This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 20
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21399.62 3498.22 7699.51 33597.70 14599.73 14397.89 365
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 53
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 62
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7899.35 8698.86 2899.67 26997.81 13699.81 9899.24 222
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 40100.00 199.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 54100.00 199.82 25
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 43
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 15
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16599.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 16
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4599.98 1299.89 12
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4397.12 15899.90 6599.21 5099.87 7499.54 107
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18199.30 4199.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6399.95 2999.78 33
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 32099.37 4599.70 3799.65 3192.65 30399.93 4299.04 6099.84 8499.60 73
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24699.57 6399.37 4599.21 12099.61 3796.76 18299.83 15798.06 12099.83 9199.71 46
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3999.16 2099.82 16799.07 5799.83 9199.56 96
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3499.17 1899.83 15799.06 5899.62 18899.66 57
K. test v398.00 19497.66 21799.03 12999.79 2297.56 18699.19 4892.47 39899.62 2399.52 6499.66 2789.61 32799.96 1299.25 4799.81 9899.56 96
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20899.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 15099.19 11897.76 11199.58 31196.57 22499.55 21498.97 268
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17899.91 1199.67 2597.15 15798.91 39399.76 1599.56 21199.92 9
EGC-MVSNET85.24 37780.54 38099.34 7299.77 2699.20 3599.08 5799.29 18012.08 41520.84 41699.42 7697.55 12999.85 12297.08 17799.72 15098.96 270
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9799.55 5094.10 27999.94 3599.25 4799.96 2399.42 162
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8599.50 6097.12 15899.85 12299.02 6299.94 3699.80 29
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28499.79 2799.57 4392.85 29999.42 35499.79 1299.84 8499.60 73
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 18099.82 2199.84 298.56 5499.71 24999.96 199.96 2399.97 3
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 9099.49 6698.75 3699.86 10998.20 11099.80 10899.71 46
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6299.61 3798.64 4499.80 18898.24 10799.84 8499.52 118
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18599.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35398.86 10498.87 17897.62 32998.63 4698.96 39099.41 3698.29 34298.45 333
test_vis1_n_192098.40 15298.92 6996.81 33099.74 3590.76 38098.15 15699.91 798.33 13399.89 1599.55 5095.07 25099.88 8499.76 1599.93 4199.79 30
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 112
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7698.16 8499.96 1298.78 7499.93 4199.77 35
lessismore_v098.97 13799.73 3697.53 18886.71 41299.37 9099.52 5989.93 32599.92 5198.99 6499.72 15099.44 155
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16998.90 16998.90 19198.00 9499.88 8496.15 25699.72 15099.58 85
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25299.68 4394.45 33898.99 14999.27 10196.87 17299.94 3597.13 17499.91 5999.57 90
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10899.48 6798.82 3199.95 2398.94 6699.93 4199.59 79
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 30199.74 999.67 4399.24 10894.57 26599.95 2399.11 5499.24 26899.82 25
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28699.78 2899.82 496.14 20998.63 39999.82 799.93 4199.95 6
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7399.22 1599.76 22498.44 9899.77 12499.64 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19799.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7399.41 7998.23 7399.95 2398.89 7099.95 2999.81 28
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6998.23 7399.97 598.78 7499.93 4199.72 45
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6999.34 9097.30 14799.93 4298.90 6899.93 4199.77 35
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22398.94 16598.86 20198.75 3699.82 16797.53 15299.71 15599.56 96
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6299.18 12298.81 3299.67 26996.71 21499.77 12499.50 124
PMVScopyleft91.26 2097.86 20697.94 19697.65 27999.71 4597.94 15698.52 11698.68 29798.99 9297.52 29999.35 8697.41 14298.18 40491.59 36899.67 17496.82 392
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11799.41 7996.79 17999.82 16798.69 8499.88 7199.76 39
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10699.05 15296.72 18599.82 16798.09 11799.36 24899.59 79
test_cas_vis1_n_192098.33 16398.68 9797.27 30799.69 5492.29 35698.03 17399.85 1597.62 18999.96 499.62 3493.98 28099.74 23699.52 3199.86 7899.79 30
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 27099.38 13394.87 32898.97 15498.99 17098.01 9399.88 8497.29 16299.70 16099.58 85
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12799.92 5299.57 90
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16599.92 5299.57 90
test_fmvs1_n98.09 18898.28 15797.52 29399.68 5693.47 33598.63 10399.93 495.41 31799.68 4199.64 3291.88 31299.48 34299.82 799.87 7499.62 66
CHOSEN 1792x268897.49 23497.14 25098.54 20399.68 5696.09 25296.50 30299.62 4991.58 37698.84 18198.97 17692.36 30599.88 8496.76 20799.95 2999.67 56
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6899.24 10898.20 7999.86 10995.92 26599.69 16399.04 255
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17198.90 19196.98 16899.92 5197.16 16999.70 16099.56 96
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17999.85 1599.24 5999.92 899.50 6099.39 1199.95 2399.89 399.98 1298.71 309
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20499.76 2998.70 11299.78 2899.11 13898.79 3499.95 2399.85 599.96 2399.83 22
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28799.65 1799.52 6499.00 16994.34 27199.93 4298.65 8698.83 31599.76 39
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9799.26 10397.01 16699.94 3598.74 7999.93 4199.79 30
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26698.61 21198.38 27598.62 4799.87 10196.47 23699.67 17499.59 79
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18398.90 16999.26 10396.12 21199.52 33095.72 27699.71 15599.32 203
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 20199.76 2998.73 10999.82 2199.09 14498.81 3299.95 2399.86 499.96 2399.83 22
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21999.84 1899.29 5599.92 899.57 4399.60 599.96 1299.74 1799.98 1299.89 12
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25399.24 11798.89 19797.83 10499.81 18196.88 19799.49 23399.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18299.68 4397.62 18999.34 9699.18 12297.54 13099.77 21897.79 13899.74 14099.04 255
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5697.36 14599.86 10999.24 4999.71 15599.39 175
EU-MVSNet97.66 22398.50 12295.13 37199.63 7285.84 40198.35 14098.21 31998.23 14399.54 5899.46 6995.02 25199.68 26698.24 10799.87 7499.87 16
HyFIR lowres test97.19 25996.60 28398.96 13899.62 7497.28 20195.17 36499.50 8794.21 34399.01 14798.32 28386.61 34599.99 297.10 17699.84 8499.60 73
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 20199.25 19296.94 25598.78 18899.12 13798.02 9299.84 14097.13 17499.67 17499.59 79
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7399.26 10398.62 4799.73 24199.17 5399.92 5299.76 39
VDDNet98.21 17997.95 19499.01 13299.58 7597.74 17599.01 6697.29 34599.67 1598.97 15499.50 6090.45 32299.80 18897.88 13399.20 27699.48 138
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9799.19 11898.40 6399.72 24895.98 26399.76 13699.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18699.83 2099.22 6099.93 699.30 9799.42 1099.96 1299.85 599.99 599.29 212
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22998.11 25798.39 27398.00 9499.87 10196.86 20099.64 18299.55 103
MSP-MVS98.40 15298.00 19099.61 999.57 7999.25 2598.57 11099.35 14697.55 20099.31 10597.71 32294.61 26499.88 8496.14 25799.19 27999.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20699.49 9497.37 22099.19 12297.65 32698.96 2499.49 33996.50 23598.99 30499.34 196
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19297.58 29398.66 23897.40 14399.88 8494.72 30199.60 19599.54 107
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 27199.10 13299.06 14598.71 3999.83 15795.58 28399.78 11899.62 66
IS-MVSNet98.19 18197.90 20099.08 11799.57 7997.97 15199.31 2698.32 31599.01 9198.98 15099.03 15691.59 31399.79 20195.49 28599.80 10899.48 138
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33199.06 6199.86 1399.50 3199.66 4499.26 10397.21 15599.99 298.00 12599.91 5999.68 53
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15898.91 18898.34 6999.79 20195.63 28099.91 5998.86 288
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32699.03 8998.59 21599.13 13692.16 30899.90 6596.87 19899.68 16899.49 128
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24498.82 18599.01 16697.71 11499.87 10196.29 24899.69 16399.54 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20599.82 2298.21 14599.81 2599.53 5698.46 6099.84 14099.70 2199.97 1999.90 11
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21399.81 2398.55 12599.85 1999.55 5098.60 4999.84 14099.69 2399.98 1299.89 12
