This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
IterMVS-SCA-FT99.00 18999.16 12198.51 30599.75 10395.90 34798.07 30999.84 3499.84 3599.89 3299.73 9996.01 28799.99 699.33 65100.00 199.63 105
new-patchmatchnet99.35 9999.57 4898.71 30099.82 5196.62 33798.55 26599.75 7899.50 10099.88 3899.87 3499.31 3999.88 17399.43 47100.00 199.62 116
anonymousdsp99.80 1299.77 1399.90 599.96 499.88 999.73 2699.85 2899.70 6199.92 1999.93 1599.45 2599.97 1999.36 59100.00 199.85 14
UA-Net99.78 1499.76 1599.86 1899.72 11699.71 7699.91 399.95 899.96 399.71 10899.91 2199.15 5699.97 1999.50 41100.00 199.90 4
PS-MVSNAJss99.84 899.82 899.89 999.96 499.77 4999.68 4399.85 2899.95 599.98 399.92 1899.28 4399.98 999.75 13100.00 199.94 2
jajsoiax99.89 399.89 399.89 999.96 499.78 4699.70 3499.86 2499.89 1799.98 399.90 2399.94 199.98 999.75 13100.00 199.90 4
mvs_tets99.90 299.90 299.90 599.96 499.79 4399.72 2999.88 1999.92 1099.98 399.93 1599.94 199.98 999.77 12100.00 199.92 3
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 299.99 1100.00 199.98 1099.78 6100.00 199.92 1100.00 199.87 10
test_djsdf99.84 899.81 999.91 299.94 1199.84 2299.77 1499.80 5299.73 5399.97 699.92 1899.77 799.98 999.43 47100.00 199.90 4
IterMVS98.97 19399.16 12198.42 30999.74 10995.64 35098.06 31199.83 3699.83 3899.85 4899.74 9596.10 28699.99 699.27 77100.00 199.63 105
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 499.87 499.91 299.99 199.91 299.65 57100.00 199.90 12100.00 199.97 1199.61 1799.97 1999.75 13100.00 199.84 15
bld_raw_dy_0_6499.70 2299.65 2999.85 2199.95 1099.77 4999.66 5199.71 9899.95 599.91 2299.77 8498.35 170100.00 199.54 3499.99 1299.79 32
test250694.73 34394.59 34595.15 35999.59 16285.90 38499.75 2074.01 38599.89 1799.71 10899.86 4179.00 38399.90 14299.52 3899.99 1299.65 91
test111197.74 29498.16 26896.49 35399.60 15889.86 38299.71 3391.21 37999.89 1799.88 3899.87 3493.73 31099.90 14299.56 3299.99 1299.70 56
ECVR-MVScopyleft97.73 29598.04 27496.78 34799.59 16290.81 37899.72 2990.43 38199.89 1799.86 4699.86 4193.60 31299.89 15899.46 4499.99 1299.65 91
pmmvs-eth3d99.48 6399.47 6199.51 16799.77 8899.41 15998.81 23799.66 12299.42 12199.75 8999.66 14599.20 5199.76 29898.98 11299.99 1299.36 238
v7n99.82 1099.80 1099.88 1399.96 499.84 2299.82 899.82 4199.84 3599.94 1299.91 2199.13 6199.96 3799.83 999.99 1299.83 19
RRT_MVS99.67 3199.59 4199.91 299.94 1199.88 999.78 1199.27 29199.87 2499.91 2299.87 3498.04 19999.96 3799.68 1799.99 1299.90 4
v899.68 2899.69 2399.65 10999.80 6399.40 16099.66 5199.76 7199.64 7899.93 1599.85 4598.66 12599.84 24099.88 699.99 1299.71 53
v1099.69 2599.69 2399.66 10499.81 5899.39 16299.66 5199.75 7899.60 9299.92 1999.87 3498.75 11499.86 20599.90 299.99 1299.73 49
CHOSEN 1792x268899.39 8999.30 9799.65 10999.88 3099.25 19498.78 24499.88 1998.66 21699.96 899.79 7097.45 24099.93 7899.34 6199.99 1299.78 34
PVSNet_Blended_VisFu99.40 8599.38 7899.44 18899.90 2498.66 26198.94 22099.91 1297.97 27899.79 7199.73 9999.05 7399.97 1999.15 9499.99 1299.68 66
IterMVS-LS99.41 8299.47 6199.25 23999.81 5898.09 29598.85 22999.76 7199.62 8299.83 5599.64 15298.54 14299.97 1999.15 9499.99 1299.68 66
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS98.90 499.62 4299.61 3899.67 9799.72 11699.44 14899.24 14199.71 9899.27 13699.93 1599.90 2399.70 1199.93 7898.99 11099.99 1299.64 100
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LTVRE_ROB99.19 199.88 499.87 499.88 1399.91 2099.90 599.96 199.92 999.90 1299.97 699.87 3499.81 599.95 4799.54 3499.99 1299.80 26
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_low_dy_conf_00199.75 1699.70 1899.90 599.94 1199.85 1599.74 2299.54 19999.88 2299.90 2799.89 2798.84 9799.95 4799.59 2499.98 2699.90 4
Anonymous2024052199.44 7499.42 7399.49 17399.89 2698.96 23599.62 6099.76 7199.85 3299.82 5699.88 3196.39 27899.97 1999.59 2499.98 2699.55 156
D2MVS99.22 13699.19 11899.29 23099.69 13198.74 25598.81 23799.41 25298.55 22799.68 11699.69 12598.13 19399.87 18598.82 12999.98 2699.24 259
CHOSEN 280x42098.41 26298.41 24198.40 31099.34 27195.89 34896.94 36599.44 24598.80 20499.25 24499.52 22393.51 31399.98 998.94 12199.98 2699.32 247
v119299.57 4799.57 4899.57 14999.77 8899.22 20399.04 19899.60 16399.18 15199.87 4599.72 10599.08 6899.85 22399.89 599.98 2699.66 83
v114499.54 5599.53 5799.59 13999.79 7399.28 18699.10 18599.61 15099.20 14999.84 5199.73 9998.67 12399.84 24099.86 899.98 2699.64 100
mvsmamba99.74 1999.70 1899.85 2199.93 1799.83 2799.76 1799.81 5099.96 399.91 2299.81 6198.60 13399.94 6299.58 2999.98 2699.77 39
bld_raw_conf00599.81 1199.79 1199.86 1899.94 1199.85 1599.77 1499.90 1599.97 299.92 1999.86 4199.21 5099.94 6299.59 2499.98 2699.78 34
OurMVSNet-221017-099.75 1699.71 1799.84 2499.96 499.83 2799.83 699.85 2899.80 4499.93 1599.93 1598.54 14299.93 7899.59 2499.98 2699.76 44
UGNet99.38 9199.34 8699.49 17398.90 33998.90 24599.70 3499.35 27399.86 2798.57 32199.81 6198.50 15299.93 7899.38 5499.98 2699.66 83
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet199.66 3399.62 3499.80 3499.94 1199.87 1199.69 4099.77 6699.78 4999.93 1599.89 2797.94 20899.92 9899.65 1999.98 2699.62 116
Vis-MVSNetpermissive99.75 1699.74 1699.79 3999.88 3099.66 9499.69 4099.92 999.67 7099.77 7999.75 9399.61 1799.98 999.35 6099.98 2699.72 50
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
iter_conf_final98.75 22298.54 23099.40 20299.33 27698.75 25499.26 13499.59 17099.80 4499.76 8199.58 19790.17 34999.92 9899.37 5799.97 3899.54 164
UniMVSNet_ETH3D99.85 799.83 799.90 599.89 2699.91 299.89 499.71 9899.93 899.95 1199.89 2799.71 999.96 3799.51 3999.97 3899.84 15
test_part198.63 23398.26 25699.75 6299.40 24999.49 13499.67 4799.68 11399.86 2799.88 3899.86 4186.73 36799.93 7899.34 6199.97 3899.81 25
CANet99.11 16799.05 15699.28 23298.83 34898.56 26698.71 25399.41 25299.25 14099.23 24899.22 30397.66 23399.94 6299.19 8599.97 3899.33 244
pmmvs699.86 699.86 699.83 2699.94 1199.90 599.83 699.91 1299.85 3299.94 1299.95 1399.73 899.90 14299.65 1999.97 3899.69 60
v14419299.55 5399.54 5399.58 14399.78 8099.20 20999.11 18499.62 14399.18 15199.89 3299.72 10598.66 12599.87 18599.88 699.97 3899.66 83
v192192099.56 5099.57 4899.55 15699.75 10399.11 21799.05 19699.61 15099.15 16199.88 3899.71 11299.08 6899.87 18599.90 299.97 3899.66 83
FC-MVSNet-test99.70 2299.65 2999.86 1899.88 3099.86 1499.72 2999.78 6399.90 1299.82 5699.83 5198.45 15799.87 18599.51 3999.97 3899.86 12
iter_conf0598.46 25798.23 25899.15 25299.04 32797.99 29999.10 18599.61 15099.79 4799.76 8199.58 19787.88 35899.92 9899.31 7099.97 3899.53 170
v2v48299.50 5999.47 6199.58 14399.78 8099.25 19499.14 17299.58 18099.25 14099.81 6399.62 17198.24 18199.84 24099.83 999.97 3899.64 100
Patchmtry98.78 21898.54 23099.49 17398.89 34299.19 21099.32 11499.67 11899.65 7699.72 10399.79 7091.87 32899.95 4798.00 19099.97 3899.33 244
PVSNet_BlendedMVS99.03 18199.01 16899.09 25999.54 19097.99 29998.58 25999.82 4197.62 29699.34 22799.71 11298.52 14999.77 29697.98 19199.97 3899.52 181
FMVSNet199.66 3399.63 3399.73 7899.78 8099.77 4999.68 4399.70 10499.67 7099.82 5699.83 5198.98 7999.90 14299.24 7899.97 3899.53 170
HyFIR lowres test98.91 20298.64 21799.73 7899.85 3999.47 13798.07 30999.83 3698.64 21899.89 3299.60 18992.57 320100.00 199.33 6599.97 3899.72 50
patch_mono-299.51 5899.46 6599.64 11699.70 12799.11 21799.04 19899.87 2199.71 5799.47 19399.79 7098.24 18199.98 999.38 5499.96 5299.83 19
dcpmvs_299.61 4499.64 3299.53 16299.79 7398.82 24999.58 7399.97 299.95 599.96 899.76 8898.44 15899.99 699.34 6199.96 5299.78 34
