This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7399.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 799.96 9100.00 199.98 3
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6199.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_fmvsm_n_192099.84 1599.85 1699.83 3399.82 7299.70 9099.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6799.70 35100.00 199.73 74100.00 199.89 3499.79 1699.88 18999.98 1100.00 199.98 3
IterMVS-SCA-FT99.00 21299.16 14598.51 32899.75 12895.90 37298.07 33699.84 6099.84 5399.89 5399.73 12396.01 30599.99 799.33 91100.00 199.63 127
new-patchmatchnet99.35 12599.57 7198.71 32199.82 7296.62 36098.55 29299.75 10599.50 12399.88 6199.87 4799.31 6299.88 18999.43 72100.00 199.62 138
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5499.70 8599.92 4199.93 1799.45 4799.97 3399.36 84100.00 199.85 35
UA-Net99.78 2799.76 3699.86 2599.72 14099.71 8399.91 399.95 2899.96 1899.71 13299.91 2499.15 8199.97 3399.50 66100.00 199.90 20
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5499.95 2099.98 1399.92 2199.28 6699.98 2099.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4999.89 3599.98 1399.90 2999.94 499.98 2099.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4499.92 2799.98 1399.93 1799.94 499.98 2099.77 38100.00 199.92 18
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
test_djsdf99.84 1599.81 2399.91 299.94 1899.84 2499.77 1599.80 8099.73 7499.97 1999.92 2199.77 1999.98 2099.43 72100.00 199.90 20
IterMVS98.97 21699.16 14598.42 33299.74 13495.64 37598.06 33899.83 6299.83 5699.85 7399.74 11996.10 30499.99 799.27 103100.00 199.63 127
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 58100.00 199.90 29100.00 199.97 1199.61 3299.97 3399.75 39100.00 199.84 36
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3099.88 4499.64 11099.12 19799.91 3399.98 1499.95 3199.67 16699.67 2799.99 799.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4499.66 10199.11 20199.91 3399.98 1499.96 2399.64 17899.60 3499.99 799.95 1299.99 1699.88 25
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9499.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2599.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11699.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5899.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11699.92 2299.99 1699.92 18
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3199.73 7698.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 799.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4099.88 4499.55 13899.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 799.96 999.99 1699.88 25
test_vis1_n_192099.72 3699.88 699.27 24599.93 2597.84 32599.34 122100.00 199.99 299.99 799.82 7399.87 999.99 799.97 499.99 1699.97 7
test_fmvs299.72 3699.85 1699.34 22699.91 3198.08 31299.48 96100.00 199.90 2999.99 799.91 2499.50 4699.98 2099.98 199.99 1699.96 10
test_fmvs399.83 1999.93 299.53 17499.96 798.62 27599.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 799.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 21999.96 798.21 29999.51 90100.00 199.94 23100.00 199.93 1799.58 3699.94 7799.97 499.99 1699.97 7
bld_raw_dy_0_6498.97 21698.90 21799.17 26299.07 34499.24 20799.24 15699.93 2999.23 16799.87 6999.03 34595.48 31199.81 29498.29 18999.99 1698.47 373
test250694.73 37194.59 37295.15 38799.59 18685.90 41399.75 2274.01 41399.89 3599.71 13299.86 5479.00 40499.90 15799.52 6399.99 1699.65 112
test111197.74 31398.16 28796.49 38199.60 18289.86 41199.71 3491.21 40799.89 3599.88 6199.87 4793.73 33099.90 15799.56 5799.99 1699.70 79
ECVR-MVScopyleft97.73 31498.04 29396.78 37599.59 18690.81 40799.72 3090.43 40999.89 3599.86 7199.86 5493.60 33299.89 17599.46 6999.99 1699.65 112
pmmvs-eth3d99.48 8799.47 8599.51 17899.77 11399.41 17098.81 26199.66 14899.42 14499.75 11499.66 17199.20 7699.76 31898.98 13899.99 1699.36 249
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6799.84 5399.94 3499.91 2499.13 8699.96 5499.83 3299.99 1699.83 40
RRT_MVS99.67 5199.59 6499.91 299.94 1899.88 1299.78 1299.27 30299.87 4199.91 4499.87 4798.04 21999.96 5499.68 4499.99 1699.90 20
v899.68 4599.69 4399.65 12199.80 8699.40 17199.66 5399.76 10099.64 10299.93 3799.85 5698.66 14699.84 25599.88 2999.99 1699.71 76
v1099.69 4299.69 4399.66 11699.81 8099.39 17399.66 5399.75 10599.60 11599.92 4199.87 4798.75 13399.86 22299.90 2599.99 1699.73 71
CHOSEN 1792x268899.39 11599.30 12399.65 12199.88 4499.25 20398.78 26899.88 4498.66 24799.96 2399.79 9397.45 25699.93 9499.34 8899.99 1699.78 56
PVSNet_Blended_VisFu99.40 11199.38 10399.44 19599.90 3798.66 26998.94 24599.91 3397.97 31099.79 9799.73 12399.05 9799.97 3399.15 11999.99 1699.68 89
IterMVS-LS99.41 10999.47 8599.25 25199.81 8098.09 30998.85 25399.76 10099.62 10699.83 8099.64 17898.54 16399.97 3399.15 11999.99 1699.68 89
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS98.90 499.62 6599.61 5999.67 10999.72 14099.44 15899.24 15699.71 12699.27 15999.93 3799.90 2999.70 2499.93 9498.99 13699.99 1699.64 122
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3199.90 799.96 199.92 3099.90 2999.97 1999.87 4799.81 1499.95 6399.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5899.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9499.92 2299.98 4199.93 15
