This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8997.89 1499.47 399.32 1199.08 1097.87 14699.67 296.47 9099.92 597.88 2799.98 299.85 3
ANet_high98.31 2998.94 696.41 21199.33 5089.64 25597.92 6699.56 899.27 699.66 899.50 697.67 2599.83 3497.55 4199.98 299.77 10
PS-MVSNAJss98.53 1998.63 1998.21 8399.68 994.82 13598.10 5599.21 1796.91 9299.75 299.45 995.82 11099.92 598.80 499.96 499.89 1
mvs_tets98.90 598.94 698.75 3399.69 896.48 6298.54 2499.22 1696.23 12099.71 499.48 798.77 699.93 398.89 399.95 599.84 5
test_djsdf98.73 1198.74 1698.69 4099.63 1396.30 6898.67 1699.02 5596.50 10899.32 2099.44 1097.43 3199.92 598.73 799.95 599.86 2
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4699.69 299.57 799.02 1599.62 1099.36 1498.53 799.52 18898.58 1599.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax98.77 998.79 1298.74 3599.66 1196.48 6298.45 3199.12 3195.83 14799.67 699.37 1298.25 1099.92 598.77 599.94 899.82 6
v897.60 9198.06 3996.23 21798.71 13089.44 25997.43 9998.82 11897.29 8398.74 5499.10 3893.86 17799.68 13298.61 1399.94 899.56 41
Anonymous2024052197.07 12297.51 9395.76 23899.35 4888.18 28197.78 7298.40 18597.11 8798.34 8899.04 4489.58 26199.79 4798.09 2399.93 1099.30 113
test_part196.77 14496.53 15497.47 14498.04 20792.92 20097.93 6498.85 9898.83 2199.30 2199.07 4279.25 32499.79 4797.59 3999.93 1099.69 22
v7n98.73 1198.99 597.95 10299.64 1294.20 16298.67 1699.14 2999.08 1099.42 1599.23 2496.53 8599.91 1399.27 299.93 1099.73 17
PS-CasMVS98.73 1198.85 1098.39 6499.55 2295.47 10798.49 2899.13 3099.22 899.22 2798.96 4997.35 3499.92 597.79 3299.93 1099.79 9
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6699.18 599.20 1999.67 299.73 399.65 499.15 399.86 2597.22 5199.92 1499.77 10
v1097.55 9497.97 4696.31 21598.60 14589.64 25597.44 9799.02 5596.60 10198.72 5699.16 3393.48 18799.72 9298.76 699.92 1499.58 33
PEN-MVS98.75 1098.85 1098.44 5899.58 1795.67 9498.45 3199.15 2799.33 599.30 2199.00 4597.27 3899.92 597.64 3899.92 1499.75 15
bld_raw_dy_0_6497.69 8497.61 8597.91 10599.54 2494.27 15998.06 5898.60 16196.60 10198.79 4998.95 5089.62 25999.84 3198.43 1899.91 1799.62 29
anonymousdsp98.72 1498.63 1998.99 1399.62 1497.29 3998.65 2099.19 2195.62 15599.35 1999.37 1297.38 3399.90 1498.59 1499.91 1799.77 10
FC-MVSNet-test98.16 3598.37 2897.56 13199.49 3393.10 19698.35 3599.21 1798.43 2998.89 4298.83 5994.30 16799.81 4097.87 2899.91 1799.77 10
DTE-MVSNet98.79 898.86 898.59 4899.55 2296.12 7498.48 3099.10 3499.36 499.29 2399.06 4397.27 3899.93 397.71 3699.91 1799.70 20
CP-MVSNet98.42 2498.46 2598.30 7399.46 3595.22 12398.27 4498.84 10399.05 1399.01 3898.65 7295.37 13199.90 1497.57 4099.91 1799.77 10
WR-MVS_H98.65 1598.62 2198.75 3399.51 2996.61 5898.55 2399.17 2299.05 1399.17 2998.79 6095.47 12899.89 1897.95 2699.91 1799.75 15
bld_raw_conf00598.51 2098.52 2498.47 5699.57 1895.91 8398.75 1399.27 1498.28 3599.17 2999.27 2193.85 17899.83 3498.63 1299.91 1799.66 23
RRT_MVS97.95 5497.79 6198.43 6099.67 1095.56 9898.86 1096.73 29797.99 4699.15 3199.35 1689.84 25899.90 1498.64 1199.90 2499.82 6
mvsmamba98.16 3598.06 3998.44 5899.53 2795.87 8498.70 1498.94 7797.71 6098.85 4499.10 3891.35 23699.83 3498.47 1699.90 2499.64 28
test_low_dy_conf_00198.18 3498.04 4198.60 4699.62 1496.14 7398.66 1997.66 25797.24 8498.78 5099.33 1992.47 21499.87 2298.71 1099.89 2699.80 8
pmmvs699.07 499.24 498.56 5099.81 296.38 6498.87 999.30 1299.01 1699.63 999.66 399.27 299.68 13297.75 3499.89 2699.62 29
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6599.17 699.05 4698.05 4499.61 1199.52 593.72 18399.88 2098.72 999.88 2899.65 26
DeepC-MVS95.41 497.82 7597.70 6998.16 8498.78 12195.72 8996.23 15999.02 5593.92 21698.62 5898.99 4697.69 2399.62 15896.18 8699.87 2999.15 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test111194.53 24694.81 22193.72 30699.06 9581.94 35598.31 3983.87 37696.37 11398.49 7199.17 3281.49 31399.73 8796.64 6799.86 3099.49 59
Anonymous2023121198.55 1798.76 1397.94 10398.79 11994.37 15398.84 1199.15 2799.37 399.67 699.43 1195.61 12299.72 9298.12 2199.86 3099.73 17
TranMVSNet+NR-MVSNet98.33 2798.30 3298.43 6099.07 9495.87 8496.73 13799.05 4698.67 2498.84 4698.45 8597.58 2899.88 2096.45 7799.86 3099.54 44
nrg03098.54 1898.62 2198.32 6999.22 6495.66 9597.90 6799.08 4098.31 3399.02 3798.74 6497.68 2499.61 16497.77 3399.85 3399.70 20
pmmvs-eth3d96.49 16196.18 16997.42 15298.25 18494.29 15594.77 24698.07 23389.81 29097.97 13498.33 9593.11 19399.08 28795.46 13199.84 3498.89 198
FIs97.93 6098.07 3797.48 14399.38 4592.95 19998.03 6199.11 3298.04 4598.62 5898.66 7093.75 18299.78 5197.23 5099.84 3499.73 17
test250689.86 32489.16 32991.97 33898.95 10576.83 37098.54 2461.07 38496.20 12197.07 18899.16 3355.19 38399.69 12596.43 7899.83 3699.38 94
ECVR-MVScopyleft94.37 25194.48 23994.05 30398.95 10583.10 34798.31 3982.48 37796.20 12198.23 10299.16 3381.18 31699.66 14395.95 9999.83 3699.38 94
iter_conf0593.65 27393.05 27295.46 25396.13 33087.45 29895.95 17898.22 20592.66 25497.04 19097.89 15763.52 37599.72 9296.19 8599.82 3899.21 135
D2MVS95.18 21395.17 20295.21 26197.76 24987.76 29394.15 27097.94 23889.77 29196.99 19597.68 18287.45 28599.14 27895.03 16199.81 3998.74 218
WR-MVS96.90 13396.81 13797.16 16598.56 15092.20 21594.33 25998.12 22497.34 8098.20 10497.33 21492.81 20099.75 7294.79 16999.81 3999.54 44
test_040297.84 7297.97 4697.47 14499.19 7494.07 16596.71 13898.73 13398.66 2598.56 6598.41 8896.84 7099.69 12594.82 16799.81 3998.64 227
MIMVSNet198.51 2098.45 2798.67 4199.72 696.71 5298.76 1298.89 8398.49 2899.38 1799.14 3695.44 13099.84 3196.47 7699.80 4299.47 68
VPA-MVSNet98.27 3098.46 2597.70 12299.06 9593.80 17697.76 7599.00 6398.40 3099.07 3698.98 4796.89 6499.75 7297.19 5599.79 4399.55 43
Baseline_NR-MVSNet97.72 8297.79 6197.50 13999.56 2093.29 19295.44 20198.86 9498.20 3998.37 8299.24 2394.69 15299.55 17995.98 9899.79 4399.65 26
IterMVS-LS96.92 13197.29 10695.79 23798.51 15688.13 28495.10 22598.66 15396.99 8998.46 7598.68 6992.55 20999.74 8296.91 6399.79 4399.50 51
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
patch_mono-296.59 15696.93 13095.55 24898.88 11287.12 30594.47 25699.30 1294.12 21096.65 21698.41 8894.98 14699.87 2295.81 10999.78 4699.66 23
dcpmvs_297.12 12097.99 4594.51 29299.11 8984.00 34397.75 7699.65 597.38 7999.14 3298.42 8795.16 13899.96 295.52 12499.78 4699.58 33
