This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 8100.00 199.85 12
Gipumacopyleft99.03 5199.16 3698.64 17499.94 298.51 10299.32 2399.75 2299.58 2398.60 20099.62 3098.22 6599.51 31397.70 12999.73 13297.89 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
OurMVSNet-221017-099.37 2199.31 2699.53 3499.91 398.98 6599.63 699.58 4599.44 3499.78 1899.76 1096.39 18699.92 4499.44 2699.92 4599.68 43
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2199.64 1399.84 1499.83 399.50 599.87 9399.36 2899.92 4599.64 52
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4599.65 3699.48 2999.92 699.71 1698.07 7799.96 1199.53 20100.00 199.93 4
testf199.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
APD_test299.25 3099.16 3699.51 4399.89 699.63 398.71 9199.69 2798.90 9399.43 6599.35 7798.86 2599.67 25397.81 12199.81 9099.24 212
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5499.93 399.82 399.93 499.81 599.17 1599.94 3099.31 31100.00 199.82 15
anonymousdsp99.51 1099.47 1399.62 699.88 999.08 6399.34 2099.69 2798.93 9199.65 3599.72 1598.93 2399.95 2099.11 43100.00 199.82 15
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 4199.66 1299.68 3099.66 2498.44 5099.95 2099.73 1399.96 1899.75 31
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 2499.27 5299.90 999.74 1299.68 299.97 499.55 1999.99 599.88 7
RRT_MVS99.09 4698.94 5899.55 2399.87 1298.82 7899.48 998.16 30699.49 2899.59 4299.65 2694.79 24799.95 2099.45 2599.96 1899.88 7
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3799.66 3599.09 7699.89 1199.68 1899.53 499.97 499.50 2299.99 599.87 9
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1799.56 5999.11 6699.70 2699.73 1499.00 1999.97 499.26 3499.98 1099.89 6
MIMVSNet199.38 2099.32 2499.55 2399.86 1499.19 3799.41 1399.59 4399.59 2199.71 2499.57 3897.12 14699.90 5799.21 3999.87 6899.54 97
bld_raw_dy_0_6499.07 4999.00 5399.29 8199.85 1698.18 12699.11 5899.40 11499.33 4699.38 7699.44 6495.21 23099.97 499.31 3199.98 1099.73 33
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1999.63 1599.78 1899.67 2299.48 699.81 16799.30 3399.97 1499.77 24
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4599.90 299.86 1399.78 899.58 399.95 2099.00 5199.95 2299.78 22
mvsmamba99.24 3499.15 4199.49 4899.83 1998.85 7499.41 1399.55 6399.54 2599.40 7299.52 5095.86 21399.91 5299.32 3099.95 2299.70 40
SixPastTwentyTwo98.75 8798.62 9599.16 10399.83 1997.96 15399.28 3798.20 30399.37 4199.70 2699.65 2692.65 28599.93 3599.04 4899.84 7699.60 63
Baseline_NR-MVSNet98.98 5798.86 6699.36 6499.82 2198.55 9797.47 23099.57 5299.37 4199.21 10999.61 3396.76 17099.83 14498.06 10599.83 8399.71 35
pm-mvs199.44 1399.48 1299.33 7699.80 2298.63 8999.29 3399.63 3799.30 5099.65 3599.60 3599.16 1799.82 15499.07 4599.83 8399.56 86
TransMVSNet (Re)99.44 1399.47 1399.36 6499.80 2298.58 9599.27 3999.57 5299.39 3999.75 2199.62 3099.17 1599.83 14499.06 4699.62 17799.66 47
K. test v398.00 17997.66 20199.03 12899.79 2497.56 18399.19 4992.47 37099.62 1899.52 5299.66 2489.61 30799.96 1199.25 3699.81 9099.56 86
APD_test198.83 7598.66 8999.34 7299.78 2599.47 698.42 12799.45 9898.28 12898.98 13999.19 10697.76 9999.58 29296.57 20699.55 20398.97 256
test_vis3_rt99.14 3999.17 3499.07 11899.78 2598.38 10998.92 7699.94 197.80 16299.91 899.67 2297.15 14598.91 36699.76 1199.56 20099.92 5
EGC-MVSNET85.24 34880.54 35199.34 7299.77 2799.20 3499.08 5999.29 16612.08 38420.84 38599.42 6797.55 11799.85 11497.08 16199.72 13998.96 258
Anonymous2024052198.69 9798.87 6398.16 22799.77 2795.11 26999.08 5999.44 10299.34 4599.33 8699.55 4394.10 26399.94 3099.25 3699.96 1899.42 150
FC-MVSNet-test99.27 2799.25 3099.34 7299.77 2798.37 11199.30 3299.57 5299.61 2099.40 7299.50 5297.12 14699.85 11499.02 5099.94 3099.80 18
test_vis1_n98.31 15198.50 11097.73 25999.76 3094.17 29398.68 9499.91 696.31 26099.79 1799.57 3892.85 28299.42 32999.79 999.84 7699.60 63
test_fmvs399.12 4499.41 1698.25 21999.76 3095.07 27099.05 6599.94 197.78 16499.82 1599.84 298.56 4499.71 23499.96 199.96 1899.97 1
XXY-MVS99.14 3999.15 4199.10 11299.76 3097.74 17398.85 8299.62 3898.48 11599.37 7999.49 5698.75 3199.86 10298.20 9899.80 10099.71 35
TDRefinement99.42 1699.38 1899.55 2399.76 3099.33 1699.68 599.71 2499.38 4099.53 5099.61 3398.64 3799.80 17498.24 9599.84 7699.52 107
tt080598.69 9798.62 9598.90 14599.75 3499.30 1799.15 5396.97 33698.86 9698.87 16697.62 31398.63 3998.96 36399.41 2798.29 32198.45 312
test_vis1_n_192098.40 14098.92 6096.81 31199.74 3590.76 35598.15 15099.91 698.33 12099.89 1199.55 4395.07 23599.88 7699.76 1199.93 3499.79 19
FOURS199.73 3699.67 299.43 1199.54 6899.43 3699.26 101
PEN-MVS99.41 1799.34 2299.62 699.73 3699.14 5299.29 3399.54 6899.62 1899.56 4399.42 6798.16 7399.96 1198.78 6299.93 3499.77 24
lessismore_v098.97 13599.73 3697.53 18586.71 38399.37 7999.52 5089.93 30599.92 4498.99 5299.72 13999.44 143
SteuartSystems-ACMMP98.79 8098.54 10599.54 2799.73 3699.16 4398.23 14199.31 15097.92 15398.90 15698.90 17798.00 8399.88 7696.15 23799.72 13999.58 75
Skip Steuart: Steuart Systems R&D Blog.
PVSNet_Blended_VisFu98.17 16898.15 16098.22 22299.73 3695.15 26697.36 23699.68 3294.45 30998.99 13899.27 9296.87 16099.94 3097.13 15899.91 5399.57 80
Vis-MVSNetpermissive99.34 2299.36 1999.27 8699.73 3698.26 11899.17 5099.78 1999.11 6699.27 9799.48 5798.82 2899.95 2098.94 5499.93 3499.59 69
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_f98.67 10598.87 6398.05 23699.72 4295.59 24998.51 11499.81 1796.30 26299.78 1899.82 496.14 19598.63 37199.82 699.93 3499.95 2
ACMH96.65 799.25 3099.24 3199.26 8899.72 4298.38 10999.07 6299.55 6398.30 12399.65 3599.45 6399.22 1299.76 20998.44 8699.77 11499.64 52
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-CasMVS99.40 1899.33 2399.62 699.71 4499.10 6099.29 3399.53 7199.53 2699.46 6099.41 7098.23 6299.95 2098.89 5899.95 2299.81 17
DTE-MVSNet99.43 1599.35 2099.66 499.71 4499.30 1799.31 2799.51 7599.64 1399.56 4399.46 5998.23 6299.97 498.78 6299.93 3499.72 34
WR-MVS_H99.33 2399.22 3299.65 599.71 4499.24 2599.32 2399.55 6399.46 3299.50 5699.34 8197.30 13599.93 3598.90 5699.93 3499.77 24
HPM-MVS_fast99.01 5298.82 6999.57 1699.71 4499.35 1299.00 6999.50 7797.33 20598.94 15298.86 18798.75 3199.82 15497.53 13699.71 14499.56 86
ACMH+96.62 999.08 4899.00 5399.33 7699.71 4498.83 7698.60 10199.58 4599.11 6699.53 5099.18 10998.81 2999.67 25396.71 19899.77 11499.50 112
PMVScopyleft91.26 2097.86 19097.94 17997.65 26399.71 4497.94 15598.52 11098.68 28198.99 8597.52 28499.35 7797.41 13098.18 37591.59 34499.67 16396.82 363
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
FIs99.14 3999.09 4699.29 8199.70 5098.28 11799.13 5599.52 7499.48 2999.24 10699.41 7096.79 16799.82 15498.69 7199.88 6599.76 28
VPNet98.87 7098.83 6899.01 13099.70 5097.62 18298.43 12599.35 13299.47 3199.28 9599.05 13796.72 17399.82 15498.09 10399.36 23799.59 69
test_cas_vis1_n_192098.33 14898.68 8697.27 28999.69 5292.29 33698.03 16599.85 1297.62 17499.96 299.62 3093.98 26499.74 22199.52 2199.86 7199.79 19
MP-MVS-pluss98.57 11898.23 15099.60 1199.69 5299.35 1297.16 25299.38 11994.87 29998.97 14398.99 15498.01 8299.88 7697.29 14699.70 14999.58 75
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SDMVSNet99.23 3599.32 2498.96 13699.68 5497.35 19498.84 8499.48 8699.69 899.63 3899.68 1899.03 1899.96 1197.97 11299.92 4599.57 80
sd_testset99.28 2699.31 2699.19 9999.68 5498.06 14299.41 1399.30 15899.69 899.63 3899.68 1899.25 1199.96 1197.25 14999.92 4599.57 80
