This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 20100.00 199.87 28
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 28100.00 199.97 1199.61 3199.97 3299.75 37100.00 199.84 34
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18899.98 1100.00 199.98 3
Gipumacopyleft99.57 6999.59 6399.49 18099.98 399.71 8499.72 3099.84 5799.81 6099.94 3299.78 10198.91 11099.71 32898.41 18099.95 8299.05 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27299.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_f99.75 3099.88 699.37 21999.96 798.21 29699.51 90100.00 199.94 22100.00 199.93 1799.58 3499.94 7699.97 499.99 1699.97 7
anonymousdsp99.80 2399.77 3199.90 899.96 799.88 1299.73 2799.85 5199.70 8599.92 3999.93 1799.45 4599.97 3299.36 84100.00 199.85 33
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6499.84 5299.94 3299.91 2499.13 8499.96 5399.83 3099.99 1699.83 38
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5199.95 1899.98 1399.92 2199.28 6499.98 1999.75 37100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4699.89 3499.98 1399.90 2999.94 499.98 1999.75 37100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4199.92 2699.98 1399.93 1799.94 499.98 1999.77 36100.00 199.92 18
OurMVSNet-221017-099.75 3099.71 3699.84 3099.96 799.83 2999.83 699.85 5199.80 6399.93 3599.93 1798.54 16099.93 9399.59 4999.98 3999.76 65
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20299.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 1899.99 1699.99 1
test_fmvs1_n99.68 4499.81 2399.28 24299.95 1597.93 31899.49 95100.00 199.82 5799.99 799.89 3499.21 7399.98 1999.97 499.98 3999.93 15
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 17799.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
bld_raw_dy_0_6499.70 3899.65 4899.85 2799.95 1599.77 5499.66 5399.71 12399.95 1899.91 4299.77 10898.35 188100.00 199.54 5899.99 1699.79 52
test_vis1_n99.68 4499.79 2799.36 22399.94 1998.18 29999.52 86100.00 199.86 44100.00 199.88 4298.99 10099.96 5399.97 499.96 6999.95 11
testf199.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
APD_test299.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
pmmvs699.86 999.86 1299.83 3299.94 1999.90 799.83 699.91 3299.85 4999.94 3299.95 1399.73 2199.90 15799.65 4499.97 5499.69 82
RRT_MVS99.67 5099.59 6399.91 299.94 1999.88 1299.78 1299.27 30099.87 4099.91 4299.87 4798.04 21799.96 5399.68 4299.99 1699.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7799.73 7499.97 1999.92 2199.77 1999.98 1999.43 71100.00 199.90 20
MIMVSNet199.66 5299.62 5499.80 4499.94 1999.87 1599.69 4299.77 9299.78 6899.93 3599.89 3497.94 22599.92 11599.65 4499.98 3999.62 137
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 1899.99 1699.98 3
test_cas_vis1_n_192099.76 2999.86 1299.45 19199.93 2698.40 28499.30 13599.98 1199.94 2299.99 799.89 3499.80 1599.97 3299.96 999.97 5499.97 7
test_vis1_n_192099.72 3499.88 699.27 24599.93 2697.84 32099.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
mvsmamba99.74 3399.70 3799.85 2799.93 2699.83 2999.76 1999.81 7399.96 1699.91 4299.81 7998.60 15199.94 7699.58 5299.98 3999.77 59
K. test v398.87 22998.60 23899.69 10399.93 2699.46 15099.74 2494.97 39099.78 6899.88 6099.88 4293.66 32699.97 3299.61 4799.95 8299.64 121
SixPastTwentyTwo99.42 10499.30 12299.76 6399.92 3199.67 10099.70 3599.14 32499.65 10099.89 5299.90 2996.20 29999.94 7699.42 7699.92 10499.67 94
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 23899.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1599.99 1699.93 15
test_fmvs299.72 3499.85 1699.34 22699.91 3298.08 30999.48 96100.00 199.90 2899.99 799.91 2499.50 4499.98 1999.98 199.99 1699.96 10
pm-mvs199.79 2499.79 2799.78 5399.91 3299.83 2999.76 1999.87 4399.73 7499.89 5299.87 4799.63 2899.87 20299.54 5899.92 10499.63 126
TransMVSNet (Re)99.78 2599.77 3199.81 3999.91 3299.85 1999.75 2299.86 4699.70 8599.91 4299.89 3499.60 3399.87 20299.59 4999.74 21699.71 75
Baseline_NR-MVSNet99.49 8499.37 10599.82 3699.91 3299.84 2498.83 25499.86 4699.68 9099.65 15399.88 4297.67 24399.87 20299.03 13399.86 15199.76 65
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 2899.97 1999.87 4799.81 1499.95 6299.54 5899.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PVSNet_Blended_VisFu99.40 11099.38 10299.44 19499.90 3898.66 26698.94 24399.91 3297.97 30099.79 9599.73 12499.05 9599.97 3299.15 11999.99 1699.68 88
TDRefinement99.72 3499.70 3799.77 5699.90 3899.85 1999.86 599.92 2999.69 8899.78 9999.92 2199.37 5499.88 18898.93 14899.95 8299.60 151
APD_test199.36 12299.28 12999.61 14699.89 4099.89 1099.32 12799.74 10799.18 17399.69 13899.75 11798.41 18099.84 25297.85 22999.70 23299.10 306
EGC-MVSNET89.05 36285.52 36599.64 12799.89 4099.78 4999.56 8199.52 23424.19 39749.96 39899.83 6699.15 7999.92 11597.71 24299.85 15599.21 280
Anonymous2024052199.44 9899.42 9799.49 18099.89 4098.96 23999.62 6399.76 9799.85 4999.82 7999.88 4296.39 29399.97 3299.59 4999.98 3999.55 173
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12399.93 2499.95 3099.89 3499.71 2299.96 5399.51 6399.97 5499.84 34
XXY-MVS99.71 3799.67 4599.81 3999.89 4099.72 8299.59 7499.82 6499.39 14499.82 7999.84 6299.38 5299.91 13999.38 7999.93 10099.80 45
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4599.55 13799.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
FC-MVSNet-test99.70 3899.65 4899.86 2599.88 4599.86 1899.72 3099.78 8999.90 2899.82 7999.83 6698.45 17599.87 20299.51 6399.97 5499.86 30
EU-MVSNet99.39 11499.62 5498.72 31499.88 4596.44 35699.56 8199.85 5199.90 2899.90 4899.85 5698.09 21399.83 26799.58 5299.95 8299.90 20
CHOSEN 1792x268899.39 11499.30 12299.65 12099.88 4599.25 20298.78 26699.88 4198.66 23999.96 2399.79 9397.45 25399.93 9399.34 8899.99 1699.78 55
Vis-MVSNetpermissive99.75 3099.74 3599.79 5099.88 4599.66 10299.69 4299.92 2999.67 9499.77 10499.75 11799.61 3199.98 1999.35 8799.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 34599.72 7899.91 4299.60 21299.43 4699.81 29199.81 3499.53 28599.73 70
tfpnnormal99.43 10199.38 10299.60 14999.87 5099.75 6899.59 7499.78 8999.71 8099.90 4899.69 15298.85 11699.90 15797.25 28199.78 20199.15 295
SteuartSystems-ACMMP99.30 13699.14 14899.76 6399.87 5099.66 10299.18 17299.60 18598.55 24999.57 18499.67 16799.03 9799.94 7697.01 29199.80 19199.69 82
Skip Steuart: Steuart Systems R&D Blog.
