This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
anonymousdsp99.51 1099.47 1299.62 699.88 799.08 6499.34 2099.69 1798.93 9299.65 2399.72 1198.93 1999.95 1799.11 32100.00 199.82 10
PS-MVSNAJss99.46 1299.49 1099.35 7499.90 498.15 13699.20 4499.65 2399.48 2899.92 399.71 1298.07 6899.96 1199.53 9100.00 199.93 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 299.98 199.99 199.96 199.77 1100.00 199.81 1100.00 199.85 9
ANet_high99.57 799.67 599.28 8899.89 698.09 14099.14 5299.93 199.82 399.93 299.81 399.17 1299.94 2699.31 20100.00 199.82 10
UA-Net99.47 1199.40 1499.70 299.49 9299.29 1899.80 399.72 1399.82 399.04 12099.81 398.05 7199.96 1198.85 4899.99 599.86 8
jajsoiax99.58 699.61 799.48 5599.87 1098.61 9899.28 3699.66 2299.09 7599.89 699.68 1499.53 499.97 499.50 1099.99 599.87 5
mvs_tets99.63 599.67 599.49 5299.88 798.61 9899.34 2099.71 1499.27 5299.90 499.74 899.68 299.97 499.55 899.99 599.88 3
v1098.97 5299.11 3698.55 19999.44 10896.21 24298.90 7499.55 4998.73 10099.48 4399.60 2896.63 17499.83 15099.70 399.99 599.61 56
bld_raw_dy_0_6499.07 4299.00 4699.29 8599.85 1598.18 13299.11 5699.40 10099.33 4699.38 6199.44 5595.21 23099.97 499.31 2099.98 999.73 27
v899.01 4599.16 3198.57 19499.47 10296.31 24098.90 7499.47 8099.03 8199.52 3799.57 3196.93 15499.81 17499.60 499.98 999.60 57
test_djsdf99.52 999.51 999.53 3899.86 1298.74 8799.39 1699.56 4599.11 6599.70 1599.73 1099.00 1599.97 499.26 2399.98 999.89 2
pmmvs-eth3d98.47 12998.34 12998.86 15799.30 13497.76 18097.16 24199.28 15895.54 27799.42 5399.19 8997.27 13299.63 28197.89 10499.97 1299.20 220
IterMVS-LS98.55 11798.70 7398.09 23799.48 10094.73 28097.22 23499.39 10398.97 8799.38 6199.31 7396.00 20099.93 3198.58 6399.97 1299.60 57
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LTVRE_ROB98.40 199.67 399.71 299.56 2499.85 1599.11 6099.90 199.78 899.63 1599.78 1099.67 1799.48 699.81 17499.30 2299.97 1299.77 17
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2024052198.69 9198.87 5398.16 23599.77 2595.11 27399.08 5799.44 8899.34 4599.33 7199.55 3594.10 26399.94 2699.25 2599.96 1599.42 149
v7n99.53 899.57 899.41 6599.88 798.54 10699.45 1099.61 2799.66 1299.68 1999.66 1898.44 4299.95 1799.73 299.96 1599.75 24
RRT_MVS99.09 3998.94 5099.55 2699.87 1098.82 8299.48 998.16 30799.49 2799.59 2999.65 2094.79 24699.95 1799.45 1399.96 1599.88 3
test250692.39 33691.89 33993.89 34999.38 11882.28 37899.32 2266.03 38599.08 7798.77 17199.57 3166.26 38299.84 13598.71 5799.95 1899.54 91
test111196.49 27496.82 24595.52 33399.42 11387.08 36499.22 4187.14 37799.11 6599.46 4699.58 3088.69 30999.86 10398.80 5099.95 1899.62 51
ECVR-MVScopyleft96.42 27796.61 25995.85 32599.38 11888.18 36099.22 4186.00 37999.08 7799.36 6699.57 3188.47 31499.82 16098.52 6999.95 1899.54 91
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 3199.90 299.86 799.78 599.58 399.95 1799.00 4099.95 1899.78 15
D2MVS97.84 19097.84 17997.83 25399.14 17394.74 27996.94 25098.88 24995.84 27198.89 14898.96 14594.40 25499.69 25197.55 12199.95 1899.05 242
test_part197.91 17797.46 20799.27 9198.80 24798.18 13299.07 6099.36 11399.75 599.63 2699.49 4682.20 35399.89 6698.87 4799.95 1899.74 26
PS-CasMVS99.40 1999.33 2199.62 699.71 3799.10 6199.29 3299.53 5899.53 2599.46 4699.41 6098.23 5499.95 1798.89 4699.95 1899.81 12
mvsmamba99.24 3199.15 3499.49 5299.83 1998.85 7799.41 1499.55 4999.54 2499.40 5799.52 4195.86 21199.91 5099.32 1999.95 1899.70 35
bld_raw_conf00599.41 1799.38 1599.51 4799.85 1598.88 7499.44 1199.74 1299.68 999.51 4099.61 2597.25 13699.91 5099.37 1699.95 1899.72 28
CHOSEN 1792x268897.49 21297.14 22798.54 20299.68 4696.09 24596.50 27799.62 2591.58 34098.84 16098.97 14292.36 28799.88 7796.76 17999.95 1899.67 41
test_low_dy_conf_00199.26 2899.16 3199.55 2699.86 1298.86 7699.37 1898.87 25199.42 3699.46 4699.68 1496.44 18399.93 3199.39 1599.94 2899.87 5
IterMVS-SCA-FT97.85 18998.18 14796.87 30499.27 13891.16 35095.53 32099.25 16799.10 7299.41 5499.35 6793.10 27699.96 1198.65 6199.94 2899.49 114
FC-MVSNet-test99.27 2699.25 2699.34 7799.77 2598.37 11699.30 3199.57 3899.61 2099.40 5799.50 4397.12 14299.85 11899.02 3999.94 2899.80 13
UGNet98.53 12298.45 11198.79 16797.94 32996.96 22399.08 5798.54 28999.10 7296.82 31199.47 4996.55 17799.84 13598.56 6899.94 2899.55 87
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
IterMVS97.73 19698.11 15796.57 31199.24 14390.28 35195.52 32299.21 17698.86 9599.33 7199.33 7193.11 27599.94 2698.49 7199.94 2899.48 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 280x42095.51 29995.47 29095.65 33198.25 31288.27 35993.25 36598.88 24993.53 31894.65 35697.15 33086.17 32499.93 3197.41 12999.93 3398.73 295
CANet97.87 18397.76 18298.19 23297.75 33895.51 25996.76 26499.05 21997.74 16396.93 30098.21 26895.59 21999.89 6697.86 10999.93 3399.19 225
v114498.60 10898.66 7998.41 21599.36 12495.90 24997.58 20399.34 12597.51 18299.27 8299.15 10196.34 19199.80 18399.47 1299.93 3399.51 106
PEN-MVS99.41 1799.34 2099.62 699.73 3099.14 5399.29 3299.54 5499.62 1899.56 3099.42 5798.16 6499.96 1198.78 5199.93 3399.77 17
DTE-MVSNet99.43 1599.35 1899.66 499.71 3799.30 1799.31 2699.51 6299.64 1399.56 3099.46 5098.23 5499.97 498.78 5199.93 3399.72 28
CP-MVSNet99.21 3299.09 3999.56 2499.65 5098.96 7199.13 5399.34 12599.42 3699.33 7199.26 7997.01 15099.94 2698.74 5599.93 3399.79 14
WR-MVS_H99.33 2499.22 2899.65 599.71 3799.24 2499.32 2299.55 4999.46 3199.50 4299.34 6997.30 12999.93 3198.90 4499.93 3399.77 17
PVSNet_BlendedMVS97.55 20897.53 19997.60 26898.92 22093.77 31196.64 27099.43 9494.49 29897.62 26599.18 9196.82 16199.67 26394.73 27099.93 3399.36 179
Vis-MVSNetpermissive99.34 2399.36 1799.27 9199.73 3098.26 12399.17 4999.78 899.11 6599.27 8299.48 4898.82 2199.95 1798.94 4299.93 3399.59 63
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
pmmvs699.67 399.70 399.60 1399.90 499.27 2199.53 799.76 1099.64 1399.84 899.83 299.50 599.87 9499.36 1799.92 4299.64 47
nrg03099.40 1999.35 1899.54 3199.58 5899.13 5698.98 7099.48 7499.68 999.46 4699.26 7998.62 3299.73 23699.17 3199.92 4299.76 21
v119298.60 10898.66 7998.41 21599.27 13895.88 25097.52 20999.36 11397.41 19699.33 7199.20 8896.37 18999.82 16099.57 699.92 4299.55 87
