This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 31196.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8898.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18566.64 12792.15 14993.68 7581.07 4676.91 15393.64 10962.59 11798.44 3185.50 7692.84 5994.03 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS77.80 482.18 12680.46 14787.35 4589.14 17770.28 3595.59 2695.17 2178.85 8570.19 23085.82 24570.66 4097.67 5172.19 19066.52 29194.09 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9567.74 9784.65 30894.50 4379.15 7882.23 8887.93 21466.88 6096.94 10780.53 12382.20 17196.39 33
3Dnovator73.91 682.69 12080.82 13788.31 2689.57 16271.26 2292.60 13494.39 5178.84 8667.89 26292.48 13448.42 27298.52 2868.80 22194.40 3695.15 78
3Dnovator+73.60 782.10 13080.60 14486.60 6890.89 13866.80 12495.20 3493.44 8674.05 15267.42 26992.49 13349.46 26297.65 5570.80 20091.68 7495.33 66
PVSNet73.49 880.05 16678.63 17484.31 15190.92 13764.97 16892.47 14091.05 19779.18 7772.43 20290.51 17237.05 34394.06 22768.06 22586.00 13793.90 139
PCF-MVS73.15 979.29 17977.63 18984.29 15286.06 24865.96 14487.03 29391.10 19169.86 25269.79 23790.64 16857.54 17396.59 11964.37 26482.29 16790.32 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP71.68 1075.58 24774.23 24079.62 27684.97 26959.64 29390.80 21389.07 27370.39 24562.95 31187.30 22538.28 32793.87 24072.89 17771.45 25885.36 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft70.45 1178.54 19775.92 21686.41 7785.93 25371.68 1892.74 12492.51 12666.49 28564.56 29391.96 14643.88 30598.10 3754.61 31290.65 8989.44 235
TAPA-MVS70.22 1274.94 25473.53 25079.17 28390.40 14652.07 35089.19 26089.61 24862.69 31970.07 23192.67 12948.89 27194.32 21338.26 37879.97 19091.12 211
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 25772.73 26079.17 28384.25 28257.87 31390.36 23089.93 23563.17 31465.64 28486.04 24437.79 33594.10 22365.89 25071.52 25785.55 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft68.80 1475.23 25073.68 24979.86 27092.93 7658.68 30790.64 22188.30 29960.90 33364.43 29790.53 17142.38 31194.57 20356.52 30576.54 22386.33 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_068.08 1571.81 28368.32 29982.27 20684.68 27162.31 24288.68 26890.31 21975.84 12857.93 34280.65 31137.85 33494.19 22069.94 20729.05 40890.31 220
ACMH+65.35 1667.65 31764.55 32276.96 31084.59 27457.10 32388.08 27580.79 36358.59 34853.00 35981.09 30626.63 38092.95 25846.51 34661.69 33680.82 354
ACMH63.93 1768.62 30764.81 31980.03 26385.22 26363.25 21687.72 28484.66 34260.83 33451.57 36679.43 32727.29 37894.96 18841.76 36564.84 30481.88 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 32462.92 33376.80 31276.51 36357.77 31489.22 25883.41 35555.48 36353.86 35777.84 33726.28 38193.95 23634.90 38568.76 27478.68 373
LTVRE_ROB59.60 1966.27 32563.54 32974.45 32784.00 28551.55 35367.08 39483.53 35358.78 34654.94 35280.31 31534.54 35293.23 25240.64 37168.03 28078.58 374
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft57.96 2062.98 34359.65 34672.98 33981.44 31253.00 34783.75 31475.53 37848.34 38348.81 37881.40 29824.14 38390.30 31832.95 39060.52 34475.65 384
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary48.56 2166.77 32364.41 32573.84 33370.65 38550.31 36177.79 36385.73 33445.54 39044.76 38982.14 28535.40 34990.14 32563.18 27374.54 23381.07 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft26.43 2231.84 38228.16 38542.89 39525.87 42527.58 41650.92 41049.78 41321.37 41114.17 41740.81 4122.01 42466.62 4059.61 41738.88 39534.49 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 38419.77 39038.09 39834.56 42426.92 41726.57 41438.87 42111.73 41711.37 41827.44 4141.37 42550.42 41711.41 41514.60 41536.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
reproduce_monomvs79.49 17679.11 17080.64 24892.91 7761.47 25991.17 20293.28 9283.09 2064.04 29982.38 28166.19 6694.57 20381.19 11957.71 35485.88 293
mmtdpeth68.33 31166.37 30874.21 33182.81 30051.73 35184.34 31080.42 36567.01 28271.56 21468.58 38130.52 36992.35 28675.89 15636.21 39778.56 375
reproduce_model83.15 11082.96 10383.73 16892.02 10259.74 29290.37 22992.08 14163.70 30682.86 8295.48 5058.62 16197.17 8583.06 10388.42 11094.26 118
reproduce-ours83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
our_new_method83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
mvs5depth61.03 34857.65 35371.18 35267.16 39347.04 38172.74 37777.49 37057.47 35360.52 32372.53 36422.84 38788.38 33849.15 33238.94 39378.11 378
MVStest151.35 36446.89 36864.74 37065.06 39751.10 35767.33 39372.58 38430.20 40635.30 40174.82 35927.70 37669.89 40124.44 40324.57 41073.22 388
ttmdpeth53.34 36349.96 36663.45 37362.07 40340.04 39872.06 37865.64 40042.54 39851.88 36377.79 33813.94 40576.48 39232.93 39130.82 40773.84 387
WBMVS81.67 13580.98 13683.72 17093.07 7369.40 5394.33 5493.05 10376.84 11672.05 20784.14 26274.49 1893.88 23972.76 18168.09 27987.88 252
dongtai55.18 36155.46 36054.34 38676.03 36836.88 40476.07 36984.61 34351.28 37343.41 39464.61 39056.56 18967.81 40418.09 40928.50 40958.32 402
kuosan60.86 35060.24 34362.71 37581.57 31046.43 38375.70 37285.88 33157.98 34948.95 37769.53 37958.42 16376.53 39128.25 40035.87 39865.15 399
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 15174.04 887.84 28292.69 11762.18 32281.47 9587.64 21971.47 3896.28 13284.69 8694.74 3196.47 28
MGCFI-Net85.59 6485.73 5985.17 11791.41 12762.44 23692.87 12091.31 18079.65 6786.99 4495.14 6762.90 11596.12 13987.13 6484.13 15696.96 13
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5680.53 10891.93 14870.43 4196.51 12580.32 12582.13 17295.37 63
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4380.69 10592.21 14272.30 3296.46 12885.18 8083.43 15894.82 95
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5480.60 10791.95 14771.73 3796.50 12680.02 12782.22 17095.13 79
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3681.50 9392.12 14373.58 2596.28 13284.37 9085.20 14295.51 58
UWE-MVS80.81 15281.01 13580.20 25889.33 16957.05 32491.91 16494.71 3575.67 13075.01 17189.37 19263.13 11191.44 31167.19 23682.80 16592.12 193
ETVMVS84.22 8883.71 8285.76 9692.58 8968.25 8592.45 14195.53 1479.54 6979.46 12191.64 15570.29 4294.18 22169.16 21682.76 16694.84 92
sasdasda86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5580.38 11092.27 13968.73 4795.19 18275.94 15583.27 16094.81 96
WB-MVSnew77.14 21876.18 21380.01 26486.18 24663.24 21791.26 19594.11 6071.72 21573.52 18587.29 22645.14 30093.00 25656.98 30479.42 19483.80 318
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22964.19 19094.41 5288.14 30480.24 5992.54 596.97 1069.52 4697.17 8595.89 388.51 10994.56 105
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 23264.37 18394.30 5588.45 29580.51 5192.70 496.86 1569.98 4497.15 8995.83 488.08 11494.65 102
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32663.50 21292.79 12288.73 28680.46 5289.84 2796.65 2260.96 13397.57 6193.80 1380.14 18992.53 178
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29963.48 21394.03 6889.46 25181.69 3489.86 2696.74 2061.85 12597.75 4994.74 982.01 17492.81 171
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25663.58 20893.79 8389.32 25781.42 4190.21 2396.91 1462.41 11997.67 5194.48 1080.56 18792.90 169
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22463.54 21194.74 4790.02 23382.52 2590.14 2596.92 1362.93 11497.84 4695.28 882.26 16893.07 163
