| MG-MVS | | | 87.11 30 | 86.27 39 | 89.62 7 | 97.79 1 | 76.27 4 | 94.96 43 | 94.49 38 | 78.74 78 | 83.87 70 | 92.94 115 | 64.34 78 | 96.94 101 | 75.19 145 | 94.09 36 | 95.66 47 |
|
| MCST-MVS | | | 91.08 1 | 91.46 2 | 89.94 4 | 97.66 2 | 73.37 8 | 97.13 2 | 95.58 10 | 89.33 1 | 85.77 49 | 96.26 28 | 72.84 26 | 99.38 1 | 92.64 17 | 95.93 9 | 97.08 9 |
|
| OPU-MVS | | | | | 89.97 3 | 97.52 3 | 73.15 12 | 96.89 5 | | | | 97.00 9 | 83.82 2 | 99.15 2 | 95.72 3 | 97.63 3 | 97.62 2 |
|
| DVP-MVS++ | | | 90.53 3 | 91.09 4 | 88.87 14 | 97.31 4 | 69.91 37 | 93.96 68 | 94.37 46 | 72.48 173 | 92.07 6 | 96.85 14 | 83.82 2 | 99.15 2 | 91.53 27 | 97.42 4 | 97.55 4 |
|
| MSC_two_6792asdad | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 21 | | | | | 99.07 13 | 92.01 22 | 94.77 25 | 96.51 21 |
|
| No_MVS | | | | | 89.60 8 | 97.31 4 | 73.22 10 | | 95.05 21 | | | | | 99.07 13 | 92.01 22 | 94.77 25 | 96.51 21 |
|
| DP-MVS Recon | | | 82.73 102 | 81.65 109 | 85.98 77 | 97.31 4 | 67.06 106 | 95.15 36 | 91.99 131 | 69.08 249 | 76.50 142 | 93.89 97 | 54.48 194 | 98.20 35 | 70.76 183 | 85.66 131 | 92.69 154 |
|
| CNVR-MVS | | | 90.32 5 | 90.89 6 | 88.61 19 | 96.76 8 | 70.65 26 | 96.47 13 | 94.83 25 | 84.83 11 | 89.07 29 | 96.80 17 | 70.86 34 | 99.06 15 | 92.64 17 | 95.71 10 | 96.12 35 |
|
| ZD-MVS | | | | | | 96.63 9 | 65.50 146 | | 93.50 75 | 70.74 227 | 85.26 57 | 95.19 59 | 64.92 71 | 97.29 76 | 87.51 53 | 93.01 54 | |
|
| NCCC | | | 89.07 14 | 89.46 14 | 87.91 25 | 96.60 10 | 69.05 56 | 96.38 15 | 94.64 33 | 84.42 12 | 86.74 41 | 96.20 30 | 66.56 55 | 98.76 23 | 89.03 44 | 94.56 32 | 95.92 41 |
|
| IU-MVS | | | | | | 96.46 11 | 69.91 37 | | 95.18 16 | 80.75 46 | 95.28 1 | | | | 92.34 19 | 95.36 13 | 96.47 25 |
|
| SED-MVS | | | 89.94 8 | 90.36 9 | 88.70 16 | 96.45 12 | 69.38 47 | 96.89 5 | 94.44 40 | 71.65 202 | 92.11 4 | 97.21 4 | 76.79 9 | 99.11 6 | 92.34 19 | 95.36 13 | 97.62 2 |
|
| test_241102_ONE | | | | | | 96.45 12 | 69.38 47 | | 94.44 40 | 71.65 202 | 92.11 4 | 97.05 7 | 76.79 9 | 99.11 6 | | | |
|
| test_0728_SECOND | | | | | 88.70 16 | 96.45 12 | 70.43 29 | 96.64 9 | 94.37 46 | | | | | 99.15 2 | 91.91 25 | 94.90 21 | 96.51 21 |
|
| DVP-MVS |  | | 89.41 12 | 89.73 13 | 88.45 22 | 96.40 15 | 69.99 33 | 96.64 9 | 94.52 36 | 71.92 189 | 90.55 17 | 96.93 10 | 73.77 21 | 99.08 11 | 91.91 25 | 94.90 21 | 96.29 30 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 96.40 15 | 69.99 33 | 96.76 7 | 94.33 48 | 71.92 189 | 91.89 8 | 97.11 6 | 73.77 21 | | | | |
|
| AdaColmap |  | | 78.94 167 | 77.00 183 | 84.76 119 | 96.34 17 | 65.86 136 | 92.66 124 | 87.97 290 | 62.18 305 | 70.56 205 | 92.37 130 | 43.53 284 | 97.35 72 | 64.50 245 | 82.86 148 | 91.05 193 |
|
| test_one_0601 | | | | | | 96.32 18 | 69.74 42 | | 94.18 51 | 71.42 213 | 90.67 16 | 96.85 14 | 74.45 18 | | | | |
|
| test_part2 | | | | | | 96.29 19 | 68.16 79 | | | | 90.78 14 | | | | | | |
|
| DPE-MVS |  | | 88.77 15 | 89.21 15 | 87.45 37 | 96.26 20 | 67.56 93 | 94.17 55 | 94.15 53 | 68.77 252 | 90.74 15 | 97.27 2 | 76.09 12 | 98.49 29 | 90.58 35 | 94.91 20 | 96.30 29 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MAR-MVS | | | 84.18 76 | 83.43 78 | 86.44 66 | 96.25 21 | 65.93 135 | 94.28 53 | 94.27 50 | 74.41 131 | 79.16 111 | 95.61 43 | 53.99 199 | 98.88 21 | 69.62 194 | 93.26 52 | 94.50 98 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| API-MVS | | | 82.28 109 | 80.53 127 | 87.54 35 | 96.13 22 | 70.59 27 | 93.63 88 | 91.04 180 | 65.72 277 | 75.45 152 | 92.83 120 | 56.11 175 | 98.89 20 | 64.10 247 | 89.75 96 | 93.15 141 |
|
| APDe-MVS |  | | 87.54 25 | 87.84 22 | 86.65 58 | 96.07 23 | 66.30 126 | 94.84 45 | 93.78 59 | 69.35 243 | 88.39 31 | 96.34 26 | 67.74 46 | 97.66 54 | 90.62 34 | 93.44 49 | 96.01 39 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| patch_mono-2 | | | 89.71 10 | 90.99 5 | 85.85 83 | 96.04 24 | 63.70 191 | 95.04 40 | 95.19 15 | 86.74 7 | 91.53 12 | 95.15 60 | 73.86 20 | 97.58 59 | 93.38 12 | 92.00 67 | 96.28 32 |
|
| PAPR | | | 85.15 59 | 84.47 64 | 87.18 42 | 96.02 25 | 68.29 73 | 91.85 158 | 93.00 96 | 76.59 109 | 79.03 112 | 95.00 61 | 61.59 114 | 97.61 58 | 78.16 129 | 89.00 100 | 95.63 48 |
|
| APD-MVS |  | | 85.93 47 | 85.99 46 | 85.76 87 | 95.98 26 | 65.21 151 | 93.59 90 | 92.58 112 | 66.54 270 | 86.17 45 | 95.88 37 | 63.83 84 | 97.00 92 | 86.39 65 | 92.94 55 | 95.06 73 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| DeepC-MVS_fast | | 79.48 2 | 87.95 20 | 88.00 21 | 87.79 28 | 95.86 27 | 68.32 72 | 95.74 21 | 94.11 54 | 83.82 15 | 83.49 71 | 96.19 31 | 64.53 77 | 98.44 31 | 83.42 89 | 94.88 24 | 96.61 15 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DP-MVS | | | 69.90 279 | 66.48 286 | 80.14 241 | 95.36 28 | 62.93 212 | 89.56 235 | 76.11 351 | 50.27 357 | 57.69 324 | 85.23 233 | 39.68 297 | 95.73 143 | 33.35 368 | 71.05 245 | 81.78 330 |
|
| 114514_t | | | 79.17 162 | 77.67 168 | 83.68 156 | 95.32 29 | 65.53 145 | 92.85 114 | 91.60 153 | 63.49 291 | 67.92 242 | 90.63 157 | 46.65 264 | 95.72 147 | 67.01 220 | 83.54 145 | 89.79 208 |
|
| HPM-MVS++ |  | | 89.37 13 | 89.95 12 | 87.64 30 | 95.10 30 | 68.23 77 | 95.24 33 | 94.49 38 | 82.43 25 | 88.90 30 | 96.35 25 | 71.89 33 | 98.63 26 | 88.76 45 | 96.40 6 | 96.06 36 |
|
| CSCG | | | 86.87 32 | 86.26 40 | 88.72 15 | 95.05 31 | 70.79 25 | 93.83 80 | 95.33 13 | 68.48 256 | 77.63 128 | 94.35 84 | 73.04 24 | 98.45 30 | 84.92 77 | 93.71 45 | 96.92 11 |
|
| dcpmvs_2 | | | 87.37 27 | 87.55 26 | 86.85 50 | 95.04 32 | 68.20 78 | 90.36 215 | 90.66 188 | 79.37 62 | 81.20 87 | 93.67 101 | 74.73 15 | 96.55 116 | 90.88 32 | 92.00 67 | 95.82 44 |
|
| LFMVS | | | 84.34 71 | 82.73 94 | 89.18 12 | 94.76 33 | 73.25 9 | 94.99 42 | 91.89 137 | 71.90 191 | 82.16 81 | 93.49 106 | 47.98 255 | 97.05 87 | 82.55 94 | 84.82 135 | 97.25 7 |
|
| CDPH-MVS | | | 85.71 51 | 85.46 53 | 86.46 65 | 94.75 34 | 67.19 102 | 93.89 73 | 92.83 101 | 70.90 222 | 83.09 74 | 95.28 52 | 63.62 89 | 97.36 71 | 80.63 109 | 94.18 35 | 94.84 83 |
|
| test_prior | | | | | 86.42 67 | 94.71 35 | 67.35 99 | | 93.10 92 | | | | | 96.84 106 | | | 95.05 74 |
|
| test12 | | | | | 87.09 45 | 94.60 36 | 68.86 60 | | 92.91 98 | | 82.67 79 | | 65.44 64 | 97.55 62 | | 93.69 46 | 94.84 83 |
|
| test_yl | | | 84.28 72 | 83.16 85 | 87.64 30 | 94.52 37 | 69.24 51 | 95.78 18 | 95.09 19 | 69.19 246 | 81.09 89 | 92.88 118 | 57.00 161 | 97.44 66 | 81.11 107 | 81.76 158 | 96.23 33 |
|
| DCV-MVSNet | | | 84.28 72 | 83.16 85 | 87.64 30 | 94.52 37 | 69.24 51 | 95.78 18 | 95.09 19 | 69.19 246 | 81.09 89 | 92.88 118 | 57.00 161 | 97.44 66 | 81.11 107 | 81.76 158 | 96.23 33 |
|
| CANet | | | 89.61 11 | 89.99 11 | 88.46 21 | 94.39 39 | 69.71 43 | 96.53 12 | 93.78 59 | 86.89 6 | 89.68 25 | 95.78 38 | 65.94 59 | 99.10 9 | 92.99 14 | 93.91 40 | 96.58 18 |
|
| test_8 | | | | | | 94.19 40 | 67.19 102 | 94.15 59 | 93.42 79 | 71.87 194 | 85.38 55 | 95.35 48 | 68.19 41 | 96.95 100 | | | |
|
| TEST9 | | | | | | 94.18 41 | 67.28 100 | 94.16 56 | 93.51 73 | 71.75 200 | 85.52 52 | 95.33 49 | 68.01 43 | 97.27 80 | | | |
|
| train_agg | | | 87.21 29 | 87.42 28 | 86.60 59 | 94.18 41 | 67.28 100 | 94.16 56 | 93.51 73 | 71.87 194 | 85.52 52 | 95.33 49 | 68.19 41 | 97.27 80 | 89.09 42 | 94.90 21 | 95.25 69 |
|
| agg_prior | | | | | | 94.16 43 | 66.97 110 | | 93.31 82 | | 84.49 63 | | | 96.75 109 | | | |
|
| PAPM_NR | | | 82.97 99 | 81.84 107 | 86.37 69 | 94.10 44 | 66.76 115 | 87.66 271 | 92.84 100 | 69.96 236 | 74.07 166 | 93.57 104 | 63.10 99 | 97.50 64 | 70.66 185 | 90.58 88 | 94.85 80 |
|
| FOURS1 | | | | | | 93.95 45 | 61.77 236 | 93.96 68 | 91.92 134 | 62.14 306 | 86.57 42 | | | | | | |
|
| VNet | | | 86.20 42 | 85.65 52 | 87.84 27 | 93.92 46 | 69.99 33 | 95.73 23 | 95.94 7 | 78.43 80 | 86.00 47 | 93.07 112 | 58.22 148 | 97.00 92 | 85.22 72 | 84.33 140 | 96.52 20 |
|
| 9.14 | | | | 87.63 24 | | 93.86 47 | | 94.41 52 | 94.18 51 | 72.76 168 | 86.21 44 | 96.51 22 | 66.64 53 | 97.88 44 | 90.08 36 | 94.04 37 | |
|
| save fliter | | | | | | 93.84 48 | 67.89 85 | 95.05 39 | 92.66 107 | 78.19 82 | | | | | | | |
|
| PVSNet_BlendedMVS | | | 83.38 91 | 83.43 78 | 83.22 168 | 93.76 49 | 67.53 95 | 94.06 61 | 93.61 69 | 79.13 68 | 81.00 92 | 85.14 234 | 63.19 97 | 97.29 76 | 87.08 59 | 73.91 223 | 84.83 294 |
|
| PVSNet_Blended | | | 86.73 36 | 86.86 36 | 86.31 72 | 93.76 49 | 67.53 95 | 96.33 16 | 93.61 69 | 82.34 27 | 81.00 92 | 93.08 111 | 63.19 97 | 97.29 76 | 87.08 59 | 91.38 78 | 94.13 109 |
|
| HFP-MVS | | | 84.73 65 | 84.40 66 | 85.72 88 | 93.75 51 | 65.01 157 | 93.50 94 | 93.19 87 | 72.19 183 | 79.22 110 | 94.93 64 | 59.04 142 | 97.67 51 | 81.55 100 | 92.21 62 | 94.49 99 |
|
| Anonymous202405211 | | | 77.96 187 | 75.33 205 | 85.87 81 | 93.73 52 | 64.52 163 | 94.85 44 | 85.36 314 | 62.52 303 | 76.11 143 | 90.18 167 | 29.43 351 | 97.29 76 | 68.51 206 | 77.24 200 | 95.81 45 |
|
| SD-MVS | | | 87.49 26 | 87.49 27 | 87.50 36 | 93.60 53 | 68.82 62 | 93.90 72 | 92.63 110 | 76.86 102 | 87.90 33 | 95.76 39 | 66.17 56 | 97.63 56 | 89.06 43 | 91.48 76 | 96.05 37 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| ACMMPR | | | 84.37 69 | 84.06 68 | 85.28 100 | 93.56 54 | 64.37 173 | 93.50 94 | 93.15 89 | 72.19 183 | 78.85 118 | 94.86 67 | 56.69 168 | 97.45 65 | 81.55 100 | 92.20 63 | 94.02 116 |
|
| region2R | | | 84.36 70 | 84.03 69 | 85.36 98 | 93.54 55 | 64.31 175 | 93.43 97 | 92.95 97 | 72.16 186 | 78.86 117 | 94.84 68 | 56.97 163 | 97.53 63 | 81.38 104 | 92.11 65 | 94.24 103 |
|
| TSAR-MVS + GP. | | | 87.96 19 | 88.37 19 | 86.70 57 | 93.51 56 | 65.32 148 | 95.15 36 | 93.84 58 | 78.17 83 | 85.93 48 | 94.80 69 | 75.80 13 | 98.21 34 | 89.38 38 | 88.78 101 | 96.59 16 |
|
| PHI-MVS | | | 86.83 34 | 86.85 37 | 86.78 55 | 93.47 57 | 65.55 144 | 95.39 30 | 95.10 18 | 71.77 199 | 85.69 51 | 96.52 21 | 62.07 108 | 98.77 22 | 86.06 68 | 95.60 11 | 96.03 38 |
|
| SR-MVS | | | 82.81 101 | 82.58 97 | 83.50 162 | 93.35 58 | 61.16 248 | 92.23 138 | 91.28 166 | 64.48 284 | 81.27 86 | 95.28 52 | 53.71 203 | 95.86 137 | 82.87 91 | 88.77 102 | 93.49 132 |
|
| iter_conf05 | | | 83.27 93 | 82.70 95 | 84.98 109 | 93.32 59 | 71.84 15 | 94.16 56 | 81.76 339 | 82.74 21 | 73.83 169 | 88.40 188 | 72.77 27 | 94.61 186 | 82.10 96 | 75.21 212 | 88.48 227 |
|
| EPNet | | | 87.84 22 | 88.38 18 | 86.23 73 | 93.30 60 | 66.05 130 | 95.26 32 | 94.84 24 | 87.09 5 | 88.06 32 | 94.53 75 | 66.79 52 | 97.34 73 | 83.89 86 | 91.68 72 | 95.29 63 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| XVS | | | 83.87 82 | 83.47 76 | 85.05 106 | 93.22 61 | 63.78 185 | 92.92 112 | 92.66 107 | 73.99 139 | 78.18 122 | 94.31 87 | 55.25 182 | 97.41 68 | 79.16 119 | 91.58 74 | 93.95 118 |
