This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19888.84 1394.29 1897.57 390.48 1391.26 18472.57 20197.65 6097.34 15
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18388.51 1790.11 9595.12 4490.98 688.92 24877.55 14097.07 8183.13 340
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12084.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 177
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30188.95 8493.19 7191.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30489.04 8392.74 9291.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31188.93 8592.84 8991.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30788.66 9292.06 10890.78 695.67 795.17 4281.80 11195.54 4179.00 12198.69 998.95 4
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25689.54 7493.31 6690.21 1095.57 995.66 2981.42 11595.90 1580.94 9998.80 298.84 5
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8282.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9583.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5477.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4478.43 11189.16 11992.25 15072.03 22196.36 388.21 790.93 25892.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6781.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6981.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13767.85 24286.63 16994.84 5079.58 13395.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4480.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12182.70 16892.08 895.64 2386.25 1892.64 1893.33 6385.07 3689.99 9916.05 40586.57 5295.80 2587.35 2497.62 6294.20 92
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5080.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6881.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7075.37 14792.84 4895.28 3885.58 6396.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6183.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
VDDNet84.35 13485.39 12281.25 22195.13 3159.32 29485.42 14281.11 29086.41 2787.41 15196.21 1973.61 19690.61 20866.33 25696.85 8593.81 115
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10279.74 9187.50 15092.38 14381.42 11593.28 12983.07 7497.24 7791.67 201
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6279.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 171
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9088.22 1888.53 12997.64 283.45 8294.55 7886.02 4898.60 1296.67 27
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13478.20 11386.69 16892.28 14980.36 12795.06 6286.17 4496.49 9990.22 236
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7793.10 13682.67 8298.04 3693.64 123
EGC-MVSNET74.79 27869.99 31889.19 6394.89 3787.00 1191.89 3486.28 2321.09 4062.23 40895.98 2381.87 11089.48 23679.76 11295.96 12491.10 213
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4788.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 184
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9178.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4380.07 8986.75 16593.26 11493.64 290.93 19584.60 6190.75 26493.97 104
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5780.16 8789.13 12193.44 11283.82 7690.98 19383.86 6895.30 15193.60 125
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 190
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5283.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 178
IU-MVS94.18 4672.64 14490.82 14656.98 33689.67 10885.78 5097.92 4693.28 135
test_241102_ONE94.18 4672.65 14293.69 5283.62 4994.11 2293.78 10490.28 1495.50 46
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14183.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 230
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14890.63 4593.90 4483.61 5093.75 3094.49 6489.76 18
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
MIMVSNet183.63 15484.59 13680.74 23094.06 5362.77 24982.72 20684.53 26377.57 12190.34 9295.92 2476.88 16685.83 29861.88 29597.42 7293.62 124
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16191.29 13384.88 3992.06 6393.84 10186.45 5493.73 10773.22 19298.66 1097.69 9
新几何182.95 19093.96 5578.56 8480.24 29655.45 34183.93 22891.08 18271.19 22688.33 25765.84 26293.07 21481.95 353
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5982.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
test_part293.86 5777.77 9492.84 48
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
save fliter93.75 5977.44 9986.31 12989.72 17770.80 208
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6893.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6495.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19077.34 12293.63 3595.83 2565.40 25695.90 1585.01 5798.23 2797.49 13
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15170.00 21894.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5579.44 9686.55 17092.95 12674.84 18195.22 5680.78 10295.83 13294.46 80
plane_prior793.45 6577.31 102
WR-MVS83.56 15684.40 14281.06 22693.43 6754.88 33378.67 27385.02 25581.24 7590.74 8991.56 16872.85 20991.08 19068.00 24698.04 3697.23 18
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 200
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16569.27 22294.39 1696.38 1586.02 6193.52 12083.96 6695.92 12895.34 53
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11170.73 20994.19 2196.67 1176.94 16094.57 7683.07 7496.28 10896.15 33
test22293.31 7076.54 10979.38 26077.79 30752.59 35582.36 25290.84 19366.83 24691.69 24281.25 361
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18085.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19592.21 10381.73 6990.92 8291.97 15477.20 15493.99 9774.16 17598.35 2197.61 10
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22490.46 15580.99 7888.42 13391.97 15477.56 14993.85 10372.46 20298.65 1197.61 10
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7581.10 7795.32 1097.24 572.94 20894.85 6785.07 5497.78 5397.26 16
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17792.87 8780.37 8389.61 11291.81 16177.72 14794.18 9075.00 17098.53 1596.99 24
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
114514_t83.10 16682.54 17384.77 13992.90 8069.10 19186.65 12390.62 15254.66 34681.46 26990.81 19476.98 15994.38 8372.62 20096.18 11390.82 220
testdata79.54 24992.87 8172.34 15380.14 29759.91 31685.47 19491.75 16467.96 24185.24 30268.57 24392.18 23481.06 366
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14491.23 13577.31 12487.07 15991.47 17082.94 8794.71 7084.67 6096.27 11092.62 163
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21291.56 12383.08 5790.92 8291.82 16078.25 14293.99 9774.16 17598.35 2197.49 13
plane_prior192.83 85
原ACMM184.60 14392.81 8674.01 12991.50 12562.59 28182.73 24890.67 20076.53 16794.25 8669.24 22995.69 14085.55 304
