| LCM-MVSNet | | | 95.70 1 | 96.40 1 | 93.61 2 | 98.67 1 | 85.39 33 | 95.54 5 | 97.36 1 | 96.97 1 | 99.04 1 | 99.05 1 | 96.61 1 | 95.92 14 | 85.07 55 | 99.27 1 | 99.54 1 |
|
| UniMVSNet_ETH3D | | | 89.12 61 | 90.72 43 | 84.31 155 | 97.00 2 | 64.33 231 | 89.67 69 | 88.38 196 | 88.84 13 | 94.29 18 | 97.57 3 | 90.48 13 | 91.26 183 | 72.57 200 | 97.65 60 | 97.34 15 |
|
| PMVS |  | 80.48 6 | 90.08 37 | 90.66 44 | 88.34 79 | 96.71 3 | 92.97 1 | 90.31 54 | 89.57 181 | 88.51 17 | 90.11 95 | 95.12 45 | 90.98 6 | 88.92 247 | 77.55 140 | 97.07 82 | 83.13 330 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MTAPA | | | 91.52 14 | 91.60 18 | 91.29 26 | 96.59 4 | 86.29 17 | 92.02 30 | 91.81 118 | 84.07 44 | 92.00 64 | 94.40 72 | 86.63 51 | 95.28 55 | 88.59 5 | 98.31 23 | 92.30 178 |
|
| PEN-MVS | | | 90.03 41 | 91.88 14 | 84.48 147 | 96.57 5 | 58.88 298 | 88.95 84 | 93.19 69 | 91.62 4 | 96.01 6 | 96.16 20 | 87.02 47 | 95.60 36 | 78.69 123 | 98.72 8 | 98.97 3 |
|
| PS-CasMVS | | | 90.06 39 | 91.92 11 | 84.47 148 | 96.56 6 | 58.83 301 | 89.04 83 | 92.74 90 | 91.40 5 | 96.12 4 | 96.06 22 | 87.23 45 | 95.57 38 | 79.42 118 | 98.74 5 | 99.00 2 |
|
| DTE-MVSNet | | | 89.98 43 | 91.91 13 | 84.21 157 | 96.51 7 | 57.84 308 | 88.93 85 | 92.84 87 | 91.92 3 | 96.16 3 | 96.23 18 | 86.95 48 | 95.99 10 | 79.05 120 | 98.57 14 | 98.80 6 |
|
| CP-MVSNet | | | 89.27 58 | 90.91 40 | 84.37 149 | 96.34 8 | 58.61 304 | 88.66 92 | 92.06 106 | 90.78 6 | 95.67 7 | 95.17 43 | 81.80 110 | 95.54 41 | 79.00 121 | 98.69 9 | 98.95 4 |
|
| WR-MVS_H | | | 89.91 46 | 91.31 29 | 85.71 125 | 96.32 9 | 62.39 255 | 89.54 74 | 93.31 64 | 90.21 10 | 95.57 9 | 95.66 29 | 81.42 114 | 95.90 15 | 80.94 98 | 98.80 2 | 98.84 5 |
|
| MP-MVS |  | | 91.14 24 | 90.91 40 | 91.83 18 | 96.18 10 | 86.88 13 | 92.20 27 | 93.03 80 | 82.59 61 | 88.52 130 | 94.37 74 | 86.74 50 | 95.41 50 | 86.32 39 | 98.21 29 | 93.19 142 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| FOURS1 | | | | | | 96.08 11 | 87.41 10 | 96.19 2 | 95.83 4 | 92.95 2 | 96.57 2 | | | | | | |
|
| mPP-MVS | | | 91.69 11 | 91.47 22 | 92.37 5 | 96.04 12 | 88.48 7 | 92.72 17 | 92.60 93 | 83.09 56 | 91.54 70 | 94.25 79 | 87.67 41 | 95.51 44 | 87.21 28 | 98.11 35 | 93.12 146 |
|
| MP-MVS-pluss | | | 90.81 26 | 91.08 33 | 89.99 46 | 95.97 13 | 79.88 71 | 88.13 99 | 94.51 17 | 75.79 140 | 92.94 44 | 94.96 47 | 88.36 28 | 95.01 63 | 90.70 2 | 98.40 19 | 95.09 63 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TDRefinement | | | 93.52 2 | 93.39 3 | 93.88 1 | 95.94 14 | 90.26 3 | 95.70 4 | 96.46 2 | 90.58 8 | 92.86 47 | 96.29 16 | 88.16 33 | 94.17 92 | 86.07 45 | 98.48 17 | 97.22 19 |
|
| ACMMP_NAP | | | 90.65 28 | 91.07 35 | 89.42 59 | 95.93 15 | 79.54 76 | 89.95 61 | 93.68 52 | 77.65 119 | 91.97 65 | 94.89 49 | 88.38 27 | 95.45 48 | 89.27 3 | 97.87 50 | 93.27 138 |
|
| HPM-MVS_fast | | | 92.50 4 | 92.54 5 | 92.37 5 | 95.93 15 | 85.81 29 | 92.99 12 | 94.23 22 | 85.21 35 | 92.51 55 | 95.13 44 | 90.65 9 | 95.34 52 | 88.06 8 | 98.15 34 | 95.95 41 |
|
| MSP-MVS | | | 89.08 62 | 88.16 73 | 91.83 18 | 95.76 17 | 86.14 21 | 92.75 16 | 93.90 42 | 78.43 111 | 89.16 119 | 92.25 151 | 72.03 218 | 96.36 3 | 88.21 7 | 90.93 257 | 92.98 152 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| region2R | | | 91.44 18 | 91.30 30 | 91.87 17 | 95.75 18 | 85.90 25 | 92.63 20 | 93.30 65 | 81.91 67 | 90.88 87 | 94.21 80 | 87.75 39 | 95.87 19 | 87.60 18 | 97.71 58 | 93.83 112 |
|
| ACMMPR | | | 91.49 15 | 91.35 26 | 91.92 14 | 95.74 19 | 85.88 26 | 92.58 21 | 93.25 67 | 81.99 65 | 91.40 72 | 94.17 84 | 87.51 42 | 95.87 19 | 87.74 13 | 97.76 55 | 93.99 103 |
|
| ZNCC-MVS | | | 91.26 20 | 91.34 27 | 91.01 30 | 95.73 20 | 83.05 52 | 92.18 28 | 94.22 24 | 80.14 88 | 91.29 76 | 93.97 93 | 87.93 38 | 95.87 19 | 88.65 4 | 97.96 45 | 94.12 99 |
|
| TSAR-MVS + MP. | | | 88.14 72 | 87.82 78 | 89.09 65 | 95.72 21 | 76.74 108 | 92.49 24 | 91.19 135 | 67.85 242 | 86.63 168 | 94.84 51 | 79.58 132 | 95.96 13 | 87.62 16 | 94.50 179 | 94.56 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| PGM-MVS | | | 91.20 22 | 90.95 39 | 91.93 13 | 95.67 22 | 85.85 27 | 90.00 57 | 93.90 42 | 80.32 85 | 91.74 69 | 94.41 71 | 88.17 32 | 95.98 11 | 86.37 38 | 97.99 40 | 93.96 106 |
|
| XVS | | | 91.54 13 | 91.36 24 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 36 | 89.99 99 | 94.03 90 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| X-MVStestdata | | | 85.04 119 | 82.70 167 | 92.08 8 | 95.64 23 | 86.25 18 | 92.64 18 | 93.33 61 | 85.07 36 | 89.99 99 | 16.05 395 | 86.57 52 | 95.80 25 | 87.35 24 | 97.62 62 | 94.20 92 |
|
| HPM-MVS |  | | 92.13 7 | 92.20 9 | 91.91 15 | 95.58 25 | 84.67 42 | 93.51 8 | 94.85 14 | 82.88 59 | 91.77 68 | 93.94 99 | 90.55 12 | 95.73 31 | 88.50 6 | 98.23 27 | 95.33 54 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMMP |  | | 91.91 10 | 91.87 15 | 92.03 11 | 95.53 26 | 85.91 24 | 93.35 11 | 94.16 27 | 82.52 62 | 92.39 58 | 94.14 85 | 89.15 23 | 95.62 35 | 87.35 24 | 98.24 26 | 94.56 76 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| GST-MVS | | | 90.96 25 | 91.01 36 | 90.82 33 | 95.45 27 | 82.73 55 | 91.75 35 | 93.74 48 | 80.98 79 | 91.38 73 | 93.80 103 | 87.20 46 | 95.80 25 | 87.10 31 | 97.69 59 | 93.93 107 |
|
| HFP-MVS | | | 91.30 19 | 91.39 23 | 91.02 29 | 95.43 28 | 84.66 43 | 92.58 21 | 93.29 66 | 81.99 65 | 91.47 71 | 93.96 96 | 88.35 29 | 95.56 39 | 87.74 13 | 97.74 57 | 92.85 155 |
|
| SMA-MVS |  | | 90.31 34 | 90.48 46 | 89.83 50 | 95.31 29 | 79.52 77 | 90.98 43 | 93.24 68 | 75.37 147 | 92.84 48 | 95.28 38 | 85.58 62 | 96.09 7 | 87.92 10 | 97.76 55 | 93.88 110 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| CP-MVS | | | 91.67 12 | 91.58 19 | 91.96 12 | 95.29 30 | 87.62 9 | 93.38 9 | 93.36 59 | 83.16 55 | 91.06 81 | 94.00 92 | 88.26 30 | 95.71 32 | 87.28 27 | 98.39 20 | 92.55 167 |
|
| VDDNet | | | 84.35 133 | 85.39 120 | 81.25 218 | 95.13 31 | 59.32 291 | 85.42 142 | 81.11 287 | 86.41 27 | 87.41 150 | 96.21 19 | 73.61 194 | 90.61 206 | 66.33 253 | 96.85 86 | 93.81 116 |
|
| CPTT-MVS | | | 89.39 54 | 88.98 65 | 90.63 36 | 95.09 32 | 86.95 12 | 92.09 29 | 92.30 100 | 79.74 91 | 87.50 149 | 92.38 144 | 81.42 114 | 93.28 128 | 83.07 75 | 97.24 77 | 91.67 202 |
|
| ACMM | | 79.39 9 | 90.65 28 | 90.99 37 | 89.63 55 | 95.03 33 | 83.53 47 | 89.62 71 | 93.35 60 | 79.20 100 | 93.83 27 | 93.60 111 | 90.81 7 | 92.96 138 | 85.02 57 | 98.45 18 | 92.41 172 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UA-Net | | | 91.49 15 | 91.53 20 | 91.39 23 | 94.98 34 | 82.95 54 | 93.52 7 | 92.79 88 | 88.22 18 | 88.53 129 | 97.64 2 | 83.45 81 | 94.55 78 | 86.02 48 | 98.60 12 | 96.67 27 |
|
| HPM-MVS++ |  | | 88.93 64 | 88.45 71 | 90.38 40 | 94.92 35 | 85.85 27 | 89.70 66 | 91.27 132 | 78.20 113 | 86.69 167 | 92.28 150 | 80.36 126 | 95.06 62 | 86.17 44 | 96.49 100 | 90.22 237 |
|
| XVG-ACMP-BASELINE | | | 89.98 43 | 89.84 50 | 90.41 39 | 94.91 36 | 84.50 44 | 89.49 76 | 93.98 38 | 79.68 92 | 92.09 62 | 93.89 101 | 83.80 76 | 93.10 135 | 82.67 82 | 98.04 36 | 93.64 124 |
|
| EGC-MVSNET | | | 74.79 274 | 69.99 314 | 89.19 63 | 94.89 37 | 87.00 11 | 91.89 34 | 86.28 229 | 1.09 396 | 2.23 398 | 95.98 23 | 81.87 109 | 89.48 234 | 79.76 112 | 95.96 124 | 91.10 214 |
|
| SR-MVS | | | 92.23 6 | 92.34 7 | 91.91 15 | 94.89 37 | 87.85 8 | 92.51 23 | 93.87 45 | 88.20 19 | 93.24 39 | 94.02 91 | 90.15 16 | 95.67 34 | 86.82 33 | 97.34 74 | 92.19 185 |
|
| OPM-MVS | | | 89.80 47 | 89.97 48 | 89.27 61 | 94.76 39 | 79.86 72 | 86.76 122 | 92.78 89 | 78.78 106 | 92.51 55 | 93.64 110 | 88.13 34 | 93.84 104 | 84.83 60 | 97.55 67 | 94.10 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| LPG-MVS_test | | | 91.47 17 | 91.68 16 | 90.82 33 | 94.75 40 | 81.69 59 | 90.00 57 | 94.27 19 | 82.35 63 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| LGP-MVS_train | | | | | 90.82 33 | 94.75 40 | 81.69 59 | | 94.27 19 | 82.35 63 | 93.67 33 | 94.82 52 | 91.18 4 | 95.52 42 | 85.36 52 | 98.73 6 | 95.23 59 |
|
| XVG-OURS-SEG-HR | | | 89.59 51 | 89.37 57 | 90.28 42 | 94.47 42 | 85.95 23 | 86.84 118 | 93.91 41 | 80.07 89 | 86.75 164 | 93.26 115 | 93.64 2 | 90.93 193 | 84.60 62 | 90.75 263 | 93.97 105 |
|
| ACMP | | 79.16 10 | 90.54 31 | 90.60 45 | 90.35 41 | 94.36 43 | 80.98 65 | 89.16 81 | 94.05 36 | 79.03 103 | 92.87 46 | 93.74 107 | 90.60 11 | 95.21 58 | 82.87 78 | 98.76 3 | 94.87 67 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS | | | 89.18 59 | 88.83 67 | 90.23 43 | 94.28 44 | 86.11 22 | 85.91 132 | 93.60 55 | 80.16 87 | 89.13 121 | 93.44 113 | 83.82 75 | 90.98 191 | 83.86 69 | 95.30 151 | 93.60 126 |
|
| test_0728_SECOND | | | | | 86.79 100 | 94.25 45 | 72.45 151 | 90.54 48 | 94.10 34 | | | | | 95.88 17 | 86.42 36 | 97.97 43 | 92.02 191 |
|
| SED-MVS | | | 90.46 33 | 91.64 17 | 86.93 97 | 94.18 46 | 72.65 141 | 90.47 51 | 93.69 50 | 83.77 47 | 94.11 22 | 94.27 75 | 90.28 14 | 95.84 23 | 86.03 46 | 97.92 46 | 92.29 179 |
|
| IU-MVS | | | | | | 94.18 46 | 72.64 143 | | 90.82 144 | 56.98 328 | 89.67 108 | | | | 85.78 50 | 97.92 46 | 93.28 137 |
|
| test_241102_ONE | | | | | | 94.18 46 | 72.65 141 | | 93.69 50 | 83.62 49 | 94.11 22 | 93.78 105 | 90.28 14 | 95.50 46 | | | |
|
| DVP-MVS |  | | 90.06 39 | 91.32 28 | 86.29 109 | 94.16 49 | 72.56 147 | 90.54 48 | 91.01 139 | 83.61 50 | 93.75 30 | 94.65 57 | 89.76 18 | 95.78 28 | 86.42 36 | 97.97 43 | 90.55 231 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 94.16 49 | 72.56 147 | 90.63 45 | 93.90 42 | 83.61 50 | 93.75 30 | 94.49 65 | 89.76 18 | | | | |
|
| SR-MVS-dyc-post | | | 92.41 5 | 92.41 6 | 92.39 4 | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 68 | 88.83 24 | 95.51 44 | 87.16 29 | 97.60 64 | 92.73 158 |
|
| RE-MVS-def | | | | 92.61 4 | | 94.13 51 | 88.95 5 | 92.87 13 | 94.16 27 | 88.75 14 | 93.79 28 | 94.43 68 | 90.64 10 | | 87.16 29 | 97.60 64 | 92.73 158 |
|
| MIMVSNet1 | | | 83.63 153 | 84.59 134 | 80.74 227 | 94.06 53 | 62.77 248 | 82.72 204 | 84.53 259 | 77.57 121 | 90.34 92 | 95.92 24 | 76.88 165 | 85.83 295 | 61.88 292 | 97.42 72 | 93.62 125 |
|
| TranMVSNet+NR-MVSNet | | | 87.86 79 | 88.76 69 | 85.18 133 | 94.02 54 | 64.13 232 | 84.38 161 | 91.29 131 | 84.88 39 | 92.06 63 | 93.84 102 | 86.45 54 | 93.73 106 | 73.22 191 | 98.66 10 | 97.69 9 |
|
| 新几何1 | | | | | 82.95 189 | 93.96 55 | 78.56 84 | | 80.24 293 | 55.45 333 | 83.93 227 | 91.08 183 | 71.19 223 | 88.33 256 | 65.84 259 | 93.07 213 | 81.95 343 |
