This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22699.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_fmvsm_n_192099.84 1599.85 1699.83 3299.82 7199.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 45
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18899.98 1100.00 199.98 3
IterMVS-SCA-FT99.00 20999.16 14498.51 32299.75 12795.90 36698.07 32899.84 5799.84 5299.89 5299.73 12496.01 30299.99 899.33 91100.00 199.63 126
new-patchmatchnet99.35 12499.57 7098.71 31699.82 7196.62 35498.55 28799.75 10299.50 12299.88 6099.87 4799.31 6099.88 18899.43 71100.00 199.62 137
anonymousdsp99.80 2399.77 3199.90 899.96 799.88 1299.73 2799.85 5199.70 8599.92 3999.93 1799.45 4599.97 3299.36 84100.00 199.85 33
UA-Net99.78 2599.76 3499.86 2599.72 13999.71 8499.91 399.95 2899.96 1699.71 13199.91 2499.15 7999.97 3299.50 65100.00 199.90 20
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5199.95 1899.98 1399.92 2199.28 6499.98 1999.75 37100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4699.89 3499.98 1399.90 2999.94 499.98 1999.75 37100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4199.92 2699.98 1399.93 1799.94 499.98 1999.77 36100.00 199.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 20100.00 199.87 28
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7799.73 7499.97 1999.92 2199.77 1999.98 1999.43 71100.00 199.90 20
IterMVS98.97 21399.16 14498.42 32699.74 13395.64 36998.06 33099.83 5999.83 5599.85 7199.74 12096.10 30199.99 899.27 103100.00 199.63 126
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 28100.00 199.97 1199.61 3199.97 3299.75 37100.00 199.84 34
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20299.98 1199.99 299.98 1399.91 2499.68 2699.93 9399.93 1899.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21399.98 1199.99 299.98 1399.90 2999.88 899.92 11599.93 1899.99 1699.98 3
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5799.78 4999.03 22199.96 2399.99 299.97 1999.84 6299.78 1799.92 11599.92 2099.99 1699.92 18
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 23899.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1599.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 3999.88 4599.55 13799.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_vis1_n_192099.72 3499.88 699.27 24599.93 2697.84 32099.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_fmvs299.72 3499.85 1699.34 22699.91 3298.08 30999.48 96100.00 199.90 2899.99 799.91 2499.50 4499.98 1999.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17399.96 798.62 27299.67 49100.00 199.95 18100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_f99.75 3099.88 699.37 21999.96 798.21 29699.51 90100.00 199.94 22100.00 199.93 1799.58 3499.94 7699.97 499.99 1699.97 7
bld_raw_dy_0_6499.70 3899.65 4899.85 2799.95 1599.77 5499.66 5399.71 12399.95 1899.91 4299.77 10898.35 188100.00 199.54 5899.99 1699.79 52
test250694.73 36094.59 36295.15 37799.59 18585.90 40399.75 2274.01 40399.89 3499.71 13199.86 5479.00 39999.90 15799.52 6299.99 1699.65 111
test111197.74 30898.16 28396.49 37199.60 18189.86 40199.71 3491.21 39799.89 3499.88 6099.87 4793.73 32599.90 15799.56 5599.99 1699.70 78
ECVR-MVScopyleft97.73 30998.04 28896.78 36599.59 18590.81 39799.72 3090.43 39999.89 3499.86 6999.86 5493.60 32799.89 17499.46 6899.99 1699.65 111
pmmvs-eth3d99.48 8699.47 8499.51 17799.77 11299.41 16998.81 25999.66 14699.42 14399.75 11399.66 17199.20 7499.76 31398.98 13899.99 1699.36 249
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6499.84 5299.94 3299.91 2499.13 8499.96 5399.83 3099.99 1699.83 38
RRT_MVS99.67 5099.59 6399.91 299.94 1999.88 1299.78 1299.27 30099.87 4099.91 4299.87 4798.04 21799.96 5399.68 4299.99 1699.90 20
v899.68 4499.69 4199.65 12099.80 8599.40 17099.66 5399.76 9799.64 10299.93 3599.85 5698.66 14399.84 25299.88 2799.99 1699.71 75
v1099.69 4199.69 4199.66 11599.81 7999.39 17299.66 5399.75 10299.60 11499.92 3999.87 4798.75 13099.86 22099.90 2399.99 1699.73 70
CHOSEN 1792x268899.39 11499.30 12299.65 12099.88 4599.25 20298.78 26699.88 4198.66 23999.96 2399.79 9397.45 25399.93 9399.34 8899.99 1699.78 55
PVSNet_Blended_VisFu99.40 11099.38 10299.44 19499.90 3898.66 26698.94 24399.91 3297.97 30099.79 9599.73 12499.05 9599.97 3299.15 11999.99 1699.68 88
IterMVS-LS99.41 10899.47 8499.25 25199.81 7998.09 30698.85 25199.76 9799.62 10599.83 7899.64 17898.54 16099.97 3299.15 11999.99 1699.68 88
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS98.90 499.62 6499.61 5899.67 10899.72 13999.44 15799.24 15799.71 12399.27 15899.93 3599.90 2999.70 2499.93 9398.99 13699.99 1699.64 121
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 2899.97 1999.87 4799.81 1499.95 6299.54 5899.99 1699.80 45
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5799.82 3599.03 22199.96 2399.99 299.97 1999.84 6299.58 3499.93 9399.92 2099.98 3999.93 15
MM99.55 16798.81 25299.05 21497.79 37399.99 299.48 21599.59 21796.29 29799.95 6299.94 1599.98 3999.88 25
test_fmvs1_n99.68 4499.81 2399.28 24299.95 1597.93 31899.49 95100.00 199.82 5799.99 799.89 3499.21 7399.98 1999.97 499.98 3999.93 15
mvsany_test399.85 1199.88 699.75 7399.95 1599.37 17799.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7699.95 1299.98 3999.94 13
Anonymous2024052199.44 9899.42 9799.49 18099.89 4098.96 23999.62 6399.76 9799.85 4999.82 7999.88 4296.39 29399.97 3299.59 4999.98 3999.55 173
D2MVS99.22 15799.19 14199.29 24099.69 15498.74 26098.81 25999.41 26498.55 24999.68 14199.69 15298.13 21199.87 20298.82 15399.98 3999.24 273
CHOSEN 280x42098.41 27698.41 25998.40 32799.34 28895.89 36796.94 38399.44 25898.80 22599.25 26699.52 24693.51 32899.98 1998.94 14799.98 3999.32 259
MVS_030499.17 17599.03 18599.59 15199.44 25898.90 24699.04 21795.32 38999.99 299.68 14199.57 22998.30 19599.97 3299.94 1599.98 3999.88 25
v119299.57 6999.57 7099.57 16199.77 11299.22 20999.04 21799.60 18599.18 17399.87 6899.72 13199.08 9099.85 23799.89 2699.98 3999.66 103
v114499.54 7799.53 8099.59 15199.79 9799.28 19599.10 20299.61 17399.20 17199.84 7499.73 12498.67 14199.84 25299.86 2999.98 3999.64 121
mvsmamba99.74 3399.70 3799.85 2799.93 2699.83 2999.76 1999.81 7399.96 1699.91 4299.81 7998.60 15199.94 7699.58 5299.98 3999.77 59
OurMVSNet-221017-099.75 3099.71 3699.84 3099.96 799.83 2999.83 699.85 5199.80 6399.93 3599.93 1798.54 16099.93 9399.59 4999.98 3999.76 65
UGNet99.38 11699.34 11099.49 18098.90 35698.90 24699.70 3599.35 28399.86 4498.57 34199.81 7998.50 17099.93 9399.38 7999.98 3999.66 103
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet199.66 5299.62 5499.80 4499.94 1999.87 1599.69 4299.77 9299.78 6899.93 3599.89 3497.94 22599.92 11599.65 4499.98 3999.62 137
Vis-MVSNetpermissive99.75 3099.74 3599.79 5099.88 4599.66 10299.69 4299.92 2999.67 9499.77 10499.75 11799.61 3199.98 1999.35 8799.98 3999.72 72
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192099.76 2999.86 1299.45 19199.93 2698.40 28499.30 13599.98 1199.94 2299.99 799.89 3499.80 1599.97 3299.96 999.97 5499.97 7
test_fmvs199.48 8699.65 4898.97 28599.54 21497.16 34299.11 20099.98 1199.78 6899.96 2399.81 7998.72 13599.97 3299.95 1299.97 5499.79 52
iter_conf_final98.75 23998.54 24899.40 20999.33 29398.75 25899.26 14999.59 19199.80 6399.76 10699.58 22090.17 36599.92 11599.37 8299.97 5499.54 181
