| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 54 | 99.27 1 | 99.54 1 |
|
| UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 153 | 97.00 2 | 64.33 232 | 89.67 69 | 88.38 198 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 184 | 72.57 201 | 97.65 60 | 97.34 15 |
|
| PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 183 | 88.51 17 | 90.11 95 | 95.12 44 | 90.98 6 | 88.92 248 | 77.55 140 | 97.07 81 | 83.13 340 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 120 | 84.07 44 | 92.00 64 | 94.40 71 | 86.63 51 | 95.28 55 | 88.59 5 | 98.31 23 | 92.30 177 |
|
| PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 145 | 96.57 5 | 58.88 301 | 88.95 84 | 93.19 71 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 36 | 78.69 123 | 98.72 8 | 98.97 3 |
|
| PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 146 | 96.56 6 | 58.83 304 | 89.04 83 | 92.74 92 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 38 | 79.42 118 | 98.74 5 | 99.00 2 |
|
| DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 155 | 96.51 7 | 57.84 311 | 88.93 85 | 92.84 89 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 10 | 79.05 120 | 98.57 14 | 98.80 6 |
|
| CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 147 | 96.34 8 | 58.61 307 | 88.66 92 | 92.06 108 | 90.78 6 | 95.67 7 | 95.17 42 | 81.80 111 | 95.54 41 | 79.00 121 | 98.69 9 | 98.95 4 |
|
| WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 124 | 96.32 9 | 62.39 256 | 89.54 74 | 93.31 66 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 115 | 95.90 15 | 80.94 99 | 98.80 2 | 98.84 5 |
|
| MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 82 | 82.59 61 | 88.52 130 | 94.37 73 | 86.74 50 | 95.41 50 | 86.32 39 | 98.21 29 | 93.19 140 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
| mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 95 | 83.09 56 | 91.54 70 | 94.25 78 | 87.67 41 | 95.51 44 | 87.21 28 | 98.11 35 | 93.12 144 |
|
| MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 98 | 94.51 18 | 75.79 140 | 92.94 44 | 94.96 46 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 19 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 92 | 86.07 45 | 98.48 17 | 97.22 19 |
|
| ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 54 | 77.65 119 | 91.97 65 | 94.89 48 | 88.38 27 | 95.45 48 | 89.27 3 | 97.87 50 | 93.27 136 |
|
| HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 24 | 85.21 35 | 92.51 55 | 95.13 43 | 90.65 9 | 95.34 52 | 88.06 8 | 98.15 34 | 95.95 41 |
|
| MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 44 | 78.43 111 | 89.16 119 | 92.25 150 | 72.03 221 | 96.36 3 | 88.21 7 | 90.93 258 | 92.98 150 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 67 | 81.91 67 | 90.88 86 | 94.21 79 | 87.75 39 | 95.87 19 | 87.60 18 | 97.71 58 | 93.83 111 |
|
| ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 69 | 81.99 65 | 91.40 72 | 94.17 83 | 87.51 42 | 95.87 19 | 87.74 13 | 97.76 55 | 93.99 103 |
|
| ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 26 | 80.14 88 | 91.29 76 | 93.97 92 | 87.93 38 | 95.87 19 | 88.65 4 | 97.96 45 | 94.12 99 |
|
| TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 137 | 67.85 242 | 86.63 169 | 94.84 50 | 79.58 133 | 95.96 13 | 87.62 16 | 94.50 179 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 44 | 80.32 85 | 91.74 69 | 94.41 70 | 88.17 32 | 95.98 11 | 86.37 38 | 97.99 40 | 93.96 105 |
|
| XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 63 | 85.07 36 | 89.99 99 | 94.03 89 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| X-MVStestdata | | | 85.04 121 | 82.70 168 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 63 | 85.07 36 | 89.99 99 | 16.05 405 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 15 | 82.88 59 | 91.77 68 | 93.94 98 | 90.55 12 | 95.73 31 | 88.50 6 | 98.23 27 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 29 | 82.52 62 | 92.39 58 | 94.14 84 | 89.15 23 | 95.62 35 | 87.35 24 | 98.24 26 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 50 | 80.98 79 | 91.38 73 | 93.80 102 | 87.20 46 | 95.80 25 | 87.10 31 | 97.69 59 | 93.93 106 |
|
| HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 68 | 81.99 65 | 91.47 71 | 93.96 95 | 88.35 29 | 95.56 39 | 87.74 13 | 97.74 57 | 92.85 153 |
|
| SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 70 | 75.37 147 | 92.84 48 | 95.28 38 | 85.58 63 | 96.09 7 | 87.92 10 | 97.76 55 | 93.88 109 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 61 | 83.16 55 | 91.06 80 | 94.00 91 | 88.26 30 | 95.71 32 | 87.28 27 | 98.39 20 | 92.55 165 |
|
| VDDNet | | | 84.35 134 | 85.39 122 | 81.25 221 | 95.13 31 | 59.32 294 | 85.42 142 | 81.11 290 | 86.41 27 | 87.41 151 | 96.21 19 | 73.61 196 | 90.61 208 | 66.33 256 | 96.85 85 | 93.81 115 |
|
| CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 102 | 79.74 91 | 87.50 150 | 92.38 143 | 81.42 115 | 93.28 129 | 83.07 74 | 97.24 77 | 91.67 201 |
|
| ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 62 | 79.20 100 | 93.83 27 | 93.60 110 | 90.81 7 | 92.96 139 | 85.02 56 | 98.45 18 | 92.41 171 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 90 | 88.22 18 | 88.53 129 | 97.64 2 | 83.45 82 | 94.55 78 | 86.02 48 | 98.60 12 | 96.67 27 |
|
| HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 134 | 78.20 113 | 86.69 168 | 92.28 149 | 80.36 127 | 95.06 62 | 86.17 44 | 96.49 99 | 90.22 236 |
|
| XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 40 | 79.68 92 | 92.09 62 | 93.89 100 | 83.80 77 | 93.10 136 | 82.67 82 | 98.04 36 | 93.64 123 |
|
| EGC-MVSNET | | | 74.79 278 | 69.99 318 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 232 | 1.09 406 | 2.23 408 | 95.98 23 | 81.87 110 | 89.48 236 | 79.76 112 | 95.96 124 | 91.10 213 |
|
| SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 47 | 88.20 19 | 93.24 39 | 94.02 90 | 90.15 16 | 95.67 34 | 86.82 33 | 97.34 74 | 92.19 184 |
|
| OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 121 | 92.78 91 | 78.78 106 | 92.51 55 | 93.64 109 | 88.13 34 | 93.84 105 | 84.83 59 | 97.55 67 | 94.10 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 21 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 21 | 82.35 63 | 93.67 33 | 94.82 51 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 117 | 93.91 43 | 80.07 89 | 86.75 165 | 93.26 114 | 93.64 2 | 90.93 195 | 84.60 61 | 90.75 264 | 93.97 104 |
|
| ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 38 | 79.03 103 | 92.87 46 | 93.74 106 | 90.60 11 | 95.21 58 | 82.87 78 | 98.76 3 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 132 | 93.60 57 | 80.16 87 | 89.13 121 | 93.44 112 | 83.82 76 | 90.98 193 | 83.86 68 | 95.30 151 | 93.60 125 |
|
| test_0728_SECOND | | | | | 86.79 100 | 94.25 45 | 72.45 152 | 90.54 48 | 94.10 36 | | | | | 95.88 17 | 86.42 36 | 97.97 43 | 92.02 190 |
|
| SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 97 | 94.18 46 | 72.65 142 | 90.47 51 | 93.69 52 | 83.77 47 | 94.11 22 | 94.27 74 | 90.28 14 | 95.84 23 | 86.03 46 | 97.92 46 | 92.29 178 |
|
| IU-MVS | | | | | | 94.18 46 | 72.64 144 | | 90.82 146 | 56.98 336 | 89.67 108 | | | | 85.78 50 | 97.92 46 | 93.28 135 |
|
| test_241102_ONE | | | | | | 94.18 46 | 72.65 142 | | 93.69 52 | 83.62 49 | 94.11 22 | 93.78 104 | 90.28 14 | 95.50 46 | | | |
|
| DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 109 | 94.16 49 | 72.56 148 | 90.54 48 | 91.01 141 | 83.61 50 | 93.75 30 | 94.65 56 | 89.76 18 | 95.78 28 | 86.42 36 | 97.97 43 | 90.55 230 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 94.16 49 | 72.56 148 | 90.63 45 | 93.90 44 | 83.61 50 | 93.75 30 | 94.49 64 | 89.76 18 | | | | |
|
| SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 67 | 88.83 24 | 95.51 44 | 87.16 29 | 97.60 64 | 92.73 156 |
|
| RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 29 | 88.75 14 | 93.79 28 | 94.43 67 | 90.64 10 | | 87.16 29 | 97.60 64 | 92.73 156 |
|
| MIMVSNet1 | | | 83.63 154 | 84.59 136 | 80.74 230 | 94.06 53 | 62.77 249 | 82.72 206 | 84.53 263 | 77.57 121 | 90.34 92 | 95.92 24 | 76.88 166 | 85.83 298 | 61.88 295 | 97.42 72 | 93.62 124 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 132 | 94.02 54 | 64.13 233 | 84.38 161 | 91.29 133 | 84.88 39 | 92.06 63 | 93.84 101 | 86.45 54 | 93.73 107 | 73.22 192 | 98.66 10 | 97.69 9 |
|
| 新几何1 | | | | | 82.95 190 | 93.96 55 | 78.56 84 | | 80.24 296 | 55.45 341 | 83.93 228 | 91.08 182 | 71.19 226 | 88.33 257 | 65.84 262 | 93.07 214 | 81.95 353 |
|
| SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 59 | 82.82 60 | 92.60 54 | 93.97 92 | 88.19 31 | 96.29 5 | 87.61 17 | 98.20 31 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_part2 | | | | | | 93.86 57 | 77.77 94 | | | | 92.84 48 | | | | | | |
|
| test_one_0601 | | | | | | 93.85 58 | 73.27 136 | | 94.11 35 | 86.57 25 | 93.47 38 | 94.64 59 | 88.42 26 | | | | |
|
| save fliter | | | | | | 93.75 59 | 77.44 99 | 86.31 129 | 89.72 177 | 70.80 208 | | | | | | | |
|
| LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 68 | 93.16 133 | 91.10 1 | 97.53 70 | 96.58 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 61 | 86.15 20 | 93.37 10 | 95.10 13 | 90.28 9 | 92.11 61 | 95.03 45 | 89.75 20 | 94.93 65 | 79.95 110 | 98.27 25 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 62 | 79.07 79 | 88.54 93 | 94.20 27 | 73.53 166 | 89.71 106 | 94.82 51 | 85.09 64 | 95.77 30 | 84.17 65 | 98.03 38 | 93.26 137 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 63 | 75.70 121 | 92.36 26 | 89.06 190 | 77.34 122 | 93.63 35 | 95.83 25 | 65.40 256 | 95.90 15 | 85.01 57 | 98.23 27 | 97.49 13 |
|
| mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 64 | 84.79 40 | 89.89 63 | 90.63 151 | 70.00 218 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 116 | 84.27 64 | 95.97 123 | 95.52 49 |
|
| HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 73 | 93.45 65 | 76.42 113 | 89.45 77 | 93.61 55 | 79.44 96 | 86.55 170 | 92.95 126 | 74.84 181 | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior7 | | | | | | 93.45 65 | 77.31 102 | | | | | | | | | | |
|
| WR-MVS | | | 83.56 156 | 84.40 142 | 81.06 226 | 93.43 67 | 54.88 333 | 78.67 273 | 85.02 255 | 81.24 75 | 90.74 89 | 91.56 168 | 72.85 209 | 91.08 190 | 68.00 246 | 98.04 36 | 97.23 18 |
|
| DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 67 | 93.38 68 | 78.65 83 | 89.15 82 | 94.05 38 | 84.68 40 | 93.90 24 | 94.11 87 | 88.13 34 | 96.30 4 | 84.51 62 | 97.81 52 | 91.70 200 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 68 | 84.72 41 | 89.70 66 | 90.29 165 | 69.27 222 | 94.39 16 | 96.38 15 | 86.02 61 | 93.52 120 | 83.96 66 | 95.92 128 | 95.34 53 |
|
| PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 70 | 77.96 92 | 87.94 101 | 91.97 111 | 70.73 209 | 94.19 21 | 96.67 11 | 76.94 160 | 94.57 76 | 83.07 74 | 96.28 108 | 96.15 33 |
|
| test222 | | | | | | 93.31 70 | 76.54 109 | 79.38 260 | 77.79 307 | 52.59 355 | 82.36 252 | 90.84 193 | 66.83 246 | | | 91.69 242 | 81.25 361 |
|
| tt0805 | | | 88.09 74 | 89.79 51 | 82.98 188 | 93.26 72 | 63.94 236 | 91.10 41 | 89.64 180 | 85.07 36 | 90.91 84 | 91.09 181 | 89.16 22 | 91.87 170 | 82.03 89 | 95.87 130 | 93.13 142 |
|
| DU-MVS | | | 86.80 91 | 86.99 92 | 86.21 113 | 93.24 73 | 67.02 206 | 83.16 195 | 92.21 103 | 81.73 69 | 90.92 82 | 91.97 154 | 77.20 154 | 93.99 97 | 74.16 175 | 98.35 21 | 97.61 10 |
|
| NR-MVSNet | | | 86.00 105 | 86.22 104 | 85.34 130 | 93.24 73 | 64.56 229 | 82.21 224 | 90.46 155 | 80.99 78 | 88.42 133 | 91.97 154 | 77.56 149 | 93.85 103 | 72.46 202 | 98.65 11 | 97.61 10 |
|
| OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 75 | 80.37 68 | 91.91 33 | 93.11 75 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 208 | 94.85 67 | 85.07 54 | 97.78 53 | 97.26 16 |
|
| UniMVSNet (Re) | | | 86.87 88 | 86.98 93 | 86.55 104 | 93.11 76 | 68.48 193 | 83.80 177 | 92.87 87 | 80.37 83 | 89.61 112 | 91.81 161 | 77.72 147 | 94.18 90 | 75.00 170 | 98.53 15 | 96.99 24 |
|
| APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 77 | 85.17 35 | 92.47 25 | 95.05 14 | 87.65 22 | 93.21 40 | 94.39 72 | 90.09 17 | 95.08 61 | 86.67 35 | 97.60 64 | 94.18 95 |
|
| ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 76 | 93.00 78 | 76.26 116 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 47 | 91.62 3 | 93.44 124 | 78.35 126 | 98.76 3 | 95.61 48 |
|
| APDe-MVS |  | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 79 | 78.04 89 | 92.84 15 | 94.14 33 | 83.33 53 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 2 | 87.60 18 | 97.98 42 | 92.98 150 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| 114514_t | | | 83.10 166 | 82.54 173 | 84.77 139 | 92.90 80 | 69.10 191 | 86.65 123 | 90.62 152 | 54.66 346 | 81.46 269 | 90.81 194 | 76.98 159 | 94.38 83 | 72.62 200 | 96.18 113 | 90.82 220 |
|
| testdata | | | | | 79.54 249 | 92.87 81 | 72.34 153 | | 80.14 297 | 59.91 316 | 85.47 194 | 91.75 164 | 67.96 241 | 85.24 302 | 68.57 243 | 92.18 234 | 81.06 366 |
|
| CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 81 | 92.87 81 | 77.30 103 | 85.25 144 | 91.23 135 | 77.31 124 | 87.07 159 | 91.47 170 | 82.94 87 | 94.71 70 | 84.67 60 | 96.27 110 | 92.62 163 |
|
| SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 74 | 92.86 83 | 77.09 104 | 91.19 40 | 95.74 5 | 81.38 73 | 92.28 59 | 93.80 102 | 86.89 49 | 94.64 73 | 85.52 51 | 97.51 71 | 94.30 91 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 90 | 87.06 90 | 86.17 115 | 92.86 83 | 67.02 206 | 82.55 212 | 91.56 123 | 83.08 57 | 90.92 82 | 91.82 160 | 78.25 142 | 93.99 97 | 74.16 175 | 98.35 21 | 97.49 13 |
|
| plane_prior1 | | | | | | 92.83 85 | | | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 143 | 92.81 86 | 74.01 129 | | 91.50 125 | 62.59 281 | 82.73 248 | 90.67 200 | 76.53 167 | 94.25 86 | 69.24 229 | 95.69 140 | 85.55 304 |
|
| plane_prior6 | | | | | | 92.61 87 | 76.54 109 | | | | | | 74.84 181 | | | | |
|
| APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 88 | 81.34 64 | 90.19 56 | 93.08 78 | 80.87 81 | 91.13 78 | 93.19 115 | 86.22 58 | 95.97 12 | 82.23 88 | 97.18 79 | 90.45 232 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_0402 | | | 88.65 65 | 89.58 56 | 85.88 120 | 92.55 89 | 72.22 156 | 84.01 168 | 89.44 185 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 57 | 93.59 116 | 79.84 111 | 95.21 152 | 91.82 196 |
|
| SixPastTwentyTwo | | | 87.20 86 | 87.45 83 | 86.45 106 | 92.52 90 | 69.19 189 | 87.84 103 | 88.05 206 | 81.66 70 | 94.64 14 | 96.53 14 | 65.94 251 | 94.75 69 | 83.02 76 | 96.83 87 | 95.41 51 |
|
| ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 160 | 92.50 91 | 70.36 176 | 89.55 72 | 93.84 48 | 81.89 68 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 258 | 83.33 70 | 98.30 24 | 93.20 139 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| VPNet | | | 80.25 214 | 81.68 183 | 75.94 299 | 92.46 92 | 47.98 371 | 76.70 300 | 81.67 287 | 73.45 167 | 84.87 204 | 92.82 130 | 74.66 186 | 86.51 282 | 61.66 298 | 96.85 85 | 93.33 133 |
|
| F-COLMAP | | | 84.97 124 | 83.42 154 | 89.63 55 | 92.39 93 | 83.40 48 | 88.83 87 | 91.92 113 | 73.19 177 | 80.18 290 | 89.15 231 | 77.04 158 | 93.28 129 | 65.82 263 | 92.28 230 | 92.21 183 |
|
| test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 94 | 82.98 53 | 91.98 31 | 90.08 171 | 71.54 200 | 94.28 20 | 96.54 13 | 81.57 113 | 94.27 84 | 86.26 40 | 96.49 99 | 97.09 21 |
|
| TEST9 | | | | | | 92.34 95 | 79.70 74 | 83.94 170 | 90.32 160 | 65.41 266 | 84.49 210 | 90.97 185 | 82.03 105 | 93.63 111 | | | |
|
| train_agg | | | 85.98 106 | 85.28 124 | 88.07 83 | 92.34 95 | 79.70 74 | 83.94 170 | 90.32 160 | 65.79 257 | 84.49 210 | 90.97 185 | 81.93 107 | 93.63 111 | 81.21 96 | 96.54 96 | 90.88 218 |
|
| NCCC | | | 87.36 84 | 86.87 95 | 88.83 68 | 92.32 97 | 78.84 82 | 86.58 125 | 91.09 139 | 78.77 107 | 84.85 205 | 90.89 189 | 80.85 121 | 95.29 53 | 81.14 97 | 95.32 148 | 92.34 175 |
|
| mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 98 | 76.51 112 | 91.09 42 | 91.87 115 | 72.61 187 | 92.16 60 | 95.23 41 | 66.01 250 | 95.59 37 | 86.02 48 | 97.78 53 | 97.24 17 |
|
| FC-MVSNet-test | | | 85.93 107 | 87.05 91 | 82.58 199 | 92.25 99 | 56.44 322 | 85.75 136 | 93.09 77 | 77.33 123 | 91.94 66 | 94.65 56 | 74.78 183 | 93.41 126 | 75.11 169 | 98.58 13 | 97.88 7 |
|
| CDPH-MVS | | | 86.17 104 | 85.54 119 | 88.05 84 | 92.25 99 | 75.45 122 | 83.85 174 | 92.01 109 | 65.91 256 | 86.19 179 | 91.75 164 | 83.77 78 | 94.98 64 | 77.43 143 | 96.71 91 | 93.73 118 |
|
| test1111 | | | 78.53 235 | 78.85 228 | 77.56 279 | 92.22 101 | 47.49 373 | 82.61 208 | 69.24 368 | 72.43 188 | 85.28 195 | 94.20 80 | 51.91 330 | 90.07 225 | 65.36 267 | 96.45 102 | 95.11 62 |
|
| ZD-MVS | | | | | | 92.22 101 | 80.48 67 | | 91.85 116 | 71.22 205 | 90.38 91 | 92.98 123 | 86.06 60 | 96.11 6 | 81.99 91 | 96.75 90 | |
|
| pmmvs6 | | | 86.52 96 | 88.06 74 | 81.90 208 | 92.22 101 | 62.28 259 | 84.66 154 | 89.15 188 | 83.54 52 | 89.85 103 | 97.32 4 | 88.08 36 | 86.80 277 | 70.43 218 | 97.30 76 | 96.62 28 |
|
| EG-PatchMatch MVS | | | 84.08 144 | 84.11 146 | 83.98 159 | 92.22 101 | 72.61 147 | 82.20 226 | 87.02 223 | 72.63 186 | 88.86 122 | 91.02 183 | 78.52 138 | 91.11 189 | 73.41 189 | 91.09 252 | 88.21 270 |
|
| test_8 | | | | | | 92.09 105 | 78.87 81 | 83.82 175 | 90.31 162 | 65.79 257 | 84.36 214 | 90.96 187 | 81.93 107 | 93.44 124 | | | |
|
| Vis-MVSNet |  | | 86.86 89 | 86.58 98 | 87.72 86 | 92.09 105 | 77.43 100 | 87.35 109 | 92.09 107 | 78.87 105 | 84.27 221 | 94.05 88 | 78.35 141 | 93.65 109 | 80.54 106 | 91.58 246 | 92.08 188 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IS-MVSNet | | | 86.66 94 | 86.82 97 | 86.17 115 | 92.05 107 | 66.87 209 | 91.21 39 | 88.64 195 | 86.30 28 | 89.60 113 | 92.59 137 | 69.22 234 | 94.91 66 | 73.89 181 | 97.89 49 | 96.72 26 |
|
| 旧先验1 | | | | | | 91.97 108 | 71.77 160 | | 81.78 286 | | | 91.84 158 | 73.92 193 | | | 93.65 202 | 83.61 330 |
|
| v7n | | | 90.13 36 | 90.96 38 | 87.65 89 | 91.95 109 | 71.06 170 | 89.99 59 | 93.05 79 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 89 | 94.08 95 | 86.25 42 | 97.63 61 | 97.82 8 |
|
| NP-MVS | | | | | | 91.95 109 | 74.55 126 | | | | | 90.17 214 | | | | | |
|
| OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 111 | 81.68 61 | 87.49 108 | 93.17 72 | 76.02 134 | 88.64 127 | 91.22 176 | 84.24 74 | 93.37 127 | 77.97 136 | 97.03 82 | 95.52 49 |
|
| OPU-MVS | | | | | 88.27 80 | 91.89 112 | 77.83 93 | 90.47 51 | | | | 91.22 176 | 81.12 118 | 94.68 71 | 74.48 172 | 95.35 146 | 92.29 178 |
|
| FIs | | | 85.35 115 | 86.27 103 | 82.60 198 | 91.86 113 | 57.31 315 | 85.10 148 | 93.05 79 | 75.83 139 | 91.02 81 | 93.97 92 | 73.57 197 | 92.91 143 | 73.97 180 | 98.02 39 | 97.58 12 |
|
| test2506 | | | 74.12 283 | 73.39 283 | 76.28 296 | 91.85 114 | 44.20 387 | 84.06 167 | 48.20 406 | 72.30 194 | 81.90 259 | 94.20 80 | 27.22 407 | 89.77 233 | 64.81 272 | 96.02 121 | 94.87 67 |
|
| ECVR-MVS |  | | 78.44 236 | 78.63 232 | 77.88 275 | 91.85 114 | 48.95 367 | 83.68 180 | 69.91 365 | 72.30 194 | 84.26 222 | 94.20 80 | 51.89 331 | 89.82 230 | 63.58 281 | 96.02 121 | 94.87 67 |
|
| 9.14 | | | | 89.29 58 | | 91.84 116 | | 88.80 88 | 95.32 12 | 75.14 149 | 91.07 79 | 92.89 128 | 87.27 44 | 93.78 106 | 83.69 69 | 97.55 67 | |
|
| MSLP-MVS++ | | | 85.00 123 | 86.03 108 | 81.90 208 | 91.84 116 | 71.56 167 | 86.75 122 | 93.02 83 | 75.95 137 | 87.12 154 | 89.39 225 | 77.98 143 | 89.40 243 | 77.46 141 | 94.78 172 | 84.75 313 |
|
| h-mvs33 | | | 84.25 138 | 82.76 167 | 88.72 71 | 91.82 118 | 82.60 56 | 84.00 169 | 84.98 257 | 71.27 202 | 86.70 166 | 90.55 203 | 63.04 271 | 93.92 100 | 78.26 129 | 94.20 188 | 89.63 248 |
|
| DP-MVS Recon | | | 84.05 145 | 83.22 157 | 86.52 105 | 91.73 119 | 75.27 123 | 83.23 193 | 92.40 98 | 72.04 197 | 82.04 257 | 88.33 241 | 77.91 145 | 93.95 99 | 66.17 257 | 95.12 157 | 90.34 235 |
|
| SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 112 | 91.63 120 | 77.07 105 | 89.82 64 | 93.77 49 | 78.90 104 | 92.88 45 | 92.29 148 | 86.11 59 | 90.22 216 | 86.24 43 | 97.24 77 | 91.36 208 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 121 | 83.40 48 | 89.50 75 | 95.44 10 | 79.47 94 | 88.00 142 | 93.03 121 | 82.66 90 | 91.47 177 | 70.81 210 | 96.14 115 | 94.16 96 |
|
| TestCases | | | | | 89.68 53 | 91.59 121 | 83.40 48 | | 95.44 10 | 79.47 94 | 88.00 142 | 93.03 121 | 82.66 90 | 91.47 177 | 70.81 210 | 96.14 115 | 94.16 96 |
|
| MCST-MVS | | | 84.36 133 | 83.93 150 | 85.63 125 | 91.59 121 | 71.58 165 | 83.52 183 | 92.13 106 | 61.82 290 | 83.96 227 | 89.75 221 | 79.93 132 | 93.46 123 | 78.33 127 | 94.34 184 | 91.87 195 |
|
| agg_prior | | | | | | 91.58 124 | 77.69 96 | | 90.30 163 | | 84.32 216 | | | 93.18 132 | | | |
