This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32897.70 14299.73 14297.89 354
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25799.95 2399.45 3599.96 2599.88 14
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 24099.97 499.31 4199.98 1299.73 45
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22399.91 6099.32 4099.95 3299.70 52
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29899.93 4199.04 5999.84 8699.60 75
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
K. test v398.00 19197.66 21399.03 13199.79 2597.56 18699.19 4992.47 38899.62 2099.52 6299.66 2789.61 32199.96 1299.25 4699.81 10099.56 98
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38499.76 1699.56 21099.92 9
EGC-MVSNET85.24 36680.54 36999.34 7399.77 2999.20 3499.08 5999.29 17512.08 40220.84 40399.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27599.94 3699.25 4699.96 2599.42 162
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27599.79 2599.57 4292.85 29599.42 34599.79 1399.84 8699.60 75
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 38199.41 3798.29 33598.45 327
test_vis1_n_192098.40 15198.92 6996.81 32699.74 3890.76 37398.15 15299.91 798.33 13099.89 1599.55 4895.07 24599.88 8499.76 1699.93 4499.79 30
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
lessismore_v098.97 13999.73 3997.53 18886.71 40199.37 9099.52 5789.93 31999.92 5198.99 6399.72 14999.44 155
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 18098.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32798.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26199.95 2399.11 5399.24 26799.82 25
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27799.78 2699.82 496.14 20498.63 38999.82 899.93 4499.95 6
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
PMVScopyleft91.26 2097.86 20297.94 19197.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39391.59 35899.67 17396.82 381
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35298.03 16899.85 1597.62 18699.96 499.62 3493.98 27699.74 23499.52 3199.86 8199.79 30
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31798.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
test_fmvs1_n98.09 18598.28 15597.52 28999.68 5993.47 33198.63 9899.93 495.41 30699.68 3999.64 3291.88 30799.48 33499.82 899.87 7899.62 68
CHOSEN 1792x268897.49 22997.14 24598.54 20499.68 5996.09 24796.50 29799.62 4791.58 36598.84 18298.97 17292.36 30099.88 8496.76 20499.95 3299.67 58
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26799.93 4198.65 8598.83 31199.76 39
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25898.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32495.72 27099.71 15499.32 205
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
EU-MVSNet97.66 21998.50 12195.13 36199.63 7585.84 39198.35 13598.21 31398.23 14099.54 5699.46 6695.02 24699.68 26398.24 10799.87 7899.87 16
HyFIR lowres test97.19 25396.60 27898.96 14099.62 7797.28 20195.17 35399.50 8694.21 33299.01 14798.32 27986.61 33999.99 297.10 17399.84 8699.60 75
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
VDDNet98.21 17597.95 18999.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31699.80 18697.88 13199.20 27399.48 138
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 26099.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 33196.50 23098.99 30099.34 198
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26399.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
IS-MVSNet98.19 17797.90 19599.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30899.79 19995.49 27999.80 11099.48 138
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30399.90 6596.87 19599.68 16799.49 128
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
Vis-MVSNet (Re-imp)97.46 23197.16 24298.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32699.73 23993.88 32199.79 11599.18 238
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25699.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
Patchmatch-RL test97.26 24697.02 24997.99 25299.52 10495.53 26496.13 31799.71 3397.47 20299.27 10899.16 12384.30 36099.62 29097.89 12899.77 12498.81 294
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
Anonymous2023120698.21 17598.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 28098.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29398.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25498.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32399.50 8697.30 22299.05 14198.98 17099.35 1299.32 35995.72 27099.68 16799.18 238
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
IU-MVS99.49 11699.15 4798.87 26292.97 35099.41 8096.76 20499.62 18799.66 59
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 334
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 36296.23 24498.38 33199.28 216
114514_t96.50 28895.77 29598.69 17999.48 12397.43 19497.84 19699.55 7281.42 39696.51 34498.58 24995.53 23199.67 26693.41 33399.58 20398.98 266
