This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
MSP-MVS90.38 591.87 185.88 8992.83 7964.03 19393.06 11294.33 5482.19 2993.65 396.15 3485.89 197.19 8491.02 3497.75 196.43 31
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPM-MVS90.70 390.52 991.24 189.68 16076.68 297.29 195.35 1582.87 2291.58 1397.22 379.93 599.10 983.12 10297.64 297.94 1
OPU-MVS89.97 397.52 373.15 1496.89 697.00 983.82 299.15 295.72 597.63 397.62 2
DVP-MVS++90.53 491.09 588.87 1697.31 469.91 4293.96 7094.37 5272.48 18792.07 996.85 1683.82 299.15 291.53 3097.42 497.55 4
PC_three_145280.91 4894.07 296.83 1883.57 499.12 595.70 797.42 497.55 4
HPM-MVS++copyleft89.37 1489.95 1387.64 3495.10 3068.23 8695.24 3394.49 4482.43 2688.90 3296.35 2771.89 3698.63 2688.76 4896.40 696.06 41
SMA-MVScopyleft88.14 1888.29 2287.67 3393.21 6768.72 7293.85 7794.03 6274.18 15091.74 1296.67 2165.61 7498.42 3389.24 4496.08 795.88 47
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DELS-MVS90.05 890.09 1189.94 493.14 7073.88 997.01 494.40 5088.32 385.71 5594.91 7374.11 2098.91 1887.26 6295.94 897.03 12
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MCST-MVS91.08 191.46 389.94 497.66 273.37 1097.13 295.58 1089.33 185.77 5496.26 3072.84 2899.38 192.64 2095.93 997.08 11
balanced_conf0389.08 1588.84 1789.81 693.66 5475.15 590.61 22493.43 8784.06 1486.20 4990.17 18172.42 3196.98 10193.09 1695.92 1097.29 7
CNVR-MVS90.32 690.89 888.61 2296.76 870.65 3096.47 1494.83 3084.83 1189.07 3196.80 1970.86 3999.06 1592.64 2095.71 1196.12 40
PHI-MVS86.83 3986.85 4186.78 6393.47 6265.55 15495.39 3095.10 2271.77 21385.69 5696.52 2362.07 12298.77 2386.06 7495.60 1296.03 43
DeepPCF-MVS81.17 189.72 1091.38 484.72 13393.00 7558.16 31196.72 994.41 4886.50 890.25 2297.83 175.46 1498.67 2592.78 1995.49 1397.32 6
SED-MVS89.94 990.36 1088.70 1896.45 1269.38 5596.89 694.44 4671.65 21792.11 797.21 476.79 999.11 692.34 2295.36 1497.62 2
IU-MVS96.46 1169.91 4295.18 2080.75 4995.28 192.34 2295.36 1496.47 28
test_241102_TWO94.41 4871.65 21792.07 997.21 474.58 1799.11 692.34 2295.36 1496.59 19
MM90.87 291.52 288.92 1592.12 10071.10 2797.02 396.04 688.70 291.57 1496.19 3270.12 4398.91 1896.83 195.06 1796.76 15
test_0728_THIRD72.48 18790.55 2096.93 1176.24 1199.08 1191.53 3094.99 1896.43 31
test9_res89.41 4094.96 1995.29 70
ACMMP_NAP86.05 5285.80 5786.80 6291.58 11967.53 10491.79 17093.49 8474.93 14184.61 6695.30 5659.42 15097.92 4186.13 7294.92 2094.94 88
DPE-MVScopyleft88.77 1789.21 1687.45 4396.26 2067.56 10294.17 5894.15 5968.77 26690.74 1897.27 276.09 1298.49 2990.58 3894.91 2196.30 34
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVScopyleft89.41 1389.73 1488.45 2596.40 1569.99 3896.64 1094.52 4271.92 20390.55 2096.93 1173.77 2299.08 1191.91 2894.90 2296.29 35
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND88.70 1896.45 1270.43 3396.64 1094.37 5299.15 291.91 2894.90 2296.51 24
train_agg87.21 3387.42 3286.60 6894.18 4167.28 10994.16 5993.51 8171.87 20885.52 5795.33 5468.19 5097.27 8089.09 4594.90 2295.25 76
DeepC-MVS_fast79.48 287.95 2288.00 2587.79 3195.86 2768.32 8095.74 2194.11 6083.82 1683.49 7696.19 3264.53 8898.44 3183.42 10194.88 2596.61 18
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSC_two_6792asdad89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
No_MVS89.60 997.31 473.22 1295.05 2699.07 1392.01 2594.77 2696.51 24
TSAR-MVS + MP.88.11 2088.64 1886.54 7291.73 11568.04 9090.36 23093.55 8082.89 2191.29 1692.89 12472.27 3396.03 14787.99 5294.77 2695.54 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_prior295.10 3875.40 13585.25 6395.61 4567.94 5387.47 5994.77 26
agg_prior286.41 7094.75 3095.33 66
MVSMamba_PlusPlus84.97 7483.65 8488.93 1490.17 15174.04 887.84 28292.69 11762.18 32281.47 9587.64 21971.47 3896.28 13284.69 8694.74 3196.47 28
MVS84.66 7882.86 10890.06 290.93 13674.56 787.91 28095.54 1368.55 26872.35 20494.71 7859.78 14698.90 2081.29 11894.69 3296.74 16
MVS_030490.32 690.90 788.55 2394.05 4570.23 3697.00 593.73 7387.30 492.15 696.15 3466.38 6598.94 1796.71 294.67 3396.47 28
SF-MVS87.03 3587.09 3586.84 5992.70 8567.45 10793.64 9093.76 6970.78 24186.25 4796.44 2666.98 5997.79 4788.68 4994.56 3495.28 72
NCCC89.07 1689.46 1587.91 2896.60 1069.05 6396.38 1594.64 3984.42 1286.74 4596.20 3166.56 6498.76 2489.03 4794.56 3495.92 46
3Dnovator73.91 682.69 12080.82 13788.31 2689.57 16271.26 2292.60 13494.39 5178.84 8667.89 26292.48 13448.42 27298.52 2868.80 22194.40 3695.15 78
CDPH-MVS85.71 6085.46 6286.46 7494.75 3467.19 11193.89 7592.83 11270.90 23783.09 8195.28 5763.62 10097.36 7180.63 12294.18 3794.84 92
MG-MVS87.11 3486.27 4589.62 897.79 176.27 494.96 4394.49 4478.74 8983.87 7592.94 12264.34 8996.94 10775.19 16194.09 3895.66 52
9.1487.63 2893.86 4894.41 5294.18 5772.76 18286.21 4896.51 2466.64 6297.88 4490.08 3994.04 39
原ACMM184.42 14693.21 6764.27 18893.40 9065.39 29279.51 12092.50 13158.11 16896.69 11765.27 25993.96 4092.32 183
MSLP-MVS++86.27 4885.91 5587.35 4592.01 10568.97 6695.04 4092.70 11579.04 8481.50 9396.50 2558.98 15996.78 11583.49 10093.93 4196.29 35
CANet89.61 1289.99 1288.46 2494.39 3969.71 5096.53 1393.78 6686.89 689.68 2895.78 4065.94 7099.10 992.99 1793.91 4296.58 21
MP-MVS-pluss85.24 6885.13 6785.56 10291.42 12465.59 15291.54 18092.51 12674.56 14480.62 10695.64 4459.15 15497.00 9786.94 6793.80 4394.07 130
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MVP-Stereo77.12 21976.23 21179.79 27281.72 30966.34 13589.29 25690.88 20070.56 24462.01 31882.88 27549.34 26394.13 22265.55 25693.80 4378.88 371
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
GG-mvs-BLEND86.53 7391.91 11069.67 5275.02 37494.75 3378.67 13590.85 16777.91 794.56 20672.25 18793.74 4595.36 65
ZNCC-MVS85.33 6785.08 6886.06 8493.09 7265.65 15093.89 7593.41 8973.75 16179.94 11594.68 7960.61 13798.03 3882.63 10693.72 4694.52 110
CSCG86.87 3686.26 4688.72 1795.05 3170.79 2993.83 8295.33 1668.48 27077.63 14394.35 9173.04 2698.45 3084.92 8493.71 4796.92 14
test1287.09 5294.60 3668.86 6792.91 10982.67 8765.44 7597.55 6293.69 4894.84 92
PAPM85.89 5785.46 6287.18 4988.20 20372.42 1592.41 14292.77 11382.11 3080.34 11193.07 11968.27 4995.02 18578.39 14393.59 4994.09 128
SteuartSystems-ACMMP86.82 4186.90 3986.58 7090.42 14566.38 13396.09 1793.87 6477.73 10284.01 7495.66 4363.39 10597.94 4087.40 6093.55 5095.42 59
Skip Steuart: Steuart Systems R&D Blog.
