This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LTVRE_ROB99.19 199.88 499.87 499.88 1199.91 1599.90 599.96 199.92 799.90 799.97 699.87 3299.81 599.95 4599.54 2799.99 1299.80 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
3Dnovator99.15 299.43 6699.36 7799.65 10499.39 24199.42 14999.70 2599.56 18299.23 13599.35 21399.80 5599.17 5399.95 4598.21 16299.84 12499.59 132
3Dnovator+98.92 399.35 9299.24 10699.67 9299.35 25199.47 13199.62 5099.50 21899.44 10499.12 25899.78 6798.77 10899.94 5797.87 19399.72 19899.62 108
DeepC-MVS98.90 499.62 3599.61 3199.67 9299.72 10999.44 14299.24 13299.71 9599.27 12799.93 1499.90 2299.70 1199.93 7198.99 10199.99 1299.64 92
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast98.47 599.23 12099.12 12599.56 14499.28 27799.22 19798.99 20099.40 25299.08 15999.58 14899.64 14298.90 8999.83 24197.44 23199.75 17799.63 97
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS98.42 699.18 14399.02 15899.67 9299.22 28699.75 5497.25 34799.47 22998.72 20499.66 11799.70 10899.29 3999.63 34198.07 17699.81 15199.62 108
ACMH98.42 699.59 3899.54 4599.72 7999.86 3099.62 10199.56 6799.79 5598.77 19999.80 6099.85 3899.64 1399.85 21398.70 13199.89 9299.70 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+98.40 899.50 5099.43 6299.71 8399.86 3099.76 5099.32 10499.77 6399.53 8699.77 7399.76 7799.26 4599.78 27897.77 20199.88 10099.60 123
HY-MVS98.23 998.21 27297.95 27298.99 26099.03 31798.24 27699.61 5598.72 32596.81 32298.73 30099.51 21694.06 29799.86 19496.91 26498.20 34498.86 312
OpenMVScopyleft98.12 1098.23 27097.89 28299.26 22999.19 29399.26 18499.65 4799.69 10691.33 36198.14 33499.77 7498.28 17299.96 3595.41 32899.55 25398.58 327
ACMM98.09 1199.46 6199.38 7199.72 7999.80 5799.69 8199.13 16999.65 12998.99 16899.64 12399.72 9499.39 2599.86 19498.23 16099.81 15199.60 123
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
COLMAP_ROBcopyleft98.06 1299.45 6399.37 7499.70 8799.83 3899.70 7799.38 8999.78 6099.53 8699.67 11399.78 6799.19 5199.86 19497.32 23799.87 10999.55 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TAPA-MVS97.92 1398.03 27897.55 29299.46 17399.47 21799.44 14298.50 26299.62 14086.79 36499.07 26699.26 28198.26 17499.62 34297.28 24199.73 19299.31 240
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ACMP97.51 1499.05 17098.84 19399.67 9299.78 7399.55 12198.88 21399.66 11897.11 31599.47 18399.60 17999.07 6899.89 14796.18 30399.85 12099.58 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet97.47 1598.42 25498.44 23298.35 30499.46 22296.26 33396.70 35899.34 26897.68 28599.00 27099.13 29997.40 23499.72 29997.59 22399.68 21299.08 287
PLCcopyleft97.35 1698.36 25997.99 26899.48 16899.32 26799.24 19398.50 26299.51 21495.19 34698.58 31198.96 32896.95 25599.83 24195.63 32299.25 30199.37 226
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
OpenMVS_ROBcopyleft97.31 1797.36 30096.84 31198.89 27799.29 27499.45 14098.87 21699.48 22586.54 36699.44 18899.74 8497.34 23999.86 19491.61 35599.28 29797.37 360
PCF-MVS96.03 1896.73 31395.86 32499.33 21299.44 22799.16 20696.87 35699.44 23886.58 36598.95 27399.40 24594.38 29599.88 16187.93 36399.80 15698.95 304
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_095.53 1995.85 33195.31 33397.47 32998.78 34493.48 35795.72 36299.40 25296.18 33297.37 35397.73 36595.73 28299.58 34995.49 32581.40 36999.36 229
IB-MVS95.41 2095.30 33594.46 33897.84 32098.76 34695.33 34597.33 34496.07 36296.02 33395.37 36897.41 36976.17 37599.96 3597.54 22595.44 36798.22 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PMVScopyleft92.94 2198.82 20898.81 19798.85 27899.84 3497.99 29299.20 14299.47 22999.71 4499.42 19499.82 5098.09 18899.47 35893.88 35099.85 12099.07 292
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive92.54 2296.66 31596.11 31998.31 30899.68 13297.55 30897.94 31595.60 36599.37 11490.68 37198.70 34696.56 26198.61 36886.94 36899.55 25398.77 319
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CMPMVSbinary77.52 2398.50 24598.19 25899.41 19398.33 35899.56 11899.01 19399.59 16695.44 34199.57 15199.80 5595.64 28399.46 36096.47 29199.92 7499.21 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_blank8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
DVP-MVS++.99.38 8499.25 10499.77 4099.03 31799.77 4399.74 1699.61 14799.18 14299.76 7599.61 17099.00 7499.92 9197.72 20799.60 24299.62 108
FOURS199.83 3899.89 899.74 1699.71 9599.69 5299.63 127
MSC_two_6792asdad99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
PC_three_145297.56 28999.68 10899.41 24299.09 6297.09 36996.66 28099.60 24299.62 108
No_MVS99.74 6399.03 31799.53 12399.23 29399.92 9197.77 20199.69 20799.78 32
test_one_060199.63 14499.76 5099.55 18899.23 13599.31 22499.61 17098.59 130
eth-test20.00 378
eth-test0.00 378
GeoE99.69 2199.66 2299.78 3799.76 8599.76 5099.60 6099.82 3999.46 10199.75 8199.56 19899.63 1499.95 4599.43 3899.88 10099.62 108
test_method91.72 33692.32 33989.91 35293.49 37470.18 37690.28 36599.56 18261.71 37095.39 36799.52 21293.90 29899.94 5798.76 12698.27 34399.62 108
Anonymous2024052199.44 6599.42 6599.49 16499.89 2198.96 22899.62 5099.76 6899.85 2199.82 5099.88 2996.39 27099.97 1799.59 2199.98 2199.55 149
h-mvs3398.61 22998.34 24399.44 17999.60 15198.67 25099.27 12299.44 23899.68 5499.32 22099.49 22492.50 314100.00 199.24 6796.51 36399.65 85
hse-mvs298.52 24398.30 24799.16 24399.29 27498.60 25798.77 23599.02 31399.68 5499.32 22099.04 31392.50 31499.85 21399.24 6797.87 35499.03 296
CL-MVSNet_self_test98.71 22198.56 22299.15 24599.22 28698.66 25297.14 35099.51 21498.09 26299.54 16599.27 27896.87 25799.74 29498.43 14498.96 31599.03 296
KD-MVS_2432*160095.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
KD-MVS_self_test99.63 3299.59 3499.76 4799.84 3499.90 599.37 9399.79 5599.83 2799.88 3299.85 3898.42 15699.90 13299.60 2099.73 19299.49 185
AUN-MVS97.82 28397.38 29499.14 24699.27 27998.53 25998.72 24199.02 31398.10 26097.18 35899.03 31789.26 34699.85 21397.94 18697.91 35299.03 296
ZD-MVS99.43 23099.61 10799.43 24296.38 32899.11 25999.07 30897.86 20799.92 9194.04 34799.49 268
test117299.23 12099.05 14999.74 6399.52 18999.75 5499.20 14299.61 14798.97 17099.48 18199.58 18798.41 15799.91 11297.15 25499.55 25399.57 143
SR-MVS-dyc-post99.27 11399.11 12899.73 7399.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.41 15799.91 11297.27 24299.61 23999.54 157
RE-MVS-def99.13 12199.54 17999.74 6099.26 12499.62 14099.16 14899.52 17299.64 14298.57 13397.27 24299.61 23999.54 157
SED-MVS99.40 7799.28 9799.77 4099.69 12399.82 2899.20 14299.54 19499.13 15499.82 5099.63 15298.91 8699.92 9197.85 19699.70 20499.58 137
IU-MVS99.69 12399.77 4399.22 29697.50 29599.69 10697.75 20599.70 20499.77 35
OPU-MVS99.29 22299.12 30399.44 14299.20 14299.40 24599.00 7498.84 36696.54 28699.60 24299.58 137
test_241102_TWO99.54 19499.13 15499.76 7599.63 15298.32 17099.92 9197.85 19699.69 20799.75 42
test_241102_ONE99.69 12399.82 2899.54 19499.12 15799.82 5099.49 22498.91 8699.52 355
