| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 2 | 99.95 1 | 98.13 2 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 2 | 97.58 2 | 99.94 1 | 99.85 2 |
|
| UniMVSNet_ETH3D | | | 97.13 9 | 97.72 4 | 95.35 86 | 99.51 2 | 87.38 137 | 97.70 8 | 97.54 122 | 98.16 3 | 98.94 3 | 99.33 3 | 97.84 4 | 99.08 98 | 90.73 147 | 99.73 13 | 99.59 14 |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 16 | 98.45 4 | 98.81 11 | 97.73 7 | 98.27 21 | | | | | | |
|
| PEN-MVS | | | 96.69 24 | 97.39 9 | 94.61 120 | 99.16 4 | 84.50 199 | 96.54 34 | 98.05 72 | 98.06 5 | 98.64 14 | 98.25 40 | 95.01 53 | 99.65 5 | 92.95 93 | 99.83 5 | 99.68 6 |
|
| MIMVSNet1 | | | 95.52 73 | 95.45 84 | 95.72 75 | 99.14 5 | 89.02 105 | 96.23 59 | 96.87 177 | 93.73 67 | 97.87 31 | 98.49 31 | 90.73 161 | 99.05 103 | 86.43 251 | 99.60 25 | 99.10 47 |
|
| PS-CasMVS | | | 96.69 24 | 97.43 6 | 94.49 130 | 99.13 6 | 84.09 209 | 96.61 32 | 97.97 85 | 97.91 6 | 98.64 14 | 98.13 43 | 95.24 40 | 99.65 5 | 93.39 76 | 99.84 3 | 99.72 4 |
|
| DTE-MVSNet | | | 96.74 21 | 97.43 6 | 94.67 117 | 99.13 6 | 84.68 198 | 96.51 36 | 97.94 91 | 98.14 4 | 98.67 13 | 98.32 37 | 95.04 50 | 99.69 4 | 93.27 81 | 99.82 7 | 99.62 12 |
|
| pmmvs6 | | | 96.80 16 | 97.36 10 | 95.15 100 | 99.12 8 | 87.82 132 | 96.68 29 | 97.86 94 | 96.10 33 | 98.14 28 | 99.28 5 | 97.94 3 | 98.21 214 | 91.38 136 | 99.69 14 | 99.42 20 |
|
| HPM-MVS_fast | | | 97.01 10 | 96.89 18 | 97.39 25 | 99.12 8 | 93.92 32 | 97.16 14 | 98.17 53 | 93.11 80 | 96.48 92 | 97.36 100 | 96.92 6 | 99.34 65 | 94.31 43 | 99.38 57 | 98.92 72 |
|
| MP-MVS-pluss | | | 96.08 52 | 95.92 63 | 96.57 48 | 99.06 10 | 91.21 69 | 93.25 173 | 98.32 30 | 87.89 207 | 96.86 76 | 97.38 96 | 95.55 26 | 99.39 52 | 95.47 23 | 99.47 41 | 99.11 44 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| OurMVSNet-221017-0 | | | 96.80 16 | 96.75 21 | 96.96 39 | 99.03 11 | 91.85 61 | 97.98 7 | 98.01 80 | 94.15 58 | 98.93 4 | 99.07 7 | 88.07 195 | 99.57 15 | 95.86 15 | 99.69 14 | 99.46 19 |
|
| WR-MVS_H | | | 96.60 29 | 97.05 17 | 95.24 94 | 99.02 12 | 86.44 164 | 96.78 26 | 98.08 65 | 97.42 10 | 98.48 17 | 97.86 65 | 91.76 134 | 99.63 8 | 94.23 45 | 99.84 3 | 99.66 8 |
|
| TDRefinement | | | 97.68 4 | 97.60 5 | 97.93 3 | 99.02 12 | 95.95 9 | 98.61 3 | 98.81 11 | 97.41 11 | 97.28 58 | 98.46 33 | 94.62 66 | 98.84 132 | 94.64 36 | 99.53 37 | 98.99 56 |
|
| testf1 | | | 96.77 18 | 96.49 30 | 97.60 10 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 28 | 94.96 45 | 97.30 56 | 97.93 57 | 96.05 16 | 97.90 241 | 89.32 188 | 99.23 86 | 98.19 147 |
|
| APD_test2 | | | 96.77 18 | 96.49 30 | 97.60 10 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 28 | 94.96 45 | 97.30 56 | 97.93 57 | 96.05 16 | 97.90 241 | 89.32 188 | 99.23 86 | 98.19 147 |
|
| CP-MVSNet | | | 96.19 49 | 96.80 20 | 94.38 135 | 98.99 16 | 83.82 212 | 96.31 52 | 97.53 124 | 97.60 8 | 98.34 20 | 97.52 86 | 91.98 127 | 99.63 8 | 93.08 89 | 99.81 8 | 99.70 5 |
|
| PMVS |  | 87.21 14 | 94.97 98 | 95.33 91 | 93.91 152 | 98.97 17 | 97.16 3 | 95.54 92 | 95.85 229 | 96.47 25 | 93.40 227 | 97.46 93 | 95.31 37 | 95.47 352 | 86.18 255 | 98.78 147 | 89.11 397 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MTAPA | | | 96.65 26 | 96.38 37 | 97.47 19 | 98.95 18 | 94.05 27 | 95.88 74 | 97.62 114 | 94.46 54 | 96.29 101 | 96.94 136 | 93.56 84 | 99.37 60 | 94.29 44 | 99.42 50 | 98.99 56 |
|
| ACMMP_NAP | | | 96.21 48 | 96.12 50 | 96.49 52 | 98.90 19 | 91.42 67 | 94.57 129 | 98.03 77 | 90.42 156 | 96.37 95 | 97.35 103 | 95.68 21 | 99.25 79 | 94.44 40 | 99.34 63 | 98.80 85 |
|
| HPM-MVS |  | | 96.81 15 | 96.62 26 | 97.36 27 | 98.89 20 | 93.53 42 | 97.51 10 | 98.44 20 | 92.35 93 | 95.95 119 | 96.41 170 | 96.71 8 | 99.42 36 | 93.99 51 | 99.36 58 | 99.13 41 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| VDDNet | | | 94.03 138 | 94.27 134 | 93.31 178 | 98.87 21 | 82.36 234 | 95.51 93 | 91.78 327 | 97.19 13 | 96.32 98 | 98.60 25 | 84.24 246 | 98.75 150 | 87.09 238 | 98.83 140 | 98.81 84 |
|
| TSAR-MVS + MP. | | | 94.96 99 | 94.75 112 | 95.57 80 | 98.86 22 | 88.69 110 | 96.37 46 | 96.81 181 | 85.23 255 | 94.75 186 | 97.12 123 | 91.85 129 | 99.40 49 | 93.45 71 | 98.33 192 | 98.62 115 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| EGC-MVSNET | | | 80.97 367 | 75.73 384 | 96.67 46 | 98.85 23 | 94.55 19 | 96.83 22 | 96.60 194 | 2.44 421 | 5.32 422 | 98.25 40 | 92.24 120 | 98.02 231 | 91.85 120 | 99.21 90 | 97.45 218 |
|
| mvs_tets | | | 96.83 12 | 96.71 22 | 97.17 31 | 98.83 24 | 92.51 52 | 96.58 33 | 97.61 116 | 87.57 216 | 98.80 8 | 98.90 11 | 96.50 9 | 99.59 14 | 96.15 13 | 99.47 41 | 99.40 22 |
|
| APD_test1 | | | 95.91 57 | 95.42 87 | 97.36 27 | 98.82 25 | 96.62 7 | 95.64 84 | 97.64 112 | 93.38 76 | 95.89 124 | 97.23 112 | 93.35 92 | 97.66 269 | 88.20 214 | 98.66 162 | 97.79 194 |
|
| PS-MVSNAJss | | | 96.01 54 | 96.04 56 | 95.89 69 | 98.82 25 | 88.51 119 | 95.57 89 | 97.88 92 | 88.72 188 | 98.81 7 | 98.86 12 | 90.77 157 | 99.60 10 | 95.43 25 | 99.53 37 | 99.57 15 |
|
| MP-MVS |  | | 96.14 50 | 95.68 76 | 97.51 17 | 98.81 27 | 94.06 25 | 96.10 63 | 97.78 105 | 92.73 83 | 93.48 222 | 96.72 154 | 94.23 76 | 99.42 36 | 91.99 115 | 99.29 75 | 99.05 51 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| LTVRE_ROB | | 93.87 1 | 97.93 3 | 98.16 2 | 97.26 30 | 98.81 27 | 93.86 35 | 99.07 2 | 98.98 9 | 97.01 15 | 98.92 5 | 98.78 16 | 95.22 42 | 98.61 174 | 96.85 4 | 99.77 9 | 99.31 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ZNCC-MVS | | | 96.42 39 | 96.20 45 | 97.07 34 | 98.80 29 | 92.79 50 | 96.08 65 | 98.16 56 | 91.74 121 | 95.34 154 | 96.36 178 | 95.68 21 | 99.44 32 | 94.41 41 | 99.28 80 | 98.97 62 |
|
| jajsoiax | | | 96.59 31 | 96.42 33 | 97.12 33 | 98.76 30 | 92.49 53 | 96.44 43 | 97.42 131 | 86.96 225 | 98.71 11 | 98.72 19 | 95.36 34 | 99.56 18 | 95.92 14 | 99.45 45 | 99.32 27 |
|
| tt0805 | | | 95.42 80 | 95.93 62 | 93.86 155 | 98.75 31 | 88.47 120 | 97.68 9 | 94.29 277 | 96.48 24 | 95.38 150 | 93.63 292 | 94.89 59 | 97.94 240 | 95.38 27 | 96.92 276 | 95.17 318 |
|
| MSP-MVS | | | 95.34 83 | 94.63 122 | 97.48 18 | 98.67 32 | 94.05 27 | 96.41 45 | 98.18 49 | 91.26 134 | 95.12 169 | 95.15 237 | 86.60 224 | 99.50 22 | 93.43 75 | 96.81 280 | 98.89 75 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| GST-MVS | | | 96.24 47 | 95.99 59 | 97.00 37 | 98.65 33 | 92.71 51 | 95.69 82 | 98.01 80 | 92.08 102 | 95.74 132 | 96.28 184 | 95.22 42 | 99.42 36 | 93.17 85 | 99.06 103 | 98.88 77 |
|
| SteuartSystems-ACMMP | | | 96.40 41 | 96.30 40 | 96.71 44 | 98.63 34 | 91.96 59 | 95.70 80 | 98.01 80 | 93.34 77 | 96.64 87 | 96.57 162 | 94.99 54 | 99.36 61 | 93.48 68 | 99.34 63 | 98.82 82 |
| Skip Steuart: Steuart Systems R&D Blog. |
| region2R | | | 96.41 40 | 96.09 51 | 97.38 26 | 98.62 35 | 93.81 39 | 96.32 51 | 97.96 86 | 92.26 96 | 95.28 159 | 96.57 162 | 95.02 52 | 99.41 42 | 93.63 60 | 99.11 101 | 98.94 66 |
|
| mPP-MVS | | | 96.46 35 | 96.05 55 | 97.69 6 | 98.62 35 | 94.65 17 | 96.45 41 | 97.74 107 | 92.59 87 | 95.47 145 | 96.68 156 | 94.50 71 | 99.42 36 | 93.10 87 | 99.26 82 | 98.99 56 |
|
| ACMMP |  | | 96.61 28 | 96.34 38 | 97.43 22 | 98.61 37 | 93.88 33 | 96.95 20 | 98.18 49 | 92.26 96 | 96.33 97 | 96.84 144 | 95.10 48 | 99.40 49 | 93.47 69 | 99.33 65 | 99.02 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| VPNet | | | 93.08 166 | 93.76 148 | 91.03 261 | 98.60 38 | 75.83 337 | 91.51 242 | 95.62 234 | 91.84 113 | 95.74 132 | 97.10 126 | 89.31 183 | 98.32 205 | 85.07 270 | 99.06 103 | 98.93 68 |
|
| ACMMPR | | | 96.46 35 | 96.14 49 | 97.41 24 | 98.60 38 | 93.82 37 | 96.30 56 | 97.96 86 | 92.35 93 | 95.57 140 | 96.61 160 | 94.93 58 | 99.41 42 | 93.78 56 | 99.15 98 | 99.00 54 |
|
| PGM-MVS | | | 96.32 44 | 95.94 60 | 97.43 22 | 98.59 40 | 93.84 36 | 95.33 98 | 98.30 33 | 91.40 132 | 95.76 129 | 96.87 141 | 95.26 39 | 99.45 31 | 92.77 95 | 99.21 90 | 99.00 54 |
|
| XVS | | | 96.49 33 | 96.18 46 | 97.44 20 | 98.56 41 | 93.99 30 | 96.50 37 | 97.95 88 | 94.58 50 | 94.38 196 | 96.49 164 | 94.56 69 | 99.39 52 | 93.57 62 | 99.05 106 | 98.93 68 |
|
| X-MVStestdata | | | 90.70 223 | 88.45 271 | 97.44 20 | 98.56 41 | 93.99 30 | 96.50 37 | 97.95 88 | 94.58 50 | 94.38 196 | 26.89 419 | 94.56 69 | 99.39 52 | 93.57 62 | 99.05 106 | 98.93 68 |
|
| ACMH | | 88.36 12 | 96.59 31 | 97.43 6 | 94.07 144 | 98.56 41 | 85.33 192 | 96.33 49 | 98.30 33 | 94.66 49 | 98.72 9 | 98.30 38 | 97.51 5 | 98.00 234 | 94.87 33 | 99.59 27 | 98.86 78 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_0728_SECOND | | | | | 94.88 107 | 98.55 44 | 86.72 155 | 95.20 106 | 98.22 44 | | | | | 99.38 58 | 93.44 72 | 99.31 70 | 98.53 121 |
|
| test_djsdf | | | 96.62 27 | 96.49 30 | 97.01 36 | 98.55 44 | 91.77 63 | 97.15 15 | 97.37 133 | 88.98 182 | 98.26 24 | 98.86 12 | 93.35 92 | 99.60 10 | 96.41 9 | 99.45 45 | 99.66 8 |
|
| v7n | | | 96.82 13 | 97.31 11 | 95.33 88 | 98.54 46 | 86.81 152 | 96.83 22 | 98.07 68 | 96.59 23 | 98.46 18 | 98.43 35 | 92.91 107 | 99.52 20 | 96.25 12 | 99.76 10 | 99.65 10 |
|
| ACMH+ | | 88.43 11 | 96.48 34 | 96.82 19 | 95.47 83 | 98.54 46 | 89.06 104 | 95.65 83 | 98.61 15 | 96.10 33 | 98.16 27 | 97.52 86 | 96.90 7 | 98.62 173 | 90.30 162 | 99.60 25 | 98.72 96 |
|
| SixPastTwentyTwo | | | 94.91 100 | 95.21 96 | 93.98 146 | 98.52 48 | 83.19 221 | 95.93 71 | 94.84 263 | 94.86 48 | 98.49 16 | 98.74 18 | 81.45 275 | 99.60 10 | 94.69 35 | 99.39 56 | 99.15 39 |
|
| SED-MVS | | | 96.00 55 | 96.41 36 | 94.76 112 | 98.51 49 | 86.97 148 | 95.21 104 | 98.10 62 | 91.95 104 | 97.63 38 | 97.25 110 | 96.48 10 | 99.35 62 | 93.29 79 | 99.29 75 | 97.95 172 |
|
| IU-MVS | | | | | | 98.51 49 | 86.66 158 | | 96.83 180 | 72.74 375 | 95.83 126 | | | | 93.00 91 | 99.29 75 | 98.64 111 |
|
| test_241102_ONE | | | | | | 98.51 49 | 86.97 148 | | 98.10 62 | 91.85 110 | 97.63 38 | 97.03 130 | 96.48 10 | 98.95 118 | | | |
|
| DVP-MVS |  | | 95.82 62 | 96.18 46 | 94.72 114 | 98.51 49 | 86.69 156 | 95.20 106 | 97.00 165 | 91.85 110 | 97.40 54 | 97.35 103 | 95.58 24 | 99.34 65 | 93.44 72 | 99.31 70 | 98.13 153 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.51 49 | 86.69 156 | 95.34 97 | 98.18 49 | 91.85 110 | 97.63 38 | 97.37 97 | 95.58 24 | | | | |
|
| HFP-MVS | | | 96.39 42 | 96.17 48 | 97.04 35 | 98.51 49 | 93.37 43 | 96.30 56 | 97.98 83 | 92.35 93 | 95.63 137 | 96.47 165 | 95.37 32 | 99.27 78 | 93.78 56 | 99.14 99 | 98.48 126 |
|
| Baseline_NR-MVSNet | | | 94.47 119 | 95.09 102 | 92.60 206 | 98.50 55 | 80.82 255 | 92.08 220 | 96.68 190 | 93.82 66 | 96.29 101 | 98.56 27 | 90.10 175 | 97.75 262 | 90.10 173 | 99.66 21 | 99.24 32 |
|
| OPM-MVS | | | 95.61 70 | 95.45 84 | 96.08 57 | 98.49 56 | 91.00 72 | 92.65 194 | 97.33 141 | 90.05 161 | 96.77 82 | 96.85 142 | 95.04 50 | 98.56 181 | 92.77 95 | 99.06 103 | 98.70 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| FC-MVSNet-test | | | 95.32 84 | 95.88 65 | 93.62 164 | 98.49 56 | 81.77 240 | 95.90 73 | 98.32 30 | 93.93 63 | 97.53 45 | 97.56 81 | 88.48 188 | 99.40 49 | 92.91 94 | 99.83 5 | 99.68 6 |
|
