This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14299.23 493.45 8299.57 1495.34 2899.89 299.63 9
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20396.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7099.84 399.72 2
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4099.84 399.66 6
FC-MVSNet-test95.32 8195.88 5993.62 15898.49 5881.77 23295.90 6998.32 2493.93 5697.53 4297.56 7688.48 17999.40 4692.91 8899.83 599.68 4
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19396.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8799.83 599.68 4
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19296.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7599.82 799.62 10
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20696.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8399.81 899.70 3
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13799.76 1099.38 22
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 7899.74 1299.50 17
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 13999.73 1399.59 13
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12799.69 1499.42 19
FIs94.90 9795.35 8393.55 16198.28 6981.76 23395.33 9098.14 4993.05 7697.07 6397.18 11187.65 19399.29 7091.72 11799.69 1499.61 11
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26493.12 7397.94 2798.54 2581.19 26999.63 695.48 2399.69 1499.60 12
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18699.57 1495.86 1599.69 1499.46 18
Anonymous2024052192.86 16693.57 14890.74 26596.57 17675.50 33194.15 13695.60 22489.38 16595.90 12097.90 6180.39 27397.96 23292.60 9699.68 1898.75 92
ANet_high94.83 10096.28 3790.47 27196.65 17073.16 34894.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 14899.68 1899.53 15
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9299.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19190.10 16699.33 6890.11 16299.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 19998.50 5780.82 24892.08 21096.68 17993.82 5996.29 9998.56 2490.10 16697.75 25590.10 16499.66 2199.24 32
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 23999.45 2795.52 2199.66 2199.36 24
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19090.14 16399.34 6392.11 10399.64 2499.16 38
WR-MVS93.49 14493.72 14092.80 18997.57 12380.03 25890.14 27195.68 22293.70 6196.62 8695.39 22087.21 20199.04 10287.50 22099.64 2499.33 26
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15499.05 9986.43 24199.60 2699.10 47
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15399.60 2698.72 97
MVS_030493.92 13693.68 14394.64 11795.94 22985.83 17794.34 12788.14 34192.98 7791.09 28297.68 6786.73 21299.36 5896.64 799.59 2898.72 97
VPA-MVSNet95.14 8995.67 7093.58 16097.76 10683.15 21694.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17299.59 2899.08 48
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10699.59 2899.11 44
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18696.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 2999.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20697.84 8894.91 4096.80 7895.78 20090.42 15999.41 3991.60 12199.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19190.10 16699.41 3991.60 12199.58 3399.26 30
MM95.22 9487.21 13894.31 13190.92 32494.48 4692.80 23997.52 8185.27 22899.49 2496.58 899.57 3598.97 62
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15695.85 1899.12 9190.45 14599.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v1094.68 10695.27 8992.90 18596.57 17680.15 25294.65 11597.57 11090.68 14197.43 4898.00 5188.18 18399.15 8494.84 3099.55 3799.41 20
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23188.41 18897.09 6198.08 4478.69 28398.87 12595.63 1799.53 3898.81 84
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15099.60 995.43 2699.53 3899.57 14
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3299.53 3898.99 56
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26796.24 2596.28 10196.36 16882.88 24799.35 6088.19 20599.52 4198.96 64
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 4899.49 4299.36 24
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
v894.65 10795.29 8792.74 19096.65 17079.77 26794.59 11697.17 14391.86 10397.47 4797.93 5588.16 18499.08 9494.32 3799.47 4399.38 22
CLD-MVS91.82 19191.41 20193.04 17696.37 18983.65 20886.82 34197.29 13584.65 25792.27 26289.67 35092.20 11897.85 24583.95 27099.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28393.73 27993.52 8199.55 1891.81 11499.45 4797.58 203
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16596.39 16594.77 5899.42 3393.17 7999.44 5098.58 119
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16299.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4699.42 5298.89 75
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12793.56 7999.37 5794.29 3999.42 5298.99 56
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 18995.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 25890.17 16099.42 5298.99 56
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 13992.91 10298.72 15291.19 12899.42 5298.32 133
wuyk23d87.83 28390.79 21578.96 37290.46 35988.63 11092.72 18190.67 32791.65 11998.68 1197.64 7196.06 1577.53 39459.84 38999.41 5670.73 392
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21595.93 6794.84 25494.86 4198.49 1598.74 1681.45 26399.60 994.69 3199.39 5899.15 39
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 3899.38 5998.92 72
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16096.71 899.42 3393.99 4599.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SDMVSNet94.43 11495.02 9892.69 19297.93 9682.88 22191.92 21995.99 21493.65 6595.51 13798.63 2094.60 6396.48 31087.57 21999.35 6198.70 101
sd_testset93.94 13594.39 11992.61 19897.93 9683.24 21293.17 16995.04 24893.65 6595.51 13798.63 2094.49 6795.89 32781.72 29299.35 6198.70 101
KD-MVS_self_test94.10 12994.73 11092.19 21097.66 11879.49 27394.86 10897.12 14889.59 16296.87 7497.65 7090.40 16198.34 19989.08 19099.35 6198.75 92
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3599.34 6498.80 86
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15394.99 5299.36 5893.48 6299.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13595.10 4699.40 4693.47 6399.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13396.25 1499.00 10693.10 8199.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111190.39 22390.61 21989.74 29098.04 8871.50 35995.59 8179.72 38889.41 16495.94 11798.14 3970.79 33198.81 13688.52 20299.32 6898.90 74
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6699.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6699.31 6998.53 121
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4399.30 7198.72 97
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3499.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7399.29 7497.95 169
IU-MVS98.51 5186.66 15496.83 17072.74 35395.83 12393.00 8599.29 7498.64 112
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 5899.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21296.72 14594.23 7199.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_040295.73 6196.22 4094.26 13598.19 7685.77 17893.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12499.29 7497.88 177
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 14996.36 16895.68 2199.44 2994.41 3699.28 7998.97 62
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12695.14 4299.51 2091.74 11699.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0588.94 26488.09 27491.50 23692.74 31776.97 31492.80 17995.92 21582.82 27993.65 20895.37 22249.41 39299.13 8890.82 13699.28 7998.40 130