MM99.18 17299.05 17999.55 16899.35 28198.81 25599.05 21697.79 38099.99 299.48 21699.59 21896.29 30099.95 6399.94 1699.98 4199.88 25
test_fmvs1_n99.68 4599.81 2399.28 24299.95 1597.93 32299.49 95100.00 199.82 5899.99 799.89 3499.21 7599.98 2099.97 499.98 4199.93 15
mvsany_test399.85 1199.88 699.75 7499.95 1599.37 17899.53 8599.98 1199.77 7299.99 799.95 1399.85 1099.94 7799.95 1299.98 4199.94 13
Anonymous2024052199.44 9999.42 9899.49 18199.89 3998.96 24299.62 6299.76 10099.85 5099.82 8199.88 4296.39 29699.97 3399.59 5199.98 4199.55 174
D2MVS99.22 15899.19 14299.29 24099.69 15598.74 26298.81 26199.41 26698.55 25899.68 14299.69 15198.13 21399.87 20398.82 15399.98 4199.24 273
CHOSEN 280x42098.41 28098.41 26298.40 33399.34 29095.89 37396.94 39399.44 26098.80 23199.25 26899.52 24693.51 33399.98 2098.94 14799.98 4199.32 259
MVS_030499.17 17799.03 18799.59 15299.44 25998.90 24999.04 21995.32 39899.99 299.68 14299.57 22998.30 19799.97 3399.94 1699.98 4199.88 25
v119299.57 7099.57 7199.57 16299.77 11399.22 21199.04 21999.60 18899.18 17599.87 6999.72 13099.08 9299.85 24099.89 2899.98 4199.66 104
v114499.54 7899.53 8199.59 15299.79 9899.28 19699.10 20499.61 17699.20 17399.84 7699.73 12398.67 14499.84 25599.86 3199.98 4199.64 122
mvsmamba99.74 3599.70 3999.85 2799.93 2599.83 2999.76 1999.81 7699.96 1899.91 4499.81 7998.60 15499.94 7799.58 5499.98 4199.77 60
OurMVSNet-221017-099.75 3299.71 3899.84 3099.96 799.83 2999.83 699.85 5499.80 6499.93 3799.93 1798.54 16399.93 9499.59 5199.98 4199.76 66
UGNet99.38 11799.34 11199.49 18198.90 36098.90 24999.70 3599.35 28599.86 4598.57 34599.81 7998.50 17399.93 9499.38 8099.98 4199.66 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MIMVSNet199.66 5399.62 5599.80 4599.94 1899.87 1599.69 4299.77 9599.78 6899.93 3799.89 3497.94 22799.92 11699.65 4699.98 4199.62 138
Vis-MVSNetpermissive99.75 3299.74 3799.79 5199.88 4499.66 10199.69 4299.92 3099.67 9499.77 10699.75 11699.61 3299.98 2099.35 8799.98 4199.72 73
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192099.76 3199.86 1299.45 19299.93 2598.40 28799.30 13599.98 1199.94 2399.99 799.89 3499.80 1599.97 3399.96 999.97 5699.97 7
test_fmvs199.48 8799.65 5098.97 28899.54 21597.16 34899.11 20199.98 1199.78 6899.96 2399.81 7998.72 13899.97 3399.95 1299.97 5699.79 54
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 3999.91 499.89 499.71 12699.93 2599.95 3199.89 3499.71 2299.96 5499.51 6499.97 5699.84 36
CANet99.11 19099.05 17999.28 24298.83 36798.56 27798.71 27599.41 26699.25 16399.23 27299.22 31997.66 25099.94 7799.19 11199.97 5699.33 256
pmmvs699.86 999.86 1299.83 3399.94 1899.90 799.83 699.91 3399.85 5099.94 3499.95 1399.73 2199.90 15799.65 4699.97 5699.69 83
v14419299.55 7699.54 7799.58 15699.78 10599.20 21699.11 20199.62 16999.18 17599.89 5399.72 13098.66 14699.87 20399.88 2999.97 5699.66 104
v192192099.56 7399.57 7199.55 16899.75 12899.11 22599.05 21699.61 17699.15 18799.88 6199.71 13899.08 9299.87 20399.90 2599.97 5699.66 104
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4499.86 1899.72 3099.78 9299.90 2999.82 8199.83 6698.45 17899.87 20399.51 6499.97 5699.86 32
iter_conf0598.46 27598.23 27899.15 26599.04 34997.99 31599.10 20499.61 17699.79 6699.76 10899.58 22187.88 37999.92 11699.31 9699.97 5699.53 187
v2v48299.50 8399.47 8599.58 15699.78 10599.25 20399.14 18799.58 20399.25 16399.81 8899.62 19698.24 20299.84 25599.83 3299.97 5699.64 122
Patchmtry98.78 24098.54 25299.49 18198.89 36399.19 21899.32 12799.67 14499.65 10099.72 12799.79 9391.87 34999.95 6398.00 21699.97 5699.33 256
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21597.99 31598.58 28699.82 6797.62 32999.34 24999.71 13898.52 17099.77 31697.98 21799.97 5699.52 198
FMVSNet199.66 5399.63 5499.73 8899.78 10599.77 5499.68 4599.70 13199.67 9499.82 8199.83 6698.98 10599.90 15799.24 10499.97 5699.53 187
HyFIR lowres test98.91 22698.64 23999.73 8899.85 5899.47 14798.07 33699.83 6298.64 24999.89 5399.60 21392.57 341100.00 199.33 9199.97 5699.72 73
SDMVSNet99.77 3099.77 3399.76 6499.80 8699.65 10799.63 6099.86 4999.97 1699.89 5399.89 3499.52 4499.99 799.42 7799.96 7099.65 112
sd_testset99.78 2799.78 3199.80 4599.80 8699.76 6199.80 1099.79 8699.97 1699.89 5399.89 3499.53 4399.99 799.36 8499.96 7099.65 112
test_vis1_n99.68 4599.79 2799.36 22399.94 1898.18 30299.52 86100.00 199.86 45100.00 199.88 4298.99 10399.96 5499.97 499.96 7099.95 11
patch_mono-299.51 8299.46 8999.64 12899.70 15199.11 22599.04 21999.87 4699.71 8099.47 21899.79 9398.24 20299.98 2099.38 8099.96 7099.83 40
dcpmvs_299.61 6799.64 5399.53 17499.79 9898.82 25499.58 7699.97 1899.95 2099.96 2399.76 11198.44 17999.99 799.34 8899.96 7099.78 56
ppachtmachnet_test98.89 23199.12 15598.20 34399.66 16995.24 38197.63 36799.68 14099.08 19499.78 10199.62 19698.65 14899.88 18998.02 21299.96 7099.48 214
Anonymous2023121199.62 6599.57 7199.76 6499.61 18099.60 12699.81 999.73 11499.82 5899.90 4999.90 2997.97 22699.86 22299.42 7799.96 7099.80 47
