This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 11993.61 6072.28 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31577.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33577.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 31877.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 20987.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31776.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29278.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11195.62 994.88 5
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39473.86 5286.31 1978.84 1994.03 5384.64 104
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28074.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21091.64 8689.08 32
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
新几何169.99 18988.37 3471.34 5162.08 30243.85 29274.99 18486.11 16452.85 23070.57 26750.99 23783.23 23768.05 330
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test22287.30 3769.15 7367.85 23359.59 31241.06 31473.05 21685.72 17248.03 26280.65 26466.92 335
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
EGC-MVSNET64.77 23161.17 26475.60 9886.90 4274.47 3084.04 3568.62 2610.60 3961.13 39891.61 2865.32 12774.15 23064.01 12688.28 16078.17 245
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
VDDNet71.60 14973.13 12867.02 23286.29 4741.11 30269.97 20366.50 27068.72 5574.74 18791.70 2559.90 17875.81 20748.58 25891.72 8484.15 125
test_0728_SECOND76.57 8586.20 4860.57 14983.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14683.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14683.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 13983.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14380.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
test_241102_ONE86.12 5361.06 13984.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
test_part285.90 5766.44 9184.61 62
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18791.08 10473.00 287
testdata64.13 25385.87 5963.34 11961.80 30547.83 26476.42 17086.60 14848.83 25662.31 32154.46 21281.26 25866.74 339
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
test_one_060185.84 6161.45 13385.63 2775.27 1785.62 4890.38 6476.72 27
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior785.18 6666.21 94
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29151.92 22083.13 7790.26 7039.21 31069.91 27270.73 7391.60 8984.56 111
WR-MVS71.20 15272.48 14167.36 22784.98 7135.70 34564.43 28068.66 26065.05 8681.49 9986.43 15357.57 20576.48 20350.36 24293.32 6589.90 23
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14088.14 16271.73 301
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29470.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20295.47 1091.35 13
旧先验184.55 7960.36 15163.69 29487.05 13154.65 22183.34 23669.66 319
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
plane_prior184.46 81
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 9991.26 9583.50 138
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
plane_prior684.18 8565.31 10360.83 170
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17378.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16491.03 10580.45 214
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11591.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19871.12 24554.28 18977.89 13783.41 19749.04 25380.98 12763.62 13390.77 11678.58 239
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26669.47 20980.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19494.98 2091.93 8
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28165.65 26577.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20595.63 891.93 8
test_040278.17 6979.48 5974.24 11383.50 9159.15 16072.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11788.68 15781.20 191
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14789.79 13583.08 156
NP-MVS83.34 9563.07 12285.97 167
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14391.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13483.29 4880.34 13257.43 15486.65 3191.79 2350.52 24386.01 3171.36 7094.65 3291.62 11
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24370.41 20081.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18695.25 1490.94 17
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21471.45 23554.28 18977.89 13778.26 27349.04 25379.23 15563.62 13389.13 15180.92 200
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26669.26 21278.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19494.98 2091.05 15
HyFIR lowres test63.01 25160.47 27170.61 17483.04 10254.10 19259.93 31372.24 22833.67 35769.00 26675.63 29438.69 31376.93 19736.60 34075.45 30580.81 205
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21571.39 23649.17 25371.70 23278.07 27837.62 32179.21 15661.81 14489.15 14980.82 203
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24689.95 13080.89 201
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29079.18 26251.42 23978.38 17454.39 21479.72 27678.60 238
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16470.53 19781.23 10947.79 26564.16 30780.21 24251.32 24083.12 9060.14 16484.95 21574.83 274
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16571.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20680.84 26272.74 291
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16577.32 10784.12 6559.08 13471.58 23485.96 16858.09 19685.30 5367.38 10189.16 14783.73 135
test1276.51 8682.28 11460.94 14281.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
TAMVS65.31 22463.75 24369.97 19082.23 11559.76 15566.78 25263.37 29645.20 28569.79 25979.37 25847.42 26572.17 25034.48 35385.15 21077.99 250
test_prior75.27 10282.15 11659.85 15484.33 5983.39 8682.58 171
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14179.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26790.00 12873.37 284
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19681.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 17881.66 25582.87 162
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14392.40 7778.92 236
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23287.19 18382.56 172
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18676.47 11675.49 20064.10 9587.73 1792.24 1750.45 24581.30 11867.41 9791.46 9286.04 73
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13082.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
tt080576.12 8378.43 6869.20 20081.32 12641.37 30076.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12492.40 7787.17 60
