This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12298.16 398.94 399.33 397.84 499.08 9890.73 14799.73 1399.59 14
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7298.06 598.64 1498.25 4095.01 5399.65 592.95 9399.83 599.68 6
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17793.73 6797.87 3198.49 3190.73 16199.05 10386.43 25199.60 2599.10 47
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8597.91 698.64 1498.13 4395.24 4099.65 593.39 7699.84 399.72 4
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9198.14 498.67 1398.32 3795.04 5099.69 493.27 8199.82 799.62 12
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9496.10 3398.14 2899.28 597.94 398.21 21491.38 13699.69 1499.42 20
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4399.38 5798.92 72
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17398.32 3087.89 20796.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8094.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6597.42 1098.48 1797.86 6591.76 13499.63 894.23 4599.84 399.66 8
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13294.64 3699.53 3798.99 56
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12497.60 898.34 2097.52 8691.98 12799.63 893.08 8999.81 899.70 5
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 22996.47 2593.40 22797.46 9395.31 3795.47 35286.18 25598.78 14789.11 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11494.46 5496.29 10196.94 13693.56 8499.37 6094.29 4499.42 5098.99 56
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7790.42 15696.37 9597.35 10395.68 2199.25 7994.44 4099.34 6398.80 85
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5199.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
VDDNet94.03 13894.27 13493.31 17898.87 2182.36 23495.51 9391.78 32797.19 1396.32 9898.60 2584.24 24698.75 15087.09 23898.83 14098.81 84
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18185.23 25594.75 18697.12 12391.85 12999.40 4993.45 7198.33 19298.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EGC-MVSNET80.97 36775.73 38496.67 4698.85 2394.55 1996.83 2296.60 1942.44 4215.32 42298.25 4092.24 12098.02 23191.85 12099.21 9097.45 218
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11687.57 21698.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11293.38 7695.89 12497.23 11293.35 9297.66 26988.20 21498.66 16297.79 194
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9288.72 18898.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10592.73 8393.48 22296.72 15494.23 7699.42 3691.99 11599.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17496.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4199.28 8098.97 62
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13186.96 22598.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27796.48 2495.38 15093.63 29294.89 5997.94 24095.38 2796.92 27695.17 318
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13495.12 16995.15 23786.60 22499.50 2293.43 7596.81 28098.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8092.08 10295.74 13296.28 18495.22 4299.42 3693.17 8599.06 10398.88 77
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8093.34 7796.64 8796.57 16294.99 5499.36 6193.48 6899.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8692.26 9695.28 15996.57 16295.02 5299.41 4293.63 6099.11 10198.94 66
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10792.59 8795.47 14596.68 15694.50 7199.42 3693.10 8799.26 8298.99 56
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 6999.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VPNet93.08 16693.76 14891.03 26198.60 3875.83 33791.51 24295.62 23491.84 11395.74 13297.10 12689.31 18398.32 20585.07 27099.06 10398.93 68
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8692.35 9395.57 14096.61 16094.93 5899.41 4293.78 5699.15 9899.00 54
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9599.21 9099.00 54
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19696.49 16494.56 6999.39 5293.57 6299.05 10698.93 68
X-MVStestdata90.70 22388.45 27197.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19626.89 41994.56 6999.39 5293.57 6299.05 10698.93 68
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23494.87 3399.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7299.31 7098.53 121
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13388.98 18298.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6896.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17390.30 16299.60 2598.72 96
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22195.93 7194.84 26394.86 4898.49 1698.74 1881.45 27599.60 1094.69 3599.39 5699.15 39
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6291.95 10497.63 3897.25 11096.48 1099.35 6293.29 7999.29 7597.95 172
IU-MVS98.51 4986.66 15896.83 18072.74 37595.83 12693.00 9199.29 7598.64 111
test_241102_ONE98.51 4986.97 14898.10 6291.85 11097.63 3897.03 13096.48 1098.95 118
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16591.85 11097.40 5497.35 10395.58 2499.34 6593.44 7299.31 7098.13 153
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8392.35 9395.63 13796.47 16595.37 3299.27 7893.78 5699.14 9998.48 126
Baseline_NR-MVSNet94.47 11995.09 10292.60 20698.50 5580.82 25592.08 22096.68 19093.82 6696.29 10198.56 2790.10 17597.75 26290.10 17399.66 2199.24 32
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19497.33 14190.05 16196.77 8296.85 14295.04 5098.56 18192.77 9599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
FC-MVSNet-test95.32 8495.88 6593.62 16498.49 5681.77 24095.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9499.83 599.68 6
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 122
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7290.45 15596.31 9996.76 14892.91 10798.72 15591.19 13799.42 5098.32 136
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7790.82 14497.15 6196.85 14296.25 1499.00 11093.10 8799.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15891.84 11397.28 5898.46 3395.30 3897.71 26690.17 16999.42 5098.99 56
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 14990.11 17199.44 4898.31 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
TransMVSNet (Re)95.27 9196.04 5692.97 18698.37 6381.92 23995.07 11196.76 18693.97 6297.77 3498.57 2695.72 2097.90 24188.89 20599.23 8699.08 48
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6592.67 8695.08 17396.39 17594.77 6299.42 3693.17 8599.44 4898.58 118
FIs94.90 10195.35 8993.55 16798.28 6981.76 24195.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7391.72 12499.69 1499.61 13
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10486.48 22897.42 5297.51 9094.47 7499.29 7393.55 6499.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15897.86 9495.96 3897.48 4897.14 12195.33 3699.44 3290.79 14599.76 1099.38 23
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27696.24 3196.28 10396.36 17882.88 25899.35 6288.19 21599.52 3998.96 64
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 119
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
test_part298.21 7689.41 9696.72 83