test_fmvs1_n98.09 17398.28 14497.52 27699.68 5493.47 31698.63 9799.93 395.41 28899.68 3099.64 2891.88 29499.48 31899.82 699.87 6899.62 56
CHOSEN 1792x268897.49 21797.14 23398.54 19399.68 5496.09 23896.50 28399.62 3891.58 34798.84 17098.97 16092.36 28799.88 7696.76 19199.95 2299.67 46
tfpnnormal98.90 6798.90 6298.91 14399.67 5897.82 16699.00 6999.44 10299.45 3399.51 5599.24 9998.20 6899.86 10295.92 24699.69 15299.04 244
MTAPA98.88 6998.64 9299.61 999.67 5899.36 1198.43 12599.20 18998.83 10098.89 15898.90 17796.98 15699.92 4497.16 15399.70 14999.56 86
test_fmvsmvis_n_192099.26 2999.49 1098.54 19399.66 6096.97 21498.00 17199.85 1299.24 5499.92 699.50 5299.39 899.95 2099.89 399.98 1098.71 295
CP-MVSNet99.21 3699.09 4699.56 2199.65 6198.96 7099.13 5599.34 13899.42 3799.33 8699.26 9497.01 15499.94 3098.74 6699.93 3499.79 19
HPM-MVScopyleft98.79 8098.53 10699.59 1599.65 6199.29 1999.16 5199.43 10896.74 24498.61 19898.38 25998.62 4099.87 9396.47 21899.67 16399.59 69
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
RPSCF98.62 11398.36 13499.42 5899.65 6199.42 798.55 10699.57 5297.72 16898.90 15699.26 9496.12 19799.52 30995.72 25799.71 14499.32 193
TSAR-MVS + MP.98.63 11198.49 11499.06 12499.64 6497.90 15798.51 11498.94 24096.96 23399.24 10698.89 18397.83 9399.81 16796.88 18199.49 22299.48 126
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PM-MVS98.82 7698.72 7899.12 10899.64 6498.54 10097.98 17499.68 3297.62 17499.34 8599.18 10997.54 11899.77 20497.79 12399.74 12999.04 244
KD-MVS_self_test99.25 3099.18 3399.44 5799.63 6699.06 6498.69 9399.54 6899.31 4899.62 4199.53 4897.36 13399.86 10299.24 3899.71 14499.39 165
EU-MVSNet97.66 20798.50 11095.13 34399.63 6685.84 37298.35 13398.21 30298.23 13099.54 4699.46 5995.02 23699.68 25098.24 9599.87 6899.87 9
HyFIR lowres test97.19 24196.60 26698.96 13699.62 6897.28 19895.17 33599.50 7794.21 31499.01 13698.32 26786.61 32599.99 297.10 16099.84 7699.60 63
ACMMP_NAP98.75 8798.48 11599.57 1699.58 6999.29 1997.82 19199.25 17896.94 23598.78 17799.12 12498.02 8199.84 13097.13 15899.67 16399.59 69
nrg03099.40 1899.35 2099.54 2799.58 6999.13 5598.98 7299.48 8699.68 1099.46 6099.26 9498.62 4099.73 22699.17 4299.92 4599.76 28
VDDNet98.21 16397.95 17799.01 13099.58 6997.74 17399.01 6797.29 32999.67 1198.97 14399.50 5290.45 30299.80 17497.88 11899.20 26299.48 126
COLMAP_ROBcopyleft96.50 1098.99 5498.85 6799.41 6099.58 6999.10 6098.74 8699.56 5999.09 7699.33 8699.19 10698.40 5299.72 23395.98 24499.76 12599.42 150
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvsm_n_192099.33 2399.45 1598.99 13299.57 7397.73 17597.93 17799.83 1599.22 5599.93 499.30 8899.42 799.96 1199.85 499.99 599.29 202
ZNCC-MVS98.68 10298.40 12799.54 2799.57 7399.21 2898.46 12299.29 16697.28 21198.11 24398.39 25798.00 8399.87 9396.86 18499.64 17199.55 93
MSP-MVS98.40 14098.00 17499.61 999.57 7399.25 2498.57 10499.35 13297.55 18399.31 9497.71 30694.61 25099.88 7696.14 23899.19 26599.70 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testgi98.32 14998.39 13098.13 22899.57 7395.54 25197.78 19399.49 8497.37 20299.19 11197.65 31098.96 2199.49 31596.50 21798.99 28999.34 186
MP-MVScopyleft98.46 13498.09 16599.54 2799.57 7399.22 2798.50 11699.19 19397.61 17797.58 27898.66 22397.40 13199.88 7694.72 28199.60 18499.54 97
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LPG-MVS_test98.71 9198.46 11999.47 5499.57 7398.97 6698.23 14199.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
LGP-MVS_train99.47 5499.57 7398.97 6699.48 8696.60 24999.10 12199.06 13098.71 3499.83 14495.58 26499.78 11099.62 56
IS-MVSNet98.19 16597.90 18399.08 11699.57 7397.97 15099.31 2798.32 29899.01 8498.98 13999.03 14191.59 29599.79 18795.49 26699.80 10099.48 126
dcpmvs_298.78 8299.11 4397.78 25199.56 8193.67 31399.06 6399.86 1199.50 2799.66 3299.26 9497.21 14399.99 298.00 11099.91 5399.68 43
test_040298.76 8698.71 8098.93 14099.56 8198.14 13198.45 12499.34 13899.28 5198.95 14698.91 17498.34 5899.79 18795.63 26199.91 5398.86 274
EPP-MVSNet98.30 15298.04 17199.07 11899.56 8197.83 16399.29 3398.07 31099.03 8298.59 20299.13 12292.16 29099.90 5796.87 18299.68 15799.49 116
ACMMPcopyleft98.75 8798.50 11099.52 3999.56 8199.16 4398.87 7999.37 12397.16 22598.82 17499.01 15197.71 10299.87 9396.29 22999.69 15299.54 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
FMVSNet199.17 3799.17 3499.17 10099.55 8598.24 12099.20 4599.44 10299.21 5799.43 6599.55 4397.82 9699.86 10298.42 8899.89 6499.41 153
Vis-MVSNet (Re-imp)97.46 21997.16 23098.34 21299.55 8596.10 23698.94 7498.44 29398.32 12298.16 23798.62 23288.76 31299.73 22693.88 30799.79 10599.18 226
ACMM96.08 1298.91 6598.73 7699.48 5199.55 8599.14 5298.07 15999.37 12397.62 17499.04 13298.96 16398.84 2799.79 18797.43 14099.65 16999.49 116
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs298.70 9498.97 5797.89 24499.54 8894.05 29598.55 10699.92 596.78 24299.72 2299.78 896.60 17899.67 25399.91 299.90 6099.94 3
mPP-MVS98.64 10998.34 13799.54 2799.54 8899.17 3998.63 9799.24 18397.47 18998.09 24598.68 21897.62 11199.89 6796.22 23299.62 17799.57 80
XVG-ACMP-BASELINE98.56 11998.34 13799.22 9699.54 8898.59 9497.71 20199.46 9597.25 21498.98 13998.99 15497.54 11899.84 13095.88 24799.74 12999.23 214
region2R98.69 9798.40 12799.54 2799.53 9199.17 3998.52 11099.31 15097.46 19498.44 21998.51 24497.83 9399.88 7696.46 21999.58 19399.58 75
PGM-MVS98.66 10698.37 13399.55 2399.53 9199.18 3898.23 14199.49 8497.01 23298.69 18798.88 18498.00 8399.89 6795.87 25099.59 18899.58 75
Patchmatch-RL test97.26 23497.02 23797.99 24099.52 9395.53 25296.13 30199.71 2497.47 18999.27 9799.16 11584.30 34699.62 27797.89 11599.77 11498.81 281
ACMMPR98.70 9498.42 12599.54 2799.52 9399.14 5298.52 11099.31 15097.47 18998.56 20798.54 24097.75 10099.88 7696.57 20699.59 18899.58 75
GST-MVS98.61 11498.30 14299.52 3999.51 9599.20 3498.26 13999.25 17897.44 19798.67 18998.39 25797.68 10399.85 11496.00 24299.51 21499.52 107
Anonymous2023120698.21 16398.21 15198.20 22399.51 9595.43 25798.13 15199.32 14596.16 26598.93 15398.82 19696.00 20399.83 14497.32 14599.73 13299.36 180
ACMP95.32 1598.41 13898.09 16599.36 6499.51 9598.79 8097.68 20499.38 11995.76 27898.81 17698.82 19698.36 5499.82 15494.75 27899.77 11499.48 126
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
DVP-MVScopyleft98.77 8598.52 10799.52 3999.50 9899.21 2898.02 16798.84 26297.97 14899.08 12399.02 14297.61 11299.88 7696.99 16899.63 17499.48 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 9899.23 2698.02 16799.32 14599.88 7696.99 16899.63 17499.68 43
test072699.50 9899.21 2898.17 14999.35 13297.97 14899.26 10199.06 13097.61 112
AllTest98.44 13698.20 15299.16 10399.50 9898.55 9798.25 14099.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
TestCases99.16 10399.50 9898.55 9799.58 4596.80 24098.88 16299.06 13097.65 10699.57 29494.45 28899.61 18299.37 174
XVG-OURS98.53 12798.34 13799.11 11099.50 9898.82 7895.97 30599.50 7797.30 20999.05 13098.98 15899.35 999.32 34195.72 25799.68 15799.18 226
EG-PatchMatch MVS98.99 5499.01 5298.94 13999.50 9897.47 18798.04 16499.59 4398.15 14199.40 7299.36 7698.58 4399.76 20998.78 6299.68 15799.59 69
SED-MVS98.91 6598.72 7899.49 4899.49 10599.17 3998.10 15699.31 15098.03 14599.66 3299.02 14298.36 5499.88 7696.91 17499.62 17799.41 153
IU-MVS99.49 10599.15 4798.87 25392.97 33299.41 6996.76 19199.62 17799.66 47
test_241102_ONE99.49 10599.17 3999.31 15097.98 14799.66 3298.90 17798.36 5499.48 318
