This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 24
Gipumacopyleft99.03 6599.16 5098.64 18799.94 298.51 10499.32 2399.75 3699.58 2998.60 21999.62 3798.22 8299.51 34497.70 15199.73 14797.89 374
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2599.31 3499.53 3799.91 398.98 6999.63 799.58 6199.44 4199.78 2999.76 1296.39 20599.92 5399.44 3999.92 5699.68 58
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2199.83 499.50 899.87 11099.36 4199.92 5699.64 68
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5199.48 3499.92 899.71 1998.07 9599.96 1299.53 33100.00 199.93 11
testf199.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
APD_test299.25 3699.16 5099.51 4699.89 699.63 498.71 9999.69 4298.90 10899.43 8299.35 9198.86 2899.67 27797.81 14299.81 10199.24 231
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 44100.00 199.82 29
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4298.93 10699.65 4899.72 1898.93 2699.95 2499.11 57100.00 199.82 29
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5799.66 1799.68 4299.66 2998.44 6399.95 2499.73 2099.96 2599.75 48
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3899.27 6099.90 1299.74 1599.68 499.97 599.55 3299.99 599.88 19
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3999.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5099.09 8899.89 1599.68 2299.53 799.97 599.50 3699.99 599.87 20
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7599.11 7899.70 3899.73 1799.00 2299.97 599.26 4899.98 1299.89 16
MIMVSNet199.38 2499.32 3299.55 2799.86 1499.19 4199.41 1499.59 5999.59 2799.71 3699.57 4697.12 16599.90 6899.21 5399.87 7899.54 115
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 2999.67 2799.48 999.81 18999.30 4599.97 2099.77 39
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6199.90 399.86 1999.78 1099.58 699.95 2499.00 6699.95 3299.78 37
SixPastTwentyTwo98.75 10298.62 11299.16 10799.83 1897.96 15799.28 3798.20 32899.37 4899.70 3899.65 3392.65 30899.93 4499.04 6399.84 8799.60 81
Baseline_NR-MVSNet98.98 7198.86 8199.36 6699.82 1998.55 9997.47 25599.57 6899.37 4899.21 12699.61 4096.76 18999.83 16598.06 12699.83 9499.71 51
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5399.30 5799.65 4899.60 4299.16 2099.82 17599.07 6099.83 9499.56 104
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6899.39 4699.75 3399.62 3799.17 1899.83 16599.06 6199.62 19599.66 62
K. test v398.00 19997.66 22399.03 13299.79 2297.56 18999.19 4992.47 40899.62 2499.52 6599.66 2989.61 33499.96 1299.25 5099.81 10199.56 104
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5399.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
APD_test198.83 8998.66 10699.34 7599.78 2399.47 998.42 13699.45 11698.28 15298.98 15699.19 12697.76 11899.58 31996.57 23399.55 22298.97 279
test_vis3_rt99.14 5099.17 4899.07 12299.78 2398.38 11198.92 7999.94 297.80 18999.91 1199.67 2797.15 16498.91 40299.76 1799.56 21899.92 12
EGC-MVSNET85.24 38780.54 39099.34 7599.77 2699.20 3899.08 5899.29 18712.08 42520.84 42699.42 7997.55 13699.85 13097.08 18699.72 15598.96 281
Anonymous2024052198.69 11398.87 7898.16 25099.77 2695.11 29299.08 5899.44 12099.34 5299.33 10299.55 5494.10 28499.94 3799.25 5099.96 2599.42 170
FC-MVSNet-test99.27 3399.25 4399.34 7599.77 2698.37 11399.30 3299.57 6899.61 2699.40 9099.50 6497.12 16599.85 13099.02 6599.94 4099.80 33
test_vis1_n98.31 17198.50 12897.73 28299.76 2994.17 31798.68 10299.91 996.31 29499.79 2899.57 4692.85 30499.42 36399.79 1499.84 8799.60 81
test_fmvs399.12 5699.41 2198.25 24299.76 2995.07 29399.05 6499.94 297.78 19199.82 2399.84 398.56 5499.71 25799.96 199.96 2599.97 4
XXY-MVS99.14 5099.15 5599.10 11699.76 2997.74 17898.85 8799.62 5498.48 13799.37 9599.49 6998.75 3699.86 11898.20 11699.80 11299.71 51
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3899.38 4799.53 6399.61 4098.64 4499.80 19698.24 11399.84 8799.52 126
fmvsm_s_conf0.1_n_a99.17 4599.30 3798.80 16399.75 3396.59 24297.97 19299.86 1698.22 15599.88 1799.71 1998.59 5099.84 14899.73 2099.98 1299.98 3
tt080598.69 11398.62 11298.90 15399.75 3399.30 2199.15 5396.97 36398.86 11198.87 18497.62 33998.63 4698.96 39999.41 4098.29 35198.45 342
test_vis1_n_192098.40 15898.92 7396.81 33899.74 3590.76 38998.15 16099.91 998.33 14399.89 1599.55 5495.07 25599.88 9399.76 1799.93 4599.79 34
FOURS199.73 3699.67 399.43 1299.54 8399.43 4399.26 118
PEN-MVS99.41 2199.34 2999.62 999.73 3699.14 5699.29 3399.54 8399.62 2499.56 5599.42 7998.16 9099.96 1298.78 8099.93 4599.77 39
lessismore_v098.97 14099.73 3697.53 19186.71 42299.37 9599.52 6389.93 33299.92 5398.99 6799.72 15599.44 163
SteuartSystems-ACMMP98.79 9598.54 12399.54 3099.73 3699.16 4798.23 15099.31 17197.92 18098.90 17598.90 19998.00 10199.88 9396.15 26599.72 15599.58 93
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 18998.15 18098.22 24599.73 3695.15 28997.36 26299.68 4794.45 34898.99 15599.27 10896.87 17999.94 3797.13 18399.91 6399.57 98
Vis-MVSNetpermissive99.34 2699.36 2699.27 9099.73 3698.26 12099.17 5099.78 3199.11 7899.27 11499.48 7098.82 3199.95 2498.94 7099.93 4599.59 87
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 10698.74 9098.62 19399.72 4296.08 25898.74 9298.64 30899.74 1099.67 4499.24 11794.57 27099.95 2499.11 5799.24 27699.82 29
test_f98.67 12198.87 7898.05 25999.72 4295.59 27098.51 12399.81 2696.30 29699.78 2999.82 596.14 21598.63 40899.82 899.93 4599.95 9
ACMH96.65 799.25 3699.24 4499.26 9299.72 4298.38 11199.07 6199.55 7998.30 14799.65 4899.45 7699.22 1599.76 23298.44 10499.77 12899.64 68
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4899.33 3098.64 18799.71 4596.10 25397.87 20499.85 1898.56 13399.90 1299.68 2298.69 4199.85 13099.72 2299.98 1299.97 4
PS-CasMVS99.40 2299.33 3099.62 999.71 4599.10 6499.29 3399.53 8699.53 3199.46 7799.41 8398.23 7999.95 2498.89 7499.95 3299.81 32
DTE-MVSNet99.43 1999.35 2799.66 799.71 4599.30 2199.31 2799.51 9099.64 1999.56 5599.46 7298.23 7999.97 598.78 8099.93 4599.72 50
WR-MVS_H99.33 2799.22 4599.65 899.71 4599.24 2999.32 2399.55 7999.46 3899.50 7199.34 9597.30 15499.93 4498.90 7299.93 4599.77 39
HPM-MVS_fast99.01 6698.82 8499.57 2099.71 4599.35 1699.00 6999.50 9297.33 23398.94 17198.86 20998.75 3699.82 17597.53 16199.71 16099.56 104
ACMH+96.62 999.08 6399.00 6699.33 8099.71 4598.83 7998.60 10999.58 6199.11 7899.53 6399.18 13098.81 3299.67 27796.71 22399.77 12899.50 132
PMVScopyleft91.26 2097.86 21297.94 20297.65 28699.71 4597.94 15998.52 11898.68 30498.99 9997.52 30999.35 9197.41 14998.18 41391.59 37899.67 18196.82 402
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 5099.09 5999.29 8699.70 5298.28 11999.13 5599.52 8999.48 3499.24 12399.41 8396.79 18699.82 17598.69 9099.88 7599.76 44
VPNet98.87 8498.83 8399.01 13599.70 5297.62 18798.43 13499.35 15399.47 3799.28 11299.05 16096.72 19299.82 17598.09 12399.36 25699.59 87
fmvsm_s_conf0.1_n_299.20 4399.38 2498.65 18599.69 5496.08 25897.49 25299.90 1199.53 3199.88 1799.64 3498.51 5799.90 6899.83 799.98 1299.97 4
test_cas_vis1_n_192098.33 16898.68 10397.27 31599.69 5492.29 36498.03 17899.85 1897.62 20099.96 499.62 3793.98 28599.74 24499.52 3599.86 8299.79 34
MP-MVS-pluss98.57 13598.23 17099.60 1499.69 5499.35 1697.16 28099.38 14094.87 33898.97 16098.99 17898.01 10099.88 9397.29 17199.70 16799.58 93
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 4099.32 3298.96 14199.68 5797.35 20098.84 8999.48 10199.69 1399.63 5199.68 2299.03 2199.96 1297.97 13399.92 5699.57 98
sd_testset99.28 3299.31 3499.19 10399.68 5798.06 14699.41 1499.30 17999.69 1399.63 5199.68 2299.25 1499.96 1297.25 17499.92 5699.57 98
test_fmvs1_n98.09 19398.28 16297.52 30199.68 5793.47 34398.63 10599.93 595.41 32799.68 4299.64 3491.88 31799.48 35199.82 899.87 7899.62 72
CHOSEN 1792x268897.49 24197.14 25698.54 21199.68 5796.09 25696.50 31299.62 5491.58 38698.84 18798.97 18492.36 31099.88 9396.76 21699.95 3299.67 61
tfpnnormal98.90 8198.90 7598.91 15099.67 6197.82 17099.00 6999.44 12099.45 3999.51 7099.24 11798.20 8599.86 11895.92 27499.69 17099.04 266