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7899.55 5097.82 10799.86 10998.42 10099.89 6999.41 165
Vis-MVSNet (Re-imp)97.46 23697.16 24798.34 22799.55 9196.10 24998.94 7598.44 31098.32 13598.16 25198.62 24788.76 33299.73 24193.88 32799.79 11399.18 236
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16799.37 13797.62 18999.04 14398.96 17998.84 3099.79 20197.43 15699.65 18099.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31398.55 11299.92 696.78 26499.72 3399.78 896.60 19099.67 26999.91 299.90 6599.94 7
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20798.09 25998.68 23397.62 12399.89 7596.22 25199.62 18899.57 90
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21699.46 10697.25 23298.98 15098.99 17097.54 13099.84 14095.88 26699.74 14099.23 224
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 21298.44 23298.51 25997.83 10499.88 8496.46 23799.58 20499.58 85
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 25298.69 20098.88 19898.00 9499.89 7595.87 26999.59 19999.58 85
Patchmatch-RL test97.26 25297.02 25497.99 25699.52 10195.53 26896.13 32599.71 3497.47 20799.27 10899.16 12884.30 36699.62 29497.89 13099.77 12498.81 295
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20798.56 22098.54 25597.75 11299.88 8496.57 22499.59 19999.58 85
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21598.67 20298.39 27397.68 11599.85 12296.00 26199.51 22599.52 118
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28998.93 16698.82 21096.00 21699.83 15797.32 16199.73 14399.36 190
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21999.38 13395.76 30498.81 18798.82 21098.36 6599.82 16794.75 29899.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17598.84 27697.97 16399.08 13499.02 15797.61 12499.88 8496.99 18499.63 18599.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17599.32 15999.88 8496.99 18499.63 18599.68 53
test072699.50 10699.21 2998.17 15599.35 14697.97 16399.26 11299.06 14597.61 124
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
TestCases99.16 10499.50 10698.55 9699.58 5696.80 26298.88 17499.06 14597.65 11899.57 31394.45 30899.61 19399.37 184
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 33199.50 8797.30 22799.05 14198.98 17499.35 1299.32 36895.72 27699.68 16899.18 236
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17299.59 5498.15 15699.40 8599.36 8598.58 5399.76 22498.78 7499.68 16899.59 79
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16399.31 16498.03 15999.66 4499.02 15798.36 6599.88 8496.91 19099.62 18899.41 165
IU-MVS99.49 11399.15 4898.87 26792.97 36199.41 8296.76 20799.62 18899.66 57
test_241102_ONE99.49 11399.17 4099.31 16497.98 16299.66 4498.90 19198.36 6599.48 342
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1298.85 7199.99 599.86 19
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20798.58 21798.50 26397.97 9899.85 12296.57 22499.59 19999.53 115
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6499.44 7498.25 7199.88 8499.09 5699.84 8499.62 66
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29999.48 9697.32 22599.11 12998.61 24999.33 1399.30 37196.23 25098.38 33899.28 214
114514_t96.50 29295.77 29998.69 17799.48 12097.43 19497.84 20099.55 7481.42 40896.51 35098.58 25295.53 23699.67 26993.41 34099.58 20498.98 265
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26599.39 13198.97 9599.38 8899.31 9696.00 21699.93 4298.58 8999.97 1999.60 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6499.57 4396.93 16999.81 18199.60 2499.98 1299.60 73
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29798.63 24597.50 13699.83 15796.79 20399.53 22099.56 96
X-MVStestdata94.32 33892.59 35699.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29745.85 41397.50 13699.83 15796.79 20399.53 22099.56 96
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20699.24 19799.04 8899.41 8298.90 19197.65 11899.76 22497.70 14599.79 11399.39 175
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17398.85 17998.04 30497.66 11799.84 14096.72 21299.81 9899.13 244
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16898.81 21298.94 2599.91 6098.35 10299.73 14399.49 128
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24899.06 23398.30 13699.32 10398.97 17696.65 18899.62 29498.37 10199.85 8099.39 175
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 7099.60 3996.63 18999.83 15799.70 2199.99 599.61 72
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17399.25 11699.16 12896.84 17399.78 21299.21 5099.84 8499.46 147
MDA-MVSNet-bldmvs97.94 19897.91 19998.06 25099.44 12794.96 28896.63 29799.15 22398.35 13198.83 18299.11 13894.31 27299.85 12296.60 22198.72 32199.37 184
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17999.62 4999.22 6099.55 5799.22 11398.93 2699.75 23198.66 8599.81 9899.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 29396.82 26795.52 36599.42 13387.08 39899.22 4187.14 41199.11 7399.46 7399.58 4188.69 33399.86 10998.80 7399.95 2999.62 66
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23499.16 21897.90 17199.28 10699.01 16695.98 22199.79 20199.33 3999.90 6599.51 121
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27299.18 21197.10 24798.75 19498.92 18798.18 8099.65 28596.68 21699.56 21199.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 38299.40 12997.50 20498.82 18598.83 20796.83 17599.84 14097.50 15499.81 9899.71 46
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20499.02 15797.64 121
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27699.96 499.81 598.18 8099.45 34998.97 6599.79 11399.83 22
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25299.69 3898.16 15598.49 22899.29 9897.06 16199.97 598.29 10699.91 5999.76 39
test250692.39 36791.89 36993.89 38399.38 13882.28 41399.32 2266.03 41999.08 8598.77 19199.57 4366.26 40999.84 14098.71 8299.95 2999.54 107
ECVR-MVScopyleft96.42 29596.61 28195.85 35799.38 13888.18 39499.22 4186.00 41399.08 8599.36 9299.57 4388.47 33899.82 16798.52 9599.95 2999.54 107
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 20199.57 6399.17 7199.35 9499.17 12698.35 6899.69 25798.46 9799.73 14399.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12299.06 14598.23 7399.69 25798.71 8299.76 13699.33 201
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9299.06 14598.38 6499.95 2398.34 10399.90 6599.57 90
tttt051795.64 31894.98 32797.64 28199.36 14593.81 32798.72 9590.47 40698.08 15898.67 20298.34 28073.88 39799.92 5197.77 13999.51 22599.20 229
test_part299.36 14599.10 6199.05 141
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23499.34 15297.51 20399.27 10899.15 13296.34 20399.80 18899.47 3499.93 4199.51 121
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 20198.30 24198.40 27297.86 10399.89 7596.53 23399.72 15099.56 96
Test_1112_low_res96.99 27496.55 28598.31 23199.35 14995.47 27195.84 34399.53 8191.51 37896.80 33998.48 26691.36 31599.83 15796.58 22299.53 22099.62 66
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17899.46 10697.56 19899.54 5899.50 6098.97 2399.84 14098.06 12099.92 5299.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 25196.86 26398.58 19299.34 15196.32 24596.75 29199.58 5693.14 35996.89 33497.48 33692.11 30999.86 10996.91 19099.54 21699.57 90
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19799.50 6096.17 20799.94 3599.27 4399.78 11898.57 325
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 6096.17 20799.94 3599.27 4399.86 7898.88 285
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26598.83 18298.90 19197.80 10999.82 16795.68 27999.52 22399.38 182
CPTT-MVS97.84 21297.36 23699.27 8799.31 15498.46 10498.29 14299.27 18694.90 32797.83 27798.37 27694.90 25399.84 14093.85 32999.54 21699.51 121
UnsupCasMVSNet_eth97.89 20297.60 22298.75 17199.31 15497.17 21197.62 22899.35 14698.72 11198.76 19398.68 23392.57 30499.74 23697.76 14395.60 39899.34 196
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 27099.28 18395.54 31099.42 8199.19 11897.27 15099.63 29197.89 13099.97 1999.20 229
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4397.82 10799.98 499.53 2999.89 6999.01 259
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 5099.91 5999.77 35
UnsupCasMVSNet_bld97.30 24996.92 25998.45 21599.28 16096.78 23096.20 32099.27 18695.42 31498.28 24598.30 28493.16 29099.71 24994.99 29397.37 37498.87 287
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25698.37 27698.72 3899.90 6599.05 5999.77 12498.77 303
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27599.39 13197.67 18599.44 7798.99 17097.53 13299.89 7595.40 28799.68 16899.66 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 21198.18 17096.87 32699.27 16291.16 37595.53 35299.25 19299.10 8099.41 8299.35 8693.10 29299.96 1298.65 8699.94 3699.49 128
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 24099.36 14197.41 21699.33 9799.20 11696.37 20199.82 16799.57 2699.92 5299.55 103
N_pmnet97.63 22597.17 24698.99 13499.27 16297.86 16195.98 33093.41 39595.25 31999.47 7298.90 19195.63 23399.85 12296.91 19099.73 14399.27 215
FPMVS93.44 35492.23 36097.08 31599.25 16697.86 16195.61 34997.16 34892.90 36393.76 39798.65 24075.94 39595.66 41079.30 41097.49 36797.73 375
new-patchmatchnet98.35 15998.74 8497.18 31099.24 16792.23 35896.42 30799.48 9698.30 13699.69 3999.53 5697.44 14199.82 16798.84 7299.77 12499.49 128
MCST-MVS98.00 19497.63 22099.10 11399.24 16798.17 12696.89 28498.73 29495.66 30597.92 26897.70 32497.17 15699.66 28096.18 25599.23 27199.47 145
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21599.38 13398.93 9999.12 12898.73 22496.77 18099.86 10998.63 8899.80 10899.46 147
jason97.45 23897.35 23797.76 27099.24 16793.93 32195.86 34098.42 31194.24 34298.50 22798.13 29494.82 25799.91 6097.22 16699.73 14399.43 159
jason: jason.