xxxxxxxxxxxxxcwj99.11 16098.96 17599.54 15199.53 18499.25 18898.29 27899.76 6899.07 16199.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
SF-MVS99.10 16498.93 17899.62 12499.58 15799.51 12699.13 16999.65 12997.97 26999.42 19499.61 17098.86 9299.87 17496.45 29299.68 21299.49 185
ETH3D cwj APD-0.1698.50 24598.16 26199.51 15899.04 31699.39 15698.47 26499.47 22996.70 32598.78 29699.33 26697.62 22899.86 19494.69 34099.38 28399.28 246
cl2297.56 29497.28 29698.40 30298.37 35796.75 32797.24 34899.37 26297.31 30599.41 20299.22 29087.30 34999.37 36297.70 21199.62 23299.08 287
miper_ehance_all_eth98.59 23498.59 21598.59 29598.98 32397.07 32097.49 33899.52 21198.50 22499.52 17299.37 25296.41 26999.71 30397.86 19499.62 23299.00 302
miper_enhance_ethall98.03 27897.94 27698.32 30698.27 35996.43 33296.95 35499.41 24596.37 32999.43 19298.96 32894.74 29199.69 31197.71 20999.62 23298.83 316
ZNCC-MVS99.22 12999.04 15599.77 4099.76 8599.73 6399.28 11999.56 18298.19 25799.14 25599.29 27498.84 9599.92 9197.53 22799.80 15699.64 92
ETH3 D test640097.76 28697.19 30199.50 16199.38 24499.26 18498.34 27399.49 22392.99 35798.54 31499.20 29495.92 28199.82 25191.14 35899.66 22399.40 218
cl____98.54 24198.41 23598.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.85 30099.78 27897.97 18499.89 9299.17 267
DIV-MVS_self_test98.54 24198.42 23498.92 26899.03 31797.80 30197.46 33999.59 16698.90 18299.60 14399.46 23593.87 29999.78 27897.97 18499.89 9299.18 265
eth_miper_zixun_eth98.68 22498.71 20498.60 29499.10 30996.84 32697.52 33799.54 19498.94 17599.58 14899.48 22796.25 27499.76 28898.01 18099.93 7099.21 257
9.1498.64 21099.45 22598.81 22799.60 15997.52 29499.28 23099.56 19898.53 14299.83 24195.36 33099.64 229
testtj98.56 23798.17 26099.72 7999.45 22599.60 10998.88 21399.50 21896.88 31899.18 25099.48 22797.08 25199.92 9193.69 35199.38 28399.63 97
uanet_test8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ETH3D-3000-0.198.77 21298.50 22799.59 13199.47 21799.53 12398.77 23599.60 15997.33 30499.23 23899.50 21997.91 20299.83 24195.02 33599.67 21999.41 216
save fliter99.53 18499.25 18898.29 27899.38 26199.07 161
ET-MVSNet_ETH3D96.78 31196.07 32098.91 27099.26 28197.92 29897.70 32796.05 36397.96 27292.37 37098.43 35687.06 35199.90 13298.27 15797.56 35798.91 308
UniMVSNet_ETH3D99.85 799.83 799.90 499.89 2199.91 299.89 499.71 9599.93 499.95 1099.89 2699.71 999.96 3599.51 3199.97 3099.84 14
EIA-MVS99.12 15699.01 16199.45 17799.36 24999.62 10199.34 9999.79 5598.41 23298.84 28898.89 33598.75 11199.84 23098.15 17199.51 26498.89 309
miper_refine_blended95.89 32895.41 33197.31 33594.96 37193.89 35397.09 35199.22 29697.23 30898.88 28299.04 31379.23 37199.54 35196.24 30196.81 36098.50 334
miper_lstm_enhance98.65 22698.60 21398.82 28599.20 29197.33 31497.78 32399.66 11899.01 16799.59 14699.50 21994.62 29399.85 21398.12 17299.90 8499.26 247
ETV-MVS99.18 14399.18 11299.16 24399.34 26199.28 18099.12 17399.79 5599.48 9298.93 27598.55 35299.40 2499.93 7198.51 14199.52 26398.28 342
CS-MVS99.40 7799.43 6299.29 22299.44 22799.72 6799.36 9699.91 1099.71 4499.28 23098.83 33999.22 4899.86 19499.40 4599.77 17198.29 341
D2MVS99.22 12999.19 11199.29 22299.69 12398.74 24698.81 22799.41 24598.55 21899.68 10899.69 11498.13 18699.87 17498.82 12099.98 2199.24 250
DVP-MVScopyleft99.32 10399.17 11399.77 4099.69 12399.80 3699.14 16399.31 27599.16 14899.62 13599.61 17098.35 16599.91 11297.88 19099.72 19899.61 119
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 14299.62 13599.61 17098.58 13299.91 11297.72 20799.80 15699.77 35
test_0728_SECOND99.83 2199.70 12099.79 3899.14 16399.61 14799.92 9197.88 19099.72 19899.77 35
test072699.69 12399.80 3699.24 13299.57 17799.16 14899.73 9499.65 14098.35 165
SR-MVS99.19 13999.00 16499.74 6399.51 19499.72 6799.18 14899.60 15998.85 18899.47 18399.58 18798.38 16299.92 9196.92 26399.54 25999.57 143
DPM-MVS98.28 26597.94 27699.32 21699.36 24999.11 21197.31 34598.78 32396.88 31898.84 28899.11 30597.77 21499.61 34694.03 34899.36 28899.23 253
GST-MVS99.16 14898.96 17599.75 5799.73 10599.73 6399.20 14299.55 18898.22 25499.32 22099.35 26298.65 12499.91 11296.86 26799.74 18599.62 108
test_yl98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
thisisatest053097.45 29696.95 30798.94 26499.68 13297.73 30399.09 18094.19 37098.61 21399.56 15899.30 27184.30 36499.93 7198.27 15799.54 25999.16 269
Anonymous2024052999.42 7099.34 7999.65 10499.53 18499.60 10999.63 4999.39 25599.47 9799.76 7599.78 6798.13 18699.86 19498.70 13199.68 21299.49 185
Anonymous20240521198.75 21598.46 22999.63 11599.34 26199.66 8899.47 7797.65 35199.28 12699.56 15899.50 21993.15 30699.84 23098.62 13699.58 24799.40 218
DCV-MVSNet98.25 26797.95 27299.13 24799.17 29698.47 26399.00 19598.67 32898.97 17099.22 24299.02 31891.31 32499.69 31197.26 24498.93 31699.24 250
tttt051797.62 29197.20 30098.90 27699.76 8597.40 31299.48 7594.36 36899.06 16599.70 10399.49 22484.55 36399.94 5798.73 12999.65 22799.36 229
our_test_398.85 20599.09 13798.13 31399.66 13894.90 34997.72 32599.58 17599.07 16199.64 12399.62 16198.19 18299.93 7198.41 14599.95 4999.55 149
thisisatest051596.98 30796.42 31498.66 29399.42 23597.47 30997.27 34694.30 36997.24 30799.15 25398.86 33885.01 36199.87 17497.10 25699.39 28298.63 322
ppachtmachnet_test98.89 20099.12 12598.20 31199.66 13895.24 34697.63 32999.68 10999.08 15999.78 6899.62 16198.65 12499.88 16198.02 17799.96 4299.48 190
SMA-MVScopyleft99.19 13999.00 16499.73 7399.46 22299.73 6399.13 16999.52 21197.40 30099.57 15199.64 14298.93 8399.83 24197.61 22199.79 16199.63 97
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GSMVS99.14 275
DPE-MVScopyleft99.14 15298.92 18299.82 2399.57 16799.77 4398.74 23899.60 15998.55 21899.76 7599.69 11498.23 17899.92 9196.39 29499.75 17799.76 39
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_part299.62 14899.67 8699.55 163
test_part198.63 22798.26 25099.75 5799.40 23999.49 12899.67 3899.68 10999.86 1699.88 3299.86 3786.73 35799.93 7199.34 5299.97 3099.81 23
thres100view90096.39 31996.03 32197.47 32999.63 14495.93 33899.18 14897.57 35298.75 20398.70 30397.31 37187.04 35299.67 32787.62 36498.51 33896.81 362
tfpnnormal99.43 6699.38 7199.60 12999.87 2899.75 5499.59 6299.78 6099.71 4499.90 2299.69 11498.85 9499.90 13297.25 24799.78 16799.15 271
tfpn200view996.30 32295.89 32297.53 32799.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33896.81 362
c3_l98.72 22098.71 20498.72 29099.12 30397.22 31797.68 32899.56 18298.90 18299.54 16599.48 22796.37 27199.73 29797.88 19099.88 10099.21 257
CHOSEN 280x42098.41 25598.41 23598.40 30299.34 26195.89 34096.94 35599.44 23898.80 19599.25 23499.52 21293.51 30499.98 798.94 11299.98 2199.32 238
CANet99.11 16099.05 14999.28 22598.83 33698.56 25898.71 24399.41 24599.25 13199.23 23899.22 29097.66 22599.94 5799.19 7599.97 3099.33 235
Fast-Effi-MVS+-dtu99.20 13699.12 12599.43 18399.25 28299.69 8199.05 18699.82 3999.50 9098.97 27199.05 31098.98 7799.98 798.20 16399.24 30398.62 323
