This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12096.10 487.21 57
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28165.65 26577.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20595.63 891.93 8
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29278.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11195.62 994.88 5
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29470.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20295.47 1091.35 13
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
Baseline_NR-MVSNet70.62 15973.19 12662.92 27076.97 18234.44 35368.84 21770.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 20995.27 1385.22 87
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24370.41 20081.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18695.25 1490.94 17
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31577.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 31877.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31776.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26669.26 21278.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19494.98 2091.05 15
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26669.47 20980.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19494.98 2091.93 8
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33577.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13483.29 4880.34 13257.43 15486.65 3191.79 2350.52 24386.01 3171.36 7094.65 3291.62 11
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
FC-MVSNet-test73.32 11874.78 10168.93 20879.21 14936.57 33771.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18294.56 3491.23 14
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17778.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 13983.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
IU-MVS86.12 5360.90 14380.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14683.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8586.20 4860.57 14983.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39473.86 5286.31 1978.84 1994.03 5384.64 104
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24179.43 8278.04 17470.09 4979.17 12488.02 12253.04 22983.60 8158.05 18193.76 5990.79 19
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 11993.61 6072.28 296
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
FIs72.56 13973.80 11468.84 21178.74 16037.74 33171.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 18893.36 6490.51 21
WR-MVS71.20 15272.48 14167.36 22784.98 7135.70 34564.43 28068.66 26065.05 8681.49 9986.43 15357.57 20576.48 20350.36 24293.32 6589.90 23
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19068.77 22283.43 7552.12 21676.79 15874.44 30669.54 8583.91 7555.88 19793.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13280.58 6682.12 9153.54 20583.93 7091.03 3749.49 24985.97 3373.26 5793.08 6791.59 12
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20782.60 9870.08 7792.80 7189.25 28
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 26974.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 17992.77 7289.30 27
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 19880.45 6877.32 18365.11 8576.47 16886.80 13549.47 25083.77 7753.89 21992.72 7488.81 41
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
tt080576.12 8378.43 6869.20 20081.32 12641.37 30076.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12492.40 7787.17 60
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14392.40 7778.92 236
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22674.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15092.34 7988.94 37
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Anonymous2024052163.55 24466.07 21955.99 31466.18 31644.04 27968.77 22268.80 25846.99 27072.57 22185.84 17039.87 30550.22 34853.40 22692.23 8173.71 283
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++91.96 83
v7n79.37 5680.41 5276.28 9078.67 16155.81 18179.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
VDDNet71.60 14973.13 12867.02 23286.29 4741.11 30269.97 20366.50 27068.72 5574.74 18791.70 2559.90 17875.81 20748.58 25891.72 8484.15 125
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28074.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21091.64 8689.08 32
wuyk23d61.97 26066.25 21649.12 34458.19 36460.77 14866.32 25652.97 34855.93 17090.62 586.91 13373.07 5735.98 38920.63 39391.63 8750.62 379
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29151.92 22083.13 7790.26 7039.21 31069.91 27270.73 7391.60 8984.56 111
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
Gipumacopyleft69.55 17372.83 13459.70 29563.63 33453.97 19380.08 7875.93 19664.24 9473.49 20988.93 10257.89 20262.46 31959.75 17091.55 9162.67 358
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18676.47 11675.49 20064.10 9587.73 1792.24 1750.45 24581.30 11867.41 9791.46 9286.04 73
test9_res72.12 6991.37 9377.40 254
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 9991.26 9583.50 138
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 10991.24 9687.61 52
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
KD-MVS_self_test66.38 21667.51 20262.97 26861.76 34134.39 35458.11 32575.30 20150.84 23677.12 14885.42 17356.84 21269.44 27551.07 23691.16 9885.08 92
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11591.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf175.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 30867.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 15991.13 10179.56 225
ambc70.10 18777.74 17250.21 21774.28 15277.93 17779.26 12388.29 11654.11 22579.77 14864.43 12291.10 10380.30 216
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18791.08 10473.00 287
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17378.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16491.03 10580.45 214
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
agg_prior270.70 7590.93 10878.55 240
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23562.19 15283.86 7668.02 9090.92 10983.65 136
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 19990.90 11085.81 76
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
VPNet65.58 22267.56 20159.65 29679.72 13930.17 37260.27 31162.14 30054.19 19471.24 24286.63 14658.80 18967.62 28944.17 29390.87 11381.18 192
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14391.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 13890.78 11483.49 139
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19871.12 24554.28 18977.89 13783.41 19749.04 25380.98 12763.62 13390.77 11678.58 239
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