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
WAC-MVS49.45 36631.56 398
Syy-MVS69.65 29969.52 29170.03 35687.87 21143.21 39288.07 27689.01 27572.91 17863.11 30888.10 21045.28 29985.54 35922.07 40669.23 27081.32 349
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31662.33 24093.84 8088.81 28383.50 1987.00 4396.01 3763.36 10696.93 10994.04 1287.29 12394.61 104
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36961.72 25492.17 14887.24 31782.36 2784.91 6495.41 5155.60 19996.83 11492.85 1885.87 13894.21 121
myMVS_eth3d72.58 28172.74 25972.10 34887.87 21149.45 36688.07 27689.01 27572.91 17863.11 30888.10 21063.63 9985.54 35932.73 39369.23 27081.32 349
testing370.38 29370.83 27869.03 36085.82 25443.93 39190.72 21890.56 20968.06 27160.24 32586.82 23464.83 8384.12 36526.33 40164.10 31379.04 370
SSC-MVS44.51 37143.35 37347.99 39361.01 40518.90 42474.12 37554.36 40943.42 39634.10 40460.02 39834.42 35370.39 4009.14 41819.57 41254.68 405
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 26262.55 23594.26 5789.78 23983.81 1787.78 3696.33 2965.33 7696.98 10194.40 1187.55 12094.95 87
WB-MVS46.23 36944.94 37150.11 38962.13 40221.23 42276.48 36755.49 40845.89 38935.78 40061.44 39735.54 34872.83 3979.96 41621.75 41156.27 404
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 30263.72 20191.37 18983.99 35181.42 4177.68 14295.74 4258.37 16497.58 5993.38 1486.87 12693.00 166
dmvs_re76.93 22275.36 22381.61 22587.78 21560.71 27580.00 35287.99 30879.42 7169.02 24489.47 19146.77 28494.32 21363.38 27074.45 23489.81 226
SDMVSNet80.26 16178.88 17284.40 14789.25 17267.63 10185.35 30493.02 10476.77 11970.84 22187.12 22847.95 27896.09 14185.04 8174.55 23189.48 233
dmvs_testset65.55 33066.45 30662.86 37479.87 32922.35 42076.55 36671.74 38877.42 11155.85 34987.77 21751.39 24480.69 38731.51 39965.92 29485.55 300
sd_testset77.08 22075.37 22282.20 21089.25 17262.11 24582.06 33189.09 27176.77 11970.84 22187.12 22841.43 31495.01 18667.23 23574.55 23189.48 233
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 23163.55 21093.69 8791.08 19484.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 118
test_cas_vis1_n_192080.45 15880.61 14379.97 26778.25 35257.01 32694.04 6788.33 29879.06 8382.81 8493.70 10738.65 32391.63 30390.82 3679.81 19191.27 209
test_vis1_n_192081.66 13682.01 12080.64 24882.24 30455.09 33894.76 4686.87 31981.67 3584.40 6994.63 8038.17 32894.67 20091.98 2783.34 15992.16 192
test_vis1_n71.63 28570.73 28174.31 33069.63 38847.29 37886.91 29572.11 38663.21 31375.18 16990.17 18120.40 39285.76 35884.59 8874.42 23589.87 225
test_fmvs1_n72.69 27971.92 27074.99 32371.15 38247.08 37987.34 29175.67 37563.48 30978.08 13991.17 16320.16 39487.87 34384.65 8775.57 22990.01 224
mvsany_test168.77 30668.56 29569.39 35873.57 37545.88 38680.93 34260.88 40659.65 34271.56 21490.26 17943.22 30875.05 39374.26 17162.70 32287.25 265
APD_test140.50 37437.31 37750.09 39051.88 41035.27 40759.45 40452.59 41121.64 41026.12 40857.80 4004.56 41866.56 40622.64 40539.09 39248.43 406
test_vis1_rt59.09 35657.31 35564.43 37168.44 39146.02 38583.05 32648.63 41551.96 37149.57 37463.86 39116.30 39780.20 38871.21 19762.79 32167.07 398
test_vis3_rt40.46 37537.79 37648.47 39244.49 41733.35 40966.56 39532.84 42332.39 40429.65 40539.13 4133.91 42168.65 40250.17 32640.99 39043.40 408
test_fmvs265.78 32964.84 31868.60 36266.54 39441.71 39483.27 32069.81 39354.38 36567.91 26084.54 25915.35 39981.22 38675.65 15866.16 29282.88 331
test_fmvs174.07 26073.69 24875.22 32078.91 34447.34 37789.06 26474.69 38063.68 30779.41 12291.59 15624.36 38287.77 34685.22 7876.26 22590.55 218
test_fmvs356.82 35754.86 36162.69 37653.59 40935.47 40675.87 37065.64 40043.91 39455.10 35171.43 3756.91 41474.40 39668.64 22252.63 36878.20 377
mvsany_test348.86 36746.35 37056.41 38046.00 41531.67 41162.26 39947.25 41643.71 39545.54 38768.15 38310.84 40764.44 41257.95 30035.44 40173.13 389
testf132.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
APD_test232.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
test_f46.58 36843.45 37255.96 38145.18 41632.05 41061.18 40049.49 41433.39 40342.05 39662.48 3947.00 41365.56 40847.08 34543.21 38670.27 395
FE-MVS75.97 23973.02 25584.82 12689.78 15765.56 15377.44 36491.07 19564.55 29772.66 19479.85 32246.05 29496.69 11754.97 31180.82 18592.21 190
FA-MVS(test-final)79.12 18277.23 19884.81 12990.54 14363.98 19481.35 33991.71 16371.09 23474.85 17382.94 27452.85 23097.05 9267.97 22681.73 17893.41 150
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22493.43 8784.06 1486.20 4990.17 18172.42 3196.98 10193.09 1695.92 1097.29 7
MonoMVSNet76.99 22175.08 22782.73 19283.32 29363.24 21786.47 30086.37 32379.08 8166.31 28179.30 32849.80 26091.72 30079.37 13165.70 29593.23 156
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6673.86 2197.58 5993.38 1492.00 6996.28 37
EGC-MVSNET42.35 37238.09 37555.11 38374.57 37146.62 38271.63 38155.77 4070.04 4210.24 42262.70 39314.24 40374.91 39517.59 41046.06 38143.80 407
test250683.29 10782.92 10684.37 14988.39 19563.18 22192.01 15891.35 17977.66 10478.49 13691.42 15864.58 8795.09 18473.19 17489.23 10094.85 89
test111180.84 15180.02 15083.33 18187.87 21160.76 27292.62 13286.86 32077.86 10075.73 16191.39 16046.35 28994.70 19972.79 18088.68 10894.52 110
ECVR-MVScopyleft81.29 14280.38 14884.01 16288.39 19561.96 24892.56 13986.79 32177.66 10476.63 15491.42 15846.34 29095.24 18174.36 17089.23 10094.85 89
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
tt080573.07 26970.73 28180.07 26178.37 35157.05 32487.78 28392.18 13961.23 33267.04 27486.49 23731.35 36594.58 20165.06 26067.12 28688.57 243
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18792.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
FOURS193.95 4661.77 25193.96 7091.92 15062.14 32486.57 46
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
test_one_060196.32 1869.74 4994.18 5771.42 22890.67 1996.85 1674.45 19
eth-test20.00 429
eth-test0.00 429
GeoE78.90 18777.43 19283.29 18288.95 18162.02 24692.31 14386.23 32770.24 24771.34 21889.27 19354.43 21494.04 23063.31 27180.81 18693.81 142
test_method38.59 37735.16 38048.89 39154.33 40821.35 42145.32 41253.71 4107.41 41828.74 40651.62 4028.70 41152.87 41533.73 38632.89 40372.47 391
Anonymous2024052162.09 34459.08 34871.10 35367.19 39248.72 37183.91 31385.23 33750.38 37747.84 38071.22 37620.74 39185.51 36146.47 34758.75 35279.06 369
h-mvs3383.01 11382.56 11384.35 15089.34 16762.02 24692.72 12593.76 6981.45 3882.73 8592.25 14160.11 14197.13 9087.69 5562.96 31993.91 137
hse-mvs281.12 14681.11 13381.16 23586.52 23957.48 31989.40 25591.16 18781.45 3882.73 8590.49 17360.11 14194.58 20187.69 5560.41 34691.41 202
CL-MVSNet_self_test69.92 29668.09 30075.41 31973.25 37655.90 33390.05 24089.90 23669.96 25061.96 31976.54 34851.05 24887.64 34749.51 33150.59 37482.70 337
KD-MVS_2432*160069.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
KD-MVS_self_test60.87 34958.60 34967.68 36566.13 39539.93 40075.63 37384.70 34157.32 35449.57 37468.45 38229.55 37082.87 37748.09 33747.94 37880.25 362
AUN-MVS78.37 19977.43 19281.17 23486.60 23857.45 32089.46 25491.16 18774.11 15174.40 17690.49 17355.52 20094.57 20374.73 16960.43 34591.48 200
ZD-MVS96.63 965.50 15693.50 8370.74 24285.26 6295.19 6564.92 8297.29 7687.51 5793.01 56