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
X-MVStestdata94.32 33292.59 35099.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 40097.50 13399.83 15696.79 20099.53 21999.56 98
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
MDA-MVSNet-bldmvs97.94 19597.91 19498.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26899.85 12296.60 21698.72 31799.37 186
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 28996.82 26195.52 35599.42 13687.08 38899.22 4287.14 40099.11 7299.46 7199.58 4188.69 32799.86 11098.80 7299.95 3299.62 68
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21799.79 19999.33 3999.90 7099.51 121
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 18798.08 17998.04 24999.41 13894.59 29694.59 37199.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26899.96 499.81 598.18 7899.45 34098.97 6499.79 11599.83 22
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
test250692.39 35791.89 35993.89 37299.38 14182.28 40299.32 2366.03 40899.08 8498.77 19299.57 4266.26 40199.84 13998.71 8099.95 3299.54 109
ECVR-MVScopyleft96.42 29196.61 27695.85 34799.38 14188.18 38499.22 4286.00 40299.08 8499.36 9299.57 4288.47 33299.82 16698.52 9499.95 3299.54 109
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
tttt051795.64 31394.98 32297.64 27899.36 14893.81 32398.72 9090.47 39698.08 15698.67 20198.34 27673.88 39399.92 5197.77 13799.51 22499.20 231
test_part299.36 14899.10 6099.05 141
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
Test_1112_low_res96.99 26996.55 28098.31 22799.35 15295.47 26795.84 33499.53 8091.51 36796.80 33398.48 26391.36 31099.83 15696.58 21799.53 21999.62 68
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 24596.86 25798.58 19499.34 15496.32 24096.75 28699.58 5493.14 34896.89 32897.48 33292.11 30499.86 11096.91 18799.54 21599.57 92
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25798.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
CPTT-MVS97.84 20897.36 23299.27 8999.31 15598.46 10598.29 13899.27 18194.90 31697.83 27498.37 27294.90 24899.84 13993.85 32399.54 21599.51 121
UnsupCasMVSNet_eth97.89 19897.60 21898.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29999.74 23497.76 14195.60 38799.34 198
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29999.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
UnsupCasMVSNet_bld97.30 24396.92 25398.45 21399.28 16096.78 23096.20 31399.27 18195.42 30398.28 24398.30 28093.16 28699.71 24794.99 28797.37 36498.87 286
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 20798.18 16696.87 32299.27 16291.16 36995.53 34299.25 18799.10 7999.41 8099.35 8493.10 28899.96 1298.65 8599.94 4099.49 128
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
N_pmnet97.63 22197.17 24198.99 13699.27 16297.86 16395.98 32293.41 38595.25 30899.47 7098.90 18995.63 22899.85 12296.91 18799.73 14299.27 217
FPMVS93.44 34892.23 35297.08 31199.25 16697.86 16395.61 33997.16 34292.90 35293.76 38998.65 23775.94 39095.66 39979.30 39997.49 35897.73 364
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35496.42 30299.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
MCST-MVS98.00 19197.63 21699.10 11599.24 16798.17 12896.89 27998.73 28995.66 29497.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
jason97.45 23397.35 23397.76 26799.24 16793.93 31795.86 33198.42 30594.24 33198.50 22698.13 29094.82 25299.91 6097.22 16399.73 14299.43 159
jason: jason.
IterMVS97.73 21398.11 17596.57 33199.24 16790.28 37595.52 34499.21 19698.86 10299.33 9799.33 9093.11 28799.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35593.86 32299.27 26298.79 300
h-mvs3397.77 21197.33 23599.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 33099.96 1298.11 11496.34 37999.49 128
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22499.84 13999.50 3299.91 6399.54 109
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
thisisatest053095.27 32094.45 32997.74 27099.19 18194.37 30197.86 19490.20 39797.17 23798.22 24597.65 32273.53 39499.90 6596.90 19299.35 24998.95 272
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
HQP_MVS97.99 19497.67 21098.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24899.70 25094.42 30499.51 22499.45 151
plane_prior799.19 18197.87 162
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
F-COLMAP97.30 24396.68 27099.14 10999.19 18198.39 10897.27 25799.30 16792.93 35196.62 33998.00 30195.73 22699.68 26392.62 34798.46 33099.35 196
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
LF4IMVS97.90 19697.69 20998.52 20699.17 18997.66 18197.19 26499.47 10296.31 27597.85 27398.20 28796.71 18399.52 32494.62 29699.72 14998.38 334
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33398.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31999.30 16797.58 19198.10 25698.24 28398.25 6999.34 35696.69 21299.65 17999.12 247