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12399.93 2499.95 3099.89 3499.71 2299.96 5399.51 6399.97 5499.84 34
CANet99.11 18899.05 17899.28 24298.83 36398.56 27498.71 27399.41 26499.25 16299.23 27099.22 31997.66 24799.94 7699.19 11199.97 5499.33 256
pmmvs699.86 999.86 1299.83 3299.94 1999.90 799.83 699.91 3299.85 4999.94 3299.95 1399.73 2199.90 15799.65 4499.97 5499.69 82
v14419299.55 7599.54 7699.58 15599.78 10499.20 21499.11 20099.62 16699.18 17399.89 5299.72 13198.66 14399.87 20299.88 2799.97 5499.66 103
v192192099.56 7299.57 7099.55 16799.75 12799.11 22299.05 21499.61 17399.15 18499.88 6099.71 13999.08 9099.87 20299.90 2399.97 5499.66 103
FC-MVSNet-test99.70 3899.65 4899.86 2599.88 4599.86 1899.72 3099.78 8999.90 2899.82 7999.83 6698.45 17599.87 20299.51 6399.97 5499.86 30
iter_conf0598.46 27198.23 27499.15 26399.04 34597.99 31199.10 20299.61 17399.79 6699.76 10699.58 22087.88 37599.92 11599.31 9699.97 5499.53 187
v2v48299.50 8299.47 8499.58 15599.78 10499.25 20299.14 18799.58 20199.25 16299.81 8699.62 19598.24 20099.84 25299.83 3099.97 5499.64 121
Patchmtry98.78 23698.54 24899.49 18098.89 35999.19 21599.32 12799.67 14299.65 10099.72 12699.79 9391.87 34499.95 6298.00 21399.97 5499.33 256
PVSNet_BlendedMVS99.03 20199.01 19099.09 27399.54 21497.99 31198.58 28199.82 6497.62 31999.34 24899.71 13998.52 16799.77 31197.98 21499.97 5499.52 198
FMVSNet199.66 5299.63 5399.73 8799.78 10499.77 5499.68 4599.70 12999.67 9499.82 7999.83 6698.98 10299.90 15799.24 10499.97 5499.53 187
HyFIR lowres test98.91 22298.64 23599.73 8799.85 5799.47 14698.07 32899.83 5998.64 24199.89 5299.60 21292.57 336100.00 199.33 9199.97 5499.72 72
SDMVSNet99.77 2899.77 3199.76 6399.80 8599.65 10799.63 6199.86 4699.97 1499.89 5299.89 3499.52 4299.99 899.42 7699.96 6999.65 111
sd_testset99.78 2599.78 3099.80 4499.80 8599.76 6299.80 1099.79 8399.97 1499.89 5299.89 3499.53 4199.99 899.36 8499.96 6999.65 111
test_vis1_n99.68 4499.79 2799.36 22399.94 1998.18 29999.52 86100.00 199.86 44100.00 199.88 4298.99 10099.96 5399.97 499.96 6999.95 11
patch_mono-299.51 8199.46 8899.64 12799.70 15099.11 22299.04 21799.87 4399.71 8099.47 21799.79 9398.24 20099.98 1999.38 7999.96 6999.83 38
dcpmvs_299.61 6699.64 5299.53 17399.79 9798.82 25199.58 7699.97 1899.95 1899.96 2399.76 11298.44 17699.99 899.34 8899.96 6999.78 55
ppachtmachnet_test98.89 22799.12 15498.20 33799.66 16895.24 37397.63 35799.68 13899.08 19199.78 9999.62 19598.65 14599.88 18898.02 20999.96 6999.48 214
Anonymous2023121199.62 6499.57 7099.76 6399.61 17999.60 12599.81 999.73 11199.82 5799.90 4899.90 2997.97 22499.86 22099.42 7699.96 6999.80 45
nrg03099.70 3899.66 4699.82 3699.76 11699.84 2499.61 6899.70 12999.93 2499.78 9999.68 16399.10 8599.78 30399.45 6999.96 6999.83 38
v124099.56 7299.58 6799.51 17799.80 8599.00 23399.00 22999.65 15599.15 18499.90 4899.75 11799.09 8799.88 18899.90 2399.96 6999.67 94
PS-CasMVS99.66 5299.58 6799.89 1199.80 8599.85 1999.66 5399.73 11199.62 10599.84 7499.71 13998.62 14799.96 5399.30 9799.96 6999.86 30
casdiffmvs_mvgpermissive99.68 4499.68 4499.69 10399.81 7999.59 12799.29 14299.90 3599.71 8099.79 9599.73 12499.54 3999.84 25299.36 8499.96 6999.65 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS99.49 8499.45 9099.63 13499.48 24399.42 16499.45 10399.57 20399.66 9899.78 9999.83 6697.85 23299.86 22099.44 7099.96 6999.61 147
test_040299.22 15799.14 14899.45 19199.79 9799.43 16199.28 14499.68 13899.54 11899.40 24099.56 23399.07 9299.82 27696.01 33999.96 6999.11 304
our_test_398.85 23199.09 16698.13 33999.66 16894.90 37697.72 35399.58 20199.07 19399.64 15499.62 19598.19 20799.93 9398.41 18099.95 8299.55 173
CANet_DTU98.91 22298.85 21899.09 27398.79 36898.13 30198.18 31499.31 29299.48 12498.86 31599.51 24896.56 28499.95 6299.05 13299.95 8299.19 287
pmmvs599.19 16799.11 15799.42 20099.76 11698.88 24898.55 28799.73 11198.82 22299.72 12699.62 19596.56 28499.82 27699.32 9399.95 8299.56 170
V4299.56 7299.54 7699.63 13499.79 9799.46 15099.39 11199.59 19199.24 16499.86 6999.70 14698.55 15899.82 27699.79 3599.95 8299.60 151
EU-MVSNet99.39 11499.62 5498.72 31499.88 4596.44 35699.56 8199.85 5199.90 2899.90 4899.85 5698.09 21399.83 26799.58 5299.95 8299.90 20
PMMVS299.48 8699.45 9099.57 16199.76 11698.99 23498.09 32599.90 3598.95 20499.78 9999.58 22099.57 3699.93 9399.48 6699.95 8299.79 52
DTE-MVSNet99.68 4499.61 5899.88 1799.80 8599.87 1599.67 4999.71 12399.72 7899.84 7499.78 10198.67 14199.97 3299.30 9799.95 8299.80 45
WR-MVS_H99.61 6699.53 8099.87 2199.80 8599.83 2999.67 4999.75 10299.58 11799.85 7199.69 15298.18 20999.94 7699.28 10299.95 8299.83 38
K. test v398.87 22998.60 23899.69 10399.93 2699.46 15099.74 2494.97 39099.78 6899.88 6099.88 4293.66 32699.97 3299.61 4799.95 8299.64 121
TDRefinement99.72 3499.70 3799.77 5699.90 3899.85 1999.86 599.92 2999.69 8899.78 9999.92 2199.37 5499.88 18898.93 14899.95 8299.60 151
Gipumacopyleft99.57 6999.59 6399.49 18099.98 399.71 8499.72 3099.84 5799.81 6099.94 3299.78 10198.91 11099.71 32898.41 18099.95 8299.05 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v14899.40 11099.41 9999.39 21399.76 11698.94 24099.09 20799.59 19199.17 17899.81 8699.61 20498.41 18099.69 33699.32 9399.94 9399.53 187
casdiffmvspermissive99.63 5899.61 5899.67 10899.79 9799.59 12799.13 19399.85 5199.79 6699.76 10699.72 13199.33 5999.82 27699.21 10799.94 9399.59 158
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS99.66 5299.59 6399.89 1199.83 6499.87 1599.66 5399.73 11199.70 8599.84 7499.73 12498.56 15799.96 5399.29 10099.94 9399.83 38
CP-MVSNet99.54 7799.43 9599.87 2199.76 11699.82 3599.57 7999.61 17399.54 11899.80 9099.64 17897.79 23699.95 6299.21 10799.94 9399.84 34
baseline99.63 5899.62 5499.66 11599.80 8599.62 11699.44 10599.80 7799.71 8099.72 12699.69 15299.15 7999.83 26799.32 9399.94 9399.53 187
FMVSNet299.35 12499.28 12999.55 16799.49 23899.35 18499.45 10399.57 20399.44 13499.70 13599.74 12097.21 26499.87 20299.03 13399.94 9399.44 228
ACMMP++_ref99.94 93
eth_miper_zixun_eth98.68 24898.71 23198.60 31899.10 33896.84 35197.52 36599.54 22098.94 20599.58 18199.48 25896.25 29899.76 31398.01 21299.93 10099.21 280
FIs99.65 5799.58 6799.84 3099.84 6099.85 1999.66 5399.75 10299.86 4499.74 12199.79 9398.27 19899.85 23799.37 8299.93 10099.83 38
pmmvs499.13 18399.06 17499.36 22399.57 20099.10 22798.01 33399.25 30698.78 22899.58 18199.44 26998.24 20099.76 31398.74 16399.93 10099.22 278
XXY-MVS99.71 3799.67 4599.81 3999.89 4099.72 8299.59 7499.82 6499.39 14499.82 7999.84 6299.38 5299.91 13999.38 7999.93 10099.80 45
pm-mvs199.79 2499.79 2799.78 5399.91 3299.83 2999.76 1999.87 4399.73 7499.89 5299.87 4799.63 2899.87 20299.54 5899.92 10499.63 126
EI-MVSNet99.38 11699.44 9399.21 25599.58 19098.09 30699.26 14999.46 25399.62 10599.75 11399.67 16798.54 16099.85 23799.15 11999.92 10499.68 88
TranMVSNet+NR-MVSNet99.54 7799.47 8499.76 6399.58 19099.64 11099.30 13599.63 16399.61 10899.71 13199.56 23398.76 12899.96 5399.14 12599.92 10499.68 88
lessismore_v099.64 12799.86 5399.38 17490.66 39899.89 5299.83 6694.56 31699.97 3299.56 5599.92 10499.57 168
SixPastTwentyTwo99.42 10499.30 12299.76 6399.92 3199.67 10099.70 3599.14 32499.65 10099.89 5299.90 2996.20 29999.94 7699.42 7699.92 10499.67 94
MVSTER98.47 27098.22 27699.24 25399.06 34298.35 29099.08 21099.46 25399.27 15899.75 11399.66 17188.61 37399.85 23799.14 12599.92 10499.52 198