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14096.68 14794.50 6699.42 3393.10 8199.26 8298.99 56
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7399.25 8398.49 124
ACMMP++99.25 83
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28791.92 12398.78 14389.11 18999.24 8596.92 237
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 17899.23 8698.19 144
TransMVSNet (Re)95.27 8796.04 5292.97 17998.37 6581.92 23195.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19599.23 8699.08 48
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24194.52 25393.95 7699.49 2493.62 5599.22 8997.51 209
EGC-MVSNET80.97 34875.73 36196.67 4298.85 2494.55 1596.83 2396.60 1832.44 3975.32 39898.25 3792.24 11598.02 22691.85 11399.21 9097.45 212
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12596.87 13295.26 3799.45 2792.77 8999.21 9099.00 54
SD-MVS95.19 8895.73 6793.55 16196.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16195.42 2894.36 35392.72 9399.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNet (Re-imp)90.42 22090.16 22891.20 24997.66 11877.32 30794.33 12887.66 34691.20 12992.99 23295.13 22875.40 31498.28 20277.86 32799.19 9297.99 164
test250685.42 31584.57 31887.96 32397.81 10366.53 37796.14 5856.35 40089.04 17293.55 21198.10 4242.88 40098.68 16388.09 20999.18 9498.67 105
ECVR-MVScopyleft90.12 23490.16 22890.00 28697.81 10372.68 35395.76 7578.54 39189.04 17295.36 14898.10 4270.51 33298.64 16887.10 22799.18 9498.67 105
tfpnnormal94.27 12094.87 10392.48 20397.71 11280.88 24794.55 12295.41 23893.70 6196.67 8497.72 6691.40 13498.18 21387.45 22199.18 9498.36 131
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19695.99 6396.56 18692.38 8597.03 6798.53 2690.12 16498.98 10788.78 19799.16 9798.65 107
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13596.61 15194.93 5499.41 3993.78 5099.15 9899.00 54
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13396.47 15695.37 3099.27 7493.78 5099.14 9998.48 125
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17193.97 14493.28 28794.49 4596.24 10397.78 6387.99 18998.79 14088.92 19399.14 9998.34 132
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15396.57 15395.02 5099.41 3993.63 5499.11 10198.94 66
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27098.85 1291.77 12695.49 33491.72 11799.08 10295.02 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12896.28 17495.22 4099.42 3393.17 7999.06 10398.88 77
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13395.04 4898.56 17792.77 8999.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPNet93.08 15793.76 13991.03 25398.60 3975.83 32991.51 23295.62 22391.84 10795.74 12897.10 11789.31 17498.32 20085.07 26099.06 10398.93 68
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14794.37 7099.32 6992.41 9999.05 10698.64 112
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25094.79 24393.56 7999.49 2493.47 6399.05 10697.89 176
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18796.49 15594.56 6499.39 4993.57 5699.05 10698.93 68
X-MVStestdata90.70 21288.45 25997.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18726.89 39594.56 6499.39 4993.57 5699.05 10698.93 68
test20.0390.80 20990.85 21390.63 26895.63 24779.24 27889.81 28292.87 29389.90 15594.39 18696.40 16185.77 22295.27 34273.86 35499.05 10697.39 219
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17395.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20199.04 11198.78 88
IterMVS-LS93.78 13994.28 12592.27 20796.27 20279.21 28091.87 22396.78 17391.77 11396.57 8997.07 11887.15 20298.74 15091.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
cl____90.65 21490.56 22190.91 26091.85 33776.98 31386.75 34295.36 24185.53 24194.06 19494.89 23777.36 29997.98 23190.27 15598.98 11497.76 191
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16696.74 14292.54 11197.86 24385.11 25898.98 11497.98 165
Patchmtry90.11 23589.92 23490.66 26790.35 36077.00 31192.96 17492.81 29490.25 15194.74 17896.93 12867.11 34397.52 26785.17 25398.98 11497.46 211
DIV-MVS_self_test90.65 21490.56 22190.91 26091.85 33776.99 31286.75 34295.36 24185.52 24394.06 19494.89 23777.37 29897.99 23090.28 15498.97 11997.76 191
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14596.03 18794.66 6099.08 9490.70 14098.97 119
D2MVS89.93 24189.60 24290.92 25894.03 29578.40 29288.69 31394.85 25378.96 31593.08 22895.09 23074.57 31696.94 29688.19 20598.96 12197.41 215
PHI-MVS94.34 11893.80 13795.95 5995.65 24591.67 6294.82 10997.86 8587.86 19993.04 23194.16 26491.58 13098.78 14390.27 15598.96 12197.41 215
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
iter_conf_final90.23 23089.32 24392.95 18194.65 28181.46 23894.32 13095.40 24085.61 23892.84 23795.37 22254.58 38599.13 8892.16 10298.94 12498.25 139
ambc92.98 17896.88 15683.01 21995.92 6896.38 19696.41 9297.48 8688.26 18297.80 24789.96 16798.93 12598.12 151
EPNet89.80 24588.25 26794.45 13083.91 39586.18 16893.87 14687.07 35191.16 13180.64 38494.72 24578.83 28198.89 12085.17 25398.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPP-MVSNet93.91 13793.68 14394.59 12298.08 8285.55 18397.44 1294.03 27394.22 5094.94 16996.19 17982.07 25899.57 1487.28 22598.89 12698.65 107
v119293.49 14493.78 13892.62 19796.16 21179.62 26991.83 22697.22 14186.07 22796.10 11296.38 16687.22 20099.02 10494.14 4298.88 12899.22 33
v114493.50 14393.81 13692.57 20096.28 20179.61 27091.86 22596.96 15886.95 21795.91 11996.32 17087.65 19398.96 11293.51 5998.88 12899.13 41
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12095.63 2399.39 4993.31 7298.88 12898.75 92
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14296.17 18293.42 8599.34 6389.30 18098.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OMC-MVS94.22 12593.69 14295.81 6997.25 13891.27 6492.27 20597.40 12287.10 21594.56 18295.42 21693.74 7798.11 21886.62 23598.85 13298.06 153
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12194.85 5699.42 3393.49 6098.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12195.40 2993.49 6098.84 13398.00 161
v14419293.20 15693.54 15092.16 21496.05 21978.26 29491.95 21597.14 14584.98 25295.96 11596.11 18387.08 20499.04 10293.79 4998.84 13399.17 37
v192192093.26 15193.61 14692.19 21096.04 22378.31 29391.88 22297.24 13985.17 24696.19 10996.19 17986.76 21199.05 9994.18 4198.84 13399.22 33
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14598.84 13397.57 204
VDDNet94.03 13194.27 12793.31 17198.87 2182.36 22795.51 8691.78 31697.19 1296.32 9698.60 2284.24 23598.75 14787.09 22898.83 13898.81 84
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 21995.46 21388.89 17798.98 10789.80 16998.82 13997.80 187
ACMMP++_ref98.82 139
v2v48293.29 14993.63 14592.29 20696.35 19478.82 28791.77 22996.28 19888.45 18695.70 13296.26 17686.02 22198.90 11893.02 8498.81 14199.14 40
USDC89.02 25889.08 24688.84 30695.07 26374.50 33888.97 30496.39 19573.21 34993.27 22096.28 17482.16 25796.39 31477.55 33198.80 14295.62 294
tttt051789.81 24488.90 25392.55 20197.00 14979.73 26895.03 10383.65 37589.88 15695.30 15194.79 24353.64 38899.39 4991.99 10898.79 14398.54 120
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 21896.47 2293.40 21597.46 8795.31 3595.47 33586.18 24598.78 14489.11 375
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
TinyColmap92.00 19092.76 16689.71 29195.62 24877.02 31090.72 25196.17 20787.70 20495.26 15496.29 17292.54 11196.45 31281.77 29098.77 14595.66 291
v124093.29 14993.71 14192.06 21796.01 22477.89 29991.81 22797.37 12385.12 24896.69 8396.40 16186.67 21399.07 9894.51 3398.76 14699.22 33