ppachtmachnet_test98.89 20799.12 13298.20 31999.66 14595.24 35497.63 33999.68 11399.08 16899.78 7499.62 17198.65 12799.88 17398.02 18699.96 5299.48 199
Anonymous2023121199.62 4299.57 4899.76 5299.61 15699.60 11599.81 999.73 8699.82 4099.90 2799.90 2397.97 20799.86 20599.42 5299.96 5299.80 26
nrg03099.70 2299.66 2799.82 2899.76 9299.84 2299.61 6599.70 10499.93 899.78 7499.68 13699.10 6299.78 28899.45 4599.96 5299.83 19
v124099.56 5099.58 4599.51 16799.80 6399.00 22999.00 20699.65 13299.15 16199.90 2799.75 9399.09 6499.88 17399.90 299.96 5299.67 73
PS-CasMVS99.66 3399.58 4599.89 999.80 6399.85 1599.66 5199.73 8699.62 8299.84 5199.71 11298.62 12999.96 3799.30 7199.96 5299.86 12
TAMVS99.49 6199.45 6699.63 12399.48 22399.42 15599.45 8999.57 18299.66 7499.78 7499.83 5197.85 21799.86 20599.44 4699.96 5299.61 126
test_040299.22 13699.14 12599.45 18699.79 7399.43 15299.28 12999.68 11399.54 9699.40 21899.56 21099.07 7099.82 26196.01 31799.96 5299.11 290
our_test_398.85 21299.09 14498.13 32199.66 14594.90 35797.72 33599.58 18099.07 17099.64 13199.62 17198.19 18999.93 7898.41 15499.95 6199.55 156
CANet_DTU98.91 20298.85 19899.09 25998.79 35398.13 29098.18 29599.31 28299.48 10298.86 29599.51 22796.56 26999.95 4799.05 10699.95 6199.19 273
pmmvs599.19 14699.11 13599.42 19499.76 9298.88 24698.55 26599.73 8698.82 20199.72 10399.62 17196.56 26999.82 26199.32 6799.95 6199.56 153
V4299.56 5099.54 5399.63 12399.79 7399.46 14199.39 9899.59 17099.24 14299.86 4699.70 11998.55 14099.82 26199.79 1199.95 6199.60 130
EU-MVSNet99.39 8999.62 3498.72 29899.88 3096.44 33999.56 7799.85 2899.90 1299.90 2799.85 4598.09 19599.83 25199.58 2999.95 6199.90 4
PMMVS299.48 6399.45 6699.57 14999.76 9298.99 23098.09 30699.90 1598.95 18399.78 7499.58 19799.57 2099.93 7899.48 4299.95 6199.79 32
DTE-MVSNet99.68 2899.61 3899.88 1399.80 6399.87 1199.67 4799.71 9899.72 5699.84 5199.78 7798.67 12399.97 1999.30 7199.95 6199.80 26
WR-MVS_H99.61 4499.53 5799.87 1699.80 6399.83 2799.67 4799.75 7899.58 9599.85 4899.69 12598.18 19199.94 6299.28 7699.95 6199.83 19
K. test v398.87 21098.60 22099.69 9399.93 1799.46 14199.74 2294.97 37299.78 4999.88 3899.88 3193.66 31199.97 1999.61 2299.95 6199.64 100
TDRefinement99.72 2099.70 1899.77 4599.90 2499.85 1599.86 599.92 999.69 6499.78 7499.92 1899.37 3399.88 17398.93 12299.95 6199.60 130
Gipumacopyleft99.57 4799.59 4199.49 17399.98 399.71 7699.72 2999.84 3499.81 4199.94 1299.78 7798.91 8899.71 31398.41 15499.95 6199.05 305
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030498.88 20898.71 21199.39 20698.85 34698.91 24499.45 8999.30 28598.56 22597.26 36599.68 13696.18 28499.96 3799.17 9099.94 7299.29 253
v14899.40 8599.41 7499.39 20699.76 9298.94 23799.09 19099.59 17099.17 15599.81 6399.61 18098.41 16299.69 32199.32 6799.94 7299.53 170
casdiffmvs99.63 3999.61 3899.67 9799.79 7399.59 11899.13 17899.85 2899.79 4799.76 8199.72 10599.33 3899.82 26199.21 8199.94 7299.59 139
PEN-MVS99.66 3399.59 4199.89 999.83 4499.87 1199.66 5199.73 8699.70 6199.84 5199.73 9998.56 13999.96 3799.29 7499.94 7299.83 19
CP-MVSNet99.54 5599.43 7199.87 1699.76 9299.82 3399.57 7599.61 15099.54 9699.80 6699.64 15297.79 22199.95 4799.21 8199.94 7299.84 15
baseline99.63 3999.62 3499.66 10499.80 6399.62 10799.44 9299.80 5299.71 5799.72 10399.69 12599.15 5699.83 25199.32 6799.94 7299.53 170
FMVSNet299.35 9999.28 10499.55 15699.49 21799.35 17599.45 8999.57 18299.44 11499.70 11199.74 9597.21 25299.87 18599.03 10799.94 7299.44 215
ACMMP++_ref99.94 72
eth_miper_zixun_eth98.68 23098.71 21198.60 30299.10 32096.84 33497.52 34799.54 19998.94 18499.58 15799.48 23896.25 28299.76 29898.01 18999.93 8099.21 266
FIs99.65 3899.58 4599.84 2499.84 4099.85 1599.66 5199.75 7899.86 2799.74 9899.79 7098.27 17999.85 22399.37 5799.93 8099.83 19
pmmvs499.13 16199.06 15299.36 21699.57 17799.10 22298.01 31499.25 29798.78 20799.58 15799.44 25098.24 18199.76 29898.74 13799.93 8099.22 264
XXY-MVS99.71 2199.67 2699.81 3199.89 2699.72 7499.59 7199.82 4199.39 12299.82 5699.84 5099.38 3199.91 12299.38 5499.93 8099.80 26
pm-mvs199.79 1399.79 1199.78 4299.91 2099.83 2799.76 1799.87 2199.73 5399.89 3299.87 3499.63 1499.87 18599.54 3499.92 8499.63 105
EI-MVSNet99.38 9199.44 6899.21 24499.58 16798.09 29599.26 13499.46 24099.62 8299.75 8999.67 14198.54 14299.85 22399.15 9499.92 8499.68 66
TranMVSNet+NR-MVSNet99.54 5599.47 6199.76 5299.58 16799.64 10199.30 12199.63 14099.61 8699.71 10899.56 21098.76 11299.96 3799.14 10099.92 8499.68 66
lessismore_v099.64 11699.86 3699.38 16590.66 38099.89 3299.83 5194.56 30199.97 1999.56 3299.92 8499.57 150
SixPastTwentyTwo99.42 7899.30 9799.76 5299.92 1999.67 9299.70 3499.14 31499.65 7699.89 3299.90 2396.20 28399.94 6299.42 5299.92 8499.67 73
MVSTER98.47 25698.22 26099.24 24199.06 32498.35 28199.08 19399.46 24099.27 13699.75 8999.66 14588.61 35699.85 22399.14 10099.92 8499.52 181
N_pmnet98.73 22698.53 23299.35 21799.72 11698.67 25998.34 28394.65 37398.35 25299.79 7199.68 13698.03 20099.93 7898.28 16599.92 8499.44 215
CSCG99.37 9499.29 10299.60 13799.71 11999.46 14199.43 9499.85 2898.79 20599.41 21399.60 18998.92 8699.92 9898.02 18699.92 8499.43 221
CMPMVSbinary77.52 2398.50 25198.19 26599.41 20198.33 36899.56 12499.01 20499.59 17095.44 34999.57 16099.80 6495.64 29199.46 36996.47 30099.92 8499.21 266
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS99.57 4799.56 5299.62 13299.77 8899.33 17899.26 13499.76 7199.32 13199.80 6699.78 7799.29 4199.87 18599.15 9499.91 9399.66 83
miper_lstm_enhance98.65 23298.60 22098.82 29399.20 30297.33 32297.78 33399.66 12299.01 17699.59 15599.50 23094.62 30099.85 22398.12 18199.90 9499.26 256
CS-MVS-test99.68 2899.70 1899.64 11699.57 17799.83 2799.78 1199.97 299.92 1099.50 18899.38 26399.57 2099.95 4799.69 1699.90 9499.15 281
EI-MVSNet-UG-set99.48 6399.50 5999.42 19499.57 17798.65 26499.24 14199.46 24099.68 6699.80 6699.66 14598.99 7899.89 15899.19 8599.90 9499.72 50
diffmvs99.34 10499.32 9199.39 20699.67 14498.77 25398.57 26399.81 5099.61 8699.48 19199.41 25398.47 15399.86 20598.97 11499.90 9499.53 170
YYNet198.95 19998.99 17698.84 28899.64 14997.14 32798.22 29499.32 27898.92 18999.59 15599.66 14597.40 24299.83 25198.27 16699.90 9499.55 156
GBi-Net99.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
FMVSNet597.80 29197.25 30799.42 19498.83 34898.97 23399.38 10099.80 5298.87 19599.25 24499.69 12580.60 37899.91 12298.96 11699.90 9499.38 232
test199.42 7899.31 9299.73 7899.49 21799.77 4999.68 4399.70 10499.44 11499.62 14399.83 5197.21 25299.90 14298.96 11699.90 9499.53 170
FMVSNet398.80 21798.63 21999.32 22499.13 31298.72 25699.10 18599.48 23299.23 14499.62 14399.64 15292.57 32099.86 20598.96 11699.90 9499.39 230
cl____98.54 24798.41 24198.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.85 30799.78 28897.97 19399.89 10399.17 277
DIV-MVS_self_test98.54 24798.42 24098.92 27699.03 32997.80 30997.46 34999.59 17098.90 19199.60 15299.46 24693.87 30699.78 28897.97 19399.89 10399.18 275
CS-MVS99.67 3199.70 1899.58 14399.53 19599.84 2299.79 1099.96 699.90 1299.61 14999.41 25399.51 2499.95 4799.66 1899.89 10398.96 314
EI-MVSNet-Vis-set99.47 6999.49 6099.42 19499.57 17798.66 26199.24 14199.46 24099.67 7099.79 7199.65 15098.97 8199.89 15899.15 9499.89 10399.71 53
DSMNet-mixed99.48 6399.65 2998.95 27199.71 11997.27 32399.50 8299.82 4199.59 9499.41 21399.85 4599.62 16100.00 199.53 3799.89 10399.59 139
Vis-MVSNet (Re-imp)98.77 21998.58 22599.34 21899.78 8098.88 24699.61 6599.56 18799.11 16799.24 24799.56 21093.00 31899.78 28897.43 24299.89 10399.35 241