| reproduce_model | | | 97.35 5 | 97.24 12 | 97.70 5 | 98.44 58 | 95.08 12 | 95.88 74 | 98.50 18 | 96.62 22 | 98.27 21 | 97.93 57 | 94.57 68 | 99.50 22 | 95.57 20 | 99.35 59 | 98.52 122 |
|
| XVG-ACMP-BASELINE | | | 95.68 68 | 95.34 90 | 96.69 45 | 98.40 59 | 93.04 45 | 94.54 133 | 98.05 72 | 90.45 155 | 96.31 99 | 96.76 148 | 92.91 107 | 98.72 155 | 91.19 137 | 99.42 50 | 98.32 136 |
|
| ACMM | | 88.83 9 | 96.30 46 | 96.07 54 | 96.97 38 | 98.39 60 | 92.95 48 | 94.74 121 | 98.03 77 | 90.82 144 | 97.15 61 | 96.85 142 | 96.25 14 | 99.00 110 | 93.10 87 | 99.33 65 | 98.95 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pm-mvs1 | | | 95.43 77 | 95.94 60 | 93.93 151 | 98.38 61 | 85.08 195 | 95.46 94 | 97.12 158 | 91.84 113 | 97.28 58 | 98.46 33 | 95.30 38 | 97.71 266 | 90.17 169 | 99.42 50 | 98.99 56 |
|
| COLMAP_ROB |  | 91.06 5 | 96.75 20 | 96.62 26 | 97.13 32 | 98.38 61 | 94.31 21 | 96.79 25 | 98.32 30 | 96.69 19 | 96.86 76 | 97.56 81 | 95.48 27 | 98.77 149 | 90.11 171 | 99.44 48 | 98.31 138 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| reproduce-ours | | | 97.28 7 | 97.19 14 | 97.57 12 | 98.37 63 | 94.84 13 | 95.57 89 | 98.40 24 | 96.36 29 | 98.18 25 | 97.78 67 | 95.47 28 | 99.50 22 | 95.26 30 | 99.33 65 | 98.36 132 |
|
| our_new_method | | | 97.28 7 | 97.19 14 | 97.57 12 | 98.37 63 | 94.84 13 | 95.57 89 | 98.40 24 | 96.36 29 | 98.18 25 | 97.78 67 | 95.47 28 | 99.50 22 | 95.26 30 | 99.33 65 | 98.36 132 |
|
| TransMVSNet (Re) | | | 95.27 91 | 96.04 56 | 92.97 186 | 98.37 63 | 81.92 239 | 95.07 111 | 96.76 186 | 93.97 62 | 97.77 34 | 98.57 26 | 95.72 20 | 97.90 241 | 88.89 205 | 99.23 86 | 99.08 48 |
|
| LPG-MVS_test | | | 96.38 43 | 96.23 43 | 96.84 42 | 98.36 66 | 92.13 56 | 95.33 98 | 98.25 37 | 91.78 117 | 97.07 64 | 97.22 114 | 96.38 12 | 99.28 76 | 92.07 113 | 99.59 27 | 99.11 44 |
|
| LGP-MVS_train | | | | | 96.84 42 | 98.36 66 | 92.13 56 | | 98.25 37 | 91.78 117 | 97.07 64 | 97.22 114 | 96.38 12 | 99.28 76 | 92.07 113 | 99.59 27 | 99.11 44 |
|
| CP-MVS | | | 96.44 38 | 96.08 53 | 97.54 15 | 98.29 68 | 94.62 18 | 96.80 24 | 98.08 65 | 92.67 86 | 95.08 173 | 96.39 175 | 94.77 62 | 99.42 36 | 93.17 85 | 99.44 48 | 98.58 118 |
|
| FIs | | | 94.90 101 | 95.35 89 | 93.55 167 | 98.28 69 | 81.76 241 | 95.33 98 | 98.14 57 | 93.05 82 | 97.07 64 | 97.18 118 | 87.65 202 | 99.29 73 | 91.72 124 | 99.69 14 | 99.61 13 |
|
| SMA-MVS |  | | 95.77 64 | 95.54 81 | 96.47 53 | 98.27 70 | 91.19 70 | 95.09 109 | 97.79 104 | 86.48 228 | 97.42 52 | 97.51 90 | 94.47 74 | 99.29 73 | 93.55 64 | 99.29 75 | 98.93 68 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_one_0601 | | | | | | 98.26 71 | 87.14 143 | | 98.18 49 | 94.25 55 | 96.99 71 | 97.36 100 | 95.13 45 | | | | |
|
| TranMVSNet+NR-MVSNet | | | 96.07 53 | 96.26 42 | 95.50 82 | 98.26 71 | 87.69 134 | 93.75 158 | 97.86 94 | 95.96 38 | 97.48 48 | 97.14 121 | 95.33 36 | 99.44 32 | 90.79 145 | 99.76 10 | 99.38 23 |
|
| IS-MVSNet | | | 94.49 118 | 94.35 130 | 94.92 105 | 98.25 73 | 86.46 163 | 97.13 17 | 94.31 276 | 96.24 31 | 96.28 103 | 96.36 178 | 82.88 258 | 99.35 62 | 88.19 215 | 99.52 39 | 98.96 64 |
|
| mamv4 | | | 98.21 2 | 97.86 3 | 99.26 1 | 98.24 74 | 99.36 1 | 96.10 63 | 99.32 2 | 98.75 2 | 99.58 2 | 98.70 20 | 91.78 131 | 99.88 1 | 98.60 1 | 99.67 20 | 98.54 119 |
|
| UA-Net | | | 97.35 5 | 97.24 12 | 97.69 6 | 98.22 75 | 93.87 34 | 98.42 6 | 98.19 47 | 96.95 16 | 95.46 147 | 99.23 6 | 93.45 87 | 99.57 15 | 95.34 29 | 99.89 2 | 99.63 11 |
|
| test_part2 | | | | | | 98.21 76 | 89.41 96 | | | | 96.72 83 | | | | | | |
|
| test_0402 | | | 95.73 66 | 96.22 44 | 94.26 138 | 98.19 77 | 85.77 182 | 93.24 174 | 97.24 149 | 96.88 18 | 97.69 36 | 97.77 71 | 94.12 78 | 99.13 93 | 91.54 132 | 99.29 75 | 97.88 182 |
|
| ACMP | | 88.15 13 | 95.71 67 | 95.43 86 | 96.54 49 | 98.17 78 | 91.73 64 | 94.24 140 | 98.08 65 | 89.46 171 | 96.61 89 | 96.47 165 | 95.85 18 | 99.12 94 | 90.45 154 | 99.56 34 | 98.77 90 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CPTT-MVS | | | 94.74 107 | 94.12 139 | 96.60 47 | 98.15 79 | 93.01 46 | 95.84 76 | 97.66 111 | 89.21 179 | 93.28 231 | 95.46 226 | 88.89 186 | 98.98 111 | 89.80 178 | 98.82 141 | 97.80 193 |
|
| SF-MVS | | | 95.88 60 | 95.88 65 | 95.87 70 | 98.12 80 | 89.65 90 | 95.58 88 | 98.56 17 | 91.84 113 | 96.36 96 | 96.68 156 | 94.37 75 | 99.32 71 | 92.41 106 | 99.05 106 | 98.64 111 |
|
| Vis-MVSNet |  | | 95.50 74 | 95.48 83 | 95.56 81 | 98.11 81 | 89.40 97 | 95.35 96 | 98.22 44 | 92.36 92 | 94.11 201 | 98.07 46 | 92.02 125 | 99.44 32 | 93.38 77 | 97.67 244 | 97.85 187 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| XVG-OURS-SEG-HR | | | 95.38 81 | 95.00 105 | 96.51 50 | 98.10 82 | 94.07 24 | 92.46 202 | 98.13 58 | 90.69 147 | 93.75 215 | 96.25 188 | 98.03 2 | 97.02 306 | 92.08 112 | 95.55 311 | 98.45 128 |
|
| EPP-MVSNet | | | 93.91 143 | 93.68 152 | 94.59 124 | 98.08 83 | 85.55 188 | 97.44 11 | 94.03 282 | 94.22 57 | 94.94 178 | 96.19 190 | 82.07 270 | 99.57 15 | 87.28 235 | 98.89 128 | 98.65 106 |
|
| SR-MVS-dyc-post | | | 96.84 11 | 96.60 28 | 97.56 14 | 98.07 84 | 95.27 10 | 96.37 46 | 98.12 59 | 95.66 39 | 97.00 69 | 97.03 130 | 94.85 60 | 99.42 36 | 93.49 66 | 98.84 135 | 98.00 164 |
|
| RE-MVS-def | | | | 96.66 23 | | 98.07 84 | 95.27 10 | 96.37 46 | 98.12 59 | 95.66 39 | 97.00 69 | 97.03 130 | 95.40 31 | | 93.49 66 | 98.84 135 | 98.00 164 |
|
| SR-MVS | | | 96.70 23 | 96.42 33 | 97.54 15 | 98.05 86 | 94.69 15 | 96.13 62 | 98.07 68 | 95.17 43 | 96.82 79 | 96.73 153 | 95.09 49 | 99.43 35 | 92.99 92 | 98.71 154 | 98.50 123 |
|
| K. test v3 | | | 93.37 156 | 93.27 166 | 93.66 162 | 98.05 86 | 82.62 230 | 94.35 136 | 86.62 367 | 96.05 35 | 97.51 46 | 98.85 14 | 76.59 320 | 99.65 5 | 93.21 83 | 98.20 207 | 98.73 95 |
|
| lessismore_v0 | | | | | 93.87 154 | 98.05 86 | 83.77 213 | | 80.32 407 | | 97.13 62 | 97.91 62 | 77.49 305 | 99.11 96 | 92.62 101 | 98.08 217 | 98.74 94 |
|
| test1111 | | | 90.39 234 | 90.61 230 | 89.74 299 | 98.04 89 | 71.50 370 | 95.59 85 | 79.72 409 | 89.41 172 | 95.94 120 | 98.14 42 | 70.79 343 | 98.81 139 | 88.52 212 | 99.32 69 | 98.90 74 |
|
| AllTest | | | 94.88 102 | 94.51 124 | 96.00 58 | 98.02 90 | 92.17 54 | 95.26 102 | 98.43 21 | 90.48 153 | 95.04 174 | 96.74 151 | 92.54 116 | 97.86 249 | 85.11 268 | 98.98 115 | 97.98 168 |
|
| TestCases | | | | | 96.00 58 | 98.02 90 | 92.17 54 | | 98.43 21 | 90.48 153 | 95.04 174 | 96.74 151 | 92.54 116 | 97.86 249 | 85.11 268 | 98.98 115 | 97.98 168 |
|
| anonymousdsp | | | 96.74 21 | 96.42 33 | 97.68 8 | 98.00 92 | 94.03 29 | 96.97 19 | 97.61 116 | 87.68 214 | 98.45 19 | 98.77 17 | 94.20 77 | 99.50 22 | 96.70 6 | 99.40 55 | 99.53 16 |
|
| XVG-OURS | | | 94.72 108 | 94.12 139 | 96.50 51 | 98.00 92 | 94.23 22 | 91.48 244 | 98.17 53 | 90.72 146 | 95.30 156 | 96.47 165 | 87.94 199 | 96.98 307 | 91.41 135 | 97.61 248 | 98.30 139 |
|
| 114514_t | | | 90.51 228 | 89.80 248 | 92.63 203 | 98.00 92 | 82.24 236 | 93.40 170 | 97.29 145 | 65.84 405 | 89.40 326 | 94.80 253 | 86.99 215 | 98.75 150 | 83.88 282 | 98.61 164 | 96.89 249 |
|
| Gipuma |  | | 95.31 87 | 95.80 72 | 93.81 158 | 97.99 95 | 90.91 74 | 96.42 44 | 97.95 88 | 96.69 19 | 91.78 282 | 98.85 14 | 91.77 132 | 95.49 351 | 91.72 124 | 99.08 102 | 95.02 327 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| APD-MVS_3200maxsize | | | 96.82 13 | 96.65 24 | 97.32 29 | 97.95 96 | 93.82 37 | 96.31 52 | 98.25 37 | 95.51 41 | 96.99 71 | 97.05 129 | 95.63 23 | 99.39 52 | 93.31 78 | 98.88 130 | 98.75 91 |
|
| SDMVSNet | | | 94.43 121 | 95.02 103 | 92.69 198 | 97.93 97 | 82.88 228 | 91.92 229 | 95.99 226 | 93.65 72 | 95.51 142 | 98.63 23 | 94.60 67 | 96.48 325 | 87.57 229 | 99.35 59 | 98.70 100 |
|
| sd_testset | | | 93.94 142 | 94.39 126 | 92.61 205 | 97.93 97 | 83.24 218 | 93.17 177 | 95.04 257 | 93.65 72 | 95.51 142 | 98.63 23 | 94.49 72 | 95.89 344 | 81.72 304 | 99.35 59 | 98.70 100 |
|
| DPE-MVS |  | | 95.89 59 | 95.88 65 | 95.92 66 | 97.93 97 | 89.83 88 | 93.46 167 | 98.30 33 | 92.37 91 | 97.75 35 | 96.95 135 | 95.14 44 | 99.51 21 | 91.74 123 | 99.28 80 | 98.41 131 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SSC-MVS | | | 90.16 243 | 92.96 170 | 81.78 388 | 97.88 100 | 48.48 420 | 90.75 262 | 87.69 358 | 96.02 37 | 96.70 84 | 97.63 77 | 85.60 236 | 97.80 254 | 85.73 259 | 98.60 166 | 99.06 50 |
|
| HPM-MVS++ |  | | 95.02 96 | 94.39 126 | 96.91 41 | 97.88 100 | 93.58 41 | 94.09 148 | 96.99 167 | 91.05 139 | 92.40 266 | 95.22 236 | 91.03 153 | 99.25 79 | 92.11 110 | 98.69 157 | 97.90 179 |
|
| EG-PatchMatch MVS | | | 94.54 117 | 94.67 120 | 94.14 141 | 97.87 102 | 86.50 160 | 92.00 224 | 96.74 187 | 88.16 203 | 96.93 73 | 97.61 78 | 93.04 104 | 97.90 241 | 91.60 128 | 98.12 212 | 98.03 162 |
|
| nrg030 | | | 96.32 44 | 96.55 29 | 95.62 78 | 97.83 103 | 88.55 118 | 95.77 78 | 98.29 36 | 92.68 84 | 98.03 30 | 97.91 62 | 95.13 45 | 98.95 118 | 93.85 54 | 99.49 40 | 99.36 25 |
|
| MVSMamba_PlusPlus | | | 94.82 105 | 95.89 64 | 91.62 238 | 97.82 104 | 78.88 293 | 96.52 35 | 97.60 118 | 97.14 14 | 94.23 199 | 98.48 32 | 87.01 214 | 99.71 3 | 95.43 25 | 98.80 144 | 96.28 276 |
|
| test2506 | | | 85.42 328 | 84.57 331 | 87.96 332 | 97.81 105 | 66.53 393 | 96.14 61 | 56.35 422 | 89.04 180 | 93.55 221 | 98.10 44 | 42.88 419 | 98.68 166 | 88.09 219 | 99.18 94 | 98.67 104 |
|
| ECVR-MVS |  | | 90.12 245 | 90.16 239 | 90.00 295 | 97.81 105 | 72.68 364 | 95.76 79 | 78.54 412 | 89.04 180 | 95.36 153 | 98.10 44 | 70.51 345 | 98.64 172 | 87.10 237 | 99.18 94 | 98.67 104 |
|
| UniMVSNet (Re) | | | 95.32 84 | 95.15 98 | 95.80 72 | 97.79 107 | 88.91 107 | 92.91 184 | 98.07 68 | 93.46 74 | 96.31 99 | 95.97 202 | 90.14 172 | 99.34 65 | 92.11 110 | 99.64 23 | 99.16 38 |
|
| VPA-MVSNet | | | 95.14 93 | 95.67 77 | 93.58 166 | 97.76 108 | 83.15 222 | 94.58 128 | 97.58 119 | 93.39 75 | 97.05 67 | 98.04 49 | 93.25 95 | 98.51 187 | 89.75 181 | 99.59 27 | 99.08 48 |
|
| DU-MVS | | | 95.28 88 | 95.12 100 | 95.75 74 | 97.75 109 | 88.59 116 | 92.58 196 | 97.81 100 | 93.99 60 | 96.80 80 | 95.90 203 | 90.10 175 | 99.41 42 | 91.60 128 | 99.58 31 | 99.26 30 |
|
| NR-MVSNet | | | 95.28 88 | 95.28 94 | 95.26 92 | 97.75 109 | 87.21 141 | 95.08 110 | 97.37 133 | 93.92 65 | 97.65 37 | 95.90 203 | 90.10 175 | 99.33 70 | 90.11 171 | 99.66 21 | 99.26 30 |
|
| XXY-MVS | | | 92.58 184 | 93.16 168 | 90.84 270 | 97.75 109 | 79.84 270 | 91.87 233 | 96.22 216 | 85.94 239 | 95.53 141 | 97.68 73 | 92.69 113 | 94.48 368 | 83.21 286 | 97.51 251 | 98.21 145 |
|
| WB-MVS | | | 89.44 261 | 92.15 193 | 81.32 389 | 97.73 112 | 48.22 421 | 89.73 297 | 87.98 356 | 95.24 42 | 96.05 116 | 96.99 134 | 85.18 239 | 96.95 308 | 82.45 296 | 97.97 227 | 98.78 87 |
|
| PVSNet_Blended_VisFu | | | 91.63 207 | 91.20 216 | 92.94 189 | 97.73 112 | 83.95 211 | 92.14 219 | 97.46 129 | 78.85 335 | 92.35 269 | 94.98 245 | 84.16 247 | 99.08 98 | 86.36 252 | 96.77 282 | 95.79 300 |
|
| tfpnnormal | | | 94.27 128 | 94.87 108 | 92.48 210 | 97.71 114 | 80.88 254 | 94.55 132 | 95.41 248 | 93.70 68 | 96.67 86 | 97.72 72 | 91.40 140 | 98.18 218 | 87.45 231 | 99.18 94 | 98.36 132 |
|
| HQP_MVS | | | 94.26 129 | 93.93 142 | 95.23 95 | 97.71 114 | 88.12 125 | 94.56 130 | 97.81 100 | 91.74 121 | 93.31 228 | 95.59 220 | 86.93 217 | 98.95 118 | 89.26 194 | 98.51 176 | 98.60 116 |
