This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 299.95 198.13 299.37 199.57 199.82 199.86 199.85 199.52 199.73 297.58 299.94 199.85 2
UA-Net97.35 597.24 1297.69 698.22 7593.87 3498.42 698.19 4796.95 1695.46 14799.23 693.45 8799.57 1595.34 2999.89 299.63 11
PS-CasMVS96.69 2497.43 694.49 13099.13 684.09 20996.61 3297.97 8597.91 698.64 1498.13 4395.24 4099.65 593.39 7699.84 399.72 4
WR-MVS_H96.60 2997.05 1795.24 9499.02 1286.44 16496.78 2698.08 6597.42 1098.48 1797.86 6591.76 13499.63 894.23 4599.84 399.66 8
FC-MVSNet-test95.32 8495.88 6593.62 16498.49 5681.77 24095.90 7398.32 3093.93 6397.53 4597.56 8188.48 18899.40 4992.91 9499.83 599.68 6
PEN-MVS96.69 2497.39 994.61 12099.16 484.50 19996.54 3498.05 7298.06 598.64 1498.25 4095.01 5399.65 592.95 9399.83 599.68 6
DTE-MVSNet96.74 2197.43 694.67 11799.13 684.68 19896.51 3697.94 9198.14 498.67 1398.32 3795.04 5099.69 493.27 8199.82 799.62 12
CP-MVSNet96.19 4996.80 2094.38 13598.99 1683.82 21296.31 5297.53 12497.60 898.34 2097.52 8691.98 12799.63 893.08 8999.81 899.70 5
LTVRE_ROB93.87 197.93 398.16 297.26 3098.81 2793.86 3599.07 298.98 997.01 1598.92 598.78 1695.22 4298.61 17496.85 499.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 1397.31 1195.33 8898.54 4686.81 15296.83 2298.07 6896.59 2398.46 1898.43 3592.91 10799.52 2096.25 1299.76 1099.65 10
TranMVSNet+NR-MVSNet96.07 5396.26 4295.50 8298.26 7187.69 13493.75 15897.86 9495.96 3897.48 4897.14 12195.33 3699.44 3290.79 14599.76 1099.38 23
Anonymous2023121196.60 2997.13 1695.00 10397.46 13286.35 16897.11 1898.24 4097.58 998.72 998.97 993.15 9999.15 8993.18 8499.74 1299.50 18
UniMVSNet_ETH3D97.13 997.72 495.35 8699.51 287.38 13797.70 897.54 12298.16 398.94 399.33 397.84 499.08 9890.73 14799.73 1399.59 14
pmmvs696.80 1697.36 1095.15 10099.12 887.82 13296.68 2997.86 9496.10 3398.14 2899.28 597.94 398.21 21491.38 13699.69 1499.42 20
FIs94.90 10195.35 8993.55 16798.28 6981.76 24195.33 9898.14 5793.05 8297.07 6497.18 11887.65 20299.29 7391.72 12499.69 1499.61 13
OurMVSNet-221017-096.80 1696.75 2196.96 3999.03 1191.85 6197.98 798.01 8094.15 5898.93 499.07 788.07 19599.57 1595.86 1599.69 1499.46 19
Anonymous2024052192.86 17693.57 15790.74 27396.57 17975.50 33994.15 14495.60 23589.38 17395.90 12397.90 6480.39 28497.96 23892.60 10299.68 1798.75 91
ANet_high94.83 10496.28 4190.47 27996.65 17373.16 35894.33 13798.74 1496.39 2898.09 2998.93 1093.37 9198.70 16290.38 15799.68 1799.53 16
DeepC-MVS91.39 495.43 7795.33 9195.71 7697.67 11990.17 8493.86 15598.02 7987.35 21896.22 10797.99 5494.48 7399.05 10392.73 9899.68 1797.93 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mamv498.21 297.86 399.26 198.24 7499.36 196.10 6399.32 298.75 299.58 298.70 2091.78 13199.88 198.60 199.67 2098.54 119
NR-MVSNet95.28 8895.28 9495.26 9297.75 10987.21 14195.08 11097.37 13393.92 6597.65 3795.90 20390.10 17599.33 7090.11 17199.66 2199.26 30
Baseline_NR-MVSNet94.47 11995.09 10292.60 20698.50 5580.82 25592.08 22096.68 19093.82 6696.29 10198.56 2790.10 17597.75 26290.10 17399.66 2199.24 32
UniMVSNet (Re)95.32 8495.15 9895.80 7297.79 10788.91 10792.91 18498.07 6893.46 7496.31 9995.97 20290.14 17299.34 6592.11 11099.64 2399.16 38
WR-MVS93.49 15293.72 14992.80 19597.57 12580.03 26590.14 28495.68 23393.70 6896.62 8895.39 23387.21 21099.04 10687.50 23099.64 2399.33 26
MIMVSNet195.52 7395.45 8495.72 7599.14 589.02 10596.23 5996.87 17793.73 6797.87 3198.49 3190.73 16199.05 10386.43 25199.60 2599.10 47
ACMH+88.43 1196.48 3496.82 1995.47 8398.54 4689.06 10495.65 8398.61 1596.10 3398.16 2797.52 8696.90 798.62 17390.30 16299.60 2598.72 96
VPA-MVSNet95.14 9395.67 7793.58 16697.76 10883.15 22294.58 12897.58 11993.39 7597.05 6798.04 4993.25 9598.51 18789.75 18199.59 2799.08 48
LPG-MVS_test96.38 4396.23 4396.84 4298.36 6692.13 5695.33 9898.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
LGP-MVS_train96.84 4298.36 6692.13 5698.25 3791.78 11797.07 6497.22 11496.38 1299.28 7692.07 11399.59 2799.11 44
ACMH88.36 1296.59 3197.43 694.07 14498.56 4185.33 19296.33 4998.30 3394.66 4998.72 998.30 3897.51 598.00 23494.87 3399.59 2798.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 8295.21 9695.76 7397.69 11788.59 11692.26 21697.84 9794.91 4796.80 8095.78 21390.42 16699.41 4291.60 12899.58 3199.29 29
DU-MVS95.28 8895.12 10095.75 7497.75 10988.59 11692.58 19697.81 10093.99 6096.80 8095.90 20390.10 17599.41 4291.60 12899.58 3199.26 30
MM94.41 12294.14 13895.22 9795.84 23887.21 14194.31 13990.92 33594.48 5392.80 25097.52 8685.27 23899.49 2896.58 899.57 3398.97 62
ACMP88.15 1395.71 6795.43 8696.54 4998.17 7891.73 6494.24 14098.08 6589.46 17196.61 8996.47 16595.85 1899.12 9490.45 15499.56 3498.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 11195.27 9592.90 19196.57 17980.15 25994.65 12597.57 12090.68 14897.43 5098.00 5288.18 19299.15 8994.84 3499.55 3599.41 21
MVS_030492.88 17392.27 18994.69 11692.35 33886.03 17692.88 18689.68 34290.53 15291.52 28596.43 16882.52 26699.32 7195.01 3299.54 3698.71 99
PS-MVSNAJss96.01 5496.04 5695.89 6998.82 2588.51 11995.57 8997.88 9288.72 18898.81 798.86 1290.77 15799.60 1095.43 2599.53 3799.57 15
TDRefinement97.68 497.60 597.93 399.02 1295.95 998.61 398.81 1197.41 1197.28 5898.46 3394.62 6698.84 13294.64 3699.53 3798.99 56
IS-MVSNet94.49 11894.35 13094.92 10598.25 7386.46 16397.13 1794.31 27696.24 3196.28 10396.36 17882.88 25899.35 6288.19 21599.52 3998.96 64
nrg03096.32 4496.55 2995.62 7897.83 10388.55 11895.77 7898.29 3692.68 8498.03 3097.91 6295.13 4598.95 11893.85 5499.49 4099.36 25
MP-MVS-pluss96.08 5295.92 6396.57 4899.06 1091.21 6993.25 17398.32 3087.89 20796.86 7697.38 9695.55 2699.39 5295.47 2399.47 4199.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 1296.71 2297.17 3198.83 2492.51 5296.58 3397.61 11687.57 21698.80 898.90 1196.50 999.59 1496.15 1399.47 4199.40 22
v894.65 11295.29 9392.74 19696.65 17379.77 27494.59 12697.17 15391.86 10997.47 4997.93 5788.16 19399.08 9894.32 4299.47 4199.38 23
CLD-MVS91.82 20291.41 21293.04 18396.37 19383.65 21486.82 35597.29 14584.65 26892.27 27389.67 36492.20 12397.85 25183.95 28199.47 4197.62 207
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 8495.10 10195.96 6096.86 16190.75 7896.33 4999.20 593.99 6091.03 29593.73 29093.52 8699.55 1991.81 12199.45 4597.58 209
jajsoiax96.59 3196.42 3397.12 3398.76 3092.49 5396.44 4397.42 13186.96 22598.71 1198.72 1995.36 3499.56 1895.92 1499.45 4599.32 27
test_djsdf96.62 2796.49 3097.01 3698.55 4491.77 6397.15 1597.37 13388.98 18298.26 2498.86 1293.35 9299.60 1096.41 999.45 4599.66 8
CP-MVS96.44 3896.08 5397.54 1598.29 6894.62 1896.80 2498.08 6592.67 8695.08 17396.39 17594.77 6299.42 3693.17 8599.44 4898.58 118
COLMAP_ROBcopyleft91.06 596.75 2096.62 2697.13 3298.38 6194.31 2196.79 2598.32 3096.69 1996.86 7697.56 8195.48 2798.77 14990.11 17199.44 4898.31 138
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 7897.40 5497.35 10394.69 6399.34 6593.88 5299.42 5098.89 75
MTAPA96.65 2696.38 3797.47 1998.95 1894.05 2795.88 7497.62 11494.46 5496.29 10196.94 13693.56 8499.37 6094.29 4499.42 5098.99 56
pm-mvs195.43 7795.94 6093.93 15198.38 6185.08 19595.46 9497.12 15891.84 11397.28 5898.46 3395.30 3897.71 26690.17 16999.42 5098.99 56
XVG-ACMP-BASELINE95.68 6895.34 9096.69 4598.40 5993.04 4594.54 13398.05 7290.45 15596.31 9996.76 14892.91 10798.72 15591.19 13799.42 5098.32 136
wuyk23d87.83 29490.79 22678.96 39490.46 38088.63 11292.72 18990.67 33891.65 12598.68 1297.64 7696.06 1577.53 41659.84 41099.41 5470.73 414
anonymousdsp96.74 2196.42 3397.68 898.00 9294.03 2996.97 1997.61 11687.68 21498.45 1998.77 1794.20 7799.50 2296.70 699.40 5599.53 16
SixPastTwentyTwo94.91 10095.21 9693.98 14698.52 4883.19 22195.93 7194.84 26394.86 4898.49 1698.74 1881.45 27599.60 1094.69 3599.39 5699.15 39
HPM-MVS_fast97.01 1096.89 1897.39 2599.12 893.92 3297.16 1498.17 5393.11 8096.48 9297.36 10096.92 699.34 6594.31 4399.38 5798.92 72
HPM-MVScopyleft96.81 1596.62 2697.36 2798.89 2093.53 4297.51 1098.44 2092.35 9395.95 11996.41 17096.71 899.42 3693.99 5199.36 5899.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
reproduce_model97.35 597.24 1297.70 598.44 5895.08 1295.88 7498.50 1896.62 2298.27 2197.93 5794.57 6899.50 2295.57 2099.35 5998.52 122
SDMVSNet94.43 12195.02 10392.69 19897.93 9782.88 22891.92 22995.99 22693.65 7295.51 14298.63 2394.60 6796.48 32587.57 22999.35 5998.70 100
sd_testset93.94 14294.39 12692.61 20597.93 9783.24 21893.17 17795.04 25793.65 7295.51 14298.63 2394.49 7295.89 34481.72 30499.35 5998.70 100
KD-MVS_self_test94.10 13694.73 11592.19 21797.66 12079.49 28094.86 11897.12 15889.59 17096.87 7597.65 7590.40 16898.34 20489.08 20099.35 5998.75 91
ACMMP_NAP96.21 4896.12 5096.49 5298.90 1991.42 6794.57 12998.03 7790.42 15696.37 9597.35 10395.68 2199.25 7994.44 4099.34 6398.80 85
SteuartSystems-ACMMP96.40 4196.30 4096.71 4498.63 3491.96 5995.70 8098.01 8093.34 7796.64 8796.57 16294.99 5499.36 6193.48 6899.34 6398.82 82
Skip Steuart: Steuart Systems R&D Blog.