pmmvs671.82 14773.66 11766.31 23975.94 20042.01 29666.99 24772.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23390.46 12087.22 56
test1276.51 8682.28 11460.94 14281.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
VDD-MVS70.81 15771.44 15868.91 20979.07 15546.51 26067.82 23470.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23590.28 12284.61 107
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13677.56 10363.57 29560.95 12256.62 35182.75 21251.53 23881.24 11954.36 21590.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet68.71 18570.37 16763.72 25876.13 19538.06 32964.10 28271.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 26990.15 12583.37 147
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16690.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
Anonymous2024052972.56 13973.79 11568.86 21076.89 18745.21 27168.80 22177.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 23890.00 12887.18 59
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14179.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26790.00 12873.37 284
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24689.95 13080.89 201
test111164.62 23265.19 22862.93 26979.01 15629.91 37365.45 26854.41 33954.09 19671.47 24188.48 11137.02 32374.29 22846.83 27689.94 13184.58 110
plane_prior65.18 10480.06 7961.88 11789.91 132
cl____68.26 19568.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.42 21748.74 25775.38 21160.92 15689.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21764.98 32643.67 28265.89 26074.67 20650.04 24676.86 15582.43 21648.74 25775.38 21160.94 15589.81 13385.81 76
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14789.79 13583.08 156
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14580.18 7674.88 20566.93 6269.11 26488.95 10157.84 20386.12 2976.63 3789.77 13685.28 86
LFMVS67.06 21067.89 19764.56 25078.02 16738.25 32670.81 19659.60 31165.18 8371.06 24486.56 14943.85 28075.22 21446.35 27889.63 13780.21 218
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25660.73 12474.39 19678.44 27157.72 20482.78 9560.16 16389.60 13879.11 233
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17580.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
MIMVSNet166.57 21469.23 17658.59 30381.26 12837.73 33264.06 28357.62 31657.02 15778.40 13290.75 4662.65 14458.10 33641.77 30689.58 14079.95 220
TransMVSNet (Re)69.62 17171.63 15363.57 26076.51 19035.93 34365.75 26471.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24589.48 14184.38 119
ACMMP++_ref89.47 142
test250661.23 26760.85 26862.38 27478.80 15827.88 37967.33 24337.42 39154.23 19167.55 28688.68 10717.87 39574.39 22646.33 27989.41 14384.86 97
ECVR-MVScopyleft64.82 22965.22 22763.60 25978.80 15831.14 36966.97 24856.47 33054.23 19169.94 25688.68 10737.23 32274.81 22145.28 28989.41 14384.86 97
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23466.74 11281.96 10861.74 14689.40 14585.69 81
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15373.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25689.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS84.12 6589.16 147
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16577.32 10784.12 6559.08 13471.58 23485.96 16858.09 19685.30 5367.38 10189.16 14783.73 135
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21571.39 23649.17 25371.70 23278.07 27837.62 32179.21 15661.81 14489.15 14980.82 203
v1075.69 8676.20 8774.16 11474.44 22248.69 23275.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21471.45 23554.28 18977.89 13778.26 27349.04 25379.23 15563.62 13389.13 15180.92 200
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 15974.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12189.09 15380.73 207
iter_conf0567.34 20765.62 22272.50 15469.82 27647.06 25672.19 16776.86 18745.32 28472.86 21782.85 21020.53 39083.73 7861.13 15389.02 15486.70 65
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15488.95 15587.56 53
ANet_high67.08 20969.94 16958.51 30457.55 36527.09 38058.43 32376.80 18963.56 10182.40 8891.93 2059.82 18064.98 31050.10 24488.86 15683.46 143
test_040278.17 6979.48 5974.24 11383.50 9159.15 16072.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11788.68 15781.20 191
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 16988.54 15879.56 225
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22772.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EGC-MVSNET64.77 23161.17 26475.60 9886.90 4274.47 3084.04 3568.62 2610.60 3961.13 39891.61 2865.32 12774.15 23064.01 12688.28 16078.17 245
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22271.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14088.14 16271.73 301
CL-MVSNet_self_test62.44 25863.40 24759.55 29772.34 25232.38 36256.39 33264.84 28451.21 23267.46 28781.01 23250.75 24263.51 31738.47 32788.12 16382.75 166
FMVSNet171.06 15372.48 14166.81 23377.65 17540.68 30671.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24388.05 16484.54 112
pm-mvs168.40 18969.85 17164.04 25673.10 24339.94 31264.61 27870.50 25055.52 17373.97 20589.33 8663.91 13768.38 28349.68 24788.02 16583.81 131
TinyColmap67.98 19669.28 17464.08 25467.98 29946.82 25770.04 20275.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28488.01 16672.83 289
v875.07 9675.64 9473.35 12773.42 23547.46 25175.20 13581.45 10360.05 12885.64 4589.26 8858.08 19881.80 11169.71 8187.97 16790.79 19
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20075.05 13663.27 29754.69 18378.87 12784.37 18526.63 37481.15 12063.95 12887.93 16889.51 25
new-patchmatchnet52.89 31555.76 30644.26 36359.94 3546.31 40137.36 38550.76 35541.10 31364.28 30679.82 25044.77 27448.43 35636.24 34487.61 16978.03 248
tfpnnormal66.48 21567.93 19662.16 27673.40 23636.65 33663.45 28864.99 28255.97 16872.82 21987.80 12457.06 21069.10 27948.31 26287.54 17080.72 208
Anonymous20240521166.02 21966.89 21363.43 26374.22 22438.14 32759.00 31766.13 27263.33 10769.76 26085.95 16951.88 23470.50 26844.23 29287.52 17181.64 188
c3_l69.82 16969.89 17069.61 19466.24 31443.48 28468.12 23179.61 14351.43 22677.72 14180.18 24554.61 22278.15 18363.62 13387.50 17287.20 58
v14419272.99 12973.06 13072.77 14674.58 22047.48 25071.90 17780.44 12851.57 22481.46 10084.11 18958.04 20082.12 10667.98 9287.47 17388.70 43
Patchmtry60.91 26963.01 25254.62 31966.10 31726.27 38367.47 23856.40 33154.05 19772.04 23086.66 14333.19 33660.17 32743.69 29487.45 17477.42 253
v192192072.96 13172.98 13272.89 14474.67 21647.58 24971.92 17680.69 12051.70 22381.69 9883.89 19256.58 21482.25 10468.34 8687.36 17588.82 40
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13177.45 10681.98 9462.47 11479.06 12580.19 24461.83 15478.79 16459.83 16887.35 17679.54 228
