| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
| UniMVSNet_ETH3D | | | 97.13 5 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 134 | 97.70 8 | 97.54 113 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 93 | 90.73 139 | 99.73 13 | 99.59 13 |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 9 | 97.73 6 | 98.27 20 | | | | | | |
|
| PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 117 | 99.16 4 | 84.50 194 | 96.54 34 | 98.05 65 | 98.06 4 | 98.64 13 | 98.25 37 | 95.01 51 | 99.65 3 | 92.95 88 | 99.83 5 | 99.68 4 |
|
| MIMVSNet1 | | | 95.52 69 | 95.45 77 | 95.72 73 | 99.14 5 | 89.02 102 | 96.23 57 | 96.87 168 | 93.73 60 | 97.87 28 | 98.49 29 | 90.73 155 | 99.05 98 | 86.43 241 | 99.60 27 | 99.10 47 |
|
| PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 127 | 99.13 6 | 84.09 204 | 96.61 32 | 97.97 78 | 97.91 5 | 98.64 13 | 98.13 41 | 95.24 38 | 99.65 3 | 93.39 71 | 99.84 3 | 99.72 2 |
|
| DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 113 | 99.13 6 | 84.68 193 | 96.51 35 | 97.94 84 | 98.14 3 | 98.67 12 | 98.32 34 | 95.04 48 | 99.69 2 | 93.27 76 | 99.82 7 | 99.62 10 |
|
| pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 97 | 99.12 8 | 87.82 129 | 96.68 30 | 97.86 86 | 96.10 27 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 209 | 91.38 127 | 99.69 14 | 99.42 19 |
|
| HPM-MVS_fast | | | 97.01 6 | 96.89 14 | 97.39 21 | 99.12 8 | 93.92 28 | 97.16 14 | 98.17 46 | 93.11 74 | 96.48 90 | 97.36 93 | 96.92 6 | 99.34 63 | 94.31 39 | 99.38 59 | 98.92 72 |
|
| MP-MVS-pluss | | | 96.08 48 | 95.92 58 | 96.57 44 | 99.06 10 | 91.21 65 | 93.25 164 | 98.32 25 | 87.89 197 | 96.86 75 | 97.38 89 | 95.55 26 | 99.39 49 | 95.47 24 | 99.47 43 | 99.11 44 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| OurMVSNet-221017-0 | | | 96.80 12 | 96.75 17 | 96.96 35 | 99.03 11 | 91.85 57 | 97.98 7 | 98.01 73 | 94.15 51 | 98.93 3 | 99.07 5 | 88.07 188 | 99.57 14 | 95.86 15 | 99.69 14 | 99.46 18 |
|
| WR-MVS_H | | | 96.60 25 | 97.05 13 | 95.24 92 | 99.02 12 | 86.44 160 | 96.78 27 | 98.08 58 | 97.42 9 | 98.48 16 | 97.86 61 | 91.76 128 | 99.63 6 | 94.23 41 | 99.84 3 | 99.66 6 |
|
| TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 8 | 98.61 3 | 98.81 9 | 97.41 10 | 97.28 56 | 98.46 30 | 94.62 62 | 98.84 128 | 94.64 33 | 99.53 39 | 98.99 56 |
|
| testf1 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 23 | 94.96 38 | 97.30 54 | 97.93 54 | 96.05 16 | 97.90 235 | 89.32 178 | 99.23 86 | 98.19 142 |
|
| APD_test2 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 23 | 94.96 38 | 97.30 54 | 97.93 54 | 96.05 16 | 97.90 235 | 89.32 178 | 99.23 86 | 98.19 142 |
|
| CP-MVSNet | | | 96.19 45 | 96.80 16 | 94.38 132 | 98.99 16 | 83.82 207 | 96.31 50 | 97.53 115 | 97.60 7 | 98.34 19 | 97.52 80 | 91.98 122 | 99.63 6 | 93.08 84 | 99.81 8 | 99.70 3 |
|
| PMVS |  | 87.21 14 | 94.97 94 | 95.33 85 | 93.91 148 | 98.97 17 | 97.16 2 | 95.54 84 | 95.85 221 | 96.47 22 | 93.40 217 | 97.46 86 | 95.31 35 | 95.47 342 | 86.18 245 | 98.78 143 | 89.11 384 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 18 | 94.05 23 | 95.88 70 | 97.62 106 | 94.46 47 | 96.29 99 | 96.94 128 | 93.56 79 | 99.37 57 | 94.29 40 | 99.42 52 | 98.99 56 |
|
| ACMMP_NAP | | | 96.21 44 | 96.12 46 | 96.49 48 | 98.90 19 | 91.42 63 | 94.57 118 | 98.03 70 | 90.42 148 | 96.37 93 | 97.35 96 | 95.68 21 | 99.25 75 | 94.44 36 | 99.34 64 | 98.80 85 |
|
| HPM-MVS |  | | 96.81 11 | 96.62 22 | 97.36 23 | 98.89 20 | 93.53 38 | 97.51 10 | 98.44 17 | 92.35 88 | 95.95 116 | 96.41 161 | 96.71 8 | 99.42 33 | 93.99 46 | 99.36 60 | 99.13 41 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| VDDNet | | | 94.03 131 | 94.27 127 | 93.31 172 | 98.87 21 | 82.36 228 | 95.51 85 | 91.78 318 | 97.19 12 | 96.32 96 | 98.60 22 | 84.24 238 | 98.75 146 | 87.09 228 | 98.83 137 | 98.81 84 |
|
| TSAR-MVS + MP. | | | 94.96 95 | 94.75 107 | 95.57 78 | 98.86 22 | 88.69 108 | 96.37 44 | 96.81 172 | 85.23 244 | 94.75 179 | 97.12 115 | 91.85 124 | 99.40 46 | 93.45 66 | 98.33 189 | 98.62 115 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| RRT_MVS | | | 95.41 77 | 95.20 92 | 96.05 55 | 98.86 22 | 88.92 104 | 97.49 11 | 94.48 265 | 93.12 73 | 97.94 27 | 98.54 25 | 81.19 273 | 99.63 6 | 95.48 23 | 99.69 14 | 99.60 12 |
|
| EGC-MVSNET | | | 80.97 355 | 75.73 371 | 96.67 42 | 98.85 24 | 94.55 15 | 96.83 23 | 96.60 185 | 2.44 406 | 5.32 407 | 98.25 37 | 92.24 115 | 98.02 226 | 91.85 113 | 99.21 90 | 97.45 210 |
|
| mvs_tets | | | 96.83 8 | 96.71 18 | 97.17 27 | 98.83 25 | 92.51 48 | 96.58 33 | 97.61 108 | 87.57 206 | 98.80 7 | 98.90 9 | 96.50 9 | 99.59 13 | 96.15 13 | 99.47 43 | 99.40 21 |
|
| APD_test1 | | | 95.91 53 | 95.42 80 | 97.36 23 | 98.82 26 | 96.62 6 | 95.64 79 | 97.64 104 | 93.38 69 | 95.89 121 | 97.23 105 | 93.35 87 | 97.66 263 | 88.20 204 | 98.66 159 | 97.79 186 |
|
| PS-MVSNAJss | | | 96.01 50 | 96.04 52 | 95.89 67 | 98.82 26 | 88.51 116 | 95.57 83 | 97.88 85 | 88.72 180 | 98.81 6 | 98.86 10 | 90.77 151 | 99.60 9 | 95.43 26 | 99.53 39 | 99.57 14 |
|
| MP-MVS |  | | 96.14 46 | 95.68 69 | 97.51 13 | 98.81 28 | 94.06 21 | 96.10 60 | 97.78 97 | 92.73 78 | 93.48 214 | 96.72 146 | 94.23 71 | 99.42 33 | 91.99 108 | 99.29 74 | 99.05 51 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 28 | 93.86 31 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 40 | 98.61 169 | 96.85 3 | 99.77 9 | 99.31 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ZNCC-MVS | | | 96.42 35 | 96.20 41 | 97.07 30 | 98.80 30 | 92.79 46 | 96.08 61 | 98.16 49 | 91.74 115 | 95.34 151 | 96.36 169 | 95.68 21 | 99.44 29 | 94.41 37 | 99.28 79 | 98.97 62 |
|
| jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 31 | 92.49 49 | 96.44 41 | 97.42 122 | 86.96 215 | 98.71 10 | 98.72 17 | 95.36 32 | 99.56 17 | 95.92 14 | 99.45 47 | 99.32 27 |
|
| tt0805 | | | 95.42 76 | 95.93 57 | 93.86 151 | 98.75 32 | 88.47 117 | 97.68 9 | 94.29 269 | 96.48 21 | 95.38 147 | 93.63 281 | 94.89 55 | 97.94 234 | 95.38 27 | 96.92 269 | 95.17 305 |
|
| MSP-MVS | | | 95.34 80 | 94.63 115 | 97.48 14 | 98.67 33 | 94.05 23 | 96.41 43 | 98.18 42 | 91.26 126 | 95.12 163 | 95.15 226 | 86.60 217 | 99.50 21 | 93.43 70 | 96.81 273 | 98.89 75 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| GST-MVS | | | 96.24 43 | 95.99 54 | 97.00 33 | 98.65 34 | 92.71 47 | 95.69 77 | 98.01 73 | 92.08 96 | 95.74 129 | 96.28 175 | 95.22 40 | 99.42 33 | 93.17 80 | 99.06 103 | 98.88 77 |
|
| SteuartSystems-ACMMP | | | 96.40 37 | 96.30 36 | 96.71 40 | 98.63 35 | 91.96 55 | 95.70 75 | 98.01 73 | 93.34 70 | 96.64 85 | 96.57 154 | 94.99 52 | 99.36 58 | 93.48 63 | 99.34 64 | 98.82 82 |
| Skip Steuart: Steuart Systems R&D Blog. |
| region2R | | | 96.41 36 | 96.09 47 | 97.38 22 | 98.62 36 | 93.81 35 | 96.32 49 | 97.96 79 | 92.26 91 | 95.28 155 | 96.57 154 | 95.02 50 | 99.41 39 | 93.63 55 | 99.11 101 | 98.94 66 |
|
| mPP-MVS | | | 96.46 31 | 96.05 51 | 97.69 4 | 98.62 36 | 94.65 13 | 96.45 39 | 97.74 99 | 92.59 82 | 95.47 142 | 96.68 148 | 94.50 66 | 99.42 33 | 93.10 82 | 99.26 82 | 98.99 56 |
|
| ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 18 | 98.61 38 | 93.88 29 | 96.95 21 | 98.18 42 | 92.26 91 | 96.33 95 | 96.84 136 | 95.10 46 | 99.40 46 | 93.47 64 | 99.33 66 | 99.02 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| VPNet | | | 93.08 159 | 93.76 140 | 91.03 253 | 98.60 39 | 75.83 331 | 91.51 233 | 95.62 226 | 91.84 107 | 95.74 129 | 97.10 118 | 89.31 176 | 98.32 200 | 85.07 262 | 99.06 103 | 98.93 68 |
|
| ACMMPR | | | 96.46 31 | 96.14 45 | 97.41 20 | 98.60 39 | 93.82 33 | 96.30 54 | 97.96 79 | 92.35 88 | 95.57 137 | 96.61 152 | 94.93 54 | 99.41 39 | 93.78 51 | 99.15 98 | 99.00 54 |
|
| PGM-MVS | | | 96.32 40 | 95.94 55 | 97.43 18 | 98.59 41 | 93.84 32 | 95.33 89 | 98.30 28 | 91.40 124 | 95.76 126 | 96.87 133 | 95.26 37 | 99.45 27 | 92.77 90 | 99.21 90 | 99.00 54 |
|
| XVS | | | 96.49 29 | 96.18 42 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 81 | 94.58 43 | 94.38 189 | 96.49 156 | 94.56 64 | 99.39 49 | 93.57 57 | 99.05 106 | 98.93 68 |
|
| X-MVStestdata | | | 90.70 215 | 88.45 261 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 81 | 94.58 43 | 94.38 189 | 26.89 404 | 94.56 64 | 99.39 49 | 93.57 57 | 99.05 106 | 98.93 68 |
|
| ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 140 | 98.56 42 | 85.33 187 | 96.33 47 | 98.30 28 | 94.66 42 | 98.72 8 | 98.30 35 | 97.51 5 | 98.00 228 | 94.87 30 | 99.59 29 | 98.86 78 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| test_0728_SECOND | | | | | 94.88 104 | 98.55 45 | 86.72 151 | 95.20 95 | 98.22 37 | | | | | 99.38 55 | 93.44 67 | 99.31 69 | 98.53 120 |
|
| test_djsdf | | | 96.62 23 | 96.49 26 | 97.01 32 | 98.55 45 | 91.77 59 | 97.15 15 | 97.37 124 | 88.98 174 | 98.26 22 | 98.86 10 | 93.35 87 | 99.60 9 | 96.41 9 | 99.45 47 | 99.66 6 |
|
| v7n | | | 96.82 9 | 97.31 10 | 95.33 86 | 98.54 47 | 86.81 148 | 96.83 23 | 98.07 61 | 96.59 20 | 98.46 17 | 98.43 32 | 92.91 102 | 99.52 19 | 96.25 12 | 99.76 10 | 99.65 8 |
|
| ACMH+ | | 88.43 11 | 96.48 30 | 96.82 15 | 95.47 81 | 98.54 47 | 89.06 101 | 95.65 78 | 98.61 13 | 96.10 27 | 98.16 23 | 97.52 80 | 96.90 7 | 98.62 168 | 90.30 153 | 99.60 27 | 98.72 96 |
|
| SixPastTwentyTwo | | | 94.91 96 | 95.21 90 | 93.98 142 | 98.52 49 | 83.19 216 | 95.93 67 | 94.84 255 | 94.86 41 | 98.49 15 | 98.74 16 | 81.45 267 | 99.60 9 | 94.69 32 | 99.39 58 | 99.15 39 |
|
| SED-MVS | | | 96.00 51 | 96.41 32 | 94.76 109 | 98.51 50 | 86.97 144 | 95.21 93 | 98.10 55 | 91.95 98 | 97.63 35 | 97.25 103 | 96.48 10 | 99.35 60 | 93.29 74 | 99.29 74 | 97.95 167 |
|
| IU-MVS | | | | | | 98.51 50 | 86.66 154 | | 96.83 171 | 72.74 362 | 95.83 123 | | | | 93.00 86 | 99.29 74 | 98.64 111 |
|
| test_241102_ONE | | | | | | 98.51 50 | 86.97 144 | | 98.10 55 | 91.85 104 | 97.63 35 | 97.03 122 | 96.48 10 | 98.95 114 | | | |
|
| DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 111 | 98.51 50 | 86.69 152 | 95.20 95 | 97.00 156 | 91.85 104 | 97.40 52 | 97.35 96 | 95.58 24 | 99.34 63 | 93.44 67 | 99.31 69 | 98.13 148 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.51 50 | 86.69 152 | 95.34 88 | 98.18 42 | 91.85 104 | 97.63 35 | 97.37 90 | 95.58 24 | | | | |
|
| HFP-MVS | | | 96.39 38 | 96.17 44 | 97.04 31 | 98.51 50 | 93.37 39 | 96.30 54 | 97.98 76 | 92.35 88 | 95.63 134 | 96.47 157 | 95.37 30 | 99.27 74 | 93.78 51 | 99.14 99 | 98.48 124 |
|
| Baseline_NR-MVSNet | | | 94.47 113 | 95.09 97 | 92.60 199 | 98.50 56 | 80.82 248 | 92.08 211 | 96.68 181 | 93.82 59 | 96.29 99 | 98.56 24 | 90.10 168 | 97.75 256 | 90.10 164 | 99.66 21 | 99.24 32 |
|