Effi-MVS+-dtu99.07 16698.92 18299.52 15598.89 33099.78 4199.15 16199.66 11899.34 11798.92 27899.24 28897.69 21899.98 798.11 17399.28 29798.81 317
CANet_DTU98.91 19598.85 19199.09 25198.79 34298.13 28398.18 28599.31 27599.48 9298.86 28699.51 21696.56 26199.95 4599.05 9799.95 4999.19 263
MVS_030498.88 20198.71 20499.39 19898.85 33498.91 23799.45 7899.30 27898.56 21697.26 35699.68 12596.18 27699.96 3599.17 8099.94 6299.29 244
MP-MVS-pluss99.14 15298.92 18299.80 2999.83 3899.83 2498.61 24599.63 13796.84 32199.44 18899.58 18798.81 9699.91 11297.70 21199.82 14399.67 67
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS99.04 17398.79 20099.81 2699.78 7399.73 6399.35 9899.57 17798.54 22199.54 16598.99 32096.81 25899.93 7196.97 26199.53 26199.77 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
sam_mvs190.81 33499.14 275
sam_mvs90.52 338
IterMVS-SCA-FT99.00 18299.16 11498.51 29799.75 9695.90 33998.07 29999.84 3299.84 2499.89 2699.73 8896.01 27999.99 599.33 55100.00 199.63 97
TSAR-MVS + MP.99.34 9799.24 10699.63 11599.82 4599.37 16299.26 12499.35 26698.77 19999.57 15199.70 10899.27 4499.88 16197.71 20999.75 17799.65 85
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
OPM-MVS99.26 11599.13 12199.63 11599.70 12099.61 10798.58 24999.48 22598.50 22499.52 17299.63 15299.14 5799.76 28897.89 18999.77 17199.51 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMP_NAP99.28 10999.11 12899.79 3499.75 9699.81 3198.95 20899.53 20398.27 25299.53 17099.73 8898.75 11199.87 17497.70 21199.83 13499.68 60
ambc99.20 23999.35 25198.53 25999.17 15399.46 23399.67 11399.80 5598.46 15299.70 30597.92 18799.70 20499.38 223
zzz-MVS99.30 10699.14 11899.80 2999.81 5299.81 3198.73 24099.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
MTGPAbinary99.53 203
mvs-test198.83 20698.70 20799.22 23698.89 33099.65 9398.88 21399.66 11899.34 11798.29 32398.94 33097.69 21899.96 3598.11 17398.54 33798.04 352
CS-MVS-test99.43 6699.40 6899.53 15399.51 19499.84 1999.60 6099.94 699.52 8899.10 26198.89 33599.24 4699.90 13299.11 9299.66 22398.84 315
Effi-MVS+99.06 16798.97 17399.34 21099.31 26898.98 22498.31 27799.91 1098.81 19398.79 29498.94 33099.14 5799.84 23098.79 12298.74 32999.20 260
xiu_mvs_v2_base99.02 17699.11 12898.77 28799.37 24798.09 28898.13 29199.51 21499.47 9799.42 19498.54 35399.38 2999.97 1798.83 11899.33 29298.24 344
xiu_mvs_v1_base99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
new-patchmatchnet99.35 9299.57 4098.71 29299.82 4596.62 32998.55 25599.75 7599.50 9099.88 3299.87 3299.31 3799.88 16199.43 38100.00 199.62 108
pmmvs699.86 699.86 699.83 2199.94 1099.90 599.83 699.91 1099.85 2199.94 1199.95 1299.73 899.90 13299.65 1699.97 3099.69 54
pmmvs599.19 13999.11 12899.42 18599.76 8598.88 23998.55 25599.73 8398.82 19299.72 9699.62 16196.56 26199.82 25199.32 5799.95 4999.56 146
test_post199.14 16351.63 37889.54 34599.82 25196.86 267
test_post52.41 37790.25 34099.86 194
Fast-Effi-MVS+99.02 17698.87 18999.46 17399.38 24499.50 12799.04 18899.79 5597.17 31198.62 30798.74 34599.34 3599.95 4598.32 15399.41 28098.92 307
patchmatchnet-post99.62 16190.58 33699.94 57
Anonymous2023121199.62 3599.57 4099.76 4799.61 14999.60 10999.81 999.73 8399.82 2999.90 2299.90 2297.97 19999.86 19499.42 4399.96 4299.80 24
pmmvs-eth3d99.48 5499.47 5399.51 15899.77 8199.41 15398.81 22799.66 11899.42 11199.75 8199.66 13599.20 5099.76 28898.98 10399.99 1299.36 229
GG-mvs-BLEND97.36 33297.59 36796.87 32599.70 2588.49 37694.64 36997.26 37280.66 36899.12 36391.50 35696.50 36496.08 366
xiu_mvs_v1_base_debi99.23 12099.34 7998.91 27099.59 15498.23 27798.47 26499.66 11899.61 7499.68 10898.94 33099.39 2599.97 1799.18 7799.55 25398.51 331
Anonymous2023120699.35 9299.31 8599.47 17099.74 10299.06 22199.28 11999.74 8099.23 13599.72 9699.53 21097.63 22799.88 16199.11 9299.84 12499.48 190
MTAPA99.35 9299.20 11099.80 2999.81 5299.81 3199.33 10199.53 20399.27 12799.42 19499.63 15298.21 17999.95 4597.83 19999.79 16199.65 85
MTMP99.09 18098.59 332
gm-plane-assit97.59 36789.02 37593.47 35598.30 35899.84 23096.38 295
test9_res95.10 33399.44 27499.50 180
MVP-Stereo99.16 14899.08 13999.43 18399.48 21299.07 21999.08 18399.55 18898.63 21099.31 22499.68 12598.19 18299.78 27898.18 16799.58 24799.45 201
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TEST999.35 25199.35 16998.11 29499.41 24594.83 35297.92 34198.99 32098.02 19499.85 213
train_agg98.35 26297.95 27299.57 14099.35 25199.35 16998.11 29499.41 24594.90 34897.92 34198.99 32098.02 19499.85 21395.38 32999.44 27499.50 180
gg-mvs-nofinetune95.87 33095.17 33497.97 31698.19 36196.95 32299.69 3189.23 37599.89 1196.24 36399.94 1381.19 36699.51 35693.99 34998.20 34497.44 358
SCA98.11 27498.36 24097.36 33299.20 29192.99 35998.17 28798.49 33698.24 25399.10 26199.57 19596.01 27999.94 5796.86 26799.62 23299.14 275
Patchmatch-test98.10 27597.98 27098.48 29999.27 27996.48 33099.40 8599.07 30998.81 19399.23 23899.57 19590.11 34199.87 17496.69 27799.64 22999.09 284
test_899.34 26199.31 17598.08 29899.40 25294.90 34897.87 34598.97 32698.02 19499.84 230
MS-PatchMatch99.00 18298.97 17399.09 25199.11 30898.19 28098.76 23799.33 26998.49 22699.44 18899.58 18798.21 17999.69 31198.20 16399.62 23299.39 221
Patchmatch-RL test98.60 23198.36 24099.33 21299.77 8199.07 21998.27 28099.87 2098.91 18199.74 9099.72 9490.57 33799.79 27598.55 13999.85 12099.11 279
cdsmvs_eth3d_5k24.88 33933.17 3410.00 3550.00 3780.00 3790.00 36699.62 1400.00 3730.00 37499.13 29999.82 40.00 3740.00 3720.00 3720.00 370
pcd_1.5k_mvsjas16.61 34022.14 3430.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 199.28 410.00 3740.00 3720.00 3720.00 370
agg_prior198.33 26497.92 27899.57 14099.35 25199.36 16597.99 30899.39 25594.85 35197.76 35098.98 32398.03 19299.85 21395.49 32599.44 27499.51 174
agg_prior294.58 34199.46 27399.50 180
agg_prior99.35 25199.36 16599.39 25597.76 35099.85 213
tmp_tt95.75 33295.42 33096.76 34089.90 37594.42 35198.86 21797.87 34978.01 36799.30 22999.69 11497.70 21695.89 37099.29 6398.14 34899.95 1
canonicalmvs99.02 17699.00 16499.09 25199.10 30998.70 24899.61 5599.66 11899.63 6998.64 30697.65 36699.04 7299.54 35198.79 12298.92 31899.04 295
anonymousdsp99.80 1199.77 1299.90 499.96 499.88 999.73 1999.85 2699.70 4999.92 1899.93 1499.45 2399.97 1799.36 50100.00 199.85 13
alignmvs98.28 26597.96 27199.25 23299.12 30398.93 23499.03 19098.42 33899.64 6698.72 30197.85 36490.86 33399.62 34298.88 11699.13 30699.19 263
nrg03099.70 1999.66 2299.82 2399.76 8599.84 1999.61 5599.70 10099.93 499.78 6899.68 12599.10 6099.78 27899.45 3699.96 4299.83 18
v14419299.55 4599.54 4599.58 13599.78 7399.20 20399.11 17599.62 14099.18 14299.89 2699.72 9498.66 12299.87 17499.88 699.97 3099.66 77
FIs99.65 3199.58 3799.84 1999.84 3499.85 1499.66 4299.75 7599.86 1699.74 9099.79 6198.27 17399.85 21399.37 4999.93 7099.83 18
v192192099.56 4299.57 4099.55 14799.75 9699.11 21199.05 18699.61 14799.15 15299.88 3299.71 10199.08 6699.87 17499.90 299.97 3099.66 77
