02 227 | 84.35 363 | 95.70 217 | 90.79 391 | 96.26 125 | 95.90 282 | 92.13 387 | 73.62 383 | 99.42 217 | 78.85 403 | 97.74 324 | 95.85 385 |
|
| c3_l | | | 95.20 232 | 95.32 218 | 94.83 293 | 96.19 346 | 86.43 334 | 91.83 367 | 98.35 214 | 93.47 242 | 97.36 190 | 97.26 248 | 88.69 286 | 99.28 266 | 95.41 163 | 99.36 182 | 98.78 223 |
|
| CHOSEN 280x420 | | | 89.98 351 | 89.19 357 | 92.37 366 | 95.60 373 | 81.13 389 | 86.22 408 | 97.09 295 | 81.44 395 | 87.44 409 | 93.15 366 | 73.99 378 | 99.47 202 | 88.69 339 | 99.07 233 | 96.52 376 |
|
| CANet | | | 95.86 201 | 95.65 213 | 96.49 211 | 96.41 339 | 90.82 251 | 94.36 287 | 98.41 204 | 94.94 195 | 92.62 373 | 96.73 283 | 92.68 219 | 99.71 107 | 95.12 181 | 99.60 104 | 98.94 195 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 178 | 96.12 190 | 97.39 148 | 97.18 317 | 94.39 147 | 95.46 233 | 98.73 158 | 96.03 140 | 94.72 314 | 94.92 347 | 96.28 116 | 99.69 122 | 93.81 236 | 97.98 312 | 98.09 295 |
|
| Effi-MVS+-dtu | | | 96.81 157 | 96.09 192 | 98.99 14 | 96.90 329 | 98.69 5 | 96.42 163 | 98.09 246 | 95.86 152 | 95.15 304 | 95.54 334 | 94.26 182 | 99.81 40 | 94.06 226 | 98.51 289 | 98.47 258 |
|
| CANet_DTU | | | 94.65 260 | 94.21 272 | 95.96 236 | 95.90 358 | 89.68 267 | 93.92 312 | 97.83 264 | 93.19 254 | 90.12 394 | 95.64 331 | 88.52 288 | 99.57 174 | 93.27 252 | 99.47 152 | 98.62 243 |
|
| MVS_0304 | | | 95.71 207 | 95.18 223 | 97.33 151 | 94.85 387 | 92.82 200 | 95.36 242 | 90.89 390 | 95.51 169 | 95.61 293 | 97.82 201 | 88.39 291 | 99.78 51 | 98.23 35 | 99.91 17 | 99.40 105 |
|
| MP-MVS-pluss | | | 97.69 96 | 97.36 119 | 98.70 42 | 99.50 31 | 96.84 51 | 95.38 241 | 98.99 95 | 92.45 278 | 98.11 136 | 98.31 135 | 97.25 53 | 99.77 61 | 96.60 93 | 99.62 92 | 99.48 81 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MSP-MVS | | | 97.45 115 | 96.92 149 | 99.03 9 | 99.26 57 | 97.70 22 | 97.66 90 | 98.89 110 | 95.65 161 | 98.51 87 | 96.46 297 | 92.15 236 | 99.81 40 | 95.14 178 | 98.58 284 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| sam_mvs1 | | | | | | | | | | | | | 77.80 360 | | | | 98.06 302 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 364 | | | | |
|
| IterMVS-SCA-FT | | | 95.86 201 | 96.19 188 | 94.85 291 | 97.68 275 | 85.53 342 | 92.42 355 | 97.63 279 | 96.99 96 | 98.36 106 | 98.54 109 | 87.94 295 | 99.75 72 | 97.07 80 | 99.08 231 | 99.27 138 |
|
| TSAR-MVS + MP. | | | 97.42 119 | 97.23 128 | 98.00 97 | 99.38 46 | 95.00 127 | 97.63 93 | 98.20 229 | 93.00 263 | 98.16 131 | 98.06 177 | 95.89 125 | 99.72 93 | 95.67 139 | 99.10 229 | 99.28 134 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| xiu_mvs_v1_base_debu | | | 95.62 212 | 95.96 199 | 94.60 302 | 98.01 229 | 88.42 291 | 93.99 307 | 98.21 226 | 92.98 264 | 95.91 279 | 94.53 353 | 96.39 108 | 99.72 93 | 95.43 160 | 98.19 304 | 95.64 389 |
|
| OPM-MVS | | | 97.54 109 | 97.25 126 | 98.41 61 | 99.11 92 | 96.61 60 | 95.24 253 | 98.46 196 | 94.58 209 | 98.10 138 | 98.07 172 | 97.09 60 | 99.39 232 | 95.16 175 | 99.44 159 | 99.21 147 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| ACMMP_NAP | | | 97.89 76 | 97.63 98 | 98.67 44 | 99.35 49 | 96.84 51 | 96.36 169 | 98.79 146 | 95.07 190 | 97.88 163 | 98.35 130 | 97.24 54 | 99.72 93 | 96.05 116 | 99.58 109 | 99.45 90 |
|
| ambc | | | | | 96.56 207 | 98.23 204 | 91.68 236 | 97.88 72 | 98.13 243 | | 98.42 98 | 98.56 106 | 94.22 183 | 99.04 307 | 94.05 228 | 99.35 187 | 98.95 193 |
|
| MTGPA |  | | | | | | | | 98.73 158 | | | | | | | | |
|
| SPE-MVS-test | | | 97.91 73 | 97.84 72 | 98.14 84 | 98.52 173 | 96.03 81 | 98.38 34 | 99.67 9 | 98.11 51 | 95.50 297 | 96.92 270 | 96.81 86 | 99.87 24 | 96.87 87 | 99.76 57 | 98.51 254 |
|
| Effi-MVS+ | | | 96.19 187 | 96.01 195 | 96.71 197 | 97.43 302 | 92.19 222 | 96.12 188 | 99.10 55 | 95.45 172 | 93.33 356 | 94.71 350 | 97.23 55 | 99.56 175 | 93.21 254 | 97.54 337 | 98.37 266 |
|
| xiu_mvs_v2_base | | | 94.22 274 | 94.63 252 | 92.99 350 | 97.32 312 | 84.84 357 | 92.12 361 | 97.84 262 | 91.96 286 | 94.17 327 | 93.43 365 | 96.07 121 | 99.71 107 | 91.27 284 | 97.48 340 | 94.42 399 |
|
| xiu_mvs_v1_base | | | 95.62 212 | 95.96 199 | 94.60 302 | 98.01 229 | 88.42 291 | 93.99 307 | 98.21 226 | 92.98 264 | 95.91 279 | 94.53 353 | 96.39 108 | 99.72 93 | 95.43 160 | 98.19 304 | 95.64 389 |
|
| new-patchmatchnet | | | 95.67 210 | 96.58 167 | 92.94 352 | 97.48 296 | 80.21 393 | 92.96 337 | 98.19 234 | 94.83 198 | 98.82 63 | 98.79 79 | 93.31 203 | 99.51 191 | 95.83 132 | 99.04 237 | 99.12 167 |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 52 | 99.81 2 | 96.38 66 | 98.87 10 | 99.30 29 | 99.01 20 | 99.63 12 | 99.66 4 | 99.27 2 | 99.68 127 | 97.75 53 | 99.89 23 | 99.62 36 |
|
| pmmvs5 | | | 94.63 261 | 94.34 268 | 95.50 261 | 97.63 286 | 88.34 294 | 94.02 305 | 97.13 293 | 87.15 353 | 95.22 303 | 97.15 253 | 87.50 301 | 99.27 269 | 93.99 230 | 99.26 207 | 98.88 211 |
|
| test_post1 | | | | | | | | 94.98 268 | | | | 10.37 423 | 76.21 372 | 99.04 307 | 89.47 328 | | |
|
| test_post | | | | | | | | | | | | 10.87 422 | 76.83 368 | 99.07 303 | | | |
|
| Fast-Effi-MVS+ | | | 95.49 217 | 95.07 228 | 96.75 195 | 97.67 279 | 92.82 200 | 94.22 295 | 98.60 183 | 91.61 293 | 93.42 354 | 92.90 374 | 96.73 89 | 99.70 115 | 92.60 261 | 97.89 318 | 97.74 329 |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 274 | 77.36 365 | 99.42 217 | | | |
|
| Anonymous20231211 | | | 98.55 21 | 98.76 14 | 97.94 101 | 98.79 136 | 94.37 150 | 98.84 11 | 99.15 46 | 99.37 4 | 99.67 8 | 99.43 17 | 95.61 141 | 99.72 93 | 98.12 36 | 99.86 28 | 99.73 22 |
|
| pmmvs-eth3d | | | 96.49 175 | 96.18 189 | 97.42 145 | 98.25 201 | 94.29 153 | 94.77 276 | 98.07 251 | 89.81 322 | 97.97 154 | 98.33 133 | 93.11 207 | 99.08 302 | 95.46 156 | 99.84 38 | 98.89 207 |
|
| GG-mvs-BLEND | | | | | 90.60 383 | 91.00 416 | 84.21 366 | 98.23 46 | 72.63 423 | | 82.76 414 | 84.11 415 | 56.14 413 | 96.79 401 | 72.20 413 | 92.09 404 | 90.78 412 |
|
| xiu_mvs_v1_base_debi | | | 95.62 212 | 95.96 199 | 94.60 302 | 98.01 229 | 88.42 291 | 93.99 307 | 98.21 226 | 92.98 264 | 95.91 279 | 94.53 353 | 96.39 108 | 99.72 93 | 95.43 160 | 98.19 304 | 95.64 389 |
|
| Anonymous20231206 | | | 95.27 229 | 95.06 230 | 95.88 242 | 98.72 144 | 89.37 275 | 95.70 217 | 97.85 260 | 88.00 347 | 96.98 219 | 97.62 218 | 91.95 243 | 99.34 250 | 89.21 331 | 99.53 129 | 98.94 195 |
|
| MTAPA | | | 98.14 43 | 97.84 72 | 99.06 7 | 99.44 36 | 97.90 16 | 97.25 115 | 98.73 158 | 97.69 68 | 97.90 161 | 97.96 187 | 95.81 134 | 99.82 36 | 96.13 113 | 99.61 98 | 99.45 90 |
|
| MTMP | | | | | | | | 96.55 159 | 74.60 420 | | | | | | | | |
|
| gm-plane-assit | | | | | | 91.79 415 | 71.40 421 | | | 81.67 392 | | 90.11 405 | | 98.99 313 | 84.86 380 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 283 | 98.89 252 | 99.00 186 |
|
| MVP-Stereo | | | 95.69 208 | 95.28 219 | 96.92 182 | 98.15 218 | 93.03 197 | 95.64 227 | 98.20 229 | 90.39 314 | 96.63 242 | 97.73 211 | 91.63 248 | 99.10 300 | 91.84 275 | 97.31 347 | 98.63 242 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| TEST9 | | | | | | 97.84 247 | 95.23 117 | 93.62 321 | 98.39 207 | 86.81 358 | 93.78 338 | 95.99 319 | 94.68 169 | 99.52 187 | | | |