| OPM-MVS | | | 95.61 65 | 95.45 77 | 96.08 54 | 98.49 57 | 91.00 68 | 92.65 185 | 97.33 132 | 90.05 153 | 96.77 80 | 96.85 134 | 95.04 48 | 98.56 177 | 92.77 90 | 99.06 103 | 98.70 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| FC-MVSNet-test | | | 95.32 81 | 95.88 59 | 93.62 158 | 98.49 57 | 81.77 233 | 95.90 69 | 98.32 25 | 93.93 56 | 97.53 42 | 97.56 75 | 88.48 181 | 99.40 46 | 92.91 89 | 99.83 5 | 99.68 4 |
|
| mvsmamba | | | 95.61 65 | 95.40 81 | 96.22 51 | 98.44 59 | 89.86 84 | 97.14 17 | 97.45 121 | 91.25 128 | 97.49 44 | 98.14 39 | 83.49 242 | 99.45 27 | 95.52 21 | 99.66 21 | 99.36 24 |
|
| XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 84 | 96.69 41 | 98.40 60 | 93.04 41 | 94.54 122 | 98.05 65 | 90.45 147 | 96.31 97 | 96.76 140 | 92.91 102 | 98.72 151 | 91.19 128 | 99.42 52 | 98.32 132 |
|
| ACMM | | 88.83 9 | 96.30 42 | 96.07 50 | 96.97 34 | 98.39 61 | 92.95 44 | 94.74 110 | 98.03 70 | 90.82 137 | 97.15 59 | 96.85 134 | 96.25 14 | 99.00 105 | 93.10 82 | 99.33 66 | 98.95 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| pm-mvs1 | | | 95.43 73 | 95.94 55 | 93.93 147 | 98.38 62 | 85.08 190 | 95.46 86 | 97.12 149 | 91.84 107 | 97.28 56 | 98.46 30 | 95.30 36 | 97.71 260 | 90.17 160 | 99.42 52 | 98.99 56 |
|
| COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 22 | 97.13 28 | 98.38 62 | 94.31 17 | 96.79 26 | 98.32 25 | 96.69 17 | 96.86 75 | 97.56 75 | 95.48 27 | 98.77 145 | 90.11 162 | 99.44 50 | 98.31 134 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| TransMVSNet (Re) | | | 95.27 87 | 96.04 52 | 92.97 180 | 98.37 64 | 81.92 232 | 95.07 100 | 96.76 177 | 93.97 55 | 97.77 31 | 98.57 23 | 95.72 20 | 97.90 235 | 88.89 195 | 99.23 86 | 99.08 48 |
|
| LPG-MVS_test | | | 96.38 39 | 96.23 39 | 96.84 38 | 98.36 65 | 92.13 52 | 95.33 89 | 98.25 32 | 91.78 111 | 97.07 62 | 97.22 107 | 96.38 12 | 99.28 72 | 92.07 106 | 99.59 29 | 99.11 44 |
|
| LGP-MVS_train | | | | | 96.84 38 | 98.36 65 | 92.13 52 | | 98.25 32 | 91.78 111 | 97.07 62 | 97.22 107 | 96.38 12 | 99.28 72 | 92.07 106 | 99.59 29 | 99.11 44 |
|
| CP-MVS | | | 96.44 34 | 96.08 49 | 97.54 11 | 98.29 67 | 94.62 14 | 96.80 25 | 98.08 58 | 92.67 81 | 95.08 167 | 96.39 166 | 94.77 58 | 99.42 33 | 93.17 80 | 99.44 50 | 98.58 118 |
|
| FIs | | | 94.90 97 | 95.35 83 | 93.55 161 | 98.28 68 | 81.76 234 | 95.33 89 | 98.14 50 | 93.05 76 | 97.07 62 | 97.18 110 | 87.65 195 | 99.29 70 | 91.72 117 | 99.69 14 | 99.61 11 |
|
| SMA-MVS |  | | 95.77 59 | 95.54 74 | 96.47 49 | 98.27 69 | 91.19 66 | 95.09 98 | 97.79 96 | 86.48 218 | 97.42 50 | 97.51 83 | 94.47 69 | 99.29 70 | 93.55 59 | 99.29 74 | 98.93 68 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| test_one_0601 | | | | | | 98.26 70 | 87.14 140 | | 98.18 42 | 94.25 48 | 96.99 70 | 97.36 93 | 95.13 43 | | | | |
|
| TranMVSNet+NR-MVSNet | | | 96.07 49 | 96.26 38 | 95.50 80 | 98.26 70 | 87.69 131 | 93.75 149 | 97.86 86 | 95.96 32 | 97.48 46 | 97.14 113 | 95.33 34 | 99.44 29 | 90.79 137 | 99.76 10 | 99.38 22 |
|
| IS-MVSNet | | | 94.49 112 | 94.35 123 | 94.92 102 | 98.25 72 | 86.46 159 | 97.13 18 | 94.31 268 | 96.24 25 | 96.28 101 | 96.36 169 | 82.88 250 | 99.35 60 | 88.19 205 | 99.52 41 | 98.96 64 |
|
| UA-Net | | | 97.35 4 | 97.24 11 | 97.69 4 | 98.22 73 | 93.87 30 | 98.42 6 | 98.19 40 | 96.95 14 | 95.46 144 | 99.23 4 | 93.45 82 | 99.57 14 | 95.34 29 | 99.89 2 | 99.63 9 |
|
| test_part2 | | | | | | 98.21 74 | 89.41 93 | | | | 96.72 81 | | | | | | |
|
| test_0402 | | | 95.73 61 | 96.22 40 | 94.26 134 | 98.19 75 | 85.77 178 | 93.24 165 | 97.24 140 | 96.88 16 | 97.69 33 | 97.77 64 | 94.12 73 | 99.13 88 | 91.54 124 | 99.29 74 | 97.88 175 |
|
| ACMP | | 88.15 13 | 95.71 62 | 95.43 79 | 96.54 45 | 98.17 76 | 91.73 60 | 94.24 130 | 98.08 58 | 89.46 163 | 96.61 87 | 96.47 157 | 95.85 18 | 99.12 90 | 90.45 145 | 99.56 37 | 98.77 90 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| CPTT-MVS | | | 94.74 102 | 94.12 131 | 96.60 43 | 98.15 77 | 93.01 42 | 95.84 71 | 97.66 103 | 89.21 171 | 93.28 221 | 95.46 214 | 88.89 179 | 98.98 106 | 89.80 169 | 98.82 138 | 97.80 185 |
|
| SF-MVS | | | 95.88 56 | 95.88 59 | 95.87 68 | 98.12 78 | 89.65 87 | 95.58 82 | 98.56 15 | 91.84 107 | 96.36 94 | 96.68 148 | 94.37 70 | 99.32 69 | 92.41 100 | 99.05 106 | 98.64 111 |
|
| Vis-MVSNet |  | | 95.50 70 | 95.48 76 | 95.56 79 | 98.11 79 | 89.40 94 | 95.35 87 | 98.22 37 | 92.36 87 | 94.11 192 | 98.07 44 | 92.02 120 | 99.44 29 | 93.38 72 | 97.67 239 | 97.85 179 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| XVG-OURS-SEG-HR | | | 95.38 78 | 95.00 100 | 96.51 46 | 98.10 80 | 94.07 20 | 92.46 193 | 98.13 51 | 90.69 140 | 93.75 206 | 96.25 178 | 98.03 2 | 97.02 297 | 92.08 105 | 95.55 301 | 98.45 126 |
|
| EPP-MVSNet | | | 93.91 137 | 93.68 144 | 94.59 121 | 98.08 81 | 85.55 184 | 97.44 12 | 94.03 274 | 94.22 50 | 94.94 171 | 96.19 180 | 82.07 261 | 99.57 14 | 87.28 225 | 98.89 125 | 98.65 106 |
|
| SR-MVS-dyc-post | | | 96.84 7 | 96.60 24 | 97.56 10 | 98.07 82 | 95.27 9 | 96.37 44 | 98.12 52 | 95.66 33 | 97.00 68 | 97.03 122 | 94.85 56 | 99.42 33 | 93.49 61 | 98.84 132 | 98.00 159 |
|
| RE-MVS-def | | | | 96.66 19 | | 98.07 82 | 95.27 9 | 96.37 44 | 98.12 52 | 95.66 33 | 97.00 68 | 97.03 122 | 95.40 29 | | 93.49 61 | 98.84 132 | 98.00 159 |
|
| SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 84 | 94.69 11 | 96.13 59 | 98.07 61 | 95.17 37 | 96.82 77 | 96.73 145 | 95.09 47 | 99.43 32 | 92.99 87 | 98.71 150 | 98.50 121 |
|
| K. test v3 | | | 93.37 149 | 93.27 159 | 93.66 157 | 98.05 84 | 82.62 224 | 94.35 125 | 86.62 356 | 96.05 29 | 97.51 43 | 98.85 12 | 76.59 313 | 99.65 3 | 93.21 78 | 98.20 204 | 98.73 95 |
|
| lessismore_v0 | | | | | 93.87 150 | 98.05 84 | 83.77 208 | | 80.32 394 | | 97.13 60 | 97.91 58 | 77.49 298 | 99.11 92 | 92.62 96 | 98.08 213 | 98.74 94 |
|
| test1111 | | | 90.39 226 | 90.61 222 | 89.74 292 | 98.04 87 | 71.50 361 | 95.59 80 | 79.72 396 | 89.41 164 | 95.94 117 | 98.14 39 | 70.79 335 | 98.81 135 | 88.52 202 | 99.32 68 | 98.90 74 |
|
| AllTest | | | 94.88 98 | 94.51 117 | 96.00 56 | 98.02 88 | 92.17 50 | 95.26 92 | 98.43 18 | 90.48 145 | 95.04 168 | 96.74 143 | 92.54 111 | 97.86 243 | 85.11 260 | 98.98 114 | 97.98 163 |
|
| TestCases | | | | | 96.00 56 | 98.02 88 | 92.17 50 | | 98.43 18 | 90.48 145 | 95.04 168 | 96.74 143 | 92.54 111 | 97.86 243 | 85.11 260 | 98.98 114 | 97.98 163 |
|
| anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 6 | 98.00 90 | 94.03 25 | 96.97 20 | 97.61 108 | 87.68 204 | 98.45 18 | 98.77 15 | 94.20 72 | 99.50 21 | 96.70 5 | 99.40 57 | 99.53 15 |
|
| XVG-OURS | | | 94.72 103 | 94.12 131 | 96.50 47 | 98.00 90 | 94.23 18 | 91.48 234 | 98.17 46 | 90.72 139 | 95.30 153 | 96.47 157 | 87.94 192 | 96.98 298 | 91.41 126 | 97.61 242 | 98.30 135 |
|
| 114514_t | | | 90.51 220 | 89.80 240 | 92.63 196 | 98.00 90 | 82.24 229 | 93.40 161 | 97.29 136 | 65.84 391 | 89.40 313 | 94.80 242 | 86.99 207 | 98.75 146 | 83.88 273 | 98.61 161 | 96.89 239 |
|
| Gipuma |  | | 95.31 84 | 95.80 65 | 93.81 154 | 97.99 93 | 90.91 70 | 96.42 42 | 97.95 81 | 96.69 17 | 91.78 271 | 98.85 12 | 91.77 126 | 95.49 341 | 91.72 117 | 99.08 102 | 95.02 313 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 25 | 97.95 94 | 93.82 33 | 96.31 50 | 98.25 32 | 95.51 35 | 96.99 70 | 97.05 121 | 95.63 23 | 99.39 49 | 93.31 73 | 98.88 127 | 98.75 91 |
|
| SDMVSNet | | | 94.43 114 | 95.02 98 | 92.69 192 | 97.93 95 | 82.88 222 | 91.92 220 | 95.99 217 | 93.65 65 | 95.51 139 | 98.63 20 | 94.60 63 | 96.48 316 | 87.57 219 | 99.35 61 | 98.70 100 |
|
| sd_testset | | | 93.94 135 | 94.39 119 | 92.61 198 | 97.93 95 | 83.24 213 | 93.17 168 | 95.04 249 | 93.65 65 | 95.51 139 | 98.63 20 | 94.49 67 | 95.89 334 | 81.72 294 | 99.35 61 | 98.70 100 |
|
| DPE-MVS |  | | 95.89 55 | 95.88 59 | 95.92 64 | 97.93 95 | 89.83 85 | 93.46 158 | 98.30 28 | 92.37 86 | 97.75 32 | 96.95 127 | 95.14 42 | 99.51 20 | 91.74 116 | 99.28 79 | 98.41 128 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| SSC-MVS | | | 90.16 234 | 92.96 162 | 81.78 375 | 97.88 98 | 48.48 407 | 90.75 250 | 87.69 348 | 96.02 31 | 96.70 82 | 97.63 71 | 85.60 229 | 97.80 248 | 85.73 249 | 98.60 163 | 99.06 50 |
|
| HPM-MVS++ |  | | 95.02 92 | 94.39 119 | 96.91 37 | 97.88 98 | 93.58 37 | 94.09 138 | 96.99 158 | 91.05 132 | 92.40 256 | 95.22 225 | 91.03 147 | 99.25 75 | 92.11 103 | 98.69 153 | 97.90 172 |
|
| EG-PatchMatch MVS | | | 94.54 111 | 94.67 114 | 94.14 137 | 97.87 100 | 86.50 156 | 92.00 215 | 96.74 178 | 88.16 193 | 96.93 72 | 97.61 72 | 93.04 99 | 97.90 235 | 91.60 121 | 98.12 209 | 98.03 157 |
|
| nrg030 | | | 96.32 40 | 96.55 25 | 95.62 76 | 97.83 101 | 88.55 115 | 95.77 73 | 98.29 31 | 92.68 79 | 98.03 26 | 97.91 58 | 95.13 43 | 98.95 114 | 93.85 49 | 99.49 42 | 99.36 24 |
|
| test2506 | | | 85.42 318 | 84.57 321 | 87.96 325 | 97.81 102 | 66.53 382 | 96.14 58 | 56.35 409 | 89.04 172 | 93.55 213 | 98.10 42 | 42.88 407 | 98.68 162 | 88.09 209 | 99.18 94 | 98.67 104 |
|
| ECVR-MVS |  | | 90.12 236 | 90.16 231 | 90.00 288 | 97.81 102 | 72.68 355 | 95.76 74 | 78.54 399 | 89.04 172 | 95.36 150 | 98.10 42 | 70.51 336 | 98.64 167 | 87.10 227 | 99.18 94 | 98.67 104 |
|
| UniMVSNet (Re) | | | 95.32 81 | 95.15 93 | 95.80 70 | 97.79 104 | 88.91 105 | 92.91 175 | 98.07 61 | 93.46 67 | 96.31 97 | 95.97 191 | 90.14 165 | 99.34 63 | 92.11 103 | 99.64 24 | 99.16 38 |
|
| VPA-MVSNet | | | 95.14 89 | 95.67 70 | 93.58 160 | 97.76 105 | 83.15 217 | 94.58 117 | 97.58 110 | 93.39 68 | 97.05 65 | 98.04 47 | 93.25 90 | 98.51 182 | 89.75 172 | 99.59 29 | 99.08 48 |
|
| DU-MVS | | | 95.28 85 | 95.12 95 | 95.75 72 | 97.75 106 | 88.59 113 | 92.58 187 | 97.81 92 | 93.99 53 | 96.80 78 | 95.90 192 | 90.10 168 | 99.41 39 | 91.60 121 | 99.58 34 | 99.26 30 |
|
| NR-MVSNet | | | 95.28 85 | 95.28 88 | 95.26 90 | 97.75 106 | 87.21 138 | 95.08 99 | 97.37 124 | 93.92 58 | 97.65 34 | 95.90 192 | 90.10 168 | 99.33 68 | 90.11 162 | 99.66 21 | 99.26 30 |
|
| XXY-MVS | | | 92.58 176 | 93.16 161 | 90.84 262 | 97.75 106 | 79.84 263 | 91.87 224 | 96.22 207 | 85.94 229 | 95.53 138 | 97.68 66 | 92.69 108 | 94.48 357 | 83.21 277 | 97.51 244 | 98.21 140 |
|
| WB-MVS | | | 89.44 252 | 92.15 184 | 81.32 376 | 97.73 109 | 48.22 408 | 89.73 285 | 87.98 346 | 95.24 36 | 96.05 113 | 96.99 126 | 85.18 231 | 96.95 299 | 82.45 286 | 97.97 223 | 98.78 87 |
|
| PVSNet_Blended_VisFu | | | 91.63 198 | 91.20 207 | 92.94 183 | 97.73 109 | 83.95 206 | 92.14 210 | 97.46 119 | 78.85 323 | 92.35 259 | 94.98 234 | 84.16 239 | 99.08 93 | 86.36 242 | 96.77 275 | 95.79 287 |
|
| tfpnnormal | | | 94.27 121 | 94.87 103 | 92.48 203 | 97.71 111 | 80.88 247 | 94.55 121 | 95.41 240 | 93.70 61 | 96.67 84 | 97.72 65 | 91.40 134 | 98.18 213 | 87.45 221 | 99.18 94 | 98.36 130 |
|
| HQP_MVS | | | 94.26 122 | 93.93 134 | 95.23 93 | 97.71 111 | 88.12 122 | 94.56 119 | 97.81 92 | 91.74 115 | 93.31 218 | 95.59 208 | 86.93 209 | 98.95 114 | 89.26 184 | 98.51 173 | 98.60 116 |