iter_conf_final94.54 24593.91 25996.43 20797.23 29390.41 24896.81 12898.10 22593.87 21796.80 20597.89 15768.02 36999.72 9296.73 6699.77 4899.18 143
CS-MVS-test97.91 6497.84 5698.14 8898.52 15496.03 7998.38 3499.67 398.11 4195.50 26696.92 24396.81 7299.87 2296.87 6599.76 4998.51 239
NR-MVSNet97.96 5097.86 5598.26 7598.73 12595.54 10098.14 5398.73 13397.79 5099.42 1597.83 16594.40 16599.78 5195.91 10299.76 4999.46 70
SixPastTwentyTwo97.49 9997.57 8997.26 16299.56 2092.33 20998.28 4296.97 28698.30 3499.45 1499.35 1688.43 27499.89 1898.01 2599.76 4999.54 44
FMVSNet197.95 5498.08 3697.56 13199.14 8793.67 18198.23 4598.66 15397.41 7799.00 3999.19 2795.47 12899.73 8795.83 10799.76 4999.30 113
TDRefinement98.90 598.86 899.02 999.54 2498.06 899.34 499.44 1098.85 2099.00 3999.20 2697.42 3299.59 16697.21 5299.76 4999.40 90
pm-mvs198.47 2298.67 1797.86 11099.52 2894.58 14598.28 4299.00 6397.57 6699.27 2499.22 2598.32 999.50 19397.09 5899.75 5499.50 51
UniMVSNet (Re)97.83 7397.65 7698.35 6898.80 11895.86 8695.92 18099.04 5297.51 7198.22 10397.81 16994.68 15499.78 5197.14 5799.75 5499.41 89
CS-MVS98.09 4298.01 4498.32 6998.45 16796.69 5498.52 2699.69 298.07 4396.07 24497.19 22396.88 6699.86 2597.50 4399.73 5698.41 246
LPG-MVS_test97.94 5797.67 7398.74 3599.15 7997.02 4497.09 11699.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
LGP-MVS_train98.74 3599.15 7997.02 4499.02 5595.15 17498.34 8898.23 11497.91 1799.70 11794.41 18499.73 5699.50 51
CSCG97.40 10697.30 10597.69 12498.95 10594.83 13497.28 10598.99 6696.35 11698.13 11495.95 29895.99 10399.66 14394.36 19099.73 5698.59 233
IS-MVSNet96.93 13096.68 14497.70 12299.25 5894.00 16898.57 2196.74 29598.36 3198.14 11397.98 14688.23 27699.71 10893.10 22899.72 6099.38 94
ACMH+93.58 1098.23 3398.31 3097.98 10199.39 4495.22 12397.55 8999.20 1998.21 3899.25 2598.51 8198.21 1199.40 22594.79 16999.72 6099.32 107
CLD-MVS95.47 20195.07 20696.69 19398.27 18192.53 20691.36 33598.67 15191.22 27795.78 25894.12 33595.65 12198.98 29990.81 26899.72 6098.57 234
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet97.83 7397.65 7698.37 6598.72 12795.78 8795.66 19199.02 5598.11 4198.31 9597.69 18194.65 15699.85 2897.02 6199.71 6399.48 65
DU-MVS97.79 7797.60 8698.36 6698.73 12595.78 8795.65 19498.87 9197.57 6698.31 9597.83 16594.69 15299.85 2897.02 6199.71 6399.46 70
ACMH93.61 998.44 2398.76 1397.51 13699.43 3993.54 18798.23 4599.05 4697.40 7899.37 1899.08 4198.79 599.47 20197.74 3599.71 6399.50 51
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.54 1397.47 10197.10 11998.55 5199.04 10096.70 5396.24 15898.89 8393.71 22197.97 13497.75 17497.44 3099.63 15093.22 22599.70 6699.32 107
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48296.78 14397.06 12395.95 23098.57 14988.77 27295.36 20998.26 20195.18 17397.85 14898.23 11492.58 20899.63 15097.80 3199.69 6799.45 75
UGNet96.81 14196.56 15097.58 13096.64 31093.84 17597.75 7697.12 28096.47 11193.62 31598.88 5693.22 19299.53 18495.61 12099.69 6799.36 102
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
wuyk23d93.25 28395.20 20087.40 35796.07 33195.38 11097.04 11994.97 32395.33 16699.70 598.11 12898.14 1391.94 37577.76 36899.68 6974.89 375
Vis-MVSNet (Re-imp)95.11 21694.85 21795.87 23599.12 8889.17 26397.54 9494.92 32496.50 10896.58 21897.27 21883.64 30899.48 19888.42 31399.67 7098.97 181
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4499.21 7197.35 3797.96 6299.16 2398.34 3298.78 5098.52 8097.32 3599.45 20894.08 19999.67 7099.13 153
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0396.58 15896.61 14696.48 20598.49 16091.72 22795.68 19097.69 25496.81 9598.27 9997.92 15594.18 17198.71 32290.78 27099.66 7299.00 177
KD-MVS_self_test97.86 7198.07 3797.25 16399.22 6492.81 20297.55 8998.94 7797.10 8898.85 4498.88 5695.03 14399.67 13797.39 4899.65 7399.26 126
CHOSEN 1792x268894.10 26093.41 26796.18 22199.16 7690.04 25092.15 32498.68 14879.90 36096.22 23897.83 16587.92 28299.42 21489.18 30299.65 7399.08 166
XVG-ACMP-BASELINE97.58 9397.28 10898.49 5499.16 7696.90 4896.39 14798.98 6995.05 17998.06 12398.02 14195.86 10699.56 17594.37 18799.64 7599.00 177
DROMVSNet97.90 6697.94 4997.79 11498.66 13695.14 12698.31 3999.66 497.57 6695.95 24997.01 23796.99 5599.82 3797.66 3799.64 7598.39 249
CP-MVS97.92 6197.56 9098.99 1398.99 10397.82 1697.93 6498.96 7496.11 12696.89 20397.45 19996.85 6999.78 5195.19 14699.63 7799.38 94
test_0728_THIRD96.62 9998.40 7998.28 10697.10 4599.71 10895.70 11099.62 7899.58 33
tfpnnormal97.72 8297.97 4696.94 17799.26 5592.23 21297.83 7198.45 17598.25 3699.13 3398.66 7096.65 7799.69 12593.92 20899.62 7898.91 194
MP-MVS-pluss97.69 8497.36 10298.70 3999.50 3296.84 4995.38 20898.99 6692.45 25898.11 11598.31 9797.25 4199.77 6096.60 6999.62 7899.48 65
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 13697.08 12196.13 22398.42 16989.28 26295.41 20598.67 15194.21 20697.97 13498.31 9793.06 19499.65 14598.06 2499.62 7899.45 75
HPM-MVS_fast98.32 2898.13 3498.88 2499.54 2497.48 3298.35 3599.03 5395.88 14297.88 14398.22 11798.15 1299.74 8296.50 7599.62 7899.42 87
Patchmtry95.03 22194.59 23496.33 21394.83 35290.82 23996.38 14997.20 27596.59 10397.49 16198.57 7577.67 33299.38 23392.95 23199.62 7898.80 210
EGC-MVSNET83.08 34377.93 34698.53 5299.57 1897.55 2798.33 3898.57 1664.71 37910.38 38098.90 5595.60 12399.50 19395.69 11299.61 8498.55 237
zzz-MVS98.01 4897.66 7499.06 499.44 3797.90 1295.66 19198.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
MTAPA98.14 3797.84 5699.06 499.44 3797.90 1297.25 10698.73 13397.69 6297.90 14097.96 14795.81 11499.82 3796.13 8799.61 8499.45 75
Patchmatch-RL test94.66 23894.49 23895.19 26298.54 15288.91 26792.57 31698.74 13191.46 27298.32 9397.75 17477.31 33798.81 31396.06 8999.61 8497.85 296
CANet95.86 18795.65 19096.49 20496.41 31690.82 23994.36 25898.41 18394.94 18392.62 34196.73 25692.68 20499.71 10895.12 15699.60 8898.94 185
FMVSNet296.72 14896.67 14596.87 18297.96 21791.88 22397.15 11198.06 23495.59 15798.50 7098.62 7389.51 26599.65 14594.99 16399.60 8899.07 168
SteuartSystems-ACMMP98.02 4797.76 6698.79 3199.43 3997.21 4397.15 11198.90 8296.58 10498.08 12197.87 16397.02 5399.76 6595.25 14399.59 9099.40 90
Skip Steuart: Steuart Systems R&D Blog.