SR-MVS-dyc-post81.06 14780.70 14082.15 21292.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8351.26 24795.61 16578.77 14086.77 13092.28 185
RE-MVS-def80.48 14692.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8349.30 26478.77 14086.77 13092.28 185
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21792.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2295.36 1496.47 28
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
test_241102_TWO94.41 4871.65 21792.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
test_241102_ONE96.45 1269.38 5594.44 4671.65 21792.11 797.05 776.79 999.11 6
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 6970.78 24186.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
cl2277.94 20776.78 20481.42 22987.57 21764.93 17090.67 21988.86 28272.45 18967.63 26682.68 27864.07 9192.91 26371.79 19165.30 29786.44 277
miper_ehance_all_eth77.60 21176.44 20881.09 24185.70 25764.41 18190.65 22088.64 29172.31 19367.37 27282.52 27964.77 8592.64 27670.67 20265.30 29786.24 281
miper_enhance_ethall78.86 18877.97 18481.54 22788.00 20865.17 16291.41 18289.15 26675.19 13868.79 24983.98 26567.17 5892.82 26572.73 18265.30 29786.62 276
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16179.94 11594.68 7960.61 13798.03 3882.63 10693.72 4694.52 110
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23090.66 20679.37 7381.20 9793.67 10874.73 1596.55 12390.88 3592.00 6995.82 48
cl____76.07 23374.67 22980.28 25585.15 26461.76 25290.12 23788.73 28671.16 23165.43 28581.57 29461.15 12992.95 25866.54 24262.17 32786.13 285
DIV-MVS_self_test76.07 23374.67 22980.28 25585.14 26561.75 25390.12 23788.73 28671.16 23165.42 28681.60 29361.15 12992.94 26266.54 24262.16 32986.14 283
eth_miper_zixun_eth75.96 24074.40 23780.66 24784.66 27263.02 22389.28 25788.27 30171.88 20765.73 28381.65 29159.45 14992.81 26668.13 22460.53 34386.14 283
9.1487.63 2893.86 4894.41 5294.18 5772.76 18286.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
save fliter93.84 4967.89 9495.05 3992.66 11978.19 94
ET-MVSNet_ETH3D84.01 9283.15 10286.58 7090.78 14170.89 2894.74 4794.62 4081.44 4058.19 33793.64 10973.64 2492.35 28682.66 10578.66 20496.50 27
UniMVSNet_ETH3D72.74 27670.53 28379.36 28078.62 34956.64 32885.01 30689.20 26263.77 30564.84 29184.44 26034.05 35491.86 29763.94 26670.89 26289.57 231
EIA-MVS84.84 7584.88 7184.69 13591.30 12962.36 23993.85 7792.04 14379.45 7079.33 12494.28 9562.42 11896.35 13080.05 12691.25 8395.38 62
miper_refine_blended69.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
miper_lstm_enhance73.05 27071.73 27377.03 30783.80 28658.32 31081.76 33288.88 28069.80 25361.01 32078.23 33457.19 17587.51 35065.34 25859.53 34885.27 307
ETV-MVS86.01 5386.11 5085.70 9990.21 15067.02 11893.43 10391.92 15081.21 4584.13 7394.07 10160.93 13495.63 16389.28 4389.81 9694.46 114
CS-MVS85.80 5886.65 4383.27 18392.00 10658.92 30495.31 3191.86 15579.97 6184.82 6595.40 5262.26 12095.51 17386.11 7392.08 6895.37 63
D2MVS73.80 26472.02 26979.15 28579.15 33962.97 22488.58 27090.07 22972.94 17659.22 33178.30 33242.31 31292.70 27265.59 25572.00 25381.79 346
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20390.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 18790.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
test072696.40 1569.99 3896.76 894.33 5471.92 20391.89 1197.11 673.77 22
SR-MVS82.81 11682.58 11283.50 17893.35 6361.16 26492.23 14791.28 18464.48 29881.27 9695.28 5753.71 22295.86 15182.87 10488.77 10793.49 149
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
GST-MVS84.63 7984.29 7885.66 10092.82 8165.27 15993.04 11493.13 10073.20 17078.89 12894.18 9859.41 15197.85 4581.45 11492.48 6393.86 140
test_yl84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
thisisatest053081.15 14380.07 14984.39 14888.26 19965.63 15191.40 18494.62 4071.27 23070.93 22089.18 19472.47 3096.04 14665.62 25476.89 22191.49 199
Anonymous2024052976.84 22574.15 24184.88 12491.02 13464.95 16993.84 8091.09 19253.57 36773.00 18887.42 22335.91 34797.32 7469.14 21772.41 25292.36 181
Anonymous20240521177.96 20675.33 22485.87 9093.73 5364.52 17394.85 4485.36 33662.52 32076.11 15890.18 18029.43 37297.29 7668.51 22377.24 21995.81 49
DCV-MVSNet84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
tttt051779.50 17578.53 17682.41 20387.22 22661.43 26089.75 24894.76 3269.29 25867.91 26088.06 21372.92 2795.63 16362.91 27573.90 24190.16 221
our_test_368.29 31264.69 32179.11 28678.92 34264.85 17188.40 27385.06 33860.32 33852.68 36076.12 35340.81 31689.80 33044.25 35755.65 36082.67 339
thisisatest051583.41 10582.49 11486.16 8389.46 16668.26 8393.54 9594.70 3674.31 14875.75 16090.92 16572.62 2996.52 12469.64 20881.50 17993.71 143
ppachtmachnet_test67.72 31663.70 32879.77 27378.92 34266.04 14188.68 26882.90 35960.11 34055.45 35075.96 35439.19 32090.55 31539.53 37352.55 37082.71 336
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 15091.74 1296.67 2165.61 7498.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.68 99
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26690.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part296.29 1968.16 8890.78 17
thres100view90078.37 19977.01 20182.46 19991.89 11163.21 21991.19 20196.33 172.28 19570.45 22687.89 21560.31 13895.32 17745.16 35277.58 21288.83 237
tfpnnormal70.10 29467.36 30378.32 29183.45 29260.97 26788.85 26592.77 11364.85 29660.83 32278.53 33143.52 30793.48 24831.73 39661.70 33580.52 358
tfpn200view978.79 19177.43 19282.88 18992.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21288.83 237
c3_l76.83 22675.47 22180.93 24585.02 26864.18 19190.39 22888.11 30571.66 21666.65 28081.64 29263.58 10492.56 27769.31 21462.86 32086.04 287
CHOSEN 280x42077.35 21576.95 20378.55 28987.07 23062.68 23469.71 38582.95 35868.80 26571.48 21687.27 22766.03 6984.00 36976.47 15382.81 16488.95 236
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 7099.10 992.99 1793.91 4296.58 21
Fast-Effi-MVS+-dtu75.04 25273.37 25280.07 26180.86 31559.52 29691.20 20085.38 33571.90 20565.20 28784.84 25441.46 31392.97 25766.50 24472.96 24687.73 254
Effi-MVS+-dtu76.14 23275.28 22578.72 28883.22 29455.17 33789.87 24587.78 31175.42 13467.98 25881.43 29645.08 30192.52 27975.08 16371.63 25588.48 245
CANet_DTU84.09 9183.52 8585.81 9390.30 14866.82 12291.87 16689.01 27585.27 986.09 5193.74 10647.71 28196.98 10177.90 14689.78 9893.65 145
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12465.59 15291.54 18092.51 12674.56 14480.62 10695.64 4459.15 15497.00 9786.94 6793.80 4394.07 130
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS90.38 591.87 185.88 8992.83 7964.03 19393.06 11294.33 5482.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs157.85 16994.68 99
sam_mvs54.91 208
IterMVS-SCA-FT71.55 28669.97 28676.32 31481.48 31160.67 27787.64 28785.99 33066.17 28759.50 32978.88 32945.53 29683.65 37162.58 27861.93 33084.63 313
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23093.55 8082.89 2191.29 1692.89 12472.27 3396.03 14787.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
OPM-MVS79.00 18478.09 18181.73 22283.52 29163.83 19691.64 17990.30 22076.36 12571.97 20889.93 18746.30 29295.17 18375.10 16277.70 21086.19 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11967.53 10491.79 17093.49 8474.93 14184.61 6695.30 5659.42 15097.92 4186.13 7294.92 2094.94 88
ambc69.61 35761.38 40441.35 39549.07 41185.86 33350.18 37366.40 38510.16 40888.14 34145.73 35144.20 38379.32 368
