This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1399.98 199.99 199.96 199.77 2100.00 199.81 12100.00 199.85 25
Gipumacopyleft99.03 6699.16 5198.64 18899.94 298.51 10499.32 2399.75 3699.58 2998.60 22099.62 3798.22 8399.51 34597.70 15299.73 14897.89 375
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2599.31 3599.53 3799.91 398.98 6999.63 799.58 6299.44 4299.78 3099.76 1296.39 20699.92 5399.44 4099.92 5799.68 59
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3399.64 1999.84 2299.83 499.50 899.87 11199.36 4299.92 5799.64 69
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 5299.48 3499.92 899.71 1998.07 9699.96 1299.53 34100.00 199.93 11
testf199.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
APD_test299.25 3699.16 5199.51 4699.89 699.63 498.71 9999.69 4398.90 10999.43 8399.35 9298.86 2999.67 27897.81 14399.81 10299.24 232
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 45100.00 199.82 30
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4398.93 10799.65 4999.72 1898.93 2799.95 2499.11 58100.00 199.82 30
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5899.66 1799.68 4399.66 2998.44 6499.95 2499.73 2199.96 2699.75 49
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3999.27 6199.90 1299.74 1599.68 499.97 599.55 3399.99 599.88 19
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 4099.98 299.75 1399.80 199.97 599.82 899.99 599.99 2
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 5199.09 8999.89 1599.68 2299.53 799.97 599.50 3799.99 599.87 20
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7699.11 7999.70 3999.73 1799.00 2299.97 599.26 4999.98 1299.89 16
MIMVSNet199.38 2499.32 3399.55 2799.86 1499.19 4199.41 1499.59 6099.59 2799.71 3799.57 4697.12 16699.90 6899.21 5499.87 7999.54 116
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 3199.63 2199.78 3099.67 2799.48 999.81 19099.30 4699.97 2099.77 40
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 6299.90 399.86 1999.78 1099.58 699.95 2499.00 6799.95 3399.78 38
SixPastTwentyTwo98.75 10398.62 11399.16 10799.83 1897.96 15799.28 3798.20 32999.37 4999.70 3999.65 3392.65 30999.93 4499.04 6499.84 8899.60 82
Baseline_NR-MVSNet98.98 7298.86 8299.36 6699.82 1998.55 9997.47 25699.57 6999.37 4999.21 12799.61 4096.76 19099.83 16698.06 12799.83 9599.71 52
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5499.30 5899.65 4999.60 4299.16 2099.82 17699.07 6199.83 9599.56 105
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6999.39 4799.75 3499.62 3799.17 1899.83 16699.06 6299.62 19699.66 63
K. test v398.00 20097.66 22499.03 13299.79 2297.56 18999.19 4992.47 40999.62 2499.52 6699.66 2989.61 33599.96 1299.25 5199.81 10299.56 105
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5499.97 399.66 2999.71 399.96 1299.79 1499.99 599.96 8
APD_test198.83 9098.66 10799.34 7599.78 2399.47 998.42 13699.45 11798.28 15398.98 15799.19 12797.76 11999.58 32096.57 23499.55 22398.97 280
test_vis3_rt99.14 5199.17 4999.07 12299.78 2398.38 11198.92 7999.94 297.80 19099.91 1199.67 2797.15 16598.91 40399.76 1799.56 21999.92 12
EGC-MVSNET85.24 38880.54 39199.34 7599.77 2699.20 3899.08 5899.29 18812.08 42620.84 42799.42 8097.55 13799.85 13197.08 18799.72 15698.96 282
Anonymous2024052198.69 11498.87 7998.16 25199.77 2695.11 29399.08 5899.44 12199.34 5399.33 10399.55 5494.10 28599.94 3799.25 5199.96 2699.42 171
FC-MVSNet-test99.27 3399.25 4499.34 7599.77 2698.37 11399.30 3299.57 6999.61 2699.40 9199.50 6497.12 16699.85 13199.02 6699.94 4199.80 34
test_vis1_n98.31 17298.50 12997.73 28399.76 2994.17 31898.68 10299.91 996.31 29599.79 2999.57 4692.85 30599.42 36499.79 1499.84 8899.60 82
test_fmvs399.12 5799.41 2198.25 24399.76 2995.07 29499.05 6499.94 297.78 19299.82 2499.84 398.56 5599.71 25899.96 199.96 2699.97 4
XXY-MVS99.14 5199.15 5699.10 11699.76 2997.74 17898.85 8799.62 5598.48 13899.37 9699.49 7098.75 3799.86 11998.20 11799.80 11399.71 52
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3999.38 4899.53 6499.61 4098.64 4599.80 19798.24 11499.84 8899.52 127
fmvsm_s_conf0.1_n_a99.17 4699.30 3898.80 16399.75 3396.59 24297.97 19299.86 1698.22 15699.88 1799.71 1998.59 5199.84 14999.73 2199.98 1299.98 3
tt080598.69 11498.62 11398.90 15399.75 3399.30 2199.15 5396.97 36498.86 11298.87 18597.62 34098.63 4798.96 40099.41 4198.29 35298.45 343
test_vis1_n_192098.40 15998.92 7496.81 33999.74 3590.76 39098.15 16099.91 998.33 14499.89 1599.55 5495.07 25699.88 9499.76 1799.93 4699.79 35
FOURS199.73 3699.67 399.43 1299.54 8499.43 4499.26 119
PEN-MVS99.41 2199.34 3099.62 999.73 3699.14 5699.29 3399.54 8499.62 2499.56 5699.42 8098.16 9199.96 1298.78 8199.93 4699.77 40
lessismore_v098.97 14099.73 3697.53 19186.71 42399.37 9699.52 6389.93 33399.92 5398.99 6899.72 15699.44 164
SteuartSystems-ACMMP98.79 9698.54 12499.54 3099.73 3699.16 4798.23 15099.31 17297.92 18198.90 17698.90 20098.00 10299.88 9496.15 26699.72 15699.58 94
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 19098.15 18198.22 24699.73 3695.15 29097.36 26399.68 4894.45 34998.99 15699.27 10996.87 18099.94 3797.13 18499.91 6499.57 99
Vis-MVSNetpermissive99.34 2699.36 2799.27 9099.73 3698.26 12099.17 5099.78 3199.11 7999.27 11599.48 7198.82 3299.95 2498.94 7199.93 4699.59 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 10798.74 9198.62 19499.72 4296.08 25998.74 9298.64 30999.74 1099.67 4599.24 11894.57 27199.95 2499.11 5899.24 27799.82 30
test_f98.67 12298.87 7998.05 26099.72 4295.59 27198.51 12399.81 2696.30 29799.78 3099.82 596.14 21698.63 40999.82 899.93 4699.95 9
ACMH96.65 799.25 3699.24 4599.26 9299.72 4298.38 11199.07 6199.55 8098.30 14899.65 4999.45 7799.22 1599.76 23398.44 10599.77 12999.64 69
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4999.33 3198.64 18899.71 4596.10 25497.87 20499.85 1898.56 13499.90 1299.68 2298.69 4299.85 13199.72 2399.98 1299.97 4
PS-CasMVS99.40 2299.33 3199.62 999.71 4599.10 6499.29 3399.53 8799.53 3199.46 7899.41 8498.23 8099.95 2498.89 7599.95 3399.81 33
DTE-MVSNet99.43 1999.35 2899.66 799.71 4599.30 2199.31 2799.51 9199.64 1999.56 5699.46 7398.23 8099.97 598.78 8199.93 4699.72 51
WR-MVS_H99.33 2799.22 4699.65 899.71 4599.24 2999.32 2399.55 8099.46 3999.50 7299.34 9697.30 15599.93 4498.90 7399.93 4699.77 40
HPM-MVS_fast99.01 6798.82 8599.57 2099.71 4599.35 1699.00 6999.50 9397.33 23498.94 17298.86 21098.75 3799.82 17697.53 16299.71 16199.56 105
ACMH+96.62 999.08 6499.00 6799.33 8099.71 4598.83 7998.60 10999.58 6299.11 7999.53 6499.18 13198.81 3399.67 27896.71 22499.77 12999.50 133
PMVScopyleft91.26 2097.86 21397.94 20397.65 28799.71 4597.94 15998.52 11898.68 30598.99 10097.52 31099.35 9297.41 15098.18 41491.59 37999.67 18296.82 403
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 5199.09 6099.29 8699.70 5298.28 11999.13 5599.52 9099.48 3499.24 12499.41 8496.79 18799.82 17698.69 9199.88 7699.76 45
VPNet98.87 8598.83 8499.01 13599.70 5297.62 18798.43 13499.35 15499.47 3799.28 11399.05 16196.72 19399.82 17698.09 12499.36 25799.59 88
fmvsm_s_conf0.1_n_299.20 4499.38 2498.65 18699.69 5496.08 25997.49 25399.90 1199.53 3199.88 1799.64 3498.51 5899.90 6899.83 799.98 1299.97 4
test_cas_vis1_n_192098.33 16998.68 10497.27 31699.69 5492.29 36598.03 17899.85 1897.62 20199.96 499.62 3793.98 28699.74 24599.52 3699.86 8399.79 35
MP-MVS-pluss98.57 13698.23 17199.60 1499.69 5499.35 1697.16 28199.38 14194.87 33998.97 16198.99 17998.01 10199.88 9497.29 17299.70 16899.58 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 4099.32 3398.96 14199.68 5797.35 20098.84 8999.48 10299.69 1399.63 5299.68 2299.03 2199.96 1297.97 13499.92 5799.57 99
sd_testset99.28 3299.31 3599.19 10399.68 5798.06 14699.41 1499.30 18099.69 1399.63 5299.68 2299.25 1499.96 1297.25 17599.92 5799.57 99
test_fmvs1_n98.09 19498.28 16397.52 30299.68 5793.47 34498.63 10599.93 595.41 32899.68 4399.64 3491.88 31899.48 35299.82 899.87 7999.62 73
CHOSEN 1792x268897.49 24297.14 25798.54 21299.68 5796.09 25796.50 31399.62 5591.58 38798.84 18898.97 18592.36 31199.88 9496.76 21799.95 3399.67 62
tfpnnormal98.90 8298.90 7698.91 15099.67 6197.82 17099.00 6999.44 12199.45 4099.51 7199.24 11898.20 8699.86 11995.92 27599.69 17199.04 267