USDC94.56 24394.57 23794.55 29097.78 24786.43 31592.75 31298.65 15885.96 32596.91 20297.93 15490.82 24298.74 31990.71 27599.59 9098.47 243
ACMMP_NAP97.89 6797.63 8198.67 4199.35 4896.84 4996.36 15098.79 12095.07 17897.88 14398.35 9397.24 4299.72 9296.05 9199.58 9299.45 75
v119296.83 13997.06 12396.15 22298.28 17989.29 26195.36 20998.77 12593.73 22098.11 11598.34 9493.02 19899.67 13798.35 1999.58 9299.50 51
APDe-MVS98.14 3798.03 4398.47 5698.72 12796.04 7798.07 5799.10 3495.96 13698.59 6398.69 6896.94 5899.81 4096.64 6799.58 9299.57 38
DPE-MVScopyleft97.64 8797.35 10398.50 5398.85 11496.18 7095.21 22298.99 6695.84 14698.78 5098.08 13096.84 7099.81 4093.98 20699.57 9599.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.11 4197.83 5998.92 2299.42 4197.46 3398.57 2199.05 4695.43 16497.41 16997.50 19597.98 1599.79 4795.58 12399.57 9599.50 51
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.05 4597.75 6898.93 2199.23 6197.60 2398.09 5698.96 7495.75 15197.91 13998.06 13796.89 6499.76 6595.32 13999.57 9599.43 86
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cl____94.73 23094.64 22895.01 26895.85 33587.00 30791.33 33798.08 22993.34 23097.10 18397.33 21484.01 30799.30 25395.14 15399.56 9898.71 223
miper_lstm_enhance94.81 22894.80 22294.85 27696.16 32686.45 31491.14 34398.20 20993.49 22597.03 19297.37 21184.97 30099.26 26295.28 14199.56 9898.83 207
v14419296.69 15196.90 13496.03 22598.25 18488.92 26695.49 19998.77 12593.05 24398.09 11998.29 10592.51 21399.70 11798.11 2299.56 9899.47 68
EI-MVSNet96.63 15596.93 13095.74 23997.26 29188.13 28495.29 21697.65 26096.99 8997.94 13798.19 11992.55 20999.58 16896.91 6399.56 9899.50 51
K. test v396.44 16496.28 16596.95 17699.41 4291.53 22997.65 8290.31 36398.89 1998.93 4199.36 1484.57 30399.92 597.81 3099.56 9899.39 92
MVSTER94.21 25693.93 25895.05 26795.83 33686.46 31395.18 22397.65 26092.41 25997.94 13798.00 14572.39 35999.58 16896.36 8099.56 9899.12 158
DIV-MVS_self_test94.73 23094.64 22895.01 26895.86 33487.00 30791.33 33798.08 22993.34 23097.10 18397.34 21384.02 30699.31 25095.15 15299.55 10498.72 221
v192192096.72 14896.96 12995.99 22698.21 18888.79 27195.42 20398.79 12093.22 23598.19 10798.26 11192.68 20499.70 11798.34 2099.55 10499.49 59
ACMMP++99.55 104
SMA-MVScopyleft97.48 10097.11 11898.60 4698.83 11596.67 5596.74 13398.73 13391.61 26998.48 7298.36 9296.53 8599.68 13295.17 14899.54 10799.45 75
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.37 10897.70 6996.35 21298.14 20095.13 12796.54 14298.92 8095.94 13899.19 2898.08 13097.74 2295.06 37395.24 14499.54 10798.87 204
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM93.33 1198.05 4597.79 6198.85 2599.15 7997.55 2796.68 13998.83 11095.21 17098.36 8598.13 12498.13 1499.62 15896.04 9299.54 10799.39 92
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6197.62 8398.83 2699.32 5297.24 4197.45 9698.84 10395.76 14996.93 20097.43 20197.26 4099.79 4796.06 8999.53 11099.45 75
Anonymous2023120695.27 21095.06 20895.88 23498.72 12789.37 26095.70 18797.85 24388.00 30996.98 19797.62 18591.95 22699.34 24389.21 30199.53 11098.94 185
V4297.04 12397.16 11696.68 19498.59 14791.05 23496.33 15298.36 19094.60 19397.99 13098.30 10193.32 18999.62 15897.40 4799.53 11099.38 94
EU-MVSNet94.25 25394.47 24093.60 30998.14 20082.60 35097.24 10892.72 34585.08 33698.48 7298.94 5182.59 31198.76 31897.47 4599.53 11099.44 85
TransMVSNet (Re)98.38 2698.67 1797.51 13699.51 2993.39 19198.20 5098.87 9198.23 3799.48 1299.27 2198.47 899.55 17996.52 7399.53 11099.60 31
DVP-MVScopyleft97.78 7897.65 7698.16 8499.24 5995.51 10296.74 13398.23 20495.92 13998.40 7998.28 10697.06 5099.71 10895.48 12899.52 11599.26 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7899.23 6195.49 10696.74 13398.89 8399.75 7295.48 12899.52 11599.53 47
v14896.58 15896.97 12795.42 25598.63 14187.57 29595.09 22697.90 24095.91 14198.24 10197.96 14793.42 18899.39 23096.04 9299.52 11599.29 120
EI-MVSNet-UG-set97.32 11297.40 9997.09 17097.34 28692.01 22195.33 21297.65 26097.74 5598.30 9798.14 12395.04 14299.69 12597.55 4199.52 11599.58 33
ACMMP++_ref99.52 115
MSC_two_6792asdad98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
No_MVS98.22 8097.75 25195.34 11598.16 21899.75 7295.87 10599.51 12099.57 38
SED-MVS97.94 5797.90 5098.07 9399.22 6495.35 11396.79 13098.83 11096.11 12699.08 3498.24 11297.87 2099.72 9295.44 13299.51 12099.14 151
IU-MVS99.22 6495.40 10898.14 22185.77 32998.36 8595.23 14599.51 12099.49 59
EI-MVSNet-Vis-set97.32 11297.39 10097.11 16897.36 28192.08 21995.34 21197.65 26097.74 5598.29 9898.11 12895.05 14099.68 13297.50 4399.50 12499.56 41
abl_698.42 2498.19 3399.09 399.16 7698.10 697.73 8099.11 3297.76 5498.62 5898.27 11097.88 1999.80 4695.67 11499.50 12499.38 94
mPP-MVS97.91 6497.53 9199.04 799.22 6497.87 1597.74 7898.78 12496.04 13197.10 18397.73 17796.53 8599.78 5195.16 15099.50 12499.46 70
Gipumacopyleft98.07 4498.31 3097.36 15699.76 596.28 6998.51 2799.10 3498.76 2396.79 20699.34 1896.61 8098.82 31196.38 7999.50 12496.98 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_241102_TWO98.83 11096.11 12698.62 5898.24 11296.92 6299.72 9295.44 13299.49 12899.49 59
v124096.74 14597.02 12695.91 23398.18 19388.52 27495.39 20798.88 8993.15 24198.46 7598.40 9192.80 20199.71 10898.45 1799.49 12899.49 59
VDD-MVS97.37 10897.25 10997.74 11898.69 13494.50 14997.04 11995.61 31698.59 2698.51 6898.72 6592.54 21199.58 16896.02 9499.49 12899.12 158
PVSNet_BlendedMVS95.02 22294.93 21395.27 25997.79 24387.40 30094.14 27298.68 14888.94 29894.51 28998.01 14393.04 19599.30 25389.77 29499.49 12899.11 161
MP-MVScopyleft97.64 8797.18 11599.00 1299.32 5297.77 1897.49 9598.73 13396.27 11795.59 26497.75 17496.30 9899.78 5193.70 21699.48 13299.45 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet93.72 26992.62 28797.03 17487.61 38292.25 21196.27 15491.28 35496.74 9787.65 36897.39 20785.00 29999.64 14892.14 23899.48 13299.20 139
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU94.65 23994.21 24995.96 22895.90 33389.68 25493.92 28297.83 24793.19 23690.12 35895.64 30688.52 27299.57 17493.27 22499.47 13498.62 230
PMMVS293.66 27294.07 25392.45 33497.57 26680.67 36086.46 36796.00 30693.99 21497.10 18397.38 20989.90 25697.82 36188.76 30799.47 13498.86 205
baseline97.44 10397.78 6596.43 20798.52 15490.75 24296.84 12699.03 5396.51 10797.86 14798.02 14196.67 7699.36 23897.09 5899.47 13499.19 140
HFP-MVS97.94 5797.64 7998.83 2699.15 7997.50 3097.59 8698.84 10396.05 12997.49 16197.54 19097.07 4899.70 11795.61 12099.46 13799.30 113
#test#97.62 8997.22 11398.83 2699.15 7997.50 3096.81 12898.84 10394.25 20597.49 16197.54 19097.07 4899.70 11794.37 18799.46 13799.30 113
ACMMPR97.95 5497.62 8398.94 1899.20 7297.56 2697.59 8698.83 11096.05 12997.46 16797.63 18496.77 7399.76 6595.61 12099.46 13799.49 59
PGM-MVS97.88 6897.52 9298.96 1699.20 7297.62 2297.09 11699.06 4495.45 16297.55 15697.94 15297.11 4499.78 5194.77 17299.46 13799.48 65
PM-MVS97.36 11097.10 11998.14 8898.91 11096.77 5196.20 16098.63 15993.82 21898.54 6698.33 9593.98 17599.05 29095.99 9799.45 14198.61 232
GeoE97.75 8097.70 6997.89 10798.88 11294.53 14697.10 11598.98 6995.75 15197.62 15497.59 18797.61 2799.77 6096.34 8199.44 14299.36 102
