This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12572.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 204
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 176
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 166
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15274.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 304
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31877.15 11081.28 10979.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33877.16 10981.81 9980.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32177.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 127
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21187.10 879.75 783.87 22984.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32076.76 11380.46 12978.91 790.32 791.70 2568.49 9284.89 6363.40 13695.12 1895.01 4
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 129
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29578.24 9682.24 9178.21 989.57 992.10 1868.05 9785.59 4866.04 11295.62 994.88 5
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40473.86 5286.31 1978.84 1994.03 5384.64 103
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 174
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 147
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23172.33 3585.50 5093.65 377.98 2176.88 20054.60 21391.64 8689.08 32
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 163
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9568.80 5380.92 10788.52 10972.00 6482.39 10174.80 4493.04 6881.14 194
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13664.71 9178.11 13688.39 11265.46 12683.14 8977.64 2991.20 9678.94 236
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10751.71 22277.15 14791.42 3265.49 12587.20 679.44 1387.17 18584.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13975.34 1579.80 11894.91 269.79 8480.25 14272.63 6394.46 3688.78 42
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6387.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 154
新几何169.99 18988.37 3471.34 5162.08 30543.85 29574.99 18586.11 16352.85 23370.57 26950.99 24083.23 23868.05 340
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 200
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3769.15 7367.85 23559.59 31541.06 31973.05 21785.72 17148.03 26780.65 26566.92 345
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8880.55 13772.51 6593.37 6383.48 140
save fliter87.00 3967.23 8679.24 8577.94 17856.65 163
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
EGC-MVSNET64.77 23561.17 26875.60 9886.90 4274.47 3084.04 3568.62 2650.60 4061.13 40891.61 2865.32 12874.15 23264.01 12688.28 16078.17 246
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20182.35 176
VDDNet71.60 15073.13 13067.02 23586.29 4741.11 30569.97 20566.50 27468.72 5574.74 18891.70 2559.90 17975.81 20848.58 26191.72 8484.15 124
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 149
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12772.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 232
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 155
IU-MVS86.12 5360.90 14480.38 13145.49 28381.31 10175.64 4194.39 4184.65 102
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10978.37 17674.80 4490.76 11682.40 175
test_part285.90 5766.44 9184.61 62
原ACMM173.90 11885.90 5765.15 10681.67 10150.97 23474.25 19986.16 16061.60 15883.54 8156.75 18891.08 10373.00 294
testdata64.13 25685.87 5963.34 11861.80 30847.83 26576.42 17186.60 14748.83 26062.31 32854.46 21581.26 25966.74 349
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10363.92 9677.51 14486.56 14868.43 9484.82 6573.83 5391.61 8882.26 180
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11865.77 7275.55 17886.25 15767.42 10285.42 5070.10 7590.88 11181.81 186
TEST985.47 6369.32 7076.42 11878.69 16353.73 20476.97 14986.74 13866.84 10881.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16354.00 19976.97 14986.74 13866.60 11481.10 12372.50 6691.56 8977.15 259
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 171
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17186.15 2771.09 7190.94 10584.82 98
plane_prior785.18 6666.21 94
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 6967.89 7976.26 12378.66 16554.00 19976.89 15386.72 14066.60 11480.89 133
WR-MVS71.20 15372.48 14267.36 23084.98 7035.70 34864.43 28368.66 26465.05 8681.49 9886.43 15257.57 20776.48 20450.36 24593.32 6589.90 23
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14653.48 20786.29 3692.43 1562.39 15080.25 14267.90 9390.61 11787.77 49
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6981.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19451.98 22087.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 141
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14177.64 19262.95 14088.14 16271.73 309
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19651.33 23087.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29770.98 19278.29 17268.67 5683.04 7789.26 8772.99 5880.75 13455.58 20595.47 1091.35 13
旧先验184.55 7860.36 15263.69 29787.05 13054.65 22483.34 23769.66 328
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 80
agg_prior84.44 8166.02 9778.62 16676.95 15180.34 140
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9187.03 1067.39 9991.26 9483.50 137
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19477.68 14387.18 12569.98 8185.37 5168.01 9092.72 7485.08 91
plane_prior684.18 8465.31 10360.83 171
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13843.76 29872.55 22386.07 16564.00 13783.35 8660.14 16491.03 10480.45 215
ZD-MVS83.91 8669.36 6981.09 11558.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18785.32 17365.54 12487.79 265.61 11691.14 9983.35 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12471.61 15577.48 7483.89 8872.89 4470.47 19971.12 24754.28 19077.89 13783.41 19649.04 25780.98 12863.62 13390.77 11578.58 240
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 212
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21180.14 13765.22 8281.74 9587.08 12761.82 15681.07 12556.21 19794.98 2091.93 8
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26877.32 18564.32 9375.59 17787.08 12762.45 14981.34 11754.90 20895.63 891.93 8
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21175.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 192
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10986.01 3161.72 14789.79 13483.08 155
NP-MVS83.34 9463.07 12185.97 166
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10985.90 3877.43 3090.78 11383.49 138
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12086.24 2277.27 3394.85 2583.78 131
No_MVS79.02 5583.14 9567.03 8780.75 12086.24 2277.27 3394.85 2583.78 131
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13457.43 15486.65 3191.79 2350.52 24686.01 3171.36 7094.65 3291.62 11
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20181.04 11763.67 10079.54 12086.37 15362.83 14481.82 11157.10 18795.25 1490.94 17
hse-mvs272.32 14370.66 16777.31 7983.10 10071.77 4769.19 21671.45 23754.28 19077.89 13778.26 27449.04 25779.23 15663.62 13389.13 15180.92 201
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21478.81 15866.66 6781.74 9586.88 13363.26 14081.07 12556.21 19794.98 2091.05 15
HyFIR lowres test63.01 25560.47 27570.61 17483.04 10154.10 19359.93 31672.24 23033.67 36769.00 26775.63 29538.69 31876.93 19836.60 34575.45 31280.81 206
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16367.88 20077.22 8082.96 10471.61 4869.08 21771.39 23849.17 25471.70 23378.07 27937.62 32679.21 15761.81 14489.15 14980.82 204
DP-MVS Recon73.57 11472.69 13876.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25181.98 21964.34 13684.41 7349.69 24989.95 12980.89 202
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PVSNet_Blended_VisFu70.04 16568.88 18373.53 12582.71 10763.62 11674.81 13981.95 9748.53 25967.16 29279.18 26351.42 24278.38 17554.39 21779.72 27778.60 239
DPM-MVS69.98 16769.22 17972.26 15882.69 10858.82 16570.53 19881.23 11147.79 26664.16 30980.21 24351.32 24383.12 9060.14 16484.95 21674.83 277
EG-PatchMatch MVS70.70 15970.88 16470.16 18582.64 10958.80 16671.48 18273.64 21554.98 17776.55 16581.77 22261.10 16878.94 16254.87 20980.84 26372.74 299
HQP-NCC82.37 11077.32 10659.08 13471.58 235
ACMP_Plane82.37 11077.32 10659.08 13471.58 235
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23585.96 16758.09 19885.30 5367.38 10189.16 14783.73 134
test1276.51 8682.28 11360.94 14381.64 10273.60 20864.88 13185.19 5990.42 12083.38 145
TAMVS65.31 22863.75 24769.97 19082.23 11459.76 15666.78 25463.37 29945.20 28769.79 25979.37 25947.42 27072.17 25234.48 35885.15 21177.99 251
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 172
