This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9999.92 597.88 4299.98 299.85 3
ANet_high98.31 3198.94 696.41 21299.33 5389.64 26297.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9399.75 299.45 1395.82 12599.92 598.80 1999.96 499.89 1
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7696.50 10999.32 2699.44 1497.43 4099.92 598.73 2299.95 599.86 2
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MM96.87 14496.62 15697.62 11997.72 26893.30 18696.39 15692.61 36297.90 5296.76 22798.64 9290.46 25699.81 3699.16 999.94 899.76 17
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v897.60 10098.06 4796.23 21898.71 14289.44 26697.43 10298.82 13697.29 8598.74 7099.10 4893.86 18599.68 12298.61 2799.94 899.56 50
bld_raw_dy_0_6495.16 22895.16 21795.15 26996.54 32789.06 27596.63 14899.54 1789.68 31298.72 7294.50 34488.64 28299.38 22892.24 25799.93 1197.03 344
Anonymous2024052197.07 13097.51 10695.76 24099.35 5188.18 29297.78 7398.40 19897.11 8898.34 10799.04 5389.58 27099.79 4498.09 3699.93 1199.30 120
MVS_030496.62 16396.40 17397.28 15197.91 23492.30 21096.47 15489.74 38997.52 7195.38 28998.63 9392.76 20999.81 3699.28 499.93 1199.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9499.91 1399.27 599.93 1199.73 22
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4399.92 597.79 4899.93 1199.79 10
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
v1097.55 10497.97 5596.31 21698.60 15789.64 26297.44 10099.02 7696.60 10298.72 7299.16 4393.48 19499.72 8798.76 2199.92 1699.58 39
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4799.92 597.64 5699.92 1699.75 19
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15699.35 2599.37 1997.38 4299.90 1498.59 2899.91 1999.77 12
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19298.35 3599.21 3398.43 3298.89 5498.83 7494.30 17599.81 3697.87 4399.91 1999.77 12
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4799.93 397.71 5299.91 1999.70 26
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12299.05 1399.01 4498.65 9195.37 14399.90 1497.57 5799.91 1999.77 12
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14099.89 1897.95 4199.91 1999.75 19
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26899.90 1498.64 2699.90 2499.82 6
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9897.71 6198.85 5799.10 4891.35 24499.83 3298.47 3099.90 2499.64 35
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9791.43 23796.37 16099.11 5094.19 21099.01 4499.25 3196.30 10999.38 22899.00 1499.88 2799.73 22
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 19099.88 2098.72 2499.88 2799.65 33
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17899.57 1495.66 15399.52 1598.71 8497.04 6199.64 14099.21 799.87 2998.69 228
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17299.02 7693.92 22098.62 7698.99 5797.69 2999.62 14996.18 10499.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18798.79 13191.44 23696.14 17999.06 6294.19 21098.82 6198.98 5896.22 11499.38 22898.98 1699.86 3199.58 39
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14499.82 195.44 16699.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21496.92 12798.60 17598.58 2898.78 6499.39 1697.80 2599.62 14994.98 18199.86 3199.52 58
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18297.96 6298.25 21498.58 2898.78 6499.39 1698.21 1499.56 16892.65 25199.86 3199.52 58
test111194.53 25894.81 23693.72 32299.06 10181.94 37498.31 3983.87 40396.37 11498.49 8899.17 4281.49 33499.73 8296.64 8499.86 3199.49 70
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13699.72 8798.12 3499.86 3199.73 22
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14299.05 6698.67 2498.84 5998.45 11097.58 3799.88 2096.45 9299.86 3199.54 53
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
pmmvs-eth3d96.49 16996.18 18297.42 14298.25 19694.29 15194.77 26598.07 24489.81 31097.97 15198.33 12293.11 20099.08 29595.46 14799.84 4098.89 201
FIs97.93 6598.07 4597.48 13599.38 4892.95 19598.03 6199.11 5098.04 4898.62 7698.66 8893.75 18999.78 4797.23 6699.84 4099.73 22
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20596.57 14999.15 4493.68 22798.89 5499.30 2896.42 10399.37 23499.03 1399.83 4399.66 30
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10793.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 306
test250689.86 34389.16 34891.97 36398.95 11276.83 39898.54 2361.07 41296.20 12297.07 20699.16 4355.19 40699.69 11796.43 9399.83 4399.38 106
ECVR-MVScopyleft94.37 26494.48 25494.05 31898.95 11283.10 36498.31 3982.48 40596.20 12298.23 12099.16 4381.18 33799.66 13495.95 11699.83 4399.38 106
iter_conf0593.65 28793.05 28695.46 25696.13 34787.45 31195.95 19698.22 21892.66 26497.04 20897.89 18463.52 39599.72 8796.19 10399.82 4799.21 140
D2MVS95.18 22595.17 21695.21 26597.76 26187.76 30694.15 28897.94 24889.77 31196.99 21297.68 20487.45 29699.14 28395.03 17799.81 4898.74 221
WR-MVS96.90 14296.81 14797.16 15998.56 16392.20 21794.33 27798.12 23797.34 8298.20 12297.33 23392.81 20799.75 6794.79 18799.81 4899.54 53
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14398.73 15098.66 2598.56 8298.41 11496.84 8099.69 11794.82 18599.81 4898.64 232
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20596.25 17099.06 6293.67 22898.64 7499.00 5596.23 11399.36 23798.99 1599.80 5199.53 56
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10498.49 3199.38 2299.14 4695.44 14299.84 3096.47 9199.80 5199.47 79
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7699.00 8598.40 3399.07 4298.98 5896.89 7499.75 6797.19 7199.79 5399.55 52
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18795.44 22498.86 11598.20 4298.37 10199.24 3294.69 16199.55 17395.98 11599.79 5399.65 33
IterMVS-LS96.92 14097.29 11895.79 23998.51 17088.13 29595.10 24798.66 16796.99 9098.46 9398.68 8792.55 21899.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
patch_mono-296.59 16496.93 14095.55 25198.88 12287.12 31894.47 27499.30 2794.12 21396.65 23598.41 11494.98 15699.87 2295.81 12699.78 5699.66 30
dcpmvs_297.12 12897.99 5494.51 30399.11 9484.00 35997.75 7799.65 997.38 8199.14 3798.42 11395.16 14999.96 295.52 14099.78 5699.58 39
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21195.83 20399.32 2593.22 24198.91 5398.49 10596.31 10899.64 14099.07 1299.76 5899.40 100
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20295.89 20099.41 2493.36 23599.00 4698.44 11296.46 10199.65 13699.09 1199.76 5899.45 85
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28596.92 25996.81 8299.87 2296.87 8299.76 5898.51 246
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15097.79 5399.42 2097.83 18894.40 17399.78 4795.91 11999.76 5899.46 81
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28599.89 1898.01 3999.76 5899.54 53
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17398.23 4698.66 16797.41 7999.00 4699.19 3695.47 14099.73 8295.83 12499.76 5899.30 120
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4199.59 15997.21 6899.76 5899.40 100
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8597.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19899.04 7397.51 7298.22 12197.81 19294.68 16399.78 4797.14 7299.75 6599.41 99
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26497.19 24196.88 7699.86 2497.50 6099.73 6798.41 253
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11999.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7695.15 17798.34 10798.23 14297.91 2199.70 11094.41 20299.73 6799.50 62