MTAPA98.88 8398.64 10999.61 1299.67 6199.36 1598.43 13499.20 21098.83 11598.89 17798.90 19996.98 17599.92 5397.16 17899.70 16799.56 104
test_fmvsmvis_n_192099.26 3599.49 1398.54 21199.66 6396.97 22298.00 18499.85 1899.24 6299.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 319
mvs5depth99.30 2999.59 998.44 22499.65 6495.35 28199.82 399.94 299.83 499.42 8599.94 298.13 9399.96 1299.63 2699.96 25100.00 1
fmvsm_l_conf0.5_n_a99.19 4499.27 4098.94 14499.65 6497.05 21897.80 21299.76 3398.70 11999.78 2999.11 14698.79 3499.95 2499.85 599.96 2599.83 26
WB-MVS98.52 14798.55 12198.43 22599.65 6495.59 27098.52 11898.77 29499.65 1899.52 6599.00 17794.34 27699.93 4498.65 9298.83 32399.76 44
CP-MVSNet99.21 4199.09 5999.56 2599.65 6498.96 7499.13 5599.34 15999.42 4499.33 10299.26 11297.01 17399.94 3798.74 8599.93 4599.79 34
HPM-MVScopyleft98.79 9598.53 12499.59 1899.65 6499.29 2399.16 5199.43 12696.74 27698.61 21798.38 28598.62 4799.87 11096.47 24599.67 18199.59 87
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 13098.36 15299.42 6099.65 6499.42 1198.55 11499.57 6897.72 19498.90 17599.26 11296.12 21799.52 33995.72 28599.71 16099.32 212
fmvsm_l_conf0.5_n99.21 4199.28 3999.02 13499.64 7097.28 20497.82 20999.76 3398.73 11699.82 2399.09 15298.81 3299.95 2499.86 499.96 2599.83 26
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5899.92 899.57 4699.60 599.96 1299.74 1999.98 1299.89 16
TSAR-MVS + MP.98.63 12798.49 13299.06 12899.64 7097.90 16198.51 12398.94 25996.96 26399.24 12398.89 20597.83 11199.81 18996.88 20699.49 24199.48 146
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 9198.72 9499.12 11299.64 7098.54 10297.98 18999.68 4797.62 20099.34 10199.18 13097.54 13799.77 22697.79 14499.74 14499.04 266
KD-MVS_self_test99.25 3699.18 4799.44 5999.63 7499.06 6898.69 10199.54 8399.31 5599.62 5499.53 6097.36 15299.86 11899.24 5299.71 16099.39 183
EU-MVSNet97.66 22998.50 12895.13 38099.63 7485.84 41098.35 14298.21 32798.23 15499.54 5999.46 7295.02 25699.68 27498.24 11399.87 7899.87 20
HyFIR lowres test97.19 26796.60 29198.96 14199.62 7697.28 20495.17 37499.50 9294.21 35399.01 15398.32 29386.61 35299.99 297.10 18599.84 8799.60 81
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25499.80 998.33 7299.91 6299.56 3199.95 3299.97 4
ACMMP_NAP98.75 10298.48 13399.57 2099.58 7799.29 2397.82 20999.25 19996.94 26598.78 19499.12 14598.02 9999.84 14897.13 18399.67 18199.59 87
nrg03099.40 2299.35 2799.54 3099.58 7799.13 5998.98 7299.48 10199.68 1599.46 7799.26 11298.62 4799.73 24999.17 5699.92 5699.76 44
VDDNet98.21 18497.95 20099.01 13599.58 7797.74 17899.01 6797.29 35499.67 1698.97 16099.50 6490.45 32999.80 19697.88 13999.20 28499.48 146
COLMAP_ROBcopyleft96.50 1098.99 6898.85 8299.41 6299.58 7799.10 6498.74 9299.56 7599.09 8899.33 10299.19 12698.40 6599.72 25695.98 27299.76 14099.42 170
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6399.93 699.30 10399.42 1099.96 1299.85 599.99 599.29 221
ZNCC-MVS98.68 11898.40 14599.54 3099.57 8299.21 3298.46 13199.29 18797.28 23998.11 26698.39 28398.00 10199.87 11096.86 20999.64 18999.55 111
MSP-MVS98.40 15898.00 19599.61 1299.57 8299.25 2898.57 11299.35 15397.55 21099.31 11097.71 33294.61 26999.88 9396.14 26699.19 28799.70 56
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 16998.39 14898.13 25199.57 8295.54 27397.78 21499.49 9997.37 23099.19 12897.65 33698.96 2499.49 34896.50 24498.99 31299.34 205
MP-MVScopyleft98.46 15298.09 18599.54 3099.57 8299.22 3198.50 12599.19 21497.61 20397.58 30398.66 24697.40 15099.88 9394.72 31199.60 20299.54 115
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 10698.46 13799.47 5699.57 8298.97 7098.23 15099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10196.60 28199.10 13899.06 15398.71 3999.83 16595.58 29299.78 12299.62 72
IS-MVSNet98.19 18697.90 20699.08 12099.57 8297.97 15499.31 2798.32 32399.01 9898.98 15699.03 16491.59 31999.79 20995.49 29499.80 11299.48 146
dcpmvs_298.78 9799.11 5697.78 27399.56 9093.67 33999.06 6299.86 1699.50 3399.66 4599.26 11297.21 16299.99 298.00 13199.91 6399.68 58
test_040298.76 10198.71 9798.93 14699.56 9098.14 13298.45 13399.34 15999.28 5998.95 16498.91 19698.34 7199.79 20995.63 28999.91 6398.86 298
EPP-MVSNet98.30 17298.04 19199.07 12299.56 9097.83 16799.29 3398.07 33499.03 9698.59 22199.13 14492.16 31399.90 6896.87 20799.68 17599.49 136
ACMMPcopyleft98.75 10298.50 12899.52 4299.56 9099.16 4798.87 8499.37 14497.16 25498.82 19199.01 17497.71 12199.87 11096.29 25799.69 17099.54 115
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5899.20 4698.78 16999.55 9496.59 24297.79 21399.82 2598.21 15699.81 2699.53 6098.46 6199.84 14899.70 2399.97 2099.90 15
fmvsm_s_conf0.5_n99.09 5999.26 4298.61 19699.55 9496.09 25697.74 22199.81 2698.55 13499.85 2099.55 5498.60 4999.84 14899.69 2599.98 1299.89 16
FMVSNet199.17 4599.17 4899.17 10499.55 9498.24 12299.20 4599.44 12099.21 6599.43 8299.55 5497.82 11499.86 11898.42 10699.89 7399.41 173
Vis-MVSNet (Re-imp)97.46 24397.16 25398.34 23599.55 9496.10 25398.94 7798.44 31798.32 14598.16 26098.62 25588.76 33999.73 24993.88 33799.79 11799.18 246
ACMM96.08 1298.91 7998.73 9299.48 5399.55 9499.14 5698.07 17299.37 14497.62 20099.04 14998.96 18798.84 3099.79 20997.43 16599.65 18799.49 136
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 11098.97 7097.89 26699.54 9994.05 32098.55 11499.92 796.78 27499.72 3499.78 1096.60 19799.67 27799.91 299.90 6999.94 10
mPP-MVS98.64 12598.34 15599.54 3099.54 9999.17 4398.63 10599.24 20497.47 21798.09 26898.68 24197.62 13099.89 8096.22 26099.62 19599.57 98
XVG-ACMP-BASELINE98.56 13698.34 15599.22 10099.54 9998.59 9697.71 22499.46 11297.25 24298.98 15698.99 17897.54 13799.84 14895.88 27599.74 14499.23 233
region2R98.69 11398.40 14599.54 3099.53 10299.17 4398.52 11899.31 17197.46 22298.44 23998.51 26997.83 11199.88 9396.46 24699.58 21199.58 93
PGM-MVS98.66 12298.37 15199.55 2799.53 10299.18 4298.23 15099.49 9997.01 26298.69 20598.88 20698.00 10199.89 8095.87 27899.59 20699.58 93
Patchmatch-RL test97.26 26097.02 26197.99 26399.52 10495.53 27496.13 33599.71 3897.47 21799.27 11499.16 13684.30 37399.62 30297.89 13699.77 12898.81 305
ACMMPR98.70 11098.42 14399.54 3099.52 10499.14 5698.52 11899.31 17197.47 21798.56 22698.54 26497.75 11999.88 9396.57 23399.59 20699.58 93
GST-MVS98.61 13198.30 16099.52 4299.51 10699.20 3898.26 14899.25 19997.44 22598.67 20898.39 28397.68 12299.85 13096.00 27099.51 23399.52 126
Anonymous2023120698.21 18498.21 17198.20 24699.51 10695.43 27998.13 16299.32 16696.16 29998.93 17298.82 21896.00 22299.83 16597.32 17099.73 14799.36 199
ACMP95.32 1598.41 15698.09 18599.36 6699.51 10698.79 8297.68 22799.38 14095.76 31498.81 19398.82 21898.36 6799.82 17594.75 30899.77 12899.48 146
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 10098.52 12599.52 4299.50 10999.21 3298.02 18098.84 28397.97 17499.08 14099.02 16597.61 13199.88 9396.99 19399.63 19299.48 146
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16699.88 9396.99 19399.63 19299.68 58
test072699.50 10999.21 3298.17 15899.35 15397.97 17499.26 11899.06 15397.61 131
AllTest98.44 15498.20 17299.16 10799.50 10998.55 9998.25 14999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
TestCases99.16 10799.50 10998.55 9999.58 6196.80 27298.88 18099.06 15397.65 12599.57 32194.45 31899.61 20099.37 192
XVG-OURS98.53 14498.34 15599.11 11499.50 10998.82 8195.97 34199.50 9297.30 23799.05 14798.98 18299.35 1299.32 37795.72 28599.68 17599.18 246
EG-PatchMatch MVS98.99 6899.01 6598.94 14499.50 10997.47 19398.04 17799.59 5998.15 16799.40 9099.36 9098.58 5399.76 23298.78 8099.68 17599.59 87
fmvsm_s_conf0.5_n_299.14 5099.31 3498.63 19199.49 11696.08 25897.38 25999.81 2699.48 3499.84 2199.57 4698.46 6199.89 8099.82 899.97 2099.91 13
SED-MVS98.91 7998.72 9499.49 5199.49 11699.17 4398.10 16899.31 17198.03 17099.66 4599.02 16598.36 6799.88 9396.91 19999.62 19599.41 173
IU-MVS99.49 11699.15 5198.87 27492.97 37199.41 8796.76 21699.62 19599.66 62
test_241102_ONE99.49 11699.17 4399.31 17197.98 17399.66 4598.90 19998.36 6799.48 351