v119273.40 11673.42 12073.32 12974.65 21948.67 23372.21 16681.73 9852.76 21181.85 9284.56 18257.12 20882.24 10568.58 8487.33 17789.06 33
LCM-MVSNet-Re69.10 18071.57 15661.70 27970.37 27134.30 35561.45 30079.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30187.33 17777.85 252
canonicalmvs72.29 14473.38 12269.04 20374.23 22347.37 25273.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18587.28 17984.40 118
baseline73.10 12273.96 11270.51 17771.46 25846.39 26372.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12587.27 18087.11 61
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
alignmvs70.54 16071.00 16269.15 20273.50 23348.04 24269.85 20679.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18487.21 18284.72 102
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23287.19 18382.56 172
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v124073.06 12573.14 12772.84 14574.74 21547.27 25471.88 17881.11 11151.80 22182.28 8984.21 18756.22 21682.34 10268.82 8387.17 18488.91 38
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
v114473.29 11973.39 12173.01 13674.12 22748.11 23972.01 17181.08 11453.83 20281.77 9484.68 18058.07 19981.91 10968.10 8886.86 18688.99 36
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 25970.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 25563.21 25061.34 28472.19 25331.56 36667.31 24453.87 34053.60 20469.88 25883.37 20040.52 30170.98 26441.40 30886.78 18981.48 190
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18474.69 14662.04 30466.16 7184.76 6093.23 549.47 25080.97 12865.66 11486.67 19185.02 94
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
thisisatest053067.05 21165.16 22972.73 14973.10 24350.55 21271.26 18963.91 29350.22 24374.46 19580.75 23526.81 37380.25 14159.43 17286.50 19387.37 54
lessismore_v072.75 14779.60 14156.83 17657.37 31983.80 7289.01 9847.45 26478.74 16564.39 12386.49 19482.69 168
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20375.96 12973.54 21350.56 23969.90 25782.85 21024.76 38383.73 7865.40 11686.33 19585.22 87
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 21972.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 14986.15 19676.32 262
LF4IMVS67.50 20267.31 20668.08 22058.86 36061.93 12771.43 18375.90 19744.67 28972.42 22480.20 24357.16 20670.44 26958.99 17586.12 19771.88 299
FMVSNet267.48 20368.21 19365.29 24573.14 24038.94 31968.81 21971.21 24454.81 17876.73 15986.48 15148.63 25974.60 22347.98 26686.11 19882.35 175
EPNet_dtu58.93 28558.52 28460.16 29467.91 30047.70 24869.97 20358.02 31549.73 24847.28 38073.02 32038.14 31562.34 32036.57 34185.99 19970.43 313
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 17980.99 6176.84 18862.48 11371.24 24277.51 28361.51 15980.96 13152.04 22885.76 20171.22 306
v2v48272.55 14172.58 13972.43 15672.92 24846.72 25871.41 18479.13 15155.27 17481.17 10485.25 17655.41 21881.13 12167.25 10585.46 20289.43 26
GBi-Net68.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
test168.30 19168.79 18266.81 23373.14 24040.68 30671.96 17373.03 21654.81 17874.72 18890.36 6748.63 25975.20 21547.12 27185.37 20384.54 112
FMVSNet365.00 22865.16 22964.52 25169.47 28237.56 33466.63 25370.38 25151.55 22574.72 18883.27 20537.89 31974.44 22547.12 27185.37 20381.57 189
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30353.70 22185.33 20681.92 184
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33186.14 16252.37 23277.12 19550.67 23985.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VNet64.01 24365.15 23160.57 29073.28 23835.61 34657.60 32767.08 26754.61 18566.76 29283.37 20056.28 21566.87 29942.19 30285.20 20979.23 232
TAMVS65.31 22463.75 24369.97 19082.23 11559.76 15566.78 25263.37 29645.20 28569.79 25979.37 25847.42 26572.17 25034.48 35385.15 21077.99 250
test_yl65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
DCV-MVSNet65.11 22565.09 23365.18 24670.59 26640.86 30463.22 29372.79 21957.91 14668.88 27279.07 26542.85 28774.89 21945.50 28684.97 21179.81 221
USDC62.80 25463.10 25161.89 27765.19 32243.30 28767.42 23974.20 21035.80 34672.25 22784.48 18445.67 26871.95 25537.95 33184.97 21170.42 314
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17873.34 15884.67 5162.04 11572.19 22970.81 33265.90 12085.24 5658.64 17684.96 21481.95 183
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16470.53 19781.23 10947.79 26564.16 30780.21 24251.32 24083.12 9060.14 16484.95 21574.83 274
SDMVSNet66.36 21767.85 19961.88 27873.04 24646.14 26558.54 32171.36 23751.42 22768.93 27082.72 21365.62 12262.22 32254.41 21384.67 21677.28 255
sd_testset63.55 24465.38 22558.07 30673.04 24638.83 32157.41 32865.44 27951.42 22768.93 27082.72 21363.76 13858.11 33541.05 31084.67 21677.28 255
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26167.58 23678.81 15650.72 23778.13 13580.34 24150.15 24780.34 13960.18 16284.65 21887.74 50
miper_lstm_enhance61.97 26061.63 26062.98 26760.04 35045.74 26847.53 36570.95 24644.04 29173.06 21578.84 26839.72 30660.33 32655.82 19884.64 21982.88 161
cl2267.14 20866.51 21469.03 20463.20 33543.46 28566.88 25176.25 19249.22 25274.48 19477.88 27945.49 27077.40 19360.64 15884.59 22086.24 69
miper_ehance_all_eth68.36 19068.16 19568.98 20565.14 32543.34 28667.07 24678.92 15549.11 25476.21 17277.72 28053.48 22777.92 18661.16 15284.59 22085.68 82
miper_enhance_ethall65.86 22065.05 23668.28 21961.62 34342.62 29364.74 27577.97 17542.52 30473.42 21172.79 32149.66 24877.68 19058.12 18084.59 22084.54 112
CDS-MVSNet64.33 23962.66 25569.35 19880.44 13458.28 16965.26 27065.66 27644.36 29067.30 28975.54 29543.27 28371.77 25637.68 33284.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet73.00 12871.84 14976.48 8775.82 20161.28 13574.81 14080.37 13063.17 10862.43 32180.50 23961.10 16785.16 6064.00 12784.34 22483.01 159
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29180.63 23759.44 18281.74 11346.91 27484.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS65.38 22364.30 23768.61 21369.81 27749.36 22865.60 26778.96 15345.50 27959.98 33478.61 26951.82 23578.20 18044.30 29084.11 22678.27 243
cascas64.59 23362.77 25470.05 18875.27 20550.02 21961.79 29971.61 23042.46 30563.68 31468.89 34949.33 25280.35 13847.82 26884.05 22779.78 223
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 20987.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test20.0355.74 30057.51 29350.42 33559.89 35532.09 36450.63 35749.01 35950.11 24465.07 30183.23 20745.61 26948.11 35730.22 36883.82 22971.07 309
D2MVS62.58 25761.05 26667.20 22963.85 33147.92 24356.29 33369.58 25539.32 32770.07 25578.19 27534.93 33072.68 24153.44 22483.74 23081.00 198
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 19966.64 26956.87 15876.81 15781.76 22568.78 8871.76 25761.81 14483.74 23073.18 286