MTAPA98.88 8498.64 11099.61 1299.67 6199.36 1598.43 13499.20 21198.83 11698.89 17898.90 20096.98 17699.92 5397.16 17999.70 16899.56 105
test_fmvsmvis_n_192099.26 3599.49 1398.54 21299.66 6396.97 22298.00 18499.85 1899.24 6399.92 899.50 6499.39 1199.95 2499.89 399.98 1298.71 320
mvs5depth99.30 2999.59 998.44 22599.65 6495.35 28299.82 399.94 299.83 499.42 8699.94 298.13 9499.96 1299.63 2799.96 26100.00 1
fmvsm_l_conf0.5_n_a99.19 4599.27 4198.94 14499.65 6497.05 21897.80 21299.76 3398.70 12099.78 3099.11 14798.79 3599.95 2499.85 599.96 2699.83 27
WB-MVS98.52 14898.55 12298.43 22699.65 6495.59 27198.52 11898.77 29599.65 1899.52 6699.00 17894.34 27799.93 4498.65 9398.83 32499.76 45
CP-MVSNet99.21 4299.09 6099.56 2599.65 6498.96 7499.13 5599.34 16099.42 4599.33 10399.26 11397.01 17499.94 3798.74 8699.93 4699.79 35
HPM-MVScopyleft98.79 9698.53 12599.59 1899.65 6499.29 2399.16 5199.43 12796.74 27798.61 21898.38 28698.62 4899.87 11196.47 24699.67 18299.59 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 13198.36 15399.42 6099.65 6499.42 1198.55 11499.57 6997.72 19598.90 17699.26 11396.12 21899.52 34095.72 28699.71 16199.32 213
fmvsm_l_conf0.5_n99.21 4299.28 4099.02 13499.64 7097.28 20497.82 20999.76 3398.73 11799.82 2499.09 15398.81 3399.95 2499.86 499.96 2699.83 27
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 7098.10 13697.68 22799.84 2199.29 5999.92 899.57 4699.60 599.96 1299.74 2099.98 1299.89 16
TSAR-MVS + MP.98.63 12898.49 13399.06 12899.64 7097.90 16198.51 12398.94 26096.96 26499.24 12498.89 20697.83 11299.81 19096.88 20799.49 24299.48 147
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 9298.72 9599.12 11299.64 7098.54 10297.98 18999.68 4897.62 20199.34 10299.18 13197.54 13899.77 22797.79 14599.74 14599.04 267
KD-MVS_self_test99.25 3699.18 4899.44 5999.63 7499.06 6898.69 10199.54 8499.31 5699.62 5599.53 6097.36 15399.86 11999.24 5399.71 16199.39 184
EU-MVSNet97.66 23098.50 12995.13 38199.63 7485.84 41198.35 14298.21 32898.23 15599.54 6099.46 7395.02 25799.68 27598.24 11499.87 7999.87 20
HyFIR lowres test97.19 26896.60 29298.96 14199.62 7697.28 20495.17 37599.50 9394.21 35499.01 15498.32 29486.61 35399.99 297.10 18699.84 8899.60 82
mmtdpeth99.30 2999.42 2098.92 14999.58 7796.89 22999.48 1099.92 799.92 298.26 25599.80 998.33 7399.91 6299.56 3299.95 3399.97 4
ACMMP_NAP98.75 10398.48 13499.57 2099.58 7799.29 2397.82 20999.25 20096.94 26698.78 19599.12 14698.02 10099.84 14997.13 18499.67 18299.59 88
nrg03099.40 2299.35 2899.54 3099.58 7799.13 5998.98 7299.48 10299.68 1599.46 7899.26 11398.62 4899.73 25099.17 5799.92 5799.76 45
VDDNet98.21 18597.95 20199.01 13599.58 7797.74 17899.01 6797.29 35599.67 1698.97 16199.50 6490.45 33099.80 19797.88 14099.20 28599.48 147
COLMAP_ROBcopyleft96.50 1098.99 6998.85 8399.41 6299.58 7799.10 6498.74 9299.56 7699.09 8999.33 10399.19 12798.40 6699.72 25795.98 27399.76 14199.42 171
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8297.73 18097.93 19399.83 2399.22 6499.93 699.30 10499.42 1099.96 1299.85 599.99 599.29 222
ZNCC-MVS98.68 11998.40 14699.54 3099.57 8299.21 3298.46 13199.29 18897.28 24098.11 26798.39 28498.00 10299.87 11196.86 21099.64 19099.55 112
MSP-MVS98.40 15998.00 19699.61 1299.57 8299.25 2898.57 11299.35 15497.55 21199.31 11197.71 33394.61 27099.88 9496.14 26799.19 28899.70 57
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 17098.39 14998.13 25299.57 8295.54 27497.78 21499.49 10097.37 23199.19 12997.65 33798.96 2499.49 34996.50 24598.99 31399.34 206
MP-MVScopyleft98.46 15398.09 18699.54 3099.57 8299.22 3198.50 12599.19 21597.61 20497.58 30498.66 24797.40 15199.88 9494.72 31299.60 20399.54 116
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 10798.46 13899.47 5699.57 8298.97 7098.23 15099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
LGP-MVS_train99.47 5699.57 8298.97 7099.48 10296.60 28299.10 13999.06 15498.71 4099.83 16695.58 29399.78 12399.62 73
IS-MVSNet98.19 18797.90 20799.08 12099.57 8297.97 15499.31 2798.32 32499.01 9998.98 15799.03 16591.59 32099.79 21095.49 29599.80 11399.48 147
dcpmvs_298.78 9899.11 5797.78 27499.56 9093.67 34099.06 6299.86 1699.50 3399.66 4699.26 11397.21 16399.99 298.00 13299.91 6499.68 59
test_040298.76 10298.71 9898.93 14699.56 9098.14 13298.45 13399.34 16099.28 6098.95 16598.91 19798.34 7299.79 21095.63 29099.91 6498.86 299
EPP-MVSNet98.30 17398.04 19299.07 12299.56 9097.83 16799.29 3398.07 33599.03 9798.59 22299.13 14592.16 31499.90 6896.87 20899.68 17699.49 137
ACMMPcopyleft98.75 10398.50 12999.52 4299.56 9099.16 4798.87 8499.37 14597.16 25598.82 19299.01 17597.71 12299.87 11196.29 25899.69 17199.54 116
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5999.20 4798.78 16999.55 9496.59 24297.79 21399.82 2598.21 15799.81 2799.53 6098.46 6299.84 14999.70 2499.97 2099.90 15
fmvsm_s_conf0.5_n99.09 6099.26 4398.61 19799.55 9496.09 25797.74 22199.81 2698.55 13599.85 2199.55 5498.60 5099.84 14999.69 2699.98 1299.89 16
FMVSNet199.17 4699.17 4999.17 10499.55 9498.24 12299.20 4599.44 12199.21 6699.43 8399.55 5497.82 11599.86 11998.42 10799.89 7499.41 174
Vis-MVSNet (Re-imp)97.46 24497.16 25498.34 23699.55 9496.10 25498.94 7798.44 31898.32 14698.16 26198.62 25688.76 34099.73 25093.88 33899.79 11899.18 247
ACMM96.08 1298.91 8098.73 9399.48 5399.55 9499.14 5698.07 17299.37 14597.62 20199.04 15098.96 18898.84 3199.79 21097.43 16699.65 18899.49 137
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 11198.97 7197.89 26799.54 9994.05 32198.55 11499.92 796.78 27599.72 3599.78 1096.60 19899.67 27899.91 299.90 7099.94 10
mPP-MVS98.64 12698.34 15699.54 3099.54 9999.17 4398.63 10599.24 20597.47 21898.09 26998.68 24297.62 13199.89 8096.22 26199.62 19699.57 99
XVG-ACMP-BASELINE98.56 13798.34 15699.22 10099.54 9998.59 9697.71 22499.46 11397.25 24398.98 15798.99 17997.54 13899.84 14995.88 27699.74 14599.23 234
region2R98.69 11498.40 14699.54 3099.53 10299.17 4398.52 11899.31 17297.46 22398.44 24098.51 27097.83 11299.88 9496.46 24799.58 21299.58 94
PGM-MVS98.66 12398.37 15299.55 2799.53 10299.18 4298.23 15099.49 10097.01 26398.69 20698.88 20798.00 10299.89 8095.87 27999.59 20799.58 94
Patchmatch-RL test97.26 26197.02 26297.99 26499.52 10495.53 27596.13 33699.71 3997.47 21899.27 11599.16 13784.30 37499.62 30397.89 13799.77 12998.81 306
ACMMPR98.70 11198.42 14499.54 3099.52 10499.14 5698.52 11899.31 17297.47 21898.56 22798.54 26597.75 12099.88 9496.57 23499.59 20799.58 94
GST-MVS98.61 13298.30 16199.52 4299.51 10699.20 3898.26 14899.25 20097.44 22698.67 20998.39 28497.68 12399.85 13196.00 27199.51 23499.52 127
Anonymous2023120698.21 18598.21 17298.20 24799.51 10695.43 28098.13 16299.32 16796.16 30098.93 17398.82 21996.00 22399.83 16697.32 17199.73 14899.36 200
ACMP95.32 1598.41 15798.09 18699.36 6699.51 10698.79 8297.68 22799.38 14195.76 31598.81 19498.82 21998.36 6899.82 17694.75 30999.77 12999.48 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 10198.52 12699.52 4299.50 10999.21 3298.02 18098.84 28497.97 17599.08 14199.02 16697.61 13299.88 9496.99 19499.63 19399.48 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1499.50 10999.23 3098.02 18099.32 16799.88 9496.99 19499.63 19399.68 59
test072699.50 10999.21 3298.17 15899.35 15497.97 17599.26 11999.06 15497.61 132
AllTest98.44 15598.20 17399.16 10799.50 10998.55 9998.25 14999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
TestCases99.16 10799.50 10998.55 9999.58 6296.80 27398.88 18199.06 15497.65 12699.57 32294.45 31999.61 20199.37 193
XVG-OURS98.53 14598.34 15699.11 11499.50 10998.82 8195.97 34299.50 9397.30 23899.05 14898.98 18399.35 1299.32 37895.72 28699.68 17699.18 247
EG-PatchMatch MVS98.99 6999.01 6698.94 14499.50 10997.47 19398.04 17799.59 6098.15 16899.40 9199.36 9198.58 5499.76 23398.78 8199.68 17699.59 88
fmvsm_s_conf0.5_n_299.14 5199.31 3598.63 19299.49 11696.08 25997.38 26099.81 2699.48 3499.84 2299.57 4698.46 6299.89 8099.82 899.97 2099.91 13
SED-MVS98.91 8098.72 9599.49 5199.49 11699.17 4398.10 16899.31 17298.03 17199.66 4699.02 16698.36 6899.88 9496.91 20099.62 19699.41 174
IU-MVS99.49 11699.15 5198.87 27592.97 37299.41 8896.76 21799.62 19699.66 63
test_241102_ONE99.49 11699.17 4399.31 17297.98 17499.66 4698.90 20098.36 6899.48 352
