This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MG-MVS87.11 3386.27 4389.62 797.79 176.27 494.96 4494.49 4478.74 8783.87 7492.94 12064.34 8596.94 10575.19 15394.09 3795.66 50
MCST-MVS91.08 191.46 389.94 497.66 273.37 897.13 395.58 1189.33 285.77 5396.26 3272.84 2699.38 192.64 1995.93 997.08 12
OPU-MVS89.97 397.52 373.15 1296.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4393.96 7194.37 5272.48 18392.07 996.85 1683.82 299.15 291.53 3197.42 497.55 4
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
No_MVS89.60 897.31 473.22 1095.05 2699.07 1392.01 2694.77 2696.51 24
DP-MVS Recon82.73 11381.65 11985.98 8497.31 467.06 11395.15 3791.99 13869.08 26076.50 15193.89 10254.48 20298.20 3570.76 19185.66 13492.69 164
CNVR-MVS90.32 690.89 788.61 2296.76 870.65 3296.47 1494.83 3084.83 1389.07 3296.80 1970.86 3699.06 1592.64 1995.71 1196.12 38
ZD-MVS96.63 965.50 15393.50 8270.74 23885.26 6195.19 6464.92 7897.29 7887.51 5893.01 55
NCCC89.07 1589.46 1587.91 2896.60 1069.05 6296.38 1694.64 3984.42 1486.74 4596.20 3466.56 6298.76 2389.03 4894.56 3395.92 44
IU-MVS96.46 1169.91 4395.18 2080.75 4995.28 192.34 2195.36 1496.47 28
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5496.89 694.44 4671.65 21392.11 797.21 476.79 999.11 692.34 2195.36 1497.62 2
test_241102_ONE96.45 1269.38 5494.44 4671.65 21392.11 797.05 776.79 999.11 6
test_0728_SECOND88.70 1896.45 1270.43 3596.64 1094.37 5299.15 291.91 2994.90 2296.51 24
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3996.64 1094.52 4271.92 19990.55 2096.93 1173.77 2199.08 1191.91 2994.90 2296.29 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072696.40 1569.99 3996.76 894.33 5471.92 19991.89 1197.11 673.77 21
AdaColmapbinary78.94 17877.00 19484.76 12996.34 1765.86 14392.66 13187.97 30062.18 31570.56 21692.37 13543.53 29397.35 7464.50 25482.86 15491.05 204
test_one_060196.32 1869.74 4994.18 5771.42 22490.67 1996.85 1674.45 18
test_part296.29 1968.16 8690.78 17
DPE-MVScopyleft88.77 1689.21 1687.45 4396.26 2067.56 10094.17 5894.15 5968.77 26390.74 1897.27 276.09 1298.49 2990.58 3994.91 2196.30 32
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MAR-MVS84.18 8683.43 8886.44 7396.25 2165.93 14294.28 5694.27 5674.41 14179.16 12095.61 4753.99 20798.88 2169.62 20193.26 5394.50 108
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS82.28 12080.53 13887.54 4196.13 2270.59 3393.63 9291.04 18865.72 28775.45 16192.83 12556.11 18398.89 2064.10 25689.75 9793.15 151
APDe-MVScopyleft87.54 2687.84 2586.65 6496.07 2366.30 13394.84 4693.78 6669.35 25488.39 3496.34 3067.74 5397.66 5490.62 3893.44 5096.01 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
patch_mono-289.71 1190.99 685.85 9096.04 2463.70 20095.04 4195.19 1986.74 991.53 1595.15 6573.86 2097.58 5993.38 1492.00 6896.28 35
PAPR85.15 6884.47 7387.18 4896.02 2568.29 7991.85 16893.00 10376.59 11879.03 12195.00 6661.59 12297.61 5878.16 13689.00 10195.63 51
APD-MVScopyleft85.93 5485.99 5285.76 9495.98 2665.21 15893.59 9492.58 11966.54 28086.17 4995.88 4163.83 9197.00 9686.39 7092.94 5695.06 78
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DeepC-MVS_fast79.48 287.95 2188.00 2487.79 3195.86 2768.32 7895.74 2294.11 6083.82 1783.49 7596.19 3564.53 8498.44 3183.42 9594.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DP-MVS69.90 29066.48 29780.14 25195.36 2862.93 22289.56 24676.11 36250.27 36757.69 33485.23 24439.68 30695.73 15133.35 37871.05 25681.78 340
114514_t79.17 17377.67 17983.68 16595.32 2965.53 15292.85 12191.60 16163.49 30167.92 25390.63 16746.65 27295.72 15567.01 22983.54 14989.79 219
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8495.24 3494.49 4482.43 2788.90 3396.35 2971.89 3498.63 2688.76 4996.40 696.06 39
CSCG86.87 3686.26 4588.72 1795.05 3170.79 3193.83 8395.33 1668.48 26777.63 13794.35 8973.04 2498.45 3084.92 8393.71 4696.92 14
dcpmvs_287.37 3087.55 2986.85 5695.04 3268.20 8590.36 22690.66 19679.37 7281.20 9193.67 10674.73 1596.55 12190.88 3692.00 6895.82 47
LFMVS84.34 8082.73 10489.18 1294.76 3373.25 994.99 4391.89 14471.90 20182.16 8593.49 11147.98 26397.05 9182.55 10084.82 13897.25 9
CDPH-MVS85.71 5985.46 6086.46 7294.75 3467.19 10993.89 7692.83 10870.90 23383.09 7895.28 5663.62 9697.36 7380.63 11594.18 3694.84 88
test_prior86.42 7494.71 3567.35 10693.10 9996.84 11195.05 79
test1287.09 5194.60 3668.86 6692.91 10582.67 8365.44 7197.55 6393.69 4794.84 88
test_yl84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
DCV-MVSNet84.28 8183.16 9587.64 3494.52 3769.24 5895.78 1995.09 2369.19 25781.09 9392.88 12357.00 16997.44 6881.11 11381.76 16896.23 36
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 889.68 2895.78 4265.94 6699.10 992.99 1693.91 4196.58 21
test_894.19 4067.19 10994.15 6293.42 8671.87 20485.38 5995.35 5268.19 4896.95 104
TEST994.18 4167.28 10794.16 5993.51 8071.75 21085.52 5695.33 5368.01 5097.27 82
train_agg87.21 3287.42 3186.60 6694.18 4167.28 10794.16 5993.51 8071.87 20485.52 5695.33 5368.19 4897.27 8289.09 4694.90 2295.25 73
agg_prior94.16 4366.97 11793.31 8984.49 6796.75 114
PAPM_NR82.97 10981.84 11786.37 7694.10 4466.76 12287.66 28192.84 10769.96 24774.07 17693.57 10963.10 10897.50 6570.66 19390.58 8994.85 85
FOURS193.95 4561.77 24693.96 7191.92 14162.14 31686.57 46
VNet86.20 4885.65 5887.84 3093.92 4669.99 3995.73 2495.94 778.43 8986.00 5193.07 11758.22 15697.00 9685.22 7784.33 14496.52 23
9.1487.63 2793.86 4794.41 5394.18 5772.76 17886.21 4896.51 2566.64 6097.88 4490.08 4094.04 38
save fliter93.84 4867.89 9295.05 4092.66 11478.19 91
PVSNet_BlendedMVS83.38 10183.43 8883.22 17793.76 4967.53 10294.06 6493.61 7679.13 7881.00 9685.14 24563.19 10597.29 7887.08 6473.91 23484.83 303
PVSNet_Blended86.73 4186.86 3986.31 7993.76 4967.53 10296.33 1793.61 7682.34 2981.00 9693.08 11663.19 10597.29 7887.08 6491.38 7994.13 119
HFP-MVS84.73 7484.40 7585.72 9693.75 5165.01 16493.50 9993.19 9472.19 19379.22 11994.93 6959.04 15097.67 5181.55 10692.21 6394.49 109
iter_conf05_1186.99 3586.27 4389.15 1393.74 5272.45 1397.56 187.04 30888.32 492.60 596.57 2332.61 34797.45 6692.21 2495.80 1097.53 6
bld_raw_dy_0_6482.84 11180.75 13189.09 1493.74 5272.16 1593.16 11077.36 35989.69 174.55 16996.48 2732.35 34997.56 6292.21 2477.24 21197.53 6
Anonymous20240521177.96 19875.33 21785.87 8893.73 5464.52 17094.85 4585.36 32562.52 31376.11 15290.18 17729.43 36197.29 7868.51 21477.24 21195.81 48
testing9986.01 5285.47 5987.63 3893.62 5571.25 2493.47 10295.23 1880.42 5480.60 10191.95 14471.73 3596.50 12480.02 12082.22 16295.13 76
SD-MVS87.49 2787.49 3087.50 4293.60 5668.82 6893.90 7592.63 11776.86 11187.90 3695.76 4366.17 6397.63 5689.06 4791.48 7796.05 40
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
testing9185.93 5485.31 6287.78 3293.59 5771.47 2093.50 9995.08 2580.26 5680.53 10291.93 14570.43 3896.51 12380.32 11882.13 16495.37 60
ACMMPR84.37 7884.06 7785.28 11093.56 5864.37 18093.50 9993.15 9672.19 19378.85 12794.86 7256.69 17697.45 6681.55 10692.20 6494.02 126
testing1186.71 4286.44 4287.55 4093.54 5971.35 2293.65 9095.58 1181.36 4380.69 9992.21 14072.30 3096.46 12685.18 7983.43 15094.82 91
region2R84.36 7984.03 7885.36 10793.54 5964.31 18393.43 10492.95 10472.16 19678.86 12694.84 7356.97 17197.53 6481.38 11092.11 6694.24 113
TSAR-MVS + GP.87.96 2088.37 2086.70 6393.51 6165.32 15595.15 3793.84 6578.17 9285.93 5294.80 7475.80 1398.21 3489.38 4288.78 10296.59 19
PHI-MVS86.83 3986.85 4086.78 6193.47 6265.55 15195.39 3195.10 2271.77 20985.69 5596.52 2462.07 11798.77 2286.06 7395.60 1296.03 41
SR-MVS82.81 11282.58 10783.50 17193.35 6361.16 25892.23 14791.28 17464.48 29481.27 9095.28 5653.71 21195.86 14582.87 9788.77 10393.49 142
iter_conf0583.27 10382.70 10584.98 11993.32 6471.84 1894.16 5981.76 34982.74 2373.83 17988.40 19972.77 2794.61 19582.10 10275.21 22388.48 237
EPNet87.84 2388.38 1986.23 8093.30 6566.05 13795.26 3394.84 2987.09 788.06 3594.53 8066.79 5997.34 7583.89 9291.68 7395.29 67
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVS83.87 9283.47 8685.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13194.31 9255.25 19097.41 7079.16 12691.58 7593.95 128
