This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 19099.88 2098.72 2499.88 2799.65 33
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9098.82 31996.38 9499.50 13996.98 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10498.49 3199.38 2299.14 4695.44 14299.84 3096.47 9199.80 5199.47 79
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9399.75 299.45 1395.82 12599.92 598.80 1999.96 499.89 1
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26899.90 1498.64 2699.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9499.91 1399.27 599.93 1199.73 22
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7696.50 10999.32 2699.44 1497.43 4099.92 598.73 2299.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15699.35 2599.37 1997.38 4299.90 1498.59 2899.91 1999.77 12
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5896.57 10798.07 14098.38 11896.22 11499.14 28394.71 19499.31 19598.52 245
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4799.92 597.64 5699.92 1699.75 19
EGC-MVSNET83.08 37177.93 37498.53 5099.57 2097.55 2698.33 3898.57 1804.71 40710.38 40898.90 6995.60 13799.50 18695.69 12999.61 9898.55 242
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18795.44 22498.86 11598.20 4298.37 10199.24 3294.69 16199.55 17395.98 11599.79 5399.65 33
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28599.89 1898.01 3999.76 5899.54 53
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32597.17 5398.50 35398.67 2597.45 33396.48 366
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4399.92 597.79 4899.93 1199.79 10
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4799.93 397.71 5299.91 1999.70 26
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7495.88 14397.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4199.59 15997.21 6899.76 5899.40 100
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9897.71 6198.85 5799.10 4891.35 24499.83 3298.47 3099.90 2499.64 35
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8597.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18598.20 5198.87 11298.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14099.89 1897.95 4199.91 1999.75 19
PMVScopyleft89.60 1796.71 15896.97 13795.95 23299.51 3097.81 1697.42 10397.49 27597.93 5095.95 26898.58 9696.88 7696.91 39089.59 31599.36 17793.12 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23198.99 8892.45 26998.11 13398.31 12497.25 5099.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19298.35 3599.21 3398.43 3298.89 5498.83 7494.30 17599.81 3697.87 4399.91 1999.77 12
VPNet97.26 12497.49 10996.59 19999.47 3590.58 25196.27 16698.53 18297.77 5498.46 9398.41 11494.59 16699.68 12294.61 19599.29 19899.52 58
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12299.05 1399.01 4498.65 9195.37 14399.90 1497.57 5799.91 1999.77 12
XXY-MVS97.54 10597.70 8197.07 16899.46 3692.21 21497.22 11199.00 8594.93 18898.58 8198.92 6597.31 4599.41 21994.44 20099.43 16399.59 38
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10898.73 15097.69 6397.90 15797.96 17695.81 12999.82 3496.13 10599.61 9899.45 85
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11498.90 10396.58 10498.08 13897.87 18697.02 6399.76 6195.25 15999.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17998.23 4699.05 6697.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16797.41 18497.50 21697.98 1999.79 4495.58 13999.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21496.92 12798.60 17598.58 2898.78 6499.39 1697.80 2599.62 14994.98 18199.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18297.96 6298.25 21498.58 2898.78 6499.39 1698.21 1499.56 16892.65 25199.86 3199.52 58
K. test v396.44 17296.28 17896.95 17599.41 4291.53 23397.65 8490.31 38498.89 2098.93 5099.36 2184.57 31999.92 597.81 4699.56 11199.39 104
VDDNet96.98 13796.84 14597.41 14399.40 4593.26 18997.94 6495.31 33099.26 798.39 10099.18 3987.85 29499.62 14995.13 17199.09 22599.35 114
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14499.82 195.44 16699.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9299.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18799.72 7199.32 115
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8698.20 22293.00 25398.16 12898.06 16695.89 12099.72 8795.67 13199.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 6598.07 4597.48 13599.38 4892.95 19598.03 6199.11 5098.04 4898.62 7698.66 8893.75 18999.78 4797.23 6699.84 4099.73 22
lessismore_v097.05 16999.36 5092.12 21984.07 40298.77 6898.98 5885.36 31399.74 7697.34 6599.37 17499.30 120
Anonymous2024052197.07 13097.51 10695.76 24099.35 5188.18 29297.78 7398.40 19897.11 8898.34 10799.04 5389.58 27099.79 4498.09 3699.93 1199.30 120
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16198.79 13895.07 18197.88 15998.35 12097.24 5199.72 8796.05 10899.58 10599.45 85
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8397.82 16699.11 4796.75 8499.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 3198.94 696.41 21299.33 5389.64 26297.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9998.84 12295.76 14996.93 21797.43 22097.26 4999.79 4496.06 10699.53 12599.45 85
MP-MVScopyleft97.64 9697.18 12599.00 999.32 5597.77 1797.49 9898.73 15096.27 11895.59 28397.75 19796.30 10999.78 4793.70 23299.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SSC-MVS95.92 19297.03 13492.58 35399.28 5778.39 38996.68 14595.12 33298.90 1999.11 3998.66 8891.36 24399.68 12295.00 17899.16 21499.67 28
PVSNet_Blended_VisFu95.95 19195.80 20096.42 21099.28 5790.62 25095.31 23899.08 5888.40 32996.97 21598.17 15092.11 23099.78 4793.64 23399.21 20798.86 208
tfpnnormal97.72 9097.97 5596.94 17699.26 5992.23 21397.83 7298.45 18998.25 3999.13 3898.66 8896.65 8799.69 11793.92 22499.62 9298.91 197
MSP-MVS97.45 11196.92 14299.03 599.26 5997.70 1897.66 8398.89 10495.65 15498.51 8596.46 28692.15 22899.81 3695.14 16998.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 18596.50 16994.80 28999.26 5987.69 30795.96 19498.58 17995.08 18098.02 14696.25 29697.92 2097.60 38388.68 32998.74 26299.11 164
IS-MVSNet96.93 13996.68 15497.70 11399.25 6294.00 16298.57 2096.74 30298.36 3498.14 13197.98 17588.23 28799.71 10293.10 24799.72 7199.38 106
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13898.23 21795.92 14098.40 9898.28 13397.06 5999.71 10295.48 14499.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6395.51 9796.89 12998.89 10495.92 14098.64 7498.31 12497.06 59
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13898.89 10499.75 6795.48 14499.52 13099.53 56
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11398.79 13895.96 13797.53 17397.40 22296.93 7099.77 5695.04 17599.35 18299.42 97
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9595.75 15197.91 15698.06 16696.89 7499.76 6195.32 15699.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19797.55 9298.94 9897.10 8998.85 5798.88 7195.03 15399.67 12897.39 6499.65 8799.26 132
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13598.83 12896.11 12799.08 4098.24 14097.87 2399.72 8795.44 14899.51 13599.14 154
IU-MVS99.22 6895.40 10398.14 23585.77 35798.36 10495.23 16199.51 13599.49 70
test_241102_ONE99.22 6895.35 10898.83 12896.04 13299.08 4098.13 15397.87 2399.33 245
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8798.84 12296.00 13597.22 18997.62 20796.87 7899.76 6195.48 14499.43 16399.46 81
