This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1399.91 2099.90 599.96 199.92 999.90 1299.97 699.87 3499.81 599.95 4799.54 3499.99 1299.80 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator99.15 299.43 7599.36 8499.65 10999.39 25199.42 15599.70 3499.56 18799.23 14499.35 22499.80 6499.17 5499.95 4798.21 17199.84 13799.59 139
3Dnovator+98.92 399.35 9999.24 11399.67 9799.35 26199.47 13799.62 6099.50 22599.44 11499.12 26899.78 7798.77 11199.94 6297.87 20299.72 21099.62 116
DeepC-MVS98.90 499.62 4299.61 3899.67 9799.72 11699.44 14899.24 14199.71 9899.27 13699.93 1599.90 2399.70 1199.93 7898.99 11099.99 1299.64 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast98.47 599.23 12799.12 13299.56 15399.28 28899.22 20398.99 21199.40 25999.08 16899.58 15799.64 15298.90 9199.83 25197.44 24199.75 18999.63 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.42 699.18 15099.02 16599.67 9799.22 29799.75 6197.25 35799.47 23698.72 21399.66 12599.70 11999.29 4199.63 35098.07 18599.81 16499.62 116
ACMH98.42 699.59 4699.54 5399.72 8499.86 3699.62 10799.56 7799.79 5898.77 20899.80 6699.85 4599.64 1399.85 22398.70 14099.89 10399.70 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+98.40 899.50 5999.43 7199.71 8899.86 3699.76 5799.32 11499.77 6699.53 9899.77 7999.76 8899.26 4799.78 28897.77 21099.88 11299.60 130
HY-MVS98.23 998.21 27997.95 28198.99 26899.03 32998.24 28399.61 6598.72 33396.81 33198.73 30999.51 22794.06 30499.86 20596.91 27398.20 35498.86 324
OpenMVScopyleft98.12 1098.23 27797.89 29199.26 23699.19 30499.26 19099.65 5799.69 11091.33 36998.14 34399.77 8498.28 17899.96 3795.41 33799.55 26398.58 338
ACMM98.09 1199.46 7099.38 7899.72 8499.80 6399.69 8799.13 17899.65 13298.99 17799.64 13199.72 10599.39 2799.86 20598.23 16999.81 16499.60 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.06 1299.45 7299.37 8199.70 9299.83 4499.70 8399.38 10099.78 6399.53 9899.67 12199.78 7799.19 5299.86 20597.32 24799.87 12199.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS97.92 1398.03 28597.55 30199.46 18299.47 22899.44 14898.50 27299.62 14386.79 37299.07 27599.26 29498.26 18099.62 35197.28 25199.73 20499.31 249
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP97.51 1499.05 17798.84 20099.67 9799.78 8099.55 12798.88 22399.66 12297.11 32499.47 19399.60 18999.07 7099.89 15896.18 31299.85 13299.58 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet97.47 1598.42 26198.44 23898.35 31299.46 23396.26 34196.70 36899.34 27597.68 29499.00 27999.13 31297.40 24299.72 30997.59 23399.68 22399.08 298
PLCcopyleft97.35 1698.36 26697.99 27799.48 17799.32 27899.24 19998.50 27299.51 22195.19 35498.58 32098.96 34196.95 26399.83 25195.63 33199.25 31199.37 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14698.87 22699.48 23286.54 37499.44 19999.74 9597.34 24799.86 20591.61 36499.28 30797.37 369
PCF-MVS96.03 1896.73 32195.86 33299.33 22099.44 23899.16 21296.87 36699.44 24586.58 37398.95 28299.40 25794.38 30299.88 17387.93 37299.80 16998.95 316
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25996.18 34197.37 36297.73 37695.73 29099.58 35895.49 33481.40 37899.36 238
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34295.37 37697.41 37976.17 38499.96 3797.54 23595.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft92.94 2198.82 21598.81 20498.85 28699.84 4097.99 29999.20 15199.47 23699.71 5799.42 20599.82 5898.09 19599.47 36793.88 35999.85 13299.07 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13997.55 31697.94 32595.60 37199.37 12490.68 37998.70 35796.56 26998.61 37786.94 37799.55 26398.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary77.52 2398.50 25198.19 26599.41 20198.33 36899.56 12499.01 20499.59 17095.44 34999.57 16099.80 6495.64 29199.46 36996.47 30099.92 8499.21 266
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
iter_conf_final98.75 22298.54 23099.40 20299.33 27698.75 25499.26 13499.59 17099.80 4499.76 8199.58 19790.17 34999.92 9899.37 5799.97 3899.54 164
bld_raw_dy_0_6499.70 2299.65 2999.85 2199.95 1099.77 4999.66 5199.71 9899.95 599.91 2299.77 8498.35 170100.00 199.54 3499.99 1299.79 32
test_low_dy_conf_00199.75 1699.70 1899.90 599.94 1199.85 1599.74 2299.54 19999.88 2299.90 2799.89 2798.84 9799.95 4799.59 2499.98 2699.90 4
patch_mono-299.51 5899.46 6599.64 11699.70 12799.11 21799.04 19899.87 2199.71 5799.47 19399.79 7098.24 18199.98 999.38 5499.96 5299.83 19
EGC-MVSNET89.05 34585.52 34899.64 11699.89 2699.78 4699.56 7799.52 21724.19 37949.96 38099.83 5199.15 5699.92 9897.71 21899.85 13299.21 266
test250694.73 34394.59 34595.15 35999.59 16285.90 38499.75 2074.01 38599.89 1799.71 10899.86 4179.00 38399.90 14299.52 3899.99 1299.65 91
test111197.74 29498.16 26896.49 35399.60 15889.86 38299.71 3391.21 37999.89 1799.88 3899.87 3493.73 31099.90 14299.56 3299.99 1299.70 56
ECVR-MVScopyleft97.73 29598.04 27496.78 34799.59 16290.81 37899.72 2990.43 38199.89 1799.86 4699.86 4193.60 31299.89 15899.46 4499.99 1299.65 91
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DVP-MVS++99.38 9199.25 11199.77 4599.03 32999.77 4999.74 2299.61 15099.18 15199.76 8199.61 18099.00 7699.92 9897.72 21699.60 25299.62 116
FOURS199.83 4499.89 899.74 2299.71 9899.69 6499.63 135
MSC_two_6792asdad99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
PC_three_145297.56 29899.68 11699.41 25399.09 6497.09 37896.66 28999.60 25299.62 116
No_MVS99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
test_one_060199.63 15199.76 5799.55 19399.23 14499.31 23599.61 18098.59 134
eth-test20.00 387
eth-test0.00 387
GeoE99.69 2599.66 2799.78 4299.76 9299.76 5799.60 7099.82 4199.46 11199.75 8999.56 21099.63 1499.95 4799.43 4799.88 11299.62 116
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18761.71 37895.39 37599.52 22393.90 30599.94 6298.76 13598.27 35399.62 116
Anonymous2024052199.44 7499.42 7399.49 17399.89 2698.96 23599.62 6099.76 7199.85 3299.82 5699.88 3196.39 27899.97 1999.59 2499.98 2699.55 156
h-mvs3398.61 23598.34 24999.44 18899.60 15898.67 25999.27 13299.44 24599.68 6699.32 23199.49 23592.50 323100.00 199.24 7896.51 37299.65 91
hse-mvs298.52 24998.30 25399.16 25099.29 28598.60 26598.77 24599.02 32199.68 6699.32 23199.04 32692.50 32399.85 22399.24 7897.87 36399.03 307
CL-MVSNet_self_test98.71 22898.56 22999.15 25299.22 29798.66 26197.14 36099.51 22198.09 27199.54 17499.27 29196.87 26599.74 30498.43 15398.96 32599.03 307
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
KD-MVS_self_test99.63 3999.59 4199.76 5299.84 4099.90 599.37 10499.79 5899.83 3899.88 3899.85 4598.42 16199.90 14299.60 2399.73 20499.49 194
AUN-MVS97.82 29097.38 30399.14 25499.27 29098.53 26798.72 25199.02 32198.10 26997.18 36799.03 33089.26 35599.85 22397.94 19597.91 36199.03 307
