This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 2899.97 1999.87 4799.81 1499.95 6299.54 5899.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator99.15 299.43 10199.36 10899.65 12099.39 27099.42 16499.70 3599.56 20899.23 16699.35 24599.80 8399.17 7799.95 6298.21 19599.84 16099.59 158
3Dnovator+98.92 399.35 12499.24 13799.67 10899.35 28099.47 14699.62 6399.50 24299.44 13499.12 28899.78 10198.77 12799.94 7697.87 22699.72 22799.62 137
DeepC-MVS98.90 499.62 6499.61 5899.67 10899.72 13999.44 15799.24 15799.71 12399.27 15899.93 3599.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast98.47 599.23 14999.12 15499.56 16499.28 30599.22 20998.99 23499.40 27199.08 19199.58 18199.64 17898.90 11399.83 26797.44 26599.75 20999.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.42 699.18 17199.02 18799.67 10899.22 31599.75 6897.25 37599.47 25098.72 23599.66 15199.70 14699.29 6299.63 36498.07 20899.81 18699.62 137
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11699.56 8199.79 8398.77 23099.80 9099.85 5699.64 2799.85 23798.70 16699.89 12399.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6299.32 12799.77 9299.53 12099.77 10499.76 11299.26 6899.78 30397.77 23499.88 13299.60 151
HY-MVS98.23 998.21 29297.95 29598.99 28399.03 34698.24 29299.61 6898.72 34496.81 35298.73 32899.51 24894.06 31999.86 22096.91 29698.20 37298.86 341
OpenMVScopyleft98.12 1098.23 29097.89 30499.26 24899.19 32299.26 19999.65 5999.69 13591.33 38798.14 36099.77 10898.28 19799.96 5395.41 35799.55 27898.58 357
ACMM98.09 1199.46 9499.38 10299.72 9399.80 8599.69 9599.13 19399.65 15598.99 19999.64 15499.72 13199.39 4899.86 22098.23 19399.81 18699.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.06 1299.45 9699.37 10599.70 10299.83 6499.70 9199.38 11399.78 8999.53 12099.67 14799.78 10199.19 7599.86 22097.32 27199.87 14399.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS97.92 1398.03 29997.55 31599.46 18899.47 24999.44 15798.50 29499.62 16686.79 39099.07 29599.26 31098.26 19999.62 36597.28 27599.73 22199.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP97.51 1499.05 19798.84 22099.67 10899.78 10499.55 13798.88 24799.66 14697.11 34699.47 21799.60 21299.07 9299.89 17496.18 33499.85 15599.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet97.47 1598.42 27598.44 25698.35 32999.46 25396.26 36096.70 38699.34 28597.68 31799.00 29999.13 32797.40 25599.72 32497.59 25799.68 24199.08 315
PLCcopyleft97.35 1698.36 28097.99 29199.48 18499.32 29599.24 20698.50 29499.51 23895.19 37498.58 34098.96 35596.95 27599.83 26795.63 35299.25 32599.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft97.31 1797.36 32396.84 33398.89 30199.29 30299.45 15598.87 24899.48 24786.54 39299.44 22399.74 12097.34 25999.86 22091.61 38399.28 32197.37 387
PCF-MVS96.03 1896.73 33695.86 34799.33 22999.44 25899.16 21796.87 38499.44 25886.58 39198.95 30299.40 27694.38 31799.88 18887.93 39099.80 19198.95 333
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_095.53 1995.85 35495.31 35697.47 35498.78 37093.48 38495.72 38999.40 27196.18 36197.37 37897.73 39195.73 30499.58 37295.49 35581.40 39699.36 249
IB-MVS95.41 2095.30 35994.46 36397.84 34698.76 37295.33 37297.33 37296.07 38596.02 36295.37 39497.41 39576.17 40099.96 5397.54 25995.44 39498.22 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft92.94 2198.82 23398.81 22498.85 30299.84 6097.99 31199.20 16799.47 25099.71 8099.42 22999.82 7398.09 21399.47 38393.88 37999.85 15599.07 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive92.54 2296.66 33896.11 34298.31 33499.68 16297.55 33197.94 34295.60 38899.37 14690.68 39798.70 37196.56 28498.61 39586.94 39599.55 27898.77 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary77.52 2398.50 26698.19 28199.41 20798.33 38599.56 13499.01 22699.59 19195.44 36999.57 18499.80 8395.64 30599.46 38596.47 32299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20299.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 1899.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 1899.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5799.82 3599.03 22199.96 2399.99 299.97 1999.84 6299.58 3499.93 9399.92 2099.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5799.78 4999.03 22199.96 2399.99 299.97 1999.84 6299.78 1799.92 11599.92 2099.99 1699.92 18
MM99.55 16798.81 25299.05 21497.79 37399.99 299.48 21599.59 21796.29 29799.95 6299.94 1599.98 3999.88 25
WAC-MVS96.36 35895.20 361
Syy-MVS98.17 29397.85 30599.15 26398.50 38098.79 25598.60 27799.21 31697.89 30696.76 38596.37 40295.47 30899.57 37399.10 12898.73 35799.09 310
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
myMVS_eth3d95.63 35794.73 35998.34 33198.50 38096.36 35898.60 27799.21 31697.89 30696.76 38596.37 40272.10 40299.57 37394.38 37098.73 35799.09 310
testing396.48 34195.63 35199.01 28299.23 31497.81 32298.90 24599.10 32798.72 23597.84 37297.92 38972.44 40199.85 23797.21 28499.33 31499.35 252
SSC-MVS99.52 8099.42 9799.83 3299.86 5399.65 10799.52 8699.81 7399.87 4099.81 8699.79 9396.78 27999.99 899.83 3099.51 28999.86 30
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 23899.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1599.99 1699.93 15
WB-MVS99.44 9899.32 11599.80 4499.81 7999.61 12299.47 9999.81 7399.82 5799.71 13199.72 13196.60 28399.98 1999.75 3799.23 32999.82 44
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4599.55 13799.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
dmvs_re98.69 24798.48 25299.31 23699.55 21299.42 16499.54 8498.38 36299.32 15298.72 32998.71 37096.76 28099.21 38896.01 33999.35 31299.31 263
SDMVSNet99.77 2899.77 3199.76 6399.80 8599.65 10799.63 6199.86 4699.97 1499.89 5299.89 3499.52 4299.99 899.42 7699.96 6999.65 111
dmvs_testset97.27 32496.83 33498.59 31999.46 25397.55 33199.25 15696.84 38298.78 22897.24 38197.67 39297.11 27098.97 39286.59 39698.54 36599.27 269
sd_testset99.78 2599.78 3099.80 4499.80 8599.76 6299.80 1099.79 8399.97 1499.89 5299.89 3499.53 4199.99 899.36 8499.96 6999.65 111
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 45
test_cas_vis1_n_192099.76 2999.86 1299.45 19199.93 2698.40 28499.30 13599.98 1199.94 2299.99 799.89 3499.80 1599.97 3299.96 999.97 5499.97 7
test_vis1_n_192099.72 3499.88 699.27 24599.93 2697.84 32099.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_vis1_n99.68 4499.79 2799.36 22399.94 1998.18 29999.52 86100.00 199.86 44100.00 199.88 4298.99 10099.96 5399.97 499.96 6999.95 11
test_fmvs1_n99.68 4499.81 2399.28 24299.95 1597.93 31899.49 95100.00 199.82 5799.99 799.89 3499.21 7399.98 1999.97 499.98 3999.93 15
mvsany_test199.44 9899.45 9099.40 20999.37 27598.64 27097.90 34799.59 19199.27 15899.92 3999.82 7399.74 2099.93 9399.55 5799.87 14399.63 126
APD_test199.36 12299.28 12999.61 14699.89 4099.89 1099.32 12799.74 10799.18 17399.69 13899.75 11798.41 18099.84 25297.85 22999.70 23299.10 306
test_vis1_rt99.45 9699.46 8899.41 20799.71 14298.63 27198.99 23499.96 2399.03 19799.95 3099.12 33198.75 13099.84 25299.82 3399.82 17799.77 59
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18899.98 1100.00 199.98 3
test_fmvs299.72 3499.85 1699.34 22699.91 3298.08 30999.48 96100.00 199.90 2899.99 799.91 2499.50 4499.98 1999.98 199.99 1699.96 10