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17497.24 14996.88 1897.69 3697.77 7194.12 7899.13 9391.54 13299.29 7597.88 182
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6589.46 17196.61 8996.47 16595.85 1899.12 9490.45 15499.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11189.21 17993.28 23195.46 22688.89 18698.98 11189.80 17898.82 14197.80 193
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10699.05 10698.64 111
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7797.67 24497.85 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20298.13 5890.69 14793.75 21596.25 18898.03 297.02 30692.08 11295.55 31198.45 128
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28294.22 5794.94 17896.19 19082.07 27099.57 1587.28 23598.89 12898.65 106
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6698.84 13598.00 164
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6698.84 13598.00 164
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6895.17 4396.82 7996.73 15395.09 4999.43 3592.99 9298.71 15498.50 123
K. test v393.37 15693.27 16693.66 16298.05 8682.62 23094.35 13686.62 36796.05 3597.51 4698.85 1476.59 32099.65 593.21 8398.20 20798.73 95
lessismore_v093.87 15498.05 8683.77 21380.32 40797.13 6297.91 6277.49 30599.11 9692.62 10198.08 21798.74 94
test111190.39 23490.61 23089.74 29998.04 8971.50 37095.59 8579.72 40989.41 17295.94 12098.14 4270.79 34398.81 13988.52 21299.32 6998.90 74
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11687.68 21498.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24498.17 5390.72 14695.30 15696.47 16587.94 19996.98 30791.41 13597.61 24898.30 139
114514_t90.51 22889.80 24892.63 20398.00 9282.24 23693.40 17097.29 14565.84 40589.40 32694.80 25386.99 21598.75 15083.88 28298.61 16496.89 249
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8896.69 1991.78 28298.85 1491.77 13295.49 35191.72 12499.08 10295.02 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7898.88 13098.75 91
SDMVSNet94.43 12195.02 10392.69 19897.93 9782.88 22891.92 22995.99 22693.65 7295.51 14298.63 2394.60 6796.48 32587.57 22999.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20597.93 9783.24 21893.17 17795.04 25793.65 7295.51 14298.63 2394.49 7295.89 34481.72 30499.35 5998.70 100
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16798.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12399.28 8098.41 131
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SSC-MVS90.16 24392.96 17081.78 38897.88 10048.48 42090.75 26287.69 35896.02 3796.70 8497.63 7785.60 23697.80 25485.73 25998.60 16699.06 50
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14896.99 16791.05 13992.40 26695.22 23691.03 15399.25 7992.11 11098.69 15797.90 179
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22496.74 18788.16 20396.93 7397.61 7893.04 10497.90 24191.60 12898.12 21298.03 162
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 11893.85 5499.49 4099.36 25
MVSMamba_PlusPlus94.82 10595.89 6491.62 23897.82 10478.88 29396.52 3597.60 11897.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 276
test250685.42 32884.57 33187.96 33297.81 10566.53 39396.14 6156.35 42289.04 18093.55 22198.10 4442.88 41998.68 16688.09 21999.18 9498.67 104
ECVR-MVScopyleft90.12 24590.16 23990.00 29597.81 10572.68 36495.76 7978.54 41289.04 18095.36 15398.10 4470.51 34598.64 17287.10 23799.18 9498.67 104
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18498.07 6893.46 7496.31 9995.97 20290.14 17299.34 6592.11 11099.64 2399.16 38
VPA-MVSNet95.14 9395.67 7793.58 16697.76 10883.15 22294.58 12897.58 11993.39 7597.05 6798.04 4993.25 9598.51 18789.75 18199.59 2799.08 48
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19697.81 10093.99 6096.80 8095.90 20390.10 17599.41 4291.60 12899.58 3199.26 30
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13393.92 6597.65 3795.90 20390.10 17599.33 7090.11 17199.66 2199.26 30
XXY-MVS92.58 18493.16 16890.84 27097.75 10979.84 27091.87 23396.22 21685.94 23995.53 14197.68 7392.69 11394.48 36883.21 28697.51 25198.21 145
WB-MVS89.44 26192.15 19381.32 38997.73 11248.22 42189.73 29787.98 35695.24 4296.05 11696.99 13485.18 23996.95 30882.45 29697.97 22798.78 87
PVSNet_Blended_VisFu91.63 20791.20 21692.94 18997.73 11283.95 21192.14 21997.46 12978.85 33592.35 26994.98 24584.16 24799.08 9886.36 25296.77 28295.79 300
tfpnnormal94.27 12894.87 10892.48 21097.71 11480.88 25494.55 13295.41 24893.70 6896.67 8697.72 7291.40 14098.18 21887.45 23199.18 9498.36 132
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10091.74 12193.31 22895.59 22086.93 21798.95 11889.26 19498.51 17698.60 116
plane_prior797.71 11488.68 111
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21697.84 9794.91 4796.80 8095.78 21390.42 16699.41 4291.60 12899.58 3199.29 29
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 3999.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15598.02 7987.35 21896.22 10797.99 5494.48 7399.05 10392.73 9899.68 1797.93 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
KD-MVS_self_test94.10 13694.73 11592.19 21797.66 12079.49 28094.86 11897.12 15889.59 17096.87 7597.65 7590.40 16898.34 20489.08 20099.35 5998.75 91
Vis-MVSNet (Re-imp)90.42 23190.16 23991.20 25797.66 12077.32 31694.33 13787.66 35991.20 13692.99 24495.13 23975.40 32598.28 20777.86 34099.19 9297.99 167
dcpmvs_293.96 14195.01 10490.82 27197.60 12274.04 35393.68 16298.85 1089.80 16697.82 3297.01 13391.14 15199.21 8290.56 15198.59 16799.19 36
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19892.38 9097.03 6898.53 2890.12 17398.98 11188.78 20799.16 9798.65 106
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12492.42 8993.41 22497.78 6791.21 14697.77 25991.06 13997.06 26898.80 85
WR-MVS93.49 15293.72 14992.80 19597.57 12580.03 26590.14 28495.68 23393.70 6896.62 8895.39 23387.21 21099.04 10687.50 23099.64 2399.33 26
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12092.68 8496.20 10993.44 29891.92 12898.78 14689.11 19999.24 8596.92 247
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 24897.13 15780.33 31592.91 24894.24 27191.23 14598.72 15589.99 17597.93 23097.86 185
F-COLMAP92.28 19491.06 22095.95 6197.52 12791.90 6093.53 16497.18 15283.98 27488.70 33994.04 27888.41 19098.55 18380.17 32195.99 30197.39 225
9.1494.81 10997.49 12994.11 14798.37 2687.56 21795.38 15096.03 19994.66 6499.08 9890.70 14898.97 120
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15293.28 29794.49 5296.24 10597.78 6787.99 19898.79 14388.92 20399.14 9998.34 135
testgi90.38 23591.34 21487.50 34097.49 12971.54 36989.43 30695.16 25488.38 19794.54 19294.68 25892.88 10993.09 38371.60 38497.85 23597.88 182
save fliter97.46 13288.05 12792.04 22297.08 16087.63 215
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 8993.18 8499.74 1299.50 18
plane_prior197.38 134
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10089.22 17895.46 14796.17 19393.42 9099.34 6589.30 19098.87 13397.56 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24583.25 28295.51 14298.05 4792.54 11697.19 29695.55 2197.46 25598.94 66