iter_conf0596.54 27096.07 27597.92 24897.90 33294.50 28797.87 17399.14 20397.73 16498.89 14898.95 14975.75 37299.87 9498.50 7099.92 4299.40 161
OurMVSNet-221017-099.37 2299.31 2399.53 3899.91 398.98 6699.63 699.58 3199.44 3399.78 1099.76 696.39 18699.92 4099.44 1499.92 4299.68 38
DeepC-MVS97.60 498.97 5298.93 5199.10 11899.35 12897.98 15698.01 16099.46 8297.56 17999.54 3299.50 4398.97 1699.84 13598.06 9599.92 4299.49 114
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final97.10 24296.65 25898.45 21198.53 29196.08 24698.30 12599.11 20898.10 14398.85 15798.95 14979.38 36399.87 9498.68 6099.91 4899.40 161
patch_mono-298.51 12598.63 8298.17 23399.38 11894.78 27897.36 22299.69 1798.16 14198.49 20799.29 7497.06 14599.97 498.29 8399.91 4899.76 21
dcpmvs_298.78 7599.11 3697.78 25699.56 6993.67 31399.06 6299.86 599.50 2699.66 2099.26 7997.21 14099.99 298.00 10099.91 4899.68 38
Anonymous2023121199.27 2699.27 2599.26 9499.29 13598.18 13299.49 899.51 6299.70 899.80 999.68 1496.84 15899.83 15099.21 2899.91 4899.77 17
v14419298.54 12098.57 9298.45 21199.21 15095.98 24797.63 19699.36 11397.15 22599.32 7799.18 9195.84 21299.84 13599.50 1099.91 4899.54 91
PVSNet_Blended_VisFu98.17 16298.15 15398.22 23099.73 3095.15 27097.36 22299.68 1994.45 30298.99 12799.27 7796.87 15799.94 2697.13 14699.91 4899.57 74
test_040298.76 7998.71 7098.93 14799.56 6998.14 13898.45 11599.34 12599.28 5198.95 13598.91 15698.34 5099.79 19695.63 25299.91 4898.86 276
v192192098.54 12098.60 8998.38 21899.20 15495.76 25597.56 20599.36 11397.23 21899.38 6199.17 9596.02 19899.84 13599.57 699.90 5599.54 91
v2v48298.56 11398.62 8498.37 21999.42 11395.81 25397.58 20399.16 19697.90 15599.28 8099.01 13395.98 20499.79 19699.33 1899.90 5599.51 106
TranMVSNet+NR-MVSNet99.17 3399.07 4299.46 6099.37 12398.87 7598.39 11999.42 9799.42 3699.36 6699.06 11198.38 4599.95 1798.34 8099.90 5599.57 74
FMVSNet199.17 3399.17 3099.17 10699.55 7398.24 12599.20 4499.44 8899.21 5499.43 5299.55 3597.82 8799.86 10398.42 7699.89 5899.41 152
FIs99.14 3599.09 3999.29 8599.70 4398.28 12299.13 5399.52 6199.48 2899.24 9199.41 6096.79 16499.82 16098.69 5999.88 5999.76 21
v124098.55 11798.62 8498.32 22299.22 14895.58 25697.51 21199.45 8597.16 22399.45 5099.24 8396.12 19599.85 11899.60 499.88 5999.55 87
TAMVS98.24 15598.05 16398.80 16599.07 18897.18 21597.88 17098.81 26796.66 24499.17 10299.21 8694.81 24399.77 21496.96 16099.88 5999.44 142
EU-MVSNet97.66 20198.50 10095.13 33999.63 5585.84 36798.35 12398.21 30398.23 13199.54 3299.46 5095.02 23599.68 26098.24 8499.87 6299.87 5
MIMVSNet199.38 2199.32 2299.55 2699.86 1299.19 3799.41 1499.59 2999.59 2199.71 1499.57 3197.12 14299.90 5699.21 2899.87 6299.54 91
CS-MVS99.13 3799.10 3899.24 9999.06 19299.15 4899.36 1999.88 399.36 4498.21 22598.46 24598.68 2999.93 3199.03 3899.85 6498.64 303
CS-MVS-test99.13 3799.09 3999.26 9499.13 17598.97 6799.31 2699.88 399.44 3398.16 22898.51 23598.64 3099.93 3198.91 4399.85 6498.88 274
v14898.45 13198.60 8998.00 24699.44 10894.98 27497.44 21899.06 21598.30 12399.32 7798.97 14296.65 17399.62 28398.37 7899.85 6499.39 163
WR-MVS98.40 13798.19 14699.03 13599.00 20497.65 18896.85 25898.94 23898.57 11298.89 14898.50 23995.60 21899.85 11897.54 12399.85 6499.59 63
CANet_DTU97.26 23097.06 22997.84 25297.57 34594.65 28496.19 29498.79 27097.23 21895.14 35398.24 26593.22 27399.84 13597.34 13299.84 6899.04 246
V4298.78 7598.78 6298.76 17399.44 10897.04 22098.27 12899.19 18397.87 15799.25 9099.16 9796.84 15899.78 20899.21 2899.84 6899.46 134
VPA-MVSNet99.30 2599.30 2499.28 8899.49 9298.36 11999.00 6799.45 8599.63 1599.52 3799.44 5598.25 5299.88 7799.09 3399.84 6899.62 51
SixPastTwentyTwo98.75 8198.62 8499.16 10999.83 1997.96 16199.28 3698.20 30499.37 4199.70 1599.65 2092.65 28599.93 3199.04 3799.84 6899.60 57
HyFIR lowres test97.19 23796.60 26198.96 14399.62 5797.28 20695.17 33099.50 6494.21 30799.01 12498.32 26186.61 32099.99 297.10 14899.84 6899.60 57
TDRefinement99.42 1699.38 1599.55 2699.76 2899.33 1699.68 599.71 1499.38 4099.53 3599.61 2598.64 3099.80 18398.24 8499.84 6899.52 103
pm-mvs199.44 1399.48 1199.33 8099.80 2298.63 9599.29 3299.63 2499.30 5099.65 2399.60 2899.16 1499.82 16099.07 3499.83 7499.56 79
Baseline_NR-MVSNet98.98 5198.86 5599.36 6999.82 2198.55 10397.47 21599.57 3899.37 4199.21 9599.61 2596.76 16799.83 15098.06 9599.83 7499.71 30
Patchmtry97.35 22396.97 23498.50 20797.31 35696.47 23698.18 13698.92 24398.95 9198.78 16899.37 6385.44 33299.85 11895.96 23499.83 7499.17 231
ppachtmachnet_test97.50 21097.74 18496.78 30998.70 26391.23 34994.55 34999.05 21996.36 25399.21 9598.79 18996.39 18699.78 20896.74 18199.82 7799.34 185
EI-MVSNet98.40 13798.51 9898.04 24499.10 18194.73 28097.20 23598.87 25198.97 8799.06 11399.02 12496.00 20099.80 18398.58 6399.82 7799.60 57
NR-MVSNet98.95 5598.82 5899.36 6999.16 16898.72 9299.22 4199.20 17899.10 7299.72 1398.76 19496.38 18899.86 10398.00 10099.82 7799.50 110
MVSTER96.86 25796.55 26397.79 25597.91 33194.21 29397.56 20598.87 25197.49 18599.06 11399.05 11880.72 35599.80 18398.44 7499.82 7799.37 173
cl____97.02 25096.83 24497.58 27097.82 33694.04 29794.66 34499.16 19697.04 22898.63 18598.71 20088.68 31199.69 25197.00 15499.81 8199.00 253
DIV-MVS_self_test97.02 25096.84 24397.58 27097.82 33694.03 29894.66 34499.16 19697.04 22898.63 18598.71 20088.69 30999.69 25197.00 15499.81 8199.01 250
eth_miper_zixun_eth97.23 23497.25 21897.17 29198.00 32792.77 32694.71 34199.18 18797.27 21098.56 19998.74 19691.89 29299.69 25197.06 15299.81 8199.05 242
MVS_030497.64 20297.35 21398.52 20397.87 33496.69 23398.59 9598.05 31397.44 19493.74 36798.85 17593.69 27099.88 7798.11 9099.81 8198.98 255
PMMVS298.07 16798.08 16198.04 24499.41 11594.59 28694.59 34899.40 10097.50 18398.82 16598.83 18196.83 16099.84 13597.50 12699.81 8199.71 30
K. test v398.00 17297.66 19199.03 13599.79 2497.56 19299.19 4892.47 36799.62 1899.52 3799.66 1889.61 30399.96 1199.25 2599.81 8199.56 79
CDS-MVSNet97.69 19897.35 21398.69 17998.73 25497.02 22296.92 25498.75 27695.89 27098.59 19398.67 20892.08 29199.74 23296.72 18499.81 8199.32 193
