This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 899.08 1097.87 13599.67 296.47 8499.92 497.88 2399.98 299.85 3
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24397.92 5299.56 499.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1196.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1096.23 10799.71 499.48 798.77 699.93 298.89 399.95 599.84 5
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 4996.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 399.02 1599.62 1099.36 1498.53 799.52 17498.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2595.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
v897.60 8298.06 3896.23 20798.71 11789.44 24797.43 8498.82 10997.29 7598.74 4799.10 3293.86 16999.68 11998.61 1099.94 899.56 33
Anonymous2024052197.07 11297.51 8395.76 22899.35 4188.18 26997.78 5898.40 17597.11 7798.34 7899.04 3789.58 24899.79 3898.09 1899.93 1099.30 102
test_part196.77 13596.53 14497.47 13298.04 19192.92 18797.93 5098.85 8998.83 2099.30 2199.07 3579.25 31099.79 3897.59 3499.93 1099.69 20
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2399.08 1099.42 1599.23 2196.53 7999.91 1299.27 299.93 1099.73 15
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2499.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1399.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
v1097.55 8597.97 4196.31 20498.60 13189.64 24397.44 8299.02 4996.60 9098.72 4999.16 2993.48 17899.72 8298.76 699.92 1499.58 28
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2199.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1595.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18398.35 2699.21 1198.43 2898.89 3998.83 5094.30 15999.81 3197.87 2499.91 1799.77 8
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 2899.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9499.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1699.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 999.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4098.05 4099.61 1199.52 593.72 17499.88 1898.72 999.88 2399.65 23
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 4993.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2199.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4098.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3498.31 3299.02 3498.74 5597.68 2499.61 15097.77 2999.85 2799.70 18
pmmvs-eth3d96.49 15196.18 15997.42 14098.25 16894.29 14294.77 23398.07 21989.81 27697.97 12398.33 8493.11 18499.08 27295.46 11699.84 2898.89 185
FIs97.93 5498.07 3697.48 13199.38 3892.95 18698.03 4799.11 2698.04 4198.62 5198.66 6193.75 17399.78 4297.23 4499.84 2899.73 15
D2MVS95.18 20395.17 19295.21 24997.76 23487.76 28194.15 25697.94 22489.77 27796.99 18497.68 16987.45 27299.14 26395.03 14699.81 3098.74 205
WR-MVS96.90 12496.81 12797.16 15498.56 13692.20 20394.33 24598.12 21197.34 7298.20 9497.33 20092.81 19199.75 6594.79 15499.81 3099.54 36
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12498.66 2498.56 5798.41 7896.84 6599.69 11394.82 15299.81 3098.64 214
bset_n11_16_dypcd94.53 23693.95 24796.25 20697.56 25089.85 24088.52 35191.32 34094.90 17297.51 14896.38 26082.34 29999.78 4297.22 4599.80 3399.12 144
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7698.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16297.76 6199.00 5798.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17895.44 18698.86 8598.20 3798.37 7399.24 2094.69 14499.55 16595.98 9099.79 3599.65 23
IterMVS-LS96.92 12297.29 9695.79 22798.51 14188.13 27295.10 21198.66 14496.99 7998.46 6698.68 6092.55 20099.74 7296.91 5999.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS94.90 21494.07 24197.39 14393.18 35193.21 18195.26 20397.49 25393.94 20398.25 9097.85 14972.96 34599.84 2597.90 2299.78 3899.14 136
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12497.79 4599.42 1597.83 15194.40 15799.78 4295.91 9399.76 3999.46 61
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27298.30 3399.45 1499.35 1688.43 26199.89 1698.01 2099.76 3999.54 36
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16798.23 3298.66 14497.41 7099.00 3699.19 2495.47 12299.73 7895.83 9699.76 3999.30 102
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15297.21 4799.76 3999.40 81
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5797.57 6099.27 2499.22 2298.32 999.50 17997.09 5399.75 4399.50 43
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4697.51 6498.22 9397.81 15594.68 14699.78 4297.14 5299.75 4399.41 80
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
LGP-MVS_train98.74 3599.15 7297.02 4299.02 4995.15 16098.34 7898.23 10197.91 1799.70 10594.41 16999.73 4599.50 43
CSCG97.40 9797.30 9597.69 11298.95 9594.83 12197.28 9198.99 6096.35 10398.13 10495.95 28295.99 9899.66 13094.36 17599.73 4598.59 220
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28198.36 3098.14 10397.98 13388.23 26399.71 9693.10 21399.72 4899.38 85
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7499.20 1398.21 3699.25 2598.51 7298.21 1199.40 21094.79 15499.72 4899.32 96
CLD-MVS95.47 19195.07 19696.69 18298.27 16592.53 19491.36 32198.67 14291.22 26395.78 24394.12 32095.65 11698.98 28490.81 25299.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17699.02 4998.11 3998.31 8597.69 16894.65 14899.85 2297.02 5699.71 5199.48 56
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 17998.87 8397.57 6098.31 8597.83 15194.69 14499.85 2297.02 5699.71 5199.46 61
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17398.23 3299.05 4097.40 7199.37 1899.08 3498.79 599.47 18697.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.54 1397.47 9297.10 10998.55 5099.04 9096.70 5196.24 14398.89 7693.71 20897.97 12397.75 16097.44 3099.63 13693.22 21099.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26095.36 19498.26 19195.18 15997.85 13798.23 10192.58 19999.63 13697.80 2799.69 5599.45 66
UGNet96.81 13296.56 14097.58 11896.64 29293.84 16197.75 6297.12 26696.47 9993.62 30098.88 4793.22 18399.53 17095.61 10699.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
wuyk23d93.25 27195.20 19087.40 34396.07 31295.38 10097.04 10594.97 30895.33 15299.70 598.11 11598.14 1391.94 36077.76 35399.68 5774.89 360
Vis-MVSNet (Re-imp)95.11 20694.85 20795.87 22599.12 8189.17 25197.54 7994.92 30996.50 9696.58 20597.27 20483.64 29599.48 18388.42 29899.67 5898.97 168
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1798.34 3198.78 4498.52 7197.32 3599.45 19394.08 18499.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17597.69 24096.81 8598.27 8997.92 14294.18 16398.71 30890.78 25499.66 6099.00 164
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 18997.55 7498.94 7197.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