|
| train_agg | | | 95.46 221 | 94.66 248 | 97.88 104 | 97.84 247 | 95.23 117 | 93.62 321 | 98.39 207 | 87.04 354 | 93.78 338 | 95.99 319 | 94.58 173 | 99.52 187 | 91.76 278 | 98.90 249 | 98.89 207 |
|
| gg-mvs-nofinetune | | | 88.28 370 | 86.96 376 | 92.23 369 | 92.84 412 | 84.44 362 | 98.19 52 | 74.60 420 | 99.08 14 | 87.01 411 | 99.47 13 | 56.93 410 | 98.23 380 | 78.91 402 | 95.61 384 | 94.01 402 |
|
| SCA | | | 93.38 302 | 93.52 289 | 92.96 351 | 96.24 342 | 81.40 386 | 93.24 333 | 94.00 354 | 91.58 295 | 94.57 317 | 96.97 265 | 87.94 295 | 99.42 217 | 89.47 328 | 97.66 333 | 98.06 302 |
|
| Patchmatch-test | | | 93.60 296 | 93.25 293 | 94.63 300 | 96.14 352 | 87.47 316 | 96.04 193 | 94.50 350 | 93.57 239 | 96.47 251 | 96.97 265 | 76.50 369 | 98.61 352 | 90.67 307 | 98.41 296 | 97.81 324 |
|
| test_8 | | | | | | 97.81 251 | 95.07 126 | 93.54 324 | 98.38 209 | 87.04 354 | 93.71 342 | 95.96 322 | 94.58 173 | 99.52 187 | | | |
|
| MS-PatchMatch | | | 94.83 248 | 94.91 236 | 94.57 305 | 96.81 330 | 87.10 324 | 94.23 294 | 97.34 286 | 88.74 336 | 97.14 202 | 97.11 256 | 91.94 244 | 98.23 380 | 92.99 257 | 97.92 315 | 98.37 266 |
|
| Patchmatch-RL test | | | 94.66 259 | 94.49 260 | 95.19 272 | 98.54 171 | 88.91 283 | 92.57 348 | 98.74 157 | 91.46 298 | 98.32 114 | 97.75 208 | 77.31 366 | 98.81 330 | 96.06 114 | 99.61 98 | 97.85 320 |
|
| cdsmvs_eth3d_5k | | | 24.22 388 | 32.30 391 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 98.10 245 | 0.00 424 | 0.00 425 | 95.06 343 | 97.54 39 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 7.98 391 | 10.65 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 95.82 130 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 316 | 98.90 249 | 99.10 174 |
|
| agg_prior | | | | | | 97.80 255 | 94.96 128 | | 98.36 211 | | 93.49 350 | | | 99.53 184 | | | |
|
| tmp_tt | | | 57.23 386 | 62.50 389 | 41.44 403 | 34.77 426 | 49.21 427 | 83.93 411 | 60.22 425 | 15.31 419 | 71.11 419 | 79.37 416 | 70.09 396 | 44.86 422 | 64.76 416 | 82.93 416 | 30.25 418 |
|
| canonicalmvs | | | 97.23 130 | 97.21 130 | 97.30 153 | 97.65 282 | 94.39 147 | 97.84 74 | 99.05 71 | 97.42 79 | 96.68 236 | 93.85 363 | 97.63 35 | 99.33 252 | 96.29 106 | 98.47 291 | 98.18 290 |
|
| anonymousdsp | | | 98.72 15 | 98.63 21 | 98.99 14 | 99.62 15 | 97.29 41 | 98.65 19 | 99.19 39 | 95.62 163 | 99.35 26 | 99.37 21 | 97.38 43 | 99.90 16 | 98.59 27 | 99.91 17 | 99.77 13 |
|
| alignmvs | | | 96.01 195 | 95.52 217 | 97.50 134 | 97.77 264 | 94.71 133 | 96.07 191 | 96.84 304 | 97.48 77 | 96.78 232 | 94.28 359 | 85.50 319 | 99.40 228 | 96.22 110 | 98.73 270 | 98.40 262 |
|
| nrg030 | | | 98.54 22 | 98.62 23 | 98.32 67 | 99.22 66 | 95.66 94 | 97.90 71 | 99.08 63 | 98.31 41 | 99.02 44 | 98.74 85 | 97.68 30 | 99.61 163 | 97.77 52 | 99.85 36 | 99.70 26 |
|
| v144192 | | | 96.69 166 | 96.90 151 | 96.03 233 | 98.25 201 | 88.92 282 | 95.49 232 | 98.77 151 | 93.05 261 | 98.09 139 | 98.29 143 | 92.51 230 | 99.70 115 | 98.11 37 | 99.56 115 | 99.47 84 |
|
| FIs | | | 97.93 69 | 98.07 51 | 97.48 138 | 99.38 46 | 92.95 199 | 98.03 61 | 99.11 52 | 98.04 55 | 98.62 78 | 98.66 94 | 93.75 195 | 99.78 51 | 97.23 69 | 99.84 38 | 99.73 22 |
|
| v1921920 | | | 96.72 163 | 96.96 146 | 95.99 234 | 98.21 205 | 88.79 287 | 95.42 236 | 98.79 146 | 93.22 251 | 98.19 129 | 98.26 149 | 92.68 219 | 99.70 115 | 98.34 34 | 99.55 121 | 99.49 75 |
|
| UA-Net | | | 98.88 8 | 98.76 14 | 99.22 3 | 99.11 92 | 97.89 17 | 99.47 3 | 99.32 27 | 99.08 14 | 97.87 166 | 99.67 3 | 96.47 103 | 99.92 6 | 97.88 44 | 99.98 2 | 99.85 5 |
|
| v1192 | | | 96.83 155 | 97.06 139 | 96.15 230 | 98.28 197 | 89.29 276 | 95.36 242 | 98.77 151 | 93.73 233 | 98.11 136 | 98.34 132 | 93.02 213 | 99.67 135 | 98.35 33 | 99.58 109 | 99.50 67 |
|
| FC-MVSNet-test | | | 98.16 42 | 98.37 36 | 97.56 125 | 99.49 32 | 93.10 196 | 98.35 35 | 99.21 35 | 98.43 36 | 98.89 57 | 98.83 78 | 94.30 181 | 99.81 40 | 97.87 45 | 99.91 17 | 99.77 13 |
|
| v1144 | | | 96.84 152 | 97.08 137 | 96.13 231 | 98.42 187 | 89.28 277 | 95.41 238 | 98.67 173 | 94.21 218 | 97.97 154 | 98.31 135 | 93.06 208 | 99.65 143 | 98.06 40 | 99.62 92 | 99.45 90 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| HFP-MVS | | | 97.94 66 | 97.64 96 | 98.83 29 | 99.15 83 | 97.50 33 | 97.59 96 | 98.84 130 | 96.05 136 | 97.49 182 | 97.54 223 | 97.07 61 | 99.70 115 | 95.61 144 | 99.46 155 | 99.30 127 |
|
| v148 | | | 96.58 172 | 96.97 144 | 95.42 265 | 98.63 158 | 87.57 314 | 95.09 259 | 97.90 257 | 95.91 149 | 98.24 122 | 97.96 187 | 93.42 201 | 99.39 232 | 96.04 117 | 99.52 134 | 99.29 133 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| AllTest | | | 97.20 132 | 96.92 149 | 98.06 90 | 99.08 96 | 96.16 74 | 97.14 123 | 99.16 42 | 94.35 215 | 97.78 171 | 98.07 172 | 95.84 127 | 99.12 294 | 91.41 281 | 99.42 171 | 98.91 203 |
|
| TestCases | | | | | 98.06 90 | 99.08 96 | 96.16 74 | | 99.16 42 | 94.35 215 | 97.78 171 | 98.07 172 | 95.84 127 | 99.12 294 | 91.41 281 | 99.42 171 | 98.91 203 |
|
| v7n | | | 98.73 12 | 98.99 5 | 97.95 100 | 99.64 13 | 94.20 158 | 98.67 15 | 99.14 49 | 99.08 14 | 99.42 21 | 99.23 34 | 96.53 98 | 99.91 14 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| region2R | | | 97.92 70 | 97.59 103 | 98.92 25 | 99.22 66 | 97.55 30 | 97.60 94 | 98.84 130 | 96.00 141 | 97.22 195 | 97.62 218 | 96.87 82 | 99.76 66 | 95.48 153 | 99.43 168 | 99.46 86 |
|
| RRT-MVS | | | 95.78 204 | 96.25 185 | 94.35 314 | 96.68 332 | 84.47 361 | 97.72 86 | 99.11 52 | 97.23 91 | 97.27 193 | 98.72 86 | 86.39 310 | 99.79 47 | 95.49 149 | 97.67 331 | 98.80 220 |
|
| mamv4 | | | 99.05 5 | 98.91 8 | 99.46 2 | 98.94 118 | 99.62 2 | 97.98 63 | 99.70 7 | 99.49 3 | 99.78 2 | 99.22 35 | 95.92 124 | 99.95 3 | 99.31 4 | 99.83 42 | 98.83 216 |
|
| PS-MVSNAJss | | | 98.53 24 | 98.63 21 | 98.21 80 | 99.68 11 | 94.82 131 | 98.10 56 | 99.21 35 | 96.91 99 | 99.75 3 | 99.45 15 | 95.82 130 | 99.92 6 | 98.80 19 | 99.96 4 | 99.89 3 |
|
| PS-MVSNAJ | | | 94.10 280 | 94.47 262 | 93.00 349 | 97.35 307 | 84.88 354 | 91.86 366 | 97.84 262 | 91.96 286 | 94.17 327 | 92.50 383 | 95.82 130 | 99.71 107 | 91.27 284 | 97.48 340 | 94.40 400 |
|
| jajsoiax | | | 98.77 10 | 98.79 13 | 98.74 38 | 99.66 12 | 96.48 64 | 98.45 31 | 99.12 51 | 95.83 154 | 99.67 8 | 99.37 21 | 98.25 13 | 99.92 6 | 98.77 20 | 99.94 8 | 99.82 8 |
|
| mvs_tets | | | 98.90 6 | 98.94 6 | 98.75 35 | 99.69 10 | 96.48 64 | 98.54 23 | 99.22 34 | 96.23 127 | 99.71 5 | 99.48 12 | 98.77 7 | 99.93 4 | 98.89 17 | 99.95 5 | 99.84 7 |
|
| EI-MVSNet-UG-set | | | 97.32 127 | 97.40 116 | 97.09 170 | 97.34 309 | 92.01 229 | 95.33 247 | 97.65 275 | 97.74 63 | 98.30 118 | 98.14 162 | 95.04 158 | 99.69 122 | 97.55 61 | 99.52 134 | 99.58 39 |
|
| EI-MVSNet-Vis-set | | | 97.32 127 | 97.39 117 | 97.11 166 | 97.36 306 | 92.08 227 | 95.34 246 | 97.65 275 | 97.74 63 | 98.29 119 | 98.11 168 | 95.05 157 | 99.68 127 | 97.50 63 | 99.50 143 | 99.56 50 |
|
| HPM-MVS++ |  | | 96.99 140 | 96.38 180 | 98.81 31 | 98.64 154 | 97.59 27 | 95.97 201 | 98.20 229 | 95.51 169 | 95.06 306 | 96.53 293 | 94.10 185 | 99.70 115 | 94.29 217 | 99.15 220 | 99.13 162 |
|
| test_prior4 | | | | | | | 95.38 107 | 93.61 323 | | | | | | | | | |
|