patch_mono-262.73 25664.08 24058.68 30270.36 27255.87 18060.84 30664.11 29241.23 31264.04 30878.22 27460.00 17648.80 35254.17 21783.71 23271.37 303
dcpmvs_271.02 15572.65 13866.16 24076.06 19950.49 21371.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29461.54 14883.71 23280.71 209
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23170.62 7568.69 28069.74 8083.60 23483.14 154
thres600view761.82 26261.38 26363.12 26571.81 25634.93 35064.64 27656.99 32454.78 18270.33 25179.74 25132.07 34572.42 24838.61 32583.46 23582.02 181
旧先验184.55 7960.36 15163.69 29487.05 13154.65 22183.34 23669.66 319
新几何169.99 18988.37 3471.34 5162.08 30243.85 29274.99 18486.11 16452.85 23070.57 26750.99 23783.23 23768.05 330
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13082.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D63.32 24760.69 27071.20 17170.15 27455.66 18265.02 27364.32 28943.28 30368.99 26772.05 32625.46 38078.19 18254.16 21882.80 23979.74 224
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23563.78 28682.13 9054.00 19868.96 26875.17 29958.95 18880.06 14658.55 17782.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CMPMVSbinary48.73 2061.54 26660.89 26763.52 26161.08 34551.55 20668.07 23268.00 26433.88 35465.87 29581.25 22937.91 31867.71 28749.32 25182.60 24171.31 305
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 27659.61 27762.20 27567.70 30244.33 27758.18 32460.96 30740.75 32065.80 29672.57 32241.23 29463.92 31446.87 27582.42 24278.33 241
v14869.38 17769.39 17369.36 19769.14 28544.56 27568.83 21872.70 22254.79 18178.59 12884.12 18854.69 22076.74 20259.40 17382.20 24386.79 63
thisisatest051560.48 27457.86 29068.34 21667.25 30546.42 26160.58 30962.14 30040.82 31863.58 31669.12 34526.28 37678.34 17648.83 25482.13 24480.26 217
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21270.56 26853.91 19478.29 9677.35 18248.85 25670.22 25283.52 19652.65 23176.93 19755.31 20381.99 24575.49 267
MAR-MVS67.72 20066.16 21772.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29768.58 35357.01 21177.79 18846.68 27781.92 24674.42 277
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous2023120654.13 30855.82 30549.04 34570.89 26135.96 34251.73 35450.87 35434.86 34862.49 32079.22 26042.52 29044.29 37327.95 37981.88 24766.88 336
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19177.55 10473.42 21557.65 15272.66 22084.91 17932.02 34781.49 11548.43 26081.85 24881.04 195
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20174.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13781.84 24983.18 153
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20476.45 11876.12 19359.07 13774.04 20486.18 15952.18 23379.43 15459.75 17081.76 25084.03 126
thres100view90061.17 26861.09 26561.39 28372.14 25435.01 34965.42 26956.99 32455.23 17570.71 24779.90 24932.07 34572.09 25135.61 34881.73 25177.08 260
tfpn200view960.35 27559.97 27461.51 28170.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25177.08 260
thres40060.77 27259.97 27463.15 26470.78 26335.35 34763.27 29157.47 31753.00 20968.31 27877.09 28532.45 34272.09 25135.61 34881.73 25182.02 181
MG-MVS70.47 16171.34 15967.85 22279.26 14740.42 31074.67 14775.15 20458.41 14268.74 27688.14 12156.08 21783.69 8059.90 16781.71 25479.43 230
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19681.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 17881.66 25582.87 162
FMVSNet555.08 30455.54 30753.71 32165.80 31833.50 35956.22 33452.50 35043.72 29761.06 32883.38 19925.46 38054.87 34130.11 36981.64 25672.75 290
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24675.31 13481.11 11149.62 25066.33 29379.27 25961.53 15882.96 9348.12 26481.50 25781.74 187
testdata64.13 25385.87 5963.34 11961.80 30547.83 26476.42 17086.60 14848.83 25662.31 32154.46 21281.26 25866.74 339
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 21978.47 16960.82 15781.07 25975.45 268
testing358.28 28958.38 28758.00 30777.45 17726.12 38460.78 30743.00 37756.02 16770.18 25375.76 29213.27 40267.24 29548.02 26580.89 26080.65 210
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18380.89 26089.17 31
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16571.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20680.84 26272.74 291
V4271.06 15370.83 16471.72 16467.25 30547.14 25565.94 25980.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11280.81 26389.23 29
test22287.30 3769.15 7367.85 23359.59 31241.06 31473.05 21685.72 17248.03 26280.65 26466.92 335
BH-untuned69.39 17669.46 17269.18 20177.96 16956.88 17468.47 22877.53 18056.77 16077.79 14079.63 25360.30 17580.20 14446.04 28180.65 26470.47 312
pmmvs-eth3d64.41 23863.27 24967.82 22475.81 20260.18 15269.49 20862.05 30338.81 33274.13 20082.23 21943.76 28168.65 28142.53 30080.63 26674.63 275
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16372.24 16571.56 23263.92 9678.59 12871.59 32866.22 11778.60 16667.58 9580.32 26789.00 35
diffmvspermissive67.42 20567.50 20367.20 22962.26 33945.21 27164.87 27477.04 18648.21 25971.74 23179.70 25258.40 19271.17 26364.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16872.02 17071.50 23363.53 10278.58 13071.39 33165.98 11878.53 16767.30 10480.18 26989.23 29
MDA-MVSNet-bldmvs62.34 25961.73 25764.16 25261.64 34249.90 22248.11 36357.24 32253.31 20780.95 10679.39 25749.00 25561.55 32445.92 28280.05 27081.03 196
IB-MVS49.67 1859.69 28056.96 29667.90 22168.19 29650.30 21661.42 30165.18 28147.57 26755.83 35567.15 36023.77 38679.60 15143.56 29679.97 27173.79 282
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-RL test59.95 27859.12 27962.44 27372.46 25154.61 18959.63 31447.51 36541.05 31574.58 19374.30 30831.06 35665.31 30751.61 23179.85 27267.39 332
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22271.31 18771.32 23858.22 14375.40 18170.44 33458.16 19475.85 20562.51 14179.81 27388.48 44
MVSTER63.29 24861.60 26168.36 21559.77 35646.21 26460.62 30871.32 23841.83 30775.40 18179.12 26330.25 36275.85 20556.30 19379.81 27383.03 158
ab-mvs64.11 24165.13 23261.05 28671.99 25538.03 33067.59 23568.79 25949.08 25565.32 29986.26 15758.02 20166.85 30139.33 31879.79 27578.27 243
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29079.18 26251.42 23978.38 17454.39 21479.72 27678.60 238
thres20057.55 29357.02 29559.17 29867.89 30134.93 35058.91 31957.25 32150.24 24264.01 30971.46 33032.49 34171.39 26131.31 36479.57 27771.19 308
testgi54.00 31256.86 29745.45 35758.20 36325.81 38549.05 35949.50 35845.43 28267.84 28181.17 23051.81 23743.20 37729.30 37379.41 27867.34 334
jason64.47 23662.84 25369.34 19976.91 18459.20 15667.15 24565.67 27535.29 34765.16 30076.74 28844.67 27570.68 26554.74 20879.28 27978.14 246
jason: jason.