|
| SteuartSystems-ACMMP | | | 91.16 23 | 91.36 24 | 90.55 37 | 93.91 56 | 80.97 66 | 91.49 37 | 93.48 57 | 82.82 60 | 92.60 54 | 93.97 93 | 88.19 31 | 96.29 5 | 87.61 17 | 98.20 31 | 94.39 87 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_part2 | | | | | | 93.86 57 | 77.77 94 | | | | 92.84 48 | | | | | | |
|
| test_one_0601 | | | | | | 93.85 58 | 73.27 136 | | 94.11 33 | 86.57 25 | 93.47 38 | 94.64 60 | 88.42 26 | | | | |
|
| save fliter | | | | | | 93.75 59 | 77.44 99 | 86.31 129 | 89.72 175 | 70.80 207 | | | | | | | |
|
| bld_raw_dy_0_64 | | | 84.85 123 | 84.44 138 | 86.07 117 | 93.73 60 | 74.93 125 | 88.57 93 | 81.90 282 | 70.44 210 | 91.28 77 | 95.18 42 | 56.62 304 | 89.28 243 | 85.15 54 | 97.09 81 | 93.99 103 |
|
| LTVRE_ROB | | 86.10 1 | 93.04 3 | 93.44 2 | 91.82 20 | 93.73 60 | 85.72 30 | 96.79 1 | 95.51 8 | 88.86 12 | 95.63 8 | 96.99 8 | 84.81 67 | 93.16 132 | 91.10 1 | 97.53 70 | 96.58 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| COLMAP_ROB |  | 83.01 3 | 91.97 9 | 91.95 10 | 92.04 10 | 93.68 62 | 86.15 20 | 93.37 10 | 95.10 12 | 90.28 9 | 92.11 61 | 95.03 46 | 89.75 20 | 94.93 65 | 79.95 109 | 98.27 25 | 95.04 64 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| DeepC-MVS | | 82.31 4 | 89.15 60 | 89.08 62 | 89.37 60 | 93.64 63 | 79.07 79 | 88.54 94 | 94.20 25 | 73.53 166 | 89.71 106 | 94.82 52 | 85.09 63 | 95.77 30 | 84.17 66 | 98.03 38 | 93.26 139 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| RRT_MVS | | | 88.30 70 | 87.83 77 | 89.70 52 | 93.62 64 | 75.70 121 | 92.36 26 | 89.06 188 | 77.34 122 | 93.63 35 | 95.83 25 | 65.40 251 | 95.90 15 | 85.01 58 | 98.23 27 | 97.49 13 |
|
| mvs_tets | | | 89.78 48 | 89.27 59 | 91.30 25 | 93.51 65 | 84.79 40 | 89.89 63 | 90.63 149 | 70.00 218 | 94.55 15 | 96.67 11 | 87.94 37 | 93.59 115 | 84.27 65 | 95.97 123 | 95.52 49 |
|
| HQP_MVS | | | 87.75 82 | 87.43 84 | 88.70 73 | 93.45 66 | 76.42 113 | 89.45 77 | 93.61 53 | 79.44 96 | 86.55 169 | 92.95 127 | 74.84 180 | 95.22 56 | 80.78 101 | 95.83 132 | 94.46 80 |
|
| plane_prior7 | | | | | | 93.45 66 | 77.31 102 | | | | | | | | | | |
|
| WR-MVS | | | 83.56 155 | 84.40 141 | 81.06 223 | 93.43 68 | 54.88 330 | 78.67 271 | 85.02 251 | 81.24 75 | 90.74 89 | 91.56 169 | 72.85 207 | 91.08 189 | 68.00 243 | 98.04 36 | 97.23 18 |
|
| DPE-MVS |  | | 90.53 32 | 91.08 33 | 88.88 67 | 93.38 69 | 78.65 83 | 89.15 82 | 94.05 36 | 84.68 40 | 93.90 24 | 94.11 88 | 88.13 34 | 96.30 4 | 84.51 63 | 97.81 52 | 91.70 201 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| jajsoiax | | | 89.41 53 | 88.81 68 | 91.19 28 | 93.38 69 | 84.72 41 | 89.70 66 | 90.29 163 | 69.27 222 | 94.39 16 | 96.38 15 | 86.02 60 | 93.52 119 | 83.96 67 | 95.92 128 | 95.34 53 |
|
| PS-MVSNAJss | | | 88.31 69 | 87.90 76 | 89.56 57 | 93.31 71 | 77.96 92 | 87.94 102 | 91.97 109 | 70.73 208 | 94.19 21 | 96.67 11 | 76.94 159 | 94.57 76 | 83.07 75 | 96.28 108 | 96.15 33 |
|
| test222 | | | | | | 93.31 71 | 76.54 109 | 79.38 258 | 77.79 304 | 52.59 345 | 82.36 249 | 90.84 194 | 66.83 243 | | | 91.69 241 | 81.25 351 |
|
| tt0805 | | | 88.09 74 | 89.79 51 | 82.98 187 | 93.26 73 | 63.94 235 | 91.10 41 | 89.64 178 | 85.07 36 | 90.91 85 | 91.09 182 | 89.16 22 | 91.87 169 | 82.03 89 | 95.87 130 | 93.13 144 |
|
| DU-MVS | | | 86.80 90 | 86.99 91 | 86.21 113 | 93.24 74 | 67.02 204 | 83.16 194 | 92.21 101 | 81.73 69 | 90.92 83 | 91.97 155 | 77.20 153 | 93.99 97 | 74.16 174 | 98.35 21 | 97.61 10 |
|
| NR-MVSNet | | | 86.00 104 | 86.22 103 | 85.34 131 | 93.24 74 | 64.56 228 | 82.21 222 | 90.46 153 | 80.99 78 | 88.42 132 | 91.97 155 | 77.56 148 | 93.85 102 | 72.46 201 | 98.65 11 | 97.61 10 |
|
| OurMVSNet-221017-0 | | | 90.01 42 | 89.74 52 | 90.83 32 | 93.16 76 | 80.37 68 | 91.91 33 | 93.11 73 | 81.10 77 | 95.32 10 | 97.24 5 | 72.94 206 | 94.85 67 | 85.07 55 | 97.78 53 | 97.26 16 |
|
| UniMVSNet (Re) | | | 86.87 87 | 86.98 92 | 86.55 104 | 93.11 77 | 68.48 192 | 83.80 177 | 92.87 85 | 80.37 83 | 89.61 112 | 91.81 162 | 77.72 146 | 94.18 90 | 75.00 169 | 98.53 15 | 96.99 24 |
|
| APD-MVS_3200maxsize | | | 92.05 8 | 92.24 8 | 91.48 21 | 93.02 78 | 85.17 35 | 92.47 25 | 95.05 13 | 87.65 22 | 93.21 40 | 94.39 73 | 90.09 17 | 95.08 61 | 86.67 35 | 97.60 64 | 94.18 95 |
|
| ACMH+ | | 77.89 11 | 90.73 27 | 91.50 21 | 88.44 76 | 93.00 79 | 76.26 116 | 89.65 70 | 95.55 7 | 87.72 21 | 93.89 26 | 94.94 48 | 91.62 3 | 93.44 123 | 78.35 126 | 98.76 3 | 95.61 48 |
|
| APDe-MVS |  | | 91.22 21 | 91.92 11 | 89.14 64 | 92.97 80 | 78.04 89 | 92.84 15 | 94.14 31 | 83.33 53 | 93.90 24 | 95.73 27 | 88.77 25 | 96.41 2 | 87.60 18 | 97.98 42 | 92.98 152 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| 114514_t | | | 83.10 165 | 82.54 172 | 84.77 141 | 92.90 81 | 69.10 190 | 86.65 124 | 90.62 150 | 54.66 336 | 81.46 267 | 90.81 195 | 76.98 158 | 94.38 83 | 72.62 199 | 96.18 113 | 90.82 221 |
|
| testdata | | | | | 79.54 246 | 92.87 82 | 72.34 152 | | 80.14 294 | 59.91 311 | 85.47 193 | 91.75 165 | 67.96 238 | 85.24 299 | 68.57 240 | 92.18 233 | 81.06 356 |
|
| CNVR-MVS | | | 87.81 81 | 87.68 79 | 88.21 81 | 92.87 82 | 77.30 103 | 85.25 144 | 91.23 133 | 77.31 124 | 87.07 158 | 91.47 171 | 82.94 86 | 94.71 70 | 84.67 61 | 96.27 110 | 92.62 165 |
|
| SF-MVS | | | 90.27 35 | 90.80 42 | 88.68 74 | 92.86 84 | 77.09 104 | 91.19 40 | 95.74 5 | 81.38 73 | 92.28 59 | 93.80 103 | 86.89 49 | 94.64 73 | 85.52 51 | 97.51 71 | 94.30 91 |
|
| UniMVSNet_NR-MVSNet | | | 86.84 89 | 87.06 89 | 86.17 115 | 92.86 84 | 67.02 204 | 82.55 210 | 91.56 121 | 83.08 57 | 90.92 83 | 91.82 161 | 78.25 141 | 93.99 97 | 74.16 174 | 98.35 21 | 97.49 13 |
|
| plane_prior1 | | | | | | 92.83 86 | | | | | | | | | | | |
|
| 原ACMM1 | | | | | 84.60 145 | 92.81 87 | 74.01 130 | | 91.50 123 | 62.59 279 | 82.73 245 | 90.67 201 | 76.53 166 | 94.25 86 | 69.24 226 | 95.69 140 | 85.55 296 |
|
| plane_prior6 | | | | | | 92.61 88 | 76.54 109 | | | | | | 74.84 180 | | | | |
|
| APD-MVS |  | | 89.54 52 | 89.63 54 | 89.26 62 | 92.57 89 | 81.34 64 | 90.19 56 | 93.08 76 | 80.87 81 | 91.13 79 | 93.19 116 | 86.22 57 | 95.97 12 | 82.23 88 | 97.18 79 | 90.45 233 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_0402 | | | 88.65 65 | 89.58 56 | 85.88 121 | 92.55 90 | 72.22 155 | 84.01 168 | 89.44 183 | 88.63 16 | 94.38 17 | 95.77 26 | 86.38 56 | 93.59 115 | 79.84 110 | 95.21 152 | 91.82 197 |
|
| SixPastTwentyTwo | | | 87.20 85 | 87.45 83 | 86.45 106 | 92.52 91 | 69.19 188 | 87.84 104 | 88.05 204 | 81.66 70 | 94.64 14 | 96.53 14 | 65.94 248 | 94.75 69 | 83.02 77 | 96.83 88 | 95.41 51 |
|
| ACMH | | 76.49 14 | 89.34 55 | 91.14 31 | 83.96 162 | 92.50 92 | 70.36 175 | 89.55 72 | 93.84 46 | 81.89 68 | 94.70 13 | 95.44 34 | 90.69 8 | 88.31 257 | 83.33 71 | 98.30 24 | 93.20 141 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| VPNet | | | 80.25 211 | 81.68 182 | 75.94 296 | 92.46 93 | 47.98 368 | 76.70 297 | 81.67 284 | 73.45 167 | 84.87 203 | 92.82 131 | 74.66 185 | 86.51 279 | 61.66 295 | 96.85 86 | 93.33 135 |
|
| F-COLMAP | | | 84.97 122 | 83.42 153 | 89.63 55 | 92.39 94 | 83.40 48 | 88.83 87 | 91.92 111 | 73.19 176 | 80.18 288 | 89.15 231 | 77.04 157 | 93.28 128 | 65.82 260 | 92.28 229 | 92.21 184 |
|
| test_djsdf | | | 89.62 50 | 89.01 63 | 91.45 22 | 92.36 95 | 82.98 53 | 91.98 31 | 90.08 169 | 71.54 199 | 94.28 20 | 96.54 13 | 81.57 112 | 94.27 84 | 86.26 40 | 96.49 100 | 97.09 21 |
|
| TEST9 | | | | | | 92.34 96 | 79.70 74 | 83.94 170 | 90.32 158 | 65.41 265 | 84.49 209 | 90.97 186 | 82.03 104 | 93.63 110 | | | |
|
| train_agg | | | 85.98 105 | 85.28 122 | 88.07 83 | 92.34 96 | 79.70 74 | 83.94 170 | 90.32 158 | 65.79 256 | 84.49 209 | 90.97 186 | 81.93 106 | 93.63 110 | 81.21 95 | 96.54 97 | 90.88 219 |
|
| NCCC | | | 87.36 83 | 86.87 94 | 88.83 68 | 92.32 98 | 78.84 82 | 86.58 126 | 91.09 137 | 78.77 107 | 84.85 204 | 90.89 190 | 80.85 120 | 95.29 53 | 81.14 96 | 95.32 148 | 92.34 176 |
|
| mvsmamba | | | 87.87 78 | 87.23 86 | 89.78 51 | 92.31 99 | 76.51 112 | 91.09 42 | 91.87 113 | 72.61 186 | 92.16 60 | 95.23 41 | 66.01 247 | 95.59 37 | 86.02 48 | 97.78 53 | 97.24 17 |
|
| FC-MVSNet-test | | | 85.93 106 | 87.05 90 | 82.58 198 | 92.25 100 | 56.44 319 | 85.75 136 | 93.09 75 | 77.33 123 | 91.94 66 | 94.65 57 | 74.78 182 | 93.41 125 | 75.11 168 | 98.58 13 | 97.88 7 |
|
| CDPH-MVS | | | 86.17 103 | 85.54 117 | 88.05 84 | 92.25 100 | 75.45 122 | 83.85 174 | 92.01 107 | 65.91 255 | 86.19 178 | 91.75 165 | 83.77 77 | 94.98 64 | 77.43 143 | 96.71 92 | 93.73 119 |
|
| test1111 | | | 78.53 232 | 78.85 225 | 77.56 276 | 92.22 102 | 47.49 370 | 82.61 206 | 69.24 362 | 72.43 187 | 85.28 194 | 94.20 81 | 51.91 325 | 90.07 223 | 65.36 264 | 96.45 103 | 95.11 62 |
|
| ZD-MVS | | | | | | 92.22 102 | 80.48 67 | | 91.85 114 | 71.22 204 | 90.38 91 | 92.98 124 | 86.06 59 | 96.11 6 | 81.99 91 | 96.75 91 | |
|
| pmmvs6 | | | 86.52 95 | 88.06 74 | 81.90 207 | 92.22 102 | 62.28 258 | 84.66 154 | 89.15 186 | 83.54 52 | 89.85 103 | 97.32 4 | 88.08 36 | 86.80 275 | 70.43 217 | 97.30 76 | 96.62 28 |
|
| EG-PatchMatch MVS | | | 84.08 143 | 84.11 145 | 83.98 161 | 92.22 102 | 72.61 146 | 82.20 224 | 87.02 221 | 72.63 185 | 88.86 122 | 91.02 184 | 78.52 137 | 91.11 188 | 73.41 188 | 91.09 251 | 88.21 267 |
|
| test_8 | | | | | | 92.09 106 | 78.87 81 | 83.82 175 | 90.31 160 | 65.79 256 | 84.36 213 | 90.96 188 | 81.93 106 | 93.44 123 | | | |
|
| Vis-MVSNet |  | | 86.86 88 | 86.58 97 | 87.72 86 | 92.09 106 | 77.43 100 | 87.35 109 | 92.09 105 | 78.87 105 | 84.27 220 | 94.05 89 | 78.35 140 | 93.65 108 | 80.54 105 | 91.58 245 | 92.08 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| IS-MVSNet | | | 86.66 93 | 86.82 96 | 86.17 115 | 92.05 108 | 66.87 207 | 91.21 39 | 88.64 193 | 86.30 28 | 89.60 113 | 92.59 138 | 69.22 231 | 94.91 66 | 73.89 180 | 97.89 49 | 96.72 26 |
|
| 旧先验1 | | | | | | 91.97 109 | 71.77 159 | | 81.78 283 | | | 91.84 159 | 73.92 191 | | | 93.65 201 | 83.61 320 |
|
| v7n | | | 90.13 36 | 90.96 38 | 87.65 89 | 91.95 110 | 71.06 169 | 89.99 59 | 93.05 77 | 86.53 26 | 94.29 18 | 96.27 17 | 82.69 88 | 94.08 95 | 86.25 42 | 97.63 61 | 97.82 8 |
|
| NP-MVS | | | | | | 91.95 110 | 74.55 127 | | | | | 90.17 214 | | | | | |
|
| OMC-MVS | | | 88.19 71 | 87.52 81 | 90.19 44 | 91.94 112 | 81.68 61 | 87.49 108 | 93.17 70 | 76.02 134 | 88.64 127 | 91.22 177 | 84.24 73 | 93.37 126 | 77.97 136 | 97.03 83 | 95.52 49 |
|