DeepPCF-MVS90.46 694.20 12693.56 14996.14 5295.96 22692.96 4389.48 29197.46 11885.14 24796.23 10495.42 21693.19 9298.08 22090.37 14998.76 14697.38 221
Anonymous2023120688.77 26888.29 26490.20 28196.31 19878.81 28889.56 28993.49 28474.26 34392.38 25695.58 21082.21 25595.43 33772.07 36398.75 14896.34 261
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11694.11 7497.75 25596.26 1198.72 14996.89 239
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16496.25 20583.23 21392.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10198.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14495.09 4799.43 3292.99 8698.71 15198.50 122
UGNet93.08 15792.50 17594.79 10893.87 29987.99 12595.07 10194.26 27090.64 14287.33 34497.67 6986.89 20998.49 18388.10 20898.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LFMVS91.33 20391.16 20891.82 22296.27 20279.36 27595.01 10485.61 36396.04 3094.82 17497.06 11972.03 32798.46 18884.96 26198.70 15397.65 200
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25595.22 22591.03 14799.25 7592.11 10398.69 15497.90 174
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4698.68 15598.04 156
PC_three_145275.31 33795.87 12295.75 20292.93 10196.34 31987.18 22698.68 15598.04 156
miper_lstm_enhance89.90 24289.80 23790.19 28291.37 34777.50 30483.82 37295.00 24984.84 25593.05 23094.96 23576.53 31095.20 34389.96 16798.67 15797.86 179
FMVSNet292.78 16892.73 16992.95 18195.40 25481.98 23094.18 13595.53 23388.63 18296.05 11397.37 9181.31 26598.81 13687.38 22498.67 15798.06 153
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26188.20 20498.66 15997.79 188
DeepC-MVS_fast89.96 793.73 14093.44 15294.60 12196.14 21387.90 12693.36 16497.14 14585.53 24193.90 20295.45 21491.30 13798.59 17489.51 17598.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20593.12 9598.06 22186.28 24498.61 16197.95 169
114514_t90.51 21789.80 23792.63 19698.00 9182.24 22893.40 16297.29 13565.84 38289.40 31294.80 24286.99 20598.75 14783.88 27198.61 16196.89 239
SSC-MVS90.16 23292.96 16081.78 36697.88 9948.48 39890.75 24987.69 34596.02 3196.70 8297.63 7285.60 22797.80 24785.73 24998.60 16399.06 50
patch_mono-292.46 17892.72 17091.71 22796.65 17078.91 28588.85 30897.17 14383.89 26592.45 25296.76 13989.86 17097.09 29090.24 15798.59 16499.12 43
dcpmvs_293.96 13495.01 9990.82 26397.60 12074.04 34393.68 15498.85 789.80 15897.82 2997.01 12491.14 14599.21 7890.56 14398.59 16499.19 36
CDPH-MVS92.67 17291.83 19195.18 9696.94 15288.46 11890.70 25297.07 15177.38 32392.34 26095.08 23192.67 10998.88 12185.74 24898.57 16698.20 143
c3_l91.32 20491.42 20091.00 25692.29 32376.79 31787.52 32896.42 19485.76 23394.72 18093.89 27582.73 25198.16 21590.93 13598.55 16798.04 156
test_prior290.21 26889.33 16790.77 28694.81 24090.41 16088.21 20398.55 167
LCM-MVSNet-Re94.20 12694.58 11693.04 17695.91 23083.13 21793.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29698.54 16996.96 236
Patchmatch-RL test88.81 26788.52 25789.69 29295.33 25979.94 26186.22 35192.71 29878.46 31895.80 12494.18 26366.25 35195.33 34089.22 18698.53 17093.78 338
Anonymous20240521192.58 17492.50 17592.83 18896.55 17883.22 21492.43 19691.64 31894.10 5295.59 13496.64 14981.88 26297.50 26885.12 25798.52 17197.77 190
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22796.80 17289.66 16093.90 20295.44 21592.80 10698.72 15292.74 9198.52 17198.32 133
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21695.59 20786.93 20798.95 11489.26 18498.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18498.51 17398.60 117
baseline94.26 12294.80 10592.64 19496.08 21780.99 24593.69 15398.04 6890.80 13894.89 17296.32 17093.19 9298.48 18791.68 11998.51 17398.43 128
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26195.70 1698.48 17697.74 194
thisisatest053088.69 27187.52 28292.20 20996.33 19679.36 27592.81 17884.01 37486.44 22093.67 20792.68 30653.62 38999.25 7589.65 17498.45 17798.00 161
train_agg92.71 17191.83 19195.35 8496.45 18789.46 9090.60 25596.92 16279.37 30890.49 29094.39 25691.20 14198.88 12188.66 20098.43 17897.72 195
GeoE94.55 11094.68 11394.15 13797.23 13985.11 18894.14 13897.34 13088.71 18195.26 15495.50 21294.65 6199.12 9190.94 13498.40 17998.23 140
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17695.79 19792.76 10799.39 4988.72 19998.40 179
test9_res88.16 20798.40 17997.83 183
TSAR-MVS + GP.93.07 15992.41 17795.06 9995.82 23490.87 7290.97 24492.61 30288.04 19594.61 18193.79 27888.08 18597.81 24689.41 17798.39 18296.50 255
VNet92.67 17292.96 16091.79 22396.27 20280.15 25291.95 21594.98 25092.19 9494.52 18496.07 18587.43 19797.39 27784.83 26298.38 18397.83 183
GBi-Net93.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
test193.21 15492.96 16093.97 14495.40 25484.29 19695.99 6396.56 18688.63 18295.10 16298.53 2681.31 26598.98 10786.74 23198.38 18398.65 107
FMVSNet390.78 21090.32 22792.16 21493.03 31479.92 26292.54 18994.95 25186.17 22695.10 16296.01 18869.97 33498.75 14786.74 23198.38 18397.82 185
MVS_111021_HR93.63 14293.42 15394.26 13596.65 17086.96 14689.30 29896.23 20288.36 19093.57 21094.60 25093.45 8297.77 25290.23 15898.38 18398.03 159
agg_prior287.06 22998.36 18897.98 165
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17797.12 11591.85 12499.40 4693.45 6598.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
pmmvs-eth3d91.54 19890.73 21793.99 14295.76 23987.86 12890.83 24793.98 27778.23 32094.02 19796.22 17882.62 25496.83 30186.57 23698.33 18997.29 225
casdiffmvspermissive94.32 11994.80 10592.85 18796.05 21981.44 23992.35 20098.05 6491.53 12295.75 12796.80 13693.35 8798.49 18391.01 13398.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 17897.23 10691.33 13599.16 8393.25 7698.30 19298.46 126
MVS_111021_LR93.66 14193.28 15694.80 10796.25 20590.95 6990.21 26895.43 23787.91 19693.74 20694.40 25592.88 10496.38 31590.39 14798.28 19397.07 230
CANet92.38 18191.99 18693.52 16693.82 30183.46 20991.14 24097.00 15589.81 15786.47 34894.04 26787.90 19199.21 7889.50 17698.27 19497.90 174
EI-MVSNet92.99 16093.26 15892.19 21092.12 33079.21 28092.32 20294.67 26291.77 11395.24 15795.85 19387.14 20398.49 18391.99 10898.26 19598.86 78
MVSTER89.32 25288.75 25591.03 25390.10 36376.62 31990.85 24694.67 26282.27 28695.24 15795.79 19761.09 37498.49 18390.49 14498.26 19597.97 168
MSLP-MVS++93.25 15393.88 13591.37 23996.34 19582.81 22293.11 17097.74 9889.37 16694.08 19295.29 22490.40 16196.35 31790.35 15098.25 19794.96 307
LF4IMVS92.72 17092.02 18594.84 10695.65 24591.99 5492.92 17596.60 18385.08 25092.44 25393.62 28286.80 21096.35 31786.81 23098.25 19796.18 268
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32185.87 17592.42 19794.69 26093.67 6496.13 11095.84 19591.20 14198.86 12693.78 5098.23 19999.03 52
PM-MVS93.33 14892.67 17195.33 8696.58 17594.06 2192.26 20692.18 30785.92 23096.22 10596.61 15185.64 22695.99 32690.35 15098.23 19995.93 277
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32085.98 17292.44 19594.69 26093.70 6196.12 11195.81 19691.24 13898.86 12693.76 5398.22 20198.98 60
V4293.43 14693.58 14792.97 17995.34 25881.22 24292.67 18496.49 19187.25 21196.20 10796.37 16787.32 19998.85 12892.39 10098.21 20298.85 81
TAMVS90.16 23289.05 24793.49 16896.49 18486.37 16290.34 26592.55 30380.84 29792.99 23294.57 25281.94 26198.20 21073.51 35598.21 20295.90 280
K. test v393.37 14793.27 15793.66 15798.05 8582.62 22394.35 12686.62 35396.05 2997.51 4398.85 1276.59 30999.65 393.21 7798.20 20498.73 96
DELS-MVS92.05 18992.16 18091.72 22694.44 28580.13 25487.62 32297.25 13887.34 21092.22 26393.18 29489.54 17398.73 15189.67 17398.20 20496.30 263