MTGPAbinary92.23 132
SPE-MVS-test86.14 5187.01 3683.52 17592.63 8759.36 30095.49 2791.92 15080.09 6085.46 5995.53 4961.82 12695.77 15586.77 6993.37 5295.41 60
Effi-MVS+83.82 9682.76 10986.99 5689.56 16369.40 5391.35 19186.12 32972.59 18483.22 8092.81 12859.60 14896.01 14981.76 11187.80 11795.56 56
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10183.53 1889.55 2995.95 3853.45 22797.68 5091.07 3392.62 6094.54 108
xiu_mvs_v1_base82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
new-patchmatchnet59.30 35556.48 35767.79 36465.86 39644.19 38882.47 32981.77 36059.94 34143.65 39366.20 38627.67 37781.68 38439.34 37441.40 38877.50 380
pmmvs667.57 31864.76 32076.00 31772.82 37953.37 34588.71 26786.78 32253.19 36857.58 34578.03 33635.33 35092.41 28255.56 30954.88 36482.21 343
pmmvs573.35 26771.52 27478.86 28778.64 34860.61 27991.08 20486.90 31867.69 27363.32 30683.64 26744.33 30490.53 31662.04 28166.02 29385.46 302
test_post178.95 35520.70 41853.05 22891.50 31060.43 289
test_post23.01 41556.49 19092.67 273
Fast-Effi-MVS+81.14 14480.01 15184.51 14490.24 14965.86 14694.12 6289.15 26673.81 16075.37 16888.26 20657.26 17494.53 20866.97 23984.92 14493.15 159
patchmatchnet-post67.62 38457.62 17290.25 319
Anonymous2023121173.08 26870.39 28481.13 23690.62 14263.33 21591.40 18490.06 23151.84 37264.46 29680.67 31036.49 34594.07 22663.83 26764.17 31285.98 289
pmmvs-eth3d65.53 33162.32 33775.19 32169.39 38959.59 29482.80 32883.43 35462.52 32051.30 36872.49 36532.86 35687.16 35355.32 31050.73 37378.83 372
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37494.75 3378.67 13590.85 16777.91 794.56 20672.25 18793.74 4595.36 65
xiu_mvs_v1_base_debi82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
Anonymous2023120667.53 31965.78 31172.79 34174.95 37047.59 37588.23 27487.32 31461.75 33058.07 33977.29 34237.79 33587.29 35242.91 36063.71 31783.48 323
MTAPA83.91 9483.38 9585.50 10391.89 11165.16 16381.75 33392.23 13275.32 13680.53 10895.21 6456.06 19597.16 8884.86 8592.55 6294.18 122
MTMP93.77 8432.52 424
gm-plane-assit88.42 19367.04 11778.62 9091.83 15097.37 7076.57 152
test9_res89.41 4094.96 1995.29 70
MVP-Stereo77.12 21976.23 21179.79 27281.72 30966.34 13589.29 25690.88 20070.56 24462.01 31882.88 27549.34 26394.13 22265.55 25693.80 4378.88 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST994.18 4167.28 10994.16 5993.51 8171.75 21485.52 5795.33 5468.01 5297.27 80
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20885.52 5795.33 5468.19 5097.27 8089.09 4594.90 2295.25 76
gg-mvs-nofinetune77.18 21774.31 23885.80 9491.42 12468.36 7971.78 37994.72 3449.61 37977.12 15045.92 40577.41 893.98 23467.62 23193.16 5595.05 83
SCA75.82 24272.76 25885.01 12186.63 23770.08 3781.06 34189.19 26371.60 22270.01 23277.09 34545.53 29690.25 31960.43 28973.27 24394.68 99
Patchmatch-test65.86 32760.94 34280.62 25083.75 28758.83 30558.91 40575.26 37944.50 39350.95 37077.09 34558.81 16087.90 34235.13 38464.03 31495.12 80
test_894.19 4067.19 11194.15 6193.42 8871.87 20885.38 6095.35 5368.19 5096.95 106
MS-PatchMatch77.90 20976.50 20782.12 21485.99 24969.95 4191.75 17592.70 11573.97 15562.58 31584.44 26041.11 31595.78 15363.76 26892.17 6680.62 357
Patchmatch-RL test68.17 31364.49 32479.19 28271.22 38153.93 34370.07 38471.54 39069.22 25956.79 34762.89 39256.58 18888.61 33469.53 21152.61 36995.03 85
cdsmvs_eth3d_5k19.86 38726.47 3860.00 4060.00 4290.00 4310.00 41793.45 850.00 4240.00 42595.27 5949.56 2610.00 4250.00 4240.00 4220.00 421
pcd_1.5k_mvsjas4.46 3925.95 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42453.55 2230.00 4250.00 4240.00 4220.00 421
agg_prior286.41 7094.75 3095.33 66
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 116
tmp_tt22.26 38623.75 38817.80 4025.23 42612.06 42735.26 41339.48 4202.82 42018.94 41144.20 40922.23 38924.64 42136.30 3799.31 41816.69 415
canonicalmvs86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
anonymousdsp71.14 28869.37 29276.45 31372.95 37754.71 34084.19 31188.88 28061.92 32762.15 31779.77 32338.14 33091.44 31168.90 22067.45 28583.21 328
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 7979.30 7487.07 4295.25 6168.43 4896.93 10987.87 5384.33 15196.65 17
nrg03080.93 14979.86 15484.13 15683.69 28868.83 6893.23 10891.20 18575.55 13275.06 17088.22 20963.04 11394.74 19581.88 11066.88 28888.82 239
v14419276.05 23674.03 24382.12 21479.50 33466.55 13191.39 18689.71 24772.30 19468.17 25681.33 29951.75 24094.03 23267.94 22764.19 31185.77 295
FIs79.47 17779.41 16379.67 27485.95 25059.40 29791.68 17793.94 6378.06 9668.96 24688.28 20466.61 6391.77 29966.20 24874.99 23087.82 253
v192192075.63 24673.49 25182.06 21879.38 33566.35 13491.07 20689.48 25071.98 20267.99 25781.22 30249.16 26893.90 23866.56 24164.56 30985.92 292
UA-Net80.02 16779.65 15781.11 23789.33 16957.72 31586.33 30189.00 27877.44 10981.01 10189.15 19559.33 15295.90 15061.01 28684.28 15389.73 229
v119275.98 23873.92 24582.15 21279.73 33066.24 13891.22 19889.75 24172.67 18368.49 25481.42 29749.86 25894.27 21767.08 23765.02 30285.95 290
FC-MVSNet-test77.99 20578.08 18277.70 29784.89 27055.51 33590.27 23393.75 7276.87 11466.80 27987.59 22065.71 7390.23 32362.89 27673.94 23987.37 260
v114476.73 22874.88 22882.27 20680.23 32666.60 12991.68 17790.21 22673.69 16369.06 24381.89 28752.73 23294.40 21269.21 21565.23 30085.80 294
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9772.19 19779.22 12594.93 7159.04 15797.67 5181.55 11292.21 6494.49 113
v14876.19 23174.47 23681.36 23080.05 32864.44 17891.75 17590.23 22473.68 16467.13 27380.84 30755.92 19793.86 24268.95 21961.73 33485.76 297
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
AllTest61.66 34558.06 35072.46 34379.57 33151.42 35580.17 34968.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
TestCases72.46 34379.57 33151.42 35568.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
v7n71.31 28768.65 29479.28 28176.40 36460.77 27186.71 29889.45 25264.17 30258.77 33678.24 33344.59 30393.54 24657.76 30161.75 33383.52 322
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10872.16 20078.86 13294.84 7556.97 18197.53 6381.38 11692.11 6794.24 120
RRT-MVS82.61 12181.16 12886.96 5791.10 13368.75 7087.70 28592.20 13676.97 11372.68 19387.10 23051.30 24696.41 12983.56 9987.84 11695.74 50
mamv465.18 33267.43 30258.44 37877.88 35849.36 36969.40 38670.99 39148.31 38457.78 34385.53 24859.01 15851.88 41673.67 17364.32 31074.07 386
PS-MVSNAJss77.26 21676.31 21080.13 26080.64 32059.16 30290.63 22391.06 19672.80 18168.58 25384.57 25853.55 22393.96 23572.97 17671.96 25487.27 264
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9383.86 1589.55 2996.06 3653.55 22397.89 4391.10 3293.31 5394.54 108
jajsoiax73.05 27071.51 27577.67 29877.46 35954.83 33988.81 26690.04 23269.13 26262.85 31383.51 26931.16 36692.75 26970.83 19969.80 26385.43 303
mvs_tets72.71 27771.11 27677.52 29977.41 36054.52 34188.45 27289.76 24068.76 26762.70 31483.26 27229.49 37192.71 27070.51 20569.62 26585.34 305
EI-MVSNet-UG-set83.14 11182.96 10383.67 17392.28 9363.19 22091.38 18894.68 3779.22 7676.60 15593.75 10562.64 11697.76 4878.07 14578.01 20790.05 223
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8463.56 20991.76 17394.81 3179.65 6777.87 14094.09 9963.35 10797.90 4279.35 13279.36 19690.74 214
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2688.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