nrg03099.70 4099.66 4899.82 3799.76 11799.84 2499.61 6799.70 13199.93 2599.78 10199.68 16299.10 8799.78 30899.45 7099.96 7099.83 40
v124099.56 7399.58 6899.51 17899.80 8699.00 23699.00 23199.65 15899.15 18799.90 4999.75 11699.09 8999.88 18999.90 2599.96 7099.67 95
PS-CasMVS99.66 5399.58 6899.89 1199.80 8699.85 1999.66 5399.73 11499.62 10699.84 7699.71 13898.62 15099.96 5499.30 9799.96 7099.86 32
casdiffmvs_mvgpermissive99.68 4599.68 4699.69 10499.81 8099.59 12899.29 14299.90 3899.71 8099.79 9799.73 12399.54 4199.84 25599.36 8499.96 7099.65 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TAMVS99.49 8599.45 9199.63 13599.48 24499.42 16599.45 10399.57 20599.66 9899.78 10199.83 6697.85 23499.86 22299.44 7199.96 7099.61 148
test_040299.22 15899.14 14999.45 19299.79 9899.43 16299.28 14499.68 14099.54 11999.40 24199.56 23399.07 9499.82 27996.01 34899.96 7099.11 304
our_test_398.85 23599.09 16798.13 34599.66 16994.90 38597.72 36399.58 20399.07 19699.64 15599.62 19698.19 20999.93 9498.41 18199.95 8399.55 174
CANet_DTU98.91 22698.85 22299.09 27598.79 37398.13 30498.18 32299.31 29499.48 12598.86 31799.51 24896.56 28799.95 6399.05 13299.95 8399.19 287
pmmvs599.19 16899.11 15899.42 20199.76 11798.88 25198.55 29299.73 11498.82 22799.72 12799.62 19696.56 28799.82 27999.32 9399.95 8399.56 171
V4299.56 7399.54 7799.63 13599.79 9899.46 15199.39 11199.59 19499.24 16599.86 7199.70 14598.55 16199.82 27999.79 3799.95 8399.60 152
EU-MVSNet99.39 11599.62 5598.72 31999.88 4496.44 36299.56 8199.85 5499.90 2999.90 4999.85 5698.09 21599.83 27099.58 5499.95 8399.90 20
PMMVS299.48 8799.45 9199.57 16299.76 11798.99 23798.09 33399.90 3898.95 20899.78 10199.58 22199.57 3899.93 9499.48 6799.95 8399.79 54
DTE-MVSNet99.68 4599.61 5999.88 1799.80 8699.87 1599.67 4999.71 12699.72 7899.84 7699.78 10198.67 14499.97 3399.30 9799.95 8399.80 47
WR-MVS_H99.61 6799.53 8199.87 2199.80 8699.83 2999.67 4999.75 10599.58 11899.85 7399.69 15198.18 21199.94 7799.28 10299.95 8399.83 40
K. test v398.87 23398.60 24299.69 10499.93 2599.46 15199.74 2494.97 39999.78 6899.88 6199.88 4293.66 33199.97 3399.61 4999.95 8399.64 122
TDRefinement99.72 3699.70 3999.77 5799.90 3799.85 1999.86 599.92 3099.69 8899.78 10199.92 2199.37 5699.88 18998.93 14899.95 8399.60 152
Gipumacopyleft99.57 7099.59 6499.49 18199.98 399.71 8399.72 3099.84 6099.81 6199.94 3499.78 10198.91 11399.71 33498.41 18199.95 8399.05 323
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v14899.40 11199.41 10099.39 21399.76 11798.94 24399.09 20999.59 19499.17 18099.81 8899.61 20598.41 18399.69 34399.32 9399.94 9499.53 187
casdiffmvspermissive99.63 5999.61 5999.67 10999.79 9899.59 12899.13 19399.85 5499.79 6699.76 10899.72 13099.33 6199.82 27999.21 10799.94 9499.59 159
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PEN-MVS99.66 5399.59 6499.89 1199.83 6599.87 1599.66 5399.73 11499.70 8599.84 7699.73 12398.56 16099.96 5499.29 10099.94 9499.83 40
CP-MVSNet99.54 7899.43 9699.87 2199.76 11799.82 3599.57 7999.61 17699.54 11999.80 9299.64 17897.79 23899.95 6399.21 10799.94 9499.84 36
baseline99.63 5999.62 5599.66 11699.80 8699.62 11799.44 10599.80 8099.71 8099.72 12799.69 15199.15 8199.83 27099.32 9399.94 9499.53 187
FMVSNet299.35 12599.28 13099.55 16899.49 23999.35 18599.45 10399.57 20599.44 13599.70 13699.74 11997.21 26799.87 20399.03 13399.94 9499.44 228
ACMMP++_ref99.94 94
eth_miper_zixun_eth98.68 25198.71 23598.60 32499.10 33996.84 35797.52 37599.54 22298.94 20999.58 18299.48 25896.25 30199.76 31898.01 21599.93 10199.21 280
FIs99.65 5899.58 6899.84 3099.84 6199.85 1999.66 5399.75 10599.86 4599.74 12299.79 9398.27 20099.85 24099.37 8399.93 10199.83 40
pmmvs499.13 18599.06 17599.36 22399.57 20199.10 23098.01 34299.25 30898.78 23499.58 18299.44 26998.24 20299.76 31898.74 16499.93 10199.22 278
XXY-MVS99.71 3999.67 4799.81 4099.89 3999.72 8199.59 7499.82 6799.39 14599.82 8199.84 6299.38 5499.91 13999.38 8099.93 10199.80 47
pm-mvs199.79 2699.79 2799.78 5499.91 3199.83 2999.76 1999.87 4699.73 7499.89 5399.87 4799.63 2999.87 20399.54 6099.92 10599.63 127
EI-MVSNet99.38 11799.44 9499.21 25599.58 19198.09 30999.26 14999.46 25599.62 10699.75 11499.67 16698.54 16399.85 24099.15 11999.92 10599.68 89
TranMVSNet+NR-MVSNet99.54 7899.47 8599.76 6499.58 19199.64 11099.30 13599.63 16699.61 10999.71 13299.56 23398.76 13199.96 5499.14 12599.92 10599.68 89
lessismore_v099.64 12899.86 5499.38 17590.66 40899.89 5399.83 6694.56 32199.97 3399.56 5799.92 10599.57 169
SixPastTwentyTwo99.42 10599.30 12399.76 6499.92 3099.67 9999.70 3599.14 32699.65 10099.89 5399.90 2996.20 30299.94 7799.42 7799.92 10599.67 95
MVSTER98.47 27498.22 28099.24 25399.06 34698.35 29399.08 21299.46 25599.27 15999.75 11499.66 17188.61 37799.85 24099.14 12599.92 10599.52 198
N_pmnet98.73 24698.53 25399.35 22599.72 14098.67 26698.34 31194.65 40098.35 28499.79 9799.68 16298.03 22099.93 9498.28 19299.92 10599.44 228
CSCG99.37 12099.29 12899.60 15099.71 14399.46 15199.43 10799.85 5498.79 23299.41 23699.60 21398.92 11199.92 11698.02 21299.92 10599.43 234
CMPMVSbinary77.52 2398.50 27098.19 28599.41 20898.33 39599.56 13599.01 22899.59 19495.44 37999.57 18599.80 8395.64 30899.46 39596.47 33099.92 10599.21 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EG-PatchMatch MVS99.57 7099.56 7699.62 14499.77 11399.33 18899.26 14999.76 10099.32 15399.80 9299.78 10199.29 6499.87 20399.15 11999.91 11499.66 104
