This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS81.17 189.72 991.38 384.72 12193.00 6958.16 29396.72 894.41 4286.50 890.25 1997.83 175.46 1498.67 2592.78 1695.49 1297.32 6
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7196.19 3164.53 7798.44 3183.42 8994.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS77.85 385.52 5585.24 5586.37 6988.80 16866.64 11792.15 14093.68 6781.07 4376.91 13893.64 10262.59 10398.44 3185.50 7092.84 5794.03 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IB-MVS77.80 482.18 11080.46 12987.35 3989.14 16070.28 3195.59 2695.17 1778.85 7470.19 21285.82 22970.66 3597.67 5172.19 17266.52 27594.09 111
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
HY-MVS76.49 584.28 7283.36 8387.02 4892.22 8767.74 8884.65 29294.50 3779.15 6782.23 8087.93 20166.88 5196.94 10180.53 11082.20 15496.39 28
3Dnovator73.91 682.69 10580.82 12088.31 2389.57 14671.26 1892.60 12694.39 4578.84 7567.89 24592.48 12748.42 25098.52 2868.80 20494.40 3495.15 71
3Dnovator+73.60 782.10 11480.60 12686.60 5990.89 12266.80 11495.20 3493.44 7874.05 13867.42 25192.49 12649.46 24097.65 5570.80 18291.68 7295.33 59
PVSNet73.49 880.05 14878.63 15584.31 13990.92 12164.97 15892.47 13291.05 17979.18 6672.43 18690.51 15937.05 32294.06 21368.06 20886.00 12893.90 122
PCF-MVS73.15 979.29 16077.63 17084.29 14086.06 22865.96 13487.03 27891.10 17369.86 23869.79 21990.64 15557.54 15596.59 11264.37 24682.29 15190.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ACMP71.68 1075.58 22774.23 22079.62 25784.97 24959.64 27490.80 20289.07 25470.39 23162.95 29287.30 21138.28 30693.87 22572.89 16071.45 24285.36 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft70.45 1178.54 17875.92 19686.41 6885.93 23371.68 1692.74 11792.51 11466.49 27164.56 27591.96 13643.88 28398.10 3754.61 29390.65 8789.44 216
TAPA-MVS70.22 1274.94 23473.53 23079.17 26490.40 13052.07 33389.19 24689.61 23062.69 30270.07 21392.67 12248.89 24994.32 19938.26 35879.97 17291.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMM69.62 1374.34 23872.73 24179.17 26484.25 26257.87 29690.36 21589.93 21763.17 29765.64 26586.04 22837.79 31494.10 20965.89 23271.52 24185.55 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PLCcopyleft68.80 1475.23 23073.68 22979.86 25192.93 7058.68 28990.64 20888.30 28060.90 31564.43 27990.53 15842.38 28994.57 19056.52 28676.54 20486.33 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_068.08 1571.81 26468.32 28182.27 18984.68 25162.31 22788.68 25490.31 20175.84 11557.93 32380.65 29437.85 31394.19 20769.94 19029.05 38690.31 201
ACMH+65.35 1667.65 29864.55 30276.96 29384.59 25457.10 30788.08 26180.79 34258.59 33053.00 33981.09 28926.63 35892.95 24246.51 32661.69 31980.82 337
ACMH63.93 1768.62 28964.81 29980.03 24585.22 24363.25 20487.72 26984.66 32060.83 31651.57 34579.43 31027.29 35694.96 17341.76 34564.84 28881.88 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft61.12 1866.39 30562.92 31376.80 29576.51 34257.77 29789.22 24483.41 33255.48 34353.86 33777.84 31926.28 35993.95 22234.90 36568.76 25978.68 356
LTVRE_ROB59.60 1966.27 30663.54 30974.45 31084.00 26551.55 33567.08 37083.53 33058.78 32854.94 33280.31 29834.54 33193.23 23740.64 35168.03 26478.58 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft57.96 2062.98 32359.65 32572.98 32181.44 29153.00 33083.75 29775.53 35648.34 36248.81 35681.40 28124.14 36190.30 30032.95 37060.52 32775.65 365
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CMPMVSbinary48.56 2166.77 30464.41 30573.84 31570.65 36350.31 34277.79 34585.73 31245.54 36844.76 36782.14 26835.40 32890.14 30763.18 25574.54 21681.07 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMVScopyleft26.43 2231.84 35728.16 36042.89 37125.87 40027.58 39250.92 38649.78 38921.37 38714.17 39340.81 3882.01 40066.62 3829.61 39338.88 37634.49 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive24.84 2324.35 35919.77 36538.09 37434.56 39926.92 39326.57 39038.87 39711.73 39311.37 39427.44 3901.37 40150.42 39311.41 39114.60 39136.93 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
fmvsm_s_conf0.1_n_a84.76 6484.84 6384.53 13080.23 30563.50 20092.79 11588.73 26880.46 4889.84 2496.65 2060.96 12097.57 6193.80 1180.14 17192.53 160
fmvsm_s_conf0.1_n85.61 5485.93 4784.68 12482.95 27963.48 20194.03 6689.46 23381.69 3389.86 2396.74 1861.85 11197.75 4994.74 782.01 15692.81 153
fmvsm_s_conf0.5_n_a85.75 5086.09 4484.72 12185.73 23663.58 19693.79 8189.32 23981.42 3990.21 2096.91 1362.41 10597.67 5194.48 880.56 16992.90 151
fmvsm_s_conf0.5_n86.39 3986.91 3484.82 11487.36 20763.54 19994.74 4790.02 21582.52 2490.14 2296.92 1262.93 10197.84 4695.28 682.26 15293.07 145
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1196.19 3170.12 3698.91 1796.83 195.06 1696.76 12
WAC-MVS49.45 34731.56 377
Syy-MVS69.65 28169.52 27370.03 33787.87 19443.21 37088.07 26289.01 25672.91 16463.11 28988.10 19745.28 27885.54 34022.07 38369.23 25581.32 332
test_fmvsmconf0.1_n85.71 5186.08 4584.62 12880.83 29562.33 22593.84 7888.81 26483.50 1887.00 4096.01 3563.36 9496.93 10394.04 1087.29 11494.61 91
test_fmvsmconf0.01_n83.70 8883.52 7284.25 14275.26 34761.72 23992.17 13987.24 29782.36 2684.91 5995.41 4655.60 18096.83 10792.85 1585.87 12994.21 104
myMVS_eth3d72.58 26272.74 24072.10 33087.87 19449.45 34788.07 26289.01 25672.91 16463.11 28988.10 19763.63 8885.54 34032.73 37269.23 25581.32 332
testing370.38 27570.83 25969.03 34185.82 23443.93 36990.72 20590.56 19168.06 25760.24 30686.82 21764.83 7284.12 34626.33 37964.10 29679.04 353
SSC-MVS44.51 34643.35 34847.99 36961.01 38018.90 40074.12 35554.36 38543.42 37434.10 38060.02 37434.42 33270.39 3799.14 39419.57 38854.68 381
test_fmvsmconf_n86.58 3787.17 3084.82 11485.28 24262.55 22194.26 5489.78 22183.81 1687.78 3496.33 2765.33 6596.98 9694.40 987.55 11194.95 78
WB-MVS46.23 34444.94 34650.11 36562.13 37821.23 39876.48 34955.49 38445.89 36735.78 37761.44 37335.54 32772.83 3769.96 39221.75 38756.27 380
test_fmvsmvis_n_192083.80 8483.48 7584.77 11882.51 28163.72 18991.37 18083.99 32881.42 3977.68 12795.74 4058.37 14697.58 5993.38 1286.87 11793.00 148
dmvs_re76.93 20175.36 20481.61 20887.78 19860.71 25980.00 33487.99 28879.42 6069.02 22689.47 17746.77 26294.32 19963.38 25274.45 21789.81 207
SDMVSNet80.26 14378.88 15384.40 13589.25 15567.63 9285.35 28893.02 9376.77 10670.84 20387.12 21347.95 25696.09 12785.04 7474.55 21489.48 214
dmvs_testset65.55 31166.45 28762.86 35379.87 30822.35 39676.55 34871.74 36677.42 9955.85 32987.77 20451.39 22480.69 36831.51 37865.92 27985.55 283
sd_testset77.08 20075.37 20382.20 19389.25 15562.11 23082.06 31389.09 25276.77 10670.84 20387.12 21341.43 29295.01 17167.23 21874.55 21489.48 214
test_fmvsm_n_192087.69 2488.50 1785.27 10187.05 21363.55 19893.69 8591.08 17684.18 1390.17 2197.04 867.58 4797.99 3995.72 390.03 9294.26 102
test_cas_vis1_n_192080.45 14080.61 12579.97 24878.25 33157.01 30994.04 6588.33 27979.06 7182.81 7693.70 10038.65 30291.63 28690.82 3379.81 17391.27 190
test_vis1_n_192081.66 12082.01 10580.64 23182.24 28455.09 32194.76 4686.87 29981.67 3484.40 6494.63 7338.17 30794.67 18591.98 2483.34 14692.16 174
test_vis1_n71.63 26670.73 26274.31 31369.63 36647.29 35886.91 28072.11 36463.21 29675.18 15490.17 16820.40 36985.76 33984.59 8074.42 21889.87 206