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 9598.50 10099.20 10399.45 10698.63 9598.56 9899.57 3897.87 15798.85 15798.04 28297.66 9699.84 13596.72 18499.81 8199.13 235
miper_lstm_enhance97.18 23897.16 22497.25 28998.16 31892.85 32495.15 33299.31 13897.25 21298.74 17698.78 19090.07 30099.78 20897.19 13899.80 8999.11 238
UniMVSNet (Re)98.87 6498.71 7099.35 7499.24 14398.73 9097.73 18799.38 10598.93 9299.12 10498.73 19796.77 16599.86 10398.63 6299.80 8999.46 134
FMVSNet298.49 12798.40 11998.75 17598.90 22497.14 21998.61 9299.13 20498.59 10899.19 9799.28 7594.14 25999.82 16097.97 10299.80 8999.29 204
XXY-MVS99.14 3599.15 3499.10 11899.76 2897.74 18398.85 7999.62 2598.48 11599.37 6499.49 4698.75 2499.86 10398.20 8799.80 8999.71 30
IS-MVSNet98.19 15997.90 17599.08 12299.57 6297.97 15799.31 2698.32 29999.01 8398.98 12999.03 12391.59 29399.79 19695.49 25799.80 8999.48 124
EI-MVSNet-UG-set98.69 9198.71 7098.62 18799.10 18196.37 23897.23 23198.87 25199.20 5799.19 9798.99 13697.30 12999.85 11898.77 5499.79 9499.65 46
pmmvs497.58 20797.28 21798.51 20598.84 23896.93 22595.40 32698.52 29193.60 31798.61 18998.65 21395.10 23499.60 29096.97 15999.79 9498.99 254
test20.0398.78 7598.77 6498.78 17099.46 10397.20 21397.78 17999.24 17299.04 8099.41 5498.90 15997.65 9799.76 22197.70 11899.79 9499.39 163
Vis-MVSNet (Re-imp)97.46 21597.16 22498.34 22199.55 7396.10 24398.94 7298.44 29498.32 12298.16 22898.62 22288.76 30899.73 23693.88 30099.79 9499.18 227
EI-MVSNet-Vis-set98.68 9598.70 7398.63 18599.09 18496.40 23797.23 23198.86 25799.20 5799.18 10198.97 14297.29 13199.85 11898.72 5699.78 9899.64 47
LPG-MVS_test98.71 8698.46 10999.47 5899.57 6298.97 6798.23 13199.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
LGP-MVS_train99.47 5899.57 6298.97 6799.48 7496.60 24599.10 10899.06 11198.71 2799.83 15095.58 25599.78 9899.62 51
CLD-MVS97.49 21297.16 22498.48 20899.07 18897.03 22194.71 34199.21 17694.46 30098.06 23997.16 32997.57 10699.48 32494.46 27899.78 9898.95 261
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
new-patchmatchnet98.35 14298.74 6597.18 29099.24 14392.23 33596.42 28299.48 7498.30 12399.69 1799.53 3997.44 12299.82 16098.84 4999.77 10299.49 114
Patchmatch-RL test97.26 23097.02 23197.99 24799.52 8095.53 25896.13 29599.71 1497.47 18699.27 8299.16 9784.30 34199.62 28397.89 10499.77 10298.81 282
UniMVSNet_NR-MVSNet98.86 6698.68 7699.40 6799.17 16698.74 8797.68 19199.40 10099.14 6399.06 11398.59 22796.71 17199.93 3198.57 6599.77 10299.53 99
DU-MVS98.82 6898.63 8299.39 6899.16 16898.74 8797.54 20799.25 16798.84 9799.06 11398.76 19496.76 16799.93 3198.57 6599.77 10299.50 110
DROMVSNet99.09 3999.05 4399.20 10399.28 13698.93 7299.24 4099.84 699.08 7798.12 23398.37 25498.72 2699.90 5699.05 3699.77 10298.77 290
ACMMP++_ref99.77 102
wuyk23d96.06 28597.62 19591.38 35898.65 27898.57 10298.85 7996.95 33796.86 23699.90 499.16 9799.18 1198.40 37189.23 35799.77 10277.18 376
ACMP95.32 1598.41 13598.09 15899.36 6999.51 8298.79 8597.68 19199.38 10595.76 27498.81 16798.82 18498.36 4699.82 16094.75 26999.77 10299.48 124
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+96.62 999.08 4199.00 4699.33 8099.71 3798.83 8098.60 9399.58 3199.11 6599.53 3599.18 9198.81 2299.67 26396.71 18699.77 10299.50 110
ACMH96.65 799.25 2999.24 2799.26 9499.72 3698.38 11599.07 6099.55 4998.30 12399.65 2399.45 5499.22 999.76 22198.44 7499.77 10299.64 47
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
c3_l97.36 22297.37 21197.31 28598.09 32293.25 31795.01 33599.16 19697.05 22798.77 17198.72 19992.88 28199.64 27896.93 16199.76 11299.05 242
pmmvs597.64 20297.49 20298.08 24099.14 17395.12 27296.70 26899.05 21993.77 31598.62 18798.83 18193.23 27299.75 22898.33 8299.76 11299.36 179
baseline98.96 5499.02 4498.76 17399.38 11897.26 20798.49 10899.50 6498.86 9599.19 9799.06 11198.23 5499.69 25198.71 5799.76 11299.33 191
COLMAP_ROBcopyleft96.50 1098.99 4798.85 5699.41 6599.58 5899.10 6198.74 8299.56 4599.09 7599.33 7199.19 8998.40 4499.72 24495.98 23399.76 11299.42 149
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SD-MVS98.40 13798.68 7697.54 27598.96 21197.99 15297.88 17099.36 11398.20 13599.63 2699.04 12098.76 2395.33 37896.56 19899.74 11699.31 197
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PM-MVS98.82 6898.72 6899.12 11499.64 5398.54 10697.98 16299.68 1997.62 17299.34 7099.18 9197.54 10999.77 21497.79 11099.74 11699.04 246
XVG-ACMP-BASELINE98.56 11398.34 12999.22 10299.54 7698.59 10097.71 18899.46 8297.25 21298.98 12998.99 13697.54 10999.84 13595.88 23699.74 11699.23 215
GeoE99.05 4398.99 4999.25 9799.44 10898.35 12098.73 8499.56 4598.42 11798.91 14498.81 18698.94 1899.91 5098.35 7999.73 11999.49 114
Anonymous2023120698.21 15798.21 14398.20 23199.51 8295.43 26398.13 14099.32 13296.16 26098.93 14298.82 18496.00 20099.83 15097.32 13399.73 11999.36 179
casdiffmvs98.95 5599.00 4698.81 16399.38 11897.33 20297.82 17799.57 3899.17 6299.35 6899.17 9598.35 4999.69 25198.46 7399.73 11999.41 152
jason97.45 21797.35 21397.76 25899.24 14393.93 30395.86 30798.42 29594.24 30698.50 20698.13 27294.82 24199.91 5097.22 13799.73 11999.43 146
jason: jason.
N_pmnet97.63 20497.17 22398.99 14199.27 13897.86 16995.98 29893.41 36495.25 28699.47 4598.90 15995.63 21799.85 11896.91 16299.73 11999.27 207
USDC97.41 22097.40 20897.44 28198.94 21493.67 31395.17 33099.53 5894.03 31298.97 13299.10 10895.29 22899.34 34095.84 24299.73 11999.30 200
Gipumacopyleft99.03 4499.16 3198.64 18299.94 298.51 10899.32 2299.75 1199.58 2398.60 19199.62 2398.22 5799.51 31997.70 11899.73 11997.89 331
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EGC-MVSNET85.24 34380.54 34699.34 7799.77 2599.20 3399.08 5799.29 15512.08 37920.84 38099.42 5797.55 10899.85 11897.08 14999.72 12698.96 260
lessismore_v098.97 14299.73 3097.53 19486.71 37899.37 6499.52 4189.93 30199.92 4098.99 4199.72 12699.44 142
CP-MVS98.70 8998.42 11799.52 4399.36 12499.12 5898.72 8599.36 11397.54 18198.30 22098.40 24997.86 8399.89 6696.53 20399.72 12699.56 79
SteuartSystems-ACMMP98.79 7298.54 9499.54 3199.73 3099.16 4398.23 13199.31 13897.92 15398.90 14598.90 15998.00 7499.88 7796.15 22799.72 12699.58 69
Skip Steuart: Steuart Systems R&D Blog.