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
TAPA-MVS88.58 1092.49 17791.75 19394.73 11096.50 18389.69 8692.91 17697.68 10178.02 32192.79 24094.10 26590.85 14997.96 23284.76 26498.16 20696.54 250
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LS3D96.11 4795.83 6396.95 3694.75 27494.20 1997.34 1397.98 7597.31 1195.32 15096.77 13793.08 9799.20 8091.79 11598.16 20697.44 214
DP-MVS Recon92.31 18391.88 18993.60 15997.18 14386.87 14791.10 24297.37 12384.92 25392.08 26694.08 26688.59 17898.20 21083.50 27298.14 20895.73 286
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21496.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12198.12 20998.03 159
PCF-MVS84.52 1789.12 25587.71 27993.34 17096.06 21885.84 17686.58 34997.31 13268.46 37593.61 20993.89 27587.51 19698.52 18167.85 38098.11 21095.66 291
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25287.06 14296.63 3197.28 13791.82 11094.34 18997.41 8890.60 15798.65 16792.47 9898.11 21097.70 196
PMMVS281.31 34483.44 32674.92 37590.52 35746.49 40169.19 38985.23 36984.30 26287.95 33694.71 24676.95 30484.36 39264.07 38698.09 21293.89 336
lessismore_v093.87 15198.05 8583.77 20780.32 38697.13 6097.91 5977.49 29499.11 9392.62 9598.08 21398.74 95
new-patchmatchnet88.97 26290.79 21583.50 36194.28 28955.83 39685.34 35893.56 28286.18 22595.47 14095.73 20383.10 24496.51 30985.40 25298.06 21498.16 147
plane_prior88.12 12293.01 17288.98 17498.06 214
PVSNet_BlendedMVS90.35 22689.96 23391.54 23494.81 27078.80 28990.14 27196.93 16079.43 30788.68 32695.06 23286.27 21898.15 21680.27 30498.04 21697.68 198
CL-MVSNet_self_test90.04 24089.90 23590.47 27195.24 26077.81 30086.60 34892.62 30185.64 23693.25 22393.92 27383.84 23796.06 32479.93 31298.03 21797.53 208
FMVSNet587.82 28486.56 30191.62 23192.31 32279.81 26693.49 15894.81 25783.26 26991.36 27596.93 12852.77 39097.49 27076.07 34298.03 21797.55 207
原ACMM192.87 18696.91 15584.22 19997.01 15476.84 32989.64 31094.46 25488.00 18898.70 15981.53 29498.01 21995.70 289
v14892.87 16593.29 15491.62 23196.25 20577.72 30291.28 23895.05 24789.69 15995.93 11896.04 18687.34 19898.38 19490.05 16597.99 22098.78 88
WB-MVS89.44 25092.15 18281.32 36797.73 11048.22 39989.73 28487.98 34395.24 3696.05 11396.99 12585.18 22996.95 29582.45 28497.97 22198.78 88
ITE_SJBPF95.95 5997.34 13593.36 4096.55 18991.93 10094.82 17495.39 22091.99 12197.08 29185.53 25197.96 22297.41 215
test1294.43 13195.95 22786.75 15096.24 20189.76 30889.79 17198.79 14097.95 22397.75 193
MCST-MVS92.91 16292.51 17494.10 14097.52 12585.72 18091.36 23797.13 14780.33 29992.91 23694.24 26091.23 13998.72 15289.99 16697.93 22497.86 179
CDS-MVSNet89.55 24688.22 27093.53 16495.37 25786.49 15789.26 29993.59 28079.76 30391.15 28092.31 31477.12 30098.38 19477.51 33297.92 22595.71 287
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
旧先验196.20 20884.17 20194.82 25595.57 21189.57 17297.89 22696.32 262
alignmvs93.26 15192.85 16494.50 12695.70 24187.45 13393.45 16095.76 21991.58 12095.25 15692.42 31381.96 26098.72 15291.61 12097.87 22797.33 223
testgi90.38 22491.34 20387.50 32997.49 12771.54 35889.43 29395.16 24588.38 18994.54 18394.68 24792.88 10493.09 36371.60 36797.85 22897.88 177
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16697.22 14184.37 19493.73 15195.26 24384.45 25995.76 12598.00 5191.85 12497.21 28395.62 1897.82 22998.98 60
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 16996.69 16784.37 19493.38 16395.13 24684.50 25895.40 14497.55 8091.77 12697.20 28495.59 1997.79 23098.69 104
新几何193.17 17597.16 14487.29 13594.43 26567.95 37691.29 27694.94 23686.97 20698.23 20881.06 30097.75 23193.98 334
ETV-MVS92.99 16092.74 16793.72 15695.86 23286.30 16592.33 20197.84 8891.70 11892.81 23886.17 37692.22 11699.19 8188.03 21297.73 23295.66 291
HQP3-MVS97.31 13297.73 232
HQP-MVS92.09 18891.49 19993.88 15096.36 19184.89 19091.37 23497.31 13287.16 21288.81 31993.40 28884.76 23298.60 17286.55 23897.73 23298.14 149
CANet_DTU89.85 24389.17 24591.87 22092.20 32780.02 25990.79 24895.87 21786.02 22882.53 37591.77 32280.01 27498.57 17685.66 25097.70 23597.01 234
NCCC94.08 13093.54 15095.70 7596.49 18489.90 8392.39 19996.91 16490.64 14292.33 26194.60 25090.58 15898.96 11290.21 15997.70 23598.23 140
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19098.07 4592.02 12099.44 2993.38 7197.67 23797.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AdaColmapbinary91.63 19691.36 20292.47 20495.56 25086.36 16392.24 20896.27 19988.88 17889.90 30492.69 30591.65 12998.32 20077.38 33497.64 23892.72 357
EPNet_dtu85.63 31384.37 31989.40 29686.30 38874.33 34091.64 23088.26 33784.84 25572.96 39389.85 34371.27 33097.69 25976.60 33997.62 23996.18 268
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23398.17 4590.72 13995.30 15196.47 15687.94 19096.98 29491.41 12697.61 24098.30 136
canonicalmvs94.59 10894.69 11194.30 13495.60 24987.03 14395.59 8198.24 3491.56 12195.21 15992.04 31994.95 5398.66 16591.45 12597.57 24197.20 228
XXY-MVS92.58 17493.16 15990.84 26297.75 10779.84 26391.87 22396.22 20485.94 22995.53 13697.68 6792.69 10894.48 34983.21 27597.51 24298.21 142
FA-MVS(test-final)91.81 19291.85 19091.68 22994.95 26579.99 26096.00 6293.44 28587.80 20094.02 19797.29 10277.60 29398.45 18988.04 21197.49 24396.61 249
Effi-MVS+-dtu93.90 13892.60 17397.77 394.74 27596.67 594.00 14295.41 23889.94 15491.93 26992.13 31790.12 16498.97 11187.68 21897.48 24497.67 199
OpenMVScopyleft89.45 892.27 18592.13 18392.68 19394.53 28484.10 20295.70 7697.03 15382.44 28591.14 28196.42 15988.47 18098.38 19485.95 24697.47 24595.55 295
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18094.15 13695.44 23583.25 27095.51 13798.05 4692.54 11197.19 28695.55 2097.46 24698.94 66
ab-mvs92.40 18092.62 17291.74 22597.02 14881.65 23495.84 7195.50 23486.95 21792.95 23597.56 7690.70 15597.50 26879.63 31597.43 24796.06 272
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 17993.65 15595.23 24483.30 26895.13 16097.56 7692.22 11697.17 28795.51 2297.41 24898.64 112
thisisatest051584.72 32182.99 33089.90 28792.96 31575.33 33284.36 36783.42 37677.37 32488.27 33286.65 37153.94 38798.72 15282.56 28197.40 24995.67 290
test22296.95 15185.27 18788.83 30993.61 27965.09 38490.74 28794.85 23984.62 23497.36 25093.91 335
API-MVS91.52 19991.61 19491.26 24594.16 29086.26 16794.66 11494.82 25591.17 13092.13 26591.08 33290.03 16997.06 29279.09 32297.35 25190.45 373
EIA-MVS92.35 18292.03 18493.30 17295.81 23683.97 20492.80 17998.17 4587.71 20389.79 30787.56 36691.17 14499.18 8287.97 21397.27 25296.77 245
testdata91.03 25396.87 15782.01 22994.28 26971.55 35792.46 25195.42 21685.65 22597.38 27982.64 28097.27 25293.70 341
N_pmnet88.90 26587.25 28793.83 15494.40 28793.81 3584.73 36287.09 35079.36 31093.26 22192.43 31279.29 27991.68 36977.50 33397.22 25496.00 274
testing383.66 32882.52 33387.08 33295.84 23365.84 37989.80 28377.17 39488.17 19390.84 28588.63 36030.95 40298.11 21884.05 26997.19 25597.28 226
ppachtmachnet_test88.61 27288.64 25688.50 31491.76 33970.99 36284.59 36592.98 29179.30 31292.38 25693.53 28679.57 27697.45 27286.50 24097.17 25697.07 230
CNLPA91.72 19491.20 20593.26 17396.17 21091.02 6791.14 24095.55 23190.16 15290.87 28493.56 28586.31 21794.40 35279.92 31497.12 25794.37 325
FE-MVS89.06 25788.29 26491.36 24094.78 27279.57 27196.77 2890.99 32284.87 25492.96 23496.29 17260.69 37698.80 13980.18 30797.11 25895.71 287
jason89.17 25488.32 26291.70 22895.73 24080.07 25588.10 31893.22 28871.98 35690.09 29892.79 30278.53 28798.56 17787.43 22297.06 25996.46 257
jason: jason.