| OPU-MVS | | | | | 88.27 80 | 91.89 113 | 77.83 93 | 90.47 51 | | | | 91.22 177 | 81.12 117 | 94.68 71 | 74.48 171 | 95.35 146 | 92.29 179 |
|
| FIs | | | 85.35 113 | 86.27 102 | 82.60 197 | 91.86 114 | 57.31 312 | 85.10 148 | 93.05 77 | 75.83 139 | 91.02 82 | 93.97 93 | 73.57 195 | 92.91 142 | 73.97 179 | 98.02 39 | 97.58 12 |
|
| test2506 | | | 74.12 279 | 73.39 279 | 76.28 293 | 91.85 115 | 44.20 380 | 84.06 167 | 48.20 396 | 72.30 193 | 81.90 257 | 94.20 81 | 27.22 397 | 89.77 231 | 64.81 269 | 96.02 121 | 94.87 67 |
|
| ECVR-MVS |  | | 78.44 233 | 78.63 229 | 77.88 272 | 91.85 115 | 48.95 364 | 83.68 180 | 69.91 360 | 72.30 193 | 84.26 221 | 94.20 81 | 51.89 326 | 89.82 228 | 63.58 278 | 96.02 121 | 94.87 67 |
|
| 9.14 | | | | 89.29 58 | | 91.84 117 | | 88.80 88 | 95.32 11 | 75.14 149 | 91.07 80 | 92.89 129 | 87.27 44 | 93.78 105 | 83.69 70 | 97.55 67 | |
|
| MSLP-MVS++ | | | 85.00 121 | 86.03 106 | 81.90 207 | 91.84 117 | 71.56 166 | 86.75 123 | 93.02 81 | 75.95 137 | 87.12 153 | 89.39 225 | 77.98 142 | 89.40 241 | 77.46 141 | 94.78 172 | 84.75 305 |
|
| h-mvs33 | | | 84.25 137 | 82.76 166 | 88.72 71 | 91.82 119 | 82.60 56 | 84.00 169 | 84.98 253 | 71.27 201 | 86.70 165 | 90.55 204 | 63.04 265 | 93.92 100 | 78.26 129 | 94.20 189 | 89.63 245 |
|
| DP-MVS Recon | | | 84.05 144 | 83.22 156 | 86.52 105 | 91.73 120 | 75.27 123 | 83.23 192 | 92.40 96 | 72.04 196 | 82.04 255 | 88.33 241 | 77.91 144 | 93.95 99 | 66.17 254 | 95.12 157 | 90.34 236 |
|
| SD-MVS | | | 88.96 63 | 89.88 49 | 86.22 112 | 91.63 121 | 77.07 105 | 89.82 64 | 93.77 47 | 78.90 104 | 92.88 45 | 92.29 149 | 86.11 58 | 90.22 214 | 86.24 43 | 97.24 77 | 91.36 209 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| AllTest | | | 87.97 77 | 87.40 85 | 89.68 53 | 91.59 122 | 83.40 48 | 89.50 75 | 95.44 9 | 79.47 94 | 88.00 141 | 93.03 122 | 82.66 89 | 91.47 176 | 70.81 209 | 96.14 115 | 94.16 96 |
|
| TestCases | | | | | 89.68 53 | 91.59 122 | 83.40 48 | | 95.44 9 | 79.47 94 | 88.00 141 | 93.03 122 | 82.66 89 | 91.47 176 | 70.81 209 | 96.14 115 | 94.16 96 |
|
| MCST-MVS | | | 84.36 132 | 83.93 149 | 85.63 126 | 91.59 122 | 71.58 164 | 83.52 183 | 92.13 104 | 61.82 287 | 83.96 226 | 89.75 220 | 79.93 131 | 93.46 122 | 78.33 127 | 94.34 184 | 91.87 196 |
|
| agg_prior | | | | | | 91.58 125 | 77.69 96 | | 90.30 161 | | 84.32 215 | | | 93.18 131 | | | |
|
| PVSNet_Blended_VisFu | | | 81.55 189 | 80.49 203 | 84.70 144 | 91.58 125 | 73.24 137 | 84.21 162 | 91.67 120 | 62.86 278 | 80.94 273 | 87.16 263 | 67.27 240 | 92.87 143 | 69.82 222 | 88.94 282 | 87.99 271 |
|
| DVP-MVS++ | | | 90.07 38 | 91.09 32 | 87.00 95 | 91.55 127 | 72.64 143 | 96.19 2 | 94.10 34 | 85.33 33 | 93.49 36 | 94.64 60 | 81.12 117 | 95.88 17 | 87.41 22 | 95.94 126 | 92.48 169 |
|
| MSC_two_6792asdad | | | | | 88.81 69 | 91.55 127 | 77.99 90 | | 91.01 139 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 173 |
|
| No_MVS | | | | | 88.81 69 | 91.55 127 | 77.99 90 | | 91.01 139 | | | | | 96.05 8 | 87.45 20 | 98.17 32 | 92.40 173 |
|
| EPP-MVSNet | | | 85.47 111 | 85.04 125 | 86.77 101 | 91.52 130 | 69.37 183 | 91.63 36 | 87.98 206 | 81.51 72 | 87.05 159 | 91.83 160 | 66.18 246 | 95.29 53 | 70.75 212 | 96.89 85 | 95.64 46 |
|
| DeepPCF-MVS | | 81.24 5 | 87.28 84 | 86.21 104 | 90.49 38 | 91.48 131 | 84.90 38 | 83.41 186 | 92.38 98 | 70.25 215 | 89.35 118 | 90.68 199 | 82.85 87 | 94.57 76 | 79.55 115 | 95.95 125 | 92.00 192 |
|
| Baseline_NR-MVSNet | | | 84.00 146 | 85.90 109 | 78.29 264 | 91.47 132 | 53.44 338 | 82.29 218 | 87.00 224 | 79.06 102 | 89.55 114 | 95.72 28 | 77.20 153 | 86.14 288 | 72.30 202 | 98.51 16 | 95.28 56 |
|
| HyFIR lowres test | | | 75.12 268 | 72.66 288 | 82.50 201 | 91.44 133 | 65.19 223 | 72.47 338 | 87.31 211 | 46.79 367 | 80.29 284 | 84.30 305 | 52.70 322 | 92.10 163 | 51.88 354 | 86.73 310 | 90.22 237 |
|
| DP-MVS | | | 88.60 66 | 89.01 63 | 87.36 91 | 91.30 134 | 77.50 97 | 87.55 106 | 92.97 83 | 87.95 20 | 89.62 110 | 92.87 130 | 84.56 68 | 93.89 101 | 77.65 138 | 96.62 94 | 90.70 225 |
|
| DeepC-MVS_fast | | 80.27 8 | 86.23 99 | 85.65 116 | 87.96 85 | 91.30 134 | 76.92 106 | 87.19 110 | 91.99 108 | 70.56 209 | 84.96 200 | 90.69 198 | 80.01 129 | 95.14 59 | 78.37 125 | 95.78 137 | 91.82 197 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| 3Dnovator+ | | 83.92 2 | 89.97 45 | 89.66 53 | 90.92 31 | 91.27 136 | 81.66 62 | 91.25 38 | 94.13 32 | 88.89 11 | 88.83 124 | 94.26 78 | 77.55 149 | 95.86 22 | 84.88 59 | 95.87 130 | 95.24 58 |
|
| HQP-NCC | | | | | | 91.19 137 | | 84.77 149 | | 73.30 172 | 80.55 280 | | | | | | |
|
| ACMP_Plane | | | | | | 91.19 137 | | 84.77 149 | | 73.30 172 | 80.55 280 | | | | | | |
|
| HQP-MVS | | | 84.61 127 | 84.06 146 | 86.27 110 | 91.19 137 | 70.66 171 | 84.77 149 | 92.68 91 | 73.30 172 | 80.55 280 | 90.17 214 | 72.10 214 | 94.61 74 | 77.30 145 | 94.47 180 | 93.56 129 |
|
| VDD-MVS | | | 84.23 139 | 84.58 135 | 83.20 183 | 91.17 140 | 65.16 224 | 83.25 190 | 84.97 254 | 79.79 90 | 87.18 152 | 94.27 75 | 74.77 183 | 90.89 196 | 69.24 226 | 96.54 97 | 93.55 131 |
|
| K. test v3 | | | 85.14 117 | 84.73 129 | 86.37 107 | 91.13 141 | 69.63 181 | 85.45 141 | 76.68 316 | 84.06 45 | 92.44 57 | 96.99 8 | 62.03 268 | 94.65 72 | 80.58 104 | 93.24 209 | 94.83 72 |
|
| lessismore_v0 | | | | | 85.95 118 | 91.10 142 | 70.99 170 | | 70.91 356 | | 91.79 67 | 94.42 70 | 61.76 269 | 92.93 140 | 79.52 117 | 93.03 214 | 93.93 107 |
|
| hse-mvs2 | | | 83.47 158 | 81.81 181 | 88.47 75 | 91.03 143 | 82.27 57 | 82.61 206 | 83.69 264 | 71.27 201 | 86.70 165 | 86.05 280 | 63.04 265 | 92.41 152 | 78.26 129 | 93.62 203 | 90.71 224 |
|
| TransMVSNet (Re) | | | 84.02 145 | 85.74 114 | 78.85 252 | 91.00 144 | 55.20 329 | 82.29 218 | 87.26 212 | 79.65 93 | 88.38 134 | 95.52 33 | 83.00 85 | 86.88 273 | 67.97 244 | 96.60 95 | 94.45 82 |
|
| AUN-MVS | | | 81.18 193 | 78.78 226 | 88.39 77 | 90.93 145 | 82.14 58 | 82.51 212 | 83.67 265 | 64.69 271 | 80.29 284 | 85.91 283 | 51.07 329 | 92.38 153 | 76.29 156 | 93.63 202 | 90.65 228 |
|
| PAPM_NR | | | 83.23 161 | 83.19 158 | 83.33 179 | 90.90 146 | 65.98 216 | 88.19 98 | 90.78 145 | 78.13 115 | 80.87 275 | 87.92 249 | 73.49 198 | 92.42 151 | 70.07 219 | 88.40 287 | 91.60 204 |
|
| CSCG | | | 86.26 98 | 86.47 99 | 85.60 127 | 90.87 147 | 74.26 129 | 87.98 101 | 91.85 114 | 80.35 84 | 89.54 116 | 88.01 245 | 79.09 134 | 92.13 160 | 75.51 162 | 95.06 159 | 90.41 234 |
|
| PLC |  | 73.85 16 | 82.09 180 | 80.31 205 | 87.45 90 | 90.86 148 | 80.29 69 | 85.88 133 | 90.65 148 | 68.17 235 | 76.32 317 | 86.33 274 | 73.12 205 | 92.61 148 | 61.40 297 | 90.02 272 | 89.44 248 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test12 | | | | | 86.57 103 | 90.74 149 | 72.63 145 | | 90.69 147 | | 82.76 244 | | 79.20 133 | 94.80 68 | | 95.32 148 | 92.27 181 |
|
| ITE_SJBPF | | | | | 90.11 45 | 90.72 150 | 84.97 37 | | 90.30 161 | 81.56 71 | 90.02 98 | 91.20 179 | 82.40 94 | 90.81 199 | 73.58 186 | 94.66 176 | 94.56 76 |
|
| DPM-MVS | | | 80.10 216 | 79.18 221 | 82.88 193 | 90.71 151 | 69.74 178 | 78.87 268 | 90.84 143 | 60.29 308 | 75.64 326 | 85.92 282 | 67.28 239 | 93.11 134 | 71.24 207 | 91.79 239 | 85.77 295 |
|
| TAMVS | | | 78.08 236 | 76.36 251 | 83.23 181 | 90.62 152 | 72.87 139 | 79.08 264 | 80.01 295 | 61.72 290 | 81.35 269 | 86.92 268 | 63.96 258 | 88.78 251 | 50.61 355 | 93.01 215 | 88.04 270 |
|
| test_prior | | | | | 86.32 108 | 90.59 153 | 71.99 158 | | 92.85 86 | | | | | 94.17 92 | | | 92.80 156 |
|
| ambc | | | | | 82.98 187 | 90.55 154 | 64.86 225 | 88.20 97 | 89.15 186 | | 89.40 117 | 93.96 96 | 71.67 221 | 91.38 182 | 78.83 122 | 96.55 96 | 92.71 161 |
|
| SSC-MVS | | | 77.55 241 | 81.64 183 | 65.29 355 | 90.46 155 | 20.33 400 | 73.56 332 | 68.28 364 | 85.44 32 | 88.18 139 | 94.64 60 | 70.93 224 | 81.33 323 | 71.25 206 | 92.03 234 | 94.20 92 |
|
| Anonymous20231211 | | | 88.40 67 | 89.62 55 | 84.73 142 | 90.46 155 | 65.27 221 | 88.86 86 | 93.02 81 | 87.15 23 | 93.05 43 | 97.10 6 | 82.28 100 | 92.02 164 | 76.70 150 | 97.99 40 | 96.88 25 |
|
| Test_1112_low_res | | | 73.90 281 | 73.08 282 | 76.35 291 | 90.35 157 | 55.95 320 | 73.40 335 | 86.17 232 | 50.70 360 | 73.14 341 | 85.94 281 | 58.31 292 | 85.90 292 | 56.51 321 | 83.22 343 | 87.20 281 |
|
| VPA-MVSNet | | | 83.47 158 | 84.73 129 | 79.69 243 | 90.29 158 | 57.52 311 | 81.30 234 | 88.69 192 | 76.29 130 | 87.58 148 | 94.44 67 | 80.60 124 | 87.20 268 | 66.60 252 | 96.82 89 | 94.34 89 |
|
| FMVSNet1 | | | 84.55 129 | 85.45 119 | 81.85 209 | 90.27 159 | 61.05 271 | 86.83 119 | 88.27 201 | 78.57 110 | 89.66 109 | 95.64 30 | 75.43 173 | 90.68 203 | 69.09 230 | 95.33 147 | 93.82 113 |
|
| Anonymous20240529 | | | 86.20 101 | 87.13 87 | 83.42 177 | 90.19 160 | 64.55 229 | 84.55 156 | 90.71 146 | 85.85 31 | 89.94 102 | 95.24 40 | 82.13 102 | 90.40 210 | 69.19 229 | 96.40 105 | 95.31 55 |
|
| MVS_111021_HR | | | 84.63 126 | 84.34 143 | 85.49 130 | 90.18 161 | 75.86 120 | 79.23 263 | 87.13 216 | 73.35 169 | 85.56 191 | 89.34 226 | 83.60 80 | 90.50 208 | 76.64 151 | 94.05 193 | 90.09 242 |
|
| GeoE | | | 85.45 112 | 85.81 112 | 84.37 149 | 90.08 162 | 67.07 203 | 85.86 134 | 91.39 128 | 72.33 192 | 87.59 147 | 90.25 210 | 84.85 66 | 92.37 154 | 78.00 134 | 91.94 238 | 93.66 121 |
|
| RPSCF | | | 88.00 76 | 86.93 93 | 91.22 27 | 90.08 162 | 89.30 4 | 89.68 68 | 91.11 136 | 79.26 99 | 89.68 107 | 94.81 55 | 82.44 92 | 87.74 261 | 76.54 153 | 88.74 285 | 96.61 29 |
|
| nrg030 | | | 87.85 80 | 88.49 70 | 85.91 119 | 90.07 164 | 69.73 179 | 87.86 103 | 94.20 25 | 74.04 158 | 92.70 53 | 94.66 56 | 85.88 61 | 91.50 175 | 79.72 113 | 97.32 75 | 96.50 31 |
|
| AdaColmap |  | | 83.66 152 | 83.69 152 | 83.57 174 | 90.05 165 | 72.26 154 | 86.29 130 | 90.00 171 | 78.19 114 | 81.65 264 | 87.16 263 | 83.40 82 | 94.24 87 | 61.69 294 | 94.76 175 | 84.21 312 |
|
| pm-mvs1 | | | 83.69 151 | 84.95 127 | 79.91 239 | 90.04 166 | 59.66 288 | 82.43 214 | 87.44 209 | 75.52 144 | 87.85 143 | 95.26 39 | 81.25 116 | 85.65 297 | 68.74 236 | 96.04 120 | 94.42 85 |
|
| CHOSEN 1792x2688 | | | 72.45 292 | 70.56 305 | 78.13 266 | 90.02 167 | 63.08 243 | 68.72 356 | 83.16 269 | 42.99 382 | 75.92 322 | 85.46 287 | 57.22 301 | 85.18 301 | 49.87 359 | 81.67 353 | 86.14 290 |
|
| WB-MVS | | | 76.06 259 | 80.01 215 | 64.19 358 | 89.96 168 | 20.58 399 | 72.18 340 | 68.19 365 | 83.21 54 | 86.46 176 | 93.49 112 | 70.19 227 | 78.97 335 | 65.96 255 | 90.46 269 | 93.02 149 |
