This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 18
Gipumacopyleft99.03 5899.16 4798.64 18099.94 298.51 10199.32 2299.75 3299.58 2898.60 21299.62 3398.22 7699.51 33397.70 14499.73 14297.89 361
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2599.31 3199.53 3499.91 398.98 6699.63 699.58 5699.44 3899.78 2899.76 1096.39 19899.92 5199.44 3599.92 5299.68 51
pmmvs699.67 399.70 399.60 1199.90 499.27 2399.53 899.76 2999.64 1899.84 2099.83 399.50 899.87 10199.36 3799.92 5299.64 60
PS-MVSNAJss99.46 1499.49 1299.35 6999.90 498.15 12799.20 4499.65 4799.48 3299.92 899.71 1798.07 8899.96 1299.53 29100.00 199.93 8
testf199.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
APD_test299.25 3499.16 4799.51 4399.89 699.63 498.71 9799.69 3898.90 10199.43 7799.35 8498.86 2899.67 26897.81 13599.81 9799.24 219
ANet_high99.57 799.67 599.28 8499.89 698.09 13499.14 5399.93 499.82 399.93 699.81 599.17 1899.94 3599.31 39100.00 199.82 23
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6499.34 1999.69 3898.93 9999.65 4799.72 1698.93 2699.95 2399.11 53100.00 199.82 23
v7n99.53 999.57 999.41 5999.88 998.54 9999.45 1099.61 5299.66 1699.68 4199.66 2798.44 6199.95 2399.73 1899.96 2399.75 41
mvs_tets99.63 599.67 599.49 4899.88 998.61 9199.34 1999.71 3499.27 5799.90 1299.74 1399.68 499.97 599.55 2899.99 599.88 14
test_fmvsmconf0.01_n99.57 799.63 799.36 6399.87 1298.13 13098.08 16499.95 199.45 3699.98 299.75 1199.80 199.97 599.82 799.99 599.99 1
jajsoiax99.58 699.61 899.48 5099.87 1298.61 9199.28 3699.66 4699.09 8399.89 1599.68 2099.53 799.97 599.50 3299.99 599.87 15
test_djsdf99.52 1099.51 1199.53 3499.86 1498.74 8199.39 1699.56 7099.11 7399.70 3799.73 1599.00 2299.97 599.26 4499.98 1299.89 11
MIMVSNet199.38 2499.32 2999.55 2499.86 1499.19 3899.41 1399.59 5499.59 2699.71 3599.57 4197.12 15899.90 6599.21 4999.87 7499.54 105
LTVRE_ROB98.40 199.67 399.71 299.56 2299.85 1699.11 6099.90 199.78 2799.63 2099.78 2899.67 2599.48 999.81 18099.30 4099.97 1999.77 33
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1699.69 499.58 5699.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 2999.78 31
SixPastTwentyTwo98.75 9698.62 10699.16 10499.83 1897.96 15499.28 3698.20 31799.37 4599.70 3799.65 3092.65 30299.93 4299.04 5999.84 8399.60 71
Baseline_NR-MVSNet98.98 6598.86 7599.36 6399.82 1998.55 9697.47 24499.57 6399.37 4599.21 11999.61 3696.76 18299.83 15798.06 11999.83 9099.71 44
pm-mvs199.44 1599.48 1499.33 7799.80 2098.63 8899.29 3299.63 4899.30 5499.65 4799.60 3899.16 2099.82 16799.07 5699.83 9099.56 94
TransMVSNet (Re)99.44 1599.47 1699.36 6399.80 2098.58 9499.27 3899.57 6399.39 4399.75 3299.62 3399.17 1899.83 15799.06 5799.62 18799.66 55
K. test v398.00 19497.66 21699.03 12999.79 2297.56 18699.19 4892.47 39499.62 2399.52 6399.66 2789.61 32699.96 1299.25 4699.81 9799.56 94
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7299.78 2398.11 13197.77 20699.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1299.99 599.96 5
APD_test198.83 8398.66 10099.34 7299.78 2399.47 798.42 13499.45 11098.28 14198.98 14999.19 11697.76 11199.58 31096.57 22299.55 21398.97 265
test_vis3_rt99.14 4699.17 4599.07 11999.78 2398.38 10898.92 7799.94 297.80 17699.91 1199.67 2597.15 15798.91 39199.76 1599.56 21099.92 9
EGC-MVSNET85.24 37380.54 37699.34 7299.77 2699.20 3599.08 5799.29 18012.08 41120.84 41299.42 7497.55 12999.85 12297.08 17699.72 14998.96 267
Anonymous2024052198.69 10798.87 7298.16 24399.77 2695.11 28599.08 5799.44 11499.34 4999.33 9699.55 4894.10 27899.94 3599.25 4699.96 2399.42 159
FC-MVSNet-test99.27 3199.25 3999.34 7299.77 2698.37 11099.30 3199.57 6399.61 2599.40 8499.50 5897.12 15899.85 12299.02 6199.94 3699.80 27
test_vis1_n98.31 16698.50 12297.73 27599.76 2994.17 31098.68 10099.91 796.31 28199.79 2799.57 4192.85 29899.42 35299.79 1299.84 8399.60 71
test_fmvs399.12 5199.41 1998.25 23599.76 2995.07 28699.05 6399.94 297.78 17899.82 2199.84 298.56 5499.71 24899.96 199.96 2399.97 3
XXY-MVS99.14 4699.15 5299.10 11399.76 2997.74 17598.85 8699.62 4998.48 12799.37 8999.49 6498.75 3699.86 10998.20 10999.80 10799.71 44
TDRefinement99.42 2099.38 2299.55 2499.76 2999.33 1799.68 599.71 3499.38 4499.53 6199.61 3698.64 4499.80 18798.24 10699.84 8399.52 115
fmvsm_s_conf0.1_n_a99.17 4299.30 3398.80 15999.75 3396.59 23697.97 18499.86 1398.22 14499.88 1799.71 1798.59 5099.84 14099.73 1899.98 1299.98 2
tt080598.69 10798.62 10698.90 14999.75 3399.30 1899.15 5296.97 35098.86 10498.87 17797.62 32698.63 4698.96 38899.41 3698.29 33998.45 330
test_vis1_n_192098.40 15298.92 6996.81 32999.74 3590.76 37898.15 15699.91 798.33 13399.89 1599.55 4895.07 24999.88 8499.76 1599.93 4199.79 28
FOURS199.73 3699.67 399.43 1199.54 7899.43 4099.26 111
PEN-MVS99.41 2199.34 2699.62 699.73 3699.14 5399.29 3299.54 7899.62 2399.56 5499.42 7498.16 8499.96 1298.78 7399.93 4199.77 33
lessismore_v098.97 13799.73 3697.53 18886.71 40899.37 8999.52 5789.93 32499.92 5198.99 6399.72 14999.44 152
SteuartSystems-ACMMP98.79 8998.54 11799.54 2799.73 3699.16 4498.23 14799.31 16497.92 16798.90 16898.90 18998.00 9499.88 8496.15 25399.72 14999.58 83
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 18498.15 17598.22 23899.73 3695.15 28297.36 25099.68 4394.45 33498.99 14899.27 9996.87 17299.94 3597.13 17399.91 5999.57 88
Vis-MVSNetpermissive99.34 2699.36 2399.27 8799.73 3698.26 11799.17 4999.78 2799.11 7399.27 10799.48 6598.82 3199.95 2398.94 6599.93 4199.59 77
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 10098.74 8498.62 18599.72 4296.08 25498.74 9098.64 29899.74 999.67 4399.24 10694.57 26499.95 2399.11 5399.24 26799.82 23
test_f98.67 11598.87 7298.05 25299.72 4295.59 26498.51 12199.81 2396.30 28399.78 2899.82 496.14 20998.63 39699.82 799.93 4199.95 6
ACMH96.65 799.25 3499.24 4099.26 8999.72 4298.38 10899.07 6099.55 7498.30 13699.65 4799.45 7199.22 1599.76 22398.44 9799.77 12399.64 60
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4599.33 2798.64 18099.71 4596.10 24997.87 19599.85 1598.56 12499.90 1299.68 2098.69 4199.85 12299.72 2099.98 1299.97 3
PS-CasMVS99.40 2299.33 2799.62 699.71 4599.10 6199.29 3299.53 8199.53 3099.46 7299.41 7798.23 7399.95 2398.89 6999.95 2999.81 26
DTE-MVSNet99.43 1999.35 2499.66 499.71 4599.30 1899.31 2699.51 8599.64 1899.56 5499.46 6798.23 7399.97 598.78 7399.93 4199.72 43
WR-MVS_H99.33 2799.22 4199.65 599.71 4599.24 2699.32 2299.55 7499.46 3599.50 6899.34 8897.30 14799.93 4298.90 6799.93 4199.77 33
HPM-MVS_fast99.01 6098.82 7899.57 1799.71 4599.35 1399.00 6899.50 8797.33 22098.94 16498.86 19998.75 3699.82 16797.53 15199.71 15499.56 94
ACMH+96.62 999.08 5699.00 6399.33 7799.71 4598.83 7698.60 10799.58 5699.11 7399.53 6199.18 12098.81 3299.67 26896.71 21399.77 12399.50 121
PMVScopyleft91.26 2097.86 20597.94 19597.65 27999.71 4597.94 15698.52 11698.68 29498.99 9297.52 29799.35 8497.41 14298.18 40091.59 36599.67 17396.82 388
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4699.09 5699.29 8399.70 5298.28 11699.13 5499.52 8499.48 3299.24 11699.41 7796.79 17999.82 16798.69 8399.88 7199.76 37
VPNet98.87 7898.83 7799.01 13299.70 5297.62 18498.43 13299.35 14699.47 3499.28 10599.05 15096.72 18599.82 16798.09 11699.36 24799.59 77
test_cas_vis1_n_192098.33 16398.68 9797.27 30699.69 5492.29 35598.03 17299.85 1597.62 18799.96 499.62 3393.98 27999.74 23599.52 3199.86 7799.79 28
MP-MVS-pluss98.57 12998.23 16599.60 1199.69 5499.35 1397.16 26899.38 13394.87 32498.97 15398.99 16898.01 9399.88 8497.29 16199.70 15999.58 83
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2998.96 13899.68 5697.35 19798.84 8899.48 9699.69 1299.63 5099.68 2099.03 2199.96 1297.97 12699.92 5299.57 88
sd_testset99.28 3099.31 3199.19 10099.68 5698.06 14399.41 1399.30 17299.69 1299.63 5099.68 2099.25 1499.96 1297.25 16499.92 5299.57 88
test_fmvs1_n98.09 18898.28 15797.52 29299.68 5693.47 33498.63 10399.93 495.41 31399.68 4199.64 3191.88 31199.48 34099.82 799.87 7499.62 64