SSC-MVS99.52 8099.42 9799.83 3299.86 5399.65 10799.52 8699.81 7399.87 4099.81 8699.79 9396.78 27999.99 899.83 3099.51 28999.86 30
lessismore_v099.64 12799.86 5399.38 17490.66 39899.89 5299.83 6694.56 31699.97 3299.56 5599.92 10499.57 168
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6299.32 12799.77 9299.53 12099.77 10499.76 11299.26 6899.78 30397.77 23499.88 13299.60 151
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11699.56 8199.79 8398.77 23099.80 9099.85 5699.64 2799.85 23798.70 16699.89 12399.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5799.82 3599.03 22199.96 2399.99 299.97 1999.84 6299.58 3499.93 9399.92 2099.98 3999.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5799.78 4999.03 22199.96 2399.99 299.97 1999.84 6299.78 1799.92 11599.92 2099.99 1699.92 18
HyFIR lowres test98.91 22298.64 23599.73 8799.85 5799.47 14698.07 32899.83 5998.64 24199.89 5299.60 21292.57 336100.00 199.33 9199.97 5499.72 72
KD-MVS_self_test99.63 5899.59 6399.76 6399.84 6099.90 799.37 11799.79 8399.83 5599.88 6099.85 5698.42 17999.90 15799.60 4899.73 22199.49 210
FIs99.65 5799.58 6799.84 3099.84 6099.85 1999.66 5399.75 10299.86 4499.74 12199.79 9398.27 19899.85 23799.37 8299.93 10099.83 38
XVG-OURS-SEG-HR99.16 17798.99 19899.66 11599.84 6099.64 11098.25 31199.73 11198.39 26699.63 15899.43 27099.70 2499.90 15797.34 27098.64 36199.44 228
PMVScopyleft92.94 2198.82 23398.81 22498.85 30299.84 6097.99 31199.20 16799.47 25099.71 8099.42 22999.82 7398.09 21399.47 38393.88 37999.85 15599.07 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FOURS199.83 6499.89 1099.74 2499.71 12399.69 8899.63 158
MP-MVS-pluss99.14 18198.92 21099.80 4499.83 6499.83 2998.61 27599.63 16396.84 35199.44 22399.58 22098.81 11899.91 13997.70 24599.82 17799.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PM-MVS99.36 12299.29 12799.58 15599.83 6499.66 10298.95 24199.86 4698.85 21899.81 8699.73 12498.40 18499.92 11598.36 18399.83 16899.17 291
PEN-MVS99.66 5299.59 6399.89 1199.83 6499.87 1599.66 5399.73 11199.70 8599.84 7499.73 12498.56 15799.96 5399.29 10099.94 9399.83 38
HPM-MVS_fast99.43 10199.30 12299.80 4499.83 6499.81 4099.52 8699.70 12998.35 27499.51 21099.50 25199.31 6099.88 18898.18 20099.84 16099.69 82
RPSCF99.18 17199.02 18799.64 12799.83 6499.85 1999.44 10599.82 6498.33 27999.50 21299.78 10197.90 22799.65 36196.78 30499.83 16899.44 228
COLMAP_ROBcopyleft98.06 1299.45 9699.37 10599.70 10299.83 6499.70 9199.38 11399.78 8999.53 12099.67 14799.78 10199.19 7599.86 22097.32 27199.87 14399.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 45
TSAR-MVS + MP.99.34 12999.24 13799.63 13499.82 7199.37 17799.26 14999.35 28398.77 23099.57 18499.70 14699.27 6799.88 18897.71 24299.75 20999.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 12499.57 7098.71 31699.82 7196.62 35498.55 28799.75 10299.50 12299.88 6099.87 4799.31 6099.88 18899.43 71100.00 199.62 137
VPNet99.46 9499.37 10599.71 9899.82 7199.59 12799.48 9699.70 12999.81 6099.69 13899.58 22097.66 24799.86 22099.17 11699.44 29999.67 94
XVG-OURS99.21 16299.06 17499.65 12099.82 7199.62 11697.87 34899.74 10798.36 26999.66 15199.68 16399.71 2299.90 15796.84 30299.88 13299.43 234
XVG-ACMP-BASELINE99.23 14999.10 16599.63 13499.82 7199.58 13198.83 25499.72 12098.36 26999.60 17699.71 13998.92 10899.91 13997.08 28999.84 16099.40 239
LPG-MVS_test99.22 15799.05 17899.74 7899.82 7199.63 11499.16 18399.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
LGP-MVS_train99.74 7899.82 7199.63 11499.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
WB-MVS99.44 9899.32 11599.80 4499.81 7999.61 12299.47 9999.81 7399.82 5799.71 13199.72 13196.60 28399.98 1999.75 3799.23 32999.82 44
MTAPA99.35 12499.20 14099.80 4499.81 7999.81 4099.33 12599.53 22999.27 15899.42 22999.63 18898.21 20599.95 6297.83 23399.79 19699.65 111
v1099.69 4199.69 4199.66 11599.81 7999.39 17299.66 5399.75 10299.60 11499.92 3999.87 4798.75 13099.86 22099.90 2399.99 1699.73 70
HPM-MVScopyleft99.25 14599.07 17299.78 5399.81 7999.75 6899.61 6899.67 14297.72 31599.35 24599.25 31299.23 7199.92 11597.21 28499.82 17799.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
casdiffmvs_mvgpermissive99.68 4499.68 4499.69 10399.81 7999.59 12799.29 14299.90 3599.71 8099.79 9599.73 12499.54 3999.84 25299.36 8499.96 6999.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS99.41 10899.47 8499.25 25199.81 7998.09 30698.85 25199.76 9799.62 10599.83 7899.64 17898.54 16099.97 3299.15 11999.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SDMVSNet99.77 2899.77 3199.76 6399.80 8599.65 10799.63 6199.86 4699.97 1499.89 5299.89 3499.52 4299.99 899.42 7699.96 6999.65 111
sd_testset99.78 2599.78 3099.80 4499.80 8599.76 6299.80 1099.79 8399.97 1499.89 5299.89 3499.53 4199.99 899.36 8499.96 6999.65 111
v124099.56 7299.58 6799.51 17799.80 8599.00 23399.00 22999.65 15599.15 18499.90 4899.75 11799.09 8799.88 18899.90 2399.96 6999.67 94
v899.68 4499.69 4199.65 12099.80 8599.40 17099.66 5399.76 9799.64 10299.93 3599.85 5698.66 14399.84 25299.88 2799.99 1699.71 75
MDA-MVSNet-bldmvs99.06 19499.05 17899.07 27799.80 8597.83 32198.89 24699.72 12099.29 15499.63 15899.70 14696.47 28899.89 17498.17 20299.82 17799.50 205
PS-CasMVS99.66 5299.58 6799.89 1199.80 8599.85 1999.66 5399.73 11199.62 10599.84 7499.71 13998.62 14799.96 5399.30 9799.96 6999.86 30
DTE-MVSNet99.68 4499.61 5899.88 1799.80 8599.87 1599.67 4999.71 12399.72 7899.84 7499.78 10198.67 14199.97 3299.30 9799.95 8299.80 45
WR-MVS_H99.61 6699.53 8099.87 2199.80 8599.83 2999.67 4999.75 10299.58 11799.85 7199.69 15298.18 20999.94 7699.28 10299.95 8299.83 38
baseline99.63 5899.62 5499.66 11599.80 8599.62 11699.44 10599.80 7799.71 8099.72 12699.69 15299.15 7999.83 26799.32 9399.94 9399.53 187
IS-MVSNet99.03 20198.85 21899.55 16799.80 8599.25 20299.73 2799.15 32399.37 14699.61 17399.71 13994.73 31499.81 29197.70 24599.88 13299.58 163
EPP-MVSNet99.17 17599.00 19399.66 11599.80 8599.43 16199.70 3599.24 30999.48 12499.56 19199.77 10894.89 31199.93 9398.72 16599.89 12399.63 126
ACMM98.09 1199.46 9499.38 10299.72 9399.80 8599.69 9599.13 19399.65 15598.99 19999.64 15499.72 13199.39 4899.86 22098.23 19399.81 18699.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dcpmvs_299.61 6699.64 5299.53 17399.79 9798.82 25199.58 7699.97 1899.95 1899.96 2399.76 11298.44 17699.99 899.34 8899.96 6999.78 55
v114499.54 7799.53 8099.59 15199.79 9799.28 19599.10 20299.61 17399.20 17199.84 7499.73 12498.67 14199.84 25299.86 2999.98 3999.64 121
V4299.56 7299.54 7699.63 13499.79 9799.46 15099.39 11199.59 19199.24 16499.86 6999.70 14698.55 15899.82 27699.79 3599.95 8299.60 151
test20.0399.55 7599.54 7699.58 15599.79 9799.37 17799.02 22499.89 3799.60 11499.82 7999.62 19598.81 11899.89 17499.43 7199.86 15199.47 218
casdiffmvspermissive99.63 5899.61 5899.67 10899.79 9799.59 12799.13 19399.85 5199.79 6699.76 10699.72 13199.33 5999.82 27699.21 10799.94 9399.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040299.22 15799.14 14899.45 19199.79 9799.43 16199.28 14499.68 13899.54 11899.40 24099.56 23399.07 9299.82 27696.01 33999.96 6999.11 304
ACMMPcopyleft99.25 14599.08 16899.74 7899.79 9799.68 9899.50 9199.65 15598.07 29499.52 20599.69 15298.57 15599.92 11597.18 28699.79 19699.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MSP-MVS99.04 20098.79 22799.81 3999.78 10499.73 7799.35 12199.57 20398.54 25299.54 19898.99 34896.81 27899.93 9396.97 29399.53 28599.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