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 15974.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12189.09 15380.73 207
MIMVSNet166.57 21469.23 17658.59 30381.26 12837.73 33264.06 28357.62 31657.02 15778.40 13290.75 4662.65 14458.10 33641.77 30689.58 14079.95 220
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12096.10 487.21 57
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 21972.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 14986.15 19676.32 262
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20782.60 9870.08 7792.80 7189.25 28
CDS-MVSNet64.33 23962.66 25569.35 19880.44 13458.28 16965.26 27065.66 27644.36 29067.30 28975.54 29543.27 28371.77 25637.68 33284.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13280.58 6682.12 9153.54 20583.93 7091.03 3749.49 24985.97 3373.26 5793.08 6791.59 12
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29180.63 23759.44 18281.74 11346.91 27484.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CHOSEN 1792x268858.09 29056.30 30163.45 26279.95 13750.93 21054.07 34665.59 27728.56 37361.53 32474.33 30741.09 29766.52 30533.91 35667.69 35872.92 288
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18474.69 14662.04 30466.16 7184.76 6093.23 549.47 25080.97 12865.66 11486.67 19185.02 94
VPNet65.58 22267.56 20159.65 29679.72 13930.17 37260.27 31162.14 30054.19 19471.24 24286.63 14658.80 18967.62 28944.17 29390.87 11381.18 192
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17778.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
lessismore_v072.75 14779.60 14156.83 17657.37 31983.80 7289.01 9847.45 26478.74 16564.39 12386.49 19482.69 168
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 19966.64 26956.87 15876.81 15781.76 22568.78 8871.76 25761.81 14483.74 23073.18 286
Test_1112_low_res58.78 28658.69 28359.04 30179.41 14338.13 32857.62 32666.98 26834.74 35059.62 34077.56 28242.92 28663.65 31638.66 32470.73 34075.35 271
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13177.45 10681.98 9462.47 11479.06 12580.19 24461.83 15478.79 16459.83 16887.35 17679.54 228
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14580.18 7674.88 20566.93 6269.11 26488.95 10157.84 20386.12 2976.63 3789.77 13685.28 86
MVP-Stereo61.56 26559.22 27868.58 21479.28 14660.44 15069.20 21371.57 23143.58 29856.42 35278.37 27239.57 30876.46 20434.86 35260.16 37568.86 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MG-MVS70.47 16171.34 15967.85 22279.26 14740.42 31074.67 14775.15 20458.41 14268.74 27688.14 12156.08 21783.69 8059.90 16781.71 25479.43 230
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24179.43 8278.04 17470.09 4979.17 12488.02 12253.04 22983.60 8158.05 18193.76 5990.79 19
FC-MVSNet-test73.32 11874.78 10168.93 20879.21 14936.57 33771.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18294.56 3491.23 14
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
VDD-MVS70.81 15771.44 15868.91 20979.07 15546.51 26067.82 23470.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23590.28 12284.61 107
test111164.62 23265.19 22862.93 26979.01 15629.91 37365.45 26854.41 33954.09 19671.47 24188.48 11137.02 32374.29 22846.83 27689.94 13184.58 110
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25660.73 12474.39 19678.44 27157.72 20482.78 9560.16 16389.60 13879.11 233
test250661.23 26760.85 26862.38 27478.80 15827.88 37967.33 24337.42 39154.23 19167.55 28688.68 10717.87 39574.39 22646.33 27989.41 14384.86 97
ECVR-MVScopyleft64.82 22965.22 22763.60 25978.80 15831.14 36966.97 24856.47 33054.23 19169.94 25688.68 10737.23 32274.81 22145.28 28989.41 14384.86 97
FIs72.56 13973.80 11468.84 21178.74 16037.74 33171.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 18893.36 6490.51 21
v7n79.37 5680.41 5276.28 9078.67 16155.81 18179.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 10991.24 9687.61 52
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30353.70 22185.33 20681.92 184
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 19880.45 6877.32 18365.11 8576.47 16886.80 13549.47 25083.77 7753.89 21992.72 7488.81 41
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15373.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25689.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20174.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13781.84 24983.18 153
LFMVS67.06 21067.89 19764.56 25078.02 16738.25 32670.81 19659.60 31165.18 8371.06 24486.56 14943.85 28075.22 21446.35 27889.63 13780.21 218
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
BH-untuned69.39 17669.46 17269.18 20177.96 16956.88 17468.47 22877.53 18056.77 16077.79 14079.63 25360.30 17580.20 14446.04 28180.65 26470.47 312
1112_ss59.48 28158.99 28160.96 28877.84 17042.39 29561.42 30168.45 26237.96 33559.93 33767.46 35645.11 27365.07 30940.89 31271.81 33475.41 269
PS-MVSNAJ64.27 24063.73 24465.90 24377.82 17151.42 20763.33 29072.33 22645.09 28761.60 32368.04 35462.39 14973.95 23249.07 25273.87 32172.34 294
ambc70.10 18777.74 17250.21 21774.28 15277.93 17779.26 12388.29 11654.11 22579.77 14864.43 12291.10 10380.30 216
xiu_mvs_v2_base64.43 23763.96 24165.85 24477.72 17351.32 20863.63 28772.31 22745.06 28861.70 32269.66 34262.56 14573.93 23349.06 25373.91 32072.31 295
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 26974.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 17992.77 7289.30 27
FMVSNet171.06 15372.48 14166.81 23377.65 17540.68 30671.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24388.05 16484.54 112
FPMVS59.43 28260.07 27357.51 30977.62 17671.52 4962.33 29750.92 35357.40 15569.40 26280.00 24839.14 31161.92 32337.47 33566.36 36039.09 390
testing358.28 28958.38 28758.00 30777.45 17726.12 38460.78 30743.00 37756.02 16770.18 25375.76 29213.27 40267.24 29548.02 26580.89 26080.65 210
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19068.77 22283.43 7552.12 21676.79 15874.44 30669.54 8583.91 7555.88 19793.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23466.74 11281.96 10861.74 14689.40 14585.69 81
Baseline_NR-MVSNet70.62 15973.19 12662.92 27076.97 18234.44 35368.84 21770.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 20995.27 1385.22 87
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15488.95 15587.56 53
SSC-MVS61.79 26366.08 21848.89 34676.91 18410.00 40053.56 34847.37 36668.20 5876.56 16389.21 9054.13 22457.59 33754.75 20774.07 31979.08 234
jason64.47 23662.84 25369.34 19976.91 18459.20 15667.15 24565.67 27535.29 34765.16 30076.74 28844.67 27570.68 26554.74 20879.28 27978.14 246
jason: jason.