test_fmvs1_n72.69 26071.92 25174.99 30671.15 36047.08 35987.34 27675.67 35363.48 29278.08 12491.17 15020.16 37187.87 32484.65 7975.57 21190.01 205
mvsany_test168.77 28868.56 27769.39 33973.57 35345.88 36480.93 32460.88 38259.65 32471.56 19790.26 16643.22 28675.05 37274.26 15562.70 30587.25 248
APD_test140.50 34937.31 35250.09 36651.88 38535.27 38359.45 38052.59 38721.64 38626.12 38457.80 3764.56 39466.56 38322.64 38239.09 37448.43 382
test_vis1_rt59.09 33457.31 33364.43 35168.44 36946.02 36383.05 30848.63 39151.96 35149.57 35363.86 36716.30 37480.20 36971.21 17962.79 30467.07 376
test_vis3_rt40.46 35037.79 35148.47 36844.49 39233.35 38566.56 37132.84 39932.39 38129.65 38139.13 3893.91 39768.65 38050.17 30740.99 37243.40 384
test_fmvs265.78 31064.84 29868.60 34366.54 37141.71 37283.27 30369.81 37054.38 34567.91 24384.54 24315.35 37681.22 36775.65 14266.16 27782.88 314
test_fmvs174.07 24173.69 22875.22 30378.91 32347.34 35789.06 25074.69 35863.68 29079.41 10791.59 14324.36 36087.77 32785.22 7276.26 20790.55 199
test_fmvs356.82 33554.86 33862.69 35453.59 38435.47 38275.87 35165.64 37743.91 37255.10 33171.43 3546.91 39074.40 37568.64 20552.63 35078.20 359
mvsany_test348.86 34246.35 34556.41 35746.00 39031.67 38762.26 37547.25 39243.71 37345.54 36568.15 36010.84 38364.44 38957.95 28235.44 38073.13 367
testf132.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
APD_test232.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
test_f46.58 34343.45 34755.96 35845.18 39132.05 38661.18 37649.49 39033.39 38042.05 37362.48 3707.00 38965.56 38547.08 32543.21 36870.27 373
FE-MVS75.97 21973.02 23584.82 11489.78 14165.56 14377.44 34691.07 17764.55 28372.66 17879.85 30546.05 27396.69 11054.97 29280.82 16792.21 172
FA-MVS(test-final)79.12 16377.23 17984.81 11790.54 12763.98 18281.35 32191.71 14771.09 21974.85 15782.94 25852.85 21197.05 8767.97 20981.73 16093.41 133
iter_conf_final81.74 11980.93 11984.18 14392.66 7969.10 5492.94 11182.80 33779.01 7374.85 15788.40 18861.83 11294.61 18679.36 11676.52 20588.83 218
bld_raw_dy_0_6471.59 26769.71 27277.22 28977.82 33758.12 29487.71 27073.66 36068.01 25861.90 30184.29 24633.68 33488.43 31969.91 19170.43 24785.11 291
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19195.04 4095.19 1586.74 791.53 1295.15 6073.86 2097.58 5993.38 1292.00 6796.28 32
EGC-MVSNET42.35 34738.09 35055.11 36074.57 34946.62 36171.63 35955.77 3830.04 3970.24 39862.70 36914.24 38074.91 37417.59 38646.06 36343.80 383
test250683.29 9282.92 9084.37 13788.39 17863.18 20792.01 14991.35 16277.66 9278.49 12191.42 14564.58 7695.09 16973.19 15789.23 9794.85 80
test111180.84 13480.02 13283.33 16587.87 19460.76 25692.62 12586.86 30077.86 8875.73 14691.39 14746.35 26794.70 18472.79 16388.68 10394.52 96
ECVR-MVScopyleft81.29 12580.38 13084.01 14888.39 17861.96 23392.56 13186.79 30177.66 9276.63 13991.42 14546.34 26895.24 16774.36 15489.23 9794.85 80
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
tt080573.07 25070.73 26280.07 24378.37 33057.05 30887.78 26892.18 12661.23 31467.04 25686.49 22031.35 34594.58 18865.06 24267.12 27088.57 225
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 4672.48 17392.07 696.85 1483.82 299.15 291.53 2797.42 497.55 4
FOURS193.95 4561.77 23693.96 6891.92 13462.14 30686.57 42
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
PC_three_145280.91 4594.07 296.83 1683.57 499.12 595.70 597.42 497.55 4
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
test_one_060196.32 1869.74 4294.18 5171.42 21390.67 1696.85 1474.45 18
eth-test20.00 404
eth-test0.00 404
GeoE78.90 16877.43 17383.29 16688.95 16462.02 23192.31 13486.23 30670.24 23371.34 20089.27 17854.43 19594.04 21663.31 25380.81 16893.81 125
test_method38.59 35235.16 35548.89 36754.33 38321.35 39745.32 38853.71 3867.41 39428.74 38251.62 3788.70 38752.87 39233.73 36632.89 38272.47 369
Anonymous2024052162.09 32459.08 32771.10 33467.19 37048.72 35183.91 29685.23 31550.38 35647.84 35871.22 35520.74 36885.51 34246.47 32758.75 33579.06 352
h-mvs3383.01 9882.56 9884.35 13889.34 15162.02 23192.72 11893.76 6281.45 3682.73 7792.25 13360.11 12897.13 8587.69 5162.96 30293.91 120
hse-mvs281.12 12981.11 11781.16 21886.52 22057.48 30389.40 24191.16 16981.45 3682.73 7790.49 16060.11 12894.58 18887.69 5160.41 32991.41 183
CL-MVSNet_self_test69.92 27868.09 28275.41 30273.25 35455.90 31690.05 22589.90 21869.96 23661.96 30076.54 32951.05 22787.64 32849.51 31250.59 35682.70 320
KD-MVS_2432*160069.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
KD-MVS_self_test60.87 32858.60 32867.68 34666.13 37239.93 37775.63 35384.70 31957.32 33449.57 35368.45 35929.55 34982.87 35848.09 31747.94 36080.25 345
AUN-MVS78.37 18077.43 17381.17 21786.60 21957.45 30489.46 24091.16 16974.11 13774.40 16190.49 16055.52 18194.57 19074.73 15360.43 32891.48 181
ZD-MVS96.63 965.50 14693.50 7570.74 22785.26 5795.19 5964.92 7197.29 7687.51 5393.01 54
SR-MVS-dyc-post81.06 13080.70 12282.15 19592.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7651.26 22695.61 15178.77 12586.77 12192.28 167
RE-MVS-def80.48 12892.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7649.30 24278.77 12586.77 12192.28 167
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20292.11 497.21 476.79 999.11 692.34 1995.36 1397.62 2
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 1995.36 1396.47 25
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 397.63 397.62 2
test_241102_TWO94.41 4271.65 20292.07 697.21 474.58 1799.11 692.34 1995.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20292.11 497.05 776.79 999.11 6
SF-MVS87.03 3187.09 3186.84 5192.70 7767.45 9893.64 8793.76 6270.78 22686.25 4396.44 2466.98 5097.79 4788.68 4694.56 3295.28 65
cl2277.94 18876.78 18581.42 21287.57 20064.93 16090.67 20688.86 26372.45 17567.63 24982.68 26264.07 8092.91 24771.79 17365.30 28186.44 260
miper_ehance_all_eth77.60 19276.44 18981.09 22485.70 23764.41 17190.65 20788.64 27372.31 17967.37 25482.52 26364.77 7492.64 26170.67 18465.30 28186.24 264
miper_enhance_ethall78.86 16977.97 16581.54 21088.00 19165.17 15291.41 17389.15 24875.19 12468.79 23183.98 24967.17 4992.82 24972.73 16465.30 28186.62 259
ZNCC-MVS85.33 5785.08 5886.06 7593.09 6865.65 14093.89 7393.41 8073.75 14779.94 10194.68 7260.61 12498.03 3882.63 9393.72 4494.52 96
dcpmvs_287.37 2787.55 2686.85 5095.04 3268.20 7890.36 21590.66 18879.37 6281.20 8793.67 10174.73 1596.55 11690.88 3292.00 6795.82 44
cl____76.07 21374.67 20980.28 23785.15 24461.76 23790.12 22288.73 26871.16 21665.43 26681.57 27761.15 11692.95 24266.54 22462.17 31086.13 269
DIV-MVS_self_test76.07 21374.67 20980.28 23785.14 24561.75 23890.12 22288.73 26871.16 21665.42 26781.60 27661.15 11692.94 24666.54 22462.16 31286.14 267
eth_miper_zixun_eth75.96 22074.40 21780.66 23084.66 25263.02 20989.28 24388.27 28271.88 19365.73 26481.65 27459.45 13692.81 25068.13 20760.53 32686.14 267
9.1487.63 2493.86 4794.41 5294.18 5172.76 16886.21 4496.51 2266.64 5397.88 4490.08 3694.04 37
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
save fliter93.84 4867.89 8595.05 3992.66 10778.19 82
ET-MVSNet_ETH3D84.01 7983.15 8786.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 31893.64 10273.64 2392.35 27182.66 9278.66 18596.50 24
