This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2499.01 1699.63 1199.66 399.27 299.68 12497.75 4999.89 2699.62 36
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5098.77 7997.80 2599.25 26296.27 9899.69 7798.76 219
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3299.67 299.73 399.65 599.15 399.86 2497.22 6699.92 1599.77 12
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6398.05 4799.61 1399.52 793.72 18799.88 2098.72 2299.88 2799.65 33
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 4998.76 2396.79 22199.34 2596.61 8998.82 31296.38 9499.50 13796.98 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10098.49 3199.38 2299.14 4695.44 13999.84 3096.47 9199.80 5199.47 80
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18098.58 2799.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2996.23 12199.71 499.48 1098.77 799.93 398.89 1599.95 599.84 5
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3096.91 9299.75 299.45 1395.82 12299.92 598.80 1799.96 499.89 1
RRT_MVS97.95 5897.79 7298.43 5799.67 1295.56 9398.86 1096.73 30297.99 4999.15 3699.35 2389.84 26499.90 1498.64 2499.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4695.83 14799.67 799.37 1998.25 1399.92 598.77 1899.94 899.82 6
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4499.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7296.50 10999.32 2699.44 1497.43 3999.92 598.73 2099.95 599.86 2
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3495.62 15699.35 2599.37 1997.38 4199.90 1498.59 2699.91 1899.77 12
APD_test197.95 5897.68 8398.75 3199.60 1798.60 597.21 11299.08 5596.57 10798.07 13898.38 11796.22 11199.14 27894.71 19399.31 19398.52 245
FOURS199.59 1898.20 799.03 799.25 2898.96 1898.87 54
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4199.33 599.30 2799.00 5597.27 4699.92 597.64 5599.92 1599.75 19
EGC-MVSNET83.08 36077.93 36398.53 5099.57 2097.55 2698.33 3898.57 1774.71 39710.38 39898.90 7095.60 13499.50 18595.69 12899.61 9798.55 242
Baseline_NR-MVSNet97.72 9097.79 7297.50 13299.56 2193.29 18795.44 22298.86 11198.20 4298.37 9999.24 3294.69 15899.55 17295.98 11499.79 5399.65 33
SixPastTwentyTwo97.49 10797.57 9997.26 15399.56 2192.33 20898.28 4296.97 29198.30 3899.45 1899.35 2388.43 28199.89 1898.01 3899.76 5999.54 54
tt080597.44 11197.56 10097.11 16299.55 2396.36 6398.66 1895.66 31798.31 3697.09 20395.45 32597.17 5298.50 34498.67 2397.45 32996.48 356
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4599.22 899.22 3398.96 6197.35 4299.92 597.79 4799.93 1199.79 10
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4999.36 499.29 2899.06 5297.27 4699.93 397.71 5199.91 1899.70 26
bld_raw_dy_0_6497.69 9297.61 9597.91 10099.54 2694.27 15498.06 5998.60 17196.60 10198.79 6298.95 6389.62 26599.84 3098.43 3099.91 1899.62 36
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7095.88 14397.88 15798.22 14498.15 1699.74 7796.50 9099.62 9199.42 97
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 15997.21 6799.76 5999.40 100
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9497.71 6198.85 5599.10 4891.35 24099.83 3398.47 2899.90 2499.64 35
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8197.57 6799.27 2999.22 3498.32 1299.50 18597.09 7399.75 6499.50 63
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 10898.23 4099.48 1699.27 3098.47 1199.55 17296.52 8999.53 12399.60 38
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3699.05 1399.17 3598.79 7695.47 13799.89 1897.95 4099.91 1899.75 19
PMVScopyleft89.60 1796.71 15596.97 13595.95 23199.51 3197.81 1697.42 10397.49 27397.93 5095.95 26698.58 9796.88 7596.91 38089.59 31299.36 17593.12 385
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVS-pluss97.69 9297.36 11398.70 3899.50 3496.84 4795.38 22998.99 8492.45 26598.11 13198.31 12397.25 4999.77 5796.60 8699.62 9199.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3098.43 3298.89 5298.83 7594.30 17299.81 3797.87 4299.91 1899.77 12
VPNet97.26 12397.49 10896.59 19799.47 3690.58 24996.27 16698.53 17997.77 5498.46 9198.41 11394.59 16399.68 12494.61 19499.29 19699.52 59
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 11899.05 1399.01 4498.65 9295.37 14099.90 1497.57 5699.91 1899.77 12
XXY-MVS97.54 10497.70 7997.07 16699.46 3792.21 21297.22 11199.00 8194.93 18898.58 7998.92 6697.31 4499.41 21894.44 19999.43 16199.59 39
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14697.69 6397.90 15597.96 17595.81 12699.82 3596.13 10499.61 9799.45 86
SteuartSystems-ACMMP98.02 5097.76 7798.79 2999.43 4097.21 4197.15 11498.90 9996.58 10498.08 13697.87 18697.02 6299.76 6295.25 15899.59 10299.40 100
Skip Steuart: Steuart Systems R&D Blog.
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6397.40 7999.37 2399.08 5198.79 699.47 19597.74 5099.71 7399.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6395.43 16797.41 18297.50 21697.98 1999.79 4595.58 13899.57 10799.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SDMVSNet97.97 5298.26 3997.11 16299.41 4392.21 21296.92 12798.60 17198.58 2898.78 6399.39 1697.80 2599.62 14994.98 18099.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21198.58 2898.78 6399.39 1698.21 1499.56 16892.65 25099.86 3199.52 59
K. test v396.44 16996.28 17596.95 17399.41 4391.53 23197.65 8490.31 37798.89 2098.93 4999.36 2184.57 31499.92 597.81 4599.56 11099.39 103
VDDNet96.98 13596.84 14397.41 14499.40 4693.26 18997.94 6595.31 32899.26 798.39 9899.18 3987.85 29099.62 14995.13 17099.09 22399.35 113
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3298.21 4199.25 3198.51 10598.21 1499.40 22094.79 18699.72 7099.32 114
TSAR-MVS + MP.97.42 11397.23 12198.00 9599.38 4995.00 12597.63 8698.20 21993.00 25098.16 12698.06 16595.89 11799.72 8895.67 13099.10 22299.28 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4798.04 4898.62 7498.66 8993.75 18699.78 4897.23 6599.84 4099.73 22
lessismore_v097.05 16799.36 5192.12 21784.07 39398.77 6798.98 5885.36 30899.74 7797.34 6499.37 17299.30 119
Anonymous2024052197.07 12897.51 10595.76 23999.35 5288.18 28997.78 7398.40 19597.11 8798.34 10599.04 5389.58 26799.79 4598.09 3599.93 1199.30 119
ACMMP_NAP97.89 7297.63 9198.67 4099.35 5296.84 4796.36 16198.79 13495.07 18197.88 15798.35 11997.24 5099.72 8896.05 10799.58 10499.45 86
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16499.11 4796.75 8399.86 2497.84 4499.36 17599.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high98.31 3198.94 696.41 21199.33 5489.64 26197.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5799.98 299.77 12
ZNCC-MVS97.92 6697.62 9398.83 2599.32 5697.24 3997.45 9998.84 11895.76 14996.93 21597.43 22097.26 4899.79 4596.06 10599.53 12399.45 86
MP-MVScopyleft97.64 9697.18 12399.00 999.32 5697.77 1797.49 9898.73 14696.27 11895.59 28197.75 19796.30 10699.78 4893.70 23199.48 14499.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SSC-MVS95.92 18997.03 13292.58 34599.28 5878.39 38096.68 14695.12 33098.90 1999.11 3998.66 8991.36 23999.68 12495.00 17799.16 21299.67 28
PVSNet_Blended_VisFu95.95 18895.80 19796.42 20999.28 5890.62 24895.31 23699.08 5588.40 31996.97 21398.17 14992.11 22699.78 4893.64 23299.21 20598.86 208