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17873.34 15884.67 5162.04 11572.19 22970.81 33265.90 12085.24 5658.64 17684.96 21481.95 183
Anonymous2024052972.56 13973.79 11568.86 21076.89 18745.21 27168.80 22177.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 23890.00 12887.18 59
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17580.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
PM-MVS64.49 23563.61 24567.14 23176.68 18975.15 2768.49 22742.85 37851.17 23377.85 13980.51 23845.76 26766.31 30652.83 22776.35 29759.96 367
TransMVSNet (Re)69.62 17171.63 15363.57 26076.51 19035.93 34365.75 26471.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24589.48 14184.38 119
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19564.62 27773.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25777.96 29278.31 242
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23562.19 15283.86 7668.02 9090.92 10983.65 136
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33186.14 16252.37 23277.12 19550.67 23985.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchMatch-RL58.68 28757.72 29161.57 28076.21 19473.59 3961.83 29849.00 36047.30 26961.08 32768.97 34750.16 24659.01 33036.06 34768.84 35152.10 377
VPA-MVSNet68.71 18570.37 16763.72 25876.13 19538.06 32964.10 28271.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 26990.15 12583.37 147
WB-MVS60.04 27764.19 23947.59 34876.09 19610.22 39952.44 35346.74 36765.17 8474.07 20287.48 12553.48 22755.28 34049.36 25072.84 32677.28 255
PAPM61.79 26360.37 27266.05 24176.09 19641.87 29769.30 21176.79 19040.64 32253.80 36479.62 25444.38 27782.92 9429.64 37273.11 32573.36 285
BH-w/o64.81 23064.29 23866.36 23876.08 19854.71 18765.61 26675.23 20350.10 24571.05 24571.86 32754.33 22379.02 15938.20 32976.14 29965.36 345
dcpmvs_271.02 15572.65 13866.16 24076.06 19950.49 21371.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29461.54 14883.71 23280.71 209
pmmvs671.82 14773.66 11766.31 23975.94 20042.01 29666.99 24772.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23390.46 12087.22 56
CANet73.00 12871.84 14976.48 8775.82 20161.28 13574.81 14080.37 13063.17 10862.43 32180.50 23961.10 16785.16 6064.00 12784.34 22483.01 159
pmmvs-eth3d64.41 23863.27 24967.82 22475.81 20260.18 15269.49 20862.05 30338.81 33274.13 20082.23 21943.76 28168.65 28142.53 30080.63 26674.63 275
TR-MVS64.59 23363.54 24667.73 22575.75 20350.83 21163.39 28970.29 25249.33 25171.55 23874.55 30450.94 24178.46 17040.43 31475.69 30173.89 281
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20075.05 13663.27 29754.69 18378.87 12784.37 18526.63 37481.15 12063.95 12887.93 16889.51 25
cascas64.59 23362.77 25470.05 18875.27 20550.02 21961.79 29971.61 23042.46 30563.68 31468.89 34949.33 25280.35 13847.82 26884.05 22779.78 223
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 17980.99 6176.84 18862.48 11371.24 24277.51 28361.51 15980.96 13152.04 22885.76 20171.22 306
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18369.39 21081.29 10652.44 21364.53 30370.69 33360.33 17482.30 10354.27 21676.31 29880.75 206
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24675.31 13481.11 11149.62 25066.33 29379.27 25961.53 15882.96 9348.12 26481.50 25781.74 187
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15783.98 3675.72 19852.27 21463.53 31776.74 28843.19 28480.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24661.49 26268.97 20674.93 20959.19 15765.80 26364.52 28834.68 35263.53 31774.25 30943.19 28470.62 26653.88 22078.67 28577.10 259
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22674.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15092.34 7988.94 37
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16690.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18380.89 26089.17 31
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16372.24 16571.56 23263.92 9678.59 12871.59 32866.22 11778.60 16667.58 9580.32 26789.00 35
v124073.06 12573.14 12772.84 14574.74 21547.27 25471.88 17881.11 11151.80 22182.28 8984.21 18756.22 21682.34 10268.82 8387.17 18488.91 38
v192192072.96 13172.98 13272.89 14474.67 21647.58 24971.92 17680.69 12051.70 22381.69 9883.89 19256.58 21482.25 10468.34 8687.36 17588.82 40
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16872.02 17071.50 23363.53 10278.58 13071.39 33165.98 11878.53 16767.30 10480.18 26989.23 29
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23466.06 25878.32 16850.62 23871.48 24075.54 29568.75 8979.59 15250.55 24178.73 28482.86 163
v119273.40 11673.42 12073.32 12974.65 21948.67 23372.21 16681.73 9852.76 21181.85 9284.56 18257.12 20882.24 10568.58 8487.33 17789.06 33
v14419272.99 12973.06 13072.77 14674.58 22047.48 25071.90 17780.44 12851.57 22481.46 10084.11 18958.04 20082.12 10667.98 9287.47 17388.70 43
MAR-MVS67.72 20066.16 21772.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29768.58 35357.01 21177.79 18846.68 27781.92 24674.42 277
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
v1075.69 8676.20 8774.16 11474.44 22248.69 23275.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
canonicalmvs72.29 14473.38 12269.04 20374.23 22347.37 25273.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18587.28 17984.40 118
Anonymous20240521166.02 21966.89 21363.43 26374.22 22438.14 32759.00 31766.13 27263.33 10769.76 26085.95 16951.88 23470.50 26844.23 29287.52 17181.64 188