CHOSEN 1792x268897.49 23397.14 24998.54 20399.68 5696.09 25296.50 30099.62 4991.58 37298.84 18098.97 17492.36 30499.88 8496.76 20699.95 2999.67 54
tfpnnormal98.90 7598.90 7198.91 14699.67 6097.82 16799.00 6899.44 11499.45 3699.51 6799.24 10698.20 7999.86 10995.92 26299.69 16299.04 252
MTAPA98.88 7798.64 10399.61 999.67 6099.36 1298.43 13299.20 20398.83 10898.89 17098.90 18996.98 16899.92 5197.16 16899.70 15999.56 94
test_fmvsmvis_n_192099.26 3399.49 1298.54 20399.66 6296.97 21998.00 17899.85 1599.24 5999.92 899.50 5899.39 1199.95 2399.89 399.98 1298.71 306
fmvsm_l_conf0.5_n_a99.19 4199.27 3698.94 14199.65 6397.05 21597.80 20299.76 2998.70 11299.78 2899.11 13698.79 3499.95 2399.85 599.96 2399.83 20
WB-MVS98.52 14198.55 11598.43 21799.65 6395.59 26498.52 11698.77 28599.65 1799.52 6399.00 16794.34 27099.93 4298.65 8598.83 31299.76 37
CP-MVSNet99.21 3999.09 5699.56 2299.65 6398.96 7199.13 5499.34 15299.42 4199.33 9699.26 10197.01 16699.94 3598.74 7899.93 4199.79 28
HPM-MVScopyleft98.79 8998.53 11899.59 1599.65 6399.29 2099.16 5099.43 12096.74 26398.61 21098.38 27298.62 4799.87 10196.47 23499.67 17399.59 77
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12498.36 14799.42 5799.65 6399.42 898.55 11299.57 6397.72 18198.90 16899.26 10196.12 21199.52 32995.72 27399.71 15499.32 200
fmvsm_l_conf0.5_n99.21 3999.28 3599.02 13199.64 6897.28 20197.82 19999.76 2998.73 10999.82 2199.09 14298.81 3299.95 2399.86 499.96 2399.83 20
test_fmvsmconf_n99.44 1599.48 1499.31 8299.64 6898.10 13397.68 21799.84 1899.29 5599.92 899.57 4199.60 599.96 1299.74 1799.98 1299.89 11
TSAR-MVS + MP.98.63 12198.49 12699.06 12599.64 6897.90 15898.51 12198.94 25296.96 25099.24 11698.89 19597.83 10499.81 18096.88 19699.49 23299.48 135
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8598.72 8899.12 10999.64 6898.54 9997.98 18199.68 4397.62 18799.34 9599.18 12097.54 13099.77 21797.79 13799.74 13999.04 252
KD-MVS_self_test99.25 3499.18 4499.44 5699.63 7299.06 6598.69 9999.54 7899.31 5299.62 5399.53 5497.36 14599.86 10999.24 4899.71 15499.39 172
EU-MVSNet97.66 22298.50 12295.13 36799.63 7285.84 39798.35 14098.21 31698.23 14399.54 5799.46 6795.02 25099.68 26598.24 10699.87 7499.87 15
HyFIR lowres test97.19 25896.60 28298.96 13899.62 7497.28 20195.17 36099.50 8794.21 33999.01 14698.32 28086.61 34499.99 297.10 17599.84 8399.60 71
ACMMP_NAP98.75 9698.48 12799.57 1799.58 7599.29 2097.82 19999.25 19296.94 25298.78 18799.12 13598.02 9299.84 14097.13 17399.67 17399.59 77
nrg03099.40 2299.35 2499.54 2799.58 7599.13 5698.98 7199.48 9699.68 1499.46 7299.26 10198.62 4799.73 24099.17 5299.92 5299.76 37
VDDNet98.21 17997.95 19399.01 13299.58 7597.74 17599.01 6697.29 34299.67 1598.97 15399.50 5890.45 32199.80 18797.88 13299.20 27399.48 135
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7699.41 5999.58 7599.10 6198.74 9099.56 7099.09 8399.33 9699.19 11698.40 6399.72 24795.98 26099.76 13599.42 159
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2799.45 1898.99 13499.57 7997.73 17797.93 18599.83 2099.22 6099.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 209
ZNCC-MVS98.68 11298.40 13999.54 2799.57 7999.21 2998.46 12999.29 18097.28 22698.11 25598.39 27098.00 9499.87 10196.86 19999.64 18199.55 101
MSP-MVS98.40 15298.00 18999.61 999.57 7999.25 2598.57 11099.35 14697.55 19899.31 10497.71 31994.61 26399.88 8496.14 25499.19 27699.70 49
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 16498.39 14298.13 24499.57 7995.54 26797.78 20499.49 9497.37 21799.19 12197.65 32398.96 2499.49 33796.50 23398.99 30199.34 193
MP-MVScopyleft98.46 14698.09 18099.54 2799.57 7999.22 2898.50 12399.19 20797.61 19097.58 29198.66 23697.40 14399.88 8494.72 29899.60 19499.54 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 10098.46 13199.47 5399.57 7998.97 6798.23 14799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
LGP-MVS_train99.47 5399.57 7998.97 6799.48 9696.60 26899.10 13199.06 14398.71 3999.83 15795.58 28099.78 11799.62 64
IS-MVSNet98.19 18197.90 19999.08 11799.57 7997.97 15199.31 2698.32 31299.01 9198.98 14999.03 15491.59 31299.79 20095.49 28299.80 10799.48 135
dcpmvs_298.78 9199.11 5397.78 26699.56 8793.67 33099.06 6199.86 1399.50 3199.66 4499.26 10197.21 15599.99 298.00 12499.91 5999.68 51
test_040298.76 9598.71 9198.93 14399.56 8798.14 12998.45 13199.34 15299.28 5698.95 15798.91 18698.34 6999.79 20095.63 27799.91 5998.86 285
EPP-MVSNet98.30 16798.04 18699.07 11999.56 8797.83 16499.29 3298.07 32399.03 8998.59 21499.13 13492.16 30799.90 6596.87 19799.68 16799.49 125
ACMMPcopyleft98.75 9698.50 12299.52 3999.56 8799.16 4498.87 8399.37 13797.16 24198.82 18499.01 16497.71 11499.87 10196.29 24599.69 16299.54 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5399.20 4398.78 16599.55 9196.59 23697.79 20399.82 2298.21 14599.81 2599.53 5498.46 6099.84 14099.70 2199.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3898.61 18899.55 9196.09 25297.74 21199.81 2398.55 12599.85 1999.55 4898.60 4999.84 14099.69 2399.98 1299.89 11
FMVSNet199.17 4299.17 4599.17 10199.55 9198.24 11999.20 4499.44 11499.21 6299.43 7799.55 4897.82 10799.86 10998.42 9999.89 6999.41 162
Vis-MVSNet (Re-imp)97.46 23597.16 24698.34 22799.55 9196.10 24998.94 7598.44 30798.32 13598.16 24998.62 24588.76 33199.73 24093.88 32499.79 11299.18 233
ACMM96.08 1298.91 7398.73 8699.48 5099.55 9199.14 5398.07 16699.37 13797.62 18799.04 14298.96 17798.84 3099.79 20097.43 15599.65 17999.49 125
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10498.97 6797.89 25999.54 9694.05 31298.55 11299.92 696.78 26199.72 3399.78 896.60 19099.67 26899.91 299.90 6599.94 7
mPP-MVS98.64 11998.34 15099.54 2799.54 9699.17 4098.63 10399.24 19797.47 20498.09 25798.68 23197.62 12399.89 7596.22 24899.62 18799.57 88
XVG-ACMP-BASELINE98.56 13098.34 15099.22 9799.54 9698.59 9397.71 21499.46 10697.25 22998.98 14998.99 16897.54 13099.84 14095.88 26399.74 13999.23 221
region2R98.69 10798.40 13999.54 2799.53 9999.17 4098.52 11699.31 16497.46 20998.44 23198.51 25797.83 10499.88 8496.46 23599.58 20399.58 83
PGM-MVS98.66 11698.37 14699.55 2499.53 9999.18 3998.23 14799.49 9497.01 24998.69 19998.88 19698.00 9499.89 7595.87 26699.59 19899.58 83
Patchmatch-RL test97.26 25197.02 25397.99 25699.52 10195.53 26896.13 32399.71 3497.47 20499.27 10799.16 12684.30 36599.62 29397.89 12999.77 12398.81 292
ACMMPR98.70 10498.42 13799.54 2799.52 10199.14 5398.52 11699.31 16497.47 20498.56 21998.54 25397.75 11299.88 8496.57 22299.59 19899.58 83
GST-MVS98.61 12598.30 15599.52 3999.51 10399.20 3598.26 14599.25 19297.44 21298.67 20198.39 27097.68 11599.85 12296.00 25899.51 22499.52 115
Anonymous2023120698.21 17998.21 16698.20 23999.51 10395.43 27398.13 15799.32 15996.16 28698.93 16598.82 20896.00 21699.83 15797.32 16099.73 14299.36 187
ACMP95.32 1598.41 15098.09 18099.36 6399.51 10398.79 7997.68 21799.38 13395.76 30098.81 18698.82 20898.36 6599.82 16794.75 29599.77 12399.48 135
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9498.52 11999.52 3999.50 10699.21 2998.02 17498.84 27497.97 16299.08 13399.02 15597.61 12499.88 8496.99 18399.63 18499.48 135
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10699.23 2798.02 17499.32 15999.88 8496.99 18399.63 18499.68 51
test072699.50 10699.21 2998.17 15599.35 14697.97 16299.26 11199.06 14397.61 124
AllTest98.44 14898.20 16799.16 10499.50 10698.55 9698.25 14699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
TestCases99.16 10499.50 10698.55 9699.58 5696.80 25998.88 17399.06 14397.65 11899.57 31294.45 30599.61 19299.37 181
XVG-OURS98.53 13898.34 15099.11 11199.50 10698.82 7895.97 32999.50 8797.30 22499.05 14098.98 17299.35 1299.32 36695.72 27399.68 16799.18 233
EG-PatchMatch MVS98.99 6299.01 6298.94 14199.50 10697.47 19098.04 17199.59 5498.15 15699.40 8499.36 8398.58 5399.76 22398.78 7399.68 16799.59 77
SED-MVS98.91 7398.72 8899.49 4899.49 11399.17 4098.10 16299.31 16498.03 15999.66 4499.02 15598.36 6599.88 8496.91 18999.62 18799.41 162
IU-MVS99.49 11399.15 4898.87 26592.97 35799.41 8196.76 20699.62 18799.66 55