LF4IMVS97.90 17897.69 18798.52 20399.17 16697.66 18797.19 23899.47 8096.31 25697.85 25198.20 26996.71 17199.52 31594.62 27399.72 12698.38 315
KD-MVS_self_test99.25 2999.18 2999.44 6199.63 5599.06 6598.69 8799.54 5499.31 4899.62 2899.53 3997.36 12799.86 10399.24 2799.71 13199.39 163
test_0728_THIRD98.17 13899.08 11199.02 12497.89 8199.88 7797.07 15099.71 13199.70 35
HPM-MVS_fast99.01 4598.82 5899.57 1899.71 3799.35 1299.00 6799.50 6497.33 20398.94 14198.86 17298.75 2499.82 16097.53 12499.71 13199.56 79
FMVSNet596.01 28695.20 30198.41 21597.53 34896.10 24398.74 8299.50 6497.22 22198.03 24399.04 12069.80 37699.88 7797.27 13599.71 13199.25 211
RPSCF98.62 10598.36 12699.42 6299.65 5099.42 598.55 9999.57 3897.72 16698.90 14599.26 7996.12 19599.52 31595.72 24699.71 13199.32 193
MP-MVS-pluss98.57 11298.23 14299.60 1399.69 4599.35 1297.16 24199.38 10594.87 29398.97 13298.99 13698.01 7399.88 7797.29 13499.70 13699.58 69
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
zzz-MVS98.79 7298.52 9699.61 999.67 4799.36 1097.33 22499.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
MTAPA98.88 6398.64 8199.61 999.67 4799.36 1098.43 11699.20 17898.83 9898.89 14898.90 15996.98 15299.92 4097.16 14099.70 13699.56 79
Regformer-398.61 10698.61 8798.63 18599.02 20196.53 23597.17 23998.84 26199.13 6499.10 10898.85 17597.24 13799.79 19698.41 7799.70 13699.57 74
Regformer-498.73 8498.68 7698.89 15399.02 20197.22 21097.17 23999.06 21599.21 5499.17 10298.85 17597.45 12199.86 10398.48 7299.70 13699.60 57
APDe-MVS98.99 4798.79 6199.60 1399.21 15099.15 4898.87 7699.48 7497.57 17799.35 6899.24 8397.83 8499.89 6697.88 10799.70 13699.75 24
tfpnnormal98.90 6198.90 5298.91 15099.67 4797.82 17599.00 6799.44 8899.45 3299.51 4099.24 8398.20 6099.86 10395.92 23599.69 14299.04 246
GBi-Net98.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
test198.65 9998.47 10799.17 10698.90 22498.24 12599.20 4499.44 8898.59 10898.95 13599.55 3594.14 25999.86 10397.77 11299.69 14299.41 152
FMVSNet397.50 21097.24 22098.29 22698.08 32395.83 25297.86 17498.91 24597.89 15698.95 13598.95 14987.06 31799.81 17497.77 11299.69 14299.23 215
ACMMPcopyleft98.75 8198.50 10099.52 4399.56 6999.16 4398.87 7699.37 10997.16 22398.82 16599.01 13397.71 9399.87 9496.29 21999.69 14299.54 91
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DPE-MVScopyleft98.59 11198.26 13899.57 1899.27 13899.15 4897.01 24699.39 10397.67 16899.44 5198.99 13697.53 11199.89 6695.40 25999.68 14799.66 42
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVG-OURS98.53 12298.34 12999.11 11699.50 8598.82 8295.97 29999.50 6497.30 20799.05 11898.98 14099.35 799.32 34395.72 24699.68 14799.18 227
EPNet96.14 28495.44 29398.25 22890.76 38295.50 26097.92 16694.65 35598.97 8792.98 36898.85 17589.12 30799.87 9495.99 23299.68 14799.39 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EG-PatchMatch MVS98.99 4799.01 4598.94 14699.50 8597.47 19698.04 15499.59 2998.15 14299.40 5799.36 6698.58 3599.76 22198.78 5199.68 14799.59 63
ACMMP++99.68 147
EPP-MVSNet98.30 14698.04 16499.07 12599.56 6997.83 17299.29 3298.07 31199.03 8198.59 19399.13 10492.16 28999.90 5696.87 17099.68 14799.49 114
our_test_397.39 22197.73 18696.34 31598.70 26389.78 35394.61 34798.97 23796.50 24899.04 12098.85 17595.98 20499.84 13597.26 13699.67 15399.41 152
ACMMP_NAP98.75 8198.48 10599.57 1899.58 5899.29 1897.82 17799.25 16796.94 23298.78 16899.12 10598.02 7299.84 13597.13 14699.67 15399.59 63
HPM-MVScopyleft98.79 7298.53 9599.59 1799.65 5099.29 1899.16 5099.43 9496.74 24098.61 18998.38 25398.62 3299.87 9496.47 20699.67 15399.59 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator98.27 298.81 7098.73 6699.05 13298.76 25097.81 17799.25 3999.30 14898.57 11298.55 20199.33 7197.95 8099.90 5697.16 14099.67 15399.44 142
PMVScopyleft91.26 2097.86 18497.94 17297.65 26499.71 3797.94 16498.52 10298.68 28298.99 8497.52 27599.35 6797.41 12398.18 37291.59 34099.67 15396.82 358
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DP-MVS98.93 5798.81 6099.28 8899.21 15098.45 11298.46 11399.33 13099.63 1599.48 4399.15 10197.23 13899.75 22897.17 13999.66 15899.63 50
MVS_111021_LR98.30 14698.12 15698.83 16099.16 16898.03 15096.09 29699.30 14897.58 17698.10 23698.24 26598.25 5299.34 34096.69 18799.65 15999.12 236
ACMM96.08 1298.91 5998.73 6699.48 5599.55 7399.14 5398.07 14899.37 10997.62 17299.04 12098.96 14598.84 2099.79 19697.43 12899.65 15999.49 114
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS98.68 9598.40 11999.54 3199.57 6299.21 2798.46 11399.29 15597.28 20998.11 23598.39 25198.00 7499.87 9496.86 17299.64 16199.55 87
SMA-MVScopyleft98.40 13798.03 16599.51 4799.16 16899.21 2798.05 15299.22 17594.16 30998.98 12999.10 10897.52 11399.79 19696.45 20899.64 16199.53 99
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
diffmvs98.22 15698.24 14098.17 23399.00 20495.44 26296.38 28499.58 3197.79 16298.53 20498.50 23996.76 16799.74 23297.95 10399.64 16199.34 185
DVP-MVScopyleft98.77 7898.52 9699.52 4399.50 8599.21 2798.02 15798.84 26197.97 14999.08 11199.02 12497.61 10399.88 7796.99 15699.63 16499.48 124
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1399.50 8599.23 2598.02 15799.32 13299.88 7796.99 15699.63 16499.68 38
VDD-MVS98.56 11398.39 12299.07 12599.13 17598.07 14698.59 9597.01 33599.59 2199.11 10599.27 7794.82 24199.79 19698.34 8099.63 16499.34 185
SED-MVS98.91 5998.72 6899.49 5299.49 9299.17 3998.10 14599.31 13898.03 14699.66 2099.02 12498.36 4699.88 7796.91 16299.62 16799.41 152
IU-MVS99.49 9299.15 4898.87 25192.97 32499.41 5496.76 17999.62 16799.66 42
TransMVSNet (Re)99.44 1399.47 1299.36 6999.80 2298.58 10199.27 3899.57 3899.39 3999.75 1299.62 2399.17 1299.83 15099.06 3599.62 16799.66 42
abl_698.99 4798.78 6299.61 999.45 10699.46 498.60 9399.50 6498.59 10899.24 9199.04 12098.54 3799.89 6696.45 20899.62 16799.50 110
mPP-MVS98.64 10198.34 12999.54 3199.54 7699.17 3998.63 9099.24 17297.47 18698.09 23798.68 20697.62 10299.89 6696.22 22299.62 16799.57 74
DeepPCF-MVS96.93 598.32 14498.01 16699.23 10198.39 30598.97 6795.03 33499.18 18796.88 23599.33 7198.78 19098.16 6499.28 34996.74 18199.62 16799.44 142
AllTest98.44 13298.20 14499.16 10999.50 8598.55 10398.25 13099.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
TestCases99.16 10999.50 8598.55 10399.58 3196.80 23798.88 15399.06 11197.65 9799.57 30094.45 27999.61 17399.37 173
MSC_two_6792asdad99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
No_MVS99.32 8298.43 30098.37 11698.86 25799.89 6697.14 14499.60 17599.71 30
test_241102_TWO99.30 14898.03 14699.26 8699.02 12497.51 11499.88 7796.91 16299.60 17599.66 42
MP-MVScopyleft98.46 13098.09 15899.54 3199.57 6299.22 2698.50 10799.19 18397.61 17497.58 26998.66 21197.40 12499.88 7794.72 27299.60 17599.54 91
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HFP-MVS98.71 8698.44 11399.51 4799.49 9299.16 4398.52 10299.31 13897.47 18698.58 19598.50 23997.97 7899.85 11896.57 19599.59 17999.53 99
#test#98.50 12698.16 15199.51 4799.49 9299.16 4398.03 15599.31 13896.30 25798.58 19598.50 23997.97 7899.85 11895.68 24999.59 17999.53 99
CVMVSNet96.25 28297.21 22293.38 35599.10 18180.56 38197.20 23598.19 30696.94 23299.00 12699.02 12489.50 30599.80 18396.36 21599.59 17999.78 15
ACMMPR98.70 8998.42 11799.54 3199.52 8099.14 5398.52 10299.31 13897.47 18698.56 19998.54 23197.75 9199.88 7796.57 19599.59 17999.58 69
PGM-MVS98.66 9898.37 12599.55 2699.53 7899.18 3898.23 13199.49 7297.01 23098.69 17898.88 16898.00 7499.89 6695.87 23999.59 17999.58 69