|
| anonymousdsp | | | 89.73 49 | 88.88 66 | 92.27 7 | 89.82 169 | 86.67 14 | 90.51 50 | 90.20 166 | 69.87 219 | 95.06 11 | 96.14 21 | 84.28 72 | 93.07 136 | 87.68 15 | 96.34 106 | 97.09 21 |
|
| 1112_ss | | | 74.82 273 | 73.74 274 | 78.04 269 | 89.57 170 | 60.04 283 | 76.49 302 | 87.09 220 | 54.31 337 | 73.66 340 | 79.80 350 | 60.25 278 | 86.76 277 | 58.37 311 | 84.15 339 | 87.32 280 |
|
| CS-MVS | | | 88.14 72 | 87.67 80 | 89.54 58 | 89.56 171 | 79.18 78 | 90.47 51 | 94.77 15 | 79.37 98 | 84.32 215 | 89.33 227 | 83.87 74 | 94.53 79 | 82.45 84 | 94.89 167 | 94.90 65 |
|
| APD_test1 | | | 88.40 67 | 87.91 75 | 89.88 47 | 89.50 172 | 86.65 16 | 89.98 60 | 91.91 112 | 84.26 42 | 90.87 88 | 93.92 100 | 82.18 101 | 89.29 242 | 73.75 183 | 94.81 171 | 93.70 120 |
|
| CS-MVS-test | | | 87.00 86 | 86.43 100 | 88.71 72 | 89.46 173 | 77.46 98 | 89.42 79 | 95.73 6 | 77.87 117 | 81.64 265 | 87.25 261 | 82.43 93 | 94.53 79 | 77.65 138 | 96.46 102 | 94.14 98 |
|
| PCF-MVS | | 74.62 15 | 82.15 179 | 80.92 199 | 85.84 122 | 89.43 174 | 72.30 153 | 80.53 242 | 91.82 116 | 57.36 326 | 87.81 144 | 89.92 217 | 77.67 147 | 93.63 110 | 58.69 309 | 95.08 158 | 91.58 205 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MVP-Stereo | | | 75.81 262 | 73.51 278 | 82.71 195 | 89.35 175 | 73.62 131 | 80.06 246 | 85.20 245 | 60.30 307 | 73.96 338 | 87.94 247 | 57.89 297 | 89.45 237 | 52.02 349 | 74.87 378 | 85.06 302 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| CNLPA | | | 83.55 156 | 83.10 161 | 84.90 136 | 89.34 176 | 83.87 46 | 84.54 158 | 88.77 190 | 79.09 101 | 83.54 233 | 88.66 238 | 74.87 179 | 81.73 321 | 66.84 249 | 92.29 228 | 89.11 255 |
|
| EC-MVSNet | | | 88.01 75 | 88.32 72 | 87.09 93 | 89.28 177 | 72.03 157 | 90.31 54 | 96.31 3 | 80.88 80 | 85.12 196 | 89.67 221 | 84.47 70 | 95.46 47 | 82.56 83 | 96.26 111 | 93.77 118 |
|
| TSAR-MVS + GP. | | | 83.95 147 | 82.69 168 | 87.72 86 | 89.27 178 | 81.45 63 | 83.72 179 | 81.58 286 | 74.73 152 | 85.66 188 | 86.06 279 | 72.56 212 | 92.69 146 | 75.44 164 | 95.21 152 | 89.01 261 |
|
| MVS_111021_LR | | | 84.28 136 | 83.76 151 | 85.83 123 | 89.23 179 | 83.07 51 | 80.99 238 | 83.56 267 | 72.71 184 | 86.07 181 | 89.07 232 | 81.75 111 | 86.19 286 | 77.11 147 | 93.36 204 | 88.24 266 |
|
| MVS_0304 | | | 86.35 97 | 85.92 108 | 87.66 88 | 89.21 180 | 73.16 138 | 88.40 96 | 83.63 266 | 81.27 74 | 80.87 275 | 94.12 87 | 71.49 222 | 95.71 32 | 87.79 12 | 96.50 99 | 94.11 100 |
|
| LFMVS | | | 80.15 215 | 80.56 201 | 78.89 251 | 89.19 181 | 55.93 321 | 85.22 145 | 73.78 336 | 82.96 58 | 84.28 219 | 92.72 136 | 57.38 299 | 90.07 223 | 63.80 277 | 95.75 138 | 90.68 226 |
|
| CLD-MVS | | | 83.18 162 | 82.64 169 | 84.79 139 | 89.05 182 | 67.82 200 | 77.93 279 | 92.52 94 | 68.33 233 | 85.07 197 | 81.54 336 | 82.06 103 | 92.96 138 | 69.35 225 | 97.91 48 | 93.57 128 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| LS3D | | | 90.60 30 | 90.34 47 | 91.38 24 | 89.03 183 | 84.23 45 | 93.58 6 | 94.68 16 | 90.65 7 | 90.33 93 | 93.95 98 | 84.50 69 | 95.37 51 | 80.87 99 | 95.50 143 | 94.53 79 |
|
| CDS-MVSNet | | | 77.32 244 | 75.40 260 | 83.06 185 | 89.00 184 | 72.48 150 | 77.90 280 | 82.17 279 | 60.81 302 | 78.94 299 | 83.49 313 | 59.30 285 | 88.76 252 | 54.64 337 | 92.37 225 | 87.93 273 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tttt0517 | | | 81.07 194 | 79.58 217 | 85.52 128 | 88.99 185 | 66.45 211 | 87.03 114 | 75.51 324 | 73.76 162 | 88.32 136 | 90.20 211 | 37.96 382 | 94.16 94 | 79.36 119 | 95.13 155 | 95.93 42 |
|
| tfpnnormal | | | 81.79 187 | 82.95 163 | 78.31 262 | 88.93 186 | 55.40 325 | 80.83 241 | 82.85 273 | 76.81 127 | 85.90 186 | 94.14 85 | 74.58 186 | 86.51 279 | 66.82 250 | 95.68 141 | 93.01 150 |
|
| testing3 | | | 71.53 301 | 70.79 303 | 73.77 309 | 88.89 187 | 41.86 385 | 76.60 301 | 59.12 386 | 72.83 181 | 80.97 271 | 82.08 330 | 19.80 402 | 87.33 267 | 65.12 266 | 91.68 242 | 92.13 188 |
|
| Vis-MVSNet (Re-imp) | | | 77.82 238 | 77.79 238 | 77.92 271 | 88.82 188 | 51.29 355 | 83.28 188 | 71.97 349 | 74.04 158 | 82.23 251 | 89.78 219 | 57.38 299 | 89.41 240 | 57.22 318 | 95.41 144 | 93.05 148 |
|
| SDMVSNet | | | 81.90 186 | 83.17 159 | 78.10 267 | 88.81 189 | 62.45 254 | 76.08 309 | 86.05 234 | 73.67 163 | 83.41 234 | 93.04 120 | 82.35 95 | 80.65 328 | 70.06 220 | 95.03 160 | 91.21 211 |
|
| sd_testset | | | 79.95 219 | 81.39 191 | 75.64 299 | 88.81 189 | 58.07 306 | 76.16 308 | 82.81 274 | 73.67 163 | 83.41 234 | 93.04 120 | 80.96 119 | 77.65 339 | 58.62 310 | 95.03 160 | 91.21 211 |
|
| TAPA-MVS | | 77.73 12 | 85.71 109 | 84.83 128 | 88.37 78 | 88.78 191 | 79.72 73 | 87.15 112 | 93.50 56 | 69.17 223 | 85.80 187 | 89.56 222 | 80.76 121 | 92.13 160 | 73.21 196 | 95.51 142 | 93.25 140 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| testf1 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 238 | 74.12 176 | 96.10 118 | 94.45 82 |
|
| APD_test2 | | | 89.30 56 | 89.12 60 | 89.84 48 | 88.67 192 | 85.64 31 | 90.61 46 | 93.17 70 | 86.02 29 | 93.12 41 | 95.30 36 | 84.94 64 | 89.44 238 | 74.12 176 | 96.10 118 | 94.45 82 |
|
| FPMVS | | | 72.29 295 | 72.00 294 | 73.14 313 | 88.63 194 | 85.00 36 | 74.65 323 | 67.39 366 | 71.94 198 | 77.80 308 | 87.66 253 | 50.48 332 | 75.83 346 | 49.95 357 | 79.51 361 | 58.58 390 |
|
| dcpmvs_2 | | | 84.23 139 | 85.14 123 | 81.50 215 | 88.61 195 | 61.98 262 | 82.90 201 | 93.11 73 | 68.66 231 | 92.77 51 | 92.39 143 | 78.50 138 | 87.63 263 | 76.99 149 | 92.30 226 | 94.90 65 |
|
| ETV-MVS | | | 84.31 134 | 83.91 150 | 85.52 128 | 88.58 196 | 70.40 174 | 84.50 160 | 93.37 58 | 78.76 108 | 84.07 224 | 78.72 358 | 80.39 125 | 95.13 60 | 73.82 182 | 92.98 216 | 91.04 215 |
|
| BH-untuned | | | 80.96 196 | 80.99 197 | 80.84 226 | 88.55 197 | 68.23 193 | 80.33 245 | 88.46 194 | 72.79 183 | 86.55 169 | 86.76 269 | 74.72 184 | 91.77 172 | 61.79 293 | 88.99 280 | 82.52 337 |
|
| Anonymous202405211 | | | 80.51 203 | 81.19 196 | 78.49 259 | 88.48 198 | 57.26 313 | 76.63 299 | 82.49 276 | 81.21 76 | 84.30 218 | 92.24 152 | 67.99 237 | 86.24 283 | 62.22 287 | 95.13 155 | 91.98 194 |
|
| ab-mvs | | | 79.67 220 | 80.56 201 | 76.99 282 | 88.48 198 | 56.93 315 | 84.70 153 | 86.06 233 | 68.95 227 | 80.78 277 | 93.08 119 | 75.30 175 | 84.62 305 | 56.78 319 | 90.90 258 | 89.43 249 |
|
| PHI-MVS | | | 86.38 96 | 85.81 112 | 88.08 82 | 88.44 200 | 77.34 101 | 89.35 80 | 93.05 77 | 73.15 177 | 84.76 205 | 87.70 252 | 78.87 136 | 94.18 90 | 80.67 103 | 96.29 107 | 92.73 158 |
|
| xiu_mvs_v1_base_debu | | | 80.84 197 | 80.14 211 | 82.93 190 | 88.31 201 | 71.73 160 | 79.53 254 | 87.17 213 | 65.43 262 | 79.59 290 | 82.73 324 | 76.94 159 | 90.14 219 | 73.22 191 | 88.33 288 | 86.90 284 |
|
| xiu_mvs_v1_base | | | 80.84 197 | 80.14 211 | 82.93 190 | 88.31 201 | 71.73 160 | 79.53 254 | 87.17 213 | 65.43 262 | 79.59 290 | 82.73 324 | 76.94 159 | 90.14 219 | 73.22 191 | 88.33 288 | 86.90 284 |
|
| xiu_mvs_v1_base_debi | | | 80.84 197 | 80.14 211 | 82.93 190 | 88.31 201 | 71.73 160 | 79.53 254 | 87.17 213 | 65.43 262 | 79.59 290 | 82.73 324 | 76.94 159 | 90.14 219 | 73.22 191 | 88.33 288 | 86.90 284 |
|
| MG-MVS | | | 80.32 210 | 80.94 198 | 78.47 260 | 88.18 204 | 52.62 345 | 82.29 218 | 85.01 252 | 72.01 197 | 79.24 297 | 92.54 141 | 69.36 230 | 93.36 127 | 70.65 214 | 89.19 279 | 89.45 247 |
|
| PM-MVS | | | 80.20 213 | 79.00 222 | 83.78 167 | 88.17 205 | 86.66 15 | 81.31 232 | 66.81 372 | 69.64 220 | 88.33 135 | 90.19 212 | 64.58 253 | 83.63 313 | 71.99 204 | 90.03 271 | 81.06 356 |
|
| v10 | | | 86.54 94 | 87.10 88 | 84.84 137 | 88.16 206 | 63.28 241 | 86.64 125 | 92.20 102 | 75.42 146 | 92.81 50 | 94.50 64 | 74.05 190 | 94.06 96 | 83.88 68 | 96.28 108 | 97.17 20 |
|
| canonicalmvs | | | 85.50 110 | 86.14 105 | 83.58 173 | 87.97 207 | 67.13 202 | 87.55 106 | 94.32 18 | 73.44 168 | 88.47 131 | 87.54 255 | 86.45 54 | 91.06 190 | 75.76 161 | 93.76 197 | 92.54 168 |
|
| EIA-MVS | | | 82.19 177 | 81.23 195 | 85.10 134 | 87.95 208 | 69.17 189 | 83.22 193 | 93.33 61 | 70.42 211 | 78.58 301 | 79.77 352 | 77.29 152 | 94.20 89 | 71.51 205 | 88.96 281 | 91.93 195 |
|
| VNet | | | 79.31 221 | 80.27 206 | 76.44 290 | 87.92 209 | 53.95 334 | 75.58 315 | 84.35 260 | 74.39 156 | 82.23 251 | 90.72 197 | 72.84 208 | 84.39 307 | 60.38 303 | 93.98 194 | 90.97 216 |
|
| v8 | | | 86.22 100 | 86.83 95 | 84.36 151 | 87.82 210 | 62.35 257 | 86.42 128 | 91.33 130 | 76.78 128 | 92.73 52 | 94.48 66 | 73.41 199 | 93.72 107 | 83.10 74 | 95.41 144 | 97.01 23 |
|
| alignmvs | | | 83.94 148 | 83.98 148 | 83.80 165 | 87.80 211 | 67.88 199 | 84.54 158 | 91.42 127 | 73.27 175 | 88.41 133 | 87.96 246 | 72.33 213 | 90.83 198 | 76.02 159 | 94.11 191 | 92.69 162 |
|
| v1192 | | | 84.57 128 | 84.69 133 | 84.21 157 | 87.75 212 | 62.88 245 | 83.02 197 | 91.43 125 | 69.08 225 | 89.98 101 | 90.89 190 | 72.70 210 | 93.62 113 | 82.41 85 | 94.97 164 | 96.13 34 |
|
| PatchMatch-RL | | | 74.48 276 | 73.22 281 | 78.27 265 | 87.70 213 | 85.26 34 | 75.92 311 | 70.09 358 | 64.34 272 | 76.09 320 | 81.25 338 | 65.87 249 | 78.07 338 | 53.86 339 | 83.82 340 | 71.48 376 |
|
| fmvsm_s_conf0.1_n_a | | | 82.58 170 | 81.93 179 | 84.50 146 | 87.68 214 | 73.35 133 | 86.14 131 | 77.70 305 | 61.64 292 | 85.02 198 | 91.62 167 | 77.75 145 | 86.24 283 | 82.79 80 | 87.07 305 | 93.91 109 |
|
| v1144 | | | 84.54 130 | 84.72 131 | 84.00 160 | 87.67 215 | 62.55 252 | 82.97 198 | 90.93 142 | 70.32 214 | 89.80 104 | 90.99 185 | 73.50 196 | 93.48 121 | 81.69 94 | 94.65 177 | 95.97 39 |
|
| v1240 | | | 84.30 135 | 84.51 137 | 83.65 171 | 87.65 216 | 61.26 268 | 82.85 202 | 91.54 122 | 67.94 240 | 90.68 90 | 90.65 202 | 71.71 220 | 93.64 109 | 82.84 79 | 94.78 172 | 96.07 36 |
|
| v1921920 | | | 84.23 139 | 84.37 142 | 83.79 166 | 87.64 217 | 61.71 263 | 82.91 200 | 91.20 134 | 67.94 240 | 90.06 96 | 90.34 207 | 72.04 217 | 93.59 115 | 82.32 86 | 94.91 165 | 96.07 36 |
|
| v144192 | | | 84.24 138 | 84.41 140 | 83.71 170 | 87.59 218 | 61.57 264 | 82.95 199 | 91.03 138 | 67.82 243 | 89.80 104 | 90.49 205 | 73.28 203 | 93.51 120 | 81.88 93 | 94.89 167 | 96.04 38 |
|
| Fast-Effi-MVS+ | | | 81.04 195 | 80.57 200 | 82.46 202 | 87.50 219 | 63.22 242 | 78.37 275 | 89.63 179 | 68.01 237 | 81.87 258 | 82.08 330 | 82.31 97 | 92.65 147 | 67.10 246 | 88.30 292 | 91.51 207 |
|