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21574.72 14582.73 8362.62 11170.77 24676.83 28769.96 8180.97 12860.20 16178.43 28783.45 144
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19177.55 10473.42 21557.65 15272.66 22084.91 17932.02 34781.49 11548.43 26081.85 24881.04 195
v114473.29 11973.39 12173.01 13674.12 22748.11 23972.01 17181.08 11453.83 20281.77 9484.68 18058.07 19981.91 10968.10 8886.86 18688.99 36
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20476.45 11876.12 19359.07 13774.04 20486.18 15952.18 23379.43 15459.75 17081.76 25084.03 126
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22271.31 18771.32 23858.22 14375.40 18170.44 33458.16 19475.85 20562.51 14179.81 27388.48 44
CVMVSNet59.21 28358.44 28661.51 28173.94 22947.76 24771.31 18764.56 28726.91 37960.34 33370.44 33436.24 32767.65 28853.57 22268.66 35269.12 325
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22271.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20375.96 12973.54 21350.56 23969.90 25782.85 21024.76 38383.73 7865.40 11686.33 19585.22 87
alignmvs70.54 16071.00 16269.15 20273.50 23348.04 24269.85 20679.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18487.21 18284.72 102
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27474.71 30365.36 12675.75 20852.00 22979.00 28181.03 196
v875.07 9675.64 9473.35 12773.42 23547.46 25175.20 13581.45 10360.05 12885.64 4589.26 8858.08 19881.80 11169.71 8187.97 16790.79 19
tfpnnormal66.48 21567.93 19662.16 27673.40 23636.65 33663.45 28864.99 28255.97 16872.82 21987.80 12457.06 21069.10 27948.31 26287.54 17080.72 208
IterMVS-SCA-FT67.68 20166.07 21972.49 15573.34 23758.20 17063.80 28565.55 27848.10 26076.91 15282.64 21545.20 27178.84 16261.20 15177.89 29380.44 215
VNet64.01 24365.15 23160.57 29073.28 23835.61 34657.60 32767.08 26754.61 18566.76 29283.37 20056.28 21566.87 29942.19 30285.20 20979.23 232
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 21978.47 16960.82 15781.07 25975.45 268
GBi-Net68.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
test168.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
FMVSNet267.48 20368.21 19365.29 24573.14 24038.94 31968.81 21971.21 24454.81 17876.73 15986.48 15148.63 25974.60 22347.98 26686.11 19882.35 175
thisisatest053067.05 21165.16 22972.73 14973.10 24350.55 21271.26 18963.91 29350.22 24374.46 19580.75 23526.81 37380.25 14159.43 17286.50 19387.37 54
pm-mvs168.40 18969.85 17164.04 25673.10 24339.94 31264.61 27870.50 25055.52 17373.97 20589.33 8663.91 13768.38 28349.68 24788.02 16583.81 131
pmmvs460.78 27159.04 28066.00 24273.06 24557.67 17264.53 27960.22 30936.91 34165.96 29477.27 28439.66 30768.54 28238.87 32274.89 30971.80 300
SDMVSNet66.36 21767.85 19961.88 27873.04 24646.14 26558.54 32171.36 23751.42 22768.93 27082.72 21365.62 12262.22 32254.41 21384.67 21677.28 255
sd_testset63.55 24465.38 22558.07 30673.04 24638.83 32157.41 32865.44 27951.42 22768.93 27082.72 21363.76 13858.11 33541.05 31084.67 21677.28 255
v2v48272.55 14172.58 13972.43 15672.92 24846.72 25871.41 18479.13 15155.27 17481.17 10485.25 17655.41 21881.13 12167.25 10585.46 20289.43 26
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22772.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet54.39 30756.12 30349.20 34272.57 25030.91 37059.98 31248.43 36241.66 30855.94 35483.86 19341.19 29650.42 34726.05 38275.38 30666.27 340
Patchmatch-RL test59.95 27859.12 27962.44 27372.46 25154.61 18959.63 31447.51 36541.05 31574.58 19374.30 30831.06 35665.31 30751.61 23179.85 27267.39 332
CL-MVSNet_self_test62.44 25863.40 24759.55 29772.34 25232.38 36256.39 33264.84 28451.21 23267.46 28781.01 23250.75 24263.51 31738.47 32788.12 16382.75 166
Vis-MVSNet (Re-imp)62.74 25563.21 25061.34 28472.19 25331.56 36667.31 24453.87 34053.60 20469.88 25883.37 20040.52 30170.98 26441.40 30886.78 18981.48 190
thres100view90061.17 26861.09 26561.39 28372.14 25435.01 34965.42 26956.99 32455.23 17570.71 24779.90 24932.07 34572.09 25135.61 34881.73 25177.08 260
ab-mvs64.11 24165.13 23261.05 28671.99 25538.03 33067.59 23568.79 25949.08 25565.32 29986.26 15758.02 20166.85 30139.33 31879.79 27578.27 243
thres600view761.82 26261.38 26363.12 26571.81 25634.93 35064.64 27656.99 32454.78 18270.33 25179.74 25132.07 34572.42 24838.61 32583.46 23582.02 181
QAPM69.18 17969.26 17568.94 20771.61 25752.58 20280.37 7178.79 15949.63 24973.51 20885.14 17753.66 22679.12 15755.11 20475.54 30375.11 273
baseline73.10 12273.96 11270.51 17771.46 25846.39 26372.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12587.27 18087.11 61
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 25970.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23170.62 7568.69 28069.74 8083.60 23483.14 154
Anonymous2023120654.13 30855.82 30549.04 34570.89 26135.96 34251.73 35450.87 35434.86 34862.49 32079.22 26042.52 29044.29 37327.95 37981.88 24766.88 336
fmvsm_s_conf0.1_n_a67.37 20666.36 21570.37 17970.86 26261.17 13774.00 15557.18 32340.77 31968.83 27580.88 23363.11 14167.61 29066.94 10674.72 31082.33 178
tfpn200view960.35 27559.97 27461.51 28170.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25177.08 260
thres40060.77 27259.97 27463.15 26470.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25182.02 181