|
| PVSNet_Blended_VisFu | | | 81.55 191 | 80.49 207 | 84.70 142 | 91.58 124 | 73.24 137 | 84.21 162 | 91.67 122 | 62.86 280 | 80.94 275 | 87.16 264 | 67.27 243 | 92.87 144 | 69.82 225 | 88.94 286 | 87.99 276 |
|
| DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 95 | 91.55 126 | 72.64 144 | 96.19 2 | 94.10 36 | 85.33 33 | 93.49 36 | 94.64 59 | 81.12 118 | 95.88 17 | 87.41 22 | 95.94 126 | 92.48 168 |
|
| MSC_two_6792asdad | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 141 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 172 |
|
| No_MVS | | | | | 88.81 69 | 91.55 126 | 77.99 90 | | 91.01 141 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 172 |
|
| EPP-MVSNet | | | 85.47 113 | 85.04 127 | 86.77 101 | 91.52 129 | 69.37 184 | 91.63 36 | 87.98 208 | 81.51 72 | 87.05 160 | 91.83 159 | 66.18 249 | 95.29 53 | 70.75 213 | 96.89 84 | 95.64 46 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 85 | 86.21 105 | 90.49 38 | 91.48 130 | 84.90 38 | 83.41 186 | 92.38 100 | 70.25 215 | 89.35 118 | 90.68 198 | 82.85 88 | 94.57 76 | 79.55 115 | 95.95 125 | 92.00 191 |
|
| Baseline_NR-MVSNet | | | 84.00 147 | 85.90 111 | 78.29 267 | 91.47 131 | 53.44 341 | 82.29 220 | 87.00 226 | 79.06 102 | 89.55 114 | 95.72 28 | 77.20 154 | 86.14 291 | 72.30 203 | 98.51 16 | 95.28 56 |
|
| HyFIR lowres test | | | 75.12 272 | 72.66 292 | 82.50 202 | 91.44 132 | 65.19 224 | 72.47 343 | 87.31 213 | 46.79 377 | 80.29 286 | 84.30 306 | 52.70 327 | 92.10 164 | 51.88 359 | 86.73 316 | 90.22 236 |
|
| DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 91 | 91.30 133 | 77.50 97 | 87.55 105 | 92.97 85 | 87.95 20 | 89.62 110 | 92.87 129 | 84.56 69 | 93.89 102 | 77.65 138 | 96.62 93 | 90.70 224 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 100 | 85.65 118 | 87.96 85 | 91.30 133 | 76.92 106 | 87.19 110 | 91.99 110 | 70.56 210 | 84.96 201 | 90.69 197 | 80.01 130 | 95.14 59 | 78.37 125 | 95.78 137 | 91.82 196 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 135 | 81.66 62 | 91.25 38 | 94.13 34 | 88.89 11 | 88.83 124 | 94.26 77 | 77.55 150 | 95.86 22 | 84.88 58 | 95.87 130 | 95.24 58 |
|
| HQP-NCC | | | | | | 91.19 136 | | 84.77 149 | | 73.30 173 | 80.55 282 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 136 | | 84.77 149 | | 73.30 173 | 80.55 282 | | | | | | |
|
| HQP-MVS | | | 84.61 128 | 84.06 147 | 86.27 110 | 91.19 136 | 70.66 172 | 84.77 149 | 92.68 93 | 73.30 173 | 80.55 282 | 90.17 214 | 72.10 217 | 94.61 74 | 77.30 145 | 94.47 180 | 93.56 128 |
|
| VDD-MVS | | | 84.23 140 | 84.58 137 | 83.20 184 | 91.17 139 | 65.16 225 | 83.25 191 | 84.97 258 | 79.79 90 | 87.18 153 | 94.27 74 | 74.77 184 | 90.89 198 | 69.24 229 | 96.54 96 | 93.55 130 |
|
| K. test v3 | | | 85.14 119 | 84.73 131 | 86.37 107 | 91.13 140 | 69.63 182 | 85.45 141 | 76.68 319 | 84.06 45 | 92.44 57 | 96.99 8 | 62.03 274 | 94.65 72 | 80.58 105 | 93.24 210 | 94.83 72 |
|
| lessismore_v0 | | | | | 85.95 117 | 91.10 141 | 70.99 171 | | 70.91 361 | | 91.79 67 | 94.42 69 | 61.76 275 | 92.93 141 | 79.52 117 | 93.03 215 | 93.93 106 |
|
| hse-mvs2 | | | 83.47 159 | 81.81 182 | 88.47 75 | 91.03 142 | 82.27 57 | 82.61 208 | 83.69 268 | 71.27 202 | 86.70 166 | 86.05 281 | 63.04 271 | 92.41 153 | 78.26 129 | 93.62 204 | 90.71 223 |
|
| TransMVSNet (Re) | | | 84.02 146 | 85.74 116 | 78.85 255 | 91.00 143 | 55.20 332 | 82.29 220 | 87.26 214 | 79.65 93 | 88.38 135 | 95.52 33 | 83.00 86 | 86.88 275 | 67.97 247 | 96.60 94 | 94.45 82 |
|
| AUN-MVS | | | 81.18 197 | 78.78 229 | 88.39 77 | 90.93 144 | 82.14 58 | 82.51 214 | 83.67 269 | 64.69 272 | 80.29 286 | 85.91 284 | 51.07 334 | 92.38 154 | 76.29 156 | 93.63 203 | 90.65 227 |
|
| PAPM_NR | | | 83.23 162 | 83.19 159 | 83.33 179 | 90.90 145 | 65.98 217 | 88.19 97 | 90.78 147 | 78.13 115 | 80.87 277 | 87.92 249 | 73.49 200 | 92.42 152 | 70.07 222 | 88.40 291 | 91.60 203 |
|
| CSCG | | | 86.26 99 | 86.47 100 | 85.60 126 | 90.87 146 | 74.26 128 | 87.98 100 | 91.85 116 | 80.35 84 | 89.54 116 | 88.01 245 | 79.09 135 | 92.13 161 | 75.51 163 | 95.06 159 | 90.41 233 |
|
| PLC |  | 73.85 16 | 82.09 181 | 80.31 209 | 87.45 90 | 90.86 147 | 80.29 69 | 85.88 133 | 90.65 150 | 68.17 236 | 76.32 319 | 86.33 275 | 73.12 207 | 92.61 149 | 61.40 300 | 90.02 274 | 89.44 251 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test12 | | | | | 86.57 103 | 90.74 148 | 72.63 146 | | 90.69 149 | | 82.76 247 | | 79.20 134 | 94.80 68 | | 95.32 148 | 92.27 180 |
|
| ITE_SJBPF | | | | | 90.11 45 | 90.72 149 | 84.97 37 | | 90.30 163 | 81.56 71 | 90.02 98 | 91.20 178 | 82.40 95 | 90.81 201 | 73.58 187 | 94.66 176 | 94.56 76 |
|
| DPM-MVS | | | 80.10 219 | 79.18 225 | 82.88 194 | 90.71 150 | 69.74 179 | 78.87 270 | 90.84 145 | 60.29 312 | 75.64 330 | 85.92 283 | 67.28 242 | 93.11 135 | 71.24 208 | 91.79 240 | 85.77 302 |
|
| TAMVS | | | 78.08 240 | 76.36 255 | 83.23 182 | 90.62 151 | 72.87 140 | 79.08 266 | 80.01 298 | 61.72 293 | 81.35 271 | 86.92 269 | 63.96 264 | 88.78 252 | 50.61 360 | 93.01 216 | 88.04 275 |
|
| test_prior | | | | | 86.32 108 | 90.59 152 | 71.99 159 | | 92.85 88 | | | | | 94.17 92 | | | 92.80 154 |
|
| ambc | | | | | 82.98 188 | 90.55 153 | 64.86 226 | 88.20 96 | 89.15 188 | | 89.40 117 | 93.96 95 | 71.67 224 | 91.38 183 | 78.83 122 | 96.55 95 | 92.71 159 |
|
| SSC-MVS | | | 77.55 245 | 81.64 184 | 65.29 365 | 90.46 154 | 20.33 410 | 73.56 336 | 68.28 370 | 85.44 32 | 88.18 140 | 94.64 59 | 70.93 227 | 81.33 330 | 71.25 207 | 92.03 235 | 94.20 92 |
|
| Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 140 | 90.46 154 | 65.27 222 | 88.86 86 | 93.02 83 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 101 | 92.02 165 | 76.70 150 | 97.99 40 | 96.88 25 |
|
| Test_1112_low_res | | | 73.90 285 | 73.08 286 | 76.35 294 | 90.35 156 | 55.95 323 | 73.40 339 | 86.17 234 | 50.70 370 | 73.14 346 | 85.94 282 | 58.31 298 | 85.90 295 | 56.51 324 | 83.22 353 | 87.20 287 |
|
| VPA-MVSNet | | | 83.47 159 | 84.73 131 | 79.69 246 | 90.29 157 | 57.52 314 | 81.30 236 | 88.69 194 | 76.29 130 | 87.58 149 | 94.44 66 | 80.60 125 | 87.20 269 | 66.60 255 | 96.82 88 | 94.34 89 |
|
| FMVSNet1 | | | 84.55 130 | 85.45 121 | 81.85 210 | 90.27 158 | 61.05 272 | 86.83 118 | 88.27 203 | 78.57 110 | 89.66 109 | 95.64 30 | 75.43 174 | 90.68 205 | 69.09 233 | 95.33 147 | 93.82 112 |
|
| Anonymous20240529 | | | 86.20 102 | 87.13 88 | 83.42 177 | 90.19 159 | 64.55 230 | 84.55 156 | 90.71 148 | 85.85 31 | 89.94 102 | 95.24 40 | 82.13 103 | 90.40 212 | 69.19 232 | 96.40 104 | 95.31 55 |
|
| MVS_111021_HR | | | 84.63 127 | 84.34 144 | 85.49 129 | 90.18 160 | 75.86 120 | 79.23 265 | 87.13 218 | 73.35 170 | 85.56 192 | 89.34 226 | 83.60 81 | 90.50 210 | 76.64 151 | 94.05 192 | 90.09 241 |
|
| GeoE | | | 85.45 114 | 85.81 114 | 84.37 147 | 90.08 161 | 67.07 205 | 85.86 134 | 91.39 130 | 72.33 193 | 87.59 148 | 90.25 210 | 84.85 67 | 92.37 155 | 78.00 134 | 91.94 239 | 93.66 120 |
|
| RPSCF | | | 88.00 76 | 86.93 94 | 91.22 27 | 90.08 161 | 89.30 4 | 89.68 68 | 91.11 138 | 79.26 99 | 89.68 107 | 94.81 54 | 82.44 93 | 87.74 262 | 76.54 153 | 88.74 289 | 96.61 29 |
|
| nrg030 | | | 87.85 80 | 88.49 70 | 85.91 118 | 90.07 163 | 69.73 180 | 87.86 102 | 94.20 27 | 74.04 158 | 92.70 53 | 94.66 55 | 85.88 62 | 91.50 176 | 79.72 113 | 97.32 75 | 96.50 31 |
|
| AdaColmap |  | | 83.66 153 | 83.69 153 | 83.57 174 | 90.05 164 | 72.26 155 | 86.29 130 | 90.00 173 | 78.19 114 | 81.65 266 | 87.16 264 | 83.40 83 | 94.24 87 | 61.69 297 | 94.76 175 | 84.21 322 |
|
| pm-mvs1 | | | 83.69 152 | 84.95 129 | 79.91 242 | 90.04 165 | 59.66 291 | 82.43 216 | 87.44 211 | 75.52 144 | 87.85 144 | 95.26 39 | 81.25 117 | 85.65 300 | 68.74 239 | 96.04 120 | 94.42 85 |
|
| CHOSEN 1792x2688 | | | 72.45 296 | 70.56 309 | 78.13 269 | 90.02 166 | 63.08 244 | 68.72 366 | 83.16 273 | 42.99 392 | 75.92 325 | 85.46 288 | 57.22 307 | 85.18 304 | 49.87 364 | 81.67 363 | 86.14 297 |
|
| WB-MVS | | | 76.06 263 | 80.01 219 | 64.19 368 | 89.96 167 | 20.58 409 | 72.18 345 | 68.19 371 | 83.21 54 | 86.46 177 | 93.49 111 | 70.19 230 | 78.97 344 | 65.96 258 | 90.46 270 | 93.02 147 |
|
| anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 168 | 86.67 14 | 90.51 50 | 90.20 168 | 69.87 219 | 95.06 11 | 96.14 21 | 84.28 73 | 93.07 137 | 87.68 15 | 96.34 105 | 97.09 21 |
|
| 1112_ss | | | 74.82 277 | 73.74 278 | 78.04 272 | 89.57 169 | 60.04 286 | 76.49 305 | 87.09 222 | 54.31 347 | 73.66 345 | 79.80 353 | 60.25 284 | 86.76 279 | 58.37 314 | 84.15 348 | 87.32 286 |
|
| CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 170 | 79.18 78 | 90.47 51 | 94.77 16 | 79.37 98 | 84.32 216 | 89.33 227 | 83.87 75 | 94.53 79 | 82.45 84 | 94.89 167 | 94.90 65 |
|
| MM | | | 87.64 83 | 87.15 87 | 89.09 65 | 89.51 171 | 76.39 115 | 88.68 91 | 86.76 228 | 84.54 41 | 83.58 233 | 93.78 104 | 73.36 204 | 96.48 1 | 87.98 9 | 96.21 112 | 94.41 86 |
|
| APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 172 | 86.65 16 | 89.98 60 | 91.91 114 | 84.26 42 | 90.87 87 | 93.92 99 | 82.18 102 | 89.29 244 | 73.75 184 | 94.81 171 | 93.70 119 |
|
| CS-MVS-test | | | 87.00 87 | 86.43 101 | 88.71 72 | 89.46 173 | 77.46 98 | 89.42 79 | 95.73 6 | 77.87 117 | 81.64 267 | 87.25 262 | 82.43 94 | 94.53 79 | 77.65 138 | 96.46 101 | 94.14 98 |
|
| PCF-MVS | | 74.62 15 | 82.15 180 | 80.92 202 | 85.84 121 | 89.43 174 | 72.30 154 | 80.53 244 | 91.82 118 | 57.36 333 | 87.81 145 | 89.92 218 | 77.67 148 | 93.63 111 | 58.69 312 | 95.08 158 | 91.58 204 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVP-Stereo | | | 75.81 266 | 73.51 282 | 82.71 196 | 89.35 175 | 73.62 131 | 80.06 248 | 85.20 249 | 60.30 311 | 73.96 342 | 87.94 247 | 57.89 303 | 89.45 239 | 52.02 354 | 74.87 388 | 85.06 310 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CNLPA | | | 83.55 157 | 83.10 162 | 84.90 135 | 89.34 176 | 83.87 46 | 84.54 158 | 88.77 192 | 79.09 101 | 83.54 235 | 88.66 238 | 74.87 180 | 81.73 328 | 66.84 252 | 92.29 229 | 89.11 258 |
|
| EC-MVSNet | | | 88.01 75 | 88.32 72 | 87.09 93 | 89.28 177 | 72.03 158 | 90.31 54 | 96.31 3 | 80.88 80 | 85.12 197 | 89.67 222 | 84.47 71 | 95.46 47 | 82.56 83 | 96.26 111 | 93.77 117 |
|
| TSAR-MVS + GP. | | | 83.95 148 | 82.69 169 | 87.72 86 | 89.27 178 | 81.45 63 | 83.72 179 | 81.58 289 | 74.73 152 | 85.66 189 | 86.06 280 | 72.56 214 | 92.69 147 | 75.44 165 | 95.21 152 | 89.01 264 |