UniMVSNet_ETH3D72.74 25770.53 26479.36 26178.62 32856.64 31185.01 29089.20 24463.77 28964.84 27284.44 24434.05 33391.86 28163.94 24870.89 24689.57 212
EIA-MVS84.84 6384.88 6184.69 12391.30 11462.36 22493.85 7592.04 12979.45 5979.33 10994.28 8862.42 10496.35 11980.05 11291.25 8195.38 56
miper_refine_blended69.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_lstm_enhance73.05 25171.73 25477.03 29083.80 26658.32 29281.76 31488.88 26169.80 23961.01 30278.23 31657.19 15787.51 33165.34 24059.53 33185.27 290
ETV-MVS86.01 4686.11 4385.70 8990.21 13467.02 10993.43 9791.92 13481.21 4284.13 6894.07 9460.93 12195.63 14989.28 4089.81 9394.46 100
CS-MVS85.80 4986.65 3883.27 16792.00 9458.92 28695.31 3191.86 13979.97 5284.82 6095.40 4762.26 10695.51 15986.11 6792.08 6695.37 57
D2MVS73.80 24572.02 25079.15 26679.15 31862.97 21088.58 25690.07 21172.94 16259.22 31278.30 31442.31 29092.70 25665.59 23772.00 23781.79 329
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 18990.55 1796.93 1073.77 2199.08 1191.91 2594.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 17390.55 1796.93 1076.24 1199.08 1191.53 2794.99 1796.43 26
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2594.90 2196.51 21
test072696.40 1569.99 3396.76 794.33 4871.92 18991.89 897.11 673.77 21
SR-MVS82.81 10182.58 9783.50 16293.35 5861.16 24892.23 13891.28 16664.48 28481.27 8695.28 5253.71 20395.86 13782.87 9188.77 10293.49 132
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1097.22 379.93 599.10 983.12 9097.64 297.94 1
GST-MVS84.63 6784.29 6785.66 9092.82 7365.27 14993.04 10793.13 9073.20 15678.89 11394.18 9159.41 13897.85 4581.45 10292.48 6193.86 123
test_yl84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
thisisatest053081.15 12680.07 13184.39 13688.26 18265.63 14191.40 17594.62 3471.27 21570.93 20289.18 17972.47 2996.04 13265.62 23676.89 20291.49 180
Anonymous2024052976.84 20574.15 22184.88 11291.02 11864.95 15993.84 7891.09 17453.57 34773.00 17387.42 20935.91 32697.32 7469.14 20072.41 23692.36 163
Anonymous20240521177.96 18775.33 20585.87 8193.73 5264.52 16394.85 4485.36 31462.52 30376.11 14390.18 16729.43 35197.29 7668.51 20677.24 20095.81 45
DCV-MVSNet84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
tttt051779.50 15778.53 15782.41 18687.22 20961.43 24489.75 23494.76 2769.29 24467.91 24388.06 20072.92 2595.63 14962.91 25773.90 22490.16 202
our_test_368.29 29364.69 30179.11 26778.92 32164.85 16188.40 25985.06 31660.32 32052.68 34076.12 33440.81 29489.80 31144.25 33755.65 34282.67 322
thisisatest051583.41 9082.49 9986.16 7489.46 15068.26 7593.54 9294.70 3074.31 13475.75 14590.92 15272.62 2896.52 11769.64 19281.50 16193.71 126
ppachtmachnet_test67.72 29763.70 30879.77 25478.92 32166.04 13188.68 25482.90 33660.11 32255.45 33075.96 33539.19 29990.55 29739.53 35352.55 35282.71 319
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7594.03 5574.18 13691.74 996.67 1965.61 6398.42 3389.24 4196.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS94.68 87
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5594.15 5368.77 25290.74 1597.27 276.09 1298.49 2990.58 3594.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part296.29 1968.16 7990.78 14
thres100view90078.37 18077.01 18282.46 18291.89 9963.21 20591.19 19196.33 172.28 18170.45 20887.89 20260.31 12595.32 16345.16 33277.58 19388.83 218
tfpnnormal70.10 27667.36 28478.32 27383.45 27260.97 25188.85 25192.77 10264.85 28260.83 30478.53 31343.52 28593.48 23331.73 37561.70 31880.52 341
tfpn200view978.79 17277.43 17382.88 17392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19388.83 218
c3_l76.83 20675.47 20280.93 22885.02 24864.18 17990.39 21488.11 28571.66 20166.65 26281.64 27563.58 9292.56 26269.31 19862.86 30386.04 271
CHOSEN 280x42077.35 19676.95 18478.55 27187.07 21262.68 22069.71 36382.95 33568.80 25171.48 19887.27 21266.03 5884.00 35076.47 13882.81 15088.95 217
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2595.78 3865.94 5999.10 992.99 1493.91 4096.58 18
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29459.52 27791.20 19085.38 31371.90 19165.20 26884.84 23841.46 29192.97 24166.50 22672.96 22987.73 236
Effi-MVS+-dtu76.14 21275.28 20678.72 27083.22 27355.17 32089.87 23087.78 29175.42 12067.98 24081.43 27945.08 27992.52 26475.08 14771.63 23988.48 227
CANet_DTU84.09 7883.52 7285.81 8490.30 13266.82 11291.87 15689.01 25685.27 986.09 4693.74 9947.71 25996.98 9677.90 13189.78 9593.65 128
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2696.26 2868.44 3898.74 2495.82 294.72 3095.90 42
MP-MVS-pluss85.24 5885.13 5785.56 9291.42 11165.59 14291.54 17092.51 11474.56 13080.62 9595.64 4259.15 14197.00 9286.94 6193.80 4194.07 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18193.06 10594.33 4882.19 2893.65 396.15 3385.89 197.19 8291.02 3197.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs157.85 15194.68 87
sam_mvs54.91 189
IterMVS-SCA-FT71.55 26869.97 26776.32 29781.48 29060.67 26187.64 27285.99 30966.17 27359.50 31078.88 31145.53 27583.65 35262.58 26061.93 31384.63 297
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21593.55 7282.89 1991.29 1392.89 11772.27 3096.03 13387.99 4894.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
OPM-MVS79.00 16578.09 16281.73 20583.52 27163.83 18491.64 16990.30 20276.36 11271.97 19189.93 17346.30 27095.17 16875.10 14677.70 19186.19 266
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP86.05 4585.80 5086.80 5491.58 10667.53 9591.79 16093.49 7674.93 12784.61 6195.30 5159.42 13797.92 4186.13 6694.92 1994.94 79
ambc69.61 33861.38 37941.35 37349.07 38785.86 31150.18 35266.40 36210.16 38488.14 32245.73 33144.20 36579.32 351
MTGPAbinary92.23 120
CS-MVS-test86.14 4487.01 3283.52 15992.63 8059.36 28195.49 2791.92 13480.09 5185.46 5495.53 4561.82 11395.77 14186.77 6393.37 5095.41 54
Effi-MVS+83.82 8382.76 9386.99 4989.56 14769.40 4691.35 18286.12 30872.59 17083.22 7392.81 12159.60 13596.01 13581.76 9987.80 10895.56 51
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2795.95 3653.45 20897.68 5091.07 3092.62 5894.54 94
xiu_mvs_v1_base82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
new-patchmatchnet59.30 33356.48 33567.79 34565.86 37344.19 36682.47 31181.77 33859.94 32343.65 37166.20 36327.67 35581.68 36539.34 35441.40 37077.50 361
pmmvs667.57 29964.76 30076.00 30072.82 35753.37 32888.71 25386.78 30253.19 34857.58 32578.03 31835.33 32992.41 26755.56 29054.88 34682.21 326
pmmvs573.35 24871.52 25578.86 26878.64 32760.61 26391.08 19386.90 29867.69 26063.32 28783.64 25144.33 28290.53 29862.04 26366.02 27885.46 285
test_post178.95 33720.70 39453.05 20991.50 29360.43 271
test_post23.01 39156.49 17192.67 257
Fast-Effi-MVS+81.14 12780.01 13384.51 13290.24 13365.86 13694.12 6089.15 24873.81 14675.37 15388.26 19357.26 15694.53 19466.97 22184.92 13493.15 141
patchmatchnet-post67.62 36157.62 15490.25 301
Anonymous2023121173.08 24970.39 26581.13 21990.62 12663.33 20391.40 17590.06 21351.84 35264.46 27880.67 29336.49 32494.07 21263.83 24964.17 29585.98 273
pmmvs-eth3d65.53 31262.32 31775.19 30469.39 36759.59 27582.80 31083.43 33162.52 30351.30 34772.49 34432.86 33687.16 33455.32 29150.73 35578.83 355