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10798.99 8896.35 11798.13 13295.95 31195.99 11899.66 13494.36 20799.73 6798.59 238
IS-MVSNet96.93 13996.68 15497.70 11399.25 6294.00 16298.57 2096.74 30298.36 3498.14 13197.98 17588.23 28799.71 10293.10 24799.72 7199.38 106
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9299.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18799.72 7199.32 115
CLD-MVS95.47 21295.07 22196.69 19598.27 19492.53 20491.36 36298.67 16591.22 29095.78 27794.12 34995.65 13598.98 30790.81 28899.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21299.02 7698.11 4498.31 11397.69 20394.65 16599.85 2797.02 7799.71 7499.48 76
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21498.87 11297.57 6798.31 11397.83 18894.69 16199.85 2797.02 7799.71 7499.46 81
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17998.23 4699.05 6697.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP92.54 1397.47 11097.10 12898.55 4999.04 10696.70 5196.24 17198.89 10493.71 22497.97 15197.75 19797.44 3999.63 14493.22 24499.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2297.69 6398.92 5198.77 7897.80 2599.25 26596.27 9999.69 7898.76 219
v2v48296.78 15297.06 13295.95 23298.57 16188.77 28295.36 23298.26 21395.18 17697.85 16498.23 14292.58 21699.63 14497.80 4799.69 7899.45 85
UGNet96.81 15096.56 16297.58 12196.64 32593.84 16897.75 7797.12 28796.47 11293.62 33398.88 7193.22 19999.53 17895.61 13699.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test_fmvs397.38 11697.56 10196.84 18598.63 15392.81 19797.60 8799.61 1390.87 29398.76 6999.66 394.03 18197.90 37799.24 699.68 8299.81 8
wuyk23d93.25 29895.20 21487.40 38596.07 34895.38 10597.04 12294.97 33495.33 16999.70 698.11 15798.14 1791.94 40377.76 39499.68 8274.89 403
Vis-MVSNet (Re-imp)95.11 22994.85 23295.87 23799.12 9389.17 27097.54 9794.92 33596.50 10996.58 23797.27 23683.64 32599.48 19488.42 33299.67 8498.97 185
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4499.45 20394.08 21699.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0396.58 16696.61 15896.48 20798.49 17491.72 23195.68 21197.69 26396.81 9698.27 11797.92 18294.18 17898.71 33190.78 29099.66 8699.00 180
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19797.55 9298.94 9897.10 8998.85 5798.88 7195.03 15399.67 12897.39 6499.65 8799.26 132
CHOSEN 1792x268894.10 27293.41 28196.18 22299.16 8290.04 25692.15 34998.68 16279.90 38996.22 25797.83 18887.92 29399.42 21089.18 32199.65 8799.08 169
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15698.98 9195.05 18298.06 14198.02 17095.86 12199.56 16894.37 20599.64 8999.00 180
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26897.01 25396.99 6599.82 3497.66 5599.64 8998.39 256
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9596.11 12796.89 22097.45 21896.85 7999.78 4795.19 16299.63 9199.38 106
test_0728_THIRD96.62 10098.40 9898.28 13397.10 5599.71 10295.70 12799.62 9299.58 39
tfpnnormal97.72 9097.97 5596.94 17699.26 5992.23 21397.83 7298.45 18998.25 3999.13 3898.66 8896.65 8799.69 11793.92 22499.62 9298.91 197
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23198.99 8892.45 26998.11 13398.31 12497.25 5099.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 14597.08 13096.13 22598.42 18289.28 26995.41 22898.67 16594.21 20897.97 15198.31 12493.06 20199.65 13698.06 3899.62 9299.45 85
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7495.88 14397.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
Patchmtry95.03 23494.59 24996.33 21494.83 37990.82 24696.38 15997.20 28296.59 10397.49 17798.57 9777.67 35299.38 22892.95 25099.62 9298.80 213
EGC-MVSNET83.08 37177.93 37498.53 5099.57 2097.55 2698.33 3898.57 1804.71 40710.38 40898.90 6995.60 13799.50 18695.69 12999.61 9898.55 242
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10898.73 15097.69 6397.90 15797.96 17695.81 12999.82 3496.13 10599.61 9899.45 85
Patchmatch-RL test94.66 25194.49 25395.19 26698.54 16688.91 27792.57 33798.74 14991.46 28598.32 11197.75 19777.31 35798.81 32196.06 10699.61 9897.85 310
CANet95.86 19595.65 20696.49 20696.41 33390.82 24694.36 27698.41 19694.94 18692.62 36296.73 27292.68 21299.71 10295.12 17299.60 10198.94 189
FMVSNet296.72 15696.67 15596.87 18297.96 23091.88 22797.15 11498.06 24595.59 15898.50 8798.62 9489.51 27499.65 13694.99 18099.60 10199.07 171
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11498.90 10396.58 10498.08 13897.87 18697.02 6399.76 6195.25 15999.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
USDC94.56 25694.57 25294.55 30197.78 25986.43 32992.75 33198.65 17285.96 35396.91 21997.93 18190.82 25198.74 32790.71 29599.59 10398.47 250
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16198.79 13895.07 18197.88 15998.35 12097.24 5199.72 8796.05 10899.58 10599.45 85
v119296.83 14897.06 13296.15 22498.28 19289.29 26895.36 23298.77 14393.73 22398.11 13398.34 12193.02 20599.67 12898.35 3299.58 10599.50 62
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13798.59 8098.69 8696.94 6899.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24498.99 8895.84 14698.78 6498.08 15996.84 8099.81 3693.98 22299.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16797.41 18497.50 21697.98 1999.79 4495.58 13999.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9595.75 15197.91 15698.06 16696.89 7499.76 6195.32 15699.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
iter_conf05_1193.77 28093.29 28295.24 26396.54 32789.14 27391.55 35995.02 33390.16 30693.21 34693.94 35087.37 29899.56 16892.24 25799.56 11197.03 344
cl____94.73 24394.64 24395.01 27695.85 35587.00 32091.33 36498.08 24093.34 23697.10 20097.33 23384.01 32499.30 25395.14 16999.56 11198.71 227
miper_lstm_enhance94.81 24294.80 23794.85 28696.16 34286.45 32891.14 37098.20 22293.49 23197.03 20997.37 23084.97 31699.26 26395.28 15799.56 11198.83 210
v14419296.69 15996.90 14496.03 22798.25 19688.92 27695.49 22298.77 14393.05 25198.09 13698.29 13292.51 22399.70 11098.11 3599.56 11199.47 79
EI-MVSNet96.63 16296.93 14095.74 24197.26 30788.13 29595.29 24097.65 26896.99 9097.94 15498.19 14792.55 21899.58 16196.91 8099.56 11199.50 62
K. test v396.44 17296.28 17896.95 17599.41 4291.53 23397.65 8490.31 38498.89 2098.93 5099.36 2184.57 31999.92 597.81 4699.56 11199.39 104
MVSTER94.21 26893.93 27395.05 27495.83 35686.46 32795.18 24597.65 26892.41 27097.94 15498.00 17472.39 37999.58 16196.36 9599.56 11199.12 161
DIV-MVS_self_test94.73 24394.64 24395.01 27695.86 35487.00 32091.33 36498.08 24093.34 23697.10 20097.34 23284.02 32399.31 25095.15 16899.55 11898.72 224
v192192096.72 15696.96 13995.99 22898.21 20088.79 28195.42 22698.79 13893.22 24198.19 12698.26 13892.68 21299.70 11098.34 3399.55 11899.49 70
ACMMP++99.55 118
SMA-MVScopyleft97.48 10997.11 12798.60 4598.83 12696.67 5396.74 13898.73 15091.61 28298.48 9098.36 11996.53 9499.68 12295.17 16499.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SD-MVS97.37 11897.70 8196.35 21398.14 21595.13 12296.54 15198.92 10195.94 13999.19 3498.08 15997.74 2895.06 39795.24 16099.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16192.10 22295.97 19299.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14598.83 12895.21 17398.36 10498.13 15398.13 1899.62 14996.04 10999.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9998.84 12295.76 14996.93 21797.43 22097.26 4999.79 4496.06 10699.53 12599.45 85
Anonymous2023120695.27 22195.06 22395.88 23698.72 13989.37 26795.70 20897.85 25388.00 33596.98 21497.62 20791.95 23599.34 24389.21 32099.53 12598.94 189