| XVS | | | 97.96 59 | 97.63 98 | 98.94 19 | 99.15 83 | 97.66 23 | 97.77 79 | 98.83 136 | 97.42 79 | 96.32 258 | 97.64 216 | 96.49 101 | 99.72 93 | 95.66 140 | 99.37 179 | 99.45 90 |
|
| v1240 | | | 96.74 160 | 97.02 142 | 95.91 241 | 98.18 211 | 88.52 290 | 95.39 240 | 98.88 117 | 93.15 259 | 98.46 95 | 98.40 126 | 92.80 216 | 99.71 107 | 98.45 31 | 99.49 146 | 99.49 75 |
|
| pm-mvs1 | | | 98.47 28 | 98.67 19 | 97.86 105 | 99.52 27 | 94.58 141 | 98.28 42 | 99.00 92 | 97.57 72 | 99.27 30 | 99.22 35 | 98.32 12 | 99.50 192 | 97.09 77 | 99.75 64 | 99.50 67 |
|
| test_prior2 | | | | | | | | 93.33 331 | | 94.21 218 | 94.02 334 | 96.25 308 | 93.64 197 | | 91.90 272 | 98.96 242 | |
|
| X-MVStestdata | | | 92.86 311 | 90.83 340 | 98.94 19 | 99.15 83 | 97.66 23 | 97.77 79 | 98.83 136 | 97.42 79 | 96.32 258 | 36.50 419 | 96.49 101 | 99.72 93 | 95.66 140 | 99.37 179 | 99.45 90 |
|
| test_prior | | | | | 97.46 140 | 97.79 260 | 94.26 157 | | 98.42 203 | | | | | 99.34 250 | | | 98.79 222 |
|
| 旧先验2 | | | | | | | | 93.35 330 | | 77.95 408 | 95.77 289 | | | 98.67 347 | 90.74 304 | | |
|
| 新几何2 | | | | | | | | 93.43 326 | | | | | | | | | |
|
| 新几何1 | | | | | 97.25 158 | 98.29 195 | 94.70 135 | | 97.73 268 | 77.98 407 | 94.83 313 | 96.67 286 | 92.08 240 | 99.45 210 | 88.17 347 | 98.65 278 | 97.61 338 |
|
| 旧先验1 | | | | | | 97.80 255 | 93.87 168 | | 97.75 267 | | | 97.04 261 | 93.57 198 | | | 98.68 273 | 98.72 232 |
|
| 无先验 | | | | | | | | 93.20 334 | 97.91 256 | 80.78 397 | | | | 99.40 228 | 87.71 350 | | 97.94 314 |
|
| 原ACMM2 | | | | | | | | 92.82 340 | | | | | | | | | |
|
| 原ACMM1 | | | | | 96.58 204 | 98.16 216 | 92.12 223 | | 98.15 241 | 85.90 367 | 93.49 350 | 96.43 299 | 92.47 231 | 99.38 235 | 87.66 352 | 98.62 280 | 98.23 284 |
|
| test222 | | | | | | 98.17 214 | 93.24 194 | 92.74 344 | 97.61 280 | 75.17 412 | 94.65 316 | 96.69 285 | 90.96 257 | | | 98.66 276 | 97.66 334 |
|
| testdata2 | | | | | | | | | | | | | | 99.46 205 | 87.84 348 | | |
|
| segment_acmp | | | | | | | | | | | | | 95.34 150 | | | | |
|
| testdata | | | | | 95.70 251 | 98.16 216 | 90.58 256 | | 97.72 269 | 80.38 399 | 95.62 292 | 97.02 262 | 92.06 241 | 98.98 315 | 89.06 335 | 98.52 286 | 97.54 342 |
|
| testdata1 | | | | | | | | 92.77 341 | | 93.78 232 | | | | | | | |
|
| v8 | | | 97.60 104 | 98.06 53 | 96.23 224 | 98.71 147 | 89.44 274 | 97.43 109 | 98.82 144 | 97.29 90 | 98.74 73 | 99.10 52 | 93.86 191 | 99.68 127 | 98.61 26 | 99.94 8 | 99.56 50 |
|
| 1314 | | | 92.38 318 | 92.30 313 | 92.64 360 | 95.42 378 | 85.15 350 | 95.86 209 | 96.97 301 | 85.40 373 | 90.62 386 | 93.06 372 | 91.12 253 | 97.80 389 | 86.74 364 | 95.49 386 | 94.97 397 |
|
| LFMVS | | | 95.32 227 | 94.88 238 | 96.62 201 | 98.03 226 | 91.47 239 | 97.65 91 | 90.72 393 | 99.11 12 | 97.89 162 | 98.31 135 | 79.20 354 | 99.48 200 | 93.91 234 | 99.12 226 | 98.93 199 |
|
| VDD-MVS | | | 97.37 123 | 97.25 126 | 97.74 112 | 98.69 151 | 94.50 145 | 97.04 129 | 95.61 332 | 98.59 31 | 98.51 87 | 98.72 86 | 92.54 227 | 99.58 168 | 96.02 119 | 99.49 146 | 99.12 167 |
|
| VDDNet | | | 96.98 143 | 96.84 152 | 97.41 146 | 99.40 43 | 93.26 193 | 97.94 67 | 95.31 340 | 99.26 9 | 98.39 102 | 99.18 42 | 87.85 300 | 99.62 156 | 95.13 180 | 99.09 230 | 99.35 120 |
|
| v10 | | | 97.55 108 | 97.97 61 | 96.31 222 | 98.60 162 | 89.64 269 | 97.44 107 | 99.02 81 | 96.60 108 | 98.72 75 | 99.16 46 | 93.48 200 | 99.72 93 | 98.76 21 | 99.92 14 | 99.58 39 |
|
| VPNet | | | 97.26 129 | 97.49 114 | 96.59 203 | 99.47 33 | 90.58 256 | 96.27 174 | 98.53 190 | 97.77 60 | 98.46 95 | 98.41 123 | 94.59 172 | 99.68 127 | 94.61 204 | 99.29 203 | 99.52 60 |
|
| MVS | | | 90.02 349 | 89.20 356 | 92.47 364 | 94.71 390 | 86.90 327 | 95.86 209 | 96.74 310 | 64.72 416 | 90.62 386 | 92.77 377 | 92.54 227 | 98.39 370 | 79.30 401 | 95.56 385 | 92.12 408 |
|
| v2v482 | | | 96.78 159 | 97.06 139 | 95.95 238 | 98.57 166 | 88.77 288 | 95.36 242 | 98.26 221 | 95.18 185 | 97.85 168 | 98.23 153 | 92.58 223 | 99.63 151 | 97.80 49 | 99.69 77 | 99.45 90 |
|
| V42 | | | 97.04 137 | 97.16 133 | 96.68 200 | 98.59 164 | 91.05 246 | 96.33 171 | 98.36 211 | 94.60 206 | 97.99 150 | 98.30 139 | 93.32 202 | 99.62 156 | 97.40 66 | 99.53 129 | 99.38 112 |
|
| SD-MVS | | | 97.37 123 | 97.70 86 | 96.35 219 | 98.14 220 | 95.13 124 | 96.54 160 | 98.92 107 | 95.94 145 | 99.19 35 | 98.08 170 | 97.74 28 | 95.06 409 | 95.24 169 | 99.54 125 | 98.87 213 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GA-MVS | | | 92.83 312 | 92.15 317 | 94.87 290 | 96.97 324 | 87.27 321 | 90.03 394 | 96.12 317 | 91.83 289 | 94.05 332 | 94.57 351 | 76.01 373 | 98.97 319 | 92.46 265 | 97.34 346 | 98.36 271 |
|
| MSLP-MVS++ | | | 96.42 180 | 96.71 159 | 95.57 256 | 97.82 250 | 90.56 258 | 95.71 216 | 98.84 130 | 94.72 201 | 96.71 235 | 97.39 237 | 94.91 164 | 98.10 384 | 95.28 166 | 99.02 238 | 98.05 305 |
|
| APDe-MVS |  | | 98.14 43 | 98.03 55 | 98.47 58 | 98.72 144 | 96.04 79 | 98.07 58 | 99.10 55 | 95.96 143 | 98.59 82 | 98.69 92 | 96.94 71 | 99.81 40 | 96.64 91 | 99.58 109 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| APD-MVS_3200maxsize | | | 98.13 46 | 97.90 65 | 98.79 33 | 98.79 136 | 97.31 40 | 97.55 99 | 98.92 107 | 97.72 65 | 98.25 121 | 98.13 164 | 97.10 58 | 99.75 72 | 95.44 157 | 99.24 211 | 99.32 122 |
|
| ADS-MVSNet2 | | | 91.47 337 | 90.51 346 | 94.36 313 | 95.51 374 | 85.63 340 | 95.05 264 | 95.70 327 | 83.46 387 | 92.69 368 | 96.84 274 | 79.15 355 | 99.41 226 | 85.66 371 | 90.52 405 | 98.04 306 |
|
| EI-MVSNet | | | 96.63 169 | 96.93 147 | 95.74 248 | 97.26 314 | 88.13 301 | 95.29 251 | 97.65 275 | 96.99 96 | 97.94 158 | 98.19 158 | 92.55 225 | 99.58 168 | 96.91 85 | 99.56 115 | 99.50 67 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| CVMVSNet | | | 92.33 320 | 92.79 303 | 90.95 381 | 97.26 314 | 75.84 412 | 95.29 251 | 92.33 375 | 81.86 391 | 96.27 263 | 98.19 158 | 81.44 344 | 98.46 366 | 94.23 220 | 98.29 301 | 98.55 250 |
|
| pmmvs4 | | | 94.82 249 | 94.19 273 | 96.70 198 | 97.42 303 | 92.75 206 | 92.09 363 | 96.76 308 | 86.80 359 | 95.73 290 | 97.22 250 | 89.28 283 | 98.89 323 | 93.28 251 | 99.14 221 | 98.46 260 |
|
| EU-MVSNet | | | 94.25 273 | 94.47 262 | 93.60 332 | 98.14 220 | 82.60 377 | 97.24 117 | 92.72 370 | 85.08 375 | 98.48 92 | 98.94 67 | 82.59 341 | 98.76 335 | 97.47 65 | 99.53 129 | 99.44 100 |
|
| VNet | | | 96.84 152 | 96.83 153 | 96.88 185 | 98.06 225 | 92.02 228 | 96.35 170 | 97.57 281 | 97.70 67 | 97.88 163 | 97.80 204 | 92.40 232 | 99.54 182 | 94.73 201 | 98.96 242 | 99.08 175 |
|
| test-LLR | | | 89.97 352 | 89.90 350 | 90.16 385 | 94.24 397 | 74.98 414 | 89.89 396 | 89.06 402 | 92.02 284 | 89.97 395 | 90.77 400 | 73.92 380 | 98.57 355 | 91.88 273 | 97.36 344 | 96.92 359 |
|
| TESTMET0.1,1 | | | 87.20 379 | 86.57 379 | 89.07 390 | 93.62 406 | 72.84 419 | 89.89 396 | 87.01 410 | 85.46 372 | 89.12 402 | 90.20 403 | 56.00 414 | 97.72 390 | 90.91 294 | 96.92 351 | 96.64 372 |
|
| test-mter | | | 87.92 373 | 87.17 373 | 90.16 385 | 94.24 397 | 74.98 414 | 89.89 396 | 89.06 402 | 86.44 362 | 89.97 395 | 90.77 400 | 54.96 420 | 98.57 355 | 91.88 273 | 97.36 344 | 96.92 359 |
|
