This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11399.71 33498.41 18199.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 21999.96 798.21 29999.51 90100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16399.93 9499.59 5199.98 4199.76 66
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32299.49 95100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30299.52 86100.00 199.86 45100.00 199.88 4298.99 10399.96 5499.97 499.96 7099.95 11
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30299.87 4199.91 4499.87 4798.04 21999.96 5499.68 4499.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22799.92 11699.65 4699.98 4199.62 138
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28799.30 13599.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32599.34 122100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15499.94 7799.58 5499.98 4199.77 60
K. test v398.87 23398.60 24299.69 10499.93 2599.46 15199.74 2494.97 39999.78 6899.88 6199.88 4293.66 33199.97 3399.61 4999.95 8399.64 122
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32699.65 10099.89 5399.90 2996.20 30299.94 7799.42 7799.92 10599.67 95
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31299.48 96100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25699.86 4999.68 9099.65 15499.88 4297.67 24699.87 20399.03 13399.86 15399.76 66
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24599.91 3397.97 31099.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12799.74 11099.18 17599.69 13999.75 11698.41 18399.84 25597.85 23299.70 23499.10 306
EGC-MVSNET89.05 37385.52 37699.64 12899.89 3999.78 4999.56 8199.52 23624.19 40749.96 40899.83 6699.15 8199.92 11697.71 24599.85 15799.21 280
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29699.97 3399.59 5199.98 4199.55 174
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7499.82 6799.39 14599.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19799.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20199.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17899.87 20399.51 6499.97 5699.86 32
EU-MVSNet99.39 11599.62 5598.72 31999.88 4496.44 36299.56 8199.85 5499.90 2999.90 4999.85 5698.09 21599.83 27099.58 5499.95 8399.90 20
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26899.88 4498.66 24799.96 2399.79 9397.45 25699.93 9499.34 8899.99 1699.78 56
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7698.70 34799.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7499.78 9299.71 8099.90 4999.69 15198.85 11999.90 15797.25 28699.78 20399.15 295
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17299.60 18898.55 25899.57 18599.67 16699.03 10099.94 7797.01 29699.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8699.81 7699.87 4199.81 8899.79 9396.78 28299.99 799.83 3299.51 29199.86 32
lessismore_v099.64 12899.86 5499.38 17590.66 40899.89 5399.83 6694.56 32199.97 3399.56 5799.92 10599.57 169
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12799.77 9599.53 12199.77 10699.76 11199.26 7099.78 30897.77 23799.88 13499.60 152
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8199.79 8698.77 23699.80 9299.85 5699.64 2899.85 24098.70 16799.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
HyFIR lowres test98.91 22698.64 23999.73 8899.85 5899.47 14798.07 33699.83 6298.64 24999.89 5399.60 21392.57 341100.00 199.33 9199.97 5699.72 73
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11799.79 8699.83 5699.88 6199.85 5698.42 18299.90 15799.60 5099.73 22399.49 210
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20099.85 24099.37 8399.93 10199.83 40
XVG-OURS-SEG-HR99.16 17998.99 20199.66 11699.84 6199.64 11098.25 31999.73 11498.39 27699.63 15999.43 27099.70 2499.90 15797.34 27498.64 36699.44 228
PMVScopyleft92.94 2198.82 23798.81 22898.85 30799.84 6197.99 31599.20 16799.47 25299.71 8099.42 23099.82 7398.09 21599.47 39393.88 38999.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
MP-MVS-pluss99.14 18398.92 21399.80 4599.83 6599.83 2998.61 27999.63 16696.84 36199.44 22499.58 22198.81 12199.91 13997.70 24899.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24399.86 4998.85 22399.81 8899.73 12398.40 18799.92 11698.36 18499.83 17099.17 291
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16099.96 5499.29 10099.94 9499.83 40
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8699.70 13198.35 28499.51 21199.50 25199.31 6299.88 18998.18 20399.84 16299.69 83
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10599.82 6798.33 28999.50 21399.78 10197.90 22999.65 37096.78 31099.83 17099.44 228
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11399.78 9299.53 12199.67 14899.78 10199.19 7799.86 22297.32 27599.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14999.35 28598.77 23699.57 18599.70 14599.27 6999.88 18997.71 24599.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 12599.57 7198.71 32199.82 7296.62 36098.55 29299.75 10599.50 12399.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9699.70 13199.81 6199.69 13999.58 22197.66 25099.86 22299.17 11699.44 30199.67 95
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35899.74 11098.36 27999.66 15299.68 16299.71 2299.90 15796.84 30899.88 13499.43 234
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25699.72 12398.36 27999.60 17799.71 13898.92 11199.91 13997.08 29499.84 16299.40 239
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18399.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9999.81 7699.82 5899.71 13299.72 13096.60 28699.98 2099.75 3999.23 33199.82 46
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12599.53 23199.27 15999.42 23099.63 18998.21 20799.95 6397.83 23699.79 19899.65 112
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11599.92 4199.87 4798.75 13399.86 22299.90 2599.99 1699.73 71
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32599.35 24699.25 31299.23 7399.92 11697.21 28999.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14299.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30998.85 25399.76 10099.62 10699.83 8099.64 17898.54 16399.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23199.65 15899.15 18799.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14699.84 25599.88 2999.99 1699.71 76