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20191.93 10694.82 18395.39 23391.99 12697.08 30385.53 26197.96 22897.41 221
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18596.64 2197.61 4198.05 4793.23 9698.79 14388.60 21199.04 11198.78 87
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23297.56 4298.66 2195.73 1998.44 19597.35 398.99 11498.27 141
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21597.40 13287.10 22494.56 19195.42 22993.74 8298.11 22386.62 24598.85 13498.06 156
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14088.71 18995.26 16095.50 22594.65 6599.12 9490.94 14398.40 18298.23 143
ZD-MVS97.23 14190.32 8297.54 12284.40 27194.78 18595.79 21092.76 11299.39 5288.72 20998.40 182
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17297.22 14384.37 20093.73 15995.26 25284.45 27095.76 12998.00 5291.85 12997.21 29395.62 1797.82 23698.98 60
plane_prior697.21 14488.23 12486.93 217
DP-MVS Recon92.31 19391.88 20093.60 16597.18 14586.87 15191.10 25497.37 13384.92 26492.08 27894.08 27788.59 18798.20 21583.50 28398.14 21195.73 302
新几何193.17 18297.16 14687.29 13894.43 27467.95 39991.29 28994.94 24786.97 21698.23 21381.06 31397.75 23893.98 355
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11296.94 1796.58 9097.32 10793.07 10398.72 15590.45 15498.84 13597.57 210
CHOSEN 1792x268887.19 31285.92 32391.00 26497.13 14879.41 28184.51 38695.60 23564.14 40890.07 31394.81 25178.26 30097.14 30073.34 37395.38 31896.46 268
HyFIR lowres test87.19 31285.51 32592.24 21597.12 14980.51 25685.03 38096.06 22166.11 40491.66 28492.98 31070.12 34699.14 9175.29 36295.23 32297.07 239
ab-mvs92.40 19092.62 18291.74 23297.02 15081.65 24295.84 7695.50 24486.95 22692.95 24797.56 8190.70 16297.50 27679.63 32897.43 25696.06 287
tttt051789.81 25588.90 26592.55 20897.00 15179.73 27595.03 11383.65 39289.88 16495.30 15694.79 25453.64 40199.39 5291.99 11598.79 14698.54 119
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15394.01 28589.23 17693.95 21096.19 19076.88 31699.14 9191.02 14095.71 30897.04 243
test22296.95 15385.27 19388.83 32293.61 28965.09 40790.74 29994.85 25084.62 24597.36 25993.91 356
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26597.07 16177.38 34292.34 27195.08 24292.67 11498.88 12585.74 25898.57 16998.20 146
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23796.80 18289.66 16893.90 21395.44 22892.80 11198.72 15592.74 9798.52 17498.32 136
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25294.52 26493.95 8199.49 2893.62 6199.22 8997.51 215
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29094.49 3899.01 11399.80 3
原ACMM192.87 19296.91 15784.22 20597.01 16476.84 34989.64 32394.46 26588.00 19798.70 16281.53 30798.01 22495.70 305
ambc92.98 18596.88 15983.01 22695.92 7296.38 20896.41 9497.48 9288.26 19197.80 25489.96 17698.93 12598.12 154
testdata91.03 26196.87 16082.01 23794.28 27871.55 38092.46 26295.42 22985.65 23497.38 28782.64 29197.27 26193.70 362
CS-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29593.73 29093.52 8699.55 1991.81 12199.45 4597.58 209
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16598.60 1685.68 24697.42 5298.30 3895.34 3598.39 19696.85 498.98 11598.19 147
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22686.28 25498.61 16497.95 172
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26194.79 25493.56 8499.49 2893.47 6999.05 10697.89 181
NP-MVS96.82 16587.10 14493.40 299
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 9996.13 3294.74 18797.23 11291.33 14199.16 8893.25 8298.30 19598.46 127
Test_1112_low_res87.50 30486.58 31290.25 28696.80 16777.75 31087.53 34196.25 21269.73 39486.47 36493.61 29475.67 32397.88 24579.95 32393.20 36895.11 324
PAPM_NR91.03 21890.81 22591.68 23696.73 16881.10 25193.72 16096.35 20988.19 20188.77 33792.12 33185.09 24197.25 29182.40 29793.90 35596.68 258
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16395.23 25383.30 28095.13 16897.56 8192.22 12197.17 29795.51 2297.41 25798.64 111
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17696.69 17084.37 20093.38 17195.13 25584.50 26995.40 14997.55 8591.77 13297.20 29495.59 1897.79 23798.69 103
1112_ss88.42 28587.41 29491.45 24496.69 17080.99 25289.72 29896.72 18873.37 36987.00 36290.69 35377.38 30898.20 21581.38 30893.72 35895.15 320
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 16998.49 1985.57 25098.27 2197.11 12494.11 7997.75 26296.26 1198.72 15296.89 249
patch_mono-292.46 18892.72 18091.71 23496.65 17378.91 29288.85 32197.17 15383.89 27692.45 26396.76 14889.86 17997.09 30290.24 16698.59 16799.12 43
v894.65 11295.29 9392.74 19696.65 17379.77 27494.59 12697.17 15391.86 10997.47 4997.93 5788.16 19399.08 9894.32 4299.47 4199.38 23
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31196.23 21488.36 19993.57 22094.60 26193.45 8797.77 25990.23 16798.38 18698.03 162
ANet_high94.83 10496.28 4190.47 27996.65 17373.16 35894.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16290.38 15799.68 1799.53 16
SD-MVS95.19 9295.73 7493.55 16796.62 17788.88 10994.67 12398.05 7291.26 13497.25 6096.40 17195.42 3094.36 37292.72 9999.19 9297.40 224
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21692.18 31885.92 24096.22 10796.61 16085.64 23595.99 34290.35 15998.23 20295.93 293
Anonymous2024052192.86 17693.57 15790.74 27396.57 17975.50 33994.15 14495.60 23589.38 17395.90 12397.90 6480.39 28497.96 23892.60 10299.68 1798.75 91
v1094.68 11195.27 9592.90 19196.57 17980.15 25994.65 12597.57 12090.68 14897.43 5098.00 5288.18 19299.15 8994.84 3499.55 3599.41 21
Anonymous20240521192.58 18492.50 18592.83 19496.55 18183.22 22092.43 20591.64 32994.10 5995.59 13996.64 15881.88 27497.50 27685.12 26798.52 17497.77 196
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5298.68 15898.04 159
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
PLCcopyleft85.34 1590.40 23288.92 26394.85 10896.53 18590.02 8591.58 24196.48 20480.16 31686.14 36692.18 32885.73 23298.25 21276.87 35094.61 33996.30 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18497.68 11078.02 33992.79 25194.10 27690.85 15597.96 23884.76 27498.16 20996.54 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 20896.91 17490.64 14992.33 27294.60 26190.58 16598.96 11690.21 16897.70 24298.23 143
TAMVS90.16 24389.05 25993.49 17496.49 18786.37 16690.34 27892.55 31380.84 31392.99 24494.57 26381.94 27398.20 21573.51 37298.21 20595.90 296
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17598.36 2785.61 24996.92 7498.02 5195.23 4198.38 19996.69 798.95 12498.09 155
TEST996.45 19089.46 9390.60 26896.92 17279.09 33190.49 30394.39 26791.31 14298.88 125
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 26896.92 17279.37 32690.49 30394.39 26791.20 14798.88 12588.66 21098.43 18197.72 201
mvs5depth95.28 8895.82 7193.66 16296.42 19283.08 22497.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23294.06 4898.93 12599.87 1
test_896.37 19389.14 10390.51 27196.89 17579.37 32690.42 30594.36 26991.20 14798.82 134
CLD-MVS91.82 20291.41 21293.04 18396.37 19383.65 21486.82 35597.29 14584.65 26892.27 27389.67 36492.20 12397.85 25183.95 28199.47 4197.62 207