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20178.35 16737.69 33674.29 19778.89 26761.10 16768.10 28565.87 11379.07 28085.53 83
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27474.71 30365.36 12675.75 20852.00 22979.00 28181.03 196
EU-MVSNet60.82 27060.80 26960.86 28968.37 29241.16 30172.27 16468.27 26326.96 37769.08 26575.71 29332.09 34467.44 29255.59 20178.90 28273.97 279
MVS_Test69.84 16870.71 16567.24 22867.49 30443.25 28869.87 20581.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11078.74 28383.96 127
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23466.06 25878.32 16850.62 23871.48 24075.54 29568.75 8979.59 15250.55 24178.73 28482.86 163
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15783.98 3675.72 19852.27 21463.53 31776.74 28843.19 28480.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24661.49 26268.97 20674.93 20959.19 15765.80 26364.52 28834.68 35263.53 31774.25 30943.19 28470.62 26653.88 22078.67 28577.10 259
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21574.72 14582.73 8362.62 11170.77 24676.83 28769.96 8180.97 12860.20 16178.43 28783.45 144
CANet_DTU64.04 24263.83 24264.66 24968.39 29142.97 29073.45 15774.50 20952.05 21854.78 35975.44 29843.99 27970.42 27053.49 22378.41 28880.59 212
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12867.34 24071.25 24147.98 26167.70 28374.19 31161.31 16072.62 24356.51 18978.26 28976.27 263
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19564.62 27773.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25777.96 29278.31 242
IterMVS-SCA-FT67.68 20166.07 21972.49 15573.34 23758.20 17063.80 28565.55 27848.10 26076.91 15282.64 21545.20 27178.84 16261.20 15177.89 29380.44 215
PVSNet_Blended62.90 25361.64 25966.69 23669.81 27749.36 22861.23 30378.96 15342.04 30659.98 33468.86 35051.82 23578.20 18044.30 29077.77 29472.52 292
MSDG67.47 20467.48 20467.46 22670.70 26554.69 18866.90 25078.17 17160.88 12370.41 24974.76 30161.22 16573.18 23747.38 27076.87 29574.49 276
E-PMN45.17 34645.36 34944.60 36150.07 38842.75 29138.66 38242.29 38246.39 27439.55 39151.15 38826.00 37745.37 36637.68 33276.41 29645.69 385
PM-MVS64.49 23563.61 24567.14 23176.68 18975.15 2768.49 22742.85 37851.17 23377.85 13980.51 23845.76 26766.31 30652.83 22776.35 29759.96 367
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18369.39 21081.29 10652.44 21364.53 30370.69 33360.33 17482.30 10354.27 21676.31 29880.75 206
BH-w/o64.81 23064.29 23866.36 23876.08 19854.71 18765.61 26675.23 20350.10 24571.05 24571.86 32754.33 22379.02 15938.20 32976.14 29965.36 345
MVS60.62 27359.97 27462.58 27268.13 29747.28 25368.59 22473.96 21132.19 36159.94 33668.86 35050.48 24477.64 19141.85 30575.74 30062.83 356
TR-MVS64.59 23363.54 24667.73 22575.75 20350.83 21163.39 28970.29 25249.33 25171.55 23874.55 30450.94 24178.46 17040.43 31475.69 30173.89 281
mvs_anonymous65.08 22765.49 22463.83 25763.79 33237.60 33366.52 25569.82 25443.44 29973.46 21086.08 16558.79 19071.75 25851.90 23075.63 30282.15 180
QAPM69.18 17969.26 17568.94 20771.61 25752.58 20280.37 7178.79 15949.63 24973.51 20885.14 17753.66 22679.12 15755.11 20475.54 30375.11 273
IterMVS63.12 25062.48 25665.02 24866.34 31352.86 19963.81 28462.25 29946.57 27371.51 23980.40 24044.60 27666.82 30251.38 23475.47 30475.38 270
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 25160.47 27170.61 17483.04 10254.10 19259.93 31372.24 22833.67 35769.00 26675.63 29438.69 31376.93 19736.60 34075.45 30580.81 205
EMVS44.61 35044.45 35545.10 36048.91 39143.00 28937.92 38341.10 38846.75 27238.00 39348.43 39126.42 37546.27 36137.11 33875.38 30646.03 384
MIMVSNet54.39 30756.12 30349.20 34272.57 25030.91 37059.98 31248.43 36241.66 30855.94 35483.86 19341.19 29650.42 34726.05 38275.38 30666.27 340
our_test_356.46 29656.51 29956.30 31267.70 30239.66 31455.36 34052.34 35140.57 32363.85 31169.91 34140.04 30458.22 33443.49 29775.29 30871.03 310
pmmvs460.78 27159.04 28066.00 24273.06 24557.67 17264.53 27960.22 30936.91 34165.96 29477.27 28439.66 30768.54 28238.87 32274.89 30971.80 300
fmvsm_s_conf0.1_n_a67.37 20666.36 21570.37 17970.86 26261.17 13774.00 15557.18 32340.77 31968.83 27580.88 23363.11 14167.61 29066.94 10674.72 31082.33 178
GA-MVS62.91 25261.66 25866.66 23767.09 30744.49 27661.18 30469.36 25751.33 23069.33 26374.47 30536.83 32474.94 21850.60 24074.72 31080.57 213
KD-MVS_2432*160052.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
miper_refine_blended52.05 32251.58 32553.44 32352.11 38531.20 36744.88 37264.83 28541.53 30964.37 30470.03 33915.61 39964.20 31136.25 34274.61 31264.93 349
fmvsm_s_conf0.5_n_a67.00 21265.95 22170.17 18469.72 28161.16 13873.34 15856.83 32640.96 31668.36 27780.08 24762.84 14267.57 29166.90 10874.50 31481.78 186