|
| X-MVStestdata | | | 76.86 202 | 74.13 222 | 85.05 106 | 93.22 61 | 63.78 185 | 92.92 112 | 92.66 107 | 73.99 139 | 78.18 122 | 10.19 396 | 55.25 182 | 97.41 68 | 79.16 119 | 91.58 74 | 93.95 118 |
|
| SMA-MVS |  | | 88.14 16 | 88.29 20 | 87.67 29 | 93.21 63 | 68.72 64 | 93.85 75 | 94.03 55 | 74.18 136 | 91.74 9 | 96.67 19 | 65.61 63 | 98.42 33 | 89.24 41 | 96.08 7 | 95.88 43 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| 原ACMM1 | | | | | 84.42 134 | 93.21 63 | 64.27 177 | | 93.40 81 | 65.39 278 | 79.51 106 | 92.50 124 | 58.11 150 | 96.69 110 | 65.27 241 | 93.96 38 | 92.32 165 |
|
| MVS_111021_HR | | | 86.19 43 | 85.80 50 | 87.37 38 | 93.17 65 | 69.79 40 | 93.99 67 | 93.76 62 | 79.08 70 | 78.88 116 | 93.99 95 | 62.25 107 | 98.15 36 | 85.93 69 | 91.15 82 | 94.15 108 |
|
| CP-MVS | | | 83.71 87 | 83.40 81 | 84.65 125 | 93.14 66 | 63.84 183 | 94.59 49 | 92.28 118 | 71.03 220 | 77.41 131 | 94.92 65 | 55.21 185 | 96.19 123 | 81.32 105 | 90.70 86 | 93.91 120 |
|
| DELS-MVS | | | 90.05 6 | 90.09 10 | 89.94 4 | 93.14 66 | 73.88 7 | 97.01 4 | 94.40 44 | 88.32 3 | 85.71 50 | 94.91 66 | 74.11 19 | 98.91 17 | 87.26 57 | 95.94 8 | 97.03 10 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| ZNCC-MVS | | | 85.33 57 | 85.08 58 | 86.06 75 | 93.09 68 | 65.65 140 | 93.89 73 | 93.41 80 | 73.75 147 | 79.94 101 | 94.68 72 | 60.61 124 | 98.03 38 | 82.63 93 | 93.72 44 | 94.52 96 |
|
| DeepPCF-MVS | | 81.17 1 | 89.72 9 | 91.38 3 | 84.72 121 | 93.00 69 | 58.16 293 | 96.72 8 | 94.41 42 | 86.50 8 | 90.25 19 | 97.83 1 | 75.46 14 | 98.67 25 | 92.78 16 | 95.49 12 | 97.32 6 |
|
| PLC |  | 68.80 14 | 75.23 230 | 73.68 229 | 79.86 251 | 92.93 70 | 58.68 289 | 90.64 208 | 88.30 280 | 60.90 315 | 64.43 279 | 90.53 158 | 42.38 289 | 94.57 190 | 56.52 286 | 76.54 204 | 86.33 261 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| MSP-MVS | | | 90.38 4 | 91.87 1 | 85.88 80 | 92.83 71 | 64.03 181 | 93.06 105 | 94.33 48 | 82.19 28 | 93.65 3 | 96.15 33 | 85.89 1 | 97.19 82 | 91.02 31 | 97.75 1 | 96.43 26 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| mPP-MVS | | | 82.96 100 | 82.44 100 | 84.52 131 | 92.83 71 | 62.92 214 | 92.76 116 | 91.85 141 | 71.52 210 | 75.61 150 | 94.24 89 | 53.48 207 | 96.99 95 | 78.97 122 | 90.73 85 | 93.64 129 |
|
| GST-MVS | | | 84.63 67 | 84.29 67 | 85.66 90 | 92.82 73 | 65.27 149 | 93.04 107 | 93.13 90 | 73.20 156 | 78.89 113 | 94.18 91 | 59.41 138 | 97.85 45 | 81.45 102 | 92.48 61 | 93.86 123 |
|
| WTY-MVS | | | 86.32 40 | 85.81 49 | 87.85 26 | 92.82 73 | 69.37 49 | 95.20 34 | 95.25 14 | 82.71 22 | 81.91 82 | 94.73 70 | 67.93 45 | 97.63 56 | 79.55 115 | 82.25 153 | 96.54 19 |
|
| PGM-MVS | | | 83.25 94 | 82.70 95 | 84.92 110 | 92.81 75 | 64.07 180 | 90.44 211 | 92.20 124 | 71.28 214 | 77.23 134 | 94.43 78 | 55.17 186 | 97.31 75 | 79.33 118 | 91.38 78 | 93.37 134 |
|
| EI-MVSNet-Vis-set | | | 83.77 85 | 83.67 71 | 84.06 146 | 92.79 76 | 63.56 197 | 91.76 163 | 94.81 26 | 79.65 58 | 77.87 125 | 94.09 92 | 63.35 95 | 97.90 42 | 79.35 117 | 79.36 177 | 90.74 195 |
|
| SF-MVS | | | 87.03 31 | 87.09 31 | 86.84 51 | 92.70 77 | 67.45 98 | 93.64 87 | 93.76 62 | 70.78 226 | 86.25 43 | 96.44 24 | 66.98 50 | 97.79 47 | 88.68 46 | 94.56 32 | 95.28 65 |
|
| MVSTER | | | 82.47 106 | 82.05 103 | 83.74 152 | 92.68 78 | 69.01 57 | 91.90 155 | 93.21 84 | 79.83 53 | 72.14 189 | 85.71 231 | 74.72 16 | 94.72 181 | 75.72 141 | 72.49 234 | 87.50 238 |
|
| iter_conf_final | | | 81.74 119 | 80.93 119 | 84.18 143 | 92.66 79 | 69.10 54 | 92.94 111 | 82.80 337 | 79.01 73 | 74.85 157 | 88.40 188 | 61.83 112 | 94.61 186 | 79.36 116 | 76.52 205 | 88.83 218 |
|
| CS-MVS-test | | | 86.14 44 | 87.01 32 | 83.52 159 | 92.63 80 | 59.36 281 | 95.49 27 | 91.92 134 | 80.09 51 | 85.46 54 | 95.53 45 | 61.82 113 | 95.77 141 | 86.77 63 | 93.37 50 | 95.41 54 |
|
| MP-MVS |  | | 85.02 60 | 84.97 60 | 85.17 105 | 92.60 81 | 64.27 177 | 93.24 100 | 92.27 119 | 73.13 158 | 79.63 105 | 94.43 78 | 61.90 109 | 97.17 83 | 85.00 75 | 92.56 59 | 94.06 114 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| thres200 | | | 79.66 154 | 78.33 158 | 83.66 158 | 92.54 82 | 65.82 138 | 93.06 105 | 96.31 3 | 74.90 128 | 73.30 172 | 88.66 183 | 59.67 134 | 95.61 151 | 47.84 321 | 78.67 184 | 89.56 213 |
|
| APD-MVS_3200maxsize | | | 81.64 121 | 81.32 112 | 82.59 181 | 92.36 83 | 58.74 288 | 91.39 177 | 91.01 181 | 63.35 293 | 79.72 104 | 94.62 74 | 51.82 218 | 96.14 125 | 79.71 113 | 87.93 107 | 92.89 152 |
|
| 新几何1 | | | | | 84.73 120 | 92.32 84 | 64.28 176 | | 91.46 159 | 59.56 325 | 79.77 103 | 92.90 116 | 56.95 164 | 96.57 114 | 63.40 251 | 92.91 56 | 93.34 135 |
|
| EI-MVSNet-UG-set | | | 83.14 96 | 82.96 88 | 83.67 157 | 92.28 85 | 63.19 206 | 91.38 179 | 94.68 31 | 79.22 65 | 76.60 140 | 93.75 98 | 62.64 102 | 97.76 48 | 78.07 130 | 78.01 188 | 90.05 204 |
|
| HPM-MVS |  | | 83.25 94 | 82.95 89 | 84.17 144 | 92.25 86 | 62.88 216 | 90.91 196 | 91.86 139 | 70.30 232 | 77.12 135 | 93.96 96 | 56.75 166 | 96.28 121 | 82.04 97 | 91.34 80 | 93.34 135 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| HY-MVS | | 76.49 5 | 84.28 72 | 83.36 83 | 87.02 48 | 92.22 87 | 67.74 88 | 84.65 292 | 94.50 37 | 79.15 67 | 82.23 80 | 87.93 201 | 66.88 51 | 96.94 101 | 80.53 110 | 82.20 154 | 96.39 28 |
|
| tfpn200view9 | | | 78.79 172 | 77.43 173 | 82.88 173 | 92.21 88 | 64.49 164 | 92.05 147 | 96.28 4 | 73.48 153 | 71.75 194 | 88.26 193 | 60.07 130 | 95.32 163 | 45.16 332 | 77.58 193 | 88.83 218 |
|
| thres400 | | | 78.68 174 | 77.43 173 | 82.43 183 | 92.21 88 | 64.49 164 | 92.05 147 | 96.28 4 | 73.48 153 | 71.75 194 | 88.26 193 | 60.07 130 | 95.32 163 | 45.16 332 | 77.58 193 | 87.48 239 |
|
| PS-MVSNAJ | | | 88.14 16 | 87.61 25 | 89.71 6 | 92.06 90 | 76.72 1 | 95.75 20 | 93.26 83 | 83.86 14 | 89.55 27 | 96.06 34 | 53.55 204 | 97.89 43 | 91.10 29 | 93.31 51 | 94.54 94 |
|
| SR-MVS-dyc-post | | | 81.06 130 | 80.70 122 | 82.15 195 | 92.02 91 | 58.56 290 | 90.90 197 | 90.45 192 | 62.76 300 | 78.89 113 | 94.46 76 | 51.26 226 | 95.61 151 | 78.77 125 | 86.77 121 | 92.28 167 |
|
| RE-MVS-def | | | | 80.48 128 | | 92.02 91 | 58.56 290 | 90.90 197 | 90.45 192 | 62.76 300 | 78.89 113 | 94.46 76 | 49.30 242 | | 78.77 125 | 86.77 121 | 92.28 167 |
|
| MSLP-MVS++ | | | 86.27 41 | 85.91 48 | 87.35 39 | 92.01 93 | 68.97 59 | 95.04 40 | 92.70 104 | 79.04 72 | 81.50 85 | 96.50 23 | 58.98 143 | 96.78 108 | 83.49 88 | 93.93 39 | 96.29 30 |
|
| CS-MVS | | | 85.80 49 | 86.65 38 | 83.27 167 | 92.00 94 | 58.92 286 | 95.31 31 | 91.86 139 | 79.97 52 | 84.82 60 | 95.40 47 | 62.26 106 | 95.51 159 | 86.11 67 | 92.08 66 | 95.37 57 |
|
| 旧先验1 | | | | | | 91.94 95 | 60.74 258 | | 91.50 157 | | | 94.36 80 | 65.23 66 | | | 91.84 69 | 94.55 92 |
|
| thres600view7 | | | 78.00 185 | 76.66 187 | 82.03 202 | 91.93 96 | 63.69 192 | 91.30 185 | 96.33 1 | 72.43 176 | 70.46 207 | 87.89 202 | 60.31 125 | 94.92 176 | 42.64 344 | 76.64 203 | 87.48 239 |
|
| LS3D | | | 69.17 284 | 66.40 288 | 77.50 282 | 91.92 97 | 56.12 314 | 85.12 289 | 80.37 345 | 46.96 364 | 56.50 328 | 87.51 208 | 37.25 317 | 93.71 228 | 32.52 374 | 79.40 176 | 82.68 321 |
|
| GG-mvs-BLEND | | | | | 86.53 64 | 91.91 98 | 69.67 45 | 75.02 354 | 94.75 28 | | 78.67 120 | 90.85 154 | 77.91 7 | 94.56 192 | 72.25 169 | 93.74 43 | 95.36 58 |
|
| thres100view900 | | | 78.37 180 | 77.01 182 | 82.46 182 | 91.89 99 | 63.21 205 | 91.19 191 | 96.33 1 | 72.28 181 | 70.45 208 | 87.89 202 | 60.31 125 | 95.32 163 | 45.16 332 | 77.58 193 | 88.83 218 |
|
| MTAPA | | | 83.91 81 | 83.38 82 | 85.50 93 | 91.89 99 | 65.16 153 | 81.75 315 | 92.23 120 | 75.32 122 | 80.53 96 | 95.21 58 | 56.06 176 | 97.16 84 | 84.86 78 | 92.55 60 | 94.18 105 |
|
| canonicalmvs | | | 86.85 33 | 86.25 41 | 88.66 18 | 91.80 101 | 71.92 14 | 93.54 92 | 91.71 147 | 80.26 50 | 87.55 35 | 95.25 56 | 63.59 91 | 96.93 103 | 88.18 47 | 84.34 139 | 97.11 8 |
|
| TSAR-MVS + MP. | | | 88.11 18 | 88.64 16 | 86.54 63 | 91.73 102 | 68.04 81 | 90.36 215 | 93.55 72 | 82.89 19 | 91.29 13 | 92.89 117 | 72.27 30 | 96.03 133 | 87.99 48 | 94.77 25 | 95.54 52 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| ACMMP |  | | 81.49 122 | 80.67 123 | 83.93 149 | 91.71 103 | 62.90 215 | 92.13 141 | 92.22 123 | 71.79 198 | 71.68 196 | 93.49 106 | 50.32 231 | 96.96 99 | 78.47 127 | 84.22 144 | 91.93 176 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| BH-RMVSNet | | | 79.46 159 | 77.65 169 | 84.89 111 | 91.68 104 | 65.66 139 | 93.55 91 | 88.09 286 | 72.93 163 | 73.37 171 | 91.12 151 | 46.20 271 | 96.12 126 | 56.28 288 | 85.61 132 | 92.91 150 |
|
| baseline1 | | | 81.84 117 | 81.03 118 | 84.28 141 | 91.60 105 | 66.62 118 | 91.08 193 | 91.66 151 | 81.87 31 | 74.86 156 | 91.67 142 | 69.98 37 | 94.92 176 | 71.76 175 | 64.75 290 | 91.29 189 |
|
| ACMMP_NAP | | | 86.05 45 | 85.80 50 | 86.80 54 | 91.58 106 | 67.53 95 | 91.79 160 | 93.49 76 | 74.93 127 | 84.61 61 | 95.30 51 | 59.42 137 | 97.92 41 | 86.13 66 | 94.92 19 | 94.94 79 |
|
| MVS_Test | | | 84.16 77 | 83.20 84 | 87.05 47 | 91.56 107 | 69.82 39 | 89.99 229 | 92.05 128 | 77.77 89 | 82.84 75 | 86.57 219 | 63.93 83 | 96.09 127 | 74.91 150 | 89.18 99 | 95.25 69 |
|
| HPM-MVS_fast | | | 80.25 144 | 79.55 143 | 82.33 187 | 91.55 108 | 59.95 271 | 91.32 184 | 89.16 247 | 65.23 281 | 74.71 159 | 93.07 112 | 47.81 258 | 95.74 142 | 74.87 152 | 88.23 104 | 91.31 188 |
|
| CPTT-MVS | | | 79.59 155 | 79.16 150 | 80.89 229 | 91.54 109 | 59.80 273 | 92.10 143 | 88.54 276 | 60.42 318 | 72.96 174 | 93.28 108 | 48.27 251 | 92.80 251 | 78.89 124 | 86.50 126 | 90.06 203 |
|
| CNLPA | | | 74.31 239 | 72.30 247 | 80.32 235 | 91.49 110 | 61.66 240 | 90.85 200 | 80.72 343 | 56.67 339 | 63.85 283 | 90.64 155 | 46.75 263 | 90.84 296 | 53.79 297 | 75.99 209 | 88.47 229 |
|
| MP-MVS-pluss | | | 85.24 58 | 85.13 57 | 85.56 92 | 91.42 111 | 65.59 142 | 91.54 170 | 92.51 114 | 74.56 130 | 80.62 95 | 95.64 42 | 59.15 141 | 97.00 92 | 86.94 61 | 93.80 41 | 94.07 113 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| gg-mvs-nofinetune | | | 77.18 198 | 74.31 218 | 85.80 85 | 91.42 111 | 68.36 71 | 71.78 357 | 94.72 29 | 49.61 358 | 77.12 135 | 45.92 381 | 77.41 8 | 93.98 220 | 67.62 214 | 93.16 53 | 95.05 74 |
|
| xiu_mvs_v2_base | | | 87.92 21 | 87.38 29 | 89.55 11 | 91.41 113 | 76.43 3 | 95.74 21 | 93.12 91 | 83.53 17 | 89.55 27 | 95.95 36 | 53.45 208 | 97.68 50 | 91.07 30 | 92.62 58 | 94.54 94 |