APDe-MVScopyleft87.54 2787.84 2686.65 6696.07 2366.30 13694.84 4593.78 6669.35 25788.39 3396.34 2867.74 5597.66 5490.62 3793.44 5196.01 44
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SPE-MVS-test86.14 5187.01 3683.52 17592.63 8759.36 30095.49 2791.92 15080.09 6085.46 5995.53 4961.82 12695.77 15586.77 6993.37 5295.41 60
PS-MVSNAJ88.14 1887.61 2989.71 792.06 10176.72 195.75 2093.26 9383.86 1589.55 2996.06 3653.55 22397.89 4391.10 3293.31 5394.54 108
MAR-MVS84.18 8983.43 9186.44 7596.25 2165.93 14594.28 5694.27 5674.41 14579.16 12695.61 4553.99 21898.88 2269.62 21093.26 5494.50 112
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
gg-mvs-nofinetune77.18 21774.31 23885.80 9491.42 12468.36 7971.78 37994.72 3449.61 37977.12 15045.92 40577.41 893.98 23467.62 23193.16 5595.05 83
ZD-MVS96.63 965.50 15693.50 8370.74 24285.26 6295.19 6564.92 8297.29 7687.51 5793.01 56
APD-MVScopyleft85.93 5585.99 5385.76 9695.98 2665.21 16193.59 9392.58 12466.54 28486.17 5095.88 3963.83 9597.00 9786.39 7192.94 5795.06 82
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
新几何184.73 13292.32 9264.28 18791.46 17659.56 34379.77 11792.90 12356.95 18296.57 12163.40 26992.91 5893.34 152
DeepC-MVS77.85 385.52 6585.24 6586.37 7888.80 18566.64 12792.15 14993.68 7581.07 4676.91 15393.64 10962.59 11798.44 3185.50 7692.84 5994.03 132
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v2_base87.92 2387.38 3389.55 1291.41 12776.43 395.74 2193.12 10183.53 1889.55 2995.95 3853.45 22797.68 5091.07 3392.62 6094.54 108
MP-MVScopyleft85.02 7184.97 7085.17 11792.60 8864.27 18893.24 10792.27 13173.13 17279.63 11994.43 8561.90 12397.17 8585.00 8292.56 6194.06 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 9483.38 9585.50 10391.89 11165.16 16381.75 33392.23 13275.32 13680.53 10895.21 6456.06 19597.16 8884.86 8592.55 6294.18 122
GST-MVS84.63 7984.29 7885.66 10092.82 8165.27 15993.04 11493.13 10073.20 17078.89 12894.18 9859.41 15197.85 4581.45 11492.48 6393.86 140
HFP-MVS84.73 7784.40 7785.72 9893.75 5265.01 16793.50 9893.19 9772.19 19779.22 12594.93 7159.04 15797.67 5181.55 11292.21 6494.49 113
ACMMPR84.37 8184.06 7985.28 11293.56 5864.37 18393.50 9893.15 9972.19 19778.85 13394.86 7456.69 18697.45 6581.55 11292.20 6594.02 133
MS-PatchMatch77.90 20976.50 20782.12 21485.99 24969.95 4191.75 17592.70 11573.97 15562.58 31584.44 26041.11 31595.78 15363.76 26892.17 6680.62 357
region2R84.36 8284.03 8085.36 10993.54 5964.31 18693.43 10392.95 10872.16 20078.86 13294.84 7556.97 18197.53 6381.38 11692.11 6794.24 120
CS-MVS85.80 5886.65 4383.27 18392.00 10658.92 30495.31 3191.86 15579.97 6184.82 6595.40 5262.26 12095.51 17386.11 7392.08 6895.37 63
patch_mono-289.71 1190.99 685.85 9296.04 2463.70 20395.04 4095.19 1986.74 791.53 1595.15 6673.86 2197.58 5993.38 1492.00 6996.28 37
dcpmvs_287.37 3187.55 3086.85 5895.04 3268.20 8790.36 23090.66 20679.37 7381.20 9793.67 10874.73 1596.55 12390.88 3592.00 6995.82 48
旧先验191.94 10760.74 27491.50 17494.36 8765.23 7791.84 7194.55 106
MVSFormer83.75 9982.88 10786.37 7889.24 17571.18 2489.07 26290.69 20365.80 28987.13 4094.34 9264.99 7992.67 27372.83 17891.80 7295.27 73
lupinMVS87.74 2587.77 2787.63 3889.24 17571.18 2496.57 1292.90 11082.70 2487.13 4095.27 5964.99 7995.80 15289.34 4291.80 7295.93 45
EPNet87.84 2488.38 2086.23 8293.30 6466.05 14095.26 3294.84 2987.09 588.06 3494.53 8266.79 6197.34 7383.89 9591.68 7495.29 70
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
3Dnovator+73.60 782.10 13080.60 14486.60 6890.89 13866.80 12495.20 3493.44 8674.05 15267.42 26992.49 13349.46 26297.65 5570.80 20091.68 7495.33 66
XVS83.87 9583.47 8985.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13794.31 9455.25 20197.41 6879.16 13491.58 7693.95 135
X-MVStestdata76.86 22374.13 24285.05 11993.22 6563.78 19792.92 11892.66 11973.99 15378.18 13710.19 42055.25 20197.41 6879.16 13491.58 7693.95 135
SD-MVS87.49 2887.49 3187.50 4293.60 5668.82 6993.90 7492.63 12276.86 11587.90 3595.76 4166.17 6797.63 5689.06 4691.48 7896.05 42
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EC-MVSNet84.53 8085.04 6983.01 18789.34 16761.37 26194.42 5191.09 19277.91 9983.24 7794.20 9758.37 16495.40 17485.35 7791.41 7992.27 188
PGM-MVS83.25 10882.70 11184.92 12292.81 8364.07 19290.44 22592.20 13671.28 22977.23 14994.43 8555.17 20597.31 7579.33 13391.38 8093.37 151
PVSNet_Blended86.73 4286.86 4086.31 8193.76 5067.53 10496.33 1693.61 7782.34 2881.00 10293.08 11863.19 10997.29 7687.08 6591.38 8094.13 126
HPM-MVScopyleft83.25 10882.95 10584.17 15592.25 9462.88 23090.91 20791.86 15570.30 24677.12 15093.96 10356.75 18496.28 13282.04 10991.34 8293.34 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EIA-MVS84.84 7584.88 7184.69 13591.30 12962.36 23993.85 7792.04 14379.45 7079.33 12494.28 9562.42 11896.35 13080.05 12691.25 8395.38 62
MVS_111021_HR86.19 5085.80 5787.37 4493.17 6969.79 4793.99 6993.76 6979.08 8178.88 13193.99 10262.25 12198.15 3685.93 7591.15 8494.15 125
test22289.77 15861.60 25689.55 25089.42 25456.83 35877.28 14892.43 13552.76 23191.14 8593.09 161
jason86.40 4586.17 4987.11 5186.16 24770.54 3295.71 2492.19 13882.00 3184.58 6794.34 9261.86 12495.53 17287.76 5490.89 8695.27 73
jason: jason.
mPP-MVS82.96 11582.44 11584.52 14392.83 7962.92 22892.76 12391.85 15771.52 22575.61 16594.24 9653.48 22696.99 10078.97 13790.73 8793.64 146
CP-MVS83.71 10083.40 9484.65 13793.14 7063.84 19594.59 4992.28 13071.03 23577.41 14694.92 7255.21 20496.19 13681.32 11790.70 8893.91 137
OpenMVScopyleft70.45 1178.54 19775.92 21686.41 7785.93 25371.68 1892.74 12492.51 12666.49 28564.56 29391.96 14643.88 30598.10 3754.61 31290.65 8989.44 235
PAPM_NR82.97 11481.84 12286.37 7894.10 4466.76 12587.66 28692.84 11169.96 25074.07 18193.57 11163.10 11297.50 6470.66 20390.58 9094.85 89
testdata81.34 23189.02 17957.72 31589.84 23858.65 34785.32 6194.09 9957.03 17793.28 25169.34 21390.56 9193.03 164
mvsmamba81.55 13880.72 13984.03 16191.42 12466.93 12083.08 32489.13 26878.55 9167.50 26787.02 23151.79 23990.07 32787.48 5890.49 9295.10 81
Vis-MVSNetpermissive80.92 15079.98 15383.74 16688.48 19061.80 25093.44 10288.26 30373.96 15677.73 14191.76 15149.94 25794.76 19365.84 25190.37 9394.65 102
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CHOSEN 1792x268884.98 7383.45 9089.57 1189.94 15575.14 692.07 15592.32 12981.87 3275.68 16288.27 20560.18 14098.60 2780.46 12490.27 9494.96 86
test_fmvsm_n_192087.69 2688.50 1985.27 11387.05 23163.55 21093.69 8791.08 19484.18 1390.17 2497.04 867.58 5697.99 3995.72 590.03 9594.26 118
ETV-MVS86.01 5386.11 5085.70 9990.21 15067.02 11893.43 10391.92 15081.21 4584.13 7394.07 10160.93 13495.63 16389.28 4389.81 9694.46 114
QAPM79.95 16977.39 19687.64 3489.63 16171.41 2093.30 10693.70 7465.34 29467.39 27191.75 15247.83 27998.96 1657.71 30289.81 9692.54 177
CANet_DTU84.09 9183.52 8585.81 9390.30 14866.82 12291.87 16689.01 27585.27 986.09 5193.74 10647.71 28196.98 10177.90 14689.78 9893.65 145
API-MVS82.28 12580.53 14587.54 4196.13 2270.59 3193.63 9191.04 19865.72 29175.45 16792.83 12756.11 19498.89 2164.10 26589.75 9993.15 159
test250683.29 10782.92 10684.37 14988.39 19563.18 22192.01 15891.35 17977.66 10478.49 13691.42 15864.58 8795.09 18473.19 17489.23 10094.85 89
ECVR-MVScopyleft81.29 14280.38 14884.01 16288.39 19561.96 24892.56 13986.79 32177.66 10476.63 15491.42 15846.34 29095.24 18174.36 17089.23 10094.85 89
MVS_Test84.16 9083.20 9987.05 5491.56 12069.82 4589.99 24492.05 14277.77 10182.84 8386.57 23663.93 9496.09 14174.91 16689.18 10295.25 76
reproduce-ours83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
our_new_method83.51 10383.33 9784.06 15792.18 9860.49 28090.74 21692.04 14364.35 29983.24 7795.59 4759.05 15597.27 8083.61 9789.17 10394.41 115
PAPR85.15 7084.47 7587.18 4996.02 2568.29 8191.85 16893.00 10776.59 12279.03 12795.00 6861.59 12797.61 5878.16 14489.00 10595.63 53
TSAR-MVS + GP.87.96 2188.37 2186.70 6593.51 6165.32 15895.15 3693.84 6578.17 9585.93 5394.80 7675.80 1398.21 3489.38 4188.78 10696.59 19