UA-Net99.47 1399.40 2299.70 299.49 11699.29 2399.80 499.72 3799.82 599.04 15099.81 698.05 9999.96 1298.85 7799.99 599.86 23
HFP-MVS98.71 10798.44 14199.51 4699.49 11699.16 4798.52 11899.31 17297.47 21898.58 22498.50 27497.97 10699.85 13196.57 23499.59 20799.53 124
VPA-MVSNet99.30 2999.30 3899.28 8799.49 11698.36 11699.00 6999.45 11799.63 2199.52 6699.44 7898.25 7899.88 9499.09 6099.84 8899.62 73
XVG-OURS-SEG-HR98.49 15098.28 16399.14 11099.49 11698.83 7996.54 31099.48 10297.32 23699.11 13698.61 25899.33 1399.30 38196.23 26098.38 34899.28 224
114514_t96.50 30195.77 30998.69 18399.48 12497.43 19797.84 20899.55 8081.42 41996.51 36198.58 26295.53 24399.67 27893.41 35199.58 21298.98 277
IterMVS-LS98.55 14198.70 10198.09 25399.48 12494.73 30297.22 27699.39 13998.97 10399.38 9499.31 10396.00 22399.93 4498.58 9699.97 2099.60 82
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6799.16 5198.57 20499.47 12696.31 25198.90 8099.47 11099.03 9799.52 6699.57 4696.93 17799.81 19099.60 2899.98 1299.60 82
fmvsm_s_conf0.5_n_399.22 4199.37 2698.78 16999.46 12796.58 24497.65 23399.72 3799.47 3799.86 1999.50 6498.94 2599.89 8099.75 1999.97 2099.86 23
XVS98.72 10698.45 13999.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30898.63 25497.50 14499.83 16696.79 21399.53 22999.56 105
X-MVStestdata94.32 34992.59 36799.53 3799.46 12799.21 3298.65 10399.34 16098.62 12597.54 30845.85 42497.50 14499.83 16696.79 21399.53 22999.56 105
test20.0398.78 9898.77 9098.78 16999.46 12797.20 21197.78 21499.24 20599.04 9699.41 8898.90 20097.65 12699.76 23397.70 15299.79 11899.39 184
CSCG98.68 11998.50 12999.20 10199.45 13198.63 9198.56 11399.57 6997.87 18598.85 18698.04 31597.66 12599.84 14996.72 22299.81 10299.13 256
GeoE99.05 6598.99 6999.25 9599.44 13298.35 11798.73 9699.56 7698.42 14098.91 17598.81 22198.94 2599.91 6298.35 10999.73 14899.49 137
v14898.45 15498.60 11898.00 26399.44 13294.98 29597.44 25899.06 24198.30 14899.32 10998.97 18596.65 19699.62 30398.37 10899.85 8499.39 184
v1098.97 7399.11 5798.55 20999.44 13296.21 25398.90 8099.55 8098.73 11799.48 7399.60 4296.63 19799.83 16699.70 2499.99 599.61 81
V4298.78 9898.78 8998.76 17499.44 13297.04 21998.27 14799.19 21597.87 18599.25 12399.16 13796.84 18199.78 22199.21 5499.84 8899.46 156
MDA-MVSNet-bldmvs97.94 20497.91 20698.06 25899.44 13294.96 29696.63 30899.15 23198.35 14298.83 18999.11 14794.31 27899.85 13196.60 23198.72 33099.37 193
casdiffmvs_mvgpermissive99.12 5799.16 5198.99 13799.43 13797.73 18098.00 18499.62 5599.22 6499.55 5999.22 12398.93 2799.75 24098.66 9299.81 10299.50 133
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 30296.82 27695.52 37499.42 13887.08 40899.22 4287.14 42299.11 7999.46 7899.58 4488.69 34199.86 11998.80 7999.95 3399.62 73
v2v48298.56 13798.62 11398.37 23399.42 13895.81 26897.58 24399.16 22697.90 18399.28 11399.01 17595.98 22899.79 21099.33 4499.90 7099.51 130
OPM-MVS98.56 13798.32 16099.25 9599.41 14098.73 8797.13 28399.18 21997.10 25898.75 20198.92 19698.18 8799.65 29496.68 22699.56 21999.37 193
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 19698.08 18998.04 26199.41 14094.59 30894.59 39399.40 13797.50 21598.82 19298.83 21696.83 18399.84 14997.50 16499.81 10299.71 52
test_one_060199.39 14299.20 3899.31 17298.49 13798.66 21199.02 16697.64 129
mvsany_test398.87 8598.92 7498.74 18099.38 14396.94 22698.58 11199.10 23696.49 28799.96 499.81 698.18 8799.45 35998.97 6999.79 11899.83 27
patch_mono-298.51 14998.63 11198.17 24999.38 14394.78 29997.36 26399.69 4398.16 16798.49 23699.29 10697.06 16999.97 598.29 11399.91 6499.76 45
test250692.39 37891.89 38093.89 39499.38 14382.28 42499.32 2366.03 43099.08 9198.77 19899.57 4666.26 42099.84 14998.71 8999.95 3399.54 116
ECVR-MVScopyleft96.42 30496.61 29095.85 36699.38 14388.18 40499.22 4286.00 42499.08 9199.36 9899.57 4688.47 34699.82 17698.52 10299.95 3399.54 116
casdiffmvspermissive98.95 7699.00 6798.81 16199.38 14397.33 20197.82 20999.57 6999.17 7599.35 10099.17 13598.35 7199.69 26698.46 10499.73 14899.41 174
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 7599.02 6598.76 17499.38 14397.26 20698.49 12699.50 9398.86 11299.19 12999.06 15498.23 8099.69 26698.71 8999.76 14199.33 211
TranMVSNet+NR-MVSNet99.17 4699.07 6399.46 5899.37 14998.87 7798.39 13899.42 13099.42 4599.36 9899.06 15498.38 6799.95 2498.34 11099.90 7099.57 99
tttt051795.64 32894.98 33897.64 28999.36 15093.81 33598.72 9790.47 41798.08 17098.67 20998.34 29173.88 40799.92 5397.77 14799.51 23499.20 239
test_part299.36 15099.10 6499.05 148
v114498.60 13398.66 10798.41 22899.36 15095.90 26497.58 24399.34 16097.51 21499.27 11599.15 14196.34 21199.80 19799.47 3999.93 4699.51 130
CP-MVS98.70 11198.42 14499.52 4299.36 15099.12 6198.72 9799.36 14997.54 21298.30 24998.40 28397.86 11199.89 8096.53 24399.72 15699.56 105
Test_1112_low_res96.99 28396.55 29498.31 23999.35 15495.47 27895.84 35499.53 8791.51 38996.80 35098.48 27791.36 32299.83 16696.58 23299.53 22999.62 73
DeepC-MVS97.60 498.97 7398.93 7399.10 11699.35 15497.98 15398.01 18399.46 11397.56 20999.54 6099.50 6498.97 2399.84 14998.06 12799.92 5799.49 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 26096.86 27298.58 20199.34 15696.32 25096.75 30299.58 6293.14 37096.89 34597.48 34792.11 31599.86 11996.91 20099.54 22599.57 99
reproduce_model99.15 5098.97 7199.67 499.33 15799.44 1098.15 16099.47 11099.12 7899.52 6699.32 10298.31 7499.90 6897.78 14699.73 14899.66 63
MVSMamba_PlusPlus98.83 9098.98 7098.36 23499.32 15896.58 24498.90 8099.41 13499.75 898.72 20499.50 6496.17 21599.94 3799.27 4899.78 12398.57 336
SF-MVS98.53 14598.27 16699.32 8299.31 15998.75 8398.19 15499.41 13496.77 27698.83 18998.90 20097.80 11799.82 17695.68 28999.52 23299.38 191
CPTT-MVS97.84 21997.36 24399.27 9099.31 15998.46 10798.29 14599.27 19494.90 33897.83 28898.37 28794.90 25999.84 14993.85 34099.54 22599.51 130
UnsupCasMVSNet_eth97.89 20897.60 22998.75 17699.31 15997.17 21497.62 23799.35 15498.72 11998.76 20098.68 24292.57 31099.74 24597.76 15195.60 40899.34 206
pmmvs-eth3d98.47 15298.34 15698.86 15599.30 16297.76 17697.16 28199.28 19195.54 32199.42 8699.19 12797.27 15899.63 30097.89 13799.97 2099.20 239
mamv499.44 1599.39 2399.58 1999.30 16299.74 299.04 6599.81 2699.77 799.82 2499.57 4697.82 11599.98 499.53 3499.89 7499.01 271
Anonymous2023121199.27 3399.27 4199.26 9299.29 16498.18 12899.49 999.51 9199.70 1299.80 2899.68 2296.84 18199.83 16699.21 5499.91 6499.77 40
UnsupCasMVSNet_bld97.30 25896.92 26898.45 22399.28 16596.78 23696.20 33199.27 19495.42 32598.28 25398.30 29593.16 29699.71 25894.99 30397.37 38498.87 298
EC-MVSNet99.09 6099.05 6499.20 10199.28 16598.93 7599.24 4199.84 2199.08 9198.12 26698.37 28798.72 3999.90 6899.05 6399.77 12998.77 314
reproduce-ours99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
our_new_method99.09 6098.90 7699.67 499.27 16799.49 698.00 18499.42 13099.05 9499.48 7399.27 10998.29 7699.89 8097.61 15699.71 16199.62 73
DPE-MVScopyleft98.59 13598.26 16799.57 2099.27 16799.15 5197.01 28699.39 13997.67 19799.44 8298.99 17997.53 14099.89 8095.40 29799.68 17699.66 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 21898.18 17696.87 33599.27 16791.16 38495.53 36399.25 20099.10 8699.41 8899.35 9293.10 29899.96 1298.65 9399.94 4199.49 137
v119298.60 13398.66 10798.41 22899.27 16795.88 26597.52 24999.36 14997.41 22799.33 10399.20 12696.37 20999.82 17699.57 3099.92 5799.55 112
N_pmnet97.63 23297.17 25398.99 13799.27 16797.86 16495.98 34193.41 40695.25 33099.47 7798.90 20095.63 24099.85 13196.91 20099.73 14899.27 225
FPMVS93.44 36592.23 37197.08 32499.25 17397.86 16495.61 36097.16 35992.90 37493.76 40898.65 24975.94 40595.66 42179.30 42197.49 37797.73 385
new-patchmatchnet98.35 16598.74 9197.18 31999.24 17492.23 36796.42 31899.48 10298.30 14899.69 4199.53 6097.44 14999.82 17698.84 7899.77 12999.49 137
MCST-MVS98.00 20097.63 22799.10 11699.24 17498.17 12996.89 29598.73 30295.66 31697.92 27997.70 33597.17 16499.66 28996.18 26599.23 28099.47 154
UniMVSNet (Re)98.87 8598.71 9899.35 7299.24 17498.73 8797.73 22399.38 14198.93 10799.12 13598.73 23396.77 18899.86 11998.63 9599.80 11399.46 156
jason97.45 24697.35 24497.76 27899.24 17493.93 32995.86 35198.42 32094.24 35398.50 23598.13 30594.82 26399.91 6297.22 17699.73 14899.43 168
jason: jason.