DSMNet-mixed97.42 23597.60 21896.87 32299.15 19591.46 36098.54 10999.12 22192.87 35397.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
D2MVS97.84 20897.84 20097.83 25999.14 19694.74 28996.94 27498.88 26095.84 29198.89 17098.96 17594.40 26599.69 25497.55 14699.95 3299.05 253
pmmvs597.64 22097.49 22498.08 24499.14 19695.12 28096.70 28999.05 23393.77 34098.62 20898.83 20593.23 28499.75 22998.33 10599.76 13599.36 192
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25299.79 19998.34 10399.63 18499.34 198
save fliter99.11 20097.97 15396.53 29699.02 24198.24 139
APD-MVScopyleft98.10 18297.67 21099.42 5899.11 20098.93 7197.76 20799.28 17894.97 31498.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
CVMVSNet96.25 29697.21 24093.38 37899.10 20280.56 40597.20 26298.19 31696.94 24899.00 14899.02 15389.50 32399.80 18696.36 23899.59 19899.78 33
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
HPM-MVS++copyleft98.10 18297.64 21599.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32797.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
DP-MVS Recon97.33 24196.92 25398.57 19699.09 20597.99 14996.79 28299.35 14193.18 34797.71 28198.07 29895.00 24799.31 36093.97 31799.13 28498.42 332
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32399.27 18197.60 19097.99 26498.25 28298.15 8499.38 35196.87 19599.57 20799.42 162
9.1497.78 20299.07 20997.53 23599.32 15495.53 30098.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
PAPM_NR96.82 27696.32 28698.30 22899.07 20996.69 23297.48 24098.76 28395.81 29296.61 34096.47 35794.12 27499.17 37390.82 37297.78 35499.06 252
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26299.17 12799.21 11194.81 25499.77 21696.96 18599.88 7599.44 155
CLD-MVS97.49 22997.16 24298.48 21099.07 20997.03 21794.71 36499.21 19694.46 32598.06 25997.16 34497.57 12499.48 33494.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
thres100view90094.19 33593.67 33995.75 35099.06 21391.35 36398.03 16894.24 38098.33 13097.40 30594.98 38379.84 37699.62 29083.05 39298.08 34796.29 385
thres600view794.45 33093.83 33696.29 33799.06 21391.53 35997.99 17694.24 38098.34 12997.44 30395.01 38179.84 37699.67 26684.33 39098.23 33697.66 367
plane_prior199.05 216
YYNet197.60 22297.67 21097.39 29999.04 21793.04 33895.27 35098.38 30897.25 22798.92 16698.95 17995.48 23599.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22297.66 21397.41 29899.04 21793.09 33495.27 35098.42 30597.26 22698.88 17498.95 17995.43 23699.73 23997.02 17898.72 31799.41 165
MIMVSNet96.62 28396.25 29097.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34599.65 28291.65 35699.21 27298.82 290
PatchMatch-RL97.24 24996.78 26498.61 19099.03 22097.83 16696.36 30599.06 23093.49 34597.36 30897.78 31495.75 22599.49 33193.44 33298.77 31498.52 323
ZD-MVS99.01 22198.84 7599.07 22994.10 33598.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
CDPH-MVS97.26 24696.66 27399.07 12199.00 22298.15 12996.03 32199.01 24491.21 37197.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30499.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22999.85 12297.54 14899.85 8299.59 81
plane_prior698.99 22597.70 18094.90 248
xiu_mvs_v1_base_debu97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
xiu_mvs_v1_base97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
xiu_mvs_v1_base_debi97.86 20298.17 16796.92 31998.98 22693.91 31896.45 29999.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 378
MVP-Stereo98.08 18697.92 19398.57 19698.96 22996.79 22797.90 18699.18 20696.41 27198.46 22998.95 17995.93 22099.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 40196.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14898.94 23197.76 17498.76 28387.58 38896.75 33598.10 29494.80 25599.78 21092.73 34599.00 29999.20 231
USDC97.41 23697.40 22897.44 29698.94 23193.67 32795.17 35399.53 8094.03 33798.97 15499.10 13795.29 23899.34 35695.84 26699.73 14299.30 212
tfpn200view994.03 33993.44 34195.78 34998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34796.29 385
testdata98.09 24198.93 23395.40 27098.80 27890.08 37997.45 30298.37 27295.26 23999.70 25093.58 32898.95 30599.17 242
thres40094.14 33793.44 34196.24 33998.93 23391.44 36197.60 22794.29 37897.94 16397.10 31394.31 38979.67 37899.62 29083.05 39298.08 34797.66 367
TAPA-MVS96.21 1196.63 28295.95 29398.65 18198.93 23398.09 13696.93 27699.28 17883.58 39498.13 25397.78 31496.13 20599.40 34793.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 23796.93 22495.54 34198.78 28185.72 39196.86 33098.11 29394.43 26399.10 28999.23 226
PVSNet_BlendedMVS97.55 22697.53 22197.60 28098.92 23793.77 32596.64 29199.43 11794.49 32397.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
PVSNet_Blended96.88 27296.68 27097.47 29498.92 23793.77 32594.71 36499.43 11790.98 37397.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