V4297.04 13197.16 12696.68 19698.59 15991.05 24196.33 16398.36 20394.60 19797.99 14798.30 12893.32 19699.62 14997.40 6399.53 12599.38 106
EU-MVSNet94.25 26594.47 25593.60 32598.14 21582.60 36997.24 11092.72 35985.08 36398.48 9098.94 6382.59 33298.76 32697.47 6299.53 12599.44 95
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18598.20 5198.87 11298.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13898.23 21795.92 14098.40 9898.28 13397.06 5999.71 10295.48 14499.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13898.89 10499.75 6795.48 14499.52 13099.53 56
v14896.58 16696.97 13795.42 25898.63 15387.57 30895.09 24897.90 25095.91 14298.24 11997.96 17693.42 19599.39 22596.04 10999.52 13099.29 126
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30292.01 22595.33 23697.65 26897.74 5798.30 11598.14 15195.04 15299.69 11797.55 5899.52 13099.58 39
ACMMP++_ref99.52 130
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23299.75 6795.87 12299.51 13599.57 46
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13598.83 12896.11 12799.08 4098.24 14097.87 2399.72 8795.44 14899.51 13599.14 154
IU-MVS99.22 6895.40 10398.14 23585.77 35798.36 10495.23 16199.51 13599.49 70
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 29992.08 22395.34 23597.65 26897.74 5798.29 11698.11 15795.05 15199.68 12297.50 6099.50 13999.56 50
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7998.78 14296.04 13297.10 20097.73 20096.53 9499.78 4795.16 16699.50 13999.46 81
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9098.82 31996.38 9499.50 13996.98 346
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_241102_TWO98.83 12896.11 12798.62 7698.24 14096.92 7299.72 8795.44 14899.49 14299.49 70
v124096.74 15397.02 13595.91 23598.18 20688.52 28495.39 23098.88 11093.15 24998.46 9398.40 11792.80 20899.71 10298.45 3199.49 14299.49 70
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12295.61 32398.59 2798.51 8598.72 8292.54 22099.58 16196.02 11199.49 14299.12 161
PVSNet_BlendedMVS95.02 23594.93 22795.27 26297.79 25687.40 31394.14 29098.68 16288.94 32194.51 30898.01 17293.04 20299.30 25389.77 31399.49 14299.11 164
MP-MVScopyleft97.64 9697.18 12599.00 999.32 5597.77 1797.49 9898.73 15096.27 11895.59 28397.75 19796.30 10999.78 4793.70 23299.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EPNet93.72 28392.62 30297.03 17287.61 41092.25 21296.27 16691.28 37496.74 9887.65 39697.39 22685.00 31599.64 14092.14 26099.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet_DTU94.65 25294.21 26495.96 23095.90 35189.68 26193.92 30197.83 25793.19 24490.12 38395.64 31988.52 28399.57 16793.27 24399.47 14898.62 235
PMMVS293.66 28694.07 26892.45 35797.57 28280.67 38286.46 39596.00 31293.99 21897.10 20097.38 22889.90 26697.82 37988.76 32699.47 14898.86 208
baseline97.44 11297.78 7796.43 20998.52 16890.75 24996.84 13099.03 7496.51 10897.86 16398.02 17096.67 8699.36 23797.09 7499.47 14899.19 145
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8998.84 12296.05 13097.49 17797.54 21297.07 5899.70 11095.61 13699.46 15199.30 120
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8998.83 12896.05 13097.46 18297.63 20696.77 8399.76 6195.61 13699.46 15199.49 70
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11999.06 6295.45 16497.55 17297.94 17997.11 5499.78 4794.77 19099.46 15199.48 76
PM-MVS97.36 12097.10 12898.14 8298.91 12096.77 4996.20 17398.63 17393.82 22198.54 8398.33 12293.98 18299.05 29895.99 11499.45 15498.61 237
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11898.98 9195.75 15197.62 17097.59 20997.61 3699.77 5696.34 9699.44 15599.36 112
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24298.46 18894.58 20098.10 13598.07 16197.09 5799.39 22595.16 16699.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18095.96 19498.97 9494.55 20198.82 6198.76 8097.31 4599.29 25797.20 7099.44 15599.38 106
GBi-Net96.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
test196.99 13496.80 14897.56 12297.96 23093.67 17398.23 4698.66 16795.59 15897.99 14799.19 3689.51 27499.73 8294.60 19699.44 15599.30 120
FMVSNet395.26 22294.94 22596.22 22096.53 33090.06 25595.99 19097.66 26694.11 21497.99 14797.91 18380.22 34399.63 14494.60 19699.44 15598.96 186
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11798.79 13898.98 1798.74 7098.49 10595.80 13099.49 19195.04 17599.44 15599.11 164
TAMVS95.49 20994.94 22597.16 15998.31 18893.41 18495.07 25196.82 29891.09 29197.51 17597.82 19189.96 26599.42 21088.42 33299.44 15598.64 232
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8798.84 12296.00 13597.22 18997.62 20796.87 7899.76 6195.48 14499.43 16399.46 81
XXY-MVS97.54 10597.70 8197.07 16899.46 3692.21 21497.22 11199.00 8594.93 18898.58 8198.92 6597.31 4599.41 21994.44 20099.43 16399.59 38
PHI-MVS96.96 13896.53 16698.25 7397.48 28996.50 5996.76 13798.85 11993.52 23096.19 26096.85 26295.94 11999.42 21093.79 22899.43 16398.83 210
AllTest97.20 12796.92 14298.06 8899.08 9896.16 7097.14 11699.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20597.78 16798.07 16195.84 12299.12 28791.41 27399.42 16698.91 197
TinyColmap96.00 19096.34 17694.96 28097.90 23687.91 30094.13 29198.49 18694.41 20398.16 12897.76 19496.29 11198.68 33790.52 30099.42 16698.30 269
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17798.49 2898.88 11096.86 9597.11 19998.55 10095.82 12599.73 8295.94 11799.42 16699.13 156
DeepPCF-MVS94.58 596.90 14296.43 17198.31 6797.48 28997.23 4092.56 33898.60 17592.84 26098.54 8397.40 22296.64 8998.78 32394.40 20499.41 17098.93 193
EPP-MVSNet96.84 14596.58 16097.65 11799.18 8093.78 17198.68 1496.34 30797.91 5197.30 18698.06 16688.46 28499.85 2793.85 22699.40 17199.32 115
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12199.10 5295.32 17097.83 16597.88 18596.44 10299.72 8794.59 19999.39 17299.25 136
casdiffmvspermissive97.50 10797.81 7196.56 20398.51 17091.04 24295.83 20399.09 5797.23 8698.33 11098.30 12897.03 6299.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25097.64 20596.49 9799.72 8795.66 13299.37 17499.45 85
X-MVStestdata92.86 30390.83 33098.94 1599.15 8597.66 1997.77 7498.83 12897.42 7596.32 25036.50 40596.49 9799.72 8795.66 13299.37 17499.45 85
lessismore_v097.05 16999.36 5092.12 21984.07 40298.77 6898.98 5885.36 31399.74 7697.34 6599.37 17499.30 120
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21198.79 2299.23 3298.86 7395.76 13199.61 15695.49 14199.36 17799.23 138
c3_l95.20 22495.32 21194.83 28896.19 34086.43 32991.83 35698.35 20693.47 23297.36 18597.26 23788.69 28099.28 25995.41 15499.36 17798.78 215
FMVSNet593.39 29492.35 30496.50 20595.83 35690.81 24897.31 10598.27 21292.74 26296.27 25498.28 13362.23 39699.67 12890.86 28699.36 17799.03 176
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8397.82 16699.11 4796.75 8499.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PMVScopyleft89.60 1796.71 15896.97 13795.95 23299.51 3097.81 1697.42 10397.49 27597.93 5095.95 26898.58 9696.88 7696.91 39089.59 31599.36 17793.12 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11398.79 13895.96 13797.53 17397.40 22296.93 7099.77 5695.04 17599.35 18299.42 97
ambc96.56 20398.23 19991.68 23297.88 6898.13 23698.42 9698.56 9994.22 17799.04 29994.05 21999.35 18298.95 187
APD-MVScopyleft97.00 13396.53 16698.41 5998.55 16496.31 6696.32 16498.77 14392.96 25897.44 18397.58 21195.84 12299.74 7691.96 26299.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
jason94.39 26394.04 26995.41 26098.29 19087.85 30392.74 33396.75 30185.38 36295.29 29096.15 30088.21 28899.65 13694.24 21099.34 18598.74 221
jason: jason.
