| LCM-MVSNet | | | 86.90 1 | 88.67 1 | 81.57 21 | 91.50 1 | 63.30 119 | 84.80 32 | 87.77 9 | 86.18 1 | 96.26 1 | 96.06 1 | 90.32 1 | 84.49 69 | 68.08 88 | 97.05 1 | 96.93 1 |
|
| MTAPA | | | 83.19 18 | 83.87 18 | 81.13 30 | 91.16 2 | 78.16 11 | 84.87 30 | 80.63 125 | 72.08 36 | 84.93 56 | 90.79 45 | 74.65 46 | 84.42 72 | 80.98 4 | 94.75 28 | 80.82 204 |
|
| mPP-MVS | | | 84.01 10 | 84.39 11 | 82.88 6 | 90.65 3 | 81.38 3 | 87.08 12 | 82.79 84 | 72.41 34 | 85.11 55 | 90.85 44 | 76.65 28 | 84.89 63 | 79.30 16 | 94.63 33 | 82.35 176 |
|
| MP-MVS |  | | 83.19 18 | 83.54 23 | 82.14 19 | 90.54 4 | 79.00 8 | 86.42 22 | 83.59 74 | 71.31 39 | 81.26 102 | 90.96 39 | 74.57 47 | 84.69 67 | 78.41 21 | 94.78 27 | 82.74 166 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| PMVS |  | 70.70 6 | 81.70 32 | 83.15 31 | 77.36 77 | 90.35 5 | 82.82 2 | 82.15 54 | 79.22 152 | 74.08 20 | 87.16 28 | 91.97 19 | 84.80 2 | 76.97 197 | 64.98 119 | 93.61 60 | 72.28 304 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| PS-CasMVS | | | 80.41 47 | 82.86 36 | 73.07 133 | 89.93 6 | 39.21 318 | 77.15 110 | 81.28 109 | 79.74 5 | 90.87 4 | 92.73 11 | 75.03 43 | 84.93 62 | 63.83 131 | 95.19 15 | 95.07 3 |
|
| DTE-MVSNet | | | 80.35 48 | 82.89 35 | 72.74 146 | 89.84 7 | 37.34 338 | 77.16 109 | 81.81 99 | 80.45 3 | 90.92 3 | 92.95 7 | 74.57 47 | 86.12 29 | 63.65 132 | 94.68 31 | 94.76 6 |
|
| PEN-MVS | | | 80.46 46 | 82.91 34 | 73.11 132 | 89.83 8 | 39.02 321 | 77.06 112 | 82.61 88 | 80.04 4 | 90.60 6 | 92.85 9 | 74.93 44 | 85.21 57 | 63.15 139 | 95.15 17 | 95.09 2 |
|
| region2R | | | 83.54 14 | 83.86 19 | 82.58 14 | 89.82 9 | 77.53 16 | 87.06 13 | 84.23 64 | 70.19 48 | 83.86 71 | 90.72 49 | 75.20 40 | 86.27 21 | 79.41 14 | 94.25 50 | 83.95 127 |
|
| ACMMPR | | | 83.62 12 | 83.93 17 | 82.69 11 | 89.78 10 | 77.51 18 | 87.01 14 | 84.19 65 | 70.23 46 | 84.49 63 | 90.67 50 | 75.15 41 | 86.37 18 | 79.58 10 | 94.26 49 | 84.18 123 |
|
| MSP-MVS | | | 80.49 45 | 79.67 58 | 82.96 5 | 89.70 11 | 77.46 19 | 87.16 11 | 85.10 40 | 64.94 89 | 81.05 105 | 88.38 113 | 57.10 211 | 87.10 8 | 79.75 7 | 83.87 229 | 84.31 120 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| CP-MVSNet | | | 79.48 54 | 81.65 45 | 72.98 136 | 89.66 12 | 39.06 320 | 76.76 113 | 80.46 129 | 78.91 7 | 90.32 7 | 91.70 25 | 68.49 92 | 84.89 63 | 63.40 136 | 95.12 18 | 95.01 4 |
|
| PGM-MVS | | | 83.07 21 | 83.25 30 | 82.54 15 | 89.57 13 | 77.21 20 | 82.04 56 | 85.40 34 | 67.96 59 | 84.91 59 | 90.88 42 | 75.59 36 | 86.57 14 | 78.16 22 | 94.71 30 | 83.82 129 |
|
| WR-MVS_H | | | 80.22 50 | 82.17 41 | 74.39 111 | 89.46 14 | 42.69 295 | 78.24 96 | 82.24 91 | 78.21 9 | 89.57 9 | 92.10 18 | 68.05 97 | 85.59 48 | 66.04 112 | 95.62 9 | 94.88 5 |
|
| XVS | | | 83.51 15 | 83.73 20 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 53 | 72.71 27 | 82.87 81 | 90.39 62 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 103 |
|
| X-MVStestdata | | | 76.81 78 | 74.79 101 | 82.85 8 | 89.43 15 | 77.61 14 | 86.80 17 | 84.66 53 | 72.71 27 | 82.87 81 | 9.95 404 | 73.86 52 | 86.31 19 | 78.84 19 | 94.03 53 | 84.64 103 |
|
| CP-MVS | | | 84.12 8 | 84.55 10 | 82.80 10 | 89.42 17 | 79.74 5 | 88.19 5 | 84.43 58 | 71.96 38 | 84.70 61 | 90.56 52 | 77.12 25 | 86.18 26 | 79.24 17 | 95.36 12 | 82.49 174 |
|
| ACMMP_NAP | | | 82.33 27 | 83.28 28 | 79.46 49 | 89.28 18 | 69.09 74 | 83.62 42 | 84.98 42 | 64.77 90 | 83.97 69 | 91.02 38 | 75.53 39 | 85.93 37 | 82.00 2 | 94.36 45 | 83.35 147 |
|
| UniMVSNet_ETH3D | | | 76.74 79 | 79.02 61 | 69.92 191 | 89.27 19 | 43.81 283 | 74.47 148 | 71.70 231 | 72.33 35 | 85.50 50 | 93.65 3 | 77.98 21 | 76.88 200 | 54.60 213 | 91.64 86 | 89.08 32 |
|
| HFP-MVS | | | 83.39 17 | 84.03 16 | 81.48 23 | 89.25 20 | 75.69 24 | 87.01 14 | 84.27 61 | 70.23 46 | 84.47 64 | 90.43 57 | 76.79 26 | 85.94 35 | 79.58 10 | 94.23 51 | 82.82 163 |
|
| ACMMP |  | | 84.22 6 | 84.84 8 | 82.35 17 | 89.23 21 | 76.66 22 | 87.65 6 | 85.89 26 | 71.03 42 | 85.85 42 | 90.58 51 | 78.77 16 | 85.78 42 | 79.37 15 | 95.17 16 | 84.62 105 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CPTT-MVS | | | 81.51 34 | 81.76 43 | 80.76 34 | 89.20 22 | 78.75 9 | 86.48 21 | 82.03 95 | 68.80 53 | 80.92 107 | 88.52 109 | 72.00 64 | 82.39 101 | 74.80 44 | 93.04 68 | 81.14 194 |
|
| FOURS1 | | | | | | 89.19 23 | 77.84 12 | 91.64 1 | 89.11 2 | 84.05 2 | 91.57 2 | | | | | | |
|
| ZNCC-MVS | | | 83.12 20 | 83.68 21 | 81.45 24 | 89.14 24 | 73.28 42 | 86.32 23 | 85.97 25 | 67.39 60 | 84.02 68 | 90.39 62 | 74.73 45 | 86.46 15 | 80.73 6 | 94.43 40 | 84.60 108 |
|
| HPM-MVS++ |  | | 79.89 51 | 79.80 57 | 80.18 39 | 89.02 25 | 78.44 10 | 83.49 45 | 80.18 136 | 64.71 91 | 78.11 136 | 88.39 112 | 65.46 126 | 83.14 89 | 77.64 29 | 91.20 96 | 78.94 236 |
|
| GST-MVS | | | 82.79 24 | 83.27 29 | 81.34 27 | 88.99 26 | 73.29 41 | 85.94 25 | 85.13 38 | 68.58 57 | 84.14 67 | 90.21 72 | 73.37 56 | 86.41 16 | 79.09 18 | 93.98 56 | 84.30 122 |
|
| TSAR-MVS + MP. | | | 79.05 57 | 78.81 62 | 79.74 42 | 88.94 27 | 67.52 83 | 86.61 19 | 81.38 107 | 51.71 222 | 77.15 147 | 91.42 32 | 65.49 125 | 87.20 6 | 79.44 13 | 87.17 185 | 84.51 114 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| UA-Net | | | 81.56 33 | 82.28 40 | 79.40 50 | 88.91 28 | 69.16 72 | 84.67 33 | 80.01 139 | 75.34 15 | 79.80 118 | 94.91 2 | 69.79 84 | 80.25 142 | 72.63 63 | 94.46 36 | 88.78 42 |
|
| SMA-MVS |  | | 82.12 28 | 82.68 38 | 80.43 36 | 88.90 29 | 69.52 65 | 85.12 29 | 84.76 47 | 63.53 102 | 84.23 66 | 91.47 30 | 72.02 63 | 87.16 7 | 79.74 9 | 94.36 45 | 84.61 106 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MP-MVS-pluss | | | 82.54 26 | 83.46 25 | 79.76 41 | 88.88 30 | 68.44 76 | 81.57 59 | 86.33 19 | 63.17 108 | 85.38 52 | 91.26 33 | 76.33 30 | 84.67 68 | 83.30 1 | 94.96 22 | 86.17 70 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| TDRefinement | | | 86.32 2 | 86.33 2 | 86.29 1 | 88.64 31 | 81.19 4 | 88.84 4 | 90.72 1 | 78.27 8 | 87.95 14 | 92.53 13 | 79.37 13 | 84.79 66 | 74.51 48 | 96.15 2 | 92.88 7 |
|
| HPM-MVS_fast | | | 84.59 4 | 85.10 6 | 83.06 4 | 88.60 32 | 75.83 23 | 86.27 24 | 86.89 15 | 73.69 23 | 86.17 37 | 91.70 25 | 78.23 19 | 85.20 58 | 79.45 12 | 94.91 24 | 88.15 47 |
|
| SR-MVS | | | 84.51 5 | 85.27 4 | 82.25 18 | 88.52 33 | 77.71 13 | 86.81 16 | 85.25 37 | 77.42 13 | 86.15 38 | 90.24 70 | 81.69 5 | 85.94 35 | 77.77 26 | 93.58 61 | 83.09 154 |
|
| 新几何1 | | | | | 69.99 189 | 88.37 34 | 71.34 51 | | 62.08 305 | 43.85 295 | 74.99 185 | 86.11 163 | 52.85 233 | 70.57 269 | 50.99 240 | 83.23 238 | 68.05 340 |
|
| HPM-MVS |  | | 84.12 8 | 84.63 9 | 82.60 13 | 88.21 35 | 74.40 31 | 85.24 28 | 87.21 13 | 70.69 45 | 85.14 54 | 90.42 58 | 78.99 15 | 86.62 13 | 80.83 5 | 94.93 23 | 86.79 63 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| ACMM | | 69.25 9 | 82.11 29 | 83.31 27 | 78.49 64 | 88.17 36 | 73.96 34 | 83.11 49 | 84.52 57 | 66.40 69 | 87.45 22 | 89.16 93 | 81.02 8 | 80.52 138 | 74.27 51 | 95.73 7 | 80.98 200 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test222 | | | | | | 87.30 37 | 69.15 73 | 67.85 235 | 59.59 315 | 41.06 319 | 73.05 217 | 85.72 171 | 48.03 267 | | | 80.65 265 | 66.92 345 |
|
| XVG-ACMP-BASELINE | | | 80.54 44 | 81.06 48 | 78.98 57 | 87.01 38 | 72.91 43 | 80.23 75 | 85.56 29 | 66.56 68 | 85.64 45 | 89.57 82 | 69.12 88 | 80.55 137 | 72.51 65 | 93.37 63 | 83.48 140 |
|
| save fliter | | | | | | 87.00 39 | 67.23 86 | 79.24 85 | 77.94 178 | 56.65 163 | | | | | | | |
|
| LPG-MVS_test | | | 83.47 16 | 84.33 12 | 80.90 32 | 87.00 39 | 70.41 60 | 82.04 56 | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| LGP-MVS_train | | | | | 80.90 32 | 87.00 39 | 70.41 60 | | 86.35 17 | 69.77 50 | 87.75 15 | 91.13 34 | 81.83 3 | 86.20 24 | 77.13 35 | 95.96 5 | 86.08 71 |
|
| EGC-MVSNET | | | 64.77 235 | 61.17 268 | 75.60 98 | 86.90 42 | 74.47 30 | 84.04 35 | 68.62 265 | 0.60 406 | 1.13 408 | 91.61 28 | 65.32 128 | 74.15 232 | 64.01 126 | 88.28 160 | 78.17 246 |
|
| OPM-MVS | | | 80.99 41 | 81.63 46 | 79.07 54 | 86.86 43 | 69.39 68 | 79.41 84 | 84.00 70 | 65.64 73 | 85.54 49 | 89.28 86 | 76.32 31 | 83.47 83 | 74.03 52 | 93.57 62 | 84.35 119 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| DeepC-MVS | | 72.44 4 | 81.00 40 | 80.83 50 | 81.50 22 | 86.70 44 | 70.03 64 | 82.06 55 | 87.00 14 | 59.89 130 | 80.91 108 | 90.53 53 | 72.19 60 | 88.56 1 | 73.67 55 | 94.52 35 | 85.92 75 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| ACMP | | 69.50 8 | 82.64 25 | 83.38 26 | 80.40 37 | 86.50 45 | 69.44 67 | 82.30 53 | 86.08 24 | 66.80 65 | 86.70 30 | 89.99 75 | 81.64 6 | 85.95 34 | 74.35 50 | 96.11 3 | 85.81 76 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS-SEG-HR | | | 79.62 52 | 79.99 55 | 78.49 64 | 86.46 46 | 74.79 29 | 77.15 110 | 85.39 35 | 66.73 66 | 80.39 114 | 88.85 102 | 74.43 50 | 78.33 178 | 74.73 46 | 85.79 201 | 82.35 176 |
|
| VDDNet | | | 71.60 150 | 73.13 130 | 67.02 235 | 86.29 47 | 41.11 305 | 69.97 205 | 66.50 274 | 68.72 55 | 74.74 188 | 91.70 25 | 59.90 179 | 75.81 208 | 48.58 261 | 91.72 84 | 84.15 124 |
|
| test_0728_SECOND | | | | | 76.57 85 | 86.20 48 | 60.57 150 | 83.77 40 | 85.49 30 | | | | | 85.90 38 | 75.86 39 | 94.39 41 | 83.25 149 |
|
| SR-MVS-dyc-post | | | 84.75 3 | 85.26 5 | 83.21 3 | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 47 | 79.20 14 | 85.58 49 | 78.11 23 | 94.46 36 | 84.89 94 |
|
| RE-MVS-def | | | | 85.50 3 | | 86.19 49 | 79.18 6 | 87.23 8 | 86.27 20 | 77.51 10 | 87.65 18 | 90.73 47 | 81.38 7 | | 78.11 23 | 94.46 36 | 84.89 94 |
|
| DVP-MVS |  | | 81.15 37 | 83.12 32 | 75.24 103 | 86.16 51 | 60.78 147 | 83.77 40 | 80.58 127 | 72.48 32 | 85.83 43 | 90.41 59 | 78.57 17 | 85.69 45 | 75.86 39 | 94.39 41 | 79.24 232 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 86.16 51 | 60.78 147 | 83.81 39 | 85.10 40 | 72.48 32 | 85.27 53 | 89.96 76 | 78.57 17 | | | | |
|
| SED-MVS | | | 81.78 31 | 83.48 24 | 76.67 83 | 86.12 53 | 61.06 140 | 83.62 42 | 84.72 49 | 72.61 30 | 87.38 24 | 89.70 80 | 77.48 23 | 85.89 40 | 75.29 42 | 94.39 41 | 83.08 155 |
|
| IU-MVS | | | | | | 86.12 53 | 60.90 144 | | 80.38 131 | 45.49 283 | 81.31 101 | | | | 75.64 41 | 94.39 41 | 84.65 102 |
|
| test_241102_ONE | | | | | | 86.12 53 | 61.06 140 | | 84.72 49 | 72.64 29 | 87.38 24 | 89.47 83 | 77.48 23 | 85.74 44 | | | |
|
| XVG-OURS | | | 79.51 53 | 79.82 56 | 78.58 63 | 86.11 56 | 74.96 28 | 76.33 122 | 84.95 44 | 66.89 63 | 82.75 84 | 88.99 98 | 66.82 109 | 78.37 176 | 74.80 44 | 90.76 116 | 82.40 175 |
|
| test_part2 | | | | | | 85.90 57 | 66.44 91 | | | | 84.61 62 | | | | | | |
|
| 原ACMM1 | | | | | 73.90 118 | 85.90 57 | 65.15 106 | | 81.67 101 | 50.97 234 | 74.25 199 | 86.16 160 | 61.60 158 | 83.54 81 | 56.75 188 | 91.08 103 | 73.00 294 |
|