UA-Net99.47 1199.40 1799.70 299.49 10599.29 1999.80 399.72 2399.82 399.04 13299.81 598.05 8099.96 1198.85 5999.99 599.86 11
HFP-MVS98.71 9198.44 12299.51 4399.49 10599.16 4398.52 11099.31 15097.47 18998.58 20498.50 24897.97 8799.85 11496.57 20699.59 18899.53 104
VPA-MVSNet99.30 2599.30 2899.28 8399.49 10598.36 11499.00 6999.45 9899.63 1599.52 5299.44 6498.25 6099.88 7699.09 4499.84 7699.62 56
XVG-OURS-SEG-HR98.49 13198.28 14499.14 10699.49 10598.83 7696.54 28199.48 8697.32 20799.11 11898.61 23499.33 1099.30 34496.23 23198.38 31899.28 204
114514_t96.50 27695.77 28398.69 17199.48 11297.43 19197.84 19099.55 6381.42 37896.51 33098.58 23795.53 22199.67 25393.41 31999.58 19398.98 253
IterMVS-LS98.55 12398.70 8398.09 22999.48 11294.73 27897.22 24899.39 11798.97 8799.38 7699.31 8796.00 20399.93 3598.58 7699.97 1499.60 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v899.01 5299.16 3698.57 18599.47 11496.31 23398.90 7799.47 9399.03 8299.52 5299.57 3896.93 15799.81 16799.60 1599.98 1099.60 63
XVS98.72 9098.45 12099.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28298.63 23097.50 12499.83 14496.79 18799.53 20999.56 86
X-MVStestdata94.32 31892.59 33699.53 3499.46 11599.21 2898.65 9599.34 13898.62 10797.54 28245.85 38297.50 12499.83 14496.79 18799.53 20999.56 86
test20.0398.78 8298.77 7498.78 16099.46 11597.20 20497.78 19399.24 18399.04 8199.41 6998.90 17797.65 10699.76 20997.70 12999.79 10599.39 165
CSCG98.68 10298.50 11099.20 9799.45 11898.63 8998.56 10599.57 5297.87 15798.85 16798.04 28897.66 10599.84 13096.72 19699.81 9099.13 234
GeoE99.05 5098.99 5699.25 9199.44 11998.35 11598.73 8899.56 5998.42 11698.91 15598.81 19898.94 2299.91 5298.35 9099.73 13299.49 116
v14898.45 13598.60 10098.00 23999.44 11994.98 27197.44 23299.06 22198.30 12399.32 9298.97 16096.65 17699.62 27798.37 8999.85 7299.39 165
v1098.97 5899.11 4398.55 19099.44 11996.21 23598.90 7799.55 6398.73 10199.48 5799.60 3596.63 17799.83 14499.70 1499.99 599.61 62
V4298.78 8298.78 7398.76 16399.44 11997.04 21198.27 13899.19 19397.87 15799.25 10599.16 11596.84 16199.78 19899.21 3999.84 7699.46 135
MDA-MVSNet-bldmvs97.94 18397.91 18298.06 23499.44 11994.96 27296.63 27999.15 20998.35 11898.83 17199.11 12594.31 25699.85 11496.60 20398.72 30499.37 174
casdiffmvs_mvgpermissive99.12 4499.16 3698.99 13299.43 12497.73 17598.00 17199.62 3899.22 5599.55 4599.22 10298.93 2399.75 21698.66 7399.81 9099.50 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test111196.49 27796.82 24995.52 33799.42 12587.08 36999.22 4287.14 38299.11 6699.46 6099.58 3788.69 31399.86 10298.80 6199.95 2299.62 56
v2v48298.56 11998.62 9598.37 21099.42 12595.81 24697.58 21899.16 20497.90 15599.28 9599.01 15195.98 20799.79 18799.33 2999.90 6099.51 109
OPM-MVS98.56 11998.32 14199.25 9199.41 12798.73 8597.13 25499.18 19797.10 22898.75 18398.92 17398.18 6999.65 26996.68 20099.56 20099.37 174
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PMMVS298.07 17598.08 16898.04 23799.41 12794.59 28494.59 35399.40 11497.50 18698.82 17498.83 19396.83 16399.84 13097.50 13899.81 9099.71 35
test_one_060199.39 12999.20 3499.31 15098.49 11498.66 19199.02 14297.64 109
mvsany_test398.87 7098.92 6098.74 17099.38 13096.94 21798.58 10399.10 21696.49 25399.96 299.81 598.18 6999.45 32498.97 5399.79 10599.83 14
patch_mono-298.51 13098.63 9398.17 22599.38 13094.78 27597.36 23699.69 2798.16 14098.49 21599.29 8997.06 14999.97 498.29 9499.91 5399.76 28
test250692.39 34191.89 34493.89 35499.38 13082.28 38399.32 2366.03 39099.08 7898.77 18099.57 3866.26 38799.84 13098.71 6999.95 2299.54 97
ECVR-MVScopyleft96.42 27996.61 26495.85 32999.38 13088.18 36599.22 4286.00 38499.08 7899.36 8199.57 3888.47 31899.82 15498.52 8299.95 2299.54 97
casdiffmvspermissive98.95 6199.00 5398.81 15399.38 13097.33 19597.82 19199.57 5299.17 6499.35 8399.17 11398.35 5799.69 24198.46 8599.73 13299.41 153
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6099.02 5198.76 16399.38 13097.26 19998.49 11799.50 7798.86 9699.19 11199.06 13098.23 6299.69 24198.71 6999.76 12599.33 191
TranMVSNet+NR-MVSNet99.17 3799.07 4999.46 5699.37 13698.87 7398.39 12999.42 11199.42 3799.36 8199.06 13098.38 5399.95 2098.34 9199.90 6099.57 80
tttt051795.64 29994.98 30897.64 26599.36 13793.81 30998.72 8990.47 37898.08 14498.67 18998.34 26473.88 37999.92 4497.77 12499.51 21499.20 219
test_part299.36 13799.10 6099.05 130
v114498.60 11598.66 8998.41 20699.36 13795.90 24297.58 21899.34 13897.51 18599.27 9799.15 11996.34 19199.80 17499.47 2499.93 3499.51 109
CP-MVS98.70 9498.42 12599.52 3999.36 13799.12 5798.72 8999.36 12797.54 18498.30 22998.40 25697.86 9299.89 6796.53 21599.72 13999.56 86
Test_1112_low_res96.99 25796.55 26898.31 21599.35 14195.47 25595.84 31699.53 7191.51 34996.80 32098.48 25191.36 29799.83 14496.58 20499.53 20999.62 56
DeepC-MVS97.60 498.97 5898.93 5999.10 11299.35 14197.98 14998.01 17099.46 9597.56 18299.54 4699.50 5298.97 2099.84 13098.06 10599.92 4599.49 116
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
1112_ss97.29 23396.86 24598.58 18399.34 14396.32 23296.75 27399.58 4593.14 33096.89 31597.48 32092.11 29199.86 10296.91 17499.54 20599.57 80
SF-MVS98.53 12798.27 14699.32 7899.31 14498.75 8198.19 14599.41 11296.77 24398.83 17198.90 17797.80 9799.82 15495.68 26099.52 21299.38 172
CPTT-MVS97.84 19697.36 22099.27 8699.31 14498.46 10598.29 13699.27 17294.90 29897.83 26298.37 26094.90 23899.84 13093.85 30999.54 20599.51 109
UnsupCasMVSNet_eth97.89 18697.60 20698.75 16699.31 14497.17 20797.62 21299.35 13298.72 10298.76 18298.68 21892.57 28699.74 22197.76 12895.60 36999.34 186
pmmvs-eth3d98.47 13398.34 13798.86 14799.30 14797.76 17197.16 25299.28 16995.54 28199.42 6899.19 10697.27 13899.63 27597.89 11599.97 1499.20 219
Anonymous2023121199.27 2799.27 2999.26 8899.29 14898.18 12699.49 899.51 7599.70 799.80 1699.68 1896.84 16199.83 14499.21 3999.91 5399.77 24
UnsupCasMVSNet_bld97.30 23196.92 24198.45 20299.28 14996.78 22496.20 29999.27 17295.42 28598.28 23198.30 26893.16 27399.71 23494.99 27397.37 34698.87 273
EC-MVSNet99.09 4699.05 5099.20 9799.28 14998.93 7199.24 4199.84 1499.08 7898.12 24298.37 26098.72 3399.90 5799.05 4799.77 11498.77 289
DPE-MVScopyleft98.59 11798.26 14799.57 1699.27 15199.15 4797.01 25799.39 11797.67 17099.44 6498.99 15497.53 12099.89 6795.40 26899.68 15799.66 47
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
IterMVS-SCA-FT97.85 19598.18 15596.87 30799.27 15191.16 35395.53 32499.25 17899.10 7399.41 6999.35 7793.10 27599.96 1198.65 7499.94 3099.49 116
v119298.60 11598.66 8998.41 20699.27 15195.88 24397.52 22499.36 12797.41 19899.33 8699.20 10596.37 18999.82 15499.57 1799.92 4599.55 93
N_pmnet97.63 20997.17 22998.99 13299.27 15197.86 16095.98 30493.41 36795.25 29099.47 5998.90 17795.63 21899.85 11496.91 17499.73 13299.27 205
FPMVS93.44 33392.23 33897.08 29699.25 15597.86 16095.61 32197.16 33192.90 33493.76 37298.65 22575.94 37695.66 38179.30 38097.49 34197.73 346
new-patchmatchnet98.35 14698.74 7597.18 29299.24 15692.23 33896.42 28899.48 8698.30 12399.69 2899.53 4897.44 12999.82 15498.84 6099.77 11499.49 116
MCST-MVS98.00 17997.63 20499.10 11299.24 15698.17 12896.89 26698.73 27995.66 27997.92 25497.70 30897.17 14499.66 26496.18 23699.23 25899.47 133
UniMVSNet (Re)98.87 7098.71 8099.35 6999.24 15698.73 8597.73 20099.38 11998.93 9199.12 11798.73 20996.77 16899.86 10298.63 7599.80 10099.46 135
jason97.45 22197.35 22197.76 25599.24 15693.93 30395.86 31398.42 29494.24 31398.50 21498.13 27894.82 24299.91 5297.22 15099.73 13299.43 147
jason: jason.