CPTT-MVS96.69 15996.08 18698.49 5298.89 12196.64 5597.25 10898.77 14392.89 25996.01 26797.13 24392.23 22799.67 12892.24 25799.34 18599.17 148
MVS_111021_LR96.82 14996.55 16397.62 11998.27 19495.34 11093.81 30698.33 20794.59 19996.56 23996.63 27796.61 9098.73 32894.80 18699.34 18598.78 215
OMC-MVS96.48 17096.00 18997.91 10098.30 18996.01 7894.86 26198.60 17591.88 27897.18 19497.21 24096.11 11699.04 29990.49 30399.34 18598.69 228
DeepC-MVS_fast94.34 796.74 15396.51 16897.44 13997.69 27094.15 15796.02 18798.43 19293.17 24897.30 18697.38 22895.48 13999.28 25993.74 22999.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9199.06 6296.19 12498.48 9098.70 8594.72 16099.24 26994.37 20599.33 19099.17 148
LF4IMVS96.07 18595.63 20797.36 14698.19 20395.55 9495.44 22498.82 13692.29 27295.70 28196.55 28092.63 21598.69 33491.75 27199.33 19097.85 310
test_fmvs296.38 17596.45 17096.16 22397.85 23891.30 23896.81 13399.45 1989.24 31698.49 8899.38 1888.68 28197.62 38298.83 1899.32 19299.57 46
9.1496.69 15398.53 16796.02 18798.98 9193.23 24097.18 19497.46 21796.47 9999.62 14992.99 24899.32 192
tttt051793.31 29692.56 30395.57 24898.71 14287.86 30197.44 10087.17 39795.79 14897.47 18196.84 26364.12 39399.81 3696.20 10299.32 19299.02 179
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5896.57 10798.07 14098.38 11896.22 11499.14 28394.71 19499.31 19598.52 245
N_pmnet95.18 22594.23 26298.06 8897.85 23896.55 5892.49 33991.63 37089.34 31498.09 13697.41 22190.33 25999.06 29791.58 27299.31 19598.56 240
CDS-MVSNet94.88 23994.12 26797.14 16197.64 27893.57 17893.96 30097.06 29090.05 30796.30 25396.55 28086.10 30699.47 19690.10 30899.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
VPNet97.26 12497.49 10996.59 19999.47 3590.58 25196.27 16698.53 18297.77 5498.46 9398.41 11494.59 16699.68 12294.61 19599.29 19899.52 58
114514_t93.96 27793.22 28596.19 22199.06 10190.97 24495.99 19098.94 9873.88 40193.43 34196.93 25792.38 22699.37 23489.09 32299.28 19998.25 275
DELS-MVS96.17 18296.23 17995.99 22897.55 28590.04 25692.38 34798.52 18394.13 21296.55 24197.06 24894.99 15599.58 16195.62 13599.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.73 15596.54 16597.27 15298.35 18793.66 17693.42 31698.36 20394.74 19196.58 23796.76 27196.54 9398.99 30594.87 18399.27 20199.15 151
pmmvs594.63 25394.34 26095.50 25397.63 27988.34 28894.02 29497.13 28687.15 34195.22 29297.15 24287.50 29599.27 26293.99 22199.26 20298.88 205
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10496.62 10098.62 7698.30 12896.97 6699.75 6795.70 12799.25 20399.21 140
PC_three_145287.24 34098.37 10197.44 21997.00 6496.78 39392.01 26199.25 20399.21 140
OPU-MVS97.64 11898.01 22495.27 11396.79 13597.35 23196.97 6698.51 35291.21 27999.25 20399.14 154
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9298.92 10197.72 5998.25 11898.13 15397.10 5599.75 6795.44 14899.24 20699.32 115
PVSNet_Blended_VisFu95.95 19195.80 20096.42 21099.28 5790.62 25095.31 23899.08 5888.40 32996.97 21598.17 15092.11 23099.78 4793.64 23399.21 20798.86 208
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.60 9299.76 6195.49 14199.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9298.86 11597.77 5498.20 12298.07 16196.94 6895.49 14199.20 20899.26 132
HQP_MVS96.66 16196.33 17797.68 11698.70 14494.29 15196.50 15298.75 14796.36 11596.16 26196.77 26991.91 23899.46 19992.59 25399.20 20899.28 127
plane_prior598.75 14799.46 19992.59 25399.20 20899.28 127
ppachtmachnet_test94.49 26094.84 23393.46 32896.16 34282.10 37190.59 37797.48 27690.53 29997.01 21197.59 20991.01 24899.36 23793.97 22399.18 21298.94 189
test_cas_vis1_n_192095.34 21795.67 20494.35 30998.21 20086.83 32495.61 21899.26 3090.45 30098.17 12798.96 6184.43 32098.31 36796.74 8399.17 21397.90 306
SSC-MVS95.92 19297.03 13492.58 35399.28 5778.39 38996.68 14595.12 33298.90 1999.11 3998.66 8891.36 24399.68 12295.00 17899.16 21499.67 28
HPM-MVS++copyleft96.99 13496.38 17498.81 2798.64 14997.59 2395.97 19298.20 22295.51 16295.06 29596.53 28294.10 17999.70 11094.29 20899.15 21599.13 156
pmmvs494.82 24194.19 26596.70 19497.42 29692.75 20192.09 35296.76 30086.80 34795.73 28097.22 23989.28 27798.89 31493.28 24299.14 21698.46 252
TSAR-MVS + GP.96.47 17196.12 18397.49 13497.74 26695.23 11594.15 28896.90 29593.26 23998.04 14496.70 27394.41 17298.89 31494.77 19099.14 21698.37 258
CDPH-MVS95.45 21494.65 24297.84 10598.28 19294.96 12693.73 30898.33 20785.03 36595.44 28696.60 27895.31 14599.44 20690.01 30999.13 21899.11 164
MVSFormer96.14 18396.36 17595.49 25497.68 27187.81 30498.67 1599.02 7696.50 10994.48 31096.15 30086.90 30199.92 598.73 2299.13 21898.74 221
lupinMVS93.77 28093.28 28395.24 26397.68 27187.81 30492.12 35096.05 31084.52 37194.48 31095.06 33186.90 30199.63 14493.62 23499.13 21898.27 273
LFMVS95.32 21994.88 23196.62 19798.03 22191.47 23597.65 8490.72 38099.11 997.89 15898.31 12479.20 34599.48 19493.91 22599.12 22198.93 193
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10498.83 12897.32 8398.06 14197.85 18796.65 8799.77 5695.00 17899.11 22299.32 115
thisisatest053092.71 30691.76 31495.56 25098.42 18288.23 29096.03 18687.35 39694.04 21796.56 23995.47 32464.03 39499.77 5694.78 18999.11 22298.68 231
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8698.20 22293.00 25398.16 12898.06 16695.89 12099.72 8795.67 13199.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet96.98 13796.84 14597.41 14399.40 4593.26 18997.94 6495.31 33099.26 798.39 10099.18 3987.85 29499.62 14995.13 17199.09 22599.35 114
IterMVS-SCA-FT95.86 19596.19 18194.85 28697.68 27185.53 33792.42 34497.63 27296.99 9098.36 10498.54 10187.94 28999.75 6797.07 7699.08 22699.27 131
CNVR-MVS96.92 14096.55 16398.03 9398.00 22895.54 9594.87 26098.17 22894.60 19796.38 24797.05 24995.67 13499.36 23795.12 17299.08 22699.19 145
Anonymous20240521196.34 17695.98 19197.43 14098.25 19693.85 16796.74 13894.41 34097.72 5998.37 10198.03 16987.15 30099.53 17894.06 21799.07 22898.92 196
CHOSEN 280x42089.98 34089.19 34692.37 35895.60 36581.13 38086.22 39697.09 28881.44 38387.44 39793.15 35573.99 36999.47 19688.69 32899.07 22896.52 365
ab-mvs96.59 16496.59 15996.60 19898.64 14992.21 21498.35 3597.67 26494.45 20296.99 21298.79 7594.96 15799.49 19190.39 30499.07 22898.08 286
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12499.65 996.74 9899.47 1798.93 6496.91 7399.84 3090.11 30799.06 23198.32 265
new-patchmatchnet95.67 20296.58 16092.94 34497.48 28980.21 38492.96 32698.19 22794.83 18998.82 6198.79 7593.31 19799.51 18595.83 12499.04 23299.12 161
MSLP-MVS++96.42 17496.71 15295.57 24897.82 24690.56 25395.71 20798.84 12294.72 19296.71 22997.39 22694.91 15898.10 37595.28 15799.02 23398.05 295