X-MVStestdata76.86 21474.13 23485.05 11693.22 6663.78 19492.92 11992.66 11473.99 14978.18 13110.19 40655.25 19097.41 7079.16 12691.58 7593.95 128
SMA-MVScopyleft88.14 1788.29 2187.67 3393.21 6868.72 7093.85 7894.03 6274.18 14691.74 1296.67 2165.61 7098.42 3389.24 4596.08 795.88 46
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
原ACMM184.42 14493.21 6864.27 18593.40 8865.39 28879.51 11492.50 12958.11 15896.69 11565.27 25093.96 3992.32 175
MVS_111021_HR86.19 4985.80 5687.37 4493.17 7069.79 4793.99 7093.76 6979.08 8078.88 12593.99 10062.25 11698.15 3685.93 7491.15 8394.15 118
CP-MVS83.71 9783.40 9184.65 13593.14 7163.84 19294.59 5092.28 12571.03 23177.41 14094.92 7055.21 19396.19 13181.32 11190.70 8793.91 130
DELS-MVS90.05 790.09 1189.94 493.14 7173.88 797.01 594.40 5088.32 485.71 5494.91 7174.11 1998.91 1787.26 6295.94 897.03 13
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ZNCC-MVS85.33 6585.08 6686.06 8293.09 7365.65 14793.89 7693.41 8773.75 15779.94 10994.68 7760.61 13298.03 3882.63 9993.72 4594.52 106
DeepPCF-MVS81.17 189.72 1091.38 484.72 13193.00 7458.16 30396.72 994.41 4886.50 1090.25 2297.83 175.46 1498.67 2592.78 1895.49 1397.32 8
PLCcopyleft68.80 1475.23 24273.68 24179.86 26292.93 7558.68 29990.64 21988.30 28960.90 32564.43 29090.53 16842.38 29894.57 19856.52 29676.54 21686.33 271
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
testing22285.18 6784.69 7286.63 6592.91 7669.91 4392.61 13395.80 980.31 5580.38 10492.27 13768.73 4495.19 17675.94 14883.27 15294.81 92
MSP-MVS90.38 591.87 185.88 8792.83 7764.03 19093.06 11394.33 5482.19 3093.65 396.15 3785.89 197.19 8491.02 3597.75 196.43 29
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mPP-MVS82.96 11082.44 11084.52 14192.83 7762.92 22492.76 12391.85 14871.52 22175.61 15994.24 9453.48 21596.99 9978.97 12990.73 8693.64 139
GST-MVS84.63 7684.29 7685.66 9892.82 7965.27 15693.04 11593.13 9773.20 16678.89 12294.18 9659.41 14697.85 4581.45 10892.48 6293.86 133
WTY-MVS86.32 4685.81 5587.85 2992.82 7969.37 5695.20 3595.25 1782.71 2481.91 8694.73 7567.93 5297.63 5679.55 12382.25 16196.54 22
PGM-MVS83.25 10482.70 10584.92 12092.81 8164.07 18990.44 22292.20 13171.28 22577.23 14394.43 8355.17 19497.31 7779.33 12591.38 7993.37 144
EI-MVSNet-Vis-set83.77 9583.67 8184.06 15592.79 8263.56 20691.76 17394.81 3179.65 6777.87 13494.09 9763.35 10397.90 4279.35 12479.36 18890.74 206
SF-MVS87.03 3487.09 3486.84 5792.70 8367.45 10593.64 9193.76 6970.78 23786.25 4796.44 2866.98 5797.79 4788.68 5094.56 3395.28 69
MVSTER82.47 11782.05 11383.74 16192.68 8469.01 6391.90 16593.21 9179.83 6272.14 20085.71 24274.72 1694.72 19075.72 14972.49 24587.50 248
CS-MVS-test86.14 5087.01 3583.52 16892.63 8559.36 29195.49 2891.92 14180.09 6085.46 5895.53 4961.82 12195.77 14986.77 6893.37 5195.41 57
MP-MVScopyleft85.02 6984.97 6885.17 11592.60 8664.27 18593.24 10792.27 12673.13 16879.63 11394.43 8361.90 11897.17 8585.00 8192.56 6094.06 124
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETVMVS84.22 8583.71 8085.76 9492.58 8768.25 8392.45 14195.53 1479.54 6879.46 11591.64 15270.29 3994.18 21669.16 20782.76 15894.84 88
thres20079.66 16578.33 16983.66 16792.54 8865.82 14593.06 11396.31 374.90 13873.30 18388.66 19459.67 14295.61 15947.84 33178.67 19589.56 224
APD-MVS_3200maxsize81.64 13181.32 12282.59 19092.36 8958.74 29891.39 18791.01 18963.35 30379.72 11294.62 7951.82 22696.14 13379.71 12187.93 11092.89 162
新几何184.73 13092.32 9064.28 18491.46 16759.56 33579.77 11192.90 12156.95 17296.57 11963.40 26092.91 5793.34 145
EI-MVSNet-UG-set83.14 10682.96 9883.67 16692.28 9163.19 21691.38 18994.68 3779.22 7576.60 14993.75 10362.64 11197.76 4878.07 13778.01 19990.05 215
HPM-MVScopyleft83.25 10482.95 9984.17 15392.25 9262.88 22690.91 20791.86 14670.30 24377.12 14493.96 10156.75 17496.28 12982.04 10391.34 8193.34 145
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HY-MVS76.49 584.28 8183.36 9387.02 5492.22 9367.74 9584.65 30294.50 4379.15 7782.23 8487.93 21166.88 5896.94 10580.53 11682.20 16396.39 31
tfpn200view978.79 18377.43 18482.88 18292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20488.83 229
thres40078.68 18577.43 18482.43 19292.21 9464.49 17192.05 15696.28 473.48 16371.75 20588.26 20360.07 13895.32 17145.16 34277.58 20487.48 249
MM90.87 291.52 288.92 1592.12 9671.10 2897.02 496.04 688.70 391.57 1496.19 3570.12 4098.91 1796.83 195.06 1796.76 15
PS-MVSNAJ88.14 1787.61 2889.71 692.06 9776.72 195.75 2193.26 9083.86 1689.55 3096.06 3853.55 21297.89 4391.10 3393.31 5294.54 104
SR-MVS-dyc-post81.06 14080.70 13382.15 20492.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8151.26 23495.61 15978.77 13286.77 12492.28 177
RE-MVS-def80.48 13992.02 9858.56 30090.90 20890.45 20062.76 31078.89 12294.46 8149.30 25078.77 13286.77 12492.28 177
MSLP-MVS++86.27 4785.91 5487.35 4592.01 10068.97 6595.04 4192.70 11179.04 8281.50 8996.50 2658.98 15196.78 11383.49 9493.93 4096.29 33
CS-MVS85.80 5786.65 4183.27 17692.00 10158.92 29695.31 3291.86 14679.97 6184.82 6495.40 5162.26 11595.51 16786.11 7292.08 6795.37 60
旧先验191.94 10260.74 26891.50 16594.36 8565.23 7391.84 7094.55 102
thres600view778.00 19676.66 19882.03 21191.93 10363.69 20191.30 19596.33 172.43 18670.46 21887.89 21260.31 13394.92 18542.64 35476.64 21587.48 249
LS3D69.17 29566.40 29977.50 29391.92 10456.12 32485.12 29980.37 35546.96 37456.50 33887.51 21837.25 32693.71 23732.52 38479.40 18782.68 331
GG-mvs-BLEND86.53 7191.91 10569.67 5275.02 36494.75 3378.67 12990.85 16477.91 794.56 20072.25 17793.74 4495.36 62
thres100view90078.37 19177.01 19382.46 19191.89 10663.21 21591.19 20296.33 172.28 19170.45 21987.89 21260.31 13395.32 17145.16 34277.58 20488.83 229
MTAPA83.91 9183.38 9285.50 10191.89 10665.16 16081.75 32592.23 12775.32 13280.53 10295.21 6356.06 18497.16 8784.86 8492.55 6194.18 115
sasdasda86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
canonicalmvs86.85 3786.25 4688.66 2091.80 10871.92 1693.54 9691.71 15480.26 5687.55 3895.25 6063.59 9896.93 10788.18 5184.34 14297.11 10
TSAR-MVS + MP.88.11 1988.64 1786.54 7091.73 11068.04 8890.36 22693.55 7982.89 2191.29 1692.89 12272.27 3196.03 14187.99 5394.77 2695.54 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
ACMMPcopyleft81.49 13280.67 13483.93 15891.71 11162.90 22592.13 15092.22 13071.79 20871.68 20793.49 11150.32 23996.96 10378.47 13484.22 14891.93 187
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BH-RMVSNet79.46 17077.65 18084.89 12191.68 11265.66 14693.55 9588.09 29672.93 17373.37 18291.12 16146.20 27996.12 13456.28 29885.61 13592.91 160
baseline181.84 12881.03 12884.28 15191.60 11366.62 12591.08 20491.66 15981.87 3374.86 16691.67 15169.98 4194.92 18571.76 18364.75 30091.29 200
ACMMP_NAP86.05 5185.80 5686.80 6091.58 11467.53 10291.79 17093.49 8374.93 13784.61 6595.30 5559.42 14597.92 4186.13 7194.92 2094.94 84
MVS_Test84.16 8783.20 9487.05 5391.56 11569.82 4689.99 24092.05 13577.77 9882.84 7986.57 23063.93 9096.09 13574.91 15889.18 10095.25 73
HPM-MVS_fast80.25 15579.55 15482.33 19691.55 11659.95 28191.32 19489.16 25565.23 29174.71 16893.07 11747.81 26695.74 15074.87 16088.23 10691.31 199
CPTT-MVS79.59 16679.16 16180.89 23891.54 11759.80 28392.10 15288.54 28460.42 32872.96 18593.28 11348.27 25992.80 26178.89 13186.50 12990.06 214
CNLPA74.31 25172.30 25980.32 24491.49 11861.66 25090.85 21180.72 35356.67 34963.85 29490.64 16546.75 27190.84 30753.79 30775.99 22088.47 239
MP-MVS-pluss85.24 6685.13 6585.56 10091.42 11965.59 14991.54 18092.51 12174.56 14080.62 10095.64 4659.15 14997.00 9686.94 6693.80 4294.07 123
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
gg-mvs-nofinetune77.18 20974.31 23085.80 9291.42 11968.36 7771.78 36794.72 3449.61 36877.12 14445.92 39177.41 893.98 22967.62 22293.16 5495.05 79
xiu_mvs_v2_base87.92 2287.38 3289.55 1191.41 12176.43 395.74 2293.12 9883.53 1989.55 3095.95 4053.45 21697.68 5091.07 3492.62 5994.54 104
EIA-MVS84.84 7284.88 6984.69 13391.30 12262.36 23493.85 7892.04 13679.45 6979.33 11894.28 9362.42 11396.35 12780.05 11991.25 8295.38 59
alignmvs87.28 3186.97 3688.24 2791.30 12271.14 2795.61 2693.56 7879.30 7387.07 4395.25 6068.43 4696.93 10787.87 5484.33 14496.65 17