reproduce-ours97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
our_new_method97.28 797.19 1497.57 1298.37 6394.84 1395.57 8998.40 2496.36 2998.18 2597.78 6795.47 2899.50 2295.26 3099.33 6598.36 132
ACMMPcopyleft96.61 2896.34 3897.43 2298.61 3793.88 3396.95 2098.18 4992.26 9696.33 9796.84 14495.10 4899.40 4993.47 6999.33 6599.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4696.07 5496.97 3898.39 6092.95 4894.74 12198.03 7790.82 14497.15 6196.85 14296.25 1499.00 11093.10 8799.33 6598.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111190.39 23490.61 23089.74 29998.04 8971.50 37095.59 8579.72 40989.41 17295.94 12098.14 4270.79 34398.81 13988.52 21299.32 6998.90 74
DVP-MVScopyleft95.82 6296.18 4694.72 11498.51 4986.69 15695.20 10697.00 16591.85 11097.40 5497.35 10395.58 2499.34 6593.44 7299.31 7098.13 153
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10798.55 4486.72 15595.20 10698.22 4499.38 5893.44 7299.31 7098.53 121
MSC_two_6792asdad95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
No_MVS95.90 6796.54 18289.57 9196.87 17799.41 4294.06 4899.30 7298.72 96
APDe-MVScopyleft96.46 3596.64 2595.93 6497.68 11889.38 9896.90 2198.41 2392.52 8897.43 5097.92 6195.11 4799.50 2294.45 3999.30 7298.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS96.00 5596.41 3694.76 11298.51 4986.97 14895.21 10498.10 6291.95 10497.63 3897.25 11096.48 1099.35 6293.29 7999.29 7597.95 172
IU-MVS98.51 4986.66 15896.83 18072.74 37595.83 12693.00 9199.29 7598.64 111
SMA-MVScopyleft95.77 6495.54 8196.47 5398.27 7091.19 7095.09 10997.79 10486.48 22897.42 5297.51 9094.47 7499.29 7393.55 6499.29 7598.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 5095.68 7697.51 1798.81 2794.06 2596.10 6397.78 10592.73 8393.48 22296.72 15494.23 7699.42 3691.99 11599.29 7599.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 6696.22 4494.26 13898.19 7785.77 18293.24 17497.24 14996.88 1897.69 3697.77 7194.12 7899.13 9391.54 13299.29 7597.88 182
ZNCC-MVS96.42 3996.20 4597.07 3498.80 2992.79 5096.08 6598.16 5691.74 12195.34 15496.36 17895.68 2199.44 3294.41 4199.28 8098.97 62
DPE-MVScopyleft95.89 5995.88 6595.92 6697.93 9789.83 8893.46 16798.30 3392.37 9197.75 3596.95 13595.14 4499.51 2191.74 12399.28 8098.41 131
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
mPP-MVS96.46 3596.05 5597.69 698.62 3594.65 1796.45 4197.74 10792.59 8795.47 14596.68 15694.50 7199.42 3693.10 8799.26 8298.99 56
test_241102_TWO98.10 6291.95 10497.54 4397.25 11095.37 3299.35 6293.29 7999.25 8398.49 125
ACMMP++99.25 83
CSCG94.69 11094.75 11294.52 12797.55 12687.87 13095.01 11497.57 12092.68 8496.20 10993.44 29891.92 12898.78 14689.11 19999.24 8596.92 247
testf196.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
APD_test296.77 1896.49 3097.60 1099.01 1496.70 496.31 5298.33 2894.96 4597.30 5697.93 5796.05 1697.90 24189.32 18899.23 8698.19 147
TransMVSNet (Re)95.27 9196.04 5692.97 18698.37 6381.92 23995.07 11196.76 18693.97 6297.77 3498.57 2695.72 2097.90 24188.89 20599.23 8699.08 48
EC-MVSNet95.44 7695.62 7894.89 10696.93 15687.69 13496.48 4099.14 793.93 6392.77 25294.52 26493.95 8199.49 2893.62 6199.22 8997.51 215
EGC-MVSNET80.97 36775.73 38496.67 4698.85 2394.55 1996.83 2296.60 1942.44 4215.32 42298.25 4092.24 12098.02 23191.85 12099.21 9097.45 218
PGM-MVS96.32 4495.94 6097.43 2298.59 4093.84 3695.33 9898.30 3391.40 13295.76 12996.87 14195.26 3999.45 3192.77 9599.21 9099.00 54
SD-MVS95.19 9295.73 7493.55 16796.62 17788.88 10994.67 12398.05 7291.26 13497.25 6096.40 17195.42 3094.36 37292.72 9999.19 9297.40 224
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 23190.16 23991.20 25797.66 12077.32 31694.33 13787.66 35991.20 13692.99 24495.13 23975.40 32598.28 20777.86 34099.19 9297.99 167
test250685.42 32884.57 33187.96 33297.81 10566.53 39396.14 6156.35 42289.04 18093.55 22198.10 4442.88 41998.68 16688.09 21999.18 9498.67 104
ECVR-MVScopyleft90.12 24590.16 23990.00 29597.81 10572.68 36495.76 7978.54 41289.04 18095.36 15398.10 4470.51 34598.64 17287.10 23799.18 9498.67 104
tfpnnormal94.27 12894.87 10892.48 21097.71 11480.88 25494.55 13295.41 24893.70 6896.67 8697.72 7291.40 14098.18 21887.45 23199.18 9498.36 132
FMVSNet194.84 10395.13 9993.97 14797.60 12284.29 20295.99 6796.56 19892.38 9097.03 6898.53 2890.12 17398.98 11188.78 20799.16 9798.65 106
ACMMPR96.46 3596.14 4997.41 2498.60 3893.82 3796.30 5697.96 8692.35 9395.57 14096.61 16094.93 5899.41 4293.78 5699.15 9899.00 54
HFP-MVS96.39 4296.17 4897.04 3598.51 4993.37 4396.30 5697.98 8392.35 9395.63 13796.47 16595.37 3299.27 7893.78 5699.14 9998.48 126
VDD-MVS94.37 12394.37 12894.40 13497.49 12986.07 17593.97 15293.28 29794.49 5296.24 10597.78 6787.99 19898.79 14388.92 20399.14 9998.34 135
region2R96.41 4096.09 5197.38 2698.62 3593.81 3996.32 5197.96 8692.26 9695.28 15996.57 16295.02 5299.41 4293.63 6099.11 10198.94 66
Gipumacopyleft95.31 8795.80 7293.81 15897.99 9590.91 7496.42 4497.95 8896.69 1991.78 28298.85 1491.77 13295.49 35191.72 12499.08 10295.02 327
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4795.99 5997.00 3798.65 3392.71 5195.69 8298.01 8092.08 10295.74 13296.28 18495.22 4299.42 3693.17 8599.06 10398.88 77
OPM-MVS95.61 7095.45 8496.08 5798.49 5691.00 7292.65 19497.33 14190.05 16196.77 8296.85 14295.04 5098.56 18192.77 9599.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPNet93.08 16693.76 14891.03 26198.60 3875.83 33791.51 24295.62 23491.84 11395.74 13297.10 12689.31 18398.32 20585.07 27099.06 10398.93 68
SF-MVS95.88 6095.88 6595.87 7098.12 8089.65 9095.58 8898.56 1791.84 11396.36 9696.68 15694.37 7599.32 7192.41 10699.05 10698.64 111
CS-MVS95.77 6495.58 8096.37 5496.84 16391.72 6596.73 2899.06 894.23 5692.48 26194.79 25493.56 8499.49 2893.47 6999.05 10697.89 181
XVS96.49 3396.18 4697.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19696.49 16494.56 6999.39 5293.57 6299.05 10698.93 68
X-MVStestdata90.70 22388.45 27197.44 2098.56 4193.99 3096.50 3797.95 8894.58 5094.38 19626.89 41994.56 6999.39 5293.57 6299.05 10698.93 68
test20.0390.80 22090.85 22490.63 27695.63 25479.24 28589.81 29592.87 30389.90 16394.39 19596.40 17185.77 23195.27 35973.86 37199.05 10697.39 225
Anonymous2024052995.50 7495.83 6994.50 12897.33 13885.93 17895.19 10896.77 18596.64 2197.61 4198.05 4793.23 9698.79 14388.60 21199.04 11198.78 87
IterMVS-LS93.78 14694.28 13292.27 21496.27 20679.21 28791.87 23396.78 18391.77 11996.57 9197.07 12787.15 21198.74 15391.99 11599.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mmtdpeth95.82 6296.02 5895.23 9596.91 15788.62 11396.49 3999.26 495.07 4493.41 22499.29 490.25 17097.27 29094.49 3899.01 11399.80 3
test_fmvsmconf0.01_n95.90 5896.09 5195.31 9197.30 13989.21 10094.24 14098.76 1386.25 23297.56 4298.66 2195.73 1998.44 19597.35 398.99 11498.27 141
test_fmvsmconf0.1_n95.61 7095.72 7595.26 9296.85 16289.20 10193.51 16598.60 1685.68 24697.42 5298.30 3895.34 3598.39 19696.85 498.98 11598.19 147
cl____90.65 22590.56 23290.91 26891.85 35576.98 32286.75 35695.36 25085.53 25194.06 20594.89 24877.36 31097.98 23790.27 16498.98 11597.76 197