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35494.75 2878.67 12090.85 15477.91 794.56 19272.25 16993.74 4395.36 58
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
Anonymous2023120667.53 30065.78 29172.79 32374.95 34847.59 35588.23 26087.32 29461.75 31258.07 32077.29 32337.79 31487.29 33342.91 34063.71 30083.48 306
MTAPA83.91 8183.38 8285.50 9391.89 9965.16 15381.75 31592.23 12075.32 12280.53 9695.21 5856.06 17697.16 8484.86 7892.55 6094.18 105
MTMP93.77 8232.52 400
gm-plane-assit88.42 17667.04 10878.62 7991.83 13897.37 7076.57 137
test9_res89.41 3794.96 1895.29 63
MVP-Stereo77.12 19976.23 19279.79 25381.72 28966.34 12589.29 24290.88 18270.56 23062.01 29982.88 25949.34 24194.13 20865.55 23893.80 4178.88 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST994.18 4167.28 10094.16 5693.51 7371.75 20085.52 5295.33 4968.01 4397.27 80
train_agg87.21 2987.42 2886.60 5994.18 4167.28 10094.16 5693.51 7371.87 19485.52 5295.33 4968.19 4197.27 8089.09 4294.90 2195.25 69
gg-mvs-nofinetune77.18 19874.31 21885.80 8591.42 11168.36 7171.78 35794.72 2949.61 35877.12 13545.92 38177.41 893.98 22067.62 21493.16 5395.05 74
SCA75.82 22272.76 23985.01 10886.63 21870.08 3281.06 32389.19 24571.60 20770.01 21477.09 32645.53 27590.25 30160.43 27173.27 22694.68 87
Patchmatch-test65.86 30860.94 32280.62 23283.75 26758.83 28758.91 38175.26 35744.50 37150.95 34977.09 32658.81 14487.90 32335.13 36464.03 29795.12 72
test_894.19 4067.19 10294.15 5993.42 7971.87 19485.38 5595.35 4868.19 4196.95 100
MS-PatchMatch77.90 19076.50 18882.12 19785.99 22969.95 3691.75 16592.70 10473.97 14162.58 29684.44 24441.11 29395.78 13963.76 25092.17 6480.62 340
Patchmatch-RL test68.17 29464.49 30479.19 26371.22 35953.93 32670.07 36271.54 36869.22 24556.79 32762.89 36856.58 17088.61 31569.53 19552.61 35195.03 76
cdsmvs_eth3d_5k19.86 36226.47 3610.00 3820.00 4040.00 4070.00 39393.45 770.00 4000.00 40195.27 5449.56 2390.00 4010.00 4000.00 3980.00 397
pcd_1.5k_mvsjas4.46 3675.95 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40053.55 2040.00 4010.00 4000.00 3980.00 397
agg_prior286.41 6494.75 2995.33 59
agg_prior94.16 4366.97 11093.31 8284.49 6396.75 109
tmp_tt22.26 36123.75 36317.80 3785.23 40112.06 40335.26 38939.48 3962.82 39618.94 38744.20 38522.23 36624.64 39736.30 3599.31 39416.69 391
canonicalmvs86.85 3386.25 4188.66 1891.80 10171.92 1493.54 9291.71 14780.26 5087.55 3595.25 5663.59 9196.93 10388.18 4784.34 13997.11 8
anonymousdsp71.14 27069.37 27476.45 29672.95 35554.71 32384.19 29488.88 26161.92 30962.15 29879.77 30638.14 30991.44 29468.90 20367.45 26983.21 311
alignmvs87.28 2886.97 3388.24 2491.30 11471.14 2195.61 2593.56 7179.30 6387.07 3995.25 5668.43 3996.93 10387.87 4984.33 14096.65 14
nrg03080.93 13279.86 13684.13 14583.69 26868.83 6193.23 10191.20 16775.55 11875.06 15588.22 19663.04 10094.74 18081.88 9866.88 27288.82 221
v14419276.05 21674.03 22382.12 19779.50 31366.55 12191.39 17789.71 22972.30 18068.17 23881.33 28251.75 22094.03 21867.94 21064.19 29485.77 278
FIs79.47 15879.41 14579.67 25585.95 23059.40 27891.68 16793.94 5678.06 8468.96 22888.28 19166.61 5491.77 28366.20 23074.99 21387.82 235
v192192075.63 22673.49 23182.06 20179.38 31466.35 12491.07 19589.48 23271.98 18867.99 23981.22 28549.16 24693.90 22466.56 22364.56 29385.92 276
UA-Net80.02 14979.65 13981.11 22089.33 15357.72 29886.33 28589.00 25977.44 9781.01 9189.15 18059.33 13995.90 13661.01 26884.28 14289.73 210
v119275.98 21873.92 22582.15 19579.73 30966.24 12891.22 18889.75 22372.67 16968.49 23681.42 28049.86 23794.27 20367.08 21965.02 28685.95 274
FC-MVSNet-test77.99 18678.08 16377.70 27984.89 25055.51 31890.27 21893.75 6576.87 10166.80 26187.59 20665.71 6290.23 30562.89 25873.94 22287.37 242
v114476.73 20874.88 20882.27 18980.23 30566.60 11991.68 16790.21 20873.69 14969.06 22581.89 27052.73 21394.40 19869.21 19965.23 28485.80 277
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
HFP-MVS84.73 6584.40 6685.72 8893.75 5165.01 15793.50 9493.19 8772.19 18379.22 11094.93 6459.04 14297.67 5181.55 10092.21 6294.49 99
v14876.19 21174.47 21681.36 21380.05 30764.44 16891.75 16590.23 20673.68 15067.13 25580.84 29055.92 17893.86 22768.95 20261.73 31785.76 280
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
AllTest61.66 32558.06 32972.46 32579.57 31051.42 33780.17 33168.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
TestCases72.46 32579.57 31051.42 33768.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
v7n71.31 26968.65 27679.28 26276.40 34360.77 25586.71 28389.45 23464.17 28658.77 31778.24 31544.59 28193.54 23157.76 28361.75 31683.52 305
region2R84.36 7084.03 6985.36 9893.54 5564.31 17593.43 9792.95 9772.16 18678.86 11794.84 6856.97 16397.53 6381.38 10492.11 6594.24 103
iter_conf0583.27 9382.70 9584.98 10993.32 5971.84 1594.16 5681.76 33982.74 2173.83 16988.40 18872.77 2794.61 18682.10 9675.21 21288.48 227
RRT_MVS74.44 23772.97 23778.84 26982.36 28357.66 30089.83 23288.79 26770.61 22964.58 27484.89 23739.24 29892.65 26070.11 18966.34 27686.21 265
PS-MVSNAJss77.26 19776.31 19180.13 24280.64 29959.16 28390.63 21091.06 17872.80 16768.58 23584.57 24253.55 20493.96 22172.97 15971.96 23887.27 247
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2796.06 3453.55 20497.89 4391.10 2993.31 5194.54 94
jajsoiax73.05 25171.51 25677.67 28077.46 33854.83 32288.81 25290.04 21469.13 24862.85 29483.51 25331.16 34692.75 25370.83 18169.80 24885.43 286
mvs_tets72.71 25871.11 25777.52 28177.41 33954.52 32488.45 25889.76 22268.76 25362.70 29583.26 25629.49 35092.71 25470.51 18769.62 25085.34 288
EI-MVSNet-UG-set83.14 9682.96 8883.67 15792.28 8563.19 20691.38 17994.68 3179.22 6576.60 14093.75 9862.64 10297.76 4878.07 13078.01 18890.05 204
EI-MVSNet-Vis-set83.77 8583.67 7184.06 14692.79 7663.56 19791.76 16394.81 2679.65 5877.87 12594.09 9263.35 9597.90 4279.35 11779.36 17790.74 195
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3096.35 2571.89 3398.63 2688.76 4596.40 696.06 36
test_prior467.18 10493.92 71
XVS83.87 8283.47 7685.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12294.31 8755.25 18297.41 6879.16 11991.58 7493.95 118
v124075.21 23172.98 23681.88 20379.20 31666.00 13290.75 20489.11 25171.63 20667.41 25281.22 28547.36 26093.87 22565.46 23964.72 29185.77 278
pm-mvs172.89 25471.09 25878.26 27579.10 32057.62 30190.80 20289.30 24067.66 26162.91 29381.78 27249.11 24792.95 24260.29 27358.89 33484.22 298
test_prior295.10 3875.40 12185.25 5895.61 4367.94 4487.47 5494.77 25
X-MVStestdata76.86 20274.13 22285.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12210.19 39655.25 18297.41 6879.16 11991.58 7493.95 118
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10695.05 74
旧先验292.00 15259.37 32687.54 3693.47 23475.39 144
新几何291.41 173
新几何184.73 12092.32 8464.28 17691.46 15959.56 32579.77 10392.90 11656.95 16496.57 11463.40 25192.91 5693.34 135
旧先验191.94 9560.74 25891.50 15794.36 8065.23 6691.84 6994.55 92
无先验92.71 11992.61 11162.03 30797.01 9166.63 22293.97 117
原ACMM292.01 149
原ACMM184.42 13493.21 6364.27 17793.40 8165.39 27879.51 10692.50 12458.11 15096.69 11065.27 24193.96 3892.32 165
test22289.77 14261.60 24189.55 23689.42 23656.83 33877.28 13392.43 12852.76 21291.14 8393.09 143
testdata296.09 12761.26 267
segment_acmp65.94 59