CHOSEN 1792x268894.10 24993.41 25696.18 21199.16 6990.04 23792.15 31098.68 13979.90 34696.22 22597.83 15187.92 26999.42 19989.18 28799.65 6199.08 153
XVG-ACMP-BASELINE97.58 8497.28 9898.49 5299.16 6996.90 4696.39 13298.98 6395.05 16598.06 11398.02 12895.86 10199.56 16194.37 17299.64 6399.00 164
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 6896.11 11196.89 19297.45 18696.85 6499.78 4295.19 13199.63 6499.38 85
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9899.62 6599.58 28
tfpnnormal97.72 7497.97 4196.94 16699.26 4892.23 20097.83 5798.45 16598.25 3499.13 3098.66 6196.65 7199.69 11393.92 19399.62 6598.91 181
MP-MVS-pluss97.69 7697.36 9298.70 3999.50 2596.84 4795.38 19398.99 6092.45 24498.11 10598.31 8697.25 4199.77 5296.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 12797.08 11196.13 21398.42 15389.28 25095.41 19098.67 14294.21 19497.97 12398.31 8693.06 18599.65 13198.06 1999.62 6599.45 66
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4795.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
Patchmtry95.03 21194.59 22396.33 20294.83 33490.82 22796.38 13497.20 26196.59 9197.49 15198.57 6677.67 31899.38 21892.95 21699.62 6598.80 197
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17698.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12497.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
Patchmatch-RL test94.66 22994.49 22795.19 25098.54 13888.91 25592.57 30298.74 12291.46 25898.32 8397.75 16077.31 32398.81 29996.06 8199.61 7197.85 279
CANet95.86 17795.65 18096.49 19496.41 29890.82 22794.36 24498.41 17394.94 16992.62 32696.73 23992.68 19599.71 9695.12 14199.60 7498.94 172
FMVSNet296.72 13996.67 13596.87 17197.96 20191.88 21197.15 9798.06 22095.59 14398.50 6298.62 6489.51 25299.65 13194.99 14899.60 7499.07 155
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7596.58 9298.08 11197.87 14897.02 5399.76 5795.25 12899.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
USDC94.56 23494.57 22694.55 27897.78 23286.43 30192.75 29898.65 14985.96 31096.91 19197.93 14190.82 23198.74 30590.71 25999.59 7698.47 228
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11195.07 16497.88 13298.35 8297.24 4299.72 8296.05 8399.58 7899.45 66
v119296.83 13097.06 11496.15 21298.28 16389.29 24995.36 19498.77 11693.73 20798.11 10598.34 8393.02 18999.67 12498.35 1499.58 7899.50 43
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 2895.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
DPE-MVScopyleft97.64 7897.35 9398.50 5198.85 10196.18 6795.21 20898.99 6095.84 13298.78 4498.08 11796.84 6599.81 3193.98 19199.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4095.43 15097.41 16097.50 18297.98 1599.79 3895.58 10999.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 6895.75 13797.91 12898.06 12496.89 6099.76 5795.32 12499.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
cl-mvsnet____94.73 22194.64 21795.01 25695.85 31687.00 29391.33 32398.08 21593.34 21797.10 17497.33 20084.01 29499.30 23895.14 13899.56 8498.71 210
miper_lstm_enhance94.81 21994.80 21194.85 26496.16 30886.45 30091.14 32998.20 19893.49 21297.03 18197.37 19784.97 28799.26 24795.28 12699.56 8498.83 194
v14419296.69 14296.90 12496.03 21598.25 16888.92 25495.49 18498.77 11693.05 23098.09 10998.29 9292.51 20499.70 10598.11 1799.56 8499.47 59
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27295.29 20197.65 24596.99 7997.94 12698.19 10692.55 20099.58 15496.91 5999.56 8499.50 43
K. test v396.44 15496.28 15596.95 16599.41 3591.53 21797.65 6790.31 35098.89 1898.93 3899.36 1484.57 29099.92 497.81 2699.56 8499.39 83
MVSTER94.21 24593.93 24895.05 25595.83 31786.46 29995.18 20997.65 24592.41 24597.94 12698.00 13272.39 34699.58 15496.36 7399.56 8499.12 144
cl-mvsnet194.73 22194.64 21795.01 25695.86 31587.00 29391.33 32398.08 21593.34 21797.10 17497.34 19984.02 29399.31 23595.15 13799.55 9098.72 208
v192192096.72 13996.96 12095.99 21698.21 17288.79 25995.42 18898.79 11193.22 22298.19 9798.26 9892.68 19599.70 10598.34 1599.55 9099.49 51
ACMMP++99.55 90
SMA-MVScopyleft97.48 9197.11 10898.60 4698.83 10296.67 5296.74 11898.73 12491.61 25598.48 6398.36 8196.53 7999.68 11995.17 13399.54 9399.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.37 9997.70 6096.35 20198.14 18495.13 11496.54 12798.92 7395.94 12499.19 2898.08 11797.74 2295.06 35895.24 12999.54 9398.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10195.21 15698.36 7598.13 11198.13 1499.62 14496.04 8499.54 9399.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8198.84 9495.76 13596.93 18997.43 18797.26 4099.79 3896.06 8199.53 9699.45 66
Anonymous2023120695.27 20095.06 19895.88 22498.72 11489.37 24895.70 17297.85 22988.00 29596.98 18697.62 17291.95 21699.34 22889.21 28699.53 9698.94 172
V4297.04 11397.16 10696.68 18398.59 13391.05 22296.33 13798.36 18094.60 18097.99 11998.30 9093.32 18099.62 14497.40 4199.53 9699.38 85
EU-MVSNet94.25 24294.47 22893.60 29498.14 18482.60 33497.24 9492.72 33085.08 32298.48 6398.94 4382.59 29898.76 30497.47 3999.53 9699.44 76
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17798.20 3798.87 8398.23 3599.48 1299.27 1998.47 899.55 16596.52 6799.53 9699.60 26
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19495.92 12598.40 7098.28 9397.06 5099.71 9695.48 11399.52 10199.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7699.75 6595.48 11399.52 10199.53 39
v14896.58 14896.97 11895.42 24398.63 12787.57 28395.09 21397.90 22695.91 12798.24 9297.96 13493.42 17999.39 21596.04 8499.52 10199.29 109
EI-MVSNet-UG-set97.32 10397.40 8997.09 15997.34 26992.01 20995.33 19797.65 24597.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10199.58 28
ACMMP++_ref99.52 101
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10196.11 11199.08 3198.24 9997.87 2099.72 8295.44 11799.51 10699.14 136
IU-MVS99.22 5795.40 9998.14 20885.77 31498.36 7595.23 13099.51 10699.49 51
EI-MVSNet-Vis-set97.32 10397.39 9097.11 15797.36 26492.08 20795.34 19697.65 24597.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10899.56 33
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6599.11 2697.76 4998.62 5198.27 9797.88 1999.80 3795.67 10099.50 10899.38 85
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6398.78 11596.04 11697.10 17497.73 16396.53 7999.78 4295.16 13599.50 10899.46 61
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 2898.76 2296.79 19499.34 1796.61 7498.82 29796.38 7299.50 10896.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_241102_TWO98.83 10196.11 11198.62 5198.24 9996.92 5899.72 8295.44 11799.49 11299.49 51