|
| plane_prior7 | | | | | | 97.71 111 | 88.68 109 | | | | | | | | | | |
|
| UniMVSNet_NR-MVSNet | | | 95.35 79 | 95.21 90 | 95.76 71 | 97.69 114 | 88.59 113 | 92.26 207 | 97.84 89 | 94.91 40 | 96.80 78 | 95.78 201 | 90.42 160 | 99.41 39 | 91.60 121 | 99.58 34 | 99.29 29 |
|
| APDe-MVS |  | | 96.46 31 | 96.64 21 | 95.93 62 | 97.68 115 | 89.38 95 | 96.90 22 | 98.41 20 | 92.52 83 | 97.43 48 | 97.92 57 | 95.11 45 | 99.50 21 | 94.45 35 | 99.30 71 | 98.92 72 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| DeepC-MVS | | 91.39 4 | 95.43 73 | 95.33 85 | 95.71 74 | 97.67 116 | 90.17 80 | 93.86 146 | 98.02 72 | 87.35 208 | 96.22 105 | 97.99 52 | 94.48 68 | 99.05 98 | 92.73 93 | 99.68 18 | 97.93 169 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| KD-MVS_self_test | | | 94.10 129 | 94.73 110 | 92.19 210 | 97.66 117 | 79.49 273 | 94.86 107 | 97.12 149 | 89.59 162 | 96.87 74 | 97.65 69 | 90.40 162 | 98.34 199 | 89.08 190 | 99.35 61 | 98.75 91 |
|
| Vis-MVSNet (Re-imp) | | | 90.42 223 | 90.16 231 | 91.20 249 | 97.66 117 | 77.32 309 | 94.33 127 | 87.66 349 | 91.20 129 | 92.99 234 | 95.13 228 | 75.40 318 | 98.28 202 | 77.86 329 | 99.19 92 | 97.99 162 |
|
| dcpmvs_2 | | | 93.96 134 | 95.01 99 | 90.82 263 | 97.60 119 | 74.04 345 | 93.68 153 | 98.85 8 | 89.80 158 | 97.82 29 | 97.01 125 | 91.14 145 | 99.21 78 | 90.56 143 | 98.59 164 | 99.19 36 |
|
| FMVSNet1 | | | 94.84 99 | 95.13 94 | 93.97 143 | 97.60 119 | 84.29 197 | 95.99 63 | 96.56 189 | 92.38 85 | 97.03 66 | 98.53 26 | 90.12 166 | 98.98 106 | 88.78 197 | 99.16 97 | 98.65 106 |
|
| RPSCF | | | 95.58 68 | 94.89 102 | 97.62 7 | 97.58 121 | 96.30 7 | 95.97 66 | 97.53 115 | 92.42 84 | 93.41 215 | 97.78 62 | 91.21 140 | 97.77 253 | 91.06 130 | 97.06 261 | 98.80 85 |
|
| WR-MVS | | | 93.49 146 | 93.72 141 | 92.80 189 | 97.57 122 | 80.03 258 | 90.14 272 | 95.68 225 | 93.70 61 | 96.62 86 | 95.39 221 | 87.21 203 | 99.04 101 | 87.50 220 | 99.64 24 | 99.33 26 |
|
| CSCG | | | 94.69 105 | 94.75 107 | 94.52 124 | 97.55 123 | 87.87 127 | 95.01 103 | 97.57 111 | 92.68 79 | 96.20 107 | 93.44 287 | 91.92 123 | 98.78 142 | 89.11 189 | 99.24 85 | 96.92 237 |
|
| MCST-MVS | | | 92.91 164 | 92.51 176 | 94.10 139 | 97.52 124 | 85.72 180 | 91.36 238 | 97.13 148 | 80.33 304 | 92.91 238 | 94.24 260 | 91.23 139 | 98.72 151 | 89.99 166 | 97.93 226 | 97.86 177 |
|
| F-COLMAP | | | 92.28 186 | 91.06 211 | 95.95 59 | 97.52 124 | 91.90 56 | 93.53 155 | 97.18 143 | 83.98 263 | 88.70 326 | 94.04 267 | 88.41 183 | 98.55 179 | 80.17 310 | 95.99 292 | 97.39 217 |
|
| 9.14 | | | | 94.81 104 | | 97.49 126 | | 94.11 137 | 98.37 21 | 87.56 207 | 95.38 147 | 96.03 188 | 94.66 60 | 99.08 93 | 90.70 140 | 98.97 119 | |
|
| VDD-MVS | | | 94.37 116 | 94.37 121 | 94.40 131 | 97.49 126 | 86.07 171 | 93.97 143 | 93.28 288 | 94.49 45 | 96.24 103 | 97.78 62 | 87.99 191 | 98.79 139 | 88.92 193 | 99.14 99 | 98.34 131 |
|
| testgi | | | 90.38 227 | 91.34 205 | 87.50 331 | 97.49 126 | 71.54 360 | 89.43 294 | 95.16 246 | 88.38 188 | 94.54 185 | 94.68 247 | 92.88 104 | 93.09 372 | 71.60 372 | 97.85 230 | 97.88 175 |
|
| save fliter | | | | | | 97.46 129 | 88.05 124 | 92.04 213 | 97.08 151 | 87.63 205 | | | | | | | |
|
| Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 100 | 97.46 129 | 86.35 164 | 97.11 19 | 98.24 35 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 94 | 99.15 84 | 93.18 79 | 99.74 12 | 99.50 17 |
|
| plane_prior1 | | | | | | 97.38 131 | | | | | | | | | | | |
|
| APD-MVS |  | | 95.00 93 | 94.69 111 | 95.93 62 | 97.38 131 | 90.88 71 | 94.59 115 | 97.81 92 | 89.22 170 | 95.46 144 | 96.17 183 | 93.42 85 | 99.34 63 | 89.30 180 | 98.87 130 | 97.56 204 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| fmvsm_s_conf0.1_n_a | | | 94.26 122 | 94.37 121 | 93.95 146 | 97.36 133 | 85.72 180 | 94.15 134 | 95.44 237 | 83.25 271 | 95.51 139 | 98.05 45 | 92.54 111 | 97.19 288 | 95.55 20 | 97.46 248 | 98.94 66 |
|
| ITE_SJBPF | | | | | 95.95 59 | 97.34 134 | 93.36 40 | | 96.55 192 | 91.93 100 | 94.82 176 | 95.39 221 | 91.99 121 | 97.08 294 | 85.53 251 | 97.96 224 | 97.41 213 |
|
| Anonymous20240529 | | | 95.50 70 | 95.83 63 | 94.50 125 | 97.33 135 | 85.93 173 | 95.19 97 | 96.77 176 | 96.64 19 | 97.61 38 | 98.05 45 | 93.23 91 | 98.79 139 | 88.60 201 | 99.04 111 | 98.78 87 |
|
| test_fmvsmconf0.01_n | | | 95.90 54 | 96.09 47 | 95.31 89 | 97.30 136 | 89.21 97 | 94.24 130 | 98.76 11 | 86.25 222 | 97.56 39 | 98.66 18 | 95.73 19 | 98.44 190 | 97.35 2 | 98.99 113 | 98.27 137 |
|
| OMC-MVS | | | 94.22 125 | 93.69 143 | 95.81 69 | 97.25 137 | 91.27 64 | 92.27 206 | 97.40 123 | 87.10 214 | 94.56 184 | 95.42 217 | 93.74 77 | 98.11 218 | 86.62 235 | 98.85 131 | 98.06 151 |
|
| GeoE | | | 94.55 110 | 94.68 113 | 94.15 136 | 97.23 138 | 85.11 189 | 94.14 136 | 97.34 131 | 88.71 181 | 95.26 156 | 95.50 213 | 94.65 61 | 99.12 90 | 90.94 134 | 98.40 179 | 98.23 138 |
|
| ZD-MVS | | | | | | 97.23 138 | 90.32 78 | | 97.54 113 | 84.40 260 | 94.78 178 | 95.79 198 | 92.76 107 | 99.39 49 | 88.72 199 | 98.40 179 | |
|
| fmvsm_s_conf0.1_n | | | 94.19 128 | 94.41 118 | 93.52 166 | 97.22 140 | 84.37 195 | 93.73 150 | 95.26 244 | 84.45 259 | 95.76 126 | 98.00 50 | 91.85 124 | 97.21 285 | 95.62 17 | 97.82 231 | 98.98 60 |
|
| plane_prior6 | | | | | | 97.21 141 | 88.23 121 | | | | | | 86.93 209 | | | | |
|
| DP-MVS Recon | | | 92.31 185 | 91.88 191 | 93.60 159 | 97.18 142 | 86.87 147 | 91.10 243 | 97.37 124 | 84.92 253 | 92.08 267 | 94.08 266 | 88.59 180 | 98.20 210 | 83.50 274 | 98.14 208 | 95.73 289 |
|
| 新几何1 | | | | | 93.17 176 | 97.16 143 | 87.29 135 | | 94.43 266 | 67.95 385 | 91.29 277 | 94.94 236 | 86.97 208 | 98.23 208 | 81.06 302 | 97.75 233 | 93.98 343 |
|
| DP-MVS | | | 95.62 64 | 95.84 62 | 94.97 101 | 97.16 143 | 88.62 111 | 94.54 122 | 97.64 104 | 96.94 15 | 96.58 88 | 97.32 100 | 93.07 98 | 98.72 151 | 90.45 145 | 98.84 132 | 97.57 202 |
|
| CHOSEN 1792x2688 | | | 87.19 304 | 85.92 313 | 91.00 256 | 97.13 145 | 79.41 274 | 84.51 375 | 95.60 227 | 64.14 394 | 90.07 301 | 94.81 240 | 78.26 293 | 97.14 292 | 73.34 361 | 95.38 308 | 96.46 257 |
|
| HyFIR lowres test | | | 87.19 304 | 85.51 315 | 92.24 208 | 97.12 146 | 80.51 249 | 85.03 369 | 96.06 212 | 66.11 390 | 91.66 273 | 92.98 298 | 70.12 337 | 99.14 86 | 75.29 350 | 95.23 312 | 97.07 229 |
|
| ab-mvs | | | 92.40 182 | 92.62 174 | 91.74 225 | 97.02 147 | 81.65 235 | 95.84 71 | 95.50 236 | 86.95 216 | 92.95 237 | 97.56 75 | 90.70 156 | 97.50 270 | 79.63 317 | 97.43 249 | 96.06 274 |
|
| tttt0517 | | | 89.81 246 | 88.90 255 | 92.55 201 | 97.00 148 | 79.73 268 | 95.03 102 | 83.65 380 | 89.88 156 | 95.30 153 | 94.79 243 | 53.64 391 | 99.39 49 | 91.99 108 | 98.79 142 | 98.54 119 |
|
| h-mvs33 | | | 92.89 165 | 91.99 188 | 95.58 77 | 96.97 149 | 90.55 76 | 93.94 144 | 94.01 277 | 89.23 168 | 93.95 201 | 96.19 180 | 76.88 309 | 99.14 86 | 91.02 131 | 95.71 298 | 97.04 233 |
|
| test222 | | | | | | 96.95 150 | 85.27 188 | 88.83 310 | 93.61 280 | 65.09 393 | 90.74 288 | 94.85 239 | 84.62 237 | | | 97.36 252 | 93.91 344 |
|
| CDPH-MVS | | | 92.67 174 | 91.83 193 | 95.18 96 | 96.94 151 | 88.46 118 | 90.70 253 | 97.07 152 | 77.38 330 | 92.34 261 | 95.08 231 | 92.67 109 | 98.88 121 | 85.74 248 | 98.57 166 | 98.20 141 |
|
| CNVR-MVS | | | 94.58 109 | 94.29 124 | 95.46 82 | 96.94 151 | 89.35 96 | 91.81 228 | 96.80 173 | 89.66 160 | 93.90 204 | 95.44 216 | 92.80 106 | 98.72 151 | 92.74 92 | 98.52 171 | 98.32 132 |
|
| EC-MVSNet | | | 95.44 72 | 95.62 71 | 94.89 103 | 96.93 153 | 87.69 131 | 96.48 38 | 99.14 4 | 93.93 56 | 92.77 242 | 94.52 253 | 93.95 76 | 99.49 24 | 93.62 56 | 99.22 89 | 97.51 207 |
|
| 原ACMM1 | | | | | 92.87 186 | 96.91 154 | 84.22 200 | | 97.01 155 | 76.84 336 | 89.64 311 | 94.46 254 | 88.00 190 | 98.70 158 | 81.53 296 | 98.01 220 | 95.70 292 |
|
| ambc | | | | | 92.98 179 | 96.88 155 | 83.01 220 | 95.92 68 | 96.38 199 | | 96.41 92 | 97.48 85 | 88.26 184 | 97.80 248 | 89.96 167 | 98.93 124 | 98.12 149 |
|
| testdata | | | | | 91.03 253 | 96.87 156 | 82.01 230 | | 94.28 270 | 71.55 366 | 92.46 252 | 95.42 217 | 85.65 227 | 97.38 281 | 82.64 282 | 97.27 254 | 93.70 350 |
|
| CS-MVS-test | | | 95.32 81 | 95.10 96 | 95.96 58 | 96.86 157 | 90.75 74 | 96.33 47 | 99.20 2 | 93.99 53 | 91.03 284 | 93.73 279 | 93.52 81 | 99.55 18 | 91.81 114 | 99.45 47 | 97.58 201 |
|
| test_fmvsmconf0.1_n | | | 95.61 65 | 95.72 68 | 95.26 90 | 96.85 158 | 89.20 98 | 93.51 156 | 98.60 14 | 85.68 235 | 97.42 50 | 98.30 35 | 95.34 33 | 98.39 191 | 96.85 3 | 98.98 114 | 98.19 142 |
|
| OPU-MVS | | | | | 95.15 97 | 96.84 159 | 89.43 92 | 95.21 93 | | | | 95.66 206 | 93.12 95 | 98.06 221 | 86.28 244 | 98.61 161 | 97.95 167 |
|
| CS-MVS | | | 95.77 59 | 95.58 73 | 96.37 50 | 96.84 159 | 91.72 61 | 96.73 29 | 99.06 5 | 94.23 49 | 92.48 251 | 94.79 243 | 93.56 79 | 99.49 24 | 93.47 64 | 99.05 106 | 97.89 174 |
|
| NP-MVS | | | | | | 96.82 161 | 87.10 141 | | | | | 93.40 288 | | | | | |
|
| 3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 66 | 96.13 53 | 96.81 162 | 90.79 73 | 96.30 54 | 97.82 91 | 96.13 26 | 94.74 180 | 97.23 105 | 91.33 135 | 99.16 83 | 93.25 77 | 98.30 192 | 98.46 125 |
|
| Test_1112_low_res | | | 87.50 296 | 86.58 303 | 90.25 280 | 96.80 163 | 77.75 303 | 87.53 329 | 96.25 203 | 69.73 380 | 86.47 352 | 93.61 283 | 75.67 316 | 97.88 239 | 79.95 312 | 93.20 356 | 95.11 311 |
|
| PAPM_NR | | | 91.03 209 | 90.81 217 | 91.68 229 | 96.73 164 | 81.10 244 | 93.72 151 | 96.35 200 | 88.19 191 | 88.77 324 | 92.12 318 | 85.09 233 | 97.25 283 | 82.40 287 | 93.90 344 | 96.68 248 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 132 | 94.08 133 | 93.84 152 | 96.72 165 | 85.73 179 | 93.65 154 | 95.23 245 | 83.30 269 | 95.13 162 | 97.56 75 | 92.22 116 | 97.17 289 | 95.51 22 | 97.41 250 | 98.64 111 |
|
| fmvsm_s_conf0.5_n | | | 94.00 133 | 94.20 129 | 93.42 170 | 96.69 166 | 84.37 195 | 93.38 162 | 95.13 247 | 84.50 258 | 95.40 146 | 97.55 79 | 91.77 126 | 97.20 286 | 95.59 18 | 97.79 232 | 98.69 103 |
|
| 1112_ss | | | 88.42 277 | 87.41 286 | 91.45 237 | 96.69 166 | 80.99 245 | 89.72 286 | 96.72 179 | 73.37 356 | 87.00 350 | 90.69 339 | 77.38 301 | 98.20 210 | 81.38 297 | 93.72 347 | 95.15 307 |
|
| test_fmvsmvis_n_1920 | | | 95.08 91 | 95.40 81 | 94.13 138 | 96.66 168 | 87.75 130 | 93.44 160 | 98.49 16 | 85.57 239 | 98.27 20 | 97.11 116 | 94.11 74 | 97.75 256 | 96.26 11 | 98.72 148 | 96.89 239 |
|
| patch_mono-2 | | | 92.46 180 | 92.72 172 | 91.71 227 | 96.65 169 | 78.91 285 | 88.85 309 | 97.17 144 | 83.89 265 | 92.45 253 | 96.76 140 | 89.86 172 | 97.09 293 | 90.24 157 | 98.59 164 | 99.12 43 |
|
| v8 | | | 94.65 107 | 95.29 87 | 92.74 190 | 96.65 169 | 79.77 267 | 94.59 115 | 97.17 144 | 91.86 103 | 97.47 47 | 97.93 54 | 88.16 186 | 99.08 93 | 94.32 38 | 99.47 43 | 99.38 22 |