|
| plane_prior7 | | | | | | 97.71 114 | 88.68 111 | | | | | | | | | | |
|
| UniMVSNet_NR-MVSNet | | | 95.35 82 | 95.21 96 | 95.76 73 | 97.69 117 | 88.59 116 | 92.26 216 | 97.84 97 | 94.91 47 | 96.80 80 | 95.78 213 | 90.42 166 | 99.41 42 | 91.60 128 | 99.58 31 | 99.29 29 |
|
| APDe-MVS |  | | 96.46 35 | 96.64 25 | 95.93 64 | 97.68 118 | 89.38 98 | 96.90 21 | 98.41 23 | 92.52 88 | 97.43 50 | 97.92 61 | 95.11 47 | 99.50 22 | 94.45 39 | 99.30 72 | 98.92 72 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepC-MVS | | 91.39 4 | 95.43 77 | 95.33 91 | 95.71 76 | 97.67 119 | 90.17 84 | 93.86 155 | 98.02 79 | 87.35 218 | 96.22 107 | 97.99 54 | 94.48 73 | 99.05 103 | 92.73 98 | 99.68 17 | 97.93 175 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| KD-MVS_self_test | | | 94.10 136 | 94.73 115 | 92.19 217 | 97.66 120 | 79.49 280 | 94.86 118 | 97.12 158 | 89.59 170 | 96.87 75 | 97.65 75 | 90.40 168 | 98.34 204 | 89.08 200 | 99.35 59 | 98.75 91 |
|
| Vis-MVSNet (Re-imp) | | | 90.42 231 | 90.16 239 | 91.20 257 | 97.66 120 | 77.32 316 | 94.33 137 | 87.66 359 | 91.20 136 | 92.99 244 | 95.13 239 | 75.40 325 | 98.28 207 | 77.86 340 | 99.19 92 | 97.99 167 |
|
| dcpmvs_2 | | | 93.96 141 | 95.01 104 | 90.82 271 | 97.60 122 | 74.04 353 | 93.68 162 | 98.85 10 | 89.80 166 | 97.82 32 | 97.01 133 | 91.14 151 | 99.21 82 | 90.56 151 | 98.59 167 | 99.19 36 |
|
| FMVSNet1 | | | 94.84 103 | 95.13 99 | 93.97 147 | 97.60 122 | 84.29 202 | 95.99 67 | 96.56 198 | 92.38 90 | 97.03 68 | 98.53 28 | 90.12 173 | 98.98 111 | 88.78 207 | 99.16 97 | 98.65 106 |
|
| RPSCF | | | 95.58 72 | 94.89 107 | 97.62 9 | 97.58 124 | 96.30 8 | 95.97 70 | 97.53 124 | 92.42 89 | 93.41 224 | 97.78 67 | 91.21 146 | 97.77 259 | 91.06 139 | 97.06 268 | 98.80 85 |
|
| WR-MVS | | | 93.49 152 | 93.72 149 | 92.80 195 | 97.57 125 | 80.03 265 | 90.14 284 | 95.68 233 | 93.70 68 | 96.62 88 | 95.39 233 | 87.21 210 | 99.04 106 | 87.50 230 | 99.64 23 | 99.33 26 |
|
| CSCG | | | 94.69 110 | 94.75 112 | 94.52 127 | 97.55 126 | 87.87 130 | 95.01 114 | 97.57 120 | 92.68 84 | 96.20 109 | 93.44 298 | 91.92 128 | 98.78 146 | 89.11 199 | 99.24 85 | 96.92 247 |
|
| MCST-MVS | | | 92.91 171 | 92.51 184 | 94.10 143 | 97.52 127 | 85.72 184 | 91.36 248 | 97.13 157 | 80.33 315 | 92.91 248 | 94.24 271 | 91.23 145 | 98.72 155 | 89.99 175 | 97.93 230 | 97.86 185 |
|
| F-COLMAP | | | 92.28 194 | 91.06 220 | 95.95 61 | 97.52 127 | 91.90 60 | 93.53 164 | 97.18 152 | 83.98 274 | 88.70 339 | 94.04 278 | 88.41 190 | 98.55 183 | 80.17 321 | 95.99 301 | 97.39 225 |
|
| 9.14 | | | | 94.81 109 | | 97.49 129 | | 94.11 147 | 98.37 26 | 87.56 217 | 95.38 150 | 96.03 199 | 94.66 64 | 99.08 98 | 90.70 148 | 98.97 120 | |
|
| VDD-MVS | | | 94.37 123 | 94.37 128 | 94.40 134 | 97.49 129 | 86.07 175 | 93.97 152 | 93.28 297 | 94.49 52 | 96.24 105 | 97.78 67 | 87.99 198 | 98.79 143 | 88.92 203 | 99.14 99 | 98.34 135 |
|
| testgi | | | 90.38 235 | 91.34 214 | 87.50 340 | 97.49 129 | 71.54 369 | 89.43 306 | 95.16 254 | 88.38 197 | 94.54 192 | 94.68 258 | 92.88 109 | 93.09 383 | 71.60 384 | 97.85 235 | 97.88 182 |
|
| save fliter | | | | | | 97.46 132 | 88.05 127 | 92.04 222 | 97.08 160 | 87.63 215 | | | | | | | |
|
| Anonymous20231211 | | | 96.60 29 | 97.13 16 | 95.00 103 | 97.46 132 | 86.35 168 | 97.11 18 | 98.24 40 | 97.58 9 | 98.72 9 | 98.97 9 | 93.15 99 | 99.15 89 | 93.18 84 | 99.74 12 | 99.50 18 |
|
| plane_prior1 | | | | | | 97.38 134 | | | | | | | | | | | |
|
| APD-MVS |  | | 95.00 97 | 94.69 116 | 95.93 64 | 97.38 134 | 90.88 75 | 94.59 126 | 97.81 100 | 89.22 178 | 95.46 147 | 96.17 193 | 93.42 90 | 99.34 65 | 89.30 190 | 98.87 133 | 97.56 212 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| fmvsm_s_conf0.1_n_a | | | 94.26 129 | 94.37 128 | 93.95 150 | 97.36 136 | 85.72 184 | 94.15 144 | 95.44 245 | 83.25 282 | 95.51 142 | 98.05 47 | 92.54 116 | 97.19 296 | 95.55 21 | 97.46 255 | 98.94 66 |
|
| ITE_SJBPF | | | | | 95.95 61 | 97.34 137 | 93.36 44 | | 96.55 201 | 91.93 106 | 94.82 183 | 95.39 233 | 91.99 126 | 97.08 303 | 85.53 261 | 97.96 228 | 97.41 221 |
|
| Anonymous20240529 | | | 95.50 74 | 95.83 69 | 94.50 128 | 97.33 138 | 85.93 178 | 95.19 108 | 96.77 185 | 96.64 21 | 97.61 41 | 98.05 47 | 93.23 96 | 98.79 143 | 88.60 211 | 99.04 111 | 98.78 87 |
|
| test_fmvsmconf0.01_n | | | 95.90 58 | 96.09 51 | 95.31 91 | 97.30 139 | 89.21 100 | 94.24 140 | 98.76 13 | 86.25 232 | 97.56 42 | 98.66 21 | 95.73 19 | 98.44 195 | 97.35 3 | 98.99 114 | 98.27 141 |
|
| OMC-MVS | | | 94.22 132 | 93.69 151 | 95.81 71 | 97.25 140 | 91.27 68 | 92.27 215 | 97.40 132 | 87.10 224 | 94.56 191 | 95.42 229 | 93.74 82 | 98.11 223 | 86.62 245 | 98.85 134 | 98.06 156 |
|
| GeoE | | | 94.55 116 | 94.68 119 | 94.15 140 | 97.23 141 | 85.11 194 | 94.14 146 | 97.34 140 | 88.71 189 | 95.26 160 | 95.50 225 | 94.65 65 | 99.12 94 | 90.94 143 | 98.40 182 | 98.23 143 |
|
| ZD-MVS | | | | | | 97.23 141 | 90.32 82 | | 97.54 122 | 84.40 271 | 94.78 185 | 95.79 210 | 92.76 112 | 99.39 52 | 88.72 209 | 98.40 182 | |
|
| fmvsm_s_conf0.1_n | | | 94.19 135 | 94.41 125 | 93.52 172 | 97.22 143 | 84.37 200 | 93.73 159 | 95.26 252 | 84.45 270 | 95.76 129 | 98.00 52 | 91.85 129 | 97.21 293 | 95.62 17 | 97.82 236 | 98.98 60 |
|
| plane_prior6 | | | | | | 97.21 144 | 88.23 124 | | | | | | 86.93 217 | | | | |
|
| DP-MVS Recon | | | 92.31 193 | 91.88 200 | 93.60 165 | 97.18 145 | 86.87 151 | 91.10 254 | 97.37 133 | 84.92 264 | 92.08 278 | 94.08 277 | 88.59 187 | 98.20 215 | 83.50 283 | 98.14 211 | 95.73 302 |
|
| 新几何1 | | | | | 93.17 182 | 97.16 146 | 87.29 138 | | 94.43 274 | 67.95 399 | 91.29 289 | 94.94 247 | 86.97 216 | 98.23 213 | 81.06 313 | 97.75 238 | 93.98 355 |
|
| DP-MVS | | | 95.62 69 | 95.84 68 | 94.97 104 | 97.16 146 | 88.62 113 | 94.54 133 | 97.64 112 | 96.94 17 | 96.58 90 | 97.32 107 | 93.07 103 | 98.72 155 | 90.45 154 | 98.84 135 | 97.57 210 |
|
| CHOSEN 1792x2688 | | | 87.19 312 | 85.92 323 | 91.00 264 | 97.13 148 | 79.41 281 | 84.51 386 | 95.60 235 | 64.14 408 | 90.07 313 | 94.81 251 | 78.26 300 | 97.14 300 | 73.34 373 | 95.38 318 | 96.46 268 |
|
| HyFIR lowres test | | | 87.19 312 | 85.51 325 | 92.24 215 | 97.12 149 | 80.51 256 | 85.03 380 | 96.06 221 | 66.11 404 | 91.66 284 | 92.98 310 | 70.12 346 | 99.14 91 | 75.29 362 | 95.23 322 | 97.07 239 |
|
| ab-mvs | | | 92.40 190 | 92.62 182 | 91.74 232 | 97.02 150 | 81.65 242 | 95.84 76 | 95.50 244 | 86.95 226 | 92.95 247 | 97.56 81 | 90.70 162 | 97.50 276 | 79.63 328 | 97.43 256 | 96.06 287 |
|
| tttt0517 | | | 89.81 255 | 88.90 265 | 92.55 208 | 97.00 151 | 79.73 275 | 95.03 113 | 83.65 392 | 89.88 164 | 95.30 156 | 94.79 254 | 53.64 401 | 99.39 52 | 91.99 115 | 98.79 146 | 98.54 119 |
|
| h-mvs33 | | | 92.89 172 | 91.99 197 | 95.58 79 | 96.97 152 | 90.55 80 | 93.94 153 | 94.01 285 | 89.23 176 | 93.95 210 | 96.19 190 | 76.88 316 | 99.14 91 | 91.02 140 | 95.71 308 | 97.04 243 |
|
| test222 | | | | | | 96.95 153 | 85.27 193 | 88.83 322 | 93.61 289 | 65.09 407 | 90.74 299 | 94.85 250 | 84.62 245 | | | 97.36 259 | 93.91 356 |
|
| CDPH-MVS | | | 92.67 182 | 91.83 202 | 95.18 99 | 96.94 154 | 88.46 121 | 90.70 265 | 97.07 161 | 77.38 342 | 92.34 271 | 95.08 242 | 92.67 114 | 98.88 125 | 85.74 258 | 98.57 169 | 98.20 146 |
|
| CNVR-MVS | | | 94.58 115 | 94.29 131 | 95.46 84 | 96.94 154 | 89.35 99 | 91.81 237 | 96.80 182 | 89.66 168 | 93.90 213 | 95.44 228 | 92.80 111 | 98.72 155 | 92.74 97 | 98.52 174 | 98.32 136 |
|
| EC-MVSNet | | | 95.44 76 | 95.62 78 | 94.89 106 | 96.93 156 | 87.69 134 | 96.48 40 | 99.14 7 | 93.93 63 | 92.77 252 | 94.52 264 | 93.95 81 | 99.49 28 | 93.62 61 | 99.22 89 | 97.51 215 |
|
| mmtdpeth | | | 95.82 62 | 96.02 58 | 95.23 95 | 96.91 157 | 88.62 113 | 96.49 39 | 99.26 4 | 95.07 44 | 93.41 224 | 99.29 4 | 90.25 170 | 97.27 290 | 94.49 38 | 99.01 113 | 99.80 3 |
|
| 原ACMM1 | | | | | 92.87 192 | 96.91 157 | 84.22 205 | | 97.01 164 | 76.84 349 | 89.64 323 | 94.46 265 | 88.00 197 | 98.70 162 | 81.53 307 | 98.01 224 | 95.70 305 |
|
| ambc | | | | | 92.98 185 | 96.88 159 | 83.01 226 | 95.92 72 | 96.38 208 | | 96.41 94 | 97.48 92 | 88.26 191 | 97.80 254 | 89.96 176 | 98.93 125 | 98.12 154 |
|
| testdata | | | | | 91.03 261 | 96.87 160 | 82.01 237 | | 94.28 278 | 71.55 380 | 92.46 262 | 95.42 229 | 85.65 234 | 97.38 287 | 82.64 291 | 97.27 261 | 93.70 362 |
|
| CS-MVS-test | | | 95.32 84 | 95.10 101 | 95.96 60 | 96.86 161 | 90.75 78 | 96.33 49 | 99.20 5 | 93.99 60 | 91.03 295 | 93.73 290 | 93.52 86 | 99.55 19 | 91.81 121 | 99.45 45 | 97.58 209 |
|
| test_fmvsmconf0.1_n | | | 95.61 70 | 95.72 75 | 95.26 92 | 96.85 162 | 89.20 101 | 93.51 165 | 98.60 16 | 85.68 246 | 97.42 52 | 98.30 38 | 95.34 35 | 98.39 196 | 96.85 4 | 98.98 115 | 98.19 147 |
|
| OPU-MVS | | | | | 95.15 100 | 96.84 163 | 89.43 95 | 95.21 104 | | | | 95.66 218 | 93.12 100 | 98.06 226 | 86.28 254 | 98.61 164 | 97.95 172 |
|
| CS-MVS | | | 95.77 64 | 95.58 80 | 96.37 54 | 96.84 163 | 91.72 65 | 96.73 28 | 99.06 8 | 94.23 56 | 92.48 261 | 94.79 254 | 93.56 84 | 99.49 28 | 93.47 69 | 99.05 106 | 97.89 181 |
|
| NP-MVS | | | | | | 96.82 165 | 87.10 144 | | | | | 93.40 299 | | | | | |
|
| 3Dnovator+ | | 92.74 2 | 95.86 61 | 95.77 73 | 96.13 56 | 96.81 166 | 90.79 77 | 96.30 56 | 97.82 99 | 96.13 32 | 94.74 187 | 97.23 112 | 91.33 141 | 99.16 88 | 93.25 82 | 98.30 195 | 98.46 127 |
|
| Test_1112_low_res | | | 87.50 304 | 86.58 312 | 90.25 286 | 96.80 167 | 77.75 310 | 87.53 341 | 96.25 212 | 69.73 394 | 86.47 364 | 93.61 294 | 75.67 323 | 97.88 245 | 79.95 323 | 93.20 368 | 95.11 324 |
|
| PAPM_NR | | | 91.03 218 | 90.81 225 | 91.68 236 | 96.73 168 | 81.10 251 | 93.72 160 | 96.35 209 | 88.19 201 | 88.77 337 | 92.12 331 | 85.09 241 | 97.25 291 | 82.40 297 | 93.90 355 | 96.68 258 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 139 | 94.08 141 | 93.84 156 | 96.72 169 | 85.73 183 | 93.65 163 | 95.23 253 | 83.30 280 | 95.13 168 | 97.56 81 | 92.22 121 | 97.17 297 | 95.51 22 | 97.41 257 | 98.64 111 |
|
| fmvsm_s_conf0.5_n | | | 94.00 140 | 94.20 136 | 93.42 176 | 96.69 170 | 84.37 200 | 93.38 171 | 95.13 255 | 84.50 269 | 95.40 149 | 97.55 85 | 91.77 132 | 97.20 294 | 95.59 18 | 97.79 237 | 98.69 103 |
|
| 1112_ss | | | 88.42 285 | 87.41 294 | 91.45 244 | 96.69 170 | 80.99 252 | 89.72 298 | 96.72 188 | 73.37 369 | 87.00 362 | 90.69 353 | 77.38 308 | 98.20 215 | 81.38 308 | 93.72 358 | 95.15 320 |
|
| test_fmvsmvis_n_1920 | | | 95.08 95 | 95.40 88 | 94.13 142 | 96.66 172 | 87.75 133 | 93.44 169 | 98.49 19 | 85.57 250 | 98.27 21 | 97.11 124 | 94.11 79 | 97.75 262 | 96.26 11 | 98.72 152 | 96.89 249 |
|
| patch_mono-2 | | | 92.46 188 | 92.72 180 | 91.71 234 | 96.65 173 | 78.91 292 | 88.85 321 | 97.17 153 | 83.89 276 | 92.45 263 | 96.76 148 | 89.86 179 | 97.09 302 | 90.24 166 | 98.59 167 | 99.12 43 |
|
| v8 | | | 94.65 112 | 95.29 93 | 92.74 196 | 96.65 173 | 79.77 274 | 94.59 126 | 97.17 153 | 91.86 109 | 97.47 49 | 97.93 57 | 88.16 193 | 99.08 98 | 94.32 42 | 99.47 41 | 99.38 23 |
|