IterMVS97.73 20198.11 16496.57 31599.24 15690.28 35695.52 32699.21 18798.86 9699.33 8699.33 8393.11 27499.94 3098.49 8499.94 3099.48 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v124098.55 12398.62 9598.32 21399.22 16195.58 25097.51 22699.45 9897.16 22599.45 6399.24 9996.12 19799.85 11499.60 1599.88 6599.55 93
ITE_SJBPF98.87 14699.22 16198.48 10499.35 13297.50 18698.28 23198.60 23597.64 10999.35 33793.86 30899.27 25298.79 287
h-mvs3397.77 19997.33 22399.10 11299.21 16397.84 16298.35 13398.57 28799.11 6698.58 20499.02 14288.65 31699.96 1198.11 10196.34 36199.49 116
v14419298.54 12598.57 10398.45 20299.21 16395.98 24097.63 21199.36 12797.15 22799.32 9299.18 10995.84 21499.84 13099.50 2299.91 5399.54 97
APDe-MVS98.99 5498.79 7299.60 1199.21 16399.15 4798.87 7999.48 8697.57 18099.35 8399.24 9997.83 9399.89 6797.88 11899.70 14999.75 31
DP-MVS98.93 6398.81 7199.28 8399.21 16398.45 10698.46 12299.33 14399.63 1599.48 5799.15 11997.23 14199.75 21697.17 15299.66 16899.63 55
SR-MVS-dyc-post98.81 7898.55 10499.57 1699.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.49 12799.86 10296.56 21099.39 23399.45 139
RE-MVS-def98.58 10299.20 16799.38 898.48 12099.30 15898.64 10398.95 14698.96 16397.75 10096.56 21099.39 23399.45 139
v192192098.54 12598.60 10098.38 20999.20 16795.76 24897.56 22099.36 12797.23 22099.38 7699.17 11396.02 20199.84 13099.57 1799.90 6099.54 97
thisisatest053095.27 30694.45 31597.74 25799.19 17094.37 28797.86 18890.20 37997.17 22498.22 23397.65 31073.53 38099.90 5796.90 17999.35 23998.95 259
Anonymous2024052998.93 6398.87 6399.12 10899.19 17098.22 12599.01 6798.99 23899.25 5399.54 4699.37 7397.04 15099.80 17497.89 11599.52 21299.35 184
APD-MVS_3200maxsize98.84 7498.61 9999.53 3499.19 17099.27 2298.49 11799.33 14398.64 10399.03 13598.98 15897.89 9099.85 11496.54 21499.42 23099.46 135
HQP_MVS97.99 18297.67 19898.93 14099.19 17097.65 17997.77 19599.27 17298.20 13497.79 26597.98 29194.90 23899.70 23794.42 29099.51 21499.45 139
plane_prior799.19 17097.87 159
ab-mvs98.41 13898.36 13498.59 18299.19 17097.23 20099.32 2398.81 26797.66 17198.62 19699.40 7296.82 16499.80 17495.88 24799.51 21498.75 292
F-COLMAP97.30 23196.68 25899.14 10699.19 17098.39 10897.27 24499.30 15892.93 33396.62 32598.00 28995.73 21699.68 25092.62 33398.46 31799.35 184
SR-MVS98.71 9198.43 12399.57 1699.18 17799.35 1298.36 13299.29 16698.29 12698.88 16298.85 19097.53 12099.87 9396.14 23899.31 24599.48 126
UniMVSNet_NR-MVSNet98.86 7398.68 8699.40 6299.17 17898.74 8297.68 20499.40 11499.14 6599.06 12598.59 23696.71 17499.93 3598.57 7899.77 11499.53 104
LF4IMVS97.90 18497.69 19798.52 19599.17 17897.66 17897.19 25199.47 9396.31 26097.85 26198.20 27596.71 17499.52 30994.62 28299.72 13998.38 317
SMA-MVScopyleft98.40 14098.03 17299.51 4399.16 18099.21 2898.05 16299.22 18694.16 31598.98 13999.10 12797.52 12299.79 18796.45 22099.64 17199.53 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DU-MVS98.82 7698.63 9399.39 6399.16 18098.74 8297.54 22299.25 17898.84 9999.06 12598.76 20696.76 17099.93 3598.57 7899.77 11499.50 112
NR-MVSNet98.95 6198.82 6999.36 6499.16 18098.72 8799.22 4299.20 18999.10 7399.72 2298.76 20696.38 18899.86 10298.00 11099.82 8699.50 112
MVS_111021_LR98.30 15298.12 16398.83 15099.16 18098.03 14496.09 30299.30 15897.58 17998.10 24498.24 27198.25 6099.34 33896.69 19999.65 16999.12 235
DSMNet-mixed97.42 22397.60 20696.87 30799.15 18491.46 34498.54 10899.12 21292.87 33597.58 27899.63 2996.21 19499.90 5795.74 25699.54 20599.27 205
D2MVS97.84 19697.84 18897.83 24799.14 18594.74 27796.94 26198.88 25195.84 27698.89 15898.96 16394.40 25499.69 24197.55 13399.95 2299.05 240
pmmvs597.64 20897.49 21298.08 23299.14 18595.12 26896.70 27699.05 22493.77 32298.62 19698.83 19393.23 27199.75 21698.33 9399.76 12599.36 180
CS-MVS-test99.13 4299.09 4699.26 8899.13 18798.97 6699.31 2799.88 999.44 3498.16 23798.51 24498.64 3799.93 3598.91 5599.85 7298.88 272
VDD-MVS98.56 11998.39 13099.07 11899.13 18798.07 13998.59 10297.01 33499.59 2199.11 11899.27 9294.82 24299.79 18798.34 9199.63 17499.34 186
save fliter99.11 18997.97 15096.53 28299.02 23298.24 129
APD-MVScopyleft98.10 17097.67 19899.42 5899.11 18998.93 7197.76 19799.28 16994.97 29698.72 18698.77 20497.04 15099.85 11493.79 31099.54 20599.49 116
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-UG-set98.69 9798.71 8098.62 17899.10 19196.37 23097.23 24598.87 25399.20 5999.19 11198.99 15497.30 13599.85 11498.77 6599.79 10599.65 51
EI-MVSNet98.40 14098.51 10898.04 23799.10 19194.73 27897.20 24998.87 25398.97 8799.06 12599.02 14296.00 20399.80 17498.58 7699.82 8699.60 63
CVMVSNet96.25 28497.21 22893.38 36099.10 19180.56 38697.20 24998.19 30596.94 23599.00 13799.02 14289.50 30999.80 17496.36 22599.59 18899.78 22
EI-MVSNet-Vis-set98.68 10298.70 8398.63 17799.09 19496.40 22997.23 24598.86 25899.20 5999.18 11598.97 16097.29 13799.85 11498.72 6899.78 11099.64 52
HPM-MVS++copyleft98.10 17097.64 20399.48 5199.09 19499.13 5597.52 22498.75 27697.46 19496.90 31497.83 30196.01 20299.84 13095.82 25499.35 23999.46 135
DP-MVS Recon97.33 22996.92 24198.57 18599.09 19497.99 14696.79 26999.35 13293.18 32997.71 26998.07 28695.00 23799.31 34293.97 30399.13 27398.42 316
MVS_111021_HR98.25 16098.08 16898.75 16699.09 19497.46 18895.97 30599.27 17297.60 17897.99 25298.25 27098.15 7599.38 33596.87 18299.57 19799.42 150
9.1497.78 19099.07 19897.53 22399.32 14595.53 28298.54 21198.70 21597.58 11499.76 20994.32 29599.46 224
PAPM_NR96.82 26496.32 27498.30 21699.07 19896.69 22697.48 22898.76 27395.81 27796.61 32696.47 34594.12 26299.17 35590.82 35697.78 33899.06 239
TAMVS98.24 16198.05 17098.80 15599.07 19897.18 20697.88 18498.81 26796.66 24899.17 11699.21 10394.81 24499.77 20496.96 17299.88 6599.44 143
CLD-MVS97.49 21797.16 23098.48 19999.07 19897.03 21294.71 34699.21 18794.46 30798.06 24797.16 33297.57 11599.48 31894.46 28799.78 11098.95 259
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS99.13 4299.10 4599.24 9399.06 20299.15 4799.36 1999.88 999.36 4498.21 23498.46 25298.68 3699.93 3599.03 4999.85 7298.64 304
thres100view90094.19 32193.67 32595.75 33299.06 20291.35 34798.03 16594.24 36398.33 12097.40 29394.98 36979.84 36299.62 27783.05 37398.08 33396.29 367
thres600view794.45 31693.83 32296.29 32099.06 20291.53 34397.99 17394.24 36398.34 11997.44 29195.01 36779.84 36299.67 25384.33 37198.23 32297.66 349
plane_prior199.05 205
YYNet197.60 21097.67 19897.39 28599.04 20693.04 32395.27 33298.38 29797.25 21498.92 15498.95 16795.48 22599.73 22696.99 16898.74 30299.41 153
MDA-MVSNet_test_wron97.60 21097.66 20197.41 28499.04 20693.09 31995.27 33298.42 29497.26 21398.88 16298.95 16795.43 22699.73 22697.02 16598.72 30499.41 153
MIMVSNet96.62 27196.25 27897.71 26099.04 20694.66 28199.16 5196.92 34097.23 22097.87 25899.10 12786.11 33199.65 26991.65 34299.21 26198.82 277
PatchMatch-RL97.24 23796.78 25298.61 18099.03 20997.83 16396.36 29199.06 22193.49 32797.36 29697.78 30295.75 21599.49 31593.44 31898.77 30198.52 308