AllTest94.88 10294.51 12496.00 5898.02 9092.17 5495.26 10298.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
TestCases96.00 5898.02 9092.17 5498.43 2190.48 15395.04 17496.74 15192.54 11697.86 24985.11 26898.98 11597.98 168
Patchmtry90.11 24689.92 24590.66 27590.35 38177.00 32092.96 18292.81 30490.25 15994.74 18796.93 13767.11 35697.52 27585.17 26398.98 11597.46 217
DIV-MVS_self_test90.65 22590.56 23290.91 26891.85 35576.99 32186.75 35695.36 25085.52 25394.06 20594.89 24877.37 30997.99 23690.28 16398.97 12097.76 197
9.1494.81 10997.49 12994.11 14798.37 2687.56 21795.38 15096.03 19994.66 6499.08 9890.70 14898.97 120
D2MVS89.93 25289.60 25390.92 26694.03 30578.40 30088.69 32694.85 26278.96 33393.08 24095.09 24174.57 32796.94 30988.19 21598.96 12297.41 221
PHI-MVS94.34 12693.80 14695.95 6195.65 25291.67 6694.82 11997.86 9487.86 20893.04 24394.16 27591.58 13698.78 14690.27 16498.96 12297.41 221
test_fmvsmconf_n95.43 7795.50 8295.22 9796.48 18989.19 10293.23 17598.36 2785.61 24996.92 7498.02 5195.23 4198.38 19996.69 798.95 12498.09 155
mvs5depth95.28 8895.82 7193.66 16296.42 19283.08 22497.35 1299.28 396.44 2696.20 10999.65 284.10 24898.01 23294.06 4898.93 12599.87 1
ambc92.98 18596.88 15983.01 22695.92 7296.38 20896.41 9497.48 9288.26 19197.80 25489.96 17698.93 12598.12 154
balanced_conf0393.45 15494.17 13791.28 25295.81 24278.40 30096.20 6097.48 12888.56 19495.29 15897.20 11785.56 23799.21 8292.52 10498.91 12796.24 279
EPNet89.80 25688.25 27994.45 13283.91 41786.18 17293.87 15487.07 36591.16 13880.64 40694.72 25678.83 29298.89 12485.17 26398.89 12898.28 140
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 14393.68 15294.59 12498.08 8385.55 18897.44 1194.03 28294.22 5794.94 17896.19 19082.07 27099.57 1587.28 23598.89 12898.65 106
v119293.49 15293.78 14792.62 20496.16 21579.62 27691.83 23697.22 15186.07 23796.10 11596.38 17687.22 20999.02 10894.14 4798.88 13099.22 33
v114493.50 15193.81 14492.57 20796.28 20579.61 27791.86 23596.96 16886.95 22695.91 12296.32 18087.65 20298.96 11693.51 6598.88 13099.13 41
APD-MVS_3200maxsize96.82 1396.65 2497.32 2997.95 9693.82 3796.31 5298.25 3795.51 4196.99 7197.05 12995.63 2399.39 5293.31 7898.88 13098.75 91
APD-MVScopyleft95.00 9794.69 11695.93 6497.38 13490.88 7594.59 12697.81 10089.22 17895.46 14796.17 19393.42 9099.34 6589.30 19098.87 13397.56 212
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 13293.69 15195.81 7197.25 14091.27 6892.27 21597.40 13287.10 22494.56 19195.42 22993.74 8298.11 22386.62 24598.85 13498.06 156
SR-MVS-dyc-post96.84 1196.60 2897.56 1498.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13094.85 6099.42 3693.49 6698.84 13598.00 164
RE-MVS-def96.66 2398.07 8495.27 1096.37 4698.12 5995.66 3997.00 6997.03 13095.40 3193.49 6698.84 13598.00 164
v14419293.20 16593.54 15992.16 22196.05 22578.26 30391.95 22597.14 15584.98 26395.96 11896.11 19587.08 21399.04 10693.79 5598.84 13599.17 37
v192192093.26 16093.61 15592.19 21796.04 22978.31 30291.88 23297.24 14985.17 25796.19 11296.19 19086.76 22199.05 10394.18 4698.84 13599.22 33
DP-MVS95.62 6995.84 6894.97 10497.16 14688.62 11394.54 13397.64 11296.94 1796.58 9097.32 10793.07 10398.72 15590.45 15498.84 13597.57 210
VDDNet94.03 13894.27 13493.31 17898.87 2182.36 23495.51 9391.78 32797.19 1396.32 9898.60 2584.24 24698.75 15087.09 23898.83 14098.81 84
CPTT-MVS94.74 10794.12 13996.60 4798.15 7993.01 4695.84 7697.66 11189.21 17993.28 23195.46 22688.89 18698.98 11189.80 17898.82 14197.80 193
ACMMP++_ref98.82 141
v2v48293.29 15893.63 15392.29 21396.35 19878.82 29591.77 23996.28 21088.45 19595.70 13696.26 18786.02 23098.90 12293.02 9098.81 14399.14 40
MVSMamba_PlusPlus94.82 10595.89 6491.62 23897.82 10478.88 29396.52 3597.60 11897.14 1494.23 19998.48 3287.01 21499.71 395.43 2598.80 14496.28 276
USDC89.02 26989.08 25888.84 31595.07 27374.50 34788.97 31796.39 20773.21 37193.27 23296.28 18482.16 26996.39 32977.55 34498.80 14495.62 310
tttt051789.81 25588.90 26592.55 20897.00 15179.73 27595.03 11383.65 39289.88 16495.30 15694.79 25453.64 40199.39 5291.99 11598.79 14698.54 119
PMVScopyleft87.21 1494.97 9895.33 9193.91 15298.97 1797.16 395.54 9295.85 22996.47 2593.40 22797.46 9395.31 3795.47 35286.18 25598.78 14789.11 397
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 20192.76 17689.71 30095.62 25577.02 31990.72 26496.17 21987.70 21395.26 16096.29 18292.54 11696.45 32781.77 30298.77 14895.66 307
v124093.29 15893.71 15092.06 22496.01 23077.89 30891.81 23797.37 13385.12 25996.69 8596.40 17186.67 22299.07 10294.51 3798.76 14999.22 33
DeepPCF-MVS90.46 694.20 13393.56 15896.14 5595.96 23292.96 4789.48 30497.46 12985.14 25896.23 10695.42 22993.19 9798.08 22590.37 15898.76 14997.38 227
Anonymous2023120688.77 27888.29 27690.20 28996.31 20278.81 29689.56 30293.49 29474.26 36592.38 26795.58 22382.21 26795.43 35472.07 38098.75 15196.34 272
test_fmvsmvis_n_192095.08 9595.40 8894.13 14296.66 17287.75 13393.44 16998.49 1985.57 25098.27 2197.11 12494.11 7997.75 26296.26 1198.72 15296.89 249
casdiffmvs_mvgpermissive95.10 9495.62 7893.53 17096.25 20983.23 21992.66 19398.19 4793.06 8197.49 4797.15 12094.78 6198.71 16192.27 10898.72 15298.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS96.70 2396.42 3397.54 1598.05 8694.69 1596.13 6298.07 6895.17 4396.82 7996.73 15395.09 4999.43 3592.99 9298.71 15498.50 123
UGNet93.08 16692.50 18594.79 11193.87 30987.99 12895.07 11194.26 27990.64 14987.33 36097.67 7486.89 21998.49 18888.10 21898.71 15497.91 178
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 21491.16 21991.82 22996.27 20679.36 28295.01 11485.61 37996.04 3694.82 18397.06 12872.03 33998.46 19384.96 27198.70 15697.65 206
HPM-MVS++copyleft95.02 9694.39 12696.91 4197.88 10093.58 4194.09 14896.99 16791.05 13992.40 26695.22 23691.03 15399.25 7992.11 11098.69 15797.90 179
DVP-MVS++95.93 5696.34 3894.70 11596.54 18286.66 15898.45 498.22 4493.26 7897.54 4397.36 10093.12 10099.38 5893.88 5298.68 15898.04 159
PC_three_145275.31 35995.87 12595.75 21592.93 10696.34 33487.18 23698.68 15898.04 159
miper_lstm_enhance89.90 25389.80 24890.19 29091.37 36677.50 31383.82 39395.00 25884.84 26693.05 24294.96 24676.53 32195.20 36089.96 17698.67 16097.86 185
FMVSNet292.78 17892.73 17992.95 18895.40 26481.98 23894.18 14395.53 24388.63 19096.05 11697.37 9781.31 27798.81 13987.38 23498.67 16098.06 156
APD_test195.91 5795.42 8797.36 2798.82 2596.62 795.64 8497.64 11293.38 7695.89 12497.23 11293.35 9297.66 26988.20 21498.66 16297.79 194
DeepC-MVS_fast89.96 793.73 14793.44 16194.60 12396.14 21887.90 12993.36 17297.14 15585.53 25193.90 21395.45 22791.30 14398.59 17889.51 18498.62 16397.31 230
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 10096.84 16389.43 9595.21 10495.66 21893.12 10098.06 22686.28 25498.61 16497.95 172
114514_t90.51 22889.80 24892.63 20398.00 9282.24 23693.40 17097.29 14565.84 40589.40 32694.80 25386.99 21598.75 15083.88 28298.61 16496.89 249
SSC-MVS90.16 24392.96 17081.78 38897.88 10048.48 42090.75 26287.69 35896.02 3796.70 8497.63 7785.60 23697.80 25485.73 25998.60 16699.06 50