|
| EIA-MVS | | | 84.84 63 | 84.88 61 | 84.69 123 | 91.30 114 | 62.36 224 | 93.85 75 | 92.04 129 | 79.45 59 | 79.33 109 | 94.28 88 | 62.42 104 | 96.35 119 | 80.05 112 | 91.25 81 | 95.38 56 |
|
| alignmvs | | | 87.28 28 | 86.97 33 | 88.24 24 | 91.30 114 | 71.14 21 | 95.61 25 | 93.56 71 | 79.30 63 | 87.07 39 | 95.25 56 | 68.43 39 | 96.93 103 | 87.87 49 | 84.33 140 | 96.65 14 |
|
| EPMVS | | | 78.49 179 | 75.98 195 | 86.02 76 | 91.21 116 | 69.68 44 | 80.23 330 | 91.20 167 | 75.25 123 | 72.48 184 | 78.11 317 | 54.65 190 | 93.69 229 | 57.66 285 | 83.04 147 | 94.69 86 |
|
| FMVSNet3 | | | 77.73 191 | 76.04 194 | 82.80 174 | 91.20 117 | 68.99 58 | 91.87 156 | 91.99 131 | 73.35 155 | 67.04 256 | 83.19 257 | 56.62 169 | 92.14 274 | 59.80 276 | 69.34 252 | 87.28 246 |
|
| Anonymous20240529 | | | 76.84 205 | 74.15 221 | 84.88 112 | 91.02 118 | 64.95 159 | 93.84 78 | 91.09 174 | 53.57 347 | 73.00 173 | 87.42 209 | 35.91 326 | 97.32 74 | 69.14 200 | 72.41 236 | 92.36 163 |
|
| tpmvs | | | 72.88 255 | 69.76 271 | 82.22 192 | 90.98 119 | 67.05 107 | 78.22 343 | 88.30 280 | 63.10 298 | 64.35 280 | 74.98 339 | 55.09 187 | 94.27 203 | 43.25 338 | 69.57 251 | 85.34 288 |
|
| MVS | | | 84.66 66 | 82.86 92 | 90.06 2 | 90.93 120 | 74.56 6 | 87.91 266 | 95.54 11 | 68.55 254 | 72.35 188 | 94.71 71 | 59.78 133 | 98.90 19 | 81.29 106 | 94.69 31 | 96.74 13 |
|
| PVSNet | | 73.49 8 | 80.05 148 | 78.63 155 | 84.31 139 | 90.92 121 | 64.97 158 | 92.47 132 | 91.05 179 | 79.18 66 | 72.43 186 | 90.51 159 | 37.05 322 | 94.06 213 | 68.06 208 | 86.00 128 | 93.90 122 |
|
| 3Dnovator+ | | 73.60 7 | 82.10 114 | 80.60 126 | 86.60 59 | 90.89 122 | 66.80 114 | 95.20 34 | 93.44 78 | 74.05 138 | 67.42 251 | 92.49 126 | 49.46 240 | 97.65 55 | 70.80 182 | 91.68 72 | 95.33 59 |
|
| VDD-MVS | | | 83.06 97 | 81.81 108 | 86.81 53 | 90.86 123 | 67.70 89 | 95.40 29 | 91.50 157 | 75.46 119 | 81.78 83 | 92.34 131 | 40.09 296 | 97.13 85 | 86.85 62 | 82.04 155 | 95.60 49 |
|
| BH-w/o | | | 80.49 139 | 79.30 148 | 84.05 147 | 90.83 124 | 64.36 174 | 93.60 89 | 89.42 236 | 74.35 133 | 69.09 223 | 90.15 169 | 55.23 184 | 95.61 151 | 64.61 244 | 86.43 127 | 92.17 173 |
|
| ET-MVSNet_ETH3D | | | 84.01 79 | 83.15 87 | 86.58 61 | 90.78 125 | 70.89 24 | 94.74 47 | 94.62 34 | 81.44 38 | 58.19 318 | 93.64 102 | 73.64 23 | 92.35 271 | 82.66 92 | 78.66 185 | 96.50 24 |
|
| Anonymous20231211 | | | 73.08 249 | 70.39 265 | 81.13 219 | 90.62 126 | 63.33 203 | 91.40 175 | 90.06 213 | 51.84 352 | 64.46 278 | 80.67 293 | 36.49 324 | 94.07 212 | 63.83 249 | 64.17 295 | 85.98 273 |
|
| FA-MVS(test-final) | | | 79.12 163 | 77.23 179 | 84.81 117 | 90.54 127 | 63.98 182 | 81.35 321 | 91.71 147 | 71.09 219 | 74.85 157 | 82.94 258 | 52.85 211 | 97.05 87 | 67.97 209 | 81.73 160 | 93.41 133 |
|
| TR-MVS | | | 78.77 173 | 77.37 178 | 82.95 172 | 90.49 128 | 60.88 252 | 93.67 86 | 90.07 211 | 70.08 235 | 74.51 160 | 91.37 148 | 45.69 274 | 95.70 148 | 60.12 274 | 80.32 170 | 92.29 166 |
|
| SteuartSystems-ACMMP | | | 86.82 35 | 86.90 35 | 86.58 61 | 90.42 129 | 66.38 123 | 96.09 17 | 93.87 57 | 77.73 90 | 84.01 69 | 95.66 41 | 63.39 93 | 97.94 40 | 87.40 55 | 93.55 48 | 95.42 53 |
| Skip Steuart: Steuart Systems R&D Blog. |
| TAPA-MVS | | 70.22 12 | 74.94 234 | 73.53 230 | 79.17 264 | 90.40 130 | 52.07 333 | 89.19 246 | 89.61 230 | 62.69 302 | 70.07 213 | 92.67 122 | 48.89 249 | 94.32 199 | 38.26 358 | 79.97 172 | 91.12 192 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| mvs_anonymous | | | 81.36 124 | 79.99 134 | 85.46 94 | 90.39 131 | 68.40 70 | 86.88 282 | 90.61 190 | 74.41 131 | 70.31 211 | 84.67 240 | 63.79 85 | 92.32 272 | 73.13 158 | 85.70 130 | 95.67 46 |
|
| CANet_DTU | | | 84.09 78 | 83.52 72 | 85.81 84 | 90.30 132 | 66.82 112 | 91.87 156 | 89.01 256 | 85.27 9 | 86.09 46 | 93.74 99 | 47.71 259 | 96.98 96 | 77.90 131 | 89.78 95 | 93.65 128 |
|
| Fast-Effi-MVS+ | | | 81.14 127 | 80.01 133 | 84.51 132 | 90.24 133 | 65.86 136 | 94.12 60 | 89.15 248 | 73.81 146 | 75.37 153 | 88.26 193 | 57.26 156 | 94.53 194 | 66.97 221 | 84.92 134 | 93.15 141 |
|
| ETV-MVS | | | 86.01 46 | 86.11 43 | 85.70 89 | 90.21 134 | 67.02 109 | 93.43 97 | 91.92 134 | 81.21 42 | 84.13 68 | 94.07 94 | 60.93 121 | 95.63 149 | 89.28 40 | 89.81 93 | 94.46 100 |
|
| MVS_0304 | | | 90.01 7 | 90.50 8 | 88.53 20 | 90.14 135 | 70.94 23 | 96.47 13 | 95.72 9 | 87.33 4 | 89.60 26 | 96.26 28 | 68.44 38 | 98.74 24 | 95.82 2 | 94.72 30 | 95.90 42 |
|
| tpmrst | | | 80.57 136 | 79.14 151 | 84.84 113 | 90.10 136 | 68.28 74 | 81.70 316 | 89.72 228 | 77.63 94 | 75.96 144 | 79.54 309 | 64.94 70 | 92.71 254 | 75.43 143 | 77.28 199 | 93.55 130 |
|
| PVSNet_Blended_VisFu | | | 83.97 80 | 83.50 74 | 85.39 97 | 90.02 137 | 66.59 120 | 93.77 82 | 91.73 145 | 77.43 98 | 77.08 137 | 89.81 174 | 63.77 86 | 96.97 98 | 79.67 114 | 88.21 105 | 92.60 157 |
|
| UGNet | | | 79.87 152 | 78.68 154 | 83.45 164 | 89.96 138 | 61.51 242 | 92.13 141 | 90.79 183 | 76.83 104 | 78.85 118 | 86.33 223 | 38.16 308 | 96.17 124 | 67.93 211 | 87.17 115 | 92.67 155 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| CHOSEN 1792x2688 | | | 84.98 62 | 83.45 77 | 89.57 10 | 89.94 139 | 75.14 5 | 92.07 146 | 92.32 117 | 81.87 31 | 75.68 147 | 88.27 192 | 60.18 127 | 98.60 27 | 80.46 111 | 90.27 91 | 94.96 77 |
|
| BH-untuned | | | 78.68 174 | 77.08 180 | 83.48 163 | 89.84 140 | 63.74 187 | 92.70 120 | 88.59 274 | 71.57 208 | 66.83 260 | 88.65 184 | 51.75 220 | 95.39 161 | 59.03 279 | 84.77 136 | 91.32 187 |
|
| FE-MVS | | | 75.97 219 | 73.02 235 | 84.82 114 | 89.78 141 | 65.56 143 | 77.44 346 | 91.07 177 | 64.55 283 | 72.66 178 | 79.85 305 | 46.05 273 | 96.69 110 | 54.97 292 | 80.82 167 | 92.21 172 |
|
| test222 | | | | | | 89.77 142 | 61.60 241 | 89.55 236 | 89.42 236 | 56.83 338 | 77.28 133 | 92.43 128 | 52.76 212 | | | 91.14 83 | 93.09 143 |
|
| PMMVS | | | 81.98 116 | 82.04 104 | 81.78 204 | 89.76 143 | 56.17 313 | 91.13 192 | 90.69 185 | 77.96 85 | 80.09 100 | 93.57 104 | 46.33 269 | 94.99 172 | 81.41 103 | 87.46 112 | 94.17 106 |
|
| DPM-MVS | | | 90.70 2 | 90.52 7 | 91.24 1 | 89.68 144 | 76.68 2 | 97.29 1 | 95.35 12 | 82.87 20 | 91.58 10 | 97.22 3 | 79.93 5 | 99.10 9 | 83.12 90 | 97.64 2 | 97.94 1 |
|
| QAPM | | | 79.95 151 | 77.39 177 | 87.64 30 | 89.63 145 | 71.41 17 | 93.30 99 | 93.70 66 | 65.34 280 | 67.39 253 | 91.75 140 | 47.83 257 | 98.96 16 | 57.71 284 | 89.81 93 | 92.54 159 |
|
| 3Dnovator | | 73.91 6 | 82.69 105 | 80.82 120 | 88.31 23 | 89.57 146 | 71.26 18 | 92.60 126 | 94.39 45 | 78.84 75 | 67.89 245 | 92.48 127 | 48.42 250 | 98.52 28 | 68.80 204 | 94.40 34 | 95.15 71 |
|
| Effi-MVS+ | | | 83.82 83 | 82.76 93 | 86.99 49 | 89.56 147 | 69.40 46 | 91.35 182 | 86.12 308 | 72.59 170 | 83.22 73 | 92.81 121 | 59.60 135 | 96.01 135 | 81.76 99 | 87.80 108 | 95.56 51 |
|
| PatchmatchNet |  | | 77.46 194 | 74.63 211 | 85.96 78 | 89.55 148 | 70.35 30 | 79.97 335 | 89.55 231 | 72.23 182 | 70.94 201 | 76.91 328 | 57.03 159 | 92.79 252 | 54.27 295 | 81.17 163 | 94.74 85 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PatchMatch-RL | | | 72.06 263 | 69.98 266 | 78.28 274 | 89.51 149 | 55.70 317 | 83.49 299 | 83.39 333 | 61.24 313 | 63.72 284 | 82.76 260 | 34.77 330 | 93.03 240 | 53.37 300 | 77.59 192 | 86.12 270 |
|
| thisisatest0515 | | | 83.41 90 | 82.49 99 | 86.16 74 | 89.46 150 | 68.26 75 | 93.54 92 | 94.70 30 | 74.31 134 | 75.75 145 | 90.92 152 | 72.62 28 | 96.52 117 | 69.64 192 | 81.50 161 | 93.71 126 |
|
| h-mvs33 | | | 83.01 98 | 82.56 98 | 84.35 138 | 89.34 151 | 62.02 231 | 92.72 118 | 93.76 62 | 81.45 36 | 82.73 77 | 92.25 133 | 60.11 128 | 97.13 85 | 87.69 51 | 62.96 302 | 93.91 120 |
|
| EC-MVSNet | | | 84.53 68 | 85.04 59 | 83.01 171 | 89.34 151 | 61.37 245 | 94.42 51 | 91.09 174 | 77.91 87 | 83.24 72 | 94.20 90 | 58.37 146 | 95.40 160 | 85.35 71 | 91.41 77 | 92.27 170 |
|
| UA-Net | | | 80.02 149 | 79.65 139 | 81.11 220 | 89.33 153 | 57.72 298 | 86.33 285 | 89.00 259 | 77.44 97 | 81.01 91 | 89.15 180 | 59.33 139 | 95.90 136 | 61.01 268 | 84.28 142 | 89.73 210 |
|
| dp | | | 75.01 233 | 72.09 249 | 83.76 151 | 89.28 154 | 66.22 129 | 79.96 336 | 89.75 223 | 71.16 216 | 67.80 247 | 77.19 325 | 51.81 219 | 92.54 263 | 50.39 306 | 71.44 243 | 92.51 161 |
|
| SDMVSNet | | | 80.26 143 | 78.88 153 | 84.40 135 | 89.25 155 | 67.63 92 | 85.35 288 | 93.02 93 | 76.77 106 | 70.84 203 | 87.12 213 | 47.95 256 | 96.09 127 | 85.04 74 | 74.55 214 | 89.48 214 |
|
| sd_testset | | | 77.08 200 | 75.37 203 | 82.20 193 | 89.25 155 | 62.11 230 | 82.06 313 | 89.09 252 | 76.77 106 | 70.84 203 | 87.12 213 | 41.43 292 | 95.01 171 | 67.23 218 | 74.55 214 | 89.48 214 |
|
| sss | | | 82.71 104 | 82.38 101 | 83.73 154 | 89.25 155 | 59.58 276 | 92.24 137 | 94.89 23 | 77.96 85 | 79.86 102 | 92.38 129 | 56.70 167 | 97.05 87 | 77.26 134 | 80.86 166 | 94.55 92 |
|
| MVSFormer | | | 83.75 86 | 82.88 91 | 86.37 69 | 89.24 158 | 71.18 19 | 89.07 248 | 90.69 185 | 65.80 275 | 87.13 37 | 94.34 85 | 64.99 68 | 92.67 257 | 72.83 161 | 91.80 70 | 95.27 66 |
|
| lupinMVS | | | 87.74 23 | 87.77 23 | 87.63 34 | 89.24 158 | 71.18 19 | 96.57 11 | 92.90 99 | 82.70 23 | 87.13 37 | 95.27 54 | 64.99 68 | 95.80 138 | 89.34 39 | 91.80 70 | 95.93 40 |
|
| IB-MVS | | 77.80 4 | 82.18 110 | 80.46 129 | 87.35 39 | 89.14 160 | 70.28 31 | 95.59 26 | 95.17 17 | 78.85 74 | 70.19 212 | 85.82 229 | 70.66 35 | 97.67 51 | 72.19 172 | 66.52 275 | 94.09 111 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MDTV_nov1_ep13 | | | | 72.61 243 | | 89.06 161 | 68.48 68 | 80.33 328 | 90.11 210 | 71.84 196 | 71.81 193 | 75.92 336 | 53.01 210 | 93.92 223 | 48.04 318 | 73.38 225 | |
|
| testdata | | | | | 81.34 214 | 89.02 162 | 57.72 298 | | 89.84 220 | 58.65 329 | 85.32 56 | 94.09 92 | 57.03 159 | 93.28 236 | 69.34 197 | 90.56 89 | 93.03 146 |
|
| CostFormer | | | 82.33 108 | 81.15 113 | 85.86 82 | 89.01 163 | 68.46 69 | 82.39 312 | 93.01 94 | 75.59 117 | 80.25 98 | 81.57 277 | 72.03 32 | 94.96 173 | 79.06 121 | 77.48 196 | 94.16 107 |
|
| GeoE | | | 78.90 168 | 77.43 173 | 83.29 166 | 88.95 164 | 62.02 231 | 92.31 134 | 86.23 306 | 70.24 233 | 71.34 200 | 89.27 178 | 54.43 195 | 94.04 216 | 63.31 253 | 80.81 168 | 93.81 125 |
|
| GBi-Net | | | 75.65 224 | 73.83 226 | 81.10 221 | 88.85 165 | 65.11 154 | 90.01 226 | 90.32 198 | 70.84 223 | 67.04 256 | 80.25 300 | 48.03 252 | 91.54 289 | 59.80 276 | 69.34 252 | 86.64 255 |
|