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7998.78 14296.04 13297.10 20097.73 20096.53 9499.78 4795.16 16699.50 13999.46 81
WB-MVS95.50 20896.62 15692.11 36299.21 7577.26 39796.12 18095.40 32998.62 2698.84 5998.26 13891.08 24799.50 18693.37 23798.70 26799.58 39
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4499.45 20394.08 21699.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8998.83 12896.05 13097.46 18297.63 20696.77 8399.76 6195.61 13699.46 15199.49 70
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11999.06 6295.45 16497.55 17297.94 17997.11 5499.78 4794.77 19099.46 15199.48 76
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14398.73 15098.66 2598.56 8298.41 11496.84 8099.69 11794.82 18599.81 4898.64 232
EPP-MVSNet96.84 14596.58 16097.65 11799.18 8093.78 17198.68 1496.34 30797.91 5197.30 18698.06 16688.46 28499.85 2793.85 22699.40 17199.32 115
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20596.57 14999.15 4493.68 22798.89 5499.30 2896.42 10399.37 23499.03 1399.83 4399.66 30
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15698.98 9195.05 18298.06 14198.02 17095.86 12199.56 16894.37 20599.64 8999.00 180
CHOSEN 1792x268894.10 27293.41 28196.18 22299.16 8290.04 25692.15 34998.68 16279.90 38996.22 25797.83 18887.92 29399.42 21089.18 32199.65 8799.08 169
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8998.84 12296.05 13097.49 17797.54 21297.07 5899.70 11095.61 13699.46 15199.30 120
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25097.64 20596.49 9799.72 8795.66 13299.37 17499.45 85
X-MVStestdata92.86 30390.83 33098.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25036.50 40596.49 9799.72 8795.66 13299.37 17499.45 85
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11999.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9199.06 6296.19 12498.48 9098.70 8594.72 16099.24 26994.37 20599.33 19099.17 148
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14598.83 12895.21 17398.36 10498.13 15398.13 1899.62 14996.04 10999.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17398.23 4698.66 16797.41 7999.00 4699.19 3695.47 14099.73 8295.83 12499.76 5899.30 120
Vis-MVSNet (Re-imp)95.11 22994.85 23295.87 23799.12 9389.17 27097.54 9794.92 33596.50 10996.58 23797.27 23683.64 32599.48 19488.42 33299.67 8498.97 185
dcpmvs_297.12 12897.99 5494.51 30399.11 9484.00 35997.75 7799.65 997.38 8199.14 3798.42 11395.16 14999.96 295.52 14099.78 5699.58 39
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24298.46 18894.58 20098.10 13598.07 16197.09 5799.39 22595.16 16699.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9999.92 597.88 4299.98 299.85 3
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9791.43 23796.37 16099.11 5094.19 21099.01 4499.25 3196.30 10999.38 22899.00 1499.88 2799.73 22
AllTest97.20 12796.92 14298.06 8899.08 9896.16 7097.14 11699.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14299.05 6698.67 2498.84 5998.45 11097.58 3799.88 2096.45 9299.86 3199.54 53
test111194.53 25894.81 23693.72 32299.06 10181.94 37498.31 3983.87 40396.37 11498.49 8899.17 4281.49 33499.73 8296.64 8499.86 3199.49 70
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7699.00 8598.40 3399.07 4298.98 5896.89 7499.75 6797.19 7199.79 5399.55 52
114514_t93.96 27793.22 28596.19 22199.06 10190.97 24495.99 19098.94 9873.88 40193.43 34196.93 25792.38 22699.37 23489.09 32299.28 19998.25 275
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18095.96 19498.97 9494.55 20198.82 6198.76 8097.31 4599.29 25797.20 7099.44 15599.38 106
test_one_060199.05 10595.50 10098.87 11297.21 8798.03 14598.30 12896.93 70
ACMP92.54 1397.47 11097.10 12898.55 4999.04 10696.70 5196.24 17198.89 10493.71 22497.97 15197.75 19797.44 3999.63 14493.22 24499.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10793.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 306
test_part299.03 10796.07 7498.08 138
XVG-OURS-SEG-HR97.38 11697.07 13198.30 6899.01 10997.41 3494.66 26999.02 7695.20 17498.15 13097.52 21498.83 598.43 35894.87 18396.41 35799.07 171
XVG-OURS97.12 12896.74 15198.26 7098.99 11097.45 3293.82 30499.05 6695.19 17598.32 11197.70 20295.22 14898.41 35994.27 20998.13 29998.93 193
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9596.11 12796.89 22097.45 21896.85 7999.78 4795.19 16299.63 9199.38 106
test250689.86 34389.16 34891.97 36398.95 11276.83 39898.54 2361.07 41296.20 12297.07 20699.16 4355.19 40699.69 11796.43 9399.83 4399.38 106
ECVR-MVScopyleft94.37 26494.48 25494.05 31898.95 11283.10 36498.31 3982.48 40596.20 12298.23 12099.16 4381.18 33799.66 13495.95 11699.83 4399.38 106
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10798.99 8896.35 11798.13 13295.95 31195.99 11899.66 13494.36 20799.73 6798.59 238
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12199.10 5295.32 17097.83 16597.88 18596.44 10299.72 8794.59 19999.39 17299.25 136
HyFIR lowres test93.72 28392.65 30096.91 18098.93 11691.81 23091.23 36898.52 18382.69 37796.46 24496.52 28480.38 34299.90 1490.36 30598.79 25799.03 176
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21195.83 20399.32 2593.22 24198.91 5398.49 10596.31 10899.64 14099.07 1299.76 5899.40 100
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20295.89 20099.41 2493.36 23599.00 4698.44 11296.46 10199.65 13699.09 1199.76 5899.45 85
PM-MVS97.36 12097.10 12898.14 8298.91 12096.77 4996.20 17398.63 17393.82 22198.54 8398.33 12293.98 18299.05 29895.99 11499.45 15498.61 237
CPTT-MVS96.69 15996.08 18698.49 5298.89 12196.64 5597.25 10898.77 14392.89 25996.01 26797.13 24392.23 22799.67 12892.24 25799.34 18599.17 148
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17899.57 1495.66 15399.52 1598.71 8497.04 6199.64 14099.21 799.87 2998.69 228
patch_mono-296.59 16496.93 14095.55 25198.88 12287.12 31894.47 27499.30 2794.12 21396.65 23598.41 11494.98 15699.87 2295.81 12699.78 5699.66 30
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11898.98 9195.75 15197.62 17097.59 20997.61 3699.77 5696.34 9699.44 15599.36 112
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24498.99 8895.84 14698.78 6498.08 15996.84 8099.81 3693.98 22299.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 10997.11 12798.60 4598.83 12696.67 5396.74 13898.73 15091.61 28298.48 9098.36 11996.53 9499.68 12295.17 16499.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.60 9299.76 6195.49 14199.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.94 6895.49 14199.20 20899.26 132
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20596.25 17099.06 6293.67 22898.64 7499.00 5596.23 11399.36 23798.99 1599.80 5199.53 56
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19899.04 7397.51 7298.22 12197.81 19294.68 16399.78 4797.14 7299.75 6599.41 99
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18798.79 13191.44 23696.14 17999.06 6294.19 21098.82 6198.98 5896.22 11499.38 22898.98 1699.86 3199.58 39
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13699.72 8798.12 3499.86 3199.73 22
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9298.92 10197.72 5998.25 11898.13 15397.10 5599.75 6795.44 14899.24 20699.32 115
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17299.02 7693.92 22098.62 7698.99 5797.69 2999.62 14996.18 10499.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10498.83 12897.32 8398.06 14197.85 18796.65 8799.77 5695.00 17899.11 22299.32 115