test_fmvs199.48 8699.65 4898.97 28599.54 21497.16 34299.11 20099.98 1199.78 6899.96 2399.81 7998.72 13599.97 3299.95 1299.97 5499.79 52
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27299.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 17799.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
testf199.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
APD_test299.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
test_f99.75 3099.88 699.37 21999.96 798.21 29699.51 90100.00 199.94 22100.00 199.93 1799.58 3499.94 7699.97 499.99 1699.97 7
FE-MVS97.85 30497.42 31799.15 26399.44 25898.75 25899.77 1598.20 36695.85 36499.33 25099.80 8388.86 37299.88 18896.40 32499.12 33298.81 345
FA-MVS(test-final)98.52 26398.32 26999.10 27299.48 24398.67 26399.77 1598.60 35297.35 33499.63 15899.80 8393.07 33299.84 25297.92 21999.30 31898.78 348
iter_conf_final98.75 23998.54 24899.40 20999.33 29398.75 25899.26 14999.59 19199.80 6399.76 10699.58 22090.17 36599.92 11599.37 8299.97 5499.54 181
bld_raw_dy_0_6499.70 3899.65 4899.85 2799.95 1599.77 5499.66 5399.71 12399.95 1899.91 4299.77 10898.35 188100.00 199.54 5899.99 1699.79 52
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22299.04 21799.87 4399.71 8099.47 21799.79 9398.24 20099.98 1999.38 7999.96 6999.83 38
EGC-MVSNET89.05 36285.52 36599.64 12799.89 4099.78 4999.56 8199.52 23424.19 39749.96 39899.83 6699.15 7999.92 11597.71 24299.85 15599.21 280
test250694.73 36094.59 36295.15 37799.59 18585.90 40399.75 2274.01 40399.89 3499.71 13199.86 5479.00 39999.90 15799.52 6299.99 1699.65 111
test111197.74 30898.16 28396.49 37199.60 18189.86 40199.71 3491.21 39799.89 3499.88 6099.87 4793.73 32599.90 15799.56 5599.99 1699.70 78
ECVR-MVScopyleft97.73 30998.04 28896.78 36599.59 18590.81 39799.72 3090.43 39999.89 3499.86 6999.86 5493.60 32799.89 17499.46 6899.99 1699.65 111
test_blank8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 34599.72 7899.91 4299.60 21299.43 4699.81 29199.81 3499.53 28599.73 70
DVP-MVS++99.38 11699.25 13599.77 5699.03 34699.77 5499.74 2499.61 17399.18 17399.76 10699.61 20499.00 9899.92 11597.72 24099.60 26799.62 137
FOURS199.83 6499.89 1099.74 2499.71 12399.69 8899.63 158
MSC_two_6792asdad99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
PC_three_145297.56 32099.68 14199.41 27299.09 8797.09 39696.66 31199.60 26799.62 137
No_MVS99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
test_one_060199.63 17499.76 6299.55 21499.23 16699.31 25799.61 20498.59 152
eth-test20.00 404
eth-test0.00 404
GeoE99.69 4199.66 4699.78 5399.76 11699.76 6299.60 7399.82 6499.46 13199.75 11399.56 23399.63 2899.95 6299.43 7199.88 13299.62 137
test_method91.72 36192.32 36489.91 37993.49 40070.18 40490.28 39299.56 20861.71 39695.39 39399.52 24693.90 32099.94 7698.76 16198.27 37199.62 137
Anonymous2024052199.44 9899.42 9799.49 18099.89 4098.96 23999.62 6399.76 9799.85 4999.82 7999.88 4296.39 29399.97 3299.59 4999.98 3999.55 173
h-mvs3398.61 25198.34 26799.44 19499.60 18198.67 26399.27 14799.44 25899.68 9099.32 25399.49 25592.50 339100.00 199.24 10496.51 39099.65 111
hse-mvs298.52 26398.30 27199.16 26199.29 30298.60 27398.77 26799.02 33299.68 9099.32 25399.04 34192.50 33999.85 23799.24 10497.87 38199.03 324
CL-MVSNet_self_test98.71 24598.56 24799.15 26399.22 31598.66 26697.14 37899.51 23898.09 29399.54 19899.27 30796.87 27799.74 31998.43 17998.96 34199.03 324
KD-MVS_2432*160095.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
KD-MVS_self_test99.63 5899.59 6399.76 6399.84 6099.90 799.37 11799.79 8399.83 5599.88 6099.85 5698.42 17999.90 15799.60 4899.73 22199.49 210
AUN-MVS97.82 30597.38 31899.14 26799.27 30798.53 27598.72 27199.02 33298.10 29197.18 38399.03 34589.26 37199.85 23797.94 21897.91 37999.03 324
ZD-MVS99.43 26299.61 12299.43 26196.38 35799.11 28999.07 33797.86 23099.92 11594.04 37699.49 294
SR-MVS-dyc-post99.27 14299.11 15799.73 8799.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.41 18099.91 13997.27 27699.61 26499.54 181
RE-MVS-def99.13 15099.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.57 15597.27 27699.61 26499.54 181
SED-MVS99.40 11099.28 12999.77 5699.69 15499.82 3599.20 16799.54 22099.13 18699.82 7999.63 18898.91 11099.92 11597.85 22999.70 23299.58 163
IU-MVS99.69 15499.77 5499.22 31397.50 32699.69 13897.75 23899.70 23299.77 59
OPU-MVS99.29 24099.12 33299.44 15799.20 16799.40 27699.00 9898.84 39396.54 31799.60 26799.58 163
test_241102_TWO99.54 22099.13 18699.76 10699.63 18898.32 19499.92 11597.85 22999.69 23699.75 68
test_241102_ONE99.69 15499.82 3599.54 22099.12 18999.82 7999.49 25598.91 11099.52 380
SF-MVS99.10 19198.93 20699.62 14399.58 19099.51 14299.13 19399.65 15597.97 30099.42 22999.61 20498.86 11599.87 20296.45 32399.68 24199.49 210
cl2297.56 31797.28 32098.40 32798.37 38496.75 35297.24 37699.37 27997.31 33699.41 23599.22 31987.30 37699.37 38797.70 24599.62 25799.08 315
miper_ehance_all_eth98.59 25698.59 24098.59 31998.98 35297.07 34597.49 36699.52 23498.50 25599.52 20599.37 28496.41 29299.71 32897.86 22799.62 25799.00 330
miper_enhance_ethall98.03 29997.94 29998.32 33298.27 38696.43 35796.95 38299.41 26496.37 35899.43 22798.96 35594.74 31399.69 33697.71 24299.62 25798.83 344
ZNCC-MVS99.22 15799.04 18399.77 5699.76 11699.73 7799.28 14499.56 20898.19 28899.14 28599.29 30498.84 11799.92 11597.53 26199.80 19199.64 121
dcpmvs_299.61 6699.64 5299.53 17399.79 9798.82 25199.58 7699.97 1899.95 1899.96 2399.76 11298.44 17699.99 899.34 8899.96 6999.78 55
cl____98.54 26198.41 25998.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.85 32299.78 30397.97 21699.89 12399.17 291
DIV-MVS_self_test98.54 26198.42 25898.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.87 32199.78 30397.97 21699.89 12399.18 289
eth_miper_zixun_eth98.68 24898.71 23198.60 31899.10 33896.84 35197.52 36599.54 22098.94 20599.58 18199.48 25896.25 29899.76 31398.01 21299.93 10099.21 280
9.1498.64 23599.45 25798.81 25999.60 18597.52 32599.28 26399.56 23398.53 16499.83 26795.36 35999.64 254
uanet_test8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
save fliter99.53 22099.25 20298.29 30899.38 27899.07 193
ET-MVSNet_ETH3D96.78 33496.07 34398.91 29499.26 30997.92 31997.70 35596.05 38697.96 30392.37 39698.43 38187.06 37899.90 15798.27 19097.56 38498.91 337
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12399.93 2499.95 3099.89 3499.71 2299.96 5399.51 6399.97 5499.84 34
EIA-MVS99.12 18599.01 19099.45 19199.36 27899.62 11699.34 12299.79 8398.41 26398.84 31798.89 36198.75 13099.84 25298.15 20499.51 28998.89 338
miper_refine_blended95.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
miper_lstm_enhance98.65 25098.60 23898.82 30999.20 32097.33 33897.78 35199.66 14699.01 19899.59 17999.50 25194.62 31599.85 23798.12 20599.90 11499.26 270
ETV-MVS99.18 17199.18 14299.16 26199.34 28899.28 19599.12 19799.79 8399.48 12498.93 30498.55 37799.40 4799.93 9398.51 17699.52 28898.28 370
CS-MVS99.67 5099.70 3799.58 15599.53 22099.84 2499.79 1199.96 2399.90 2899.61 17399.41 27299.51 4399.95 6299.66 4399.89 12398.96 331
D2MVS99.22 15799.19 14199.29 24099.69 15498.74 26098.81 25999.41 26498.55 24999.68 14199.69 15298.13 21199.87 20298.82 15399.98 3999.24 273