IterMVS97.73 21798.11 17996.57 33699.24 16790.28 38395.52 35499.21 20198.86 10499.33 9799.33 9293.11 29199.94 3598.49 9699.94 3699.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24299.45 11097.16 24499.45 7699.24 10896.12 21199.85 12299.60 2499.88 7199.55 103
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20498.28 24598.60 25097.64 12199.35 36493.86 32899.27 26398.79 301
h-mvs3397.77 21597.33 23999.10 11399.21 17497.84 16398.35 14098.57 30499.11 7398.58 21799.02 15788.65 33699.96 1298.11 11596.34 39099.49 128
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22799.36 14197.15 24699.32 10399.18 12295.84 22899.84 14099.50 3299.91 5999.54 107
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19599.35 9499.24 10897.83 10499.89 7597.88 13399.70 16099.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 7099.15 13297.23 15399.75 23197.17 16899.66 17999.63 65
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.49 13999.86 10996.56 22899.39 24499.45 151
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15898.96 17997.75 11296.56 22899.39 24499.45 151
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23699.36 14197.23 23899.38 8899.17 12696.02 21499.84 14099.57 2699.90 6599.54 107
thisisatest053095.27 32594.45 33597.74 27399.19 18194.37 30497.86 19890.20 40797.17 24398.22 24797.65 32673.53 39899.90 6596.90 19599.35 25098.95 271
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5899.37 8297.04 16299.80 18897.89 13099.52 22399.35 194
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14698.98 17497.89 10199.85 12296.54 23299.42 24199.46 147
HQP_MVS97.99 19797.67 21498.93 14399.19 18197.65 18197.77 20899.27 18698.20 14997.79 28097.98 30794.90 25399.70 25394.42 31099.51 22599.45 151
plane_prior799.19 18197.87 160
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 28197.66 18698.62 20999.40 8196.82 17699.80 18895.88 26699.51 22598.75 306
F-COLMAP97.30 24996.68 27699.14 10799.19 18198.39 10797.27 26199.30 17292.93 36296.62 34598.00 30595.73 23199.68 26692.62 35698.46 33799.35 194
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17498.85 20497.53 13299.87 10196.14 25799.31 25699.48 138
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21999.40 12999.14 7299.06 13698.59 25196.71 18699.93 4298.57 9199.77 12499.53 115
LF4IMVS97.90 20097.69 21398.52 20599.17 18997.66 18097.19 26999.47 10496.31 28497.85 27698.20 29196.71 18699.52 33094.62 30299.72 15098.38 343
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 17099.22 20094.16 34498.98 15099.10 14197.52 13499.79 20196.45 23899.64 18299.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23899.25 19298.84 10799.06 13698.76 22196.76 18299.93 4298.57 9199.77 12499.50 124
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 22196.38 20099.86 10998.00 12599.82 9499.50 124
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32799.30 17297.58 19498.10 25898.24 28798.25 7199.34 36596.69 21599.65 18099.12 245
DSMNet-mixed97.42 24197.60 22296.87 32699.15 19591.46 36598.54 11499.12 22592.87 36497.58 29399.63 3396.21 20699.90 6595.74 27599.54 21699.27 215
D2MVS97.84 21297.84 20497.83 26299.14 19694.74 29396.94 27998.88 26595.84 30298.89 17198.96 17994.40 26999.69 25797.55 14999.95 2999.05 251
pmmvs597.64 22497.49 22898.08 24899.14 19695.12 28496.70 29499.05 23693.77 35198.62 20998.83 20793.23 28899.75 23198.33 10599.76 13699.36 190
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 25198.51 25998.64 4499.93 4298.91 6799.85 8098.88 285
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 35199.59 2699.11 12999.27 10194.82 25799.79 20198.34 10399.63 18599.34 196
save fliter99.11 20097.97 15196.53 30199.02 24498.24 142
APD-MVScopyleft98.10 18697.67 21499.42 5799.11 20098.93 7297.76 21199.28 18394.97 32598.72 19798.77 21997.04 16299.85 12293.79 33099.54 21699.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26298.87 26799.20 6499.19 12298.99 17097.30 14799.85 12298.77 7799.79 11399.65 61
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26698.87 26798.97 9599.06 13699.02 15796.00 21699.80 18898.58 8999.82 9499.60 73
CVMVSNet96.25 30097.21 24593.38 38999.10 20280.56 41697.20 26698.19 32296.94 25599.00 14899.02 15789.50 32999.80 18896.36 24499.59 19999.78 33
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26298.86 27299.20 6499.18 12698.97 17697.29 14999.85 12298.72 8199.78 11899.64 62
HPM-MVS++copyleft98.10 18697.64 21999.48 5099.09 20599.13 5697.52 24098.75 29197.46 21296.90 33397.83 31796.01 21599.84 14095.82 27399.35 25099.46 147
DP-MVS Recon97.33 24796.92 25998.57 19599.09 20597.99 14796.79 28799.35 14693.18 35897.71 28498.07 30295.00 25299.31 36993.97 32399.13 28798.42 340
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 33199.27 18697.60 19397.99 26698.25 28698.15 8699.38 36096.87 19899.57 20899.42 162
9.1497.78 20699.07 20997.53 23999.32 15995.53 31198.54 22498.70 23097.58 12699.76 22494.32 31599.46 235
PAPM_NR96.82 28196.32 29198.30 23299.07 20996.69 23497.48 24498.76 28895.81 30396.61 34696.47 36194.12 27899.17 38290.82 38297.78 36299.06 250
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19498.81 28196.66 27099.17 12799.21 11494.81 25999.77 21896.96 18899.88 7199.44 155
CLD-MVS97.49 23497.16 24798.48 21199.07 20997.03 21794.71 37599.21 20194.46 33698.06 26197.16 34897.57 12799.48 34294.46 30799.78 11898.95 271
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24898.46 26798.68 4299.93 4299.03 6199.85 8098.64 318
thres100view90094.19 34193.67 34595.75 36099.06 21391.35 36898.03 17394.24 39098.33 13397.40 30994.98 39079.84 38299.62 29483.05 40398.08 35496.29 396
thres600view794.45 33693.83 34296.29 34499.06 21391.53 36497.99 18194.24 39098.34 13297.44 30795.01 38879.84 38299.67 26984.33 40198.23 34397.66 378
plane_prior199.05 216
YYNet197.60 22697.67 21497.39 30399.04 21793.04 34295.27 36198.38 31497.25 23298.92 16798.95 18395.48 24099.73 24196.99 18498.74 31999.41 165
MDA-MVSNet_test_wron97.60 22697.66 21797.41 30299.04 21793.09 33895.27 36198.42 31197.26 23198.88 17498.95 18395.43 24299.73 24197.02 18198.72 32199.41 165