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21397.78 6391.21 14097.77 25291.06 13097.06 25998.80 86
cl2289.02 25888.50 25890.59 26989.76 36576.45 32186.62 34794.03 27382.98 27792.65 24492.49 30872.05 32697.53 26688.93 19297.02 26197.78 189
miper_ehance_all_eth90.48 21890.42 22490.69 26691.62 34476.57 32086.83 34096.18 20683.38 26794.06 19492.66 30782.20 25698.04 22289.79 17097.02 26197.45 212
miper_enhance_ethall88.42 27487.87 27790.07 28388.67 37775.52 33085.10 35995.59 22875.68 33292.49 24989.45 35378.96 28097.88 23987.86 21697.02 26196.81 243
eth_miper_zixun_eth90.72 21190.61 21991.05 25292.04 33376.84 31686.91 33796.67 18085.21 24594.41 18593.92 27379.53 27798.26 20689.76 17197.02 26198.06 153
QAPM92.88 16492.77 16593.22 17495.82 23483.31 21096.45 3997.35 12983.91 26493.75 20496.77 13789.25 17598.88 12184.56 26697.02 26197.49 210
thres600view787.66 28787.10 29389.36 29796.05 21973.17 34792.72 18185.31 36691.89 10293.29 21890.97 33363.42 36598.39 19173.23 35796.99 26696.51 252
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 26896.48 2195.38 14593.63 28194.89 5597.94 23495.38 2796.92 26795.17 300
test_yl90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
DCV-MVSNet90.11 23589.73 24091.26 24594.09 29379.82 26490.44 25992.65 29990.90 13393.19 22693.30 29073.90 31898.03 22382.23 28696.87 26895.93 277
test_fmvs392.42 17992.40 17892.46 20593.80 30287.28 13693.86 14797.05 15276.86 32896.25 10298.66 1882.87 24891.26 37195.44 2596.83 27098.82 82
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16195.15 22686.60 21599.50 2193.43 6996.81 27198.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
pmmvs587.87 28287.14 29090.07 28393.26 30976.97 31488.89 30692.18 30773.71 34688.36 33093.89 27576.86 30796.73 30480.32 30396.81 27196.51 252
PVSNet_Blended_VisFu91.63 19691.20 20592.94 18397.73 11083.95 20592.14 20997.46 11878.85 31792.35 25894.98 23484.16 23699.08 9486.36 24296.77 27395.79 284
MVSFormer92.18 18792.23 17992.04 21894.74 27580.06 25697.15 1597.37 12388.98 17488.83 31792.79 30277.02 30299.60 996.41 996.75 27496.46 257
lupinMVS88.34 27687.31 28491.45 23794.74 27580.06 25687.23 33092.27 30671.10 36188.83 31791.15 33077.02 30298.53 18086.67 23496.75 27495.76 285
diffmvspermissive91.74 19391.93 18891.15 25193.06 31278.17 29588.77 31197.51 11786.28 22292.42 25493.96 27288.04 18797.46 27190.69 14196.67 27697.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DPM-MVS89.35 25188.40 26092.18 21396.13 21584.20 20086.96 33696.15 20875.40 33687.36 34391.55 32783.30 24298.01 22782.17 28896.62 27794.32 327
test_fmvs290.62 21690.40 22591.29 24491.93 33685.46 18492.70 18396.48 19274.44 34194.91 17197.59 7475.52 31390.57 37393.44 6696.56 27897.84 182
thres100view90087.35 29686.89 29588.72 30896.14 21373.09 34993.00 17385.31 36692.13 9593.26 22190.96 33463.42 36598.28 20271.27 36996.54 27994.79 315
tfpn200view987.05 30486.52 30388.67 30995.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27994.79 315
thres40087.20 30086.52 30389.24 30195.77 23772.94 35091.89 22086.00 35890.84 13592.61 24589.80 34563.93 36298.28 20271.27 36996.54 27996.51 252
CMPMVSbinary68.83 2287.28 29785.67 31192.09 21688.77 37685.42 18590.31 26694.38 26670.02 36988.00 33593.30 29073.78 32094.03 35775.96 34496.54 27996.83 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs488.95 26387.70 28092.70 19194.30 28885.60 18287.22 33192.16 30974.62 34089.75 30994.19 26277.97 29196.41 31382.71 27996.36 28396.09 270
Fast-Effi-MVS+-dtu92.77 16992.16 18094.58 12494.66 28088.25 12092.05 21196.65 18189.62 16190.08 29991.23 32992.56 11098.60 17286.30 24396.27 28496.90 238
MAR-MVS90.32 22888.87 25494.66 11594.82 26991.85 5794.22 13494.75 25880.91 29487.52 34288.07 36586.63 21497.87 24276.67 33896.21 28594.25 328
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AUN-MVS90.05 23988.30 26395.32 8896.09 21690.52 7792.42 19792.05 31382.08 28888.45 32992.86 29965.76 35398.69 16188.91 19496.07 28696.75 247
hse-mvs292.24 18691.20 20595.38 8396.16 21190.65 7592.52 19092.01 31489.23 16893.95 19992.99 29776.88 30598.69 16191.02 13196.03 28796.81 243
PVSNet_Blended88.74 26988.16 27390.46 27394.81 27078.80 28986.64 34596.93 16074.67 33988.68 32689.18 35786.27 21898.15 21680.27 30496.00 28894.44 324
F-COLMAP92.28 18491.06 20995.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32594.04 26788.41 18198.55 17980.17 30895.99 28997.39 219
xiu_mvs_v1_base_debu91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
xiu_mvs_v1_base_debi91.47 20091.52 19691.33 24195.69 24281.56 23589.92 27896.05 21183.22 27191.26 27790.74 33691.55 13198.82 13189.29 18195.91 29093.62 344
thres20085.85 31285.18 31387.88 32694.44 28572.52 35489.08 30386.21 35588.57 18591.44 27488.40 36364.22 36098.00 22868.35 37895.88 29393.12 350
Patchmatch-test86.10 31186.01 30886.38 34290.63 35574.22 34289.57 28886.69 35285.73 23489.81 30692.83 30065.24 35791.04 37277.82 33095.78 29493.88 337
h-mvs3392.89 16391.99 18695.58 7796.97 15090.55 7693.94 14594.01 27689.23 16893.95 19996.19 17976.88 30599.14 8691.02 13195.71 29597.04 233
test_fmvs1_n88.73 27088.38 26189.76 28992.06 33282.53 22492.30 20496.59 18571.14 36092.58 24795.41 21968.55 33789.57 38191.12 12995.66 29697.18 229
cascas87.02 30586.28 30789.25 30091.56 34576.45 32184.33 36896.78 17371.01 36286.89 34785.91 37781.35 26496.94 29683.09 27695.60 29794.35 326
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20496.25 17798.03 297.02 29392.08 10595.55 29898.45 127
DSMNet-mixed82.21 33881.56 33784.16 35789.57 36970.00 36890.65 25477.66 39354.99 39383.30 37197.57 7577.89 29290.50 37566.86 38395.54 29991.97 362