DVP-MVScopyleft99.32 13499.17 14399.77 5699.69 15499.80 4499.14 18799.31 29299.16 18099.62 16799.61 20498.35 18899.91 13997.88 22399.72 22799.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 17399.62 16799.61 20498.58 15499.91 13997.72 24099.80 19199.77 59
test_0728_SECOND99.83 3299.70 15099.79 4699.14 18799.61 17399.92 11597.88 22399.72 22799.77 59
test072699.69 15499.80 4499.24 15799.57 20399.16 18099.73 12599.65 17698.35 188
SR-MVS99.19 16799.00 19399.74 7899.51 22799.72 8299.18 17299.60 18598.85 21899.47 21799.58 22098.38 18599.92 11596.92 29599.54 28399.57 168
DPM-MVS98.28 28597.94 29999.32 23399.36 27899.11 22297.31 37398.78 34296.88 34998.84 31799.11 33497.77 23799.61 36994.03 37799.36 31099.23 276
GST-MVS99.16 17798.96 20499.75 7399.73 13699.73 7799.20 16799.55 21498.22 28599.32 25399.35 29398.65 14599.91 13996.86 29999.74 21699.62 137
test_yl98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
thisisatest053097.45 31996.95 32998.94 28899.68 16297.73 32699.09 20794.19 39498.61 24599.56 19199.30 30184.30 39099.93 9398.27 19099.54 28399.16 293
Anonymous2024052999.42 10499.34 11099.65 12099.53 22099.60 12599.63 6199.39 27499.47 12899.76 10699.78 10198.13 21199.86 22098.70 16699.68 24199.49 210
Anonymous20240521198.75 23998.46 25499.63 13499.34 28899.66 10299.47 9997.65 37499.28 15799.56 19199.50 25193.15 33099.84 25298.62 17199.58 27299.40 239
DCV-MVSNet98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
tttt051797.62 31497.20 32398.90 30099.76 11697.40 33699.48 9694.36 39299.06 19599.70 13599.49 25584.55 38999.94 7698.73 16499.65 25299.36 249
our_test_398.85 23199.09 16698.13 33999.66 16894.90 37697.72 35399.58 20199.07 19399.64 15499.62 19598.19 20799.93 9398.41 18099.95 8299.55 173
thisisatest051596.98 33096.42 33798.66 31799.42 26797.47 33397.27 37494.30 39397.24 33899.15 28398.86 36385.01 38799.87 20297.10 28899.39 30698.63 352
ppachtmachnet_test98.89 22799.12 15498.20 33799.66 16895.24 37397.63 35799.68 13899.08 19199.78 9999.62 19598.65 14599.88 18898.02 20999.96 6999.48 214
SMA-MVScopyleft99.19 16799.00 19399.73 8799.46 25399.73 7799.13 19399.52 23497.40 33199.57 18499.64 17898.93 10799.83 26797.61 25599.79 19699.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.14 300
DPE-MVScopyleft99.14 18198.92 21099.82 3699.57 20099.77 5498.74 26999.60 18598.55 24999.76 10699.69 15298.23 20499.92 11596.39 32599.75 20999.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.62 17899.67 10099.55 196
thres100view90096.39 34396.03 34497.47 35499.63 17495.93 36599.18 17297.57 37598.75 23498.70 33297.31 39787.04 37999.67 35187.62 39198.51 36696.81 389
tfpnnormal99.43 10199.38 10299.60 14999.87 5099.75 6899.59 7499.78 8999.71 8099.90 4899.69 15298.85 11699.90 15797.25 28199.78 20199.15 295
tfpn200view996.30 34695.89 34597.53 35299.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36696.81 389
c3_l98.72 24498.71 23198.72 31499.12 33297.22 34197.68 35699.56 20898.90 21299.54 19899.48 25896.37 29499.73 32297.88 22399.88 13299.21 280
CHOSEN 280x42098.41 27698.41 25998.40 32799.34 28895.89 36796.94 38399.44 25898.80 22599.25 26699.52 24693.51 32899.98 1998.94 14799.98 3999.32 259
CANet99.11 18899.05 17899.28 24298.83 36398.56 27498.71 27399.41 26499.25 16299.23 27099.22 31997.66 24799.94 7699.19 11199.97 5499.33 256
Fast-Effi-MVS+-dtu99.20 16499.12 15499.43 19899.25 31099.69 9599.05 21499.82 6499.50 12298.97 30099.05 33998.98 10299.98 1998.20 19699.24 32798.62 353
Effi-MVS+-dtu99.07 19398.92 21099.52 17598.89 35999.78 4999.15 18599.66 14699.34 14998.92 30799.24 31797.69 24199.98 1998.11 20699.28 32198.81 345
CANet_DTU98.91 22298.85 21899.09 27398.79 36898.13 30198.18 31499.31 29299.48 12498.86 31599.51 24896.56 28499.95 6299.05 13299.95 8299.19 287
MVS_030499.17 17599.03 18599.59 15199.44 25898.90 24699.04 21795.32 38999.99 299.68 14199.57 22998.30 19599.97 3299.94 1599.98 3999.88 25
MP-MVS-pluss99.14 18198.92 21099.80 4499.83 6499.83 2998.61 27599.63 16396.84 35199.44 22399.58 22098.81 11899.91 13997.70 24599.82 17799.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.04 20098.79 22799.81 3999.78 10499.73 7799.35 12199.57 20398.54 25299.54 19898.99 34896.81 27899.93 9396.97 29399.53 28599.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs190.81 35899.14 300
sam_mvs90.52 362
IterMVS-SCA-FT99.00 20999.16 14498.51 32299.75 12795.90 36698.07 32899.84 5799.84 5299.89 5299.73 12496.01 30299.99 899.33 91100.00 199.63 126
TSAR-MVS + MP.99.34 12999.24 13799.63 13499.82 7199.37 17799.26 14999.35 28398.77 23099.57 18499.70 14699.27 6799.88 18897.71 24299.75 20999.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
OPM-MVS99.26 14499.13 15099.63 13499.70 15099.61 12298.58 28199.48 24798.50 25599.52 20599.63 18899.14 8299.76 31397.89 22299.77 20599.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.28 13899.11 15799.79 5099.75 12799.81 4098.95 24199.53 22998.27 28399.53 20399.73 12498.75 13099.87 20297.70 24599.83 16899.68 88
ambc99.20 25799.35 28098.53 27599.17 17799.46 25399.67 14799.80 8398.46 17499.70 33097.92 21999.70 23299.38 243
MTGPAbinary99.53 229
CS-MVS-test99.68 4499.70 3799.64 12799.57 20099.83 2999.78 1299.97 1899.92 2699.50 21299.38 28299.57 3699.95 6299.69 4199.90 11499.15 295
Effi-MVS+99.06 19498.97 20299.34 22699.31 29698.98 23598.31 30799.91 3298.81 22398.79 32398.94 35799.14 8299.84 25298.79 15798.74 35599.20 284
xiu_mvs_v2_base99.02 20399.11 15798.77 31199.37 27598.09 30698.13 32099.51 23899.47 12899.42 22998.54 37899.38 5299.97 3298.83 15199.33 31498.24 372
xiu_mvs_v1_base99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
new-patchmatchnet99.35 12499.57 7098.71 31699.82 7196.62 35498.55 28799.75 10299.50 12299.88 6099.87 4799.31 6099.88 18899.43 71100.00 199.62 137
pmmvs699.86 999.86 1299.83 3299.94 1999.90 799.83 699.91 3299.85 4999.94 3299.95 1399.73 2199.90 15799.65 4499.97 5499.69 82
pmmvs599.19 16799.11 15799.42 20099.76 11698.88 24898.55 28799.73 11198.82 22299.72 12699.62 19596.56 28499.82 27699.32 9399.95 8299.56 170
test_post199.14 18751.63 40689.54 37099.82 27696.86 299
test_post52.41 40590.25 36499.86 220
Fast-Effi-MVS+99.02 20398.87 21699.46 18899.38 27399.50 14399.04 21799.79 8397.17 34298.62 33698.74 36999.34 5899.95 6298.32 18799.41 30498.92 336
patchmatchnet-post99.62 19590.58 36099.94 76
Anonymous2023121199.62 6499.57 7099.76 6399.61 17999.60 12599.81 999.73 11199.82 5799.90 4899.90 2997.97 22499.86 22099.42 7699.96 6999.80 45
pmmvs-eth3d99.48 8699.47 8499.51 17799.77 11299.41 16998.81 25999.66 14699.42 14399.75 11399.66 17199.20 7499.76 31398.98 13899.99 1699.36 249
GG-mvs-BLEND97.36 35797.59 39396.87 35099.70 3588.49 40294.64 39597.26 39880.66 39399.12 38991.50 38496.50 39196.08 393
xiu_mvs_v1_base_debi99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
Anonymous2023120699.35 12499.31 11799.47 18699.74 13399.06 23299.28 14499.74 10799.23 16699.72 12699.53 24497.63 24999.88 18899.11 12799.84 16099.48 214
MTAPA99.35 12499.20 14099.80 4499.81 7999.81 4099.33 12599.53 22999.27 15899.42 22999.63 18898.21 20599.95 6297.83 23399.79 19699.65 111
MTMP99.09 20798.59 353