IterMVS97.73 22498.11 18596.57 34599.24 17490.28 39395.52 36599.21 20998.86 11299.33 10399.33 9893.11 29799.94 3798.49 10399.94 4199.48 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 14198.62 11398.32 23799.22 17995.58 27397.51 25199.45 11797.16 25599.45 8199.24 11896.12 21899.85 13199.60 2899.88 7699.55 112
ITE_SJBPF98.87 15499.22 17998.48 10699.35 15497.50 21598.28 25398.60 26097.64 12999.35 37493.86 33999.27 27298.79 312
h-mvs3397.77 22297.33 24699.10 11699.21 18197.84 16698.35 14298.57 31299.11 7998.58 22499.02 16688.65 34499.96 1298.11 12296.34 40099.49 137
v14419298.54 14398.57 12198.45 22399.21 18195.98 26297.63 23699.36 14997.15 25799.32 10999.18 13195.84 23599.84 14999.50 3799.91 6499.54 116
APDe-MVScopyleft98.99 6998.79 8899.60 1499.21 18199.15 5198.87 8499.48 10297.57 20799.35 10099.24 11897.83 11299.89 8097.88 14099.70 16899.75 49
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7898.81 8799.28 8799.21 18198.45 10898.46 13199.33 16599.63 2199.48 7399.15 14197.23 16199.75 24097.17 17899.66 18799.63 72
SR-MVS-dyc-post98.81 9498.55 12299.57 2099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.49 14799.86 11996.56 23899.39 25399.45 160
RE-MVS-def98.58 12099.20 18599.38 1298.48 12999.30 18098.64 12198.95 16598.96 18897.75 12096.56 23899.39 25399.45 160
v192192098.54 14398.60 11898.38 23199.20 18595.76 27097.56 24599.36 14997.23 24999.38 9499.17 13596.02 22199.84 14999.57 3099.90 7099.54 116
thisisatest053095.27 33594.45 34697.74 28199.19 18894.37 31297.86 20590.20 41897.17 25498.22 25697.65 33773.53 40899.90 6896.90 20599.35 25998.95 283
Anonymous2024052998.93 7898.87 7999.12 11299.19 18898.22 12799.01 6798.99 25899.25 6299.54 6099.37 8797.04 17099.80 19797.89 13799.52 23299.35 204
APD-MVS_3200maxsize98.84 8998.61 11799.53 3799.19 18899.27 2698.49 12699.33 16598.64 12199.03 15398.98 18397.89 10999.85 13196.54 24299.42 25099.46 156
HQP_MVS97.99 20397.67 22198.93 14699.19 18897.65 18497.77 21699.27 19498.20 16197.79 29197.98 31894.90 25999.70 26294.42 32199.51 23499.45 160
plane_prior799.19 18897.87 163
ab-mvs98.41 15798.36 15398.59 20099.19 18897.23 20799.32 2398.81 28997.66 19898.62 21699.40 8696.82 18499.80 19795.88 27699.51 23498.75 317
F-COLMAP97.30 25896.68 28599.14 11099.19 18898.39 11097.27 27299.30 18092.93 37396.62 35698.00 31695.73 23899.68 27592.62 36798.46 34799.35 204
SR-MVS98.71 10798.43 14299.57 2099.18 19599.35 1698.36 14199.29 18898.29 15198.88 18198.85 21397.53 14099.87 11196.14 26799.31 26599.48 147
UniMVSNet_NR-MVSNet98.86 8898.68 10499.40 6499.17 19698.74 8497.68 22799.40 13799.14 7799.06 14398.59 26196.71 19499.93 4498.57 9899.77 12999.53 124
LF4IMVS97.90 20697.69 22098.52 21499.17 19697.66 18397.19 28099.47 11096.31 29597.85 28798.20 30296.71 19499.52 34094.62 31399.72 15698.38 353
SMA-MVScopyleft98.40 15998.03 19399.51 4699.16 19899.21 3298.05 17599.22 20894.16 35598.98 15799.10 15097.52 14299.79 21096.45 24899.64 19099.53 124
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 9298.63 11199.39 6599.16 19898.74 8497.54 24799.25 20098.84 11599.06 14398.76 23096.76 19099.93 4498.57 9899.77 12999.50 133
NR-MVSNet98.95 7698.82 8599.36 6699.16 19898.72 8999.22 4299.20 21199.10 8699.72 3598.76 23096.38 20899.86 11998.00 13299.82 9899.50 133
MVS_111021_LR98.30 17398.12 18498.83 15899.16 19898.03 14896.09 33899.30 18097.58 20698.10 26898.24 29898.25 7899.34 37596.69 22599.65 18899.12 257
DSMNet-mixed97.42 24997.60 22996.87 33599.15 20291.46 37498.54 11699.12 23392.87 37597.58 30499.63 3696.21 21499.90 6895.74 28599.54 22599.27 225
D2MVS97.84 21997.84 21197.83 27099.14 20394.74 30196.94 29098.88 27395.84 31398.89 17898.96 18894.40 27599.69 26697.55 15999.95 3399.05 263
pmmvs597.64 23197.49 23598.08 25699.14 20395.12 29296.70 30599.05 24493.77 36298.62 21698.83 21693.23 29499.75 24098.33 11299.76 14199.36 200
SPE-MVS-test99.13 5599.09 6099.26 9299.13 20598.97 7099.31 2799.88 1499.44 4298.16 26198.51 27098.64 4599.93 4498.91 7299.85 8498.88 297
VDD-MVS98.56 13798.39 14999.07 12299.13 20598.07 14398.59 11097.01 36299.59 2799.11 13699.27 10994.82 26399.79 21098.34 11099.63 19399.34 206
save fliter99.11 20797.97 15496.53 31299.02 25298.24 154
APD-MVScopyleft98.10 19297.67 22199.42 6099.11 20798.93 7597.76 21999.28 19194.97 33698.72 20498.77 22897.04 17099.85 13193.79 34199.54 22599.49 137
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 11498.71 9898.62 19499.10 20996.37 24897.23 27398.87 27599.20 6899.19 12998.99 17997.30 15599.85 13198.77 8499.79 11899.65 68
EI-MVSNet98.40 15998.51 12798.04 26199.10 20994.73 30297.20 27798.87 27598.97 10399.06 14399.02 16696.00 22399.80 19798.58 9699.82 9899.60 82
CVMVSNet96.25 30997.21 25293.38 40099.10 20980.56 42797.20 27798.19 33196.94 26699.00 15599.02 16689.50 33799.80 19796.36 25499.59 20799.78 38
EI-MVSNet-Vis-set98.68 11998.70 10198.63 19299.09 21296.40 24797.23 27398.86 28099.20 6899.18 13398.97 18597.29 15799.85 13198.72 8899.78 12399.64 69
HPM-MVS++copyleft98.10 19297.64 22699.48 5399.09 21299.13 5997.52 24998.75 29997.46 22396.90 34497.83 32896.01 22299.84 14995.82 28399.35 25999.46 156
DP-MVS Recon97.33 25696.92 26898.57 20499.09 21297.99 15096.79 29899.35 15493.18 36997.71 29598.07 31395.00 25899.31 37993.97 33499.13 29698.42 350
MVS_111021_HR98.25 18198.08 18998.75 17699.09 21297.46 19495.97 34299.27 19497.60 20597.99 27798.25 29798.15 9399.38 37096.87 20899.57 21699.42 171
BP-MVS197.40 25196.97 26498.71 18299.07 21696.81 23298.34 14497.18 35798.58 13098.17 25898.61 25884.01 37699.94 3798.97 6999.78 12399.37 193
9.1497.78 21399.07 21697.53 24899.32 16795.53 32298.54 23198.70 23997.58 13499.76 23394.32 32699.46 244
PAPM_NR96.82 29096.32 30198.30 24099.07 21696.69 24097.48 25498.76 29695.81 31496.61 35796.47 37294.12 28499.17 39290.82 39397.78 37299.06 262
TAMVS98.24 18298.05 19198.80 16399.07 21697.18 21397.88 20198.81 28996.66 28199.17 13499.21 12494.81 26599.77 22796.96 19899.88 7699.44 164
CLD-MVS97.49 24297.16 25498.48 22099.07 21697.03 22094.71 38699.21 20994.46 34798.06 27197.16 35997.57 13599.48 35294.46 31899.78 12398.95 283
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 5599.10 5999.24 9799.06 22199.15 5199.36 1999.88 1499.36 5298.21 25798.46 27898.68 4399.93 4499.03 6599.85 8498.64 329
thres100view90094.19 35293.67 35695.75 36999.06 22191.35 37798.03 17894.24 40198.33 14497.40 32094.98 40179.84 39299.62 30383.05 41498.08 36496.29 407
thres600view794.45 34793.83 35396.29 35399.06 22191.53 37397.99 18894.24 40198.34 14397.44 31895.01 39979.84 39299.67 27884.33 41298.23 35397.66 388
plane_prior199.05 224
YYNet197.60 23397.67 22197.39 31299.04 22593.04 35195.27 37298.38 32397.25 24398.92 17498.95 19295.48 24799.73 25096.99 19498.74 32899.41 174
MDA-MVSNet_test_wron97.60 23397.66 22497.41 31199.04 22593.09 34795.27 37298.42 32097.26 24298.88 18198.95 19295.43 24899.73 25097.02 19198.72 33099.41 174
MIMVSNet96.62 29796.25 30597.71 28499.04 22594.66 30599.16 5196.92 36897.23 24997.87 28499.10 15086.11 35999.65 29491.65 37799.21 28498.82 302
PatchMatch-RL97.24 26496.78 27998.61 19799.03 22897.83 16796.36 32199.06 24193.49 36797.36 32497.78 32995.75 23799.49 34993.44 35098.77 32798.52 338
GDP-MVS97.50 23997.11 25898.67 18599.02 22996.85 23098.16 15999.71 3998.32 14698.52 23498.54 26583.39 38099.95 2498.79 8099.56 21999.19 244
ZD-MVS99.01 23098.84 7899.07 24094.10 35798.05 27398.12 30796.36 21099.86 11992.70 36699.19 288
CDPH-MVS97.26 26196.66 28899.07 12299.00 23198.15 13096.03 34099.01 25591.21 39397.79 29197.85 32796.89 17999.69 26692.75 36499.38 25699.39 184