ZD-MVS99.43 24099.61 11399.43 24996.38 33799.11 26999.07 32197.86 21599.92 9894.04 35699.49 278
test117299.23 12799.05 15699.74 6899.52 20199.75 6199.20 15199.61 15098.97 17999.48 19199.58 19798.41 16299.91 12297.15 26399.55 26399.57 150
SR-MVS-dyc-post99.27 12099.11 13599.73 7899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.41 16299.91 12297.27 25299.61 24999.54 164
RE-MVS-def99.13 12899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.57 13797.27 25299.61 24999.54 164
SED-MVS99.40 8599.28 10499.77 4599.69 13199.82 3399.20 15199.54 19999.13 16399.82 5699.63 16298.91 8899.92 9897.85 20599.70 21599.58 144
IU-MVS99.69 13199.77 4999.22 30497.50 30499.69 11497.75 21499.70 21599.77 39
OPU-MVS99.29 23099.12 31499.44 14899.20 15199.40 25799.00 7698.84 37596.54 29599.60 25299.58 144
test_241102_TWO99.54 19999.13 16399.76 8199.63 16298.32 17699.92 9897.85 20599.69 21899.75 47
test_241102_ONE99.69 13199.82 3399.54 19999.12 16699.82 5699.49 23598.91 8899.52 364
xxxxxxxxxxxxxcwj99.11 16798.96 18299.54 16099.53 19599.25 19498.29 28899.76 7199.07 17099.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
SF-MVS99.10 17198.93 18599.62 13299.58 16799.51 13299.13 17899.65 13297.97 27899.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
ETH3D cwj APD-0.1698.50 25198.16 26899.51 16799.04 32799.39 16298.47 27499.47 23696.70 33498.78 30599.33 27997.62 23699.86 20594.69 34999.38 29399.28 255
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26997.31 31499.41 21399.22 30387.30 35999.37 37197.70 22199.62 24299.08 298
miper_ehance_all_eth98.59 24098.59 22298.59 30398.98 33597.07 32897.49 34899.52 21798.50 23399.52 18199.37 26596.41 27799.71 31397.86 20399.62 24299.00 313
miper_enhance_ethall98.03 28597.94 28598.32 31498.27 36996.43 34096.95 36499.41 25296.37 33899.43 20398.96 34194.74 29899.69 32197.71 21899.62 24298.83 327
ZNCC-MVS99.22 13699.04 16299.77 4599.76 9299.73 7099.28 12999.56 18798.19 26699.14 26599.29 28798.84 9799.92 9897.53 23799.80 16999.64 100
ETH3 D test640097.76 29397.19 30999.50 17099.38 25499.26 19098.34 28399.49 23092.99 36598.54 32399.20 30795.92 28999.82 26191.14 36799.66 23499.40 227
dcpmvs_299.61 4499.64 3299.53 16299.79 7398.82 24999.58 7399.97 299.95 599.96 899.76 8898.44 15899.99 699.34 6199.96 5299.78 34
cl____98.54 24798.41 24198.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.85 30799.78 28897.97 19399.89 10399.17 277
DIV-MVS_self_test98.54 24798.42 24098.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.87 30699.78 28897.97 19399.89 10399.18 275
eth_miper_zixun_eth98.68 23098.71 21198.60 30299.10 32096.84 33497.52 34799.54 19998.94 18499.58 15799.48 23896.25 28299.76 29898.01 18999.93 8099.21 266
9.1498.64 21799.45 23698.81 23799.60 16397.52 30399.28 24199.56 21098.53 14699.83 25195.36 33999.64 239
testtj98.56 24398.17 26799.72 8499.45 23699.60 11598.88 22399.50 22596.88 32799.18 26099.48 23897.08 25999.92 9893.69 36099.38 29399.63 105
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ETH3D-3000-0.198.77 21998.50 23499.59 13999.47 22899.53 12998.77 24599.60 16397.33 31399.23 24899.50 23097.91 21099.83 25195.02 34499.67 23099.41 225
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
save fliter99.53 19599.25 19498.29 28899.38 26899.07 170
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 28192.37 37898.43 36787.06 36199.90 14298.27 16697.56 36698.91 320
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2699.91 299.89 499.71 9899.93 899.95 1199.89 2799.71 999.96 3799.51 3999.97 3899.84 15
EIA-MVS99.12 16399.01 16899.45 18699.36 25999.62 10799.34 10999.79 5898.41 24198.84 29798.89 34898.75 11499.84 24098.15 18099.51 27498.89 321
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_lstm_enhance98.65 23298.60 22098.82 29399.20 30297.33 32297.78 33399.66 12299.01 17699.59 15599.50 23094.62 30099.85 22398.12 18199.90 9499.26 256
ETV-MVS99.18 15099.18 11999.16 25099.34 27199.28 18699.12 18299.79 5899.48 10298.93 28498.55 36399.40 2699.93 7898.51 15099.52 27398.28 351
CS-MVS99.67 3199.70 1899.58 14399.53 19599.84 2299.79 1099.96 699.90 1299.61 14999.41 25399.51 2499.95 4799.66 1899.89 10398.96 314
D2MVS99.22 13699.19 11899.29 23099.69 13198.74 25598.81 23799.41 25298.55 22799.68 11699.69 12598.13 19399.87 18598.82 12999.98 2699.24 259
DVP-MVScopyleft99.32 11099.17 12099.77 4599.69 13199.80 4199.14 17299.31 28299.16 15799.62 14399.61 18098.35 17099.91 12297.88 19999.72 21099.61 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 15199.62 14399.61 18098.58 13699.91 12297.72 21699.80 16999.77 39
test_0728_SECOND99.83 2699.70 12799.79 4399.14 17299.61 15099.92 9897.88 19999.72 21099.77 39
test072699.69 13199.80 4199.24 14199.57 18299.16 15799.73 10299.65 15098.35 170
SR-MVS99.19 14699.00 17199.74 6899.51 20699.72 7499.18 15799.60 16398.85 19799.47 19399.58 19798.38 16799.92 9896.92 27299.54 26999.57 150
DPM-MVS98.28 27297.94 28599.32 22499.36 25999.11 21797.31 35598.78 33196.88 32798.84 29799.11 31897.77 22299.61 35594.03 35799.36 29899.23 262
GST-MVS99.16 15598.96 18299.75 6299.73 11299.73 7099.20 15199.55 19398.22 26399.32 23199.35 27598.65 12799.91 12296.86 27699.74 19799.62 116
test_yl98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
thisisatest053097.45 30596.95 31598.94 27299.68 13997.73 31199.09 19094.19 37698.61 22299.56 16799.30 28484.30 37499.93 7898.27 16699.54 26999.16 279
Anonymous2024052999.42 7899.34 8699.65 10999.53 19599.60 11599.63 5999.39 26299.47 10799.76 8199.78 7798.13 19399.86 20598.70 14099.68 22399.49 194
Anonymous20240521198.75 22298.46 23699.63 12399.34 27199.66 9499.47 8897.65 35899.28 13599.56 16799.50 23093.15 31599.84 24098.62 14599.58 25799.40 227
DCV-MVSNet98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
tttt051797.62 30097.20 30898.90 28499.76 9297.40 32099.48 8694.36 37499.06 17499.70 11199.49 23584.55 37399.94 6298.73 13899.65 23799.36 238
our_test_398.85 21299.09 14498.13 32199.66 14594.90 35797.72 33599.58 18099.07 17099.64 13199.62 17198.19 18999.93 7898.41 15499.95 6199.55 156
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31699.15 26398.86 35085.01 37199.87 18597.10 26599.39 29298.63 333
ppachtmachnet_test98.89 20799.12 13298.20 31999.66 14595.24 35497.63 33999.68 11399.08 16899.78 7499.62 17198.65 12799.88 17398.02 18699.96 5299.48 199
SMA-MVScopyleft99.19 14699.00 17199.73 7899.46 23399.73 7099.13 17899.52 21797.40 30999.57 16099.64 15298.93 8599.83 25197.61 23199.79 17499.63 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.14 286
DPE-MVScopyleft99.14 15998.92 18999.82 2899.57 17799.77 4998.74 24899.60 16398.55 22799.76 8199.69 12598.23 18599.92 9896.39 30399.75 18999.76 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.62 15599.67 9299.55 172