plane_prior692.61 8776.54 10974.84 181
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7880.87 8191.13 7893.19 11586.22 5895.97 1282.23 8897.18 7990.45 232
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16889.44 18588.63 1694.38 1795.77 2686.38 5793.59 11679.84 11195.21 15291.82 196
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20681.66 7094.64 1496.53 1465.94 25194.75 6983.02 7696.83 8795.41 51
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4881.89 6894.70 1395.44 3490.69 888.31 25883.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VPNet80.25 21481.68 18375.94 29992.46 9247.98 37176.70 30081.67 28773.45 16784.87 20492.82 13074.66 18686.51 28261.66 29896.85 8593.33 133
F-COLMAP84.97 12483.42 15489.63 5592.39 9383.40 4888.83 8791.92 11373.19 17780.18 29089.15 23177.04 15893.28 12965.82 26392.28 23092.21 183
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17171.54 20094.28 2096.54 1381.57 11394.27 8486.26 4096.49 9997.09 21
TEST992.34 9579.70 7483.94 17090.32 16065.41 26684.49 21090.97 18582.03 10593.63 111
train_agg85.98 10685.28 12488.07 8392.34 9579.70 7483.94 17090.32 16065.79 25784.49 21090.97 18581.93 10793.63 11181.21 9696.54 9690.88 218
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 13978.77 10784.85 20590.89 18980.85 12195.29 5381.14 9795.32 14892.34 175
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11572.61 18792.16 6095.23 4166.01 25095.59 3786.02 4897.78 5397.24 17
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32285.75 13693.09 7777.33 12391.94 6694.65 5674.78 18393.41 12675.11 16998.58 1397.88 7
CDPH-MVS86.17 10485.54 11988.05 8492.25 9975.45 12283.85 17492.01 10965.91 25686.19 17991.75 16483.77 7894.98 6477.43 14396.71 9193.73 118
test111178.53 23578.85 22877.56 27992.22 10147.49 37382.61 20869.24 36872.43 18885.28 19594.20 8051.91 33090.07 22565.36 26796.45 10295.11 62
ZD-MVS92.22 10180.48 6791.85 11671.22 20590.38 9192.98 12386.06 6096.11 681.99 9196.75 90
pmmvs686.52 9688.06 7481.90 20892.22 10162.28 25984.66 15489.15 18883.54 5289.85 10397.32 488.08 3686.80 27770.43 21897.30 7696.62 28
EG-PatchMatch MVS84.08 14484.11 14683.98 15992.22 10172.61 14782.20 22687.02 22372.63 18688.86 12291.02 18378.52 13891.11 18973.41 18991.09 25288.21 270
test_892.09 10578.87 8183.82 17590.31 16265.79 25784.36 21490.96 18781.93 10793.44 124
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10778.87 10584.27 22194.05 8878.35 14193.65 10980.54 10691.58 24692.08 188
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19586.30 2889.60 11392.59 13769.22 23494.91 6673.89 18197.89 4996.72 26
旧先验191.97 10871.77 16081.78 28691.84 15873.92 19393.65 20283.61 330
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 7986.53 2694.29 1896.27 1782.69 8994.08 9586.25 4297.63 6197.82 8
NP-MVS91.95 10974.55 12690.17 214
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7276.02 13488.64 12791.22 17684.24 7493.37 12777.97 13697.03 8295.52 49
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11894.68 7174.48 17295.35 14692.29 178
FIs85.35 11586.27 10382.60 19891.86 11357.31 31585.10 14893.05 7975.83 13991.02 8193.97 9273.57 19792.91 14373.97 18098.02 3997.58 12
test250674.12 28373.39 28376.28 29691.85 11444.20 38784.06 16748.20 40672.30 19481.90 25994.20 8027.22 40789.77 23364.81 27296.02 12194.87 67
ECVR-MVScopyleft78.44 23678.63 23277.88 27591.85 11448.95 36783.68 18069.91 36572.30 19484.26 22294.20 8051.89 33189.82 23063.58 28196.02 12194.87 67
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
MSLP-MVS++85.00 12386.03 10881.90 20891.84 11671.56 16786.75 12293.02 8375.95 13787.12 15489.39 22577.98 14389.40 24377.46 14194.78 17284.75 313
h-mvs3384.25 13882.76 16788.72 7191.82 11882.60 5684.00 16984.98 25771.27 20286.70 16690.55 20363.04 27193.92 10078.26 12994.20 18889.63 248
DP-MVS Recon84.05 14583.22 15786.52 10591.73 11975.27 12383.23 19392.40 9872.04 19782.04 25788.33 24177.91 14593.95 9966.17 25795.12 15790.34 235
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 4978.90 10492.88 4592.29 14886.11 5990.22 21686.24 4397.24 7791.36 208
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14293.03 12182.66 9091.47 17770.81 21096.14 11594.16 96
MCST-MVS84.36 13383.93 15085.63 12591.59 12171.58 16583.52 18392.13 10661.82 29083.96 22789.75 22179.93 13293.46 12378.33 12794.34 18491.87 195
agg_prior91.58 12477.69 9690.30 16384.32 21693.18 132
PVSNet_Blended_VisFu81.55 19180.49 20784.70 14291.58 12473.24 13784.21 16291.67 12262.86 28080.94 27587.16 26467.27 24392.87 14469.82 22588.94 28687.99 276
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11895.88 1787.41 2295.94 12692.48 168
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
No_MVS88.81 6991.55 12677.99 9091.01 14196.05 887.45 2098.17 3292.40 172
EPP-MVSNet85.47 11385.04 12786.77 10191.52 12969.37 18491.63 3687.98 20881.51 7287.05 16091.83 15966.18 24995.29 5370.75 21396.89 8495.64 46
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18692.38 10070.25 21589.35 11890.68 19882.85 8894.57 7679.55 11595.95 12592.00 191
Baseline_NR-MVSNet84.00 14785.90 11178.29 26791.47 13153.44 34182.29 22087.00 22679.06 10289.55 11495.72 2877.20 15486.14 29172.30 20398.51 1695.28 56
HyFIR lowres test75.12 27272.66 29282.50 20291.44 13265.19 22472.47 34387.31 21346.79 37780.29 28684.30 30652.70 32792.10 16451.88 35986.73 31690.22 236
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8587.95 2089.62 11092.87 12984.56 6993.89 10277.65 13896.62 9390.70 224
DeepC-MVS_fast80.27 886.23 10085.65 11887.96 8591.30 13376.92 10687.19 11091.99 11070.56 21084.96 20190.69 19780.01 13095.14 5978.37 12595.78 13791.82 196
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15095.86 2284.88 5895.87 13095.24 58
HQP-NCC91.19 13684.77 14973.30 17380.55 282
ACMP_Plane91.19 13684.77 14973.30 17380.55 282
HQP-MVS84.61 12884.06 14786.27 11091.19 13670.66 17284.77 14992.68 9373.30 17380.55 28290.17 21472.10 21794.61 7477.30 14594.47 18093.56 128
VDD-MVS84.23 14084.58 13783.20 18491.17 13965.16 22583.25 19184.97 25879.79 9087.18 15394.27 7474.77 18490.89 19869.24 22996.54 9693.55 130
K. test v385.14 11984.73 13186.37 10791.13 14069.63 18285.45 14176.68 31984.06 4592.44 5796.99 862.03 27494.65 7280.58 10593.24 21094.83 72
lessismore_v085.95 11791.10 14170.99 17170.91 36191.79 6794.42 6961.76 27592.93 14179.52 11793.03 21593.93 106
hse-mvs283.47 15981.81 18288.47 7591.03 14282.27 5782.61 20883.69 26871.27 20286.70 16686.05 28163.04 27192.41 15378.26 12993.62 20490.71 223
TransMVSNet (Re)84.02 14685.74 11678.85 25591.00 14355.20 33282.29 22087.26 21479.65 9388.38 13595.52 3383.00 8686.88 27567.97 24796.60 9494.45 82
AUN-MVS81.18 19778.78 22988.39 7790.93 14482.14 5882.51 21483.67 26964.69 27280.29 28685.91 28451.07 33492.38 15476.29 15693.63 20390.65 227