EPMVS78.49 19075.98 20786.02 8391.21 12469.68 5180.23 34091.20 17575.25 13372.48 19578.11 32754.65 19893.69 23857.66 29483.04 15394.69 94
FMVSNet377.73 20276.04 20682.80 18391.20 12568.99 6491.87 16691.99 13873.35 16567.04 26783.19 26756.62 17792.14 28459.80 28569.34 26287.28 256
Anonymous2024052976.84 21774.15 23384.88 12291.02 12664.95 16693.84 8191.09 18253.57 35773.00 18487.42 21935.91 33597.32 7669.14 20872.41 24792.36 173
tpmvs72.88 26769.76 28382.22 20190.98 12767.05 11478.22 35388.30 28963.10 30864.35 29174.98 34955.09 19594.27 21143.25 34869.57 26185.34 298
MVS84.66 7582.86 10290.06 290.93 12874.56 687.91 27795.54 1368.55 26572.35 19994.71 7659.78 14198.90 1981.29 11294.69 3296.74 16
PVSNet73.49 880.05 15978.63 16684.31 14990.92 12964.97 16592.47 14091.05 18779.18 7672.43 19790.51 16937.05 33194.06 22268.06 21686.00 13193.90 132
3Dnovator+73.60 782.10 12580.60 13786.60 6690.89 13066.80 12195.20 3593.44 8574.05 14867.42 26292.49 13149.46 24897.65 5570.80 19091.68 7395.33 63
VDD-MVS83.06 10781.81 11886.81 5990.86 13167.70 9695.40 3091.50 16575.46 12981.78 8792.34 13640.09 30597.13 8986.85 6782.04 16595.60 52
BH-w/o80.49 15079.30 15984.05 15690.83 13264.36 18293.60 9389.42 24474.35 14369.09 23490.15 17955.23 19295.61 15964.61 25386.43 13092.17 183
ET-MVSNet_ETH3D84.01 8983.15 9786.58 6890.78 13370.89 3094.74 4894.62 4081.44 4058.19 32893.64 10773.64 2392.35 28182.66 9878.66 19696.50 27
Anonymous2023121173.08 26170.39 27781.13 22890.62 13463.33 21291.40 18590.06 22151.84 36264.46 28980.67 30336.49 33394.07 22163.83 25864.17 30585.98 283
FA-MVS(test-final)79.12 17477.23 19084.81 12790.54 13563.98 19181.35 33191.71 15471.09 23074.85 16782.94 26852.85 21997.05 9167.97 21781.73 17093.41 143
TR-MVS78.77 18477.37 18982.95 18190.49 13660.88 26293.67 8990.07 21970.08 24674.51 17091.37 15845.69 28295.70 15660.12 28380.32 18092.29 176
SteuartSystems-ACMMP86.82 4086.90 3886.58 6890.42 13766.38 13096.09 1893.87 6477.73 9984.01 7395.66 4563.39 10197.94 4087.40 6093.55 4995.42 56
Skip Steuart: Steuart Systems R&D Blog.
TAPA-MVS70.22 1274.94 24673.53 24279.17 27590.40 13852.07 34389.19 25789.61 23862.69 31270.07 22492.67 12748.89 25794.32 20738.26 36879.97 18291.12 203
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mvs_anonymous81.36 13479.99 14585.46 10290.39 13968.40 7686.88 29290.61 19874.41 14170.31 22284.67 25163.79 9292.32 28273.13 16685.70 13395.67 49
CANet_DTU84.09 8883.52 8285.81 9190.30 14066.82 11991.87 16689.01 26485.27 1186.09 5093.74 10447.71 26796.98 10077.90 13889.78 9693.65 138
Fast-Effi-MVS+81.14 13780.01 14484.51 14290.24 14165.86 14394.12 6389.15 25673.81 15675.37 16288.26 20357.26 16494.53 20266.97 23084.92 13793.15 151
ETV-MVS86.01 5286.11 4985.70 9790.21 14267.02 11693.43 10491.92 14181.21 4584.13 7294.07 9960.93 12995.63 15789.28 4489.81 9494.46 110
MVS_030490.01 890.50 988.53 2390.14 14370.94 2996.47 1495.72 1087.33 689.60 2996.26 3268.44 4598.74 2495.82 494.72 3195.90 45
tpmrst80.57 14779.14 16284.84 12390.10 14468.28 8081.70 32689.72 23677.63 10375.96 15379.54 31964.94 7792.71 26475.43 15177.28 21093.55 140
PVSNet_Blended_VisFu83.97 9083.50 8485.39 10590.02 14566.59 12793.77 8591.73 15277.43 10777.08 14689.81 18463.77 9396.97 10279.67 12288.21 10792.60 167
UGNet79.87 16378.68 16583.45 17389.96 14661.51 25292.13 15090.79 19176.83 11378.85 12786.33 23438.16 31796.17 13267.93 21987.17 11892.67 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CHOSEN 1792x268884.98 7183.45 8789.57 1089.94 14775.14 592.07 15592.32 12481.87 3375.68 15688.27 20260.18 13598.60 2780.46 11790.27 9294.96 82
BH-untuned78.68 18577.08 19183.48 17289.84 14863.74 19692.70 12788.59 28271.57 21966.83 27188.65 19551.75 22895.39 16959.03 28884.77 13991.32 198
FE-MVS75.97 23173.02 24784.82 12489.78 14965.56 15077.44 35691.07 18564.55 29372.66 18979.85 31546.05 28196.69 11554.97 30280.82 17792.21 182
test22289.77 15061.60 25189.55 24789.42 24456.83 34877.28 14292.43 13352.76 22091.14 8493.09 153
PMMVS81.98 12782.04 11481.78 21389.76 15156.17 32391.13 20390.69 19377.96 9480.09 10893.57 10946.33 27794.99 18181.41 10987.46 11594.17 116
DPM-MVS90.70 390.52 891.24 189.68 15276.68 297.29 295.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 9697.64 297.94 1
QAPM79.95 16277.39 18887.64 3489.63 15371.41 2193.30 10693.70 7365.34 29067.39 26491.75 14947.83 26598.96 1657.71 29389.81 9492.54 169
3Dnovator73.91 682.69 11680.82 13088.31 2689.57 15471.26 2392.60 13494.39 5178.84 8467.89 25692.48 13248.42 25898.52 2868.80 21294.40 3595.15 75
Effi-MVS+83.82 9382.76 10386.99 5589.56 15569.40 5391.35 19286.12 31972.59 18083.22 7792.81 12659.60 14396.01 14381.76 10587.80 11195.56 54
PatchmatchNetpermissive77.46 20574.63 22385.96 8589.55 15670.35 3679.97 34589.55 23972.23 19270.94 21276.91 33857.03 16792.79 26254.27 30581.17 17394.74 93
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PatchMatch-RL72.06 27569.98 27878.28 28589.51 15755.70 32783.49 30983.39 34461.24 32363.72 29582.76 27034.77 33993.03 24953.37 31077.59 20386.12 280
thisisatest051583.41 10082.49 10986.16 8189.46 15868.26 8193.54 9694.70 3674.31 14475.75 15490.92 16272.62 2896.52 12269.64 19981.50 17193.71 136
h-mvs3383.01 10882.56 10884.35 14889.34 15962.02 24192.72 12593.76 6981.45 3882.73 8192.25 13960.11 13697.13 8987.69 5662.96 31293.91 130
EC-MVSNet84.53 7785.04 6783.01 18089.34 15961.37 25594.42 5291.09 18277.91 9683.24 7694.20 9558.37 15495.40 16885.35 7691.41 7892.27 180
UWE-MVS80.81 14581.01 12980.20 25089.33 16157.05 31791.91 16494.71 3575.67 12675.01 16589.37 18863.13 10791.44 30467.19 22782.80 15792.12 185
UA-Net80.02 16079.65 15081.11 22989.33 16157.72 30786.33 29589.00 26777.44 10681.01 9589.15 19159.33 14795.90 14461.01 27784.28 14689.73 221
dp75.01 24572.09 26183.76 16089.28 16366.22 13679.96 34689.75 23171.16 22767.80 25877.19 33551.81 22792.54 27350.39 31671.44 25492.51 171
SDMVSNet80.26 15478.88 16484.40 14589.25 16467.63 9985.35 29893.02 10076.77 11570.84 21487.12 22447.95 26496.09 13585.04 8074.55 22589.48 225
sd_testset77.08 21275.37 21582.20 20289.25 16462.11 24082.06 32389.09 26076.77 11570.84 21487.12 22441.43 30195.01 18067.23 22674.55 22589.48 225
sss82.71 11582.38 11183.73 16389.25 16459.58 28692.24 14694.89 2877.96 9479.86 11092.38 13456.70 17597.05 9177.26 14180.86 17694.55 102
MVSFormer83.75 9682.88 10186.37 7689.24 16771.18 2589.07 25990.69 19365.80 28587.13 4194.34 9064.99 7592.67 26772.83 16991.80 7195.27 70
lupinMVS87.74 2487.77 2687.63 3889.24 16771.18 2596.57 1292.90 10682.70 2587.13 4195.27 5864.99 7595.80 14689.34 4391.80 7195.93 43
IB-MVS77.80 482.18 12180.46 14087.35 4589.14 16970.28 3795.59 2795.17 2178.85 8370.19 22385.82 24070.66 3797.67 5172.19 18066.52 28594.09 121
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MDTV_nov1_ep1372.61 25589.06 17068.48 7480.33 33890.11 21871.84 20671.81 20475.92 34653.01 21893.92 23248.04 32873.38 236
testdata81.34 22389.02 17157.72 30789.84 22858.65 33985.32 6094.09 9757.03 16793.28 24569.34 20490.56 9093.03 156
CostFormer82.33 11981.15 12385.86 8989.01 17268.46 7582.39 32293.01 10175.59 12780.25 10681.57 28772.03 3394.96 18279.06 12877.48 20794.16 117
GeoE78.90 17977.43 18483.29 17588.95 17362.02 24192.31 14386.23 31770.24 24471.34 21189.27 18954.43 20394.04 22563.31 26280.81 17893.81 135
GBi-Net75.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
test175.65 23673.83 23881.10 23088.85 17465.11 16190.01 23790.32 20670.84 23467.04 26780.25 31048.03 26091.54 29959.80 28569.34 26286.64 265
FMVSNet276.07 22574.01 23682.26 20088.85 17467.66 9791.33 19391.61 16070.84 23465.98 27482.25 27648.03 26092.00 28958.46 29068.73 27087.10 259
DeepC-MVS77.85 385.52 6385.24 6386.37 7688.80 17766.64 12492.15 14993.68 7481.07 4676.91 14793.64 10762.59 11298.44 3185.50 7592.84 5894.03 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EPP-MVSNet81.79 12981.52 12082.61 18988.77 17860.21 27893.02 11793.66 7568.52 26672.90 18790.39 17272.19 3294.96 18274.93 15779.29 19092.67 165
1112_ss80.56 14879.83 14882.77 18488.65 17960.78 26492.29 14488.36 28772.58 18172.46 19694.95 6765.09 7493.42 24466.38 23677.71 20194.10 120