MVS_Test92.57 17693.29 15490.40 27493.53 30575.85 32792.52 19096.96 15888.73 17992.35 25896.70 14690.77 15098.37 19892.53 9795.49 30096.99 235
MIMVSNet87.13 30386.54 30288.89 30596.05 21976.11 32494.39 12588.51 33581.37 29188.27 33296.75 14172.38 32495.52 33265.71 38595.47 30195.03 305
Fast-Effi-MVS+91.28 20590.86 21292.53 20295.45 25382.53 22489.25 30196.52 19085.00 25189.91 30388.55 36292.94 10098.84 12984.72 26595.44 30296.22 266
ET-MVSNet_ETH3D86.15 31084.27 32191.79 22393.04 31381.28 24087.17 33386.14 35679.57 30683.65 36788.66 35957.10 38098.18 21387.74 21795.40 30395.90 280
BH-RMVSNet90.47 21990.44 22390.56 27095.21 26178.65 29189.15 30293.94 27888.21 19192.74 24294.22 26186.38 21697.88 23978.67 32495.39 30495.14 303
CHOSEN 1792x268887.19 30185.92 31091.00 25697.13 14679.41 27484.51 36695.60 22464.14 38590.07 30094.81 24078.26 28997.14 28973.34 35695.38 30596.46 257
test_fmvs187.59 29087.27 28688.54 31288.32 37881.26 24190.43 26295.72 22170.55 36691.70 27194.63 24868.13 33889.42 38290.59 14295.34 30694.94 310
Effi-MVS+92.79 16792.74 16792.94 18395.10 26283.30 21194.00 14297.53 11491.36 12589.35 31390.65 34194.01 7598.66 16587.40 22395.30 30796.88 241
MG-MVS89.54 24789.80 23788.76 30794.88 26672.47 35589.60 28792.44 30585.82 23189.48 31195.98 18982.85 24997.74 25781.87 28995.27 30896.08 271
HyFIR lowres test87.19 30185.51 31292.24 20897.12 14780.51 24985.03 36096.06 20966.11 38191.66 27292.98 29870.12 33399.14 8675.29 34695.23 30997.07 230
BH-untuned90.68 21390.90 21090.05 28595.98 22579.57 27190.04 27494.94 25287.91 19694.07 19393.00 29687.76 19297.78 25179.19 32195.17 31092.80 356
pmmvs380.83 34978.96 35686.45 33987.23 38477.48 30584.87 36182.31 37863.83 38685.03 35889.50 35249.66 39193.10 36273.12 35995.10 31188.78 378
mvs_anonymous90.37 22591.30 20487.58 32892.17 32968.00 37289.84 28194.73 25983.82 26693.22 22597.40 8987.54 19597.40 27687.94 21495.05 31297.34 222
test_vis1_n89.01 26089.01 24989.03 30292.57 31982.46 22692.62 18796.06 20973.02 35190.40 29395.77 20174.86 31589.68 37990.78 13894.98 31394.95 308
IterMVS-SCA-FT91.65 19591.55 19591.94 21993.89 29879.22 27987.56 32593.51 28391.53 12295.37 14796.62 15078.65 28498.90 11891.89 11294.95 31497.70 196
test_vis3_rt90.40 22190.03 23291.52 23592.58 31888.95 10390.38 26397.72 10073.30 34897.79 3097.51 8477.05 30187.10 38689.03 19194.89 31598.50 122
test-LLR83.58 32983.17 32884.79 35289.68 36766.86 37583.08 37384.52 37183.07 27582.85 37384.78 38162.86 36893.49 36082.85 27794.86 31694.03 332
test-mter81.21 34680.01 35384.79 35289.68 36766.86 37583.08 37384.52 37173.85 34582.85 37384.78 38143.66 39793.49 36082.85 27794.86 31694.03 332
PatchMatch-RL89.18 25388.02 27692.64 19495.90 23192.87 4588.67 31591.06 32180.34 29890.03 30191.67 32483.34 24194.42 35176.35 34194.84 31890.64 372
OpenMVS_ROBcopyleft85.12 1689.52 24889.05 24790.92 25894.58 28381.21 24391.10 24293.41 28677.03 32793.41 21393.99 27183.23 24397.80 24779.93 31294.80 31993.74 340
our_test_387.55 29187.59 28187.44 33091.76 33970.48 36383.83 37190.55 32879.79 30292.06 26792.17 31678.63 28695.63 33084.77 26394.73 32096.22 266
CHOSEN 280x42080.04 35377.97 36086.23 34390.13 36274.53 33772.87 38789.59 33166.38 38076.29 39085.32 37956.96 38195.36 33869.49 37794.72 32188.79 377
IterMVS90.18 23190.16 22890.21 28093.15 31075.98 32687.56 32592.97 29286.43 22194.09 19196.40 16178.32 28897.43 27387.87 21594.69 32297.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EMVS80.35 35280.28 35180.54 36984.73 39469.07 37072.54 38880.73 38487.80 20081.66 38181.73 38662.89 36789.84 37875.79 34594.65 32382.71 388
PLCcopyleft85.34 1590.40 22188.92 25194.85 10596.53 18290.02 8191.58 23196.48 19280.16 30086.14 35092.18 31585.73 22398.25 20776.87 33794.61 32496.30 263
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MSDG90.82 20890.67 21891.26 24594.16 29083.08 21886.63 34696.19 20590.60 14491.94 26891.89 32089.16 17695.75 32980.96 30194.51 32594.95 308
test_f86.65 30887.13 29185.19 34990.28 36186.11 17086.52 35091.66 31769.76 37095.73 13097.21 11069.51 33581.28 39389.15 18894.40 32688.17 379
xiu_mvs_v2_base89.00 26189.19 24488.46 31694.86 26874.63 33586.97 33595.60 22480.88 29587.83 33788.62 36191.04 14698.81 13682.51 28394.38 32791.93 363
PS-MVSNAJ88.86 26688.99 25088.48 31594.88 26674.71 33386.69 34495.60 22480.88 29587.83 33787.37 36990.77 15098.82 13182.52 28294.37 32891.93 363
EU-MVSNet87.39 29586.71 29989.44 29493.40 30676.11 32494.93 10790.00 33057.17 39195.71 13197.37 9164.77 35997.68 26092.67 9494.37 32894.52 322
E-PMN80.72 35080.86 34580.29 37085.11 39268.77 37172.96 38681.97 37987.76 20283.25 37283.01 38562.22 37189.17 38377.15 33694.31 33082.93 387
GA-MVS87.70 28586.82 29690.31 27593.27 30877.22 30984.72 36492.79 29685.11 24989.82 30590.07 34266.80 34697.76 25484.56 26694.27 33195.96 275
mvsany_test389.11 25688.21 27191.83 22191.30 34890.25 7988.09 31978.76 38976.37 33196.43 9198.39 3383.79 23890.43 37686.57 23694.20 33294.80 314
sss87.23 29886.82 29688.46 31693.96 29677.94 29686.84 33992.78 29777.59 32287.61 34191.83 32178.75 28291.92 36877.84 32894.20 33295.52 296
MDA-MVSNet-bldmvs91.04 20690.88 21191.55 23394.68 27980.16 25185.49 35692.14 31090.41 14994.93 17095.79 19785.10 23096.93 29885.15 25594.19 33497.57 204
Syy-MVS84.81 32084.93 31484.42 35591.71 34163.36 38985.89 35281.49 38181.03 29285.13 35681.64 38777.44 29595.00 34485.94 24794.12 33594.91 311
myMVS_eth3d79.62 35478.26 35883.72 35991.71 34161.25 39185.89 35281.49 38181.03 29285.13 35681.64 38732.12 40195.00 34471.17 37294.12 33594.91 311
PAPM_NR91.03 20790.81 21491.68 22996.73 16581.10 24493.72 15296.35 19788.19 19288.77 32392.12 31885.09 23197.25 28182.40 28593.90 33796.68 248
