This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2498.93 8699.65 3299.72 1598.93 1999.95 1799.11 39100.00 199.82 14
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3399.48 2699.92 499.71 1698.07 7399.96 1199.53 17100.00 199.93 4
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 27100.00 199.82 14
UA-Net99.47 1199.40 1599.70 299.49 10099.29 1999.80 399.72 2099.82 399.04 12799.81 598.05 7699.96 1198.85 5599.99 599.86 11
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3299.09 7199.89 899.68 1899.53 499.97 499.50 1899.99 599.87 9
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2199.27 4999.90 699.74 1299.68 299.97 499.55 1699.99 599.88 7
v1098.97 5499.11 3998.55 18699.44 11496.21 23098.90 7699.55 6098.73 9699.48 5299.60 3296.63 17399.83 14099.70 1199.99 599.61 60
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 11099.33 4399.38 7199.44 6095.21 22599.97 499.31 2799.98 999.73 31
v899.01 4899.16 3298.57 18199.47 10996.31 22898.90 7699.47 8999.03 7799.52 4799.57 3596.93 15399.81 16399.60 1299.98 999.60 61
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5699.11 6199.70 2399.73 1499.00 1599.97 499.26 3099.98 999.89 6
pmmvs-eth3d98.47 12998.34 13298.86 14499.30 14297.76 17097.16 24599.28 16495.54 27499.42 6399.19 10197.27 13499.63 27097.89 11199.97 1299.20 214
IterMVS-LS98.55 11998.70 7998.09 22599.48 10794.73 27397.22 24199.39 11398.97 8299.38 7199.31 8396.00 19899.93 3198.58 7299.97 1299.60 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1699.63 1399.78 1599.67 2099.48 699.81 16399.30 2999.97 1299.77 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15899.82 1299.84 298.56 4099.71 22999.96 199.96 1599.97 1
Anonymous2024052198.69 9398.87 5998.16 22399.77 2795.11 26499.08 5899.44 9899.34 4299.33 8199.55 4094.10 25899.94 2699.25 3299.96 1599.42 146
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3899.66 1099.68 2799.66 2298.44 4699.95 1799.73 1099.96 1599.75 29
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30199.49 2599.59 3799.65 2494.79 24299.95 1799.45 2199.96 1599.88 7
test250692.39 33491.89 33793.89 34799.38 12582.28 37699.32 2266.03 38399.08 7398.77 17599.57 3566.26 38099.84 12698.71 6599.95 1999.54 93
test111196.49 27296.82 24495.52 33199.42 12087.08 36299.22 4187.14 37599.11 6199.46 5599.58 3488.69 30699.86 9898.80 5799.95 1999.62 54
ECVR-MVScopyleft96.42 27496.61 25995.85 32399.38 12588.18 35899.22 4186.00 37799.08 7399.36 7699.57 3588.47 31199.82 15098.52 7899.95 1999.54 93
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4299.90 299.86 1099.78 899.58 399.95 1799.00 4799.95 1999.78 20
D2MVS97.84 19097.84 18297.83 24399.14 18094.74 27296.94 25498.88 24695.84 26998.89 15398.96 15794.40 24999.69 23697.55 12999.95 1999.05 235
PS-CasMVS99.40 1899.33 2199.62 699.71 4499.10 6099.29 3299.53 6899.53 2399.46 5599.41 6698.23 5899.95 1798.89 5499.95 1999.81 16
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 6099.54 2299.40 6799.52 4795.86 20899.91 4799.32 2699.95 1999.70 38
CHOSEN 1792x268897.49 21297.14 22898.54 18999.68 5396.09 23396.50 27699.62 3591.58 34098.84 16598.97 15492.36 28299.88 7196.76 18699.95 1999.67 44
IterMVS-SCA-FT97.85 18998.18 15096.87 30199.27 14691.16 34795.53 31799.25 17399.10 6899.41 6499.35 7393.10 27099.96 1198.65 7099.94 2799.49 112
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4999.61 1899.40 6799.50 4997.12 14299.85 11099.02 4699.94 2799.80 17
UGNet98.53 12398.45 11598.79 15497.94 32696.96 21099.08 5898.54 28399.10 6896.82 31399.47 5496.55 17699.84 12698.56 7799.94 2799.55 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 19598.11 15996.57 30999.24 15190.28 34995.52 31999.21 18298.86 9199.33 8199.33 7993.11 26999.94 2698.49 8099.94 2799.48 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_vis1_n_192098.40 13698.92 5696.81 30599.74 3590.76 34898.15 14899.91 698.33 11599.89 899.55 4095.07 23099.88 7199.76 899.93 3199.79 18
test_f98.67 10198.87 5998.05 23299.72 4295.59 24498.51 11399.81 1496.30 25599.78 1599.82 496.14 19198.63 36699.82 399.93 3199.95 2
CHOSEN 280x42095.51 29795.47 28795.65 32998.25 31088.27 35793.25 36398.88 24693.53 31894.65 35497.15 32886.17 32299.93 3197.41 13799.93 3198.73 290
CANet97.87 18397.76 18598.19 22097.75 33595.51 24896.76 26599.05 21997.74 15996.93 30298.21 26995.59 21599.89 6297.86 11699.93 3199.19 219
v114498.60 11198.66 8498.41 20299.36 13295.90 23797.58 21199.34 13497.51 17899.27 9299.15 11496.34 18799.80 17099.47 2099.93 3199.51 105
PEN-MVS99.41 1799.34 2099.62 699.73 3699.14 5299.29 3299.54 6599.62 1699.56 3899.42 6398.16 6999.96 1198.78 5899.93 3199.77 22
DTE-MVSNet99.43 1599.35 1899.66 499.71 4499.30 1799.31 2699.51 7299.64 1199.56 3899.46 5598.23 5899.97 498.78 5899.93 3199.72 32
CP-MVSNet99.21 3299.09 4299.56 2199.65 5798.96 7099.13 5499.34 13499.42 3499.33 8199.26 8997.01 15099.94 2698.74 6299.93 3199.79 18
WR-MVS_H99.33 2399.22 2899.65 599.71 4499.24 2599.32 2299.55 6099.46 2999.50 5199.34 7797.30 13199.93 3198.90 5299.93 3199.77 22
PVSNet_BlendedMVS97.55 20997.53 20397.60 26298.92 22193.77 30696.64 27199.43 10494.49 29897.62 26899.18 10496.82 16099.67 24894.73 27499.93 3199.36 176
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3698.26 11899.17 4999.78 1699.11 6199.27 9299.48 5398.82 2499.95 1798.94 5099.93 3199.59 67
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1899.64 1199.84 1199.83 399.50 599.87 8999.36 2499.92 4299.64 50
nrg03099.40 1899.35 1899.54 2799.58 6599.13 5598.98 7199.48 8399.68 899.46 5599.26 8998.62 3699.73 22199.17 3899.92 4299.76 26
v119298.60 11198.66 8498.41 20299.27 14695.88 23897.52 21799.36 12397.41 19299.33 8199.20 10096.37 18599.82 15099.57 1499.92 4299.55 89
iter_conf0596.54 26896.07 27497.92 23797.90 32994.50 28097.87 18199.14 20597.73 16098.89 15398.95 16175.75 37099.87 8998.50 7999.92 4299.40 158
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4299.44 3199.78 1599.76 1096.39 18299.92 3999.44 2299.92 4299.68 41
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13697.98 14898.01 16799.46 9197.56 17599.54 4199.50 4998.97 1699.84 12698.06 10299.92 4299.49 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final97.10 24196.65 25898.45 19898.53 28996.08 23498.30 13399.11 20998.10 13798.85 16298.95 16179.38 36099.87 8998.68 6899.91 4899.40 158
patch_mono-298.51 12698.63 8898.17 22199.38 12594.78 27097.36 22999.69 2498.16 13598.49 21099.29 8497.06 14599.97 498.29 9099.91 4899.76 26
dcpmvs_298.78 7899.11 3997.78 24799.56 7693.67 30899.06 6299.86 1199.50 2499.66 2999.26 8997.21 13999.99 298.00 10799.91 4899.68 41
Anonymous2023121199.27 2599.27 2599.26 8899.29 14398.18 12699.49 899.51 7299.70 799.80 1399.68 1896.84 15799.83 14099.21 3599.91 4899.77 22
v14419298.54 12198.57 9898.45 19899.21 15895.98 23597.63 20499.36 12397.15 22199.32 8799.18 10495.84 20999.84 12699.50 1899.91 4899.54 93