| test1 | | | 75.65 224 | 73.83 226 | 81.10 221 | 88.85 165 | 65.11 154 | 90.01 226 | 90.32 198 | 70.84 223 | 67.04 256 | 80.25 300 | 48.03 252 | 91.54 289 | 59.80 276 | 69.34 252 | 86.64 255 |
|
| FMVSNet2 | | | 76.07 213 | 74.01 224 | 82.26 191 | 88.85 165 | 67.66 90 | 91.33 183 | 91.61 152 | 70.84 223 | 65.98 263 | 82.25 266 | 48.03 252 | 92.00 279 | 58.46 281 | 68.73 260 | 87.10 249 |
|
| DeepC-MVS | | 77.85 3 | 85.52 55 | 85.24 55 | 86.37 69 | 88.80 168 | 66.64 117 | 92.15 140 | 93.68 67 | 81.07 43 | 76.91 138 | 93.64 102 | 62.59 103 | 98.44 31 | 85.50 70 | 92.84 57 | 94.03 115 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| EPP-MVSNet | | | 81.79 118 | 81.52 110 | 82.61 180 | 88.77 169 | 60.21 268 | 93.02 109 | 93.66 68 | 68.52 255 | 72.90 176 | 90.39 162 | 72.19 31 | 94.96 173 | 74.93 149 | 79.29 179 | 92.67 155 |
|
| 1112_ss | | | 80.56 137 | 79.83 137 | 82.77 175 | 88.65 170 | 60.78 254 | 92.29 135 | 88.36 278 | 72.58 171 | 72.46 185 | 94.95 62 | 65.09 67 | 93.42 235 | 66.38 227 | 77.71 190 | 94.10 110 |
|
| tpm cat1 | | | 75.30 229 | 72.21 248 | 84.58 129 | 88.52 171 | 67.77 87 | 78.16 344 | 88.02 287 | 61.88 310 | 68.45 237 | 76.37 332 | 60.65 122 | 94.03 218 | 53.77 298 | 74.11 220 | 91.93 176 |
|
| LCM-MVSNet-Re | | | 72.93 253 | 71.84 252 | 76.18 299 | 88.49 172 | 48.02 352 | 80.07 333 | 70.17 369 | 73.96 142 | 52.25 342 | 80.09 303 | 49.98 235 | 88.24 321 | 67.35 215 | 84.23 143 | 92.28 167 |
|
| Vis-MVSNet |  | | 80.92 133 | 79.98 135 | 83.74 152 | 88.48 173 | 61.80 235 | 93.44 96 | 88.26 284 | 73.96 142 | 77.73 126 | 91.76 139 | 49.94 236 | 94.76 178 | 65.84 233 | 90.37 90 | 94.65 90 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Vis-MVSNet (Re-imp) | | | 79.24 161 | 79.57 140 | 78.24 276 | 88.46 174 | 52.29 332 | 90.41 213 | 89.12 250 | 74.24 135 | 69.13 222 | 91.91 137 | 65.77 61 | 90.09 308 | 59.00 280 | 88.09 106 | 92.33 164 |
|
| ab-mvs | | | 80.18 145 | 78.31 159 | 85.80 85 | 88.44 175 | 65.49 147 | 83.00 309 | 92.67 106 | 71.82 197 | 77.36 132 | 85.01 235 | 54.50 191 | 96.59 112 | 76.35 139 | 75.63 210 | 95.32 61 |
|
| gm-plane-assit | | | | | | 88.42 176 | 67.04 108 | | | 78.62 79 | | 91.83 138 | | 97.37 70 | 76.57 137 | | |
|
| MVS_111021_LR | | | 82.02 115 | 81.52 110 | 83.51 161 | 88.42 176 | 62.88 216 | 89.77 233 | 88.93 260 | 76.78 105 | 75.55 151 | 93.10 109 | 50.31 232 | 95.38 162 | 83.82 87 | 87.02 116 | 92.26 171 |
|
| test2506 | | | 83.29 92 | 82.92 90 | 84.37 137 | 88.39 178 | 63.18 207 | 92.01 149 | 91.35 162 | 77.66 92 | 78.49 121 | 91.42 145 | 64.58 76 | 95.09 169 | 73.19 157 | 89.23 97 | 94.85 80 |
|
| ECVR-MVS |  | | 81.29 125 | 80.38 130 | 84.01 148 | 88.39 178 | 61.96 233 | 92.56 131 | 86.79 301 | 77.66 92 | 76.63 139 | 91.42 145 | 46.34 268 | 95.24 167 | 74.36 154 | 89.23 97 | 94.85 80 |
|
| baseline | | | 85.01 61 | 84.44 65 | 86.71 56 | 88.33 180 | 68.73 63 | 90.24 220 | 91.82 143 | 81.05 44 | 81.18 88 | 92.50 124 | 63.69 87 | 96.08 130 | 84.45 81 | 86.71 123 | 95.32 61 |
|
| tpm2 | | | 79.80 153 | 77.95 166 | 85.34 99 | 88.28 181 | 68.26 75 | 81.56 318 | 91.42 160 | 70.11 234 | 77.59 130 | 80.50 295 | 67.40 48 | 94.26 205 | 67.34 216 | 77.35 197 | 93.51 131 |
|
| thisisatest0530 | | | 81.15 126 | 80.07 131 | 84.39 136 | 88.26 182 | 65.63 141 | 91.40 175 | 94.62 34 | 71.27 215 | 70.93 202 | 89.18 179 | 72.47 29 | 96.04 132 | 65.62 236 | 76.89 202 | 91.49 180 |
|
| casdiffmvs |  | | 85.37 56 | 84.87 62 | 86.84 51 | 88.25 183 | 69.07 55 | 93.04 107 | 91.76 144 | 81.27 41 | 80.84 94 | 92.07 135 | 64.23 79 | 96.06 131 | 84.98 76 | 87.43 113 | 95.39 55 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| Test_1112_low_res | | | 79.56 156 | 78.60 156 | 82.43 183 | 88.24 184 | 60.39 265 | 92.09 144 | 87.99 288 | 72.10 187 | 71.84 192 | 87.42 209 | 64.62 75 | 93.04 239 | 65.80 234 | 77.30 198 | 93.85 124 |
|
| casdiffmvs_mvg |  | | 85.66 53 | 85.18 56 | 87.09 45 | 88.22 185 | 69.35 50 | 93.74 84 | 91.89 137 | 81.47 35 | 80.10 99 | 91.45 144 | 64.80 73 | 96.35 119 | 87.23 58 | 87.69 109 | 95.58 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PAPM | | | 85.89 48 | 85.46 53 | 87.18 42 | 88.20 186 | 72.42 13 | 92.41 133 | 92.77 102 | 82.11 29 | 80.34 97 | 93.07 112 | 68.27 40 | 95.02 170 | 78.39 128 | 93.59 47 | 94.09 111 |
|
| TESTMET0.1,1 | | | 82.41 107 | 81.98 106 | 83.72 155 | 88.08 187 | 63.74 187 | 92.70 120 | 93.77 61 | 79.30 63 | 77.61 129 | 87.57 207 | 58.19 149 | 94.08 211 | 73.91 156 | 86.68 124 | 93.33 137 |
|
| ADS-MVSNet2 | | | 66.90 303 | 63.44 310 | 77.26 288 | 88.06 188 | 60.70 260 | 68.01 367 | 75.56 355 | 57.57 331 | 64.48 276 | 69.87 356 | 38.68 300 | 84.10 347 | 40.87 349 | 67.89 266 | 86.97 250 |
|
| ADS-MVSNet | | | 68.54 291 | 64.38 306 | 81.03 225 | 88.06 188 | 66.90 111 | 68.01 367 | 84.02 325 | 57.57 331 | 64.48 276 | 69.87 356 | 38.68 300 | 89.21 314 | 40.87 349 | 67.89 266 | 86.97 250 |
|
| EPNet_dtu | | | 78.80 171 | 79.26 149 | 77.43 284 | 88.06 188 | 49.71 345 | 91.96 154 | 91.95 133 | 77.67 91 | 76.56 141 | 91.28 149 | 58.51 145 | 90.20 306 | 56.37 287 | 80.95 165 | 92.39 162 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_enhance_ethall | | | 78.86 169 | 77.97 165 | 81.54 210 | 88.00 191 | 65.17 152 | 91.41 173 | 89.15 248 | 75.19 124 | 68.79 231 | 83.98 249 | 67.17 49 | 92.82 249 | 72.73 164 | 65.30 281 | 86.62 259 |
|
| IS-MVSNet | | | 80.14 146 | 79.41 145 | 82.33 187 | 87.91 192 | 60.08 270 | 91.97 153 | 88.27 282 | 72.90 166 | 71.44 199 | 91.73 141 | 61.44 115 | 93.66 230 | 62.47 261 | 86.53 125 | 93.24 138 |
|
| CLD-MVS | | | 82.73 102 | 82.35 102 | 83.86 150 | 87.90 193 | 67.65 91 | 95.45 28 | 92.18 126 | 85.06 10 | 72.58 181 | 92.27 132 | 52.46 215 | 95.78 139 | 84.18 82 | 79.06 180 | 88.16 233 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Syy-MVS | | | 69.65 281 | 69.52 273 | 70.03 337 | 87.87 194 | 43.21 370 | 88.07 262 | 89.01 256 | 72.91 164 | 63.11 289 | 88.10 197 | 45.28 278 | 85.54 340 | 22.07 383 | 69.23 255 | 81.32 332 |
|
| myMVS_eth3d | | | 72.58 262 | 72.74 240 | 72.10 330 | 87.87 194 | 49.45 347 | 88.07 262 | 89.01 256 | 72.91 164 | 63.11 289 | 88.10 197 | 63.63 88 | 85.54 340 | 32.73 372 | 69.23 255 | 81.32 332 |
|
| test1111 | | | 80.84 134 | 80.02 132 | 83.33 165 | 87.87 194 | 60.76 256 | 92.62 125 | 86.86 300 | 77.86 88 | 75.73 146 | 91.39 147 | 46.35 267 | 94.70 184 | 72.79 163 | 88.68 103 | 94.52 96 |
|
| HyFIR lowres test | | | 81.03 131 | 79.56 141 | 85.43 95 | 87.81 197 | 68.11 80 | 90.18 221 | 90.01 216 | 70.65 228 | 72.95 175 | 86.06 227 | 63.61 90 | 94.50 196 | 75.01 148 | 79.75 175 | 93.67 127 |
|
| dmvs_re | | | 76.93 201 | 75.36 204 | 81.61 208 | 87.78 198 | 60.71 259 | 80.00 334 | 87.99 288 | 79.42 60 | 69.02 226 | 89.47 177 | 46.77 262 | 94.32 199 | 63.38 252 | 74.45 217 | 89.81 207 |
|
| 1314 | | | 80.70 135 | 78.95 152 | 85.94 79 | 87.77 199 | 67.56 93 | 87.91 266 | 92.55 113 | 72.17 185 | 67.44 250 | 93.09 110 | 50.27 233 | 97.04 90 | 71.68 177 | 87.64 110 | 93.23 139 |
|
| cl22 | | | 77.94 188 | 76.78 185 | 81.42 212 | 87.57 200 | 64.93 160 | 90.67 206 | 88.86 263 | 72.45 175 | 67.63 249 | 82.68 262 | 64.07 80 | 92.91 247 | 71.79 173 | 65.30 281 | 86.44 260 |
|
| HQP-NCC | | | | | | 87.54 201 | | 94.06 61 | | 79.80 54 | 74.18 162 | | | | | | |
|
| ACMP_Plane | | | | | | 87.54 201 | | 94.06 61 | | 79.80 54 | 74.18 162 | | | | | | |
|
| HQP-MVS | | | 81.14 127 | 80.64 124 | 82.64 179 | 87.54 201 | 63.66 194 | 94.06 61 | 91.70 149 | 79.80 54 | 74.18 162 | 90.30 164 | 51.63 222 | 95.61 151 | 77.63 132 | 78.90 181 | 88.63 223 |
|
| NP-MVS | | | | | | 87.41 204 | 63.04 208 | | | | | 90.30 164 | | | | | |
|
| diffmvs |  | | 84.28 72 | 83.83 70 | 85.61 91 | 87.40 205 | 68.02 82 | 90.88 199 | 89.24 242 | 80.54 47 | 81.64 84 | 92.52 123 | 59.83 132 | 94.52 195 | 87.32 56 | 85.11 133 | 94.29 101 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 83.68 89 | 83.42 80 | 84.48 133 | 87.37 206 | 66.00 132 | 90.06 224 | 95.93 8 | 79.71 57 | 69.08 224 | 90.39 162 | 77.92 6 | 96.28 121 | 78.91 123 | 81.38 162 | 91.16 191 |
|
| fmvsm_s_conf0.5_n | | | 86.39 39 | 86.91 34 | 84.82 114 | 87.36 207 | 63.54 199 | 94.74 47 | 90.02 215 | 82.52 24 | 90.14 22 | 96.92 12 | 62.93 101 | 97.84 46 | 95.28 6 | 82.26 152 | 93.07 145 |
|
| plane_prior6 | | | | | | 87.23 208 | 62.32 226 | | | | | | 50.66 229 | | | | |
|
| tttt0517 | | | 79.50 157 | 78.53 157 | 82.41 186 | 87.22 209 | 61.43 244 | 89.75 234 | 94.76 27 | 69.29 244 | 67.91 243 | 88.06 200 | 72.92 25 | 95.63 149 | 62.91 257 | 73.90 224 | 90.16 202 |
|
| plane_prior1 | | | | | | 87.15 210 | | | | | | | | | | | |
|
| cascas | | | 78.18 183 | 75.77 198 | 85.41 96 | 87.14 211 | 69.11 53 | 92.96 110 | 91.15 171 | 66.71 269 | 70.47 206 | 86.07 226 | 37.49 316 | 96.48 118 | 70.15 188 | 79.80 174 | 90.65 196 |
|
| CHOSEN 280x420 | | | 77.35 196 | 76.95 184 | 78.55 271 | 87.07 212 | 62.68 220 | 69.71 363 | 82.95 335 | 68.80 251 | 71.48 198 | 87.27 212 | 66.03 58 | 84.00 350 | 76.47 138 | 82.81 150 | 88.95 217 |
|
| test_fmvsm_n_1920 | | | 87.69 24 | 88.50 17 | 85.27 101 | 87.05 213 | 63.55 198 | 93.69 85 | 91.08 176 | 84.18 13 | 90.17 21 | 97.04 8 | 67.58 47 | 97.99 39 | 95.72 3 | 90.03 92 | 94.26 102 |
|
| HQP_MVS | | | 80.34 142 | 79.75 138 | 82.12 197 | 86.94 214 | 62.42 222 | 93.13 103 | 91.31 163 | 78.81 76 | 72.53 182 | 89.14 181 | 50.66 229 | 95.55 156 | 76.74 135 | 78.53 186 | 88.39 230 |
|
| plane_prior7 | | | | | | 86.94 214 | 61.51 242 | | | | | | | | | | |
|
| test-LLR | | | 80.10 147 | 79.56 141 | 81.72 206 | 86.93 216 | 61.17 246 | 92.70 120 | 91.54 154 | 71.51 211 | 75.62 148 | 86.94 215 | 53.83 200 | 92.38 268 | 72.21 170 | 84.76 137 | 91.60 178 |
|
| test-mter | | | 79.96 150 | 79.38 147 | 81.72 206 | 86.93 216 | 61.17 246 | 92.70 120 | 91.54 154 | 73.85 144 | 75.62 148 | 86.94 215 | 49.84 238 | 92.38 268 | 72.21 170 | 84.76 137 | 91.60 178 |
|
| SCA | | | 75.82 222 | 72.76 239 | 85.01 108 | 86.63 218 | 70.08 32 | 81.06 323 | 89.19 245 | 71.60 207 | 70.01 214 | 77.09 326 | 45.53 275 | 90.25 301 | 60.43 271 | 73.27 226 | 94.68 87 |
|
| AUN-MVS | | | 78.37 180 | 77.43 173 | 81.17 217 | 86.60 219 | 57.45 304 | 89.46 240 | 91.16 169 | 74.11 137 | 74.40 161 | 90.49 160 | 55.52 181 | 94.57 190 | 74.73 153 | 60.43 328 | 91.48 181 |
|
| hse-mvs2 | | | 81.12 129 | 81.11 117 | 81.16 218 | 86.52 220 | 57.48 303 | 89.40 241 | 91.16 169 | 81.45 36 | 82.73 77 | 90.49 160 | 60.11 128 | 94.58 188 | 87.69 51 | 60.41 329 | 91.41 183 |
|