test_prior467.18 11393.92 73
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13794.31 9455.25 20197.41 6879.16 13491.58 7693.95 135
v124075.21 25172.98 25681.88 22079.20 33766.00 14290.75 21589.11 27071.63 22167.41 27081.22 30247.36 28293.87 24065.46 25764.72 30785.77 295
pm-mvs172.89 27371.09 27778.26 29379.10 34157.62 31790.80 21389.30 25867.66 27462.91 31281.78 28949.11 26992.95 25860.29 29158.89 35184.22 314
test_prior295.10 3875.40 13585.25 6395.61 4567.94 5387.47 5994.77 26
X-MVStestdata76.86 22374.13 24285.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13710.19 42055.25 20197.41 6879.16 13491.58 7693.95 135
test_prior86.42 7694.71 3567.35 10893.10 10296.84 11395.05 83
旧先验292.00 16159.37 34487.54 3993.47 24975.39 160
新几何291.41 182
新几何184.73 13292.32 9264.28 18791.46 17659.56 34379.77 11792.90 12356.95 18296.57 12163.40 26992.91 5893.34 152
旧先验191.94 10760.74 27491.50 17494.36 8765.23 7791.84 7194.55 106
无先验92.71 12692.61 12362.03 32597.01 9666.63 24093.97 134
原ACMM292.01 158
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29279.51 12092.50 13158.11 16896.69 11765.27 25993.96 4092.32 183
test22289.77 15861.60 25689.55 25089.42 25456.83 35877.28 14892.43 13552.76 23191.14 8593.09 161
testdata296.09 14161.26 285
segment_acmp65.94 70
testdata81.34 23189.02 17957.72 31589.84 23858.65 34785.32 6194.09 9957.03 17793.28 25169.34 21390.56 9193.03 164
testdata189.21 25977.55 107
v875.35 24873.26 25381.61 22580.67 31966.82 12289.54 25189.27 25971.65 21763.30 30780.30 31654.99 20794.06 22767.33 23462.33 32683.94 316
131480.70 15378.95 17185.94 8887.77 21667.56 10287.91 28092.55 12572.17 19967.44 26893.09 11750.27 25497.04 9571.68 19587.64 11993.23 156
LFMVS84.34 8382.73 11089.18 1394.76 3373.25 1194.99 4291.89 15371.90 20582.16 8993.49 11347.98 27797.05 9282.55 10784.82 14597.25 8
VDD-MVS83.06 11281.81 12386.81 6190.86 13967.70 9895.40 2991.50 17475.46 13381.78 9192.34 13840.09 31897.13 9086.85 6882.04 17395.60 54
VDDNet80.50 15678.26 17987.21 4786.19 24569.79 4794.48 5091.31 18060.42 33679.34 12390.91 16638.48 32696.56 12282.16 10881.05 18295.27 73
v1074.77 25572.54 26481.46 22880.33 32466.71 12689.15 26189.08 27270.94 23663.08 31079.86 32152.52 23394.04 23065.70 25362.17 32783.64 319
VPNet78.82 18977.53 19182.70 19484.52 27566.44 13293.93 7292.23 13280.46 5272.60 19688.38 20349.18 26693.13 25372.47 18663.97 31688.55 244
MVS84.66 7882.86 10890.06 290.93 13674.56 787.91 28095.54 1368.55 26872.35 20494.71 7859.78 14698.90 2081.29 11894.69 3296.74 16
v2v48277.42 21475.65 22082.73 19280.38 32267.13 11491.85 16890.23 22475.09 13969.37 23883.39 27153.79 22194.44 21171.77 19265.00 30386.63 275
V4276.46 23074.55 23482.19 21179.14 34067.82 9590.26 23489.42 25473.75 16168.63 25281.89 28751.31 24594.09 22471.69 19464.84 30484.66 311
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12276.86 11587.90 3595.76 4166.17 6797.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS78.33 20176.23 21184.65 13783.65 28966.30 13691.44 18190.14 22776.01 12770.32 22884.02 26442.50 31094.72 19670.98 19877.00 22092.94 167
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10568.97 6695.04 4092.70 11579.04 8481.50 9396.50 2558.98 15996.78 11583.49 10093.93 4196.29 35
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25788.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize81.64 13781.32 12782.59 19892.36 9158.74 30691.39 18691.01 19963.35 31079.72 11894.62 8151.82 23796.14 13879.71 12887.93 11592.89 170
ADS-MVSNet266.90 32263.44 33077.26 30688.06 20560.70 27668.01 39075.56 37757.57 35064.48 29469.87 37738.68 32184.10 36640.87 36967.89 28286.97 267
EI-MVSNet78.97 18578.22 18081.25 23285.33 26062.73 23389.53 25293.21 9472.39 19272.14 20590.13 18460.99 13194.72 19667.73 23072.49 25086.29 279
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
CVMVSNet74.04 26174.27 23973.33 33685.33 26043.94 39089.53 25288.39 29654.33 36670.37 22790.13 18449.17 26784.05 36761.83 28379.36 19691.99 194
pmmvs473.92 26371.81 27280.25 25779.17 33865.24 16087.43 28987.26 31667.64 27663.46 30583.91 26648.96 27091.53 30962.94 27465.49 29683.96 315
EU-MVSNet64.01 33863.01 33267.02 36874.40 37338.86 40383.27 32086.19 32845.11 39154.27 35481.15 30536.91 34480.01 38948.79 33557.02 35682.19 344
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9286.00 5293.07 11958.22 16697.00 9785.22 7884.33 15196.52 23
test-LLR80.10 16579.56 15981.72 22386.93 23561.17 26292.70 12791.54 17171.51 22675.62 16386.94 23253.83 21992.38 28372.21 18884.76 14791.60 197
TESTMET0.1,182.41 12381.98 12183.72 17088.08 20463.74 19992.70 12793.77 6879.30 7477.61 14487.57 22158.19 16794.08 22573.91 17286.68 13393.33 154
test-mter79.96 16879.38 16581.72 22386.93 23561.17 26292.70 12791.54 17173.85 15875.62 16386.94 23249.84 25992.38 28372.21 18884.76 14791.60 197
VPA-MVSNet79.03 18378.00 18382.11 21785.95 25064.48 17693.22 10994.66 3875.05 14074.04 18284.95 25352.17 23693.52 24774.90 16767.04 28788.32 249
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9972.19 19778.85 13394.86 7456.69 18697.45 6581.55 11292.20 6594.02 133
testgi64.48 33662.87 33469.31 35971.24 38040.62 39785.49 30379.92 36765.36 29354.18 35583.49 27023.74 38584.55 36441.60 36660.79 34282.77 333
test20.0363.83 33962.65 33567.38 36770.58 38639.94 39986.57 29984.17 34663.29 31151.86 36477.30 34137.09 34282.47 37938.87 37754.13 36679.73 364
thres600view778.00 20476.66 20682.03 21991.93 10863.69 20491.30 19496.33 172.43 19070.46 22587.89 21560.31 13894.92 19142.64 36476.64 22287.48 257
ADS-MVSNet68.54 30964.38 32681.03 24288.06 20566.90 12168.01 39084.02 34857.57 35064.48 29469.87 37738.68 32189.21 33340.87 36967.89 28286.97 267
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8864.27 18893.24 10792.27 13173.13 17279.63 11994.43 8561.90 12397.17 8585.00 8292.56 6194.06 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs7.23 3909.62 3930.06 4050.04 4270.02 43084.98 3070.02 4280.03 4220.18 4231.21 4220.01 4280.02 4230.14 4220.01 4210.13 420
thres40078.68 19377.43 19282.43 20092.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21287.48 257
test1236.92 3919.21 3940.08 4040.03 4280.05 42981.65 3350.01 4290.02 4230.14 4240.85 4230.03 4270.02 4230.12 4230.00 4220.16 419
thres20079.66 17278.33 17783.66 17492.54 9065.82 14893.06 11296.31 374.90 14273.30 18788.66 19859.67 14795.61 16547.84 34178.67 20389.56 232
test0.0.03 172.76 27572.71 26172.88 34080.25 32547.99 37391.22 19889.45 25271.51 22662.51 31687.66 21853.83 21985.06 36350.16 32767.84 28485.58 298
pmmvs355.51 35951.50 36567.53 36657.90 40750.93 35980.37 34573.66 38240.63 40044.15 39264.75 38916.30 39778.97 39044.77 35640.98 39172.69 390
EMVS23.76 38523.20 38925.46 40141.52 42116.90 42660.56 40238.79 42214.62 4168.99 42020.24 4197.35 41245.82 4197.25 4209.46 41713.64 417
E-PMN24.61 38324.00 38726.45 40043.74 41818.44 42560.86 40139.66 41915.11 4159.53 41922.10 4166.52 41546.94 4188.31 41910.14 41613.98 416
PGM-MVS83.25 10882.70 11184.92 12292.81 8364.07 19290.44 22592.20 13671.28 22977.23 14994.43 8555.17 20597.31 7579.33 13391.38 8093.37 151
LCM-MVSNet-Re72.93 27271.84 27176.18 31688.49 18948.02 37280.07 35170.17 39273.96 15652.25 36280.09 32049.98 25688.24 34067.35 23284.23 15492.28 185
LCM-MVSNet40.54 37335.79 37854.76 38536.92 42230.81 41251.41 40969.02 39422.07 40924.63 40945.37 4064.56 41865.81 40733.67 38734.50 40267.67 396
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