v14419299.55 7599.54 7699.58 15599.78 10499.20 21499.11 20099.62 16699.18 17399.89 5299.72 13198.66 14399.87 20299.88 2799.97 5499.66 103
AllTest99.21 16299.07 17299.63 13499.78 10499.64 11099.12 19799.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
TestCases99.63 13499.78 10499.64 11099.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
v2v48299.50 8299.47 8499.58 15599.78 10499.25 20299.14 18799.58 20199.25 16299.81 8699.62 19598.24 20099.84 25299.83 3099.97 5499.64 121
FMVSNet199.66 5299.63 5399.73 8799.78 10499.77 5499.68 4599.70 12999.67 9499.82 7999.83 6698.98 10299.90 15799.24 10499.97 5499.53 187
Vis-MVSNet (Re-imp)98.77 23798.58 24399.34 22699.78 10498.88 24899.61 6899.56 20899.11 19099.24 26999.56 23393.00 33499.78 30397.43 26699.89 12399.35 252
ACMP97.51 1499.05 19798.84 22099.67 10899.78 10499.55 13798.88 24799.66 14697.11 34699.47 21799.60 21299.07 9299.89 17496.18 33499.85 15599.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs-eth3d99.48 8699.47 8499.51 17799.77 11299.41 16998.81 25999.66 14699.42 14399.75 11399.66 17199.20 7499.76 31398.98 13899.99 1699.36 249
Patchmatch-RL test98.60 25398.36 26499.33 22999.77 11299.07 23098.27 30999.87 4398.91 21199.74 12199.72 13190.57 36199.79 30098.55 17499.85 15599.11 304
v119299.57 6999.57 7099.57 16199.77 11299.22 20999.04 21799.60 18599.18 17399.87 6899.72 13199.08 9099.85 23799.89 2699.98 3999.66 103
EG-PatchMatch MVS99.57 6999.56 7599.62 14399.77 11299.33 18799.26 14999.76 9799.32 15299.80 9099.78 10199.29 6299.87 20299.15 11999.91 11399.66 103
GeoE99.69 4199.66 4699.78 5399.76 11699.76 6299.60 7399.82 6499.46 13199.75 11399.56 23399.63 2899.95 6299.43 7199.88 13299.62 137
ZNCC-MVS99.22 15799.04 18399.77 5699.76 11699.73 7799.28 14499.56 20898.19 28899.14 28599.29 30498.84 11799.92 11597.53 26199.80 19199.64 121
tttt051797.62 31497.20 32398.90 30099.76 11697.40 33699.48 9694.36 39299.06 19599.70 13599.49 25584.55 38999.94 7698.73 16499.65 25299.36 249
pmmvs599.19 16799.11 15799.42 20099.76 11698.88 24898.55 28799.73 11198.82 22299.72 12699.62 19596.56 28499.82 27699.32 9399.95 8299.56 170
nrg03099.70 3899.66 4699.82 3699.76 11699.84 2499.61 6899.70 12999.93 2499.78 9999.68 16399.10 8599.78 30399.45 6999.96 6999.83 38
v14899.40 11099.41 9999.39 21399.76 11698.94 24099.09 20799.59 19199.17 17899.81 8699.61 20498.41 18099.69 33699.32 9399.94 9399.53 187
region2R99.23 14999.05 17899.77 5699.76 11699.70 9199.31 13299.59 19198.41 26399.32 25399.36 28898.73 13499.93 9397.29 27399.74 21699.67 94
MP-MVScopyleft99.06 19498.83 22299.76 6399.76 11699.71 8499.32 12799.50 24298.35 27498.97 30099.48 25898.37 18699.92 11595.95 34599.75 20999.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMMVS299.48 8699.45 9099.57 16199.76 11698.99 23498.09 32599.90 3598.95 20499.78 9999.58 22099.57 3699.93 9399.48 6699.95 8299.79 52
CP-MVSNet99.54 7799.43 9599.87 2199.76 11699.82 3599.57 7999.61 17399.54 11899.80 9099.64 17897.79 23699.95 6299.21 10799.94 9399.84 34
mPP-MVS99.19 16799.00 19399.76 6399.76 11699.68 9899.38 11399.54 22098.34 27899.01 29899.50 25198.53 16499.93 9397.18 28699.78 20199.66 103
IterMVS-SCA-FT99.00 20999.16 14498.51 32299.75 12795.90 36698.07 32899.84 5799.84 5299.89 5299.73 12496.01 30299.99 899.33 91100.00 199.63 126
ACMMP_NAP99.28 13899.11 15799.79 5099.75 12799.81 4098.95 24199.53 22998.27 28399.53 20399.73 12498.75 13099.87 20297.70 24599.83 16899.68 88
v192192099.56 7299.57 7099.55 16799.75 12799.11 22299.05 21499.61 17399.15 18499.88 6099.71 13999.08 9099.87 20299.90 2399.97 5499.66 103
testgi99.29 13799.26 13399.37 21999.75 12798.81 25298.84 25299.89 3798.38 26799.75 11399.04 34199.36 5799.86 22099.08 13099.25 32599.45 223
PGM-MVS99.20 16499.01 19099.77 5699.75 12799.71 8499.16 18399.72 12097.99 29899.42 22999.60 21298.81 11899.93 9396.91 29699.74 21699.66 103
jason99.16 17799.11 15799.32 23399.75 12798.44 28198.26 31099.39 27498.70 23799.74 12199.30 30198.54 16099.97 3298.48 17799.82 17799.55 173
jason: jason.
Anonymous2023120699.35 12499.31 11799.47 18699.74 13399.06 23299.28 14499.74 10799.23 16699.72 12699.53 24497.63 24999.88 18899.11 12799.84 16099.48 214
ACMMPR99.23 14999.06 17499.76 6399.74 13399.69 9599.31 13299.59 19198.36 26999.35 24599.38 28298.61 14999.93 9397.43 26699.75 20999.67 94
IterMVS98.97 21399.16 14498.42 32699.74 13395.64 36998.06 33099.83 5999.83 5599.85 7199.74 12096.10 30199.99 899.27 103100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
GST-MVS99.16 17798.96 20499.75 7399.73 13699.73 7799.20 16799.55 21498.22 28599.32 25399.35 29398.65 14599.91 13996.86 29999.74 21699.62 137
HFP-MVS99.25 14599.08 16899.76 6399.73 13699.70 9199.31 13299.59 19198.36 26999.36 24499.37 28498.80 12299.91 13997.43 26699.75 20999.68 88
114514_t98.49 26898.11 28599.64 12799.73 13699.58 13199.24 15799.76 9789.94 38999.42 22999.56 23397.76 23899.86 22097.74 23999.82 17799.47 218
UA-Net99.78 2599.76 3499.86 2599.72 13999.71 8499.91 399.95 2899.96 1699.71 13199.91 2499.15 7999.97 3299.50 65100.00 199.90 20
N_pmnet98.73 24398.53 25099.35 22599.72 13998.67 26398.34 30494.65 39198.35 27499.79 9599.68 16398.03 21899.93 9398.28 18999.92 10499.44 228
DeepC-MVS98.90 499.62 6499.61 5899.67 10899.72 13999.44 15799.24 15799.71 12399.27 15899.93 3599.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_vis1_rt99.45 9699.46 8899.41 20799.71 14298.63 27198.99 23499.96 2399.03 19799.95 3099.12 33198.75 13099.84 25299.82 3399.82 17799.77 59
XVS99.27 14299.11 15799.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32699.47 26298.47 17199.88 18897.62 25399.73 22199.67 94
X-MVStestdata96.09 34994.87 35899.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32661.30 40498.47 17199.88 18897.62 25399.73 22199.67 94
VDDNet98.97 21398.82 22399.42 20099.71 14298.81 25299.62 6398.68 34699.81 6099.38 24299.80 8394.25 31899.85 23798.79 15799.32 31699.59 158
DSMNet-mixed99.48 8699.65 4898.95 28799.71 14297.27 33999.50 9199.82 6499.59 11699.41 23599.85 5699.62 30100.00 199.53 6199.89 12399.59 158
EC-MVSNet99.69 4199.69 4199.68 10599.71 14299.91 499.76 1999.96 2399.86 4499.51 21099.39 28099.57 3699.93 9399.64 4699.86 15199.20 284
CSCG99.37 11999.29 12799.60 14999.71 14299.46 15099.43 10799.85 5198.79 22699.41 23599.60 21298.92 10899.92 11598.02 20999.92 10499.43 234
LF4IMVS99.01 20798.92 21099.27 24599.71 14299.28 19598.59 28099.77 9298.32 28099.39 24199.41 27298.62 14799.84 25296.62 31599.84 16098.69 351
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22299.04 21799.87 4399.71 8099.47 21799.79 9398.24 20099.98 1999.38 7999.96 6999.83 38
test_0728_SECOND99.83 3299.70 15099.79 4699.14 18799.61 17399.92 11597.88 22399.72 22799.77 59
OPM-MVS99.26 14499.13 15099.63 13499.70 15099.61 12298.58 28199.48 24798.50 25599.52 20599.63 18899.14 8299.76 31397.89 22299.77 20599.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
new_pmnet98.88 22898.89 21498.84 30499.70 15097.62 32998.15 31799.50 24297.98 29999.62 16799.54 24298.15 21099.94 7697.55 25899.84 16098.95 333
SED-MVS99.40 11099.28 12999.77 5699.69 15499.82 3599.20 16799.54 22099.13 18699.82 7999.63 18898.91 11099.92 11597.85 22999.70 23299.58 163