| MVS_111021_HR | | | 93.63 149 | 93.42 162 | 94.26 138 | 96.65 173 | 86.96 150 | 89.30 311 | 96.23 214 | 88.36 199 | 93.57 220 | 94.60 261 | 93.45 87 | 97.77 259 | 90.23 167 | 98.38 186 | 98.03 162 |
|
| ANet_high | | | 94.83 104 | 96.28 41 | 90.47 279 | 96.65 173 | 73.16 358 | 94.33 137 | 98.74 14 | 96.39 28 | 98.09 29 | 98.93 10 | 93.37 91 | 98.70 162 | 90.38 157 | 99.68 17 | 99.53 16 |
|
| SD-MVS | | | 95.19 92 | 95.73 74 | 93.55 167 | 96.62 177 | 88.88 109 | 94.67 123 | 98.05 72 | 91.26 134 | 97.25 60 | 96.40 171 | 95.42 30 | 94.36 372 | 92.72 99 | 99.19 92 | 97.40 224 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PM-MVS | | | 93.33 157 | 92.67 181 | 95.33 88 | 96.58 178 | 94.06 25 | 92.26 216 | 92.18 318 | 85.92 240 | 96.22 107 | 96.61 160 | 85.64 235 | 95.99 342 | 90.35 159 | 98.23 202 | 95.93 293 |
|
| Anonymous20240521 | | | 92.86 176 | 93.57 157 | 90.74 273 | 96.57 179 | 75.50 339 | 94.15 144 | 95.60 235 | 89.38 173 | 95.90 123 | 97.90 64 | 80.39 284 | 97.96 238 | 92.60 102 | 99.68 17 | 98.75 91 |
|
| v10 | | | 94.68 111 | 95.27 95 | 92.90 191 | 96.57 179 | 80.15 259 | 94.65 125 | 97.57 120 | 90.68 148 | 97.43 50 | 98.00 52 | 88.18 192 | 99.15 89 | 94.84 34 | 99.55 35 | 99.41 21 |
|
| Anonymous202405211 | | | 92.58 184 | 92.50 185 | 92.83 194 | 96.55 181 | 83.22 220 | 92.43 205 | 91.64 329 | 94.10 59 | 95.59 139 | 96.64 158 | 81.88 274 | 97.50 276 | 85.12 267 | 98.52 174 | 97.77 196 |
|
| DVP-MVS++ | | | 95.93 56 | 96.34 38 | 94.70 115 | 96.54 182 | 86.66 158 | 98.45 4 | 98.22 44 | 93.26 78 | 97.54 43 | 97.36 100 | 93.12 100 | 99.38 58 | 93.88 52 | 98.68 158 | 98.04 159 |
|
| MSC_two_6792asdad | | | | | 95.90 67 | 96.54 182 | 89.57 91 | | 96.87 177 | | | | | 99.41 42 | 94.06 48 | 99.30 72 | 98.72 96 |
|
| No_MVS | | | | | 95.90 67 | 96.54 182 | 89.57 91 | | 96.87 177 | | | | | 99.41 42 | 94.06 48 | 99.30 72 | 98.72 96 |
|
| PLC |  | 85.34 15 | 90.40 232 | 88.92 263 | 94.85 108 | 96.53 185 | 90.02 85 | 91.58 241 | 96.48 204 | 80.16 316 | 86.14 366 | 92.18 328 | 85.73 232 | 98.25 212 | 76.87 350 | 94.61 339 | 96.30 274 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TAPA-MVS | | 88.58 10 | 92.49 187 | 91.75 204 | 94.73 113 | 96.50 186 | 89.69 89 | 92.91 184 | 97.68 110 | 78.02 339 | 92.79 251 | 94.10 276 | 90.85 155 | 97.96 238 | 84.76 274 | 98.16 209 | 96.54 260 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| NCCC | | | 94.08 137 | 93.54 159 | 95.70 77 | 96.49 187 | 89.90 87 | 92.39 208 | 96.91 174 | 90.64 149 | 92.33 272 | 94.60 261 | 90.58 165 | 98.96 116 | 90.21 168 | 97.70 242 | 98.23 143 |
|
| TAMVS | | | 90.16 243 | 89.05 259 | 93.49 174 | 96.49 187 | 86.37 166 | 90.34 278 | 92.55 313 | 80.84 313 | 92.99 244 | 94.57 263 | 81.94 273 | 98.20 215 | 73.51 372 | 98.21 205 | 95.90 296 |
|
| test_fmvsmconf_n | | | 95.43 77 | 95.50 82 | 95.22 97 | 96.48 189 | 89.19 102 | 93.23 175 | 98.36 27 | 85.61 249 | 96.92 74 | 98.02 51 | 95.23 41 | 98.38 199 | 96.69 7 | 98.95 124 | 98.09 155 |
|
| TEST9 | | | | | | 96.45 190 | 89.46 93 | 90.60 268 | 96.92 172 | 79.09 331 | 90.49 303 | 94.39 267 | 91.31 142 | 98.88 125 | | | |
|
| train_agg | | | 92.71 181 | 91.83 202 | 95.35 86 | 96.45 190 | 89.46 93 | 90.60 268 | 96.92 172 | 79.37 326 | 90.49 303 | 94.39 267 | 91.20 147 | 98.88 125 | 88.66 210 | 98.43 181 | 97.72 201 |
|
| mvs5depth | | | 95.28 88 | 95.82 71 | 93.66 162 | 96.42 192 | 83.08 224 | 97.35 12 | 99.28 3 | 96.44 26 | 96.20 109 | 99.65 2 | 84.10 248 | 98.01 232 | 94.06 48 | 98.93 125 | 99.87 1 |
|
| test_8 | | | | | | 96.37 193 | 89.14 103 | 90.51 271 | 96.89 175 | 79.37 326 | 90.42 305 | 94.36 269 | 91.20 147 | 98.82 134 | | | |
|
| CLD-MVS | | | 91.82 202 | 91.41 212 | 93.04 183 | 96.37 193 | 83.65 214 | 86.82 355 | 97.29 145 | 84.65 268 | 92.27 273 | 89.67 364 | 92.20 123 | 97.85 251 | 83.95 281 | 99.47 41 | 97.62 207 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP-NCC | | | | | | 96.36 195 | | 91.37 245 | | 87.16 221 | 88.81 333 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 195 | | 91.37 245 | | 87.16 221 | 88.81 333 | | | | | | |
|
| HQP-MVS | | | 92.09 199 | 91.49 210 | 93.88 153 | 96.36 195 | 84.89 196 | 91.37 245 | 97.31 142 | 87.16 221 | 88.81 333 | 93.40 299 | 84.76 243 | 98.60 176 | 86.55 248 | 97.73 239 | 98.14 152 |
|
| v2v482 | | | 93.29 158 | 93.63 153 | 92.29 213 | 96.35 198 | 78.82 295 | 91.77 239 | 96.28 210 | 88.45 195 | 95.70 136 | 96.26 187 | 86.02 230 | 98.90 122 | 93.02 90 | 98.81 143 | 99.14 40 |
|
| MSLP-MVS++ | | | 93.25 162 | 93.88 143 | 91.37 246 | 96.34 199 | 82.81 229 | 93.11 178 | 97.74 107 | 89.37 174 | 94.08 203 | 95.29 235 | 90.40 168 | 96.35 332 | 90.35 159 | 98.25 200 | 94.96 328 |
|
| thisisatest0530 | | | 88.69 281 | 87.52 293 | 92.20 216 | 96.33 200 | 79.36 282 | 92.81 187 | 84.01 391 | 86.44 229 | 93.67 218 | 92.68 318 | 53.62 402 | 99.25 79 | 89.65 183 | 98.45 180 | 98.00 164 |
|
| FPMVS | | | 84.50 337 | 83.28 343 | 88.16 330 | 96.32 201 | 94.49 20 | 85.76 374 | 85.47 380 | 83.09 286 | 85.20 371 | 94.26 270 | 63.79 378 | 86.58 410 | 63.72 406 | 91.88 386 | 83.40 408 |
|
| Anonymous20231206 | | | 88.77 278 | 88.29 276 | 90.20 289 | 96.31 202 | 78.81 296 | 89.56 302 | 93.49 294 | 74.26 365 | 92.38 267 | 95.58 223 | 82.21 267 | 95.43 354 | 72.07 380 | 98.75 151 | 96.34 272 |
|
| MVP-Stereo | | | 90.07 249 | 88.92 263 | 93.54 169 | 96.31 202 | 86.49 161 | 90.93 258 | 95.59 239 | 79.80 318 | 91.48 286 | 95.59 220 | 80.79 281 | 97.39 285 | 78.57 338 | 91.19 388 | 96.76 256 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_fmvsm_n_1920 | | | 94.72 108 | 94.74 114 | 94.67 117 | 96.30 204 | 88.62 113 | 93.19 176 | 98.07 68 | 85.63 248 | 97.08 63 | 97.35 103 | 90.86 154 | 97.66 269 | 95.70 16 | 98.48 179 | 97.74 200 |
|
| v1144 | | | 93.50 151 | 93.81 144 | 92.57 207 | 96.28 205 | 79.61 277 | 91.86 235 | 96.96 168 | 86.95 226 | 95.91 122 | 96.32 180 | 87.65 202 | 98.96 116 | 93.51 65 | 98.88 130 | 99.13 41 |
|
| LFMVS | | | 91.33 214 | 91.16 219 | 91.82 229 | 96.27 206 | 79.36 282 | 95.01 114 | 85.61 379 | 96.04 36 | 94.82 183 | 97.06 128 | 72.03 339 | 98.46 193 | 84.96 271 | 98.70 156 | 97.65 206 |
|
| VNet | | | 92.67 182 | 92.96 170 | 91.79 230 | 96.27 206 | 80.15 259 | 91.95 225 | 94.98 259 | 92.19 100 | 94.52 193 | 96.07 197 | 87.43 206 | 97.39 285 | 84.83 272 | 98.38 186 | 97.83 189 |
|
| IterMVS-LS | | | 93.78 146 | 94.28 132 | 92.27 214 | 96.27 206 | 79.21 287 | 91.87 233 | 96.78 183 | 91.77 119 | 96.57 91 | 97.07 127 | 87.15 211 | 98.74 153 | 91.99 115 | 99.03 112 | 98.86 78 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 92.87 175 | 93.29 163 | 91.62 238 | 96.25 209 | 77.72 311 | 91.28 249 | 95.05 256 | 89.69 167 | 95.93 121 | 96.04 198 | 87.34 207 | 98.38 199 | 90.05 174 | 97.99 225 | 98.78 87 |
|
| casdiffmvs_mvg |  | | 95.10 94 | 95.62 78 | 93.53 170 | 96.25 209 | 83.23 219 | 92.66 193 | 98.19 47 | 93.06 81 | 97.49 47 | 97.15 120 | 94.78 61 | 98.71 161 | 92.27 108 | 98.72 152 | 98.65 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_LR | | | 93.66 148 | 93.28 165 | 94.80 110 | 96.25 209 | 90.95 73 | 90.21 281 | 95.43 247 | 87.91 205 | 93.74 217 | 94.40 266 | 92.88 109 | 96.38 330 | 90.39 156 | 98.28 196 | 97.07 239 |
|
| agg_prior | | | | | | 96.20 212 | 88.89 108 | | 96.88 176 | | 90.21 310 | | | 98.78 146 | | | |
|
| 旧先验1 | | | | | | 96.20 212 | 84.17 207 | | 94.82 264 | | | 95.57 224 | 89.57 181 | | | 97.89 232 | 96.32 273 |
|
| CNLPA | | | 91.72 205 | 91.20 216 | 93.26 180 | 96.17 214 | 91.02 71 | 91.14 252 | 95.55 242 | 90.16 160 | 90.87 296 | 93.56 296 | 86.31 226 | 94.40 371 | 79.92 327 | 97.12 266 | 94.37 346 |
|
| fmvsm_l_conf0.5_n | | | 93.79 145 | 93.81 144 | 93.73 160 | 96.16 215 | 86.26 170 | 92.46 202 | 96.72 188 | 81.69 304 | 95.77 128 | 97.11 124 | 90.83 156 | 97.82 252 | 95.58 19 | 97.99 225 | 97.11 238 |
|
| hse-mvs2 | | | 92.24 197 | 91.20 216 | 95.38 85 | 96.16 215 | 90.65 79 | 92.52 198 | 92.01 325 | 89.23 176 | 93.95 210 | 92.99 309 | 76.88 316 | 98.69 164 | 91.02 140 | 96.03 299 | 96.81 253 |
|
| v1192 | | | 93.49 152 | 93.78 147 | 92.62 204 | 96.16 215 | 79.62 276 | 91.83 236 | 97.22 151 | 86.07 237 | 96.10 115 | 96.38 176 | 87.22 209 | 99.02 108 | 94.14 47 | 98.88 130 | 99.22 33 |
|
| thres100view900 | | | 87.35 307 | 86.89 307 | 88.72 317 | 96.14 218 | 73.09 359 | 93.00 181 | 85.31 382 | 92.13 101 | 93.26 233 | 90.96 348 | 63.42 379 | 98.28 207 | 71.27 386 | 96.54 289 | 94.79 336 |
|
| DeepC-MVS_fast | | 89.96 7 | 93.73 147 | 93.44 161 | 94.60 123 | 96.14 218 | 87.90 129 | 93.36 172 | 97.14 155 | 85.53 251 | 93.90 213 | 95.45 227 | 91.30 143 | 98.59 178 | 89.51 184 | 98.62 163 | 97.31 230 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DPM-MVS | | | 89.35 262 | 88.40 272 | 92.18 220 | 96.13 220 | 84.20 206 | 86.96 350 | 96.15 220 | 75.40 357 | 87.36 359 | 91.55 341 | 83.30 253 | 98.01 232 | 82.17 300 | 96.62 287 | 94.32 348 |
|
| fmvsm_l_conf0.5_n_a | | | 93.59 150 | 93.63 153 | 93.49 174 | 96.10 221 | 85.66 186 | 92.32 211 | 96.57 197 | 81.32 307 | 95.63 137 | 97.14 121 | 90.19 171 | 97.73 265 | 95.37 28 | 98.03 221 | 97.07 239 |
|
| AUN-MVS | | | 90.05 250 | 88.30 275 | 95.32 90 | 96.09 222 | 90.52 81 | 92.42 206 | 92.05 324 | 82.08 300 | 88.45 343 | 92.86 311 | 65.76 366 | 98.69 164 | 88.91 204 | 96.07 298 | 96.75 257 |
|
| baseline | | | 94.26 129 | 94.80 110 | 92.64 200 | 96.08 223 | 80.99 252 | 93.69 161 | 98.04 76 | 90.80 145 | 94.89 181 | 96.32 180 | 93.19 97 | 98.48 192 | 91.68 126 | 98.51 176 | 98.43 130 |
|
| PCF-MVS | | 84.52 17 | 89.12 266 | 87.71 290 | 93.34 177 | 96.06 224 | 85.84 181 | 86.58 363 | 97.31 142 | 68.46 398 | 93.61 219 | 93.89 286 | 87.51 205 | 98.52 186 | 67.85 397 | 98.11 213 | 95.66 307 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| v144192 | | | 93.20 165 | 93.54 159 | 92.16 221 | 96.05 225 | 78.26 303 | 91.95 225 | 97.14 155 | 84.98 263 | 95.96 118 | 96.11 195 | 87.08 213 | 99.04 106 | 93.79 55 | 98.84 135 | 99.17 37 |
|
| thres600view7 | | | 87.66 298 | 87.10 304 | 89.36 306 | 96.05 225 | 73.17 357 | 92.72 189 | 85.31 382 | 91.89 108 | 93.29 230 | 90.97 347 | 63.42 379 | 98.39 196 | 73.23 374 | 96.99 275 | 96.51 262 |
|
| casdiffmvs |  | | 94.32 127 | 94.80 110 | 92.85 193 | 96.05 225 | 81.44 246 | 92.35 209 | 98.05 72 | 91.53 129 | 95.75 131 | 96.80 145 | 93.35 92 | 98.49 188 | 91.01 142 | 98.32 194 | 98.64 111 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MIMVSNet | | | 87.13 314 | 86.54 315 | 88.89 314 | 96.05 225 | 76.11 332 | 94.39 135 | 88.51 348 | 81.37 306 | 88.27 346 | 96.75 150 | 72.38 336 | 95.52 349 | 65.71 402 | 95.47 314 | 95.03 326 |
|
| v1921920 | | | 93.26 160 | 93.61 155 | 92.19 217 | 96.04 229 | 78.31 302 | 91.88 232 | 97.24 149 | 85.17 257 | 96.19 112 | 96.19 190 | 86.76 221 | 99.05 103 | 94.18 46 | 98.84 135 | 99.22 33 |
|
| v1240 | | | 93.29 158 | 93.71 150 | 92.06 224 | 96.01 230 | 77.89 308 | 91.81 237 | 97.37 133 | 85.12 259 | 96.69 85 | 96.40 171 | 86.67 222 | 99.07 102 | 94.51 37 | 98.76 149 | 99.22 33 |
|
| BH-untuned | | | 90.68 224 | 90.90 221 | 90.05 294 | 95.98 231 | 79.57 278 | 90.04 287 | 94.94 261 | 87.91 205 | 94.07 204 | 93.00 308 | 87.76 201 | 97.78 258 | 79.19 334 | 95.17 324 | 92.80 378 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 133 | 93.56 158 | 96.14 55 | 95.96 232 | 92.96 47 | 89.48 304 | 97.46 129 | 85.14 258 | 96.23 106 | 95.42 229 | 93.19 97 | 98.08 225 | 90.37 158 | 98.76 149 | 97.38 227 |