mvs_anonymous81.36 14179.99 15285.46 10490.39 14768.40 7886.88 29790.61 20874.41 14570.31 22984.67 25663.79 9692.32 28873.13 17585.70 13995.67 51
MVS_Test84.16 9083.20 9987.05 5491.56 12069.82 4589.99 24492.05 14277.77 10182.84 8386.57 23663.93 9496.09 14174.91 16689.18 10295.25 76
MDA-MVSNet-bldmvs61.54 34757.70 35273.05 33879.53 33357.00 32783.08 32481.23 36157.57 35034.91 40372.45 36632.79 35786.26 35735.81 38241.95 38775.89 383
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11270.90 23783.09 8195.28 5763.62 10097.36 7180.63 12294.18 3794.84 92
test1287.09 5294.60 3668.86 6792.91 10982.67 8765.44 7597.55 6293.69 4894.84 92
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 20069.07 6293.04 11491.76 16081.27 4480.84 10492.07 14564.23 9096.06 14584.98 8387.43 12295.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive84.28 8483.83 8185.61 10187.40 22268.02 9190.88 21089.24 26080.54 5081.64 9292.52 13059.83 14594.52 20987.32 6185.11 14394.29 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 10283.42 9384.48 14587.37 22366.00 14290.06 23995.93 879.71 6669.08 24290.39 17577.92 696.28 13278.91 13881.38 18091.16 210
baseline181.84 13381.03 13484.28 15391.60 11866.62 12891.08 20491.66 16881.87 3274.86 17291.67 15469.98 4494.92 19171.76 19364.75 30691.29 208
YYNet163.76 34160.14 34574.62 32678.06 35560.19 28783.46 31883.99 35156.18 36139.25 39871.56 37437.18 34083.34 37442.90 36148.70 37780.32 360
PMMVS237.93 37833.61 38150.92 38846.31 41424.76 41860.55 40350.05 41228.94 40820.93 41047.59 4034.41 42065.13 40925.14 40218.55 41462.87 400
MDA-MVSNet_test_wron63.78 34060.16 34474.64 32578.15 35460.41 28283.49 31684.03 34756.17 36239.17 39971.59 37337.22 33983.24 37642.87 36248.73 37680.26 361
tpmvs72.88 27469.76 29082.22 20990.98 13567.05 11678.22 36188.30 29963.10 31564.35 29874.98 35855.09 20694.27 21743.25 35869.57 26685.34 305
PM-MVS59.40 35456.59 35667.84 36363.63 39841.86 39376.76 36563.22 40359.01 34551.07 36972.27 37011.72 40683.25 37561.34 28450.28 37578.39 376
HQP_MVS80.34 16079.75 15682.12 21486.94 23362.42 23793.13 11091.31 18078.81 8772.53 19889.14 19650.66 25095.55 17076.74 15078.53 20588.39 247
plane_prior786.94 23361.51 257
plane_prior687.23 22562.32 24150.66 250
plane_prior591.31 18095.55 17076.74 15078.53 20588.39 247
plane_prior489.14 196
plane_prior361.95 24979.09 8072.53 198
plane_prior293.13 11078.81 87
plane_prior187.15 227
plane_prior62.42 23793.85 7779.38 7278.80 202
PS-CasMVS69.86 29869.13 29372.07 34980.35 32350.57 36087.02 29489.75 24167.27 27859.19 33282.28 28246.58 28782.24 38250.69 32459.02 35083.39 326
UniMVSNet_NR-MVSNet78.15 20377.55 19079.98 26584.46 27760.26 28492.25 14593.20 9677.50 10868.88 24786.61 23566.10 6892.13 29166.38 24562.55 32387.54 255
PEN-MVS69.46 30168.56 29572.17 34779.27 33649.71 36486.90 29689.24 26067.24 28159.08 33382.51 28047.23 28383.54 37248.42 33657.12 35583.25 327
TransMVSNet (Re)70.07 29567.66 30177.31 30580.62 32159.13 30391.78 17284.94 34065.97 28860.08 32780.44 31350.78 24991.87 29648.84 33445.46 38280.94 353
DTE-MVSNet68.46 31067.33 30471.87 35177.94 35649.00 37086.16 30288.58 29366.36 28658.19 33782.21 28446.36 28883.87 37044.97 35555.17 36282.73 334
DU-MVS76.86 22375.84 21779.91 26882.96 29760.26 28491.26 19591.54 17176.46 12468.88 24786.35 23856.16 19292.13 29166.38 24562.55 32387.35 261
UniMVSNet (Re)77.58 21276.78 20479.98 26584.11 28360.80 26991.76 17393.17 9876.56 12369.93 23684.78 25563.32 10892.36 28564.89 26162.51 32586.78 271
CP-MVSNet70.50 29169.91 28872.26 34580.71 31851.00 35887.23 29290.30 22067.84 27259.64 32882.69 27750.23 25582.30 38151.28 32259.28 34983.46 324
WR-MVS_H70.59 29069.94 28772.53 34281.03 31451.43 35487.35 29092.03 14667.38 27760.23 32680.70 30855.84 19883.45 37346.33 34858.58 35382.72 335
WR-MVS76.76 22775.74 21979.82 27184.60 27362.27 24392.60 13492.51 12676.06 12667.87 26385.34 24956.76 18390.24 32262.20 28063.69 31886.94 269
NR-MVSNet76.05 23674.59 23280.44 25182.96 29762.18 24490.83 21291.73 16177.12 11260.96 32186.35 23859.28 15391.80 29860.74 28761.34 33887.35 261
Baseline_NR-MVSNet73.99 26272.83 25777.48 30180.78 31759.29 30191.79 17084.55 34468.85 26468.99 24580.70 30856.16 19292.04 29462.67 27760.98 34081.11 351
TranMVSNet+NR-MVSNet75.86 24174.52 23579.89 26982.44 30360.64 27891.37 18991.37 17876.63 12167.65 26586.21 24152.37 23591.55 30561.84 28260.81 34187.48 257
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9585.93 5394.80 7675.80 1398.21 3489.38 4188.78 10696.59 19
n20.00 430
nn0.00 430
mPP-MVS82.96 11582.44 11584.52 14392.83 7962.92 22892.76 12391.85 15771.52 22575.61 16594.24 9653.48 22696.99 10078.97 13790.73 8793.64 146
door-mid66.01 399
XVG-OURS-SEG-HR74.70 25673.08 25479.57 27778.25 35257.33 32280.49 34487.32 31463.22 31268.76 25090.12 18644.89 30291.59 30470.55 20474.09 23889.79 227
mvsmamba81.55 13880.72 13984.03 16191.42 12466.93 12083.08 32489.13 26878.55 9167.50 26787.02 23151.79 23990.07 32787.48 5890.49 9295.10 81
MVSFormer83.75 9982.88 10786.37 7889.24 17571.18 2489.07 26290.69 20365.80 28987.13 4094.34 9264.99 7992.67 27372.83 17891.80 7295.27 73
jason86.40 4586.17 4987.11 5186.16 24770.54 3295.71 2492.19 13882.00 3184.58 6794.34 9261.86 12495.53 17287.76 5490.89 8695.27 73
jason: jason.
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11082.70 2487.13 4095.27 5964.99 7995.80 15289.34 4291.80 7295.93 45
test_djsdf73.76 26672.56 26377.39 30377.00 36253.93 34389.07 26290.69 20365.80 28963.92 30082.03 28643.14 30992.67 27372.83 17868.53 27685.57 299
HPM-MVS_fast80.25 16279.55 16182.33 20491.55 12159.95 28991.32 19389.16 26565.23 29574.71 17493.07 11947.81 28095.74 15674.87 16888.23 11191.31 207
K. test v363.09 34259.61 34773.53 33576.26 36549.38 36883.27 32077.15 37264.35 29947.77 38172.32 36928.73 37387.79 34549.93 32936.69 39683.41 325
lessismore_v073.72 33472.93 37847.83 37461.72 40545.86 38573.76 36228.63 37589.81 32847.75 34331.37 40483.53 321
SixPastTwentyTwo64.92 33361.78 34074.34 32978.74 34649.76 36383.42 31979.51 36962.86 31650.27 37177.35 34030.92 36890.49 31745.89 35047.06 37982.78 332
OurMVSNet-221017-064.68 33462.17 33872.21 34676.08 36747.35 37680.67 34381.02 36256.19 36051.60 36579.66 32527.05 37988.56 33653.60 31853.63 36780.71 356
HPM-MVScopyleft83.25 10882.95 10584.17 15592.25 9462.88 23090.91 20791.86 15570.30 24677.12 15093.96 10356.75 18496.28 13282.04 10991.34 8293.34 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS74.25 25972.46 26579.63 27578.45 35057.59 31880.33 34687.39 31363.86 30468.76 25089.62 19040.50 31791.72 30069.00 21874.25 23689.58 230
XVG-ACMP-BASELINE68.04 31465.53 31575.56 31874.06 37452.37 34878.43 35885.88 33162.03 32558.91 33581.21 30420.38 39391.15 31360.69 28868.18 27883.16 329
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 20269.35 5893.74 8691.89 15381.47 3780.10 11391.45 15764.80 8496.35 13087.23 6387.69 11895.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test75.82 24274.58 23379.56 27884.31 28059.37 29890.44 22589.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
LGP-MVS_train79.56 27884.31 28059.37 29889.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
baseline85.01 7284.44 7686.71 6488.33 19768.73 7190.24 23591.82 15981.05 4781.18 9892.50 13163.69 9896.08 14484.45 8986.71 13295.32 68
test1193.01 105
door66.57 398