MCST-MVS96.24 17995.80 20097.56 12298.75 13694.13 15894.66 26998.17 22890.17 30596.21 25896.10 30595.14 15099.43 20894.13 21598.85 25199.13 156
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21498.87 11297.57 6798.31 11397.83 18894.69 16199.85 2797.02 7799.71 7499.46 81
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15097.79 5399.42 2097.83 18894.40 17399.78 4795.91 11999.76 5899.46 81
Anonymous2023120695.27 22195.06 22395.88 23698.72 13989.37 26795.70 20897.85 25388.00 33596.98 21497.62 20791.95 23599.34 24389.21 32099.53 12598.94 189
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13798.59 8098.69 8696.94 6899.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21299.02 7698.11 4498.31 11397.69 20394.65 16599.85 2797.02 7799.71 7499.48 76
tttt051793.31 29692.56 30395.57 24898.71 14287.86 30197.44 10087.17 39795.79 14897.47 18196.84 26364.12 39399.81 3696.20 10299.32 19299.02 179
v897.60 10098.06 4796.23 21898.71 14289.44 26697.43 10298.82 13697.29 8598.74 7099.10 4893.86 18599.68 12298.61 2799.94 899.56 50
HQP_MVS96.66 16196.33 17797.68 11698.70 14494.29 15196.50 15298.75 14796.36 11596.16 26196.77 26991.91 23899.46 19992.59 25399.20 20899.28 127
plane_prior798.70 14494.67 134
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21198.79 2299.23 3298.86 7395.76 13199.61 15695.49 14199.36 17799.23 138
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12295.61 32398.59 2798.51 8598.72 8292.54 22099.58 16196.02 11199.49 14299.12 161
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26897.01 25396.99 6599.82 3497.66 5599.64 8998.39 256
HPM-MVS++copyleft96.99 13496.38 17498.81 2798.64 14997.59 2395.97 19298.20 22295.51 16295.06 29596.53 28294.10 17999.70 11094.29 20899.15 21599.13 156
ab-mvs96.59 16496.59 15996.60 19898.64 14992.21 21498.35 3597.67 26494.45 20296.99 21298.79 7594.96 15799.49 19190.39 30499.07 22898.08 286
F-COLMAP95.30 22094.38 25998.05 9298.64 14996.04 7595.61 21898.66 16789.00 32093.22 34596.40 29092.90 20699.35 24187.45 34797.53 32898.77 218
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18595.63 15597.22 18997.30 23595.52 13898.55 34990.97 28398.90 24498.34 264
test_fmvs397.38 11697.56 10196.84 18598.63 15392.81 19797.60 8799.61 1390.87 29398.76 6999.66 394.03 18197.90 37799.24 699.68 8299.81 8
v14896.58 16696.97 13795.42 25898.63 15387.57 30895.09 24897.90 25095.91 14298.24 11997.96 17693.42 19599.39 22596.04 10999.52 13099.29 126
UnsupCasMVSNet_bld94.72 24794.26 26196.08 22698.62 15590.54 25493.38 31898.05 24690.30 30297.02 21096.80 26889.54 27199.16 28188.44 33196.18 36398.56 240
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11798.79 13898.98 1798.74 7098.49 10595.80 13099.49 19195.04 17599.44 15599.11 164
v1097.55 10497.97 5596.31 21698.60 15789.64 26297.44 10099.02 7696.60 10298.72 7299.16 4393.48 19499.72 8798.76 2199.92 1699.58 39
Test_1112_low_res93.53 29192.86 29295.54 25298.60 15788.86 27992.75 33198.69 16082.66 37892.65 35996.92 25984.75 31799.56 16890.94 28497.76 31498.19 280
V4297.04 13197.16 12696.68 19698.59 15991.05 24196.33 16398.36 20394.60 19797.99 14798.30 12893.32 19699.62 14997.40 6399.53 12599.38 106
1112_ss94.12 27193.42 28096.23 21898.59 15990.85 24594.24 28298.85 11985.49 35892.97 35194.94 33386.01 30799.64 14091.78 26997.92 30798.20 279
v2v48296.78 15297.06 13295.95 23298.57 16188.77 28295.36 23298.26 21395.18 17697.85 16498.23 14292.58 21699.63 14497.80 4799.69 7899.45 85
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16192.10 22295.97 19299.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS96.90 14296.81 14797.16 15998.56 16392.20 21794.33 27798.12 23797.34 8298.20 12297.33 23392.81 20799.75 6794.79 18799.81 4899.54 53
test_vis1_n_192095.77 19896.41 17293.85 31998.55 16484.86 34995.91 19999.71 492.72 26397.67 16998.90 6987.44 29798.73 32897.96 4098.85 25197.96 302
APD-MVScopyleft97.00 13396.53 16698.41 5998.55 16496.31 6696.32 16498.77 14392.96 25897.44 18397.58 21195.84 12299.74 7691.96 26299.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 25194.49 25395.19 26698.54 16688.91 27792.57 33798.74 14991.46 28598.32 11197.75 19777.31 35798.81 32196.06 10699.61 9897.85 310
9.1496.69 15398.53 16796.02 18798.98 9193.23 24097.18 19497.46 21796.47 9999.62 14992.99 24899.32 192
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28596.92 25996.81 8299.87 2296.87 8299.76 5898.51 246
baseline97.44 11297.78 7796.43 20998.52 16890.75 24996.84 13099.03 7496.51 10897.86 16398.02 17096.67 8699.36 23797.09 7499.47 14899.19 145
casdiffmvspermissive97.50 10797.81 7196.56 20398.51 17091.04 24295.83 20399.09 5797.23 8698.33 11098.30 12897.03 6299.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS96.92 14097.29 11895.79 23998.51 17088.13 29595.10 24798.66 16796.99 9098.46 9398.68 8792.55 21899.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 20795.13 21896.80 18798.51 17093.99 16394.60 27198.69 16090.20 30495.78 27796.21 29892.73 21198.98 30790.58 29998.86 25097.42 334
h-mvs3396.29 17795.63 20798.26 7098.50 17396.11 7396.90 12897.09 28896.58 10497.21 19198.19 14784.14 32199.78 4795.89 12096.17 36498.89 201
test20.0396.58 16696.61 15896.48 20798.49 17491.72 23195.68 21197.69 26396.81 9698.27 11797.92 18294.18 17898.71 33190.78 29099.66 8699.00 180
plane_prior198.49 174
save fliter98.48 17694.71 13194.53 27398.41 19695.02 184
MDA-MVSNet-bldmvs95.69 20095.67 20495.74 24198.48 17688.76 28392.84 32897.25 28096.00 13597.59 17197.95 17891.38 24299.46 19993.16 24696.35 35998.99 183
UnsupCasMVSNet_eth95.91 19395.73 20396.44 20898.48 17691.52 23495.31 23898.45 18995.76 14997.48 17997.54 21289.53 27398.69 33494.43 20194.61 38299.13 156
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26497.19 24196.88 7699.86 2497.50 6099.73 6798.41 253
test_vis3_rt97.04 13196.98 13697.23 15798.44 18095.88 8096.82 13299.67 690.30 30299.27 2999.33 2794.04 18096.03 39697.14 7297.83 31199.78 11
ZD-MVS98.43 18195.94 7998.56 18190.72 29596.66 23397.07 24795.02 15499.74 7691.08 28098.93 242
thisisatest053092.71 30691.76 31495.56 25098.42 18288.23 29096.03 18687.35 39694.04 21796.56 23995.47 32464.03 39499.77 5694.78 18999.11 22298.68 231
v114496.84 14597.08 13096.13 22598.42 18289.28 26995.41 22898.67 16594.21 20897.97 15198.31 12493.06 20199.65 13698.06 3899.62 9299.45 85
plane_prior698.38 18494.37 14891.91 238
FPMVS89.92 34288.63 35093.82 32098.37 18596.94 4591.58 35893.34 35288.00 33590.32 38097.10 24670.87 38491.13 40471.91 40296.16 36593.39 394
PAPM_NR94.61 25494.17 26695.96 23098.36 18691.23 23995.93 19797.95 24792.98 25493.42 34294.43 34690.53 25498.38 36287.60 34296.29 36198.27 273
MVS_111021_HR96.73 15596.54 16597.27 15298.35 18793.66 17693.42 31698.36 20394.74 19196.58 23796.76 27196.54 9398.99 30594.87 18399.27 20199.15 151
TAMVS95.49 20994.94 22597.16 15998.31 18893.41 18495.07 25196.82 29891.09 29197.51 17597.82 19189.96 26599.42 21088.42 33299.44 15598.64 232
OMC-MVS96.48 17096.00 18997.91 10098.30 18996.01 7894.86 26198.60 17591.88 27897.18 19497.21 24096.11 11699.04 29990.49 30399.34 18598.69 228
新几何197.25 15598.29 19094.70 13397.73 26177.98 39594.83 30296.67 27592.08 23299.45 20388.17 33698.65 27397.61 325
jason94.39 26394.04 26995.41 26098.29 19087.85 30392.74 33396.75 30185.38 36295.29 29096.15 30088.21 28899.65 13694.24 21099.34 18598.74 221
jason: jason.