| xiu_mvs_v1_base_debu | | | 82.16 111 | 81.12 114 | 85.26 102 | 86.42 221 | 68.72 64 | 92.59 128 | 90.44 195 | 73.12 159 | 84.20 65 | 94.36 80 | 38.04 310 | 95.73 143 | 84.12 83 | 86.81 118 | 91.33 184 |
|
| xiu_mvs_v1_base | | | 82.16 111 | 81.12 114 | 85.26 102 | 86.42 221 | 68.72 64 | 92.59 128 | 90.44 195 | 73.12 159 | 84.20 65 | 94.36 80 | 38.04 310 | 95.73 143 | 84.12 83 | 86.81 118 | 91.33 184 |
|
| xiu_mvs_v1_base_debi | | | 82.16 111 | 81.12 114 | 85.26 102 | 86.42 221 | 68.72 64 | 92.59 128 | 90.44 195 | 73.12 159 | 84.20 65 | 94.36 80 | 38.04 310 | 95.73 143 | 84.12 83 | 86.81 118 | 91.33 184 |
|
| F-COLMAP | | | 70.66 271 | 68.44 279 | 77.32 286 | 86.37 224 | 55.91 315 | 88.00 264 | 86.32 303 | 56.94 337 | 57.28 326 | 88.07 199 | 33.58 335 | 92.49 265 | 51.02 304 | 68.37 262 | 83.55 303 |
|
| CDS-MVSNet | | | 81.43 123 | 80.74 121 | 83.52 159 | 86.26 225 | 64.45 167 | 92.09 144 | 90.65 189 | 75.83 116 | 73.95 168 | 89.81 174 | 63.97 82 | 92.91 247 | 71.27 178 | 82.82 149 | 93.20 140 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| VDDNet | | | 80.50 138 | 78.26 160 | 87.21 41 | 86.19 226 | 69.79 40 | 94.48 50 | 91.31 163 | 60.42 318 | 79.34 108 | 90.91 153 | 38.48 305 | 96.56 115 | 82.16 95 | 81.05 164 | 95.27 66 |
|
| jason | | | 86.40 38 | 86.17 42 | 87.11 44 | 86.16 227 | 70.54 28 | 95.71 24 | 92.19 125 | 82.00 30 | 84.58 62 | 94.34 85 | 61.86 110 | 95.53 158 | 87.76 50 | 90.89 84 | 95.27 66 |
| jason: jason. |
| PCF-MVS | | 73.15 9 | 79.29 160 | 77.63 170 | 84.29 140 | 86.06 228 | 65.96 134 | 87.03 278 | 91.10 173 | 69.86 238 | 69.79 219 | 90.64 155 | 57.54 155 | 96.59 112 | 64.37 246 | 82.29 151 | 90.32 200 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| MS-PatchMatch | | | 77.90 190 | 76.50 188 | 82.12 197 | 85.99 229 | 69.95 36 | 91.75 165 | 92.70 104 | 73.97 141 | 62.58 296 | 84.44 244 | 41.11 293 | 95.78 139 | 63.76 250 | 92.17 64 | 80.62 340 |
|
| FIs | | | 79.47 158 | 79.41 145 | 79.67 255 | 85.95 230 | 59.40 278 | 91.68 167 | 93.94 56 | 78.06 84 | 68.96 228 | 88.28 191 | 66.61 54 | 91.77 283 | 66.20 230 | 74.99 213 | 87.82 235 |
|
| VPA-MVSNet | | | 79.03 164 | 78.00 164 | 82.11 200 | 85.95 230 | 64.48 166 | 93.22 102 | 94.66 32 | 75.05 126 | 74.04 167 | 84.95 236 | 52.17 217 | 93.52 232 | 74.90 151 | 67.04 271 | 88.32 232 |
|
| tpm | | | 78.58 177 | 77.03 181 | 83.22 168 | 85.94 232 | 64.56 162 | 83.21 306 | 91.14 172 | 78.31 81 | 73.67 170 | 79.68 307 | 64.01 81 | 92.09 277 | 66.07 231 | 71.26 244 | 93.03 146 |
|
| OpenMVS |  | 70.45 11 | 78.54 178 | 75.92 196 | 86.41 68 | 85.93 233 | 71.68 16 | 92.74 117 | 92.51 114 | 66.49 271 | 64.56 275 | 91.96 136 | 43.88 283 | 98.10 37 | 54.61 293 | 90.65 87 | 89.44 216 |
|
| testing3 | | | 70.38 275 | 70.83 259 | 69.03 341 | 85.82 234 | 43.93 369 | 90.72 205 | 90.56 191 | 68.06 257 | 60.24 306 | 86.82 217 | 64.83 72 | 84.12 346 | 26.33 379 | 64.10 296 | 79.04 353 |
|
| OMC-MVS | | | 78.67 176 | 77.91 167 | 80.95 227 | 85.76 235 | 57.40 305 | 88.49 257 | 88.67 271 | 73.85 144 | 72.43 186 | 92.10 134 | 49.29 243 | 94.55 193 | 72.73 164 | 77.89 189 | 90.91 194 |
|
| fmvsm_s_conf0.5_n_a | | | 85.75 50 | 86.09 44 | 84.72 121 | 85.73 236 | 63.58 196 | 93.79 81 | 89.32 239 | 81.42 39 | 90.21 20 | 96.91 13 | 62.41 105 | 97.67 51 | 94.48 8 | 80.56 169 | 92.90 151 |
|
| miper_ehance_all_eth | | | 77.60 192 | 76.44 189 | 81.09 224 | 85.70 237 | 64.41 171 | 90.65 207 | 88.64 273 | 72.31 179 | 67.37 254 | 82.52 263 | 64.77 74 | 92.64 261 | 70.67 184 | 65.30 281 | 86.24 264 |
|
| KD-MVS_2432*1600 | | | 69.03 286 | 66.37 289 | 77.01 291 | 85.56 238 | 61.06 249 | 81.44 319 | 90.25 204 | 67.27 265 | 58.00 321 | 76.53 330 | 54.49 192 | 87.63 329 | 48.04 318 | 35.77 378 | 82.34 324 |
|
| miper_refine_blended | | | 69.03 286 | 66.37 289 | 77.01 291 | 85.56 238 | 61.06 249 | 81.44 319 | 90.25 204 | 67.27 265 | 58.00 321 | 76.53 330 | 54.49 192 | 87.63 329 | 48.04 318 | 35.77 378 | 82.34 324 |
|
| EI-MVSNet | | | 78.97 166 | 78.22 161 | 81.25 215 | 85.33 240 | 62.73 219 | 89.53 238 | 93.21 84 | 72.39 178 | 72.14 189 | 90.13 170 | 60.99 118 | 94.72 181 | 67.73 213 | 72.49 234 | 86.29 262 |
|
| CVMVSNet | | | 74.04 242 | 74.27 219 | 73.33 318 | 85.33 240 | 43.94 368 | 89.53 238 | 88.39 277 | 54.33 346 | 70.37 209 | 90.13 170 | 49.17 245 | 84.05 348 | 61.83 265 | 79.36 177 | 91.99 175 |
|
| test_fmvsmconf_n | | | 86.58 37 | 87.17 30 | 84.82 114 | 85.28 242 | 62.55 221 | 94.26 54 | 89.78 221 | 83.81 16 | 87.78 34 | 96.33 27 | 65.33 65 | 96.98 96 | 94.40 9 | 87.55 111 | 94.95 78 |
|
| ACMH | | 63.93 17 | 68.62 289 | 64.81 299 | 80.03 245 | 85.22 243 | 63.25 204 | 87.72 269 | 84.66 320 | 60.83 316 | 51.57 345 | 79.43 310 | 27.29 356 | 94.96 173 | 41.76 345 | 64.84 288 | 81.88 328 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| cl____ | | | 76.07 213 | 74.67 209 | 80.28 237 | 85.15 244 | 61.76 237 | 90.12 222 | 88.73 268 | 71.16 216 | 65.43 266 | 81.57 277 | 61.15 116 | 92.95 242 | 66.54 224 | 62.17 310 | 86.13 269 |
|
| DIV-MVS_self_test | | | 76.07 213 | 74.67 209 | 80.28 237 | 85.14 245 | 61.75 238 | 90.12 222 | 88.73 268 | 71.16 216 | 65.42 267 | 81.60 276 | 61.15 116 | 92.94 246 | 66.54 224 | 62.16 312 | 86.14 267 |
|
| TAMVS | | | 80.37 141 | 79.45 144 | 83.13 170 | 85.14 245 | 63.37 202 | 91.23 187 | 90.76 184 | 74.81 129 | 72.65 179 | 88.49 185 | 60.63 123 | 92.95 242 | 69.41 196 | 81.95 157 | 93.08 144 |
|
| MSDG | | | 69.54 282 | 65.73 292 | 80.96 226 | 85.11 247 | 63.71 190 | 84.19 294 | 83.28 334 | 56.95 336 | 54.50 333 | 84.03 247 | 31.50 343 | 96.03 133 | 42.87 342 | 69.13 257 | 83.14 313 |
|
| c3_l | | | 76.83 206 | 75.47 202 | 80.93 228 | 85.02 248 | 64.18 179 | 90.39 214 | 88.11 285 | 71.66 201 | 66.65 262 | 81.64 275 | 63.58 92 | 92.56 262 | 69.31 198 | 62.86 303 | 86.04 271 |
|
| ACMP | | 71.68 10 | 75.58 227 | 74.23 220 | 79.62 257 | 84.97 249 | 59.64 274 | 90.80 202 | 89.07 254 | 70.39 231 | 62.95 292 | 87.30 211 | 38.28 306 | 93.87 225 | 72.89 160 | 71.45 242 | 85.36 287 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| FC-MVSNet-test | | | 77.99 186 | 78.08 163 | 77.70 279 | 84.89 250 | 55.51 318 | 90.27 218 | 93.75 65 | 76.87 101 | 66.80 261 | 87.59 206 | 65.71 62 | 90.23 305 | 62.89 258 | 73.94 222 | 87.37 242 |
|
| PVSNet_0 | | 68.08 15 | 71.81 264 | 68.32 281 | 82.27 189 | 84.68 251 | 62.31 227 | 88.68 254 | 90.31 201 | 75.84 115 | 57.93 323 | 80.65 294 | 37.85 313 | 94.19 207 | 69.94 190 | 29.05 386 | 90.31 201 |
|
| eth_miper_zixun_eth | | | 75.96 220 | 74.40 217 | 80.66 230 | 84.66 252 | 63.02 209 | 89.28 243 | 88.27 282 | 71.88 193 | 65.73 264 | 81.65 274 | 59.45 136 | 92.81 250 | 68.13 207 | 60.53 326 | 86.14 267 |
|
| WR-MVS | | | 76.76 207 | 75.74 199 | 79.82 252 | 84.60 253 | 62.27 228 | 92.60 126 | 92.51 114 | 76.06 113 | 67.87 246 | 85.34 232 | 56.76 165 | 90.24 304 | 62.20 262 | 63.69 301 | 86.94 252 |
|
| ACMH+ | | 65.35 16 | 67.65 298 | 64.55 302 | 76.96 293 | 84.59 254 | 57.10 307 | 88.08 261 | 80.79 342 | 58.59 330 | 53.00 339 | 81.09 289 | 26.63 358 | 92.95 242 | 46.51 326 | 61.69 319 | 80.82 337 |
|
| VPNet | | | 78.82 170 | 77.53 172 | 82.70 177 | 84.52 255 | 66.44 122 | 93.93 70 | 92.23 120 | 80.46 48 | 72.60 180 | 88.38 190 | 49.18 244 | 93.13 238 | 72.47 168 | 63.97 299 | 88.55 226 |
|
| IterMVS-LS | | | 76.49 209 | 75.18 207 | 80.43 234 | 84.49 256 | 62.74 218 | 90.64 208 | 88.80 265 | 72.40 177 | 65.16 269 | 81.72 273 | 60.98 119 | 92.27 273 | 67.74 212 | 64.65 292 | 86.29 262 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| UniMVSNet_NR-MVSNet | | | 78.15 184 | 77.55 171 | 79.98 246 | 84.46 257 | 60.26 266 | 92.25 136 | 93.20 86 | 77.50 96 | 68.88 229 | 86.61 218 | 66.10 57 | 92.13 275 | 66.38 227 | 62.55 306 | 87.54 237 |
|
| FMVSNet5 | | | 68.04 295 | 65.66 294 | 75.18 305 | 84.43 258 | 57.89 295 | 83.54 298 | 86.26 305 | 61.83 311 | 53.64 338 | 73.30 343 | 37.15 320 | 85.08 343 | 48.99 313 | 61.77 315 | 82.56 323 |
|
| MVS-HIRNet | | | 60.25 330 | 55.55 337 | 74.35 311 | 84.37 259 | 56.57 312 | 71.64 358 | 74.11 359 | 34.44 379 | 45.54 365 | 42.24 386 | 31.11 347 | 89.81 309 | 40.36 352 | 76.10 208 | 76.67 363 |
|
| LPG-MVS_test | | | 75.82 222 | 74.58 213 | 79.56 259 | 84.31 260 | 59.37 279 | 90.44 211 | 89.73 226 | 69.49 241 | 64.86 270 | 88.42 186 | 38.65 302 | 94.30 201 | 72.56 166 | 72.76 231 | 85.01 292 |
|
| LGP-MVS_train | | | | | 79.56 259 | 84.31 260 | 59.37 279 | | 89.73 226 | 69.49 241 | 64.86 270 | 88.42 186 | 38.65 302 | 94.30 201 | 72.56 166 | 72.76 231 | 85.01 292 |
|
| ACMM | | 69.62 13 | 74.34 238 | 72.73 241 | 79.17 264 | 84.25 262 | 57.87 296 | 90.36 215 | 89.93 217 | 63.17 297 | 65.64 265 | 86.04 228 | 37.79 314 | 94.10 209 | 65.89 232 | 71.52 241 | 85.55 283 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UniMVSNet (Re) | | | 77.58 193 | 76.78 185 | 79.98 246 | 84.11 263 | 60.80 253 | 91.76 163 | 93.17 88 | 76.56 110 | 69.93 218 | 84.78 239 | 63.32 96 | 92.36 270 | 64.89 243 | 62.51 308 | 86.78 254 |
|
| test_0402 | | | 64.54 315 | 61.09 321 | 74.92 307 | 84.10 264 | 60.75 257 | 87.95 265 | 79.71 347 | 52.03 350 | 52.41 341 | 77.20 324 | 32.21 341 | 91.64 285 | 23.14 381 | 61.03 322 | 72.36 370 |
|
| LTVRE_ROB | | 59.60 19 | 66.27 306 | 63.54 309 | 74.45 310 | 84.00 265 | 51.55 335 | 67.08 370 | 83.53 330 | 58.78 328 | 54.94 332 | 80.31 298 | 34.54 331 | 93.23 237 | 40.64 351 | 68.03 264 | 78.58 357 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| miper_lstm_enhance | | | 73.05 251 | 71.73 254 | 77.03 290 | 83.80 266 | 58.32 292 | 81.76 314 | 88.88 261 | 69.80 239 | 61.01 302 | 78.23 316 | 57.19 157 | 87.51 331 | 65.34 240 | 59.53 331 | 85.27 290 |
|
| Patchmatch-test | | | 65.86 308 | 60.94 322 | 80.62 232 | 83.75 267 | 58.83 287 | 58.91 381 | 75.26 357 | 44.50 371 | 50.95 349 | 77.09 326 | 58.81 144 | 87.90 323 | 35.13 364 | 64.03 297 | 95.12 72 |
|
| nrg030 | | | 80.93 132 | 79.86 136 | 84.13 145 | 83.69 268 | 68.83 61 | 93.23 101 | 91.20 167 | 75.55 118 | 75.06 155 | 88.22 196 | 63.04 100 | 94.74 180 | 81.88 98 | 66.88 272 | 88.82 221 |
|
| GA-MVS | | | 78.33 182 | 76.23 192 | 84.65 125 | 83.65 269 | 66.30 126 | 91.44 171 | 90.14 209 | 76.01 114 | 70.32 210 | 84.02 248 | 42.50 288 | 94.72 181 | 70.98 180 | 77.00 201 | 92.94 149 |
|
| FMVSNet1 | | | 72.71 258 | 69.91 269 | 81.10 221 | 83.60 270 | 65.11 154 | 90.01 226 | 90.32 198 | 63.92 287 | 63.56 285 | 80.25 300 | 36.35 325 | 91.54 289 | 54.46 294 | 66.75 273 | 86.64 255 |
|