tpm cat175.30 24172.21 26084.58 13988.52 18067.77 9478.16 35488.02 29761.88 32068.45 24876.37 34260.65 13094.03 22753.77 30874.11 23191.93 187
LCM-MVSNet-Re72.93 26571.84 26476.18 30988.49 18148.02 36280.07 34370.17 37973.96 15252.25 35280.09 31349.98 24388.24 33167.35 22384.23 14792.28 177
Vis-MVSNetpermissive80.92 14379.98 14683.74 16188.48 18261.80 24593.44 10388.26 29373.96 15277.73 13591.76 14849.94 24494.76 18765.84 24290.37 9194.65 98
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Vis-MVSNet (Re-imp)79.24 17279.57 15178.24 28788.46 18352.29 34290.41 22489.12 25874.24 14569.13 23391.91 14665.77 6890.09 31959.00 28988.09 10892.33 174
ab-mvs80.18 15678.31 17085.80 9288.44 18465.49 15483.00 31992.67 11371.82 20777.36 14185.01 24654.50 19996.59 11776.35 14675.63 22195.32 65
gm-plane-assit88.42 18567.04 11578.62 8891.83 14797.37 7276.57 144
MVS_111021_LR82.02 12681.52 12083.51 17088.42 18562.88 22689.77 24488.93 26876.78 11475.55 16093.10 11450.31 24095.38 17083.82 9387.02 11992.26 181
test250683.29 10282.92 10084.37 14788.39 18763.18 21792.01 15891.35 17077.66 10178.49 13091.42 15564.58 8395.09 17873.19 16589.23 9894.85 85
ECVR-MVScopyleft81.29 13580.38 14184.01 15788.39 18761.96 24392.56 13986.79 31277.66 10176.63 14891.42 15546.34 27695.24 17574.36 16289.23 9894.85 85
baseline85.01 7084.44 7486.71 6288.33 18968.73 6990.24 23191.82 15081.05 4781.18 9292.50 12963.69 9496.08 13884.45 8786.71 12695.32 65
tpm279.80 16477.95 17785.34 10888.28 19068.26 8181.56 32891.42 16870.11 24577.59 13980.50 30567.40 5594.26 21367.34 22477.35 20893.51 141
thisisatest053081.15 13680.07 14284.39 14688.26 19165.63 14891.40 18594.62 4071.27 22670.93 21389.18 19072.47 2996.04 14065.62 24576.89 21491.49 191
casdiffmvspermissive85.37 6484.87 7086.84 5788.25 19269.07 6193.04 11591.76 15181.27 4480.84 9892.07 14264.23 8696.06 13984.98 8287.43 11695.39 58
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Test_1112_low_res79.56 16778.60 16782.43 19288.24 19360.39 27592.09 15387.99 29872.10 19771.84 20387.42 21964.62 8293.04 24865.80 24377.30 20993.85 134
casdiffmvs_mvgpermissive85.66 6185.18 6487.09 5188.22 19469.35 5793.74 8791.89 14481.47 3780.10 10791.45 15464.80 8096.35 12787.23 6387.69 11295.58 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM85.89 5685.46 6087.18 4888.20 19572.42 1492.41 14292.77 10982.11 3180.34 10593.07 11768.27 4795.02 17978.39 13593.59 4894.09 121
TESTMET0.1,182.41 11881.98 11683.72 16488.08 19663.74 19692.70 12793.77 6879.30 7377.61 13887.57 21758.19 15794.08 22073.91 16486.68 12793.33 147
ADS-MVSNet266.90 31463.44 32177.26 29988.06 19760.70 27068.01 37775.56 36657.57 34164.48 28769.87 36638.68 30984.10 35740.87 35967.89 27686.97 260
ADS-MVSNet68.54 30264.38 31781.03 23488.06 19766.90 11868.01 37784.02 33657.57 34164.48 28769.87 36638.68 30989.21 32540.87 35967.89 27686.97 260
EPNet_dtu78.80 18279.26 16077.43 29588.06 19749.71 35591.96 16391.95 14077.67 10076.56 15091.28 15958.51 15390.20 31756.37 29780.95 17592.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall78.86 18077.97 17681.54 21988.00 20065.17 15991.41 18389.15 25675.19 13468.79 24283.98 25967.17 5692.82 25972.73 17265.30 29186.62 269
IS-MVSNet80.14 15779.41 15682.33 19687.91 20160.08 28091.97 16288.27 29172.90 17671.44 21091.73 15061.44 12393.66 23962.47 27086.53 12893.24 148
CLD-MVS82.73 11382.35 11283.86 15987.90 20267.65 9895.45 2992.18 13385.06 1272.58 19292.27 13752.46 22395.78 14784.18 8879.06 19188.16 243
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Syy-MVS69.65 29269.52 28470.03 34787.87 20343.21 38088.07 27389.01 26472.91 17463.11 30088.10 20745.28 28685.54 35022.07 39369.23 26581.32 342
myMVS_eth3d72.58 27472.74 25272.10 34087.87 20349.45 35788.07 27389.01 26472.91 17463.11 30088.10 20763.63 9585.54 35032.73 38269.23 26581.32 342
test111180.84 14480.02 14383.33 17487.87 20360.76 26692.62 13286.86 31177.86 9775.73 15591.39 15746.35 27594.70 19372.79 17188.68 10494.52 106
HyFIR lowres test81.03 14179.56 15285.43 10387.81 20668.11 8790.18 23290.01 22470.65 23972.95 18686.06 23863.61 9794.50 20475.01 15679.75 18593.67 137
dmvs_re76.93 21375.36 21681.61 21787.78 20760.71 26980.00 34487.99 29879.42 7069.02 23789.47 18746.77 27094.32 20763.38 26174.45 22889.81 218
131480.70 14678.95 16385.94 8687.77 20867.56 10087.91 27792.55 12072.17 19567.44 26193.09 11550.27 24197.04 9471.68 18587.64 11393.23 149
cl2277.94 19976.78 19681.42 22187.57 20964.93 16790.67 21788.86 27172.45 18567.63 26082.68 27264.07 8792.91 25771.79 18165.30 29186.44 270
HQP-NCC87.54 21094.06 6479.80 6374.18 172
ACMP_Plane87.54 21094.06 6479.80 6374.18 172
HQP-MVS81.14 13780.64 13582.64 18887.54 21063.66 20394.06 6491.70 15779.80 6374.18 17290.30 17451.63 23095.61 15977.63 13978.90 19288.63 233
NP-MVS87.41 21363.04 21890.30 174
diffmvspermissive84.28 8183.83 7985.61 9987.40 21468.02 8990.88 21089.24 25080.54 5081.64 8892.52 12859.83 14094.52 20387.32 6185.11 13694.29 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 9983.42 9084.48 14387.37 21566.00 13990.06 23595.93 879.71 6669.08 23590.39 17277.92 696.28 12978.91 13081.38 17291.16 202
fmvsm_s_conf0.5_n86.39 4586.91 3784.82 12487.36 21663.54 20894.74 4890.02 22382.52 2690.14 2596.92 1362.93 11097.84 4695.28 882.26 16093.07 155
plane_prior687.23 21762.32 23650.66 237
tttt051779.50 16878.53 16882.41 19587.22 21861.43 25489.75 24594.76 3269.29 25567.91 25488.06 21072.92 2595.63 15762.91 26673.90 23590.16 213
plane_prior187.15 219
cascas78.18 19475.77 21085.41 10487.14 22069.11 6092.96 11891.15 17966.71 27970.47 21786.07 23737.49 32596.48 12570.15 19679.80 18490.65 207
fmvsm_l_conf0.5_n_a87.44 2988.15 2385.30 10987.10 22164.19 18794.41 5388.14 29480.24 5992.54 696.97 1069.52 4397.17 8595.89 288.51 10594.56 101
CHOSEN 280x42077.35 20776.95 19578.55 28287.07 22262.68 23069.71 37382.95 34668.80 26271.48 20987.27 22366.03 6584.00 36076.47 14582.81 15688.95 228
test_fmvsm_n_192087.69 2588.50 1885.27 11187.05 22363.55 20793.69 8891.08 18484.18 1590.17 2497.04 867.58 5497.99 3995.72 590.03 9394.26 112
fmvsm_l_conf0.5_n87.49 2788.19 2285.39 10586.95 22464.37 18094.30 5588.45 28580.51 5192.70 496.86 1569.98 4197.15 8895.83 388.08 10994.65 98
HQP_MVS80.34 15379.75 14982.12 20686.94 22562.42 23293.13 11191.31 17178.81 8572.53 19389.14 19250.66 23795.55 16476.74 14278.53 19788.39 240
plane_prior786.94 22561.51 252
test-LLR80.10 15879.56 15281.72 21586.93 22761.17 25692.70 12791.54 16271.51 22275.62 15786.94 22653.83 20892.38 27872.21 17884.76 14091.60 189
test-mter79.96 16179.38 15881.72 21586.93 22761.17 25692.70 12791.54 16273.85 15475.62 15786.94 22649.84 24692.38 27872.21 17884.76 14091.60 189
SCA75.82 23472.76 25185.01 11886.63 22970.08 3881.06 33389.19 25371.60 21870.01 22577.09 33645.53 28390.25 31260.43 28073.27 23794.68 95
AUN-MVS78.37 19177.43 18481.17 22686.60 23057.45 31389.46 25191.16 17774.11 14774.40 17190.49 17055.52 18994.57 19874.73 16160.43 33891.48 192
hse-mvs281.12 13981.11 12781.16 22786.52 23157.48 31289.40 25291.16 17781.45 3882.73 8190.49 17060.11 13694.58 19687.69 5660.41 33991.41 194
xiu_mvs_v1_base_debu82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
xiu_mvs_v1_base_debi82.16 12281.12 12485.26 11286.42 23268.72 7092.59 13690.44 20373.12 16984.20 6994.36 8538.04 31995.73 15184.12 8986.81 12191.33 195
F-COLMAP70.66 28268.44 29077.32 29786.37 23555.91 32588.00 27586.32 31456.94 34757.28 33688.07 20933.58 34392.49 27551.02 31468.37 27283.55 313
CDS-MVSNet81.43 13380.74 13283.52 16886.26 23664.45 17492.09 15390.65 19775.83 12573.95 17889.81 18463.97 8992.91 25771.27 18682.82 15593.20 150
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VDDNet80.50 14978.26 17187.21 4786.19 23769.79 4794.48 5191.31 17160.42 32879.34 11790.91 16338.48 31496.56 12082.16 10181.05 17495.27 70
WB-MVSnew77.14 21076.18 20580.01 25686.18 23863.24 21491.26 19694.11 6071.72 21173.52 18187.29 22245.14 28793.00 25056.98 29579.42 18683.80 311
jason86.40 4486.17 4887.11 5086.16 23970.54 3495.71 2592.19 13282.00 3284.58 6694.34 9061.86 11995.53 16687.76 5590.89 8595.27 70
jason: jason.