patch_mono-292.46 18892.72 18091.71 23496.65 17378.91 29288.85 32197.17 15383.89 27692.45 26396.76 14889.86 17997.09 30290.24 16698.59 16799.12 43
dcpmvs_293.96 14195.01 10490.82 27197.60 12274.04 35393.68 16298.85 1089.80 16697.82 3297.01 13391.14 15199.21 8290.56 15198.59 16799.19 36
CDPH-MVS92.67 18291.83 20295.18 9996.94 15488.46 12190.70 26597.07 16177.38 34292.34 27195.08 24292.67 11498.88 12585.74 25898.57 16998.20 146
c3_l91.32 21591.42 21191.00 26492.29 34076.79 32587.52 34296.42 20685.76 24494.72 18993.89 28682.73 26298.16 22090.93 14498.55 17098.04 159
test_prior290.21 28189.33 17590.77 29894.81 25190.41 16788.21 21398.55 170
LCM-MVSNet-Re94.20 13394.58 12393.04 18395.91 23583.13 22393.79 15799.19 692.00 10398.84 698.04 4993.64 8399.02 10881.28 30998.54 17296.96 246
Patchmatch-RL test88.81 27788.52 26989.69 30195.33 26979.94 26886.22 36892.71 30878.46 33695.80 12794.18 27466.25 36495.33 35789.22 19698.53 17393.78 359
Anonymous20240521192.58 18492.50 18592.83 19496.55 18183.22 22092.43 20591.64 32994.10 5995.59 13996.64 15881.88 27497.50 27685.12 26798.52 17497.77 196
CNVR-MVS94.58 11594.29 13195.46 8496.94 15489.35 9991.81 23796.80 18289.66 16893.90 21395.44 22892.80 11198.72 15592.74 9798.52 17498.32 136
HQP_MVS94.26 12993.93 14295.23 9597.71 11488.12 12594.56 13097.81 10091.74 12193.31 22895.59 22086.93 21798.95 11889.26 19498.51 17698.60 116
plane_prior597.81 10098.95 11889.26 19498.51 17698.60 116
baseline94.26 12994.80 11092.64 20096.08 22380.99 25293.69 16198.04 7690.80 14594.89 18196.32 18093.19 9798.48 19291.68 12698.51 17698.43 130
test_fmvsm_n_192094.72 10894.74 11494.67 11796.30 20488.62 11393.19 17698.07 6885.63 24897.08 6397.35 10390.86 15497.66 26995.70 1698.48 17997.74 200
thisisatest053088.69 28187.52 29392.20 21696.33 20079.36 28292.81 18784.01 39186.44 22993.67 21892.68 31853.62 40299.25 7989.65 18398.45 18098.00 164
train_agg92.71 18191.83 20295.35 8696.45 19089.46 9390.60 26896.92 17279.37 32690.49 30394.39 26791.20 14798.88 12588.66 21098.43 18197.72 201
GeoE94.55 11694.68 11994.15 14097.23 14185.11 19494.14 14697.34 14088.71 18995.26 16095.50 22594.65 6599.12 9490.94 14398.40 18298.23 143
ZD-MVS97.23 14190.32 8297.54 12284.40 27194.78 18595.79 21092.76 11299.39 5288.72 20998.40 182
test9_res88.16 21798.40 18297.83 189
TSAR-MVS + GP.93.07 16892.41 18795.06 10295.82 24090.87 7690.97 25792.61 31288.04 20494.61 19093.79 28988.08 19497.81 25389.41 18798.39 18596.50 265
VNet92.67 18292.96 17091.79 23096.27 20680.15 25991.95 22594.98 25992.19 10094.52 19396.07 19787.43 20697.39 28584.83 27298.38 18697.83 189
GBi-Net93.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
test193.21 16392.96 17093.97 14795.40 26484.29 20295.99 6796.56 19888.63 19095.10 17098.53 2881.31 27798.98 11186.74 24198.38 18698.65 106
FMVSNet390.78 22190.32 23892.16 22193.03 32479.92 26992.54 19794.95 26086.17 23695.10 17096.01 20069.97 34798.75 15086.74 24198.38 18697.82 191
MVS_111021_HR93.63 14993.42 16294.26 13896.65 17386.96 15089.30 31196.23 21488.36 19993.57 22094.60 26193.45 8797.77 25990.23 16798.38 18698.03 162
agg_prior287.06 23998.36 19197.98 168
TSAR-MVS + MP.94.96 9994.75 11295.57 8098.86 2288.69 11096.37 4696.81 18185.23 25594.75 18697.12 12391.85 12999.40 4993.45 7198.33 19298.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 20990.73 22893.99 14595.76 24687.86 13190.83 26093.98 28678.23 33894.02 20896.22 18982.62 26596.83 31686.57 24698.33 19297.29 231
casdiffmvspermissive94.32 12794.80 11092.85 19396.05 22581.44 24692.35 20998.05 7291.53 12995.75 13196.80 14593.35 9298.49 18891.01 14298.32 19498.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+92.74 295.86 6195.77 7396.13 5696.81 16690.79 7796.30 5697.82 9996.13 3294.74 18797.23 11291.33 14199.16 8893.25 8298.30 19598.46 127
MVS_111021_LR93.66 14893.28 16594.80 11096.25 20990.95 7390.21 28195.43 24787.91 20593.74 21794.40 26692.88 10996.38 33090.39 15698.28 19697.07 239
CANet92.38 19191.99 19793.52 17293.82 31183.46 21591.14 25297.00 16589.81 16586.47 36494.04 27887.90 20099.21 8289.50 18598.27 19797.90 179
EI-MVSNet92.99 16993.26 16792.19 21792.12 34779.21 28792.32 21194.67 27291.77 11995.24 16395.85 20587.14 21298.49 18891.99 11598.26 19898.86 78
MVSTER89.32 26388.75 26791.03 26190.10 38476.62 32790.85 25994.67 27282.27 29795.24 16395.79 21061.09 38898.49 18890.49 15398.26 19897.97 171
MSLP-MVS++93.25 16293.88 14391.37 24696.34 19982.81 22993.11 17897.74 10789.37 17494.08 20395.29 23590.40 16896.35 33290.35 15998.25 20094.96 328
LF4IMVS92.72 18092.02 19694.84 10995.65 25291.99 5892.92 18396.60 19485.08 26192.44 26493.62 29386.80 22096.35 33286.81 24098.25 20096.18 282
EI-MVSNet-UG-set94.35 12594.27 13494.59 12492.46 33785.87 18092.42 20694.69 27093.67 7196.13 11395.84 20791.20 14798.86 12993.78 5698.23 20299.03 52
PM-MVS93.33 15792.67 18195.33 8896.58 17894.06 2592.26 21692.18 31885.92 24096.22 10796.61 16085.64 23595.99 34290.35 15998.23 20295.93 293
EI-MVSNet-Vis-set94.36 12494.28 13294.61 12092.55 33485.98 17792.44 20494.69 27093.70 6896.12 11495.81 20991.24 14498.86 12993.76 5998.22 20498.98 60
V4293.43 15593.58 15692.97 18695.34 26881.22 24992.67 19296.49 20387.25 22096.20 10996.37 17787.32 20898.85 13192.39 10798.21 20598.85 81
TAMVS90.16 24389.05 25993.49 17496.49 18786.37 16690.34 27892.55 31380.84 31392.99 24494.57 26381.94 27398.20 21573.51 37298.21 20595.90 296
K. test v393.37 15693.27 16693.66 16298.05 8682.62 23094.35 13686.62 36796.05 3597.51 4698.85 1476.59 32099.65 593.21 8398.20 20798.73 95
DELS-MVS92.05 20092.16 19191.72 23394.44 29480.13 26187.62 33697.25 14887.34 21992.22 27493.18 30689.54 18298.73 15489.67 18298.20 20796.30 274
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 18791.75 20494.73 11396.50 18689.69 8992.91 18497.68 11078.02 33992.79 25194.10 27690.85 15597.96 23884.76 27498.16 20996.54 260
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 5195.83 6996.95 4094.75 28494.20 2397.34 1397.98 8397.31 1295.32 15596.77 14693.08 10299.20 8591.79 12298.16 20997.44 220
DP-MVS Recon92.31 19391.88 20093.60 16597.18 14586.87 15191.10 25497.37 13384.92 26492.08 27894.08 27788.59 18798.20 21583.50 28398.14 21195.73 302
EG-PatchMatch MVS94.54 11794.67 12094.14 14197.87 10286.50 16092.00 22496.74 18788.16 20396.93 7397.61 7893.04 10497.90 24191.60 12898.12 21298.03 162
PCF-MVS84.52 1789.12 26687.71 29093.34 17796.06 22485.84 18186.58 36397.31 14268.46 39893.61 21993.89 28687.51 20598.52 18667.85 39798.11 21395.66 307
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 10694.90 10694.47 13195.47 26287.06 14596.63 3197.28 14791.82 11694.34 19897.41 9490.60 16498.65 17192.47 10598.11 21397.70 202
WBMVS84.00 34283.48 34185.56 36392.71 33061.52 41083.82 39389.38 34479.56 32490.74 29993.20 30548.21 40697.28 28975.63 36198.10 21597.88 182
PMMVS281.31 36383.44 34274.92 39790.52 37746.49 42369.19 41385.23 38584.30 27387.95 35194.71 25776.95 31584.36 41464.07 40598.09 21693.89 357
lessismore_v093.87 15498.05 8683.77 21380.32 40797.13 6297.91 6277.49 30599.11 9692.62 10198.08 21798.74 94