| OPM-MVS | | | 79.00 165 | 78.09 162 | 81.73 205 | 83.52 271 | 63.83 184 | 91.64 169 | 90.30 202 | 76.36 112 | 71.97 191 | 89.93 173 | 46.30 270 | 95.17 168 | 75.10 146 | 77.70 191 | 86.19 266 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| tfpnnormal | | | 70.10 276 | 67.36 284 | 78.32 273 | 83.45 272 | 60.97 251 | 88.85 251 | 92.77 102 | 64.85 282 | 60.83 304 | 78.53 313 | 43.52 285 | 93.48 233 | 31.73 375 | 61.70 318 | 80.52 341 |
|
| Effi-MVS+-dtu | | | 76.14 212 | 75.28 206 | 78.72 270 | 83.22 273 | 55.17 320 | 89.87 230 | 87.78 291 | 75.42 120 | 67.98 240 | 81.43 279 | 45.08 279 | 92.52 264 | 75.08 147 | 71.63 239 | 88.48 227 |
|
| CR-MVSNet | | | 73.79 246 | 70.82 261 | 82.70 177 | 83.15 274 | 67.96 83 | 70.25 360 | 84.00 326 | 73.67 151 | 69.97 216 | 72.41 346 | 57.82 152 | 89.48 312 | 52.99 301 | 73.13 227 | 90.64 197 |
|
| RPMNet | | | 70.42 274 | 65.68 293 | 84.63 127 | 83.15 274 | 67.96 83 | 70.25 360 | 90.45 192 | 46.83 366 | 69.97 216 | 65.10 365 | 56.48 172 | 95.30 166 | 35.79 363 | 73.13 227 | 90.64 197 |
|
| mvsmamba | | | 76.85 204 | 75.71 200 | 80.25 239 | 83.07 276 | 59.16 283 | 91.44 171 | 80.64 344 | 76.84 103 | 67.95 241 | 86.33 223 | 46.17 272 | 94.24 206 | 76.06 140 | 72.92 230 | 87.36 243 |
|
| DU-MVS | | | 76.86 202 | 75.84 197 | 79.91 249 | 82.96 277 | 60.26 266 | 91.26 186 | 91.54 154 | 76.46 111 | 68.88 229 | 86.35 221 | 56.16 173 | 92.13 275 | 66.38 227 | 62.55 306 | 87.35 244 |
|
| NR-MVSNet | | | 76.05 216 | 74.59 212 | 80.44 233 | 82.96 277 | 62.18 229 | 90.83 201 | 91.73 145 | 77.12 100 | 60.96 303 | 86.35 221 | 59.28 140 | 91.80 282 | 60.74 269 | 61.34 321 | 87.35 244 |
|
| fmvsm_s_conf0.1_n | | | 85.61 54 | 85.93 47 | 84.68 124 | 82.95 279 | 63.48 201 | 94.03 66 | 89.46 233 | 81.69 33 | 89.86 23 | 96.74 18 | 61.85 111 | 97.75 49 | 94.74 7 | 82.01 156 | 92.81 153 |
|
| XXY-MVS | | | 77.94 188 | 76.44 189 | 82.43 183 | 82.60 280 | 64.44 168 | 92.01 149 | 91.83 142 | 73.59 152 | 70.00 215 | 85.82 229 | 54.43 195 | 94.76 178 | 69.63 193 | 68.02 265 | 88.10 234 |
|
| test_fmvsmvis_n_1920 | | | 83.80 84 | 83.48 75 | 84.77 118 | 82.51 281 | 63.72 189 | 91.37 180 | 83.99 328 | 81.42 39 | 77.68 127 | 95.74 40 | 58.37 146 | 97.58 59 | 93.38 12 | 86.87 117 | 93.00 148 |
|
| TranMVSNet+NR-MVSNet | | | 75.86 221 | 74.52 215 | 79.89 250 | 82.44 282 | 60.64 262 | 91.37 180 | 91.37 161 | 76.63 108 | 67.65 248 | 86.21 225 | 52.37 216 | 91.55 288 | 61.84 264 | 60.81 324 | 87.48 239 |
|
| RRT_MVS | | | 74.44 237 | 72.97 237 | 78.84 269 | 82.36 283 | 57.66 300 | 89.83 232 | 88.79 267 | 70.61 229 | 64.58 274 | 84.89 237 | 39.24 298 | 92.65 260 | 70.11 189 | 66.34 276 | 86.21 265 |
|
| test_vis1_n_1920 | | | 81.66 120 | 82.01 105 | 80.64 231 | 82.24 284 | 55.09 321 | 94.76 46 | 86.87 299 | 81.67 34 | 84.40 64 | 94.63 73 | 38.17 307 | 94.67 185 | 91.98 24 | 83.34 146 | 92.16 174 |
|
| IterMVS | | | 72.65 261 | 70.83 259 | 78.09 277 | 82.17 285 | 62.96 211 | 87.64 272 | 86.28 304 | 71.56 209 | 60.44 305 | 78.85 312 | 45.42 277 | 86.66 335 | 63.30 254 | 61.83 314 | 84.65 296 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| Patchmtry | | | 67.53 300 | 63.93 307 | 78.34 272 | 82.12 286 | 64.38 172 | 68.72 364 | 84.00 326 | 48.23 363 | 59.24 311 | 72.41 346 | 57.82 152 | 89.27 313 | 46.10 329 | 56.68 341 | 81.36 331 |
|
| PatchT | | | 69.11 285 | 65.37 297 | 80.32 235 | 82.07 287 | 63.68 193 | 67.96 369 | 87.62 292 | 50.86 355 | 69.37 220 | 65.18 364 | 57.09 158 | 88.53 318 | 41.59 347 | 66.60 274 | 88.74 222 |
|
| MIMVSNet | | | 71.64 265 | 68.44 279 | 81.23 216 | 81.97 288 | 64.44 168 | 73.05 356 | 88.80 265 | 69.67 240 | 64.59 273 | 74.79 340 | 32.79 337 | 87.82 325 | 53.99 296 | 76.35 206 | 91.42 182 |
|
| MVP-Stereo | | | 77.12 199 | 76.23 192 | 79.79 253 | 81.72 289 | 66.34 125 | 89.29 242 | 90.88 182 | 70.56 230 | 62.01 299 | 82.88 259 | 49.34 241 | 94.13 208 | 65.55 238 | 93.80 41 | 78.88 354 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| IterMVS-SCA-FT | | | 71.55 268 | 69.97 267 | 76.32 297 | 81.48 290 | 60.67 261 | 87.64 272 | 85.99 309 | 66.17 273 | 59.50 310 | 78.88 311 | 45.53 275 | 83.65 352 | 62.58 260 | 61.93 313 | 84.63 297 |
|
| COLMAP_ROB |  | 57.96 20 | 62.98 323 | 59.65 325 | 72.98 321 | 81.44 291 | 53.00 330 | 83.75 297 | 75.53 356 | 48.34 362 | 48.81 356 | 81.40 281 | 24.14 361 | 90.30 300 | 32.95 370 | 60.52 327 | 75.65 365 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| JIA-IIPM | | | 66.06 307 | 62.45 316 | 76.88 294 | 81.42 292 | 54.45 325 | 57.49 382 | 88.67 271 | 49.36 359 | 63.86 282 | 46.86 380 | 56.06 176 | 90.25 301 | 49.53 311 | 68.83 258 | 85.95 274 |
|
| WR-MVS_H | | | 70.59 272 | 69.94 268 | 72.53 324 | 81.03 293 | 51.43 336 | 87.35 275 | 92.03 130 | 67.38 264 | 60.23 307 | 80.70 291 | 55.84 179 | 83.45 354 | 46.33 328 | 58.58 336 | 82.72 318 |
|
| Fast-Effi-MVS+-dtu | | | 75.04 232 | 73.37 232 | 80.07 243 | 80.86 294 | 59.52 277 | 91.20 190 | 85.38 313 | 71.90 191 | 65.20 268 | 84.84 238 | 41.46 291 | 92.97 241 | 66.50 226 | 72.96 229 | 87.73 236 |
|
| test_fmvsmconf0.1_n | | | 85.71 51 | 86.08 45 | 84.62 128 | 80.83 295 | 62.33 225 | 93.84 78 | 88.81 264 | 83.50 18 | 87.00 40 | 96.01 35 | 63.36 94 | 96.93 103 | 94.04 10 | 87.29 114 | 94.61 91 |
|
| Baseline_NR-MVSNet | | | 73.99 243 | 72.83 238 | 77.48 283 | 80.78 296 | 59.29 282 | 91.79 160 | 84.55 321 | 68.85 250 | 68.99 227 | 80.70 291 | 56.16 173 | 92.04 278 | 62.67 259 | 60.98 323 | 81.11 334 |
|
| CP-MVSNet | | | 70.50 273 | 69.91 269 | 72.26 327 | 80.71 297 | 51.00 339 | 87.23 277 | 90.30 202 | 67.84 259 | 59.64 309 | 82.69 261 | 50.23 234 | 82.30 362 | 51.28 303 | 59.28 332 | 83.46 307 |
|
| v8 | | | 75.35 228 | 73.26 233 | 81.61 208 | 80.67 298 | 66.82 112 | 89.54 237 | 89.27 241 | 71.65 202 | 63.30 288 | 80.30 299 | 54.99 188 | 94.06 213 | 67.33 217 | 62.33 309 | 83.94 300 |
|
| PS-MVSNAJss | | | 77.26 197 | 76.31 191 | 80.13 242 | 80.64 299 | 59.16 283 | 90.63 210 | 91.06 178 | 72.80 167 | 68.58 235 | 84.57 242 | 53.55 204 | 93.96 221 | 72.97 159 | 71.96 238 | 87.27 247 |
|
| TransMVSNet (Re) | | | 70.07 277 | 67.66 283 | 77.31 287 | 80.62 300 | 59.13 285 | 91.78 162 | 84.94 318 | 65.97 274 | 60.08 308 | 80.44 296 | 50.78 228 | 91.87 280 | 48.84 314 | 45.46 364 | 80.94 336 |
|
| v2v482 | | | 77.42 195 | 75.65 201 | 82.73 176 | 80.38 301 | 67.13 105 | 91.85 158 | 90.23 206 | 75.09 125 | 69.37 220 | 83.39 255 | 53.79 202 | 94.44 197 | 71.77 174 | 65.00 287 | 86.63 258 |
|
| PS-CasMVS | | | 69.86 280 | 69.13 275 | 72.07 331 | 80.35 302 | 50.57 341 | 87.02 279 | 89.75 223 | 67.27 265 | 59.19 313 | 82.28 265 | 46.58 265 | 82.24 363 | 50.69 305 | 59.02 333 | 83.39 309 |
|
| v10 | | | 74.77 235 | 72.54 245 | 81.46 211 | 80.33 303 | 66.71 116 | 89.15 247 | 89.08 253 | 70.94 221 | 63.08 291 | 79.86 304 | 52.52 214 | 94.04 216 | 65.70 235 | 62.17 310 | 83.64 302 |
|
| test0.0.03 1 | | | 72.76 256 | 72.71 242 | 72.88 322 | 80.25 304 | 47.99 353 | 91.22 188 | 89.45 234 | 71.51 211 | 62.51 297 | 87.66 205 | 53.83 200 | 85.06 344 | 50.16 308 | 67.84 268 | 85.58 281 |
|
| fmvsm_s_conf0.1_n_a | | | 84.76 64 | 84.84 63 | 84.53 130 | 80.23 305 | 63.50 200 | 92.79 115 | 88.73 268 | 80.46 48 | 89.84 24 | 96.65 20 | 60.96 120 | 97.57 61 | 93.80 11 | 80.14 171 | 92.53 160 |
|
| v1144 | | | 76.73 208 | 74.88 208 | 82.27 189 | 80.23 305 | 66.60 119 | 91.68 167 | 90.21 208 | 73.69 149 | 69.06 225 | 81.89 270 | 52.73 213 | 94.40 198 | 69.21 199 | 65.23 284 | 85.80 277 |
|
| v148 | | | 76.19 211 | 74.47 216 | 81.36 213 | 80.05 307 | 64.44 168 | 91.75 165 | 90.23 206 | 73.68 150 | 67.13 255 | 80.84 290 | 55.92 178 | 93.86 227 | 68.95 202 | 61.73 317 | 85.76 280 |
|
| dmvs_testset | | | 65.55 311 | 66.45 287 | 62.86 353 | 79.87 308 | 22.35 396 | 76.55 348 | 71.74 366 | 77.42 99 | 55.85 329 | 87.77 204 | 51.39 224 | 80.69 368 | 31.51 378 | 65.92 279 | 85.55 283 |
|
| v1192 | | | 75.98 218 | 73.92 225 | 82.15 195 | 79.73 309 | 66.24 128 | 91.22 188 | 89.75 223 | 72.67 169 | 68.49 236 | 81.42 280 | 49.86 237 | 94.27 203 | 67.08 219 | 65.02 286 | 85.95 274 |
|
| AllTest | | | 61.66 325 | 58.06 329 | 72.46 325 | 79.57 310 | 51.42 337 | 80.17 331 | 68.61 372 | 51.25 353 | 45.88 361 | 81.23 283 | 19.86 372 | 86.58 336 | 38.98 355 | 57.01 339 | 79.39 349 |
|
| TestCases | | | | | 72.46 325 | 79.57 310 | 51.42 337 | | 68.61 372 | 51.25 353 | 45.88 361 | 81.23 283 | 19.86 372 | 86.58 336 | 38.98 355 | 57.01 339 | 79.39 349 |
|
| MDA-MVSNet-bldmvs | | | 61.54 327 | 57.70 331 | 73.05 320 | 79.53 312 | 57.00 310 | 83.08 307 | 81.23 340 | 57.57 331 | 34.91 379 | 72.45 345 | 32.79 337 | 86.26 338 | 35.81 362 | 41.95 369 | 75.89 364 |
|
| v144192 | | | 76.05 216 | 74.03 223 | 82.12 197 | 79.50 313 | 66.55 121 | 91.39 177 | 89.71 229 | 72.30 180 | 68.17 238 | 81.33 282 | 51.75 220 | 94.03 218 | 67.94 210 | 64.19 294 | 85.77 278 |
|
| v1921920 | | | 75.63 226 | 73.49 231 | 82.06 201 | 79.38 314 | 66.35 124 | 91.07 195 | 89.48 232 | 71.98 188 | 67.99 239 | 81.22 285 | 49.16 246 | 93.90 224 | 66.56 223 | 64.56 293 | 85.92 276 |
|
| PEN-MVS | | | 69.46 283 | 68.56 277 | 72.17 329 | 79.27 315 | 49.71 345 | 86.90 281 | 89.24 242 | 67.24 268 | 59.08 314 | 82.51 264 | 47.23 261 | 83.54 353 | 48.42 316 | 57.12 337 | 83.25 310 |
|
| v1240 | | | 75.21 231 | 72.98 236 | 81.88 203 | 79.20 316 | 66.00 132 | 90.75 204 | 89.11 251 | 71.63 206 | 67.41 252 | 81.22 285 | 47.36 260 | 93.87 225 | 65.46 239 | 64.72 291 | 85.77 278 |
|
| pmmvs4 | | | 73.92 244 | 71.81 253 | 80.25 239 | 79.17 317 | 65.24 150 | 87.43 274 | 87.26 296 | 67.64 263 | 63.46 286 | 83.91 250 | 48.96 248 | 91.53 292 | 62.94 256 | 65.49 280 | 83.96 299 |
|
| D2MVS | | | 73.80 245 | 72.02 250 | 79.15 266 | 79.15 318 | 62.97 210 | 88.58 256 | 90.07 211 | 72.94 162 | 59.22 312 | 78.30 314 | 42.31 290 | 92.70 256 | 65.59 237 | 72.00 237 | 81.79 329 |
|
| V42 | | | 76.46 210 | 74.55 214 | 82.19 194 | 79.14 319 | 67.82 86 | 90.26 219 | 89.42 236 | 73.75 147 | 68.63 234 | 81.89 270 | 51.31 225 | 94.09 210 | 71.69 176 | 64.84 288 | 84.66 295 |
|
| pm-mvs1 | | | 72.89 254 | 71.09 258 | 78.26 275 | 79.10 320 | 57.62 301 | 90.80 202 | 89.30 240 | 67.66 261 | 62.91 293 | 81.78 272 | 49.11 247 | 92.95 242 | 60.29 273 | 58.89 334 | 84.22 298 |
|
| our_test_3 | | | 68.29 293 | 64.69 301 | 79.11 267 | 78.92 321 | 64.85 161 | 88.40 259 | 85.06 316 | 60.32 320 | 52.68 340 | 76.12 334 | 40.81 294 | 89.80 311 | 44.25 337 | 55.65 342 | 82.67 322 |
|
| ppachtmachnet_test | | | 67.72 297 | 63.70 308 | 79.77 254 | 78.92 321 | 66.04 131 | 88.68 254 | 82.90 336 | 60.11 322 | 55.45 330 | 75.96 335 | 39.19 299 | 90.55 297 | 39.53 353 | 52.55 352 | 82.71 319 |