|
| test_prior | | | | | 94.61 120 | 95.95 233 | 87.23 140 | | 97.36 138 | | | | | 98.68 166 | | | 97.93 175 |
|
| test12 | | | | | 94.43 133 | 95.95 233 | 86.75 154 | | 96.24 213 | | 89.76 321 | | 89.79 180 | 98.79 143 | | 97.95 229 | 97.75 199 |
|
| LCM-MVSNet-Re | | | 94.20 133 | 94.58 123 | 93.04 183 | 95.91 235 | 83.13 223 | 93.79 157 | 99.19 6 | 92.00 103 | 98.84 6 | 98.04 49 | 93.64 83 | 99.02 108 | 81.28 309 | 98.54 172 | 96.96 246 |
|
| PatchMatch-RL | | | 89.18 264 | 88.02 287 | 92.64 200 | 95.90 236 | 92.87 49 | 88.67 328 | 91.06 332 | 80.34 314 | 90.03 314 | 91.67 338 | 83.34 252 | 94.42 370 | 76.35 355 | 94.84 333 | 90.64 394 |
|
| ETV-MVS | | | 92.99 169 | 92.74 177 | 93.72 161 | 95.86 237 | 86.30 169 | 92.33 210 | 97.84 97 | 91.70 124 | 92.81 249 | 86.17 392 | 92.22 121 | 99.19 86 | 88.03 222 | 97.73 239 | 95.66 307 |
|
| MM | | | 94.41 122 | 94.14 138 | 95.22 97 | 95.84 238 | 87.21 141 | 94.31 139 | 90.92 335 | 94.48 53 | 92.80 250 | 97.52 86 | 85.27 238 | 99.49 28 | 96.58 8 | 99.57 33 | 98.97 62 |
|
| testing3 | | | 83.66 344 | 82.52 349 | 87.08 343 | 95.84 238 | 65.84 398 | 89.80 296 | 77.17 416 | 88.17 202 | 90.84 297 | 88.63 374 | 30.95 424 | 98.11 223 | 84.05 280 | 97.19 264 | 97.28 232 |
|
| TSAR-MVS + GP. | | | 93.07 168 | 92.41 187 | 95.06 102 | 95.82 240 | 90.87 76 | 90.97 257 | 92.61 312 | 88.04 204 | 94.61 190 | 93.79 289 | 88.08 194 | 97.81 253 | 89.41 187 | 98.39 185 | 96.50 265 |
|
| QAPM | | | 92.88 173 | 92.77 175 | 93.22 181 | 95.82 240 | 83.31 216 | 96.45 41 | 97.35 139 | 83.91 275 | 93.75 215 | 96.77 146 | 89.25 184 | 98.88 125 | 84.56 276 | 97.02 270 | 97.49 216 |
|
| balanced_conf03 | | | 93.45 154 | 94.17 137 | 91.28 252 | 95.81 242 | 78.40 300 | 96.20 60 | 97.48 128 | 88.56 194 | 95.29 158 | 97.20 117 | 85.56 237 | 99.21 82 | 92.52 104 | 98.91 127 | 96.24 279 |
|
| EIA-MVS | | | 92.35 192 | 92.03 195 | 93.30 179 | 95.81 242 | 83.97 210 | 92.80 188 | 98.17 53 | 87.71 212 | 89.79 320 | 87.56 382 | 91.17 150 | 99.18 87 | 87.97 223 | 97.27 261 | 96.77 255 |
|
| tfpn200view9 | | | 87.05 316 | 86.52 316 | 88.67 318 | 95.77 244 | 72.94 361 | 91.89 230 | 86.00 372 | 90.84 142 | 92.61 256 | 89.80 359 | 63.93 376 | 98.28 207 | 71.27 386 | 96.54 289 | 94.79 336 |
|
| thres400 | | | 87.20 311 | 86.52 316 | 89.24 310 | 95.77 244 | 72.94 361 | 91.89 230 | 86.00 372 | 90.84 142 | 92.61 256 | 89.80 359 | 63.93 376 | 98.28 207 | 71.27 386 | 96.54 289 | 96.51 262 |
|
| pmmvs-eth3d | | | 91.54 209 | 90.73 228 | 93.99 145 | 95.76 246 | 87.86 131 | 90.83 260 | 93.98 286 | 78.23 338 | 94.02 208 | 96.22 189 | 82.62 265 | 96.83 316 | 86.57 246 | 98.33 192 | 97.29 231 |
|
| jason | | | 89.17 265 | 88.32 274 | 91.70 235 | 95.73 247 | 80.07 262 | 88.10 332 | 93.22 298 | 71.98 378 | 90.09 311 | 92.79 314 | 78.53 297 | 98.56 181 | 87.43 232 | 97.06 268 | 96.46 268 |
| jason: jason. |
| alignmvs | | | 93.26 160 | 92.85 174 | 94.50 128 | 95.70 248 | 87.45 136 | 93.45 168 | 95.76 230 | 91.58 126 | 95.25 162 | 92.42 325 | 81.96 272 | 98.72 155 | 91.61 127 | 97.87 234 | 97.33 229 |
|
| xiu_mvs_v1_base_debu | | | 91.47 211 | 91.52 207 | 91.33 248 | 95.69 249 | 81.56 243 | 89.92 291 | 96.05 223 | 83.22 283 | 91.26 290 | 90.74 350 | 91.55 137 | 98.82 134 | 89.29 191 | 95.91 302 | 93.62 365 |
|
| xiu_mvs_v1_base | | | 91.47 211 | 91.52 207 | 91.33 248 | 95.69 249 | 81.56 243 | 89.92 291 | 96.05 223 | 83.22 283 | 91.26 290 | 90.74 350 | 91.55 137 | 98.82 134 | 89.29 191 | 95.91 302 | 93.62 365 |
|
| xiu_mvs_v1_base_debi | | | 91.47 211 | 91.52 207 | 91.33 248 | 95.69 249 | 81.56 243 | 89.92 291 | 96.05 223 | 83.22 283 | 91.26 290 | 90.74 350 | 91.55 137 | 98.82 134 | 89.29 191 | 95.91 302 | 93.62 365 |
|
| PHI-MVS | | | 94.34 126 | 93.80 146 | 95.95 61 | 95.65 252 | 91.67 66 | 94.82 119 | 97.86 94 | 87.86 208 | 93.04 243 | 94.16 275 | 91.58 136 | 98.78 146 | 90.27 164 | 98.96 122 | 97.41 221 |
|
| LF4IMVS | | | 92.72 180 | 92.02 196 | 94.84 109 | 95.65 252 | 91.99 58 | 92.92 183 | 96.60 194 | 85.08 261 | 92.44 264 | 93.62 293 | 86.80 220 | 96.35 332 | 86.81 240 | 98.25 200 | 96.18 282 |
|
| test20.03 | | | 90.80 220 | 90.85 224 | 90.63 276 | 95.63 254 | 79.24 285 | 89.81 295 | 92.87 303 | 89.90 163 | 94.39 195 | 96.40 171 | 85.77 231 | 95.27 359 | 73.86 371 | 99.05 106 | 97.39 225 |
|
| TinyColmap | | | 92.00 201 | 92.76 176 | 89.71 300 | 95.62 255 | 77.02 319 | 90.72 264 | 96.17 219 | 87.70 213 | 95.26 160 | 96.29 182 | 92.54 116 | 96.45 327 | 81.77 302 | 98.77 148 | 95.66 307 |
|
| sasdasda | | | 94.59 113 | 94.69 116 | 94.30 136 | 95.60 256 | 87.03 146 | 95.59 85 | 98.24 40 | 91.56 127 | 95.21 165 | 92.04 332 | 94.95 55 | 98.66 168 | 91.45 133 | 97.57 249 | 97.20 235 |
|
| canonicalmvs | | | 94.59 113 | 94.69 116 | 94.30 136 | 95.60 256 | 87.03 146 | 95.59 85 | 98.24 40 | 91.56 127 | 95.21 165 | 92.04 332 | 94.95 55 | 98.66 168 | 91.45 133 | 97.57 249 | 97.20 235 |
|
| MGCFI-Net | | | 94.44 120 | 94.67 120 | 93.75 159 | 95.56 258 | 85.47 189 | 95.25 103 | 98.24 40 | 91.53 129 | 95.04 174 | 92.21 327 | 94.94 57 | 98.54 184 | 91.56 131 | 97.66 245 | 97.24 233 |
|
| AdaColmap |  | | 91.63 207 | 91.36 213 | 92.47 211 | 95.56 258 | 86.36 167 | 92.24 218 | 96.27 211 | 88.88 186 | 89.90 317 | 92.69 317 | 91.65 135 | 98.32 205 | 77.38 347 | 97.64 246 | 92.72 379 |
|
| mvsmamba | | | 90.24 241 | 89.43 254 | 92.64 200 | 95.52 260 | 82.36 234 | 96.64 30 | 92.29 316 | 81.77 302 | 92.14 276 | 96.28 184 | 70.59 344 | 99.10 97 | 84.44 278 | 95.22 323 | 96.47 267 |
|
| UnsupCasMVSNet_bld | | | 88.50 283 | 88.03 286 | 89.90 296 | 95.52 260 | 78.88 293 | 87.39 343 | 94.02 284 | 79.32 329 | 93.06 241 | 94.02 280 | 80.72 282 | 94.27 373 | 75.16 363 | 93.08 372 | 96.54 260 |
|
| 3Dnovator | | 92.54 3 | 94.80 106 | 94.90 106 | 94.47 131 | 95.47 262 | 87.06 145 | 96.63 31 | 97.28 147 | 91.82 116 | 94.34 198 | 97.41 94 | 90.60 164 | 98.65 171 | 92.47 105 | 98.11 213 | 97.70 202 |
|
| Fast-Effi-MVS+ | | | 91.28 216 | 90.86 223 | 92.53 209 | 95.45 263 | 82.53 231 | 89.25 314 | 96.52 202 | 85.00 262 | 89.91 316 | 88.55 376 | 92.94 105 | 98.84 132 | 84.72 275 | 95.44 315 | 96.22 280 |
|
| GBi-Net | | | 93.21 163 | 92.96 170 | 93.97 147 | 95.40 264 | 84.29 202 | 95.99 67 | 96.56 198 | 88.63 190 | 95.10 170 | 98.53 28 | 81.31 277 | 98.98 111 | 86.74 241 | 98.38 186 | 98.65 106 |
|
| test1 | | | 93.21 163 | 92.96 170 | 93.97 147 | 95.40 264 | 84.29 202 | 95.99 67 | 96.56 198 | 88.63 190 | 95.10 170 | 98.53 28 | 81.31 277 | 98.98 111 | 86.74 241 | 98.38 186 | 98.65 106 |
|
| FMVSNet2 | | | 92.78 178 | 92.73 179 | 92.95 188 | 95.40 264 | 81.98 238 | 94.18 143 | 95.53 243 | 88.63 190 | 96.05 116 | 97.37 97 | 81.31 277 | 98.81 139 | 87.38 234 | 98.67 160 | 98.06 156 |
|
| CDS-MVSNet | | | 89.55 257 | 88.22 282 | 93.53 170 | 95.37 267 | 86.49 161 | 89.26 312 | 93.59 290 | 79.76 320 | 91.15 293 | 92.31 326 | 77.12 311 | 98.38 199 | 77.51 345 | 97.92 231 | 95.71 303 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| V42 | | | 93.43 155 | 93.58 156 | 92.97 186 | 95.34 268 | 81.22 249 | 92.67 192 | 96.49 203 | 87.25 220 | 96.20 109 | 96.37 177 | 87.32 208 | 98.85 131 | 92.39 107 | 98.21 205 | 98.85 81 |
|
| Patchmatch-RL test | | | 88.81 277 | 88.52 269 | 89.69 301 | 95.33 269 | 79.94 268 | 86.22 368 | 92.71 308 | 78.46 336 | 95.80 127 | 94.18 274 | 66.25 364 | 95.33 357 | 89.22 196 | 98.53 173 | 93.78 359 |
|
| CL-MVSNet_self_test | | | 90.04 251 | 89.90 246 | 90.47 279 | 95.24 270 | 77.81 309 | 86.60 362 | 92.62 311 | 85.64 247 | 93.25 235 | 93.92 284 | 83.84 249 | 96.06 339 | 79.93 325 | 98.03 221 | 97.53 214 |
|
| BH-RMVSNet | | | 90.47 230 | 90.44 234 | 90.56 278 | 95.21 271 | 78.65 299 | 89.15 315 | 93.94 287 | 88.21 200 | 92.74 253 | 94.22 272 | 86.38 225 | 97.88 245 | 78.67 337 | 95.39 317 | 95.14 321 |
|
| Effi-MVS+ | | | 92.79 177 | 92.74 177 | 92.94 189 | 95.10 272 | 83.30 217 | 94.00 150 | 97.53 124 | 91.36 133 | 89.35 327 | 90.65 355 | 94.01 80 | 98.66 168 | 87.40 233 | 95.30 320 | 96.88 251 |
|
| USDC | | | 89.02 269 | 89.08 258 | 88.84 315 | 95.07 273 | 74.50 347 | 88.97 317 | 96.39 207 | 73.21 371 | 93.27 232 | 96.28 184 | 82.16 269 | 96.39 329 | 77.55 344 | 98.80 144 | 95.62 310 |
|
| WTY-MVS | | | 86.93 318 | 86.50 318 | 88.24 328 | 94.96 274 | 74.64 343 | 87.19 346 | 92.07 323 | 78.29 337 | 88.32 345 | 91.59 340 | 78.06 301 | 94.27 373 | 74.88 364 | 93.15 370 | 95.80 299 |
|
| FA-MVS(test-final) | | | 91.81 203 | 91.85 201 | 91.68 236 | 94.95 275 | 79.99 267 | 96.00 66 | 93.44 295 | 87.80 209 | 94.02 208 | 97.29 108 | 77.60 304 | 98.45 194 | 88.04 221 | 97.49 252 | 96.61 259 |
|
| PS-MVSNAJ | | | 88.86 276 | 88.99 262 | 88.48 324 | 94.88 276 | 74.71 342 | 86.69 358 | 95.60 235 | 80.88 311 | 87.83 352 | 87.37 385 | 90.77 157 | 98.82 134 | 82.52 294 | 94.37 343 | 91.93 385 |
|
| MG-MVS | | | 89.54 258 | 89.80 248 | 88.76 316 | 94.88 276 | 72.47 366 | 89.60 300 | 92.44 315 | 85.82 242 | 89.48 324 | 95.98 201 | 82.85 260 | 97.74 264 | 81.87 301 | 95.27 321 | 96.08 286 |
|
| xiu_mvs_v2_base | | | 89.00 272 | 89.19 256 | 88.46 325 | 94.86 278 | 74.63 344 | 86.97 349 | 95.60 235 | 80.88 311 | 87.83 352 | 88.62 375 | 91.04 152 | 98.81 139 | 82.51 295 | 94.38 342 | 91.93 385 |
|
| MAR-MVS | | | 90.32 239 | 88.87 266 | 94.66 119 | 94.82 279 | 91.85 61 | 94.22 142 | 94.75 268 | 80.91 310 | 87.52 358 | 88.07 380 | 86.63 223 | 97.87 248 | 76.67 351 | 96.21 297 | 94.25 349 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_BlendedMVS | | | 90.35 237 | 89.96 244 | 91.54 242 | 94.81 280 | 78.80 297 | 90.14 284 | 96.93 170 | 79.43 325 | 88.68 340 | 95.06 243 | 86.27 227 | 98.15 221 | 80.27 317 | 98.04 220 | 97.68 204 |
|
| PVSNet_Blended | | | 88.74 279 | 88.16 285 | 90.46 281 | 94.81 280 | 78.80 297 | 86.64 359 | 96.93 170 | 74.67 361 | 88.68 340 | 89.18 371 | 86.27 227 | 98.15 221 | 80.27 317 | 96.00 300 | 94.44 345 |
|
| FE-MVS | | | 89.06 268 | 88.29 276 | 91.36 247 | 94.78 282 | 79.57 278 | 96.77 27 | 90.99 333 | 84.87 265 | 92.96 246 | 96.29 182 | 60.69 390 | 98.80 142 | 80.18 320 | 97.11 267 | 95.71 303 |
|
| BH-w/o | | | 87.21 310 | 87.02 305 | 87.79 338 | 94.77 283 | 77.27 317 | 87.90 334 | 93.21 300 | 81.74 303 | 89.99 315 | 88.39 378 | 83.47 251 | 96.93 311 | 71.29 385 | 92.43 380 | 89.15 396 |
|
| LS3D | | | 96.11 51 | 95.83 69 | 96.95 40 | 94.75 284 | 94.20 23 | 97.34 13 | 97.98 83 | 97.31 12 | 95.32 155 | 96.77 146 | 93.08 102 | 99.20 85 | 91.79 122 | 98.16 209 | 97.44 220 |
|
| Effi-MVS+-dtu | | | 93.90 144 | 92.60 183 | 97.77 4 | 94.74 285 | 96.67 6 | 94.00 150 | 95.41 248 | 89.94 162 | 91.93 281 | 92.13 330 | 90.12 173 | 98.97 115 | 87.68 228 | 97.48 253 | 97.67 205 |
|
| MVSFormer | | | 92.18 198 | 92.23 190 | 92.04 225 | 94.74 285 | 80.06 263 | 97.15 15 | 97.37 133 | 88.98 182 | 88.83 331 | 92.79 314 | 77.02 313 | 99.60 10 | 96.41 9 | 96.75 283 | 96.46 268 |
|