SR-MVS82.81 11682.58 11283.50 17893.35 6361.16 26492.23 14791.28 18464.48 29881.27 9695.28 5753.71 22295.86 15182.87 10488.77 10793.49 149
test111180.84 15180.02 15083.33 18187.87 21160.76 27292.62 13286.86 32077.86 10075.73 16191.39 16046.35 28994.70 19972.79 18088.68 10894.52 110
fmvsm_l_conf0.5_n_a87.44 3088.15 2485.30 11187.10 22964.19 19094.41 5288.14 30480.24 5992.54 596.97 1069.52 4697.17 8595.89 388.51 10994.56 105
reproduce_model83.15 11082.96 10383.73 16892.02 10259.74 29290.37 22992.08 14163.70 30682.86 8295.48 5058.62 16197.17 8583.06 10388.42 11094.26 118
HPM-MVS_fast80.25 16279.55 16182.33 20491.55 12159.95 28991.32 19389.16 26565.23 29574.71 17493.07 11947.81 28095.74 15674.87 16888.23 11191.31 207
PVSNet_Blended_VisFu83.97 9383.50 8785.39 10790.02 15366.59 13093.77 8491.73 16177.43 11077.08 15289.81 18863.77 9796.97 10479.67 12988.21 11292.60 175
Vis-MVSNet (Re-imp)79.24 18079.57 15878.24 29488.46 19152.29 34990.41 22789.12 26974.24 14969.13 24091.91 14965.77 7290.09 32659.00 29888.09 11392.33 182
fmvsm_l_conf0.5_n87.49 2888.19 2385.39 10786.95 23264.37 18394.30 5588.45 29580.51 5192.70 496.86 1569.98 4497.15 8995.83 488.08 11494.65 102
APD-MVS_3200maxsize81.64 13781.32 12782.59 19892.36 9158.74 30691.39 18691.01 19963.35 31079.72 11894.62 8151.82 23796.14 13879.71 12887.93 11592.89 170
RRT-MVS82.61 12181.16 12886.96 5791.10 13368.75 7087.70 28592.20 13676.97 11372.68 19387.10 23051.30 24696.41 12983.56 9987.84 11695.74 50
Effi-MVS+83.82 9682.76 10986.99 5689.56 16369.40 5391.35 19186.12 32972.59 18483.22 8092.81 12859.60 14896.01 14981.76 11187.80 11795.56 56
casdiffmvs_mvgpermissive85.66 6285.18 6687.09 5288.22 20269.35 5893.74 8691.89 15381.47 3780.10 11391.45 15764.80 8496.35 13087.23 6387.69 11895.58 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
131480.70 15378.95 17185.94 8887.77 21667.56 10287.91 28092.55 12572.17 19967.44 26893.09 11750.27 25497.04 9571.68 19587.64 11993.23 156
test_fmvsmconf_n86.58 4487.17 3484.82 12685.28 26262.55 23594.26 5789.78 23983.81 1787.78 3696.33 2965.33 7696.98 10194.40 1187.55 12094.95 87
PMMVS81.98 13282.04 11981.78 22189.76 15956.17 33091.13 20390.69 20377.96 9780.09 11493.57 11146.33 29194.99 18781.41 11587.46 12194.17 123
casdiffmvspermissive85.37 6684.87 7286.84 5988.25 20069.07 6293.04 11491.76 16081.27 4480.84 10492.07 14564.23 9096.06 14584.98 8387.43 12295.39 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.1_n85.71 6086.08 5284.62 14080.83 31662.33 24093.84 8088.81 28383.50 1987.00 4396.01 3763.36 10696.93 10994.04 1287.29 12394.61 104
UGNet79.87 17078.68 17383.45 18089.96 15461.51 25792.13 15090.79 20176.83 11778.85 13386.33 24038.16 32996.17 13767.93 22887.17 12492.67 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MVS_111021_LR82.02 13181.52 12583.51 17788.42 19362.88 23089.77 24788.93 27976.78 11875.55 16693.10 11650.31 25395.38 17683.82 9687.02 12592.26 189
test_fmvsmvis_n_192083.80 9783.48 8884.77 13082.51 30263.72 20191.37 18983.99 35181.42 4177.68 14295.74 4258.37 16497.58 5993.38 1486.87 12693.00 166
xiu_mvs_v1_base_debu82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
xiu_mvs_v1_base_debi82.16 12781.12 13085.26 11486.42 24068.72 7292.59 13690.44 21373.12 17384.20 7094.36 8738.04 33195.73 15784.12 9286.81 12791.33 203
SR-MVS-dyc-post81.06 14780.70 14082.15 21292.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8351.26 24795.61 16578.77 14086.77 13092.28 185
RE-MVS-def80.48 14692.02 10258.56 30890.90 20890.45 21062.76 31778.89 12894.46 8349.30 26478.77 14086.77 13092.28 185
baseline85.01 7284.44 7686.71 6488.33 19768.73 7190.24 23591.82 15981.05 4781.18 9892.50 13163.69 9896.08 14484.45 8986.71 13295.32 68
TESTMET0.1,182.41 12381.98 12183.72 17088.08 20463.74 19992.70 12793.77 6879.30 7477.61 14487.57 22158.19 16794.08 22573.91 17286.68 13393.33 154
IS-MVSNet80.14 16479.41 16382.33 20487.91 20960.08 28891.97 16288.27 30172.90 18071.44 21791.73 15361.44 12893.66 24562.47 27986.53 13493.24 155
CPTT-MVS79.59 17379.16 16880.89 24691.54 12259.80 29192.10 15288.54 29460.42 33672.96 18993.28 11548.27 27392.80 26778.89 13986.50 13590.06 222
BH-w/o80.49 15779.30 16684.05 16090.83 14064.36 18593.60 9289.42 25474.35 14769.09 24190.15 18355.23 20395.61 16564.61 26286.43 13692.17 191
PVSNet73.49 880.05 16678.63 17484.31 15190.92 13764.97 16892.47 14091.05 19779.18 7772.43 20290.51 17237.05 34394.06 22768.06 22586.00 13793.90 139
test_fmvsmconf0.01_n83.70 10183.52 8584.25 15475.26 36961.72 25492.17 14887.24 31782.36 2784.91 6495.41 5155.60 19996.83 11492.85 1885.87 13894.21 121
mvs_anonymous81.36 14179.99 15285.46 10490.39 14768.40 7886.88 29790.61 20874.41 14570.31 22984.67 25663.79 9692.32 28873.13 17585.70 13995.67 51
DP-MVS Recon82.73 11781.65 12485.98 8697.31 467.06 11595.15 3691.99 14769.08 26376.50 15793.89 10454.48 21398.20 3570.76 20185.66 14092.69 172
BH-RMVSNet79.46 17877.65 18884.89 12391.68 11765.66 14993.55 9488.09 30672.93 17773.37 18691.12 16446.20 29396.12 13956.28 30785.61 14192.91 168
UBG86.83 3986.70 4287.20 4893.07 7369.81 4693.43 10395.56 1281.52 3681.50 9392.12 14373.58 2596.28 13284.37 9085.20 14295.51 58
diffmvspermissive84.28 8483.83 8185.61 10187.40 22268.02 9190.88 21089.24 26080.54 5081.64 9292.52 13059.83 14594.52 20987.32 6185.11 14394.29 117
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Fast-Effi-MVS+81.14 14480.01 15184.51 14490.24 14965.86 14694.12 6289.15 26673.81 16075.37 16888.26 20657.26 17494.53 20866.97 23984.92 14493.15 159
LFMVS84.34 8382.73 11089.18 1394.76 3373.25 1194.99 4291.89 15371.90 20582.16 8993.49 11347.98 27797.05 9282.55 10784.82 14597.25 8
BH-untuned78.68 19377.08 19983.48 17989.84 15663.74 19992.70 12788.59 29271.57 22366.83 27888.65 19951.75 24095.39 17559.03 29784.77 14691.32 206
test-LLR80.10 16579.56 15981.72 22386.93 23561.17 26292.70 12791.54 17171.51 22675.62 16386.94 23253.83 21992.38 28372.21 18884.76 14791.60 197
test-mter79.96 16879.38 16581.72 22386.93 23561.17 26292.70 12791.54 17173.85 15875.62 16386.94 23249.84 25992.38 28372.21 18884.76 14791.60 197
sasdasda86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
canonicalmvs86.85 3786.25 4788.66 2091.80 11371.92 1693.54 9591.71 16380.26 5687.55 3795.25 6163.59 10296.93 10988.18 5084.34 14997.11 9
alignmvs87.28 3286.97 3788.24 2791.30 12971.14 2695.61 2593.56 7979.30 7487.07 4295.25 6168.43 4896.93 10987.87 5384.33 15196.65 17
VNet86.20 4985.65 6087.84 3093.92 4769.99 3895.73 2395.94 778.43 9286.00 5293.07 11958.22 16697.00 9785.22 7884.33 15196.52 23
UA-Net80.02 16779.65 15781.11 23789.33 16957.72 31586.33 30189.00 27877.44 10981.01 10189.15 19559.33 15295.90 15061.01 28684.28 15389.73 229
LCM-MVSNet-Re72.93 27271.84 27176.18 31688.49 18948.02 37280.07 35170.17 39273.96 15652.25 36280.09 32049.98 25688.24 34067.35 23284.23 15492.28 185
ACMMPcopyleft81.49 13980.67 14183.93 16391.71 11662.90 22992.13 15092.22 13571.79 21271.68 21393.49 11350.32 25296.96 10578.47 14284.22 15591.93 195
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MGCFI-Net85.59 6485.73 5985.17 11791.41 12762.44 23692.87 12091.31 18079.65 6786.99 4495.14 6762.90 11596.12 13987.13 6484.13 15696.96 13
114514_t79.17 18177.67 18783.68 17295.32 2965.53 15592.85 12191.60 17063.49 30867.92 25990.63 17046.65 28695.72 16167.01 23883.54 15789.79 227
testing1186.71 4386.44 4487.55 4093.54 5971.35 2193.65 8995.58 1081.36 4380.69 10592.21 14272.30 3296.46 12885.18 8083.43 15894.82 95
test_vis1_n_192081.66 13682.01 12080.64 24882.24 30455.09 33894.76 4686.87 31981.67 3584.40 6994.63 8038.17 32894.67 20091.98 2783.34 15992.16 192
testing22285.18 6984.69 7486.63 6792.91 7769.91 4292.61 13395.80 980.31 5580.38 11092.27 13968.73 4795.19 18275.94 15583.27 16094.81 96
EPMVS78.49 19875.98 21586.02 8591.21 13169.68 5180.23 34891.20 18575.25 13772.48 20078.11 33554.65 20993.69 24457.66 30383.04 16194.69 98
AdaColmapbinary78.94 18677.00 20284.76 13196.34 1765.86 14692.66 13187.97 31062.18 32270.56 22392.37 13743.53 30697.35 7264.50 26382.86 16291.05 212
