This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 18
Gipumacopyleft99.03 5899.16 4598.64 18299.94 298.51 10199.32 2299.75 3199.58 2598.60 21099.62 3398.22 7699.51 33397.70 14399.73 14397.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2499.31 3099.53 3399.91 398.98 6599.63 699.58 5499.44 3799.78 2699.76 1096.39 19799.92 4999.44 3599.92 5499.68 53
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 9999.36 3799.92 5499.64 62
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4599.48 3199.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
testf199.25 3399.16 4599.51 4299.89 699.63 398.71 9399.69 3698.90 9999.43 7599.35 8298.86 2899.67 26897.81 13499.81 10099.24 220
APD_test299.25 3399.16 4599.51 4299.89 699.63 398.71 9399.69 3698.90 9999.43 7599.35 8298.86 2899.67 26897.81 13499.81 10099.24 220
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3499.31 40100.00 199.82 24
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 1999.69 3698.93 9799.65 4599.72 1698.93 2699.95 2299.11 51100.00 199.82 24
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 999.61 5099.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2499.75 42
mvs_tets99.63 599.67 599.49 4799.88 998.61 9199.34 1999.71 3399.27 5699.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16099.95 199.45 3599.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 15
test_djsdf99.52 1099.51 1199.53 3399.86 1498.74 8199.39 1699.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4299.98 1299.89 11
MIMVSNet199.38 2399.32 2899.55 2399.86 1499.19 3799.41 1299.59 5299.59 2399.71 3399.57 4197.12 15799.90 6399.21 4799.87 7599.54 107
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17899.30 4199.97 1999.77 34
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2299.00 6099.95 3199.78 32
mvsmamba99.24 3799.15 5099.49 4799.83 1898.85 7499.41 1299.55 7299.54 2799.40 8299.52 5695.86 22599.91 5899.32 3999.95 3199.70 50
SixPastTwentyTwo98.75 9498.62 10399.16 10499.83 1897.96 15499.28 3698.20 31899.37 4499.70 3599.65 3092.65 30399.93 3999.04 5799.84 8399.60 73
Baseline_NR-MVSNet98.98 6498.86 7399.36 6399.82 2098.55 9697.47 24499.57 6199.37 4499.21 11899.61 3696.76 18199.83 15398.06 11899.83 9199.71 45
pm-mvs199.44 1599.48 1499.33 7799.80 2198.63 8899.29 3299.63 4699.30 5399.65 4599.60 3899.16 2099.82 16399.07 5499.83 9199.56 96
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2198.58 9499.27 3899.57 6199.39 4299.75 3099.62 3399.17 1899.83 15399.06 5599.62 18899.66 57
K. test v398.00 19597.66 21899.03 12999.79 2397.56 18799.19 4892.47 39499.62 2099.52 6199.66 2789.61 32699.96 1199.25 4499.81 10099.56 96
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2498.11 13197.77 20399.90 999.33 4999.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
APD_test198.83 8298.66 9799.34 7299.78 2499.47 698.42 13099.45 11198.28 13898.98 14899.19 11397.76 11099.58 31096.57 22299.55 21498.97 266
test_vis3_rt99.14 4699.17 4399.07 11999.78 2498.38 10898.92 7699.94 297.80 17499.91 1199.67 2597.15 15698.91 39199.76 1699.56 21199.92 9
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2799.20 3499.08 5799.29 18112.08 41120.84 41299.42 7297.55 12899.85 11897.08 17799.72 15098.96 268
Anonymous2024052198.69 10598.87 7098.16 24399.77 2795.11 28599.08 5799.44 11599.34 4899.33 9599.55 4794.10 28099.94 3499.25 4499.96 2499.42 160
FC-MVSNet-test99.27 3099.25 3899.34 7299.77 2798.37 11099.30 3199.57 6199.61 2299.40 8299.50 5897.12 15799.85 11899.02 5999.94 3999.80 28
test_vis1_n98.31 16498.50 12097.73 27599.76 3094.17 31098.68 9699.91 796.31 28099.79 2599.57 4192.85 30099.42 35299.79 1399.84 8399.60 73
test_fmvs399.12 5199.41 1998.25 23599.76 3095.07 28699.05 6399.94 297.78 17799.82 2199.84 298.56 5499.71 24899.96 199.96 2499.97 3
XXY-MVS99.14 4699.15 5099.10 11399.76 3097.74 17598.85 8399.62 4798.48 12599.37 8899.49 6298.75 3699.86 10698.20 10899.80 11099.71 45
TDRefinement99.42 1999.38 2199.55 2399.76 3099.33 1699.68 599.71 3399.38 4399.53 5999.61 3698.64 4499.80 18598.24 10599.84 8399.52 117
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 15999.75 3496.59 23697.97 18099.86 1398.22 14199.88 1799.71 1798.59 5099.84 13599.73 1999.98 1299.98 2
tt080598.69 10598.62 10398.90 14999.75 3499.30 1799.15 5296.97 35098.86 10298.87 17697.62 32598.63 4698.96 38899.41 3698.29 33998.45 329
test_vis1_n_192098.40 15198.92 6796.81 32999.74 3690.76 37898.15 15299.91 798.33 13099.89 1599.55 4795.07 25199.88 8299.76 1699.93 4399.79 29
FOURS199.73 3799.67 299.43 1099.54 7799.43 3999.26 110
PEN-MVS99.41 2099.34 2599.62 699.73 3799.14 5299.29 3299.54 7799.62 2099.56 5299.42 7298.16 8499.96 1198.78 7199.93 4399.77 34
lessismore_v098.97 13799.73 3797.53 18986.71 40899.37 8899.52 5689.93 32499.92 4998.99 6199.72 15099.44 153
SteuartSystems-ACMMP98.79 8798.54 11599.54 2699.73 3799.16 4398.23 14399.31 16497.92 16598.90 16798.90 18898.00 9499.88 8296.15 25399.72 15099.58 85
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 18298.15 17398.22 23899.73 3795.15 28297.36 25099.68 4194.45 33498.99 14799.27 9796.87 17199.94 3497.13 17499.91 6199.57 90
Vis-MVSNetpermissive99.34 2599.36 2299.27 8799.73 3798.26 11799.17 4999.78 2699.11 7299.27 10699.48 6398.82 3199.95 2298.94 6399.93 4399.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 9898.74 8298.62 18799.72 4396.08 25498.74 8798.64 29999.74 699.67 4199.24 10494.57 26699.95 2299.11 5199.24 26899.82 24
test_f98.67 11398.87 7098.05 25299.72 4395.59 26498.51 11799.81 2396.30 28299.78 2699.82 496.14 20698.63 39699.82 899.93 4399.95 6
ACMH96.65 799.25 3399.24 3999.26 8999.72 4398.38 10899.07 6099.55 7298.30 13399.65 4599.45 6999.22 1599.76 22398.44 9599.77 12599.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4696.10 24997.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 11899.72 2199.98 1299.97 3
PS-CasMVS99.40 2199.33 2699.62 699.71 4699.10 6099.29 3299.53 8099.53 2999.46 7099.41 7598.23 7399.95 2298.89 6799.95 3199.81 27
DTE-MVSNet99.43 1899.35 2399.66 499.71 4699.30 1799.31 2699.51 8599.64 1599.56 5299.46 6598.23 7399.97 498.78 7199.93 4399.72 44
WR-MVS_H99.33 2699.22 4099.65 599.71 4699.24 2599.32 2299.55 7299.46 3499.50 6699.34 8697.30 14699.93 3998.90 6599.93 4399.77 34
HPM-MVS_fast99.01 5998.82 7699.57 1699.71 4699.35 1299.00 6799.50 8897.33 22098.94 16398.86 19998.75 3699.82 16397.53 15099.71 15599.56 96
ACMH+96.62 999.08 5699.00 6299.33 7799.71 4698.83 7698.60 10399.58 5499.11 7299.53 5999.18 11698.81 3299.67 26896.71 21499.77 12599.50 122
PMVScopyleft91.26 2097.86 20697.94 19497.65 27999.71 4697.94 15698.52 11298.68 29598.99 9197.52 29799.35 8297.41 14198.18 40091.59 36599.67 17496.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4699.09 5599.29 8399.70 5398.28 11699.13 5499.52 8399.48 3199.24 11599.41 7596.79 17899.82 16398.69 8099.88 7299.76 38
VPNet98.87 7798.83 7599.01 13299.70 5397.62 18598.43 12899.35 14699.47 3399.28 10499.05 14796.72 18499.82 16398.09 11599.36 24899.59 79
test_cas_vis1_n_192098.33 16198.68 9497.27 30699.69 5592.29 35598.03 16899.85 1597.62 18699.96 499.62 3393.98 28199.74 23599.52 3199.86 7899.79 29
MP-MVS-pluss98.57 12798.23 16399.60 1199.69 5599.35 1297.16 26799.38 13294.87 32498.97 15298.99 16698.01 9399.88 8297.29 16299.70 16099.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2898.96 13899.68 5797.35 19898.84 8599.48 9799.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5499.57 90