ZD-MVS99.01 21098.84 7599.07 22094.10 31798.05 24998.12 28096.36 19099.86 10292.70 33299.19 265
CDPH-MVS97.26 23496.66 26199.07 11899.00 21198.15 12996.03 30399.01 23591.21 35397.79 26597.85 30096.89 15999.69 24192.75 33099.38 23699.39 165
diffmvspermissive98.22 16298.24 14998.17 22599.00 21195.44 25696.38 29099.58 4597.79 16398.53 21298.50 24896.76 17099.74 22197.95 11499.64 17199.34 186
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 14098.19 15499.03 12899.00 21197.65 17996.85 26798.94 24098.57 11298.89 15898.50 24895.60 21999.85 11497.54 13599.85 7299.59 69
plane_prior698.99 21497.70 17794.90 238
xiu_mvs_v1_base_debu97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
xiu_mvs_v1_base_debi97.86 19098.17 15696.92 30498.98 21593.91 30496.45 28599.17 20197.85 15998.41 22297.14 33498.47 4799.92 4498.02 10799.05 27996.92 360
MVP-Stereo98.08 17497.92 18198.57 18598.96 21896.79 22197.90 18299.18 19796.41 25698.46 21798.95 16795.93 21099.60 28496.51 21698.98 29199.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 14098.68 8697.54 27498.96 21897.99 14697.88 18499.36 12798.20 13499.63 3899.04 13998.76 3095.33 38396.56 21099.74 12999.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
新几何198.91 14398.94 22097.76 17198.76 27387.58 37096.75 32198.10 28294.80 24599.78 19892.73 33199.00 28899.20 219
USDC97.41 22497.40 21697.44 28298.94 22093.67 31395.17 33599.53 7194.03 31998.97 14399.10 12795.29 22899.34 33895.84 25399.73 13299.30 200
tfpn200view994.03 32593.44 32795.78 33198.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33396.29 367
testdata98.09 22998.93 22295.40 25898.80 26990.08 36197.45 29098.37 26095.26 22999.70 23793.58 31498.95 29399.17 230
thres40094.14 32393.44 32796.24 32298.93 22291.44 34597.60 21594.29 36197.94 15197.10 30194.31 37579.67 36499.62 27783.05 37398.08 33397.66 349
TAPA-MVS96.21 1196.63 27095.95 28198.65 17398.93 22298.09 13396.93 26399.28 16983.58 37698.13 24197.78 30296.13 19699.40 33193.52 31599.29 25098.45 312
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test22298.92 22696.93 21895.54 32398.78 27285.72 37396.86 31798.11 28194.43 25299.10 27899.23 214
PVSNet_BlendedMVS97.55 21497.53 20997.60 26798.92 22693.77 31196.64 27899.43 10894.49 30597.62 27499.18 10996.82 16499.67 25394.73 27999.93 3499.36 180
PVSNet_Blended96.88 26096.68 25897.47 28098.92 22693.77 31194.71 34699.43 10890.98 35597.62 27497.36 32896.82 16499.67 25394.73 27999.56 20098.98 253
MSDG97.71 20397.52 21098.28 21898.91 22996.82 22094.42 35699.37 12397.65 17298.37 22798.29 26997.40 13199.33 34094.09 30199.22 25998.68 302
Anonymous20240521197.90 18497.50 21199.08 11698.90 23098.25 11998.53 10996.16 34898.87 9599.11 11898.86 18790.40 30399.78 19897.36 14399.31 24599.19 224
原ACMM198.35 21198.90 23096.25 23498.83 26692.48 33996.07 34098.10 28295.39 22799.71 23492.61 33498.99 28999.08 237
GBi-Net98.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
test198.65 10798.47 11799.17 10098.90 23098.24 12099.20 4599.44 10298.59 10998.95 14699.55 4394.14 25999.86 10297.77 12499.69 15299.41 153
FMVSNet298.49 13198.40 12798.75 16698.90 23097.14 21098.61 10099.13 21198.59 10999.19 11199.28 9094.14 25999.82 15497.97 11299.80 10099.29 202
OMC-MVS97.88 18897.49 21299.04 12798.89 23598.63 8996.94 26199.25 17895.02 29498.53 21298.51 24497.27 13899.47 32193.50 31799.51 21499.01 248
MVSFormer98.26 15898.43 12397.77 25298.88 23693.89 30799.39 1799.56 5999.11 6698.16 23798.13 27893.81 26799.97 499.26 3499.57 19799.43 147
lupinMVS97.06 25096.86 24597.65 26398.88 23693.89 30795.48 32797.97 31293.53 32598.16 23797.58 31493.81 26799.91 5296.77 19099.57 19799.17 230
dmvs_re95.98 29095.39 29897.74 25798.86 23897.45 18998.37 13195.69 35597.95 15096.56 32795.95 35390.70 30097.68 37788.32 36396.13 36598.11 327
DELS-MVS98.27 15698.20 15298.48 19998.86 23896.70 22595.60 32299.20 18997.73 16698.45 21898.71 21297.50 12499.82 15498.21 9799.59 18898.93 264
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TinyColmap97.89 18697.98 17597.60 26798.86 23894.35 28896.21 29899.44 10297.45 19699.06 12598.88 18497.99 8699.28 34894.38 29499.58 19399.18 226
LCM-MVSNet-Re98.64 10998.48 11599.11 11098.85 24198.51 10298.49 11799.83 1598.37 11799.69 2899.46 5998.21 6799.92 4494.13 30099.30 24898.91 268
pmmvs497.58 21397.28 22498.51 19698.84 24296.93 21895.40 33098.52 29093.60 32498.61 19898.65 22595.10 23499.60 28496.97 17199.79 10598.99 252
NP-MVS98.84 24297.39 19396.84 337
sss97.21 23996.93 23998.06 23498.83 24495.22 26496.75 27398.48 29294.49 30597.27 29797.90 29792.77 28399.80 17496.57 20699.32 24399.16 233
PVSNet93.40 1795.67 29795.70 28695.57 33698.83 24488.57 36192.50 37397.72 31792.69 33796.49 33396.44 34693.72 27099.43 32793.61 31299.28 25198.71 295
MVEpermissive83.40 2292.50 34091.92 34394.25 35098.83 24491.64 34292.71 37283.52 38695.92 27486.46 38395.46 36395.20 23195.40 38280.51 37898.64 31195.73 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MVS_030498.10 17097.88 18598.76 16398.82 24796.50 22797.90 18291.35 37699.56 2498.32 22899.13 12296.06 19999.93 3599.84 599.97 1499.85 12
ambc98.24 22198.82 24795.97 24198.62 9999.00 23799.27 9799.21 10396.99 15599.50 31496.55 21399.50 22199.26 208
旧先验198.82 24797.45 18998.76 27398.34 26495.50 22499.01 28799.23 214
test_vis1_rt97.75 20097.72 19697.83 24798.81 25096.35 23197.30 24099.69 2794.61 30397.87 25898.05 28796.26 19398.32 37498.74 6698.18 32598.82 277
WTY-MVS96.67 26896.27 27797.87 24598.81 25094.61 28396.77 27197.92 31494.94 29797.12 30097.74 30591.11 29899.82 15493.89 30698.15 32999.18 226
3Dnovator+97.89 398.69 9798.51 10899.24 9398.81 25098.40 10799.02 6699.19 19398.99 8598.07 24699.28 9097.11 14899.84 13096.84 18599.32 24399.47 133
QAPM97.31 23096.81 25198.82 15198.80 25397.49 18699.06 6399.19 19390.22 35997.69 27199.16 11596.91 15899.90 5790.89 35599.41 23199.07 238
VNet98.42 13798.30 14298.79 15798.79 25497.29 19798.23 14198.66 28299.31 4898.85 16798.80 19994.80 24599.78 19898.13 10099.13 27399.31 197
DPM-MVS96.32 28195.59 29198.51 19698.76 25597.21 20394.54 35598.26 30091.94 34496.37 33497.25 33093.06 27799.43 32791.42 34798.74 30298.89 269
3Dnovator98.27 298.81 7898.73 7699.05 12598.76 25597.81 16899.25 4099.30 15898.57 11298.55 20999.33 8397.95 8899.90 5797.16 15399.67 16399.44 143
PLCcopyleft94.65 1696.51 27495.73 28598.85 14898.75 25797.91 15696.42 28899.06 22190.94 35695.59 34697.38 32694.41 25399.59 28890.93 35398.04 33699.05 240
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 26296.75 25497.08 29698.74 25893.33 31796.71 27598.26 30096.72 24598.44 21997.37 32795.20 23199.47 32191.89 33997.43 34498.44 314
hse-mvs297.46 21997.07 23498.64 17498.73 25997.33 19597.45 23197.64 32299.11 6698.58 20497.98 29188.65 31699.79 18798.11 10197.39 34598.81 281
CDS-MVSNet97.69 20497.35 22198.69 17198.73 25997.02 21396.92 26598.75 27695.89 27598.59 20298.67 22092.08 29299.74 22196.72 19699.81 9099.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