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 14999.81 698.05 9899.96 1298.85 7699.99 599.86 23
HFP-MVS98.71 10698.44 14099.51 4699.49 11699.16 4798.52 11899.31 17197.47 21798.58 22398.50 27397.97 10599.85 13096.57 23399.59 20699.53 123
VPA-MVSNet99.30 2999.30 3799.28 8799.49 11698.36 11699.00 6999.45 11699.63 2199.52 6599.44 7798.25 7799.88 9399.09 5999.84 8799.62 72
XVG-OURS-SEG-HR98.49 14998.28 16299.14 11099.49 11698.83 7996.54 30999.48 10197.32 23599.11 13598.61 25799.33 1399.30 38096.23 25998.38 34799.28 223
114514_t96.50 30095.77 30898.69 18299.48 12497.43 19797.84 20899.55 7981.42 41896.51 36098.58 26195.53 24299.67 27793.41 35099.58 21198.98 276
IterMVS-LS98.55 14098.70 10098.09 25299.48 12494.73 30197.22 27599.39 13898.97 10299.38 9399.31 10296.00 22299.93 4498.58 9599.97 2099.60 81
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6699.16 5098.57 20399.47 12696.31 25098.90 8099.47 10999.03 9699.52 6599.57 4696.93 17699.81 18999.60 2799.98 1299.60 81
XVS98.72 10598.45 13899.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30798.63 25397.50 14399.83 16596.79 21299.53 22899.56 104
X-MVStestdata94.32 34892.59 36699.53 3799.46 12799.21 3298.65 10399.34 15998.62 12497.54 30745.85 42397.50 14399.83 16596.79 21299.53 22899.56 104
test20.0398.78 9798.77 8998.78 16999.46 12797.20 21197.78 21499.24 20499.04 9599.41 8798.90 19997.65 12599.76 23297.70 15199.79 11799.39 183
CSCG98.68 11898.50 12899.20 10199.45 13098.63 9198.56 11399.57 6897.87 18498.85 18598.04 31497.66 12499.84 14896.72 22199.81 10199.13 255
GeoE99.05 6498.99 6899.25 9599.44 13198.35 11798.73 9699.56 7598.42 13998.91 17498.81 22098.94 2599.91 6298.35 10899.73 14799.49 136
v14898.45 15398.60 11798.00 26299.44 13194.98 29497.44 25799.06 24098.30 14799.32 10898.97 18496.65 19599.62 30298.37 10799.85 8399.39 183
v1098.97 7299.11 5698.55 20899.44 13196.21 25298.90 8099.55 7998.73 11699.48 7299.60 4296.63 19699.83 16599.70 2399.99 599.61 80
V4298.78 9798.78 8898.76 17399.44 13197.04 21998.27 14799.19 21497.87 18499.25 12299.16 13696.84 18099.78 22099.21 5399.84 8799.46 155
MDA-MVSNet-bldmvs97.94 20397.91 20598.06 25799.44 13194.96 29596.63 30799.15 23098.35 14198.83 18899.11 14694.31 27799.85 13096.60 23098.72 32999.37 192
casdiffmvs_mvgpermissive99.12 5699.16 5098.99 13799.43 13697.73 18098.00 18499.62 5499.22 6399.55 5899.22 12298.93 2699.75 23998.66 9199.81 10199.50 132
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 30196.82 27595.52 37399.42 13787.08 40799.22 4287.14 42199.11 7899.46 7799.58 4488.69 34099.86 11898.80 7899.95 3299.62 72
v2v48298.56 13698.62 11298.37 23299.42 13795.81 26797.58 24299.16 22597.90 18299.28 11299.01 17495.98 22799.79 20999.33 4399.90 6999.51 129
OPM-MVS98.56 13698.32 15999.25 9599.41 13998.73 8797.13 28299.18 21897.10 25798.75 20098.92 19598.18 8699.65 29396.68 22599.56 21899.37 192
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 19598.08 18898.04 26099.41 13994.59 30794.59 39299.40 13697.50 21498.82 19198.83 21596.83 18299.84 14897.50 16399.81 10199.71 51
test_one_060199.39 14199.20 3899.31 17198.49 13698.66 21099.02 16597.64 128
mvsany_test398.87 8498.92 7398.74 17999.38 14296.94 22698.58 11199.10 23596.49 28699.96 499.81 698.18 8699.45 35898.97 6899.79 11799.83 26
patch_mono-298.51 14898.63 11098.17 24899.38 14294.78 29897.36 26299.69 4298.16 16698.49 23599.29 10597.06 16899.97 598.29 11299.91 6399.76 44
test250692.39 37791.89 37993.89 39399.38 14282.28 42399.32 2366.03 42999.08 9098.77 19799.57 4666.26 41999.84 14898.71 8899.95 3299.54 115
ECVR-MVScopyleft96.42 30396.61 28995.85 36599.38 14288.18 40399.22 4286.00 42399.08 9099.36 9799.57 4688.47 34599.82 17598.52 10199.95 3299.54 115
casdiffmvspermissive98.95 7599.00 6698.81 16199.38 14297.33 20197.82 20999.57 6899.17 7499.35 9999.17 13498.35 7099.69 26598.46 10399.73 14799.41 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 7499.02 6498.76 17399.38 14297.26 20698.49 12699.50 9298.86 11199.19 12899.06 15398.23 7999.69 26598.71 8899.76 14099.33 210
TranMVSNet+NR-MVSNet99.17 4599.07 6299.46 5899.37 14898.87 7798.39 13899.42 12999.42 4499.36 9799.06 15398.38 6699.95 2498.34 10999.90 6999.57 98
tttt051795.64 32794.98 33797.64 28899.36 14993.81 33498.72 9790.47 41698.08 16998.67 20898.34 29073.88 40699.92 5397.77 14699.51 23399.20 238
test_part299.36 14999.10 6499.05 147
v114498.60 13298.66 10698.41 22799.36 14995.90 26397.58 24299.34 15997.51 21399.27 11499.15 14096.34 21099.80 19699.47 3899.93 4599.51 129
CP-MVS98.70 11098.42 14399.52 4299.36 14999.12 6198.72 9799.36 14897.54 21198.30 24898.40 28297.86 11099.89 8096.53 24299.72 15599.56 104
Test_1112_low_res96.99 28296.55 29398.31 23899.35 15395.47 27795.84 35399.53 8691.51 38896.80 34998.48 27691.36 32199.83 16596.58 23199.53 22899.62 72
DeepC-MVS97.60 498.97 7298.93 7299.10 11699.35 15397.98 15398.01 18399.46 11297.56 20899.54 5999.50 6498.97 2399.84 14898.06 12699.92 5699.49 136
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 25996.86 27198.58 20099.34 15596.32 24996.75 30199.58 6193.14 36996.89 34497.48 34692.11 31499.86 11896.91 19999.54 22499.57 98
reproduce_model99.15 4998.97 7099.67 499.33 15699.44 1098.15 16099.47 10999.12 7799.52 6599.32 10198.31 7399.90 6897.78 14599.73 14799.66 62
MVSMamba_PlusPlus98.83 8998.98 6998.36 23399.32 15796.58 24498.90 8099.41 13399.75 898.72 20399.50 6496.17 21499.94 3799.27 4799.78 12298.57 335
SF-MVS98.53 14498.27 16599.32 8299.31 15898.75 8398.19 15499.41 13396.77 27598.83 18898.90 19997.80 11699.82 17595.68 28899.52 23199.38 190
CPTT-MVS97.84 21897.36 24299.27 9099.31 15898.46 10798.29 14599.27 19394.90 33797.83 28798.37 28694.90 25899.84 14893.85 33999.54 22499.51 129
UnsupCasMVSNet_eth97.89 20797.60 22898.75 17599.31 15897.17 21497.62 23699.35 15398.72 11898.76 19998.68 24192.57 30999.74 24497.76 15095.60 40799.34 205
pmmvs-eth3d98.47 15198.34 15598.86 15599.30 16197.76 17697.16 28099.28 19095.54 32099.42 8599.19 12697.27 15799.63 29997.89 13699.97 2099.20 238
mamv499.44 1599.39 2399.58 1999.30 16199.74 299.04 6599.81 2699.77 799.82 2399.57 4697.82 11499.98 499.53 3399.89 7399.01 270
Anonymous2023121199.27 3399.27 4099.26 9299.29 16398.18 12899.49 999.51 9099.70 1299.80 2799.68 2296.84 18099.83 16599.21 5399.91 6399.77 39
UnsupCasMVSNet_bld97.30 25796.92 26798.45 22299.28 16496.78 23696.20 33099.27 19395.42 32498.28 25298.30 29493.16 29599.71 25794.99 30297.37 38398.87 297
EC-MVSNet99.09 5999.05 6399.20 10199.28 16498.93 7599.24 4199.84 2199.08 9098.12 26598.37 28698.72 3899.90 6899.05 6299.77 12898.77 313
reproduce-ours99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
our_new_method99.09 5998.90 7599.67 499.27 16699.49 698.00 18499.42 12999.05 9399.48 7299.27 10898.29 7599.89 8097.61 15599.71 16099.62 72
DPE-MVScopyleft98.59 13498.26 16699.57 2099.27 16699.15 5197.01 28599.39 13897.67 19699.44 8198.99 17897.53 13999.89 8095.40 29699.68 17599.66 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 21798.18 17596.87 33499.27 16691.16 38395.53 36299.25 19999.10 8599.41 8799.35 9193.10 29799.96 1298.65 9299.94 4099.49 136
v119298.60 13298.66 10698.41 22799.27 16695.88 26497.52 24899.36 14897.41 22699.33 10299.20 12596.37 20899.82 17599.57 2999.92 5699.55 111
N_pmnet97.63 23197.17 25298.99 13799.27 16697.86 16495.98 34093.41 40595.25 32999.47 7698.90 19995.63 23999.85 13096.91 19999.73 14799.27 224
FPMVS93.44 36492.23 37097.08 32399.25 17297.86 16495.61 35997.16 35892.90 37393.76 40798.65 24875.94 40495.66 42079.30 42097.49 37697.73 384
new-patchmatchnet98.35 16498.74 9097.18 31899.24 17392.23 36696.42 31799.48 10198.30 14799.69 4099.53 6097.44 14899.82 17598.84 7799.77 12899.49 136
MCST-MVS98.00 19997.63 22699.10 11699.24 17398.17 12996.89 29498.73 30195.66 31597.92 27897.70 33497.17 16399.66 28896.18 26499.23 27999.47 153
UniMVSNet (Re)98.87 8498.71 9799.35 7299.24 17398.73 8797.73 22399.38 14098.93 10699.12 13498.73 23296.77 18799.86 11898.63 9499.80 11299.46 155
jason97.45 24597.35 24397.76 27799.24 17393.93 32895.86 35098.42 31994.24 35298.50 23498.13 30494.82 26299.91 6297.22 17599.73 14799.43 167
jason: jason.