N_pmnet98.73 24398.53 25099.35 22599.72 13998.67 26398.34 30494.65 39198.35 27499.79 9599.68 16398.03 21899.93 9398.28 18999.92 10499.44 228
CSCG99.37 11999.29 12799.60 14999.71 14299.46 15099.43 10799.85 5198.79 22699.41 23599.60 21298.92 10899.92 11598.02 20999.92 10499.43 234
CMPMVSbinary77.52 2398.50 26698.19 28199.41 20798.33 38599.56 13499.01 22699.59 19195.44 36999.57 18499.80 8395.64 30599.46 38596.47 32299.92 10499.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS99.57 6999.56 7599.62 14399.77 11299.33 18799.26 14999.76 9799.32 15299.80 9099.78 10199.29 6299.87 20299.15 11999.91 11399.66 103
miper_lstm_enhance98.65 25098.60 23898.82 30999.20 32097.33 33897.78 35199.66 14699.01 19899.59 17999.50 25194.62 31599.85 23798.12 20599.90 11499.26 270
CS-MVS-test99.68 4499.70 3799.64 12799.57 20099.83 2999.78 1299.97 1899.92 2699.50 21299.38 28299.57 3699.95 6299.69 4199.90 11499.15 295
EI-MVSNet-UG-set99.48 8699.50 8299.42 20099.57 20098.65 26999.24 15799.46 25399.68 9099.80 9099.66 17198.99 10099.89 17499.19 11199.90 11499.72 72
diffmvspermissive99.34 12999.32 11599.39 21399.67 16798.77 25798.57 28599.81 7399.61 10899.48 21599.41 27298.47 17199.86 22098.97 14099.90 11499.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet198.95 21998.99 19898.84 30499.64 17297.14 34498.22 31399.32 28898.92 21099.59 17999.66 17197.40 25599.83 26798.27 19099.90 11499.55 173
GBi-Net99.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
FMVSNet597.80 30697.25 32299.42 20098.83 36398.97 23799.38 11399.80 7798.87 21699.25 26699.69 15280.60 39499.91 13998.96 14299.90 11499.38 243
test199.42 10499.31 11799.73 8799.49 23899.77 5499.68 4599.70 12999.44 13499.62 16799.83 6697.21 26499.90 15798.96 14299.90 11499.53 187
FMVSNet398.80 23598.63 23799.32 23399.13 33098.72 26199.10 20299.48 24799.23 16699.62 16799.64 17892.57 33699.86 22098.96 14299.90 11499.39 241
cl____98.54 26198.41 25998.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.85 32299.78 30397.97 21699.89 12399.17 291
DIV-MVS_self_test98.54 26198.42 25898.92 29299.03 34697.80 32497.46 36799.59 19198.90 21299.60 17699.46 26593.87 32199.78 30397.97 21699.89 12399.18 289
CS-MVS99.67 5099.70 3799.58 15599.53 22099.84 2499.79 1199.96 2399.90 2899.61 17399.41 27299.51 4399.95 6299.66 4399.89 12398.96 331
EI-MVSNet-Vis-set99.47 9399.49 8399.42 20099.57 20098.66 26699.24 15799.46 25399.67 9499.79 9599.65 17698.97 10499.89 17499.15 11999.89 12399.71 75
DSMNet-mixed99.48 8699.65 4898.95 28799.71 14297.27 33999.50 9199.82 6499.59 11699.41 23599.85 5699.62 30100.00 199.53 6199.89 12399.59 158
Vis-MVSNet (Re-imp)98.77 23798.58 24399.34 22699.78 10498.88 24899.61 6899.56 20899.11 19099.24 26999.56 23393.00 33499.78 30397.43 26699.89 12399.35 252
EPP-MVSNet99.17 17599.00 19399.66 11599.80 8599.43 16199.70 3599.24 30999.48 12499.56 19199.77 10894.89 31199.93 9398.72 16599.89 12399.63 126
CLD-MVS98.76 23898.57 24499.33 22999.57 20098.97 23797.53 36399.55 21496.41 35699.27 26499.13 32799.07 9299.78 30396.73 30799.89 12399.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH98.42 699.59 6899.54 7699.72 9399.86 5399.62 11699.56 8199.79 8398.77 23099.80 9099.85 5699.64 2799.85 23798.70 16699.89 12399.70 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf199.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
APD_test299.63 5899.60 6199.72 9399.94 1999.95 299.47 9999.89 3799.43 13999.88 6099.80 8399.26 6899.90 15798.81 15599.88 13299.32 259
GeoE99.69 4199.66 4699.78 5399.76 11699.76 6299.60 7399.82 6499.46 13199.75 11399.56 23399.63 2899.95 6299.43 7199.88 13299.62 137
c3_l98.72 24498.71 23198.72 31499.12 33297.22 34197.68 35699.56 20898.90 21299.54 19899.48 25896.37 29499.73 32297.88 22399.88 13299.21 280
VPA-MVSNet99.66 5299.62 5499.79 5099.68 16299.75 6899.62 6399.69 13599.85 4999.80 9099.81 7998.81 11899.91 13999.47 6799.88 13299.70 78
MDA-MVSNet_test_wron98.95 21998.99 19898.85 30299.64 17297.16 34298.23 31299.33 28698.93 20899.56 19199.66 17197.39 25799.83 26798.29 18899.88 13299.55 173
XVG-OURS99.21 16299.06 17499.65 12099.82 7199.62 11697.87 34899.74 10798.36 26999.66 15199.68 16399.71 2299.90 15796.84 30299.88 13299.43 234
CDS-MVSNet99.22 15799.13 15099.50 17999.35 28099.11 22298.96 24099.54 22099.46 13199.61 17399.70 14696.31 29599.83 26799.34 8899.88 13299.55 173
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 20198.85 21899.55 16799.80 8599.25 20299.73 2799.15 32399.37 14699.61 17399.71 13994.73 31499.81 29197.70 24599.88 13299.58 163
USDC98.96 21698.93 20699.05 27999.54 21497.99 31197.07 38199.80 7798.21 28699.75 11399.77 10898.43 17799.64 36397.90 22199.88 13299.51 200
ACMH+98.40 899.50 8299.43 9599.71 9899.86 5399.76 6299.32 12799.77 9299.53 12099.77 10499.76 11299.26 6899.78 30397.77 23499.88 13299.60 151
mvsany_test199.44 9899.45 9099.40 20999.37 27598.64 27097.90 34799.59 19199.27 15899.92 3999.82 7399.74 2099.93 9399.55 5799.87 14399.63 126
SD-MVS99.01 20799.30 12298.15 33899.50 23399.40 17098.94 24399.61 17399.22 17099.75 11399.82 7399.54 3995.51 39897.48 26399.87 14399.54 181
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet (Re)99.37 11999.26 13399.68 10599.51 22799.58 13198.98 23799.60 18599.43 13999.70 13599.36 28897.70 23999.88 18899.20 11099.87 14399.59 158
WR-MVS99.11 18898.93 20699.66 11599.30 30099.42 16498.42 30199.37 27999.04 19699.57 18499.20 32396.89 27699.86 22098.66 17099.87 14399.70 78
NR-MVSNet99.40 11099.31 11799.68 10599.43 26299.55 13799.73 2799.50 24299.46 13199.88 6099.36 28897.54 25099.87 20298.97 14099.87 14399.63 126
LPG-MVS_test99.22 15799.05 17899.74 7899.82 7199.63 11499.16 18399.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
LGP-MVS_train99.74 7899.82 7199.63 11499.73 11197.56 32099.64 15499.69 15299.37 5499.89 17496.66 31199.87 14399.69 82
COLMAP_ROBcopyleft98.06 1299.45 9699.37 10599.70 10299.83 6499.70 9199.38 11399.78 8999.53 12099.67 14799.78 10199.19 7599.86 22097.32 27199.87 14399.55 173
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0399.55 7599.54 7699.58 15599.79 9799.37 17799.02 22499.89 3799.60 11499.82 7999.62 19598.81 11899.89 17499.43 7199.86 15199.47 218
Baseline_NR-MVSNet99.49 8499.37 10599.82 3699.91 3299.84 2498.83 25499.86 4699.68 9099.65 15399.88 4297.67 24399.87 20299.03 13399.86 15199.76 65
EC-MVSNet99.69 4199.69 4199.68 10599.71 14299.91 499.76 1999.96 2399.86 4499.51 21099.39 28099.57 3699.93 9399.64 4699.86 15199.20 284
MSDG99.08 19298.98 20199.37 21999.60 18199.13 22097.54 36199.74 10798.84 22199.53 20399.55 24099.10 8599.79 30097.07 29099.86 15199.18 289
EGC-MVSNET89.05 36285.52 36599.64 12799.89 4099.78 4999.56 8199.52 23424.19 39749.96 39899.83 6699.15 7999.92 11597.71 24299.85 15599.21 280
Patchmatch-RL test98.60 25398.36 26499.33 22999.77 11299.07 23098.27 30999.87 4398.91 21199.74 12199.72 13190.57 36199.79 30098.55 17499.85 15599.11 304
APDe-MVScopyleft99.48 8699.36 10899.85 2799.55 21299.81 4099.50 9199.69 13598.99 19999.75 11399.71 13998.79 12399.93 9398.46 17899.85 15599.80 45
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMP97.51 1499.05 19798.84 22099.67 10899.78 10499.55 13798.88 24799.66 14697.11 34699.47 21799.60 21299.07 9299.89 17496.18 33499.85 15599.58 163
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft92.94 2198.82 23398.81 22498.85 30299.84 6097.99 31199.20 16799.47 25099.71 8099.42 22999.82 7398.09 21399.47 38393.88 37999.85 15599.07 320