v124096.74 13697.02 11795.91 22398.18 17788.52 26295.39 19298.88 8193.15 22898.46 6698.40 8092.80 19299.71 9698.45 1399.49 11299.49 51
VDD-MVS97.37 9997.25 9997.74 10698.69 12194.50 13697.04 10595.61 30198.59 2598.51 6098.72 5692.54 20299.58 15496.02 8699.49 11299.12 144
PVSNet_BlendedMVS95.02 21294.93 20395.27 24797.79 22887.40 28794.14 25898.68 13988.94 28494.51 27498.01 13093.04 18699.30 23889.77 27999.49 11299.11 148
MP-MVScopyleft97.64 7897.18 10599.00 1299.32 4597.77 1797.49 8098.73 12496.27 10495.59 24997.75 16096.30 9299.78 4293.70 20199.48 11699.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet93.72 25892.62 27597.03 16387.61 36692.25 19996.27 13991.28 34196.74 8787.65 35497.39 19385.00 28699.64 13492.14 22399.48 11699.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU94.65 23094.21 23795.96 21895.90 31489.68 24293.92 26897.83 23393.19 22390.12 34395.64 29188.52 25999.57 16093.27 20999.47 11898.62 217
PMMVS293.66 26194.07 24192.45 31997.57 24880.67 34386.46 35496.00 29193.99 20197.10 17497.38 19589.90 24597.82 34788.76 29299.47 11898.86 192
baseline97.44 9497.78 5696.43 19798.52 14090.75 23096.84 11299.03 4796.51 9597.86 13698.02 12896.67 7099.36 22397.09 5399.47 11899.19 126
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7198.84 9496.05 11497.49 15197.54 17797.07 4899.70 10595.61 10699.46 12199.30 102
#test#97.62 8097.22 10398.83 2699.15 7297.50 2896.81 11498.84 9494.25 19397.49 15197.54 17797.07 4899.70 10594.37 17299.46 12199.30 102
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7198.83 10196.05 11497.46 15797.63 17196.77 6799.76 5795.61 10699.46 12199.49 51
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 3895.45 14897.55 14597.94 13997.11 4499.78 4294.77 15799.46 12199.48 56
PM-MVS97.36 10197.10 10998.14 8098.91 9896.77 4996.20 14598.63 15093.82 20598.54 5898.33 8493.98 16799.05 27595.99 8999.45 12598.61 219
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6395.75 13797.62 14397.59 17497.61 2799.77 5296.34 7499.44 12699.36 91
OPM-MVS97.54 8697.25 9998.41 5799.11 8296.61 5595.24 20698.46 16494.58 18398.10 10898.07 11997.09 4799.39 21595.16 13599.44 12699.21 124
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17495.96 16098.97 6794.55 18498.82 4298.76 5497.31 3699.29 24297.20 4999.44 12699.38 85
GBi-Net96.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
test196.99 11596.80 12897.56 11997.96 20193.67 16798.23 3298.66 14495.59 14397.99 11999.19 2489.51 25299.73 7894.60 16199.44 12699.30 102
FMVSNet395.26 20194.94 20196.22 20996.53 29590.06 23695.99 15797.66 24394.11 19897.99 11997.91 14380.22 30899.63 13694.60 16199.44 12698.96 169
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11198.98 1798.74 4798.49 7395.80 11199.49 18095.04 14499.44 12699.11 148
TAMVS95.49 18894.94 20197.16 15498.31 15993.41 17695.07 21696.82 27791.09 26497.51 14897.82 15489.96 24499.42 19988.42 29899.44 12698.64 214
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7098.84 9496.00 11997.22 16497.62 17296.87 6399.76 5795.48 11399.43 13499.46 61
XXY-MVS97.54 8697.70 6097.07 16099.46 2892.21 20197.22 9599.00 5794.93 17198.58 5698.92 4597.31 3699.41 20894.44 16799.43 13499.59 27
PHI-MVS96.96 11996.53 14498.25 7297.48 25596.50 5896.76 11798.85 8993.52 21196.19 22796.85 22995.94 9999.42 19993.79 19799.43 13498.83 194
CS-MVS96.95 12097.07 11296.59 18697.86 20992.74 19297.38 8799.52 595.98 12194.89 26595.89 28596.05 9799.76 5796.65 6199.42 13797.26 300
AllTest97.20 11096.92 12298.06 8599.08 8496.16 6897.14 9999.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
TestCases98.06 8599.08 8496.16 6899.16 1794.35 18997.78 14198.07 11995.84 10299.12 26591.41 23799.42 13798.91 181
Regformer-397.25 10797.29 9697.11 15797.35 26592.32 19895.26 20397.62 25097.67 5898.17 9897.89 14495.05 13399.56 16197.16 5199.42 13799.46 61
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20398.14 20897.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13799.51 42
TinyColmap96.00 17296.34 15394.96 25897.90 20787.91 27594.13 25998.49 16294.41 18698.16 9997.76 15796.29 9398.68 31390.52 26699.42 13798.30 245
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17198.49 2098.88 8196.86 8497.11 17398.55 6995.82 10599.73 7895.94 9199.42 13799.13 139
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30398.60 15292.84 23998.54 5897.40 18996.64 7398.78 30194.40 17199.41 14498.93 176
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16498.68 1096.34 28597.91 4497.30 16298.06 12488.46 26099.85 2293.85 19599.40 14599.32 96
xxxxxxxxxxxxxcwj97.24 10897.03 11697.89 9698.48 14794.71 12694.53 24199.07 3795.02 16797.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
SF-MVS97.60 8297.39 9098.22 7498.93 9695.69 8497.05 10499.10 2895.32 15397.83 13897.88 14696.44 8699.72 8294.59 16499.39 14699.25 119
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22395.83 16899.09 3397.23 7698.33 8298.30 9097.03 5299.37 22196.58 6599.38 14899.28 110
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21897.64 17096.49 8299.72 8295.66 10299.37 14999.45 66
X-MVStestdata92.86 27590.83 30098.94 1899.15 7297.66 1997.77 5998.83 10197.42 6796.32 21836.50 36396.49 8299.72 8295.66 10299.37 14999.45 66
lessismore_v097.05 16199.36 4092.12 20584.07 36298.77 4698.98 4085.36 28499.74 7297.34 4399.37 14999.30 102
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 18898.79 2199.23 2698.86 4995.76 11299.61 15095.49 11099.36 15299.23 122
cl_fuxian95.20 20295.32 18894.83 26696.19 30686.43 30191.83 31698.35 18493.47 21397.36 16197.26 20588.69 25899.28 24495.41 12399.36 15298.78 200
FMVSNet593.39 26792.35 27896.50 19395.83 31790.81 22997.31 8998.27 18992.74 24096.27 22298.28 9362.23 36199.67 12490.86 25099.36 15299.03 161
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15299.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8597.49 25397.93 4395.95 23598.58 6596.88 6296.91 35389.59 28199.36 15293.12 352
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11195.96 12297.53 14697.40 18996.93 5799.77 5295.04 14499.35 15799.42 78
ambc96.56 19198.23 17191.68 21697.88 5498.13 21098.42 6998.56 6894.22 16299.04 27694.05 18899.35 15798.95 170
APD-MVScopyleft97.00 11496.53 14498.41 5798.55 13796.31 6496.32 13898.77 11692.96 23797.44 15997.58 17695.84 10299.74 7291.96 22499.35 15799.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6393.36 21697.04 18097.31 20294.93 14099.63 13692.60 21799.34 16099.17 129
MVS_030495.50 18795.05 19996.84 17396.28 30193.12 18297.00 10796.16 28795.03 16689.22 34897.70 16690.16 24399.48 18394.51 16699.34 16097.93 276
jason94.39 24094.04 24395.41 24598.29 16187.85 27892.74 30096.75 28085.38 32195.29 25496.15 27088.21 26499.65 13194.24 17899.34 16098.74 205
jason: jason.