test_241102_ONE99.49 11399.17 4099.31 16497.98 16199.66 4498.90 18998.36 6599.48 340
UA-Net99.47 1399.40 2099.70 299.49 11399.29 2099.80 399.72 3399.82 399.04 14299.81 598.05 9199.96 1298.85 7099.99 599.86 17
HFP-MVS98.71 10098.44 13499.51 4399.49 11399.16 4498.52 11699.31 16497.47 20498.58 21698.50 26197.97 9899.85 12296.57 22299.59 19899.53 112
VPA-MVSNet99.30 2999.30 3399.28 8499.49 11398.36 11399.00 6899.45 11099.63 2099.52 6399.44 7298.25 7199.88 8499.09 5599.84 8399.62 64
XVG-OURS-SEG-HR98.49 14398.28 15799.14 10799.49 11398.83 7696.54 29799.48 9697.32 22299.11 12898.61 24799.33 1399.30 36996.23 24798.38 33599.28 211
114514_t96.50 29195.77 29898.69 17799.48 12097.43 19497.84 19899.55 7481.42 40496.51 34798.58 25095.53 23599.67 26893.41 33799.58 20398.98 262
IterMVS-LS98.55 13498.70 9498.09 24599.48 12094.73 29497.22 26399.39 13198.97 9599.38 8799.31 9496.00 21699.93 4298.58 8899.97 1999.60 71
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6099.16 4798.57 19599.47 12296.31 24698.90 7899.47 10499.03 8999.52 6399.57 4196.93 16999.81 18099.60 2499.98 1299.60 71
XVS98.72 9998.45 13299.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29598.63 24397.50 13699.83 15796.79 20299.53 21999.56 94
X-MVStestdata94.32 33592.59 35399.53 3499.46 12399.21 2998.65 10199.34 15298.62 11797.54 29545.85 40997.50 13699.83 15796.79 20299.53 21999.56 94
test20.0398.78 9198.77 8398.78 16599.46 12397.20 20897.78 20499.24 19799.04 8899.41 8198.90 18997.65 11899.76 22397.70 14499.79 11299.39 172
CSCG98.68 11298.50 12299.20 9899.45 12698.63 8898.56 11199.57 6397.87 17198.85 17898.04 30197.66 11799.84 14096.72 21199.81 9799.13 241
GeoE99.05 5798.99 6599.25 9299.44 12798.35 11498.73 9499.56 7098.42 12998.91 16798.81 21098.94 2599.91 6098.35 10199.73 14299.49 125
v14898.45 14798.60 11198.00 25599.44 12794.98 28797.44 24699.06 23398.30 13699.32 10298.97 17496.65 18899.62 29398.37 10099.85 7999.39 172
v1098.97 6699.11 5398.55 20099.44 12796.21 24898.90 7899.55 7498.73 10999.48 6999.60 3896.63 18999.83 15799.70 2199.99 599.61 70
V4298.78 9198.78 8298.76 16999.44 12797.04 21698.27 14499.19 20797.87 17199.25 11599.16 12696.84 17399.78 21199.21 4999.84 8399.46 144
MDA-MVSNet-bldmvs97.94 19897.91 19898.06 25099.44 12794.96 28896.63 29599.15 22398.35 13198.83 18199.11 13694.31 27199.85 12296.60 21998.72 31899.37 181
casdiffmvs_mvgpermissive99.12 5199.16 4798.99 13499.43 13297.73 17798.00 17899.62 4999.22 6099.55 5699.22 11198.93 2699.75 23098.66 8499.81 9799.50 121
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 29296.82 26695.52 36199.42 13387.08 39499.22 4187.14 40799.11 7399.46 7299.58 4088.69 33299.86 10998.80 7299.95 2999.62 64
v2v48298.56 13098.62 10698.37 22499.42 13395.81 26197.58 23299.16 21897.90 16999.28 10599.01 16495.98 22199.79 20099.33 3899.90 6599.51 118
OPM-MVS98.56 13098.32 15499.25 9299.41 13598.73 8497.13 27099.18 21197.10 24498.75 19398.92 18598.18 8099.65 28496.68 21599.56 21099.37 181
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 19098.08 18398.04 25399.41 13594.59 30094.59 37899.40 12997.50 20198.82 18498.83 20596.83 17599.84 14097.50 15399.81 9799.71 44
test_one_060199.39 13799.20 3599.31 16498.49 12698.66 20399.02 15597.64 121
mvsany_test398.87 7898.92 6998.74 17599.38 13896.94 22398.58 10999.10 22896.49 27399.96 499.81 598.18 8099.45 34798.97 6499.79 11299.83 20
patch_mono-298.51 14298.63 10498.17 24199.38 13894.78 29197.36 25099.69 3898.16 15598.49 22799.29 9697.06 16199.97 598.29 10599.91 5999.76 37
test250692.39 36391.89 36593.89 37999.38 13882.28 40999.32 2266.03 41599.08 8598.77 19099.57 4166.26 40599.84 14098.71 8199.95 2999.54 105
ECVR-MVScopyleft96.42 29496.61 28095.85 35399.38 13888.18 39099.22 4186.00 40999.08 8599.36 9199.57 4188.47 33799.82 16798.52 9499.95 2999.54 105
casdiffmvspermissive98.95 6999.00 6398.81 15799.38 13897.33 19897.82 19999.57 6399.17 7199.35 9399.17 12498.35 6899.69 25698.46 9699.73 14299.41 162
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6899.02 6198.76 16999.38 13897.26 20398.49 12499.50 8798.86 10499.19 12199.06 14398.23 7399.69 25698.71 8199.76 13599.33 198
TranMVSNet+NR-MVSNet99.17 4299.07 5999.46 5599.37 14498.87 7498.39 13699.42 12399.42 4199.36 9199.06 14398.38 6499.95 2398.34 10299.90 6599.57 88
tttt051795.64 31694.98 32597.64 28199.36 14593.81 32698.72 9590.47 40298.08 15898.67 20198.34 27773.88 39699.92 5197.77 13899.51 22499.20 226
test_part299.36 14599.10 6199.05 140
v114498.60 12698.66 10098.41 21999.36 14595.90 25797.58 23299.34 15297.51 20099.27 10799.15 13096.34 20399.80 18799.47 3499.93 4199.51 118
CP-MVS98.70 10498.42 13799.52 3999.36 14599.12 5898.72 9599.36 14197.54 19998.30 24098.40 26997.86 10399.89 7596.53 23199.72 14999.56 94
Test_1112_low_res96.99 27396.55 28498.31 23199.35 14995.47 27195.84 34099.53 8191.51 37496.80 33698.48 26491.36 31499.83 15796.58 22099.53 21999.62 64
DeepC-MVS97.60 498.97 6698.93 6899.10 11399.35 14997.98 15098.01 17799.46 10697.56 19699.54 5799.50 5898.97 2399.84 14098.06 11999.92 5299.49 125
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 25096.86 26298.58 19299.34 15196.32 24596.75 28999.58 5693.14 35596.89 33197.48 33392.11 30899.86 10996.91 18999.54 21599.57 88
MVSMamba_PlusPlus98.83 8398.98 6698.36 22599.32 15296.58 23898.90 7899.41 12599.75 698.72 19699.50 5896.17 20799.94 3599.27 4299.78 11798.57 322
iter_conf0599.03 5899.22 4198.46 21399.32 15296.55 24099.55 799.70 3799.75 699.82 2199.50 5896.17 20799.94 3599.27 4299.86 7798.88 282
SF-MVS98.53 13898.27 16099.32 7999.31 15498.75 8098.19 15199.41 12596.77 26298.83 18198.90 18997.80 10999.82 16795.68 27699.52 22299.38 179
CPTT-MVS97.84 21197.36 23599.27 8799.31 15498.46 10498.29 14299.27 18694.90 32397.83 27598.37 27394.90 25299.84 14093.85 32699.54 21599.51 118
UnsupCasMVSNet_eth97.89 20197.60 22198.75 17199.31 15497.17 21197.62 22699.35 14698.72 11198.76 19298.68 23192.57 30399.74 23597.76 14295.60 39499.34 193
pmmvs-eth3d98.47 14598.34 15098.86 15199.30 15797.76 17397.16 26899.28 18395.54 30699.42 8099.19 11697.27 15099.63 29097.89 12999.97 1999.20 226
mamv499.44 1599.39 2199.58 1699.30 15799.74 299.04 6499.81 2399.77 599.82 2199.57 4197.82 10799.98 499.53 2999.89 6999.01 256
Anonymous2023121199.27 3199.27 3699.26 8999.29 15998.18 12599.49 999.51 8599.70 1199.80 2699.68 2096.84 17399.83 15799.21 4999.91 5999.77 33
UnsupCasMVSNet_bld97.30 24896.92 25898.45 21599.28 16096.78 23096.20 31899.27 18695.42 31098.28 24398.30 28193.16 28999.71 24894.99 29097.37 37098.87 284
EC-MVSNet99.09 5499.05 6099.20 9899.28 16098.93 7299.24 4099.84 1899.08 8598.12 25498.37 27398.72 3899.90 6599.05 5899.77 12398.77 300
DPE-MVScopyleft98.59 12898.26 16199.57 1799.27 16299.15 4897.01 27399.39 13197.67 18399.44 7698.99 16897.53 13299.89 7595.40 28499.68 16799.66 55
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 21098.18 17096.87 32599.27 16291.16 37395.53 34899.25 19299.10 8099.41 8199.35 8493.10 29199.96 1298.65 8599.94 3699.49 125
v119298.60 12698.66 10098.41 21999.27 16295.88 25897.52 23899.36 14197.41 21399.33 9699.20 11496.37 20199.82 16799.57 2699.92 5299.55 101
N_pmnet97.63 22497.17 24598.99 13499.27 16297.86 16195.98 32893.41 39195.25 31599.47 7198.90 18995.63 23299.85 12296.91 18999.73 14299.27 212
FPMVS93.44 35192.23 35697.08 31499.25 16697.86 16195.61 34597.16 34592.90 35993.76 39398.65 23875.94 39495.66 40679.30 40697.49 36397.73 371
new-patchmatchnet98.35 15998.74 8497.18 30999.24 16792.23 35796.42 30599.48 9698.30 13699.69 3999.53 5497.44 14199.82 16798.84 7199.77 12399.49 125
MCST-MVS98.00 19497.63 21999.10 11399.24 16798.17 12696.89 28298.73 29295.66 30197.92 26697.70 32197.17 15699.66 27996.18 25299.23 26999.47 142
UniMVSNet (Re)98.87 7898.71 9199.35 6999.24 16798.73 8497.73 21399.38 13398.93 9999.12 12798.73 22296.77 18099.86 10998.63 8799.80 10799.46 144
jason97.45 23797.35 23697.76 27099.24 16793.93 32095.86 33798.42 30894.24 33898.50 22698.13 29194.82 25699.91 6097.22 16599.73 14299.43 156
jason: jason.