miper_lstm_enhance98.65 25398.60 24298.82 31499.20 32197.33 34497.78 36199.66 14899.01 20199.59 18099.50 25194.62 32099.85 24098.12 20899.90 11599.26 270
CS-MVS-test99.68 4599.70 3999.64 12899.57 20199.83 2999.78 1299.97 1899.92 2799.50 21399.38 28299.57 3899.95 6399.69 4399.90 11599.15 295
EI-MVSNet-UG-set99.48 8799.50 8399.42 20199.57 20198.65 27299.24 15699.46 25599.68 9099.80 9299.66 17198.99 10399.89 17599.19 11199.90 11599.72 73
diffmvspermissive99.34 13099.32 11699.39 21399.67 16898.77 26098.57 29099.81 7699.61 10999.48 21699.41 27298.47 17499.86 22298.97 14099.90 11599.53 187
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet198.95 22398.99 20198.84 30999.64 17397.14 35098.22 32199.32 29098.92 21499.59 18099.66 17197.40 25899.83 27098.27 19399.90 11599.55 174
GBi-Net99.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
FMVSNet597.80 31197.25 32799.42 20198.83 36798.97 24099.38 11399.80 8098.87 22099.25 26899.69 15180.60 39899.91 13998.96 14299.90 11599.38 243
test199.42 10599.31 11899.73 8899.49 23999.77 5499.68 4599.70 13199.44 13599.62 16899.83 6697.21 26799.90 15798.96 14299.90 11599.53 187
FMVSNet398.80 23998.63 24199.32 23399.13 33198.72 26399.10 20499.48 24999.23 16799.62 16899.64 17892.57 34199.86 22298.96 14299.90 11599.39 241
iter_conf05_1198.54 26498.33 27299.18 26099.07 34499.20 21697.94 35197.59 38299.17 18099.30 26398.92 36294.79 31799.86 22298.29 18999.89 12498.47 373
cl____98.54 26498.41 26298.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.85 32799.78 30897.97 21999.89 12499.17 291
DIV-MVS_self_test98.54 26498.42 26198.92 29699.03 35097.80 32997.46 37799.59 19498.90 21699.60 17799.46 26593.87 32699.78 30897.97 21999.89 12499.18 289
CS-MVS99.67 5199.70 3999.58 15699.53 22199.84 2499.79 1199.96 2399.90 2999.61 17499.41 27299.51 4599.95 6399.66 4599.89 12498.96 334
EI-MVSNet-Vis-set99.47 9499.49 8499.42 20199.57 20198.66 26999.24 15699.46 25599.67 9499.79 9799.65 17698.97 10799.89 17599.15 11999.89 12499.71 76
DSMNet-mixed99.48 8799.65 5098.95 29199.71 14397.27 34599.50 9199.82 6799.59 11799.41 23699.85 5699.62 31100.00 199.53 6299.89 12499.59 159
Vis-MVSNet (Re-imp)98.77 24198.58 24799.34 22699.78 10598.88 25199.61 6799.56 21099.11 19399.24 27199.56 23393.00 33999.78 30897.43 26999.89 12499.35 252
EPP-MVSNet99.17 17799.00 19599.66 11699.80 8699.43 16299.70 3599.24 31199.48 12599.56 19299.77 10894.89 31599.93 9498.72 16699.89 12499.63 127
CLD-MVS98.76 24298.57 24899.33 22999.57 20198.97 24097.53 37399.55 21696.41 36699.27 26699.13 32799.07 9499.78 30896.73 31399.89 12499.23 276
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ACMH98.42 699.59 6999.54 7799.72 9499.86 5499.62 11799.56 8199.79 8698.77 23699.80 9299.85 5699.64 2899.85 24098.70 16799.89 12499.70 79
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testf199.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
APD_test299.63 5999.60 6299.72 9499.94 1899.95 299.47 9999.89 4099.43 14099.88 6199.80 8399.26 7099.90 15798.81 15599.88 13499.32 259
GeoE99.69 4299.66 4899.78 5499.76 11799.76 6199.60 7399.82 6799.46 13299.75 11499.56 23399.63 2999.95 6399.43 7299.88 13499.62 138
c3_l98.72 24798.71 23598.72 31999.12 33397.22 34797.68 36699.56 21098.90 21699.54 19999.48 25896.37 29799.73 32897.88 22699.88 13499.21 280
VPA-MVSNet99.66 5399.62 5599.79 5199.68 16399.75 6799.62 6299.69 13799.85 5099.80 9299.81 7998.81 12199.91 13999.47 6899.88 13499.70 79
MDA-MVSNet_test_wron98.95 22398.99 20198.85 30799.64 17397.16 34898.23 32099.33 28898.93 21299.56 19299.66 17197.39 26099.83 27098.29 18999.88 13499.55 174
XVG-OURS99.21 16399.06 17599.65 12199.82 7299.62 11797.87 35899.74 11098.36 27999.66 15299.68 16299.71 2299.90 15796.84 30899.88 13499.43 234
CDS-MVSNet99.22 15899.13 15199.50 18099.35 28199.11 22598.96 24299.54 22299.46 13299.61 17499.70 14596.31 29899.83 27099.34 8899.88 13499.55 174
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 20398.85 22299.55 16899.80 8699.25 20399.73 2799.15 32599.37 14799.61 17499.71 13894.73 31999.81 29497.70 24899.88 13499.58 164
USDC98.96 22098.93 20999.05 28299.54 21597.99 31597.07 39199.80 8098.21 29699.75 11499.77 10898.43 18099.64 37297.90 22499.88 13499.51 200
ACMH+98.40 899.50 8399.43 9699.71 9999.86 5499.76 6199.32 12799.77 9599.53 12199.77 10699.76 11199.26 7099.78 30897.77 23799.88 13499.60 152
mvsany_test199.44 9999.45 9199.40 21099.37 27698.64 27397.90 35799.59 19499.27 15999.92 4199.82 7399.74 2099.93 9499.55 5999.87 14599.63 127
SD-MVS99.01 21099.30 12398.15 34499.50 23499.40 17198.94 24599.61 17699.22 17299.75 11499.82 7399.54 4195.51 40897.48 26699.87 14599.54 182
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UniMVSNet (Re)99.37 12099.26 13499.68 10699.51 22899.58 13298.98 23999.60 18899.43 14099.70 13699.36 28897.70 24299.88 18999.20 11099.87 14599.59 159
WR-MVS99.11 19098.93 20999.66 11699.30 30199.42 16598.42 30799.37 28199.04 19999.57 18599.20 32396.89 27999.86 22298.66 17199.87 14599.70 79