OPM-MVS97.54 9597.25 10998.41 6299.11 8996.61 5895.24 22098.46 17494.58 19698.10 11898.07 13297.09 4799.39 23095.16 15099.44 14299.21 135
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 8497.79 6197.40 15499.06 9593.52 18895.96 17598.97 7394.55 19798.82 4798.76 6397.31 3699.29 25797.20 5499.44 14299.38 94
GBi-Net96.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
test196.99 12596.80 13897.56 13197.96 21793.67 18198.23 4598.66 15395.59 15797.99 13099.19 2789.51 26599.73 8794.60 17699.44 14299.30 113
FMVSNet395.26 21194.94 21196.22 21996.53 31390.06 24995.99 17297.66 25794.11 21197.99 13097.91 15680.22 32299.63 15094.60 17699.44 14298.96 182
DP-MVS97.87 6997.89 5397.81 11398.62 14294.82 13597.13 11498.79 12098.98 1798.74 5498.49 8295.80 11699.49 19595.04 15999.44 14299.11 161
TAMVS95.49 19894.94 21197.16 16598.31 17593.41 19095.07 22996.82 29191.09 27897.51 15997.82 16889.96 25599.42 21488.42 31399.44 14298.64 227
region2R97.92 6197.59 8798.92 2299.22 6497.55 2797.60 8598.84 10396.00 13497.22 17397.62 18596.87 6899.76 6595.48 12899.43 15099.46 70
XXY-MVS97.54 9597.70 6997.07 17199.46 3592.21 21397.22 10999.00 6394.93 18598.58 6498.92 5397.31 3699.41 22394.44 18299.43 15099.59 32
PHI-MVS96.96 12996.53 15498.25 7897.48 27296.50 6196.76 13298.85 9893.52 22496.19 24096.85 24695.94 10499.42 21493.79 21299.43 15098.83 207
AllTest97.20 11996.92 13298.06 9599.08 9296.16 7197.14 11399.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
TestCases98.06 9599.08 9296.16 7199.16 2394.35 20197.78 15298.07 13295.84 10799.12 28091.41 25399.42 15398.91 194
Regformer-397.25 11697.29 10697.11 16897.35 28292.32 21095.26 21897.62 26597.67 6498.17 10897.89 15795.05 14099.56 17597.16 5699.42 15399.46 70
Regformer-497.53 9797.47 9897.71 12097.35 28293.91 17095.26 21898.14 22197.97 4798.34 8897.89 15795.49 12699.71 10897.41 4699.42 15399.51 50
TinyColmap96.00 18296.34 16394.96 27097.90 22387.91 28794.13 27398.49 17294.41 19998.16 10997.76 17196.29 9998.68 32790.52 28199.42 15398.30 262
3Dnovator96.53 297.61 9097.64 7997.50 13997.74 25493.65 18598.49 2898.88 8996.86 9497.11 18298.55 7895.82 11099.73 8795.94 10099.42 15399.13 153
DeepPCF-MVS94.58 596.90 13396.43 16098.31 7297.48 27297.23 4292.56 31798.60 16192.84 25298.54 6697.40 20396.64 7998.78 31594.40 18699.41 15998.93 189
EPP-MVSNet96.84 13696.58 14897.65 12699.18 7593.78 17898.68 1596.34 30097.91 4997.30 17198.06 13788.46 27399.85 2893.85 21099.40 16099.32 107
xxxxxxxxxxxxxcwj97.24 11797.03 12597.89 10798.48 16294.71 13994.53 25499.07 4395.02 18197.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
SF-MVS97.60 9197.39 10098.22 8098.93 10895.69 9197.05 11899.10 3495.32 16797.83 14997.88 16196.44 9299.72 9294.59 17999.39 16199.25 130
casdiffmvs97.50 9897.81 6096.56 20198.51 15691.04 23595.83 18499.09 3997.23 8598.33 9298.30 10197.03 5299.37 23696.58 7199.38 16399.28 121
XVS97.96 5097.63 8198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23197.64 18396.49 8899.72 9295.66 11699.37 16499.45 75
X-MVStestdata92.86 28790.83 31198.94 1899.15 7997.66 2097.77 7398.83 11097.42 7496.32 23136.50 37796.49 8899.72 9295.66 11699.37 16499.45 75
lessismore_v097.05 17299.36 4792.12 21784.07 37598.77 5398.98 4785.36 29799.74 8297.34 4999.37 16499.30 113
Anonymous2024052997.96 5098.04 4197.71 12098.69 13494.28 15897.86 6998.31 19898.79 2299.23 2698.86 5895.76 11799.61 16495.49 12599.36 16799.23 133
c3_l95.20 21295.32 19894.83 27896.19 32486.43 31591.83 33098.35 19493.47 22697.36 17097.26 21988.69 27199.28 25995.41 13899.36 16798.78 213
FMVSNet593.39 27992.35 28996.50 20395.83 33690.81 24197.31 10398.27 19992.74 25396.27 23598.28 10662.23 37699.67 13790.86 26699.36 16799.03 174
Vis-MVSNetpermissive98.27 3098.34 2998.07 9399.33 5095.21 12598.04 5999.46 997.32 8197.82 15199.11 3796.75 7499.86 2597.84 2999.36 16799.15 148
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMVScopyleft89.60 1796.71 15096.97 12795.95 23099.51 2997.81 1797.42 10097.49 26897.93 4895.95 24998.58 7496.88 6696.91 36789.59 29699.36 16793.12 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GST-MVS97.82 7597.49 9698.81 2999.23 6197.25 4097.16 11098.79 12095.96 13697.53 15797.40 20396.93 6099.77 6095.04 15999.35 17299.42 87
ambc96.56 20198.23 18791.68 22897.88 6898.13 22398.42 7898.56 7794.22 17099.04 29194.05 20399.35 17298.95 183
APD-MVScopyleft97.00 12496.53 15498.41 6298.55 15196.31 6796.32 15398.77 12592.96 25097.44 16897.58 18995.84 10799.74 8291.96 24099.35 17299.19 140
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D-3000-0.196.89 13596.46 15998.16 8498.62 14295.69 9195.96 17598.98 6993.36 22997.04 19097.31 21694.93 14899.63 15092.60 23299.34 17599.17 144
MVS_030495.50 19795.05 20996.84 18496.28 31993.12 19597.00 12196.16 30295.03 18089.22 36397.70 17990.16 25499.48 19894.51 18199.34 17597.93 293
jason94.39 25094.04 25495.41 25798.29 17787.85 29092.74 31496.75 29485.38 33595.29 27096.15 28688.21 27799.65 14594.24 19399.34 17598.74 218
jason: jason.
CPTT-MVS96.69 15196.08 17498.49 5498.89 11196.64 5797.25 10698.77 12592.89 25196.01 24897.13 22592.23 21899.67 13792.24 23799.34 17599.17 144
MVS_111021_LR96.82 14096.55 15197.62 12898.27 18195.34 11593.81 28798.33 19594.59 19596.56 22096.63 26296.61 8098.73 32094.80 16899.34 17598.78 213
OMC-MVS96.48 16296.00 17797.91 10598.30 17696.01 8194.86 24198.60 16191.88 26697.18 17797.21 22296.11 10199.04 29190.49 28499.34 17598.69 224
DeepC-MVS_fast94.34 796.74 14596.51 15797.44 15097.69 25794.15 16396.02 17098.43 17893.17 24097.30 17197.38 20995.48 12799.28 25993.74 21399.34 17598.88 202
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF97.87 6997.51 9398.95 1799.15 7998.43 397.56 8899.06 4496.19 12398.48 7298.70 6794.72 15199.24 26594.37 18799.33 18299.17 144
LF4IMVS96.07 17795.63 19197.36 15698.19 19095.55 9995.44 20198.82 11892.29 26095.70 26296.55 26592.63 20798.69 32491.75 24999.33 18297.85 296
9.1496.69 14398.53 15396.02 17098.98 6993.23 23497.18 17797.46 19896.47 9099.62 15892.99 22999.32 184
tttt051793.31 28192.56 28895.57 24598.71 13087.86 28897.44 9787.17 37195.79 14897.47 16696.84 24764.12 37399.81 4096.20 8499.32 18499.02 176
Regformer-197.27 11497.16 11697.61 12997.21 29493.86 17394.85 24298.04 23697.62 6598.03 12797.50 19595.34 13299.63 15096.52 7399.31 18699.35 104
Regformer-297.41 10597.24 11197.93 10497.21 29494.72 13894.85 24298.27 19997.74 5598.11 11597.50 19595.58 12499.69 12596.57 7299.31 18699.37 101
N_pmnet95.18 21394.23 24798.06 9597.85 22596.55 6092.49 31891.63 35389.34 29398.09 11997.41 20290.33 24899.06 28991.58 25199.31 18698.56 235
CDS-MVSNet94.88 22594.12 25297.14 16797.64 26393.57 18693.96 28197.06 28390.05 28896.30 23496.55 26586.10 29299.47 20190.10 28999.31 18698.40 247
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VPNet97.26 11597.49 9696.59 19799.47 3490.58 24496.27 15498.53 16897.77 5198.46 7598.41 8894.59 15899.68 13294.61 17599.29 19099.52 48
114514_t93.96 26493.22 27196.19 22099.06 9590.97 23795.99 17298.94 7773.88 37393.43 32496.93 24192.38 21799.37 23689.09 30399.28 19198.25 268
DELS-MVS96.17 17496.23 16695.99 22697.55 26990.04 25092.38 32298.52 16994.13 20996.55 22297.06 23294.99 14599.58 16895.62 11999.28 19198.37 251
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.73 14796.54 15397.27 16098.35 17493.66 18493.42 29798.36 19094.74 18896.58 21896.76 25596.54 8498.99 29794.87 16599.27 19399.15 148