test_part198.63 23398.26 25699.75 6299.40 24999.49 13499.67 4799.68 11399.86 2799.88 3899.86 4186.73 36799.93 7899.34 6199.97 3899.81 25
thres100view90096.39 32796.03 32997.47 33699.63 15195.93 34699.18 15797.57 35998.75 21298.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
tfpnnormal99.43 7599.38 7899.60 13799.87 3499.75 6199.59 7199.78 6399.71 5799.90 2799.69 12598.85 9699.90 14297.25 25799.78 18099.15 281
tfpn200view996.30 33095.89 33097.53 33499.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
c3_l98.72 22798.71 21198.72 29899.12 31497.22 32597.68 33899.56 18798.90 19199.54 17499.48 23896.37 27999.73 30797.88 19999.88 11299.21 266
CHOSEN 280x42098.41 26298.41 24198.40 31099.34 27195.89 34896.94 36599.44 24598.80 20499.25 24499.52 22393.51 31399.98 998.94 12199.98 2699.32 247
CANet99.11 16799.05 15699.28 23298.83 34898.56 26698.71 25399.41 25299.25 14099.23 24899.22 30397.66 23399.94 6299.19 8599.97 3899.33 244
Fast-Effi-MVS+-dtu99.20 14399.12 13299.43 19299.25 29399.69 8799.05 19699.82 4199.50 10098.97 28099.05 32398.98 7999.98 998.20 17299.24 31398.62 334
Effi-MVS+-dtu99.07 17398.92 18999.52 16498.89 34299.78 4699.15 17099.66 12299.34 12798.92 28799.24 30197.69 22699.98 998.11 18299.28 30798.81 328
CANet_DTU98.91 20298.85 19899.09 25998.79 35398.13 29098.18 29599.31 28299.48 10298.86 29599.51 22796.56 26999.95 4799.05 10699.95 6199.19 273
MVS_030498.88 20898.71 21199.39 20698.85 34698.91 24499.45 8999.30 28598.56 22597.26 36599.68 13696.18 28499.96 3799.17 9099.94 7299.29 253
MP-MVS-pluss99.14 15998.92 18999.80 3499.83 4499.83 2798.61 25599.63 14096.84 33099.44 19999.58 19798.81 9999.91 12297.70 22199.82 15699.67 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.04 18098.79 20799.81 3199.78 8099.73 7099.35 10899.57 18298.54 23099.54 17498.99 33396.81 26699.93 7896.97 27099.53 27199.77 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs190.81 34299.14 286
sam_mvs90.52 346
IterMVS-SCA-FT99.00 18999.16 12198.51 30599.75 10395.90 34798.07 30999.84 3499.84 3599.89 3299.73 9996.01 28799.99 699.33 65100.00 199.63 105
TSAR-MVS + MP.99.34 10499.24 11399.63 12399.82 5199.37 16899.26 13499.35 27398.77 20899.57 16099.70 11999.27 4699.88 17397.71 21899.75 18999.65 91
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
OPM-MVS99.26 12299.13 12899.63 12399.70 12799.61 11398.58 25999.48 23298.50 23399.52 18199.63 16299.14 5999.76 29897.89 19899.77 18499.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.28 11699.11 13599.79 3999.75 10399.81 3698.95 21899.53 20998.27 26199.53 17999.73 9998.75 11499.87 18597.70 22199.83 14799.68 66
ambc99.20 24699.35 26198.53 26799.17 16299.46 24099.67 12199.80 6498.46 15699.70 31597.92 19699.70 21599.38 232
zzz-MVS99.30 11399.14 12599.80 3499.81 5899.81 3698.73 25099.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
MTGPAbinary99.53 209
mvs-test198.83 21398.70 21499.22 24398.89 34299.65 9998.88 22399.66 12299.34 12798.29 33298.94 34397.69 22699.96 3798.11 18298.54 34798.04 361
CS-MVS-test99.68 2899.70 1899.64 11699.57 17799.83 2799.78 1199.97 299.92 1099.50 18899.38 26399.57 2099.95 4799.69 1699.90 9499.15 281
Effi-MVS+99.06 17498.97 18099.34 21899.31 27998.98 23198.31 28799.91 1298.81 20298.79 30398.94 34399.14 5999.84 24098.79 13198.74 33999.20 270
xiu_mvs_v2_base99.02 18399.11 13598.77 29599.37 25798.09 29598.13 30199.51 22199.47 10799.42 20598.54 36499.38 3199.97 1998.83 12799.33 30298.24 353
xiu_mvs_v1_base99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
new-patchmatchnet99.35 9999.57 4898.71 30099.82 5196.62 33798.55 26599.75 7899.50 10099.88 3899.87 3499.31 3999.88 17399.43 47100.00 199.62 116
pmmvs699.86 699.86 699.83 2699.94 1199.90 599.83 699.91 1299.85 3299.94 1299.95 1399.73 899.90 14299.65 1999.97 3899.69 60
pmmvs599.19 14699.11 13599.42 19499.76 9298.88 24698.55 26599.73 8698.82 20199.72 10399.62 17196.56 26999.82 26199.32 6799.95 6199.56 153
test_post199.14 17251.63 38889.54 35499.82 26196.86 276
test_post52.41 38790.25 34899.86 205
Fast-Effi-MVS+99.02 18398.87 19699.46 18299.38 25499.50 13399.04 19899.79 5897.17 32098.62 31698.74 35699.34 3799.95 4798.32 16299.41 29098.92 319
patchmatchnet-post99.62 17190.58 34499.94 62
Anonymous2023121199.62 4299.57 4899.76 5299.61 15699.60 11599.81 999.73 8699.82 4099.90 2799.90 2397.97 20799.86 20599.42 5299.96 5299.80 26
pmmvs-eth3d99.48 6399.47 6199.51 16799.77 8899.41 15998.81 23799.66 12299.42 12199.75 8999.66 14599.20 5199.76 29898.98 11299.99 1299.36 238
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
xiu_mvs_v1_base_debi99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
Anonymous2023120699.35 9999.31 9299.47 17999.74 10999.06 22899.28 12999.74 8399.23 14499.72 10399.53 22197.63 23599.88 17399.11 10299.84 13799.48 199
MTAPA99.35 9999.20 11799.80 3499.81 5899.81 3699.33 11199.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
MTMP99.09 19098.59 340
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 24096.38 304
test9_res95.10 34299.44 28499.50 189
MVP-Stereo99.16 15599.08 14699.43 19299.48 22399.07 22699.08 19399.55 19398.63 21999.31 23599.68 13698.19 18999.78 28898.18 17699.58 25799.45 210
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.35 26199.35 17598.11 30499.41 25294.83 36097.92 35098.99 33398.02 20299.85 223
train_agg98.35 26997.95 28199.57 14999.35 26199.35 17598.11 30499.41 25294.90 35697.92 35098.99 33398.02 20299.85 22395.38 33899.44 28499.50 189
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1796.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
SCA98.11 28198.36 24697.36 33999.20 30292.99 36698.17 29798.49 34498.24 26299.10 27199.57 20796.01 28799.94 6296.86 27699.62 24299.14 286
Patchmatch-test98.10 28297.98 27998.48 30799.27 29096.48 33899.40 9699.07 31798.81 20299.23 24899.57 20790.11 35099.87 18596.69 28699.64 23999.09 295
test_899.34 27199.31 18198.08 30899.40 25994.90 35697.87 35498.97 33998.02 20299.84 240
MS-PatchMatch99.00 18998.97 18099.09 25999.11 31998.19 28798.76 24799.33 27698.49 23599.44 19999.58 19798.21 18699.69 32198.20 17299.62 24299.39 230
Patchmatch-RL test98.60 23798.36 24699.33 22099.77 8899.07 22698.27 29099.87 2198.91 19099.74 9899.72 10590.57 34599.79 28598.55 14899.85 13299.11 290
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1430.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
agg_prior198.33 27197.92 28799.57 14999.35 26199.36 17197.99 31899.39 26294.85 35997.76 35998.98 33698.03 20099.85 22395.49 33499.44 28499.51 183
agg_prior294.58 35099.46 28399.50 189
agg_prior99.35 26199.36 17199.39 26297.76 35999.85 223
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22495.89 37999.29 7498.14 35899.95 1
canonicalmvs99.02 18399.00 17199.09 25999.10 32098.70 25799.61 6599.66 12299.63 8198.64 31597.65 37799.04 7499.54 36098.79 13198.92 32899.04 306