MIMVSNet96.62 28896.25 29597.71 27699.04 21794.66 29799.16 5096.92 35797.23 23897.87 27399.10 14186.11 35199.65 28591.65 36699.21 27598.82 291
PatchMatch-RL97.24 25596.78 27098.61 18899.03 22097.83 16496.36 31099.06 23393.49 35697.36 31397.78 31895.75 23099.49 33993.44 33998.77 31898.52 328
ZD-MVS99.01 22198.84 7599.07 23294.10 34698.05 26398.12 29696.36 20299.86 10992.70 35599.19 279
CDPH-MVS97.26 25296.66 27999.07 11999.00 22298.15 12796.03 32999.01 24791.21 38297.79 28097.85 31696.89 17199.69 25792.75 35399.38 24799.39 175
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30999.58 5697.79 17998.53 22598.50 26396.76 18299.74 23697.95 12999.64 18299.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28598.94 25298.57 12298.89 17198.50 26395.60 23499.85 12297.54 15199.85 8099.59 79
plane_prior698.99 22597.70 17994.90 253
xiu_mvs_v1_base_debu97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
xiu_mvs_v1_base97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
xiu_mvs_v1_base_debi97.86 20698.17 17196.92 32398.98 22693.91 32296.45 30499.17 21597.85 17598.41 23597.14 35098.47 5799.92 5198.02 12299.05 29396.92 389
MVP-Stereo98.08 18997.92 19898.57 19598.96 22996.79 22797.90 19299.18 21196.41 28098.46 23098.95 18395.93 22599.60 30196.51 23498.98 30699.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15298.68 9797.54 29198.96 22997.99 14797.88 19499.36 14198.20 14999.63 5099.04 15498.76 3595.33 41296.56 22899.74 14099.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14698.94 23197.76 17398.76 28887.58 39996.75 34198.10 29894.80 26099.78 21292.73 35499.00 30299.20 229
USDC97.41 24297.40 23297.44 30098.94 23193.67 33195.17 36499.53 8194.03 34898.97 15499.10 14195.29 24499.34 36595.84 27299.73 14399.30 210
tfpn200view994.03 34593.44 34795.78 35998.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35496.29 396
testdata98.09 24598.93 23395.40 27498.80 28390.08 39097.45 30698.37 27695.26 24599.70 25393.58 33598.95 30999.17 240
thres40094.14 34393.44 34796.24 34798.93 23391.44 36697.60 23194.29 38897.94 16797.10 31994.31 39779.67 38499.62 29483.05 40398.08 35497.66 378
TAPA-MVS96.21 1196.63 28795.95 29798.65 17998.93 23398.09 13496.93 28199.28 18383.58 40598.13 25597.78 31896.13 21099.40 35693.52 33699.29 26198.45 333
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23796.93 22495.54 35198.78 28685.72 40296.86 33698.11 29794.43 26799.10 29299.23 224
PVSNet_BlendedMVS97.55 23197.53 22597.60 28398.92 23793.77 32996.64 29699.43 12094.49 33497.62 28999.18 12296.82 17699.67 26994.73 29999.93 4199.36 190
PVSNet_Blended96.88 27796.68 27697.47 29898.92 23793.77 32994.71 37599.43 12090.98 38497.62 28997.36 34496.82 17699.67 26994.73 29999.56 21198.98 265
MSDG97.71 21997.52 22698.28 23498.91 24096.82 22694.42 38599.37 13797.65 18798.37 24098.29 28597.40 14399.33 36794.09 32199.22 27298.68 316
Anonymous20240521197.90 20097.50 22799.08 11798.90 24198.25 11898.53 11596.16 36898.87 10399.11 12998.86 20190.40 32399.78 21297.36 15999.31 25699.19 234
原ACMM198.35 22698.90 24196.25 24798.83 28092.48 36896.07 36198.10 29895.39 24399.71 24992.61 35798.99 30499.08 247
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15899.55 5094.14 27599.86 10997.77 13999.69 16399.41 165
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12299.28 9994.14 27599.82 16797.97 12799.80 10899.29 212
OMC-MVS97.88 20497.49 22899.04 12898.89 24698.63 8896.94 27999.25 19295.02 32398.53 22598.51 25997.27 15099.47 34593.50 33899.51 22599.01 259
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32599.39 1699.56 7099.11 7398.16 25198.13 29493.81 28399.97 599.26 4599.57 20899.43 159
lupinMVS97.06 26796.86 26397.65 27998.88 24793.89 32595.48 35597.97 32893.53 35498.16 25197.58 33093.81 28399.91 6096.77 20699.57 20899.17 240
dmvs_re95.98 30795.39 31797.74 27398.86 24997.45 19298.37 13895.69 37997.95 16596.56 34795.95 36990.70 32097.68 40688.32 39196.13 39498.11 355
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 35099.20 20397.73 18298.45 23198.71 22797.50 13699.82 16798.21 10999.59 19998.93 276
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 20297.98 19297.60 28398.86 24994.35 30596.21 31999.44 11497.45 21499.06 13698.88 19897.99 9799.28 37594.38 31499.58 20499.18 236
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6998.21 7899.92 5194.13 32099.30 25998.91 280
pmmvs497.58 22997.28 24098.51 20698.84 25396.93 22495.40 35998.52 30793.60 35398.61 21198.65 24095.10 24999.60 30196.97 18799.79 11398.99 264
NP-MVS98.84 25397.39 19696.84 353
sss97.21 25796.93 25798.06 25098.83 25595.22 28096.75 29198.48 30994.49 33497.27 31597.90 31392.77 30099.80 18896.57 22499.32 25499.16 243
PVSNet93.40 1795.67 31695.70 30295.57 36498.83 25588.57 39092.50 40297.72 33392.69 36696.49 35396.44 36293.72 28699.43 35293.61 33399.28 26298.71 309
MVEpermissive83.40 2292.50 36691.92 36894.25 37898.83 25591.64 36392.71 40183.52 41595.92 30086.46 41395.46 38295.20 24695.40 41180.51 40898.64 33095.73 404
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10899.21 11496.99 16799.50 33696.55 23199.50 23299.26 218
旧先验198.82 25897.45 19298.76 28898.34 28095.50 23999.01 30199.23 224
test_vis1_rt97.75 21697.72 21297.83 26298.81 26096.35 24497.30 25799.69 3894.61 33297.87 27398.05 30396.26 20598.32 40298.74 7998.18 34698.82 291
WTY-MVS96.67 28596.27 29497.87 26098.81 26094.61 29996.77 28997.92 33094.94 32697.12 31897.74 32191.11 31799.82 16793.89 32698.15 35099.18 236
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 26099.28 9997.11 16099.84 14096.84 20199.32 25499.47 145
QAPM97.31 24896.81 26998.82 15598.80 26397.49 18999.06 6199.19 20790.22 38897.69 28699.16 12896.91 17099.90 6590.89 38199.41 24299.07 249
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29899.31 5298.85 17998.80 21394.80 26099.78 21298.13 11499.13 28799.31 207
DPM-MVS96.32 29795.59 30898.51 20698.76 26597.21 20794.54 38498.26 31791.94 37396.37 35497.25 34693.06 29499.43 35291.42 37198.74 31998.89 282
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22299.33 9297.95 9999.90 6597.16 16999.67 17499.44 155