tfpnnormal97.72 9097.97 5596.94 17499.26 6092.23 21197.83 7298.45 18698.25 3999.13 3898.66 8996.65 8699.69 11993.92 22399.62 9198.91 197
MSP-MVS97.45 11096.92 14099.03 599.26 6097.70 1897.66 8398.89 10095.65 15498.51 8396.46 28692.15 22499.81 3795.14 16898.58 27799.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi96.07 18296.50 16694.80 28699.26 6087.69 30495.96 19498.58 17695.08 18098.02 14496.25 29697.92 2097.60 37388.68 32698.74 26099.11 164
IS-MVSNet96.93 13796.68 15297.70 11499.25 6394.00 16298.57 2096.74 30098.36 3498.14 12997.98 17488.23 28399.71 10493.10 24699.72 7099.38 105
DVP-MVScopyleft97.78 8597.65 8698.16 7999.24 6495.51 9796.74 13998.23 21495.92 14098.40 9698.28 13297.06 5899.71 10495.48 14399.52 12899.26 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6495.51 9796.89 12998.89 10095.92 14098.64 7298.31 12397.06 58
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10099.75 6895.48 14399.52 12899.53 57
GST-MVS97.82 8197.49 10898.81 2799.23 6697.25 3897.16 11398.79 13495.96 13797.53 17197.40 22296.93 6999.77 5795.04 17499.35 18099.42 97
ACMMPcopyleft98.05 4897.75 7898.93 1899.23 6697.60 2298.09 5798.96 9195.75 15197.91 15498.06 16596.89 7399.76 6295.32 15599.57 10799.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6992.81 19797.55 9298.94 9497.10 8898.85 5598.88 7295.03 15099.67 13097.39 6399.65 8699.26 131
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12496.11 12799.08 4098.24 13997.87 2399.72 8895.44 14799.51 13399.14 154
IU-MVS99.22 6995.40 10398.14 23285.77 34798.36 10295.23 16099.51 13399.49 71
test_241102_ONE99.22 6995.35 10898.83 12496.04 13299.08 4098.13 15297.87 2399.33 243
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5598.31 3699.02 4398.74 8297.68 3099.61 15697.77 4899.85 3899.70 26
region2R97.92 6697.59 9798.92 2199.22 6997.55 2697.60 8798.84 11896.00 13597.22 18797.62 20796.87 7799.76 6295.48 14399.43 16199.46 82
mPP-MVS97.91 6997.53 10399.04 499.22 6997.87 1497.74 7998.78 13896.04 13297.10 19897.73 20096.53 9399.78 4895.16 16599.50 13799.46 82
WB-MVS95.50 20596.62 15492.11 35399.21 7677.26 38896.12 18095.40 32798.62 2698.84 5798.26 13791.08 24399.50 18593.37 23698.70 26599.58 40
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3798.34 3598.78 6398.52 10397.32 4399.45 20294.08 21599.67 8399.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPR97.95 5897.62 9398.94 1599.20 7897.56 2597.59 8998.83 12496.05 13097.46 18097.63 20696.77 8299.76 6295.61 13599.46 14999.49 71
PGM-MVS97.88 7397.52 10498.96 1399.20 7897.62 2197.09 11999.06 5995.45 16497.55 17097.94 17897.11 5399.78 4894.77 18999.46 14999.48 77
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14698.66 2598.56 8098.41 11396.84 7999.69 11994.82 18499.81 4898.64 232
EPP-MVSNet96.84 14296.58 15797.65 11899.18 8193.78 17198.68 1496.34 30597.91 5197.30 18498.06 16588.46 28099.85 2793.85 22599.40 16999.32 114
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8292.51 20496.57 14999.15 4193.68 22798.89 5299.30 2896.42 10199.37 23299.03 1199.83 4399.66 30
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
XVG-ACMP-BASELINE97.58 10297.28 11898.49 5299.16 8396.90 4696.39 15698.98 8795.05 18298.06 13998.02 16995.86 11899.56 16894.37 20499.64 8899.00 180
CHOSEN 1792x268894.10 26993.41 27896.18 22199.16 8390.04 25592.15 34198.68 15879.90 37996.22 25597.83 18887.92 28999.42 20989.18 31899.65 8699.08 169
HFP-MVS97.94 6297.64 8998.83 2599.15 8697.50 2997.59 8998.84 11896.05 13097.49 17597.54 21297.07 5799.70 11295.61 13599.46 14999.30 119
XVS97.96 5497.63 9198.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24897.64 20596.49 9699.72 8895.66 13199.37 17299.45 86
X-MVStestdata92.86 29990.83 32598.94 1599.15 8697.66 1997.77 7498.83 12497.42 7596.32 24836.50 39596.49 9699.72 8895.66 13199.37 17299.45 86
LPG-MVS_test97.94 6297.67 8498.74 3499.15 8697.02 4297.09 11999.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7295.15 17798.34 10598.23 14197.91 2199.70 11294.41 20199.73 6699.50 63
RPSCF97.87 7497.51 10598.95 1499.15 8698.43 697.56 9199.06 5996.19 12498.48 8898.70 8694.72 15799.24 26594.37 20499.33 18899.17 148
ACMM93.33 1198.05 4897.79 7298.85 2499.15 8697.55 2696.68 14698.83 12495.21 17398.36 10298.13 15298.13 1899.62 14996.04 10899.54 11999.39 103
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16397.41 7899.00 4699.19 3695.47 13799.73 8395.83 12399.76 5999.30 119
Vis-MVSNet (Re-imp)95.11 22594.85 22895.87 23699.12 9489.17 26997.54 9794.92 33296.50 10996.58 23597.27 23683.64 32099.48 19388.42 32999.67 8398.97 185
dcpmvs_297.12 12697.99 5494.51 30099.11 9584.00 35697.75 7799.65 997.38 8099.14 3798.42 11295.16 14699.96 295.52 13999.78 5699.58 40
OPM-MVS97.54 10497.25 11998.41 5999.11 9596.61 5695.24 24098.46 18594.58 20098.10 13398.07 16097.09 5699.39 22495.16 16599.44 15399.21 139
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2399.08 1097.87 16099.67 296.47 9899.92 597.88 4199.98 299.85 3
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18199.09 9891.43 23596.37 16099.11 4794.19 21099.01 4499.25 3196.30 10699.38 22799.00 1299.88 2799.73 22
AllTest97.20 12596.92 14098.06 8899.08 9996.16 7097.14 11699.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
TestCases98.06 8899.08 9996.16 7099.16 3794.35 20597.78 16598.07 16095.84 11999.12 28191.41 27099.42 16498.91 197
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6398.67 2498.84 5798.45 11097.58 3699.88 2096.45 9299.86 3199.54 54
test111194.53 25594.81 23293.72 31999.06 10281.94 36998.31 3983.87 39496.37 11498.49 8699.17 4281.49 32999.73 8396.64 8499.86 3199.49 71
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8198.40 3399.07 4298.98 5896.89 7399.75 6897.19 7099.79 5399.55 53
114514_t93.96 27493.22 28196.19 22099.06 10290.97 24295.99 19098.94 9473.88 39193.43 33896.93 25792.38 22299.37 23289.09 31999.28 19798.25 275
EG-PatchMatch MVS97.69 9297.79 7297.40 14599.06 10293.52 18095.96 19498.97 9094.55 20198.82 5998.76 8197.31 4499.29 25497.20 6999.44 15399.38 105
test_one_060199.05 10695.50 10098.87 10897.21 8698.03 14398.30 12796.93 69
ACMP92.54 1397.47 10997.10 12698.55 4999.04 10796.70 5196.24 17198.89 10093.71 22597.97 14997.75 19797.44 3899.63 14493.22 24399.70 7699.32 114
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_fmvsmvis_n_192098.08 4598.47 2696.93 17599.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 303
test_part299.03 10896.07 7498.08 136
XVG-OURS-SEG-HR97.38 11597.07 12998.30 6899.01 11097.41 3494.66 26799.02 7295.20 17498.15 12897.52 21498.83 598.43 34994.87 18296.41 35199.07 171
XVG-OURS97.12 12696.74 14998.26 7098.99 11197.45 3293.82 30299.05 6395.19 17598.32 10997.70 20295.22 14598.41 35094.27 20898.13 29698.93 193
CP-MVS97.92 6697.56 10098.99 1098.99 11197.82 1597.93 6698.96 9196.11 12796.89 21897.45 21896.85 7899.78 4895.19 16199.63 9099.38 105
test250689.86 33889.16 34391.97 35498.95 11376.83 38998.54 2361.07 40296.20 12297.07 20499.16 4355.19 39999.69 11996.43 9399.83 4399.38 105
ECVR-MVScopyleft94.37 26194.48 25094.05 31598.95 11383.10 36098.31 3982.48 39596.20 12298.23 11899.16 4381.18 33299.66 13695.95 11599.83 4399.38 105