sd_testset99.28 2999.31 3099.19 10099.68 5798.06 14399.41 1299.30 17399.69 999.63 4899.68 2099.25 1499.96 1197.25 16599.92 5499.57 90
test_fmvs1_n98.09 18798.28 15597.52 29299.68 5793.47 33498.63 9999.93 495.41 31399.68 3999.64 3191.88 31299.48 34099.82 899.87 7599.62 66
CHOSEN 1792x268897.49 23497.14 25098.54 20599.68 5796.09 25296.50 29999.62 4791.58 37298.84 17998.97 17292.36 30599.88 8296.76 20799.95 3199.67 56
tfpnnormal98.90 7498.90 6998.91 14699.67 6197.82 16799.00 6799.44 11599.45 3599.51 6599.24 10498.20 7999.86 10695.92 26299.69 16399.04 254
MTAPA98.88 7698.64 10099.61 999.67 6199.36 1198.43 12899.20 20498.83 10698.89 16998.90 18896.98 16799.92 4997.16 16999.70 16099.56 96
test_fmvsmvis_n_192099.26 3299.49 1298.54 20599.66 6396.97 22198.00 17499.85 1599.24 5899.92 899.50 5899.39 1199.95 2299.89 399.98 1298.71 306
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14199.65 6497.05 21797.80 19999.76 2898.70 11099.78 2699.11 13398.79 3499.95 2299.85 599.96 2499.83 21
WB-MVS98.52 13998.55 11398.43 21799.65 6495.59 26498.52 11298.77 28699.65 1499.52 6199.00 16594.34 27299.93 3998.65 8298.83 31299.76 38
CP-MVSNet99.21 3999.09 5599.56 2199.65 6498.96 7099.13 5499.34 15299.42 4099.33 9599.26 9997.01 16599.94 3498.74 7599.93 4399.79 29
HPM-MVScopyleft98.79 8798.53 11699.59 1599.65 6499.29 1999.16 5099.43 12196.74 26298.61 20898.38 27198.62 4799.87 9996.47 23499.67 17499.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12198.36 14599.42 5799.65 6499.42 798.55 10899.57 6197.72 18098.90 16799.26 9996.12 20899.52 32995.72 27399.71 15599.32 201
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13199.64 6997.28 20297.82 19699.76 2898.73 10799.82 2199.09 13998.81 3299.95 2299.86 499.96 2499.83 21
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6998.10 13397.68 21499.84 1899.29 5499.92 899.57 4199.60 599.96 1199.74 1899.98 1299.89 11
TSAR-MVS + MP.98.63 11998.49 12499.06 12599.64 6997.90 15898.51 11798.94 25396.96 24999.24 11598.89 19497.83 10499.81 17896.88 19799.49 23399.48 136
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8398.72 8699.12 10999.64 6998.54 9997.98 17799.68 4197.62 18699.34 9499.18 11697.54 12999.77 21797.79 13699.74 14099.04 254
KD-MVS_self_test99.25 3399.18 4299.44 5699.63 7399.06 6498.69 9599.54 7799.31 5199.62 5199.53 5397.36 14499.86 10699.24 4699.71 15599.39 173
EU-MVSNet97.66 22498.50 12095.13 36799.63 7385.84 39798.35 13698.21 31798.23 14099.54 5599.46 6595.02 25299.68 26598.24 10599.87 7599.87 15
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7597.28 20295.17 36099.50 8894.21 33999.01 14598.32 27986.61 34499.99 297.10 17699.84 8399.60 73
ACMMP_NAP98.75 9498.48 12599.57 1699.58 7699.29 1997.82 19699.25 19396.94 25198.78 18699.12 13298.02 9299.84 13597.13 17499.67 17499.59 79
nrg03099.40 2199.35 2399.54 2699.58 7699.13 5598.98 7099.48 9799.68 1199.46 7099.26 9998.62 4799.73 24099.17 5099.92 5499.76 38
VDDNet98.21 17797.95 19299.01 13299.58 7697.74 17599.01 6597.29 34399.67 1298.97 15299.50 5890.45 32199.80 18597.88 13199.20 27499.48 136
COLMAP_ROBcopyleft96.50 1098.99 6198.85 7499.41 5999.58 7699.10 6098.74 8799.56 6899.09 8299.33 9599.19 11398.40 6399.72 24795.98 26099.76 13699.42 160
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13499.57 8097.73 17797.93 18199.83 2099.22 5999.93 699.30 9399.42 1099.96 1199.85 599.99 599.29 210
ZNCC-MVS98.68 11098.40 13799.54 2699.57 8099.21 2898.46 12599.29 18197.28 22698.11 25398.39 26998.00 9499.87 9996.86 20099.64 18299.55 103
MSP-MVS98.40 15198.00 18899.61 999.57 8099.25 2498.57 10699.35 14697.55 19899.31 10397.71 31894.61 26599.88 8296.14 25499.19 27799.70 50
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 16298.39 14098.13 24499.57 8095.54 26797.78 20199.49 9597.37 21799.19 12097.65 32298.96 2499.49 33796.50 23398.99 30199.34 194
MP-MVScopyleft98.46 14498.09 17899.54 2699.57 8099.22 2798.50 11999.19 20897.61 18997.58 29198.66 23597.40 14299.88 8294.72 29899.60 19599.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 9898.46 12999.47 5399.57 8098.97 6698.23 14399.48 9796.60 26799.10 13099.06 14098.71 3999.83 15395.58 28099.78 12099.62 66
LGP-MVS_train99.47 5399.57 8098.97 6699.48 9796.60 26799.10 13099.06 14098.71 3999.83 15395.58 28099.78 12099.62 66
IS-MVSNet98.19 17997.90 19899.08 11799.57 8097.97 15199.31 2698.32 31399.01 9098.98 14899.03 15191.59 31399.79 20095.49 28299.80 11099.48 136
dcpmvs_298.78 8999.11 5297.78 26699.56 8893.67 33099.06 6199.86 1399.50 3099.66 4299.26 9997.21 15499.99 298.00 12399.91 6199.68 53
test_040298.76 9398.71 8898.93 14399.56 8898.14 12998.45 12799.34 15299.28 5598.95 15598.91 18598.34 6999.79 20095.63 27799.91 6198.86 284
EPP-MVSNet98.30 16598.04 18499.07 11999.56 8897.83 16499.29 3298.07 32499.03 8898.59 21299.13 13092.16 30899.90 6396.87 19899.68 16899.49 126
ACMMPcopyleft98.75 9498.50 12099.52 3899.56 8899.16 4398.87 8099.37 13797.16 24198.82 18399.01 16197.71 11399.87 9996.29 24599.69 16399.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16599.55 9296.59 23697.79 20099.82 2298.21 14299.81 2399.53 5398.46 6099.84 13599.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9296.09 25297.74 20899.81 2398.55 12399.85 1999.55 4798.60 4999.84 13599.69 2499.98 1299.89 11
FMVSNet199.17 4299.17 4399.17 10199.55 9298.24 11999.20 4499.44 11599.21 6199.43 7599.55 4797.82 10799.86 10698.42 9799.89 7199.41 163
Vis-MVSNet (Re-imp)97.46 23697.16 24798.34 22599.55 9296.10 24998.94 7498.44 30898.32 13298.16 24798.62 24488.76 33199.73 24093.88 32499.79 11599.18 234
ACMM96.08 1298.91 7298.73 8499.48 5099.55 9299.14 5298.07 16299.37 13797.62 18699.04 14198.96 17598.84 3099.79 20097.43 15699.65 18099.49 126
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10298.97 6597.89 25999.54 9794.05 31298.55 10899.92 696.78 26099.72 3199.78 896.60 18999.67 26899.91 299.90 6799.94 7
mPP-MVS98.64 11798.34 14899.54 2699.54 9799.17 3998.63 9999.24 19897.47 20498.09 25598.68 23097.62 12299.89 7396.22 24899.62 18899.57 90
XVG-ACMP-BASELINE98.56 12898.34 14899.22 9799.54 9798.59 9397.71 21199.46 10797.25 22998.98 14898.99 16697.54 12999.84 13595.88 26399.74 14099.23 222
region2R98.69 10598.40 13799.54 2699.53 10099.17 3998.52 11299.31 16497.46 20998.44 22998.51 25697.83 10499.88 8296.46 23599.58 20499.58 85
PGM-MVS98.66 11498.37 14499.55 2399.53 10099.18 3898.23 14399.49 9597.01 24898.69 19798.88 19698.00 9499.89 7395.87 26699.59 19999.58 85
Patchmatch-RL test97.26 25197.02 25497.99 25699.52 10295.53 26896.13 32299.71 3397.47 20499.27 10699.16 12284.30 36599.62 29397.89 12899.77 12598.81 291
ACMMPR98.70 10298.42 13599.54 2699.52 10299.14 5298.52 11299.31 16497.47 20498.56 21798.54 25297.75 11199.88 8296.57 22299.59 19999.58 85
GST-MVS98.61 12398.30 15399.52 3899.51 10499.20 3498.26 14199.25 19397.44 21298.67 19998.39 26997.68 11499.85 11896.00 25899.51 22599.52 117
Anonymous2023120698.21 17798.21 16498.20 23999.51 10495.43 27398.13 15399.32 15996.16 28598.93 16498.82 20896.00 21499.83 15397.32 16199.73 14399.36 188
ACMP95.32 1598.41 14998.09 17899.36 6399.51 10498.79 7997.68 21499.38 13295.76 30098.81 18598.82 20898.36 6599.82 16394.75 29599.77 12599.48 136