diffmvspermissive98.22 18398.24 17098.17 24999.00 23195.44 27996.38 32099.58 6297.79 19198.53 23298.50 27496.76 19099.74 24597.95 13699.64 19099.34 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15998.19 17599.03 13299.00 23197.65 18496.85 29698.94 26098.57 13198.89 17898.50 27495.60 24199.85 13197.54 16199.85 8499.59 88
plane_prior698.99 23497.70 18294.90 259
xiu_mvs_v1_base_debu97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
xiu_mvs_v1_base97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
xiu_mvs_v1_base_debi97.86 21398.17 17796.92 33298.98 23593.91 33096.45 31599.17 22397.85 18798.41 24397.14 36198.47 5999.92 5398.02 12999.05 30296.92 400
MVP-Stereo98.08 19597.92 20598.57 20498.96 23896.79 23397.90 19999.18 21996.41 29198.46 23898.95 19295.93 23299.60 31096.51 24498.98 31599.31 217
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15998.68 10497.54 30098.96 23897.99 15097.88 20199.36 14998.20 16199.63 5299.04 16398.76 3695.33 42396.56 23899.74 14599.31 217
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 15098.94 24097.76 17698.76 29687.58 41096.75 35298.10 30994.80 26699.78 22192.73 36599.00 31199.20 239
USDC97.41 25097.40 23997.44 30998.94 24093.67 34095.17 37599.53 8794.03 35998.97 16199.10 15095.29 25099.34 37595.84 28299.73 14899.30 220
tfpn200view994.03 35693.44 35895.78 36898.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36496.29 407
testdata98.09 25398.93 24295.40 28198.80 29190.08 40197.45 31798.37 28795.26 25199.70 26293.58 34698.95 31899.17 251
thres40094.14 35493.44 35896.24 35698.93 24291.44 37597.60 24094.29 39997.94 17997.10 33094.31 40879.67 39499.62 30383.05 41498.08 36497.66 388
TAPA-MVS96.21 1196.63 29695.95 30798.65 18698.93 24298.09 13796.93 29299.28 19183.58 41698.13 26597.78 32996.13 21799.40 36693.52 34799.29 27098.45 343
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 24696.93 22795.54 36298.78 29485.72 41396.86 34798.11 30894.43 27399.10 30199.23 234
PVSNet_BlendedMVS97.55 23897.53 23297.60 29298.92 24693.77 33796.64 30799.43 12794.49 34597.62 30099.18 13196.82 18499.67 27894.73 31099.93 4699.36 200
PVSNet_Blended96.88 28696.68 28597.47 30798.92 24693.77 33794.71 38699.43 12790.98 39597.62 30097.36 35596.82 18499.67 27894.73 31099.56 21998.98 277
MSDG97.71 22697.52 23398.28 24298.91 24996.82 23194.42 39699.37 14597.65 19998.37 24898.29 29697.40 15199.33 37794.09 33299.22 28198.68 327
Anonymous20240521197.90 20697.50 23499.08 12098.90 25098.25 12198.53 11796.16 37998.87 11199.11 13698.86 21090.40 33199.78 22197.36 16999.31 26599.19 244
原ACMM198.35 23598.90 25096.25 25298.83 28892.48 37996.07 37298.10 30995.39 24999.71 25892.61 36898.99 31399.08 259
GBi-Net98.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
test198.65 12498.47 13699.17 10498.90 25098.24 12299.20 4599.44 12198.59 12798.95 16599.55 5494.14 28199.86 11997.77 14799.69 17199.41 174
FMVSNet298.49 15098.40 14698.75 17698.90 25097.14 21798.61 10899.13 23298.59 12799.19 12999.28 10794.14 28199.82 17697.97 13499.80 11399.29 222
OMC-MVS97.88 21097.49 23599.04 13198.89 25598.63 9196.94 29099.25 20095.02 33498.53 23298.51 27097.27 15899.47 35593.50 34999.51 23499.01 271
MVSFormer98.26 17998.43 14297.77 27598.88 25693.89 33399.39 1799.56 7699.11 7998.16 26198.13 30593.81 28999.97 599.26 4999.57 21699.43 168
lupinMVS97.06 27696.86 27297.65 28798.88 25693.89 33395.48 36697.97 33793.53 36598.16 26197.58 34193.81 28999.91 6296.77 21699.57 21699.17 251
dmvs_re95.98 31795.39 32797.74 28198.86 25897.45 19598.37 14095.69 39097.95 17796.56 35895.95 38090.70 32897.68 41788.32 40296.13 40498.11 365
DELS-MVS98.27 17798.20 17398.48 22098.86 25896.70 23995.60 36199.20 21197.73 19498.45 23998.71 23697.50 14499.82 17698.21 11699.59 20798.93 288
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 20897.98 19897.60 29298.86 25894.35 31396.21 33099.44 12197.45 22599.06 14398.88 20797.99 10599.28 38594.38 32599.58 21299.18 247
LCM-MVSNet-Re98.64 12698.48 13499.11 11498.85 26198.51 10498.49 12699.83 2398.37 14199.69 4199.46 7398.21 8599.92 5394.13 33199.30 26898.91 292
pmmvs497.58 23697.28 24798.51 21598.84 26296.93 22795.40 37098.52 31593.60 36498.61 21898.65 24995.10 25599.60 31096.97 19799.79 11898.99 276
NP-MVS98.84 26297.39 19996.84 364
sss97.21 26696.93 26698.06 25898.83 26495.22 28896.75 30298.48 31794.49 34597.27 32697.90 32492.77 30699.80 19796.57 23499.32 26399.16 254
PVSNet93.40 1795.67 32695.70 31295.57 37398.83 26488.57 40092.50 41397.72 34292.69 37796.49 36496.44 37393.72 29299.43 36293.61 34499.28 27198.71 320
MVEpermissive83.40 2292.50 37791.92 37994.25 38898.83 26491.64 37292.71 41283.52 42695.92 31186.46 42495.46 39395.20 25295.40 42280.51 41998.64 33995.73 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ambc98.24 24598.82 26795.97 26398.62 10799.00 25799.27 11599.21 12496.99 17599.50 34696.55 24199.50 24199.26 228
旧先验198.82 26797.45 19598.76 29698.34 29195.50 24699.01 31099.23 234
test_vis1_rt97.75 22397.72 21997.83 27098.81 26996.35 24997.30 26899.69 4394.61 34397.87 28498.05 31496.26 21398.32 41298.74 8698.18 35698.82 302
WTY-MVS96.67 29496.27 30497.87 26898.81 26994.61 30796.77 30097.92 33994.94 33797.12 32997.74 33291.11 32499.82 17693.89 33798.15 36099.18 247
3Dnovator+97.89 398.69 11498.51 12799.24 9798.81 26998.40 10999.02 6699.19 21598.99 10098.07 27099.28 10797.11 16899.84 14996.84 21199.32 26399.47 154
QAPM97.31 25796.81 27898.82 15998.80 27297.49 19299.06 6299.19 21590.22 39997.69 29799.16 13796.91 17899.90 6890.89 39299.41 25199.07 261
VNet98.42 15698.30 16198.79 16698.79 27397.29 20398.23 15098.66 30699.31 5698.85 18698.80 22294.80 26699.78 22198.13 12199.13 29699.31 217
DPM-MVS96.32 30695.59 31898.51 21598.76 27497.21 21094.54 39598.26 32691.94 38496.37 36597.25 35793.06 30099.43 36291.42 38298.74 32898.89 294
3Dnovator98.27 298.81 9498.73 9399.05 12998.76 27497.81 17399.25 4099.30 18098.57 13198.55 22999.33 9897.95 10799.90 6897.16 17999.67 18299.44 164
PLCcopyleft94.65 1696.51 29995.73 31198.85 15698.75 27697.91 16096.42 31899.06 24190.94 39695.59 37897.38 35394.41 27499.59 31490.93 39098.04 36999.05 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 28896.75 28197.08 32498.74 27793.33 34596.71 30498.26 32696.72 27898.44 24097.37 35495.20 25299.47 35591.89 37397.43 38198.44 346
hse-mvs297.46 24497.07 25998.64 18898.73 27897.33 20197.45 25797.64 34899.11 7998.58 22497.98 31888.65 34499.79 21098.11 12297.39 38398.81 306
CDS-MVSNet97.69 22797.35 24498.69 18398.73 27897.02 22196.92 29498.75 29995.89 31298.59 22298.67 24492.08 31699.74 24596.72 22299.81 10299.32 213
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 20097.74 21698.80 16398.72 28098.09 13798.05 17599.60 5997.39 22996.63 35595.55 38897.68 12399.80 19796.73 22199.27 27298.52 338
LFMVS97.20 26796.72 28298.64 18898.72 28096.95 22598.93 7894.14 40399.74 1098.78 19599.01 17584.45 37199.73 25097.44 16599.27 27299.25 229
new_pmnet96.99 28396.76 28097.67 28598.72 28094.89 29795.95 34698.20 32992.62 37898.55 22998.54 26594.88 26299.52 34093.96 33599.44 24998.59 335
Fast-Effi-MVS+97.67 22997.38 24198.57 20498.71 28397.43 19797.23 27399.45 11794.82 34096.13 36996.51 36998.52 5799.91 6296.19 26398.83 32498.37 355
TEST998.71 28398.08 14195.96 34499.03 24991.40 39095.85 37597.53 34396.52 20199.76 233
train_agg97.10 27396.45 29899.07 12298.71 28398.08 14195.96 34499.03 24991.64 38595.85 37597.53 34396.47 20399.76 23393.67 34399.16 29199.36 200
TSAR-MVS + GP.98.18 18897.98 19898.77 17398.71 28397.88 16296.32 32498.66 30696.33 29399.23 12698.51 27097.48 14899.40 36697.16 17999.46 24499.02 270
FA-MVS(test-final)96.99 28396.82 27697.50 30498.70 28794.78 29999.34 2096.99 36395.07 33398.48 23799.33 9888.41 34799.65 29496.13 26998.92 32198.07 368
AUN-MVS96.24 31195.45 32398.60 19998.70 28797.22 20997.38 26097.65 34695.95 31095.53 38597.96 32282.11 38899.79 21096.31 25697.44 38098.80 311