| lupinMVS | | | 88.34 287 | 87.31 295 | 91.45 244 | 94.74 285 | 80.06 263 | 87.23 344 | 92.27 317 | 71.10 384 | 88.83 331 | 91.15 344 | 77.02 313 | 98.53 185 | 86.67 244 | 96.75 283 | 95.76 301 |
|
| baseline1 | | | 87.62 300 | 87.31 295 | 88.54 321 | 94.71 288 | 74.27 350 | 93.10 179 | 88.20 352 | 86.20 234 | 92.18 275 | 93.04 307 | 73.21 332 | 95.52 349 | 79.32 332 | 85.82 404 | 95.83 298 |
|
| MDA-MVSNet-bldmvs | | | 91.04 217 | 90.88 222 | 91.55 241 | 94.68 289 | 80.16 258 | 85.49 376 | 92.14 321 | 90.41 157 | 94.93 179 | 95.79 210 | 85.10 240 | 96.93 311 | 85.15 265 | 94.19 350 | 97.57 210 |
|
| Fast-Effi-MVS+-dtu | | | 92.77 179 | 92.16 191 | 94.58 126 | 94.66 290 | 88.25 123 | 92.05 221 | 96.65 192 | 89.62 169 | 90.08 312 | 91.23 343 | 92.56 115 | 98.60 176 | 86.30 253 | 96.27 296 | 96.90 248 |
|
| UnsupCasMVSNet_eth | | | 90.33 238 | 90.34 237 | 90.28 284 | 94.64 291 | 80.24 257 | 89.69 299 | 95.88 227 | 85.77 243 | 93.94 212 | 95.69 217 | 81.99 271 | 92.98 384 | 84.21 279 | 91.30 387 | 97.62 207 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 259 | 89.05 259 | 90.92 266 | 94.58 292 | 81.21 250 | 91.10 254 | 93.41 296 | 77.03 347 | 93.41 224 | 93.99 282 | 83.23 254 | 97.80 254 | 79.93 325 | 94.80 334 | 93.74 361 |
|
| OpenMVS |  | 89.45 8 | 92.27 196 | 92.13 194 | 92.68 199 | 94.53 293 | 84.10 208 | 95.70 80 | 97.03 163 | 82.44 296 | 91.14 294 | 96.42 169 | 88.47 189 | 98.38 199 | 85.95 256 | 97.47 254 | 95.55 312 |
|
| thres200 | | | 85.85 325 | 85.18 326 | 87.88 336 | 94.44 294 | 72.52 365 | 89.08 316 | 86.21 369 | 88.57 193 | 91.44 287 | 88.40 377 | 64.22 374 | 98.00 234 | 68.35 395 | 95.88 305 | 93.12 371 |
|
| DELS-MVS | | | 92.05 200 | 92.16 191 | 91.72 233 | 94.44 294 | 80.13 261 | 87.62 336 | 97.25 148 | 87.34 219 | 92.22 274 | 93.18 306 | 89.54 182 | 98.73 154 | 89.67 182 | 98.20 207 | 96.30 274 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| N_pmnet | | | 88.90 275 | 87.25 298 | 93.83 157 | 94.40 296 | 93.81 39 | 84.73 382 | 87.09 363 | 79.36 328 | 93.26 233 | 92.43 324 | 79.29 290 | 91.68 389 | 77.50 346 | 97.22 263 | 96.00 289 |
|
| pmmvs4 | | | 88.95 274 | 87.70 291 | 92.70 197 | 94.30 297 | 85.60 187 | 87.22 345 | 92.16 320 | 74.62 362 | 89.75 322 | 94.19 273 | 77.97 302 | 96.41 328 | 82.71 290 | 96.36 293 | 96.09 285 |
|
| new-patchmatchnet | | | 88.97 273 | 90.79 226 | 83.50 383 | 94.28 298 | 55.83 418 | 85.34 378 | 93.56 292 | 86.18 235 | 95.47 145 | 95.73 216 | 83.10 255 | 96.51 324 | 85.40 262 | 98.06 218 | 98.16 150 |
|
| API-MVS | | | 91.52 210 | 91.61 205 | 91.26 253 | 94.16 299 | 86.26 170 | 94.66 124 | 94.82 264 | 91.17 137 | 92.13 277 | 91.08 346 | 90.03 178 | 97.06 305 | 79.09 335 | 97.35 260 | 90.45 395 |
|
| MSDG | | | 90.82 219 | 90.67 229 | 91.26 253 | 94.16 299 | 83.08 224 | 86.63 360 | 96.19 217 | 90.60 151 | 91.94 280 | 91.89 334 | 89.16 185 | 95.75 346 | 80.96 314 | 94.51 340 | 94.95 329 |
|
| TR-MVS | | | 87.70 296 | 87.17 300 | 89.27 308 | 94.11 301 | 79.26 284 | 88.69 326 | 91.86 326 | 81.94 301 | 90.69 301 | 89.79 361 | 82.82 261 | 97.42 282 | 72.65 378 | 91.98 384 | 91.14 391 |
|
| test_yl | | | 90.11 246 | 89.73 251 | 91.26 253 | 94.09 302 | 79.82 271 | 90.44 272 | 92.65 309 | 90.90 140 | 93.19 238 | 93.30 301 | 73.90 329 | 98.03 228 | 82.23 298 | 96.87 277 | 95.93 293 |
|
| DCV-MVSNet | | | 90.11 246 | 89.73 251 | 91.26 253 | 94.09 302 | 79.82 271 | 90.44 272 | 92.65 309 | 90.90 140 | 93.19 238 | 93.30 301 | 73.90 329 | 98.03 228 | 82.23 298 | 96.87 277 | 95.93 293 |
|
| RRT-MVS | | | 92.28 194 | 93.01 169 | 90.07 291 | 94.06 304 | 73.01 360 | 95.36 95 | 97.88 92 | 92.24 98 | 95.16 167 | 97.52 86 | 78.51 298 | 99.29 73 | 90.55 152 | 95.83 306 | 97.92 177 |
|
| D2MVS | | | 89.93 252 | 89.60 253 | 90.92 266 | 94.03 305 | 78.40 300 | 88.69 326 | 94.85 262 | 78.96 333 | 93.08 240 | 95.09 241 | 74.57 327 | 96.94 309 | 88.19 215 | 98.96 122 | 97.41 221 |
|
| sss | | | 87.23 309 | 86.82 308 | 88.46 325 | 93.96 306 | 77.94 305 | 86.84 353 | 92.78 307 | 77.59 341 | 87.61 357 | 91.83 335 | 78.75 293 | 91.92 388 | 77.84 341 | 94.20 348 | 95.52 313 |
|
| PVSNet | | 76.22 20 | 82.89 352 | 82.37 351 | 84.48 374 | 93.96 306 | 64.38 405 | 78.60 406 | 88.61 347 | 71.50 381 | 84.43 380 | 86.36 391 | 74.27 328 | 94.60 367 | 69.87 393 | 93.69 359 | 94.46 344 |
|
| IterMVS-SCA-FT | | | 91.65 206 | 91.55 206 | 91.94 226 | 93.89 308 | 79.22 286 | 87.56 339 | 93.51 293 | 91.53 129 | 95.37 152 | 96.62 159 | 78.65 294 | 98.90 122 | 91.89 119 | 94.95 329 | 97.70 202 |
|
| UGNet | | | 93.08 166 | 92.50 185 | 94.79 111 | 93.87 309 | 87.99 128 | 95.07 111 | 94.26 279 | 90.64 149 | 87.33 360 | 97.67 74 | 86.89 219 | 98.49 188 | 88.10 218 | 98.71 154 | 97.91 178 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PAPM | | | 81.91 361 | 80.11 371 | 87.31 342 | 93.87 309 | 72.32 367 | 84.02 390 | 93.22 298 | 69.47 395 | 76.13 413 | 89.84 358 | 72.15 337 | 97.23 292 | 53.27 415 | 89.02 397 | 92.37 382 |
|
| CANet | | | 92.38 191 | 91.99 197 | 93.52 172 | 93.82 311 | 83.46 215 | 91.14 252 | 97.00 165 | 89.81 165 | 86.47 364 | 94.04 278 | 87.90 200 | 99.21 82 | 89.50 185 | 98.27 197 | 97.90 179 |
|
| test_fmvs3 | | | 92.42 189 | 92.40 188 | 92.46 212 | 93.80 312 | 87.28 139 | 93.86 155 | 97.05 162 | 76.86 348 | 96.25 104 | 98.66 21 | 82.87 259 | 91.26 391 | 95.44 24 | 96.83 279 | 98.82 82 |
|
| HY-MVS | | 82.50 18 | 86.81 320 | 85.93 322 | 89.47 302 | 93.63 313 | 77.93 306 | 94.02 149 | 91.58 330 | 75.68 353 | 83.64 386 | 93.64 291 | 77.40 307 | 97.42 282 | 71.70 383 | 92.07 383 | 93.05 374 |
|
| test_vis1_n_1920 | | | 89.45 260 | 89.85 247 | 88.28 327 | 93.59 314 | 76.71 326 | 90.67 266 | 97.78 105 | 79.67 322 | 90.30 309 | 96.11 195 | 76.62 319 | 92.17 387 | 90.31 161 | 93.57 360 | 95.96 291 |
|
| MVS_Test | | | 92.57 186 | 93.29 163 | 90.40 282 | 93.53 315 | 75.85 335 | 92.52 198 | 96.96 168 | 88.73 187 | 92.35 269 | 96.70 155 | 90.77 157 | 98.37 203 | 92.53 103 | 95.49 313 | 96.99 245 |
|
| EU-MVSNet | | | 87.39 306 | 86.71 311 | 89.44 303 | 93.40 316 | 76.11 332 | 94.93 117 | 90.00 341 | 57.17 414 | 95.71 135 | 97.37 97 | 64.77 373 | 97.68 268 | 92.67 100 | 94.37 343 | 94.52 343 |
|
| MS-PatchMatch | | | 88.05 291 | 87.75 289 | 88.95 312 | 93.28 317 | 77.93 306 | 87.88 335 | 92.49 314 | 75.42 356 | 92.57 259 | 93.59 295 | 80.44 283 | 94.24 375 | 81.28 309 | 92.75 375 | 94.69 341 |
|
| GA-MVS | | | 87.70 296 | 86.82 308 | 90.31 283 | 93.27 318 | 77.22 318 | 84.72 384 | 92.79 306 | 85.11 260 | 89.82 318 | 90.07 356 | 66.80 359 | 97.76 261 | 84.56 276 | 94.27 346 | 95.96 291 |
|
| pmmvs5 | | | 87.87 293 | 87.14 301 | 90.07 291 | 93.26 319 | 76.97 323 | 88.89 319 | 92.18 318 | 73.71 368 | 88.36 344 | 93.89 286 | 76.86 318 | 96.73 319 | 80.32 316 | 96.81 280 | 96.51 262 |
|
| IterMVS | | | 90.18 242 | 90.16 239 | 90.21 288 | 93.15 320 | 75.98 334 | 87.56 339 | 92.97 302 | 86.43 230 | 94.09 202 | 96.40 171 | 78.32 299 | 97.43 281 | 87.87 225 | 94.69 337 | 97.23 234 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MVS-HIRNet | | | 78.83 380 | 80.60 366 | 73.51 398 | 93.07 321 | 47.37 422 | 87.10 348 | 78.00 413 | 68.94 396 | 77.53 411 | 97.26 109 | 71.45 341 | 94.62 366 | 63.28 407 | 88.74 398 | 78.55 413 |
|
| diffmvs |  | | 91.74 204 | 91.93 199 | 91.15 259 | 93.06 322 | 78.17 304 | 88.77 324 | 97.51 127 | 86.28 231 | 92.42 265 | 93.96 283 | 88.04 196 | 97.46 279 | 90.69 149 | 96.67 286 | 97.82 191 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ET-MVSNet_ETH3D | | | 86.15 323 | 84.27 334 | 91.79 230 | 93.04 323 | 81.28 247 | 87.17 347 | 86.14 370 | 79.57 323 | 83.65 385 | 88.66 373 | 57.10 394 | 98.18 218 | 87.74 227 | 95.40 316 | 95.90 296 |
|
| FMVSNet3 | | | 90.78 221 | 90.32 238 | 92.16 221 | 93.03 324 | 79.92 269 | 92.54 197 | 94.95 260 | 86.17 236 | 95.10 170 | 96.01 200 | 69.97 347 | 98.75 150 | 86.74 241 | 98.38 186 | 97.82 191 |
|
| ETVMVS | | | 79.85 376 | 77.94 383 | 85.59 362 | 92.97 325 | 66.20 396 | 86.13 369 | 80.99 404 | 81.41 305 | 83.52 388 | 83.89 403 | 41.81 420 | 94.98 365 | 56.47 413 | 94.25 347 | 95.61 311 |
|
| thisisatest0515 | | | 84.72 335 | 82.99 346 | 89.90 296 | 92.96 326 | 75.33 340 | 84.36 387 | 83.42 393 | 77.37 343 | 88.27 346 | 86.65 387 | 53.94 400 | 98.72 155 | 82.56 293 | 97.40 258 | 95.67 306 |
|
| testing91 | | | 83.56 346 | 82.45 350 | 86.91 348 | 92.92 327 | 67.29 387 | 86.33 366 | 88.07 355 | 86.22 233 | 84.26 381 | 85.76 394 | 48.15 407 | 97.17 297 | 76.27 356 | 94.08 354 | 96.27 277 |
|
| UBG | | | 80.28 374 | 78.94 377 | 84.31 377 | 92.86 328 | 61.77 409 | 83.87 391 | 83.31 395 | 77.33 344 | 82.78 394 | 83.72 404 | 47.60 408 | 96.06 339 | 65.47 403 | 93.48 363 | 95.11 324 |
|
| PAPR | | | 87.65 299 | 86.77 310 | 90.27 285 | 92.85 329 | 77.38 315 | 88.56 329 | 96.23 214 | 76.82 350 | 84.98 375 | 89.75 363 | 86.08 229 | 97.16 299 | 72.33 379 | 93.35 365 | 96.26 278 |
|
| WBMVS | | | 84.00 342 | 83.48 341 | 85.56 363 | 92.71 330 | 61.52 410 | 83.82 393 | 89.38 344 | 79.56 324 | 90.74 299 | 93.20 305 | 48.21 406 | 97.28 289 | 75.63 361 | 98.10 215 | 97.88 182 |
|
| testing11 | | | 81.98 360 | 80.52 367 | 86.38 357 | 92.69 331 | 67.13 388 | 85.79 373 | 84.80 387 | 82.16 299 | 81.19 405 | 85.41 397 | 45.24 410 | 96.88 314 | 74.14 369 | 93.24 367 | 95.14 321 |
|
| test_vis3_rt | | | 90.40 232 | 90.03 243 | 91.52 243 | 92.58 332 | 88.95 106 | 90.38 276 | 97.72 109 | 73.30 370 | 97.79 33 | 97.51 90 | 77.05 312 | 87.10 408 | 89.03 201 | 94.89 330 | 98.50 123 |
|
| test_vis1_n | | | 89.01 271 | 89.01 261 | 89.03 311 | 92.57 333 | 82.46 233 | 92.62 195 | 96.06 221 | 73.02 373 | 90.40 306 | 95.77 214 | 74.86 326 | 89.68 400 | 90.78 146 | 94.98 328 | 94.95 329 |
|
| testing99 | | | 82.94 351 | 81.72 354 | 86.59 351 | 92.55 334 | 66.53 393 | 86.08 370 | 85.70 375 | 85.47 254 | 83.95 383 | 85.70 395 | 45.87 409 | 97.07 304 | 76.58 353 | 93.56 361 | 96.17 284 |
|
| EI-MVSNet-Vis-set | | | 94.36 124 | 94.28 132 | 94.61 120 | 92.55 334 | 85.98 177 | 92.44 204 | 94.69 270 | 93.70 68 | 96.12 114 | 95.81 209 | 91.24 144 | 98.86 129 | 93.76 59 | 98.22 204 | 98.98 60 |
|
| testing222 | | | 80.54 371 | 78.53 379 | 86.58 352 | 92.54 336 | 68.60 384 | 86.24 367 | 82.72 396 | 83.78 278 | 82.68 395 | 84.24 402 | 39.25 422 | 95.94 343 | 60.25 409 | 95.09 326 | 95.20 317 |
|
| EI-MVSNet-UG-set | | | 94.35 125 | 94.27 134 | 94.59 124 | 92.46 337 | 85.87 180 | 92.42 206 | 94.69 270 | 93.67 71 | 96.13 113 | 95.84 207 | 91.20 147 | 98.86 129 | 93.78 56 | 98.23 202 | 99.03 52 |
|
| MVS_0304 | | | 92.88 173 | 92.27 189 | 94.69 116 | 92.35 338 | 86.03 176 | 92.88 186 | 89.68 342 | 90.53 152 | 91.52 285 | 96.43 168 | 82.52 266 | 99.32 71 | 95.01 32 | 99.54 36 | 98.71 99 |
|
| FMVSNet5 | | | 87.82 295 | 86.56 314 | 91.62 238 | 92.31 339 | 79.81 273 | 93.49 166 | 94.81 266 | 83.26 281 | 91.36 288 | 96.93 137 | 52.77 403 | 97.49 278 | 76.07 357 | 98.03 221 | 97.55 213 |
|
| c3_l | | | 91.32 215 | 91.42 211 | 91.00 264 | 92.29 340 | 76.79 325 | 87.52 342 | 96.42 206 | 85.76 244 | 94.72 189 | 93.89 286 | 82.73 262 | 98.16 220 | 90.93 144 | 98.55 170 | 98.04 159 |
|
| dmvs_re | | | 84.69 336 | 83.94 338 | 86.95 347 | 92.24 341 | 82.93 227 | 89.51 303 | 87.37 361 | 84.38 272 | 85.37 369 | 85.08 399 | 72.44 335 | 86.59 409 | 68.05 396 | 91.03 391 | 91.33 389 |