testdata81.34 21489.02 16257.72 29889.84 22058.65 32985.32 5694.09 9257.03 15993.28 23669.34 19790.56 8993.03 146
testdata189.21 24577.55 95
v875.35 22873.26 23381.61 20880.67 29866.82 11289.54 23789.27 24171.65 20263.30 28880.30 29954.99 18894.06 21367.33 21762.33 30983.94 300
131480.70 13578.95 15285.94 7987.77 19967.56 9387.91 26692.55 11372.17 18567.44 25093.09 11050.27 23397.04 9071.68 17787.64 11093.23 139
LFMVS84.34 7182.73 9489.18 1294.76 3373.25 994.99 4291.89 13771.90 19182.16 8193.49 10647.98 25597.05 8782.55 9484.82 13597.25 7
VDD-MVS83.06 9781.81 10886.81 5390.86 12367.70 8995.40 2991.50 15775.46 11981.78 8392.34 13140.09 29697.13 8586.85 6282.04 15595.60 49
VDDNet80.50 13878.26 16087.21 4186.19 22669.79 4094.48 5091.31 16360.42 31879.34 10890.91 15338.48 30596.56 11582.16 9581.05 16495.27 66
v1074.77 23572.54 24581.46 21180.33 30366.71 11689.15 24789.08 25370.94 22163.08 29179.86 30452.52 21494.04 21665.70 23562.17 31083.64 302
VPNet78.82 17077.53 17282.70 17784.52 25566.44 12293.93 7092.23 12080.46 4872.60 18088.38 19049.18 24493.13 23872.47 16863.97 29988.55 226
MVS84.66 6682.86 9290.06 290.93 12074.56 687.91 26695.54 1168.55 25472.35 18894.71 7159.78 13398.90 1981.29 10694.69 3196.74 13
v2v48277.42 19575.65 20182.73 17680.38 30167.13 10591.85 15890.23 20675.09 12569.37 22083.39 25553.79 20294.44 19771.77 17465.00 28786.63 258
V4276.46 21074.55 21482.19 19479.14 31967.82 8690.26 21989.42 23673.75 14768.63 23481.89 27051.31 22594.09 21071.69 17664.84 28884.66 295
SD-MVS87.49 2687.49 2787.50 3693.60 5368.82 6293.90 7292.63 11076.86 10287.90 3395.76 3966.17 5697.63 5689.06 4391.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS78.33 18276.23 19284.65 12583.65 26966.30 12691.44 17190.14 20976.01 11470.32 21084.02 24842.50 28894.72 18170.98 18077.00 20192.94 149
MSLP-MVS++86.27 4185.91 4887.35 3992.01 9368.97 5995.04 4092.70 10479.04 7281.50 8596.50 2358.98 14396.78 10883.49 8893.93 3996.29 30
APDe-MVScopyleft87.54 2587.84 2286.65 5896.07 2366.30 12694.84 4593.78 5969.35 24388.39 3196.34 2667.74 4697.66 5490.62 3493.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize81.64 12181.32 11282.59 18192.36 8358.74 28891.39 17791.01 18163.35 29379.72 10494.62 7451.82 21896.14 12579.71 11387.93 10792.89 152
ADS-MVSNet266.90 30363.44 31077.26 28888.06 18860.70 26068.01 36775.56 35557.57 33164.48 27669.87 35638.68 30084.10 34740.87 34967.89 26686.97 250
EI-MVSNet78.97 16678.22 16181.25 21585.33 24062.73 21989.53 23893.21 8472.39 17872.14 18990.13 17060.99 11894.72 18167.73 21372.49 23486.29 262
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
CVMVSNet74.04 24274.27 21973.33 31885.33 24043.94 36889.53 23888.39 27754.33 34670.37 20990.13 17049.17 24584.05 34861.83 26579.36 17791.99 175
pmmvs473.92 24471.81 25380.25 23979.17 31765.24 15087.43 27487.26 29667.64 26363.46 28683.91 25048.96 24891.53 29262.94 25665.49 28083.96 299
EU-MVSNet64.01 31863.01 31267.02 34974.40 35138.86 38083.27 30386.19 30745.11 36954.27 33481.15 28836.91 32380.01 37048.79 31557.02 33882.19 327
VNet86.20 4285.65 5287.84 2793.92 4669.99 3395.73 2395.94 778.43 8086.00 4793.07 11258.22 14897.00 9285.22 7284.33 14096.52 20
test-LLR80.10 14779.56 14181.72 20686.93 21661.17 24692.70 12091.54 15471.51 21175.62 14886.94 21553.83 20092.38 26872.21 17084.76 13791.60 178
TESTMET0.1,182.41 10781.98 10683.72 15588.08 18763.74 18792.70 12093.77 6179.30 6377.61 12987.57 20758.19 14994.08 21173.91 15686.68 12493.33 137
test-mter79.96 15079.38 14781.72 20686.93 21661.17 24692.70 12091.54 15473.85 14475.62 14886.94 21549.84 23892.38 26872.21 17084.76 13791.60 178
VPA-MVSNet79.03 16478.00 16482.11 20085.95 23064.48 16693.22 10294.66 3275.05 12674.04 16784.95 23652.17 21793.52 23274.90 15167.04 27188.32 232
ACMMPR84.37 6984.06 6885.28 10093.56 5464.37 17393.50 9493.15 8972.19 18378.85 11894.86 6756.69 16897.45 6581.55 10092.20 6394.02 116
testgi64.48 31662.87 31469.31 34071.24 35840.62 37585.49 28779.92 34665.36 27954.18 33583.49 25423.74 36384.55 34541.60 34660.79 32582.77 316
test20.0363.83 31962.65 31567.38 34870.58 36439.94 37686.57 28484.17 32363.29 29451.86 34377.30 32237.09 32182.47 36038.87 35754.13 34879.73 347
thres600view778.00 18576.66 18782.03 20291.93 9663.69 19291.30 18596.33 172.43 17670.46 20787.89 20260.31 12594.92 17642.64 34476.64 20387.48 239
ADS-MVSNet68.54 29164.38 30681.03 22588.06 18866.90 11168.01 36784.02 32557.57 33164.48 27669.87 35638.68 30089.21 31440.87 34967.89 26686.97 250
MP-MVScopyleft85.02 6084.97 6085.17 10592.60 8164.27 17793.24 10092.27 11973.13 15879.63 10594.43 7861.90 10997.17 8385.00 7592.56 5994.06 114
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs7.23 3659.62 3680.06 3810.04 4020.02 40684.98 2910.02 4040.03 3980.18 3991.21 3980.01 4040.02 3990.14 3980.01 3970.13 396
thres40078.68 17477.43 17382.43 18392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19387.48 239
test1236.92 3669.21 3690.08 3800.03 4030.05 40581.65 3170.01 4050.02 3990.14 4000.85 3990.03 4030.02 3990.12 3990.00 3980.16 395
thres20079.66 15478.33 15883.66 15892.54 8265.82 13893.06 10596.31 374.90 12873.30 17288.66 18359.67 13495.61 15147.84 32178.67 18489.56 213
test0.0.03 172.76 25672.71 24272.88 32280.25 30447.99 35391.22 18889.45 23471.51 21162.51 29787.66 20553.83 20085.06 34450.16 30867.84 26885.58 281
pmmvs355.51 33751.50 34267.53 34757.90 38250.93 34080.37 32773.66 36040.63 37744.15 37064.75 36616.30 37478.97 37144.77 33640.98 37372.69 368
EMVS23.76 36023.20 36425.46 37741.52 39616.90 40260.56 37838.79 39814.62 3928.99 39620.24 3957.35 38845.82 3957.25 3969.46 39313.64 393
E-PMN24.61 35824.00 36226.45 37643.74 39318.44 40160.86 37739.66 39515.11 3919.53 39522.10 3926.52 39146.94 3948.31 39510.14 39213.98 392
PGM-MVS83.25 9482.70 9584.92 11092.81 7564.07 18090.44 21192.20 12471.28 21477.23 13494.43 7855.17 18697.31 7579.33 11891.38 7893.37 134
LCM-MVSNet-Re72.93 25371.84 25276.18 29988.49 17248.02 35280.07 33370.17 36973.96 14252.25 34280.09 30349.98 23588.24 32167.35 21584.23 14392.28 167
LCM-MVSNet40.54 34835.79 35354.76 36236.92 39730.81 38851.41 38569.02 37122.07 38524.63 38545.37 3824.56 39465.81 38433.67 36734.50 38167.67 374
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 4996.26 2872.84 2699.38 192.64 1795.93 997.08 9
mvs_anonymous81.36 12479.99 13485.46 9490.39 13168.40 7086.88 28290.61 19074.41 13170.31 21184.67 24063.79 8592.32 27273.13 15885.70 13095.67 46
MVS_Test84.16 7783.20 8487.05 4791.56 10769.82 3989.99 22992.05 12877.77 8982.84 7586.57 21963.93 8396.09 12774.91 15089.18 9995.25 69
MDA-MVSNet-bldmvs61.54 32757.70 33173.05 32079.53 31257.00 31083.08 30781.23 34057.57 33134.91 37972.45 34532.79 33786.26 33835.81 36241.95 36975.89 364
CDPH-MVS85.71 5185.46 5386.46 6594.75 3467.19 10293.89 7392.83 10170.90 22283.09 7495.28 5263.62 8997.36 7180.63 10994.18 3594.84 83
test1287.09 4594.60 3668.86 6092.91 9882.67 7965.44 6497.55 6293.69 4694.84 83
casdiffmvspermissive85.37 5684.87 6286.84 5188.25 18369.07 5593.04 10791.76 14481.27 4180.84 9492.07 13564.23 7996.06 13184.98 7687.43 11395.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive84.28 7283.83 7085.61 9187.40 20568.02 8290.88 19989.24 24280.54 4781.64 8492.52 12359.83 13294.52 19587.32 5685.11 13394.29 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 8983.42 8084.48 13387.37 20666.00 13290.06 22495.93 879.71 5769.08 22490.39 16277.92 696.28 12178.91 12381.38 16291.16 191