| pmmvs-eth3d | | | 78.42 234 | 77.04 245 | 82.57 200 | 87.44 220 | 74.41 128 | 80.86 240 | 79.67 296 | 55.68 332 | 84.69 206 | 90.31 209 | 60.91 273 | 85.42 298 | 62.20 288 | 91.59 244 | 87.88 274 |
|
| IterMVS-LS | | | 84.73 125 | 84.98 126 | 83.96 162 | 87.35 221 | 63.66 236 | 83.25 190 | 89.88 173 | 76.06 132 | 89.62 110 | 92.37 147 | 73.40 201 | 92.52 149 | 78.16 131 | 94.77 174 | 95.69 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| thres100view900 | | | 75.45 264 | 75.05 264 | 76.66 289 | 87.27 222 | 51.88 350 | 81.07 237 | 73.26 340 | 75.68 141 | 83.25 237 | 86.37 273 | 45.54 354 | 88.80 248 | 51.98 350 | 90.99 253 | 89.31 251 |
|
| MIMVSNet | | | 71.09 305 | 71.59 297 | 69.57 334 | 87.23 223 | 50.07 362 | 78.91 266 | 71.83 350 | 60.20 310 | 71.26 350 | 91.76 164 | 55.08 316 | 76.09 344 | 41.06 384 | 87.02 308 | 82.54 336 |
|
| Effi-MVS+ | | | 83.90 149 | 84.01 147 | 83.57 174 | 87.22 224 | 65.61 220 | 86.55 127 | 92.40 96 | 78.64 109 | 81.34 270 | 84.18 307 | 83.65 79 | 92.93 140 | 74.22 173 | 87.87 296 | 92.17 186 |
|
| BH-RMVSNet | | | 80.53 202 | 80.22 209 | 81.49 216 | 87.19 225 | 66.21 214 | 77.79 282 | 86.23 231 | 74.21 157 | 83.69 228 | 88.50 239 | 73.25 204 | 90.75 200 | 63.18 283 | 87.90 295 | 87.52 277 |
|
| thisisatest0530 | | | 79.07 222 | 77.33 243 | 84.26 156 | 87.13 226 | 64.58 227 | 83.66 181 | 75.95 319 | 68.86 228 | 85.22 195 | 87.36 259 | 38.10 380 | 93.57 118 | 75.47 163 | 94.28 187 | 94.62 74 |
|
| Effi-MVS+-dtu | | | 85.82 108 | 83.38 154 | 93.14 3 | 87.13 226 | 91.15 2 | 87.70 105 | 88.42 195 | 74.57 154 | 83.56 232 | 85.65 284 | 78.49 139 | 94.21 88 | 72.04 203 | 92.88 218 | 94.05 102 |
|
| v2v482 | | | 84.09 142 | 84.24 144 | 83.62 172 | 87.13 226 | 61.40 265 | 82.71 205 | 89.71 176 | 72.19 195 | 89.55 114 | 91.41 172 | 70.70 226 | 93.20 130 | 81.02 97 | 93.76 197 | 96.25 32 |
|
| jason | | | 77.42 243 | 75.75 257 | 82.43 203 | 87.10 229 | 69.27 184 | 77.99 278 | 81.94 281 | 51.47 354 | 77.84 306 | 85.07 297 | 60.32 277 | 89.00 245 | 70.74 213 | 89.27 278 | 89.03 259 |
| jason: jason. |
| PS-MVSNAJ | | | 77.04 247 | 76.53 250 | 78.56 257 | 87.09 230 | 61.40 265 | 75.26 318 | 87.13 216 | 61.25 297 | 74.38 337 | 77.22 368 | 76.94 159 | 90.94 192 | 64.63 272 | 84.83 334 | 83.35 325 |
|
| casdiffmvs_mvg |  | | 86.72 91 | 87.51 82 | 84.36 151 | 87.09 230 | 65.22 222 | 84.16 163 | 94.23 22 | 77.89 116 | 91.28 77 | 93.66 109 | 84.35 71 | 92.71 144 | 80.07 106 | 94.87 170 | 95.16 61 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| xiu_mvs_v2_base | | | 77.19 245 | 76.75 248 | 78.52 258 | 87.01 232 | 61.30 267 | 75.55 316 | 87.12 219 | 61.24 298 | 74.45 335 | 78.79 357 | 77.20 153 | 90.93 193 | 64.62 273 | 84.80 335 | 83.32 326 |
|
| thres600view7 | | | 75.97 260 | 75.35 262 | 77.85 274 | 87.01 232 | 51.84 351 | 80.45 243 | 73.26 340 | 75.20 148 | 83.10 240 | 86.31 276 | 45.54 354 | 89.05 244 | 55.03 334 | 92.24 230 | 92.66 163 |
|
| CL-MVSNet_self_test | | | 76.81 250 | 77.38 241 | 75.12 302 | 86.90 234 | 51.34 353 | 73.20 336 | 80.63 292 | 68.30 234 | 81.80 262 | 88.40 240 | 66.92 242 | 80.90 325 | 55.35 331 | 94.90 166 | 93.12 146 |
|
| BH-w/o | | | 76.57 253 | 76.07 255 | 78.10 267 | 86.88 235 | 65.92 217 | 77.63 284 | 86.33 228 | 65.69 260 | 80.89 274 | 79.95 349 | 68.97 234 | 90.74 201 | 53.01 345 | 85.25 324 | 77.62 367 |
|
| fmvsm_s_conf0.1_n | | | 82.17 178 | 81.59 186 | 83.94 164 | 86.87 236 | 71.57 165 | 85.19 146 | 77.42 308 | 62.27 286 | 84.47 211 | 91.33 174 | 76.43 167 | 85.91 291 | 83.14 72 | 87.14 303 | 94.33 90 |
|
| MAR-MVS | | | 80.24 212 | 78.74 228 | 84.73 142 | 86.87 236 | 78.18 88 | 85.75 136 | 87.81 207 | 65.67 261 | 77.84 306 | 78.50 359 | 73.79 193 | 90.53 207 | 61.59 296 | 90.87 259 | 85.49 298 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| fmvsm_s_conf0.5_n_a | | | 82.21 176 | 81.51 189 | 84.32 154 | 86.56 238 | 73.35 133 | 85.46 140 | 77.30 309 | 61.81 288 | 84.51 208 | 90.88 192 | 77.36 151 | 86.21 285 | 82.72 81 | 86.97 309 | 93.38 133 |
|
| FE-MVS | | | 79.98 218 | 78.86 224 | 83.36 178 | 86.47 239 | 66.45 211 | 89.73 65 | 84.74 258 | 72.80 182 | 84.22 223 | 91.38 173 | 44.95 363 | 93.60 114 | 63.93 276 | 91.50 246 | 90.04 243 |
|
| QAPM | | | 82.59 169 | 82.59 171 | 82.58 198 | 86.44 240 | 66.69 208 | 89.94 62 | 90.36 157 | 67.97 239 | 84.94 202 | 92.58 140 | 72.71 209 | 92.18 159 | 70.63 215 | 87.73 298 | 88.85 262 |
|
| PAPM | | | 71.77 298 | 70.06 312 | 76.92 284 | 86.39 241 | 53.97 333 | 76.62 300 | 86.62 226 | 53.44 341 | 63.97 381 | 84.73 301 | 57.79 298 | 92.34 155 | 39.65 386 | 81.33 357 | 84.45 307 |
|
| GBi-Net | | | 82.02 181 | 82.07 176 | 81.85 209 | 86.38 242 | 61.05 271 | 86.83 119 | 88.27 201 | 72.43 187 | 86.00 182 | 95.64 30 | 63.78 259 | 90.68 203 | 65.95 256 | 93.34 205 | 93.82 113 |
|
| test1 | | | 82.02 181 | 82.07 176 | 81.85 209 | 86.38 242 | 61.05 271 | 86.83 119 | 88.27 201 | 72.43 187 | 86.00 182 | 95.64 30 | 63.78 259 | 90.68 203 | 65.95 256 | 93.34 205 | 93.82 113 |
|
| FMVSNet2 | | | 81.31 191 | 81.61 185 | 80.41 233 | 86.38 242 | 58.75 302 | 83.93 172 | 86.58 227 | 72.43 187 | 87.65 146 | 92.98 124 | 63.78 259 | 90.22 214 | 66.86 247 | 93.92 195 | 92.27 181 |
|
| 3Dnovator | | 80.37 7 | 84.80 124 | 84.71 132 | 85.06 135 | 86.36 245 | 74.71 126 | 88.77 89 | 90.00 171 | 75.65 142 | 84.96 200 | 93.17 117 | 74.06 189 | 91.19 185 | 78.28 128 | 91.09 251 | 89.29 253 |
|
| Anonymous20231206 | | | 71.38 303 | 71.88 295 | 69.88 331 | 86.31 246 | 54.37 331 | 70.39 350 | 74.62 327 | 52.57 346 | 76.73 313 | 88.76 235 | 59.94 280 | 72.06 353 | 44.35 379 | 93.23 210 | 83.23 328 |
|
| baseline | | | 85.20 116 | 85.93 107 | 83.02 186 | 86.30 247 | 62.37 256 | 84.55 156 | 93.96 39 | 74.48 155 | 87.12 153 | 92.03 154 | 82.30 98 | 91.94 165 | 78.39 124 | 94.21 188 | 94.74 73 |
|
| iter_conf_final | | | 80.36 208 | 78.88 223 | 84.79 139 | 86.29 248 | 66.36 213 | 86.95 115 | 86.25 230 | 68.16 236 | 82.09 254 | 89.48 223 | 36.59 385 | 94.51 81 | 79.83 111 | 94.30 186 | 93.50 132 |
|
| API-MVS | | | 82.28 174 | 82.61 170 | 81.30 217 | 86.29 248 | 69.79 177 | 88.71 90 | 87.67 208 | 78.42 112 | 82.15 253 | 84.15 308 | 77.98 142 | 91.59 174 | 65.39 263 | 92.75 220 | 82.51 338 |
|
| tfpn200view9 | | | 74.86 272 | 74.23 271 | 76.74 288 | 86.24 250 | 52.12 347 | 79.24 261 | 73.87 334 | 73.34 170 | 81.82 260 | 84.60 303 | 46.02 348 | 88.80 248 | 51.98 350 | 90.99 253 | 89.31 251 |
|
| thres400 | | | 75.14 266 | 74.23 271 | 77.86 273 | 86.24 250 | 52.12 347 | 79.24 261 | 73.87 334 | 73.34 170 | 81.82 260 | 84.60 303 | 46.02 348 | 88.80 248 | 51.98 350 | 90.99 253 | 92.66 163 |
|
| UGNet | | | 82.78 166 | 81.64 183 | 86.21 113 | 86.20 252 | 76.24 117 | 86.86 117 | 85.68 239 | 77.07 126 | 73.76 339 | 92.82 131 | 69.64 228 | 91.82 171 | 69.04 232 | 93.69 200 | 90.56 230 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CANet | | | 83.79 150 | 82.85 165 | 86.63 102 | 86.17 253 | 72.21 156 | 83.76 178 | 91.43 125 | 77.24 125 | 74.39 336 | 87.45 257 | 75.36 174 | 95.42 49 | 77.03 148 | 92.83 219 | 92.25 183 |
|
| casdiffmvs |  | | 85.21 115 | 85.85 111 | 83.31 180 | 86.17 253 | 62.77 248 | 83.03 196 | 93.93 40 | 74.69 153 | 88.21 137 | 92.68 137 | 82.29 99 | 91.89 168 | 77.87 137 | 93.75 199 | 95.27 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FA-MVS(test-final) | | | 83.13 164 | 83.02 162 | 83.43 176 | 86.16 255 | 66.08 215 | 88.00 100 | 88.36 197 | 75.55 143 | 85.02 198 | 92.75 135 | 65.12 252 | 92.50 150 | 74.94 170 | 91.30 249 | 91.72 199 |
|
| TR-MVS | | | 76.77 251 | 75.79 256 | 79.72 242 | 86.10 256 | 65.79 218 | 77.14 290 | 83.02 271 | 65.20 268 | 81.40 268 | 82.10 328 | 66.30 244 | 90.73 202 | 55.57 328 | 85.27 323 | 82.65 332 |
|
| fmvsm_s_conf0.5_n | | | 81.91 185 | 81.30 192 | 83.75 168 | 86.02 257 | 71.56 166 | 84.73 152 | 77.11 312 | 62.44 283 | 84.00 225 | 90.68 199 | 76.42 168 | 85.89 293 | 83.14 72 | 87.11 304 | 93.81 116 |
|
| test_fmvsmconf0.01_n | | | 86.68 92 | 86.52 98 | 87.18 92 | 85.94 258 | 78.30 85 | 86.93 116 | 92.20 102 | 65.94 253 | 89.16 119 | 93.16 118 | 83.10 84 | 89.89 227 | 87.81 11 | 94.43 182 | 93.35 134 |
|
| LCM-MVSNet-Re | | | 83.48 157 | 85.06 124 | 78.75 254 | 85.94 258 | 55.75 324 | 80.05 247 | 94.27 19 | 76.47 129 | 96.09 5 | 94.54 63 | 83.31 83 | 89.75 233 | 59.95 304 | 94.89 167 | 90.75 222 |
|
| test_fmvsmvis_n_1920 | | | 85.22 114 | 85.36 121 | 84.81 138 | 85.80 260 | 76.13 119 | 85.15 147 | 92.32 99 | 61.40 294 | 91.33 74 | 90.85 193 | 83.76 78 | 86.16 287 | 84.31 64 | 93.28 208 | 92.15 187 |
|
| Fast-Effi-MVS+-dtu | | | 82.54 171 | 81.41 190 | 85.90 120 | 85.60 261 | 76.53 111 | 83.07 195 | 89.62 180 | 73.02 179 | 79.11 298 | 83.51 312 | 80.74 122 | 90.24 213 | 68.76 235 | 89.29 276 | 90.94 217 |
|
| v148 | | | 82.31 173 | 82.48 173 | 81.81 212 | 85.59 262 | 59.66 288 | 81.47 231 | 86.02 235 | 72.85 180 | 88.05 140 | 90.65 202 | 70.73 225 | 90.91 195 | 75.15 167 | 91.79 239 | 94.87 67 |
|
| MVSFormer | | | 82.23 175 | 81.57 188 | 84.19 159 | 85.54 263 | 69.26 185 | 91.98 31 | 90.08 169 | 71.54 199 | 76.23 318 | 85.07 297 | 58.69 290 | 94.27 84 | 86.26 40 | 88.77 283 | 89.03 259 |
|
| lupinMVS | | | 76.37 257 | 74.46 269 | 82.09 204 | 85.54 263 | 69.26 185 | 76.79 295 | 80.77 291 | 50.68 361 | 76.23 318 | 82.82 322 | 58.69 290 | 88.94 246 | 69.85 221 | 88.77 283 | 88.07 268 |
|
| TinyColmap | | | 81.25 192 | 82.34 175 | 77.99 270 | 85.33 265 | 60.68 279 | 82.32 217 | 88.33 199 | 71.26 203 | 86.97 160 | 92.22 153 | 77.10 156 | 86.98 272 | 62.37 286 | 95.17 154 | 86.31 289 |
|
| test_fmvsmconf0.1_n | | | 86.18 102 | 85.88 110 | 87.08 94 | 85.26 266 | 78.25 86 | 85.82 135 | 91.82 116 | 65.33 266 | 88.55 128 | 92.35 148 | 82.62 91 | 89.80 229 | 86.87 32 | 94.32 185 | 93.18 143 |
|
| test_fmvsm_n_1920 | | | 83.60 154 | 82.89 164 | 85.74 124 | 85.22 267 | 77.74 95 | 84.12 165 | 90.48 152 | 59.87 312 | 86.45 177 | 91.12 181 | 75.65 171 | 85.89 293 | 82.28 87 | 90.87 259 | 93.58 127 |
|
| PAPR | | | 78.84 226 | 78.10 236 | 81.07 222 | 85.17 268 | 60.22 282 | 82.21 222 | 90.57 151 | 62.51 280 | 75.32 330 | 84.61 302 | 74.99 178 | 92.30 157 | 59.48 307 | 88.04 294 | 90.68 226 |
|
| pmmvs4 | | | 74.92 271 | 72.98 284 | 80.73 228 | 84.95 269 | 71.71 163 | 76.23 306 | 77.59 306 | 52.83 344 | 77.73 310 | 86.38 272 | 56.35 307 | 84.97 302 | 57.72 317 | 87.05 306 | 85.51 297 |
|