|
| MVS_111021_LR | | | 84.28 137 | 83.76 152 | 85.83 122 | 89.23 179 | 83.07 51 | 80.99 240 | 83.56 271 | 72.71 185 | 86.07 182 | 89.07 232 | 81.75 112 | 86.19 289 | 77.11 147 | 93.36 205 | 88.24 269 |
|
| MVS_0304 | | | 86.35 98 | 85.92 110 | 87.66 88 | 89.21 180 | 73.16 139 | 88.40 95 | 83.63 270 | 81.27 74 | 80.87 277 | 94.12 86 | 71.49 225 | 95.71 32 | 87.79 12 | 96.50 98 | 94.11 100 |
|
| LFMVS | | | 80.15 218 | 80.56 205 | 78.89 254 | 89.19 181 | 55.93 324 | 85.22 145 | 73.78 339 | 82.96 58 | 84.28 220 | 92.72 135 | 57.38 305 | 90.07 225 | 63.80 280 | 95.75 138 | 90.68 225 |
|
| CLD-MVS | | | 83.18 163 | 82.64 170 | 84.79 138 | 89.05 182 | 67.82 201 | 77.93 281 | 92.52 96 | 68.33 233 | 85.07 198 | 81.54 339 | 82.06 104 | 92.96 139 | 69.35 228 | 97.91 48 | 93.57 127 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 183 | 84.23 45 | 93.58 6 | 94.68 17 | 90.65 7 | 90.33 93 | 93.95 97 | 84.50 70 | 95.37 51 | 80.87 100 | 95.50 143 | 94.53 79 |
|
| CDS-MVSNet | | | 77.32 248 | 75.40 264 | 83.06 186 | 89.00 184 | 72.48 151 | 77.90 282 | 82.17 283 | 60.81 306 | 78.94 301 | 83.49 314 | 59.30 291 | 88.76 253 | 54.64 340 | 92.37 226 | 87.93 278 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tttt0517 | | | 81.07 198 | 79.58 221 | 85.52 127 | 88.99 185 | 66.45 213 | 87.03 114 | 75.51 327 | 73.76 162 | 88.32 137 | 90.20 211 | 37.96 387 | 94.16 94 | 79.36 119 | 95.13 155 | 95.93 42 |
|
| tfpnnormal | | | 81.79 189 | 82.95 164 | 78.31 265 | 88.93 186 | 55.40 328 | 80.83 243 | 82.85 277 | 76.81 127 | 85.90 187 | 94.14 84 | 74.58 187 | 86.51 282 | 66.82 253 | 95.68 141 | 93.01 148 |
|
| testing3 | | | 71.53 305 | 70.79 307 | 73.77 312 | 88.89 187 | 41.86 394 | 76.60 304 | 59.12 396 | 72.83 182 | 80.97 273 | 82.08 332 | 19.80 412 | 87.33 268 | 65.12 269 | 91.68 243 | 92.13 187 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 242 | 77.79 241 | 77.92 274 | 88.82 188 | 51.29 358 | 83.28 189 | 71.97 353 | 74.04 158 | 82.23 254 | 89.78 220 | 57.38 305 | 89.41 242 | 57.22 321 | 95.41 144 | 93.05 146 |
|
| SDMVSNet | | | 81.90 188 | 83.17 160 | 78.10 270 | 88.81 189 | 62.45 255 | 76.08 312 | 86.05 237 | 73.67 163 | 83.41 236 | 93.04 119 | 82.35 96 | 80.65 335 | 70.06 223 | 95.03 160 | 91.21 210 |
|
| sd_testset | | | 79.95 222 | 81.39 193 | 75.64 302 | 88.81 189 | 58.07 309 | 76.16 311 | 82.81 278 | 73.67 163 | 83.41 236 | 93.04 119 | 80.96 120 | 77.65 348 | 58.62 313 | 95.03 160 | 91.21 210 |
|
| TAPA-MVS | | 77.73 12 | 85.71 110 | 84.83 130 | 88.37 78 | 88.78 191 | 79.72 73 | 87.15 112 | 93.50 58 | 69.17 223 | 85.80 188 | 89.56 223 | 80.76 122 | 92.13 161 | 73.21 197 | 95.51 142 | 93.25 138 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 72 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 65 | 89.44 240 | 74.12 177 | 96.10 118 | 94.45 82 |
|
| APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 72 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 65 | 89.44 240 | 74.12 177 | 96.10 118 | 94.45 82 |
|
| FPMVS | | | 72.29 299 | 72.00 298 | 73.14 316 | 88.63 194 | 85.00 36 | 74.65 327 | 67.39 373 | 71.94 199 | 77.80 310 | 87.66 253 | 50.48 337 | 75.83 355 | 49.95 362 | 79.51 371 | 58.58 400 |
|
| dcpmvs_2 | | | 84.23 140 | 85.14 125 | 81.50 217 | 88.61 195 | 61.98 263 | 82.90 203 | 93.11 75 | 68.66 231 | 92.77 51 | 92.39 142 | 78.50 139 | 87.63 264 | 76.99 149 | 92.30 227 | 94.90 65 |
|
| ETV-MVS | | | 84.31 135 | 83.91 151 | 85.52 127 | 88.58 196 | 70.40 175 | 84.50 160 | 93.37 60 | 78.76 108 | 84.07 225 | 78.72 363 | 80.39 126 | 95.13 60 | 73.82 183 | 92.98 217 | 91.04 214 |
|
| BH-untuned | | | 80.96 200 | 80.99 200 | 80.84 229 | 88.55 197 | 68.23 194 | 80.33 247 | 88.46 196 | 72.79 184 | 86.55 170 | 86.76 270 | 74.72 185 | 91.77 173 | 61.79 296 | 88.99 284 | 82.52 347 |
|
| Anonymous202405211 | | | 80.51 207 | 81.19 198 | 78.49 262 | 88.48 198 | 57.26 316 | 76.63 302 | 82.49 280 | 81.21 76 | 84.30 219 | 92.24 151 | 67.99 240 | 86.24 286 | 62.22 290 | 95.13 155 | 91.98 193 |
|
| ab-mvs | | | 79.67 223 | 80.56 205 | 76.99 285 | 88.48 198 | 56.93 318 | 84.70 153 | 86.06 236 | 68.95 227 | 80.78 279 | 93.08 118 | 75.30 176 | 84.62 308 | 56.78 322 | 90.90 259 | 89.43 252 |
|
| PHI-MVS | | | 86.38 97 | 85.81 114 | 88.08 82 | 88.44 200 | 77.34 101 | 89.35 80 | 93.05 79 | 73.15 178 | 84.76 206 | 87.70 252 | 78.87 137 | 94.18 90 | 80.67 104 | 96.29 107 | 92.73 156 |
|
| xiu_mvs_v1_base_debu | | | 80.84 201 | 80.14 215 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 256 | 87.17 215 | 65.43 263 | 79.59 292 | 82.73 325 | 76.94 160 | 90.14 221 | 73.22 192 | 88.33 293 | 86.90 290 |
|
| xiu_mvs_v1_base | | | 80.84 201 | 80.14 215 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 256 | 87.17 215 | 65.43 263 | 79.59 292 | 82.73 325 | 76.94 160 | 90.14 221 | 73.22 192 | 88.33 293 | 86.90 290 |
|
| xiu_mvs_v1_base_debi | | | 80.84 201 | 80.14 215 | 82.93 191 | 88.31 201 | 71.73 161 | 79.53 256 | 87.17 215 | 65.43 263 | 79.59 292 | 82.73 325 | 76.94 160 | 90.14 221 | 73.22 192 | 88.33 293 | 86.90 290 |
|
| MG-MVS | | | 80.32 213 | 80.94 201 | 78.47 263 | 88.18 204 | 52.62 348 | 82.29 220 | 85.01 256 | 72.01 198 | 79.24 299 | 92.54 140 | 69.36 233 | 93.36 128 | 70.65 215 | 89.19 283 | 89.45 250 |
|
| PM-MVS | | | 80.20 216 | 79.00 226 | 83.78 165 | 88.17 205 | 86.66 15 | 81.31 234 | 66.81 379 | 69.64 220 | 88.33 136 | 90.19 212 | 64.58 258 | 83.63 319 | 71.99 205 | 90.03 273 | 81.06 366 |
|
| v10 | | | 86.54 95 | 87.10 89 | 84.84 136 | 88.16 206 | 63.28 242 | 86.64 124 | 92.20 104 | 75.42 146 | 92.81 50 | 94.50 63 | 74.05 192 | 94.06 96 | 83.88 67 | 96.28 108 | 97.17 20 |
|
| MGCFI-Net | | | 85.50 111 | 86.14 106 | 83.58 172 | 87.97 207 | 67.13 203 | 87.55 105 | 94.32 19 | 73.44 168 | 88.47 131 | 87.54 255 | 86.45 54 | 91.06 191 | 75.76 161 | 93.76 197 | 92.54 166 |
|
| canonicalmvs | | | 85.50 111 | 86.14 106 | 83.58 172 | 87.97 207 | 67.13 203 | 87.55 105 | 94.32 19 | 73.44 168 | 88.47 131 | 87.54 255 | 86.45 54 | 91.06 191 | 75.76 161 | 93.76 197 | 92.54 166 |
|
| EIA-MVS | | | 82.19 178 | 81.23 197 | 85.10 133 | 87.95 209 | 69.17 190 | 83.22 194 | 93.33 63 | 70.42 211 | 78.58 303 | 79.77 355 | 77.29 153 | 94.20 89 | 71.51 206 | 88.96 285 | 91.93 194 |
|
| VNet | | | 79.31 224 | 80.27 210 | 76.44 293 | 87.92 210 | 53.95 337 | 75.58 318 | 84.35 264 | 74.39 156 | 82.23 254 | 90.72 196 | 72.84 210 | 84.39 311 | 60.38 306 | 93.98 193 | 90.97 215 |
|
| v8 | | | 86.22 101 | 86.83 96 | 84.36 149 | 87.82 211 | 62.35 258 | 86.42 127 | 91.33 132 | 76.78 128 | 92.73 52 | 94.48 65 | 73.41 201 | 93.72 108 | 83.10 73 | 95.41 144 | 97.01 23 |
|
| alignmvs | | | 83.94 149 | 83.98 149 | 83.80 163 | 87.80 212 | 67.88 200 | 84.54 158 | 91.42 129 | 73.27 176 | 88.41 134 | 87.96 246 | 72.33 215 | 90.83 200 | 76.02 159 | 94.11 190 | 92.69 160 |
|
| v1192 | | | 84.57 129 | 84.69 135 | 84.21 155 | 87.75 213 | 62.88 246 | 83.02 198 | 91.43 127 | 69.08 225 | 89.98 101 | 90.89 189 | 72.70 212 | 93.62 114 | 82.41 85 | 94.97 164 | 96.13 34 |
|
| PatchMatch-RL | | | 74.48 280 | 73.22 285 | 78.27 268 | 87.70 214 | 85.26 34 | 75.92 314 | 70.09 363 | 64.34 273 | 76.09 323 | 81.25 341 | 65.87 252 | 78.07 347 | 53.86 342 | 83.82 350 | 71.48 386 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 171 | 81.93 180 | 84.50 144 | 87.68 215 | 73.35 133 | 86.14 131 | 77.70 308 | 61.64 295 | 85.02 199 | 91.62 166 | 77.75 146 | 86.24 286 | 82.79 80 | 87.07 310 | 93.91 108 |
|
| v1144 | | | 84.54 131 | 84.72 133 | 84.00 158 | 87.67 216 | 62.55 253 | 82.97 200 | 90.93 144 | 70.32 214 | 89.80 104 | 90.99 184 | 73.50 198 | 93.48 122 | 81.69 95 | 94.65 177 | 95.97 39 |
|
| v1240 | | | 84.30 136 | 84.51 139 | 83.65 169 | 87.65 217 | 61.26 269 | 82.85 204 | 91.54 124 | 67.94 240 | 90.68 90 | 90.65 201 | 71.71 223 | 93.64 110 | 82.84 79 | 94.78 172 | 96.07 36 |
|
| v1921920 | | | 84.23 140 | 84.37 143 | 83.79 164 | 87.64 218 | 61.71 264 | 82.91 202 | 91.20 136 | 67.94 240 | 90.06 96 | 90.34 207 | 72.04 220 | 93.59 116 | 82.32 86 | 94.91 165 | 96.07 36 |
|
| v144192 | | | 84.24 139 | 84.41 141 | 83.71 168 | 87.59 219 | 61.57 265 | 82.95 201 | 91.03 140 | 67.82 243 | 89.80 104 | 90.49 204 | 73.28 205 | 93.51 121 | 81.88 94 | 94.89 167 | 96.04 38 |
|
| Fast-Effi-MVS+ | | | 81.04 199 | 80.57 204 | 82.46 203 | 87.50 220 | 63.22 243 | 78.37 277 | 89.63 181 | 68.01 237 | 81.87 260 | 82.08 332 | 82.31 98 | 92.65 148 | 67.10 249 | 88.30 297 | 91.51 206 |
|
| pmmvs-eth3d | | | 78.42 237 | 77.04 249 | 82.57 201 | 87.44 221 | 74.41 127 | 80.86 242 | 79.67 299 | 55.68 340 | 84.69 207 | 90.31 209 | 60.91 279 | 85.42 301 | 62.20 291 | 91.59 245 | 87.88 279 |
|
| IterMVS-LS | | | 84.73 126 | 84.98 128 | 83.96 160 | 87.35 222 | 63.66 237 | 83.25 191 | 89.88 175 | 76.06 132 | 89.62 110 | 92.37 146 | 73.40 203 | 92.52 150 | 78.16 131 | 94.77 174 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thres100view900 | | | 75.45 268 | 75.05 268 | 76.66 292 | 87.27 223 | 51.88 353 | 81.07 239 | 73.26 344 | 75.68 141 | 83.25 239 | 86.37 274 | 45.54 359 | 88.80 249 | 51.98 355 | 90.99 254 | 89.31 254 |
|
| MIMVSNet | | | 71.09 309 | 71.59 301 | 69.57 341 | 87.23 224 | 50.07 365 | 78.91 268 | 71.83 354 | 60.20 314 | 71.26 355 | 91.76 163 | 55.08 321 | 76.09 353 | 41.06 390 | 87.02 313 | 82.54 346 |
|
| Effi-MVS+ | | | 83.90 150 | 84.01 148 | 83.57 174 | 87.22 225 | 65.61 221 | 86.55 126 | 92.40 98 | 78.64 109 | 81.34 272 | 84.18 308 | 83.65 80 | 92.93 141 | 74.22 174 | 87.87 301 | 92.17 185 |
|
| BH-RMVSNet | | | 80.53 206 | 80.22 213 | 81.49 218 | 87.19 226 | 66.21 215 | 77.79 284 | 86.23 233 | 74.21 157 | 83.69 230 | 88.50 239 | 73.25 206 | 90.75 202 | 63.18 286 | 87.90 300 | 87.52 283 |
|
| thisisatest0530 | | | 79.07 225 | 77.33 246 | 84.26 154 | 87.13 227 | 64.58 228 | 83.66 181 | 75.95 322 | 68.86 228 | 85.22 196 | 87.36 260 | 38.10 385 | 93.57 119 | 75.47 164 | 94.28 186 | 94.62 74 |
|
| Effi-MVS+-dtu | | | 85.82 109 | 83.38 155 | 93.14 3 | 87.13 227 | 91.15 2 | 87.70 104 | 88.42 197 | 74.57 154 | 83.56 234 | 85.65 285 | 78.49 140 | 94.21 88 | 72.04 204 | 92.88 219 | 94.05 102 |
|
| v2v482 | | | 84.09 143 | 84.24 145 | 83.62 170 | 87.13 227 | 61.40 266 | 82.71 207 | 89.71 178 | 72.19 196 | 89.55 114 | 91.41 171 | 70.70 229 | 93.20 131 | 81.02 98 | 93.76 197 | 96.25 32 |
|