| VPA-MVSNet | | | 98.27 38 | 98.46 30 | 97.70 116 | 99.06 100 | 93.80 171 | 97.76 81 | 99.00 92 | 98.40 38 | 99.07 42 | 98.98 62 | 96.89 78 | 99.75 72 | 97.19 74 | 99.79 52 | 99.55 53 |
|
| ACMMPR | | | 97.95 63 | 97.62 100 | 98.94 19 | 99.20 75 | 97.56 29 | 97.59 96 | 98.83 136 | 96.05 136 | 97.46 187 | 97.63 217 | 96.77 87 | 99.76 66 | 95.61 144 | 99.46 155 | 99.49 75 |
|
| testgi | | | 96.07 191 | 96.50 176 | 94.80 294 | 99.26 57 | 87.69 313 | 95.96 203 | 98.58 187 | 95.08 189 | 98.02 149 | 96.25 308 | 97.92 20 | 97.60 392 | 88.68 340 | 98.74 267 | 99.11 170 |
|
| test20.03 | | | 96.58 172 | 96.61 165 | 96.48 212 | 98.49 179 | 91.72 235 | 95.68 220 | 97.69 270 | 96.81 102 | 98.27 120 | 97.92 193 | 94.18 184 | 98.71 340 | 90.78 299 | 99.66 85 | 99.00 186 |
|
| thres600view7 | | | 92.03 328 | 91.43 326 | 93.82 326 | 98.19 208 | 84.61 359 | 96.27 174 | 90.39 394 | 96.81 102 | 96.37 256 | 93.11 367 | 73.44 386 | 99.49 197 | 80.32 398 | 97.95 314 | 97.36 348 |
|
| ADS-MVSNet | | | 90.95 344 | 90.26 348 | 93.04 346 | 95.51 374 | 82.37 378 | 95.05 264 | 93.41 362 | 83.46 387 | 92.69 368 | 96.84 274 | 79.15 355 | 98.70 341 | 85.66 371 | 90.52 405 | 98.04 306 |
|
| MP-MVS |  | | 97.64 100 | 97.18 132 | 99.00 13 | 99.32 53 | 97.77 21 | 97.49 105 | 98.73 158 | 96.27 124 | 95.59 294 | 97.75 208 | 96.30 113 | 99.78 51 | 93.70 241 | 99.48 150 | 99.45 90 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| testmvs | | | 12.33 390 | 15.23 393 | 3.64 405 | 5.77 428 | 2.23 430 | 88.99 403 | 3.62 428 | 2.30 423 | 5.29 423 | 13.09 420 | 4.52 428 | 1.95 423 | 5.16 423 | 8.32 422 | 6.75 420 |
|
| thres400 | | | 91.68 334 | 91.00 335 | 93.71 330 | 98.02 227 | 84.35 363 | 95.70 217 | 90.79 391 | 96.26 125 | 95.90 282 | 92.13 387 | 73.62 383 | 99.42 217 | 78.85 403 | 97.74 324 | 97.36 348 |
|
| test123 | | | 12.59 389 | 15.49 392 | 3.87 404 | 6.07 427 | 2.55 429 | 90.75 388 | 2.59 429 | 2.52 422 | 5.20 424 | 13.02 421 | 4.96 427 | 1.85 424 | 5.20 422 | 9.09 421 | 7.23 419 |
|
| thres200 | | | 91.00 343 | 90.42 347 | 92.77 357 | 97.47 300 | 83.98 368 | 94.01 306 | 91.18 388 | 95.12 188 | 95.44 298 | 91.21 396 | 73.93 379 | 99.31 257 | 77.76 406 | 97.63 335 | 95.01 396 |
|
| test0.0.03 1 | | | 90.11 348 | 89.21 355 | 92.83 355 | 93.89 403 | 86.87 328 | 91.74 368 | 88.74 405 | 92.02 284 | 94.71 315 | 91.14 397 | 73.92 380 | 94.48 412 | 83.75 388 | 92.94 399 | 97.16 353 |
|
| pmmvs3 | | | 90.00 350 | 88.90 360 | 93.32 336 | 94.20 399 | 85.34 344 | 91.25 379 | 92.56 374 | 78.59 405 | 93.82 337 | 95.17 340 | 67.36 400 | 98.69 343 | 89.08 334 | 98.03 311 | 95.92 383 |
|
| EMVS | | | 89.06 362 | 89.22 354 | 88.61 392 | 93.00 410 | 77.34 406 | 82.91 414 | 90.92 389 | 94.64 205 | 92.63 372 | 91.81 390 | 76.30 371 | 97.02 397 | 83.83 386 | 96.90 353 | 91.48 411 |
|
| E-PMN | | | 89.52 359 | 89.78 351 | 88.73 391 | 93.14 408 | 77.61 404 | 83.26 413 | 92.02 377 | 94.82 199 | 93.71 342 | 93.11 367 | 75.31 375 | 96.81 400 | 85.81 368 | 96.81 358 | 91.77 410 |
|
| PGM-MVS | | | 97.88 77 | 97.52 110 | 98.96 17 | 99.20 75 | 97.62 25 | 97.09 126 | 99.06 67 | 95.45 172 | 97.55 177 | 97.94 190 | 97.11 57 | 99.78 51 | 94.77 199 | 99.46 155 | 99.48 81 |
|
| LCM-MVSNet-Re | | | 97.33 126 | 97.33 121 | 97.32 152 | 98.13 223 | 93.79 172 | 96.99 132 | 99.65 12 | 96.74 104 | 99.47 18 | 98.93 68 | 96.91 77 | 99.84 32 | 90.11 317 | 99.06 236 | 98.32 273 |
|
| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 3 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 5 |
|
| MCST-MVS | | | 96.24 185 | 95.80 207 | 97.56 125 | 98.75 141 | 94.13 160 | 94.66 280 | 98.17 235 | 90.17 318 | 96.21 267 | 96.10 317 | 95.14 156 | 99.43 215 | 94.13 224 | 98.85 256 | 99.13 162 |
|
| mvs_anonymous | | | 95.36 224 | 96.07 194 | 93.21 342 | 96.29 341 | 81.56 384 | 94.60 282 | 97.66 273 | 93.30 248 | 96.95 221 | 98.91 72 | 93.03 212 | 99.38 235 | 96.60 93 | 97.30 348 | 98.69 236 |
|
| MVS_Test | | | 96.27 184 | 96.79 157 | 94.73 298 | 96.94 327 | 86.63 331 | 96.18 182 | 98.33 215 | 94.94 195 | 96.07 273 | 98.28 144 | 95.25 153 | 99.26 270 | 97.21 71 | 97.90 317 | 98.30 277 |
|
| MDA-MVSNet-bldmvs | | | 95.69 208 | 95.67 211 | 95.74 248 | 98.48 181 | 88.76 289 | 92.84 339 | 97.25 287 | 96.00 141 | 97.59 176 | 97.95 189 | 91.38 250 | 99.46 205 | 93.16 255 | 96.35 370 | 98.99 189 |
|
| CDPH-MVS | | | 95.45 222 | 94.65 249 | 97.84 107 | 98.28 197 | 94.96 128 | 93.73 319 | 98.33 215 | 85.03 377 | 95.44 298 | 96.60 289 | 95.31 151 | 99.44 213 | 90.01 319 | 99.13 223 | 99.11 170 |
|
| test12 | | | | | 97.46 140 | 97.61 287 | 94.07 161 | | 97.78 266 | | 93.57 348 | | 93.31 203 | 99.42 217 | | 98.78 263 | 98.89 207 |
|
| casdiffmvs |  | | 97.50 111 | 97.81 77 | 96.56 207 | 98.51 175 | 91.04 247 | 95.83 211 | 99.09 60 | 97.23 91 | 98.33 113 | 98.30 139 | 97.03 65 | 99.37 240 | 96.58 95 | 99.38 178 | 99.28 134 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 96.04 193 | 96.23 186 | 95.46 264 | 97.35 307 | 88.03 304 | 93.42 327 | 99.08 63 | 94.09 226 | 96.66 239 | 96.93 268 | 93.85 192 | 99.29 264 | 96.01 121 | 98.67 274 | 99.06 179 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 89.65 358 | 88.44 364 | 93.25 339 | 95.62 372 | 82.71 374 | 93.82 315 | 85.94 412 | 88.89 334 | 87.35 410 | 92.54 381 | 71.23 391 | 99.33 252 | 86.01 366 | 94.60 394 | 97.72 332 |
|
| baseline1 | | | 93.14 308 | 92.64 309 | 94.62 301 | 97.34 309 | 87.20 322 | 96.67 157 | 93.02 365 | 94.71 202 | 96.51 250 | 95.83 326 | 81.64 342 | 98.60 354 | 90.00 320 | 88.06 411 | 98.07 298 |
|
| YYNet1 | | | 94.73 251 | 94.84 240 | 94.41 312 | 97.47 300 | 85.09 352 | 90.29 392 | 95.85 326 | 92.52 275 | 97.53 178 | 97.76 205 | 91.97 242 | 99.18 283 | 93.31 250 | 96.86 354 | 98.95 193 |
|
| PMMVS2 | | | 93.66 294 | 94.07 277 | 92.45 365 | 97.57 289 | 80.67 391 | 86.46 407 | 96.00 320 | 93.99 228 | 97.10 206 | 97.38 239 | 89.90 273 | 97.82 388 | 88.76 337 | 99.47 152 | 98.86 214 |
|
| MDA-MVSNet_test_wron | | | 94.73 251 | 94.83 242 | 94.42 311 | 97.48 296 | 85.15 350 | 90.28 393 | 95.87 325 | 92.52 275 | 97.48 184 | 97.76 205 | 91.92 245 | 99.17 287 | 93.32 249 | 96.80 359 | 98.94 195 |
|
| tpmvs | | | 90.79 345 | 90.87 338 | 90.57 384 | 92.75 413 | 76.30 410 | 95.79 214 | 93.64 360 | 91.04 305 | 91.91 379 | 96.26 307 | 77.19 367 | 98.86 327 | 89.38 330 | 89.85 408 | 96.56 375 |
|
| PM-MVS | | | 97.36 125 | 97.10 135 | 98.14 84 | 98.91 124 | 96.77 53 | 96.20 181 | 98.63 181 | 93.82 231 | 98.54 85 | 98.33 133 | 93.98 188 | 99.05 305 | 95.99 122 | 99.45 158 | 98.61 245 |
|
| HQP_MVS | | | 96.66 168 | 96.33 183 | 97.68 119 | 98.70 149 | 94.29 153 | 96.50 161 | 98.75 155 | 96.36 121 | 96.16 270 | 96.77 280 | 91.91 246 | 99.46 205 | 92.59 262 | 99.20 213 | 99.28 134 |
|
| plane_prior7 | | | | | | 98.70 149 | 94.67 136 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 98.38 189 | 94.37 150 | | | | | | 91.91 246 | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 155 | | | | | 99.46 205 | 92.59 262 | 99.20 213 | 99.28 134 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 280 | | | | | |
|
| plane_prior3 | | | | | | | 94.51 143 | | | 95.29 181 | 96.16 270 | | | | | | |
|
| plane_prior2 | | | | | | | | 96.50 161 | | 96.36 121 | | | | | | | |
|