|
| MVS_111021_HR | | | 93.63 143 | 93.42 155 | 94.26 134 | 96.65 169 | 86.96 146 | 89.30 299 | 96.23 205 | 88.36 189 | 93.57 212 | 94.60 250 | 93.45 82 | 97.77 253 | 90.23 158 | 98.38 183 | 98.03 157 |
|
| ANet_high | | | 94.83 100 | 96.28 37 | 90.47 272 | 96.65 169 | 73.16 350 | 94.33 127 | 98.74 12 | 96.39 24 | 98.09 25 | 98.93 8 | 93.37 86 | 98.70 158 | 90.38 148 | 99.68 18 | 99.53 15 |
|
| SD-MVS | | | 95.19 88 | 95.73 67 | 93.55 161 | 96.62 173 | 88.88 107 | 94.67 112 | 98.05 65 | 91.26 126 | 97.25 58 | 96.40 162 | 95.42 28 | 94.36 361 | 92.72 94 | 99.19 92 | 97.40 216 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| PM-MVS | | | 93.33 150 | 92.67 173 | 95.33 86 | 96.58 174 | 94.06 21 | 92.26 207 | 92.18 309 | 85.92 230 | 96.22 105 | 96.61 152 | 85.64 228 | 95.99 332 | 90.35 150 | 98.23 199 | 95.93 280 |
|
| Anonymous20240521 | | | 92.86 168 | 93.57 150 | 90.74 265 | 96.57 175 | 75.50 333 | 94.15 134 | 95.60 227 | 89.38 165 | 95.90 120 | 97.90 60 | 80.39 277 | 97.96 232 | 92.60 97 | 99.68 18 | 98.75 91 |
|
| v10 | | | 94.68 106 | 95.27 89 | 92.90 185 | 96.57 175 | 80.15 252 | 94.65 114 | 97.57 111 | 90.68 141 | 97.43 48 | 98.00 50 | 88.18 185 | 99.15 84 | 94.84 31 | 99.55 38 | 99.41 20 |
|
| Anonymous202405211 | | | 92.58 176 | 92.50 177 | 92.83 188 | 96.55 177 | 83.22 215 | 92.43 196 | 91.64 320 | 94.10 52 | 95.59 136 | 96.64 150 | 81.88 265 | 97.50 270 | 85.12 259 | 98.52 171 | 97.77 188 |
|
| DVP-MVS++ | | | 95.93 52 | 96.34 34 | 94.70 112 | 96.54 178 | 86.66 154 | 98.45 4 | 98.22 37 | 93.26 71 | 97.54 40 | 97.36 93 | 93.12 95 | 99.38 55 | 93.88 47 | 98.68 155 | 98.04 154 |
|
| MSC_two_6792asdad | | | | | 95.90 65 | 96.54 178 | 89.57 88 | | 96.87 168 | | | | | 99.41 39 | 94.06 44 | 99.30 71 | 98.72 96 |
|
| No_MVS | | | | | 95.90 65 | 96.54 178 | 89.57 88 | | 96.87 168 | | | | | 99.41 39 | 94.06 44 | 99.30 71 | 98.72 96 |
|
| PLC |  | 85.34 15 | 90.40 224 | 88.92 253 | 94.85 105 | 96.53 181 | 90.02 81 | 91.58 232 | 96.48 195 | 80.16 305 | 86.14 354 | 92.18 315 | 85.73 225 | 98.25 207 | 76.87 339 | 94.61 328 | 96.30 263 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| TAPA-MVS | | 88.58 10 | 92.49 179 | 91.75 195 | 94.73 110 | 96.50 182 | 89.69 86 | 92.91 175 | 97.68 102 | 78.02 327 | 92.79 241 | 94.10 265 | 90.85 149 | 97.96 232 | 84.76 266 | 98.16 206 | 96.54 250 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| NCCC | | | 94.08 130 | 93.54 152 | 95.70 75 | 96.49 183 | 89.90 83 | 92.39 199 | 96.91 165 | 90.64 142 | 92.33 262 | 94.60 250 | 90.58 159 | 98.96 111 | 90.21 159 | 97.70 237 | 98.23 138 |
|
| TAMVS | | | 90.16 234 | 89.05 249 | 93.49 168 | 96.49 183 | 86.37 162 | 90.34 266 | 92.55 305 | 80.84 302 | 92.99 234 | 94.57 252 | 81.94 264 | 98.20 210 | 73.51 360 | 98.21 202 | 95.90 283 |
|
| test_fmvsmconf_n | | | 95.43 73 | 95.50 75 | 95.22 94 | 96.48 185 | 89.19 99 | 93.23 166 | 98.36 22 | 85.61 238 | 96.92 73 | 98.02 49 | 95.23 39 | 98.38 194 | 96.69 6 | 98.95 123 | 98.09 150 |
|
| TEST9 | | | | | | 96.45 186 | 89.46 90 | 90.60 256 | 96.92 163 | 79.09 319 | 90.49 291 | 94.39 256 | 91.31 136 | 98.88 121 | | | |
|
| train_agg | | | 92.71 173 | 91.83 193 | 95.35 84 | 96.45 186 | 89.46 90 | 90.60 256 | 96.92 163 | 79.37 313 | 90.49 291 | 94.39 256 | 91.20 141 | 98.88 121 | 88.66 200 | 98.43 178 | 97.72 193 |
|
| test_8 | | | | | | 96.37 188 | 89.14 100 | 90.51 259 | 96.89 166 | 79.37 313 | 90.42 293 | 94.36 258 | 91.20 141 | 98.82 130 | | | |
|
| CLD-MVS | | | 91.82 193 | 91.41 203 | 93.04 177 | 96.37 188 | 83.65 209 | 86.82 344 | 97.29 136 | 84.65 257 | 92.27 263 | 89.67 352 | 92.20 118 | 97.85 245 | 83.95 272 | 99.47 43 | 97.62 199 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| HQP-NCC | | | | | | 96.36 190 | | 91.37 235 | | 87.16 211 | 88.81 320 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 190 | | 91.37 235 | | 87.16 211 | 88.81 320 | | | | | | |
|
| HQP-MVS | | | 92.09 190 | 91.49 201 | 93.88 149 | 96.36 190 | 84.89 191 | 91.37 235 | 97.31 133 | 87.16 211 | 88.81 320 | 93.40 288 | 84.76 235 | 98.60 171 | 86.55 238 | 97.73 234 | 98.14 147 |
|
| v2v482 | | | 93.29 151 | 93.63 146 | 92.29 206 | 96.35 193 | 78.82 287 | 91.77 230 | 96.28 201 | 88.45 186 | 95.70 133 | 96.26 177 | 86.02 223 | 98.90 118 | 93.02 85 | 98.81 140 | 99.14 40 |
|
| MSLP-MVS++ | | | 93.25 155 | 93.88 135 | 91.37 239 | 96.34 194 | 82.81 223 | 93.11 169 | 97.74 99 | 89.37 166 | 94.08 194 | 95.29 224 | 90.40 162 | 96.35 323 | 90.35 150 | 98.25 197 | 94.96 314 |
|
| thisisatest0530 | | | 88.69 274 | 87.52 285 | 92.20 209 | 96.33 195 | 79.36 275 | 92.81 177 | 84.01 379 | 86.44 219 | 93.67 209 | 92.68 306 | 53.62 392 | 99.25 75 | 89.65 174 | 98.45 177 | 98.00 159 |
|
| FPMVS | | | 84.50 326 | 83.28 331 | 88.16 323 | 96.32 196 | 94.49 16 | 85.76 363 | 85.47 368 | 83.09 275 | 85.20 359 | 94.26 259 | 63.79 368 | 86.58 397 | 63.72 393 | 91.88 374 | 83.40 395 |
|
| Anonymous20231206 | | | 88.77 271 | 88.29 267 | 90.20 283 | 96.31 197 | 78.81 288 | 89.56 290 | 93.49 285 | 74.26 352 | 92.38 257 | 95.58 211 | 82.21 258 | 95.43 344 | 72.07 368 | 98.75 147 | 96.34 261 |
|
| MVP-Stereo | | | 90.07 240 | 88.92 253 | 93.54 163 | 96.31 197 | 86.49 157 | 90.93 246 | 95.59 231 | 79.80 306 | 91.48 274 | 95.59 208 | 80.79 274 | 97.39 279 | 78.57 327 | 91.19 376 | 96.76 246 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| test_fmvsm_n_1920 | | | 94.72 103 | 94.74 109 | 94.67 113 | 96.30 199 | 88.62 111 | 93.19 167 | 98.07 61 | 85.63 237 | 97.08 61 | 97.35 96 | 90.86 148 | 97.66 263 | 95.70 16 | 98.48 176 | 97.74 192 |
|
| v1144 | | | 93.50 145 | 93.81 136 | 92.57 200 | 96.28 200 | 79.61 270 | 91.86 226 | 96.96 159 | 86.95 216 | 95.91 119 | 96.32 171 | 87.65 195 | 98.96 111 | 93.51 60 | 98.88 127 | 99.13 41 |
|
| LFMVS | | | 91.33 205 | 91.16 210 | 91.82 222 | 96.27 201 | 79.36 275 | 95.01 103 | 85.61 367 | 96.04 30 | 94.82 176 | 97.06 120 | 72.03 331 | 98.46 188 | 84.96 263 | 98.70 152 | 97.65 198 |
|
| VNet | | | 92.67 174 | 92.96 162 | 91.79 223 | 96.27 201 | 80.15 252 | 91.95 216 | 94.98 251 | 92.19 94 | 94.52 186 | 96.07 186 | 87.43 199 | 97.39 279 | 84.83 264 | 98.38 183 | 97.83 181 |
|
| IterMVS-LS | | | 93.78 140 | 94.28 125 | 92.27 207 | 96.27 201 | 79.21 280 | 91.87 224 | 96.78 174 | 91.77 113 | 96.57 89 | 97.07 119 | 87.15 204 | 98.74 149 | 91.99 108 | 99.03 112 | 98.86 78 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| v148 | | | 92.87 167 | 93.29 156 | 91.62 231 | 96.25 204 | 77.72 304 | 91.28 239 | 95.05 248 | 89.69 159 | 95.93 118 | 96.04 187 | 87.34 200 | 98.38 194 | 90.05 165 | 97.99 221 | 98.78 87 |
|
| casdiffmvs_mvg |  | | 95.10 90 | 95.62 71 | 93.53 164 | 96.25 204 | 83.23 214 | 92.66 184 | 98.19 40 | 93.06 75 | 97.49 44 | 97.15 112 | 94.78 57 | 98.71 157 | 92.27 102 | 98.72 148 | 98.65 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVS_111021_LR | | | 93.66 142 | 93.28 158 | 94.80 107 | 96.25 204 | 90.95 69 | 90.21 269 | 95.43 239 | 87.91 195 | 93.74 208 | 94.40 255 | 92.88 104 | 96.38 321 | 90.39 147 | 98.28 193 | 97.07 229 |
|
| agg_prior | | | | | | 96.20 207 | 88.89 106 | | 96.88 167 | | 90.21 298 | | | 98.78 142 | | | |
|
| 旧先验1 | | | | | | 96.20 207 | 84.17 202 | | 94.82 256 | | | 95.57 212 | 89.57 174 | | | 97.89 228 | 96.32 262 |
|
| CNLPA | | | 91.72 196 | 91.20 207 | 93.26 174 | 96.17 209 | 91.02 67 | 91.14 241 | 95.55 234 | 90.16 152 | 90.87 285 | 93.56 285 | 86.31 219 | 94.40 360 | 79.92 316 | 97.12 259 | 94.37 334 |
|
| fmvsm_l_conf0.5_n | | | 93.79 139 | 93.81 136 | 93.73 155 | 96.16 210 | 86.26 166 | 92.46 193 | 96.72 179 | 81.69 293 | 95.77 125 | 97.11 116 | 90.83 150 | 97.82 246 | 95.58 19 | 97.99 221 | 97.11 228 |
|
| hse-mvs2 | | | 92.24 188 | 91.20 207 | 95.38 83 | 96.16 210 | 90.65 75 | 92.52 189 | 92.01 316 | 89.23 168 | 93.95 201 | 92.99 297 | 76.88 309 | 98.69 160 | 91.02 131 | 96.03 290 | 96.81 243 |
|
| v1192 | | | 93.49 146 | 93.78 139 | 92.62 197 | 96.16 210 | 79.62 269 | 91.83 227 | 97.22 142 | 86.07 227 | 96.10 112 | 96.38 167 | 87.22 202 | 99.02 103 | 94.14 43 | 98.88 127 | 99.22 33 |
|
| thres100view900 | | | 87.35 299 | 86.89 298 | 88.72 310 | 96.14 213 | 73.09 351 | 93.00 172 | 85.31 370 | 92.13 95 | 93.26 223 | 90.96 334 | 63.42 369 | 98.28 202 | 71.27 374 | 96.54 281 | 94.79 324 |
|
| DeepC-MVS_fast | | 89.96 7 | 93.73 141 | 93.44 154 | 94.60 120 | 96.14 213 | 87.90 126 | 93.36 163 | 97.14 146 | 85.53 240 | 93.90 204 | 95.45 215 | 91.30 137 | 98.59 173 | 89.51 175 | 98.62 160 | 97.31 222 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DPM-MVS | | | 89.35 253 | 88.40 262 | 92.18 213 | 96.13 215 | 84.20 201 | 86.96 339 | 96.15 211 | 75.40 344 | 87.36 347 | 91.55 327 | 83.30 245 | 98.01 227 | 82.17 290 | 96.62 279 | 94.32 336 |
|
| fmvsm_l_conf0.5_n_a | | | 93.59 144 | 93.63 146 | 93.49 168 | 96.10 216 | 85.66 182 | 92.32 202 | 96.57 188 | 81.32 296 | 95.63 134 | 97.14 113 | 90.19 164 | 97.73 259 | 95.37 28 | 98.03 217 | 97.07 229 |
|
| AUN-MVS | | | 90.05 241 | 88.30 266 | 95.32 88 | 96.09 217 | 90.52 77 | 92.42 197 | 92.05 315 | 82.08 290 | 88.45 330 | 92.86 299 | 65.76 357 | 98.69 160 | 88.91 194 | 96.07 289 | 96.75 247 |
|
| baseline | | | 94.26 122 | 94.80 105 | 92.64 194 | 96.08 218 | 80.99 245 | 93.69 152 | 98.04 69 | 90.80 138 | 94.89 174 | 96.32 171 | 93.19 92 | 98.48 187 | 91.68 119 | 98.51 173 | 98.43 127 |
|
| PCF-MVS | | 84.52 17 | 89.12 257 | 87.71 282 | 93.34 171 | 96.06 219 | 85.84 176 | 86.58 352 | 97.31 133 | 68.46 384 | 93.61 211 | 93.89 275 | 87.51 198 | 98.52 181 | 67.85 385 | 98.11 210 | 95.66 294 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| v144192 | | | 93.20 158 | 93.54 152 | 92.16 214 | 96.05 220 | 78.26 294 | 91.95 216 | 97.14 146 | 84.98 252 | 95.96 115 | 96.11 184 | 87.08 206 | 99.04 101 | 93.79 50 | 98.84 132 | 99.17 37 |
|
| thres600view7 | | | 87.66 290 | 87.10 296 | 89.36 299 | 96.05 220 | 73.17 349 | 92.72 180 | 85.31 370 | 91.89 102 | 93.29 220 | 90.97 333 | 63.42 369 | 98.39 191 | 73.23 362 | 96.99 268 | 96.51 252 |
|
| casdiffmvs |  | | 94.32 120 | 94.80 105 | 92.85 187 | 96.05 220 | 81.44 239 | 92.35 200 | 98.05 65 | 91.53 122 | 95.75 128 | 96.80 137 | 93.35 87 | 98.49 183 | 91.01 133 | 98.32 191 | 98.64 111 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MIMVSNet | | | 87.13 306 | 86.54 305 | 88.89 307 | 96.05 220 | 76.11 326 | 94.39 124 | 88.51 337 | 81.37 295 | 88.27 333 | 96.75 142 | 72.38 328 | 95.52 339 | 65.71 390 | 95.47 304 | 95.03 312 |
|
| v1921920 | | | 93.26 153 | 93.61 148 | 92.19 210 | 96.04 224 | 78.31 293 | 91.88 223 | 97.24 140 | 85.17 246 | 96.19 109 | 96.19 180 | 86.76 213 | 99.05 98 | 94.18 42 | 98.84 132 | 99.22 33 |
|