| testdata | | | | | 64.13 256 | 85.87 59 | 63.34 118 | | 61.80 308 | 47.83 265 | 76.42 171 | 86.60 147 | 48.83 260 | 62.31 328 | 54.46 215 | 81.26 259 | 66.74 349 |
|
| CNVR-MVS | | | 78.49 64 | 78.59 66 | 78.16 68 | 85.86 60 | 67.40 84 | 78.12 99 | 81.50 103 | 63.92 96 | 77.51 144 | 86.56 148 | 68.43 94 | 84.82 65 | 73.83 53 | 91.61 88 | 82.26 180 |
|
| test_one_0601 | | | | | | 85.84 61 | 61.45 133 | | 85.63 28 | 75.27 17 | 85.62 48 | 90.38 64 | 76.72 27 | | | | |
|
| NCCC | | | 78.25 67 | 78.04 71 | 78.89 59 | 85.61 62 | 69.45 66 | 79.80 81 | 80.99 118 | 65.77 72 | 75.55 178 | 86.25 157 | 67.42 102 | 85.42 50 | 70.10 75 | 90.88 111 | 81.81 186 |
|
| TEST9 | | | | | | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 163 | 53.73 204 | 76.97 149 | 86.74 138 | 66.84 108 | 81.10 123 | | | |
|
| train_agg | | | 76.38 81 | 76.55 84 | 75.86 95 | 85.47 63 | 69.32 70 | 76.42 118 | 78.69 163 | 54.00 199 | 76.97 149 | 86.74 138 | 66.60 114 | 81.10 123 | 72.50 66 | 91.56 89 | 77.15 259 |
|
| DPE-MVS |  | | 82.00 30 | 83.02 33 | 78.95 58 | 85.36 65 | 67.25 85 | 82.91 50 | 84.98 42 | 73.52 24 | 85.43 51 | 90.03 74 | 76.37 29 | 86.97 11 | 74.56 47 | 94.02 55 | 82.62 171 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| HQP_MVS | | | 78.77 60 | 78.78 64 | 78.72 60 | 85.18 66 | 65.18 104 | 82.74 51 | 85.49 30 | 65.45 76 | 78.23 133 | 89.11 94 | 60.83 171 | 86.15 27 | 71.09 71 | 90.94 105 | 84.82 98 |
|
| plane_prior7 | | | | | | 85.18 66 | 66.21 94 | | | | | | | | | | |
|
| SteuartSystems-ACMMP | | | 83.07 21 | 83.64 22 | 81.35 26 | 85.14 68 | 71.00 54 | 85.53 26 | 84.78 46 | 70.91 43 | 85.64 45 | 90.41 59 | 75.55 38 | 87.69 4 | 79.75 7 | 95.08 19 | 85.36 85 |
| Skip Steuart: Steuart Systems R&D Blog. |
| test_8 | | | | | | 85.09 69 | 67.89 79 | 76.26 123 | 78.66 165 | 54.00 199 | 76.89 153 | 86.72 140 | 66.60 114 | 80.89 133 | | | |
|
| WR-MVS | | | 71.20 153 | 72.48 142 | 67.36 230 | 84.98 70 | 35.70 348 | 64.43 283 | 68.66 264 | 65.05 86 | 81.49 98 | 86.43 152 | 57.57 207 | 76.48 204 | 50.36 245 | 93.32 65 | 89.90 23 |
|
| PS-MVSNAJss | | | 77.54 72 | 77.35 78 | 78.13 70 | 84.88 71 | 66.37 92 | 78.55 92 | 79.59 146 | 53.48 207 | 86.29 36 | 92.43 15 | 62.39 150 | 80.25 142 | 67.90 93 | 90.61 117 | 87.77 49 |
|
| LTVRE_ROB | | 75.46 1 | 84.22 6 | 84.98 7 | 81.94 20 | 84.82 72 | 75.40 25 | 91.60 3 | 87.80 7 | 73.52 24 | 88.90 11 | 93.06 6 | 71.39 69 | 81.53 115 | 81.53 3 | 92.15 82 | 88.91 38 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| mvs_tets | | | 78.93 58 | 78.67 65 | 79.72 43 | 84.81 73 | 73.93 35 | 80.65 65 | 76.50 194 | 51.98 220 | 87.40 23 | 91.86 21 | 76.09 33 | 78.53 168 | 68.58 83 | 90.20 122 | 86.69 66 |
|
| APDe-MVS |  | | 82.88 23 | 84.14 14 | 79.08 53 | 84.80 74 | 66.72 90 | 86.54 20 | 85.11 39 | 72.00 37 | 86.65 31 | 91.75 24 | 78.20 20 | 87.04 9 | 77.93 25 | 94.32 48 | 83.47 141 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MSLP-MVS++ | | | 74.48 106 | 75.78 93 | 70.59 175 | 84.66 75 | 62.40 123 | 78.65 90 | 84.24 63 | 60.55 125 | 77.71 142 | 81.98 219 | 63.12 141 | 77.64 192 | 62.95 140 | 88.14 162 | 71.73 309 |
|
| jajsoiax | | | 78.51 63 | 78.16 70 | 79.59 47 | 84.65 76 | 73.83 37 | 80.42 69 | 76.12 196 | 51.33 230 | 87.19 27 | 91.51 29 | 73.79 54 | 78.44 172 | 68.27 86 | 90.13 126 | 86.49 68 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 83 | 77.66 75 | 71.56 164 | 84.61 77 | 42.57 297 | 70.98 192 | 78.29 172 | 68.67 56 | 83.04 77 | 89.26 87 | 72.99 58 | 80.75 134 | 55.58 205 | 95.47 10 | 91.35 13 |
|
| 旧先验1 | | | | | | 84.55 78 | 60.36 152 | | 63.69 297 | | | 87.05 130 | 54.65 224 | | | 83.34 237 | 69.66 328 |
|
| APD-MVS |  | | 81.13 38 | 81.73 44 | 79.36 51 | 84.47 79 | 70.53 59 | 83.85 38 | 83.70 72 | 69.43 52 | 83.67 73 | 88.96 99 | 75.89 34 | 86.41 16 | 72.62 64 | 92.95 69 | 81.14 194 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| plane_prior1 | | | | | | 84.46 80 | | | | | | | | | | | |
|
| agg_prior | | | | | | 84.44 81 | 66.02 97 | | 78.62 166 | | 76.95 151 | | | 80.34 140 | | | |
|
| DeepPCF-MVS | | 71.07 5 | 78.48 65 | 77.14 80 | 82.52 16 | 84.39 82 | 77.04 21 | 76.35 120 | 84.05 68 | 56.66 162 | 80.27 115 | 85.31 174 | 68.56 91 | 87.03 10 | 67.39 99 | 91.26 94 | 83.50 137 |
|
| CDPH-MVS | | | 77.33 74 | 77.06 81 | 78.14 69 | 84.21 83 | 63.98 114 | 76.07 126 | 83.45 75 | 54.20 194 | 77.68 143 | 87.18 125 | 69.98 81 | 85.37 51 | 68.01 90 | 92.72 74 | 85.08 91 |
|
| plane_prior6 | | | | | | 84.18 84 | 65.31 103 | | | | | | 60.83 171 | | | | |
|
| 114514_t | | | 73.40 117 | 73.33 127 | 73.64 122 | 84.15 85 | 57.11 174 | 78.20 97 | 80.02 138 | 43.76 298 | 72.55 223 | 86.07 165 | 64.00 137 | 83.35 86 | 60.14 164 | 91.03 104 | 80.45 215 |
|
| ZD-MVS | | | | | | 83.91 86 | 69.36 69 | | 81.09 115 | 58.91 140 | 82.73 85 | 89.11 94 | 75.77 35 | 86.63 12 | 72.73 62 | 92.93 70 | |
|
| DeepC-MVS_fast | | 69.89 7 | 77.17 76 | 76.33 87 | 79.70 44 | 83.90 87 | 67.94 78 | 80.06 79 | 83.75 71 | 56.73 161 | 74.88 187 | 85.32 173 | 65.54 124 | 87.79 2 | 65.61 116 | 91.14 99 | 83.35 147 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| h-mvs33 | | | 73.08 124 | 71.61 155 | 77.48 74 | 83.89 88 | 72.89 44 | 70.47 199 | 71.12 247 | 54.28 190 | 77.89 137 | 83.41 196 | 49.04 257 | 80.98 128 | 63.62 133 | 90.77 115 | 78.58 240 |
|
| SD-MVS | | | 80.28 49 | 81.55 47 | 76.47 88 | 83.57 89 | 67.83 80 | 83.39 47 | 85.35 36 | 64.42 92 | 86.14 39 | 87.07 129 | 74.02 51 | 80.97 129 | 77.70 28 | 92.32 80 | 80.62 212 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DU-MVS | | | 74.91 101 | 75.57 96 | 72.93 140 | 83.50 90 | 45.79 269 | 69.47 211 | 80.14 137 | 65.22 82 | 81.74 95 | 87.08 127 | 61.82 156 | 81.07 125 | 56.21 197 | 94.98 20 | 91.93 8 |
|
| NR-MVSNet | | | 73.62 113 | 74.05 111 | 72.33 157 | 83.50 90 | 43.71 284 | 65.65 268 | 77.32 185 | 64.32 93 | 75.59 177 | 87.08 127 | 62.45 149 | 81.34 117 | 54.90 208 | 95.63 8 | 91.93 8 |
|
| test_0402 | | | 78.17 69 | 79.48 59 | 74.24 113 | 83.50 90 | 59.15 161 | 72.52 163 | 74.60 211 | 75.34 15 | 88.69 13 | 91.81 22 | 75.06 42 | 82.37 102 | 65.10 117 | 88.68 157 | 81.20 192 |
|
| OPU-MVS | | | | | 78.65 62 | 83.44 93 | 66.85 89 | 83.62 42 | | | | 86.12 162 | 66.82 109 | 86.01 31 | 61.72 147 | 89.79 134 | 83.08 155 |
|
| NP-MVS | | | | | | 83.34 94 | 63.07 121 | | | | | 85.97 166 | | | | | |
|
| DVP-MVS++ | | | 81.24 35 | 82.74 37 | 76.76 82 | 83.14 95 | 60.90 144 | 91.64 1 | 85.49 30 | 74.03 21 | 84.93 56 | 90.38 64 | 66.82 109 | 85.90 38 | 77.43 30 | 90.78 113 | 83.49 138 |
|
| MSC_two_6792asdad | | | | | 79.02 55 | 83.14 95 | 67.03 87 | | 80.75 120 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 131 |
|
| No_MVS | | | | | 79.02 55 | 83.14 95 | 67.03 87 | | 80.75 120 | | | | | 86.24 22 | 77.27 33 | 94.85 25 | 83.78 131 |
|
| RRT_MVS | | | 78.18 68 | 77.69 73 | 79.66 46 | 83.14 95 | 61.34 135 | 83.29 48 | 80.34 134 | 57.43 154 | 86.65 31 | 91.79 23 | 50.52 246 | 86.01 31 | 71.36 70 | 94.65 32 | 91.62 11 |
|
| UniMVSNet (Re) | | | 75.00 99 | 75.48 97 | 73.56 124 | 83.14 95 | 47.92 243 | 70.41 201 | 81.04 117 | 63.67 100 | 79.54 120 | 86.37 153 | 62.83 144 | 81.82 111 | 57.10 187 | 95.25 14 | 90.94 17 |
|
| hse-mvs2 | | | 72.32 143 | 70.66 167 | 77.31 79 | 83.10 100 | 71.77 47 | 69.19 216 | 71.45 237 | 54.28 190 | 77.89 137 | 78.26 274 | 49.04 257 | 79.23 156 | 63.62 133 | 89.13 151 | 80.92 201 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 102 | 75.65 94 | 72.64 149 | 83.04 101 | 45.79 269 | 69.26 214 | 78.81 158 | 66.66 67 | 81.74 95 | 86.88 133 | 63.26 140 | 81.07 125 | 56.21 197 | 94.98 20 | 91.05 15 |
|
| HyFIR lowres test | | | 63.01 255 | 60.47 275 | 70.61 174 | 83.04 101 | 54.10 193 | 59.93 316 | 72.24 230 | 33.67 367 | 69.00 267 | 75.63 295 | 38.69 318 | 76.93 198 | 36.60 345 | 75.45 312 | 80.81 206 |
|
| COLMAP_ROB |  | 72.78 3 | 83.75 11 | 84.11 15 | 82.68 12 | 82.97 103 | 74.39 32 | 87.18 10 | 88.18 6 | 78.98 6 | 86.11 40 | 91.47 30 | 79.70 12 | 85.76 43 | 66.91 107 | 95.46 11 | 87.89 48 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| AUN-MVS | | | 70.22 163 | 67.88 200 | 77.22 80 | 82.96 104 | 71.61 48 | 69.08 217 | 71.39 238 | 49.17 254 | 71.70 233 | 78.07 279 | 37.62 326 | 79.21 157 | 61.81 144 | 89.15 149 | 80.82 204 |
|
| DP-MVS Recon | | | 73.57 114 | 72.69 138 | 76.23 91 | 82.85 105 | 63.39 117 | 74.32 149 | 82.96 82 | 57.75 148 | 70.35 251 | 81.98 219 | 64.34 136 | 84.41 73 | 49.69 249 | 89.95 129 | 80.89 202 |
|
| APD-MVS_3200maxsize | | | 83.57 13 | 84.33 12 | 81.31 28 | 82.83 106 | 73.53 40 | 85.50 27 | 87.45 12 | 74.11 19 | 86.45 35 | 90.52 55 | 80.02 10 | 84.48 70 | 77.73 27 | 94.34 47 | 85.93 74 |
|
| PVSNet_Blended_VisFu | | | 70.04 165 | 68.88 183 | 73.53 125 | 82.71 107 | 63.62 116 | 74.81 139 | 81.95 97 | 48.53 259 | 67.16 292 | 79.18 263 | 51.42 242 | 78.38 175 | 54.39 217 | 79.72 277 | 78.60 239 |
|
| DPM-MVS | | | 69.98 167 | 69.22 179 | 72.26 158 | 82.69 108 | 58.82 165 | 70.53 198 | 81.23 111 | 47.79 266 | 64.16 309 | 80.21 243 | 51.32 243 | 83.12 90 | 60.14 164 | 84.95 216 | 74.83 277 |
|
| EG-PatchMatch MVS | | | 70.70 159 | 70.88 164 | 70.16 185 | 82.64 109 | 58.80 166 | 71.48 182 | 73.64 215 | 54.98 177 | 76.55 165 | 81.77 222 | 61.10 168 | 78.94 162 | 54.87 209 | 80.84 263 | 72.74 299 |
|
| HQP-NCC | | | | | | 82.37 110 | | 77.32 106 | | 59.08 134 | 71.58 235 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 110 | | 77.32 106 | | 59.08 134 | 71.58 235 | | | | | | |
|
| HQP-MVS | | | 75.24 94 | 75.01 100 | 75.94 93 | 82.37 110 | 58.80 166 | 77.32 106 | 84.12 66 | 59.08 134 | 71.58 235 | 85.96 167 | 58.09 198 | 85.30 53 | 67.38 101 | 89.16 147 | 83.73 134 |
|
| test12 | | | | | 76.51 86 | 82.28 113 | 60.94 143 | | 81.64 102 | | 73.60 208 | | 64.88 131 | 85.19 59 | | 90.42 120 | 83.38 145 |
|
| TAMVS | | | 65.31 228 | 63.75 247 | 69.97 190 | 82.23 114 | 59.76 156 | 66.78 254 | 63.37 299 | 45.20 287 | 69.79 259 | 79.37 259 | 47.42 270 | 72.17 252 | 34.48 358 | 85.15 211 | 77.99 251 |
|
| test_prior | | | | | 75.27 102 | 82.15 115 | 59.85 155 | | 84.33 60 | | | | | 83.39 85 | | | 82.58 172 |
|
| SF-MVS | | | 80.72 43 | 81.80 42 | 77.48 74 | 82.03 116 | 64.40 111 | 83.41 46 | 88.46 5 | 65.28 81 | 84.29 65 | 89.18 91 | 73.73 55 | 83.22 88 | 76.01 38 | 93.77 58 | 84.81 100 |
|
| AdaColmap |  | | 74.22 107 | 74.56 103 | 73.20 129 | 81.95 117 | 60.97 142 | 79.43 82 | 80.90 119 | 65.57 74 | 72.54 224 | 81.76 223 | 70.98 74 | 85.26 54 | 47.88 270 | 90.00 127 | 73.37 290 |
|
| PAPM_NR | | | 73.91 109 | 74.16 110 | 73.16 130 | 81.90 118 | 53.50 197 | 81.28 60 | 81.40 106 | 66.17 70 | 73.30 214 | 83.31 202 | 59.96 178 | 83.10 91 | 58.45 178 | 81.66 256 | 82.87 161 |
|
| DP-MVS | | | 78.44 66 | 79.29 60 | 75.90 94 | 81.86 119 | 65.33 102 | 79.05 87 | 84.63 55 | 74.83 18 | 80.41 113 | 86.27 155 | 71.68 65 | 83.45 84 | 62.45 143 | 92.40 77 | 78.92 237 |