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9298.52 11799.52 3899.50 10799.21 2898.02 17098.84 27597.97 16099.08 13299.02 15297.61 12399.88 8296.99 18499.63 18599.48 136
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10799.23 2698.02 17099.32 15999.88 8296.99 18499.63 18599.68 53
test072699.50 10799.21 2898.17 15199.35 14697.97 16099.26 11099.06 14097.61 123
AllTest98.44 14798.20 16599.16 10499.50 10798.55 9698.25 14299.58 5496.80 25898.88 17299.06 14097.65 11799.57 31294.45 30599.61 19399.37 182
TestCases99.16 10499.50 10798.55 9699.58 5496.80 25898.88 17299.06 14097.65 11799.57 31294.45 30599.61 19399.37 182
XVG-OURS98.53 13698.34 14899.11 11199.50 10798.82 7895.97 32899.50 8897.30 22499.05 13998.98 17099.35 1299.32 36695.72 27399.68 16899.18 234
EG-PatchMatch MVS98.99 6199.01 6198.94 14199.50 10797.47 19198.04 16799.59 5298.15 15399.40 8299.36 8198.58 5399.76 22398.78 7199.68 16899.59 79
SED-MVS98.91 7298.72 8699.49 4799.49 11499.17 3998.10 15899.31 16498.03 15799.66 4299.02 15298.36 6599.88 8296.91 19099.62 18899.41 163
IU-MVS99.49 11499.15 4798.87 26692.97 35799.41 7996.76 20799.62 18899.66 57
test_241102_ONE99.49 11499.17 3999.31 16497.98 15999.66 4298.90 18898.36 6599.48 340
UA-Net99.47 1399.40 2099.70 299.49 11499.29 1999.80 399.72 3299.82 399.04 14199.81 598.05 9199.96 1198.85 6899.99 599.86 17
HFP-MVS98.71 9898.44 13299.51 4299.49 11499.16 4398.52 11299.31 16497.47 20498.58 21498.50 26097.97 9899.85 11896.57 22299.59 19999.53 114
VPA-MVSNet99.30 2899.30 3299.28 8499.49 11498.36 11399.00 6799.45 11199.63 1799.52 6199.44 7098.25 7199.88 8299.09 5399.84 8399.62 66
XVG-OURS-SEG-HR98.49 14198.28 15599.14 10799.49 11498.83 7696.54 29699.48 9797.32 22299.11 12798.61 24699.33 1399.30 36996.23 24798.38 33599.28 212
114514_t96.50 29195.77 29898.69 17999.48 12197.43 19597.84 19599.55 7281.42 40496.51 34798.58 24995.53 23699.67 26893.41 33799.58 20498.98 263
IterMVS-LS98.55 13298.70 9198.09 24599.48 12194.73 29497.22 26399.39 13098.97 9399.38 8699.31 9296.00 21499.93 3998.58 8599.97 1999.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 5999.16 4598.57 19799.47 12396.31 24698.90 7799.47 10599.03 8899.52 6199.57 4196.93 16899.81 17899.60 2599.98 1299.60 73
XVS98.72 9798.45 13099.53 3399.46 12499.21 2898.65 9799.34 15298.62 11597.54 29598.63 24297.50 13599.83 15396.79 20399.53 22099.56 96
X-MVStestdata94.32 33592.59 35399.53 3399.46 12499.21 2898.65 9799.34 15298.62 11597.54 29545.85 40997.50 13599.83 15396.79 20399.53 22099.56 96
test20.0398.78 8998.77 8198.78 16599.46 12497.20 20997.78 20199.24 19899.04 8799.41 7998.90 18897.65 11799.76 22397.70 14399.79 11599.39 173
CSCG98.68 11098.50 12099.20 9899.45 12798.63 8898.56 10799.57 6197.87 16998.85 17798.04 30097.66 11699.84 13596.72 21299.81 10099.13 243
GeoE99.05 5798.99 6499.25 9299.44 12898.35 11498.73 9099.56 6898.42 12698.91 16698.81 21098.94 2599.91 5898.35 9999.73 14399.49 126
v14898.45 14698.60 10898.00 25599.44 12894.98 28797.44 24699.06 23498.30 13399.32 10198.97 17296.65 18799.62 29398.37 9899.85 7999.39 173
v1098.97 6599.11 5298.55 20299.44 12896.21 24898.90 7799.55 7298.73 10799.48 6799.60 3896.63 18899.83 15399.70 2299.99 599.61 72
V4298.78 8998.78 8098.76 16999.44 12897.04 21898.27 14099.19 20897.87 16999.25 11499.16 12296.84 17299.78 21199.21 4799.84 8399.46 145
MDA-MVSNet-bldmvs97.94 19997.91 19798.06 25099.44 12894.96 28896.63 29499.15 22498.35 12898.83 18099.11 13394.31 27399.85 11896.60 21998.72 31899.37 182
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13499.43 13397.73 17798.00 17499.62 4799.22 5999.55 5499.22 10898.93 2699.75 23098.66 8199.81 10099.50 122
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 29296.82 26695.52 36199.42 13487.08 39499.22 4187.14 40799.11 7299.46 7099.58 4088.69 33299.86 10698.80 7099.95 3199.62 66
v2v48298.56 12898.62 10398.37 22399.42 13495.81 26197.58 22999.16 21997.90 16799.28 10499.01 16195.98 21999.79 20099.33 3899.90 6799.51 119
OPM-MVS98.56 12898.32 15299.25 9299.41 13698.73 8497.13 26999.18 21297.10 24498.75 19298.92 18498.18 8099.65 28496.68 21699.56 21199.37 182
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 19098.08 18198.04 25399.41 13694.59 30094.59 37899.40 12897.50 20198.82 18398.83 20596.83 17499.84 13597.50 15399.81 10099.71 45
test_one_060199.39 13899.20 3499.31 16498.49 12498.66 20199.02 15297.64 120
mvsany_test398.87 7798.92 6798.74 17799.38 13996.94 22598.58 10599.10 22996.49 27299.96 499.81 598.18 8099.45 34798.97 6299.79 11599.83 21
patch_mono-298.51 14098.63 10198.17 24199.38 13994.78 29197.36 25099.69 3698.16 15298.49 22599.29 9497.06 16099.97 498.29 10499.91 6199.76 38
test250692.39 36391.89 36593.89 37999.38 13982.28 40999.32 2266.03 41599.08 8498.77 18999.57 4166.26 40599.84 13598.71 7899.95 3199.54 107
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13988.18 39099.22 4186.00 40999.08 8499.36 9099.57 4188.47 33799.82 16398.52 9299.95 3199.54 107
casdiffmvspermissive98.95 6899.00 6298.81 15799.38 13997.33 19997.82 19699.57 6199.17 7099.35 9299.17 12098.35 6899.69 25698.46 9499.73 14399.41 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6799.02 6098.76 16999.38 13997.26 20498.49 12099.50 8898.86 10299.19 12099.06 14098.23 7399.69 25698.71 7899.76 13699.33 199
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5599.37 14598.87 7398.39 13299.42 12499.42 4099.36 9099.06 14098.38 6499.95 2298.34 10099.90 6799.57 90
tttt051795.64 31694.98 32597.64 28199.36 14693.81 32698.72 9190.47 40298.08 15698.67 19998.34 27673.88 39699.92 4997.77 13799.51 22599.20 227
test_part299.36 14699.10 6099.05 139
v114498.60 12498.66 9798.41 21999.36 14695.90 25797.58 22999.34 15297.51 20099.27 10699.15 12696.34 20299.80 18599.47 3499.93 4399.51 119
CP-MVS98.70 10298.42 13599.52 3899.36 14699.12 5798.72 9199.36 14197.54 19998.30 23998.40 26897.86 10399.89 7396.53 23199.72 15099.56 96
Test_1112_low_res96.99 27396.55 28498.31 22999.35 15095.47 27195.84 33999.53 8091.51 37496.80 33698.48 26391.36 31599.83 15396.58 22099.53 22099.62 66
DeepC-MVS97.60 498.97 6598.93 6699.10 11399.35 15097.98 15098.01 17399.46 10797.56 19699.54 5599.50 5898.97 2399.84 13598.06 11899.92 5499.49 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 25096.86 26298.58 19499.34 15296.32 24596.75 28899.58 5493.14 35596.89 33197.48 33392.11 30999.86 10696.91 19099.54 21699.57 90
SF-MVS98.53 13698.27 15899.32 7999.31 15398.75 8098.19 14799.41 12596.77 26198.83 18098.90 18897.80 10899.82 16395.68 27699.52 22399.38 180
CPTT-MVS97.84 21397.36 23799.27 8799.31 15398.46 10498.29 13899.27 18794.90 32397.83 27598.37 27294.90 25499.84 13593.85 32699.54 21699.51 119
UnsupCasMVSNet_eth97.89 20297.60 22398.75 17399.31 15397.17 21297.62 22399.35 14698.72 10998.76 19198.68 23092.57 30499.74 23597.76 14195.60 39499.34 194
pmmvs-eth3d98.47 14398.34 14898.86 15199.30 15697.76 17397.16 26799.28 18495.54 30699.42 7899.19 11397.27 14999.63 29097.89 12899.97 1999.20 227
Anonymous2023121199.27 3099.27 3599.26 8999.29 15798.18 12599.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15399.21 4799.91 6199.77 34
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21599.28 15896.78 23296.20 31799.27 18795.42 31098.28 24198.30 28093.16 29199.71 24894.99 29097.37 37098.87 283
