This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11484.80 3287.77 986.18 196.26 196.06 190.32 184.49 6768.08 8397.05 196.93 1
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6474.51 4696.15 292.88 7
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6286.70 3089.99 7681.64 685.95 3274.35 4796.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+66.64 1081.20 3682.48 3977.35 7681.16 12962.39 11980.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9764.82 10996.10 487.21 57
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6687.45 2289.16 9381.02 880.52 13574.27 4895.73 780.98 188
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
NR-MVSNet73.62 11074.05 10972.33 15383.50 9143.71 26965.65 25477.32 17764.32 8975.59 17387.08 12462.45 14081.34 11454.90 19495.63 891.93 8
WR-MVS_H80.22 5082.17 4174.39 10689.46 1442.69 28078.24 9582.24 8978.21 989.57 992.10 1868.05 9585.59 4666.04 10195.62 994.88 5
TranMVSNet+NR-MVSNet76.13 8177.66 7471.56 15984.61 7842.57 28270.98 18278.29 16468.67 5583.04 7889.26 8872.99 5880.75 13155.58 19195.47 1091.35 13
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4166.91 9895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 164
Baseline_NR-MVSNet70.62 15473.19 12462.92 26076.97 18034.44 33968.84 20670.88 24060.25 12379.50 12090.53 5361.82 14769.11 27354.67 19795.27 1385.22 84
UniMVSNet (Re)75.00 9775.48 9573.56 12083.14 9647.92 23370.41 19081.04 11463.67 9679.54 11986.37 15062.83 13581.82 10857.10 17595.25 1490.94 17
PS-CasMVS80.41 4782.86 3673.07 12989.93 639.21 30377.15 10981.28 10679.74 590.87 492.73 1175.03 4384.93 6063.83 12095.19 1595.07 3
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4079.37 1595.17 1684.62 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS80.46 4682.91 3473.11 12789.83 839.02 30677.06 11182.61 8680.04 490.60 692.85 974.93 4485.21 5563.15 12895.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13289.66 1239.06 30576.76 11280.46 12678.91 790.32 791.70 2568.49 9084.89 6163.40 12595.12 1895.01 4
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 83
Skip Steuart: Steuart Systems R&D Blog.
UniMVSNet_NR-MVSNet74.90 10075.65 9272.64 14583.04 10245.79 25469.26 20178.81 15366.66 6481.74 9686.88 13063.26 13381.07 12256.21 18394.98 2091.05 15
DU-MVS74.91 9975.57 9472.93 13683.50 9145.79 25469.47 19880.14 13465.22 7981.74 9687.08 12461.82 14781.07 12256.21 18394.98 2091.93 8
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10485.38 5291.26 3376.33 3084.67 6683.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5679.45 1294.91 2488.15 47
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
No_MVS79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6578.41 2194.78 2782.74 159
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12272.08 3684.93 5690.79 4574.65 4684.42 7080.98 494.75 2880.82 192
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4377.43 3094.74 2984.31 118
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 126
DTE-MVSNet80.35 4882.89 3572.74 14289.84 737.34 32177.16 10881.81 9680.45 390.92 392.95 774.57 4786.12 2863.65 12194.68 3194.76 6
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 12883.29 4880.34 13157.43 15186.65 3191.79 2350.52 22886.01 2971.36 6594.65 3291.62 11
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6179.30 1694.63 3382.35 166
FC-MVSNet-test73.32 11674.78 10068.93 19779.21 14836.57 32371.82 17079.54 14457.63 15082.57 8790.38 6459.38 17278.99 15857.91 17194.56 3491.23 14
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12680.91 10790.53 5372.19 6088.56 173.67 5294.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4778.11 2394.46 3684.89 92
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 92
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13675.34 1579.80 11794.91 269.79 8280.25 13972.63 5894.46 3688.78 42
ACMH63.62 1477.50 7280.11 5469.68 18379.61 14056.28 16678.81 8783.62 7263.41 10287.14 2990.23 7276.11 3273.32 23167.58 8994.44 3979.44 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 106
SED-MVS81.78 3183.48 2476.67 8186.12 5361.06 13183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3875.29 4094.39 4183.08 148
IU-MVS86.12 5360.90 13580.38 12845.49 27281.31 10175.64 3994.39 4184.65 100
DVP-MVScopyleft81.15 3783.12 3275.24 10186.16 5160.78 13783.77 4080.58 12472.48 3285.83 4390.41 5978.57 1785.69 4375.86 3794.39 4179.24 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8386.20 4860.57 14083.77 4085.49 2985.90 3675.86 3794.39 4183.25 144
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9884.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8683.97 6991.02 3875.53 3985.93 3582.00 294.36 4583.35 142
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6877.73 2794.34 4785.93 74
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 137
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 121
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 125
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3379.58 1094.23 5182.82 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3875.29 4094.22 5283.25 144
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 101
X-MVStestdata76.81 7774.79 9982.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 37473.86 5286.31 1878.84 1994.03 5384.64 101
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4594.02 5582.62 161
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 120
9.1480.22 5380.68 13180.35 7187.69 1059.90 12583.00 7988.20 11474.57 4781.75 11073.75 5193.78 57
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10783.41 4688.46 565.28 7884.29 6589.18 9173.73 5583.22 8676.01 3693.77 5884.81 98
IS-MVSNet75.10 9475.42 9674.15 11079.23 14748.05 23179.43 8078.04 16870.09 4879.17 12388.02 11953.04 21483.60 7958.05 17093.76 5990.79 19
PMVScopyleft70.70 681.70 3283.15 3177.36 7590.35 582.82 282.15 5479.22 14774.08 2087.16 2891.97 1984.80 276.97 19464.98 10893.61 6072.28 281
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3377.77 2693.58 6183.09 147
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8284.00 6965.64 7085.54 4989.28 8776.32 3183.47 8274.03 4993.57 6284.35 117
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6585.64 4589.57 8369.12 8680.55 13472.51 6093.37 6383.48 136
FIs72.56 13573.80 11368.84 20078.74 15937.74 31771.02 18179.83 13756.12 16380.88 10989.45 8558.18 18178.28 17656.63 17793.36 6490.51 21
WR-MVS71.20 14772.48 13767.36 21684.98 7135.70 33164.43 26968.66 25265.05 8281.49 9986.43 14957.57 19276.48 20150.36 22993.32 6589.90 23
CLD-MVS72.88 12972.36 13974.43 10577.03 17754.30 17968.77 21183.43 7552.12 21276.79 15774.44 29169.54 8483.91 7355.88 18693.25 6685.09 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12680.58 6582.12 9153.54 20183.93 7091.03 3749.49 23485.97 3173.26 5493.08 6791.59 12
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10688.52 10772.00 6382.39 9874.80 4293.04 6881.14 182
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 5992.95 6981.14 182
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 6981.09 11258.91 13782.73 8689.11 9475.77 3586.63 1172.73 5792.93 70
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10880.24 7382.06 9261.89 11288.77 1293.32 457.15 19482.60 9670.08 7292.80 7189.25 28
Anonymous2023121175.54 8877.19 7870.59 16877.67 17345.70 25774.73 14180.19 13268.80 5282.95 8192.91 866.26 11276.76 19958.41 16892.77 7289.30 27
test_prior275.57 13058.92 13676.53 16486.78 13367.83 9869.81 7392.76 73
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 10976.07 12583.45 7454.20 18977.68 14287.18 12269.98 7985.37 4968.01 8592.72 7485.08 89
EPP-MVSNet73.86 10873.38 12075.31 9978.19 16353.35 18780.45 6777.32 17765.11 8176.47 16586.80 13149.47 23583.77 7553.89 20692.72 7488.81 41
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10881.77 9486.65 14171.46 6683.53 8167.95 8792.44 7689.60 24
tt080576.12 8278.43 6869.20 18981.32 12641.37 28876.72 11377.64 17363.78 9582.06 9087.88 12079.78 1179.05 15664.33 11392.40 7787.17 60
DP-MVS78.44 6679.29 6075.90 9281.86 12065.33 9779.05 8584.63 5474.83 1880.41 11286.27 15271.68 6483.45 8362.45 13292.40 7778.92 223
nrg03074.87 10275.99 9071.52 16074.90 20749.88 21574.10 14982.58 8754.55 18383.50 7589.21 9071.51 6575.74 20761.24 13992.34 7988.94 37
SD-MVS80.28 4981.55 4776.47 8683.57 9067.83 8083.39 4785.35 3564.42 8886.14 3987.07 12674.02 5180.97 12677.70 2892.32 8080.62 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Anonymous2024052163.55 23366.07 21055.99 30166.18 30044.04 26768.77 21168.80 25046.99 26472.57 21485.84 16639.87 29050.22 33153.40 21392.23 8173.71 268
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11281.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMMP++91.96 83
v7n79.37 5680.41 5276.28 8878.67 16055.81 17079.22 8482.51 8870.72 4387.54 2192.44 1468.00 9781.34 11472.84 5691.72 8491.69 10
VDDNet71.60 14473.13 12667.02 22186.29 4741.11 29069.97 19266.50 26268.72 5474.74 18391.70 2559.90 16675.81 20548.58 24491.72 8484.15 122
UniMVSNet_ETH3D76.74 7879.02 6169.92 18289.27 1943.81 26874.47 14571.70 22272.33 3585.50 5093.65 377.98 2176.88 19754.60 19891.64 8689.08 32
wuyk23d61.97 24966.25 20849.12 32858.19 34660.77 13966.32 24552.97 33455.93 16690.62 586.91 12973.07 5735.98 36920.63 37291.63 8750.62 359
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9881.50 10063.92 9277.51 14386.56 14568.43 9284.82 6373.83 5091.61 8882.26 169
bld_raw_dy_0_6472.85 13072.76 13373.09 12885.08 7064.80 10378.72 8864.22 28251.92 21683.13 7790.26 7039.21 29469.91 26770.73 6891.60 8984.56 108
train_agg76.38 8076.55 8375.86 9385.47 6369.32 7076.42 11778.69 15654.00 19476.97 14886.74 13566.60 10981.10 12072.50 6191.56 9077.15 242
Gipumacopyleft69.55 16772.83 13259.70 28463.63 31853.97 18280.08 7675.93 19064.24 9073.49 20288.93 10057.89 19062.46 30859.75 15991.55 9162.67 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8376.34 8574.06 11181.69 12254.84 17576.47 11475.49 19464.10 9187.73 1792.24 1750.45 23081.30 11667.41 9191.46 9286.04 73
test9_res72.12 6491.37 9377.40 241
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11090.18 7459.80 16987.58 473.06 5591.34 9489.01 34
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 11984.05 6756.66 15980.27 11485.31 17168.56 8987.03 967.39 9391.26 9583.50 133
LS3D80.99 4180.85 4981.41 2578.37 16171.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8585.26 5266.15 9991.24 9687.61 52
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13364.71 8778.11 13588.39 11065.46 12083.14 8777.64 2991.20 9778.94 222
KD-MVS_self_test66.38 20767.51 19562.97 25861.76 32534.39 34058.11 31275.30 19550.84 23077.12 14785.42 16956.84 19969.44 27051.07 22391.16 9885.08 89
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19252.27 21087.37 2692.25 1668.04 9680.56 13272.28 6291.15 9990.32 22
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7783.75 7056.73 15874.88 18285.32 17065.54 11887.79 265.61 10491.14 10083.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testf175.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
APD_test275.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
ambc70.10 17877.74 17150.21 20674.28 14877.93 17179.26 12288.29 11354.11 21179.77 14664.43 11191.10 10380.30 204
原ACMM173.90 11385.90 5765.15 10181.67 9850.97 22874.25 19286.16 15761.60 14983.54 8056.75 17691.08 10473.00 272
114514_t73.40 11473.33 12373.64 11884.15 8657.11 16278.20 9680.02 13543.76 28472.55 21586.07 16264.00 13183.35 8560.14 15391.03 10580.45 202
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 9982.74 5185.49 2965.45 7378.23 13289.11 9460.83 15986.15 2671.09 6690.94 10684.82 96
plane_prior585.49 2986.15 2671.09 6690.94 10684.82 96
agg_prior270.70 7090.93 10878.55 227
PHI-MVS74.92 9874.36 10576.61 8276.40 18862.32 12080.38 6983.15 7754.16 19173.23 20780.75 22562.19 14483.86 7468.02 8490.92 10983.65 132
AllTest77.66 7077.43 7578.35 6579.19 14970.81 5578.60 9088.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
TestCases78.35 6579.19 14970.81 5588.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 7980.99 11565.77 6975.55 17486.25 15467.42 9985.42 4870.10 7190.88 11281.81 175
VPNet65.58 21167.56 19459.65 28579.72 13930.17 35860.27 30062.14 29254.19 19071.24 23486.63 14258.80 17767.62 28244.17 27690.87 11381.18 181
DVP-MVS++81.24 3582.74 3776.76 8083.14 9660.90 13591.64 185.49 2974.03 2184.93 5690.38 6466.82 10585.90 3677.43 3090.78 11483.49 134
PC_three_145246.98 26581.83 9386.28 15166.55 11184.47 6963.31 12790.78 11483.49 134
h-mvs3373.08 12071.61 14977.48 7383.89 8972.89 4470.47 18871.12 23754.28 18577.89 13683.41 19149.04 23880.98 12563.62 12290.77 11678.58 226
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12184.95 4366.89 6082.75 8588.99 9866.82 10578.37 17374.80 4290.76 11782.40 165
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9179.59 14253.48 20286.29 3692.43 1562.39 14180.25 13967.90 8890.61 11887.77 49
anonymousdsp78.60 6177.80 7281.00 3178.01 16774.34 3380.09 7576.12 18750.51 23489.19 1090.88 4271.45 6777.78 18773.38 5390.60 11990.90 18
pmmvs671.82 14273.66 11666.31 22875.94 19642.01 28466.99 23672.53 21763.45 10076.43 16692.78 1072.95 5969.69 26951.41 22090.46 12087.22 56
test1276.51 8482.28 11460.94 13481.64 9973.60 20064.88 12585.19 5790.42 12183.38 140
VDD-MVS70.81 15271.44 15368.91 19879.07 15446.51 24967.82 22370.83 24161.23 11574.07 19688.69 10359.86 16775.62 20851.11 22290.28 12284.61 104
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18551.98 21587.40 2391.86 2176.09 3378.53 16568.58 7890.20 12386.69 66
EPNet69.10 17467.32 19874.46 10368.33 27961.27 13077.56 10163.57 28660.95 11856.62 33282.75 20551.53 22381.24 11754.36 20290.20 12380.88 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
VPA-MVSNet68.71 17970.37 16263.72 24776.13 19238.06 31564.10 27171.48 22756.60 16174.10 19588.31 11264.78 12769.72 26847.69 25490.15 12583.37 141
TAPA-MVS65.27 1275.16 9374.29 10677.77 7174.86 20868.08 7777.89 9984.04 6855.15 17276.19 17083.39 19266.91 10380.11 14360.04 15590.14 12685.13 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18751.33 22487.19 2791.51 2973.79 5478.44 16968.27 8190.13 12786.49 68
Anonymous2024052972.56 13573.79 11468.86 19976.89 18445.21 25968.80 21077.25 17967.16 5976.89 15290.44 5665.95 11574.19 22750.75 22590.00 12887.18 59
AdaColmapbinary74.22 10574.56 10173.20 12581.95 11860.97 13379.43 8080.90 11665.57 7172.54 21681.76 21670.98 7385.26 5247.88 25290.00 12873.37 269
DP-MVS Recon73.57 11172.69 13476.23 8982.85 10663.39 11274.32 14682.96 8057.75 14570.35 24281.98 21264.34 13084.41 7149.69 23389.95 13080.89 190
test111164.62 22165.19 21562.93 25979.01 15529.91 35965.45 25754.41 32654.09 19271.47 23388.48 10837.02 30674.29 22646.83 26189.94 13184.58 107
plane_prior65.18 9980.06 7761.88 11389.91 132
cl____68.26 18968.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.42 20848.74 24275.38 20960.92 14589.81 13385.80 80
DIV-MVS_self_test68.27 18868.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.43 20748.74 24275.38 20960.94 14489.81 13385.81 76
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 15966.82 10586.01 2961.72 13689.79 13583.08 148
LFMVS67.06 20367.89 19164.56 23978.02 16638.25 31270.81 18659.60 30365.18 8071.06 23686.56 14543.85 26575.22 21246.35 26389.63 13680.21 206
TSAR-MVS + GP.73.08 12071.60 15077.54 7278.99 15670.73 5774.96 13469.38 24860.73 12074.39 19178.44 25757.72 19182.78 9360.16 15289.60 13779.11 221
DROMVSNet77.08 7677.39 7676.14 9076.86 18556.87 16480.32 7287.52 1163.45 10074.66 18784.52 17869.87 8184.94 5969.76 7489.59 13886.60 67
MIMVSNet166.57 20569.23 17158.59 29281.26 12837.73 31864.06 27257.62 30857.02 15478.40 13190.75 4662.65 13658.10 32141.77 28989.58 13979.95 208
TransMVSNet (Re)69.62 16571.63 14863.57 24976.51 18735.93 32965.75 25371.29 23261.05 11775.02 17989.90 7965.88 11770.41 26649.79 23289.48 14084.38 116
ACMMP++_ref89.47 141
test250661.23 25560.85 25562.38 26478.80 15727.88 36567.33 23237.42 37154.23 18767.55 27088.68 10417.87 37774.39 22446.33 26489.41 14284.86 94
ECVR-MVScopyleft64.82 21865.22 21463.60 24878.80 15731.14 35566.97 23756.47 31854.23 18769.94 24788.68 10437.23 30574.81 21945.28 27289.41 14284.86 94
CS-MVS-test74.89 10174.23 10776.86 7977.01 17962.94 11778.98 8684.61 5558.62 13870.17 24580.80 22466.74 10881.96 10661.74 13589.40 14485.69 81
PCF-MVS63.80 1372.70 13371.69 14675.72 9478.10 16460.01 14473.04 15381.50 10045.34 27479.66 11884.35 18165.15 12382.65 9548.70 24289.38 14584.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
HQP3-MVS84.12 6589.16 146
HQP-MVS75.24 9275.01 9875.94 9182.37 11158.80 15477.32 10584.12 6559.08 13171.58 22685.96 16458.09 18485.30 5167.38 9489.16 14683.73 131
AUN-MVS70.22 15767.88 19277.22 7882.96 10571.61 4869.08 20471.39 22949.17 24771.70 22478.07 26437.62 30479.21 15461.81 13389.15 14880.82 192
v1075.69 8576.20 8774.16 10974.44 21848.69 22175.84 12982.93 8159.02 13585.92 4189.17 9258.56 17982.74 9470.73 6889.14 14991.05 15
hse-mvs272.32 13870.66 16177.31 7783.10 10171.77 4769.19 20371.45 22854.28 18577.89 13678.26 25949.04 23879.23 15363.62 12289.13 15080.92 189
MCST-MVS73.42 11373.34 12273.63 11981.28 12759.17 15074.80 13983.13 7845.50 27072.84 21183.78 18865.15 12380.99 12464.54 11089.09 15180.73 196
iter_conf0567.34 20065.62 21272.50 14869.82 26747.06 24572.19 15976.86 18145.32 27572.86 21082.85 20320.53 37283.73 7661.13 14289.02 15286.70 65
ITE_SJBPF80.35 3876.94 18173.60 3880.48 12566.87 6183.64 7486.18 15570.25 7779.90 14561.12 14388.95 15387.56 53
ANet_high67.08 20269.94 16458.51 29357.55 34727.09 36658.43 31076.80 18363.56 9782.40 8891.93 2059.82 16864.98 29950.10 23188.86 15483.46 138
test_040278.17 6979.48 5974.24 10883.50 9159.15 15172.52 15574.60 20175.34 1588.69 1391.81 2275.06 4282.37 9965.10 10688.68 15581.20 180
APD_test175.04 9675.38 9774.02 11269.89 26670.15 6276.46 11579.71 13865.50 7282.99 8088.60 10666.94 10272.35 24459.77 15888.54 15679.56 213
casdiffmvs_mvgpermissive75.26 9176.18 8872.52 14772.87 24349.47 21672.94 15484.71 5059.49 12980.90 10888.81 10270.07 7879.71 14767.40 9288.39 15788.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EGC-MVSNET64.77 22061.17 25175.60 9686.90 4274.47 3084.04 3568.62 2530.60 3761.13 37891.61 2865.32 12274.15 22864.01 11588.28 15878.17 232
IterMVS-LS73.01 12473.12 12772.66 14473.79 22749.90 21171.63 17178.44 16158.22 14080.51 11186.63 14258.15 18379.62 14862.51 13088.20 15988.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MSLP-MVS++74.48 10475.78 9170.59 16884.66 7662.40 11878.65 8984.24 6260.55 12177.71 14181.98 21263.12 13477.64 18962.95 12988.14 16071.73 286
CL-MVSNet_self_test62.44 24763.40 23359.55 28672.34 24632.38 34856.39 31864.84 27551.21 22667.46 27181.01 22350.75 22763.51 30638.47 31088.12 16182.75 158
FMVSNet171.06 14872.48 13766.81 22277.65 17440.68 29471.96 16473.03 20961.14 11679.45 12190.36 6760.44 16175.20 21350.20 23088.05 16284.54 109
pm-mvs168.40 18369.85 16664.04 24573.10 23939.94 30064.61 26770.50 24255.52 16973.97 19889.33 8663.91 13268.38 27749.68 23488.02 16383.81 127
TinyColmap67.98 19069.28 16964.08 24367.98 28346.82 24670.04 19175.26 19653.05 20477.36 14586.79 13259.39 17172.59 24145.64 26888.01 16472.83 274
v875.07 9575.64 9373.35 12273.42 23147.46 24075.20 13281.45 10260.05 12485.64 4589.26 8858.08 18681.80 10969.71 7587.97 16590.79 19
tttt051769.46 16867.79 19374.46 10375.34 20052.72 18975.05 13363.27 28854.69 17978.87 12684.37 18026.63 35681.15 11863.95 11787.93 16689.51 25
new-patchmatchnet52.89 30055.76 29244.26 34459.94 3366.31 38037.36 36550.76 34141.10 30164.28 29079.82 23844.77 25948.43 33836.24 32787.61 16778.03 235
tfpnnormal66.48 20667.93 19062.16 26673.40 23236.65 32263.45 27864.99 27355.97 16472.82 21287.80 12157.06 19769.10 27448.31 24887.54 16880.72 197
Anonymous20240521166.02 20866.89 20663.43 25274.22 22038.14 31359.00 30666.13 26463.33 10369.76 25185.95 16551.88 21970.50 26344.23 27587.52 16981.64 177
c3_l69.82 16469.89 16569.61 18466.24 29843.48 27268.12 22079.61 14151.43 22277.72 14080.18 23554.61 20978.15 18163.62 12287.50 17087.20 58
v14419272.99 12673.06 12872.77 14074.58 21647.48 23971.90 16880.44 12751.57 22081.46 10084.11 18458.04 18882.12 10467.98 8687.47 17188.70 43
Patchmtry60.91 25763.01 23854.62 30666.10 30126.27 36967.47 22756.40 31954.05 19372.04 22286.66 13933.19 31860.17 31543.69 27787.45 17277.42 240
v192192072.96 12872.98 13072.89 13874.67 21247.58 23871.92 16780.69 11951.70 21981.69 9883.89 18656.58 20182.25 10268.34 8087.36 17388.82 40
CSCG74.12 10674.39 10373.33 12379.35 14461.66 12577.45 10481.98 9462.47 11079.06 12480.19 23461.83 14678.79 16259.83 15787.35 17479.54 216
v119273.40 11473.42 11873.32 12474.65 21548.67 22272.21 15881.73 9752.76 20781.85 9284.56 17757.12 19582.24 10368.58 7887.33 17589.06 33
LCM-MVSNet-Re69.10 17471.57 15161.70 26870.37 26234.30 34161.45 29079.62 13956.81 15689.59 888.16 11768.44 9172.94 23442.30 28487.33 17577.85 239
canonicalmvs72.29 13973.38 12069.04 19274.23 21947.37 24173.93 15083.18 7654.36 18476.61 16181.64 21872.03 6175.34 21157.12 17487.28 17784.40 115
baseline73.10 11973.96 11170.51 17071.46 25246.39 25272.08 16084.40 5855.95 16576.62 16086.46 14867.20 10078.03 18264.22 11487.27 17887.11 61
alignmvs70.54 15571.00 15769.15 19173.50 22948.04 23269.85 19579.62 13953.94 19776.54 16382.00 21159.00 17574.68 22057.32 17387.21 17984.72 99
F-COLMAP75.29 9073.99 11079.18 5181.73 12171.90 4681.86 5882.98 7959.86 12772.27 21884.00 18564.56 12883.07 9051.48 21987.19 18082.56 163
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10451.71 21877.15 14691.42 3265.49 11987.20 579.44 1387.17 18184.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v124073.06 12273.14 12572.84 13974.74 21147.27 24371.88 16981.11 11051.80 21782.28 8984.21 18256.22 20382.34 10068.82 7787.17 18188.91 38
v114473.29 11773.39 11973.01 13074.12 22348.11 22972.01 16281.08 11353.83 19881.77 9484.68 17558.07 18781.91 10768.10 8286.86 18388.99 36
casdiffmvspermissive73.06 12273.84 11270.72 16671.32 25346.71 24870.93 18384.26 6155.62 16877.46 14487.10 12367.09 10177.81 18563.95 11786.83 18487.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 24363.21 23661.34 27372.19 24731.56 35267.31 23353.87 32753.60 20069.88 24983.37 19440.52 28670.98 25941.40 29186.78 18581.48 179
CS-MVS76.51 7976.00 8978.06 7077.02 17864.77 10480.78 6382.66 8560.39 12274.15 19383.30 19869.65 8382.07 10569.27 7686.75 18687.36 55
K. test v373.67 10973.61 11773.87 11479.78 13855.62 17374.69 14362.04 29666.16 6884.76 6093.23 549.47 23580.97 12665.66 10386.67 18785.02 91
thisisatest053067.05 20465.16 21672.73 14373.10 23950.55 20171.26 17963.91 28450.22 23774.46 19080.75 22526.81 35580.25 13959.43 16186.50 18887.37 54
lessismore_v072.75 14179.60 14156.83 16557.37 31183.80 7289.01 9747.45 24978.74 16364.39 11286.49 18982.69 160
iter_conf_final68.69 18067.00 20473.76 11673.68 22852.33 19275.96 12773.54 20650.56 23369.90 24882.85 20324.76 36583.73 7665.40 10586.33 19085.22 84
MVS_111021_HR72.98 12772.97 13172.99 13180.82 13065.47 9668.81 20872.77 21457.67 14775.76 17182.38 20971.01 7277.17 19261.38 13886.15 19176.32 246
LF4IMVS67.50 19667.31 19968.08 20958.86 34261.93 12171.43 17375.90 19144.67 28072.42 21780.20 23357.16 19370.44 26458.99 16486.12 19271.88 284
FMVSNet267.48 19768.21 18765.29 23473.14 23638.94 30768.81 20871.21 23654.81 17476.73 15886.48 14748.63 24474.60 22147.98 25186.11 19382.35 166
EPNet_dtu58.93 27258.52 27160.16 28367.91 28447.70 23769.97 19258.02 30749.73 24247.28 36073.02 30538.14 29962.34 30936.57 32485.99 19470.43 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 10985.39 3466.73 6380.39 11388.85 10174.43 5078.33 17574.73 4485.79 19582.35 166
API-MVS70.97 15171.51 15269.37 18575.20 20255.94 16880.99 6176.84 18262.48 10971.24 23477.51 26961.51 15180.96 12952.04 21585.76 19671.22 291
v2v48272.55 13772.58 13672.43 15072.92 24246.72 24771.41 17479.13 14855.27 17081.17 10385.25 17255.41 20581.13 11967.25 9785.46 19789.43 26
GBi-Net68.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
test168.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
FMVSNet365.00 21765.16 21664.52 24069.47 27137.56 32066.63 24270.38 24351.55 22174.72 18483.27 19937.89 30374.44 22347.12 25685.37 19881.57 178
CNLPA73.44 11273.03 12974.66 10278.27 16275.29 2675.99 12678.49 16065.39 7575.67 17283.22 20261.23 15566.77 29153.70 20885.33 20181.92 174
Effi-MVS+-dtu75.43 8972.28 14084.91 277.05 17683.58 178.47 9277.70 17257.68 14674.89 18178.13 26364.80 12684.26 7256.46 18185.32 20286.88 62
UGNet70.20 15869.05 17373.65 11776.24 19063.64 11075.87 12872.53 21761.48 11460.93 31486.14 15852.37 21777.12 19350.67 22685.21 20380.17 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VNet64.01 23265.15 21860.57 27973.28 23435.61 33257.60 31467.08 25954.61 18166.76 27683.37 19456.28 20266.87 28742.19 28585.20 20479.23 220
TAMVS65.31 21363.75 22969.97 18182.23 11559.76 14666.78 24163.37 28745.20 27669.79 25079.37 24547.42 25072.17 24534.48 33585.15 20577.99 237
test_yl65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DCV-MVSNet65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
USDC62.80 24263.10 23761.89 26765.19 30643.30 27567.42 22874.20 20335.80 32772.25 21984.48 17945.67 25371.95 25037.95 31484.97 20670.42 299
ETV-MVS72.72 13272.16 14274.38 10776.90 18355.95 16773.34 15284.67 5162.04 11172.19 22170.81 31765.90 11685.24 5458.64 16584.96 20981.95 173
DPM-MVS69.98 16169.22 17272.26 15482.69 10958.82 15370.53 18781.23 10847.79 25964.16 29180.21 23251.32 22583.12 8860.14 15384.95 21074.83 259
eth_miper_zixun_eth69.42 16968.73 18171.50 16167.99 28246.42 25067.58 22578.81 15350.72 23178.13 13480.34 23150.15 23280.34 13760.18 15184.65 21187.74 50
miper_lstm_enhance61.97 24961.63 24762.98 25760.04 33445.74 25647.53 34570.95 23844.04 28273.06 20878.84 25439.72 29160.33 31455.82 18784.64 21282.88 153
cl2267.14 20166.51 20769.03 19363.20 31943.46 27366.88 24076.25 18649.22 24674.48 18977.88 26545.49 25577.40 19160.64 14784.59 21386.24 69
miper_ehance_all_eth68.36 18468.16 18968.98 19465.14 30943.34 27467.07 23578.92 15249.11 24876.21 16977.72 26653.48 21377.92 18461.16 14184.59 21385.68 82
miper_enhance_ethall65.86 20965.05 22368.28 20861.62 32742.62 28164.74 26477.97 16942.52 29373.42 20472.79 30649.66 23377.68 18858.12 16984.59 21384.54 109
CDS-MVSNet64.33 22862.66 24169.35 18780.44 13458.28 15865.26 25965.66 26844.36 28167.30 27375.54 28043.27 26871.77 25137.68 31584.44 21678.01 236
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CANet73.00 12571.84 14476.48 8575.82 19761.28 12974.81 13780.37 12963.17 10462.43 30480.50 22961.10 15785.16 5864.00 11684.34 21783.01 151
PLCcopyleft62.01 1671.79 14370.28 16376.33 8780.31 13668.63 7578.18 9781.24 10754.57 18267.09 27580.63 22759.44 17081.74 11146.91 25984.17 21878.63 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PVSNet_BlendedMVS65.38 21264.30 22468.61 20269.81 26849.36 21765.60 25678.96 15045.50 27059.98 31778.61 25551.82 22078.20 17844.30 27384.11 21978.27 230
cascas64.59 22262.77 24070.05 17975.27 20150.02 20861.79 28971.61 22342.46 29463.68 29768.89 33449.33 23780.35 13647.82 25384.05 22079.78 211
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8581.05 10488.38 11157.10 19687.10 779.75 783.87 22184.31 118
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test20.0355.74 28657.51 27950.42 32159.89 33732.09 35050.63 33749.01 34550.11 23865.07 28583.23 20045.61 25448.11 33930.22 34983.82 22271.07 294
D2MVS62.58 24561.05 25367.20 21863.85 31547.92 23356.29 31969.58 24739.32 30970.07 24678.19 26134.93 31272.68 23653.44 21183.74 22381.00 187
MVS_111021_LR72.10 14071.82 14572.95 13379.53 14273.90 3670.45 18966.64 26156.87 15576.81 15681.76 21668.78 8771.76 25261.81 13383.74 22373.18 271
patch_mono-262.73 24464.08 22658.68 29170.36 26355.87 16960.84 29664.11 28341.23 30064.04 29278.22 26060.00 16448.80 33454.17 20483.71 22571.37 288
dcpmvs_271.02 15072.65 13566.16 22976.06 19550.49 20271.97 16379.36 14550.34 23582.81 8483.63 18964.38 12967.27 28561.54 13783.71 22580.71 198
thres600view761.82 25161.38 25063.12 25571.81 25034.93 33664.64 26556.99 31554.78 17870.33 24379.74 23932.07 32772.42 24338.61 30883.46 22782.02 171
旧先验184.55 7960.36 14263.69 28587.05 12754.65 20883.34 22869.66 304
新几何169.99 18088.37 3471.34 5162.08 29443.85 28374.99 18086.11 16052.85 21570.57 26250.99 22483.23 22968.05 313
Vis-MVSNetpermissive74.85 10374.56 10175.72 9481.63 12364.64 10576.35 11979.06 14962.85 10673.33 20588.41 10962.54 13979.59 15063.94 11982.92 23082.94 152
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ET-MVSNet_ETH3D63.32 23560.69 25771.20 16470.15 26555.66 17165.02 26264.32 28043.28 29268.99 25772.05 31125.46 36278.19 18054.16 20582.80 23179.74 212
DELS-MVS68.83 17668.31 18370.38 17170.55 26148.31 22563.78 27682.13 9054.00 19468.96 25875.17 28458.95 17680.06 14458.55 16682.74 23282.76 157
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CMPMVSbinary48.73 2061.54 25460.89 25463.52 25061.08 32951.55 19568.07 22168.00 25633.88 33565.87 27981.25 22037.91 30267.71 28049.32 23782.60 23371.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MVS_030462.51 24662.27 24363.25 25369.39 27248.47 22464.05 27362.48 29059.69 12854.10 34481.04 22245.71 25266.31 29441.38 29282.58 23474.96 258
ppachtmachnet_test60.26 26459.61 26462.20 26567.70 28644.33 26558.18 31160.96 29940.75 30565.80 28072.57 30741.23 27963.92 30346.87 26082.42 23578.33 228
v14869.38 17169.39 16869.36 18669.14 27544.56 26368.83 20772.70 21554.79 17778.59 12784.12 18354.69 20776.74 20059.40 16282.20 23686.79 63
thisisatest051560.48 26257.86 27668.34 20567.25 28946.42 25060.58 29862.14 29240.82 30463.58 29969.12 33026.28 35878.34 17448.83 24082.13 23780.26 205
OpenMVScopyleft62.51 1568.76 17868.75 17968.78 20170.56 26053.91 18378.29 9477.35 17648.85 25070.22 24483.52 19052.65 21676.93 19555.31 19281.99 23875.49 251
MAR-MVS67.72 19466.16 20972.40 15174.45 21764.99 10274.87 13577.50 17548.67 25165.78 28168.58 33857.01 19877.79 18646.68 26281.92 23974.42 262
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Anonymous2023120654.13 29455.82 29149.04 32970.89 25435.96 32851.73 33550.87 34034.86 32962.49 30379.22 24742.52 27544.29 35327.95 35981.88 24066.88 319
FE-MVS68.29 18766.96 20572.26 15474.16 22254.24 18077.55 10273.42 20857.65 14972.66 21384.91 17432.02 32981.49 11348.43 24681.85 24181.04 184
GeoE73.14 11873.77 11571.26 16378.09 16552.64 19074.32 14679.56 14356.32 16276.35 16883.36 19670.76 7477.96 18363.32 12681.84 24283.18 146
FA-MVS(test-final)71.27 14671.06 15671.92 15673.96 22452.32 19376.45 11676.12 18759.07 13474.04 19786.18 15552.18 21879.43 15259.75 15981.76 24384.03 123
thres100view90061.17 25661.09 25261.39 27272.14 24835.01 33565.42 25856.99 31555.23 17170.71 23979.90 23732.07 32772.09 24635.61 33081.73 24477.08 244
tfpn200view960.35 26359.97 26161.51 27070.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24477.08 244
thres40060.77 26059.97 26163.15 25470.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24482.02 171
MG-MVS70.47 15671.34 15467.85 21179.26 14640.42 29874.67 14475.15 19858.41 13968.74 26388.14 11856.08 20483.69 7859.90 15681.71 24779.43 218
PAPM_NR73.91 10774.16 10873.16 12681.90 11953.50 18581.28 6081.40 10366.17 6773.30 20683.31 19759.96 16583.10 8958.45 16781.66 24882.87 154
FMVSNet555.08 29055.54 29353.71 30865.80 30233.50 34556.22 32052.50 33643.72 28661.06 31183.38 19325.46 36254.87 32430.11 35081.64 24972.75 275
PAPR69.20 17268.66 18270.82 16575.15 20447.77 23575.31 13181.11 11049.62 24466.33 27779.27 24661.53 15082.96 9148.12 25081.50 25081.74 176
testdata64.13 24285.87 5963.34 11361.80 29747.83 25876.42 16786.60 14448.83 24162.31 31054.46 20081.26 25166.74 322
3Dnovator65.95 1171.50 14571.22 15572.34 15273.16 23563.09 11578.37 9378.32 16257.67 14772.22 22084.61 17654.77 20678.47 16760.82 14681.07 25275.45 252
RPSCF75.76 8474.37 10479.93 4074.81 20977.53 1677.53 10379.30 14659.44 13078.88 12589.80 8071.26 6973.09 23357.45 17280.89 25389.17 31
EG-PatchMatch MVS70.70 15370.88 15870.16 17682.64 11058.80 15471.48 17273.64 20554.98 17376.55 16281.77 21561.10 15778.94 15954.87 19580.84 25472.74 276
V4271.06 14870.83 15971.72 15767.25 28947.14 24465.94 24880.35 13051.35 22383.40 7683.23 20059.25 17378.80 16165.91 10280.81 25589.23 29
test22287.30 3769.15 7367.85 22259.59 30441.06 30273.05 20985.72 16848.03 24780.65 25666.92 318
BH-untuned69.39 17069.46 16769.18 19077.96 16856.88 16368.47 21777.53 17456.77 15777.79 13979.63 24160.30 16380.20 14246.04 26580.65 25670.47 297
pmmvs-eth3d64.41 22763.27 23567.82 21375.81 19860.18 14369.49 19762.05 29538.81 31474.13 19482.23 21043.76 26668.65 27542.53 28380.63 25874.63 260
EI-MVSNet-Vis-set72.78 13171.87 14375.54 9774.77 21059.02 15272.24 15771.56 22563.92 9278.59 12771.59 31366.22 11378.60 16467.58 8980.32 25989.00 35
diffmvspermissive67.42 19967.50 19667.20 21862.26 32345.21 25964.87 26377.04 18048.21 25371.74 22379.70 24058.40 18071.17 25864.99 10780.27 26085.22 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet-UG-set72.63 13471.68 14775.47 9874.67 21258.64 15772.02 16171.50 22663.53 9878.58 12971.39 31665.98 11478.53 16567.30 9680.18 26189.23 29
MDA-MVSNet-bldmvs62.34 24861.73 24464.16 24161.64 32649.90 21148.11 34357.24 31453.31 20380.95 10579.39 24449.00 24061.55 31245.92 26680.05 26281.03 185
IB-MVS49.67 1859.69 26756.96 28267.90 21068.19 28050.30 20561.42 29165.18 27247.57 26155.83 33667.15 34523.77 36879.60 14943.56 27979.97 26373.79 267
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-RL test59.95 26559.12 26662.44 26372.46 24554.61 17859.63 30347.51 35141.05 30374.58 18874.30 29331.06 33865.31 29651.61 21879.85 26467.39 315
EI-MVSNet69.61 16669.01 17571.41 16273.94 22549.90 21171.31 17771.32 23058.22 14075.40 17770.44 31958.16 18275.85 20362.51 13079.81 26588.48 44
MVSTER63.29 23661.60 24868.36 20459.77 33846.21 25360.62 29771.32 23041.83 29675.40 17779.12 25030.25 34475.85 20356.30 18279.81 26583.03 150
ab-mvs64.11 23065.13 21961.05 27571.99 24938.03 31667.59 22468.79 25149.08 24965.32 28386.26 15358.02 18966.85 28939.33 30179.79 26778.27 230
PVSNet_Blended_VisFu70.04 15968.88 17673.53 12182.71 10863.62 11174.81 13781.95 9548.53 25267.16 27479.18 24951.42 22478.38 17254.39 20179.72 26878.60 225
thres20057.55 27957.02 28159.17 28767.89 28534.93 33658.91 30857.25 31350.24 23664.01 29371.46 31532.49 32371.39 25631.31 34579.57 26971.19 293
testgi54.00 29756.86 28345.45 33858.20 34525.81 37049.05 33949.50 34445.43 27367.84 26681.17 22151.81 22243.20 35729.30 35479.41 27067.34 317
jason64.47 22562.84 23969.34 18876.91 18259.20 14767.15 23465.67 26735.29 32865.16 28476.74 27444.67 26070.68 26054.74 19679.28 27178.14 233
jason: jason.
Fast-Effi-MVS+-dtu70.00 16068.74 18073.77 11573.47 23064.53 10671.36 17578.14 16755.81 16768.84 26274.71 28865.36 12175.75 20652.00 21679.00 27281.03 185
EU-MVSNet60.82 25860.80 25660.86 27868.37 27741.16 28972.27 15668.27 25526.96 35869.08 25575.71 27832.09 32667.44 28355.59 19078.90 27373.97 264
MVS_Test69.84 16370.71 16067.24 21767.49 28843.25 27669.87 19481.22 10952.69 20871.57 22986.68 13862.09 14574.51 22266.05 10078.74 27483.96 124
Fast-Effi-MVS+68.81 17768.30 18470.35 17274.66 21448.61 22366.06 24778.32 16250.62 23271.48 23275.54 28068.75 8879.59 15050.55 22878.73 27582.86 155
MVSFormer69.93 16269.03 17472.63 14674.93 20559.19 14883.98 3675.72 19252.27 21063.53 30076.74 27443.19 26980.56 13272.28 6278.67 27678.14 233
lupinMVS63.36 23461.49 24968.97 19574.93 20559.19 14865.80 25264.52 27934.68 33363.53 30074.25 29443.19 26970.62 26153.88 20778.67 27677.10 243
Effi-MVS+72.10 14072.28 14071.58 15874.21 22150.33 20474.72 14282.73 8362.62 10770.77 23876.83 27369.96 8080.97 12660.20 15078.43 27883.45 139
CANet_DTU64.04 23163.83 22864.66 23868.39 27642.97 27873.45 15174.50 20252.05 21454.78 33975.44 28343.99 26470.42 26553.49 21078.41 27980.59 200
xiu_mvs_v1_base_debu67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base_debi67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
BH-RMVSNet68.69 18068.20 18870.14 17776.40 18853.90 18464.62 26673.48 20758.01 14273.91 19981.78 21459.09 17478.22 17748.59 24377.96 28378.31 229
IterMVS-SCA-FT67.68 19566.07 21072.49 14973.34 23358.20 15963.80 27565.55 27048.10 25476.91 15182.64 20645.20 25678.84 16061.20 14077.89 28480.44 203
PVSNet_Blended62.90 24161.64 24666.69 22569.81 26849.36 21761.23 29378.96 15042.04 29559.98 31768.86 33551.82 22078.20 17844.30 27377.77 28572.52 277
MSDG67.47 19867.48 19767.46 21570.70 25754.69 17766.90 23978.17 16560.88 11970.41 24174.76 28661.22 15673.18 23247.38 25576.87 28674.49 261
E-PMN45.17 32745.36 33044.60 34250.07 36942.75 27938.66 36242.29 36246.39 26839.55 37151.15 36826.00 35945.37 34837.68 31576.41 28745.69 365
PM-MVS64.49 22463.61 23167.14 22076.68 18675.15 2768.49 21642.85 35851.17 22777.85 13880.51 22845.76 25166.31 29452.83 21476.35 28859.96 350
EIA-MVS68.59 18267.16 20072.90 13775.18 20355.64 17269.39 19981.29 10552.44 20964.53 28770.69 31860.33 16282.30 10154.27 20376.31 28980.75 195
BH-w/o64.81 21964.29 22566.36 22776.08 19454.71 17665.61 25575.23 19750.10 23971.05 23771.86 31254.33 21079.02 15738.20 31276.14 29065.36 328
MVS60.62 26159.97 26162.58 26268.13 28147.28 24268.59 21373.96 20432.19 34259.94 31968.86 33550.48 22977.64 18941.85 28875.74 29162.83 339
TR-MVS64.59 22263.54 23267.73 21475.75 19950.83 20063.39 27970.29 24449.33 24571.55 23074.55 28950.94 22678.46 16840.43 29775.69 29273.89 266
mvs_anonymous65.08 21665.49 21363.83 24663.79 31637.60 31966.52 24469.82 24643.44 28873.46 20386.08 16158.79 17871.75 25351.90 21775.63 29382.15 170
QAPM69.18 17369.26 17068.94 19671.61 25152.58 19180.37 7078.79 15549.63 24373.51 20185.14 17353.66 21279.12 15555.11 19375.54 29475.11 257
IterMVS63.12 23862.48 24265.02 23766.34 29752.86 18863.81 27462.25 29146.57 26771.51 23180.40 23044.60 26166.82 29051.38 22175.47 29575.38 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test63.01 23960.47 25870.61 16783.04 10254.10 18159.93 30272.24 22133.67 33869.00 25675.63 27938.69 29776.93 19536.60 32375.45 29680.81 194
EMVS44.61 33144.45 33645.10 34148.91 37243.00 27737.92 36341.10 36846.75 26638.00 37348.43 37126.42 35746.27 34337.11 32175.38 29746.03 364
MIMVSNet54.39 29356.12 28949.20 32672.57 24430.91 35659.98 30148.43 34841.66 29755.94 33583.86 18741.19 28150.42 33026.05 36275.38 29766.27 323
our_test_356.46 28256.51 28556.30 29967.70 28639.66 30255.36 32652.34 33740.57 30763.85 29469.91 32640.04 28958.22 32043.49 28075.29 29971.03 295
pmmvs460.78 25959.04 26766.00 23173.06 24157.67 16164.53 26860.22 30136.91 32265.96 27877.27 27039.66 29268.54 27638.87 30574.89 30071.80 285
GA-MVS62.91 24061.66 24566.66 22667.09 29144.49 26461.18 29469.36 24951.33 22469.33 25474.47 29036.83 30774.94 21650.60 22774.72 30180.57 201
KD-MVS_2432*160052.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
miper_refine_blended52.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
pmmvs552.49 30452.58 30652.21 31654.99 35932.38 34855.45 32553.84 32832.15 34455.49 33874.81 28538.08 30057.37 32234.02 33774.40 30466.88 319
PatchT53.35 29856.47 28643.99 34564.19 31417.46 37759.15 30443.10 35752.11 21354.74 34086.95 12829.97 34749.98 33243.62 27874.40 30464.53 336
xiu_mvs_v2_base64.43 22663.96 22765.85 23377.72 17251.32 19763.63 27772.31 22045.06 27961.70 30569.66 32762.56 13773.93 23049.06 23973.91 30672.31 280
PS-MVSNAJ64.27 22963.73 23065.90 23277.82 17051.42 19663.33 28072.33 21945.09 27861.60 30668.04 33962.39 14173.95 22949.07 23873.87 30772.34 279
OpenMVS_ROBcopyleft54.93 1763.23 23763.28 23463.07 25669.81 26845.34 25868.52 21567.14 25843.74 28570.61 24079.22 24747.90 24872.66 23748.75 24173.84 30871.21 292
test_fmvs356.78 28155.99 29059.12 28853.96 36448.09 23058.76 30966.22 26327.54 35676.66 15968.69 33725.32 36451.31 32853.42 21273.38 30977.97 238
MDTV_nov1_ep1354.05 29965.54 30429.30 36159.00 30655.22 32135.96 32652.44 34775.98 27730.77 34159.62 31638.21 31173.33 310
PAPM61.79 25260.37 25966.05 23076.09 19341.87 28569.30 20076.79 18440.64 30653.80 34579.62 24244.38 26282.92 9229.64 35373.11 31173.36 270
Patchmatch-test47.93 32049.96 32141.84 34857.42 34824.26 37248.75 34041.49 36539.30 31056.79 33173.48 30030.48 34333.87 37029.29 35572.61 31267.39 315
gg-mvs-nofinetune55.75 28556.75 28452.72 31462.87 32028.04 36468.92 20541.36 36671.09 4050.80 35292.63 1220.74 37166.86 28829.97 35172.41 31363.25 338
test_vis3_rt51.94 30951.04 31554.65 30546.32 37550.13 20744.34 35478.17 16523.62 36768.95 25962.81 35221.41 37038.52 36741.49 29072.22 31475.30 256
test-LLR50.43 31450.69 31849.64 32460.76 33041.87 28553.18 33245.48 35443.41 28949.41 35760.47 35929.22 35044.73 35142.09 28672.14 31562.33 345
test-mter48.56 31948.20 32449.64 32460.76 33041.87 28553.18 33245.48 35431.91 34749.41 35760.47 35918.34 37544.73 35142.09 28672.14 31562.33 345
1112_ss59.48 26858.99 26860.96 27777.84 16942.39 28361.42 29168.45 25437.96 31759.93 32067.46 34145.11 25865.07 29840.89 29571.81 31775.41 253
N_pmnet52.06 30651.11 31454.92 30359.64 33971.03 5337.42 36461.62 29833.68 33757.12 32872.10 30837.94 30131.03 37129.13 35871.35 31862.70 340
XXY-MVS55.19 28957.40 28048.56 33064.45 31334.84 33851.54 33653.59 32938.99 31363.79 29679.43 24356.59 20045.57 34536.92 32271.29 31965.25 329
MDA-MVSNet_test_wron52.57 30353.49 30249.81 32354.24 36136.47 32440.48 35946.58 35238.13 31575.47 17673.32 30241.05 28443.85 35540.98 29471.20 32069.10 311
YYNet152.58 30253.50 30049.85 32254.15 36236.45 32540.53 35846.55 35338.09 31675.52 17573.31 30341.08 28343.88 35441.10 29371.14 32169.21 309
HY-MVS49.31 1957.96 27757.59 27859.10 28966.85 29436.17 32665.13 26165.39 27139.24 31154.69 34178.14 26244.28 26367.18 28633.75 33970.79 32273.95 265
Test_1112_low_res58.78 27358.69 27059.04 29079.41 14338.13 31457.62 31366.98 26034.74 33159.62 32377.56 26842.92 27163.65 30538.66 30770.73 32375.35 255
pmmvs346.71 32345.09 33251.55 31856.76 35148.25 22655.78 32439.53 37024.13 36650.35 35563.40 35015.90 38051.08 32929.29 35570.69 32455.33 357
test_fmvs254.80 29154.11 29856.88 29851.76 36849.95 21056.70 31765.80 26626.22 36069.42 25265.25 34831.82 33049.98 33249.63 23570.36 32570.71 296
SCA58.57 27558.04 27560.17 28270.17 26441.07 29165.19 26053.38 33243.34 29161.00 31373.48 30045.20 25669.38 27140.34 29870.31 32670.05 300
CR-MVSNet58.96 27158.49 27260.36 28166.37 29548.24 22770.93 18356.40 31932.87 34161.35 30886.66 13933.19 31863.22 30748.50 24570.17 32769.62 305
RPMNet65.77 21065.08 22267.84 21266.37 29548.24 22770.93 18386.27 1954.66 18061.35 30886.77 13433.29 31785.67 4555.93 18570.17 32769.62 305
test0.0.03 147.72 32148.31 32345.93 33655.53 35729.39 36046.40 34941.21 36743.41 28955.81 33767.65 34029.22 35043.77 35625.73 36569.87 32964.62 334
PVSNet43.83 2151.56 31051.17 31352.73 31368.34 27838.27 31148.22 34253.56 33036.41 32354.29 34264.94 34934.60 31354.20 32730.34 34869.87 32965.71 326
tpm256.12 28354.64 29660.55 28066.24 29836.01 32768.14 21956.77 31733.60 33958.25 32775.52 28230.25 34474.33 22533.27 34069.76 33171.32 289
CostFormer57.35 28056.14 28860.97 27663.76 31738.43 30967.50 22660.22 30137.14 32159.12 32476.34 27632.78 32171.99 24939.12 30469.27 33272.47 278
baseline157.82 27858.36 27456.19 30069.17 27430.76 35762.94 28555.21 32246.04 26963.83 29578.47 25641.20 28063.68 30439.44 30068.99 33374.13 263
PatchMatch-RL58.68 27457.72 27761.57 26976.21 19173.59 3961.83 28849.00 34647.30 26361.08 31068.97 33250.16 23159.01 31836.06 32968.84 33452.10 358
CVMVSNet59.21 27058.44 27361.51 27073.94 22547.76 23671.31 17764.56 27826.91 35960.34 31670.44 31936.24 30967.65 28153.57 20968.66 33569.12 310
TESTMET0.1,145.17 32744.93 33345.89 33756.02 35438.31 31053.18 33241.94 36427.85 35544.86 36656.47 36317.93 37641.50 36238.08 31368.06 33657.85 352
test_fmvs1_n52.70 30152.01 30854.76 30453.83 36550.36 20355.80 32365.90 26524.96 36365.39 28260.64 35827.69 35348.46 33645.88 26767.99 33765.46 327
PMMVS237.74 33940.87 33928.36 35642.41 3785.35 38124.61 36927.75 37632.15 34447.85 35970.27 32235.85 31029.51 37319.08 37367.85 33850.22 360
131459.83 26658.86 26962.74 26165.71 30344.78 26268.59 21372.63 21633.54 34061.05 31267.29 34443.62 26771.26 25749.49 23667.84 33972.19 282
CHOSEN 1792x268858.09 27656.30 28763.45 25179.95 13750.93 19954.07 33065.59 26928.56 35461.53 30774.33 29241.09 28266.52 29333.91 33867.69 34072.92 273
test_fmvs151.51 31150.86 31753.48 30949.72 37149.35 21954.11 32964.96 27424.64 36563.66 29859.61 36128.33 35248.45 33745.38 27167.30 34162.66 342
tpm50.60 31352.42 30745.14 34065.18 30726.29 36860.30 29943.50 35637.41 31957.01 32979.09 25130.20 34642.32 35832.77 34266.36 34266.81 321
FPMVS59.43 26960.07 26057.51 29677.62 17571.52 4962.33 28750.92 33957.40 15269.40 25380.00 23639.14 29561.92 31137.47 31866.36 34239.09 370
GG-mvs-BLEND52.24 31560.64 33229.21 36269.73 19642.41 35945.47 36352.33 36720.43 37368.16 27825.52 36665.42 34459.36 351
tpmvs55.84 28455.45 29457.01 29760.33 33333.20 34665.89 24959.29 30547.52 26256.04 33473.60 29931.05 33968.06 27940.64 29664.64 34569.77 303
WTY-MVS49.39 31750.31 32046.62 33461.22 32832.00 35146.61 34849.77 34333.87 33654.12 34369.55 32941.96 27645.40 34731.28 34664.42 34662.47 343
baseline255.57 28852.74 30464.05 24465.26 30544.11 26662.38 28654.43 32539.03 31251.21 35067.35 34333.66 31672.45 24237.14 32064.22 34775.60 250
test_vis1_n51.27 31250.41 31953.83 30756.99 34950.01 20956.75 31660.53 30025.68 36159.74 32257.86 36229.40 34947.41 34143.10 28163.66 34864.08 337
MS-PatchMatch55.59 28754.89 29557.68 29569.18 27349.05 22061.00 29562.93 28935.98 32558.36 32668.93 33336.71 30866.59 29237.62 31763.30 34957.39 354
test_vis1_n_192052.96 29953.50 30051.32 31959.15 34044.90 26156.13 32164.29 28130.56 35259.87 32160.68 35740.16 28847.47 34048.25 24962.46 35061.58 347
test_f43.79 33345.63 32838.24 35442.29 37938.58 30834.76 36747.68 35022.22 37067.34 27263.15 35131.82 33030.60 37239.19 30362.28 35145.53 366
sss47.59 32248.32 32245.40 33956.73 35233.96 34245.17 35148.51 34732.11 34652.37 34865.79 34640.39 28741.91 36131.85 34361.97 35260.35 349
test_vis1_rt46.70 32445.24 33151.06 32044.58 37651.04 19839.91 36067.56 25721.84 37151.94 34950.79 36933.83 31539.77 36435.25 33361.50 35362.38 344
PMMVS44.69 32943.95 33746.92 33250.05 37053.47 18648.08 34442.40 36022.36 36944.01 36953.05 36642.60 27445.49 34631.69 34461.36 35441.79 368