PCF-MVS73.15 979.29 17177.63 18184.29 15086.06 24065.96 14187.03 28891.10 18169.86 24969.79 23090.64 16557.54 16396.59 11764.37 25582.29 15990.32 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MS-PatchMatch77.90 20176.50 19982.12 20685.99 24169.95 4291.75 17592.70 11173.97 15162.58 30784.44 25541.11 30295.78 14763.76 25992.17 6580.62 350
FIs79.47 16979.41 15679.67 26685.95 24259.40 28891.68 17793.94 6378.06 9368.96 23988.28 20166.61 6191.77 29366.20 23974.99 22487.82 245
VPA-MVSNet79.03 17578.00 17582.11 20985.95 24264.48 17393.22 10994.66 3875.05 13674.04 17784.95 24752.17 22593.52 24174.90 15967.04 28188.32 242
tpm78.58 18877.03 19283.22 17785.94 24464.56 16983.21 31691.14 18078.31 9073.67 18079.68 31764.01 8892.09 28766.07 24071.26 25593.03 156
OpenMVScopyleft70.45 1178.54 18975.92 20886.41 7585.93 24571.68 1992.74 12492.51 12166.49 28164.56 28691.96 14343.88 29298.10 3754.61 30390.65 8889.44 227
testing370.38 28670.83 27169.03 35185.82 24643.93 37990.72 21690.56 19968.06 26860.24 31686.82 22864.83 7984.12 35626.33 38964.10 30679.04 363
OMC-MVS78.67 18777.91 17880.95 23685.76 24757.40 31488.49 26888.67 27973.85 15472.43 19792.10 14149.29 25194.55 20172.73 17277.89 20090.91 205
fmvsm_s_conf0.5_n_a85.75 5886.09 5084.72 13185.73 24863.58 20593.79 8489.32 24781.42 4190.21 2396.91 1462.41 11497.67 5194.48 1080.56 17992.90 161
miper_ehance_all_eth77.60 20376.44 20081.09 23385.70 24964.41 17890.65 21888.64 28172.31 18967.37 26582.52 27364.77 8192.64 27170.67 19265.30 29186.24 274
KD-MVS_2432*160069.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
miper_refine_blended69.03 29766.37 30077.01 30185.56 25061.06 25981.44 32990.25 21267.27 27558.00 33176.53 34054.49 20087.63 33948.04 32835.77 38882.34 334
EI-MVSNet78.97 17778.22 17281.25 22485.33 25262.73 22989.53 24993.21 9172.39 18872.14 20090.13 18060.99 12694.72 19067.73 22172.49 24586.29 272
CVMVSNet74.04 25474.27 23173.33 32885.33 25243.94 37889.53 24988.39 28654.33 35670.37 22090.13 18049.17 25384.05 35861.83 27479.36 18891.99 186
test_fmvsmconf_n86.58 4387.17 3384.82 12485.28 25462.55 23194.26 5789.78 22983.81 1887.78 3796.33 3165.33 7296.98 10094.40 1187.55 11494.95 83
ACMH63.93 1768.62 30064.81 31080.03 25585.22 25563.25 21387.72 28084.66 33160.83 32651.57 35579.43 32027.29 36694.96 18241.76 35564.84 29881.88 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cl____76.07 22574.67 22180.28 24685.15 25661.76 24790.12 23388.73 27671.16 22765.43 27781.57 28761.15 12492.95 25266.54 23362.17 32086.13 279
DIV-MVS_self_test76.07 22574.67 22180.28 24685.14 25761.75 24890.12 23388.73 27671.16 22765.42 27881.60 28661.15 12492.94 25666.54 23362.16 32286.14 277
TAMVS80.37 15279.45 15583.13 17985.14 25763.37 21191.23 19890.76 19274.81 13972.65 19088.49 19660.63 13192.95 25269.41 20381.95 16793.08 154
MSDG69.54 29365.73 30380.96 23585.11 25963.71 19984.19 30483.28 34556.95 34654.50 34384.03 25731.50 35396.03 14142.87 35269.13 26783.14 323
c3_l76.83 21875.47 21480.93 23785.02 26064.18 18890.39 22588.11 29571.66 21266.65 27381.64 28563.58 10092.56 27269.31 20562.86 31386.04 281
ACMP71.68 1075.58 23974.23 23279.62 26884.97 26159.64 28490.80 21389.07 26270.39 24262.95 30387.30 22138.28 31593.87 23472.89 16871.45 25385.36 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
FC-MVSNet-test77.99 19778.08 17477.70 29084.89 26255.51 32890.27 22993.75 7276.87 11066.80 27287.59 21665.71 6990.23 31662.89 26773.94 23387.37 252
PVSNet_068.08 1571.81 27668.32 29282.27 19884.68 26362.31 23788.68 26590.31 20975.84 12457.93 33380.65 30437.85 32294.19 21569.94 19829.05 39690.31 212
eth_miper_zixun_eth75.96 23274.40 22980.66 23984.66 26463.02 21989.28 25488.27 29171.88 20365.73 27581.65 28459.45 14492.81 26068.13 21560.53 33686.14 277
WR-MVS76.76 21975.74 21179.82 26384.60 26562.27 23892.60 13492.51 12176.06 12267.87 25785.34 24356.76 17390.24 31562.20 27163.69 31186.94 262
ACMH+65.35 1667.65 30964.55 31376.96 30384.59 26657.10 31688.08 27280.79 35258.59 34053.00 34981.09 29926.63 36892.95 25246.51 33661.69 32980.82 347
VPNet78.82 18177.53 18382.70 18684.52 26766.44 12993.93 7392.23 12780.46 5272.60 19188.38 20049.18 25293.13 24772.47 17663.97 30988.55 236
IterMVS-LS76.49 22175.18 21980.43 24384.49 26862.74 22890.64 21988.80 27372.40 18765.16 28081.72 28360.98 12792.27 28367.74 22064.65 30286.29 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UniMVSNet_NR-MVSNet78.15 19577.55 18279.98 25784.46 26960.26 27692.25 14593.20 9377.50 10568.88 24086.61 22966.10 6492.13 28566.38 23662.55 31687.54 247
FMVSNet568.04 30665.66 30575.18 31584.43 27057.89 30483.54 30886.26 31661.83 32153.64 34873.30 35337.15 32985.08 35348.99 32361.77 32582.56 333
MVS-HIRNet60.25 34155.55 34874.35 32184.37 27156.57 32271.64 36874.11 37034.44 38945.54 37542.24 39631.11 35789.81 32040.36 36276.10 21976.67 373
LPG-MVS_test75.82 23474.58 22579.56 27084.31 27259.37 28990.44 22289.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
LGP-MVS_train79.56 27084.31 27259.37 28989.73 23469.49 25264.86 28188.42 19738.65 31194.30 20972.56 17472.76 24285.01 301
ACMM69.62 1374.34 25072.73 25379.17 27584.25 27457.87 30590.36 22689.93 22563.17 30765.64 27686.04 23937.79 32394.10 21865.89 24171.52 25285.55 293
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)77.58 20476.78 19679.98 25784.11 27560.80 26391.76 17393.17 9576.56 11969.93 22984.78 25063.32 10492.36 28064.89 25262.51 31886.78 264
test_040264.54 32661.09 33274.92 31784.10 27660.75 26787.95 27679.71 35752.03 36052.41 35177.20 33432.21 35191.64 29523.14 39161.03 33272.36 380
LTVRE_ROB59.60 1966.27 31763.54 32074.45 32084.00 27751.55 34567.08 38083.53 34158.78 33854.94 34280.31 30834.54 34093.23 24640.64 36168.03 27478.58 367
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
miper_lstm_enhance73.05 26371.73 26677.03 30083.80 27858.32 30281.76 32488.88 26969.80 25061.01 31278.23 32657.19 16587.51 34165.34 24959.53 34185.27 300
Patchmatch-test65.86 31960.94 33380.62 24183.75 27958.83 29758.91 39175.26 36844.50 38150.95 35977.09 33658.81 15287.90 33335.13 37464.03 30795.12 77
nrg03080.93 14279.86 14784.13 15483.69 28068.83 6793.23 10891.20 17575.55 12875.06 16488.22 20663.04 10994.74 18981.88 10466.88 28288.82 231
GA-MVS78.33 19376.23 20384.65 13583.65 28166.30 13391.44 18190.14 21776.01 12370.32 22184.02 25842.50 29794.72 19070.98 18877.00 21392.94 159
FMVSNet172.71 27069.91 28181.10 23083.60 28265.11 16190.01 23790.32 20663.92 29763.56 29680.25 31036.35 33491.54 29954.46 30466.75 28386.64 265
OPM-MVS79.00 17678.09 17381.73 21483.52 28363.83 19391.64 17990.30 21076.36 12171.97 20289.93 18346.30 27895.17 17775.10 15477.70 20286.19 276
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tfpnnormal70.10 28767.36 29578.32 28483.45 28460.97 26188.85 26292.77 10964.85 29260.83 31478.53 32343.52 29493.48 24231.73 38561.70 32880.52 351
Effi-MVS+-dtu76.14 22475.28 21878.72 28183.22 28555.17 33089.87 24187.78 30175.42 13067.98 25181.43 28945.08 28892.52 27475.08 15571.63 25088.48 237