IU-MVS99.69 15499.77 5499.22 31397.50 32699.69 13897.75 23899.70 23299.77 59
test_241102_ONE99.69 15499.82 3599.54 22099.12 18999.82 7999.49 25598.91 11099.52 380
D2MVS99.22 15799.19 14199.29 24099.69 15498.74 26098.81 25999.41 26498.55 24999.68 14199.69 15298.13 21199.87 20298.82 15399.98 3999.24 273
DVP-MVScopyleft99.32 13499.17 14399.77 5699.69 15499.80 4499.14 18799.31 29299.16 18099.62 16799.61 20498.35 18899.91 13997.88 22399.72 22799.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15499.80 4499.24 15799.57 20399.16 18099.73 12599.65 17698.35 188
wuyk23d97.58 31699.13 15092.93 37899.69 15499.49 14499.52 8699.77 9297.97 30099.96 2399.79 9399.84 1299.94 7695.85 34799.82 17779.36 394
DeepMVS_CXcopyleft97.98 34199.69 15496.95 34799.26 30375.51 39495.74 39298.28 38496.47 28899.62 36591.23 38597.89 38097.38 386
thisisatest053097.45 31996.95 32998.94 28899.68 16297.73 32699.09 20794.19 39498.61 24599.56 19199.30 30184.30 39099.93 9398.27 19099.54 28399.16 293
VPA-MVSNet99.66 5299.62 5499.79 5099.68 16299.75 6899.62 6399.69 13599.85 4999.80 9099.81 7998.81 11899.91 13999.47 6799.88 13299.70 78
UnsupCasMVSNet_eth98.83 23298.57 24499.59 15199.68 16299.45 15598.99 23499.67 14299.48 12499.55 19699.36 28894.92 31099.86 22098.95 14696.57 38999.45 223
Test_1112_low_res98.95 21998.73 22999.63 13499.68 16299.15 21998.09 32599.80 7797.14 34499.46 22199.40 27696.11 30099.89 17499.01 13599.84 16099.84 34
MVEpermissive92.54 2296.66 33896.11 34298.31 33499.68 16297.55 33197.94 34295.60 38899.37 14690.68 39798.70 37196.56 28498.61 39586.94 39599.55 27898.77 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
diffmvspermissive99.34 12999.32 11599.39 21399.67 16798.77 25798.57 28599.81 7399.61 10899.48 21599.41 27298.47 17199.86 22098.97 14099.90 11499.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
our_test_398.85 23199.09 16698.13 33999.66 16894.90 37697.72 35399.58 20199.07 19399.64 15499.62 19598.19 20799.93 9398.41 18099.95 8299.55 173
ppachtmachnet_test98.89 22799.12 15498.20 33799.66 16895.24 37397.63 35799.68 13899.08 19199.78 9999.62 19598.65 14599.88 18898.02 20999.96 6999.48 214
CP-MVS99.23 14999.05 17899.75 7399.66 16899.66 10299.38 11399.62 16698.38 26799.06 29699.27 30798.79 12399.94 7697.51 26299.82 17799.66 103
1112_ss99.05 19798.84 22099.67 10899.66 16899.29 19398.52 29299.82 6497.65 31899.43 22799.16 32596.42 29099.91 13999.07 13199.84 16099.80 45
YYNet198.95 21998.99 19898.84 30499.64 17297.14 34498.22 31399.32 28898.92 21099.59 17999.66 17197.40 25599.83 26798.27 19099.90 11499.55 173
MDA-MVSNet_test_wron98.95 21998.99 19898.85 30299.64 17297.16 34298.23 31299.33 28698.93 20899.56 19199.66 17197.39 25799.83 26798.29 18899.88 13299.55 173
test_one_060199.63 17499.76 6299.55 21499.23 16699.31 25799.61 20498.59 152
thres100view90096.39 34396.03 34497.47 35499.63 17495.93 36599.18 17297.57 37598.75 23498.70 33297.31 39787.04 37999.67 35187.62 39198.51 36696.81 389
thres600view796.60 33996.16 34197.93 34399.63 17496.09 36499.18 17297.57 37598.77 23098.72 32997.32 39687.04 37999.72 32488.57 38898.62 36297.98 380
ITE_SJBPF99.38 21699.63 17499.44 15799.73 11198.56 24899.33 25099.53 24498.88 11499.68 34696.01 33999.65 25299.02 328
test_part299.62 17899.67 10099.55 196
Anonymous2023121199.62 6499.57 7099.76 6399.61 17999.60 12599.81 999.73 11199.82 5799.90 4899.90 2997.97 22499.86 22099.42 7699.96 6999.80 45
CPTT-MVS98.74 24198.44 25699.64 12799.61 17999.38 17499.18 17299.55 21496.49 35599.27 26499.37 28497.11 27099.92 11595.74 35199.67 24799.62 137
test111197.74 30898.16 28396.49 37199.60 18189.86 40199.71 3491.21 39799.89 3499.88 6099.87 4793.73 32599.90 15799.56 5599.99 1699.70 78
h-mvs3398.61 25198.34 26799.44 19499.60 18198.67 26399.27 14799.44 25899.68 9099.32 25399.49 25592.50 339100.00 199.24 10496.51 39099.65 111
MSDG99.08 19298.98 20199.37 21999.60 18199.13 22097.54 36199.74 10798.84 22199.53 20399.55 24099.10 8599.79 30097.07 29099.86 15199.18 289
FPMVS96.32 34595.50 35298.79 31099.60 18198.17 30098.46 30098.80 34197.16 34396.28 38799.63 18882.19 39199.09 39088.45 38998.89 34799.10 306
test250694.73 36094.59 36295.15 37799.59 18585.90 40399.75 2274.01 40399.89 3499.71 13199.86 5479.00 39999.90 15799.52 6299.99 1699.65 111
ECVR-MVScopyleft97.73 30998.04 28896.78 36599.59 18590.81 39799.72 3090.43 39999.89 3499.86 6999.86 5493.60 32799.89 17499.46 6899.99 1699.65 111
xiu_mvs_v1_base_debu99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base_debi99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
SF-MVS99.10 19198.93 20699.62 14399.58 19099.51 14299.13 19399.65 15597.97 30099.42 22999.61 20498.86 11599.87 20296.45 32399.68 24199.49 210
tfpn200view996.30 34695.89 34597.53 35299.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36696.81 389
EI-MVSNet99.38 11699.44 9399.21 25599.58 19098.09 30699.26 14999.46 25399.62 10599.75 11399.67 16798.54 16099.85 23799.15 11999.92 10499.68 88
CVMVSNet98.61 25198.88 21597.80 34799.58 19093.60 38399.26 14999.64 16199.66 9899.72 12699.67 16793.26 32999.93 9399.30 9799.81 18699.87 28
thres40096.40 34295.89 34597.92 34499.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36697.98 380
MCST-MVS99.02 20398.81 22499.65 12099.58 19099.49 14498.58 28199.07 32898.40 26599.04 29799.25 31298.51 16999.80 29797.31 27299.51 28999.65 111
HQP_MVS98.90 22498.68 23499.55 16799.58 19099.24 20698.80 26299.54 22098.94 20599.14 28599.25 31297.24 26299.82 27695.84 34899.78 20199.60 151
plane_prior799.58 19099.38 174
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19099.64 11099.30 13599.63 16399.61 10899.71 13199.56 23398.76 12899.96 5399.14 12599.92 10499.68 88
MVS_111021_LR99.13 18399.03 18599.42 20099.58 19099.32 18997.91 34699.73 11198.68 23899.31 25799.48 25899.09 8799.66 35597.70 24599.77 20599.29 268
DPE-MVScopyleft99.14 18198.92 21099.82 3699.57 20099.77 5498.74 26999.60 18598.55 24999.76 10699.69 15298.23 20499.92 11596.39 32599.75 20999.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CS-MVS-test99.68 4499.70 3799.64 12799.57 20099.83 2999.78 1299.97 1899.92 2699.50 21299.38 28299.57 3699.95 6299.69 4199.90 11499.15 295
EI-MVSNet-UG-set99.48 8699.50 8299.42 20099.57 20098.65 26999.24 15799.46 25399.68 9099.80 9099.66 17198.99 10099.89 17499.19 11199.90 11499.72 72
EI-MVSNet-Vis-set99.47 9399.49 8399.42 20099.57 20098.66 26699.24 15799.46 25399.67 9499.79 9599.65 17698.97 10499.89 17499.15 11999.89 12399.71 75
pmmvs499.13 18399.06 17499.36 22399.57 20099.10 22798.01 33399.25 30698.78 22899.58 18199.44 26998.24 20099.76 31398.74 16399.93 10099.22 278
MVSFormer99.41 10899.44 9399.31 23699.57 20098.40 28499.77 1599.80 7799.73 7499.63 15899.30 30198.02 21999.98 1999.43 7199.69 23699.55 173
lupinMVS98.96 21698.87 21699.24 25399.57 20098.40 28498.12 32199.18 32098.28 28299.63 15899.13 32798.02 21999.97 3298.22 19499.69 23699.35 252
ab-mvs99.33 13299.28 12999.47 18699.57 20099.39 17299.78 1299.43 26198.87 21699.57 18499.82 7398.06 21699.87 20298.69 16899.73 22199.15 295
DP-MVS99.48 8699.39 10099.74 7899.57 20099.62 11699.29 14299.61 17399.87 4099.74 12199.76 11298.69 13799.87 20298.20 19699.80 19199.75 68
F-COLMAP98.74 24198.45 25599.62 14399.57 20099.47 14698.84 25299.65 15596.31 35998.93 30499.19 32497.68 24299.87 20296.52 31899.37 30999.53 187