EPNet_dtu78.80 19079.26 16777.43 30288.06 20549.71 36491.96 16391.95 14977.67 10376.56 15691.28 16258.51 16290.20 32456.37 30680.95 18392.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15575.14 692.07 15592.32 12981.87 3275.68 16288.27 20560.18 14098.60 2780.46 12490.27 9494.96 86
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 8266.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS63.66 206
HQP-NCC87.54 21894.06 6379.80 6374.18 177
ACMP_Plane87.54 21894.06 6379.80 6374.18 177
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12466.54 28486.17 5095.88 3963.83 9597.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.63 147
HQP4-MVS74.18 17795.61 16588.63 241
HQP3-MVS91.70 16678.90 200
HQP2-MVS51.63 242
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
114514_t79.17 18177.67 18783.68 17295.32 2965.53 15592.85 12191.60 17063.49 30867.92 25990.63 17046.65 28695.72 16167.01 23883.54 15789.79 227
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 13071.03 23577.41 14694.92 7255.21 20496.19 13681.32 11790.70 8893.91 137
DSMNet-mixed56.78 35854.44 36263.79 37263.21 39929.44 41564.43 39764.10 40242.12 39951.32 36771.60 37231.76 36275.04 39436.23 38065.20 30186.87 270
tpm279.80 17177.95 18585.34 11088.28 19868.26 8381.56 33691.42 17770.11 24877.59 14580.50 31267.40 5794.26 21967.34 23377.35 21693.51 148
NP-MVS87.41 22163.04 22290.30 177
EG-PatchMatch MVS68.55 30865.41 31677.96 29678.69 34762.93 22689.86 24689.17 26460.55 33550.27 37177.73 33922.60 38894.06 22747.18 34472.65 24976.88 381
tpm cat175.30 24972.21 26784.58 14188.52 18867.77 9678.16 36288.02 30761.88 32868.45 25576.37 35160.65 13594.03 23253.77 31774.11 23791.93 195
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13396.09 1793.87 6477.73 10284.01 7495.66 4363.39 10597.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
CostFormer82.33 12481.15 12985.86 9189.01 18068.46 7782.39 33093.01 10575.59 13180.25 11281.57 29472.03 3594.96 18879.06 13677.48 21594.16 124
CR-MVSNet73.79 26570.82 28082.70 19483.15 29567.96 9270.25 38284.00 34973.67 16569.97 23472.41 36757.82 17089.48 33152.99 32073.13 24490.64 216
JIA-IIPM66.06 32662.45 33676.88 31181.42 31354.45 34257.49 40688.67 28949.36 38063.86 30146.86 40456.06 19590.25 31949.53 33068.83 27385.95 290
Patchmtry67.53 31963.93 32778.34 29082.12 30664.38 18268.72 38784.00 34948.23 38559.24 33072.41 36757.82 17089.27 33246.10 34956.68 35981.36 348
PatchT69.11 30365.37 31780.32 25382.07 30763.68 20567.96 39287.62 31250.86 37669.37 23865.18 38757.09 17688.53 33741.59 36766.60 29088.74 240
tpmrst80.57 15479.14 16984.84 12590.10 15268.28 8281.70 33489.72 24677.63 10675.96 15979.54 32664.94 8192.71 27075.43 15977.28 21893.55 147
BH-w/o80.49 15779.30 16684.05 16090.83 14064.36 18593.60 9289.42 25474.35 14769.09 24190.15 18355.23 20395.61 16564.61 26286.43 13692.17 191
tpm78.58 19677.03 20083.22 18485.94 25264.56 17283.21 32391.14 19078.31 9373.67 18479.68 32464.01 9292.09 29366.07 24971.26 26093.03 164
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7374.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned78.68 19377.08 19983.48 17989.84 15663.74 19992.70 12788.59 29271.57 22366.83 27888.65 19951.75 24095.39 17559.03 29784.77 14691.32 206
RPMNet70.42 29265.68 31384.63 13983.15 29567.96 9270.25 38290.45 21046.83 38869.97 23465.10 38856.48 19195.30 18035.79 38373.13 24490.64 216
MVSTER82.47 12282.05 11883.74 16692.68 8669.01 6491.90 16593.21 9479.83 6272.14 20585.71 24774.72 1694.72 19675.72 15772.49 25087.50 256
CPTT-MVS79.59 17379.16 16880.89 24691.54 12259.80 29192.10 15288.54 29460.42 33672.96 18993.28 11548.27 27392.80 26778.89 13986.50 13590.06 222
GBi-Net75.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 15366.59 13093.77 8491.73 16177.43 11077.08 15289.81 18863.77 9796.97 10479.67 12988.21 11292.60 175
PVSNet_BlendedMVS83.38 10683.43 9183.22 18493.76 5067.53 10494.06 6393.61 7779.13 7981.00 10285.14 25163.19 10997.29 7687.08 6573.91 24084.83 310
UnsupCasMVSNet_eth65.79 32863.10 33173.88 33270.71 38450.29 36281.09 34089.88 23772.58 18549.25 37674.77 36132.57 35987.43 35155.96 30841.04 38983.90 317
UnsupCasMVSNet_bld61.60 34657.71 35173.29 33768.73 39051.64 35278.61 35789.05 27457.20 35546.11 38261.96 39528.70 37488.60 33550.08 32838.90 39479.63 365
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2881.00 10293.08 11863.19 10997.29 7687.08 6591.38 8094.13 126
FMVSNet568.04 31465.66 31475.18 32284.43 27857.89 31283.54 31586.26 32661.83 32953.64 35873.30 36337.15 34185.08 36248.99 33361.77 33282.56 340
test175.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
new_pmnet49.31 36646.44 36957.93 37962.84 40040.74 39668.47 38962.96 40436.48 40135.09 40257.81 39914.97 40172.18 39832.86 39246.44 38060.88 401
FMVSNet377.73 21076.04 21482.80 19091.20 13268.99 6591.87 16691.99 14773.35 16967.04 27483.19 27356.62 18792.14 29059.80 29469.34 26787.28 263
dp75.01 25372.09 26883.76 16589.28 17166.22 13979.96 35489.75 24171.16 23167.80 26477.19 34451.81 23892.54 27850.39 32571.44 25992.51 179
FMVSNet276.07 23374.01 24482.26 20888.85 18267.66 9991.33 19291.61 16970.84 23865.98 28282.25 28348.03 27492.00 29558.46 29968.73 27587.10 266
FMVSNet172.71 27769.91 28881.10 23883.60 29065.11 16490.01 24190.32 21663.92 30363.56 30480.25 31736.35 34691.54 30654.46 31366.75 28986.64 272
N_pmnet50.55 36549.11 36754.88 38477.17 3614.02 42884.36 3092.00 42648.59 38145.86 38568.82 38032.22 36082.80 37831.58 39751.38 37277.81 379
cascas78.18 20275.77 21885.41 10687.14 22869.11 6192.96 11791.15 18966.71 28370.47 22486.07 24237.49 33796.48 12770.15 20679.80 19290.65 215
BH-RMVSNet79.46 17877.65 18884.89 12391.68 11765.66 14993.55 9488.09 30672.93 17773.37 18691.12 16446.20 29396.12 13956.28 30785.61 14192.91 168
UGNet79.87 17078.68 17383.45 18089.96 15461.51 25792.13 15090.79 20176.83 11778.85 13386.33 24038.16 32996.17 13767.93 22887.17 12492.67 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.32 4785.81 5687.85 2992.82 8169.37 5795.20 3495.25 1782.71 2381.91 9094.73 7767.93 5497.63 5679.55 13082.25 16996.54 22
XXY-MVS77.94 20776.44 20882.43 20082.60 30164.44 17892.01 15891.83 15873.59 16670.00 23385.82 24554.43 21494.76 19369.63 20968.02 28188.10 251
EC-MVSNet84.53 8085.04 6983.01 18789.34 16761.37 26194.42 5191.09 19277.91 9983.24 7794.20 9758.37 16495.40 17485.35 7791.41 7992.27 188
sss82.71 11982.38 11683.73 16889.25 17259.58 29592.24 14694.89 2877.96 9779.86 11692.38 13656.70 18597.05 9277.26 14980.86 18494.55 106
Test_1112_low_res79.56 17478.60 17582.43 20088.24 20160.39 28392.09 15387.99 30872.10 20171.84 20987.42 22364.62 8693.04 25465.80 25277.30 21793.85 141
1112_ss80.56 15579.83 15582.77 19188.65 18760.78 27092.29 14488.36 29772.58 18572.46 20194.95 6965.09 7893.42 25066.38 24577.71 20994.10 127
ab-mvs-re7.91 38910.55 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.95 690.00 4290.00 4250.00 4240.00 4220.00 421
ab-mvs80.18 16378.31 17885.80 9488.44 19265.49 15783.00 32792.67 11871.82 21177.36 14785.01 25254.50 21096.59 11976.35 15475.63 22895.32 68
TR-MVS78.77 19277.37 19782.95 18890.49 14460.88 26893.67 8890.07 22970.08 24974.51 17591.37 16145.69 29595.70 16260.12 29280.32 18892.29 184
MDTV_nov1_ep13_2view59.90 29080.13 35067.65 27572.79 19254.33 21659.83 29392.58 176
MDTV_nov1_ep1372.61 26289.06 17868.48 7680.33 34690.11 22871.84 21071.81 21075.92 35553.01 22993.92 23748.04 33873.38 242