| baseline1 | | | 73.26 285 | 73.54 277 | 72.43 320 | 84.92 270 | 47.79 369 | 79.89 250 | 74.00 332 | 65.93 254 | 78.81 300 | 86.28 277 | 56.36 306 | 81.63 322 | 56.63 320 | 79.04 367 | 87.87 275 |
|
| Patchmatch-RL test | | | 74.48 276 | 73.68 275 | 76.89 286 | 84.83 271 | 66.54 209 | 72.29 339 | 69.16 363 | 57.70 322 | 86.76 163 | 86.33 274 | 45.79 353 | 82.59 316 | 69.63 223 | 90.65 267 | 81.54 347 |
|
| patch_mono-2 | | | 78.89 224 | 79.39 219 | 77.41 279 | 84.78 272 | 68.11 196 | 75.60 313 | 83.11 270 | 60.96 301 | 79.36 294 | 89.89 218 | 75.18 176 | 72.97 351 | 73.32 190 | 92.30 226 | 91.15 213 |
|
| test_fmvsmconf_n | | | 85.88 107 | 85.51 118 | 86.99 96 | 84.77 273 | 78.21 87 | 85.40 143 | 91.39 128 | 65.32 267 | 87.72 145 | 91.81 162 | 82.33 96 | 89.78 230 | 86.68 34 | 94.20 189 | 92.99 151 |
|
| KD-MVS_self_test | | | 81.93 184 | 83.14 160 | 78.30 263 | 84.75 274 | 52.75 342 | 80.37 244 | 89.42 184 | 70.24 216 | 90.26 94 | 93.39 114 | 74.55 187 | 86.77 276 | 68.61 238 | 96.64 93 | 95.38 52 |
|
| XXY-MVS | | | 74.44 278 | 76.19 253 | 69.21 336 | 84.61 275 | 52.43 346 | 71.70 342 | 77.18 311 | 60.73 304 | 80.60 278 | 90.96 188 | 75.44 172 | 69.35 361 | 56.13 324 | 88.33 288 | 85.86 294 |
|
| cascas | | | 76.29 258 | 74.81 265 | 80.72 229 | 84.47 276 | 62.94 244 | 73.89 330 | 87.34 210 | 55.94 331 | 75.16 332 | 76.53 372 | 63.97 257 | 91.16 186 | 65.00 267 | 90.97 256 | 88.06 269 |
|
| PVSNet_BlendedMVS | | | 78.80 228 | 77.84 237 | 81.65 214 | 84.43 277 | 63.41 238 | 79.49 257 | 90.44 154 | 61.70 291 | 75.43 327 | 87.07 266 | 69.11 232 | 91.44 178 | 60.68 301 | 92.24 230 | 90.11 241 |
|
| PVSNet_Blended | | | 76.49 255 | 75.40 260 | 79.76 241 | 84.43 277 | 63.41 238 | 75.14 319 | 90.44 154 | 57.36 326 | 75.43 327 | 78.30 360 | 69.11 232 | 91.44 178 | 60.68 301 | 87.70 299 | 84.42 308 |
|
| OpenMVS |  | 76.72 13 | 81.98 183 | 82.00 178 | 81.93 206 | 84.42 279 | 68.22 194 | 88.50 95 | 89.48 182 | 66.92 248 | 81.80 262 | 91.86 157 | 72.59 211 | 90.16 216 | 71.19 208 | 91.25 250 | 87.40 279 |
|
| OpenMVS_ROB |  | 70.19 17 | 77.77 240 | 77.46 239 | 78.71 255 | 84.39 280 | 61.15 269 | 81.18 236 | 82.52 275 | 62.45 282 | 83.34 236 | 87.37 258 | 66.20 245 | 88.66 253 | 64.69 271 | 85.02 328 | 86.32 288 |
|
| test_yl | | | 78.71 230 | 78.51 231 | 79.32 248 | 84.32 281 | 58.84 299 | 78.38 273 | 85.33 243 | 75.99 135 | 82.49 246 | 86.57 270 | 58.01 293 | 90.02 225 | 62.74 284 | 92.73 221 | 89.10 256 |
|
| DCV-MVSNet | | | 78.71 230 | 78.51 231 | 79.32 248 | 84.32 281 | 58.84 299 | 78.38 273 | 85.33 243 | 75.99 135 | 82.49 246 | 86.57 270 | 58.01 293 | 90.02 225 | 62.74 284 | 92.73 221 | 89.10 256 |
|
| DELS-MVS | | | 81.44 190 | 81.25 193 | 82.03 205 | 84.27 283 | 62.87 246 | 76.47 303 | 92.49 95 | 70.97 206 | 81.64 265 | 83.83 309 | 75.03 177 | 92.70 145 | 74.29 172 | 92.22 232 | 90.51 232 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| Gipuma |  | | 84.44 131 | 86.33 101 | 78.78 253 | 84.20 284 | 73.57 132 | 89.55 72 | 90.44 154 | 84.24 43 | 84.38 212 | 94.89 49 | 76.35 170 | 80.40 329 | 76.14 157 | 96.80 90 | 82.36 339 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| EI-MVSNet-Vis-set | | | 85.12 118 | 84.53 136 | 86.88 98 | 84.01 285 | 72.76 140 | 83.91 173 | 85.18 246 | 80.44 82 | 88.75 125 | 85.49 286 | 80.08 128 | 91.92 166 | 82.02 90 | 90.85 261 | 95.97 39 |
|
| IterMVS-SCA-FT | | | 80.64 201 | 79.41 218 | 84.34 153 | 83.93 286 | 69.66 180 | 76.28 305 | 81.09 288 | 72.43 187 | 86.47 175 | 90.19 212 | 60.46 275 | 93.15 133 | 77.45 142 | 86.39 315 | 90.22 237 |
|
| MSDG | | | 80.06 217 | 79.99 216 | 80.25 235 | 83.91 287 | 68.04 198 | 77.51 287 | 89.19 185 | 77.65 119 | 81.94 256 | 83.45 314 | 76.37 169 | 86.31 282 | 63.31 282 | 86.59 312 | 86.41 287 |
|
| EI-MVSNet-UG-set | | | 85.04 119 | 84.44 138 | 86.85 99 | 83.87 288 | 72.52 149 | 83.82 175 | 85.15 247 | 80.27 86 | 88.75 125 | 85.45 288 | 79.95 130 | 91.90 167 | 81.92 92 | 90.80 262 | 96.13 34 |
|
| thres200 | | | 72.34 294 | 71.55 300 | 74.70 305 | 83.48 289 | 51.60 352 | 75.02 320 | 73.71 337 | 70.14 217 | 78.56 302 | 80.57 343 | 46.20 346 | 88.20 258 | 46.99 371 | 89.29 276 | 84.32 309 |
|
| USDC | | | 76.63 252 | 76.73 249 | 76.34 292 | 83.46 290 | 57.20 314 | 80.02 248 | 88.04 205 | 52.14 350 | 83.65 229 | 91.25 176 | 63.24 262 | 86.65 278 | 54.66 336 | 94.11 191 | 85.17 300 |
|
| HY-MVS | | 64.64 18 | 73.03 288 | 72.47 292 | 74.71 304 | 83.36 291 | 54.19 332 | 82.14 225 | 81.96 280 | 56.76 330 | 69.57 359 | 86.21 278 | 60.03 279 | 84.83 304 | 49.58 361 | 82.65 349 | 85.11 301 |
|
| EI-MVSNet | | | 82.61 168 | 82.42 174 | 83.20 183 | 83.25 292 | 63.66 236 | 83.50 184 | 85.07 248 | 76.06 132 | 86.55 169 | 85.10 294 | 73.41 199 | 90.25 211 | 78.15 133 | 90.67 265 | 95.68 45 |
|
| CVMVSNet | | | 72.62 291 | 71.41 301 | 76.28 293 | 83.25 292 | 60.34 281 | 83.50 184 | 79.02 300 | 37.77 391 | 76.33 316 | 85.10 294 | 49.60 336 | 87.41 265 | 70.54 216 | 77.54 373 | 81.08 354 |
|
| V42 | | | 83.47 158 | 83.37 155 | 83.75 168 | 83.16 294 | 63.33 240 | 81.31 232 | 90.23 165 | 69.51 221 | 90.91 85 | 90.81 195 | 74.16 188 | 92.29 158 | 80.06 107 | 90.22 270 | 95.62 47 |
|
| Anonymous20240521 | | | 80.18 214 | 81.25 193 | 76.95 283 | 83.15 295 | 60.84 276 | 82.46 213 | 85.99 236 | 68.76 229 | 86.78 162 | 93.73 108 | 59.13 287 | 77.44 340 | 73.71 184 | 97.55 67 | 92.56 166 |
|
| EU-MVSNet | | | 75.12 268 | 74.43 270 | 77.18 281 | 83.11 296 | 59.48 290 | 85.71 138 | 82.43 277 | 39.76 388 | 85.64 189 | 88.76 235 | 44.71 365 | 87.88 260 | 73.86 181 | 85.88 319 | 84.16 313 |
|
| ET-MVSNet_ETH3D | | | 75.28 265 | 72.77 286 | 82.81 194 | 83.03 297 | 68.11 196 | 77.09 291 | 76.51 317 | 60.67 305 | 77.60 311 | 80.52 344 | 38.04 381 | 91.15 187 | 70.78 211 | 90.68 264 | 89.17 254 |
|
| iter_conf05 | | | 78.81 227 | 77.35 242 | 83.21 182 | 82.98 298 | 60.75 278 | 84.09 166 | 88.34 198 | 63.12 276 | 84.25 222 | 89.48 223 | 31.41 390 | 94.51 81 | 76.64 151 | 95.83 132 | 94.38 88 |
|
| FMVSNet3 | | | 78.80 228 | 78.55 230 | 79.57 245 | 82.89 299 | 56.89 317 | 81.76 226 | 85.77 238 | 69.04 226 | 86.00 182 | 90.44 206 | 51.75 327 | 90.09 222 | 65.95 256 | 93.34 205 | 91.72 199 |
|
| MVS_Test | | | 82.47 172 | 83.22 156 | 80.22 236 | 82.62 300 | 57.75 310 | 82.54 211 | 91.96 110 | 71.16 205 | 82.89 242 | 92.52 142 | 77.41 150 | 90.50 208 | 80.04 108 | 87.84 297 | 92.40 173 |
|
| LF4IMVS | | | 82.75 167 | 81.93 179 | 85.19 132 | 82.08 301 | 80.15 70 | 85.53 139 | 88.76 191 | 68.01 237 | 85.58 190 | 87.75 251 | 71.80 219 | 86.85 274 | 74.02 178 | 93.87 196 | 88.58 264 |
|
| PVSNet | | 58.17 21 | 66.41 334 | 65.63 339 | 68.75 339 | 81.96 302 | 49.88 363 | 62.19 375 | 72.51 345 | 51.03 357 | 68.04 364 | 75.34 375 | 50.84 330 | 74.77 348 | 45.82 376 | 82.96 344 | 81.60 346 |
|
| GA-MVS | | | 75.83 261 | 74.61 266 | 79.48 247 | 81.87 303 | 59.25 292 | 73.42 334 | 82.88 272 | 68.68 230 | 79.75 289 | 81.80 333 | 50.62 331 | 89.46 236 | 66.85 248 | 85.64 320 | 89.72 244 |
|
| MS-PatchMatch | | | 70.93 307 | 70.22 310 | 73.06 314 | 81.85 304 | 62.50 253 | 73.82 331 | 77.90 303 | 52.44 347 | 75.92 322 | 81.27 337 | 55.67 311 | 81.75 320 | 55.37 330 | 77.70 371 | 74.94 372 |
|
| Syy-MVS | | | 69.40 321 | 70.03 313 | 67.49 345 | 81.72 305 | 38.94 387 | 71.00 345 | 61.99 378 | 61.38 295 | 70.81 354 | 72.36 380 | 61.37 271 | 79.30 332 | 64.50 275 | 85.18 325 | 84.22 310 |
|
| myMVS_eth3d | | | 64.66 341 | 63.89 343 | 66.97 347 | 81.72 305 | 37.39 390 | 71.00 345 | 61.99 378 | 61.38 295 | 70.81 354 | 72.36 380 | 20.96 401 | 79.30 332 | 49.59 360 | 85.18 325 | 84.22 310 |
|
| SCA | | | 73.32 284 | 72.57 290 | 75.58 300 | 81.62 307 | 55.86 322 | 78.89 267 | 71.37 354 | 61.73 289 | 74.93 333 | 83.42 315 | 60.46 275 | 87.01 269 | 58.11 315 | 82.63 351 | 83.88 314 |
|
| FMVSNet5 | | | 72.10 296 | 71.69 296 | 73.32 311 | 81.57 308 | 53.02 341 | 76.77 296 | 78.37 302 | 63.31 274 | 76.37 315 | 91.85 158 | 36.68 384 | 78.98 334 | 47.87 368 | 92.45 224 | 87.95 272 |
|
| thisisatest0515 | | | 73.00 289 | 70.52 306 | 80.46 232 | 81.45 309 | 59.90 286 | 73.16 337 | 74.31 331 | 57.86 321 | 76.08 321 | 77.78 362 | 37.60 383 | 92.12 162 | 65.00 267 | 91.45 247 | 89.35 250 |
|
| eth_miper_zixun_eth | | | 80.84 197 | 80.22 209 | 82.71 195 | 81.41 310 | 60.98 274 | 77.81 281 | 90.14 168 | 67.31 246 | 86.95 161 | 87.24 262 | 64.26 255 | 92.31 156 | 75.23 166 | 91.61 243 | 94.85 71 |
|
| CANet_DTU | | | 77.81 239 | 77.05 244 | 80.09 238 | 81.37 311 | 59.90 286 | 83.26 189 | 88.29 200 | 69.16 224 | 67.83 366 | 83.72 310 | 60.93 272 | 89.47 235 | 69.22 228 | 89.70 273 | 90.88 219 |
|
| ANet_high | | | 83.17 163 | 85.68 115 | 75.65 298 | 81.24 312 | 45.26 377 | 79.94 249 | 92.91 84 | 83.83 46 | 91.33 74 | 96.88 10 | 80.25 127 | 85.92 290 | 68.89 233 | 95.89 129 | 95.76 43 |
|
| new-patchmatchnet | | | 70.10 313 | 73.37 280 | 60.29 368 | 81.23 313 | 16.95 401 | 59.54 378 | 74.62 327 | 62.93 277 | 80.97 271 | 87.93 248 | 62.83 267 | 71.90 354 | 55.24 332 | 95.01 163 | 92.00 192 |
|
| test20.03 | | | 73.75 282 | 74.59 268 | 71.22 324 | 81.11 314 | 51.12 357 | 70.15 352 | 72.10 348 | 70.42 211 | 80.28 286 | 91.50 170 | 64.21 256 | 74.72 350 | 46.96 372 | 94.58 178 | 87.82 276 |
|
| MVS | | | 73.21 287 | 72.59 289 | 75.06 303 | 80.97 315 | 60.81 277 | 81.64 229 | 85.92 237 | 46.03 372 | 71.68 349 | 77.54 363 | 68.47 235 | 89.77 231 | 55.70 327 | 85.39 321 | 74.60 373 |
|
| N_pmnet | | | 70.20 311 | 68.80 323 | 74.38 306 | 80.91 316 | 84.81 39 | 59.12 380 | 76.45 318 | 55.06 334 | 75.31 331 | 82.36 327 | 55.74 310 | 54.82 390 | 47.02 370 | 87.24 302 | 83.52 321 |
|
| IterMVS | | | 76.91 248 | 76.34 252 | 78.64 256 | 80.91 316 | 64.03 233 | 76.30 304 | 79.03 299 | 64.88 270 | 83.11 239 | 89.16 230 | 59.90 281 | 84.46 306 | 68.61 238 | 85.15 327 | 87.42 278 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| c3_l | | | 81.64 188 | 81.59 186 | 81.79 213 | 80.86 318 | 59.15 295 | 78.61 272 | 90.18 167 | 68.36 232 | 87.20 151 | 87.11 265 | 69.39 229 | 91.62 173 | 78.16 131 | 94.43 182 | 94.60 75 |
|
| WTY-MVS | | | 67.91 327 | 68.35 325 | 66.58 349 | 80.82 319 | 48.12 367 | 65.96 366 | 72.60 343 | 53.67 340 | 71.20 351 | 81.68 335 | 58.97 288 | 69.06 363 | 48.57 364 | 81.67 353 | 82.55 335 |
|