|
| F-COLMAP | | | 75.29 92 | 73.99 112 | 79.18 52 | 81.73 120 | 71.90 46 | 81.86 58 | 82.98 81 | 59.86 131 | 72.27 227 | 84.00 189 | 64.56 134 | 83.07 92 | 51.48 235 | 87.19 184 | 82.56 173 |
|
| SixPastTwentyTwo | | | 75.77 85 | 76.34 86 | 74.06 116 | 81.69 121 | 54.84 187 | 76.47 115 | 75.49 203 | 64.10 95 | 87.73 17 | 92.24 17 | 50.45 248 | 81.30 119 | 67.41 97 | 91.46 91 | 86.04 73 |
|
| Vis-MVSNet |  | | 74.85 105 | 74.56 103 | 75.72 96 | 81.63 122 | 64.64 109 | 76.35 120 | 79.06 154 | 62.85 110 | 73.33 213 | 88.41 111 | 62.54 148 | 79.59 153 | 63.94 130 | 82.92 239 | 82.94 159 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| test_djsdf | | | 78.88 59 | 78.27 69 | 80.70 35 | 81.42 123 | 71.24 52 | 83.98 36 | 75.72 201 | 52.27 215 | 87.37 26 | 92.25 16 | 68.04 98 | 80.56 135 | 72.28 67 | 91.15 98 | 90.32 22 |
|
| 3Dnovator+ | | 73.19 2 | 81.08 39 | 80.48 51 | 82.87 7 | 81.41 124 | 72.03 45 | 84.38 34 | 86.23 23 | 77.28 14 | 80.65 111 | 90.18 73 | 59.80 182 | 87.58 5 | 73.06 59 | 91.34 93 | 89.01 34 |
|
| tt0805 | | | 76.12 84 | 78.43 68 | 69.20 201 | 81.32 125 | 41.37 303 | 76.72 114 | 77.64 181 | 63.78 99 | 82.06 89 | 87.88 122 | 79.78 11 | 79.05 159 | 64.33 124 | 92.40 77 | 87.17 60 |
|
| MCST-MVS | | | 73.42 116 | 73.34 126 | 73.63 123 | 81.28 126 | 59.17 160 | 74.80 141 | 83.13 80 | 45.50 281 | 72.84 219 | 83.78 193 | 65.15 129 | 80.99 127 | 64.54 121 | 89.09 153 | 80.73 208 |
|
| MIMVSNet1 | | | 66.57 218 | 69.23 178 | 58.59 306 | 81.26 127 | 37.73 335 | 64.06 286 | 57.62 319 | 57.02 157 | 78.40 132 | 90.75 46 | 62.65 145 | 58.10 345 | 41.77 309 | 89.58 140 | 79.95 221 |
|
| ACMH+ | | 66.64 10 | 81.20 36 | 82.48 39 | 77.35 78 | 81.16 128 | 62.39 124 | 80.51 67 | 87.80 7 | 73.02 26 | 87.57 20 | 91.08 36 | 80.28 9 | 82.44 100 | 64.82 120 | 96.10 4 | 87.21 57 |
|
| MVS_111021_HR | | | 72.98 131 | 72.97 135 | 72.99 135 | 80.82 129 | 65.47 100 | 68.81 221 | 72.77 223 | 57.67 150 | 75.76 175 | 82.38 216 | 71.01 73 | 77.17 195 | 61.38 149 | 86.15 196 | 76.32 265 |
|
| 9.14 | | | | 80.22 53 | | 80.68 130 | | 80.35 72 | 87.69 10 | 59.90 129 | 83.00 78 | 88.20 116 | 74.57 47 | 81.75 113 | 73.75 54 | 93.78 57 | |
|
| OMC-MVS | | | 79.41 55 | 78.79 63 | 81.28 29 | 80.62 131 | 70.71 58 | 80.91 63 | 84.76 47 | 62.54 112 | 81.77 93 | 86.65 144 | 71.46 67 | 83.53 82 | 67.95 92 | 92.44 76 | 89.60 24 |
|
| OurMVSNet-221017-0 | | | 78.57 62 | 78.53 67 | 78.67 61 | 80.48 132 | 64.16 112 | 80.24 74 | 82.06 94 | 61.89 116 | 88.77 12 | 93.32 4 | 57.15 209 | 82.60 99 | 70.08 76 | 92.80 71 | 89.25 28 |
|
| CDS-MVSNet | | | 64.33 243 | 62.66 259 | 69.35 198 | 80.44 133 | 58.28 170 | 65.26 273 | 65.66 280 | 44.36 293 | 67.30 291 | 75.54 296 | 43.27 289 | 71.77 258 | 37.68 335 | 84.44 224 | 78.01 250 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| mvsmamba | | | 77.20 75 | 76.37 85 | 79.69 45 | 80.34 134 | 61.52 132 | 80.58 66 | 82.12 93 | 53.54 206 | 83.93 70 | 91.03 37 | 49.49 252 | 85.97 33 | 73.26 57 | 93.08 67 | 91.59 12 |
|
| PLC |  | 62.01 16 | 71.79 149 | 70.28 169 | 76.33 89 | 80.31 135 | 68.63 75 | 78.18 98 | 81.24 110 | 54.57 186 | 67.09 293 | 80.63 237 | 59.44 183 | 81.74 114 | 46.91 277 | 84.17 226 | 78.63 238 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MM | | | 78.15 70 | 77.68 74 | 79.55 48 | 80.10 136 | 65.47 100 | 80.94 62 | 78.74 162 | 71.22 40 | 72.40 226 | 88.70 104 | 60.51 173 | 87.70 3 | 77.40 32 | 89.13 151 | 85.48 84 |
|
| CHOSEN 1792x2688 | | | 58.09 294 | 56.30 305 | 63.45 265 | 79.95 137 | 50.93 210 | 54.07 355 | 65.59 281 | 28.56 383 | 61.53 328 | 74.33 309 | 41.09 303 | 66.52 308 | 33.91 361 | 67.69 368 | 72.92 295 |
|
| K. test v3 | | | 73.67 112 | 73.61 120 | 73.87 119 | 79.78 138 | 55.62 185 | 74.69 145 | 62.04 307 | 66.16 71 | 84.76 60 | 93.23 5 | 49.47 253 | 80.97 129 | 65.66 115 | 86.67 192 | 85.02 93 |
|
| VPNet | | | 65.58 226 | 67.56 203 | 59.65 299 | 79.72 139 | 30.17 378 | 60.27 314 | 62.14 303 | 54.19 195 | 71.24 243 | 86.63 145 | 58.80 190 | 67.62 292 | 44.17 296 | 90.87 112 | 81.18 193 |
|
| ACMH | | 63.62 14 | 77.50 73 | 80.11 54 | 69.68 193 | 79.61 140 | 56.28 178 | 78.81 89 | 83.62 73 | 63.41 106 | 87.14 29 | 90.23 71 | 76.11 32 | 73.32 238 | 67.58 94 | 94.44 39 | 79.44 230 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| lessismore_v0 | | | | | 72.75 145 | 79.60 141 | 56.83 177 | | 57.37 322 | | 83.80 72 | 89.01 97 | 47.45 269 | 78.74 166 | 64.39 123 | 86.49 195 | 82.69 167 |
|
| MVS_111021_LR | | | 72.10 146 | 71.82 151 | 72.95 137 | 79.53 142 | 73.90 36 | 70.45 200 | 66.64 273 | 56.87 158 | 76.81 157 | 81.76 223 | 68.78 89 | 71.76 259 | 61.81 144 | 83.74 231 | 73.18 292 |
|
| Test_1112_low_res | | | 58.78 290 | 58.69 287 | 59.04 304 | 79.41 143 | 38.13 331 | 57.62 330 | 66.98 272 | 34.74 360 | 59.62 344 | 77.56 283 | 42.92 292 | 63.65 323 | 38.66 327 | 70.73 350 | 75.35 274 |
|
| CSCG | | | 74.12 108 | 74.39 105 | 73.33 127 | 79.35 144 | 61.66 131 | 77.45 105 | 81.98 96 | 62.47 114 | 79.06 125 | 80.19 245 | 61.83 155 | 78.79 165 | 59.83 168 | 87.35 176 | 79.54 229 |
|
| MVS_0304 | | | 76.32 82 | 75.96 92 | 77.42 76 | 79.33 145 | 60.86 146 | 80.18 76 | 74.88 208 | 66.93 62 | 69.11 265 | 88.95 100 | 57.84 205 | 86.12 29 | 76.63 37 | 89.77 135 | 85.28 86 |
|
| MVP-Stereo | | | 61.56 269 | 59.22 282 | 68.58 217 | 79.28 146 | 60.44 151 | 69.20 215 | 71.57 233 | 43.58 301 | 56.42 360 | 78.37 273 | 39.57 314 | 76.46 205 | 34.86 357 | 60.16 385 | 68.86 336 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| MG-MVS | | | 70.47 162 | 71.34 160 | 67.85 225 | 79.26 147 | 40.42 313 | 74.67 146 | 75.15 207 | 58.41 142 | 68.74 277 | 88.14 120 | 56.08 220 | 83.69 79 | 59.90 167 | 81.71 255 | 79.43 231 |
|
| IS-MVSNet | | | 75.10 96 | 75.42 98 | 74.15 115 | 79.23 148 | 48.05 241 | 79.43 82 | 78.04 176 | 70.09 49 | 79.17 124 | 88.02 121 | 53.04 232 | 83.60 80 | 58.05 181 | 93.76 59 | 90.79 19 |
|
| FC-MVSNet-test | | | 73.32 119 | 74.78 102 | 68.93 210 | 79.21 149 | 36.57 340 | 71.82 179 | 79.54 148 | 57.63 153 | 82.57 86 | 90.38 64 | 59.38 185 | 78.99 161 | 57.91 182 | 94.56 34 | 91.23 14 |
|
| AllTest | | | 77.66 71 | 77.43 76 | 78.35 66 | 79.19 150 | 70.81 55 | 78.60 91 | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 117 | 70.33 77 | 78.43 173 | 55.60 202 | 90.90 109 | 85.81 76 |
|
| TestCases | | | | | 78.35 66 | 79.19 150 | 70.81 55 | | 88.64 3 | 65.37 79 | 80.09 116 | 88.17 117 | 70.33 77 | 78.43 173 | 55.60 202 | 90.90 109 | 85.81 76 |
|
| xiu_mvs_v1_base_debu | | | 67.87 198 | 67.07 210 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 242 | 71.25 243 | 47.98 262 | 67.70 285 | 74.19 313 | 61.31 161 | 72.62 245 | 56.51 190 | 78.26 290 | 76.27 266 |
|
| xiu_mvs_v1_base | | | 67.87 198 | 67.07 210 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 242 | 71.25 243 | 47.98 262 | 67.70 285 | 74.19 313 | 61.31 161 | 72.62 245 | 56.51 190 | 78.26 290 | 76.27 266 |
|
| xiu_mvs_v1_base_debi | | | 67.87 198 | 67.07 210 | 70.26 181 | 79.13 152 | 61.90 128 | 67.34 242 | 71.25 243 | 47.98 262 | 67.70 285 | 74.19 313 | 61.31 161 | 72.62 245 | 56.51 190 | 78.26 290 | 76.27 266 |
|
| VDD-MVS | | | 70.81 158 | 71.44 159 | 68.91 211 | 79.07 155 | 46.51 263 | 67.82 236 | 70.83 251 | 61.23 119 | 74.07 203 | 88.69 105 | 59.86 180 | 75.62 211 | 51.11 238 | 90.28 121 | 84.61 106 |
|
| test1111 | | | 64.62 236 | 65.19 232 | 62.93 272 | 79.01 156 | 29.91 379 | 65.45 271 | 54.41 343 | 54.09 197 | 71.47 242 | 88.48 110 | 37.02 328 | 74.29 230 | 46.83 279 | 89.94 130 | 84.58 109 |
|
| TSAR-MVS + GP. | | | 73.08 124 | 71.60 156 | 77.54 73 | 78.99 157 | 70.73 57 | 74.96 136 | 69.38 259 | 60.73 124 | 74.39 197 | 78.44 272 | 57.72 206 | 82.78 96 | 60.16 163 | 89.60 137 | 79.11 234 |
|
| test2506 | | | 61.23 271 | 60.85 272 | 62.38 277 | 78.80 158 | 27.88 387 | 67.33 245 | 37.42 401 | 54.23 192 | 67.55 288 | 88.68 106 | 17.87 405 | 74.39 228 | 46.33 282 | 89.41 143 | 84.86 96 |
|
| ECVR-MVS |  | | 64.82 233 | 65.22 230 | 63.60 262 | 78.80 158 | 31.14 373 | 66.97 250 | 56.47 333 | 54.23 192 | 69.94 257 | 88.68 106 | 37.23 327 | 74.81 223 | 45.28 292 | 89.41 143 | 84.86 96 |
|
| FIs | | | 72.56 139 | 73.80 115 | 68.84 213 | 78.74 160 | 37.74 334 | 71.02 191 | 79.83 141 | 56.12 166 | 80.88 110 | 89.45 84 | 58.18 194 | 78.28 179 | 56.63 189 | 93.36 64 | 90.51 21 |
|
| v7n | | | 79.37 56 | 80.41 52 | 76.28 90 | 78.67 161 | 55.81 182 | 79.22 86 | 82.51 90 | 70.72 44 | 87.54 21 | 92.44 14 | 68.00 99 | 81.34 117 | 72.84 61 | 91.72 84 | 91.69 10 |
|
| LS3D | | | 80.99 41 | 80.85 49 | 81.41 25 | 78.37 162 | 71.37 50 | 87.45 7 | 85.87 27 | 77.48 12 | 81.98 90 | 89.95 77 | 69.14 87 | 85.26 54 | 66.15 109 | 91.24 95 | 87.61 52 |
|
| CNLPA | | | 73.44 115 | 73.03 133 | 74.66 105 | 78.27 163 | 75.29 26 | 75.99 127 | 78.49 167 | 65.39 78 | 75.67 176 | 83.22 208 | 61.23 164 | 66.77 306 | 53.70 224 | 85.33 207 | 81.92 185 |
|
| EPP-MVSNet | | | 73.86 111 | 73.38 123 | 75.31 101 | 78.19 164 | 53.35 199 | 80.45 68 | 77.32 185 | 65.11 85 | 76.47 169 | 86.80 134 | 49.47 253 | 83.77 77 | 53.89 222 | 92.72 74 | 88.81 41 |
|
| PCF-MVS | | 63.80 13 | 72.70 137 | 71.69 152 | 75.72 96 | 78.10 165 | 60.01 154 | 73.04 160 | 81.50 103 | 45.34 285 | 79.66 119 | 84.35 185 | 65.15 129 | 82.65 98 | 48.70 259 | 89.38 146 | 84.50 115 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| GeoE | | | 73.14 122 | 73.77 117 | 71.26 168 | 78.09 166 | 52.64 202 | 74.32 149 | 79.56 147 | 56.32 165 | 76.35 172 | 83.36 201 | 70.76 75 | 77.96 186 | 63.32 137 | 81.84 250 | 83.18 152 |
|
| LFMVS | | | 67.06 212 | 67.89 199 | 64.56 253 | 78.02 167 | 38.25 329 | 70.81 196 | 59.60 314 | 65.18 83 | 71.06 245 | 86.56 148 | 43.85 286 | 75.22 216 | 46.35 281 | 89.63 136 | 80.21 219 |
|
| anonymousdsp | | | 78.60 61 | 77.80 72 | 81.00 31 | 78.01 168 | 74.34 33 | 80.09 77 | 76.12 196 | 50.51 239 | 89.19 10 | 90.88 42 | 71.45 68 | 77.78 190 | 73.38 56 | 90.60 118 | 90.90 18 |
|
| BH-untuned | | | 69.39 178 | 69.46 174 | 69.18 202 | 77.96 169 | 56.88 175 | 68.47 230 | 77.53 182 | 56.77 160 | 77.79 140 | 79.63 254 | 60.30 176 | 80.20 145 | 46.04 284 | 80.65 265 | 70.47 320 |
|
| 1112_ss | | | 59.48 285 | 58.99 285 | 60.96 291 | 77.84 170 | 42.39 298 | 61.42 304 | 68.45 266 | 37.96 344 | 59.93 341 | 67.46 366 | 45.11 279 | 65.07 316 | 40.89 315 | 71.81 343 | 75.41 272 |
|
| PS-MVSNAJ | | | 64.27 244 | 63.73 248 | 65.90 246 | 77.82 171 | 51.42 207 | 63.33 293 | 72.33 228 | 45.09 289 | 61.60 327 | 68.04 363 | 62.39 150 | 73.95 234 | 49.07 255 | 73.87 328 | 72.34 302 |
|
| ambc | | | | | 70.10 187 | 77.74 172 | 50.21 217 | 74.28 151 | 77.93 179 | | 79.26 123 | 88.29 115 | 54.11 228 | 79.77 149 | 64.43 122 | 91.10 102 | 80.30 217 |
|