CSCG97.40 11497.30 11697.69 11698.95 11394.83 12897.28 10798.99 8496.35 11798.13 13095.95 31195.99 11599.66 13694.36 20699.73 6698.59 238
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
SF-MVS97.60 10097.39 11198.22 7598.93 11795.69 8897.05 12199.10 4995.32 17097.83 16397.88 18596.44 10099.72 8894.59 19899.39 17099.25 135
HyFIR lowres test93.72 27992.65 29696.91 17898.93 11791.81 22891.23 35898.52 18082.69 36796.46 24296.52 28480.38 33799.90 1490.36 30298.79 25599.03 176
PM-MVS97.36 11997.10 12698.14 8298.91 11996.77 4996.20 17398.63 16993.82 22298.54 8198.33 12193.98 17999.05 29195.99 11399.45 15298.61 237
CPTT-MVS96.69 15696.08 18398.49 5298.89 12096.64 5597.25 10898.77 13992.89 25696.01 26597.13 24392.23 22399.67 13092.24 25699.34 18399.17 148
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12193.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14199.21 799.87 2998.69 228
patch_mono-296.59 16196.93 13895.55 25098.88 12187.12 31594.47 27299.30 2494.12 21396.65 23398.41 11394.98 15399.87 2295.81 12599.78 5699.66 30
GeoE97.75 8797.70 7997.89 10298.88 12194.53 14097.10 11898.98 8795.75 15197.62 16897.59 20997.61 3599.77 5796.34 9699.44 15399.36 111
DPE-MVScopyleft97.64 9697.35 11498.50 5198.85 12496.18 6995.21 24298.99 8495.84 14698.78 6398.08 15896.84 7999.81 3793.98 22199.57 10799.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft97.48 10897.11 12598.60 4598.83 12596.67 5396.74 13998.73 14691.61 27798.48 8898.36 11896.53 9399.68 12495.17 16399.54 11999.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.60 9199.76 6295.49 14099.20 20699.26 131
RE-MVS-def97.88 6498.81 12698.05 997.55 9298.86 11197.77 5498.20 12098.07 16096.94 6795.49 14099.20 20699.26 131
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12892.51 20496.25 17099.06 5993.67 22898.64 7299.00 5596.23 11099.36 23598.99 1399.80 5199.53 57
UniMVSNet (Re)97.83 7897.65 8698.35 6498.80 12895.86 8395.92 19899.04 6997.51 7298.22 11997.81 19294.68 16099.78 4897.14 7199.75 6499.41 99
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18598.79 13091.44 23496.14 17999.06 5994.19 21098.82 5998.98 5896.22 11199.38 22798.98 1499.86 3199.58 40
Anonymous2023121198.55 2098.76 1397.94 9998.79 13094.37 14798.84 1199.15 4199.37 399.67 799.43 1595.61 13399.72 8898.12 3399.86 3199.73 22
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13097.31 3697.55 9298.92 9797.72 5998.25 11698.13 15297.10 5499.75 6895.44 14799.24 20499.32 114
DeepC-MVS95.41 497.82 8197.70 7998.16 7998.78 13395.72 8696.23 17299.02 7293.92 22098.62 7498.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS98.00 5197.66 8599.01 898.77 13497.93 1197.38 10498.83 12497.32 8298.06 13997.85 18796.65 8699.77 5795.00 17799.11 22099.32 114
MCST-MVS96.24 17695.80 19797.56 12398.75 13594.13 15894.66 26798.17 22590.17 29996.21 25696.10 30595.14 14799.43 20794.13 21498.85 24999.13 156
DU-MVS97.79 8497.60 9698.36 6398.73 13695.78 8495.65 21298.87 10897.57 6798.31 11197.83 18894.69 15899.85 2797.02 7699.71 7399.46 82
NR-MVSNet97.96 5497.86 6598.26 7098.73 13695.54 9598.14 5498.73 14697.79 5399.42 2097.83 18894.40 17099.78 4895.91 11899.76 5999.46 82
Anonymous2023120695.27 21895.06 21995.88 23598.72 13889.37 26695.70 20697.85 25188.00 32596.98 21297.62 20791.95 23199.34 24189.21 31799.53 12398.94 189
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13896.04 7598.07 5899.10 4995.96 13798.59 7898.69 8796.94 6799.81 3796.64 8499.58 10499.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_NR-MVSNet97.83 7897.65 8698.37 6298.72 13895.78 8495.66 21099.02 7298.11 4498.31 11197.69 20394.65 16299.85 2797.02 7699.71 7399.48 77
tttt051793.31 29292.56 29995.57 24798.71 14187.86 29897.44 10087.17 38895.79 14897.47 17996.84 26364.12 38999.81 3796.20 10199.32 19099.02 179
v897.60 10098.06 4796.23 21798.71 14189.44 26597.43 10298.82 13297.29 8498.74 6999.10 4893.86 18299.68 12498.61 2599.94 899.56 51
HQP_MVS96.66 15896.33 17497.68 11798.70 14394.29 15096.50 15298.75 14396.36 11596.16 25996.77 26991.91 23499.46 19892.59 25299.20 20699.28 126
plane_prior798.70 14394.67 134
Anonymous2024052997.96 5498.04 4997.71 11398.69 14594.28 15397.86 7098.31 20898.79 2299.23 3298.86 7495.76 12899.61 15695.49 14099.36 17599.23 137
VDD-MVS97.37 11797.25 11997.74 11198.69 14594.50 14397.04 12295.61 32198.59 2798.51 8398.72 8392.54 21699.58 16196.02 11099.49 14099.12 161
EC-MVSNet97.90 7197.94 5897.79 10898.66 14795.14 12198.31 3999.66 897.57 6795.95 26697.01 25396.99 6499.82 3597.66 5499.64 8898.39 256
HPM-MVS++copyleft96.99 13296.38 17198.81 2798.64 14897.59 2395.97 19298.20 21995.51 16295.06 29396.53 28294.10 17699.70 11294.29 20799.15 21399.13 156
ab-mvs96.59 16196.59 15696.60 19698.64 14892.21 21298.35 3597.67 26294.45 20296.99 21098.79 7694.96 15499.49 19090.39 30199.07 22698.08 284
F-COLMAP95.30 21794.38 25598.05 9298.64 14896.04 7595.61 21698.66 16389.00 31293.22 34296.40 29092.90 20399.35 23987.45 34397.53 32498.77 218
ITE_SJBPF97.85 10598.64 14896.66 5498.51 18295.63 15597.22 18797.30 23595.52 13598.55 34090.97 28098.90 24298.34 264
test_fmvs397.38 11597.56 10096.84 18398.63 15292.81 19797.60 8799.61 1390.87 28798.76 6899.66 394.03 17897.90 36799.24 699.68 8199.81 8
v14896.58 16396.97 13595.42 25798.63 15287.57 30595.09 24697.90 24895.91 14298.24 11797.96 17593.42 19299.39 22496.04 10899.52 12899.29 125
UnsupCasMVSNet_bld94.72 24394.26 25796.08 22598.62 15490.54 25293.38 31698.05 24490.30 29697.02 20896.80 26889.54 26899.16 27688.44 32896.18 35498.56 240
DP-MVS97.87 7497.89 6297.81 10798.62 15494.82 12997.13 11798.79 13498.98 1798.74 6998.49 10695.80 12799.49 19095.04 17499.44 15399.11 164
v1097.55 10397.97 5596.31 21598.60 15689.64 26197.44 10099.02 7296.60 10198.72 7199.16 4393.48 19199.72 8898.76 1999.92 1599.58 40
Test_1112_low_res93.53 28792.86 28895.54 25198.60 15688.86 27692.75 32798.69 15682.66 36892.65 35496.92 25984.75 31299.56 16890.94 28197.76 31098.19 280
V4297.04 12997.16 12496.68 19498.59 15891.05 23996.33 16398.36 20094.60 19797.99 14598.30 12793.32 19399.62 14997.40 6299.53 12399.38 105
1112_ss94.12 26893.42 27796.23 21798.59 15890.85 24394.24 28098.85 11585.49 34892.97 34694.94 33386.01 30299.64 14191.78 26697.92 30398.20 279
v2v48296.78 14997.06 13095.95 23198.57 16088.77 27995.36 23098.26 21095.18 17697.85 16298.23 14192.58 21399.63 14497.80 4699.69 7799.45 86
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17298.57 16092.10 22095.97 19299.18 3597.67 6699.00 4698.48 10997.64 3399.50 18596.96 7899.54 11999.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS96.90 14096.81 14597.16 15898.56 16292.20 21594.33 27598.12 23497.34 8198.20 12097.33 23392.81 20499.75 6894.79 18699.81 4899.54 54
test_vis1_n_192095.77 19596.41 16993.85 31698.55 16384.86 34695.91 19999.71 492.72 25997.67 16798.90 7087.44 29398.73 32197.96 3998.85 24997.96 299
APD-MVScopyleft97.00 13196.53 16398.41 5998.55 16396.31 6696.32 16498.77 13992.96 25597.44 18197.58 21195.84 11999.74 7791.96 25999.35 18099.19 144
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmatch-RL test94.66 24794.49 24995.19 26498.54 16588.91 27492.57 33198.74 14591.46 28098.32 10997.75 19777.31 35298.81 31496.06 10599.61 9797.85 307