IterMVS97.73 22398.11 18496.57 34499.24 17390.28 39295.52 36499.21 20898.86 11199.33 10299.33 9793.11 29699.94 3798.49 10299.94 4099.48 146
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 14098.62 11298.32 23699.22 17895.58 27297.51 25099.45 11697.16 25499.45 8099.24 11796.12 21799.85 13099.60 2799.88 7599.55 111
ITE_SJBPF98.87 15499.22 17898.48 10699.35 15397.50 21498.28 25298.60 25997.64 12899.35 37393.86 33899.27 27198.79 311
h-mvs3397.77 22197.33 24599.10 11699.21 18097.84 16698.35 14298.57 31199.11 7898.58 22399.02 16588.65 34399.96 1298.11 12196.34 39999.49 136
v14419298.54 14298.57 12098.45 22299.21 18095.98 26197.63 23599.36 14897.15 25699.32 10899.18 13095.84 23499.84 14899.50 3699.91 6399.54 115
APDe-MVScopyleft98.99 6898.79 8799.60 1499.21 18099.15 5198.87 8499.48 10197.57 20699.35 9999.24 11797.83 11199.89 8097.88 13999.70 16799.75 48
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7798.81 8699.28 8799.21 18098.45 10898.46 13199.33 16499.63 2199.48 7299.15 14097.23 16099.75 23997.17 17799.66 18699.63 71
SR-MVS-dyc-post98.81 9398.55 12199.57 2099.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.49 14699.86 11896.56 23799.39 25299.45 159
RE-MVS-def98.58 11999.20 18499.38 1298.48 12999.30 17998.64 12098.95 16498.96 18797.75 11996.56 23799.39 25299.45 159
v192192098.54 14298.60 11798.38 23099.20 18495.76 26997.56 24499.36 14897.23 24899.38 9399.17 13496.02 22099.84 14899.57 2999.90 6999.54 115
thisisatest053095.27 33494.45 34597.74 28099.19 18794.37 31197.86 20590.20 41797.17 25398.22 25597.65 33673.53 40799.90 6896.90 20499.35 25898.95 282
Anonymous2024052998.93 7798.87 7899.12 11299.19 18798.22 12799.01 6798.99 25799.25 6199.54 5999.37 8697.04 16999.80 19697.89 13699.52 23199.35 203
APD-MVS_3200maxsize98.84 8898.61 11699.53 3799.19 18799.27 2698.49 12699.33 16498.64 12099.03 15298.98 18297.89 10899.85 13096.54 24199.42 24999.46 155
HQP_MVS97.99 20297.67 22098.93 14699.19 18797.65 18497.77 21699.27 19398.20 16097.79 29097.98 31794.90 25899.70 26194.42 32099.51 23399.45 159
plane_prior799.19 18797.87 163
ab-mvs98.41 15698.36 15298.59 19999.19 18797.23 20799.32 2398.81 28897.66 19798.62 21599.40 8596.82 18399.80 19695.88 27599.51 23398.75 316
F-COLMAP97.30 25796.68 28499.14 11099.19 18798.39 11097.27 27199.30 17992.93 37296.62 35598.00 31595.73 23799.68 27492.62 36698.46 34699.35 203
SR-MVS98.71 10698.43 14199.57 2099.18 19499.35 1698.36 14199.29 18798.29 15098.88 18098.85 21297.53 13999.87 11096.14 26699.31 26499.48 146
UniMVSNet_NR-MVSNet98.86 8798.68 10399.40 6499.17 19598.74 8497.68 22799.40 13699.14 7699.06 14298.59 26096.71 19399.93 4498.57 9799.77 12899.53 123
LF4IMVS97.90 20597.69 21998.52 21399.17 19597.66 18397.19 27999.47 10996.31 29497.85 28698.20 30196.71 19399.52 33994.62 31299.72 15598.38 352
SMA-MVScopyleft98.40 15898.03 19299.51 4699.16 19799.21 3298.05 17599.22 20794.16 35498.98 15699.10 14997.52 14199.79 20996.45 24799.64 18999.53 123
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 9198.63 11099.39 6599.16 19798.74 8497.54 24699.25 19998.84 11499.06 14298.76 22996.76 18999.93 4498.57 9799.77 12899.50 132
NR-MVSNet98.95 7598.82 8499.36 6699.16 19798.72 8999.22 4299.20 21099.10 8599.72 3498.76 22996.38 20799.86 11898.00 13199.82 9799.50 132
MVS_111021_LR98.30 17298.12 18398.83 15899.16 19798.03 14896.09 33799.30 17997.58 20598.10 26798.24 29798.25 7799.34 37496.69 22499.65 18799.12 256
DSMNet-mixed97.42 24897.60 22896.87 33499.15 20191.46 37398.54 11699.12 23292.87 37497.58 30399.63 3696.21 21399.90 6895.74 28499.54 22499.27 224
D2MVS97.84 21897.84 21097.83 26999.14 20294.74 30096.94 28998.88 27295.84 31298.89 17798.96 18794.40 27499.69 26597.55 15899.95 3299.05 262
pmmvs597.64 23097.49 23498.08 25599.14 20295.12 29196.70 30499.05 24393.77 36198.62 21598.83 21593.23 29399.75 23998.33 11199.76 14099.36 199
SPE-MVS-test99.13 5499.09 5999.26 9299.13 20498.97 7099.31 2799.88 1499.44 4198.16 26098.51 26998.64 4499.93 4498.91 7199.85 8398.88 296
VDD-MVS98.56 13698.39 14899.07 12299.13 20498.07 14398.59 11097.01 36199.59 2799.11 13599.27 10894.82 26299.79 20998.34 10999.63 19299.34 205
save fliter99.11 20697.97 15496.53 31199.02 25198.24 153
APD-MVScopyleft98.10 19197.67 22099.42 6099.11 20698.93 7597.76 21999.28 19094.97 33598.72 20398.77 22797.04 16999.85 13093.79 34099.54 22499.49 136
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 11398.71 9798.62 19399.10 20896.37 24797.23 27298.87 27499.20 6799.19 12898.99 17897.30 15499.85 13098.77 8399.79 11799.65 67
EI-MVSNet98.40 15898.51 12698.04 26099.10 20894.73 30197.20 27698.87 27498.97 10299.06 14299.02 16596.00 22299.80 19698.58 9599.82 9799.60 81
CVMVSNet96.25 30897.21 25193.38 39999.10 20880.56 42697.20 27698.19 33096.94 26599.00 15499.02 16589.50 33699.80 19696.36 25399.59 20699.78 37
EI-MVSNet-Vis-set98.68 11898.70 10098.63 19199.09 21196.40 24697.23 27298.86 27999.20 6799.18 13298.97 18497.29 15699.85 13098.72 8799.78 12299.64 68
HPM-MVS++copyleft98.10 19197.64 22599.48 5399.09 21199.13 5997.52 24898.75 29897.46 22296.90 34397.83 32796.01 22199.84 14895.82 28299.35 25899.46 155
DP-MVS Recon97.33 25596.92 26798.57 20399.09 21197.99 15096.79 29799.35 15393.18 36897.71 29498.07 31295.00 25799.31 37893.97 33399.13 29598.42 349
MVS_111021_HR98.25 18098.08 18898.75 17599.09 21197.46 19495.97 34199.27 19397.60 20497.99 27698.25 29698.15 9299.38 36996.87 20799.57 21599.42 170
BP-MVS197.40 25096.97 26398.71 18199.07 21596.81 23298.34 14497.18 35698.58 12998.17 25798.61 25784.01 37599.94 3798.97 6899.78 12299.37 192
9.1497.78 21299.07 21597.53 24799.32 16695.53 32198.54 23098.70 23897.58 13399.76 23294.32 32599.46 243
PAPM_NR96.82 28996.32 30098.30 23999.07 21596.69 24097.48 25398.76 29595.81 31396.61 35696.47 37194.12 28399.17 39190.82 39297.78 37199.06 261
TAMVS98.24 18198.05 19098.80 16399.07 21597.18 21397.88 20198.81 28896.66 28099.17 13399.21 12394.81 26499.77 22696.96 19799.88 7599.44 163
CLD-MVS97.49 24197.16 25398.48 21999.07 21597.03 22094.71 38599.21 20894.46 34698.06 27097.16 35897.57 13499.48 35194.46 31799.78 12298.95 282
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 5499.10 5899.24 9799.06 22099.15 5199.36 1999.88 1499.36 5198.21 25698.46 27798.68 4299.93 4499.03 6499.85 8398.64 328
thres100view90094.19 35193.67 35595.75 36899.06 22091.35 37698.03 17894.24 40098.33 14397.40 31994.98 40079.84 39199.62 30283.05 41398.08 36396.29 406
thres600view794.45 34693.83 35296.29 35299.06 22091.53 37297.99 18894.24 40098.34 14297.44 31795.01 39879.84 39199.67 27784.33 41198.23 35297.66 387
plane_prior199.05 223
YYNet197.60 23297.67 22097.39 31199.04 22493.04 35095.27 37198.38 32297.25 24298.92 17398.95 19195.48 24699.73 24996.99 19398.74 32799.41 173
MDA-MVSNet_test_wron97.60 23297.66 22397.41 31099.04 22493.09 34695.27 37198.42 31997.26 24198.88 18098.95 19195.43 24799.73 24997.02 19098.72 32999.41 173
MIMVSNet96.62 29696.25 30497.71 28399.04 22494.66 30499.16 5196.92 36797.23 24897.87 28399.10 14986.11 35899.65 29391.65 37699.21 28398.82 301
PatchMatch-RL97.24 26396.78 27898.61 19699.03 22797.83 16796.36 32099.06 24093.49 36697.36 32397.78 32895.75 23699.49 34893.44 34998.77 32698.52 337
GDP-MVS97.50 23897.11 25798.67 18499.02 22896.85 23098.16 15999.71 3898.32 14598.52 23398.54 26483.39 37999.95 2498.79 7999.56 21899.19 243
ZD-MVS99.01 22998.84 7899.07 23994.10 35698.05 27298.12 30696.36 20999.86 11892.70 36599.19 287
CDPH-MVS97.26 26096.66 28799.07 12299.00 23098.15 13096.03 33999.01 25491.21 39297.79 29097.85 32696.89 17899.69 26592.75 36399.38 25599.39 183
diffmvspermissive98.22 18298.24 16998.17 24899.00 23095.44 27896.38 31999.58 6197.79 19098.53 23198.50 27396.76 18999.74 24497.95 13599.64 18999.34 205