| IB-MVS | | 62.13 19 | 71.64 299 | 68.97 321 | 79.66 244 | 80.80 320 | 62.26 259 | 73.94 329 | 76.90 313 | 63.27 275 | 68.63 362 | 76.79 370 | 33.83 388 | 91.84 170 | 59.28 308 | 87.26 301 | 84.88 303 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| our_test_3 | | | 71.85 297 | 71.59 297 | 72.62 317 | 80.71 321 | 53.78 335 | 69.72 354 | 71.71 353 | 58.80 315 | 78.03 303 | 80.51 345 | 56.61 305 | 78.84 336 | 62.20 288 | 86.04 318 | 85.23 299 |
|
| ppachtmachnet_test | | | 74.73 275 | 74.00 273 | 76.90 285 | 80.71 321 | 56.89 317 | 71.53 344 | 78.42 301 | 58.24 318 | 79.32 296 | 82.92 321 | 57.91 296 | 84.26 308 | 65.60 262 | 91.36 248 | 89.56 246 |
|
| testgi | | | 72.36 293 | 74.61 266 | 65.59 352 | 80.56 323 | 42.82 384 | 68.29 357 | 73.35 339 | 66.87 249 | 81.84 259 | 89.93 216 | 72.08 216 | 66.92 374 | 46.05 375 | 92.54 223 | 87.01 283 |
|
| D2MVS | | | 76.84 249 | 75.67 259 | 80.34 234 | 80.48 324 | 62.16 261 | 73.50 333 | 84.80 257 | 57.61 324 | 82.24 250 | 87.54 255 | 51.31 328 | 87.65 262 | 70.40 218 | 93.19 211 | 91.23 210 |
|
| 1314 | | | 73.22 286 | 72.56 291 | 75.20 301 | 80.41 325 | 57.84 308 | 81.64 229 | 85.36 242 | 51.68 353 | 73.10 342 | 76.65 371 | 61.45 270 | 85.19 300 | 63.54 279 | 79.21 365 | 82.59 333 |
|
| cl____ | | | 80.42 205 | 80.23 207 | 81.02 224 | 79.99 326 | 59.25 292 | 77.07 292 | 87.02 221 | 67.37 245 | 86.18 180 | 89.21 229 | 63.08 264 | 90.16 216 | 76.31 155 | 95.80 135 | 93.65 123 |
|
| DIV-MVS_self_test | | | 80.43 204 | 80.23 207 | 81.02 224 | 79.99 326 | 59.25 292 | 77.07 292 | 87.02 221 | 67.38 244 | 86.19 178 | 89.22 228 | 63.09 263 | 90.16 216 | 76.32 154 | 95.80 135 | 93.66 121 |
|
| miper_ehance_all_eth | | | 80.34 209 | 80.04 214 | 81.24 220 | 79.82 328 | 58.95 297 | 77.66 283 | 89.66 177 | 65.75 259 | 85.99 185 | 85.11 293 | 68.29 236 | 91.42 180 | 76.03 158 | 92.03 234 | 93.33 135 |
|
| CR-MVSNet | | | 74.00 280 | 73.04 283 | 76.85 287 | 79.58 329 | 62.64 250 | 82.58 208 | 76.90 313 | 50.50 362 | 75.72 324 | 92.38 144 | 48.07 340 | 84.07 309 | 68.72 237 | 82.91 346 | 83.85 317 |
|
| RPMNet | | | 78.88 225 | 78.28 234 | 80.68 230 | 79.58 329 | 62.64 250 | 82.58 208 | 94.16 27 | 74.80 151 | 75.72 324 | 92.59 138 | 48.69 337 | 95.56 39 | 73.48 187 | 82.91 346 | 83.85 317 |
|
| baseline2 | | | 69.77 317 | 66.89 331 | 78.41 261 | 79.51 331 | 58.09 305 | 76.23 306 | 69.57 361 | 57.50 325 | 64.82 379 | 77.45 365 | 46.02 348 | 88.44 254 | 53.08 342 | 77.83 369 | 88.70 263 |
|
| UnsupCasMVSNet_bld | | | 69.21 322 | 69.68 316 | 67.82 343 | 79.42 332 | 51.15 356 | 67.82 361 | 75.79 320 | 54.15 338 | 77.47 312 | 85.36 292 | 59.26 286 | 70.64 357 | 48.46 365 | 79.35 363 | 81.66 345 |
|
| PatchT | | | 70.52 309 | 72.76 287 | 63.79 360 | 79.38 333 | 33.53 394 | 77.63 284 | 65.37 374 | 73.61 165 | 71.77 348 | 92.79 134 | 44.38 366 | 75.65 347 | 64.53 274 | 85.37 322 | 82.18 340 |
|
| Patchmtry | | | 76.56 254 | 77.46 239 | 73.83 308 | 79.37 334 | 46.60 374 | 82.41 215 | 76.90 313 | 73.81 161 | 85.56 191 | 92.38 144 | 48.07 340 | 83.98 310 | 63.36 281 | 95.31 150 | 90.92 218 |
|
| mvs_anonymous | | | 78.13 235 | 78.76 227 | 76.23 295 | 79.24 335 | 50.31 361 | 78.69 270 | 84.82 256 | 61.60 293 | 83.09 241 | 92.82 131 | 73.89 192 | 87.01 269 | 68.33 242 | 86.41 314 | 91.37 208 |
|
| MVS-HIRNet | | | 61.16 350 | 62.92 347 | 55.87 372 | 79.09 336 | 35.34 393 | 71.83 341 | 57.98 390 | 46.56 369 | 59.05 388 | 91.14 180 | 49.95 335 | 76.43 343 | 38.74 387 | 71.92 382 | 55.84 391 |
|
| MDA-MVSNet-bldmvs | | | 77.47 242 | 76.90 247 | 79.16 250 | 79.03 337 | 64.59 226 | 66.58 365 | 75.67 322 | 73.15 177 | 88.86 122 | 88.99 233 | 66.94 241 | 81.23 324 | 64.71 270 | 88.22 293 | 91.64 203 |
|
| diffmvs |  | | 80.40 206 | 80.48 204 | 80.17 237 | 79.02 338 | 60.04 283 | 77.54 286 | 90.28 164 | 66.65 251 | 82.40 248 | 87.33 260 | 73.50 196 | 87.35 266 | 77.98 135 | 89.62 274 | 93.13 144 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tpm2 | | | 68.45 325 | 66.83 332 | 73.30 312 | 78.93 339 | 48.50 365 | 79.76 251 | 71.76 351 | 47.50 366 | 69.92 358 | 83.60 311 | 42.07 374 | 88.40 255 | 48.44 366 | 79.51 361 | 83.01 331 |
|
| tpm | | | 67.95 326 | 68.08 327 | 67.55 344 | 78.74 340 | 43.53 382 | 75.60 313 | 67.10 371 | 54.92 335 | 72.23 346 | 88.10 244 | 42.87 373 | 75.97 345 | 52.21 348 | 80.95 360 | 83.15 329 |
|
| MDTV_nov1_ep13 | | | | 68.29 326 | | 78.03 341 | 43.87 381 | 74.12 326 | 72.22 347 | 52.17 348 | 67.02 368 | 85.54 285 | 45.36 358 | 80.85 326 | 55.73 325 | 84.42 337 | |
|
| cl22 | | | 78.97 223 | 78.21 235 | 81.24 220 | 77.74 342 | 59.01 296 | 77.46 289 | 87.13 216 | 65.79 256 | 84.32 215 | 85.10 294 | 58.96 289 | 90.88 197 | 75.36 165 | 92.03 234 | 93.84 111 |
|
| EPNet_dtu | | | 72.87 290 | 71.33 302 | 77.49 278 | 77.72 343 | 60.55 280 | 82.35 216 | 75.79 320 | 66.49 252 | 58.39 391 | 81.06 339 | 53.68 318 | 85.98 289 | 53.55 340 | 92.97 217 | 85.95 292 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PatchmatchNet |  | | 69.71 318 | 68.83 322 | 72.33 321 | 77.66 344 | 53.60 336 | 79.29 259 | 69.99 359 | 57.66 323 | 72.53 345 | 82.93 320 | 46.45 345 | 80.08 331 | 60.91 300 | 72.09 381 | 83.31 327 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_vis1_n_1920 | | | 71.30 304 | 71.58 299 | 70.47 327 | 77.58 345 | 59.99 285 | 74.25 324 | 84.22 262 | 51.06 356 | 74.85 334 | 79.10 354 | 55.10 315 | 68.83 364 | 68.86 234 | 79.20 366 | 82.58 334 |
|
| dmvs_testset | | | 60.59 354 | 62.54 349 | 54.72 374 | 77.26 346 | 27.74 397 | 74.05 327 | 61.00 384 | 60.48 306 | 65.62 373 | 67.03 387 | 55.93 309 | 68.23 369 | 32.07 394 | 69.46 388 | 68.17 381 |
|
| sss | | | 66.92 329 | 67.26 329 | 65.90 351 | 77.23 347 | 51.10 358 | 64.79 368 | 71.72 352 | 52.12 351 | 70.13 357 | 80.18 347 | 57.96 295 | 65.36 380 | 50.21 356 | 81.01 359 | 81.25 351 |
|
| CostFormer | | | 69.98 316 | 68.68 324 | 73.87 307 | 77.14 348 | 50.72 359 | 79.26 260 | 74.51 329 | 51.94 352 | 70.97 353 | 84.75 300 | 45.16 362 | 87.49 264 | 55.16 333 | 79.23 364 | 83.40 324 |
|
| tpm cat1 | | | 66.76 333 | 65.21 340 | 71.42 323 | 77.09 349 | 50.62 360 | 78.01 277 | 73.68 338 | 44.89 375 | 68.64 361 | 79.00 355 | 45.51 356 | 82.42 319 | 49.91 358 | 70.15 384 | 81.23 353 |
|
| pmmvs5 | | | 70.73 308 | 70.07 311 | 72.72 316 | 77.03 350 | 52.73 343 | 74.14 325 | 75.65 323 | 50.36 363 | 72.17 347 | 85.37 291 | 55.42 313 | 80.67 327 | 52.86 346 | 87.59 300 | 84.77 304 |
|
| dmvs_re | | | 66.81 332 | 66.98 330 | 66.28 350 | 76.87 351 | 58.68 303 | 71.66 343 | 72.24 346 | 60.29 308 | 69.52 360 | 73.53 377 | 52.38 323 | 64.40 382 | 44.90 377 | 81.44 356 | 75.76 370 |
|
| EPNet | | | 80.37 207 | 78.41 233 | 86.23 111 | 76.75 352 | 73.28 135 | 87.18 111 | 77.45 307 | 76.24 131 | 68.14 363 | 88.93 234 | 65.41 250 | 93.85 102 | 69.47 224 | 96.12 117 | 91.55 206 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_lstm_enhance | | | 76.45 256 | 76.10 254 | 77.51 277 | 76.72 353 | 60.97 275 | 64.69 369 | 85.04 250 | 63.98 273 | 83.20 238 | 88.22 242 | 56.67 303 | 78.79 337 | 73.22 191 | 93.12 212 | 92.78 157 |
|
| CHOSEN 280x420 | | | 59.08 355 | 56.52 360 | 66.76 348 | 76.51 354 | 64.39 230 | 49.62 388 | 59.00 387 | 43.86 378 | 55.66 393 | 68.41 386 | 35.55 387 | 68.21 370 | 43.25 380 | 76.78 376 | 67.69 382 |
|
| UnsupCasMVSNet_eth | | | 71.63 300 | 72.30 293 | 69.62 333 | 76.47 355 | 52.70 344 | 70.03 353 | 80.97 289 | 59.18 313 | 79.36 294 | 88.21 243 | 60.50 274 | 69.12 362 | 58.33 313 | 77.62 372 | 87.04 282 |
|
| test-LLR | | | 67.21 328 | 66.74 333 | 68.63 340 | 76.45 356 | 55.21 327 | 67.89 358 | 67.14 369 | 62.43 284 | 65.08 376 | 72.39 378 | 43.41 369 | 69.37 359 | 61.00 298 | 84.89 332 | 81.31 349 |
|
| test-mter | | | 65.00 340 | 63.79 344 | 68.63 340 | 76.45 356 | 55.21 327 | 67.89 358 | 67.14 369 | 50.98 358 | 65.08 376 | 72.39 378 | 28.27 395 | 69.37 359 | 61.00 298 | 84.89 332 | 81.31 349 |
|
| miper_enhance_ethall | | | 77.83 237 | 76.93 246 | 80.51 231 | 76.15 358 | 58.01 307 | 75.47 317 | 88.82 189 | 58.05 320 | 83.59 230 | 80.69 340 | 64.41 254 | 91.20 184 | 73.16 197 | 92.03 234 | 92.33 177 |
|
| gg-mvs-nofinetune | | | 68.96 324 | 69.11 319 | 68.52 342 | 76.12 359 | 45.32 376 | 83.59 182 | 55.88 391 | 86.68 24 | 64.62 380 | 97.01 7 | 30.36 392 | 83.97 311 | 44.78 378 | 82.94 345 | 76.26 369 |
|
| test_vis1_n | | | 70.29 310 | 69.99 314 | 71.20 325 | 75.97 360 | 66.50 210 | 76.69 298 | 80.81 290 | 44.22 377 | 75.43 327 | 77.23 367 | 50.00 334 | 68.59 365 | 66.71 251 | 82.85 348 | 78.52 366 |
|
| CMPMVS |  | 59.41 20 | 75.12 268 | 73.57 276 | 79.77 240 | 75.84 361 | 67.22 201 | 81.21 235 | 82.18 278 | 50.78 359 | 76.50 314 | 87.66 253 | 55.20 314 | 82.99 315 | 62.17 290 | 90.64 268 | 89.09 258 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| wuyk23d | | | 75.13 267 | 79.30 220 | 62.63 361 | 75.56 362 | 75.18 124 | 80.89 239 | 73.10 342 | 75.06 150 | 94.76 12 | 95.32 35 | 87.73 40 | 52.85 391 | 34.16 391 | 97.11 80 | 59.85 388 |
|
| Patchmatch-test | | | 65.91 336 | 67.38 328 | 61.48 366 | 75.51 363 | 43.21 383 | 68.84 355 | 63.79 376 | 62.48 281 | 72.80 344 | 83.42 315 | 44.89 364 | 59.52 388 | 48.27 367 | 86.45 313 | 81.70 344 |
|
| new_pmnet | | | 55.69 358 | 57.66 359 | 49.76 375 | 75.47 364 | 30.59 395 | 59.56 377 | 51.45 394 | 43.62 380 | 62.49 382 | 75.48 374 | 40.96 376 | 49.15 394 | 37.39 389 | 72.52 379 | 69.55 379 |
|
| gm-plane-assit | | | | | | 75.42 365 | 44.97 379 | | | 52.17 348 | | 72.36 380 | | 87.90 259 | 54.10 338 | | |
|
| MVSTER | | | 77.09 246 | 75.70 258 | 81.25 218 | 75.27 366 | 61.08 270 | 77.49 288 | 85.07 248 | 60.78 303 | 86.55 169 | 88.68 237 | 43.14 372 | 90.25 211 | 73.69 185 | 90.67 265 | 92.42 171 |
|
| PVSNet_0 | | 51.08 22 | 56.10 357 | 54.97 362 | 59.48 370 | 75.12 367 | 53.28 340 | 55.16 385 | 61.89 380 | 44.30 376 | 59.16 387 | 62.48 390 | 54.22 317 | 65.91 378 | 35.40 390 | 47.01 393 | 59.25 389 |
|
| test0.0.03 1 | | | 64.66 341 | 64.36 341 | 65.57 353 | 75.03 368 | 46.89 373 | 64.69 369 | 61.58 383 | 62.43 284 | 71.18 352 | 77.54 363 | 43.41 369 | 68.47 368 | 40.75 385 | 82.65 349 | 81.35 348 |
|
| test_fmvs3 | | | 75.72 263 | 75.20 263 | 77.27 280 | 75.01 369 | 69.47 182 | 78.93 265 | 84.88 255 | 46.67 368 | 87.08 157 | 87.84 250 | 50.44 333 | 71.62 355 | 77.42 144 | 88.53 286 | 90.72 223 |
|
| tpmvs | | | 70.16 312 | 69.56 317 | 71.96 322 | 74.71 370 | 48.13 366 | 79.63 252 | 75.45 325 | 65.02 269 | 70.26 356 | 81.88 332 | 45.34 359 | 85.68 296 | 58.34 312 | 75.39 377 | 82.08 342 |
|