PVSNet_Blended_VisFu98.17 16398.15 15598.22 21899.73 3695.15 26197.36 22999.68 2994.45 30298.99 13399.27 8796.87 15699.94 2697.13 15399.91 4899.57 78
test_040298.76 8298.71 7698.93 13799.56 7698.14 13198.45 12399.34 13499.28 4898.95 14198.91 16898.34 5499.79 18395.63 25699.91 4898.86 270
test_fmvs298.70 9098.97 5397.89 24099.54 8394.05 29098.55 10599.92 596.78 23599.72 1999.78 896.60 17499.67 24899.91 299.90 5599.94 3
v192192098.54 12198.60 9598.38 20599.20 16295.76 24397.56 21399.36 12397.23 21499.38 7199.17 10896.02 19699.84 12699.57 1499.90 5599.54 93
v2v48298.56 11598.62 9098.37 20699.42 12095.81 24197.58 21199.16 19997.90 14999.28 9099.01 14595.98 20299.79 18399.33 2599.90 5599.51 105
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13198.87 7398.39 12899.42 10799.42 3499.36 7699.06 12498.38 4999.95 1798.34 8799.90 5599.57 78
FMVSNet199.17 3399.17 3099.17 9999.55 8098.24 12099.20 4499.44 9899.21 5299.43 6099.55 4097.82 9299.86 9898.42 8499.89 5999.41 149
FIs99.14 3599.09 4299.29 8199.70 5098.28 11799.13 5499.52 7199.48 2699.24 10199.41 6696.79 16399.82 15098.69 6799.88 6099.76 26
v124098.55 11998.62 9098.32 20999.22 15695.58 24597.51 21999.45 9497.16 21999.45 5899.24 9496.12 19399.85 11099.60 1299.88 6099.55 89
TAMVS98.24 15698.05 16598.80 15299.07 19397.18 20297.88 17898.81 26296.66 24199.17 11199.21 9894.81 23999.77 20096.96 16799.88 6099.44 139
test_fmvs1_n98.09 16798.28 13997.52 27199.68 5393.47 31198.63 9599.93 395.41 28199.68 2799.64 2691.88 28899.48 31399.82 399.87 6399.62 54
EU-MVSNet97.66 20198.50 10595.13 33799.63 6285.84 36598.35 13198.21 29798.23 12599.54 4199.46 5595.02 23199.68 24598.24 9199.87 6399.87 9
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 4099.59 1999.71 2199.57 3597.12 14299.90 5299.21 3599.87 6399.54 93
CS-MVS99.13 3899.10 4199.24 9399.06 19799.15 4799.36 1899.88 999.36 4198.21 22898.46 24798.68 3299.93 3199.03 4599.85 6698.64 299
CS-MVS-test99.13 3899.09 4299.26 8899.13 18298.97 6699.31 2699.88 999.44 3198.16 23198.51 23998.64 3399.93 3198.91 5199.85 6698.88 268
v14898.45 13198.60 9598.00 23599.44 11494.98 26697.44 22599.06 21698.30 11899.32 8798.97 15496.65 17299.62 27298.37 8599.85 6699.39 161
WR-MVS98.40 13698.19 14999.03 12799.00 20697.65 17796.85 26098.94 23598.57 10798.89 15398.50 24395.60 21499.85 11097.54 13199.85 6699.59 67
test_vis1_n98.31 14698.50 10597.73 25499.76 3094.17 28898.68 9299.91 696.31 25399.79 1499.57 3592.85 27799.42 32499.79 699.84 7099.60 61
CANet_DTU97.26 22997.06 23097.84 24297.57 34394.65 27796.19 29398.79 26597.23 21495.14 35198.24 26693.22 26799.84 12697.34 14099.84 7099.04 239
V4298.78 7898.78 6998.76 16099.44 11497.04 20798.27 13699.19 18897.87 15199.25 10099.16 11096.84 15799.78 19499.21 3599.84 7099.46 131
VPA-MVSNet99.30 2499.30 2499.28 8399.49 10098.36 11499.00 6899.45 9499.63 1399.52 4799.44 6098.25 5699.88 7199.09 4099.84 7099.62 54
SixPastTwentyTwo98.75 8398.62 9099.16 10299.83 1997.96 15299.28 3698.20 29899.37 3899.70 2399.65 2492.65 28099.93 3199.04 4499.84 7099.60 61
HyFIR lowres test97.19 23696.60 26198.96 13499.62 6497.28 19495.17 32899.50 7494.21 30799.01 13198.32 26286.61 31899.99 297.10 15599.84 7099.60 61
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2199.38 3799.53 4599.61 3098.64 3399.80 17098.24 9199.84 7099.52 103
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3499.30 4799.65 3299.60 3299.16 1499.82 15099.07 4199.83 7799.56 82
Baseline_NR-MVSNet98.98 5398.86 6299.36 6499.82 2198.55 9797.47 22399.57 4999.37 3899.21 10499.61 3096.76 16699.83 14098.06 10299.83 7799.71 33
Patchmtry97.35 22296.97 23398.50 19497.31 35496.47 22398.18 14498.92 24098.95 8598.78 17299.37 6985.44 33099.85 11095.96 24099.83 7799.17 225
ppachtmachnet_test97.50 21097.74 18796.78 30798.70 26191.23 34694.55 34799.05 21996.36 25099.21 10498.79 19696.39 18299.78 19496.74 18899.82 8099.34 182
EI-MVSNet98.40 13698.51 10398.04 23399.10 18694.73 27397.20 24298.87 24898.97 8299.06 12099.02 13696.00 19899.80 17098.58 7299.82 8099.60 61
NR-MVSNet98.95 5798.82 6599.36 6499.16 17598.72 8799.22 4199.20 18499.10 6899.72 1998.76 20196.38 18499.86 9898.00 10799.82 8099.50 108
MVSTER96.86 25696.55 26397.79 24697.91 32894.21 28697.56 21398.87 24897.49 18199.06 12099.05 13180.72 35299.80 17098.44 8299.82 8099.37 170
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
cl____97.02 24896.83 24397.58 26497.82 33394.04 29294.66 34299.16 19997.04 22498.63 18998.71 20788.68 30899.69 23697.00 16199.81 8499.00 246
DIV-MVS_self_test97.02 24896.84 24297.58 26497.82 33394.03 29394.66 34299.16 19997.04 22498.63 18998.71 20788.69 30699.69 23697.00 16199.81 8499.01 243
eth_miper_zixun_eth97.23 23397.25 22097.17 28798.00 32492.77 32294.71 33999.18 19297.27 20698.56 20298.74 20391.89 28799.69 23697.06 15999.81 8499.05 235
MVS_030497.64 20297.35 21598.52 19097.87 33196.69 22198.59 10098.05 30797.44 19093.74 36598.85 18493.69 26599.88 7198.11 9799.81 8498.98 248
PMMVS298.07 16998.08 16398.04 23399.41 12294.59 27994.59 34699.40 11097.50 17998.82 16998.83 18896.83 15999.84 12697.50 13499.81 8499.71 33
K. test v398.00 17397.66 19599.03 12799.79 2497.56 18199.19 4892.47 36599.62 1699.52 4799.66 2289.61 30099.96 1199.25 3299.81 8499.56 82
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11997.73 17498.00 16899.62 3599.22 5199.55 4099.22 9798.93 1999.75 21298.66 6999.81 8499.50 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDS-MVSNet97.69 19897.35 21598.69 16798.73 25297.02 20996.92 25898.75 27195.89 26898.59 19798.67 21592.08 28699.74 21796.72 19199.81 8499.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 9898.50 10599.20 9799.45 11398.63 8998.56 10499.57 4997.87 15198.85 16298.04 28397.66 10199.84 12696.72 19199.81 8499.13 229
miper_lstm_enhance97.18 23797.16 22597.25 28598.16 31692.85 32095.15 33099.31 14697.25 20898.74 18098.78 19790.07 29799.78 19497.19 14699.80 9599.11 231
UniMVSNet (Re)98.87 6698.71 7699.35 6999.24 15198.73 8597.73 19499.38 11598.93 8699.12 11298.73 20496.77 16499.86 9898.63 7199.80 9599.46 131
FMVSNet298.49 12798.40 12298.75 16298.90 22597.14 20698.61 9899.13 20698.59 10499.19 10699.28 8594.14 25499.82 15097.97 10999.80 9599.29 198
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3598.48 11099.37 7499.49 5298.75 2799.86 9898.20 9499.80 9599.71 33
IS-MVSNet98.19 16097.90 17899.08 11599.57 6997.97 14999.31 2698.32 29399.01 7998.98 13499.03 13591.59 28999.79 18395.49 26199.80 9599.48 122
mvsany_test398.87 6698.92 5698.74 16699.38 12596.94 21298.58 10299.10 21196.49 24699.96 299.81 598.18 6599.45 31998.97 4999.79 10099.83 13
EI-MVSNet-UG-set98.69 9398.71 7698.62 17499.10 18696.37 22597.23 23898.87 24899.20 5499.19 10698.99 14897.30 13199.85 11098.77 6199.79 10099.65 49