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP-NCC96.36 19591.37 24587.16 22188.81 333
ACMP_Plane96.36 19591.37 24587.16 22188.81 333
HQP-MVS92.09 19991.49 21093.88 15396.36 19584.89 19691.37 24597.31 14287.16 22188.81 33393.40 29984.76 24398.60 17686.55 24897.73 23998.14 152
v2v48293.29 15893.63 15392.29 21396.35 19878.82 29591.77 23996.28 21088.45 19595.70 13696.26 18786.02 23098.90 12293.02 9098.81 14399.14 40
MSLP-MVS++93.25 16293.88 14391.37 24696.34 19982.81 22993.11 17897.74 10789.37 17494.08 20395.29 23590.40 16896.35 33290.35 15998.25 20094.96 328
thisisatest053088.69 28187.52 29392.20 21696.33 20079.36 28292.81 18784.01 39186.44 22993.67 21892.68 31853.62 40299.25 7989.65 18398.45 18098.00 164
FPMVS84.50 33783.28 34388.16 33096.32 20194.49 2085.76 37485.47 38083.09 28685.20 37194.26 27063.79 37886.58 41063.72 40691.88 38683.40 408
Anonymous2023120688.77 27888.29 27690.20 28996.31 20278.81 29689.56 30293.49 29474.26 36592.38 26795.58 22382.21 26795.43 35472.07 38098.75 15196.34 272
MVP-Stereo90.07 24988.92 26393.54 16996.31 20286.49 16190.93 25895.59 23979.80 31891.48 28695.59 22080.79 28197.39 28578.57 33891.19 38896.76 256
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20488.62 11393.19 17698.07 6885.63 24897.08 6397.35 10390.86 15497.66 26995.70 1698.48 17997.74 200
v114493.50 15193.81 14492.57 20796.28 20579.61 27791.86 23596.96 16886.95 22695.91 12296.32 18087.65 20298.96 11693.51 6598.88 13099.13 41
LFMVS91.33 21491.16 21991.82 22996.27 20679.36 28295.01 11485.61 37996.04 3694.82 18397.06 12872.03 33998.46 19384.96 27198.70 15697.65 206
VNet92.67 18292.96 17091.79 23096.27 20680.15 25991.95 22594.98 25992.19 10094.52 19396.07 19787.43 20697.39 28584.83 27298.38 18697.83 189
IterMVS-LS93.78 14694.28 13292.27 21496.27 20679.21 28791.87 23396.78 18391.77 11996.57 9197.07 12787.15 21198.74 15391.99 11599.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v14892.87 17593.29 16391.62 23896.25 20977.72 31191.28 24995.05 25689.69 16795.93 12196.04 19887.34 20798.38 19990.05 17497.99 22598.78 87
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17096.25 20983.23 21992.66 19398.19 4793.06 8197.49 4797.15 12094.78 6198.71 16192.27 10898.72 15298.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_111021_LR93.66 14893.28 16594.80 11096.25 20990.95 7390.21 28195.43 24787.91 20593.74 21794.40 26692.88 10996.38 33090.39 15698.28 19697.07 239
agg_prior96.20 21288.89 10896.88 17690.21 31098.78 146
旧先验196.20 21284.17 20794.82 26495.57 22489.57 18197.89 23296.32 273
CNLPA91.72 20591.20 21693.26 18096.17 21491.02 7191.14 25295.55 24290.16 16090.87 29693.56 29686.31 22694.40 37179.92 32797.12 26694.37 346
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16096.16 21586.26 17092.46 20296.72 18881.69 30495.77 12897.11 12490.83 15697.82 25295.58 1997.99 22597.11 238
hse-mvs292.24 19791.20 21695.38 8596.16 21590.65 7992.52 19892.01 32589.23 17693.95 21092.99 30976.88 31698.69 16491.02 14096.03 29996.81 253
v119293.49 15293.78 14792.62 20496.16 21579.62 27691.83 23697.22 15186.07 23796.10 11596.38 17687.22 20999.02 10894.14 4798.88 13099.22 33
thres100view90087.35 30786.89 30788.72 31796.14 21873.09 35993.00 18185.31 38292.13 10193.26 23390.96 34863.42 37998.28 20771.27 38696.54 28994.79 336
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 21887.90 12993.36 17297.14 15585.53 25193.90 21395.45 22791.30 14398.59 17889.51 18498.62 16397.31 230
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DPM-MVS89.35 26288.40 27292.18 22096.13 22084.20 20686.96 35096.15 22075.40 35787.36 35991.55 34183.30 25398.01 23282.17 30096.62 28794.32 348
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17496.10 22185.66 18692.32 21196.57 19781.32 30795.63 13797.14 12190.19 17197.73 26595.37 2898.03 22197.07 239
AUN-MVS90.05 25088.30 27595.32 9096.09 22290.52 8192.42 20692.05 32482.08 30088.45 34392.86 31165.76 36698.69 16488.91 20496.07 29896.75 257
baseline94.26 12994.80 11092.64 20096.08 22380.99 25293.69 16198.04 7690.80 14594.89 18196.32 18093.19 9798.48 19291.68 12698.51 17698.43 130
PCF-MVS84.52 1789.12 26687.71 29093.34 17796.06 22485.84 18186.58 36397.31 14268.46 39893.61 21993.89 28687.51 20598.52 18667.85 39798.11 21395.66 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v14419293.20 16593.54 15992.16 22196.05 22578.26 30391.95 22597.14 15584.98 26395.96 11896.11 19587.08 21399.04 10693.79 5598.84 13599.17 37
thres600view787.66 29887.10 30489.36 30696.05 22573.17 35792.72 18985.31 38291.89 10893.29 23090.97 34763.42 37998.39 19673.23 37496.99 27596.51 262
casdiffmvspermissive94.32 12794.80 11092.85 19396.05 22581.44 24692.35 20998.05 7291.53 12995.75 13196.80 14593.35 9298.49 18891.01 14298.32 19498.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MIMVSNet87.13 31486.54 31588.89 31496.05 22576.11 33294.39 13588.51 34881.37 30688.27 34696.75 15072.38 33695.52 34965.71 40295.47 31495.03 326
v192192093.26 16093.61 15592.19 21796.04 22978.31 30291.88 23297.24 14985.17 25796.19 11296.19 19086.76 22199.05 10394.18 4698.84 13599.22 33
v124093.29 15893.71 15092.06 22496.01 23077.89 30891.81 23797.37 13385.12 25996.69 8596.40 17186.67 22299.07 10294.51 3798.76 14999.22 33
BH-untuned90.68 22490.90 22190.05 29495.98 23179.57 27890.04 28794.94 26187.91 20594.07 20493.00 30887.76 20197.78 25879.19 33495.17 32492.80 378
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23292.96 4789.48 30497.46 12985.14 25896.23 10695.42 22993.19 9798.08 22590.37 15898.76 14997.38 227
test_prior94.61 12095.95 23387.23 14097.36 13898.68 16697.93 175
test1294.43 13395.95 23386.75 15496.24 21389.76 32189.79 18098.79 14397.95 22997.75 199
LCM-MVSNet-Re94.20 13394.58 12393.04 18395.91 23583.13 22393.79 15799.19 692.00 10398.84 698.04 4993.64 8399.02 10881.28 30998.54 17296.96 246
PatchMatch-RL89.18 26488.02 28792.64 20095.90 23692.87 4988.67 32891.06 33280.34 31490.03 31491.67 33883.34 25294.42 37076.35 35594.84 33390.64 394
ETV-MVS92.99 16992.74 17793.72 16195.86 23786.30 16992.33 21097.84 9791.70 12492.81 24986.17 39292.22 12199.19 8688.03 22297.73 23995.66 307
MM94.41 12294.14 13895.22 9795.84 23887.21 14194.31 13990.92 33594.48 5392.80 25097.52 8685.27 23899.49 2896.58 899.57 3398.97 62
testing383.66 34482.52 34987.08 34395.84 23865.84 39889.80 29677.17 41688.17 20290.84 29788.63 37430.95 42498.11 22384.05 28097.19 26497.28 232
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24090.87 7690.97 25792.61 31288.04 20494.61 19093.79 28988.08 19497.81 25389.41 18798.39 18596.50 265
QAPM92.88 17392.77 17593.22 18195.82 24083.31 21696.45 4197.35 13983.91 27593.75 21596.77 14689.25 18498.88 12584.56 27697.02 27097.49 216
balanced_conf0393.45 15494.17 13791.28 25295.81 24278.40 30096.20 6097.48 12888.56 19495.29 15897.20 11785.56 23799.21 8292.52 10498.91 12796.24 279
EIA-MVS92.35 19292.03 19593.30 17995.81 24283.97 21092.80 18898.17 5387.71 21289.79 32087.56 38291.17 15099.18 8787.97 22397.27 26196.77 255
tfpn200view987.05 31686.52 31688.67 31895.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28994.79 336