PLCcopyleft94.65 1696.51 29095.73 30198.85 15298.75 26797.91 15796.42 30799.06 23390.94 38595.59 36797.38 34294.41 26899.59 30590.93 37998.04 35999.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27996.75 27297.08 31598.74 26893.33 33696.71 29398.26 31796.72 26798.44 23297.37 34395.20 24699.47 34591.89 36297.43 37198.44 336
hse-mvs297.46 23697.07 25198.64 18098.73 26997.33 19897.45 24797.64 33899.11 7398.58 21797.98 30788.65 33699.79 20198.11 11597.39 37398.81 295
CDS-MVSNet97.69 22097.35 23798.69 17798.73 26997.02 21896.92 28398.75 29195.89 30198.59 21598.67 23592.08 31099.74 23696.72 21299.81 9899.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19497.74 20998.80 15998.72 27198.09 13498.05 17099.60 5397.39 21896.63 34495.55 37797.68 11599.80 18896.73 21199.27 26398.52 328
LFMVS97.20 25896.72 27398.64 18098.72 27196.95 22298.93 7694.14 39299.74 998.78 18899.01 16684.45 36399.73 24197.44 15599.27 26399.25 219
new_pmnet96.99 27496.76 27197.67 27798.72 27194.89 28995.95 33598.20 32092.62 36798.55 22298.54 25594.88 25699.52 33093.96 32499.44 24098.59 324
Fast-Effi-MVS+97.67 22297.38 23498.57 19598.71 27497.43 19497.23 26299.45 11094.82 32996.13 35896.51 35898.52 5699.91 6096.19 25398.83 31598.37 345
TEST998.71 27498.08 13895.96 33399.03 24191.40 37995.85 36497.53 33296.52 19399.76 224
train_agg97.10 26496.45 28899.07 11998.71 27498.08 13895.96 33399.03 24191.64 37495.85 36497.53 33296.47 19599.76 22493.67 33299.16 28299.36 190
TSAR-MVS + GP.98.18 18297.98 19298.77 16898.71 27497.88 15996.32 31398.66 29896.33 28299.23 11998.51 25997.48 14099.40 35697.16 16999.46 23599.02 258
FA-MVS(test-final)96.99 27496.82 26797.50 29598.70 27894.78 29199.34 1996.99 35295.07 32298.48 22999.33 9288.41 33999.65 28596.13 25998.92 31298.07 358
AUN-MVS96.24 30195.45 31398.60 19098.70 27897.22 20697.38 25097.65 33695.95 29995.53 37497.96 31182.11 37899.79 20196.31 24697.44 37098.80 300
our_test_397.39 24397.73 21196.34 34298.70 27889.78 38694.61 38198.97 25196.50 27599.04 14398.85 20495.98 22199.84 14097.26 16499.67 17499.41 165
ppachtmachnet_test97.50 23297.74 20996.78 33298.70 27891.23 37494.55 38399.05 23696.36 28199.21 12098.79 21596.39 19899.78 21296.74 20999.82 9499.34 196
PCF-MVS92.86 1894.36 33793.00 35498.42 21898.70 27897.56 18693.16 40099.11 22779.59 40997.55 29697.43 33992.19 30799.73 24179.85 40999.45 23797.97 364
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
m2depth97.91 19998.02 18897.58 28598.69 28394.10 31298.13 15798.90 26197.95 16597.32 31499.58 4195.95 22498.75 39796.41 24099.22 27299.87 16
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19598.72 19799.20 11695.48 24099.86 10997.76 14399.78 11898.57 325
ETV-MVS98.03 19197.86 20398.56 19998.69 28398.07 14097.51 24299.50 8798.10 15797.50 30195.51 37898.41 6299.88 8496.27 24999.24 26897.71 377
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30599.30 210
mvsmamba97.57 23097.26 24198.51 20698.69 28396.73 23298.74 9097.25 34697.03 25197.88 27299.23 11290.95 31899.87 10196.61 22099.00 30298.91 280
agg_prior98.68 28897.99 14799.01 24795.59 36799.77 218
test_898.67 28998.01 14695.91 33999.02 24491.64 37495.79 36697.50 33596.47 19599.76 224
HQP-NCC98.67 28996.29 31596.05 29295.55 370
ACMP_Plane98.67 28996.29 31596.05 29295.55 370
CNVR-MVS98.17 18497.87 20299.07 11998.67 28998.24 11997.01 27598.93 25597.25 23297.62 28998.34 28097.27 15099.57 31396.42 23999.33 25399.39 175
HQP-MVS97.00 27396.49 28798.55 20098.67 28996.79 22796.29 31599.04 23996.05 29295.55 37096.84 35393.84 28199.54 32492.82 35099.26 26699.32 203
MM98.22 17797.99 19198.91 14698.66 29496.97 21997.89 19394.44 38699.54 2998.95 15899.14 13593.50 28799.92 5199.80 1199.96 2399.85 20
test_fmvs197.72 21897.94 19697.07 31798.66 29492.39 35397.68 21999.81 2395.20 32199.54 5899.44 7491.56 31499.41 35599.78 1499.77 12499.40 174
balanced_conf0398.63 12198.72 8898.38 22298.66 29496.68 23598.90 7899.42 12398.99 9298.97 15499.19 11895.81 22999.85 12298.77 7799.77 12498.60 321
thres20093.72 35093.14 35295.46 36898.66 29491.29 37096.61 29894.63 38597.39 21896.83 33793.71 40079.88 38199.56 31682.40 40698.13 35195.54 405
wuyk23d96.06 30397.62 22191.38 39298.65 29898.57 9598.85 8696.95 35596.86 26099.90 1299.16 12899.18 1798.40 40189.23 38999.77 12477.18 412
NCCC97.86 20697.47 23199.05 12698.61 29998.07 14096.98 27798.90 26197.63 18897.04 32397.93 31295.99 22099.66 28095.31 28898.82 31799.43 159
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29997.23 20497.76 21199.09 23097.31 22698.75 19498.66 23897.56 12899.64 28896.10 26099.55 21499.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 35292.09 36297.75 27198.60 30194.40 30397.32 25595.26 38197.56 19896.79 34095.50 37953.57 41899.77 21895.26 28998.97 30799.08 247
thisisatest051594.12 34493.16 35196.97 32198.60 30192.90 34393.77 39690.61 40594.10 34696.91 33095.87 37274.99 39699.80 18894.52 30599.12 29098.20 351
GA-MVS95.86 31095.32 32097.49 29698.60 30194.15 31193.83 39597.93 32995.49 31296.68 34297.42 34083.21 37199.30 37196.22 25198.55 33699.01 259
dmvs_testset92.94 36292.21 36195.13 37198.59 30490.99 37697.65 22592.09 40196.95 25494.00 39393.55 40192.34 30696.97 40972.20 41292.52 40797.43 385
OPU-MVS98.82 15598.59 30498.30 11598.10 16398.52 25898.18 8098.75 39794.62 30299.48 23499.41 165
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30695.19 28197.48 24499.23 19997.47 20797.90 27098.62 24797.04 16298.81 39697.55 14999.41 24298.94 275
test1298.93 14398.58 30697.83 16498.66 29896.53 34895.51 23899.69 25799.13 28799.27 215
CL-MVSNet_self_test97.44 23997.22 24498.08 24898.57 30895.78 26294.30 38898.79 28496.58 27398.60 21398.19 29294.74 26399.64 28896.41 24098.84 31498.82 291
PS-MVSNAJ97.08 26697.39 23396.16 35398.56 30992.46 35195.24 36398.85 27597.25 23297.49 30295.99 36898.07 8899.90 6596.37 24298.67 32996.12 401
CNLPA97.17 26196.71 27498.55 20098.56 30998.05 14496.33 31298.93 25596.91 25797.06 32297.39 34194.38 27099.45 34991.66 36599.18 28198.14 354
xiu_mvs_v2_base97.16 26297.49 22896.17 35198.54 31192.46 35195.45 35698.84 27697.25 23297.48 30396.49 35998.31 7099.90 6596.34 24598.68 32896.15 400