| jason | | | 77.42 247 | 75.75 261 | 82.43 204 | 87.10 230 | 69.27 185 | 77.99 280 | 81.94 285 | 51.47 364 | 77.84 308 | 85.07 298 | 60.32 283 | 89.00 246 | 70.74 214 | 89.27 282 | 89.03 262 |
| jason: jason. |
| PS-MVSNAJ | | | 77.04 251 | 76.53 254 | 78.56 260 | 87.09 231 | 61.40 266 | 75.26 321 | 87.13 218 | 61.25 301 | 74.38 341 | 77.22 375 | 76.94 160 | 90.94 194 | 64.63 275 | 84.83 343 | 83.35 335 |
|
| casdiffmvs_mvg |  | | 86.72 92 | 87.51 82 | 84.36 149 | 87.09 231 | 65.22 223 | 84.16 163 | 94.23 24 | 77.89 116 | 91.28 77 | 93.66 108 | 84.35 72 | 92.71 145 | 80.07 107 | 94.87 170 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| xiu_mvs_v2_base | | | 77.19 249 | 76.75 252 | 78.52 261 | 87.01 233 | 61.30 268 | 75.55 319 | 87.12 221 | 61.24 302 | 74.45 339 | 78.79 362 | 77.20 154 | 90.93 195 | 64.62 276 | 84.80 344 | 83.32 336 |
|
| thres600view7 | | | 75.97 264 | 75.35 266 | 77.85 277 | 87.01 233 | 51.84 354 | 80.45 245 | 73.26 344 | 75.20 148 | 83.10 242 | 86.31 277 | 45.54 359 | 89.05 245 | 55.03 337 | 92.24 231 | 92.66 161 |
|
| CL-MVSNet_self_test | | | 76.81 254 | 77.38 244 | 75.12 305 | 86.90 235 | 51.34 356 | 73.20 340 | 80.63 295 | 68.30 234 | 81.80 264 | 88.40 240 | 66.92 245 | 80.90 332 | 55.35 334 | 94.90 166 | 93.12 144 |
|
| BH-w/o | | | 76.57 257 | 76.07 259 | 78.10 270 | 86.88 236 | 65.92 218 | 77.63 286 | 86.33 231 | 65.69 261 | 80.89 276 | 79.95 352 | 68.97 237 | 90.74 203 | 53.01 350 | 85.25 332 | 77.62 377 |
|
| fmvsm_s_conf0.1_n | | | 82.17 179 | 81.59 187 | 83.94 162 | 86.87 237 | 71.57 166 | 85.19 146 | 77.42 311 | 62.27 289 | 84.47 212 | 91.33 173 | 76.43 168 | 85.91 294 | 83.14 71 | 87.14 308 | 94.33 90 |
|
| MAR-MVS | | | 80.24 215 | 78.74 231 | 84.73 140 | 86.87 237 | 78.18 88 | 85.75 136 | 87.81 209 | 65.67 262 | 77.84 308 | 78.50 364 | 73.79 195 | 90.53 209 | 61.59 299 | 90.87 260 | 85.49 306 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| fmvsm_s_conf0.5_n_a | | | 82.21 177 | 81.51 191 | 84.32 152 | 86.56 239 | 73.35 133 | 85.46 140 | 77.30 312 | 61.81 291 | 84.51 209 | 90.88 191 | 77.36 152 | 86.21 288 | 82.72 81 | 86.97 315 | 93.38 131 |
|
| FE-MVS | | | 79.98 221 | 78.86 227 | 83.36 178 | 86.47 240 | 66.45 213 | 89.73 65 | 84.74 262 | 72.80 183 | 84.22 224 | 91.38 172 | 44.95 368 | 93.60 115 | 63.93 279 | 91.50 247 | 90.04 242 |
|
| QAPM | | | 82.59 170 | 82.59 172 | 82.58 199 | 86.44 241 | 66.69 210 | 89.94 62 | 90.36 159 | 67.97 239 | 84.94 203 | 92.58 139 | 72.71 211 | 92.18 160 | 70.63 216 | 87.73 303 | 88.85 265 |
|
| PAPM | | | 71.77 302 | 70.06 316 | 76.92 287 | 86.39 242 | 53.97 336 | 76.62 303 | 86.62 229 | 53.44 351 | 63.97 391 | 84.73 302 | 57.79 304 | 92.34 156 | 39.65 392 | 81.33 367 | 84.45 317 |
|
| GBi-Net | | | 82.02 183 | 82.07 177 | 81.85 210 | 86.38 243 | 61.05 272 | 86.83 118 | 88.27 203 | 72.43 188 | 86.00 183 | 95.64 30 | 63.78 265 | 90.68 205 | 65.95 259 | 93.34 206 | 93.82 112 |
|
| test1 | | | 82.02 183 | 82.07 177 | 81.85 210 | 86.38 243 | 61.05 272 | 86.83 118 | 88.27 203 | 72.43 188 | 86.00 183 | 95.64 30 | 63.78 265 | 90.68 205 | 65.95 259 | 93.34 206 | 93.82 112 |
|
| FMVSNet2 | | | 81.31 194 | 81.61 186 | 80.41 236 | 86.38 243 | 58.75 305 | 83.93 172 | 86.58 230 | 72.43 188 | 87.65 147 | 92.98 123 | 63.78 265 | 90.22 216 | 66.86 250 | 93.92 194 | 92.27 180 |
|
| 3Dnovator | | 80.37 7 | 84.80 125 | 84.71 134 | 85.06 134 | 86.36 246 | 74.71 125 | 88.77 89 | 90.00 173 | 75.65 142 | 84.96 201 | 93.17 116 | 74.06 191 | 91.19 186 | 78.28 128 | 91.09 252 | 89.29 256 |
|
| Anonymous20231206 | | | 71.38 307 | 71.88 299 | 69.88 338 | 86.31 247 | 54.37 334 | 70.39 359 | 74.62 330 | 52.57 356 | 76.73 315 | 88.76 235 | 59.94 286 | 72.06 362 | 44.35 385 | 93.23 211 | 83.23 338 |
|
| baseline | | | 85.20 118 | 85.93 109 | 83.02 187 | 86.30 248 | 62.37 257 | 84.55 156 | 93.96 41 | 74.48 155 | 87.12 154 | 92.03 153 | 82.30 99 | 91.94 166 | 78.39 124 | 94.21 187 | 94.74 73 |
|
| API-MVS | | | 82.28 175 | 82.61 171 | 81.30 220 | 86.29 249 | 69.79 178 | 88.71 90 | 87.67 210 | 78.42 112 | 82.15 256 | 84.15 309 | 77.98 143 | 91.59 175 | 65.39 266 | 92.75 221 | 82.51 348 |
|
| tfpn200view9 | | | 74.86 276 | 74.23 275 | 76.74 291 | 86.24 250 | 52.12 350 | 79.24 263 | 73.87 337 | 73.34 171 | 81.82 262 | 84.60 304 | 46.02 353 | 88.80 249 | 51.98 355 | 90.99 254 | 89.31 254 |
|
| thres400 | | | 75.14 270 | 74.23 275 | 77.86 276 | 86.24 250 | 52.12 350 | 79.24 263 | 73.87 337 | 73.34 171 | 81.82 262 | 84.60 304 | 46.02 353 | 88.80 249 | 51.98 355 | 90.99 254 | 92.66 161 |
|
| UGNet | | | 82.78 167 | 81.64 184 | 86.21 113 | 86.20 252 | 76.24 117 | 86.86 116 | 85.68 242 | 77.07 126 | 73.76 344 | 92.82 130 | 69.64 231 | 91.82 172 | 69.04 235 | 93.69 201 | 90.56 229 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CANet | | | 83.79 151 | 82.85 166 | 86.63 102 | 86.17 253 | 72.21 157 | 83.76 178 | 91.43 127 | 77.24 125 | 74.39 340 | 87.45 258 | 75.36 175 | 95.42 49 | 77.03 148 | 92.83 220 | 92.25 182 |
|
| casdiffmvs |  | | 85.21 117 | 85.85 113 | 83.31 180 | 86.17 253 | 62.77 249 | 83.03 197 | 93.93 42 | 74.69 153 | 88.21 138 | 92.68 136 | 82.29 100 | 91.89 169 | 77.87 137 | 93.75 200 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FA-MVS(test-final) | | | 83.13 165 | 83.02 163 | 83.43 176 | 86.16 255 | 66.08 216 | 88.00 99 | 88.36 199 | 75.55 143 | 85.02 199 | 92.75 134 | 65.12 257 | 92.50 151 | 74.94 171 | 91.30 250 | 91.72 198 |
|
| TR-MVS | | | 76.77 255 | 75.79 260 | 79.72 245 | 86.10 256 | 65.79 219 | 77.14 293 | 83.02 275 | 65.20 269 | 81.40 270 | 82.10 330 | 66.30 247 | 90.73 204 | 55.57 331 | 85.27 331 | 82.65 342 |
|
| fmvsm_s_conf0.5_n | | | 81.91 187 | 81.30 194 | 83.75 166 | 86.02 257 | 71.56 167 | 84.73 152 | 77.11 315 | 62.44 286 | 84.00 226 | 90.68 198 | 76.42 169 | 85.89 296 | 83.14 71 | 87.11 309 | 93.81 115 |
|
| test_fmvsmconf0.01_n | | | 86.68 93 | 86.52 99 | 87.18 92 | 85.94 258 | 78.30 85 | 86.93 115 | 92.20 104 | 65.94 254 | 89.16 119 | 93.16 117 | 83.10 85 | 89.89 229 | 87.81 11 | 94.43 182 | 93.35 132 |
|
| LCM-MVSNet-Re | | | 83.48 158 | 85.06 126 | 78.75 257 | 85.94 258 | 55.75 327 | 80.05 249 | 94.27 21 | 76.47 129 | 96.09 5 | 94.54 62 | 83.31 84 | 89.75 235 | 59.95 307 | 94.89 167 | 90.75 221 |
|
| test_fmvsmvis_n_1920 | | | 85.22 116 | 85.36 123 | 84.81 137 | 85.80 260 | 76.13 119 | 85.15 147 | 92.32 101 | 61.40 297 | 91.33 74 | 90.85 192 | 83.76 79 | 86.16 290 | 84.31 63 | 93.28 209 | 92.15 186 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 172 | 81.41 192 | 85.90 119 | 85.60 261 | 76.53 111 | 83.07 196 | 89.62 182 | 73.02 180 | 79.11 300 | 83.51 313 | 80.74 123 | 90.24 215 | 68.76 238 | 89.29 280 | 90.94 216 |
|
| v148 | | | 82.31 174 | 82.48 174 | 81.81 213 | 85.59 262 | 59.66 291 | 81.47 233 | 86.02 238 | 72.85 181 | 88.05 141 | 90.65 201 | 70.73 228 | 90.91 197 | 75.15 168 | 91.79 240 | 94.87 67 |
|
| iter_conf05_11 | | | 78.40 238 | 77.29 247 | 81.71 215 | 85.55 263 | 60.95 277 | 77.22 292 | 86.90 227 | 60.10 315 | 75.79 327 | 81.73 336 | 64.08 262 | 94.47 82 | 70.37 220 | 93.92 194 | 89.72 245 |
|
| bld_raw_dy_0_64 | | | 81.25 195 | 81.17 199 | 81.49 218 | 85.55 263 | 60.85 278 | 86.36 128 | 95.45 9 | 57.08 335 | 90.81 88 | 82.69 328 | 65.85 253 | 93.91 101 | 70.37 220 | 96.34 105 | 89.72 245 |
|
| MVSFormer | | | 82.23 176 | 81.57 189 | 84.19 157 | 85.54 265 | 69.26 186 | 91.98 31 | 90.08 171 | 71.54 200 | 76.23 320 | 85.07 298 | 58.69 296 | 94.27 84 | 86.26 40 | 88.77 287 | 89.03 262 |
|
| lupinMVS | | | 76.37 261 | 74.46 273 | 82.09 205 | 85.54 265 | 69.26 186 | 76.79 298 | 80.77 294 | 50.68 371 | 76.23 320 | 82.82 323 | 58.69 296 | 88.94 247 | 69.85 224 | 88.77 287 | 88.07 272 |
|
| TinyColmap | | | 81.25 195 | 82.34 176 | 77.99 273 | 85.33 267 | 60.68 282 | 82.32 219 | 88.33 201 | 71.26 204 | 86.97 161 | 92.22 152 | 77.10 157 | 86.98 273 | 62.37 289 | 95.17 154 | 86.31 296 |
|
| test_fmvsmconf0.1_n | | | 86.18 103 | 85.88 112 | 87.08 94 | 85.26 268 | 78.25 86 | 85.82 135 | 91.82 118 | 65.33 267 | 88.55 128 | 92.35 147 | 82.62 92 | 89.80 231 | 86.87 32 | 94.32 185 | 93.18 141 |
|
| test_fmvsm_n_1920 | | | 83.60 155 | 82.89 165 | 85.74 123 | 85.22 269 | 77.74 95 | 84.12 165 | 90.48 154 | 59.87 317 | 86.45 178 | 91.12 180 | 75.65 172 | 85.89 296 | 82.28 87 | 90.87 260 | 93.58 126 |
|
| PAPR | | | 78.84 229 | 78.10 239 | 81.07 225 | 85.17 270 | 60.22 285 | 82.21 224 | 90.57 153 | 62.51 282 | 75.32 334 | 84.61 303 | 74.99 179 | 92.30 158 | 59.48 310 | 88.04 299 | 90.68 225 |
|
| pmmvs4 | | | 74.92 275 | 72.98 288 | 80.73 231 | 84.95 271 | 71.71 164 | 76.23 309 | 77.59 309 | 52.83 354 | 77.73 312 | 86.38 273 | 56.35 312 | 84.97 305 | 57.72 320 | 87.05 311 | 85.51 305 |
|
| baseline1 | | | 73.26 289 | 73.54 281 | 72.43 325 | 84.92 272 | 47.79 372 | 79.89 252 | 74.00 335 | 65.93 255 | 78.81 302 | 86.28 278 | 56.36 311 | 81.63 329 | 56.63 323 | 79.04 377 | 87.87 280 |
|
| Patchmatch-RL test | | | 74.48 280 | 73.68 279 | 76.89 289 | 84.83 273 | 66.54 211 | 72.29 344 | 69.16 369 | 57.70 329 | 86.76 164 | 86.33 275 | 45.79 358 | 82.59 323 | 69.63 226 | 90.65 268 | 81.54 357 |
|
| patch_mono-2 | | | 78.89 227 | 79.39 223 | 77.41 282 | 84.78 274 | 68.11 197 | 75.60 316 | 83.11 274 | 60.96 305 | 79.36 296 | 89.89 219 | 75.18 177 | 72.97 360 | 73.32 191 | 92.30 227 | 91.15 212 |
|
| test_fmvsmconf_n | | | 85.88 108 | 85.51 120 | 86.99 96 | 84.77 275 | 78.21 87 | 85.40 143 | 91.39 130 | 65.32 268 | 87.72 146 | 91.81 161 | 82.33 97 | 89.78 232 | 86.68 34 | 94.20 188 | 92.99 149 |
|
| KD-MVS_self_test | | | 81.93 186 | 83.14 161 | 78.30 266 | 84.75 276 | 52.75 345 | 80.37 246 | 89.42 186 | 70.24 216 | 90.26 94 | 93.39 113 | 74.55 188 | 86.77 278 | 68.61 241 | 96.64 92 | 95.38 52 |
|
| XXY-MVS | | | 74.44 282 | 76.19 257 | 69.21 343 | 84.61 277 | 52.43 349 | 71.70 348 | 77.18 314 | 60.73 308 | 80.60 280 | 90.96 187 | 75.44 173 | 69.35 371 | 56.13 327 | 88.33 293 | 85.86 301 |
|
| cascas | | | 76.29 262 | 74.81 269 | 80.72 232 | 84.47 278 | 62.94 245 | 73.89 334 | 87.34 212 | 55.94 339 | 75.16 336 | 76.53 380 | 63.97 263 | 91.16 187 | 65.00 270 | 90.97 257 | 88.06 274 |
|
| PVSNet_BlendedMVS | | | 78.80 231 | 77.84 240 | 81.65 216 | 84.43 279 | 63.41 239 | 79.49 259 | 90.44 156 | 61.70 294 | 75.43 331 | 87.07 267 | 69.11 235 | 91.44 179 | 60.68 304 | 92.24 231 | 90.11 240 |
|