MSDG97.71 21597.52 22298.28 23098.91 24096.82 22694.42 37499.37 13297.65 18498.37 23998.29 28197.40 14099.33 35894.09 31599.22 27098.68 315
Anonymous20240521197.90 19697.50 22399.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31799.78 21097.36 15699.31 25599.19 236
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35796.07 35498.10 29495.39 23799.71 24792.61 34898.99 30099.08 249
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27199.86 11097.77 13799.69 16299.41 165
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27199.82 16697.97 12599.80 11099.29 214
OMC-MVS97.88 20097.49 22499.04 13098.89 24698.63 8996.94 27499.25 18795.02 31298.53 22498.51 25697.27 14799.47 33793.50 33199.51 22499.01 261
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27999.97 499.26 4499.57 20799.43 159
lupinMVS97.06 26296.86 25797.65 27698.88 24793.89 32195.48 34597.97 32393.53 34398.16 24997.58 32693.81 27999.91 6096.77 20399.57 20799.17 242
dmvs_re95.98 30395.39 31297.74 27098.86 24997.45 19298.37 13395.69 36997.95 16296.56 34195.95 36590.70 31497.68 39588.32 38096.13 38398.11 344
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 34099.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 19897.98 18797.60 28098.86 24994.35 30296.21 31299.44 11197.45 20999.06 13698.88 19697.99 9599.28 36694.38 30899.58 20399.18 238
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
pmmvs497.58 22597.28 23698.51 20798.84 25396.93 22495.40 34898.52 30193.60 34298.61 21098.65 23795.10 24499.60 29796.97 18499.79 11598.99 265
NP-MVS98.84 25397.39 19696.84 349
sss97.21 25196.93 25198.06 24698.83 25595.22 27696.75 28698.48 30394.49 32397.27 30997.90 30992.77 29699.80 18696.57 21999.32 25399.16 245
PVSNet93.40 1795.67 31195.70 29895.57 35498.83 25588.57 38092.50 39197.72 32892.69 35596.49 34796.44 35893.72 28299.43 34393.61 32699.28 26198.71 308
MVEpermissive83.40 2292.50 35691.92 35894.25 36898.83 25591.64 35892.71 39083.52 40495.92 28986.46 40195.46 37695.20 24195.40 40080.51 39798.64 32495.73 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVS_030498.10 18297.88 19798.76 17198.82 25896.50 23597.90 18691.35 39499.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32996.55 22699.50 23199.26 220
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23499.01 29899.23 226
test_vis1_rt97.75 21297.72 20897.83 25998.81 26196.35 23997.30 25399.69 3694.61 32197.87 27098.05 29996.26 20298.32 39298.74 7798.18 33998.82 290
WTY-MVS96.67 28096.27 28997.87 25798.81 26194.61 29596.77 28497.92 32594.94 31597.12 31297.74 31791.11 31299.82 16693.89 32098.15 34399.18 238
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
QAPM97.31 24296.81 26398.82 15798.80 26497.49 18999.06 6399.19 20290.22 37797.69 28399.16 12396.91 16799.90 6590.89 37199.41 24199.07 251
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25599.78 21098.13 11399.13 28499.31 209
DPM-MVS96.32 29395.59 30398.51 20798.76 26697.21 20794.54 37398.26 31191.94 36296.37 34897.25 34293.06 29099.43 34391.42 36198.74 31598.89 282
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
PLCcopyleft94.65 1696.51 28695.73 29798.85 15498.75 26897.91 15996.42 30299.06 23090.94 37495.59 36097.38 33894.41 26499.59 30190.93 36998.04 35299.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27496.75 26697.08 31198.74 26993.33 33296.71 28898.26 31196.72 25998.44 23197.37 33995.20 24199.47 33791.89 35397.43 36198.44 329
hse-mvs297.46 23197.07 24698.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 33099.79 19998.11 11497.39 36398.81 294
CDS-MVSNet97.69 21697.35 23398.69 17998.73 27097.02 21896.92 27898.75 28695.89 29098.59 21498.67 23292.08 30599.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 19197.74 20598.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33895.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
LFMVS97.20 25296.72 26798.64 18298.72 27296.95 22298.93 7594.14 38299.74 698.78 18999.01 16284.45 35799.73 23997.44 15299.27 26299.25 221
new_pmnet96.99 26996.76 26597.67 27498.72 27294.89 28595.95 32798.20 31492.62 35698.55 22198.54 25294.88 25199.52 32493.96 31899.44 23998.59 322
Fast-Effi-MVS+97.67 21897.38 23098.57 19698.71 27597.43 19497.23 25899.45 10794.82 31896.13 35196.51 35498.52 5499.91 6096.19 24798.83 31198.37 336
TEST998.71 27598.08 14095.96 32599.03 23891.40 36895.85 35797.53 32896.52 19099.76 222
train_agg97.10 25896.45 28399.07 12198.71 27598.08 14095.96 32599.03 23891.64 36395.85 35797.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
TSAR-MVS + GP.98.18 17897.98 18798.77 17098.71 27597.88 16196.32 30798.66 29296.33 27399.23 11998.51 25697.48 13799.40 34797.16 16699.46 23499.02 260
FA-MVS(test-final)96.99 26996.82 26197.50 29198.70 27994.78 28799.34 2096.99 34695.07 31198.48 22899.33 9088.41 33399.65 28296.13 25398.92 30898.07 347
AUN-MVS96.24 29795.45 30898.60 19298.70 27997.22 20697.38 24697.65 33195.95 28895.53 36797.96 30782.11 37299.79 19996.31 24097.44 36098.80 299