DELS-MVS98.27 15098.20 14498.48 20898.86 23396.70 23295.60 31899.20 17897.73 16498.45 20998.71 20097.50 11599.82 16098.21 8699.59 17998.93 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
region2R98.69 9198.40 11999.54 3199.53 7899.17 3998.52 10299.31 13897.46 19198.44 21098.51 23597.83 8499.88 7796.46 20799.58 18599.58 69
114514_t96.50 27395.77 28098.69 17999.48 10097.43 19997.84 17699.55 4981.42 37396.51 32298.58 22895.53 22099.67 26393.41 31399.58 18598.98 255
PHI-MVS98.29 14997.95 17099.34 7798.44 29999.16 4398.12 14299.38 10596.01 26698.06 23998.43 24797.80 8899.67 26395.69 24899.58 18599.20 220
TinyColmap97.89 18097.98 16897.60 26898.86 23394.35 29096.21 29299.44 8897.45 19399.06 11398.88 16897.99 7799.28 34994.38 28599.58 18599.18 227
Regformer-198.55 11798.44 11398.87 15598.85 23597.29 20496.91 25598.99 23598.97 8798.99 12798.64 21697.26 13599.81 17497.79 11099.57 18999.51 106
Regformer-298.60 10898.46 10999.02 13898.85 23597.71 18596.91 25599.09 21198.98 8699.01 12498.64 21697.37 12699.84 13597.75 11799.57 18999.52 103
MVSFormer98.26 15298.43 11597.77 25798.88 23093.89 30799.39 1699.56 4599.11 6598.16 22898.13 27293.81 26699.97 499.26 2399.57 18999.43 146
lupinMVS97.06 24696.86 24197.65 26498.88 23093.89 30795.48 32397.97 31493.53 31898.16 22897.58 30993.81 26699.91 5096.77 17899.57 18999.17 231
MVS_111021_HR98.25 15498.08 16198.75 17599.09 18497.46 19795.97 29999.27 16197.60 17597.99 24498.25 26498.15 6699.38 33796.87 17099.57 18999.42 149
OPM-MVS98.56 11398.32 13399.25 9799.41 11598.73 9097.13 24399.18 18797.10 22698.75 17498.92 15598.18 6199.65 27696.68 18899.56 19499.37 173
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PVSNet_Blended96.88 25696.68 25397.47 27998.92 22093.77 31194.71 34199.43 9490.98 34897.62 26597.36 32496.82 16199.67 26394.73 27099.56 19498.98 255
DeepC-MVS_fast96.85 698.30 14698.15 15398.75 17598.61 27997.23 20897.76 18499.09 21197.31 20698.75 17498.66 21197.56 10799.64 27896.10 23099.55 19699.39 163
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVScopyleft98.10 16497.67 18899.42 6299.11 17798.93 7297.76 18499.28 15894.97 29098.72 17798.77 19297.04 14699.85 11893.79 30399.54 19799.49 114
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DSMNet-mixed97.42 21997.60 19796.87 30499.15 17291.46 34198.54 10099.12 20692.87 32797.58 26999.63 2296.21 19399.90 5695.74 24599.54 19799.27 207
CPTT-MVS97.84 19097.36 21299.27 9199.31 13198.46 11198.29 12699.27 16194.90 29297.83 25298.37 25494.90 23799.84 13593.85 30299.54 19799.51 106
1112_ss97.29 22996.86 24198.58 19299.34 13096.32 23996.75 26599.58 3193.14 32396.89 30797.48 31692.11 29099.86 10396.91 16299.54 19799.57 74
XVS98.72 8598.45 11199.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27398.63 22097.50 11599.83 15096.79 17599.53 20199.56 79
X-MVStestdata94.32 31492.59 33299.53 3899.46 10399.21 2798.65 8899.34 12598.62 10697.54 27345.85 37797.50 11599.83 15096.79 17599.53 20199.56 79
Test_1112_low_res96.99 25496.55 26398.31 22499.35 12895.47 26195.84 31099.53 5891.51 34296.80 31298.48 24491.36 29499.83 15096.58 19399.53 20199.62 51
xxxxxxxxxxxxxcwj98.44 13298.24 14099.06 13099.11 17797.97 15796.53 27499.54 5498.24 12998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
SF-MVS98.53 12298.27 13799.32 8299.31 13198.75 8698.19 13599.41 9896.77 23998.83 16198.90 15997.80 8899.82 16095.68 24999.52 20499.38 170
Anonymous2024052998.93 5798.87 5399.12 11499.19 15798.22 13099.01 6598.99 23599.25 5399.54 3299.37 6397.04 14699.80 18397.89 10499.52 20499.35 183
GST-MVS98.61 10698.30 13499.52 4399.51 8299.20 3398.26 12999.25 16797.44 19498.67 18098.39 25197.68 9499.85 11896.00 23199.51 20799.52 103
tttt051795.64 29594.98 30597.64 26699.36 12493.81 30998.72 8590.47 37398.08 14598.67 18098.34 25873.88 37499.92 4097.77 11299.51 20799.20 220
HQP_MVS97.99 17597.67 18898.93 14799.19 15797.65 18897.77 18299.27 16198.20 13597.79 25597.98 28594.90 23799.70 24794.42 28199.51 20799.45 138
plane_prior599.27 16199.70 24794.42 28199.51 20799.45 138
ab-mvs98.41 13598.36 12698.59 19199.19 15797.23 20899.32 2298.81 26797.66 16998.62 18799.40 6296.82 16199.80 18395.88 23699.51 20798.75 293
OMC-MVS97.88 18297.49 20299.04 13498.89 22998.63 9596.94 25099.25 16795.02 28898.53 20498.51 23597.27 13299.47 32693.50 31199.51 20799.01 250
CMPMVSbinary75.91 2396.29 28095.44 29398.84 15996.25 37298.69 9397.02 24599.12 20688.90 35997.83 25298.86 17289.51 30498.90 36691.92 33499.51 20798.92 267
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ambc98.24 22998.82 24395.97 24898.62 9199.00 23499.27 8299.21 8696.99 15199.50 32096.55 20199.50 21499.26 210
ETH3D-3000-0.198.03 16897.62 19599.29 8599.11 17798.80 8497.47 21599.32 13295.54 27798.43 21398.62 22296.61 17599.77 21493.95 29799.49 21599.30 200
TSAR-MVS + MP.98.63 10398.49 10399.06 13099.64 5397.90 16698.51 10698.94 23896.96 23199.24 9198.89 16797.83 8499.81 17496.88 16999.49 21599.48 124
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
OPU-MVS98.82 16198.59 28398.30 12198.10 14598.52 23498.18 6198.75 36994.62 27399.48 21799.41 152
9.1497.78 18199.07 18897.53 20899.32 13295.53 27998.54 20398.70 20397.58 10599.76 22194.32 28699.46 218
TSAR-MVS + GP.98.18 16097.98 16898.77 17298.71 25997.88 16796.32 28798.66 28396.33 25499.23 9498.51 23597.48 12099.40 33397.16 14099.46 21899.02 249
DVP-MVS++98.90 6198.70 7399.51 4798.43 30099.15 4899.43 1299.32 13298.17 13899.26 8699.02 12498.18 6199.88 7797.07 15099.45 22099.49 114
PC_three_145293.27 32199.40 5798.54 23198.22 5797.00 37595.17 26199.45 22099.49 114
PCF-MVS92.86 1894.36 31393.00 33098.42 21498.70 26397.56 19293.16 36699.11 20879.59 37497.55 27297.43 31992.19 28899.73 23679.85 37599.45 22097.97 330
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet96.99 25496.76 24897.67 26298.72 25694.89 27695.95 30398.20 30492.62 33098.55 20198.54 23194.88 24099.52 31593.96 29699.44 22398.59 306
APD-MVS_3200maxsize98.84 6798.61 8799.53 3899.19 15799.27 2198.49 10899.33 13098.64 10299.03 12398.98 14097.89 8199.85 11896.54 20299.42 22499.46 134
MSLP-MVS++98.02 17098.14 15597.64 26698.58 28495.19 26997.48 21399.23 17497.47 18697.90 24798.62 22297.04 14698.81 36897.55 12199.41 22598.94 265
QAPM97.31 22696.81 24698.82 16198.80 24797.49 19599.06 6299.19 18390.22 35297.69 26199.16 9796.91 15599.90 5690.89 35199.41 22599.07 240
ETH3 D test640096.46 27695.59 28899.08 12298.88 23098.21 13196.53 27499.18 18788.87 36097.08 29497.79 29693.64 27199.77 21488.92 35899.40 22799.28 205
SR-MVS-dyc-post98.81 7098.55 9399.57 1899.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.49 11899.86 10396.56 19899.39 22899.45 138
RE-MVS-def98.58 9199.20 15499.38 698.48 11199.30 14898.64 10298.95 13598.96 14597.75 9196.56 19899.39 22899.45 138
MVS-HIRNet94.32 31495.62 28690.42 35998.46 29775.36 38296.29 28889.13 37695.25 28695.38 35099.75 792.88 28199.19 35594.07 29499.39 22896.72 360
CDPH-MVS97.26 23096.66 25699.07 12599.00 20498.15 13696.03 29799.01 23191.21 34697.79 25597.85 29496.89 15699.69 25192.75 32599.38 23199.39 163
test117298.76 7998.49 10399.57 1899.18 16499.37 998.39 11999.31 13898.43 11698.90 14598.88 16897.49 11899.86 10396.43 21099.37 23299.48 124
VPNet98.87 6498.83 5799.01 13999.70 4397.62 19198.43 11699.35 11999.47 3099.28 8099.05 11896.72 17099.82 16098.09 9399.36 23399.59 63
plane_prior97.65 18897.07 24496.72 24199.36 233
thisisatest053095.27 30294.45 31197.74 26099.19 15794.37 28997.86 17490.20 37497.17 22298.22 22497.65 30573.53 37599.90 5696.90 16799.35 23598.95 261
HPM-MVS++copyleft98.10 16497.64 19399.48 5599.09 18499.13 5697.52 20998.75 27697.46 19196.90 30697.83 29596.01 19999.84 13595.82 24399.35 23599.46 134