new-patchmatchnet88.97 27390.79 22683.50 38394.28 29855.83 41885.34 37893.56 29286.18 23595.47 14595.73 21683.10 25596.51 32485.40 26298.06 21898.16 150
plane_prior88.12 12593.01 18088.98 18298.06 218
PVSNet_BlendedMVS90.35 23789.96 24491.54 24294.81 28078.80 29790.14 28496.93 17079.43 32588.68 34095.06 24386.27 22798.15 22180.27 31798.04 22097.68 204
fmvsm_l_conf0.5_n_a93.59 15093.63 15393.49 17496.10 22185.66 18692.32 21196.57 19781.32 30795.63 13797.14 12190.19 17197.73 26595.37 2898.03 22197.07 239
CL-MVSNet_self_test90.04 25189.90 24690.47 27995.24 27077.81 30986.60 36292.62 31185.64 24793.25 23593.92 28483.84 24996.06 33979.93 32598.03 22197.53 214
FMVSNet587.82 29586.56 31491.62 23892.31 33979.81 27393.49 16694.81 26683.26 28191.36 28896.93 13752.77 40397.49 27876.07 35798.03 22197.55 213
原ACMM192.87 19296.91 15784.22 20597.01 16476.84 34989.64 32394.46 26588.00 19798.70 16281.53 30798.01 22495.70 305
fmvsm_l_conf0.5_n93.79 14593.81 14493.73 16096.16 21586.26 17092.46 20296.72 18881.69 30495.77 12897.11 12490.83 15697.82 25295.58 1997.99 22597.11 238
v14892.87 17593.29 16391.62 23896.25 20977.72 31191.28 24995.05 25689.69 16795.93 12196.04 19887.34 20798.38 19990.05 17497.99 22598.78 87
WB-MVS89.44 26192.15 19381.32 38997.73 11248.22 42189.73 29787.98 35695.24 4296.05 11696.99 13485.18 23996.95 30882.45 29697.97 22798.78 87
ITE_SJBPF95.95 6197.34 13793.36 4496.55 20191.93 10694.82 18395.39 23391.99 12697.08 30385.53 26197.96 22897.41 221
test1294.43 13395.95 23386.75 15496.24 21389.76 32189.79 18098.79 14397.95 22997.75 199
MCST-MVS92.91 17192.51 18494.10 14397.52 12785.72 18491.36 24897.13 15780.33 31592.91 24894.24 27191.23 14598.72 15589.99 17597.93 23097.86 185
CDS-MVSNet89.55 25788.22 28293.53 17095.37 26786.49 16189.26 31293.59 29079.76 32091.15 29392.31 32677.12 31198.38 19977.51 34597.92 23195.71 303
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 21284.17 20794.82 26495.57 22489.57 18197.89 23296.32 273
reproduce_monomvs87.13 31486.90 30687.84 33790.92 37268.15 38591.19 25193.75 28885.84 24194.21 20095.83 20842.99 41697.10 30189.46 18697.88 23398.26 142
alignmvs93.26 16092.85 17494.50 12895.70 24887.45 13693.45 16895.76 23091.58 12695.25 16292.42 32581.96 27298.72 15591.61 12797.87 23497.33 229
testgi90.38 23591.34 21487.50 34097.49 12971.54 36989.43 30695.16 25488.38 19794.54 19294.68 25892.88 10993.09 38371.60 38497.85 23597.88 182
fmvsm_s_conf0.1_n94.19 13594.41 12593.52 17297.22 14384.37 20093.73 15995.26 25284.45 27095.76 12998.00 5291.85 12997.21 29395.62 1797.82 23698.98 60
fmvsm_s_conf0.5_n94.00 14094.20 13693.42 17696.69 17084.37 20093.38 17195.13 25584.50 26995.40 14997.55 8591.77 13297.20 29495.59 1897.79 23798.69 103
新几何193.17 18297.16 14687.29 13894.43 27467.95 39991.29 28994.94 24786.97 21698.23 21381.06 31397.75 23893.98 355
ETV-MVS92.99 16992.74 17793.72 16195.86 23786.30 16992.33 21097.84 9791.70 12492.81 24986.17 39292.22 12199.19 8688.03 22297.73 23995.66 307
HQP3-MVS97.31 14297.73 239
HQP-MVS92.09 19991.49 21093.88 15396.36 19584.89 19691.37 24597.31 14287.16 22188.81 33393.40 29984.76 24398.60 17686.55 24897.73 23998.14 152
CANet_DTU89.85 25489.17 25791.87 22792.20 34480.02 26690.79 26195.87 22886.02 23882.53 39691.77 33680.01 28598.57 18085.66 26097.70 24297.01 244
NCCC94.08 13793.54 15995.70 7796.49 18789.90 8792.39 20896.91 17490.64 14992.33 27294.60 26190.58 16598.96 11690.21 16897.70 24298.23 143
Vis-MVSNetpermissive95.50 7495.48 8395.56 8198.11 8189.40 9795.35 9698.22 4492.36 9294.11 20198.07 4692.02 12599.44 3293.38 7797.67 24497.85 187
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MGCFI-Net94.44 12094.67 12093.75 15995.56 25885.47 18995.25 10398.24 4091.53 12995.04 17492.21 32794.94 5798.54 18491.56 13197.66 24597.24 233
AdaColmapbinary91.63 20791.36 21392.47 21195.56 25886.36 16792.24 21896.27 21188.88 18689.90 31792.69 31791.65 13598.32 20577.38 34797.64 24692.72 379
EPNet_dtu85.63 32684.37 33289.40 30586.30 41074.33 34991.64 24088.26 35084.84 26672.96 41589.85 35771.27 34297.69 26776.60 35297.62 24796.18 282
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 10894.12 13996.50 5198.00 9294.23 2291.48 24498.17 5390.72 14695.30 15696.47 16587.94 19996.98 30791.41 13597.61 24898.30 139
sasdasda94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
canonicalmvs94.59 11394.69 11694.30 13695.60 25687.03 14695.59 8598.24 4091.56 12795.21 16592.04 33294.95 5598.66 16891.45 13397.57 24997.20 235
XXY-MVS92.58 18493.16 16890.84 27097.75 10979.84 27091.87 23396.22 21685.94 23995.53 14197.68 7392.69 11394.48 36883.21 28697.51 25198.21 145
FA-MVS(test-final)91.81 20391.85 20191.68 23694.95 27579.99 26796.00 6693.44 29587.80 20994.02 20897.29 10877.60 30498.45 19488.04 22197.49 25296.61 259
Effi-MVS+-dtu93.90 14492.60 18397.77 494.74 28596.67 694.00 15095.41 24889.94 16291.93 28192.13 33090.12 17398.97 11587.68 22897.48 25397.67 205
OpenMVScopyleft89.45 892.27 19692.13 19492.68 19994.53 29384.10 20895.70 8097.03 16382.44 29691.14 29496.42 16988.47 18998.38 19985.95 25697.47 25495.55 312
fmvsm_s_conf0.1_n_a94.26 12994.37 12893.95 15097.36 13685.72 18494.15 14495.44 24583.25 28295.51 14298.05 4792.54 11697.19 29695.55 2197.46 25598.94 66
ab-mvs92.40 19092.62 18291.74 23297.02 15081.65 24295.84 7695.50 24486.95 22692.95 24797.56 8190.70 16297.50 27679.63 32897.43 25696.06 287
fmvsm_s_conf0.5_n_a94.02 13994.08 14193.84 15696.72 16985.73 18393.65 16395.23 25383.30 28095.13 16897.56 8192.22 12197.17 29795.51 2297.41 25798.64 111
thisisatest051584.72 33582.99 34689.90 29692.96 32675.33 34084.36 38783.42 39377.37 34388.27 34686.65 38753.94 40098.72 15582.56 29397.40 25895.67 306
test22296.95 15385.27 19388.83 32293.61 28965.09 40790.74 29994.85 25084.62 24597.36 25993.91 356
API-MVS91.52 21091.61 20591.26 25394.16 29986.26 17094.66 12494.82 26491.17 13792.13 27791.08 34690.03 17897.06 30579.09 33597.35 26090.45 395
EIA-MVS92.35 19292.03 19593.30 17995.81 24283.97 21092.80 18898.17 5387.71 21289.79 32087.56 38291.17 15099.18 8787.97 22397.27 26196.77 255
testdata91.03 26196.87 16082.01 23794.28 27871.55 38092.46 26295.42 22985.65 23497.38 28782.64 29197.27 26193.70 362
N_pmnet88.90 27587.25 29893.83 15794.40 29693.81 3984.73 38287.09 36379.36 32893.26 23392.43 32479.29 29091.68 38977.50 34697.22 26396.00 289
testing383.66 34482.52 34987.08 34395.84 23865.84 39889.80 29677.17 41688.17 20290.84 29788.63 37430.95 42498.11 22384.05 28097.19 26497.28 232
ppachtmachnet_test88.61 28288.64 26888.50 32391.76 35770.99 37384.59 38592.98 30179.30 33092.38 26793.53 29779.57 28797.45 28086.50 25097.17 26597.07 239
CNLPA91.72 20591.20 21693.26 18096.17 21491.02 7191.14 25295.55 24290.16 16090.87 29693.56 29686.31 22694.40 37179.92 32797.12 26694.37 346
FE-MVS89.06 26888.29 27691.36 24794.78 28279.57 27896.77 2790.99 33384.87 26592.96 24696.29 18260.69 39098.80 14280.18 32097.11 26795.71 303
jason89.17 26588.32 27491.70 23595.73 24780.07 26288.10 33293.22 29871.98 37890.09 31192.79 31478.53 29798.56 18187.43 23297.06 26896.46 268
jason: jason.