| xiu_mvs_v2_base | | | 64.43 241 | 63.96 245 | 65.85 247 | 77.72 173 | 51.32 208 | 63.63 290 | 72.31 229 | 45.06 290 | 61.70 326 | 69.66 349 | 62.56 146 | 73.93 235 | 49.06 256 | 73.91 327 | 72.31 303 |
|
| Anonymous20231211 | | | 75.54 90 | 77.19 79 | 70.59 175 | 77.67 174 | 45.70 272 | 74.73 143 | 80.19 135 | 68.80 53 | 82.95 80 | 92.91 8 | 66.26 117 | 76.76 202 | 58.41 179 | 92.77 72 | 89.30 27 |
|
| FMVSNet1 | | | 71.06 154 | 72.48 142 | 66.81 236 | 77.65 175 | 40.68 309 | 71.96 173 | 73.03 218 | 61.14 120 | 79.45 122 | 90.36 67 | 60.44 174 | 75.20 217 | 50.20 246 | 88.05 164 | 84.54 110 |
|
| FPMVS | | | 59.43 286 | 60.07 277 | 57.51 312 | 77.62 176 | 71.52 49 | 62.33 300 | 50.92 360 | 57.40 155 | 69.40 263 | 80.00 249 | 39.14 316 | 61.92 330 | 37.47 338 | 66.36 370 | 39.09 400 |
|
| testing3 | | | 58.28 293 | 58.38 291 | 58.00 310 | 77.45 177 | 26.12 394 | 60.78 310 | 43.00 387 | 56.02 167 | 70.18 254 | 75.76 293 | 13.27 412 | 67.24 298 | 48.02 268 | 80.89 261 | 80.65 211 |
|
| Effi-MVS+-dtu | | | 75.43 91 | 72.28 146 | 84.91 2 | 77.05 178 | 83.58 1 | 78.47 93 | 77.70 180 | 57.68 149 | 74.89 186 | 78.13 278 | 64.80 132 | 84.26 74 | 56.46 193 | 85.32 208 | 86.88 62 |
|
| CLD-MVS | | | 72.88 134 | 72.36 145 | 74.43 110 | 77.03 179 | 54.30 191 | 68.77 224 | 83.43 76 | 52.12 217 | 76.79 158 | 74.44 308 | 69.54 86 | 83.91 75 | 55.88 200 | 93.25 66 | 85.09 90 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| CS-MVS | | | 76.51 80 | 76.00 90 | 78.06 71 | 77.02 180 | 64.77 108 | 80.78 64 | 82.66 87 | 60.39 126 | 74.15 200 | 83.30 203 | 69.65 85 | 82.07 108 | 69.27 81 | 86.75 191 | 87.36 55 |
|
| CS-MVS-test | | | 74.89 103 | 74.23 109 | 76.86 81 | 77.01 181 | 62.94 122 | 78.98 88 | 84.61 56 | 58.62 141 | 70.17 255 | 80.80 234 | 66.74 113 | 81.96 109 | 61.74 146 | 89.40 145 | 85.69 81 |
|
| Baseline_NR-MVSNet | | | 70.62 160 | 73.19 128 | 62.92 273 | 76.97 182 | 34.44 356 | 68.84 219 | 70.88 250 | 60.25 127 | 79.50 121 | 90.53 53 | 61.82 156 | 69.11 279 | 54.67 212 | 95.27 13 | 85.22 87 |
|
| ITE_SJBPF | | | | | 80.35 38 | 76.94 183 | 73.60 38 | | 80.48 128 | 66.87 64 | 83.64 74 | 86.18 158 | 70.25 79 | 79.90 148 | 61.12 154 | 88.95 155 | 87.56 53 |
|
| SSC-MVS | | | 61.79 267 | 66.08 220 | 48.89 356 | 76.91 184 | 10.00 410 | 53.56 357 | 47.37 375 | 68.20 58 | 76.56 164 | 89.21 89 | 54.13 227 | 57.59 346 | 54.75 210 | 74.07 326 | 79.08 235 |
|
| jason | | | 64.47 240 | 62.84 257 | 69.34 199 | 76.91 184 | 59.20 157 | 67.15 247 | 65.67 279 | 35.29 357 | 65.16 302 | 76.74 289 | 44.67 281 | 70.68 267 | 54.74 211 | 79.28 280 | 78.14 247 |
| jason: jason. |
| ETV-MVS | | | 72.72 136 | 72.16 148 | 74.38 112 | 76.90 186 | 55.95 179 | 73.34 158 | 84.67 52 | 62.04 115 | 72.19 230 | 70.81 336 | 65.90 121 | 85.24 56 | 58.64 176 | 84.96 215 | 81.95 184 |
|
| Anonymous20240529 | | | 72.56 139 | 73.79 116 | 68.86 212 | 76.89 187 | 45.21 274 | 68.80 223 | 77.25 187 | 67.16 61 | 76.89 153 | 90.44 56 | 65.95 120 | 74.19 231 | 50.75 241 | 90.00 127 | 87.18 59 |
|
| EC-MVSNet | | | 77.08 77 | 77.39 77 | 76.14 92 | 76.86 188 | 56.87 176 | 80.32 73 | 87.52 11 | 63.45 104 | 74.66 192 | 84.52 182 | 69.87 83 | 84.94 61 | 69.76 78 | 89.59 138 | 86.60 67 |
|
| PM-MVS | | | 64.49 239 | 63.61 249 | 67.14 234 | 76.68 189 | 75.15 27 | 68.49 229 | 42.85 388 | 51.17 233 | 77.85 139 | 80.51 238 | 45.76 273 | 66.31 309 | 52.83 230 | 76.35 303 | 59.96 377 |
|
| TransMVSNet (Re) | | | 69.62 173 | 71.63 154 | 63.57 263 | 76.51 190 | 35.93 346 | 65.75 267 | 71.29 242 | 61.05 121 | 75.02 184 | 89.90 78 | 65.88 122 | 70.41 273 | 49.79 248 | 89.48 141 | 84.38 118 |
|
| BH-RMVSNet | | | 68.69 188 | 68.20 196 | 70.14 186 | 76.40 191 | 53.90 196 | 64.62 280 | 73.48 216 | 58.01 145 | 73.91 207 | 81.78 221 | 59.09 187 | 78.22 180 | 48.59 260 | 77.96 294 | 78.31 243 |
|
| PHI-MVS | | | 74.92 100 | 74.36 107 | 76.61 84 | 76.40 191 | 62.32 125 | 80.38 70 | 83.15 79 | 54.16 196 | 73.23 215 | 80.75 235 | 62.19 153 | 83.86 76 | 68.02 89 | 90.92 108 | 83.65 135 |
|
| UGNet | | | 70.20 164 | 69.05 180 | 73.65 121 | 76.24 193 | 63.64 115 | 75.87 129 | 72.53 226 | 61.48 118 | 60.93 335 | 86.14 161 | 52.37 235 | 77.12 196 | 50.67 242 | 85.21 209 | 80.17 220 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PatchMatch-RL | | | 58.68 291 | 57.72 295 | 61.57 283 | 76.21 194 | 73.59 39 | 61.83 301 | 49.00 369 | 47.30 270 | 61.08 331 | 68.97 354 | 50.16 249 | 59.01 339 | 36.06 352 | 68.84 361 | 52.10 387 |
|
| VPA-MVSNet | | | 68.71 187 | 70.37 168 | 63.72 261 | 76.13 195 | 38.06 332 | 64.10 285 | 71.48 236 | 56.60 164 | 74.10 202 | 88.31 114 | 64.78 133 | 69.72 274 | 47.69 272 | 90.15 124 | 83.37 146 |
|
| WB-MVS | | | 60.04 281 | 64.19 243 | 47.59 358 | 76.09 196 | 10.22 409 | 52.44 362 | 46.74 376 | 65.17 84 | 74.07 203 | 87.48 124 | 53.48 230 | 55.28 349 | 49.36 253 | 72.84 334 | 77.28 256 |
|
| PAPM | | | 61.79 267 | 60.37 276 | 66.05 244 | 76.09 196 | 41.87 300 | 69.30 213 | 76.79 193 | 40.64 327 | 53.80 373 | 79.62 255 | 44.38 283 | 82.92 95 | 29.64 378 | 73.11 333 | 73.36 291 |
|
| BH-w/o | | | 64.81 234 | 64.29 242 | 66.36 241 | 76.08 198 | 54.71 188 | 65.61 269 | 75.23 206 | 50.10 245 | 71.05 246 | 71.86 330 | 54.33 226 | 79.02 160 | 38.20 332 | 76.14 305 | 65.36 355 |
|
| dcpmvs_2 | | | 71.02 156 | 72.65 139 | 66.16 243 | 76.06 199 | 50.49 213 | 71.97 172 | 79.36 149 | 50.34 240 | 82.81 83 | 83.63 194 | 64.38 135 | 67.27 297 | 61.54 148 | 83.71 233 | 80.71 210 |
|
| pmmvs6 | | | 71.82 148 | 73.66 118 | 66.31 242 | 75.94 200 | 42.01 299 | 66.99 249 | 72.53 226 | 63.45 104 | 76.43 170 | 92.78 10 | 72.95 59 | 69.69 275 | 51.41 236 | 90.46 119 | 87.22 56 |
|
| CANet | | | 73.00 129 | 71.84 150 | 76.48 87 | 75.82 201 | 61.28 136 | 74.81 139 | 80.37 132 | 63.17 108 | 62.43 325 | 80.50 239 | 61.10 168 | 85.16 60 | 64.00 127 | 84.34 225 | 83.01 158 |
|
| pmmvs-eth3d | | | 64.41 242 | 63.27 253 | 67.82 227 | 75.81 202 | 60.18 153 | 69.49 210 | 62.05 306 | 38.81 339 | 74.13 201 | 82.23 217 | 43.76 287 | 68.65 283 | 42.53 303 | 80.63 267 | 74.63 278 |
|
| TR-MVS | | | 64.59 237 | 63.54 250 | 67.73 228 | 75.75 203 | 50.83 211 | 63.39 292 | 70.29 254 | 49.33 252 | 71.55 239 | 74.55 306 | 50.94 244 | 78.46 171 | 40.43 317 | 75.69 308 | 73.89 287 |
|
| tttt0517 | | | 69.46 176 | 67.79 202 | 74.46 107 | 75.34 204 | 52.72 201 | 75.05 135 | 63.27 300 | 54.69 183 | 78.87 127 | 84.37 184 | 26.63 379 | 81.15 121 | 63.95 128 | 87.93 168 | 89.51 25 |
|
| cascas | | | 64.59 237 | 62.77 258 | 70.05 188 | 75.27 205 | 50.02 219 | 61.79 302 | 71.61 232 | 42.46 310 | 63.68 316 | 68.89 357 | 49.33 255 | 80.35 139 | 47.82 271 | 84.05 228 | 79.78 224 |
|
| API-MVS | | | 70.97 157 | 71.51 158 | 69.37 196 | 75.20 206 | 55.94 180 | 80.99 61 | 76.84 191 | 62.48 113 | 71.24 243 | 77.51 284 | 61.51 160 | 80.96 132 | 52.04 231 | 85.76 202 | 71.22 314 |
|
| EIA-MVS | | | 68.59 189 | 67.16 209 | 72.90 141 | 75.18 207 | 55.64 184 | 69.39 212 | 81.29 108 | 52.44 214 | 64.53 305 | 70.69 337 | 60.33 175 | 82.30 104 | 54.27 219 | 76.31 304 | 80.75 207 |
|
| PAPR | | | 69.20 180 | 68.66 189 | 70.82 172 | 75.15 208 | 47.77 246 | 75.31 133 | 81.11 113 | 49.62 250 | 66.33 295 | 79.27 260 | 61.53 159 | 82.96 94 | 48.12 267 | 81.50 258 | 81.74 188 |
|
| MVSFormer | | | 69.93 169 | 69.03 181 | 72.63 150 | 74.93 209 | 59.19 158 | 83.98 36 | 75.72 201 | 52.27 215 | 63.53 319 | 76.74 289 | 43.19 290 | 80.56 135 | 72.28 67 | 78.67 286 | 78.14 247 |
|
| lupinMVS | | | 63.36 250 | 61.49 266 | 68.97 208 | 74.93 209 | 59.19 158 | 65.80 266 | 64.52 292 | 34.68 362 | 63.53 319 | 74.25 311 | 43.19 290 | 70.62 268 | 53.88 223 | 78.67 286 | 77.10 260 |
|
| nrg030 | | | 74.87 104 | 75.99 91 | 71.52 165 | 74.90 211 | 49.88 226 | 74.10 153 | 82.58 89 | 54.55 187 | 83.50 75 | 89.21 89 | 71.51 66 | 75.74 210 | 61.24 150 | 92.34 79 | 88.94 37 |
|
| TAPA-MVS | | 65.27 12 | 75.16 95 | 74.29 108 | 77.77 72 | 74.86 212 | 68.08 77 | 77.89 100 | 84.04 69 | 55.15 176 | 76.19 174 | 83.39 197 | 66.91 107 | 80.11 146 | 60.04 166 | 90.14 125 | 85.13 89 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| RPSCF | | | 75.76 86 | 74.37 106 | 79.93 40 | 74.81 213 | 77.53 16 | 77.53 104 | 79.30 151 | 59.44 133 | 78.88 126 | 89.80 79 | 71.26 70 | 73.09 240 | 57.45 183 | 80.89 261 | 89.17 31 |
|
| EI-MVSNet-Vis-set | | | 72.78 135 | 71.87 149 | 75.54 99 | 74.77 214 | 59.02 164 | 72.24 165 | 71.56 234 | 63.92 96 | 78.59 128 | 71.59 331 | 66.22 118 | 78.60 167 | 67.58 94 | 80.32 268 | 89.00 35 |
|
| v1240 | | | 73.06 126 | 73.14 129 | 72.84 143 | 74.74 215 | 47.27 255 | 71.88 178 | 81.11 113 | 51.80 221 | 82.28 88 | 84.21 186 | 56.22 219 | 82.34 103 | 68.82 82 | 87.17 185 | 88.91 38 |
|
| v1921920 | | | 72.96 132 | 72.98 134 | 72.89 142 | 74.67 216 | 47.58 249 | 71.92 176 | 80.69 122 | 51.70 223 | 81.69 97 | 83.89 191 | 56.58 216 | 82.25 105 | 68.34 85 | 87.36 175 | 88.82 40 |
|
| EI-MVSNet-UG-set | | | 72.63 138 | 71.68 153 | 75.47 100 | 74.67 216 | 58.64 169 | 72.02 170 | 71.50 235 | 63.53 102 | 78.58 130 | 71.39 335 | 65.98 119 | 78.53 168 | 67.30 104 | 80.18 270 | 89.23 29 |
|
| Fast-Effi-MVS+ | | | 68.81 185 | 68.30 192 | 70.35 180 | 74.66 218 | 48.61 234 | 66.06 261 | 78.32 170 | 50.62 238 | 71.48 241 | 75.54 296 | 68.75 90 | 79.59 153 | 50.55 244 | 78.73 285 | 82.86 162 |
|
| v1192 | | | 73.40 117 | 73.42 121 | 73.32 128 | 74.65 219 | 48.67 233 | 72.21 166 | 81.73 100 | 52.76 212 | 81.85 91 | 84.56 181 | 57.12 210 | 82.24 106 | 68.58 83 | 87.33 177 | 89.06 33 |
|
| v144192 | | | 72.99 130 | 73.06 132 | 72.77 144 | 74.58 220 | 47.48 250 | 71.90 177 | 80.44 130 | 51.57 224 | 81.46 99 | 84.11 188 | 58.04 202 | 82.12 107 | 67.98 91 | 87.47 173 | 88.70 43 |
|
| MAR-MVS | | | 67.72 201 | 66.16 219 | 72.40 155 | 74.45 221 | 64.99 107 | 74.87 137 | 77.50 183 | 48.67 258 | 65.78 299 | 68.58 361 | 57.01 213 | 77.79 189 | 46.68 280 | 81.92 247 | 74.42 283 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| v10 | | | 75.69 87 | 76.20 88 | 74.16 114 | 74.44 222 | 48.69 232 | 75.84 130 | 82.93 83 | 59.02 138 | 85.92 41 | 89.17 92 | 58.56 192 | 82.74 97 | 70.73 73 | 89.14 150 | 91.05 15 |
|
| MGCFI-Net | | | 72.29 144 | 73.38 123 | 69.04 204 | 74.23 223 | 47.37 252 | 73.93 155 | 83.18 77 | 54.36 188 | 76.61 162 | 81.64 225 | 72.03 61 | 75.34 214 | 57.12 185 | 87.28 179 | 84.40 116 |
|
| canonicalmvs | | | 72.29 144 | 73.38 123 | 69.04 204 | 74.23 223 | 47.37 252 | 73.93 155 | 83.18 77 | 54.36 188 | 76.61 162 | 81.64 225 | 72.03 61 | 75.34 214 | 57.12 185 | 87.28 179 | 84.40 116 |
|
| Anonymous202405211 | | | 66.02 223 | 66.89 214 | 63.43 266 | 74.22 225 | 38.14 330 | 59.00 320 | 66.13 276 | 63.33 107 | 69.76 260 | 85.95 168 | 51.88 237 | 70.50 270 | 44.23 295 | 87.52 171 | 81.64 189 |
|
| Effi-MVS+ | | | 72.10 146 | 72.28 146 | 71.58 163 | 74.21 226 | 50.33 215 | 74.72 144 | 82.73 85 | 62.62 111 | 70.77 247 | 76.83 288 | 69.96 82 | 80.97 129 | 60.20 161 | 78.43 288 | 83.45 143 |