v119296.83 14897.06 13296.15 22498.28 19289.29 26895.36 23298.77 14393.73 22398.11 13398.34 12193.02 20599.67 12898.35 3299.58 10599.50 62
CDPH-MVS95.45 21494.65 24297.84 10598.28 19294.96 12693.73 30898.33 20785.03 36595.44 28696.60 27895.31 14599.44 20690.01 30999.13 21899.11 164
MVS_111021_LR96.82 14996.55 16397.62 11998.27 19495.34 11093.81 30698.33 20794.59 19996.56 23996.63 27796.61 9098.73 32894.80 18699.34 18598.78 215
CLD-MVS95.47 21295.07 22196.69 19598.27 19492.53 20491.36 36298.67 16591.22 29095.78 27794.12 34995.65 13598.98 30790.81 28899.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521196.34 17695.98 19197.43 14098.25 19693.85 16796.74 13894.41 34097.72 5998.37 10198.03 16987.15 30099.53 17894.06 21799.07 22898.92 196
pmmvs-eth3d96.49 16996.18 18297.42 14298.25 19694.29 15194.77 26598.07 24489.81 31097.97 15198.33 12293.11 20099.08 29595.46 14799.84 4098.89 201
v14419296.69 15996.90 14496.03 22798.25 19688.92 27695.49 22298.77 14393.05 25198.09 13698.29 13292.51 22399.70 11098.11 3599.56 11199.47 79
ambc96.56 20398.23 19991.68 23297.88 6898.13 23698.42 9698.56 9994.22 17799.04 29994.05 21999.35 18298.95 187
test_cas_vis1_n_192095.34 21795.67 20494.35 30998.21 20086.83 32495.61 21899.26 3090.45 30098.17 12798.96 6184.43 32098.31 36796.74 8399.17 21397.90 306
thres100view90091.76 32391.26 32393.26 33198.21 20084.50 35396.39 15690.39 38196.87 9496.33 24993.08 36073.44 37799.42 21078.85 39197.74 31595.85 373
v192192096.72 15696.96 13995.99 22898.21 20088.79 28195.42 22698.79 13893.22 24198.19 12698.26 13892.68 21299.70 11098.34 3399.55 11899.49 70
thres600view792.03 31991.43 31693.82 32098.19 20384.61 35296.27 16690.39 38196.81 9696.37 24893.11 35673.44 37799.49 19180.32 38697.95 30697.36 335
PatchMatch-RL94.61 25493.81 27497.02 17398.19 20395.72 8693.66 30997.23 28188.17 33394.94 30095.62 32091.43 24198.57 34687.36 34897.68 32196.76 359
LF4IMVS96.07 18595.63 20797.36 14698.19 20395.55 9495.44 22498.82 13692.29 27295.70 28196.55 28092.63 21598.69 33491.75 27199.33 19097.85 310
test_vis1_n95.67 20295.89 19795.03 27598.18 20689.89 25996.94 12699.28 2988.25 33298.20 12298.92 6586.69 30497.19 38597.70 5498.82 25598.00 300
v124096.74 15397.02 13595.91 23598.18 20688.52 28495.39 23098.88 11093.15 24998.46 9398.40 11792.80 20899.71 10298.45 3199.49 14299.49 70
TAPA-MVS93.32 1294.93 23694.23 26297.04 17198.18 20694.51 14195.22 24398.73 15081.22 38496.25 25695.95 31193.80 18898.98 30789.89 31198.87 24897.62 324
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 20993.24 19092.74 33397.61 27375.17 39994.65 30596.69 27490.96 25098.66 27197.66 321
MIMVSNet93.42 29392.86 29295.10 27298.17 20988.19 29198.13 5593.69 34592.07 27395.04 29898.21 14680.95 34099.03 30281.42 38398.06 30298.07 288
原ACMM196.58 20098.16 21192.12 21998.15 23485.90 35593.49 33896.43 28792.47 22499.38 22887.66 34198.62 27598.23 276
testdata95.70 24498.16 21190.58 25197.72 26280.38 38795.62 28297.02 25192.06 23398.98 30789.06 32498.52 28197.54 329
test_fmvs1_n95.21 22395.28 21294.99 27898.15 21389.13 27496.81 13399.43 2186.97 34597.21 19198.92 6583.00 32997.13 38698.09 3698.94 24098.72 224
MVP-Stereo95.69 20095.28 21296.92 17898.15 21393.03 19395.64 21798.20 22290.39 30196.63 23697.73 20091.63 24099.10 29391.84 26797.31 33798.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 11897.70 8196.35 21398.14 21595.13 12296.54 15198.92 10195.94 13999.19 3498.08 15997.74 2895.06 39795.24 16099.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 26594.47 25593.60 32598.14 21582.60 36997.24 11092.72 35985.08 36398.48 9098.94 6382.59 33298.76 32697.47 6299.53 12599.44 95
NP-MVS98.14 21593.72 17295.08 329
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12499.65 996.74 9899.47 1798.93 6496.91 7399.84 3090.11 30799.06 23198.32 265
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15998.13 4396.93 21798.45 11095.30 14699.62 14995.64 13498.96 23799.24 137
VNet96.84 14596.83 14696.88 18198.06 22092.02 22496.35 16297.57 27497.70 6297.88 15997.80 19392.40 22599.54 17694.73 19298.96 23799.08 169
LFMVS95.32 21994.88 23196.62 19798.03 22191.47 23597.65 8490.72 38099.11 997.89 15898.31 12479.20 34599.48 19493.91 22599.12 22198.93 193
tfpn200view991.55 32591.00 32593.21 33598.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31595.85 373
thres40091.68 32491.00 32593.71 32398.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31597.36 335
OPU-MVS97.64 11898.01 22495.27 11396.79 13597.35 23196.97 6698.51 35291.21 27999.25 20399.14 154
xiu_mvs_v1_base_debu95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base_debi95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
CNVR-MVS96.92 14096.55 16398.03 9398.00 22895.54 9594.87 26098.17 22894.60 19796.38 24797.05 24995.67 13499.36 23795.12 17299.08 22699.19 145
PLCcopyleft91.02 1694.05 27592.90 29197.51 12798.00 22895.12 12394.25 28198.25 21486.17 35191.48 37295.25 32791.01 24899.19 27585.02 36896.69 35298.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
test196.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
FMVSNet296.72 15696.67 15596.87 18297.96 23091.88 22797.15 11498.06 24595.59 15898.50 8798.62 9489.51 27499.65 13694.99 18099.60 10199.07 171
BH-untuned94.69 24894.75 23994.52 30297.95 23387.53 30994.07 29397.01 29193.99 21897.10 20095.65 31892.65 21498.95 31287.60 34296.74 35097.09 341
DPM-MVS93.68 28592.77 29896.42 21097.91 23492.54 20391.17 36997.47 27784.99 36793.08 34994.74 33789.90 26699.00 30387.54 34498.09 30197.72 319
MVS_030496.62 16396.40 17397.28 15197.91 23492.30 21096.47 15489.74 38997.52 7195.38 28998.63 9392.76 20999.81 3699.28 499.93 1199.75 19
QAPM95.88 19495.57 20996.80 18797.90 23691.84 22998.18 5398.73 15088.41 32896.42 24598.13 15394.73 15999.75 6788.72 32798.94 24098.81 212
TinyColmap96.00 19096.34 17694.96 28097.90 23687.91 30094.13 29198.49 18694.41 20398.16 12897.76 19496.29 11198.68 33790.52 30099.42 16698.30 269
test_fmvs296.38 17596.45 17096.16 22397.85 23891.30 23896.81 13399.45 1989.24 31698.49 8899.38 1888.68 28197.62 38298.83 1899.32 19299.57 46
HQP-NCC97.85 23894.26 27893.18 24592.86 353
ACMP_Plane97.85 23894.26 27893.18 24592.86 353
N_pmnet95.18 22594.23 26298.06 8897.85 23896.55 5892.49 33991.63 37089.34 31498.09 13697.41 22190.33 25999.06 29791.58 27299.31 19598.56 240
HQP-MVS95.17 22794.58 25096.92 17897.85 23892.47 20794.26 27898.43 19293.18 24592.86 35395.08 32990.33 25999.23 27190.51 30198.74 26299.05 175