gm-plane-assit97.59 39389.02 40293.47 38298.30 38399.84 25296.38 326
test9_res95.10 36399.44 29999.50 205
MVP-Stereo99.16 17799.08 16899.43 19899.48 24399.07 23099.08 21099.55 21498.63 24299.31 25799.68 16398.19 20799.78 30398.18 20099.58 27299.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.35 28099.35 18498.11 32399.41 26494.83 37997.92 36698.99 34898.02 21999.85 237
train_agg98.35 28397.95 29599.57 16199.35 28099.35 18498.11 32399.41 26494.90 37697.92 36698.99 34898.02 21999.85 23795.38 35899.44 29999.50 205
gg-mvs-nofinetune95.87 35395.17 35797.97 34298.19 38896.95 34799.69 4289.23 40199.89 3496.24 38999.94 1681.19 39299.51 38193.99 37898.20 37297.44 385
SCA98.11 29598.36 26497.36 35799.20 32092.99 38598.17 31698.49 35798.24 28499.10 29199.57 22996.01 30299.94 7696.86 29999.62 25799.14 300
Patchmatch-test98.10 29697.98 29398.48 32499.27 30796.48 35599.40 10999.07 32898.81 22399.23 27099.57 22990.11 36699.87 20296.69 30899.64 25499.09 310
test_899.34 28899.31 19098.08 32799.40 27194.90 37697.87 37098.97 35398.02 21999.84 252
MS-PatchMatch99.00 20998.97 20299.09 27399.11 33798.19 29798.76 26899.33 28698.49 25799.44 22399.58 22098.21 20599.69 33698.20 19699.62 25799.39 241
Patchmatch-RL test98.60 25398.36 26499.33 22999.77 11299.07 23098.27 30999.87 4398.91 21199.74 12199.72 13190.57 36199.79 30098.55 17499.85 15599.11 304
cdsmvs_eth3d_5k24.88 36533.17 3670.00 3820.00 4040.00 4070.00 39399.62 1660.00 4000.00 40199.13 32799.82 130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas16.61 36622.14 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 199.28 640.00 4010.00 4000.00 3990.00 397
agg_prior294.58 36999.46 29899.50 205
agg_prior99.35 28099.36 18199.39 27497.76 37699.85 237
tmp_tt95.75 35595.42 35396.76 36689.90 40194.42 37898.86 24997.87 37278.01 39399.30 26299.69 15297.70 23995.89 39799.29 10098.14 37699.95 11
canonicalmvs99.02 20399.00 19399.09 27399.10 33898.70 26299.61 6899.66 14699.63 10498.64 33597.65 39399.04 9699.54 37698.79 15798.92 34499.04 323
anonymousdsp99.80 2399.77 3199.90 899.96 799.88 1299.73 2799.85 5199.70 8599.92 3999.93 1799.45 4599.97 3299.36 84100.00 199.85 33
alignmvs98.28 28597.96 29499.25 25199.12 33298.93 24399.03 22198.42 35999.64 10298.72 32997.85 39090.86 35799.62 36598.88 14999.13 33199.19 287
nrg03099.70 3899.66 4699.82 3699.76 11699.84 2499.61 6899.70 12999.93 2499.78 9999.68 16399.10 8599.78 30399.45 6999.96 6999.83 38
v14419299.55 7599.54 7699.58 15599.78 10499.20 21499.11 20099.62 16699.18 17399.89 5299.72 13198.66 14399.87 20299.88 2799.97 5499.66 103
FIs99.65 5799.58 6799.84 3099.84 6099.85 1999.66 5399.75 10299.86 4499.74 12199.79 9398.27 19899.85 23799.37 8299.93 10099.83 38
v192192099.56 7299.57 7099.55 16799.75 12799.11 22299.05 21499.61 17399.15 18499.88 6099.71 13999.08 9099.87 20299.90 2399.97 5499.66 103
UA-Net99.78 2599.76 3499.86 2599.72 13999.71 8499.91 399.95 2899.96 1699.71 13199.91 2499.15 7999.97 3299.50 65100.00 199.90 20
v119299.57 6999.57 7099.57 16199.77 11299.22 20999.04 21799.60 18599.18 17399.87 6899.72 13199.08 9099.85 23799.89 2699.98 3999.66 103
FC-MVSNet-test99.70 3899.65 4899.86 2599.88 4599.86 1899.72 3099.78 8999.90 2899.82 7999.83 6698.45 17599.87 20299.51 6399.97 5499.86 30
v114499.54 7799.53 8099.59 15199.79 9799.28 19599.10 20299.61 17399.20 17199.84 7499.73 12498.67 14199.84 25299.86 2999.98 3999.64 121
sosnet-low-res8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
HFP-MVS99.25 14599.08 16899.76 6399.73 13699.70 9199.31 13299.59 19198.36 26999.36 24499.37 28498.80 12299.91 13997.43 26699.75 20999.68 88
v14899.40 11099.41 9999.39 21399.76 11698.94 24099.09 20799.59 19199.17 17899.81 8699.61 20498.41 18099.69 33699.32 9399.94 9399.53 187
sosnet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
AllTest99.21 16299.07 17299.63 13499.78 10499.64 11099.12 19799.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
TestCases99.63 13499.78 10499.64 11099.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6499.84 5299.94 3299.91 2499.13 8499.96 5399.83 3099.99 1699.83 38
region2R99.23 14999.05 17899.77 5699.76 11699.70 9199.31 13299.59 19198.41 26399.32 25399.36 28898.73 13499.93 9397.29 27399.74 21699.67 94
iter_conf0598.46 27198.23 27499.15 26399.04 34597.99 31199.10 20299.61 17399.79 6699.76 10699.58 22087.88 37599.92 11599.31 9699.97 5499.53 187
RRT_MVS99.67 5099.59 6399.91 299.94 1999.88 1299.78 1299.27 30099.87 4099.91 4299.87 4798.04 21799.96 5399.68 4299.99 1699.90 20
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5199.95 1899.98 1399.92 2199.28 6499.98 1999.75 37100.00 199.94 13
PS-MVSNAJ99.00 20999.08 16898.76 31299.37 27598.10 30598.00 33599.51 23899.47 12899.41 23598.50 38099.28 6499.97 3298.83 15199.34 31398.20 376
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4699.89 3499.98 1399.90 2999.94 499.98 1999.75 37100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4199.92 2699.98 1399.93 1799.94 499.98 1999.77 36100.00 199.92 18
EI-MVSNet-UG-set99.48 8699.50 8299.42 20099.57 20098.65 26999.24 15799.46 25399.68 9099.80 9099.66 17198.99 10099.89 17499.19 11199.90 11499.72 72
EI-MVSNet-Vis-set99.47 9399.49 8399.42 20099.57 20098.66 26699.24 15799.46 25399.67 9499.79 9599.65 17698.97 10499.89 17499.15 11999.89 12399.71 75
HPM-MVS++copyleft98.96 21698.70 23399.74 7899.52 22599.71 8498.86 24999.19 31998.47 25998.59 33999.06 33898.08 21599.91 13996.94 29499.60 26799.60 151
test_prior499.19 21598.00 335
XVS99.27 14299.11 15799.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32699.47 26298.47 17199.88 18897.62 25399.73 22199.67 94
v124099.56 7299.58 6799.51 17799.80 8599.00 23399.00 22999.65 15599.15 18499.90 4899.75 11799.09 8799.88 18899.90 2399.96 6999.67 94
pm-mvs199.79 2499.79 2799.78 5399.91 3299.83 2999.76 1999.87 4399.73 7499.89 5299.87 4799.63 2899.87 20299.54 5899.92 10499.63 126
test_prior297.95 34197.87 30998.05 36299.05 33997.90 22795.99 34299.49 294
X-MVStestdata96.09 34994.87 35899.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32661.30 40498.47 17199.88 18897.62 25399.73 22199.67 94
test_prior99.46 18899.35 28099.22 20999.39 27499.69 33699.48 214
旧先验297.94 34295.33 37198.94 30399.88 18896.75 305
新几何298.04 331
新几何199.52 17599.50 23399.22 20999.26 30395.66 36898.60 33899.28 30597.67 24399.89 17495.95 34599.32 31699.45 223
旧先验199.49 23899.29 19399.26 30399.39 28097.67 24399.36 31099.46 222
无先验98.01 33399.23 31095.83 36599.85 23795.79 35099.44 228
原ACMM297.92 344
原ACMM199.37 21999.47 24998.87 25099.27 30096.74 35498.26 35199.32 29797.93 22699.82 27695.96 34499.38 30799.43 234
test22299.51 22799.08 22997.83 35099.29 29695.21 37398.68 33399.31 29997.28 26199.38 30799.43 234
testdata299.89 17495.99 342
segment_acmp98.37 186
testdata99.42 20099.51 22798.93 24399.30 29596.20 36098.87 31499.40 27698.33 19399.89 17496.29 32999.28 32199.44 228
testdata197.72 35397.86 311
v899.68 4499.69 4199.65 12099.80 8599.40 17099.66 5399.76 9799.64 10299.93 3599.85 5698.66 14399.84 25299.88 2799.99 1699.71 75
131498.00 30197.90 30398.27 33698.90 35697.45 33599.30 13599.06 33094.98 37597.21 38299.12 33198.43 17799.67 35195.58 35498.56 36497.71 383