LS3D98.63 10398.38 12499.36 6997.25 35799.38 699.12 5599.32 13299.21 5498.44 21098.88 16897.31 12899.80 18396.58 19399.34 23798.92 267
CNVR-MVS98.17 16297.87 17799.07 12598.67 27298.24 12597.01 24698.93 24097.25 21297.62 26598.34 25897.27 13299.57 30096.42 21199.33 23899.39 163
sss97.21 23596.93 23598.06 24298.83 24095.22 26896.75 26598.48 29394.49 29897.27 28897.90 29192.77 28399.80 18396.57 19599.32 23999.16 234
3Dnovator+97.89 398.69 9198.51 9899.24 9998.81 24598.40 11399.02 6499.19 18398.99 8498.07 23899.28 7597.11 14499.84 13596.84 17399.32 23999.47 132
SR-MVS98.71 8698.43 11599.57 1899.18 16499.35 1298.36 12299.29 15598.29 12698.88 15398.85 17597.53 11199.87 9496.14 22899.31 24199.48 124
Anonymous20240521197.90 17897.50 20199.08 12298.90 22498.25 12498.53 10196.16 34798.87 9499.11 10598.86 17290.40 29999.78 20897.36 13199.31 24199.19 225
Patchmatch-test96.55 26996.34 26997.17 29198.35 30693.06 31998.40 11897.79 31797.33 20398.41 21498.67 20883.68 34599.69 25195.16 26299.31 24198.77 290
LCM-MVSNet-Re98.64 10198.48 10599.11 11698.85 23598.51 10898.49 10899.83 798.37 11899.69 1799.46 5098.21 5999.92 4094.13 29299.30 24498.91 270
EPNet_dtu94.93 30894.78 30995.38 33793.58 37987.68 36296.78 26295.69 35397.35 20289.14 37598.09 27988.15 31599.49 32194.95 26699.30 24498.98 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS96.21 1196.63 26795.95 27898.65 18198.93 21698.09 14096.93 25299.28 15883.58 37198.13 23297.78 29796.13 19499.40 33393.52 30999.29 24698.45 311
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PVSNet93.40 1795.67 29495.70 28395.57 33298.83 24088.57 35692.50 36897.72 31992.69 32996.49 32596.44 34393.72 26999.43 33193.61 30699.28 24798.71 296
EIA-MVS98.00 17297.74 18498.80 16598.72 25698.09 14098.05 15299.60 2897.39 19896.63 31695.55 35697.68 9499.80 18396.73 18399.27 24898.52 307
LFMVS97.20 23696.72 25098.64 18298.72 25696.95 22498.93 7394.14 36299.74 798.78 16899.01 13384.45 33899.73 23697.44 12799.27 24899.25 211
ITE_SJBPF98.87 15599.22 14898.48 11099.35 11997.50 18398.28 22298.60 22697.64 10099.35 33993.86 30199.27 24898.79 288
HQP3-MVS99.04 22299.26 251
HQP-MVS97.00 25396.49 26598.55 19998.67 27296.79 22896.29 28899.04 22296.05 26395.55 34496.84 33493.84 26499.54 30992.82 32299.26 25199.32 193
ETV-MVS98.03 16897.86 17898.56 19898.69 26798.07 14697.51 21199.50 6498.10 14397.50 27795.51 35798.41 4399.88 7796.27 22099.24 25397.71 343
MCST-MVS98.00 17297.63 19499.10 11899.24 14398.17 13596.89 25798.73 27995.66 27597.92 24597.70 30397.17 14199.66 27196.18 22699.23 25499.47 132
SCA96.41 27896.66 25695.67 32998.24 31388.35 35895.85 30996.88 34096.11 26197.67 26298.67 20893.10 27699.85 11894.16 28799.22 25598.81 282
MSDG97.71 19797.52 20098.28 22798.91 22396.82 22794.42 35199.37 10997.65 17098.37 21998.29 26397.40 12499.33 34294.09 29399.22 25598.68 302
MIMVSNet96.62 26896.25 27497.71 26199.04 19694.66 28399.16 5096.92 33997.23 21897.87 24999.10 10886.11 32699.65 27691.65 33899.21 25798.82 279
test_prior397.48 21497.00 23298.95 14498.69 26797.95 16295.74 31399.03 22496.48 24996.11 33197.63 30795.92 20899.59 29494.16 28799.20 25899.30 200
test_prior295.74 31396.48 24996.11 33197.63 30795.92 20894.16 28799.20 258
VDDNet98.21 15797.95 17099.01 13999.58 5897.74 18399.01 6597.29 33199.67 1198.97 13299.50 4390.45 29899.80 18397.88 10799.20 25899.48 124
OpenMVScopyleft96.65 797.09 24496.68 25398.32 22298.32 30897.16 21798.86 7899.37 10989.48 35696.29 32999.15 10196.56 17699.90 5692.90 31999.20 25897.89 331
ZD-MVS99.01 20398.84 7999.07 21494.10 31098.05 24198.12 27596.36 19099.86 10392.70 32799.19 262
MSP-MVS98.40 13798.00 16799.61 999.57 6299.25 2398.57 9799.35 11997.55 18099.31 7997.71 30194.61 24999.88 7796.14 22899.19 26299.70 35
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNLPA97.17 23996.71 25198.55 19998.56 28798.05 14996.33 28698.93 24096.91 23497.06 29697.39 32194.38 25599.45 32991.66 33799.18 26498.14 323
ETH3D cwj APD-0.1697.55 20897.00 23299.19 10598.51 29398.64 9496.85 25899.13 20494.19 30897.65 26398.40 24995.78 21399.81 17493.37 31499.16 26599.12 236
train_agg97.10 24296.45 26699.07 12598.71 25998.08 14495.96 30199.03 22491.64 33895.85 33797.53 31196.47 18199.76 22193.67 30599.16 26599.36 179
agg_prior292.50 33099.16 26599.37 173
test9_res93.28 31699.15 26899.38 170
MS-PatchMatch97.68 19997.75 18397.45 28098.23 31593.78 31097.29 22798.84 26196.10 26298.64 18498.65 21396.04 19799.36 33896.84 17399.14 26999.20 220
agg_prior197.06 24696.40 26799.03 13598.68 27097.99 15295.76 31199.01 23191.73 33795.59 34097.50 31496.49 18099.77 21493.71 30499.14 26999.34 185
AdaColmapbinary97.14 24196.71 25198.46 21098.34 30797.80 17896.95 24998.93 24095.58 27696.92 30197.66 30495.87 21099.53 31190.97 34899.14 26998.04 326
VNet98.42 13498.30 13498.79 16798.79 24997.29 20498.23 13198.66 28399.31 4898.85 15798.80 18794.80 24499.78 20898.13 8999.13 27299.31 197
test1298.93 14798.58 28497.83 17298.66 28396.53 32095.51 22299.69 25199.13 27299.27 207
DP-MVS Recon97.33 22596.92 23798.57 19499.09 18497.99 15296.79 26199.35 11993.18 32297.71 25998.07 28195.00 23699.31 34493.97 29599.13 27298.42 314
thisisatest051594.12 32093.16 32796.97 29998.60 28192.90 32393.77 36290.61 37294.10 31096.91 30395.87 35274.99 37399.80 18394.52 27699.12 27598.20 320
pmmvs395.03 30694.40 31296.93 30097.70 34292.53 32995.08 33397.71 32088.57 36197.71 25998.08 28079.39 36299.82 16096.19 22499.11 27698.43 313
test22298.92 22096.93 22595.54 31998.78 27285.72 36896.86 30998.11 27694.43 25299.10 27799.23 215
testtj97.79 19497.25 21899.42 6299.03 19998.85 7797.78 17999.18 18795.83 27298.12 23398.50 23995.50 22399.86 10392.23 33399.07 27899.54 91
xiu_mvs_v1_base_debu97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
xiu_mvs_v1_base_debi97.86 18498.17 14896.92 30198.98 20893.91 30496.45 27999.17 19397.85 15998.41 21497.14 33198.47 3999.92 4098.02 9799.05 27996.92 355
MG-MVS96.77 26196.61 25997.26 28898.31 30993.06 31995.93 30498.12 31096.45 25197.92 24598.73 19793.77 26899.39 33591.19 34799.04 28299.33 191
cl2295.79 29295.39 29696.98 29896.77 36592.79 32594.40 35298.53 29094.59 29797.89 24898.17 27182.82 35099.24 35196.37 21399.03 28398.92 267
miper_ehance_all_eth97.06 24697.03 23097.16 29397.83 33593.06 31994.66 34499.09 21195.99 26798.69 17898.45 24692.73 28499.61 28996.79 17599.03 28398.82 279
miper_enhance_ethall96.01 28695.74 28196.81 30896.41 37092.27 33493.69 36398.89 24891.14 34798.30 22097.35 32590.58 29799.58 29996.31 21799.03 28398.60 304
112196.73 26296.00 27698.91 15098.95 21397.76 18098.07 14898.73 27987.65 36496.54 31998.13 27294.52 25199.73 23692.38 33199.02 28699.24 214
API-MVS97.04 24996.91 23997.42 28297.88 33398.23 12998.18 13698.50 29297.57 17797.39 28596.75 33696.77 16599.15 35890.16 35499.02 28694.88 372
旧先验198.82 24397.45 19898.76 27398.34 25895.50 22399.01 28899.23 215
新几何198.91 15098.94 21497.76 18098.76 27387.58 36596.75 31398.10 27794.80 24499.78 20892.73 32699.00 28999.20 220
原ACMM198.35 22098.90 22496.25 24198.83 26692.48 33196.07 33498.10 27795.39 22799.71 24592.61 32998.99 29099.08 239
testgi98.32 14498.39 12298.13 23699.57 6295.54 25797.78 17999.49 7297.37 20099.19 9797.65 30598.96 1799.49 32196.50 20598.99 29099.34 185
MVP-Stereo98.08 16697.92 17398.57 19498.96 21196.79 22897.90 16999.18 18796.41 25298.46 20898.95 14995.93 20799.60 29096.51 20498.98 29299.31 197
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