EIA-MVS98.00 17997.74 19398.80 15598.72 26198.09 13398.05 16299.60 4297.39 20096.63 32495.55 36097.68 10399.80 17496.73 19599.27 25298.52 308
LFMVS97.20 24096.72 25598.64 17498.72 26196.95 21698.93 7594.14 36599.74 698.78 17799.01 15184.45 34399.73 22697.44 13999.27 25299.25 209
new_pmnet96.99 25796.76 25397.67 26198.72 26194.89 27395.95 30998.20 30392.62 33898.55 20998.54 24094.88 24199.52 30993.96 30499.44 22998.59 307
Fast-Effi-MVS+97.67 20697.38 21898.57 18598.71 26497.43 19197.23 24599.45 9894.82 30096.13 33796.51 34298.52 4699.91 5296.19 23498.83 29998.37 319
TEST998.71 26498.08 13795.96 30799.03 22991.40 35095.85 34397.53 31696.52 18199.76 209
train_agg97.10 24696.45 27199.07 11898.71 26498.08 13795.96 30799.03 22991.64 34595.85 34397.53 31696.47 18399.76 20993.67 31199.16 26899.36 180
TSAR-MVS + GP.98.18 16697.98 17598.77 16298.71 26497.88 15896.32 29398.66 28296.33 25899.23 10898.51 24497.48 12899.40 33197.16 15399.46 22499.02 247
FA-MVS(test-final)96.99 25796.82 24997.50 27898.70 26894.78 27599.34 2096.99 33595.07 29398.48 21699.33 8388.41 31999.65 26996.13 24098.92 29698.07 330
AUN-MVS96.24 28595.45 29498.60 18198.70 26897.22 20297.38 23497.65 32095.95 27395.53 35397.96 29582.11 35899.79 18796.31 22797.44 34398.80 286
our_test_397.39 22597.73 19596.34 31998.70 26889.78 35894.61 35298.97 23996.50 25299.04 13298.85 19095.98 20799.84 13097.26 14899.67 16399.41 153
ppachtmachnet_test97.50 21597.74 19396.78 31398.70 26891.23 35294.55 35499.05 22496.36 25799.21 10998.79 20196.39 18699.78 19896.74 19399.82 8699.34 186
PCF-MVS92.86 1894.36 31793.00 33498.42 20598.70 26897.56 18393.16 37199.11 21479.59 37997.55 28197.43 32392.19 28999.73 22679.85 37999.45 22697.97 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
ETV-MVS98.03 17697.86 18798.56 18998.69 27398.07 13997.51 22699.50 7798.10 14297.50 28695.51 36198.41 5199.88 7696.27 23099.24 25797.71 348
test_prior98.95 13898.69 27397.95 15499.03 22999.59 28899.30 200
agg_prior98.68 27597.99 14699.01 23595.59 34699.77 204
test_898.67 27698.01 14595.91 31299.02 23291.64 34595.79 34597.50 31996.47 18399.76 209
HQP-NCC98.67 27696.29 29496.05 26895.55 349
ACMP_Plane98.67 27696.29 29496.05 26895.55 349
CNVR-MVS98.17 16897.87 18699.07 11898.67 27698.24 12097.01 25798.93 24297.25 21497.62 27498.34 26497.27 13899.57 29496.42 22199.33 24299.39 165
HQP-MVS97.00 25696.49 27098.55 19098.67 27696.79 22196.29 29499.04 22796.05 26895.55 34996.84 33793.84 26599.54 30392.82 32799.26 25599.32 193
test_fmvs197.72 20297.94 17997.07 29898.66 28192.39 33397.68 20499.81 1795.20 29299.54 4699.44 6491.56 29699.41 33099.78 1099.77 11499.40 162
thres20093.72 33093.14 33295.46 34098.66 28191.29 34996.61 28094.63 35997.39 20096.83 31893.71 37779.88 36199.56 29782.40 37698.13 33095.54 376
wuyk23d96.06 28797.62 20591.38 36398.65 28398.57 9698.85 8296.95 33896.86 23999.90 999.16 11599.18 1498.40 37389.23 36199.77 11477.18 381
NCCC97.86 19097.47 21599.05 12598.61 28498.07 13996.98 25998.90 24897.63 17397.04 30597.93 29695.99 20699.66 26495.31 26998.82 30099.43 147
DeepC-MVS_fast96.85 698.30 15298.15 16098.75 16698.61 28497.23 20097.76 19799.09 21897.31 20898.75 18398.66 22397.56 11699.64 27296.10 24199.55 20399.39 165
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thisisatest051594.12 32493.16 33196.97 30298.60 28692.90 32493.77 36790.61 37794.10 31796.91 31195.87 35674.99 37899.80 17494.52 28599.12 27698.20 323
GA-MVS95.86 29395.32 30197.49 27998.60 28694.15 29493.83 36697.93 31395.49 28396.68 32297.42 32483.21 35199.30 34496.22 23298.55 31699.01 248
dmvs_testset92.94 33792.21 33995.13 34398.59 28890.99 35497.65 20992.09 37396.95 23494.00 36993.55 37892.34 28896.97 38072.20 38292.52 37897.43 356
OPU-MVS98.82 15198.59 28898.30 11698.10 15698.52 24398.18 6998.75 37094.62 28299.48 22399.41 153
MSLP-MVS++98.02 17798.14 16297.64 26598.58 29095.19 26597.48 22899.23 18597.47 18997.90 25698.62 23297.04 15098.81 36997.55 13399.41 23198.94 263
test1298.93 14098.58 29097.83 16398.66 28296.53 32895.51 22399.69 24199.13 27399.27 205
CL-MVSNet_self_test97.44 22297.22 22798.08 23298.57 29295.78 24794.30 35998.79 27096.58 25198.60 20098.19 27694.74 24999.64 27296.41 22298.84 29898.82 277
PS-MVSNAJ97.08 24997.39 21796.16 32698.56 29392.46 33195.24 33498.85 26197.25 21497.49 28795.99 35298.07 7799.90 5796.37 22398.67 31096.12 372
CNLPA97.17 24396.71 25698.55 19098.56 29398.05 14396.33 29298.93 24296.91 23797.06 30497.39 32594.38 25599.45 32491.66 34199.18 26798.14 326
xiu_mvs_v2_base97.16 24497.49 21296.17 32498.54 29592.46 33195.45 32898.84 26297.25 21497.48 28896.49 34398.31 5999.90 5796.34 22698.68 30996.15 371
alignmvs97.35 22796.88 24498.78 16098.54 29598.09 13397.71 20197.69 31999.20 5997.59 27795.90 35588.12 32199.55 30098.18 9998.96 29298.70 298
FE-MVS95.66 29894.95 31097.77 25298.53 29795.28 26199.40 1696.09 35093.11 33197.96 25399.26 9479.10 36999.77 20492.40 33698.71 30698.27 321
iter_conf_final97.10 24696.65 26398.45 20298.53 29796.08 23998.30 13599.11 21498.10 14298.85 16798.95 16779.38 36799.87 9398.68 7299.91 5399.40 162
Effi-MVS+98.02 17797.82 18998.62 17898.53 29797.19 20597.33 23899.68 3297.30 20996.68 32297.46 32298.56 4499.80 17496.63 20298.20 32498.86 274
baseline195.96 29195.44 29597.52 27698.51 30093.99 30198.39 12996.09 35098.21 13198.40 22697.76 30486.88 32399.63 27595.42 26789.27 38198.95 259
MVS_Test98.18 16698.36 13497.67 26198.48 30194.73 27898.18 14699.02 23297.69 16998.04 25099.11 12597.22 14299.56 29798.57 7898.90 29798.71 295
BH-RMVSNet96.83 26296.58 26797.58 26998.47 30294.05 29596.67 27797.36 32596.70 24797.87 25897.98 29195.14 23399.44 32690.47 35798.58 31599.25 209
canonicalmvs98.34 14798.26 14798.58 18398.46 30397.82 16698.96 7399.46 9599.19 6397.46 28995.46 36398.59 4299.46 32398.08 10498.71 30698.46 310
MVS-HIRNet94.32 31895.62 28990.42 36498.46 30375.36 38796.29 29489.13 38195.25 29095.38 35599.75 1192.88 28099.19 35494.07 30299.39 23396.72 365
PHI-MVS98.29 15597.95 17799.34 7298.44 30599.16 4398.12 15399.38 11996.01 27198.06 24798.43 25497.80 9799.67 25395.69 25999.58 19399.20 219
DVP-MVS++98.90 6798.70 8399.51 4398.43 30699.15 4799.43 1199.32 14598.17 13799.26 10199.02 14298.18 6999.88 7697.07 16299.45 22699.49 116
MSC_two_6792asdad99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
No_MVS99.32 7898.43 30698.37 11198.86 25899.89 6797.14 15699.60 18499.71 35
Fast-Effi-MVS+-dtu98.27 15698.09 16598.81 15398.43 30698.11 13297.61 21499.50 7798.64 10397.39 29497.52 31898.12 7699.95 2096.90 17998.71 30698.38 317
OpenMVS_ROBcopyleft95.38 1495.84 29495.18 30597.81 24998.41 31097.15 20997.37 23598.62 28583.86 37598.65 19298.37 26094.29 25799.68 25088.41 36298.62 31396.60 366
DeepPCF-MVS96.93 598.32 14998.01 17399.23 9598.39 31198.97 6695.03 33999.18 19796.88 23899.33 8698.78 20298.16 7399.28 34896.74 19399.62 17799.44 143
Patchmatch-test96.55 27296.34 27397.17 29398.35 31293.06 32098.40 12897.79 31597.33 20598.41 22298.67 22083.68 35099.69 24195.16 27199.31 24598.77 289