|
| MDA-MVSNet_test_wron | | | 88.16 290 | 88.23 281 | 87.93 333 | 92.22 342 | 73.71 354 | 80.71 404 | 88.84 345 | 82.52 294 | 94.88 182 | 95.14 238 | 82.70 263 | 93.61 378 | 83.28 285 | 93.80 357 | 96.46 268 |
|
| YYNet1 | | | 88.17 289 | 88.24 280 | 87.93 333 | 92.21 343 | 73.62 355 | 80.75 403 | 88.77 346 | 82.51 295 | 94.99 177 | 95.11 240 | 82.70 263 | 93.70 377 | 83.33 284 | 93.83 356 | 96.48 266 |
|
| CANet_DTU | | | 89.85 254 | 89.17 257 | 91.87 227 | 92.20 344 | 80.02 266 | 90.79 261 | 95.87 228 | 86.02 238 | 82.53 396 | 91.77 336 | 80.01 285 | 98.57 180 | 85.66 260 | 97.70 242 | 97.01 244 |
|
| test_cas_vis1_n_1920 | | | 88.25 288 | 88.27 278 | 88.20 329 | 92.19 345 | 78.92 291 | 89.45 305 | 95.44 245 | 75.29 360 | 93.23 236 | 95.65 219 | 71.58 340 | 90.23 398 | 88.05 220 | 93.55 362 | 95.44 314 |
|
| mvs_anonymous | | | 90.37 236 | 91.30 215 | 87.58 339 | 92.17 346 | 68.00 386 | 89.84 294 | 94.73 269 | 83.82 277 | 93.22 237 | 97.40 95 | 87.54 204 | 97.40 284 | 87.94 224 | 95.05 327 | 97.34 228 |
|
| EI-MVSNet | | | 92.99 169 | 93.26 167 | 92.19 217 | 92.12 347 | 79.21 287 | 92.32 211 | 94.67 272 | 91.77 119 | 95.24 163 | 95.85 205 | 87.14 212 | 98.49 188 | 91.99 115 | 98.26 198 | 98.86 78 |
|
| CVMVSNet | | | 85.16 330 | 84.72 328 | 86.48 353 | 92.12 347 | 70.19 375 | 92.32 211 | 88.17 353 | 56.15 415 | 90.64 302 | 95.85 205 | 67.97 354 | 96.69 320 | 88.78 207 | 90.52 392 | 92.56 380 |
|
| test_fmvs1_n | | | 88.73 280 | 88.38 273 | 89.76 298 | 92.06 349 | 82.53 231 | 92.30 214 | 96.59 196 | 71.14 383 | 92.58 258 | 95.41 232 | 68.55 350 | 89.57 402 | 91.12 138 | 95.66 309 | 97.18 237 |
|
| eth_miper_zixun_eth | | | 90.72 222 | 90.61 230 | 91.05 260 | 92.04 350 | 76.84 324 | 86.91 351 | 96.67 191 | 85.21 256 | 94.41 194 | 93.92 284 | 79.53 288 | 98.26 211 | 89.76 180 | 97.02 270 | 98.06 156 |
|
| SCA | | | 87.43 305 | 87.21 299 | 88.10 331 | 92.01 351 | 71.98 368 | 89.43 306 | 88.11 354 | 82.26 298 | 88.71 338 | 92.83 312 | 78.65 294 | 97.59 272 | 79.61 329 | 93.30 366 | 94.75 338 |
|
| dmvs_testset | | | 78.23 381 | 78.99 375 | 75.94 396 | 91.99 352 | 55.34 419 | 88.86 320 | 78.70 411 | 82.69 291 | 81.64 403 | 79.46 411 | 75.93 322 | 85.74 411 | 48.78 417 | 82.85 410 | 86.76 404 |
|
| UWE-MVS | | | 80.29 373 | 79.10 374 | 83.87 380 | 91.97 353 | 59.56 414 | 86.50 365 | 77.43 415 | 75.40 357 | 87.79 354 | 88.10 379 | 44.08 414 | 96.90 313 | 64.23 404 | 96.36 293 | 95.14 321 |
|
| test_fmvs2 | | | 90.62 227 | 90.40 236 | 91.29 251 | 91.93 354 | 85.46 190 | 92.70 191 | 96.48 204 | 74.44 363 | 94.91 180 | 97.59 79 | 75.52 324 | 90.57 394 | 93.44 72 | 96.56 288 | 97.84 188 |
|
| cl____ | | | 90.65 225 | 90.56 232 | 90.91 268 | 91.85 355 | 76.98 322 | 86.75 356 | 95.36 250 | 85.53 251 | 94.06 205 | 94.89 248 | 77.36 310 | 97.98 237 | 90.27 164 | 98.98 115 | 97.76 197 |
|
| DIV-MVS_self_test | | | 90.65 225 | 90.56 232 | 90.91 268 | 91.85 355 | 76.99 321 | 86.75 356 | 95.36 250 | 85.52 253 | 94.06 205 | 94.89 248 | 77.37 309 | 97.99 236 | 90.28 163 | 98.97 120 | 97.76 197 |
|
| our_test_3 | | | 87.55 302 | 87.59 292 | 87.44 341 | 91.76 357 | 70.48 374 | 83.83 392 | 90.55 339 | 79.79 319 | 92.06 279 | 92.17 329 | 78.63 296 | 95.63 347 | 84.77 273 | 94.73 335 | 96.22 280 |
|
| ppachtmachnet_test | | | 88.61 282 | 88.64 268 | 88.50 323 | 91.76 357 | 70.99 373 | 84.59 385 | 92.98 301 | 79.30 330 | 92.38 267 | 93.53 297 | 79.57 287 | 97.45 280 | 86.50 250 | 97.17 265 | 97.07 239 |
|
| Syy-MVS | | | 84.81 333 | 84.93 327 | 84.42 375 | 91.71 359 | 63.36 408 | 85.89 371 | 81.49 400 | 81.03 308 | 85.13 372 | 81.64 409 | 77.44 306 | 95.00 362 | 85.94 257 | 94.12 351 | 94.91 332 |
|
| myMVS_eth3d | | | 79.62 377 | 78.26 380 | 83.72 381 | 91.71 359 | 61.25 412 | 85.89 371 | 81.49 400 | 81.03 308 | 85.13 372 | 81.64 409 | 32.12 423 | 95.00 362 | 71.17 389 | 94.12 351 | 94.91 332 |
|
| 1314 | | | 86.46 322 | 86.33 319 | 86.87 349 | 91.65 361 | 74.54 345 | 91.94 227 | 94.10 281 | 74.28 364 | 84.78 377 | 87.33 386 | 83.03 257 | 95.00 362 | 78.72 336 | 91.16 389 | 91.06 392 |
|
| WB-MVSnew | | | 84.20 340 | 83.89 339 | 85.16 369 | 91.62 362 | 66.15 397 | 88.44 331 | 81.00 403 | 76.23 352 | 87.98 350 | 87.77 381 | 84.98 242 | 93.35 381 | 62.85 408 | 94.10 353 | 95.98 290 |
|
| miper_ehance_all_eth | | | 90.48 229 | 90.42 235 | 90.69 274 | 91.62 362 | 76.57 328 | 86.83 354 | 96.18 218 | 83.38 279 | 94.06 205 | 92.66 319 | 82.20 268 | 98.04 227 | 89.79 179 | 97.02 270 | 97.45 218 |
|
| cascas | | | 87.02 317 | 86.28 320 | 89.25 309 | 91.56 364 | 76.45 329 | 84.33 388 | 96.78 183 | 71.01 385 | 86.89 363 | 85.91 393 | 81.35 276 | 96.94 309 | 83.09 287 | 95.60 310 | 94.35 347 |
|
| baseline2 | | | 83.38 347 | 81.54 357 | 88.90 313 | 91.38 365 | 72.84 363 | 88.78 323 | 81.22 402 | 78.97 332 | 79.82 408 | 87.56 382 | 61.73 386 | 97.80 254 | 74.30 368 | 90.05 394 | 96.05 288 |
|
| miper_lstm_enhance | | | 89.90 253 | 89.80 248 | 90.19 290 | 91.37 366 | 77.50 313 | 83.82 393 | 95.00 258 | 84.84 266 | 93.05 242 | 94.96 246 | 76.53 321 | 95.20 360 | 89.96 176 | 98.67 160 | 97.86 185 |
|
| mvsany_test3 | | | 89.11 267 | 88.21 283 | 91.83 228 | 91.30 367 | 90.25 83 | 88.09 333 | 78.76 410 | 76.37 351 | 96.43 93 | 98.39 36 | 83.79 250 | 90.43 397 | 86.57 246 | 94.20 348 | 94.80 335 |
|
| IB-MVS | | 77.21 19 | 83.11 348 | 81.05 360 | 89.29 307 | 91.15 368 | 75.85 335 | 85.66 375 | 86.00 372 | 79.70 321 | 82.02 400 | 86.61 388 | 48.26 405 | 98.39 196 | 77.84 341 | 92.22 381 | 93.63 364 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVS | | | 84.98 332 | 84.30 333 | 87.01 344 | 91.03 369 | 77.69 312 | 91.94 227 | 94.16 280 | 59.36 413 | 84.23 382 | 87.50 384 | 85.66 233 | 96.80 317 | 71.79 381 | 93.05 373 | 86.54 405 |
|
| CR-MVSNet | | | 87.89 292 | 87.12 303 | 90.22 287 | 91.01 370 | 78.93 289 | 92.52 198 | 92.81 304 | 73.08 372 | 89.10 328 | 96.93 137 | 67.11 356 | 97.64 271 | 88.80 206 | 92.70 376 | 94.08 350 |
|
| RPMNet | | | 90.31 240 | 90.14 242 | 90.81 272 | 91.01 370 | 78.93 289 | 92.52 198 | 98.12 59 | 91.91 107 | 89.10 328 | 96.89 140 | 68.84 349 | 99.41 42 | 90.17 169 | 92.70 376 | 94.08 350 |
|
| reproduce_monomvs | | | 87.13 314 | 86.90 306 | 87.84 337 | 90.92 372 | 68.15 385 | 91.19 251 | 93.75 288 | 85.84 241 | 94.21 200 | 95.83 208 | 42.99 416 | 97.10 301 | 89.46 186 | 97.88 233 | 98.26 142 |
|
| new_pmnet | | | 81.22 364 | 81.01 362 | 81.86 387 | 90.92 372 | 70.15 376 | 84.03 389 | 80.25 408 | 70.83 386 | 85.97 367 | 89.78 362 | 67.93 355 | 84.65 413 | 67.44 398 | 91.90 385 | 90.78 393 |
|
| PatchT | | | 87.51 303 | 88.17 284 | 85.55 364 | 90.64 374 | 66.91 390 | 92.02 223 | 86.09 371 | 92.20 99 | 89.05 330 | 97.16 119 | 64.15 375 | 96.37 331 | 89.21 197 | 92.98 374 | 93.37 369 |
|
| Patchmatch-test | | | 86.10 324 | 86.01 321 | 86.38 357 | 90.63 375 | 74.22 352 | 89.57 301 | 86.69 366 | 85.73 245 | 89.81 319 | 92.83 312 | 65.24 371 | 91.04 392 | 77.82 343 | 95.78 307 | 93.88 358 |
|
| PVSNet_0 | | 70.34 21 | 74.58 382 | 72.96 385 | 79.47 393 | 90.63 375 | 66.24 395 | 73.26 409 | 83.40 394 | 63.67 410 | 78.02 410 | 78.35 413 | 72.53 334 | 89.59 401 | 56.68 412 | 60.05 417 | 82.57 411 |
|
| MonoMVSNet | | | 88.46 284 | 89.28 255 | 85.98 360 | 90.52 377 | 70.07 379 | 95.31 101 | 94.81 266 | 88.38 197 | 93.47 223 | 96.13 194 | 73.21 332 | 95.07 361 | 82.61 292 | 89.12 396 | 92.81 377 |
|
| PMMVS2 | | | 81.31 363 | 83.44 342 | 74.92 397 | 90.52 377 | 46.49 423 | 69.19 413 | 85.23 385 | 84.30 273 | 87.95 351 | 94.71 257 | 76.95 315 | 84.36 414 | 64.07 405 | 98.09 216 | 93.89 357 |
|
| tpm | | | 84.38 338 | 84.08 335 | 85.30 367 | 90.47 379 | 63.43 407 | 89.34 309 | 85.63 377 | 77.24 346 | 87.62 356 | 95.03 244 | 61.00 389 | 97.30 288 | 79.26 333 | 91.09 390 | 95.16 319 |
|
| wuyk23d | | | 87.83 294 | 90.79 226 | 78.96 394 | 90.46 380 | 88.63 112 | 92.72 189 | 90.67 338 | 91.65 125 | 98.68 12 | 97.64 76 | 96.06 15 | 77.53 416 | 59.84 410 | 99.41 54 | 70.73 414 |
|
| Patchmtry | | | 90.11 246 | 89.92 245 | 90.66 275 | 90.35 381 | 77.00 320 | 92.96 182 | 92.81 304 | 90.25 159 | 94.74 187 | 96.93 137 | 67.11 356 | 97.52 275 | 85.17 263 | 98.98 115 | 97.46 217 |
|
| test_f | | | 86.65 321 | 87.13 302 | 85.19 368 | 90.28 382 | 86.11 174 | 86.52 364 | 91.66 328 | 69.76 393 | 95.73 134 | 97.21 116 | 69.51 348 | 81.28 415 | 89.15 198 | 94.40 341 | 88.17 401 |
|
| CHOSEN 280x420 | | | 80.04 375 | 77.97 382 | 86.23 359 | 90.13 383 | 74.53 346 | 72.87 411 | 89.59 343 | 66.38 403 | 76.29 412 | 85.32 398 | 56.96 395 | 95.36 355 | 69.49 394 | 94.72 336 | 88.79 399 |
|
| MVSTER | | | 89.32 263 | 88.75 267 | 91.03 261 | 90.10 384 | 76.62 327 | 90.85 259 | 94.67 272 | 82.27 297 | 95.24 163 | 95.79 210 | 61.09 388 | 98.49 188 | 90.49 153 | 98.26 198 | 97.97 171 |
|
| tpm2 | | | 81.46 362 | 80.35 369 | 84.80 371 | 89.90 385 | 65.14 401 | 90.44 272 | 85.36 381 | 65.82 406 | 82.05 399 | 92.44 323 | 57.94 393 | 96.69 320 | 70.71 390 | 88.49 399 | 92.56 380 |
|
| cl22 | | | 89.02 269 | 88.50 270 | 90.59 277 | 89.76 386 | 76.45 329 | 86.62 361 | 94.03 282 | 82.98 289 | 92.65 255 | 92.49 320 | 72.05 338 | 97.53 274 | 88.93 202 | 97.02 270 | 97.78 195 |
|
| test0.0.03 1 | | | 82.48 354 | 81.47 358 | 85.48 365 | 89.70 387 | 73.57 356 | 84.73 382 | 81.64 399 | 83.07 287 | 88.13 348 | 86.61 388 | 62.86 382 | 89.10 405 | 66.24 401 | 90.29 393 | 93.77 360 |
|
| ttmdpeth | | | 86.91 319 | 86.57 313 | 87.91 335 | 89.68 388 | 74.24 351 | 91.49 243 | 87.09 363 | 79.84 317 | 89.46 325 | 97.86 65 | 65.42 368 | 91.04 392 | 81.57 306 | 96.74 285 | 98.44 129 |
|
| test-LLR | | | 83.58 345 | 83.17 344 | 84.79 372 | 89.68 388 | 66.86 391 | 83.08 395 | 84.52 388 | 83.07 287 | 82.85 392 | 84.78 400 | 62.86 382 | 93.49 379 | 82.85 288 | 94.86 331 | 94.03 353 |
|
| test-mter | | | 81.21 365 | 80.01 372 | 84.79 372 | 89.68 388 | 66.86 391 | 83.08 395 | 84.52 388 | 73.85 367 | 82.85 392 | 84.78 400 | 43.66 415 | 93.49 379 | 82.85 288 | 94.86 331 | 94.03 353 |
|
| DSMNet-mixed | | | 82.21 356 | 81.56 355 | 84.16 378 | 89.57 391 | 70.00 380 | 90.65 267 | 77.66 414 | 54.99 416 | 83.30 390 | 97.57 80 | 77.89 303 | 90.50 396 | 66.86 400 | 95.54 312 | 91.97 384 |
|
| PatchmatchNet |  | | 85.22 329 | 84.64 329 | 86.98 345 | 89.51 392 | 69.83 381 | 90.52 270 | 87.34 362 | 78.87 334 | 87.22 361 | 92.74 316 | 66.91 358 | 96.53 322 | 81.77 302 | 86.88 402 | 94.58 342 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | | 83.88 340 | | 89.42 393 | 61.52 410 | 88.74 325 | 87.41 360 | 73.99 366 | 84.96 376 | 94.01 281 | 65.25 370 | 95.53 348 | 78.02 339 | 93.16 369 | |
|
| CostFormer | | | 83.09 349 | 82.21 352 | 85.73 361 | 89.27 394 | 67.01 389 | 90.35 277 | 86.47 368 | 70.42 390 | 83.52 388 | 93.23 304 | 61.18 387 | 96.85 315 | 77.21 348 | 88.26 400 | 93.34 370 |
|
| ADS-MVSNet2 | | | 84.01 341 | 82.20 353 | 89.41 304 | 89.04 395 | 76.37 331 | 87.57 337 | 90.98 334 | 72.71 376 | 84.46 378 | 92.45 321 | 68.08 352 | 96.48 325 | 70.58 391 | 83.97 406 | 95.38 315 |
|