| v1240 | | | 93.29 151 | 93.71 142 | 92.06 217 | 96.01 225 | 77.89 300 | 91.81 228 | 97.37 124 | 85.12 248 | 96.69 83 | 96.40 162 | 86.67 215 | 99.07 97 | 94.51 34 | 98.76 145 | 99.22 33 |
|
| BH-untuned | | | 90.68 216 | 90.90 213 | 90.05 287 | 95.98 226 | 79.57 271 | 90.04 275 | 94.94 253 | 87.91 195 | 94.07 195 | 93.00 296 | 87.76 194 | 97.78 252 | 79.19 323 | 95.17 313 | 92.80 365 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 126 | 93.56 151 | 96.14 52 | 95.96 227 | 92.96 43 | 89.48 292 | 97.46 119 | 85.14 247 | 96.23 104 | 95.42 217 | 93.19 92 | 98.08 220 | 90.37 149 | 98.76 145 | 97.38 219 |
|
| test_prior | | | | | 94.61 117 | 95.95 228 | 87.23 137 | | 97.36 129 | | | | | 98.68 162 | | | 97.93 169 |
|
| test12 | | | | | 94.43 130 | 95.95 228 | 86.75 150 | | 96.24 204 | | 89.76 309 | | 89.79 173 | 98.79 139 | | 97.95 225 | 97.75 191 |
|
| MVS_0304 | | | 93.92 136 | 93.68 144 | 94.64 116 | 95.94 230 | 85.83 177 | 94.34 126 | 88.14 343 | 92.98 77 | 91.09 283 | 97.68 66 | 86.73 214 | 99.36 58 | 96.64 7 | 99.59 29 | 98.72 96 |
|
| LCM-MVSNet-Re | | | 94.20 126 | 94.58 116 | 93.04 177 | 95.91 231 | 83.13 218 | 93.79 148 | 99.19 3 | 92.00 97 | 98.84 5 | 98.04 47 | 93.64 78 | 99.02 103 | 81.28 298 | 98.54 169 | 96.96 236 |
|
| PatchMatch-RL | | | 89.18 255 | 88.02 279 | 92.64 194 | 95.90 232 | 92.87 45 | 88.67 316 | 91.06 323 | 80.34 303 | 90.03 302 | 91.67 324 | 83.34 244 | 94.42 359 | 76.35 344 | 94.84 322 | 90.64 381 |
|
| ETV-MVS | | | 92.99 162 | 92.74 169 | 93.72 156 | 95.86 233 | 86.30 165 | 92.33 201 | 97.84 89 | 91.70 118 | 92.81 239 | 86.17 380 | 92.22 116 | 99.19 81 | 88.03 212 | 97.73 234 | 95.66 294 |
|
| MM | | | 94.41 115 | 94.14 130 | 95.22 94 | 95.84 234 | 87.21 138 | 94.31 129 | 90.92 326 | 94.48 46 | 92.80 240 | 97.52 80 | 85.27 230 | 99.49 24 | 96.58 8 | 99.57 36 | 98.97 62 |
|
| testing3 | | | 83.66 332 | 82.52 337 | 87.08 334 | 95.84 234 | 65.84 387 | 89.80 284 | 77.17 403 | 88.17 192 | 90.84 286 | 88.63 362 | 30.95 411 | 98.11 218 | 84.05 271 | 97.19 257 | 97.28 224 |
|
| TSAR-MVS + GP. | | | 93.07 161 | 92.41 179 | 95.06 99 | 95.82 236 | 90.87 72 | 90.97 245 | 92.61 304 | 88.04 194 | 94.61 183 | 93.79 278 | 88.08 187 | 97.81 247 | 89.41 177 | 98.39 182 | 96.50 255 |
|
| QAPM | | | 92.88 166 | 92.77 167 | 93.22 175 | 95.82 236 | 83.31 211 | 96.45 39 | 97.35 130 | 83.91 264 | 93.75 206 | 96.77 138 | 89.25 177 | 98.88 121 | 84.56 268 | 97.02 263 | 97.49 208 |
|
| EIA-MVS | | | 92.35 184 | 92.03 186 | 93.30 173 | 95.81 238 | 83.97 205 | 92.80 178 | 98.17 46 | 87.71 202 | 89.79 308 | 87.56 370 | 91.17 144 | 99.18 82 | 87.97 213 | 97.27 254 | 96.77 245 |
|
| tfpn200view9 | | | 87.05 307 | 86.52 306 | 88.67 311 | 95.77 239 | 72.94 352 | 91.89 221 | 86.00 361 | 90.84 135 | 92.61 246 | 89.80 346 | 63.93 366 | 98.28 202 | 71.27 374 | 96.54 281 | 94.79 324 |
|
| thres400 | | | 87.20 303 | 86.52 306 | 89.24 303 | 95.77 239 | 72.94 352 | 91.89 221 | 86.00 361 | 90.84 135 | 92.61 246 | 89.80 346 | 63.93 366 | 98.28 202 | 71.27 374 | 96.54 281 | 96.51 252 |
|
| pmmvs-eth3d | | | 91.54 200 | 90.73 220 | 93.99 141 | 95.76 241 | 87.86 128 | 90.83 248 | 93.98 278 | 78.23 326 | 94.02 199 | 96.22 179 | 82.62 257 | 96.83 307 | 86.57 236 | 98.33 189 | 97.29 223 |
|
| jason | | | 89.17 256 | 88.32 264 | 91.70 228 | 95.73 242 | 80.07 255 | 88.10 320 | 93.22 289 | 71.98 365 | 90.09 299 | 92.79 302 | 78.53 291 | 98.56 177 | 87.43 222 | 97.06 261 | 96.46 257 |
| jason: jason. |
| alignmvs | | | 93.26 153 | 92.85 166 | 94.50 125 | 95.70 243 | 87.45 133 | 93.45 159 | 95.76 222 | 91.58 120 | 95.25 158 | 92.42 313 | 81.96 263 | 98.72 151 | 91.61 120 | 97.87 229 | 97.33 221 |
|
| xiu_mvs_v1_base_debu | | | 91.47 202 | 91.52 198 | 91.33 241 | 95.69 244 | 81.56 236 | 89.92 279 | 96.05 214 | 83.22 272 | 91.26 278 | 90.74 336 | 91.55 131 | 98.82 130 | 89.29 181 | 95.91 293 | 93.62 353 |
|
| xiu_mvs_v1_base | | | 91.47 202 | 91.52 198 | 91.33 241 | 95.69 244 | 81.56 236 | 89.92 279 | 96.05 214 | 83.22 272 | 91.26 278 | 90.74 336 | 91.55 131 | 98.82 130 | 89.29 181 | 95.91 293 | 93.62 353 |
|
| xiu_mvs_v1_base_debi | | | 91.47 202 | 91.52 198 | 91.33 241 | 95.69 244 | 81.56 236 | 89.92 279 | 96.05 214 | 83.22 272 | 91.26 278 | 90.74 336 | 91.55 131 | 98.82 130 | 89.29 181 | 95.91 293 | 93.62 353 |
|
| PHI-MVS | | | 94.34 119 | 93.80 138 | 95.95 59 | 95.65 247 | 91.67 62 | 94.82 108 | 97.86 86 | 87.86 198 | 93.04 233 | 94.16 264 | 91.58 130 | 98.78 142 | 90.27 155 | 98.96 121 | 97.41 213 |
|
| LF4IMVS | | | 92.72 172 | 92.02 187 | 94.84 106 | 95.65 247 | 91.99 54 | 92.92 174 | 96.60 185 | 85.08 250 | 92.44 254 | 93.62 282 | 86.80 212 | 96.35 323 | 86.81 230 | 98.25 197 | 96.18 269 |
|
| test20.03 | | | 90.80 212 | 90.85 216 | 90.63 269 | 95.63 249 | 79.24 278 | 89.81 283 | 92.87 295 | 89.90 155 | 94.39 188 | 96.40 162 | 85.77 224 | 95.27 349 | 73.86 359 | 99.05 106 | 97.39 217 |
|
| TinyColmap | | | 92.00 192 | 92.76 168 | 89.71 293 | 95.62 250 | 77.02 312 | 90.72 252 | 96.17 210 | 87.70 203 | 95.26 156 | 96.29 173 | 92.54 111 | 96.45 318 | 81.77 292 | 98.77 144 | 95.66 294 |
|
| canonicalmvs | | | 94.59 108 | 94.69 111 | 94.30 133 | 95.60 251 | 87.03 143 | 95.59 80 | 98.24 35 | 91.56 121 | 95.21 161 | 92.04 319 | 94.95 53 | 98.66 164 | 91.45 125 | 97.57 243 | 97.20 226 |
|
| AdaColmap |  | | 91.63 198 | 91.36 204 | 92.47 204 | 95.56 252 | 86.36 163 | 92.24 209 | 96.27 202 | 88.88 178 | 89.90 305 | 92.69 305 | 91.65 129 | 98.32 200 | 77.38 336 | 97.64 240 | 92.72 366 |
|
| UnsupCasMVSNet_bld | | | 88.50 276 | 88.03 278 | 89.90 289 | 95.52 253 | 78.88 286 | 87.39 331 | 94.02 276 | 79.32 317 | 93.06 231 | 94.02 269 | 80.72 275 | 94.27 362 | 75.16 351 | 93.08 360 | 96.54 250 |
|
| 3Dnovator | | 92.54 3 | 94.80 101 | 94.90 101 | 94.47 128 | 95.47 254 | 87.06 142 | 96.63 31 | 97.28 138 | 91.82 110 | 94.34 191 | 97.41 87 | 90.60 158 | 98.65 166 | 92.47 99 | 98.11 210 | 97.70 194 |
|
| Fast-Effi-MVS+ | | | 91.28 207 | 90.86 215 | 92.53 202 | 95.45 255 | 82.53 225 | 89.25 302 | 96.52 193 | 85.00 251 | 89.91 304 | 88.55 364 | 92.94 100 | 98.84 128 | 84.72 267 | 95.44 305 | 96.22 267 |
|
| GBi-Net | | | 93.21 156 | 92.96 162 | 93.97 143 | 95.40 256 | 84.29 197 | 95.99 63 | 96.56 189 | 88.63 182 | 95.10 164 | 98.53 26 | 81.31 269 | 98.98 106 | 86.74 231 | 98.38 183 | 98.65 106 |
|
| test1 | | | 93.21 156 | 92.96 162 | 93.97 143 | 95.40 256 | 84.29 197 | 95.99 63 | 96.56 189 | 88.63 182 | 95.10 164 | 98.53 26 | 81.31 269 | 98.98 106 | 86.74 231 | 98.38 183 | 98.65 106 |
|
| FMVSNet2 | | | 92.78 170 | 92.73 171 | 92.95 182 | 95.40 256 | 81.98 231 | 94.18 133 | 95.53 235 | 88.63 182 | 96.05 113 | 97.37 90 | 81.31 269 | 98.81 135 | 87.38 224 | 98.67 157 | 98.06 151 |
|
| CDS-MVSNet | | | 89.55 248 | 88.22 273 | 93.53 164 | 95.37 259 | 86.49 157 | 89.26 300 | 93.59 281 | 79.76 308 | 91.15 281 | 92.31 314 | 77.12 304 | 98.38 194 | 77.51 334 | 97.92 227 | 95.71 290 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| V42 | | | 93.43 148 | 93.58 149 | 92.97 180 | 95.34 260 | 81.22 242 | 92.67 183 | 96.49 194 | 87.25 210 | 96.20 107 | 96.37 168 | 87.32 201 | 98.85 127 | 92.39 101 | 98.21 202 | 98.85 81 |
|
| Patchmatch-RL test | | | 88.81 270 | 88.52 259 | 89.69 294 | 95.33 261 | 79.94 261 | 86.22 357 | 92.71 300 | 78.46 324 | 95.80 124 | 94.18 263 | 66.25 355 | 95.33 347 | 89.22 186 | 98.53 170 | 93.78 347 |
|
| CL-MVSNet_self_test | | | 90.04 242 | 89.90 238 | 90.47 272 | 95.24 262 | 77.81 302 | 86.60 351 | 92.62 303 | 85.64 236 | 93.25 225 | 93.92 273 | 83.84 240 | 96.06 330 | 79.93 314 | 98.03 217 | 97.53 206 |
|
| BH-RMVSNet | | | 90.47 222 | 90.44 226 | 90.56 271 | 95.21 263 | 78.65 291 | 89.15 303 | 93.94 279 | 88.21 190 | 92.74 243 | 94.22 261 | 86.38 218 | 97.88 239 | 78.67 326 | 95.39 307 | 95.14 308 |
|
| Effi-MVS+ | | | 92.79 169 | 92.74 169 | 92.94 183 | 95.10 264 | 83.30 212 | 94.00 140 | 97.53 115 | 91.36 125 | 89.35 314 | 90.65 341 | 94.01 75 | 98.66 164 | 87.40 223 | 95.30 310 | 96.88 241 |
|
| USDC | | | 89.02 260 | 89.08 248 | 88.84 308 | 95.07 265 | 74.50 340 | 88.97 305 | 96.39 198 | 73.21 358 | 93.27 222 | 96.28 175 | 82.16 260 | 96.39 320 | 77.55 333 | 98.80 141 | 95.62 297 |
|
| WTY-MVS | | | 86.93 309 | 86.50 308 | 88.24 321 | 94.96 266 | 74.64 336 | 87.19 334 | 92.07 314 | 78.29 325 | 88.32 332 | 91.59 326 | 78.06 294 | 94.27 362 | 74.88 352 | 93.15 358 | 95.80 286 |
|
| FA-MVS(test-final) | | | 91.81 194 | 91.85 192 | 91.68 229 | 94.95 267 | 79.99 260 | 96.00 62 | 93.44 286 | 87.80 199 | 94.02 199 | 97.29 101 | 77.60 297 | 98.45 189 | 88.04 211 | 97.49 245 | 96.61 249 |
|
| PS-MVSNAJ | | | 88.86 269 | 88.99 252 | 88.48 317 | 94.88 268 | 74.71 335 | 86.69 347 | 95.60 227 | 80.88 300 | 87.83 339 | 87.37 373 | 90.77 151 | 98.82 130 | 82.52 284 | 94.37 332 | 91.93 372 |
|
| MG-MVS | | | 89.54 249 | 89.80 240 | 88.76 309 | 94.88 268 | 72.47 357 | 89.60 288 | 92.44 307 | 85.82 231 | 89.48 312 | 95.98 190 | 82.85 252 | 97.74 258 | 81.87 291 | 95.27 311 | 96.08 273 |
|
| xiu_mvs_v2_base | | | 89.00 263 | 89.19 246 | 88.46 318 | 94.86 270 | 74.63 337 | 86.97 338 | 95.60 227 | 80.88 300 | 87.83 339 | 88.62 363 | 91.04 146 | 98.81 135 | 82.51 285 | 94.38 331 | 91.93 372 |
|
| MAR-MVS | | | 90.32 231 | 88.87 256 | 94.66 115 | 94.82 271 | 91.85 57 | 94.22 132 | 94.75 259 | 80.91 299 | 87.52 346 | 88.07 368 | 86.63 216 | 97.87 242 | 76.67 340 | 96.21 288 | 94.25 337 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_BlendedMVS | | | 90.35 229 | 89.96 236 | 91.54 234 | 94.81 272 | 78.80 289 | 90.14 272 | 96.93 161 | 79.43 312 | 88.68 327 | 95.06 232 | 86.27 220 | 98.15 216 | 80.27 306 | 98.04 216 | 97.68 196 |
|
| PVSNet_Blended | | | 88.74 272 | 88.16 276 | 90.46 275 | 94.81 272 | 78.80 289 | 86.64 348 | 96.93 161 | 74.67 348 | 88.68 327 | 89.18 359 | 86.27 220 | 98.15 216 | 80.27 306 | 96.00 291 | 94.44 333 |
|
| FE-MVS | | | 89.06 259 | 88.29 267 | 91.36 240 | 94.78 274 | 79.57 271 | 96.77 28 | 90.99 324 | 84.87 254 | 92.96 236 | 96.29 173 | 60.69 380 | 98.80 138 | 80.18 309 | 97.11 260 | 95.71 290 |
|
| BH-w/o | | | 87.21 302 | 87.02 297 | 87.79 329 | 94.77 275 | 77.27 310 | 87.90 322 | 93.21 291 | 81.74 292 | 89.99 303 | 88.39 366 | 83.47 243 | 96.93 302 | 71.29 373 | 92.43 368 | 89.15 383 |
|
| LS3D | | | 96.11 47 | 95.83 63 | 96.95 36 | 94.75 276 | 94.20 19 | 97.34 13 | 97.98 76 | 97.31 11 | 95.32 152 | 96.77 138 | 93.08 97 | 99.20 80 | 91.79 115 | 98.16 206 | 97.44 212 |
|
| Effi-MVS+-dtu | | | 93.90 138 | 92.60 175 | 97.77 3 | 94.74 277 | 96.67 5 | 94.00 140 | 95.41 240 | 89.94 154 | 91.93 270 | 92.13 317 | 90.12 166 | 98.97 110 | 87.68 218 | 97.48 246 | 97.67 197 |
|
| MVSFormer | | | 92.18 189 | 92.23 181 | 92.04 218 | 94.74 277 | 80.06 256 | 97.15 15 | 97.37 124 | 88.98 174 | 88.83 318 | 92.79 302 | 77.02 306 | 99.60 9 | 96.41 9 | 96.75 276 | 96.46 257 |