MSDG67.47 20467.48 20467.46 22670.70 26554.69 18866.90 25078.17 17160.88 12370.41 24974.76 30161.22 16573.18 23747.38 27076.87 29574.49 276
test_yl65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
DCV-MVSNet65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20178.35 16737.69 33674.29 19778.89 26761.10 16768.10 28565.87 11379.07 28085.53 83
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21270.56 26853.91 19478.29 9677.35 18248.85 25670.22 25283.52 19652.65 23176.93 19755.31 20381.99 24575.49 267
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23563.78 28682.13 9054.00 19868.96 26875.17 29958.95 18880.06 14658.55 17782.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LCM-MVSNet-Re69.10 18071.57 15661.70 27970.37 27134.30 35561.45 30079.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30187.33 17777.85 252
patch_mono-262.73 25664.08 24058.68 30270.36 27255.87 18060.84 30664.11 29241.23 31264.04 30878.22 27460.00 17648.80 35254.17 21783.71 23271.37 303
SCA58.57 28858.04 28960.17 29370.17 27341.07 30365.19 27153.38 34643.34 30261.00 33073.48 31545.20 27169.38 27640.34 31570.31 34370.05 315
ET-MVSNet_ETH3D63.32 24760.69 27071.20 17170.15 27455.66 18265.02 27364.32 28943.28 30368.99 26772.05 32625.46 38078.19 18254.16 21882.80 23979.74 224
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 16988.54 15879.56 225
iter_conf0567.34 20765.62 22272.50 15469.82 27647.06 25672.19 16776.86 18745.32 28472.86 21782.85 21020.53 39083.73 7861.13 15389.02 15486.70 65
PVSNet_BlendedMVS65.38 22364.30 23768.61 21369.81 27749.36 22865.60 26778.96 15345.50 27959.98 33478.61 26951.82 23578.20 18044.30 29084.11 22678.27 243
PVSNet_Blended62.90 25361.64 25966.69 23669.81 27749.36 22861.23 30378.96 15342.04 30659.98 33468.86 35051.82 23578.20 18044.30 29077.77 29472.52 292
OpenMVS_ROBcopyleft54.93 1763.23 24963.28 24863.07 26669.81 27745.34 27068.52 22667.14 26643.74 29670.61 24879.22 26047.90 26372.66 24248.75 25573.84 32271.21 307
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
fmvsm_s_conf0.5_n_a67.00 21265.95 22170.17 18469.72 28161.16 13873.34 15856.83 32640.96 31668.36 27780.08 24762.84 14267.57 29166.90 10874.50 31481.78 186
FMVSNet365.00 22865.16 22964.52 25169.47 28237.56 33466.63 25370.38 25151.55 22574.72 18883.27 20537.89 31974.44 22547.12 27185.37 20381.57 189
MS-PatchMatch55.59 30154.89 31057.68 30869.18 28349.05 23161.00 30562.93 29835.98 34458.36 34368.93 34836.71 32566.59 30437.62 33463.30 36757.39 373
baseline157.82 29258.36 28856.19 31369.17 28430.76 37162.94 29555.21 33446.04 27563.83 31278.47 27041.20 29563.68 31539.44 31768.99 35074.13 278
v14869.38 17769.39 17369.36 19769.14 28544.56 27568.83 21872.70 22254.79 18178.59 12884.12 18854.69 22076.74 20259.40 17382.20 24386.79 63
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
fmvsm_s_conf0.1_n66.60 21365.54 22369.77 19268.99 28759.15 16072.12 16856.74 32840.72 32168.25 28080.14 24661.18 16666.92 29767.34 10374.40 31583.23 152
Syy-MVS54.13 30855.45 30850.18 33668.77 28823.59 38855.02 34144.55 37243.80 29358.05 34564.07 36546.22 26658.83 33146.16 28072.36 32968.12 328
myMVS_eth3d50.36 33150.52 33649.88 33768.77 28822.69 39055.02 34144.55 37243.80 29358.05 34564.07 36514.16 40158.83 33133.90 35772.36 32968.12 328
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
CANet_DTU64.04 24263.83 24264.66 24968.39 29142.97 29073.45 15774.50 20952.05 21854.78 35975.44 29843.99 27970.42 27053.49 22378.41 28880.59 212
EU-MVSNet60.82 27060.80 26960.86 28968.37 29241.16 30172.27 16468.27 26326.96 37769.08 26575.71 29332.09 34467.44 29255.59 20178.90 28273.97 279
PVSNet43.83 2151.56 32551.17 32852.73 32668.34 29338.27 32548.22 36253.56 34436.41 34254.29 36264.94 36434.60 33154.20 34430.34 36769.87 34665.71 343
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13677.56 10363.57 29560.95 12256.62 35182.75 21251.53 23881.24 11954.36 21590.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
fmvsm_s_conf0.5_n66.34 21865.27 22669.57 19568.20 29559.14 16271.66 18056.48 32940.92 31767.78 28279.46 25561.23 16366.90 29867.39 9974.32 31882.66 169
IB-MVS49.67 1859.69 28056.96 29667.90 22168.19 29650.30 21661.42 30165.18 28147.57 26755.83 35567.15 36023.77 38679.60 15143.56 29679.97 27173.79 282
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS60.62 27359.97 27462.58 27268.13 29747.28 25368.59 22473.96 21132.19 36159.94 33668.86 35050.48 24477.64 19141.85 30575.74 30062.83 356
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26167.58 23678.81 15650.72 23778.13 13580.34 24150.15 24780.34 13960.18 16284.65 21887.74 50
TinyColmap67.98 19669.28 17464.08 25467.98 29946.82 25770.04 20275.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28488.01 16672.83 289
EPNet_dtu58.93 28558.52 28460.16 29467.91 30047.70 24869.97 20358.02 31549.73 24847.28 38073.02 32038.14 31562.34 32036.57 34185.99 19970.43 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thres20057.55 29357.02 29559.17 29867.89 30134.93 35058.91 31957.25 32150.24 24264.01 30971.46 33032.49 34171.39 26131.31 36479.57 27771.19 308
our_test_356.46 29656.51 29956.30 31267.70 30239.66 31455.36 34052.34 35140.57 32363.85 31169.91 34140.04 30458.22 33443.49 29775.29 30871.03 310
ppachtmachnet_test60.26 27659.61 27762.20 27567.70 30244.33 27758.18 32460.96 30740.75 32065.80 29672.57 32241.23 29463.92 31446.87 27582.42 24278.33 241