EPP-MVSNet99.17 15499.00 17199.66 10499.80 6399.43 15299.70 3499.24 30099.48 10299.56 16799.77 8494.89 29699.93 7898.72 13999.89 10399.63 105
CLD-MVS98.76 22198.57 22699.33 22099.57 17798.97 23397.53 34599.55 19396.41 33699.27 24299.13 31299.07 7099.78 28896.73 28599.89 10399.23 262
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH98.42 699.59 4699.54 5399.72 8499.86 3699.62 10799.56 7799.79 5898.77 20899.80 6699.85 4599.64 1399.85 22398.70 14099.89 10399.70 56
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2599.66 2799.78 4299.76 9299.76 5799.60 7099.82 4199.46 11199.75 8999.56 21099.63 1499.95 4799.43 4799.88 11299.62 116
c3_l98.72 22798.71 21198.72 29899.12 31497.22 32597.68 33899.56 18798.90 19199.54 17499.48 23896.37 27999.73 30797.88 19999.88 11299.21 266
VPA-MVSNet99.66 3399.62 3499.79 3999.68 13999.75 6199.62 6099.69 11099.85 3299.80 6699.81 6198.81 9999.91 12299.47 4399.88 11299.70 56
MDA-MVSNet_test_wron98.95 19998.99 17698.85 28699.64 14997.16 32698.23 29399.33 27698.93 18799.56 16799.66 14597.39 24499.83 25198.29 16499.88 11299.55 156
XVG-OURS99.21 14199.06 15299.65 10999.82 5199.62 10797.87 33099.74 8398.36 24799.66 12599.68 13699.71 999.90 14296.84 27999.88 11299.43 221
CDS-MVSNet99.22 13699.13 12899.50 17099.35 26199.11 21798.96 21799.54 19999.46 11199.61 14999.70 11996.31 28099.83 25199.34 6199.88 11299.55 156
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 18198.85 19899.55 15699.80 6399.25 19499.73 2699.15 31399.37 12499.61 14999.71 11294.73 29999.81 27797.70 22199.88 11299.58 144
USDC98.96 19698.93 18599.05 26599.54 19097.99 29997.07 36399.80 5298.21 26499.75 8999.77 8498.43 15999.64 34997.90 19799.88 11299.51 183
ACMH+98.40 899.50 5999.43 7199.71 8899.86 3699.76 5799.32 11499.77 6699.53 9899.77 7999.76 8899.26 4799.78 28897.77 21099.88 11299.60 130
SD-MVS99.01 18799.30 9798.15 32099.50 21299.40 16098.94 22099.61 15099.22 14899.75 8999.82 5899.54 2395.51 38097.48 23999.87 12199.54 164
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet (Re)99.37 9499.26 10999.68 9499.51 20699.58 12198.98 21599.60 16399.43 11999.70 11199.36 27097.70 22499.88 17399.20 8499.87 12199.59 139
WR-MVS99.11 16798.93 18599.66 10499.30 28399.42 15598.42 28099.37 26999.04 17599.57 16099.20 30796.89 26499.86 20598.66 14499.87 12199.70 56
NR-MVSNet99.40 8599.31 9299.68 9499.43 24099.55 12799.73 2699.50 22599.46 11199.88 3899.36 27097.54 23799.87 18598.97 11499.87 12199.63 105
LPG-MVS_test99.22 13699.05 15699.74 6899.82 5199.63 10599.16 16899.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
LGP-MVS_train99.74 6899.82 5199.63 10599.73 8697.56 29899.64 13199.69 12599.37 3399.89 15896.66 28999.87 12199.69 60
COLMAP_ROBcopyleft98.06 1299.45 7299.37 8199.70 9299.83 4499.70 8399.38 10099.78 6399.53 9899.67 12199.78 7799.19 5299.86 20597.32 24799.87 12199.55 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0399.55 5399.54 5399.58 14399.79 7399.37 16899.02 20299.89 1799.60 9299.82 5699.62 17198.81 9999.89 15899.43 4799.86 12899.47 204
Baseline_NR-MVSNet99.49 6199.37 8199.82 2899.91 2099.84 2298.83 23299.86 2499.68 6699.65 12999.88 3197.67 22999.87 18599.03 10799.86 12899.76 44
DROMVSNet99.69 2599.69 2399.68 9499.71 11999.91 299.76 1799.96 699.86 2799.51 18699.39 26199.57 2099.93 7899.64 2199.86 12899.20 270
MSDG99.08 17298.98 17999.37 21399.60 15899.13 21597.54 34399.74 8398.84 20099.53 17999.55 21799.10 6299.79 28597.07 26799.86 12899.18 275
EGC-MVSNET89.05 34585.52 34899.64 11699.89 2699.78 4699.56 7799.52 21724.19 37949.96 38099.83 5199.15 5699.92 9897.71 21899.85 13299.21 266
Patchmatch-RL test98.60 23798.36 24699.33 22099.77 8899.07 22698.27 29099.87 2198.91 19099.74 9899.72 10590.57 34599.79 28598.55 14899.85 13299.11 290
APDe-MVS99.48 6399.36 8499.85 2199.55 18999.81 3699.50 8299.69 11098.99 17799.75 8999.71 11298.79 10699.93 7898.46 15299.85 13299.80 26
ACMP97.51 1499.05 17798.84 20099.67 9799.78 8099.55 12798.88 22399.66 12297.11 32499.47 19399.60 18999.07 7099.89 15896.18 31299.85 13299.58 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft92.94 2198.82 21598.81 20498.85 28699.84 4097.99 29999.20 15199.47 23699.71 5799.42 20599.82 5898.09 19599.47 36793.88 35999.85 13299.07 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120699.35 9999.31 9299.47 17999.74 10999.06 22899.28 12999.74 8399.23 14499.72 10399.53 22197.63 23599.88 17399.11 10299.84 13799.48 199
Regformer-399.41 8299.41 7499.40 20299.52 20198.70 25799.17 16299.44 24599.62 8299.75 8999.60 18998.90 9199.85 22398.89 12499.84 13799.65 91
Regformer-499.45 7299.44 6899.50 17099.52 20198.94 23799.17 16299.53 20999.64 7899.76 8199.60 18998.96 8499.90 14298.91 12399.84 13799.67 73
HPM-MVS_fast99.43 7599.30 9799.80 3499.83 4499.81 3699.52 8099.70 10498.35 25299.51 18699.50 23099.31 3999.88 17398.18 17699.84 13799.69 60
XVG-ACMP-BASELINE99.23 12799.10 14399.63 12399.82 5199.58 12198.83 23299.72 9598.36 24799.60 15299.71 11298.92 8699.91 12297.08 26699.84 13799.40 227
new_pmnet98.88 20898.89 19498.84 28899.70 12797.62 31498.15 29899.50 22597.98 27799.62 14399.54 21998.15 19299.94 6297.55 23499.84 13798.95 316
Test_1112_low_res98.95 19998.73 20999.63 12399.68 13999.15 21498.09 30699.80 5297.14 32299.46 19799.40 25796.11 28599.89 15899.01 10999.84 13799.84 15
1112_ss99.05 17798.84 20099.67 9799.66 14599.29 18498.52 27099.82 4197.65 29599.43 20399.16 31096.42 27599.91 12299.07 10599.84 13799.80 26
3Dnovator99.15 299.43 7599.36 8499.65 10999.39 25199.42 15599.70 3499.56 18799.23 14499.35 22499.80 6499.17 5499.95 4798.21 17199.84 13799.59 139
LF4IMVS99.01 18798.92 18999.27 23499.71 11999.28 18698.59 25899.77 6698.32 25899.39 21999.41 25398.62 12999.84 24096.62 29399.84 13798.69 332
ACMMP_NAP99.28 11699.11 13599.79 3999.75 10399.81 3698.95 21899.53 20998.27 26199.53 17999.73 9998.75 11499.87 18597.70 22199.83 14799.68 66
AllTest99.21 14199.07 15099.63 12399.78 8099.64 10199.12 18299.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
TestCases99.63 12399.78 8099.64 10199.83 3698.63 21999.63 13599.72 10598.68 12099.75 30296.38 30499.83 14799.51 183
PM-MVS99.36 9799.29 10299.58 14399.83 4499.66 9498.95 21899.86 2498.85 19799.81 6399.73 9998.40 16699.92 9898.36 15799.83 14799.17 277
EPNet98.13 28097.77 29599.18 24994.57 38297.99 29999.24 14197.96 35499.74 5297.29 36499.62 17193.13 31699.97 1998.59 14699.83 14799.58 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended98.70 22998.59 22299.02 26799.54 19097.99 29997.58 34299.82 4195.70 34799.34 22798.98 33698.52 14999.77 29697.98 19199.83 14799.30 250
MVS-HIRNet97.86 28998.22 26096.76 34899.28 28891.53 37498.38 28292.60 37899.13 16399.31 23599.96 1297.18 25699.68 33298.34 16099.83 14799.07 303
RPSCF99.18 15099.02 16599.64 11699.83 4499.85 1599.44 9299.82 4198.33 25799.50 18899.78 7797.90 21199.65 34796.78 28299.83 14799.44 215
TinyColmap98.97 19398.93 18599.07 26399.46 23398.19 28797.75 33499.75 7898.79 20599.54 17499.70 11998.97 8199.62 35196.63 29299.83 14799.41 225
MP-MVS-pluss99.14 15998.92 18999.80 3499.83 4499.83 2798.61 25599.63 14096.84 33099.44 19999.58 19798.81 9999.91 12297.70 22199.82 15699.67 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDA-MVSNet-bldmvs99.06 17499.05 15699.07 26399.80 6397.83 30798.89 22299.72 9599.29 13299.63 13599.70 11996.47 27399.89 15898.17 17899.82 15699.50 189
jason99.16 15599.11 13599.32 22499.75 10398.44 27398.26 29199.39 26298.70 21499.74 9899.30 28498.54 14299.97 1998.48 15199.82 15699.55 156
jason: jason.