| ADS-MVSNet | | | 82.25 355 | 81.55 356 | 84.34 376 | 89.04 395 | 65.30 399 | 87.57 337 | 85.13 386 | 72.71 376 | 84.46 378 | 92.45 321 | 68.08 352 | 92.33 386 | 70.58 391 | 83.97 406 | 95.38 315 |
|
| tpm cat1 | | | 80.61 370 | 79.46 373 | 84.07 379 | 88.78 397 | 65.06 403 | 89.26 312 | 88.23 351 | 62.27 411 | 81.90 401 | 89.66 365 | 62.70 384 | 95.29 358 | 71.72 382 | 80.60 413 | 91.86 387 |
|
| CMPMVS |  | 68.83 22 | 87.28 308 | 85.67 324 | 92.09 223 | 88.77 398 | 85.42 191 | 90.31 279 | 94.38 275 | 70.02 392 | 88.00 349 | 93.30 301 | 73.78 331 | 94.03 376 | 75.96 359 | 96.54 289 | 96.83 252 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| miper_enhance_ethall | | | 88.42 285 | 87.87 288 | 90.07 291 | 88.67 399 | 75.52 338 | 85.10 379 | 95.59 239 | 75.68 353 | 92.49 260 | 89.45 367 | 78.96 291 | 97.88 245 | 87.86 226 | 97.02 270 | 96.81 253 |
|
| test_fmvs1 | | | 87.59 301 | 87.27 297 | 88.54 321 | 88.32 400 | 81.26 248 | 90.43 275 | 95.72 232 | 70.55 389 | 91.70 283 | 94.63 259 | 68.13 351 | 89.42 403 | 90.59 150 | 95.34 319 | 94.94 331 |
|
| test_vis1_rt | | | 85.58 327 | 84.58 330 | 88.60 320 | 87.97 401 | 86.76 153 | 85.45 377 | 93.59 290 | 66.43 402 | 87.64 355 | 89.20 370 | 79.33 289 | 85.38 412 | 81.59 305 | 89.98 395 | 93.66 363 |
|
| tpmrst | | | 82.85 353 | 82.93 347 | 82.64 385 | 87.65 402 | 58.99 416 | 90.14 284 | 87.90 357 | 75.54 355 | 83.93 384 | 91.63 339 | 66.79 361 | 95.36 355 | 81.21 311 | 81.54 412 | 93.57 368 |
|
| JIA-IIPM | | | 85.08 331 | 83.04 345 | 91.19 258 | 87.56 403 | 86.14 173 | 89.40 308 | 84.44 390 | 88.98 182 | 82.20 397 | 97.95 56 | 56.82 396 | 96.15 335 | 76.55 354 | 83.45 408 | 91.30 390 |
|
| TESTMET0.1,1 | | | 79.09 379 | 78.04 381 | 82.25 386 | 87.52 404 | 64.03 406 | 83.08 395 | 80.62 406 | 70.28 391 | 80.16 407 | 83.22 406 | 44.13 413 | 90.56 395 | 79.95 323 | 93.36 364 | 92.15 383 |
|
| gg-mvs-nofinetune | | | 82.10 359 | 81.02 361 | 85.34 366 | 87.46 405 | 71.04 371 | 94.74 121 | 67.56 419 | 96.44 26 | 79.43 409 | 98.99 8 | 45.24 410 | 96.15 335 | 67.18 399 | 92.17 382 | 88.85 398 |
|
| pmmvs3 | | | 80.83 368 | 78.96 376 | 86.45 354 | 87.23 406 | 77.48 314 | 84.87 381 | 82.31 397 | 63.83 409 | 85.03 374 | 89.50 366 | 49.66 404 | 93.10 382 | 73.12 376 | 95.10 325 | 88.78 400 |
|
| tpmvs | | | 84.22 339 | 83.97 337 | 84.94 370 | 87.09 407 | 65.18 400 | 91.21 250 | 88.35 349 | 82.87 290 | 85.21 370 | 90.96 348 | 65.24 371 | 96.75 318 | 79.60 331 | 85.25 405 | 92.90 376 |
|
| gm-plane-assit | | | | | | 87.08 408 | 59.33 415 | | | 71.22 382 | | 83.58 405 | | 97.20 294 | 73.95 370 | | |
|
| MVE |  | 59.87 23 | 73.86 383 | 72.65 386 | 77.47 395 | 87.00 409 | 74.35 348 | 61.37 415 | 60.93 421 | 67.27 400 | 69.69 416 | 86.49 390 | 81.24 280 | 72.33 418 | 56.45 414 | 83.45 408 | 85.74 406 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EPNet_dtu | | | 85.63 326 | 84.37 332 | 89.40 305 | 86.30 410 | 74.33 349 | 91.64 240 | 88.26 350 | 84.84 266 | 72.96 415 | 89.85 357 | 71.27 342 | 97.69 267 | 76.60 352 | 97.62 247 | 96.18 282 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsany_test1 | | | 83.91 343 | 82.93 347 | 86.84 350 | 86.18 411 | 85.93 178 | 81.11 402 | 75.03 417 | 70.80 388 | 88.57 342 | 94.63 259 | 83.08 256 | 87.38 407 | 80.39 315 | 86.57 403 | 87.21 403 |
|
| dp | | | 79.28 378 | 78.62 378 | 81.24 390 | 85.97 412 | 56.45 417 | 86.91 351 | 85.26 384 | 72.97 374 | 81.45 404 | 89.17 372 | 56.01 398 | 95.45 353 | 73.19 375 | 76.68 414 | 91.82 388 |
|
| EPMVS | | | 81.17 366 | 80.37 368 | 83.58 382 | 85.58 413 | 65.08 402 | 90.31 279 | 71.34 418 | 77.31 345 | 85.80 368 | 91.30 342 | 59.38 391 | 92.70 385 | 79.99 322 | 82.34 411 | 92.96 375 |
|
| E-PMN | | | 80.72 369 | 80.86 363 | 80.29 392 | 85.11 414 | 68.77 383 | 72.96 410 | 81.97 398 | 87.76 211 | 83.25 391 | 83.01 407 | 62.22 385 | 89.17 404 | 77.15 349 | 94.31 345 | 82.93 409 |
|
| GG-mvs-BLEND | | | | | 83.24 384 | 85.06 415 | 71.03 372 | 94.99 116 | 65.55 420 | | 74.09 414 | 75.51 414 | 44.57 412 | 94.46 369 | 59.57 411 | 87.54 401 | 84.24 407 |
|
| EMVS | | | 80.35 372 | 80.28 370 | 80.54 391 | 84.73 416 | 69.07 382 | 72.54 412 | 80.73 405 | 87.80 209 | 81.66 402 | 81.73 408 | 62.89 381 | 89.84 399 | 75.79 360 | 94.65 338 | 82.71 410 |
|
| EPNet | | | 89.80 256 | 88.25 279 | 94.45 132 | 83.91 417 | 86.18 172 | 93.87 154 | 87.07 365 | 91.16 138 | 80.64 406 | 94.72 256 | 78.83 292 | 98.89 124 | 85.17 263 | 98.89 128 | 98.28 140 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PMMVS | | | 83.00 350 | 81.11 359 | 88.66 319 | 83.81 418 | 86.44 164 | 82.24 399 | 85.65 376 | 61.75 412 | 82.07 398 | 85.64 396 | 79.75 286 | 91.59 390 | 75.99 358 | 93.09 371 | 87.94 402 |
|
| KD-MVS_2432*1600 | | | 82.17 357 | 80.75 364 | 86.42 355 | 82.04 419 | 70.09 377 | 81.75 400 | 90.80 336 | 82.56 292 | 90.37 307 | 89.30 368 | 42.90 417 | 96.11 337 | 74.47 366 | 92.55 378 | 93.06 372 |
|
| miper_refine_blended | | | 82.17 357 | 80.75 364 | 86.42 355 | 82.04 419 | 70.09 377 | 81.75 400 | 90.80 336 | 82.56 292 | 90.37 307 | 89.30 368 | 42.90 417 | 96.11 337 | 74.47 366 | 92.55 378 | 93.06 372 |
|
| dongtai | | | 53.72 384 | 53.79 387 | 53.51 401 | 79.69 421 | 36.70 425 | 77.18 407 | 32.53 427 | 71.69 379 | 68.63 417 | 60.79 416 | 26.65 425 | 73.11 417 | 30.67 420 | 36.29 419 | 50.73 415 |
|
| MVStest1 | | | 84.79 334 | 84.06 336 | 86.98 345 | 77.73 422 | 74.76 341 | 91.08 256 | 85.63 377 | 77.70 340 | 96.86 76 | 97.97 55 | 41.05 421 | 88.24 406 | 92.22 109 | 96.28 295 | 97.94 174 |
|
| DeepMVS_CX |  | | | | 53.83 400 | 70.38 423 | 64.56 404 | | 48.52 424 | 33.01 418 | 65.50 418 | 74.21 415 | 56.19 397 | 46.64 421 | 38.45 419 | 70.07 415 | 50.30 416 |
|
| kuosan | | | 43.63 386 | 44.25 390 | 41.78 402 | 66.04 424 | 34.37 426 | 75.56 408 | 32.62 426 | 53.25 417 | 50.46 420 | 51.18 417 | 25.28 426 | 49.13 420 | 13.44 421 | 30.41 420 | 41.84 417 |
|
| test_method | | | 50.44 385 | 48.94 388 | 54.93 399 | 39.68 425 | 12.38 428 | 28.59 416 | 90.09 340 | 6.82 419 | 41.10 421 | 78.41 412 | 54.41 399 | 70.69 419 | 50.12 416 | 51.26 418 | 81.72 412 |
|
| tmp_tt | | | 37.97 387 | 44.33 389 | 18.88 403 | 11.80 426 | 21.54 427 | 63.51 414 | 45.66 425 | 4.23 420 | 51.34 419 | 50.48 418 | 59.08 392 | 22.11 422 | 44.50 418 | 68.35 416 | 13.00 418 |
|
| test123 | | | 9.49 389 | 12.01 392 | 1.91 404 | 2.87 427 | 1.30 429 | 82.38 398 | 1.34 429 | 1.36 422 | 2.84 423 | 6.56 421 | 2.45 427 | 0.97 423 | 2.73 422 | 5.56 421 | 3.47 419 |
|
| testmvs | | | 9.02 390 | 11.42 393 | 1.81 405 | 2.77 428 | 1.13 430 | 79.44 405 | 1.90 428 | 1.18 423 | 2.65 424 | 6.80 420 | 1.95 428 | 0.87 424 | 2.62 423 | 3.45 422 | 3.44 420 |
|
| mmdepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| monomultidepth | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| test_blank | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| eth-test2 | | | | | | 0.00 429 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 429 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| DCPMVS | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| cdsmvs_eth3d_5k | | | 23.35 388 | 31.13 391 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 95.58 241 | 0.00 424 | 0.00 425 | 91.15 344 | 93.43 89 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| pcd_1.5k_mvsjas | | | 7.56 391 | 10.09 394 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 90.77 157 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet-low-res | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| sosnet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uncertanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| Regformer | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| ab-mvs-re | | | 7.56 391 | 10.08 395 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 90.69 353 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| uanet | | | 0.00 393 | 0.00 396 | 0.00 406 | 0.00 429 | 0.00 431 | 0.00 417 | 0.00 430 | 0.00 424 | 0.00 425 | 0.00 424 | 0.00 429 | 0.00 425 | 0.00 424 | 0.00 423 | 0.00 421 |
|
| WAC-MVS | | | | | | | 61.25 412 | | | | | | | | 74.55 365 | | |
|
| PC_three_1452 | | | | | | | | | | 75.31 359 | 95.87 125 | 95.75 215 | 92.93 106 | 96.34 334 | 87.18 236 | 98.68 158 | 98.04 159 |
|
| test_241102_TWO | | | | | | | | | 98.10 62 | 91.95 104 | 97.54 43 | 97.25 110 | 95.37 32 | 99.35 62 | 93.29 79 | 99.25 83 | 98.49 125 |
|
| test_0728_THIRD | | | | | | | | | | 93.26 78 | 97.40 54 | 97.35 103 | 94.69 63 | 99.34 65 | 93.88 52 | 99.42 50 | 98.89 75 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 338 |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 362 | | | | 94.75 338 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 363 | | | | |
|
| MTGPA |  | | | | | | | | 97.62 114 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.21 281 | | | | 5.85 423 | 65.36 369 | 96.00 341 | 79.61 329 | | |
|
| test_post | | | | | | | | | | | | 6.07 422 | 65.74 367 | 95.84 345 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 337 | 66.22 365 | 97.59 272 | | | |
|
| MTMP | | | | | | | | 94.82 119 | 54.62 423 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 217 | 98.40 182 | 97.83 189 |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 239 | 98.36 191 | 97.98 168 |
|
| test_prior4 | | | | | | | 89.91 86 | 90.74 263 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 90.21 281 | | 89.33 175 | 90.77 298 | 94.81 251 | 90.41 167 | | 88.21 213 | 98.55 170 | |
|
| 旧先验2 | | | | | | | | 90.00 289 | | 68.65 397 | 92.71 254 | | | 96.52 323 | 85.15 265 | | |
|
| 新几何2 | | | | | | | | 90.02 288 | | | | | | | | | |
|
| 无先验 | | | | | | | | 89.94 290 | 95.75 231 | 70.81 387 | | | | 98.59 178 | 81.17 312 | | 94.81 334 |
|
| 原ACMM2 | | | | | | | | 89.34 309 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.03 228 | 80.24 319 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.14 124 | | | | |
|
| testdata1 | | | | | | | | 88.96 318 | | 88.44 196 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.81 100 | | | | | 98.95 118 | 89.26 194 | 98.51 176 | 98.60 116 |
|
| plane_prior4 | | | | | | | | | | | | 95.59 220 | | | | | |
|
| plane_prior3 | | | | | | | 88.43 122 | | | 90.35 158 | 93.31 228 | | | | | | |
|
| plane_prior2 | | | | | | | | 94.56 130 | | 91.74 121 | | | | | | | |
|
| plane_prior | | | | | | | 88.12 125 | 93.01 180 | | 88.98 182 | | | | | | 98.06 218 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 322 | | | | | | | | |
|
| test11 | | | | | | | | | 96.65 192 | | | | | | | | |
|
| door | | | | | | | | | 91.26 331 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 196 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 248 | | |
|
| HQP4-MVS | | | | | | | | | | | 88.81 333 | | | 98.61 174 | | | 98.15 151 |
|
| HQP3-MVS | | | | | | | | | 97.31 142 | | | | | | | 97.73 239 | |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 243 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 42.48 424 | 88.45 330 | | 67.22 401 | 83.56 387 | | 66.80 359 | | 72.86 377 | | 94.06 352 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 141 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 83 | |
|
| Test By Simon | | | | | | | | | | | | | 90.61 163 | | | | |
|