CDS-MVSNet81.43 14080.74 13883.52 17586.26 24464.45 17792.09 15390.65 20775.83 12973.95 18389.81 18863.97 9392.91 26371.27 19682.82 16393.20 158
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CHOSEN 280x42077.35 21576.95 20378.55 28987.07 23062.68 23469.71 38582.95 35868.80 26571.48 21687.27 22766.03 6984.00 36976.47 15382.81 16488.95 236
UWE-MVS80.81 15281.01 13580.20 25889.33 16957.05 32491.91 16494.71 3575.67 13075.01 17189.37 19263.13 11191.44 31167.19 23682.80 16592.12 193
ETVMVS84.22 8883.71 8285.76 9692.58 8968.25 8592.45 14195.53 1479.54 6979.46 12191.64 15570.29 4294.18 22169.16 21682.76 16694.84 92
PCF-MVS73.15 979.29 17977.63 18984.29 15286.06 24865.96 14487.03 29391.10 19169.86 25269.79 23790.64 16857.54 17396.59 11964.37 26482.29 16790.32 219
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_s_conf0.5_n86.39 4686.91 3884.82 12687.36 22463.54 21194.74 4790.02 23382.52 2590.14 2596.92 1362.93 11497.84 4695.28 882.26 16893.07 163
WTY-MVS86.32 4785.81 5687.85 2992.82 8169.37 5795.20 3495.25 1782.71 2381.91 9094.73 7767.93 5497.63 5679.55 13082.25 16996.54 22
testing9986.01 5385.47 6187.63 3893.62 5571.25 2393.47 10195.23 1880.42 5480.60 10791.95 14771.73 3796.50 12680.02 12782.22 17095.13 79
HY-MVS76.49 584.28 8483.36 9687.02 5592.22 9567.74 9784.65 30894.50 4379.15 7882.23 8887.93 21466.88 6096.94 10780.53 12382.20 17196.39 33
testing9185.93 5585.31 6487.78 3293.59 5771.47 1993.50 9895.08 2580.26 5680.53 10891.93 14870.43 4196.51 12580.32 12582.13 17295.37 63
VDD-MVS83.06 11281.81 12386.81 6190.86 13967.70 9895.40 2991.50 17475.46 13381.78 9192.34 13840.09 31897.13 9086.85 6882.04 17395.60 54
fmvsm_s_conf0.1_n85.61 6385.93 5484.68 13682.95 29963.48 21394.03 6889.46 25181.69 3489.86 2696.74 2061.85 12597.75 4994.74 982.01 17492.81 171
TAMVS80.37 15979.45 16283.13 18685.14 26563.37 21491.23 19790.76 20274.81 14372.65 19588.49 20060.63 13692.95 25869.41 21281.95 17593.08 162
test_yl84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
DCV-MVSNet84.28 8483.16 10087.64 3494.52 3769.24 5995.78 1895.09 2369.19 26081.09 9992.88 12557.00 17997.44 6681.11 12081.76 17696.23 38
FA-MVS(test-final)79.12 18277.23 19884.81 12990.54 14363.98 19481.35 33991.71 16371.09 23474.85 17382.94 27452.85 23097.05 9267.97 22681.73 17893.41 150
thisisatest051583.41 10582.49 11486.16 8389.46 16668.26 8393.54 9594.70 3674.31 14875.75 16090.92 16572.62 2996.52 12469.64 20881.50 17993.71 143
baseline283.68 10283.42 9384.48 14587.37 22366.00 14290.06 23995.93 879.71 6669.08 24290.39 17577.92 696.28 13278.91 13881.38 18091.16 210
PatchmatchNetpermissive77.46 21374.63 23185.96 8789.55 16470.35 3479.97 35389.55 24972.23 19670.94 21976.91 34757.03 17792.79 26854.27 31481.17 18194.74 97
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VDDNet80.50 15678.26 17987.21 4786.19 24569.79 4794.48 5091.31 18060.42 33679.34 12390.91 16638.48 32696.56 12282.16 10881.05 18295.27 73
EPNet_dtu78.80 19079.26 16777.43 30288.06 20549.71 36491.96 16391.95 14977.67 10376.56 15691.28 16258.51 16290.20 32456.37 30680.95 18392.39 180
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
sss82.71 11982.38 11683.73 16889.25 17259.58 29592.24 14694.89 2877.96 9779.86 11692.38 13656.70 18597.05 9277.26 14980.86 18494.55 106
FE-MVS75.97 23973.02 25584.82 12689.78 15765.56 15377.44 36491.07 19564.55 29772.66 19479.85 32246.05 29496.69 11754.97 31180.82 18592.21 190
GeoE78.90 18777.43 19283.29 18288.95 18162.02 24692.31 14386.23 32770.24 24771.34 21889.27 19354.43 21494.04 23063.31 27180.81 18693.81 142
fmvsm_s_conf0.5_n_a85.75 5986.09 5184.72 13385.73 25663.58 20893.79 8389.32 25781.42 4190.21 2396.91 1462.41 11997.67 5194.48 1080.56 18792.90 169
TR-MVS78.77 19277.37 19782.95 18890.49 14460.88 26893.67 8890.07 22970.08 24974.51 17591.37 16145.69 29595.70 16260.12 29280.32 18892.29 184
fmvsm_s_conf0.1_n_a84.76 7684.84 7384.53 14280.23 32663.50 21292.79 12288.73 28680.46 5289.84 2796.65 2260.96 13397.57 6193.80 1380.14 18992.53 178
TAPA-MVS70.22 1274.94 25473.53 25079.17 28390.40 14652.07 35089.19 26089.61 24862.69 31970.07 23192.67 12948.89 27194.32 21338.26 37879.97 19091.12 211
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_cas_vis1_n_192080.45 15880.61 14379.97 26778.25 35257.01 32694.04 6788.33 29879.06 8382.81 8493.70 10738.65 32391.63 30390.82 3679.81 19191.27 209
cascas78.18 20275.77 21885.41 10687.14 22869.11 6192.96 11791.15 18966.71 28370.47 22486.07 24237.49 33796.48 12770.15 20679.80 19290.65 215
HyFIR lowres test81.03 14879.56 15985.43 10587.81 21468.11 8990.18 23690.01 23470.65 24372.95 19086.06 24363.61 10194.50 21075.01 16479.75 19393.67 144
WB-MVSnew77.14 21876.18 21380.01 26486.18 24663.24 21791.26 19594.11 6071.72 21573.52 18587.29 22645.14 30093.00 25656.98 30479.42 19483.80 318
LS3D69.17 30266.40 30777.50 30091.92 10956.12 33185.12 30580.37 36646.96 38656.50 34887.51 22237.25 33893.71 24332.52 39579.40 19582.68 338
EI-MVSNet-Vis-set83.77 9883.67 8384.06 15792.79 8463.56 20991.76 17394.81 3179.65 6777.87 14094.09 9963.35 10797.90 4279.35 13279.36 19690.74 214
CVMVSNet74.04 26174.27 23973.33 33685.33 26043.94 39089.53 25288.39 29654.33 36670.37 22790.13 18449.17 26784.05 36761.83 28379.36 19691.99 194
EPP-MVSNet81.79 13481.52 12582.61 19788.77 18660.21 28693.02 11693.66 7668.52 26972.90 19190.39 17572.19 3494.96 18874.93 16579.29 19892.67 173
CLD-MVS82.73 11782.35 11783.86 16487.90 21067.65 10095.45 2892.18 13985.06 1072.58 19792.27 13952.46 23495.78 15384.18 9179.06 19988.16 250
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
HQP3-MVS91.70 16678.90 200
HQP-MVS81.14 14480.64 14282.64 19687.54 21863.66 20694.06 6391.70 16679.80 6374.18 17790.30 17751.63 24295.61 16577.63 14778.90 20088.63 241
plane_prior62.42 23793.85 7779.38 7278.80 202
thres20079.66 17278.33 17783.66 17492.54 9065.82 14893.06 11296.31 374.90 14273.30 18788.66 19859.67 14795.61 16547.84 34178.67 20389.56 232
ET-MVSNet_ETH3D84.01 9283.15 10286.58 7090.78 14170.89 2894.74 4794.62 4081.44 4058.19 33793.64 10973.64 2492.35 28682.66 10578.66 20496.50 27
HQP_MVS80.34 16079.75 15682.12 21486.94 23362.42 23793.13 11091.31 18078.81 8772.53 19889.14 19650.66 25095.55 17076.74 15078.53 20588.39 247
plane_prior591.31 18095.55 17076.74 15078.53 20588.39 247
EI-MVSNet-UG-set83.14 11182.96 10383.67 17392.28 9363.19 22091.38 18894.68 3779.22 7676.60 15593.75 10562.64 11697.76 4878.07 14578.01 20790.05 223
OMC-MVS78.67 19577.91 18680.95 24485.76 25557.40 32188.49 27188.67 28973.85 15872.43 20292.10 14449.29 26594.55 20772.73 18277.89 20890.91 213
1112_ss80.56 15579.83 15582.77 19188.65 18760.78 27092.29 14488.36 29772.58 18572.46 20194.95 6965.09 7893.42 25066.38 24577.71 20994.10 127
OPM-MVS79.00 18478.09 18181.73 22283.52 29163.83 19691.64 17990.30 22076.36 12571.97 20889.93 18746.30 29295.17 18375.10 16277.70 21086.19 282
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PatchMatch-RL72.06 28269.98 28578.28 29289.51 16555.70 33483.49 31683.39 35661.24 33163.72 30382.76 27634.77 35193.03 25553.37 31977.59 21186.12 286
thres100view90078.37 19977.01 20182.46 19991.89 11163.21 21991.19 20196.33 172.28 19570.45 22687.89 21560.31 13895.32 17745.16 35277.58 21288.83 237
tfpn200view978.79 19177.43 19282.88 18992.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21288.83 237
thres40078.68 19377.43 19282.43 20092.21 9664.49 17492.05 15696.28 473.48 16771.75 21188.26 20660.07 14395.32 17745.16 35277.58 21287.48 257
CostFormer82.33 12481.15 12985.86 9189.01 18068.46 7782.39 33093.01 10575.59 13180.25 11281.57 29472.03 3594.96 18879.06 13677.48 21594.16 124
tpm279.80 17177.95 18585.34 11088.28 19868.26 8381.56 33691.42 17770.11 24877.59 14580.50 31267.40 5794.26 21967.34 23377.35 21693.51 148
Test_1112_low_res79.56 17478.60 17582.43 20088.24 20160.39 28392.09 15387.99 30872.10 20171.84 20987.42 22364.62 8693.04 25465.80 25277.30 21793.85 141
tpmrst80.57 15479.14 16984.84 12590.10 15268.28 8281.70 33489.72 24677.63 10675.96 15979.54 32664.94 8192.71 27075.43 15977.28 21893.55 147