| plane_prior1 | | | | | | 98.49 179 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.29 153 | 95.42 236 | | 94.31 217 | | | | | | 98.93 247 | |
|
| PS-CasMVS | | | 98.73 12 | 98.85 11 | 98.39 63 | 99.55 22 | 95.47 104 | 98.49 28 | 99.13 50 | 99.22 10 | 99.22 34 | 98.96 65 | 97.35 44 | 99.92 6 | 97.79 50 | 99.93 11 | 99.79 11 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 82 | 97.65 93 | 98.37 64 | 98.72 144 | 95.78 87 | 95.66 222 | 99.02 81 | 98.11 51 | 98.31 116 | 97.69 214 | 94.65 171 | 99.85 29 | 97.02 82 | 99.71 73 | 99.48 81 |
|
| PEN-MVS | | | 98.75 11 | 98.85 11 | 98.44 59 | 99.58 18 | 95.67 93 | 98.45 31 | 99.15 46 | 99.33 6 | 99.30 28 | 99.00 59 | 97.27 48 | 99.92 6 | 97.64 59 | 99.92 14 | 99.75 20 |
|
| TransMVSNet (Re) | | | 98.38 32 | 98.67 19 | 97.51 130 | 99.51 28 | 93.39 189 | 98.20 51 | 98.87 119 | 98.23 47 | 99.48 17 | 99.27 31 | 98.47 11 | 99.55 179 | 96.52 96 | 99.53 129 | 99.60 37 |
|
| DTE-MVSNet | | | 98.79 9 | 98.86 9 | 98.59 50 | 99.55 22 | 96.12 76 | 98.48 30 | 99.10 55 | 99.36 5 | 99.29 29 | 99.06 56 | 97.27 48 | 99.93 4 | 97.71 55 | 99.91 17 | 99.70 26 |
|
| DU-MVS | | | 97.79 88 | 97.60 102 | 98.36 65 | 98.73 142 | 95.78 87 | 95.65 224 | 98.87 119 | 97.57 72 | 98.31 116 | 97.83 198 | 94.69 167 | 99.85 29 | 97.02 82 | 99.71 73 | 99.46 86 |
|
| UniMVSNet (Re) | | | 97.83 82 | 97.65 93 | 98.35 66 | 98.80 134 | 95.86 86 | 95.92 206 | 99.04 78 | 97.51 76 | 98.22 124 | 97.81 203 | 94.68 169 | 99.78 51 | 97.14 75 | 99.75 64 | 99.41 104 |
|
| CP-MVSNet | | | 98.42 30 | 98.46 30 | 98.30 70 | 99.46 34 | 95.22 120 | 98.27 44 | 98.84 130 | 99.05 17 | 99.01 45 | 98.65 97 | 95.37 149 | 99.90 16 | 97.57 60 | 99.91 17 | 99.77 13 |
|
| WR-MVS_H | | | 98.65 16 | 98.62 23 | 98.75 35 | 99.51 28 | 96.61 60 | 98.55 22 | 99.17 41 | 99.05 17 | 99.17 36 | 98.79 79 | 95.47 145 | 99.89 19 | 97.95 43 | 99.91 17 | 99.75 20 |
|
| WR-MVS | | | 96.90 148 | 96.81 154 | 97.16 162 | 98.56 168 | 92.20 221 | 94.33 288 | 98.12 244 | 97.34 87 | 98.20 125 | 97.33 244 | 92.81 215 | 99.75 72 | 94.79 196 | 99.81 47 | 99.54 54 |
|
| NR-MVSNet | | | 97.96 59 | 97.86 71 | 98.26 72 | 98.73 142 | 95.54 97 | 98.14 54 | 98.73 158 | 97.79 59 | 99.42 21 | 97.83 198 | 94.40 179 | 99.78 51 | 95.91 127 | 99.76 57 | 99.46 86 |
|
| Baseline_NR-MVSNet | | | 97.72 94 | 97.79 79 | 97.50 134 | 99.56 20 | 93.29 191 | 95.44 234 | 98.86 122 | 98.20 49 | 98.37 103 | 99.24 33 | 94.69 167 | 99.55 179 | 95.98 123 | 99.79 52 | 99.65 33 |
|
| TranMVSNet+NR-MVSNet | | | 98.33 33 | 98.30 41 | 98.43 60 | 99.07 98 | 95.87 85 | 96.73 152 | 99.05 71 | 98.67 28 | 98.84 61 | 98.45 118 | 97.58 38 | 99.88 21 | 96.45 99 | 99.86 28 | 99.54 54 |
|
| TSAR-MVS + GP. | | | 96.47 177 | 96.12 190 | 97.49 137 | 97.74 270 | 95.23 117 | 94.15 299 | 96.90 303 | 93.26 249 | 98.04 147 | 96.70 284 | 94.41 178 | 98.89 323 | 94.77 199 | 99.14 221 | 98.37 266 |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| mPP-MVS | | | 97.91 73 | 97.53 109 | 99.04 8 | 99.22 66 | 97.87 18 | 97.74 84 | 98.78 150 | 96.04 138 | 97.10 206 | 97.73 211 | 96.53 98 | 99.78 51 | 95.16 175 | 99.50 143 | 99.46 86 |
|
| door-mid | | | | | | | | | 98.17 235 | | | | | | | | |
|
| XVG-OURS-SEG-HR | | | 97.38 121 | 97.07 138 | 98.30 70 | 99.01 109 | 97.41 38 | 94.66 280 | 99.02 81 | 95.20 183 | 98.15 133 | 97.52 225 | 98.83 5 | 98.43 367 | 94.87 192 | 96.41 368 | 99.07 177 |
|
| mvsmamba | | | 94.91 244 | 94.41 266 | 96.40 218 | 97.65 282 | 91.30 242 | 97.92 69 | 95.32 339 | 91.50 296 | 95.54 296 | 98.38 127 | 83.06 337 | 99.68 127 | 92.46 265 | 97.84 319 | 98.23 284 |
|
| MVSFormer | | | 96.14 189 | 96.36 181 | 95.49 262 | 97.68 275 | 87.81 310 | 98.67 15 | 99.02 81 | 96.50 115 | 94.48 321 | 96.15 312 | 86.90 306 | 99.92 6 | 98.73 22 | 99.13 223 | 98.74 229 |
|
| jason | | | 94.39 271 | 94.04 278 | 95.41 267 | 98.29 195 | 87.85 309 | 92.74 344 | 96.75 309 | 85.38 374 | 95.29 301 | 96.15 312 | 88.21 294 | 99.65 143 | 94.24 219 | 99.34 190 | 98.74 229 |
| jason: jason. |
| lupinMVS | | | 93.77 289 | 93.28 292 | 95.24 270 | 97.68 275 | 87.81 310 | 92.12 361 | 96.05 318 | 84.52 383 | 94.48 321 | 95.06 343 | 86.90 306 | 99.63 151 | 93.62 243 | 99.13 223 | 98.27 281 |
|
| test_djsdf | | | 98.73 12 | 98.74 17 | 98.69 43 | 99.63 14 | 96.30 71 | 98.67 15 | 99.02 81 | 96.50 115 | 99.32 27 | 99.44 16 | 97.43 41 | 99.92 6 | 98.73 22 | 99.95 5 | 99.86 4 |
|
| HPM-MVS_fast | | | 98.32 35 | 98.13 46 | 98.88 27 | 99.54 25 | 97.48 34 | 98.35 35 | 99.03 79 | 95.88 150 | 97.88 163 | 98.22 156 | 98.15 16 | 99.74 81 | 96.50 97 | 99.62 92 | 99.42 102 |
|
| K. test v3 | | | 96.44 178 | 96.28 184 | 96.95 179 | 99.41 40 | 91.53 237 | 97.65 91 | 90.31 397 | 98.89 24 | 98.93 53 | 99.36 23 | 84.57 326 | 99.92 6 | 97.81 48 | 99.56 115 | 99.39 110 |
|
| lessismore_v0 | | | | | 97.05 173 | 99.36 48 | 92.12 223 | | 84.07 414 | | 98.77 70 | 98.98 62 | 85.36 320 | 99.74 81 | 97.34 68 | 99.37 179 | 99.30 127 |
|
| SixPastTwentyTwo | | | 97.49 112 | 97.57 105 | 97.26 157 | 99.56 20 | 92.33 214 | 98.28 42 | 96.97 301 | 98.30 43 | 99.45 19 | 99.35 25 | 88.43 290 | 99.89 19 | 98.01 41 | 99.76 57 | 99.54 54 |
|
| OurMVSNet-221017-0 | | | 98.61 17 | 98.61 25 | 98.63 48 | 99.77 5 | 96.35 68 | 99.17 7 | 99.05 71 | 98.05 54 | 99.61 14 | 99.52 9 | 93.72 196 | 99.88 21 | 98.72 24 | 99.88 24 | 99.65 33 |
|
| HPM-MVS |  | | 98.11 47 | 97.83 75 | 98.92 25 | 99.42 39 | 97.46 35 | 98.57 20 | 99.05 71 | 95.43 175 | 97.41 189 | 97.50 227 | 97.98 19 | 99.79 47 | 95.58 147 | 99.57 112 | 99.50 67 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| XVG-OURS | | | 97.12 134 | 96.74 158 | 98.26 72 | 98.99 110 | 97.45 36 | 93.82 315 | 99.05 71 | 95.19 184 | 98.32 114 | 97.70 213 | 95.22 154 | 98.41 368 | 94.27 218 | 98.13 307 | 98.93 199 |
|
| XVG-ACMP-BASELINE | | | 97.58 107 | 97.28 125 | 98.49 56 | 99.16 80 | 96.90 50 | 96.39 164 | 98.98 98 | 95.05 191 | 98.06 144 | 98.02 181 | 95.86 126 | 99.56 175 | 94.37 214 | 99.64 88 | 99.00 186 |
|
| casdiffmvs_mvg |  | | 97.83 82 | 98.11 48 | 97.00 178 | 98.57 166 | 92.10 226 | 95.97 201 | 99.18 40 | 97.67 71 | 99.00 47 | 98.48 117 | 97.64 34 | 99.50 192 | 96.96 84 | 99.54 125 | 99.40 105 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| LPG-MVS_test | | | 97.94 66 | 97.67 91 | 98.74 38 | 99.15 83 | 97.02 46 | 97.09 126 | 99.02 81 | 95.15 186 | 98.34 110 | 98.23 153 | 97.91 21 | 99.70 115 | 94.41 211 | 99.73 66 | 99.50 67 |
|
| LGP-MVS_train | | | | | 98.74 38 | 99.15 83 | 97.02 46 | | 99.02 81 | 95.15 186 | 98.34 110 | 98.23 153 | 97.91 21 | 99.70 115 | 94.41 211 | 99.73 66 | 99.50 67 |
|
| baseline | | | 97.44 116 | 97.78 82 | 96.43 214 | 98.52 173 | 90.75 254 | 96.84 138 | 99.03 79 | 96.51 114 | 97.86 167 | 98.02 181 | 96.67 90 | 99.36 243 | 97.09 77 | 99.47 152 | 99.19 151 |
|
| test11 | | | | | | | | | 98.08 247 | | | | | | | | |
|
| door | | | | | | | | | 97.81 265 | | | | | | | | |
|
| EPNet_dtu | | | 91.39 338 | 90.75 341 | 93.31 337 | 90.48 418 | 82.61 376 | 94.80 273 | 92.88 367 | 93.39 244 | 81.74 416 | 94.90 348 | 81.36 345 | 99.11 297 | 88.28 345 | 98.87 253 | 98.21 287 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CHOSEN 1792x2688 | | | 94.10 280 | 93.41 291 | 96.18 228 | 99.16 80 | 90.04 261 | 92.15 360 | 98.68 170 | 79.90 401 | 96.22 266 | 97.83 198 | 87.92 299 | 99.42 217 | 89.18 332 | 99.65 86 | 99.08 175 |