UA-Net99.78 1399.76 1499.86 1699.72 10999.71 7099.91 399.95 599.96 299.71 10199.91 2099.15 5599.97 1799.50 33100.00 199.90 4
v119299.57 3999.57 4099.57 14099.77 8199.22 19799.04 18899.60 15999.18 14299.87 3899.72 9499.08 6699.85 21399.89 599.98 2199.66 77
FC-MVSNet-test99.70 1999.65 2499.86 1699.88 2499.86 1399.72 2299.78 6099.90 799.82 5099.83 4498.45 15399.87 17499.51 3199.97 3099.86 11
v114499.54 4799.53 4999.59 13199.79 6799.28 18099.10 17699.61 14799.20 14099.84 4399.73 8898.67 12099.84 23099.86 899.98 2199.64 92
sosnet-low-res8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
HFP-MVS99.25 11699.08 13999.76 4799.73 10599.70 7799.31 10899.59 16698.36 23899.36 21199.37 25298.80 10099.91 11297.43 23299.75 17799.68 60
v14899.40 7799.41 6699.39 19899.76 8598.94 23099.09 18099.59 16699.17 14699.81 5799.61 17098.41 15799.69 31199.32 5799.94 6299.53 162
sosnet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
uncertanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
AllTest99.21 13499.07 14399.63 11599.78 7399.64 9599.12 17399.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
TestCases99.63 11599.78 7399.64 9599.83 3498.63 21099.63 12799.72 9498.68 11799.75 29296.38 29599.83 13499.51 174
v7n99.82 1099.80 1099.88 1199.96 499.84 1999.82 899.82 3999.84 2499.94 1199.91 2099.13 5999.96 3599.83 999.99 1299.83 18
region2R99.23 12099.05 14999.77 4099.76 8599.70 7799.31 10899.59 16698.41 23299.32 22099.36 25798.73 11499.93 7197.29 23999.74 18599.67 67
bset_n11_16_dypcd98.69 22398.45 23099.42 18599.69 12398.52 26196.06 36196.80 35999.71 4499.73 9499.54 20795.14 28799.96 3599.39 4699.95 4999.79 30
RRT_MVS98.75 21598.54 22399.41 19398.14 36598.61 25698.98 20499.66 11899.31 12299.84 4399.75 8191.98 31799.98 799.20 7399.95 4999.62 108
PS-MVSNAJss99.84 899.82 899.89 799.96 499.77 4399.68 3499.85 2699.95 399.98 399.92 1799.28 4199.98 799.75 13100.00 199.94 2
PS-MVSNAJ99.00 18299.08 13998.76 28899.37 24798.10 28798.00 30699.51 21499.47 9799.41 20298.50 35599.28 4199.97 1798.83 11899.34 29098.20 348
jajsoiax99.89 399.89 399.89 799.96 499.78 4199.70 2599.86 2299.89 1199.98 399.90 2299.94 199.98 799.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 499.96 499.79 3899.72 2299.88 1899.92 699.98 399.93 1499.94 199.98 799.77 12100.00 199.92 3
#test#99.12 15698.90 18699.76 4799.73 10599.70 7799.10 17699.59 16697.60 28899.36 21199.37 25298.80 10099.91 11296.84 27099.75 17799.68 60
EI-MVSNet-UG-set99.48 5499.50 5199.42 18599.57 16798.65 25599.24 13299.46 23399.68 5499.80 6099.66 13598.99 7699.89 14799.19 7599.90 8499.72 45
EI-MVSNet-Vis-set99.47 6099.49 5299.42 18599.57 16798.66 25299.24 13299.46 23399.67 5899.79 6599.65 14098.97 7999.89 14799.15 8499.89 9299.71 48
Regformer-399.41 7499.41 6699.40 19599.52 18998.70 24899.17 15399.44 23899.62 7099.75 8199.60 17998.90 8999.85 21398.89 11599.84 12499.65 85
Regformer-499.45 6399.44 5999.50 16199.52 18998.94 23099.17 15399.53 20399.64 6699.76 7599.60 17998.96 8299.90 13298.91 11499.84 12499.67 67
Regformer-199.32 10399.27 10099.47 17099.41 23698.95 22998.99 20099.48 22599.48 9299.66 11799.52 21298.78 10599.87 17498.36 14899.74 18599.60 123
Regformer-299.34 9799.27 10099.53 15399.41 23699.10 21598.99 20099.53 20399.47 9799.66 11799.52 21298.80 10099.89 14798.31 15499.74 18599.60 123
HPM-MVS++copyleft98.96 18998.70 20799.74 6399.52 18999.71 7098.86 21799.19 30198.47 22898.59 31099.06 30998.08 19099.91 11296.94 26299.60 24299.60 123
test_prior499.19 20498.00 306
XVS99.27 11399.11 12899.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29899.47 23298.47 14999.88 16197.62 21999.73 19299.67 67
v124099.56 4299.58 3799.51 15899.80 5799.00 22299.00 19599.65 12999.15 15299.90 2299.75 8199.09 6299.88 16199.90 299.96 4299.67 67
test_prior398.62 22898.34 24399.46 17399.35 25199.22 19797.95 31399.39 25597.87 27698.05 33699.05 31097.90 20399.69 31195.99 31099.49 26899.48 190
pm-mvs199.79 1299.79 1199.78 3799.91 1599.83 2499.76 1399.87 2099.73 4099.89 2699.87 3299.63 1499.87 17499.54 2799.92 7499.63 97
test_prior297.95 31397.87 27698.05 33699.05 31097.90 20395.99 31099.49 268
X-MVStestdata96.09 32594.87 33599.75 5799.71 11299.71 7099.37 9399.61 14799.29 12398.76 29861.30 37698.47 14999.88 16197.62 21999.73 19299.67 67
test_prior99.46 17399.35 25199.22 19799.39 25599.69 31199.48 190
旧先验297.94 31595.33 34398.94 27499.88 16196.75 274
新几何298.04 302
新几何199.52 15599.50 20199.22 19799.26 28695.66 34098.60 30999.28 27697.67 22199.89 14795.95 31499.32 29399.45 201
旧先验199.49 20699.29 17899.26 28699.39 24997.67 22199.36 28899.46 199
无先验98.01 30499.23 29395.83 33699.85 21395.79 31999.44 206
原ACMM297.92 317
原ACMM199.37 20599.47 21798.87 24199.27 28496.74 32498.26 32599.32 26797.93 20199.82 25195.96 31399.38 28399.43 212
test22299.51 19499.08 21897.83 32299.29 28095.21 34598.68 30499.31 26997.28 24199.38 28399.43 212
testdata299.89 14795.99 310
segment_acmp98.37 163
testdata99.42 18599.51 19498.93 23499.30 27896.20 33198.87 28599.40 24598.33 16999.89 14796.29 29899.28 29799.44 206
testdata197.72 32597.86 279
v899.68 2499.69 1899.65 10499.80 5799.40 15499.66 4299.76 6899.64 6699.93 1499.85 3898.66 12299.84 23099.88 699.99 1299.71 48
131498.00 28097.90 28198.27 31098.90 32797.45 31199.30 11199.06 31194.98 34797.21 35799.12 30398.43 15499.67 32795.58 32498.56 33697.71 356
112198.56 23798.24 25199.52 15599.49 20699.24 19399.30 11199.22 29695.77 33798.52 31599.29 27497.39 23699.85 21395.79 31999.34 29099.46 199
LFMVS98.46 25198.19 25899.26 22999.24 28498.52 26199.62 5096.94 35899.87 1499.31 22499.58 18791.04 32899.81 26798.68 13499.42 27999.45 201
VDD-MVS99.20 13699.11 12899.44 17999.43 23098.98 22499.50 7198.32 34299.80 3399.56 15899.69 11496.99 25499.85 21398.99 10199.73 19299.50 180
VDDNet98.97 18698.82 19699.42 18599.71 11298.81 24299.62 5098.68 32699.81 3099.38 20999.80 5594.25 29699.85 21398.79 12299.32 29399.59 132
v1099.69 2199.69 1899.66 9999.81 5299.39 15699.66 4299.75 7599.60 8099.92 1899.87 3298.75 11199.86 19499.90 299.99 1299.73 44
VPNet99.46 6199.37 7499.71 8399.82 4599.59 11299.48 7599.70 10099.81 3099.69 10699.58 18797.66 22599.86 19499.17 8099.44 27499.67 67
MVS95.72 33394.63 33798.99 26098.56 35297.98 29799.30 11198.86 31872.71 36997.30 35499.08 30798.34 16799.74 29489.21 36098.33 34199.26 247
v2v48299.50 5099.47 5399.58 13599.78 7399.25 18899.14 16399.58 17599.25 13199.81 5799.62 16198.24 17599.84 23099.83 999.97 3099.64 92
V4299.56 4299.54 4599.63 11599.79 6799.46 13599.39 8799.59 16699.24 13399.86 3999.70 10898.55 13699.82 25199.79 1199.95 4999.60 123
SD-MVS99.01 18099.30 9098.15 31299.50 20199.40 15498.94 21099.61 14799.22 13999.75 8199.82 5099.54 2295.51 37197.48 22999.87 10999.54 157
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GA-MVS97.99 28197.68 28998.93 26799.52 18998.04 29197.19 34999.05 31298.32 24998.81 29198.97 32689.89 34499.41 36198.33 15299.05 31099.34 234