CLD-MVS98.76 23898.57 24499.33 22999.57 20098.97 23797.53 36399.55 21496.41 35699.27 26499.13 32799.07 9299.78 30396.73 30799.89 12399.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld98.55 26098.27 27399.40 20999.56 21199.37 17797.97 34099.68 13897.49 32799.08 29299.35 29395.41 30999.82 27697.70 24598.19 37499.01 329
dmvs_re98.69 24798.48 25299.31 23699.55 21299.42 16499.54 8498.38 36299.32 15298.72 32998.71 37096.76 28099.21 38896.01 33999.35 31299.31 263
APDe-MVScopyleft99.48 8699.36 10899.85 2799.55 21299.81 4099.50 9199.69 13598.99 19999.75 11399.71 13998.79 12399.93 9398.46 17899.85 15599.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_fmvs199.48 8699.65 4898.97 28599.54 21497.16 34299.11 20099.98 1199.78 6899.96 2399.81 7998.72 13599.97 3299.95 1299.97 5499.79 52
SR-MVS-dyc-post99.27 14299.11 15799.73 8799.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.41 18099.91 13997.27 27699.61 26499.54 181
RE-MVS-def99.13 15099.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.57 15597.27 27699.61 26499.54 181
PVSNet_BlendedMVS99.03 20199.01 19099.09 27399.54 21497.99 31198.58 28199.82 6497.62 31999.34 24899.71 13998.52 16799.77 31197.98 21499.97 5499.52 198
PVSNet_Blended98.70 24698.59 24099.02 28199.54 21497.99 31197.58 36099.82 6495.70 36799.34 24898.98 35198.52 16799.77 31197.98 21499.83 16899.30 265
USDC98.96 21698.93 20699.05 27999.54 21497.99 31197.07 38199.80 7798.21 28699.75 11399.77 10898.43 17799.64 36397.90 22199.88 13299.51 200
save fliter99.53 22099.25 20298.29 30899.38 27899.07 193
CS-MVS99.67 5099.70 3799.58 15599.53 22099.84 2499.79 1199.96 2399.90 2899.61 17399.41 27299.51 4399.95 6299.66 4399.89 12398.96 331
Anonymous2024052999.42 10499.34 11099.65 12099.53 22099.60 12599.63 6199.39 27499.47 12899.76 10699.78 10198.13 21199.86 22098.70 16699.68 24199.49 210
APD-MVS_3200maxsize99.31 13599.16 14499.74 7899.53 22099.75 6899.27 14799.61 17399.19 17299.57 18499.64 17898.76 12899.90 15797.29 27399.62 25799.56 170
MIMVSNet98.43 27498.20 27899.11 27099.53 22098.38 28899.58 7698.61 35098.96 20399.33 25099.76 11290.92 35499.81 29197.38 26999.76 20799.15 295
HPM-MVS++copyleft98.96 21698.70 23399.74 7899.52 22599.71 8498.86 24999.19 31998.47 25998.59 33999.06 33898.08 21599.91 13996.94 29499.60 26799.60 151
GA-MVS97.99 30297.68 31298.93 29199.52 22598.04 31097.19 37799.05 33198.32 28098.81 32098.97 35389.89 36999.41 38698.33 18699.05 33699.34 255
SR-MVS99.19 16799.00 19399.74 7899.51 22799.72 8299.18 17299.60 18598.85 21899.47 21799.58 22098.38 18599.92 11596.92 29599.54 28399.57 168
test22299.51 22799.08 22997.83 35099.29 29695.21 37398.68 33399.31 29997.28 26199.38 30799.43 234
testdata99.42 20099.51 22798.93 24399.30 29596.20 36098.87 31499.40 27698.33 19399.89 17496.29 32999.28 32199.44 228
plane_prior199.51 227
UniMVSNet (Re)99.37 11999.26 13399.68 10599.51 22799.58 13198.98 23799.60 18599.43 13999.70 13599.36 28897.70 23999.88 18899.20 11099.87 14399.59 158
DELS-MVS99.34 12999.30 12299.48 18499.51 22799.36 18198.12 32199.53 22999.36 14899.41 23599.61 20499.22 7299.87 20299.21 10799.68 24199.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
新几何199.52 17599.50 23399.22 20999.26 30395.66 36898.60 33899.28 30597.67 24399.89 17495.95 34599.32 31699.45 223
SD-MVS99.01 20799.30 12298.15 33899.50 23399.40 17098.94 24399.61 17399.22 17099.75 11399.82 7399.54 3995.51 39897.48 26399.87 14399.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.56 25998.20 27899.61 14699.50 23399.46 15098.32 30699.41 26495.22 37299.21 27599.10 33598.34 19199.82 27695.09 36499.66 25099.56 170
APD-MVScopyleft98.87 22998.59 24099.71 9899.50 23399.62 11699.01 22699.57 20396.80 35399.54 19899.63 18898.29 19699.91 13995.24 36099.71 23099.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MVS_111021_HR99.12 18599.02 18799.40 20999.50 23399.11 22297.92 34499.71 12398.76 23399.08 29299.47 26299.17 7799.54 37697.85 22999.76 20799.54 181
旧先验199.49 23899.29 19399.26 30399.39 28097.67 24399.36 31099.46 222
GBi-Net99.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
test199.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
FMVSNet299.35 12499.28 12999.55 16799.49 23899.35 18499.45 10399.57 20399.44 13499.70 13599.74 12097.21 26499.87 20299.03 13399.94 9399.44 228
DP-MVS Recon98.50 26698.23 27499.31 23699.49 23899.46 15098.56 28699.63 16394.86 37898.85 31699.37 28497.81 23499.59 37196.08 33699.44 29998.88 339
FA-MVS(test-final)98.52 26398.32 26999.10 27299.48 24398.67 26399.77 1598.60 35297.35 33499.63 15899.80 8393.07 33299.84 25297.92 21999.30 31898.78 348
MVP-Stereo99.16 17799.08 16899.43 19899.48 24399.07 23099.08 21099.55 21498.63 24299.31 25799.68 16398.19 20799.78 30398.18 20099.58 27299.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres20096.09 34995.68 35097.33 35999.48 24396.22 36198.53 29197.57 37598.06 29598.37 34996.73 40186.84 38399.61 36986.99 39498.57 36396.16 392
sss98.90 22498.77 22899.27 24599.48 24398.44 28198.72 27199.32 28897.94 30499.37 24399.35 29396.31 29599.91 13998.85 15099.63 25699.47 218
PAPM_NR98.36 28098.04 28899.33 22999.48 24398.93 24398.79 26599.28 29997.54 32398.56 34298.57 37597.12 26999.69 33694.09 37598.90 34699.38 243
TAMVS99.49 8499.45 9099.63 13499.48 24399.42 16499.45 10399.57 20399.66 9899.78 9999.83 6697.85 23299.86 22099.44 7099.96 6999.61 147
原ACMM199.37 21999.47 24998.87 25099.27 30096.74 35498.26 35199.32 29797.93 22699.82 27695.96 34499.38 30799.43 234
plane_prior699.47 24999.26 19997.24 262
UniMVSNet_NR-MVSNet99.37 11999.25 13599.72 9399.47 24999.56 13498.97 23899.61 17399.43 13999.67 14799.28 30597.85 23299.95 6299.17 11699.81 18699.65 111
TAPA-MVS97.92 1398.03 29997.55 31599.46 18899.47 24999.44 15798.50 29499.62 16686.79 39099.07 29599.26 31098.26 19999.62 36597.28 27599.73 22199.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
dmvs_testset97.27 32496.83 33498.59 31999.46 25397.55 33199.25 15696.84 38298.78 22897.24 38197.67 39297.11 27098.97 39286.59 39698.54 36599.27 269
SMA-MVScopyleft99.19 16799.00 19399.73 8799.46 25399.73 7799.13 19399.52 23497.40 33199.57 18499.64 17898.93 10799.83 26797.61 25599.79 19699.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PVSNet97.47 1598.42 27598.44 25698.35 32999.46 25396.26 36096.70 38699.34 28597.68 31799.00 29999.13 32797.40 25599.72 32497.59 25799.68 24199.08 315
TinyColmap98.97 21398.93 20699.07 27799.46 25398.19 29797.75 35299.75 10298.79 22699.54 19899.70 14698.97 10499.62 36596.63 31499.83 16899.41 238
9.1498.64 23599.45 25798.81 25999.60 18597.52 32599.28 26399.56 23398.53 16499.83 26795.36 35999.64 254
FE-MVS97.85 30497.42 31799.15 26399.44 25898.75 25899.77 1598.20 36695.85 36499.33 25099.80 8388.86 37299.88 18896.40 32499.12 33298.81 345
MVS_030499.17 17599.03 18599.59 15199.44 25898.90 24699.04 21795.32 38999.99 299.68 14199.57 22998.30 19599.97 3299.94 1599.98 3999.88 25
PatchMatch-RL98.68 24898.47 25399.30 23999.44 25899.28 19598.14 31999.54 22097.12 34599.11 28999.25 31297.80 23599.70 33096.51 31999.30 31898.93 335
PCF-MVS96.03 1896.73 33695.86 34799.33 22999.44 25899.16 21796.87 38499.44 25886.58 39198.95 30299.40 27694.38 31799.88 18887.93 39099.80 19198.95 333
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ZD-MVS99.43 26299.61 12299.43 26196.38 35799.11 28999.07 33797.86 23099.92 11594.04 37699.49 294