thres40087.20 31186.52 31689.24 31095.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28996.51 262
pmmvs-eth3d91.54 20990.73 22893.99 14595.76 24687.86 13190.83 26093.98 28678.23 33894.02 20896.22 18982.62 26596.83 31686.57 24698.33 19297.29 231
jason89.17 26588.32 27491.70 23595.73 24780.07 26288.10 33293.22 29871.98 37890.09 31192.79 31478.53 29798.56 18187.43 23297.06 26896.46 268
jason: jason.
alignmvs93.26 16092.85 17494.50 12895.70 24887.45 13693.45 16895.76 23091.58 12695.25 16292.42 32581.96 27298.72 15591.61 12797.87 23497.33 229
xiu_mvs_v1_base_debu91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base_debi91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
PHI-MVS94.34 12693.80 14695.95 6195.65 25291.67 6694.82 11997.86 9487.86 20893.04 24394.16 27591.58 13698.78 14690.27 16498.96 12297.41 221
LF4IMVS92.72 18092.02 19694.84 10995.65 25291.99 5892.92 18396.60 19485.08 26192.44 26493.62 29386.80 22096.35 33286.81 24098.25 20096.18 282
test20.0390.80 22090.85 22490.63 27695.63 25479.24 28589.81 29592.87 30389.90 16394.39 19596.40 17185.77 23195.27 35973.86 37199.05 10697.39 225
TinyColmap92.00 20192.76 17689.71 30095.62 25577.02 31990.72 26496.17 21987.70 21395.26 16096.29 18292.54 11696.45 32781.77 30298.77 14895.66 307
sasdasda94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
canonicalmvs94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
MGCFI-Net94.44 12094.67 12093.75 15995.56 25885.47 18995.25 10398.24 4091.53 12995.04 17492.21 32794.94 5798.54 18491.56 13197.66 24597.24 233
AdaColmapbinary91.63 20791.36 21392.47 21195.56 25886.36 16792.24 21896.27 21188.88 18689.90 31792.69 31791.65 13598.32 20577.38 34797.64 24692.72 379
mvsmamba90.24 24189.43 25492.64 20095.52 26082.36 23496.64 3092.29 31681.77 30292.14 27696.28 18470.59 34499.10 9784.44 27895.22 32396.47 267
UnsupCasMVSNet_bld88.50 28388.03 28689.90 29695.52 26078.88 29387.39 34394.02 28479.32 32993.06 24194.02 28080.72 28294.27 37375.16 36393.08 37296.54 260
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26287.06 14596.63 3197.28 14791.82 11694.34 19897.41 9490.60 16498.65 17192.47 10598.11 21397.70 202
Fast-Effi-MVS+91.28 21690.86 22392.53 20995.45 26382.53 23189.25 31496.52 20285.00 26289.91 31688.55 37692.94 10598.84 13284.72 27595.44 31596.22 280
GBi-Net93.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
test193.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
FMVSNet292.78 17892.73 17992.95 18895.40 26481.98 23894.18 14395.53 24388.63 19096.05 11697.37 9781.31 27798.81 13987.38 23498.67 16098.06 156
CDS-MVSNet89.55 25788.22 28293.53 17095.37 26786.49 16189.26 31293.59 29079.76 32091.15 29392.31 32677.12 31198.38 19977.51 34597.92 23195.71 303
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
V4293.43 15593.58 15692.97 18695.34 26881.22 24992.67 19296.49 20387.25 22096.20 10996.37 17787.32 20898.85 13192.39 10798.21 20598.85 81
Patchmatch-RL test88.81 27788.52 26989.69 30195.33 26979.94 26886.22 36892.71 30878.46 33695.80 12794.18 27466.25 36495.33 35789.22 19698.53 17393.78 359
CL-MVSNet_self_test90.04 25189.90 24690.47 27995.24 27077.81 30986.60 36292.62 31185.64 24793.25 23593.92 28483.84 24996.06 33979.93 32598.03 22197.53 214
BH-RMVSNet90.47 23090.44 23490.56 27895.21 27178.65 29989.15 31593.94 28788.21 20092.74 25394.22 27286.38 22597.88 24578.67 33795.39 31795.14 321
Effi-MVS+92.79 17792.74 17792.94 18995.10 27283.30 21794.00 15097.53 12491.36 13389.35 32790.65 35594.01 8098.66 16887.40 23395.30 32096.88 251
USDC89.02 26989.08 25888.84 31595.07 27374.50 34788.97 31796.39 20773.21 37193.27 23296.28 18482.16 26996.39 32977.55 34498.80 14495.62 310
WTY-MVS86.93 31886.50 31888.24 32894.96 27474.64 34387.19 34692.07 32378.29 33788.32 34591.59 34078.06 30194.27 37374.88 36493.15 37095.80 299
FA-MVS(test-final)91.81 20391.85 20191.68 23694.95 27579.99 26796.00 6693.44 29587.80 20994.02 20897.29 10877.60 30498.45 19488.04 22197.49 25296.61 259
PS-MVSNAJ88.86 27688.99 26288.48 32494.88 27674.71 34286.69 35895.60 23580.88 31187.83 35287.37 38590.77 15798.82 13482.52 29494.37 34391.93 385
MG-MVS89.54 25889.80 24888.76 31694.88 27672.47 36689.60 30092.44 31585.82 24289.48 32495.98 20182.85 26097.74 26481.87 30195.27 32196.08 286
xiu_mvs_v2_base89.00 27289.19 25688.46 32594.86 27874.63 34486.97 34995.60 23580.88 31187.83 35288.62 37591.04 15298.81 13982.51 29594.38 34291.93 385
MAR-MVS90.32 23988.87 26694.66 11994.82 27991.85 6194.22 14294.75 26880.91 31087.52 35888.07 38086.63 22397.87 24876.67 35196.21 29794.25 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_BlendedMVS90.35 23789.96 24491.54 24294.81 28078.80 29790.14 28496.93 17079.43 32588.68 34095.06 24386.27 22798.15 22180.27 31798.04 22097.68 204
PVSNet_Blended88.74 27988.16 28590.46 28194.81 28078.80 29786.64 35996.93 17074.67 36188.68 34089.18 37186.27 22798.15 22180.27 31796.00 30094.44 345
FE-MVS89.06 26888.29 27691.36 24794.78 28279.57 27896.77 2790.99 33384.87 26592.96 24696.29 18260.69 39098.80 14280.18 32097.11 26795.71 303
BH-w/o87.21 31087.02 30587.79 33894.77 28377.27 31787.90 33493.21 30081.74 30389.99 31588.39 37883.47 25196.93 31171.29 38592.43 38089.15 396
LS3D96.11 5195.83 6996.95 4094.75 28494.20 2397.34 1397.98 8397.31 1295.32 15596.77 14693.08 10299.20 8591.79 12298.16 20997.44 220
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28596.67 694.00 15095.41 24889.94 16291.93 28192.13 33090.12 17398.97 11587.68 22897.48 25397.67 205
MVSFormer92.18 19892.23 19092.04 22594.74 28580.06 26397.15 1597.37 13388.98 18288.83 33192.79 31477.02 31399.60 1096.41 996.75 28396.46 268
lupinMVS88.34 28787.31 29591.45 24494.74 28580.06 26387.23 34492.27 31771.10 38488.83 33191.15 34477.02 31398.53 18586.67 24496.75 28395.76 301
baseline187.62 30087.31 29588.54 32194.71 28874.27 35093.10 17988.20 35286.20 23492.18 27593.04 30773.21 33295.52 34979.32 33285.82 40495.83 298
MDA-MVSNet-bldmvs91.04 21790.88 22291.55 24194.68 28980.16 25885.49 37692.14 32190.41 15794.93 17995.79 21085.10 24096.93 31185.15 26594.19 35097.57 210
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29088.25 12392.05 22196.65 19289.62 16990.08 31291.23 34392.56 11598.60 17686.30 25396.27 29696.90 248
UnsupCasMVSNet_eth90.33 23890.34 23790.28 28494.64 29180.24 25789.69 29995.88 22785.77 24393.94 21295.69 21781.99 27192.98 38484.21 27991.30 38797.62 207
OpenMVS_ROBcopyleft85.12 1689.52 25989.05 25990.92 26694.58 29281.21 25091.10 25493.41 29677.03 34793.41 22493.99 28283.23 25497.80 25479.93 32594.80 33493.74 361
OpenMVScopyleft89.45 892.27 19692.13 19492.68 19994.53 29384.10 20895.70 8097.03 16382.44 29691.14 29496.42 16988.47 18998.38 19985.95 25697.47 25495.55 312
thres20085.85 32585.18 32687.88 33694.44 29472.52 36589.08 31686.21 36988.57 19391.44 28788.40 37764.22 37498.00 23468.35 39595.88 30593.12 371
DELS-MVS92.05 20092.16 19191.72 23394.44 29480.13 26187.62 33697.25 14887.34 21992.22 27493.18 30689.54 18298.73 15489.67 18298.20 20796.30 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
N_pmnet88.90 27587.25 29893.83 15794.40 29693.81 3984.73 38287.09 36379.36 32893.26 23392.43 32479.29 29091.68 38977.50 34697.22 26396.00 289