PAPM_NR83.23 16283.19 15983.33 17990.90 14565.98 21788.19 9790.78 14778.13 11580.87 27787.92 24973.49 20092.42 15270.07 22288.40 29191.60 203
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11680.35 8489.54 11688.01 24579.09 13592.13 16175.51 16395.06 15990.41 233
PLCcopyleft73.85 1682.09 18180.31 20987.45 9090.86 14780.29 6985.88 13390.65 15068.17 23676.32 31986.33 27573.12 20792.61 14961.40 30090.02 27489.44 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test1286.57 10390.74 14872.63 14690.69 14982.76 24779.20 13494.80 6895.32 14892.27 180
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16381.56 7190.02 9891.20 17882.40 9590.81 20173.58 18794.66 17694.56 76
DPM-MVS80.10 21979.18 22582.88 19490.71 15069.74 17978.87 27090.84 14560.29 31275.64 33085.92 28367.28 24293.11 13571.24 20891.79 24085.77 302
TAMVS78.08 24076.36 25583.23 18290.62 15172.87 14079.08 26680.01 29861.72 29381.35 27186.92 26963.96 26488.78 25250.61 36093.01 21688.04 275
test_prior86.32 10890.59 15271.99 15992.85 8894.17 9292.80 154
ambc82.98 18890.55 15364.86 22688.20 9689.15 18889.40 11793.96 9571.67 22491.38 18378.83 12296.55 9592.71 159
SSC-MVS77.55 24581.64 18465.29 36590.46 15420.33 41073.56 33668.28 37085.44 3288.18 14094.64 5970.93 22781.33 33071.25 20792.03 23594.20 92
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8387.15 2393.05 4397.10 682.28 10192.02 16576.70 15097.99 4096.88 25
Test_1112_low_res73.90 28573.08 28676.35 29490.35 15655.95 32373.40 33986.17 23450.70 37073.14 34685.94 28258.31 29885.90 29556.51 32483.22 35387.20 287
VPA-MVSNet83.47 15984.73 13179.69 24690.29 15757.52 31481.30 23688.69 19476.29 13087.58 14994.44 6680.60 12587.20 26966.60 25596.82 8894.34 89
FMVSNet184.55 13085.45 12181.85 21090.27 15861.05 27286.83 11888.27 20378.57 11089.66 10995.64 3075.43 17490.68 20569.09 23395.33 14793.82 112
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15690.71 14885.85 3189.94 10295.24 4082.13 10390.40 21269.19 23296.40 10495.31 55
MVS_111021_HR84.63 12784.34 14485.49 12990.18 16075.86 12079.23 26587.13 21873.35 17085.56 19289.34 22683.60 8190.50 21076.64 15194.05 19290.09 241
GeoE85.45 11485.81 11484.37 14790.08 16167.07 20585.86 13491.39 13072.33 19387.59 14890.25 21084.85 6792.37 15578.00 13491.94 23993.66 120
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13879.26 9989.68 10794.81 5482.44 9387.74 26276.54 15388.74 28996.61 29
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6291.50 17679.72 11397.32 7596.50 31
AdaColmapbinary83.66 15383.69 15383.57 17490.05 16472.26 15586.29 13090.00 17378.19 11481.65 26687.16 26483.40 8394.24 8761.69 29794.76 17584.21 322
pm-mvs183.69 15284.95 12979.91 24290.04 16559.66 29182.43 21687.44 21175.52 14487.85 14495.26 3981.25 11785.65 30068.74 23996.04 12094.42 85
CHOSEN 1792x268872.45 29670.56 30978.13 26990.02 16663.08 24468.72 36683.16 27342.99 39275.92 32585.46 28857.22 30785.18 30449.87 36481.67 36386.14 297
WB-MVS76.06 26380.01 21964.19 36889.96 16720.58 40972.18 34568.19 37183.21 5486.46 17793.49 11170.19 23078.97 34465.96 25890.46 27093.02 147
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16869.87 21995.06 1196.14 2184.28 7393.07 13787.68 1596.34 10597.09 21
1112_ss74.82 27773.74 27878.04 27289.57 16960.04 28676.49 30587.09 22254.31 34773.66 34579.80 35360.25 28486.76 27958.37 31484.15 34887.32 286
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21689.33 22783.87 7594.53 7982.45 8494.89 16794.90 65
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22884.54 4183.58 23393.78 10473.36 20496.48 187.98 996.21 11294.41 86
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11484.26 4290.87 8793.92 9982.18 10289.29 24473.75 18494.81 17193.70 119
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26282.43 9494.53 7977.65 13896.46 10194.14 98
PCF-MVS74.62 1582.15 18080.92 20285.84 12189.43 17472.30 15480.53 24491.82 11857.36 33387.81 14589.92 21877.67 14893.63 11158.69 31295.08 15891.58 204
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVP-Stereo75.81 26673.51 28282.71 19689.35 17573.62 13180.06 24885.20 24960.30 31173.96 34287.94 24757.89 30389.45 23952.02 35474.87 38885.06 310
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
CNLPA83.55 15783.10 16284.90 13589.34 17683.87 4684.54 15888.77 19279.09 10183.54 23588.66 23874.87 18081.73 32866.84 25292.29 22989.11 258
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19789.67 22284.47 7195.46 4782.56 8396.26 11193.77 117
TSAR-MVS + GP.83.95 14882.69 16987.72 8689.27 17881.45 6383.72 17981.58 28974.73 15285.66 18986.06 28072.56 21492.69 14775.44 16595.21 15289.01 264
MVS_111021_LR84.28 13783.76 15285.83 12289.23 17983.07 5180.99 24083.56 27172.71 18586.07 18289.07 23281.75 11286.19 28977.11 14793.36 20588.24 269
MVS_030486.35 9885.92 11087.66 8889.21 18073.16 13988.40 9583.63 27081.27 7480.87 27794.12 8671.49 22595.71 3287.79 1296.50 9894.11 100
LFMVS80.15 21880.56 20578.89 25489.19 18155.93 32485.22 14573.78 33982.96 5884.28 22092.72 13557.38 30590.07 22563.80 28095.75 13890.68 225
CLD-MVS83.18 16382.64 17084.79 13889.05 18267.82 20177.93 28192.52 9668.33 23385.07 19881.54 33982.06 10492.96 13969.35 22897.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7095.37 5180.87 10095.50 14394.53 79
CDS-MVSNet77.32 24875.40 26483.06 18689.00 18472.48 15177.90 28282.17 28360.81 30678.94 30183.49 31459.30 29188.76 25354.64 34092.37 22687.93 278
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tttt051781.07 19879.58 22185.52 12788.99 18566.45 21387.03 11475.51 32773.76 16288.32 13790.20 21137.96 38794.16 9479.36 11995.13 15595.93 42
tfpnnormal81.79 18982.95 16478.31 26588.93 18655.40 32880.83 24382.85 27776.81 12785.90 18794.14 8474.58 18786.51 28266.82 25395.68 14193.01 148
testing371.53 30570.79 30773.77 31288.89 18741.86 39476.60 30459.12 39672.83 18280.97 27382.08 33219.80 41287.33 26865.12 26991.68 24392.13 187
Vis-MVSNet (Re-imp)77.82 24277.79 24177.92 27488.82 18851.29 35883.28 18971.97 35374.04 15882.23 25489.78 22057.38 30589.41 24257.22 32195.41 14493.05 146
SDMVSNet81.90 18883.17 16078.10 27088.81 18962.45 25576.08 31286.05 23773.67 16383.41 23693.04 11982.35 9680.65 33570.06 22395.03 16091.21 210
sd_testset79.95 22281.39 19375.64 30288.81 18958.07 30976.16 31182.81 27873.67 16383.41 23693.04 11980.96 12077.65 34858.62 31395.03 16091.21 210
TAPA-MVS77.73 1285.71 11084.83 13088.37 7888.78 19179.72 7387.15 11293.50 5869.17 22385.80 18889.56 22380.76 12292.13 16173.21 19795.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7286.02 2993.12 4195.30 3684.94 6589.44 24074.12 17796.10 11894.45 82
FPMVS72.29 29972.00 29873.14 31688.63 19485.00 3674.65 32767.39 37371.94 19977.80 31087.66 25350.48 33775.83 35549.95 36279.51 37158.58 400