our_test_397.39 23797.73 20796.34 33598.70 27989.78 37794.61 37098.97 24896.50 26799.04 14398.85 20295.98 21799.84 13997.26 16199.67 17399.41 165
ppachtmachnet_test97.50 22797.74 20596.78 32898.70 27991.23 36894.55 37299.05 23396.36 27299.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
PCF-MVS92.86 1894.36 33193.00 34898.42 21798.70 27997.56 18693.16 38999.11 22379.59 39797.55 29397.43 33592.19 30299.73 23979.85 39899.45 23697.97 353
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 18897.86 19998.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 366
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
agg_prior98.68 28697.99 14999.01 24495.59 36099.77 216
test_898.67 28798.01 14895.91 33099.02 24191.64 36395.79 35997.50 33196.47 19299.76 222
HQP-NCC98.67 28796.29 30896.05 28395.55 363
ACMP_Plane98.67 28796.29 30896.05 28395.55 363
CNVR-MVS98.17 18097.87 19899.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
HQP-MVS97.00 26896.49 28298.55 20198.67 28796.79 22796.29 30899.04 23696.05 28395.55 36396.84 34993.84 27799.54 31892.82 34199.26 26599.32 205
MM98.22 17397.99 18698.91 14898.66 29296.97 21997.89 18894.44 37699.54 2798.95 15799.14 13093.50 28399.92 5199.80 1299.96 2599.85 19
test_fmvs197.72 21497.94 19197.07 31398.66 29292.39 34997.68 21599.81 2395.20 31099.54 5699.44 7191.56 30999.41 34699.78 1599.77 12499.40 174
thres20093.72 34493.14 34695.46 35898.66 29291.29 36596.61 29394.63 37597.39 21396.83 33193.71 39179.88 37599.56 31082.40 39598.13 34495.54 394
wuyk23d96.06 29997.62 21791.38 38198.65 29598.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 39189.23 37899.77 12477.18 399
NCCC97.86 20297.47 22799.05 12898.61 29698.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21699.66 27795.31 28298.82 31399.43 159
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29697.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing393.51 34692.09 35497.75 26898.60 29894.40 30097.32 25195.26 37197.56 19496.79 33495.50 37453.57 40799.77 21695.26 28398.97 30399.08 249
thisisatest051594.12 33893.16 34596.97 31798.60 29892.90 33993.77 38590.61 39594.10 33596.91 32495.87 36874.99 39299.80 18694.52 29999.12 28798.20 340
GA-MVS95.86 30695.32 31597.49 29298.60 29894.15 30893.83 38497.93 32495.49 30196.68 33697.42 33683.21 36599.30 36296.22 24598.55 32999.01 261
dmvs_testset92.94 35292.21 35395.13 36198.59 30190.99 37097.65 22192.09 39196.95 24794.00 38693.55 39292.34 30196.97 39872.20 40192.52 39697.43 374
OPU-MVS98.82 15798.59 30198.30 11698.10 15898.52 25598.18 7898.75 38894.62 29699.48 23399.41 165
MSLP-MVS++98.02 18998.14 17397.64 27898.58 30395.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38797.55 14699.41 24198.94 276
test1298.93 14598.58 30397.83 16698.66 29296.53 34295.51 23399.69 25499.13 28499.27 217
CL-MVSNet_self_test97.44 23497.22 23998.08 24498.57 30595.78 25894.30 37798.79 27996.58 26598.60 21298.19 28894.74 25999.64 28596.41 23598.84 31098.82 290
PS-MVSNAJ97.08 26197.39 22996.16 34498.56 30692.46 34795.24 35298.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 390
CNLPA97.17 25596.71 26898.55 20198.56 30698.05 14696.33 30698.93 25196.91 25097.06 31697.39 33794.38 26699.45 34091.66 35599.18 27898.14 343
xiu_mvs_v2_base97.16 25697.49 22496.17 34298.54 30892.46 34795.45 34698.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 389
alignmvs97.35 23996.88 25698.78 16798.54 30898.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33599.55 31398.18 11198.96 30498.70 311
FE-MVS95.66 31294.95 32497.77 26498.53 31095.28 27399.40 1696.09 36393.11 34997.96 26599.26 10179.10 38399.77 21692.40 35098.71 31998.27 338
iter_conf_final97.10 25896.65 27598.45 21398.53 31096.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38199.87 10198.68 8399.91 6399.40 174
Effi-MVS+98.02 18997.82 20198.62 18798.53 31097.19 20997.33 25099.68 4197.30 22296.68 33697.46 33498.56 5299.80 18696.63 21598.20 33898.86 287
baseline195.96 30495.44 30997.52 28998.51 31393.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33799.63 28895.42 28089.27 39998.95 272
MVS_Test98.18 17898.36 14597.67 27498.48 31494.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
BH-RMVSNet96.83 27496.58 27997.58 28298.47 31594.05 30996.67 29097.36 33696.70 26197.87 27097.98 30395.14 24399.44 34290.47 37398.58 32899.25 221
canonicalmvs98.34 15898.26 15898.58 19498.46 31697.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33998.08 11798.71 31998.46 325
MVS-HIRNet94.32 33295.62 30190.42 38298.46 31675.36 40696.29 30889.13 39995.25 30895.38 36999.75 1192.88 29399.19 37294.07 31699.39 24396.72 383
PHI-MVS98.29 16697.95 18999.34 7398.44 31899.16 4398.12 15599.38 12896.01 28698.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
DVP-MVS++98.90 7698.70 9399.51 4398.43 31999.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31998.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31998.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 334