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15898.19 17499.03 13299.00 23097.65 18496.85 29598.94 25998.57 13098.89 17798.50 27395.60 24099.85 13097.54 16099.85 8399.59 87
plane_prior698.99 23397.70 18294.90 258
xiu_mvs_v1_base_debu97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
xiu_mvs_v1_base_debi97.86 21298.17 17696.92 33198.98 23493.91 32996.45 31499.17 22297.85 18698.41 24297.14 36098.47 5899.92 5398.02 12899.05 30196.92 399
MVP-Stereo98.08 19497.92 20498.57 20398.96 23796.79 23397.90 19999.18 21896.41 29098.46 23798.95 19195.93 23199.60 30996.51 24398.98 31499.31 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15898.68 10397.54 29998.96 23797.99 15097.88 20199.36 14898.20 16099.63 5199.04 16298.76 3595.33 42296.56 23799.74 14499.31 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 15098.94 23997.76 17698.76 29587.58 40996.75 35198.10 30894.80 26599.78 22092.73 36499.00 31099.20 238
USDC97.41 24997.40 23897.44 30898.94 23993.67 33995.17 37499.53 8694.03 35898.97 16099.10 14995.29 24999.34 37495.84 28199.73 14799.30 219
tfpn200view994.03 35593.44 35795.78 36798.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36396.29 406
testdata98.09 25298.93 24195.40 28098.80 29090.08 40097.45 31698.37 28695.26 25099.70 26193.58 34598.95 31799.17 250
thres40094.14 35393.44 35796.24 35598.93 24191.44 37497.60 23994.29 39897.94 17897.10 32994.31 40779.67 39399.62 30283.05 41398.08 36397.66 387
TAPA-MVS96.21 1196.63 29595.95 30698.65 18598.93 24198.09 13796.93 29199.28 19083.58 41598.13 26497.78 32896.13 21699.40 36593.52 34699.29 26998.45 342
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 24596.93 22795.54 36198.78 29385.72 41296.86 34698.11 30794.43 27299.10 30099.23 233
PVSNet_BlendedMVS97.55 23797.53 23197.60 29198.92 24593.77 33696.64 30699.43 12694.49 34497.62 29999.18 13096.82 18399.67 27794.73 30999.93 4599.36 199
PVSNet_Blended96.88 28596.68 28497.47 30698.92 24593.77 33694.71 38599.43 12690.98 39497.62 29997.36 35496.82 18399.67 27794.73 30999.56 21898.98 276
MSDG97.71 22597.52 23298.28 24198.91 24896.82 23194.42 39599.37 14497.65 19898.37 24798.29 29597.40 15099.33 37694.09 33199.22 28098.68 326
Anonymous20240521197.90 20597.50 23399.08 12098.90 24998.25 12198.53 11796.16 37898.87 11099.11 13598.86 20990.40 33099.78 22097.36 16899.31 26499.19 243
原ACMM198.35 23498.90 24996.25 25198.83 28792.48 37896.07 37198.10 30895.39 24899.71 25792.61 36798.99 31299.08 258
GBi-Net98.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
test198.65 12398.47 13599.17 10498.90 24998.24 12299.20 4599.44 12098.59 12698.95 16499.55 5494.14 28099.86 11897.77 14699.69 17099.41 173
FMVSNet298.49 14998.40 14598.75 17598.90 24997.14 21798.61 10899.13 23198.59 12699.19 12899.28 10694.14 28099.82 17597.97 13399.80 11299.29 221
OMC-MVS97.88 20997.49 23499.04 13198.89 25498.63 9196.94 28999.25 19995.02 33398.53 23198.51 26997.27 15799.47 35493.50 34899.51 23399.01 270
MVSFormer98.26 17898.43 14197.77 27498.88 25593.89 33299.39 1799.56 7599.11 7898.16 26098.13 30493.81 28899.97 599.26 4899.57 21599.43 167
lupinMVS97.06 27596.86 27197.65 28698.88 25593.89 33295.48 36597.97 33693.53 36498.16 26097.58 34093.81 28899.91 6296.77 21599.57 21599.17 250
dmvs_re95.98 31695.39 32697.74 28098.86 25797.45 19598.37 14095.69 38997.95 17696.56 35795.95 37990.70 32797.68 41688.32 40196.13 40398.11 364
DELS-MVS98.27 17698.20 17298.48 21998.86 25796.70 23995.60 36099.20 21097.73 19398.45 23898.71 23597.50 14399.82 17598.21 11599.59 20698.93 287
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 20797.98 19797.60 29198.86 25794.35 31296.21 32999.44 12097.45 22499.06 14298.88 20697.99 10499.28 38494.38 32499.58 21199.18 246
LCM-MVSNet-Re98.64 12598.48 13399.11 11498.85 26098.51 10498.49 12699.83 2398.37 14099.69 4099.46 7298.21 8499.92 5394.13 33099.30 26798.91 291
pmmvs497.58 23597.28 24698.51 21498.84 26196.93 22795.40 36998.52 31493.60 36398.61 21798.65 24895.10 25499.60 30996.97 19699.79 11798.99 275
NP-MVS98.84 26197.39 19996.84 363
sss97.21 26596.93 26598.06 25798.83 26395.22 28796.75 30198.48 31694.49 34497.27 32597.90 32392.77 30599.80 19696.57 23399.32 26299.16 253
PVSNet93.40 1795.67 32595.70 31195.57 37298.83 26388.57 39992.50 41297.72 34192.69 37696.49 36396.44 37293.72 29199.43 36193.61 34399.28 27098.71 319
MVEpermissive83.40 2292.50 37691.92 37894.25 38798.83 26391.64 37192.71 41183.52 42595.92 31086.46 42395.46 39295.20 25195.40 42180.51 41898.64 33895.73 414
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 24498.82 26695.97 26298.62 10799.00 25699.27 11499.21 12396.99 17499.50 34596.55 24099.50 24099.26 227
旧先验198.82 26697.45 19598.76 29598.34 29095.50 24599.01 30999.23 233
test_vis1_rt97.75 22297.72 21897.83 26998.81 26896.35 24897.30 26799.69 4294.61 34297.87 28398.05 31396.26 21298.32 41198.74 8598.18 35598.82 301
WTY-MVS96.67 29396.27 30397.87 26798.81 26894.61 30696.77 29997.92 33894.94 33697.12 32897.74 33191.11 32399.82 17593.89 33698.15 35999.18 246
3Dnovator+97.89 398.69 11398.51 12699.24 9798.81 26898.40 10999.02 6699.19 21498.99 9998.07 26999.28 10697.11 16799.84 14896.84 21099.32 26299.47 153
QAPM97.31 25696.81 27798.82 15998.80 27197.49 19299.06 6299.19 21490.22 39897.69 29699.16 13696.91 17799.90 6890.89 39199.41 25099.07 260
VNet98.42 15598.30 16098.79 16698.79 27297.29 20398.23 15098.66 30599.31 5598.85 18598.80 22194.80 26599.78 22098.13 12099.13 29599.31 216
DPM-MVS96.32 30595.59 31798.51 21498.76 27397.21 21094.54 39498.26 32591.94 38396.37 36497.25 35693.06 29999.43 36191.42 38198.74 32798.89 293
3Dnovator98.27 298.81 9398.73 9299.05 12998.76 27397.81 17399.25 4099.30 17998.57 13098.55 22899.33 9797.95 10699.90 6897.16 17899.67 18199.44 163
PLCcopyleft94.65 1696.51 29895.73 31098.85 15698.75 27597.91 16096.42 31799.06 24090.94 39595.59 37797.38 35294.41 27399.59 31390.93 38998.04 36899.05 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 28796.75 28097.08 32398.74 27693.33 34496.71 30398.26 32596.72 27798.44 23997.37 35395.20 25199.47 35491.89 37297.43 38098.44 345
hse-mvs297.46 24397.07 25898.64 18798.73 27797.33 20197.45 25697.64 34799.11 7898.58 22397.98 31788.65 34399.79 20998.11 12197.39 38298.81 305
CDS-MVSNet97.69 22697.35 24398.69 18298.73 27797.02 22196.92 29398.75 29895.89 31198.59 22198.67 24392.08 31599.74 24496.72 22199.81 10199.32 212
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19997.74 21598.80 16398.72 27998.09 13798.05 17599.60 5897.39 22896.63 35495.55 38797.68 12299.80 19696.73 22099.27 27198.52 337
LFMVS97.20 26696.72 28198.64 18798.72 27996.95 22598.93 7894.14 40299.74 1098.78 19499.01 17484.45 37099.73 24997.44 16499.27 27199.25 228
new_pmnet96.99 28296.76 27997.67 28498.72 27994.89 29695.95 34598.20 32892.62 37798.55 22898.54 26494.88 26199.52 33993.96 33499.44 24898.59 334
Fast-Effi-MVS+97.67 22897.38 24098.57 20398.71 28297.43 19797.23 27299.45 11694.82 33996.13 36896.51 36898.52 5699.91 6296.19 26298.83 32398.37 354
TEST998.71 28298.08 14195.96 34399.03 24891.40 38995.85 37497.53 34296.52 20099.76 232
train_agg97.10 27296.45 29799.07 12298.71 28298.08 14195.96 34399.03 24891.64 38495.85 37497.53 34296.47 20299.76 23293.67 34299.16 29099.36 199
TSAR-MVS + GP.98.18 18797.98 19798.77 17298.71 28297.88 16296.32 32398.66 30596.33 29299.23 12598.51 26997.48 14799.40 36597.16 17899.46 24399.02 269
FA-MVS(test-final)96.99 28296.82 27597.50 30398.70 28694.78 29899.34 2096.99 36295.07 33298.48 23699.33 9788.41 34699.65 29396.13 26898.92 32098.07 367
AUN-MVS96.24 31095.45 32298.60 19898.70 28697.22 20997.38 25997.65 34595.95 30995.53 38497.96 32182.11 38799.79 20996.31 25597.44 37998.80 310