fmvsm_s_conf0.1_n66.60 21365.54 22369.77 19268.99 28759.15 16072.12 16856.74 32840.72 32168.25 28080.14 24661.18 16666.92 29767.34 10374.40 31583.23 152
pmmvs552.49 31952.58 32152.21 32954.99 37732.38 36255.45 33953.84 34132.15 36355.49 35774.81 30038.08 31657.37 33834.02 35574.40 31566.88 336
PatchT53.35 31356.47 30043.99 36464.19 33017.46 39559.15 31543.10 37652.11 21754.74 36086.95 13229.97 36549.98 34943.62 29574.40 31564.53 353
fmvsm_s_conf0.5_n66.34 21865.27 22669.57 19568.20 29559.14 16271.66 18056.48 32940.92 31767.78 28279.46 25561.23 16366.90 29867.39 9974.32 31882.66 169
SSC-MVS61.79 26366.08 21848.89 34676.91 18410.00 40053.56 34847.37 36668.20 5876.56 16389.21 9054.13 22457.59 33754.75 20774.07 31979.08 234
xiu_mvs_v2_base64.43 23763.96 24165.85 24477.72 17351.32 20863.63 28772.31 22745.06 28861.70 32269.66 34262.56 14573.93 23349.06 25373.91 32072.31 295
PS-MVSNAJ64.27 24063.73 24465.90 24377.82 17151.42 20763.33 29072.33 22645.09 28761.60 32368.04 35462.39 14973.95 23249.07 25273.87 32172.34 294
OpenMVS_ROBcopyleft54.93 1763.23 24963.28 24863.07 26669.81 27745.34 27068.52 22667.14 26643.74 29670.61 24879.22 26047.90 26372.66 24248.75 25573.84 32271.21 307
test_fmvs356.78 29555.99 30459.12 29953.96 38348.09 24058.76 32066.22 27127.54 37576.66 16068.69 35225.32 38251.31 34553.42 22573.38 32377.97 251
MDTV_nov1_ep1354.05 31465.54 32029.30 37559.00 31755.22 33335.96 34552.44 36675.98 29130.77 35959.62 32838.21 32873.33 324
PAPM61.79 26360.37 27266.05 24176.09 19641.87 29769.30 21176.79 19040.64 32253.80 36479.62 25444.38 27782.92 9429.64 37273.11 32573.36 285
WB-MVS60.04 27764.19 23947.59 34876.09 19610.22 39952.44 35346.74 36765.17 8474.07 20287.48 12553.48 22755.28 34049.36 25072.84 32677.28 255
Patchmatch-test47.93 33849.96 33941.84 36757.42 36624.26 38748.75 36041.49 38539.30 32856.79 35073.48 31530.48 36133.87 39029.29 37472.61 32767.39 332
gg-mvs-nofinetune55.75 29956.75 29852.72 32762.87 33628.04 37868.92 21641.36 38671.09 4150.80 37292.63 1220.74 38966.86 30029.97 37072.41 32863.25 355
Syy-MVS54.13 30855.45 30850.18 33668.77 28823.59 38855.02 34144.55 37243.80 29358.05 34564.07 36546.22 26658.83 33146.16 28072.36 32968.12 328
myMVS_eth3d50.36 33150.52 33649.88 33768.77 28822.69 39055.02 34144.55 37243.80 29358.05 34564.07 36514.16 40158.83 33133.90 35772.36 32968.12 328
test_vis3_rt51.94 32451.04 33054.65 31846.32 39450.13 21844.34 37478.17 17123.62 38768.95 26962.81 36921.41 38838.52 38741.49 30772.22 33175.30 272
test-LLR50.43 33050.69 33549.64 34060.76 34641.87 29753.18 34945.48 37043.41 30049.41 37760.47 37829.22 36844.73 37042.09 30372.14 33262.33 362
test-mter48.56 33748.20 34249.64 34060.76 34641.87 29753.18 34945.48 37031.91 36649.41 37760.47 37818.34 39344.73 37042.09 30372.14 33262.33 362
1112_ss59.48 28158.99 28160.96 28877.84 17042.39 29561.42 30168.45 26237.96 33559.93 33767.46 35645.11 27365.07 30940.89 31271.81 33475.41 269
N_pmnet52.06 32151.11 32954.92 31659.64 35771.03 5337.42 38461.62 30633.68 35657.12 34772.10 32337.94 31731.03 39129.13 37871.35 33562.70 357
XXY-MVS55.19 30357.40 29448.56 34764.45 32934.84 35251.54 35553.59 34238.99 33163.79 31379.43 25656.59 21345.57 36336.92 33971.29 33665.25 346
MDA-MVSNet_test_wron52.57 31853.49 31749.81 33954.24 37936.47 33840.48 37946.58 36838.13 33375.47 18073.32 31741.05 29943.85 37540.98 31171.20 33769.10 326
YYNet152.58 31753.50 31549.85 33854.15 38036.45 33940.53 37846.55 36938.09 33475.52 17973.31 31841.08 29843.88 37441.10 30971.14 33869.21 324
HY-MVS49.31 1957.96 29157.59 29259.10 30066.85 31036.17 34065.13 27265.39 28039.24 32954.69 36178.14 27644.28 27867.18 29633.75 35870.79 33973.95 280
Test_1112_low_res58.78 28658.69 28359.04 30179.41 14338.13 32857.62 32666.98 26834.74 35059.62 34077.56 28242.92 28663.65 31638.66 32470.73 34075.35 271
pmmvs346.71 34145.09 35151.55 33156.76 36948.25 23655.78 33839.53 39024.13 38650.35 37563.40 36715.90 39851.08 34629.29 37470.69 34155.33 376
test_fmvs254.80 30554.11 31356.88 31151.76 38749.95 22156.70 33165.80 27426.22 38069.42 26165.25 36331.82 34849.98 34949.63 24870.36 34270.71 311
SCA58.57 28858.04 28960.17 29370.17 27341.07 30365.19 27153.38 34643.34 30261.00 33073.48 31545.20 27169.38 27640.34 31570.31 34370.05 315
CR-MVSNet58.96 28458.49 28560.36 29266.37 31148.24 23770.93 19356.40 33132.87 36061.35 32586.66 14333.19 33663.22 31848.50 25970.17 34469.62 320
RPMNet65.77 22165.08 23567.84 22366.37 31148.24 23770.93 19386.27 1954.66 18461.35 32586.77 13833.29 33585.67 4755.93 19670.17 34469.62 320
test0.0.03 147.72 33948.31 34145.93 35555.53 37529.39 37446.40 36941.21 38743.41 30055.81 35667.65 35529.22 36843.77 37625.73 38569.87 34664.62 351