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32698.89 24899.72 12399.29 15599.63 15999.70 14596.47 29199.89 17598.17 20599.82 17999.50 205
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10699.84 7699.71 13898.62 15099.96 5499.30 9799.96 7099.86 32
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14499.97 3399.30 9799.95 8399.80 47
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11899.85 7399.69 15198.18 21199.94 7799.28 10299.95 8399.83 40
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10599.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
IS-MVSNet99.03 20398.85 22299.55 16899.80 8699.25 20399.73 2799.15 32599.37 14799.61 17499.71 13894.73 31999.81 29497.70 24899.88 13499.58 164
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31199.48 12599.56 19299.77 10894.89 31599.93 9498.72 16699.89 12499.63 127
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19399.65 15898.99 20299.64 15599.72 13099.39 5099.86 22298.23 19699.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7699.97 1899.95 2099.96 2399.76 11198.44 17999.99 799.34 8899.96 7099.78 56
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20499.61 17699.20 17399.84 7699.73 12398.67 14499.84 25599.86 3199.98 4199.64 122
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11199.59 19499.24 16599.86 7199.70 14598.55 16199.82 27999.79 3799.95 8399.60 152
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22699.89 4099.60 11599.82 8199.62 19698.81 12199.89 17599.43 7299.86 15399.47 218
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19399.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14499.68 14099.54 11999.40 24199.56 23399.07 9499.82 27996.01 34899.96 7099.11 304
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9199.65 15898.07 30499.52 20699.69 15198.57 15899.92 11697.18 29199.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 20298.79 23199.81 4099.78 10599.73 7699.35 12199.57 20598.54 26199.54 19998.99 34996.81 28199.93 9496.97 29999.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20199.62 16999.18 17599.89 5399.72 13098.66 14699.87 20399.88 2999.97 5699.66 104
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19799.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18799.58 20399.25 16399.81 8899.62 19698.24 20299.84 25599.83 3299.97 5699.64 122
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10599.90 15799.24 10499.97 5699.53 187
Vis-MVSNet (Re-imp)98.77 24198.58 24799.34 22699.78 10598.88 25199.61 6799.56 21099.11 19399.24 27199.56 23393.00 33999.78 30897.43 26999.89 12499.35 252
ACMP97.51 1499.05 19998.84 22499.67 10999.78 10599.55 13898.88 24999.66 14897.11 35699.47 21899.60 21399.07 9499.89 17596.18 34399.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26199.66 14899.42 14499.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
Patchmatch-RL test98.60 25698.36 26799.33 22999.77 11399.07 23398.27 31699.87 4698.91 21599.74 12299.72 13090.57 36699.79 30598.55 17599.85 15799.11 304
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21999.60 18899.18 17599.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14999.76 10099.32 15399.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7399.82 6799.46 13299.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14499.56 21098.19 29899.14 28799.29 30498.84 12099.92 11697.53 26499.80 19399.64 122
tttt051797.62 31997.20 32898.90 30499.76 11797.40 34299.48 9694.36 40199.06 19899.70 13699.49 25584.55 39399.94 7798.73 16599.65 25499.36 249
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29299.73 11498.82 22799.72 12799.62 19696.56 28799.82 27999.32 9399.95 8399.56 171
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20999.59 19499.17 18099.81 8899.61 20598.41 18399.69 34399.32 9399.94 9499.53 187
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13299.59 19498.41 27399.32 25499.36 28898.73 13799.93 9497.29 27799.74 21899.67 95
MP-MVScopyleft99.06 19698.83 22699.76 6499.76 11799.71 8399.32 12799.50 24498.35 28498.97 30299.48 25898.37 18999.92 11695.95 35499.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33399.90 3898.95 20899.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7999.61 17699.54 11999.80 9299.64 17897.79 23899.95 6399.21 10799.94 9499.84 36
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11399.54 22298.34 28899.01 30099.50 25198.53 16799.93 9497.18 29199.78 20399.66 104
IterMVS-SCA-FT99.00 21299.16 14598.51 32899.75 12895.90 37298.07 33699.84 6099.84 5399.89 5399.73 12396.01 30599.99 799.33 91100.00 199.63 127
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24399.53 23198.27 29399.53 20499.73 12398.75 13399.87 20397.70 24899.83 17099.68 89
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21699.61 17699.15 18799.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25499.89 4098.38 27799.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18399.72 12397.99 30899.42 23099.60 21398.81 12199.93 9496.91 30299.74 21899.66 104
jason99.16 17999.11 15899.32 23399.75 12898.44 28498.26 31899.39 27698.70 24499.74 12299.30 30198.54 16399.97 3398.48 17899.82 17999.55 174
jason: jason.
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14499.74 11099.23 16799.72 12799.53 24497.63 25299.88 18999.11 12799.84 16299.48 214
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13299.59 19498.36 27999.35 24699.38 28298.61 15299.93 9497.43 26999.75 21199.67 95
IterMVS98.97 21699.16 14598.42 33299.74 13495.64 37598.06 33899.83 6299.83 5699.85 7399.74 11996.10 30499.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 17998.96 20799.75 7499.73 13799.73 7699.20 16799.55 21698.22 29599.32 25499.35 29398.65 14899.91 13996.86 30599.74 21899.62 138
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13299.59 19498.36 27999.36 24599.37 28498.80 12599.91 13997.43 26999.75 21199.68 89
114514_t98.49 27298.11 29099.64 12899.73 13799.58 13299.24 15699.76 10089.94 39999.42 23099.56 23397.76 24199.86 22297.74 24299.82 17999.47 218
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
N_pmnet98.73 24698.53 25399.35 22599.72 14098.67 26698.34 31194.65 40098.35 28499.79 9799.68 16298.03 22099.93 9498.28 19299.92 10599.44 228