CR-MVSNet73.79 25870.82 27382.70 18683.15 28667.96 9070.25 37084.00 33773.67 16169.97 22772.41 35657.82 16089.48 32352.99 31173.13 23890.64 208
RPMNet70.42 28565.68 30484.63 13783.15 28667.96 9070.25 37090.45 20046.83 37669.97 22765.10 37556.48 18095.30 17435.79 37373.13 23890.64 208
mvsmamba76.85 21675.71 21280.25 24883.07 28859.16 29391.44 18180.64 35476.84 11267.95 25286.33 23446.17 28094.24 21476.06 14772.92 24187.36 253
DU-MVS76.86 21475.84 20979.91 26082.96 28960.26 27691.26 19691.54 16276.46 12068.88 24086.35 23256.16 18192.13 28566.38 23662.55 31687.35 254
NR-MVSNet76.05 22874.59 22480.44 24282.96 28962.18 23990.83 21291.73 15277.12 10960.96 31386.35 23259.28 14891.80 29260.74 27861.34 33187.35 254
fmvsm_s_conf0.1_n85.61 6285.93 5384.68 13482.95 29163.48 21094.03 6989.46 24181.69 3589.86 2696.74 2061.85 12097.75 4994.74 982.01 16692.81 163
XXY-MVS77.94 19976.44 20082.43 19282.60 29264.44 17592.01 15891.83 14973.59 16270.00 22685.82 24054.43 20394.76 18769.63 20068.02 27588.10 244
test_fmvsmvis_n_192083.80 9483.48 8584.77 12882.51 29363.72 19891.37 19083.99 33981.42 4177.68 13695.74 4458.37 15497.58 5993.38 1486.87 12093.00 158
TranMVSNet+NR-MVSNet75.86 23374.52 22779.89 26182.44 29460.64 27291.37 19091.37 16976.63 11767.65 25986.21 23652.37 22491.55 29861.84 27360.81 33487.48 249
RRT_MVS74.44 24972.97 24978.84 28082.36 29557.66 30989.83 24388.79 27570.61 24064.58 28584.89 24839.24 30792.65 27070.11 19766.34 28686.21 275
test_vis1_n_192081.66 13082.01 11580.64 24082.24 29655.09 33194.76 4786.87 31081.67 3684.40 6894.63 7838.17 31694.67 19491.98 2883.34 15192.16 184
IterMVS72.65 27370.83 27178.09 28882.17 29762.96 22187.64 28286.28 31571.56 22060.44 31578.85 32245.42 28586.66 34563.30 26361.83 32484.65 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry67.53 31163.93 31878.34 28382.12 29864.38 17968.72 37484.00 33748.23 37359.24 32172.41 35657.82 16089.27 32446.10 33956.68 35181.36 341
PatchT69.11 29665.37 30880.32 24482.07 29963.68 20267.96 37987.62 30250.86 36569.37 23165.18 37457.09 16688.53 32941.59 35766.60 28488.74 232
MIMVSNet71.64 27768.44 29081.23 22581.97 30064.44 17573.05 36688.80 27369.67 25164.59 28474.79 35032.79 34587.82 33553.99 30676.35 21791.42 193
MVP-Stereo77.12 21176.23 20379.79 26481.72 30166.34 13289.29 25390.88 19070.56 24162.01 31082.88 26949.34 24994.13 21765.55 24793.80 4278.88 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
IterMVS-SCA-FT71.55 27969.97 27976.32 30781.48 30260.67 27187.64 28285.99 32066.17 28359.50 32078.88 32145.53 28383.65 36262.58 26961.93 32384.63 306
COLMAP_ROBcopyleft57.96 2062.98 33459.65 33672.98 33181.44 30353.00 34083.75 30775.53 36748.34 37248.81 36681.40 29124.14 37190.30 31132.95 38060.52 33775.65 375
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
JIA-IIPM66.06 31862.45 32776.88 30481.42 30454.45 33557.49 39288.67 27949.36 36963.86 29346.86 39056.06 18490.25 31249.53 32168.83 26885.95 284
WR-MVS_H70.59 28369.94 28072.53 33481.03 30551.43 34687.35 28592.03 13767.38 27460.23 31780.70 30155.84 18783.45 36446.33 33858.58 34682.72 328
Fast-Effi-MVS+-dtu75.04 24473.37 24480.07 25380.86 30659.52 28791.20 20185.38 32471.90 20165.20 27984.84 24941.46 30092.97 25166.50 23572.96 24087.73 246
test_fmvsmconf0.1_n85.71 5986.08 5184.62 13880.83 30762.33 23593.84 8188.81 27283.50 2087.00 4496.01 3963.36 10296.93 10794.04 1287.29 11794.61 100
Baseline_NR-MVSNet73.99 25572.83 25077.48 29480.78 30859.29 29291.79 17084.55 33268.85 26168.99 23880.70 30156.16 18192.04 28862.67 26860.98 33381.11 344
CP-MVSNet70.50 28469.91 28172.26 33780.71 30951.00 34987.23 28790.30 21067.84 26959.64 31982.69 27150.23 24282.30 37251.28 31359.28 34283.46 317
v875.35 24073.26 24581.61 21780.67 31066.82 11989.54 24889.27 24971.65 21363.30 29980.30 30954.99 19694.06 22267.33 22562.33 31983.94 309
PS-MVSNAJss77.26 20876.31 20280.13 25280.64 31159.16 29390.63 22191.06 18672.80 17768.58 24684.57 25353.55 21293.96 23072.97 16771.96 24987.27 257
TransMVSNet (Re)70.07 28867.66 29477.31 29880.62 31259.13 29591.78 17284.94 32965.97 28460.08 31880.44 30650.78 23691.87 29048.84 32445.46 37480.94 346
v2v48277.42 20675.65 21382.73 18580.38 31367.13 11291.85 16890.23 21475.09 13569.37 23183.39 26553.79 21094.44 20571.77 18265.00 29786.63 268
PS-CasMVS69.86 29169.13 28672.07 34180.35 31450.57 35187.02 28989.75 23167.27 27559.19 32382.28 27546.58 27382.24 37350.69 31559.02 34383.39 319
v1074.77 24772.54 25781.46 22080.33 31566.71 12389.15 25889.08 26170.94 23263.08 30279.86 31452.52 22294.04 22565.70 24462.17 32083.64 312
test0.0.03 172.76 26872.71 25472.88 33280.25 31647.99 36391.22 19989.45 24271.51 22262.51 30887.66 21553.83 20885.06 35450.16 31867.84 27885.58 291
fmvsm_s_conf0.1_n_a84.76 7384.84 7184.53 14080.23 31763.50 20992.79 12288.73 27680.46 5289.84 2796.65 2260.96 12897.57 6193.80 1380.14 18192.53 170
v114476.73 22074.88 22082.27 19880.23 31766.60 12691.68 17790.21 21673.69 15969.06 23681.89 28052.73 22194.40 20669.21 20665.23 29485.80 287
v14876.19 22374.47 22881.36 22280.05 31964.44 17591.75 17590.23 21473.68 16067.13 26680.84 30055.92 18693.86 23668.95 21061.73 32785.76 290
dmvs_testset65.55 32266.45 29862.86 36379.87 32022.35 40676.55 35871.74 37677.42 10855.85 33987.77 21451.39 23280.69 37831.51 38865.92 28985.55 293
v119275.98 23073.92 23782.15 20479.73 32166.24 13591.22 19989.75 23172.67 17968.49 24781.42 29049.86 24594.27 21167.08 22865.02 29685.95 284
AllTest61.66 33658.06 34072.46 33579.57 32251.42 34780.17 34168.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
TestCases72.46 33579.57 32251.42 34768.61 38251.25 36345.88 37181.23 29319.86 38286.58 34638.98 36557.01 34979.39 359
MDA-MVSNet-bldmvs61.54 33857.70 34273.05 33079.53 32457.00 32083.08 31781.23 35057.57 34134.91 38972.45 35532.79 34586.26 34835.81 37241.95 37975.89 374
v14419276.05 22874.03 23582.12 20679.50 32566.55 12891.39 18789.71 23772.30 19068.17 24981.33 29251.75 22894.03 22767.94 21864.19 30485.77 288
v192192075.63 23873.49 24382.06 21079.38 32666.35 13191.07 20689.48 24071.98 19867.99 25081.22 29549.16 25493.90 23366.56 23264.56 30385.92 286
PEN-MVS69.46 29468.56 28872.17 33979.27 32749.71 35586.90 29189.24 25067.24 27859.08 32482.51 27447.23 26983.54 36348.42 32657.12 34783.25 320
v124075.21 24372.98 24881.88 21279.20 32866.00 13990.75 21589.11 25971.63 21767.41 26381.22 29547.36 26893.87 23465.46 24864.72 30185.77 288
pmmvs473.92 25671.81 26580.25 24879.17 32965.24 15787.43 28487.26 30667.64 27363.46 29783.91 26048.96 25691.53 30262.94 26565.49 29083.96 308
D2MVS73.80 25772.02 26279.15 27779.15 33062.97 22088.58 26790.07 21972.94 17259.22 32278.30 32442.31 29992.70 26665.59 24672.00 24881.79 339
V4276.46 22274.55 22682.19 20379.14 33167.82 9390.26 23089.42 24473.75 15768.63 24581.89 28051.31 23394.09 21971.69 18464.84 29884.66 304
pm-mvs172.89 26671.09 27078.26 28679.10 33257.62 31090.80 21389.30 24867.66 27162.91 30481.78 28249.11 25592.95 25260.29 28258.89 34484.22 307