|
| FE-MVS | | | 68.29 194 | 66.96 213 | 72.26 158 | 74.16 227 | 54.24 192 | 77.55 103 | 73.42 217 | 57.65 152 | 72.66 221 | 84.91 178 | 32.02 352 | 81.49 116 | 48.43 263 | 81.85 249 | 81.04 196 |
|
| v1144 | | | 73.29 120 | 73.39 122 | 73.01 134 | 74.12 228 | 48.11 239 | 72.01 171 | 81.08 116 | 53.83 203 | 81.77 93 | 84.68 179 | 58.07 201 | 81.91 110 | 68.10 87 | 86.86 187 | 88.99 36 |
|
| FA-MVS(test-final) | | | 71.27 152 | 71.06 162 | 71.92 161 | 73.96 229 | 52.32 204 | 76.45 117 | 76.12 196 | 59.07 137 | 74.04 205 | 86.18 158 | 52.18 236 | 79.43 155 | 59.75 170 | 81.76 251 | 84.03 125 |
|
| EI-MVSNet | | | 69.61 174 | 69.01 182 | 71.41 167 | 73.94 230 | 49.90 222 | 71.31 187 | 71.32 240 | 58.22 143 | 75.40 182 | 70.44 338 | 58.16 195 | 75.85 206 | 62.51 141 | 79.81 274 | 88.48 44 |
|
| CVMVSNet | | | 59.21 287 | 58.44 290 | 61.51 284 | 73.94 230 | 47.76 247 | 71.31 187 | 64.56 291 | 26.91 389 | 60.34 337 | 70.44 338 | 36.24 332 | 67.65 291 | 53.57 225 | 68.66 362 | 69.12 334 |
|
| IterMVS-LS | | | 73.01 128 | 73.12 131 | 72.66 148 | 73.79 232 | 49.90 222 | 71.63 181 | 78.44 168 | 58.22 143 | 80.51 112 | 86.63 145 | 58.15 196 | 79.62 151 | 62.51 141 | 88.20 161 | 88.48 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UWE-MVS | | | 52.94 324 | 52.70 327 | 53.65 329 | 73.56 233 | 27.49 388 | 57.30 333 | 49.57 366 | 38.56 341 | 62.79 323 | 71.42 334 | 19.49 401 | 60.41 333 | 24.33 397 | 77.33 298 | 73.06 293 |
|
| alignmvs | | | 70.54 161 | 71.00 163 | 69.15 203 | 73.50 234 | 48.04 242 | 69.85 208 | 79.62 143 | 53.94 202 | 76.54 166 | 82.00 218 | 59.00 188 | 74.68 224 | 57.32 184 | 87.21 183 | 84.72 101 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 166 | 68.74 187 | 73.77 120 | 73.47 235 | 64.53 110 | 71.36 185 | 78.14 175 | 55.81 171 | 68.84 275 | 74.71 305 | 65.36 127 | 75.75 209 | 52.00 232 | 79.00 282 | 81.03 197 |
|
| v8 | | | 75.07 97 | 75.64 95 | 73.35 126 | 73.42 236 | 47.46 251 | 75.20 134 | 81.45 105 | 60.05 128 | 85.64 45 | 89.26 87 | 58.08 200 | 81.80 112 | 69.71 80 | 87.97 167 | 90.79 19 |
|
| tfpnnormal | | | 66.48 219 | 67.93 198 | 62.16 279 | 73.40 237 | 36.65 339 | 63.45 291 | 64.99 286 | 55.97 168 | 72.82 220 | 87.80 123 | 57.06 212 | 69.10 280 | 48.31 265 | 87.54 170 | 80.72 209 |
|
| IterMVS-SCA-FT | | | 67.68 202 | 66.07 221 | 72.49 153 | 73.34 238 | 58.20 171 | 63.80 288 | 65.55 282 | 48.10 261 | 76.91 152 | 82.64 213 | 45.20 277 | 78.84 163 | 61.20 151 | 77.89 295 | 80.44 216 |
|
| iter_conf05_11 | | | 66.64 216 | 65.20 231 | 70.94 170 | 73.28 239 | 46.89 258 | 66.09 260 | 77.03 189 | 43.44 303 | 63.43 321 | 74.09 316 | 47.19 271 | 83.26 87 | 56.25 195 | 86.01 199 | 82.66 168 |
|
| bld_raw_dy_0_64 | | | 69.94 168 | 69.64 173 | 70.84 171 | 73.28 239 | 46.85 259 | 75.82 131 | 86.52 16 | 40.43 329 | 81.41 100 | 74.77 302 | 48.70 263 | 83.01 93 | 56.25 195 | 89.59 138 | 82.66 168 |
|
| VNet | | | 64.01 247 | 65.15 235 | 60.57 293 | 73.28 239 | 35.61 349 | 57.60 331 | 67.08 271 | 54.61 185 | 66.76 294 | 83.37 199 | 56.28 218 | 66.87 302 | 42.19 305 | 85.20 210 | 79.23 233 |
|
| 3Dnovator | | 65.95 11 | 71.50 151 | 71.22 161 | 72.34 156 | 73.16 242 | 63.09 120 | 78.37 94 | 78.32 170 | 57.67 150 | 72.22 229 | 84.61 180 | 54.77 222 | 78.47 170 | 60.82 157 | 81.07 260 | 75.45 271 |
|
| GBi-Net | | | 68.30 192 | 68.79 184 | 66.81 236 | 73.14 243 | 40.68 309 | 71.96 173 | 73.03 218 | 54.81 178 | 74.72 189 | 90.36 67 | 48.63 264 | 75.20 217 | 47.12 274 | 85.37 204 | 84.54 110 |
|
| test1 | | | 68.30 192 | 68.79 184 | 66.81 236 | 73.14 243 | 40.68 309 | 71.96 173 | 73.03 218 | 54.81 178 | 74.72 189 | 90.36 67 | 48.63 264 | 75.20 217 | 47.12 274 | 85.37 204 | 84.54 110 |
|
| FMVSNet2 | | | 67.48 204 | 68.21 195 | 65.29 248 | 73.14 243 | 38.94 322 | 68.81 221 | 71.21 246 | 54.81 178 | 76.73 159 | 86.48 150 | 48.63 264 | 74.60 225 | 47.98 269 | 86.11 198 | 82.35 176 |
|
| thisisatest0530 | | | 67.05 213 | 65.16 233 | 72.73 147 | 73.10 246 | 50.55 212 | 71.26 189 | 63.91 296 | 50.22 243 | 74.46 196 | 80.75 235 | 26.81 378 | 80.25 142 | 59.43 172 | 86.50 194 | 87.37 54 |
|
| pm-mvs1 | | | 68.40 190 | 69.85 172 | 64.04 259 | 73.10 246 | 39.94 315 | 64.61 281 | 70.50 252 | 55.52 173 | 73.97 206 | 89.33 85 | 63.91 138 | 68.38 285 | 49.68 250 | 88.02 165 | 83.81 130 |
|
| pmmvs4 | | | 60.78 275 | 59.04 284 | 66.00 245 | 73.06 248 | 57.67 173 | 64.53 282 | 60.22 312 | 36.91 351 | 65.96 296 | 77.27 285 | 39.66 313 | 68.54 284 | 38.87 325 | 74.89 316 | 71.80 308 |
|
| SDMVSNet | | | 66.36 221 | 67.85 201 | 61.88 281 | 73.04 249 | 46.14 268 | 58.54 324 | 71.36 239 | 51.42 227 | 68.93 271 | 82.72 211 | 65.62 123 | 62.22 329 | 54.41 216 | 84.67 217 | 77.28 256 |
|
| sd_testset | | | 63.55 248 | 65.38 228 | 58.07 309 | 73.04 249 | 38.83 324 | 57.41 332 | 65.44 283 | 51.42 227 | 68.93 271 | 82.72 211 | 63.76 139 | 58.11 344 | 41.05 313 | 84.67 217 | 77.28 256 |
|
| v2v482 | | | 72.55 141 | 72.58 140 | 72.43 154 | 72.92 251 | 46.72 261 | 71.41 184 | 79.13 153 | 55.27 174 | 81.17 104 | 85.25 175 | 55.41 221 | 81.13 122 | 67.25 105 | 85.46 203 | 89.43 26 |
|
| casdiffmvs_mvg |  | | 75.26 93 | 76.18 89 | 72.52 151 | 72.87 252 | 49.47 227 | 72.94 161 | 84.71 51 | 59.49 132 | 80.90 109 | 88.81 103 | 70.07 80 | 79.71 150 | 67.40 98 | 88.39 159 | 88.40 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MIMVSNet | | | 54.39 313 | 56.12 307 | 49.20 352 | 72.57 253 | 30.91 374 | 59.98 315 | 48.43 371 | 41.66 313 | 55.94 362 | 83.86 192 | 41.19 302 | 50.42 357 | 26.05 388 | 75.38 313 | 66.27 350 |
|
| Patchmatch-RL test | | | 59.95 282 | 59.12 283 | 62.44 276 | 72.46 254 | 54.61 190 | 59.63 317 | 47.51 374 | 41.05 320 | 74.58 194 | 74.30 310 | 31.06 361 | 65.31 314 | 51.61 234 | 79.85 273 | 67.39 342 |
|
| CL-MVSNet_self_test | | | 62.44 262 | 63.40 251 | 59.55 300 | 72.34 255 | 32.38 365 | 56.39 337 | 64.84 288 | 51.21 232 | 67.46 289 | 81.01 232 | 50.75 245 | 63.51 324 | 38.47 330 | 88.12 163 | 82.75 165 |
|
| Vis-MVSNet (Re-imp) | | | 62.74 259 | 63.21 254 | 61.34 287 | 72.19 256 | 31.56 370 | 67.31 246 | 53.87 345 | 53.60 205 | 69.88 258 | 83.37 199 | 40.52 307 | 70.98 266 | 41.40 311 | 86.78 190 | 81.48 191 |
|
| thres100view900 | | | 61.17 272 | 61.09 269 | 61.39 286 | 72.14 257 | 35.01 352 | 65.42 272 | 56.99 327 | 55.23 175 | 70.71 248 | 79.90 250 | 32.07 350 | 72.09 253 | 35.61 353 | 81.73 252 | 77.08 261 |
|
| ab-mvs | | | 64.11 245 | 65.13 236 | 61.05 289 | 71.99 258 | 38.03 333 | 67.59 237 | 68.79 263 | 49.08 256 | 65.32 301 | 86.26 156 | 58.02 203 | 66.85 304 | 39.33 321 | 79.79 276 | 78.27 244 |
|
| thres600view7 | | | 61.82 266 | 61.38 267 | 63.12 268 | 71.81 259 | 34.93 353 | 64.64 279 | 56.99 327 | 54.78 182 | 70.33 252 | 79.74 252 | 32.07 350 | 72.42 250 | 38.61 328 | 83.46 236 | 82.02 182 |
|
| QAPM | | | 69.18 181 | 69.26 177 | 68.94 209 | 71.61 260 | 52.58 203 | 80.37 71 | 78.79 161 | 49.63 249 | 73.51 209 | 85.14 176 | 53.66 229 | 79.12 158 | 55.11 207 | 75.54 310 | 75.11 276 |
|
| WB-MVSnew | | | 53.94 319 | 54.76 316 | 51.49 341 | 71.53 261 | 28.05 385 | 58.22 327 | 50.36 363 | 37.94 345 | 59.16 345 | 70.17 343 | 49.21 256 | 51.94 354 | 24.49 395 | 71.80 344 | 74.47 282 |
|
| baseline | | | 73.10 123 | 73.96 113 | 70.51 177 | 71.46 262 | 46.39 266 | 72.08 169 | 84.40 59 | 55.95 169 | 76.62 161 | 86.46 151 | 67.20 103 | 78.03 185 | 64.22 125 | 87.27 181 | 87.11 61 |
|
| casdiffmvs |  | | 73.06 126 | 73.84 114 | 70.72 173 | 71.32 263 | 46.71 262 | 70.93 193 | 84.26 62 | 55.62 172 | 77.46 145 | 87.10 126 | 67.09 105 | 77.81 188 | 63.95 128 | 86.83 189 | 87.64 51 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmvis_n_1920 | | | 72.36 142 | 72.49 141 | 71.96 160 | 71.29 264 | 64.06 113 | 72.79 162 | 81.82 98 | 40.23 330 | 81.25 103 | 81.04 231 | 70.62 76 | 68.69 282 | 69.74 79 | 83.60 235 | 83.14 153 |
|
| Anonymous20231206 | | | 54.13 314 | 55.82 309 | 49.04 355 | 70.89 265 | 35.96 345 | 51.73 364 | 50.87 361 | 34.86 358 | 62.49 324 | 79.22 261 | 42.52 296 | 44.29 383 | 27.95 385 | 81.88 248 | 66.88 346 |
|
| fmvsm_s_conf0.1_n_a | | | 67.37 208 | 66.36 217 | 70.37 179 | 70.86 266 | 61.17 138 | 74.00 154 | 57.18 326 | 40.77 324 | 68.83 276 | 80.88 233 | 63.11 142 | 67.61 293 | 66.94 106 | 74.72 317 | 82.33 179 |
|
| tfpn200view9 | | | 60.35 279 | 59.97 278 | 61.51 284 | 70.78 267 | 35.35 350 | 63.27 294 | 57.47 320 | 53.00 210 | 68.31 280 | 77.09 286 | 32.45 347 | 72.09 253 | 35.61 353 | 81.73 252 | 77.08 261 |
|
| thres400 | | | 60.77 276 | 59.97 278 | 63.15 267 | 70.78 267 | 35.35 350 | 63.27 294 | 57.47 320 | 53.00 210 | 68.31 280 | 77.09 286 | 32.45 347 | 72.09 253 | 35.61 353 | 81.73 252 | 82.02 182 |
|
| MSDG | | | 67.47 206 | 67.48 206 | 67.46 229 | 70.70 269 | 54.69 189 | 66.90 252 | 78.17 173 | 60.88 123 | 70.41 250 | 74.76 303 | 61.22 166 | 73.18 239 | 47.38 273 | 76.87 300 | 74.49 281 |
|
| testing91 | | | 55.74 304 | 55.29 314 | 57.08 313 | 70.63 270 | 30.85 375 | 54.94 350 | 56.31 336 | 50.34 240 | 57.08 353 | 70.10 345 | 24.50 389 | 65.86 310 | 36.98 343 | 76.75 301 | 74.53 280 |
|
| test_yl | | | 65.11 229 | 65.09 237 | 65.18 249 | 70.59 271 | 40.86 307 | 63.22 296 | 72.79 221 | 57.91 146 | 68.88 273 | 79.07 266 | 42.85 293 | 74.89 221 | 45.50 289 | 84.97 212 | 79.81 222 |
|
| DCV-MVSNet | | | 65.11 229 | 65.09 237 | 65.18 249 | 70.59 271 | 40.86 307 | 63.22 296 | 72.79 221 | 57.91 146 | 68.88 273 | 79.07 266 | 42.85 293 | 74.89 221 | 45.50 289 | 84.97 212 | 79.81 222 |
|
| test_fmvsm_n_1920 | | | 69.63 172 | 68.45 190 | 73.16 130 | 70.56 273 | 65.86 98 | 70.26 202 | 78.35 169 | 37.69 346 | 74.29 198 | 78.89 268 | 61.10 168 | 68.10 288 | 65.87 114 | 79.07 281 | 85.53 83 |
|
| OpenMVS |  | 62.51 15 | 68.76 186 | 68.75 186 | 68.78 214 | 70.56 273 | 53.91 195 | 78.29 95 | 77.35 184 | 48.85 257 | 70.22 253 | 83.52 195 | 52.65 234 | 76.93 198 | 55.31 206 | 81.99 246 | 75.49 270 |
|
| DELS-MVS | | | 68.83 184 | 68.31 191 | 70.38 178 | 70.55 275 | 48.31 235 | 63.78 289 | 82.13 92 | 54.00 199 | 68.96 269 | 75.17 300 | 58.95 189 | 80.06 147 | 58.55 177 | 82.74 241 | 82.76 164 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| testing222 | | | 53.37 320 | 52.50 330 | 55.98 320 | 70.51 276 | 29.68 380 | 56.20 340 | 51.85 358 | 46.19 276 | 56.76 357 | 68.94 355 | 19.18 402 | 65.39 313 | 25.87 391 | 76.98 299 | 72.87 296 |
|
| testing11 | | | 53.13 322 | 52.26 332 | 55.75 321 | 70.44 277 | 31.73 369 | 54.75 351 | 52.40 356 | 44.81 291 | 52.36 377 | 68.40 362 | 21.83 394 | 65.74 312 | 32.64 367 | 72.73 335 | 69.78 326 |
|
| LCM-MVSNet-Re | | | 69.10 182 | 71.57 157 | 61.70 282 | 70.37 278 | 34.30 358 | 61.45 303 | 79.62 143 | 56.81 159 | 89.59 8 | 88.16 119 | 68.44 93 | 72.94 241 | 42.30 304 | 87.33 177 | 77.85 253 |