dcpmvs_284.23 14085.14 12581.50 21788.61 19561.98 26382.90 20393.11 7568.66 23192.77 5192.39 14278.50 13987.63 26476.99 14992.30 22794.90 65
ETV-MVS84.31 13583.91 15185.52 12788.58 19670.40 17584.50 16093.37 6078.76 10884.07 22578.72 36380.39 12695.13 6073.82 18392.98 21791.04 214
BH-untuned80.96 20080.99 20080.84 22988.55 19768.23 19480.33 24788.46 19672.79 18486.55 17086.76 27074.72 18591.77 17361.79 29688.99 28482.52 347
Anonymous20240521180.51 20781.19 19878.49 26288.48 19857.26 31676.63 30282.49 28081.21 7684.30 21992.24 15167.99 24086.24 28662.22 29095.13 15591.98 193
ab-mvs79.67 22380.56 20576.99 28588.48 19856.93 31884.70 15386.06 23668.95 22780.78 27993.08 11875.30 17684.62 30856.78 32290.90 25989.43 252
PHI-MVS86.38 9785.81 11488.08 8288.44 20077.34 10189.35 8093.05 7973.15 17884.76 20687.70 25278.87 13794.18 9080.67 10496.29 10792.73 156
xiu_mvs_v1_base_debu80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
xiu_mvs_v1_base_debi80.84 20180.14 21582.93 19188.31 20171.73 16179.53 25687.17 21565.43 26379.59 29282.73 32576.94 16090.14 22173.22 19288.33 29386.90 290
MG-MVS80.32 21380.94 20178.47 26388.18 20452.62 34882.29 22085.01 25672.01 19879.24 29992.54 14069.36 23393.36 12870.65 21589.19 28389.45 250
PM-MVS80.20 21679.00 22683.78 16588.17 20586.66 1581.31 23466.81 37969.64 22088.33 13690.19 21264.58 25883.63 31971.99 20590.03 27381.06 366
v1086.54 9587.10 8984.84 13688.16 20663.28 24286.64 12492.20 10475.42 14692.81 5094.50 6374.05 19294.06 9683.88 6796.28 10897.17 20
MGCFI-Net85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16888.47 13187.54 25586.45 5491.06 19175.76 16193.76 19792.54 166
EIA-MVS82.19 17881.23 19785.10 13387.95 20969.17 19083.22 19493.33 6370.42 21178.58 30379.77 35577.29 15394.20 8971.51 20688.96 28591.93 194
VNet79.31 22480.27 21076.44 29387.92 21053.95 33775.58 31884.35 26474.39 15682.23 25490.72 19672.84 21084.39 31160.38 30693.98 19390.97 215
v886.22 10186.83 9684.36 14987.82 21162.35 25886.42 12791.33 13276.78 12892.73 5294.48 6573.41 20193.72 10883.10 7395.41 14497.01 23
alignmvs83.94 14983.98 14983.80 16387.80 21267.88 20084.54 15891.42 12973.27 17688.41 13487.96 24672.33 21590.83 20076.02 15994.11 19092.69 160
v119284.57 12984.69 13584.21 15587.75 21362.88 24683.02 19891.43 12769.08 22589.98 10190.89 18972.70 21293.62 11482.41 8594.97 16496.13 34
PatchMatch-RL74.48 28073.22 28578.27 26887.70 21485.26 3475.92 31470.09 36364.34 27376.09 32381.25 34165.87 25278.07 34753.86 34283.82 35071.48 386
fmvsm_s_conf0.1_n_a82.58 17181.93 18084.50 14487.68 21573.35 13386.14 13177.70 30861.64 29585.02 19991.62 16677.75 14686.24 28682.79 8087.07 31093.91 108
v114484.54 13184.72 13384.00 15887.67 21662.55 25382.97 20090.93 14470.32 21489.80 10490.99 18473.50 19893.48 12281.69 9594.65 17795.97 39
v124084.30 13684.51 13983.65 16987.65 21761.26 26982.85 20491.54 12467.94 24090.68 9090.65 20171.71 22393.64 11082.84 7994.78 17296.07 36
v192192084.23 14084.37 14383.79 16487.64 21861.71 26482.91 20291.20 13667.94 24090.06 9690.34 20772.04 22093.59 11682.32 8694.91 16596.07 36
v14419284.24 13984.41 14183.71 16887.59 21961.57 26582.95 20191.03 14067.82 24389.80 10490.49 20473.28 20593.51 12181.88 9494.89 16796.04 38
Fast-Effi-MVS+81.04 19980.57 20482.46 20387.50 22063.22 24378.37 27789.63 18168.01 23781.87 26082.08 33282.31 9892.65 14867.10 24988.30 29791.51 206
pmmvs-eth3d78.42 23777.04 24982.57 20187.44 22174.41 12780.86 24279.67 29955.68 34084.69 20790.31 20960.91 27985.42 30162.20 29191.59 24587.88 279
IterMVS-LS84.73 12684.98 12883.96 16087.35 22263.66 23783.25 19189.88 17576.06 13289.62 11092.37 14673.40 20392.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres100view90075.45 26875.05 26876.66 29287.27 22351.88 35381.07 23973.26 34475.68 14183.25 23986.37 27445.54 35988.80 24951.98 35590.99 25489.31 254
MIMVSNet71.09 30971.59 30169.57 34187.23 22450.07 36578.91 26871.83 35460.20 31471.26 35591.76 16355.08 32176.09 35341.06 39087.02 31382.54 346
Effi-MVS+83.90 15084.01 14883.57 17487.22 22565.61 22186.55 12692.40 9878.64 10981.34 27284.18 30883.65 8092.93 14174.22 17487.87 30192.17 185
BH-RMVSNet80.53 20680.22 21381.49 21887.19 22666.21 21577.79 28486.23 23374.21 15783.69 23088.50 23973.25 20690.75 20263.18 28687.90 30087.52 283
thisisatest053079.07 22577.33 24684.26 15487.13 22764.58 22883.66 18175.95 32268.86 22885.22 19687.36 26038.10 38593.57 11975.47 16494.28 18694.62 74
Effi-MVS+-dtu85.82 10983.38 15593.14 387.13 22791.15 287.70 10488.42 19774.57 15483.56 23485.65 28578.49 14094.21 8872.04 20492.88 21994.05 102
v2v48284.09 14384.24 14583.62 17087.13 22761.40 26682.71 20789.71 17872.19 19689.55 11491.41 17170.70 22993.20 13181.02 9893.76 19796.25 32
jason77.42 24775.75 26182.43 20487.10 23069.27 18577.99 28081.94 28551.47 36477.84 30885.07 29860.32 28389.00 24670.74 21489.27 28289.03 262
jason: jason.
PS-MVSNAJ77.04 25176.53 25478.56 26087.09 23161.40 26675.26 32187.13 21861.25 30174.38 34177.22 37576.94 16090.94 19464.63 27584.83 34383.35 335
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23165.22 22384.16 16394.23 2477.89 11691.28 7793.66 10884.35 7292.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
xiu_mvs_v2_base77.19 24976.75 25278.52 26187.01 23361.30 26875.55 31987.12 22161.24 30274.45 33978.79 36277.20 15490.93 19564.62 27684.80 34483.32 336
thres600view775.97 26475.35 26677.85 27787.01 23351.84 35480.45 24573.26 34475.20 14883.10 24286.31 27745.54 35989.05 24555.03 33792.24 23192.66 161
CL-MVSNet_self_test76.81 25477.38 24475.12 30586.90 23551.34 35673.20 34080.63 29568.30 23481.80 26488.40 24066.92 24580.90 33255.35 33494.90 16693.12 144
BH-w/o76.57 25776.07 25978.10 27086.88 23665.92 21877.63 28686.33 23165.69 26180.89 27679.95 35268.97 23790.74 20353.01 35085.25 33277.62 377
fmvsm_s_conf0.1_n82.17 17981.59 18783.94 16286.87 23771.57 16685.19 14677.42 31162.27 28984.47 21291.33 17376.43 16885.91 29483.14 7187.14 30894.33 90
MAR-MVS80.24 21578.74 23184.73 14086.87 23778.18 8885.75 13687.81 20965.67 26277.84 30878.50 36473.79 19590.53 20961.59 29990.87 26085.49 306
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
fmvsm_s_conf0.5_n_a82.21 17781.51 19184.32 15286.56 23973.35 13385.46 14077.30 31261.81 29184.51 20990.88 19177.36 15286.21 28882.72 8186.97 31593.38 131
FE-MVS79.98 22178.86 22783.36 17886.47 24066.45 21389.73 6584.74 26272.80 18384.22 22491.38 17244.95 36893.60 11563.93 27991.50 24790.04 242
QAPM82.59 17082.59 17282.58 19986.44 24166.69 21089.94 6290.36 15967.97 23984.94 20392.58 13972.71 21192.18 16070.63 21687.73 30388.85 265
PAPM71.77 30270.06 31676.92 28786.39 24253.97 33676.62 30386.62 22953.44 35163.97 39184.73 30257.79 30492.34 15639.65 39281.33 36784.45 317
GBi-Net82.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
test182.02 18382.07 17781.85 21086.38 24361.05 27286.83 11888.27 20372.43 18886.00 18395.64 3063.78 26590.68 20565.95 25993.34 20693.82 112