MSLP-MVS++99.05 17099.09 13798.91 27099.21 28898.36 27398.82 22699.47 22998.85 18898.90 28199.56 19898.78 10599.09 36498.57 13899.68 21299.26 247
APDe-MVS99.48 5499.36 7799.85 1899.55 17899.81 3199.50 7199.69 10698.99 16899.75 8199.71 10198.79 10399.93 7198.46 14399.85 12099.80 24
APD-MVS_3200maxsize99.31 10599.16 11499.74 6399.53 18499.75 5499.27 12299.61 14799.19 14199.57 15199.64 14298.76 10999.90 13297.29 23999.62 23299.56 146
ADS-MVSNet297.78 28597.66 29198.12 31499.14 29995.36 34499.22 13998.75 32496.97 31698.25 32699.64 14290.90 33199.94 5796.51 28899.56 24999.08 287
EI-MVSNet99.38 8499.44 5999.21 23799.58 15798.09 28899.26 12499.46 23399.62 7099.75 8199.67 13198.54 13899.85 21399.15 8499.92 7499.68 60
Regformer8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
CVMVSNet98.61 22998.88 18897.80 32199.58 15793.60 35699.26 12499.64 13599.66 6299.72 9699.67 13193.26 30599.93 7199.30 6099.81 15199.87 9
pmmvs499.13 15499.06 14599.36 20899.57 16799.10 21598.01 30499.25 28998.78 19899.58 14899.44 23998.24 17599.76 28898.74 12899.93 7099.22 255
EU-MVSNet99.39 8299.62 2798.72 29099.88 2496.44 33199.56 6799.85 2699.90 799.90 2299.85 3898.09 18899.83 24199.58 2499.95 4999.90 4
VNet99.18 14399.06 14599.56 14499.24 28499.36 16599.33 10199.31 27599.67 5899.47 18399.57 19596.48 26499.84 23099.15 8499.30 29599.47 195
test-LLR97.15 30396.95 30797.74 32498.18 36295.02 34797.38 34196.10 36098.00 26597.81 34798.58 34890.04 34299.91 11297.69 21798.78 32398.31 339
TESTMET0.1,196.24 32395.84 32597.41 33198.24 36093.84 35597.38 34195.84 36498.43 22997.81 34798.56 35179.77 37099.89 14797.77 20198.77 32598.52 330
test-mter96.23 32495.73 32797.74 32498.18 36295.02 34797.38 34196.10 36097.90 27497.81 34798.58 34879.12 37399.91 11297.69 21798.78 32398.31 339
VPA-MVSNet99.66 2699.62 2799.79 3499.68 13299.75 5499.62 5099.69 10699.85 2199.80 6099.81 5398.81 9699.91 11299.47 3599.88 10099.70 51
ACMMPR99.23 12099.06 14599.76 4799.74 10299.69 8199.31 10899.59 16698.36 23899.35 21399.38 25198.61 12899.93 7197.43 23299.75 17799.67 67
testgi99.29 10899.26 10299.37 20599.75 9698.81 24298.84 22099.89 1598.38 23699.75 8199.04 31399.36 3499.86 19499.08 9599.25 30199.45 201
test20.0399.55 4599.54 4599.58 13599.79 6799.37 16299.02 19199.89 1599.60 8099.82 5099.62 16198.81 9699.89 14799.43 3899.86 11699.47 195
thres600view796.60 31696.16 31897.93 31799.63 14496.09 33799.18 14897.57 35298.77 19998.72 30197.32 37087.04 35299.72 29988.57 36198.62 33497.98 353
ADS-MVSNet97.72 28997.67 29097.86 31999.14 29994.65 35099.22 13998.86 31896.97 31698.25 32699.64 14290.90 33199.84 23096.51 28899.56 24999.08 287
MP-MVScopyleft99.06 16798.83 19599.76 4799.76 8599.71 7099.32 10499.50 21898.35 24398.97 27199.48 22798.37 16399.92 9195.95 31499.75 17799.63 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testmvs28.94 33833.33 34015.79 35426.03 3769.81 37896.77 35715.67 37711.55 37223.87 37350.74 37919.03 3778.53 37323.21 37133.07 37029.03 369
thres40096.40 31895.89 32297.92 31899.58 15796.11 33599.00 19597.54 35598.43 22998.52 31596.98 37386.85 35499.67 32787.62 36498.51 33897.98 353
test12329.31 33733.05 34218.08 35325.93 37712.24 37797.53 33510.93 37811.78 37124.21 37250.08 38021.04 3768.60 37223.51 37032.43 37133.39 368
thres20096.09 32595.68 32897.33 33499.48 21296.22 33498.53 25997.57 35298.06 26498.37 32296.73 37586.84 35699.61 34686.99 36798.57 33596.16 365
test0.0.03 197.37 29996.91 31098.74 28997.72 36697.57 30797.60 33197.36 35798.00 26599.21 24498.02 36290.04 34299.79 27598.37 14795.89 36698.86 312
pmmvs398.08 27697.80 28398.91 27099.41 23697.69 30597.87 32099.66 11895.87 33599.50 17999.51 21690.35 33999.97 1798.55 13999.47 27199.08 287
EMVS96.96 30897.28 29695.99 35098.76 34691.03 37095.26 36498.61 33099.34 11798.92 27898.88 33793.79 30199.66 33192.87 35299.05 31097.30 361
E-PMN97.14 30597.43 29396.27 34798.79 34291.62 36795.54 36399.01 31599.44 10498.88 28299.12 30392.78 31099.68 32294.30 34399.03 31297.50 357
PGM-MVS99.20 13699.01 16199.77 4099.75 9699.71 7099.16 15999.72 9297.99 26799.42 19499.60 17998.81 9699.93 7196.91 26499.74 18599.66 77
LCM-MVSNet-Re99.28 10999.15 11799.67 9299.33 26699.76 5099.34 9999.97 298.93 17899.91 2099.79 6198.68 11799.93 7196.80 27299.56 24999.30 241
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 999.78 6100.00 199.92 1100.00 199.87 9
MCST-MVS99.02 17698.81 19799.65 10499.58 15799.49 12898.58 24999.07 30998.40 23499.04 26899.25 28398.51 14799.80 27297.31 23899.51 26499.65 85
mvs_anonymous99.28 10999.39 6998.94 26499.19 29397.81 30099.02 19199.55 18899.78 3699.85 4099.80 5598.24 17599.86 19499.57 2599.50 26699.15 271
MVS_Test99.28 10999.31 8599.19 24099.35 25198.79 24499.36 9699.49 22399.17 14699.21 24499.67 13198.78 10599.66 33199.09 9499.66 22399.10 281
MDA-MVSNet-bldmvs99.06 16799.05 14999.07 25599.80 5797.83 29998.89 21299.72 9299.29 12399.63 12799.70 10896.47 26599.89 14798.17 16999.82 14399.50 180
CDPH-MVS98.56 23798.20 25599.61 12799.50 20199.46 13598.32 27699.41 24595.22 34499.21 24499.10 30698.34 16799.82 25195.09 33499.66 22399.56 146
test1299.54 15199.29 27499.33 17299.16 30498.43 32097.54 22999.82 25199.47 27199.48 190
casdiffmvs99.63 3299.61 3199.67 9299.79 6799.59 11299.13 16999.85 2699.79 3599.76 7599.72 9499.33 3699.82 25199.21 7099.94 6299.59 132
diffmvs99.34 9799.32 8499.39 19899.67 13798.77 24598.57 25399.81 4899.61 7499.48 18199.41 24298.47 14999.86 19498.97 10599.90 8499.53 162
baseline296.83 31096.28 31698.46 30099.09 31196.91 32498.83 22293.87 37197.23 30896.23 36498.36 35788.12 34899.90 13296.68 27898.14 34898.57 328
baseline197.73 28797.33 29598.96 26299.30 27297.73 30399.40 8598.42 33899.33 12099.46 18699.21 29291.18 32699.82 25198.35 15091.26 36899.32 238
YYNet198.95 19298.99 16998.84 28099.64 14297.14 31998.22 28499.32 27198.92 18099.59 14699.66 13597.40 23499.83 24198.27 15799.90 8499.55 149
PMMVS299.48 5499.45 5799.57 14099.76 8598.99 22398.09 29699.90 1498.95 17499.78 6899.58 18799.57 2099.93 7199.48 3499.95 4999.79 30
MDA-MVSNet_test_wron98.95 19298.99 16998.85 27899.64 14297.16 31898.23 28399.33 26998.93 17899.56 15899.66 13597.39 23699.83 24198.29 15599.88 10099.55 149
tpmvs97.39 29897.69 28896.52 34598.41 35591.76 36599.30 11198.94 31797.74 28297.85 34699.55 20592.40 31699.73 29796.25 30098.73 33198.06 351
PM-MVS99.36 9099.29 9599.58 13599.83 3899.66 8898.95 20899.86 2298.85 18899.81 5799.73 8898.40 16199.92 9198.36 14899.83 13499.17 267
HQP_MVS98.90 19798.68 20999.55 14799.58 15799.24 19398.80 23099.54 19498.94 17599.14 25599.25 28397.24 24299.82 25195.84 31799.78 16799.60 123
plane_prior799.58 15799.38 159
plane_prior699.47 21799.26 18497.24 242
plane_prior599.54 19499.82 25195.84 31799.78 16799.60 123
plane_prior499.25 283
plane_prior399.31 17598.36 23899.14 255
plane_prior298.80 23098.94 175
plane_prior199.51 194
plane_prior99.24 19398.42 27097.87 27699.71 202
PS-CasMVS99.66 2699.58 3799.89 799.80 5799.85 1499.66 4299.73 8399.62 7099.84 4399.71 10198.62 12699.96 3599.30 6099.96 4299.86 11