alignmvs97.35 22396.88 24098.78 17098.54 28998.09 14097.71 18897.69 32199.20 5797.59 26895.90 35188.12 31699.55 30698.18 8898.96 29398.70 298
testdata98.09 23798.93 21695.40 26498.80 26990.08 35497.45 28198.37 25495.26 22999.70 24793.58 30898.95 29499.17 231
Effi-MVS+-dtu98.26 15297.90 17599.35 7498.02 32599.49 398.02 15799.16 19698.29 12697.64 26497.99 28496.44 18399.95 1796.66 18998.93 29598.60 304
MVS_Test98.18 16098.36 12697.67 26298.48 29594.73 28098.18 13699.02 22897.69 16798.04 24299.11 10697.22 13999.56 30398.57 6598.90 29698.71 296
CL-MVSNet_self_test97.44 21897.22 22198.08 24098.57 28695.78 25494.30 35498.79 27096.58 24798.60 19198.19 27094.74 24899.64 27896.41 21298.84 29798.82 279
Fast-Effi-MVS+97.67 20097.38 21098.57 19498.71 25997.43 19997.23 23199.45 8594.82 29496.13 33096.51 33998.52 3899.91 5096.19 22498.83 29898.37 317
NCCC97.86 18497.47 20699.05 13298.61 27998.07 14696.98 24898.90 24697.63 17197.04 29797.93 29095.99 20399.66 27195.31 26098.82 29999.43 146
PatchMatch-RL97.24 23396.78 24798.61 18999.03 19997.83 17296.36 28599.06 21593.49 32097.36 28797.78 29795.75 21499.49 32193.44 31298.77 30098.52 307
DPM-MVS96.32 27995.59 28898.51 20598.76 25097.21 21294.54 35098.26 30191.94 33696.37 32797.25 32693.06 27899.43 33191.42 34398.74 30198.89 271
YYNet197.60 20597.67 18897.39 28499.04 19693.04 32295.27 32798.38 29897.25 21298.92 14398.95 14995.48 22599.73 23696.99 15698.74 30199.41 152
MDA-MVSNet-bldmvs97.94 17697.91 17498.06 24299.44 10894.96 27596.63 27199.15 20298.35 11998.83 16199.11 10694.31 25699.85 11896.60 19298.72 30399.37 173
MDA-MVSNet_test_wron97.60 20597.66 19197.41 28399.04 19693.09 31895.27 32798.42 29597.26 21198.88 15398.95 14995.43 22699.73 23697.02 15398.72 30399.41 152
Fast-Effi-MVS+-dtu98.27 15098.09 15898.81 16398.43 30098.11 13997.61 19999.50 6498.64 10297.39 28597.52 31398.12 6799.95 1796.90 16798.71 30598.38 315
canonicalmvs98.34 14398.26 13898.58 19298.46 29797.82 17598.96 7199.46 8299.19 6197.46 28095.46 35998.59 3499.46 32898.08 9498.71 30598.46 309
xiu_mvs_v2_base97.16 24097.49 20296.17 32098.54 28992.46 33095.45 32498.84 26197.25 21297.48 27996.49 34098.31 5199.90 5696.34 21698.68 30796.15 366
PS-MVSNAJ97.08 24597.39 20996.16 32298.56 28792.46 33095.24 32998.85 26097.25 21297.49 27895.99 34998.07 6899.90 5696.37 21398.67 30896.12 367
PatchmatchNetpermissive95.58 29695.67 28595.30 33897.34 35587.32 36397.65 19596.65 34295.30 28597.07 29598.69 20484.77 33599.75 22894.97 26598.64 30998.83 278
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVEpermissive83.40 2292.50 33591.92 33894.25 34598.83 24091.64 33992.71 36783.52 38195.92 26986.46 37895.46 35995.20 23195.40 37780.51 37498.64 30995.73 370
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
OpenMVS_ROBcopyleft95.38 1495.84 29195.18 30297.81 25498.41 30497.15 21897.37 22198.62 28683.86 37098.65 18398.37 25494.29 25799.68 26088.41 35998.62 31196.60 361
cascas94.79 30994.33 31596.15 32396.02 37592.36 33392.34 37099.26 16685.34 36995.08 35494.96 36692.96 28098.53 37094.41 28498.59 31297.56 348
BH-RMVSNet96.83 25896.58 26297.58 27098.47 29694.05 29696.67 26997.36 32796.70 24397.87 24997.98 28595.14 23399.44 33090.47 35398.58 31399.25 211
GA-MVS95.86 29095.32 29897.49 27898.60 28194.15 29593.83 36197.93 31595.49 28096.68 31497.42 32083.21 34699.30 34696.22 22298.55 31499.01 250
F-COLMAP97.30 22796.68 25399.14 11299.19 15798.39 11497.27 23099.30 14892.93 32596.62 31798.00 28395.73 21599.68 26092.62 32898.46 31599.35 183
XVG-OURS-SEG-HR98.49 12798.28 13699.14 11299.49 9298.83 8096.54 27399.48 7497.32 20599.11 10598.61 22599.33 899.30 34696.23 22198.38 31699.28 205
test_yl96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
DCV-MVSNet96.69 26396.29 27197.90 24998.28 31095.24 26697.29 22797.36 32798.21 13298.17 22697.86 29286.27 32299.55 30694.87 26798.32 31798.89 271
thres600view794.45 31293.83 31896.29 31699.06 19291.53 34097.99 16194.24 36098.34 12097.44 28295.01 36379.84 35899.67 26384.33 36798.23 31997.66 344
MAR-MVS96.47 27595.70 28398.79 16797.92 33099.12 5898.28 12798.60 28792.16 33595.54 34796.17 34794.77 24799.52 31589.62 35698.23 31997.72 342
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+98.02 17097.82 18098.62 18798.53 29197.19 21497.33 22499.68 1997.30 20796.68 31497.46 31898.56 3699.80 18396.63 19198.20 32198.86 276
test-LLR93.90 32393.85 31794.04 34696.53 36784.62 37294.05 35892.39 36896.17 25894.12 36195.07 36182.30 35199.67 26395.87 23998.18 32297.82 334
test-mter92.33 33891.76 34194.04 34696.53 36784.62 37294.05 35892.39 36894.00 31394.12 36195.07 36165.63 38499.67 26395.87 23998.18 32297.82 334
mvs_anonymous97.83 19298.16 15196.87 30498.18 31791.89 33797.31 22698.90 24697.37 20098.83 16199.46 5096.28 19299.79 19698.90 4498.16 32498.95 261
WTY-MVS96.67 26596.27 27397.87 25198.81 24594.61 28596.77 26397.92 31694.94 29197.12 29197.74 30091.11 29599.82 16093.89 29998.15 32599.18 227
thres20093.72 32693.14 32895.46 33698.66 27791.29 34696.61 27294.63 35697.39 19896.83 31093.71 37379.88 35799.56 30382.40 37298.13 32695.54 371
TESTMET0.1,192.19 34091.77 34093.46 35396.48 36982.80 37794.05 35891.52 37194.45 30294.00 36494.88 36766.65 38199.56 30395.78 24498.11 32798.02 327
PMMVS96.51 27195.98 27798.09 23797.53 34895.84 25194.92 33798.84 26191.58 34096.05 33595.58 35595.68 21699.66 27195.59 25498.09 32898.76 292
thres100view90094.19 31793.67 32195.75 32899.06 19291.35 34498.03 15594.24 36098.33 12197.40 28494.98 36579.84 35899.62 28383.05 36998.08 32996.29 362
tfpn200view994.03 32193.44 32395.78 32798.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32996.29 362
thres40094.14 31993.44 32396.24 31898.93 21691.44 34297.60 20094.29 35897.94 15197.10 29294.31 37179.67 36099.62 28383.05 36998.08 32997.66 344
PLCcopyleft94.65 1696.51 27195.73 28298.85 15898.75 25297.91 16596.42 28299.06 21590.94 34995.59 34097.38 32294.41 25399.59 29490.93 34998.04 33299.05 242
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MDTV_nov1_ep1395.22 30097.06 36083.20 37697.74 18696.16 34794.37 30496.99 29998.83 18183.95 34399.53 31193.90 29897.95 333
mvs-test197.83 19297.48 20598.89 15398.02 32599.20 3397.20 23599.16 19698.29 12696.46 32697.17 32896.44 18399.92 4096.66 18997.90 33497.54 349
PAPM_NR96.82 26096.32 27098.30 22599.07 18896.69 23397.48 21398.76 27395.81 27396.61 31896.47 34294.12 26299.17 35690.82 35297.78 33599.06 241
EMVS93.83 32494.02 31693.23 35696.83 36484.96 37089.77 37396.32 34697.92 15397.43 28396.36 34686.17 32498.93 36587.68 36197.73 33695.81 369
E-PMN94.17 31894.37 31393.58 35296.86 36285.71 36990.11 37297.07 33498.17 13897.82 25497.19 32784.62 33798.94 36489.77 35597.68 33796.09 368
PatchT96.65 26696.35 26897.54 27597.40 35395.32 26597.98 16296.64 34399.33 4696.89 30799.42 5784.32 34099.81 17497.69 12097.49 33897.48 350
FPMVS93.44 32992.23 33497.08 29499.25 14297.86 16995.61 31797.16 33392.90 32693.76 36698.65 21375.94 37195.66 37679.30 37697.49 33897.73 341
AUN-MVS96.24 28395.45 29298.60 19098.70 26397.22 21097.38 22097.65 32295.95 26895.53 34897.96 28982.11 35499.79 19696.31 21797.44 34098.80 287
BH-untuned96.83 25896.75 24997.08 29498.74 25393.33 31696.71 26798.26 30196.72 24198.44 21097.37 32395.20 23199.47 32691.89 33597.43 34198.44 312
hse-mvs297.46 21597.07 22898.64 18298.73 25497.33 20297.45 21797.64 32499.11 6598.58 19597.98 28588.65 31299.79 19698.11 9097.39 34298.81 282
UnsupCasMVSNet_bld97.30 22796.92 23798.45 21199.28 13696.78 23196.20 29399.27 16195.42 28298.28 22298.30 26293.16 27499.71 24594.99 26497.37 34398.87 275