EC-MVSNet99.09 5499.05 5999.20 9899.28 15898.93 7199.24 4099.84 1899.08 8498.12 25298.37 27298.72 3899.90 6399.05 5699.77 12598.77 300
DPE-MVScopyleft98.59 12698.26 15999.57 1699.27 16099.15 4797.01 27299.39 13097.67 18299.44 7498.99 16697.53 13199.89 7395.40 28499.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 21198.18 16896.87 32599.27 16091.16 37395.53 34799.25 19399.10 7999.41 7999.35 8293.10 29399.96 1198.65 8299.94 3999.49 126
v119298.60 12498.66 9798.41 21999.27 16095.88 25897.52 23799.36 14197.41 21399.33 9599.20 11196.37 20099.82 16399.57 2799.92 5499.55 103
iter_conf0598.46 14498.38 14298.70 17899.27 16097.15 21497.51 23999.51 8597.57 19298.95 15598.89 19495.48 24099.82 16398.30 10399.96 2499.14 242
N_pmnet97.63 22697.17 24698.99 13499.27 16097.86 16195.98 32793.41 39195.25 31599.47 6998.90 18895.63 23199.85 11896.91 19099.73 14399.27 213
FPMVS93.44 35192.23 35697.08 31499.25 16597.86 16195.61 34497.16 34592.90 35993.76 39398.65 23775.94 39495.66 40679.30 40697.49 36397.73 371
new-patchmatchnet98.35 15798.74 8297.18 30999.24 16692.23 35796.42 30499.48 9798.30 13399.69 3799.53 5397.44 14099.82 16398.84 6999.77 12599.49 126
MCST-MVS98.00 19597.63 22199.10 11399.24 16698.17 12696.89 28198.73 29395.66 30197.92 26597.70 32097.17 15599.66 27996.18 25299.23 27099.47 143
UniMVSNet (Re)98.87 7798.71 8899.35 6999.24 16698.73 8497.73 21099.38 13298.93 9799.12 12698.73 22196.77 17999.86 10698.63 8499.80 11099.46 145
jason97.45 23897.35 23897.76 27099.24 16693.93 32095.86 33698.42 30994.24 33898.50 22498.13 29094.82 25899.91 5897.22 16699.73 14399.43 157
jason: jason.
IterMVS97.73 21898.11 17796.57 33499.24 16690.28 38195.52 35099.21 20298.86 10299.33 9599.33 8893.11 29299.94 3498.49 9399.94 3999.48 136
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13298.62 10398.32 22699.22 17195.58 26697.51 23999.45 11197.16 24199.45 7399.24 10496.12 20899.85 11899.60 2599.88 7299.55 103
ITE_SJBPF98.87 15099.22 17198.48 10399.35 14697.50 20198.28 24198.60 24797.64 12099.35 36293.86 32599.27 26398.79 298
h-mvs3397.77 21697.33 24099.10 11399.21 17397.84 16398.35 13698.57 30299.11 7298.58 21499.02 15288.65 33599.96 1198.11 11396.34 38699.49 126
v14419298.54 13498.57 11198.45 21599.21 17395.98 25597.63 22299.36 14197.15 24399.32 10199.18 11695.84 22699.84 13599.50 3299.91 6199.54 107
APDe-MVScopyleft98.99 6198.79 7999.60 1199.21 17399.15 4798.87 8099.48 9797.57 19299.35 9299.24 10497.83 10499.89 7397.88 13199.70 16099.75 42
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7098.81 7899.28 8499.21 17398.45 10598.46 12599.33 15799.63 1799.48 6799.15 12697.23 15299.75 23097.17 16899.66 17999.63 65
SR-MVS-dyc-post98.81 8598.55 11399.57 1699.20 17799.38 898.48 12399.30 17398.64 11198.95 15598.96 17597.49 13899.86 10696.56 22699.39 24499.45 149
RE-MVS-def98.58 11099.20 17799.38 898.48 12399.30 17398.64 11198.95 15598.96 17597.75 11196.56 22699.39 24499.45 149
v192192098.54 13498.60 10898.38 22299.20 17795.76 26397.56 23299.36 14197.23 23599.38 8699.17 12096.02 21299.84 13599.57 2799.90 6799.54 107
thisisatest053095.27 32394.45 33297.74 27399.19 18094.37 30497.86 19390.20 40397.17 24098.22 24397.65 32273.53 39799.90 6396.90 19599.35 25098.95 269
Anonymous2024052998.93 7098.87 7099.12 10999.19 18098.22 12499.01 6598.99 25199.25 5799.54 5599.37 7897.04 16199.80 18597.89 12899.52 22399.35 192
APD-MVS_3200maxsize98.84 8198.61 10799.53 3399.19 18099.27 2298.49 12099.33 15798.64 11199.03 14498.98 17097.89 10199.85 11896.54 23099.42 24199.46 145
HQP_MVS97.99 19897.67 21598.93 14399.19 18097.65 18197.77 20399.27 18798.20 14697.79 27897.98 30394.90 25499.70 25294.42 30799.51 22599.45 149
plane_prior799.19 18097.87 160
ab-mvs98.41 14998.36 14598.59 19399.19 18097.23 20599.32 2298.81 28097.66 18398.62 20699.40 7796.82 17599.80 18595.88 26399.51 22598.75 303
F-COLMAP97.30 24896.68 27599.14 10799.19 18098.39 10797.27 25999.30 17392.93 35896.62 34298.00 30195.73 22899.68 26592.62 35398.46 33499.35 192
SR-MVS98.71 9898.43 13399.57 1699.18 18799.35 1298.36 13599.29 18198.29 13698.88 17298.85 20297.53 13199.87 9996.14 25499.31 25699.48 136
UniMVSNet_NR-MVSNet98.86 8098.68 9499.40 6199.17 18898.74 8197.68 21499.40 12899.14 7199.06 13498.59 24896.71 18599.93 3998.57 8899.77 12599.53 114
LF4IMVS97.90 20097.69 21498.52 20799.17 18897.66 18097.19 26699.47 10596.31 28097.85 27398.20 28796.71 18599.52 32994.62 29999.72 15098.38 338
SMA-MVScopyleft98.40 15198.03 18599.51 4299.16 19099.21 2898.05 16599.22 20194.16 34098.98 14899.10 13697.52 13399.79 20096.45 23699.64 18299.53 114
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8398.63 10199.39 6299.16 19098.74 8197.54 23499.25 19398.84 10599.06 13498.76 21896.76 18199.93 3998.57 8899.77 12599.50 122
NR-MVSNet98.95 6898.82 7699.36 6399.16 19098.72 8699.22 4199.20 20499.10 7999.72 3198.76 21896.38 19999.86 10698.00 12399.82 9599.50 122
MVS_111021_LR98.30 16598.12 17698.83 15499.16 19098.03 14596.09 32499.30 17397.58 19198.10 25498.24 28398.25 7199.34 36396.69 21599.65 18099.12 244
DSMNet-mixed97.42 24097.60 22396.87 32599.15 19491.46 36398.54 11099.12 22692.87 36097.58 29199.63 3296.21 20599.90 6395.74 27299.54 21699.27 213
D2MVS97.84 21397.84 20497.83 26299.14 19594.74 29396.94 27698.88 26495.84 29898.89 16998.96 17594.40 27099.69 25697.55 14799.95 3199.05 250
pmmvs597.64 22597.49 22998.08 24899.14 19595.12 28496.70 29199.05 23793.77 34798.62 20698.83 20593.23 28999.75 23098.33 10299.76 13699.36 188
CS-MVS-test99.13 4999.09 5599.26 8999.13 19798.97 6699.31 2699.88 1199.44 3798.16 24798.51 25698.64 4499.93 3998.91 6499.85 7998.88 282
VDD-MVS98.56 12898.39 14099.07 11999.13 19798.07 14098.59 10497.01 34899.59 2399.11 12799.27 9794.82 25899.79 20098.34 10099.63 18599.34 194
save fliter99.11 19997.97 15196.53 29899.02 24598.24 139
APD-MVScopyleft98.10 18497.67 21599.42 5799.11 19998.93 7197.76 20699.28 18494.97 32198.72 19598.77 21697.04 16199.85 11893.79 32799.54 21699.49 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10598.71 8898.62 18799.10 20196.37 24397.23 26098.87 26699.20 6399.19 12098.99 16697.30 14699.85 11898.77 7499.79 11599.65 61
EI-MVSNet98.40 15198.51 11898.04 25399.10 20194.73 29497.20 26498.87 26698.97 9399.06 13499.02 15296.00 21499.80 18598.58 8599.82 9599.60 73
CVMVSNet96.25 29997.21 24593.38 38599.10 20180.56 41297.20 26498.19 32096.94 25199.00 14699.02 15289.50 32899.80 18596.36 24199.59 19999.78 32
EI-MVSNet-Vis-set98.68 11098.70 9198.63 18699.09 20496.40 24297.23 26098.86 27199.20 6399.18 12498.97 17297.29 14899.85 11898.72 7799.78 12099.64 62
HPM-MVS++copyleft98.10 18497.64 22099.48 5099.09 20499.13 5597.52 23798.75 29097.46 20996.90 33097.83 31396.01 21399.84 13595.82 27099.35 25099.46 145
DP-MVS Recon97.33 24696.92 25898.57 19799.09 20497.99 14796.79 28499.35 14693.18 35497.71 28298.07 29895.00 25399.31 36793.97 32099.13 28598.42 335
MVS_111021_HR98.25 17398.08 18198.75 17399.09 20497.46 19295.97 32899.27 18797.60 19097.99 26298.25 28298.15 8699.38 35896.87 19899.57 20899.42 160
9.1497.78 20699.07 20897.53 23599.32 15995.53 30798.54 22198.70 22797.58 12599.76 22394.32 31299.46 235
PAPM_NR96.82 28096.32 29098.30 23199.07 20896.69 23597.48 24298.76 28795.81 29996.61 34396.47 35894.12 27999.17 38090.82 37997.78 35899.06 249