pmmvs594.63 24094.34 24595.50 25097.63 26488.34 27894.02 27697.13 27987.15 31695.22 27297.15 22487.50 28499.27 26193.99 20599.26 19498.88 202
DVP-MVS++97.96 5097.90 5098.12 9097.75 25195.40 10899.03 798.89 8396.62 9998.62 5898.30 10196.97 5699.75 7295.70 11099.25 19599.21 135
PC_three_145287.24 31498.37 8297.44 20097.00 5496.78 37092.01 23999.25 19599.21 135
OPU-MVS97.64 12798.01 21195.27 11896.79 13097.35 21296.97 5698.51 34191.21 25999.25 19599.14 151
APD-MVS_3200maxsize98.13 4097.90 5098.79 3198.79 11997.31 3897.55 8998.92 8097.72 5898.25 10098.13 12497.10 4599.75 7295.44 13299.24 19899.32 107
PVSNet_Blended_VisFu95.95 18395.80 18596.42 20999.28 5490.62 24395.31 21499.08 4088.40 30496.97 19898.17 12292.11 22199.78 5193.64 21799.21 19998.86 205
SR-MVS-dyc-post98.14 3797.84 5699.02 998.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.60 8299.76 6595.49 12599.20 20099.26 126
RE-MVS-def97.88 5498.81 11698.05 997.55 8998.86 9497.77 5198.20 10498.07 13296.94 5895.49 12599.20 20099.26 126
HQP_MVS96.66 15496.33 16497.68 12598.70 13294.29 15596.50 14398.75 12996.36 11496.16 24196.77 25391.91 23099.46 20492.59 23499.20 20099.28 121
plane_prior598.75 12999.46 20492.59 23499.20 20099.28 121
test117298.08 4397.76 6699.05 698.78 12198.07 797.41 10198.85 9897.57 6698.15 11197.96 14796.60 8299.76 6595.30 14099.18 20499.33 106
ppachtmachnet_test94.49 24794.84 21893.46 31296.16 32682.10 35290.59 34997.48 26990.53 28397.01 19497.59 18791.01 23999.36 23893.97 20799.18 20498.94 185
HPM-MVS++copyleft96.99 12596.38 16198.81 2998.64 13797.59 2495.97 17498.20 20995.51 16095.06 27496.53 26794.10 17299.70 11794.29 19199.15 20699.13 153
ETH3 D test640094.77 22993.87 26097.47 14498.12 20493.73 17994.56 25398.70 14385.45 33394.70 28495.93 30091.77 23299.63 15086.45 33399.14 20799.05 172
pmmvs494.82 22794.19 25096.70 19297.42 27992.75 20492.09 32796.76 29386.80 32095.73 26197.22 22189.28 26898.89 30693.28 22399.14 20798.46 245
TSAR-MVS + GP.96.47 16396.12 17197.49 14297.74 25495.23 12094.15 27096.90 28893.26 23398.04 12696.70 25894.41 16498.89 30694.77 17299.14 20798.37 251
CDPH-MVS95.45 20394.65 22797.84 11298.28 17994.96 13193.73 28998.33 19585.03 33895.44 26796.60 26395.31 13499.44 21190.01 29099.13 21099.11 161
MVSFormer96.14 17596.36 16295.49 25197.68 25887.81 29198.67 1699.02 5596.50 10894.48 29196.15 28686.90 28899.92 598.73 799.13 21098.74 218
lupinMVS93.77 26793.28 26895.24 26097.68 25887.81 29192.12 32596.05 30484.52 34294.48 29195.06 31786.90 28899.63 15093.62 21899.13 21098.27 266
LFMVS95.32 20894.88 21696.62 19598.03 20891.47 23197.65 8290.72 36099.11 997.89 14298.31 9779.20 32599.48 19893.91 20999.12 21398.93 189
SR-MVS98.00 4997.66 7499.01 1198.77 12397.93 1197.38 10298.83 11097.32 8198.06 12397.85 16496.65 7799.77 6095.00 16299.11 21499.32 107
thisisatest053092.71 29091.76 29795.56 24798.42 16988.23 27996.03 16987.35 37094.04 21396.56 22095.47 31164.03 37499.77 6094.78 17199.11 21498.68 226
TSAR-MVS + MP.97.42 10497.23 11298.00 10099.38 4595.00 13097.63 8498.20 20993.00 24598.16 10998.06 13795.89 10599.72 9295.67 11499.10 21699.28 121
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet96.98 12896.84 13597.41 15399.40 4393.26 19397.94 6395.31 32299.26 798.39 8199.18 3087.85 28399.62 15895.13 15599.09 21799.35 104
IterMVS-SCA-FT95.86 18796.19 16894.85 27697.68 25885.53 32392.42 32097.63 26496.99 8998.36 8598.54 7987.94 27899.75 7297.07 6099.08 21899.27 125
CNVR-MVS96.92 13196.55 15198.03 9998.00 21595.54 10094.87 24098.17 21594.60 19396.38 22897.05 23395.67 12099.36 23895.12 15699.08 21899.19 140
Anonymous20240521196.34 16795.98 17997.43 15198.25 18493.85 17496.74 13394.41 32997.72 5898.37 8298.03 14087.15 28799.53 18494.06 20099.07 22098.92 193
CHOSEN 280x42089.98 32189.19 32792.37 33595.60 34281.13 35986.22 36897.09 28181.44 35487.44 36993.15 33973.99 34999.47 20188.69 30999.07 22096.52 341
ab-mvs96.59 15696.59 14796.60 19698.64 13792.21 21398.35 3597.67 25594.45 19896.99 19598.79 6094.96 14799.49 19590.39 28599.07 22098.08 277
LCM-MVSNet-Re97.33 11197.33 10497.32 15898.13 20393.79 17796.99 12299.65 596.74 9799.47 1398.93 5296.91 6399.84 3190.11 28899.06 22398.32 258
new-patchmatchnet95.67 19296.58 14892.94 32697.48 27280.21 36192.96 30898.19 21494.83 18698.82 4798.79 6093.31 19099.51 19295.83 10799.04 22499.12 158
MSLP-MVS++96.42 16696.71 14295.57 24597.82 23290.56 24695.71 18698.84 10394.72 18996.71 21297.39 20794.91 14998.10 35995.28 14199.02 22598.05 286
IterMVS95.42 20495.83 18494.20 30097.52 27083.78 34592.41 32197.47 27095.49 16198.06 12398.49 8287.94 27899.58 16896.02 9499.02 22599.23 133
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.43 1892.12 30090.64 31496.57 20097.80 23793.48 18989.88 35998.45 17574.46 37296.04 24695.68 30490.71 24499.31 25073.73 37199.01 22796.91 326
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D97.77 7997.50 9598.57 4996.24 32097.58 2598.45 3198.85 9898.58 2797.51 15997.94 15295.74 11899.63 15095.19 14698.97 22898.51 239
test_prior395.91 18495.39 19797.46 14797.79 24394.26 16093.33 30298.42 18194.21 20694.02 30296.25 28193.64 18499.34 24391.90 24298.96 22998.79 211
test_prior293.33 30294.21 20694.02 30296.25 28193.64 18491.90 24298.96 229
VNet96.84 13696.83 13696.88 18198.06 20692.02 22096.35 15197.57 26797.70 6197.88 14397.80 17092.40 21699.54 18294.73 17498.96 22999.08 166
3Dnovator+96.13 397.73 8197.59 8798.15 8798.11 20595.60 9798.04 5998.70 14398.13 4096.93 20098.45 8595.30 13599.62 15895.64 11898.96 22999.24 132
ETH3D cwj APD-0.1696.23 17195.61 19398.09 9297.91 22195.65 9694.94 23798.74 13191.31 27596.02 24797.08 23094.05 17499.69 12591.51 25298.94 23398.93 189
QAPM95.88 18695.57 19496.80 18697.90 22391.84 22598.18 5298.73 13388.41 30396.42 22698.13 12494.73 15099.75 7288.72 30898.94 23398.81 209
ZD-MVS98.43 16895.94 8298.56 16790.72 28196.66 21497.07 23195.02 14499.74 8291.08 26098.93 235
plane_prior94.29 15595.42 20394.31 20398.93 235
train_agg95.46 20294.66 22697.88 10997.84 22995.23 12093.62 29198.39 18687.04 31793.78 30795.99 29394.58 15999.52 18891.76 24898.90 23798.89 198
agg_prior290.34 28798.90 23799.10 165
ITE_SJBPF97.85 11198.64 13796.66 5698.51 17195.63 15497.22 17397.30 21795.52 12598.55 33890.97 26398.90 23798.34 257
test9_res91.29 25598.89 24099.00 177
EPNet_dtu91.39 30990.75 31293.31 31490.48 37982.61 34994.80 24492.88 34293.39 22881.74 37694.90 32281.36 31599.11 28388.28 31598.87 24198.21 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.32 1294.93 22394.23 24797.04 17398.18 19394.51 14795.22 22198.73 13381.22 35596.25 23795.95 29893.80 18198.98 29989.89 29298.87 24197.62 306
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
agg_prior195.39 20594.60 23297.75 11797.80 23794.96 13193.39 29998.36 19087.20 31593.49 32095.97 29694.65 15699.53 18491.69 25098.86 24398.77 216
DP-MVS Recon95.55 19695.13 20396.80 18698.51 15693.99 16994.60 25198.69 14690.20 28695.78 25896.21 28492.73 20398.98 29990.58 27998.86 24397.42 313
EIA-MVS96.04 17995.77 18796.85 18397.80 23792.98 19896.12 16499.16 2394.65 19193.77 30991.69 36295.68 11999.67 13794.18 19598.85 24597.91 294
MCST-MVS96.24 17095.80 18597.56 13198.75 12494.13 16494.66 24998.17 21590.17 28796.21 23996.10 29195.14 13999.43 21394.13 19898.85 24599.13 153