9.1496.69 15198.53 16696.02 18798.98 8793.23 23997.18 19297.46 21796.47 9899.62 14992.99 24799.32 190
CS-MVS-test97.91 6997.84 6698.14 8298.52 16796.03 7798.38 3499.67 698.11 4495.50 28396.92 25996.81 8199.87 2296.87 8199.76 5998.51 246
baseline97.44 11197.78 7696.43 20798.52 16790.75 24796.84 13099.03 7096.51 10897.86 16198.02 16996.67 8599.36 23597.09 7399.47 14699.19 144
casdiffmvspermissive97.50 10697.81 7196.56 20198.51 16991.04 24095.83 20299.09 5497.23 8598.33 10898.30 12797.03 6199.37 23296.58 8899.38 17199.28 126
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS96.92 13897.29 11795.79 23898.51 16988.13 29295.10 24598.66 16396.99 8998.46 9198.68 8892.55 21499.74 7796.91 7999.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS Recon95.55 20495.13 21496.80 18598.51 16993.99 16394.60 26998.69 15690.20 29895.78 27596.21 29892.73 20898.98 30090.58 29698.86 24897.42 327
h-mvs3396.29 17495.63 20498.26 7098.50 17296.11 7396.90 12897.09 28696.58 10497.21 18998.19 14684.14 31699.78 4895.89 11996.17 35598.89 201
test20.0396.58 16396.61 15596.48 20598.49 17391.72 22995.68 20997.69 26196.81 9598.27 11597.92 18194.18 17598.71 32490.78 28799.66 8599.00 180
plane_prior198.49 173
save fliter98.48 17594.71 13194.53 27198.41 19395.02 184
MDA-MVSNet-bldmvs95.69 19795.67 20195.74 24098.48 17588.76 28092.84 32497.25 27896.00 13597.59 16997.95 17791.38 23899.46 19893.16 24596.35 35298.99 183
UnsupCasMVSNet_eth95.91 19095.73 20096.44 20698.48 17591.52 23295.31 23698.45 18695.76 14997.48 17797.54 21289.53 27098.69 32694.43 20094.61 37299.13 156
CS-MVS98.09 4498.01 5298.32 6598.45 17896.69 5298.52 2699.69 598.07 4696.07 26297.19 24196.88 7599.86 2497.50 5999.73 6698.41 253
test_vis3_rt97.04 12996.98 13497.23 15698.44 17995.88 8096.82 13299.67 690.30 29699.27 2999.33 2794.04 17796.03 38697.14 7197.83 30799.78 11
ZD-MVS98.43 18095.94 7998.56 17890.72 28996.66 23197.07 24795.02 15199.74 7791.08 27798.93 240
thisisatest053092.71 30291.76 31095.56 24998.42 18188.23 28796.03 18687.35 38794.04 21796.56 23795.47 32464.03 39099.77 5794.78 18899.11 22098.68 231
v114496.84 14297.08 12896.13 22498.42 18189.28 26895.41 22698.67 16194.21 20897.97 14998.31 12393.06 19899.65 13898.06 3799.62 9199.45 86
plane_prior698.38 18394.37 14791.91 234
FPMVS89.92 33788.63 34593.82 31798.37 18496.94 4591.58 34993.34 34888.00 32590.32 37497.10 24670.87 37991.13 39471.91 39296.16 35693.39 384
PAPM_NR94.61 25094.17 26295.96 22998.36 18591.23 23795.93 19797.95 24592.98 25193.42 33994.43 34590.53 25098.38 35387.60 33996.29 35398.27 273
MVS_111021_HR96.73 15296.54 16297.27 15298.35 18693.66 17693.42 31498.36 20094.74 19196.58 23596.76 27196.54 9298.99 29894.87 18299.27 19999.15 151
TAMVS95.49 20694.94 22197.16 15898.31 18793.41 18495.07 24996.82 29691.09 28597.51 17397.82 19189.96 26199.42 20988.42 32999.44 15398.64 232
OMC-MVS96.48 16796.00 18697.91 10098.30 18896.01 7894.86 25998.60 17191.88 27497.18 19297.21 24096.11 11399.04 29290.49 30099.34 18398.69 228
新几何197.25 15498.29 18994.70 13397.73 25977.98 38594.83 30096.67 27592.08 22899.45 20288.17 33398.65 27197.61 319
jason94.39 26094.04 26595.41 25998.29 18987.85 30092.74 32996.75 29985.38 35295.29 28896.15 30088.21 28499.65 13894.24 20999.34 18398.74 221
jason: jason.
v119296.83 14597.06 13096.15 22398.28 19189.29 26795.36 23098.77 13993.73 22498.11 13198.34 12093.02 20299.67 13098.35 3199.58 10499.50 63
CDPH-MVS95.45 21194.65 23897.84 10698.28 19194.96 12693.73 30698.33 20485.03 35595.44 28496.60 27895.31 14299.44 20590.01 30699.13 21699.11 164
MVS_111021_LR96.82 14696.55 16097.62 12098.27 19395.34 11093.81 30498.33 20494.59 19996.56 23796.63 27796.61 8998.73 32194.80 18599.34 18398.78 215
CLD-MVS95.47 20995.07 21796.69 19398.27 19392.53 20391.36 35298.67 16191.22 28495.78 27594.12 34895.65 13298.98 30090.81 28599.72 7098.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous20240521196.34 17395.98 18897.43 14198.25 19593.85 16796.74 13994.41 33797.72 5998.37 9998.03 16887.15 29599.53 17794.06 21699.07 22698.92 196
pmmvs-eth3d96.49 16696.18 17997.42 14398.25 19594.29 15094.77 26398.07 24289.81 30397.97 14998.33 12193.11 19799.08 28895.46 14699.84 4098.89 201
v14419296.69 15696.90 14296.03 22698.25 19588.92 27395.49 22098.77 13993.05 24898.09 13498.29 13192.51 21999.70 11298.11 3499.56 11099.47 80
ambc96.56 20198.23 19891.68 23097.88 6998.13 23398.42 9498.56 10094.22 17499.04 29294.05 21899.35 18098.95 187
test_cas_vis1_n_192095.34 21495.67 20194.35 30698.21 19986.83 32195.61 21699.26 2790.45 29498.17 12598.96 6184.43 31598.31 35896.74 8299.17 21197.90 303
thres100view90091.76 31991.26 31893.26 32898.21 19984.50 35096.39 15690.39 37596.87 9396.33 24793.08 35773.44 37299.42 20978.85 38397.74 31195.85 363
v192192096.72 15396.96 13795.99 22798.21 19988.79 27895.42 22498.79 13493.22 24098.19 12498.26 13792.68 20999.70 11298.34 3299.55 11699.49 71
thres600view792.03 31591.43 31293.82 31798.19 20284.61 34996.27 16690.39 37596.81 9596.37 24693.11 35373.44 37299.49 19080.32 37997.95 30297.36 328
PatchMatch-RL94.61 25093.81 27197.02 17198.19 20295.72 8693.66 30797.23 27988.17 32394.94 29895.62 32091.43 23798.57 33787.36 34497.68 31796.76 349
LF4IMVS96.07 18295.63 20497.36 14798.19 20295.55 9495.44 22298.82 13292.29 26895.70 27996.55 28092.63 21298.69 32691.75 26899.33 18897.85 307
test_vis1_n95.67 19995.89 19495.03 27298.18 20589.89 25896.94 12699.28 2688.25 32298.20 12098.92 6686.69 29997.19 37597.70 5398.82 25398.00 298
v124096.74 15097.02 13395.91 23498.18 20588.52 28195.39 22898.88 10693.15 24698.46 9198.40 11692.80 20599.71 10498.45 2999.49 14099.49 71
TAPA-MVS93.32 1294.93 23294.23 25897.04 16998.18 20594.51 14195.22 24198.73 14681.22 37496.25 25495.95 31193.80 18598.98 30089.89 30898.87 24697.62 318
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.17 20893.24 19092.74 32997.61 27175.17 38994.65 30396.69 27490.96 24698.66 26997.66 315
MIMVSNet93.42 28992.86 28895.10 26998.17 20888.19 28898.13 5593.69 34192.07 26995.04 29698.21 14580.95 33599.03 29581.42 37698.06 29998.07 286
原ACMM196.58 19898.16 21092.12 21798.15 23185.90 34593.49 33596.43 28792.47 22099.38 22787.66 33898.62 27398.23 276
testdata95.70 24398.16 21090.58 24997.72 26080.38 37795.62 28097.02 25192.06 22998.98 30089.06 32198.52 27997.54 322
test_fmvs1_n95.21 22095.28 20994.99 27598.15 21289.13 27296.81 13399.43 2086.97 33597.21 18998.92 6683.00 32497.13 37698.09 3598.94 23898.72 224
MVP-Stereo95.69 19795.28 20996.92 17698.15 21293.03 19395.64 21598.20 21990.39 29596.63 23497.73 20091.63 23699.10 28691.84 26497.31 33398.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS97.37 11797.70 7996.35 21298.14 21495.13 12296.54 15198.92 9795.94 13999.19 3498.08 15897.74 2895.06 38795.24 15999.54 11998.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet94.25 26294.47 25193.60 32298.14 21482.60 36497.24 11092.72 35585.08 35398.48 8898.94 6482.59 32798.76 31997.47 6199.53 12399.44 95
NP-MVS98.14 21493.72 17295.08 329
LCM-MVSNet-Re97.33 12097.33 11597.32 14998.13 21793.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30499.06 22998.32 265