alignmvs97.35 24596.88 26298.78 16598.54 31198.09 13497.71 21697.69 33599.20 6497.59 29295.90 37188.12 34199.55 31998.18 11198.96 30898.70 312
FE-MVS95.66 31794.95 32997.77 26798.53 31395.28 27799.40 1596.09 37093.11 36097.96 26799.26 10379.10 38899.77 21892.40 35998.71 32398.27 349
Effi-MVS+98.02 19297.82 20598.62 18598.53 31397.19 20997.33 25499.68 4397.30 22796.68 34297.46 33898.56 5499.80 18896.63 21898.20 34598.86 288
baseline195.96 30895.44 31497.52 29398.51 31593.99 31998.39 13696.09 37098.21 14598.40 23997.76 32086.88 34399.63 29195.42 28689.27 41098.95 271
MVS_Test98.18 18298.36 14797.67 27798.48 31694.73 29498.18 15299.02 24497.69 18498.04 26499.11 13897.22 15499.56 31698.57 9198.90 31398.71 309
MGCFI-Net98.34 16098.28 15798.51 20698.47 31797.59 18598.96 7299.48 9699.18 7097.40 30995.50 37998.66 4399.50 33698.18 11198.71 32398.44 336
BH-RMVSNet96.83 27996.58 28497.58 28598.47 31794.05 31396.67 29597.36 34196.70 26997.87 27397.98 30795.14 24899.44 35190.47 38498.58 33599.25 219
sasdasda98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
canonicalmvs98.34 16098.26 16198.58 19298.46 31997.82 16798.96 7299.46 10699.19 6897.46 30495.46 38298.59 5099.46 34798.08 11898.71 32398.46 330
MVS-HIRNet94.32 33895.62 30590.42 39398.46 31975.36 41796.29 31589.13 40995.25 31995.38 37699.75 1192.88 29799.19 38194.07 32299.39 24496.72 394
PHI-MVS98.29 17097.95 19499.34 7298.44 32299.16 4498.12 16099.38 13396.01 29698.06 26198.43 27097.80 10999.67 26995.69 27899.58 20499.20 229
DVP-MVS++98.90 7598.70 9499.51 4398.43 32399.15 4899.43 1199.32 15998.17 15299.26 11299.02 15798.18 8099.88 8497.07 17899.45 23799.49 128
MSC_two_6792asdad99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
No_MVS99.32 7998.43 32398.37 11098.86 27299.89 7597.14 17299.60 19599.71 46
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32398.11 13197.61 23099.50 8798.64 11397.39 31197.52 33498.12 8799.95 2396.90 19598.71 32398.38 343
OpenMVS_ROBcopyleft95.38 1495.84 31295.18 32497.81 26498.41 32797.15 21397.37 25198.62 30283.86 40498.65 20598.37 27694.29 27399.68 26688.41 39098.62 33396.60 395
DeepPCF-MVS96.93 598.32 16498.01 18999.23 9698.39 32898.97 6795.03 36899.18 21196.88 25899.33 9798.78 21798.16 8499.28 37596.74 20999.62 18899.44 155
Patchmatch-test96.55 28996.34 29097.17 31298.35 32993.06 33998.40 13597.79 33197.33 22398.41 23598.67 23583.68 37099.69 25795.16 29199.31 25698.77 303
AdaColmapbinary97.14 26396.71 27498.46 21398.34 33097.80 17196.95 27898.93 25595.58 30996.92 32897.66 32595.87 22799.53 32690.97 37899.14 28598.04 359
OpenMVScopyleft96.65 797.09 26596.68 27698.32 22998.32 33197.16 21298.86 8599.37 13789.48 39296.29 35699.15 13296.56 19199.90 6592.90 34799.20 27697.89 365
MG-MVS96.77 28296.61 28197.26 30898.31 33293.06 33995.93 33698.12 32596.45 27997.92 26898.73 22493.77 28599.39 35891.19 37699.04 29699.33 201
test_yl96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
DCV-MVSNet96.69 28396.29 29297.90 25798.28 33395.24 27897.29 25897.36 34198.21 14598.17 24997.86 31486.27 34799.55 31994.87 29698.32 33998.89 282
CHOSEN 280x42095.51 32295.47 31195.65 36398.25 33588.27 39393.25 39998.88 26593.53 35494.65 38597.15 34986.17 34999.93 4297.41 15799.93 4198.73 308
SCA96.41 29696.66 27995.67 36198.24 33688.35 39295.85 34296.88 35896.11 29097.67 28798.67 23593.10 29299.85 12294.16 31699.22 27298.81 295
DeepMVS_CXcopyleft93.44 38898.24 33694.21 30894.34 38764.28 41291.34 40694.87 39489.45 33092.77 41377.54 41193.14 40693.35 408
MS-PatchMatch97.68 22197.75 20897.45 29998.23 33893.78 32897.29 25898.84 27696.10 29198.64 20698.65 24096.04 21399.36 36196.84 20199.14 28599.20 229
BH-w/o95.13 32894.89 33195.86 35698.20 33991.31 36995.65 34897.37 34093.64 35296.52 34995.70 37593.04 29599.02 38788.10 39295.82 39797.24 387
mvs_anonymous97.83 21498.16 17496.87 32698.18 34091.89 36097.31 25698.90 26197.37 22098.83 18299.46 6996.28 20499.79 20198.90 6898.16 34998.95 271
miper_lstm_enhance97.18 26097.16 24797.25 30998.16 34192.85 34495.15 36699.31 16497.25 23298.74 19698.78 21790.07 32499.78 21297.19 16799.80 10899.11 246
ET-MVSNet_ETH3D94.30 34093.21 35097.58 28598.14 34294.47 30294.78 37493.24 39794.72 33089.56 40895.87 37278.57 39199.81 18196.91 19097.11 38298.46 330
ADS-MVSNet295.43 32394.98 32796.76 33398.14 34291.74 36197.92 18997.76 33290.23 38696.51 35098.91 18885.61 35499.85 12292.88 34896.90 38398.69 313
ADS-MVSNet95.24 32694.93 33096.18 35098.14 34290.10 38597.92 18997.32 34490.23 38696.51 35098.91 18885.61 35499.74 23692.88 34896.90 38398.69 313
c3_l97.36 24497.37 23597.31 30498.09 34593.25 33795.01 36999.16 21897.05 24898.77 19198.72 22692.88 29799.64 28896.93 18999.76 13699.05 251
FMVSNet397.50 23297.24 24398.29 23398.08 34695.83 26097.86 19898.91 26097.89 17298.95 15898.95 18387.06 34299.81 18197.77 13999.69 16399.23 224
PAPM91.88 37590.34 37896.51 33798.06 34792.56 34992.44 40397.17 34786.35 40090.38 40796.01 36786.61 34599.21 38070.65 41395.43 39997.75 374
Effi-MVS+-dtu98.26 17397.90 20099.35 6998.02 34899.49 698.02 17599.16 21898.29 13997.64 28897.99 30696.44 19799.95 2396.66 21798.93 31198.60 321
eth_miper_zixun_eth97.23 25697.25 24297.17 31298.00 34992.77 34694.71 37599.18 21197.27 23098.56 22098.74 22391.89 31199.69 25797.06 18099.81 9899.05 251
HY-MVS95.94 1395.90 30995.35 31997.55 29097.95 35094.79 29098.81 8996.94 35692.28 37195.17 37898.57 25389.90 32699.75 23191.20 37597.33 37898.10 356
UGNet98.53 13898.45 13298.79 16297.94 35196.96 22199.08 5798.54 30599.10 8096.82 33899.47 6896.55 19299.84 14098.56 9499.94 3699.55 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29495.70 30298.79 16297.92 35299.12 5898.28 14398.60 30392.16 37295.54 37396.17 36694.77 26299.52 33089.62 38798.23 34397.72 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27896.55 28597.79 26597.91 35394.21 30897.56 23698.87 26797.49 20699.06 13699.05 15280.72 37999.80 18898.44 9899.82 9499.37 184
API-MVS97.04 26996.91 26197.42 30197.88 35498.23 12398.18 15298.50 30897.57 19597.39 31196.75 35596.77 18099.15 38490.16 38599.02 30094.88 406
miper_ehance_all_eth97.06 26797.03 25397.16 31497.83 35593.06 33994.66 37899.09 23095.99 29798.69 20098.45 26892.73 30299.61 30096.79 20399.03 29798.82 291