pmmvs497.58 20897.28 21998.51 19298.84 23696.93 21395.40 32398.52 28593.60 31798.61 19398.65 22095.10 22999.60 27996.97 16699.79 10098.99 247
test20.0398.78 7898.77 7098.78 15799.46 11097.20 20097.78 18799.24 17899.04 7699.41 6498.90 17197.65 10299.76 20597.70 12599.79 10099.39 161
Vis-MVSNet (Re-imp)97.46 21497.16 22598.34 20899.55 8096.10 23198.94 7398.44 28898.32 11798.16 23198.62 22788.76 30599.73 22193.88 30299.79 10099.18 221
EI-MVSNet-Vis-set98.68 9898.70 7998.63 17399.09 18996.40 22497.23 23898.86 25399.20 5499.18 11098.97 15497.29 13399.85 11098.72 6499.78 10599.64 50
LPG-MVS_test98.71 8798.46 11499.47 5499.57 6998.97 6698.23 13999.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
LGP-MVS_train99.47 5499.57 6998.97 6699.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
CLD-MVS97.49 21297.16 22598.48 19599.07 19397.03 20894.71 33999.21 18294.46 30098.06 24197.16 32797.57 11199.48 31394.46 28299.78 10598.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_fmvs197.72 19697.94 17497.07 29298.66 27492.39 32897.68 19899.81 1495.20 28599.54 4199.44 6091.56 29099.41 32599.78 799.77 10999.40 158
new-patchmatchnet98.35 14298.74 7197.18 28699.24 15192.23 33296.42 28199.48 8398.30 11899.69 2599.53 4597.44 12599.82 15098.84 5699.77 10999.49 112
Patchmatch-RL test97.26 22997.02 23297.99 23699.52 8895.53 24796.13 29499.71 2197.47 18299.27 9299.16 11084.30 33999.62 27297.89 11199.77 10998.81 277
UniMVSNet_NR-MVSNet98.86 6998.68 8299.40 6299.17 17398.74 8297.68 19899.40 11099.14 6099.06 12098.59 23196.71 17099.93 3198.57 7499.77 10999.53 100
DU-MVS98.82 7298.63 8899.39 6399.16 17598.74 8297.54 21599.25 17398.84 9499.06 12098.76 20196.76 16699.93 3198.57 7499.77 10999.50 108
DROMVSNet99.09 4299.05 4699.20 9799.28 14498.93 7199.24 4099.84 1299.08 7398.12 23698.37 25598.72 2999.90 5299.05 4399.77 10998.77 285
ACMMP++_ref99.77 109
wuyk23d96.06 28297.62 19991.38 35698.65 27698.57 9698.85 8196.95 33496.86 23299.90 699.16 11099.18 1198.40 36889.23 35699.77 10977.18 374
ACMP95.32 1598.41 13498.09 16099.36 6499.51 9098.79 8097.68 19899.38 11595.76 27198.81 17198.82 19198.36 5099.82 15094.75 27399.77 10999.48 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4498.83 7698.60 9999.58 4299.11 6199.53 4599.18 10498.81 2599.67 24896.71 19399.77 10999.50 108
ACMH96.65 799.25 2799.24 2799.26 8899.72 4298.38 10999.07 6199.55 6098.30 11899.65 3299.45 5999.22 999.76 20598.44 8299.77 10999.64 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l97.36 22197.37 21397.31 28198.09 32093.25 31395.01 33399.16 19997.05 22398.77 17598.72 20692.88 27599.64 26796.93 16899.76 12099.05 235
pmmvs597.64 20297.49 20698.08 22899.14 18095.12 26396.70 26999.05 21993.77 31598.62 19198.83 18893.23 26699.75 21298.33 8999.76 12099.36 176
baseline98.96 5699.02 4798.76 16099.38 12597.26 19598.49 11699.50 7498.86 9199.19 10699.06 12498.23 5899.69 23698.71 6599.76 12099.33 187
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6399.41 6099.58 6599.10 6098.74 8499.56 5699.09 7199.33 8199.19 10198.40 4899.72 22895.98 23999.76 12099.42 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 13698.68 8297.54 26998.96 21397.99 14597.88 17899.36 12398.20 12999.63 3599.04 13398.76 2695.33 37696.56 20599.74 12499.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 7298.72 7499.12 10799.64 6098.54 10097.98 17099.68 2997.62 16899.34 8099.18 10497.54 11499.77 20097.79 11999.74 12499.04 239
XVG-ACMP-BASELINE98.56 11598.34 13299.22 9699.54 8398.59 9497.71 19599.46 9197.25 20898.98 13498.99 14897.54 11499.84 12695.88 24299.74 12499.23 209
GeoE99.05 4698.99 5299.25 9199.44 11498.35 11598.73 8699.56 5698.42 11198.91 15098.81 19398.94 1899.91 4798.35 8699.73 12799.49 112
Anonymous2023120698.21 15898.21 14698.20 21999.51 9095.43 25298.13 14999.32 14196.16 25898.93 14898.82 19196.00 19899.83 14097.32 14199.73 12799.36 176
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12597.33 19197.82 18599.57 4999.17 5999.35 7899.17 10898.35 5399.69 23698.46 8199.73 12799.41 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
jason97.45 21697.35 21597.76 25199.24 15193.93 29895.86 30698.42 28994.24 30698.50 20998.13 27394.82 23799.91 4797.22 14599.73 12799.43 143
jason: jason.
N_pmnet97.63 20497.17 22498.99 13199.27 14697.86 15995.98 29793.41 36295.25 28399.47 5498.90 17195.63 21399.85 11096.91 16999.73 12799.27 200
USDC97.41 21997.40 21097.44 27798.94 21593.67 30895.17 32899.53 6894.03 31298.97 13899.10 12195.29 22399.34 33395.84 24899.73 12799.30 196
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1999.58 2198.60 19599.62 2898.22 6199.51 30897.70 12599.73 12797.89 330
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EGC-MVSNET85.24 34180.54 34499.34 7299.77 2799.20 3499.08 5899.29 16112.08 37720.84 37899.42 6397.55 11399.85 11097.08 15699.72 13498.96 254
lessismore_v098.97 13399.73 3697.53 18386.71 37699.37 7499.52 4789.93 29899.92 3998.99 4899.72 13499.44 139
CP-MVS98.70 9098.42 12099.52 3999.36 13299.12 5798.72 8799.36 12397.54 17798.30 22398.40 25197.86 8899.89 6296.53 21099.72 13499.56 82
SteuartSystems-ACMMP98.79 7698.54 10099.54 2799.73 3699.16 4398.23 13999.31 14697.92 14798.90 15198.90 17198.00 7999.88 7196.15 23299.72 13499.58 73
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 17897.69 19198.52 19099.17 17397.66 17697.19 24499.47 8996.31 25397.85 25598.20 27096.71 17099.52 30494.62 27799.72 13498.38 312
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6299.06 6498.69 9199.54 6599.31 4599.62 3699.53 4597.36 12999.86 9899.24 3499.71 13999.39 161
test_0728_THIRD98.17 13299.08 11899.02 13697.89 8699.88 7197.07 15799.71 13999.70 38
HPM-MVS_fast99.01 4898.82 6599.57 1699.71 4499.35 1299.00 6899.50 7497.33 19998.94 14798.86 18198.75 2799.82 15097.53 13299.71 13999.56 82
FMVSNet596.01 28395.20 29898.41 20297.53 34696.10 23198.74 8499.50 7497.22 21798.03 24599.04 13369.80 37499.88 7197.27 14399.71 13999.25 204
RPSCF98.62 10998.36 12999.42 5899.65 5799.42 798.55 10599.57 4997.72 16298.90 15199.26 8996.12 19399.52 30495.72 25299.71 13999.32 189
MP-MVS-pluss98.57 11498.23 14599.60 1199.69 5299.35 1297.16 24599.38 11594.87 29298.97 13898.99 14898.01 7899.88 7197.29 14299.70 14499.58 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MTAPA98.88 6598.64 8799.61 999.67 5599.36 1198.43 12499.20 18498.83 9598.89 15398.90 17196.98 15299.92 3997.16 14899.70 14499.56 82
APDe-MVS98.99 5098.79 6899.60 1199.21 15899.15 4798.87 7899.48 8397.57 17399.35 7899.24 9497.83 8999.89 6297.88 11499.70 14499.75 29
tfpnnormal98.90 6398.90 5898.91 14099.67 5597.82 16599.00 6899.44 9899.45 3099.51 5099.24 9498.20 6499.86 9895.92 24199.69 14799.04 239
GBi-Net98.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
test198.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