|
| test_fmvs1 | | | 74.07 241 | 73.69 228 | 75.22 303 | 78.91 323 | 47.34 357 | 89.06 250 | 74.69 358 | 63.68 290 | 79.41 107 | 91.59 143 | 24.36 360 | 87.77 327 | 85.22 72 | 76.26 207 | 90.55 199 |
|
| TinyColmap | | | 60.32 329 | 56.42 336 | 72.00 332 | 78.78 324 | 53.18 329 | 78.36 342 | 75.64 354 | 52.30 349 | 41.59 374 | 75.82 337 | 14.76 379 | 88.35 320 | 35.84 361 | 54.71 347 | 74.46 366 |
|
| SixPastTwentyTwo | | | 64.92 313 | 61.78 320 | 74.34 312 | 78.74 325 | 49.76 344 | 83.42 302 | 79.51 348 | 62.86 299 | 50.27 350 | 77.35 321 | 30.92 348 | 90.49 299 | 45.89 330 | 47.06 361 | 82.78 315 |
|
| EG-PatchMatch MVS | | | 68.55 290 | 65.41 296 | 77.96 278 | 78.69 326 | 62.93 212 | 89.86 231 | 89.17 246 | 60.55 317 | 50.27 350 | 77.73 320 | 22.60 365 | 94.06 213 | 47.18 324 | 72.65 233 | 76.88 362 |
|
| pmmvs5 | | | 73.35 248 | 71.52 255 | 78.86 268 | 78.64 327 | 60.61 263 | 91.08 193 | 86.90 298 | 67.69 260 | 63.32 287 | 83.64 251 | 44.33 282 | 90.53 298 | 62.04 263 | 66.02 278 | 85.46 285 |
|
| UniMVSNet_ETH3D | | | 72.74 257 | 70.53 264 | 79.36 261 | 78.62 328 | 56.64 311 | 85.01 290 | 89.20 244 | 63.77 289 | 64.84 272 | 84.44 244 | 34.05 333 | 91.86 281 | 63.94 248 | 70.89 246 | 89.57 212 |
|
| XVG-OURS | | | 74.25 240 | 72.46 246 | 79.63 256 | 78.45 329 | 57.59 302 | 80.33 328 | 87.39 293 | 63.86 288 | 68.76 232 | 89.62 176 | 40.50 295 | 91.72 284 | 69.00 201 | 74.25 219 | 89.58 211 |
|
| tt0805 | | | 73.07 250 | 70.73 262 | 80.07 243 | 78.37 330 | 57.05 308 | 87.78 268 | 92.18 126 | 61.23 314 | 67.04 256 | 86.49 220 | 31.35 345 | 94.58 188 | 65.06 242 | 67.12 270 | 88.57 225 |
|
| test_cas_vis1_n_1920 | | | 80.45 140 | 80.61 125 | 79.97 248 | 78.25 331 | 57.01 309 | 94.04 65 | 88.33 279 | 79.06 71 | 82.81 76 | 93.70 100 | 38.65 302 | 91.63 286 | 90.82 33 | 79.81 173 | 91.27 190 |
|
| XVG-OURS-SEG-HR | | | 74.70 236 | 73.08 234 | 79.57 258 | 78.25 331 | 57.33 306 | 80.49 326 | 87.32 294 | 63.22 295 | 68.76 232 | 90.12 172 | 44.89 280 | 91.59 287 | 70.55 186 | 74.09 221 | 89.79 208 |
|
| MDA-MVSNet_test_wron | | | 63.78 320 | 60.16 323 | 74.64 308 | 78.15 333 | 60.41 264 | 83.49 299 | 84.03 324 | 56.17 342 | 39.17 376 | 71.59 352 | 37.22 318 | 83.24 357 | 42.87 342 | 48.73 358 | 80.26 344 |
|
| YYNet1 | | | 63.76 321 | 60.14 324 | 74.62 309 | 78.06 334 | 60.19 269 | 83.46 301 | 83.99 328 | 56.18 341 | 39.25 375 | 71.56 353 | 37.18 319 | 83.34 355 | 42.90 341 | 48.70 359 | 80.32 343 |
|
| DTE-MVSNet | | | 68.46 292 | 67.33 285 | 71.87 333 | 77.94 335 | 49.00 350 | 86.16 286 | 88.58 275 | 66.36 272 | 58.19 318 | 82.21 267 | 46.36 266 | 83.87 351 | 44.97 335 | 55.17 344 | 82.73 317 |
|
| USDC | | | 67.43 302 | 64.51 303 | 76.19 298 | 77.94 335 | 55.29 319 | 78.38 341 | 85.00 317 | 73.17 157 | 48.36 357 | 80.37 297 | 21.23 367 | 92.48 266 | 52.15 302 | 64.02 298 | 80.81 338 |
|
| bld_raw_dy_0_64 | | | 71.59 267 | 69.71 272 | 77.22 289 | 77.82 337 | 58.12 294 | 87.71 270 | 73.66 360 | 68.01 258 | 61.90 301 | 84.29 246 | 33.68 334 | 88.43 319 | 69.91 191 | 70.43 247 | 85.11 291 |
|
| jajsoiax | | | 73.05 251 | 71.51 256 | 77.67 280 | 77.46 338 | 54.83 322 | 88.81 252 | 90.04 214 | 69.13 248 | 62.85 294 | 83.51 253 | 31.16 346 | 92.75 253 | 70.83 181 | 69.80 248 | 85.43 286 |
|
| mvs_tets | | | 72.71 258 | 71.11 257 | 77.52 281 | 77.41 339 | 54.52 324 | 88.45 258 | 89.76 222 | 68.76 253 | 62.70 295 | 83.26 256 | 29.49 350 | 92.71 254 | 70.51 187 | 69.62 250 | 85.34 288 |
|
| N_pmnet | | | 50.55 340 | 49.11 343 | 54.88 361 | 77.17 340 | 4.02 404 | 84.36 293 | 2.00 402 | 48.59 360 | 45.86 363 | 68.82 358 | 32.22 340 | 82.80 359 | 31.58 376 | 51.38 354 | 77.81 360 |
|
| test_djsdf | | | 73.76 247 | 72.56 244 | 77.39 285 | 77.00 341 | 53.93 326 | 89.07 248 | 90.69 185 | 65.80 275 | 63.92 281 | 82.03 269 | 43.14 287 | 92.67 257 | 72.83 161 | 68.53 261 | 85.57 282 |
|
| OpenMVS_ROB |  | 61.12 18 | 66.39 305 | 62.92 313 | 76.80 295 | 76.51 342 | 57.77 297 | 89.22 244 | 83.41 332 | 55.48 343 | 53.86 337 | 77.84 319 | 26.28 359 | 93.95 222 | 34.90 365 | 68.76 259 | 78.68 356 |
|
| v7n | | | 71.31 269 | 68.65 276 | 79.28 262 | 76.40 343 | 60.77 255 | 86.71 283 | 89.45 234 | 64.17 286 | 58.77 317 | 78.24 315 | 44.59 281 | 93.54 231 | 57.76 283 | 61.75 316 | 83.52 305 |
|
| K. test v3 | | | 63.09 322 | 59.61 326 | 73.53 317 | 76.26 344 | 49.38 349 | 83.27 303 | 77.15 350 | 64.35 285 | 47.77 359 | 72.32 348 | 28.73 352 | 87.79 326 | 49.93 310 | 36.69 377 | 83.41 308 |
|
| RPSCF | | | 64.24 317 | 61.98 319 | 71.01 335 | 76.10 345 | 45.00 365 | 75.83 352 | 75.94 352 | 46.94 365 | 58.96 315 | 84.59 241 | 31.40 344 | 82.00 364 | 47.76 322 | 60.33 330 | 86.04 271 |
|
| OurMVSNet-221017-0 | | | 64.68 314 | 62.17 318 | 72.21 328 | 76.08 346 | 47.35 356 | 80.67 325 | 81.02 341 | 56.19 340 | 51.60 344 | 79.66 308 | 27.05 357 | 88.56 317 | 53.60 299 | 53.63 349 | 80.71 339 |
|
| test_fmvsmconf0.01_n | | | 83.70 88 | 83.52 72 | 84.25 142 | 75.26 347 | 61.72 239 | 92.17 139 | 87.24 297 | 82.36 26 | 84.91 59 | 95.41 46 | 55.60 180 | 96.83 107 | 92.85 15 | 85.87 129 | 94.21 104 |
|
| Anonymous20231206 | | | 67.53 300 | 65.78 291 | 72.79 323 | 74.95 348 | 47.59 355 | 88.23 260 | 87.32 294 | 61.75 312 | 58.07 320 | 77.29 323 | 37.79 314 | 87.29 333 | 42.91 340 | 63.71 300 | 83.48 306 |
|
| EGC-MVSNET | | | 42.35 347 | 38.09 350 | 55.11 360 | 74.57 349 | 46.62 361 | 71.63 359 | 55.77 383 | 0.04 397 | 0.24 398 | 62.70 369 | 14.24 380 | 74.91 374 | 17.59 386 | 46.06 363 | 43.80 383 |
|
| ITE_SJBPF | | | | | 70.43 336 | 74.44 350 | 47.06 360 | | 77.32 349 | 60.16 321 | 54.04 336 | 83.53 252 | 23.30 364 | 84.01 349 | 43.07 339 | 61.58 320 | 80.21 346 |
|
| EU-MVSNet | | | 64.01 318 | 63.01 312 | 67.02 349 | 74.40 351 | 38.86 380 | 83.27 303 | 86.19 307 | 45.11 369 | 54.27 334 | 81.15 288 | 36.91 323 | 80.01 370 | 48.79 315 | 57.02 338 | 82.19 327 |
|
| XVG-ACMP-BASELINE | | | 68.04 295 | 65.53 295 | 75.56 301 | 74.06 352 | 52.37 331 | 78.43 340 | 85.88 310 | 62.03 307 | 58.91 316 | 81.21 287 | 20.38 370 | 91.15 295 | 60.69 270 | 68.18 263 | 83.16 312 |
|
| mvsany_test1 | | | 68.77 288 | 68.56 277 | 69.39 339 | 73.57 353 | 45.88 364 | 80.93 324 | 60.88 382 | 59.65 324 | 71.56 197 | 90.26 166 | 43.22 286 | 75.05 372 | 74.26 155 | 62.70 305 | 87.25 248 |
|
| CL-MVSNet_self_test | | | 69.92 278 | 68.09 282 | 75.41 302 | 73.25 354 | 55.90 316 | 90.05 225 | 89.90 218 | 69.96 236 | 61.96 300 | 76.54 329 | 51.05 227 | 87.64 328 | 49.51 312 | 50.59 356 | 82.70 320 |
|
| anonymousdsp | | | 71.14 270 | 69.37 274 | 76.45 296 | 72.95 355 | 54.71 323 | 84.19 294 | 88.88 261 | 61.92 309 | 62.15 298 | 79.77 306 | 38.14 309 | 91.44 294 | 68.90 203 | 67.45 269 | 83.21 311 |
|
| lessismore_v0 | | | | | 73.72 316 | 72.93 356 | 47.83 354 | | 61.72 381 | | 45.86 363 | 73.76 342 | 28.63 354 | 89.81 309 | 47.75 323 | 31.37 383 | 83.53 304 |
|
| pmmvs6 | | | 67.57 299 | 64.76 300 | 76.00 300 | 72.82 357 | 53.37 328 | 88.71 253 | 86.78 302 | 53.19 348 | 57.58 325 | 78.03 318 | 35.33 329 | 92.41 267 | 55.56 290 | 54.88 346 | 82.21 326 |
|
| testgi | | | 64.48 316 | 62.87 314 | 69.31 340 | 71.24 358 | 40.62 375 | 85.49 287 | 79.92 346 | 65.36 279 | 54.18 335 | 83.49 254 | 23.74 363 | 84.55 345 | 41.60 346 | 60.79 325 | 82.77 316 |
|
| Patchmatch-RL test | | | 68.17 294 | 64.49 304 | 79.19 263 | 71.22 359 | 53.93 326 | 70.07 362 | 71.54 368 | 69.22 245 | 56.79 327 | 62.89 368 | 56.58 170 | 88.61 315 | 69.53 195 | 52.61 351 | 95.03 76 |
|
| test_fmvs1_n | | | 72.69 260 | 71.92 251 | 74.99 306 | 71.15 360 | 47.08 359 | 87.34 276 | 75.67 353 | 63.48 292 | 78.08 124 | 91.17 150 | 20.16 371 | 87.87 324 | 84.65 79 | 75.57 211 | 90.01 205 |
|
| Gipuma |  | | 34.91 354 | 31.44 357 | 45.30 370 | 70.99 361 | 39.64 379 | 19.85 392 | 72.56 363 | 20.10 388 | 16.16 392 | 21.47 393 | 5.08 393 | 71.16 378 | 13.07 390 | 43.70 367 | 25.08 390 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| UnsupCasMVSNet_eth | | | 65.79 309 | 63.10 311 | 73.88 314 | 70.71 362 | 50.29 343 | 81.09 322 | 89.88 219 | 72.58 171 | 49.25 355 | 74.77 341 | 32.57 339 | 87.43 332 | 55.96 289 | 41.04 371 | 83.90 301 |
|
| CMPMVS |  | 48.56 21 | 66.77 304 | 64.41 305 | 73.84 315 | 70.65 363 | 50.31 342 | 77.79 345 | 85.73 312 | 45.54 368 | 44.76 367 | 82.14 268 | 35.40 328 | 90.14 307 | 63.18 255 | 74.54 216 | 81.07 335 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test20.03 | | | 63.83 319 | 62.65 315 | 67.38 348 | 70.58 364 | 39.94 376 | 86.57 284 | 84.17 323 | 63.29 294 | 51.86 343 | 77.30 322 | 37.09 321 | 82.47 360 | 38.87 357 | 54.13 348 | 79.73 347 |
|
| MIMVSNet1 | | | 60.16 331 | 57.33 332 | 68.67 342 | 69.71 365 | 44.13 367 | 78.92 338 | 84.21 322 | 55.05 344 | 44.63 368 | 71.85 350 | 23.91 362 | 81.54 366 | 32.63 373 | 55.03 345 | 80.35 342 |
|
| test_vis1_n | | | 71.63 266 | 70.73 262 | 74.31 313 | 69.63 366 | 47.29 358 | 86.91 280 | 72.11 364 | 63.21 296 | 75.18 154 | 90.17 168 | 20.40 369 | 85.76 339 | 84.59 80 | 74.42 218 | 89.87 206 |
|
| pmmvs-eth3d | | | 65.53 312 | 62.32 317 | 75.19 304 | 69.39 367 | 59.59 275 | 82.80 310 | 83.43 331 | 62.52 303 | 51.30 347 | 72.49 344 | 32.86 336 | 87.16 334 | 55.32 291 | 50.73 355 | 78.83 355 |
|
| UnsupCasMVSNet_bld | | | 61.60 326 | 57.71 330 | 73.29 319 | 68.73 368 | 51.64 334 | 78.61 339 | 89.05 255 | 57.20 335 | 46.11 360 | 61.96 371 | 28.70 353 | 88.60 316 | 50.08 309 | 38.90 375 | 79.63 348 |
|
| test_vis1_rt | | | 59.09 334 | 57.31 333 | 64.43 351 | 68.44 369 | 46.02 363 | 83.05 308 | 48.63 391 | 51.96 351 | 49.57 353 | 63.86 367 | 16.30 374 | 80.20 369 | 71.21 179 | 62.79 304 | 67.07 376 |
|
| Anonymous20240521 | | | 62.09 324 | 59.08 327 | 71.10 334 | 67.19 370 | 48.72 351 | 83.91 296 | 85.23 315 | 50.38 356 | 47.84 358 | 71.22 355 | 20.74 368 | 85.51 342 | 46.47 327 | 58.75 335 | 79.06 352 |
|
| test_fmvs2 | | | 65.78 310 | 64.84 298 | 68.60 343 | 66.54 371 | 41.71 372 | 83.27 303 | 69.81 370 | 54.38 345 | 67.91 243 | 84.54 243 | 15.35 376 | 81.22 367 | 75.65 142 | 66.16 277 | 82.88 314 |
|
| KD-MVS_self_test | | | 60.87 328 | 58.60 328 | 67.68 346 | 66.13 372 | 39.93 377 | 75.63 353 | 84.70 319 | 57.32 334 | 49.57 353 | 68.45 359 | 29.55 349 | 82.87 358 | 48.09 317 | 47.94 360 | 80.25 345 |
|
| new-patchmatchnet | | | 59.30 333 | 56.48 335 | 67.79 345 | 65.86 373 | 44.19 366 | 82.47 311 | 81.77 338 | 59.94 323 | 43.65 371 | 66.20 363 | 27.67 355 | 81.68 365 | 39.34 354 | 41.40 370 | 77.50 361 |
|