MVS_Test69.84 16870.71 16567.24 22867.49 30443.25 28869.87 20581.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11078.74 28383.96 127
thisisatest051560.48 27457.86 29068.34 21667.25 30546.42 26160.58 30962.14 30040.82 31863.58 31669.12 34526.28 37678.34 17648.83 25482.13 24480.26 217
V4271.06 15370.83 16471.72 16467.25 30547.14 25565.94 25980.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11280.81 26389.23 29
GA-MVS62.91 25261.66 25866.66 23767.09 30744.49 27661.18 30469.36 25751.33 23069.33 26374.47 30536.83 32474.94 21850.60 24074.72 31080.57 213
testf175.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
HY-MVS49.31 1957.96 29157.59 29259.10 30066.85 31036.17 34065.13 27265.39 28039.24 32954.69 36178.14 27644.28 27867.18 29633.75 35870.79 33973.95 280
CR-MVSNet58.96 28458.49 28560.36 29266.37 31148.24 23770.93 19356.40 33132.87 36061.35 32586.66 14333.19 33663.22 31848.50 25970.17 34469.62 320
RPMNet65.77 22165.08 23567.84 22366.37 31148.24 23770.93 19386.27 1954.66 18461.35 32586.77 13833.29 33585.67 4755.93 19670.17 34469.62 320
IterMVS63.12 25062.48 25665.02 24866.34 31352.86 19963.81 28462.25 29946.57 27371.51 23980.40 24044.60 27666.82 30251.38 23475.47 30475.38 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
c3_l69.82 16969.89 17069.61 19466.24 31443.48 28468.12 23179.61 14351.43 22677.72 14180.18 24554.61 22278.15 18363.62 13387.50 17287.20 58
tpm256.12 29754.64 31160.55 29166.24 31436.01 34168.14 23056.77 32733.60 35858.25 34475.52 29730.25 36274.33 22733.27 35969.76 34871.32 304
Anonymous2024052163.55 24466.07 21955.99 31466.18 31644.04 27968.77 22268.80 25846.99 27072.57 22185.84 17039.87 30550.22 34853.40 22692.23 8173.71 283
Patchmtry60.91 26963.01 25254.62 31966.10 31726.27 38367.47 23856.40 33154.05 19772.04 23086.66 14333.19 33660.17 32743.69 29487.45 17477.42 253
FMVSNet555.08 30455.54 30753.71 32165.80 31833.50 35956.22 33452.50 35043.72 29761.06 32883.38 19925.46 38054.87 34130.11 36981.64 25672.75 290
131459.83 27958.86 28262.74 27165.71 31944.78 27468.59 22472.63 22333.54 35961.05 32967.29 35943.62 28271.26 26249.49 24967.84 35772.19 297
MDTV_nov1_ep1354.05 31465.54 32029.30 37559.00 31755.22 33335.96 34552.44 36675.98 29130.77 35959.62 32838.21 32873.33 324
baseline255.57 30252.74 31964.05 25565.26 32144.11 27862.38 29654.43 33839.03 33051.21 37067.35 35833.66 33472.45 24737.14 33764.22 36575.60 266
USDC62.80 25463.10 25161.89 27765.19 32243.30 28767.42 23974.20 21035.80 34672.25 22784.48 18445.67 26871.95 25537.95 33184.97 21170.42 314
tpm50.60 32952.42 32245.14 35965.18 32326.29 38260.30 31043.50 37437.41 33857.01 34879.09 26430.20 36442.32 37832.77 36166.36 36066.81 338
PatchmatchNetpermissive54.60 30654.27 31255.59 31565.17 32439.08 31666.92 24951.80 35239.89 32558.39 34273.12 31931.69 35058.33 33343.01 29958.38 38169.38 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
miper_ehance_all_eth68.36 19068.16 19568.98 20565.14 32543.34 28667.07 24678.92 15549.11 25476.21 17277.72 28053.48 22777.92 18661.16 15284.59 22085.68 82
cl____68.26 19568.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.42 21748.74 25775.38 21160.92 15689.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.43 21648.74 25775.38 21160.94 15589.81 13385.81 76
tpm cat154.02 31152.63 32058.19 30564.85 32839.86 31366.26 25757.28 32032.16 36256.90 34970.39 33632.75 34065.30 30834.29 35458.79 37869.41 322
XXY-MVS55.19 30357.40 29448.56 34764.45 32934.84 35251.54 35553.59 34238.99 33163.79 31379.43 25656.59 21345.57 36336.92 33971.29 33665.25 346
PatchT53.35 31356.47 30043.99 36464.19 33017.46 39559.15 31543.10 37652.11 21754.74 36086.95 13229.97 36549.98 34943.62 29574.40 31564.53 353
D2MVS62.58 25761.05 26667.20 22963.85 33147.92 24356.29 33369.58 25539.32 32770.07 25578.19 27534.93 33072.68 24153.44 22483.74 23081.00 198
mvs_anonymous65.08 22765.49 22463.83 25763.79 33237.60 33366.52 25569.82 25443.44 29973.46 21086.08 16558.79 19071.75 25851.90 23075.63 30282.15 180
CostFormer57.35 29456.14 30260.97 28763.76 33338.43 32367.50 23760.22 30937.14 34059.12 34176.34 29032.78 33971.99 25439.12 32169.27 34972.47 293
Gipumacopyleft69.55 17372.83 13459.70 29563.63 33453.97 19380.08 7875.93 19664.24 9473.49 20988.93 10257.89 20262.46 31959.75 17091.55 9162.67 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
cl2267.14 20866.51 21469.03 20463.20 33543.46 28566.88 25176.25 19249.22 25274.48 19477.88 27945.49 27077.40 19360.64 15884.59 22086.24 69
gg-mvs-nofinetune55.75 29956.75 29852.72 32762.87 33628.04 37868.92 21641.36 38671.09 4150.80 37292.63 1220.74 38966.86 30029.97 37072.41 32863.25 355
gm-plane-assit62.51 33733.91 35737.25 33962.71 37072.74 24038.70 323
MVS-HIRNet45.53 34447.29 34440.24 37062.29 33826.82 38156.02 33637.41 39229.74 37243.69 39081.27 22833.96 33255.48 33924.46 38856.79 38238.43 391
diffmvspermissive67.42 20567.50 20367.20 22962.26 33945.21 27164.87 27477.04 18648.21 25971.74 23179.70 25258.40 19271.17 26364.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CHOSEN 280x42041.62 35539.89 36046.80 35261.81 34051.59 20533.56 38835.74 39327.48 37637.64 39453.53 38423.24 38742.09 37927.39 38058.64 37946.72 383
KD-MVS_self_test66.38 21667.51 20262.97 26861.76 34134.39 35458.11 32575.30 20150.84 23677.12 14885.42 17356.84 21269.44 27551.07 23691.16 9885.08 92