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120699.35 12499.31 11799.47 18699.74 13399.06 23299.28 14499.74 10799.23 16699.72 12699.53 24497.63 24999.88 18899.11 12799.84 16099.48 214
HPM-MVS_fast99.43 10199.30 12299.80 4499.83 6499.81 4099.52 8699.70 12998.35 27499.51 21099.50 25199.31 6099.88 18898.18 20099.84 16099.69 82
XVG-ACMP-BASELINE99.23 14999.10 16599.63 13499.82 7199.58 13198.83 25499.72 12098.36 26999.60 17699.71 13998.92 10899.91 13997.08 28999.84 16099.40 239
new_pmnet98.88 22898.89 21498.84 30499.70 15097.62 32998.15 31799.50 24297.98 29999.62 16799.54 24298.15 21099.94 7697.55 25899.84 16098.95 333
Test_1112_low_res98.95 21998.73 22999.63 13499.68 16299.15 21998.09 32599.80 7797.14 34499.46 22199.40 27696.11 30099.89 17499.01 13599.84 16099.84 34
1112_ss99.05 19798.84 22099.67 10899.66 16899.29 19398.52 29299.82 6497.65 31899.43 22799.16 32596.42 29099.91 13999.07 13199.84 16099.80 45
3Dnovator99.15 299.43 10199.36 10899.65 12099.39 27099.42 16499.70 3599.56 20899.23 16699.35 24599.80 8399.17 7799.95 6298.21 19599.84 16099.59 158
LF4IMVS99.01 20798.92 21099.27 24599.71 14299.28 19598.59 28099.77 9298.32 28099.39 24199.41 27298.62 14799.84 25296.62 31599.84 16098.69 351
ACMMP_NAP99.28 13899.11 15799.79 5099.75 12799.81 4098.95 24199.53 22998.27 28399.53 20399.73 12498.75 13099.87 20297.70 24599.83 16899.68 88
AllTest99.21 16299.07 17299.63 13499.78 10499.64 11099.12 19799.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
TestCases99.63 13499.78 10499.64 11099.83 5998.63 24299.63 15899.72 13198.68 13899.75 31796.38 32699.83 16899.51 200
PM-MVS99.36 12299.29 12799.58 15599.83 6499.66 10298.95 24199.86 4698.85 21899.81 8699.73 12498.40 18499.92 11598.36 18399.83 16899.17 291
EPNet98.13 29497.77 30999.18 26094.57 39997.99 31199.24 15797.96 36999.74 7397.29 38099.62 19593.13 33199.97 3298.59 17299.83 16899.58 163
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended98.70 24698.59 24099.02 28199.54 21497.99 31197.58 36099.82 6495.70 36799.34 24898.98 35198.52 16799.77 31197.98 21499.83 16899.30 265
MVS-HIRNet97.86 30398.22 27696.76 36699.28 30591.53 39398.38 30392.60 39699.13 18699.31 25799.96 1297.18 26899.68 34698.34 18599.83 16899.07 320
RPSCF99.18 17199.02 18799.64 12799.83 6499.85 1999.44 10599.82 6498.33 27999.50 21299.78 10197.90 22799.65 36196.78 30499.83 16899.44 228
TinyColmap98.97 21398.93 20699.07 27799.46 25398.19 29797.75 35299.75 10298.79 22699.54 19899.70 14698.97 10499.62 36596.63 31499.83 16899.41 238
test_vis1_rt99.45 9699.46 8899.41 20799.71 14298.63 27198.99 23499.96 2399.03 19799.95 3099.12 33198.75 13099.84 25299.82 3399.82 17799.77 59
MP-MVS-pluss99.14 18198.92 21099.80 4499.83 6499.83 2998.61 27599.63 16396.84 35199.44 22399.58 22098.81 11899.91 13997.70 24599.82 17799.67 94
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDA-MVSNet-bldmvs99.06 19499.05 17899.07 27799.80 8597.83 32198.89 24699.72 12099.29 15499.63 15899.70 14696.47 28899.89 17498.17 20299.82 17799.50 205
jason99.16 17799.11 15799.32 23399.75 12798.44 28198.26 31099.39 27498.70 23799.74 12199.30 30198.54 16099.97 3298.48 17799.82 17799.55 173
jason: jason.
HPM-MVScopyleft99.25 14599.07 17299.78 5399.81 7999.75 6899.61 6899.67 14297.72 31599.35 24599.25 31299.23 7199.92 11597.21 28499.82 17799.67 94
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.49 26898.11 28599.64 12799.73 13699.58 13199.24 15799.76 9789.94 38999.42 22999.56 23397.76 23899.86 22097.74 23999.82 17799.47 218
CP-MVS99.23 14999.05 17899.75 7399.66 16899.66 10299.38 11399.62 16698.38 26799.06 29699.27 30798.79 12399.94 7697.51 26299.82 17799.66 103
PHI-MVS99.11 18898.95 20599.59 15199.13 33099.59 12799.17 17799.65 15597.88 30899.25 26699.46 26598.97 10499.80 29797.26 27899.82 17799.37 246
wuyk23d97.58 31699.13 15092.93 37899.69 15499.49 14499.52 8699.77 9297.97 30099.96 2399.79 9399.84 1299.94 7695.85 34799.82 17779.36 394
CVMVSNet98.61 25198.88 21597.80 34799.58 19093.60 38399.26 14999.64 16199.66 9899.72 12699.67 16793.26 32999.93 9399.30 9799.81 18699.87 28
UniMVSNet_NR-MVSNet99.37 11999.25 13599.72 9399.47 24999.56 13498.97 23899.61 17399.43 13999.67 14799.28 30597.85 23299.95 6299.17 11699.81 18699.65 111
DU-MVS99.33 13299.21 13999.71 9899.43 26299.56 13498.83 25499.53 22999.38 14599.67 14799.36 28897.67 24399.95 6299.17 11699.81 18699.63 126
DeepPCF-MVS98.42 699.18 17199.02 18799.67 10899.22 31599.75 6897.25 37599.47 25098.72 23599.66 15199.70 14699.29 6299.63 36498.07 20899.81 18699.62 137
ACMM98.09 1199.46 9499.38 10299.72 9399.80 8599.69 9599.13 19399.65 15598.99 19999.64 15499.72 13199.39 4899.86 22098.23 19399.81 18699.60 151
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.22 15799.04 18399.77 5699.76 11699.73 7799.28 14499.56 20898.19 28899.14 28599.29 30498.84 11799.92 11597.53 26199.80 19199.64 121
test_0728_THIRD99.18 17399.62 16799.61 20498.58 15499.91 13997.72 24099.80 19199.77 59
SteuartSystems-ACMMP99.30 13699.14 14899.76 6399.87 5099.66 10299.18 17299.60 18598.55 24999.57 18499.67 16799.03 9799.94 7697.01 29199.80 19199.69 82
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.48 8699.39 10099.74 7899.57 20099.62 11699.29 14299.61 17399.87 4099.74 12199.76 11298.69 13799.87 20298.20 19699.80 19199.75 68
PCF-MVS96.03 1896.73 33695.86 34799.33 22999.44 25899.16 21796.87 38499.44 25886.58 39198.95 30299.40 27694.38 31799.88 18887.93 39099.80 19198.95 333
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SMA-MVScopyleft99.19 16799.00 19399.73 8799.46 25399.73 7799.13 19399.52 23497.40 33199.57 18499.64 17898.93 10799.83 26797.61 25599.79 19699.63 126
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA99.35 12499.20 14099.80 4499.81 7999.81 4099.33 12599.53 22999.27 15899.42 22999.63 18898.21 20599.95 6297.83 23399.79 19699.65 111
ACMMP++99.79 196
ACMMPcopyleft99.25 14599.08 16899.74 7899.79 9799.68 9899.50 9199.65 15598.07 29499.52 20599.69 15298.57 15599.92 11597.18 28699.79 19699.63 126
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.90 22498.72 23099.44 19499.39 27099.42 16498.58 28199.64 16197.31 33699.44 22399.62 19598.59 15299.69 33696.17 33599.79 19699.22 278
tfpnnormal99.43 10199.38 10299.60 14999.87 5099.75 6899.59 7499.78 8999.71 8099.90 4899.69 15298.85 11699.90 15797.25 28199.78 20199.15 295
HQP_MVS98.90 22498.68 23499.55 16799.58 19099.24 20698.80 26299.54 22098.94 20599.14 28599.25 31297.24 26299.82 27695.84 34899.78 20199.60 151
plane_prior599.54 22099.82 27695.84 34899.78 20199.60 151
mPP-MVS99.19 16799.00 19399.76 6399.76 11699.68 9899.38 11399.54 22098.34 27899.01 29899.50 25198.53 16499.93 9397.18 28699.78 20199.66 103
OPM-MVS99.26 14499.13 15099.63 13499.70 15099.61 12298.58 28199.48 24798.50 25599.52 20599.63 18899.14 8299.76 31397.89 22299.77 20599.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR99.13 18399.03 18599.42 20099.58 19099.32 18997.91 34699.73 11198.68 23899.31 25799.48 25899.09 8799.66 35597.70 24599.77 20599.29 268
MIMVSNet98.43 27498.20 27899.11 27099.53 22098.38 28899.58 7698.61 35098.96 20399.33 25099.76 11290.92 35499.81 29197.38 26999.76 20799.15 295
MVS_111021_HR99.12 18599.02 18799.40 20999.50 23399.11 22297.92 34499.71 12398.76 23399.08 29299.47 26299.17 7799.54 37697.85 22999.76 20799.54 181