OpenMVS_ROBcopyleft95.38 1495.84 30795.18 31997.81 26198.41 32397.15 21397.37 24798.62 29683.86 39398.65 20498.37 27294.29 26999.68 26388.41 37998.62 32696.60 384
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32498.97 6695.03 35799.18 20696.88 25199.33 9798.78 21498.16 8299.28 36696.74 20699.62 18799.44 155
Patchmatch-test96.55 28496.34 28597.17 30898.35 32593.06 33598.40 13097.79 32697.33 21898.41 23498.67 23283.68 36499.69 25495.16 28599.31 25598.77 302
AdaColmapbinary97.14 25796.71 26898.46 21298.34 32697.80 17296.95 27398.93 25195.58 29896.92 32297.66 32195.87 22299.53 32090.97 36899.14 28298.04 348
OpenMVScopyleft96.65 797.09 26096.68 27098.32 22598.32 32797.16 21298.86 8199.37 13289.48 38196.29 35099.15 12796.56 18899.90 6592.90 33899.20 27397.89 354
MG-MVS96.77 27796.61 27697.26 30498.31 32893.06 33595.93 32898.12 32096.45 27097.92 26698.73 22193.77 28199.39 34991.19 36699.04 29399.33 203
test_yl96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27896.29 28797.90 25498.28 32995.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34199.55 31394.87 29098.32 33298.89 282
CHOSEN 280x42095.51 31795.47 30695.65 35398.25 33188.27 38393.25 38898.88 26093.53 34394.65 37897.15 34586.17 34399.93 4197.41 15499.93 4498.73 307
SCA96.41 29296.66 27395.67 35198.24 33288.35 38295.85 33396.88 35296.11 28197.67 28498.67 23293.10 28899.85 12294.16 31099.22 27098.81 294
DeepMVS_CXcopyleft93.44 37798.24 33294.21 30594.34 37764.28 39991.34 39594.87 38789.45 32492.77 40277.54 40093.14 39593.35 397
MS-PatchMatch97.68 21797.75 20497.45 29598.23 33493.78 32497.29 25498.84 27196.10 28298.64 20598.65 23796.04 20999.36 35296.84 19899.14 28299.20 231
BH-w/o95.13 32294.89 32695.86 34698.20 33591.31 36495.65 33897.37 33593.64 34196.52 34395.70 37093.04 29199.02 37888.10 38195.82 38697.24 376
mvs_anonymous97.83 21098.16 17096.87 32298.18 33691.89 35697.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34298.95 272
miper_lstm_enhance97.18 25497.16 24297.25 30598.16 33792.85 34095.15 35599.31 15997.25 22798.74 19798.78 21490.07 31899.78 21097.19 16499.80 11099.11 248
ET-MVSNet_ETH3D94.30 33493.21 34497.58 28298.14 33894.47 29994.78 36393.24 38794.72 31989.56 39795.87 36878.57 38699.81 17996.91 18797.11 37198.46 325
ADS-MVSNet295.43 31894.98 32296.76 32998.14 33891.74 35797.92 18397.76 32790.23 37596.51 34498.91 18685.61 34899.85 12292.88 33996.90 37298.69 312
ADS-MVSNet95.24 32194.93 32596.18 34198.14 33890.10 37697.92 18397.32 33990.23 37596.51 34498.91 18685.61 34899.74 23492.88 33996.90 37298.69 312
c3_l97.36 23897.37 23197.31 30098.09 34193.25 33395.01 35899.16 21397.05 24298.77 19298.72 22392.88 29399.64 28596.93 18699.76 13599.05 253
FMVSNet397.50 22797.24 23898.29 22998.08 34295.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33699.81 17997.77 13799.69 16299.23 226
PAPM91.88 36490.34 36796.51 33298.06 34392.56 34592.44 39297.17 34186.35 38990.38 39696.01 36386.61 33999.21 37170.65 40295.43 38897.75 363
Effi-MVS+-dtu98.26 16997.90 19599.35 7098.02 34499.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
eth_miper_zixun_eth97.23 25097.25 23797.17 30898.00 34592.77 34294.71 36499.18 20697.27 22598.56 21998.74 22091.89 30699.69 25497.06 17799.81 10099.05 253
HY-MVS95.94 1395.90 30595.35 31497.55 28697.95 34694.79 28698.81 8596.94 35092.28 36095.17 37198.57 25089.90 32099.75 22991.20 36597.33 36898.10 345
UGNet98.53 13798.45 13198.79 16497.94 34796.96 22199.08 5998.54 29999.10 7996.82 33299.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 29095.70 29898.79 16497.92 34899.12 5798.28 13998.60 29792.16 36195.54 36696.17 36294.77 25899.52 32489.62 37698.23 33697.72 365
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 27396.55 28097.79 26297.91 34994.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37399.80 18698.44 9899.82 9699.37 186
iter_conf0596.54 28596.07 29197.92 25397.90 35094.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39199.87 10198.50 9599.92 5599.40 174
API-MVS97.04 26496.91 25597.42 29797.88 35198.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37590.16 37499.02 29794.88 395
miper_ehance_all_eth97.06 26297.03 24897.16 31097.83 35293.06 33594.66 36799.09 22795.99 28798.69 19998.45 26592.73 29799.61 29696.79 20099.03 29498.82 290
cl____97.02 26596.83 26097.58 28297.82 35394.04 31194.66 36799.16 21397.04 24398.63 20698.71 22488.68 32999.69 25497.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26596.84 25997.58 28297.82 35394.03 31294.66 36799.16 21397.04 24398.63 20698.71 22488.69 32799.69 25497.00 17999.81 10099.01 261
CANet97.87 20197.76 20398.19 23697.75 35595.51 26596.76 28599.05 23397.74 17796.93 32198.21 28695.59 23099.89 7597.86 13399.93 4499.19 236
mvsany_test197.60 22297.54 22097.77 26497.72 35695.35 27195.36 34997.13 34394.13 33499.71 3399.33 9097.93 9899.30 36297.60 14598.94 30698.67 316