FMVSNet397.50 21097.24 22198.29 21398.08 32195.83 24097.86 18298.91 24297.89 15098.95 14198.95 16187.06 31599.81 16397.77 12099.69 14799.23 209
ACMMPcopyleft98.75 8398.50 10599.52 3999.56 7699.16 4398.87 7899.37 11997.16 21998.82 16999.01 14597.71 9899.87 8996.29 22499.69 14799.54 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 11398.26 14299.57 1699.27 14699.15 4797.01 25099.39 11397.67 16499.44 5998.99 14897.53 11699.89 6295.40 26399.68 15299.66 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.53 12398.34 13299.11 10999.50 9398.82 7895.97 29899.50 7497.30 20399.05 12598.98 15299.35 799.32 33695.72 25299.68 15299.18 221
EPNet96.14 28195.44 29098.25 21590.76 38095.50 24997.92 17494.65 35398.97 8292.98 36698.85 18489.12 30499.87 8995.99 23899.68 15299.39 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9397.47 18598.04 16299.59 4098.15 13699.40 6799.36 7298.58 3999.76 20598.78 5899.68 15299.59 67
ACMMP++99.68 152
EPP-MVSNet98.30 14798.04 16699.07 11799.56 7697.83 16299.29 3298.07 30599.03 7798.59 19799.13 11792.16 28499.90 5296.87 17799.68 15299.49 112
our_test_397.39 22097.73 18996.34 31398.70 26189.78 35194.61 34598.97 23496.50 24599.04 12798.85 18495.98 20299.84 12697.26 14499.67 15899.41 149
ACMMP_NAP98.75 8398.48 11099.57 1699.58 6599.29 1997.82 18599.25 17396.94 22898.78 17299.12 11898.02 7799.84 12697.13 15399.67 15899.59 67
HPM-MVScopyleft98.79 7698.53 10199.59 1599.65 5799.29 1999.16 5099.43 10496.74 23798.61 19398.38 25498.62 3699.87 8996.47 21399.67 15899.59 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 7498.73 7299.05 12498.76 24897.81 16799.25 3999.30 15498.57 10798.55 20499.33 7997.95 8499.90 5297.16 14899.67 15899.44 139
PMVScopyleft91.26 2097.86 18497.94 17497.65 25899.71 4497.94 15498.52 10998.68 27698.99 8097.52 27899.35 7397.41 12698.18 37091.59 33999.67 15896.82 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 5998.81 6799.28 8399.21 15898.45 10698.46 12199.33 13999.63 1399.48 5299.15 11497.23 13799.75 21297.17 14799.66 16399.63 53
MVS_111021_LR98.30 14798.12 15898.83 14799.16 17598.03 14396.09 29599.30 15497.58 17298.10 23898.24 26698.25 5699.34 33396.69 19499.65 16499.12 230
ACMM96.08 1298.91 6198.73 7299.48 5199.55 8099.14 5298.07 15799.37 11997.62 16899.04 12798.96 15798.84 2399.79 18397.43 13699.65 16499.49 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 9898.40 12299.54 2799.57 6999.21 2898.46 12199.29 16197.28 20598.11 23798.39 25298.00 7999.87 8996.86 17999.64 16699.55 89
SMA-MVScopyleft98.40 13698.03 16799.51 4399.16 17599.21 2898.05 16099.22 18194.16 30898.98 13499.10 12197.52 11899.79 18396.45 21599.64 16699.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvspermissive98.22 15798.24 14498.17 22199.00 20695.44 25196.38 28399.58 4297.79 15798.53 20798.50 24396.76 16699.74 21797.95 11099.64 16699.34 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DVP-MVScopyleft98.77 8198.52 10299.52 3999.50 9399.21 2898.02 16498.84 25797.97 14399.08 11899.02 13697.61 10899.88 7196.99 16399.63 16999.48 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 9399.23 2698.02 16499.32 14199.88 7196.99 16399.63 16999.68 41
VDD-MVS98.56 11598.39 12599.07 11799.13 18298.07 13998.59 10097.01 33099.59 1999.11 11399.27 8794.82 23799.79 18398.34 8799.63 16999.34 182
SED-MVS98.91 6198.72 7499.49 4899.49 10099.17 3998.10 15499.31 14698.03 14099.66 2999.02 13698.36 5099.88 7196.91 16999.62 17299.41 149
IU-MVS99.49 10099.15 4798.87 24892.97 32599.41 6496.76 18699.62 17299.66 45
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4999.39 3699.75 1899.62 2899.17 1299.83 14099.06 4299.62 17299.66 45
mPP-MVS98.64 10598.34 13299.54 2799.54 8399.17 3998.63 9599.24 17897.47 18298.09 23998.68 21397.62 10799.89 6296.22 22799.62 17299.57 78
DeepPCF-MVS96.93 598.32 14498.01 16899.23 9598.39 30398.97 6695.03 33299.18 19296.88 23199.33 8198.78 19798.16 6999.28 34396.74 18899.62 17299.44 139
AllTest98.44 13298.20 14799.16 10299.50 9398.55 9798.25 13899.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
TestCases99.16 10299.50 9398.55 9799.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
MSC_two_6792asdad99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
No_MVS99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
test_241102_TWO99.30 15498.03 14099.26 9699.02 13697.51 11999.88 7196.91 16999.60 17999.66 45
MP-MVScopyleft98.46 13098.09 16099.54 2799.57 6999.22 2798.50 11599.19 18897.61 17097.58 27298.66 21897.40 12799.88 7194.72 27699.60 17999.54 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 8798.44 11799.51 4399.49 10099.16 4398.52 10999.31 14697.47 18298.58 19998.50 24397.97 8399.85 11096.57 20199.59 18399.53 100
CVMVSNet96.25 27997.21 22393.38 35399.10 18680.56 37997.20 24298.19 30096.94 22899.00 13299.02 13689.50 30299.80 17096.36 22099.59 18399.78 20
ACMMPR98.70 9098.42 12099.54 2799.52 8899.14 5298.52 10999.31 14697.47 18298.56 20298.54 23597.75 9699.88 7196.57 20199.59 18399.58 73
PGM-MVS98.66 10298.37 12899.55 2399.53 8699.18 3898.23 13999.49 8197.01 22698.69 18298.88 17898.00 7999.89 6295.87 24599.59 18399.58 73
DELS-MVS98.27 15198.20 14798.48 19598.86 23396.70 22095.60 31599.20 18497.73 16098.45 21398.71 20797.50 12099.82 15098.21 9399.59 18398.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 9398.40 12299.54 2799.53 8699.17 3998.52 10999.31 14697.46 18798.44 21498.51 23997.83 8999.88 7196.46 21499.58 18899.58 73
114514_t96.50 27195.77 27898.69 16799.48 10797.43 18897.84 18499.55 6081.42 37196.51 32398.58 23295.53 21699.67 24893.41 31499.58 18898.98 248
PHI-MVS98.29 15097.95 17299.34 7298.44 29799.16 4398.12 15199.38 11596.01 26498.06 24198.43 24997.80 9399.67 24895.69 25499.58 18899.20 214
TinyColmap97.89 18097.98 17097.60 26298.86 23394.35 28396.21 29199.44 9897.45 18999.06 12098.88 17897.99 8299.28 34394.38 28999.58 18899.18 221
MVSFormer98.26 15398.43 11897.77 24898.88 23193.89 30299.39 1699.56 5699.11 6198.16 23198.13 27393.81 26199.97 499.26 3099.57 19299.43 143
lupinMVS97.06 24596.86 24097.65 25898.88 23193.89 30295.48 32097.97 30893.53 31898.16 23197.58 30993.81 26199.91 4796.77 18599.57 19299.17 225
MVS_111021_HR98.25 15598.08 16398.75 16299.09 18997.46 18695.97 29899.27 16797.60 17197.99 24698.25 26598.15 7199.38 33096.87 17799.57 19299.42 146
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15699.91 599.67 2097.15 14198.91 36199.76 899.56 19599.92 5
OPM-MVS98.56 11598.32 13699.25 9199.41 12298.73 8597.13 24799.18 19297.10 22298.75 17898.92 16798.18 6599.65 26496.68 19599.56 19599.37 170
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended96.88 25596.68 25397.47 27598.92 22193.77 30694.71 33999.43 10490.98 34897.62 26897.36 32396.82 16099.67 24894.73 27499.56 19598.98 248
APD_test198.83 7198.66 8499.34 7299.78 2599.47 698.42 12699.45 9498.28 12398.98 13499.19 10197.76 9599.58 28796.57 20199.55 19898.97 252