CPTT-MVS96.69 14296.08 16498.49 5298.89 9996.64 5497.25 9298.77 11692.89 23896.01 23497.13 21092.23 20899.67 12492.24 22299.34 16099.17 129
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16595.34 10593.81 27398.33 18594.59 18296.56 20796.63 24596.61 7498.73 30694.80 15399.34 16098.78 200
OMC-MVS96.48 15296.00 16797.91 9598.30 16096.01 7694.86 22898.60 15291.88 25297.18 16897.21 20896.11 9599.04 27690.49 26999.34 16098.69 211
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 16893.17 22797.30 16297.38 19595.48 12199.28 24493.74 19899.34 16098.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7399.06 3896.19 10898.48 6398.70 5894.72 14399.24 25094.37 17299.33 16799.17 129
LF4IMVS96.07 16795.63 18197.36 14598.19 17495.55 9195.44 18698.82 10992.29 24695.70 24796.55 24892.63 19898.69 31091.75 23399.33 16797.85 279
9.1496.69 13398.53 13996.02 15598.98 6393.23 22197.18 16897.46 18596.47 8499.62 14492.99 21499.32 169
tttt051793.31 26992.56 27695.57 23598.71 11787.86 27697.44 8287.17 35895.79 13497.47 15696.84 23064.12 35999.81 3196.20 7799.32 16999.02 163
Regformer-197.27 10597.16 10697.61 11797.21 27693.86 15994.85 22998.04 22297.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17199.35 93
Regformer-297.41 9697.24 10197.93 9497.21 27694.72 12594.85 22998.27 18997.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17199.37 90
N_pmnet95.18 20394.23 23598.06 8597.85 21096.55 5792.49 30491.63 33889.34 27998.09 10997.41 18890.33 23799.06 27491.58 23599.31 17198.56 222
CDS-MVSNet94.88 21694.12 24097.14 15697.64 24593.57 17293.96 26797.06 26990.05 27496.30 22196.55 24886.10 27999.47 18690.10 27499.31 17198.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VPNet97.26 10697.49 8696.59 18699.47 2790.58 23296.27 13998.53 15897.77 4698.46 6698.41 7894.59 15099.68 11994.61 16099.29 17599.52 40
114514_t93.96 25393.22 26096.19 21099.06 8790.97 22595.99 15798.94 7173.88 35993.43 30996.93 22592.38 20799.37 22189.09 28899.28 17698.25 251
DELS-MVS96.17 16496.23 15695.99 21697.55 25290.04 23792.38 30898.52 15994.13 19796.55 20997.06 21794.99 13899.58 15495.62 10599.28 17698.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17093.42 28398.36 18094.74 17596.58 20596.76 23896.54 7898.99 28294.87 15099.27 17899.15 133
pmmvs594.63 23194.34 23395.50 23997.63 24688.34 26694.02 26297.13 26587.15 30195.22 25697.15 20987.50 27199.27 24693.99 19099.26 17998.88 189
OPU-MVS97.64 11598.01 19595.27 10696.79 11597.35 19896.97 5498.51 32791.21 24399.25 18099.14 136
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7498.92 7397.72 5398.25 9098.13 11197.10 4599.75 6595.44 11799.24 18199.32 96
PVSNet_Blended_VisFu95.95 17395.80 17596.42 19899.28 4790.62 23195.31 19999.08 3488.40 29096.97 18798.17 10992.11 21199.78 4293.64 20299.21 18298.86 192
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.60 7699.76 5795.49 11099.20 18399.26 115
RE-MVS-def97.88 4798.81 10398.05 897.55 7498.86 8597.77 4698.20 9498.07 11996.94 5595.49 11099.20 18399.26 115
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12096.36 10196.16 22896.77 23691.91 22099.46 18992.59 21999.20 18399.28 110
plane_prior598.75 12099.46 18992.59 21999.20 18399.28 110
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8698.85 8997.57 6098.15 10197.96 13496.60 7699.76 5795.30 12599.18 18799.33 95
ppachtmachnet_test94.49 23794.84 20893.46 29796.16 30882.10 33690.59 33597.48 25590.53 26997.01 18397.59 17491.01 22899.36 22393.97 19299.18 18798.94 172
HPM-MVS++copyleft96.99 11596.38 15198.81 2998.64 12397.59 2395.97 15998.20 19895.51 14695.06 25896.53 25094.10 16499.70 10594.29 17699.15 18999.13 139
ETH3 D test640094.77 22093.87 24997.47 13298.12 18893.73 16594.56 24098.70 13485.45 31994.70 26995.93 28491.77 22299.63 13686.45 31899.14 19099.05 159
pmmvs494.82 21894.19 23896.70 18197.42 26292.75 19192.09 31396.76 27986.80 30595.73 24697.22 20789.28 25598.89 29293.28 20899.14 19098.46 230
TSAR-MVS + GP.96.47 15396.12 16197.49 13097.74 23695.23 10894.15 25696.90 27493.26 22098.04 11696.70 24194.41 15698.89 29294.77 15799.14 19098.37 234
RRT_test8_iter0592.46 28192.52 27792.29 32295.33 32977.43 35295.73 17098.55 15794.41 18697.46 15797.72 16557.44 36499.74 7296.92 5899.14 19099.69 20
CDPH-MVS95.45 19394.65 21697.84 10198.28 16394.96 11893.73 27598.33 18585.03 32495.44 25196.60 24695.31 12899.44 19690.01 27599.13 19499.11 148
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 27998.67 1199.02 4996.50 9694.48 27696.15 27086.90 27599.92 498.73 799.13 19498.74 205
lupinMVS93.77 25693.28 25795.24 24897.68 24087.81 27992.12 31196.05 28984.52 32894.48 27695.06 30286.90 27599.63 13693.62 20399.13 19498.27 249
LFMVS95.32 19894.88 20696.62 18498.03 19291.47 21997.65 6790.72 34799.11 997.89 13198.31 8679.20 31199.48 18393.91 19499.12 19798.93 176
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8798.83 10197.32 7398.06 11397.85 14996.65 7199.77 5295.00 14799.11 19899.32 96
thisisatest053092.71 27891.76 28695.56 23798.42 15388.23 26796.03 15487.35 35794.04 20096.56 20795.47 29664.03 36099.77 5294.78 15699.11 19898.68 213
TSAR-MVS + MP.97.42 9597.23 10298.00 9099.38 3895.00 11797.63 6998.20 19893.00 23298.16 9998.06 12495.89 10099.72 8295.67 10099.10 20099.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet96.98 11896.84 12597.41 14199.40 3693.26 17997.94 4995.31 30799.26 798.39 7299.18 2787.85 27099.62 14495.13 14099.09 20199.35 93
IterMVS-SCA-FT95.86 17796.19 15894.85 26497.68 24085.53 30992.42 30697.63 24996.99 7998.36 7598.54 7087.94 26599.75 6597.07 5599.08 20299.27 114
CNVR-MVS96.92 12296.55 14198.03 8998.00 19995.54 9294.87 22798.17 20494.60 18096.38 21597.05 21895.67 11599.36 22395.12 14199.08 20299.19 126
Anonymous20240521196.34 15795.98 16997.43 13998.25 16893.85 16096.74 11894.41 31497.72 5398.37 7398.03 12787.15 27499.53 17094.06 18599.07 20498.92 180
CHOSEN 280x42089.98 31089.19 31692.37 32095.60 32381.13 34286.22 35597.09 26781.44 34087.44 35593.15 32473.99 33599.47 18688.69 29499.07 20496.52 326
ab-mvs96.59 14796.59 13796.60 18598.64 12392.21 20198.35 2697.67 24194.45 18596.99 18498.79 5194.96 13999.49 18090.39 27099.07 20498.08 260