3Dnovator+96.13 397.73 8897.59 9798.15 8198.11 21895.60 9298.04 6098.70 15598.13 4396.93 21598.45 11095.30 14399.62 14995.64 13398.96 23599.24 136
VNet96.84 14296.83 14496.88 17998.06 21992.02 22296.35 16297.57 27297.70 6297.88 15797.80 19392.40 22199.54 17594.73 19198.96 23599.08 169
LFMVS95.32 21694.88 22796.62 19598.03 22091.47 23397.65 8490.72 37499.11 997.89 15698.31 12379.20 34099.48 19393.91 22499.12 21998.93 193
tfpn200view991.55 32191.00 32093.21 33198.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31195.85 363
thres40091.68 32091.00 32093.71 32098.02 22184.35 35295.70 20690.79 37296.26 11995.90 27192.13 37173.62 36999.42 20978.85 38397.74 31197.36 328
OPU-MVS97.64 11998.01 22395.27 11396.79 13697.35 23196.97 6598.51 34391.21 27699.25 20199.14 154
xiu_mvs_v1_base_debu95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
xiu_mvs_v1_base_debi95.62 20195.96 18994.60 29498.01 22388.42 28293.99 29498.21 21692.98 25195.91 26894.53 34196.39 10299.72 8895.43 15098.19 29395.64 367
CNVR-MVS96.92 13896.55 16098.03 9398.00 22795.54 9594.87 25898.17 22594.60 19796.38 24597.05 24995.67 13199.36 23595.12 17199.08 22499.19 144
PLCcopyleft91.02 1694.05 27292.90 28797.51 12898.00 22795.12 12394.25 27998.25 21186.17 34191.48 36795.25 32791.01 24499.19 27085.02 36296.69 34698.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GBi-Net96.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
test196.99 13296.80 14697.56 12397.96 22993.67 17398.23 4698.66 16395.59 15897.99 14599.19 3689.51 27199.73 8394.60 19599.44 15399.30 119
FMVSNet296.72 15396.67 15396.87 18097.96 22991.88 22597.15 11498.06 24395.59 15898.50 8598.62 9589.51 27199.65 13894.99 17999.60 10099.07 171
BH-untuned94.69 24494.75 23594.52 29997.95 23287.53 30694.07 29197.01 28993.99 21897.10 19895.65 31892.65 21198.95 30587.60 33996.74 34597.09 333
DPM-MVS93.68 28192.77 29496.42 20997.91 23392.54 20291.17 35997.47 27584.99 35793.08 34594.74 33789.90 26299.00 29687.54 34198.09 29897.72 313
MVS_030496.62 16096.40 17097.28 15197.91 23392.30 20996.47 15489.74 38197.52 7195.38 28798.63 9492.76 20699.81 3799.28 499.93 1199.75 19
QAPM95.88 19195.57 20696.80 18597.90 23591.84 22798.18 5398.73 14688.41 31896.42 24398.13 15294.73 15699.75 6888.72 32498.94 23898.81 212
TinyColmap96.00 18796.34 17394.96 27797.90 23587.91 29794.13 28998.49 18394.41 20398.16 12697.76 19496.29 10898.68 32990.52 29799.42 16498.30 269
test_fmvs296.38 17296.45 16796.16 22297.85 23791.30 23696.81 13399.45 1889.24 30898.49 8699.38 1888.68 27897.62 37298.83 1699.32 19099.57 47
HQP-NCC97.85 23794.26 27693.18 24292.86 348
ACMP_Plane97.85 23794.26 27693.18 24292.86 348
N_pmnet95.18 22294.23 25898.06 8897.85 23796.55 5892.49 33391.63 36589.34 30698.09 13497.41 22190.33 25599.06 29091.58 26999.31 19398.56 240
HQP-MVS95.17 22494.58 24696.92 17697.85 23792.47 20694.26 27698.43 18993.18 24292.86 34895.08 32990.33 25599.23 26790.51 29898.74 26099.05 175
hse-mvs295.77 19595.09 21697.79 10897.84 24295.51 9795.66 21095.43 32696.58 10497.21 18996.16 29984.14 31699.54 17595.89 11996.92 33698.32 265
TEST997.84 24295.23 11593.62 30898.39 19686.81 33693.78 32395.99 30794.68 16099.52 180
train_agg95.46 21094.66 23797.88 10397.84 24295.23 11593.62 30898.39 19687.04 33293.78 32395.99 30794.58 16499.52 18091.76 26798.90 24298.89 201
MSLP-MVS++96.42 17196.71 15095.57 24797.82 24590.56 25195.71 20598.84 11894.72 19296.71 22897.39 22694.91 15598.10 36595.28 15699.02 23198.05 293
test_897.81 24695.07 12493.54 31198.38 19887.04 33293.71 32795.96 31094.58 16499.52 180
NCCC96.52 16595.99 18798.10 8597.81 24695.68 8995.00 25498.20 21995.39 16895.40 28696.36 29293.81 18499.45 20293.55 23498.42 28599.17 148
WTY-MVS93.55 28693.00 28695.19 26497.81 24687.86 29893.89 30096.00 31089.02 31194.07 31795.44 32686.27 30099.33 24387.69 33796.82 34298.39 256
CNLPA95.04 22894.47 25196.75 18997.81 24695.25 11494.12 29097.89 24994.41 20394.57 30495.69 31690.30 25898.35 35686.72 34898.76 25896.64 351
AUN-MVS93.95 27692.69 29597.74 11197.80 25095.38 10595.57 21995.46 32591.26 28392.64 35596.10 30574.67 36399.55 17293.72 23096.97 33598.30 269
EIA-MVS96.04 18495.77 19996.85 18197.80 25092.98 19496.12 18099.16 3794.65 19593.77 32591.69 37695.68 13099.67 13094.18 21198.85 24997.91 302
agg_prior97.80 25094.96 12698.36 20093.49 33599.53 177
旧先验197.80 25093.87 16697.75 25897.04 25093.57 18998.68 26698.72 224
PCF-MVS89.43 1892.12 31290.64 32896.57 20097.80 25093.48 18189.88 37798.45 18674.46 39096.04 26495.68 31790.71 24999.31 24773.73 38999.01 23396.91 340
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test_prior97.46 13897.79 25594.26 15598.42 19299.34 24198.79 214
PVSNet_BlendedMVS95.02 23194.93 22395.27 26197.79 25587.40 31094.14 28898.68 15888.94 31394.51 30698.01 17193.04 19999.30 25089.77 31099.49 14099.11 164
PVSNet_Blended93.96 27493.65 27394.91 27897.79 25587.40 31091.43 35198.68 15884.50 36294.51 30694.48 34493.04 19999.30 25089.77 31098.61 27498.02 296
USDC94.56 25294.57 24894.55 29897.78 25886.43 32692.75 32798.65 16885.96 34396.91 21797.93 18090.82 24798.74 32090.71 29299.59 10298.47 250
alignmvs96.01 18695.52 20797.50 13297.77 25994.71 13196.07 18396.84 29497.48 7396.78 22594.28 34785.50 30799.40 22096.22 10098.73 26398.40 254
ETV-MVS96.13 18195.90 19396.82 18497.76 26093.89 16595.40 22798.95 9395.87 14495.58 28291.00 38296.36 10599.72 8893.36 23798.83 25296.85 343
D2MVS95.18 22295.17 21395.21 26397.76 26087.76 30394.15 28697.94 24689.77 30496.99 21097.68 20487.45 29299.14 27895.03 17699.81 4898.74 221
DVP-MVS++97.96 5497.90 5998.12 8497.75 26295.40 10399.03 798.89 10096.62 9998.62 7498.30 12796.97 6599.75 6895.70 12699.25 20199.21 139
MSC_two_6792asdad98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
No_MVS98.22 7597.75 26295.34 11098.16 22999.75 6895.87 12199.51 13399.57 47
TSAR-MVS + GP.96.47 16896.12 18097.49 13597.74 26595.23 11594.15 28696.90 29393.26 23898.04 14296.70 27394.41 16998.89 30794.77 18999.14 21498.37 258
3Dnovator96.53 297.61 9997.64 8997.50 13297.74 26593.65 17798.49 2898.88 10696.86 9497.11 19798.55 10195.82 12299.73 8395.94 11699.42 16499.13 156
sss94.22 26393.72 27295.74 24097.71 26789.95 25793.84 30196.98 29088.38 32093.75 32695.74 31587.94 28598.89 30791.02 27998.10 29798.37 258
DeepC-MVS_fast94.34 796.74 15096.51 16597.44 14097.69 26894.15 15796.02 18798.43 18993.17 24597.30 18497.38 22895.48 13699.28 25693.74 22899.34 18398.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IterMVS-SCA-FT95.86 19296.19 17894.85 28397.68 26985.53 33492.42 33797.63 27096.99 8998.36 10298.54 10287.94 28599.75 6897.07 7599.08 22499.27 130
MVSFormer96.14 18096.36 17295.49 25397.68 26987.81 30198.67 1599.02 7296.50 10994.48 30896.15 30086.90 29699.92 598.73 2099.13 21698.74 221
lupinMVS93.77 27793.28 27995.24 26297.68 26987.81 30192.12 34296.05 30884.52 36194.48 30895.06 33186.90 29699.63 14493.62 23399.13 21698.27 273
Fast-Effi-MVS+95.49 20695.07 21796.75 18997.67 27292.82 19694.22 28298.60 17191.61 27793.42 33992.90 36096.73 8499.70 11292.60 25197.89 30697.74 312