DeepC-MVS_fast96.85 698.30 14798.15 15598.75 16298.61 27797.23 19697.76 19199.09 21397.31 20298.75 17898.66 21897.56 11299.64 26796.10 23699.55 19899.39 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 16597.67 19299.42 5899.11 18498.93 7197.76 19199.28 16494.97 28998.72 18198.77 19997.04 14699.85 11093.79 30599.54 20099.49 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 21897.60 20096.87 30199.15 17991.46 33898.54 10799.12 20792.87 32897.58 27299.63 2796.21 19099.90 5295.74 25199.54 20099.27 200
CPTT-MVS97.84 19097.36 21499.27 8699.31 13998.46 10598.29 13499.27 16794.90 29197.83 25698.37 25594.90 23399.84 12693.85 30499.54 20099.51 105
1112_ss97.29 22896.86 24098.58 17999.34 13896.32 22796.75 26699.58 4293.14 32396.89 30997.48 31592.11 28599.86 9896.91 16999.54 20099.57 78
XVS98.72 8698.45 11599.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27698.63 22597.50 12099.83 14096.79 18299.53 20499.56 82
X-MVStestdata94.32 31292.59 33099.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27645.85 37597.50 12099.83 14096.79 18299.53 20499.56 82
Test_1112_low_res96.99 25296.55 26398.31 21199.35 13695.47 25095.84 30999.53 6891.51 34296.80 31498.48 24691.36 29199.83 14096.58 19999.53 20499.62 54
SF-MVS98.53 12398.27 14199.32 7899.31 13998.75 8198.19 14399.41 10896.77 23698.83 16698.90 17197.80 9399.82 15095.68 25599.52 20799.38 168
Anonymous2024052998.93 5998.87 5999.12 10799.19 16598.22 12599.01 6698.99 23399.25 5099.54 4199.37 6997.04 14699.80 17097.89 11199.52 20799.35 180
GST-MVS98.61 11098.30 13799.52 3999.51 9099.20 3498.26 13799.25 17397.44 19098.67 18498.39 25297.68 9999.85 11096.00 23799.51 20999.52 103
tttt051795.64 29394.98 30297.64 26099.36 13293.81 30498.72 8790.47 37198.08 13998.67 18498.34 25973.88 37299.92 3997.77 12099.51 20999.20 214
HQP_MVS97.99 17697.67 19298.93 13799.19 16597.65 17797.77 18999.27 16798.20 12997.79 25997.98 28694.90 23399.70 23294.42 28599.51 20999.45 135
plane_prior599.27 16799.70 23294.42 28599.51 20999.45 135
ab-mvs98.41 13498.36 12998.59 17899.19 16597.23 19699.32 2298.81 26297.66 16598.62 19199.40 6896.82 16099.80 17095.88 24299.51 20998.75 288
OMC-MVS97.88 18297.49 20699.04 12698.89 23098.63 8996.94 25499.25 17395.02 28798.53 20798.51 23997.27 13499.47 31693.50 31299.51 20999.01 243
CMPMVSbinary75.91 2396.29 27795.44 29098.84 14696.25 37098.69 8897.02 24999.12 20788.90 35997.83 25698.86 18189.51 30198.90 36291.92 33399.51 20998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 21798.82 24195.97 23698.62 9799.00 23299.27 9299.21 9896.99 15199.50 30996.55 20899.50 21699.26 203
TSAR-MVS + MP.98.63 10798.49 10999.06 12399.64 6097.90 15698.51 11398.94 23596.96 22799.24 10198.89 17797.83 8999.81 16396.88 17699.49 21799.48 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 14898.59 28198.30 11698.10 15498.52 23898.18 6598.75 36594.62 27799.48 21899.41 149
9.1497.78 18499.07 19397.53 21699.32 14195.53 27598.54 20698.70 21097.58 11099.76 20594.32 29099.46 219
TSAR-MVS + GP.98.18 16197.98 17098.77 15998.71 25797.88 15796.32 28698.66 27796.33 25199.23 10398.51 23997.48 12499.40 32697.16 14899.46 21999.02 242
DVP-MVS++98.90 6398.70 7999.51 4398.43 29899.15 4799.43 1199.32 14198.17 13299.26 9699.02 13698.18 6599.88 7197.07 15799.45 22199.49 112
PC_three_145293.27 32199.40 6798.54 23598.22 6197.00 37395.17 26599.45 22199.49 112
PCF-MVS92.86 1894.36 31193.00 32898.42 20198.70 26197.56 18193.16 36499.11 20979.59 37297.55 27597.43 31892.19 28399.73 22179.85 37399.45 22197.97 329
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 25296.76 24897.67 25698.72 25494.89 26895.95 30298.20 29892.62 33198.55 20498.54 23594.88 23699.52 30493.96 29999.44 22498.59 302
APD-MVS_3200maxsize98.84 7098.61 9499.53 3499.19 16599.27 2298.49 11699.33 13998.64 9899.03 13098.98 15297.89 8699.85 11096.54 20999.42 22599.46 131
MSLP-MVS++98.02 17198.14 15797.64 26098.58 28295.19 26097.48 22199.23 18097.47 18297.90 25098.62 22797.04 14698.81 36497.55 12999.41 22698.94 259
QAPM97.31 22596.81 24698.82 14898.80 24697.49 18499.06 6299.19 18890.22 35297.69 26599.16 11096.91 15499.90 5290.89 35099.41 22699.07 233
SR-MVS-dyc-post98.81 7498.55 9999.57 1699.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.49 12399.86 9896.56 20599.39 22899.45 135
RE-MVS-def98.58 9799.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.75 9696.56 20599.39 22899.45 135
MVS-HIRNet94.32 31295.62 28490.42 35798.46 29575.36 38096.29 28789.13 37495.25 28395.38 34899.75 1192.88 27599.19 34994.07 29799.39 22896.72 358
CDPH-MVS97.26 22996.66 25699.07 11799.00 20698.15 12996.03 29699.01 23091.21 34697.79 25997.85 29596.89 15599.69 23692.75 32599.38 23199.39 161
VPNet98.87 6698.83 6499.01 12999.70 5097.62 18098.43 12499.35 12899.47 2899.28 9099.05 13196.72 16999.82 15098.09 10099.36 23299.59 67
plane_prior97.65 17797.07 24896.72 23899.36 232
thisisatest053095.27 30094.45 30997.74 25399.19 16594.37 28297.86 18290.20 37297.17 21898.22 22797.65 30573.53 37399.90 5296.90 17499.35 23498.95 255
HPM-MVS++copyleft98.10 16597.64 19799.48 5199.09 18999.13 5597.52 21798.75 27197.46 18796.90 30897.83 29696.01 19799.84 12695.82 24999.35 23499.46 131
LS3D98.63 10798.38 12799.36 6497.25 35599.38 899.12 5699.32 14199.21 5298.44 21498.88 17897.31 13099.80 17096.58 19999.34 23698.92 261
CNVR-MVS98.17 16397.87 18099.07 11798.67 26998.24 12097.01 25098.93 23797.25 20897.62 26898.34 25997.27 13499.57 28996.42 21699.33 23799.39 161
sss97.21 23496.93 23498.06 23098.83 23895.22 25996.75 26698.48 28794.49 29897.27 29197.90 29292.77 27899.80 17096.57 20199.32 23899.16 228
3Dnovator+97.89 398.69 9398.51 10399.24 9398.81 24398.40 10799.02 6599.19 18898.99 8098.07 24099.28 8597.11 14499.84 12696.84 18099.32 23899.47 129
SR-MVS98.71 8798.43 11899.57 1699.18 17299.35 1298.36 13099.29 16198.29 12198.88 15798.85 18497.53 11699.87 8996.14 23399.31 24099.48 122
Anonymous20240521197.90 17897.50 20599.08 11598.90 22598.25 11998.53 10896.16 34498.87 9099.11 11398.86 18190.40 29699.78 19497.36 13999.31 24099.19 219
Patchmatch-test96.55 26796.34 26897.17 28798.35 30493.06 31598.40 12797.79 31197.33 19998.41 21798.67 21583.68 34399.69 23695.16 26699.31 24098.77 285
LCM-MVSNet-Re98.64 10598.48 11099.11 10998.85 23598.51 10298.49 11699.83 1398.37 11299.69 2599.46 5598.21 6399.92 3994.13 29599.30 24398.91 264
EPNet_dtu94.93 30694.78 30795.38 33593.58 37787.68 36096.78 26395.69 35197.35 19889.14 37398.09 27988.15 31399.49 31094.95 27099.30 24398.98 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 26595.95 27698.65 16998.93 21798.09 13396.93 25699.28 16483.58 36998.13 23597.78 29796.13 19299.40 32693.52 31099.29 24598.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 29195.70 28195.57 33098.83 23888.57 35492.50 36697.72 31392.69 33096.49 32696.44 34193.72 26499.43 32293.61 30799.28 24698.71 291