NR-MVSNet99.40 11199.31 11899.68 10699.43 26399.55 13899.73 2799.50 24499.46 13299.88 6199.36 28897.54 25399.87 20398.97 14099.87 14599.63 127
LPG-MVS_test99.22 15899.05 17999.74 7999.82 7299.63 11599.16 18399.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
LGP-MVS_train99.74 7999.82 7299.63 11599.73 11497.56 33099.64 15599.69 15199.37 5699.89 17596.66 31799.87 14599.69 83
COLMAP_ROBcopyleft98.06 1299.45 9799.37 10699.70 10399.83 6599.70 9099.38 11399.78 9299.53 12199.67 14899.78 10199.19 7799.86 22297.32 27599.87 14599.55 174
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test20.0399.55 7699.54 7799.58 15699.79 9899.37 17899.02 22699.89 4099.60 11599.82 8199.62 19698.81 12199.89 17599.43 7299.86 15399.47 218
Baseline_NR-MVSNet99.49 8599.37 10699.82 3799.91 3199.84 2498.83 25699.86 4999.68 9099.65 15499.88 4297.67 24699.87 20399.03 13399.86 15399.76 66
EC-MVSNet99.69 4299.69 4399.68 10699.71 14399.91 499.76 1999.96 2399.86 4599.51 21199.39 28099.57 3899.93 9499.64 4899.86 15399.20 284
MSDG99.08 19498.98 20499.37 21999.60 18299.13 22397.54 37199.74 11098.84 22699.53 20499.55 24099.10 8799.79 30597.07 29599.86 15399.18 289
EGC-MVSNET89.05 37385.52 37699.64 12899.89 3999.78 4999.56 8199.52 23624.19 40749.96 40899.83 6699.15 8199.92 11697.71 24599.85 15799.21 280
Patchmatch-RL test98.60 25698.36 26799.33 22999.77 11399.07 23398.27 31699.87 4698.91 21599.74 12299.72 13090.57 36699.79 30598.55 17599.85 15799.11 304
APDe-MVScopyleft99.48 8799.36 10999.85 2799.55 21399.81 4099.50 9199.69 13798.99 20299.75 11499.71 13898.79 12699.93 9498.46 17999.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMP97.51 1499.05 19998.84 22499.67 10999.78 10599.55 13898.88 24999.66 14897.11 35699.47 21899.60 21399.07 9499.89 17596.18 34399.85 15799.58 164
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PMVScopyleft92.94 2198.82 23798.81 22898.85 30799.84 6197.99 31599.20 16799.47 25299.71 8099.42 23099.82 7398.09 21599.47 39393.88 38999.85 15799.07 321
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Anonymous2023120699.35 12599.31 11899.47 18799.74 13499.06 23599.28 14499.74 11099.23 16799.72 12799.53 24497.63 25299.88 18999.11 12799.84 16299.48 214
HPM-MVS_fast99.43 10299.30 12399.80 4599.83 6599.81 4099.52 8699.70 13198.35 28499.51 21199.50 25199.31 6299.88 18998.18 20399.84 16299.69 83
XVG-ACMP-BASELINE99.23 15099.10 16699.63 13599.82 7299.58 13298.83 25699.72 12398.36 27999.60 17799.71 13898.92 11199.91 13997.08 29499.84 16299.40 239
new_pmnet98.88 23298.89 21898.84 30999.70 15197.62 33498.15 32599.50 24497.98 30999.62 16899.54 24298.15 21299.94 7797.55 26199.84 16298.95 336
Test_1112_low_res98.95 22398.73 23399.63 13599.68 16399.15 22298.09 33399.80 8097.14 35499.46 22299.40 27696.11 30399.89 17599.01 13599.84 16299.84 36
1112_ss99.05 19998.84 22499.67 10999.66 16999.29 19498.52 29899.82 6797.65 32899.43 22899.16 32596.42 29399.91 13999.07 13199.84 16299.80 47
3Dnovator99.15 299.43 10299.36 10999.65 12199.39 27199.42 16599.70 3599.56 21099.23 16799.35 24699.80 8399.17 7999.95 6398.21 19899.84 16299.59 159
LF4IMVS99.01 21098.92 21399.27 24599.71 14399.28 19698.59 28499.77 9598.32 29099.39 24299.41 27298.62 15099.84 25596.62 32299.84 16298.69 358
ACMMP_NAP99.28 13999.11 15899.79 5199.75 12899.81 4098.95 24399.53 23198.27 29399.53 20499.73 12398.75 13399.87 20397.70 24899.83 17099.68 89
AllTest99.21 16399.07 17399.63 13599.78 10599.64 11099.12 19799.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
TestCases99.63 13599.78 10599.64 11099.83 6298.63 25099.63 15999.72 13098.68 14199.75 32296.38 33599.83 17099.51 200
PM-MVS99.36 12399.29 12899.58 15699.83 6599.66 10198.95 24399.86 4998.85 22399.81 8899.73 12398.40 18799.92 11698.36 18499.83 17099.17 291
EPNet98.13 29997.77 31499.18 26094.57 41097.99 31599.24 15697.96 37599.74 7397.29 38599.62 19693.13 33699.97 3398.59 17399.83 17099.58 164
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended98.70 24998.59 24499.02 28499.54 21597.99 31597.58 37099.82 6795.70 37799.34 24998.98 35298.52 17099.77 31697.98 21799.83 17099.30 265
MVS-HIRNet97.86 30898.22 28096.76 37699.28 30691.53 40398.38 30992.60 40699.13 18999.31 25899.96 1297.18 27199.68 35598.34 18699.83 17099.07 321
RPSCF99.18 17299.02 18999.64 12899.83 6599.85 1999.44 10599.82 6798.33 28999.50 21399.78 10197.90 22999.65 37096.78 31099.83 17099.44 228
TinyColmap98.97 21698.93 20999.07 28099.46 25498.19 30097.75 36299.75 10598.79 23299.54 19999.70 14598.97 10799.62 37496.63 32199.83 17099.41 238
test_vis1_rt99.45 9799.46 8999.41 20899.71 14398.63 27498.99 23699.96 2399.03 20099.95 3199.12 33198.75 13399.84 25599.82 3599.82 17999.77 60
MP-MVS-pluss99.14 18398.92 21399.80 4599.83 6599.83 2998.61 27999.63 16696.84 36199.44 22499.58 22198.81 12199.91 13997.70 24899.82 17999.67 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDA-MVSNet-bldmvs99.06 19699.05 17999.07 28099.80 8697.83 32698.89 24899.72 12399.29 15599.63 15999.70 14596.47 29199.89 17598.17 20599.82 17999.50 205
jason99.16 17999.11 15899.32 23399.75 12898.44 28498.26 31899.39 27698.70 24499.74 12299.30 30198.54 16399.97 3398.48 17899.82 17999.55 174
jason: jason.