PVSNet_089.98 2191.15 36590.30 36893.70 37497.72 35684.34 39990.24 39497.42 33490.20 37893.79 38893.09 39390.90 31398.89 38686.57 38772.76 40197.87 356
CR-MVSNet96.28 29595.95 29397.28 30297.71 35894.22 30398.11 15698.92 25492.31 35996.91 32499.37 8085.44 35199.81 17997.39 15597.36 36697.81 359
RPMNet97.02 26596.93 25197.30 30197.71 35894.22 30398.11 15699.30 16799.37 4596.91 32499.34 8886.72 33899.87 10197.53 14997.36 36697.81 359
ETVMVS92.60 35591.08 36397.18 30697.70 36093.65 32996.54 29495.70 36896.51 26694.68 37792.39 39661.80 40499.50 32986.97 38497.41 36298.40 333
pmmvs395.03 32494.40 33096.93 31897.70 36092.53 34695.08 35697.71 32988.57 38597.71 28198.08 29779.39 38099.82 16696.19 24799.11 28898.43 330
baseline293.73 34392.83 34996.42 33497.70 36091.28 36696.84 28189.77 39893.96 33992.44 39295.93 36679.14 38299.77 21692.94 33796.76 37698.21 339
tpm94.67 32894.34 33295.66 35297.68 36388.42 38197.88 18994.90 37294.46 32596.03 35698.56 25178.66 38499.79 19995.88 26095.01 39098.78 301
CANet_DTU97.26 24697.06 24797.84 25897.57 36494.65 29496.19 31498.79 27997.23 23395.14 37298.24 28393.22 28599.84 13997.34 15799.84 8699.04 257
tpm293.09 35192.58 35194.62 36597.56 36586.53 38997.66 21995.79 36786.15 39094.07 38598.23 28575.95 38999.53 32090.91 37096.86 37597.81 359
TR-MVS95.55 31595.12 32096.86 32597.54 36693.94 31696.49 29896.53 35894.36 33097.03 31996.61 35394.26 27099.16 37486.91 38696.31 38097.47 373
131495.74 30995.60 30296.17 34297.53 36792.75 34398.07 16298.31 31091.22 37094.25 38196.68 35295.53 23199.03 37791.64 35797.18 36996.74 382
CostFormer93.97 34093.78 33794.51 36697.53 36785.83 39297.98 17795.96 36589.29 38394.99 37498.63 24278.63 38599.62 29094.54 29896.50 37798.09 346
FMVSNet596.01 30195.20 31898.41 21897.53 36796.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39599.88 8497.27 16099.71 15499.25 221
PMMVS96.51 28695.98 29298.09 24197.53 36795.84 25594.92 36098.84 27191.58 36596.05 35595.58 37195.68 22799.66 27795.59 27698.09 34698.76 304
PAPR95.29 31994.47 32897.75 26897.50 37195.14 27994.89 36198.71 29091.39 36995.35 37095.48 37594.57 26199.14 37684.95 38997.37 36498.97 269
testing22291.96 36290.37 36696.72 33097.47 37292.59 34496.11 31894.76 37396.83 25392.90 39192.87 39457.92 40599.55 31386.93 38597.52 35798.00 352
PatchT96.65 28196.35 28497.54 28797.40 37395.32 27297.98 17796.64 35599.33 5096.89 32899.42 7484.32 35999.81 17997.69 14497.49 35897.48 372
tpm cat193.29 34993.13 34793.75 37397.39 37484.74 39597.39 24597.65 33183.39 39594.16 38298.41 26782.86 36899.39 34991.56 35995.35 38997.14 377
PatchmatchNetpermissive95.58 31495.67 30095.30 36097.34 37587.32 38797.65 22196.65 35495.30 30797.07 31598.69 22884.77 35499.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 23996.97 25098.50 20997.31 37696.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35199.85 12295.96 25899.83 9399.17 242
LS3D98.63 12198.38 14399.36 6497.25 37799.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
IB-MVS91.63 1992.24 36090.90 36496.27 33897.22 37891.24 36794.36 37693.33 38692.37 35892.24 39394.58 38866.20 40299.89 7593.16 33694.63 39297.66 367
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst95.07 32395.46 30793.91 37197.11 37984.36 39897.62 22496.96 34894.98 31396.35 34998.80 21185.46 35099.59 30195.60 27596.23 38197.79 362
Syy-MVS96.04 30095.56 30597.49 29297.10 38094.48 29896.18 31596.58 35695.65 29594.77 37592.29 39791.27 31199.36 35298.17 11298.05 35098.63 318
myMVS_eth3d91.92 36390.45 36596.30 33697.10 38090.90 37196.18 31596.58 35695.65 29594.77 37592.29 39753.88 40699.36 35289.59 37798.05 35098.63 318
MDTV_nov1_ep1395.22 31797.06 38283.20 40097.74 20996.16 36194.37 32996.99 32098.83 20583.95 36299.53 32093.90 31997.95 353
MVS93.19 35092.09 35496.50 33396.91 38394.03 31298.07 16298.06 32268.01 39894.56 38096.48 35695.96 21999.30 36283.84 39196.89 37496.17 387
E-PMN94.17 33694.37 33193.58 37596.86 38485.71 39390.11 39597.07 34498.17 14997.82 27697.19 34384.62 35698.94 38289.77 37597.68 35696.09 391
JIA-IIPM95.52 31695.03 32197.00 31496.85 38594.03 31296.93 27695.82 36699.20 6594.63 37999.71 1783.09 36699.60 29794.42 30494.64 39197.36 375
EMVS93.83 34294.02 33493.23 37996.83 38684.96 39489.77 39696.32 36097.92 16597.43 30496.36 36186.17 34398.93 38387.68 38297.73 35595.81 392
cl2295.79 30895.39 31296.98 31696.77 38792.79 34194.40 37598.53 30094.59 32297.89 26998.17 28982.82 36999.24 36896.37 23699.03 29498.92 278
WB-MVSnew95.73 31095.57 30496.23 34096.70 38890.70 37496.07 32093.86 38395.60 29797.04 31795.45 37896.00 21299.55 31391.04 36798.31 33498.43 330
dp93.47 34793.59 34093.13 38096.64 38981.62 40497.66 21996.42 35992.80 35496.11 35298.64 24078.55 38799.59 30193.31 33492.18 39898.16 342
test-LLR93.90 34193.85 33594.04 36996.53 39084.62 39694.05 38192.39 38996.17 27894.12 38395.07 37982.30 37099.67 26695.87 26398.18 33997.82 357