LFMVS98.46 27198.19 28199.26 24899.24 31298.52 27799.62 6396.94 38199.87 4099.31 25799.58 22091.04 35299.81 29198.68 16999.42 30399.45 223
VDD-MVS99.20 16499.11 15799.44 19499.43 26298.98 23599.50 9198.32 36499.80 6399.56 19199.69 15296.99 27499.85 23798.99 13699.73 22199.50 205
VDDNet98.97 21398.82 22399.42 20099.71 14298.81 25299.62 6398.68 34699.81 6099.38 24299.80 8394.25 31899.85 23798.79 15799.32 31699.59 158
v1099.69 4199.69 4199.66 11599.81 7999.39 17299.66 5399.75 10299.60 11499.92 3999.87 4798.75 13099.86 22099.90 2399.99 1699.73 70
VPNet99.46 9499.37 10599.71 9899.82 7199.59 12799.48 9699.70 12999.81 6099.69 13899.58 22097.66 24799.86 22099.17 11699.44 29999.67 94
MVS95.72 35694.63 36198.99 28398.56 37897.98 31799.30 13598.86 33772.71 39597.30 37999.08 33698.34 19199.74 31989.21 38798.33 36999.26 270
v2v48299.50 8299.47 8499.58 15599.78 10499.25 20299.14 18799.58 20199.25 16299.81 8699.62 19598.24 20099.84 25299.83 3099.97 5499.64 121
V4299.56 7299.54 7699.63 13499.79 9799.46 15099.39 11199.59 19199.24 16499.86 6999.70 14698.55 15899.82 27699.79 3599.95 8299.60 151
SD-MVS99.01 20799.30 12298.15 33899.50 23399.40 17098.94 24399.61 17399.22 17099.75 11399.82 7399.54 3995.51 39897.48 26399.87 14399.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.99 30297.68 31298.93 29199.52 22598.04 31097.19 37799.05 33198.32 28098.81 32098.97 35389.89 36999.41 38698.33 18699.05 33699.34 255
MSLP-MVS++99.05 19799.09 16698.91 29499.21 31798.36 28998.82 25899.47 25098.85 21898.90 31099.56 23398.78 12599.09 39098.57 17399.68 24199.26 270
APDe-MVScopyleft99.48 8699.36 10899.85 2799.55 21299.81 4099.50 9199.69 13598.99 19999.75 11399.71 13998.79 12399.93 9398.46 17899.85 15599.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVS_3200maxsize99.31 13599.16 14499.74 7899.53 22099.75 6899.27 14799.61 17399.19 17299.57 18499.64 17898.76 12899.90 15797.29 27399.62 25799.56 170
ADS-MVSNet297.78 30797.66 31498.12 34099.14 32895.36 37199.22 16498.75 34396.97 34798.25 35299.64 17890.90 35599.94 7696.51 31999.56 27499.08 315
EI-MVSNet99.38 11699.44 9399.21 25599.58 19098.09 30699.26 14999.46 25399.62 10599.75 11399.67 16798.54 16099.85 23799.15 11999.92 10499.68 88
Regformer8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
CVMVSNet98.61 25198.88 21597.80 34799.58 19093.60 38399.26 14999.64 16199.66 9899.72 12699.67 16793.26 32999.93 9399.30 9799.81 18699.87 28
pmmvs499.13 18399.06 17499.36 22399.57 20099.10 22798.01 33399.25 30698.78 22899.58 18199.44 26998.24 20099.76 31398.74 16399.93 10099.22 278
EU-MVSNet99.39 11499.62 5498.72 31499.88 4596.44 35699.56 8199.85 5199.90 2899.90 4899.85 5698.09 21399.83 26799.58 5299.95 8299.90 20
VNet99.18 17199.06 17499.56 16499.24 31299.36 18199.33 12599.31 29299.67 9499.47 21799.57 22996.48 28799.84 25299.15 11999.30 31899.47 218
test-LLR97.15 32696.95 32997.74 35098.18 38995.02 37497.38 36996.10 38398.00 29697.81 37398.58 37390.04 36799.91 13997.69 25198.78 34998.31 368
TESTMET0.1,196.24 34795.84 34897.41 35698.24 38793.84 38297.38 36995.84 38798.43 26097.81 37398.56 37679.77 39599.89 17497.77 23498.77 35198.52 359
test-mter96.23 34895.73 34997.74 35098.18 38995.02 37497.38 36996.10 38397.90 30597.81 37398.58 37379.12 39899.91 13997.69 25198.78 34998.31 368
VPA-MVSNet99.66 5299.62 5499.79 5099.68 16299.75 6899.62 6399.69 13599.85 4999.80 9099.81 7998.81 11899.91 13999.47 6799.88 13299.70 78
ACMMPR99.23 14999.06 17499.76 6399.74 13399.69 9599.31 13299.59 19198.36 26999.35 24599.38 28298.61 14999.93 9397.43 26699.75 20999.67 94
testgi99.29 13799.26 13399.37 21999.75 12798.81 25298.84 25299.89 3798.38 26799.75 11399.04 34199.36 5799.86 22099.08 13099.25 32599.45 223
test20.0399.55 7599.54 7699.58 15599.79 9799.37 17799.02 22499.89 3799.60 11499.82 7999.62 19598.81 11899.89 17499.43 7199.86 15199.47 218
thres600view796.60 33996.16 34197.93 34399.63 17496.09 36499.18 17297.57 37598.77 23098.72 32997.32 39687.04 37999.72 32488.57 38898.62 36297.98 380
ADS-MVSNet97.72 31297.67 31397.86 34599.14 32894.65 37799.22 16498.86 33796.97 34798.25 35299.64 17890.90 35599.84 25296.51 31999.56 27499.08 315
MP-MVScopyleft99.06 19498.83 22299.76 6399.76 11699.71 8499.32 12799.50 24298.35 27498.97 30099.48 25898.37 18699.92 11595.95 34599.75 20999.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs28.94 36433.33 36615.79 38126.03 4029.81 40696.77 38515.67 40411.55 39923.87 40050.74 40719.03 4048.53 40023.21 39933.07 39729.03 396
thres40096.40 34295.89 34597.92 34499.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36697.98 380
test12329.31 36333.05 36818.08 38025.93 40312.24 40597.53 36310.93 40511.78 39824.21 39950.08 40821.04 4038.60 39923.51 39832.43 39833.39 395
thres20096.09 34995.68 35097.33 35999.48 24396.22 36198.53 29197.57 37598.06 29598.37 34996.73 40186.84 38399.61 36986.99 39498.57 36396.16 392
test0.0.03 197.37 32296.91 33298.74 31397.72 39297.57 33097.60 35997.36 38098.00 29699.21 27598.02 38790.04 36799.79 30098.37 18295.89 39398.86 341
pmmvs398.08 29797.80 30698.91 29499.41 26897.69 32897.87 34899.66 14695.87 36399.50 21299.51 24890.35 36399.97 3298.55 17499.47 29699.08 315
EMVS96.96 33197.28 32095.99 37698.76 37291.03 39595.26 39198.61 35099.34 14998.92 30798.88 36293.79 32399.66 35592.87 38099.05 33697.30 388
E-PMN97.14 32897.43 31696.27 37398.79 36891.62 39295.54 39099.01 33499.44 13498.88 31199.12 33192.78 33599.68 34694.30 37299.03 33897.50 384
PGM-MVS99.20 16499.01 19099.77 5699.75 12799.71 8499.16 18399.72 12097.99 29899.42 22999.60 21298.81 11899.93 9396.91 29699.74 21699.66 103
LCM-MVSNet-Re99.28 13899.15 14799.67 10899.33 29399.76 6299.34 12299.97 1898.93 20899.91 4299.79 9398.68 13899.93 9396.80 30399.56 27499.30 265
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 20100.00 199.87 28
MCST-MVS99.02 20398.81 22499.65 12099.58 19099.49 14498.58 28199.07 32898.40 26599.04 29799.25 31298.51 16999.80 29797.31 27299.51 28999.65 111
mvs_anonymous99.28 13899.39 10098.94 28899.19 32297.81 32299.02 22499.55 21499.78 6899.85 7199.80 8398.24 20099.86 22099.57 5499.50 29299.15 295
MVS_Test99.28 13899.31 11799.19 25899.35 28098.79 25599.36 12099.49 24699.17 17899.21 27599.67 16798.78 12599.66 35599.09 12999.66 25099.10 306
MDA-MVSNet-bldmvs99.06 19499.05 17899.07 27799.80 8597.83 32198.89 24699.72 12099.29 15499.63 15899.70 14696.47 28899.89 17498.17 20299.82 17799.50 205
CDPH-MVS98.56 25998.20 27899.61 14699.50 23399.46 15098.32 30699.41 26495.22 37299.21 27599.10 33598.34 19199.82 27695.09 36499.66 25099.56 170
test1299.54 17299.29 30299.33 18799.16 32298.43 34797.54 25099.82 27699.47 29699.48 214
casdiffmvspermissive99.63 5899.61 5899.67 10899.79 9799.59 12799.13 19399.85 5199.79 6699.76 10699.72 13199.33 5999.82 27699.21 10799.94 9399.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
diffmvspermissive99.34 12999.32 11599.39 21399.67 16798.77 25798.57 28599.81 7399.61 10899.48 21599.41 27298.47 17199.86 22098.97 14099.90 11499.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline296.83 33396.28 33998.46 32599.09 34096.91 34998.83 25493.87 39597.23 33996.23 39098.36 38288.12 37499.90 15796.68 30998.14 37698.57 358