HPM-MVScopyleft99.25 14699.07 17399.78 5499.81 8099.75 6799.61 6799.67 14497.72 32599.35 24699.25 31299.23 7399.92 11697.21 28999.82 17999.67 95
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
114514_t98.49 27298.11 29099.64 12899.73 13799.58 13299.24 15699.76 10089.94 39999.42 23099.56 23397.76 24199.86 22297.74 24299.82 17999.47 218
CP-MVS99.23 15099.05 17999.75 7499.66 16999.66 10199.38 11399.62 16998.38 27799.06 29899.27 30798.79 12699.94 7797.51 26599.82 17999.66 104
PHI-MVS99.11 19098.95 20899.59 15299.13 33199.59 12899.17 17799.65 15897.88 31899.25 26899.46 26598.97 10799.80 30297.26 28299.82 17999.37 246
wuyk23d97.58 32199.13 15192.93 38899.69 15599.49 14599.52 8699.77 9597.97 31099.96 2399.79 9399.84 1299.94 7795.85 35799.82 17979.36 404
CVMVSNet98.61 25498.88 21997.80 35699.58 19193.60 39399.26 14999.64 16499.66 9899.72 12799.67 16693.26 33499.93 9499.30 9799.81 18899.87 30
UniMVSNet_NR-MVSNet99.37 12099.25 13699.72 9499.47 25099.56 13598.97 24099.61 17699.43 14099.67 14899.28 30597.85 23499.95 6399.17 11699.81 18899.65 112
DU-MVS99.33 13399.21 14099.71 9999.43 26399.56 13598.83 25699.53 23199.38 14699.67 14899.36 28897.67 24699.95 6399.17 11699.81 18899.63 127
DeepPCF-MVS98.42 699.18 17299.02 18999.67 10999.22 31699.75 6797.25 38599.47 25298.72 24199.66 15299.70 14599.29 6499.63 37398.07 21199.81 18899.62 138
ACMM98.09 1199.46 9599.38 10399.72 9499.80 8699.69 9499.13 19399.65 15898.99 20299.64 15599.72 13099.39 5099.86 22298.23 19699.81 18899.60 152
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZNCC-MVS99.22 15899.04 18599.77 5799.76 11799.73 7699.28 14499.56 21098.19 29899.14 28799.29 30498.84 12099.92 11697.53 26499.80 19399.64 122
test_0728_THIRD99.18 17599.62 16899.61 20598.58 15799.91 13997.72 24399.80 19399.77 60
SteuartSystems-ACMMP99.30 13799.14 14999.76 6499.87 5199.66 10199.18 17299.60 18898.55 25899.57 18599.67 16699.03 10099.94 7797.01 29699.80 19399.69 83
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS99.48 8799.39 10199.74 7999.57 20199.62 11799.29 14299.61 17699.87 4199.74 12299.76 11198.69 14099.87 20398.20 19999.80 19399.75 69
PCF-MVS96.03 1896.73 34195.86 35299.33 22999.44 25999.16 22096.87 39499.44 26086.58 40198.95 30499.40 27694.38 32299.88 18987.93 40099.80 19398.95 336
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SMA-MVScopyleft99.19 16899.00 19599.73 8899.46 25499.73 7699.13 19399.52 23697.40 34199.57 18599.64 17898.93 11099.83 27097.61 25899.79 19899.63 127
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA99.35 12599.20 14199.80 4599.81 8099.81 4099.33 12599.53 23199.27 15999.42 23099.63 18998.21 20799.95 6397.83 23699.79 19899.65 112
ACMMP++99.79 198
ACMMPcopyleft99.25 14699.08 16999.74 7999.79 9899.68 9799.50 9199.65 15898.07 30499.52 20699.69 15198.57 15899.92 11697.18 29199.79 19899.63 127
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
OMC-MVS98.90 22898.72 23499.44 19599.39 27199.42 16598.58 28699.64 16497.31 34699.44 22499.62 19698.59 15599.69 34396.17 34499.79 19899.22 278
tfpnnormal99.43 10299.38 10399.60 15099.87 5199.75 6799.59 7499.78 9299.71 8099.90 4999.69 15198.85 11999.90 15797.25 28699.78 20399.15 295
HQP_MVS98.90 22898.68 23899.55 16899.58 19199.24 20798.80 26499.54 22298.94 20999.14 28799.25 31297.24 26599.82 27995.84 35899.78 20399.60 152
plane_prior599.54 22299.82 27995.84 35899.78 20399.60 152
mPP-MVS99.19 16899.00 19599.76 6499.76 11799.68 9799.38 11399.54 22298.34 28899.01 30099.50 25198.53 16799.93 9497.18 29199.78 20399.66 104
OPM-MVS99.26 14599.13 15199.63 13599.70 15199.61 12398.58 28699.48 24998.50 26599.52 20699.63 18999.14 8499.76 31897.89 22599.77 20799.51 200
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_111021_LR99.13 18599.03 18799.42 20199.58 19199.32 19097.91 35699.73 11498.68 24599.31 25899.48 25899.09 8999.66 36497.70 24899.77 20799.29 268
MIMVSNet98.43 27898.20 28299.11 27299.53 22198.38 29199.58 7698.61 35398.96 20699.33 25199.76 11190.92 35999.81 29497.38 27299.76 20999.15 295
MVS_111021_HR99.12 18799.02 18999.40 21099.50 23499.11 22597.92 35499.71 12698.76 23999.08 29499.47 26299.17 7999.54 38597.85 23299.76 20999.54 182
DPE-MVScopyleft99.14 18398.92 21399.82 3799.57 20199.77 5498.74 27199.60 18898.55 25899.76 10899.69 15198.23 20699.92 11696.39 33499.75 21199.76 66
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TSAR-MVS + MP.99.34 13099.24 13899.63 13599.82 7299.37 17899.26 14999.35 28598.77 23699.57 18599.70 14599.27 6999.88 18997.71 24599.75 21199.65 112
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HFP-MVS99.25 14699.08 16999.76 6499.73 13799.70 9099.31 13299.59 19498.36 27999.36 24599.37 28498.80 12599.91 13997.43 26999.75 21199.68 89
ACMMPR99.23 15099.06 17599.76 6499.74 13499.69 9499.31 13299.59 19498.36 27999.35 24699.38 28298.61 15299.93 9497.43 26999.75 21199.67 95
MP-MVScopyleft99.06 19698.83 22699.76 6499.76 11799.71 8399.32 12799.50 24498.35 28498.97 30299.48 25898.37 18999.92 11695.95 35499.75 21199.63 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
QAPM98.40 28297.99 29699.65 12199.39 27199.47 14799.67 4999.52 23691.70 39698.78 32899.80 8398.55 16199.95 6394.71 37899.75 21199.53 187
DeepC-MVS_fast98.47 599.23 15099.12 15599.56 16599.28 30699.22 21198.99 23699.40 27399.08 19499.58 18299.64 17898.90 11699.83 27097.44 26899.75 21199.63 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS99.16 17998.96 20799.75 7499.73 13799.73 7699.20 16799.55 21698.22 29599.32 25499.35 29398.65 14899.91 13996.86 30599.74 21899.62 138
region2R99.23 15099.05 17999.77 5799.76 11799.70 9099.31 13299.59 19498.41 27399.32 25499.36 28898.73 13799.93 9497.29 27799.74 21899.67 95
PGM-MVS99.20 16599.01 19299.77 5799.75 12899.71 8399.16 18399.72 12397.99 30899.42 23099.60 21398.81 12199.93 9496.91 30299.74 21899.66 104