LCM-MVSNet-Re97.33 10297.33 9497.32 14798.13 18793.79 16396.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27399.06 20798.32 241
new-patchmatchnet95.67 18296.58 13892.94 31197.48 25580.21 34492.96 29498.19 20394.83 17398.82 4298.79 5193.31 18199.51 17895.83 9699.04 20899.12 144
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23495.71 17198.84 9494.72 17696.71 20097.39 19394.91 14198.10 34595.28 12699.02 20998.05 269
IterMVS95.42 19495.83 17494.20 28797.52 25383.78 33092.41 30797.47 25695.49 14798.06 11398.49 7387.94 26599.58 15496.02 8699.02 20999.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.43 1892.12 28990.64 30396.57 19097.80 22293.48 17589.88 34598.45 16574.46 35896.04 23295.68 28990.71 23399.31 23573.73 35699.01 21196.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D97.77 7197.50 8598.57 4896.24 30297.58 2498.45 2398.85 8998.58 2697.51 14897.94 13995.74 11399.63 13695.19 13198.97 21298.51 225
test_prior395.91 17495.39 18797.46 13597.79 22894.26 14693.33 28898.42 17194.21 19494.02 28796.25 26593.64 17599.34 22891.90 22698.96 21398.79 198
test_prior293.33 28894.21 19494.02 28796.25 26593.64 17591.90 22698.96 213
VNet96.84 12796.83 12696.88 17098.06 19092.02 20896.35 13697.57 25297.70 5597.88 13297.80 15692.40 20699.54 16894.73 15998.96 21399.08 153
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 18995.60 9098.04 4598.70 13498.13 3896.93 18998.45 7695.30 12999.62 14495.64 10498.96 21399.24 121
ETH3D cwj APD-0.1696.23 16195.61 18398.09 8297.91 20595.65 8994.94 22498.74 12291.31 26196.02 23397.08 21594.05 16699.69 11391.51 23698.94 21798.93 176
QAPM95.88 17695.57 18496.80 17597.90 20791.84 21398.18 3998.73 12488.41 28996.42 21398.13 11194.73 14299.75 6588.72 29398.94 21798.81 196
ZD-MVS98.43 15295.94 7798.56 15690.72 26796.66 20297.07 21695.02 13799.74 7291.08 24498.93 219
plane_prior94.29 14295.42 18894.31 19198.93 219
train_agg95.46 19294.66 21597.88 9897.84 21495.23 10893.62 27798.39 17687.04 30293.78 29295.99 27794.58 15199.52 17491.76 23298.90 22198.89 185
agg_prior290.34 27298.90 22199.10 152
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16195.63 14097.22 16497.30 20395.52 11998.55 32490.97 24798.90 22198.34 240
test9_res91.29 23998.89 22499.00 164
EPNet_dtu91.39 29890.75 30193.31 29990.48 36382.61 33394.80 23192.88 32793.39 21581.74 36294.90 30781.36 30299.11 26888.28 30098.87 22598.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.32 1294.93 21394.23 23597.04 16298.18 17794.51 13495.22 20798.73 12481.22 34196.25 22495.95 28293.80 17298.98 28489.89 27798.87 22597.62 289
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
agg_prior195.39 19594.60 22197.75 10597.80 22294.96 11893.39 28598.36 18087.20 30093.49 30595.97 28094.65 14899.53 17091.69 23498.86 22798.77 203
DP-MVS Recon95.55 18695.13 19396.80 17598.51 14193.99 15594.60 23898.69 13790.20 27295.78 24396.21 26892.73 19498.98 28490.58 26498.86 22797.42 296
EIA-MVS96.04 16995.77 17796.85 17297.80 22292.98 18596.12 14999.16 1794.65 17893.77 29491.69 34795.68 11499.67 12494.18 18098.85 22997.91 277
MCST-MVS96.24 16095.80 17597.56 11998.75 11194.13 15094.66 23698.17 20490.17 27396.21 22696.10 27595.14 13299.43 19894.13 18398.85 22999.13 139
ETV-MVS96.13 16695.90 17396.82 17497.76 23493.89 15795.40 19198.95 7095.87 12995.58 25091.00 35396.36 9199.72 8293.36 20598.83 23196.85 313
eth_miper_zixun_eth94.89 21594.93 20394.75 26995.99 31386.12 30491.35 32298.49 16293.40 21497.12 17297.25 20686.87 27799.35 22695.08 14398.82 23298.78 200
testtj96.69 14296.13 16098.36 6198.46 15196.02 7596.44 13098.70 13494.26 19296.79 19497.13 21094.07 16599.75 6590.53 26598.80 23399.31 101
HyFIR lowres test93.72 25892.65 27396.91 16998.93 9691.81 21491.23 32798.52 15982.69 33496.46 21296.52 25280.38 30799.90 1390.36 27198.79 23499.03 161
test1297.46 13597.61 24794.07 15197.78 23593.57 30393.31 18199.42 19998.78 23598.89 185
CMPMVSbinary73.10 2392.74 27791.39 28996.77 17793.57 35094.67 13094.21 25397.67 24180.36 34593.61 30196.60 24682.85 29797.35 35184.86 33298.78 23598.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CNLPA95.04 20994.47 22896.75 17897.81 21895.25 10794.12 26097.89 22794.41 18694.57 27195.69 28890.30 24098.35 33786.72 31798.76 23796.64 322
OpenMVScopyleft94.22 895.48 19095.20 19096.32 20397.16 27991.96 21097.74 6398.84 9487.26 29994.36 27898.01 13093.95 16899.67 12490.70 26098.75 23897.35 299
testgi96.07 16796.50 14894.80 26799.26 4887.69 28295.96 16098.58 15595.08 16398.02 11896.25 26597.92 1697.60 35088.68 29598.74 23999.11 148
HQP3-MVS98.43 16898.74 239
HQP-MVS95.17 20594.58 22496.92 16797.85 21092.47 19594.26 24698.43 16893.18 22492.86 31895.08 30090.33 23799.23 25290.51 26798.74 23999.05 159
alignmvs96.01 17195.52 18597.50 12797.77 23394.71 12696.07 15196.84 27597.48 6596.78 19894.28 31985.50 28399.40 21096.22 7698.73 24298.40 231
旧先验197.80 22293.87 15897.75 23697.04 21993.57 17798.68 24398.72 208
thisisatest051590.43 30589.18 31794.17 28997.07 28285.44 31089.75 34687.58 35688.28 29293.69 29891.72 34665.27 35899.58 15490.59 26398.67 24497.50 294
diffmvs96.04 16996.23 15695.46 24297.35 26588.03 27493.42 28399.08 3494.09 19996.66 20296.93 22593.85 17099.29 24296.01 8898.67 24499.06 157
CL-MVSNet_2432*160095.04 20994.79 21295.82 22697.51 25489.79 24191.14 32996.82 27793.05 23096.72 19996.40 25890.82 23199.16 26191.95 22598.66 24698.50 226
test22298.17 17993.24 18092.74 30097.61 25175.17 35794.65 27096.69 24290.96 23098.66 24697.66 288
新几何197.25 15298.29 16194.70 12997.73 23777.98 35294.83 26696.67 24392.08 21399.45 19388.17 30298.65 24897.61 290
112194.26 24193.26 25897.27 14998.26 16794.73 12495.86 16597.71 23977.96 35394.53 27396.71 24091.93 21899.40 21087.71 30498.64 24997.69 287
原ACMM196.58 18898.16 18192.12 20598.15 20785.90 31293.49 30596.43 25592.47 20599.38 21887.66 30798.62 25098.23 252
PVSNet_Blended93.96 25393.65 25294.91 25997.79 22887.40 28791.43 32098.68 13984.50 32994.51 27494.48 31593.04 18699.30 23889.77 27998.61 25198.02 272
AdaColmapbinary95.11 20694.62 22096.58 18897.33 27194.45 13794.92 22598.08 21593.15 22893.98 29095.53 29594.34 15899.10 27085.69 32398.61 25196.20 330