DPE-MVScopyleft99.14 18198.92 21099.82 3699.57 20099.77 5498.74 26999.60 18598.55 24999.76 10699.69 15298.23 20499.92 11596.39 32599.75 20999.76 65
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.99.34 12999.24 13799.63 13499.82 7199.37 17799.26 14999.35 28398.77 23099.57 18499.70 14699.27 6799.88 18897.71 24299.75 20999.65 111
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.25 14599.08 16899.76 6399.73 13699.70 9199.31 13299.59 19198.36 26999.36 24499.37 28498.80 12299.91 13997.43 26699.75 20999.68 88
ACMMPR99.23 14999.06 17499.76 6399.74 13399.69 9599.31 13299.59 19198.36 26999.35 24599.38 28298.61 14999.93 9397.43 26699.75 20999.67 94
MP-MVScopyleft99.06 19498.83 22299.76 6399.76 11699.71 8499.32 12799.50 24298.35 27498.97 30099.48 25898.37 18699.92 11595.95 34599.75 20999.63 126
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM98.40 27897.99 29199.65 12099.39 27099.47 14699.67 4999.52 23491.70 38698.78 32599.80 8398.55 15899.95 6294.71 36899.75 20999.53 187
DeepC-MVS_fast98.47 599.23 14999.12 15499.56 16499.28 30599.22 20998.99 23499.40 27199.08 19199.58 18199.64 17898.90 11399.83 26797.44 26599.75 20999.63 126
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 17798.96 20499.75 7399.73 13699.73 7799.20 16799.55 21498.22 28599.32 25399.35 29398.65 14599.91 13996.86 29999.74 21699.62 137
region2R99.23 14999.05 17899.77 5699.76 11699.70 9199.31 13299.59 19198.41 26399.32 25399.36 28898.73 13499.93 9397.29 27399.74 21699.67 94
PGM-MVS99.20 16499.01 19099.77 5699.75 12799.71 8499.16 18399.72 12097.99 29899.42 22999.60 21298.81 11899.93 9396.91 29699.74 21699.66 103
TransMVSNet (Re)99.78 2599.77 3199.81 3999.91 3299.85 1999.75 2299.86 4699.70 8599.91 4299.89 3499.60 3399.87 20299.59 4999.74 21699.71 75
TSAR-MVS + GP.99.12 18599.04 18399.38 21699.34 28899.16 21798.15 31799.29 29698.18 28999.63 15899.62 19599.18 7699.68 34698.20 19699.74 21699.30 265
KD-MVS_self_test99.63 5899.59 6399.76 6399.84 6099.90 799.37 11799.79 8399.83 5599.88 6099.85 5698.42 17999.90 15799.60 4899.73 22199.49 210
XVS99.27 14299.11 15799.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32699.47 26298.47 17199.88 18897.62 25399.73 22199.67 94
X-MVStestdata96.09 34994.87 35899.75 7399.71 14299.71 8499.37 11799.61 17399.29 15498.76 32661.30 40498.47 17199.88 18897.62 25399.73 22199.67 94
VDD-MVS99.20 16499.11 15799.44 19499.43 26298.98 23599.50 9198.32 36499.80 6399.56 19199.69 15296.99 27499.85 23798.99 13699.73 22199.50 205
ab-mvs99.33 13299.28 12999.47 18699.57 20099.39 17299.78 1299.43 26198.87 21699.57 18499.82 7398.06 21699.87 20298.69 16899.73 22199.15 295
TAPA-MVS97.92 1398.03 29997.55 31599.46 18899.47 24999.44 15798.50 29499.62 16686.79 39099.07 29599.26 31098.26 19999.62 36597.28 27599.73 22199.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.32 13499.17 14399.77 5699.69 15499.80 4499.14 18799.31 29299.16 18099.62 16799.61 20498.35 18899.91 13997.88 22399.72 22799.61 147
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3299.70 15099.79 4699.14 18799.61 17399.92 11597.88 22399.72 22799.77 59
3Dnovator+98.92 399.35 12499.24 13799.67 10899.35 28099.47 14699.62 6399.50 24299.44 13499.12 28899.78 10198.77 12799.94 7697.87 22699.72 22799.62 137
plane_prior99.24 20698.42 30197.87 30999.71 230
APD-MVScopyleft98.87 22998.59 24099.71 9899.50 23399.62 11699.01 22699.57 20396.80 35399.54 19899.63 18898.29 19699.91 13995.24 36099.71 23099.61 147
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD_test199.36 12299.28 12999.61 14699.89 4099.89 1099.32 12799.74 10799.18 17399.69 13899.75 11798.41 18099.84 25297.85 22999.70 23299.10 306
SED-MVS99.40 11099.28 12999.77 5699.69 15499.82 3599.20 16799.54 22099.13 18699.82 7999.63 18898.91 11099.92 11597.85 22999.70 23299.58 163
IU-MVS99.69 15499.77 5499.22 31397.50 32699.69 13897.75 23899.70 23299.77 59
ambc99.20 25799.35 28098.53 27599.17 17799.46 25399.67 14799.80 8398.46 17499.70 33097.92 21999.70 23299.38 243
MSC_two_6792asdad99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
No_MVS99.74 7899.03 34699.53 14099.23 31099.92 11597.77 23499.69 23699.78 55
test_241102_TWO99.54 22099.13 18699.76 10699.63 18898.32 19499.92 11597.85 22999.69 23699.75 68
MVSFormer99.41 10899.44 9399.31 23699.57 20098.40 28499.77 1599.80 7799.73 7499.63 15899.30 30198.02 21999.98 1999.43 7199.69 23699.55 173
lupinMVS98.96 21698.87 21699.24 25399.57 20098.40 28498.12 32199.18 32098.28 28299.63 15899.13 32798.02 21999.97 3298.22 19499.69 23699.35 252
SF-MVS99.10 19198.93 20699.62 14399.58 19099.51 14299.13 19399.65 15597.97 30099.42 22999.61 20498.86 11599.87 20296.45 32399.68 24199.49 210
Anonymous2024052999.42 10499.34 11099.65 12099.53 22099.60 12599.63 6199.39 27499.47 12899.76 10699.78 10198.13 21199.86 22098.70 16699.68 24199.49 210
MSLP-MVS++99.05 19799.09 16698.91 29499.21 31798.36 28998.82 25899.47 25098.85 21898.90 31099.56 23398.78 12599.09 39098.57 17399.68 24199.26 270
DELS-MVS99.34 12999.30 12299.48 18499.51 22799.36 18198.12 32199.53 22999.36 14899.41 23599.61 20499.22 7299.87 20299.21 10799.68 24199.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet97.47 1598.42 27598.44 25698.35 32999.46 25396.26 36096.70 38699.34 28597.68 31799.00 29999.13 32797.40 25599.72 32497.59 25799.68 24199.08 315
LS3D99.24 14899.11 15799.61 14698.38 38399.79 4699.57 7999.68 13899.61 10899.15 28399.71 13998.70 13699.91 13997.54 25999.68 24199.13 303
HQP3-MVS99.37 27999.67 247
CPTT-MVS98.74 24198.44 25699.64 12799.61 17999.38 17499.18 17299.55 21496.49 35599.27 26499.37 28497.11 27099.92 11595.74 35199.67 24799.62 137
HQP-MVS98.36 28098.02 29099.39 21399.31 29698.94 24097.98 33799.37 27997.45 32898.15 35698.83 36496.67 28199.70 33094.73 36699.67 24799.53 187
MVS_Test99.28 13899.31 11799.19 25899.35 28098.79 25599.36 12099.49 24699.17 17899.21 27599.67 16798.78 12599.66 35599.09 12999.66 25099.10 306
CDPH-MVS98.56 25998.20 27899.61 14699.50 23399.46 15098.32 30699.41 26495.22 37299.21 27599.10 33598.34 19199.82 27695.09 36499.66 25099.56 170
tttt051797.62 31497.20 32398.90 30099.76 11697.40 33699.48 9694.36 39299.06 19599.70 13599.49 25584.55 38999.94 7698.73 16499.65 25299.36 249
ITE_SJBPF99.38 21699.63 17499.44 15799.73 11198.56 24899.33 25099.53 24498.88 11499.68 34696.01 33999.65 25299.02 328
9.1498.64 23599.45 25798.81 25999.60 18597.52 32599.28 26399.56 23398.53 16499.83 26795.36 35999.64 254
Patchmatch-test98.10 29697.98 29398.48 32499.27 30796.48 35599.40 10999.07 32898.81 22399.23 27099.57 22990.11 36699.87 20296.69 30899.64 25499.09 310
sss98.90 22498.77 22899.27 24599.48 24398.44 28198.72 27199.32 28897.94 30499.37 24399.35 29396.31 29599.91 13998.85 15099.63 25699.47 218
cl2297.56 31797.28 32098.40 32798.37 38496.75 35297.24 37699.37 27997.31 33699.41 23599.22 31987.30 37699.37 38797.70 24599.62 25799.08 315
miper_ehance_all_eth98.59 25698.59 24098.59 31998.98 35297.07 34597.49 36699.52 23498.50 25599.52 20599.37 28496.41 29299.71 32897.86 22799.62 25799.00 330
miper_enhance_ethall98.03 29997.94 29998.32 33298.27 38696.43 35796.95 38299.41 26496.37 35899.43 22798.96 35594.74 31399.69 33697.71 24299.62 25798.83 344
SCA98.11 29598.36 26497.36 35799.20 32092.99 38598.17 31698.49 35798.24 28499.10 29199.57 22996.01 30299.94 7696.86 29999.62 25799.14 300
MS-PatchMatch99.00 20998.97 20299.09 27399.11 33798.19 29798.76 26899.33 28698.49 25799.44 22399.58 22098.21 20599.69 33698.20 19699.62 25799.39 241