IterMVS97.73 21698.11 17996.57 33499.24 16790.28 38195.52 35099.21 20198.86 10499.33 9699.33 9093.11 29099.94 3598.49 9599.94 3699.48 135
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13498.62 10698.32 22999.22 17295.58 26697.51 24099.45 11097.16 24199.45 7599.24 10696.12 21199.85 12299.60 2499.88 7199.55 101
ITE_SJBPF98.87 15099.22 17298.48 10399.35 14697.50 20198.28 24398.60 24897.64 12199.35 36293.86 32599.27 26298.79 298
h-mvs3397.77 21497.33 23899.10 11399.21 17497.84 16398.35 14098.57 30199.11 7398.58 21699.02 15588.65 33599.96 1298.11 11496.34 38699.49 125
v14419298.54 13698.57 11498.45 21599.21 17495.98 25597.63 22599.36 14197.15 24399.32 10299.18 12095.84 22799.84 14099.50 3299.91 5999.54 105
APDe-MVScopyleft98.99 6298.79 8199.60 1199.21 17499.15 4898.87 8399.48 9697.57 19399.35 9399.24 10697.83 10499.89 7597.88 13299.70 15999.75 41
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7198.81 8099.28 8499.21 17498.45 10598.46 12999.33 15799.63 2099.48 6999.15 13097.23 15399.75 23097.17 16799.66 17899.63 63
SR-MVS-dyc-post98.81 8798.55 11599.57 1799.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.49 13999.86 10996.56 22699.39 24399.45 148
RE-MVS-def98.58 11399.20 17899.38 998.48 12799.30 17298.64 11398.95 15798.96 17797.75 11296.56 22699.39 24399.45 148
v192192098.54 13698.60 11198.38 22299.20 17895.76 26397.56 23499.36 14197.23 23599.38 8799.17 12496.02 21499.84 14099.57 2699.90 6599.54 105
thisisatest053095.27 32394.45 33297.74 27399.19 18194.37 30497.86 19690.20 40397.17 24098.22 24597.65 32373.53 39799.90 6596.90 19499.35 24998.95 268
Anonymous2024052998.93 7198.87 7299.12 10999.19 18198.22 12499.01 6698.99 25099.25 5899.54 5799.37 8097.04 16299.80 18797.89 12999.52 22299.35 191
APD-MVS_3200maxsize98.84 8298.61 11099.53 3499.19 18199.27 2398.49 12499.33 15798.64 11399.03 14598.98 17297.89 10199.85 12296.54 23099.42 24099.46 144
HQP_MVS97.99 19797.67 21398.93 14399.19 18197.65 18197.77 20699.27 18698.20 14997.79 27897.98 30494.90 25299.70 25294.42 30799.51 22499.45 148
plane_prior799.19 18197.87 160
ab-mvs98.41 15098.36 14798.59 19199.19 18197.23 20499.32 2298.81 27997.66 18498.62 20899.40 7996.82 17699.80 18795.88 26399.51 22498.75 303
F-COLMAP97.30 24896.68 27599.14 10799.19 18198.39 10797.27 25999.30 17292.93 35896.62 34298.00 30295.73 23099.68 26592.62 35398.46 33499.35 191
SR-MVS98.71 10098.43 13599.57 1799.18 18899.35 1398.36 13999.29 18098.29 13998.88 17398.85 20297.53 13299.87 10196.14 25499.31 25599.48 135
UniMVSNet_NR-MVSNet98.86 8198.68 9799.40 6199.17 18998.74 8197.68 21799.40 12999.14 7299.06 13598.59 24996.71 18699.93 4298.57 9099.77 12399.53 112
LF4IMVS97.90 19997.69 21298.52 20599.17 18997.66 18097.19 26799.47 10496.31 28197.85 27498.20 28896.71 18699.52 32994.62 29999.72 14998.38 339
SMA-MVScopyleft98.40 15298.03 18799.51 4399.16 19199.21 2998.05 16999.22 20094.16 34098.98 14999.10 13997.52 13499.79 20096.45 23699.64 18199.53 112
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8598.63 10499.39 6299.16 19198.74 8197.54 23699.25 19298.84 10799.06 13598.76 21996.76 18299.93 4298.57 9099.77 12399.50 121
NR-MVSNet98.95 6998.82 7899.36 6399.16 19198.72 8699.22 4199.20 20399.10 8099.72 3398.76 21996.38 20099.86 10998.00 12499.82 9399.50 121
MVS_111021_LR98.30 16798.12 17898.83 15499.16 19198.03 14596.09 32599.30 17297.58 19298.10 25698.24 28498.25 7199.34 36396.69 21499.65 17999.12 242
DSMNet-mixed97.42 24097.60 22196.87 32599.15 19591.46 36398.54 11499.12 22592.87 36097.58 29199.63 3296.21 20699.90 6595.74 27299.54 21599.27 212
D2MVS97.84 21197.84 20397.83 26299.14 19694.74 29396.94 27798.88 26395.84 29898.89 17098.96 17794.40 26899.69 25697.55 14899.95 2999.05 248
pmmvs597.64 22397.49 22798.08 24899.14 19695.12 28496.70 29299.05 23693.77 34798.62 20898.83 20593.23 28799.75 23098.33 10499.76 13599.36 187
CS-MVS-test99.13 4999.09 5699.26 8999.13 19898.97 6799.31 2699.88 1199.44 3898.16 24998.51 25798.64 4499.93 4298.91 6699.85 7998.88 282
VDD-MVS98.56 13098.39 14299.07 11999.13 19898.07 14098.59 10897.01 34899.59 2699.11 12899.27 9994.82 25699.79 20098.34 10299.63 18499.34 193
save fliter99.11 20097.97 15196.53 29999.02 24498.24 142
APD-MVScopyleft98.10 18697.67 21399.42 5799.11 20098.93 7297.76 20999.28 18394.97 32198.72 19698.77 21797.04 16299.85 12293.79 32799.54 21599.49 125
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10798.71 9198.62 18599.10 20296.37 24397.23 26098.87 26599.20 6499.19 12198.99 16897.30 14799.85 12298.77 7699.79 11299.65 59
EI-MVSNet98.40 15298.51 12098.04 25399.10 20294.73 29497.20 26498.87 26598.97 9599.06 13599.02 15596.00 21699.80 18798.58 8899.82 9399.60 71
CVMVSNet96.25 29997.21 24493.38 38599.10 20280.56 41297.20 26498.19 31996.94 25299.00 14799.02 15589.50 32899.80 18796.36 24199.59 19899.78 31
EI-MVSNet-Vis-set98.68 11298.70 9498.63 18499.09 20596.40 24297.23 26098.86 27099.20 6499.18 12598.97 17497.29 14999.85 12298.72 8099.78 11799.64 60
HPM-MVS++copyleft98.10 18697.64 21899.48 5099.09 20599.13 5697.52 23898.75 28997.46 20996.90 33097.83 31496.01 21599.84 14095.82 27099.35 24999.46 144
DP-MVS Recon97.33 24696.92 25898.57 19599.09 20597.99 14796.79 28599.35 14693.18 35497.71 28298.07 29995.00 25199.31 36793.97 32099.13 28498.42 336
MVS_111021_HR98.25 17598.08 18398.75 17199.09 20597.46 19195.97 32999.27 18697.60 19197.99 26498.25 28398.15 8699.38 35896.87 19799.57 20799.42 159
9.1497.78 20599.07 20997.53 23799.32 15995.53 30798.54 22398.70 22897.58 12699.76 22394.32 31299.46 234
PAPM_NR96.82 28096.32 29098.30 23299.07 20996.69 23497.48 24298.76 28695.81 29996.61 34396.47 35894.12 27799.17 38090.82 37997.78 35899.06 247
TAMVS98.24 17698.05 18598.80 15999.07 20997.18 21097.88 19298.81 27996.66 26799.17 12699.21 11294.81 25899.77 21796.96 18799.88 7199.44 152
CLD-MVS97.49 23397.16 24698.48 21199.07 20997.03 21794.71 37199.21 20194.46 33298.06 25997.16 34597.57 12799.48 34094.46 30499.78 11798.95 268
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4999.10 5599.24 9499.06 21399.15 4899.36 1899.88 1199.36 4898.21 24698.46 26598.68 4299.93 4299.03 6099.85 7998.64 315
thres100view90094.19 33893.67 34295.75 35699.06 21391.35 36698.03 17294.24 38698.33 13397.40 30794.98 38779.84 38199.62 29383.05 39998.08 35196.29 392
thres600view794.45 33393.83 33996.29 34199.06 21391.53 36297.99 18094.24 38698.34 13297.44 30595.01 38579.84 38199.67 26884.33 39798.23 34097.66 374
plane_prior199.05 216
YYNet197.60 22597.67 21397.39 30299.04 21793.04 34195.27 35798.38 31197.25 22998.92 16698.95 18195.48 23999.73 24096.99 18398.74 31699.41 162
MDA-MVSNet_test_wron97.60 22597.66 21697.41 30199.04 21793.09 33795.27 35798.42 30897.26 22898.88 17398.95 18195.43 24199.73 24097.02 18098.72 31899.41 162
MIMVSNet96.62 28796.25 29497.71 27699.04 21794.66 29799.16 5096.92 35497.23 23597.87 27199.10 13986.11 35099.65 28491.65 36399.21 27298.82 288
PatchMatch-RL97.24 25496.78 26998.61 18899.03 22097.83 16496.36 30899.06 23393.49 35297.36 31197.78 31595.75 22999.49 33793.44 33698.77 31598.52 325
ZD-MVS99.01 22198.84 7599.07 23294.10 34298.05 26198.12 29396.36 20299.86 10992.70 35299.19 276
CDPH-MVS97.26 25196.66 27899.07 11999.00 22298.15 12796.03 32799.01 24791.21 37897.79 27897.85 31396.89 17199.69 25692.75 35099.38 24699.39 172