IterMVS95.42 21595.83 19994.20 31497.52 28683.78 36192.41 34597.47 27795.49 16398.06 14198.49 10587.94 28999.58 16196.02 11199.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.43 1892.12 31690.64 33396.57 20297.80 25193.48 18189.88 38798.45 18974.46 40096.04 26695.68 31790.71 25399.31 25073.73 39999.01 23596.91 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
LS3D97.77 8697.50 10898.57 4796.24 33697.58 2498.45 3198.85 11998.58 2897.51 17597.94 17995.74 13299.63 14495.19 16298.97 23698.51 246
test_prior293.33 32094.21 20894.02 32296.25 29693.64 19191.90 26498.96 237
VNet96.84 14596.83 14696.88 18198.06 22092.02 22496.35 16297.57 27497.70 6297.88 15997.80 19392.40 22599.54 17694.73 19298.96 23799.08 169
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15998.13 4396.93 21798.45 11095.30 14699.62 14995.64 13498.96 23799.24 137
test_fmvs1_n95.21 22395.28 21294.99 27898.15 21389.13 27496.81 13399.43 2186.97 34597.21 19198.92 6583.00 32997.13 38698.09 3698.94 24098.72 224
QAPM95.88 19495.57 20996.80 18797.90 23691.84 22998.18 5398.73 15088.41 32896.42 24598.13 15394.73 15999.75 6788.72 32798.94 24098.81 212
ZD-MVS98.43 18195.94 7998.56 18190.72 29596.66 23397.07 24795.02 15499.74 7691.08 28098.93 242
plane_prior94.29 15195.42 22694.31 20798.93 242
train_agg95.46 21394.66 24197.88 10297.84 24395.23 11593.62 31098.39 19987.04 34293.78 32695.99 30794.58 16799.52 18191.76 27098.90 24498.89 201
agg_prior290.34 30698.90 24499.10 168
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18595.63 15597.22 18997.30 23595.52 13898.55 34990.97 28398.90 24498.34 264
test9_res91.29 27598.89 24799.00 180
EPNet_dtu91.39 32890.75 33193.31 33090.48 40782.61 36894.80 26292.88 35693.39 23481.74 40494.90 33681.36 33699.11 29088.28 33498.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TAPA-MVS93.32 1294.93 23694.23 26297.04 17198.18 20694.51 14195.22 24398.73 15081.22 38496.25 25695.95 31193.80 18898.98 30789.89 31198.87 24897.62 324
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon95.55 20795.13 21896.80 18798.51 17093.99 16394.60 27198.69 16090.20 30495.78 27796.21 29892.73 21198.98 30790.58 29998.86 25097.42 334
test_vis1_n_192095.77 19896.41 17293.85 31998.55 16484.86 34995.91 19999.71 492.72 26397.67 16998.90 6987.44 29798.73 32897.96 4098.85 25197.96 302
EIA-MVS96.04 18795.77 20296.85 18397.80 25192.98 19496.12 18099.16 4094.65 19593.77 32891.69 38195.68 13399.67 12894.18 21298.85 25197.91 305
MCST-MVS96.24 17995.80 20097.56 12298.75 13694.13 15894.66 26998.17 22890.17 30596.21 25896.10 30595.14 15099.43 20894.13 21598.85 25199.13 156
ETV-MVS96.13 18495.90 19696.82 18697.76 26193.89 16595.40 22998.95 9795.87 14495.58 28491.00 38796.36 10799.72 8793.36 23898.83 25496.85 353
test_vis1_n95.67 20295.89 19795.03 27598.18 20689.89 25996.94 12699.28 2988.25 33298.20 12298.92 6586.69 30497.19 38597.70 5498.82 25598.00 300
eth_miper_zixun_eth94.89 23894.93 22794.75 29295.99 34986.12 33291.35 36398.49 18693.40 23397.12 19897.25 23886.87 30399.35 24195.08 17498.82 25598.78 215
HyFIR lowres test93.72 28392.65 30096.91 18098.93 11691.81 23091.23 36898.52 18382.69 37796.46 24496.52 28480.38 34299.90 1490.36 30598.79 25799.03 176
test1297.46 13797.61 28094.07 15997.78 25993.57 33693.31 19799.42 21098.78 25898.89 201
CMPMVSbinary73.10 2392.74 30591.39 31796.77 19093.57 39694.67 13494.21 28597.67 26480.36 38893.61 33496.60 27882.85 33097.35 38484.86 36998.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CNLPA95.04 23294.47 25596.75 19197.81 24795.25 11494.12 29297.89 25194.41 20394.57 30695.69 31690.30 26298.35 36586.72 35498.76 26096.64 361
OpenMVScopyleft94.22 895.48 21195.20 21496.32 21597.16 31191.96 22697.74 7998.84 12287.26 33994.36 31298.01 17293.95 18499.67 12890.70 29698.75 26197.35 337
testgi96.07 18596.50 16994.80 28999.26 5987.69 30795.96 19498.58 17995.08 18098.02 14696.25 29697.92 2097.60 38388.68 32998.74 26299.11 164
HQP3-MVS98.43 19298.74 262
HQP-MVS95.17 22794.58 25096.92 17897.85 23892.47 20794.26 27898.43 19293.18 24592.86 35395.08 32990.33 25999.23 27190.51 30198.74 26299.05 175
alignmvs96.01 18995.52 21097.50 13197.77 26094.71 13196.07 18396.84 29697.48 7396.78 22694.28 34885.50 31299.40 22196.22 10198.73 26598.40 254
test_fmvs194.51 25994.60 24794.26 31395.91 35087.92 29995.35 23499.02 7686.56 34996.79 22298.52 10282.64 33197.00 38997.87 4398.71 26697.88 308
WB-MVS95.50 20896.62 15692.11 36299.21 7577.26 39796.12 18095.40 32998.62 2698.84 5998.26 13891.08 24799.50 18693.37 23798.70 26799.58 39
旧先验197.80 25193.87 16697.75 26097.04 25093.57 19298.68 26898.72 224
thisisatest051590.43 33589.18 34794.17 31697.07 31585.44 33889.75 38887.58 39588.28 33193.69 33291.72 38065.27 39299.58 16190.59 29898.67 26997.50 332
diffmvspermissive96.04 18796.23 17995.46 25697.35 30088.03 29893.42 31699.08 5894.09 21696.66 23396.93 25793.85 18699.29 25796.01 11398.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test95.04 23294.79 23895.82 23897.51 28789.79 26091.14 37096.82 29893.05 25196.72 22896.40 29090.82 25199.16 28191.95 26398.66 27198.50 248
test22298.17 20993.24 19092.74 33397.61 27375.17 39994.65 30596.69 27490.96 25098.66 27197.66 321
新几何197.25 15598.29 19094.70 13397.73 26177.98 39594.83 30296.67 27592.08 23299.45 20388.17 33698.65 27397.61 325
mvsany_test396.21 18095.93 19597.05 16997.40 29794.33 15095.76 20694.20 34289.10 31799.36 2499.60 693.97 18397.85 37895.40 15598.63 27498.99 183
原ACMM196.58 20098.16 21192.12 21998.15 23485.90 35593.49 33896.43 28792.47 22499.38 22887.66 34198.62 27598.23 276
PVSNet_Blended93.96 27793.65 27694.91 28197.79 25687.40 31391.43 36198.68 16284.50 37294.51 30894.48 34593.04 20299.30 25389.77 31398.61 27698.02 298
AdaColmapbinary95.11 22994.62 24696.58 20097.33 30494.45 14494.92 25898.08 24093.15 24993.98 32495.53 32394.34 17499.10 29385.69 35998.61 27696.20 371
DSMNet-mixed92.19 31491.83 31193.25 33296.18 34183.68 36296.27 16693.68 34776.97 39892.54 36399.18 3989.20 27998.55 34983.88 37498.60 27897.51 330
MSP-MVS97.45 11196.92 14299.03 599.26 5997.70 1897.66 8398.89 10495.65 15498.51 8596.46 28692.15 22899.81 3695.14 16998.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)94.91 23794.89 23094.99 27897.51 28788.11 29798.27 4495.20 33192.40 27196.68 23098.60 9583.44 32699.28 25993.34 23998.53 28097.59 327
testdata95.70 24498.16 21190.58 25197.72 26280.38 38795.62 28297.02 25192.06 23398.98 30789.06 32498.52 28197.54 329
API-MVS95.09 23195.01 22495.31 26196.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34794.54 16998.37 36485.70 35898.52 28193.52 392
Effi-MVS+-dtu96.81 15096.09 18598.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32294.26 17699.81 3694.06 21798.51 28398.47 250
MGCFI-Net97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