baseline181.84 11781.03 11884.28 14191.60 10566.62 11891.08 19391.66 15181.87 3174.86 15691.67 14269.98 3794.92 17671.76 17564.75 29091.29 189
YYNet163.76 32160.14 32474.62 30978.06 33460.19 26983.46 30183.99 32856.18 34139.25 37571.56 35337.18 31983.34 35542.90 34148.70 35980.32 343
PMMVS237.93 35333.61 35650.92 36446.31 38924.76 39460.55 37950.05 38828.94 38420.93 38647.59 3794.41 39665.13 38625.14 38018.55 39062.87 377
MDA-MVSNet_test_wron63.78 32060.16 32374.64 30878.15 33360.41 26483.49 29984.03 32456.17 34239.17 37671.59 35237.22 31883.24 35742.87 34248.73 35880.26 344
tpmvs72.88 25569.76 27182.22 19290.98 11967.05 10778.22 34388.30 28063.10 29864.35 28074.98 33955.09 18794.27 20343.25 33869.57 25185.34 288
PM-MVS59.40 33256.59 33467.84 34463.63 37441.86 37176.76 34763.22 37959.01 32751.07 34872.27 34911.72 38283.25 35661.34 26650.28 35778.39 358
HQP_MVS80.34 14279.75 13882.12 19786.94 21462.42 22293.13 10391.31 16378.81 7672.53 18289.14 18150.66 22995.55 15676.74 13578.53 18688.39 230
plane_prior786.94 21461.51 242
plane_prior687.23 20862.32 22650.66 229
plane_prior591.31 16395.55 15676.74 13578.53 18688.39 230
plane_prior489.14 181
plane_prior361.95 23479.09 6972.53 182
plane_prior293.13 10378.81 76
plane_prior187.15 210
plane_prior62.42 22293.85 7579.38 6178.80 183
PS-CasMVS69.86 28069.13 27572.07 33180.35 30250.57 34187.02 27989.75 22367.27 26559.19 31382.28 26546.58 26582.24 36350.69 30559.02 33383.39 309
UniMVSNet_NR-MVSNet78.15 18477.55 17179.98 24684.46 25760.26 26692.25 13693.20 8677.50 9668.88 22986.61 21866.10 5792.13 27566.38 22762.55 30687.54 237
PEN-MVS69.46 28368.56 27772.17 32979.27 31549.71 34586.90 28189.24 24267.24 26859.08 31482.51 26447.23 26183.54 35348.42 31657.12 33783.25 310
TransMVSNet (Re)70.07 27767.66 28377.31 28780.62 30059.13 28591.78 16284.94 31865.97 27460.08 30880.44 29650.78 22891.87 28048.84 31445.46 36480.94 336
DTE-MVSNet68.46 29267.33 28571.87 33377.94 33549.00 35086.16 28688.58 27566.36 27258.19 31882.21 26746.36 26683.87 35144.97 33555.17 34482.73 317
DU-MVS76.86 20275.84 19779.91 24982.96 27760.26 26691.26 18691.54 15476.46 11168.88 22986.35 22156.16 17392.13 27566.38 22762.55 30687.35 244
UniMVSNet (Re)77.58 19376.78 18579.98 24684.11 26360.80 25391.76 16393.17 8876.56 11069.93 21884.78 23963.32 9692.36 27064.89 24362.51 30886.78 254
CP-MVSNet70.50 27369.91 26972.26 32780.71 29751.00 33987.23 27790.30 20267.84 25959.64 30982.69 26150.23 23482.30 36251.28 30359.28 33283.46 307
WR-MVS_H70.59 27269.94 26872.53 32481.03 29351.43 33687.35 27592.03 13067.38 26460.23 30780.70 29155.84 17983.45 35446.33 32858.58 33682.72 318
WR-MVS76.76 20775.74 19979.82 25284.60 25362.27 22892.60 12692.51 11476.06 11367.87 24685.34 23256.76 16590.24 30462.20 26263.69 30186.94 252
NR-MVSNet76.05 21674.59 21280.44 23382.96 27762.18 22990.83 20191.73 14577.12 10060.96 30386.35 22159.28 14091.80 28260.74 26961.34 32187.35 244
Baseline_NR-MVSNet73.99 24372.83 23877.48 28380.78 29659.29 28291.79 16084.55 32168.85 25068.99 22780.70 29156.16 17392.04 27862.67 25960.98 32381.11 334
TranMVSNet+NR-MVSNet75.86 22174.52 21579.89 25082.44 28260.64 26291.37 18091.37 16176.63 10867.65 24886.21 22552.37 21691.55 28861.84 26460.81 32487.48 239
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8385.93 4894.80 6975.80 1398.21 3489.38 3888.78 10196.59 16
n20.00 406
nn0.00 406
mPP-MVS82.96 10082.44 10084.52 13192.83 7162.92 21492.76 11691.85 14171.52 21075.61 15094.24 8953.48 20796.99 9578.97 12290.73 8593.64 129
door-mid66.01 376
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25878.25 33157.33 30680.49 32687.32 29463.22 29568.76 23290.12 17244.89 28091.59 28770.55 18674.09 22189.79 208
mvsmamba76.85 20475.71 20080.25 23983.07 27659.16 28391.44 17180.64 34476.84 10367.95 24186.33 22346.17 27294.24 20676.06 14072.92 23087.36 243
MVSFormer83.75 8682.88 9186.37 6989.24 15871.18 1989.07 24890.69 18565.80 27587.13 3794.34 8564.99 6892.67 25772.83 16191.80 7095.27 66
jason86.40 3886.17 4287.11 4486.16 22770.54 2895.71 2492.19 12582.00 3084.58 6294.34 8561.86 11095.53 15887.76 5090.89 8495.27 66
jason: jason.
lupinMVS87.74 2387.77 2387.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3795.27 5464.99 6895.80 13889.34 3991.80 7095.93 40
test_djsdf73.76 24772.56 24477.39 28577.00 34153.93 32689.07 24890.69 18565.80 27563.92 28182.03 26943.14 28792.67 25772.83 16168.53 26185.57 282
HPM-MVS_fast80.25 14479.55 14382.33 18791.55 10859.95 27191.32 18489.16 24765.23 28174.71 15993.07 11247.81 25895.74 14274.87 15288.23 10491.31 188
K. test v363.09 32259.61 32673.53 31776.26 34449.38 34983.27 30377.15 35064.35 28547.77 35972.32 34828.73 35287.79 32649.93 31036.69 37783.41 308
lessismore_v073.72 31672.93 35647.83 35461.72 38145.86 36373.76 34228.63 35489.81 30947.75 32331.37 38383.53 304
SixPastTwentyTwo64.92 31361.78 32074.34 31278.74 32549.76 34483.42 30279.51 34862.86 29950.27 35077.35 32130.92 34890.49 29945.89 33047.06 36182.78 315
OurMVSNet-221017-064.68 31462.17 31872.21 32876.08 34647.35 35680.67 32581.02 34156.19 34051.60 34479.66 30827.05 35788.56 31753.60 29953.63 34980.71 339
HPM-MVScopyleft83.25 9482.95 8984.17 14492.25 8662.88 21690.91 19691.86 13970.30 23277.12 13593.96 9656.75 16696.28 12182.04 9791.34 8093.34 135
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS74.25 24072.46 24679.63 25678.45 32957.59 30280.33 32887.39 29363.86 28868.76 23289.62 17640.50 29591.72 28469.00 20174.25 21989.58 211
XVG-ACMP-BASELINE68.04 29565.53 29575.56 30174.06 35252.37 33178.43 34085.88 31062.03 30758.91 31681.21 28720.38 37091.15 29560.69 27068.18 26383.16 312
casdiffmvs_mvgpermissive85.66 5385.18 5687.09 4588.22 18569.35 5093.74 8491.89 13781.47 3580.10 9991.45 14464.80 7396.35 11987.23 5887.69 10995.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test75.82 22274.58 21379.56 25984.31 26059.37 27990.44 21189.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
LGP-MVS_train79.56 25984.31 26059.37 27989.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
baseline85.01 6184.44 6586.71 5688.33 18068.73 6390.24 22091.82 14381.05 4481.18 8892.50 12463.69 8796.08 13084.45 8186.71 12395.32 61
test1193.01 94
door66.57 375
EPNet_dtu78.80 17179.26 14977.43 28488.06 18849.71 34591.96 15491.95 13377.67 9176.56 14191.28 14958.51 14590.20 30656.37 28780.95 16592.39 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268884.98 6283.45 7789.57 1089.94 13975.14 592.07 14692.32 11781.87 3175.68 14788.27 19260.18 12798.60 2780.46 11190.27 9194.96 77
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3294.53 7566.79 5297.34 7383.89 8691.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS63.66 194
HQP-NCC87.54 20194.06 6179.80 5474.18 162
ACMP_Plane87.54 20194.06 6179.80 5474.18 162
APD-MVScopyleft85.93 4785.99 4685.76 8795.98 2665.21 15193.59 9092.58 11266.54 27086.17 4595.88 3763.83 8497.00 9286.39 6592.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS77.63 132
HQP4-MVS74.18 16295.61 15188.63 223
HQP3-MVS91.70 14978.90 181
HQP2-MVS51.63 222
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 2996.80 1770.86 3499.06 1592.64 1795.71 1096.12 35