RPSCF95.58 7294.89 10797.62 997.58 12496.30 895.97 7097.53 12492.42 8993.41 22497.78 6791.21 14697.77 25991.06 13997.06 26898.80 85
cl2289.02 26988.50 27090.59 27789.76 38676.45 32986.62 36194.03 28282.98 28992.65 25592.49 32072.05 33897.53 27488.93 20297.02 27097.78 195
miper_ehance_all_eth90.48 22990.42 23590.69 27491.62 36276.57 32886.83 35496.18 21883.38 27994.06 20592.66 31982.20 26898.04 22789.79 17997.02 27097.45 218
miper_enhance_ethall88.42 28587.87 28890.07 29188.67 39975.52 33885.10 37995.59 23975.68 35392.49 26089.45 36778.96 29197.88 24587.86 22697.02 27096.81 253
eth_miper_zixun_eth90.72 22290.61 23091.05 26092.04 35076.84 32486.91 35196.67 19185.21 25694.41 19493.92 28479.53 28898.26 21189.76 18097.02 27098.06 156
QAPM92.88 17392.77 17593.22 18195.82 24083.31 21696.45 4197.35 13983.91 27593.75 21596.77 14689.25 18498.88 12584.56 27697.02 27097.49 216
thres600view787.66 29887.10 30489.36 30696.05 22573.17 35792.72 18985.31 38291.89 10893.29 23090.97 34763.42 37998.39 19673.23 37496.99 27596.51 262
tt080595.42 8095.93 6293.86 15598.75 3188.47 12097.68 994.29 27796.48 2495.38 15093.63 29294.89 5997.94 24095.38 2796.92 27695.17 318
test_yl90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
DCV-MVSNet90.11 24689.73 25191.26 25394.09 30279.82 27190.44 27292.65 30990.90 14093.19 23893.30 30173.90 32998.03 22882.23 29896.87 27795.93 293
test_fmvs392.42 18992.40 18892.46 21293.80 31287.28 13993.86 15597.05 16276.86 34896.25 10498.66 2182.87 25991.26 39195.44 2496.83 27998.82 82
MSP-MVS95.34 8394.63 12297.48 1898.67 3294.05 2796.41 4598.18 4991.26 13495.12 16995.15 23786.60 22499.50 2293.43 7596.81 28098.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 29387.14 30190.07 29193.26 31976.97 32388.89 31992.18 31873.71 36888.36 34493.89 28676.86 31896.73 31980.32 31696.81 28096.51 262
PVSNet_Blended_VisFu91.63 20791.20 21692.94 18997.73 11283.95 21192.14 21997.46 12978.85 33592.35 26994.98 24584.16 24799.08 9886.36 25296.77 28295.79 300
MVSFormer92.18 19892.23 19092.04 22594.74 28580.06 26397.15 1597.37 13388.98 18288.83 33192.79 31477.02 31399.60 1096.41 996.75 28396.46 268
lupinMVS88.34 28787.31 29591.45 24494.74 28580.06 26387.23 34492.27 31771.10 38488.83 33191.15 34477.02 31398.53 18586.67 24496.75 28395.76 301
ttmdpeth86.91 31986.57 31387.91 33589.68 38874.24 35191.49 24387.09 36379.84 31789.46 32597.86 6565.42 36891.04 39281.57 30696.74 28598.44 129
diffmvspermissive91.74 20491.93 19991.15 25993.06 32278.17 30488.77 32497.51 12786.28 23192.42 26593.96 28388.04 19697.46 27990.69 14996.67 28697.82 191
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS89.35 26288.40 27292.18 22096.13 22084.20 20686.96 35096.15 22075.40 35787.36 35991.55 34183.30 25398.01 23282.17 30096.62 28794.32 348
test_fmvs290.62 22790.40 23691.29 25191.93 35485.46 19092.70 19196.48 20474.44 36394.91 18097.59 7975.52 32490.57 39493.44 7296.56 28897.84 188
thres100view90087.35 30786.89 30788.72 31796.14 21873.09 35993.00 18185.31 38292.13 10193.26 23390.96 34863.42 37998.28 20771.27 38696.54 28994.79 336
tfpn200view987.05 31686.52 31688.67 31895.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28994.79 336
thres40087.20 31186.52 31689.24 31095.77 24472.94 36191.89 23086.00 37290.84 14292.61 25689.80 35963.93 37698.28 20771.27 38696.54 28996.51 262
CMPMVSbinary68.83 2287.28 30885.67 32492.09 22388.77 39885.42 19190.31 27994.38 27570.02 39288.00 34993.30 30173.78 33194.03 37675.96 35996.54 28996.83 252
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
UWE-MVS80.29 37379.10 37483.87 38091.97 35359.56 41486.50 36577.43 41575.40 35787.79 35488.10 37944.08 41496.90 31364.23 40496.36 29395.14 321
pmmvs488.95 27487.70 29192.70 19794.30 29785.60 18787.22 34592.16 32074.62 36289.75 32294.19 27377.97 30296.41 32882.71 29096.36 29396.09 285
MVStest184.79 33484.06 33686.98 34577.73 42274.76 34191.08 25685.63 37777.70 34096.86 7697.97 5541.05 42188.24 40692.22 10996.28 29597.94 174
Fast-Effi-MVS+-dtu92.77 17992.16 19194.58 12694.66 29088.25 12392.05 22196.65 19289.62 16990.08 31291.23 34392.56 11598.60 17686.30 25396.27 29696.90 248
MAR-MVS90.32 23988.87 26694.66 11994.82 27991.85 6194.22 14294.75 26880.91 31087.52 35888.07 38086.63 22397.87 24876.67 35196.21 29794.25 349
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 25088.30 27595.32 9096.09 22290.52 8192.42 20692.05 32482.08 30088.45 34392.86 31165.76 36698.69 16488.91 20496.07 29896.75 257
hse-mvs292.24 19791.20 21695.38 8596.16 21590.65 7992.52 19892.01 32589.23 17693.95 21092.99 30976.88 31698.69 16491.02 14096.03 29996.81 253
PVSNet_Blended88.74 27988.16 28590.46 28194.81 28078.80 29786.64 35996.93 17074.67 36188.68 34089.18 37186.27 22798.15 22180.27 31796.00 30094.44 345
F-COLMAP92.28 19491.06 22095.95 6197.52 12791.90 6093.53 16497.18 15283.98 27488.70 33994.04 27888.41 19098.55 18380.17 32195.99 30197.39 225
xiu_mvs_v1_base_debu91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
xiu_mvs_v1_base_debi91.47 21191.52 20791.33 24895.69 24981.56 24389.92 29196.05 22383.22 28391.26 29090.74 35091.55 13798.82 13489.29 19195.91 30293.62 365
thres20085.85 32585.18 32687.88 33694.44 29472.52 36589.08 31686.21 36988.57 19391.44 28788.40 37764.22 37498.00 23468.35 39595.88 30593.12 371
RRT-MVS92.28 19493.01 16990.07 29194.06 30473.01 36095.36 9597.88 9292.24 9895.16 16797.52 8678.51 29899.29 7390.55 15295.83 30697.92 177
Patchmatch-test86.10 32486.01 32186.38 35790.63 37574.22 35289.57 30186.69 36685.73 24589.81 31992.83 31265.24 37191.04 39277.82 34395.78 30793.88 358
h-mvs3392.89 17291.99 19795.58 7996.97 15290.55 8093.94 15394.01 28589.23 17693.95 21096.19 19076.88 31699.14 9191.02 14095.71 30897.04 243
test_fmvs1_n88.73 28088.38 27389.76 29892.06 34982.53 23192.30 21496.59 19671.14 38392.58 25895.41 23268.55 35089.57 40291.12 13895.66 30997.18 237
cascas87.02 31786.28 32089.25 30991.56 36476.45 32984.33 38896.78 18371.01 38586.89 36385.91 39381.35 27696.94 30983.09 28795.60 31094.35 347
XVG-OURS-SEG-HR95.38 8195.00 10596.51 5098.10 8294.07 2492.46 20298.13 5890.69 14793.75 21596.25 18898.03 297.02 30692.08 11295.55 31198.45 128
DSMNet-mixed82.21 35681.56 35584.16 37889.57 39170.00 38090.65 26777.66 41454.99 41683.30 39097.57 8077.89 30390.50 39666.86 40095.54 31291.97 384
MVS_Test92.57 18693.29 16390.40 28293.53 31575.85 33592.52 19896.96 16888.73 18792.35 26996.70 15590.77 15798.37 20392.53 10395.49 31396.99 245
MIMVSNet87.13 31486.54 31588.89 31496.05 22576.11 33294.39 13588.51 34881.37 30688.27 34696.75 15072.38 33695.52 34965.71 40295.47 31495.03 326
Fast-Effi-MVS+91.28 21690.86 22392.53 20995.45 26382.53 23189.25 31496.52 20285.00 26289.91 31688.55 37692.94 10598.84 13284.72 27595.44 31596.22 280
ET-MVSNet_ETH3D86.15 32384.27 33491.79 23093.04 32381.28 24787.17 34786.14 37079.57 32383.65 38588.66 37357.10 39498.18 21887.74 22795.40 31695.90 296
BH-RMVSNet90.47 23090.44 23490.56 27895.21 27178.65 29989.15 31593.94 28788.21 20092.74 25394.22 27286.38 22597.88 24578.67 33795.39 31795.14 321
CHOSEN 1792x268887.19 31285.92 32391.00 26497.13 14879.41 28184.51 38695.60 23564.14 40890.07 31394.81 25178.26 30097.14 30073.34 37395.38 31896.46 268
test_fmvs187.59 30187.27 29788.54 32188.32 40081.26 24890.43 27595.72 23270.55 38991.70 28394.63 25968.13 35189.42 40390.59 15095.34 31994.94 331
Effi-MVS+92.79 17792.74 17792.94 18995.10 27283.30 21794.00 15097.53 12491.36 13389.35 32790.65 35594.01 8098.66 16887.40 23395.30 32096.88 251
MG-MVS89.54 25889.80 24888.76 31694.88 27672.47 36689.60 30092.44 31585.82 24289.48 32495.98 20182.85 26097.74 26481.87 30195.27 32196.08 286
HyFIR lowres test87.19 31285.51 32592.24 21597.12 14980.51 25685.03 38096.06 22166.11 40491.66 28492.98 31070.12 34699.14 9175.29 36295.23 32297.07 239
mvsmamba90.24 24189.43 25492.64 20095.52 26082.36 23496.64 3092.29 31681.77 30292.14 27696.28 18470.59 34499.10 9784.44 27895.22 32396.47 267
BH-untuned90.68 22490.90 22190.05 29495.98 23179.57 27890.04 28794.94 26187.91 20594.07 20493.00 30887.76 20197.78 25879.19 33495.17 32492.80 378
pmmvs380.83 36878.96 37686.45 35487.23 40677.48 31484.87 38182.31 39763.83 40985.03 37489.50 36649.66 40493.10 38273.12 37695.10 32588.78 400
testing22280.54 37178.53 37986.58 35292.54 33668.60 38486.24 36782.72 39683.78 27882.68 39584.24 40239.25 42295.94 34360.25 40995.09 32695.20 317