DSMNet-mixed92.19 28791.83 28493.25 30196.18 30783.68 33196.27 13993.68 31976.97 35692.54 32799.18 2789.20 25798.55 32483.88 33798.60 25397.51 293
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6698.89 7695.65 13998.51 6096.46 25492.15 20999.81 3195.14 13898.58 25499.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testdata95.70 23298.16 18190.58 23297.72 23880.38 34495.62 24897.02 22092.06 21498.98 28489.06 29098.52 25597.54 292
API-MVS95.09 20895.01 20095.31 24696.61 29394.02 15396.83 11397.18 26395.60 14295.79 24194.33 31794.54 15398.37 33685.70 32298.52 25593.52 349
Effi-MVS+-dtu96.81 13296.09 16398.99 1396.90 28998.69 296.42 13198.09 21395.86 13095.15 25795.54 29494.26 16099.81 3194.06 18598.51 25798.47 228
canonicalmvs97.23 10997.21 10497.30 14897.65 24494.39 13897.84 5699.05 4097.42 6796.68 20193.85 32297.63 2699.33 23196.29 7598.47 25898.18 257
NCCC96.52 15095.99 16898.10 8197.81 21895.68 8695.00 22298.20 19895.39 15195.40 25396.36 26193.81 17199.45 19393.55 20498.42 25999.17 129
Patchmatch-test93.60 26393.25 25994.63 27296.14 31187.47 28596.04 15394.50 31393.57 21096.47 21196.97 22276.50 32698.61 31890.67 26198.41 26097.81 283
cl-mvsnet293.25 27192.84 26794.46 28094.30 34086.00 30591.09 33196.64 28490.74 26695.79 24196.31 26378.24 31598.77 30294.15 18298.34 26198.62 217
miper_ehance_all_eth94.69 22694.70 21494.64 27195.77 31986.22 30391.32 32598.24 19391.67 25497.05 17996.65 24488.39 26299.22 25494.88 14998.34 26198.49 227
miper_enhance_ethall93.14 27392.78 27094.20 28793.65 34885.29 31389.97 34197.85 22985.05 32396.15 23094.56 31185.74 28199.14 26393.74 19898.34 26198.17 258
CVMVSNet92.33 28592.79 26890.95 32997.26 27475.84 35795.29 20192.33 33381.86 33696.27 22298.19 10681.44 30198.46 32994.23 17998.29 26498.55 224
our_test_394.20 24794.58 22493.07 30596.16 30881.20 34190.42 33796.84 27590.72 26797.14 17097.13 21090.47 23599.11 26894.04 18998.25 26598.91 181
xiu_mvs_v1_base_debu95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
xiu_mvs_v1_base_debi95.62 18395.96 17094.60 27498.01 19588.42 26393.99 26498.21 19592.98 23395.91 23694.53 31296.39 8899.72 8295.43 12098.19 26695.64 336
XVG-OURS97.12 11196.74 13198.26 6998.99 9397.45 3293.82 27199.05 4095.19 15898.32 8397.70 16695.22 13198.41 33194.27 17798.13 26998.93 176
sss94.22 24393.72 25195.74 22997.71 23889.95 23993.84 27096.98 27188.38 29193.75 29595.74 28787.94 26598.89 29291.02 24698.10 27098.37 234
DPM-MVS93.68 26092.77 27196.42 19897.91 20592.54 19391.17 32897.47 25684.99 32593.08 31594.74 30889.90 24599.00 28087.54 31098.09 27197.72 285
MIMVSNet93.42 26692.86 26595.10 25398.17 17988.19 26898.13 4193.69 31792.07 24795.04 26198.21 10580.95 30599.03 27981.42 34498.06 27298.07 262
pmmvs390.00 30988.90 31893.32 29894.20 34485.34 31191.25 32692.56 33278.59 35093.82 29195.17 29967.36 35798.69 31089.08 28998.03 27395.92 331
Fast-Effi-MVS+-dtu96.44 15496.12 16197.39 14397.18 27894.39 13895.46 18598.73 12496.03 11894.72 26794.92 30696.28 9499.69 11393.81 19697.98 27498.09 259
thres600view792.03 29091.43 28893.82 29098.19 17484.61 32396.27 13990.39 34896.81 8596.37 21693.11 32573.44 34399.49 18080.32 34697.95 27597.36 297
MS-PatchMatch94.83 21794.91 20594.57 27796.81 29187.10 29294.23 25197.34 25888.74 28797.14 17097.11 21391.94 21798.23 34192.99 21497.92 27698.37 234
1112_ss94.12 24893.42 25596.23 20798.59 13390.85 22694.24 25098.85 8985.49 31692.97 31694.94 30486.01 28099.64 13491.78 23197.92 27698.20 255
MVS_Test96.27 15996.79 13094.73 27096.94 28786.63 29896.18 14698.33 18594.94 16996.07 23198.28 9395.25 13099.26 24797.21 4797.90 27898.30 245
Fast-Effi-MVS+95.49 18895.07 19696.75 17897.67 24392.82 18894.22 25298.60 15291.61 25593.42 31092.90 33296.73 6999.70 10592.60 21797.89 27997.74 284
test_yl94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
DCV-MVSNet94.40 23894.00 24495.59 23396.95 28589.52 24594.75 23495.55 30396.18 10996.79 19496.14 27281.09 30399.18 25690.75 25597.77 28098.07 262
Test_1112_low_res93.53 26592.86 26595.54 23898.60 13188.86 25792.75 29898.69 13782.66 33592.65 32396.92 22784.75 28899.56 16190.94 24897.76 28298.19 256
thres100view90091.76 29491.26 29393.26 30098.21 17284.50 32496.39 13290.39 34896.87 8396.33 21793.08 32973.44 34399.42 19978.85 35097.74 28395.85 332
tfpn200view991.55 29691.00 29593.21 30398.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28395.85 332
thres40091.68 29591.00 29593.71 29298.02 19384.35 32695.70 17290.79 34596.26 10595.90 23992.13 34273.62 34099.42 19978.85 35097.74 28397.36 297
BH-RMVSNet94.56 23494.44 23194.91 25997.57 24887.44 28693.78 27496.26 28693.69 20996.41 21496.50 25392.10 21299.00 28085.96 32097.71 28698.31 243
MG-MVS94.08 25194.00 24494.32 28497.09 28185.89 30693.19 29295.96 29392.52 24194.93 26497.51 18189.54 24998.77 30287.52 31197.71 28698.31 243
PVSNet86.72 1991.10 30090.97 29791.49 32597.56 25078.04 34987.17 35394.60 31284.65 32792.34 32892.20 34187.37 27398.47 32885.17 33097.69 28897.96 274
PatchMatch-RL94.61 23293.81 25097.02 16498.19 17495.72 8293.66 27697.23 26088.17 29394.94 26395.62 29291.43 22498.57 32187.36 31397.68 28996.76 319
OpenMVS_ROBcopyleft91.80 1493.64 26293.05 26195.42 24397.31 27391.21 22195.08 21596.68 28381.56 33896.88 19396.41 25690.44 23699.25 24985.39 32797.67 29095.80 334
SCA93.38 26893.52 25492.96 31096.24 30281.40 34093.24 29094.00 31691.58 25794.57 27196.97 22287.94 26599.42 19989.47 28397.66 29198.06 266
MSDG95.33 19795.13 19395.94 22297.40 26391.85 21291.02 33298.37 17995.30 15496.31 22095.99 27794.51 15498.38 33489.59 28197.65 29297.60 291
thres20091.00 30290.42 30692.77 31397.47 25983.98 32994.01 26391.18 34395.12 16295.44 25191.21 35173.93 33699.31 23577.76 35397.63 29395.01 342
new_pmnet92.34 28491.69 28794.32 28496.23 30489.16 25292.27 30992.88 32784.39 33195.29 25496.35 26285.66 28296.74 35684.53 33497.56 29497.05 304
Effi-MVS+96.19 16396.01 16696.71 18097.43 26192.19 20496.12 14999.10 2895.45 14893.33 31294.71 30997.23 4399.56 16193.21 21197.54 29598.37 234
F-COLMAP95.30 19994.38 23298.05 8898.64 12396.04 7395.61 18298.66 14489.00 28393.22 31396.40 25892.90 19099.35 22687.45 31297.53 29698.77 203