APD-MVS_3200maxsize99.31 13599.16 14499.74 7899.53 22099.75 6899.27 14799.61 17399.19 17299.57 18499.64 17898.76 12899.90 15797.29 27399.62 25799.56 170
EPNet_dtu97.62 31497.79 30897.11 36496.67 39692.31 38898.51 29398.04 36799.24 16495.77 39199.47 26293.78 32499.66 35598.98 13899.62 25799.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post99.27 14299.11 15799.73 8799.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.41 18099.91 13997.27 27699.61 26499.54 181
RE-MVS-def99.13 15099.54 21499.74 7499.26 14999.62 16699.16 18099.52 20599.64 17898.57 15597.27 27699.61 26499.54 181
MG-MVS98.52 26398.39 26198.94 28899.15 32797.39 33798.18 31499.21 31698.89 21599.23 27099.63 18897.37 25899.74 31994.22 37399.61 26499.69 82
DVP-MVS++99.38 11699.25 13599.77 5699.03 34699.77 5499.74 2499.61 17399.18 17399.76 10699.61 20499.00 9899.92 11597.72 24099.60 26799.62 137
PC_three_145297.56 32099.68 14199.41 27299.09 8797.09 39696.66 31199.60 26799.62 137
OPU-MVS99.29 24099.12 33299.44 15799.20 16799.40 27699.00 9898.84 39396.54 31799.60 26799.58 163
HPM-MVS++copyleft98.96 21698.70 23399.74 7899.52 22599.71 8498.86 24999.19 31998.47 25998.59 33999.06 33898.08 21599.91 13996.94 29499.60 26799.60 151
CNVR-MVS98.99 21298.80 22699.56 16499.25 31099.43 16198.54 29099.27 30098.58 24798.80 32299.43 27098.53 16499.70 33097.22 28399.59 27199.54 181
Anonymous20240521198.75 23998.46 25499.63 13499.34 28899.66 10299.47 9997.65 37499.28 15799.56 19199.50 25193.15 33099.84 25298.62 17199.58 27299.40 239
MVP-Stereo99.16 17799.08 16899.43 19899.48 24399.07 23099.08 21099.55 21498.63 24299.31 25799.68 16398.19 20799.78 30398.18 20099.58 27299.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ADS-MVSNet297.78 30797.66 31498.12 34099.14 32895.36 37199.22 16498.75 34396.97 34798.25 35299.64 17890.90 35599.94 7696.51 31999.56 27499.08 315
ADS-MVSNet97.72 31297.67 31397.86 34599.14 32894.65 37799.22 16498.86 33796.97 34798.25 35299.64 17890.90 35599.84 25296.51 31999.56 27499.08 315
LCM-MVSNet-Re99.28 13899.15 14799.67 10899.33 29399.76 6299.34 12299.97 1898.93 20899.91 4299.79 9398.68 13899.93 9396.80 30399.56 27499.30 265
API-MVS98.38 27998.39 26198.35 32998.83 36399.26 19999.14 18799.18 32098.59 24698.66 33498.78 36798.61 14999.57 37394.14 37499.56 27496.21 391
xiu_mvs_v1_base_debu99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
xiu_mvs_v1_base_debi99.23 14999.34 11098.91 29499.59 18598.23 29398.47 29699.66 14699.61 10899.68 14198.94 35799.39 4899.97 3299.18 11399.55 27898.51 360
OpenMVScopyleft98.12 1098.23 29097.89 30499.26 24899.19 32299.26 19999.65 5999.69 13591.33 38798.14 36099.77 10898.28 19799.96 5395.41 35799.55 27898.58 357
MVEpermissive92.54 2296.66 33896.11 34298.31 33499.68 16297.55 33197.94 34295.60 38899.37 14690.68 39798.70 37196.56 28498.61 39586.94 39599.55 27898.77 349
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SR-MVS99.19 16799.00 19399.74 7899.51 22799.72 8299.18 17299.60 18598.85 21899.47 21799.58 22098.38 18599.92 11596.92 29599.54 28399.57 168
thisisatest053097.45 31996.95 32998.94 28899.68 16297.73 32699.09 20794.19 39498.61 24599.56 19199.30 30184.30 39099.93 9398.27 19099.54 28399.16 293
tt080599.63 5899.57 7099.81 3999.87 5099.88 1299.58 7698.70 34599.72 7899.91 4299.60 21299.43 4699.81 29199.81 3499.53 28599.73 70
MSP-MVS99.04 20098.79 22799.81 3999.78 10499.73 7799.35 12199.57 20398.54 25299.54 19898.99 34896.81 27899.93 9396.97 29399.53 28599.77 59
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary98.60 25398.35 26699.38 21699.12 33299.22 20998.67 27499.42 26397.84 31298.81 32099.27 30797.32 26099.81 29195.14 36299.53 28599.10 306
ETV-MVS99.18 17199.18 14299.16 26199.34 28899.28 19599.12 19799.79 8399.48 12498.93 30498.55 37799.40 4799.93 9398.51 17699.52 28898.28 370
SSC-MVS99.52 8099.42 9799.83 3299.86 5399.65 10799.52 8699.81 7399.87 4099.81 8699.79 9396.78 27999.99 899.83 3099.51 28999.86 30
EIA-MVS99.12 18599.01 19099.45 19199.36 27899.62 11699.34 12299.79 8398.41 26398.84 31798.89 36198.75 13099.84 25298.15 20499.51 28998.89 338
MCST-MVS99.02 20398.81 22499.65 12099.58 19099.49 14498.58 28199.07 32898.40 26599.04 29799.25 31298.51 16999.80 29797.31 27299.51 28999.65 111
mvs_anonymous99.28 13899.39 10098.94 28899.19 32297.81 32299.02 22499.55 21499.78 6899.85 7199.80 8398.24 20099.86 22099.57 5499.50 29299.15 295
CNLPA98.57 25898.34 26799.28 24299.18 32499.10 22798.34 30499.41 26498.48 25898.52 34398.98 35197.05 27299.78 30395.59 35399.50 29298.96 331
ZD-MVS99.43 26299.61 12299.43 26196.38 35799.11 28999.07 33797.86 23099.92 11594.04 37699.49 294
test_prior297.95 34197.87 30998.05 36299.05 33997.90 22795.99 34299.49 294
pmmvs398.08 29797.80 30698.91 29499.41 26897.69 32897.87 34899.66 14695.87 36399.50 21299.51 24890.35 36399.97 3298.55 17499.47 29699.08 315
test1299.54 17299.29 30299.33 18799.16 32298.43 34797.54 25099.82 27699.47 29699.48 214
agg_prior294.58 36999.46 29899.50 205
test9_res95.10 36399.44 29999.50 205
train_agg98.35 28397.95 29599.57 16199.35 28099.35 18498.11 32399.41 26494.90 37697.92 36698.99 34898.02 21999.85 23795.38 35899.44 29999.50 205
VPNet99.46 9499.37 10599.71 9899.82 7199.59 12799.48 9699.70 12999.81 6099.69 13899.58 22097.66 24799.86 22099.17 11699.44 29999.67 94
DP-MVS Recon98.50 26698.23 27499.31 23699.49 23899.46 15098.56 28699.63 16394.86 37898.85 31699.37 28497.81 23499.59 37196.08 33699.44 29998.88 339
LFMVS98.46 27198.19 28199.26 24899.24 31298.52 27799.62 6396.94 38199.87 4099.31 25799.58 22091.04 35299.81 29198.68 16999.42 30399.45 223
Fast-Effi-MVS+99.02 20398.87 21699.46 18899.38 27399.50 14399.04 21799.79 8397.17 34298.62 33698.74 36999.34 5899.95 6298.32 18799.41 30498.92 336
PatchmatchNetpermissive97.65 31397.80 30697.18 36298.82 36692.49 38799.17 17798.39 36198.12 29098.79 32399.58 22090.71 35999.89 17497.23 28299.41 30499.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051596.98 33096.42 33798.66 31799.42 26797.47 33397.27 37494.30 39397.24 33899.15 28398.86 36385.01 38799.87 20297.10 28899.39 30698.63 352
原ACMM199.37 21999.47 24998.87 25099.27 30096.74 35498.26 35199.32 29797.93 22699.82 27695.96 34499.38 30799.43 234
test22299.51 22799.08 22997.83 35099.29 29695.21 37398.68 33399.31 29997.28 26199.38 30799.43 234
F-COLMAP98.74 24198.45 25599.62 14399.57 20099.47 14698.84 25299.65 15596.31 35998.93 30499.19 32497.68 24299.87 20296.52 31899.37 30999.53 187
DPM-MVS98.28 28597.94 29999.32 23399.36 27899.11 22297.31 37398.78 34296.88 34998.84 31799.11 33497.77 23799.61 36994.03 37799.36 31099.23 276
旧先验199.49 23899.29 19399.26 30399.39 28097.67 24399.36 31099.46 222
dmvs_re98.69 24798.48 25299.31 23699.55 21299.42 16499.54 8498.38 36299.32 15298.72 32998.71 37096.76 28099.21 38896.01 33999.35 31299.31 263
PS-MVSNAJ99.00 20999.08 16898.76 31299.37 27598.10 30598.00 33599.51 23899.47 12899.41 23598.50 38099.28 6499.97 3298.83 15199.34 31398.20 376
testing396.48 34195.63 35199.01 28299.23 31497.81 32298.90 24599.10 32798.72 23597.84 37297.92 38972.44 40199.85 23797.21 28499.33 31499.35 252
xiu_mvs_v2_base99.02 20399.11 15798.77 31199.37 27598.09 30698.13 32099.51 23899.47 12899.42 22998.54 37899.38 5299.97 3298.83 15199.33 31498.24 372
新几何199.52 17599.50 23399.22 20999.26 30395.66 36898.60 33899.28 30597.67 24399.89 17495.95 34599.32 31699.45 223