cl____97.02 27096.83 26697.58 28597.82 35694.04 31594.66 37899.16 21897.04 24998.63 20798.71 22788.68 33599.69 25797.00 18299.81 9899.00 263
DIV-MVS_self_test97.02 27096.84 26597.58 28597.82 35694.03 31694.66 37899.16 21897.04 24998.63 20798.71 22788.69 33399.69 25797.00 18299.81 9899.01 259
CANet97.87 20597.76 20798.19 24097.75 35895.51 26996.76 29099.05 23697.74 18196.93 32798.21 29095.59 23599.89 7597.86 13599.93 4199.19 234
UBG93.25 35792.32 35896.04 35597.72 35990.16 38495.92 33895.91 37496.03 29593.95 39593.04 40569.60 40299.52 33090.72 38397.98 36098.45 333
mvsany_test197.60 22697.54 22497.77 26797.72 35995.35 27595.36 36097.13 34994.13 34599.71 3599.33 9297.93 10099.30 37197.60 14898.94 31098.67 317
PVSNet_089.98 2191.15 37690.30 37993.70 38597.72 35984.34 41090.24 40697.42 33990.20 38993.79 39693.09 40490.90 31998.89 39586.57 39872.76 41397.87 367
CR-MVSNet96.28 29995.95 29797.28 30697.71 36294.22 30698.11 16198.92 25892.31 37096.91 33099.37 8285.44 35799.81 18197.39 15897.36 37697.81 370
RPMNet97.02 27096.93 25797.30 30597.71 36294.22 30698.11 16199.30 17299.37 4596.91 33099.34 9086.72 34499.87 10197.53 15297.36 37697.81 370
ETVMVS92.60 36591.08 37497.18 31097.70 36493.65 33396.54 29995.70 37796.51 27494.68 38492.39 40861.80 41599.50 33686.97 39597.41 37298.40 341
pmmvs395.03 33094.40 33696.93 32297.70 36492.53 35095.08 36797.71 33488.57 39697.71 28498.08 30179.39 38699.82 16796.19 25399.11 29198.43 338
baseline293.73 34992.83 35596.42 34097.70 36491.28 37196.84 28689.77 40893.96 35092.44 40395.93 37079.14 38799.77 21892.94 34696.76 38798.21 350
WBMVS95.18 32794.78 33296.37 34197.68 36789.74 38795.80 34498.73 29497.54 20198.30 24198.44 26970.06 40099.82 16796.62 21999.87 7499.54 107
tpm94.67 33494.34 33895.66 36297.68 36788.42 39197.88 19494.90 38294.46 33696.03 36398.56 25478.66 38999.79 20195.88 26695.01 40198.78 302
CANet_DTU97.26 25297.06 25297.84 26197.57 36994.65 29896.19 32198.79 28497.23 23895.14 37998.24 28793.22 28999.84 14097.34 16099.84 8499.04 255
testing1193.08 36092.02 36496.26 34697.56 37090.83 37996.32 31395.70 37796.47 27892.66 40293.73 39964.36 41399.59 30593.77 33197.57 36598.37 345
tpm293.09 35992.58 35794.62 37597.56 37086.53 39997.66 22395.79 37686.15 40194.07 39298.23 28975.95 39499.53 32690.91 38096.86 38697.81 370
testing9193.32 35592.27 35996.47 33997.54 37291.25 37296.17 32496.76 36097.18 24293.65 39893.50 40265.11 41299.63 29193.04 34597.45 36998.53 327
TR-MVS95.55 32095.12 32596.86 32997.54 37293.94 32096.49 30396.53 36594.36 34197.03 32596.61 35794.26 27499.16 38386.91 39796.31 39197.47 384
testing9993.04 36191.98 36796.23 34897.53 37490.70 38196.35 31195.94 37396.87 25993.41 39993.43 40363.84 41499.59 30593.24 34397.19 37998.40 341
131495.74 31495.60 30696.17 35197.53 37492.75 34798.07 16798.31 31691.22 38194.25 38896.68 35695.53 23699.03 38691.64 36797.18 38096.74 393
CostFormer93.97 34693.78 34394.51 37697.53 37485.83 40297.98 18295.96 37289.29 39494.99 38198.63 24578.63 39099.62 29494.54 30496.50 38898.09 357
FMVSNet596.01 30595.20 32398.41 21997.53 37496.10 24998.74 9099.50 8797.22 24198.03 26599.04 15469.80 40199.88 8497.27 16399.71 15599.25 219
PMMVS96.51 29095.98 29698.09 24597.53 37495.84 25994.92 37198.84 27691.58 37696.05 36295.58 37695.68 23299.66 28095.59 28298.09 35398.76 305
PAPR95.29 32494.47 33497.75 27197.50 37995.14 28394.89 37298.71 29691.39 38095.35 37795.48 38194.57 26599.14 38584.95 40097.37 37498.97 268
testing22291.96 37390.37 37796.72 33497.47 38092.59 34896.11 32694.76 38396.83 26192.90 40192.87 40657.92 41699.55 31986.93 39697.52 36698.00 363
PatchT96.65 28696.35 28997.54 29197.40 38195.32 27697.98 18296.64 36299.33 5096.89 33499.42 7684.32 36599.81 18197.69 14797.49 36797.48 383
tpm cat193.29 35693.13 35393.75 38497.39 38284.74 40597.39 24997.65 33683.39 40694.16 38998.41 27182.86 37499.39 35891.56 36995.35 40097.14 388
PatchmatchNetpermissive95.58 31995.67 30495.30 37097.34 38387.32 39797.65 22596.65 36195.30 31897.07 32198.69 23184.77 36099.75 23194.97 29498.64 33098.83 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 24596.97 25698.50 21097.31 38496.47 24198.18 15298.92 25898.95 9898.78 18899.37 8285.44 35799.85 12295.96 26499.83 9199.17 240
LS3D98.63 12198.38 14599.36 6397.25 38599.38 999.12 5699.32 15999.21 6298.44 23298.88 19897.31 14699.80 18896.58 22299.34 25298.92 277
IB-MVS91.63 1992.24 37190.90 37596.27 34597.22 38691.24 37394.36 38793.33 39692.37 36992.24 40494.58 39666.20 41099.89 7593.16 34494.63 40397.66 378
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 36891.76 37194.21 37997.16 38784.65 40695.42 35888.45 41095.96 29896.17 35795.84 37466.36 40899.71 24991.87 36398.64 33098.28 348
tpmrst95.07 32995.46 31293.91 38297.11 38884.36 40997.62 22896.96 35494.98 32496.35 35598.80 21385.46 35699.59 30595.60 28196.23 39297.79 373
Syy-MVS96.04 30495.56 31097.49 29697.10 38994.48 30196.18 32296.58 36395.65 30694.77 38292.29 40991.27 31699.36 36198.17 11398.05 35798.63 319
myMVS_eth3d91.92 37490.45 37696.30 34397.10 38990.90 37796.18 32296.58 36395.65 30694.77 38292.29 40953.88 41799.36 36189.59 38898.05 35798.63 319
MDTV_nov1_ep1395.22 32297.06 39183.20 41197.74 21396.16 36894.37 34096.99 32698.83 20783.95 36899.53 32693.90 32597.95 361
MVS93.19 35892.09 36296.50 33896.91 39294.03 31698.07 16798.06 32768.01 41194.56 38796.48 36095.96 22399.30 37183.84 40296.89 38596.17 398
E-PMN94.17 34294.37 33793.58 38696.86 39385.71 40390.11 40897.07 35098.17 15297.82 27997.19 34784.62 36298.94 39189.77 38697.68 36496.09 402
JIA-IIPM95.52 32195.03 32697.00 31896.85 39494.03 31696.93 28195.82 37599.20 6494.63 38699.71 1783.09 37299.60 30194.42 31094.64 40297.36 386
EMVS93.83 34894.02 34093.23 39096.83 39584.96 40489.77 40996.32 36797.92 16997.43 30896.36 36586.17 34998.93 39287.68 39397.73 36395.81 403
cl2295.79 31395.39 31796.98 32096.77 39692.79 34594.40 38698.53 30694.59 33397.89 27198.17 29382.82 37599.24 37796.37 24299.03 29798.92 277
WB-MVSnew95.73 31595.57 30996.23 34896.70 39790.70 38196.07 32893.86 39395.60 30897.04 32395.45 38596.00 21699.55 31991.04 37798.31 34198.43 338