EIA-MVS98.00 17397.74 18798.80 15298.72 25498.09 13398.05 16099.60 3997.39 19496.63 31895.55 35497.68 9999.80 17096.73 19099.27 24798.52 303
LFMVS97.20 23596.72 25098.64 17098.72 25496.95 21198.93 7494.14 36099.74 698.78 17299.01 14584.45 33699.73 22197.44 13599.27 24799.25 204
ITE_SJBPF98.87 14399.22 15698.48 10499.35 12897.50 17998.28 22598.60 23097.64 10599.35 33293.86 30399.27 24798.79 283
HQP3-MVS99.04 22299.26 250
HQP-MVS97.00 25196.49 26598.55 18698.67 26996.79 21696.29 28799.04 22296.05 26195.55 34296.84 33293.84 25999.54 29892.82 32299.26 25099.32 189
ETV-MVS98.03 17097.86 18198.56 18598.69 26698.07 13997.51 21999.50 7498.10 13797.50 28095.51 35598.41 4799.88 7196.27 22599.24 25297.71 342
MCST-MVS98.00 17397.63 19899.10 11199.24 15198.17 12896.89 25998.73 27495.66 27297.92 24897.70 30397.17 14099.66 25996.18 23199.23 25399.47 129
SCA96.41 27596.66 25695.67 32798.24 31188.35 35695.85 30896.88 33796.11 25997.67 26698.67 21593.10 27099.85 11094.16 29199.22 25498.81 277
MSDG97.71 19797.52 20498.28 21498.91 22496.82 21594.42 34999.37 11997.65 16698.37 22298.29 26497.40 12799.33 33594.09 29699.22 25498.68 297
MIMVSNet96.62 26696.25 27397.71 25599.04 20194.66 27699.16 5096.92 33697.23 21497.87 25299.10 12186.11 32499.65 26491.65 33799.21 25698.82 273
test_prior295.74 31196.48 24796.11 33197.63 30795.92 20694.16 29199.20 257
VDDNet98.21 15897.95 17299.01 12999.58 6597.74 17299.01 6697.29 32599.67 998.97 13899.50 4990.45 29599.80 17097.88 11499.20 25799.48 122
OpenMVScopyleft96.65 797.09 24396.68 25398.32 20998.32 30697.16 20498.86 8099.37 11989.48 35696.29 32999.15 11496.56 17599.90 5292.90 31999.20 25797.89 330
ZD-MVS99.01 20598.84 7599.07 21594.10 31098.05 24398.12 27596.36 18699.86 9892.70 32799.19 260
MSP-MVS98.40 13698.00 16999.61 999.57 6999.25 2498.57 10399.35 12897.55 17699.31 8997.71 30194.61 24599.88 7196.14 23399.19 26099.70 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 23896.71 25198.55 18698.56 28598.05 14296.33 28598.93 23796.91 23097.06 29897.39 32094.38 25099.45 31991.66 33699.18 26298.14 321
train_agg97.10 24196.45 26699.07 11798.71 25798.08 13795.96 30099.03 22491.64 33895.85 33697.53 31196.47 17999.76 20593.67 30699.16 26399.36 176
agg_prior292.50 33099.16 26399.37 170
test9_res93.28 31699.15 26599.38 168
MS-PatchMatch97.68 19997.75 18697.45 27698.23 31393.78 30597.29 23498.84 25796.10 26098.64 18898.65 22096.04 19599.36 33196.84 18099.14 26699.20 214
AdaColmapbinary97.14 24096.71 25198.46 19798.34 30597.80 16896.95 25398.93 23795.58 27396.92 30397.66 30495.87 20799.53 30090.97 34799.14 26698.04 325
VNet98.42 13398.30 13798.79 15498.79 24797.29 19398.23 13998.66 27799.31 4598.85 16298.80 19494.80 24099.78 19498.13 9699.13 26899.31 193
test1298.93 13798.58 28297.83 16298.66 27796.53 32195.51 21899.69 23699.13 26899.27 200
DP-MVS Recon97.33 22496.92 23698.57 18199.09 18997.99 14596.79 26299.35 12893.18 32297.71 26398.07 28195.00 23299.31 33793.97 29899.13 26898.42 311
thisisatest051594.12 31893.16 32596.97 29698.60 27992.90 31993.77 36090.61 37094.10 31096.91 30595.87 35074.99 37199.80 17094.52 28099.12 27198.20 318
pmmvs395.03 30494.40 31096.93 29797.70 34092.53 32595.08 33197.71 31488.57 36097.71 26398.08 28079.39 35999.82 15096.19 22999.11 27298.43 310
test22298.92 22196.93 21395.54 31698.78 26785.72 36696.86 31198.11 27694.43 24799.10 27399.23 209
xiu_mvs_v1_base_debu97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base_debi97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
MG-MVS96.77 26096.61 25997.26 28498.31 30793.06 31595.93 30398.12 30496.45 24897.92 24898.73 20493.77 26399.39 32891.19 34699.04 27799.33 187
cl2295.79 28995.39 29396.98 29596.77 36392.79 32194.40 35098.53 28494.59 29797.89 25198.17 27282.82 34899.24 34596.37 21899.03 27898.92 261
miper_ehance_all_eth97.06 24597.03 23197.16 28997.83 33293.06 31594.66 34299.09 21395.99 26598.69 18298.45 24892.73 27999.61 27896.79 18299.03 27898.82 273
miper_enhance_ethall96.01 28395.74 27996.81 30596.41 36892.27 33193.69 36198.89 24591.14 34798.30 22397.35 32490.58 29499.58 28796.31 22299.03 27898.60 300
API-MVS97.04 24796.91 23897.42 27897.88 33098.23 12498.18 14498.50 28697.57 17397.39 28896.75 33496.77 16499.15 35290.16 35399.02 28194.88 370
旧先验198.82 24197.45 18798.76 26898.34 25995.50 21999.01 28299.23 209
新几何198.91 14098.94 21597.76 17098.76 26887.58 36396.75 31598.10 27794.80 24099.78 19492.73 32699.00 28399.20 214
原ACMM198.35 20798.90 22596.25 22998.83 26192.48 33296.07 33398.10 27795.39 22299.71 22992.61 32998.99 28499.08 232
testgi98.32 14498.39 12598.13 22499.57 6995.54 24697.78 18799.49 8197.37 19699.19 10697.65 30598.96 1799.49 31096.50 21298.99 28499.34 182
MVP-Stereo98.08 16897.92 17698.57 18198.96 21396.79 21697.90 17799.18 19296.41 24998.46 21298.95 16195.93 20599.60 27996.51 21198.98 28699.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
alignmvs97.35 22296.88 23998.78 15798.54 28798.09 13397.71 19597.69 31599.20 5497.59 27195.90 34988.12 31499.55 29598.18 9598.96 28798.70 293
testdata98.09 22598.93 21795.40 25398.80 26490.08 35497.45 28498.37 25595.26 22499.70 23293.58 30998.95 28899.17 225
mvsany_test197.60 20597.54 20297.77 24897.72 33695.35 25495.36 32497.13 32894.13 30999.71 2199.33 7997.93 8599.30 33997.60 12898.94 28998.67 298
Effi-MVS+-dtu98.26 15397.90 17899.35 6998.02 32399.49 598.02 16499.16 19998.29 12197.64 26797.99 28596.44 18199.95 1796.66 19698.93 29098.60 300
FA-MVS(test-final)96.99 25296.82 24497.50 27398.70 26194.78 27099.34 1996.99 33195.07 28698.48 21199.33 7988.41 31299.65 26496.13 23598.92 29198.07 324
MVS_Test98.18 16198.36 12997.67 25698.48 29394.73 27398.18 14499.02 22797.69 16398.04 24499.11 11997.22 13899.56 29298.57 7498.90 29298.71 291
CL-MVSNet_self_test97.44 21797.22 22298.08 22898.57 28495.78 24294.30 35298.79 26596.58 24498.60 19598.19 27194.74 24499.64 26796.41 21798.84 29398.82 273
Fast-Effi-MVS+97.67 20097.38 21298.57 18198.71 25797.43 18897.23 23899.45 9494.82 29396.13 33096.51 33798.52 4299.91 4796.19 22998.83 29498.37 314
NCCC97.86 18497.47 20999.05 12498.61 27798.07 13996.98 25298.90 24397.63 16797.04 29997.93 29195.99 20199.66 25995.31 26498.82 29599.43 143
PatchMatch-RL97.24 23296.78 24798.61 17699.03 20497.83 16296.36 28499.06 21693.49 32097.36 29097.78 29795.75 21099.49 31093.44 31398.77 29698.52 303
DPM-MVS96.32 27695.59 28698.51 19298.76 24897.21 19994.54 34898.26 29591.94 33796.37 32797.25 32593.06 27299.43 32291.42 34298.74 29798.89 265
YYNet197.60 20597.67 19297.39 28099.04 20193.04 31895.27 32598.38 29297.25 20898.92 14998.95 16195.48 22099.73 22196.99 16398.74 29799.41 149
MDA-MVSNet-bldmvs97.94 17797.91 17798.06 23099.44 11494.96 26796.63 27299.15 20498.35 11398.83 16699.11 11994.31 25199.85 11096.60 19898.72 29999.37 170