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15699.71 12699.27 15999.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23699.96 2399.03 20099.95 3199.12 33198.75 13399.84 25599.82 3599.82 17999.77 60
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32999.47 26298.47 17499.88 18997.62 25699.73 22399.67 95
X-MVStestdata96.09 35694.87 36899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32961.30 41498.47 17499.88 18997.62 25699.73 22399.67 95
VDDNet98.97 21698.82 22799.42 20199.71 14398.81 25599.62 6298.68 34899.81 6199.38 24399.80 8394.25 32399.85 24098.79 15799.32 31899.59 159
DSMNet-mixed99.48 8799.65 5098.95 29199.71 14397.27 34599.50 9199.82 6799.59 11799.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10799.85 5498.79 23299.41 23699.60 21398.92 11199.92 11698.02 21299.92 10599.43 234
LF4IMVS99.01 21098.92 21399.27 24599.71 14399.28 19698.59 28499.77 9598.32 29099.39 24299.41 27298.62 15099.84 25596.62 32299.84 16298.69 358
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21999.87 4699.71 8099.47 21899.79 9398.24 20299.98 2099.38 8099.96 7099.83 40
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18799.61 17699.92 11697.88 22699.72 22999.77 60
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28699.48 24998.50 26599.52 20699.63 18999.14 8499.76 31897.89 22599.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 23298.89 21898.84 30999.70 15197.62 33498.15 32599.50 24497.98 30999.62 16899.54 24298.15 21299.94 7797.55 26199.84 16298.95 336
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16799.54 22299.13 18999.82 8199.63 18998.91 11399.92 11697.85 23299.70 23499.58 164
IU-MVS99.69 15599.77 5499.22 31597.50 33699.69 13997.75 24199.70 23499.77 60
test_241102_ONE99.69 15599.82 3599.54 22299.12 19299.82 8199.49 25598.91 11399.52 390
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26199.41 26698.55 25899.68 14299.69 15198.13 21399.87 20398.82 15399.98 4199.24 273
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18799.31 29499.16 18399.62 16899.61 20598.35 19199.91 13997.88 22699.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15599.80 4499.24 15699.57 20599.16 18399.73 12699.65 17698.35 191
wuyk23d97.58 32199.13 15192.93 38899.69 15599.49 14599.52 8699.77 9597.97 31099.96 2399.79 9399.84 1299.94 7795.85 35799.82 17979.36 404
DeepMVS_CXcopyleft97.98 34899.69 15596.95 35399.26 30575.51 40495.74 40298.28 38696.47 29199.62 37491.23 39597.89 39097.38 396
thisisatest053097.45 32496.95 33498.94 29299.68 16397.73 33199.09 20994.19 40398.61 25499.56 19299.30 30184.30 39499.93 9498.27 19399.54 28599.16 293
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12199.91 13999.47 6899.88 13499.70 79
UnsupCasMVSNet_eth98.83 23698.57 24899.59 15299.68 16399.45 15698.99 23699.67 14499.48 12599.55 19799.36 28894.92 31499.86 22298.95 14696.57 39999.45 223
Test_1112_low_res98.95 22398.73 23399.63 13599.68 16399.15 22298.09 33399.80 8097.14 35499.46 22299.40 27696.11 30399.89 17599.01 13599.84 16299.84 36
MVEpermissive92.54 2296.66 34396.11 34798.31 34099.68 16397.55 33697.94 35195.60 39799.37 14790.68 40798.70 37396.56 28798.61 40586.94 40599.55 28098.77 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29099.81 7699.61 10999.48 21699.41 27298.47 17499.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_398.85 23599.09 16798.13 34599.66 16994.90 38597.72 36399.58 20399.07 19699.64 15599.62 19698.19 20999.93 9498.41 18199.95 8399.55 174
ppachtmachnet_test98.89 23199.12 15598.20 34399.66 16995.24 38197.63 36799.68 14099.08 19499.78 10199.62 19698.65 14899.88 18998.02 21299.96 7099.48 214
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11399.62 16998.38 27799.06 29899.27 30798.79 12699.94 7797.51 26599.82 17999.66 104
1112_ss99.05 19998.84 22499.67 10999.66 16999.29 19498.52 29899.82 6797.65 32899.43 22899.16 32596.42 29399.91 13999.07 13199.84 16299.80 47
YYNet198.95 22398.99 20198.84 30999.64 17397.14 35098.22 32199.32 29098.92 21499.59 18099.66 17197.40 25899.83 27098.27 19399.90 11599.55 174
MDA-MVSNet_test_wron98.95 22398.99 20198.85 30799.64 17397.16 34898.23 32099.33 28898.93 21299.56 19299.66 17197.39 26099.83 27098.29 18999.88 13499.55 174
test_one_060199.63 17599.76 6199.55 21699.23 16799.31 25899.61 20598.59 155
thres100view90096.39 34896.03 34997.47 36499.63 17595.93 37199.18 17297.57 38398.75 24098.70 33597.31 40287.04 38399.67 36087.62 40198.51 37196.81 399
thres600view796.60 34496.16 34697.93 35199.63 17596.09 37099.18 17297.57 38398.77 23698.72 33297.32 40187.04 38399.72 33088.57 39898.62 36797.98 390
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25799.33 25199.53 24498.88 11799.68 35596.01 34899.65 25499.02 330
test_part299.62 17999.67 9999.55 197
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22699.86 22299.42 7799.96 7099.80 47
CPTT-MVS98.74 24498.44 25999.64 12899.61 18099.38 17599.18 17299.55 21696.49 36599.27 26699.37 28497.11 27399.92 11695.74 36199.67 24999.62 138
test111197.74 31398.16 28796.49 38199.60 18289.86 41199.71 3491.21 40799.89 3599.88 6199.87 4793.73 33099.90 15799.56 5799.99 1699.70 79
h-mvs3398.61 25498.34 27099.44 19599.60 18298.67 26699.27 14799.44 26099.68 9099.32 25499.49 25592.50 344100.00 199.24 10496.51 40099.65 112
MSDG99.08 19498.98 20499.37 21999.60 18299.13 22397.54 37199.74 11098.84 22699.53 20499.55 24099.10 8799.79 30597.07 29599.86 15399.18 289
FPMVS96.32 35095.50 35898.79 31599.60 18298.17 30398.46 30698.80 34397.16 35396.28 39799.63 18982.19 39599.09 40088.45 39998.89 35299.10 306
test250694.73 37194.59 37295.15 38799.59 18685.90 41399.75 2274.01 41399.89 3599.71 13299.86 5479.00 40499.90 15799.52 6399.99 1699.65 112
ECVR-MVScopyleft97.73 31498.04 29396.78 37599.59 18690.81 40799.72 3090.43 40999.89 3599.86 7199.86 5493.60 33299.89 17599.46 6999.99 1699.65 112
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
SF-MVS99.10 19398.93 20999.62 14499.58 19199.51 14399.13 19399.65 15897.97 31099.42 23099.61 20598.86 11899.87 20396.45 33299.68 24399.49 210
tfpn200view996.30 35195.89 35097.53 36199.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37196.81 399
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30999.26 14999.46 25599.62 10699.75 11499.67 16698.54 16399.85 24099.15 11999.92 10599.68 89
CVMVSNet98.61 25498.88 21997.80 35699.58 19193.60 39399.26 14999.64 16499.66 9899.72 12799.67 16693.26 33499.93 9499.30 9799.81 18899.87 30