TransMVSNet (Re)99.78 2799.77 3399.81 4099.91 3199.85 1999.75 2299.86 4999.70 8599.91 4499.89 3499.60 3499.87 20399.59 5199.74 21899.71 76
TSAR-MVS + GP.99.12 18799.04 18599.38 21699.34 29099.16 22098.15 32599.29 29898.18 29999.63 15999.62 19699.18 7899.68 35598.20 19999.74 21899.30 265
KD-MVS_self_test99.63 5999.59 6499.76 6499.84 6199.90 799.37 11799.79 8699.83 5699.88 6199.85 5698.42 18299.90 15799.60 5099.73 22399.49 210
XVS99.27 14399.11 15899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32999.47 26298.47 17499.88 18997.62 25699.73 22399.67 95
X-MVStestdata96.09 35694.87 36899.75 7499.71 14399.71 8399.37 11799.61 17699.29 15598.76 32961.30 41498.47 17499.88 18997.62 25699.73 22399.67 95
VDD-MVS99.20 16599.11 15899.44 19599.43 26398.98 23899.50 9198.32 36999.80 6499.56 19299.69 15196.99 27799.85 24098.99 13699.73 22399.50 205
ab-mvs99.33 13399.28 13099.47 18799.57 20199.39 17399.78 1299.43 26398.87 22099.57 18599.82 7398.06 21899.87 20398.69 16999.73 22399.15 295
TAPA-MVS97.92 1398.03 30497.55 32099.46 18999.47 25099.44 15898.50 30099.62 16986.79 40099.07 29799.26 31098.26 20199.62 37497.28 27999.73 22399.31 263
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DVP-MVScopyleft99.32 13599.17 14499.77 5799.69 15599.80 4499.14 18799.31 29499.16 18399.62 16899.61 20598.35 19199.91 13997.88 22699.72 22999.61 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.83 3399.70 15199.79 4699.14 18799.61 17699.92 11697.88 22699.72 22999.77 60
3Dnovator+98.92 399.35 12599.24 13899.67 10999.35 28199.47 14799.62 6299.50 24499.44 13599.12 29099.78 10198.77 13099.94 7797.87 22999.72 22999.62 138
plane_prior99.24 20798.42 30797.87 31999.71 232
APD-MVScopyleft98.87 23398.59 24499.71 9999.50 23499.62 11799.01 22899.57 20596.80 36399.54 19999.63 18998.29 19899.91 13995.24 37099.71 23299.61 148
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
APD_test199.36 12399.28 13099.61 14799.89 3999.89 1099.32 12799.74 11099.18 17599.69 13999.75 11698.41 18399.84 25597.85 23299.70 23499.10 306
SED-MVS99.40 11199.28 13099.77 5799.69 15599.82 3599.20 16799.54 22299.13 18999.82 8199.63 18998.91 11399.92 11697.85 23299.70 23499.58 164
IU-MVS99.69 15599.77 5499.22 31597.50 33699.69 13997.75 24199.70 23499.77 60
ambc99.20 25799.35 28198.53 27899.17 17799.46 25599.67 14899.80 8398.46 17799.70 33797.92 22299.70 23499.38 243
MSC_two_6792asdad99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
No_MVS99.74 7999.03 35099.53 14199.23 31299.92 11697.77 23799.69 23899.78 56
test_241102_TWO99.54 22299.13 18999.76 10899.63 18998.32 19699.92 11697.85 23299.69 23899.75 69
MVSFormer99.41 10999.44 9499.31 23699.57 20198.40 28799.77 1599.80 8099.73 7499.63 15999.30 30198.02 22199.98 2099.43 7299.69 23899.55 174
lupinMVS98.96 22098.87 22099.24 25399.57 20198.40 28798.12 32999.18 32298.28 29299.63 15999.13 32798.02 22199.97 3398.22 19799.69 23899.35 252
SF-MVS99.10 19398.93 20999.62 14499.58 19199.51 14399.13 19399.65 15897.97 31099.42 23099.61 20598.86 11899.87 20396.45 33299.68 24399.49 210
Anonymous2024052999.42 10599.34 11199.65 12199.53 22199.60 12699.63 6099.39 27699.47 12999.76 10899.78 10198.13 21399.86 22298.70 16799.68 24399.49 210
MSLP-MVS++99.05 19999.09 16798.91 29899.21 31898.36 29298.82 26099.47 25298.85 22398.90 31299.56 23398.78 12899.09 40098.57 17499.68 24399.26 270
DELS-MVS99.34 13099.30 12399.48 18599.51 22899.36 18298.12 32999.53 23199.36 14999.41 23699.61 20599.22 7499.87 20399.21 10799.68 24399.20 284
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PVSNet97.47 1598.42 27998.44 25998.35 33599.46 25496.26 36696.70 39699.34 28797.68 32799.00 30199.13 32797.40 25899.72 33097.59 26099.68 24399.08 316
LS3D99.24 14999.11 15899.61 14798.38 39399.79 4699.57 7999.68 14099.61 10999.15 28599.71 13898.70 13999.91 13997.54 26299.68 24399.13 303
HQP3-MVS99.37 28199.67 249
CPTT-MVS98.74 24498.44 25999.64 12899.61 18099.38 17599.18 17299.55 21696.49 36599.27 26699.37 28497.11 27399.92 11695.74 36199.67 24999.62 138
HQP-MVS98.36 28498.02 29599.39 21399.31 29798.94 24397.98 34699.37 28197.45 33898.15 36198.83 36696.67 28499.70 33794.73 37699.67 24999.53 187
MVS_Test99.28 13999.31 11899.19 25899.35 28198.79 25899.36 12099.49 24899.17 18099.21 27799.67 16698.78 12899.66 36499.09 12999.66 25299.10 306
CDPH-MVS98.56 26298.20 28299.61 14799.50 23499.46 15198.32 31399.41 26695.22 38299.21 27799.10 33598.34 19399.82 27995.09 37499.66 25299.56 171
tttt051797.62 31997.20 32898.90 30499.76 11797.40 34299.48 9694.36 40199.06 19899.70 13699.49 25584.55 39399.94 7798.73 16599.65 25499.36 249
ITE_SJBPF99.38 21699.63 17599.44 15899.73 11498.56 25799.33 25199.53 24498.88 11799.68 35596.01 34899.65 25499.02 330
9.1498.64 23999.45 25898.81 26199.60 18897.52 33599.28 26599.56 23398.53 16799.83 27095.36 36999.64 256
Patchmatch-test98.10 30197.98 29898.48 33099.27 30896.48 36199.40 10999.07 33098.81 22999.23 27299.57 22990.11 37099.87 20396.69 31499.64 25699.09 310
sss98.90 22898.77 23299.27 24599.48 24498.44 28498.72 27399.32 29097.94 31499.37 24499.35 29396.31 29899.91 13998.85 15099.63 25899.47 218
cl2297.56 32297.28 32598.40 33398.37 39496.75 35897.24 38699.37 28197.31 34699.41 23699.22 31987.30 38099.37 39797.70 24899.62 25999.08 316
miper_ehance_all_eth98.59 25998.59 24498.59 32598.98 35697.07 35197.49 37699.52 23698.50 26599.52 20699.37 28496.41 29599.71 33497.86 23099.62 25999.00 332
miper_enhance_ethall98.03 30497.94 30498.32 33898.27 39696.43 36396.95 39299.41 26696.37 36899.43 22898.96 35694.74 31899.69 34397.71 24599.62 25998.83 350
SCA98.11 30098.36 26797.36 36799.20 32192.99 39598.17 32498.49 36098.24 29499.10 29399.57 22996.01 30599.94 7796.86 30599.62 25999.14 300
MS-PatchMatch99.00 21298.97 20599.09 27599.11 33898.19 30098.76 27099.33 28898.49 26799.44 22499.58 22198.21 20799.69 34398.20 19999.62 25999.39 241