MDA-MVSNet_test_wron97.60 20597.66 19597.41 27999.04 20193.09 31495.27 32598.42 28997.26 20798.88 15798.95 16195.43 22199.73 22197.02 16098.72 29999.41 149
FE-MVS95.66 29294.95 30497.77 24898.53 28995.28 25699.40 1596.09 34693.11 32497.96 24799.26 8979.10 36299.77 20092.40 33198.71 30198.27 316
Fast-Effi-MVS+-dtu98.27 15198.09 16098.81 15098.43 29898.11 13297.61 20799.50 7498.64 9897.39 28897.52 31398.12 7299.95 1796.90 17498.71 30198.38 312
canonicalmvs98.34 14398.26 14298.58 17998.46 29597.82 16598.96 7299.46 9199.19 5897.46 28395.46 35798.59 3899.46 31898.08 10198.71 30198.46 305
xiu_mvs_v2_base97.16 23997.49 20696.17 31898.54 28792.46 32695.45 32198.84 25797.25 20897.48 28296.49 33898.31 5599.90 5296.34 22198.68 30496.15 364
PS-MVSNAJ97.08 24497.39 21196.16 32098.56 28592.46 32695.24 32798.85 25697.25 20897.49 28195.99 34798.07 7399.90 5296.37 21898.67 30596.12 365
PatchmatchNetpermissive95.58 29495.67 28395.30 33697.34 35387.32 36197.65 20396.65 33995.30 28297.07 29798.69 21184.77 33399.75 21294.97 26998.64 30698.83 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 33391.92 33694.25 34398.83 23891.64 33692.71 36583.52 37995.92 26786.46 37695.46 35795.20 22695.40 37580.51 37298.64 30695.73 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 28895.18 29997.81 24598.41 30297.15 20597.37 22898.62 28083.86 36898.65 18798.37 25594.29 25299.68 24588.41 35798.62 30896.60 359
cascas94.79 30794.33 31396.15 32196.02 37392.36 33092.34 36899.26 17285.34 36795.08 35294.96 36492.96 27498.53 36794.41 28898.59 30997.56 347
BH-RMVSNet96.83 25796.58 26297.58 26498.47 29494.05 29096.67 27097.36 32196.70 24097.87 25297.98 28695.14 22899.44 32190.47 35298.58 31099.25 204
GA-MVS95.86 28795.32 29597.49 27498.60 27994.15 28993.83 35997.93 30995.49 27696.68 31697.42 31983.21 34499.30 33996.22 22798.55 31199.01 243
F-COLMAP97.30 22696.68 25399.14 10599.19 16598.39 10897.27 23799.30 15492.93 32696.62 31998.00 28495.73 21199.68 24592.62 32898.46 31299.35 180
XVG-OURS-SEG-HR98.49 12798.28 13999.14 10599.49 10098.83 7696.54 27499.48 8397.32 20199.11 11398.61 22999.33 899.30 33996.23 22698.38 31399.28 199
test_yl96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
DCV-MVSNet96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
tt080598.69 9398.62 9098.90 14299.75 3499.30 1799.15 5296.97 33298.86 9198.87 16197.62 30898.63 3598.96 35899.41 2398.29 31698.45 307
thres600view794.45 31093.83 31696.29 31499.06 19791.53 33797.99 16994.24 35898.34 11497.44 28595.01 36179.84 35599.67 24884.33 36598.23 31797.66 343
MAR-MVS96.47 27395.70 28198.79 15497.92 32799.12 5798.28 13598.60 28192.16 33695.54 34596.17 34594.77 24399.52 30489.62 35598.23 31797.72 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 17197.82 18398.62 17498.53 28997.19 20197.33 23199.68 2997.30 20396.68 31697.46 31798.56 4099.80 17096.63 19798.20 31998.86 270
test_vis1_rt97.75 19497.72 19097.83 24398.81 24396.35 22697.30 23399.69 2494.61 29697.87 25298.05 28296.26 18998.32 36998.74 6298.18 32098.82 273
test-LLR93.90 32193.85 31594.04 34496.53 36584.62 37094.05 35692.39 36696.17 25694.12 35995.07 35982.30 34999.67 24895.87 24598.18 32097.82 333
test-mter92.33 33691.76 33994.04 34496.53 36584.62 37094.05 35692.39 36694.00 31394.12 35995.07 35965.63 38299.67 24895.87 24598.18 32097.82 333
mvs_anonymous97.83 19298.16 15496.87 30198.18 31591.89 33497.31 23298.90 24397.37 19698.83 16699.46 5596.28 18899.79 18398.90 5298.16 32398.95 255
WTY-MVS96.67 26396.27 27297.87 24198.81 24394.61 27896.77 26497.92 31094.94 29097.12 29497.74 30091.11 29299.82 15093.89 30198.15 32499.18 221
thres20093.72 32493.14 32695.46 33498.66 27491.29 34396.61 27394.63 35497.39 19496.83 31293.71 37179.88 35499.56 29282.40 37098.13 32595.54 369
TESTMET0.1,192.19 33891.77 33893.46 35196.48 36782.80 37594.05 35691.52 36994.45 30294.00 36294.88 36566.65 37999.56 29295.78 25098.11 32698.02 326
PMMVS96.51 26995.98 27598.09 22597.53 34695.84 23994.92 33598.84 25791.58 34096.05 33495.58 35395.68 21299.66 25995.59 25898.09 32798.76 287
thres100view90094.19 31593.67 31995.75 32699.06 19791.35 34198.03 16394.24 35898.33 11597.40 28794.98 36379.84 35599.62 27283.05 36798.08 32896.29 360
tfpn200view994.03 31993.44 32195.78 32598.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32896.29 360
thres40094.14 31793.44 32196.24 31698.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32897.66 343
PLCcopyleft94.65 1696.51 26995.73 28098.85 14598.75 25097.91 15596.42 28199.06 21690.94 34995.59 33997.38 32194.41 24899.59 28390.93 34898.04 33199.05 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 29797.06 35883.20 37497.74 19396.16 34494.37 30496.99 30198.83 18883.95 34199.53 30093.90 30097.95 332
PAPM_NR96.82 25996.32 26998.30 21299.07 19396.69 22197.48 22198.76 26895.81 27096.61 32096.47 34094.12 25799.17 35090.82 35197.78 33399.06 234
EMVS93.83 32294.02 31493.23 35496.83 36284.96 36889.77 37196.32 34397.92 14797.43 28696.36 34486.17 32298.93 36087.68 35997.73 33495.81 367
E-PMN94.17 31694.37 31193.58 35096.86 36085.71 36790.11 37097.07 32998.17 13297.82 25897.19 32684.62 33598.94 35989.77 35497.68 33596.09 366
PatchT96.65 26496.35 26797.54 26997.40 35195.32 25597.98 17096.64 34099.33 4396.89 30999.42 6384.32 33899.81 16397.69 12797.49 33697.48 348
FPMVS93.44 32792.23 33297.08 29099.25 15097.86 15995.61 31497.16 32792.90 32793.76 36498.65 22075.94 36995.66 37479.30 37497.49 33697.73 340
AUN-MVS96.24 28095.45 28998.60 17798.70 26197.22 19897.38 22797.65 31695.95 26695.53 34697.96 29082.11 35199.79 18396.31 22297.44 33898.80 282
BH-untuned96.83 25796.75 24997.08 29098.74 25193.33 31296.71 26898.26 29596.72 23898.44 21497.37 32295.20 22699.47 31691.89 33497.43 33998.44 309
hse-mvs297.46 21497.07 22998.64 17098.73 25297.33 19197.45 22497.64 31899.11 6198.58 19997.98 28688.65 30999.79 18398.11 9797.39 34098.81 277
UnsupCasMVSNet_bld97.30 22696.92 23698.45 19899.28 14496.78 21996.20 29299.27 16795.42 27898.28 22598.30 26393.16 26899.71 22994.99 26897.37 34198.87 269
PAPR95.29 29994.47 30897.75 25297.50 35095.14 26294.89 33698.71 27591.39 34495.35 34995.48 35694.57 24699.14 35384.95 36497.37 34198.97 252
CR-MVSNet96.28 27895.95 27697.28 28397.71 33894.22 28498.11 15298.92 24092.31 33496.91 30599.37 6985.44 33099.81 16397.39 13897.36 34397.81 335
RPMNet97.02 24896.93 23497.30 28297.71 33894.22 28498.11 15299.30 15499.37 3896.91 30599.34 7786.72 31799.87 8997.53 13297.36 34397.81 335
HY-MVS95.94 1395.90 28695.35 29497.55 26897.95 32594.79 26998.81 8396.94 33592.28 33595.17 35098.57 23389.90 29999.75 21291.20 34597.33 34598.10 322
131495.74 29095.60 28596.17 31897.53 34692.75 32398.07 15798.31 29491.22 34594.25 35796.68 33595.53 21699.03 35491.64 33897.18 34696.74 357