thres40096.40 34795.89 35097.92 35299.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37197.98 390
MCST-MVS99.02 20598.81 22899.65 12199.58 19199.49 14598.58 28699.07 33098.40 27599.04 29999.25 31298.51 17299.80 30297.31 27699.51 29199.65 112
HQP_MVS98.90 22898.68 23899.55 16899.58 19199.24 20798.80 26499.54 22298.94 20999.14 28799.25 31297.24 26599.82 27995.84 35899.78 20399.60 152
plane_prior799.58 19199.38 175
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13599.63 16699.61 10999.71 13299.56 23398.76 13199.96 5499.14 12599.92 10599.68 89
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35699.73 11498.68 24599.31 25899.48 25899.09 8999.66 36497.70 24899.77 20799.29 268
DPE-MVScopyleft99.14 18398.92 21399.82 3799.57 20199.77 5498.74 27199.60 18898.55 25899.76 10899.69 15198.23 20699.92 11696.39 33499.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15699.46 25599.68 9099.80 9299.66 17198.99 10399.89 17599.19 11199.90 11599.72 73
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15699.46 25599.67 9499.79 9799.65 17698.97 10799.89 17599.15 11999.89 12499.71 76
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34299.25 30898.78 23499.58 18299.44 26998.24 20299.76 31898.74 16499.93 10199.22 278
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28799.77 1599.80 8099.73 7499.63 15999.30 30198.02 22199.98 2099.43 7299.69 23899.55 174
lupinMVS98.96 22098.87 22099.24 25399.57 20198.40 28798.12 32999.18 32298.28 29299.63 15999.13 32798.02 22199.97 3398.22 19799.69 23899.35 252
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26398.87 22099.57 18599.82 7398.06 21899.87 20398.69 16999.73 22399.15 295
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14299.61 17699.87 4199.74 12299.76 11198.69 14099.87 20398.20 19999.80 19399.75 69
F-COLMAP98.74 24498.45 25899.62 14499.57 20199.47 14798.84 25499.65 15896.31 36998.93 30699.19 32497.68 24599.87 20396.52 32599.37 31199.53 187
CLD-MVS98.76 24298.57 24899.33 22999.57 20198.97 24097.53 37399.55 21696.41 36699.27 26699.13 32799.07 9499.78 30896.73 31399.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 26398.27 27799.40 21099.56 21299.37 17897.97 34999.68 14097.49 33799.08 29499.35 29395.41 31399.82 27997.70 24898.19 38199.01 331
dmvs_re98.69 25098.48 25599.31 23699.55 21399.42 16599.54 8498.38 36699.32 15398.72 33298.71 37296.76 28399.21 39896.01 34899.35 31499.31 263
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9199.69 13798.99 20299.75 11499.71 13898.79 12699.93 9498.46 17999.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvs199.48 8799.65 5098.97 28899.54 21597.16 34899.11 20199.98 1199.78 6899.96 2399.81 7998.72 13899.97 3399.95 1299.97 5699.79 54
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.41 18399.91 13997.27 28099.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.57 15897.27 28099.61 26699.54 182
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31598.58 28699.82 6797.62 32999.34 24999.71 13898.52 17099.77 31697.98 21799.97 5699.52 198
PVSNet_Blended98.70 24998.59 24499.02 28499.54 21597.99 31597.58 37099.82 6795.70 37799.34 24998.98 35298.52 17099.77 31697.98 21799.83 17099.30 265
USDC98.96 22098.93 20999.05 28299.54 21597.99 31597.07 39199.80 8098.21 29699.75 11499.77 10898.43 18099.64 37297.90 22499.88 13499.51 200
save fliter99.53 22199.25 20398.29 31599.38 28099.07 196
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 334
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27699.47 12999.76 10899.78 10198.13 21399.86 22298.70 16799.68 24399.49 210
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14799.61 17699.19 17499.57 18599.64 17898.76 13199.90 15797.29 27799.62 25999.56 171
MIMVSNet98.43 27898.20 28299.11 27299.53 22198.38 29199.58 7698.61 35398.96 20699.33 25199.76 11190.92 35999.81 29497.38 27299.76 20999.15 295
HPM-MVS++copyleft98.96 22098.70 23799.74 7999.52 22699.71 8398.86 25199.19 32198.47 26998.59 34399.06 33898.08 21799.91 13996.94 30099.60 26999.60 152
GA-MVS97.99 30797.68 31798.93 29599.52 22698.04 31397.19 38799.05 33398.32 29098.81 32298.97 35489.89 37399.41 39698.33 18799.05 33999.34 255
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17299.60 18898.85 22399.47 21899.58 22198.38 18899.92 11696.92 30199.54 28599.57 169
test22299.51 22899.08 23297.83 36099.29 29895.21 38398.68 33699.31 29997.28 26499.38 30999.43 234
testdata99.42 20199.51 22898.93 24699.30 29796.20 37098.87 31699.40 27698.33 19599.89 17596.29 33899.28 32399.44 228
plane_prior199.51 228
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23999.60 18899.43 14099.70 13699.36 28897.70 24299.88 18999.20 11099.87 14599.59 159
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32999.53 23199.36 14999.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 17699.50 23499.22 21199.26 30595.66 37898.60 34299.28 30597.67 24699.89 17595.95 35499.32 31899.45 223
SD-MVS99.01 21099.30 12398.15 34499.50 23499.40 17198.94 24599.61 17699.22 17299.75 11499.82 7399.54 4195.51 40897.48 26699.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 26298.20 28299.61 14799.50 23499.46 15198.32 31399.41 26695.22 38299.21 27799.10 33598.34 19399.82 27995.09 37499.66 25299.56 171
APD-MVScopyleft98.87 23398.59 24499.71 9999.50 23499.62 11799.01 22899.57 20596.80 36399.54 19999.63 18998.29 19899.91 13995.24 37099.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35499.71 12698.76 23999.08 29499.47 26299.17 7999.54 38597.85 23299.76 20999.54 182
旧先验199.49 23999.29 19499.26 30599.39 28097.67 24699.36 31299.46 222
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10399.57 20599.44 13599.70 13699.74 11997.21 26799.87 20399.03 13399.94 9499.44 228
DP-MVS Recon98.50 27098.23 27899.31 23699.49 23999.46 15198.56 29199.63 16694.86 38898.85 31899.37 28497.81 23699.59 38096.08 34599.44 30198.88 345
FA-MVS(test-final)98.52 26798.32 27399.10 27499.48 24498.67 26699.77 1598.60 35597.35 34499.63 15999.80 8393.07 33799.84 25597.92 22299.30 32098.78 354
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21299.55 21698.63 25099.31 25899.68 16298.19 20999.78 30898.18 20399.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 35695.68 35697.33 36999.48 24496.22 36798.53 29797.57 38398.06 30598.37 35496.73 40786.84 38799.61 37886.99 40498.57 36896.16 402