HPM-MVScopyleft99.25 12399.07 15099.78 4299.81 5899.75 6199.61 6599.67 11897.72 29299.35 22499.25 29699.23 4899.92 9897.21 26099.82 15699.67 73
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.49 25498.11 27199.64 11699.73 11299.58 12199.24 14199.76 7189.94 37199.42 20599.56 21097.76 22399.86 20597.74 21599.82 15699.47 204
CP-MVS99.23 12799.05 15699.75 6299.66 14599.66 9499.38 10099.62 14398.38 24599.06 27699.27 29198.79 10699.94 6297.51 23899.82 15699.66 83
PHI-MVS99.11 16798.95 18499.59 13999.13 31299.59 11899.17 16299.65 13297.88 28499.25 24499.46 24698.97 8199.80 28297.26 25499.82 15699.37 235
wuyk23d97.58 30299.13 12892.93 36099.69 13199.49 13499.52 8099.77 6697.97 27899.96 899.79 7099.84 399.94 6295.85 32599.82 15679.36 376
CVMVSNet98.61 23598.88 19597.80 32999.58 16793.60 36499.26 13499.64 13899.66 7499.72 10399.67 14193.26 31499.93 7899.30 7199.81 16499.87 10
UniMVSNet_NR-MVSNet99.37 9499.25 11199.72 8499.47 22899.56 12498.97 21699.61 15099.43 11999.67 12199.28 28997.85 21799.95 4799.17 9099.81 16499.65 91
DU-MVS99.33 10899.21 11699.71 8899.43 24099.56 12498.83 23299.53 20999.38 12399.67 12199.36 27097.67 22999.95 4799.17 9099.81 16499.63 105
DeepPCF-MVS98.42 699.18 15099.02 16599.67 9799.22 29799.75 6197.25 35799.47 23698.72 21399.66 12599.70 11999.29 4199.63 35098.07 18599.81 16499.62 116
ACMM98.09 1199.46 7099.38 7899.72 8499.80 6399.69 8799.13 17899.65 13298.99 17799.64 13199.72 10599.39 2799.86 20598.23 16999.81 16499.60 130
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.22 13699.04 16299.77 4599.76 9299.73 7099.28 12999.56 18798.19 26699.14 26599.29 28798.84 9799.92 9897.53 23799.80 16999.64 100
test_0728_THIRD99.18 15199.62 14399.61 18098.58 13699.91 12297.72 21699.80 16999.77 39
SteuartSystems-ACMMP99.30 11399.14 12599.76 5299.87 3499.66 9499.18 15799.60 16398.55 22799.57 16099.67 14199.03 7599.94 6297.01 26899.80 16999.69 60
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.48 6399.39 7699.74 6899.57 17799.62 10799.29 12899.61 15099.87 2499.74 9899.76 8898.69 11999.87 18598.20 17299.80 16999.75 47
PCF-MVS96.03 1896.73 32195.86 33299.33 22099.44 23899.16 21296.87 36699.44 24586.58 37398.95 28299.40 25794.38 30299.88 17387.93 37299.80 16998.95 316
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SMA-MVScopyleft99.19 14699.00 17199.73 7899.46 23399.73 7099.13 17899.52 21797.40 30999.57 16099.64 15298.93 8599.83 25197.61 23199.79 17499.63 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
zzz-MVS99.30 11399.14 12599.80 3499.81 5899.81 3698.73 25099.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
MTAPA99.35 9999.20 11799.80 3499.81 5899.81 3699.33 11199.53 20999.27 13699.42 20599.63 16298.21 18699.95 4797.83 20899.79 17499.65 91
ACMMP++99.79 174
ACMMPcopyleft99.25 12399.08 14699.74 6899.79 7399.68 9099.50 8299.65 13298.07 27299.52 18199.69 12598.57 13799.92 9897.18 26199.79 17499.63 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.90 20498.72 21099.44 18899.39 25199.42 15598.58 25999.64 13897.31 31499.44 19999.62 17198.59 13499.69 32196.17 31399.79 17499.22 264
tfpnnormal99.43 7599.38 7899.60 13799.87 3499.75 6199.59 7199.78 6399.71 5799.90 2799.69 12598.85 9699.90 14297.25 25799.78 18099.15 281
HQP_MVS98.90 20498.68 21699.55 15699.58 16799.24 19998.80 24099.54 19998.94 18499.14 26599.25 29697.24 25099.82 26195.84 32699.78 18099.60 130
plane_prior599.54 19999.82 26195.84 32699.78 18099.60 130
mPP-MVS99.19 14699.00 17199.76 5299.76 9299.68 9099.38 10099.54 19998.34 25699.01 27899.50 23098.53 14699.93 7897.18 26199.78 18099.66 83
OPM-MVS99.26 12299.13 12899.63 12399.70 12799.61 11398.58 25999.48 23298.50 23399.52 18199.63 16299.14 5999.76 29897.89 19899.77 18499.51 183
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR99.13 16199.03 16499.42 19499.58 16799.32 18097.91 32999.73 8698.68 21599.31 23599.48 23899.09 6499.66 34197.70 22199.77 18499.29 253
abl_699.36 9799.23 11599.75 6299.71 11999.74 6799.33 11199.76 7199.07 17099.65 12999.63 16299.09 6499.92 9897.13 26499.76 18699.58 144
MIMVSNet98.43 26098.20 26299.11 25799.53 19598.38 27999.58 7398.61 33898.96 18299.33 22999.76 8890.92 33899.81 27797.38 24599.76 18699.15 281
MVS_111021_HR99.12 16399.02 16599.40 20299.50 21299.11 21797.92 32799.71 9898.76 21199.08 27299.47 24399.17 5499.54 36097.85 20599.76 18699.54 164
DPE-MVScopyleft99.14 15998.92 18999.82 2899.57 17799.77 4998.74 24899.60 16398.55 22799.76 8199.69 12598.23 18599.92 9896.39 30399.75 18999.76 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.99.34 10499.24 11399.63 12399.82 5199.37 16899.26 13499.35 27398.77 20899.57 16099.70 11999.27 4699.88 17397.71 21899.75 18999.65 91
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.25 12399.08 14699.76 5299.73 11299.70 8399.31 11899.59 17098.36 24799.36 22299.37 26598.80 10399.91 12297.43 24299.75 18999.68 66
#test#99.12 16398.90 19399.76 5299.73 11299.70 8399.10 18599.59 17097.60 29799.36 22299.37 26598.80 10399.91 12296.84 27999.75 18999.68 66
ACMMPR99.23 12799.06 15299.76 5299.74 10999.69 8799.31 11899.59 17098.36 24799.35 22499.38 26398.61 13199.93 7897.43 24299.75 18999.67 73
MP-MVScopyleft99.06 17498.83 20299.76 5299.76 9299.71 7699.32 11499.50 22598.35 25298.97 28099.48 23898.37 16899.92 9895.95 32399.75 18999.63 105
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM98.40 26497.99 27799.65 10999.39 25199.47 13799.67 4799.52 21791.70 36898.78 30599.80 6498.55 14099.95 4794.71 34899.75 18999.53 170
DeepC-MVS_fast98.47 599.23 12799.12 13299.56 15399.28 28899.22 20398.99 21199.40 25999.08 16899.58 15799.64 15298.90 9199.83 25197.44 24199.75 18999.63 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 15598.96 18299.75 6299.73 11299.73 7099.20 15199.55 19398.22 26399.32 23199.35 27598.65 12799.91 12296.86 27699.74 19799.62 116
region2R99.23 12799.05 15699.77 4599.76 9299.70 8399.31 11899.59 17098.41 24199.32 23199.36 27098.73 11799.93 7897.29 24999.74 19799.67 73
Regformer-199.32 11099.27 10799.47 17999.41 24698.95 23698.99 21199.48 23299.48 10299.66 12599.52 22398.78 10899.87 18598.36 15799.74 19799.60 130
Regformer-299.34 10499.27 10799.53 16299.41 24699.10 22298.99 21199.53 20999.47 10799.66 12599.52 22398.80 10399.89 15898.31 16399.74 19799.60 130
PGM-MVS99.20 14399.01 16899.77 4599.75 10399.71 7699.16 16899.72 9597.99 27699.42 20599.60 18998.81 9999.93 7896.91 27399.74 19799.66 83
TransMVSNet (Re)99.78 1499.77 1399.81 3199.91 2099.85 1599.75 2099.86 2499.70 6199.91 2299.89 2799.60 1999.87 18599.59 2499.74 19799.71 53
TSAR-MVS + GP.99.12 16399.04 16299.38 21099.34 27199.16 21298.15 29899.29 28798.18 26799.63 13599.62 17199.18 5399.68 33298.20 17299.74 19799.30 250
KD-MVS_self_test99.63 3999.59 4199.76 5299.84 4099.90 599.37 10499.79 5899.83 3899.88 3899.85 4598.42 16199.90 14299.60 2399.73 20499.49 194