VDDNet98.97 21398.82 22399.42 20099.71 14298.81 25299.62 6398.68 34699.81 6099.38 24299.80 8394.25 31899.85 23798.79 15799.32 31699.59 158
FA-MVS(test-final)98.52 26398.32 26999.10 27299.48 24398.67 26399.77 1598.60 35297.35 33499.63 15899.80 8393.07 33299.84 25297.92 21999.30 31898.78 348
VNet99.18 17199.06 17499.56 16499.24 31299.36 18199.33 12599.31 29299.67 9499.47 21799.57 22996.48 28799.84 25299.15 11999.30 31899.47 218
PatchMatch-RL98.68 24898.47 25399.30 23999.44 25899.28 19598.14 31999.54 22097.12 34599.11 28999.25 31297.80 23599.70 33096.51 31999.30 31898.93 335
Effi-MVS+-dtu99.07 19398.92 21099.52 17598.89 35999.78 4999.15 18599.66 14699.34 14998.92 30799.24 31797.69 24199.98 1998.11 20699.28 32198.81 345
testdata99.42 20099.51 22798.93 24399.30 29596.20 36098.87 31499.40 27698.33 19399.89 17496.29 32999.28 32199.44 228
OpenMVS_ROBcopyleft97.31 1797.36 32396.84 33398.89 30199.29 30299.45 15598.87 24899.48 24786.54 39299.44 22399.74 12097.34 25999.86 22091.61 38399.28 32197.37 387
NCCC98.82 23398.57 24499.58 15599.21 31799.31 19098.61 27599.25 30698.65 24098.43 34799.26 31097.86 23099.81 29196.55 31699.27 32499.61 147
testgi99.29 13799.26 13399.37 21999.75 12798.81 25298.84 25299.89 3798.38 26799.75 11399.04 34199.36 5799.86 22099.08 13099.25 32599.45 223
PLCcopyleft97.35 1698.36 28097.99 29199.48 18499.32 29599.24 20698.50 29499.51 23895.19 37498.58 34098.96 35596.95 27599.83 26795.63 35299.25 32599.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu99.20 16499.12 15499.43 19899.25 31099.69 9599.05 21499.82 6499.50 12298.97 30099.05 33998.98 10299.98 1998.20 19699.24 32798.62 353
PMMVS98.49 26898.29 27299.11 27098.96 35398.42 28397.54 36199.32 28897.53 32498.47 34698.15 38697.88 22999.82 27697.46 26499.24 32799.09 310
WB-MVS99.44 9899.32 11599.80 4499.81 7999.61 12299.47 9999.81 7399.82 5799.71 13199.72 13196.60 28399.98 1999.75 3799.23 32999.82 44
EPMVS96.53 34096.32 33897.17 36398.18 38992.97 38699.39 11189.95 40098.21 28698.61 33799.59 21786.69 38599.72 32496.99 29299.23 32998.81 345
alignmvs98.28 28597.96 29499.25 25199.12 33298.93 24399.03 22198.42 35999.64 10298.72 32997.85 39090.86 35799.62 36598.88 14999.13 33199.19 287
FE-MVS97.85 30497.42 31799.15 26399.44 25898.75 25899.77 1598.20 36695.85 36499.33 25099.80 8388.86 37299.88 18896.40 32499.12 33298.81 345
cascas96.99 32996.82 33597.48 35397.57 39595.64 36996.43 38899.56 20891.75 38597.13 38497.61 39495.58 30798.63 39496.68 30999.11 33398.18 377
BH-RMVSNet98.41 27698.14 28499.21 25599.21 31798.47 27898.60 27798.26 36598.35 27498.93 30499.31 29997.20 26799.66 35594.32 37199.10 33499.51 200
MAR-MVS98.24 28997.92 30199.19 25898.78 37099.65 10799.17 17799.14 32495.36 37098.04 36398.81 36697.47 25299.72 32495.47 35699.06 33598.21 374
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GA-MVS97.99 30297.68 31298.93 29199.52 22598.04 31097.19 37799.05 33198.32 28098.81 32098.97 35389.89 36999.41 38698.33 18699.05 33699.34 255
EMVS96.96 33197.28 32095.99 37698.76 37291.03 39595.26 39198.61 35099.34 14998.92 30798.88 36293.79 32399.66 35592.87 38099.05 33697.30 388
E-PMN97.14 32897.43 31696.27 37398.79 36891.62 39295.54 39099.01 33499.44 13498.88 31199.12 33192.78 33599.68 34694.30 37299.03 33897.50 384
tpmrst97.73 30998.07 28796.73 36898.71 37492.00 38999.10 20298.86 33798.52 25398.92 30799.54 24291.90 34299.82 27698.02 20999.03 33898.37 367
PatchT98.45 27398.32 26998.83 30698.94 35498.29 29199.24 15798.82 34099.84 5299.08 29299.76 11291.37 34799.94 7698.82 15399.00 34098.26 371
CL-MVSNet_self_test98.71 24598.56 24799.15 26399.22 31598.66 26697.14 37899.51 23898.09 29399.54 19899.27 30796.87 27799.74 31998.43 17998.96 34199.03 324
test_yl98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
DCV-MVSNet98.25 28797.95 29599.13 26899.17 32598.47 27899.00 22998.67 34898.97 20199.22 27399.02 34691.31 34899.69 33697.26 27898.93 34299.24 273
canonicalmvs99.02 20399.00 19399.09 27399.10 33898.70 26299.61 6899.66 14699.63 10498.64 33597.65 39399.04 9699.54 37698.79 15798.92 34499.04 323
MDTV_nov1_ep1397.73 31098.70 37590.83 39699.15 18598.02 36898.51 25498.82 31999.61 20490.98 35399.66 35596.89 29898.92 344
PAPM_NR98.36 28098.04 28899.33 22999.48 24398.93 24398.79 26599.28 29997.54 32398.56 34298.57 37597.12 26999.69 33694.09 37598.90 34699.38 243
FPMVS96.32 34595.50 35298.79 31099.60 18198.17 30098.46 30098.80 34197.16 34396.28 38799.63 18882.19 39199.09 39088.45 38998.89 34799.10 306
tpm cat196.78 33496.98 32896.16 37598.85 36290.59 39999.08 21099.32 28892.37 38497.73 37799.46 26591.15 35199.69 33696.07 33798.80 34898.21 374
test-LLR97.15 32696.95 32997.74 35098.18 38995.02 37497.38 36996.10 38398.00 29697.81 37398.58 37390.04 36799.91 13997.69 25198.78 34998.31 368
test-mter96.23 34895.73 34997.74 35098.18 38995.02 37497.38 36996.10 38397.90 30597.81 37398.58 37379.12 39899.91 13997.69 25198.78 34998.31 368
TESTMET0.1,196.24 34795.84 34897.41 35698.24 38793.84 38297.38 36995.84 38798.43 26097.81 37398.56 37679.77 39599.89 17497.77 23498.77 35198.52 359
CR-MVSNet98.35 28398.20 27898.83 30699.05 34398.12 30299.30 13599.67 14297.39 33299.16 28199.79 9391.87 34499.91 13998.78 16098.77 35198.44 365
RPMNet98.60 25398.53 25098.83 30699.05 34398.12 30299.30 13599.62 16699.86 4499.16 28199.74 12092.53 33899.92 11598.75 16298.77 35198.44 365
WTY-MVS98.59 25698.37 26399.26 24899.43 26298.40 28498.74 26999.13 32698.10 29199.21 27599.24 31794.82 31299.90 15797.86 22798.77 35199.49 210
Effi-MVS+99.06 19498.97 20299.34 22699.31 29698.98 23598.31 30799.91 3298.81 22398.79 32398.94 35799.14 8299.84 25298.79 15798.74 35599.20 284
PAPR97.56 31797.07 32599.04 28098.80 36798.11 30497.63 35799.25 30694.56 38198.02 36498.25 38597.43 25499.68 34690.90 38698.74 35599.33 256
Syy-MVS98.17 29397.85 30599.15 26398.50 38098.79 25598.60 27799.21 31697.89 30696.76 38596.37 40295.47 30899.57 37399.10 12898.73 35799.09 310
myMVS_eth3d95.63 35794.73 35998.34 33198.50 38096.36 35898.60 27799.21 31697.89 30696.76 38596.37 40272.10 40299.57 37394.38 37098.73 35799.09 310
tpmvs97.39 32197.69 31196.52 37098.41 38291.76 39099.30 13598.94 33697.74 31497.85 37199.55 24092.40 34199.73 32296.25 33198.73 35798.06 379
dp96.86 33297.07 32596.24 37498.68 37690.30 40099.19 17198.38 36297.35 33498.23 35499.59 21787.23 37799.82 27696.27 33098.73 35798.59 355
XVG-OURS-SEG-HR99.16 17798.99 19899.66 11599.84 6099.64 11098.25 31199.73 11198.39 26699.63 15899.43 27099.70 2499.90 15797.34 27098.64 36199.44 228
thres600view796.60 33996.16 34197.93 34399.63 17496.09 36499.18 17297.57 37598.77 23098.72 32997.32 39687.04 37999.72 32488.57 38898.62 36297.98 380
thres20096.09 34995.68 35097.33 35999.48 24396.22 36198.53 29197.57 37598.06 29598.37 34996.73 40186.84 38399.61 36986.99 39498.57 36396.16 392
131498.00 30197.90 30398.27 33698.90 35697.45 33599.30 13599.06 33094.98 37597.21 38299.12 33198.43 17799.67 35195.58 35498.56 36497.71 383
dmvs_testset97.27 32496.83 33498.59 31999.46 25397.55 33199.25 15696.84 38298.78 22897.24 38197.67 39297.11 27098.97 39286.59 39698.54 36599.27 269
thres100view90096.39 34396.03 34497.47 35499.63 17495.93 36599.18 17297.57 37598.75 23498.70 33297.31 39787.04 37999.67 35187.62 39198.51 36696.81 389
tfpn200view996.30 34695.89 34597.53 35299.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36696.81 389