VDD-MVS99.20 16499.11 15799.44 19499.43 26298.98 23599.50 9198.32 36499.80 6399.56 19199.69 15296.99 27499.85 23798.99 13699.73 22199.50 205
DU-MVS99.33 13299.21 13999.71 9899.43 26299.56 13498.83 25499.53 22999.38 14599.67 14799.36 28897.67 24399.95 6299.17 11699.81 18699.63 126
NR-MVSNet99.40 11099.31 11799.68 10599.43 26299.55 13799.73 2799.50 24299.46 13199.88 6099.36 28897.54 25099.87 20298.97 14099.87 14399.63 126
WTY-MVS98.59 25698.37 26399.26 24899.43 26298.40 28498.74 26999.13 32698.10 29199.21 27599.24 31794.82 31299.90 15797.86 22798.77 35199.49 210
thisisatest051596.98 33096.42 33798.66 31799.42 26797.47 33397.27 37494.30 39397.24 33899.15 28398.86 36385.01 38799.87 20297.10 28899.39 30698.63 352
pmmvs398.08 29797.80 30698.91 29499.41 26897.69 32897.87 34899.66 14695.87 36399.50 21299.51 24890.35 36399.97 3298.55 17499.47 29699.08 315
NP-MVS99.40 26999.13 22098.83 364
QAPM98.40 27897.99 29199.65 12099.39 27099.47 14699.67 4999.52 23491.70 38698.78 32599.80 8398.55 15899.95 6294.71 36899.75 20999.53 187
OMC-MVS98.90 22498.72 23099.44 19499.39 27099.42 16498.58 28199.64 16197.31 33699.44 22399.62 19598.59 15299.69 33696.17 33599.79 19699.22 278
3Dnovator99.15 299.43 10199.36 10899.65 12099.39 27099.42 16499.70 3599.56 20899.23 16699.35 24599.80 8399.17 7799.95 6298.21 19599.84 16099.59 158
Fast-Effi-MVS+99.02 20398.87 21699.46 18899.38 27399.50 14399.04 21799.79 8397.17 34298.62 33698.74 36999.34 5899.95 6298.32 18799.41 30498.92 336
BH-untuned98.22 29198.09 28698.58 32199.38 27397.24 34098.55 28798.98 33597.81 31399.20 28098.76 36897.01 27399.65 36194.83 36598.33 36998.86 341
mvsany_test199.44 9899.45 9099.40 20999.37 27598.64 27097.90 34799.59 19199.27 15899.92 3999.82 7399.74 2099.93 9399.55 5799.87 14399.63 126
xiu_mvs_v2_base99.02 20399.11 15798.77 31199.37 27598.09 30698.13 32099.51 23899.47 12899.42 22998.54 37899.38 5299.97 3298.83 15199.33 31498.24 372
PS-MVSNAJ99.00 20999.08 16898.76 31299.37 27598.10 30598.00 33599.51 23899.47 12899.41 23598.50 38099.28 6499.97 3298.83 15199.34 31398.20 376
EIA-MVS99.12 18599.01 19099.45 19199.36 27899.62 11699.34 12299.79 8398.41 26398.84 31798.89 36198.75 13099.84 25298.15 20499.51 28998.89 338
DPM-MVS98.28 28597.94 29999.32 23399.36 27899.11 22297.31 37398.78 34296.88 34998.84 31799.11 33497.77 23799.61 36994.03 37799.36 31099.23 276
ambc99.20 25799.35 28098.53 27599.17 17799.46 25399.67 14799.80 8398.46 17499.70 33097.92 21999.70 23299.38 243
TEST999.35 28099.35 18498.11 32399.41 26494.83 37997.92 36698.99 34898.02 21999.85 237
train_agg98.35 28397.95 29599.57 16199.35 28099.35 18498.11 32399.41 26494.90 37697.92 36698.99 34898.02 21999.85 23795.38 35899.44 29999.50 205
agg_prior99.35 28099.36 18199.39 27497.76 37699.85 237
test_prior99.46 18899.35 28099.22 20999.39 27499.69 33699.48 214
MVS_Test99.28 13899.31 11799.19 25899.35 28098.79 25599.36 12099.49 24699.17 17899.21 27599.67 16798.78 12599.66 35599.09 12999.66 25099.10 306
CDS-MVSNet99.22 15799.13 15099.50 17999.35 28099.11 22298.96 24099.54 22099.46 13199.61 17399.70 14696.31 29599.83 26799.34 8899.88 13299.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+98.92 399.35 12499.24 13799.67 10899.35 28099.47 14699.62 6399.50 24299.44 13499.12 28899.78 10198.77 12799.94 7697.87 22699.72 22799.62 137
ETV-MVS99.18 17199.18 14299.16 26199.34 28899.28 19599.12 19799.79 8399.48 12498.93 30498.55 37799.40 4799.93 9398.51 17699.52 28898.28 370
Anonymous20240521198.75 23998.46 25499.63 13499.34 28899.66 10299.47 9997.65 37499.28 15799.56 19199.50 25193.15 33099.84 25298.62 17199.58 27299.40 239
CHOSEN 280x42098.41 27698.41 25998.40 32799.34 28895.89 36796.94 38399.44 25898.80 22599.25 26699.52 24693.51 32899.98 1998.94 14799.98 3999.32 259
test_899.34 28899.31 19098.08 32799.40 27194.90 37697.87 37098.97 35398.02 21999.84 252
TSAR-MVS + GP.99.12 18599.04 18399.38 21699.34 28899.16 21798.15 31799.29 29698.18 28999.63 15899.62 19599.18 7699.68 34698.20 19699.74 21699.30 265
iter_conf_final98.75 23998.54 24899.40 20999.33 29398.75 25899.26 14999.59 19199.80 6399.76 10699.58 22090.17 36599.92 11599.37 8299.97 5499.54 181
LCM-MVSNet-Re99.28 13899.15 14799.67 10899.33 29399.76 6299.34 12299.97 1898.93 20899.91 4299.79 9398.68 13899.93 9396.80 30399.56 27499.30 265
PLCcopyleft97.35 1698.36 28097.99 29199.48 18499.32 29599.24 20698.50 29499.51 23895.19 37498.58 34098.96 35596.95 27599.83 26795.63 35299.25 32599.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Effi-MVS+99.06 19498.97 20299.34 22699.31 29698.98 23598.31 30799.91 3298.81 22398.79 32398.94 35799.14 8299.84 25298.79 15798.74 35599.20 284
HQP-NCC99.31 29697.98 33797.45 32898.15 356
ACMP_Plane99.31 29697.98 33797.45 32898.15 356
HQP-MVS98.36 28098.02 29099.39 21399.31 29698.94 24097.98 33799.37 27997.45 32898.15 35698.83 36496.67 28199.70 33094.73 36699.67 24799.53 187
baseline197.73 30997.33 31998.96 28699.30 30097.73 32699.40 10998.42 35999.33 15199.46 22199.21 32191.18 35099.82 27698.35 18491.26 39599.32 259
WR-MVS99.11 18898.93 20699.66 11599.30 30099.42 16498.42 30199.37 27999.04 19699.57 18499.20 32396.89 27699.86 22098.66 17099.87 14399.70 78
hse-mvs298.52 26398.30 27199.16 26199.29 30298.60 27398.77 26799.02 33299.68 9099.32 25399.04 34192.50 33999.85 23799.24 10497.87 38199.03 324
test1299.54 17299.29 30299.33 18799.16 32298.43 34797.54 25099.82 27699.47 29699.48 214
OpenMVS_ROBcopyleft97.31 1797.36 32396.84 33398.89 30199.29 30299.45 15598.87 24899.48 24786.54 39299.44 22399.74 12097.34 25999.86 22091.61 38399.28 32197.37 387
MVS-HIRNet97.86 30398.22 27696.76 36699.28 30591.53 39398.38 30392.60 39699.13 18699.31 25799.96 1297.18 26899.68 34698.34 18599.83 16899.07 320
DeepC-MVS_fast98.47 599.23 14999.12 15499.56 16499.28 30599.22 20998.99 23499.40 27199.08 19199.58 18199.64 17898.90 11399.83 26797.44 26599.75 20999.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS97.82 30597.38 31899.14 26799.27 30798.53 27598.72 27199.02 33298.10 29197.18 38399.03 34589.26 37199.85 23797.94 21897.91 37999.03 324
Patchmatch-test98.10 29697.98 29398.48 32499.27 30796.48 35599.40 10999.07 32898.81 22399.23 27099.57 22990.11 36699.87 20296.69 30899.64 25499.09 310
ET-MVSNet_ETH3D96.78 33496.07 34398.91 29499.26 30997.92 31997.70 35596.05 38697.96 30392.37 39698.43 38187.06 37899.90 15798.27 19097.56 38498.91 337
Fast-Effi-MVS+-dtu99.20 16499.12 15499.43 19899.25 31099.69 9599.05 21499.82 6499.50 12298.97 30099.05 33998.98 10299.98 1998.20 19699.24 32798.62 353
CNVR-MVS98.99 21298.80 22699.56 16499.25 31099.43 16198.54 29099.27 30098.58 24798.80 32299.43 27098.53 16499.70 33097.22 28399.59 27199.54 181
LFMVS98.46 27198.19 28199.26 24899.24 31298.52 27799.62 6396.94 38199.87 4099.31 25799.58 22091.04 35299.81 29198.68 16999.42 30399.45 223
VNet99.18 17199.06 17499.56 16499.24 31299.36 18199.33 12599.31 29299.67 9499.47 21799.57 22996.48 28799.84 25299.15 11999.30 31899.47 218
testing396.48 34195.63 35199.01 28299.23 31497.81 32298.90 24599.10 32798.72 23597.84 37297.92 38972.44 40199.85 23797.21 28499.33 31499.35 252
CL-MVSNet_self_test98.71 24598.56 24799.15 26399.22 31598.66 26697.14 37899.51 23898.09 29399.54 19899.27 30796.87 27799.74 31998.43 17998.96 34199.03 324
DeepPCF-MVS98.42 699.18 17199.02 18799.67 10899.22 31599.75 6897.25 37599.47 25098.72 23599.66 15199.70 14699.29 6299.63 36498.07 20899.81 18699.62 137