|
| EPNet | | | 93.72 291 | 92.62 310 | 97.03 176 | 87.61 422 | 92.25 216 | 96.27 174 | 91.28 386 | 96.74 104 | 87.65 408 | 97.39 237 | 85.00 322 | 99.64 147 | 92.14 268 | 99.48 150 | 99.20 150 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HQP5-MVS | | | | | | | 92.47 212 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.85 242 | | 94.26 289 | | 93.18 255 | 92.86 364 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 242 | | 94.26 289 | | 93.18 255 | 92.86 364 | | | | | | |
|
| APD-MVS |  | | 97.00 139 | 96.53 173 | 98.41 61 | 98.55 169 | 96.31 70 | 96.32 172 | 98.77 151 | 92.96 268 | 97.44 188 | 97.58 222 | 95.84 127 | 99.74 81 | 91.96 270 | 99.35 187 | 99.19 151 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| BP-MVS | | | | | | | | | | | | | | | 90.51 311 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 363 | | | 99.23 278 | | | 99.06 179 |
|
| HQP3-MVS | | | | | | | | | 98.43 200 | | | | | | | 98.74 267 | |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 266 | | | | |
|
| CNVR-MVS | | | 96.92 146 | 96.55 170 | 98.03 95 | 98.00 233 | 95.54 97 | 94.87 271 | 98.17 235 | 94.60 206 | 96.38 255 | 97.05 260 | 95.67 139 | 99.36 243 | 95.12 181 | 99.08 231 | 99.19 151 |
|
| NCCC | | | 96.52 174 | 95.99 197 | 98.10 87 | 97.81 251 | 95.68 92 | 95.00 267 | 98.20 229 | 95.39 176 | 95.40 300 | 96.36 304 | 93.81 193 | 99.45 210 | 93.55 244 | 98.42 295 | 99.17 154 |
|
| 114514_t | | | 93.96 286 | 93.22 294 | 96.19 227 | 99.06 100 | 90.97 249 | 95.99 199 | 98.94 105 | 73.88 414 | 93.43 353 | 96.93 268 | 92.38 233 | 99.37 240 | 89.09 333 | 99.28 204 | 98.25 283 |
|
| CP-MVS | | | 97.92 70 | 97.56 106 | 98.99 14 | 98.99 110 | 97.82 19 | 97.93 68 | 98.96 102 | 96.11 133 | 96.89 225 | 97.45 229 | 96.85 83 | 99.78 51 | 95.19 171 | 99.63 90 | 99.38 112 |
|
| DSMNet-mixed | | | 92.19 322 | 91.83 320 | 93.25 339 | 96.18 347 | 83.68 370 | 96.27 174 | 93.68 358 | 76.97 411 | 92.54 374 | 99.18 42 | 89.20 285 | 98.55 358 | 83.88 385 | 98.60 283 | 97.51 343 |
|
| tpm2 | | | 88.47 367 | 87.69 370 | 90.79 382 | 94.98 386 | 77.34 406 | 95.09 259 | 91.83 379 | 77.51 410 | 89.40 400 | 96.41 300 | 67.83 399 | 98.73 337 | 83.58 389 | 92.60 402 | 96.29 380 |
|
| NP-MVS | | | | | | 98.14 220 | 93.72 174 | | | | | 95.08 341 | | | | | |
|
| EG-PatchMatch MVS | | | 97.69 96 | 97.79 79 | 97.40 147 | 99.06 100 | 93.52 183 | 95.96 203 | 98.97 101 | 94.55 210 | 98.82 63 | 98.76 84 | 97.31 46 | 99.29 264 | 97.20 73 | 99.44 159 | 99.38 112 |
|
| tpm cat1 | | | 88.01 372 | 87.33 372 | 90.05 388 | 94.48 393 | 76.28 411 | 94.47 285 | 94.35 352 | 73.84 415 | 89.26 401 | 95.61 333 | 73.64 382 | 98.30 377 | 84.13 383 | 86.20 413 | 95.57 392 |
|
| SteuartSystems-ACMMP | | | 98.02 55 | 97.76 83 | 98.79 33 | 99.43 37 | 97.21 45 | 97.15 121 | 98.90 109 | 96.58 110 | 98.08 141 | 97.87 196 | 97.02 66 | 99.76 66 | 95.25 168 | 99.59 106 | 99.40 105 |
| Skip Steuart: Steuart Systems R&D Blog. |
| CostFormer | | | 89.75 355 | 89.25 353 | 91.26 380 | 94.69 391 | 78.00 402 | 95.32 248 | 91.98 378 | 81.50 394 | 90.55 388 | 96.96 267 | 71.06 392 | 98.89 323 | 88.59 341 | 92.63 401 | 96.87 362 |
|
| CR-MVSNet | | | 93.29 305 | 92.79 303 | 94.78 296 | 95.44 376 | 88.15 299 | 96.18 182 | 97.20 289 | 84.94 380 | 94.10 329 | 98.57 104 | 77.67 361 | 99.39 232 | 95.17 173 | 95.81 378 | 96.81 368 |
|
| JIA-IIPM | | | 91.79 332 | 90.69 343 | 95.11 275 | 93.80 404 | 90.98 248 | 94.16 298 | 91.78 380 | 96.38 119 | 90.30 392 | 99.30 29 | 72.02 389 | 98.90 322 | 88.28 345 | 90.17 407 | 95.45 393 |
|
| Patchmtry | | | 95.03 241 | 94.59 256 | 96.33 220 | 94.83 389 | 90.82 251 | 96.38 167 | 97.20 289 | 96.59 109 | 97.49 182 | 98.57 104 | 77.67 361 | 99.38 235 | 92.95 259 | 99.62 92 | 98.80 220 |
|
| PatchT | | | 93.75 290 | 93.57 288 | 94.29 318 | 95.05 385 | 87.32 320 | 96.05 192 | 92.98 366 | 97.54 75 | 94.25 324 | 98.72 86 | 75.79 374 | 99.24 276 | 95.92 126 | 95.81 378 | 96.32 379 |
|
| tpmrst | | | 90.31 347 | 90.61 345 | 89.41 389 | 94.06 401 | 72.37 420 | 95.06 263 | 93.69 356 | 88.01 346 | 92.32 376 | 96.86 272 | 77.45 363 | 98.82 328 | 91.04 289 | 87.01 412 | 97.04 356 |
|
| BH-w/o | | | 92.14 323 | 91.94 318 | 92.73 358 | 97.13 320 | 85.30 346 | 92.46 352 | 95.64 329 | 89.33 327 | 94.21 325 | 92.74 378 | 89.60 275 | 98.24 379 | 81.68 393 | 94.66 392 | 94.66 398 |
|
| tpm | | | 91.08 342 | 90.85 339 | 91.75 374 | 95.33 380 | 78.09 400 | 95.03 266 | 91.27 387 | 88.75 335 | 93.53 349 | 97.40 233 | 71.24 390 | 99.30 260 | 91.25 286 | 93.87 397 | 97.87 319 |
|
| DELS-MVS | | | 96.17 188 | 96.23 186 | 95.99 234 | 97.55 292 | 90.04 261 | 92.38 358 | 98.52 191 | 94.13 222 | 96.55 249 | 97.06 259 | 94.99 161 | 99.58 168 | 95.62 143 | 99.28 204 | 98.37 266 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| BH-untuned | | | 94.69 256 | 94.75 246 | 94.52 307 | 97.95 238 | 87.53 315 | 94.07 304 | 97.01 299 | 93.99 228 | 97.10 206 | 95.65 330 | 92.65 221 | 98.95 320 | 87.60 353 | 96.74 360 | 97.09 354 |
|
| RPMNet | | | 94.68 258 | 94.60 254 | 94.90 288 | 95.44 376 | 88.15 299 | 96.18 182 | 98.86 122 | 97.43 78 | 94.10 329 | 98.49 113 | 79.40 353 | 99.76 66 | 95.69 137 | 95.81 378 | 96.81 368 |
|
| MVSTER | | | 94.21 276 | 93.93 283 | 95.05 279 | 95.83 363 | 86.46 332 | 95.18 256 | 97.65 275 | 92.41 279 | 97.94 158 | 98.00 185 | 72.39 388 | 99.58 168 | 96.36 103 | 99.56 115 | 99.12 167 |
|
| CPTT-MVS | | | 96.69 166 | 96.08 193 | 98.49 56 | 98.89 125 | 96.64 59 | 97.25 115 | 98.77 151 | 92.89 269 | 96.01 276 | 97.13 254 | 92.23 234 | 99.67 135 | 92.24 267 | 99.34 190 | 99.17 154 |
|
| GBi-Net | | | 96.99 140 | 96.80 155 | 97.56 125 | 97.96 235 | 93.67 176 | 98.23 46 | 98.66 175 | 95.59 165 | 97.99 150 | 99.19 38 | 89.51 280 | 99.73 87 | 94.60 205 | 99.44 159 | 99.30 127 |
|
| PVSNet_Blended_VisFu | | | 95.95 197 | 95.80 207 | 96.42 215 | 99.28 55 | 90.62 255 | 95.31 249 | 99.08 63 | 88.40 341 | 96.97 220 | 98.17 161 | 92.11 238 | 99.78 51 | 93.64 242 | 99.21 212 | 98.86 214 |
|
| PVSNet_BlendedMVS | | | 95.02 242 | 94.93 234 | 95.27 269 | 97.79 260 | 87.40 318 | 94.14 301 | 98.68 170 | 88.94 333 | 94.51 319 | 98.01 183 | 93.04 209 | 99.30 260 | 89.77 324 | 99.49 146 | 99.11 170 |
|
| UnsupCasMVSNet_eth | | | 95.91 199 | 95.73 210 | 96.44 213 | 98.48 181 | 91.52 238 | 95.31 249 | 98.45 197 | 95.76 156 | 97.48 184 | 97.54 223 | 89.53 279 | 98.69 343 | 94.43 210 | 94.61 393 | 99.13 162 |
|
| UnsupCasMVSNet_bld | | | 94.72 255 | 94.26 269 | 96.08 232 | 98.62 160 | 90.54 259 | 93.38 329 | 98.05 253 | 90.30 315 | 97.02 215 | 96.80 279 | 89.54 277 | 99.16 288 | 88.44 342 | 96.18 374 | 98.56 248 |
|
| PVSNet_Blended | | | 93.96 286 | 93.65 286 | 94.91 286 | 97.79 260 | 87.40 318 | 91.43 373 | 98.68 170 | 84.50 384 | 94.51 319 | 94.48 356 | 93.04 209 | 99.30 260 | 89.77 324 | 98.61 281 | 98.02 308 |
|
| FMVSNet5 | | | 93.39 301 | 92.35 312 | 96.50 210 | 95.83 363 | 90.81 253 | 97.31 112 | 98.27 220 | 92.74 272 | 96.27 263 | 98.28 144 | 62.23 404 | 99.67 135 | 90.86 295 | 99.36 182 | 99.03 182 |
|
| test1 | | | 96.99 140 | 96.80 155 | 97.56 125 | 97.96 235 | 93.67 176 | 98.23 46 | 98.66 175 | 95.59 165 | 97.99 150 | 99.19 38 | 89.51 280 | 99.73 87 | 94.60 205 | 99.44 159 | 99.30 127 |