pmmvs488.95 27487.70 29192.70 19794.30 29785.60 18787.22 34592.16 32074.62 36289.75 32294.19 27377.97 30296.41 32882.71 29096.36 29396.09 285
new-patchmatchnet88.97 27390.79 22683.50 38394.28 29855.83 41885.34 37893.56 29286.18 23595.47 14595.73 21683.10 25596.51 32485.40 26298.06 21898.16 150
API-MVS91.52 21091.61 20591.26 25394.16 29986.26 17094.66 12494.82 26491.17 13792.13 27791.08 34690.03 17897.06 30579.09 33597.35 26090.45 395
MSDG90.82 21990.67 22991.26 25394.16 29983.08 22486.63 36096.19 21790.60 15191.94 28091.89 33489.16 18595.75 34680.96 31494.51 34094.95 329
TR-MVS87.70 29687.17 30089.27 30894.11 30179.26 28488.69 32691.86 32681.94 30190.69 30189.79 36182.82 26197.42 28272.65 37891.98 38491.14 391
test_yl90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
DCV-MVSNet90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
RRT-MVS92.28 19493.01 16990.07 29194.06 30473.01 36095.36 9597.88 9292.24 9895.16 16797.52 8678.51 29899.29 7390.55 15295.83 30697.92 177
D2MVS89.93 25289.60 25390.92 26694.03 30578.40 30088.69 32694.85 26278.96 33393.08 24095.09 24174.57 32796.94 30988.19 21598.96 12297.41 221
sss87.23 30986.82 30888.46 32593.96 30677.94 30586.84 35392.78 30777.59 34187.61 35791.83 33578.75 29391.92 38877.84 34194.20 34895.52 313
PVSNet76.22 2082.89 35282.37 35184.48 37493.96 30664.38 40578.60 40688.61 34771.50 38184.43 38086.36 39174.27 32894.60 36769.87 39393.69 35994.46 344
IterMVS-SCA-FT91.65 20691.55 20691.94 22693.89 30879.22 28687.56 33993.51 29391.53 12995.37 15296.62 15978.65 29498.90 12291.89 11994.95 32997.70 202
UGNet93.08 16692.50 18594.79 11193.87 30987.99 12895.07 11194.26 27990.64 14987.33 36097.67 7486.89 21998.49 18888.10 21898.71 15497.91 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM81.91 36180.11 37187.31 34293.87 30972.32 36784.02 39093.22 29869.47 39576.13 41389.84 35872.15 33797.23 29253.27 41589.02 39792.37 382
CANet92.38 19191.99 19793.52 17293.82 31183.46 21591.14 25297.00 16589.81 16586.47 36494.04 27887.90 20099.21 8289.50 18598.27 19797.90 179
test_fmvs392.42 18992.40 18892.46 21293.80 31287.28 13993.86 15597.05 16276.86 34896.25 10498.66 2182.87 25991.26 39195.44 2496.83 27998.82 82
HY-MVS82.50 1886.81 32085.93 32289.47 30293.63 31377.93 30694.02 14991.58 33075.68 35383.64 38693.64 29177.40 30797.42 28271.70 38392.07 38393.05 374
test_vis1_n_192089.45 26089.85 24788.28 32793.59 31476.71 32690.67 26697.78 10579.67 32290.30 30996.11 19576.62 31992.17 38790.31 16193.57 36095.96 291
MVS_Test92.57 18693.29 16390.40 28293.53 31575.85 33592.52 19896.96 16888.73 18792.35 26996.70 15590.77 15798.37 20392.53 10395.49 31396.99 245
EU-MVSNet87.39 30686.71 31189.44 30393.40 31676.11 33294.93 11790.00 34157.17 41495.71 13597.37 9764.77 37397.68 26892.67 10094.37 34394.52 343
MS-PatchMatch88.05 29187.75 28988.95 31293.28 31777.93 30687.88 33592.49 31475.42 35692.57 25993.59 29580.44 28394.24 37581.28 30992.75 37594.69 341
GA-MVS87.70 29686.82 30890.31 28393.27 31877.22 31884.72 38492.79 30685.11 26089.82 31890.07 35666.80 35997.76 26184.56 27694.27 34695.96 291
pmmvs587.87 29387.14 30190.07 29193.26 31976.97 32388.89 31992.18 31873.71 36888.36 34493.89 28676.86 31896.73 31980.32 31696.81 28096.51 262
IterMVS90.18 24290.16 23990.21 28893.15 32075.98 33487.56 33992.97 30286.43 23094.09 20296.40 17178.32 29997.43 28187.87 22594.69 33797.23 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet78.83 38080.60 36673.51 39893.07 32147.37 42287.10 34878.00 41368.94 39677.53 41197.26 10971.45 34194.62 36663.28 40788.74 39878.55 413
diffmvspermissive91.74 20491.93 19991.15 25993.06 32278.17 30488.77 32497.51 12786.28 23192.42 26593.96 28388.04 19697.46 27990.69 14996.67 28697.82 191
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ET-MVSNet_ETH3D86.15 32384.27 33491.79 23093.04 32381.28 24787.17 34786.14 37079.57 32383.65 38588.66 37357.10 39498.18 21887.74 22795.40 31695.90 296
FMVSNet390.78 22190.32 23892.16 22193.03 32479.92 26992.54 19794.95 26086.17 23695.10 17096.01 20069.97 34798.75 15086.74 24198.38 18697.82 191
ETVMVS79.85 37677.94 38385.59 36292.97 32566.20 39686.13 36980.99 40481.41 30583.52 38883.89 40341.81 42094.98 36556.47 41394.25 34795.61 311
thisisatest051584.72 33582.99 34689.90 29692.96 32675.33 34084.36 38783.42 39377.37 34388.27 34686.65 38753.94 40098.72 15582.56 29397.40 25895.67 306
testing9183.56 34682.45 35086.91 34892.92 32767.29 38786.33 36688.07 35586.22 23384.26 38185.76 39448.15 40797.17 29776.27 35694.08 35496.27 277
UBG80.28 37478.94 37784.31 37792.86 32861.77 40983.87 39183.31 39577.33 34482.78 39483.72 40447.60 40896.06 33965.47 40393.48 36395.11 324
PAPR87.65 29986.77 31090.27 28592.85 32977.38 31588.56 32996.23 21476.82 35084.98 37589.75 36386.08 22997.16 29972.33 37993.35 36596.26 278
WBMVS84.00 34283.48 34185.56 36392.71 33061.52 41083.82 39389.38 34479.56 32490.74 29993.20 30548.21 40697.28 28975.63 36198.10 21597.88 182
testing1181.98 36080.52 36786.38 35792.69 33167.13 38885.79 37384.80 38782.16 29981.19 40585.41 39745.24 41096.88 31474.14 36993.24 36795.14 321
test_vis3_rt90.40 23290.03 24391.52 24392.58 33288.95 10690.38 27697.72 10973.30 37097.79 3397.51 9077.05 31287.10 40889.03 20194.89 33098.50 123
test_vis1_n89.01 27189.01 26189.03 31192.57 33382.46 23392.62 19596.06 22173.02 37390.40 30695.77 21474.86 32689.68 40090.78 14694.98 32894.95 329
testing9982.94 35181.72 35486.59 35192.55 33466.53 39386.08 37085.70 37585.47 25483.95 38385.70 39545.87 40997.07 30476.58 35393.56 36196.17 284
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33485.98 17792.44 20494.69 27093.70 6896.12 11495.81 20991.24 14498.86 12993.76 5998.22 20498.98 60
testing22280.54 37178.53 37986.58 35292.54 33668.60 38486.24 36782.72 39683.78 27882.68 39584.24 40239.25 42295.94 34360.25 40995.09 32695.20 317
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33785.87 18092.42 20694.69 27093.67 7196.13 11395.84 20791.20 14798.86 12993.78 5698.23 20299.03 52
MVS_030492.88 17392.27 18994.69 11692.35 33886.03 17692.88 18689.68 34290.53 15291.52 28596.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
FMVSNet587.82 29586.56 31491.62 23892.31 33979.81 27393.49 16694.81 26683.26 28191.36 28896.93 13752.77 40397.49 27876.07 35798.03 22197.55 213
c3_l91.32 21591.42 21191.00 26492.29 34076.79 32587.52 34296.42 20685.76 24494.72 18993.89 28682.73 26298.16 22090.93 14498.55 17098.04 159
dmvs_re84.69 33683.94 33886.95 34792.24 34182.93 22789.51 30387.37 36184.38 27285.37 36985.08 39972.44 33586.59 40968.05 39691.03 39191.33 389
MDA-MVSNet_test_wron88.16 29088.23 28187.93 33392.22 34273.71 35480.71 40488.84 34582.52 29494.88 18295.14 23882.70 26393.61 37883.28 28593.80 35796.46 268
YYNet188.17 28988.24 28087.93 33392.21 34373.62 35580.75 40388.77 34682.51 29594.99 17795.11 24082.70 26393.70 37783.33 28493.83 35696.48 266
CANet_DTU89.85 25489.17 25791.87 22792.20 34480.02 26690.79 26195.87 22886.02 23882.53 39691.77 33680.01 28598.57 18085.66 26097.70 24297.01 244