our_test_397.39 25297.73 21896.34 35198.70 28789.78 39694.61 39298.97 25996.50 28699.04 15098.85 21395.98 22899.84 14997.26 17499.67 18299.41 174
ppachtmachnet_test97.50 23997.74 21696.78 34198.70 28791.23 38394.55 39499.05 24496.36 29299.21 12798.79 22496.39 20699.78 22196.74 21999.82 9899.34 206
PCF-MVS92.86 1894.36 34893.00 36598.42 22798.70 28797.56 18993.16 41199.11 23579.59 42097.55 30797.43 35092.19 31399.73 25079.85 42099.45 24697.97 374
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ttmdpeth97.91 20598.02 19497.58 29498.69 29294.10 32098.13 16298.90 26997.95 17797.32 32599.58 4495.95 23198.75 40796.41 25099.22 28199.87 20
ETV-MVS98.03 19797.86 21098.56 20898.69 29298.07 14397.51 25199.50 9398.10 16997.50 31295.51 38998.41 6599.88 9496.27 25999.24 27797.71 387
test_prior98.95 14398.69 29297.95 15899.03 24999.59 31499.30 220
mvsmamba97.57 23797.26 24898.51 21598.69 29296.73 23898.74 9297.25 35697.03 26297.88 28399.23 12290.95 32599.87 11196.61 23099.00 31198.91 292
agg_prior98.68 29697.99 15099.01 25595.59 37899.77 227
test_898.67 29798.01 14995.91 35099.02 25291.64 38595.79 37797.50 34696.47 20399.76 233
HQP-NCC98.67 29796.29 32696.05 30395.55 381
ACMP_Plane98.67 29796.29 32696.05 30395.55 381
CNVR-MVS98.17 19097.87 20999.07 12298.67 29798.24 12297.01 28698.93 26397.25 24397.62 30098.34 29197.27 15899.57 32296.42 24999.33 26299.39 184
HQP-MVS97.00 28296.49 29798.55 20998.67 29796.79 23396.29 32699.04 24796.05 30395.55 38196.84 36493.84 28799.54 33492.82 36199.26 27599.32 213
MM98.22 18397.99 19798.91 15098.66 30296.97 22297.89 20094.44 39799.54 3098.95 16599.14 14493.50 29399.92 5399.80 1399.96 2699.85 25
test_fmvs197.72 22597.94 20397.07 32698.66 30292.39 36297.68 22799.81 2695.20 33299.54 6099.44 7891.56 32199.41 36599.78 1699.77 12999.40 183
balanced_conf0398.63 12898.72 9598.38 23198.66 30296.68 24198.90 8099.42 13098.99 10098.97 16199.19 12795.81 23699.85 13198.77 8499.77 12998.60 332
thres20093.72 36193.14 36395.46 37798.66 30291.29 37996.61 30994.63 39697.39 22996.83 34893.71 41179.88 39199.56 32582.40 41798.13 36195.54 416
wuyk23d96.06 31397.62 22891.38 40398.65 30698.57 9898.85 8796.95 36696.86 27199.90 1299.16 13799.18 1798.40 41189.23 40099.77 12977.18 423
NCCC97.86 21397.47 23899.05 12998.61 30798.07 14396.98 28898.90 26997.63 20097.04 33497.93 32395.99 22799.66 28995.31 29898.82 32699.43 168
DeepC-MVS_fast96.85 698.30 17398.15 18198.75 17698.61 30797.23 20797.76 21999.09 23897.31 23798.75 20198.66 24797.56 13699.64 29796.10 27099.55 22399.39 184
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 36392.09 37397.75 27998.60 30994.40 31197.32 26695.26 39297.56 20996.79 35195.50 39053.57 42999.77 22795.26 29998.97 31699.08 259
thisisatest051594.12 35593.16 36296.97 33098.60 30992.90 35293.77 40790.61 41694.10 35796.91 34195.87 38374.99 40699.80 19794.52 31699.12 29998.20 361
GA-MVS95.86 32095.32 33097.49 30598.60 30994.15 31993.83 40697.93 33895.49 32396.68 35397.42 35183.21 38199.30 38196.22 26198.55 34599.01 271
dmvs_testset92.94 37392.21 37295.13 38198.59 31290.99 38697.65 23392.09 41296.95 26594.00 40493.55 41292.34 31296.97 42072.20 42392.52 41897.43 395
OPU-MVS98.82 15998.59 31298.30 11898.10 16898.52 26998.18 8798.75 40794.62 31399.48 24399.41 174
MSLP-MVS++98.02 19898.14 18397.64 28998.58 31495.19 28997.48 25499.23 20797.47 21897.90 28198.62 25697.04 17098.81 40697.55 15999.41 25198.94 287
test1298.93 14698.58 31497.83 16798.66 30696.53 35995.51 24599.69 26699.13 29699.27 225
CL-MVSNet_self_test97.44 24797.22 25198.08 25698.57 31695.78 26994.30 39998.79 29296.58 28498.60 22098.19 30394.74 26999.64 29796.41 25098.84 32398.82 302
PS-MVSNAJ97.08 27597.39 24096.16 36298.56 31792.46 36095.24 37498.85 28397.25 24397.49 31395.99 37998.07 9699.90 6896.37 25298.67 33896.12 412
CNLPA97.17 27096.71 28398.55 20998.56 31798.05 14796.33 32398.93 26396.91 26897.06 33397.39 35294.38 27699.45 35991.66 37699.18 29098.14 364
xiu_mvs_v2_base97.16 27197.49 23596.17 36098.54 31992.46 36095.45 36798.84 28497.25 24397.48 31496.49 37098.31 7499.90 6896.34 25598.68 33796.15 411
alignmvs97.35 25496.88 27198.78 16998.54 31998.09 13797.71 22497.69 34499.20 6897.59 30395.90 38288.12 34999.55 32998.18 11898.96 31798.70 323
FE-MVS95.66 32794.95 34097.77 27598.53 32195.28 28599.40 1696.09 38193.11 37197.96 27899.26 11379.10 39899.77 22792.40 37098.71 33298.27 359
Effi-MVS+98.02 19897.82 21298.62 19498.53 32197.19 21297.33 26599.68 4897.30 23896.68 35397.46 34998.56 5599.80 19796.63 22898.20 35598.86 299
baseline195.96 31895.44 32497.52 30298.51 32393.99 32798.39 13896.09 38198.21 15798.40 24797.76 33186.88 35199.63 30095.42 29689.27 42198.95 283
MVS_Test98.18 18898.36 15397.67 28598.48 32494.73 30298.18 15599.02 25297.69 19698.04 27499.11 14797.22 16299.56 32598.57 9898.90 32298.71 320
MGCFI-Net98.34 16698.28 16398.51 21598.47 32597.59 18898.96 7499.48 10299.18 7497.40 32095.50 39098.66 4499.50 34698.18 11898.71 33298.44 346
BH-RMVSNet96.83 28896.58 29397.58 29498.47 32594.05 32196.67 30697.36 35196.70 28097.87 28497.98 31895.14 25499.44 36190.47 39598.58 34499.25 229
sasdasda98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
canonicalmvs98.34 16698.26 16798.58 20198.46 32797.82 17098.96 7499.46 11399.19 7297.46 31595.46 39398.59 5199.46 35798.08 12598.71 33298.46 340
MVS-HIRNet94.32 34995.62 31590.42 40498.46 32775.36 42896.29 32689.13 42095.25 33095.38 38799.75 1392.88 30399.19 39194.07 33399.39 25396.72 405
PHI-MVS98.29 17697.95 20199.34 7598.44 33099.16 4798.12 16599.38 14196.01 30798.06 27198.43 28197.80 11799.67 27895.69 28899.58 21299.20 239
DVP-MVS++98.90 8298.70 10199.51 4698.43 33199.15 5199.43 1299.32 16798.17 16499.26 11999.02 16698.18 8799.88 9497.07 18899.45 24699.49 137
MSC_two_6792asdad99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
No_MVS99.32 8298.43 33198.37 11398.86 28099.89 8097.14 18299.60 20399.71 52
Fast-Effi-MVS+-dtu98.27 17798.09 18698.81 16198.43 33198.11 13497.61 23999.50 9398.64 12197.39 32297.52 34598.12 9599.95 2496.90 20598.71 33298.38 353
OpenMVS_ROBcopyleft95.38 1495.84 32295.18 33597.81 27298.41 33597.15 21697.37 26298.62 31083.86 41598.65 21298.37 28794.29 27999.68 27588.41 40198.62 34296.60 406
DeepPCF-MVS96.93 598.32 17098.01 19599.23 9998.39 33698.97 7095.03 37999.18 21996.88 26999.33 10398.78 22698.16 9199.28 38596.74 21999.62 19699.44 164
Patchmatch-test96.55 29896.34 30097.17 32198.35 33793.06 34898.40 13797.79 34097.33 23498.41 24398.67 24483.68 37999.69 26695.16 30199.31 26598.77 314
AdaColmapbinary97.14 27296.71 28398.46 22298.34 33897.80 17496.95 28998.93 26395.58 32096.92 33997.66 33695.87 23499.53 33690.97 38999.14 29498.04 369
OpenMVScopyleft96.65 797.09 27496.68 28598.32 23798.32 33997.16 21598.86 8699.37 14589.48 40396.29 36799.15 14196.56 19999.90 6892.90 35899.20 28597.89 375
MG-MVS96.77 29196.61 29097.26 31798.31 34093.06 34895.93 34798.12 33496.45 29097.92 27998.73 23393.77 29199.39 36891.19 38799.04 30599.33 211
test_yl96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
DCV-MVSNet96.69 29296.29 30297.90 26598.28 34195.24 28697.29 26997.36 35198.21 15798.17 25897.86 32586.27 35599.55 32994.87 30798.32 34998.89 294
CHOSEN 280x42095.51 33295.47 32195.65 37298.25 34388.27 40393.25 41098.88 27393.53 36594.65 39697.15 36086.17 35799.93 4497.41 16799.93 4698.73 319
SCA96.41 30596.66 28895.67 37098.24 34488.35 40295.85 35396.88 36996.11 30197.67 29898.67 24493.10 29899.85 13194.16 32799.22 28198.81 306
DeepMVS_CXcopyleft93.44 39998.24 34494.21 31694.34 39864.28 42391.34 41794.87 40589.45 33892.77 42477.54 42293.14 41793.35 419
MS-PatchMatch97.68 22897.75 21597.45 30898.23 34693.78 33697.29 26998.84 28496.10 30298.64 21398.65 24996.04 22099.36 37196.84 21199.14 29499.20 239