|
| patch_mono-2 | | | 62.73 260 | 64.08 244 | 58.68 305 | 70.36 279 | 55.87 181 | 60.84 309 | 64.11 295 | 41.23 317 | 64.04 310 | 78.22 275 | 60.00 177 | 48.80 362 | 54.17 220 | 83.71 233 | 71.37 311 |
|
| ETVMVS | | | 50.32 342 | 49.87 350 | 51.68 339 | 70.30 280 | 26.66 391 | 52.33 363 | 43.93 383 | 43.54 302 | 54.91 367 | 67.95 364 | 20.01 400 | 60.17 335 | 22.47 399 | 73.40 330 | 68.22 337 |
|
| SCA | | | 58.57 292 | 58.04 293 | 60.17 296 | 70.17 281 | 41.07 306 | 65.19 274 | 53.38 351 | 43.34 307 | 61.00 334 | 73.48 318 | 45.20 277 | 69.38 277 | 40.34 318 | 70.31 353 | 70.05 323 |
|
| ET-MVSNet_ETH3D | | | 63.32 251 | 60.69 274 | 71.20 169 | 70.15 282 | 55.66 183 | 65.02 276 | 64.32 293 | 43.28 308 | 68.99 268 | 72.05 329 | 25.46 385 | 78.19 183 | 54.16 221 | 82.80 240 | 79.74 225 |
|
| testing99 | | | 55.16 309 | 54.56 318 | 56.98 315 | 70.13 283 | 30.58 377 | 54.55 353 | 54.11 344 | 49.53 251 | 56.76 357 | 70.14 344 | 22.76 393 | 65.79 311 | 36.99 342 | 76.04 306 | 74.57 279 |
|
| APD_test1 | | | 75.04 98 | 75.38 99 | 74.02 117 | 69.89 284 | 70.15 62 | 76.46 116 | 79.71 142 | 65.50 75 | 82.99 79 | 88.60 108 | 66.94 106 | 72.35 251 | 59.77 169 | 88.54 158 | 79.56 226 |
|
| iter_conf05 | | | 67.34 209 | 65.62 225 | 72.50 152 | 69.82 285 | 47.06 257 | 72.19 167 | 76.86 190 | 45.32 286 | 72.86 218 | 82.85 209 | 20.53 397 | 83.73 78 | 61.13 153 | 89.02 154 | 86.70 65 |
|
| PVSNet_BlendedMVS | | | 65.38 227 | 64.30 241 | 68.61 216 | 69.81 286 | 49.36 228 | 65.60 270 | 78.96 155 | 45.50 281 | 59.98 338 | 78.61 270 | 51.82 238 | 78.20 181 | 44.30 293 | 84.11 227 | 78.27 244 |
|
| PVSNet_Blended | | | 62.90 257 | 61.64 263 | 66.69 239 | 69.81 286 | 49.36 228 | 61.23 306 | 78.96 155 | 42.04 311 | 59.98 338 | 68.86 358 | 51.82 238 | 78.20 181 | 44.30 293 | 77.77 296 | 72.52 300 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 253 | 63.28 252 | 63.07 269 | 69.81 286 | 45.34 273 | 68.52 228 | 67.14 270 | 43.74 299 | 70.61 249 | 79.22 261 | 47.90 268 | 72.66 244 | 48.75 258 | 73.84 329 | 71.21 315 |
|
| test_fmvsmconf0.01_n | | | 73.91 109 | 73.64 119 | 74.71 104 | 69.79 289 | 66.25 93 | 75.90 128 | 79.90 140 | 46.03 278 | 76.48 168 | 85.02 177 | 67.96 100 | 73.97 233 | 74.47 49 | 87.22 182 | 83.90 128 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 214 | 65.95 224 | 70.17 184 | 69.72 290 | 61.16 139 | 73.34 158 | 56.83 329 | 40.96 321 | 68.36 279 | 80.08 248 | 62.84 143 | 67.57 294 | 66.90 108 | 74.50 321 | 81.78 187 |
|
| FMVSNet3 | | | 65.00 232 | 65.16 233 | 64.52 254 | 69.47 291 | 37.56 337 | 66.63 255 | 70.38 253 | 51.55 225 | 74.72 189 | 83.27 204 | 37.89 324 | 74.44 227 | 47.12 274 | 85.37 204 | 81.57 190 |
|
| MS-PatchMatch | | | 55.59 306 | 54.89 315 | 57.68 311 | 69.18 292 | 49.05 231 | 61.00 308 | 62.93 301 | 35.98 354 | 58.36 348 | 68.93 356 | 36.71 330 | 66.59 307 | 37.62 337 | 63.30 377 | 57.39 383 |
|
| baseline1 | | | 57.82 296 | 58.36 292 | 56.19 318 | 69.17 293 | 30.76 376 | 62.94 298 | 55.21 338 | 46.04 277 | 63.83 314 | 78.47 271 | 41.20 301 | 63.68 322 | 39.44 320 | 68.99 360 | 74.13 284 |
|
| v148 | | | 69.38 179 | 69.39 175 | 69.36 197 | 69.14 294 | 44.56 278 | 68.83 220 | 72.70 224 | 54.79 181 | 78.59 128 | 84.12 187 | 54.69 223 | 76.74 203 | 59.40 173 | 82.20 244 | 86.79 63 |
|
| test_fmvsmconf0.1_n | | | 73.26 121 | 72.82 137 | 74.56 106 | 69.10 295 | 66.18 95 | 74.65 147 | 79.34 150 | 45.58 280 | 75.54 179 | 83.91 190 | 67.19 104 | 73.88 236 | 73.26 57 | 86.86 187 | 83.63 136 |
|
| fmvsm_s_conf0.1_n | | | 66.60 217 | 65.54 226 | 69.77 192 | 68.99 296 | 59.15 161 | 72.12 168 | 56.74 331 | 40.72 326 | 68.25 282 | 80.14 247 | 61.18 167 | 66.92 300 | 67.34 103 | 74.40 322 | 83.23 151 |
|
| Syy-MVS | | | 54.13 314 | 55.45 312 | 50.18 346 | 68.77 297 | 23.59 398 | 55.02 347 | 44.55 381 | 43.80 296 | 58.05 350 | 64.07 375 | 46.22 272 | 58.83 340 | 46.16 283 | 72.36 338 | 68.12 338 |
|
| myMVS_eth3d | | | 50.36 341 | 50.52 346 | 49.88 347 | 68.77 297 | 22.69 400 | 55.02 347 | 44.55 381 | 43.80 296 | 58.05 350 | 64.07 375 | 14.16 411 | 58.83 340 | 33.90 362 | 72.36 338 | 68.12 338 |
|
| test_fmvsmconf_n | | | 72.91 133 | 72.40 144 | 74.46 107 | 68.62 299 | 66.12 96 | 74.21 152 | 78.80 160 | 45.64 279 | 74.62 193 | 83.25 205 | 66.80 112 | 73.86 237 | 72.97 60 | 86.66 193 | 83.39 144 |
|
| CANet_DTU | | | 64.04 246 | 63.83 246 | 64.66 252 | 68.39 300 | 42.97 293 | 73.45 157 | 74.50 212 | 52.05 219 | 54.78 368 | 75.44 299 | 43.99 285 | 70.42 272 | 53.49 226 | 78.41 289 | 80.59 213 |
|
| EU-MVSNet | | | 60.82 274 | 60.80 273 | 60.86 292 | 68.37 301 | 41.16 304 | 72.27 164 | 68.27 267 | 26.96 387 | 69.08 266 | 75.71 294 | 32.09 349 | 67.44 295 | 55.59 204 | 78.90 283 | 73.97 285 |
|
| PVSNet | | 43.83 21 | 51.56 335 | 51.17 338 | 52.73 334 | 68.34 302 | 38.27 328 | 48.22 372 | 53.56 349 | 36.41 352 | 54.29 371 | 64.94 374 | 34.60 336 | 54.20 353 | 30.34 373 | 69.87 356 | 65.71 353 |
|
| EPNet | | | 69.10 182 | 67.32 207 | 74.46 107 | 68.33 303 | 61.27 137 | 77.56 102 | 63.57 298 | 60.95 122 | 56.62 359 | 82.75 210 | 51.53 241 | 81.24 120 | 54.36 218 | 90.20 122 | 80.88 203 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| fmvsm_s_conf0.5_n | | | 66.34 222 | 65.27 229 | 69.57 195 | 68.20 304 | 59.14 163 | 71.66 180 | 56.48 332 | 40.92 322 | 67.78 284 | 79.46 256 | 61.23 164 | 66.90 301 | 67.39 99 | 74.32 325 | 82.66 168 |
|
| IB-MVS | | 49.67 18 | 59.69 284 | 56.96 300 | 67.90 224 | 68.19 305 | 50.30 216 | 61.42 304 | 65.18 285 | 47.57 268 | 55.83 363 | 67.15 370 | 23.77 391 | 79.60 152 | 43.56 299 | 79.97 272 | 73.79 288 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVS | | | 60.62 277 | 59.97 278 | 62.58 275 | 68.13 306 | 47.28 254 | 68.59 226 | 73.96 214 | 32.19 371 | 59.94 340 | 68.86 358 | 50.48 247 | 77.64 192 | 41.85 308 | 75.74 307 | 62.83 366 |
|
| eth_miper_zixun_eth | | | 69.42 177 | 68.73 188 | 71.50 166 | 67.99 307 | 46.42 264 | 67.58 238 | 78.81 158 | 50.72 237 | 78.13 135 | 80.34 242 | 50.15 250 | 80.34 140 | 60.18 162 | 84.65 219 | 87.74 50 |
|
| TinyColmap | | | 67.98 197 | 69.28 176 | 64.08 257 | 67.98 308 | 46.82 260 | 70.04 203 | 75.26 205 | 53.05 209 | 77.36 146 | 86.79 135 | 59.39 184 | 72.59 248 | 45.64 287 | 88.01 166 | 72.83 297 |
|
| EPNet_dtu | | | 58.93 289 | 58.52 288 | 60.16 297 | 67.91 309 | 47.70 248 | 69.97 205 | 58.02 318 | 49.73 248 | 47.28 390 | 73.02 323 | 38.14 320 | 62.34 327 | 36.57 346 | 85.99 200 | 70.43 321 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| thres200 | | | 57.55 297 | 57.02 299 | 59.17 301 | 67.89 310 | 34.93 353 | 58.91 322 | 57.25 324 | 50.24 242 | 64.01 311 | 71.46 333 | 32.49 346 | 71.39 263 | 31.31 370 | 79.57 278 | 71.19 316 |
|
| our_test_3 | | | 56.46 300 | 56.51 303 | 56.30 317 | 67.70 311 | 39.66 317 | 55.36 346 | 52.34 357 | 40.57 328 | 63.85 313 | 69.91 348 | 40.04 310 | 58.22 343 | 43.49 300 | 75.29 315 | 71.03 318 |
|
| ppachtmachnet_test | | | 60.26 280 | 59.61 281 | 62.20 278 | 67.70 311 | 44.33 280 | 58.18 328 | 60.96 310 | 40.75 325 | 65.80 298 | 72.57 325 | 41.23 300 | 63.92 321 | 46.87 278 | 82.42 243 | 78.33 242 |
|
| MVS_Test | | | 69.84 170 | 70.71 166 | 67.24 231 | 67.49 313 | 43.25 291 | 69.87 207 | 81.22 112 | 52.69 213 | 71.57 238 | 86.68 141 | 62.09 154 | 74.51 226 | 66.05 111 | 78.74 284 | 83.96 126 |
|
| fmvsm_l_conf0.5_n | | | 67.48 204 | 66.88 215 | 69.28 200 | 67.41 314 | 62.04 126 | 70.69 197 | 69.85 256 | 39.46 333 | 69.59 261 | 81.09 230 | 58.15 196 | 68.73 281 | 67.51 96 | 78.16 293 | 77.07 263 |
|
| thisisatest0515 | | | 60.48 278 | 57.86 294 | 68.34 219 | 67.25 315 | 46.42 264 | 60.58 312 | 62.14 303 | 40.82 323 | 63.58 318 | 69.12 352 | 26.28 381 | 78.34 177 | 48.83 257 | 82.13 245 | 80.26 218 |
|
| V42 | | | 71.06 154 | 70.83 165 | 71.72 162 | 67.25 315 | 47.14 256 | 65.94 262 | 80.35 133 | 51.35 229 | 83.40 76 | 83.23 206 | 59.25 186 | 78.80 164 | 65.91 113 | 80.81 264 | 89.23 29 |
|
| fmvsm_l_conf0.5_n_a | | | 66.66 215 | 65.97 223 | 68.72 215 | 67.09 317 | 61.38 134 | 70.03 204 | 69.15 261 | 38.59 340 | 68.41 278 | 80.36 241 | 56.56 217 | 68.32 286 | 66.10 110 | 77.45 297 | 76.46 264 |
|
| GA-MVS | | | 62.91 256 | 61.66 262 | 66.66 240 | 67.09 317 | 44.49 279 | 61.18 307 | 69.36 260 | 51.33 230 | 69.33 264 | 74.47 307 | 36.83 329 | 74.94 220 | 50.60 243 | 74.72 317 | 80.57 214 |
|
| testf1 | | | 75.66 88 | 76.57 82 | 72.95 137 | 67.07 319 | 67.62 81 | 76.10 124 | 80.68 123 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 71 | 71.68 261 | 60.46 159 | 91.13 100 | 79.56 226 |
|
| APD_test2 | | | 75.66 88 | 76.57 82 | 72.95 137 | 67.07 319 | 67.62 81 | 76.10 124 | 80.68 123 | 64.95 87 | 86.58 33 | 90.94 40 | 71.20 71 | 71.68 261 | 60.46 159 | 91.13 100 | 79.56 226 |
|
| HY-MVS | | 49.31 19 | 57.96 295 | 57.59 296 | 59.10 303 | 66.85 321 | 36.17 343 | 65.13 275 | 65.39 284 | 39.24 336 | 54.69 370 | 78.14 277 | 44.28 284 | 67.18 299 | 33.75 363 | 70.79 349 | 73.95 286 |
|
| CR-MVSNet | | | 58.96 288 | 58.49 289 | 60.36 295 | 66.37 322 | 48.24 237 | 70.93 193 | 56.40 334 | 32.87 370 | 61.35 329 | 86.66 142 | 33.19 341 | 63.22 325 | 48.50 262 | 70.17 354 | 69.62 329 |
|
| RPMNet | | | 65.77 225 | 65.08 239 | 67.84 226 | 66.37 322 | 48.24 237 | 70.93 193 | 86.27 20 | 54.66 184 | 61.35 329 | 86.77 137 | 33.29 340 | 85.67 47 | 55.93 199 | 70.17 354 | 69.62 329 |
|
| IterMVS | | | 63.12 254 | 62.48 260 | 65.02 251 | 66.34 324 | 52.86 200 | 63.81 287 | 62.25 302 | 46.57 274 | 71.51 240 | 80.40 240 | 44.60 282 | 66.82 305 | 51.38 237 | 75.47 311 | 75.38 273 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| c3_l | | | 69.82 171 | 69.89 171 | 69.61 194 | 66.24 325 | 43.48 287 | 68.12 233 | 79.61 145 | 51.43 226 | 77.72 141 | 80.18 246 | 54.61 225 | 78.15 184 | 63.62 133 | 87.50 172 | 87.20 58 |
|
| tpm2 | | | 56.12 301 | 54.64 317 | 60.55 294 | 66.24 325 | 36.01 344 | 68.14 232 | 56.77 330 | 33.60 368 | 58.25 349 | 75.52 298 | 30.25 367 | 74.33 229 | 33.27 364 | 69.76 358 | 71.32 312 |
|
| Anonymous20240521 | | | 63.55 248 | 66.07 221 | 55.99 319 | 66.18 327 | 44.04 282 | 68.77 224 | 68.80 262 | 46.99 271 | 72.57 222 | 85.84 169 | 39.87 311 | 50.22 358 | 53.40 229 | 92.23 81 | 73.71 289 |
|
| Patchmtry | | | 60.91 273 | 63.01 256 | 54.62 326 | 66.10 328 | 26.27 393 | 67.47 240 | 56.40 334 | 54.05 198 | 72.04 231 | 86.66 142 | 33.19 341 | 60.17 335 | 43.69 297 | 87.45 174 | 77.42 254 |
|
| FMVSNet5 | | | 55.08 310 | 55.54 311 | 53.71 328 | 65.80 329 | 33.50 362 | 56.22 339 | 52.50 355 | 43.72 300 | 61.06 332 | 83.38 198 | 25.46 385 | 54.87 350 | 30.11 375 | 81.64 257 | 72.75 298 |
|
| 1314 | | | 59.83 283 | 58.86 286 | 62.74 274 | 65.71 330 | 44.78 277 | 68.59 226 | 72.63 225 | 33.54 369 | 61.05 333 | 67.29 369 | 43.62 288 | 71.26 264 | 49.49 252 | 67.84 367 | 72.19 305 |