| PVSNet_Blended | | | 76.49 259 | 75.40 264 | 79.76 244 | 84.43 279 | 63.41 239 | 75.14 322 | 90.44 156 | 57.36 333 | 75.43 331 | 78.30 365 | 69.11 235 | 91.44 179 | 60.68 304 | 87.70 304 | 84.42 318 |
|
| OpenMVS |  | 76.72 13 | 81.98 185 | 82.00 179 | 81.93 207 | 84.42 281 | 68.22 195 | 88.50 94 | 89.48 184 | 66.92 249 | 81.80 264 | 91.86 156 | 72.59 213 | 90.16 218 | 71.19 209 | 91.25 251 | 87.40 285 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 244 | 77.46 242 | 78.71 258 | 84.39 282 | 61.15 270 | 81.18 238 | 82.52 279 | 62.45 285 | 83.34 238 | 87.37 259 | 66.20 248 | 88.66 254 | 64.69 274 | 85.02 337 | 86.32 295 |
|
| test_yl | | | 78.71 233 | 78.51 234 | 79.32 251 | 84.32 283 | 58.84 302 | 78.38 275 | 85.33 247 | 75.99 135 | 82.49 249 | 86.57 271 | 58.01 299 | 90.02 227 | 62.74 287 | 92.73 222 | 89.10 259 |
|
| DCV-MVSNet | | | 78.71 233 | 78.51 234 | 79.32 251 | 84.32 283 | 58.84 302 | 78.38 275 | 85.33 247 | 75.99 135 | 82.49 249 | 86.57 271 | 58.01 299 | 90.02 227 | 62.74 287 | 92.73 222 | 89.10 259 |
|
| DELS-MVS | | | 81.44 193 | 81.25 195 | 82.03 206 | 84.27 285 | 62.87 247 | 76.47 306 | 92.49 97 | 70.97 207 | 81.64 267 | 83.83 310 | 75.03 178 | 92.70 146 | 74.29 173 | 92.22 233 | 90.51 231 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Gipuma |  | | 84.44 132 | 86.33 102 | 78.78 256 | 84.20 286 | 73.57 132 | 89.55 72 | 90.44 156 | 84.24 43 | 84.38 213 | 94.89 48 | 76.35 171 | 80.40 337 | 76.14 157 | 96.80 89 | 82.36 349 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UWE-MVS | | | 66.43 343 | 65.56 348 | 69.05 344 | 84.15 287 | 40.98 395 | 73.06 342 | 64.71 383 | 54.84 345 | 76.18 322 | 79.62 356 | 29.21 401 | 80.50 336 | 38.54 396 | 89.75 276 | 85.66 303 |
|
| EI-MVSNet-Vis-set | | | 85.12 120 | 84.53 138 | 86.88 98 | 84.01 288 | 72.76 141 | 83.91 173 | 85.18 250 | 80.44 82 | 88.75 125 | 85.49 287 | 80.08 129 | 91.92 167 | 82.02 90 | 90.85 262 | 95.97 39 |
|
| fmvsm_l_conf0.5_n | | | 82.06 182 | 81.54 190 | 83.60 171 | 83.94 289 | 73.90 130 | 83.35 188 | 86.10 235 | 58.97 319 | 83.80 229 | 90.36 206 | 74.23 189 | 86.94 274 | 82.90 77 | 90.22 271 | 89.94 243 |
|
| IterMVS-SCA-FT | | | 80.64 205 | 79.41 222 | 84.34 151 | 83.93 290 | 69.66 181 | 76.28 308 | 81.09 291 | 72.43 188 | 86.47 176 | 90.19 212 | 60.46 281 | 93.15 134 | 77.45 142 | 86.39 321 | 90.22 236 |
|
| MSDG | | | 80.06 220 | 79.99 220 | 80.25 238 | 83.91 291 | 68.04 199 | 77.51 289 | 89.19 187 | 77.65 119 | 81.94 258 | 83.45 315 | 76.37 170 | 86.31 285 | 63.31 285 | 86.59 318 | 86.41 294 |
|
| EI-MVSNet-UG-set | | | 85.04 121 | 84.44 140 | 86.85 99 | 83.87 292 | 72.52 150 | 83.82 175 | 85.15 251 | 80.27 86 | 88.75 125 | 85.45 289 | 79.95 131 | 91.90 168 | 81.92 93 | 90.80 263 | 96.13 34 |
|
| testing91 | | | 69.94 321 | 68.99 326 | 72.80 319 | 83.81 293 | 45.89 380 | 71.57 350 | 73.64 342 | 68.24 235 | 70.77 361 | 77.82 367 | 34.37 392 | 84.44 310 | 53.64 344 | 87.00 314 | 88.07 272 |
|
| fmvsm_l_conf0.5_n_a | | | 81.46 192 | 80.87 203 | 83.25 181 | 83.73 294 | 73.21 138 | 83.00 199 | 85.59 244 | 58.22 325 | 82.96 244 | 90.09 216 | 72.30 216 | 86.65 280 | 81.97 92 | 89.95 275 | 89.88 244 |
|
| thres200 | | | 72.34 298 | 71.55 304 | 74.70 308 | 83.48 295 | 51.60 355 | 75.02 323 | 73.71 340 | 70.14 217 | 78.56 304 | 80.57 346 | 46.20 351 | 88.20 259 | 46.99 377 | 89.29 280 | 84.32 319 |
|
| USDC | | | 76.63 256 | 76.73 253 | 76.34 295 | 83.46 296 | 57.20 317 | 80.02 250 | 88.04 207 | 52.14 360 | 83.65 231 | 91.25 175 | 63.24 268 | 86.65 280 | 54.66 339 | 94.11 190 | 85.17 308 |
|
| ETVMVS | | | 64.67 351 | 63.34 356 | 68.64 348 | 83.44 297 | 41.89 393 | 69.56 364 | 61.70 392 | 61.33 300 | 68.74 369 | 75.76 383 | 28.76 402 | 79.35 340 | 34.65 400 | 86.16 325 | 84.67 314 |
|
| testing222 | | | 66.93 337 | 65.30 349 | 71.81 328 | 83.38 298 | 45.83 381 | 72.06 346 | 67.50 372 | 64.12 274 | 69.68 366 | 76.37 381 | 27.34 406 | 83.00 321 | 38.88 393 | 88.38 292 | 86.62 293 |
|
| testing11 | | | 67.38 335 | 65.93 343 | 71.73 329 | 83.37 299 | 46.60 377 | 70.95 355 | 69.40 367 | 62.47 284 | 66.14 378 | 76.66 378 | 31.22 397 | 84.10 314 | 49.10 368 | 84.10 349 | 84.49 315 |
|
| HY-MVS | | 64.64 18 | 73.03 292 | 72.47 296 | 74.71 307 | 83.36 300 | 54.19 335 | 82.14 227 | 81.96 284 | 56.76 338 | 69.57 367 | 86.21 279 | 60.03 285 | 84.83 307 | 49.58 366 | 82.65 359 | 85.11 309 |
|
| testing99 | | | 69.27 327 | 68.15 333 | 72.63 321 | 83.29 301 | 45.45 382 | 71.15 352 | 71.08 359 | 67.34 246 | 70.43 362 | 77.77 369 | 32.24 395 | 84.35 312 | 53.72 343 | 86.33 322 | 88.10 271 |
|
| EI-MVSNet | | | 82.61 169 | 82.42 175 | 83.20 184 | 83.25 302 | 63.66 237 | 83.50 184 | 85.07 252 | 76.06 132 | 86.55 170 | 85.10 295 | 73.41 201 | 90.25 213 | 78.15 133 | 90.67 266 | 95.68 45 |
|
| CVMVSNet | | | 72.62 295 | 71.41 305 | 76.28 296 | 83.25 302 | 60.34 284 | 83.50 184 | 79.02 303 | 37.77 401 | 76.33 318 | 85.10 295 | 49.60 341 | 87.41 266 | 70.54 217 | 77.54 383 | 81.08 364 |
|
| WB-MVSnew | | | 68.72 331 | 69.01 325 | 67.85 352 | 83.22 304 | 43.98 388 | 74.93 324 | 65.98 380 | 55.09 342 | 73.83 343 | 79.11 358 | 65.63 254 | 71.89 364 | 38.21 397 | 85.04 336 | 87.69 282 |
|
| V42 | | | 83.47 159 | 83.37 156 | 83.75 166 | 83.16 305 | 63.33 241 | 81.31 234 | 90.23 167 | 69.51 221 | 90.91 84 | 90.81 194 | 74.16 190 | 92.29 159 | 80.06 108 | 90.22 271 | 95.62 47 |
|
| Anonymous20240521 | | | 80.18 217 | 81.25 195 | 76.95 286 | 83.15 306 | 60.84 279 | 82.46 215 | 85.99 239 | 68.76 229 | 86.78 163 | 93.73 107 | 59.13 293 | 77.44 349 | 73.71 185 | 97.55 67 | 92.56 164 |
|
| EU-MVSNet | | | 75.12 272 | 74.43 274 | 77.18 284 | 83.11 307 | 59.48 293 | 85.71 138 | 82.43 281 | 39.76 398 | 85.64 190 | 88.76 235 | 44.71 370 | 87.88 261 | 73.86 182 | 85.88 327 | 84.16 323 |
|
| ET-MVSNet_ETH3D | | | 75.28 269 | 72.77 290 | 82.81 195 | 83.03 308 | 68.11 197 | 77.09 294 | 76.51 320 | 60.67 309 | 77.60 313 | 80.52 347 | 38.04 386 | 91.15 188 | 70.78 212 | 90.68 265 | 89.17 257 |
|
| iter_conf05 | | | 78.81 230 | 77.35 245 | 83.21 183 | 82.98 309 | 60.75 281 | 84.09 166 | 88.34 200 | 63.12 278 | 84.25 223 | 89.48 224 | 31.41 396 | 94.51 81 | 76.64 151 | 95.83 132 | 94.38 88 |
|
| FMVSNet3 | | | 78.80 231 | 78.55 233 | 79.57 248 | 82.89 310 | 56.89 320 | 81.76 228 | 85.77 241 | 69.04 226 | 86.00 183 | 90.44 205 | 51.75 332 | 90.09 224 | 65.95 259 | 93.34 206 | 91.72 198 |
|
| MVS_Test | | | 82.47 173 | 83.22 157 | 80.22 239 | 82.62 311 | 57.75 313 | 82.54 213 | 91.96 112 | 71.16 206 | 82.89 245 | 92.52 141 | 77.41 151 | 90.50 210 | 80.04 109 | 87.84 302 | 92.40 172 |
|
| LF4IMVS | | | 82.75 168 | 81.93 180 | 85.19 131 | 82.08 312 | 80.15 70 | 85.53 139 | 88.76 193 | 68.01 237 | 85.58 191 | 87.75 251 | 71.80 222 | 86.85 276 | 74.02 179 | 93.87 196 | 88.58 267 |
|
| PVSNet | | 58.17 21 | 66.41 344 | 65.63 347 | 68.75 347 | 81.96 313 | 49.88 366 | 62.19 385 | 72.51 349 | 51.03 367 | 68.04 373 | 75.34 385 | 50.84 335 | 74.77 357 | 45.82 382 | 82.96 354 | 81.60 356 |
|
| GA-MVS | | | 75.83 265 | 74.61 270 | 79.48 250 | 81.87 314 | 59.25 295 | 73.42 338 | 82.88 276 | 68.68 230 | 79.75 291 | 81.80 335 | 50.62 336 | 89.46 238 | 66.85 251 | 85.64 328 | 89.72 245 |
|
| MS-PatchMatch | | | 70.93 311 | 70.22 314 | 73.06 317 | 81.85 315 | 62.50 254 | 73.82 335 | 77.90 306 | 52.44 357 | 75.92 325 | 81.27 340 | 55.67 316 | 81.75 327 | 55.37 333 | 77.70 381 | 74.94 382 |
|
| Syy-MVS | | | 69.40 326 | 70.03 317 | 67.49 355 | 81.72 316 | 38.94 397 | 71.00 353 | 61.99 387 | 61.38 298 | 70.81 359 | 72.36 390 | 61.37 277 | 79.30 341 | 64.50 278 | 85.18 333 | 84.22 320 |
|
| myMVS_eth3d | | | 64.66 352 | 63.89 353 | 66.97 357 | 81.72 316 | 37.39 400 | 71.00 353 | 61.99 387 | 61.38 298 | 70.81 359 | 72.36 390 | 20.96 411 | 79.30 341 | 49.59 365 | 85.18 333 | 84.22 320 |
|
| SCA | | | 73.32 288 | 72.57 294 | 75.58 303 | 81.62 318 | 55.86 325 | 78.89 269 | 71.37 358 | 61.73 292 | 74.93 337 | 83.42 316 | 60.46 281 | 87.01 270 | 58.11 318 | 82.63 361 | 83.88 324 |
|
| FMVSNet5 | | | 72.10 300 | 71.69 300 | 73.32 314 | 81.57 319 | 53.02 344 | 76.77 299 | 78.37 305 | 63.31 276 | 76.37 317 | 91.85 157 | 36.68 389 | 78.98 343 | 47.87 374 | 92.45 225 | 87.95 277 |
|
| thisisatest0515 | | | 73.00 293 | 70.52 310 | 80.46 235 | 81.45 320 | 59.90 289 | 73.16 341 | 74.31 334 | 57.86 328 | 76.08 324 | 77.78 368 | 37.60 388 | 92.12 163 | 65.00 270 | 91.45 248 | 89.35 253 |
|
| eth_miper_zixun_eth | | | 80.84 201 | 80.22 213 | 82.71 196 | 81.41 321 | 60.98 275 | 77.81 283 | 90.14 170 | 67.31 247 | 86.95 162 | 87.24 263 | 64.26 260 | 92.31 157 | 75.23 167 | 91.61 244 | 94.85 71 |
|
| CANet_DTU | | | 77.81 243 | 77.05 248 | 80.09 241 | 81.37 322 | 59.90 289 | 83.26 190 | 88.29 202 | 69.16 224 | 67.83 375 | 83.72 311 | 60.93 278 | 89.47 237 | 69.22 231 | 89.70 277 | 90.88 218 |
|
| ANet_high | | | 83.17 164 | 85.68 117 | 75.65 301 | 81.24 323 | 45.26 384 | 79.94 251 | 92.91 86 | 83.83 46 | 91.33 74 | 96.88 10 | 80.25 128 | 85.92 293 | 68.89 236 | 95.89 129 | 95.76 43 |
|
| new-patchmatchnet | | | 70.10 317 | 73.37 284 | 60.29 378 | 81.23 324 | 16.95 411 | 59.54 388 | 74.62 330 | 62.93 279 | 80.97 273 | 87.93 248 | 62.83 273 | 71.90 363 | 55.24 335 | 95.01 163 | 92.00 191 |
|
| test20.03 | | | 73.75 286 | 74.59 272 | 71.22 331 | 81.11 325 | 51.12 360 | 70.15 361 | 72.10 352 | 70.42 211 | 80.28 288 | 91.50 169 | 64.21 261 | 74.72 359 | 46.96 378 | 94.58 178 | 87.82 281 |
|
| MVS | | | 73.21 291 | 72.59 293 | 75.06 306 | 80.97 326 | 60.81 280 | 81.64 231 | 85.92 240 | 46.03 382 | 71.68 354 | 77.54 370 | 68.47 238 | 89.77 233 | 55.70 330 | 85.39 329 | 74.60 383 |
|
| N_pmnet | | | 70.20 315 | 68.80 329 | 74.38 309 | 80.91 327 | 84.81 39 | 59.12 390 | 76.45 321 | 55.06 343 | 75.31 335 | 82.36 329 | 55.74 315 | 54.82 400 | 47.02 376 | 87.24 307 | 83.52 331 |
|
| IterMVS | | | 76.91 252 | 76.34 256 | 78.64 259 | 80.91 327 | 64.03 234 | 76.30 307 | 79.03 302 | 64.88 271 | 83.11 241 | 89.16 230 | 59.90 287 | 84.46 309 | 68.61 241 | 85.15 335 | 87.42 284 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| c3_l | | | 81.64 190 | 81.59 187 | 81.79 214 | 80.86 329 | 59.15 298 | 78.61 274 | 90.18 169 | 68.36 232 | 87.20 152 | 87.11 266 | 69.39 232 | 91.62 174 | 78.16 131 | 94.43 182 | 94.60 75 |
|
| WTY-MVS | | | 67.91 334 | 68.35 331 | 66.58 359 | 80.82 330 | 48.12 370 | 65.96 376 | 72.60 347 | 53.67 350 | 71.20 356 | 81.68 338 | 58.97 294 | 69.06 373 | 48.57 370 | 81.67 363 | 82.55 345 |