BH-w/o95.13 33894.89 34295.86 36598.20 34791.31 37895.65 35997.37 35093.64 36396.52 36095.70 38693.04 30199.02 39788.10 40395.82 40797.24 398
mvs_anonymous97.83 22198.16 18096.87 33598.18 34891.89 36997.31 26798.90 26997.37 23198.83 18999.46 7396.28 21299.79 21098.90 7398.16 35998.95 283
miper_lstm_enhance97.18 26997.16 25497.25 31898.16 34992.85 35395.15 37799.31 17297.25 24398.74 20398.78 22690.07 33299.78 22197.19 17799.80 11399.11 258
RRT-MVS97.88 21097.98 19897.61 29198.15 35093.77 33798.97 7399.64 5399.16 7698.69 20699.42 8091.60 31999.89 8097.63 15598.52 34699.16 254
ET-MVSNet_ETH3D94.30 35193.21 36197.58 29498.14 35194.47 31094.78 38593.24 40894.72 34189.56 41995.87 38378.57 40199.81 19096.91 20097.11 39298.46 340
ADS-MVSNet295.43 33394.98 33896.76 34298.14 35191.74 37097.92 19697.76 34190.23 39796.51 36198.91 19785.61 36299.85 13192.88 35996.90 39398.69 324
ADS-MVSNet95.24 33694.93 34196.18 35998.14 35190.10 39597.92 19697.32 35490.23 39796.51 36198.91 19785.61 36299.74 24592.88 35996.90 39398.69 324
c3_l97.36 25397.37 24297.31 31398.09 35493.25 34695.01 38099.16 22697.05 25998.77 19898.72 23592.88 30399.64 29796.93 19999.76 14199.05 263
FMVSNet397.50 23997.24 25098.29 24198.08 35595.83 26797.86 20598.91 26897.89 18498.95 16598.95 19287.06 35099.81 19097.77 14799.69 17199.23 234
PAPM91.88 38690.34 38996.51 34698.06 35692.56 35892.44 41497.17 35886.35 41190.38 41896.01 37886.61 35399.21 39070.65 42495.43 40997.75 384
Effi-MVS+-dtu98.26 17997.90 20799.35 7298.02 35799.49 698.02 18099.16 22698.29 15197.64 29997.99 31796.44 20599.95 2496.66 22798.93 32098.60 332
eth_miper_zixun_eth97.23 26597.25 24997.17 32198.00 35892.77 35594.71 38699.18 21997.27 24198.56 22798.74 23291.89 31799.69 26697.06 19099.81 10299.05 263
HY-MVS95.94 1395.90 31995.35 32997.55 29997.95 35994.79 29898.81 9196.94 36792.28 38295.17 38998.57 26389.90 33499.75 24091.20 38697.33 38898.10 366
UGNet98.53 14598.45 13998.79 16697.94 36096.96 22499.08 5898.54 31399.10 8696.82 34999.47 7296.55 20099.84 14998.56 10199.94 4199.55 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 30395.70 31298.79 16697.92 36199.12 6198.28 14698.60 31192.16 38395.54 38496.17 37794.77 26899.52 34089.62 39898.23 35397.72 386
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 28796.55 29497.79 27397.91 36294.21 31697.56 24598.87 27597.49 21799.06 14399.05 16180.72 38999.80 19798.44 10599.82 9899.37 193
API-MVS97.04 27896.91 27097.42 31097.88 36398.23 12698.18 15598.50 31697.57 20797.39 32296.75 36696.77 18899.15 39490.16 39699.02 30994.88 417
miper_ehance_all_eth97.06 27697.03 26197.16 32397.83 36493.06 34894.66 38999.09 23895.99 30898.69 20698.45 27992.73 30899.61 30996.79 21399.03 30698.82 302
cl____97.02 27996.83 27597.58 29497.82 36594.04 32394.66 38999.16 22697.04 26098.63 21498.71 23688.68 34399.69 26697.00 19299.81 10299.00 275
DIV-MVS_self_test97.02 27996.84 27497.58 29497.82 36594.03 32494.66 38999.16 22697.04 26098.63 21498.71 23688.69 34199.69 26697.00 19299.81 10299.01 271
CANet97.87 21297.76 21498.19 24897.75 36795.51 27696.76 30199.05 24497.74 19396.93 33898.21 30195.59 24299.89 8097.86 14299.93 4699.19 244
UBG93.25 36892.32 36996.04 36497.72 36890.16 39495.92 34995.91 38596.03 30693.95 40693.04 41669.60 41299.52 34090.72 39497.98 37098.45 343
mvsany_test197.60 23397.54 23197.77 27597.72 36895.35 28295.36 37197.13 36094.13 35699.71 3799.33 9897.93 10899.30 38197.60 15898.94 31998.67 328
PVSNet_089.98 2191.15 38790.30 39093.70 39697.72 36884.34 42090.24 41797.42 34990.20 40093.79 40793.09 41590.90 32798.89 40586.57 40972.76 42497.87 377
CR-MVSNet96.28 30895.95 30797.28 31597.71 37194.22 31498.11 16698.92 26692.31 38196.91 34199.37 8785.44 36599.81 19097.39 16897.36 38697.81 380
RPMNet97.02 27996.93 26697.30 31497.71 37194.22 31498.11 16699.30 18099.37 4996.91 34199.34 9686.72 35299.87 11197.53 16297.36 38697.81 380
ETVMVS92.60 37691.08 38597.18 31997.70 37393.65 34296.54 31095.70 38896.51 28594.68 39592.39 41961.80 42699.50 34686.97 40697.41 38298.40 351
pmmvs395.03 34094.40 34796.93 33197.70 37392.53 35995.08 37897.71 34388.57 40797.71 29598.08 31279.39 39699.82 17696.19 26399.11 30098.43 348
baseline293.73 36092.83 36696.42 34997.70 37391.28 38096.84 29789.77 41993.96 36192.44 41495.93 38179.14 39799.77 22792.94 35796.76 39798.21 360
WBMVS95.18 33794.78 34396.37 35097.68 37689.74 39795.80 35598.73 30297.54 21298.30 24998.44 28070.06 41099.82 17696.62 22999.87 7999.54 116
tpm94.67 34594.34 34995.66 37197.68 37688.42 40197.88 20194.90 39394.46 34796.03 37498.56 26478.66 39999.79 21095.88 27695.01 41198.78 313
CANet_DTU97.26 26197.06 26097.84 26997.57 37894.65 30696.19 33298.79 29297.23 24995.14 39098.24 29893.22 29599.84 14997.34 17099.84 8899.04 267
testing1193.08 37192.02 37596.26 35597.56 37990.83 38996.32 32495.70 38896.47 28992.66 41393.73 41064.36 42499.59 31493.77 34297.57 37598.37 355
tpm293.09 37092.58 36894.62 38597.56 37986.53 40997.66 23195.79 38786.15 41294.07 40398.23 30075.95 40499.53 33690.91 39196.86 39697.81 380
testing9193.32 36692.27 37096.47 34897.54 38191.25 38196.17 33596.76 37197.18 25393.65 40993.50 41365.11 42399.63 30093.04 35697.45 37998.53 337
TR-MVS95.55 33095.12 33696.86 33897.54 38193.94 32896.49 31496.53 37694.36 35297.03 33696.61 36894.26 28099.16 39386.91 40896.31 40197.47 394
testing9993.04 37291.98 37896.23 35797.53 38390.70 39196.35 32295.94 38496.87 27093.41 41093.43 41463.84 42599.59 31493.24 35497.19 38998.40 351
131495.74 32495.60 31696.17 36097.53 38392.75 35698.07 17298.31 32591.22 39294.25 39996.68 36795.53 24399.03 39691.64 37897.18 39096.74 404
CostFormer93.97 35793.78 35494.51 38697.53 38385.83 41297.98 18995.96 38389.29 40594.99 39298.63 25478.63 40099.62 30394.54 31596.50 39898.09 367
FMVSNet596.01 31595.20 33498.41 22897.53 38396.10 25498.74 9299.50 9397.22 25298.03 27599.04 16369.80 41199.88 9497.27 17399.71 16199.25 229
PMMVS96.51 29995.98 30698.09 25397.53 38395.84 26694.92 38298.84 28491.58 38796.05 37395.58 38795.68 23999.66 28995.59 29298.09 36398.76 316
reproduce_monomvs95.00 34295.25 33194.22 38997.51 38883.34 42197.86 20598.44 31898.51 13699.29 11299.30 10467.68 41699.56 32598.89 7599.81 10299.77 40
PAPR95.29 33494.47 34597.75 27997.50 38995.14 29194.89 38398.71 30491.39 39195.35 38895.48 39294.57 27199.14 39584.95 41197.37 38498.97 280
testing22291.96 38490.37 38896.72 34397.47 39092.59 35796.11 33794.76 39496.83 27292.90 41292.87 41757.92 42799.55 32986.93 40797.52 37698.00 373
PatchT96.65 29596.35 29997.54 30097.40 39195.32 28497.98 18996.64 37399.33 5496.89 34599.42 8084.32 37399.81 19097.69 15497.49 37797.48 393
tpm cat193.29 36793.13 36493.75 39597.39 39284.74 41597.39 25997.65 34683.39 41794.16 40098.41 28282.86 38499.39 36891.56 38095.35 41097.14 399
PatchmatchNetpermissive95.58 32995.67 31495.30 38097.34 39387.32 40797.65 23396.65 37295.30 32997.07 33298.69 24084.77 36899.75 24094.97 30598.64 33998.83 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 25496.97 26498.50 21997.31 39496.47 24698.18 15598.92 26698.95 10698.78 19599.37 8785.44 36599.85 13195.96 27499.83 9599.17 251
LS3D98.63 12898.38 15199.36 6697.25 39599.38 1299.12 5799.32 16799.21 6698.44 24098.88 20797.31 15499.80 19796.58 23299.34 26198.92 289
IB-MVS91.63 1992.24 38290.90 38696.27 35497.22 39691.24 38294.36 39893.33 40792.37 38092.24 41594.58 40766.20 42199.89 8093.16 35594.63 41397.66 388
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UWE-MVS92.38 37991.76 38294.21 39097.16 39784.65 41695.42 36988.45 42195.96 30996.17 36895.84 38566.36 41999.71 25891.87 37498.64 33998.28 358