test_cas_vis1_n_192088.25 28888.27 27888.20 32992.19 34578.92 29189.45 30595.44 24575.29 36093.23 23695.65 21971.58 34090.23 39888.05 22093.55 36295.44 314
mvs_anonymous90.37 23691.30 21587.58 33992.17 34668.00 38689.84 29494.73 26983.82 27793.22 23797.40 9587.54 20497.40 28487.94 22495.05 32797.34 228
EI-MVSNet92.99 16993.26 16792.19 21792.12 34779.21 28792.32 21194.67 27291.77 11995.24 16395.85 20587.14 21298.49 18891.99 11598.26 19898.86 78
CVMVSNet85.16 33084.72 32886.48 35392.12 34770.19 37592.32 21188.17 35356.15 41590.64 30295.85 20567.97 35496.69 32088.78 20790.52 39292.56 380
test_fmvs1_n88.73 28088.38 27389.76 29892.06 34982.53 23192.30 21496.59 19671.14 38392.58 25895.41 23268.55 35089.57 40291.12 13895.66 30997.18 237
eth_miper_zixun_eth90.72 22290.61 23091.05 26092.04 35076.84 32486.91 35196.67 19185.21 25694.41 19493.92 28479.53 28898.26 21189.76 18097.02 27098.06 156
SCA87.43 30587.21 29988.10 33192.01 35171.98 36889.43 30688.11 35482.26 29888.71 33892.83 31278.65 29497.59 27279.61 32993.30 36694.75 338
dmvs_testset78.23 38178.99 37575.94 39691.99 35255.34 41988.86 32078.70 41182.69 29181.64 40379.46 41175.93 32285.74 41148.78 41782.85 41086.76 404
UWE-MVS80.29 37379.10 37483.87 38091.97 35359.56 41486.50 36577.43 41575.40 35787.79 35488.10 37944.08 41496.90 31364.23 40496.36 29395.14 321
test_fmvs290.62 22790.40 23691.29 25191.93 35485.46 19092.70 19196.48 20474.44 36394.91 18097.59 7975.52 32490.57 39493.44 7296.56 28897.84 188
cl____90.65 22590.56 23290.91 26891.85 35576.98 32286.75 35695.36 25085.53 25194.06 20594.89 24877.36 31097.98 23790.27 16498.98 11597.76 197
DIV-MVS_self_test90.65 22590.56 23290.91 26891.85 35576.99 32186.75 35695.36 25085.52 25394.06 20594.89 24877.37 30997.99 23690.28 16398.97 12097.76 197
our_test_387.55 30287.59 29287.44 34191.76 35770.48 37483.83 39290.55 33979.79 31992.06 27992.17 32978.63 29695.63 34784.77 27394.73 33596.22 280
ppachtmachnet_test88.61 28288.64 26888.50 32391.76 35770.99 37384.59 38592.98 30179.30 33092.38 26793.53 29779.57 28797.45 28086.50 25097.17 26597.07 239
Syy-MVS84.81 33384.93 32784.42 37591.71 35963.36 40885.89 37181.49 40081.03 30885.13 37281.64 40977.44 30695.00 36285.94 25794.12 35194.91 332
myMVS_eth3d79.62 37778.26 38083.72 38191.71 35961.25 41285.89 37181.49 40081.03 30885.13 37281.64 40932.12 42395.00 36271.17 38994.12 35194.91 332
131486.46 32286.33 31986.87 34991.65 36174.54 34591.94 22794.10 28174.28 36484.78 37787.33 38683.03 25795.00 36278.72 33691.16 38991.06 392
WB-MVSnew84.20 34083.89 33985.16 36991.62 36266.15 39788.44 33181.00 40376.23 35287.98 35087.77 38184.98 24293.35 38162.85 40894.10 35395.98 290
miper_ehance_all_eth90.48 22990.42 23590.69 27491.62 36276.57 32886.83 35496.18 21883.38 27994.06 20592.66 31982.20 26898.04 22789.79 17997.02 27097.45 218
cascas87.02 31786.28 32089.25 30991.56 36476.45 32984.33 38896.78 18371.01 38586.89 36385.91 39381.35 27696.94 30983.09 28795.60 31094.35 347
baseline283.38 34781.54 35788.90 31391.38 36572.84 36388.78 32381.22 40278.97 33279.82 40887.56 38261.73 38697.80 25474.30 36890.05 39496.05 288
miper_lstm_enhance89.90 25389.80 24890.19 29091.37 36677.50 31383.82 39395.00 25884.84 26693.05 24294.96 24676.53 32195.20 36089.96 17698.67 16097.86 185
mvsany_test389.11 26788.21 28391.83 22891.30 36790.25 8388.09 33378.76 41076.37 35196.43 9398.39 3683.79 25090.43 39786.57 24694.20 34894.80 335
IB-MVS77.21 1983.11 34881.05 36089.29 30791.15 36875.85 33585.66 37586.00 37279.70 32182.02 40086.61 38848.26 40598.39 19677.84 34192.22 38193.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVS84.98 33284.30 33387.01 34491.03 36977.69 31291.94 22794.16 28059.36 41384.23 38287.50 38485.66 23396.80 31771.79 38193.05 37386.54 405
CR-MVSNet87.89 29287.12 30390.22 28791.01 37078.93 28992.52 19892.81 30473.08 37289.10 32896.93 13767.11 35697.64 27188.80 20692.70 37694.08 350
RPMNet90.31 24090.14 24290.81 27291.01 37078.93 28992.52 19898.12 5991.91 10789.10 32896.89 14068.84 34999.41 4290.17 16992.70 37694.08 350
reproduce_monomvs87.13 31486.90 30687.84 33790.92 37268.15 38591.19 25193.75 28885.84 24194.21 20095.83 20842.99 41697.10 30189.46 18697.88 23398.26 142
new_pmnet81.22 36481.01 36281.86 38790.92 37270.15 37684.03 38980.25 40870.83 38685.97 36789.78 36267.93 35584.65 41367.44 39891.90 38590.78 393
PatchT87.51 30388.17 28485.55 36490.64 37466.91 39092.02 22386.09 37192.20 9989.05 33097.16 11964.15 37596.37 33189.21 19792.98 37493.37 369
Patchmatch-test86.10 32486.01 32186.38 35790.63 37574.22 35289.57 30186.69 36685.73 24589.81 31992.83 31265.24 37191.04 39277.82 34395.78 30793.88 358
PVSNet_070.34 2174.58 38272.96 38579.47 39390.63 37566.24 39573.26 40983.40 39463.67 41078.02 41078.35 41372.53 33489.59 40156.68 41260.05 41782.57 411
MonoMVSNet88.46 28489.28 25585.98 36090.52 37770.07 37995.31 10194.81 26688.38 19793.47 22396.13 19473.21 33295.07 36182.61 29289.12 39692.81 377
PMMVS281.31 36383.44 34274.92 39790.52 37746.49 42369.19 41385.23 38584.30 27387.95 35194.71 25776.95 31584.36 41464.07 40598.09 21693.89 357
tpm84.38 33884.08 33585.30 36790.47 37963.43 40789.34 30985.63 37777.24 34687.62 35695.03 24461.00 38997.30 28879.26 33391.09 39095.16 319
wuyk23d87.83 29490.79 22678.96 39490.46 38088.63 11292.72 18990.67 33891.65 12598.68 1297.64 7696.06 1577.53 41659.84 41099.41 5470.73 414
Patchmtry90.11 24689.92 24590.66 27590.35 38177.00 32092.96 18292.81 30490.25 15994.74 18796.93 13767.11 35697.52 27585.17 26398.98 11597.46 217
test_f86.65 32187.13 30285.19 36890.28 38286.11 17486.52 36491.66 32869.76 39395.73 13497.21 11669.51 34881.28 41589.15 19894.40 34188.17 401
CHOSEN 280x42080.04 37577.97 38286.23 35990.13 38374.53 34672.87 41189.59 34366.38 40376.29 41285.32 39856.96 39595.36 35569.49 39494.72 33688.79 399
MVSTER89.32 26388.75 26791.03 26190.10 38476.62 32790.85 25994.67 27282.27 29795.24 16395.79 21061.09 38898.49 18890.49 15398.26 19897.97 171
tpm281.46 36280.35 36984.80 37189.90 38565.14 40190.44 27285.36 38165.82 40682.05 39992.44 32357.94 39396.69 32070.71 39088.49 39992.56 380
cl2289.02 26988.50 27090.59 27789.76 38676.45 32986.62 36194.03 28282.98 28992.65 25592.49 32072.05 33897.53 27488.93 20297.02 27097.78 195
test0.0.03 182.48 35481.47 35885.48 36589.70 38773.57 35684.73 38281.64 39983.07 28788.13 34886.61 38862.86 38289.10 40566.24 40190.29 39393.77 360
ttmdpeth86.91 31986.57 31387.91 33589.68 38874.24 35191.49 24387.09 36379.84 31789.46 32597.86 6565.42 36891.04 39281.57 30696.74 28598.44 129
test-LLR83.58 34583.17 34484.79 37289.68 38866.86 39183.08 39584.52 38883.07 28782.85 39284.78 40062.86 38293.49 37982.85 28894.86 33194.03 353
test-mter81.21 36580.01 37284.79 37289.68 38866.86 39183.08 39584.52 38873.85 36782.85 39284.78 40043.66 41593.49 37982.85 28894.86 33194.03 353
DSMNet-mixed82.21 35681.56 35584.16 37889.57 39170.00 38090.65 26777.66 41454.99 41683.30 39097.57 8077.89 30390.50 39666.86 40095.54 31291.97 384
PatchmatchNetpermissive85.22 32984.64 32986.98 34589.51 39269.83 38190.52 27087.34 36278.87 33487.22 36192.74 31666.91 35896.53 32281.77 30286.88 40294.58 342