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11965.57 7472.54 22481.76 22370.98 7485.26 5447.88 27090.00 12773.37 290
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10666.17 7073.30 21483.31 20259.96 17883.10 9158.45 17881.66 25682.87 161
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6583.45 8462.45 14392.40 7778.92 237
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22784.00 18964.56 13483.07 9251.48 23587.19 18482.56 173
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20364.10 9587.73 1792.24 1750.45 24881.30 11967.41 9791.46 9186.04 73
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15462.85 11073.33 21388.41 11162.54 14879.59 15363.94 13082.92 23982.94 159
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20152.27 21587.37 2692.25 1668.04 9880.56 13572.28 6791.15 9890.32 22
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18287.58 573.06 5991.34 9389.01 34
tt080576.12 8478.43 6869.20 20181.32 12541.37 30376.72 11477.64 18163.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28172.84 21983.78 19365.15 12980.99 12764.54 12189.09 15380.73 208
MIMVSNet166.57 21869.23 17858.59 30681.26 12737.73 33564.06 28657.62 31957.02 15778.40 13290.75 4662.65 14558.10 34541.77 30989.58 14079.95 221
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
MVS_111021_HR72.98 13172.97 13572.99 13580.82 12965.47 10068.81 22172.77 22357.67 15075.76 17582.38 21671.01 7377.17 19561.38 14986.15 19676.32 265
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6783.53 8267.95 9292.44 7689.60 24
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9461.89 11688.77 1293.32 457.15 20982.60 9970.08 7692.80 7189.25 28
CDS-MVSNet64.33 24362.66 25969.35 19880.44 13358.28 17065.26 27365.66 28044.36 29367.30 29175.54 29643.27 28971.77 25837.68 33584.44 22478.01 250
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9353.54 20683.93 7091.03 3749.49 25285.97 3373.26 5793.08 6791.59 12
PLCcopyleft62.01 1671.79 14970.28 16976.33 8980.31 13568.63 7578.18 9881.24 11054.57 18667.09 29380.63 23759.44 18381.74 11446.91 27784.17 22678.63 238
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16271.22 4072.40 22688.70 10460.51 17387.70 377.40 3289.13 15185.48 84
CHOSEN 1792x268858.09 29456.30 30563.45 26579.95 13750.93 21054.07 35565.59 28128.56 38361.53 32874.33 30941.09 30366.52 30833.91 36167.69 36872.92 295
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30766.16 7184.76 6093.23 549.47 25380.97 12965.66 11586.67 19285.02 93
VPNet65.58 22667.56 20359.65 29979.72 13930.17 37860.27 31462.14 30354.19 19571.24 24386.63 14558.80 19067.62 29244.17 29690.87 11281.18 193
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23867.58 9494.44 3979.44 230
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14579.60 14156.83 17757.37 32283.80 7289.01 9747.45 26978.74 16664.39 12386.49 19582.69 167
MVS_111021_LR72.10 14671.82 15172.95 13779.53 14273.90 3670.45 20066.64 27356.87 15876.81 15781.76 22368.78 8971.76 25961.81 14483.74 23173.18 292
Test_1112_low_res58.78 29058.69 28759.04 30479.41 14338.13 33157.62 33066.98 27234.74 36059.62 34477.56 28342.92 29263.65 32338.66 32770.73 35075.35 274
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9662.47 11479.06 12580.19 24561.83 15578.79 16559.83 16887.35 17679.54 229
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20866.93 6269.11 26588.95 10057.84 20586.12 2976.63 3789.77 13585.28 86
MVP-Stereo61.56 26959.22 28268.58 21779.28 14660.44 15169.20 21571.57 23343.58 30156.42 36078.37 27339.57 31476.46 20534.86 35760.16 38568.86 336
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16271.34 16067.85 22579.26 14740.42 31374.67 14675.15 20758.41 14268.74 27788.14 12056.08 22083.69 7959.90 16781.71 25579.43 231
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17670.09 4979.17 12488.02 12153.04 23283.60 8058.05 18193.76 5990.79 19
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34071.82 17979.54 14857.63 15382.57 8690.38 6459.38 18578.99 16157.91 18294.56 3491.23 14
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7778.43 17355.60 20290.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7778.43 17355.60 20290.90 10985.81 76
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 18179.13 15261.90 12867.34 24271.25 24347.98 26267.70 28574.19 31361.31 16172.62 24556.51 19078.26 29076.27 266
xiu_mvs_v1_base67.87 19867.07 21070.26 18179.13 15261.90 12867.34 24271.25 24347.98 26267.70 28574.19 31361.31 16172.62 24556.51 19078.26 29076.27 266
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 18179.13 15261.90 12867.34 24271.25 24347.98 26267.70 28574.19 31361.31 16172.62 24556.51 19078.26 29076.27 266
VDD-MVS70.81 15871.44 15968.91 21179.07 15546.51 26367.82 23670.83 25161.23 11974.07 20388.69 10559.86 18075.62 21151.11 23890.28 12184.61 106
test111164.62 23665.19 23262.93 27279.01 15629.91 37965.45 27154.41 34354.09 19771.47 24288.48 11037.02 32874.29 23046.83 27989.94 13084.58 109
TSAR-MVS + GP.73.08 12471.60 15677.54 7378.99 15770.73 5774.96 13669.38 25960.73 12474.39 19778.44 27257.72 20682.78 9660.16 16389.60 13779.11 234
test250661.23 27160.85 27262.38 27778.80 15827.88 38767.33 24537.42 40154.23 19267.55 28888.68 10617.87 40574.39 22846.33 28289.41 14384.86 96
ECVR-MVScopyleft64.82 23365.22 23063.60 26278.80 15831.14 37366.97 25056.47 33354.23 19269.94 25788.68 10637.23 32774.81 22345.28 29289.41 14384.86 96
FIs72.56 13973.80 11568.84 21378.74 16037.74 33471.02 19179.83 14156.12 16680.88 11089.45 8458.18 19478.28 17956.63 18993.36 6490.51 21
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 9981.34 11772.84 6191.72 8491.69 10
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8785.26 5466.15 10991.24 9587.61 52
CNLPA73.44 11573.03 13374.66 10578.27 16375.29 2675.99 12778.49 16765.39 7875.67 17683.22 20861.23 16466.77 30653.70 22485.33 20781.92 185
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18565.11 8576.47 16986.80 13449.47 25383.77 7753.89 22292.72 7488.81 41
PCF-MVS63.80 1372.70 13771.69 15275.72 9678.10 16560.01 15473.04 16081.50 10345.34 28579.66 11984.35 18565.15 12982.65 9848.70 25989.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14756.32 16576.35 17283.36 20170.76 7577.96 18663.32 13781.84 25083.18 152
LFMVS67.06 21267.89 19964.56 25378.02 16738.25 32970.81 19659.60 31465.18 8371.06 24586.56 14843.85 28675.22 21646.35 28189.63 13680.21 219
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19650.51 23989.19 1090.88 4271.45 6877.78 19073.38 5690.60 11890.90 18
BH-untuned69.39 17869.46 17469.18 20277.96 16956.88 17568.47 23077.53 18256.77 16077.79 14079.63 25460.30 17680.20 14546.04 28480.65 26570.47 320
1112_ss59.48 28558.99 28560.96 29177.84 17042.39 29861.42 30468.45 26637.96 34459.93 34167.46 36645.11 27965.07 31640.89 31571.81 34375.41 272
PS-MVSNAJ64.27 24463.73 24865.90 24677.82 17151.42 20763.33 29372.33 22845.09 28961.60 32768.04 36362.39 15073.95 23449.07 25573.87 32872.34 302
ambc70.10 18777.74 17250.21 21774.28 15177.93 17979.26 12388.29 11554.11 22879.77 14964.43 12291.10 10280.30 217
xiu_mvs_v2_base64.43 24163.96 24565.85 24777.72 17351.32 20863.63 29072.31 22945.06 29061.70 32669.66 34962.56 14673.93 23549.06 25673.91 32772.31 303
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13568.80 5382.95 8092.91 866.26 11776.76 20258.41 17992.77 7289.30 27
FMVSNet171.06 15472.48 14266.81 23677.65 17540.68 30971.96 17373.03 21861.14 12079.45 12290.36 6760.44 17475.20 21750.20 24688.05 16484.54 110
FPMVS59.43 28660.07 27757.51 31277.62 17671.52 4962.33 30050.92 36057.40 15569.40 26380.00 24939.14 31661.92 33037.47 33866.36 37039.09 400
testing358.28 29358.38 29158.00 31077.45 17726.12 39460.78 31043.00 38756.02 16770.18 25475.76 29313.27 41267.24 29848.02 26880.89 26180.65 211
Effi-MVS+-dtu75.43 9172.28 14684.91 277.05 17883.58 178.47 9377.70 18057.68 14974.89 18678.13 27864.80 13284.26 7456.46 19385.32 20886.88 62
CLD-MVS72.88 13472.36 14574.43 11077.03 17954.30 19168.77 22483.43 7652.12 21776.79 15874.44 30869.54 8683.91 7555.88 20093.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20083.30 20369.65 8582.07 10869.27 8186.75 19187.36 55
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25580.80 23466.74 11381.96 10961.74 14689.40 14585.69 81
Baseline_NR-MVSNet70.62 16073.19 12862.92 27376.97 18234.44 35668.84 21970.88 25060.25 12779.50 12190.53 5361.82 15669.11 27954.67 21295.27 1385.22 87
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12866.87 6483.64 7486.18 15870.25 7979.90 14861.12 15488.95 15587.56 53
SSC-MVS61.79 26766.08 22048.89 35676.91 18410.00 41053.56 35747.37 37568.20 5876.56 16489.21 8954.13 22757.59 34654.75 21074.07 32679.08 235
jason64.47 24062.84 25769.34 19976.91 18459.20 15767.15 24765.67 27935.29 35765.16 30276.74 28944.67 28170.68 26754.74 21179.28 28078.14 247
jason: jason.