MAR-MVS94.21 24593.03 26297.76 10496.94 28797.44 3396.97 10997.15 26487.89 29792.00 33192.73 33692.14 21099.12 26583.92 33697.51 29796.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base94.22 24394.63 21992.99 30997.32 27284.84 32192.12 31197.84 23191.96 25094.17 28193.43 32396.07 9699.71 9691.27 24097.48 29894.42 345
PS-MVSNAJ94.10 24994.47 22893.00 30897.35 26584.88 32091.86 31597.84 23191.96 25094.17 28192.50 33995.82 10599.71 9691.27 24097.48 29894.40 346
cascas91.89 29291.35 29093.51 29694.27 34185.60 30888.86 35098.61 15179.32 34892.16 33091.44 34989.22 25698.12 34490.80 25397.47 30096.82 316
test-LLR89.97 31189.90 30990.16 33394.24 34274.98 35889.89 34289.06 35392.02 24889.97 34490.77 35473.92 33798.57 32191.88 22897.36 30196.92 308
test-mter87.92 32687.17 32790.16 33394.24 34274.98 35889.89 34289.06 35386.44 30789.97 34490.77 35454.96 37098.57 32191.88 22897.36 30196.92 308
GA-MVS92.83 27692.15 28194.87 26396.97 28487.27 29090.03 34096.12 28891.83 25394.05 28694.57 31076.01 33098.97 28892.46 22197.34 30398.36 239
MVP-Stereo95.69 18095.28 18996.92 16798.15 18393.03 18495.64 18198.20 19890.39 27096.63 20497.73 16391.63 22399.10 27091.84 23097.31 30498.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous95.36 19696.07 16593.21 30396.29 30081.56 33994.60 23897.66 24393.30 21996.95 18898.91 4693.03 18899.38 21896.60 6397.30 30598.69 211
mvs-test196.20 16295.50 18698.32 6496.90 28998.16 495.07 21698.09 21395.86 13093.63 29994.32 31894.26 16099.71 9694.06 18597.27 30697.07 303
AUN-MVS93.95 25592.69 27297.74 10697.80 22295.38 10095.57 18395.46 30591.26 26292.64 32496.10 27574.67 33499.55 16593.72 20096.97 30798.30 245
hse-mvs295.77 17995.09 19597.79 10397.84 21495.51 9495.66 17695.43 30696.58 9297.21 16696.16 26984.14 29199.54 16895.89 9496.92 30898.32 241
TESTMET0.1,187.20 32986.57 33189.07 33793.62 34972.84 36289.89 34287.01 35985.46 31889.12 34990.20 35656.00 36997.72 34990.91 24996.92 30896.64 322
EMVS89.06 31789.22 31388.61 33993.00 35577.34 35382.91 35990.92 34494.64 17992.63 32591.81 34576.30 32897.02 35283.83 33896.90 31091.48 356
YYNet194.73 22194.84 20894.41 28297.47 25985.09 31890.29 33895.85 29692.52 24197.53 14697.76 15791.97 21599.18 25693.31 20796.86 31198.95 170
WTY-MVS93.55 26493.00 26395.19 25097.81 21887.86 27693.89 26996.00 29189.02 28294.07 28595.44 29786.27 27899.33 23187.69 30696.82 31298.39 233
E-PMN89.52 31589.78 31088.73 33893.14 35377.61 35183.26 35892.02 33494.82 17493.71 29693.11 32575.31 33296.81 35485.81 32196.81 31391.77 355
MDA-MVSNet_test_wron94.73 22194.83 21094.42 28197.48 25585.15 31690.28 33995.87 29592.52 24197.48 15497.76 15791.92 21999.17 26093.32 20696.80 31498.94 172
BH-untuned94.69 22694.75 21394.52 27997.95 20487.53 28494.07 26197.01 27093.99 20197.10 17495.65 29092.65 19798.95 28987.60 30896.74 31597.09 302
PLCcopyleft91.02 1694.05 25292.90 26497.51 12498.00 19995.12 11594.25 24998.25 19286.17 30891.48 33495.25 29891.01 22899.19 25585.02 33196.69 31698.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMMVS92.39 28291.08 29496.30 20593.12 35492.81 18990.58 33695.96 29379.17 34991.85 33392.27 34090.29 24198.66 31589.85 27896.68 31797.43 295
ET-MVSNet_ETH3D91.12 29989.67 31195.47 24196.41 29889.15 25391.54 31990.23 35189.07 28186.78 35892.84 33369.39 35499.44 19694.16 18196.61 31897.82 281
MVS-HIRNet88.40 32290.20 30882.99 34497.01 28360.04 36693.11 29385.61 36184.45 33088.72 35099.09 3384.72 28998.23 34182.52 34296.59 31990.69 358
MDTV_nov1_ep1391.28 29194.31 33973.51 36194.80 23193.16 32486.75 30693.45 30897.40 18976.37 32798.55 32488.85 29196.43 320
XVG-OURS-SEG-HR97.38 9897.07 11298.30 6799.01 9297.41 3494.66 23699.02 4995.20 15798.15 10197.52 18098.83 498.43 33094.87 15096.41 32199.07 155
MDA-MVSNet-bldmvs95.69 18095.67 17995.74 22998.48 14788.76 26192.84 29597.25 25996.00 11997.59 14497.95 13891.38 22599.46 18993.16 21296.35 32298.99 167
PAPM_NR94.61 23294.17 23995.96 21898.36 15791.23 22095.93 16397.95 22392.98 23393.42 31094.43 31690.53 23498.38 33487.60 30896.29 32398.27 249
UnsupCasMVSNet_bld94.72 22594.26 23496.08 21498.62 12890.54 23593.38 28698.05 22190.30 27197.02 18296.80 23589.54 24999.16 26188.44 29796.18 32498.56 222
hse-mvs396.29 15895.63 18198.26 6998.50 14496.11 7196.90 11097.09 26796.58 9297.21 16698.19 10684.14 29199.78 4295.89 9496.17 32598.89 185
FPMVS89.92 31288.63 31993.82 29098.37 15696.94 4591.58 31893.34 32388.00 29590.32 34197.10 21470.87 35191.13 36171.91 35996.16 32693.39 351
CR-MVSNet93.29 27092.79 26894.78 26895.44 32688.15 27096.18 14697.20 26184.94 32694.10 28398.57 6677.67 31899.39 21595.17 13395.81 32796.81 317
PatchT93.75 25793.57 25394.29 28695.05 33287.32 28996.05 15292.98 32697.54 6394.25 27998.72 5675.79 33199.24 25095.92 9295.81 32796.32 328
RPMNet94.68 22894.60 22194.90 26195.44 32688.15 27096.18 14698.86 8597.43 6694.10 28398.49 7379.40 30999.76 5795.69 9995.81 32796.81 317
HY-MVS91.43 1592.58 27991.81 28594.90 26196.49 29688.87 25697.31 8994.62 31185.92 31190.50 34096.84 23085.05 28599.40 21083.77 33995.78 33096.43 327
PAPR92.22 28691.27 29295.07 25495.73 32188.81 25891.97 31497.87 22885.80 31390.91 33692.73 33691.16 22698.33 33879.48 34795.76 33198.08 260
gg-mvs-nofinetune88.28 32386.96 32892.23 32392.84 35784.44 32598.19 3874.60 36599.08 1087.01 35799.47 856.93 36598.23 34178.91 34995.61 33294.01 347
MVS90.02 30889.20 31592.47 31894.71 33586.90 29595.86 16596.74 28164.72 36190.62 33792.77 33492.54 20298.39 33379.30 34895.56 33392.12 353
131492.38 28392.30 27992.64 31595.42 32885.15 31695.86 16596.97 27285.40 32090.62 33793.06 33091.12 22797.80 34886.74 31695.49 33494.97 343
KD-MVS_2432*160088.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
miper_refine_blended88.93 31887.74 32392.49 31688.04 36481.99 33789.63 34795.62 29991.35 25995.06 25893.11 32556.58 36698.63 31685.19 32895.07 33596.85 313
TR-MVS92.54 28092.20 28093.57 29596.49 29686.66 29793.51 28194.73 31089.96 27594.95 26293.87 32190.24 24298.61 31881.18 34594.88 33795.45 340
MVEpermissive73.61 2286.48 33085.92 33288.18 34196.23 30485.28 31481.78 36075.79 36486.01 30982.53 36191.88 34492.74 19387.47 36371.42 36094.86 33891.78 354