testing389.72 34088.26 34894.10 31497.66 27384.30 35494.80 26088.25 38594.66 19495.07 29292.51 36741.15 40299.43 20791.81 26598.44 28498.55 242
canonicalmvs97.23 12497.21 12297.30 15097.65 27494.39 14597.84 7199.05 6397.42 7596.68 22993.85 35097.63 3499.33 24396.29 9798.47 28298.18 281
CDS-MVSNet94.88 23594.12 26397.14 16097.64 27593.57 17893.96 29897.06 28890.05 30096.30 25196.55 28086.10 30199.47 19590.10 30599.31 19398.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
pmmvs594.63 24994.34 25695.50 25297.63 27688.34 28594.02 29297.13 28487.15 33195.22 29097.15 24287.50 29199.27 25993.99 22099.26 20098.88 205
test_f95.82 19495.88 19595.66 24497.61 27793.21 19195.61 21698.17 22586.98 33498.42 9499.47 1190.46 25294.74 38997.71 5198.45 28399.03 176
test1297.46 13897.61 27794.07 15997.78 25793.57 33393.31 19499.42 20998.78 25698.89 201
PMMVS293.66 28294.07 26492.45 34997.57 27980.67 37486.46 38596.00 31093.99 21897.10 19897.38 22889.90 26297.82 36988.76 32399.47 14698.86 208
BH-RMVSNet94.56 25294.44 25494.91 27897.57 27987.44 30993.78 30596.26 30693.69 22696.41 24496.50 28592.10 22799.00 29685.96 35097.71 31498.31 267
PVSNet86.72 1991.10 32590.97 32291.49 35797.56 28178.04 38287.17 38494.60 33584.65 36092.34 35992.20 37087.37 29498.47 34785.17 36197.69 31697.96 299
DELS-MVS96.17 17996.23 17695.99 22797.55 28290.04 25592.38 33998.52 18094.13 21296.55 23997.06 24894.99 15299.58 16195.62 13499.28 19798.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
IterMVS95.42 21295.83 19694.20 31197.52 28383.78 35892.41 33897.47 27595.49 16398.06 13998.49 10687.94 28599.58 16196.02 11099.02 23199.23 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FA-MVS(test-final)94.91 23394.89 22694.99 27597.51 28488.11 29498.27 4495.20 32992.40 26796.68 22998.60 9683.44 32199.28 25693.34 23898.53 27897.59 321
CL-MVSNet_self_test95.04 22894.79 23495.82 23797.51 28489.79 25991.14 36096.82 29693.05 24896.72 22796.40 29090.82 24799.16 27691.95 26098.66 26998.50 248
new-patchmatchnet95.67 19996.58 15792.94 33997.48 28680.21 37592.96 32398.19 22494.83 18998.82 5998.79 7693.31 19499.51 18495.83 12399.04 23099.12 161
MDA-MVSNet_test_wron94.73 23994.83 23194.42 30397.48 28685.15 34190.28 37195.87 31492.52 26297.48 17797.76 19491.92 23399.17 27593.32 23996.80 34498.94 189
PHI-MVS96.96 13696.53 16398.25 7397.48 28696.50 5996.76 13898.85 11593.52 23096.19 25896.85 26295.94 11699.42 20993.79 22799.43 16198.83 210
DeepPCF-MVS94.58 596.90 14096.43 16898.31 6797.48 28697.23 4092.56 33298.60 17192.84 25798.54 8197.40 22296.64 8898.78 31694.40 20399.41 16898.93 193
thres20091.00 32790.42 33192.77 34297.47 29083.98 35794.01 29391.18 37095.12 17995.44 28491.21 38073.93 36599.31 24777.76 38697.63 32195.01 374
YYNet194.73 23994.84 22994.41 30497.47 29085.09 34390.29 37095.85 31592.52 26297.53 17197.76 19491.97 23099.18 27193.31 24096.86 33998.95 187
Effi-MVS+96.19 17896.01 18596.71 19197.43 29292.19 21696.12 18099.10 4995.45 16493.33 34194.71 33897.23 5199.56 16893.21 24497.54 32398.37 258
pmmvs494.82 23794.19 26196.70 19297.42 29392.75 20192.09 34496.76 29886.80 33795.73 27897.22 23989.28 27498.89 30793.28 24199.14 21498.46 252
mvsany_test396.21 17795.93 19297.05 16797.40 29494.33 14995.76 20494.20 33989.10 30999.36 2499.60 693.97 18097.85 36895.40 15498.63 27298.99 183
MSDG95.33 21595.13 21495.94 23397.40 29491.85 22691.02 36398.37 19995.30 17196.31 25095.99 30794.51 16798.38 35389.59 31297.65 32097.60 320
EI-MVSNet-Vis-set97.32 12197.39 11197.11 16297.36 29692.08 22195.34 23397.65 26697.74 5798.29 11498.11 15695.05 14899.68 12497.50 5999.50 13799.56 51
PS-MVSNAJ94.10 26994.47 25193.00 33697.35 29784.88 34591.86 34697.84 25391.96 27294.17 31392.50 36895.82 12299.71 10491.27 27397.48 32694.40 378
diffmvspermissive96.04 18496.23 17695.46 25597.35 29788.03 29593.42 31499.08 5594.09 21696.66 23196.93 25793.85 18399.29 25496.01 11298.67 26799.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set97.32 12197.40 11097.09 16597.34 29992.01 22395.33 23497.65 26697.74 5798.30 11398.14 15095.04 14999.69 11997.55 5799.52 12899.58 40
baseline193.14 29692.64 29794.62 29397.34 29987.20 31496.67 14893.02 35094.71 19396.51 24095.83 31481.64 32898.60 33690.00 30788.06 38998.07 286
AdaColmapbinary95.11 22594.62 24296.58 19897.33 30194.45 14494.92 25698.08 23893.15 24693.98 32195.53 32394.34 17199.10 28685.69 35398.61 27496.20 361
xiu_mvs_v2_base94.22 26394.63 24192.99 33797.32 30284.84 34792.12 34297.84 25391.96 27294.17 31393.43 35196.07 11499.71 10491.27 27397.48 32694.42 377
OpenMVS_ROBcopyleft91.80 1493.64 28493.05 28295.42 25797.31 30391.21 23895.08 24896.68 30381.56 37196.88 21996.41 28890.44 25499.25 26285.39 35897.67 31895.80 365
EI-MVSNet96.63 15996.93 13895.74 24097.26 30488.13 29295.29 23897.65 26696.99 8997.94 15298.19 14692.55 21499.58 16196.91 7999.56 11099.50 63
CVMVSNet92.33 30892.79 29190.95 36097.26 30475.84 39295.29 23892.33 36081.86 36996.27 25298.19 14681.44 33098.46 34894.23 21098.29 29098.55 242
iter_conf_final94.54 25493.91 27096.43 20797.23 30690.41 25396.81 13398.10 23593.87 22196.80 22097.89 18368.02 38599.72 8896.73 8399.77 5899.18 147
FE-MVS92.95 29892.22 30295.11 26797.21 30788.33 28698.54 2393.66 34489.91 30296.21 25698.14 15070.33 38199.50 18587.79 33598.24 29297.51 323
Fast-Effi-MVS+-dtu96.44 16996.12 18097.39 14697.18 30894.39 14595.46 22198.73 14696.03 13494.72 30194.92 33596.28 10999.69 11993.81 22697.98 30198.09 283
dmvs_re92.08 31491.27 31694.51 30097.16 30992.79 20095.65 21292.64 35794.11 21492.74 35190.98 38383.41 32294.44 39180.72 37894.07 37596.29 359
OpenMVScopyleft94.22 895.48 20895.20 21196.32 21497.16 30991.96 22497.74 7998.84 11887.26 32994.36 31098.01 17193.95 18199.67 13090.70 29398.75 25997.35 330
BH-w/o92.14 31191.94 30592.73 34397.13 31185.30 33792.46 33495.64 31889.33 30794.21 31292.74 36389.60 26698.24 36081.68 37594.66 37194.66 376
MG-MVS94.08 27194.00 26694.32 30797.09 31285.89 33193.19 32195.96 31292.52 26294.93 29997.51 21589.54 26898.77 31787.52 34297.71 31498.31 267
thisisatest051590.43 33089.18 34294.17 31397.07 31385.44 33589.75 37887.58 38688.28 32193.69 32991.72 37565.27 38899.58 16190.59 29598.67 26797.50 325
MVS-HIRNet88.40 34990.20 33382.99 37697.01 31460.04 40193.11 32285.61 39284.45 36388.72 38399.09 5084.72 31398.23 36182.52 37496.59 34990.69 391
GA-MVS92.83 30092.15 30494.87 28296.97 31587.27 31390.03 37296.12 30791.83 27594.05 31894.57 33976.01 35998.97 30492.46 25597.34 33298.36 263
test_yl94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
DCV-MVSNet94.40 25894.00 26695.59 24596.95 31689.52 26394.75 26495.55 32396.18 12596.79 22196.14 30281.09 33399.18 27190.75 28897.77 30898.07 286
MVS_Test96.27 17596.79 14894.73 29096.94 31886.63 32396.18 17498.33 20494.94 18696.07 26298.28 13295.25 14499.26 26097.21 6797.90 30598.30 269
MAR-MVS94.21 26593.03 28497.76 11096.94 31897.44 3396.97 12597.15 28387.89 32792.00 36292.73 36492.14 22599.12 28183.92 36797.51 32596.73 350
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+-dtu96.81 14796.09 18298.99 1096.90 32098.69 496.42 15598.09 23795.86 14595.15 29195.54 32294.26 17399.81 3794.06 21698.51 28198.47 250