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 999.73 2699.85 2899.70 6199.92 1999.93 1599.45 2599.97 1999.36 59100.00 199.85 14
alignmvs98.28 27297.96 28099.25 23999.12 31498.93 24199.03 20198.42 34699.64 7898.72 31097.85 37590.86 34199.62 35198.88 12599.13 31699.19 273
nrg03099.70 2299.66 2799.82 2899.76 9299.84 2299.61 6599.70 10499.93 899.78 7499.68 13699.10 6299.78 28899.45 4599.96 5299.83 19
v14419299.55 5399.54 5399.58 14399.78 8099.20 20999.11 18499.62 14399.18 15199.89 3299.72 10598.66 12599.87 18599.88 699.97 3899.66 83
FIs99.65 3899.58 4599.84 2499.84 4099.85 1599.66 5199.75 7899.86 2799.74 9899.79 7098.27 17999.85 22399.37 5799.93 8099.83 19
v192192099.56 5099.57 4899.55 15699.75 10399.11 21799.05 19699.61 15099.15 16199.88 3899.71 11299.08 6899.87 18599.90 299.97 3899.66 83
UA-Net99.78 1499.76 1599.86 1899.72 11699.71 7699.91 399.95 899.96 399.71 10899.91 2199.15 5699.97 1999.50 41100.00 199.90 4
v119299.57 4799.57 4899.57 14999.77 8899.22 20399.04 19899.60 16399.18 15199.87 4599.72 10599.08 6899.85 22399.89 599.98 2699.66 83
FC-MVSNet-test99.70 2299.65 2999.86 1899.88 3099.86 1499.72 2999.78 6399.90 1299.82 5699.83 5198.45 15799.87 18599.51 3999.97 3899.86 12
v114499.54 5599.53 5799.59 13999.79 7399.28 18699.10 18599.61 15099.20 14999.84 5199.73 9998.67 12399.84 24099.86 899.98 2699.64 100
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
HFP-MVS99.25 12399.08 14699.76 5299.73 11299.70 8399.31 11899.59 17098.36 24799.36 22299.37 26598.80 10399.91 12297.43 24299.75 18999.68 66
v14899.40 8599.41 7499.39 20699.76 9298.94 23799.09 19099.59 17099.17 15599.81 6399.61 18098.41 16299.69 32199.32 6799.94 7299.53 170
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
AllTest99.21 14199.07 15099.63 12399.78 8099.64 10199.12 18299.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
TestCases99.63 12399.78 8099.64 10199.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
v7n99.82 1099.80 1099.88 1399.96 499.84 2299.82 899.82 4199.84 3599.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 19
region2R99.23 12799.05 15699.77 4599.76 9299.70 8399.31 11899.59 17098.41 24199.32 23199.36 27098.73 11799.93 7897.29 24999.74 19799.67 73
iter_conf0598.46 25798.23 25899.15 25299.04 32797.99 29999.10 18599.61 15099.79 4799.76 8199.58 19787.88 35899.92 9899.31 7099.97 3899.53 170
RRT_MVS99.67 3199.59 4199.91 299.94 1199.88 999.78 1199.27 29199.87 2499.91 2299.87 3498.04 19999.96 3799.68 1799.99 1299.90 4
PS-MVSNAJss99.84 899.82 899.89 999.96 499.77 4999.68 4399.85 2899.95 599.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
PS-MVSNAJ99.00 18999.08 14698.76 29699.37 25798.10 29498.00 31699.51 22199.47 10799.41 21398.50 36699.28 4399.97 1998.83 12799.34 30098.20 357
jajsoiax99.89 399.89 399.89 999.96 499.78 4699.70 3499.86 2499.89 1799.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 599.96 499.79 4399.72 2999.88 1999.92 1099.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
#test#99.12 16398.90 19399.76 5299.73 11299.70 8399.10 18599.59 17097.60 29799.36 22299.37 26598.80 10399.91 12296.84 27999.75 18999.68 66
EI-MVSNet-UG-set99.48 6399.50 5999.42 19499.57 17798.65 26499.24 14199.46 24099.68 6699.80 6699.66 14598.99 7899.89 15899.19 8599.90 9499.72 50
EI-MVSNet-Vis-set99.47 6999.49 6099.42 19499.57 17798.66 26199.24 14199.46 24099.67 7099.79 7199.65 15098.97 8199.89 15899.15 9499.89 10399.71 53
Regformer-399.41 8299.41 7499.40 20299.52 20198.70 25799.17 16299.44 24599.62 8299.75 8999.60 18998.90 9199.85 22398.89 12499.84 13799.65 91
Regformer-499.45 7299.44 6899.50 17099.52 20198.94 23799.17 16299.53 20999.64 7899.76 8199.60 18998.96 8499.90 14298.91 12399.84 13799.67 73
Regformer-199.32 11099.27 10799.47 17999.41 24698.95 23698.99 21199.48 23299.48 10299.66 12599.52 22398.78 10899.87 18598.36 15799.74 19799.60 130
Regformer-299.34 10499.27 10799.53 16299.41 24699.10 22298.99 21199.53 20999.47 10799.66 12599.52 22398.80 10399.89 15898.31 16399.74 19799.60 130
HPM-MVS++copyleft98.96 19698.70 21499.74 6899.52 20199.71 7698.86 22799.19 30998.47 23798.59 31999.06 32298.08 19799.91 12296.94 27199.60 25299.60 130
test_prior499.19 21098.00 316
XVS99.27 12099.11 13599.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30799.47 24398.47 15399.88 17397.62 22999.73 20499.67 73
v124099.56 5099.58 4599.51 16799.80 6399.00 22999.00 20699.65 13299.15 16199.90 2799.75 9399.09 6499.88 17399.90 299.96 5299.67 73
test_prior398.62 23498.34 24999.46 18299.35 26199.22 20397.95 32399.39 26297.87 28598.05 34599.05 32397.90 21199.69 32195.99 31999.49 27899.48 199
pm-mvs199.79 1399.79 1199.78 4299.91 2099.83 2799.76 1799.87 2199.73 5399.89 3299.87 3499.63 1499.87 18599.54 3499.92 8499.63 105
test_prior297.95 32397.87 28598.05 34599.05 32397.90 21195.99 31999.49 278
X-MVStestdata96.09 33394.87 34299.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30761.30 38698.47 15399.88 17397.62 22999.73 20499.67 73
test_prior99.46 18299.35 26199.22 20399.39 26299.69 32199.48 199
旧先验297.94 32595.33 35198.94 28399.88 17396.75 283
新几何298.04 312
新几何199.52 16499.50 21299.22 20399.26 29495.66 34898.60 31899.28 28997.67 22999.89 15895.95 32399.32 30399.45 210
旧先验199.49 21799.29 18499.26 29499.39 26197.67 22999.36 29899.46 208
无先验98.01 31499.23 30195.83 34499.85 22395.79 32899.44 215
原ACMM297.92 327
原ACMM199.37 21399.47 22898.87 24899.27 29196.74 33398.26 33499.32 28097.93 20999.82 26195.96 32299.38 29399.43 221
test22299.51 20699.08 22597.83 33299.29 28795.21 35398.68 31399.31 28297.28 24999.38 29399.43 221
testdata299.89 15895.99 319
segment_acmp98.37 168
testdata99.42 19499.51 20698.93 24199.30 28596.20 34098.87 29499.40 25798.33 17599.89 15896.29 30799.28 30799.44 215
testdata197.72 33597.86 288
v899.68 2899.69 2399.65 10999.80 6399.40 16099.66 5199.76 7199.64 7899.93 1599.85 4598.66 12599.84 24099.88 699.99 1299.71 53
131498.00 28797.90 29098.27 31898.90 33997.45 31999.30 12199.06 31994.98 35597.21 36699.12 31698.43 15999.67 33795.58 33398.56 34697.71 365
112198.56 24398.24 25799.52 16499.49 21799.24 19999.30 12199.22 30495.77 34598.52 32499.29 28797.39 24499.85 22395.79 32899.34 30099.46 208
LFMVS98.46 25798.19 26599.26 23699.24 29598.52 26999.62 6096.94 36599.87 2499.31 23599.58 19791.04 33699.81 27798.68 14399.42 28999.45 210
VDD-MVS99.20 14399.11 13599.44 18899.43 24098.98 23199.50 8298.32 35099.80 4499.56 16799.69 12596.99 26299.85 22398.99 11099.73 20499.50 189
VDDNet98.97 19398.82 20399.42 19499.71 11998.81 25099.62 6098.68 33499.81 4199.38 22099.80 6494.25 30399.85 22398.79 13199.32 30399.59 139
v1099.69 2599.69 2399.66 10499.81 5899.39 16299.66 5199.75 7899.60 9299.92 1999.87 3498.75 11499.86 20599.90 299.99 1299.73 49
VPNet99.46 7099.37 8199.71 8899.82 5199.59 11899.48 8699.70 10499.81 4199.69 11499.58 19797.66 23399.86 20599.17 9099.44 28499.67 73