baseline197.73 30997.33 31998.96 28699.30 30097.73 32699.40 10998.42 35999.33 15199.46 22199.21 32191.18 35099.82 27698.35 18491.26 39599.32 259
YYNet198.95 21998.99 19898.84 30499.64 17297.14 34498.22 31399.32 28898.92 21099.59 17999.66 17197.40 25599.83 26798.27 19099.90 11499.55 173
PMMVS299.48 8699.45 9099.57 16199.76 11698.99 23498.09 32599.90 3598.95 20499.78 9999.58 22099.57 3699.93 9399.48 6699.95 8299.79 52
MDA-MVSNet_test_wron98.95 21998.99 19898.85 30299.64 17297.16 34298.23 31299.33 28698.93 20899.56 19199.66 17197.39 25799.83 26798.29 18899.88 13299.55 173
tpmvs97.39 32197.69 31196.52 37098.41 38291.76 39099.30 13598.94 33697.74 31497.85 37199.55 24092.40 34199.73 32296.25 33198.73 35798.06 379
PM-MVS99.36 12299.29 12799.58 15599.83 6499.66 10298.95 24199.86 4698.85 21899.81 8699.73 12498.40 18499.92 11598.36 18399.83 16899.17 291
HQP_MVS98.90 22498.68 23499.55 16799.58 19099.24 20698.80 26299.54 22098.94 20599.14 28599.25 31297.24 26299.82 27695.84 34899.78 20199.60 151
plane_prior799.58 19099.38 174
plane_prior699.47 24999.26 19997.24 262
plane_prior599.54 22099.82 27695.84 34899.78 20199.60 151
plane_prior499.25 312
plane_prior399.31 19098.36 26999.14 285
plane_prior298.80 26298.94 205
plane_prior199.51 227
plane_prior99.24 20698.42 30197.87 30999.71 230
PS-CasMVS99.66 5299.58 6799.89 1199.80 8599.85 1999.66 5399.73 11199.62 10599.84 7499.71 13998.62 14799.96 5399.30 9799.96 6999.86 30
UniMVSNet_NR-MVSNet99.37 11999.25 13599.72 9399.47 24999.56 13498.97 23899.61 17399.43 13999.67 14799.28 30597.85 23299.95 6299.17 11699.81 18699.65 111
PEN-MVS99.66 5299.59 6399.89 1199.83 6499.87 1599.66 5399.73 11199.70 8599.84 7499.73 12498.56 15799.96 5399.29 10099.94 9399.83 38
TransMVSNet (Re)99.78 2599.77 3199.81 3999.91 3299.85 1999.75 2299.86 4699.70 8599.91 4299.89 3499.60 3399.87 20299.59 4999.74 21699.71 75
DTE-MVSNet99.68 4499.61 5899.88 1799.80 8599.87 1599.67 4999.71 12399.72 7899.84 7499.78 10198.67 14199.97 3299.30 9799.95 8299.80 45
DU-MVS99.33 13299.21 13999.71 9899.43 26299.56 13498.83 25499.53 22999.38 14599.67 14799.36 28897.67 24399.95 6299.17 11699.81 18699.63 126
UniMVSNet (Re)99.37 11999.26 13399.68 10599.51 22799.58 13198.98 23799.60 18599.43 13999.70 13599.36 28897.70 23999.88 18899.20 11099.87 14399.59 158
CP-MVSNet99.54 7799.43 9599.87 2199.76 11699.82 3599.57 7999.61 17399.54 11899.80 9099.64 17897.79 23699.95 6299.21 10799.94 9399.84 34
WR-MVS_H99.61 6699.53 8099.87 2199.80 8599.83 2999.67 4999.75 10299.58 11799.85 7199.69 15298.18 20999.94 7699.28 10299.95 8299.83 38
WR-MVS99.11 18898.93 20699.66 11599.30 30099.42 16498.42 30199.37 27999.04 19699.57 18499.20 32396.89 27699.86 22098.66 17099.87 14399.70 78
NR-MVSNet99.40 11099.31 11799.68 10599.43 26299.55 13799.73 2799.50 24299.46 13199.88 6099.36 28897.54 25099.87 20298.97 14099.87 14399.63 126
Baseline_NR-MVSNet99.49 8499.37 10599.82 3699.91 3299.84 2498.83 25499.86 4699.68 9099.65 15399.88 4297.67 24399.87 20299.03 13399.86 15199.76 65
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19099.64 11099.30 13599.63 16399.61 10899.71 13199.56 23398.76 12899.96 5399.14 12599.92 10499.68 88
TSAR-MVS + GP.99.12 18599.04 18399.38 21699.34 28899.16 21798.15 31799.29 29698.18 28999.63 15899.62 19599.18 7699.68 34698.20 19699.74 21699.30 265
n20.00 406
nn0.00 406
mPP-MVS99.19 16799.00 19399.76 6399.76 11699.68 9899.38 11399.54 22098.34 27899.01 29899.50 25198.53 16499.93 9397.18 28699.78 20199.66 103
door-mid99.83 59
XVG-OURS-SEG-HR99.16 17798.99 19899.66 11599.84 6099.64 11098.25 31199.73 11198.39 26699.63 15899.43 27099.70 2499.90 15797.34 27098.64 36199.44 228
mvsmamba99.74 3399.70 3799.85 2799.93 2699.83 2999.76 1999.81 7399.96 1699.91 4299.81 7998.60 15199.94 7699.58 5299.98 3999.77 59
MVSFormer99.41 10899.44 9399.31 23699.57 20098.40 28499.77 1599.80 7799.73 7499.63 15899.30 30198.02 21999.98 1999.43 7199.69 23699.55 173
jason99.16 17799.11 15799.32 23399.75 12798.44 28198.26 31099.39 27498.70 23799.74 12199.30 30198.54 16099.97 3298.48 17799.82 17799.55 173
jason: jason.
lupinMVS98.96 21698.87 21699.24 25399.57 20098.40 28498.12 32199.18 32098.28 28299.63 15899.13 32798.02 21999.97 3298.22 19499.69 23699.35 252
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7799.73 7499.97 1999.92 2199.77 1999.98 1999.43 71100.00 199.90 20
HPM-MVS_fast99.43 10199.30 12299.80 4499.83 6499.81 4099.52 8699.70 12998.35 27499.51 21099.50 25199.31 6099.88 18898.18 20099.84 16099.69 82
K. test v398.87 22998.60 23899.69 10399.93 2699.46 15099.74 2494.97 39099.78 6899.88 6099.88 4293.66 32699.97 3299.61 4799.95 8299.64 121
lessismore_v099.64 12799.86 5399.38 17490.66 39899.89 5299.83 6694.56 31699.97 3299.56 5599.92 10499.57 168
SixPastTwentyTwo99.42 10499.30 12299.76 6399.92 3199.67 10099.70 3599.14 32499.65 10099.89 5299.90 2996.20 29999.94 7699.42 7699.92 10499.67 94
OurMVSNet-221017-099.75 3099.71 3699.84 3099.96 799.83 2999.83 699.85 5199.80 6399.93 3599.93 1798.54 16099.93 9399.59 4999.98 3999.76 65
HPM-MVScopyleft99.25 14599.07 17299.78 5399.81 7999.75 6899.61 6899.67 14297.72 31599.35 24599.25 31299.23 7199.92 11597.21 28499.82 17799.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS99.21 16299.06 17499.65 12099.82 7199.62 11697.87 34899.74 10798.36 26999.66 15199.68 16399.71 2299.90 15796.84 30299.88 13299.43 234
XVG-ACMP-BASELINE99.23 14999.10 16599.63 13499.82 7199.58 13198.83 25499.72 12098.36 26999.60 17699.71 13998.92 10899.91 13997.08 28999.84 16099.40 239
casdiffmvs_mvgpermissive99.68 4499.68 4499.69 10399.81 7999.59 12799.29 14299.90 3599.71 8099.79 9599.73 12499.54 3999.84 25299.36 8499.96 6999.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LPG-MVS_test99.22 15799.05 17899.74 7899.82 7199.63 11499.16 18399.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
LGP-MVS_train99.74 7899.82 7199.63 11499.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
baseline99.63 5899.62 5499.66 11599.80 8599.62 11699.44 10599.80 7799.71 8099.72 12699.69 15299.15 7999.83 26799.32 9399.94 9399.53 187
test1199.29 296
door99.77 92
EPNet_dtu97.62 31497.79 30897.11 36496.67 39692.31 38898.51 29398.04 36799.24 16495.77 39199.47 26293.78 32499.66 35598.98 13899.62 25799.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.39 11499.30 12299.65 12099.88 4599.25 20298.78 26699.88 4198.66 23999.96 2399.79 9397.45 25399.93 9399.34 8899.99 1699.78 55
EPNet98.13 29497.77 30999.18 26094.57 39997.99 31199.24 15797.96 36999.74 7397.29 38099.62 19593.13 33199.97 3298.59 17299.83 16899.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS98.94 240
HQP-NCC99.31 29697.98 33797.45 32898.15 356
ACMP_Plane99.31 29697.98 33797.45 32898.15 356
APD-MVScopyleft98.87 22998.59 24099.71 9899.50 23399.62 11699.01 22699.57 20396.80 35399.54 19899.63 18898.29 19699.91 13995.24 36099.71 23099.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS94.73 366
HQP4-MVS98.15 35699.70 33099.53 187
HQP3-MVS99.37 27999.67 247
HQP2-MVS96.67 281
CNVR-MVS98.99 21298.80 22699.56 16499.25 31099.43 16198.54 29099.27 30098.58 24798.80 32299.43 27098.53 16499.70 33097.22 28399.59 27199.54 181
NCCC98.82 23398.57 24499.58 15599.21 31799.31 19098.61 27599.25 30698.65 24098.43 34799.26 31097.86 23099.81 29196.55 31699.27 32499.61 147