thres40096.40 34295.89 34597.92 34499.58 19096.11 36299.00 22997.54 37898.43 26098.52 34396.98 39986.85 38199.67 35187.62 39198.51 36697.98 380
MVS95.72 35694.63 36198.99 28398.56 37897.98 31799.30 13598.86 33772.71 39597.30 37999.08 33698.34 19199.74 31989.21 38798.33 36999.26 270
BH-untuned98.22 29198.09 28698.58 32199.38 27397.24 34098.55 28798.98 33597.81 31399.20 28098.76 36897.01 27399.65 36194.83 36598.33 36998.86 341
test_method91.72 36192.32 36489.91 37993.49 40070.18 40490.28 39299.56 20861.71 39695.39 39399.52 24693.90 32099.94 7698.76 16198.27 37199.62 137
gg-mvs-nofinetune95.87 35395.17 35797.97 34298.19 38896.95 34799.69 4289.23 40199.89 3496.24 38999.94 1681.19 39299.51 38193.99 37898.20 37297.44 385
HY-MVS98.23 998.21 29297.95 29598.99 28399.03 34698.24 29299.61 6898.72 34496.81 35298.73 32899.51 24894.06 31999.86 22096.91 29698.20 37298.86 341
UnsupCasMVSNet_bld98.55 26098.27 27399.40 20999.56 21199.37 17797.97 34099.68 13897.49 32799.08 29299.35 29395.41 30999.82 27697.70 24598.19 37499.01 329
tpm296.35 34496.22 34096.73 36898.88 36191.75 39199.21 16698.51 35593.27 38397.89 36899.21 32184.83 38899.70 33096.04 33898.18 37598.75 350
tmp_tt95.75 35595.42 35396.76 36689.90 40194.42 37898.86 24997.87 37278.01 39399.30 26299.69 15297.70 23995.89 39799.29 10098.14 37699.95 11
baseline296.83 33396.28 33998.46 32599.09 34096.91 34998.83 25493.87 39597.23 33996.23 39098.36 38288.12 37499.90 15796.68 30998.14 37698.57 358
CostFormer96.71 33796.79 33696.46 37298.90 35690.71 39899.41 10898.68 34694.69 38098.14 36099.34 29686.32 38699.80 29797.60 25698.07 37898.88 339
AUN-MVS97.82 30597.38 31899.14 26799.27 30798.53 27598.72 27199.02 33298.10 29197.18 38399.03 34589.26 37199.85 23797.94 21897.91 37999.03 324
DeepMVS_CXcopyleft97.98 34199.69 15496.95 34799.26 30375.51 39495.74 39298.28 38496.47 28899.62 36591.23 38597.89 38097.38 386
hse-mvs298.52 26398.30 27199.16 26199.29 30298.60 27398.77 26799.02 33299.68 9099.32 25399.04 34192.50 33999.85 23799.24 10497.87 38199.03 324
PAPM95.61 35894.71 36098.31 33499.12 33296.63 35396.66 38798.46 35890.77 38896.25 38898.68 37293.01 33399.69 33681.60 39797.86 38298.62 353
JIA-IIPM98.06 29897.92 30198.50 32398.59 37797.02 34698.80 26298.51 35599.88 3997.89 36899.87 4791.89 34399.90 15798.16 20397.68 38398.59 355
ET-MVSNet_ETH3D96.78 33496.07 34398.91 29499.26 30997.92 31997.70 35596.05 38697.96 30392.37 39698.43 38187.06 37899.90 15798.27 19097.56 38498.91 337
TR-MVS97.44 32097.15 32498.32 33298.53 37997.46 33498.47 29697.91 37196.85 35098.21 35598.51 37996.42 29099.51 38192.16 38297.29 38597.98 380
BH-w/o97.20 32597.01 32797.76 34899.08 34195.69 36898.03 33298.52 35495.76 36697.96 36598.02 38795.62 30699.47 38392.82 38197.25 38698.12 378
KD-MVS_2432*160095.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
miper_refine_blended95.89 35195.41 35497.31 36094.96 39793.89 38097.09 37999.22 31397.23 33998.88 31199.04 34179.23 39699.54 37696.24 33296.81 38798.50 363
UnsupCasMVSNet_eth98.83 23298.57 24499.59 15199.68 16299.45 15598.99 23499.67 14299.48 12499.55 19699.36 28894.92 31099.86 22098.95 14696.57 38999.45 223
h-mvs3398.61 25198.34 26799.44 19499.60 18198.67 26399.27 14799.44 25899.68 9099.32 25399.49 25592.50 339100.00 199.24 10496.51 39099.65 111
GG-mvs-BLEND97.36 35797.59 39396.87 35099.70 3588.49 40294.64 39597.26 39880.66 39399.12 38991.50 38496.50 39196.08 393
tpm97.15 32696.95 32997.75 34998.91 35594.24 37999.32 12797.96 36997.71 31698.29 35099.32 29786.72 38499.92 11598.10 20796.24 39299.09 310
test0.0.03 197.37 32296.91 33298.74 31397.72 39297.57 33097.60 35997.36 38098.00 29699.21 27598.02 38790.04 36799.79 30098.37 18295.89 39398.86 341
IB-MVS95.41 2095.30 35994.46 36397.84 34698.76 37295.33 37297.33 37296.07 38596.02 36295.37 39497.41 39576.17 40099.96 5397.54 25995.44 39498.22 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline197.73 30997.33 31998.96 28699.30 30097.73 32699.40 10998.42 35999.33 15199.46 22199.21 32191.18 35099.82 27698.35 18491.26 39599.32 259
PVSNet_095.53 1995.85 35495.31 35697.47 35498.78 37093.48 38495.72 38999.40 27196.18 36197.37 37897.73 39195.73 30499.58 37295.49 35581.40 39699.36 249
testmvs28.94 36433.33 36615.79 38126.03 4029.81 40696.77 38515.67 40411.55 39923.87 40050.74 40719.03 4048.53 40023.21 39933.07 39729.03 396
test12329.31 36333.05 36818.08 38025.93 40312.24 40597.53 36310.93 40511.78 39824.21 39950.08 40821.04 4038.60 39923.51 39832.43 39833.39 395
test_blank8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uanet_test8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
DCPMVS8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
cdsmvs_eth3d_5k24.88 36533.17 3670.00 3820.00 4040.00 4070.00 39399.62 1660.00 4000.00 40199.13 32799.82 130.00 4010.00 4000.00 3990.00 397
pcd_1.5k_mvsjas16.61 36622.14 3690.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 199.28 640.00 4010.00 4000.00 3990.00 397
sosnet-low-res8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
sosnet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
uncertanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
Regformer8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
ab-mvs-re8.26 37511.02 3780.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40199.16 3250.00 4050.00 4010.00 4000.00 3990.00 397
uanet8.33 36711.11 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 401100.00 10.00 4050.00 4010.00 4000.00 3990.00 397
WAC-MVS96.36 35895.20 361
FOURS199.83 6499.89 1099.74 2499.71 12399.69 8899.63 158
test_one_060199.63 17499.76 6299.55 21499.23 16699.31 25799.61 20498.59 152
eth-test20.00 404
eth-test0.00 404
test_241102_ONE99.69 15499.82 3599.54 22099.12 18999.82 7999.49 25598.91 11099.52 380
save fliter99.53 22099.25 20298.29 30899.38 27899.07 193
test072699.69 15499.80 4499.24 15799.57 20399.16 18099.73 12599.65 17698.35 188
GSMVS99.14 300
test_part299.62 17899.67 10099.55 196
sam_mvs190.81 35899.14 300
sam_mvs90.52 362
MTGPAbinary99.53 229
test_post199.14 18751.63 40689.54 37099.82 27696.86 299
test_post52.41 40590.25 36499.86 220
patchmatchnet-post99.62 19590.58 36099.94 76
MTMP99.09 20798.59 353
gm-plane-assit97.59 39389.02 40293.47 38298.30 38399.84 25296.38 326
TEST999.35 28099.35 18498.11 32399.41 26494.83 37997.92 36698.99 34898.02 21999.85 237
test_899.34 28899.31 19098.08 32799.40 27194.90 37697.87 37098.97 35398.02 21999.84 252
agg_prior99.35 28099.36 18199.39 27497.76 37699.85 237
test_prior499.19 21598.00 335
test_prior99.46 18899.35 28099.22 20999.39 27499.69 33699.48 214
旧先验297.94 34295.33 37198.94 30399.88 18896.75 305
新几何298.04 331
无先验98.01 33399.23 31095.83 36599.85 23795.79 35099.44 228
原ACMM297.92 344
testdata299.89 17495.99 342
segment_acmp98.37 186
testdata197.72 35397.86 311
plane_prior799.58 19099.38 174
plane_prior699.47 24999.26 19997.24 262
plane_prior499.25 312
plane_prior399.31 19098.36 26999.14 285
plane_prior298.80 26298.94 205
plane_prior199.51 227
n20.00 406
nn0.00 406
door-mid99.83 59
test1199.29 296
door99.77 92
HQP5-MVS98.94 240
HQP-NCC99.31 29697.98 33797.45 32898.15 356
ACMP_Plane99.31 29697.98 33797.45 32898.15 356
BP-MVS94.73 366
HQP4-MVS98.15 35699.70 33099.53 187
HQP2-MVS96.67 281
NP-MVS99.40 26999.13 22098.83 364
MDTV_nov1_ep13_2view91.44 39499.14 18797.37 33399.21 27591.78 34696.75 30599.03 324
Test By Simon98.41 180