hse-mvs295.77 19895.09 22097.79 10797.84 24395.51 9795.66 21295.43 32896.58 10497.21 19196.16 29984.14 32199.54 17695.89 12096.92 34198.32 265
TEST997.84 24395.23 11593.62 31098.39 19986.81 34693.78 32695.99 30794.68 16399.52 181
train_agg95.46 21394.66 24197.88 10297.84 24395.23 11593.62 31098.39 19987.04 34293.78 32695.99 30794.58 16799.52 18191.76 27098.90 24498.89 201
MSLP-MVS++96.42 17496.71 15295.57 24897.82 24690.56 25395.71 20798.84 12294.72 19296.71 22997.39 22694.91 15898.10 37595.28 15799.02 23398.05 295
test_897.81 24795.07 12493.54 31398.38 20187.04 34293.71 33095.96 31094.58 16799.52 181
NCCC96.52 16895.99 19098.10 8597.81 24795.68 8995.00 25698.20 22295.39 16895.40 28896.36 29293.81 18799.45 20393.55 23598.42 28899.17 148
WTY-MVS93.55 29093.00 29095.19 26697.81 24787.86 30193.89 30296.00 31289.02 31994.07 31995.44 32686.27 30599.33 24587.69 34096.82 34798.39 256
CNLPA95.04 23294.47 25596.75 19197.81 24795.25 11494.12 29297.89 25194.41 20394.57 30695.69 31690.30 26298.35 36586.72 35498.76 26096.64 361
AUN-MVS93.95 27992.69 29997.74 11097.80 25195.38 10595.57 22195.46 32791.26 28992.64 36096.10 30574.67 36899.55 17393.72 23196.97 34098.30 269
EIA-MVS96.04 18795.77 20296.85 18397.80 25192.98 19496.12 18099.16 4094.65 19593.77 32891.69 38195.68 13399.67 12894.18 21298.85 25197.91 305
agg_prior97.80 25194.96 12698.36 20393.49 33899.53 178
旧先验197.80 25193.87 16697.75 26097.04 25093.57 19298.68 26898.72 224
PCF-MVS89.43 1892.12 31690.64 33396.57 20297.80 25193.48 18189.88 38798.45 18974.46 40096.04 26695.68 31790.71 25399.31 25073.73 39999.01 23596.91 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior97.46 13797.79 25694.26 15598.42 19599.34 24398.79 214
PVSNet_BlendedMVS95.02 23594.93 22795.27 26297.79 25687.40 31394.14 29098.68 16288.94 32194.51 30898.01 17293.04 20299.30 25389.77 31399.49 14299.11 164
PVSNet_Blended93.96 27793.65 27694.91 28197.79 25687.40 31391.43 36198.68 16284.50 37294.51 30894.48 34593.04 20299.30 25389.77 31398.61 27698.02 298
USDC94.56 25694.57 25294.55 30197.78 25986.43 32992.75 33198.65 17285.96 35396.91 21997.93 18190.82 25198.74 32790.71 29599.59 10398.47 250
alignmvs96.01 18995.52 21097.50 13197.77 26094.71 13196.07 18396.84 29697.48 7396.78 22694.28 34885.50 31299.40 22196.22 10198.73 26598.40 254
ETV-MVS96.13 18495.90 19696.82 18697.76 26193.89 16595.40 22998.95 9795.87 14495.58 28491.00 38796.36 10799.72 8793.36 23898.83 25496.85 353
D2MVS95.18 22595.17 21695.21 26597.76 26187.76 30694.15 28897.94 24889.77 31196.99 21297.68 20487.45 29699.14 28395.03 17799.81 4898.74 221
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10496.62 10098.62 7698.30 12896.97 6699.75 6795.70 12799.25 20399.21 140
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
TSAR-MVS + GP.96.47 17196.12 18397.49 13497.74 26695.23 11594.15 28896.90 29593.26 23998.04 14496.70 27394.41 17298.89 31494.77 19099.14 21698.37 258
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17798.49 2898.88 11096.86 9597.11 19998.55 10095.82 12599.73 8295.94 11799.42 16699.13 156
MM96.87 14496.62 15697.62 11997.72 26893.30 18696.39 15692.61 36297.90 5296.76 22798.64 9290.46 25699.81 3699.16 999.94 899.76 17
sss94.22 26693.72 27595.74 24197.71 26989.95 25893.84 30396.98 29288.38 33093.75 32995.74 31587.94 28998.89 31491.02 28298.10 30098.37 258
DeepC-MVS_fast94.34 796.74 15396.51 16897.44 13997.69 27094.15 15796.02 18798.43 19293.17 24897.30 18697.38 22895.48 13999.28 25993.74 22999.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-SCA-FT95.86 19596.19 18194.85 28697.68 27185.53 33792.42 34497.63 27296.99 9098.36 10498.54 10187.94 28999.75 6797.07 7699.08 22699.27 131
MVSFormer96.14 18396.36 17595.49 25497.68 27187.81 30498.67 1599.02 7696.50 10994.48 31096.15 30086.90 30199.92 598.73 2299.13 21898.74 221
lupinMVS93.77 28093.28 28395.24 26397.68 27187.81 30492.12 35096.05 31084.52 37194.48 31095.06 33186.90 30199.63 14493.62 23499.13 21898.27 273
Fast-Effi-MVS+95.49 20995.07 22196.75 19197.67 27492.82 19694.22 28498.60 17591.61 28293.42 34292.90 36396.73 8599.70 11092.60 25297.89 31097.74 318
testing389.72 34588.26 35494.10 31797.66 27584.30 35794.80 26288.25 39494.66 19495.07 29492.51 37141.15 41299.43 20891.81 26898.44 28798.55 242
MGCFI-Net97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
CDS-MVSNet94.88 23994.12 26797.14 16197.64 27893.57 17893.96 30097.06 29090.05 30796.30 25396.55 28086.10 30699.47 19690.10 30899.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 25394.34 26095.50 25397.63 27988.34 28894.02 29497.13 28687.15 34195.22 29297.15 24287.50 29599.27 26293.99 22199.26 20298.88 205
test_f95.82 19795.88 19895.66 24597.61 28093.21 19195.61 21898.17 22886.98 34498.42 9699.47 1190.46 25694.74 39997.71 5298.45 28699.03 176
test1297.46 13797.61 28094.07 15997.78 25993.57 33693.31 19799.42 21098.78 25898.89 201
PMMVS293.66 28694.07 26892.45 35797.57 28280.67 38286.46 39596.00 31293.99 21897.10 20097.38 22889.90 26697.82 37988.76 32699.47 14898.86 208
BH-RMVSNet94.56 25694.44 25894.91 28197.57 28287.44 31293.78 30796.26 30893.69 22696.41 24696.50 28592.10 23199.00 30385.96 35697.71 31898.31 267
PVSNet86.72 1991.10 33090.97 32791.49 36697.56 28478.04 39187.17 39494.60 33884.65 37092.34 36492.20 37587.37 29898.47 35685.17 36797.69 32097.96 302
DELS-MVS96.17 18296.23 17995.99 22897.55 28590.04 25692.38 34798.52 18394.13 21296.55 24197.06 24894.99 15599.58 16195.62 13599.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 21595.83 19994.20 31497.52 28683.78 36192.41 34597.47 27795.49 16398.06 14198.49 10587.94 28999.58 16196.02 11199.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 23794.89 23094.99 27897.51 28788.11 29798.27 4495.20 33192.40 27196.68 23098.60 9583.44 32699.28 25993.34 23998.53 28097.59 327
CL-MVSNet_self_test95.04 23294.79 23895.82 23897.51 28789.79 26091.14 37096.82 29893.05 25196.72 22896.40 29090.82 25199.16 28191.95 26398.66 27198.50 248
new-patchmatchnet95.67 20296.58 16092.94 34497.48 28980.21 38492.96 32698.19 22794.83 18998.82 6198.79 7593.31 19799.51 18595.83 12499.04 23299.12 161
MDA-MVSNet_test_wron94.73 24394.83 23594.42 30697.48 28985.15 34490.28 38195.87 31692.52 26697.48 17997.76 19491.92 23799.17 28093.32 24096.80 34998.94 189
PHI-MVS96.96 13896.53 16698.25 7397.48 28996.50 5996.76 13798.85 11993.52 23096.19 26096.85 26295.94 11999.42 21093.79 22899.43 16398.83 210
DeepPCF-MVS94.58 596.90 14296.43 17198.31 6797.48 28997.23 4092.56 33898.60 17592.84 26098.54 8397.40 22296.64 8998.78 32394.40 20499.41 17098.93 193