mvs_anonymous90.37 23691.30 21587.58 33992.17 34668.00 38689.84 29494.73 26983.82 27793.22 23797.40 9587.54 20497.40 28487.94 22495.05 32797.34 228
test_vis1_n89.01 27189.01 26189.03 31192.57 33382.46 23392.62 19596.06 22173.02 37390.40 30695.77 21474.86 32689.68 40090.78 14694.98 32894.95 329
IterMVS-SCA-FT91.65 20691.55 20691.94 22693.89 30879.22 28687.56 33993.51 29391.53 12995.37 15296.62 15978.65 29498.90 12291.89 11994.95 32997.70 202
test_vis3_rt90.40 23290.03 24391.52 24392.58 33288.95 10690.38 27697.72 10973.30 37097.79 3397.51 9077.05 31287.10 40889.03 20194.89 33098.50 123
test-LLR83.58 34583.17 34484.79 37289.68 38866.86 39183.08 39584.52 38883.07 28782.85 39284.78 40062.86 38293.49 37982.85 28894.86 33194.03 353
test-mter81.21 36580.01 37284.79 37289.68 38866.86 39183.08 39584.52 38873.85 36782.85 39284.78 40043.66 41593.49 37982.85 28894.86 33194.03 353
PatchMatch-RL89.18 26488.02 28792.64 20095.90 23692.87 4988.67 32891.06 33280.34 31490.03 31491.67 33883.34 25294.42 37076.35 35594.84 33390.64 394
OpenMVS_ROBcopyleft85.12 1689.52 25989.05 25990.92 26694.58 29281.21 25091.10 25493.41 29677.03 34793.41 22493.99 28283.23 25497.80 25479.93 32594.80 33493.74 361
our_test_387.55 30287.59 29287.44 34191.76 35770.48 37483.83 39290.55 33979.79 31992.06 27992.17 32978.63 29695.63 34784.77 27394.73 33596.22 280
CHOSEN 280x42080.04 37577.97 38286.23 35990.13 38374.53 34672.87 41189.59 34366.38 40376.29 41285.32 39856.96 39595.36 35569.49 39494.72 33688.79 399
IterMVS90.18 24290.16 23990.21 28893.15 32075.98 33487.56 33992.97 30286.43 23094.09 20296.40 17178.32 29997.43 28187.87 22594.69 33797.23 234
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 37280.28 37080.54 39184.73 41669.07 38272.54 41280.73 40587.80 20981.66 40281.73 40862.89 38189.84 39975.79 36094.65 33882.71 410
PLCcopyleft85.34 1590.40 23288.92 26394.85 10896.53 18590.02 8591.58 24196.48 20480.16 31686.14 36692.18 32885.73 23298.25 21276.87 35094.61 33996.30 274
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 21990.67 22991.26 25394.16 29983.08 22486.63 36096.19 21790.60 15191.94 28091.89 33489.16 18595.75 34680.96 31494.51 34094.95 329
test_f86.65 32187.13 30285.19 36890.28 38286.11 17486.52 36491.66 32869.76 39395.73 13497.21 11669.51 34881.28 41589.15 19894.40 34188.17 401
xiu_mvs_v2_base89.00 27289.19 25688.46 32594.86 27874.63 34486.97 34995.60 23580.88 31187.83 35288.62 37591.04 15298.81 13982.51 29594.38 34291.93 385
PS-MVSNAJ88.86 27688.99 26288.48 32494.88 27674.71 34286.69 35895.60 23580.88 31187.83 35287.37 38590.77 15798.82 13482.52 29494.37 34391.93 385
EU-MVSNet87.39 30686.71 31189.44 30393.40 31676.11 33294.93 11790.00 34157.17 41495.71 13597.37 9764.77 37397.68 26892.67 10094.37 34394.52 343
E-PMN80.72 36980.86 36380.29 39285.11 41468.77 38372.96 41081.97 39887.76 21183.25 39183.01 40762.22 38589.17 40477.15 34994.31 34582.93 409
GA-MVS87.70 29686.82 30890.31 28393.27 31877.22 31884.72 38492.79 30685.11 26089.82 31890.07 35666.80 35997.76 26184.56 27694.27 34695.96 291
ETVMVS79.85 37677.94 38385.59 36292.97 32566.20 39686.13 36980.99 40481.41 30583.52 38883.89 40341.81 42094.98 36556.47 41394.25 34795.61 311
mvsany_test389.11 26788.21 28391.83 22891.30 36790.25 8388.09 33378.76 41076.37 35196.43 9398.39 3683.79 25090.43 39786.57 24694.20 34894.80 335
sss87.23 30986.82 30888.46 32593.96 30677.94 30586.84 35392.78 30777.59 34187.61 35791.83 33578.75 29391.92 38877.84 34194.20 34895.52 313
MDA-MVSNet-bldmvs91.04 21790.88 22291.55 24194.68 28980.16 25885.49 37692.14 32190.41 15794.93 17995.79 21085.10 24096.93 31185.15 26594.19 35097.57 210
Syy-MVS84.81 33384.93 32784.42 37591.71 35963.36 40885.89 37181.49 40081.03 30885.13 37281.64 40977.44 30695.00 36285.94 25794.12 35194.91 332
myMVS_eth3d79.62 37778.26 38083.72 38191.71 35961.25 41285.89 37181.49 40081.03 30885.13 37281.64 40932.12 42395.00 36271.17 38994.12 35194.91 332
WB-MVSnew84.20 34083.89 33985.16 36991.62 36266.15 39788.44 33181.00 40376.23 35287.98 35087.77 38184.98 24293.35 38162.85 40894.10 35395.98 290
testing9183.56 34682.45 35086.91 34892.92 32767.29 38786.33 36688.07 35586.22 23384.26 38185.76 39448.15 40797.17 29776.27 35694.08 35496.27 277
PAPM_NR91.03 21890.81 22591.68 23696.73 16881.10 25193.72 16096.35 20988.19 20188.77 33792.12 33185.09 24197.25 29182.40 29793.90 35596.68 258
YYNet188.17 28988.24 28087.93 33392.21 34373.62 35580.75 40388.77 34682.51 29594.99 17795.11 24082.70 26393.70 37783.33 28493.83 35696.48 266
MDA-MVSNet_test_wron88.16 29088.23 28187.93 33392.22 34273.71 35480.71 40488.84 34582.52 29494.88 18295.14 23882.70 26393.61 37883.28 28593.80 35796.46 268
1112_ss88.42 28587.41 29491.45 24496.69 17080.99 25289.72 29896.72 18873.37 36987.00 36290.69 35377.38 30898.20 21581.38 30893.72 35895.15 320
PVSNet76.22 2082.89 35282.37 35184.48 37493.96 30664.38 40578.60 40688.61 34771.50 38184.43 38086.36 39174.27 32894.60 36769.87 39393.69 35994.46 344
test_vis1_n_192089.45 26089.85 24788.28 32793.59 31476.71 32690.67 26697.78 10579.67 32290.30 30996.11 19576.62 31992.17 38790.31 16193.57 36095.96 291
testing9982.94 35181.72 35486.59 35192.55 33466.53 39386.08 37085.70 37585.47 25483.95 38385.70 39545.87 40997.07 30476.58 35393.56 36196.17 284
test_cas_vis1_n_192088.25 28888.27 27888.20 32992.19 34578.92 29189.45 30595.44 24575.29 36093.23 23695.65 21971.58 34090.23 39888.05 22093.55 36295.44 314
UBG80.28 37478.94 37784.31 37792.86 32861.77 40983.87 39183.31 39577.33 34482.78 39483.72 40447.60 40896.06 33965.47 40393.48 36395.11 324
TESTMET0.1,179.09 37978.04 38182.25 38687.52 40464.03 40683.08 39580.62 40670.28 39180.16 40783.22 40644.13 41390.56 39579.95 32393.36 36492.15 383
PAPR87.65 29986.77 31090.27 28592.85 32977.38 31588.56 32996.23 21476.82 35084.98 37589.75 36386.08 22997.16 29972.33 37993.35 36596.26 278
SCA87.43 30587.21 29988.10 33192.01 35171.98 36889.43 30688.11 35482.26 29888.71 33892.83 31278.65 29497.59 27279.61 32993.30 36694.75 338
testing1181.98 36080.52 36786.38 35792.69 33167.13 38885.79 37384.80 38782.16 29981.19 40585.41 39745.24 41096.88 31474.14 36993.24 36795.14 321
Test_1112_low_res87.50 30486.58 31290.25 28696.80 16777.75 31087.53 34196.25 21269.73 39486.47 36493.61 29475.67 32397.88 24579.95 32393.20 36895.11 324
MDTV_nov1_ep1383.88 34089.42 39361.52 41088.74 32587.41 36073.99 36684.96 37694.01 28165.25 37095.53 34878.02 33993.16 369
WTY-MVS86.93 31886.50 31888.24 32894.96 27474.64 34387.19 34692.07 32378.29 33788.32 34591.59 34078.06 30194.27 37374.88 36493.15 37095.80 299
PMMVS83.00 35081.11 35988.66 31983.81 41886.44 16482.24 39985.65 37661.75 41282.07 39885.64 39679.75 28691.59 39075.99 35893.09 37187.94 402
UnsupCasMVSNet_bld88.50 28388.03 28689.90 29695.52 26078.88 29387.39 34394.02 28479.32 32993.06 24194.02 28080.72 28294.27 37375.16 36393.08 37296.54 260
MVS84.98 33284.30 33387.01 34491.03 36977.69 31291.94 22794.16 28059.36 41384.23 38287.50 38485.66 23396.80 31771.79 38193.05 37386.54 405
PatchT87.51 30388.17 28485.55 36490.64 37466.91 39092.02 22386.09 37192.20 9989.05 33097.16 11964.15 37596.37 33189.21 19792.98 37493.37 369
MS-PatchMatch88.05 29187.75 28988.95 31293.28 31777.93 30687.88 33592.49 31475.42 35692.57 25993.59 29580.44 28394.24 37581.28 30992.75 37594.69 341
CR-MVSNet87.89 29287.12 30390.22 28791.01 37078.93 28992.52 19892.81 30473.08 37289.10 32896.93 13767.11 35697.64 27188.80 20692.70 37694.08 350
RPMNet90.31 24090.14 24290.81 27291.01 37078.93 28992.52 19898.12 5991.91 10789.10 32896.89 14068.84 34999.41 4290.17 16992.70 37694.08 350
KD-MVS_2432*160082.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
miper_refine_blended82.17 35780.75 36486.42 35582.04 41970.09 37781.75 40090.80 33682.56 29290.37 30789.30 36842.90 41796.11 33774.47 36692.55 37893.06 372
BH-w/o87.21 31087.02 30587.79 33894.77 28377.27 31787.90 33493.21 30081.74 30389.99 31588.39 37883.47 25196.93 31171.29 38592.43 38089.15 396
IB-MVS77.21 1983.11 34881.05 36089.29 30791.15 36875.85 33585.66 37586.00 37279.70 32182.02 40086.61 38848.26 40598.39 19677.84 34192.22 38193.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 35981.02 36185.34 36687.46 40571.04 37194.74 12167.56 41996.44 2679.43 40998.99 845.24 41096.15 33567.18 39992.17 38288.85 398