our_test_368.29 30464.69 31279.11 27878.92 33364.85 16888.40 27085.06 32760.32 33052.68 35076.12 34440.81 30389.80 32244.25 34755.65 35282.67 332
ppachtmachnet_test67.72 30863.70 31979.77 26578.92 33366.04 13888.68 26582.90 34760.11 33255.45 34075.96 34539.19 30890.55 30839.53 36352.55 36282.71 329
test_fmvs174.07 25373.69 24075.22 31378.91 33547.34 36789.06 26174.69 36963.68 30079.41 11691.59 15324.36 37087.77 33785.22 7776.26 21890.55 210
TinyColmap60.32 34056.42 34772.00 34278.78 33653.18 33978.36 35275.64 36552.30 35941.59 38475.82 34714.76 38988.35 33035.84 37154.71 35774.46 376
SixPastTwentyTwo64.92 32461.78 33174.34 32278.74 33749.76 35483.42 31279.51 35862.86 30950.27 36077.35 33130.92 35890.49 31045.89 34047.06 37182.78 325
EG-PatchMatch MVS68.55 30165.41 30777.96 28978.69 33862.93 22289.86 24289.17 25460.55 32750.27 36077.73 33022.60 37594.06 22247.18 33472.65 24476.88 372
pmmvs573.35 26071.52 26778.86 27978.64 33960.61 27391.08 20486.90 30967.69 27063.32 29883.64 26144.33 29190.53 30962.04 27266.02 28885.46 295
UniMVSNet_ETH3D72.74 26970.53 27679.36 27278.62 34056.64 32185.01 30089.20 25263.77 29964.84 28384.44 25534.05 34291.86 29163.94 25770.89 25789.57 223
XVG-OURS74.25 25272.46 25879.63 26778.45 34157.59 31180.33 33887.39 30363.86 29868.76 24389.62 18640.50 30491.72 29469.00 20974.25 23089.58 222
tt080573.07 26270.73 27480.07 25378.37 34257.05 31787.78 27992.18 13361.23 32467.04 26786.49 23131.35 35594.58 19665.06 25167.12 28088.57 235
test_cas_vis1_n_192080.45 15180.61 13679.97 25978.25 34357.01 31994.04 6888.33 28879.06 8182.81 8093.70 10538.65 31191.63 29690.82 3779.81 18391.27 201
XVG-OURS-SEG-HR74.70 24873.08 24679.57 26978.25 34357.33 31580.49 33687.32 30463.22 30568.76 24390.12 18244.89 28991.59 29770.55 19474.09 23289.79 219
MDA-MVSNet_test_wron63.78 33160.16 33474.64 31878.15 34560.41 27483.49 30984.03 33556.17 35239.17 38671.59 36237.22 32783.24 36742.87 35248.73 36880.26 354
YYNet163.76 33260.14 33574.62 31978.06 34660.19 27983.46 31183.99 33956.18 35139.25 38571.56 36337.18 32883.34 36542.90 35148.70 36980.32 353
DTE-MVSNet68.46 30367.33 29671.87 34377.94 34749.00 36086.16 29688.58 28366.36 28258.19 32882.21 27746.36 27483.87 36144.97 34555.17 35482.73 327
USDC67.43 31364.51 31476.19 30877.94 34755.29 32978.38 35185.00 32873.17 16748.36 36780.37 30721.23 37792.48 27652.15 31264.02 30880.81 348
jajsoiax73.05 26371.51 26877.67 29177.46 34954.83 33288.81 26390.04 22269.13 25962.85 30583.51 26331.16 35692.75 26370.83 18969.80 25885.43 296
mvs_tets72.71 27071.11 26977.52 29277.41 35054.52 33488.45 26989.76 23068.76 26462.70 30683.26 26629.49 36092.71 26470.51 19569.62 26085.34 298
N_pmnet50.55 35149.11 35454.88 37177.17 3514.02 41484.36 3032.00 41248.59 37045.86 37368.82 36832.22 35082.80 36931.58 38651.38 36477.81 370
test_djsdf73.76 25972.56 25677.39 29677.00 35253.93 33689.07 25990.69 19365.80 28563.92 29282.03 27943.14 29692.67 26772.83 16968.53 27185.57 292
OpenMVS_ROBcopyleft61.12 1866.39 31662.92 32476.80 30576.51 35357.77 30689.22 25583.41 34355.48 35353.86 34777.84 32926.28 36993.95 23134.90 37568.76 26978.68 366
v7n71.31 28068.65 28779.28 27376.40 35460.77 26586.71 29389.45 24264.17 29658.77 32778.24 32544.59 29093.54 24057.76 29261.75 32683.52 315
K. test v363.09 33359.61 33773.53 32776.26 35549.38 35983.27 31377.15 36164.35 29547.77 36972.32 35828.73 36287.79 33649.93 32036.69 38783.41 318
RPSCF64.24 32861.98 33071.01 34576.10 35645.00 37575.83 36275.94 36346.94 37558.96 32584.59 25231.40 35482.00 37447.76 33260.33 34086.04 281
OurMVSNet-221017-064.68 32562.17 32972.21 33876.08 35747.35 36680.67 33581.02 35156.19 35051.60 35479.66 31827.05 36788.56 32853.60 30953.63 35980.71 349
test_fmvsmconf0.01_n83.70 9883.52 8284.25 15275.26 35861.72 24992.17 14887.24 30782.36 2884.91 6395.41 5055.60 18896.83 11292.85 1785.87 13294.21 114
Anonymous2023120667.53 31165.78 30272.79 33374.95 35947.59 36588.23 27187.32 30461.75 32258.07 33077.29 33337.79 32387.29 34342.91 35063.71 31083.48 316
EGC-MVSNET42.35 35838.09 36155.11 37074.57 36046.62 37171.63 36955.77 3930.04 4070.24 40862.70 37914.24 39074.91 38417.59 39646.06 37343.80 393
ITE_SJBPF70.43 34674.44 36147.06 37077.32 36060.16 33154.04 34683.53 26223.30 37484.01 35943.07 34961.58 33080.21 356
EU-MVSNet64.01 32963.01 32367.02 35974.40 36238.86 39083.27 31386.19 31845.11 37954.27 34481.15 29836.91 33280.01 38048.79 32557.02 34882.19 337
XVG-ACMP-BASELINE68.04 30665.53 30675.56 31174.06 36352.37 34178.43 35085.88 32162.03 31758.91 32681.21 29720.38 38091.15 30660.69 27968.18 27383.16 322
mvsany_test168.77 29968.56 28869.39 34973.57 36445.88 37480.93 33460.88 39259.65 33471.56 20890.26 17643.22 29575.05 38274.26 16362.70 31587.25 258
CL-MVSNet_self_test69.92 28968.09 29375.41 31273.25 36555.90 32690.05 23689.90 22669.96 24761.96 31176.54 33951.05 23587.64 33849.51 32250.59 36682.70 330
anonymousdsp71.14 28169.37 28576.45 30672.95 36654.71 33384.19 30488.88 26961.92 31962.15 30979.77 31638.14 31891.44 30468.90 21167.45 27983.21 321
lessismore_v073.72 32672.93 36747.83 36461.72 39145.86 37373.76 35228.63 36489.81 32047.75 33331.37 39383.53 314
pmmvs667.57 31064.76 31176.00 31072.82 36853.37 33888.71 26486.78 31353.19 35857.58 33578.03 32835.33 33892.41 27755.56 30054.88 35682.21 336
testgi64.48 32762.87 32569.31 35071.24 36940.62 38585.49 29779.92 35665.36 28954.18 34583.49 26423.74 37384.55 35541.60 35660.79 33582.77 326
Patchmatch-RL test68.17 30564.49 31579.19 27471.22 37053.93 33670.07 37271.54 37869.22 25656.79 33762.89 37856.58 17888.61 32669.53 20252.61 36195.03 81
test_fmvs1_n72.69 27271.92 26374.99 31671.15 37147.08 36987.34 28675.67 36463.48 30278.08 13391.17 16020.16 38187.87 33484.65 8575.57 22290.01 216
Gipumacopyleft34.91 36531.44 36845.30 38070.99 37239.64 38919.85 40272.56 37320.10 39816.16 40221.47 4035.08 40371.16 38813.07 40043.70 37725.08 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
UnsupCasMVSNet_eth65.79 32063.10 32273.88 32470.71 37350.29 35381.09 33289.88 22772.58 18149.25 36574.77 35132.57 34887.43 34255.96 29941.04 38183.90 310
CMPMVSbinary48.56 2166.77 31564.41 31673.84 32570.65 37450.31 35277.79 35585.73 32345.54 37844.76 37782.14 27835.40 33790.14 31863.18 26474.54 22781.07 345
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test20.0363.83 33062.65 32667.38 35870.58 37539.94 38686.57 29484.17 33463.29 30451.86 35377.30 33237.09 33082.47 37038.87 36754.13 35879.73 357
MIMVSNet160.16 34257.33 34368.67 35269.71 37644.13 37778.92 34884.21 33355.05 35444.63 37871.85 36023.91 37281.54 37632.63 38355.03 35580.35 352
test_vis1_n71.63 27870.73 27474.31 32369.63 37747.29 36886.91 29072.11 37463.21 30675.18 16390.17 17820.40 37985.76 34984.59 8674.42 22989.87 217
pmmvs-eth3d65.53 32362.32 32875.19 31469.39 37859.59 28582.80 32083.43 34262.52 31351.30 35772.49 35432.86 34487.16 34455.32 30150.73 36578.83 365
UnsupCasMVSNet_bld61.60 33757.71 34173.29 32968.73 37951.64 34478.61 34989.05 26357.20 34546.11 37061.96 38128.70 36388.60 32750.08 31938.90 38579.63 358