XVS99.27 12099.11 13599.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30799.47 24398.47 15399.88 17397.62 22999.73 20499.67 73
X-MVStestdata96.09 33394.87 34299.75 6299.71 11999.71 7699.37 10499.61 15099.29 13298.76 30761.30 38698.47 15399.88 17397.62 22999.73 20499.67 73
VDD-MVS99.20 14399.11 13599.44 18899.43 24098.98 23199.50 8298.32 35099.80 4499.56 16799.69 12596.99 26299.85 22398.99 11099.73 20499.50 189
ab-mvs99.33 10899.28 10499.47 17999.57 17799.39 16299.78 1199.43 24998.87 19599.57 16099.82 5898.06 19899.87 18598.69 14299.73 20499.15 281
TAPA-MVS97.92 1398.03 28597.55 30199.46 18299.47 22899.44 14898.50 27299.62 14386.79 37299.07 27599.26 29498.26 18099.62 35197.28 25199.73 20499.31 249
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.32 11099.17 12099.77 4599.69 13199.80 4199.14 17299.31 28299.16 15799.62 14399.61 18098.35 17099.91 12297.88 19999.72 21099.61 126
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 2699.70 12799.79 4399.14 17299.61 15099.92 9897.88 19999.72 21099.77 39
3Dnovator+98.92 399.35 9999.24 11399.67 9799.35 26199.47 13799.62 6099.50 22599.44 11499.12 26899.78 7798.77 11199.94 6297.87 20299.72 21099.62 116
plane_prior99.24 19998.42 28097.87 28599.71 213
APD-MVScopyleft98.87 21098.59 22299.71 8899.50 21299.62 10799.01 20499.57 18296.80 33299.54 17499.63 16298.29 17799.91 12295.24 34099.71 21399.61 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SED-MVS99.40 8599.28 10499.77 4599.69 13199.82 3399.20 15199.54 19999.13 16399.82 5699.63 16298.91 8899.92 9897.85 20599.70 21599.58 144
IU-MVS99.69 13199.77 4999.22 30497.50 30499.69 11497.75 21499.70 21599.77 39
ambc99.20 24699.35 26198.53 26799.17 16299.46 24099.67 12199.80 6498.46 15699.70 31597.92 19699.70 21599.38 232
MSC_two_6792asdad99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
No_MVS99.74 6899.03 32999.53 12999.23 30199.92 9897.77 21099.69 21899.78 34
test_241102_TWO99.54 19999.13 16399.76 8199.63 16298.32 17699.92 9897.85 20599.69 21899.75 47
MVSFormer99.41 8299.44 6899.31 22799.57 17798.40 27699.77 1499.80 5299.73 5399.63 13599.30 28498.02 20299.98 999.43 4799.69 21899.55 156
lupinMVS98.96 19698.87 19699.24 24199.57 17798.40 27698.12 30299.18 31098.28 26099.63 13599.13 31298.02 20299.97 1998.22 17099.69 21899.35 241
xxxxxxxxxxxxxcwj99.11 16798.96 18299.54 16099.53 19599.25 19498.29 28899.76 7199.07 17099.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
SF-MVS99.10 17198.93 18599.62 13299.58 16799.51 13299.13 17899.65 13297.97 27899.42 20599.61 18098.86 9499.87 18596.45 30199.68 22399.49 194
Anonymous2024052999.42 7899.34 8699.65 10999.53 19599.60 11599.63 5999.39 26299.47 10799.76 8199.78 7798.13 19399.86 20598.70 14099.68 22399.49 194
MSLP-MVS++99.05 17799.09 14498.91 27899.21 29998.36 28098.82 23699.47 23698.85 19798.90 29099.56 21098.78 10899.09 37398.57 14799.68 22399.26 256
DELS-MVS99.34 10499.30 9799.48 17799.51 20699.36 17198.12 30299.53 20999.36 12699.41 21399.61 18099.22 4999.87 18599.21 8199.68 22399.20 270
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet97.47 1598.42 26198.44 23898.35 31299.46 23396.26 34196.70 36899.34 27597.68 29499.00 27999.13 31297.40 24299.72 30997.59 23399.68 22399.08 298
LS3D99.24 12699.11 13599.61 13598.38 36699.79 4399.57 7599.68 11399.61 8699.15 26399.71 11298.70 11899.91 12297.54 23599.68 22399.13 289
ETH3D-3000-0.198.77 21998.50 23499.59 13999.47 22899.53 12998.77 24599.60 16397.33 31399.23 24899.50 23097.91 21099.83 25195.02 34499.67 23099.41 225
HQP3-MVS99.37 26999.67 230
CPTT-MVS98.74 22498.44 23899.64 11699.61 15699.38 16599.18 15799.55 19396.49 33599.27 24299.37 26597.11 25899.92 9895.74 33099.67 23099.62 116
HQP-MVS98.36 26698.02 27699.39 20699.31 27998.94 23797.98 31999.37 26997.45 30698.15 33998.83 35196.67 26799.70 31594.73 34699.67 23099.53 170
ETH3 D test640097.76 29397.19 30999.50 17099.38 25499.26 19098.34 28399.49 23092.99 36598.54 32399.20 30795.92 28999.82 26191.14 36799.66 23499.40 227
MVS_Test99.28 11699.31 9299.19 24799.35 26198.79 25299.36 10799.49 23099.17 15599.21 25499.67 14198.78 10899.66 34199.09 10399.66 23499.10 292
CDPH-MVS98.56 24398.20 26299.61 13599.50 21299.46 14198.32 28699.41 25295.22 35299.21 25499.10 31998.34 17399.82 26195.09 34399.66 23499.56 153
tttt051797.62 30097.20 30898.90 28499.76 9297.40 32099.48 8694.36 37499.06 17499.70 11199.49 23584.55 37399.94 6298.73 13899.65 23799.36 238
ITE_SJBPF99.38 21099.63 15199.44 14899.73 8698.56 22599.33 22999.53 22198.88 9399.68 33296.01 31799.65 23799.02 311
9.1498.64 21799.45 23698.81 23799.60 16397.52 30399.28 24199.56 21098.53 14699.83 25195.36 33999.64 239
Patchmatch-test98.10 28297.98 27998.48 30799.27 29096.48 33899.40 9699.07 31798.81 20299.23 24899.57 20790.11 35099.87 18596.69 28699.64 23999.09 295
sss98.90 20498.77 20899.27 23499.48 22398.44 27398.72 25199.32 27897.94 28299.37 22199.35 27596.31 28099.91 12298.85 12699.63 24199.47 204
cl2297.56 30397.28 30598.40 31098.37 36796.75 33597.24 35899.37 26997.31 31499.41 21399.22 30387.30 35999.37 37197.70 22199.62 24299.08 298
miper_ehance_all_eth98.59 24098.59 22298.59 30398.98 33597.07 32897.49 34899.52 21798.50 23399.52 18199.37 26596.41 27799.71 31397.86 20399.62 24299.00 313
miper_enhance_ethall98.03 28597.94 28598.32 31498.27 36996.43 34096.95 36499.41 25296.37 33899.43 20398.96 34194.74 29899.69 32197.71 21899.62 24298.83 327
SCA98.11 28198.36 24697.36 33999.20 30292.99 36698.17 29798.49 34498.24 26299.10 27199.57 20796.01 28799.94 6296.86 27699.62 24299.14 286
MS-PatchMatch99.00 18998.97 18099.09 25999.11 31998.19 28798.76 24799.33 27698.49 23599.44 19999.58 19798.21 18699.69 32198.20 17299.62 24299.39 230
APD-MVS_3200maxsize99.31 11299.16 12199.74 6899.53 19599.75 6199.27 13299.61 15099.19 15099.57 16099.64 15298.76 11299.90 14297.29 24999.62 24299.56 153
EPNet_dtu97.62 30097.79 29497.11 34696.67 37992.31 36998.51 27198.04 35299.24 14295.77 37399.47 24393.78 30999.66 34198.98 11299.62 24299.37 235
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post99.27 12099.11 13599.73 7899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.41 16299.91 12297.27 25299.61 24999.54 164
RE-MVS-def99.13 12899.54 19099.74 6799.26 13499.62 14399.16 15799.52 18199.64 15298.57 13797.27 25299.61 24999.54 164
MG-MVS98.52 24998.39 24398.94 27299.15 30997.39 32198.18 29599.21 30898.89 19499.23 24899.63 16297.37 24699.74 30494.22 35399.61 24999.69 60
DVP-MVS++99.38 9199.25 11199.77 4599.03 32999.77 4999.74 2299.61 15099.18 15199.76 8199.61 18099.00 7699.92 9897.72 21699.60 25299.62 116
PC_three_145297.56 29899.68 11699.41 25399.09 6497.09 37896.66 28999.60 25299.62 116
OPU-MVS99.29 23099.12 31499.44 14899.20 15199.40 25799.00 7698.84 37596.54 29599.60 25299.58 144