HY-MVS82.50 1886.81 32085.93 32289.47 30293.63 31377.93 30694.02 14991.58 33075.68 35383.64 38693.64 29177.40 30797.42 28271.70 38392.07 38393.05 374
TR-MVS87.70 29687.17 30089.27 30894.11 30179.26 28488.69 32691.86 32681.94 30190.69 30189.79 36182.82 26197.42 28272.65 37891.98 38491.14 391
new_pmnet81.22 36481.01 36281.86 38790.92 37270.15 37684.03 38980.25 40870.83 38685.97 36789.78 36267.93 35584.65 41367.44 39891.90 38590.78 393
FPMVS84.50 33783.28 34388.16 33096.32 20194.49 2085.76 37485.47 38083.09 28685.20 37194.26 27063.79 37886.58 41063.72 40691.88 38683.40 408
UnsupCasMVSNet_eth90.33 23890.34 23790.28 28494.64 29180.24 25789.69 29995.88 22785.77 24393.94 21295.69 21781.99 27192.98 38484.21 27991.30 38797.62 207
MVP-Stereo90.07 24988.92 26393.54 16996.31 20286.49 16190.93 25895.59 23979.80 31891.48 28695.59 22080.79 28197.39 28578.57 33891.19 38896.76 256
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 32286.33 31986.87 34991.65 36174.54 34591.94 22794.10 28174.28 36484.78 37787.33 38683.03 25795.00 36278.72 33691.16 38991.06 392
tpm84.38 33884.08 33585.30 36790.47 37963.43 40789.34 30985.63 37777.24 34687.62 35695.03 24461.00 38997.30 28879.26 33391.09 39095.16 319
dmvs_re84.69 33683.94 33886.95 34792.24 34182.93 22789.51 30387.37 36184.38 27285.37 36985.08 39972.44 33586.59 40968.05 39691.03 39191.33 389
CVMVSNet85.16 33084.72 32886.48 35392.12 34770.19 37592.32 21188.17 35356.15 41590.64 30295.85 20567.97 35496.69 32088.78 20790.52 39292.56 380
test0.0.03 182.48 35481.47 35885.48 36589.70 38773.57 35684.73 38281.64 39983.07 28788.13 34886.61 38862.86 38289.10 40566.24 40190.29 39393.77 360
baseline283.38 34781.54 35788.90 31391.38 36572.84 36388.78 32381.22 40278.97 33279.82 40887.56 38261.73 38697.80 25474.30 36890.05 39496.05 288
test_vis1_rt85.58 32784.58 33088.60 32087.97 40186.76 15385.45 37793.59 29066.43 40287.64 35589.20 37079.33 28985.38 41281.59 30589.98 39593.66 363
MonoMVSNet88.46 28489.28 25585.98 36090.52 37770.07 37995.31 10194.81 26688.38 19793.47 22396.13 19473.21 33295.07 36182.61 29289.12 39692.81 377
PAPM81.91 36180.11 37187.31 34293.87 30972.32 36784.02 39093.22 29869.47 39576.13 41389.84 35872.15 33797.23 29253.27 41589.02 39792.37 382
MVS-HIRNet78.83 38080.60 36673.51 39893.07 32147.37 42287.10 34878.00 41368.94 39677.53 41197.26 10971.45 34194.62 36663.28 40788.74 39878.55 413
tpm281.46 36280.35 36984.80 37189.90 38565.14 40190.44 27285.36 38165.82 40682.05 39992.44 32357.94 39396.69 32070.71 39088.49 39992.56 380
CostFormer83.09 34982.21 35285.73 36189.27 39467.01 38990.35 27786.47 36870.42 39083.52 38893.23 30461.18 38796.85 31577.21 34888.26 40093.34 370
GG-mvs-BLEND83.24 38485.06 41571.03 37294.99 11665.55 42074.09 41475.51 41444.57 41294.46 36959.57 41187.54 40184.24 407
PatchmatchNetpermissive85.22 32984.64 32986.98 34589.51 39269.83 38190.52 27087.34 36278.87 33487.22 36192.74 31666.91 35896.53 32281.77 30286.88 40294.58 342
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mvsany_test183.91 34382.93 34786.84 35086.18 41185.93 17881.11 40275.03 41770.80 38888.57 34294.63 25983.08 25687.38 40780.39 31586.57 40387.21 403
baseline187.62 30087.31 29588.54 32194.71 28874.27 35093.10 17988.20 35286.20 23492.18 27593.04 30773.21 33295.52 34979.32 33285.82 40495.83 298
tpmvs84.22 33983.97 33784.94 37087.09 40765.18 40091.21 25088.35 34982.87 29085.21 37090.96 34865.24 37196.75 31879.60 33185.25 40592.90 376
ADS-MVSNet284.01 34182.20 35389.41 30489.04 39576.37 33187.57 33790.98 33472.71 37684.46 37892.45 32168.08 35296.48 32570.58 39183.97 40695.38 315
ADS-MVSNet82.25 35581.55 35684.34 37689.04 39565.30 39987.57 33785.13 38672.71 37684.46 37892.45 32168.08 35292.33 38670.58 39183.97 40695.38 315
JIA-IIPM85.08 33183.04 34591.19 25887.56 40386.14 17389.40 30884.44 39088.98 18282.20 39797.95 5656.82 39696.15 33576.55 35483.45 40891.30 390
MVEpermissive59.87 2373.86 38372.65 38677.47 39587.00 40974.35 34861.37 41560.93 42167.27 40069.69 41686.49 39081.24 28072.33 41856.45 41483.45 40885.74 406
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset78.23 38178.99 37575.94 39691.99 35255.34 41988.86 32078.70 41182.69 29181.64 40379.46 41175.93 32285.74 41148.78 41782.85 41086.76 404
EPMVS81.17 36680.37 36883.58 38285.58 41365.08 40290.31 27971.34 41877.31 34585.80 36891.30 34259.38 39192.70 38579.99 32282.34 41192.96 375
tpmrst82.85 35382.93 34782.64 38587.65 40258.99 41690.14 28487.90 35775.54 35583.93 38491.63 33966.79 36195.36 35581.21 31181.54 41293.57 368
tpm cat180.61 37079.46 37384.07 37988.78 39765.06 40389.26 31288.23 35162.27 41181.90 40189.66 36562.70 38495.29 35871.72 38280.60 41391.86 387
dp79.28 37878.62 37881.24 39085.97 41256.45 41786.91 35185.26 38472.97 37481.45 40489.17 37256.01 39895.45 35373.19 37576.68 41491.82 388
DeepMVS_CXcopyleft53.83 40070.38 42364.56 40448.52 42433.01 41865.50 41874.21 41556.19 39746.64 42138.45 41970.07 41550.30 416
tmp_tt37.97 38744.33 38918.88 40311.80 42621.54 42763.51 41445.66 4254.23 42051.34 41950.48 41859.08 39222.11 42244.50 41868.35 41613.00 418
PVSNet_070.34 2174.58 38272.96 38579.47 39390.63 37566.24 39573.26 40983.40 39463.67 41078.02 41078.35 41372.53 33489.59 40156.68 41260.05 41782.57 411
test_method50.44 38548.94 38854.93 39939.68 42512.38 42828.59 41690.09 3406.82 41941.10 42178.41 41254.41 39970.69 41950.12 41651.26 41881.72 412
dongtai53.72 38453.79 38753.51 40179.69 42136.70 42577.18 40732.53 42771.69 37968.63 41760.79 41626.65 42573.11 41730.67 42036.29 41950.73 415
kuosan43.63 38644.25 39041.78 40266.04 42434.37 42675.56 40832.62 42653.25 41750.46 42051.18 41725.28 42649.13 42013.44 42130.41 42041.84 417
test1239.49 38912.01 3921.91 4042.87 4271.30 42982.38 3981.34 4291.36 4222.84 4236.56 4212.45 4270.97 4232.73 4225.56 4213.47 419
testmvs9.02 39011.42 3931.81 4052.77 4281.13 43079.44 4051.90 4281.18 4232.65 4246.80 4201.95 4280.87 4242.62 4233.45 4223.44 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k23.35 38831.13 3910.00 4060.00 4290.00 4310.00 41795.58 2410.00 4240.00 42591.15 34493.43 890.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.56 39110.09 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42490.77 1570.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.56 39110.08 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42590.69 3530.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS61.25 41274.55 365
FOURS199.21 394.68 1698.45 498.81 1197.73 798.27 21
test_one_060198.26 7187.14 14398.18 4994.25 5596.99 7197.36 10095.13 45
eth-test20.00 429
eth-test0.00 429
test_241102_ONE98.51 4986.97 14898.10 6291.85 11097.63 3897.03 13096.48 1098.95 118
save fliter97.46 13288.05 12792.04 22297.08 16087.63 215
test072698.51 4986.69 15695.34 9798.18 4991.85 11097.63 3897.37 9795.58 24
GSMVS94.75 338
test_part298.21 7689.41 9696.72 83
sam_mvs166.64 36294.75 338
sam_mvs66.41 363
MTGPAbinary97.62 114
test_post190.21 2815.85 42365.36 36996.00 34179.61 329
test_post6.07 42265.74 36795.84 345
patchmatchnet-post91.71 33766.22 36597.59 272
MTMP94.82 11954.62 423
gm-plane-assit87.08 40859.33 41571.22 38283.58 40597.20 29473.95 370
TEST996.45 19089.46 9390.60 26896.92 17279.09 33190.49 30394.39 26791.31 14298.88 125
test_896.37 19389.14 10390.51 27196.89 17579.37 32690.42 30594.36 26991.20 14798.82 134
agg_prior96.20 21288.89 10896.88 17690.21 31098.78 146
test_prior489.91 8690.74 263
test_prior94.61 12095.95 23387.23 14097.36 13898.68 16697.93 175
旧先验290.00 28968.65 39792.71 25496.52 32385.15 265
新几何290.02 288
无先验89.94 29095.75 23170.81 38798.59 17881.17 31294.81 334
原ACMM289.34 309
testdata298.03 22880.24 319
segment_acmp92.14 124
testdata188.96 31888.44 196
plane_prior797.71 11488.68 111
plane_prior697.21 14488.23 12486.93 217
plane_prior495.59 220
plane_prior388.43 12290.35 15893.31 228
plane_prior294.56 13091.74 121
plane_prior197.38 134
n20.00 430
nn0.00 430
door-mid92.13 322
test1196.65 192
door91.26 331
HQP5-MVS84.89 196
HQP-NCC96.36 19591.37 24587.16 22188.81 333
ACMP_Plane96.36 19591.37 24587.16 22188.81 333
BP-MVS86.55 248
HQP4-MVS88.81 33398.61 17498.15 151
HQP2-MVS84.76 243
NP-MVS96.82 16587.10 14493.40 299
MDTV_nov1_ep13_2view42.48 42488.45 33067.22 40183.56 38766.80 35972.86 37794.06 352
Test By Simon90.61 163