dp93.47 35393.59 34693.13 39196.64 39881.62 41597.66 22396.42 36692.80 36596.11 35998.64 24378.55 39299.59 30593.31 34192.18 40998.16 353
test-LLR93.90 34793.85 34194.04 38096.53 39984.62 40794.05 39292.39 39996.17 28794.12 39095.07 38682.30 37699.67 26995.87 26998.18 34697.82 368
test-mter92.33 37091.76 37194.04 38096.53 39984.62 40794.05 39292.39 39994.00 34994.12 39095.07 38665.63 41199.67 26995.87 26998.18 34697.82 368
TESTMET0.1,192.19 37291.77 37093.46 38796.48 40182.80 41294.05 39291.52 40494.45 33894.00 39394.88 39266.65 40799.56 31695.78 27498.11 35298.02 360
MVS_030497.44 23997.01 25598.72 17696.42 40296.74 23197.20 26691.97 40298.46 12898.30 24198.79 21592.74 30199.91 6099.30 4199.94 3699.52 118
miper_enhance_ethall96.01 30595.74 30096.81 33096.41 40392.27 35793.69 39798.89 26491.14 38398.30 24197.35 34590.58 32199.58 31196.31 24699.03 29798.60 321
tpmvs95.02 33195.25 32194.33 37796.39 40485.87 40098.08 16596.83 35995.46 31395.51 37598.69 23185.91 35299.53 32694.16 31696.23 39297.58 381
CMPMVSbinary75.91 2396.29 29895.44 31498.84 15396.25 40598.69 8797.02 27499.12 22588.90 39597.83 27798.86 20189.51 32898.90 39491.92 36199.51 22598.92 277
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 33593.69 34496.99 31996.05 40693.61 33494.97 37093.49 39496.17 28797.57 29594.88 39282.30 37699.01 38993.60 33494.17 40598.37 345
EPMVS93.72 35093.27 34995.09 37396.04 40787.76 39598.13 15785.01 41494.69 33196.92 32898.64 24378.47 39399.31 36995.04 29296.46 38998.20 351
cascas94.79 33394.33 33996.15 35496.02 40892.36 35592.34 40499.26 19185.34 40395.08 38094.96 39192.96 29698.53 40094.41 31398.59 33497.56 382
MVStest195.86 31095.60 30696.63 33595.87 40991.70 36297.93 18698.94 25298.03 15999.56 5499.66 2771.83 39998.26 40399.35 3899.24 26899.91 10
gg-mvs-nofinetune92.37 36991.20 37395.85 35795.80 41092.38 35499.31 2681.84 41699.75 691.83 40599.74 1368.29 40399.02 38787.15 39497.12 38196.16 399
gm-plane-assit94.83 41181.97 41488.07 39894.99 38999.60 30191.76 364
GG-mvs-BLEND94.76 37494.54 41292.13 35999.31 2680.47 41788.73 41191.01 41167.59 40698.16 40582.30 40794.53 40493.98 407
EPNet_dtu94.93 33294.78 33295.38 36993.58 41387.68 39696.78 28895.69 37997.35 22289.14 41098.09 30088.15 34099.49 33994.95 29599.30 25998.98 265
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai76.24 38075.95 38377.12 39692.39 41467.91 42090.16 40759.44 42182.04 40789.42 40994.67 39549.68 41981.74 41448.06 41477.66 41281.72 410
KD-MVS_2432*160092.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
miper_refine_blended92.87 36391.99 36595.51 36691.37 41589.27 38894.07 39098.14 32395.42 31497.25 31696.44 36267.86 40499.24 37791.28 37396.08 39598.02 360
EPNet96.14 30295.44 31498.25 23590.76 41795.50 27097.92 18994.65 38498.97 9592.98 40098.85 20489.12 33199.87 10195.99 26299.68 16899.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan69.30 38168.95 38470.34 39787.68 41865.00 42191.11 40559.90 42069.02 41074.46 41588.89 41248.58 42068.03 41628.61 41572.33 41477.99 411
test_method79.78 37879.50 38180.62 39480.21 41945.76 42270.82 41098.41 31331.08 41480.89 41497.71 32284.85 35997.37 40791.51 37080.03 41198.75 306
tmp_tt78.77 37978.73 38278.90 39558.45 42074.76 41994.20 38978.26 41839.16 41386.71 41292.82 40780.50 38075.19 41586.16 39992.29 40886.74 409
testmvs17.12 38320.53 3866.87 39912.05 4214.20 42493.62 3986.73 4224.62 41710.41 41724.33 4148.28 4223.56 4189.69 41715.07 41512.86 414
test12317.04 38420.11 3877.82 39810.25 4224.91 42394.80 3734.47 4234.93 41610.00 41824.28 4159.69 4213.64 41710.14 41612.43 41614.92 413
test_blank0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
eth-test20.00 423
eth-test0.00 423
uanet_test0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
DCPMVS0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
cdsmvs_eth3d_5k24.66 38232.88 3850.00 4000.00 4230.00 4250.00 41199.10 2280.00 4180.00 41997.58 33099.21 160.00 4190.00 4180.00 4170.00 415
pcd_1.5k_mvsjas8.17 38510.90 3880.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 41898.07 880.00 4190.00 4180.00 4170.00 415
sosnet-low-res0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
sosnet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
uncertanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
Regformer0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
ab-mvs-re8.12 38610.83 3890.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 41997.48 3360.00 4230.00 4190.00 4180.00 4170.00 415
uanet0.00 3870.00 3900.00 4000.00 4230.00 4250.00 4110.00 4240.00 4180.00 4190.00 4180.00 4230.00 4190.00 4180.00 4170.00 415
WAC-MVS90.90 37791.37 372
PC_three_145293.27 35799.40 8598.54 25598.22 7697.00 40895.17 29099.45 23799.49 128
test_241102_TWO99.30 17298.03 15999.26 11299.02 15797.51 13599.88 8496.91 19099.60 19599.66 57
test_0728_THIRD98.17 15299.08 13499.02 15797.89 10199.88 8497.07 17899.71 15599.70 51
GSMVS98.81 295
sam_mvs184.74 36198.81 295
sam_mvs84.29 367
MTGPAbinary99.20 203
test_post197.59 23320.48 41783.07 37399.66 28094.16 316
test_post21.25 41683.86 36999.70 253
patchmatchnet-post98.77 21984.37 36499.85 122
MTMP97.93 18691.91 403
test9_res93.28 34299.15 28499.38 182
agg_prior292.50 35899.16 28299.37 184
test_prior497.97 15195.86 340
test_prior295.74 34696.48 27796.11 35997.63 32895.92 22694.16 31699.20 276
旧先验295.76 34588.56 39797.52 29999.66 28094.48 306
新几何295.93 336
无先验95.74 34698.74 29389.38 39399.73 24192.38 36099.22 228
原ACMM295.53 352
testdata299.79 20192.80 352
segment_acmp97.02 165
testdata195.44 35796.32 283
plane_prior599.27 18699.70 25394.42 31099.51 22599.45 151
plane_prior497.98 307
plane_prior397.78 17297.41 21697.79 280
plane_prior297.77 20898.20 149
plane_prior97.65 18197.07 27396.72 26799.36 248
n20.00 424
nn0.00 424
door-mid99.57 63
test1198.87 267
door99.41 125
HQP5-MVS96.79 227
BP-MVS92.82 350
HQP4-MVS95.56 36999.54 32499.32 203
HQP3-MVS99.04 23999.26 266
HQP2-MVS93.84 281
MDTV_nov1_ep13_2view74.92 41897.69 21890.06 39197.75 28385.78 35393.52 33698.69 313
ACMMP++_ref99.77 124
ACMMP++99.68 168
Test By Simon96.52 193