sss98.90 22898.77 23299.27 24599.48 24498.44 28498.72 27399.32 29097.94 31499.37 24499.35 29396.31 29899.91 13998.85 15099.63 25899.47 218
PAPM_NR98.36 28498.04 29399.33 22999.48 24498.93 24698.79 26799.28 30197.54 33398.56 34698.57 37797.12 27299.69 34394.09 38598.90 35199.38 243
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10399.57 20599.66 9899.78 10199.83 6697.85 23499.86 22299.44 7199.96 7099.61 148
原ACMM199.37 21999.47 25098.87 25399.27 30296.74 36498.26 35699.32 29797.93 22899.82 27995.96 35399.38 30999.43 234
plane_prior699.47 25099.26 20097.24 265
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24099.61 17699.43 14099.67 14899.28 30597.85 23499.95 6399.17 11699.81 18899.65 112
TAPA-MVS97.92 1398.03 30497.55 32099.46 18999.47 25099.44 15898.50 30099.62 16986.79 40099.07 29799.26 31098.26 20199.62 37497.28 27999.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_testset97.27 32996.83 33998.59 32599.46 25497.55 33699.25 15596.84 39198.78 23497.24 38697.67 39697.11 27398.97 40286.59 40698.54 37099.27 269
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19399.52 23697.40 34199.57 18599.64 17898.93 11099.83 27097.61 25899.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 27998.44 25998.35 33599.46 25496.26 36696.70 39699.34 28797.68 32799.00 30199.13 32797.40 25899.72 33097.59 26099.68 24399.08 316
TinyColmap98.97 21698.93 20999.07 28099.46 25498.19 30097.75 36299.75 10598.79 23299.54 19999.70 14598.97 10799.62 37496.63 32199.83 17099.41 238
9.1498.64 23999.45 25898.81 26199.60 18897.52 33599.28 26599.56 23398.53 16799.83 27095.36 36999.64 256
FE-MVS97.85 30997.42 32299.15 26599.44 25998.75 26199.77 1598.20 37295.85 37499.33 25199.80 8388.86 37699.88 18996.40 33399.12 33498.81 351
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21995.32 39899.99 299.68 14299.57 22998.30 19799.97 3399.94 1699.98 4199.88 25
PatchMatch-RL98.68 25198.47 25699.30 23999.44 25999.28 19698.14 32799.54 22297.12 35599.11 29199.25 31297.80 23799.70 33796.51 32699.30 32098.93 338
PCF-MVS96.03 1896.73 34195.86 35299.33 22999.44 25999.16 22096.87 39499.44 26086.58 40198.95 30499.40 27694.38 32299.88 18987.93 40099.80 19398.95 336
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 26399.61 12399.43 26396.38 36799.11 29199.07 33797.86 23299.92 11694.04 38699.49 296
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9198.32 36999.80 6499.56 19299.69 15196.99 27799.85 24098.99 13699.73 22399.50 205
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25699.53 23199.38 14699.67 14899.36 28897.67 24699.95 6399.17 11699.81 18899.63 127
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24499.46 13299.88 6199.36 28897.54 25399.87 20398.97 14099.87 14599.63 127
WTY-MVS98.59 25998.37 26699.26 24899.43 26398.40 28798.74 27199.13 32898.10 30199.21 27799.24 31794.82 31699.90 15797.86 23098.77 35699.49 210
thisisatest051596.98 33596.42 34298.66 32299.42 26897.47 33897.27 38494.30 40297.24 34899.15 28598.86 36585.01 39199.87 20397.10 29399.39 30898.63 359
pmmvs398.08 30297.80 31198.91 29899.41 26997.69 33397.87 35899.66 14895.87 37399.50 21399.51 24890.35 36899.97 3398.55 17599.47 29899.08 316
NP-MVS99.40 27099.13 22398.83 366
QAPM98.40 28297.99 29699.65 12199.39 27199.47 14799.67 4999.52 23691.70 39698.78 32899.80 8398.55 16199.95 6394.71 37899.75 21199.53 187
OMC-MVS98.90 22898.72 23499.44 19599.39 27199.42 16598.58 28699.64 16497.31 34699.44 22499.62 19698.59 15599.69 34396.17 34499.79 19899.22 278
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21099.23 16799.35 24699.80 8399.17 7999.95 6398.21 19899.84 16299.59 159
Fast-Effi-MVS+99.02 20598.87 22099.46 18999.38 27499.50 14499.04 21999.79 8697.17 35298.62 34098.74 37199.34 6099.95 6398.32 18899.41 30698.92 340
BH-untuned98.22 29698.09 29198.58 32799.38 27497.24 34698.55 29298.98 33797.81 32399.20 28298.76 37097.01 27699.65 37094.83 37598.33 37498.86 347
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35799.59 19499.27 15999.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
xiu_mvs_v2_base99.02 20599.11 15898.77 31699.37 27698.09 30998.13 32899.51 24099.47 12999.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 382
PS-MVSNAJ99.00 21299.08 16998.76 31799.37 27698.10 30898.00 34499.51 24099.47 12999.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 386
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12299.79 8698.41 27398.84 31998.89 36398.75 13399.84 25598.15 20799.51 29198.89 344
DPM-MVS98.28 29097.94 30499.32 23399.36 27999.11 22597.31 38398.78 34496.88 35998.84 31999.11 33497.77 23999.61 37894.03 38799.36 31299.23 276
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21697.79 38099.99 299.48 21699.59 21896.29 30099.95 6399.94 1699.98 4199.88 25
ambc99.20 25799.35 28198.53 27899.17 17799.46 25599.67 14899.80 8398.46 17799.70 33797.92 22299.70 23499.38 243
TEST999.35 28199.35 18598.11 33199.41 26694.83 38997.92 37198.99 34998.02 22199.85 240
train_agg98.35 28797.95 30099.57 16299.35 28199.35 18598.11 33199.41 26694.90 38697.92 37198.99 34998.02 22199.85 24095.38 36899.44 30199.50 205
agg_prior99.35 28199.36 18299.39 27697.76 38199.85 240
test_prior99.46 18999.35 28199.22 21199.39 27699.69 34399.48 214
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12099.49 24899.17 18099.21 27799.67 16698.78 12899.66 36499.09 12999.66 25299.10 306
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24299.54 22299.46 13299.61 17499.70 14596.31 29899.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24499.44 13599.12 29099.78 10198.77 13099.94 7797.87 22999.72 22999.62 138
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19799.79 8699.48 12598.93 30698.55 37999.40 4999.93 9498.51 17799.52 29098.28 380
Anonymous20240521198.75 24398.46 25799.63 13599.34 29099.66 10199.47 9997.65 38199.28 15899.56 19299.50 25193.15 33599.84 25598.62 17299.58 27499.40 239
CHOSEN 280x42098.41 28098.41 26298.40 33399.34 29095.89 37396.94 39399.44 26098.80 23199.25 26899.52 24693.51 33399.98 2098.94 14799.98 4199.32 259
test_899.34 29099.31 19198.08 33599.40 27394.90 38697.87 37598.97 35498.02 22199.84 255