test_f95.82 19795.88 19895.66 24597.61 28093.21 19195.61 21898.17 22886.98 34498.42 9699.47 1190.46 25694.74 39997.71 5298.45 28699.03 176
testing389.72 34588.26 35494.10 31797.66 27584.30 35794.80 26288.25 39494.66 19495.07 29492.51 37141.15 41299.43 20891.81 26898.44 28798.55 242
NCCC96.52 16895.99 19098.10 8597.81 24795.68 8995.00 25698.20 22295.39 16895.40 28896.36 29293.81 18799.45 20393.55 23598.42 28899.17 148
Patchmatch-test93.60 28993.25 28494.63 29596.14 34687.47 31096.04 18594.50 33993.57 22996.47 24396.97 25476.50 36098.61 34390.67 29798.41 28997.81 314
cl2293.25 29892.84 29494.46 30594.30 38586.00 33391.09 37296.64 30690.74 29495.79 27596.31 29478.24 34998.77 32494.15 21498.34 29098.62 235
miper_ehance_all_eth94.69 24894.70 24094.64 29495.77 36086.22 33191.32 36698.24 21691.67 28097.05 20796.65 27688.39 28699.22 27394.88 18298.34 29098.49 249
miper_enhance_ethall93.14 30092.78 29794.20 31493.65 39485.29 34189.97 38397.85 25385.05 36496.15 26394.56 34085.74 30999.14 28393.74 22998.34 29098.17 283
CVMVSNet92.33 31292.79 29590.95 36997.26 30775.84 40195.29 24092.33 36481.86 37996.27 25498.19 14781.44 33598.46 35794.23 21198.29 29398.55 242
our_test_394.20 27094.58 25093.07 33796.16 34281.20 37990.42 37996.84 29690.72 29597.14 19697.13 24390.47 25599.11 29094.04 22098.25 29498.91 197
FE-MVS92.95 30292.22 30695.11 27097.21 30988.33 28998.54 2393.66 34889.91 30996.21 25898.14 15170.33 38699.50 18687.79 33898.24 29597.51 330
xiu_mvs_v1_base_debu95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
xiu_mvs_v1_base_debi95.62 20495.96 19294.60 29798.01 22488.42 28593.99 29698.21 21992.98 25495.91 27094.53 34196.39 10499.72 8795.43 15198.19 29695.64 377
XVG-OURS97.12 12896.74 15198.26 7098.99 11097.45 3293.82 30499.05 6695.19 17598.32 11197.70 20295.22 14898.41 35994.27 20998.13 29998.93 193
sss94.22 26693.72 27595.74 24197.71 26989.95 25893.84 30396.98 29288.38 33093.75 32995.74 31587.94 28998.89 31491.02 28298.10 30098.37 258
DPM-MVS93.68 28592.77 29896.42 21097.91 23492.54 20391.17 36997.47 27784.99 36793.08 34994.74 33789.90 26699.00 30387.54 34498.09 30197.72 319
MIMVSNet93.42 29392.86 29295.10 27298.17 20988.19 29198.13 5593.69 34592.07 27395.04 29898.21 14680.95 34099.03 30281.42 38398.06 30298.07 288
pmmvs390.00 33988.90 34993.32 32994.20 38985.34 33991.25 36792.56 36378.59 39393.82 32595.17 32867.36 39198.69 33489.08 32398.03 30395.92 372
Fast-Effi-MVS+-dtu96.44 17296.12 18397.39 14597.18 31094.39 14595.46 22398.73 15096.03 13494.72 30394.92 33596.28 11299.69 11793.81 22797.98 30498.09 285
UWE-MVS87.57 36486.72 36690.13 37595.21 37273.56 40591.94 35483.78 40488.73 32593.00 35092.87 36455.22 40599.25 26581.74 38197.96 30597.59 327
thres600view792.03 31991.43 31693.82 32098.19 20384.61 35296.27 16690.39 38196.81 9696.37 24893.11 35673.44 37799.49 19180.32 38697.95 30697.36 335
MS-PatchMatch94.83 24094.91 22994.57 30096.81 32387.10 31994.23 28397.34 27988.74 32497.14 19697.11 24591.94 23698.23 37192.99 24897.92 30798.37 258
1112_ss94.12 27193.42 28096.23 21898.59 15990.85 24594.24 28298.85 11985.49 35892.97 35194.94 33386.01 30799.64 14091.78 26997.92 30798.20 279
MVS_Test96.27 17896.79 15094.73 29396.94 32086.63 32696.18 17498.33 20794.94 18696.07 26498.28 13395.25 14799.26 26397.21 6897.90 30998.30 269
Fast-Effi-MVS+95.49 20995.07 22196.75 19197.67 27492.82 19694.22 28498.60 17591.61 28293.42 34292.90 36396.73 8599.70 11092.60 25297.89 31097.74 318
test_vis3_rt97.04 13196.98 13697.23 15798.44 18095.88 8096.82 13299.67 690.30 30299.27 2999.33 2794.04 18096.03 39697.14 7297.83 31199.78 11
test_yl94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
DCV-MVSNet94.40 26194.00 27095.59 24696.95 31889.52 26494.75 26695.55 32596.18 12596.79 22296.14 30281.09 33899.18 27690.75 29197.77 31298.07 288
Test_1112_low_res93.53 29192.86 29295.54 25298.60 15788.86 27992.75 33198.69 16082.66 37892.65 35996.92 25984.75 31799.56 16890.94 28497.76 31498.19 280
thres100view90091.76 32391.26 32393.26 33198.21 20084.50 35396.39 15690.39 38196.87 9496.33 24993.08 36073.44 37799.42 21078.85 39197.74 31595.85 373
tfpn200view991.55 32591.00 32593.21 33598.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31595.85 373
thres40091.68 32491.00 32593.71 32398.02 22284.35 35595.70 20890.79 37896.26 11995.90 27392.13 37673.62 37499.42 21078.85 39197.74 31597.36 335
BH-RMVSNet94.56 25694.44 25894.91 28197.57 28287.44 31293.78 30796.26 30893.69 22696.41 24696.50 28592.10 23199.00 30385.96 35697.71 31898.31 267
MG-MVS94.08 27494.00 27094.32 31097.09 31485.89 33493.19 32495.96 31492.52 26694.93 30197.51 21589.54 27198.77 32487.52 34697.71 31898.31 267
PVSNet86.72 1991.10 33090.97 32791.49 36697.56 28478.04 39187.17 39494.60 33884.65 37092.34 36492.20 37587.37 29898.47 35685.17 36797.69 32097.96 302
PatchMatch-RL94.61 25493.81 27497.02 17398.19 20395.72 8693.66 30997.23 28188.17 33394.94 30095.62 32091.43 24198.57 34687.36 34897.68 32196.76 359
OpenMVS_ROBcopyleft91.80 1493.64 28893.05 28695.42 25897.31 30691.21 24095.08 25096.68 30581.56 38196.88 22196.41 28890.44 25899.25 26585.39 36497.67 32295.80 375
SCA93.38 29593.52 27992.96 34396.24 33681.40 37893.24 32294.00 34391.58 28494.57 30696.97 25487.94 28999.42 21089.47 31797.66 32398.06 292
MSDG95.33 21895.13 21895.94 23497.40 29791.85 22891.02 37398.37 20295.30 17196.31 25295.99 30794.51 17098.38 36289.59 31597.65 32497.60 326
thres20091.00 33290.42 33692.77 34997.47 29383.98 36094.01 29591.18 37695.12 17995.44 28691.21 38573.93 37099.31 25077.76 39497.63 32595.01 384
new_pmnet92.34 31191.69 31594.32 31096.23 33889.16 27192.27 34892.88 35684.39 37495.29 29096.35 29385.66 31096.74 39484.53 37197.56 32697.05 342
Effi-MVS+96.19 18196.01 18896.71 19397.43 29592.19 21896.12 18099.10 5295.45 16493.33 34494.71 33897.23 5299.56 16893.21 24597.54 32798.37 258
F-COLMAP95.30 22094.38 25998.05 9298.64 14996.04 7595.61 21898.66 16789.00 32093.22 34596.40 29092.90 20699.35 24187.45 34797.53 32898.77 218
MAR-MVS94.21 26893.03 28897.76 10996.94 32097.44 3396.97 12597.15 28587.89 33792.00 36792.73 36892.14 22999.12 28783.92 37397.51 32996.73 360
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base94.22 26694.63 24592.99 34297.32 30584.84 35092.12 35097.84 25591.96 27694.17 31593.43 35496.07 11799.71 10291.27 27697.48 33094.42 387
PS-MVSNAJ94.10 27294.47 25593.00 34197.35 30084.88 34891.86 35597.84 25591.96 27694.17 31592.50 37295.82 12599.71 10291.27 27697.48 33094.40 388
cascas91.89 32191.35 31893.51 32794.27 38685.60 33688.86 39298.61 17479.32 39192.16 36691.44 38389.22 27898.12 37490.80 28997.47 33296.82 356
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32597.17 5398.50 35398.67 2597.45 33396.48 366
test-LLR89.97 34189.90 33990.16 37394.24 38774.98 40289.89 38489.06 39092.02 27489.97 38490.77 38973.92 37198.57 34691.88 26597.36 33496.92 348