TAMVS98.24 17498.05 18398.80 15999.07 20897.18 21197.88 18998.81 28096.66 26699.17 12599.21 10994.81 26099.77 21796.96 18899.88 7299.44 153
CLD-MVS97.49 23497.16 24798.48 21299.07 20897.03 21994.71 37199.21 20294.46 33298.06 25797.16 34597.57 12699.48 34094.46 30499.78 12098.95 269
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4999.10 5499.24 9499.06 21299.15 4799.36 1899.88 1199.36 4798.21 24498.46 26498.68 4299.93 3999.03 5899.85 7998.64 315
thres100view90094.19 33893.67 34295.75 35699.06 21291.35 36698.03 16894.24 38698.33 13097.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
thres600view794.45 33393.83 33996.29 34199.06 21291.53 36297.99 17694.24 38698.34 12997.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
plane_prior199.05 215
YYNet197.60 22797.67 21597.39 30299.04 21693.04 34195.27 35798.38 31297.25 22998.92 16598.95 18095.48 24099.73 24096.99 18498.74 31699.41 163
MDA-MVSNet_test_wron97.60 22797.66 21897.41 30199.04 21693.09 33795.27 35798.42 30997.26 22898.88 17298.95 18095.43 24399.73 24097.02 18198.72 31899.41 163
MIMVSNet96.62 28796.25 29497.71 27699.04 21694.66 29799.16 5096.92 35497.23 23597.87 27099.10 13686.11 35099.65 28491.65 36399.21 27398.82 287
PatchMatch-RL97.24 25496.78 26998.61 19099.03 21997.83 16496.36 30799.06 23493.49 35297.36 31197.78 31495.75 22799.49 33793.44 33698.77 31598.52 324
ZD-MVS99.01 22098.84 7599.07 23394.10 34298.05 25998.12 29296.36 20199.86 10692.70 35299.19 277
CDPH-MVS97.26 25196.66 27899.07 11999.00 22198.15 12796.03 32699.01 24891.21 37897.79 27897.85 31296.89 17099.69 25692.75 35099.38 24799.39 173
diffmvspermissive98.22 17598.24 16298.17 24199.00 22195.44 27296.38 30699.58 5497.79 17598.53 22298.50 26096.76 18199.74 23597.95 12799.64 18299.34 194
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15198.19 16799.03 12999.00 22197.65 18196.85 28298.94 25398.57 12098.89 16998.50 26095.60 23299.85 11897.54 14999.85 7999.59 79
plane_prior698.99 22497.70 17994.90 254
xiu_mvs_v1_base_debu97.86 20698.17 16996.92 32298.98 22593.91 32196.45 30199.17 21697.85 17198.41 23297.14 34798.47 5799.92 4998.02 12099.05 29196.92 385
xiu_mvs_v1_base97.86 20698.17 16996.92 32298.98 22593.91 32196.45 30199.17 21697.85 17198.41 23297.14 34798.47 5799.92 4998.02 12099.05 29196.92 385
xiu_mvs_v1_base_debi97.86 20698.17 16996.92 32298.98 22593.91 32196.45 30199.17 21697.85 17198.41 23297.14 34798.47 5799.92 4998.02 12099.05 29196.92 385
MVP-Stereo98.08 18997.92 19698.57 19798.96 22896.79 22997.90 18699.18 21296.41 27698.46 22798.95 18095.93 22299.60 30096.51 23298.98 30399.31 205
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15198.68 9497.54 29098.96 22897.99 14797.88 18999.36 14198.20 14699.63 4899.04 14998.76 3595.33 40896.56 22699.74 14099.31 205
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14698.94 23097.76 17398.76 28787.58 39596.75 33898.10 29494.80 26199.78 21192.73 35199.00 30099.20 227
USDC97.41 24197.40 23397.44 29998.94 23093.67 33095.17 36099.53 8094.03 34498.97 15299.10 13695.29 24599.34 36395.84 26999.73 14399.30 208
tfpn200view994.03 34293.44 34495.78 35598.93 23291.44 36497.60 22694.29 38497.94 16397.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
testdata98.09 24598.93 23295.40 27498.80 28290.08 38697.45 30498.37 27295.26 24699.70 25293.58 33298.95 30699.17 238
thres40094.14 34093.44 34496.24 34498.93 23291.44 36497.60 22694.29 38497.94 16397.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
TAPA-MVS96.21 1196.63 28695.95 29698.65 18198.93 23298.09 13496.93 27899.28 18483.58 40198.13 25197.78 31496.13 20799.40 35493.52 33399.29 26198.45 329
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23696.93 22695.54 34698.78 28585.72 39896.86 33398.11 29394.43 26899.10 29099.23 222
PVSNet_BlendedMVS97.55 23197.53 22697.60 28398.92 23693.77 32896.64 29399.43 12194.49 33097.62 28799.18 11696.82 17599.67 26894.73 29699.93 4399.36 188
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23693.77 32894.71 37199.43 12190.98 38097.62 28797.36 34196.82 17599.67 26894.73 29699.56 21198.98 263
MSDG97.71 22097.52 22798.28 23398.91 23996.82 22894.42 38199.37 13797.65 18498.37 23798.29 28197.40 14299.33 36594.09 31899.22 27198.68 313
Anonymous20240521197.90 20097.50 22899.08 11798.90 24098.25 11898.53 11196.16 36598.87 10199.11 12798.86 19990.40 32299.78 21197.36 15999.31 25699.19 232
原ACMM198.35 22498.90 24096.25 24798.83 27992.48 36496.07 35898.10 29495.39 24499.71 24892.61 35498.99 30199.08 246
GBi-Net98.65 11598.47 12799.17 10198.90 24098.24 11999.20 4499.44 11598.59 11798.95 15599.55 4794.14 27699.86 10697.77 13799.69 16399.41 163
test198.65 11598.47 12799.17 10198.90 24098.24 11999.20 4499.44 11598.59 11798.95 15599.55 4794.14 27699.86 10697.77 13799.69 16399.41 163
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21698.61 10299.13 22598.59 11799.19 12099.28 9594.14 27699.82 16397.97 12599.80 11099.29 210
OMC-MVS97.88 20497.49 22999.04 12898.89 24598.63 8896.94 27699.25 19395.02 31998.53 22298.51 25697.27 14999.47 34393.50 33599.51 22599.01 258
MVSFormer98.26 17198.43 13397.77 26798.88 24693.89 32499.39 1699.56 6899.11 7298.16 24798.13 29093.81 28499.97 499.26 4299.57 20899.43 157
lupinMVS97.06 26696.86 26297.65 27998.88 24693.89 32495.48 35197.97 32693.53 35098.16 24797.58 32693.81 28499.91 5896.77 20699.57 20899.17 238
dmvs_re95.98 30695.39 31597.74 27398.86 24897.45 19398.37 13495.69 37597.95 16296.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
DELS-MVS98.27 16998.20 16598.48 21298.86 24896.70 23495.60 34599.20 20497.73 17998.45 22898.71 22497.50 13599.82 16398.21 10799.59 19998.93 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 20297.98 19097.60 28398.86 24894.35 30596.21 31699.44 11597.45 21199.06 13498.88 19697.99 9799.28 37394.38 31199.58 20499.18 234
LCM-MVSNet-Re98.64 11798.48 12599.11 11198.85 25198.51 10198.49 12099.83 2098.37 12799.69 3799.46 6598.21 7899.92 4994.13 31799.30 25998.91 278
pmmvs497.58 23097.28 24198.51 20898.84 25296.93 22695.40 35598.52 30593.60 34998.61 20898.65 23795.10 25099.60 30096.97 18799.79 11598.99 262
NP-MVS98.84 25297.39 19796.84 350
sss97.21 25696.93 25698.06 25098.83 25495.22 28096.75 28898.48 30794.49 33097.27 31297.90 30992.77 30199.80 18596.57 22299.32 25499.16 241
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25488.57 38692.50 39897.72 33192.69 36296.49 35096.44 35993.72 28799.43 35093.61 33099.28 26298.71 306
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25491.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24795.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVS_030498.10 18497.88 20198.76 16998.82 25796.50 24097.90 18691.35 40099.56 2698.32 23899.13 13096.06 21099.93 3999.84 799.97 1999.85 18
ambc98.24 23798.82 25795.97 25698.62 10199.00 25099.27 10699.21 10996.99 16699.50 33496.55 22999.50 23299.26 216
旧先验198.82 25797.45 19398.76 28798.34 27695.50 23999.01 29999.23 222
test_vis1_rt97.75 21797.72 21297.83 26298.81 26096.35 24497.30 25599.69 3694.61 32897.87 27098.05 29996.26 20498.32 39998.74 7598.18 34398.82 287
WTY-MVS96.67 28496.27 29397.87 26098.81 26094.61 29996.77 28697.92 32894.94 32297.12 31597.74 31791.11 31799.82 16393.89 32398.15 34799.18 234
3Dnovator+97.89 398.69 10598.51 11899.24 9498.81 26098.40 10699.02 6499.19 20898.99 9198.07 25699.28 9597.11 15999.84 13596.84 20199.32 25499.47 143