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32672.71 37797.30 36399.08 32098.34 17399.74 30489.21 36998.33 35199.26 256
v2v48299.50 5999.47 6199.58 14399.78 8099.25 19499.14 17299.58 18099.25 14099.81 6399.62 17198.24 18199.84 24099.83 999.97 3899.64 100
V4299.56 5099.54 5399.63 12399.79 7399.46 14199.39 9899.59 17099.24 14299.86 4699.70 11998.55 14099.82 26199.79 1199.95 6199.60 130
SD-MVS99.01 18799.30 9798.15 32099.50 21299.40 16098.94 22099.61 15099.22 14899.75 8999.82 5899.54 2395.51 38097.48 23999.87 12199.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.99 28897.68 29898.93 27599.52 20198.04 29897.19 35999.05 32098.32 25898.81 30098.97 33989.89 35399.41 37098.33 16199.05 32099.34 243
MSLP-MVS++99.05 17799.09 14498.91 27899.21 29998.36 28098.82 23699.47 23698.85 19798.90 29099.56 21098.78 10899.09 37398.57 14799.68 22399.26 256
APDe-MVS99.48 6399.36 8499.85 2199.55 18999.81 3699.50 8299.69 11098.99 17799.75 8999.71 11298.79 10699.93 7898.46 15299.85 13299.80 26
APD-MVS_3200maxsize99.31 11299.16 12199.74 6899.53 19599.75 6199.27 13299.61 15099.19 15099.57 16099.64 15298.76 11299.90 14297.29 24999.62 24299.56 153
ADS-MVSNet297.78 29297.66 30098.12 32299.14 31095.36 35299.22 14898.75 33296.97 32598.25 33599.64 15290.90 33999.94 6296.51 29799.56 25999.08 298
EI-MVSNet99.38 9199.44 6899.21 24499.58 16798.09 29599.26 13499.46 24099.62 8299.75 8999.67 14198.54 14299.85 22399.15 9499.92 8499.68 66
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
CVMVSNet98.61 23598.88 19597.80 32999.58 16793.60 36499.26 13499.64 13899.66 7499.72 10399.67 14193.26 31499.93 7899.30 7199.81 16499.87 10
pmmvs499.13 16199.06 15299.36 21699.57 17799.10 22298.01 31499.25 29798.78 20799.58 15799.44 25098.24 18199.76 29898.74 13799.93 8099.22 264
EU-MVSNet99.39 8999.62 3498.72 29899.88 3096.44 33999.56 7799.85 2899.90 1299.90 2799.85 4598.09 19599.83 25199.58 2999.95 6199.90 4
VNet99.18 15099.06 15299.56 15399.24 29599.36 17199.33 11199.31 28299.67 7099.47 19399.57 20796.48 27299.84 24099.15 9499.30 30599.47 204
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27497.81 35698.58 35990.04 35199.91 12297.69 22798.78 33398.31 349
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23897.81 35698.56 36279.77 37999.89 15897.77 21098.77 33598.52 340
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28397.81 35698.58 35979.12 38299.91 12297.69 22798.78 33398.31 349
VPA-MVSNet99.66 3399.62 3499.79 3999.68 13999.75 6199.62 6099.69 11099.85 3299.80 6699.81 6198.81 9999.91 12299.47 4399.88 11299.70 56
ACMMPR99.23 12799.06 15299.76 5299.74 10999.69 8799.31 11899.59 17098.36 24799.35 22499.38 26398.61 13199.93 7897.43 24299.75 18999.67 73
testgi99.29 11599.26 10999.37 21399.75 10398.81 25098.84 23099.89 1798.38 24599.75 8999.04 32699.36 3699.86 20599.08 10499.25 31199.45 210
test20.0399.55 5399.54 5399.58 14399.79 7399.37 16899.02 20299.89 1799.60 9299.82 5699.62 17198.81 9999.89 15899.43 4799.86 12899.47 204
thres600view796.60 32496.16 32697.93 32599.63 15196.09 34599.18 15797.57 35998.77 20898.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
ADS-MVSNet97.72 29897.67 29997.86 32799.14 31094.65 35899.22 14898.86 32696.97 32598.25 33599.64 15290.90 33999.84 24096.51 29799.56 25999.08 298
MP-MVScopyleft99.06 17498.83 20299.76 5299.76 9299.71 7699.32 11499.50 22598.35 25298.97 28099.48 23898.37 16899.92 9895.95 32399.75 18999.63 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
thres40096.40 32695.89 33097.92 32699.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
thres20096.09 33395.68 33597.33 34199.48 22396.22 34298.53 26997.57 35998.06 27398.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27499.21 25498.02 37390.04 35199.79 28598.37 15695.89 37598.86 324
pmmvs398.08 28397.80 29298.91 27899.41 24697.69 31397.87 33099.66 12295.87 34399.50 18899.51 22790.35 34799.97 1998.55 14899.47 28199.08 298
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33899.34 12798.92 28798.88 34993.79 30899.66 34192.87 36199.05 32097.30 370
E-PMN97.14 31397.43 30296.27 35598.79 35391.62 37395.54 37299.01 32399.44 11498.88 29199.12 31692.78 31999.68 33294.30 35299.03 32297.50 366
PGM-MVS99.20 14399.01 16899.77 4599.75 10399.71 7699.16 16899.72 9597.99 27699.42 20599.60 18998.81 9999.93 7896.91 27399.74 19799.66 83
LCM-MVSNet-Re99.28 11699.15 12499.67 9799.33 27699.76 5799.34 10999.97 298.93 18799.91 2299.79 7098.68 12099.93 7896.80 28199.56 25999.30 250
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 10
MCST-MVS99.02 18398.81 20499.65 10999.58 16799.49 13498.58 25999.07 31798.40 24399.04 27799.25 29698.51 15199.80 28297.31 24899.51 27499.65 91
mvs_anonymous99.28 11699.39 7698.94 27299.19 30497.81 30899.02 20299.55 19399.78 4999.85 4899.80 6498.24 18199.86 20599.57 3199.50 27699.15 281
MVS_Test99.28 11699.31 9299.19 24799.35 26198.79 25299.36 10799.49 23099.17 15599.21 25499.67 14198.78 10899.66 34199.09 10399.66 23499.10 292
MDA-MVSNet-bldmvs99.06 17499.05 15699.07 26399.80 6397.83 30798.89 22299.72 9599.29 13299.63 13599.70 11996.47 27399.89 15898.17 17899.82 15699.50 189
CDPH-MVS98.56 24398.20 26299.61 13599.50 21299.46 14198.32 28699.41 25295.22 35299.21 25499.10 31998.34 17399.82 26195.09 34399.66 23499.56 153
test1299.54 16099.29 28599.33 17899.16 31298.43 32997.54 23799.82 26199.47 28199.48 199
casdiffmvs99.63 3999.61 3899.67 9799.79 7399.59 11899.13 17899.85 2899.79 4799.76 8199.72 10599.33 3899.82 26199.21 8199.94 7299.59 139
diffmvs99.34 10499.32 9199.39 20699.67 14498.77 25398.57 26399.81 5099.61 8699.48 19199.41 25398.47 15399.86 20598.97 11499.90 9499.53 170
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31796.23 37298.36 36888.12 35799.90 14296.68 28798.14 35898.57 339
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34699.33 13099.46 19799.21 30591.18 33499.82 26198.35 15991.26 37799.32 247
YYNet198.95 19998.99 17698.84 28899.64 14997.14 32798.22 29499.32 27898.92 18999.59 15599.66 14597.40 24299.83 25198.27 16699.90 9499.55 156
PMMVS299.48 6399.45 6699.57 14999.76 9298.99 23098.09 30699.90 1598.95 18399.78 7499.58 19799.57 2099.93 7899.48 4299.95 6199.79 32
MDA-MVSNet_test_wron98.95 19998.99 17698.85 28699.64 14997.16 32698.23 29399.33 27698.93 18799.56 16799.66 14597.39 24499.83 25198.29 16499.88 11299.55 156
tpmvs97.39 30797.69 29796.52 35298.41 36591.76 37199.30 12198.94 32597.74 29197.85 35599.55 21792.40 32599.73 30796.25 30998.73 34198.06 360
PM-MVS99.36 9799.29 10299.58 14399.83 4499.66 9498.95 21899.86 2498.85 19799.81 6399.73 9998.40 16699.92 9898.36 15799.83 14799.17 277
HQP_MVS98.90 20498.68 21699.55 15699.58 16799.24 19998.80 24099.54 19998.94 18499.14 26599.25 29697.24 25099.82 26195.84 32699.78 18099.60 130