PVSNet43.83 2151.56 32551.17 32852.73 32668.34 29338.27 32548.22 36253.56 34436.41 34254.29 36264.94 36434.60 33154.20 34430.34 36769.87 34665.71 343
tpm256.12 29754.64 31160.55 29166.24 31436.01 34168.14 23056.77 32733.60 35858.25 34475.52 29730.25 36274.33 22733.27 35969.76 34871.32 304
CostFormer57.35 29456.14 30260.97 28763.76 33338.43 32367.50 23760.22 30937.14 34059.12 34176.34 29032.78 33971.99 25439.12 32169.27 34972.47 293
baseline157.82 29258.36 28856.19 31369.17 28430.76 37162.94 29555.21 33446.04 27563.83 31278.47 27041.20 29563.68 31539.44 31768.99 35074.13 278
PatchMatch-RL58.68 28757.72 29161.57 28076.21 19473.59 3961.83 29849.00 36047.30 26961.08 32768.97 34750.16 24659.01 33036.06 34768.84 35152.10 377
CVMVSNet59.21 28358.44 28661.51 28173.94 22947.76 24771.31 18764.56 28726.91 37960.34 33370.44 33436.24 32767.65 28853.57 22268.66 35269.12 325
dmvs_re49.91 33450.77 33447.34 34959.98 35138.86 32053.18 34953.58 34339.75 32655.06 35861.58 37436.42 32644.40 37229.15 37768.23 35358.75 370
TESTMET0.1,145.17 34644.93 35245.89 35656.02 37238.31 32453.18 34941.94 38427.85 37444.86 38656.47 38317.93 39441.50 38238.08 33068.06 35457.85 371
test_fmvs1_n52.70 31652.01 32354.76 31753.83 38450.36 21455.80 33765.90 27324.96 38365.39 29860.64 37727.69 37148.46 35445.88 28367.99 35565.46 344
PMMVS237.74 35840.87 35828.36 37642.41 3975.35 40224.61 38927.75 39632.15 36347.85 37970.27 33735.85 32829.51 39319.08 39467.85 35650.22 380
131459.83 27958.86 28262.74 27165.71 31944.78 27468.59 22472.63 22333.54 35961.05 32967.29 35943.62 28271.26 26249.49 24967.84 35772.19 297
CHOSEN 1792x268858.09 29056.30 30163.45 26279.95 13750.93 21054.07 34665.59 27728.56 37361.53 32474.33 30741.09 29766.52 30533.91 35667.69 35872.92 288
test_fmvs151.51 32650.86 33353.48 32249.72 39049.35 23054.11 34564.96 28324.64 38563.66 31559.61 38028.33 37048.45 35545.38 28867.30 35962.66 359
tpm50.60 32952.42 32245.14 35965.18 32326.29 38260.30 31043.50 37437.41 33857.01 34879.09 26430.20 36442.32 37832.77 36166.36 36066.81 338
FPMVS59.43 28260.07 27357.51 30977.62 17671.52 4962.33 29750.92 35357.40 15569.40 26280.00 24839.14 31161.92 32337.47 33566.36 36039.09 390
GG-mvs-BLEND52.24 32860.64 34829.21 37669.73 20742.41 37945.47 38352.33 38720.43 39168.16 28425.52 38665.42 36259.36 369
tpmvs55.84 29855.45 30857.01 31060.33 34933.20 36065.89 26059.29 31347.52 26856.04 35373.60 31431.05 35768.06 28640.64 31364.64 36369.77 318
WTY-MVS49.39 33550.31 33846.62 35361.22 34432.00 36546.61 36849.77 35733.87 35554.12 36369.55 34441.96 29145.40 36531.28 36564.42 36462.47 360
baseline255.57 30252.74 31964.05 25565.26 32144.11 27862.38 29654.43 33839.03 33051.21 37067.35 35833.66 33472.45 24737.14 33764.22 36575.60 266
test_vis1_n51.27 32750.41 33753.83 32056.99 36750.01 22056.75 33060.53 30825.68 38159.74 33957.86 38129.40 36747.41 35943.10 29863.66 36664.08 354
MS-PatchMatch55.59 30154.89 31057.68 30869.18 28349.05 23161.00 30562.93 29835.98 34458.36 34368.93 34836.71 32566.59 30437.62 33463.30 36757.39 373
test_cas_vis1_n_192050.90 32850.92 33250.83 33454.12 38247.80 24551.44 35654.61 33726.95 37863.95 31060.85 37537.86 32044.97 36845.53 28562.97 36859.72 368
test_vis1_n_192052.96 31453.50 31551.32 33259.15 35844.90 27356.13 33564.29 29030.56 37159.87 33860.68 37640.16 30347.47 35848.25 26362.46 36961.58 364
test_f43.79 35245.63 34738.24 37442.29 39838.58 32234.76 38747.68 36422.22 39067.34 28863.15 36831.82 34830.60 39239.19 32062.28 37045.53 386
sss47.59 34048.32 34045.40 35856.73 37033.96 35645.17 37148.51 36132.11 36552.37 36765.79 36140.39 30241.91 38131.85 36261.97 37160.35 366
test_vis1_rt46.70 34245.24 35051.06 33344.58 39551.04 20939.91 38067.56 26521.84 39151.94 36850.79 38933.83 33339.77 38435.25 35161.50 37262.38 361
PMMVS44.69 34843.95 35646.92 35150.05 38953.47 19748.08 36442.40 38022.36 38944.01 38953.05 38642.60 28945.49 36431.69 36361.36 37341.79 388
UnsupCasMVSNet_bld50.01 33351.03 33146.95 35058.61 36132.64 36148.31 36153.27 34734.27 35360.47 33271.53 32941.40 29347.07 36030.68 36660.78 37461.13 365
MVP-Stereo61.56 26559.22 27868.58 21479.28 14660.44 15069.20 21371.57 23143.58 29856.42 35278.37 27239.57 30876.46 20434.86 35260.16 37568.86 327
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DSMNet-mixed43.18 35444.66 35438.75 37254.75 37828.88 37757.06 32927.42 39713.47 39347.27 38177.67 28138.83 31239.29 38625.32 38760.12 37648.08 381
UnsupCasMVSNet_eth52.26 32053.29 31849.16 34355.08 37633.67 35850.03 35858.79 31437.67 33763.43 31974.75 30241.82 29245.83 36238.59 32659.42 37767.98 331
tpm cat154.02 31152.63 32058.19 30564.85 32839.86 31366.26 25757.28 32032.16 36256.90 34970.39 33632.75 34065.30 30834.29 35458.79 37869.41 322