QAPM97.31 24796.81 26898.82 15598.80 26397.49 19099.06 6199.19 20890.22 38497.69 28499.16 12296.91 16999.90 6390.89 37899.41 24299.07 248
VNet98.42 14898.30 15398.79 16298.79 26497.29 20198.23 14398.66 29699.31 5198.85 17798.80 21194.80 26199.78 21198.13 11299.13 28599.31 205
DPM-MVS96.32 29695.59 30698.51 20898.76 26597.21 20894.54 38098.26 31591.94 36996.37 35197.25 34393.06 29599.43 35091.42 36898.74 31698.89 279
3Dnovator98.27 298.81 8598.73 8499.05 12698.76 26597.81 17099.25 3999.30 17398.57 12098.55 21999.33 8897.95 9999.90 6397.16 16999.67 17499.44 153
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30499.06 23490.94 38195.59 36497.38 33994.41 26999.59 30490.93 37698.04 35699.05 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 29098.26 31596.72 26398.44 22997.37 34095.20 24799.47 34391.89 35997.43 36798.44 331
hse-mvs297.46 23697.07 25198.64 18298.73 26997.33 19997.45 24597.64 33699.11 7298.58 21497.98 30388.65 33599.79 20098.11 11397.39 36998.81 291
CDS-MVSNet97.69 22197.35 23898.69 17998.73 26997.02 22096.92 28098.75 29095.89 29798.59 21298.67 23292.08 31099.74 23596.72 21299.81 10099.32 201
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19597.74 20998.80 15998.72 27198.09 13498.05 16599.60 5197.39 21596.63 34195.55 37497.68 11499.80 18596.73 21199.27 26398.52 324
LFMVS97.20 25796.72 27298.64 18298.72 27196.95 22498.93 7594.14 38899.74 698.78 18699.01 16184.45 36299.73 24097.44 15599.27 26399.25 217
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33298.20 31892.62 36398.55 21998.54 25294.88 25799.52 32993.96 32199.44 24098.59 320
Fast-Effi-MVS+97.67 22397.38 23598.57 19798.71 27497.43 19597.23 26099.45 11194.82 32596.13 35596.51 35598.52 5699.91 5896.19 25098.83 31298.37 340
TEST998.71 27498.08 13895.96 33099.03 24291.40 37595.85 36197.53 32996.52 19299.76 223
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 33099.03 24291.64 37095.85 36197.53 32996.47 19499.76 22393.67 32999.16 28099.36 188
TSAR-MVS + GP.98.18 18097.98 19098.77 16898.71 27497.88 15996.32 31098.66 29696.33 27899.23 11798.51 25697.48 13999.40 35497.16 16999.46 23599.02 257
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22699.33 8888.41 33899.65 28496.13 25698.92 30998.07 354
AUN-MVS96.24 30095.45 31198.60 19298.70 27897.22 20797.38 24897.65 33495.95 29595.53 37197.96 30782.11 37799.79 20096.31 24397.44 36698.80 297
our_test_397.39 24297.73 21196.34 33998.70 27889.78 38394.61 37798.97 25296.50 27199.04 14198.85 20295.98 21999.84 13597.26 16499.67 17499.41 163
ppachtmachnet_test97.50 23297.74 20996.78 33198.70 27891.23 37294.55 37999.05 23796.36 27799.21 11898.79 21396.39 19799.78 21196.74 20999.82 9599.34 194
PCF-MVS92.86 1894.36 33493.00 35198.42 21898.70 27897.56 18793.16 39699.11 22879.59 40597.55 29497.43 33692.19 30799.73 24079.85 40599.45 23797.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf05_1198.62 12198.57 11198.76 16998.69 28397.65 18198.90 7799.52 8398.15 15398.72 19599.20 11195.57 23499.84 13598.58 8599.83 9198.81 291
ETV-MVS98.03 19197.86 20398.56 20198.69 28398.07 14097.51 23999.50 8898.10 15597.50 29995.51 37598.41 6299.88 8296.27 24699.24 26897.71 373
test_prior98.95 14098.69 28397.95 15599.03 24299.59 30499.30 208
agg_prior98.68 28697.99 14799.01 24895.59 36499.77 217
test_898.67 28798.01 14695.91 33599.02 24591.64 37095.79 36397.50 33296.47 19499.76 223
HQP-NCC98.67 28796.29 31296.05 28995.55 367
ACMP_Plane98.67 28796.29 31296.05 28995.55 367
CNVR-MVS98.17 18297.87 20299.07 11998.67 28798.24 11997.01 27298.93 25597.25 22997.62 28798.34 27697.27 14999.57 31296.42 23799.33 25399.39 173
HQP-MVS97.00 27296.49 28698.55 20298.67 28796.79 22996.29 31299.04 24096.05 28995.55 36796.84 35093.84 28299.54 32392.82 34799.26 26699.32 201
MM98.22 17597.99 18998.91 14698.66 29296.97 22197.89 18894.44 38299.54 2798.95 15599.14 12993.50 28899.92 4999.80 1299.96 2499.85 18
test_fmvs197.72 21997.94 19497.07 31698.66 29292.39 35297.68 21499.81 2395.20 31799.54 5599.44 7091.56 31499.41 35399.78 1599.77 12599.40 172
thres20093.72 34793.14 34995.46 36498.66 29291.29 36896.61 29594.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
wuyk23d96.06 30297.62 22291.38 38898.65 29598.57 9598.85 8396.95 35296.86 25699.90 1299.16 12299.18 1798.40 39889.23 38599.77 12577.18 408
NCCC97.86 20697.47 23299.05 12698.61 29698.07 14096.98 27498.90 26197.63 18597.04 32097.93 30895.99 21899.66 27995.31 28598.82 31499.43 157
DeepC-MVS_fast96.85 698.30 16598.15 17398.75 17398.61 29697.23 20597.76 20699.09 23197.31 22398.75 19298.66 23597.56 12799.64 28796.10 25799.55 21499.39 173
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 34992.09 35897.75 27198.60 29894.40 30397.32 25395.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 246
thisisatest051594.12 34193.16 34896.97 32098.60 29892.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18594.52 30299.12 28898.20 347
GA-MVS95.86 30995.32 31897.49 29598.60 29894.15 31193.83 39197.93 32795.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 258
dmvs_testset92.94 35892.21 35795.13 36798.59 30190.99 37497.65 22092.09 39796.95 25094.00 39093.55 39892.34 30696.97 40572.20 40892.52 40397.43 381
OPU-MVS98.82 15598.59 30198.30 11598.10 15898.52 25598.18 8098.75 39594.62 29999.48 23499.41 163
MSLP-MVS++98.02 19298.14 17597.64 28198.58 30395.19 28197.48 24299.23 20097.47 20497.90 26798.62 24497.04 16198.81 39497.55 14799.41 24298.94 273
test1298.93 14398.58 30397.83 16498.66 29696.53 34595.51 23899.69 25699.13 28599.27 213
CL-MVSNet_self_test97.44 23997.22 24498.08 24898.57 30595.78 26294.30 38498.79 28396.58 26998.60 21098.19 28894.74 26499.64 28796.41 23898.84 31198.82 287
PS-MVSNAJ97.08 26597.39 23496.16 35098.56 30692.46 35095.24 35998.85 27497.25 22997.49 30095.99 36598.07 8899.90 6396.37 23998.67 32696.12 397
CNLPA97.17 26096.71 27398.55 20298.56 30698.05 14496.33 30998.93 25596.91 25397.06 31997.39 33894.38 27199.45 34791.66 36299.18 27998.14 350
xiu_mvs_v2_base97.16 26197.49 22996.17 34898.54 30892.46 35095.45 35298.84 27597.25 22997.48 30196.49 35698.31 7099.90 6396.34 24298.68 32596.15 396
alignmvs97.35 24496.88 26198.78 16598.54 30898.09 13497.71 21197.69 33399.20 6397.59 29095.90 36888.12 34099.55 31898.18 10998.96 30598.70 309
FE-MVS95.66 31594.95 32797.77 26798.53 31095.28 27799.40 1596.09 36793.11 35697.96 26499.26 9979.10 38799.77 21792.40 35698.71 32098.27 344
Effi-MVS+98.02 19297.82 20598.62 18798.53 31097.19 21097.33 25299.68 4197.30 22496.68 33997.46 33598.56 5499.80 18596.63 21898.20 34298.86 284
baseline195.96 30795.44 31297.52 29298.51 31293.99 31898.39 13296.09 36798.21 14298.40 23697.76 31686.88 34299.63 29095.42 28389.27 40698.95 269
MVS_Test98.18 18098.36 14597.67 27798.48 31394.73 29498.18 14899.02 24597.69 18198.04 26099.11 13397.22 15399.56 31598.57 8898.90 31098.71 306
MGCFI-Net98.34 15898.28 15598.51 20898.47 31497.59 18698.96 7199.48 9799.18 6997.40 30795.50 37698.66 4399.50 33498.18 10998.71 32098.44 331
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31494.05 31296.67 29297.36 33996.70 26597.87 27097.98 30395.14 24999.44 34990.47 38098.58 33299.25 217
sasdasda98.34 15898.26 15998.58 19498.46 31697.82 16798.96 7199.46 10799.19 6797.46 30295.46 37998.59 5099.46 34598.08 11698.71 32098.46 326