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-w/o92.14 28891.94 28292.73 31497.13 28085.30 31292.46 30595.64 29889.33 28094.21 28092.74 33589.60 24798.24 34081.68 34394.66 33994.66 344
UnsupCasMVSNet_eth95.91 17495.73 17896.44 19698.48 14791.52 21895.31 19998.45 16595.76 13597.48 15497.54 17789.53 25198.69 31094.43 16894.61 34099.13 139
baseline289.65 31488.44 32193.25 30195.62 32282.71 33293.82 27185.94 36088.89 28587.35 35692.54 33871.23 34999.33 23186.01 31994.60 34197.72 285
PatchmatchNetpermissive91.98 29191.87 28392.30 32194.60 33779.71 34595.12 21093.59 32189.52 27893.61 30197.02 22077.94 31699.18 25690.84 25194.57 34298.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm91.08 30190.85 29991.75 32495.33 32978.09 34895.03 22191.27 34288.75 28693.53 30497.40 18971.24 34899.30 23891.25 24293.87 34397.87 278
IB-MVS85.98 2088.63 32086.95 32993.68 29395.12 33184.82 32290.85 33390.17 35287.55 29888.48 35191.34 35058.01 36399.59 15287.24 31493.80 34496.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 190.11 30789.21 31492.83 31293.89 34686.87 29691.74 31788.74 35592.02 24894.71 26891.14 35273.92 33794.48 35983.75 34092.94 34597.16 301
PAPM87.64 32885.84 33393.04 30696.54 29484.99 31988.42 35295.57 30279.52 34783.82 35993.05 33180.57 30698.41 33162.29 36292.79 34695.71 335
CostFormer89.75 31389.25 31291.26 32894.69 33678.00 35095.32 19891.98 33581.50 33990.55 33996.96 22471.06 35098.89 29288.59 29692.63 34796.87 311
tpm288.47 32187.69 32590.79 33094.98 33377.34 35395.09 21391.83 33677.51 35589.40 34696.41 25667.83 35698.73 30683.58 34192.60 34896.29 329
GG-mvs-BLEND90.60 33191.00 36184.21 32898.23 3272.63 36882.76 36084.11 36156.14 36896.79 35572.20 35892.09 34990.78 357
ADS-MVSNet291.47 29790.51 30594.36 28395.51 32485.63 30795.05 21995.70 29783.46 33292.69 32196.84 23079.15 31299.41 20885.66 32490.52 35098.04 270
ADS-MVSNet90.95 30390.26 30793.04 30695.51 32482.37 33595.05 21993.41 32283.46 33292.69 32196.84 23079.15 31298.70 30985.66 32490.52 35098.04 270
JIA-IIPM91.79 29390.69 30295.11 25293.80 34790.98 22494.16 25591.78 33796.38 10090.30 34299.30 1872.02 34798.90 29088.28 30090.17 35295.45 340
tpmvs90.79 30490.87 29890.57 33292.75 35876.30 35595.79 16993.64 32091.04 26591.91 33296.26 26477.19 32498.86 29689.38 28589.85 35396.56 325
EPMVS89.26 31688.55 32091.39 32692.36 35979.11 34695.65 17979.86 36388.60 28893.12 31496.53 25070.73 35298.10 34590.75 25589.32 35496.98 306
baseline193.14 27392.64 27494.62 27397.34 26987.20 29196.67 12593.02 32594.71 17796.51 21095.83 28681.64 30098.60 32090.00 27688.06 35598.07 262
DWT-MVSNet_test87.92 32686.77 33091.39 32693.18 35178.62 34795.10 21191.42 33985.58 31588.00 35288.73 35860.60 36298.90 29090.60 26287.70 35696.65 321
tpmrst90.31 30690.61 30489.41 33694.06 34572.37 36395.06 21893.69 31788.01 29492.32 32996.86 22877.45 32098.82 29791.04 24587.01 35797.04 305
tpm cat188.01 32587.33 32690.05 33594.48 33876.28 35694.47 24394.35 31573.84 36089.26 34795.61 29373.64 33998.30 33984.13 33586.20 35895.57 339
DeepMVS_CXcopyleft77.17 34590.94 36285.28 31474.08 36752.51 36280.87 36388.03 35975.25 33370.63 36459.23 36384.94 35975.62 359
dp88.08 32488.05 32288.16 34292.85 35668.81 36594.17 25492.88 32785.47 31791.38 33596.14 27268.87 35598.81 29986.88 31583.80 36096.87 311
tmp_tt57.23 33362.50 33641.44 34734.77 36849.21 36883.93 35660.22 36915.31 36371.11 36479.37 36270.09 35344.86 36564.76 36182.93 36130.25 361
test_method66.88 33266.13 33569.11 34662.68 36725.73 36949.76 36196.04 29014.32 36464.27 36591.69 34773.45 34288.05 36276.06 35566.94 36293.54 348
PVSNet_081.89 2184.49 33183.21 33488.34 34095.76 32074.97 36083.49 35792.70 33178.47 35187.94 35386.90 36083.38 29696.63 35773.44 35766.86 36393.40 350
test12312.59 33515.49 3383.87 3486.07 3692.55 37090.75 3342.59 3712.52 3655.20 36713.02 3654.96 3711.85 3675.20 3649.09 3647.23 362
testmvs12.33 33615.23 3393.64 3495.77 3702.23 37188.99 3493.62 3702.30 3665.29 36613.09 3644.52 3721.95 3665.16 3658.32 3656.75 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k24.22 33432.30 3370.00 3500.00 3710.00 3720.00 36298.10 2120.00 3670.00 36895.06 30297.54 290.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas7.98 33710.65 3400.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36895.82 1050.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.91 33810.55 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36894.94 3040.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
test_241102_ONE99.22 5795.35 10398.83 10196.04 11699.08 3198.13 11197.87 2099.33 231
save fliter98.48 14794.71 12694.53 24198.41 17395.02 167
test072699.24 5295.51 9496.89 11198.89 7695.92 12598.64 5098.31 8697.06 50
GSMVS98.06 266
test_part299.03 9196.07 7298.08 111
sam_mvs177.80 31798.06 266
sam_mvs77.38 321
MTGPAbinary98.73 124
test_post194.98 22310.37 36776.21 32999.04 27689.47 283
test_post10.87 36676.83 32599.07 273
patchmatchnet-post96.84 23077.36 32299.42 199
MTMP96.55 12674.60 365
gm-plane-assit91.79 36071.40 36481.67 33790.11 35798.99 28284.86 332
TEST997.84 21495.23 10893.62 27798.39 17686.81 30493.78 29295.99 27794.68 14699.52 174
test_897.81 21895.07 11693.54 28098.38 17887.04 30293.71 29695.96 28194.58 15199.52 174
agg_prior97.80 22294.96 11898.36 18093.49 30599.53 170
test_prior495.38 10093.61 279
test_prior97.46 13597.79 22894.26 14698.42 17199.34 22898.79 198
旧先验293.35 28777.95 35495.77 24598.67 31490.74 258
新几何293.43 282
无先验93.20 29197.91 22580.78 34299.40 21087.71 30497.94 275
原ACMM292.82 296
testdata299.46 18987.84 303
segment_acmp95.34 126
testdata192.77 29793.78 206
plane_prior798.70 11994.67 130
plane_prior698.38 15594.37 14091.91 220
plane_prior496.77 236
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior198.49 145
n20.00 372
nn0.00 372
door-mid98.17 204
test1198.08 215
door97.81 234
HQP5-MVS92.47 195
HQP-NCC97.85 21094.26 24693.18 22492.86 318
ACMP_Plane97.85 21094.26 24693.18 22492.86 318
BP-MVS90.51 267
HQP4-MVS92.87 31799.23 25299.06 157
HQP2-MVS90.33 237
NP-MVS98.14 18493.72 16695.08 300
MDTV_nov1_ep13_2view57.28 36794.89 22680.59 34394.02 28778.66 31485.50 32697.82 281
Test By Simon94.51 154