114514_t98.49 26898.11 28599.64 12799.73 13699.58 13199.24 15799.76 9789.94 38999.42 22999.56 23397.76 23899.86 22097.74 23999.82 17799.47 218
CP-MVS99.23 14999.05 17899.75 7399.66 16899.66 10299.38 11399.62 16698.38 26799.06 29699.27 30798.79 12399.94 7697.51 26299.82 17799.66 103
DSMNet-mixed99.48 8699.65 4898.95 28799.71 14297.27 33999.50 9199.82 6499.59 11699.41 23599.85 5699.62 30100.00 199.53 6199.89 12399.59 158
tpm296.35 34496.22 34096.73 36898.88 36191.75 39199.21 16698.51 35593.27 38397.89 36899.21 32184.83 38899.70 33096.04 33898.18 37598.75 350
NP-MVS99.40 26999.13 22098.83 364
EG-PatchMatch MVS99.57 6999.56 7599.62 14399.77 11299.33 18799.26 14999.76 9799.32 15299.80 9099.78 10199.29 6299.87 20299.15 11999.91 11399.66 103
tpm cat196.78 33496.98 32896.16 37598.85 36290.59 39999.08 21099.32 28892.37 38497.73 37799.46 26591.15 35199.69 33696.07 33798.80 34898.21 374
SteuartSystems-ACMMP99.30 13699.14 14899.76 6399.87 5099.66 10299.18 17299.60 18598.55 24999.57 18499.67 16799.03 9799.94 7697.01 29199.80 19199.69 82
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.71 33796.79 33696.46 37298.90 35690.71 39899.41 10898.68 34694.69 38098.14 36099.34 29686.32 38699.80 29797.60 25698.07 37898.88 339
CR-MVSNet98.35 28398.20 27898.83 30699.05 34398.12 30299.30 13599.67 14297.39 33299.16 28199.79 9391.87 34499.91 13998.78 16098.77 35198.44 365
JIA-IIPM98.06 29897.92 30198.50 32398.59 37797.02 34698.80 26298.51 35599.88 3997.89 36899.87 4791.89 34399.90 15798.16 20397.68 38398.59 355
Patchmtry98.78 23698.54 24899.49 18098.89 35999.19 21599.32 12799.67 14299.65 10099.72 12699.79 9391.87 34499.95 6298.00 21399.97 5499.33 256
PatchT98.45 27398.32 26998.83 30698.94 35498.29 29199.24 15798.82 34099.84 5299.08 29299.76 11291.37 34799.94 7698.82 15399.00 34098.26 371
tpmrst97.73 30998.07 28796.73 36898.71 37492.00 38999.10 20298.86 33798.52 25398.92 30799.54 24291.90 34299.82 27698.02 20999.03 33898.37 367
BH-w/o97.20 32597.01 32797.76 34899.08 34195.69 36898.03 33298.52 35495.76 36697.96 36598.02 38795.62 30699.47 38392.82 38197.25 38698.12 378
tpm97.15 32696.95 32997.75 34998.91 35594.24 37999.32 12797.96 36997.71 31698.29 35099.32 29786.72 38499.92 11598.10 20796.24 39299.09 310
DELS-MVS99.34 12999.30 12299.48 18499.51 22799.36 18198.12 32199.53 22999.36 14899.41 23599.61 20499.22 7299.87 20299.21 10799.68 24199.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.22 29198.09 28698.58 32199.38 27397.24 34098.55 28798.98 33597.81 31399.20 28098.76 36897.01 27399.65 36194.83 36598.33 36998.86 341
RPMNet98.60 25398.53 25098.83 30699.05 34398.12 30299.30 13599.62 16699.86 4499.16 28199.74 12092.53 33899.92 11598.75 16298.77 35198.44 365
MVSTER98.47 27098.22 27699.24 25399.06 34298.35 29099.08 21099.46 25399.27 15899.75 11399.66 17188.61 37399.85 23799.14 12599.92 10499.52 198
CPTT-MVS98.74 24198.44 25699.64 12799.61 17999.38 17499.18 17299.55 21496.49 35599.27 26499.37 28497.11 27099.92 11595.74 35199.67 24799.62 137
GBi-Net99.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
PVSNet_Blended_VisFu99.40 11099.38 10299.44 19499.90 3898.66 26698.94 24399.91 3297.97 30099.79 9599.73 12499.05 9599.97 3299.15 11999.99 1699.68 88
PVSNet_BlendedMVS99.03 20199.01 19099.09 27399.54 21497.99 31198.58 28199.82 6497.62 31999.34 24899.71 13998.52 16799.77 31197.98 21499.97 5499.52 198
UnsupCasMVSNet_eth98.83 23298.57 24499.59 15199.68 16299.45 15598.99 23499.67 14299.48 12499.55 19699.36 28894.92 31099.86 22098.95 14696.57 38999.45 223
UnsupCasMVSNet_bld98.55 26098.27 27399.40 20999.56 21199.37 17797.97 34099.68 13897.49 32799.08 29299.35 29395.41 30999.82 27697.70 24598.19 37499.01 329
PVSNet_Blended98.70 24698.59 24099.02 28199.54 21497.99 31197.58 36099.82 6495.70 36799.34 24898.98 35198.52 16799.77 31197.98 21499.83 16899.30 265
FMVSNet597.80 30697.25 32299.42 20098.83 36398.97 23799.38 11399.80 7798.87 21699.25 26699.69 15280.60 39499.91 13998.96 14299.90 11499.38 243
test199.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
new_pmnet98.88 22898.89 21498.84 30499.70 15097.62 32998.15 31799.50 24297.98 29999.62 16799.54 24298.15 21099.94 7697.55 25899.84 16098.95 333
FMVSNet398.80 23598.63 23799.32 23399.13 33098.72 26199.10 20299.48 24799.23 16699.62 16799.64 17892.57 33699.86 22098.96 14299.90 11499.39 241
dp96.86 33297.07 32596.24 37498.68 37690.30 40099.19 17198.38 36297.35 33498.23 35499.59 21787.23 37799.82 27696.27 33098.73 35798.59 355
FMVSNet299.35 12499.28 12999.55 16799.49 23899.35 18499.45 10399.57 20399.44 13499.70 13599.74 12097.21 26499.87 20299.03 13399.94 9399.44 228
FMVSNet199.66 5299.63 5399.73 8799.78 10499.77 5499.68 4599.70 12999.67 9499.82 7999.83 6698.98 10299.90 15799.24 10499.97 5499.53 187
N_pmnet98.73 24398.53 25099.35 22599.72 13998.67 26398.34 30494.65 39198.35 27499.79 9599.68 16398.03 21899.93 9398.28 18999.92 10499.44 228
cascas96.99 32996.82 33597.48 35397.57 39595.64 36996.43 38899.56 20891.75 38597.13 38497.61 39495.58 30798.63 39496.68 30999.11 33398.18 377
BH-RMVSNet98.41 27698.14 28499.21 25599.21 31798.47 27898.60 27798.26 36598.35 27498.93 30499.31 29997.20 26799.66 35594.32 37199.10 33499.51 200
UGNet99.38 11699.34 11099.49 18098.90 35698.90 24699.70 3599.35 28399.86 4498.57 34199.81 7998.50 17099.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.59 25698.37 26399.26 24899.43 26298.40 28498.74 26999.13 32698.10 29199.21 27599.24 31794.82 31299.90 15797.86 22798.77 35199.49 210
XXY-MVS99.71 3799.67 4599.81 3999.89 4099.72 8299.59 7499.82 6499.39 14499.82 7999.84 6299.38 5299.91 13999.38 7999.93 10099.80 45
EC-MVSNet99.69 4199.69 4199.68 10599.71 14299.91 499.76 1999.96 2399.86 4499.51 21099.39 28099.57 3699.93 9399.64 4699.86 15199.20 284
sss98.90 22498.77 22899.27 24599.48 24398.44 28198.72 27199.32 28897.94 30499.37 24399.35 29396.31 29599.91 13998.85 15099.63 25699.47 218
Test_1112_low_res98.95 21998.73 22999.63 13499.68 16299.15 21998.09 32599.80 7797.14 34499.46 22199.40 27696.11 30099.89 17499.01 13599.84 16099.84 34
1112_ss99.05 19798.84 22099.67 10899.66 16899.29 19398.52 29299.82 6497.65 31899.43 22799.16 32596.42 29099.91 13999.07 13199.84 16099.80 45
ab-mvs-re8.26 37511.02 3780.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.16 3250.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs99.33 13299.28 12999.47 18699.57 20099.39 17299.78 1299.43 26198.87 21699.57 18499.82 7398.06 21699.87 20298.69 16899.73 22199.15 295
TR-MVS97.44 32097.15 32498.32 33298.53 37997.46 33498.47 29697.91 37196.85 35098.21 35598.51 37996.42 29099.51 38192.16 38297.29 38597.98 380
MDTV_nov1_ep13_2view91.44 39499.14 18797.37 33399.21 27591.78 34696.75 30599.03 324
MDTV_nov1_ep1397.73 31098.70 37590.83 39699.15 18598.02 36898.51 25498.82 31999.61 20490.98 35399.66 35596.89 29898.92 344
MIMVSNet199.66 5299.62 5499.80 4499.94 1999.87 1599.69 4299.77 9299.78 6899.93 3599.89 3497.94 22599.92 11599.65 4499.98 3999.62 137
MIMVSNet98.43 27498.20 27899.11 27099.53 22098.38 28899.58 7698.61 35098.96 20399.33 25099.76 11290.92 35499.81 29197.38 26999.76 20799.15 295