diffmvspermissive98.22 17798.24 16498.17 24199.00 22295.44 27296.38 30799.58 5697.79 17798.53 22498.50 26196.76 18299.74 23597.95 12899.64 18199.34 193
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15298.19 16999.03 12999.00 22297.65 18196.85 28398.94 25298.57 12298.89 17098.50 26195.60 23399.85 12297.54 15099.85 7999.59 77
plane_prior698.99 22597.70 17994.90 252
xiu_mvs_v1_base_debu97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
xiu_mvs_v1_base_debi97.86 20598.17 17196.92 32298.98 22693.91 32196.45 30299.17 21597.85 17398.41 23497.14 34798.47 5799.92 5198.02 12199.05 29096.92 385
MVP-Stereo98.08 18997.92 19798.57 19598.96 22996.79 22797.90 19099.18 21196.41 27798.46 22998.95 18195.93 22499.60 30096.51 23298.98 30399.31 204
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15298.68 9797.54 29098.96 22997.99 14797.88 19299.36 14198.20 14999.63 5099.04 15298.76 3595.33 40896.56 22699.74 13999.31 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14698.94 23197.76 17398.76 28687.58 39596.75 33898.10 29594.80 25999.78 21192.73 35199.00 29999.20 226
USDC97.41 24197.40 23197.44 29998.94 23193.67 33095.17 36099.53 8194.03 34498.97 15399.10 13995.29 24399.34 36395.84 26999.73 14299.30 207
tfpn200view994.03 34293.44 34495.78 35598.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35196.29 392
testdata98.09 24598.93 23395.40 27498.80 28190.08 38697.45 30498.37 27395.26 24499.70 25293.58 33298.95 30699.17 237
thres40094.14 34093.44 34496.24 34498.93 23391.44 36497.60 22994.29 38497.94 16597.10 31694.31 39479.67 38399.62 29383.05 39998.08 35197.66 374
TAPA-MVS96.21 1196.63 28695.95 29698.65 17998.93 23398.09 13496.93 27999.28 18383.58 40198.13 25397.78 31596.13 21099.40 35493.52 33399.29 26098.45 330
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23796.93 22495.54 34798.78 28485.72 39896.86 33398.11 29494.43 26699.10 28999.23 221
PVSNet_BlendedMVS97.55 23097.53 22497.60 28398.92 23793.77 32896.64 29499.43 12094.49 33097.62 28799.18 12096.82 17699.67 26894.73 29699.93 4199.36 187
PVSNet_Blended96.88 27696.68 27597.47 29798.92 23793.77 32894.71 37199.43 12090.98 38097.62 28797.36 34196.82 17699.67 26894.73 29699.56 21098.98 262
MSDG97.71 21897.52 22598.28 23498.91 24096.82 22694.42 38199.37 13797.65 18598.37 23998.29 28297.40 14399.33 36594.09 31899.22 27098.68 313
Anonymous20240521197.90 19997.50 22699.08 11798.90 24198.25 11898.53 11596.16 36598.87 10399.11 12898.86 19990.40 32299.78 21197.36 15899.31 25599.19 231
原ACMM198.35 22698.90 24196.25 24798.83 27892.48 36496.07 35898.10 29595.39 24299.71 24892.61 35498.99 30199.08 244
GBi-Net98.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
test198.65 11798.47 12999.17 10198.90 24198.24 11999.20 4499.44 11498.59 11998.95 15799.55 4894.14 27499.86 10997.77 13899.69 16299.41 162
FMVSNet298.49 14398.40 13998.75 17198.90 24197.14 21498.61 10699.13 22498.59 11999.19 12199.28 9794.14 27499.82 16797.97 12699.80 10799.29 209
OMC-MVS97.88 20397.49 22799.04 12898.89 24698.63 8896.94 27799.25 19295.02 31998.53 22498.51 25797.27 15099.47 34393.50 33599.51 22499.01 256
MVSFormer98.26 17398.43 13597.77 26798.88 24793.89 32499.39 1699.56 7099.11 7398.16 24998.13 29193.81 28299.97 599.26 4499.57 20799.43 156
lupinMVS97.06 26696.86 26297.65 27998.88 24793.89 32495.48 35197.97 32593.53 35098.16 24997.58 32793.81 28299.91 6096.77 20599.57 20799.17 237
dmvs_re95.98 30695.39 31597.74 27398.86 24997.45 19298.37 13895.69 37597.95 16496.56 34495.95 36690.70 31997.68 40288.32 38796.13 39098.11 351
DELS-MVS98.27 17198.20 16798.48 21198.86 24996.70 23395.60 34699.20 20397.73 18098.45 23098.71 22597.50 13699.82 16798.21 10899.59 19898.93 273
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 20197.98 19197.60 28398.86 24994.35 30596.21 31799.44 11497.45 21199.06 13598.88 19697.99 9799.28 37394.38 31199.58 20399.18 233
LCM-MVSNet-Re98.64 11998.48 12799.11 11198.85 25298.51 10198.49 12499.83 2098.37 13099.69 3999.46 6798.21 7899.92 5194.13 31799.30 25898.91 277
pmmvs497.58 22897.28 23998.51 20698.84 25396.93 22495.40 35598.52 30493.60 34998.61 21098.65 23895.10 24899.60 30096.97 18699.79 11298.99 261
NP-MVS98.84 25397.39 19696.84 350
sss97.21 25696.93 25698.06 25098.83 25595.22 28096.75 28998.48 30694.49 33097.27 31297.90 31092.77 29999.80 18796.57 22299.32 25399.16 240
PVSNet93.40 1795.67 31495.70 30195.57 36098.83 25588.57 38692.50 39897.72 33092.69 36296.49 35096.44 35993.72 28599.43 35093.61 33099.28 26198.71 306
MVEpermissive83.40 2292.50 36291.92 36494.25 37498.83 25591.64 36192.71 39783.52 41195.92 29686.46 40995.46 37995.20 24595.40 40780.51 40498.64 32795.73 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 23798.82 25895.97 25698.62 10599.00 24999.27 10799.21 11296.99 16799.50 33496.55 22999.50 23199.26 215
旧先验198.82 25897.45 19298.76 28698.34 27795.50 23899.01 29899.23 221
test_vis1_rt97.75 21597.72 21197.83 26298.81 26096.35 24497.30 25599.69 3894.61 32897.87 27198.05 30096.26 20598.32 39998.74 7898.18 34398.82 288
WTY-MVS96.67 28496.27 29397.87 26098.81 26094.61 29996.77 28797.92 32794.94 32297.12 31597.74 31891.11 31699.82 16793.89 32398.15 34799.18 233
3Dnovator+97.89 398.69 10798.51 12099.24 9498.81 26098.40 10699.02 6599.19 20798.99 9298.07 25899.28 9797.11 16099.84 14096.84 20099.32 25399.47 142
QAPM97.31 24796.81 26898.82 15598.80 26397.49 18999.06 6199.19 20790.22 38497.69 28499.16 12696.91 17099.90 6590.89 37899.41 24199.07 246
VNet98.42 14998.30 15598.79 16298.79 26497.29 20098.23 14798.66 29599.31 5298.85 17898.80 21194.80 25999.78 21198.13 11399.13 28499.31 204
DPM-MVS96.32 29695.59 30698.51 20698.76 26597.21 20794.54 38098.26 31491.94 36996.37 35197.25 34393.06 29399.43 35091.42 36898.74 31698.89 279
3Dnovator98.27 298.81 8798.73 8699.05 12698.76 26597.81 17099.25 3999.30 17298.57 12298.55 22199.33 9097.95 9999.90 6597.16 16899.67 17399.44 152
PLCcopyleft94.65 1696.51 28995.73 30098.85 15298.75 26797.91 15796.42 30599.06 23390.94 38195.59 36497.38 33994.41 26799.59 30490.93 37698.04 35699.05 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27896.75 27197.08 31498.74 26893.33 33596.71 29198.26 31496.72 26498.44 23197.37 34095.20 24599.47 34391.89 35997.43 36798.44 332
hse-mvs297.46 23597.07 25098.64 18098.73 26997.33 19897.45 24597.64 33599.11 7398.58 21697.98 30488.65 33599.79 20098.11 11497.39 36998.81 292
CDS-MVSNet97.69 21997.35 23698.69 17798.73 26997.02 21896.92 28198.75 28995.89 29798.59 21498.67 23392.08 30999.74 23596.72 21199.81 9799.32 200
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19497.74 20898.80 15998.72 27198.09 13498.05 16999.60 5397.39 21596.63 34195.55 37497.68 11599.80 18796.73 21099.27 26298.52 325
LFMVS97.20 25796.72 27298.64 18098.72 27196.95 22298.93 7694.14 38899.74 998.78 18799.01 16484.45 36299.73 24097.44 15499.27 26299.25 216
new_pmnet96.99 27396.76 27097.67 27798.72 27194.89 28995.95 33398.20 31792.62 36398.55 22198.54 25394.88 25599.52 32993.96 32199.44 23998.59 321
Fast-Effi-MVS+97.67 22197.38 23398.57 19598.71 27497.43 19497.23 26099.45 11094.82 32596.13 35596.51 35598.52 5699.91 6096.19 25098.83 31298.37 341
TEST998.71 27498.08 13895.96 33199.03 24191.40 37595.85 36197.53 32996.52 19399.76 223
train_agg97.10 26396.45 28799.07 11998.71 27498.08 13895.96 33199.03 24191.64 37095.85 36197.53 32996.47 19599.76 22393.67 32999.16 27999.36 187