FMVSNet281.31 19481.61 18680.41 23686.38 24358.75 30583.93 17286.58 23072.43 18887.65 14792.98 12363.78 26590.22 21666.86 25093.92 19492.27 180
3Dnovator80.37 784.80 12584.71 13485.06 13486.36 24674.71 12588.77 8990.00 17375.65 14284.96 20193.17 11674.06 19191.19 18678.28 12891.09 25289.29 256
Anonymous2023120671.38 30771.88 29969.88 33886.31 24754.37 33470.39 35974.62 33052.57 35676.73 31588.76 23559.94 28672.06 36244.35 38593.23 21183.23 338
baseline85.20 11885.93 10983.02 18786.30 24862.37 25784.55 15693.96 4174.48 15587.12 15492.03 15382.30 9991.94 16678.39 12494.21 18794.74 73
API-MVS82.28 17582.61 17181.30 22086.29 24969.79 17888.71 9087.67 21078.42 11282.15 25684.15 30977.98 14391.59 17565.39 26692.75 22182.51 348
tfpn200view974.86 27674.23 27576.74 29186.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25489.31 254
thres40075.14 27074.23 27577.86 27686.24 25052.12 35079.24 26373.87 33773.34 17181.82 26284.60 30446.02 35388.80 24951.98 35590.99 25492.66 161
UGNet82.78 16781.64 18486.21 11386.20 25276.24 11786.86 11685.68 24277.07 12673.76 34492.82 13069.64 23191.82 17269.04 23593.69 20190.56 229
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet83.79 15182.85 16686.63 10286.17 25372.21 15783.76 17891.43 12777.24 12574.39 34087.45 25875.36 17595.42 4977.03 14892.83 22092.25 182
casdiffmvspermissive85.21 11785.85 11383.31 18086.17 25362.77 24983.03 19793.93 4274.69 15388.21 13892.68 13682.29 10091.89 16977.87 13793.75 20095.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FA-MVS(test-final)83.13 16583.02 16383.43 17686.16 25566.08 21688.00 9988.36 19975.55 14385.02 19992.75 13465.12 25792.50 15174.94 17191.30 25091.72 198
TR-MVS76.77 25575.79 26079.72 24586.10 25665.79 21977.14 29383.02 27565.20 26981.40 27082.10 33066.30 24790.73 20455.57 33185.27 33182.65 342
fmvsm_s_conf0.5_n81.91 18781.30 19483.75 16686.02 25771.56 16784.73 15277.11 31562.44 28684.00 22690.68 19876.42 16985.89 29683.14 7187.11 30993.81 115
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25878.30 8586.93 11592.20 10465.94 25489.16 11993.16 11783.10 8589.89 22987.81 1194.43 18293.35 132
LCM-MVSNet-Re83.48 15885.06 12678.75 25785.94 25855.75 32780.05 24994.27 2176.47 12996.09 594.54 6283.31 8489.75 23559.95 30794.89 16790.75 221
test_fmvsmvis_n_192085.22 11685.36 12384.81 13785.80 26076.13 11985.15 14792.32 10161.40 29791.33 7490.85 19283.76 7986.16 29084.31 6393.28 20992.15 186
Fast-Effi-MVS+-dtu82.54 17281.41 19285.90 11985.60 26176.53 11183.07 19689.62 18273.02 18079.11 30083.51 31380.74 12390.24 21568.76 23889.29 28090.94 216
v14882.31 17482.48 17481.81 21385.59 26259.66 29181.47 23386.02 23872.85 18188.05 14190.65 20170.73 22890.91 19775.15 16891.79 24094.87 67
iter_conf05_1178.40 23877.29 24781.71 21585.55 26360.95 27777.22 29286.90 22760.10 31575.79 32781.73 33664.08 26294.47 8270.37 22093.92 19489.72 245
bld_raw_dy_0_6481.25 19581.17 19981.49 21885.55 26360.85 27886.36 12895.45 957.08 33590.81 8882.69 32865.85 25393.91 10170.37 22096.34 10589.72 245
MVSFormer82.23 17681.57 18984.19 15785.54 26569.26 18691.98 3190.08 17171.54 20076.23 32085.07 29858.69 29694.27 8486.26 4088.77 28789.03 262
lupinMVS76.37 26174.46 27382.09 20585.54 26569.26 18676.79 29880.77 29450.68 37176.23 32082.82 32358.69 29688.94 24769.85 22488.77 28788.07 272
TinyColmap81.25 19582.34 17677.99 27385.33 26760.68 28282.32 21988.33 20171.26 20486.97 16192.22 15277.10 15786.98 27362.37 28995.17 15486.31 296
test_fmvsmconf0.1_n86.18 10385.88 11287.08 9485.26 26878.25 8685.82 13591.82 11865.33 26788.55 12892.35 14782.62 9289.80 23186.87 3294.32 18593.18 141
test_fmvsm_n_192083.60 15582.89 16585.74 12385.22 26977.74 9584.12 16590.48 15459.87 31786.45 17891.12 18075.65 17285.89 29682.28 8790.87 26093.58 126
PAPR78.84 22978.10 23981.07 22585.17 27060.22 28582.21 22490.57 15362.51 28275.32 33484.61 30374.99 17992.30 15859.48 31088.04 29990.68 225
pmmvs474.92 27572.98 28880.73 23184.95 27171.71 16476.23 30977.59 30952.83 35477.73 31286.38 27356.35 31284.97 30557.72 32087.05 31185.51 305
baseline173.26 28973.54 28172.43 32584.92 27247.79 37279.89 25274.00 33565.93 25578.81 30286.28 27856.36 31181.63 32956.63 32379.04 37787.87 280
Patchmatch-RL test74.48 28073.68 27976.89 28984.83 27366.54 21172.29 34469.16 36957.70 32986.76 16486.33 27545.79 35882.59 32369.63 22690.65 26881.54 357
patch_mono-278.89 22779.39 22377.41 28284.78 27468.11 19775.60 31683.11 27460.96 30579.36 29689.89 21975.18 17772.97 36073.32 19192.30 22791.15 212
test_fmvsmconf_n85.88 10885.51 12086.99 9684.77 27578.21 8785.40 14391.39 13065.32 26887.72 14691.81 16182.33 9789.78 23286.68 3494.20 18892.99 149
KD-MVS_self_test81.93 18683.14 16178.30 26684.75 27652.75 34580.37 24689.42 18670.24 21690.26 9493.39 11374.55 18886.77 27868.61 24196.64 9295.38 52
XXY-MVS74.44 28276.19 25769.21 34384.61 27752.43 34971.70 34877.18 31460.73 30880.60 28090.96 18775.44 17369.35 37156.13 32788.33 29385.86 301
cascas76.29 26274.81 26980.72 23284.47 27862.94 24573.89 33487.34 21255.94 33975.16 33676.53 38063.97 26391.16 18765.00 27090.97 25788.06 274
PVSNet_BlendedMVS78.80 23177.84 24081.65 21684.43 27963.41 23979.49 25990.44 15661.70 29475.43 33187.07 26769.11 23591.44 17960.68 30492.24 23190.11 240
PVSNet_Blended76.49 25975.40 26479.76 24484.43 27963.41 23975.14 32290.44 15657.36 33375.43 33178.30 36569.11 23591.44 17960.68 30487.70 30484.42 318
OpenMVScopyleft76.72 1381.98 18582.00 17981.93 20784.42 28168.22 19588.50 9489.48 18466.92 24981.80 26491.86 15672.59 21390.16 21871.19 20991.25 25187.40 285
OpenMVS_ROBcopyleft70.19 1777.77 24477.46 24278.71 25884.39 28261.15 27081.18 23882.52 27962.45 28583.34 23887.37 25966.20 24888.66 25464.69 27485.02 33786.32 295
test_yl78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
DCV-MVSNet78.71 23378.51 23479.32 25184.32 28358.84 30278.38 27585.33 24775.99 13582.49 24986.57 27158.01 29990.02 22762.74 28792.73 22289.10 259
DELS-MVS81.44 19381.25 19582.03 20684.27 28562.87 24776.47 30692.49 9770.97 20781.64 26783.83 31075.03 17892.70 14674.29 17392.22 23390.51 231
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Gipumacopyleft84.44 13286.33 10278.78 25684.20 28673.57 13289.55 7290.44 15684.24 4384.38 21394.89 4876.35 17180.40 33776.14 15796.80 8982.36 349
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UWE-MVS66.43 34365.56 34869.05 34484.15 28740.98 39573.06 34264.71 38354.84 34576.18 32279.62 35629.21 40180.50 33638.54 39689.75 27685.66 303
EI-MVSNet-Vis-set85.12 12084.53 13886.88 9884.01 28872.76 14183.91 17385.18 25080.44 8288.75 12585.49 28780.08 12991.92 16782.02 9090.85 26295.97 39
fmvsm_l_conf0.5_n82.06 18281.54 19083.60 17183.94 28973.90 13083.35 18886.10 23558.97 31983.80 22990.36 20674.23 18986.94 27482.90 7790.22 27189.94 243