MS-PatchMatch94.83 23694.91 22594.57 29796.81 32187.10 31694.23 28197.34 27788.74 31697.14 19497.11 24591.94 23298.23 36192.99 24797.92 30398.37 258
dmvs_testset87.30 35586.99 35588.24 37296.71 32277.48 38594.68 26686.81 39092.64 26189.61 37987.01 39185.91 30393.12 39261.04 39688.49 38894.13 379
UGNet96.81 14796.56 15997.58 12296.64 32393.84 16897.75 7797.12 28596.47 11293.62 33098.88 7293.22 19699.53 17795.61 13599.69 7799.36 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
API-MVS95.09 22795.01 22095.31 26096.61 32494.02 16196.83 13197.18 28295.60 15795.79 27394.33 34694.54 16698.37 35585.70 35298.52 27993.52 382
PAPM87.64 35485.84 36093.04 33496.54 32584.99 34488.42 38395.57 32279.52 38083.82 39193.05 35980.57 33698.41 35062.29 39592.79 37995.71 366
FMVSNet395.26 21994.94 22196.22 21996.53 32690.06 25495.99 19097.66 26494.11 21497.99 14597.91 18280.22 33899.63 14494.60 19599.44 15398.96 186
HY-MVS91.43 1592.58 30391.81 30894.90 28096.49 32788.87 27597.31 10594.62 33485.92 34490.50 37396.84 26385.05 30999.40 22083.77 37095.78 36096.43 357
TR-MVS92.54 30492.20 30393.57 32396.49 32786.66 32293.51 31294.73 33389.96 30194.95 29793.87 34990.24 26098.61 33481.18 37794.88 36995.45 371
ET-MVSNet_ETH3D91.12 32489.67 33695.47 25496.41 32989.15 27191.54 35090.23 37889.07 31086.78 39092.84 36169.39 38399.44 20594.16 21296.61 34897.82 309
CANet95.86 19295.65 20396.49 20496.41 32990.82 24494.36 27498.41 19394.94 18692.62 35796.73 27292.68 20999.71 10495.12 17199.60 10098.94 189
mvs_anonymous95.36 21396.07 18493.21 33196.29 33181.56 37094.60 26997.66 26493.30 23796.95 21498.91 6993.03 20199.38 22796.60 8697.30 33498.69 228
SCA93.38 29193.52 27692.96 33896.24 33281.40 37193.24 31994.00 34091.58 27994.57 30496.97 25487.94 28599.42 20989.47 31497.66 31998.06 290
LS3D97.77 8697.50 10798.57 4796.24 33297.58 2498.45 3198.85 11598.58 2897.51 17397.94 17895.74 12999.63 14495.19 16198.97 23498.51 246
new_pmnet92.34 30791.69 31194.32 30796.23 33489.16 27092.27 34092.88 35284.39 36495.29 28896.35 29385.66 30596.74 38484.53 36597.56 32297.05 334
MVEpermissive73.61 2286.48 35885.92 35988.18 37396.23 33485.28 33981.78 39175.79 39786.01 34282.53 39391.88 37392.74 20787.47 39671.42 39394.86 37091.78 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
c3_l95.20 22195.32 20894.83 28596.19 33686.43 32691.83 34798.35 20393.47 23297.36 18397.26 23788.69 27799.28 25695.41 15399.36 17598.78 215
DSMNet-mixed92.19 31091.83 30793.25 32996.18 33783.68 35996.27 16693.68 34376.97 38892.54 35899.18 3989.20 27698.55 34083.88 36898.60 27697.51 323
miper_lstm_enhance94.81 23894.80 23394.85 28396.16 33886.45 32591.14 36098.20 21993.49 23197.03 20797.37 23084.97 31199.26 26095.28 15699.56 11098.83 210
our_test_394.20 26794.58 24693.07 33396.16 33881.20 37290.42 36996.84 29490.72 28997.14 19497.13 24390.47 25199.11 28494.04 21998.25 29198.91 197
ppachtmachnet_test94.49 25794.84 22993.46 32596.16 33882.10 36690.59 36797.48 27490.53 29397.01 20997.59 20991.01 24499.36 23593.97 22299.18 21098.94 189
Patchmatch-test93.60 28593.25 28094.63 29296.14 34187.47 30796.04 18594.50 33693.57 22996.47 24196.97 25476.50 35598.61 33490.67 29498.41 28697.81 311
iter_conf0593.65 28393.05 28295.46 25596.13 34287.45 30895.95 19698.22 21592.66 26097.04 20697.89 18363.52 39199.72 8896.19 10299.82 4799.21 139
wuyk23d93.25 29495.20 21187.40 37596.07 34395.38 10597.04 12294.97 33195.33 16999.70 698.11 15698.14 1791.94 39377.76 38699.68 8174.89 393
eth_miper_zixun_eth94.89 23494.93 22394.75 28995.99 34486.12 32991.35 35398.49 18393.40 23397.12 19697.25 23886.87 29899.35 23995.08 17398.82 25398.78 215
test_fmvs194.51 25694.60 24394.26 31095.91 34587.92 29695.35 23299.02 7286.56 33996.79 22198.52 10382.64 32697.00 37997.87 4298.71 26497.88 305
CANet_DTU94.65 24894.21 26095.96 22995.90 34689.68 26093.92 29997.83 25593.19 24190.12 37695.64 31988.52 27999.57 16793.27 24299.47 14698.62 235
DIV-MVS_self_test94.73 23994.64 23995.01 27395.86 34787.00 31791.33 35498.08 23893.34 23597.10 19897.34 23284.02 31899.31 24795.15 16799.55 11698.72 224
cl____94.73 23994.64 23995.01 27395.85 34887.00 31791.33 35498.08 23893.34 23597.10 19897.33 23384.01 31999.30 25095.14 16899.56 11098.71 227
MVSTER94.21 26593.93 26995.05 27195.83 34986.46 32495.18 24397.65 26692.41 26697.94 15298.00 17372.39 37499.58 16196.36 9599.56 11099.12 161
FMVSNet593.39 29092.35 30096.50 20395.83 34990.81 24697.31 10598.27 20992.74 25896.27 25298.28 13262.23 39299.67 13090.86 28399.36 17599.03 176
miper_ehance_all_eth94.69 24494.70 23694.64 29195.77 35186.22 32891.32 35698.24 21391.67 27697.05 20596.65 27688.39 28299.22 26994.88 18198.34 28798.49 249
test_vis1_rt94.03 27393.65 27395.17 26695.76 35293.42 18393.97 29798.33 20484.68 35993.17 34395.89 31392.53 21894.79 38893.50 23594.97 36897.31 331
PVSNet_081.89 2184.49 35983.21 36288.34 37195.76 35274.97 39583.49 38892.70 35678.47 38487.94 38586.90 39283.38 32396.63 38573.44 39066.86 39693.40 383
PAPR92.22 30991.27 31695.07 27095.73 35488.81 27791.97 34597.87 25085.80 34690.91 36992.73 36491.16 24198.33 35779.48 38095.76 36198.08 284
baseline289.65 34188.44 34793.25 32995.62 35582.71 36193.82 30285.94 39188.89 31487.35 38892.54 36671.23 37799.33 24386.01 34994.60 37397.72 313
CHOSEN 280x42089.98 33589.19 34192.37 35095.60 35681.13 37386.22 38697.09 28681.44 37387.44 38793.15 35273.99 36499.47 19588.69 32599.07 22696.52 355
ADS-MVSNet291.47 32290.51 33094.36 30595.51 35785.63 33295.05 25195.70 31683.46 36592.69 35296.84 26379.15 34199.41 21885.66 35490.52 38398.04 294
ADS-MVSNet90.95 32890.26 33293.04 33495.51 35782.37 36595.05 25193.41 34783.46 36592.69 35296.84 26379.15 34198.70 32585.66 35490.52 38398.04 294
CR-MVSNet93.29 29392.79 29194.78 28895.44 35988.15 29096.18 17497.20 28084.94 35894.10 31598.57 9877.67 34799.39 22495.17 16395.81 35796.81 347
RPMNet94.68 24694.60 24394.90 28095.44 35988.15 29096.18 17498.86 11197.43 7494.10 31598.49 10679.40 33999.76 6295.69 12895.81 35796.81 347
131492.38 30692.30 30192.64 34495.42 36185.15 34195.86 20096.97 29185.40 35190.62 37093.06 35891.12 24297.80 37086.74 34795.49 36594.97 375
tpm91.08 32690.85 32491.75 35695.33 36278.09 38195.03 25391.27 36988.75 31593.53 33497.40 22271.24 37699.30 25091.25 27593.87 37697.87 306
Syy-MVS92.09 31391.80 30992.93 34095.19 36382.65 36292.46 33491.35 36690.67 29191.76 36587.61 38985.64 30698.50 34494.73 19196.84 34097.65 316
myMVS_eth3d87.16 35785.61 36191.82 35595.19 36379.32 37792.46 33491.35 36690.67 29191.76 36587.61 38941.96 40198.50 34482.66 37396.84 34097.65 316
IB-MVS85.98 2088.63 34786.95 35793.68 32195.12 36584.82 34890.85 36490.17 37987.55 32888.48 38491.34 37958.01 39399.59 15987.24 34593.80 37796.63 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchT93.75 27893.57 27594.29 30995.05 36687.32 31296.05 18492.98 35197.54 7094.25 31198.72 8375.79 36099.24 26595.92 11795.81 35796.32 358
tpm288.47 34887.69 35290.79 36194.98 36777.34 38695.09 24691.83 36377.51 38789.40 38096.41 28867.83 38698.73 32183.58 37292.60 38196.29 359
Patchmtry95.03 23094.59 24596.33 21394.83 36890.82 24496.38 15997.20 28096.59 10397.49 17598.57 9877.67 34799.38 22792.95 24999.62 9198.80 213