MSLP-MVS++99.05 19799.09 16698.91 29499.21 31798.36 28998.82 25899.47 25098.85 21898.90 31099.56 23398.78 12599.09 39098.57 17399.68 24199.26 270
NCCC98.82 23398.57 24499.58 15599.21 31799.31 19098.61 27599.25 30698.65 24098.43 34799.26 31097.86 23099.81 29196.55 31699.27 32499.61 147
BH-RMVSNet98.41 27698.14 28499.21 25599.21 31798.47 27898.60 27798.26 36598.35 27498.93 30499.31 29997.20 26799.66 35594.32 37199.10 33499.51 200
miper_lstm_enhance98.65 25098.60 23898.82 30999.20 32097.33 33897.78 35199.66 14699.01 19899.59 17999.50 25194.62 31599.85 23798.12 20599.90 11499.26 270
SCA98.11 29598.36 26497.36 35799.20 32092.99 38598.17 31698.49 35798.24 28499.10 29199.57 22996.01 30299.94 7696.86 29999.62 25799.14 300
mvs_anonymous99.28 13899.39 10098.94 28899.19 32297.81 32299.02 22499.55 21499.78 6899.85 7199.80 8398.24 20099.86 22099.57 5499.50 29299.15 295
OpenMVScopyleft98.12 1098.23 29097.89 30499.26 24899.19 32299.26 19999.65 5999.69 13591.33 38798.14 36099.77 10898.28 19799.96 5395.41 35799.55 27898.58 357
CNLPA98.57 25898.34 26799.28 24299.18 32499.10 22798.34 30499.41 26498.48 25898.52 34398.98 35197.05 27299.78 30395.59 35399.50 29298.96 331
test_yl98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
DCV-MVSNet98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
MG-MVS98.52 26398.39 26198.94 28899.15 32797.39 33798.18 31499.21 31698.89 21599.23 27099.63 18897.37 25899.74 31994.22 37399.61 26499.69 82
ADS-MVSNet297.78 30797.66 31498.12 34099.14 32895.36 37199.22 16498.75 34396.97 34798.25 35299.64 17890.90 35599.94 7696.51 31999.56 27499.08 315
ADS-MVSNet97.72 31297.67 31397.86 34599.14 32894.65 37799.22 16498.86 33796.97 34798.25 35299.64 17890.90 35599.84 25296.51 31999.56 27499.08 315
FMVSNet398.80 23598.63 23799.32 23399.13 33098.72 26199.10 20299.48 24799.23 16699.62 16799.64 17892.57 33699.86 22098.96 14299.90 11499.39 241
PHI-MVS99.11 18898.95 20599.59 15199.13 33099.59 12799.17 17799.65 15597.88 30899.25 26699.46 26598.97 10499.80 29797.26 27899.82 17799.37 246
OPU-MVS99.29 24099.12 33299.44 15799.20 16799.40 27699.00 9898.84 39396.54 31799.60 26799.58 163
c3_l98.72 24498.71 23198.72 31499.12 33297.22 34197.68 35699.56 20898.90 21299.54 19899.48 25896.37 29499.73 32297.88 22399.88 13299.21 280
alignmvs98.28 28597.96 29499.25 25199.12 33298.93 24399.03 22198.42 35999.64 10298.72 32997.85 39090.86 35799.62 36598.88 14999.13 33199.19 287
PAPM95.61 35894.71 36098.31 33499.12 33296.63 35396.66 38798.46 35890.77 38896.25 38898.68 37293.01 33399.69 33681.60 39797.86 38298.62 353
AdaColmapbinary98.60 25398.35 26699.38 21699.12 33299.22 20998.67 27499.42 26397.84 31298.81 32099.27 30797.32 26099.81 29195.14 36299.53 28599.10 306
MS-PatchMatch99.00 20998.97 20299.09 27399.11 33798.19 29798.76 26899.33 28698.49 25799.44 22399.58 22098.21 20599.69 33698.20 19699.62 25799.39 241
eth_miper_zixun_eth98.68 24898.71 23198.60 31899.10 33896.84 35197.52 36599.54 22098.94 20599.58 18199.48 25896.25 29899.76 31398.01 21299.93 10099.21 280
canonicalmvs99.02 20399.00 19399.09 27399.10 33898.70 26299.61 6899.66 14699.63 10498.64 33597.65 39399.04 9699.54 37698.79 15798.92 34499.04 323
baseline296.83 33396.28 33998.46 32599.09 34096.91 34998.83 25493.87 39597.23 33996.23 39098.36 38288.12 37499.90 15796.68 30998.14 37698.57 358
BH-w/o97.20 32597.01 32797.76 34899.08 34195.69 36898.03 33298.52 35495.76 36697.96 36598.02 38795.62 30699.47 38392.82 38197.25 38698.12 378
MVSTER98.47 27098.22 27699.24 25399.06 34298.35 29099.08 21099.46 25399.27 15899.75 11399.66 17188.61 37399.85 23799.14 12599.92 10499.52 198
CR-MVSNet98.35 28398.20 27898.83 30699.05 34398.12 30299.30 13599.67 14297.39 33299.16 28199.79 9391.87 34499.91 13998.78 16098.77 35198.44 365
RPMNet98.60 25398.53 25098.83 30699.05 34398.12 30299.30 13599.62 16699.86 4499.16 28199.74 12092.53 33899.92 11598.75 16298.77 35198.44 365
iter_conf0598.46 27198.23 27499.15 26399.04 34597.99 31199.10 20299.61 17399.79 6699.76 10699.58 22087.88 37599.92 11599.31 9699.97 5499.53 187
DVP-MVS++99.38 11699.25 13599.77 5699.03 34699.77 5499.74 2499.61 17399.18 17399.76 10699.61 20499.00 9899.92 11597.72 24099.60 26799.62 137
MSC_two_6792asdad99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
No_MVS99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
cl____98.54 26198.41 25998.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.85 32299.78 30397.97 21699.89 12399.17 291
DIV-MVS_self_test98.54 26198.42 25898.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.87 32199.78 30397.97 21699.89 12399.18 289
HY-MVS98.23 998.21 29297.95 29598.99 28399.03 34698.24 29299.61 6898.72 34496.81 35298.73 32899.51 24894.06 31999.86 22096.91 29698.20 37298.86 341
miper_ehance_all_eth98.59 25698.59 24098.59 31998.98 35297.07 34597.49 36699.52 23498.50 25599.52 20599.37 28496.41 29299.71 32897.86 22799.62 25799.00 330
PMMVS98.49 26898.29 27299.11 27098.96 35398.42 28397.54 36199.32 28897.53 32498.47 34698.15 38697.88 22999.82 27697.46 26499.24 32799.09 310
PatchT98.45 27398.32 26998.83 30698.94 35498.29 29199.24 15798.82 34099.84 5299.08 29299.76 11291.37 34799.94 7698.82 15399.00 34098.26 371
tpm97.15 32696.95 32997.75 34998.91 35594.24 37999.32 12797.96 36997.71 31698.29 35099.32 29786.72 38499.92 11598.10 20796.24 39299.09 310
131498.00 30197.90 30398.27 33698.90 35697.45 33599.30 13599.06 33094.98 37597.21 38299.12 33198.43 17799.67 35195.58 35498.56 36497.71 383
CostFormer96.71 33796.79 33696.46 37298.90 35690.71 39899.41 10898.68 34694.69 38098.14 36099.34 29686.32 38699.80 29797.60 25698.07 37898.88 339
UGNet99.38 11699.34 11099.49 18098.90 35698.90 24699.70 3599.35 28399.86 4498.57 34199.81 7998.50 17099.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Effi-MVS+-dtu99.07 19398.92 21099.52 17598.89 35999.78 4999.15 18599.66 14699.34 14998.92 30799.24 31797.69 24199.98 1998.11 20699.28 32198.81 345
Patchmtry98.78 23698.54 24899.49 18098.89 35999.19 21599.32 12799.67 14299.65 10099.72 12699.79 9391.87 34499.95 6298.00 21399.97 5499.33 256
tpm296.35 34496.22 34096.73 36898.88 36191.75 39199.21 16698.51 35593.27 38397.89 36899.21 32184.83 38899.70 33096.04 33898.18 37598.75 350
tpm cat196.78 33496.98 32896.16 37598.85 36290.59 39999.08 21099.32 28892.37 38497.73 37799.46 26591.15 35199.69 33696.07 33798.80 34898.21 374
CANet99.11 18899.05 17899.28 24298.83 36398.56 27498.71 27399.41 26499.25 16299.23 27099.22 31997.66 24799.94 7699.19 11199.97 5499.33 256
FMVSNet597.80 30697.25 32299.42 20098.83 36398.97 23799.38 11399.80 7798.87 21699.25 26699.69 15280.60 39499.91 13998.96 14299.90 11499.38 243
API-MVS98.38 27998.39 26198.35 32998.83 36399.26 19999.14 18799.18 32098.59 24698.66 33498.78 36798.61 14999.57 37394.14 37499.56 27496.21 391
PatchmatchNetpermissive97.65 31397.80 30697.18 36298.82 36692.49 38799.17 17798.39 36198.12 29098.79 32399.58 22090.71 35999.89 17497.23 28299.41 30499.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PAPR97.56 31797.07 32599.04 28098.80 36798.11 30497.63 35799.25 30694.56 38198.02 36498.25 38597.43 25499.68 34690.90 38698.74 35599.33 256
CANet_DTU98.91 22298.85 21899.09 27398.79 36898.13 30198.18 31499.31 29299.48 12498.86 31599.51 24896.56 28499.95 6299.05 13299.95 8299.19 287