YYNet188.17 27888.24 26887.93 32492.21 32673.62 34580.75 38188.77 33382.51 28494.99 16895.11 22982.70 25293.70 35883.33 27393.83 33896.48 256
MDA-MVSNet_test_wron88.16 27988.23 26987.93 32492.22 32573.71 34480.71 38288.84 33282.52 28394.88 17395.14 22782.70 25293.61 35983.28 27493.80 33996.46 257
1112_ss88.42 27487.41 28391.45 23796.69 16780.99 24589.72 28596.72 17873.37 34787.00 34690.69 33977.38 29798.20 21081.38 29593.72 34095.15 302
PVSNet76.22 2082.89 33482.37 33484.48 35493.96 29664.38 38678.60 38488.61 33471.50 35884.43 36486.36 37574.27 31794.60 34869.87 37693.69 34194.46 323
test_vis1_n_192089.45 24989.85 23688.28 31893.59 30476.71 31890.67 25397.78 9679.67 30590.30 29696.11 18376.62 30892.17 36790.31 15293.57 34295.96 275
test_cas_vis1_n_192088.25 27788.27 26688.20 32092.19 32878.92 28489.45 29295.44 23575.29 33893.23 22495.65 20671.58 32890.23 37788.05 21093.55 34395.44 297
TESTMET0.1,179.09 35678.04 35982.25 36487.52 38264.03 38783.08 37380.62 38570.28 36880.16 38583.22 38444.13 39690.56 37479.95 31093.36 34492.15 361
PAPR87.65 28886.77 29890.27 27792.85 31677.38 30688.56 31696.23 20276.82 33084.98 35989.75 34986.08 22097.16 28872.33 36293.35 34596.26 265
SCA87.43 29487.21 28888.10 32292.01 33471.98 35789.43 29388.11 34282.26 28788.71 32492.83 30078.65 28497.59 26479.61 31693.30 34694.75 317
Test_1112_low_res87.50 29386.58 30090.25 27896.80 16477.75 30187.53 32796.25 20069.73 37186.47 34893.61 28375.67 31297.88 23979.95 31093.20 34795.11 304
MDTV_nov1_ep1383.88 32589.42 37161.52 39088.74 31287.41 34773.99 34484.96 36094.01 27065.25 35695.53 33178.02 32693.16 348
WTY-MVS86.93 30686.50 30588.24 31994.96 26474.64 33487.19 33292.07 31278.29 31988.32 33191.59 32678.06 29094.27 35474.88 34893.15 34995.80 283
PMMVS83.00 33381.11 34188.66 31083.81 39686.44 16082.24 37785.65 36161.75 38982.07 37785.64 37879.75 27591.59 37075.99 34393.09 35087.94 380
UnsupCasMVSNet_bld88.50 27388.03 27589.90 28795.52 25178.88 28687.39 32994.02 27579.32 31193.06 22994.02 26980.72 27194.27 35475.16 34793.08 35196.54 250
MVS84.98 31984.30 32087.01 33391.03 35077.69 30391.94 21794.16 27159.36 39084.23 36587.50 36885.66 22496.80 30271.79 36493.05 35286.54 383
PatchT87.51 29288.17 27285.55 34590.64 35466.91 37492.02 21386.09 35792.20 9389.05 31697.16 11264.15 36196.37 31689.21 18792.98 35393.37 348
MS-PatchMatch88.05 28087.75 27888.95 30393.28 30777.93 29787.88 32192.49 30475.42 33592.57 24893.59 28480.44 27294.24 35681.28 29692.75 35494.69 320
CR-MVSNet87.89 28187.12 29290.22 27991.01 35178.93 28292.52 19092.81 29473.08 35089.10 31496.93 12867.11 34397.64 26388.80 19692.70 35594.08 329
RPMNet90.31 22990.14 23190.81 26491.01 35178.93 28292.52 19098.12 5191.91 10189.10 31496.89 13168.84 33699.41 3990.17 16092.70 35594.08 329
KD-MVS_2432*160082.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
miper_refine_blended82.17 33980.75 34686.42 34082.04 39770.09 36681.75 37890.80 32582.56 28190.37 29489.30 35442.90 39896.11 32274.47 35092.55 35793.06 351
BH-w/o87.21 29987.02 29487.79 32794.77 27377.27 30887.90 32093.21 29081.74 29089.99 30288.39 36483.47 24096.93 29871.29 36892.43 35989.15 374
IB-MVS77.21 1983.11 33181.05 34289.29 29891.15 34975.85 32785.66 35586.00 35879.70 30482.02 37986.61 37248.26 39398.39 19177.84 32892.22 36093.63 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune82.10 34181.02 34385.34 34787.46 38371.04 36094.74 11167.56 39796.44 2379.43 38798.99 645.24 39496.15 32067.18 38292.17 36188.85 376
HY-MVS82.50 1886.81 30785.93 30989.47 29393.63 30377.93 29794.02 14191.58 31975.68 33283.64 36893.64 28077.40 29697.42 27471.70 36692.07 36293.05 353
TR-MVS87.70 28587.17 28989.27 29994.11 29279.26 27788.69 31391.86 31581.94 28990.69 28889.79 34782.82 25097.42 27472.65 36191.98 36391.14 369
new_pmnet81.22 34581.01 34481.86 36590.92 35370.15 36584.03 36980.25 38770.83 36385.97 35189.78 34867.93 34284.65 39167.44 38191.90 36490.78 371
FPMVS84.50 32383.28 32788.16 32196.32 19794.49 1685.76 35485.47 36483.09 27485.20 35594.26 25963.79 36486.58 38863.72 38791.88 36583.40 386
UnsupCasMVSNet_eth90.33 22790.34 22690.28 27694.64 28280.24 25089.69 28695.88 21685.77 23293.94 20195.69 20481.99 25992.98 36484.21 26891.30 36697.62 201
MVP-Stereo90.07 23888.92 25193.54 16396.31 19886.49 15790.93 24595.59 22879.80 30191.48 27395.59 20780.79 27097.39 27778.57 32591.19 36796.76 246
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131486.46 30986.33 30686.87 33691.65 34374.54 33691.94 21794.10 27274.28 34284.78 36187.33 37083.03 24695.00 34478.72 32391.16 36891.06 370
tpm84.38 32484.08 32285.30 34890.47 35863.43 38889.34 29685.63 36277.24 32687.62 34095.03 23361.00 37597.30 28079.26 32091.09 36995.16 301
dmvs_re84.69 32283.94 32486.95 33592.24 32482.93 22089.51 29087.37 34884.38 26185.37 35385.08 38072.44 32386.59 38768.05 37991.03 37091.33 367
CVMVSNet85.16 31784.72 31586.48 33892.12 33070.19 36492.32 20288.17 34056.15 39290.64 28995.85 19367.97 34196.69 30588.78 19790.52 37192.56 358
test0.0.03 182.48 33681.47 34085.48 34689.70 36673.57 34684.73 36281.64 38083.07 27588.13 33486.61 37262.86 36889.10 38466.24 38490.29 37293.77 339
baseline283.38 33081.54 33988.90 30491.38 34672.84 35288.78 31081.22 38378.97 31479.82 38687.56 36661.73 37297.80 24774.30 35290.05 37396.05 273
test_vis1_rt85.58 31484.58 31788.60 31187.97 37986.76 14985.45 35793.59 28066.43 37987.64 33989.20 35679.33 27885.38 39081.59 29389.98 37493.66 342
PAPM81.91 34280.11 35287.31 33193.87 29972.32 35684.02 37093.22 28869.47 37276.13 39189.84 34472.15 32597.23 28253.27 39389.02 37592.37 360