|
| MDTV_nov1_ep13 | | | | 54.05 321 | | 65.54 331 | 29.30 382 | 59.00 320 | 55.22 337 | 35.96 355 | 52.44 375 | 75.98 292 | 30.77 364 | 59.62 337 | 38.21 331 | 73.33 332 | |
|
| baseline2 | | | 55.57 307 | 52.74 326 | 64.05 258 | 65.26 332 | 44.11 281 | 62.38 299 | 54.43 342 | 39.03 337 | 51.21 380 | 67.35 368 | 33.66 339 | 72.45 249 | 37.14 340 | 64.22 375 | 75.60 269 |
|
| USDC | | | 62.80 258 | 63.10 255 | 61.89 280 | 65.19 333 | 43.30 290 | 67.42 241 | 74.20 213 | 35.80 356 | 72.25 228 | 84.48 183 | 45.67 274 | 71.95 257 | 37.95 334 | 84.97 212 | 70.42 322 |
|
| tpm | | | 50.60 339 | 52.42 331 | 45.14 369 | 65.18 334 | 26.29 392 | 60.30 313 | 43.50 384 | 37.41 348 | 57.01 354 | 79.09 265 | 30.20 369 | 42.32 388 | 32.77 366 | 66.36 370 | 66.81 348 |
|
| PatchmatchNet |  | | 54.60 312 | 54.27 319 | 55.59 322 | 65.17 335 | 39.08 319 | 66.92 251 | 51.80 359 | 39.89 331 | 58.39 347 | 73.12 322 | 31.69 355 | 58.33 342 | 43.01 302 | 58.38 391 | 69.38 332 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| miper_ehance_all_eth | | | 68.36 191 | 68.16 197 | 68.98 207 | 65.14 336 | 43.34 289 | 67.07 248 | 78.92 157 | 49.11 255 | 76.21 173 | 77.72 281 | 53.48 230 | 77.92 187 | 61.16 152 | 84.59 221 | 85.68 82 |
|
| cl____ | | | 68.26 196 | 68.26 193 | 68.29 220 | 64.98 337 | 43.67 285 | 65.89 263 | 74.67 209 | 50.04 246 | 76.86 155 | 82.42 215 | 48.74 261 | 75.38 212 | 60.92 156 | 89.81 132 | 85.80 80 |
|
| DIV-MVS_self_test | | | 68.27 195 | 68.26 193 | 68.29 220 | 64.98 337 | 43.67 285 | 65.89 263 | 74.67 209 | 50.04 246 | 76.86 155 | 82.43 214 | 48.74 261 | 75.38 212 | 60.94 155 | 89.81 132 | 85.81 76 |
|
| tpm cat1 | | | 54.02 317 | 52.63 328 | 58.19 308 | 64.85 339 | 39.86 316 | 66.26 259 | 57.28 323 | 32.16 372 | 56.90 355 | 70.39 340 | 32.75 345 | 65.30 315 | 34.29 359 | 58.79 388 | 69.41 331 |
|
| XXY-MVS | | | 55.19 308 | 57.40 298 | 48.56 357 | 64.45 340 | 34.84 355 | 51.54 365 | 53.59 347 | 38.99 338 | 63.79 315 | 79.43 257 | 56.59 215 | 45.57 373 | 36.92 344 | 71.29 346 | 65.25 356 |
|
| PatchT | | | 53.35 321 | 56.47 304 | 43.99 374 | 64.19 341 | 17.46 405 | 59.15 318 | 43.10 386 | 52.11 218 | 54.74 369 | 86.95 131 | 29.97 370 | 49.98 359 | 43.62 298 | 74.40 322 | 64.53 363 |
|
| D2MVS | | | 62.58 261 | 61.05 270 | 67.20 232 | 63.85 342 | 47.92 243 | 56.29 338 | 69.58 258 | 39.32 334 | 70.07 256 | 78.19 276 | 34.93 335 | 72.68 243 | 53.44 227 | 83.74 231 | 81.00 199 |
|
| mvs_anonymous | | | 65.08 231 | 65.49 227 | 63.83 260 | 63.79 343 | 37.60 336 | 66.52 257 | 69.82 257 | 43.44 303 | 73.46 211 | 86.08 164 | 58.79 191 | 71.75 260 | 51.90 233 | 75.63 309 | 82.15 181 |
|
| CostFormer | | | 57.35 298 | 56.14 306 | 60.97 290 | 63.76 344 | 38.43 326 | 67.50 239 | 60.22 312 | 37.14 350 | 59.12 346 | 76.34 291 | 32.78 344 | 71.99 256 | 39.12 324 | 69.27 359 | 72.47 301 |
|
| Gipuma |  | | 69.55 175 | 72.83 136 | 59.70 298 | 63.63 345 | 53.97 194 | 80.08 78 | 75.93 199 | 64.24 94 | 73.49 210 | 88.93 101 | 57.89 204 | 62.46 326 | 59.75 170 | 91.55 90 | 62.67 368 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| cl22 | | | 67.14 210 | 66.51 216 | 69.03 206 | 63.20 346 | 43.46 288 | 66.88 253 | 76.25 195 | 49.22 253 | 74.48 195 | 77.88 280 | 45.49 276 | 77.40 194 | 60.64 158 | 84.59 221 | 86.24 69 |
|
| gg-mvs-nofinetune | | | 55.75 303 | 56.75 302 | 52.72 335 | 62.87 347 | 28.04 386 | 68.92 218 | 41.36 396 | 71.09 41 | 50.80 382 | 92.63 12 | 20.74 396 | 66.86 303 | 29.97 376 | 72.41 337 | 63.25 365 |
|
| gm-plane-assit | | | | | | 62.51 348 | 33.91 360 | | | 37.25 349 | | 62.71 380 | | 72.74 242 | 38.70 326 | | |
|
| MVS-HIRNet | | | 45.53 355 | 47.29 355 | 40.24 380 | 62.29 349 | 26.82 390 | 56.02 342 | 37.41 402 | 29.74 382 | 43.69 400 | 81.27 227 | 33.96 337 | 55.48 348 | 24.46 396 | 56.79 392 | 38.43 401 |
|
| diffmvs |  | | 67.42 207 | 67.50 205 | 67.20 232 | 62.26 350 | 45.21 274 | 64.87 277 | 77.04 188 | 48.21 260 | 71.74 232 | 79.70 253 | 58.40 193 | 71.17 265 | 64.99 118 | 80.27 269 | 85.22 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CHOSEN 280x420 | | | 41.62 366 | 39.89 371 | 46.80 362 | 61.81 351 | 51.59 205 | 33.56 398 | 35.74 403 | 27.48 386 | 37.64 404 | 53.53 394 | 23.24 392 | 42.09 389 | 27.39 386 | 58.64 389 | 46.72 393 |
|
| KD-MVS_self_test | | | 66.38 220 | 67.51 204 | 62.97 271 | 61.76 352 | 34.39 357 | 58.11 329 | 75.30 204 | 50.84 236 | 77.12 148 | 85.42 172 | 56.84 214 | 69.44 276 | 51.07 239 | 91.16 97 | 85.08 91 |
|
| MDA-MVSNet-bldmvs | | | 62.34 263 | 61.73 261 | 64.16 255 | 61.64 353 | 49.90 222 | 48.11 373 | 57.24 325 | 53.31 208 | 80.95 106 | 79.39 258 | 49.00 259 | 61.55 331 | 45.92 285 | 80.05 271 | 81.03 197 |
|
| miper_enhance_ethall | | | 65.86 224 | 65.05 240 | 68.28 222 | 61.62 354 | 42.62 296 | 64.74 278 | 77.97 177 | 42.52 309 | 73.42 212 | 72.79 324 | 49.66 251 | 77.68 191 | 58.12 180 | 84.59 221 | 84.54 110 |
|
| WTY-MVS | | | 49.39 346 | 50.31 348 | 46.62 363 | 61.22 355 | 32.00 368 | 46.61 378 | 49.77 365 | 33.87 365 | 54.12 372 | 69.55 351 | 41.96 297 | 45.40 375 | 31.28 371 | 64.42 374 | 62.47 370 |
|
| CMPMVS |  | 48.73 20 | 61.54 270 | 60.89 271 | 63.52 264 | 61.08 356 | 51.55 206 | 68.07 234 | 68.00 268 | 33.88 364 | 65.87 297 | 81.25 228 | 37.91 323 | 67.71 290 | 49.32 254 | 82.60 242 | 71.31 313 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test-LLR | | | 50.43 340 | 50.69 345 | 49.64 350 | 60.76 357 | 41.87 300 | 53.18 358 | 45.48 379 | 43.41 305 | 49.41 387 | 60.47 388 | 29.22 373 | 44.73 380 | 42.09 306 | 72.14 341 | 62.33 372 |
|
| test-mter | | | 48.56 348 | 48.20 353 | 49.64 350 | 60.76 357 | 41.87 300 | 53.18 358 | 45.48 379 | 31.91 376 | 49.41 387 | 60.47 388 | 18.34 403 | 44.73 380 | 42.09 306 | 72.14 341 | 62.33 372 |
|
| GG-mvs-BLEND | | | | | 52.24 336 | 60.64 359 | 29.21 383 | 69.73 209 | 42.41 389 | | 45.47 393 | 52.33 397 | 20.43 398 | 68.16 287 | 25.52 393 | 65.42 372 | 59.36 379 |
|
| tpmvs | | | 55.84 302 | 55.45 312 | 57.01 314 | 60.33 360 | 33.20 363 | 65.89 263 | 59.29 316 | 47.52 269 | 56.04 361 | 73.60 317 | 31.05 362 | 68.06 289 | 40.64 316 | 64.64 373 | 69.77 327 |
|
| miper_lstm_enhance | | | 61.97 264 | 61.63 264 | 62.98 270 | 60.04 361 | 45.74 271 | 47.53 375 | 70.95 248 | 44.04 294 | 73.06 216 | 78.84 269 | 39.72 312 | 60.33 334 | 55.82 201 | 84.64 220 | 82.88 160 |
|
| dmvs_re | | | 49.91 345 | 50.77 344 | 47.34 359 | 59.98 362 | 38.86 323 | 53.18 358 | 53.58 348 | 39.75 332 | 55.06 366 | 61.58 384 | 36.42 331 | 44.40 382 | 29.15 383 | 68.23 363 | 58.75 380 |
|
| PVSNet_0 | | 36.71 22 | 41.12 367 | 40.78 370 | 42.14 376 | 59.97 363 | 40.13 314 | 40.97 387 | 42.24 393 | 30.81 380 | 44.86 396 | 49.41 400 | 40.70 306 | 45.12 377 | 23.15 398 | 34.96 403 | 41.16 399 |
|
| dmvs_testset | | | 45.26 356 | 47.51 354 | 38.49 383 | 59.96 364 | 14.71 407 | 58.50 325 | 43.39 385 | 41.30 316 | 51.79 379 | 56.48 392 | 39.44 315 | 49.91 361 | 21.42 401 | 55.35 397 | 50.85 388 |
|
| new-patchmatchnet | | | 52.89 325 | 55.76 310 | 44.26 373 | 59.94 365 | 6.31 411 | 37.36 395 | 50.76 362 | 41.10 318 | 64.28 308 | 79.82 251 | 44.77 280 | 48.43 366 | 36.24 349 | 87.61 169 | 78.03 249 |
|
| test20.03 | | | 55.74 304 | 57.51 297 | 50.42 345 | 59.89 366 | 32.09 367 | 50.63 367 | 49.01 368 | 50.11 244 | 65.07 303 | 83.23 206 | 45.61 275 | 48.11 367 | 30.22 374 | 83.82 230 | 71.07 317 |
|
| MVSTER | | | 63.29 252 | 61.60 265 | 68.36 218 | 59.77 367 | 46.21 267 | 60.62 311 | 71.32 240 | 41.83 312 | 75.40 182 | 79.12 264 | 30.25 367 | 75.85 206 | 56.30 194 | 79.81 274 | 83.03 157 |
|
| N_pmnet | | | 52.06 331 | 51.11 339 | 54.92 323 | 59.64 368 | 71.03 53 | 37.42 394 | 61.62 309 | 33.68 366 | 57.12 352 | 72.10 326 | 37.94 322 | 31.03 401 | 29.13 384 | 71.35 345 | 62.70 367 |
|
| test_vis1_n_1920 | | | 52.96 323 | 53.50 322 | 51.32 342 | 59.15 369 | 44.90 276 | 56.13 341 | 64.29 294 | 30.56 381 | 59.87 342 | 60.68 386 | 40.16 309 | 47.47 368 | 48.25 266 | 62.46 379 | 61.58 374 |
|
| JIA-IIPM | | | 54.03 316 | 51.62 334 | 61.25 288 | 59.14 370 | 55.21 186 | 59.10 319 | 47.72 372 | 50.85 235 | 50.31 386 | 85.81 170 | 20.10 399 | 63.97 320 | 36.16 350 | 55.41 396 | 64.55 362 |
|
| LF4IMVS | | | 67.50 203 | 67.31 208 | 68.08 223 | 58.86 371 | 61.93 127 | 71.43 183 | 75.90 200 | 44.67 292 | 72.42 225 | 80.20 244 | 57.16 208 | 70.44 271 | 58.99 175 | 86.12 197 | 71.88 307 |
|
| UnsupCasMVSNet_bld | | | 50.01 344 | 51.03 341 | 46.95 360 | 58.61 372 | 32.64 364 | 48.31 371 | 53.27 352 | 34.27 363 | 60.47 336 | 71.53 332 | 41.40 299 | 47.07 370 | 30.68 372 | 60.78 384 | 61.13 375 |
|
| dp | | | 44.09 362 | 44.88 364 | 41.72 379 | 58.53 373 | 23.18 399 | 54.70 352 | 42.38 391 | 34.80 359 | 44.25 398 | 65.61 372 | 24.48 390 | 44.80 379 | 29.77 377 | 49.42 399 | 57.18 384 |
|
| testgi | | | 54.00 318 | 56.86 301 | 45.45 367 | 58.20 374 | 25.81 395 | 49.05 369 | 49.50 367 | 45.43 284 | 67.84 283 | 81.17 229 | 51.81 240 | 43.20 387 | 29.30 379 | 79.41 279 | 67.34 344 |
|
| wuyk23d | | | 61.97 264 | 66.25 218 | 49.12 354 | 58.19 375 | 60.77 149 | 66.32 258 | 52.97 353 | 55.93 170 | 90.62 5 | 86.91 132 | 73.07 57 | 35.98 399 | 20.63 403 | 91.63 87 | 50.62 389 |
|
| ANet_high | | | 67.08 211 | 69.94 170 | 58.51 307 | 57.55 376 | 27.09 389 | 58.43 326 | 76.80 192 | 63.56 101 | 82.40 87 | 91.93 20 | 59.82 181 | 64.98 317 | 50.10 247 | 88.86 156 | 83.46 142 |
|
| Patchmatch-test | | | 47.93 349 | 49.96 349 | 41.84 377 | 57.42 377 | 24.26 397 | 48.75 370 | 41.49 395 | 39.30 335 | 56.79 356 | 73.48 318 | 30.48 366 | 33.87 400 | 29.29 380 | 72.61 336 | 67.39 342 |
|
| test_vis1_n | | | 51.27 337 | 50.41 347 | 53.83 327 | 56.99 378 | 50.01 220 | 56.75 335 | 60.53 311 | 25.68 391 | 59.74 343 | 57.86 391 | 29.40 372 | 47.41 369 | 43.10 301 | 63.66 376 | 64.08 364 |
|
| new_pmnet | | | 37.55 370 | 39.80 372 | 30.79 385 | 56.83 379 | 16.46 406 | 39.35 391 | 30.65 405 | 25.59 392 | 45.26 394 | 61.60 383 | 24.54 388 | 28.02 404 | 21.60 400 | 52.80 398 | 47.90 392 |
|
| pmmvs3 | | | 46.71 352 | 45.09 362 | 51.55 340 | 56.76 380 | 48.25 236 | 55.78 344 | 39.53 400 | 24.13 396 | 50.35 385 | 63.40 377 | 15.90 408 | 51.08 356 | 29.29 380 | 70.69 351 | 55.33 386 |
|
| sss | | | 47.59 351 | 48.32 351 | 45.40 368 | 56.73 381 | 33.96 359 | 45.17 381 | 48.51 370 | 32.11 375 | 52.37 376 | 65.79 371 | 40.39 308 | 41.91 391 | 31.85 368 | 61.97 381 | 60.35 376 |
|
| tpmrst | | | 50.15 343 | 51.38 337 | 46.45 364 | 56.05 382 | 24.77 396 | 64.40 284 | 49.98 364 | 36.14 353 | 53.32 374 | 69.59 350 | 35.16 334 | 48.69 363 | 39.24 322 | 58.51 390 | 65.89 351 |
|
| TESTMET0.1,1 | | | 45.17 357 | 44.93 363 | 45.89 366 | 56.02 383 | 38.31 327 | 53.18 358 | 41.94 394 | 27.85 384 | 44.86 396 | 56.47 393 | 17.93 404 | 41.50 392 | 38.08 333 | 68.06 364 | 57.85 381 |