| PM-MVS | | | 59.40 332 | 56.59 334 | 67.84 344 | 63.63 374 | 41.86 371 | 76.76 347 | 63.22 379 | 59.01 327 | 51.07 348 | 72.27 349 | 11.72 382 | 83.25 356 | 61.34 266 | 50.28 357 | 78.39 358 |
|
| DSMNet-mixed | | | 56.78 336 | 54.44 339 | 63.79 352 | 63.21 375 | 29.44 391 | 64.43 373 | 64.10 378 | 42.12 376 | 51.32 346 | 71.60 351 | 31.76 342 | 75.04 373 | 36.23 360 | 65.20 285 | 86.87 253 |
|
| new_pmnet | | | 49.31 341 | 46.44 344 | 57.93 356 | 62.84 376 | 40.74 374 | 68.47 366 | 62.96 380 | 36.48 378 | 35.09 378 | 57.81 375 | 14.97 378 | 72.18 377 | 32.86 371 | 46.44 362 | 60.88 378 |
|
| LF4IMVS | | | 54.01 339 | 52.12 340 | 59.69 355 | 62.41 377 | 39.91 378 | 68.59 365 | 68.28 374 | 42.96 375 | 44.55 369 | 75.18 338 | 14.09 381 | 68.39 381 | 41.36 348 | 51.68 353 | 70.78 371 |
|
| WB-MVS | | | 46.23 344 | 44.94 346 | 50.11 365 | 62.13 378 | 21.23 398 | 76.48 349 | 55.49 384 | 45.89 367 | 35.78 377 | 61.44 373 | 35.54 327 | 72.83 376 | 9.96 392 | 21.75 387 | 56.27 380 |
|
| ambc | | | | | 69.61 338 | 61.38 379 | 41.35 373 | 49.07 387 | 85.86 311 | | 50.18 352 | 66.40 362 | 10.16 384 | 88.14 322 | 45.73 331 | 44.20 365 | 79.32 351 |
|
| SSC-MVS | | | 44.51 346 | 43.35 348 | 47.99 369 | 61.01 380 | 18.90 400 | 74.12 355 | 54.36 385 | 43.42 374 | 34.10 380 | 60.02 374 | 34.42 332 | 70.39 379 | 9.14 394 | 19.57 388 | 54.68 381 |
|
| TDRefinement | | | 55.28 338 | 51.58 341 | 66.39 350 | 59.53 381 | 46.15 362 | 76.23 350 | 72.80 362 | 44.60 370 | 42.49 372 | 76.28 333 | 15.29 377 | 82.39 361 | 33.20 369 | 43.75 366 | 70.62 372 |
|
| pmmvs3 | | | 55.51 337 | 51.50 342 | 67.53 347 | 57.90 382 | 50.93 340 | 80.37 327 | 73.66 360 | 40.63 377 | 44.15 370 | 64.75 366 | 16.30 374 | 78.97 371 | 44.77 336 | 40.98 373 | 72.69 368 |
|
| test_method | | | 38.59 352 | 35.16 355 | 48.89 367 | 54.33 383 | 21.35 397 | 45.32 388 | 53.71 386 | 7.41 394 | 28.74 382 | 51.62 378 | 8.70 387 | 52.87 392 | 33.73 366 | 32.89 382 | 72.47 369 |
|
| test_fmvs3 | | | 56.82 335 | 54.86 338 | 62.69 354 | 53.59 384 | 35.47 382 | 75.87 351 | 65.64 377 | 43.91 372 | 55.10 331 | 71.43 354 | 6.91 390 | 74.40 375 | 68.64 205 | 52.63 350 | 78.20 359 |
|
| APD_test1 | | | 40.50 349 | 37.31 352 | 50.09 366 | 51.88 385 | 35.27 383 | 59.45 380 | 52.59 387 | 21.64 386 | 26.12 384 | 57.80 376 | 4.56 394 | 66.56 383 | 22.64 382 | 39.09 374 | 48.43 382 |
|
| DeepMVS_CX |  | | | | 34.71 375 | 51.45 386 | 24.73 395 | | 28.48 401 | 31.46 382 | 17.49 391 | 52.75 377 | 5.80 392 | 42.60 396 | 18.18 385 | 19.42 389 | 36.81 388 |
|
| FPMVS | | | 45.64 345 | 43.10 349 | 53.23 363 | 51.42 387 | 36.46 381 | 64.97 372 | 71.91 365 | 29.13 383 | 27.53 383 | 61.55 372 | 9.83 385 | 65.01 387 | 16.00 389 | 55.58 343 | 58.22 379 |
|
| wuyk23d | | | 11.30 363 | 10.95 366 | 12.33 379 | 48.05 388 | 19.89 399 | 25.89 391 | 1.92 403 | 3.58 395 | 3.12 397 | 1.37 397 | 0.64 402 | 15.77 398 | 6.23 397 | 7.77 396 | 1.35 394 |
|
| PMMVS2 | | | 37.93 353 | 33.61 356 | 50.92 364 | 46.31 389 | 24.76 394 | 60.55 379 | 50.05 388 | 28.94 384 | 20.93 386 | 47.59 379 | 4.41 396 | 65.13 386 | 25.14 380 | 18.55 390 | 62.87 377 |
|
| mvsany_test3 | | | 48.86 342 | 46.35 345 | 56.41 357 | 46.00 390 | 31.67 387 | 62.26 375 | 47.25 392 | 43.71 373 | 45.54 365 | 68.15 360 | 10.84 383 | 64.44 389 | 57.95 282 | 35.44 380 | 73.13 367 |
|
| test_f | | | 46.58 343 | 43.45 347 | 55.96 358 | 45.18 391 | 32.05 386 | 61.18 376 | 49.49 390 | 33.39 380 | 42.05 373 | 62.48 370 | 7.00 389 | 65.56 385 | 47.08 325 | 43.21 368 | 70.27 373 |
|
| test_vis3_rt | | | 40.46 350 | 37.79 351 | 48.47 368 | 44.49 392 | 33.35 385 | 66.56 371 | 32.84 399 | 32.39 381 | 29.65 381 | 39.13 389 | 3.91 397 | 68.65 380 | 50.17 307 | 40.99 372 | 43.40 384 |
|
| E-PMN | | | 24.61 358 | 24.00 362 | 26.45 376 | 43.74 393 | 18.44 401 | 60.86 377 | 39.66 395 | 15.11 391 | 9.53 395 | 22.10 392 | 6.52 391 | 46.94 394 | 8.31 395 | 10.14 392 | 13.98 392 |
|
| testf1 | | | 32.77 355 | 29.47 358 | 42.67 372 | 41.89 394 | 30.81 388 | 52.07 383 | 43.45 393 | 15.45 389 | 18.52 389 | 44.82 383 | 2.12 398 | 58.38 390 | 16.05 387 | 30.87 384 | 38.83 385 |
|
| APD_test2 | | | 32.77 355 | 29.47 358 | 42.67 372 | 41.89 394 | 30.81 388 | 52.07 383 | 43.45 393 | 15.45 389 | 18.52 389 | 44.82 383 | 2.12 398 | 58.38 390 | 16.05 387 | 30.87 384 | 38.83 385 |
|
| EMVS | | | 23.76 360 | 23.20 364 | 25.46 377 | 41.52 396 | 16.90 402 | 60.56 378 | 38.79 398 | 14.62 392 | 8.99 396 | 20.24 395 | 7.35 388 | 45.82 395 | 7.25 396 | 9.46 393 | 13.64 393 |
|
| LCM-MVSNet | | | 40.54 348 | 35.79 353 | 54.76 362 | 36.92 397 | 30.81 388 | 51.41 385 | 69.02 371 | 22.07 385 | 24.63 385 | 45.37 382 | 4.56 394 | 65.81 384 | 33.67 367 | 34.50 381 | 67.67 374 |
|
| ANet_high | | | 40.27 351 | 35.20 354 | 55.47 359 | 34.74 398 | 34.47 384 | 63.84 374 | 71.56 367 | 48.42 361 | 18.80 388 | 41.08 387 | 9.52 386 | 64.45 388 | 20.18 384 | 8.66 395 | 67.49 375 |
|
| MVE |  | 24.84 23 | 24.35 359 | 19.77 365 | 38.09 374 | 34.56 399 | 26.92 393 | 26.57 390 | 38.87 397 | 11.73 393 | 11.37 394 | 27.44 390 | 1.37 401 | 50.42 393 | 11.41 391 | 14.60 391 | 36.93 387 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 26.43 22 | 31.84 357 | 28.16 360 | 42.89 371 | 25.87 400 | 27.58 392 | 50.92 386 | 49.78 389 | 21.37 387 | 14.17 393 | 40.81 388 | 2.01 400 | 66.62 382 | 9.61 393 | 38.88 376 | 34.49 389 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 22.26 361 | 23.75 363 | 17.80 378 | 5.23 401 | 12.06 403 | 35.26 389 | 39.48 396 | 2.82 396 | 18.94 387 | 44.20 385 | 22.23 366 | 24.64 397 | 36.30 359 | 9.31 394 | 16.69 391 |
|
| testmvs | | | 7.23 365 | 9.62 368 | 0.06 381 | 0.04 402 | 0.02 406 | 84.98 291 | 0.02 404 | 0.03 398 | 0.18 399 | 1.21 398 | 0.01 404 | 0.02 399 | 0.14 398 | 0.01 397 | 0.13 396 |
|
| test123 | | | 6.92 366 | 9.21 369 | 0.08 380 | 0.03 403 | 0.05 405 | 81.65 317 | 0.01 405 | 0.02 399 | 0.14 400 | 0.85 399 | 0.03 403 | 0.02 399 | 0.12 399 | 0.00 398 | 0.16 395 |
|
| test_blank | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| eth-test2 | | | | | | 0.00 404 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 404 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| DCPMVS | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| cdsmvs_eth3d_5k | | | 19.86 362 | 26.47 361 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 93.45 77 | 0.00 400 | 0.00 401 | 95.27 54 | 49.56 239 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| pcd_1.5k_mvsjas | | | 4.46 367 | 5.95 370 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 53.55 204 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| sosnet-low-res | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| sosnet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| uncertanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| Regformer | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| ab-mvs-re | | | 7.91 364 | 10.55 367 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 94.95 62 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| uanet | | | 0.00 368 | 0.00 371 | 0.00 382 | 0.00 404 | 0.00 407 | 0.00 393 | 0.00 406 | 0.00 400 | 0.00 401 | 0.00 400 | 0.00 405 | 0.00 401 | 0.00 400 | 0.00 398 | 0.00 397 |
|
| MM | | | | | 88.92 13 | | 71.10 22 | 97.02 3 | 96.04 6 | 88.70 2 | 91.57 11 | 96.19 31 | 70.12 36 | 98.91 17 | 96.83 1 | 95.06 16 | 96.76 12 |
|
| WAC-MVS | | | | | | | 49.45 347 | | | | | | | | 31.56 377 | | |
|
| PC_three_1452 | | | | | | | | | | 80.91 45 | 94.07 2 | 96.83 16 | 83.57 4 | 99.12 5 | 95.70 5 | 97.42 4 | 97.55 4 |
|
| test_241102_TWO | | | | | | | | | 94.41 42 | 71.65 202 | 92.07 6 | 97.21 4 | 74.58 17 | 99.11 6 | 92.34 19 | 95.36 13 | 96.59 16 |
|
| test_0728_THIRD | | | | | | | | | | 72.48 173 | 90.55 17 | 96.93 10 | 76.24 11 | 99.08 11 | 91.53 27 | 94.99 17 | 96.43 26 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.68 87 |
|
| sam_mvs1 | | | | | | | | | | | | | 57.85 151 | | | | 94.68 87 |
|
| sam_mvs | | | | | | | | | | | | | 54.91 189 | | | | |
|
| MTGPA |  | | | | | | | | 92.23 120 | | | | | | | | |
|
| test_post1 | | | | | | | | 78.95 337 | | | | 20.70 394 | 53.05 209 | 91.50 293 | 60.43 271 | | |
|
| test_post | | | | | | | | | | | | 23.01 391 | 56.49 171 | 92.67 257 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 67.62 361 | 57.62 154 | 90.25 301 | | | |
|
| MTMP | | | | | | | | 93.77 82 | 32.52 400 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 89.41 37 | 94.96 18 | 95.29 63 |
|
| agg_prior2 | | | | | | | | | | | | | | | 86.41 64 | 94.75 29 | 95.33 59 |
|
| test_prior4 | | | | | | | 67.18 104 | 93.92 71 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 95.10 38 | | 75.40 121 | 85.25 58 | 95.61 43 | 67.94 44 | | 87.47 54 | 94.77 25 | |
|
| 旧先验2 | | | | | | | | 92.00 152 | | 59.37 326 | 87.54 36 | | | 93.47 234 | 75.39 144 | | |
|
| 新几何2 | | | | | | | | 91.41 173 | | | | | | | | | |
|
| 无先验 | | | | | | | | 92.71 119 | 92.61 111 | 62.03 307 | | | | 97.01 91 | 66.63 222 | | 93.97 117 |
|
| 原ACMM2 | | | | | | | | 92.01 149 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 96.09 127 | 61.26 267 | | |
|
| segment_acmp | | | | | | | | | | | | | 65.94 59 | | | | |
|
| testdata1 | | | | | | | | 89.21 245 | | 77.55 95 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 91.31 163 | | | | | 95.55 156 | 76.74 135 | 78.53 186 | 88.39 230 |
|
| plane_prior4 | | | | | | | | | | | | 89.14 181 | | | | | |
|
| plane_prior3 | | | | | | | 61.95 234 | | | 79.09 69 | 72.53 182 | | | | | | |
|
| plane_prior2 | | | | | | | | 93.13 103 | | 78.81 76 | | | | | | | |
|
| plane_prior | | | | | | | 62.42 222 | 93.85 75 | | 79.38 61 | | | | | | 78.80 183 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 66.01 376 | | | | | | | | |
|
| test11 | | | | | | | | | 93.01 94 | | | | | | | | |
|
| door | | | | | | | | | 66.57 375 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 63.66 194 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 77.63 132 | | |
|
| HQP4-MVS | | | | | | | | | | | 74.18 162 | | | 95.61 151 | | | 88.63 223 |
|
| HQP3-MVS | | | | | | | | | 91.70 149 | | | | | | | 78.90 181 | |
|
| HQP2-MVS | | | | | | | | | | | | | 51.63 222 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 59.90 272 | 80.13 332 | | 67.65 262 | 72.79 177 | | 54.33 197 | | 59.83 275 | | 92.58 158 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 71.63 239 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 69.72 249 | |
|
| Test By Simon | | | | | | | | | | | | | 54.21 198 | | | | |
|