thres20091.00 33290.42 33692.77 34997.47 29383.98 36094.01 29591.18 37695.12 17995.44 28691.21 38573.93 37099.31 25077.76 39497.63 32595.01 384
YYNet194.73 24394.84 23394.41 30797.47 29385.09 34690.29 38095.85 31792.52 26697.53 17397.76 19491.97 23499.18 27693.31 24196.86 34498.95 187
Effi-MVS+96.19 18196.01 18896.71 19397.43 29592.19 21896.12 18099.10 5295.45 16493.33 34494.71 33897.23 5299.56 16893.21 24597.54 32798.37 258
pmmvs494.82 24194.19 26596.70 19497.42 29692.75 20192.09 35296.76 30086.80 34795.73 28097.22 23989.28 27798.89 31493.28 24299.14 21698.46 252
mvsany_test396.21 18095.93 19597.05 16997.40 29794.33 15095.76 20694.20 34289.10 31799.36 2499.60 693.97 18397.85 37895.40 15598.63 27498.99 183
MSDG95.33 21895.13 21895.94 23497.40 29791.85 22891.02 37398.37 20295.30 17196.31 25295.99 30794.51 17098.38 36289.59 31597.65 32497.60 326
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 29992.08 22395.34 23597.65 26897.74 5798.29 11698.11 15795.05 15199.68 12297.50 6099.50 13999.56 50
PS-MVSNAJ94.10 27294.47 25593.00 34197.35 30084.88 34891.86 35597.84 25591.96 27694.17 31592.50 37295.82 12599.71 10291.27 27697.48 33094.40 388
diffmvspermissive96.04 18796.23 17995.46 25697.35 30088.03 29893.42 31699.08 5894.09 21696.66 23396.93 25793.85 18699.29 25796.01 11398.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30292.01 22595.33 23697.65 26897.74 5798.30 11598.14 15195.04 15299.69 11797.55 5899.52 13099.58 39
baseline193.14 30092.64 30194.62 29697.34 30287.20 31796.67 14793.02 35494.71 19396.51 24295.83 31481.64 33398.60 34590.00 31088.06 39998.07 288
AdaColmapbinary95.11 22994.62 24696.58 20097.33 30494.45 14494.92 25898.08 24093.15 24993.98 32495.53 32394.34 17499.10 29385.69 35998.61 27696.20 371
xiu_mvs_v2_base94.22 26694.63 24592.99 34297.32 30584.84 35092.12 35097.84 25591.96 27694.17 31593.43 35496.07 11799.71 10291.27 27697.48 33094.42 387
OpenMVS_ROBcopyleft91.80 1493.64 28893.05 28695.42 25897.31 30691.21 24095.08 25096.68 30581.56 38196.88 22196.41 28890.44 25899.25 26585.39 36497.67 32295.80 375
EI-MVSNet96.63 16296.93 14095.74 24197.26 30788.13 29595.29 24097.65 26896.99 9097.94 15498.19 14792.55 21899.58 16196.91 8099.56 11199.50 62
CVMVSNet92.33 31292.79 29590.95 36997.26 30775.84 40195.29 24092.33 36481.86 37996.27 25498.19 14781.44 33598.46 35794.23 21198.29 29398.55 242
FE-MVS92.95 30292.22 30695.11 27097.21 30988.33 28998.54 2393.66 34889.91 30996.21 25898.14 15170.33 38699.50 18687.79 33898.24 29597.51 330
Fast-Effi-MVS+-dtu96.44 17296.12 18397.39 14597.18 31094.39 14595.46 22398.73 15096.03 13494.72 30394.92 33596.28 11299.69 11793.81 22797.98 30498.09 285
dmvs_re92.08 31891.27 32194.51 30397.16 31192.79 20095.65 21492.64 36194.11 21492.74 35690.98 38883.41 32794.44 40180.72 38594.07 38596.29 369
OpenMVScopyleft94.22 895.48 21195.20 21496.32 21597.16 31191.96 22697.74 7998.84 12287.26 33994.36 31298.01 17293.95 18499.67 12890.70 29698.75 26197.35 337
BH-w/o92.14 31591.94 30992.73 35097.13 31385.30 34092.46 34195.64 32089.33 31594.21 31492.74 36789.60 26998.24 37081.68 38294.66 38194.66 386
MG-MVS94.08 27494.00 27094.32 31097.09 31485.89 33493.19 32495.96 31492.52 26694.93 30197.51 21589.54 27198.77 32487.52 34697.71 31898.31 267
thisisatest051590.43 33589.18 34794.17 31697.07 31585.44 33889.75 38887.58 39588.28 33193.69 33291.72 38065.27 39299.58 16190.59 29898.67 26997.50 332
MVS-HIRNet88.40 35790.20 33882.99 38697.01 31660.04 41193.11 32585.61 40184.45 37388.72 39299.09 5084.72 31898.23 37182.52 38096.59 35590.69 401
GA-MVS92.83 30492.15 30894.87 28596.97 31787.27 31690.03 38296.12 30991.83 27994.05 32094.57 33976.01 36498.97 31192.46 25697.34 33698.36 263
test_yl94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
DCV-MVSNet94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
MVS_Test96.27 17896.79 15094.73 29396.94 32086.63 32696.18 17498.33 20794.94 18696.07 26498.28 13395.25 14799.26 26397.21 6897.90 30998.30 269
MAR-MVS94.21 26893.03 28897.76 10996.94 32097.44 3396.97 12597.15 28587.89 33792.00 36792.73 36892.14 22999.12 28783.92 37397.51 32996.73 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 15096.09 18598.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32294.26 17699.81 3694.06 21798.51 28398.47 250
MS-PatchMatch94.83 24094.91 22994.57 30096.81 32387.10 31994.23 28397.34 27988.74 32497.14 19697.11 24591.94 23698.23 37192.99 24897.92 30798.37 258
dmvs_testset87.30 36686.99 36388.24 38296.71 32477.48 39494.68 26886.81 39992.64 26589.61 38787.01 40185.91 30893.12 40261.04 40688.49 39894.13 389
UGNet96.81 15096.56 16297.58 12196.64 32593.84 16897.75 7797.12 28796.47 11293.62 33398.88 7193.22 19999.53 17895.61 13699.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 23195.01 22495.31 26196.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34794.54 16998.37 36485.70 35898.52 28193.52 392
iter_conf05_1193.77 28093.29 28295.24 26396.54 32789.14 27391.55 35995.02 33390.16 30693.21 34693.94 35087.37 29899.56 16892.24 25799.56 11197.03 344
bld_raw_dy_0_6495.16 22895.16 21795.15 26996.54 32789.06 27596.63 14899.54 1789.68 31298.72 7294.50 34488.64 28299.38 22892.24 25799.93 1197.03 344
PAPM87.64 36285.84 36993.04 33896.54 32784.99 34788.42 39395.57 32479.52 39083.82 40193.05 36280.57 34198.41 35962.29 40592.79 38995.71 376
FMVSNet395.26 22294.94 22596.22 22096.53 33090.06 25595.99 19097.66 26694.11 21497.99 14797.91 18380.22 34399.63 14494.60 19699.44 15598.96 186
HY-MVS91.43 1592.58 30791.81 31294.90 28396.49 33188.87 27897.31 10594.62 33785.92 35490.50 37896.84 26385.05 31499.40 22183.77 37695.78 37096.43 367
TR-MVS92.54 30892.20 30793.57 32696.49 33186.66 32593.51 31494.73 33689.96 30894.95 29993.87 35190.24 26498.61 34381.18 38494.88 37995.45 381
ET-MVSNet_ETH3D91.12 32989.67 34195.47 25596.41 33389.15 27291.54 36090.23 38589.07 31886.78 40092.84 36569.39 38899.44 20694.16 21396.61 35497.82 312
CANet95.86 19595.65 20696.49 20696.41 33390.82 24694.36 27698.41 19694.94 18692.62 36296.73 27292.68 21299.71 10295.12 17299.60 10198.94 189
mvs_anonymous95.36 21696.07 18793.21 33596.29 33581.56 37694.60 27197.66 26693.30 23896.95 21698.91 6893.03 20499.38 22896.60 8697.30 33898.69 228
SCA93.38 29593.52 27992.96 34396.24 33681.40 37893.24 32294.00 34391.58 28494.57 30696.97 25487.94 28999.42 21089.47 31797.66 32398.06 292
LS3D97.77 8697.50 10898.57 4796.24 33697.58 2498.45 3198.85 11998.58 2897.51 17597.94 17995.74 13299.63 14495.19 16298.97 23698.51 246