canonicalmvs98.34 15898.26 15998.58 19498.46 31697.82 16798.96 7199.46 10799.19 6797.46 30295.46 37998.59 5099.46 34598.08 11698.71 32098.46 326
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31675.36 41396.29 31289.13 40595.25 31595.38 37399.75 1192.88 29899.19 37994.07 31999.39 24496.72 390
PHI-MVS98.29 16897.95 19299.34 7298.44 31999.16 4398.12 15599.38 13296.01 29298.06 25798.43 26697.80 10899.67 26895.69 27599.58 20499.20 227
DVP-MVS++98.90 7498.70 9199.51 4298.43 32099.15 4799.43 1099.32 15998.17 14999.26 11099.02 15298.18 8099.88 8297.07 17899.45 23799.49 126
MSC_two_6792asdad99.32 7998.43 32098.37 11098.86 27199.89 7397.14 17299.60 19599.71 45
No_MVS99.32 7998.43 32098.37 11098.86 27199.89 7397.14 17299.60 19599.71 45
Fast-Effi-MVS+-dtu98.27 16998.09 17898.81 15798.43 32098.11 13197.61 22599.50 8898.64 11197.39 30997.52 33198.12 8799.95 2296.90 19598.71 32098.38 338
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32497.15 21497.37 24998.62 30083.86 40098.65 20298.37 27294.29 27499.68 26588.41 38698.62 33096.60 391
DeepPCF-MVS96.93 598.32 16298.01 18699.23 9698.39 32598.97 6695.03 36499.18 21296.88 25499.33 9598.78 21498.16 8499.28 37396.74 20999.62 18899.44 153
Patchmatch-test96.55 28896.34 28997.17 31198.35 32693.06 33898.40 13197.79 32997.33 22098.41 23298.67 23283.68 36999.69 25695.16 28899.31 25698.77 300
AdaColmapbinary97.14 26296.71 27398.46 21498.34 32797.80 17196.95 27598.93 25595.58 30596.92 32597.66 32195.87 22499.53 32590.97 37599.14 28398.04 355
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22698.32 32897.16 21398.86 8299.37 13789.48 38896.29 35399.15 12696.56 19099.90 6392.90 34499.20 27497.89 361
bld_raw_dy_0_6497.85 21197.71 21398.26 23498.31 32996.74 23395.53 34799.31 16497.79 17597.85 27397.56 32895.70 22999.82 16397.52 15299.84 8398.22 345
MG-MVS96.77 28196.61 28097.26 30798.31 32993.06 33895.93 33398.12 32396.45 27597.92 26598.73 22193.77 28699.39 35691.19 37399.04 29499.33 199
test_yl96.69 28296.29 29197.90 25798.28 33195.24 27897.29 25697.36 33998.21 14298.17 24597.86 31086.27 34699.55 31894.87 29398.32 33698.89 279
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33195.24 27897.29 25697.36 33998.21 14298.17 24597.86 31086.27 34699.55 31894.87 29398.32 33698.89 279
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33388.27 38993.25 39598.88 26493.53 35094.65 38297.15 34686.17 34899.93 3997.41 15799.93 4398.73 305
SCA96.41 29596.66 27895.67 35798.24 33488.35 38895.85 33896.88 35596.11 28697.67 28598.67 23293.10 29399.85 11894.16 31399.22 27198.81 291
DeepMVS_CXcopyleft93.44 38498.24 33494.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
MS-PatchMatch97.68 22297.75 20897.45 29898.23 33693.78 32797.29 25698.84 27596.10 28798.64 20398.65 23796.04 21199.36 35996.84 20199.14 28399.20 227
BH-w/o95.13 32594.89 32995.86 35298.20 33791.31 36795.65 34397.37 33893.64 34896.52 34695.70 37293.04 29699.02 38588.10 38895.82 39397.24 383
mvs_anonymous97.83 21598.16 17296.87 32598.18 33891.89 35997.31 25498.90 26197.37 21798.83 18099.46 6596.28 20399.79 20098.90 6598.16 34698.95 269
miper_lstm_enhance97.18 25997.16 24797.25 30898.16 33992.85 34395.15 36299.31 16497.25 22998.74 19498.78 21490.07 32399.78 21197.19 16799.80 11099.11 245
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34094.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 17896.91 19097.11 37898.46 326
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34091.74 36097.92 18397.76 33090.23 38296.51 34798.91 18585.61 35399.85 11892.88 34596.90 37998.69 310
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34090.10 38297.92 18397.32 34290.23 38296.51 34798.91 18585.61 35399.74 23592.88 34596.90 37998.69 310
c3_l97.36 24397.37 23697.31 30398.09 34393.25 33695.01 36599.16 21997.05 24598.77 18998.72 22392.88 29899.64 28796.93 18999.76 13699.05 250
FMVSNet397.50 23297.24 24398.29 23298.08 34495.83 26097.86 19398.91 26097.89 16898.95 15598.95 18087.06 34199.81 17897.77 13799.69 16399.23 222
PAPM91.88 37190.34 37496.51 33598.06 34592.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
Effi-MVS+-dtu98.26 17197.90 19899.35 6998.02 34699.49 598.02 17099.16 21998.29 13697.64 28697.99 30296.44 19699.95 2296.66 21798.93 30898.60 318
mamv498.09 18798.01 18698.31 22998.02 34696.58 23997.53 23599.41 12597.57 19297.89 26898.96 17595.45 24299.80 18597.48 15499.78 12098.57 321
eth_miper_zixun_eth97.23 25597.25 24297.17 31198.00 34892.77 34594.71 37199.18 21297.27 22798.56 21798.74 22091.89 31199.69 25697.06 18099.81 10099.05 250
MVSMamba_pp98.01 19497.90 19898.32 22697.95 34996.59 23697.57 23199.38 13296.07 28897.99 26299.01 16195.57 23499.80 18597.76 14199.82 9598.57 321
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8696.94 35392.28 36795.17 37598.57 25089.90 32599.75 23091.20 37297.33 37498.10 352
UGNet98.53 13698.45 13098.79 16297.94 35196.96 22399.08 5798.54 30399.10 7996.82 33599.47 6496.55 19199.84 13598.56 9199.94 3999.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29395.70 30198.79 16297.92 35299.12 5798.28 13998.60 30192.16 36895.54 37096.17 36394.77 26399.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27796.55 28497.79 26597.91 35394.21 30897.56 23298.87 26697.49 20399.06 13499.05 14780.72 37899.80 18598.44 9599.82 9599.37 182
API-MVS97.04 26896.91 26097.42 30097.88 35498.23 12398.18 14898.50 30697.57 19297.39 30996.75 35296.77 17999.15 38290.16 38199.02 29894.88 402
miper_ehance_all_eth97.06 26697.03 25397.16 31397.83 35593.06 33894.66 37499.09 23195.99 29398.69 19798.45 26592.73 30299.61 29996.79 20399.03 29598.82 287
cl____97.02 26996.83 26597.58 28597.82 35694.04 31494.66 37499.16 21997.04 24698.63 20498.71 22488.68 33499.69 25697.00 18299.81 10099.00 261
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35694.03 31594.66 37499.16 21997.04 24698.63 20498.71 22488.69 33299.69 25697.00 18299.81 10099.01 258
CANet97.87 20597.76 20798.19 24097.75 35895.51 26996.76 28799.05 23797.74 17896.93 32498.21 28695.59 23399.89 7397.86 13399.93 4399.19 232
mvsany_test197.60 22797.54 22597.77 26797.72 35995.35 27595.36 35697.13 34694.13 34199.71 3399.33 8897.93 10099.30 36997.60 14698.94 30798.67 314
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35984.34 40690.24 40297.42 33790.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
CR-MVSNet96.28 29895.95 29697.28 30597.71 36194.22 30698.11 15698.92 25892.31 36696.91 32799.37 7885.44 35699.81 17897.39 15897.36 37297.81 366
RPMNet97.02 26996.93 25697.30 30497.71 36194.22 30698.11 15699.30 17399.37 4496.91 32799.34 8686.72 34399.87 9997.53 15097.36 37297.81 366
ETVMVS92.60 36191.08 37097.18 30997.70 36393.65 33296.54 29695.70 37396.51 27094.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 336
pmmvs395.03 32794.40 33396.93 32197.70 36392.53 34995.08 36397.71 33288.57 39297.71 28298.08 29779.39 38599.82 16396.19 25099.11 28998.43 333
baseline293.73 34692.83 35296.42 33897.70 36391.28 36996.84 28389.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
tpm94.67 33194.34 33595.66 35897.68 36688.42 38797.88 18994.90 37894.46 33296.03 36098.56 25178.66 38899.79 20095.88 26395.01 39798.78 299
CANet_DTU97.26 25197.06 25297.84 26197.57 36794.65 29896.19 31898.79 28397.23 23595.14 37698.24 28393.22 29099.84 13597.34 16099.84 8399.04 254