ETV-MVS96.13 17695.90 18396.82 18597.76 24993.89 17195.40 20698.95 7695.87 14395.58 26591.00 36896.36 9799.72 9293.36 22098.83 24796.85 329
eth_miper_zixun_eth94.89 22494.93 21394.75 28195.99 33286.12 31891.35 33698.49 17293.40 22797.12 18197.25 22086.87 29099.35 24195.08 15898.82 24898.78 213
testtj96.69 15196.13 17098.36 6698.46 16696.02 8096.44 14598.70 14394.26 20496.79 20697.13 22594.07 17399.75 7290.53 28098.80 24999.31 112
HyFIR lowres test93.72 26992.65 28596.91 18098.93 10891.81 22691.23 34198.52 16982.69 34896.46 22596.52 26980.38 32199.90 1490.36 28698.79 25099.03 174
test1297.46 14797.61 26594.07 16597.78 24993.57 31893.31 19099.42 21498.78 25198.89 198
CMPMVSbinary73.10 2392.74 28991.39 30096.77 18893.57 36894.67 14394.21 26797.67 25580.36 35993.61 31696.60 26382.85 31097.35 36584.86 34798.78 25198.29 265
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CNLPA95.04 21994.47 24096.75 18997.81 23395.25 11994.12 27497.89 24194.41 19994.57 28695.69 30390.30 25198.35 35186.72 33298.76 25396.64 337
OpenMVScopyleft94.22 895.48 20095.20 20096.32 21497.16 29791.96 22297.74 7898.84 10387.26 31394.36 29398.01 14393.95 17699.67 13790.70 27698.75 25497.35 316
testgi96.07 17796.50 15894.80 27999.26 5587.69 29495.96 17598.58 16595.08 17798.02 12996.25 28197.92 1697.60 36488.68 31098.74 25599.11 161
HQP3-MVS98.43 17898.74 255
HQP-MVS95.17 21594.58 23596.92 17897.85 22592.47 20794.26 26098.43 17893.18 23792.86 33395.08 31590.33 24899.23 26790.51 28298.74 25599.05 172
alignmvs96.01 18195.52 19597.50 13997.77 24894.71 13996.07 16696.84 28997.48 7296.78 21094.28 33485.50 29699.40 22596.22 8398.73 25898.40 247
旧先验197.80 23793.87 17297.75 25097.04 23493.57 18698.68 25998.72 221
thisisatest051590.43 31689.18 32894.17 30297.07 30085.44 32489.75 36087.58 36988.28 30693.69 31391.72 36165.27 37299.58 16890.59 27898.67 26097.50 311
diffmvs96.04 17996.23 16695.46 25397.35 28288.03 28693.42 29799.08 4094.09 21296.66 21496.93 24193.85 17899.29 25796.01 9698.67 26099.06 170
CL-MVSNet_self_test95.04 21994.79 22395.82 23697.51 27189.79 25391.14 34396.82 29193.05 24396.72 21196.40 27590.82 24299.16 27691.95 24198.66 26298.50 241
test22298.17 19593.24 19492.74 31497.61 26675.17 37194.65 28596.69 25990.96 24198.66 26297.66 305
新几何197.25 16398.29 17794.70 14297.73 25177.98 36694.83 28196.67 26092.08 22399.45 20888.17 31798.65 26497.61 307
112194.26 25293.26 26997.27 16098.26 18394.73 13795.86 18197.71 25377.96 36794.53 28896.71 25791.93 22899.40 22587.71 31998.64 26597.69 304
原ACMM196.58 19898.16 19792.12 21798.15 22085.90 32793.49 32096.43 27292.47 21499.38 23387.66 32298.62 26698.23 269
PVSNet_Blended93.96 26493.65 26394.91 27197.79 24387.40 30091.43 33498.68 14884.50 34394.51 28994.48 33093.04 19599.30 25389.77 29498.61 26798.02 289
AdaColmapbinary95.11 21694.62 23196.58 19897.33 28894.45 15094.92 23898.08 22993.15 24193.98 30595.53 31094.34 16699.10 28585.69 33898.61 26796.20 345
DSMNet-mixed92.19 29891.83 29593.25 31696.18 32583.68 34696.27 15493.68 33476.97 37092.54 34299.18 3089.20 27098.55 33883.88 35298.60 26997.51 310
MSP-MVS97.45 10296.92 13299.03 899.26 5597.70 1997.66 8198.89 8395.65 15398.51 6896.46 27192.15 21999.81 4095.14 15398.58 27099.58 33
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata95.70 24298.16 19790.58 24497.72 25280.38 35895.62 26397.02 23592.06 22498.98 29989.06 30598.52 27197.54 309
API-MVS95.09 21895.01 21095.31 25896.61 31194.02 16796.83 12797.18 27795.60 15695.79 25694.33 33294.54 16198.37 35085.70 33798.52 27193.52 364
Effi-MVS+-dtu96.81 14196.09 17398.99 1396.90 30798.69 296.42 14698.09 22795.86 14495.15 27395.54 30994.26 16899.81 4094.06 20098.51 27398.47 243
canonicalmvs97.23 11897.21 11497.30 15997.65 26294.39 15197.84 7099.05 4697.42 7496.68 21393.85 33797.63 2699.33 24696.29 8298.47 27498.18 274
NCCC96.52 16095.99 17898.10 9197.81 23395.68 9395.00 23598.20 20995.39 16595.40 26996.36 27793.81 18099.45 20893.55 21998.42 27599.17 144
Patchmatch-test93.60 27593.25 27094.63 28496.14 32987.47 29796.04 16894.50 32893.57 22396.47 22496.97 23876.50 34098.61 33290.67 27798.41 27697.81 300
cl2293.25 28392.84 27994.46 29394.30 35886.00 31991.09 34596.64 29990.74 28095.79 25696.31 27978.24 32998.77 31694.15 19798.34 27798.62 230
miper_ehance_all_eth94.69 23594.70 22594.64 28395.77 33886.22 31791.32 33998.24 20391.67 26897.05 18996.65 26188.39 27599.22 26994.88 16498.34 27798.49 242
miper_enhance_ethall93.14 28592.78 28294.20 30093.65 36685.29 32789.97 35597.85 24385.05 33796.15 24394.56 32685.74 29499.14 27893.74 21398.34 27798.17 275
CVMVSNet92.33 29692.79 28090.95 34397.26 29175.84 37395.29 21692.33 34881.86 35096.27 23598.19 11981.44 31498.46 34394.23 19498.29 28098.55 237
our_test_394.20 25894.58 23593.07 32096.16 32681.20 35890.42 35196.84 28990.72 28197.14 17997.13 22590.47 24699.11 28394.04 20498.25 28198.91 194
xiu_mvs_v1_base_debu95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
xiu_mvs_v1_base_debi95.62 19395.96 18094.60 28698.01 21188.42 27593.99 27898.21 20692.98 24695.91 25194.53 32796.39 9499.72 9295.43 13598.19 28295.64 351
XVG-OURS97.12 12096.74 14198.26 7598.99 10397.45 3493.82 28599.05 4695.19 17298.32 9397.70 17995.22 13798.41 34594.27 19298.13 28598.93 189
sss94.22 25493.72 26295.74 23997.71 25689.95 25293.84 28496.98 28588.38 30593.75 31095.74 30287.94 27898.89 30691.02 26298.10 28698.37 251
DPM-MVS93.68 27192.77 28396.42 20997.91 22192.54 20591.17 34297.47 27084.99 33993.08 33094.74 32389.90 25699.00 29587.54 32598.09 28797.72 302
MIMVSNet93.42 27892.86 27795.10 26598.17 19588.19 28098.13 5493.69 33292.07 26195.04 27798.21 11880.95 31999.03 29481.42 35998.06 28898.07 279
pmmvs390.00 32088.90 33093.32 31394.20 36285.34 32591.25 34092.56 34778.59 36493.82 30695.17 31467.36 37198.69 32489.08 30498.03 28995.92 346
Fast-Effi-MVS+-dtu96.44 16496.12 17197.39 15597.18 29694.39 15195.46 20098.73 13396.03 13394.72 28294.92 32196.28 10099.69 12593.81 21197.98 29098.09 276
thres600view792.03 30191.43 29993.82 30498.19 19084.61 33796.27 15490.39 36196.81 9596.37 22993.11 34073.44 35799.49 19580.32 36197.95 29197.36 314
MS-PatchMatch94.83 22694.91 21594.57 28996.81 30987.10 30694.23 26597.34 27288.74 30197.14 17997.11 22891.94 22798.23 35592.99 22997.92 29298.37 251
1112_ss94.12 25993.42 26696.23 21798.59 14790.85 23894.24 26498.85 9885.49 33092.97 33194.94 31986.01 29399.64 14891.78 24797.92 29298.20 272
MVS_Test96.27 16996.79 14094.73 28296.94 30586.63 31296.18 16198.33 19594.94 18396.07 24498.28 10695.25 13699.26 26297.21 5297.90 29498.30 262
Fast-Effi-MVS+95.49 19895.07 20696.75 18997.67 26192.82 20194.22 26698.60 16191.61 26993.42 32592.90 34796.73 7599.70 11792.60 23297.89 29597.74 301
test_yl94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
DCV-MVSNet94.40 24894.00 25595.59 24396.95 30389.52 25794.75 24795.55 31896.18 12496.79 20696.14 28881.09 31799.18 27190.75 27197.77 29698.07 279
Test_1112_low_res93.53 27792.86 27795.54 24998.60 14588.86 26992.75 31298.69 14682.66 34992.65 33896.92 24384.75 30199.56 17590.94 26497.76 29898.19 273
thres100view90091.76 30591.26 30493.26 31598.21 18884.50 33896.39 14790.39 36196.87 9396.33 23093.08 34473.44 35799.42 21478.85 36597.74 29995.85 347