new_pmnet92.34 31191.69 31594.32 31096.23 33889.16 27192.27 34892.88 35684.39 37495.29 29096.35 29385.66 31096.74 39484.53 37197.56 32697.05 342
MVEpermissive73.61 2286.48 36985.92 36888.18 38396.23 33885.28 34281.78 40175.79 40786.01 35282.53 40391.88 37892.74 21087.47 40671.42 40394.86 38091.78 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
c3_l95.20 22495.32 21194.83 28896.19 34086.43 32991.83 35698.35 20693.47 23297.36 18597.26 23788.69 28099.28 25995.41 15499.36 17798.78 215
DSMNet-mixed92.19 31491.83 31193.25 33296.18 34183.68 36296.27 16693.68 34776.97 39892.54 36399.18 3989.20 27998.55 34983.88 37498.60 27897.51 330
miper_lstm_enhance94.81 24294.80 23794.85 28696.16 34286.45 32891.14 37098.20 22293.49 23197.03 20997.37 23084.97 31699.26 26395.28 15799.56 11198.83 210
our_test_394.20 27094.58 25093.07 33796.16 34281.20 37990.42 37996.84 29690.72 29597.14 19697.13 24390.47 25599.11 29094.04 22098.25 29498.91 197
ppachtmachnet_test94.49 26094.84 23393.46 32896.16 34282.10 37190.59 37797.48 27690.53 29997.01 21197.59 20991.01 24899.36 23793.97 22399.18 21298.94 189
ETVMVS87.62 36385.75 37093.22 33496.15 34583.26 36392.94 32790.37 38391.39 28690.37 37988.45 39751.93 40998.64 34073.76 39896.38 35897.75 317
Patchmatch-test93.60 28993.25 28494.63 29596.14 34687.47 31096.04 18594.50 33993.57 22996.47 24396.97 25476.50 36098.61 34390.67 29798.41 28997.81 314
iter_conf0593.65 28793.05 28695.46 25696.13 34787.45 31195.95 19698.22 21892.66 26497.04 20897.89 18463.52 39599.72 8796.19 10399.82 4799.21 140
wuyk23d93.25 29895.20 21487.40 38596.07 34895.38 10597.04 12294.97 33495.33 16999.70 698.11 15798.14 1791.94 40377.76 39499.68 8274.89 403
eth_miper_zixun_eth94.89 23894.93 22794.75 29295.99 34986.12 33291.35 36398.49 18693.40 23397.12 19897.25 23886.87 30399.35 24195.08 17498.82 25598.78 215
test_fmvs194.51 25994.60 24794.26 31395.91 35087.92 29995.35 23499.02 7686.56 34996.79 22298.52 10282.64 33197.00 38997.87 4398.71 26697.88 308
testing9189.67 34688.55 35193.04 33895.90 35181.80 37592.71 33593.71 34493.71 22490.18 38290.15 39357.11 39899.22 27387.17 35196.32 36098.12 284
CANet_DTU94.65 25294.21 26495.96 23095.90 35189.68 26193.92 30197.83 25793.19 24490.12 38395.64 31988.52 28399.57 16793.27 24399.47 14898.62 235
testing1188.93 35287.63 36092.80 34895.87 35381.49 37792.48 34091.54 37191.62 28188.27 39490.24 39155.12 40799.11 29087.30 34996.28 36297.81 314
DIV-MVS_self_test94.73 24394.64 24395.01 27695.86 35487.00 32091.33 36498.08 24093.34 23697.10 20097.34 23284.02 32399.31 25095.15 16899.55 11898.72 224
cl____94.73 24394.64 24395.01 27695.85 35587.00 32091.33 36498.08 24093.34 23697.10 20097.33 23384.01 32499.30 25395.14 16999.56 11198.71 227
MVSTER94.21 26893.93 27395.05 27495.83 35686.46 32795.18 24597.65 26892.41 27097.94 15498.00 17472.39 37999.58 16196.36 9599.56 11199.12 161
FMVSNet593.39 29492.35 30496.50 20595.83 35690.81 24897.31 10598.27 21292.74 26296.27 25498.28 13362.23 39699.67 12890.86 28699.36 17799.03 176
testing22287.35 36585.50 37292.93 34595.79 35882.83 36592.40 34690.10 38792.80 26188.87 39189.02 39648.34 41098.70 33275.40 39796.74 35097.27 339
testing9989.21 35088.04 35692.70 35195.78 35981.00 38192.65 33692.03 36593.20 24389.90 38690.08 39555.25 40499.14 28387.54 34495.95 36697.97 301
miper_ehance_all_eth94.69 24894.70 24094.64 29495.77 36086.22 33191.32 36698.24 21691.67 28097.05 20796.65 27688.39 28699.22 27394.88 18298.34 29098.49 249
test_vis1_rt94.03 27693.65 27695.17 26895.76 36193.42 18393.97 29998.33 20784.68 36993.17 34795.89 31392.53 22294.79 39893.50 23694.97 37897.31 338
PVSNet_081.89 2184.49 37083.21 37388.34 38195.76 36174.97 40483.49 39892.70 36078.47 39487.94 39586.90 40283.38 32896.63 39573.44 40066.86 40693.40 393
PAPR92.22 31391.27 32195.07 27395.73 36388.81 28091.97 35397.87 25285.80 35690.91 37492.73 36891.16 24598.33 36679.48 38895.76 37198.08 286
baseline289.65 34788.44 35393.25 33295.62 36482.71 36693.82 30485.94 40088.89 32287.35 39892.54 37071.23 38299.33 24586.01 35594.60 38397.72 319
CHOSEN 280x42089.98 34089.19 34692.37 35895.60 36581.13 38086.22 39697.09 28881.44 38387.44 39793.15 35573.99 36999.47 19688.69 32899.07 22896.52 365
ADS-MVSNet291.47 32790.51 33594.36 30895.51 36685.63 33595.05 25395.70 31883.46 37592.69 35796.84 26379.15 34699.41 21985.66 36090.52 39398.04 296
ADS-MVSNet90.95 33390.26 33793.04 33895.51 36682.37 37095.05 25393.41 35183.46 37592.69 35796.84 26379.15 34698.70 33285.66 36090.52 39398.04 296
CR-MVSNet93.29 29792.79 29594.78 29195.44 36888.15 29396.18 17497.20 28284.94 36894.10 31798.57 9777.67 35299.39 22595.17 16495.81 36796.81 357
RPMNet94.68 25094.60 24794.90 28395.44 36888.15 29396.18 17498.86 11597.43 7494.10 31798.49 10579.40 34499.76 6195.69 12995.81 36796.81 357
131492.38 31092.30 30592.64 35295.42 37085.15 34495.86 20196.97 29385.40 36190.62 37593.06 36191.12 24697.80 38086.74 35395.49 37594.97 385
tpm91.08 33190.85 32991.75 36595.33 37178.09 39095.03 25591.27 37588.75 32393.53 33797.40 22271.24 38199.30 25391.25 27893.87 38697.87 309
UWE-MVS87.57 36486.72 36690.13 37595.21 37273.56 40591.94 35483.78 40488.73 32593.00 35092.87 36455.22 40599.25 26581.74 38197.96 30597.59 327
Syy-MVS92.09 31791.80 31392.93 34595.19 37382.65 36792.46 34191.35 37290.67 29791.76 37087.61 39985.64 31198.50 35394.73 19296.84 34597.65 322
myMVS_eth3d87.16 36885.61 37191.82 36495.19 37379.32 38692.46 34191.35 37290.67 29791.76 37087.61 39941.96 41198.50 35382.66 37996.84 34597.65 322
IB-MVS85.98 2088.63 35586.95 36593.68 32495.12 37584.82 35190.85 37490.17 38687.55 33888.48 39391.34 38458.01 39799.59 15987.24 35093.80 38796.63 363
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 28293.57 27894.29 31295.05 37687.32 31596.05 18492.98 35597.54 7094.25 31398.72 8275.79 36599.24 26995.92 11895.81 36796.32 368
tpm288.47 35687.69 35990.79 37094.98 37777.34 39595.09 24891.83 36877.51 39789.40 38896.41 28867.83 39098.73 32883.58 37892.60 39196.29 369
WB-MVSnew91.50 32691.29 31992.14 36194.85 37880.32 38393.29 32188.77 39288.57 32794.03 32192.21 37492.56 21798.28 36980.21 38797.08 33997.81 314
Patchmtry95.03 23494.59 24996.33 21494.83 37990.82 24696.38 15997.20 28296.59 10397.49 17798.57 9777.67 35299.38 22892.95 25099.62 9298.80 213
MVS90.02 33889.20 34592.47 35694.71 38086.90 32295.86 20196.74 30264.72 40390.62 37592.77 36692.54 22098.39 36179.30 38995.56 37492.12 396
CostFormer89.75 34489.25 34291.26 36894.69 38178.00 39295.32 23791.98 36781.50 38290.55 37796.96 25671.06 38398.89 31488.59 33092.63 39096.87 351