test-mter87.92 36187.17 36290.16 37394.24 38774.98 40289.89 38489.06 39086.44 35089.97 38490.77 38954.96 40898.57 34691.88 26597.36 33496.92 348
GA-MVS92.83 30492.15 30894.87 28596.97 31787.27 31690.03 38296.12 30991.83 27994.05 32094.57 33976.01 36498.97 31192.46 25697.34 33698.36 263
MVP-Stereo95.69 20095.28 21296.92 17898.15 21393.03 19395.64 21798.20 22290.39 30196.63 23697.73 20091.63 24099.10 29391.84 26797.31 33798.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous95.36 21696.07 18793.21 33596.29 33581.56 37694.60 27197.66 26693.30 23896.95 21698.91 6893.03 20499.38 22896.60 8697.30 33898.69 228
WB-MVSnew91.50 32691.29 31992.14 36194.85 37880.32 38393.29 32188.77 39288.57 32794.03 32192.21 37492.56 21798.28 36980.21 38797.08 33997.81 314
AUN-MVS93.95 27992.69 29997.74 11097.80 25195.38 10595.57 22195.46 32791.26 28992.64 36096.10 30574.67 36899.55 17393.72 23196.97 34098.30 269
hse-mvs295.77 19895.09 22097.79 10797.84 24395.51 9795.66 21295.43 32896.58 10497.21 19196.16 29984.14 32199.54 17695.89 12096.92 34198.32 265
TESTMET0.1,187.20 36786.57 36789.07 37893.62 39572.84 40789.89 38487.01 39885.46 36089.12 39090.20 39256.00 40397.72 38190.91 28596.92 34196.64 361
EMVS89.06 35189.22 34388.61 38093.00 39977.34 39582.91 40090.92 37794.64 19692.63 36191.81 37976.30 36297.02 38883.83 37596.90 34391.48 399
YYNet194.73 24394.84 23394.41 30797.47 29385.09 34690.29 38095.85 31792.52 26697.53 17397.76 19491.97 23499.18 27693.31 24196.86 34498.95 187
Syy-MVS92.09 31791.80 31392.93 34595.19 37382.65 36792.46 34191.35 37290.67 29791.76 37087.61 39985.64 31198.50 35394.73 19296.84 34597.65 322
myMVS_eth3d87.16 36885.61 37191.82 36495.19 37379.32 38692.46 34191.35 37290.67 29791.76 37087.61 39941.96 41198.50 35382.66 37996.84 34597.65 322
WTY-MVS93.55 29093.00 29095.19 26697.81 24787.86 30193.89 30296.00 31289.02 31994.07 31995.44 32686.27 30599.33 24587.69 34096.82 34798.39 256
E-PMN89.52 34889.78 34088.73 37993.14 39777.61 39383.26 39992.02 36694.82 19093.71 33093.11 35675.31 36696.81 39185.81 35796.81 34891.77 398
MDA-MVSNet_test_wron94.73 24394.83 23594.42 30697.48 28985.15 34490.28 38195.87 31692.52 26697.48 17997.76 19491.92 23799.17 28093.32 24096.80 34998.94 189
testing22287.35 36585.50 37292.93 34595.79 35882.83 36592.40 34690.10 38792.80 26188.87 39189.02 39648.34 41098.70 33275.40 39796.74 35097.27 339
BH-untuned94.69 24894.75 23994.52 30297.95 23387.53 30994.07 29397.01 29193.99 21897.10 20095.65 31892.65 21498.95 31287.60 34296.74 35097.09 341
PLCcopyleft91.02 1694.05 27592.90 29197.51 12798.00 22895.12 12394.25 28198.25 21486.17 35191.48 37295.25 32791.01 24899.19 27585.02 36896.69 35298.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PMMVS92.39 30991.08 32496.30 21793.12 39892.81 19790.58 37895.96 31479.17 39291.85 36992.27 37390.29 26398.66 33989.85 31296.68 35397.43 333
ET-MVSNet_ETH3D91.12 32989.67 34195.47 25596.41 33389.15 27291.54 36090.23 38589.07 31886.78 40092.84 36569.39 38899.44 20694.16 21396.61 35497.82 312
MVS-HIRNet88.40 35790.20 33882.99 38697.01 31660.04 41193.11 32585.61 40184.45 37388.72 39299.09 5084.72 31898.23 37182.52 38096.59 35590.69 401
MDTV_nov1_ep1391.28 32094.31 38473.51 40694.80 26293.16 35386.75 34893.45 34097.40 22276.37 36198.55 34988.85 32596.43 356
XVG-OURS-SEG-HR97.38 11697.07 13198.30 6899.01 10997.41 3494.66 26999.02 7695.20 17498.15 13097.52 21498.83 598.43 35894.87 18396.41 35799.07 171
ETVMVS87.62 36385.75 37093.22 33496.15 34583.26 36392.94 32790.37 38391.39 28690.37 37988.45 39751.93 40998.64 34073.76 39896.38 35897.75 317
MDA-MVSNet-bldmvs95.69 20095.67 20495.74 24198.48 17688.76 28392.84 32897.25 28096.00 13597.59 17197.95 17891.38 24299.46 19993.16 24696.35 35998.99 183
testing9189.67 34688.55 35193.04 33895.90 35181.80 37592.71 33593.71 34493.71 22490.18 38290.15 39357.11 39899.22 27387.17 35196.32 36098.12 284
PAPM_NR94.61 25494.17 26695.96 23098.36 18691.23 23995.93 19797.95 24792.98 25493.42 34294.43 34690.53 25498.38 36287.60 34296.29 36198.27 273
testing1188.93 35287.63 36092.80 34895.87 35381.49 37792.48 34091.54 37191.62 28188.27 39490.24 39155.12 40799.11 29087.30 34996.28 36297.81 314
UnsupCasMVSNet_bld94.72 24794.26 26196.08 22698.62 15590.54 25493.38 31898.05 24690.30 30297.02 21096.80 26889.54 27199.16 28188.44 33196.18 36398.56 240
h-mvs3396.29 17795.63 20798.26 7098.50 17396.11 7396.90 12897.09 28896.58 10497.21 19198.19 14784.14 32199.78 4795.89 12096.17 36498.89 201
FPMVS89.92 34288.63 35093.82 32098.37 18596.94 4591.58 35893.34 35288.00 33590.32 38097.10 24670.87 38491.13 40471.91 40296.16 36593.39 394
testing9989.21 35088.04 35692.70 35195.78 35981.00 38192.65 33692.03 36593.20 24389.90 38690.08 39555.25 40499.14 28387.54 34495.95 36697.97 301
CR-MVSNet93.29 29792.79 29594.78 29195.44 36888.15 29396.18 17497.20 28284.94 36894.10 31798.57 9777.67 35299.39 22595.17 16495.81 36796.81 357
PatchT93.75 28293.57 27894.29 31295.05 37687.32 31596.05 18492.98 35597.54 7094.25 31398.72 8275.79 36599.24 26995.92 11895.81 36796.32 368
RPMNet94.68 25094.60 24794.90 28395.44 36888.15 29396.18 17498.86 11597.43 7494.10 31798.49 10579.40 34499.76 6195.69 12995.81 36796.81 357
HY-MVS91.43 1592.58 30791.81 31294.90 28396.49 33188.87 27897.31 10594.62 33785.92 35490.50 37896.84 26385.05 31499.40 22183.77 37695.78 37096.43 367
PAPR92.22 31391.27 32195.07 27395.73 36388.81 28091.97 35397.87 25285.80 35690.91 37492.73 36891.16 24598.33 36679.48 38895.76 37198.08 286
mvsany_test193.47 29293.03 28894.79 29094.05 39192.12 21990.82 37590.01 38885.02 36697.26 18898.28 13393.57 19297.03 38792.51 25595.75 37295.23 383
gg-mvs-nofinetune88.28 35886.96 36492.23 36092.84 40184.44 35498.19 5274.60 40899.08 1087.01 39999.47 1156.93 39998.23 37178.91 39095.61 37394.01 390
MVS90.02 33889.20 34592.47 35694.71 38086.90 32295.86 20196.74 30264.72 40390.62 37592.77 36692.54 22098.39 36179.30 38995.56 37492.12 396
131492.38 31092.30 30592.64 35295.42 37085.15 34495.86 20196.97 29385.40 36190.62 37593.06 36191.12 24697.80 38086.74 35395.49 37594.97 385
KD-MVS_2432*160088.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
miper_refine_blended88.93 35287.74 35792.49 35488.04 40881.99 37289.63 38995.62 32191.35 28795.06 29593.11 35656.58 40098.63 34185.19 36595.07 37696.85 353
test_vis1_rt94.03 27693.65 27695.17 26895.76 36193.42 18393.97 29998.33 20784.68 36993.17 34795.89 31392.53 22294.79 39893.50 23694.97 37897.31 338
TR-MVS92.54 30892.20 30793.57 32696.49 33186.66 32593.51 31494.73 33689.96 30894.95 29993.87 35190.24 26498.61 34381.18 38494.88 37995.45 381