|
| lupinMVS | | | 88.34 279 | 87.31 287 | 91.45 237 | 94.74 277 | 80.06 256 | 87.23 332 | 92.27 308 | 71.10 370 | 88.83 318 | 91.15 330 | 77.02 306 | 98.53 180 | 86.67 234 | 96.75 276 | 95.76 288 |
|
| baseline1 | | | 87.62 292 | 87.31 287 | 88.54 314 | 94.71 280 | 74.27 343 | 93.10 170 | 88.20 341 | 86.20 224 | 92.18 265 | 93.04 295 | 73.21 325 | 95.52 339 | 79.32 321 | 85.82 391 | 95.83 285 |
|
| MDA-MVSNet-bldmvs | | | 91.04 208 | 90.88 214 | 91.55 233 | 94.68 281 | 80.16 251 | 85.49 365 | 92.14 312 | 90.41 149 | 94.93 172 | 95.79 198 | 85.10 232 | 96.93 302 | 85.15 257 | 94.19 339 | 97.57 202 |
|
| Fast-Effi-MVS+-dtu | | | 92.77 171 | 92.16 182 | 94.58 123 | 94.66 282 | 88.25 120 | 92.05 212 | 96.65 183 | 89.62 161 | 90.08 300 | 91.23 329 | 92.56 110 | 98.60 171 | 86.30 243 | 96.27 287 | 96.90 238 |
|
| UnsupCasMVSNet_eth | | | 90.33 230 | 90.34 229 | 90.28 278 | 94.64 283 | 80.24 250 | 89.69 287 | 95.88 219 | 85.77 232 | 93.94 203 | 95.69 205 | 81.99 262 | 92.98 373 | 84.21 270 | 91.30 375 | 97.62 199 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 250 | 89.05 249 | 90.92 258 | 94.58 284 | 81.21 243 | 91.10 243 | 93.41 287 | 77.03 334 | 93.41 215 | 93.99 271 | 83.23 246 | 97.80 248 | 79.93 314 | 94.80 323 | 93.74 349 |
|
| OpenMVS |  | 89.45 8 | 92.27 187 | 92.13 185 | 92.68 193 | 94.53 285 | 84.10 203 | 95.70 75 | 97.03 154 | 82.44 286 | 91.14 282 | 96.42 160 | 88.47 182 | 98.38 194 | 85.95 246 | 97.47 247 | 95.55 299 |
|
| thres200 | | | 85.85 315 | 85.18 316 | 87.88 328 | 94.44 286 | 72.52 356 | 89.08 304 | 86.21 358 | 88.57 185 | 91.44 275 | 88.40 365 | 64.22 364 | 98.00 228 | 68.35 383 | 95.88 296 | 93.12 359 |
|
| DELS-MVS | | | 92.05 191 | 92.16 182 | 91.72 226 | 94.44 286 | 80.13 254 | 87.62 324 | 97.25 139 | 87.34 209 | 92.22 264 | 93.18 294 | 89.54 175 | 98.73 150 | 89.67 173 | 98.20 204 | 96.30 263 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| N_pmnet | | | 88.90 268 | 87.25 290 | 93.83 153 | 94.40 288 | 93.81 35 | 84.73 371 | 87.09 353 | 79.36 315 | 93.26 223 | 92.43 312 | 79.29 284 | 91.68 378 | 77.50 335 | 97.22 256 | 96.00 276 |
|
| pmmvs4 | | | 88.95 265 | 87.70 283 | 92.70 191 | 94.30 289 | 85.60 183 | 87.22 333 | 92.16 311 | 74.62 349 | 89.75 310 | 94.19 262 | 77.97 295 | 96.41 319 | 82.71 281 | 96.36 285 | 96.09 272 |
|
| new-patchmatchnet | | | 88.97 264 | 90.79 218 | 83.50 370 | 94.28 290 | 55.83 405 | 85.34 367 | 93.56 283 | 86.18 225 | 95.47 142 | 95.73 204 | 83.10 247 | 96.51 315 | 85.40 252 | 98.06 214 | 98.16 145 |
|
| API-MVS | | | 91.52 201 | 91.61 196 | 91.26 245 | 94.16 291 | 86.26 166 | 94.66 113 | 94.82 256 | 91.17 130 | 92.13 266 | 91.08 332 | 90.03 171 | 97.06 296 | 79.09 324 | 97.35 253 | 90.45 382 |
|
| MSDG | | | 90.82 211 | 90.67 221 | 91.26 245 | 94.16 291 | 83.08 219 | 86.63 349 | 96.19 208 | 90.60 144 | 91.94 269 | 91.89 320 | 89.16 178 | 95.75 336 | 80.96 303 | 94.51 329 | 94.95 315 |
|
| TR-MVS | | | 87.70 288 | 87.17 292 | 89.27 301 | 94.11 293 | 79.26 277 | 88.69 314 | 91.86 317 | 81.94 291 | 90.69 289 | 89.79 349 | 82.82 253 | 97.42 276 | 72.65 366 | 91.98 372 | 91.14 378 |
|
| test_yl | | | 90.11 237 | 89.73 243 | 91.26 245 | 94.09 294 | 79.82 264 | 90.44 260 | 92.65 301 | 90.90 133 | 93.19 228 | 93.30 290 | 73.90 322 | 98.03 223 | 82.23 288 | 96.87 270 | 95.93 280 |
|
| DCV-MVSNet | | | 90.11 237 | 89.73 243 | 91.26 245 | 94.09 294 | 79.82 264 | 90.44 260 | 92.65 301 | 90.90 133 | 93.19 228 | 93.30 290 | 73.90 322 | 98.03 223 | 82.23 288 | 96.87 270 | 95.93 280 |
|
| D2MVS | | | 89.93 243 | 89.60 245 | 90.92 258 | 94.03 296 | 78.40 292 | 88.69 314 | 94.85 254 | 78.96 321 | 93.08 230 | 95.09 230 | 74.57 320 | 96.94 300 | 88.19 205 | 98.96 121 | 97.41 213 |
|
| sss | | | 87.23 301 | 86.82 299 | 88.46 318 | 93.96 297 | 77.94 297 | 86.84 342 | 92.78 299 | 77.59 329 | 87.61 345 | 91.83 321 | 78.75 287 | 91.92 377 | 77.84 330 | 94.20 337 | 95.52 300 |
|
| PVSNet | | 76.22 20 | 82.89 340 | 82.37 339 | 84.48 362 | 93.96 297 | 64.38 394 | 78.60 393 | 88.61 336 | 71.50 367 | 84.43 368 | 86.36 379 | 74.27 321 | 94.60 356 | 69.87 381 | 93.69 348 | 94.46 332 |
|
| iter_conf05_11 | | | 88.91 267 | 88.32 264 | 90.66 267 | 93.95 299 | 78.09 296 | 86.98 337 | 93.06 292 | 79.35 316 | 87.64 342 | 89.80 346 | 80.25 278 | 98.96 111 | 85.18 253 | 98.69 153 | 94.95 315 |
|
| bld_raw_dy_0_64 | | | 90.86 210 | 90.99 212 | 90.47 272 | 93.95 299 | 77.88 301 | 93.99 142 | 98.93 7 | 77.75 328 | 97.03 66 | 90.61 342 | 81.82 266 | 98.58 175 | 85.18 253 | 99.61 26 | 94.95 315 |
|
| IterMVS-SCA-FT | | | 91.65 197 | 91.55 197 | 91.94 219 | 93.89 301 | 79.22 279 | 87.56 327 | 93.51 284 | 91.53 122 | 95.37 149 | 96.62 151 | 78.65 288 | 98.90 118 | 91.89 112 | 94.95 318 | 97.70 194 |
|
| UGNet | | | 93.08 159 | 92.50 177 | 94.79 108 | 93.87 302 | 87.99 125 | 95.07 100 | 94.26 271 | 90.64 142 | 87.33 348 | 97.67 68 | 86.89 211 | 98.49 183 | 88.10 208 | 98.71 150 | 97.91 171 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| PAPM | | | 81.91 349 | 80.11 359 | 87.31 333 | 93.87 302 | 72.32 358 | 84.02 379 | 93.22 289 | 69.47 381 | 76.13 400 | 89.84 345 | 72.15 329 | 97.23 284 | 53.27 402 | 89.02 384 | 92.37 369 |
|
| CANet | | | 92.38 183 | 91.99 188 | 93.52 166 | 93.82 304 | 83.46 210 | 91.14 241 | 97.00 156 | 89.81 157 | 86.47 352 | 94.04 267 | 87.90 193 | 99.21 78 | 89.50 176 | 98.27 194 | 97.90 172 |
|
| test_fmvs3 | | | 92.42 181 | 92.40 180 | 92.46 205 | 93.80 305 | 87.28 136 | 93.86 146 | 97.05 153 | 76.86 335 | 96.25 102 | 98.66 18 | 82.87 251 | 91.26 380 | 95.44 25 | 96.83 272 | 98.82 82 |
|
| HY-MVS | | 82.50 18 | 86.81 310 | 85.93 312 | 89.47 295 | 93.63 306 | 77.93 298 | 94.02 139 | 91.58 321 | 75.68 340 | 83.64 374 | 93.64 280 | 77.40 300 | 97.42 276 | 71.70 371 | 92.07 371 | 93.05 362 |
|
| test_vis1_n_1920 | | | 89.45 251 | 89.85 239 | 88.28 320 | 93.59 307 | 76.71 320 | 90.67 254 | 97.78 97 | 79.67 310 | 90.30 297 | 96.11 184 | 76.62 312 | 92.17 376 | 90.31 152 | 93.57 349 | 95.96 278 |
|
| MVS_Test | | | 92.57 178 | 93.29 156 | 90.40 276 | 93.53 308 | 75.85 329 | 92.52 189 | 96.96 159 | 88.73 179 | 92.35 259 | 96.70 147 | 90.77 151 | 98.37 198 | 92.53 98 | 95.49 303 | 96.99 235 |
|
| EU-MVSNet | | | 87.39 298 | 86.71 302 | 89.44 296 | 93.40 309 | 76.11 326 | 94.93 106 | 90.00 332 | 57.17 400 | 95.71 132 | 97.37 90 | 64.77 363 | 97.68 262 | 92.67 95 | 94.37 332 | 94.52 331 |
|
| MS-PatchMatch | | | 88.05 283 | 87.75 281 | 88.95 305 | 93.28 310 | 77.93 298 | 87.88 323 | 92.49 306 | 75.42 343 | 92.57 249 | 93.59 284 | 80.44 276 | 94.24 364 | 81.28 298 | 92.75 363 | 94.69 329 |
|
| GA-MVS | | | 87.70 288 | 86.82 299 | 90.31 277 | 93.27 311 | 77.22 311 | 84.72 373 | 92.79 298 | 85.11 249 | 89.82 306 | 90.07 343 | 66.80 350 | 97.76 255 | 84.56 268 | 94.27 335 | 95.96 278 |
|
| pmmvs5 | | | 87.87 285 | 87.14 293 | 90.07 285 | 93.26 312 | 76.97 316 | 88.89 307 | 92.18 309 | 73.71 355 | 88.36 331 | 93.89 275 | 76.86 311 | 96.73 310 | 80.32 305 | 96.81 273 | 96.51 252 |
|
| IterMVS | | | 90.18 233 | 90.16 231 | 90.21 282 | 93.15 313 | 75.98 328 | 87.56 327 | 92.97 294 | 86.43 220 | 94.09 193 | 96.40 162 | 78.32 292 | 97.43 275 | 87.87 215 | 94.69 326 | 97.23 225 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| MVS-HIRNet | | | 78.83 367 | 80.60 354 | 73.51 385 | 93.07 314 | 47.37 409 | 87.10 336 | 78.00 400 | 68.94 382 | 77.53 398 | 97.26 102 | 71.45 333 | 94.62 355 | 63.28 394 | 88.74 385 | 78.55 400 |
|
| diffmvs |  | | 91.74 195 | 91.93 190 | 91.15 251 | 93.06 315 | 78.17 295 | 88.77 312 | 97.51 118 | 86.28 221 | 92.42 255 | 93.96 272 | 88.04 189 | 97.46 273 | 90.69 141 | 96.67 278 | 97.82 183 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ET-MVSNet_ETH3D | | | 86.15 313 | 84.27 324 | 91.79 223 | 93.04 316 | 81.28 240 | 87.17 335 | 86.14 359 | 79.57 311 | 83.65 373 | 88.66 361 | 57.10 384 | 98.18 213 | 87.74 217 | 95.40 306 | 95.90 283 |
|
| FMVSNet3 | | | 90.78 213 | 90.32 230 | 92.16 214 | 93.03 317 | 79.92 262 | 92.54 188 | 94.95 252 | 86.17 226 | 95.10 164 | 96.01 189 | 69.97 338 | 98.75 146 | 86.74 231 | 98.38 183 | 97.82 183 |
|
| ETVMVS | | | 79.85 363 | 77.94 370 | 85.59 351 | 92.97 318 | 66.20 385 | 86.13 358 | 80.99 391 | 81.41 294 | 83.52 376 | 83.89 391 | 41.81 408 | 94.98 354 | 56.47 400 | 94.25 336 | 95.61 298 |
|
| thisisatest0515 | | | 84.72 324 | 82.99 334 | 89.90 289 | 92.96 319 | 75.33 334 | 84.36 376 | 83.42 381 | 77.37 331 | 88.27 333 | 86.65 375 | 53.94 390 | 98.72 151 | 82.56 283 | 97.40 251 | 95.67 293 |
|
| testing91 | | | 83.56 334 | 82.45 338 | 86.91 338 | 92.92 320 | 67.29 376 | 86.33 355 | 88.07 345 | 86.22 223 | 84.26 369 | 85.76 382 | 48.15 397 | 97.17 289 | 76.27 345 | 94.08 343 | 96.27 265 |
|
| PAPR | | | 87.65 291 | 86.77 301 | 90.27 279 | 92.85 321 | 77.38 308 | 88.56 317 | 96.23 205 | 76.82 337 | 84.98 363 | 89.75 351 | 86.08 222 | 97.16 291 | 72.33 367 | 93.35 353 | 96.26 266 |
|
| iter_conf05 | | | 88.94 266 | 88.09 277 | 91.50 236 | 92.74 322 | 76.97 316 | 92.80 178 | 95.92 218 | 82.82 280 | 93.65 210 | 95.37 223 | 49.41 395 | 99.13 88 | 90.82 136 | 99.28 79 | 98.40 129 |
|
| testing11 | | | 81.98 348 | 80.52 355 | 86.38 347 | 92.69 323 | 67.13 377 | 85.79 362 | 84.80 375 | 82.16 289 | 81.19 392 | 85.41 385 | 45.24 399 | 96.88 305 | 74.14 357 | 93.24 355 | 95.14 308 |
|
| test_vis3_rt | | | 90.40 224 | 90.03 235 | 91.52 235 | 92.58 324 | 88.95 103 | 90.38 264 | 97.72 101 | 73.30 357 | 97.79 30 | 97.51 83 | 77.05 305 | 87.10 395 | 89.03 191 | 94.89 319 | 98.50 121 |
|
| test_vis1_n | | | 89.01 262 | 89.01 251 | 89.03 304 | 92.57 325 | 82.46 227 | 92.62 186 | 96.06 212 | 73.02 360 | 90.40 294 | 95.77 202 | 74.86 319 | 89.68 388 | 90.78 138 | 94.98 317 | 94.95 315 |
|
| testing99 | | | 82.94 339 | 81.72 342 | 86.59 341 | 92.55 326 | 66.53 382 | 86.08 359 | 85.70 364 | 85.47 243 | 83.95 371 | 85.70 383 | 45.87 398 | 97.07 295 | 76.58 342 | 93.56 350 | 96.17 271 |
|
| EI-MVSNet-Vis-set | | | 94.36 117 | 94.28 125 | 94.61 117 | 92.55 326 | 85.98 172 | 92.44 195 | 94.69 261 | 93.70 61 | 96.12 111 | 95.81 197 | 91.24 138 | 98.86 125 | 93.76 54 | 98.22 201 | 98.98 60 |
|
| testing222 | | | 80.54 359 | 78.53 366 | 86.58 342 | 92.54 328 | 68.60 374 | 86.24 356 | 82.72 383 | 83.78 267 | 82.68 382 | 84.24 390 | 39.25 409 | 95.94 333 | 60.25 396 | 95.09 315 | 95.20 304 |
|
| EI-MVSNet-UG-set | | | 94.35 118 | 94.27 127 | 94.59 121 | 92.46 329 | 85.87 175 | 92.42 197 | 94.69 261 | 93.67 64 | 96.13 110 | 95.84 196 | 91.20 141 | 98.86 125 | 93.78 51 | 98.23 199 | 99.03 52 |
|
| FMVSNet5 | | | 87.82 287 | 86.56 304 | 91.62 231 | 92.31 330 | 79.81 266 | 93.49 157 | 94.81 258 | 83.26 270 | 91.36 276 | 96.93 129 | 52.77 393 | 97.49 272 | 76.07 346 | 98.03 217 | 97.55 205 |