ETV-MVS72.72 13672.16 14874.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23070.81 33665.90 12185.24 5658.64 17684.96 21581.95 184
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22377.25 18767.16 6176.89 15390.44 5665.95 12074.19 23150.75 24190.00 12787.18 59
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19284.52 18269.87 8384.94 6169.76 7889.59 13886.60 67
PM-MVS64.49 23963.61 24967.14 23476.68 18975.15 2768.49 22942.85 38851.17 23377.85 13980.51 23845.76 27366.31 30952.83 23076.35 30359.96 377
TransMVSNet (Re)69.62 17371.63 15463.57 26376.51 19035.93 34665.75 26771.29 24261.05 12175.02 18489.90 7865.88 12270.41 27349.79 24889.48 14184.38 118
BH-RMVSNet68.69 18868.20 19670.14 18676.40 19153.90 19664.62 28073.48 21658.01 14573.91 20781.78 22159.09 18778.22 18048.59 26077.96 29478.31 243
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19673.23 21580.75 23562.19 15383.86 7668.02 8990.92 10883.65 135
UGNet70.20 16469.05 18073.65 12176.24 19363.64 11575.87 12972.53 22661.48 11860.93 33586.14 16152.37 23577.12 19650.67 24285.21 20980.17 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 29157.72 29561.57 28376.21 19473.59 3961.83 30149.00 36947.30 27061.08 33168.97 35450.16 24959.01 33936.06 35268.84 36152.10 387
VPA-MVSNet68.71 18770.37 16863.72 26176.13 19538.06 33264.10 28571.48 23656.60 16474.10 20288.31 11464.78 13369.72 27447.69 27290.15 12483.37 146
WB-MVS60.04 28164.19 24347.59 35876.09 19610.22 40952.44 36246.74 37665.17 8474.07 20387.48 12453.48 23055.28 34949.36 25372.84 33477.28 256
PAPM61.79 26760.37 27666.05 24476.09 19641.87 30069.30 21376.79 19340.64 32753.80 37379.62 25544.38 28382.92 9529.64 37873.11 33373.36 291
BH-w/o64.81 23464.29 24266.36 24176.08 19854.71 18865.61 26975.23 20650.10 24571.05 24671.86 33054.33 22679.02 16038.20 33276.14 30565.36 355
dcpmvs_271.02 15672.65 13966.16 24376.06 19950.49 21371.97 17279.36 14950.34 24082.81 8383.63 19464.38 13567.27 29761.54 14883.71 23380.71 210
pmmvs671.82 14873.66 11866.31 24275.94 20042.01 29966.99 24972.53 22663.45 10476.43 17092.78 1072.95 5969.69 27551.41 23690.46 11987.22 56
CANet73.00 12971.84 15076.48 8775.82 20161.28 13674.81 13980.37 13263.17 10862.43 32580.50 23961.10 16885.16 6064.00 12784.34 22583.01 158
pmmvs-eth3d64.41 24263.27 25367.82 22775.81 20260.18 15369.49 21062.05 30638.81 33974.13 20182.23 21743.76 28768.65 28342.53 30380.63 26774.63 278
TR-MVS64.59 23763.54 25067.73 22875.75 20350.83 21163.39 29270.29 25449.33 25271.55 23974.55 30650.94 24478.46 17140.43 31775.69 30873.89 287
tttt051769.46 17667.79 20274.46 10775.34 20452.72 20175.05 13563.27 30054.69 18378.87 12784.37 18426.63 37981.15 12163.95 12887.93 16889.51 25
cascas64.59 23762.77 25870.05 18875.27 20550.02 21961.79 30271.61 23242.46 31063.68 31668.89 35749.33 25580.35 13947.82 27184.05 22879.78 224
API-MVS70.97 15771.51 15869.37 19675.20 20655.94 18080.99 6176.84 19162.48 11371.24 24377.51 28461.51 16080.96 13252.04 23185.76 20271.22 314
EIA-MVS68.59 18967.16 20972.90 14175.18 20755.64 18469.39 21281.29 10852.44 21464.53 30570.69 33760.33 17582.30 10454.27 21976.31 30480.75 207
PAPR69.20 18068.66 18970.82 17275.15 20847.77 24675.31 13381.11 11349.62 25066.33 29579.27 26061.53 15982.96 9448.12 26781.50 25881.74 188
MVSFormer69.93 16969.03 18172.63 15074.93 20959.19 15883.98 3675.72 20152.27 21563.53 31976.74 28943.19 29080.56 13572.28 6778.67 28678.14 247
lupinMVS63.36 25061.49 26668.97 20874.93 20959.19 15865.80 26664.52 29234.68 36263.53 31974.25 31143.19 29070.62 26853.88 22378.67 28677.10 260
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18783.50 7589.21 8971.51 6675.74 21061.24 15092.34 7988.94 37
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10780.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15159.44 13378.88 12689.80 7971.26 7073.09 24057.45 18380.89 26189.17 31
EI-MVSNet-Vis-set72.78 13571.87 14975.54 9974.77 21459.02 16472.24 16571.56 23463.92 9678.59 12871.59 33166.22 11878.60 16767.58 9480.32 26889.00 35
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17881.11 11351.80 22182.28 8884.21 18656.22 21982.34 10368.82 8287.17 18588.91 38
v192192072.96 13272.98 13472.89 14274.67 21647.58 24971.92 17680.69 12251.70 22381.69 9783.89 19156.58 21682.25 10568.34 8587.36 17588.82 40
EI-MVSNet-UG-set72.63 13871.68 15375.47 10074.67 21658.64 16972.02 17071.50 23563.53 10278.58 13071.39 33565.98 11978.53 16867.30 10480.18 27089.23 29
Fast-Effi-MVS+68.81 18568.30 19270.35 18074.66 21848.61 23466.06 26178.32 17050.62 23871.48 24175.54 29668.75 9079.59 15350.55 24478.73 28582.86 162
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10052.76 21281.85 9184.56 18157.12 21082.24 10668.58 8387.33 17789.06 33
v14419272.99 13073.06 13272.77 14474.58 22047.48 25071.90 17780.44 13051.57 22481.46 9984.11 18858.04 20282.12 10767.98 9187.47 17388.70 43
MAR-MVS67.72 20166.16 21972.40 15574.45 22164.99 10774.87 13777.50 18348.67 25865.78 29968.58 36157.01 21377.79 18946.68 28081.92 24774.42 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19282.74 9770.73 7389.14 15091.05 15
MGCFI-Net72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
Anonymous20240521166.02 22366.89 21463.43 26674.22 22538.14 33059.00 32066.13 27663.33 10769.76 26085.95 16851.88 23770.50 27044.23 29587.52 17181.64 189
Effi-MVS+72.10 14672.28 14671.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24776.83 28869.96 8280.97 12960.20 16178.43 28883.45 143
FE-MVS68.29 19466.96 21372.26 15874.16 22754.24 19277.55 10373.42 21757.65 15272.66 22184.91 17832.02 35281.49 11648.43 26381.85 24981.04 196
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17181.08 11653.83 20381.77 9384.68 17958.07 20181.91 11068.10 8786.86 18788.99 36
FA-MVS(test-final)71.27 15271.06 16271.92 16173.96 22952.32 20476.45 11776.12 19659.07 13774.04 20586.18 15852.18 23679.43 15559.75 17081.76 25184.03 125