AdaColmapbinary97.14 24596.71 25698.46 20198.34 31397.80 16996.95 26098.93 24295.58 28096.92 30997.66 30995.87 21299.53 30590.97 35299.14 27198.04 331
OpenMVScopyleft96.65 797.09 24896.68 25898.32 21398.32 31497.16 20898.86 8199.37 12389.48 36396.29 33699.15 11996.56 17999.90 5792.90 32499.20 26297.89 336
MG-MVS96.77 26596.61 26497.26 29098.31 31593.06 32095.93 31098.12 30996.45 25597.92 25498.73 20993.77 26999.39 33391.19 35199.04 28299.33 191
test_yl96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
DCV-MVSNet96.69 26696.29 27597.90 24298.28 31695.24 26297.29 24197.36 32598.21 13198.17 23597.86 29886.27 32799.55 30094.87 27698.32 31998.89 269
CHOSEN 280x42095.51 30395.47 29295.65 33598.25 31888.27 36493.25 37098.88 25193.53 32594.65 36197.15 33386.17 32999.93 3597.41 14199.93 3498.73 294
SCA96.41 28096.66 26195.67 33398.24 31988.35 36395.85 31596.88 34196.11 26697.67 27298.67 22093.10 27599.85 11494.16 29699.22 25998.81 281
DeepMVS_CXcopyleft93.44 35998.24 31994.21 29194.34 36064.28 38191.34 37794.87 37389.45 31092.77 38477.54 38193.14 37793.35 379
MS-PatchMatch97.68 20597.75 19297.45 28198.23 32193.78 31097.29 24198.84 26296.10 26798.64 19398.65 22596.04 20099.36 33696.84 18599.14 27199.20 219
BH-w/o95.13 30894.89 31295.86 32898.20 32291.31 34895.65 32097.37 32493.64 32396.52 32995.70 35893.04 27899.02 36088.10 36495.82 36897.24 358
mvs_anonymous97.83 19898.16 15996.87 30798.18 32391.89 34097.31 23998.90 24897.37 20298.83 17199.46 5996.28 19299.79 18798.90 5698.16 32898.95 259
miper_lstm_enhance97.18 24297.16 23097.25 29198.16 32492.85 32595.15 33799.31 15097.25 21498.74 18598.78 20290.07 30499.78 19897.19 15199.80 10099.11 236
ET-MVSNet_ETH3D94.30 32093.21 33097.58 26998.14 32594.47 28694.78 34593.24 36994.72 30189.56 37995.87 35678.57 37299.81 16796.91 17497.11 35398.46 310
ADS-MVSNet295.43 30494.98 30896.76 31498.14 32591.74 34197.92 17997.76 31690.23 35796.51 33098.91 17485.61 33499.85 11492.88 32596.90 35498.69 299
ADS-MVSNet95.24 30794.93 31196.18 32398.14 32590.10 35797.92 17997.32 32890.23 35796.51 33098.91 17485.61 33499.74 22192.88 32596.90 35498.69 299
c3_l97.36 22697.37 21997.31 28698.09 32893.25 31895.01 34099.16 20497.05 22998.77 18098.72 21192.88 28099.64 27296.93 17399.76 12599.05 240
FMVSNet397.50 21597.24 22698.29 21798.08 32995.83 24597.86 18898.91 24797.89 15698.95 14698.95 16787.06 32299.81 16797.77 12499.69 15299.23 214
PAPM91.88 34690.34 34996.51 31698.06 33092.56 32992.44 37497.17 33086.35 37190.38 37896.01 35186.61 32599.21 35370.65 38395.43 37097.75 345
Effi-MVS+-dtu98.26 15897.90 18399.35 6998.02 33199.49 598.02 16799.16 20498.29 12697.64 27397.99 29096.44 18599.95 2096.66 20198.93 29598.60 305
eth_miper_zixun_eth97.23 23897.25 22597.17 29398.00 33292.77 32794.71 34699.18 19797.27 21298.56 20798.74 20891.89 29399.69 24197.06 16499.81 9099.05 240
HY-MVS95.94 1395.90 29295.35 30097.55 27397.95 33394.79 27498.81 8596.94 33992.28 34295.17 35798.57 23889.90 30699.75 21691.20 35097.33 35098.10 328
UGNet98.53 12798.45 12098.79 15797.94 33496.96 21599.08 5998.54 28899.10 7396.82 31999.47 5896.55 18099.84 13098.56 8199.94 3099.55 93
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MAR-MVS96.47 27895.70 28698.79 15797.92 33599.12 5798.28 13798.60 28692.16 34395.54 35296.17 35094.77 24899.52 30989.62 36098.23 32297.72 347
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MVSTER96.86 26196.55 26897.79 25097.91 33694.21 29197.56 22098.87 25397.49 18899.06 12599.05 13780.72 35999.80 17498.44 8699.82 8699.37 174
iter_conf0596.54 27396.07 27997.92 24197.90 33794.50 28597.87 18799.14 21097.73 16698.89 15898.95 16775.75 37799.87 9398.50 8399.92 4599.40 162
API-MVS97.04 25296.91 24397.42 28397.88 33898.23 12498.18 14698.50 29197.57 18097.39 29496.75 33996.77 16899.15 35790.16 35899.02 28694.88 377
miper_ehance_all_eth97.06 25097.03 23697.16 29597.83 33993.06 32094.66 34999.09 21895.99 27298.69 18798.45 25392.73 28499.61 28396.79 18799.03 28398.82 277
cl____97.02 25396.83 24897.58 26997.82 34094.04 29794.66 34999.16 20497.04 23098.63 19498.71 21288.68 31599.69 24197.00 16699.81 9099.00 251
DIV-MVS_self_test97.02 25396.84 24797.58 26997.82 34094.03 29894.66 34999.16 20497.04 23098.63 19498.71 21288.69 31399.69 24197.00 16699.81 9099.01 248
CANet97.87 18997.76 19198.19 22497.75 34295.51 25396.76 27299.05 22497.74 16596.93 30898.21 27495.59 22099.89 6797.86 12099.93 3499.19 224
mvsany_test197.60 21097.54 20897.77 25297.72 34395.35 25995.36 33197.13 33294.13 31699.71 2499.33 8397.93 8999.30 34497.60 13298.94 29498.67 303
PVSNet_089.98 2191.15 34790.30 35093.70 35697.72 34384.34 38090.24 37697.42 32390.20 36093.79 37193.09 37990.90 29998.89 36886.57 36872.76 38397.87 338
CR-MVSNet96.28 28395.95 28197.28 28897.71 34594.22 28998.11 15498.92 24592.31 34196.91 31199.37 7385.44 33799.81 16797.39 14297.36 34897.81 341
RPMNet97.02 25396.93 23997.30 28797.71 34594.22 28998.11 15499.30 15899.37 4196.91 31199.34 8186.72 32499.87 9397.53 13697.36 34897.81 341
pmmvs395.03 31094.40 31696.93 30397.70 34792.53 33095.08 33897.71 31888.57 36797.71 26998.08 28579.39 36699.82 15496.19 23499.11 27798.43 315
baseline293.73 32992.83 33596.42 31897.70 34791.28 35096.84 26889.77 38093.96 32192.44 37495.93 35479.14 36899.77 20492.94 32396.76 35898.21 322
tpm94.67 31494.34 31895.66 33497.68 34988.42 36297.88 18494.90 35794.46 30796.03 34298.56 23978.66 37099.79 18795.88 24795.01 37298.78 288
CANet_DTU97.26 23497.06 23597.84 24697.57 35094.65 28296.19 30098.79 27097.23 22095.14 35898.24 27193.22 27299.84 13097.34 14499.84 7699.04 244
tpm293.09 33692.58 33794.62 34797.56 35186.53 37097.66 20795.79 35486.15 37294.07 36898.23 27375.95 37599.53 30590.91 35496.86 35797.81 341
TR-MVS95.55 30195.12 30696.86 31097.54 35293.94 30296.49 28496.53 34594.36 31297.03 30696.61 34194.26 25899.16 35686.91 36796.31 36297.47 355
131495.74 29695.60 29096.17 32497.53 35392.75 32898.07 15998.31 29991.22 35294.25 36496.68 34095.53 22199.03 35991.64 34397.18 35196.74 364
CostFormer93.97 32693.78 32394.51 34897.53 35385.83 37397.98 17495.96 35289.29 36594.99 36098.63 23078.63 37199.62 27794.54 28496.50 35998.09 329
FMVSNet596.01 28895.20 30498.41 20697.53 35396.10 23698.74 8699.50 7797.22 22398.03 25199.04 13969.80 38199.88 7697.27 14799.71 14499.25 209
PMMVS96.51 27495.98 28098.09 22997.53 35395.84 24494.92 34298.84 26291.58 34796.05 34195.58 35995.68 21799.66 26495.59 26398.09 33298.76 291
PAPR95.29 30594.47 31497.75 25697.50 35795.14 26794.89 34398.71 28091.39 35195.35 35695.48 36294.57 25199.14 35884.95 37097.37 34698.97 256
PatchT96.65 26996.35 27297.54 27497.40 35895.32 26097.98 17496.64 34499.33 4696.89 31599.42 6784.32 34599.81 16797.69 13197.49 34197.48 354
tpm cat193.29 33493.13 33393.75 35597.39 35984.74 37697.39 23397.65 32083.39 37794.16 36598.41 25582.86 35499.39 33391.56 34595.35 37197.14 359
PatchmatchNetpermissive95.58 30095.67 28895.30 34297.34 36087.32 36897.65 20996.65 34395.30 28997.07 30398.69 21684.77 34099.75 21694.97 27498.64 31198.83 276