IterMVS-SCA-FT80.64 20579.41 22284.34 15183.93 29069.66 18176.28 30881.09 29172.43 18886.47 17690.19 21260.46 28193.15 13477.45 14286.39 32190.22 236
MSDG80.06 22079.99 22080.25 23883.91 29168.04 19977.51 28989.19 18777.65 11981.94 25883.45 31576.37 17086.31 28563.31 28586.59 31886.41 294
EI-MVSNet-UG-set85.04 12184.44 14086.85 9983.87 29272.52 15083.82 17585.15 25180.27 8688.75 12585.45 28979.95 13191.90 16881.92 9390.80 26396.13 34
testing9169.94 32168.99 32672.80 31983.81 29345.89 38071.57 35073.64 34268.24 23570.77 36177.82 36734.37 39284.44 31053.64 34487.00 31488.07 272
fmvsm_l_conf0.5_n_a81.46 19280.87 20383.25 18183.73 29473.21 13883.00 19985.59 24458.22 32582.96 24490.09 21672.30 21686.65 28081.97 9289.95 27589.88 244
thres20072.34 29871.55 30474.70 30883.48 29551.60 35575.02 32373.71 34070.14 21778.56 30480.57 34646.20 35188.20 25946.99 37789.29 28084.32 319
USDC76.63 25676.73 25376.34 29583.46 29657.20 31780.02 25088.04 20752.14 36083.65 23191.25 17563.24 26886.65 28054.66 33994.11 19085.17 308
ETVMVS64.67 35163.34 35668.64 34883.44 29741.89 39369.56 36461.70 39261.33 30068.74 36975.76 38328.76 40279.35 34034.65 40086.16 32584.67 314
testing22266.93 33765.30 34971.81 32883.38 29845.83 38172.06 34667.50 37264.12 27469.68 36676.37 38127.34 40683.00 32138.88 39388.38 29286.62 293
testing1167.38 33565.93 34371.73 32983.37 29946.60 37770.95 35569.40 36762.47 28466.14 37876.66 37831.22 39784.10 31449.10 36884.10 34984.49 315
HY-MVS64.64 1873.03 29272.47 29674.71 30783.36 30054.19 33582.14 22781.96 28456.76 33869.57 36786.21 27960.03 28584.83 30749.58 36682.65 35985.11 309
testing9969.27 32768.15 33372.63 32183.29 30145.45 38271.15 35271.08 35967.34 24670.43 36277.77 36932.24 39584.35 31253.72 34386.33 32288.10 271
EI-MVSNet82.61 16982.42 17583.20 18483.25 30263.66 23783.50 18485.07 25276.06 13286.55 17085.10 29573.41 20190.25 21378.15 13390.67 26695.68 45
CVMVSNet72.62 29571.41 30576.28 29683.25 30260.34 28483.50 18479.02 30337.77 40176.33 31885.10 29549.60 34187.41 26670.54 21777.54 38381.08 364
WB-MVSnew68.72 33169.01 32567.85 35283.22 30443.98 38874.93 32465.98 38055.09 34273.83 34379.11 35865.63 25471.89 36438.21 39785.04 33687.69 282
V4283.47 15983.37 15683.75 16683.16 30563.33 24181.31 23490.23 16769.51 22190.91 8490.81 19474.16 19092.29 15980.06 10890.22 27195.62 47
Anonymous2024052180.18 21781.25 19576.95 28683.15 30660.84 27982.46 21585.99 23968.76 22986.78 16393.73 10759.13 29377.44 34973.71 18597.55 6792.56 164
EU-MVSNet75.12 27274.43 27477.18 28483.11 30759.48 29385.71 13882.43 28139.76 39885.64 19088.76 23544.71 37087.88 26173.86 18285.88 32784.16 323
ET-MVSNet_ETH3D75.28 26972.77 29082.81 19583.03 30868.11 19777.09 29476.51 32060.67 30977.60 31380.52 34738.04 38691.15 18870.78 21290.68 26589.17 257
iter_conf0578.81 23077.35 24583.21 18382.98 30960.75 28184.09 16688.34 20063.12 27884.25 22389.48 22431.41 39694.51 8176.64 15195.83 13294.38 88
FMVSNet378.80 23178.55 23379.57 24882.89 31056.89 32081.76 22885.77 24169.04 22686.00 18390.44 20551.75 33290.09 22465.95 25993.34 20691.72 198
MVS_Test82.47 17383.22 15780.22 23982.62 31157.75 31382.54 21391.96 11271.16 20682.89 24592.52 14177.41 15190.50 21080.04 10987.84 30292.40 172
LF4IMVS82.75 16881.93 18085.19 13182.08 31280.15 7085.53 13988.76 19368.01 23785.58 19187.75 25171.80 22286.85 27674.02 17993.87 19688.58 267
PVSNet58.17 2166.41 34465.63 34768.75 34781.96 31349.88 36662.19 38572.51 34951.03 36768.04 37375.34 38550.84 33574.77 35745.82 38282.96 35481.60 356
GA-MVS75.83 26574.61 27079.48 25081.87 31459.25 29573.42 33882.88 27668.68 23079.75 29181.80 33550.62 33689.46 23866.85 25185.64 32889.72 245
MS-PatchMatch70.93 31170.22 31473.06 31781.85 31562.50 25473.82 33577.90 30652.44 35775.92 32581.27 34055.67 31681.75 32755.37 33377.70 38174.94 382
Syy-MVS69.40 32670.03 31767.49 35581.72 31638.94 39771.00 35361.99 38761.38 29870.81 35972.36 39061.37 27779.30 34164.50 27885.18 33384.22 320
myMVS_eth3d64.66 35263.89 35366.97 35781.72 31637.39 40071.00 35361.99 38761.38 29870.81 35972.36 39020.96 41179.30 34149.59 36585.18 33384.22 320
SCA73.32 28872.57 29475.58 30381.62 31855.86 32578.89 26971.37 35861.73 29274.93 33783.42 31660.46 28187.01 27058.11 31882.63 36183.88 324
FMVSNet572.10 30071.69 30073.32 31481.57 31953.02 34476.77 29978.37 30563.31 27676.37 31791.85 15736.68 38978.98 34347.87 37492.45 22587.95 277
thisisatest051573.00 29370.52 31080.46 23581.45 32059.90 28973.16 34174.31 33457.86 32876.08 32477.78 36837.60 38892.12 16365.00 27091.45 24889.35 253
eth_miper_zixun_eth80.84 20180.22 21382.71 19681.41 32160.98 27577.81 28390.14 17067.31 24786.95 16287.24 26364.26 26092.31 15775.23 16791.61 24494.85 71
CANet_DTU77.81 24377.05 24880.09 24181.37 32259.90 28983.26 19088.29 20269.16 22467.83 37583.72 31160.93 27889.47 23769.22 23189.70 27790.88 218
ANet_high83.17 16485.68 11775.65 30181.24 32345.26 38479.94 25192.91 8683.83 4691.33 7496.88 1080.25 12885.92 29368.89 23695.89 12995.76 43
new-patchmatchnet70.10 31773.37 28460.29 37881.23 32416.95 41159.54 38874.62 33062.93 27980.97 27387.93 24862.83 27371.90 36355.24 33595.01 16392.00 191
test20.0373.75 28674.59 27271.22 33181.11 32551.12 36070.15 36172.10 35270.42 21180.28 28891.50 16964.21 26174.72 35946.96 37894.58 17887.82 281
MVS73.21 29172.59 29375.06 30680.97 32660.81 28081.64 23185.92 24046.03 38271.68 35477.54 37068.47 23889.77 23355.70 33085.39 32974.60 383
N_pmnet70.20 31568.80 32974.38 30980.91 32784.81 3959.12 39076.45 32155.06 34375.31 33582.36 32955.74 31554.82 40047.02 37687.24 30783.52 331
IterMVS76.91 25276.34 25678.64 25980.91 32764.03 23476.30 30779.03 30264.88 27183.11 24189.16 23059.90 28784.46 30968.61 24185.15 33587.42 284
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l81.64 19081.59 18781.79 21480.86 32959.15 29878.61 27490.18 16968.36 23287.20 15287.11 26669.39 23291.62 17478.16 13194.43 18294.60 75
WTY-MVS67.91 33468.35 33166.58 35980.82 33048.12 37065.96 37672.60 34753.67 35071.20 35681.68 33858.97 29469.06 37348.57 37081.67 36382.55 345
IB-MVS62.13 1971.64 30368.97 32779.66 24780.80 33162.26 26073.94 33376.90 31663.27 27768.63 37176.79 37733.83 39391.84 17159.28 31187.26 30684.88 311
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_371.85 30171.59 30172.62 32280.71 33253.78 33869.72 36371.71 35758.80 32178.03 30580.51 34856.61 31078.84 34562.20 29186.04 32685.23 307
ppachtmachnet_test74.73 27974.00 27776.90 28880.71 33256.89 32071.53 35178.42 30458.24 32479.32 29882.92 32257.91 30284.26 31365.60 26591.36 24989.56 249
testgi72.36 29774.61 27065.59 36280.56 33442.82 39268.29 36773.35 34366.87 25081.84 26189.93 21772.08 21966.92 38446.05 38192.54 22487.01 289