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32599.29 29898.18 29999.63 15999.62 19699.18 7899.68 35598.20 19999.74 21899.30 265
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12299.97 1898.93 21299.91 4499.79 9398.68 14199.93 9496.80 30999.56 27699.30 265
PLCcopyleft97.35 1698.36 28497.99 29699.48 18599.32 29699.24 20798.50 30099.51 24095.19 38498.58 34498.96 35696.95 27899.83 27095.63 36299.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 19698.97 20599.34 22699.31 29798.98 23898.31 31499.91 3398.81 22998.79 32698.94 35899.14 8499.84 25598.79 15798.74 36099.20 284
HQP-NCC99.31 29797.98 34697.45 33898.15 361
ACMP_Plane99.31 29797.98 34697.45 33898.15 361
HQP-MVS98.36 28498.02 29599.39 21399.31 29798.94 24397.98 34699.37 28197.45 33898.15 36198.83 36696.67 28499.70 33794.73 37699.67 24999.53 187
baseline197.73 31497.33 32498.96 28999.30 30197.73 33199.40 10998.42 36399.33 15299.46 22299.21 32191.18 35599.82 27998.35 18591.26 40599.32 259
WR-MVS99.11 19098.93 20999.66 11699.30 30199.42 16598.42 30799.37 28199.04 19999.57 18599.20 32396.89 27999.86 22298.66 17199.87 14599.70 79
hse-mvs298.52 26798.30 27599.16 26399.29 30398.60 27698.77 26999.02 33499.68 9099.32 25499.04 34192.50 34499.85 24099.24 10497.87 39199.03 326
test1299.54 17399.29 30399.33 18899.16 32498.43 35297.54 25399.82 27999.47 29899.48 214
OpenMVS_ROBcopyleft97.31 1797.36 32896.84 33898.89 30599.29 30399.45 15698.87 25099.48 24986.54 40299.44 22499.74 11997.34 26299.86 22291.61 39399.28 32397.37 397
MVS-HIRNet97.86 30898.22 28096.76 37699.28 30691.53 40398.38 30992.60 40699.13 18999.31 25899.96 1297.18 27199.68 35598.34 18699.83 17099.07 321
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23699.40 27399.08 19499.58 18299.64 17898.90 11699.83 27097.44 26899.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 31097.38 32399.14 26999.27 30898.53 27898.72 27399.02 33498.10 30197.18 38899.03 34589.26 37599.85 24097.94 22197.91 38999.03 326
Patchmatch-test98.10 30197.98 29898.48 33099.27 30896.48 36199.40 10999.07 33098.81 22999.23 27299.57 22990.11 37099.87 20396.69 31499.64 25699.09 310
ET-MVSNet_ETH3D96.78 33996.07 34898.91 29899.26 31097.92 32397.70 36596.05 39597.96 31392.37 40698.43 38387.06 38299.90 15798.27 19397.56 39498.91 341
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21699.82 6799.50 12398.97 30299.05 33998.98 10599.98 2098.20 19999.24 32998.62 360
CNVR-MVS98.99 21598.80 23099.56 16599.25 31199.43 16298.54 29599.27 30298.58 25698.80 32499.43 27098.53 16799.70 33797.22 28899.59 27399.54 182
LFMVS98.46 27598.19 28599.26 24899.24 31398.52 28099.62 6296.94 39099.87 4199.31 25899.58 22191.04 35799.81 29498.68 17099.42 30599.45 223
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12599.31 29499.67 9499.47 21899.57 22996.48 29099.84 25599.15 11999.30 32099.47 218
testing396.48 34695.63 35799.01 28599.23 31597.81 32798.90 24799.10 32998.72 24197.84 37797.92 39372.44 41099.85 24097.21 28999.33 31699.35 252
CL-MVSNet_self_test98.71 24898.56 25199.15 26599.22 31698.66 26997.14 38899.51 24098.09 30399.54 19999.27 30796.87 28099.74 32598.43 18098.96 34599.03 326
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38599.47 25298.72 24199.66 15299.70 14599.29 6499.63 37398.07 21199.81 18899.62 138
MSLP-MVS++99.05 19999.09 16798.91 29899.21 31898.36 29298.82 26099.47 25298.85 22398.90 31299.56 23398.78 12899.09 40098.57 17499.68 24399.26 270
NCCC98.82 23798.57 24899.58 15699.21 31899.31 19198.61 27999.25 30898.65 24898.43 35299.26 31097.86 23299.81 29496.55 32399.27 32699.61 148
BH-RMVSNet98.41 28098.14 28899.21 25599.21 31898.47 28198.60 28198.26 37098.35 28498.93 30699.31 29997.20 27099.66 36494.32 38199.10 33699.51 200
miper_lstm_enhance98.65 25398.60 24298.82 31499.20 32197.33 34497.78 36199.66 14899.01 20199.59 18099.50 25194.62 32099.85 24098.12 20899.90 11599.26 270
SCA98.11 30098.36 26797.36 36799.20 32192.99 39598.17 32498.49 36098.24 29499.10 29399.57 22996.01 30599.94 7796.86 30599.62 25999.14 300
mvs_anonymous99.28 13999.39 10198.94 29299.19 32397.81 32799.02 22699.55 21699.78 6899.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 295
OpenMVScopyleft98.12 1098.23 29597.89 30999.26 24899.19 32399.26 20099.65 5899.69 13791.33 39798.14 36599.77 10898.28 19999.96 5495.41 36799.55 28098.58 364
CNLPA98.57 26198.34 27099.28 24299.18 32599.10 23098.34 31199.41 26698.48 26898.52 34798.98 35297.05 27599.78 30895.59 36399.50 29498.96 334
test_yl98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
DCV-MVSNet98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
MG-MVS98.52 26798.39 26498.94 29299.15 32897.39 34398.18 32299.21 31898.89 21999.23 27299.63 18997.37 26199.74 32594.22 38399.61 26699.69 83
ADS-MVSNet297.78 31297.66 31998.12 34699.14 32995.36 37899.22 16498.75 34596.97 35798.25 35799.64 17890.90 36099.94 7796.51 32699.56 27699.08 316
ADS-MVSNet97.72 31797.67 31897.86 35499.14 32994.65 38699.22 16498.86 33996.97 35798.25 35799.64 17890.90 36099.84 25596.51 32699.56 27699.08 316
FMVSNet398.80 23998.63 24199.32 23399.13 33198.72 26399.10 20499.48 24999.23 16799.62 16899.64 17892.57 34199.86 22298.96 14299.90 11599.39 241
PHI-MVS99.11 19098.95 20899.59 15299.13 33199.59 12899.17 17799.65 15897.88 31899.25 26899.46 26598.97 10799.80 30297.26 28299.82 17999.37 246
OPU-MVS99.29 24099.12 33399.44 15899.20 16799.40 27699.00 10198.84 40396.54 32499.60 26999.58 164
c3_l98.72 24798.71 23598.72 31999.12 33397.22 34797.68 36699.56 21098.90 21699.54 19999.48 25896.37 29799.73 32897.88 22699.88 13499.21 280
alignmvs98.28 29097.96 29999.25 25199.12 33398.93 24699.03 22398.42 36399.64 10298.72 33297.85 39490.86 36299.62 37498.88 14999.13 33399.19 287
PAPM95.61 36894.71 37098.31 34099.12 33396.63 35996.66 39798.46 36190.77 39896.25 39898.68 37493.01 33899.69 34381.60 40797.86 39298.62 360
AdaColmapbinary98.60 25698.35 26999.38 21699.12 33399.22 21198.67 27699.42 26597.84 32298.81 32299.27 30797.32 26399.81 29495.14 37299.53 28799.10 306
MS-PatchMatch99.00 21298.97 20599.09 27599.11 33898.19 30098.76 27099.33 28898.49 26799.44 22499.58 22198.21 20799.69 34398.20 19999.62 25999.39 241
MGCFI-Net99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
eth_miper_zixun_eth98.68 25198.71 23598.60 32499.10 33996.84 35797.52 37599.54 22298.94 20999.58 18299.48 25896.25 30199.76 31898.01 21599.93 10199.21 280