Anonymous20240521177.96 20675.33 22485.87 9093.73 5364.52 17394.85 4485.36 33662.52 32076.11 15890.18 18029.43 37297.29 7668.51 22377.24 21995.81 49
GA-MVS78.33 20176.23 21184.65 13783.65 28966.30 13691.44 18190.14 22776.01 12770.32 22884.02 26442.50 31094.72 19670.98 19877.00 22092.94 167
thisisatest053081.15 14380.07 14984.39 14888.26 19965.63 15191.40 18494.62 4071.27 23070.93 22089.18 19472.47 3096.04 14665.62 25476.89 22191.49 199
thres600view778.00 20476.66 20682.03 21991.93 10863.69 20491.30 19496.33 172.43 19070.46 22587.89 21560.31 13894.92 19142.64 36476.64 22287.48 257
PLCcopyleft68.80 1475.23 25073.68 24979.86 27092.93 7658.68 30790.64 22188.30 29960.90 33364.43 29790.53 17142.38 31194.57 20356.52 30576.54 22386.33 278
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MIMVSNet71.64 28468.44 29781.23 23381.97 30864.44 17873.05 37688.80 28469.67 25464.59 29274.79 36032.79 35787.82 34453.99 31576.35 22491.42 201
test_fmvs174.07 26073.69 24875.22 32078.91 34447.34 37789.06 26474.69 38063.68 30779.41 12291.59 15624.36 38287.77 34685.22 7876.26 22590.55 218
MVS-HIRNet60.25 35255.55 35974.35 32884.37 27956.57 32971.64 38074.11 38134.44 40245.54 38742.24 41031.11 36789.81 32840.36 37276.10 22676.67 382
CNLPA74.31 25872.30 26680.32 25391.49 12361.66 25590.85 21180.72 36456.67 35963.85 30290.64 16846.75 28590.84 31453.79 31675.99 22788.47 246
ab-mvs80.18 16378.31 17885.80 9488.44 19265.49 15783.00 32792.67 11871.82 21177.36 14785.01 25254.50 21096.59 11976.35 15475.63 22895.32 68
test_fmvs1_n72.69 27971.92 27074.99 32371.15 38247.08 37987.34 29175.67 37563.48 30978.08 13991.17 16320.16 39487.87 34384.65 8775.57 22990.01 224
FIs79.47 17779.41 16379.67 27485.95 25059.40 29791.68 17793.94 6378.06 9668.96 24688.28 20466.61 6391.77 29966.20 24874.99 23087.82 253
SDMVSNet80.26 16178.88 17284.40 14789.25 17267.63 10185.35 30493.02 10476.77 11970.84 22187.12 22847.95 27896.09 14185.04 8174.55 23189.48 233
sd_testset77.08 22075.37 22282.20 21089.25 17262.11 24582.06 33189.09 27176.77 11970.84 22187.12 22841.43 31495.01 18667.23 23574.55 23189.48 233
CMPMVSbinary48.56 2166.77 32364.41 32573.84 33370.65 38550.31 36177.79 36385.73 33445.54 39044.76 38982.14 28535.40 34990.14 32563.18 27374.54 23381.07 352
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
dmvs_re76.93 22275.36 22381.61 22587.78 21560.71 27580.00 35287.99 30879.42 7169.02 24489.47 19146.77 28494.32 21363.38 27074.45 23489.81 226
test_vis1_n71.63 28570.73 28174.31 33069.63 38847.29 37886.91 29572.11 38663.21 31375.18 16990.17 18120.40 39285.76 35884.59 8874.42 23589.87 225
XVG-OURS74.25 25972.46 26579.63 27578.45 35057.59 31880.33 34687.39 31363.86 30468.76 25089.62 19040.50 31791.72 30069.00 21874.25 23689.58 230
tpm cat175.30 24972.21 26784.58 14188.52 18867.77 9678.16 36288.02 30761.88 32868.45 25576.37 35160.65 13594.03 23253.77 31774.11 23791.93 195
XVG-OURS-SEG-HR74.70 25673.08 25479.57 27778.25 35257.33 32280.49 34487.32 31463.22 31268.76 25090.12 18644.89 30291.59 30470.55 20474.09 23889.79 227
FC-MVSNet-test77.99 20578.08 18277.70 29784.89 27055.51 33590.27 23393.75 7276.87 11466.80 27987.59 22065.71 7390.23 32362.89 27673.94 23987.37 260
PVSNet_BlendedMVS83.38 10683.43 9183.22 18493.76 5067.53 10494.06 6393.61 7779.13 7981.00 10285.14 25163.19 10997.29 7687.08 6573.91 24084.83 310
tttt051779.50 17578.53 17682.41 20387.22 22661.43 26089.75 24894.76 3269.29 25867.91 26088.06 21372.92 2795.63 16362.91 27573.90 24190.16 221
MDTV_nov1_ep1372.61 26289.06 17868.48 7680.33 34690.11 22871.84 21071.81 21075.92 35553.01 22993.92 23748.04 33873.38 242
SCA75.82 24272.76 25885.01 12186.63 23770.08 3781.06 34189.19 26371.60 22270.01 23277.09 34545.53 29690.25 31960.43 28973.27 24394.68 99
CR-MVSNet73.79 26570.82 28082.70 19483.15 29567.96 9270.25 38284.00 34973.67 16569.97 23472.41 36757.82 17089.48 33152.99 32073.13 24490.64 216
RPMNet70.42 29265.68 31384.63 13983.15 29567.96 9270.25 38290.45 21046.83 38869.97 23465.10 38856.48 19195.30 18035.79 38373.13 24490.64 216
Fast-Effi-MVS+-dtu75.04 25273.37 25280.07 26180.86 31559.52 29691.20 20085.38 33571.90 20565.20 28784.84 25441.46 31392.97 25766.50 24472.96 24687.73 254
LPG-MVS_test75.82 24274.58 23379.56 27884.31 28059.37 29890.44 22589.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
LGP-MVS_train79.56 27884.31 28059.37 29889.73 24469.49 25564.86 28988.42 20138.65 32394.30 21572.56 18472.76 24785.01 308
EG-PatchMatch MVS68.55 30865.41 31677.96 29678.69 34762.93 22689.86 24689.17 26460.55 33550.27 37177.73 33922.60 38894.06 22747.18 34472.65 24976.88 381
EI-MVSNet78.97 18578.22 18081.25 23285.33 26062.73 23389.53 25293.21 9472.39 19272.14 20590.13 18460.99 13194.72 19667.73 23072.49 25086.29 279
MVSTER82.47 12282.05 11883.74 16692.68 8669.01 6491.90 16593.21 9479.83 6272.14 20585.71 24774.72 1694.72 19675.72 15772.49 25087.50 256
Anonymous2024052976.84 22574.15 24184.88 12491.02 13464.95 16993.84 8091.09 19253.57 36773.00 18887.42 22335.91 34797.32 7469.14 21772.41 25292.36 181
D2MVS73.80 26472.02 26979.15 28579.15 33962.97 22488.58 27090.07 22972.94 17659.22 33178.30 33242.31 31292.70 27265.59 25572.00 25381.79 346
PS-MVSNAJss77.26 21676.31 21080.13 26080.64 32059.16 30290.63 22391.06 19672.80 18168.58 25384.57 25853.55 22393.96 23572.97 17671.96 25487.27 264
Effi-MVS+-dtu76.14 23275.28 22578.72 28883.22 29455.17 33789.87 24587.78 31175.42 13467.98 25881.43 29645.08 30192.52 27975.08 16371.63 25588.48 245
ACMMP++_ref71.63 255
ACMM69.62 1374.34 25772.73 26079.17 28384.25 28257.87 31390.36 23089.93 23563.17 31465.64 28486.04 24437.79 33594.10 22365.89 25071.52 25785.55 300
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP71.68 1075.58 24774.23 24079.62 27684.97 26959.64 29390.80 21389.07 27370.39 24562.95 31187.30 22538.28 32793.87 24072.89 17771.45 25885.36 304
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
dp75.01 25372.09 26883.76 16589.28 17166.22 13979.96 35489.75 24171.16 23167.80 26477.19 34451.81 23892.54 27850.39 32571.44 25992.51 179
tpm78.58 19677.03 20083.22 18485.94 25264.56 17283.21 32391.14 19078.31 9373.67 18479.68 32464.01 9292.09 29366.07 24971.26 26093.03 164
DP-MVS69.90 29766.48 30580.14 25995.36 2862.93 22689.56 24976.11 37350.27 37857.69 34485.23 25039.68 31995.73 15733.35 38871.05 26181.78 347
UniMVSNet_ETH3D72.74 27670.53 28379.36 28078.62 34956.64 32885.01 30689.20 26263.77 30564.84 29184.44 26034.05 35491.86 29763.94 26670.89 26289.57 231
jajsoiax73.05 27071.51 27577.67 29877.46 35954.83 33988.81 26690.04 23269.13 26262.85 31383.51 26931.16 36692.75 26970.83 19969.80 26385.43 303
ACMMP++69.72 264
mvs_tets72.71 27771.11 27677.52 29977.41 36054.52 34188.45 27289.76 24068.76 26762.70 31483.26 27229.49 37192.71 27070.51 20569.62 26585.34 305
tpmvs72.88 27469.76 29082.22 20990.98 13567.05 11678.22 36188.30 29963.10 31564.35 29874.98 35855.09 20694.27 21743.25 35869.57 26685.34 305
GBi-Net75.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
test175.65 24473.83 24681.10 23888.85 18265.11 16490.01 24190.32 21670.84 23867.04 27480.25 31748.03 27491.54 30659.80 29469.34 26786.64 272
FMVSNet377.73 21076.04 21482.80 19091.20 13268.99 6591.87 16691.99 14773.35 16967.04 27483.19 27356.62 18792.14 29059.80 29469.34 26787.28 263
Syy-MVS69.65 29969.52 29170.03 35687.87 21143.21 39288.07 27689.01 27572.91 17863.11 30888.10 21045.28 29985.54 35922.07 40669.23 27081.32 349
myMVS_eth3d72.58 28172.74 25972.10 34887.87 21149.45 36688.07 27689.01 27572.91 17863.11 30888.10 21063.63 9985.54 35932.73 39369.23 27081.32 349
MSDG69.54 30065.73 31280.96 24385.11 26763.71 20284.19 31183.28 35756.95 35654.50 35384.03 26331.50 36396.03 14742.87 36269.13 27283.14 330
JIA-IIPM66.06 32662.45 33676.88 31181.42 31354.45 34257.49 40688.67 28949.36 38063.86 30146.86 40456.06 19590.25 31949.53 33068.83 27385.95 290
OpenMVS_ROBcopyleft61.12 1866.39 32462.92 33376.80 31276.51 36357.77 31489.22 25883.41 35555.48 36353.86 35777.84 33726.28 38193.95 23634.90 38568.76 27478.68 373
FMVSNet276.07 23374.01 24482.26 20888.85 18267.66 9991.33 19291.61 16970.84 23865.98 28282.25 28348.03 27492.00 29558.46 29968.73 27587.10 266