plane_prior799.58 16799.38 165
plane_prior699.47 22899.26 19097.24 250
plane_prior599.54 19999.82 26195.84 32699.78 18099.60 130
plane_prior499.25 296
plane_prior399.31 18198.36 24799.14 265
plane_prior298.80 24098.94 184
plane_prior199.51 206
plane_prior99.24 19998.42 28097.87 28599.71 213
PS-CasMVS99.66 3399.58 4599.89 999.80 6399.85 1599.66 5199.73 8699.62 8299.84 5199.71 11298.62 12999.96 3799.30 7199.96 5299.86 12
UniMVSNet_NR-MVSNet99.37 9499.25 11199.72 8499.47 22899.56 12498.97 21699.61 15099.43 11999.67 12199.28 28997.85 21799.95 4799.17 9099.81 16499.65 91
PEN-MVS99.66 3399.59 4199.89 999.83 4499.87 1199.66 5199.73 8699.70 6199.84 5199.73 9998.56 13999.96 3799.29 7499.94 7299.83 19
TransMVSNet (Re)99.78 1499.77 1399.81 3199.91 2099.85 1599.75 2099.86 2499.70 6199.91 2299.89 2799.60 1999.87 18599.59 2499.74 19799.71 53
DTE-MVSNet99.68 2899.61 3899.88 1399.80 6399.87 1199.67 4799.71 9899.72 5699.84 5199.78 7798.67 12399.97 1999.30 7199.95 6199.80 26
DU-MVS99.33 10899.21 11699.71 8899.43 24099.56 12498.83 23299.53 20999.38 12399.67 12199.36 27097.67 22999.95 4799.17 9099.81 16499.63 105
UniMVSNet (Re)99.37 9499.26 10999.68 9499.51 20699.58 12198.98 21599.60 16399.43 11999.70 11199.36 27097.70 22499.88 17399.20 8499.87 12199.59 139
CP-MVSNet99.54 5599.43 7199.87 1699.76 9299.82 3399.57 7599.61 15099.54 9699.80 6699.64 15297.79 22199.95 4799.21 8199.94 7299.84 15
WR-MVS_H99.61 4499.53 5799.87 1699.80 6399.83 2799.67 4799.75 7899.58 9599.85 4899.69 12598.18 19199.94 6299.28 7699.95 6199.83 19
WR-MVS99.11 16798.93 18599.66 10499.30 28399.42 15598.42 28099.37 26999.04 17599.57 16099.20 30796.89 26499.86 20598.66 14499.87 12199.70 56
NR-MVSNet99.40 8599.31 9299.68 9499.43 24099.55 12799.73 2699.50 22599.46 11199.88 3899.36 27097.54 23799.87 18598.97 11499.87 12199.63 105
Baseline_NR-MVSNet99.49 6199.37 8199.82 2899.91 2099.84 2298.83 23299.86 2499.68 6699.65 12999.88 3197.67 22999.87 18599.03 10799.86 12899.76 44
TranMVSNet+NR-MVSNet99.54 5599.47 6199.76 5299.58 16799.64 10199.30 12199.63 14099.61 8699.71 10899.56 21098.76 11299.96 3799.14 10099.92 8499.68 66
TSAR-MVS + GP.99.12 16399.04 16299.38 21099.34 27199.16 21298.15 29899.29 28798.18 26799.63 13599.62 17199.18 5399.68 33298.20 17299.74 19799.30 250
abl_699.36 9799.23 11599.75 6299.71 11999.74 6799.33 11199.76 7199.07 17099.65 12999.63 16299.09 6499.92 9897.13 26499.76 18699.58 144
n20.00 388
nn0.00 388
mPP-MVS99.19 14699.00 17199.76 5299.76 9299.68 9099.38 10099.54 19998.34 25699.01 27899.50 23098.53 14699.93 7897.18 26199.78 18099.66 83
door-mid99.83 36
XVG-OURS-SEG-HR99.16 15598.99 17699.66 10499.84 4099.64 10198.25 29299.73 8698.39 24499.63 13599.43 25199.70 1199.90 14297.34 24698.64 34399.44 215
mvsmamba99.74 1999.70 1899.85 2199.93 1799.83 2799.76 1799.81 5099.96 399.91 2299.81 6198.60 13399.94 6299.58 2999.98 2699.77 39
MVSFormer99.41 8299.44 6899.31 22799.57 17798.40 27699.77 1499.80 5299.73 5399.63 13599.30 28498.02 20299.98 999.43 4799.69 21899.55 156
jason99.16 15599.11 13599.32 22499.75 10398.44 27398.26 29199.39 26298.70 21499.74 9899.30 28498.54 14299.97 1998.48 15199.82 15699.55 156
jason: jason.
lupinMVS98.96 19698.87 19699.24 24199.57 17798.40 27698.12 30299.18 31098.28 26099.63 13599.13 31298.02 20299.97 1998.22 17099.69 21899.35 241
test_djsdf99.84 899.81 999.91 299.94 1199.84 2299.77 1499.80 5299.73 5399.97 699.92 1899.77 799.98 999.43 47100.00 199.90 4
HPM-MVS_fast99.43 7599.30 9799.80 3499.83 4499.81 3699.52 8099.70 10498.35 25299.51 18699.50 23099.31 3999.88 17398.18 17699.84 13799.69 60
bld_raw_conf00599.81 1199.79 1199.86 1899.94 1199.85 1599.77 1499.90 1599.97 299.92 1999.86 4199.21 5099.94 6299.59 2499.98 2699.78 34
K. test v398.87 21098.60 22099.69 9399.93 1799.46 14199.74 2294.97 37299.78 4999.88 3899.88 3193.66 31199.97 1999.61 2299.95 6199.64 100
lessismore_v099.64 11699.86 3699.38 16590.66 38099.89 3299.83 5194.56 30199.97 1999.56 3299.92 8499.57 150
SixPastTwentyTwo99.42 7899.30 9799.76 5299.92 1999.67 9299.70 3499.14 31499.65 7699.89 3299.90 2396.20 28399.94 6299.42 5299.92 8499.67 73
OurMVSNet-221017-099.75 1699.71 1799.84 2499.96 499.83 2799.83 699.85 2899.80 4499.93 1599.93 1598.54 14299.93 7899.59 2499.98 2699.76 44
HPM-MVScopyleft99.25 12399.07 15099.78 4299.81 5899.75 6199.61 6599.67 11897.72 29299.35 22499.25 29699.23 4899.92 9897.21 26099.82 15699.67 73
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS99.21 14199.06 15299.65 10999.82 5199.62 10797.87 33099.74 8398.36 24799.66 12599.68 13699.71 999.90 14296.84 27999.88 11299.43 221
XVG-ACMP-BASELINE99.23 12799.10 14399.63 12399.82 5199.58 12198.83 23299.72 9598.36 24799.60 15299.71 11298.92 8699.91 12297.08 26699.84 13799.40 227
LPG-MVS_test99.22 13699.05 15699.74 6899.82 5199.63 10599.16 16899.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
LGP-MVS_train99.74 6899.82 5199.63 10599.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
baseline99.63 3999.62 3499.66 10499.80 6399.62 10799.44 9299.80 5299.71 5799.72 10399.69 12599.15 5699.83 25199.32 6799.94 7299.53 170
test1199.29 287
door99.77 66
EPNet_dtu97.62 30097.79 29497.11 34696.67 37992.31 36998.51 27198.04 35299.24 14295.77 37399.47 24393.78 30999.66 34198.98 11299.62 24299.37 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.39 8999.30 9799.65 10999.88 3099.25 19498.78 24499.88 1998.66 21699.96 899.79 7097.45 24099.93 7899.34 6199.99 1299.78 34
EPNet98.13 28097.77 29599.18 24994.57 38297.99 29999.24 14197.96 35499.74 5297.29 36499.62 17193.13 31699.97 1998.59 14699.83 14799.58 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS98.94 237
HQP-NCC99.31 27997.98 31997.45 30698.15 339
ACMP_Plane99.31 27997.98 31997.45 30698.15 339
APD-MVScopyleft98.87 21098.59 22299.71 8899.50 21299.62 10799.01 20499.57 18296.80 33299.54 17499.63 16298.29 17799.91 12295.24 34099.71 21399.61 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS94.73 346
HQP4-MVS98.15 33999.70 31599.53 170
HQP3-MVS99.37 26999.67 230
HQP2-MVS96.67 267
CNVR-MVS98.99 19298.80 20699.56 15399.25 29399.43 15298.54 26899.27 29198.58 22498.80 30299.43 25198.53 14699.70 31597.22 25999.59 25699.54 164
NCCC98.82 21598.57 22699.58 14399.21 29999.31 18198.61 25599.25 29798.65 21798.43 32999.26 29497.86 21599.81 27796.55 29499.27 31099.61 126
114514_t98.49 25498.11 27199.64 11699.73 11299.58 12199.24 14199.76 7189.94 37199.42 20599.56 21097.76 22399.86 20597.74 21599.82 15699.47 204
CP-MVS99.23 12799.05 15699.75 6299.66 14599.66 9499.38 10099.62 14398.38 24599.06 27699.27 29198.79 10699.94 6297.51 23899.82 15699.66 83
DSMNet-mixed99.48 6399.65 2998.95 27199.71 11997.27 32399.50 8299.82 4199.59 9499.41 21399.85 4599.62 16100.00 199.53 3799.89 10399.59 139