IterMVS-LS99.41 10899.47 8499.25 25199.81 7998.09 30698.85 25199.76 9799.62 10599.83 7899.64 17898.54 16099.97 3299.15 11999.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.22 15799.13 15099.50 17999.35 28099.11 22298.96 24099.54 22099.46 13199.61 17399.70 14696.31 29599.83 26799.34 8899.88 13299.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.94 93
IterMVS98.97 21399.16 14498.42 32699.74 13395.64 36998.06 33099.83 5999.83 5599.85 7199.74 12096.10 30199.99 899.27 103100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.50 26698.23 27499.31 23699.49 23899.46 15098.56 28699.63 16394.86 37898.85 31699.37 28497.81 23499.59 37196.08 33699.44 29998.88 339
MVS_111021_LR99.13 18399.03 18599.42 20099.58 19099.32 18997.91 34699.73 11198.68 23899.31 25799.48 25899.09 8799.66 35597.70 24599.77 20599.29 268
DP-MVS99.48 8699.39 10099.74 7899.57 20099.62 11699.29 14299.61 17399.87 4099.74 12199.76 11298.69 13799.87 20298.20 19699.80 19199.75 68
ACMMP++99.79 196
HQP-MVS98.36 28098.02 29099.39 21399.31 29698.94 24097.98 33799.37 27997.45 32898.15 35698.83 36496.67 28199.70 33094.73 36699.67 24799.53 187
QAPM98.40 27897.99 29199.65 12099.39 27099.47 14699.67 4999.52 23491.70 38698.78 32599.80 8398.55 15899.95 6294.71 36899.75 20999.53 187
Vis-MVSNetpermissive99.75 3099.74 3599.79 5099.88 4599.66 10299.69 4299.92 2999.67 9499.77 10499.75 11799.61 3199.98 1999.35 8799.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet97.86 30398.22 27696.76 36699.28 30591.53 39398.38 30392.60 39699.13 18699.31 25799.96 1297.18 26899.68 34698.34 18599.83 16899.07 320
IS-MVSNet99.03 20198.85 21899.55 16799.80 8599.25 20299.73 2799.15 32399.37 14699.61 17399.71 13994.73 31499.81 29197.70 24599.88 13299.58 163
HyFIR lowres test98.91 22298.64 23599.73 8799.85 5799.47 14698.07 32899.83 5998.64 24199.89 5299.60 21292.57 336100.00 199.33 9199.97 5499.72 72
EPMVS96.53 34096.32 33897.17 36398.18 38992.97 38699.39 11189.95 40098.21 28698.61 33799.59 21786.69 38599.72 32496.99 29299.23 32998.81 345
PAPM_NR98.36 28098.04 28899.33 22999.48 24398.93 24398.79 26599.28 29997.54 32398.56 34298.57 37597.12 26999.69 33694.09 37598.90 34699.38 243
TAMVS99.49 8499.45 9099.63 13499.48 24399.42 16499.45 10399.57 20399.66 9899.78 9999.83 6697.85 23299.86 22099.44 7099.96 6999.61 147
PAPR97.56 31797.07 32599.04 28098.80 36798.11 30497.63 35799.25 30694.56 38198.02 36498.25 38597.43 25499.68 34690.90 38698.74 35599.33 256
RPSCF99.18 17199.02 18799.64 12799.83 6499.85 1999.44 10599.82 6498.33 27999.50 21299.78 10197.90 22799.65 36196.78 30499.83 16899.44 228
Vis-MVSNet (Re-imp)98.77 23798.58 24399.34 22699.78 10498.88 24899.61 6899.56 20899.11 19099.24 26999.56 23393.00 33499.78 30397.43 26699.89 12399.35 252
test_040299.22 15799.14 14899.45 19199.79 9799.43 16199.28 14499.68 13899.54 11899.40 24099.56 23399.07 9299.82 27696.01 33999.96 6999.11 304
MVS_111021_HR99.12 18599.02 18799.40 20999.50 23399.11 22297.92 34499.71 12398.76 23399.08 29299.47 26299.17 7799.54 37697.85 22999.76 20799.54 181
CSCG99.37 11999.29 12799.60 14999.71 14299.46 15099.43 10799.85 5198.79 22699.41 23599.60 21298.92 10899.92 11598.02 20999.92 10499.43 234
PatchMatch-RL98.68 24898.47 25399.30 23999.44 25899.28 19598.14 31999.54 22097.12 34599.11 28999.25 31297.80 23599.70 33096.51 31999.30 31898.93 335
API-MVS98.38 27998.39 26198.35 32998.83 36399.26 19999.14 18799.18 32098.59 24698.66 33498.78 36798.61 14999.57 37394.14 37499.56 27496.21 391
Test By Simon98.41 180
TDRefinement99.72 3499.70 3799.77 5699.90 3899.85 1999.86 599.92 2999.69 8899.78 9999.92 2199.37 5499.88 18898.93 14899.95 8299.60 151
USDC98.96 21698.93 20699.05 27999.54 21497.99 31197.07 38199.80 7798.21 28699.75 11399.77 10898.43 17799.64 36397.90 22199.88 13299.51 200
EPP-MVSNet99.17 17599.00 19399.66 11599.80 8599.43 16199.70 3599.24 30999.48 12499.56 19199.77 10894.89 31199.93 9398.72 16599.89 12399.63 126
PMMVS98.49 26898.29 27299.11 27098.96 35398.42 28397.54 36199.32 28897.53 32498.47 34698.15 38697.88 22999.82 27697.46 26499.24 32799.09 310
PAPM95.61 35894.71 36098.31 33499.12 33296.63 35396.66 38798.46 35890.77 38896.25 38898.68 37293.01 33399.69 33681.60 39797.86 38298.62 353
ACMMPcopyleft99.25 14599.08 16899.74 7899.79 9799.68 9899.50 9199.65 15598.07 29499.52 20599.69 15298.57 15599.92 11597.18 28699.79 19699.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA98.57 25898.34 26799.28 24299.18 32499.10 22798.34 30499.41 26498.48 25898.52 34398.98 35197.05 27299.78 30395.59 35399.50 29298.96 331
PatchmatchNetpermissive97.65 31397.80 30697.18 36298.82 36692.49 38799.17 17798.39 36198.12 29098.79 32399.58 22090.71 35999.89 17497.23 28299.41 30499.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 18898.95 20599.59 15199.13 33099.59 12799.17 17799.65 15597.88 30899.25 26699.46 26598.97 10499.80 29797.26 27899.82 17799.37 246
F-COLMAP98.74 24198.45 25599.62 14399.57 20099.47 14698.84 25299.65 15596.31 35998.93 30499.19 32497.68 24299.87 20296.52 31899.37 30999.53 187
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 28100.00 199.97 1199.61 3199.97 3299.75 37100.00 199.84 34
wuyk23d97.58 31699.13 15092.93 37899.69 15499.49 14499.52 8699.77 9297.97 30099.96 2399.79 9399.84 1299.94 7695.85 34799.82 17779.36 394
OMC-MVS98.90 22498.72 23099.44 19499.39 27099.42 16498.58 28199.64 16197.31 33699.44 22399.62 19598.59 15299.69 33696.17 33599.79 19699.22 278
MG-MVS98.52 26398.39 26198.94 28899.15 32797.39 33798.18 31499.21 31698.89 21599.23 27099.63 18897.37 25899.74 31994.22 37399.61 26499.69 82
AdaColmapbinary98.60 25398.35 26699.38 21699.12 33299.22 20998.67 27499.42 26397.84 31298.81 32099.27 30797.32 26099.81 29195.14 36299.53 28599.10 306
uanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
ITE_SJBPF99.38 21699.63 17499.44 15799.73 11198.56 24899.33 25099.53 24498.88 11499.68 34696.01 33999.65 25299.02 328
DeepMVS_CXcopyleft97.98 34199.69 15496.95 34799.26 30375.51 39495.74 39298.28 38496.47 28899.62 36591.23 38597.89 38097.38 386
TinyColmap98.97 21398.93 20699.07 27799.46 25398.19 29797.75 35299.75 10298.79 22699.54 19899.70 14698.97 10499.62 36596.63 31499.83 16899.41 238
MAR-MVS98.24 28997.92 30199.19 25898.78 37099.65 10799.17 17799.14 32495.36 37098.04 36398.81 36697.47 25299.72 32495.47 35699.06 33598.21 374
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS99.01 20798.92 21099.27 24599.71 14299.28 19598.59 28099.77 9298.32 28099.39 24199.41 27298.62 14799.84 25296.62 31599.84 16098.69 351
MSDG99.08 19298.98 20199.37 21999.60 18199.13 22097.54 36199.74 10798.84 22199.53 20399.55 24099.10 8599.79 30097.07 29099.86 15199.18 289
LS3D99.24 14899.11 15799.61 14698.38 38399.79 4699.57 7999.68 13899.61 10899.15 28399.71 13998.70 13699.91 13997.54 25999.68 24199.13 303
CLD-MVS98.76 23898.57 24499.33 22999.57 20098.97 23797.53 36399.55 21496.41 35699.27 26499.13 32799.07 9299.78 30396.73 30799.89 12399.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS96.32 34595.50 35298.79 31099.60 18198.17 30098.46 30098.80 34197.16 34396.28 38799.63 18882.19 39199.09 39088.45 38998.89 34799.10 306
Gipumacopyleft99.57 6999.59 6399.49 18099.98 399.71 8499.72 3099.84 5799.81 6099.94 3299.78 10198.91 11099.71 32898.41 18099.95 8299.05 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015