UniMVSNet_NR-MVSNet99.37 8799.25 10499.72 7999.47 21799.56 11898.97 20699.61 14799.43 10999.67 11399.28 27697.85 20999.95 4599.17 8099.81 15199.65 85
PEN-MVS99.66 2699.59 3499.89 799.83 3899.87 1099.66 4299.73 8399.70 4999.84 4399.73 8898.56 13599.96 3599.29 6399.94 6299.83 18
TransMVSNet (Re)99.78 1399.77 1299.81 2699.91 1599.85 1499.75 1599.86 2299.70 4999.91 2099.89 2699.60 1999.87 17499.59 2199.74 18599.71 48
DTE-MVSNet99.68 2499.61 3199.88 1199.80 5799.87 1099.67 3899.71 9599.72 4399.84 4399.78 6798.67 12099.97 1799.30 6099.95 4999.80 24
DU-MVS99.33 10199.21 10999.71 8399.43 23099.56 11898.83 22299.53 20399.38 11399.67 11399.36 25797.67 22199.95 4599.17 8099.81 15199.63 97
UniMVSNet (Re)99.37 8799.26 10299.68 8999.51 19499.58 11598.98 20499.60 15999.43 10999.70 10399.36 25797.70 21699.88 16199.20 7399.87 10999.59 132
CP-MVSNet99.54 4799.43 6299.87 1499.76 8599.82 2899.57 6599.61 14799.54 8499.80 6099.64 14297.79 21399.95 4599.21 7099.94 6299.84 14
WR-MVS_H99.61 3799.53 4999.87 1499.80 5799.83 2499.67 3899.75 7599.58 8399.85 4099.69 11498.18 18499.94 5799.28 6599.95 4999.83 18
WR-MVS99.11 16098.93 17899.66 9999.30 27299.42 14998.42 27099.37 26299.04 16699.57 15199.20 29496.89 25699.86 19498.66 13599.87 10999.70 51
NR-MVSNet99.40 7799.31 8599.68 8999.43 23099.55 12199.73 1999.50 21899.46 10199.88 3299.36 25797.54 22999.87 17498.97 10599.87 10999.63 97
Baseline_NR-MVSNet99.49 5299.37 7499.82 2399.91 1599.84 1998.83 22299.86 2299.68 5499.65 12199.88 2997.67 22199.87 17499.03 9899.86 11699.76 39
TranMVSNet+NR-MVSNet99.54 4799.47 5399.76 4799.58 15799.64 9599.30 11199.63 13799.61 7499.71 10199.56 19898.76 10999.96 3599.14 9099.92 7499.68 60
TSAR-MVS + GP.99.12 15699.04 15599.38 20299.34 26199.16 20698.15 28899.29 28098.18 25899.63 12799.62 16199.18 5299.68 32298.20 16399.74 18599.30 241
abl_699.36 9099.23 10899.75 5799.71 11299.74 6099.33 10199.76 6899.07 16199.65 12199.63 15299.09 6299.92 9197.13 25599.76 17499.58 137
n20.00 379
nn0.00 379
mPP-MVS99.19 13999.00 16499.76 4799.76 8599.68 8499.38 8999.54 19498.34 24799.01 26999.50 21998.53 14299.93 7197.18 25299.78 16799.66 77
door-mid99.83 34
XVG-OURS-SEG-HR99.16 14898.99 16999.66 9999.84 3499.64 9598.25 28299.73 8398.39 23599.63 12799.43 24099.70 1199.90 13297.34 23698.64 33399.44 206
DWT-MVSNet_test96.03 32795.80 32696.71 34498.50 35491.93 36499.25 13197.87 34995.99 33496.81 36097.61 36781.02 36799.66 33197.20 25197.98 35198.54 329
MVSFormer99.41 7499.44 5999.31 21999.57 16798.40 26999.77 1199.80 4999.73 4099.63 12799.30 27198.02 19499.98 799.43 3899.69 20799.55 149
jason99.16 14899.11 12899.32 21699.75 9698.44 26698.26 28199.39 25598.70 20599.74 9099.30 27198.54 13899.97 1798.48 14299.82 14399.55 149
jason: jason.
lupinMVS98.96 18998.87 18999.24 23499.57 16798.40 26998.12 29299.18 30298.28 25199.63 12799.13 29998.02 19499.97 1798.22 16199.69 20799.35 232
test_djsdf99.84 899.81 999.91 299.94 1099.84 1999.77 1199.80 4999.73 4099.97 699.92 1799.77 799.98 799.43 38100.00 199.90 4
HPM-MVS_fast99.43 6699.30 9099.80 2999.83 3899.81 3199.52 6999.70 10098.35 24399.51 17799.50 21999.31 3799.88 16198.18 16799.84 12499.69 54
RRT_test8_iter0597.35 30197.25 29897.63 32698.81 34093.13 35899.26 12499.89 1599.51 8999.83 4899.68 12579.03 37499.88 16199.53 2999.72 19899.89 8
K. test v398.87 20398.60 21399.69 8899.93 1399.46 13599.74 1694.97 36699.78 3699.88 3299.88 2993.66 30399.97 1799.61 1999.95 4999.64 92
lessismore_v099.64 11199.86 3099.38 15990.66 37399.89 2699.83 4494.56 29499.97 1799.56 2699.92 7499.57 143
SixPastTwentyTwo99.42 7099.30 9099.76 4799.92 1499.67 8699.70 2599.14 30699.65 6499.89 2699.90 2296.20 27599.94 5799.42 4399.92 7499.67 67
OurMVSNet-221017-099.75 1599.71 1699.84 1999.96 499.83 2499.83 699.85 2699.80 3399.93 1499.93 1498.54 13899.93 7199.59 2199.98 2199.76 39
HPM-MVScopyleft99.25 11699.07 14399.78 3799.81 5299.75 5499.61 5599.67 11497.72 28399.35 21399.25 28399.23 4799.92 9197.21 25099.82 14399.67 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVG-OURS99.21 13499.06 14599.65 10499.82 4599.62 10197.87 32099.74 8098.36 23899.66 11799.68 12599.71 999.90 13296.84 27099.88 10099.43 212
XVG-ACMP-BASELINE99.23 12099.10 13699.63 11599.82 4599.58 11598.83 22299.72 9298.36 23899.60 14399.71 10198.92 8499.91 11297.08 25799.84 12499.40 218
LPG-MVS_test99.22 12999.05 14999.74 6399.82 4599.63 9999.16 15999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
LGP-MVS_train99.74 6399.82 4599.63 9999.73 8397.56 28999.64 12399.69 11499.37 3199.89 14796.66 28099.87 10999.69 54
baseline99.63 3299.62 2799.66 9999.80 5799.62 10199.44 8199.80 4999.71 4499.72 9699.69 11499.15 5599.83 24199.32 5799.94 6299.53 162
test1199.29 280
door99.77 63
EPNet_dtu97.62 29197.79 28597.11 33996.67 37092.31 36298.51 26198.04 34499.24 13395.77 36599.47 23293.78 30299.66 33198.98 10399.62 23299.37 226
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 1792x268899.39 8299.30 9099.65 10499.88 2499.25 18898.78 23499.88 1898.66 20799.96 899.79 6197.45 23299.93 7199.34 5299.99 1299.78 32
EPNet98.13 27397.77 28699.18 24294.57 37397.99 29299.24 13297.96 34699.74 3997.29 35599.62 16193.13 30799.97 1798.59 13799.83 13499.58 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP5-MVS98.94 230
HQP-NCC99.31 26897.98 30997.45 29798.15 330
ACMP_Plane99.31 26897.98 30997.45 29798.15 330
APD-MVScopyleft98.87 20398.59 21599.71 8399.50 20199.62 10199.01 19399.57 17796.80 32399.54 16599.63 15298.29 17199.91 11295.24 33199.71 20299.61 119
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
BP-MVS94.73 337
HQP4-MVS98.15 33099.70 30599.53 162
HQP3-MVS99.37 26299.67 219
HQP2-MVS96.67 259
CNVR-MVS98.99 18598.80 19999.56 14499.25 28299.43 14698.54 25899.27 28498.58 21598.80 29399.43 24098.53 14299.70 30597.22 24999.59 24699.54 157
NCCC98.82 20898.57 21999.58 13599.21 28899.31 17598.61 24599.25 28998.65 20898.43 32099.26 28197.86 20799.81 26796.55 28599.27 30099.61 119
114514_t98.49 24898.11 26399.64 11199.73 10599.58 11599.24 13299.76 6889.94 36399.42 19499.56 19897.76 21599.86 19497.74 20699.82 14399.47 195
CP-MVS99.23 12099.05 14999.75 5799.66 13899.66 8899.38 8999.62 14098.38 23699.06 26799.27 27898.79 10399.94 5797.51 22899.82 14399.66 77
DSMNet-mixed99.48 5499.65 2498.95 26399.71 11297.27 31599.50 7199.82 3999.59 8299.41 20299.85 3899.62 16100.00 199.53 2999.89 9299.59 132
tpm296.35 32096.22 31796.73 34298.88 33391.75 36699.21 14198.51 33493.27 35697.89 34399.21 29284.83 36299.70 30596.04 30798.18 34798.75 320
NP-MVS99.40 23999.13 20998.83 339
EG-PatchMatch MVS99.57 3999.56 4499.62 12499.77 8199.33 17299.26 12499.76 6899.32 12199.80 6099.78 6799.29 3999.87 17499.15 8499.91 8399.66 77
tpm cat196.78 31196.98 30696.16 34998.85 33490.59 37399.08 18399.32 27192.37 35897.73 35299.46 23591.15 32799.69 31196.07 30698.80 32298.21 346
SteuartSystems-ACMMP99.30 10699.14 11899.76 4799.87 2899.66 8899.18 14899.60 15998.55 21899.57 15199.67 13199.03 7399.94 5797.01 25999.80 15699.69 54
Skip Steuart: Steuart Systems R&D Blog.