TSAR-MVS + GP.98.18 18297.98 19198.77 16898.71 27497.88 15996.32 31198.66 29596.33 27999.23 11898.51 25797.48 14099.40 35497.16 16899.46 23499.02 255
FA-MVS(test-final)96.99 27396.82 26697.50 29498.70 27894.78 29199.34 1996.99 34995.07 31898.48 22899.33 9088.41 33899.65 28496.13 25698.92 30998.07 354
AUN-MVS96.24 30095.45 31198.60 19098.70 27897.22 20697.38 24897.65 33395.95 29595.53 37197.96 30882.11 37799.79 20096.31 24397.44 36698.80 297
our_test_397.39 24297.73 21096.34 33998.70 27889.78 38394.61 37798.97 25196.50 27299.04 14298.85 20295.98 22199.84 14097.26 16399.67 17399.41 162
ppachtmachnet_test97.50 23197.74 20896.78 33198.70 27891.23 37294.55 37999.05 23696.36 27899.21 11998.79 21396.39 19899.78 21196.74 20899.82 9399.34 193
PCF-MVS92.86 1894.36 33493.00 35198.42 21898.70 27897.56 18693.16 39699.11 22779.59 40597.55 29497.43 33692.19 30699.73 24079.85 40599.45 23697.97 360
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bld_raw_conf0398.38 15898.39 14298.33 22898.69 28396.58 23898.90 7899.41 12597.57 19398.72 19699.20 11495.48 23999.86 10997.76 14299.78 11798.57 322
ETV-MVS98.03 19197.86 20298.56 19998.69 28398.07 14097.51 24099.50 8798.10 15797.50 29995.51 37598.41 6299.88 8496.27 24699.24 26797.71 373
test_prior98.95 14098.69 28397.95 15599.03 24199.59 30499.30 207
mvsmamba97.57 22997.26 24098.51 20698.69 28396.73 23298.74 9097.25 34397.03 24897.88 27099.23 11090.95 31799.87 10196.61 21899.00 29998.91 277
agg_prior98.68 28797.99 14799.01 24795.59 36499.77 217
test_898.67 28898.01 14695.91 33699.02 24491.64 37095.79 36397.50 33296.47 19599.76 223
HQP-NCC98.67 28896.29 31396.05 28995.55 367
ACMP_Plane98.67 28896.29 31396.05 28995.55 367
CNVR-MVS98.17 18497.87 20199.07 11998.67 28898.24 11997.01 27398.93 25497.25 22997.62 28798.34 27797.27 15099.57 31296.42 23799.33 25299.39 172
HQP-MVS97.00 27296.49 28698.55 20098.67 28896.79 22796.29 31399.04 23996.05 28995.55 36796.84 35093.84 28099.54 32392.82 34799.26 26599.32 200
MM98.22 17797.99 19098.91 14698.66 29396.97 21997.89 19194.44 38299.54 2998.95 15799.14 13393.50 28699.92 5199.80 1199.96 2399.85 18
test_fmvs197.72 21797.94 19597.07 31698.66 29392.39 35297.68 21799.81 2395.20 31799.54 5799.44 7291.56 31399.41 35399.78 1499.77 12399.40 171
balanced_conf0398.63 12198.72 8898.38 22298.66 29396.68 23598.90 7899.42 12398.99 9298.97 15399.19 11695.81 22899.85 12298.77 7699.77 12398.60 318
thres20093.72 34793.14 34995.46 36498.66 29391.29 36896.61 29694.63 38197.39 21596.83 33493.71 39779.88 38099.56 31582.40 40298.13 34895.54 401
wuyk23d96.06 30297.62 22091.38 38898.65 29798.57 9598.85 8696.95 35296.86 25799.90 1299.16 12699.18 1798.40 39889.23 38599.77 12377.18 408
NCCC97.86 20597.47 23099.05 12698.61 29898.07 14096.98 27598.90 26097.63 18697.04 32097.93 30995.99 22099.66 27995.31 28598.82 31499.43 156
DeepC-MVS_fast96.85 698.30 16798.15 17598.75 17198.61 29897.23 20497.76 20999.09 23097.31 22398.75 19398.66 23697.56 12899.64 28796.10 25799.55 21399.39 172
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 34992.09 35897.75 27198.60 30094.40 30397.32 25395.26 37797.56 19696.79 33795.50 37653.57 41499.77 21795.26 28698.97 30499.08 244
thisisatest051594.12 34193.16 34896.97 32098.60 30092.90 34293.77 39290.61 40194.10 34296.91 32795.87 36974.99 39599.80 18794.52 30299.12 28798.20 347
GA-MVS95.86 30995.32 31897.49 29598.60 30094.15 31193.83 39197.93 32695.49 30896.68 33997.42 33783.21 37099.30 36996.22 24898.55 33399.01 256
dmvs_testset92.94 35892.21 35795.13 36798.59 30390.99 37497.65 22392.09 39796.95 25194.00 39093.55 39892.34 30596.97 40572.20 40892.52 40397.43 381
OPU-MVS98.82 15598.59 30398.30 11598.10 16298.52 25698.18 8098.75 39594.62 29999.48 23399.41 162
MSLP-MVS++98.02 19298.14 17797.64 28198.58 30595.19 28197.48 24299.23 19997.47 20497.90 26898.62 24597.04 16298.81 39497.55 14899.41 24198.94 272
test1298.93 14398.58 30597.83 16498.66 29596.53 34595.51 23799.69 25699.13 28499.27 212
CL-MVSNet_self_test97.44 23897.22 24398.08 24898.57 30795.78 26294.30 38498.79 28296.58 27098.60 21298.19 28994.74 26299.64 28796.41 23898.84 31198.82 288
PS-MVSNAJ97.08 26597.39 23296.16 35098.56 30892.46 35095.24 35998.85 27397.25 22997.49 30095.99 36598.07 8899.90 6596.37 23998.67 32696.12 397
CNLPA97.17 26096.71 27398.55 20098.56 30898.05 14496.33 31098.93 25496.91 25497.06 31997.39 33894.38 26999.45 34791.66 36299.18 27898.14 350
xiu_mvs_v2_base97.16 26197.49 22796.17 34898.54 31092.46 35095.45 35298.84 27497.25 22997.48 30196.49 35698.31 7099.90 6596.34 24298.68 32596.15 396
alignmvs97.35 24496.88 26198.78 16598.54 31098.09 13497.71 21497.69 33299.20 6497.59 29095.90 36888.12 34099.55 31898.18 11098.96 30598.70 309
FE-MVS95.66 31594.95 32797.77 26798.53 31295.28 27799.40 1596.09 36793.11 35697.96 26599.26 10179.10 38799.77 21792.40 35698.71 32098.27 345
Effi-MVS+98.02 19297.82 20498.62 18598.53 31297.19 20997.33 25299.68 4397.30 22496.68 33997.46 33598.56 5499.80 18796.63 21798.20 34298.86 285
baseline195.96 30795.44 31297.52 29298.51 31493.99 31898.39 13696.09 36798.21 14598.40 23897.76 31786.88 34299.63 29095.42 28389.27 40698.95 268
MVS_Test98.18 18298.36 14797.67 27798.48 31594.73 29498.18 15299.02 24497.69 18298.04 26299.11 13697.22 15499.56 31598.57 9098.90 31098.71 306
MGCFI-Net98.34 16098.28 15798.51 20698.47 31697.59 18598.96 7299.48 9699.18 7097.40 30795.50 37698.66 4399.50 33498.18 11098.71 32098.44 332
BH-RMVSNet96.83 27896.58 28397.58 28598.47 31694.05 31296.67 29397.36 33896.70 26697.87 27197.98 30495.14 24799.44 34990.47 38098.58 33299.25 216
sasdasda98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
canonicalmvs98.34 16098.26 16198.58 19298.46 31897.82 16798.96 7299.46 10699.19 6897.46 30295.46 37998.59 5099.46 34598.08 11798.71 32098.46 327
MVS-HIRNet94.32 33595.62 30490.42 38998.46 31875.36 41396.29 31389.13 40595.25 31595.38 37399.75 1192.88 29699.19 37994.07 31999.39 24396.72 390
PHI-MVS98.29 17097.95 19399.34 7298.44 32199.16 4498.12 15999.38 13396.01 29298.06 25998.43 26797.80 10999.67 26895.69 27599.58 20399.20 226
DVP-MVS++98.90 7598.70 9499.51 4398.43 32299.15 4899.43 1199.32 15998.17 15299.26 11199.02 15598.18 8099.88 8497.07 17799.45 23699.49 125
MSC_two_6792asdad99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
No_MVS99.32 7998.43 32298.37 11098.86 27099.89 7597.14 17199.60 19499.71 44
Fast-Effi-MVS+-dtu98.27 17198.09 18098.81 15798.43 32298.11 13197.61 22899.50 8798.64 11397.39 30997.52 33198.12 8799.95 2396.90 19498.71 32098.38 339
OpenMVS_ROBcopyleft95.38 1495.84 31095.18 32297.81 26498.41 32697.15 21397.37 24998.62 29983.86 40098.65 20498.37 27394.29 27299.68 26588.41 38698.62 33096.60 391
DeepPCF-MVS96.93 598.32 16498.01 18899.23 9698.39 32798.97 6795.03 36499.18 21196.88 25599.33 9698.78 21598.16 8499.28 37396.74 20899.62 18799.44 152
Patchmatch-test96.55 28896.34 28997.17 31198.35 32893.06 33898.40 13597.79 32897.33 22098.41 23498.67 23383.68 36999.69 25695.16 28899.31 25598.77 300
AdaColmapbinary97.14 26296.71 27398.46 21398.34 32997.80 17196.95 27698.93 25495.58 30596.92 32597.66 32295.87 22699.53 32590.97 37599.14 28298.04 355
OpenMVScopyleft96.65 797.09 26496.68 27598.32 22998.32 33097.16 21298.86 8599.37 13789.48 38896.29 35399.15 13096.56 19199.90 6592.90 34499.20 27397.89 361
MG-MVS96.77 28196.61 28097.26 30798.31 33193.06 33895.93 33498.12 32296.45 27697.92 26698.73 22293.77 28499.39 35691.19 37399.04 29399.33 198