MVS-HIRNet78.83 35780.60 34873.51 37693.07 31147.37 40087.10 33478.00 39268.94 37377.53 38997.26 10371.45 32994.62 34763.28 38888.74 37678.55 391
tpm281.46 34380.35 35084.80 35189.90 36465.14 38290.44 25985.36 36565.82 38382.05 37892.44 31157.94 37996.69 30570.71 37388.49 37792.56 358
CostFormer83.09 33282.21 33585.73 34489.27 37267.01 37390.35 26486.47 35470.42 36783.52 37093.23 29361.18 37396.85 30077.21 33588.26 37893.34 349
GG-mvs-BLEND83.24 36285.06 39371.03 36194.99 10665.55 39874.09 39275.51 39244.57 39594.46 35059.57 39087.54 37984.24 385
PatchmatchNetpermissive85.22 31684.64 31686.98 33489.51 37069.83 36990.52 25787.34 34978.87 31687.22 34592.74 30466.91 34596.53 30781.77 29086.88 38094.58 321
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mvsany_test183.91 32782.93 33186.84 33786.18 38985.93 17381.11 38075.03 39570.80 36588.57 32894.63 24883.08 24587.38 38580.39 30286.57 38187.21 381
baseline187.62 28987.31 28488.54 31294.71 27874.27 34193.10 17188.20 33986.20 22492.18 26493.04 29573.21 32195.52 33279.32 31985.82 38295.83 282
tpmvs84.22 32583.97 32384.94 35087.09 38565.18 38191.21 23988.35 33682.87 27885.21 35490.96 33465.24 35796.75 30379.60 31885.25 38392.90 355
ADS-MVSNet284.01 32682.20 33689.41 29589.04 37376.37 32387.57 32390.98 32372.71 35484.46 36292.45 30968.08 33996.48 31070.58 37483.97 38495.38 298
ADS-MVSNet82.25 33781.55 33884.34 35689.04 37365.30 38087.57 32385.13 37072.71 35484.46 36292.45 30968.08 33992.33 36670.58 37483.97 38495.38 298
JIA-IIPM85.08 31883.04 32991.19 25087.56 38186.14 16989.40 29584.44 37388.98 17482.20 37697.95 5456.82 38296.15 32076.55 34083.45 38691.30 368
MVEpermissive59.87 2373.86 36072.65 36377.47 37387.00 38774.35 33961.37 39160.93 39967.27 37769.69 39486.49 37481.24 26872.33 39556.45 39283.45 38685.74 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset78.23 35878.99 35575.94 37491.99 33555.34 39788.86 30778.70 39082.69 28081.64 38279.46 38975.93 31185.74 38948.78 39582.85 38886.76 382
EPMVS81.17 34780.37 34983.58 36085.58 39165.08 38390.31 26671.34 39677.31 32585.80 35291.30 32859.38 37792.70 36579.99 30982.34 38992.96 354
tpmrst82.85 33582.93 33182.64 36387.65 38058.99 39490.14 27187.90 34475.54 33483.93 36691.63 32566.79 34895.36 33881.21 29881.54 39093.57 347
tpm cat180.61 35179.46 35484.07 35888.78 37565.06 38489.26 29988.23 33862.27 38881.90 38089.66 35162.70 37095.29 34171.72 36580.60 39191.86 365
dp79.28 35578.62 35781.24 36885.97 39056.45 39586.91 33785.26 36872.97 35281.45 38389.17 35856.01 38495.45 33673.19 35876.68 39291.82 366
DeepMVS_CXcopyleft53.83 37870.38 39964.56 38548.52 40233.01 39465.50 39574.21 39356.19 38346.64 39738.45 39770.07 39350.30 393
tmp_tt37.97 36244.33 36518.88 37911.80 40121.54 40363.51 39045.66 4034.23 39651.34 39650.48 39459.08 37822.11 39844.50 39668.35 39413.00 394
PVSNet_070.34 2174.58 35972.96 36279.47 37190.63 35566.24 37873.26 38583.40 37763.67 38778.02 38878.35 39172.53 32289.59 38056.68 39160.05 39582.57 389
test_method50.44 36148.94 36454.93 37739.68 40012.38 40428.59 39290.09 3296.82 39541.10 39778.41 39054.41 38670.69 39650.12 39451.26 39681.72 390
test1239.49 36412.01 3671.91 3802.87 4021.30 40582.38 3761.34 4051.36 3982.84 3996.56 3972.45 4030.97 3992.73 3985.56 3973.47 395
testmvs9.02 36511.42 3681.81 3812.77 4031.13 40679.44 3831.90 4041.18 3992.65 4006.80 3961.95 4040.87 4002.62 3993.45 3983.44 396
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k23.35 36331.13 3660.00 3820.00 4040.00 4070.00 39395.58 2300.00 4000.00 40191.15 33093.43 840.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas7.56 36610.09 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40090.77 1500.00 4010.00 4000.00 3990.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re7.56 36610.08 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40190.69 3390.00 4050.00 4010.00 4000.00 3990.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS61.25 39174.55 349
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 404
eth-test0.00 404
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12196.48 1098.95 114
save fliter97.46 13088.05 12492.04 21297.08 15087.63 206
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
GSMVS94.75 317
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 34994.75 317
sam_mvs66.41 350
MTGPAbinary97.62 105
test_post190.21 2685.85 39965.36 35596.00 32579.61 316
test_post6.07 39865.74 35495.84 328
patchmatchnet-post91.71 32366.22 35297.59 264
MTMP94.82 10954.62 401
gm-plane-assit87.08 38659.33 39371.22 35983.58 38397.20 28473.95 353
TEST996.45 18789.46 9090.60 25596.92 16279.09 31390.49 29094.39 25691.31 13698.88 121
test_896.37 18989.14 10090.51 25896.89 16579.37 30890.42 29294.36 25891.20 14198.82 131
agg_prior96.20 20888.89 10696.88 16690.21 29798.78 143
test_prior489.91 8290.74 250
test_prior94.61 11895.95 22787.23 13797.36 12898.68 16397.93 171
旧先验290.00 27668.65 37492.71 24396.52 30885.15 255
新几何290.02 275
无先验89.94 27795.75 22070.81 36498.59 17481.17 29994.81 313
原ACMM289.34 296
testdata298.03 22380.24 306
segment_acmp92.14 119
testdata188.96 30588.44 187
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 207
plane_prior495.59 207
plane_prior388.43 11990.35 15093.31 216
plane_prior294.56 12091.74 115
plane_prior197.38 132
n20.00 406
nn0.00 406
door-mid92.13 311
test1196.65 181
door91.26 320
HQP5-MVS84.89 190
HQP-NCC96.36 19191.37 23487.16 21288.81 319
ACMP_Plane96.36 19191.37 23487.16 21288.81 319
BP-MVS86.55 238
HQP4-MVS88.81 31998.61 17098.15 148
HQP2-MVS84.76 232
NP-MVS96.82 16287.10 14193.40 288
MDTV_nov1_ep13_2view42.48 40288.45 31767.22 37883.56 36966.80 34672.86 36094.06 331
Test By Simon90.61 156