EI-MVSNet69.61 17469.01 18271.41 16773.94 23049.90 22271.31 18771.32 24058.22 14375.40 18270.44 33858.16 19575.85 20662.51 14179.81 27488.48 44
CVMVSNet59.21 28758.44 29061.51 28473.94 23047.76 24771.31 18764.56 29126.91 38960.34 33770.44 33836.24 33267.65 29153.57 22568.66 36269.12 334
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18178.44 16858.22 14380.51 11286.63 14558.15 19679.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS52.94 32452.70 32753.65 32973.56 23327.49 38857.30 33349.57 36638.56 34162.79 32371.42 33419.49 40160.41 33324.33 39777.33 29873.06 293
alignmvs70.54 16171.00 16369.15 20373.50 23448.04 24269.85 20879.62 14353.94 20276.54 16682.00 21859.00 18874.68 22457.32 18487.21 18384.72 101
Fast-Effi-MVS+-dtu70.00 16668.74 18773.77 12073.47 23564.53 11071.36 18578.14 17555.81 17168.84 27574.71 30565.36 12775.75 20952.00 23279.00 28281.03 197
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10560.05 12885.64 4589.26 8758.08 20081.80 11269.71 8087.97 16790.79 19
tfpnnormal66.48 21967.93 19862.16 27973.40 23736.65 33963.45 29164.99 28655.97 16872.82 22087.80 12357.06 21269.10 28048.31 26587.54 17080.72 209
IterMVS-SCA-FT67.68 20266.07 22172.49 15373.34 23858.20 17163.80 28865.55 28248.10 26176.91 15282.64 21345.20 27778.84 16361.20 15177.89 29580.44 216
iter_conf05_1166.64 21665.20 23170.94 17073.28 23946.89 25866.09 26077.03 18943.44 30363.43 32174.09 31647.19 27183.26 8756.25 19586.01 19982.66 168
bld_raw_dy_0_6469.94 16869.64 17370.84 17173.28 23946.85 25975.82 13186.52 1640.43 32981.41 10074.77 30248.70 26383.01 9356.25 19589.59 13882.66 168
VNet64.01 24765.15 23560.57 29373.28 23935.61 34957.60 33167.08 27154.61 18566.76 29483.37 19956.28 21866.87 30242.19 30585.20 21079.23 233
3Dnovator65.95 1171.50 15171.22 16172.34 15673.16 24263.09 12078.37 9478.32 17057.67 15072.22 22984.61 18054.77 22278.47 17060.82 15781.07 26075.45 271
GBi-Net68.30 19268.79 18466.81 23673.14 24340.68 30971.96 17373.03 21854.81 17874.72 18990.36 6748.63 26475.20 21747.12 27485.37 20484.54 110
test168.30 19268.79 18466.81 23673.14 24340.68 30971.96 17373.03 21854.81 17874.72 18990.36 6748.63 26475.20 21747.12 27485.37 20484.54 110
FMVSNet267.48 20468.21 19565.29 24873.14 24338.94 32268.81 22171.21 24654.81 17876.73 15986.48 15048.63 26474.60 22547.98 26986.11 19882.35 176
thisisatest053067.05 21365.16 23372.73 14773.10 24650.55 21271.26 18963.91 29650.22 24374.46 19680.75 23526.81 37880.25 14259.43 17286.50 19487.37 54
pm-mvs168.40 19069.85 17264.04 25973.10 24639.94 31564.61 28170.50 25255.52 17373.97 20689.33 8563.91 13868.38 28549.68 25088.02 16583.81 130
pmmvs460.78 27559.04 28466.00 24573.06 24857.67 17364.53 28260.22 31236.91 35165.96 29677.27 28539.66 31368.54 28438.87 32574.89 31671.80 308
SDMVSNet66.36 22167.85 20161.88 28173.04 24946.14 26858.54 32471.36 23951.42 22768.93 27182.72 21165.62 12362.22 32954.41 21684.67 21777.28 256
sd_testset63.55 24865.38 22858.07 30973.04 24938.83 32457.41 33265.44 28351.42 22768.93 27182.72 21163.76 13958.11 34441.05 31384.67 21777.28 256
v2v48272.55 14172.58 14072.43 15472.92 25146.72 26171.41 18479.13 15355.27 17481.17 10485.25 17555.41 22181.13 12267.25 10585.46 20389.43 26
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25249.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8079.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 31356.12 30749.20 35272.57 25330.91 37459.98 31548.43 37141.66 31355.94 36283.86 19241.19 30250.42 35726.05 38875.38 31366.27 350
Patchmatch-RL test59.95 28259.12 28362.44 27672.46 25454.61 19059.63 31747.51 37441.05 32074.58 19474.30 31031.06 36165.31 31451.61 23479.85 27367.39 342
CL-MVSNet_self_test62.44 26263.40 25159.55 30072.34 25532.38 36556.39 33764.84 28851.21 23267.46 28981.01 23250.75 24563.51 32438.47 33088.12 16382.75 165
Vis-MVSNet (Re-imp)62.74 25963.21 25461.34 28772.19 25631.56 37067.31 24653.87 34553.60 20569.88 25883.37 19940.52 30770.98 26641.40 31186.78 19081.48 191
thres100view90061.17 27261.09 26961.39 28672.14 25735.01 35265.42 27256.99 32755.23 17570.71 24879.90 25032.07 35072.09 25335.61 35381.73 25277.08 261
ab-mvs64.11 24565.13 23661.05 28971.99 25838.03 33367.59 23768.79 26349.08 25665.32 30186.26 15658.02 20366.85 30439.33 32179.79 27678.27 244
thres600view761.82 26661.38 26763.12 26871.81 25934.93 35364.64 27956.99 32754.78 18270.33 25279.74 25232.07 35072.42 25038.61 32883.46 23682.02 182
QAPM69.18 18169.26 17768.94 20971.61 26052.58 20380.37 7178.79 16149.63 24973.51 20985.14 17653.66 22979.12 15855.11 20775.54 31075.11 276
WB-MVSnew53.94 31954.76 31651.49 34171.53 26128.05 38558.22 32750.36 36337.94 34559.16 34570.17 34349.21 25651.94 35424.49 39571.80 34474.47 282
baseline73.10 12373.96 11370.51 17771.46 26246.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10378.03 18564.22 12587.27 18187.11 61
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26346.71 26270.93 19384.26 6255.62 17277.46 14587.10 12667.09 10577.81 18863.95 12886.83 18987.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14171.96 16071.29 26464.06 11372.79 16281.82 9840.23 33081.25 10381.04 23170.62 7668.69 28269.74 7983.60 23583.14 153
Anonymous2023120654.13 31455.82 30949.04 35570.89 26535.96 34551.73 36450.87 36134.86 35862.49 32479.22 26142.52 29644.29 38327.95 38581.88 24866.88 346
fmvsm_s_conf0.1_n_a67.37 20866.36 21770.37 17970.86 26661.17 13874.00 15457.18 32640.77 32468.83 27680.88 23363.11 14267.61 29366.94 10674.72 31782.33 179
tfpn200view960.35 27959.97 27861.51 28470.78 26735.35 35063.27 29457.47 32053.00 21068.31 28077.09 28632.45 34772.09 25335.61 35381.73 25277.08 261
thres40060.77 27659.97 27863.15 26770.78 26735.35 35063.27 29457.47 32053.00 21068.31 28077.09 28632.45 34772.09 25335.61 35381.73 25282.02 182