tfpn200view991.55 30791.00 30693.21 31898.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29995.85 347
thres40091.68 30691.00 30693.71 30798.02 20984.35 34095.70 18790.79 35896.26 11895.90 25492.13 35773.62 35499.42 21478.85 36597.74 29997.36 314
BH-RMVSNet94.56 24394.44 24394.91 27197.57 26687.44 29993.78 28896.26 30193.69 22296.41 22796.50 27092.10 22299.00 29585.96 33597.71 30298.31 260
MG-MVS94.08 26294.00 25594.32 29797.09 29985.89 32093.19 30695.96 30892.52 25594.93 28097.51 19489.54 26298.77 31687.52 32697.71 30298.31 260
PVSNet86.72 1991.10 31190.97 30891.49 34097.56 26878.04 36587.17 36694.60 32784.65 34192.34 34392.20 35687.37 28698.47 34285.17 34597.69 30497.96 291
PatchMatch-RL94.61 24193.81 26197.02 17598.19 19095.72 8993.66 29097.23 27488.17 30794.94 27995.62 30791.43 23498.57 33587.36 32897.68 30596.76 335
OpenMVS_ROBcopyleft91.80 1493.64 27493.05 27295.42 25597.31 29091.21 23395.08 22896.68 29881.56 35296.88 20496.41 27390.44 24799.25 26485.39 34297.67 30695.80 349
SCA93.38 28093.52 26592.96 32596.24 32081.40 35793.24 30494.00 33191.58 27194.57 28696.97 23887.94 27899.42 21489.47 29897.66 30798.06 283
MSDG95.33 20795.13 20395.94 23297.40 28091.85 22491.02 34698.37 18995.30 16896.31 23395.99 29394.51 16298.38 34889.59 29697.65 30897.60 308
thres20091.00 31390.42 31792.77 32897.47 27683.98 34494.01 27791.18 35695.12 17695.44 26791.21 36673.93 35099.31 25077.76 36897.63 30995.01 357
new_pmnet92.34 29591.69 29894.32 29796.23 32289.16 26492.27 32392.88 34284.39 34595.29 27096.35 27885.66 29596.74 37184.53 34997.56 31097.05 320
Effi-MVS+96.19 17396.01 17696.71 19197.43 27892.19 21696.12 16499.10 3495.45 16293.33 32794.71 32497.23 4399.56 17593.21 22697.54 31198.37 251
F-COLMAP95.30 20994.38 24498.05 9898.64 13796.04 7795.61 19798.66 15389.00 29793.22 32896.40 27592.90 19999.35 24187.45 32797.53 31298.77 216
MAR-MVS94.21 25693.03 27497.76 11696.94 30597.44 3596.97 12397.15 27887.89 31192.00 34692.73 35192.14 22099.12 28083.92 35197.51 31396.73 336
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base94.22 25494.63 23092.99 32497.32 28984.84 33592.12 32597.84 24591.96 26494.17 29693.43 33896.07 10299.71 10891.27 25697.48 31494.42 360
PS-MVSNAJ94.10 26094.47 24093.00 32397.35 28284.88 33491.86 32997.84 24591.96 26494.17 29692.50 35495.82 11099.71 10891.27 25697.48 31494.40 361
cascas91.89 30391.35 30193.51 31194.27 35985.60 32288.86 36498.61 16079.32 36292.16 34591.44 36489.22 26998.12 35890.80 26997.47 31696.82 332
test-LLR89.97 32289.90 32090.16 34794.24 36074.98 37489.89 35689.06 36692.02 26289.97 35990.77 36973.92 35198.57 33591.88 24497.36 31796.92 324
test-mter87.92 33887.17 33990.16 34794.24 36074.98 37489.89 35689.06 36686.44 32289.97 35990.77 36954.96 38498.57 33591.88 24497.36 31796.92 324
GA-MVS92.83 28892.15 29294.87 27596.97 30287.27 30390.03 35496.12 30391.83 26794.05 30194.57 32576.01 34498.97 30392.46 23697.34 31998.36 256
MVP-Stereo95.69 19095.28 19996.92 17898.15 19993.03 19795.64 19698.20 20990.39 28496.63 21797.73 17791.63 23399.10 28591.84 24697.31 32098.63 229
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous95.36 20696.07 17593.21 31896.29 31881.56 35694.60 25197.66 25793.30 23296.95 19998.91 5493.03 19799.38 23396.60 6997.30 32198.69 224
mvs-test196.20 17295.50 19698.32 6996.90 30798.16 595.07 22998.09 22795.86 14493.63 31494.32 33394.26 16899.71 10894.06 20097.27 32297.07 319
AUN-MVS93.95 26692.69 28497.74 11897.80 23795.38 11095.57 19895.46 32091.26 27692.64 33996.10 29174.67 34899.55 17993.72 21596.97 32398.30 262
hse-mvs295.77 18995.09 20597.79 11497.84 22995.51 10295.66 19195.43 32196.58 10497.21 17596.16 28584.14 30499.54 18295.89 10396.92 32498.32 258
TESTMET0.1,187.20 34086.57 34289.07 35193.62 36772.84 37889.89 35687.01 37285.46 33289.12 36490.20 37156.00 38297.72 36390.91 26596.92 32496.64 337
EMVS89.06 32989.22 32488.61 35393.00 37177.34 36882.91 37290.92 35794.64 19292.63 34091.81 36076.30 34297.02 36683.83 35396.90 32691.48 371
YYNet194.73 23094.84 21894.41 29597.47 27685.09 33290.29 35295.85 31192.52 25597.53 15797.76 17191.97 22599.18 27193.31 22296.86 32798.95 183
WTY-MVS93.55 27693.00 27595.19 26297.81 23387.86 28893.89 28396.00 30689.02 29694.07 30095.44 31286.27 29199.33 24687.69 32196.82 32898.39 249
E-PMN89.52 32789.78 32188.73 35293.14 36977.61 36783.26 37192.02 34994.82 18793.71 31193.11 34075.31 34696.81 36885.81 33696.81 32991.77 370
MDA-MVSNet_test_wron94.73 23094.83 22094.42 29497.48 27285.15 33090.28 35395.87 31092.52 25597.48 16497.76 17191.92 22999.17 27593.32 22196.80 33098.94 185
BH-untuned94.69 23594.75 22494.52 29197.95 22087.53 29694.07 27597.01 28493.99 21497.10 18395.65 30592.65 20698.95 30487.60 32396.74 33197.09 318
PLCcopyleft91.02 1694.05 26392.90 27697.51 13698.00 21595.12 12894.25 26398.25 20286.17 32391.48 34995.25 31391.01 23999.19 27085.02 34696.69 33298.22 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMMVS92.39 29391.08 30596.30 21693.12 37092.81 20290.58 35095.96 30879.17 36391.85 34892.27 35590.29 25298.66 32989.85 29396.68 33397.43 312
ET-MVSNet_ETH3D91.12 31089.67 32295.47 25296.41 31689.15 26591.54 33390.23 36489.07 29586.78 37292.84 34869.39 36799.44 21194.16 19696.61 33497.82 298
MVS-HIRNet88.40 33490.20 31982.99 35897.01 30160.04 38293.11 30785.61 37484.45 34488.72 36599.09 4084.72 30298.23 35582.52 35796.59 33590.69 373
MDTV_nov1_ep1391.28 30294.31 35773.51 37794.80 24493.16 33986.75 32193.45 32397.40 20376.37 34198.55 33888.85 30696.43 336
XVG-OURS-SEG-HR97.38 10797.07 12298.30 7399.01 10297.41 3694.66 24999.02 5595.20 17198.15 11197.52 19398.83 498.43 34494.87 16596.41 33799.07 168
MDA-MVSNet-bldmvs95.69 19095.67 18995.74 23998.48 16288.76 27392.84 30997.25 27396.00 13497.59 15597.95 15191.38 23599.46 20493.16 22796.35 33898.99 180
PAPM_NR94.61 24194.17 25195.96 22898.36 17391.23 23295.93 17997.95 23792.98 24693.42 32594.43 33190.53 24598.38 34887.60 32396.29 33998.27 266
UnsupCasMVSNet_bld94.72 23494.26 24696.08 22498.62 14290.54 24793.38 30098.05 23590.30 28597.02 19396.80 25289.54 26299.16 27688.44 31296.18 34098.56 235
h-mvs3396.29 16895.63 19198.26 7598.50 15996.11 7596.90 12497.09 28196.58 10497.21 17598.19 11984.14 30499.78 5195.89 10396.17 34198.89 198
FPMVS89.92 32388.63 33193.82 30498.37 17296.94 4791.58 33293.34 33888.00 30990.32 35697.10 22970.87 36491.13 37671.91 37496.16 34293.39 366
CR-MVSNet93.29 28292.79 28094.78 28095.44 34588.15 28296.18 16197.20 27584.94 34094.10 29898.57 7577.67 33299.39 23095.17 14895.81 34396.81 333
PatchT93.75 26893.57 26494.29 29995.05 35087.32 30296.05 16792.98 34197.54 7094.25 29498.72 6575.79 34599.24 26595.92 10195.81 34396.32 343
RPMNet94.68 23794.60 23294.90 27395.44 34588.15 28296.18 16198.86 9497.43 7394.10 29898.49 8279.40 32399.76 6595.69 11295.81 34396.81 333
HY-MVS91.43 1592.58 29191.81 29694.90 27396.49 31488.87 26897.31 10394.62 32685.92 32690.50 35596.84 24785.05 29899.40 22583.77 35495.78 34696.43 342
PAPR92.22 29791.27 30395.07 26695.73 34088.81 27091.97 32897.87 24285.80 32890.91 35192.73 35191.16 23798.33 35279.48 36295.76 34798.08 277
gg-mvs-nofinetune88.28 33586.96 34092.23 33792.84 37384.44 33998.19 5174.60 38099.08 1087.01 37199.47 856.93 37898.23 35578.91 36495.61 34894.01 362