| test_fmvs1_n | | | 70.94 306 | 70.41 309 | 72.53 319 | 73.92 371 | 66.93 206 | 75.99 310 | 84.21 263 | 43.31 381 | 79.40 293 | 79.39 353 | 43.47 368 | 68.55 366 | 69.05 231 | 84.91 331 | 82.10 341 |
|
| MDA-MVSNet_test_wron | | | 70.05 315 | 70.44 307 | 68.88 338 | 73.84 372 | 53.47 337 | 58.93 382 | 67.28 367 | 58.43 316 | 87.09 156 | 85.40 289 | 59.80 283 | 67.25 372 | 59.66 306 | 83.54 341 | 85.92 293 |
|
| YYNet1 | | | 70.06 314 | 70.44 307 | 68.90 337 | 73.76 373 | 53.42 339 | 58.99 381 | 67.20 368 | 58.42 317 | 87.10 155 | 85.39 290 | 59.82 282 | 67.32 371 | 59.79 305 | 83.50 342 | 85.96 291 |
|
| test_cas_vis1_n_1920 | | | 69.20 323 | 69.12 318 | 69.43 335 | 73.68 374 | 62.82 247 | 70.38 351 | 77.21 310 | 46.18 371 | 80.46 283 | 78.95 356 | 52.03 324 | 65.53 379 | 65.77 261 | 77.45 374 | 79.95 362 |
|
| GG-mvs-BLEND | | | | | 67.16 346 | 73.36 375 | 46.54 375 | 84.15 164 | 55.04 392 | | 58.64 390 | 61.95 391 | 29.93 393 | 83.87 312 | 38.71 388 | 76.92 375 | 71.07 377 |
|
| JIA-IIPM | | | 69.41 320 | 66.64 335 | 77.70 275 | 73.19 376 | 71.24 168 | 75.67 312 | 65.56 373 | 70.42 211 | 65.18 375 | 92.97 126 | 33.64 389 | 83.06 314 | 53.52 341 | 69.61 387 | 78.79 365 |
|
| ADS-MVSNet2 | | | 65.87 337 | 63.64 345 | 72.55 318 | 73.16 377 | 56.92 316 | 67.10 362 | 74.81 326 | 49.74 364 | 66.04 370 | 82.97 318 | 46.71 343 | 77.26 341 | 42.29 381 | 69.96 385 | 83.46 322 |
|
| ADS-MVSNet | | | 61.90 346 | 62.19 350 | 61.03 367 | 73.16 377 | 36.42 392 | 67.10 362 | 61.75 381 | 49.74 364 | 66.04 370 | 82.97 318 | 46.71 343 | 63.21 383 | 42.29 381 | 69.96 385 | 83.46 322 |
|
| DSMNet-mixed | | | 60.98 352 | 61.61 352 | 59.09 371 | 72.88 379 | 45.05 378 | 74.70 322 | 46.61 397 | 26.20 393 | 65.34 374 | 90.32 208 | 55.46 312 | 63.12 384 | 41.72 383 | 81.30 358 | 69.09 380 |
|
| tpmrst | | | 66.28 335 | 66.69 334 | 65.05 356 | 72.82 380 | 39.33 386 | 78.20 276 | 70.69 357 | 53.16 343 | 67.88 365 | 80.36 346 | 48.18 339 | 74.75 349 | 58.13 314 | 70.79 383 | 81.08 354 |
|
| test_fmvs2 | | | 73.57 283 | 72.80 285 | 75.90 297 | 72.74 381 | 68.84 191 | 77.07 292 | 84.32 261 | 45.14 374 | 82.89 242 | 84.22 306 | 48.37 338 | 70.36 358 | 73.40 189 | 87.03 307 | 88.52 265 |
|
| TESTMET0.1,1 | | | 61.29 349 | 60.32 355 | 64.19 358 | 72.06 382 | 51.30 354 | 67.89 358 | 62.09 377 | 45.27 373 | 60.65 385 | 69.01 384 | 27.93 396 | 64.74 381 | 56.31 322 | 81.65 355 | 76.53 368 |
|
| dp | | | 60.70 353 | 60.29 356 | 61.92 364 | 72.04 383 | 38.67 389 | 70.83 347 | 64.08 375 | 51.28 355 | 60.75 384 | 77.28 366 | 36.59 385 | 71.58 356 | 47.41 369 | 62.34 391 | 75.52 371 |
|
| pmmvs3 | | | 62.47 344 | 60.02 357 | 69.80 332 | 71.58 384 | 64.00 234 | 70.52 349 | 58.44 389 | 39.77 387 | 66.05 369 | 75.84 373 | 27.10 398 | 72.28 352 | 46.15 374 | 84.77 336 | 73.11 374 |
|
| EPMVS | | | 62.47 344 | 62.63 348 | 62.01 362 | 70.63 385 | 38.74 388 | 74.76 321 | 52.86 393 | 53.91 339 | 67.71 367 | 80.01 348 | 39.40 378 | 66.60 375 | 55.54 329 | 68.81 389 | 80.68 358 |
|
| mvsany_test3 | | | 65.48 339 | 62.97 346 | 73.03 315 | 69.99 386 | 76.17 118 | 64.83 367 | 43.71 398 | 43.68 379 | 80.25 287 | 87.05 267 | 52.83 321 | 63.09 385 | 51.92 353 | 72.44 380 | 79.84 363 |
|
| test_vis3_rt | | | 71.42 302 | 70.67 304 | 73.64 310 | 69.66 387 | 70.46 173 | 66.97 364 | 89.73 174 | 42.68 384 | 88.20 138 | 83.04 317 | 43.77 367 | 60.07 386 | 65.35 265 | 86.66 311 | 90.39 235 |
|
| test_fmvs1 | | | 69.57 319 | 69.05 320 | 71.14 326 | 69.15 388 | 65.77 219 | 73.98 328 | 83.32 268 | 42.83 383 | 77.77 309 | 78.27 361 | 43.39 371 | 68.50 367 | 68.39 241 | 84.38 338 | 79.15 364 |
|
| KD-MVS_2432*1600 | | | 66.87 330 | 65.81 337 | 70.04 329 | 67.50 389 | 47.49 370 | 62.56 373 | 79.16 297 | 61.21 299 | 77.98 304 | 80.61 341 | 25.29 399 | 82.48 317 | 53.02 343 | 84.92 329 | 80.16 360 |
|
| miper_refine_blended | | | 66.87 330 | 65.81 337 | 70.04 329 | 67.50 389 | 47.49 370 | 62.56 373 | 79.16 297 | 61.21 299 | 77.98 304 | 80.61 341 | 25.29 399 | 82.48 317 | 53.02 343 | 84.92 329 | 80.16 360 |
|
| E-PMN | | | 61.59 348 | 61.62 351 | 61.49 365 | 66.81 391 | 55.40 325 | 53.77 386 | 60.34 385 | 66.80 250 | 58.90 389 | 65.50 388 | 40.48 377 | 66.12 377 | 55.72 326 | 86.25 316 | 62.95 386 |
|
| test_f | | | 64.31 343 | 65.85 336 | 59.67 369 | 66.54 392 | 62.24 260 | 57.76 383 | 70.96 355 | 40.13 386 | 84.36 213 | 82.09 329 | 46.93 342 | 51.67 392 | 61.99 291 | 81.89 352 | 65.12 384 |
|
| test_vis1_rt | | | 65.64 338 | 64.09 342 | 70.31 328 | 66.09 393 | 70.20 176 | 61.16 376 | 81.60 285 | 38.65 389 | 72.87 343 | 69.66 383 | 52.84 320 | 60.04 387 | 56.16 323 | 77.77 370 | 80.68 358 |
|
| EMVS | | | 61.10 351 | 60.81 353 | 61.99 363 | 65.96 394 | 55.86 322 | 53.10 387 | 58.97 388 | 67.06 247 | 56.89 392 | 63.33 389 | 40.98 375 | 67.03 373 | 54.79 335 | 86.18 317 | 63.08 385 |
|
| mvsany_test1 | | | 58.48 356 | 56.47 361 | 64.50 357 | 65.90 395 | 68.21 195 | 56.95 384 | 42.11 399 | 38.30 390 | 65.69 372 | 77.19 369 | 56.96 302 | 59.35 389 | 46.16 373 | 58.96 392 | 65.93 383 |
|
| PMMVS | | | 61.65 347 | 60.38 354 | 65.47 354 | 65.40 396 | 69.26 185 | 63.97 371 | 61.73 382 | 36.80 392 | 60.11 386 | 68.43 385 | 59.42 284 | 66.35 376 | 48.97 363 | 78.57 368 | 60.81 387 |
|
| PMMVS2 | | | 55.64 359 | 59.27 358 | 44.74 376 | 64.30 397 | 12.32 402 | 40.60 389 | 49.79 395 | 53.19 342 | 65.06 378 | 84.81 299 | 53.60 319 | 49.76 393 | 32.68 393 | 89.41 275 | 72.15 375 |
|
| MVE |  | 40.22 23 | 51.82 360 | 50.47 363 | 55.87 372 | 62.66 398 | 51.91 349 | 31.61 391 | 39.28 400 | 40.65 385 | 50.76 394 | 74.98 376 | 56.24 308 | 44.67 395 | 33.94 392 | 64.11 390 | 71.04 378 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 24.13 378 | 32.95 399 | 29.49 396 | | 21.63 403 | 12.07 394 | 37.95 395 | 45.07 393 | 30.84 391 | 19.21 397 | 17.94 397 | 33.06 396 | 23.69 393 |
|
| test_method | | | 30.46 361 | 29.60 364 | 33.06 377 | 17.99 400 | 3.84 404 | 13.62 392 | 73.92 333 | 2.79 395 | 18.29 397 | 53.41 392 | 28.53 394 | 43.25 396 | 22.56 395 | 35.27 395 | 52.11 392 |
|
| tmp_tt | | | 20.25 363 | 24.50 366 | 7.49 379 | 4.47 401 | 8.70 403 | 34.17 390 | 25.16 402 | 1.00 397 | 32.43 396 | 18.49 394 | 39.37 379 | 9.21 398 | 21.64 396 | 43.75 394 | 4.57 394 |
|
| testmvs | | | 5.91 367 | 7.65 370 | 0.72 381 | 1.20 402 | 0.37 406 | 59.14 379 | 0.67 405 | 0.49 399 | 1.11 399 | 2.76 398 | 0.94 404 | 0.24 400 | 1.02 399 | 1.47 397 | 1.55 396 |
|
| test123 | | | 6.27 366 | 8.08 369 | 0.84 380 | 1.11 403 | 0.57 405 | 62.90 372 | 0.82 404 | 0.54 398 | 1.07 400 | 2.75 399 | 1.26 403 | 0.30 399 | 1.04 398 | 1.26 398 | 1.66 395 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 20.81 362 | 27.75 365 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 85.44 241 | 0.00 400 | 0.00 401 | 82.82 322 | 81.46 113 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 6.41 365 | 8.55 368 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 76.94 159 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| ab-mvs-re | | | 6.65 364 | 8.87 367 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 79.80 350 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 399 | 0.00 397 |
|
| MM | | | | | 89.09 65 | | 76.39 115 | 88.68 91 | 86.76 225 | 84.54 41 | 83.58 231 | 93.78 105 | 73.36 202 | 96.48 1 | 87.98 9 | 96.21 112 | 94.41 86 |
|
| WAC-MVS | | | | | | | 37.39 390 | | | | | | | | 52.61 347 | | |
|
| PC_three_1452 | | | | | | | | | | 58.96 314 | 90.06 96 | 91.33 174 | 80.66 123 | 93.03 137 | 75.78 160 | 95.94 126 | 92.48 169 |
|
| test_241102_TWO | | | | | | | | | 93.71 49 | 83.77 47 | 93.49 36 | 94.27 75 | 89.27 21 | 95.84 23 | 86.03 46 | 97.82 51 | 92.04 190 |
|
| test_0728_THIRD | | | | | | | | | | 85.33 33 | 93.75 30 | 94.65 57 | 87.44 43 | 95.78 28 | 87.41 22 | 98.21 29 | 92.98 152 |
|
| GSMVS | | | | | | | | | | | | | | | | | 83.88 314 |
|
| sam_mvs1 | | | | | | | | | | | | | 46.11 347 | | | | 83.88 314 |
|
| sam_mvs | | | | | | | | | | | | | 45.92 352 | | | | |
|
| MTGPA |  | | | | | | | | 91.81 118 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.85 269 | | | | 3.13 396 | 45.19 361 | 80.13 330 | 58.11 315 | | |
|
| test_post | | | | | | | | | | | | 3.10 397 | 45.43 357 | 77.22 342 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 81.71 334 | 45.93 351 | 87.01 269 | | | |
|
| MTMP | | | | | | | | 90.66 44 | 33.14 401 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 80.83 100 | 96.45 103 | 90.57 229 |
|
| agg_prior2 | | | | | | | | | | | | | | | 79.68 114 | 96.16 114 | 90.22 237 |
|
| test_prior4 | | | | | | | 78.97 80 | 84.59 155 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 83.37 187 | | 75.43 145 | 84.58 207 | 91.57 168 | 81.92 108 | | 79.54 116 | 96.97 84 | |
|
| 旧先验2 | | | | | | | | 81.73 227 | | 56.88 329 | 86.54 174 | | | 84.90 303 | 72.81 198 | | |
|
| 新几何2 | | | | | | | | 81.72 228 | | | | | | | | | |
|
| 无先验 | | | | | | | | 82.81 203 | 85.62 240 | 58.09 319 | | | | 91.41 181 | 67.95 245 | | 84.48 306 |
|
| 原ACMM2 | | | | | | | | 82.26 221 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 86.43 281 | 63.52 280 | | |
|
| segment_acmp | | | | | | | | | | | | | 81.94 105 | | | | |
|
| testdata1 | | | | | | | | 79.62 253 | | 73.95 160 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 93.61 53 | | | | | 95.22 56 | 80.78 101 | 95.83 132 | 94.46 80 |
|
| plane_prior4 | | | | | | | | | | | | 92.95 127 | | | | | |
|
| plane_prior3 | | | | | | | 76.85 107 | | | 77.79 118 | 86.55 169 | | | | | | |
|
| plane_prior2 | | | | | | | | 89.45 77 | | 79.44 96 | | | | | | | |
|
| plane_prior | | | | | | | 76.42 113 | 87.15 112 | | 75.94 138 | | | | | | 95.03 160 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 74.45 330 | | | | | | | | |
|
| test11 | | | | | | | | | 91.46 124 | | | | | | | | |
|
| door | | | | | | | | | 72.57 344 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 70.66 171 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.30 145 | | |
|
| HQP4-MVS | | | | | | | | | | | 80.56 279 | | | 94.61 74 | | | 93.56 129 |
|
| HQP3-MVS | | | | | | | | | 92.68 91 | | | | | | | 94.47 180 | |
|
| HQP2-MVS | | | | | | | | | | | | | 72.10 214 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 27.60 398 | 70.76 348 | | 46.47 370 | 61.27 383 | | 45.20 360 | | 49.18 362 | | 83.75 319 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 95.74 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 97.35 73 | |
|
| Test By Simon | | | | | | | | | | | | | 79.09 134 | | | | |
|