MSDG67.47 20667.48 20667.46 22970.70 26954.69 18966.90 25278.17 17360.88 12370.41 25074.76 30361.22 16673.18 23947.38 27376.87 30074.49 281
testing9155.74 30455.29 31457.08 31370.63 27030.85 37554.94 35056.31 33650.34 24057.08 35370.10 34524.50 38965.86 31036.98 34376.75 30174.53 280
test_yl65.11 22965.09 23765.18 24970.59 27140.86 30763.22 29672.79 22157.91 14668.88 27379.07 26642.85 29374.89 22145.50 28984.97 21279.81 222
DCV-MVSNet65.11 22965.09 23765.18 24970.59 27140.86 30763.22 29672.79 22157.91 14668.88 27379.07 26642.85 29374.89 22145.50 28984.97 21279.81 222
test_fmvsm_n_192069.63 17268.45 19073.16 13070.56 27365.86 9870.26 20278.35 16937.69 34674.29 19878.89 26861.10 16868.10 28865.87 11479.07 28185.53 83
OpenMVScopyleft62.51 1568.76 18668.75 18668.78 21470.56 27353.91 19578.29 9577.35 18448.85 25770.22 25383.52 19552.65 23476.93 19855.31 20681.99 24675.49 270
DELS-MVS68.83 18468.31 19170.38 17870.55 27548.31 23563.78 28982.13 9254.00 19968.96 26975.17 30058.95 18980.06 14758.55 17782.74 24182.76 164
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
testing22253.37 32052.50 33055.98 32070.51 27629.68 38056.20 34051.85 35846.19 27656.76 35768.94 35519.18 40265.39 31325.87 39176.98 29972.87 296
testing1153.13 32252.26 33255.75 32170.44 27731.73 36954.75 35152.40 35644.81 29152.36 37768.40 36221.83 39465.74 31232.64 36772.73 33569.78 326
LCM-MVSNet-Re69.10 18271.57 15761.70 28270.37 27834.30 35861.45 30379.62 14356.81 15989.59 888.16 11968.44 9372.94 24142.30 30487.33 17777.85 253
patch_mono-262.73 26064.08 24458.68 30570.36 27955.87 18160.84 30964.11 29541.23 31764.04 31078.22 27560.00 17748.80 36254.17 22083.71 23371.37 311
ETVMVS50.32 34249.87 35051.68 33970.30 28026.66 39152.33 36343.93 38343.54 30254.91 36767.95 36420.01 40060.17 33522.47 39973.40 33068.22 337
SCA58.57 29258.04 29360.17 29670.17 28141.07 30665.19 27453.38 35143.34 30761.00 33473.48 31845.20 27769.38 27740.34 31870.31 35370.05 323
ET-MVSNet_ETH3D63.32 25160.69 27471.20 16970.15 28255.66 18365.02 27664.32 29343.28 30868.99 26872.05 32925.46 38578.19 18354.16 22182.80 24079.74 225
testing9955.16 30954.56 31856.98 31570.13 28330.58 37754.55 35354.11 34449.53 25156.76 35770.14 34422.76 39365.79 31136.99 34276.04 30674.57 279
APD_test175.04 9875.38 9974.02 11769.89 28470.15 6276.46 11679.71 14265.50 7582.99 7988.60 10866.94 10672.35 25159.77 16988.54 15879.56 226
iter_conf0567.34 20965.62 22572.50 15269.82 28547.06 25772.19 16776.86 19045.32 28672.86 21882.85 20920.53 39783.73 7861.13 15389.02 15486.70 65
PVSNet_BlendedMVS65.38 22764.30 24168.61 21669.81 28649.36 22865.60 27078.96 15545.50 28159.98 33878.61 27051.82 23878.20 18144.30 29384.11 22778.27 244
PVSNet_Blended62.90 25761.64 26366.69 23969.81 28649.36 22861.23 30678.96 15542.04 31159.98 33868.86 35851.82 23878.20 18144.30 29377.77 29672.52 300
OpenMVS_ROBcopyleft54.93 1763.23 25363.28 25263.07 26969.81 28645.34 27368.52 22867.14 27043.74 29970.61 24979.22 26147.90 26872.66 24448.75 25873.84 32971.21 315
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28966.25 9375.90 12879.90 14046.03 27876.48 16885.02 17767.96 10073.97 23374.47 4987.22 18283.90 128
fmvsm_s_conf0.5_n_a67.00 21465.95 22470.17 18469.72 29061.16 13973.34 15856.83 32940.96 32168.36 27980.08 24862.84 14367.57 29466.90 10874.50 32181.78 187
FMVSNet365.00 23265.16 23364.52 25469.47 29137.56 33766.63 25570.38 25351.55 22574.72 18983.27 20437.89 32474.44 22747.12 27485.37 20481.57 190
MS-PatchMatch55.59 30654.89 31557.68 31169.18 29249.05 23161.00 30862.93 30135.98 35458.36 34868.93 35636.71 33066.59 30737.62 33763.30 37757.39 383
baseline157.82 29658.36 29256.19 31869.17 29330.76 37662.94 29855.21 33846.04 27763.83 31478.47 27141.20 30163.68 32239.44 32068.99 36074.13 284
v14869.38 17969.39 17569.36 19769.14 29444.56 27868.83 22072.70 22454.79 18178.59 12884.12 18754.69 22376.74 20359.40 17382.20 24486.79 63
test_fmvsmconf0.1_n73.26 12172.82 13774.56 10669.10 29566.18 9574.65 14779.34 15045.58 28075.54 17983.91 19067.19 10473.88 23673.26 5786.86 18783.63 136
fmvsm_s_conf0.1_n66.60 21765.54 22669.77 19268.99 29659.15 16172.12 16856.74 33140.72 32668.25 28280.14 24761.18 16766.92 30067.34 10374.40 32283.23 151
Syy-MVS54.13 31455.45 31250.18 34668.77 29723.59 39855.02 34744.55 38143.80 29658.05 35064.07 37546.22 27258.83 34046.16 28372.36 33868.12 338
myMVS_eth3d50.36 34150.52 34649.88 34768.77 29722.69 40055.02 34744.55 38143.80 29658.05 35064.07 37514.16 41158.83 34033.90 36272.36 33868.12 338
test_fmvsmconf_n72.91 13372.40 14474.46 10768.62 29966.12 9674.21 15278.80 16045.64 27974.62 19383.25 20566.80 11273.86 23772.97 6086.66 19383.39 144
CANet_DTU64.04 24663.83 24664.66 25268.39 30042.97 29373.45 15774.50 21252.05 21954.78 36875.44 29943.99 28570.42 27253.49 22678.41 28980.59 213
EU-MVSNet60.82 27460.80 27360.86 29268.37 30141.16 30472.27 16468.27 26726.96 38769.08 26675.71 29432.09 34967.44 29555.59 20478.90 28373.97 285
PVSNet43.83 2151.56 33551.17 33852.73 33468.34 30238.27 32848.22 37253.56 34936.41 35254.29 37164.94 37434.60 33654.20 35330.34 37369.87 35665.71 353
EPNet69.10 18267.32 20774.46 10768.33 30361.27 13777.56 10263.57 29860.95 12256.62 35982.75 21051.53 24181.24 12054.36 21890.20 12280.88 203
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 22265.27 22969.57 19568.20 30459.14 16371.66 18056.48 33240.92 32267.78 28479.46 25661.23 16466.90 30167.39 9974.32 32582.66 168
IB-MVS49.67 1859.69 28456.96 30067.90 22468.19 30550.30 21661.42 30465.18 28547.57 26855.83 36367.15 37023.77 39179.60 15243.56 29979.97 27273.79 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 27759.97 27862.58 27568.13 30647.28 25468.59 22673.96 21432.19 37159.94 34068.86 35850.48 24777.64 19241.85 30875.74 30762.83 366
eth_miper_zixun_eth69.42 17768.73 18871.50 16667.99 30746.42 26467.58 23878.81 15850.72 23778.13 13580.34 24250.15 25080.34 14060.18 16284.65 21987.74 50