test_djsdf73.76 26672.56 26377.39 30377.00 36253.93 34389.07 26290.69 20365.80 28963.92 30082.03 28643.14 30992.67 27372.83 17868.53 27685.57 299
F-COLMAP70.66 28968.44 29777.32 30486.37 24355.91 33288.00 27886.32 32456.94 35757.28 34688.07 21233.58 35592.49 28051.02 32368.37 27783.55 320
XVG-ACMP-BASELINE68.04 31465.53 31575.56 31874.06 37452.37 34878.43 35885.88 33162.03 32558.91 33581.21 30420.38 39391.15 31360.69 28868.18 27883.16 329
WBMVS81.67 13580.98 13683.72 17093.07 7369.40 5394.33 5493.05 10376.84 11672.05 20784.14 26274.49 1893.88 23972.76 18168.09 27987.88 252
LTVRE_ROB59.60 1966.27 32563.54 32974.45 32784.00 28551.55 35367.08 39483.53 35358.78 34654.94 35280.31 31534.54 35293.23 25240.64 37168.03 28078.58 374
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
XXY-MVS77.94 20776.44 20882.43 20082.60 30164.44 17892.01 15891.83 15873.59 16670.00 23385.82 24554.43 21494.76 19369.63 20968.02 28188.10 251
ADS-MVSNet266.90 32263.44 33077.26 30688.06 20560.70 27668.01 39075.56 37757.57 35064.48 29469.87 37738.68 32184.10 36640.87 36967.89 28286.97 267
ADS-MVSNet68.54 30964.38 32681.03 24288.06 20566.90 12168.01 39084.02 34857.57 35064.48 29469.87 37738.68 32189.21 33340.87 36967.89 28286.97 267
test0.0.03 172.76 27572.71 26172.88 34080.25 32547.99 37391.22 19889.45 25271.51 22662.51 31687.66 21853.83 21985.06 36350.16 32767.84 28485.58 298
anonymousdsp71.14 28869.37 29276.45 31372.95 37754.71 34084.19 31188.88 28061.92 32762.15 31779.77 32338.14 33091.44 31168.90 22067.45 28583.21 328
tt080573.07 26970.73 28180.07 26178.37 35157.05 32487.78 28392.18 13961.23 33267.04 27486.49 23731.35 36594.58 20165.06 26067.12 28688.57 243
VPA-MVSNet79.03 18378.00 18382.11 21785.95 25064.48 17693.22 10994.66 3875.05 14074.04 18284.95 25352.17 23693.52 24774.90 16767.04 28788.32 249
nrg03080.93 14979.86 15484.13 15683.69 28868.83 6893.23 10891.20 18575.55 13275.06 17088.22 20963.04 11394.74 19581.88 11066.88 28888.82 239
FMVSNet172.71 27769.91 28881.10 23883.60 29065.11 16490.01 24190.32 21663.92 30363.56 30480.25 31736.35 34691.54 30654.46 31366.75 28986.64 272
PatchT69.11 30365.37 31780.32 25382.07 30763.68 20567.96 39287.62 31250.86 37669.37 23865.18 38757.09 17688.53 33741.59 36766.60 29088.74 240
IB-MVS77.80 482.18 12680.46 14787.35 4589.14 17770.28 3595.59 2695.17 2178.85 8570.19 23085.82 24570.66 4097.67 5172.19 19066.52 29194.09 128
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs265.78 32964.84 31868.60 36266.54 39441.71 39483.27 32069.81 39354.38 36567.91 26084.54 25915.35 39981.22 38675.65 15866.16 29282.88 331
pmmvs573.35 26771.52 27478.86 28778.64 34860.61 27991.08 20486.90 31867.69 27363.32 30683.64 26744.33 30490.53 31662.04 28166.02 29385.46 302
dmvs_testset65.55 33066.45 30662.86 37479.87 32922.35 42076.55 36671.74 38877.42 11155.85 34987.77 21751.39 24480.69 38731.51 39965.92 29485.55 300
MonoMVSNet76.99 22175.08 22782.73 19283.32 29363.24 21786.47 30086.37 32379.08 8166.31 28179.30 32849.80 26091.72 30079.37 13165.70 29593.23 156
pmmvs473.92 26371.81 27280.25 25779.17 33865.24 16087.43 28987.26 31667.64 27663.46 30583.91 26648.96 27091.53 30962.94 27465.49 29683.96 315
cl2277.94 20776.78 20481.42 22987.57 21764.93 17090.67 21988.86 28272.45 18967.63 26682.68 27864.07 9192.91 26371.79 19165.30 29786.44 277
miper_ehance_all_eth77.60 21176.44 20881.09 24185.70 25764.41 18190.65 22088.64 29172.31 19367.37 27282.52 27964.77 8592.64 27670.67 20265.30 29786.24 281
miper_enhance_ethall78.86 18877.97 18481.54 22788.00 20865.17 16291.41 18289.15 26675.19 13868.79 24983.98 26567.17 5892.82 26572.73 18265.30 29786.62 276
v114476.73 22874.88 22882.27 20680.23 32666.60 12991.68 17790.21 22673.69 16369.06 24381.89 28752.73 23294.40 21269.21 21565.23 30085.80 294
DSMNet-mixed56.78 35854.44 36263.79 37263.21 39929.44 41564.43 39764.10 40242.12 39951.32 36771.60 37231.76 36275.04 39436.23 38065.20 30186.87 270
v119275.98 23873.92 24582.15 21279.73 33066.24 13891.22 19889.75 24172.67 18368.49 25481.42 29749.86 25894.27 21767.08 23765.02 30285.95 290
v2v48277.42 21475.65 22082.73 19280.38 32267.13 11491.85 16890.23 22475.09 13969.37 23883.39 27153.79 22194.44 21171.77 19265.00 30386.63 275
V4276.46 23074.55 23482.19 21179.14 34067.82 9590.26 23489.42 25473.75 16168.63 25281.89 28751.31 24594.09 22471.69 19464.84 30484.66 311
ACMH63.93 1768.62 30764.81 31980.03 26385.22 26363.25 21687.72 28484.66 34260.83 33451.57 36679.43 32727.29 37894.96 18841.76 36564.84 30481.88 345
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline181.84 13381.03 13484.28 15391.60 11866.62 12891.08 20491.66 16881.87 3274.86 17291.67 15469.98 4494.92 19171.76 19364.75 30691.29 208
v124075.21 25172.98 25681.88 22079.20 33766.00 14290.75 21589.11 27071.63 22167.41 27081.22 30247.36 28293.87 24065.46 25764.72 30785.77 295
IterMVS-LS76.49 22975.18 22680.43 25284.49 27662.74 23290.64 22188.80 28472.40 19165.16 28881.72 29060.98 13292.27 28967.74 22964.65 30886.29 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192075.63 24673.49 25182.06 21879.38 33566.35 13491.07 20689.48 25071.98 20267.99 25781.22 30249.16 26893.90 23866.56 24164.56 30985.92 292
mamv465.18 33267.43 30258.44 37877.88 35849.36 36969.40 38670.99 39148.31 38457.78 34385.53 24859.01 15851.88 41673.67 17364.32 31074.07 386
v14419276.05 23674.03 24382.12 21479.50 33466.55 13191.39 18689.71 24772.30 19468.17 25681.33 29951.75 24094.03 23267.94 22764.19 31185.77 295
Anonymous2023121173.08 26870.39 28481.13 23690.62 14263.33 21591.40 18490.06 23151.84 37264.46 29680.67 31036.49 34594.07 22663.83 26764.17 31285.98 289
testing370.38 29370.83 27869.03 36085.82 25443.93 39190.72 21890.56 20968.06 27160.24 32586.82 23464.83 8384.12 36526.33 40164.10 31379.04 370
Patchmatch-test65.86 32760.94 34280.62 25083.75 28758.83 30558.91 40575.26 37944.50 39350.95 37077.09 34558.81 16087.90 34235.13 38464.03 31495.12 80
USDC67.43 32164.51 32376.19 31577.94 35655.29 33678.38 35985.00 33973.17 17148.36 37980.37 31421.23 39092.48 28152.15 32164.02 31580.81 355
VPNet78.82 18977.53 19182.70 19484.52 27566.44 13293.93 7292.23 13280.46 5272.60 19688.38 20349.18 26693.13 25372.47 18663.97 31688.55 244
Anonymous2023120667.53 31965.78 31172.79 34174.95 37047.59 37588.23 27487.32 31461.75 33058.07 33977.29 34237.79 33587.29 35242.91 36063.71 31783.48 323
WR-MVS76.76 22775.74 21979.82 27184.60 27362.27 24392.60 13492.51 12676.06 12667.87 26385.34 24956.76 18390.24 32262.20 28063.69 31886.94 269
h-mvs3383.01 11382.56 11384.35 15089.34 16762.02 24692.72 12593.76 6981.45 3882.73 8592.25 14160.11 14197.13 9087.69 5562.96 31993.91 137
c3_l76.83 22675.47 22180.93 24585.02 26864.18 19190.39 22888.11 30571.66 21666.65 28081.64 29263.58 10492.56 27769.31 21462.86 32086.04 287
test_vis1_rt59.09 35657.31 35564.43 37168.44 39146.02 38583.05 32648.63 41551.96 37149.57 37463.86 39116.30 39780.20 38871.21 19762.79 32167.07 398
mvsany_test168.77 30668.56 29569.39 35873.57 37545.88 38680.93 34260.88 40659.65 34271.56 21490.26 17943.22 30875.05 39374.26 17162.70 32287.25 265
UniMVSNet_NR-MVSNet78.15 20377.55 19079.98 26584.46 27760.26 28492.25 14593.20 9677.50 10868.88 24786.61 23566.10 6892.13 29166.38 24562.55 32387.54 255
DU-MVS76.86 22375.84 21779.91 26882.96 29760.26 28491.26 19591.54 17176.46 12468.88 24786.35 23856.16 19292.13 29166.38 24562.55 32387.35 261
UniMVSNet (Re)77.58 21276.78 20479.98 26584.11 28360.80 26991.76 17393.17 9876.56 12369.93 23684.78 25563.32 10892.36 28564.89 26162.51 32586.78 271
v875.35 24873.26 25381.61 22580.67 31966.82 12289.54 25189.27 25971.65 21763.30 30780.30 31654.99 20794.06 22767.33 23462.33 32683.94 316
cl____76.07 23374.67 22980.28 25585.15 26461.76 25290.12 23788.73 28671.16 23165.43 28581.57 29461.15 12992.95 25866.54 24262.17 32786.13 285
v1074.77 25572.54 26481.46 22880.33 32466.71 12689.15 26189.08 27270.94 23663.08 31079.86 32152.52 23394.04 23065.70 25362.17 32783.64 319