|
| ADS-MVSNet2 | | | 48.76 347 | 47.25 356 | 53.29 333 | 55.90 384 | 40.54 312 | 47.34 376 | 54.99 340 | 31.41 378 | 50.48 383 | 72.06 327 | 31.23 358 | 54.26 352 | 25.93 389 | 55.93 393 | 65.07 357 |
|
| ADS-MVSNet | | | 44.62 360 | 45.58 359 | 41.73 378 | 55.90 384 | 20.83 403 | 47.34 376 | 39.94 399 | 31.41 378 | 50.48 383 | 72.06 327 | 31.23 358 | 39.31 395 | 25.93 389 | 55.93 393 | 65.07 357 |
|
| test0.0.03 1 | | | 47.72 350 | 48.31 352 | 45.93 365 | 55.53 386 | 29.39 381 | 46.40 379 | 41.21 397 | 43.41 305 | 55.81 364 | 67.65 365 | 29.22 373 | 43.77 386 | 25.73 392 | 69.87 356 | 64.62 361 |
|
| UnsupCasMVSNet_eth | | | 52.26 330 | 53.29 325 | 49.16 353 | 55.08 387 | 33.67 361 | 50.03 368 | 58.79 317 | 37.67 347 | 63.43 321 | 74.75 304 | 41.82 298 | 45.83 372 | 38.59 329 | 59.42 387 | 67.98 341 |
|
| pmmvs5 | | | 52.49 329 | 52.58 329 | 52.21 337 | 54.99 388 | 32.38 365 | 55.45 345 | 53.84 346 | 32.15 373 | 55.49 365 | 74.81 301 | 38.08 321 | 57.37 347 | 34.02 360 | 74.40 322 | 66.88 346 |
|
| DSMNet-mixed | | | 43.18 365 | 44.66 365 | 38.75 382 | 54.75 389 | 28.88 384 | 57.06 334 | 27.42 407 | 13.47 403 | 47.27 391 | 77.67 282 | 38.83 317 | 39.29 396 | 25.32 394 | 60.12 386 | 48.08 391 |
|
| MDA-MVSNet_test_wron | | | 52.57 328 | 53.49 324 | 49.81 349 | 54.24 390 | 36.47 341 | 40.48 389 | 46.58 377 | 38.13 342 | 75.47 181 | 73.32 320 | 41.05 305 | 43.85 385 | 40.98 314 | 71.20 347 | 69.10 335 |
|
| YYNet1 | | | 52.58 327 | 53.50 322 | 49.85 348 | 54.15 391 | 36.45 342 | 40.53 388 | 46.55 378 | 38.09 343 | 75.52 180 | 73.31 321 | 41.08 304 | 43.88 384 | 41.10 312 | 71.14 348 | 69.21 333 |
|
| EPMVS | | | 45.74 354 | 46.53 357 | 43.39 375 | 54.14 392 | 22.33 402 | 55.02 347 | 35.00 404 | 34.69 361 | 51.09 381 | 70.20 342 | 25.92 383 | 42.04 390 | 37.19 339 | 55.50 395 | 65.78 352 |
|
| test_cas_vis1_n_1920 | | | 50.90 338 | 50.92 342 | 50.83 344 | 54.12 393 | 47.80 245 | 51.44 366 | 54.61 341 | 26.95 388 | 63.95 312 | 60.85 385 | 37.86 325 | 44.97 378 | 45.53 288 | 62.97 378 | 59.72 378 |
|
| test_fmvs3 | | | 56.78 299 | 55.99 308 | 59.12 302 | 53.96 394 | 48.09 240 | 58.76 323 | 66.22 275 | 27.54 385 | 76.66 160 | 68.69 360 | 25.32 387 | 51.31 355 | 53.42 228 | 73.38 331 | 77.97 252 |
|
| test_fmvs1_n | | | 52.70 326 | 52.01 333 | 54.76 324 | 53.83 395 | 50.36 214 | 55.80 343 | 65.90 277 | 24.96 393 | 65.39 300 | 60.64 387 | 27.69 376 | 48.46 364 | 45.88 286 | 67.99 365 | 65.46 354 |
|
| KD-MVS_2432*1600 | | | 52.05 332 | 51.58 335 | 53.44 331 | 52.11 396 | 31.20 371 | 44.88 382 | 64.83 289 | 41.53 314 | 64.37 306 | 70.03 346 | 15.61 409 | 64.20 318 | 36.25 347 | 74.61 319 | 64.93 359 |
|
| miper_refine_blended | | | 52.05 332 | 51.58 335 | 53.44 331 | 52.11 396 | 31.20 371 | 44.88 382 | 64.83 289 | 41.53 314 | 64.37 306 | 70.03 346 | 15.61 409 | 64.20 318 | 36.25 347 | 74.61 319 | 64.93 359 |
|
| test_fmvs2 | | | 54.80 311 | 54.11 320 | 56.88 316 | 51.76 398 | 49.95 221 | 56.70 336 | 65.80 278 | 26.22 390 | 69.42 262 | 65.25 373 | 31.82 353 | 49.98 359 | 49.63 251 | 70.36 352 | 70.71 319 |
|
| E-PMN | | | 45.17 357 | 45.36 360 | 44.60 371 | 50.07 399 | 42.75 294 | 38.66 392 | 42.29 392 | 46.39 275 | 39.55 401 | 51.15 398 | 26.00 382 | 45.37 376 | 37.68 335 | 76.41 302 | 45.69 395 |
|
| PMMVS | | | 44.69 359 | 43.95 367 | 46.92 361 | 50.05 400 | 53.47 198 | 48.08 374 | 42.40 390 | 22.36 399 | 44.01 399 | 53.05 396 | 42.60 295 | 45.49 374 | 31.69 369 | 61.36 383 | 41.79 398 |
|
| test_fmvs1 | | | 51.51 336 | 50.86 343 | 53.48 330 | 49.72 401 | 49.35 230 | 54.11 354 | 64.96 287 | 24.64 395 | 63.66 317 | 59.61 390 | 28.33 375 | 48.45 365 | 45.38 291 | 67.30 369 | 62.66 369 |
|
| EMVS | | | 44.61 361 | 44.45 366 | 45.10 370 | 48.91 402 | 43.00 292 | 37.92 393 | 41.10 398 | 46.75 273 | 38.00 403 | 48.43 401 | 26.42 380 | 46.27 371 | 37.11 341 | 75.38 313 | 46.03 394 |
|
| mvsany_test3 | | | 43.76 364 | 41.01 368 | 52.01 338 | 48.09 403 | 57.74 172 | 42.47 386 | 23.85 410 | 23.30 398 | 64.80 304 | 62.17 382 | 27.12 377 | 40.59 393 | 29.17 382 | 48.11 400 | 57.69 382 |
|
| mvsany_test1 | | | 37.88 368 | 35.74 373 | 44.28 372 | 47.28 404 | 49.90 222 | 36.54 396 | 24.37 409 | 19.56 402 | 45.76 392 | 53.46 395 | 32.99 343 | 37.97 398 | 26.17 387 | 35.52 402 | 44.99 397 |
|
| test_vis3_rt | | | 51.94 334 | 51.04 340 | 54.65 325 | 46.32 405 | 50.13 218 | 44.34 384 | 78.17 173 | 23.62 397 | 68.95 270 | 62.81 379 | 21.41 395 | 38.52 397 | 41.49 310 | 72.22 340 | 75.30 275 |
|
| test_vis1_rt | | | 46.70 353 | 45.24 361 | 51.06 343 | 44.58 406 | 51.04 209 | 39.91 390 | 67.56 269 | 21.84 401 | 51.94 378 | 50.79 399 | 33.83 338 | 39.77 394 | 35.25 356 | 61.50 382 | 62.38 371 |
|
| MVE |  | 27.91 23 | 36.69 371 | 35.64 374 | 39.84 381 | 43.37 407 | 35.85 347 | 19.49 400 | 24.61 408 | 24.68 394 | 39.05 402 | 62.63 381 | 38.67 319 | 27.10 405 | 21.04 402 | 47.25 401 | 56.56 385 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMMVS2 | | | 37.74 369 | 40.87 369 | 28.36 386 | 42.41 408 | 5.35 412 | 24.61 399 | 27.75 406 | 32.15 373 | 47.85 389 | 70.27 341 | 35.85 333 | 29.51 403 | 19.08 404 | 67.85 366 | 50.22 390 |
|
| test_f | | | 43.79 363 | 45.63 358 | 38.24 384 | 42.29 409 | 38.58 325 | 34.76 397 | 47.68 373 | 22.22 400 | 67.34 290 | 63.15 378 | 31.82 353 | 30.60 402 | 39.19 323 | 62.28 380 | 45.53 396 |
|
| DeepMVS_CX |  | | | | 11.83 388 | 15.51 410 | 13.86 408 | | 11.25 413 | 5.76 404 | 20.85 406 | 26.46 403 | 17.06 407 | 9.22 407 | 9.69 407 | 13.82 406 | 12.42 403 |
|
| test_method | | | 19.26 372 | 19.12 376 | 19.71 387 | 9.09 411 | 1.91 414 | 7.79 402 | 53.44 350 | 1.42 405 | 10.27 407 | 35.80 402 | 17.42 406 | 25.11 406 | 12.44 405 | 24.38 405 | 32.10 402 |
|
| tmp_tt | | | 11.98 374 | 14.73 377 | 3.72 389 | 2.28 412 | 4.62 413 | 19.44 401 | 14.50 412 | 0.47 407 | 21.55 405 | 9.58 405 | 25.78 384 | 4.57 408 | 11.61 406 | 27.37 404 | 1.96 404 |
|
| test123 | | | 4.43 377 | 5.78 380 | 0.39 391 | 0.97 413 | 0.28 415 | 46.33 380 | 0.45 414 | 0.31 408 | 0.62 409 | 1.50 408 | 0.61 414 | 0.11 410 | 0.56 408 | 0.63 407 | 0.77 406 |
|
| testmvs | | | 4.06 378 | 5.28 381 | 0.41 390 | 0.64 414 | 0.16 416 | 42.54 385 | 0.31 415 | 0.26 409 | 0.50 410 | 1.40 409 | 0.77 413 | 0.17 409 | 0.56 408 | 0.55 408 | 0.90 405 |
|
| test_blank | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| eth-test2 | | | | | | 0.00 415 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 415 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| DCPMVS | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| cdsmvs_eth3d_5k | | | 17.71 373 | 23.62 375 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 70.17 255 | 0.00 410 | 0.00 411 | 74.25 311 | 68.16 96 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| pcd_1.5k_mvsjas | | | 5.20 376 | 6.93 379 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 62.39 150 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet-low-res | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| sosnet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uncertanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| Regformer | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| ab-mvs-re | | | 5.62 375 | 7.50 378 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 67.46 366 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| uanet | | | 0.00 379 | 0.00 382 | 0.00 392 | 0.00 415 | 0.00 417 | 0.00 403 | 0.00 416 | 0.00 410 | 0.00 411 | 0.00 410 | 0.00 415 | 0.00 411 | 0.00 410 | 0.00 409 | 0.00 407 |
|
| WAC-MVS | | | | | | | 22.69 400 | | | | | | | | 36.10 351 | | |
|
| PC_three_1452 | | | | | | | | | | 46.98 272 | 81.83 92 | 86.28 154 | 66.55 116 | 84.47 71 | 63.31 138 | 90.78 113 | 83.49 138 |
|
| test_241102_TWO | | | | | | | | | 84.80 45 | 72.61 30 | 84.93 56 | 89.70 80 | 77.73 22 | 85.89 40 | 75.29 42 | 94.22 52 | 83.25 149 |
|
| test_0728_THIRD | | | | | | | | | | 74.03 21 | 85.83 43 | 90.41 59 | 75.58 37 | 85.69 45 | 77.43 30 | 94.74 29 | 84.31 120 |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 323 |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 356 | | | | 70.05 323 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 360 | | | | |
|
| MTGPA |  | | | | | | | | 80.63 125 | | | | | | | | |
|
| test_post1 | | | | | | | | 66.63 255 | | | | 2.08 406 | 30.66 365 | 59.33 338 | 40.34 318 | | |
|
| test_post | | | | | | | | | | | | 1.99 407 | 30.91 363 | 54.76 351 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 353 | 31.32 357 | 69.38 277 | | | |
|
| MTMP | | | | | | | | 84.83 31 | 19.26 411 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 69 | 91.37 92 | 77.40 255 |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 74 | 90.93 107 | 78.55 241 |
|
| test_prior4 | | | | | | | 70.14 63 | 77.57 101 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 75.57 132 | | 58.92 139 | 76.53 167 | 86.78 136 | 67.83 101 | | 69.81 77 | 92.76 73 | |
|
| 旧先验2 | | | | | | | | 71.17 190 | | 45.11 288 | 78.54 131 | | | 61.28 332 | 59.19 174 | | |
|
| 新几何2 | | | | | | | | 71.33 186 | | | | | | | | | |
|
| 无先验 | | | | | | | | 74.82 138 | 70.94 249 | 47.75 267 | | | | 76.85 201 | 54.47 214 | | 72.09 306 |
|
| 原ACMM2 | | | | | | | | 74.78 142 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 67.30 296 | 48.34 264 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 95 | | | | |
|
| testdata1 | | | | | | | | 68.34 231 | | 57.24 156 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 85.49 30 | | | | | 86.15 27 | 71.09 71 | 90.94 105 | 84.82 98 |
|
| plane_prior4 | | | | | | | | | | | | 89.11 94 | | | | | |
|
| plane_prior3 | | | | | | | 65.67 99 | | | 63.82 98 | 78.23 133 | | | | | | |
|
| plane_prior2 | | | | | | | | 82.74 51 | | 65.45 76 | | | | | | | |
|
| plane_prior | | | | | | | 65.18 104 | 80.06 79 | | 61.88 117 | | | | | | 89.91 131 | |
|
| n2 | | | | | | | | | 0.00 416 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 416 | | | | | | | | |
|
| door-mid | | | | | | | | | 55.02 339 | | | | | | | | |
|
| test11 | | | | | | | | | 82.71 86 | | | | | | | | |
|
| door | | | | | | | | | 52.91 354 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 58.80 166 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 101 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 234 | | | 85.31 52 | | | 83.74 133 |
|
| HQP3-MVS | | | | | | | | | 84.12 66 | | | | | | | 89.16 147 | |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 198 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 404 | 53.74 356 | | 31.57 377 | 44.89 395 | | 29.90 371 | | 32.93 365 | | 71.48 310 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 142 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 83 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 146 | | | | |
|