MVEpermissive73.61 2286.48 36985.92 36888.18 38396.23 33885.28 34281.78 40175.79 40786.01 35282.53 40391.88 37892.74 21087.47 40671.42 40394.86 38091.78 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-w/o92.14 31591.94 30992.73 35097.13 31385.30 34092.46 34195.64 32089.33 31594.21 31492.74 36789.60 26998.24 37081.68 38294.66 38194.66 386
UnsupCasMVSNet_eth95.91 19395.73 20396.44 20898.48 17691.52 23495.31 23898.45 18995.76 14997.48 17997.54 21289.53 27398.69 33494.43 20194.61 38299.13 156
baseline289.65 34788.44 35393.25 33295.62 36482.71 36693.82 30485.94 40088.89 32287.35 39892.54 37071.23 38299.33 24586.01 35594.60 38397.72 319
PatchmatchNetpermissive91.98 32091.87 31092.30 35994.60 38279.71 38595.12 24693.59 35089.52 31393.61 33497.02 25177.94 35099.18 27690.84 28794.57 38498.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_re92.08 31891.27 32194.51 30397.16 31192.79 20095.65 21492.64 36194.11 21492.74 35690.98 38883.41 32794.44 40180.72 38594.07 38596.29 369
tpm91.08 33190.85 32991.75 36595.33 37178.09 39095.03 25591.27 37588.75 32393.53 33797.40 22271.24 38199.30 25391.25 27893.87 38697.87 309
IB-MVS85.98 2088.63 35586.95 36593.68 32495.12 37584.82 35190.85 37490.17 38687.55 33888.48 39391.34 38458.01 39799.59 15987.24 35093.80 38796.63 363
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 190.11 33789.21 34492.83 34793.89 39286.87 32391.74 35788.74 39392.02 27494.71 30491.14 38673.92 37194.48 40083.75 37792.94 38897.16 340
PAPM87.64 36285.84 36993.04 33896.54 32784.99 34788.42 39395.57 32479.52 39083.82 40193.05 36280.57 34198.41 35962.29 40592.79 38995.71 376
CostFormer89.75 34489.25 34291.26 36894.69 38178.00 39295.32 23791.98 36781.50 38290.55 37796.96 25671.06 38398.89 31488.59 33092.63 39096.87 351
tpm288.47 35687.69 35990.79 37094.98 37777.34 39595.09 24891.83 36877.51 39789.40 38896.41 28867.83 39098.73 32883.58 37892.60 39196.29 369
GG-mvs-BLEND90.60 37191.00 40584.21 35898.23 4672.63 41182.76 40284.11 40356.14 40296.79 39272.20 40192.09 39290.78 400
ADS-MVSNet291.47 32790.51 33594.36 30895.51 36685.63 33595.05 25395.70 31883.46 37592.69 35796.84 26379.15 34699.41 21985.66 36090.52 39398.04 296
ADS-MVSNet90.95 33390.26 33793.04 33895.51 36682.37 37095.05 25393.41 35183.46 37592.69 35796.84 26379.15 34698.70 33285.66 36090.52 39398.04 296
JIA-IIPM91.79 32290.69 33295.11 27093.80 39390.98 24394.16 28791.78 36996.38 11390.30 38199.30 2872.02 38098.90 31388.28 33490.17 39595.45 381
tpmvs90.79 33490.87 32890.57 37292.75 40276.30 39995.79 20593.64 34991.04 29291.91 36896.26 29577.19 35898.86 31889.38 31989.85 39696.56 364
EPMVS89.26 34988.55 35191.39 36792.36 40379.11 38895.65 21479.86 40688.60 32693.12 34896.53 28270.73 38598.10 37590.75 29189.32 39796.98 346
dmvs_testset87.30 36686.99 36388.24 38296.71 32477.48 39494.68 26886.81 39992.64 26589.61 38787.01 40185.91 30893.12 40261.04 40688.49 39894.13 389
baseline193.14 30092.64 30194.62 29697.34 30287.20 31796.67 14793.02 35494.71 19396.51 24295.83 31481.64 33398.60 34590.00 31088.06 39998.07 288
tpmrst90.31 33690.61 33489.41 37794.06 39072.37 40895.06 25293.69 34588.01 33492.32 36596.86 26177.45 35498.82 31991.04 28187.01 40097.04 343
tpm cat188.01 36087.33 36190.05 37694.48 38376.28 40094.47 27494.35 34173.84 40289.26 38995.61 32173.64 37398.30 36884.13 37286.20 40195.57 380
DeepMVS_CXcopyleft77.17 38790.94 40685.28 34274.08 41052.51 40480.87 40588.03 39875.25 36770.63 40759.23 40784.94 40275.62 402
dp88.08 35988.05 35588.16 38492.85 40068.81 41094.17 28692.88 35685.47 35991.38 37396.14 30268.87 38998.81 32186.88 35283.80 40396.87 351
tmp_tt57.23 37362.50 37641.44 38934.77 41249.21 41383.93 39760.22 41315.31 40571.11 40679.37 40470.09 38744.86 40864.76 40482.93 40430.25 404
test_method66.88 37266.13 37569.11 38862.68 41125.73 41449.76 40296.04 31114.32 40664.27 40791.69 38173.45 37688.05 40576.06 39666.94 40593.54 391
PVSNet_081.89 2184.49 37083.21 37388.34 38195.76 36174.97 40483.49 39892.70 36078.47 39487.94 39586.90 40283.38 32896.63 39573.44 40066.86 40693.40 393
test12312.59 37515.49 3783.87 3906.07 4132.55 41590.75 3762.59 4152.52 4085.20 41013.02 4074.96 4131.85 4105.20 4089.09 4077.23 405
testmvs12.33 37615.23 3793.64 3915.77 4142.23 41688.99 3913.62 4142.30 4095.29 40913.09 4064.52 4141.95 4095.16 4098.32 4086.75 406
test_blank0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.22 37432.30 3770.00 3920.00 4150.00 4170.00 40398.10 2380.00 4100.00 41195.06 33197.54 380.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas7.98 37710.65 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 41095.82 1250.00 4110.00 4100.00 4090.00 407
sosnet-low-res0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
sosnet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
Regformer0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re7.91 37810.55 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41194.94 3330.00 4150.00 4110.00 4100.00 4090.00 407
uanet0.00 3790.00 3820.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 4110.00 4100.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS79.32 38685.41 363
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
test_one_060199.05 10595.50 10098.87 11297.21 8798.03 14598.30 12896.93 70
eth-test20.00 415
eth-test0.00 415
test_241102_ONE99.22 6895.35 10898.83 12896.04 13299.08 4098.13 15397.87 2399.33 245
save fliter98.48 17694.71 13194.53 27398.41 19695.02 184
test072699.24 6395.51 9796.89 12998.89 10495.92 14098.64 7498.31 12497.06 59
GSMVS98.06 292
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35198.06 292
sam_mvs77.38 355
MTGPAbinary98.73 150
test_post194.98 25710.37 40976.21 36399.04 29989.47 317
test_post10.87 40876.83 35999.07 296
patchmatchnet-post96.84 26377.36 35699.42 210
MTMP96.55 15074.60 408
gm-plane-assit91.79 40471.40 40981.67 38090.11 39498.99 30584.86 369
TEST997.84 24395.23 11593.62 31098.39 19986.81 34693.78 32695.99 30794.68 16399.52 181
test_897.81 24795.07 12493.54 31398.38 20187.04 34293.71 33095.96 31094.58 16799.52 181
agg_prior97.80 25194.96 12698.36 20393.49 33899.53 178
test_prior495.38 10593.61 312
test_prior97.46 13797.79 25694.26 15598.42 19599.34 24398.79 214
旧先验293.35 31977.95 39695.77 27998.67 33890.74 294
新几何293.43 315
无先验93.20 32397.91 24980.78 38599.40 22187.71 33997.94 304
原ACMM292.82 329
testdata299.46 19987.84 337
segment_acmp95.34 144
testdata192.77 33093.78 222
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 238
plane_prior496.77 269
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 174
n20.00 416
nn0.00 416
door-mid98.17 228
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23894.26 27893.18 24592.86 353
ACMP_Plane97.85 23894.26 27893.18 24592.86 353
BP-MVS90.51 301
HQP4-MVS92.87 35299.23 27199.06 173
HQP2-MVS90.33 259
NP-MVS98.14 21593.72 17295.08 329
MDTV_nov1_ep13_2view57.28 41294.89 25980.59 38694.02 32278.66 34885.50 36297.82 312
Test By Simon94.51 170