test_yl96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
DCV-MVSNet96.69 28296.29 29197.90 25798.28 33295.24 27897.29 25697.36 33898.21 14598.17 24797.86 31186.27 34699.55 31894.87 29398.32 33698.89 279
CHOSEN 280x42095.51 32095.47 30995.65 35998.25 33488.27 38993.25 39598.88 26393.53 35094.65 38297.15 34686.17 34899.93 4297.41 15699.93 4198.73 305
SCA96.41 29596.66 27895.67 35798.24 33588.35 38895.85 33996.88 35596.11 28797.67 28598.67 23393.10 29199.85 12294.16 31399.22 27098.81 292
DeepMVS_CXcopyleft93.44 38498.24 33594.21 30894.34 38364.28 40891.34 40294.87 39189.45 32992.77 40977.54 40793.14 40293.35 404
MS-PatchMatch97.68 22097.75 20797.45 29898.23 33793.78 32797.29 25698.84 27496.10 28898.64 20598.65 23896.04 21399.36 35996.84 20099.14 28299.20 226
BH-w/o95.13 32594.89 32995.86 35298.20 33891.31 36795.65 34497.37 33793.64 34896.52 34695.70 37293.04 29499.02 38588.10 38895.82 39397.24 383
mvs_anonymous97.83 21398.16 17496.87 32598.18 33991.89 35997.31 25498.90 26097.37 21798.83 18199.46 6796.28 20499.79 20098.90 6798.16 34698.95 268
miper_lstm_enhance97.18 25997.16 24697.25 30898.16 34092.85 34395.15 36299.31 16497.25 22998.74 19598.78 21590.07 32399.78 21197.19 16699.80 10799.11 243
ET-MVSNet_ETH3D94.30 33793.21 34797.58 28598.14 34194.47 30294.78 37093.24 39394.72 32689.56 40495.87 36978.57 39099.81 18096.91 18997.11 37898.46 327
ADS-MVSNet295.43 32194.98 32596.76 33298.14 34191.74 36097.92 18797.76 32990.23 38296.51 34798.91 18685.61 35399.85 12292.88 34596.90 37998.69 310
ADS-MVSNet95.24 32494.93 32896.18 34798.14 34190.10 38297.92 18797.32 34190.23 38296.51 34798.91 18685.61 35399.74 23592.88 34596.90 37998.69 310
c3_l97.36 24397.37 23497.31 30398.09 34493.25 33695.01 36599.16 21897.05 24598.77 19098.72 22492.88 29699.64 28796.93 18899.76 13599.05 248
FMVSNet397.50 23197.24 24298.29 23398.08 34595.83 26097.86 19698.91 25997.89 17098.95 15798.95 18187.06 34199.81 18097.77 13899.69 16299.23 221
PAPM91.88 37190.34 37496.51 33598.06 34692.56 34892.44 39997.17 34486.35 39690.38 40396.01 36486.61 34499.21 37870.65 40995.43 39597.75 370
Effi-MVS+-dtu98.26 17397.90 19999.35 6998.02 34799.49 698.02 17499.16 21898.29 13997.64 28697.99 30396.44 19799.95 2396.66 21698.93 30898.60 318
eth_miper_zixun_eth97.23 25597.25 24197.17 31198.00 34892.77 34594.71 37199.18 21197.27 22798.56 21998.74 22191.89 31099.69 25697.06 17999.81 9799.05 248
HY-MVS95.94 1395.90 30895.35 31797.55 28997.95 34994.79 29098.81 8996.94 35392.28 36795.17 37598.57 25189.90 32599.75 23091.20 37297.33 37498.10 352
UGNet98.53 13898.45 13298.79 16297.94 35096.96 22199.08 5798.54 30299.10 8096.82 33599.47 6696.55 19299.84 14098.56 9399.94 3699.55 101
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29395.70 30198.79 16297.92 35199.12 5898.28 14398.60 30092.16 36895.54 37096.17 36394.77 26199.52 32989.62 38398.23 34097.72 372
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27796.55 28497.79 26597.91 35294.21 30897.56 23498.87 26597.49 20399.06 13599.05 15080.72 37899.80 18798.44 9799.82 9399.37 181
API-MVS97.04 26896.91 26097.42 30097.88 35398.23 12398.18 15298.50 30597.57 19397.39 30996.75 35296.77 18099.15 38290.16 38199.02 29794.88 402
miper_ehance_all_eth97.06 26697.03 25297.16 31397.83 35493.06 33894.66 37499.09 23095.99 29398.69 19998.45 26692.73 30199.61 29996.79 20299.03 29498.82 288
cl____97.02 26996.83 26597.58 28597.82 35594.04 31494.66 37499.16 21897.04 24698.63 20698.71 22588.68 33499.69 25697.00 18199.81 9799.00 260
DIV-MVS_self_test97.02 26996.84 26497.58 28597.82 35594.03 31594.66 37499.16 21897.04 24698.63 20698.71 22588.69 33299.69 25697.00 18199.81 9799.01 256
CANet97.87 20497.76 20698.19 24097.75 35795.51 26996.76 28899.05 23697.74 17996.93 32498.21 28795.59 23499.89 7597.86 13499.93 4199.19 231
mvsany_test197.60 22597.54 22397.77 26797.72 35895.35 27595.36 35697.13 34694.13 34199.71 3599.33 9097.93 10099.30 36997.60 14798.94 30798.67 314
PVSNet_089.98 2191.15 37290.30 37593.70 38197.72 35884.34 40690.24 40297.42 33690.20 38593.79 39293.09 40190.90 31898.89 39386.57 39472.76 40997.87 363
CR-MVSNet96.28 29895.95 29697.28 30597.71 36094.22 30698.11 16098.92 25792.31 36696.91 32799.37 8085.44 35699.81 18097.39 15797.36 37297.81 366
RPMNet97.02 26996.93 25697.30 30497.71 36094.22 30698.11 16099.30 17299.37 4596.91 32799.34 8886.72 34399.87 10197.53 15197.36 37297.81 366
ETVMVS92.60 36191.08 37097.18 30997.70 36293.65 33296.54 29795.70 37396.51 27194.68 38192.39 40461.80 41199.50 33486.97 39197.41 36898.40 337
pmmvs395.03 32794.40 33396.93 32197.70 36292.53 34995.08 36397.71 33188.57 39297.71 28298.08 29879.39 38599.82 16796.19 25099.11 28898.43 334
baseline293.73 34692.83 35296.42 33897.70 36291.28 36996.84 28489.77 40493.96 34692.44 39995.93 36779.14 38699.77 21792.94 34396.76 38398.21 346
tpm94.67 33194.34 33595.66 35897.68 36588.42 38797.88 19294.90 37894.46 33296.03 36098.56 25278.66 38899.79 20095.88 26395.01 39798.78 299
CANet_DTU97.26 25197.06 25197.84 26197.57 36694.65 29896.19 31998.79 28297.23 23595.14 37698.24 28493.22 28899.84 14097.34 15999.84 8399.04 252
testing1193.08 35692.02 36096.26 34397.56 36790.83 37796.32 31195.70 37396.47 27592.66 39893.73 39664.36 40999.59 30493.77 32897.57 36198.37 341
tpm293.09 35592.58 35494.62 37197.56 36786.53 39597.66 22195.79 37286.15 39794.07 38998.23 28675.95 39399.53 32590.91 37796.86 38297.81 366
testing9193.32 35292.27 35596.47 33797.54 36991.25 37096.17 32296.76 35797.18 23993.65 39493.50 39965.11 40899.63 29093.04 34297.45 36598.53 324
TR-MVS95.55 31895.12 32396.86 32897.54 36993.94 31996.49 30196.53 36294.36 33797.03 32296.61 35494.26 27399.16 38186.91 39396.31 38797.47 380
testing9993.04 35791.98 36396.23 34597.53 37190.70 37996.35 30995.94 37096.87 25693.41 39593.43 40063.84 41099.59 30493.24 34097.19 37598.40 337
131495.74 31295.60 30596.17 34897.53 37192.75 34698.07 16698.31 31391.22 37794.25 38596.68 35395.53 23599.03 38491.64 36497.18 37696.74 389
CostFormer93.97 34393.78 34094.51 37297.53 37185.83 39897.98 18195.96 36989.29 39094.99 37898.63 24378.63 38999.62 29394.54 30196.50 38498.09 353
FMVSNet596.01 30495.20 32198.41 21997.53 37196.10 24998.74 9099.50 8797.22 23898.03 26399.04 15269.80 39899.88 8497.27 16299.71 15499.25 216
PMMVS96.51 28995.98 29598.09 24597.53 37195.84 25994.92 36798.84 27491.58 37296.05 35995.58 37395.68 23199.66 27995.59 27998.09 35098.76 302
PAPR95.29 32294.47 33197.75 27197.50 37695.14 28394.89 36898.71 29391.39 37695.35 37495.48 37894.57 26499.14 38384.95 39697.37 37098.97 265
testing22291.96 36990.37 37396.72 33397.47 37792.59 34796.11 32494.76 37996.83 25892.90 39792.87 40257.92 41299.55 31886.93 39297.52 36298.00 359
PatchT96.65 28596.35 28897.54 29097.40 37895.32 27697.98 18196.64 35999.33 5096.89 33199.42 7484.32 36499.81 18097.69 14697.49 36397.48 379
tpm cat193.29 35393.13 35093.75 38097.39 37984.74 40197.39 24797.65 33383.39 40294.16 38698.41 26882.86 37399.39 35691.56 36695.35 39697.14 384
PatchmatchNetpermissive95.58 31795.67 30395.30 36697.34 38087.32 39397.65 22396.65 35895.30 31497.07 31898.69 22984.77 35999.75 23094.97 29198.64 32798.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 24496.97 25598.50 21097.31 38196.47 24198.18 15298.92 25798.95 9898.78 18799.37 8085.44 35699.85 12295.96 26199.83 9099.17 237