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
baseline296.83 33896.28 34498.46 33199.09 34296.91 35598.83 25693.87 40597.23 34996.23 40098.36 38488.12 37899.90 15796.68 31598.14 38498.57 365
BH-w/o97.20 33097.01 33297.76 35799.08 34395.69 37498.03 34198.52 35795.76 37697.96 37098.02 39095.62 30999.47 39392.82 39197.25 39698.12 388
iter_conf05_1198.54 26498.33 27299.18 26099.07 34499.20 21697.94 35197.59 38299.17 18099.30 26398.92 36294.79 31799.86 22298.29 18999.89 12498.47 373
bld_raw_dy_0_6498.97 21698.90 21799.17 26299.07 34499.24 20799.24 15699.93 2999.23 16799.87 6999.03 34595.48 31199.81 29498.29 18999.99 1698.47 373
MVSTER98.47 27498.22 28099.24 25399.06 34698.35 29399.08 21299.46 25599.27 15999.75 11499.66 17188.61 37799.85 24099.14 12599.92 10599.52 198
CR-MVSNet98.35 28798.20 28298.83 31199.05 34798.12 30599.30 13599.67 14497.39 34299.16 28399.79 9391.87 34999.91 13998.78 16198.77 35698.44 375
RPMNet98.60 25698.53 25398.83 31199.05 34798.12 30599.30 13599.62 16999.86 4599.16 28399.74 11992.53 34399.92 11698.75 16398.77 35698.44 375
iter_conf0598.46 27598.23 27899.15 26599.04 34997.99 31599.10 20499.61 17699.79 6699.76 10899.58 22187.88 37999.92 11699.31 9699.97 5699.53 187
DVP-MVS++99.38 11799.25 13699.77 5799.03 35099.77 5499.74 2499.61 17699.18 17599.76 10899.61 20599.00 10199.92 11697.72 24399.60 26999.62 138
MSC_two_6792asdad99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
No_MVS99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
cl____98.54 26498.41 26298.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.85 32799.78 30897.97 21999.89 12499.17 291
DIV-MVS_self_test98.54 26498.42 26198.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.87 32699.78 30897.97 21999.89 12499.18 289
HY-MVS98.23 998.21 29797.95 30098.99 28699.03 35098.24 29599.61 6798.72 34696.81 36298.73 33199.51 24894.06 32499.86 22296.91 30298.20 37998.86 347
miper_ehance_all_eth98.59 25998.59 24498.59 32598.98 35697.07 35197.49 37699.52 23698.50 26599.52 20699.37 28496.41 29599.71 33497.86 23099.62 25999.00 332
PMMVS98.49 27298.29 27699.11 27298.96 35798.42 28697.54 37199.32 29097.53 33498.47 35098.15 38997.88 23199.82 27997.46 26799.24 32999.09 310
PatchT98.45 27798.32 27398.83 31198.94 35898.29 29499.24 15698.82 34299.84 5399.08 29499.76 11191.37 35299.94 7798.82 15399.00 34398.26 381
tpm97.15 33196.95 33497.75 35898.91 35994.24 38899.32 12797.96 37597.71 32698.29 35599.32 29786.72 38899.92 11698.10 21096.24 40299.09 310
131498.00 30697.90 30898.27 34298.90 36097.45 34099.30 13599.06 33294.98 38597.21 38799.12 33198.43 18099.67 36095.58 36498.56 36997.71 393
CostFormer96.71 34296.79 34196.46 38298.90 36090.71 40899.41 10898.68 34894.69 39098.14 36599.34 29686.32 39099.80 30297.60 25998.07 38798.88 345
UGNet99.38 11799.34 11199.49 18198.90 36098.90 24999.70 3599.35 28599.86 4598.57 34599.81 7998.50 17399.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 19598.92 21399.52 17698.89 36399.78 4999.15 18599.66 14899.34 15098.92 30999.24 31797.69 24499.98 2098.11 20999.28 32398.81 351
Patchmtry98.78 24098.54 25299.49 18198.89 36399.19 21899.32 12799.67 14499.65 10099.72 12799.79 9391.87 34999.95 6398.00 21699.97 5699.33 256
tpm296.35 34996.22 34596.73 37898.88 36591.75 40199.21 16698.51 35893.27 39397.89 37399.21 32184.83 39299.70 33796.04 34798.18 38298.75 357
tpm cat196.78 33996.98 33396.16 38598.85 36690.59 40999.08 21299.32 29092.37 39497.73 38299.46 26591.15 35699.69 34396.07 34698.80 35398.21 384
CANet99.11 19099.05 17999.28 24298.83 36798.56 27798.71 27599.41 26699.25 16399.23 27299.22 31997.66 25099.94 7799.19 11199.97 5699.33 256
FMVSNet597.80 31197.25 32799.42 20198.83 36798.97 24099.38 11399.80 8098.87 22099.25 26899.69 15180.60 39899.91 13998.96 14299.90 11599.38 243
API-MVS98.38 28398.39 26498.35 33598.83 36799.26 20099.14 18799.18 32298.59 25598.66 33798.78 36998.61 15299.57 38294.14 38499.56 27696.21 401
PatchmatchNetpermissive97.65 31897.80 31197.18 37298.82 37092.49 39799.17 17798.39 36598.12 30098.79 32699.58 22190.71 36499.89 17597.23 28799.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ETVMVS96.14 35595.22 36598.89 30598.80 37198.01 31498.66 27798.35 36898.71 24397.18 38896.31 41374.23 40999.75 32296.64 32098.13 38698.90 342
PAPR97.56 32297.07 33099.04 28398.80 37198.11 30797.63 36799.25 30894.56 39198.02 36998.25 38797.43 25799.68 35590.90 39698.74 36099.33 256
CANet_DTU98.91 22698.85 22299.09 27598.79 37398.13 30498.18 32299.31 29499.48 12598.86 31799.51 24896.56 28799.95 6399.05 13299.95 8399.19 287
E-PMN97.14 33397.43 32196.27 38398.79 37391.62 40295.54 40099.01 33699.44 13598.88 31399.12 33192.78 34099.68 35594.30 38299.03 34197.50 394
testing1196.05 35895.41 36097.97 34998.78 37595.27 38098.59 28498.23 37198.86 22296.56 39596.91 40675.20 40699.69 34397.26 28298.29 37698.93 338
PVSNet_095.53 1995.85 36495.31 36497.47 36498.78 37593.48 39495.72 39999.40 27396.18 37197.37 38397.73 39595.73 30799.58 38195.49 36581.40 40699.36 249
MAR-MVS98.24 29497.92 30699.19 25898.78 37599.65 10799.17 17799.14 32695.36 38098.04 36898.81 36897.47 25599.72 33095.47 36699.06 33798.21 384
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing9196.00 35995.32 36398.02 34798.76 37895.39 37798.38 30998.65 35298.82 22796.84 39196.71 40875.06 40799.71 33496.46 33198.23 37898.98 333
testing9995.86 36395.19 36697.87 35398.76 37895.03 38298.62 27898.44 36298.68 24596.67 39496.66 40974.31 40899.69 34396.51 32698.03 38898.90 342
EMVS96.96 33697.28 32595.99 38698.76 37891.03 40595.26 40198.61 35399.34 15098.92 30998.88 36493.79 32899.66 36492.87 39099.05 33997.30 398
IB-MVS95.41 2095.30 37094.46 37497.84 35598.76 37895.33 37997.33 38296.07 39496.02 37295.37 40497.41 40076.17 40599.96 5497.54 26295.44 40498.22 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 31498.07 29296.73 37898.71 38292.00 39999.10 20498.86 33998.52 26398.92 30999.54 24291.90 34799.82 27998.02 21299.03 34198.37 377
MDTV_nov1_ep1397.73 31598.70 38390.83 40699.15 18598.02 37498.51 26498.82 32199.61 20590.98 35899.66 36496.89 30498.92 348
dp96.86 33797.07 33096.24 38498.68 38490.30 41099.19 17198.38 36697.35 34498.23 35999.59 21887.23 38199.82 27996.27 33998.73 36298.59 362