CostFormer96.71 31496.79 31396.46 34698.90 32790.71 37299.41 8498.68 32694.69 35398.14 33499.34 26586.32 36099.80 27297.60 22298.07 35098.88 310
CR-MVSNet98.35 26298.20 25598.83 28299.05 31498.12 28499.30 11199.67 11497.39 30199.16 25199.79 6191.87 32099.91 11298.78 12598.77 32598.44 336
JIA-IIPM98.06 27797.92 27898.50 29898.59 35197.02 32198.80 23098.51 33499.88 1397.89 34399.87 3291.89 31999.90 13298.16 17097.68 35698.59 325
Patchmtry98.78 21198.54 22399.49 16498.89 33099.19 20499.32 10499.67 11499.65 6499.72 9699.79 6191.87 32099.95 4598.00 18199.97 3099.33 235
PatchT98.45 25298.32 24698.83 28298.94 32598.29 27599.24 13298.82 32199.84 2499.08 26399.76 7791.37 32399.94 5798.82 12099.00 31498.26 343
tpmrst97.73 28798.07 26596.73 34298.71 34892.00 36399.10 17698.86 31898.52 22298.92 27899.54 20791.90 31899.82 25198.02 17799.03 31298.37 338
BH-w/o97.20 30297.01 30597.76 32299.08 31295.69 34198.03 30398.52 33395.76 33897.96 34098.02 36295.62 28499.47 35892.82 35397.25 35998.12 350
tpm97.15 30396.95 30797.75 32398.91 32694.24 35299.32 10497.96 34697.71 28498.29 32399.32 26786.72 35899.92 9198.10 17596.24 36599.09 284
DELS-MVS99.34 9799.30 9099.48 16899.51 19499.36 16598.12 29299.53 20399.36 11699.41 20299.61 17099.22 4899.87 17499.21 7099.68 21299.20 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
BH-untuned98.22 27198.09 26498.58 29699.38 24497.24 31698.55 25598.98 31697.81 28199.20 24998.76 34497.01 25399.65 33894.83 33698.33 34198.86 312
RPMNet98.60 23198.53 22598.83 28299.05 31498.12 28499.30 11199.62 14099.86 1699.16 25199.74 8492.53 31399.92 9198.75 12798.77 32598.44 336
MVSTER98.47 25098.22 25399.24 23499.06 31398.35 27499.08 18399.46 23399.27 12799.75 8199.66 13588.61 34799.85 21399.14 9099.92 7499.52 172
CPTT-MVS98.74 21798.44 23299.64 11199.61 14999.38 15999.18 14899.55 18896.49 32699.27 23299.37 25297.11 25099.92 9195.74 32199.67 21999.62 108
GBi-Net99.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
PVSNet_Blended_VisFu99.40 7799.38 7199.44 17999.90 1998.66 25298.94 21099.91 1097.97 26999.79 6599.73 8899.05 7199.97 1799.15 8499.99 1299.68 60
PVSNet_BlendedMVS99.03 17499.01 16199.09 25199.54 17997.99 29298.58 24999.82 3997.62 28799.34 21699.71 10198.52 14599.77 28697.98 18299.97 3099.52 172
UnsupCasMVSNet_eth98.83 20698.57 21999.59 13199.68 13299.45 14098.99 20099.67 11499.48 9299.55 16399.36 25794.92 28899.86 19498.95 11196.57 36299.45 201
UnsupCasMVSNet_bld98.55 24098.27 24999.40 19599.56 17799.37 16297.97 31299.68 10997.49 29699.08 26399.35 26295.41 28699.82 25197.70 21198.19 34699.01 301
PVSNet_Blended98.70 22298.59 21599.02 25999.54 17997.99 29297.58 33299.82 3995.70 33999.34 21698.98 32398.52 14599.77 28697.98 18299.83 13499.30 241
FMVSNet597.80 28497.25 29899.42 18598.83 33698.97 22699.38 8999.80 4998.87 18699.25 23499.69 11480.60 36999.91 11298.96 10799.90 8499.38 223
test199.42 7099.31 8599.73 7399.49 20699.77 4399.68 3499.70 10099.44 10499.62 13599.83 4497.21 24499.90 13298.96 10799.90 8499.53 162
new_pmnet98.88 20198.89 18798.84 28099.70 12097.62 30698.15 28899.50 21897.98 26899.62 13599.54 20798.15 18599.94 5797.55 22499.84 12498.95 304
FMVSNet398.80 21098.63 21299.32 21699.13 30198.72 24799.10 17699.48 22599.23 13599.62 13599.64 14292.57 31199.86 19498.96 10799.90 8499.39 221
dp96.86 30997.07 30396.24 34898.68 35090.30 37499.19 14798.38 34197.35 30398.23 32899.59 18587.23 35099.82 25196.27 29998.73 33198.59 325
FMVSNet299.35 9299.28 9799.55 14799.49 20699.35 16999.45 7899.57 17799.44 10499.70 10399.74 8497.21 24499.87 17499.03 9899.94 6299.44 206
FMVSNet199.66 2699.63 2699.73 7399.78 7399.77 4399.68 3499.70 10099.67 5899.82 5099.83 4498.98 7799.90 13299.24 6799.97 3099.53 162
N_pmnet98.73 21998.53 22599.35 20999.72 10998.67 25098.34 27394.65 36798.35 24399.79 6599.68 12598.03 19299.93 7198.28 15699.92 7499.44 206
cascas96.99 30696.82 31297.48 32897.57 36995.64 34296.43 36099.56 18291.75 35997.13 35997.61 36795.58 28598.63 36796.68 27899.11 30798.18 349
BH-RMVSNet98.41 25598.14 26299.21 23799.21 28898.47 26398.60 24798.26 34398.35 24398.93 27599.31 26997.20 24799.66 33194.32 34299.10 30899.51 174
UGNet99.38 8499.34 7999.49 16498.90 32798.90 23899.70 2599.35 26699.86 1698.57 31299.81 5398.50 14899.93 7199.38 4799.98 2199.66 77
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
WTY-MVS98.59 23498.37 23999.26 22999.43 23098.40 26998.74 23899.13 30898.10 26099.21 24499.24 28894.82 29099.90 13297.86 19498.77 32599.49 185
XXY-MVS99.71 1899.67 2199.81 2699.89 2199.72 6799.59 6299.82 3999.39 11299.82 5099.84 4399.38 2999.91 11299.38 4799.93 7099.80 24
DROMVSNet99.69 2199.69 1899.68 8999.71 11299.91 299.76 1399.96 499.86 1699.51 17799.39 24999.57 2099.93 7199.64 1899.86 11699.20 260
sss98.90 19798.77 20199.27 22799.48 21298.44 26698.72 24199.32 27197.94 27399.37 21099.35 26296.31 27299.91 11298.85 11799.63 23199.47 195
Test_1112_low_res98.95 19298.73 20299.63 11599.68 13299.15 20898.09 29699.80 4997.14 31399.46 18699.40 24596.11 27799.89 14799.01 10099.84 12499.84 14
1112_ss99.05 17098.84 19399.67 9299.66 13899.29 17898.52 26099.82 3997.65 28699.43 19299.16 29796.42 26799.91 11299.07 9699.84 12499.80 24
ab-mvs-re8.26 34811.02 3510.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 37499.16 2970.00 3780.00 3740.00 3720.00 3720.00 370
ab-mvs99.33 10199.28 9799.47 17099.57 16799.39 15699.78 1099.43 24298.87 18699.57 15199.82 5098.06 19199.87 17498.69 13399.73 19299.15 271
TR-MVS97.44 29797.15 30298.32 30698.53 35397.46 31098.47 26497.91 34896.85 32098.21 32998.51 35496.42 26799.51 35692.16 35497.29 35897.98 353
MDTV_nov1_ep13_2view91.44 36999.14 16397.37 30299.21 24491.78 32296.75 27499.03 296
MDTV_nov1_ep1397.73 28798.70 34990.83 37199.15 16198.02 34598.51 22398.82 29099.61 17090.98 32999.66 33196.89 26698.92 318
MIMVSNet199.66 2699.62 2799.80 2999.94 1099.87 1099.69 3199.77 6399.78 3699.93 1499.89 2697.94 20099.92 9199.65 1699.98 2199.62 108
MIMVSNet98.43 25398.20 25599.11 24999.53 18498.38 27299.58 6498.61 33098.96 17399.33 21899.76 7790.92 33099.81 26797.38 23599.76 17499.15 271
IterMVS-LS99.41 7499.47 5399.25 23299.81 5298.09 28898.85 21999.76 6899.62 7099.83 4899.64 14298.54 13899.97 1799.15 8499.99 1299.68 60
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CDS-MVSNet99.22 12999.13 12199.50 16199.35 25199.11 21198.96 20799.54 19499.46 10199.61 14199.70 10896.31 27299.83 24199.34 5299.88 10099.55 149
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMP++_ref99.94 62
IterMVS98.97 18699.16 11498.42 30199.74 10295.64 34298.06 30199.83 3499.83 2799.85 4099.74 8496.10 27899.99 599.27 66100.00 199.63 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon98.50 24598.23 25299.31 21999.49 20699.46 13598.56 25499.63 13794.86 35098.85 28799.37 25297.81 21199.59 34896.08 30599.44 27498.88 310