gg-mvs-nofinetune92.37 33591.20 34095.85 32395.80 37492.38 32999.31 2681.84 38099.75 591.83 36999.74 1268.29 37599.02 35587.15 36097.12 34796.16 363
ET-MVSNet_ETH3D94.30 31493.21 32497.58 26498.14 31794.47 28194.78 33893.24 36494.72 29489.56 37295.87 35078.57 36599.81 16396.91 16997.11 34898.46 305
ADS-MVSNet295.43 29894.98 30296.76 30898.14 31791.74 33597.92 17497.76 31290.23 35096.51 32398.91 16885.61 32799.85 11092.88 32096.90 34998.69 294
ADS-MVSNet95.24 30194.93 30596.18 31798.14 31790.10 35097.92 17497.32 32490.23 35096.51 32398.91 16885.61 32799.74 21792.88 32096.90 34998.69 294
MVS93.19 32992.09 33396.50 31196.91 35994.03 29398.07 15798.06 30668.01 37394.56 35696.48 33995.96 20499.30 33983.84 36696.89 35196.17 362
tpm293.09 33092.58 33194.62 34097.56 34486.53 36397.66 20195.79 35086.15 36594.07 36198.23 26875.95 36899.53 30090.91 34996.86 35297.81 335
baseline293.73 32392.83 32996.42 31297.70 34091.28 34496.84 26189.77 37393.96 31492.44 36795.93 34879.14 36199.77 20092.94 31896.76 35398.21 317
CostFormer93.97 32093.78 31794.51 34197.53 34685.83 36697.98 17095.96 34889.29 35894.99 35398.63 22578.63 36499.62 27294.54 27996.50 35498.09 323
EPMVS93.72 32493.27 32395.09 33896.04 37287.76 35998.13 14985.01 37894.69 29596.92 30398.64 22378.47 36799.31 33795.04 26796.46 35598.20 318
h-mvs3397.77 19397.33 21899.10 11199.21 15897.84 16198.35 13198.57 28299.11 6198.58 19999.02 13688.65 30999.96 1198.11 9796.34 35699.49 112
TR-MVS95.55 29595.12 30096.86 30497.54 34593.94 29796.49 27796.53 34194.36 30597.03 30096.61 33694.26 25399.16 35186.91 36196.31 35797.47 349
tpmvs95.02 30595.25 29694.33 34296.39 36985.87 36498.08 15696.83 33895.46 27795.51 34798.69 21185.91 32599.53 30094.16 29196.23 35897.58 346
tpmrst95.07 30395.46 28893.91 34697.11 35784.36 37297.62 20596.96 33394.98 28896.35 32898.80 19485.46 32999.59 28395.60 25796.23 35897.79 338
KD-MVS_2432*160092.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
miper_refine_blended92.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
BH-w/o95.13 30294.89 30695.86 32298.20 31491.31 34295.65 31397.37 32093.64 31696.52 32295.70 35293.04 27399.02 35588.10 35895.82 36297.24 351
UnsupCasMVSNet_eth97.89 18097.60 20098.75 16299.31 13997.17 20397.62 20599.35 12898.72 9798.76 17798.68 21392.57 28199.74 21797.76 12495.60 36399.34 182
PAPM91.88 33990.34 34296.51 31098.06 32292.56 32492.44 36797.17 32686.35 36490.38 37196.01 34686.61 31899.21 34870.65 37695.43 36497.75 339
tpm cat193.29 32893.13 32793.75 34897.39 35284.74 36997.39 22697.65 31683.39 37094.16 35898.41 25082.86 34799.39 32891.56 34095.35 36597.14 352
tpm94.67 30894.34 31295.66 32897.68 34288.42 35597.88 17894.90 35294.46 30096.03 33598.56 23478.66 36399.79 18395.88 24295.01 36698.78 284
JIA-IIPM95.52 29695.03 30197.00 29396.85 36194.03 29396.93 25695.82 34999.20 5494.63 35599.71 1683.09 34599.60 27994.42 28594.64 36797.36 350
IB-MVS91.63 1992.24 33790.90 34196.27 31597.22 35691.24 34594.36 35193.33 36392.37 33392.24 36894.58 36866.20 38199.89 6293.16 31794.63 36897.66 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 33994.54 37692.13 33399.31 2680.47 38188.73 37491.01 37467.59 37898.16 37182.30 37194.53 36993.98 371
test0.0.03 194.51 30993.69 31896.99 29496.05 37193.61 31094.97 33493.49 36196.17 25697.57 27494.88 36582.30 34999.01 35793.60 30894.17 37098.37 314
DeepMVS_CXcopyleft93.44 35298.24 31194.21 28694.34 35564.28 37491.34 37094.87 36789.45 30392.77 37777.54 37593.14 37193.35 372
tmp_tt78.77 34378.73 34678.90 35958.45 38274.76 38294.20 35378.26 38239.16 37586.71 37592.82 37380.50 35375.19 37886.16 36392.29 37286.74 373
dp93.47 32693.59 32093.13 35596.64 36481.62 37897.66 20196.42 34292.80 32996.11 33198.64 22378.55 36699.59 28393.31 31592.18 37398.16 320
baseline195.96 28595.44 29097.52 27198.51 29293.99 29698.39 12896.09 34698.21 12698.40 22197.76 29986.88 31699.63 27095.42 26289.27 37498.95 255
test_method79.78 34279.50 34580.62 35880.21 38145.76 38370.82 37298.41 29131.08 37680.89 37797.71 30184.85 33297.37 37291.51 34180.03 37598.75 288
PVSNet_089.98 2191.15 34090.30 34393.70 34997.72 33684.34 37390.24 36997.42 31990.20 35393.79 36393.09 37290.90 29398.89 36386.57 36272.76 37697.87 332
testmvs17.12 34520.53 3486.87 36112.05 3834.20 38593.62 3626.73 3844.62 37910.41 37924.33 3768.28 3843.56 3809.69 37815.07 37712.86 376
test12317.04 34620.11 3497.82 36010.25 3844.91 38494.80 3374.47 3854.93 37810.00 38024.28 3779.69 3833.64 37910.14 37712.43 37814.92 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.66 34432.88 3470.00 3620.00 3850.00 3860.00 37399.10 2110.00 3800.00 38197.58 30999.21 100.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.17 34710.90 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38098.07 730.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.12 34810.83 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.48 3150.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.73 3699.67 299.43 1199.54 6599.43 3399.26 96
test_one_060199.39 12499.20 3499.31 14698.49 10998.66 18699.02 13697.64 105
eth-test20.00 385
eth-test0.00 385
test_241102_ONE99.49 10099.17 3999.31 14697.98 14299.66 2998.90 17198.36 5099.48 313
save fliter99.11 18497.97 14996.53 27599.02 22798.24 124
test072699.50 9399.21 2898.17 14799.35 12897.97 14399.26 9699.06 12497.61 108
GSMVS98.81 277
test_part299.36 13299.10 6099.05 125
sam_mvs184.74 33498.81 277
sam_mvs84.29 340
MTGPAbinary99.20 184
test_post197.59 21020.48 37983.07 34699.66 25994.16 291
test_post21.25 37883.86 34299.70 232
patchmatchnet-post98.77 19984.37 33799.85 110
MTMP97.93 17391.91 368
gm-plane-assit94.83 37581.97 37788.07 36294.99 36299.60 27991.76 335
TEST998.71 25798.08 13795.96 30099.03 22491.40 34395.85 33697.53 31196.52 17799.76 205
test_898.67 26998.01 14495.91 30599.02 22791.64 33895.79 33897.50 31496.47 17999.76 205
agg_prior98.68 26897.99 14599.01 23095.59 33999.77 200
test_prior497.97 14995.86 306
test_prior98.95 13598.69 26697.95 15399.03 22499.59 28399.30 196
旧先验295.76 31088.56 36197.52 27899.66 25994.48 281
新几何295.93 303
无先验95.74 31198.74 27389.38 35799.73 22192.38 33299.22 213
原ACMM295.53 317
testdata299.79 18392.80 324
segment_acmp97.02 149
testdata195.44 32296.32 252
plane_prior799.19 16597.87 158
plane_prior698.99 20997.70 17594.90 233
plane_prior497.98 286
plane_prior397.78 16997.41 19297.79 259
plane_prior297.77 18998.20 129
plane_prior199.05 200
n20.00 386
nn0.00 386
door-mid99.57 49
test1198.87 248
door99.41 108
HQP5-MVS96.79 216
HQP-NCC98.67 26996.29 28796.05 26195.55 342
ACMP_Plane98.67 26996.29 28796.05 26195.55 342
BP-MVS92.82 322
HQP4-MVS95.56 34199.54 29899.32 189
HQP2-MVS93.84 259
NP-MVS98.84 23697.39 19096.84 332
MDTV_nov1_ep13_2view74.92 38197.69 19790.06 35597.75 26285.78 32693.52 31098.69 294
Test By Simon96.52 177