MVS90.02 33389.20 34092.47 34894.71 36986.90 31995.86 20096.74 30064.72 39390.62 37092.77 36292.54 21698.39 35279.30 38195.56 36492.12 386
CostFormer89.75 33989.25 33791.26 35994.69 37078.00 38395.32 23591.98 36281.50 37290.55 37296.96 25671.06 37898.89 30788.59 32792.63 38096.87 341
PatchmatchNetpermissive91.98 31691.87 30692.30 35194.60 37179.71 37695.12 24493.59 34689.52 30593.61 33197.02 25177.94 34599.18 27190.84 28494.57 37498.01 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm cat188.01 35287.33 35390.05 36694.48 37276.28 39194.47 27294.35 33873.84 39289.26 38195.61 32173.64 36898.30 35984.13 36686.20 39195.57 370
MDTV_nov1_ep1391.28 31594.31 37373.51 39694.80 26093.16 34986.75 33893.45 33797.40 22276.37 35698.55 34088.85 32296.43 350
cl2293.25 29492.84 29094.46 30294.30 37486.00 33091.09 36296.64 30490.74 28895.79 27396.31 29478.24 34498.77 31794.15 21398.34 28798.62 235
cascas91.89 31791.35 31493.51 32494.27 37585.60 33388.86 38298.61 17079.32 38192.16 36191.44 37889.22 27598.12 36490.80 28697.47 32896.82 346
test-LLR89.97 33689.90 33490.16 36494.24 37674.98 39389.89 37489.06 38292.02 27089.97 37790.77 38473.92 36698.57 33791.88 26297.36 33096.92 338
test-mter87.92 35387.17 35490.16 36494.24 37674.98 39389.89 37489.06 38286.44 34089.97 37790.77 38454.96 40098.57 33791.88 26297.36 33096.92 338
pmmvs390.00 33488.90 34493.32 32694.20 37885.34 33691.25 35792.56 35978.59 38393.82 32295.17 32867.36 38798.69 32689.08 32098.03 30095.92 362
tpmrst90.31 33190.61 32989.41 36794.06 37972.37 39895.06 25093.69 34188.01 32492.32 36096.86 26177.45 34998.82 31291.04 27887.01 39097.04 335
mvsany_test193.47 28893.03 28494.79 28794.05 38092.12 21790.82 36590.01 38085.02 35697.26 18698.28 13293.57 18997.03 37792.51 25495.75 36295.23 373
test0.0.03 190.11 33289.21 33992.83 34193.89 38186.87 32091.74 34888.74 38492.02 27094.71 30291.14 38173.92 36694.48 39083.75 37192.94 37897.16 332
JIA-IIPM91.79 31890.69 32795.11 26793.80 38290.98 24194.16 28591.78 36496.38 11390.30 37599.30 2872.02 37598.90 30688.28 33190.17 38595.45 371
miper_enhance_ethall93.14 29692.78 29394.20 31193.65 38385.29 33889.97 37397.85 25185.05 35496.15 26194.56 34085.74 30499.14 27893.74 22898.34 28798.17 282
TESTMET0.1,187.20 35686.57 35889.07 36893.62 38472.84 39789.89 37487.01 38985.46 35089.12 38290.20 38656.00 39897.72 37190.91 28296.92 33696.64 351
CMPMVSbinary73.10 2392.74 30191.39 31396.77 18893.57 38594.67 13494.21 28397.67 26280.36 37893.61 33196.60 27882.85 32597.35 37484.86 36398.78 25698.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
E-PMN89.52 34289.78 33588.73 36993.14 38677.61 38483.26 38992.02 36194.82 19093.71 32793.11 35375.31 36196.81 38185.81 35196.81 34391.77 388
PMMVS92.39 30591.08 31996.30 21693.12 38792.81 19790.58 36895.96 31279.17 38291.85 36492.27 36990.29 25998.66 33189.85 30996.68 34797.43 326
EMVS89.06 34489.22 33888.61 37093.00 38877.34 38682.91 39090.92 37194.64 19692.63 35691.81 37476.30 35797.02 37883.83 36996.90 33891.48 389
dp88.08 35188.05 34988.16 37492.85 38968.81 40094.17 28492.88 35285.47 34991.38 36896.14 30268.87 38498.81 31486.88 34683.80 39396.87 341
gg-mvs-nofinetune88.28 35086.96 35692.23 35292.84 39084.44 35198.19 5274.60 39899.08 1087.01 38999.47 1156.93 39498.23 36178.91 38295.61 36394.01 380
tpmvs90.79 32990.87 32390.57 36392.75 39176.30 39095.79 20393.64 34591.04 28691.91 36396.26 29577.19 35398.86 31189.38 31689.85 38696.56 354
EPMVS89.26 34388.55 34691.39 35892.36 39279.11 37995.65 21279.86 39688.60 31793.12 34496.53 28270.73 38098.10 36590.75 28889.32 38796.98 336
gm-plane-assit91.79 39371.40 39981.67 37090.11 38798.99 29884.86 363
GG-mvs-BLEND90.60 36291.00 39484.21 35598.23 4672.63 40182.76 39284.11 39356.14 39796.79 38272.20 39192.09 38290.78 390
DeepMVS_CXcopyleft77.17 37790.94 39585.28 33974.08 40052.51 39480.87 39588.03 38875.25 36270.63 39759.23 39784.94 39275.62 392
EPNet_dtu91.39 32390.75 32693.31 32790.48 39682.61 36394.80 26092.88 35293.39 23481.74 39494.90 33681.36 33199.11 28488.28 33198.87 24698.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160088.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
miper_refine_blended88.93 34587.74 35092.49 34688.04 39781.99 36789.63 37995.62 31991.35 28195.06 29393.11 35356.58 39598.63 33285.19 35995.07 36696.85 343
EPNet93.72 27992.62 29897.03 17087.61 39992.25 21096.27 16691.28 36896.74 9787.65 38697.39 22685.00 31099.64 14192.14 25799.48 14499.20 143
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method66.88 36166.13 36469.11 37862.68 40025.73 40449.76 39296.04 30914.32 39664.27 39791.69 37673.45 37188.05 39576.06 38866.94 39593.54 381
tmp_tt57.23 36262.50 36541.44 37934.77 40149.21 40383.93 38760.22 40315.31 39571.11 39679.37 39470.09 38244.86 39864.76 39482.93 39430.25 394
test12312.59 36415.49 3673.87 3806.07 4022.55 40590.75 3662.59 4052.52 3985.20 40013.02 3974.96 4031.85 4005.20 3989.09 3977.23 395
testmvs12.33 36515.23 3683.64 3815.77 4032.23 40688.99 3813.62 4042.30 3995.29 39913.09 3964.52 4041.95 3995.16 3998.32 3986.75 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
eth-test20.00 404
eth-test0.00 404
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.22 36332.30 3660.00 3820.00 4040.00 4070.00 39398.10 2350.00 4000.00 40195.06 33197.54 370.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.98 36610.65 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40095.82 1220.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.91 36710.55 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.94 3330.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM97.62 12093.30 18696.39 15692.61 35897.90 5296.76 22698.64 9390.46 25299.81 3799.16 999.94 899.76 17
WAC-MVS79.32 37785.41 357
PC_three_145287.24 33098.37 9997.44 21997.00 6396.78 38392.01 25899.25 20199.21 139
test_241102_TWO98.83 12496.11 12798.62 7498.24 13996.92 7199.72 8895.44 14799.49 14099.49 71
test_0728_THIRD96.62 9998.40 9698.28 13297.10 5499.71 10495.70 12699.62 9199.58 40
GSMVS98.06 290
sam_mvs177.80 34698.06 290
sam_mvs77.38 350
MTGPAbinary98.73 146
test_post194.98 25510.37 39976.21 35899.04 29289.47 314
test_post10.87 39876.83 35499.07 289
patchmatchnet-post96.84 26377.36 35199.42 209
MTMP96.55 15074.60 398
test9_res91.29 27298.89 24599.00 180
agg_prior290.34 30398.90 24299.10 168
test_prior495.38 10593.61 310
test_prior293.33 31894.21 20894.02 31996.25 29693.64 18891.90 26198.96 235
旧先验293.35 31777.95 38695.77 27798.67 33090.74 291
新几何293.43 313
无先验93.20 32097.91 24780.78 37599.40 22087.71 33697.94 301
原ACMM292.82 325
testdata299.46 19887.84 334
segment_acmp95.34 141
testdata192.77 32693.78 223
plane_prior598.75 14399.46 19892.59 25299.20 20699.28 126
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 259
plane_prior296.50 15296.36 115
plane_prior94.29 15095.42 22494.31 20798.93 240
n20.00 406
nn0.00 406
door-mid98.17 225
test1198.08 238
door97.81 256
HQP5-MVS92.47 206
BP-MVS90.51 298
HQP4-MVS92.87 34799.23 26799.06 173
HQP3-MVS98.43 18998.74 260
HQP2-MVS90.33 255
MDTV_nov1_ep13_2view57.28 40294.89 25780.59 37694.02 31978.66 34385.50 35697.82 309
ACMMP++_ref99.52 128
ACMMP++99.55 116
Test By Simon94.51 167