test_vis1_rt59.09 34557.31 34464.43 36168.44 38046.02 37383.05 31848.63 40151.96 36149.57 36363.86 37716.30 38480.20 37971.21 18762.79 31467.07 386
Anonymous2024052162.09 33559.08 33871.10 34467.19 38148.72 36183.91 30685.23 32650.38 36647.84 36871.22 36520.74 37885.51 35246.47 33758.75 34579.06 362
test_fmvs265.78 32164.84 30968.60 35366.54 38241.71 38283.27 31369.81 38054.38 35567.91 25484.54 25415.35 38681.22 37775.65 15066.16 28782.88 324
KD-MVS_self_test60.87 33958.60 33967.68 35666.13 38339.93 38775.63 36384.70 33057.32 34449.57 36368.45 36929.55 35982.87 36848.09 32747.94 37080.25 355
new-patchmatchnet59.30 34456.48 34667.79 35565.86 38444.19 37682.47 32181.77 34859.94 33343.65 38166.20 37327.67 36581.68 37539.34 36441.40 38077.50 371
PM-MVS59.40 34356.59 34567.84 35463.63 38541.86 38176.76 35763.22 38959.01 33751.07 35872.27 35911.72 39283.25 36661.34 27550.28 36778.39 368
DSMNet-mixed56.78 34754.44 35063.79 36263.21 38629.44 40164.43 38364.10 38842.12 38651.32 35671.60 36131.76 35275.04 38336.23 37065.20 29586.87 263
new_pmnet49.31 35246.44 35557.93 36662.84 38740.74 38468.47 37662.96 39036.48 38835.09 38857.81 38514.97 38872.18 38732.86 38146.44 37260.88 388
LF4IMVS54.01 35052.12 35159.69 36562.41 38839.91 38868.59 37568.28 38442.96 38544.55 37975.18 34814.09 39168.39 39141.36 35851.68 36370.78 381
WB-MVS46.23 35544.94 35750.11 37562.13 38921.23 40876.48 35955.49 39445.89 37735.78 38761.44 38335.54 33672.83 3869.96 40221.75 39756.27 390
ambc69.61 34861.38 39041.35 38349.07 39785.86 32250.18 36266.40 37210.16 39488.14 33245.73 34144.20 37579.32 361
SSC-MVS44.51 35743.35 35947.99 37961.01 39118.90 41074.12 36554.36 39543.42 38434.10 39060.02 38434.42 34170.39 3899.14 40419.57 39854.68 391
TDRefinement55.28 34951.58 35266.39 36059.53 39246.15 37276.23 36072.80 37244.60 38042.49 38276.28 34315.29 38782.39 37133.20 37943.75 37670.62 382
pmmvs355.51 34851.50 35367.53 35757.90 39350.93 35080.37 33773.66 37140.63 38744.15 38064.75 37616.30 38478.97 38144.77 34640.98 38372.69 378
test_method38.59 36335.16 36648.89 37754.33 39421.35 40745.32 39853.71 3967.41 40428.74 39251.62 3888.70 39752.87 40233.73 37632.89 39272.47 379
test_fmvs356.82 34654.86 34962.69 36453.59 39535.47 39275.87 36165.64 38743.91 38255.10 34171.43 3646.91 40074.40 38568.64 21352.63 36078.20 369
APD_test140.50 36037.31 36350.09 37651.88 39635.27 39359.45 39052.59 39721.64 39626.12 39457.80 3864.56 40466.56 39322.64 39239.09 38448.43 392
DeepMVS_CXcopyleft34.71 38551.45 39724.73 40528.48 41131.46 39217.49 40152.75 3875.80 40242.60 40618.18 39519.42 39936.81 398
FPMVS45.64 35643.10 36053.23 37351.42 39836.46 39164.97 38271.91 37529.13 39327.53 39361.55 3829.83 39565.01 39716.00 39955.58 35358.22 389
wuyk23d11.30 37410.95 37712.33 38948.05 39919.89 40925.89 4011.92 4133.58 4053.12 4071.37 4070.64 41215.77 4086.23 4077.77 4061.35 404
PMMVS237.93 36433.61 36750.92 37446.31 40024.76 40460.55 38950.05 39828.94 39420.93 39647.59 3894.41 40665.13 39625.14 39018.55 40062.87 387
mvsany_test348.86 35346.35 35656.41 36746.00 40131.67 39762.26 38547.25 40243.71 38345.54 37568.15 37010.84 39364.44 39957.95 29135.44 39073.13 377
test_f46.58 35443.45 35855.96 36845.18 40232.05 39661.18 38649.49 40033.39 39042.05 38362.48 3807.00 39965.56 39547.08 33543.21 37870.27 383
test_vis3_rt40.46 36137.79 36248.47 37844.49 40333.35 39566.56 38132.84 40932.39 39129.65 39139.13 3993.91 40768.65 39050.17 31740.99 38243.40 394
E-PMN24.61 36924.00 37326.45 38643.74 40418.44 41160.86 38739.66 40515.11 4019.53 40522.10 4026.52 40146.94 4048.31 40510.14 40213.98 402
testf132.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
APD_test232.77 36629.47 36942.67 38241.89 40530.81 39852.07 39343.45 40315.45 39918.52 39944.82 3932.12 40858.38 40016.05 39730.87 39438.83 395
EMVS23.76 37123.20 37525.46 38741.52 40716.90 41260.56 38838.79 40814.62 4028.99 40620.24 4057.35 39845.82 4057.25 4069.46 40313.64 403
LCM-MVSNet40.54 35935.79 36454.76 37236.92 40830.81 39851.41 39569.02 38122.07 39524.63 39545.37 3924.56 40465.81 39433.67 37734.50 39167.67 384
ANet_high40.27 36235.20 36555.47 36934.74 40934.47 39463.84 38471.56 37748.42 37118.80 39841.08 3979.52 39664.45 39820.18 3948.66 40567.49 385
MVEpermissive24.84 2324.35 37019.77 37638.09 38434.56 41026.92 40326.57 40038.87 40711.73 40311.37 40427.44 4001.37 41150.42 40311.41 40114.60 40136.93 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft26.43 2231.84 36828.16 37142.89 38125.87 41127.58 40250.92 39649.78 39921.37 39714.17 40340.81 3982.01 41066.62 3929.61 40338.88 38634.49 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tmp_tt22.26 37223.75 37417.80 3885.23 41212.06 41335.26 39939.48 4062.82 40618.94 39744.20 39522.23 37624.64 40736.30 3699.31 40416.69 401
testmvs7.23 3769.62 3790.06 3910.04 4130.02 41684.98 3010.02 4140.03 4080.18 4091.21 4080.01 4140.02 4090.14 4080.01 4070.13 406
test1236.92 3779.21 3800.08 3900.03 4140.05 41581.65 3270.01 4150.02 4090.14 4100.85 4090.03 4130.02 4090.12 4090.00 4080.16 405
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
eth-test20.00 415
eth-test0.00 415
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
cdsmvs_eth3d_5k19.86 37326.47 3720.00 3920.00 4150.00 4170.00 40393.45 840.00 4100.00 41195.27 5849.56 2470.00 4110.00 4100.00 4080.00 407
pcd_1.5k_mvsjas4.46 3785.95 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41053.55 2120.00 4110.00 4100.00 4080.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
ab-mvs-re7.91 37510.55 3780.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.95 670.00 4150.00 4110.00 4100.00 4080.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4080.00 407
WAC-MVS49.45 35731.56 387
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
test_241102_TWO94.41 4871.65 21392.07 997.21 474.58 1799.11 692.34 2195.36 1496.59 19
test_0728_THIRD72.48 18390.55 2096.93 1176.24 1199.08 1191.53 3194.99 1896.43 29
GSMVS94.68 95
sam_mvs157.85 15994.68 95
sam_mvs54.91 197
MTGPAbinary92.23 127
test_post178.95 34720.70 40453.05 21791.50 30360.43 280
test_post23.01 40156.49 17992.67 267
patchmatchnet-post67.62 37157.62 16290.25 312
MTMP93.77 8532.52 410
test9_res89.41 4194.96 1995.29 67
agg_prior286.41 6994.75 3095.33 63
test_prior467.18 11193.92 74
test_prior295.10 3975.40 13185.25 6295.61 4767.94 5187.47 5994.77 26
旧先验292.00 16159.37 33687.54 4093.47 24375.39 152
新几何291.41 183
无先验92.71 12692.61 11862.03 31797.01 9566.63 23193.97 127
原ACMM292.01 158
testdata296.09 13561.26 276
segment_acmp65.94 66
testdata189.21 25677.55 104
plane_prior591.31 17195.55 16476.74 14278.53 19788.39 240
plane_prior489.14 192
plane_prior361.95 24479.09 7972.53 193
plane_prior293.13 11178.81 85
plane_prior62.42 23293.85 7879.38 7178.80 194
n20.00 416
nn0.00 416
door-mid66.01 386
test1193.01 101
door66.57 385
HQP5-MVS63.66 203
BP-MVS77.63 139
HQP4-MVS74.18 17295.61 15988.63 233
HQP3-MVS91.70 15778.90 192
HQP2-MVS51.63 230
MDTV_nov1_ep13_2view59.90 28280.13 34267.65 27272.79 18854.33 20559.83 28492.58 168
ACMMP++_ref71.63 250
ACMMP++69.72 259
Test By Simon54.21 206