PAPR95.29 30194.47 31097.75 25997.50 35295.14 27194.89 33898.71 28191.39 34495.35 35195.48 35894.57 25099.14 35984.95 36697.37 34398.97 259
CR-MVSNet96.28 28195.95 27897.28 28797.71 34094.22 29198.11 14398.92 24392.31 33396.91 30399.37 6385.44 33299.81 17497.39 13097.36 34597.81 336
RPMNet97.02 25096.93 23597.30 28697.71 34094.22 29198.11 14399.30 14899.37 4196.91 30399.34 6986.72 31999.87 9497.53 12497.36 34597.81 336
HY-MVS95.94 1395.90 28995.35 29797.55 27497.95 32894.79 27798.81 8196.94 33892.28 33495.17 35298.57 22989.90 30299.75 22891.20 34697.33 34798.10 324
131495.74 29395.60 28796.17 32097.53 34892.75 32798.07 14898.31 30091.22 34594.25 35996.68 33795.53 22099.03 36091.64 33997.18 34896.74 359
gg-mvs-nofinetune92.37 33791.20 34295.85 32595.80 37692.38 33299.31 2681.84 38299.75 591.83 37199.74 868.29 37799.02 36187.15 36297.12 34996.16 365
ET-MVSNet_ETH3D94.30 31693.21 32697.58 27098.14 31994.47 28894.78 34093.24 36694.72 29589.56 37495.87 35278.57 36799.81 17496.91 16297.11 35098.46 309
ADS-MVSNet295.43 30094.98 30596.76 31098.14 31991.74 33897.92 16697.76 31890.23 35096.51 32298.91 15685.61 32999.85 11892.88 32096.90 35198.69 299
ADS-MVSNet95.24 30394.93 30796.18 31998.14 31990.10 35297.92 16697.32 33090.23 35096.51 32298.91 15685.61 32999.74 23292.88 32096.90 35198.69 299
MVS93.19 33192.09 33596.50 31396.91 36194.03 29898.07 14898.06 31268.01 37594.56 35896.48 34195.96 20699.30 34683.84 36896.89 35396.17 364
tpm293.09 33292.58 33394.62 34297.56 34686.53 36597.66 19395.79 35286.15 36794.07 36398.23 26775.95 37099.53 31190.91 35096.86 35497.81 336
baseline293.73 32592.83 33196.42 31497.70 34291.28 34796.84 26089.77 37593.96 31492.44 36995.93 35079.14 36499.77 21492.94 31896.76 35598.21 319
CostFormer93.97 32293.78 31994.51 34397.53 34885.83 36897.98 16295.96 35089.29 35894.99 35598.63 22078.63 36699.62 28394.54 27596.50 35698.09 325
EPMVS93.72 32693.27 32595.09 34096.04 37487.76 36198.13 14085.01 38094.69 29696.92 30198.64 21678.47 36999.31 34495.04 26396.46 35798.20 320
h-mvs3397.77 19597.33 21699.10 11899.21 15097.84 17198.35 12398.57 28899.11 6598.58 19599.02 12488.65 31299.96 1198.11 9096.34 35899.49 114
TR-MVS95.55 29795.12 30396.86 30797.54 34793.94 30296.49 27896.53 34494.36 30597.03 29896.61 33894.26 25899.16 35786.91 36396.31 35997.47 351
tpmvs95.02 30795.25 29994.33 34496.39 37185.87 36698.08 14796.83 34195.46 28195.51 34998.69 20485.91 32799.53 31194.16 28796.23 36097.58 347
tpmrst95.07 30595.46 29193.91 34897.11 35984.36 37497.62 19796.96 33694.98 28996.35 32898.80 18785.46 33199.59 29495.60 25396.23 36097.79 339
KD-MVS_2432*160092.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
miper_refine_blended92.87 33391.99 33695.51 33491.37 38089.27 35494.07 35698.14 30895.42 28297.25 28996.44 34367.86 37899.24 35191.28 34496.08 36298.02 327
BH-w/o95.13 30494.89 30895.86 32498.20 31691.31 34595.65 31697.37 32693.64 31696.52 32195.70 35493.04 27999.02 36188.10 36095.82 36497.24 353
UnsupCasMVSNet_eth97.89 18097.60 19798.75 17599.31 13197.17 21697.62 19799.35 11998.72 10198.76 17398.68 20692.57 28699.74 23297.76 11695.60 36599.34 185
PAPM91.88 34190.34 34496.51 31298.06 32492.56 32892.44 36997.17 33286.35 36690.38 37396.01 34886.61 32099.21 35470.65 37895.43 36697.75 340
tpm cat193.29 33093.13 32993.75 35097.39 35484.74 37197.39 21997.65 32283.39 37294.16 36098.41 24882.86 34999.39 33591.56 34195.35 36797.14 354
tpm94.67 31094.34 31495.66 33097.68 34488.42 35797.88 17094.90 35494.46 30096.03 33698.56 23078.66 36599.79 19695.88 23695.01 36898.78 289
JIA-IIPM95.52 29895.03 30497.00 29696.85 36394.03 29896.93 25295.82 35199.20 5794.63 35799.71 1283.09 34799.60 29094.42 28194.64 36997.36 352
IB-MVS91.63 1992.24 33990.90 34396.27 31797.22 35891.24 34894.36 35393.33 36592.37 33292.24 37094.58 37066.20 38399.89 6693.16 31794.63 37097.66 344
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND94.76 34194.54 37892.13 33699.31 2680.47 38388.73 37691.01 37667.59 38098.16 37382.30 37394.53 37193.98 373
test0.0.03 194.51 31193.69 32096.99 29796.05 37393.61 31594.97 33693.49 36396.17 25897.57 27194.88 36782.30 35199.01 36393.60 30794.17 37298.37 317
DeepMVS_CXcopyleft93.44 35498.24 31394.21 29394.34 35764.28 37691.34 37294.87 36989.45 30692.77 37977.54 37793.14 37393.35 374
tmp_tt78.77 34578.73 34878.90 36158.45 38474.76 38494.20 35578.26 38439.16 37786.71 37792.82 37580.50 35675.19 38086.16 36592.29 37486.74 375
dp93.47 32893.59 32293.13 35796.64 36681.62 38097.66 19396.42 34592.80 32896.11 33198.64 21678.55 36899.59 29493.31 31592.18 37598.16 322
baseline195.96 28895.44 29397.52 27798.51 29393.99 30198.39 11996.09 34998.21 13298.40 21897.76 29986.88 31899.63 28195.42 25889.27 37698.95 261
test_method79.78 34479.50 34780.62 36080.21 38345.76 38570.82 37498.41 29731.08 37880.89 37997.71 30184.85 33497.37 37491.51 34280.03 37798.75 293
PVSNet_089.98 2191.15 34290.30 34593.70 35197.72 33984.34 37590.24 37197.42 32590.20 35393.79 36593.09 37490.90 29698.89 36786.57 36472.76 37897.87 333
testmvs17.12 34720.53 3506.87 36312.05 3854.20 38793.62 3646.73 3864.62 38110.41 38124.33 3788.28 3863.56 3829.69 38015.07 37912.86 378
test12317.04 34820.11 3517.82 36210.25 3864.91 38694.80 3394.47 3874.93 38010.00 38224.28 3799.69 3853.64 38110.14 37912.43 38014.92 377
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.66 34632.88 3490.00 3640.00 3870.00 3880.00 37599.10 2100.00 3820.00 38397.58 30999.21 100.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas8.17 34910.90 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38298.07 680.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.12 35010.83 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38397.48 3160.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.73 3099.67 299.43 1299.54 5499.43 3599.26 86
test_one_060199.39 11799.20 3399.31 13898.49 11498.66 18299.02 12497.64 100
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.49 9299.17 3999.31 13897.98 14899.66 2098.90 15998.36 4699.48 324
save fliter99.11 17797.97 15796.53 27499.02 22898.24 129
test072699.50 8599.21 2798.17 13999.35 11997.97 14999.26 8699.06 11197.61 103
GSMVS98.81 282
test_part299.36 12499.10 6199.05 118
sam_mvs184.74 33698.81 282
sam_mvs84.29 342
MTGPAbinary99.20 178
test_post197.59 20220.48 38183.07 34899.66 27194.16 287
test_post21.25 38083.86 34499.70 247
patchmatchnet-post98.77 19284.37 33999.85 118
MTMP97.93 16591.91 370
gm-plane-assit94.83 37781.97 37988.07 36394.99 36499.60 29091.76 336
TEST998.71 25998.08 14495.96 30199.03 22491.40 34395.85 33797.53 31196.52 17899.76 221
test_898.67 27298.01 15195.91 30699.02 22891.64 33895.79 33997.50 31496.47 18199.76 221
agg_prior98.68 27097.99 15299.01 23195.59 34099.77 214
test_prior497.97 15795.86 307
test_prior98.95 14498.69 26797.95 16299.03 22499.59 29499.30 200
旧先验295.76 31188.56 36297.52 27599.66 27194.48 277
新几何295.93 304
无先验95.74 31398.74 27889.38 35799.73 23692.38 33199.22 219
原ACMM295.53 320
testdata299.79 19692.80 324
segment_acmp97.02 149
testdata195.44 32596.32 255
plane_prior799.19 15797.87 168
plane_prior698.99 20797.70 18694.90 237
plane_prior497.98 285
plane_prior397.78 17997.41 19697.79 255
plane_prior297.77 18298.20 135
plane_prior199.05 195
n20.00 388
nn0.00 388
door-mid99.57 38
test1198.87 251
door99.41 98
HQP5-MVS96.79 228
HQP-NCC98.67 27296.29 28896.05 26395.55 344
ACMP_Plane98.67 27296.29 28896.05 26395.55 344
BP-MVS92.82 322
HQP4-MVS95.56 34399.54 30999.32 193
HQP2-MVS93.84 264
NP-MVS98.84 23897.39 20196.84 334
MDTV_nov1_ep13_2view74.92 38397.69 19090.06 35597.75 25885.78 32893.52 30998.69 299
Test By Simon96.52 178