MDA-MVSNet-bldmvs62.34 25961.73 25764.16 25261.64 34249.90 22248.11 36357.24 32253.31 20780.95 10679.39 25749.00 25561.55 32445.92 28280.05 27081.03 196
miper_enhance_ethall65.86 22065.05 23668.28 21961.62 34342.62 29364.74 27577.97 17542.52 30473.42 21172.79 32149.66 24877.68 19058.12 18084.59 22084.54 112
WTY-MVS49.39 33550.31 33846.62 35361.22 34432.00 36546.61 36849.77 35733.87 35554.12 36369.55 34441.96 29145.40 36531.28 36564.42 36462.47 360
CMPMVSbinary48.73 2061.54 26660.89 26763.52 26161.08 34551.55 20668.07 23268.00 26433.88 35465.87 29581.25 22937.91 31867.71 28749.32 25182.60 24171.31 305
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test-LLR50.43 33050.69 33549.64 34060.76 34641.87 29753.18 34945.48 37043.41 30049.41 37760.47 37829.22 36844.73 37042.09 30372.14 33262.33 362
test-mter48.56 33748.20 34249.64 34060.76 34641.87 29753.18 34945.48 37031.91 36649.41 37760.47 37818.34 39344.73 37042.09 30372.14 33262.33 362
GG-mvs-BLEND52.24 32860.64 34829.21 37669.73 20742.41 37945.47 38352.33 38720.43 39168.16 28425.52 38665.42 36259.36 369
tpmvs55.84 29855.45 30857.01 31060.33 34933.20 36065.89 26059.29 31347.52 26856.04 35373.60 31431.05 35768.06 28640.64 31364.64 36369.77 318
miper_lstm_enhance61.97 26061.63 26062.98 26760.04 35045.74 26847.53 36570.95 24644.04 29173.06 21578.84 26839.72 30660.33 32655.82 19884.64 21982.88 161
dmvs_re49.91 33450.77 33447.34 34959.98 35138.86 32053.18 34953.58 34339.75 32655.06 35861.58 37436.42 32644.40 37229.15 37768.23 35358.75 370
PVSNet_036.71 2241.12 35640.78 35942.14 36659.97 35240.13 31140.97 37742.24 38330.81 37044.86 38649.41 39040.70 30045.12 36723.15 38934.96 39341.16 389
dmvs_testset45.26 34547.51 34338.49 37359.96 35314.71 39758.50 32243.39 37541.30 31151.79 36956.48 38239.44 30949.91 35121.42 39155.35 38750.85 378
new-patchmatchnet52.89 31555.76 30644.26 36359.94 3546.31 40137.36 38550.76 35541.10 31364.28 30679.82 25044.77 27448.43 35636.24 34487.61 16978.03 248
test20.0355.74 30057.51 29350.42 33559.89 35532.09 36450.63 35749.01 35950.11 24465.07 30183.23 20745.61 26948.11 35730.22 36883.82 22971.07 309
MVSTER63.29 24861.60 26168.36 21559.77 35646.21 26460.62 30871.32 23841.83 30775.40 18179.12 26330.25 36275.85 20556.30 19379.81 27383.03 158
N_pmnet52.06 32151.11 32954.92 31659.64 35771.03 5337.42 38461.62 30633.68 35657.12 34772.10 32337.94 31731.03 39129.13 37871.35 33562.70 357
test_vis1_n_192052.96 31453.50 31551.32 33259.15 35844.90 27356.13 33564.29 29030.56 37159.87 33860.68 37640.16 30347.47 35848.25 26362.46 36961.58 364
JIA-IIPM54.03 31051.62 32461.25 28559.14 35955.21 18559.10 31647.72 36350.85 23550.31 37685.81 17120.10 39263.97 31336.16 34555.41 38664.55 352
LF4IMVS67.50 20267.31 20668.08 22058.86 36061.93 12771.43 18375.90 19744.67 28972.42 22480.20 24357.16 20670.44 26958.99 17586.12 19771.88 299
UnsupCasMVSNet_bld50.01 33351.03 33146.95 35058.61 36132.64 36148.31 36153.27 34734.27 35360.47 33271.53 32941.40 29347.07 36030.68 36660.78 37461.13 365
dp44.09 35144.88 35341.72 36958.53 36223.18 38954.70 34442.38 38134.80 34944.25 38865.61 36224.48 38544.80 36929.77 37149.42 38957.18 374
testgi54.00 31256.86 29745.45 35758.20 36325.81 38549.05 35949.50 35845.43 28267.84 28181.17 23051.81 23743.20 37729.30 37379.41 27867.34 334
wuyk23d61.97 26066.25 21649.12 34458.19 36460.77 14866.32 25652.97 34855.93 17090.62 586.91 13373.07 5735.98 38920.63 39391.63 8750.62 379
ANet_high67.08 20969.94 16958.51 30457.55 36527.09 38058.43 32376.80 18963.56 10182.40 8891.93 2059.82 18064.98 31050.10 24488.86 15683.46 143
Patchmatch-test47.93 33849.96 33941.84 36757.42 36624.26 38748.75 36041.49 38539.30 32856.79 35073.48 31530.48 36133.87 39029.29 37472.61 32767.39 332
test_vis1_n51.27 32750.41 33753.83 32056.99 36750.01 22056.75 33060.53 30825.68 38159.74 33957.86 38129.40 36747.41 35943.10 29863.66 36664.08 354
new_pmnet37.55 35939.80 36130.79 37556.83 36816.46 39639.35 38130.65 39525.59 38245.26 38461.60 37324.54 38428.02 39421.60 39052.80 38847.90 382
pmmvs346.71 34145.09 35151.55 33156.76 36948.25 23655.78 33839.53 39024.13 38650.35 37563.40 36715.90 39851.08 34629.29 37470.69 34155.33 376
sss47.59 34048.32 34045.40 35856.73 37033.96 35645.17 37148.51 36132.11 36552.37 36765.79 36140.39 30241.91 38131.85 36261.97 37160.35 366
tpmrst50.15 33251.38 32746.45 35456.05 37124.77 38664.40 28149.98 35636.14 34353.32 36569.59 34335.16 32948.69 35339.24 31958.51 38065.89 341
TESTMET0.1,145.17 34644.93 35245.89 35656.02 37238.31 32453.18 34941.94 38427.85 37444.86 38656.47 38317.93 39441.50 38238.08 33068.06 35457.85 371
ADS-MVSNet248.76 33647.25 34553.29 32555.90 37340.54 30947.34 36654.99 33631.41 36850.48 37372.06 32431.23 35354.26 34325.93 38355.93 38365.07 347
ADS-MVSNet44.62 34945.58 34841.73 36855.90 37320.83 39347.34 36639.94 38931.41 36850.48 37372.06 32431.23 35339.31 38525.93 38355.93 38365.07 347
test0.0.03 147.72 33948.31 34145.93 35555.53 37529.39 37446.40 36941.21 38743.41 30055.81 35667.65 35529.22 36843.77 37625.73 38569.87 34664.62 351
UnsupCasMVSNet_eth52.26 32053.29 31849.16 34355.08 37633.67 35850.03 35858.79 31437.67 33763.43 31974.75 30241.82 29245.83 36238.59 32659.42 37767.98 331
pmmvs552.49 31952.58 32152.21 32954.99 37732.38 36255.45 33953.84 34132.15 36355.49 35774.81 30038.08 31657.37 33834.02 35574.40 31566.88 336