|
| new_pmnet | | | 92.34 319 | 91.69 324 | 94.32 316 | 96.23 344 | 89.16 279 | 92.27 359 | 92.88 367 | 84.39 386 | 95.29 301 | 96.35 305 | 85.66 317 | 96.74 404 | 84.53 382 | 97.56 336 | 97.05 355 |
|
| FMVSNet3 | | | 95.26 230 | 94.94 232 | 96.22 226 | 96.53 336 | 90.06 260 | 95.99 199 | 97.66 273 | 94.11 224 | 97.99 150 | 97.91 194 | 80.22 352 | 99.63 151 | 94.60 205 | 99.44 159 | 98.96 192 |
|
| dp | | | 88.08 371 | 88.05 366 | 88.16 396 | 92.85 411 | 68.81 422 | 94.17 297 | 92.88 367 | 85.47 371 | 91.38 384 | 96.14 314 | 68.87 398 | 98.81 330 | 86.88 363 | 83.80 415 | 96.87 362 |
|
| FMVSNet2 | | | 96.72 163 | 96.67 162 | 96.87 186 | 97.96 235 | 91.88 231 | 97.15 121 | 98.06 252 | 95.59 165 | 98.50 89 | 98.62 99 | 89.51 280 | 99.65 143 | 94.99 189 | 99.60 104 | 99.07 177 |
|
| FMVSNet1 | | | 97.95 63 | 98.08 50 | 97.56 125 | 99.14 90 | 93.67 176 | 98.23 46 | 98.66 175 | 97.41 83 | 99.00 47 | 99.19 38 | 95.47 145 | 99.73 87 | 95.83 132 | 99.76 57 | 99.30 127 |
|
| N_pmnet | | | 95.18 233 | 94.23 270 | 98.06 90 | 97.85 242 | 96.55 62 | 92.49 350 | 91.63 381 | 89.34 326 | 98.09 139 | 97.41 232 | 90.33 266 | 99.06 304 | 91.58 280 | 99.31 200 | 98.56 248 |
|
| cascas | | | 91.89 330 | 91.35 328 | 93.51 334 | 94.27 396 | 85.60 341 | 88.86 404 | 98.61 182 | 79.32 403 | 92.16 377 | 91.44 394 | 89.22 284 | 98.12 383 | 90.80 298 | 97.47 342 | 96.82 367 |
|
| BH-RMVSNet | | | 94.56 264 | 94.44 265 | 94.91 286 | 97.57 289 | 87.44 317 | 93.78 318 | 96.26 316 | 93.69 236 | 96.41 254 | 96.50 296 | 92.10 239 | 99.00 311 | 85.96 367 | 97.71 327 | 98.31 275 |
|
| UGNet | | | 96.81 157 | 96.56 169 | 97.58 124 | 96.64 333 | 93.84 170 | 97.75 82 | 97.12 294 | 96.47 118 | 93.62 345 | 98.88 75 | 93.22 205 | 99.53 184 | 95.61 144 | 99.69 77 | 99.36 118 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| WTY-MVS | | | 93.55 297 | 93.00 298 | 95.19 272 | 97.81 251 | 87.86 307 | 93.89 313 | 96.00 320 | 89.02 331 | 94.07 331 | 95.44 338 | 86.27 311 | 99.33 252 | 87.69 351 | 96.82 357 | 98.39 264 |
|
| XXY-MVS | | | 97.54 109 | 97.70 86 | 97.07 172 | 99.46 34 | 92.21 218 | 97.22 118 | 99.00 92 | 94.93 197 | 98.58 83 | 98.92 69 | 97.31 46 | 99.41 226 | 94.44 209 | 99.43 168 | 99.59 38 |
|
| EC-MVSNet | | | 97.90 75 | 97.94 64 | 97.79 109 | 98.66 153 | 95.14 123 | 98.31 39 | 99.66 11 | 97.57 72 | 95.95 277 | 97.01 264 | 96.99 68 | 99.82 36 | 97.66 58 | 99.64 88 | 98.39 264 |
|
| sss | | | 94.22 274 | 93.72 285 | 95.74 248 | 97.71 273 | 89.95 263 | 93.84 314 | 96.98 300 | 88.38 342 | 93.75 341 | 95.74 327 | 87.94 295 | 98.89 323 | 91.02 290 | 98.10 308 | 98.37 266 |
|
| Test_1112_low_res | | | 93.53 298 | 92.86 300 | 95.54 260 | 98.60 162 | 88.86 285 | 92.75 342 | 98.69 168 | 82.66 390 | 92.65 370 | 96.92 270 | 84.75 324 | 99.56 175 | 90.94 293 | 97.76 323 | 98.19 289 |
|
| 1112_ss | | | 94.12 279 | 93.42 290 | 96.23 224 | 98.59 164 | 90.85 250 | 94.24 293 | 98.85 126 | 85.49 370 | 92.97 362 | 94.94 345 | 86.01 313 | 99.64 147 | 91.78 277 | 97.92 315 | 98.20 288 |
|
| ab-mvs-re | | | 7.91 392 | 10.55 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 94.94 345 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs | | | 96.59 170 | 96.59 166 | 96.60 202 | 98.64 154 | 92.21 218 | 98.35 35 | 97.67 271 | 94.45 212 | 96.99 217 | 98.79 79 | 94.96 163 | 99.49 197 | 90.39 314 | 99.07 233 | 98.08 296 |
|
| TR-MVS | | | 92.54 316 | 92.20 316 | 93.57 333 | 96.49 337 | 86.66 330 | 93.51 325 | 94.73 347 | 89.96 320 | 94.95 310 | 93.87 362 | 90.24 271 | 98.61 352 | 81.18 396 | 94.88 390 | 95.45 393 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 424 | 94.89 270 | | 80.59 398 | 94.02 334 | | 78.66 357 | | 85.50 373 | | 97.82 322 |
|
| MDTV_nov1_ep13 | | | | 91.28 330 | | 94.31 394 | 73.51 418 | 94.80 273 | 93.16 364 | 86.75 360 | 93.45 352 | 97.40 233 | 76.37 370 | 98.55 358 | 88.85 336 | 96.43 367 | |
|
| MIMVSNet1 | | | 98.51 25 | 98.45 32 | 98.67 44 | 99.72 8 | 96.71 54 | 98.76 13 | 98.89 110 | 98.49 35 | 99.38 23 | 99.14 49 | 95.44 147 | 99.84 32 | 96.47 98 | 99.80 50 | 99.47 84 |
|
| MIMVSNet | | | 93.42 300 | 92.86 300 | 95.10 277 | 98.17 214 | 88.19 297 | 98.13 55 | 93.69 356 | 92.07 282 | 95.04 309 | 98.21 157 | 80.95 349 | 99.03 310 | 81.42 394 | 98.06 310 | 98.07 298 |
|
| IterMVS-LS | | | 96.92 146 | 97.29 123 | 95.79 245 | 98.51 175 | 88.13 301 | 95.10 258 | 98.66 175 | 96.99 96 | 98.46 95 | 98.68 93 | 92.55 225 | 99.74 81 | 96.91 85 | 99.79 52 | 99.50 67 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CDS-MVSNet | | | 94.88 247 | 94.12 276 | 97.14 164 | 97.64 285 | 93.57 181 | 93.96 311 | 97.06 297 | 90.05 319 | 96.30 262 | 96.55 291 | 86.10 312 | 99.47 202 | 90.10 318 | 99.31 200 | 98.40 262 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 134 | |
|
| IterMVS | | | 95.42 223 | 95.83 206 | 94.20 320 | 97.52 293 | 83.78 369 | 92.41 356 | 97.47 284 | 95.49 171 | 98.06 144 | 98.49 113 | 87.94 295 | 99.58 168 | 96.02 119 | 99.02 238 | 99.23 145 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DP-MVS Recon | | | 95.55 215 | 95.13 225 | 96.80 191 | 98.51 175 | 93.99 165 | 94.60 282 | 98.69 168 | 90.20 317 | 95.78 287 | 96.21 310 | 92.73 218 | 98.98 315 | 90.58 309 | 98.86 255 | 97.42 347 |
|
| MVS_111021_LR | | | 96.82 156 | 96.55 170 | 97.62 122 | 98.27 199 | 95.34 112 | 93.81 317 | 98.33 215 | 94.59 208 | 96.56 247 | 96.63 288 | 96.61 94 | 98.73 337 | 94.80 195 | 99.34 190 | 98.78 223 |
|
| DP-MVS | | | 97.87 78 | 97.89 68 | 97.81 108 | 98.62 160 | 94.82 131 | 97.13 124 | 98.79 146 | 98.98 21 | 98.74 73 | 98.49 113 | 95.80 135 | 99.49 197 | 95.04 184 | 99.44 159 | 99.11 170 |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 121 | |
|
| HQP-MVS | | | 95.17 235 | 94.58 257 | 96.92 182 | 97.85 242 | 92.47 212 | 94.26 289 | 98.43 200 | 93.18 255 | 92.86 364 | 95.08 341 | 90.33 266 | 99.23 278 | 90.51 311 | 98.74 267 | 99.05 181 |
|
| QAPM | | | 95.88 200 | 95.57 216 | 96.80 191 | 97.90 240 | 91.84 233 | 98.18 53 | 98.73 158 | 88.41 340 | 96.42 253 | 98.13 164 | 94.73 165 | 99.75 72 | 88.72 338 | 98.94 245 | 98.81 219 |
|
| Vis-MVSNet |  | | 98.27 38 | 98.34 37 | 98.07 88 | 99.33 51 | 95.21 122 | 98.04 59 | 99.46 20 | 97.32 88 | 97.82 170 | 99.11 51 | 96.75 88 | 99.86 26 | 97.84 47 | 99.36 182 | 99.15 157 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| MVS-HIRNet | | | 88.40 368 | 90.20 349 | 82.99 398 | 97.01 323 | 60.04 423 | 93.11 336 | 85.61 413 | 84.45 385 | 88.72 404 | 99.09 53 | 84.72 325 | 98.23 380 | 82.52 391 | 96.59 366 | 90.69 413 |
|
| IS-MVSNet | | | 96.93 145 | 96.68 161 | 97.70 116 | 99.25 60 | 94.00 164 | 98.57 20 | 96.74 310 | 98.36 39 | 98.14 134 | 97.98 186 | 88.23 293 | 99.71 107 | 93.10 256 | 99.72 70 | 99.38 112 |
|
| HyFIR lowres test | | | 93.72 291 | 92.65 308 | 96.91 184 | 98.93 120 | 91.81 234 | 91.23 380 | 98.52 191 | 82.69 389 | 96.46 252 | 96.52 295 | 80.38 351 | 99.90 16 | 90.36 315 | 98.79 262 | 99.03 182 |
|
| EPMVS | | | 89.26 360 | 88.55 362 | 91.39 378 | 92.36 414 | 79.11 397 | 95.65 224 | 79.86 418 | 88.60 338 | 93.12 359 | 96.53 293 | 70.73 394 | 98.10 384 | 90.75 301 | 89.32 409 | 96.98 357 |
|