D2MVS76.84 25375.67 26380.34 23780.48 33562.16 26273.50 33784.80 26157.61 33182.24 25387.54 25551.31 33387.65 26370.40 21993.19 21291.23 209
131473.22 29072.56 29575.20 30480.41 33657.84 31181.64 23185.36 24651.68 36373.10 34776.65 37961.45 27685.19 30363.54 28279.21 37582.59 343
cl____80.42 20980.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.37 24586.18 18189.21 22963.08 27090.16 21876.31 15595.80 13593.65 122
DIV-MVS_self_test80.43 20880.23 21181.02 22779.99 33759.25 29577.07 29587.02 22367.38 24486.19 17989.22 22863.09 26990.16 21876.32 15495.80 13593.66 120
miper_ehance_all_eth80.34 21280.04 21881.24 22379.82 33958.95 30077.66 28589.66 17965.75 26085.99 18685.11 29468.29 23991.42 18176.03 15892.03 23593.33 133
CR-MVSNet74.00 28473.04 28776.85 29079.58 34062.64 25182.58 21076.90 31650.50 37275.72 32892.38 14348.07 34584.07 31568.72 24082.91 35683.85 327
RPMNet78.88 22878.28 23780.68 23379.58 34062.64 25182.58 21094.16 2974.80 15175.72 32892.59 13748.69 34295.56 3973.48 18882.91 35683.85 327
baseline269.77 32266.89 33878.41 26479.51 34258.09 30876.23 30969.57 36657.50 33264.82 38977.45 37246.02 35388.44 25553.08 34777.83 37988.70 266
UnsupCasMVSNet_bld69.21 32869.68 32067.82 35379.42 34351.15 35967.82 37175.79 32354.15 34877.47 31485.36 29359.26 29270.64 36748.46 37179.35 37381.66 355
PatchT70.52 31372.76 29163.79 37079.38 34433.53 40477.63 28665.37 38273.61 16571.77 35392.79 13344.38 37175.65 35664.53 27785.37 33082.18 350
Patchmtry76.56 25877.46 24273.83 31179.37 34546.60 37782.41 21776.90 31673.81 16185.56 19292.38 14348.07 34583.98 31663.36 28495.31 15090.92 217
mvs_anonymous78.13 23978.76 23076.23 29879.24 34650.31 36478.69 27284.82 26061.60 29683.09 24392.82 13073.89 19487.01 27068.33 24586.41 32091.37 207
MVS-HIRNet61.16 36162.92 35855.87 38279.09 34735.34 40371.83 34757.98 40046.56 37959.05 39891.14 17949.95 34076.43 35238.74 39471.92 39255.84 401
MDA-MVSNet-bldmvs77.47 24676.90 25179.16 25379.03 34864.59 22766.58 37575.67 32573.15 17888.86 12288.99 23366.94 24481.23 33164.71 27388.22 29891.64 202
diffmvspermissive80.40 21080.48 20880.17 24079.02 34960.04 28677.54 28890.28 16666.65 25282.40 25187.33 26173.50 19887.35 26777.98 13589.62 27893.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tpm268.45 33266.83 33973.30 31578.93 35048.50 36879.76 25371.76 35547.50 37669.92 36583.60 31242.07 37988.40 25648.44 37279.51 37183.01 341
tpm67.95 33368.08 33467.55 35478.74 35143.53 39075.60 31667.10 37854.92 34472.23 35188.10 24442.87 37875.97 35452.21 35380.95 37083.15 339
MDTV_nov1_ep1368.29 33278.03 35243.87 38974.12 33072.22 35152.17 35867.02 37785.54 28645.36 36380.85 33355.73 32884.42 346
cl2278.97 22678.21 23881.24 22377.74 35359.01 29977.46 29187.13 21865.79 25784.32 21685.10 29558.96 29590.88 19975.36 16692.03 23593.84 110
EPNet_dtu72.87 29471.33 30677.49 28177.72 35460.55 28382.35 21875.79 32366.49 25358.39 40181.06 34253.68 32385.98 29253.55 34592.97 21885.95 299
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchmatchNetpermissive69.71 32368.83 32872.33 32677.66 35553.60 33979.29 26169.99 36457.66 33072.53 35082.93 32146.45 35080.08 33960.91 30372.09 39183.31 337
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192071.30 30871.58 30370.47 33477.58 35659.99 28874.25 32884.22 26651.06 36674.85 33879.10 35955.10 32068.83 37468.86 23779.20 37682.58 344
dmvs_testset60.59 36562.54 36054.72 38477.26 35727.74 40774.05 33161.00 39460.48 31065.62 38367.03 39755.93 31468.23 37932.07 40469.46 39868.17 391
sss66.92 33867.26 33665.90 36177.23 35851.10 36164.79 37871.72 35652.12 36170.13 36480.18 35057.96 30165.36 39050.21 36181.01 36981.25 361
CostFormer69.98 32068.68 33073.87 31077.14 35950.72 36279.26 26274.51 33251.94 36270.97 35884.75 30145.16 36787.49 26555.16 33679.23 37483.40 334
tpm cat166.76 34265.21 35071.42 33077.09 36050.62 36378.01 27973.68 34144.89 38568.64 37079.00 36045.51 36182.42 32649.91 36370.15 39481.23 363
pmmvs570.73 31270.07 31572.72 32077.03 36152.73 34674.14 32975.65 32650.36 37372.17 35285.37 29255.42 31880.67 33452.86 35187.59 30584.77 312
dmvs_re66.81 34166.98 33766.28 36076.87 36258.68 30671.66 34972.24 35060.29 31269.52 36873.53 38752.38 32864.40 39244.90 38381.44 36675.76 380
EPNet80.37 21178.41 23686.23 11176.75 36373.28 13587.18 11177.45 31076.24 13168.14 37288.93 23465.41 25593.85 10369.47 22796.12 11791.55 205
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance76.45 26076.10 25877.51 28076.72 36460.97 27664.69 37985.04 25463.98 27583.20 24088.22 24256.67 30978.79 34673.22 19293.12 21392.78 155
CHOSEN 280x42059.08 36656.52 37166.76 35876.51 36564.39 23149.62 39859.00 39743.86 38855.66 40368.41 39635.55 39168.21 38043.25 38676.78 38667.69 392
UnsupCasMVSNet_eth71.63 30472.30 29769.62 34076.47 36652.70 34770.03 36280.97 29259.18 31879.36 29688.21 24360.50 28069.12 37258.33 31677.62 38287.04 288
test-LLR67.21 33666.74 34068.63 34976.45 36755.21 33067.89 36867.14 37662.43 28765.08 38672.39 38843.41 37469.37 36961.00 30184.89 34181.31 359
test-mter65.00 35063.79 35468.63 34976.45 36755.21 33067.89 36867.14 37650.98 36865.08 38672.39 38828.27 40469.37 36961.00 30184.89 34181.31 359
miper_enhance_ethall77.83 24176.93 25080.51 23476.15 36958.01 31075.47 32088.82 19158.05 32783.59 23280.69 34364.41 25991.20 18573.16 19892.03 23592.33 176
gg-mvs-nofinetune68.96 33069.11 32368.52 35176.12 37045.32 38383.59 18255.88 40186.68 2464.62 39097.01 730.36 39983.97 31744.78 38482.94 35576.26 379
test_vis1_n70.29 31469.99 31871.20 33275.97 37166.50 21276.69 30180.81 29344.22 38775.43 33177.23 37450.00 33968.59 37566.71 25482.85 35878.52 376
CMPMVSbinary59.41 2075.12 27273.57 28079.77 24375.84 37267.22 20281.21 23782.18 28250.78 36976.50 31687.66 25355.20 31982.99 32262.17 29390.64 26989.09 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
wuyk23d75.13 27179.30 22462.63 37175.56 37375.18 12480.89 24173.10 34675.06 15094.76 1295.32 3587.73 4052.85 40134.16 40197.11 8059.85 398
Patchmatch-test65.91 34667.38 33561.48 37675.51 37443.21 39168.84 36563.79 38562.48 28372.80 34983.42 31644.89 36959.52 39848.27 37386.45 31981.70 354
new_pmnet55.69 36957.66 37049.76 38575.47 37530.59 40559.56 38751.45 40443.62 39062.49 39275.48 38440.96 38149.15 40437.39 39872.52 38969.55 389
gm-plane-assit75.42 37644.97 38652.17 35872.36 39087.90 26054.10 341
MVSTER77.09 25075.70 26281.25 22175.27 37761.08 27177.49 29085.07 25260.78 30786.55 17088.68 23743.14 37790.25 21373.69 18690.67 26692.42 170
PVSNet_051.08 2256.10 36854.97 37359.48 38075.12 37853.28 34355.16 39561.89 38944.30 38659.16 39762.48 40054.22 32265.91 38835.40 39947.01 40359.25 399
test0.0.03 164.66 35264.36 35165.57 36375.03 37946.89 37664.69 37961.58 39362.43 28771.18 35777.54 37043.41 37468.47 37840.75 39182.65 35981.35 358
test_fmvs375.72 26775.20 26777.27 28375.01 38069.47 18378.93 26784.88 25946.67 37887.08 15887.84 25050.44 33871.62 36577.42 14488.53 29090.72 222