TinyColmap67.98 19769.28 17664.08 25767.98 30846.82 26070.04 20375.26 20553.05 20977.36 14686.79 13559.39 18472.59 24845.64 28788.01 16672.83 297
EPNet_dtu58.93 28958.52 28860.16 29767.91 30947.70 24869.97 20558.02 31849.73 24847.28 39073.02 32338.14 32062.34 32736.57 34685.99 20070.43 321
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 29757.02 29959.17 30167.89 31034.93 35358.91 32257.25 32450.24 24264.01 31171.46 33332.49 34671.39 26331.31 37079.57 27871.19 316
our_test_356.46 30056.51 30356.30 31767.70 31139.66 31755.36 34652.34 35740.57 32863.85 31369.91 34840.04 31058.22 34343.49 30075.29 31571.03 318
ppachtmachnet_test60.26 28059.61 28162.20 27867.70 31144.33 28058.18 32860.96 31040.75 32565.80 29872.57 32541.23 30063.92 32146.87 27882.42 24378.33 242
MVS_Test69.84 17070.71 16667.24 23167.49 31343.25 29169.87 20781.22 11252.69 21371.57 23886.68 14162.09 15474.51 22666.05 11178.74 28483.96 126
fmvsm_l_conf0.5_n67.48 20466.88 21569.28 20067.41 31462.04 12670.69 19769.85 25639.46 33369.59 26181.09 23058.15 19668.73 28167.51 9678.16 29377.07 263
thisisatest051560.48 27857.86 29468.34 21967.25 31546.42 26460.58 31262.14 30340.82 32363.58 31869.12 35226.28 38178.34 17748.83 25782.13 24580.26 218
V4271.06 15470.83 16571.72 16267.25 31547.14 25665.94 26280.35 13351.35 22983.40 7683.23 20659.25 18678.80 16465.91 11380.81 26489.23 29
fmvsm_l_conf0.5_n_a66.66 21565.97 22368.72 21567.09 31761.38 13470.03 20469.15 26138.59 34068.41 27880.36 24156.56 21768.32 28666.10 11077.45 29776.46 264
GA-MVS62.91 25661.66 26266.66 24067.09 31744.49 27961.18 30769.36 26051.33 23069.33 26474.47 30736.83 32974.94 22050.60 24374.72 31780.57 214
testf175.66 8876.57 8272.95 13767.07 31967.62 8176.10 12480.68 12364.95 8786.58 3390.94 4071.20 7171.68 26160.46 15991.13 10079.56 226
APD_test275.66 8876.57 8272.95 13767.07 31967.62 8176.10 12480.68 12364.95 8786.58 3390.94 4071.20 7171.68 26160.46 15991.13 10079.56 226
HY-MVS49.31 1957.96 29557.59 29659.10 30366.85 32136.17 34365.13 27565.39 28439.24 33654.69 37078.14 27744.28 28467.18 29933.75 36370.79 34973.95 286
CR-MVSNet58.96 28858.49 28960.36 29566.37 32248.24 23770.93 19356.40 33432.87 37061.35 32986.66 14233.19 34163.22 32548.50 26270.17 35469.62 329
RPMNet65.77 22565.08 23967.84 22666.37 32248.24 23770.93 19386.27 2054.66 18461.35 32986.77 13733.29 34085.67 4755.93 19970.17 35469.62 329
IterMVS63.12 25462.48 26065.02 25166.34 32452.86 20063.81 28762.25 30246.57 27471.51 24080.40 24044.60 28266.82 30551.38 23775.47 31175.38 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 17169.89 17169.61 19466.24 32543.48 28768.12 23379.61 14551.43 22677.72 14180.18 24654.61 22578.15 18463.62 13387.50 17287.20 58
tpm256.12 30154.64 31760.55 29466.24 32536.01 34468.14 23256.77 33033.60 36858.25 34975.52 29830.25 36774.33 22933.27 36469.76 35871.32 312
Anonymous2024052163.55 24866.07 22155.99 31966.18 32744.04 28268.77 22468.80 26246.99 27172.57 22285.84 16939.87 31150.22 35853.40 22992.23 8173.71 289
Patchmtry60.91 27363.01 25654.62 32666.10 32826.27 39367.47 24056.40 33454.05 19872.04 23186.66 14233.19 34160.17 33543.69 29787.45 17477.42 254
FMVSNet555.08 31055.54 31153.71 32865.80 32933.50 36256.22 33952.50 35543.72 30061.06 33283.38 19825.46 38554.87 35030.11 37581.64 25772.75 298
131459.83 28358.86 28662.74 27465.71 33044.78 27768.59 22672.63 22533.54 36961.05 33367.29 36943.62 28871.26 26449.49 25267.84 36772.19 305
MDTV_nov1_ep1354.05 32165.54 33129.30 38259.00 32055.22 33735.96 35552.44 37575.98 29230.77 36459.62 33738.21 33173.33 332
baseline255.57 30752.74 32664.05 25865.26 33244.11 28162.38 29954.43 34239.03 33751.21 38067.35 36833.66 33972.45 24937.14 34064.22 37575.60 269
USDC62.80 25863.10 25561.89 28065.19 33343.30 29067.42 24174.20 21335.80 35672.25 22884.48 18345.67 27471.95 25737.95 33484.97 21270.42 322
tpm50.60 33952.42 33145.14 36965.18 33426.29 39260.30 31343.50 38437.41 34857.01 35479.09 26530.20 36942.32 38832.77 36666.36 37066.81 348
PatchmatchNetpermissive54.60 31254.27 31955.59 32265.17 33539.08 31966.92 25151.80 35939.89 33158.39 34773.12 32231.69 35558.33 34243.01 30258.38 39169.38 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19168.16 19768.98 20765.14 33643.34 28967.07 24878.92 15749.11 25576.21 17377.72 28153.48 23077.92 18761.16 15284.59 22185.68 82
cl____68.26 19668.26 19368.29 22064.98 33743.67 28565.89 26374.67 20950.04 24676.86 15582.42 21548.74 26175.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19568.26 19368.29 22064.98 33743.67 28565.89 26374.67 20950.04 24676.86 15582.43 21448.74 26175.38 21260.94 15589.81 13285.81 76
tpm cat154.02 31752.63 32858.19 30864.85 33939.86 31666.26 25957.28 32332.16 37256.90 35570.39 34032.75 34565.30 31534.29 35958.79 38869.41 331
XXY-MVS55.19 30857.40 29848.56 35764.45 34034.84 35551.54 36553.59 34738.99 33863.79 31579.43 25756.59 21545.57 37336.92 34471.29 34665.25 356
PatchT53.35 32156.47 30443.99 37464.19 34117.46 40559.15 31843.10 38652.11 21854.74 36986.95 13129.97 37049.98 35943.62 29874.40 32264.53 363
D2MVS62.58 26161.05 27067.20 23263.85 34247.92 24356.29 33869.58 25839.32 33470.07 25678.19 27634.93 33572.68 24353.44 22783.74 23181.00 199
mvs_anonymous65.08 23165.49 22763.83 26063.79 34337.60 33666.52 25769.82 25743.44 30373.46 21186.08 16458.79 19171.75 26051.90 23375.63 30982.15 181
CostFormer57.35 29856.14 30660.97 29063.76 34438.43 32667.50 23960.22 31237.14 35059.12 34676.34 29132.78 34471.99 25639.12 32469.27 35972.47 301
Gipumacopyleft69.55 17572.83 13659.70 29863.63 34553.97 19480.08 7875.93 19964.24 9473.49 21088.93 10157.89 20462.46 32659.75 17091.55 9062.67 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 21066.51 21669.03 20663.20 34643.46 28866.88 25376.25 19549.22 25374.48 19577.88 28045.49 27677.40 19460.64 15884.59 22186.24 69