MVS90.02 31989.20 32692.47 33394.71 35386.90 30995.86 18196.74 29564.72 37590.62 35292.77 34992.54 21198.39 34779.30 36395.56 34992.12 368
131492.38 29492.30 29092.64 33095.42 34785.15 33095.86 18196.97 28685.40 33490.62 35293.06 34591.12 23897.80 36286.74 33195.49 35094.97 358
KD-MVS_2432*160088.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
miper_refine_blended88.93 33087.74 33592.49 33188.04 38081.99 35389.63 36195.62 31491.35 27395.06 27493.11 34056.58 37998.63 33085.19 34395.07 35196.85 329
TR-MVS92.54 29292.20 29193.57 31096.49 31486.66 31193.51 29594.73 32589.96 28994.95 27893.87 33690.24 25398.61 33281.18 36094.88 35395.45 355
MVEpermissive73.61 2286.48 34185.92 34388.18 35596.23 32285.28 32881.78 37375.79 37986.01 32482.53 37591.88 35992.74 20287.47 37871.42 37594.86 35491.78 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-w/o92.14 29991.94 29392.73 32997.13 29885.30 32692.46 31995.64 31389.33 29494.21 29592.74 35089.60 26098.24 35481.68 35894.66 35594.66 359
UnsupCasMVSNet_eth95.91 18495.73 18896.44 20698.48 16291.52 23095.31 21498.45 17595.76 14997.48 16497.54 19089.53 26498.69 32494.43 18394.61 35699.13 153
baseline289.65 32688.44 33393.25 31695.62 34182.71 34893.82 28585.94 37388.89 29987.35 37092.54 35371.23 36299.33 24686.01 33494.60 35797.72 302
PatchmatchNetpermissive91.98 30291.87 29492.30 33694.60 35579.71 36295.12 22493.59 33689.52 29293.61 31697.02 23577.94 33099.18 27190.84 26794.57 35898.01 290
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm91.08 31290.85 31091.75 33995.33 34878.09 36495.03 23491.27 35588.75 30093.53 31997.40 20371.24 36199.30 25391.25 25893.87 35997.87 295
IB-MVS85.98 2088.63 33286.95 34193.68 30895.12 34984.82 33690.85 34790.17 36587.55 31288.48 36691.34 36558.01 37799.59 16687.24 32993.80 36096.63 339
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 190.11 31889.21 32592.83 32793.89 36486.87 31091.74 33188.74 36892.02 26294.71 28391.14 36773.92 35194.48 37483.75 35592.94 36197.16 317
PAPM87.64 33985.84 34493.04 32196.54 31284.99 33388.42 36595.57 31779.52 36183.82 37393.05 34680.57 32098.41 34562.29 37792.79 36295.71 350
CostFormer89.75 32589.25 32391.26 34294.69 35478.00 36695.32 21391.98 35081.50 35390.55 35496.96 24071.06 36398.89 30688.59 31192.63 36396.87 327
tpm288.47 33387.69 33790.79 34494.98 35177.34 36895.09 22691.83 35177.51 36989.40 36196.41 27367.83 37098.73 32083.58 35692.60 36496.29 344
GG-mvs-BLEND90.60 34591.00 37784.21 34298.23 4572.63 38382.76 37484.11 37556.14 38196.79 36972.20 37392.09 36590.78 372
ADS-MVSNet291.47 30890.51 31694.36 29695.51 34385.63 32195.05 23295.70 31283.46 34692.69 33696.84 24779.15 32699.41 22385.66 33990.52 36698.04 287
ADS-MVSNet90.95 31490.26 31893.04 32195.51 34382.37 35195.05 23293.41 33783.46 34692.69 33696.84 24779.15 32698.70 32385.66 33990.52 36698.04 287
JIA-IIPM91.79 30490.69 31395.11 26493.80 36590.98 23694.16 26991.78 35296.38 11290.30 35799.30 2072.02 36098.90 30588.28 31590.17 36895.45 355
tpmvs90.79 31590.87 30990.57 34692.75 37476.30 37195.79 18593.64 33591.04 27991.91 34796.26 28077.19 33898.86 31089.38 30089.85 36996.56 340
EPMVS89.26 32888.55 33291.39 34192.36 37579.11 36395.65 19479.86 37888.60 30293.12 32996.53 26770.73 36598.10 35990.75 27189.32 37096.98 322
baseline193.14 28592.64 28694.62 28597.34 28687.20 30496.67 14093.02 34094.71 19096.51 22395.83 30181.64 31298.60 33490.00 29188.06 37198.07 279
tpmrst90.31 31790.61 31589.41 35094.06 36372.37 37995.06 23193.69 33288.01 30892.32 34496.86 24577.45 33498.82 31191.04 26187.01 37297.04 321
tpm cat188.01 33787.33 33890.05 34994.48 35676.28 37294.47 25694.35 33073.84 37489.26 36295.61 30873.64 35398.30 35384.13 35086.20 37395.57 354
DeepMVS_CXcopyleft77.17 35990.94 37885.28 32874.08 38252.51 37680.87 37788.03 37375.25 34770.63 37959.23 37884.94 37475.62 374
dp88.08 33688.05 33488.16 35692.85 37268.81 38194.17 26892.88 34285.47 33191.38 35096.14 28868.87 36898.81 31386.88 33083.80 37596.87 327
tmp_tt57.23 34562.50 34841.44 36134.77 38449.21 38483.93 36960.22 38515.31 37771.11 37879.37 37670.09 36644.86 38064.76 37682.93 37630.25 376
test_method66.88 34466.13 34769.11 36062.68 38325.73 38549.76 37496.04 30514.32 37864.27 37991.69 36273.45 35688.05 37776.06 37066.94 37793.54 363
PVSNet_081.89 2184.49 34283.21 34588.34 35495.76 33974.97 37683.49 37092.70 34678.47 36587.94 36786.90 37483.38 30996.63 37273.44 37266.86 37893.40 365
test12312.59 34715.49 3503.87 3626.07 3852.55 38690.75 3482.59 3872.52 3805.20 38213.02 3794.96 3851.85 3825.20 3799.09 3797.23 377
testmvs12.33 34815.23 3513.64 3635.77 3862.23 38788.99 3633.62 3862.30 3815.29 38113.09 3784.52 3861.95 3815.16 3808.32 3806.75 378
test_blank0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.22 34632.30 3490.00 3640.00 3870.00 3880.00 37598.10 2250.00 3820.00 38395.06 31797.54 290.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas7.98 34910.65 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 38295.82 1100.00 3830.00 3810.00 3810.00 379
sosnet-low-res0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
sosnet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
Regformer0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re7.91 35010.55 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38394.94 3190.00 3870.00 3830.00 3810.00 3810.00 379
uanet0.00 3510.00 3540.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 3830.00 3820.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.59 1698.20 499.03 799.25 1598.96 1898.87 43
test_one_060199.05 9995.50 10598.87 9197.21 8698.03 12798.30 10196.93 60
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.22 6495.35 11398.83 11096.04 13199.08 3498.13 12497.87 2099.33 246
save fliter98.48 16294.71 13994.53 25498.41 18395.02 181
test072699.24 5995.51 10296.89 12598.89 8395.92 13998.64 5798.31 9797.06 50
GSMVS98.06 283
test_part299.03 10196.07 7698.08 121
sam_mvs177.80 33198.06 283
sam_mvs77.38 335
MTGPAbinary98.73 133
test_post194.98 23610.37 38176.21 34399.04 29189.47 298
test_post10.87 38076.83 33999.07 288
patchmatchnet-post96.84 24777.36 33699.42 214
MTMP96.55 14174.60 380
gm-plane-assit91.79 37671.40 38081.67 35190.11 37298.99 29784.86 347
TEST997.84 22995.23 12093.62 29198.39 18686.81 31993.78 30795.99 29394.68 15499.52 188
test_897.81 23395.07 12993.54 29498.38 18887.04 31793.71 31195.96 29794.58 15999.52 188
agg_prior97.80 23794.96 13198.36 19093.49 32099.53 184
test_prior495.38 11093.61 293
test_prior97.46 14797.79 24394.26 16098.42 18199.34 24398.79 211
旧先验293.35 30177.95 36895.77 26098.67 32890.74 274
新几何293.43 296
无先验93.20 30597.91 23980.78 35699.40 22587.71 31997.94 292
原ACMM292.82 310
testdata299.46 20487.84 318
segment_acmp95.34 132
testdata192.77 31193.78 219
plane_prior798.70 13294.67 143
plane_prior698.38 17194.37 15391.91 230
plane_prior496.77 253
plane_prior394.51 14795.29 16996.16 241
plane_prior296.50 14396.36 114
plane_prior198.49 160
n20.00 388
nn0.00 388
door-mid98.17 215
test1198.08 229
door97.81 248
HQP5-MVS92.47 207
HQP-NCC97.85 22594.26 26093.18 23792.86 333
ACMP_Plane97.85 22594.26 26093.18 23792.86 333
BP-MVS90.51 282
HQP4-MVS92.87 33299.23 26799.06 170
HQP2-MVS90.33 248
NP-MVS98.14 20093.72 18095.08 315
MDTV_nov1_ep13_2view57.28 38394.89 23980.59 35794.02 30278.66 32885.50 34197.82 298
Test By Simon94.51 162