|
| c3_l | | | 91.32 206 | 91.42 202 | 91.00 256 | 92.29 331 | 76.79 319 | 87.52 330 | 96.42 197 | 85.76 233 | 94.72 182 | 93.89 275 | 82.73 254 | 98.16 215 | 90.93 135 | 98.55 167 | 98.04 154 |
|
| dmvs_re | | | 84.69 325 | 83.94 327 | 86.95 337 | 92.24 332 | 82.93 221 | 89.51 291 | 87.37 351 | 84.38 261 | 85.37 357 | 85.08 387 | 72.44 327 | 86.59 396 | 68.05 384 | 91.03 379 | 91.33 376 |
|
| MDA-MVSNet_test_wron | | | 88.16 282 | 88.23 272 | 87.93 326 | 92.22 333 | 73.71 346 | 80.71 391 | 88.84 334 | 82.52 284 | 94.88 175 | 95.14 227 | 82.70 255 | 93.61 367 | 83.28 276 | 93.80 346 | 96.46 257 |
|
| YYNet1 | | | 88.17 281 | 88.24 271 | 87.93 326 | 92.21 334 | 73.62 347 | 80.75 390 | 88.77 335 | 82.51 285 | 94.99 170 | 95.11 229 | 82.70 255 | 93.70 366 | 83.33 275 | 93.83 345 | 96.48 256 |
|
| CANet_DTU | | | 89.85 245 | 89.17 247 | 91.87 220 | 92.20 335 | 80.02 259 | 90.79 249 | 95.87 220 | 86.02 228 | 82.53 383 | 91.77 322 | 80.01 279 | 98.57 176 | 85.66 250 | 97.70 237 | 97.01 234 |
|
| test_cas_vis1_n_1920 | | | 88.25 280 | 88.27 269 | 88.20 322 | 92.19 336 | 78.92 284 | 89.45 293 | 95.44 237 | 75.29 347 | 93.23 226 | 95.65 207 | 71.58 332 | 90.23 386 | 88.05 210 | 93.55 351 | 95.44 301 |
|
| mvs_anonymous | | | 90.37 228 | 91.30 206 | 87.58 330 | 92.17 337 | 68.00 375 | 89.84 282 | 94.73 260 | 83.82 266 | 93.22 227 | 97.40 88 | 87.54 197 | 97.40 278 | 87.94 214 | 95.05 316 | 97.34 220 |
|
| EI-MVSNet | | | 92.99 162 | 93.26 160 | 92.19 210 | 92.12 338 | 79.21 280 | 92.32 202 | 94.67 263 | 91.77 113 | 95.24 159 | 95.85 194 | 87.14 205 | 98.49 183 | 91.99 108 | 98.26 195 | 98.86 78 |
|
| CVMVSNet | | | 85.16 320 | 84.72 318 | 86.48 343 | 92.12 338 | 70.19 366 | 92.32 202 | 88.17 342 | 56.15 401 | 90.64 290 | 95.85 194 | 67.97 345 | 96.69 311 | 88.78 197 | 90.52 380 | 92.56 367 |
|
| test_fmvs1_n | | | 88.73 273 | 88.38 263 | 89.76 291 | 92.06 340 | 82.53 225 | 92.30 205 | 96.59 187 | 71.14 369 | 92.58 248 | 95.41 220 | 68.55 341 | 89.57 390 | 91.12 129 | 95.66 299 | 97.18 227 |
|
| eth_miper_zixun_eth | | | 90.72 214 | 90.61 222 | 91.05 252 | 92.04 341 | 76.84 318 | 86.91 340 | 96.67 182 | 85.21 245 | 94.41 187 | 93.92 273 | 79.53 282 | 98.26 206 | 89.76 171 | 97.02 263 | 98.06 151 |
|
| SCA | | | 87.43 297 | 87.21 291 | 88.10 324 | 92.01 342 | 71.98 359 | 89.43 294 | 88.11 344 | 82.26 288 | 88.71 325 | 92.83 300 | 78.65 288 | 97.59 266 | 79.61 318 | 93.30 354 | 94.75 326 |
|
| dmvs_testset | | | 78.23 368 | 78.99 363 | 75.94 383 | 91.99 343 | 55.34 406 | 88.86 308 | 78.70 398 | 82.69 281 | 81.64 390 | 79.46 398 | 75.93 315 | 85.74 398 | 48.78 404 | 82.85 397 | 86.76 391 |
|
| UWE-MVS | | | 80.29 361 | 79.10 362 | 83.87 367 | 91.97 344 | 59.56 401 | 86.50 354 | 77.43 402 | 75.40 344 | 87.79 341 | 88.10 367 | 44.08 403 | 96.90 304 | 64.23 391 | 96.36 285 | 95.14 308 |
|
| test_fmvs2 | | | 90.62 219 | 90.40 228 | 91.29 244 | 91.93 345 | 85.46 185 | 92.70 182 | 96.48 195 | 74.44 350 | 94.91 173 | 97.59 73 | 75.52 317 | 90.57 382 | 93.44 67 | 96.56 280 | 97.84 180 |
|
| cl____ | | | 90.65 217 | 90.56 224 | 90.91 260 | 91.85 346 | 76.98 315 | 86.75 345 | 95.36 242 | 85.53 240 | 94.06 196 | 94.89 237 | 77.36 303 | 97.98 231 | 90.27 155 | 98.98 114 | 97.76 189 |
|
| DIV-MVS_self_test | | | 90.65 217 | 90.56 224 | 90.91 260 | 91.85 346 | 76.99 314 | 86.75 345 | 95.36 242 | 85.52 242 | 94.06 196 | 94.89 237 | 77.37 302 | 97.99 230 | 90.28 154 | 98.97 119 | 97.76 189 |
|
| our_test_3 | | | 87.55 294 | 87.59 284 | 87.44 332 | 91.76 348 | 70.48 365 | 83.83 380 | 90.55 330 | 79.79 307 | 92.06 268 | 92.17 316 | 78.63 290 | 95.63 337 | 84.77 265 | 94.73 324 | 96.22 267 |
|
| ppachtmachnet_test | | | 88.61 275 | 88.64 258 | 88.50 316 | 91.76 348 | 70.99 364 | 84.59 374 | 92.98 293 | 79.30 318 | 92.38 257 | 93.53 286 | 79.57 281 | 97.45 274 | 86.50 240 | 97.17 258 | 97.07 229 |
|
| Syy-MVS | | | 84.81 323 | 84.93 317 | 84.42 363 | 91.71 350 | 63.36 397 | 85.89 360 | 81.49 387 | 81.03 297 | 85.13 360 | 81.64 396 | 77.44 299 | 95.00 351 | 85.94 247 | 94.12 340 | 94.91 320 |
|
| myMVS_eth3d | | | 79.62 364 | 78.26 367 | 83.72 368 | 91.71 350 | 61.25 399 | 85.89 360 | 81.49 387 | 81.03 297 | 85.13 360 | 81.64 396 | 32.12 410 | 95.00 351 | 71.17 377 | 94.12 340 | 94.91 320 |
|
| 1314 | | | 86.46 312 | 86.33 309 | 86.87 339 | 91.65 352 | 74.54 338 | 91.94 218 | 94.10 273 | 74.28 351 | 84.78 365 | 87.33 374 | 83.03 249 | 95.00 351 | 78.72 325 | 91.16 377 | 91.06 379 |
|
| WB-MVSnew | | | 84.20 329 | 83.89 328 | 85.16 357 | 91.62 353 | 66.15 386 | 88.44 319 | 81.00 390 | 76.23 339 | 87.98 337 | 87.77 369 | 84.98 234 | 93.35 370 | 62.85 395 | 94.10 342 | 95.98 277 |
|
| miper_ehance_all_eth | | | 90.48 221 | 90.42 227 | 90.69 266 | 91.62 353 | 76.57 322 | 86.83 343 | 96.18 209 | 83.38 268 | 94.06 196 | 92.66 307 | 82.20 259 | 98.04 222 | 89.79 170 | 97.02 263 | 97.45 210 |
|
| cascas | | | 87.02 308 | 86.28 310 | 89.25 302 | 91.56 355 | 76.45 323 | 84.33 377 | 96.78 174 | 71.01 371 | 86.89 351 | 85.91 381 | 81.35 268 | 96.94 300 | 83.09 278 | 95.60 300 | 94.35 335 |
|
| baseline2 | | | 83.38 335 | 81.54 345 | 88.90 306 | 91.38 356 | 72.84 354 | 88.78 311 | 81.22 389 | 78.97 320 | 79.82 395 | 87.56 370 | 61.73 376 | 97.80 248 | 74.30 356 | 90.05 382 | 96.05 275 |
|
| miper_lstm_enhance | | | 89.90 244 | 89.80 240 | 90.19 284 | 91.37 357 | 77.50 306 | 83.82 381 | 95.00 250 | 84.84 255 | 93.05 232 | 94.96 235 | 76.53 314 | 95.20 350 | 89.96 167 | 98.67 157 | 97.86 177 |
|
| mvsany_test3 | | | 89.11 258 | 88.21 274 | 91.83 221 | 91.30 358 | 90.25 79 | 88.09 321 | 78.76 397 | 76.37 338 | 96.43 91 | 98.39 33 | 83.79 241 | 90.43 385 | 86.57 236 | 94.20 337 | 94.80 323 |
|
| IB-MVS | | 77.21 19 | 83.11 336 | 81.05 348 | 89.29 300 | 91.15 359 | 75.85 329 | 85.66 364 | 86.00 361 | 79.70 309 | 82.02 387 | 86.61 376 | 48.26 396 | 98.39 191 | 77.84 330 | 92.22 369 | 93.63 352 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| MVS | | | 84.98 322 | 84.30 323 | 87.01 335 | 91.03 360 | 77.69 305 | 91.94 218 | 94.16 272 | 59.36 399 | 84.23 370 | 87.50 372 | 85.66 226 | 96.80 308 | 71.79 369 | 93.05 361 | 86.54 392 |
|
| CR-MVSNet | | | 87.89 284 | 87.12 295 | 90.22 281 | 91.01 361 | 78.93 282 | 92.52 189 | 92.81 296 | 73.08 359 | 89.10 315 | 96.93 129 | 67.11 347 | 97.64 265 | 88.80 196 | 92.70 364 | 94.08 338 |
|
| RPMNet | | | 90.31 232 | 90.14 234 | 90.81 264 | 91.01 361 | 78.93 282 | 92.52 189 | 98.12 52 | 91.91 101 | 89.10 315 | 96.89 132 | 68.84 340 | 99.41 39 | 90.17 160 | 92.70 364 | 94.08 338 |
|
| new_pmnet | | | 81.22 352 | 81.01 350 | 81.86 374 | 90.92 363 | 70.15 367 | 84.03 378 | 80.25 395 | 70.83 372 | 85.97 355 | 89.78 350 | 67.93 346 | 84.65 400 | 67.44 386 | 91.90 373 | 90.78 380 |
|
| PatchT | | | 87.51 295 | 88.17 275 | 85.55 352 | 90.64 364 | 66.91 379 | 92.02 214 | 86.09 360 | 92.20 93 | 89.05 317 | 97.16 111 | 64.15 365 | 96.37 322 | 89.21 187 | 92.98 362 | 93.37 357 |
|
| Patchmatch-test | | | 86.10 314 | 86.01 311 | 86.38 347 | 90.63 365 | 74.22 344 | 89.57 289 | 86.69 355 | 85.73 234 | 89.81 307 | 92.83 300 | 65.24 361 | 91.04 381 | 77.82 332 | 95.78 297 | 93.88 346 |
|
| PVSNet_0 | | 70.34 21 | 74.58 369 | 72.96 372 | 79.47 380 | 90.63 365 | 66.24 384 | 73.26 394 | 83.40 382 | 63.67 396 | 78.02 397 | 78.35 400 | 72.53 326 | 89.59 389 | 56.68 399 | 60.05 404 | 82.57 398 |
|
| PMMVS2 | | | 81.31 351 | 83.44 330 | 74.92 384 | 90.52 367 | 46.49 410 | 69.19 398 | 85.23 373 | 84.30 262 | 87.95 338 | 94.71 246 | 76.95 308 | 84.36 401 | 64.07 392 | 98.09 212 | 93.89 345 |
|
| tpm | | | 84.38 327 | 84.08 325 | 85.30 355 | 90.47 368 | 63.43 396 | 89.34 297 | 85.63 366 | 77.24 333 | 87.62 344 | 95.03 233 | 61.00 379 | 97.30 282 | 79.26 322 | 91.09 378 | 95.16 306 |
|
| wuyk23d | | | 87.83 286 | 90.79 218 | 78.96 381 | 90.46 369 | 88.63 110 | 92.72 180 | 90.67 329 | 91.65 119 | 98.68 11 | 97.64 70 | 96.06 15 | 77.53 403 | 59.84 397 | 99.41 56 | 70.73 401 |
|
| Patchmtry | | | 90.11 237 | 89.92 237 | 90.66 267 | 90.35 370 | 77.00 313 | 92.96 173 | 92.81 296 | 90.25 151 | 94.74 180 | 96.93 129 | 67.11 347 | 97.52 269 | 85.17 255 | 98.98 114 | 97.46 209 |
|
| test_f | | | 86.65 311 | 87.13 294 | 85.19 356 | 90.28 371 | 86.11 170 | 86.52 353 | 91.66 319 | 69.76 379 | 95.73 131 | 97.21 109 | 69.51 339 | 81.28 402 | 89.15 188 | 94.40 330 | 88.17 388 |
|
| CHOSEN 280x420 | | | 80.04 362 | 77.97 369 | 86.23 349 | 90.13 372 | 74.53 339 | 72.87 396 | 89.59 333 | 66.38 389 | 76.29 399 | 85.32 386 | 56.96 385 | 95.36 345 | 69.49 382 | 94.72 325 | 88.79 386 |
|
| MVSTER | | | 89.32 254 | 88.75 257 | 91.03 253 | 90.10 373 | 76.62 321 | 90.85 247 | 94.67 263 | 82.27 287 | 95.24 159 | 95.79 198 | 61.09 378 | 98.49 183 | 90.49 144 | 98.26 195 | 97.97 166 |
|
| tpm2 | | | 81.46 350 | 80.35 357 | 84.80 359 | 89.90 374 | 65.14 390 | 90.44 260 | 85.36 369 | 65.82 392 | 82.05 386 | 92.44 311 | 57.94 383 | 96.69 311 | 70.71 378 | 88.49 386 | 92.56 367 |
|
| cl22 | | | 89.02 260 | 88.50 260 | 90.59 270 | 89.76 375 | 76.45 323 | 86.62 350 | 94.03 274 | 82.98 278 | 92.65 245 | 92.49 308 | 72.05 330 | 97.53 268 | 88.93 192 | 97.02 263 | 97.78 187 |
|
| test0.0.03 1 | | | 82.48 342 | 81.47 346 | 85.48 353 | 89.70 376 | 73.57 348 | 84.73 371 | 81.64 386 | 83.07 276 | 88.13 335 | 86.61 376 | 62.86 372 | 89.10 393 | 66.24 389 | 90.29 381 | 93.77 348 |
|
| test-LLR | | | 83.58 333 | 83.17 332 | 84.79 360 | 89.68 377 | 66.86 380 | 83.08 382 | 84.52 376 | 83.07 276 | 82.85 380 | 84.78 388 | 62.86 372 | 93.49 368 | 82.85 279 | 94.86 320 | 94.03 341 |
|
| test-mter | | | 81.21 353 | 80.01 360 | 84.79 360 | 89.68 377 | 66.86 380 | 83.08 382 | 84.52 376 | 73.85 354 | 82.85 380 | 84.78 388 | 43.66 404 | 93.49 368 | 82.85 279 | 94.86 320 | 94.03 341 |
|
| DSMNet-mixed | | | 82.21 344 | 81.56 343 | 84.16 365 | 89.57 379 | 70.00 370 | 90.65 255 | 77.66 401 | 54.99 402 | 83.30 378 | 97.57 74 | 77.89 296 | 90.50 384 | 66.86 388 | 95.54 302 | 91.97 371 |
|
| PatchmatchNet |  | | 85.22 319 | 84.64 319 | 86.98 336 | 89.51 380 | 69.83 371 | 90.52 258 | 87.34 352 | 78.87 322 | 87.22 349 | 92.74 304 | 66.91 349 | 96.53 313 | 81.77 292 | 86.88 389 | 94.58 330 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| MDTV_nov1_ep13 | | | | 83.88 329 | | 89.42 381 | 61.52 398 | 88.74 313 | 87.41 350 | 73.99 353 | 84.96 364 | 94.01 270 | 65.25 360 | 95.53 338 | 78.02 328 | 93.16 357 | |
|
| CostFormer | | | 83.09 337 | 82.21 340 | 85.73 350 | 89.27 382 | 67.01 378 | 90.35 265 | 86.47 357 | 70.42 376 | 83.52 376 | 93.23 293 | 61.18 377 | 96.85 306 | 77.21 337 | 88.26 387 | 93.34 358 |
|