| PAPM_NR | | | 94.61 262 | 94.17 274 | 95.96 236 | 98.36 191 | 91.23 244 | 95.93 205 | 97.95 254 | 92.98 264 | 93.42 354 | 94.43 357 | 90.53 261 | 98.38 371 | 87.60 353 | 96.29 372 | 98.27 281 |
|
| TAMVS | | | 95.49 217 | 94.94 232 | 97.16 162 | 98.31 193 | 93.41 188 | 95.07 262 | 96.82 306 | 91.09 304 | 97.51 180 | 97.82 201 | 89.96 272 | 99.42 217 | 88.42 343 | 99.44 159 | 98.64 240 |
|
| PAPR | | | 92.22 321 | 91.27 331 | 95.07 278 | 95.73 371 | 88.81 286 | 91.97 364 | 97.87 259 | 85.80 368 | 90.91 385 | 92.73 379 | 91.16 252 | 98.33 375 | 79.48 400 | 95.76 382 | 98.08 296 |
|
| RPSCF | | | 97.87 78 | 97.51 111 | 98.95 18 | 99.15 83 | 98.43 7 | 97.56 98 | 99.06 67 | 96.19 130 | 98.48 92 | 98.70 91 | 94.72 166 | 99.24 276 | 94.37 214 | 99.33 195 | 99.17 154 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 236 | 94.85 239 | 95.87 243 | 99.12 91 | 89.17 278 | 97.54 104 | 94.92 346 | 96.50 115 | 96.58 245 | 97.27 247 | 83.64 333 | 99.48 200 | 88.42 343 | 99.67 83 | 98.97 191 |
|
| test_0402 | | | 97.84 81 | 97.97 61 | 97.47 139 | 99.19 77 | 94.07 161 | 96.71 153 | 98.73 158 | 98.66 29 | 98.56 84 | 98.41 123 | 96.84 84 | 99.69 122 | 94.82 194 | 99.81 47 | 98.64 240 |
|
| MVS_111021_HR | | | 96.73 162 | 96.54 172 | 97.27 155 | 98.35 192 | 93.66 179 | 93.42 327 | 98.36 211 | 94.74 200 | 96.58 245 | 96.76 282 | 96.54 97 | 98.99 313 | 94.87 192 | 99.27 206 | 99.15 157 |
|
| CSCG | | | 97.40 120 | 97.30 122 | 97.69 118 | 98.95 115 | 94.83 130 | 97.28 114 | 98.99 95 | 96.35 123 | 98.13 135 | 95.95 323 | 95.99 122 | 99.66 141 | 94.36 216 | 99.73 66 | 98.59 246 |
|
| PatchMatch-RL | | | 94.61 262 | 93.81 284 | 97.02 177 | 98.19 208 | 95.72 89 | 93.66 320 | 97.23 288 | 88.17 345 | 94.94 311 | 95.62 332 | 91.43 249 | 98.57 355 | 87.36 359 | 97.68 330 | 96.76 370 |
|
| API-MVS | | | 95.09 238 | 95.01 231 | 95.31 268 | 96.61 334 | 94.02 163 | 96.83 139 | 97.18 291 | 95.60 164 | 95.79 285 | 94.33 358 | 94.54 175 | 98.37 373 | 85.70 369 | 98.52 286 | 93.52 404 |
|
| Test By Simon | | | | | | | | | | | | | 94.51 176 | | | | |
|
| TDRefinement | | | 98.90 6 | 98.86 9 | 99.02 10 | 99.54 25 | 98.06 9 | 99.34 5 | 99.44 22 | 98.85 25 | 99.00 47 | 99.20 37 | 97.42 42 | 99.59 166 | 97.21 71 | 99.76 57 | 99.40 105 |
|
| USDC | | | 94.56 264 | 94.57 259 | 94.55 306 | 97.78 263 | 86.43 334 | 92.75 342 | 98.65 180 | 85.96 365 | 96.91 224 | 97.93 192 | 90.82 258 | 98.74 336 | 90.71 305 | 99.59 106 | 98.47 258 |
|
| EPP-MVSNet | | | 96.84 152 | 96.58 167 | 97.65 120 | 99.18 78 | 93.78 173 | 98.68 14 | 96.34 315 | 97.91 57 | 97.30 191 | 98.06 177 | 88.46 289 | 99.85 29 | 93.85 235 | 99.40 176 | 99.32 122 |
|
| PMMVS | | | 92.39 317 | 91.08 334 | 96.30 223 | 93.12 409 | 92.81 202 | 90.58 390 | 95.96 322 | 79.17 404 | 91.85 380 | 92.27 384 | 90.29 270 | 98.66 348 | 89.85 323 | 96.68 364 | 97.43 346 |
|
| PAPM | | | 87.64 374 | 85.84 381 | 93.04 346 | 96.54 335 | 84.99 353 | 88.42 405 | 95.57 333 | 79.52 402 | 83.82 413 | 93.05 373 | 80.57 350 | 98.41 368 | 62.29 417 | 92.79 400 | 95.71 388 |
|
| ACMMP |  | | 98.05 53 | 97.75 85 | 98.93 22 | 99.23 63 | 97.60 26 | 98.09 57 | 98.96 102 | 95.75 158 | 97.91 160 | 98.06 177 | 96.89 78 | 99.76 66 | 95.32 165 | 99.57 112 | 99.43 101 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CNLPA | | | 95.04 239 | 94.47 262 | 96.75 195 | 97.81 251 | 95.25 116 | 94.12 303 | 97.89 258 | 94.41 213 | 94.57 317 | 95.69 328 | 90.30 269 | 98.35 374 | 86.72 365 | 98.76 265 | 96.64 372 |
|
| PatchmatchNet |  | | 91.98 329 | 91.87 319 | 92.30 367 | 94.60 392 | 79.71 394 | 95.12 257 | 93.59 361 | 89.52 325 | 93.61 346 | 97.02 262 | 77.94 359 | 99.18 283 | 90.84 296 | 94.57 395 | 98.01 309 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PHI-MVS | | | 96.96 144 | 96.53 173 | 98.25 75 | 97.48 296 | 96.50 63 | 96.76 147 | 98.85 126 | 93.52 240 | 96.19 269 | 96.85 273 | 95.94 123 | 99.42 217 | 93.79 237 | 99.43 168 | 98.83 216 |
|
| F-COLMAP | | | 95.30 228 | 94.38 267 | 98.05 94 | 98.64 154 | 96.04 79 | 95.61 228 | 98.66 175 | 89.00 332 | 93.22 357 | 96.40 302 | 92.90 214 | 99.35 247 | 87.45 358 | 97.53 338 | 98.77 226 |
|
| ANet_high | | | 98.31 36 | 98.94 6 | 96.41 217 | 99.33 51 | 89.64 269 | 97.92 69 | 99.56 19 | 99.27 8 | 99.66 10 | 99.50 11 | 97.67 31 | 99.83 34 | 97.55 61 | 99.98 2 | 99.77 13 |
|
| wuyk23d | | | 93.25 306 | 95.20 221 | 87.40 397 | 96.07 354 | 95.38 107 | 97.04 129 | 94.97 344 | 95.33 178 | 99.70 7 | 98.11 168 | 98.14 17 | 91.94 415 | 77.76 406 | 99.68 81 | 74.89 415 |
|
| OMC-MVS | | | 96.48 176 | 96.00 196 | 97.91 102 | 98.30 194 | 96.01 82 | 94.86 272 | 98.60 183 | 91.88 288 | 97.18 200 | 97.21 251 | 96.11 120 | 99.04 307 | 90.49 313 | 99.34 190 | 98.69 236 |
|
| MG-MVS | | | 94.08 282 | 94.00 279 | 94.32 316 | 97.09 321 | 85.89 339 | 93.19 335 | 95.96 322 | 92.52 275 | 94.93 312 | 97.51 226 | 89.54 277 | 98.77 333 | 87.52 357 | 97.71 327 | 98.31 275 |
|
| AdaColmap |  | | 95.11 236 | 94.62 253 | 96.58 204 | 97.33 311 | 94.45 146 | 94.92 269 | 98.08 247 | 93.15 259 | 93.98 336 | 95.53 335 | 94.34 180 | 99.10 300 | 85.69 370 | 98.61 281 | 96.20 382 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ITE_SJBPF | | | | | 97.85 106 | 98.64 154 | 96.66 58 | | 98.51 193 | 95.63 162 | 97.22 195 | 97.30 246 | 95.52 143 | 98.55 358 | 90.97 292 | 98.90 249 | 98.34 272 |
|
| DeepMVS_CX |  | | | | 77.17 399 | 90.94 417 | 85.28 348 | | 74.08 422 | 52.51 418 | 80.87 418 | 88.03 410 | 75.25 376 | 70.63 420 | 59.23 419 | 84.94 414 | 75.62 414 |
|
| TinyColmap | | | 96.00 196 | 96.34 182 | 94.96 285 | 97.90 240 | 87.91 306 | 94.13 302 | 98.49 194 | 94.41 213 | 98.16 131 | 97.76 205 | 96.29 115 | 98.68 346 | 90.52 310 | 99.42 171 | 98.30 277 |
|
| MAR-MVS | | | 94.21 276 | 93.03 296 | 97.76 111 | 96.94 327 | 97.44 37 | 96.97 133 | 97.15 292 | 87.89 349 | 92.00 378 | 92.73 379 | 92.14 237 | 99.12 294 | 83.92 384 | 97.51 339 | 96.73 371 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| LF4IMVS | | | 96.07 191 | 95.63 214 | 97.36 149 | 98.19 208 | 95.55 96 | 95.44 234 | 98.82 144 | 92.29 281 | 95.70 291 | 96.55 291 | 92.63 222 | 98.69 343 | 91.75 279 | 99.33 195 | 97.85 320 |
|
| MSDG | | | 95.33 226 | 95.13 225 | 95.94 240 | 97.40 304 | 91.85 232 | 91.02 385 | 98.37 210 | 95.30 180 | 96.31 261 | 95.99 319 | 94.51 176 | 98.38 371 | 89.59 326 | 97.65 334 | 97.60 339 |
|
| LS3D | | | 97.77 90 | 97.50 113 | 98.57 51 | 96.24 342 | 97.58 28 | 98.45 31 | 98.85 126 | 98.58 32 | 97.51 180 | 97.94 190 | 95.74 137 | 99.63 151 | 95.19 171 | 98.97 241 | 98.51 254 |
|
| CLD-MVS | | | 95.47 220 | 95.07 228 | 96.69 199 | 98.27 199 | 92.53 209 | 91.36 374 | 98.67 173 | 91.22 303 | 95.78 287 | 94.12 360 | 95.65 140 | 98.98 315 | 90.81 297 | 99.72 70 | 98.57 247 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| FPMVS | | | 89.92 353 | 88.63 361 | 93.82 326 | 98.37 190 | 96.94 49 | 91.58 370 | 93.34 363 | 88.00 347 | 90.32 391 | 97.10 257 | 70.87 393 | 91.13 416 | 71.91 414 | 96.16 376 | 93.39 406 |
|
| Gipuma |  | | 98.07 51 | 98.31 39 | 97.36 149 | 99.76 7 | 96.28 72 | 98.51 27 | 99.10 55 | 98.76 27 | 96.79 228 | 99.34 26 | 96.61 94 | 98.82 328 | 96.38 102 | 99.50 143 | 96.98 357 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |