This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4096.95 1495.46 14499.23 493.45 8299.57 1495.34 2999.89 299.63 9
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20496.61 3297.97 7897.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5897.42 998.48 1697.86 6191.76 12899.63 694.23 4199.84 399.66 6
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5781.77 23395.90 6998.32 2593.93 5697.53 4297.56 7588.48 18199.40 4692.91 8999.83 599.68 4
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19496.54 3498.05 6598.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19396.51 3597.94 8498.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20796.31 5097.53 11597.60 798.34 1997.52 8091.98 12299.63 693.08 8499.81 899.70 3
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 16996.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 997.31 1095.33 8698.54 4786.81 14896.83 2398.07 6196.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 14997.86 8695.96 3297.48 4697.14 11395.33 3499.44 2990.79 13799.76 1099.38 22
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16497.11 1998.24 3597.58 898.72 898.97 793.15 9499.15 8493.18 7999.74 1299.50 17
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11398.16 298.94 299.33 297.84 499.08 9390.73 13999.73 1399.59 13
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8696.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
FIs94.90 9795.35 8393.55 16198.28 6881.76 23495.33 8998.14 5093.05 7697.07 6297.18 11087.65 19599.29 7091.72 11799.69 1499.61 11
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26593.12 7397.94 2798.54 2581.19 27399.63 695.48 2399.69 1499.60 12
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7394.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
Anonymous2024052192.86 16893.57 15090.74 26596.57 17575.50 33394.15 13495.60 22789.38 16595.90 12097.90 6080.39 27797.96 23292.60 9799.68 1898.75 91
ANet_high94.83 10096.28 3790.47 27296.65 16973.16 35094.33 12798.74 1296.39 2498.09 2598.93 893.37 8698.70 15890.38 14899.68 1899.53 15
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14698.02 7287.35 20896.22 10597.99 5294.48 6899.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 9997.37 12493.92 5897.65 3495.90 19290.10 16899.33 6890.11 16299.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5680.82 24892.08 21196.68 18193.82 5996.29 9998.56 2490.10 16897.75 25690.10 16499.66 2199.24 32
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12191.25 12897.49 4498.14 3983.49 24299.45 2795.52 2199.66 2199.36 24
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17598.07 6193.46 6796.31 9795.97 19190.14 16599.34 6392.11 10399.64 2499.16 38
WR-MVS93.49 14693.72 14192.80 18997.57 12280.03 25890.14 27295.68 22593.70 6196.62 8695.39 22187.21 20399.04 10187.50 22099.64 2499.33 26
bld_raw_dy_0_6490.86 21090.99 21290.47 27293.95 29977.88 30193.99 14298.93 777.75 32897.03 6690.61 34281.82 26698.58 17585.18 25399.61 2694.95 315
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16893.73 6097.87 2898.49 2990.73 15599.05 9886.43 24199.60 2799.10 47
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16890.30 15399.60 2798.72 96
MVS_030493.92 13693.68 14494.64 11695.94 23085.83 17794.34 12688.14 34392.98 7791.09 28397.68 6686.73 21499.36 5896.64 799.59 2998.72 96
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10583.15 21794.58 11797.58 11093.39 6897.05 6598.04 4793.25 9098.51 18289.75 17299.59 2999.08 48
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 8998.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
ACMH88.36 1296.59 2797.43 594.07 14098.56 4285.33 18796.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 22894.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20797.84 8994.91 4096.80 7895.78 20190.42 16099.41 3991.60 12199.58 3499.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18797.81 9293.99 5396.80 7895.90 19290.10 16899.41 3991.60 12199.58 3499.26 30
MM94.41 11594.14 13095.22 9495.84 23487.21 13894.31 12990.92 32694.48 4692.80 24097.52 8085.27 23099.49 2496.58 899.57 3698.97 62
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13098.08 5889.46 16396.61 8796.47 15795.85 1899.12 9090.45 14599.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 10695.27 8992.90 18596.57 17580.15 25294.65 11497.57 11190.68 14197.43 4898.00 5088.18 18599.15 8494.84 3199.55 3899.41 20
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8397.88 8588.72 18098.81 698.86 1090.77 15199.60 995.43 2699.53 3999.57 14
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6298.84 12894.64 3399.53 3998.99 56
IS-MVSNet94.49 11294.35 12394.92 10298.25 7286.46 15997.13 1894.31 26896.24 2596.28 10196.36 16982.88 25099.35 6088.19 20599.52 4198.96 64
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16498.32 2587.89 19796.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10887.57 20698.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
v894.65 10795.29 8792.74 19096.65 16979.77 26794.59 11597.17 14491.86 10397.47 4797.93 5488.16 18699.08 9394.32 3899.47 4399.38 22
CLD-MVS91.82 19391.41 20393.04 17796.37 18883.65 20986.82 34497.29 13684.65 25792.27 26389.67 35292.20 11897.85 24583.95 27299.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28493.73 27993.52 8199.55 1891.81 11499.45 4797.58 201
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12286.96 21598.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12488.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 5892.67 8195.08 16796.39 16694.77 5899.42 3393.17 8099.44 5098.58 118
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16299.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 7197.40 5297.35 9694.69 5999.34 6393.88 4799.42 5298.89 75
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10694.46 4796.29 9996.94 12893.56 7999.37 5794.29 4099.42 5298.99 56
pm-mvs195.43 7395.94 5593.93 14798.38 6285.08 19095.46 8697.12 14991.84 10797.28 5698.46 3095.30 3697.71 26090.17 16099.42 5298.99 56
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12298.05 6590.45 14796.31 9796.76 14092.91 10298.72 15191.19 12899.42 5298.32 132
wuyk23d87.83 28690.79 21878.96 38190.46 36988.63 11092.72 18090.67 32991.65 11998.68 1197.64 7096.06 1577.53 40359.84 39799.41 5670.73 401
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 10887.68 20498.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
SixPastTwentyTwo94.91 9695.21 9093.98 14298.52 4983.19 21695.93 6794.84 25594.86 4198.49 1598.74 1681.45 26799.60 994.69 3299.39 5899.15 39
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4693.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SDMVSNet94.43 11495.02 9892.69 19297.93 9582.88 22291.92 22095.99 21793.65 6595.51 13998.63 2094.60 6396.48 31687.57 21999.35 6198.70 100
sd_testset93.94 13594.39 11992.61 19897.93 9583.24 21393.17 16895.04 24993.65 6595.51 13998.63 2094.49 6795.89 33481.72 29499.35 6198.70 100
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11779.49 27394.86 10797.12 14989.59 16296.87 7497.65 6990.40 16298.34 19989.08 19099.35 6198.75 91
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11898.03 7090.42 14896.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7393.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4292.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11098.03 7090.82 13797.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111190.39 22690.61 22289.74 29298.04 8771.50 36195.59 8079.72 39689.41 16495.94 11798.14 3970.79 33598.81 13588.52 20299.32 6898.90 74
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15295.20 9597.00 15691.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9598.22 3799.38 5593.44 6799.31 6998.53 120
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 16899.41 3994.06 4499.30 7198.72 96
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14495.21 9398.10 5591.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
IU-MVS98.51 5086.66 15496.83 17172.74 36295.83 12393.00 8699.29 7498.64 111
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 9897.79 9686.48 21897.42 5097.51 8394.47 6999.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9792.73 7893.48 21496.72 14694.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 6196.22 4094.26 13498.19 7585.77 17893.24 16597.24 14096.88 1697.69 3397.77 6494.12 7399.13 8891.54 12499.29 7497.88 175
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4991.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 15898.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0588.94 26688.09 27791.50 23692.74 32276.97 31692.80 17895.92 21882.82 28093.65 21095.37 22349.41 39599.13 8890.82 13699.28 7998.40 129
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9992.59 8295.47 14296.68 14894.50 6699.42 3393.10 8299.26 8298.99 56
test_241102_TWO98.10 5591.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
ACMMP++99.25 83
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10397.57 11192.68 7996.20 10793.44 28791.92 12398.78 14289.11 18999.24 8596.92 237
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23589.32 17899.23 8698.19 142
TransMVSNet (Re)95.27 8796.04 5292.97 18098.37 6481.92 23295.07 10096.76 17793.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24294.52 25393.95 7699.49 2493.62 5699.22 8997.51 207
EGC-MVSNET80.97 35575.73 37196.67 4298.85 2494.55 1596.83 2396.60 1852.44 4065.32 40798.25 3792.24 11598.02 22691.85 11399.21 9097.45 210
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 8998.30 2891.40 12495.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
SD-MVS95.19 8895.73 6793.55 16196.62 17388.88 10794.67 11298.05 6591.26 12697.25 5896.40 16295.42 2894.36 36192.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 22390.16 23191.20 24997.66 11777.32 30994.33 12787.66 34991.20 12992.99 23495.13 22875.40 31898.28 20277.86 32999.19 9297.99 162
test250685.42 31884.57 32187.96 32597.81 10266.53 38296.14 5856.35 40989.04 17293.55 21398.10 4242.88 40798.68 16288.09 20999.18 9498.67 104
ECVR-MVScopyleft90.12 23690.16 23190.00 28897.81 10272.68 35595.76 7478.54 39989.04 17295.36 15098.10 4270.51 33698.64 16787.10 22799.18 9498.67 104
tfpnnormal94.27 12194.87 10392.48 20397.71 11180.88 24794.55 12195.41 24093.70 6196.67 8497.72 6591.40 13498.18 21387.45 22199.18 9498.36 130
FMVSNet194.84 9995.13 9493.97 14397.60 11984.29 19795.99 6396.56 18992.38 8597.03 6698.53 2690.12 16698.98 10688.78 19799.16 9798.65 106
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7992.35 8895.57 13796.61 15294.93 5499.41 3993.78 5199.15 9899.00 54
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7692.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
VDD-MVS94.37 11694.37 12194.40 13197.49 12686.07 17193.97 14393.28 28894.49 4596.24 10397.78 6287.99 19198.79 13988.92 19399.14 9998.34 131
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7992.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
Gipumacopyleft95.31 8495.80 6593.81 15497.99 9390.91 7096.42 4297.95 8196.69 1791.78 27198.85 1291.77 12695.49 34191.72 11799.08 10295.02 313
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7392.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18597.33 13290.05 15396.77 8096.85 13495.04 4898.56 17792.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPNet93.08 15993.76 14091.03 25398.60 3975.83 33191.51 23395.62 22691.84 10795.74 12997.10 11889.31 17698.32 20085.07 26299.06 10398.93 68
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8298.56 1591.84 10796.36 9496.68 14894.37 7099.32 6992.41 10099.05 10698.64 111
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25194.79 24393.56 7999.49 2493.47 6499.05 10697.89 174
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18996.49 15694.56 6499.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21588.45 26197.44 1698.56 4293.99 2696.50 3697.95 8194.58 4394.38 18926.89 40494.56 6499.39 4993.57 5799.05 10698.93 68
test20.0390.80 21290.85 21690.63 26995.63 24979.24 27889.81 28392.87 29589.90 15594.39 18896.40 16285.77 22495.27 34973.86 35999.05 10697.39 217
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17395.19 9796.77 17696.64 1997.61 3898.05 4593.23 9198.79 13988.60 20199.04 11198.78 87
IterMVS-LS93.78 14094.28 12592.27 20796.27 20179.21 28091.87 22496.78 17491.77 11396.57 8997.07 11987.15 20498.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13098.76 1186.25 22297.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 137
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15698.60 1485.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 142
cl____90.65 21790.56 22490.91 26091.85 34676.98 31586.75 34595.36 24285.53 24094.06 19694.89 23777.36 30397.98 23190.27 15598.98 11497.76 189
AllTest94.88 9894.51 11796.00 5698.02 8892.17 5095.26 9298.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14595.04 16896.74 14392.54 11197.86 24385.11 26098.98 11497.98 163
Patchmtry90.11 23789.92 23790.66 26790.35 37077.00 31392.96 17392.81 29690.25 15194.74 18096.93 12967.11 34797.52 26985.17 25598.98 11497.46 209
DIV-MVS_self_test90.65 21790.56 22490.91 26091.85 34676.99 31486.75 34595.36 24285.52 24294.06 19694.89 23777.37 30297.99 23090.28 15498.97 11997.76 189
9.1494.81 10497.49 12694.11 13798.37 2187.56 20795.38 14796.03 18894.66 6099.08 9390.70 14098.97 119
D2MVS89.93 24389.60 24590.92 25894.03 29678.40 29288.69 31494.85 25478.96 32193.08 23095.09 23074.57 32096.94 30088.19 20598.96 12197.41 213
PHI-MVS94.34 11993.80 13895.95 5995.65 24791.67 6294.82 10897.86 8687.86 19893.04 23394.16 26491.58 13098.78 14290.27 15598.96 12197.41 213
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16698.36 2285.61 23896.92 7398.02 4995.23 3998.38 19496.69 698.95 12398.09 150
ambc92.98 17996.88 15583.01 22095.92 6896.38 19996.41 9297.48 8588.26 18497.80 24889.96 16798.93 12498.12 149
EPNet89.80 24788.25 27094.45 12983.91 40586.18 16893.87 14587.07 35491.16 13180.64 39394.72 24578.83 28698.89 12085.17 25598.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 13793.68 14494.59 12198.08 8185.55 18497.44 1294.03 27494.22 5094.94 17196.19 18082.07 26199.57 1487.28 22598.89 12598.65 106
v119293.49 14693.78 13992.62 19796.16 21079.62 26991.83 22797.22 14286.07 22796.10 11296.38 16787.22 20299.02 10394.14 4398.88 12799.22 33
v114493.50 14593.81 13692.57 20096.28 20079.61 27091.86 22696.96 15986.95 21695.91 11996.32 17187.65 19598.96 11193.51 6098.88 12799.13 41
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11597.81 9289.22 17095.46 14496.17 18393.42 8599.34 6389.30 18098.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 12593.69 14395.81 6997.25 13791.27 6492.27 20697.40 12387.10 21494.56 18495.42 21793.74 7798.11 21886.62 23598.85 13198.06 151
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12294.85 5699.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5295.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
v14419293.20 15893.54 15292.16 21496.05 22078.26 29491.95 21697.14 14684.98 25295.96 11596.11 18487.08 20699.04 10193.79 5098.84 13299.17 37
v192192093.26 15393.61 14892.19 21096.04 22478.31 29391.88 22397.24 14085.17 24696.19 10996.19 18086.76 21399.05 9894.18 4298.84 13299.22 33
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12297.64 10496.94 1596.58 8897.32 10093.07 9898.72 15190.45 14598.84 13297.57 202
VDDNet94.03 13194.27 12793.31 17298.87 2182.36 22895.51 8591.78 31897.19 1296.32 9698.60 2284.24 23898.75 14687.09 22898.83 13798.81 84
CPTT-MVS94.74 10294.12 13196.60 4398.15 7793.01 4295.84 7197.66 10389.21 17193.28 22195.46 21488.89 17998.98 10689.80 16998.82 13897.80 185
ACMMP++_ref98.82 138
v2v48293.29 15193.63 14692.29 20696.35 19378.82 28791.77 23096.28 20188.45 18695.70 13396.26 17786.02 22398.90 11893.02 8598.81 14099.14 40
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30596.39 19873.21 35893.27 22296.28 17582.16 26096.39 32077.55 33398.80 14195.62 297
tttt051789.81 24688.90 25592.55 20197.00 14879.73 26895.03 10283.65 38089.88 15695.30 15394.79 24353.64 39199.39 4991.99 10898.79 14298.54 119
PMVScopyleft87.21 1494.97 9495.33 8593.91 14898.97 1797.16 295.54 8495.85 22196.47 2293.40 21797.46 8695.31 3595.47 34286.18 24598.78 14389.11 384
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25296.17 21087.70 20395.26 15696.29 17392.54 11196.45 31881.77 29298.77 14495.66 294
v124093.29 15193.71 14292.06 21796.01 22577.89 30091.81 22897.37 12485.12 24896.69 8396.40 16286.67 21599.07 9794.51 3498.76 14599.22 33
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22792.96 4389.48 29297.46 11985.14 24796.23 10495.42 21793.19 9298.08 22090.37 14998.76 14597.38 219
Anonymous2023120688.77 27188.29 26790.20 28396.31 19778.81 28889.56 29093.49 28574.26 35292.38 25795.58 21182.21 25895.43 34472.07 36898.75 14796.34 261
test_fmvsmvis_n_192095.08 9195.40 8194.13 13896.66 16887.75 13093.44 16098.49 1685.57 23998.27 2097.11 11694.11 7497.75 25696.26 1198.72 14896.89 239
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20483.23 21492.66 18498.19 4093.06 7597.49 4497.15 11294.78 5798.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6195.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
UGNet93.08 15992.50 17794.79 10893.87 30287.99 12595.07 10094.26 27190.64 14287.33 34897.67 6886.89 21198.49 18388.10 20898.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 20591.16 21091.82 22296.27 20179.36 27595.01 10385.61 36796.04 3094.82 17697.06 12072.03 33198.46 18884.96 26398.70 15297.65 198
iter_conf05_1188.91 26788.32 26490.66 26793.95 29978.09 29686.98 33793.06 29279.35 31687.64 34289.80 34680.25 27898.96 11185.18 25398.69 15394.95 315
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9893.58 3794.09 13896.99 15891.05 13292.40 25695.22 22591.03 14799.25 7592.11 10398.69 15397.90 172
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15498.45 498.22 3793.26 7197.54 4097.36 9393.12 9599.38 5593.88 4798.68 15598.04 154
PC_three_145275.31 34695.87 12295.75 20392.93 10196.34 32587.18 22698.68 15598.04 154
miper_lstm_enhance89.90 24489.80 24090.19 28491.37 35777.50 30683.82 38195.00 25084.84 25593.05 23294.96 23576.53 31495.20 35089.96 16798.67 15797.86 177
FMVSNet292.78 17092.73 17192.95 18295.40 25681.98 23194.18 13395.53 23588.63 18296.05 11397.37 9081.31 26998.81 13587.38 22498.67 15798.06 151
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10493.38 6995.89 12197.23 10593.35 8797.66 26388.20 20498.66 15997.79 186
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12096.14 21387.90 12693.36 16397.14 14685.53 24093.90 20495.45 21591.30 13798.59 17389.51 17598.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 9796.84 15989.43 9295.21 9395.66 20693.12 9598.06 22186.28 24498.61 16197.95 167
114514_t90.51 22089.80 24092.63 19698.00 9082.24 22993.40 16197.29 13665.84 39189.40 31394.80 24286.99 20798.75 14683.88 27398.61 16196.89 239
SSC-MVS90.16 23492.96 16281.78 37597.88 9848.48 40790.75 25087.69 34896.02 3196.70 8297.63 7185.60 22997.80 24885.73 24998.60 16399.06 50
patch_mono-292.46 18092.72 17291.71 22796.65 16978.91 28588.85 30997.17 14483.89 26592.45 25396.76 14089.86 17297.09 29390.24 15798.59 16499.12 43
dcpmvs_293.96 13495.01 9990.82 26397.60 11974.04 34593.68 15398.85 889.80 15897.82 2997.01 12591.14 14599.21 7890.56 14398.59 16499.19 36
CDPH-MVS92.67 17491.83 19395.18 9696.94 15188.46 11890.70 25397.07 15277.38 33092.34 26195.08 23192.67 10998.88 12185.74 24898.57 16698.20 141
c3_l91.32 20691.42 20291.00 25692.29 33176.79 31987.52 33096.42 19785.76 23394.72 18293.89 27582.73 25498.16 21590.93 13598.55 16798.04 154
test_prior290.21 26989.33 16790.77 28794.81 24090.41 16188.21 20398.55 167
LCM-MVSNet-Re94.20 12694.58 11693.04 17795.91 23183.13 21893.79 14899.19 392.00 9798.84 598.04 4793.64 7899.02 10381.28 29898.54 16996.96 236
Patchmatch-RL test88.81 27088.52 25989.69 29495.33 26179.94 26186.22 35792.71 30078.46 32495.80 12494.18 26366.25 35595.33 34789.22 18698.53 17093.78 347
Anonymous20240521192.58 17692.50 17792.83 18896.55 17783.22 21592.43 19691.64 32094.10 5295.59 13696.64 15081.88 26597.50 27085.12 25998.52 17197.77 188
CNVR-MVS94.58 10994.29 12495.46 8296.94 15189.35 9691.81 22896.80 17389.66 16093.90 20495.44 21692.80 10698.72 15192.74 9298.52 17198.32 132
HQP_MVS94.26 12293.93 13495.23 9397.71 11188.12 12294.56 11997.81 9291.74 11593.31 21895.59 20886.93 20998.95 11489.26 18498.51 17398.60 116
plane_prior597.81 9298.95 11489.26 18498.51 17398.60 116
baseline94.26 12294.80 10592.64 19496.08 21880.99 24593.69 15298.04 6990.80 13894.89 17496.32 17193.19 9298.48 18791.68 11998.51 17398.43 127
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16798.07 6185.63 23797.08 6197.35 9690.86 14897.66 26395.70 1698.48 17697.74 192
thisisatest053088.69 27487.52 28592.20 20996.33 19579.36 27592.81 17784.01 37986.44 21993.67 20992.68 30653.62 39299.25 7589.65 17498.45 17798.00 159
train_agg92.71 17391.83 19395.35 8496.45 18689.46 9090.60 25696.92 16379.37 31390.49 29194.39 25691.20 14198.88 12188.66 20098.43 17897.72 193
GeoE94.55 11094.68 11394.15 13697.23 13885.11 18994.14 13697.34 13188.71 18195.26 15695.50 21394.65 6199.12 9090.94 13498.40 17998.23 138
ZD-MVS97.23 13890.32 7897.54 11384.40 26094.78 17895.79 19892.76 10799.39 4988.72 19998.40 179
test9_res88.16 20798.40 17997.83 181
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24592.61 30488.04 19494.61 18393.79 27888.08 18797.81 24789.41 17798.39 18296.50 255
VNet92.67 17492.96 16291.79 22396.27 20180.15 25291.95 21694.98 25192.19 9494.52 18696.07 18687.43 19997.39 27984.83 26498.38 18397.83 181
GBi-Net93.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
test193.21 15692.96 16293.97 14395.40 25684.29 19795.99 6396.56 18988.63 18295.10 16498.53 2681.31 26998.98 10686.74 23198.38 18398.65 106
FMVSNet390.78 21390.32 23092.16 21493.03 31779.92 26292.54 18894.95 25286.17 22695.10 16496.01 18969.97 33898.75 14686.74 23198.38 18397.82 183
MVS_111021_HR93.63 14393.42 15594.26 13496.65 16986.96 14689.30 29996.23 20588.36 18993.57 21294.60 25093.45 8297.77 25390.23 15898.38 18398.03 157
agg_prior287.06 22998.36 18897.98 163
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17285.23 24494.75 17997.12 11591.85 12499.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 20090.73 22093.99 14195.76 24187.86 12890.83 24893.98 27878.23 32694.02 19996.22 17982.62 25796.83 30786.57 23698.33 18997.29 223
casdiffmvspermissive94.32 12094.80 10592.85 18796.05 22081.44 23992.35 20098.05 6591.53 12295.75 12896.80 13793.35 8798.49 18391.01 13398.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9196.13 2694.74 18097.23 10591.33 13599.16 8393.25 7798.30 19298.46 125
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20490.95 6990.21 26995.43 23987.91 19593.74 20894.40 25592.88 10496.38 32190.39 14798.28 19397.07 229
CANet92.38 18391.99 18893.52 16693.82 30483.46 21091.14 24197.00 15689.81 15786.47 35294.04 26787.90 19399.21 7889.50 17698.27 19497.90 172
EI-MVSNet92.99 16293.26 16092.19 21092.12 33879.21 28092.32 20294.67 26391.77 11395.24 15995.85 19487.14 20598.49 18391.99 10898.26 19598.86 78
MVSTER89.32 25488.75 25791.03 25390.10 37376.62 32190.85 24794.67 26382.27 28795.24 15995.79 19861.09 37898.49 18390.49 14498.26 19597.97 166
MSLP-MVS++93.25 15593.88 13591.37 23996.34 19482.81 22393.11 16997.74 9989.37 16694.08 19495.29 22490.40 16296.35 32390.35 15098.25 19794.96 314
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17496.60 18585.08 25092.44 25493.62 28286.80 21296.35 32386.81 23098.25 19796.18 269
EI-MVSNet-UG-set94.35 11894.27 12794.59 12192.46 32985.87 17592.42 19794.69 26193.67 6496.13 11095.84 19691.20 14198.86 12593.78 5198.23 19999.03 52
PM-MVS93.33 15092.67 17395.33 8696.58 17494.06 2192.26 20792.18 30985.92 23096.22 10596.61 15285.64 22895.99 33290.35 15098.23 19995.93 280
EI-MVSNet-Vis-set94.36 11794.28 12594.61 11792.55 32685.98 17292.44 19594.69 26193.70 6196.12 11195.81 19791.24 13898.86 12593.76 5498.22 20198.98 60
V4293.43 14893.58 14992.97 18095.34 26081.22 24292.67 18396.49 19487.25 21096.20 10796.37 16887.32 20198.85 12792.39 10198.21 20298.85 81
TAMVS90.16 23489.05 24993.49 16896.49 18386.37 16290.34 26692.55 30580.84 30292.99 23494.57 25281.94 26498.20 21073.51 36098.21 20295.90 283
K. test v393.37 14993.27 15993.66 15798.05 8482.62 22494.35 12586.62 35696.05 2997.51 4398.85 1276.59 31399.65 393.21 7898.20 20498.73 95
DELS-MVS92.05 19192.16 18291.72 22694.44 28680.13 25487.62 32497.25 13987.34 20992.22 26493.18 29489.54 17598.73 15089.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18289.69 8692.91 17597.68 10278.02 32792.79 24194.10 26590.85 14997.96 23284.76 26698.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7697.31 1195.32 15296.77 13893.08 9799.20 8091.79 11598.16 20697.44 212
DP-MVS Recon92.31 18591.88 19193.60 15997.18 14286.87 14791.10 24397.37 12484.92 25392.08 26794.08 26688.59 18098.20 21083.50 27498.14 20895.73 289
EG-PatchMatch MVS94.54 11194.67 11494.14 13797.87 10086.50 15692.00 21596.74 17888.16 19396.93 7297.61 7293.04 9997.90 23591.60 12198.12 20998.03 157
PCF-MVS84.52 1789.12 25787.71 28293.34 17196.06 21985.84 17686.58 35297.31 13368.46 38493.61 21193.89 27587.51 19898.52 18167.85 38598.11 21095.66 294
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25487.06 14296.63 3197.28 13891.82 11094.34 19197.41 8790.60 15898.65 16692.47 9998.11 21097.70 194
PMMVS281.31 35183.44 33074.92 38490.52 36746.49 41069.19 39885.23 37384.30 26287.95 33894.71 24676.95 30884.36 40164.07 39298.09 21293.89 345
lessismore_v093.87 15098.05 8483.77 20880.32 39497.13 6097.91 5877.49 29899.11 9292.62 9698.08 21398.74 94
new-patchmatchnet88.97 26490.79 21883.50 37094.28 29055.83 40585.34 36793.56 28386.18 22595.47 14295.73 20483.10 24796.51 31585.40 25298.06 21498.16 145
plane_prior88.12 12293.01 17188.98 17498.06 214
PVSNet_BlendedMVS90.35 22989.96 23691.54 23494.81 27278.80 28990.14 27296.93 16179.43 31288.68 32795.06 23286.27 22098.15 21680.27 30698.04 21697.68 196
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16896.10 21685.66 18292.32 20296.57 18881.32 29695.63 13497.14 11390.19 16497.73 25995.37 2898.03 21797.07 229
CL-MVSNet_self_test90.04 24289.90 23890.47 27295.24 26277.81 30286.60 35192.62 30385.64 23693.25 22593.92 27383.84 24096.06 33079.93 31498.03 21797.53 206
FMVSNet587.82 28786.56 30491.62 23192.31 33079.81 26693.49 15794.81 25883.26 27091.36 27696.93 12952.77 39397.49 27276.07 34698.03 21797.55 205
原ACMM192.87 18696.91 15484.22 20097.01 15576.84 33689.64 31194.46 25488.00 19098.70 15881.53 29698.01 22095.70 292
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15596.16 21086.26 16692.46 19396.72 17981.69 29395.77 12597.11 11690.83 15097.82 24695.58 1997.99 22197.11 228
v14892.87 16793.29 15691.62 23196.25 20477.72 30491.28 23995.05 24889.69 15995.93 11896.04 18787.34 20098.38 19490.05 16597.99 22198.78 87
WB-MVS89.44 25292.15 18481.32 37697.73 10948.22 40889.73 28587.98 34695.24 3696.05 11396.99 12685.18 23196.95 29982.45 28697.97 22398.78 87
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19291.93 10094.82 17695.39 22191.99 12197.08 29485.53 25197.96 22497.41 213
test1294.43 13095.95 22886.75 15096.24 20489.76 30989.79 17398.79 13997.95 22597.75 191
MCST-MVS92.91 16492.51 17694.10 13997.52 12485.72 18091.36 23897.13 14880.33 30492.91 23894.24 26091.23 13998.72 15189.99 16697.93 22697.86 177
CDS-MVSNet89.55 24888.22 27393.53 16495.37 25986.49 15789.26 30093.59 28179.76 30891.15 28192.31 31477.12 30498.38 19477.51 33497.92 22795.71 290
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 20784.17 20294.82 25695.57 21289.57 17497.89 22896.32 262
alignmvs93.26 15392.85 16694.50 12595.70 24387.45 13393.45 15995.76 22291.58 12095.25 15892.42 31381.96 26398.72 15191.61 12097.87 22997.33 221
testgi90.38 22791.34 20587.50 33197.49 12671.54 36089.43 29495.16 24688.38 18894.54 18594.68 24792.88 10493.09 37271.60 37297.85 23097.88 175
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14084.37 19593.73 15095.26 24484.45 25995.76 12698.00 5091.85 12497.21 28595.62 1797.82 23198.98 60
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17096.69 16684.37 19593.38 16295.13 24784.50 25895.40 14697.55 7991.77 12697.20 28695.59 1897.79 23298.69 103
新几何193.17 17697.16 14387.29 13594.43 26667.95 38591.29 27794.94 23686.97 20898.23 20881.06 30297.75 23393.98 343
ETV-MVS92.99 16292.74 16993.72 15695.86 23386.30 16592.33 20197.84 8991.70 11892.81 23986.17 38092.22 11699.19 8188.03 21297.73 23495.66 294
HQP3-MVS97.31 13397.73 234
HQP-MVS92.09 19091.49 20193.88 14996.36 19084.89 19191.37 23597.31 13387.16 21188.81 32093.40 28884.76 23598.60 17186.55 23897.73 23498.14 147
CANet_DTU89.85 24589.17 24791.87 22092.20 33580.02 25990.79 24995.87 22086.02 22882.53 38391.77 32280.01 27998.57 17685.66 25097.70 23797.01 234
NCCC94.08 13093.54 15295.70 7596.49 18389.90 8392.39 19996.91 16590.64 14292.33 26294.60 25090.58 15998.96 11190.21 15997.70 23798.23 138
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8798.22 3792.36 8794.11 19298.07 4492.02 12099.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary91.63 19891.36 20492.47 20495.56 25286.36 16392.24 20996.27 20288.88 17889.90 30592.69 30591.65 12998.32 20077.38 33697.64 24092.72 366
EPNet_dtu85.63 31684.37 32289.40 29886.30 39874.33 34291.64 23188.26 33984.84 25572.96 40289.85 34471.27 33497.69 26176.60 34197.62 24196.18 269
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 10394.12 13196.50 4798.00 9094.23 1891.48 23498.17 4690.72 13995.30 15396.47 15787.94 19296.98 29891.41 12697.61 24298.30 135
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 31994.95 5398.66 16491.45 12597.57 24397.20 226
XXY-MVS92.58 17693.16 16190.84 26297.75 10679.84 26391.87 22496.22 20785.94 22995.53 13897.68 6692.69 10894.48 35783.21 27797.51 24498.21 140
FA-MVS(test-final)91.81 19491.85 19291.68 22994.95 26779.99 26096.00 6293.44 28687.80 19994.02 19997.29 10177.60 29798.45 18988.04 21197.49 24596.61 249
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14095.41 24089.94 15491.93 27092.13 31790.12 16698.97 11087.68 21897.48 24697.67 197
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19394.53 28584.10 20395.70 7597.03 15482.44 28691.14 28296.42 16088.47 18298.38 19485.95 24697.47 24795.55 299
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14697.36 13385.72 18094.15 13495.44 23783.25 27195.51 13998.05 4592.54 11197.19 28895.55 2097.46 24898.94 66
ab-mvs92.40 18292.62 17491.74 22597.02 14781.65 23595.84 7195.50 23686.95 21692.95 23797.56 7590.70 15697.50 27079.63 31797.43 24996.06 274
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15296.72 16585.73 17993.65 15495.23 24583.30 26995.13 16297.56 7592.22 11697.17 28995.51 2297.41 25098.64 111
thisisatest051584.72 32482.99 33489.90 28992.96 31975.33 33484.36 37683.42 38177.37 33188.27 33386.65 37553.94 39098.72 15182.56 28397.40 25195.67 293
test22296.95 15085.27 18888.83 31093.61 28065.09 39390.74 28894.85 23984.62 23797.36 25293.91 344
API-MVS91.52 20191.61 19691.26 24594.16 29186.26 16694.66 11394.82 25691.17 13092.13 26691.08 33290.03 17197.06 29679.09 32497.35 25390.45 382
EIA-MVS92.35 18492.03 18693.30 17395.81 23883.97 20592.80 17898.17 4687.71 20289.79 30887.56 37091.17 14499.18 8287.97 21397.27 25496.77 245
testdata91.03 25396.87 15682.01 23094.28 27071.55 36692.46 25295.42 21785.65 22797.38 28182.64 28297.27 25493.70 350
N_pmnet88.90 26887.25 29093.83 15394.40 28893.81 3584.73 37187.09 35379.36 31593.26 22392.43 31279.29 28491.68 37877.50 33597.22 25696.00 276
testing383.66 33282.52 33787.08 33495.84 23465.84 38789.80 28477.17 40388.17 19290.84 28688.63 36230.95 41198.11 21884.05 27197.19 25797.28 224
ppachtmachnet_test88.61 27588.64 25888.50 31691.76 34870.99 36484.59 37492.98 29379.30 31892.38 25793.53 28679.57 28197.45 27486.50 24097.17 25897.07 229
CNLPA91.72 19691.20 20793.26 17496.17 20991.02 6791.14 24195.55 23490.16 15290.87 28593.56 28586.31 21994.40 36079.92 31697.12 25994.37 334
FE-MVS89.06 25988.29 26791.36 24094.78 27479.57 27196.77 2890.99 32484.87 25492.96 23696.29 17360.69 38098.80 13880.18 30997.11 26095.71 290
jason89.17 25688.32 26491.70 22895.73 24280.07 25588.10 32093.22 28971.98 36590.09 29992.79 30278.53 29198.56 17787.43 22297.06 26196.46 257
jason: jason.
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11592.42 8493.41 21597.78 6291.21 14097.77 25391.06 13097.06 26198.80 85
cl2289.02 26088.50 26090.59 27089.76 37576.45 32386.62 35094.03 27482.98 27892.65 24592.49 30872.05 33097.53 26888.93 19297.02 26397.78 187
miper_ehance_all_eth90.48 22190.42 22790.69 26691.62 35376.57 32286.83 34396.18 20983.38 26894.06 19692.66 30782.20 25998.04 22289.79 17097.02 26397.45 210
miper_enhance_ethall88.42 27787.87 28090.07 28588.67 38775.52 33285.10 36895.59 23175.68 34092.49 25089.45 35578.96 28597.88 23987.86 21697.02 26396.81 243
eth_miper_zixun_eth90.72 21490.61 22291.05 25292.04 34176.84 31886.91 34096.67 18285.21 24594.41 18793.92 27379.53 28298.26 20689.76 17197.02 26398.06 151
QAPM92.88 16692.77 16793.22 17595.82 23683.31 21196.45 3997.35 13083.91 26493.75 20696.77 13889.25 17798.88 12184.56 26897.02 26397.49 208
thres600view787.66 29087.10 29689.36 29996.05 22073.17 34992.72 18085.31 37091.89 10293.29 22090.97 33363.42 36998.39 19173.23 36296.99 26896.51 252
tt080595.42 7695.93 5793.86 15198.75 3288.47 11797.68 994.29 26996.48 2195.38 14793.63 28194.89 5597.94 23495.38 2796.92 26995.17 305
test_yl90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
DCV-MVSNet90.11 23789.73 24391.26 24594.09 29479.82 26490.44 26092.65 30190.90 13393.19 22893.30 29073.90 32298.03 22382.23 28896.87 27095.93 280
test_fmvs392.42 18192.40 18092.46 20593.80 30587.28 13693.86 14697.05 15376.86 33596.25 10298.66 1882.87 25191.26 38095.44 2596.83 27298.82 82
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4291.26 12695.12 16395.15 22686.60 21799.50 2193.43 7096.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 28587.14 29390.07 28593.26 31276.97 31688.89 30792.18 30973.71 35588.36 33193.89 27576.86 31196.73 31080.32 30596.81 27396.51 252
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18397.73 10983.95 20692.14 21097.46 11978.85 32392.35 25994.98 23484.16 23999.08 9386.36 24296.77 27595.79 287
MVSFormer92.18 18992.23 18192.04 21894.74 27780.06 25697.15 1597.37 12488.98 17488.83 31892.79 30277.02 30699.60 996.41 996.75 27696.46 257
lupinMVS88.34 27987.31 28791.45 23794.74 27780.06 25687.23 33292.27 30871.10 37088.83 31891.15 33077.02 30698.53 18086.67 23496.75 27695.76 288
diffmvspermissive91.74 19591.93 19091.15 25193.06 31578.17 29588.77 31297.51 11886.28 22192.42 25593.96 27288.04 18997.46 27390.69 14196.67 27897.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS89.35 25388.40 26292.18 21396.13 21584.20 20186.96 33996.15 21175.40 34487.36 34791.55 32783.30 24598.01 22782.17 29096.62 27994.32 336
test_fmvs290.62 21990.40 22891.29 24491.93 34585.46 18592.70 18296.48 19574.44 35094.91 17397.59 7375.52 31790.57 38293.44 6796.56 28097.84 180
thres100view90087.35 29986.89 29888.72 31096.14 21373.09 35193.00 17285.31 37092.13 9593.26 22390.96 33463.42 36998.28 20271.27 37496.54 28194.79 324
tfpn200view987.05 30786.52 30688.67 31195.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28194.79 324
thres40087.20 30386.52 30689.24 30395.77 23972.94 35291.89 22186.00 36190.84 13592.61 24689.80 34663.93 36698.28 20271.27 37496.54 28196.51 252
CMPMVSbinary68.83 2287.28 30085.67 31492.09 21688.77 38685.42 18690.31 26794.38 26770.02 37888.00 33693.30 29073.78 32494.03 36575.96 34896.54 28196.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UWE-MVS80.29 36179.10 36283.87 36791.97 34459.56 40186.50 35477.43 40275.40 34487.79 34188.10 36744.08 40396.90 30464.23 39196.36 28595.14 308
pmmvs488.95 26587.70 28392.70 19194.30 28985.60 18387.22 33392.16 31174.62 34989.75 31094.19 26277.97 29596.41 31982.71 28196.36 28596.09 272
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12394.66 28288.25 12092.05 21296.65 18389.62 16190.08 30091.23 32992.56 11098.60 17186.30 24396.27 28796.90 238
MAR-MVS90.32 23188.87 25694.66 11594.82 27191.85 5794.22 13294.75 25980.91 29987.52 34688.07 36886.63 21697.87 24276.67 34096.21 28894.25 337
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 24188.30 26695.32 8896.09 21790.52 7792.42 19792.05 31582.08 29088.45 33092.86 29965.76 35798.69 16088.91 19496.07 28996.75 247
hse-mvs292.24 18891.20 20795.38 8396.16 21090.65 7592.52 18992.01 31689.23 16893.95 20192.99 29776.88 30998.69 16091.02 13196.03 29096.81 243
PVSNet_Blended88.74 27288.16 27690.46 27594.81 27278.80 28986.64 34896.93 16174.67 34888.68 32789.18 35986.27 22098.15 21680.27 30696.00 29194.44 333
F-COLMAP92.28 18691.06 21195.95 5997.52 12491.90 5693.53 15597.18 14383.98 26388.70 32694.04 26788.41 18398.55 17980.17 31095.99 29297.39 217
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24195.69 24481.56 23689.92 27996.05 21483.22 27291.26 27890.74 33691.55 13198.82 13089.29 18195.91 29393.62 353
thres20085.85 31585.18 31687.88 32894.44 28672.52 35689.08 30486.21 35888.57 18591.44 27588.40 36564.22 36498.00 22868.35 38395.88 29693.12 359
Patchmatch-test86.10 31486.01 31186.38 34790.63 36574.22 34489.57 28986.69 35585.73 23489.81 30792.83 30065.24 36191.04 38177.82 33295.78 29793.88 346
h-mvs3392.89 16591.99 18895.58 7796.97 14990.55 7693.94 14494.01 27789.23 16893.95 20196.19 18076.88 30999.14 8691.02 13195.71 29897.04 233
test_fmvs1_n88.73 27388.38 26389.76 29192.06 34082.53 22592.30 20596.59 18771.14 36992.58 24895.41 22068.55 34189.57 39091.12 12995.66 29997.18 227
cascas87.02 30886.28 31089.25 30291.56 35576.45 32384.33 37796.78 17471.01 37186.89 35185.91 38181.35 26896.94 30083.09 27895.60 30094.35 335
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19398.13 5190.69 14093.75 20696.25 17898.03 297.02 29792.08 10595.55 30198.45 126
DSMNet-mixed82.21 34481.56 34384.16 36589.57 37970.00 37090.65 25577.66 40154.99 40283.30 37897.57 7477.89 29690.50 38466.86 38895.54 30291.97 371
MVS_Test92.57 17893.29 15690.40 27693.53 30875.85 32992.52 18996.96 15988.73 17992.35 25996.70 14790.77 15198.37 19892.53 9895.49 30396.99 235
MIMVSNet87.13 30686.54 30588.89 30796.05 22076.11 32694.39 12488.51 33781.37 29588.27 33396.75 14272.38 32895.52 33965.71 39095.47 30495.03 312
Fast-Effi-MVS+91.28 20790.86 21592.53 20295.45 25582.53 22589.25 30296.52 19385.00 25189.91 30488.55 36492.94 10098.84 12884.72 26795.44 30596.22 267
ET-MVSNet_ETH3D86.15 31384.27 32491.79 22393.04 31681.28 24087.17 33586.14 35979.57 31183.65 37388.66 36157.10 38498.18 21387.74 21795.40 30695.90 283
BH-RMVSNet90.47 22290.44 22690.56 27195.21 26378.65 29189.15 30393.94 27988.21 19092.74 24394.22 26186.38 21897.88 23978.67 32695.39 30795.14 308
CHOSEN 1792x268887.19 30485.92 31391.00 25697.13 14579.41 27484.51 37595.60 22764.14 39490.07 30194.81 24078.26 29397.14 29273.34 36195.38 30896.46 257
test_fmvs187.59 29387.27 28988.54 31488.32 38881.26 24190.43 26395.72 22470.55 37591.70 27294.63 24868.13 34289.42 39190.59 14295.34 30994.94 319
Effi-MVS+92.79 16992.74 16992.94 18395.10 26483.30 21294.00 14097.53 11591.36 12589.35 31490.65 34194.01 7598.66 16487.40 22395.30 31096.88 241
MG-MVS89.54 24989.80 24088.76 30994.88 26872.47 35789.60 28892.44 30785.82 23189.48 31295.98 19082.85 25297.74 25881.87 29195.27 31196.08 273
HyFIR lowres test87.19 30485.51 31592.24 20897.12 14680.51 24985.03 36996.06 21266.11 39091.66 27392.98 29870.12 33799.14 8675.29 35095.23 31297.07 229
BH-untuned90.68 21690.90 21390.05 28795.98 22679.57 27190.04 27594.94 25387.91 19594.07 19593.00 29687.76 19497.78 25279.19 32395.17 31392.80 365
pmmvs380.83 35678.96 36486.45 34487.23 39477.48 30784.87 37082.31 38463.83 39585.03 36289.50 35449.66 39493.10 37173.12 36495.10 31488.78 387
testing22280.54 35978.53 36686.58 34292.54 32868.60 37486.24 35682.72 38383.78 26782.68 38284.24 39039.25 40995.94 33360.25 39695.09 31595.20 304
mvs_anonymous90.37 22891.30 20687.58 33092.17 33768.00 37589.84 28294.73 26083.82 26693.22 22797.40 8887.54 19797.40 27887.94 21495.05 31697.34 220
test_vis1_n89.01 26289.01 25189.03 30492.57 32582.46 22792.62 18696.06 21273.02 36090.40 29495.77 20274.86 31989.68 38890.78 13894.98 31794.95 315
IterMVS-SCA-FT91.65 19791.55 19791.94 21993.89 30179.22 27987.56 32793.51 28491.53 12295.37 14996.62 15178.65 28898.90 11891.89 11294.95 31897.70 194
test_vis3_rt90.40 22490.03 23591.52 23592.58 32488.95 10390.38 26497.72 10173.30 35797.79 3097.51 8377.05 30587.10 39589.03 19194.89 31998.50 121
test-LLR83.58 33383.17 33284.79 36089.68 37766.86 38083.08 38284.52 37683.07 27682.85 38084.78 38862.86 37293.49 36882.85 27994.86 32094.03 341
test-mter81.21 35380.01 36084.79 36089.68 37766.86 38083.08 38284.52 37673.85 35482.85 38084.78 38843.66 40493.49 36882.85 27994.86 32094.03 341
PatchMatch-RL89.18 25588.02 27992.64 19495.90 23292.87 4588.67 31691.06 32380.34 30390.03 30291.67 32483.34 24494.42 35976.35 34494.84 32290.64 381
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 25894.58 28481.21 24391.10 24393.41 28777.03 33493.41 21593.99 27183.23 24697.80 24879.93 31494.80 32393.74 349
our_test_387.55 29487.59 28487.44 33291.76 34870.48 36583.83 38090.55 33079.79 30792.06 26892.17 31678.63 29095.63 33784.77 26594.73 32496.22 267
CHOSEN 280x42080.04 36277.97 36986.23 34990.13 37274.53 33972.87 39689.59 33366.38 38976.29 39985.32 38656.96 38595.36 34569.49 38294.72 32588.79 386
IterMVS90.18 23390.16 23190.21 28293.15 31375.98 32887.56 32792.97 29486.43 22094.09 19396.40 16278.32 29297.43 27587.87 21594.69 32697.23 225
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 36080.28 35880.54 37884.73 40469.07 37272.54 39780.73 39287.80 19981.66 38981.73 39562.89 37189.84 38775.79 34994.65 32782.71 397
PLCcopyleft85.34 1590.40 22488.92 25394.85 10596.53 18190.02 8191.58 23296.48 19580.16 30586.14 35492.18 31585.73 22598.25 20776.87 33994.61 32896.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 21190.67 22191.26 24594.16 29183.08 21986.63 34996.19 20890.60 14491.94 26991.89 32089.16 17895.75 33680.96 30394.51 32994.95 315
test_f86.65 31187.13 29485.19 35690.28 37186.11 17086.52 35391.66 31969.76 37995.73 13197.21 10969.51 33981.28 40289.15 18894.40 33088.17 388
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33895.60 22780.88 30087.83 33988.62 36391.04 14698.81 13582.51 28594.38 33191.93 372
PS-MVSNAJ88.86 26988.99 25288.48 31794.88 26874.71 33586.69 34795.60 22780.88 30087.83 33987.37 37390.77 15198.82 13082.52 28494.37 33291.93 372
EU-MVSNet87.39 29886.71 30289.44 29693.40 30976.11 32694.93 10690.00 33257.17 40095.71 13297.37 9064.77 36397.68 26292.67 9594.37 33294.52 331
E-PMN80.72 35780.86 35180.29 37985.11 40268.77 37372.96 39581.97 38587.76 20183.25 37983.01 39462.22 37589.17 39277.15 33894.31 33482.93 396
GA-MVS87.70 28886.82 29990.31 27793.27 31177.22 31184.72 37392.79 29885.11 24989.82 30690.07 34366.80 35097.76 25584.56 26894.27 33595.96 278
ETVMVS79.85 36377.94 37085.59 35192.97 31866.20 38586.13 35880.99 39181.41 29483.52 37683.89 39141.81 40894.98 35456.47 40094.25 33695.61 298
mvsany_test389.11 25888.21 27491.83 22191.30 35890.25 7988.09 32178.76 39776.37 33896.43 9198.39 3383.79 24190.43 38586.57 23694.20 33794.80 323
sss87.23 30186.82 29988.46 31893.96 29777.94 29786.84 34292.78 29977.59 32987.61 34591.83 32178.75 28791.92 37777.84 33094.20 33795.52 300
MDA-MVSNet-bldmvs91.04 20890.88 21491.55 23394.68 28180.16 25185.49 36592.14 31290.41 14994.93 17295.79 19885.10 23296.93 30285.15 25794.19 33997.57 202
Syy-MVS84.81 32384.93 31784.42 36391.71 35063.36 39785.89 36081.49 38781.03 29785.13 36081.64 39677.44 29995.00 35185.94 24794.12 34094.91 320
myMVS_eth3d79.62 36478.26 36783.72 36891.71 35061.25 39985.89 36081.49 38781.03 29785.13 36081.64 39632.12 41095.00 35171.17 37794.12 34094.91 320
WB-MVSnew84.20 32983.89 32885.16 35791.62 35366.15 38688.44 31981.00 39076.23 33987.98 33787.77 36984.98 23493.35 37062.85 39594.10 34295.98 277
testing9183.56 33482.45 33886.91 33892.92 32067.29 37686.33 35588.07 34586.22 22384.26 36985.76 38248.15 39797.17 28976.27 34594.08 34396.27 265
PAPM_NR91.03 20990.81 21791.68 22996.73 16481.10 24493.72 15196.35 20088.19 19188.77 32492.12 31885.09 23397.25 28382.40 28793.90 34496.68 248
YYNet188.17 28188.24 27187.93 32692.21 33473.62 34780.75 39088.77 33582.51 28594.99 17095.11 22982.70 25593.70 36683.33 27593.83 34596.48 256
MDA-MVSNet_test_wron88.16 28288.23 27287.93 32692.22 33373.71 34680.71 39188.84 33482.52 28494.88 17595.14 22782.70 25593.61 36783.28 27693.80 34696.46 257
1112_ss88.42 27787.41 28691.45 23796.69 16680.99 24589.72 28696.72 17973.37 35687.00 35090.69 33977.38 30198.20 21081.38 29793.72 34795.15 307
PVSNet76.22 2082.89 34082.37 33984.48 36293.96 29764.38 39478.60 39388.61 33671.50 36784.43 36886.36 37974.27 32194.60 35669.87 38193.69 34894.46 332
test_vis1_n_192089.45 25189.85 23988.28 32093.59 30776.71 32090.67 25497.78 9779.67 31090.30 29796.11 18476.62 31292.17 37690.31 15293.57 34995.96 278
testing9982.94 33981.72 34286.59 34192.55 32666.53 38286.08 35985.70 36485.47 24383.95 37185.70 38345.87 39897.07 29576.58 34293.56 35096.17 271
test_cas_vis1_n_192088.25 28088.27 26988.20 32292.19 33678.92 28489.45 29395.44 23775.29 34793.23 22695.65 20771.58 33290.23 38688.05 21093.55 35195.44 301
TESTMET0.1,179.09 36678.04 36882.25 37387.52 39264.03 39583.08 38280.62 39370.28 37780.16 39483.22 39344.13 40290.56 38379.95 31293.36 35292.15 370
PAPR87.65 29186.77 30190.27 27992.85 32177.38 30888.56 31796.23 20576.82 33784.98 36389.75 35186.08 22297.16 29172.33 36793.35 35396.26 266
SCA87.43 29787.21 29188.10 32492.01 34271.98 35989.43 29488.11 34482.26 28888.71 32592.83 30078.65 28897.59 26679.61 31893.30 35494.75 326
testing1181.98 34880.52 35586.38 34792.69 32367.13 37785.79 36284.80 37582.16 28981.19 39285.41 38545.24 39996.88 30574.14 35793.24 35595.14 308
Test_1112_low_res87.50 29686.58 30390.25 28096.80 16377.75 30387.53 32996.25 20369.73 38086.47 35293.61 28375.67 31697.88 23979.95 31293.20 35695.11 311
MDTV_nov1_ep1383.88 32989.42 38161.52 39888.74 31387.41 35073.99 35384.96 36494.01 27065.25 36095.53 33878.02 32893.16 357
WTY-MVS86.93 30986.50 30888.24 32194.96 26674.64 33687.19 33492.07 31478.29 32588.32 33291.59 32678.06 29494.27 36274.88 35293.15 35895.80 286
PMMVS83.00 33881.11 34788.66 31283.81 40686.44 16082.24 38685.65 36561.75 39882.07 38585.64 38479.75 28091.59 37975.99 34793.09 35987.94 389
UnsupCasMVSNet_bld88.50 27688.03 27889.90 28995.52 25378.88 28687.39 33194.02 27679.32 31793.06 23194.02 26980.72 27594.27 36275.16 35193.08 36096.54 250
MVS84.98 32284.30 32387.01 33591.03 36077.69 30591.94 21894.16 27259.36 39984.23 37087.50 37285.66 22696.80 30871.79 36993.05 36186.54 392
PatchT87.51 29588.17 27585.55 35290.64 36466.91 37992.02 21486.09 36092.20 9389.05 31797.16 11164.15 36596.37 32289.21 18792.98 36293.37 357
MS-PatchMatch88.05 28387.75 28188.95 30593.28 31077.93 29887.88 32392.49 30675.42 34392.57 24993.59 28480.44 27694.24 36481.28 29892.75 36394.69 329
CR-MVSNet87.89 28487.12 29590.22 28191.01 36178.93 28292.52 18992.81 29673.08 35989.10 31596.93 12967.11 34797.64 26588.80 19692.70 36494.08 338
RPMNet90.31 23290.14 23490.81 26491.01 36178.93 28292.52 18998.12 5291.91 10189.10 31596.89 13268.84 34099.41 3990.17 16092.70 36494.08 338
KD-MVS_2432*160082.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
miper_refine_blended82.17 34580.75 35286.42 34582.04 40770.09 36881.75 38790.80 32782.56 28290.37 29589.30 35642.90 40596.11 32874.47 35492.55 36693.06 360
BH-w/o87.21 30287.02 29787.79 32994.77 27577.27 31087.90 32293.21 29181.74 29289.99 30388.39 36683.47 24396.93 30271.29 37392.43 36889.15 383
IB-MVS77.21 1983.11 33681.05 34889.29 30091.15 35975.85 32985.66 36486.00 36179.70 30982.02 38786.61 37648.26 39698.39 19177.84 33092.22 36993.63 352
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 34781.02 34985.34 35487.46 39371.04 36294.74 11067.56 40696.44 2379.43 39698.99 645.24 39996.15 32667.18 38792.17 37088.85 385
HY-MVS82.50 1886.81 31085.93 31289.47 29593.63 30677.93 29894.02 13991.58 32175.68 34083.64 37493.64 28077.40 30097.42 27671.70 37192.07 37193.05 362
TR-MVS87.70 28887.17 29289.27 30194.11 29379.26 27788.69 31491.86 31781.94 29190.69 28989.79 34982.82 25397.42 27672.65 36691.98 37291.14 378
new_pmnet81.22 35281.01 35081.86 37490.92 36370.15 36784.03 37880.25 39570.83 37285.97 35589.78 35067.93 34684.65 40067.44 38691.90 37390.78 380
FPMVS84.50 32683.28 33188.16 32396.32 19694.49 1685.76 36385.47 36883.09 27585.20 35994.26 25963.79 36886.58 39763.72 39391.88 37483.40 395
UnsupCasMVSNet_eth90.33 23090.34 22990.28 27894.64 28380.24 25089.69 28795.88 21985.77 23293.94 20395.69 20581.99 26292.98 37384.21 27091.30 37597.62 199
MVP-Stereo90.07 24088.92 25393.54 16396.31 19786.49 15790.93 24695.59 23179.80 30691.48 27495.59 20880.79 27497.39 27978.57 32791.19 37696.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 31286.33 30986.87 33991.65 35274.54 33891.94 21894.10 27374.28 35184.78 36587.33 37483.03 24995.00 35178.72 32591.16 37791.06 379
tpm84.38 32784.08 32585.30 35590.47 36863.43 39689.34 29785.63 36677.24 33387.62 34495.03 23361.00 37997.30 28279.26 32291.09 37895.16 306
dmvs_re84.69 32583.94 32786.95 33792.24 33282.93 22189.51 29187.37 35184.38 26185.37 35785.08 38772.44 32786.59 39668.05 38491.03 37991.33 376
CVMVSNet85.16 32084.72 31886.48 34392.12 33870.19 36692.32 20288.17 34256.15 40190.64 29095.85 19467.97 34596.69 31188.78 19790.52 38092.56 367
test0.0.03 182.48 34281.47 34685.48 35389.70 37673.57 34884.73 37181.64 38683.07 27688.13 33586.61 37662.86 37289.10 39366.24 38990.29 38193.77 348
baseline283.38 33581.54 34588.90 30691.38 35672.84 35488.78 31181.22 38978.97 32079.82 39587.56 37061.73 37697.80 24874.30 35690.05 38296.05 275
test_vis1_rt85.58 31784.58 32088.60 31387.97 38986.76 14985.45 36693.59 28166.43 38887.64 34289.20 35879.33 28385.38 39981.59 29589.98 38393.66 351
PAPM81.91 34980.11 35987.31 33393.87 30272.32 35884.02 37993.22 28969.47 38176.13 40089.84 34572.15 32997.23 28453.27 40289.02 38492.37 369
MVS-HIRNet78.83 36780.60 35473.51 38593.07 31447.37 40987.10 33678.00 40068.94 38277.53 39897.26 10271.45 33394.62 35563.28 39488.74 38578.55 400
tpm281.46 35080.35 35784.80 35989.90 37465.14 39090.44 26085.36 36965.82 39282.05 38692.44 31157.94 38396.69 31170.71 37888.49 38692.56 367
CostFormer83.09 33782.21 34085.73 35089.27 38267.01 37890.35 26586.47 35770.42 37683.52 37693.23 29361.18 37796.85 30677.21 33788.26 38793.34 358
GG-mvs-BLEND83.24 37185.06 40371.03 36394.99 10565.55 40774.09 40175.51 40144.57 40194.46 35859.57 39887.54 38884.24 394
PatchmatchNetpermissive85.22 31984.64 31986.98 33689.51 38069.83 37190.52 25887.34 35278.87 32287.22 34992.74 30466.91 34996.53 31381.77 29286.88 38994.58 330
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mvsany_test183.91 33182.93 33586.84 34086.18 39985.93 17381.11 38975.03 40470.80 37488.57 32994.63 24883.08 24887.38 39480.39 30486.57 39087.21 390
baseline187.62 29287.31 28788.54 31494.71 28074.27 34393.10 17088.20 34186.20 22492.18 26593.04 29573.21 32595.52 33979.32 32185.82 39195.83 285
tpmvs84.22 32883.97 32684.94 35887.09 39565.18 38991.21 24088.35 33882.87 27985.21 35890.96 33465.24 36196.75 30979.60 32085.25 39292.90 364
ADS-MVSNet284.01 33082.20 34189.41 29789.04 38376.37 32587.57 32590.98 32572.71 36384.46 36692.45 30968.08 34396.48 31670.58 37983.97 39395.38 302
ADS-MVSNet82.25 34381.55 34484.34 36489.04 38365.30 38887.57 32585.13 37472.71 36384.46 36692.45 30968.08 34392.33 37570.58 37983.97 39395.38 302
JIA-IIPM85.08 32183.04 33391.19 25087.56 39186.14 16989.40 29684.44 37888.98 17482.20 38497.95 5356.82 38696.15 32676.55 34383.45 39591.30 377
MVEpermissive59.87 2373.86 37072.65 37377.47 38287.00 39774.35 34161.37 40060.93 40867.27 38669.69 40386.49 37881.24 27272.33 40456.45 40183.45 39585.74 393
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset78.23 36878.99 36375.94 38391.99 34355.34 40688.86 30878.70 39882.69 28181.64 39079.46 39875.93 31585.74 39848.78 40482.85 39786.76 391
EPMVS81.17 35480.37 35683.58 36985.58 40165.08 39190.31 26771.34 40577.31 33285.80 35691.30 32859.38 38192.70 37479.99 31182.34 39892.96 363
tpmrst82.85 34182.93 33582.64 37287.65 39058.99 40390.14 27287.90 34775.54 34283.93 37291.63 32566.79 35295.36 34581.21 30081.54 39993.57 356
tpm cat180.61 35879.46 36184.07 36688.78 38565.06 39289.26 30088.23 34062.27 39781.90 38889.66 35362.70 37495.29 34871.72 37080.60 40091.86 374
dp79.28 36578.62 36581.24 37785.97 40056.45 40486.91 34085.26 37272.97 36181.45 39189.17 36056.01 38895.45 34373.19 36376.68 40191.82 375
DeepMVS_CXcopyleft53.83 38770.38 40964.56 39348.52 41133.01 40365.50 40474.21 40256.19 38746.64 40638.45 40670.07 40250.30 402
tmp_tt37.97 37244.33 37518.88 38811.80 41121.54 41263.51 39945.66 4124.23 40551.34 40550.48 40359.08 38222.11 40744.50 40568.35 40313.00 403
PVSNet_070.34 2174.58 36972.96 37279.47 38090.63 36566.24 38473.26 39483.40 38263.67 39678.02 39778.35 40072.53 32689.59 38956.68 39960.05 40482.57 398
test_method50.44 37148.94 37454.93 38639.68 41012.38 41328.59 40190.09 3316.82 40441.10 40678.41 39954.41 38970.69 40550.12 40351.26 40581.72 399
test1239.49 37412.01 3771.91 3892.87 4121.30 41482.38 3851.34 4141.36 4072.84 4086.56 4062.45 4120.97 4082.73 4075.56 4063.47 404
testmvs9.02 37511.42 3781.81 3902.77 4131.13 41579.44 3921.90 4131.18 4082.65 4096.80 4051.95 4130.87 4092.62 4083.45 4073.44 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k23.35 37331.13 3760.00 3910.00 4140.00 4160.00 40295.58 2330.00 4090.00 41091.15 33093.43 840.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.56 37610.09 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40990.77 1510.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.56 37610.08 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41090.69 3390.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS61.25 39974.55 353
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
test_one_060198.26 7087.14 14098.18 4294.25 4896.99 7097.36 9395.13 43
eth-test20.00 414
eth-test0.00 414
test_241102_ONE98.51 5086.97 14498.10 5591.85 10497.63 3597.03 12296.48 1098.95 114
save fliter97.46 12988.05 12492.04 21397.08 15187.63 205
test072698.51 5086.69 15295.34 8898.18 4291.85 10497.63 3597.37 9095.58 24
GSMVS94.75 326
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35394.75 326
sam_mvs66.41 354
MTGPAbinary97.62 106
test_post190.21 2695.85 40865.36 35996.00 33179.61 318
test_post6.07 40765.74 35895.84 335
patchmatchnet-post91.71 32366.22 35697.59 266
MTMP94.82 10854.62 410
gm-plane-assit87.08 39659.33 40271.22 36883.58 39297.20 28673.95 358
TEST996.45 18689.46 9090.60 25696.92 16379.09 31990.49 29194.39 25691.31 13698.88 121
test_896.37 18889.14 10090.51 25996.89 16679.37 31390.42 29394.36 25891.20 14198.82 130
agg_prior96.20 20788.89 10696.88 16790.21 29898.78 142
test_prior489.91 8290.74 251
test_prior94.61 11795.95 22887.23 13797.36 12998.68 16297.93 169
旧先验290.00 27768.65 38392.71 24496.52 31485.15 257
新几何290.02 276
无先验89.94 27895.75 22370.81 37398.59 17381.17 30194.81 322
原ACMM289.34 297
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30688.44 187
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 209
plane_prior495.59 208
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 11991.74 115
plane_prior197.38 131
n20.00 415
nn0.00 415
door-mid92.13 313
test1196.65 183
door91.26 322
HQP5-MVS84.89 191
HQP-NCC96.36 19091.37 23587.16 21188.81 320
ACMP_Plane96.36 19091.37 23587.16 21188.81 320
BP-MVS86.55 238
HQP4-MVS88.81 32098.61 16998.15 146
HQP2-MVS84.76 235
NP-MVS96.82 16187.10 14193.40 288
MDTV_nov1_ep13_2view42.48 41188.45 31867.22 38783.56 37566.80 35072.86 36594.06 340
Test By Simon90.61 157