PatchmatchNetpermissive91.98 32091.87 31092.30 35994.60 38279.71 38595.12 24693.59 35089.52 31393.61 33497.02 25177.94 35099.18 27690.84 28794.57 38498.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 36087.33 36190.05 37694.48 38376.28 40094.47 27494.35 34173.84 40289.26 38995.61 32173.64 37398.30 36884.13 37286.20 40195.57 380
MDTV_nov1_ep1391.28 32094.31 38473.51 40694.80 26293.16 35386.75 34893.45 34097.40 22276.37 36198.55 34988.85 32596.43 356
cl2293.25 29892.84 29494.46 30594.30 38586.00 33391.09 37296.64 30690.74 29495.79 27596.31 29478.24 34998.77 32494.15 21498.34 29098.62 235
cascas91.89 32191.35 31893.51 32794.27 38685.60 33688.86 39298.61 17479.32 39192.16 36691.44 38389.22 27898.12 37490.80 28997.47 33296.82 356
test-LLR89.97 34189.90 33990.16 37394.24 38774.98 40289.89 38489.06 39092.02 27489.97 38490.77 38973.92 37198.57 34691.88 26597.36 33496.92 348
test-mter87.92 36187.17 36290.16 37394.24 38774.98 40289.89 38489.06 39086.44 35089.97 38490.77 38954.96 40898.57 34691.88 26597.36 33496.92 348
pmmvs390.00 33988.90 34993.32 32994.20 38985.34 33991.25 36792.56 36378.59 39393.82 32595.17 32867.36 39198.69 33489.08 32398.03 30395.92 372
tpmrst90.31 33690.61 33489.41 37794.06 39072.37 40895.06 25293.69 34588.01 33492.32 36596.86 26177.45 35498.82 31991.04 28187.01 40097.04 343
mvsany_test193.47 29293.03 28894.79 29094.05 39192.12 21990.82 37590.01 38885.02 36697.26 18898.28 13393.57 19297.03 38792.51 25595.75 37295.23 383
test0.0.03 190.11 33789.21 34492.83 34793.89 39286.87 32391.74 35788.74 39392.02 27494.71 30491.14 38673.92 37194.48 40083.75 37792.94 38897.16 340
JIA-IIPM91.79 32290.69 33295.11 27093.80 39390.98 24394.16 28791.78 36996.38 11390.30 38199.30 2872.02 38098.90 31388.28 33490.17 39595.45 381
miper_enhance_ethall93.14 30092.78 29794.20 31493.65 39485.29 34189.97 38397.85 25385.05 36496.15 26394.56 34085.74 30999.14 28393.74 22998.34 29098.17 283
TESTMET0.1,187.20 36786.57 36789.07 37893.62 39572.84 40789.89 38487.01 39885.46 36089.12 39090.20 39256.00 40397.72 38190.91 28596.92 34196.64 361
CMPMVSbinary73.10 2392.74 30591.39 31796.77 19093.57 39694.67 13494.21 28597.67 26480.36 38893.61 33496.60 27882.85 33097.35 38484.86 36998.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN89.52 34889.78 34088.73 37993.14 39777.61 39383.26 39992.02 36694.82 19093.71 33093.11 35675.31 36696.81 39185.81 35796.81 34891.77 398
PMMVS92.39 30991.08 32496.30 21793.12 39892.81 19790.58 37895.96 31479.17 39291.85 36992.27 37390.29 26398.66 33989.85 31296.68 35397.43 333
EMVS89.06 35189.22 34388.61 38093.00 39977.34 39582.91 40090.92 37794.64 19692.63 36191.81 37976.30 36297.02 38883.83 37596.90 34391.48 399
dp88.08 35988.05 35588.16 38492.85 40068.81 41094.17 28692.88 35685.47 35991.38 37396.14 30268.87 38998.81 32186.88 35283.80 40396.87 351
gg-mvs-nofinetune88.28 35886.96 36492.23 36092.84 40184.44 35498.19 5274.60 40899.08 1087.01 39999.47 1156.93 39998.23 37178.91 39095.61 37394.01 390
tpmvs90.79 33490.87 32890.57 37292.75 40276.30 39995.79 20593.64 34991.04 29291.91 36896.26 29577.19 35898.86 31889.38 31989.85 39696.56 364
EPMVS89.26 34988.55 35191.39 36792.36 40379.11 38895.65 21479.86 40688.60 32693.12 34896.53 28270.73 38598.10 37590.75 29189.32 39796.98 346
gm-plane-assit91.79 40471.40 40981.67 38090.11 39498.99 30584.86 369
GG-mvs-BLEND90.60 37191.00 40584.21 35898.23 4672.63 41182.76 40284.11 40356.14 40296.79 39272.20 40192.09 39290.78 400
DeepMVS_CXcopyleft77.17 38790.94 40685.28 34274.08 41052.51 40480.87 40588.03 39875.25 36770.63 40759.23 40784.94 40275.62 402
EPNet_dtu91.39 32890.75 33193.31 33090.48 40782.61 36894.80 26292.88 35693.39 23481.74 40494.90 33681.36 33699.11 29088.28 33498.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
miper_refine_blended88.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
EPNet93.72 28392.62 30297.03 17287.61 41092.25 21296.27 16691.28 37496.74 9887.65 39697.39 22685.00 31599.64 14092.14 26099.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 37266.13 37569.11 38862.68 41125.73 41449.76 40296.04 31114.32 40664.27 40791.69 38173.45 37688.05 40576.06 39666.94 40593.54 391
tmp_tt57.23 37362.50 37641.44 38934.77 41249.21 41383.93 39760.22 41315.31 40571.11 40679.37 40470.09 38744.86 40864.76 40482.93 40430.25 404
test12312.59 37515.49 3783.87 3906.07 4132.55 41590.75 3762.59 4152.52 4085.20 41013.02 4074.96 4131.85 4105.20 4089.09 4077.23 405
testmvs12.33 37615.23 3793.64 3915.77 4142.23 41688.99 3913.62 4142.30 4095.29 40913.09 4064.52 4141.95 4095.16 4098.32 4086.75 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.22 37432.30 3770.00 3920.00 4150.00 4170.00 40398.10 2380.00 4100.00 41195.06 33197.54 380.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas7.98 37710.65 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41095.82 1250.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.91 37810.55 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.94 3330.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS79.32 38685.41 363
PC_three_145287.24 34098.37 10197.44 21997.00 6496.78 39392.01 26199.25 20399.21 140
test_241102_TWO98.83 12896.11 12798.62 7698.24 14096.92 7299.72 8795.44 14899.49 14299.49 70
test_0728_THIRD96.62 10098.40 9898.28 13397.10 5599.71 10295.70 12799.62 9299.58 39
GSMVS98.06 292
sam_mvs177.80 35198.06 292
sam_mvs77.38 355
MTGPAbinary98.73 150
test_post194.98 25710.37 40976.21 36399.04 29989.47 317
test_post10.87 40876.83 35999.07 296
patchmatchnet-post96.84 26377.36 35699.42 210
MTMP96.55 15074.60 408
test9_res91.29 27598.89 24799.00 180
agg_prior290.34 30698.90 24499.10 168
test_prior495.38 10593.61 312
test_prior293.33 32094.21 20894.02 32296.25 29693.64 19191.90 26498.96 237
旧先验293.35 31977.95 39695.77 27998.67 33890.74 294
新几何293.43 315
无先验93.20 32397.91 24980.78 38599.40 22187.71 33997.94 304
原ACMM292.82 329
testdata299.46 19987.84 337
segment_acmp95.34 144
testdata192.77 33093.78 222
plane_prior598.75 14799.46 19992.59 25399.20 20899.28 127
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior94.29 15195.42 22694.31 20798.93 242
n20.00 416
nn0.00 416
door-mid98.17 228
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
BP-MVS90.51 301
HQP4-MVS92.87 35299.23 27199.06 173
HQP3-MVS98.43 19298.74 262
HQP2-MVS90.33 259
MDTV_nov1_ep13_2view57.28 41294.89 25980.59 38694.02 32278.66 34885.50 36297.82 312
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 170