LS3D98.63 12198.38 14599.36 6397.25 38299.38 999.12 5699.32 15999.21 6298.44 23198.88 19697.31 14699.80 18796.58 22099.34 25198.92 274
IB-MVS91.63 1992.24 36790.90 37196.27 34297.22 38391.24 37194.36 38393.33 39292.37 36592.24 40094.58 39366.20 40699.89 7593.16 34194.63 39997.66 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 36491.76 36794.21 37597.16 38484.65 40295.42 35488.45 40695.96 29496.17 35495.84 37166.36 40499.71 24891.87 36098.64 32798.28 344
tpmrst95.07 32695.46 31093.91 37897.11 38584.36 40597.62 22696.96 35194.98 32096.35 35298.80 21185.46 35599.59 30495.60 27896.23 38897.79 369
Syy-MVS96.04 30395.56 30897.49 29597.10 38694.48 30196.18 32096.58 36095.65 30294.77 37992.29 40591.27 31599.36 35998.17 11298.05 35498.63 316
myMVS_eth3d91.92 37090.45 37296.30 34097.10 38690.90 37596.18 32096.58 36095.65 30294.77 37992.29 40553.88 41399.36 35989.59 38498.05 35498.63 316
MDTV_nov1_ep1395.22 32097.06 38883.20 40797.74 21196.16 36594.37 33696.99 32398.83 20583.95 36799.53 32593.90 32297.95 357
MVS93.19 35492.09 35896.50 33696.91 38994.03 31598.07 16698.06 32468.01 40794.56 38496.48 35795.96 22399.30 36983.84 39896.89 38196.17 394
E-PMN94.17 33994.37 33493.58 38296.86 39085.71 39990.11 40497.07 34798.17 15297.82 27797.19 34484.62 36198.94 38989.77 38297.68 36096.09 398
JIA-IIPM95.52 31995.03 32497.00 31796.85 39194.03 31596.93 27995.82 37199.20 6494.63 38399.71 1783.09 37199.60 30094.42 30794.64 39897.36 382
EMVS93.83 34594.02 33793.23 38696.83 39284.96 40089.77 40596.32 36497.92 16797.43 30696.36 36286.17 34898.93 39087.68 38997.73 35995.81 399
cl2295.79 31195.39 31596.98 31996.77 39392.79 34494.40 38298.53 30394.59 32997.89 26998.17 29082.82 37499.24 37596.37 23999.03 29498.92 274
WB-MVSnew95.73 31395.57 30796.23 34596.70 39490.70 37996.07 32693.86 38995.60 30497.04 32095.45 38296.00 21699.55 31891.04 37498.31 33898.43 334
dp93.47 35093.59 34393.13 38796.64 39581.62 41197.66 22196.42 36392.80 36196.11 35698.64 24178.55 39199.59 30493.31 33892.18 40598.16 349
test-LLR93.90 34493.85 33894.04 37696.53 39684.62 40394.05 38892.39 39596.17 28494.12 38795.07 38382.30 37599.67 26895.87 26698.18 34397.82 364
test-mter92.33 36691.76 36794.04 37696.53 39684.62 40394.05 38892.39 39594.00 34594.12 38795.07 38365.63 40799.67 26895.87 26698.18 34397.82 364
TESTMET0.1,192.19 36891.77 36693.46 38396.48 39882.80 40894.05 38891.52 40094.45 33494.00 39094.88 38966.65 40399.56 31595.78 27198.11 34998.02 356
MVS_030497.44 23897.01 25498.72 17696.42 39996.74 23197.20 26491.97 39898.46 12898.30 24098.79 21392.74 30099.91 6099.30 4099.94 3699.52 115
miper_enhance_ethall96.01 30495.74 29996.81 32996.41 40092.27 35693.69 39398.89 26291.14 37998.30 24097.35 34290.58 32099.58 31096.31 24399.03 29498.60 318
tpmvs95.02 32895.25 31994.33 37396.39 40185.87 39698.08 16496.83 35695.46 30995.51 37298.69 22985.91 35199.53 32594.16 31396.23 38897.58 377
CMPMVSbinary75.91 2396.29 29795.44 31298.84 15396.25 40298.69 8797.02 27299.12 22588.90 39197.83 27598.86 19989.51 32798.90 39291.92 35899.51 22498.92 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 33293.69 34196.99 31896.05 40393.61 33394.97 36693.49 39096.17 28497.57 29394.88 38982.30 37599.01 38793.60 33194.17 40198.37 341
EPMVS93.72 34793.27 34695.09 36996.04 40487.76 39198.13 15785.01 41094.69 32796.92 32598.64 24178.47 39299.31 36795.04 28996.46 38598.20 347
cascas94.79 33094.33 33696.15 35196.02 40592.36 35492.34 40099.26 19185.34 39995.08 37794.96 38892.96 29598.53 39794.41 31098.59 33197.56 378
gg-mvs-nofinetune92.37 36591.20 36995.85 35395.80 40692.38 35399.31 2681.84 41299.75 691.83 40199.74 1368.29 39999.02 38587.15 39097.12 37796.16 395
gm-plane-assit94.83 40781.97 41088.07 39494.99 38699.60 30091.76 361
GG-mvs-BLEND94.76 37094.54 40892.13 35899.31 2680.47 41388.73 40791.01 40767.59 40298.16 40182.30 40394.53 40093.98 403
EPNet_dtu94.93 32994.78 33095.38 36593.58 40987.68 39296.78 28695.69 37597.35 21989.14 40698.09 29788.15 33999.49 33794.95 29299.30 25898.98 262
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai76.24 37675.95 37977.12 39292.39 41067.91 41690.16 40359.44 41782.04 40389.42 40594.67 39249.68 41581.74 41048.06 41077.66 40881.72 406
KD-MVS_2432*160092.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
miper_refine_blended92.87 35991.99 36195.51 36291.37 41189.27 38494.07 38698.14 32095.42 31097.25 31396.44 35967.86 40099.24 37591.28 37096.08 39198.02 356
EPNet96.14 30195.44 31298.25 23590.76 41395.50 27097.92 18794.65 38098.97 9592.98 39698.85 20289.12 33099.87 10195.99 25999.68 16799.39 172
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan69.30 37768.95 38070.34 39387.68 41465.00 41791.11 40159.90 41669.02 40674.46 41188.89 40848.58 41668.03 41228.61 41172.33 41077.99 407
test_method79.78 37479.50 37780.62 39080.21 41545.76 41870.82 40698.41 31031.08 41080.89 41097.71 31984.85 35897.37 40391.51 36780.03 40798.75 303
tmp_tt78.77 37578.73 37878.90 39158.45 41674.76 41594.20 38578.26 41439.16 40986.71 40892.82 40380.50 37975.19 41186.16 39592.29 40486.74 405
testmvs17.12 37920.53 3826.87 39512.05 4174.20 42093.62 3946.73 4184.62 41310.41 41324.33 4108.28 4183.56 4149.69 41315.07 41112.86 410
test12317.04 38020.11 3837.82 39410.25 4184.91 41994.80 3694.47 4194.93 41210.00 41424.28 4119.69 4173.64 41310.14 41212.43 41214.92 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
eth-test20.00 419
eth-test0.00 419
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k24.66 37832.88 3810.00 3960.00 4190.00 4210.00 40799.10 2280.00 4140.00 41597.58 32799.21 160.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas8.17 38110.90 3840.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41498.07 880.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re8.12 38210.83 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41597.48 3330.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS90.90 37591.37 369
PC_three_145293.27 35399.40 8498.54 25398.22 7697.00 40495.17 28799.45 23699.49 125
test_241102_TWO99.30 17298.03 15999.26 11199.02 15597.51 13599.88 8496.91 18999.60 19499.66 55
test_0728_THIRD98.17 15299.08 13399.02 15597.89 10199.88 8497.07 17799.71 15499.70 49
GSMVS98.81 292
sam_mvs184.74 36098.81 292
sam_mvs84.29 366
MTGPAbinary99.20 203
test_post197.59 23120.48 41383.07 37299.66 27994.16 313
test_post21.25 41283.86 36899.70 252
patchmatchnet-post98.77 21784.37 36399.85 122
MTMP97.93 18591.91 399
test9_res93.28 33999.15 28199.38 179
agg_prior292.50 35599.16 27999.37 181
test_prior497.97 15195.86 337
test_prior295.74 34296.48 27496.11 35697.63 32595.92 22594.16 31399.20 273
旧先验295.76 34188.56 39397.52 29799.66 27994.48 303
新几何295.93 334
无先验95.74 34298.74 29189.38 38999.73 24092.38 35799.22 225
原ACMM295.53 348
testdata299.79 20092.80 349
segment_acmp97.02 165
testdata195.44 35396.32 280
plane_prior599.27 18699.70 25294.42 30799.51 22499.45 148
plane_prior497.98 304
plane_prior397.78 17297.41 21397.79 278
plane_prior297.77 20698.20 149
plane_prior97.65 18197.07 27196.72 26499.36 247
n20.00 420
nn0.00 420
door-mid99.57 63
test1198.87 265
door99.41 125
HQP5-MVS96.79 227
BP-MVS92.82 347
HQP4-MVS95.56 36699.54 32399.32 200
HQP3-MVS99.04 23999.26 265
HQP2-MVS93.84 280
MDTV_nov1_ep13_2view74.92 41497.69 21690.06 38797.75 28185.78 35293.52 33398.69 310
ACMMP++_ref99.77 123
ACMMP++99.68 167
Test By Simon96.52 193