gg-mvs-nofinetune55.75 30356.75 30252.72 33562.87 34728.04 38668.92 21841.36 39671.09 4150.80 38292.63 1220.74 39666.86 30329.97 37672.41 33763.25 365
gm-plane-assit62.51 34833.91 36037.25 34962.71 38072.74 24238.70 326
MVS-HIRNet45.53 35547.29 35540.24 38062.29 34926.82 39056.02 34237.41 40229.74 38243.69 40081.27 22733.96 33755.48 34824.46 39656.79 39238.43 401
diffmvspermissive67.42 20767.50 20567.20 23262.26 35045.21 27464.87 27777.04 18848.21 26071.74 23279.70 25358.40 19371.17 26564.99 11880.27 26985.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 36639.89 37146.80 36261.81 35151.59 20533.56 39835.74 40327.48 38637.64 40453.53 39423.24 39242.09 38927.39 38658.64 38946.72 393
KD-MVS_self_test66.38 22067.51 20462.97 27161.76 35234.39 35758.11 32975.30 20450.84 23677.12 14885.42 17256.84 21469.44 27651.07 23991.16 9785.08 91
MDA-MVSNet-bldmvs62.34 26361.73 26164.16 25561.64 35349.90 22248.11 37357.24 32553.31 20880.95 10679.39 25849.00 25961.55 33145.92 28580.05 27181.03 197
miper_enhance_ethall65.86 22465.05 24068.28 22261.62 35442.62 29664.74 27877.97 17742.52 30973.42 21272.79 32449.66 25177.68 19158.12 18084.59 22184.54 110
WTY-MVS49.39 34650.31 34846.62 36361.22 35532.00 36846.61 37849.77 36533.87 36554.12 37269.55 35141.96 29745.40 37531.28 37164.42 37462.47 370
CMPMVSbinary48.73 2061.54 27060.89 27163.52 26461.08 35651.55 20668.07 23468.00 26833.88 36465.87 29781.25 22837.91 32367.71 29049.32 25482.60 24271.31 313
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 34050.69 34549.64 35060.76 35741.87 30053.18 35845.48 37943.41 30549.41 38760.47 38829.22 37344.73 38042.09 30672.14 34162.33 372
test-mter48.56 34848.20 35349.64 35060.76 35741.87 30053.18 35845.48 37931.91 37649.41 38760.47 38818.34 40344.73 38042.09 30672.14 34162.33 372
GG-mvs-BLEND52.24 33660.64 35929.21 38369.73 20942.41 38945.47 39352.33 39720.43 39868.16 28725.52 39365.42 37259.36 379
tpmvs55.84 30255.45 31257.01 31460.33 36033.20 36365.89 26359.29 31647.52 26956.04 36173.60 31731.05 36268.06 28940.64 31664.64 37369.77 327
miper_lstm_enhance61.97 26461.63 26462.98 27060.04 36145.74 27147.53 37570.95 24844.04 29473.06 21678.84 26939.72 31260.33 33455.82 20184.64 22082.88 160
dmvs_re49.91 34550.77 34447.34 35959.98 36238.86 32353.18 35853.58 34839.75 33255.06 36661.58 38436.42 33144.40 38229.15 38368.23 36358.75 380
PVSNet_036.71 2241.12 36740.78 37042.14 37659.97 36340.13 31440.97 38742.24 39330.81 38044.86 39649.41 40040.70 30645.12 37723.15 39834.96 40341.16 399
dmvs_testset45.26 35647.51 35438.49 38359.96 36414.71 40758.50 32543.39 38541.30 31651.79 37956.48 39239.44 31549.91 36121.42 40155.35 39750.85 388
new-patchmatchnet52.89 32555.76 31044.26 37359.94 3656.31 41137.36 39550.76 36241.10 31864.28 30879.82 25144.77 28048.43 36636.24 34987.61 16978.03 249
test20.0355.74 30457.51 29750.42 34559.89 36632.09 36750.63 36749.01 36850.11 24465.07 30383.23 20645.61 27548.11 36730.22 37483.82 23071.07 317
MVSTER63.29 25261.60 26568.36 21859.77 36746.21 26760.62 31171.32 24041.83 31275.40 18279.12 26430.25 36775.85 20656.30 19479.81 27483.03 157
N_pmnet52.06 33151.11 33954.92 32359.64 36871.03 5337.42 39461.62 30933.68 36657.12 35272.10 32637.94 32231.03 40129.13 38471.35 34562.70 367
test_vis1_n_192052.96 32353.50 32251.32 34259.15 36944.90 27656.13 34164.29 29430.56 38159.87 34260.68 38640.16 30947.47 36848.25 26662.46 37961.58 374
JIA-IIPM54.03 31651.62 33461.25 28859.14 37055.21 18659.10 31947.72 37250.85 23550.31 38685.81 17020.10 39963.97 32036.16 35055.41 39664.55 362
LF4IMVS67.50 20367.31 20868.08 22358.86 37161.93 12771.43 18375.90 20044.67 29272.42 22580.20 24457.16 20870.44 27158.99 17586.12 19771.88 307
UnsupCasMVSNet_bld50.01 34451.03 34146.95 36058.61 37232.64 36448.31 37153.27 35234.27 36360.47 33671.53 33241.40 29947.07 37030.68 37260.78 38461.13 375
dp44.09 36244.88 36441.72 37958.53 37323.18 39954.70 35242.38 39134.80 35944.25 39865.61 37224.48 39044.80 37929.77 37749.42 39957.18 384
testgi54.00 31856.86 30145.45 36758.20 37425.81 39549.05 36949.50 36745.43 28467.84 28381.17 22951.81 24043.20 38729.30 37979.41 27967.34 344
wuyk23d61.97 26466.25 21849.12 35458.19 37560.77 14966.32 25852.97 35355.93 17090.62 586.91 13273.07 5735.98 39920.63 40391.63 8750.62 389
ANet_high67.08 21169.94 17058.51 30757.55 37627.09 38958.43 32676.80 19263.56 10182.40 8791.93 2059.82 18164.98 31750.10 24788.86 15683.46 142
Patchmatch-test47.93 34949.96 34941.84 37757.42 37724.26 39748.75 37041.49 39539.30 33556.79 35673.48 31830.48 36633.87 40029.29 38072.61 33667.39 342
test_vis1_n51.27 33750.41 34753.83 32756.99 37850.01 22056.75 33560.53 31125.68 39159.74 34357.86 39129.40 37247.41 36943.10 30163.66 37664.08 364
new_pmnet37.55 37039.80 37230.79 38556.83 37916.46 40639.35 39130.65 40525.59 39245.26 39461.60 38324.54 38828.02 40421.60 40052.80 39847.90 392
pmmvs346.71 35245.09 36251.55 34056.76 38048.25 23655.78 34439.53 40024.13 39650.35 38563.40 37715.90 40851.08 35629.29 38070.69 35155.33 386
sss47.59 35148.32 35145.40 36856.73 38133.96 35945.17 38148.51 37032.11 37552.37 37665.79 37140.39 30841.91 39131.85 36861.97 38160.35 376
tpmrst50.15 34351.38 33746.45 36456.05 38224.77 39664.40 28449.98 36436.14 35353.32 37469.59 35035.16 33448.69 36339.24 32258.51 39065.89 351
TESTMET0.1,145.17 35744.93 36345.89 36656.02 38338.31 32753.18 35841.94 39427.85 38444.86 39656.47 39317.93 40441.50 39238.08 33368.06 36457.85 381
ADS-MVSNet248.76 34747.25 35653.29 33355.90 38440.54 31247.34 37654.99 34031.41 37850.48 38372.06 32731.23 35854.26 35225.93 38955.93 39365.07 357
ADS-MVSNet44.62 36045.58 35941.73 37855.90 38420.83 40347.34 37639.94 39931.41 37850.48 38372.06 32731.23 35839.31 39525.93 38955.93 39365.07 357
test0.0.03 147.72 35048.31 35245.93 36555.53 38629.39 38146.40 37941.21 39743.41 30555.81 36467.65 36529.22 37343.77 38625.73 39269.87 35664.62 361