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
Patchmtry97.35 22796.97 23898.50 19897.31 36196.47 22898.18 14698.92 24598.95 9098.78 17799.37 7385.44 33799.85 11495.96 24599.83 8399.17 230
LS3D98.63 11198.38 13299.36 6497.25 36299.38 899.12 5799.32 14599.21 5798.44 21998.88 18497.31 13499.80 17496.58 20499.34 24198.92 265
IB-MVS91.63 1992.24 34490.90 34896.27 32197.22 36391.24 35194.36 35893.33 36892.37 34092.24 37594.58 37466.20 38899.89 6793.16 32294.63 37497.66 349
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmrst95.07 30995.46 29393.91 35397.11 36484.36 37997.62 21296.96 33794.98 29596.35 33598.80 19985.46 33699.59 28895.60 26296.23 36397.79 344
MDTV_nov1_ep1395.22 30397.06 36583.20 38197.74 19996.16 34894.37 31196.99 30798.83 19383.95 34899.53 30593.90 30597.95 337
MVS93.19 33592.09 34096.50 31796.91 36694.03 29898.07 15998.06 31168.01 38094.56 36396.48 34495.96 20999.30 34483.84 37296.89 35696.17 369
E-PMN94.17 32294.37 31793.58 35796.86 36785.71 37490.11 37797.07 33398.17 13797.82 26497.19 33184.62 34298.94 36489.77 35997.68 34096.09 373
JIA-IIPM95.52 30295.03 30797.00 29996.85 36894.03 29896.93 26395.82 35399.20 5994.63 36299.71 1683.09 35299.60 28494.42 29094.64 37397.36 357
EMVS93.83 32894.02 32093.23 36196.83 36984.96 37589.77 37896.32 34797.92 15397.43 29296.36 34986.17 32998.93 36587.68 36597.73 33995.81 374
cl2295.79 29595.39 29896.98 30196.77 37092.79 32694.40 35798.53 28994.59 30497.89 25798.17 27782.82 35599.24 35096.37 22399.03 28398.92 265
dp93.47 33293.59 32693.13 36296.64 37181.62 38597.66 20796.42 34692.80 33696.11 33898.64 22878.55 37399.59 28893.31 32092.18 38098.16 325
test-LLR93.90 32793.85 32194.04 35196.53 37284.62 37794.05 36392.39 37196.17 26394.12 36695.07 36582.30 35699.67 25395.87 25098.18 32597.82 339
test-mter92.33 34391.76 34694.04 35196.53 37284.62 37794.05 36392.39 37194.00 32094.12 36695.07 36565.63 38999.67 25395.87 25098.18 32597.82 339
TESTMET0.1,192.19 34591.77 34593.46 35896.48 37482.80 38294.05 36391.52 37594.45 30994.00 36994.88 37166.65 38699.56 29795.78 25598.11 33198.02 332
miper_enhance_ethall96.01 28895.74 28496.81 31196.41 37592.27 33793.69 36898.89 25091.14 35498.30 22997.35 32990.58 30199.58 29296.31 22799.03 28398.60 305
tpmvs95.02 31195.25 30294.33 34996.39 37685.87 37198.08 15896.83 34295.46 28495.51 35498.69 21685.91 33299.53 30594.16 29696.23 36397.58 352
CMPMVSbinary75.91 2396.29 28295.44 29598.84 14996.25 37798.69 8897.02 25699.12 21288.90 36697.83 26298.86 18789.51 30898.90 36791.92 33899.51 21498.92 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test0.0.03 194.51 31593.69 32496.99 30096.05 37893.61 31594.97 34193.49 36696.17 26397.57 28094.88 37182.30 35699.01 36293.60 31394.17 37698.37 319
EPMVS93.72 33093.27 32995.09 34596.04 37987.76 36698.13 15185.01 38594.69 30296.92 30998.64 22878.47 37499.31 34295.04 27296.46 36098.20 323
cascas94.79 31394.33 31996.15 32796.02 38092.36 33592.34 37599.26 17785.34 37495.08 35994.96 37092.96 27998.53 37294.41 29398.59 31497.56 353
gg-mvs-nofinetune92.37 34291.20 34795.85 32995.80 38192.38 33499.31 2781.84 38799.75 591.83 37699.74 1268.29 38299.02 36087.15 36697.12 35296.16 370
gm-plane-assit94.83 38281.97 38488.07 36994.99 36899.60 28491.76 340
GG-mvs-BLEND94.76 34694.54 38392.13 33999.31 2780.47 38888.73 38191.01 38167.59 38598.16 37682.30 37794.53 37593.98 378
EPNet_dtu94.93 31294.78 31395.38 34193.58 38487.68 36796.78 27095.69 35597.35 20489.14 38098.09 28488.15 32099.49 31594.95 27599.30 24898.98 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160092.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
miper_refine_blended92.87 33891.99 34195.51 33891.37 38589.27 35994.07 36198.14 30795.42 28597.25 29896.44 34667.86 38399.24 35091.28 34896.08 36698.02 332
EPNet96.14 28695.44 29598.25 21990.76 38795.50 25497.92 17994.65 35898.97 8792.98 37398.85 19089.12 31199.87 9395.99 24399.68 15799.39 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_method79.78 34979.50 35280.62 36580.21 38845.76 39070.82 37998.41 29631.08 38380.89 38497.71 30684.85 33997.37 37891.51 34680.03 38298.75 292
tmp_tt78.77 35078.73 35378.90 36658.45 38974.76 38994.20 36078.26 38939.16 38286.71 38292.82 38080.50 36075.19 38586.16 36992.29 37986.74 380
testmvs17.12 35220.53 3556.87 36812.05 3904.20 39293.62 3696.73 3914.62 38610.41 38624.33 3838.28 3913.56 3879.69 38515.07 38412.86 383
test12317.04 35320.11 3567.82 36710.25 3914.91 39194.80 3444.47 3924.93 38510.00 38724.28 3849.69 3903.64 38610.14 38412.43 38514.92 382
test_blank0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
eth-test20.00 392
eth-test0.00 392
uanet_test0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
DCPMVS0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
cdsmvs_eth3d_5k24.66 35132.88 3540.00 3690.00 3920.00 3930.00 38099.10 2160.00 3870.00 38897.58 31499.21 130.00 3880.00 3860.00 3860.00 384
pcd_1.5k_mvsjas8.17 35410.90 3570.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 38798.07 770.00 3880.00 3860.00 3860.00 384
sosnet-low-res0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
sosnet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
uncertanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
Regformer0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
ab-mvs-re8.12 35510.83 3580.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 38897.48 3200.00 3920.00 3880.00 3860.00 3860.00 384
uanet0.00 3560.00 3590.00 3690.00 3920.00 3930.00 3800.00 3930.00 3870.00 3880.00 3870.00 3920.00 3880.00 3860.00 3860.00 384
PC_three_145293.27 32899.40 7298.54 24098.22 6597.00 37995.17 27099.45 22699.49 116
test_241102_TWO99.30 15898.03 14599.26 10199.02 14297.51 12399.88 7696.91 17499.60 18499.66 47
test_0728_THIRD98.17 13799.08 12399.02 14297.89 9099.88 7697.07 16299.71 14499.70 40
GSMVS98.81 281
sam_mvs184.74 34198.81 281
sam_mvs84.29 347
MTGPAbinary99.20 189
test_post197.59 21720.48 38683.07 35399.66 26494.16 296
test_post21.25 38583.86 34999.70 237
patchmatchnet-post98.77 20484.37 34499.85 114
MTMP97.93 17791.91 374
test9_res93.28 32199.15 27099.38 172
agg_prior292.50 33599.16 26899.37 174
test_prior497.97 15095.86 313
test_prior295.74 31896.48 25496.11 33897.63 31295.92 21194.16 29699.20 262
旧先验295.76 31788.56 36897.52 28499.66 26494.48 286
新几何295.93 310
无先验95.74 31898.74 27889.38 36499.73 22692.38 33799.22 218
原ACMM295.53 324
testdata299.79 18792.80 329
segment_acmp97.02 153
testdata195.44 32996.32 259
plane_prior599.27 17299.70 23794.42 29099.51 21499.45 139
plane_prior497.98 291
plane_prior397.78 17097.41 19897.79 265
plane_prior297.77 19598.20 134
plane_prior97.65 17997.07 25596.72 24599.36 237
n20.00 393
nn0.00 393
door-mid99.57 52
test1198.87 253
door99.41 112
HQP5-MVS96.79 221
BP-MVS92.82 327
HQP4-MVS95.56 34899.54 30399.32 193
HQP3-MVS99.04 22799.26 255
HQP2-MVS93.84 265
MDTV_nov1_ep13_2view74.92 38897.69 20390.06 36297.75 26885.78 33393.52 31598.69 299
ACMMP++_ref99.77 114
ACMMP++99.68 157
Test By Simon96.52 181