HPM-MVS++copyleft98.96 19698.70 21499.74 6899.52 20199.71 7698.86 22799.19 30998.47 23798.59 31999.06 32298.08 19799.91 12296.94 27199.60 25299.60 130
CNVR-MVS98.99 19298.80 20699.56 15399.25 29399.43 15298.54 26899.27 29198.58 22498.80 30299.43 25198.53 14699.70 31597.22 25999.59 25699.54 164
Anonymous20240521198.75 22298.46 23699.63 12399.34 27199.66 9499.47 8897.65 35899.28 13599.56 16799.50 23093.15 31599.84 24098.62 14599.58 25799.40 227
MVP-Stereo99.16 15599.08 14699.43 19299.48 22399.07 22699.08 19399.55 19398.63 21999.31 23599.68 13698.19 18999.78 28898.18 17699.58 25799.45 210
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ADS-MVSNet297.78 29297.66 30098.12 32299.14 31095.36 35299.22 14898.75 33296.97 32598.25 33599.64 15290.90 33999.94 6296.51 29799.56 25999.08 298
ADS-MVSNet97.72 29897.67 29997.86 32799.14 31094.65 35899.22 14898.86 32696.97 32598.25 33599.64 15290.90 33999.84 24096.51 29799.56 25999.08 298
LCM-MVSNet-Re99.28 11699.15 12499.67 9799.33 27699.76 5799.34 10999.97 298.93 18799.91 2299.79 7098.68 12099.93 7896.80 28199.56 25999.30 250
API-MVS98.38 26598.39 24398.35 31298.83 34899.26 19099.14 17299.18 31098.59 22398.66 31498.78 35498.61 13199.57 35994.14 35499.56 25996.21 373
test117299.23 12799.05 15699.74 6899.52 20199.75 6199.20 15199.61 15098.97 17999.48 19199.58 19798.41 16299.91 12297.15 26399.55 26399.57 150
xiu_mvs_v1_base_debu99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
xiu_mvs_v1_base_debi99.23 12799.34 8698.91 27899.59 16298.23 28498.47 27499.66 12299.61 8699.68 11698.94 34399.39 2799.97 1999.18 8799.55 26398.51 341
OpenMVScopyleft98.12 1098.23 27797.89 29199.26 23699.19 30499.26 19099.65 5799.69 11091.33 36998.14 34399.77 8498.28 17899.96 3795.41 33799.55 26398.58 338
MVEpermissive92.54 2296.66 32396.11 32798.31 31699.68 13997.55 31697.94 32595.60 37199.37 12490.68 37998.70 35796.56 26998.61 37786.94 37799.55 26398.77 330
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SR-MVS99.19 14699.00 17199.74 6899.51 20699.72 7499.18 15799.60 16398.85 19799.47 19399.58 19798.38 16799.92 9896.92 27299.54 26999.57 150
thisisatest053097.45 30596.95 31598.94 27299.68 13997.73 31199.09 19094.19 37698.61 22299.56 16799.30 28484.30 37499.93 7898.27 16699.54 26999.16 279
MSP-MVS99.04 18098.79 20799.81 3199.78 8099.73 7099.35 10899.57 18298.54 23099.54 17498.99 33396.81 26699.93 7896.97 27099.53 27199.77 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary98.60 23798.35 24899.38 21099.12 31499.22 20398.67 25499.42 25197.84 28998.81 30099.27 29197.32 24899.81 27795.14 34199.53 27199.10 292
ETV-MVS99.18 15099.18 11999.16 25099.34 27199.28 18699.12 18299.79 5899.48 10298.93 28498.55 36399.40 2699.93 7898.51 15099.52 27398.28 351
EIA-MVS99.12 16399.01 16899.45 18699.36 25999.62 10799.34 10999.79 5898.41 24198.84 29798.89 34898.75 11499.84 24098.15 18099.51 27498.89 321
MCST-MVS99.02 18398.81 20499.65 10999.58 16799.49 13498.58 25999.07 31798.40 24399.04 27799.25 29698.51 15199.80 28297.31 24899.51 27499.65 91
mvs_anonymous99.28 11699.39 7698.94 27299.19 30497.81 30899.02 20299.55 19399.78 4999.85 4899.80 6498.24 18199.86 20599.57 3199.50 27699.15 281
CNLPA98.57 24298.34 24999.28 23299.18 30699.10 22298.34 28399.41 25298.48 23698.52 32498.98 33697.05 26099.78 28895.59 33299.50 27698.96 314
ZD-MVS99.43 24099.61 11399.43 24996.38 33799.11 26999.07 32197.86 21599.92 9894.04 35699.49 278
test_prior398.62 23498.34 24999.46 18299.35 26199.22 20397.95 32399.39 26297.87 28598.05 34599.05 32397.90 21199.69 32195.99 31999.49 27899.48 199
test_prior297.95 32397.87 28598.05 34599.05 32397.90 21195.99 31999.49 278
pmmvs398.08 28397.80 29298.91 27899.41 24697.69 31397.87 33099.66 12295.87 34399.50 18899.51 22790.35 34799.97 1998.55 14899.47 28199.08 298
test1299.54 16099.29 28599.33 17899.16 31298.43 32997.54 23799.82 26199.47 28199.48 199
agg_prior294.58 35099.46 28399.50 189
test9_res95.10 34299.44 28499.50 189
train_agg98.35 26997.95 28199.57 14999.35 26199.35 17598.11 30499.41 25294.90 35697.92 35098.99 33398.02 20299.85 22395.38 33899.44 28499.50 189
agg_prior198.33 27197.92 28799.57 14999.35 26199.36 17197.99 31899.39 26294.85 35997.76 35998.98 33698.03 20099.85 22395.49 33499.44 28499.51 183
VPNet99.46 7099.37 8199.71 8899.82 5199.59 11899.48 8699.70 10499.81 4199.69 11499.58 19797.66 23399.86 20599.17 9099.44 28499.67 73
DP-MVS Recon98.50 25198.23 25899.31 22799.49 21799.46 14198.56 26499.63 14094.86 35898.85 29699.37 26597.81 21999.59 35796.08 31499.44 28498.88 322
LFMVS98.46 25798.19 26599.26 23699.24 29598.52 26999.62 6096.94 36599.87 2499.31 23599.58 19791.04 33699.81 27798.68 14399.42 28999.45 210
Fast-Effi-MVS+99.02 18398.87 19699.46 18299.38 25499.50 13399.04 19899.79 5897.17 32098.62 31698.74 35699.34 3799.95 4798.32 16299.41 29098.92 319
PatchmatchNetpermissive97.65 29997.80 29297.18 34498.82 35192.49 36899.17 16298.39 34898.12 26898.79 30399.58 19790.71 34399.89 15897.23 25899.41 29099.16 279
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051596.98 31596.42 32298.66 30199.42 24597.47 31797.27 35694.30 37597.24 31699.15 26398.86 35085.01 37199.87 18597.10 26599.39 29298.63 333
ETH3D cwj APD-0.1698.50 25198.16 26899.51 16799.04 32799.39 16298.47 27499.47 23696.70 33498.78 30599.33 27997.62 23699.86 20594.69 34999.38 29399.28 255
testtj98.56 24398.17 26799.72 8499.45 23699.60 11598.88 22399.50 22596.88 32799.18 26099.48 23897.08 25999.92 9893.69 36099.38 29399.63 105
原ACMM199.37 21399.47 22898.87 24899.27 29196.74 33398.26 33499.32 28097.93 20999.82 26195.96 32299.38 29399.43 221
test22299.51 20699.08 22597.83 33299.29 28795.21 35398.68 31399.31 28297.28 24999.38 29399.43 221
F-COLMAP98.74 22498.45 23799.62 13299.57 17799.47 13798.84 23099.65 13296.31 33998.93 28499.19 30997.68 22899.87 18596.52 29699.37 29799.53 170
DPM-MVS98.28 27297.94 28599.32 22499.36 25999.11 21797.31 35598.78 33196.88 32798.84 29799.11 31897.77 22299.61 35594.03 35799.36 29899.23 262
旧先验199.49 21799.29 18499.26 29499.39 26197.67 22999.36 29899.46 208
PS-MVSNAJ99.00 18999.08 14698.76 29699.37 25798.10 29498.00 31699.51 22199.47 10799.41 21398.50 36699.28 4399.97 1998.83 12799.34 30098.20 357
112198.56 24398.24 25799.52 16499.49 21799.24 19999.30 12199.22 30495.77 34598.52 32499.29 28797.39 24499.85 22395.79 32899.34 30099.46 208
xiu_mvs_v2_base99.02 18399.11 13598.77 29599.37 25798.09 29598.13 30199.51 22199.47 10799.42 20598.54 36499.38 3199.97 1998.83 12799.33 30298.24 353
新几何199.52 16499.50 21299.22 20399.26 29495.66 34898.60 31899.28 28997.67 22999.89 15895.95 32399.32 30399.45 210
VDDNet98.97 19398.82 20399.42 19499.71 11998.81 25099.62 6098.68 33499.81 4199.38 22099.80 6494.25 30399.85 22398.79 13199.32 30399.59 139
VNet99.18 15099.06 15299.56 15399.24 29599.36 17199.33 11199.31 28299.67 7099.47 19399.57 20796.48 27299.84 24099.15 9499.30 30599.47 204