UnsupCasMVSNet_eth52.26 33053.29 32549.16 35355.08 38733.67 36150.03 36858.79 31737.67 34763.43 32174.75 30441.82 29845.83 37238.59 32959.42 38767.98 341
pmmvs552.49 32952.58 32952.21 33754.99 38832.38 36555.45 34553.84 34632.15 37355.49 36574.81 30138.08 32157.37 34734.02 36074.40 32266.88 346
DSMNet-mixed43.18 36544.66 36538.75 38254.75 38928.88 38457.06 33427.42 40713.47 40347.27 39177.67 28238.83 31739.29 39625.32 39460.12 38648.08 391
MDA-MVSNet_test_wron52.57 32853.49 32449.81 34954.24 39036.47 34140.48 38946.58 37738.13 34275.47 18173.32 32041.05 30543.85 38540.98 31471.20 34769.10 335
YYNet152.58 32753.50 32249.85 34854.15 39136.45 34240.53 38846.55 37838.09 34375.52 18073.31 32141.08 30443.88 38441.10 31271.14 34869.21 333
EPMVS45.74 35446.53 35743.39 37554.14 39222.33 40255.02 34735.00 40434.69 36151.09 38170.20 34225.92 38342.04 39037.19 33955.50 39565.78 352
test_cas_vis1_n_192050.90 33850.92 34250.83 34454.12 39347.80 24551.44 36654.61 34126.95 38863.95 31260.85 38537.86 32544.97 37845.53 28862.97 37859.72 378
test_fmvs356.78 29955.99 30859.12 30253.96 39448.09 24058.76 32366.22 27527.54 38576.66 16068.69 36025.32 38751.31 35553.42 22873.38 33177.97 252
test_fmvs1_n52.70 32652.01 33354.76 32453.83 39550.36 21455.80 34365.90 27724.96 39365.39 30060.64 38727.69 37648.46 36445.88 28667.99 36565.46 354
KD-MVS_2432*160052.05 33251.58 33553.44 33152.11 39631.20 37144.88 38264.83 28941.53 31464.37 30670.03 34615.61 40964.20 31836.25 34774.61 31964.93 359
miper_refine_blended52.05 33251.58 33553.44 33152.11 39631.20 37144.88 38264.83 28941.53 31464.37 30670.03 34615.61 40964.20 31836.25 34774.61 31964.93 359
test_fmvs254.80 31154.11 32056.88 31651.76 39849.95 22156.70 33665.80 27826.22 39069.42 26265.25 37331.82 35349.98 35949.63 25170.36 35270.71 319
E-PMN45.17 35745.36 36044.60 37150.07 39942.75 29438.66 39242.29 39246.39 27539.55 40151.15 39826.00 38245.37 37637.68 33576.41 30245.69 395
PMMVS44.69 35943.95 36746.92 36150.05 40053.47 19848.08 37442.40 39022.36 39944.01 39953.05 39642.60 29545.49 37431.69 36961.36 38341.79 398
test_fmvs151.51 33650.86 34353.48 33049.72 40149.35 23054.11 35464.96 28724.64 39563.66 31759.61 39028.33 37548.45 36545.38 29167.30 36962.66 369
EMVS44.61 36144.45 36645.10 37048.91 40243.00 29237.92 39341.10 39846.75 27338.00 40348.43 40126.42 38046.27 37137.11 34175.38 31346.03 394
mvsany_test343.76 36441.01 36852.01 33848.09 40357.74 17242.47 38623.85 41023.30 39864.80 30462.17 38227.12 37740.59 39329.17 38248.11 40057.69 382
mvsany_test137.88 36835.74 37344.28 37247.28 40449.90 22236.54 39624.37 40919.56 40245.76 39253.46 39532.99 34337.97 39826.17 38735.52 40244.99 397
test_vis3_rt51.94 33451.04 34054.65 32546.32 40550.13 21844.34 38478.17 17323.62 39768.95 27062.81 37921.41 39538.52 39741.49 31072.22 34075.30 275
test_vis1_rt46.70 35345.24 36151.06 34344.58 40651.04 20939.91 39067.56 26921.84 40151.94 37850.79 39933.83 33839.77 39435.25 35661.50 38262.38 371
MVEpermissive27.91 2336.69 37135.64 37439.84 38143.37 40735.85 34719.49 40024.61 40824.68 39439.05 40262.63 38138.67 31927.10 40521.04 40247.25 40156.56 385
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 36940.87 36928.36 38642.41 4085.35 41224.61 39927.75 40632.15 37347.85 38970.27 34135.85 33329.51 40319.08 40467.85 36650.22 390
test_f43.79 36345.63 35838.24 38442.29 40938.58 32534.76 39747.68 37322.22 40067.34 29063.15 37831.82 35330.60 40239.19 32362.28 38045.53 396
DeepMVS_CXcopyleft11.83 38815.51 41013.86 40811.25 4135.76 40420.85 40626.46 40317.06 4079.22 4079.69 40713.82 40612.42 403
test_method19.26 37219.12 37619.71 3879.09 4111.91 4147.79 40253.44 3501.42 40510.27 40735.80 40217.42 40625.11 40612.44 40524.38 40532.10 402
tmp_tt11.98 37414.73 3773.72 3892.28 4124.62 41319.44 40114.50 4120.47 40721.55 4059.58 40525.78 3844.57 40811.61 40627.37 4041.96 404
test1234.43 3775.78 3800.39 3910.97 4130.28 41546.33 3800.45 4140.31 4080.62 4091.50 4080.61 4140.11 4100.56 4080.63 4070.77 406
testmvs4.06 3785.28 3810.41 3900.64 4140.16 41642.54 3850.31 4150.26 4090.50 4101.40 4090.77 4130.17 4090.56 4080.55 4080.90 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k17.71 37323.62 3750.00 3920.00 4150.00 4170.00 40370.17 2550.00 4100.00 41174.25 31168.16 960.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas5.20 3766.93 3790.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41062.39 1500.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re5.62 3757.50 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41167.46 3660.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS22.69 40036.10 351
PC_three_145246.98 27281.83 9286.28 15466.55 11684.47 7163.31 13890.78 11383.49 138
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 149
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
GSMVS70.05 323
sam_mvs131.41 35670.05 323
sam_mvs31.21 360
MTGPAbinary80.63 125
test_post166.63 2552.08 40630.66 36559.33 33840.34 318
test_post1.99 40730.91 36354.76 351
patchmatchnet-post68.99 35331.32 35769.38 277
MTMP84.83 3119.26 411
test9_res72.12 6991.37 9277.40 255
agg_prior270.70 7490.93 10778.55 241
test_prior470.14 6377.57 101
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10169.81 7792.76 73
旧先验271.17 19045.11 28878.54 13161.28 33259.19 174
新几何271.33 186
无先验74.82 13870.94 24947.75 26776.85 20154.47 21472.09 306
原ACMM274.78 142
testdata267.30 29648.34 264
segment_acmp68.30 95
testdata168.34 23157.24 156
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 416
nn0.00 416
door-mid55.02 339
test1182.71 86
door52.91 354
HQP5-MVS58.80 166
BP-MVS67.38 101
HQP4-MVS71.59 23485.31 5283.74 133
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 198
MDTV_nov1_ep13_2view18.41 40453.74 35631.57 37744.89 39529.90 37132.93 36571.48 310
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 146