tpmvs70.16 31669.56 32171.96 32774.71 38148.13 36979.63 25475.45 32865.02 27070.26 36381.88 33445.34 36485.68 29958.34 31575.39 38782.08 352
test_fmvs1_n70.94 31070.41 31372.53 32473.92 38266.93 20875.99 31384.21 26743.31 39179.40 29579.39 35743.47 37368.55 37669.05 23484.91 34082.10 351
MDA-MVSNet_test_wron70.05 31970.44 31168.88 34673.84 38353.47 34058.93 39267.28 37458.43 32287.09 15785.40 29059.80 28967.25 38259.66 30983.54 35185.92 300
YYNet170.06 31870.44 31168.90 34573.76 38453.42 34258.99 39167.20 37558.42 32387.10 15685.39 29159.82 28867.32 38159.79 30883.50 35285.96 298
test_cas_vis1_n_192069.20 32969.12 32269.43 34273.68 38562.82 24870.38 36077.21 31346.18 38180.46 28578.95 36152.03 32965.53 38965.77 26477.45 38479.95 372
GG-mvs-BLEND67.16 35673.36 38646.54 37984.15 16455.04 40258.64 40061.95 40129.93 40083.87 31838.71 39576.92 38571.07 387
JIA-IIPM69.41 32566.64 34277.70 27873.19 38771.24 16975.67 31565.56 38170.42 21165.18 38592.97 12533.64 39483.06 32053.52 34669.61 39778.79 375
ADS-MVSNet265.87 34763.64 35572.55 32373.16 38856.92 31967.10 37274.81 32949.74 37466.04 38082.97 31946.71 34877.26 35042.29 38769.96 39583.46 332
ADS-MVSNet61.90 35762.19 36161.03 37773.16 38836.42 40267.10 37261.75 39049.74 37466.04 38082.97 31946.71 34863.21 39342.29 38769.96 39583.46 332
DSMNet-mixed60.98 36361.61 36359.09 38172.88 39045.05 38574.70 32646.61 40726.20 40365.34 38490.32 20855.46 31763.12 39441.72 38981.30 36869.09 390
tpmrst66.28 34566.69 34165.05 36672.82 39139.33 39678.20 27870.69 36253.16 35367.88 37480.36 34948.18 34474.75 35858.13 31770.79 39381.08 364
test_fmvs273.57 28772.80 28975.90 30072.74 39268.84 19277.07 29584.32 26545.14 38482.89 24584.22 30748.37 34370.36 36873.40 19087.03 31288.52 268
TESTMET0.1,161.29 36060.32 36664.19 36872.06 39351.30 35767.89 36862.09 38645.27 38360.65 39569.01 39427.93 40564.74 39156.31 32581.65 36576.53 378
dp60.70 36460.29 36761.92 37472.04 39438.67 39970.83 35664.08 38451.28 36560.75 39477.28 37336.59 39071.58 36647.41 37562.34 40175.52 381
pmmvs362.47 35560.02 36869.80 33971.58 39564.00 23570.52 35858.44 39939.77 39766.05 37975.84 38227.10 40872.28 36146.15 38084.77 34573.11 384
EPMVS62.47 35562.63 35962.01 37270.63 39638.74 39874.76 32552.86 40353.91 34967.71 37680.01 35139.40 38366.60 38555.54 33268.81 39980.68 368
mvsany_test365.48 34962.97 35773.03 31869.99 39776.17 11864.83 37743.71 40843.68 38980.25 28987.05 26852.83 32663.09 39551.92 35872.44 39079.84 373
test_vis3_rt71.42 30670.67 30873.64 31369.66 39870.46 17466.97 37489.73 17642.68 39488.20 13983.04 31843.77 37260.07 39665.35 26886.66 31790.39 234
test_fmvs169.57 32469.05 32471.14 33369.15 39965.77 22073.98 33283.32 27242.83 39377.77 31178.27 36643.39 37668.50 37768.39 24484.38 34779.15 374
KD-MVS_2432*160066.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
miper_refine_blended66.87 33965.81 34570.04 33667.50 40047.49 37362.56 38379.16 30061.21 30377.98 30680.61 34425.29 40982.48 32453.02 34884.92 33880.16 370
E-PMN61.59 35961.62 36261.49 37566.81 40255.40 32853.77 39660.34 39566.80 25158.90 39965.50 39840.48 38266.12 38755.72 32986.25 32362.95 396
test_f64.31 35465.85 34459.67 37966.54 40362.24 26157.76 39370.96 36040.13 39684.36 21482.09 33146.93 34751.67 40261.99 29481.89 36265.12 394
test_vis1_rt65.64 34864.09 35270.31 33566.09 40470.20 17761.16 38681.60 28838.65 39972.87 34869.66 39352.84 32560.04 39756.16 32677.77 38080.68 368
EMVS61.10 36260.81 36461.99 37365.96 40555.86 32553.10 39758.97 39867.06 24856.89 40263.33 39940.98 38067.03 38354.79 33886.18 32463.08 395
mvsany_test158.48 36756.47 37264.50 36765.90 40668.21 19656.95 39442.11 40938.30 40065.69 38277.19 37656.96 30859.35 39946.16 37958.96 40265.93 393
PMMVS61.65 35860.38 36565.47 36465.40 40769.26 18663.97 38161.73 39136.80 40260.11 39668.43 39559.42 29066.35 38648.97 36978.57 37860.81 397
PMMVS255.64 37059.27 36944.74 38664.30 40812.32 41240.60 39949.79 40553.19 35265.06 38884.81 30053.60 32449.76 40332.68 40389.41 27972.15 385
MVEpermissive40.22 2351.82 37150.47 37455.87 38262.66 40951.91 35231.61 40139.28 41040.65 39550.76 40474.98 38656.24 31344.67 40533.94 40264.11 40071.04 388
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 38832.95 41029.49 40621.63 41312.07 40437.95 40545.07 40330.84 39819.21 40717.94 40733.06 40623.69 403
test_method30.46 37229.60 37533.06 38717.99 4113.84 41413.62 40273.92 3362.79 40518.29 40753.41 40228.53 40343.25 40622.56 40535.27 40552.11 402
tmp_tt20.25 37424.50 3777.49 3894.47 4128.70 41334.17 40025.16 4121.00 40732.43 40618.49 40439.37 3849.21 40821.64 40643.75 4044.57 404
testmvs5.91 3787.65 3810.72 3911.20 4130.37 41659.14 3890.67 4150.49 4091.11 4092.76 4080.94 4140.24 4101.02 4091.47 4071.55 406
test1236.27 3778.08 3800.84 3901.11 4140.57 41562.90 3820.82 4140.54 4081.07 4102.75 4091.26 4130.30 4091.04 4081.26 4081.66 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k20.81 37327.75 3760.00 3920.00 4150.00 4170.00 40385.44 2450.00 4100.00 41182.82 32381.46 1140.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas6.41 3768.55 3790.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41076.94 1600.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re6.65 3758.87 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41179.80 3530.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS37.39 40052.61 352
PC_three_145258.96 32090.06 9691.33 17380.66 12493.03 13875.78 16095.94 12692.48 168
test_241102_TWO93.71 5183.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 189
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
GSMVS83.88 324
sam_mvs146.11 35283.88 324
sam_mvs45.92 357
MTGPAbinary91.81 120
test_post178.85 2713.13 40645.19 36680.13 33858.11 318
test_post3.10 40745.43 36277.22 351
patchmatchnet-post81.71 33745.93 35687.01 270
MTMP90.66 4433.14 411
test9_res80.83 10196.45 10290.57 228
agg_prior279.68 11496.16 11490.22 236
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20891.57 16781.92 10979.54 11696.97 83
旧先验281.73 22956.88 33786.54 17584.90 30672.81 199
新几何281.72 230
无先验82.81 20585.62 24358.09 32691.41 18267.95 24884.48 316
原ACMM282.26 223
testdata286.43 28463.52 283
segment_acmp81.94 106
testdata179.62 25573.95 160
plane_prior593.61 5595.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior376.85 10777.79 11886.55 170
plane_prior289.45 7779.44 96
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 416
nn0.00 416
door-mid74.45 333
test1191.46 126
door72.57 348
HQP5-MVS70.66 172
BP-MVS77.30 145
HQP4-MVS80.56 28194.61 7493.56 128
HQP3-MVS92.68 9394.47 180
HQP2-MVS72.10 217
MDTV_nov1_ep13_2view27.60 40870.76 35746.47 38061.27 39345.20 36549.18 36783.75 329
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 135