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4196.20 3066.56 5598.76 2389.03 4494.56 3295.92 41
114514_t79.17 16277.67 16883.68 15695.32 2965.53 14592.85 11491.60 15363.49 29167.92 24290.63 15746.65 26495.72 14767.01 22083.54 14589.79 208
CP-MVS83.71 8783.40 8184.65 12593.14 6663.84 18394.59 4992.28 11871.03 22077.41 13194.92 6555.21 18596.19 12381.32 10590.70 8693.91 120
DSMNet-mixed56.78 33654.44 33963.79 35263.21 37529.44 39164.43 37364.10 37842.12 37651.32 34671.60 35131.76 34275.04 37336.23 36065.20 28586.87 253
tpm279.80 15377.95 16685.34 9988.28 18168.26 7581.56 31891.42 16070.11 23477.59 13080.50 29567.40 4894.26 20567.34 21677.35 19793.51 131
NP-MVS87.41 20463.04 20890.30 164
EG-PatchMatch MVS68.55 29065.41 29677.96 27878.69 32662.93 21289.86 23189.17 24660.55 31750.27 35077.73 32022.60 36594.06 21347.18 32472.65 23376.88 362
tpm cat175.30 22972.21 24884.58 12988.52 17167.77 8778.16 34488.02 28761.88 31068.45 23776.37 33260.65 12294.03 21853.77 29874.11 22091.93 176
SteuartSystems-ACMMP86.82 3586.90 3586.58 6190.42 12966.38 12396.09 1793.87 5777.73 9084.01 6995.66 4163.39 9397.94 4087.40 5593.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
CostFormer82.33 10881.15 11385.86 8289.01 16368.46 6982.39 31293.01 9475.59 11780.25 9881.57 27772.03 3294.96 17379.06 12177.48 19694.16 107
CR-MVSNet73.79 24670.82 26182.70 17783.15 27467.96 8370.25 36084.00 32673.67 15169.97 21672.41 34657.82 15289.48 31252.99 30173.13 22790.64 197
JIA-IIPM66.06 30762.45 31676.88 29481.42 29254.45 32557.49 38288.67 27149.36 35963.86 28246.86 38056.06 17690.25 30149.53 31168.83 25885.95 274
Patchmtry67.53 30063.93 30778.34 27282.12 28664.38 17268.72 36484.00 32648.23 36359.24 31172.41 34657.82 15289.27 31346.10 32956.68 34181.36 331
PatchT69.11 28565.37 29780.32 23582.07 28763.68 19367.96 36987.62 29250.86 35569.37 22065.18 36457.09 15888.53 31841.59 34766.60 27488.74 222
tpmrst80.57 13679.14 15184.84 11390.10 13668.28 7481.70 31689.72 22877.63 9475.96 14479.54 30964.94 7092.71 25475.43 14377.28 19993.55 130
BH-w/o80.49 13979.30 14884.05 14790.83 12464.36 17493.60 8989.42 23674.35 13369.09 22390.15 16955.23 18495.61 15164.61 24486.43 12792.17 173
tpm78.58 17777.03 18183.22 16885.94 23264.56 16283.21 30691.14 17278.31 8173.67 17079.68 30764.01 8192.09 27766.07 23171.26 24493.03 146
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5094.91 6674.11 1998.91 1787.26 5795.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned78.68 17477.08 18083.48 16389.84 14063.74 18792.70 12088.59 27471.57 20866.83 26088.65 18451.75 22095.39 16159.03 27984.77 13691.32 187
RPMNet70.42 27465.68 29384.63 12783.15 27467.96 8370.25 36090.45 19246.83 36669.97 21665.10 36556.48 17295.30 16635.79 36373.13 22790.64 197
MVSTER82.47 10682.05 10383.74 15292.68 7869.01 5791.90 15593.21 8479.83 5372.14 18985.71 23174.72 1694.72 18175.72 14172.49 23487.50 238
CPTT-MVS79.59 15579.16 15080.89 22991.54 10959.80 27392.10 14388.54 27660.42 31872.96 17493.28 10848.27 25192.80 25178.89 12486.50 12690.06 203
GBi-Net75.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
PVSNet_Blended_VisFu83.97 8083.50 7485.39 9790.02 13766.59 12093.77 8291.73 14577.43 9877.08 13789.81 17463.77 8696.97 9879.67 11488.21 10592.60 157
PVSNet_BlendedMVS83.38 9183.43 7883.22 16893.76 4967.53 9594.06 6193.61 6979.13 6881.00 9285.14 23463.19 9797.29 7687.08 5973.91 22384.83 294
UnsupCasMVSNet_eth65.79 30963.10 31173.88 31470.71 36250.29 34381.09 32289.88 21972.58 17149.25 35574.77 34132.57 33987.43 33255.96 28941.04 37183.90 301
UnsupCasMVSNet_bld61.60 32657.71 33073.29 31968.73 36851.64 33478.61 33989.05 25557.20 33546.11 36061.96 37128.70 35388.60 31650.08 30938.90 37579.63 348
PVSNet_Blended86.73 3686.86 3686.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9293.08 11163.19 9797.29 7687.08 5991.38 7894.13 109
FMVSNet568.04 29565.66 29475.18 30584.43 25857.89 29583.54 29886.26 30561.83 31153.64 33873.30 34337.15 32085.08 34348.99 31361.77 31582.56 323
test175.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
new_pmnet49.31 34146.44 34457.93 35662.84 37640.74 37468.47 36662.96 38036.48 37835.09 37857.81 37514.97 37872.18 37732.86 37146.44 36260.88 378
FMVSNet377.73 19176.04 19482.80 17491.20 11768.99 5891.87 15691.99 13173.35 15567.04 25683.19 25756.62 16992.14 27459.80 27669.34 25287.28 246
dp75.01 23372.09 24983.76 15189.28 15466.22 12979.96 33689.75 22371.16 21667.80 24777.19 32551.81 21992.54 26350.39 30671.44 24392.51 161
FMVSNet276.07 21374.01 22482.26 19188.85 16567.66 9091.33 18391.61 15270.84 22365.98 26382.25 26648.03 25292.00 27958.46 28168.73 26087.10 249
FMVSNet172.71 25869.91 26981.10 22183.60 27065.11 15490.01 22690.32 19863.92 28763.56 28580.25 30036.35 32591.54 28954.46 29466.75 27386.64 255
N_pmnet50.55 34049.11 34354.88 36177.17 3404.02 40484.36 2932.00 40248.59 36045.86 36368.82 35832.22 34082.80 35931.58 37651.38 35477.81 360
cascas78.18 18375.77 19885.41 9687.14 21169.11 5392.96 11091.15 17166.71 26970.47 20686.07 22637.49 31696.48 11870.15 18879.80 17490.65 196
BH-RMVSNet79.46 15977.65 16984.89 11191.68 10465.66 13993.55 9188.09 28672.93 16373.37 17191.12 15146.20 27196.12 12656.28 28885.61 13292.91 150
UGNet79.87 15278.68 15483.45 16489.96 13861.51 24292.13 14190.79 18376.83 10478.85 11886.33 22338.16 30896.17 12467.93 21187.17 11592.67 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS86.32 4085.81 4987.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8294.73 7067.93 4597.63 5679.55 11582.25 15396.54 19
XXY-MVS77.94 18876.44 18982.43 18382.60 28064.44 16892.01 14991.83 14273.59 15270.00 21585.82 22954.43 19594.76 17869.63 19368.02 26588.10 234
EC-MVSNet84.53 6885.04 5983.01 17189.34 15161.37 24594.42 5191.09 17477.91 8783.24 7294.20 9058.37 14695.40 16085.35 7191.41 7792.27 170
sss82.71 10482.38 10183.73 15489.25 15559.58 27692.24 13794.89 2377.96 8579.86 10292.38 12956.70 16797.05 8777.26 13480.86 16694.55 92
Test_1112_low_res79.56 15678.60 15682.43 18388.24 18460.39 26592.09 14487.99 28872.10 18771.84 19287.42 20964.62 7593.04 23965.80 23477.30 19893.85 124
1112_ss80.56 13779.83 13782.77 17588.65 17060.78 25492.29 13588.36 27872.58 17172.46 18594.95 6265.09 6793.42 23566.38 22777.71 19094.10 110
ab-mvs-re7.91 36410.55 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.95 620.00 4050.00 4010.00 4000.00 3980.00 397
ab-mvs80.18 14578.31 15985.80 8588.44 17565.49 14783.00 30992.67 10671.82 19777.36 13285.01 23554.50 19196.59 11276.35 13975.63 21095.32 61
TR-MVS78.77 17377.37 17882.95 17290.49 12860.88 25293.67 8690.07 21170.08 23574.51 16091.37 14845.69 27495.70 14860.12 27480.32 17092.29 166
MDTV_nov1_ep13_2view59.90 27280.13 33267.65 26272.79 17754.33 19759.83 27592.58 158
MDTV_nov1_ep1372.61 24389.06 16168.48 6880.33 32890.11 21071.84 19671.81 19375.92 33653.01 21093.92 22348.04 31873.38 225
MIMVSNet160.16 33157.33 33268.67 34269.71 36544.13 36778.92 33884.21 32255.05 34444.63 36871.85 35023.91 36281.54 36632.63 37355.03 34580.35 342
MIMVSNet71.64 26568.44 27981.23 21681.97 28864.44 16873.05 35688.80 26569.67 24064.59 27374.79 34032.79 33787.82 32553.99 29676.35 20691.42 182