DIV-MVS_self_test76.07 23374.67 22980.28 25585.14 26561.75 25390.12 23788.73 28671.16 23165.42 28681.60 29361.15 12992.94 26266.54 24262.16 32986.14 283
IterMVS-SCA-FT71.55 28669.97 28676.32 31481.48 31160.67 27787.64 28785.99 33066.17 28759.50 32978.88 32945.53 29683.65 37162.58 27861.93 33084.63 313
IterMVS72.65 28070.83 27878.09 29582.17 30562.96 22587.64 28786.28 32571.56 22460.44 32478.85 33045.42 29886.66 35463.30 27261.83 33184.65 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet568.04 31465.66 31475.18 32284.43 27857.89 31283.54 31586.26 32661.83 32953.64 35873.30 36337.15 34185.08 36248.99 33361.77 33282.56 340
v7n71.31 28768.65 29479.28 28176.40 36460.77 27186.71 29889.45 25264.17 30258.77 33678.24 33344.59 30393.54 24657.76 30161.75 33383.52 322
v14876.19 23174.47 23681.36 23080.05 32864.44 17891.75 17590.23 22473.68 16467.13 27380.84 30755.92 19793.86 24268.95 21961.73 33485.76 297
tfpnnormal70.10 29467.36 30378.32 29183.45 29260.97 26788.85 26592.77 11364.85 29660.83 32278.53 33143.52 30793.48 24831.73 39661.70 33580.52 358
ACMH+65.35 1667.65 31764.55 32276.96 31084.59 27457.10 32388.08 27580.79 36358.59 34853.00 35981.09 30626.63 38092.95 25846.51 34661.69 33680.82 354
ITE_SJBPF70.43 35574.44 37247.06 38077.32 37160.16 33954.04 35683.53 26823.30 38684.01 36843.07 35961.58 33780.21 363
NR-MVSNet76.05 23674.59 23280.44 25182.96 29762.18 24490.83 21291.73 16177.12 11260.96 32186.35 23859.28 15391.80 29860.74 28761.34 33887.35 261
test_040264.54 33561.09 34174.92 32484.10 28460.75 27387.95 27979.71 36852.03 37052.41 36177.20 34332.21 36191.64 30223.14 40461.03 33972.36 392
Baseline_NR-MVSNet73.99 26272.83 25777.48 30180.78 31759.29 30191.79 17084.55 34468.85 26468.99 24580.70 30856.16 19292.04 29462.67 27760.98 34081.11 351
TranMVSNet+NR-MVSNet75.86 24174.52 23579.89 26982.44 30360.64 27891.37 18991.37 17876.63 12167.65 26586.21 24152.37 23591.55 30561.84 28260.81 34187.48 257
testgi64.48 33662.87 33469.31 35971.24 38040.62 39785.49 30379.92 36765.36 29354.18 35583.49 27023.74 38584.55 36441.60 36660.79 34282.77 333
eth_miper_zixun_eth75.96 24074.40 23780.66 24784.66 27263.02 22389.28 25788.27 30171.88 20765.73 28381.65 29159.45 14992.81 26668.13 22460.53 34386.14 283
COLMAP_ROBcopyleft57.96 2062.98 34359.65 34672.98 33981.44 31253.00 34783.75 31475.53 37848.34 38348.81 37881.40 29824.14 38390.30 31832.95 39060.52 34475.65 384
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AUN-MVS78.37 19977.43 19281.17 23486.60 23857.45 32089.46 25491.16 18774.11 15174.40 17690.49 17355.52 20094.57 20374.73 16960.43 34591.48 200
hse-mvs281.12 14681.11 13381.16 23586.52 23957.48 31989.40 25591.16 18781.45 3882.73 8590.49 17360.11 14194.58 20187.69 5560.41 34691.41 202
RPSCF64.24 33761.98 33971.01 35476.10 36645.00 38775.83 37175.94 37446.94 38758.96 33484.59 25731.40 36482.00 38347.76 34260.33 34786.04 287
miper_lstm_enhance73.05 27071.73 27377.03 30783.80 28658.32 31081.76 33288.88 28069.80 25361.01 32078.23 33457.19 17587.51 35065.34 25859.53 34885.27 307
CP-MVSNet70.50 29169.91 28872.26 34580.71 31851.00 35887.23 29290.30 22067.84 27259.64 32882.69 27750.23 25582.30 38151.28 32259.28 34983.46 324
PS-CasMVS69.86 29869.13 29372.07 34980.35 32350.57 36087.02 29489.75 24167.27 27859.19 33282.28 28246.58 28782.24 38250.69 32459.02 35083.39 326
pm-mvs172.89 27371.09 27778.26 29379.10 34157.62 31790.80 21389.30 25867.66 27462.91 31281.78 28949.11 26992.95 25860.29 29158.89 35184.22 314
Anonymous2024052162.09 34459.08 34871.10 35367.19 39248.72 37183.91 31385.23 33750.38 37747.84 38071.22 37620.74 39185.51 36146.47 34758.75 35279.06 369
WR-MVS_H70.59 29069.94 28772.53 34281.03 31451.43 35487.35 29092.03 14667.38 27760.23 32680.70 30855.84 19883.45 37346.33 34858.58 35382.72 335
reproduce_monomvs79.49 17679.11 17080.64 24892.91 7761.47 25991.17 20293.28 9283.09 2064.04 29982.38 28166.19 6694.57 20381.19 11957.71 35485.88 293
PEN-MVS69.46 30168.56 29572.17 34779.27 33649.71 36486.90 29689.24 26067.24 28159.08 33382.51 28047.23 28383.54 37248.42 33657.12 35583.25 327
EU-MVSNet64.01 33863.01 33267.02 36874.40 37338.86 40383.27 32086.19 32845.11 39154.27 35481.15 30536.91 34480.01 38948.79 33557.02 35682.19 344
AllTest61.66 34558.06 35072.46 34379.57 33151.42 35580.17 34968.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
TestCases72.46 34379.57 33151.42 35568.61 39551.25 37445.88 38381.23 30019.86 39586.58 35538.98 37557.01 35779.39 366
Patchmtry67.53 31963.93 32778.34 29082.12 30664.38 18268.72 38784.00 34948.23 38559.24 33072.41 36757.82 17089.27 33246.10 34956.68 35981.36 348
our_test_368.29 31264.69 32179.11 28678.92 34264.85 17188.40 27385.06 33860.32 33852.68 36076.12 35340.81 31689.80 33044.25 35755.65 36082.67 339
FPMVS45.64 37043.10 37453.23 38751.42 41236.46 40564.97 39671.91 38729.13 40727.53 40761.55 3969.83 40965.01 41016.00 41355.58 36158.22 403
DTE-MVSNet68.46 31067.33 30471.87 35177.94 35649.00 37086.16 30288.58 29366.36 28658.19 33782.21 28446.36 28883.87 37044.97 35555.17 36282.73 334
MIMVSNet160.16 35357.33 35468.67 36169.71 38744.13 38978.92 35684.21 34555.05 36444.63 39071.85 37123.91 38481.54 38532.63 39455.03 36380.35 359
pmmvs667.57 31864.76 32076.00 31772.82 37953.37 34588.71 26786.78 32253.19 36857.58 34578.03 33635.33 35092.41 28255.56 30954.88 36482.21 343
TinyColmap60.32 35156.42 35872.00 35078.78 34553.18 34678.36 36075.64 37652.30 36941.59 39775.82 35614.76 40288.35 33935.84 38154.71 36574.46 385
test20.0363.83 33962.65 33567.38 36770.58 38639.94 39986.57 29984.17 34663.29 31151.86 36477.30 34137.09 34282.47 37938.87 37754.13 36679.73 364
OurMVSNet-221017-064.68 33462.17 33872.21 34676.08 36747.35 37680.67 34381.02 36256.19 36051.60 36579.66 32527.05 37988.56 33653.60 31853.63 36780.71 356
test_fmvs356.82 35754.86 36162.69 37653.59 40935.47 40675.87 37065.64 40043.91 39455.10 35171.43 3756.91 41474.40 39668.64 22252.63 36878.20 377
Patchmatch-RL test68.17 31364.49 32479.19 28271.22 38153.93 34370.07 38471.54 39069.22 25956.79 34762.89 39256.58 18888.61 33469.53 21152.61 36995.03 85
ppachtmachnet_test67.72 31663.70 32879.77 27378.92 34266.04 14188.68 26882.90 35960.11 34055.45 35075.96 35439.19 32090.55 31539.53 37352.55 37082.71 336
LF4IMVS54.01 36252.12 36359.69 37762.41 40139.91 40168.59 38868.28 39742.96 39744.55 39175.18 35714.09 40468.39 40341.36 36851.68 37170.78 393
N_pmnet50.55 36549.11 36754.88 38477.17 3614.02 42884.36 3092.00 42648.59 38145.86 38568.82 38032.22 36082.80 37831.58 39751.38 37277.81 379
pmmvs-eth3d65.53 33162.32 33775.19 32169.39 38959.59 29482.80 32883.43 35462.52 32051.30 36872.49 36532.86 35687.16 35355.32 31050.73 37378.83 372
CL-MVSNet_self_test69.92 29668.09 30075.41 31973.25 37655.90 33390.05 24089.90 23669.96 25061.96 31976.54 34851.05 24887.64 34749.51 33150.59 37482.70 337
PM-MVS59.40 35456.59 35667.84 36363.63 39841.86 39376.76 36563.22 40359.01 34551.07 36972.27 37011.72 40683.25 37561.34 28450.28 37578.39 376
MDA-MVSNet_test_wron63.78 34060.16 34474.64 32578.15 35460.41 28283.49 31684.03 34756.17 36239.17 39971.59 37337.22 33983.24 37642.87 36248.73 37680.26 361
YYNet163.76 34160.14 34574.62 32678.06 35560.19 28783.46 31883.99 35156.18 36139.25 39871.56 37437.18 34083.34 37442.90 36148.70 37780.32 360
KD-MVS_self_test60.87 34958.60 34967.68 36566.13 39539.93 40075.63 37384.70 34157.32 35449.57 37468.45 38229.55 37082.87 37748.09 33747.94 37880.25 362
SixPastTwentyTwo64.92 33361.78 34074.34 32978.74 34649.76 36383.42 31979.51 36962.86 31650.27 37177.35 34030.92 36890.49 31745.89 35047.06 37982.78 332
new_pmnet49.31 36646.44 36957.93 37962.84 40040.74 39668.47 38962.96 40436.48 40135.09 40257.81 39914.97 40172.18 39832.86 39246.44 38060.88 401
EGC-MVSNET42.35 37238.09 37555.11 38374.57 37146.62 38271.63 38155.77 4070.04 4210.24 42262.70 39314.24 40374.91 39517.59 41046.06 38143.80 407
TransMVSNet (Re)70.07 29567.66 30177.31 30580.62 32159.13 30391.78 17284.94 34065.97 28860.08 32780.44 31350.78 24991.87 29648.84 33445.46 38280.94 353
ambc69.61 35761.38 40441.35 39549.07 41185.86 33350.18 37366.40 38510.16 40888.14 34145.73 35144.20 38379.32 368