tpmrst95.07 33995.46 32293.91 39397.11 39884.36 41997.62 23796.96 36594.98 33596.35 36698.80 22285.46 36499.59 31495.60 29196.23 40297.79 383
Syy-MVS96.04 31495.56 32097.49 30597.10 39994.48 30996.18 33396.58 37495.65 31794.77 39392.29 42091.27 32399.36 37198.17 12098.05 36798.63 330
myMVS_eth3d91.92 38590.45 38796.30 35297.10 39990.90 38796.18 33396.58 37495.65 31794.77 39392.29 42053.88 42899.36 37189.59 39998.05 36798.63 330
MDTV_nov1_ep1395.22 33397.06 40183.20 42297.74 22196.16 37994.37 35196.99 33798.83 21683.95 37799.53 33693.90 33697.95 371
MVS93.19 36992.09 37396.50 34796.91 40294.03 32498.07 17298.06 33668.01 42294.56 39896.48 37195.96 23099.30 38183.84 41396.89 39596.17 409
E-PMN94.17 35394.37 34893.58 39796.86 40385.71 41390.11 41997.07 36198.17 16497.82 29097.19 35884.62 37098.94 40189.77 39797.68 37496.09 413
JIA-IIPM95.52 33195.03 33797.00 32796.85 40494.03 32496.93 29295.82 38699.20 6894.63 39799.71 1983.09 38299.60 31094.42 32194.64 41297.36 397
EMVS93.83 35994.02 35193.23 40196.83 40584.96 41489.77 42096.32 37897.92 18197.43 31996.36 37686.17 35798.93 40287.68 40497.73 37395.81 414
cl2295.79 32395.39 32796.98 32996.77 40692.79 35494.40 39798.53 31494.59 34497.89 28298.17 30482.82 38599.24 38796.37 25299.03 30698.92 289
WB-MVSnew95.73 32595.57 31996.23 35796.70 40790.70 39196.07 33993.86 40495.60 31997.04 33495.45 39696.00 22399.55 32991.04 38898.31 35198.43 348
dp93.47 36493.59 35793.13 40296.64 40881.62 42697.66 23196.42 37792.80 37696.11 37098.64 25278.55 40299.59 31493.31 35292.18 42098.16 363
MonoMVSNet96.25 30996.53 29695.39 37896.57 40991.01 38598.82 9097.68 34598.57 13198.03 27599.37 8790.92 32697.78 41694.99 30393.88 41697.38 396
test-LLR93.90 35893.85 35294.04 39196.53 41084.62 41794.05 40392.39 41096.17 29894.12 40195.07 39782.30 38699.67 27895.87 27998.18 35697.82 378
test-mter92.33 38191.76 38294.04 39196.53 41084.62 41794.05 40392.39 41094.00 36094.12 40195.07 39765.63 42299.67 27895.87 27998.18 35697.82 378
TESTMET0.1,192.19 38391.77 38193.46 39896.48 41282.80 42394.05 40391.52 41594.45 34994.00 40494.88 40366.65 41899.56 32595.78 28498.11 36298.02 370
MVS_030497.44 24797.01 26398.72 18196.42 41396.74 23797.20 27791.97 41398.46 13998.30 24998.79 22492.74 30799.91 6299.30 4699.94 4199.52 127
miper_enhance_ethall96.01 31595.74 31096.81 33996.41 41492.27 36693.69 40898.89 27291.14 39498.30 24997.35 35690.58 32999.58 32096.31 25699.03 30698.60 332
tpmvs95.02 34195.25 33194.33 38796.39 41585.87 41098.08 17096.83 37095.46 32495.51 38698.69 24085.91 36099.53 33694.16 32796.23 40297.58 391
CMPMVSbinary75.91 2396.29 30795.44 32498.84 15796.25 41698.69 9097.02 28599.12 23388.90 40697.83 28898.86 21089.51 33698.90 40491.92 37299.51 23498.92 289
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 34693.69 35596.99 32896.05 41793.61 34394.97 38193.49 40596.17 29897.57 30694.88 40382.30 38699.01 39993.60 34594.17 41598.37 355
EPMVS93.72 36193.27 36095.09 38396.04 41887.76 40598.13 16285.01 42594.69 34296.92 33998.64 25278.47 40399.31 37995.04 30296.46 39998.20 361
cascas94.79 34494.33 35096.15 36396.02 41992.36 36492.34 41599.26 19985.34 41495.08 39194.96 40292.96 30298.53 41094.41 32498.59 34397.56 392
MVStest195.86 32095.60 31696.63 34495.87 42091.70 37197.93 19398.94 26098.03 17199.56 5699.66 2971.83 40998.26 41399.35 4399.24 27799.91 13
gg-mvs-nofinetune92.37 38091.20 38495.85 36695.80 42192.38 36399.31 2781.84 42799.75 891.83 41699.74 1568.29 41399.02 39787.15 40597.12 39196.16 410
gm-plane-assit94.83 42281.97 42588.07 40994.99 40099.60 31091.76 375
GG-mvs-BLEND94.76 38494.54 42392.13 36899.31 2780.47 42888.73 42291.01 42267.59 41798.16 41582.30 41894.53 41493.98 418
EPNet_dtu94.93 34394.78 34395.38 37993.58 42487.68 40696.78 29995.69 39097.35 23389.14 42198.09 31188.15 34899.49 34994.95 30699.30 26898.98 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai76.24 39175.95 39477.12 40792.39 42567.91 43190.16 41859.44 43282.04 41889.42 42094.67 40649.68 43081.74 42548.06 42577.66 42381.72 421
KD-MVS_2432*160092.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
miper_refine_blended92.87 37491.99 37695.51 37591.37 42689.27 39894.07 40198.14 33295.42 32597.25 32796.44 37367.86 41499.24 38791.28 38496.08 40598.02 370
EPNet96.14 31295.44 32498.25 24390.76 42895.50 27797.92 19694.65 39598.97 10392.98 41198.85 21389.12 33999.87 11195.99 27299.68 17699.39 184
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
kuosan69.30 39268.95 39570.34 40887.68 42965.00 43291.11 41659.90 43169.02 42174.46 42688.89 42348.58 43168.03 42728.61 42672.33 42577.99 422
test_method79.78 38979.50 39280.62 40580.21 43045.76 43370.82 42198.41 32231.08 42580.89 42597.71 33384.85 36797.37 41891.51 38180.03 42298.75 317
tmp_tt78.77 39078.73 39378.90 40658.45 43174.76 43094.20 40078.26 42939.16 42486.71 42392.82 41880.50 39075.19 42686.16 41092.29 41986.74 420
testmvs17.12 39420.53 3976.87 41012.05 4324.20 43593.62 4096.73 4334.62 42810.41 42824.33 4258.28 4333.56 4299.69 42815.07 42612.86 425
test12317.04 39520.11 3987.82 40910.25 4334.91 43494.80 3844.47 4344.93 42710.00 42924.28 4269.69 4323.64 42810.14 42712.43 42714.92 424
mmdepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
monomultidepth0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
test_blank0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
eth-test20.00 434
eth-test0.00 434
uanet_test0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
DCPMVS0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
cdsmvs_eth3d_5k24.66 39332.88 3960.00 4110.00 4340.00 4360.00 42299.10 2360.00 4290.00 43097.58 34199.21 160.00 4300.00 4290.00 4280.00 426
pcd_1.5k_mvsjas8.17 39610.90 3990.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 42998.07 960.00 4300.00 4290.00 4280.00 426
sosnet-low-res0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
sosnet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
uncertanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
Regformer0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
ab-mvs-re8.12 39710.83 4000.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 43097.48 3470.00 4340.00 4300.00 4290.00 4280.00 426
uanet0.00 3980.00 4010.00 4110.00 4340.00 4360.00 4220.00 4350.00 4290.00 4300.00 4290.00 4340.00 4300.00 4290.00 4280.00 426
WAC-MVS90.90 38791.37 383
PC_three_145293.27 36899.40 9198.54 26598.22 8397.00 41995.17 30099.45 24699.49 137
test_241102_TWO99.30 18098.03 17199.26 11999.02 16697.51 14399.88 9496.91 20099.60 20399.66 63
test_0728_THIRD98.17 16499.08 14199.02 16697.89 10999.88 9497.07 18899.71 16199.70 57
GSMVS98.81 306
sam_mvs184.74 36998.81 306
sam_mvs84.29 375
MTGPAbinary99.20 211
test_post197.59 24220.48 42883.07 38399.66 28994.16 327
test_post21.25 42783.86 37899.70 262
patchmatchnet-post98.77 22884.37 37299.85 131
MTMP97.93 19391.91 414
test9_res93.28 35399.15 29399.38 191
agg_prior292.50 36999.16 29199.37 193
test_prior497.97 15495.86 351
test_prior295.74 35796.48 28896.11 37097.63 33995.92 23394.16 32799.20 285
旧先验295.76 35688.56 40897.52 31099.66 28994.48 317
新几何295.93 347
无先验95.74 35798.74 30189.38 40499.73 25092.38 37199.22 238
原ACMM295.53 363
testdata299.79 21092.80 363
segment_acmp97.02 173
testdata195.44 36896.32 294
plane_prior599.27 19499.70 26294.42 32199.51 23499.45 160
plane_prior497.98 318
plane_prior397.78 17597.41 22797.79 291
plane_prior297.77 21698.20 161
plane_prior97.65 18497.07 28496.72 27899.36 257
n20.00 435
nn0.00 435
door-mid99.57 69
test1198.87 275
door99.41 134
HQP5-MVS96.79 233
BP-MVS92.82 361
HQP4-MVS95.56 38099.54 33499.32 213
HQP3-MVS99.04 24799.26 275
HQP2-MVS93.84 287
MDTV_nov1_ep13_2view74.92 42997.69 22690.06 40297.75 29485.78 36193.52 34798.69 324
ACMMP++_ref99.77 129
ACMMP++99.68 176
Test By Simon96.52 201