IterMVS-LS76.49 20975.18 20780.43 23484.49 25662.74 21890.64 20888.80 26572.40 17765.16 26981.72 27360.98 11992.27 27367.74 21264.65 29286.29 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet81.43 12380.74 12183.52 15986.26 22564.45 16792.09 14490.65 18975.83 11673.95 16889.81 17463.97 8292.91 24771.27 17882.82 14993.20 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref71.63 239
IterMVS72.65 26170.83 25978.09 27782.17 28562.96 21187.64 27286.28 30471.56 20960.44 30578.85 31245.42 27786.66 33563.30 25461.83 31484.65 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon82.73 10281.65 10985.98 7797.31 467.06 10695.15 3691.99 13169.08 24976.50 14293.89 9754.48 19498.20 3570.76 18385.66 13192.69 154
MVS_111021_LR82.02 11581.52 11083.51 16188.42 17662.88 21689.77 23388.93 26076.78 10575.55 15193.10 10950.31 23295.38 16283.82 8787.02 11692.26 171
DP-MVS69.90 27966.48 28680.14 24195.36 2862.93 21289.56 23576.11 35150.27 35757.69 32485.23 23339.68 29795.73 14333.35 36871.05 24581.78 330
ACMMP++69.72 249
HQP-MVS81.14 12780.64 12482.64 17987.54 20163.66 19494.06 6191.70 14979.80 5474.18 16290.30 16451.63 22295.61 15177.63 13278.90 18188.63 223
QAPM79.95 15177.39 17787.64 3089.63 14571.41 1793.30 9993.70 6665.34 28067.39 25391.75 14047.83 25798.96 1657.71 28489.81 9392.54 159
Vis-MVSNetpermissive80.92 13379.98 13583.74 15288.48 17361.80 23593.44 9688.26 28473.96 14277.73 12691.76 13949.94 23694.76 17865.84 23390.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet60.25 33055.55 33774.35 31184.37 25956.57 31271.64 35874.11 35934.44 37945.54 36542.24 38631.11 34789.81 30940.36 35276.10 20876.67 363
IS-MVSNet80.14 14679.41 14582.33 18787.91 19260.08 27091.97 15388.27 28272.90 16671.44 19991.73 14161.44 11593.66 23062.47 26186.53 12593.24 138
HyFIR lowres test81.03 13179.56 14185.43 9587.81 19768.11 8090.18 22190.01 21670.65 22872.95 17586.06 22763.61 9094.50 19675.01 14879.75 17593.67 127
EPMVS78.49 17975.98 19586.02 7691.21 11669.68 4480.23 33091.20 16775.25 12372.48 18478.11 31754.65 19093.69 22957.66 28583.04 14794.69 86
PAPM_NR82.97 9981.84 10786.37 6994.10 4466.76 11587.66 27192.84 10069.96 23674.07 16693.57 10463.10 9997.50 6470.66 18590.58 8894.85 80
TAMVS80.37 14179.45 14483.13 17085.14 24563.37 20291.23 18790.76 18474.81 12972.65 17988.49 18560.63 12392.95 24269.41 19681.95 15793.08 144
PAPR85.15 5984.47 6487.18 4296.02 2568.29 7391.85 15893.00 9676.59 10979.03 11295.00 6161.59 11497.61 5878.16 12989.00 10095.63 48
RPSCF64.24 31761.98 31971.01 33576.10 34545.00 36575.83 35275.94 35246.94 36558.96 31584.59 24131.40 34482.00 36447.76 32260.33 33086.04 271
Vis-MVSNet (Re-imp)79.24 16179.57 14078.24 27688.46 17452.29 33290.41 21389.12 25074.24 13569.13 22291.91 13765.77 6190.09 30859.00 28088.09 10692.33 164
test_040264.54 31561.09 32174.92 30784.10 26460.75 25787.95 26579.71 34752.03 35052.41 34177.20 32432.21 34191.64 28523.14 38161.03 32272.36 370
MVS_111021_HR86.19 4385.80 5087.37 3893.17 6569.79 4093.99 6793.76 6279.08 7078.88 11693.99 9562.25 10798.15 3685.93 6991.15 8294.15 108
CSCG86.87 3286.26 4088.72 1595.05 3170.79 2593.83 8095.33 1368.48 25677.63 12894.35 8473.04 2498.45 3084.92 7793.71 4596.92 11
PatchMatch-RL72.06 26369.98 26678.28 27489.51 14955.70 31783.49 29983.39 33361.24 31363.72 28482.76 26034.77 33093.03 24053.37 30077.59 19286.12 270
API-MVS82.28 10980.53 12787.54 3596.13 2270.59 2793.63 8891.04 18065.72 27775.45 15292.83 12056.11 17598.89 2064.10 24789.75 9693.15 141
Test By Simon54.21 198
TDRefinement55.28 33851.58 34166.39 35059.53 38146.15 36276.23 35072.80 36244.60 37042.49 37276.28 33315.29 37782.39 36133.20 36943.75 36670.62 372
USDC67.43 30264.51 30376.19 29877.94 33555.29 31978.38 34185.00 31773.17 15748.36 35780.37 29721.23 36792.48 26652.15 30264.02 29880.81 338
EPP-MVSNet81.79 11881.52 11082.61 18088.77 16960.21 26893.02 10993.66 6868.52 25572.90 17690.39 16272.19 3194.96 17374.93 14979.29 17992.67 155
PMMVS81.98 11682.04 10481.78 20489.76 14356.17 31391.13 19290.69 18577.96 8580.09 10093.57 10446.33 26994.99 17281.41 10387.46 11294.17 106
PAPM85.89 4885.46 5387.18 4288.20 18672.42 1392.41 13392.77 10282.11 2980.34 9793.07 11268.27 4095.02 17078.39 12893.59 4794.09 111
ACMMPcopyleft81.49 12280.67 12383.93 14991.71 10362.90 21592.13 14192.22 12371.79 19871.68 19693.49 10650.32 23196.96 9978.47 12784.22 14491.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA74.31 23972.30 24780.32 23591.49 11061.66 24090.85 20080.72 34356.67 33963.85 28390.64 15546.75 26390.84 29653.79 29775.99 20988.47 229
PatchmatchNetpermissive77.46 19474.63 21185.96 7889.55 14870.35 3079.97 33589.55 23172.23 18270.94 20176.91 32857.03 15992.79 25254.27 29581.17 16394.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS86.83 3486.85 3786.78 5593.47 5765.55 14495.39 3095.10 1871.77 19985.69 5196.52 2162.07 10898.77 2286.06 6895.60 1196.03 38
F-COLMAP70.66 27168.44 27977.32 28686.37 22455.91 31588.00 26486.32 30356.94 33757.28 32688.07 19933.58 33592.49 26551.02 30468.37 26283.55 303
ANet_high40.27 35135.20 35455.47 35934.74 39834.47 38463.84 37471.56 36748.42 36118.80 38841.08 3879.52 38664.45 38820.18 3848.66 39567.49 375
wuyk23d11.30 36310.95 36612.33 37948.05 38819.89 39925.89 3911.92 4033.58 3953.12 3971.37 3970.64 40215.77 3986.23 3977.77 3961.35 394
OMC-MVS78.67 17677.91 16780.95 22785.76 23557.40 30588.49 25788.67 27173.85 14472.43 18692.10 13449.29 24394.55 19372.73 16477.89 18990.91 194
MG-MVS87.11 3086.27 3989.62 797.79 176.27 494.96 4394.49 3878.74 7883.87 7092.94 11564.34 7896.94 10175.19 14594.09 3695.66 47
AdaColmapbinary78.94 16777.00 18384.76 11996.34 1765.86 13692.66 12487.97 29062.18 30570.56 20592.37 13043.53 28497.35 7264.50 24582.86 14891.05 193
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
ITE_SJBPF70.43 33674.44 35047.06 36077.32 34960.16 32154.04 33683.53 25223.30 36484.01 34943.07 33961.58 32080.21 346
DeepMVS_CXcopyleft34.71 37551.45 38624.73 39528.48 40131.46 38217.49 39152.75 3775.80 39242.60 39618.18 38519.42 38936.81 388
TinyColmap60.32 32956.42 33672.00 33278.78 32453.18 32978.36 34275.64 35452.30 34941.59 37475.82 33714.76 37988.35 32035.84 36154.71 34774.46 366
MAR-MVS84.18 7683.43 7886.44 6696.25 2165.93 13594.28 5394.27 5074.41 13179.16 11195.61 4353.99 19998.88 2169.62 19493.26 5294.50 98
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS54.01 33952.12 34059.69 35562.41 37739.91 37868.59 36568.28 37442.96 37544.55 36975.18 33814.09 38168.39 38141.36 34851.68 35370.78 371
MSDG69.54 28265.73 29280.96 22685.11 24763.71 19084.19 29483.28 33456.95 33654.50 33384.03 24731.50 34396.03 13342.87 34269.13 25783.14 313
LS3D69.17 28466.40 28877.50 28291.92 9756.12 31485.12 28980.37 34546.96 36456.50 32887.51 20837.25 31793.71 22832.52 37479.40 17682.68 321
CLD-MVS82.73 10282.35 10283.86 15087.90 19367.65 9195.45 2892.18 12685.06 1072.58 18192.27 13252.46 21595.78 13984.18 8279.06 18088.16 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS45.64 34543.10 34953.23 36351.42 38736.46 38164.97 37271.91 36529.13 38327.53 38361.55 3729.83 38565.01 38716.00 38955.58 34358.22 379
Gipumacopyleft34.91 35431.44 35745.30 37070.99 36139.64 37919.85 39272.56 36320.10 38816.16 39221.47 3935.08 39371.16 37813.07 39043.70 36725.08 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015