|
| IB-MVS | | 62.13 19 | 71.64 303 | 68.97 327 | 79.66 247 | 80.80 331 | 62.26 260 | 73.94 333 | 76.90 316 | 63.27 277 | 68.63 371 | 76.79 377 | 33.83 393 | 91.84 171 | 59.28 311 | 87.26 306 | 84.88 311 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| our_test_3 | | | 71.85 301 | 71.59 301 | 72.62 322 | 80.71 332 | 53.78 338 | 69.72 363 | 71.71 357 | 58.80 321 | 78.03 305 | 80.51 348 | 56.61 310 | 78.84 345 | 62.20 291 | 86.04 326 | 85.23 307 |
|
| ppachtmachnet_test | | | 74.73 279 | 74.00 277 | 76.90 288 | 80.71 332 | 56.89 320 | 71.53 351 | 78.42 304 | 58.24 324 | 79.32 298 | 82.92 322 | 57.91 302 | 84.26 313 | 65.60 265 | 91.36 249 | 89.56 249 |
|
| testgi | | | 72.36 297 | 74.61 270 | 65.59 362 | 80.56 334 | 42.82 392 | 68.29 367 | 73.35 343 | 66.87 250 | 81.84 261 | 89.93 217 | 72.08 219 | 66.92 384 | 46.05 381 | 92.54 224 | 87.01 289 |
|
| D2MVS | | | 76.84 253 | 75.67 263 | 80.34 237 | 80.48 335 | 62.16 262 | 73.50 337 | 84.80 261 | 57.61 331 | 82.24 253 | 87.54 255 | 51.31 333 | 87.65 263 | 70.40 219 | 93.19 212 | 91.23 209 |
|
| 1314 | | | 73.22 290 | 72.56 295 | 75.20 304 | 80.41 336 | 57.84 311 | 81.64 231 | 85.36 246 | 51.68 363 | 73.10 347 | 76.65 379 | 61.45 276 | 85.19 303 | 63.54 282 | 79.21 375 | 82.59 343 |
|
| cl____ | | | 80.42 209 | 80.23 211 | 81.02 227 | 79.99 337 | 59.25 295 | 77.07 295 | 87.02 223 | 67.37 245 | 86.18 181 | 89.21 229 | 63.08 270 | 90.16 218 | 76.31 155 | 95.80 135 | 93.65 122 |
|
| DIV-MVS_self_test | | | 80.43 208 | 80.23 211 | 81.02 227 | 79.99 337 | 59.25 295 | 77.07 295 | 87.02 223 | 67.38 244 | 86.19 179 | 89.22 228 | 63.09 269 | 90.16 218 | 76.32 154 | 95.80 135 | 93.66 120 |
|
| miper_ehance_all_eth | | | 80.34 212 | 80.04 218 | 81.24 223 | 79.82 339 | 58.95 300 | 77.66 285 | 89.66 179 | 65.75 260 | 85.99 186 | 85.11 294 | 68.29 239 | 91.42 181 | 76.03 158 | 92.03 235 | 93.33 133 |
|
| CR-MVSNet | | | 74.00 284 | 73.04 287 | 76.85 290 | 79.58 340 | 62.64 251 | 82.58 210 | 76.90 316 | 50.50 372 | 75.72 328 | 92.38 143 | 48.07 345 | 84.07 315 | 68.72 240 | 82.91 356 | 83.85 327 |
|
| RPMNet | | | 78.88 228 | 78.28 237 | 80.68 233 | 79.58 340 | 62.64 251 | 82.58 210 | 94.16 29 | 74.80 151 | 75.72 328 | 92.59 137 | 48.69 342 | 95.56 39 | 73.48 188 | 82.91 356 | 83.85 327 |
|
| baseline2 | | | 69.77 322 | 66.89 338 | 78.41 264 | 79.51 342 | 58.09 308 | 76.23 309 | 69.57 366 | 57.50 332 | 64.82 389 | 77.45 372 | 46.02 353 | 88.44 255 | 53.08 347 | 77.83 379 | 88.70 266 |
|
| UnsupCasMVSNet_bld | | | 69.21 328 | 69.68 320 | 67.82 353 | 79.42 343 | 51.15 359 | 67.82 371 | 75.79 323 | 54.15 348 | 77.47 314 | 85.36 293 | 59.26 292 | 70.64 367 | 48.46 371 | 79.35 373 | 81.66 355 |
|
| PatchT | | | 70.52 313 | 72.76 291 | 63.79 370 | 79.38 344 | 33.53 404 | 77.63 286 | 65.37 382 | 73.61 165 | 71.77 353 | 92.79 133 | 44.38 371 | 75.65 356 | 64.53 277 | 85.37 330 | 82.18 350 |
|
| Patchmtry | | | 76.56 258 | 77.46 242 | 73.83 311 | 79.37 345 | 46.60 377 | 82.41 217 | 76.90 316 | 73.81 161 | 85.56 192 | 92.38 143 | 48.07 345 | 83.98 316 | 63.36 284 | 95.31 150 | 90.92 217 |
|
| mvs_anonymous | | | 78.13 239 | 78.76 230 | 76.23 298 | 79.24 346 | 50.31 364 | 78.69 272 | 84.82 260 | 61.60 296 | 83.09 243 | 92.82 130 | 73.89 194 | 87.01 270 | 68.33 245 | 86.41 320 | 91.37 207 |
|
| MVS-HIRNet | | | 61.16 361 | 62.92 358 | 55.87 382 | 79.09 347 | 35.34 403 | 71.83 347 | 57.98 400 | 46.56 379 | 59.05 398 | 91.14 179 | 49.95 340 | 76.43 352 | 38.74 394 | 71.92 392 | 55.84 401 |
|
| MDA-MVSNet-bldmvs | | | 77.47 246 | 76.90 251 | 79.16 253 | 79.03 348 | 64.59 227 | 66.58 375 | 75.67 325 | 73.15 178 | 88.86 122 | 88.99 233 | 66.94 244 | 81.23 331 | 64.71 273 | 88.22 298 | 91.64 202 |
|
| diffmvs |  | | 80.40 210 | 80.48 208 | 80.17 240 | 79.02 349 | 60.04 286 | 77.54 288 | 90.28 166 | 66.65 252 | 82.40 251 | 87.33 261 | 73.50 198 | 87.35 267 | 77.98 135 | 89.62 278 | 93.13 142 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpm2 | | | 68.45 332 | 66.83 339 | 73.30 315 | 78.93 350 | 48.50 368 | 79.76 253 | 71.76 355 | 47.50 376 | 69.92 365 | 83.60 312 | 42.07 379 | 88.40 256 | 48.44 372 | 79.51 371 | 83.01 341 |
|
| tpm | | | 67.95 333 | 68.08 334 | 67.55 354 | 78.74 351 | 43.53 390 | 75.60 316 | 67.10 378 | 54.92 344 | 72.23 351 | 88.10 244 | 42.87 378 | 75.97 354 | 52.21 353 | 80.95 370 | 83.15 339 |
|
| MDTV_nov1_ep13 | | | | 68.29 332 | | 78.03 352 | 43.87 389 | 74.12 330 | 72.22 351 | 52.17 358 | 67.02 377 | 85.54 286 | 45.36 363 | 80.85 333 | 55.73 328 | 84.42 346 | |
|
| cl22 | | | 78.97 226 | 78.21 238 | 81.24 223 | 77.74 353 | 59.01 299 | 77.46 291 | 87.13 218 | 65.79 257 | 84.32 216 | 85.10 295 | 58.96 295 | 90.88 199 | 75.36 166 | 92.03 235 | 93.84 110 |
|
| EPNet_dtu | | | 72.87 294 | 71.33 306 | 77.49 281 | 77.72 354 | 60.55 283 | 82.35 218 | 75.79 323 | 66.49 253 | 58.39 401 | 81.06 342 | 53.68 323 | 85.98 292 | 53.55 345 | 92.97 218 | 85.95 299 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PatchmatchNet |  | | 69.71 323 | 68.83 328 | 72.33 326 | 77.66 355 | 53.60 339 | 79.29 261 | 69.99 364 | 57.66 330 | 72.53 350 | 82.93 321 | 46.45 350 | 80.08 339 | 60.91 303 | 72.09 391 | 83.31 337 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_vis1_n_1920 | | | 71.30 308 | 71.58 303 | 70.47 334 | 77.58 356 | 59.99 288 | 74.25 328 | 84.22 266 | 51.06 366 | 74.85 338 | 79.10 359 | 55.10 320 | 68.83 374 | 68.86 237 | 79.20 376 | 82.58 344 |
|
| dmvs_testset | | | 60.59 365 | 62.54 360 | 54.72 384 | 77.26 357 | 27.74 407 | 74.05 331 | 61.00 394 | 60.48 310 | 65.62 383 | 67.03 397 | 55.93 314 | 68.23 379 | 32.07 404 | 69.46 398 | 68.17 391 |
|
| sss | | | 66.92 338 | 67.26 336 | 65.90 361 | 77.23 358 | 51.10 361 | 64.79 378 | 71.72 356 | 52.12 361 | 70.13 364 | 80.18 350 | 57.96 301 | 65.36 390 | 50.21 361 | 81.01 369 | 81.25 361 |
|
| CostFormer | | | 69.98 320 | 68.68 330 | 73.87 310 | 77.14 359 | 50.72 362 | 79.26 262 | 74.51 332 | 51.94 362 | 70.97 358 | 84.75 301 | 45.16 367 | 87.49 265 | 55.16 336 | 79.23 374 | 83.40 334 |
|
| tpm cat1 | | | 66.76 342 | 65.21 350 | 71.42 330 | 77.09 360 | 50.62 363 | 78.01 279 | 73.68 341 | 44.89 385 | 68.64 370 | 79.00 360 | 45.51 361 | 82.42 326 | 49.91 363 | 70.15 394 | 81.23 363 |
|
| pmmvs5 | | | 70.73 312 | 70.07 315 | 72.72 320 | 77.03 361 | 52.73 346 | 74.14 329 | 75.65 326 | 50.36 373 | 72.17 352 | 85.37 292 | 55.42 318 | 80.67 334 | 52.86 351 | 87.59 305 | 84.77 312 |
|
| dmvs_re | | | 66.81 341 | 66.98 337 | 66.28 360 | 76.87 362 | 58.68 306 | 71.66 349 | 72.24 350 | 60.29 312 | 69.52 368 | 73.53 387 | 52.38 328 | 64.40 392 | 44.90 383 | 81.44 366 | 75.76 380 |
|
| EPNet | | | 80.37 211 | 78.41 236 | 86.23 111 | 76.75 363 | 73.28 135 | 87.18 111 | 77.45 310 | 76.24 131 | 68.14 372 | 88.93 234 | 65.41 255 | 93.85 103 | 69.47 227 | 96.12 117 | 91.55 205 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_lstm_enhance | | | 76.45 260 | 76.10 258 | 77.51 280 | 76.72 364 | 60.97 276 | 64.69 379 | 85.04 254 | 63.98 275 | 83.20 240 | 88.22 242 | 56.67 309 | 78.79 346 | 73.22 192 | 93.12 213 | 92.78 155 |
|
| CHOSEN 280x420 | | | 59.08 366 | 56.52 371 | 66.76 358 | 76.51 365 | 64.39 231 | 49.62 398 | 59.00 397 | 43.86 388 | 55.66 403 | 68.41 396 | 35.55 391 | 68.21 380 | 43.25 386 | 76.78 386 | 67.69 392 |
|
| UnsupCasMVSNet_eth | | | 71.63 304 | 72.30 297 | 69.62 340 | 76.47 366 | 52.70 347 | 70.03 362 | 80.97 292 | 59.18 318 | 79.36 296 | 88.21 243 | 60.50 280 | 69.12 372 | 58.33 316 | 77.62 382 | 87.04 288 |
|
| test-LLR | | | 67.21 336 | 66.74 340 | 68.63 349 | 76.45 367 | 55.21 330 | 67.89 368 | 67.14 376 | 62.43 287 | 65.08 386 | 72.39 388 | 43.41 374 | 69.37 369 | 61.00 301 | 84.89 341 | 81.31 359 |
|
| test-mter | | | 65.00 350 | 63.79 354 | 68.63 349 | 76.45 367 | 55.21 330 | 67.89 368 | 67.14 376 | 50.98 368 | 65.08 386 | 72.39 388 | 28.27 404 | 69.37 369 | 61.00 301 | 84.89 341 | 81.31 359 |
|
| miper_enhance_ethall | | | 77.83 241 | 76.93 250 | 80.51 234 | 76.15 369 | 58.01 310 | 75.47 320 | 88.82 191 | 58.05 327 | 83.59 232 | 80.69 343 | 64.41 259 | 91.20 185 | 73.16 198 | 92.03 235 | 92.33 176 |
|
| gg-mvs-nofinetune | | | 68.96 330 | 69.11 323 | 68.52 351 | 76.12 370 | 45.32 383 | 83.59 182 | 55.88 401 | 86.68 24 | 64.62 390 | 97.01 7 | 30.36 399 | 83.97 317 | 44.78 384 | 82.94 355 | 76.26 379 |
|
| test_vis1_n | | | 70.29 314 | 69.99 318 | 71.20 332 | 75.97 371 | 66.50 212 | 76.69 301 | 80.81 293 | 44.22 387 | 75.43 331 | 77.23 374 | 50.00 339 | 68.59 375 | 66.71 254 | 82.85 358 | 78.52 376 |
|
| CMPMVS |  | 59.41 20 | 75.12 272 | 73.57 280 | 79.77 243 | 75.84 372 | 67.22 202 | 81.21 237 | 82.18 282 | 50.78 369 | 76.50 316 | 87.66 253 | 55.20 319 | 82.99 322 | 62.17 293 | 90.64 269 | 89.09 261 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| wuyk23d | | | 75.13 271 | 79.30 224 | 62.63 371 | 75.56 373 | 75.18 124 | 80.89 241 | 73.10 346 | 75.06 150 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 401 | 34.16 401 | 97.11 80 | 59.85 398 |
|
| Patchmatch-test | | | 65.91 346 | 67.38 335 | 61.48 376 | 75.51 374 | 43.21 391 | 68.84 365 | 63.79 385 | 62.48 283 | 72.80 349 | 83.42 316 | 44.89 369 | 59.52 398 | 48.27 373 | 86.45 319 | 81.70 354 |
|
| new_pmnet | | | 55.69 369 | 57.66 370 | 49.76 385 | 75.47 375 | 30.59 405 | 59.56 387 | 51.45 404 | 43.62 390 | 62.49 392 | 75.48 384 | 40.96 381 | 49.15 404 | 37.39 398 | 72.52 389 | 69.55 389 |
|
| gm-plane-assit | | | | | | 75.42 376 | 44.97 386 | | | 52.17 358 | | 72.36 390 | | 87.90 260 | 54.10 341 | | |
|
| MVSTER | | | 77.09 250 | 75.70 262 | 81.25 221 | 75.27 377 | 61.08 271 | 77.49 290 | 85.07 252 | 60.78 307 | 86.55 170 | 88.68 237 | 43.14 377 | 90.25 213 | 73.69 186 | 90.67 266 | 92.42 170 |
|
| PVSNet_0 | | 51.08 22 | 56.10 368 | 54.97 373 | 59.48 380 | 75.12 378 | 53.28 343 | 55.16 395 | 61.89 389 | 44.30 386 | 59.16 397 | 62.48 400 | 54.22 322 | 65.91 388 | 35.40 399 | 47.01 403 | 59.25 399 |
|
| test0.0.03 1 | | | 64.66 352 | 64.36 351 | 65.57 363 | 75.03 379 | 46.89 376 | 64.69 379 | 61.58 393 | 62.43 287 | 71.18 357 | 77.54 370 | 43.41 374 | 68.47 378 | 40.75 391 | 82.65 359 | 81.35 358 |
|
| test_fmvs3 | | | 75.72 267 | 75.20 267 | 77.27 283 | 75.01 380 | 69.47 183 | 78.93 267 | 84.88 259 | 46.67 378 | 87.08 158 | 87.84 250 | 50.44 338 | 71.62 365 | 77.42 144 | 88.53 290 | 90.72 222 |