| ADS-MVSNet2 | | | 84.01 330 | 82.20 341 | 89.41 297 | 89.04 383 | 76.37 325 | 87.57 325 | 90.98 325 | 72.71 363 | 84.46 366 | 92.45 309 | 68.08 343 | 96.48 316 | 70.58 379 | 83.97 393 | 95.38 302 |
|
| ADS-MVSNet | | | 82.25 343 | 81.55 344 | 84.34 364 | 89.04 383 | 65.30 388 | 87.57 325 | 85.13 374 | 72.71 363 | 84.46 366 | 92.45 309 | 68.08 343 | 92.33 375 | 70.58 379 | 83.97 393 | 95.38 302 |
|
| tpm cat1 | | | 80.61 358 | 79.46 361 | 84.07 366 | 88.78 385 | 65.06 392 | 89.26 300 | 88.23 340 | 62.27 397 | 81.90 388 | 89.66 353 | 62.70 374 | 95.29 348 | 71.72 370 | 80.60 400 | 91.86 374 |
|
| CMPMVS |  | 68.83 22 | 87.28 300 | 85.67 314 | 92.09 216 | 88.77 386 | 85.42 186 | 90.31 267 | 94.38 267 | 70.02 378 | 88.00 336 | 93.30 290 | 73.78 324 | 94.03 365 | 75.96 348 | 96.54 281 | 96.83 242 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| miper_enhance_ethall | | | 88.42 277 | 87.87 280 | 90.07 285 | 88.67 387 | 75.52 332 | 85.10 368 | 95.59 231 | 75.68 340 | 92.49 250 | 89.45 355 | 78.96 285 | 97.88 239 | 87.86 216 | 97.02 263 | 96.81 243 |
|
| test_fmvs1 | | | 87.59 293 | 87.27 289 | 88.54 314 | 88.32 388 | 81.26 241 | 90.43 263 | 95.72 224 | 70.55 375 | 91.70 272 | 94.63 248 | 68.13 342 | 89.42 391 | 90.59 142 | 95.34 309 | 94.94 319 |
|
| test_vis1_rt | | | 85.58 317 | 84.58 320 | 88.60 313 | 87.97 389 | 86.76 149 | 85.45 366 | 93.59 281 | 66.43 388 | 87.64 342 | 89.20 358 | 79.33 283 | 85.38 399 | 81.59 295 | 89.98 383 | 93.66 351 |
|
| tpmrst | | | 82.85 341 | 82.93 335 | 82.64 372 | 87.65 390 | 58.99 403 | 90.14 272 | 87.90 347 | 75.54 342 | 83.93 372 | 91.63 325 | 66.79 352 | 95.36 345 | 81.21 300 | 81.54 399 | 93.57 356 |
|
| JIA-IIPM | | | 85.08 321 | 83.04 333 | 91.19 250 | 87.56 391 | 86.14 169 | 89.40 296 | 84.44 378 | 88.98 174 | 82.20 384 | 97.95 53 | 56.82 386 | 96.15 326 | 76.55 343 | 83.45 395 | 91.30 377 |
|
| TESTMET0.1,1 | | | 79.09 366 | 78.04 368 | 82.25 373 | 87.52 392 | 64.03 395 | 83.08 382 | 80.62 393 | 70.28 377 | 80.16 394 | 83.22 393 | 44.13 402 | 90.56 383 | 79.95 312 | 93.36 352 | 92.15 370 |
|
| gg-mvs-nofinetune | | | 82.10 347 | 81.02 349 | 85.34 354 | 87.46 393 | 71.04 362 | 94.74 110 | 67.56 406 | 96.44 23 | 79.43 396 | 98.99 6 | 45.24 399 | 96.15 326 | 67.18 387 | 92.17 370 | 88.85 385 |
|
| pmmvs3 | | | 80.83 356 | 78.96 364 | 86.45 344 | 87.23 394 | 77.48 307 | 84.87 370 | 82.31 384 | 63.83 395 | 85.03 362 | 89.50 354 | 49.66 394 | 93.10 371 | 73.12 364 | 95.10 314 | 88.78 387 |
|
| tpmvs | | | 84.22 328 | 83.97 326 | 84.94 358 | 87.09 395 | 65.18 389 | 91.21 240 | 88.35 338 | 82.87 279 | 85.21 358 | 90.96 334 | 65.24 361 | 96.75 309 | 79.60 320 | 85.25 392 | 92.90 364 |
|
| gm-plane-assit | | | | | | 87.08 396 | 59.33 402 | | | 71.22 368 | | 83.58 392 | | 97.20 286 | 73.95 358 | | |
|
| MVE |  | 59.87 23 | 73.86 370 | 72.65 373 | 77.47 382 | 87.00 397 | 74.35 341 | 61.37 400 | 60.93 408 | 67.27 386 | 69.69 403 | 86.49 378 | 81.24 272 | 72.33 404 | 56.45 401 | 83.45 395 | 85.74 393 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| EPNet_dtu | | | 85.63 316 | 84.37 322 | 89.40 298 | 86.30 398 | 74.33 342 | 91.64 231 | 88.26 339 | 84.84 255 | 72.96 402 | 89.85 344 | 71.27 334 | 97.69 261 | 76.60 341 | 97.62 241 | 96.18 269 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| mvsany_test1 | | | 83.91 331 | 82.93 335 | 86.84 340 | 86.18 399 | 85.93 173 | 81.11 389 | 75.03 404 | 70.80 374 | 88.57 329 | 94.63 248 | 83.08 248 | 87.38 394 | 80.39 304 | 86.57 390 | 87.21 390 |
|
| dp | | | 79.28 365 | 78.62 365 | 81.24 377 | 85.97 400 | 56.45 404 | 86.91 340 | 85.26 372 | 72.97 361 | 81.45 391 | 89.17 360 | 56.01 388 | 95.45 343 | 73.19 363 | 76.68 401 | 91.82 375 |
|
| EPMVS | | | 81.17 354 | 80.37 356 | 83.58 369 | 85.58 401 | 65.08 391 | 90.31 267 | 71.34 405 | 77.31 332 | 85.80 356 | 91.30 328 | 59.38 381 | 92.70 374 | 79.99 311 | 82.34 398 | 92.96 363 |
|
| E-PMN | | | 80.72 357 | 80.86 351 | 80.29 379 | 85.11 402 | 68.77 373 | 72.96 395 | 81.97 385 | 87.76 201 | 83.25 379 | 83.01 394 | 62.22 375 | 89.17 392 | 77.15 338 | 94.31 334 | 82.93 396 |
|
| GG-mvs-BLEND | | | | | 83.24 371 | 85.06 403 | 71.03 363 | 94.99 105 | 65.55 407 | | 74.09 401 | 75.51 401 | 44.57 401 | 94.46 358 | 59.57 398 | 87.54 388 | 84.24 394 |
|
| EMVS | | | 80.35 360 | 80.28 358 | 80.54 378 | 84.73 404 | 69.07 372 | 72.54 397 | 80.73 392 | 87.80 199 | 81.66 389 | 81.73 395 | 62.89 371 | 89.84 387 | 75.79 349 | 94.65 327 | 82.71 397 |
|
| EPNet | | | 89.80 247 | 88.25 270 | 94.45 129 | 83.91 405 | 86.18 168 | 93.87 145 | 87.07 354 | 91.16 131 | 80.64 393 | 94.72 245 | 78.83 286 | 98.89 120 | 85.17 255 | 98.89 125 | 98.28 136 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| PMMVS | | | 83.00 338 | 81.11 347 | 88.66 312 | 83.81 406 | 86.44 160 | 82.24 386 | 85.65 365 | 61.75 398 | 82.07 385 | 85.64 384 | 79.75 280 | 91.59 379 | 75.99 347 | 93.09 359 | 87.94 389 |
|
| KD-MVS_2432*1600 | | | 82.17 345 | 80.75 352 | 86.42 345 | 82.04 407 | 70.09 368 | 81.75 387 | 90.80 327 | 82.56 282 | 90.37 295 | 89.30 356 | 42.90 405 | 96.11 328 | 74.47 354 | 92.55 366 | 93.06 360 |
|
| miper_refine_blended | | | 82.17 345 | 80.75 352 | 86.42 345 | 82.04 407 | 70.09 368 | 81.75 387 | 90.80 327 | 82.56 282 | 90.37 295 | 89.30 356 | 42.90 405 | 96.11 328 | 74.47 354 | 92.55 366 | 93.06 360 |
|
| DeepMVS_CX |  | | | | 53.83 387 | 70.38 409 | 64.56 393 | | 48.52 411 | 33.01 403 | 65.50 404 | 74.21 402 | 56.19 387 | 46.64 406 | 38.45 406 | 70.07 402 | 50.30 402 |
|
| test_method | | | 50.44 371 | 48.94 374 | 54.93 386 | 39.68 410 | 12.38 413 | 28.59 401 | 90.09 331 | 6.82 404 | 41.10 406 | 78.41 399 | 54.41 389 | 70.69 405 | 50.12 403 | 51.26 405 | 81.72 399 |
|
| tmp_tt | | | 37.97 372 | 44.33 375 | 18.88 388 | 11.80 411 | 21.54 412 | 63.51 399 | 45.66 412 | 4.23 405 | 51.34 405 | 50.48 403 | 59.08 382 | 22.11 407 | 44.50 405 | 68.35 403 | 13.00 403 |
|
| test123 | | | 9.49 374 | 12.01 377 | 1.91 389 | 2.87 412 | 1.30 414 | 82.38 385 | 1.34 414 | 1.36 407 | 2.84 408 | 6.56 406 | 2.45 412 | 0.97 408 | 2.73 407 | 5.56 406 | 3.47 404 |
|
| testmvs | | | 9.02 375 | 11.42 378 | 1.81 390 | 2.77 413 | 1.13 415 | 79.44 392 | 1.90 413 | 1.18 408 | 2.65 409 | 6.80 405 | 1.95 413 | 0.87 409 | 2.62 408 | 3.45 407 | 3.44 405 |
|
| test_blank | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| eth-test2 | | | | | | 0.00 414 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 414 | | | | | | | | | | | |
|
| uanet_test | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| DCPMVS | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| cdsmvs_eth3d_5k | | | 23.35 373 | 31.13 376 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 95.58 233 | 0.00 409 | 0.00 410 | 91.15 330 | 93.43 84 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| pcd_1.5k_mvsjas | | | 7.56 376 | 10.09 379 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 90.77 151 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet-low-res | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| sosnet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uncertanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| Regformer | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| ab-mvs-re | | | 7.56 376 | 10.08 380 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 90.69 339 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| uanet | | | 0.00 378 | 0.00 381 | 0.00 391 | 0.00 414 | 0.00 416 | 0.00 402 | 0.00 415 | 0.00 409 | 0.00 410 | 0.00 409 | 0.00 414 | 0.00 410 | 0.00 409 | 0.00 408 | 0.00 406 |
|
| WAC-MVS | | | | | | | 61.25 399 | | | | | | | | 74.55 353 | | |
|
| PC_three_1452 | | | | | | | | | | 75.31 346 | 95.87 122 | 95.75 203 | 92.93 101 | 96.34 325 | 87.18 226 | 98.68 155 | 98.04 154 |
|
| test_241102_TWO | | | | | | | | | 98.10 55 | 91.95 98 | 97.54 40 | 97.25 103 | 95.37 30 | 99.35 60 | 93.29 74 | 99.25 83 | 98.49 123 |
|
| test_0728_THIRD | | | | | | | | | | 93.26 71 | 97.40 52 | 97.35 96 | 94.69 59 | 99.34 63 | 93.88 47 | 99.42 52 | 98.89 75 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 326 |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 353 | | | | 94.75 326 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 354 | | | | |
|
| MTGPA |  | | | | | | | | 97.62 106 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.21 269 | | | | 5.85 408 | 65.36 359 | 96.00 331 | 79.61 318 | | |
|
| test_post | | | | | | | | | | | | 6.07 407 | 65.74 358 | 95.84 335 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 323 | 66.22 356 | 97.59 266 | | | |
|
| MTMP | | | | | | | | 94.82 108 | 54.62 410 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 207 | 98.40 179 | 97.83 181 |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 229 | 98.36 188 | 97.98 163 |
|
| test_prior4 | | | | | | | 89.91 82 | 90.74 251 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 90.21 269 | | 89.33 167 | 90.77 287 | 94.81 240 | 90.41 161 | | 88.21 203 | 98.55 167 | |
|
| 旧先验2 | | | | | | | | 90.00 277 | | 68.65 383 | 92.71 244 | | | 96.52 314 | 85.15 257 | | |
|
| 新几何2 | | | | | | | | 90.02 276 | | | | | | | | | |
|
| 无先验 | | | | | | | | 89.94 278 | 95.75 223 | 70.81 373 | | | | 98.59 173 | 81.17 301 | | 94.81 322 |
|
| 原ACMM2 | | | | | | | | 89.34 297 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.03 223 | 80.24 308 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.14 119 | | | | |
|
| testdata1 | | | | | | | | 88.96 306 | | 88.44 187 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 97.81 92 | | | | | 98.95 114 | 89.26 184 | 98.51 173 | 98.60 116 |
|
| plane_prior4 | | | | | | | | | | | | 95.59 208 | | | | | |
|
| plane_prior3 | | | | | | | 88.43 119 | | | 90.35 150 | 93.31 218 | | | | | | |
|
| plane_prior2 | | | | | | | | 94.56 119 | | 91.74 115 | | | | | | | |
|
| plane_prior | | | | | | | 88.12 122 | 93.01 171 | | 88.98 174 | | | | | | 98.06 214 | |
|
| n2 | | | | | | | | | 0.00 415 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 415 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 313 | | | | | | | | |
|
| test11 | | | | | | | | | 96.65 183 | | | | | | | | |
|
| door | | | | | | | | | 91.26 322 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 191 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 238 | | |
|
| HQP4-MVS | | | | | | | | | | | 88.81 320 | | | 98.61 169 | | | 98.15 146 |
|
| HQP3-MVS | | | | | | | | | 97.31 133 | | | | | | | 97.73 234 | |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 235 | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 42.48 411 | 88.45 318 | | 67.22 387 | 83.56 375 | | 66.80 350 | | 72.86 365 | | 94.06 340 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 138 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 83 | |
|
| Test By Simon | | | | | | | | | | | | | 90.61 157 | | | | |
|