DSMNet-mixed43.18 35444.66 35438.75 37254.75 37828.88 37757.06 32927.42 39713.47 39347.27 38177.67 28138.83 31239.29 38625.32 38760.12 37648.08 381
MDA-MVSNet_test_wron52.57 31853.49 31749.81 33954.24 37936.47 33840.48 37946.58 36838.13 33375.47 18073.32 31741.05 29943.85 37540.98 31171.20 33769.10 326
YYNet152.58 31753.50 31549.85 33854.15 38036.45 33940.53 37846.55 36938.09 33475.52 17973.31 31841.08 29843.88 37441.10 30971.14 33869.21 324
EPMVS45.74 34346.53 34643.39 36554.14 38122.33 39255.02 34135.00 39434.69 35151.09 37170.20 33825.92 37842.04 38037.19 33655.50 38565.78 342
test_cas_vis1_n_192050.90 32850.92 33250.83 33454.12 38247.80 24551.44 35654.61 33726.95 37863.95 31060.85 37537.86 32044.97 36845.53 28562.97 36859.72 368
test_fmvs356.78 29555.99 30459.12 29953.96 38348.09 24058.76 32066.22 27127.54 37576.66 16068.69 35225.32 38251.31 34553.42 22573.38 32377.97 251
test_fmvs1_n52.70 31652.01 32354.76 31753.83 38450.36 21455.80 33765.90 27324.96 38365.39 29860.64 37727.69 37148.46 35445.88 28367.99 35565.46 344
KD-MVS_2432*160052.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
miper_refine_blended52.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
test_fmvs254.80 30554.11 31356.88 31151.76 38749.95 22156.70 33165.80 27426.22 38069.42 26165.25 36331.82 34849.98 34949.63 24870.36 34270.71 311
E-PMN45.17 34645.36 34944.60 36150.07 38842.75 29138.66 38242.29 38246.39 27439.55 39151.15 38826.00 37745.37 36637.68 33276.41 29645.69 385
PMMVS44.69 34843.95 35646.92 35150.05 38953.47 19748.08 36442.40 38022.36 38944.01 38953.05 38642.60 28945.49 36431.69 36361.36 37341.79 388
test_fmvs151.51 32650.86 33353.48 32249.72 39049.35 23054.11 34564.96 28324.64 38563.66 31559.61 38028.33 37048.45 35545.38 28867.30 35962.66 359
EMVS44.61 35044.45 35545.10 36048.91 39143.00 28937.92 38341.10 38846.75 27238.00 39348.43 39126.42 37546.27 36137.11 33875.38 30646.03 384
mvsany_test343.76 35341.01 35752.01 33048.09 39257.74 17142.47 37623.85 40023.30 38864.80 30262.17 37227.12 37240.59 38329.17 37648.11 39057.69 372
mvsany_test137.88 35735.74 36244.28 36247.28 39349.90 22236.54 38624.37 39919.56 39245.76 38253.46 38532.99 33837.97 38826.17 38135.52 39244.99 387
test_vis3_rt51.94 32451.04 33054.65 31846.32 39450.13 21844.34 37478.17 17123.62 38768.95 26962.81 36921.41 38838.52 38741.49 30772.22 33175.30 272
test_vis1_rt46.70 34245.24 35051.06 33344.58 39551.04 20939.91 38067.56 26521.84 39151.94 36850.79 38933.83 33339.77 38435.25 35161.50 37262.38 361
MVEpermissive27.91 2336.69 36035.64 36339.84 37143.37 39635.85 34419.49 39024.61 39824.68 38439.05 39262.63 37138.67 31427.10 39521.04 39247.25 39156.56 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS237.74 35840.87 35828.36 37642.41 3975.35 40224.61 38927.75 39632.15 36347.85 37970.27 33735.85 32829.51 39319.08 39467.85 35650.22 380
test_f43.79 35245.63 34738.24 37442.29 39838.58 32234.76 38747.68 36422.22 39067.34 28863.15 36831.82 34830.60 39239.19 32062.28 37045.53 386
DeepMVS_CXcopyleft11.83 37815.51 39913.86 39811.25 4035.76 39420.85 39626.46 39317.06 3979.22 3979.69 39713.82 39612.42 393
test_method19.26 36119.12 36519.71 3779.09 4001.91 4047.79 39253.44 3451.42 39510.27 39735.80 39217.42 39625.11 39612.44 39524.38 39532.10 392
tmp_tt11.98 36314.73 3663.72 3792.28 4014.62 40319.44 39114.50 4020.47 39721.55 3959.58 39525.78 3794.57 39811.61 39627.37 3941.96 394
test1234.43 3665.78 3690.39 3810.97 4020.28 40546.33 3700.45 4040.31 3980.62 3991.50 3980.61 4040.11 4000.56 3980.63 3970.77 396
testmvs4.06 3675.28 3700.41 3800.64 4030.16 40642.54 3750.31 4050.26 3990.50 4001.40 3990.77 4030.17 3990.56 3980.55 3980.90 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
eth-test20.00 404
eth-test0.00 404
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k17.71 36223.62 3640.00 3820.00 4040.00 4070.00 39370.17 2530.00 4000.00 40174.25 30968.16 950.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.20 3656.93 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40062.39 1490.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re5.62 3647.50 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40167.46 3560.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
WAC-MVS22.69 39036.10 346
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 13890.78 11483.49 139
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
GSMVS70.05 315
sam_mvs131.41 35170.05 315
sam_mvs31.21 355
MTGPAbinary80.63 123
test_post166.63 2532.08 39630.66 36059.33 32940.34 315
test_post1.99 39730.91 35854.76 342
patchmatchnet-post68.99 34631.32 35269.38 276
MTMP84.83 3119.26 401
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
test_prior470.14 6377.57 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
旧先验271.17 19045.11 28678.54 13161.28 32559.19 174
新几何271.33 186
无先验74.82 13970.94 24747.75 26676.85 20054.47 21172.09 298
原ACMM274.78 143
testdata267.30 29348.34 261
segment_acmp68.30 94
testdata168.34 22957.24 156
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 406
nn0.00 406
door-mid55.02 335
test1182.71 84
door52.91 349
HQP5-MVS58.80 165
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 196
MDTV_nov1_ep13_2view18.41 39453.74 34731.57 36744.89 38529.90 36632.93 36071.48 302
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145