our_test_397.39 25197.73 21796.34 35098.70 28689.78 39594.61 39198.97 25896.50 28599.04 14998.85 21295.98 22799.84 14897.26 17399.67 18199.41 173
ppachtmachnet_test97.50 23897.74 21596.78 34098.70 28691.23 38294.55 39399.05 24396.36 29199.21 12698.79 22396.39 20599.78 22096.74 21899.82 9799.34 205
PCF-MVS92.86 1894.36 34793.00 36498.42 22698.70 28697.56 18993.16 41099.11 23479.59 41997.55 30697.43 34992.19 31299.73 24979.85 41999.45 24597.97 373
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ttmdpeth97.91 20498.02 19397.58 29398.69 29194.10 31998.13 16298.90 26897.95 17697.32 32499.58 4495.95 23098.75 40696.41 24999.22 28099.87 20
ETV-MVS98.03 19697.86 20998.56 20798.69 29198.07 14397.51 25099.50 9298.10 16897.50 31195.51 38898.41 6499.88 9396.27 25899.24 27697.71 386
test_prior98.95 14398.69 29197.95 15899.03 24899.59 31399.30 219
mvsmamba97.57 23697.26 24798.51 21498.69 29196.73 23898.74 9297.25 35597.03 26197.88 28299.23 12190.95 32499.87 11096.61 22999.00 31098.91 291
agg_prior98.68 29597.99 15099.01 25495.59 37799.77 226
test_898.67 29698.01 14995.91 34999.02 25191.64 38495.79 37697.50 34596.47 20299.76 232
HQP-NCC98.67 29696.29 32596.05 30295.55 380
ACMP_Plane98.67 29696.29 32596.05 30295.55 380
CNVR-MVS98.17 18997.87 20899.07 12298.67 29698.24 12297.01 28598.93 26297.25 24297.62 29998.34 29097.27 15799.57 32196.42 24899.33 26199.39 183
HQP-MVS97.00 28196.49 29698.55 20898.67 29696.79 23396.29 32599.04 24696.05 30295.55 38096.84 36393.84 28699.54 33392.82 36099.26 27499.32 212
MM98.22 18297.99 19698.91 15098.66 30196.97 22297.89 20094.44 39699.54 3098.95 16499.14 14393.50 29299.92 5399.80 1399.96 2599.85 24
test_fmvs197.72 22497.94 20297.07 32598.66 30192.39 36197.68 22799.81 2695.20 33199.54 5999.44 7791.56 32099.41 36499.78 1699.77 12899.40 182
balanced_conf0398.63 12798.72 9498.38 23098.66 30196.68 24198.90 8099.42 12998.99 9998.97 16099.19 12695.81 23599.85 13098.77 8399.77 12898.60 331
thres20093.72 36093.14 36295.46 37698.66 30191.29 37896.61 30894.63 39597.39 22896.83 34793.71 41079.88 39099.56 32482.40 41698.13 36095.54 415
wuyk23d96.06 31297.62 22791.38 40298.65 30598.57 9898.85 8796.95 36596.86 27099.90 1299.16 13699.18 1798.40 41089.23 39999.77 12877.18 422
NCCC97.86 21297.47 23799.05 12998.61 30698.07 14396.98 28798.90 26897.63 19997.04 33397.93 32295.99 22699.66 28895.31 29798.82 32599.43 167
DeepC-MVS_fast96.85 698.30 17298.15 18098.75 17598.61 30697.23 20797.76 21999.09 23797.31 23698.75 20098.66 24697.56 13599.64 29696.10 26999.55 22299.39 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 36292.09 37297.75 27898.60 30894.40 31097.32 26595.26 39197.56 20896.79 35095.50 38953.57 42899.77 22695.26 29898.97 31599.08 258
thisisatest051594.12 35493.16 36196.97 32998.60 30892.90 35193.77 40690.61 41594.10 35696.91 34095.87 38274.99 40599.80 19694.52 31599.12 29898.20 360
GA-MVS95.86 31995.32 32997.49 30498.60 30894.15 31893.83 40597.93 33795.49 32296.68 35297.42 35083.21 38099.30 38096.22 26098.55 34499.01 270
dmvs_testset92.94 37292.21 37195.13 38098.59 31190.99 38597.65 23392.09 41196.95 26494.00 40393.55 41192.34 31196.97 41972.20 42292.52 41797.43 394
OPU-MVS98.82 15998.59 31198.30 11898.10 16898.52 26898.18 8698.75 40694.62 31299.48 24299.41 173
MSLP-MVS++98.02 19798.14 18297.64 28898.58 31395.19 28897.48 25399.23 20697.47 21797.90 28098.62 25597.04 16998.81 40597.55 15899.41 25098.94 286
test1298.93 14698.58 31397.83 16798.66 30596.53 35895.51 24499.69 26599.13 29599.27 224
CL-MVSNet_self_test97.44 24697.22 25098.08 25598.57 31595.78 26894.30 39898.79 29196.58 28398.60 21998.19 30294.74 26899.64 29696.41 24998.84 32298.82 301
PS-MVSNAJ97.08 27497.39 23996.16 36198.56 31692.46 35995.24 37398.85 28297.25 24297.49 31295.99 37898.07 9599.90 6896.37 25198.67 33796.12 411
CNLPA97.17 26996.71 28298.55 20898.56 31698.05 14796.33 32298.93 26296.91 26797.06 33297.39 35194.38 27599.45 35891.66 37599.18 28998.14 363
xiu_mvs_v2_base97.16 27097.49 23496.17 35998.54 31892.46 35995.45 36698.84 28397.25 24297.48 31396.49 36998.31 7399.90 6896.34 25498.68 33696.15 410
alignmvs97.35 25396.88 27098.78 16998.54 31898.09 13797.71 22497.69 34399.20 6797.59 30295.90 38188.12 34899.55 32898.18 11798.96 31698.70 322
FE-MVS95.66 32694.95 33997.77 27498.53 32095.28 28499.40 1696.09 38093.11 37097.96 27799.26 11279.10 39799.77 22692.40 36998.71 33198.27 358
Effi-MVS+98.02 19797.82 21198.62 19398.53 32097.19 21297.33 26499.68 4797.30 23796.68 35297.46 34898.56 5499.80 19696.63 22798.20 35498.86 298
baseline195.96 31795.44 32397.52 30198.51 32293.99 32698.39 13896.09 38098.21 15698.40 24697.76 33086.88 35099.63 29995.42 29589.27 42098.95 282
MVS_Test98.18 18798.36 15297.67 28498.48 32394.73 30198.18 15599.02 25197.69 19598.04 27399.11 14697.22 16199.56 32498.57 9798.90 32198.71 319
MGCFI-Net98.34 16598.28 16298.51 21498.47 32497.59 18898.96 7499.48 10199.18 7397.40 31995.50 38998.66 4399.50 34598.18 11798.71 33198.44 345
BH-RMVSNet96.83 28796.58 29297.58 29398.47 32494.05 32096.67 30597.36 35096.70 27997.87 28397.98 31795.14 25399.44 36090.47 39498.58 34399.25 228
sasdasda98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
canonicalmvs98.34 16598.26 16698.58 20098.46 32697.82 17098.96 7499.46 11299.19 7197.46 31495.46 39298.59 5099.46 35698.08 12498.71 33198.46 339
MVS-HIRNet94.32 34895.62 31490.42 40398.46 32675.36 42796.29 32589.13 41995.25 32995.38 38699.75 1392.88 30299.19 39094.07 33299.39 25296.72 404
PHI-MVS98.29 17597.95 20099.34 7598.44 32999.16 4798.12 16599.38 14096.01 30698.06 27098.43 28097.80 11699.67 27795.69 28799.58 21199.20 238
DVP-MVS++98.90 8198.70 10099.51 4698.43 33099.15 5199.43 1299.32 16698.17 16399.26 11899.02 16598.18 8699.88 9397.07 18799.45 24599.49 136
MSC_two_6792asdad99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
No_MVS99.32 8298.43 33098.37 11398.86 27999.89 8097.14 18199.60 20299.71 51
Fast-Effi-MVS+-dtu98.27 17698.09 18598.81 16198.43 33098.11 13497.61 23899.50 9298.64 12097.39 32197.52 34498.12 9499.95 2496.90 20498.71 33198.38 352
OpenMVS_ROBcopyleft95.38 1495.84 32195.18 33497.81 27198.41 33497.15 21697.37 26198.62 30983.86 41498.65 21198.37 28694.29 27899.68 27488.41 40098.62 34196.60 405
DeepPCF-MVS96.93 598.32 16998.01 19499.23 9998.39 33598.97 7095.03 37899.18 21896.88 26899.33 10298.78 22598.16 9099.28 38496.74 21899.62 19599.44 163
Patchmatch-test96.55 29796.34 29997.17 32098.35 33693.06 34798.40 13797.79 33997.33 23398.41 24298.67 24383.68 37899.69 26595.16 30099.31 26498.77 313
AdaColmapbinary97.14 27196.71 28298.46 22198.34 33797.80 17496.95 28898.93 26295.58 31996.92 33897.66 33595.87 23399.53 33590.97 38899.14 29398.04 368
OpenMVScopyleft96.65 797.09 27396.68 28498.32 23698.32 33897.16 21598.86 8699.37 14489.48 40296.29 36699.15 14096.56 19899.90 6892.90 35799.20 28497.89 374
MG-MVS96.77 29096.61 28997.26 31698.31 33993.06 34795.93 34698.12 33396.45 28997.92 27898.73 23293.77 29099.39 36791.19 38699.04 30499.33 210
test_yl96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
DCV-MVSNet96.69 29196.29 30197.90 26498.28 34095.24 28597.29 26897.36 35098.21 15698.17 25797.86 32486.27 35499.55 32894.87 30698.32 34898.89 293
CHOSEN 280x42095.51 33195.47 32095.65 37198.25 34288.27 40293.25 40998.88 27293.53 36494.65 39597.15 35986.17 35699.93 4497.41 16699.93 4598.73 318
SCA96.41 30496.66 28795.67 36998.24 34388.35 40195.85 35296.88 36896.11 30097.67 29798.67 24393.10 29799.85 13094.16 32699.22 28098.81 305
DeepMVS_CXcopyleft93.44 39898.24 34394.21 31594.34 39764.28 42291.34 41694.87 40489.45 33792.77 42377.54 42193.14 41693.35 418
MS-PatchMatch97.68 22797.75 21497.45 30798.23 34593.78 33597.29 26898.84 28396.10 30198.64 21298.65 24896.04 21999.36 37096.84 21099.14 29399.20 238