MIMVSNet160.16 35357.33 35468.67 36169.71 38744.13 38978.92 35684.21 34555.05 36444.63 39071.85 37123.91 38481.54 38532.63 39455.03 36380.35 359
MIMVSNet71.64 28468.44 29781.23 23381.97 30864.44 17873.05 37688.80 28469.67 25464.59 29274.79 36032.79 35787.82 34453.99 31576.35 22491.42 201
IterMVS-LS76.49 22975.18 22680.43 25284.49 27662.74 23290.64 22188.80 28472.40 19165.16 28881.72 29060.98 13292.27 28967.74 22964.65 30886.29 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet81.43 14080.74 13883.52 17586.26 24464.45 17792.09 15390.65 20775.83 12973.95 18389.81 18863.97 9392.91 26371.27 19682.82 16393.20 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref71.63 255
IterMVS72.65 28070.83 27878.09 29582.17 30562.96 22587.64 28786.28 32571.56 22460.44 32478.85 33045.42 29886.66 35463.30 27261.83 33184.65 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon82.73 11781.65 12485.98 8697.31 467.06 11595.15 3691.99 14769.08 26376.50 15793.89 10454.48 21398.20 3570.76 20185.66 14092.69 172
MVS_111021_LR82.02 13181.52 12583.51 17788.42 19362.88 23089.77 24788.93 27976.78 11875.55 16693.10 11650.31 25395.38 17683.82 9687.02 12592.26 189
DP-MVS69.90 29766.48 30580.14 25995.36 2862.93 22689.56 24976.11 37350.27 37857.69 34485.23 25039.68 31995.73 15733.35 38871.05 26181.78 347
ACMMP++69.72 264
HQP-MVS81.14 14480.64 14282.64 19687.54 21863.66 20694.06 6391.70 16679.80 6374.18 17790.30 17751.63 24295.61 16577.63 14778.90 20088.63 241
QAPM79.95 16977.39 19687.64 3489.63 16171.41 2093.30 10693.70 7465.34 29467.39 27191.75 15247.83 27998.96 1657.71 30289.81 9692.54 177
Vis-MVSNetpermissive80.92 15079.98 15383.74 16688.48 19061.80 25093.44 10288.26 30373.96 15677.73 14191.76 15149.94 25794.76 19365.84 25190.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet60.25 35255.55 35974.35 32884.37 27956.57 32971.64 38074.11 38134.44 40245.54 38742.24 41031.11 36789.81 32840.36 37276.10 22676.67 382
IS-MVSNet80.14 16479.41 16382.33 20487.91 20960.08 28891.97 16288.27 30172.90 18071.44 21791.73 15361.44 12893.66 24562.47 27986.53 13493.24 155
HyFIR lowres test81.03 14879.56 15985.43 10587.81 21468.11 8990.18 23690.01 23470.65 24372.95 19086.06 24363.61 10194.50 21075.01 16479.75 19393.67 144
EPMVS78.49 19875.98 21586.02 8591.21 13169.68 5180.23 34891.20 18575.25 13772.48 20078.11 33554.65 20993.69 24457.66 30383.04 16194.69 98
PAPM_NR82.97 11481.84 12286.37 7894.10 4466.76 12587.66 28692.84 11169.96 25074.07 18193.57 11163.10 11297.50 6470.66 20390.58 9094.85 89
TAMVS80.37 15979.45 16283.13 18685.14 26563.37 21491.23 19790.76 20274.81 14372.65 19588.49 20060.63 13692.95 25869.41 21281.95 17593.08 162
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10776.59 12279.03 12795.00 6861.59 12797.61 5878.16 14489.00 10595.63 53
RPSCF64.24 33761.98 33971.01 35476.10 36645.00 38775.83 37175.94 37446.94 38758.96 33484.59 25731.40 36482.00 38347.76 34260.33 34786.04 287
Vis-MVSNet (Re-imp)79.24 18079.57 15878.24 29488.46 19152.29 34990.41 22789.12 26974.24 14969.13 24091.91 14965.77 7290.09 32659.00 29888.09 11392.33 182
test_040264.54 33561.09 34174.92 32484.10 28460.75 27387.95 27979.71 36852.03 37052.41 36177.20 34332.21 36191.64 30223.14 40461.03 33972.36 392
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8178.88 13193.99 10262.25 12198.15 3685.93 7591.15 8494.15 125
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 27077.63 14394.35 9173.04 2698.45 3084.92 8493.71 4796.92 14
PatchMatch-RL72.06 28269.98 28578.28 29289.51 16555.70 33483.49 31683.39 35661.24 33163.72 30382.76 27634.77 35193.03 25553.37 31977.59 21186.12 286
API-MVS82.28 12580.53 14587.54 4196.13 2270.59 3193.63 9191.04 19865.72 29175.45 16792.83 12756.11 19498.89 2164.10 26589.75 9993.15 159
Test By Simon54.21 217
TDRefinement55.28 36051.58 36466.39 36959.53 40646.15 38476.23 36872.80 38344.60 39242.49 39576.28 35215.29 40082.39 38033.20 38943.75 38470.62 394
USDC67.43 32164.51 32376.19 31577.94 35655.29 33678.38 35985.00 33973.17 17148.36 37980.37 31421.23 39092.48 28152.15 32164.02 31580.81 355
EPP-MVSNet81.79 13481.52 12582.61 19788.77 18660.21 28693.02 11693.66 7668.52 26972.90 19190.39 17572.19 3494.96 18874.93 16579.29 19892.67 173
PMMVS81.98 13282.04 11981.78 22189.76 15956.17 33091.13 20390.69 20377.96 9780.09 11493.57 11146.33 29194.99 18781.41 11587.46 12194.17 123
PAPM85.89 5785.46 6287.18 4988.20 20372.42 1592.41 14292.77 11382.11 3080.34 11193.07 11968.27 4995.02 18578.39 14393.59 4994.09 128
ACMMPcopyleft81.49 13980.67 14183.93 16391.71 11662.90 22992.13 15092.22 13571.79 21271.68 21393.49 11350.32 25296.96 10578.47 14284.22 15591.93 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA74.31 25872.30 26680.32 25391.49 12361.66 25590.85 21180.72 36456.67 35963.85 30290.64 16846.75 28590.84 31453.79 31675.99 22788.47 246
PatchmatchNetpermissive77.46 21374.63 23185.96 8789.55 16470.35 3479.97 35389.55 24972.23 19670.94 21976.91 34757.03 17792.79 26854.27 31481.17 18194.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21385.69 5696.52 2362.07 12298.77 2386.06 7495.60 1296.03 43
F-COLMAP70.66 28968.44 29777.32 30486.37 24355.91 33288.00 27886.32 32456.94 35757.28 34688.07 21233.58 35592.49 28051.02 32368.37 27783.55 320
ANet_high40.27 37635.20 37955.47 38234.74 42334.47 40863.84 39871.56 38948.42 38218.80 41241.08 4119.52 41064.45 41120.18 4078.66 41967.49 397
wuyk23d11.30 38810.95 39112.33 40348.05 41319.89 42325.89 4151.92 4273.58 4193.12 4211.37 4210.64 42615.77 4226.23 4217.77 4201.35 418
OMC-MVS78.67 19577.91 18680.95 24485.76 25557.40 32188.49 27188.67 28973.85 15872.43 20292.10 14449.29 26594.55 20772.73 18277.89 20890.91 213
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8983.87 7592.94 12264.34 8996.94 10775.19 16194.09 3895.66 52
AdaColmapbinary78.94 18677.00 20284.76 13196.34 1765.86 14692.66 13187.97 31062.18 32270.56 22392.37 13743.53 30697.35 7264.50 26382.86 16291.05 212
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
ITE_SJBPF70.43 35574.44 37247.06 38077.32 37160.16 33954.04 35683.53 26823.30 38684.01 36843.07 35961.58 33780.21 363
DeepMVS_CXcopyleft34.71 39951.45 41124.73 41928.48 42531.46 40517.49 41552.75 4015.80 41642.60 42018.18 40819.42 41336.81 412
TinyColmap60.32 35156.42 35872.00 35078.78 34553.18 34678.36 36075.64 37652.30 36941.59 39775.82 35614.76 40288.35 33935.84 38154.71 36574.46 385
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14579.16 12695.61 4553.99 21898.88 2269.62 21093.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS54.01 36252.12 36359.69 37762.41 40139.91 40168.59 38868.28 39742.96 39744.55 39175.18 35714.09 40468.39 40341.36 36851.68 37170.78 393
MSDG69.54 30065.73 31280.96 24385.11 26763.71 20284.19 31183.28 35756.95 35654.50 35384.03 26331.50 36396.03 14742.87 36269.13 27283.14 330
LS3D69.17 30266.40 30777.50 30091.92 10956.12 33185.12 30580.37 36646.96 38656.50 34887.51 22237.25 33893.71 24332.52 39579.40 19582.68 338
CLD-MVS82.73 11782.35 11783.86 16487.90 21067.65 10095.45 2892.18 13985.06 1072.58 19792.27 13952.46 23495.78 15384.18 9179.06 19988.16 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS45.64 37043.10 37453.23 38751.42 41236.46 40564.97 39671.91 38729.13 40727.53 40761.55 3969.83 40965.01 41016.00 41355.58 36158.22 403
Gipumacopyleft34.91 37931.44 38245.30 39470.99 38339.64 40219.85 41672.56 38520.10 41216.16 41621.47 4175.08 41771.16 39913.07 41443.70 38525.08 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015