test-mter92.33 35991.76 36194.04 36996.53 39084.62 39694.05 38192.39 38994.00 33894.12 38395.07 37965.63 40399.67 26695.87 26398.18 33997.82 357
TESTMET0.1,192.19 36191.77 36093.46 37696.48 39282.80 40194.05 38191.52 39394.45 32794.00 38694.88 38566.65 40099.56 31095.78 26898.11 34598.02 349
miper_enhance_ethall96.01 30195.74 29696.81 32696.41 39392.27 35393.69 38698.89 25991.14 37298.30 24197.35 34190.58 31599.58 30596.31 24099.03 29498.60 320
tpmvs95.02 32595.25 31694.33 36796.39 39485.87 39098.08 16096.83 35395.46 30295.51 36898.69 22885.91 34699.53 32094.16 31096.23 38197.58 370
CMPMVSbinary75.91 2396.29 29495.44 30998.84 15596.25 39598.69 8897.02 26999.12 22188.90 38497.83 27498.86 19989.51 32298.90 38591.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 32993.69 33896.99 31596.05 39693.61 33094.97 35993.49 38496.17 27897.57 29294.88 38582.30 37099.01 38093.60 32794.17 39498.37 336
EPMVS93.72 34493.27 34395.09 36396.04 39787.76 38598.13 15385.01 40394.69 32096.92 32298.64 24078.47 38899.31 36095.04 28696.46 37898.20 340
cascas94.79 32794.33 33396.15 34596.02 39892.36 35192.34 39399.26 18685.34 39295.08 37394.96 38492.96 29298.53 39094.41 30798.59 32797.56 371
gg-mvs-nofinetune92.37 35891.20 36295.85 34795.80 39992.38 35099.31 2781.84 40599.75 591.83 39499.74 1368.29 39699.02 37887.15 38397.12 37096.16 388
gm-plane-assit94.83 40081.97 40388.07 38794.99 38299.60 29791.76 354
GG-mvs-BLEND94.76 36494.54 40192.13 35599.31 2780.47 40688.73 39991.01 39967.59 39998.16 39482.30 39694.53 39393.98 396
EPNet_dtu94.93 32694.78 32795.38 35993.58 40287.68 38696.78 28395.69 36997.35 21789.14 39898.09 29688.15 33499.49 33194.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160092.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
miper_refine_blended92.87 35391.99 35695.51 35691.37 40389.27 37894.07 37998.14 31895.42 30397.25 31096.44 35867.86 39799.24 36891.28 36396.08 38498.02 349
EPNet96.14 29895.44 30998.25 23190.76 40595.50 26697.92 18394.65 37498.97 9392.98 39098.85 20289.12 32599.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method79.78 36779.50 37080.62 38380.21 40645.76 40970.82 39798.41 30731.08 40180.89 40297.71 31884.85 35397.37 39691.51 36080.03 40098.75 305
tmp_tt78.77 36878.73 37178.90 38458.45 40774.76 40894.20 37878.26 40739.16 40086.71 40092.82 39580.50 37475.19 40386.16 38892.29 39786.74 398
testmvs17.12 37020.53 3736.87 38612.05 4084.20 41193.62 3876.73 4094.62 40410.41 40424.33 4018.28 4093.56 4059.69 40415.07 40212.86 401
test12317.04 37120.11 3747.82 38510.25 4094.91 41094.80 3624.47 4104.93 40310.00 40524.28 4029.69 4083.64 40410.14 40312.43 40314.92 400
test_blank0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
eth-test20.00 410
eth-test0.00 410
uanet_test0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
DCPMVS0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
cdsmvs_eth3d_5k24.66 36932.88 3720.00 3870.00 4100.00 4120.00 39899.10 2250.00 4050.00 40697.58 32699.21 160.00 4060.00 4050.00 4040.00 402
pcd_1.5k_mvsjas8.17 37210.90 3750.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 40598.07 860.00 4060.00 4050.00 4040.00 402
sosnet-low-res0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
sosnet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
uncertanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
Regformer0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
ab-mvs-re8.12 37310.83 3760.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 40697.48 3320.00 4100.00 4060.00 4050.00 4040.00 402
uanet0.00 3740.00 3770.00 3870.00 4100.00 4120.00 3980.00 4110.00 4050.00 4060.00 4050.00 4100.00 4060.00 4050.00 4040.00 402
WAC-MVS90.90 37191.37 362
PC_three_145293.27 34699.40 8398.54 25298.22 7497.00 39795.17 28499.45 23699.49 128
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
GSMVS98.81 294
sam_mvs184.74 35598.81 294
sam_mvs84.29 361
MTGPAbinary99.20 198
test_post197.59 22920.48 40483.07 36799.66 27794.16 310
test_post21.25 40383.86 36399.70 250
patchmatchnet-post98.77 21684.37 35899.85 122
MTMP97.93 18191.91 392
test9_res93.28 33599.15 28199.38 184
agg_prior292.50 34999.16 27999.37 186
test_prior497.97 15395.86 331
test_prior295.74 33696.48 26996.11 35297.63 32495.92 22194.16 31099.20 273
旧先验295.76 33588.56 38697.52 29699.66 27794.48 300
新几何295.93 328
无先验95.74 33698.74 28889.38 38299.73 23992.38 35199.22 230
原ACMM295.53 342
testdata299.79 19992.80 343
segment_acmp97.02 162
testdata195.44 34796.32 274
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior97.65 18297.07 26896.72 25999.36 247
n20.00 411
nn0.00 411
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
BP-MVS92.82 341
HQP4-MVS95.56 36299.54 31899.32 205
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 277
MDTV_nov1_ep13_2view74.92 40797.69 21490.06 38097.75 28085.78 34793.52 32998.69 312
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190