UnsupCasMVSNet_bld50.01 31651.03 31646.95 33158.61 34332.64 34748.31 34153.27 33334.27 33460.47 31571.53 31441.40 27847.07 34230.68 34760.78 35561.13 348
MVP-Stereo61.56 25359.22 26568.58 20379.28 14560.44 14169.20 20271.57 22443.58 28756.42 33378.37 25839.57 29376.46 20234.86 33460.16 35668.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
DSMNet-mixed43.18 33544.66 33538.75 35354.75 36028.88 36357.06 31527.42 37713.47 37347.27 36177.67 26738.83 29639.29 36625.32 36760.12 35748.08 361
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32755.08 35833.67 34450.03 33858.79 30637.67 31863.43 30274.75 28741.82 27745.83 34438.59 30959.42 35867.98 314
tpm cat154.02 29652.63 30558.19 29464.85 31239.86 30166.26 24657.28 31232.16 34356.90 33070.39 32132.75 32265.30 29734.29 33658.79 35969.41 307
CHOSEN 280x42041.62 33639.89 34146.80 33361.81 32451.59 19433.56 36835.74 37327.48 35737.64 37453.53 36423.24 36942.09 35927.39 36058.64 36046.72 363
tpmrst50.15 31551.38 31246.45 33556.05 35324.77 37164.40 27049.98 34236.14 32453.32 34669.59 32835.16 31148.69 33539.24 30258.51 36165.89 324
PatchmatchNetpermissive54.60 29254.27 29755.59 30265.17 30839.08 30466.92 23851.80 33839.89 30858.39 32573.12 30431.69 33258.33 31943.01 28258.38 36269.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS-HIRNet45.53 32647.29 32540.24 35162.29 32226.82 36756.02 32237.41 37229.74 35343.69 37081.27 21933.96 31455.48 32324.46 36856.79 36338.43 371
ADS-MVSNet248.76 31847.25 32653.29 31255.90 35540.54 29747.34 34654.99 32431.41 34950.48 35372.06 30931.23 33554.26 32625.93 36355.93 36465.07 330
ADS-MVSNet44.62 33045.58 32941.73 34955.90 35520.83 37547.34 34639.94 36931.41 34950.48 35372.06 30931.23 33539.31 36525.93 36355.93 36465.07 330
EPMVS45.74 32546.53 32743.39 34654.14 36322.33 37455.02 32735.00 37434.69 33251.09 35170.20 32325.92 36042.04 36037.19 31955.50 36665.78 325
JIA-IIPM54.03 29551.62 30961.25 27459.14 34155.21 17459.10 30547.72 34950.85 22950.31 35685.81 16720.10 37463.97 30236.16 32855.41 36764.55 335
new_pmnet37.55 34039.80 34230.79 35556.83 35016.46 37839.35 36130.65 37525.59 36245.26 36461.60 35624.54 36628.02 37421.60 37052.80 36847.90 362
dp44.09 33244.88 33441.72 35058.53 34423.18 37354.70 32842.38 36134.80 33044.25 36865.61 34724.48 36744.80 35029.77 35249.42 36957.18 355
mvsany_test343.76 33441.01 33852.01 31748.09 37357.74 16042.47 35623.85 38023.30 36864.80 28662.17 35527.12 35440.59 36329.17 35748.11 37057.69 353
MVEpermissive27.91 2336.69 34135.64 34439.84 35243.37 37735.85 33019.49 37024.61 37824.68 36439.05 37262.63 35438.67 29827.10 37521.04 37147.25 37156.56 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test137.88 33835.74 34344.28 34347.28 37449.90 21136.54 36624.37 37919.56 37245.76 36253.46 36532.99 32037.97 36826.17 36135.52 37244.99 367
PVSNet_036.71 2241.12 33740.78 34042.14 34759.97 33540.13 29940.97 35742.24 36330.81 35144.86 36649.41 37040.70 28545.12 34923.15 36934.96 37341.16 369
tmp_tt11.98 34414.73 3473.72 3592.28 3824.62 38219.44 37114.50 3820.47 37721.55 3759.58 37525.78 3614.57 37811.61 37527.37 3741.96 374
test_method19.26 34219.12 34619.71 3579.09 3811.91 3837.79 37253.44 3311.42 37510.27 37735.80 37217.42 37825.11 37612.44 37424.38 37532.10 372
DeepMVS_CXcopyleft11.83 35815.51 38013.86 37911.25 3835.76 37420.85 37626.46 37317.06 3799.22 3779.69 37613.82 37612.42 373
test1234.43 3475.78 3500.39 3610.97 3830.28 38446.33 3500.45 3840.31 3780.62 3791.50 3780.61 3840.11 3800.56 3770.63 3770.77 376
testmvs4.06 3485.28 3510.41 3600.64 3840.16 38542.54 3550.31 3850.26 3790.50 3801.40 3790.77 3830.17 3790.56 3770.55 3780.90 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k17.71 34323.62 3450.00 3620.00 3850.00 3860.00 37370.17 2450.00 3800.00 38174.25 29468.16 940.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.20 3466.93 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38062.39 1410.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re5.62 3457.50 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38167.46 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 12785.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 385
eth-test0.00 385
test_241102_ONE86.12 5361.06 13184.72 4872.64 2987.38 2489.47 8477.48 2385.74 42
save fliter87.00 3967.23 8679.24 8377.94 17056.65 160
test072686.16 5160.78 13783.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 300
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
MTGPAbinary80.63 122
test_post166.63 2422.08 37630.66 34259.33 31740.34 298
test_post1.99 37730.91 34054.76 325
patchmatchnet-post68.99 33131.32 33469.38 271
MTMP84.83 3119.26 381
gm-plane-assit62.51 32133.91 34337.25 32062.71 35372.74 23538.70 306
TEST985.47 6369.32 7076.42 11778.69 15653.73 19976.97 14886.74 13566.84 10481.10 120
test_885.09 6967.89 7976.26 12278.66 15854.00 19476.89 15286.72 13766.60 10980.89 130
agg_prior84.44 8266.02 9478.62 15976.95 15080.34 137
test_prior470.14 6377.57 100
test_prior75.27 10082.15 11659.85 14584.33 5983.39 8482.58 162
旧先验271.17 18045.11 27778.54 13061.28 31359.19 163
新几何271.33 176
无先验74.82 13670.94 23947.75 26076.85 19854.47 19972.09 283
原ACMM274.78 140
testdata267.30 28448.34 247
segment_acmp68.30 93
testdata168.34 21857.24 153
plane_prior785.18 6666.21 93
plane_prior684.18 8565.31 9860.83 159
plane_prior489.11 94
plane_prior365.67 9563.82 9478.23 132
plane_prior282.74 5165.45 73
plane_prior184.46 81
n20.00 386
nn0.00 386
door-mid55.02 323
test1182.71 84
door52.91 335
HQP5-MVS58.80 154
HQP-NCC82.37 11177.32 10559.08 13171.58 226
ACMP_Plane82.37 11177.32 10559.08 13171.58 226
BP-MVS67.38 94
HQP4-MVS71.59 22585.31 5083.74 130
HQP2-MVS58.09 184
NP-MVS83.34 9563.07 11685.97 163
MDTV_nov1_ep13_2view18.41 37653.74 33131.57 34844.89 36529.90 34832.93 34171.48 287
Test By Simon62.56 137