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDTV_nov1_ep1383.88 34089.42 39361.52 41088.74 32587.41 36073.99 36684.96 37694.01 28165.25 37095.53 34878.02 33993.16 369
CostFormer83.09 34982.21 35285.73 36189.27 39467.01 38990.35 27786.47 36870.42 39083.52 38893.23 30461.18 38796.85 31577.21 34888.26 40093.34 370
ADS-MVSNet284.01 34182.20 35389.41 30489.04 39576.37 33187.57 33790.98 33472.71 37684.46 37892.45 32168.08 35296.48 32570.58 39183.97 40695.38 315
ADS-MVSNet82.25 35581.55 35684.34 37689.04 39565.30 39987.57 33785.13 38672.71 37684.46 37892.45 32168.08 35292.33 38670.58 39183.97 40695.38 315
tpm cat180.61 37079.46 37384.07 37988.78 39765.06 40389.26 31288.23 35162.27 41181.90 40189.66 36562.70 38495.29 35871.72 38280.60 41391.86 387
CMPMVSbinary68.83 2287.28 30885.67 32492.09 22388.77 39885.42 19190.31 27994.38 27570.02 39288.00 34993.30 30173.78 33194.03 37675.96 35996.54 28996.83 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
miper_enhance_ethall88.42 28587.87 28890.07 29188.67 39975.52 33885.10 37995.59 23975.68 35392.49 26089.45 36778.96 29197.88 24587.86 22697.02 27096.81 253
test_fmvs187.59 30187.27 29788.54 32188.32 40081.26 24890.43 27595.72 23270.55 38991.70 28394.63 25968.13 35189.42 40390.59 15095.34 31994.94 331
test_vis1_rt85.58 32784.58 33088.60 32087.97 40186.76 15385.45 37793.59 29066.43 40287.64 35589.20 37079.33 28985.38 41281.59 30589.98 39593.66 363
tpmrst82.85 35382.93 34782.64 38587.65 40258.99 41690.14 28487.90 35775.54 35583.93 38491.63 33966.79 36195.36 35581.21 31181.54 41293.57 368
JIA-IIPM85.08 33183.04 34591.19 25887.56 40386.14 17389.40 30884.44 39088.98 18282.20 39797.95 5656.82 39696.15 33576.55 35483.45 40891.30 390
TESTMET0.1,179.09 37978.04 38182.25 38687.52 40464.03 40683.08 39580.62 40670.28 39180.16 40783.22 40644.13 41390.56 39579.95 32393.36 36492.15 383
gg-mvs-nofinetune82.10 35981.02 36185.34 36687.46 40571.04 37194.74 12167.56 41996.44 2679.43 40998.99 845.24 41096.15 33567.18 39992.17 38288.85 398
pmmvs380.83 36878.96 37686.45 35487.23 40677.48 31484.87 38182.31 39763.83 40985.03 37489.50 36649.66 40493.10 38273.12 37695.10 32588.78 400
tpmvs84.22 33983.97 33784.94 37087.09 40765.18 40091.21 25088.35 34982.87 29085.21 37090.96 34865.24 37196.75 31879.60 33185.25 40592.90 376
gm-plane-assit87.08 40859.33 41571.22 38283.58 40597.20 29473.95 370
MVEpermissive59.87 2373.86 38372.65 38677.47 39587.00 40974.35 34861.37 41560.93 42167.27 40069.69 41686.49 39081.24 28072.33 41856.45 41483.45 40885.74 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu85.63 32684.37 33289.40 30586.30 41074.33 34991.64 24088.26 35084.84 26672.96 41589.85 35771.27 34297.69 26776.60 35297.62 24796.18 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
mvsany_test183.91 34382.93 34786.84 35086.18 41185.93 17881.11 40275.03 41770.80 38888.57 34294.63 25983.08 25687.38 40780.39 31586.57 40387.21 403
dp79.28 37878.62 37881.24 39085.97 41256.45 41786.91 35185.26 38472.97 37481.45 40489.17 37256.01 39895.45 35373.19 37576.68 41491.82 388
EPMVS81.17 36680.37 36883.58 38285.58 41365.08 40290.31 27971.34 41877.31 34585.80 36891.30 34259.38 39192.70 38579.99 32282.34 41192.96 375
E-PMN80.72 36980.86 36380.29 39285.11 41468.77 38372.96 41081.97 39887.76 21183.25 39183.01 40762.22 38589.17 40477.15 34994.31 34582.93 409
GG-mvs-BLEND83.24 38485.06 41571.03 37294.99 11665.55 42074.09 41475.51 41444.57 41294.46 36959.57 41187.54 40184.24 407
EMVS80.35 37280.28 37080.54 39184.73 41669.07 38272.54 41280.73 40587.80 20981.66 40281.73 40862.89 38189.84 39975.79 36094.65 33882.71 410
EPNet89.80 25688.25 27994.45 13283.91 41786.18 17293.87 15487.07 36591.16 13880.64 40694.72 25678.83 29298.89 12485.17 26398.89 12898.28 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS83.00 35081.11 35988.66 31983.81 41886.44 16482.24 39985.65 37661.75 41282.07 39885.64 39679.75 28691.59 39075.99 35893.09 37187.94 402
KD-MVS_2432*160082.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
miper_refine_blended82.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
dongtai53.72 38453.79 38753.51 40179.69 42136.70 42577.18 40732.53 42771.69 37968.63 41760.79 41626.65 42573.11 41730.67 42036.29 41950.73 415
MVStest184.79 33484.06 33686.98 34577.73 42274.76 34191.08 25685.63 37777.70 34096.86 7697.97 5541.05 42188.24 40692.22 10996.28 29597.94 174
DeepMVS_CXcopyleft53.83 40070.38 42364.56 40448.52 42433.01 41865.50 41874.21 41556.19 39746.64 42138.45 41970.07 41550.30 416
kuosan43.63 38644.25 39041.78 40266.04 42434.37 42675.56 40832.62 42653.25 41750.46 42051.18 41725.28 42649.13 42013.44 42130.41 42041.84 417
test_method50.44 38548.94 38854.93 39939.68 42512.38 42828.59 41690.09 3406.82 41941.10 42178.41 41254.41 39970.69 41950.12 41651.26 41881.72 412
tmp_tt37.97 38744.33 38918.88 40311.80 42621.54 42763.51 41445.66 4254.23 42051.34 41950.48 41859.08 39222.11 42244.50 41868.35 41613.00 418
test1239.49 38912.01 3921.91 4042.87 4271.30 42982.38 3981.34 4291.36 4222.84 4236.56 4212.45 4270.97 4232.73 4225.56 4213.47 419
testmvs9.02 39011.42 3931.81 4052.77 4281.13 43079.44 4051.90 4281.18 4232.65 4246.80 4201.95 4280.87 4242.62 4233.45 4223.44 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
eth-test20.00 429
eth-test0.00 429
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.35 38831.13 3910.00 4060.00 4290.00 4310.00 41795.58 2410.00 4240.00 42591.15 34493.43 890.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.56 39110.09 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42490.77 1570.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.56 39110.08 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42590.69 3530.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS61.25 41274.55 365
PC_three_145275.31 35995.87 12595.75 21592.93 10696.34 33487.18 23698.68 15898.04 159
test_241102_TWO98.10 6291.95 10497.54 4397.25 11095.37 3299.35 6293.29 7999.25 8398.49 125
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5299.42 5098.89 75
GSMVS94.75 338
sam_mvs166.64 36294.75 338
sam_mvs66.41 363
MTGPAbinary97.62 114
test_post190.21 2815.85 42365.36 36996.00 34179.61 329
test_post6.07 42265.74 36795.84 345
patchmatchnet-post91.71 33766.22 36597.59 272
MTMP94.82 11954.62 423
test9_res88.16 21798.40 18297.83 189
agg_prior287.06 23998.36 19197.98 168
test_prior489.91 8690.74 263
test_prior290.21 28189.33 17590.77 29894.81 25190.41 16788.21 21398.55 170
旧先验290.00 28968.65 39792.71 25496.52 32385.15 265
新几何290.02 288
无先验89.94 29095.75 23170.81 38798.59 17881.17 31294.81 334
原ACMM289.34 309
testdata298.03 22880.24 319
segment_acmp92.14 124
testdata188.96 31888.44 196
plane_prior597.81 10098.95 11889.26 19498.51 17698.60 116
plane_prior495.59 220
plane_prior388.43 12290.35 15893.31 228
plane_prior294.56 13091.74 121
plane_prior88.12 12593.01 18088.98 18298.06 218
n20.00 430
nn0.00 430
door-mid92.13 322
test1196.65 192
door91.26 331
HQP5-MVS84.89 196
BP-MVS86.55 248
HQP4-MVS88.81 33398.61 17498.15 151
HQP3-MVS97.31 14297.73 239
HQP2-MVS84.76 243
MDTV_nov1_ep13_2view42.48 42488.45 33067.22 40183.56 38766.80 35972.86 37794.06 352
ACMMP++_ref98.82 141
ACMMP++99.25 83
Test By Simon90.61 163