|
| tpmvs | | | 70.16 316 | 69.56 321 | 71.96 327 | 74.71 381 | 48.13 369 | 79.63 254 | 75.45 328 | 65.02 270 | 70.26 363 | 81.88 334 | 45.34 364 | 85.68 299 | 58.34 315 | 75.39 387 | 82.08 352 |
|
| test_fmvs1_n | | | 70.94 310 | 70.41 313 | 72.53 324 | 73.92 382 | 66.93 208 | 75.99 313 | 84.21 267 | 43.31 391 | 79.40 295 | 79.39 357 | 43.47 373 | 68.55 376 | 69.05 234 | 84.91 340 | 82.10 351 |
|
| MDA-MVSNet_test_wron | | | 70.05 319 | 70.44 311 | 68.88 346 | 73.84 383 | 53.47 340 | 58.93 392 | 67.28 374 | 58.43 322 | 87.09 157 | 85.40 290 | 59.80 289 | 67.25 382 | 59.66 309 | 83.54 351 | 85.92 300 |
|
| YYNet1 | | | 70.06 318 | 70.44 311 | 68.90 345 | 73.76 384 | 53.42 342 | 58.99 391 | 67.20 375 | 58.42 323 | 87.10 156 | 85.39 291 | 59.82 288 | 67.32 381 | 59.79 308 | 83.50 352 | 85.96 298 |
|
| test_cas_vis1_n_1920 | | | 69.20 329 | 69.12 322 | 69.43 342 | 73.68 385 | 62.82 248 | 70.38 360 | 77.21 313 | 46.18 381 | 80.46 285 | 78.95 361 | 52.03 329 | 65.53 389 | 65.77 264 | 77.45 384 | 79.95 372 |
|
| GG-mvs-BLEND | | | | | 67.16 356 | 73.36 386 | 46.54 379 | 84.15 164 | 55.04 402 | | 58.64 400 | 61.95 401 | 29.93 400 | 83.87 318 | 38.71 395 | 76.92 385 | 71.07 387 |
|
| JIA-IIPM | | | 69.41 325 | 66.64 342 | 77.70 278 | 73.19 387 | 71.24 169 | 75.67 315 | 65.56 381 | 70.42 211 | 65.18 385 | 92.97 125 | 33.64 394 | 83.06 320 | 53.52 346 | 69.61 397 | 78.79 375 |
|
| ADS-MVSNet2 | | | 65.87 347 | 63.64 355 | 72.55 323 | 73.16 388 | 56.92 319 | 67.10 372 | 74.81 329 | 49.74 374 | 66.04 380 | 82.97 319 | 46.71 348 | 77.26 350 | 42.29 387 | 69.96 395 | 83.46 332 |
|
| ADS-MVSNet | | | 61.90 357 | 62.19 361 | 61.03 377 | 73.16 388 | 36.42 402 | 67.10 372 | 61.75 390 | 49.74 374 | 66.04 380 | 82.97 319 | 46.71 348 | 63.21 393 | 42.29 387 | 69.96 395 | 83.46 332 |
|
| DSMNet-mixed | | | 60.98 363 | 61.61 363 | 59.09 381 | 72.88 390 | 45.05 385 | 74.70 326 | 46.61 407 | 26.20 403 | 65.34 384 | 90.32 208 | 55.46 317 | 63.12 394 | 41.72 389 | 81.30 368 | 69.09 390 |
|
| tpmrst | | | 66.28 345 | 66.69 341 | 65.05 366 | 72.82 391 | 39.33 396 | 78.20 278 | 70.69 362 | 53.16 353 | 67.88 374 | 80.36 349 | 48.18 344 | 74.75 358 | 58.13 317 | 70.79 393 | 81.08 364 |
|
| test_fmvs2 | | | 73.57 287 | 72.80 289 | 75.90 300 | 72.74 392 | 68.84 192 | 77.07 295 | 84.32 265 | 45.14 384 | 82.89 245 | 84.22 307 | 48.37 343 | 70.36 368 | 73.40 190 | 87.03 312 | 88.52 268 |
|
| TESTMET0.1,1 | | | 61.29 360 | 60.32 366 | 64.19 368 | 72.06 393 | 51.30 357 | 67.89 368 | 62.09 386 | 45.27 383 | 60.65 395 | 69.01 394 | 27.93 405 | 64.74 391 | 56.31 325 | 81.65 365 | 76.53 378 |
|
| dp | | | 60.70 364 | 60.29 367 | 61.92 374 | 72.04 394 | 38.67 399 | 70.83 356 | 64.08 384 | 51.28 365 | 60.75 394 | 77.28 373 | 36.59 390 | 71.58 366 | 47.41 375 | 62.34 401 | 75.52 381 |
|
| pmmvs3 | | | 62.47 355 | 60.02 368 | 69.80 339 | 71.58 395 | 64.00 235 | 70.52 358 | 58.44 399 | 39.77 397 | 66.05 379 | 75.84 382 | 27.10 408 | 72.28 361 | 46.15 380 | 84.77 345 | 73.11 384 |
|
| EPMVS | | | 62.47 355 | 62.63 359 | 62.01 372 | 70.63 396 | 38.74 398 | 74.76 325 | 52.86 403 | 53.91 349 | 67.71 376 | 80.01 351 | 39.40 383 | 66.60 385 | 55.54 332 | 68.81 399 | 80.68 368 |
|
| mvsany_test3 | | | 65.48 349 | 62.97 357 | 73.03 318 | 69.99 397 | 76.17 118 | 64.83 377 | 43.71 408 | 43.68 389 | 80.25 289 | 87.05 268 | 52.83 326 | 63.09 395 | 51.92 358 | 72.44 390 | 79.84 373 |
|
| test_vis3_rt | | | 71.42 306 | 70.67 308 | 73.64 313 | 69.66 398 | 70.46 174 | 66.97 374 | 89.73 176 | 42.68 394 | 88.20 139 | 83.04 318 | 43.77 372 | 60.07 396 | 65.35 268 | 86.66 317 | 90.39 234 |
|
| test_fmvs1 | | | 69.57 324 | 69.05 324 | 71.14 333 | 69.15 399 | 65.77 220 | 73.98 332 | 83.32 272 | 42.83 393 | 77.77 311 | 78.27 366 | 43.39 376 | 68.50 377 | 68.39 244 | 84.38 347 | 79.15 374 |
|
| KD-MVS_2432*1600 | | | 66.87 339 | 65.81 345 | 70.04 336 | 67.50 400 | 47.49 373 | 62.56 383 | 79.16 300 | 61.21 303 | 77.98 306 | 80.61 344 | 25.29 409 | 82.48 324 | 53.02 348 | 84.92 338 | 80.16 370 |
|
| miper_refine_blended | | | 66.87 339 | 65.81 345 | 70.04 336 | 67.50 400 | 47.49 373 | 62.56 383 | 79.16 300 | 61.21 303 | 77.98 306 | 80.61 344 | 25.29 409 | 82.48 324 | 53.02 348 | 84.92 338 | 80.16 370 |
|
| E-PMN | | | 61.59 359 | 61.62 362 | 61.49 375 | 66.81 402 | 55.40 328 | 53.77 396 | 60.34 395 | 66.80 251 | 58.90 399 | 65.50 398 | 40.48 382 | 66.12 387 | 55.72 329 | 86.25 323 | 62.95 396 |
|
| test_f | | | 64.31 354 | 65.85 344 | 59.67 379 | 66.54 403 | 62.24 261 | 57.76 393 | 70.96 360 | 40.13 396 | 84.36 214 | 82.09 331 | 46.93 347 | 51.67 402 | 61.99 294 | 81.89 362 | 65.12 394 |
|
| test_vis1_rt | | | 65.64 348 | 64.09 352 | 70.31 335 | 66.09 404 | 70.20 177 | 61.16 386 | 81.60 288 | 38.65 399 | 72.87 348 | 69.66 393 | 52.84 325 | 60.04 397 | 56.16 326 | 77.77 380 | 80.68 368 |
|
| EMVS | | | 61.10 362 | 60.81 364 | 61.99 373 | 65.96 405 | 55.86 325 | 53.10 397 | 58.97 398 | 67.06 248 | 56.89 402 | 63.33 399 | 40.98 380 | 67.03 383 | 54.79 338 | 86.18 324 | 63.08 395 |
|
| mvsany_test1 | | | 58.48 367 | 56.47 372 | 64.50 367 | 65.90 406 | 68.21 196 | 56.95 394 | 42.11 409 | 38.30 400 | 65.69 382 | 77.19 376 | 56.96 308 | 59.35 399 | 46.16 379 | 58.96 402 | 65.93 393 |
|
| PMMVS | | | 61.65 358 | 60.38 365 | 65.47 364 | 65.40 407 | 69.26 186 | 63.97 381 | 61.73 391 | 36.80 402 | 60.11 396 | 68.43 395 | 59.42 290 | 66.35 386 | 48.97 369 | 78.57 378 | 60.81 397 |
|
| PMMVS2 | | | 55.64 370 | 59.27 369 | 44.74 386 | 64.30 408 | 12.32 412 | 40.60 399 | 49.79 405 | 53.19 352 | 65.06 388 | 84.81 300 | 53.60 324 | 49.76 403 | 32.68 403 | 89.41 279 | 72.15 385 |
|
| MVE |  | 40.22 23 | 51.82 371 | 50.47 374 | 55.87 382 | 62.66 409 | 51.91 352 | 31.61 401 | 39.28 410 | 40.65 395 | 50.76 404 | 74.98 386 | 56.24 313 | 44.67 405 | 33.94 402 | 64.11 400 | 71.04 388 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 24.13 388 | 32.95 410 | 29.49 406 | | 21.63 413 | 12.07 404 | 37.95 405 | 45.07 403 | 30.84 398 | 19.21 407 | 17.94 407 | 33.06 406 | 23.69 403 |
|
| test_method | | | 30.46 372 | 29.60 375 | 33.06 387 | 17.99 411 | 3.84 414 | 13.62 402 | 73.92 336 | 2.79 405 | 18.29 407 | 53.41 402 | 28.53 403 | 43.25 406 | 22.56 405 | 35.27 405 | 52.11 402 |
|
| tmp_tt | | | 20.25 374 | 24.50 377 | 7.49 389 | 4.47 412 | 8.70 413 | 34.17 400 | 25.16 412 | 1.00 407 | 32.43 406 | 18.49 404 | 39.37 384 | 9.21 408 | 21.64 406 | 43.75 404 | 4.57 404 |
|
| testmvs | | | 5.91 378 | 7.65 381 | 0.72 391 | 1.20 413 | 0.37 416 | 59.14 389 | 0.67 415 | 0.49 409 | 1.11 409 | 2.76 408 | 0.94 414 | 0.24 410 | 1.02 409 | 1.47 407 | 1.55 406 |
|
| test123 | | | 6.27 377 | 8.08 380 | 0.84 390 | 1.11 414 | 0.57 415 | 62.90 382 | 0.82 414 | 0.54 408 | 1.07 410 | 2.75 409 | 1.26 413 | 0.30 409 | 1.04 408 | 1.26 408 | 1.66 405 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 20.81 373 | 27.75 376 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 85.44 245 | 0.00 410 | 0.00 411 | 82.82 323 | 81.46 114 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 6.41 376 | 8.55 379 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 76.94 160 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| ab-mvs-re | | | 6.65 375 | 8.87 378 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 79.80 353 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 37.39 400 | | | | | | | | 52.61 352 | | |
|
| PC_three_1452 | | | | | | | | | | 58.96 320 | 90.06 96 | 91.33 173 | 80.66 124 | 93.03 138 | 75.78 160 | 95.94 126 | 92.48 168 |
|
| test_241102_TWO | | | | | | | | | 93.71 51 | 83.77 47 | 93.49 36 | 94.27 74 | 89.27 21 | 95.84 23 | 86.03 46 | 97.82 51 | 92.04 189 |
|
| test_0728_THIRD | | | | | | | | | | 85.33 33 | 93.75 30 | 94.65 56 | 87.44 43 | 95.78 28 | 87.41 22 | 98.21 29 | 92.98 150 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 324 |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 352 | | | | 83.88 324 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 357 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 120 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 271 | | | | 3.13 406 | 45.19 366 | 80.13 338 | 58.11 318 | | |
|
| test_post | | | | | | | | | | | | 3.10 407 | 45.43 362 | 77.22 351 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 337 | 45.93 356 | 87.01 270 | | | |
|
| MTMP | | | | | | | | 90.66 44 | 33.14 411 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 101 | 96.45 102 | 90.57 228 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 114 | 90.22 236 |
|
| test_prior4 | | | | | | | 78.97 80 | 84.59 155 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 187 | | 75.43 145 | 84.58 208 | 91.57 167 | 81.92 109 | | 79.54 116 | 96.97 83 | |
|
| 旧先验2 | | | | | | | | 81.73 229 | | 56.88 337 | 86.54 175 | | | 84.90 306 | 72.81 199 | | |
|
| 新几何2 | | | | | | | | 81.72 230 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 205 | 85.62 243 | 58.09 326 | | | | 91.41 182 | 67.95 248 | | 84.48 316 |
|
| 原ACMM2 | | | | | | | | 82.26 223 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 284 | 63.52 283 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 106 | | | | |
|
| testdata1 | | | | | | | | 79.62 255 | | 73.95 160 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 55 | | | | | 95.22 56 | 80.78 102 | 95.83 132 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 126 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 107 | | | 77.79 118 | 86.55 170 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 77 | | 79.44 96 | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 112 | | 75.94 138 | | | | | | 95.03 160 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 333 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 126 | | | | | | | | |
|
| door | | | | | | | | | 72.57 348 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 172 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 281 | | | 94.61 74 | | | 93.56 128 |
|
| HQP3-MVS | | | | | | | | | 92.68 93 | | | | | | | 94.47 180 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 217 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 408 | 70.76 357 | | 46.47 380 | 61.27 393 | | 45.20 365 | | 49.18 367 | | 83.75 329 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 135 | | | | |
|