testing22295.60 36994.59 37298.61 32398.66 38597.45 34098.54 29597.90 37898.53 26296.54 39696.47 41070.62 41299.81 29495.91 35698.15 38398.56 366
JIA-IIPM98.06 30397.92 30698.50 32998.59 38697.02 35298.80 26498.51 35899.88 4097.89 37399.87 4791.89 34899.90 15798.16 20697.68 39398.59 362
MVS95.72 36694.63 37198.99 28698.56 38797.98 32199.30 13598.86 33972.71 40597.30 38499.08 33698.34 19399.74 32589.21 39798.33 37499.26 270
UWE-MVS96.21 35495.78 35497.49 36298.53 38893.83 39298.04 33993.94 40498.96 20698.46 35198.17 38879.86 39999.87 20396.99 29799.06 33798.78 354
TR-MVS97.44 32597.15 32998.32 33898.53 38897.46 33998.47 30297.91 37796.85 36098.21 36098.51 38196.42 29399.51 39192.16 39297.29 39597.98 390
Syy-MVS98.17 29897.85 31099.15 26598.50 39098.79 25898.60 28199.21 31897.89 31696.76 39296.37 41195.47 31299.57 38299.10 12898.73 36299.09 310
myMVS_eth3d95.63 36794.73 36998.34 33798.50 39096.36 36498.60 28199.21 31897.89 31696.76 39296.37 41172.10 41199.57 38294.38 38098.73 36299.09 310
tpmvs97.39 32697.69 31696.52 38098.41 39291.76 40099.30 13598.94 33897.74 32497.85 37699.55 24092.40 34699.73 32896.25 34098.73 36298.06 389
LS3D99.24 14999.11 15899.61 14798.38 39399.79 4699.57 7999.68 14099.61 10999.15 28599.71 13898.70 13999.91 13997.54 26299.68 24399.13 303
cl2297.56 32297.28 32598.40 33398.37 39496.75 35897.24 38699.37 28197.31 34699.41 23699.22 31987.30 38099.37 39797.70 24899.62 25999.08 316
CMPMVSbinary77.52 2398.50 27098.19 28599.41 20898.33 39599.56 13599.01 22899.59 19495.44 37999.57 18599.80 8395.64 30899.46 39596.47 33099.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 30497.94 30498.32 33898.27 39696.43 36396.95 39299.41 26696.37 36899.43 22898.96 35694.74 31899.69 34397.71 24599.62 25998.83 350
TESTMET0.1,196.24 35295.84 35397.41 36698.24 39793.84 39197.38 37995.84 39698.43 27097.81 37898.56 37879.77 40099.89 17597.77 23798.77 35698.52 367
gg-mvs-nofinetune95.87 36295.17 36797.97 34998.19 39896.95 35399.69 4289.23 41199.89 3596.24 39999.94 1681.19 39699.51 39193.99 38898.20 37997.44 395
test-LLR97.15 33196.95 33497.74 35998.18 39995.02 38397.38 37996.10 39298.00 30697.81 37898.58 37590.04 37199.91 13997.69 25498.78 35498.31 378
test-mter96.23 35395.73 35597.74 35998.18 39995.02 38397.38 37996.10 39297.90 31597.81 37898.58 37579.12 40399.91 13997.69 25498.78 35498.31 378
EPMVS96.53 34596.32 34397.17 37398.18 39992.97 39699.39 11189.95 41098.21 29698.61 34199.59 21886.69 38999.72 33096.99 29799.23 33198.81 351
WB-MVSnew98.34 28998.14 28898.96 28998.14 40297.90 32498.27 31697.26 38998.63 25098.80 32498.00 39297.77 23999.90 15797.37 27398.98 34499.09 310
test0.0.03 197.37 32796.91 33798.74 31897.72 40397.57 33597.60 36997.36 38898.00 30699.21 27798.02 39090.04 37199.79 30598.37 18395.89 40398.86 347
GG-mvs-BLEND97.36 36797.59 40496.87 35699.70 3588.49 41294.64 40597.26 40380.66 39799.12 39991.50 39496.50 40196.08 403
gm-plane-assit97.59 40489.02 41293.47 39298.30 38599.84 25596.38 335
cascas96.99 33496.82 34097.48 36397.57 40695.64 37596.43 39899.56 21091.75 39597.13 39097.61 39995.58 31098.63 40496.68 31599.11 33598.18 387
EPNet_dtu97.62 31997.79 31397.11 37496.67 40792.31 39898.51 29998.04 37399.24 16595.77 40199.47 26293.78 32999.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
miper_refine_blended95.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
EPNet98.13 29997.77 31499.18 26094.57 41097.99 31599.24 15697.96 37599.74 7397.29 38599.62 19693.13 33699.97 3398.59 17399.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 37292.32 37589.91 38993.49 41170.18 41490.28 40299.56 21061.71 40695.39 40399.52 24693.90 32599.94 7798.76 16298.27 37799.62 138
tmp_tt95.75 36595.42 35996.76 37689.90 41294.42 38798.86 25197.87 37978.01 40399.30 26399.69 15197.70 24295.89 40799.29 10098.14 38499.95 11
testmvs28.94 37533.33 37715.79 39126.03 4139.81 41696.77 39515.67 41411.55 40923.87 41050.74 41719.03 4148.53 41023.21 40933.07 40729.03 406
test12329.31 37433.05 37918.08 39025.93 41412.24 41597.53 37310.93 41511.78 40824.21 40950.08 41821.04 4138.60 40923.51 40832.43 40833.39 405
test_blank8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.88 37633.17 3780.00 3920.00 4150.00 4170.00 40399.62 1690.00 4100.00 41199.13 32799.82 130.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas16.61 37722.14 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 199.28 660.00 4110.00 4100.00 4090.00 407
sosnet-low-res8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
sosnet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
Regformer8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.26 38611.02 3890.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.16 3250.00 4150.00 4110.00 4100.00 4090.00 407
uanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS96.36 36495.20 371
PC_three_145297.56 33099.68 14299.41 27299.09 8997.09 40696.66 31799.60 26999.62 138
test_241102_TWO99.54 22299.13 18999.76 10899.63 18998.32 19699.92 11697.85 23299.69 23899.75 69
test_0728_THIRD99.18 17599.62 16899.61 20598.58 15799.91 13997.72 24399.80 19399.77 60
GSMVS99.14 300
sam_mvs190.81 36399.14 300
sam_mvs90.52 367
MTGPAbinary99.53 231
test_post199.14 18751.63 41689.54 37499.82 27996.86 305
test_post52.41 41590.25 36999.86 222
patchmatchnet-post99.62 19690.58 36599.94 77
MTMP99.09 20998.59 356
test9_res95.10 37399.44 30199.50 205
agg_prior294.58 37999.46 30099.50 205
test_prior499.19 21898.00 344
test_prior297.95 35097.87 31998.05 36799.05 33997.90 22995.99 35199.49 296
旧先验297.94 35195.33 38198.94 30599.88 18996.75 311
新几何298.04 339
无先验98.01 34299.23 31295.83 37599.85 24095.79 36099.44 228
原ACMM297.92 354
testdata299.89 17595.99 351
segment_acmp98.37 189
testdata197.72 36397.86 321
plane_prior599.54 22299.82 27995.84 35899.78 20399.60 152
plane_prior499.25 312
plane_prior399.31 19198.36 27999.14 287
plane_prior298.80 26498.94 209
plane_prior99.24 20798.42 30797.87 31999.71 232
n20.00 416
nn0.00 416
door-mid99.83 62
test1199.29 298
door99.77 95
HQP5-MVS98.94 243
BP-MVS94.73 376
HQP4-MVS98.15 36199.70 33799.53 187
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 284
MDTV_nov1_ep13_2view91.44 40499.14 18797.37 34399.21 27791.78 35196.75 31199.03 326
ACMMP++_ref99.94 94
ACMMP++99.79 198
Test By Simon98.41 183