PatchMatch-RL98.68 23098.47 23599.30 22999.44 23899.28 18698.14 30099.54 19997.12 32399.11 26999.25 29697.80 22099.70 31596.51 29799.30 30598.93 318
Effi-MVS+-dtu99.07 17398.92 18999.52 16498.89 34299.78 4699.15 17099.66 12299.34 12798.92 28799.24 30197.69 22699.98 998.11 18299.28 30798.81 328
testdata99.42 19499.51 20698.93 24199.30 28596.20 34098.87 29499.40 25798.33 17599.89 15896.29 30799.28 30799.44 215
OpenMVS_ROBcopyleft97.31 1797.36 30996.84 31998.89 28599.29 28599.45 14698.87 22699.48 23286.54 37499.44 19999.74 9597.34 24799.86 20591.61 36499.28 30797.37 369
NCCC98.82 21598.57 22699.58 14399.21 29999.31 18198.61 25599.25 29798.65 21798.43 32999.26 29497.86 21599.81 27796.55 29499.27 31099.61 126
testgi99.29 11599.26 10999.37 21399.75 10398.81 25098.84 23099.89 1798.38 24599.75 8999.04 32699.36 3699.86 20599.08 10499.25 31199.45 210
PLCcopyleft97.35 1698.36 26697.99 27799.48 17799.32 27899.24 19998.50 27299.51 22195.19 35498.58 32098.96 34196.95 26399.83 25195.63 33199.25 31199.37 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu99.20 14399.12 13299.43 19299.25 29399.69 8799.05 19699.82 4199.50 10098.97 28099.05 32398.98 7999.98 998.20 17299.24 31398.62 334
PMMVS98.49 25498.29 25499.11 25798.96 33698.42 27597.54 34399.32 27897.53 30298.47 32898.15 37297.88 21499.82 26197.46 24099.24 31399.09 295
EPMVS96.53 32596.32 32397.17 34598.18 37292.97 36799.39 9889.95 38298.21 26498.61 31799.59 19586.69 36999.72 30996.99 26999.23 31598.81 328
alignmvs98.28 27297.96 28099.25 23999.12 31498.93 24199.03 20198.42 34699.64 7898.72 31097.85 37590.86 34199.62 35198.88 12599.13 31699.19 273
cascas96.99 31496.82 32097.48 33597.57 37895.64 35096.43 37099.56 18791.75 36797.13 36897.61 37895.58 29398.63 37696.68 28799.11 31798.18 358
BH-RMVSNet98.41 26298.14 27099.21 24499.21 29998.47 27098.60 25798.26 35198.35 25298.93 28499.31 28297.20 25599.66 34194.32 35199.10 31899.51 183
MAR-MVS98.24 27697.92 28799.19 24798.78 35599.65 9999.17 16299.14 31495.36 35098.04 34798.81 35397.47 23999.72 30995.47 33699.06 31998.21 355
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GA-MVS97.99 28897.68 29898.93 27599.52 20198.04 29897.19 35999.05 32098.32 25898.81 30098.97 33989.89 35399.41 37098.33 16199.05 32099.34 243
EMVS96.96 31697.28 30595.99 35898.76 35791.03 37695.26 37398.61 33899.34 12798.92 28798.88 34993.79 30899.66 34192.87 36199.05 32097.30 370
E-PMN97.14 31397.43 30296.27 35598.79 35391.62 37395.54 37299.01 32399.44 11498.88 29199.12 31692.78 31999.68 33294.30 35299.03 32297.50 366
tpmrst97.73 29598.07 27396.73 35098.71 35992.00 37099.10 18598.86 32698.52 23198.92 28799.54 21991.90 32699.82 26198.02 18699.03 32298.37 348
PatchT98.45 25998.32 25298.83 29098.94 33798.29 28299.24 14198.82 32999.84 3599.08 27299.76 8891.37 33199.94 6298.82 12999.00 32498.26 352
CL-MVSNet_self_test98.71 22898.56 22999.15 25299.22 29798.66 26197.14 36099.51 22198.09 27199.54 17499.27 29196.87 26599.74 30498.43 15398.96 32599.03 307
test_yl98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
DCV-MVSNet98.25 27497.95 28199.13 25599.17 30798.47 27099.00 20698.67 33698.97 17999.22 25299.02 33191.31 33299.69 32197.26 25498.93 32699.24 259
canonicalmvs99.02 18399.00 17199.09 25999.10 32098.70 25799.61 6599.66 12299.63 8198.64 31597.65 37799.04 7499.54 36098.79 13198.92 32899.04 306
MDTV_nov1_ep1397.73 29698.70 36090.83 37799.15 17098.02 35398.51 23298.82 29999.61 18090.98 33799.66 34196.89 27598.92 328
PAPM_NR98.36 26698.04 27499.33 22099.48 22398.93 24198.79 24399.28 29097.54 30198.56 32298.57 36197.12 25799.69 32194.09 35598.90 33099.38 232
FPMVS96.32 32995.50 33698.79 29499.60 15898.17 28998.46 27998.80 33097.16 32196.28 36999.63 16282.19 37599.09 37388.45 37198.89 33199.10 292
tpm cat196.78 31996.98 31496.16 35798.85 34690.59 38099.08 19399.32 27892.37 36697.73 36199.46 24691.15 33599.69 32196.07 31598.80 33298.21 355
test-LLR97.15 31196.95 31597.74 33298.18 37295.02 35597.38 35196.10 36698.00 27497.81 35698.58 35990.04 35199.91 12297.69 22798.78 33398.31 349
test-mter96.23 33295.73 33497.74 33298.18 37295.02 35597.38 35196.10 36697.90 28397.81 35698.58 35979.12 38299.91 12297.69 22798.78 33398.31 349
TESTMET0.1,196.24 33195.84 33397.41 33898.24 37093.84 36397.38 35195.84 37098.43 23897.81 35698.56 36279.77 37999.89 15897.77 21098.77 33598.52 340
CR-MVSNet98.35 26998.20 26298.83 29099.05 32598.12 29199.30 12199.67 11897.39 31099.16 26199.79 7091.87 32899.91 12298.78 13498.77 33598.44 346
RPMNet98.60 23798.53 23298.83 29099.05 32598.12 29199.30 12199.62 14399.86 2799.16 26199.74 9592.53 32299.92 9898.75 13698.77 33598.44 346
WTY-MVS98.59 24098.37 24599.26 23699.43 24098.40 27698.74 24899.13 31698.10 26999.21 25499.24 30194.82 29799.90 14297.86 20398.77 33599.49 194
Effi-MVS+99.06 17498.97 18099.34 21899.31 27998.98 23198.31 28799.91 1298.81 20298.79 30398.94 34399.14 5999.84 24098.79 13198.74 33999.20 270
PAPR97.56 30397.07 31199.04 26698.80 35298.11 29397.63 33999.25 29794.56 36298.02 34898.25 37197.43 24199.68 33290.90 36898.74 33999.33 244
tpmvs97.39 30797.69 29796.52 35298.41 36591.76 37199.30 12198.94 32597.74 29197.85 35599.55 21792.40 32599.73 30796.25 30998.73 34198.06 360
dp96.86 31797.07 31196.24 35698.68 36190.30 38199.19 15698.38 34997.35 31298.23 33799.59 19587.23 36099.82 26196.27 30898.73 34198.59 336
XVG-OURS-SEG-HR99.16 15598.99 17699.66 10499.84 4099.64 10198.25 29299.73 8698.39 24499.63 13599.43 25199.70 1199.90 14297.34 24698.64 34399.44 215
thres600view796.60 32496.16 32697.93 32599.63 15196.09 34599.18 15797.57 35998.77 20898.72 31097.32 38087.04 36299.72 30988.57 37098.62 34497.98 362
thres20096.09 33395.68 33597.33 34199.48 22396.22 34298.53 26997.57 35998.06 27398.37 33196.73 38586.84 36699.61 35586.99 37698.57 34596.16 374
131498.00 28797.90 29098.27 31898.90 33997.45 31999.30 12199.06 31994.98 35597.21 36699.12 31698.43 15999.67 33795.58 33398.56 34697.71 365
mvs-test198.83 21398.70 21499.22 24398.89 34299.65 9998.88 22399.66 12299.34 12798.29 33298.94 34397.69 22699.96 3798.11 18298.54 34798.04 361
thres100view90096.39 32796.03 32997.47 33699.63 15195.93 34699.18 15797.57 35998.75 21298.70 31297.31 38187.04 36299.67 33787.62 37398.51 34896.81 371
tfpn200view996.30 33095.89 33097.53 33499.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34896.81 371
thres40096.40 32695.89 33097.92 32699.58 16796.11 34399.00 20697.54 36298.43 23898.52 32496.98 38386.85 36499.67 33787.62 37398.51 34897.98 362
MVS95.72 34094.63 34498.99 26898.56 36397.98 30599.30 12198.86 32672.71 37797.30 36399.08 32098.34 17399.74 30489.21 36998.33 35199.26 256
BH-untuned98.22 27898.09 27298.58 30499.38 25497.24 32498.55 26598.98 32497.81 29099.20 25998.76 35597.01 26199.65 34794.83 34598.33 35198.86 324
test_method91.72 34492.32 34789.91 36193.49 38370.18 38590.28 37499.56 18761.71 37895.39 37599.52 22393.90 30599.94 6298.76 13598.27 35399.62 116