BH-w/o95.13 33794.89 34195.86 36498.20 34691.31 37795.65 35897.37 34993.64 36296.52 35995.70 38593.04 30099.02 39688.10 40295.82 40697.24 397
mvs_anonymous97.83 22098.16 17996.87 33498.18 34791.89 36897.31 26698.90 26897.37 23098.83 18899.46 7296.28 21199.79 20998.90 7298.16 35898.95 282
miper_lstm_enhance97.18 26897.16 25397.25 31798.16 34892.85 35295.15 37699.31 17197.25 24298.74 20298.78 22590.07 33199.78 22097.19 17699.80 11299.11 257
RRT-MVS97.88 20997.98 19797.61 29098.15 34993.77 33698.97 7399.64 5299.16 7598.69 20599.42 7991.60 31899.89 8097.63 15498.52 34599.16 253
ET-MVSNet_ETH3D94.30 35093.21 36097.58 29398.14 35094.47 30994.78 38493.24 40794.72 34089.56 41895.87 38278.57 40099.81 18996.91 19997.11 39198.46 339
ADS-MVSNet295.43 33294.98 33796.76 34198.14 35091.74 36997.92 19697.76 34090.23 39696.51 36098.91 19685.61 36199.85 13092.88 35896.90 39298.69 323
ADS-MVSNet95.24 33594.93 34096.18 35898.14 35090.10 39497.92 19697.32 35390.23 39696.51 36098.91 19685.61 36199.74 24492.88 35896.90 39298.69 323
c3_l97.36 25297.37 24197.31 31298.09 35393.25 34595.01 37999.16 22597.05 25898.77 19798.72 23492.88 30299.64 29696.93 19899.76 14099.05 262
FMVSNet397.50 23897.24 24998.29 24098.08 35495.83 26697.86 20598.91 26797.89 18398.95 16498.95 19187.06 34999.81 18997.77 14699.69 17099.23 233
PAPM91.88 38590.34 38896.51 34598.06 35592.56 35792.44 41397.17 35786.35 41090.38 41796.01 37786.61 35299.21 38970.65 42395.43 40897.75 383
Effi-MVS+-dtu98.26 17897.90 20699.35 7298.02 35699.49 698.02 18099.16 22598.29 15097.64 29897.99 31696.44 20499.95 2496.66 22698.93 31998.60 331
eth_miper_zixun_eth97.23 26497.25 24897.17 32098.00 35792.77 35494.71 38599.18 21897.27 24098.56 22698.74 23191.89 31699.69 26597.06 18999.81 10199.05 262
HY-MVS95.94 1395.90 31895.35 32897.55 29897.95 35894.79 29798.81 9196.94 36692.28 38195.17 38898.57 26289.90 33399.75 23991.20 38597.33 38798.10 365
UGNet98.53 14498.45 13898.79 16697.94 35996.96 22499.08 5898.54 31299.10 8596.82 34899.47 7196.55 19999.84 14898.56 10099.94 4099.55 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 30295.70 31198.79 16697.92 36099.12 6198.28 14698.60 31092.16 38295.54 38396.17 37694.77 26799.52 33989.62 39798.23 35297.72 385
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 28696.55 29397.79 27297.91 36194.21 31597.56 24498.87 27497.49 21699.06 14299.05 16080.72 38899.80 19698.44 10499.82 9799.37 192
API-MVS97.04 27796.91 26997.42 30997.88 36298.23 12698.18 15598.50 31597.57 20697.39 32196.75 36596.77 18799.15 39390.16 39599.02 30894.88 416
miper_ehance_all_eth97.06 27597.03 26097.16 32297.83 36393.06 34794.66 38899.09 23795.99 30798.69 20598.45 27892.73 30799.61 30896.79 21299.03 30598.82 301
cl____97.02 27896.83 27497.58 29397.82 36494.04 32294.66 38899.16 22597.04 25998.63 21398.71 23588.68 34299.69 26597.00 19199.81 10199.00 274
DIV-MVS_self_test97.02 27896.84 27397.58 29397.82 36494.03 32394.66 38899.16 22597.04 25998.63 21398.71 23588.69 34099.69 26597.00 19199.81 10199.01 270
CANet97.87 21197.76 21398.19 24797.75 36695.51 27596.76 30099.05 24397.74 19296.93 33798.21 30095.59 24199.89 8097.86 14199.93 4599.19 243
UBG93.25 36792.32 36896.04 36397.72 36790.16 39395.92 34895.91 38496.03 30593.95 40593.04 41569.60 41199.52 33990.72 39397.98 36998.45 342
mvsany_test197.60 23297.54 23097.77 27497.72 36795.35 28195.36 37097.13 35994.13 35599.71 3699.33 9797.93 10799.30 38097.60 15798.94 31898.67 327
PVSNet_089.98 2191.15 38690.30 38993.70 39597.72 36784.34 41990.24 41697.42 34890.20 39993.79 40693.09 41490.90 32698.89 40486.57 40872.76 42397.87 376
CR-MVSNet96.28 30795.95 30697.28 31497.71 37094.22 31398.11 16698.92 26592.31 38096.91 34099.37 8685.44 36499.81 18997.39 16797.36 38597.81 379
RPMNet97.02 27896.93 26597.30 31397.71 37094.22 31398.11 16699.30 17999.37 4896.91 34099.34 9586.72 35199.87 11097.53 16197.36 38597.81 379
ETVMVS92.60 37591.08 38497.18 31897.70 37293.65 34196.54 30995.70 38796.51 28494.68 39492.39 41861.80 42599.50 34586.97 40597.41 38198.40 350
pmmvs395.03 33994.40 34696.93 33097.70 37292.53 35895.08 37797.71 34288.57 40697.71 29498.08 31179.39 39599.82 17596.19 26299.11 29998.43 347
baseline293.73 35992.83 36596.42 34897.70 37291.28 37996.84 29689.77 41893.96 36092.44 41395.93 38079.14 39699.77 22692.94 35696.76 39698.21 359
WBMVS95.18 33694.78 34296.37 34997.68 37589.74 39695.80 35498.73 30197.54 21198.30 24898.44 27970.06 40999.82 17596.62 22899.87 7899.54 115
tpm94.67 34494.34 34895.66 37097.68 37588.42 40097.88 20194.90 39294.46 34696.03 37398.56 26378.66 39899.79 20995.88 27595.01 41098.78 312
CANet_DTU97.26 26097.06 25997.84 26897.57 37794.65 30596.19 33198.79 29197.23 24895.14 38998.24 29793.22 29499.84 14897.34 16999.84 8799.04 266
testing1193.08 37092.02 37496.26 35497.56 37890.83 38896.32 32395.70 38796.47 28892.66 41293.73 40964.36 42399.59 31393.77 34197.57 37498.37 354
tpm293.09 36992.58 36794.62 38497.56 37886.53 40897.66 23195.79 38686.15 41194.07 40298.23 29975.95 40399.53 33590.91 39096.86 39597.81 379
testing9193.32 36592.27 36996.47 34797.54 38091.25 38096.17 33496.76 37097.18 25293.65 40893.50 41265.11 42299.63 29993.04 35597.45 37898.53 336
TR-MVS95.55 32995.12 33596.86 33797.54 38093.94 32796.49 31396.53 37594.36 35197.03 33596.61 36794.26 27999.16 39286.91 40796.31 40097.47 393
testing9993.04 37191.98 37796.23 35697.53 38290.70 39096.35 32195.94 38396.87 26993.41 40993.43 41363.84 42499.59 31393.24 35397.19 38898.40 350
131495.74 32395.60 31596.17 35997.53 38292.75 35598.07 17298.31 32491.22 39194.25 39896.68 36695.53 24299.03 39591.64 37797.18 38996.74 403
CostFormer93.97 35693.78 35394.51 38597.53 38285.83 41197.98 18995.96 38289.29 40494.99 39198.63 25378.63 39999.62 30294.54 31496.50 39798.09 366
FMVSNet596.01 31495.20 33398.41 22797.53 38296.10 25398.74 9299.50 9297.22 25198.03 27499.04 16269.80 41099.88 9397.27 17299.71 16099.25 228
PMMVS96.51 29895.98 30598.09 25297.53 38295.84 26594.92 38198.84 28391.58 38696.05 37295.58 38695.68 23899.66 28895.59 29198.09 36298.76 315
reproduce_monomvs95.00 34195.25 33094.22 38897.51 38783.34 42097.86 20598.44 31798.51 13599.29 11199.30 10367.68 41599.56 32498.89 7499.81 10199.77 39
PAPR95.29 33394.47 34497.75 27897.50 38895.14 29094.89 38298.71 30391.39 39095.35 38795.48 39194.57 27099.14 39484.95 41097.37 38398.97 279
testing22291.96 38390.37 38796.72 34297.47 38992.59 35696.11 33694.76 39396.83 27192.90 41192.87 41657.92 42699.55 32886.93 40697.52 37598.00 372
PatchT96.65 29496.35 29897.54 29997.40 39095.32 28397.98 18996.64 37299.33 5396.89 34499.42 7984.32 37299.81 18997.69 15397.49 37697.48 392
tpm cat193.29 36693.13 36393.75 39497.39 39184.74 41497.39 25897.65 34583.39 41694.16 39998.41 28182.86 38399.39 36791.56 37995.35 40997.14 398
PatchmatchNetpermissive95.58 32895.67 31395.30 37997.34 39287.32 40697.65 23396.65 37195.30 32897.07 33198.69 23984.77 36799.75 23994.97 30498.64 33898.83 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 25396.97 26398.50 21897.31 39396.47 24598.18 15598.92 26598.95 10598.78 19499.37 8685.44 36499.85 13095.96 27399.83 9499.17 250
LS3D98.63 12798.38 15099.36 6697.25 39499.38 1299.12 5799.32 16699.21 6598.44 23998.88 20697.31 15399.80 19696.58 23199.34 26098.92 288
IB-MVS91.63 1992.24 38190.90 38596.27 35397.22 39591.24 38194.36 39793.33 40692.37 37992.24 41494.58 40666.20 42099.89 8093.16 35494.63 41297.66 387
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 37891.76 38194.21 38997.16 39684.65 41595.42 36888.45 42095.96 30896.17 36795.84 38466.36 41899.71 25791.87 37398.64 33898.28 357
tpmrst95.07 33895.46 32193.91 39297.11 39784.36 41897.62 23696.96 36494.98 33496.35 36598.80 22185.46 36399.59 31395.60 29096.23 40197.79 382