E-PMN97.14 32897.43 31696.27 37398.79 36891.62 39295.54 39099.01 33499.44 13498.88 31199.12 33192.78 33599.68 34694.30 37299.03 33897.50 384
PVSNet_095.53 1995.85 35495.31 35697.47 35498.78 37093.48 38495.72 38999.40 27196.18 36197.37 37897.73 39195.73 30499.58 37295.49 35581.40 39699.36 249
MAR-MVS98.24 28997.92 30199.19 25898.78 37099.65 10799.17 17799.14 32495.36 37098.04 36398.81 36697.47 25299.72 32495.47 35699.06 33598.21 374
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EMVS96.96 33197.28 32095.99 37698.76 37291.03 39595.26 39198.61 35099.34 14998.92 30798.88 36293.79 32399.66 35592.87 38099.05 33697.30 388
IB-MVS95.41 2095.30 35994.46 36397.84 34698.76 37295.33 37297.33 37296.07 38596.02 36295.37 39497.41 39576.17 40099.96 5397.54 25995.44 39498.22 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst97.73 30998.07 28796.73 36898.71 37492.00 38999.10 20298.86 33798.52 25398.92 30799.54 24291.90 34299.82 27698.02 20999.03 33898.37 367
MDTV_nov1_ep1397.73 31098.70 37590.83 39699.15 18598.02 36898.51 25498.82 31999.61 20490.98 35399.66 35596.89 29898.92 344
dp96.86 33297.07 32596.24 37498.68 37690.30 40099.19 17198.38 36297.35 33498.23 35499.59 21787.23 37799.82 27696.27 33098.73 35798.59 355
JIA-IIPM98.06 29897.92 30198.50 32398.59 37797.02 34698.80 26298.51 35599.88 3997.89 36899.87 4791.89 34399.90 15798.16 20397.68 38398.59 355
MVS95.72 35694.63 36198.99 28398.56 37897.98 31799.30 13598.86 33772.71 39597.30 37999.08 33698.34 19199.74 31989.21 38798.33 36999.26 270
TR-MVS97.44 32097.15 32498.32 33298.53 37997.46 33498.47 29697.91 37196.85 35098.21 35598.51 37996.42 29099.51 38192.16 38297.29 38597.98 380
Syy-MVS98.17 29397.85 30599.15 26398.50 38098.79 25598.60 27799.21 31697.89 30696.76 38596.37 40295.47 30899.57 37399.10 12898.73 35799.09 310
myMVS_eth3d95.63 35794.73 35998.34 33198.50 38096.36 35898.60 27799.21 31697.89 30696.76 38596.37 40272.10 40299.57 37394.38 37098.73 35799.09 310
tpmvs97.39 32197.69 31196.52 37098.41 38291.76 39099.30 13598.94 33697.74 31497.85 37199.55 24092.40 34199.73 32296.25 33198.73 35798.06 379
LS3D99.24 14899.11 15799.61 14698.38 38399.79 4699.57 7999.68 13899.61 10899.15 28399.71 13998.70 13699.91 13997.54 25999.68 24199.13 303
cl2297.56 31797.28 32098.40 32798.37 38496.75 35297.24 37699.37 27997.31 33699.41 23599.22 31987.30 37699.37 38797.70 24599.62 25799.08 315
CMPMVSbinary77.52 2398.50 26698.19 28199.41 20798.33 38599.56 13499.01 22699.59 19195.44 36999.57 18499.80 8395.64 30599.46 38596.47 32299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall98.03 29997.94 29998.32 33298.27 38696.43 35796.95 38299.41 26496.37 35899.43 22798.96 35594.74 31399.69 33697.71 24299.62 25798.83 344
TESTMET0.1,196.24 34795.84 34897.41 35698.24 38793.84 38297.38 36995.84 38798.43 26097.81 37398.56 37679.77 39599.89 17497.77 23498.77 35198.52 359
gg-mvs-nofinetune95.87 35395.17 35797.97 34298.19 38896.95 34799.69 4289.23 40199.89 3496.24 38999.94 1681.19 39299.51 38193.99 37898.20 37297.44 385
test-LLR97.15 32696.95 32997.74 35098.18 38995.02 37497.38 36996.10 38398.00 29697.81 37398.58 37390.04 36799.91 13997.69 25198.78 34998.31 368
test-mter96.23 34895.73 34997.74 35098.18 38995.02 37497.38 36996.10 38397.90 30597.81 37398.58 37379.12 39899.91 13997.69 25198.78 34998.31 368
EPMVS96.53 34096.32 33897.17 36398.18 38992.97 38699.39 11189.95 40098.21 28698.61 33799.59 21786.69 38599.72 32496.99 29299.23 32998.81 345
test0.0.03 197.37 32296.91 33298.74 31397.72 39297.57 33097.60 35997.36 38098.00 29699.21 27598.02 38790.04 36799.79 30098.37 18295.89 39398.86 341
GG-mvs-BLEND97.36 35797.59 39396.87 35099.70 3588.49 40294.64 39597.26 39880.66 39399.12 38991.50 38496.50 39196.08 393
gm-plane-assit97.59 39389.02 40293.47 38298.30 38399.84 25296.38 326
cascas96.99 32996.82 33597.48 35397.57 39595.64 36996.43 38899.56 20891.75 38597.13 38497.61 39495.58 30798.63 39496.68 30999.11 33398.18 377
EPNet_dtu97.62 31497.79 30897.11 36496.67 39692.31 38898.51 29398.04 36799.24 16495.77 39199.47 26293.78 32499.66 35598.98 13899.62 25799.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160095.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
miper_refine_blended95.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
EPNet98.13 29497.77 30999.18 26094.57 39997.99 31199.24 15797.96 36999.74 7397.29 38099.62 19593.13 33199.97 3298.59 17299.83 16899.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method91.72 36192.32 36489.91 37993.49 40070.18 40490.28 39299.56 20861.71 39695.39 39399.52 24693.90 32099.94 7698.76 16198.27 37199.62 137
tmp_tt95.75 35595.42 35396.76 36689.90 40194.42 37898.86 24997.87 37278.01 39399.30 26299.69 15297.70 23995.89 39799.29 10098.14 37699.95 11
testmvs28.94 36433.33 36615.79 38126.03 4029.81 40696.77 38515.67 40411.55 39923.87 40050.74 40719.03 4048.53 40023.21 39933.07 39729.03 396
test12329.31 36333.05 36818.08 38025.93 40312.24 40597.53 36310.93 40511.78 39824.21 39950.08 40821.04 4038.60 39923.51 39832.43 39833.39 395
test_blank8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
eth-test20.00 404
eth-test0.00 404
uanet_test8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.88 36533.17 3670.00 3820.00 4040.00 4070.00 39399.62 1660.00 4000.00 40199.13 32799.82 130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas16.61 36622.14 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 199.28 640.00 4010.00 4000.00 3990.00 397
sosnet-low-res8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
sosnet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
Regformer8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.26 37511.02 3780.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.16 3250.00 4050.00 4010.00 4000.00 3990.00 397
uanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
MM99.55 16798.81 25299.05 21497.79 37399.99 299.48 21599.59 21796.29 29799.95 6299.94 1599.98 3999.88 25
WAC-MVS96.36 35895.20 361
PC_three_145297.56 32099.68 14199.41 27299.09 8797.09 39696.66 31199.60 26799.62 137
test_241102_TWO99.54 22099.13 18699.76 10699.63 18898.32 19499.92 11597.85 22999.69 23699.75 68
test_0728_THIRD99.18 17399.62 16799.61 20498.58 15499.91 13997.72 24099.80 19199.77 59
GSMVS99.14 300
sam_mvs190.81 35899.14 300
sam_mvs90.52 362
MTGPAbinary99.53 229
test_post199.14 18751.63 40689.54 37099.82 27696.86 299
test_post52.41 40590.25 36499.86 220
patchmatchnet-post99.62 19590.58 36099.94 76
MTMP99.09 20798.59 353
test9_res95.10 36399.44 29999.50 205
agg_prior294.58 36999.46 29899.50 205
test_prior499.19 21598.00 335
test_prior297.95 34197.87 30998.05 36299.05 33997.90 22795.99 34299.49 294
旧先验297.94 34295.33 37198.94 30399.88 18896.75 305
新几何298.04 331
无先验98.01 33399.23 31095.83 36599.85 23795.79 35099.44 228
原ACMM297.92 344
testdata299.89 17495.99 342
segment_acmp98.37 186
testdata197.72 35397.86 311
plane_prior599.54 22099.82 27695.84 34899.78 20199.60 151
plane_prior499.25 312
plane_prior399.31 19098.36 26999.14 285
plane_prior298.80 26298.94 205
plane_prior99.24 20698.42 30197.87 30999.71 230
n20.00 406
nn0.00 406
door-mid99.83 59
test1199.29 296
door99.77 92
HQP5-MVS98.94 240
BP-MVS94.73 366
HQP4-MVS98.15 35699.70 33099.53 187
HQP3-MVS99.37 27999.67 247
HQP2-MVS96.67 281
MDTV_nov1_ep13_2view91.44 39499.14 18797.37 33399.21 27591.78 34696.75 30599.03 324
ACMMP++_ref99.94 93
ACMMP++99.79 196
Test By Simon98.41 180