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34293.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
NP-MVS99.40 24999.13 21598.83 351
EG-PatchMatch MVS99.57 4799.56 5299.62 13299.77 8899.33 17899.26 13499.76 7199.32 13199.80 6699.78 7799.29 4199.87 18599.15 9499.91 9399.66 83
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27892.37 36697.73 36199.46 24691.15 33599.69 32196.07 31598.80 33298.21 355
SteuartSystems-ACMMP99.30 11399.14 12599.76 5299.87 3499.66 9499.18 15799.60 16398.55 22799.57 16099.67 14199.03 7599.94 6297.01 26899.80 16999.69 60
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33494.69 36198.14 34399.34 27886.32 37099.80 28297.60 23298.07 36098.88 322
CR-MVSNet98.35 26998.20 26298.83 29099.05 32598.12 29199.30 12199.67 11897.39 31099.16 26199.79 7091.87 32899.91 12298.78 13498.77 33598.44 346
JIA-IIPM98.06 28497.92 28798.50 30698.59 36297.02 32998.80 24098.51 34299.88 2297.89 35299.87 3491.89 32799.90 14298.16 17997.68 36598.59 336
Patchmtry98.78 21898.54 23099.49 17398.89 34299.19 21099.32 11499.67 11899.65 7699.72 10399.79 7091.87 32899.95 4798.00 19099.97 3899.33 244
PatchT98.45 25998.32 25298.83 29098.94 33798.29 28299.24 14198.82 32999.84 3599.08 27299.76 8891.37 33199.94 6298.82 12999.00 32498.26 352
tpmrst97.73 29598.07 27396.73 35098.71 35992.00 37099.10 18598.86 32698.52 23198.92 28799.54 21991.90 32699.82 26198.02 18699.03 32298.37 348
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34195.76 34697.96 34998.02 37395.62 29299.47 36792.82 36297.25 36898.12 359
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29398.29 33299.32 28086.72 36899.92 9898.10 18496.24 37499.09 295
DELS-MVS99.34 10499.30 9799.48 17799.51 20699.36 17198.12 30299.53 20999.36 12699.41 21399.61 18099.22 4999.87 18599.21 8199.68 22399.20 270
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.22 27898.09 27298.58 30499.38 25497.24 32498.55 26598.98 32497.81 29099.20 25998.76 35597.01 26199.65 34794.83 34598.33 35198.86 324
RPMNet98.60 23798.53 23298.83 29099.05 32598.12 29199.30 12199.62 14399.86 2799.16 26199.74 9592.53 32299.92 9898.75 13698.77 33598.44 346
MVSTER98.47 25698.22 26099.24 24199.06 32498.35 28199.08 19399.46 24099.27 13699.75 8999.66 14588.61 35699.85 22399.14 10099.92 8499.52 181
CPTT-MVS98.74 22498.44 23899.64 11699.61 15699.38 16599.18 15799.55 19396.49 33599.27 24299.37 26597.11 25899.92 9895.74 33099.67 23099.62 116
GBi-Net99.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
PVSNet_Blended_VisFu99.40 8599.38 7899.44 18899.90 2498.66 26198.94 22099.91 1297.97 27899.79 7199.73 9999.05 7399.97 1999.15 9499.99 1299.68 66
PVSNet_BlendedMVS99.03 18199.01 16899.09 25999.54 19097.99 29998.58 25999.82 4197.62 29699.34 22799.71 11298.52 14999.77 29697.98 19199.97 3899.52 181
UnsupCasMVSNet_eth98.83 21398.57 22699.59 13999.68 13999.45 14698.99 21199.67 11899.48 10299.55 17299.36 27094.92 29599.86 20598.95 12096.57 37199.45 210
UnsupCasMVSNet_bld98.55 24698.27 25599.40 20299.56 18899.37 16897.97 32299.68 11397.49 30599.08 27299.35 27595.41 29499.82 26197.70 22198.19 35699.01 312
PVSNet_Blended98.70 22998.59 22299.02 26799.54 19097.99 29997.58 34299.82 4195.70 34799.34 22798.98 33698.52 14999.77 29697.98 19199.83 14799.30 250
FMVSNet597.80 29197.25 30799.42 19498.83 34898.97 23399.38 10099.80 5298.87 19599.25 24499.69 12580.60 37899.91 12298.96 11699.90 9499.38 232
test199.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
new_pmnet98.88 20898.89 19498.84 28899.70 12797.62 31498.15 29899.50 22597.98 27799.62 14399.54 21998.15 19299.94 6297.55 23499.84 13798.95 316
FMVSNet398.80 21798.63 21999.32 22499.13 31298.72 25699.10 18599.48 23299.23 14499.62 14399.64 15292.57 32099.86 20598.96 11699.90 9499.39 230
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34997.35 31298.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
FMVSNet299.35 9999.28 10499.55 15699.49 21799.35 17599.45 8999.57 18299.44 11499.70 11199.74 9597.21 25299.87 18599.03 10799.94 7299.44 215
FMVSNet199.66 3399.63 3399.73 7899.78 8099.77 4999.68 4399.70 10499.67 7099.82 5699.83 5198.98 7999.90 14299.24 7899.97 3899.53 170
N_pmnet98.73 22698.53 23299.35 21799.72 11698.67 25998.34 28394.65 37398.35 25299.79 7199.68 13698.03 20099.93 7898.28 16599.92 8499.44 215
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18791.75 36797.13 36897.61 37895.58 29398.63 37696.68 28799.11 31798.18 358
BH-RMVSNet98.41 26298.14 27099.21 24499.21 29998.47 27098.60 25798.26 35198.35 25298.93 28499.31 28297.20 25599.66 34194.32 35199.10 31899.51 183
UGNet99.38 9199.34 8699.49 17398.90 33998.90 24599.70 3499.35 27399.86 2798.57 32199.81 6198.50 15299.93 7899.38 5499.98 2699.66 83
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.59 24098.37 24599.26 23699.43 24098.40 27698.74 24899.13 31698.10 26999.21 25499.24 30194.82 29799.90 14297.86 20398.77 33599.49 194
XXY-MVS99.71 2199.67 2699.81 3199.89 2699.72 7499.59 7199.82 4199.39 12299.82 5699.84 5099.38 3199.91 12299.38 5499.93 8099.80 26
DROMVSNet99.69 2599.69 2399.68 9499.71 11999.91 299.76 1799.96 699.86 2799.51 18699.39 26199.57 2099.93 7899.64 2199.86 12899.20 270
sss98.90 20498.77 20899.27 23499.48 22398.44 27398.72 25199.32 27897.94 28299.37 22199.35 27596.31 28099.91 12298.85 12699.63 24199.47 204
Test_1112_low_res98.95 19998.73 20999.63 12399.68 13999.15 21498.09 30699.80 5297.14 32299.46 19799.40 25796.11 28599.89 15899.01 10999.84 13799.84 15
1112_ss99.05 17798.84 20099.67 9799.66 14599.29 18498.52 27099.82 4197.65 29599.43 20399.16 31096.42 27599.91 12299.07 10599.84 13799.80 26
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs99.33 10899.28 10499.47 17999.57 17799.39 16299.78 1199.43 24998.87 19599.57 16099.82 5898.06 19899.87 18598.69 14299.73 20499.15 281
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32998.21 33898.51 36596.42 27599.51 36592.16 36397.29 36797.98 362
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 31199.21 25491.78 33096.75 28399.03 307
MDTV_nov1_ep1397.73 29698.70 36090.83 37799.15 17098.02 35398.51 23298.82 29999.61 18090.98 33799.66 34196.89 27598.92 328
MIMVSNet199.66 3399.62 3499.80 3499.94 1199.87 1199.69 4099.77 6699.78 4999.93 1599.89 2797.94 20899.92 9899.65 1999.98 2699.62 116
MIMVSNet98.43 26098.20 26299.11 25799.53 19598.38 27999.58 7398.61 33898.96 18299.33 22999.76 8890.92 33899.81 27797.38 24599.76 18699.15 281
IterMVS-LS99.41 8299.47 6199.25 23999.81 5898.09 29598.85 22999.76 7199.62 8299.83 5599.64 15298.54 14299.97 1999.15 9499.99 1299.68 66
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.22 13699.13 12899.50 17099.35 26199.11 21798.96 21799.54 19999.46 11199.61 14999.70 11996.31 28099.83 25199.34 6199.88 11299.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.94 72