CHOSEN 280x42041.62 35539.89 36046.80 35261.81 34051.59 20533.56 38835.74 39327.48 37637.64 39453.53 38423.24 38742.09 37927.39 38058.64 37946.72 383
tpmrst50.15 33251.38 32746.45 35456.05 37124.77 38664.40 28149.98 35636.14 34353.32 36569.59 34335.16 32948.69 35339.24 31958.51 38065.89 341
PatchmatchNetpermissive54.60 30654.27 31255.59 31565.17 32439.08 31666.92 24951.80 35239.89 32558.39 34273.12 31931.69 35058.33 33343.01 29958.38 38169.38 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet45.53 34447.29 34440.24 37062.29 33826.82 38156.02 33637.41 39229.74 37243.69 39081.27 22833.96 33255.48 33924.46 38856.79 38238.43 391
ADS-MVSNet248.76 33647.25 34553.29 32555.90 37340.54 30947.34 36654.99 33631.41 36850.48 37372.06 32431.23 35354.26 34325.93 38355.93 38365.07 347
ADS-MVSNet44.62 34945.58 34841.73 36855.90 37320.83 39347.34 36639.94 38931.41 36850.48 37372.06 32431.23 35339.31 38525.93 38355.93 38365.07 347
EPMVS45.74 34346.53 34643.39 36554.14 38122.33 39255.02 34135.00 39434.69 35151.09 37170.20 33825.92 37842.04 38037.19 33655.50 38565.78 342
JIA-IIPM54.03 31051.62 32461.25 28559.14 35955.21 18559.10 31647.72 36350.85 23550.31 37685.81 17120.10 39263.97 31336.16 34555.41 38664.55 352
dmvs_testset45.26 34547.51 34338.49 37359.96 35314.71 39758.50 32243.39 37541.30 31151.79 36956.48 38239.44 30949.91 35121.42 39155.35 38750.85 378
new_pmnet37.55 35939.80 36130.79 37556.83 36816.46 39639.35 38130.65 39525.59 38245.26 38461.60 37324.54 38428.02 39421.60 39052.80 38847.90 382
dp44.09 35144.88 35341.72 36958.53 36223.18 38954.70 34442.38 38134.80 34944.25 38865.61 36224.48 38544.80 36929.77 37149.42 38957.18 374
mvsany_test343.76 35341.01 35752.01 33048.09 39257.74 17142.47 37623.85 40023.30 38864.80 30262.17 37227.12 37240.59 38329.17 37648.11 39057.69 372
MVEpermissive27.91 2336.69 36035.64 36339.84 37143.37 39635.85 34419.49 39024.61 39824.68 38439.05 39262.63 37138.67 31427.10 39521.04 39247.25 39156.56 375
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test137.88 35735.74 36244.28 36247.28 39349.90 22236.54 38624.37 39919.56 39245.76 38253.46 38532.99 33837.97 38826.17 38135.52 39244.99 387
PVSNet_036.71 2241.12 35640.78 35942.14 36659.97 35240.13 31140.97 37742.24 38330.81 37044.86 38649.41 39040.70 30045.12 36723.15 38934.96 39341.16 389
tmp_tt11.98 36314.73 3663.72 3792.28 4014.62 40319.44 39114.50 4020.47 39721.55 3959.58 39525.78 3794.57 39811.61 39627.37 3941.96 394
test_method19.26 36119.12 36519.71 3779.09 4001.91 4047.79 39253.44 3451.42 39510.27 39735.80 39217.42 39625.11 39612.44 39524.38 39532.10 392
DeepMVS_CXcopyleft11.83 37815.51 39913.86 39811.25 4035.76 39420.85 39626.46 39317.06 3979.22 3979.69 39713.82 39612.42 393
test1234.43 3665.78 3690.39 3810.97 4020.28 40546.33 3700.45 4040.31 3980.62 3991.50 3980.61 4040.11 4000.56 3980.63 3970.77 396
testmvs4.06 3675.28 3700.41 3800.64 4030.16 40642.54 3750.31 4050.26 3990.50 4001.40 3990.77 4030.17 3990.56 3980.55 3980.90 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k17.71 36223.62 3640.00 3820.00 4040.00 4070.00 39370.17 2530.00 4000.00 40174.25 30968.16 950.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas5.20 3656.93 3680.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40062.39 1490.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re5.62 3647.50 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40167.46 3560.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS22.69 39036.10 346
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 13385.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 404
eth-test0.00 404
test_241102_ONE86.12 5361.06 13984.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test072686.16 5160.78 14683.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 315
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35170.05 315
sam_mvs31.21 355
MTGPAbinary80.63 123
test_post166.63 2532.08 39630.66 36059.33 32940.34 315
test_post1.99 39730.91 35854.76 342
patchmatchnet-post68.99 34631.32 35269.38 276
MTMP84.83 3119.26 401
gm-plane-assit62.51 33733.91 35737.25 33962.71 37072.74 24038.70 323
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15484.33 5983.39 8682.58 171
旧先验271.17 19045.11 28678.54 13161.28 32559.19 174
新几何271.33 186
无先验74.82 13970.94 24747.75 26676.85 20054.47 21172.09 298
原ACMM274.78 143
testdata267.30 29348.34 261
segment_acmp68.30 94
testdata168.34 22957.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
n20.00 406
nn0.00 406
door-mid55.02 335
test1182.71 84
door52.91 349
HQP5-MVS58.80 165
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
BP-MVS67.38 101
HQP4-MVS71.59 23385.31 5283.74 134
HQP2-MVS58.09 196
NP-MVS83.34 9563.07 12285.97 167
MDTV_nov1_ep13_2view18.41 39453.74 34731.57 36744.89 38529.90 36632.93 36071.48 302
Test By Simon62.56 145