Syy-MVS96.04 31395.56 31997.49 30497.10 39894.48 30896.18 33296.58 37395.65 31694.77 39292.29 41991.27 32299.36 37098.17 11998.05 36698.63 329
myMVS_eth3d91.92 38490.45 38696.30 35197.10 39890.90 38696.18 33296.58 37395.65 31694.77 39292.29 41953.88 42799.36 37089.59 39898.05 36698.63 329
MDTV_nov1_ep1395.22 33297.06 40083.20 42197.74 22196.16 37894.37 35096.99 33698.83 21583.95 37699.53 33593.90 33597.95 370
MVS93.19 36892.09 37296.50 34696.91 40194.03 32398.07 17298.06 33568.01 42194.56 39796.48 37095.96 22999.30 38083.84 41296.89 39496.17 408
E-PMN94.17 35294.37 34793.58 39696.86 40285.71 41290.11 41897.07 36098.17 16397.82 28997.19 35784.62 36998.94 40089.77 39697.68 37396.09 412
JIA-IIPM95.52 33095.03 33697.00 32696.85 40394.03 32396.93 29195.82 38599.20 6794.63 39699.71 1983.09 38199.60 30994.42 32094.64 41197.36 396
EMVS93.83 35894.02 35093.23 40096.83 40484.96 41389.77 41996.32 37797.92 18097.43 31896.36 37586.17 35698.93 40187.68 40397.73 37295.81 413
cl2295.79 32295.39 32696.98 32896.77 40592.79 35394.40 39698.53 31394.59 34397.89 28198.17 30382.82 38499.24 38696.37 25199.03 30598.92 288
WB-MVSnew95.73 32495.57 31896.23 35696.70 40690.70 39096.07 33893.86 40395.60 31897.04 33395.45 39596.00 22299.55 32891.04 38798.31 35098.43 347
dp93.47 36393.59 35693.13 40196.64 40781.62 42597.66 23196.42 37692.80 37596.11 36998.64 25178.55 40199.59 31393.31 35192.18 41998.16 362
MonoMVSNet96.25 30896.53 29595.39 37796.57 40891.01 38498.82 9097.68 34498.57 13098.03 27499.37 8690.92 32597.78 41594.99 30293.88 41597.38 395
test-LLR93.90 35793.85 35194.04 39096.53 40984.62 41694.05 40292.39 40996.17 29794.12 40095.07 39682.30 38599.67 27795.87 27898.18 35597.82 377
test-mter92.33 38091.76 38194.04 39096.53 40984.62 41694.05 40292.39 40994.00 35994.12 40095.07 39665.63 42199.67 27795.87 27898.18 35597.82 377
TESTMET0.1,192.19 38291.77 38093.46 39796.48 41182.80 42294.05 40291.52 41494.45 34894.00 40394.88 40266.65 41799.56 32495.78 28398.11 36198.02 369
MVS_030497.44 24697.01 26298.72 18096.42 41296.74 23797.20 27691.97 41298.46 13898.30 24898.79 22392.74 30699.91 6299.30 4599.94 4099.52 126
miper_enhance_ethall96.01 31495.74 30996.81 33896.41 41392.27 36593.69 40798.89 27191.14 39398.30 24897.35 35590.58 32899.58 31996.31 25599.03 30598.60 331
tpmvs95.02 34095.25 33094.33 38696.39 41485.87 40998.08 17096.83 36995.46 32395.51 38598.69 23985.91 35999.53 33594.16 32696.23 40197.58 390
CMPMVSbinary75.91 2396.29 30695.44 32398.84 15796.25 41598.69 9097.02 28499.12 23288.90 40597.83 28798.86 20989.51 33598.90 40391.92 37199.51 23398.92 288
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 34593.69 35496.99 32796.05 41693.61 34294.97 38093.49 40496.17 29797.57 30594.88 40282.30 38599.01 39893.60 34494.17 41498.37 354
EPMVS93.72 36093.27 35995.09 38296.04 41787.76 40498.13 16285.01 42494.69 34196.92 33898.64 25178.47 40299.31 37895.04 30196.46 39898.20 360
cascas94.79 34394.33 34996.15 36296.02 41892.36 36392.34 41499.26 19885.34 41395.08 39094.96 40192.96 30198.53 40994.41 32398.59 34297.56 391
MVStest195.86 31995.60 31596.63 34395.87 41991.70 37097.93 19398.94 25998.03 17099.56 5599.66 2971.83 40898.26 41299.35 4299.24 27699.91 13
gg-mvs-nofinetune92.37 37991.20 38395.85 36595.80 42092.38 36299.31 2781.84 42699.75 891.83 41599.74 1568.29 41299.02 39687.15 40497.12 39096.16 409
gm-plane-assit94.83 42181.97 42488.07 40894.99 39999.60 30991.76 374
GG-mvs-BLEND94.76 38394.54 42292.13 36799.31 2780.47 42788.73 42191.01 42167.59 41698.16 41482.30 41794.53 41393.98 417
EPNet_dtu94.93 34294.78 34295.38 37893.58 42387.68 40596.78 29895.69 38997.35 23289.14 42098.09 31088.15 34799.49 34894.95 30599.30 26798.98 276
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai76.24 39075.95 39377.12 40692.39 42467.91 43090.16 41759.44 43182.04 41789.42 41994.67 40549.68 42981.74 42448.06 42477.66 42281.72 420
KD-MVS_2432*160092.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
miper_refine_blended92.87 37391.99 37595.51 37491.37 42589.27 39794.07 40098.14 33195.42 32497.25 32696.44 37267.86 41399.24 38691.28 38396.08 40498.02 369
EPNet96.14 31195.44 32398.25 24290.76 42795.50 27697.92 19694.65 39498.97 10292.98 41098.85 21289.12 33899.87 11095.99 27199.68 17599.39 183
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan69.30 39168.95 39470.34 40787.68 42865.00 43191.11 41559.90 43069.02 42074.46 42588.89 42248.58 43068.03 42628.61 42572.33 42477.99 421
test_method79.78 38879.50 39180.62 40480.21 42945.76 43270.82 42098.41 32131.08 42480.89 42497.71 33284.85 36697.37 41791.51 38080.03 42198.75 316
tmp_tt78.77 38978.73 39278.90 40558.45 43074.76 42994.20 39978.26 42839.16 42386.71 42292.82 41780.50 38975.19 42586.16 40992.29 41886.74 419
testmvs17.12 39320.53 3966.87 40912.05 4314.20 43493.62 4086.73 4324.62 42710.41 42724.33 4248.28 4323.56 4289.69 42715.07 42512.86 424
test12317.04 39420.11 3977.82 40810.25 4324.91 43394.80 3834.47 4334.93 42610.00 42824.28 4259.69 4313.64 42710.14 42612.43 42614.92 423
mmdepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
monomultidepth0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
test_blank0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
eth-test20.00 433
eth-test0.00 433
uanet_test0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
DCPMVS0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
cdsmvs_eth3d_5k24.66 39232.88 3950.00 4100.00 4330.00 4350.00 42199.10 2350.00 4280.00 42997.58 34099.21 160.00 4290.00 4280.00 4270.00 425
pcd_1.5k_mvsjas8.17 39510.90 3980.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 42898.07 950.00 4290.00 4280.00 4270.00 425
sosnet-low-res0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
sosnet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
uncertanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
Regformer0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
ab-mvs-re8.12 39610.83 3990.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 42997.48 3460.00 4330.00 4290.00 4280.00 4270.00 425
uanet0.00 3970.00 4000.00 4100.00 4330.00 4350.00 4210.00 4340.00 4280.00 4290.00 4280.00 4330.00 4290.00 4280.00 4270.00 425
WAC-MVS90.90 38691.37 382
PC_three_145293.27 36799.40 9098.54 26498.22 8297.00 41895.17 29999.45 24599.49 136
test_241102_TWO99.30 17998.03 17099.26 11899.02 16597.51 14299.88 9396.91 19999.60 20299.66 62
test_0728_THIRD98.17 16399.08 14099.02 16597.89 10899.88 9397.07 18799.71 16099.70 56
GSMVS98.81 305
sam_mvs184.74 36898.81 305
sam_mvs84.29 374
MTGPAbinary99.20 210
test_post197.59 24120.48 42783.07 38299.66 28894.16 326
test_post21.25 42683.86 37799.70 261
patchmatchnet-post98.77 22784.37 37199.85 130
MTMP97.93 19391.91 413
test9_res93.28 35299.15 29299.38 190
agg_prior292.50 36899.16 29099.37 192
test_prior497.97 15495.86 350
test_prior295.74 35696.48 28796.11 36997.63 33895.92 23294.16 32699.20 284
旧先验295.76 35588.56 40797.52 30999.66 28894.48 316
新几何295.93 346
无先验95.74 35698.74 30089.38 40399.73 24992.38 37099.22 237
原ACMM295.53 362
testdata299.79 20992.80 362
segment_acmp97.02 172
testdata195.44 36796.32 293
plane_prior599.27 19399.70 26194.42 32099.51 23399.45 159
plane_prior497.98 317
plane_prior397.78 17597.41 22697.79 290
plane_prior297.77 21698.20 160
plane_prior97.65 18497.07 28396.72 27799.36 256
n20.00 434
nn0.00 434
door-mid99.57 68
test1198.87 274
door99.41 133
HQP5-MVS96.79 233
BP-MVS92.82 360
HQP4-MVS95.56 37999.54 33399.32 212
HQP3-MVS99.04 24699.26 274
HQP2-MVS93.84 286
MDTV_nov1_ep13_2view74.92 42897.69 22690.06 40197.75 29385.78 36093.52 34698.69 323
ACMMP++_ref99.77 128
ACMMP++99.68 175
Test By Simon96.52 200