TDRefinement55.28 36051.58 36466.39 36959.53 40646.15 38476.23 36872.80 38344.60 39242.49 39576.28 35215.29 40082.39 38033.20 38943.75 38470.62 394
Gipumacopyleft34.91 37931.44 38245.30 39470.99 38339.64 40219.85 41672.56 38520.10 41216.16 41621.47 4175.08 41771.16 39913.07 41443.70 38525.08 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f46.58 36843.45 37255.96 38145.18 41632.05 41061.18 40049.49 41433.39 40342.05 39662.48 3947.00 41365.56 40847.08 34543.21 38670.27 395
MDA-MVSNet-bldmvs61.54 34757.70 35273.05 33879.53 33357.00 32783.08 32481.23 36157.57 35034.91 40372.45 36632.79 35786.26 35735.81 38241.95 38775.89 383
new-patchmatchnet59.30 35556.48 35767.79 36465.86 39644.19 38882.47 32981.77 36059.94 34143.65 39366.20 38627.67 37781.68 38439.34 37441.40 38877.50 380
UnsupCasMVSNet_eth65.79 32863.10 33173.88 33270.71 38450.29 36281.09 34089.88 23772.58 18549.25 37674.77 36132.57 35987.43 35155.96 30841.04 38983.90 317
test_vis3_rt40.46 37537.79 37648.47 39244.49 41733.35 40966.56 39532.84 42332.39 40429.65 40539.13 4133.91 42168.65 40250.17 32640.99 39043.40 408
pmmvs355.51 35951.50 36567.53 36657.90 40750.93 35980.37 34573.66 38240.63 40044.15 39264.75 38916.30 39778.97 39044.77 35640.98 39172.69 390
APD_test140.50 37437.31 37750.09 39051.88 41035.27 40759.45 40452.59 41121.64 41026.12 40857.80 4004.56 41866.56 40622.64 40539.09 39248.43 406
mvs5depth61.03 34857.65 35371.18 35267.16 39347.04 38172.74 37777.49 37057.47 35360.52 32372.53 36422.84 38788.38 33849.15 33238.94 39378.11 378
UnsupCasMVSNet_bld61.60 34657.71 35173.29 33768.73 39051.64 35278.61 35789.05 27457.20 35546.11 38261.96 39528.70 37488.60 33550.08 32838.90 39479.63 365
PMVScopyleft26.43 2231.84 38228.16 38542.89 39525.87 42527.58 41650.92 41049.78 41321.37 41114.17 41740.81 4122.01 42466.62 4059.61 41738.88 39534.49 413
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
K. test v363.09 34259.61 34773.53 33576.26 36549.38 36883.27 32077.15 37264.35 29947.77 38172.32 36928.73 37387.79 34549.93 32936.69 39683.41 325
mmtdpeth68.33 31166.37 30874.21 33182.81 30051.73 35184.34 31080.42 36567.01 28271.56 21468.58 38130.52 36992.35 28675.89 15636.21 39778.56 375
kuosan60.86 35060.24 34362.71 37581.57 31046.43 38375.70 37285.88 33157.98 34948.95 37769.53 37958.42 16376.53 39128.25 40035.87 39865.15 399
KD-MVS_2432*160069.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
miper_refine_blended69.03 30466.37 30877.01 30885.56 25861.06 26581.44 33790.25 22267.27 27858.00 34076.53 34954.49 21187.63 34848.04 33835.77 39982.34 341
mvsany_test348.86 36746.35 37056.41 38046.00 41531.67 41162.26 39947.25 41643.71 39545.54 38768.15 38310.84 40764.44 41257.95 30035.44 40173.13 389
LCM-MVSNet40.54 37335.79 37854.76 38536.92 42230.81 41251.41 40969.02 39422.07 40924.63 40945.37 4064.56 41865.81 40733.67 38734.50 40267.67 396
test_method38.59 37735.16 38048.89 39154.33 40821.35 42145.32 41253.71 4107.41 41828.74 40651.62 4028.70 41152.87 41533.73 38632.89 40372.47 391
lessismore_v073.72 33472.93 37847.83 37461.72 40545.86 38573.76 36228.63 37589.81 32847.75 34331.37 40483.53 321
testf132.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
APD_test232.77 38029.47 38342.67 39641.89 41930.81 41252.07 40743.45 41715.45 41318.52 41344.82 4072.12 42258.38 41316.05 41130.87 40538.83 409
ttmdpeth53.34 36349.96 36663.45 37362.07 40340.04 39872.06 37865.64 40042.54 39851.88 36377.79 33813.94 40576.48 39232.93 39130.82 40773.84 387
PVSNet_068.08 1571.81 28368.32 29982.27 20684.68 27162.31 24288.68 26890.31 21975.84 12857.93 34280.65 31137.85 33494.19 22069.94 20729.05 40890.31 220
dongtai55.18 36155.46 36054.34 38676.03 36836.88 40476.07 36984.61 34351.28 37343.41 39464.61 39056.56 18967.81 40418.09 40928.50 40958.32 402
MVStest151.35 36446.89 36864.74 37065.06 39751.10 35767.33 39372.58 38430.20 40635.30 40174.82 35927.70 37669.89 40124.44 40324.57 41073.22 388
WB-MVS46.23 36944.94 37150.11 38962.13 40221.23 42276.48 36755.49 40845.89 38935.78 40061.44 39735.54 34872.83 3979.96 41621.75 41156.27 404
SSC-MVS44.51 37143.35 37347.99 39361.01 40518.90 42474.12 37554.36 40943.42 39634.10 40460.02 39834.42 35370.39 4009.14 41819.57 41254.68 405
DeepMVS_CXcopyleft34.71 39951.45 41124.73 41928.48 42531.46 40517.49 41552.75 4015.80 41642.60 42018.18 40819.42 41336.81 412
PMMVS237.93 37833.61 38150.92 38846.31 41424.76 41860.55 40350.05 41228.94 40820.93 41047.59 4034.41 42065.13 40925.14 40218.55 41462.87 400
MVEpermissive24.84 2324.35 38419.77 39038.09 39834.56 42426.92 41726.57 41438.87 42111.73 41711.37 41827.44 4141.37 42550.42 41711.41 41514.60 41536.93 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 38324.00 38726.45 40043.74 41818.44 42560.86 40139.66 41915.11 4159.53 41922.10 4166.52 41546.94 4188.31 41910.14 41613.98 416
EMVS23.76 38523.20 38925.46 40141.52 42116.90 42660.56 40238.79 42214.62 4168.99 42020.24 4197.35 41245.82 4197.25 4209.46 41713.64 417
tmp_tt22.26 38623.75 38817.80 4025.23 42612.06 42735.26 41339.48 4202.82 42018.94 41144.20 40922.23 38924.64 42136.30 3799.31 41816.69 415
ANet_high40.27 37635.20 37955.47 38234.74 42334.47 40863.84 39871.56 38948.42 38218.80 41241.08 4119.52 41064.45 41120.18 4078.66 41967.49 397
wuyk23d11.30 38810.95 39112.33 40348.05 41319.89 42325.89 4151.92 4273.58 4193.12 4211.37 4210.64 42615.77 4226.23 4217.77 4201.35 418
testmvs7.23 3909.62 3930.06 4050.04 4270.02 43084.98 3070.02 4280.03 4220.18 4231.21 4220.01 4280.02 4230.14 4220.01 4210.13 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
cdsmvs_eth3d_5k19.86 38726.47 3860.00 4060.00 4290.00 4310.00 41793.45 850.00 4240.00 42595.27 5949.56 2610.00 4250.00 4240.00 4220.00 421
pcd_1.5k_mvsjas4.46 3925.95 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42453.55 2230.00 4250.00 4240.00 4220.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
test1236.92 3919.21 3940.08 4040.03 4280.05 42981.65 3350.01 4290.02 4230.14 4240.85 4230.03 4270.02 4230.12 4230.00 4220.16 419
ab-mvs-re7.91 38910.55 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.95 690.00 4290.00 4250.00 4240.00 4220.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4220.00 421
WAC-MVS49.45 36631.56 398
FOURS193.95 4661.77 25193.96 7091.92 15062.14 32486.57 46
test_one_060196.32 1869.74 4994.18 5771.42 22890.67 1996.85 1674.45 19
eth-test20.00 429
eth-test0.00 429
test_241102_ONE96.45 1269.38 5594.44 4671.65 21792.11 797.05 776.79 999.11 6
save fliter93.84 4967.89 9495.05 3992.66 11978.19 94
test072696.40 1569.99 3896.76 894.33 5471.92 20391.89 1197.11 673.77 22
GSMVS94.68 99
test_part296.29 1968.16 8890.78 17
sam_mvs157.85 16994.68 99
sam_mvs54.91 208
MTGPAbinary92.23 132
test_post178.95 35520.70 41853.05 22891.50 31060.43 289
test_post23.01 41556.49 19092.67 273
patchmatchnet-post67.62 38457.62 17290.25 319
MTMP93.77 8432.52 424
gm-plane-assit88.42 19367.04 11778.62 9091.83 15097.37 7076.57 152
TEST994.18 4167.28 10994.16 5993.51 8171.75 21485.52 5795.33 5468.01 5297.27 80
test_894.19 4067.19 11194.15 6193.42 8871.87 20885.38 6095.35 5368.19 5096.95 106
agg_prior94.16 4366.97 11993.31 9184.49 6896.75 116
test_prior467.18 11393.92 73
test_prior86.42 7694.71 3567.35 10893.10 10296.84 11395.05 83
旧先验292.00 16159.37 34487.54 3993.47 24975.39 160
新几何291.41 182
无先验92.71 12692.61 12362.03 32597.01 9666.63 24093.97 134
原ACMM292.01 158
testdata296.09 14161.26 285
segment_acmp65.94 70
testdata189.21 25977.55 107
plane_prior786.94 23361.51 257
plane_prior687.23 22562.32 24150.66 250
plane_prior489.14 196
plane_prior361.95 24979.09 8072.53 198
plane_prior293.13 11078.81 87
plane_prior187.15 227
n20.00 430
nn0.00 430
door-mid66.01 399
test1193.01 105
door66.57 398
HQP5-MVS63.66 206
HQP-NCC87.54 21894.06 6379.80 6374.18 177
ACMP_Plane87.54 21894.06 6379.80 6374.18 177
BP-MVS77.63 147
HQP4-MVS74.18 17795.61 16588.63 241
HQP2-MVS51.63 242
NP-MVS87.41 22163.04 22290.30 177
MDTV_nov1_ep13_2view59.90 29080.13 35067.65 27572.79 19254.33 21659.83 29392.58 176
Test By Simon54.21 217