gg-mvs-nofinetune95.87 33795.17 34197.97 32498.19 37196.95 33099.69 4089.23 38399.89 1796.24 37199.94 1481.19 37699.51 36593.99 35898.20 35497.44 367
HY-MVS98.23 998.21 27997.95 28198.99 26899.03 32998.24 28399.61 6598.72 33396.81 33198.73 30999.51 22794.06 30499.86 20596.91 27398.20 35498.86 324
UnsupCasMVSNet_bld98.55 24698.27 25599.40 20299.56 18899.37 16897.97 32299.68 11397.49 30599.08 27299.35 27595.41 29499.82 26197.70 22198.19 35699.01 312
tpm296.35 32896.22 32596.73 35098.88 34591.75 37299.21 15098.51 34293.27 36497.89 35299.21 30584.83 37299.70 31596.04 31698.18 35798.75 331
tmp_tt95.75 33995.42 33796.76 34889.90 38494.42 35998.86 22797.87 35778.01 37599.30 24099.69 12597.70 22495.89 37999.29 7498.14 35899.95 1
baseline296.83 31896.28 32498.46 30899.09 32296.91 33298.83 23293.87 37797.23 31796.23 37298.36 36888.12 35799.90 14296.68 28798.14 35898.57 339
CostFormer96.71 32296.79 32196.46 35498.90 33990.71 37999.41 9598.68 33494.69 36198.14 34399.34 27886.32 37099.80 28297.60 23298.07 36098.88 322
AUN-MVS97.82 29097.38 30399.14 25499.27 29098.53 26798.72 25199.02 32198.10 26997.18 36799.03 33089.26 35599.85 22397.94 19597.91 36199.03 307
DeepMVS_CXcopyleft97.98 32399.69 13196.95 33099.26 29475.51 37695.74 37498.28 37096.47 27399.62 35191.23 36697.89 36297.38 368
hse-mvs298.52 24998.30 25399.16 25099.29 28598.60 26598.77 24599.02 32199.68 6699.32 23199.04 32692.50 32399.85 22399.24 7897.87 36399.03 307
PAPM95.61 34194.71 34398.31 31699.12 31496.63 33696.66 36998.46 34590.77 37096.25 37098.68 35893.01 31799.69 32181.60 37897.86 36498.62 334
JIA-IIPM98.06 28497.92 28798.50 30698.59 36297.02 32998.80 24098.51 34299.88 2297.89 35299.87 3491.89 32799.90 14298.16 17997.68 36598.59 336
ET-MVSNet_ETH3D96.78 31996.07 32898.91 27899.26 29297.92 30697.70 33796.05 36997.96 28192.37 37898.43 36787.06 36199.90 14298.27 16697.56 36698.91 320
TR-MVS97.44 30697.15 31098.32 31498.53 36497.46 31898.47 27497.91 35696.85 32998.21 33898.51 36596.42 27599.51 36592.16 36397.29 36797.98 362
BH-w/o97.20 31097.01 31397.76 33099.08 32395.69 34998.03 31398.52 34195.76 34697.96 34998.02 37395.62 29299.47 36792.82 36297.25 36898.12 359
KD-MVS_2432*160095.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
miper_refine_blended95.89 33595.41 33897.31 34294.96 38093.89 36197.09 36199.22 30497.23 31798.88 29199.04 32679.23 38099.54 36096.24 31096.81 36998.50 344
UnsupCasMVSNet_eth98.83 21398.57 22699.59 13999.68 13999.45 14698.99 21199.67 11899.48 10299.55 17299.36 27094.92 29599.86 20598.95 12096.57 37199.45 210
h-mvs3398.61 23598.34 24999.44 18899.60 15898.67 25999.27 13299.44 24599.68 6699.32 23199.49 23592.50 323100.00 199.24 7896.51 37299.65 91
GG-mvs-BLEND97.36 33997.59 37696.87 33399.70 3488.49 38494.64 37797.26 38280.66 37799.12 37291.50 36596.50 37396.08 375
tpm97.15 31196.95 31597.75 33198.91 33894.24 36099.32 11497.96 35497.71 29398.29 33299.32 28086.72 36899.92 9898.10 18496.24 37499.09 295
test0.0.03 197.37 30896.91 31898.74 29797.72 37597.57 31597.60 34197.36 36498.00 27499.21 25498.02 37390.04 35199.79 28598.37 15695.89 37598.86 324
IB-MVS95.41 2095.30 34294.46 34697.84 32898.76 35795.33 35397.33 35496.07 36896.02 34295.37 37697.41 37976.17 38499.96 3797.54 23595.44 37698.22 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline197.73 29597.33 30498.96 27099.30 28397.73 31199.40 9698.42 34699.33 13099.46 19799.21 30591.18 33499.82 26198.35 15991.26 37799.32 247
PVSNet_095.53 1995.85 33895.31 34097.47 33698.78 35593.48 36595.72 37199.40 25996.18 34197.37 36297.73 37695.73 29099.58 35895.49 33481.40 37899.36 238
testmvs28.94 34733.33 34915.79 36326.03 3859.81 38796.77 36715.67 38611.55 38123.87 38250.74 38919.03 3868.53 38223.21 38033.07 37929.03 378
test12329.31 34633.05 35118.08 36225.93 38612.24 38697.53 34510.93 38711.78 38024.21 38150.08 39021.04 3858.60 38123.51 37932.43 38033.39 377
test_blank8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uanet_test8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
DCPMVS8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
cdsmvs_eth3d_5k24.88 34833.17 3500.00 3640.00 3870.00 3880.00 37599.62 1430.00 3820.00 38399.13 31299.82 40.00 3830.00 3810.00 3810.00 379
pcd_1.5k_mvsjas16.61 34922.14 3520.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 199.28 430.00 3830.00 3810.00 3810.00 379
sosnet-low-res8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
sosnet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
uncertanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
Regformer8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
ab-mvs-re8.26 35811.02 3610.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 38399.16 3100.00 3870.00 3830.00 3810.00 3810.00 379
uanet8.33 35011.11 3530.00 3640.00 3870.00 3880.00 3750.00 3880.00 3820.00 383100.00 10.00 3870.00 3830.00 3810.00 3810.00 379
FOURS199.83 4499.89 899.74 2299.71 9899.69 6499.63 135
test_one_060199.63 15199.76 5799.55 19399.23 14499.31 23599.61 18098.59 134
eth-test20.00 387
eth-test0.00 387
test_241102_ONE99.69 13199.82 3399.54 19999.12 16699.82 5699.49 23598.91 8899.52 364
save fliter99.53 19599.25 19498.29 28899.38 26899.07 170
test072699.69 13199.80 4199.24 14199.57 18299.16 15799.73 10299.65 15098.35 170
GSMVS99.14 286
test_part299.62 15599.67 9299.55 172
sam_mvs190.81 34299.14 286
sam_mvs90.52 346
MTGPAbinary99.53 209
test_post199.14 17251.63 38889.54 35499.82 26196.86 276
test_post52.41 38790.25 34899.86 205
patchmatchnet-post99.62 17190.58 34499.94 62
MTMP99.09 19098.59 340
gm-plane-assit97.59 37689.02 38393.47 36398.30 36999.84 24096.38 304
TEST999.35 26199.35 17598.11 30499.41 25294.83 36097.92 35098.99 33398.02 20299.85 223
test_899.34 27199.31 18198.08 30899.40 25994.90 35697.87 35498.97 33998.02 20299.84 240
agg_prior99.35 26199.36 17199.39 26297.76 35999.85 223
test_prior499.19 21098.00 316
test_prior99.46 18299.35 26199.22 20399.39 26299.69 32199.48 199
旧先验297.94 32595.33 35198.94 28399.88 17396.75 283
新几何298.04 312
无先验98.01 31499.23 30195.83 34499.85 22395.79 32899.44 215
原ACMM297.92 327
testdata299.89 15895.99 319
segment_acmp98.37 168
testdata197.72 33597.86 288
plane_prior799.58 16799.38 165
plane_prior699.47 22899.26 19097.24 250
plane_prior499.25 296
plane_prior399.31 18198.36 24799.14 265
plane_prior298.80 24098.94 184
plane_prior199.51 206
n20.00 388
nn0.00 388
door-mid99.83 36
test1199.29 287
door99.77 66
HQP5-MVS98.94 237
HQP-NCC99.31 27997.98 31997.45 30698.15 339
ACMP_Plane99.31 27997.98 31997.45 30698.15 339
BP-MVS94.73 346
HQP4-MVS98.15 33999.70 31599.53 170
HQP2-MVS96.67 267
NP-MVS99.40 24999.13 21598.83 351
MDTV_nov1_ep13_2view91.44 37599.14 17297.37 31199.21 25491.78 33096.75 28399.03 307
Test By Simon98.41 162