IterMVS98.97 19399.16 12198.42 30999.74 10995.64 35098.06 31199.83 3699.83 3899.85 4899.74 9596.10 28699.99 699.27 77100.00 199.63 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.50 25198.23 25899.31 22799.49 21799.46 14198.56 26499.63 14094.86 35898.85 29699.37 26597.81 21999.59 35796.08 31499.44 28498.88 322
MVS_111021_LR99.13 16199.03 16499.42 19499.58 16799.32 18097.91 32999.73 8698.68 21599.31 23599.48 23899.09 6499.66 34197.70 22199.77 18499.29 253
DP-MVS99.48 6399.39 7699.74 6899.57 17799.62 10799.29 12899.61 15099.87 2499.74 9899.76 8898.69 11999.87 18598.20 17299.80 16999.75 47
ACMMP++99.79 174
HQP-MVS98.36 26698.02 27699.39 20699.31 27998.94 23797.98 31999.37 26997.45 30698.15 33998.83 35196.67 26799.70 31594.73 34699.67 23099.53 170
QAPM98.40 26497.99 27799.65 10999.39 25199.47 13799.67 4799.52 21791.70 36898.78 30599.80 6498.55 14099.95 4794.71 34899.75 18999.53 170
Vis-MVSNetpermissive99.75 1699.74 1699.79 3999.88 3099.66 9499.69 4099.92 999.67 7099.77 7999.75 9399.61 1799.98 999.35 6099.98 2699.72 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet97.86 28998.22 26096.76 34899.28 28891.53 37498.38 28292.60 37899.13 16399.31 23599.96 1297.18 25699.68 33298.34 16099.83 14799.07 303
IS-MVSNet99.03 18198.85 19899.55 15699.80 6399.25 19499.73 2699.15 31399.37 12499.61 14999.71 11294.73 29999.81 27797.70 22199.88 11299.58 144
HyFIR lowres test98.91 20298.64 21799.73 7899.85 3999.47 13798.07 30999.83 3698.64 21899.89 3299.60 18992.57 320100.00 199.33 6599.97 3899.72 50
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26498.61 31799.59 19586.69 36999.72 30996.99 26999.23 31598.81 328
PAPM_NR98.36 26698.04 27499.33 22099.48 22398.93 24198.79 24399.28 29097.54 30198.56 32298.57 36197.12 25799.69 32194.09 35598.90 33099.38 232
TAMVS99.49 6199.45 6699.63 12399.48 22399.42 15599.45 8999.57 18299.66 7499.78 7499.83 5197.85 21799.86 20599.44 4699.96 5299.61 126
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29794.56 36298.02 34898.25 37197.43 24199.68 33290.90 36898.74 33999.33 244
RPSCF99.18 15099.02 16599.64 11699.83 4499.85 1599.44 9299.82 4198.33 25799.50 18899.78 7797.90 21199.65 34796.78 28299.83 14799.44 215
Vis-MVSNet (Re-imp)98.77 21998.58 22599.34 21899.78 8098.88 24699.61 6599.56 18799.11 16799.24 24799.56 21093.00 31899.78 28897.43 24299.89 10399.35 241
test_040299.22 13699.14 12599.45 18699.79 7399.43 15299.28 12999.68 11399.54 9699.40 21899.56 21099.07 7099.82 26196.01 31799.96 5299.11 290
MVS_111021_HR99.12 16399.02 16599.40 20299.50 21299.11 21797.92 32799.71 9898.76 21199.08 27299.47 24399.17 5499.54 36097.85 20599.76 18699.54 164
CSCG99.37 9499.29 10299.60 13799.71 11999.46 14199.43 9499.85 2898.79 20599.41 21399.60 18998.92 8699.92 9898.02 18699.92 8499.43 221
PatchMatch-RL98.68 23098.47 23599.30 22999.44 23899.28 18698.14 30099.54 19997.12 32399.11 26999.25 29697.80 22099.70 31596.51 29799.30 30598.93 318
API-MVS98.38 26598.39 24398.35 31298.83 34899.26 19099.14 17299.18 31098.59 22398.66 31498.78 35498.61 13199.57 35994.14 35499.56 25996.21 373
Test By Simon98.41 162
TDRefinement99.72 2099.70 1899.77 4599.90 2499.85 1599.86 599.92 999.69 6499.78 7499.92 1899.37 3399.88 17398.93 12299.95 6199.60 130
USDC98.96 19698.93 18599.05 26599.54 19097.99 29997.07 36399.80 5298.21 26499.75 8999.77 8498.43 15999.64 34997.90 19799.88 11299.51 183
EPP-MVSNet99.17 15499.00 17199.66 10499.80 6399.43 15299.70 3499.24 30099.48 10299.56 16799.77 8494.89 29699.93 7898.72 13999.89 10399.63 105
PMMVS98.49 25498.29 25499.11 25798.96 33698.42 27597.54 34399.32 27897.53 30298.47 32898.15 37297.88 21499.82 26197.46 24099.24 31399.09 295
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34590.77 37096.25 37098.68 35893.01 31799.69 32181.60 37897.86 36498.62 334
ACMMPcopyleft99.25 12399.08 14699.74 6899.79 7399.68 9099.50 8299.65 13298.07 27299.52 18199.69 12598.57 13799.92 9897.18 26199.79 17499.63 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA98.57 24298.34 24999.28 23299.18 30699.10 22298.34 28399.41 25298.48 23698.52 32498.98 33697.05 26099.78 28895.59 33299.50 27698.96 314
PatchmatchNetpermissive97.65 29997.80 29297.18 34498.82 35192.49 36899.17 16298.39 34898.12 26898.79 30399.58 19790.71 34399.89 15897.23 25899.41 29099.16 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 16798.95 18499.59 13999.13 31299.59 11899.17 16299.65 13297.88 28499.25 24499.46 24698.97 8199.80 28297.26 25499.82 15699.37 235
F-COLMAP98.74 22498.45 23799.62 13299.57 17799.47 13798.84 23099.65 13296.31 33998.93 28499.19 30997.68 22899.87 18596.52 29699.37 29799.53 170
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 12100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 15
wuyk23d97.58 30299.13 12892.93 36099.69 13199.49 13499.52 8099.77 6697.97 27899.96 899.79 7099.84 399.94 6295.85 32599.82 15679.36 376
OMC-MVS98.90 20498.72 21099.44 18899.39 25199.42 15598.58 25999.64 13897.31 31499.44 19999.62 17198.59 13499.69 32196.17 31399.79 17499.22 264
MG-MVS98.52 24998.39 24398.94 27299.15 30997.39 32198.18 29599.21 30898.89 19499.23 24899.63 16297.37 24699.74 30494.22 35399.61 24999.69 60
AdaColmapbinary98.60 23798.35 24899.38 21099.12 31499.22 20398.67 25499.42 25197.84 28998.81 30099.27 29197.32 24899.81 27795.14 34199.53 27199.10 292
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ITE_SJBPF99.38 21099.63 15199.44 14899.73 8698.56 22599.33 22999.53 22198.88 9399.68 33296.01 31799.65 23799.02 311
DeepMVS_CXcopyleft97.98 32399.69 13196.95 33099.26 29475.51 37695.74 37498.28 37096.47 27399.62 35191.23 36697.89 36297.38 368
TinyColmap98.97 19398.93 18599.07 26399.46 23398.19 28797.75 33499.75 7898.79 20599.54 17499.70 11998.97 8199.62 35196.63 29299.83 14799.41 225
MAR-MVS98.24 27697.92 28799.19 24798.78 35599.65 9999.17 16299.14 31495.36 35098.04 34798.81 35397.47 23999.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS99.01 18798.92 18999.27 23499.71 11999.28 18698.59 25899.77 6698.32 25899.39 21999.41 25398.62 12999.84 24096.62 29399.84 13798.69 332
MSDG99.08 17298.98 17999.37 21399.60 15899.13 21597.54 34399.74 8398.84 20099.53 17999.55 21799.10 6299.79 28597.07 26799.86 12899.18 275
LS3D99.24 12699.11 13599.61 13598.38 36699.79 4399.57 7599.68 11399.61 8699.15 26399.71 11298.70 11899.91 12297.54 23599.68 22399.13 289
CLD-MVS98.76 22198.57 22699.33 22099.57 17798.97 23397.53 34599.55 19396.41 33699.27 24299.13 31299.07 7099.78 28896.73 28599.89 10399.23 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS96.32 32995.50 33698.79 29499.60 15898.17 28998.46 27998.80 33097.16 32196.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 292
Gipumacopyleft99.57 4799.59 4199.49 17399.98 399.71 7699.72 2999.84 3499.81 4199.94 1299.78 7798.91 8899.71 31398.41 15499.95 6199.05 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015