MVS_111021_LR99.13 15499.03 15799.42 18599.58 15799.32 17497.91 31999.73 8398.68 20699.31 22499.48 22799.09 6299.66 33197.70 21199.77 17199.29 244
DP-MVS99.48 5499.39 6999.74 6399.57 16799.62 10199.29 11899.61 14799.87 1499.74 9099.76 7798.69 11699.87 17498.20 16399.80 15699.75 42
ACMMP++99.79 161
HQP-MVS98.36 25998.02 26799.39 19899.31 26898.94 23097.98 30999.37 26297.45 29798.15 33098.83 33996.67 25999.70 30594.73 33799.67 21999.53 162
QAPM98.40 25797.99 26899.65 10499.39 24199.47 13199.67 3899.52 21191.70 36098.78 29699.80 5598.55 13699.95 4594.71 33999.75 17799.53 162
Vis-MVSNetpermissive99.75 1599.74 1599.79 3499.88 2499.66 8899.69 3199.92 799.67 5899.77 7399.75 8199.61 1799.98 799.35 5199.98 2199.72 45
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS-HIRNet97.86 28298.22 25396.76 34099.28 27791.53 36898.38 27292.60 37299.13 15499.31 22499.96 1197.18 24899.68 32298.34 15199.83 13499.07 292
IS-MVSNet99.03 17498.85 19199.55 14799.80 5799.25 18899.73 1999.15 30599.37 11499.61 14199.71 10194.73 29299.81 26797.70 21199.88 10099.58 137
HyFIR lowres test98.91 19598.64 21099.73 7399.85 3399.47 13198.07 29999.83 3498.64 20999.89 2699.60 17992.57 311100.00 199.33 5599.97 3099.72 45
EPMVS96.53 31796.32 31597.17 33898.18 36292.97 36099.39 8789.95 37498.21 25598.61 30899.59 18586.69 35999.72 29996.99 26099.23 30598.81 317
PAPM_NR98.36 25998.04 26699.33 21299.48 21298.93 23498.79 23399.28 28397.54 29298.56 31398.57 35097.12 24999.69 31194.09 34698.90 32099.38 223
TAMVS99.49 5299.45 5799.63 11599.48 21299.42 14999.45 7899.57 17799.66 6299.78 6899.83 4497.85 20999.86 19499.44 3799.96 4299.61 119
PAPR97.56 29497.07 30399.04 25898.80 34198.11 28697.63 32999.25 28994.56 35498.02 33998.25 36097.43 23399.68 32290.90 35998.74 32999.33 235
RPSCF99.18 14399.02 15899.64 11199.83 3899.85 1499.44 8199.82 3998.33 24899.50 17999.78 6797.90 20399.65 33896.78 27399.83 13499.44 206
Vis-MVSNet (Re-imp)98.77 21298.58 21899.34 21099.78 7398.88 23999.61 5599.56 18299.11 15899.24 23799.56 19893.00 30999.78 27897.43 23299.89 9299.35 232
test_040299.22 12999.14 11899.45 17799.79 6799.43 14699.28 11999.68 10999.54 8499.40 20799.56 19899.07 6899.82 25196.01 30899.96 4299.11 279
MVS_111021_HR99.12 15699.02 15899.40 19599.50 20199.11 21197.92 31799.71 9598.76 20299.08 26399.47 23299.17 5399.54 35197.85 19699.76 17499.54 157
CSCG99.37 8799.29 9599.60 12999.71 11299.46 13599.43 8399.85 2698.79 19699.41 20299.60 17998.92 8499.92 9198.02 17799.92 7499.43 212
PatchMatch-RL98.68 22498.47 22899.30 22199.44 22799.28 18098.14 29099.54 19497.12 31499.11 25999.25 28397.80 21299.70 30596.51 28899.30 29598.93 306
API-MVS98.38 25898.39 23798.35 30498.83 33699.26 18499.14 16399.18 30298.59 21498.66 30598.78 34398.61 12899.57 35094.14 34599.56 24996.21 364
Test By Simon98.41 157
TDRefinement99.72 1799.70 1799.77 4099.90 1999.85 1499.86 599.92 799.69 5299.78 6899.92 1799.37 3199.88 16198.93 11399.95 4999.60 123
USDC98.96 18998.93 17899.05 25799.54 17997.99 29297.07 35399.80 4998.21 25599.75 8199.77 7498.43 15499.64 34097.90 18899.88 10099.51 174
EPP-MVSNet99.17 14799.00 16499.66 9999.80 5799.43 14699.70 2599.24 29299.48 9299.56 15899.77 7494.89 28999.93 7198.72 13099.89 9299.63 97
PMMVS98.49 24898.29 24899.11 24998.96 32498.42 26897.54 33399.32 27197.53 29398.47 31998.15 36197.88 20699.82 25197.46 23099.24 30399.09 284
PAPM95.61 33494.71 33698.31 30899.12 30396.63 32896.66 35998.46 33790.77 36296.25 36298.68 34793.01 30899.69 31181.60 36997.86 35598.62 323
ACMMPcopyleft99.25 11699.08 13999.74 6399.79 6799.68 8499.50 7199.65 12998.07 26399.52 17299.69 11498.57 13399.92 9197.18 25299.79 16199.63 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CNLPA98.57 23698.34 24399.28 22599.18 29599.10 21598.34 27399.41 24598.48 22798.52 31598.98 32397.05 25299.78 27895.59 32399.50 26698.96 303
PatchmatchNetpermissive97.65 29097.80 28397.18 33798.82 33992.49 36199.17 15398.39 34098.12 25998.79 29499.58 18790.71 33599.89 14797.23 24899.41 28099.16 269
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PHI-MVS99.11 16098.95 17799.59 13199.13 30199.59 11299.17 15399.65 12997.88 27599.25 23499.46 23598.97 7999.80 27297.26 24499.82 14399.37 226
F-COLMAP98.74 21798.45 23099.62 12499.57 16799.47 13198.84 22099.65 12996.31 33098.93 27599.19 29697.68 22099.87 17496.52 28799.37 28799.53 162
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 47100.00 199.90 7100.00 199.97 1099.61 1799.97 1799.75 13100.00 199.84 14
wuyk23d97.58 29399.13 12192.93 35199.69 12399.49 12899.52 6999.77 6397.97 26999.96 899.79 6199.84 399.94 5795.85 31699.82 14379.36 367
OMC-MVS98.90 19798.72 20399.44 17999.39 24199.42 14998.58 24999.64 13597.31 30599.44 18899.62 16198.59 13099.69 31196.17 30499.79 16199.22 255
MG-MVS98.52 24398.39 23798.94 26499.15 29897.39 31398.18 28599.21 30098.89 18599.23 23899.63 15297.37 23899.74 29494.22 34499.61 23999.69 54
AdaColmapbinary98.60 23198.35 24299.38 20299.12 30399.22 19798.67 24499.42 24497.84 28098.81 29199.27 27897.32 24099.81 26795.14 33299.53 26199.10 281
uanet8.33 34111.11 3440.00 3550.00 3780.00 3790.00 3660.00 3790.00 3730.00 374100.00 10.00 3780.00 3740.00 3720.00 3720.00 370
ITE_SJBPF99.38 20299.63 14499.44 14299.73 8398.56 21699.33 21899.53 21098.88 9199.68 32296.01 30899.65 22799.02 300
DeepMVS_CXcopyleft97.98 31599.69 12396.95 32299.26 28675.51 36895.74 36698.28 35996.47 26599.62 34291.23 35797.89 35397.38 359
TinyColmap98.97 18698.93 17899.07 25599.46 22298.19 28097.75 32499.75 7598.79 19699.54 16599.70 10898.97 7999.62 34296.63 28399.83 13499.41 216
MAR-MVS98.24 26997.92 27899.19 24098.78 34499.65 9399.17 15399.14 30695.36 34298.04 33898.81 34297.47 23199.72 29995.47 32799.06 30998.21 346
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS99.01 18098.92 18299.27 22799.71 11299.28 18098.59 24899.77 6398.32 24999.39 20899.41 24298.62 12699.84 23096.62 28499.84 12498.69 321
MSDG99.08 16598.98 17299.37 20599.60 15199.13 20997.54 33399.74 8098.84 19199.53 17099.55 20599.10 6099.79 27597.07 25899.86 11699.18 265
LS3D99.24 11999.11 12899.61 12798.38 35699.79 3899.57 6599.68 10999.61 7499.15 25399.71 10198.70 11599.91 11297.54 22599.68 21299.13 278
CLD-MVS98.76 21498.57 21999.33 21299.57 16798.97 22697.53 33599.55 18896.41 32799.27 23299.13 29999.07 6899.78 27896.73 27699.89 9299.23 253
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FPMVS96.32 32195.50 32998.79 28699.60 15198.17 28298.46 26998.80 32297.16 31296.28 36199.63 15282.19 36599.09 36488.45 36298.89 32199.10 281
Gipumacopyleft99.57 3999.59 3499.49 16499.98 399.71 7099.72 2299.84 3299.81 3099.94 1199.78 6798.91 8699.71 30398.41 14599.95 4999.05 294
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015