testing1193.08 35692.02 36096.26 34397.56 36890.83 37796.32 31095.70 37396.47 27492.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 340
tpm293.09 35592.58 35494.62 37197.56 36886.53 39597.66 21895.79 37286.15 39794.07 38998.23 28575.95 39399.53 32590.91 37796.86 38297.81 366
testing9193.32 35292.27 35596.47 33797.54 37091.25 37096.17 32196.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 323
TR-MVS95.55 31895.12 32396.86 32897.54 37093.94 31996.49 30096.53 36294.36 33797.03 32296.61 35494.26 27599.16 38186.91 39396.31 38797.47 380
testing9993.04 35791.98 36396.23 34597.53 37290.70 37996.35 30895.94 37096.87 25593.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 336
131495.74 31295.60 30596.17 34897.53 37292.75 34698.07 16298.31 31491.22 37794.25 38596.68 35395.53 23699.03 38491.64 36497.18 37696.74 389
CostFormer93.97 34393.78 34094.51 37297.53 37285.83 39897.98 17795.96 36989.29 39094.99 37898.63 24278.63 38999.62 29394.54 30196.50 38498.09 353
FMVSNet596.01 30495.20 32198.41 21997.53 37296.10 24998.74 8799.50 8897.22 23898.03 26199.04 14969.80 39899.88 8297.27 16399.71 15599.25 217
PMMVS96.51 28995.98 29598.09 24597.53 37295.84 25994.92 36798.84 27591.58 37296.05 35995.58 37395.68 23099.66 27995.59 27998.09 35098.76 302
PAPR95.29 32294.47 33197.75 27197.50 37795.14 28394.89 36898.71 29491.39 37695.35 37495.48 37894.57 26699.14 38384.95 39697.37 37098.97 266
testing22291.96 36990.37 37396.72 33397.47 37892.59 34796.11 32394.76 37996.83 25792.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
PatchT96.65 28596.35 28897.54 29097.40 37995.32 27697.98 17796.64 35999.33 4996.89 33199.42 7284.32 36499.81 17897.69 14597.49 36397.48 379
tpm cat193.29 35393.13 35093.75 38097.39 38084.74 40197.39 24797.65 33483.39 40294.16 38698.41 26782.86 37399.39 35691.56 36695.35 39697.14 384
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38187.32 39397.65 22096.65 35895.30 31497.07 31898.69 22884.77 35999.75 23094.97 29198.64 32798.83 286
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 24496.97 25598.50 21197.31 38296.47 24198.18 14898.92 25898.95 9698.78 18699.37 7885.44 35699.85 11895.96 26199.83 9199.17 238
LS3D98.63 11998.38 14299.36 6397.25 38399.38 899.12 5699.32 15999.21 6198.44 22998.88 19697.31 14599.80 18596.58 22099.34 25298.92 275
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38491.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7393.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 36491.76 36794.21 37597.16 38584.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 343
tpmrst95.07 32695.46 31093.91 37897.11 38684.36 40597.62 22396.96 35194.98 32096.35 35298.80 21185.46 35599.59 30495.60 27896.23 38897.79 369
Syy-MVS96.04 30395.56 30897.49 29597.10 38794.48 30196.18 31996.58 36095.65 30294.77 37992.29 40591.27 31699.36 35998.17 11198.05 35498.63 316
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38790.90 37596.18 31996.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 316
MDTV_nov1_ep1395.22 32097.06 38983.20 40797.74 20896.16 36594.37 33696.99 32398.83 20583.95 36799.53 32593.90 32297.95 357
MVS93.19 35492.09 35896.50 33696.91 39094.03 31598.07 16298.06 32568.01 40794.56 38496.48 35795.96 22199.30 36983.84 39896.89 38196.17 394
E-PMN94.17 33994.37 33493.58 38296.86 39185.71 39990.11 40497.07 34798.17 14997.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
JIA-IIPM95.52 31995.03 32497.00 31796.85 39294.03 31596.93 27895.82 37199.20 6394.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
EMVS93.83 34594.02 33793.23 38696.83 39384.96 40089.77 40596.32 36497.92 16597.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
cl2295.79 31195.39 31596.98 31996.77 39492.79 34494.40 38298.53 30494.59 32997.89 26898.17 28982.82 37499.24 37596.37 23999.03 29598.92 275
WB-MVSnew95.73 31395.57 30796.23 34596.70 39590.70 37996.07 32593.86 38995.60 30497.04 32095.45 38296.00 21499.55 31891.04 37498.31 33898.43 333
dp93.47 35093.59 34393.13 38796.64 39681.62 41197.66 21896.42 36392.80 36196.11 35698.64 24078.55 39199.59 30493.31 33892.18 40598.16 349
test-LLR93.90 34493.85 33894.04 37696.53 39784.62 40394.05 38892.39 39596.17 28394.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
test-mter92.33 36691.76 36794.04 37696.53 39784.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39982.80 40894.05 38891.52 39994.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26391.14 37998.30 23997.35 34290.58 32099.58 31096.31 24399.03 29598.60 318
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16096.83 35695.46 30995.51 37298.69 22885.91 35199.53 32594.16 31396.23 38897.58 377
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27199.12 22688.90 39197.83 27598.86 19989.51 32798.90 39291.92 35899.51 22598.92 275
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28397.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 340
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15385.01 41094.69 32796.92 32598.64 24078.47 39299.31 36795.04 28996.46 38598.20 347
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19285.34 39995.08 37794.96 38892.96 29798.53 39794.41 31098.59 33197.56 378
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 591.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28595.69 37597.35 21989.14 40698.09 29688.15 33999.49 33794.95 29299.30 25998.98 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32195.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18394.65 38098.97 9392.98 39698.85 20289.12 33099.87 9995.99 25999.68 16899.39 173
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31131.08 41080.89 41097.71 31884.85 35897.37 40391.51 36780.03 40798.75 303
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2290.00 4140.00 41597.58 32699.21 160.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.90 37591.37 369
PC_three_145293.27 35399.40 8298.54 25298.22 7697.00 40495.17 28799.45 23799.49 126
test_241102_TWO99.30 17398.03 15799.26 11099.02 15297.51 13499.88 8296.91 19099.60 19599.66 57
test_0728_THIRD98.17 14999.08 13299.02 15297.89 10199.88 8297.07 17899.71 15599.70 50
GSMVS98.81 291
sam_mvs184.74 36098.81 291
sam_mvs84.29 366
MTGPAbinary99.20 204
test_post197.59 22820.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
patchmatchnet-post98.77 21684.37 36399.85 118
MTMP97.93 18191.91 398
test9_res93.28 33999.15 28299.38 180
agg_prior292.50 35599.16 28099.37 182
test_prior497.97 15195.86 336
test_prior295.74 34196.48 27396.11 35697.63 32495.92 22394.16 31399.20 274
旧先验295.76 34088.56 39397.52 29799.66 27994.48 303
新几何295.93 333
无先验95.74 34198.74 29289.38 38999.73 24092.38 35799.22 226
原ACMM295.53 347
testdata299.79 20092.80 349
segment_acmp97.02 164
testdata195.44 35396.32 279
plane_prior599.27 18799.70 25294.42 30799.51 22599.45 149
plane_prior497.98 303
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20398.20 146
plane_prior97.65 18197.07 27096.72 26399.36 248
n20.00 420
nn0.00 420
door-mid99.57 61
test1198.87 266
door99.41 125
HQP5-MVS96.79 229
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 201
HQP3-MVS99.04 24099.26 266
HQP2-MVS93.84 282
MDTV_nov1_ep13_2view74.92 41497.69 21390.06 38797.75 28185.78 35293.52 33398.69 310
ACMMP++_ref99.77 125
ACMMP++99.68 168
Test By Simon96.52 192