APD-MVS_3200maxsize99.31 13699.16 14599.74 7999.53 22199.75 6799.27 14799.61 17699.19 17499.57 18599.64 17898.76 13199.90 15797.29 27799.62 25999.56 171
EPNet_dtu97.62 31997.79 31397.11 37496.67 40792.31 39898.51 29998.04 37399.24 16595.77 40199.47 26293.78 32999.66 36498.98 13899.62 25999.37 246
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SR-MVS-dyc-post99.27 14399.11 15899.73 8899.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.41 18399.91 13997.27 28099.61 26699.54 182
RE-MVS-def99.13 15199.54 21599.74 7399.26 14999.62 16999.16 18399.52 20699.64 17898.57 15897.27 28099.61 26699.54 182
MG-MVS98.52 26798.39 26498.94 29299.15 32897.39 34398.18 32299.21 31898.89 21999.23 27299.63 18997.37 26199.74 32594.22 38399.61 26699.69 83
DVP-MVS++99.38 11799.25 13699.77 5799.03 35099.77 5499.74 2499.61 17699.18 17599.76 10899.61 20599.00 10199.92 11697.72 24399.60 26999.62 138
PC_three_145297.56 33099.68 14299.41 27299.09 8997.09 40696.66 31799.60 26999.62 138
OPU-MVS99.29 24099.12 33399.44 15899.20 16799.40 27699.00 10198.84 40396.54 32499.60 26999.58 164
HPM-MVS++copyleft98.96 22098.70 23799.74 7999.52 22699.71 8398.86 25199.19 32198.47 26998.59 34399.06 33898.08 21799.91 13996.94 30099.60 26999.60 152
CNVR-MVS98.99 21598.80 23099.56 16599.25 31199.43 16298.54 29599.27 30298.58 25698.80 32499.43 27098.53 16799.70 33797.22 28899.59 27399.54 182
Anonymous20240521198.75 24398.46 25799.63 13599.34 29099.66 10199.47 9997.65 38199.28 15899.56 19299.50 25193.15 33599.84 25598.62 17299.58 27499.40 239
MVP-Stereo99.16 17999.08 16999.43 19999.48 24499.07 23399.08 21299.55 21698.63 25099.31 25899.68 16298.19 20999.78 30898.18 20399.58 27499.45 223
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ADS-MVSNet297.78 31297.66 31998.12 34699.14 32995.36 37899.22 16498.75 34596.97 35798.25 35799.64 17890.90 36099.94 7796.51 32699.56 27699.08 316
ADS-MVSNet97.72 31797.67 31897.86 35499.14 32994.65 38699.22 16498.86 33996.97 35798.25 35799.64 17890.90 36099.84 25596.51 32699.56 27699.08 316
LCM-MVSNet-Re99.28 13999.15 14899.67 10999.33 29599.76 6199.34 12299.97 1898.93 21299.91 4499.79 9398.68 14199.93 9496.80 30999.56 27699.30 265
API-MVS98.38 28398.39 26498.35 33598.83 36799.26 20099.14 18799.18 32298.59 25598.66 33798.78 36998.61 15299.57 38294.14 38499.56 27696.21 401
xiu_mvs_v1_base_debu99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
xiu_mvs_v1_base_debi99.23 15099.34 11198.91 29899.59 18698.23 29698.47 30299.66 14899.61 10999.68 14298.94 35899.39 5099.97 3399.18 11399.55 28098.51 368
OpenMVScopyleft98.12 1098.23 29597.89 30999.26 24899.19 32399.26 20099.65 5899.69 13791.33 39798.14 36599.77 10898.28 19999.96 5495.41 36799.55 28098.58 364
MVEpermissive92.54 2296.66 34396.11 34798.31 34099.68 16397.55 33697.94 35195.60 39799.37 14790.68 40798.70 37396.56 28798.61 40586.94 40599.55 28098.77 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SR-MVS99.19 16899.00 19599.74 7999.51 22899.72 8199.18 17299.60 18898.85 22399.47 21899.58 22198.38 18899.92 11696.92 30199.54 28599.57 169
thisisatest053097.45 32496.95 33498.94 29299.68 16397.73 33199.09 20994.19 40398.61 25499.56 19299.30 30184.30 39499.93 9498.27 19399.54 28599.16 293
tt080599.63 5999.57 7199.81 4099.87 5199.88 1299.58 7698.70 34799.72 7899.91 4499.60 21399.43 4899.81 29499.81 3699.53 28799.73 71
MSP-MVS99.04 20298.79 23199.81 4099.78 10599.73 7699.35 12199.57 20598.54 26199.54 19998.99 34996.81 28199.93 9496.97 29999.53 28799.77 60
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary98.60 25698.35 26999.38 21699.12 33399.22 21198.67 27699.42 26597.84 32298.81 32299.27 30797.32 26399.81 29495.14 37299.53 28799.10 306
ETV-MVS99.18 17299.18 14399.16 26399.34 29099.28 19699.12 19799.79 8699.48 12598.93 30698.55 37999.40 4999.93 9498.51 17799.52 29098.28 380
SSC-MVS99.52 8199.42 9899.83 3399.86 5499.65 10799.52 8699.81 7699.87 4199.81 8899.79 9396.78 28299.99 799.83 3299.51 29199.86 32
EIA-MVS99.12 18799.01 19299.45 19299.36 27999.62 11799.34 12299.79 8698.41 27398.84 31998.89 36398.75 13399.84 25598.15 20799.51 29198.89 344
MCST-MVS99.02 20598.81 22899.65 12199.58 19199.49 14598.58 28699.07 33098.40 27599.04 29999.25 31298.51 17299.80 30297.31 27699.51 29199.65 112
mvs_anonymous99.28 13999.39 10198.94 29299.19 32397.81 32799.02 22699.55 21699.78 6899.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 295
CNLPA98.57 26198.34 27099.28 24299.18 32599.10 23098.34 31199.41 26698.48 26898.52 34798.98 35297.05 27599.78 30895.59 36399.50 29498.96 334
ZD-MVS99.43 26399.61 12399.43 26396.38 36799.11 29199.07 33797.86 23299.92 11694.04 38699.49 296
test_prior297.95 35097.87 31998.05 36799.05 33997.90 22995.99 35199.49 296
pmmvs398.08 30297.80 31198.91 29899.41 26997.69 33397.87 35899.66 14895.87 37399.50 21399.51 24890.35 36899.97 3398.55 17599.47 29899.08 316
test1299.54 17399.29 30399.33 18899.16 32498.43 35297.54 25399.82 27999.47 29899.48 214
agg_prior294.58 37999.46 30099.50 205
test9_res95.10 37399.44 30199.50 205
train_agg98.35 28797.95 30099.57 16299.35 28199.35 18598.11 33199.41 26694.90 38697.92 37198.99 34998.02 22199.85 24095.38 36899.44 30199.50 205
VPNet99.46 9599.37 10699.71 9999.82 7299.59 12899.48 9699.70 13199.81 6199.69 13999.58 22197.66 25099.86 22299.17 11699.44 30199.67 95
DP-MVS Recon98.50 27098.23 27899.31 23699.49 23999.46 15198.56 29199.63 16694.86 38898.85 31899.37 28497.81 23699.59 38096.08 34599.44 30198.88 345
LFMVS98.46 27598.19 28599.26 24899.24 31398.52 28099.62 6296.94 39099.87 4199.31 25899.58 22191.04 35799.81 29498.68 17099.42 30599.45 223
Fast-Effi-MVS+99.02 20598.87 22099.46 18999.38 27499.50 14499.04 21999.79 8697.17 35298.62 34098.74 37199.34 6099.95 6398.32 18899.41 30698.92 340
PatchmatchNetpermissive97.65 31897.80 31197.18 37298.82 37092.49 39799.17 17798.39 36598.12 30098.79 32699.58 22190.71 36499.89 17597.23 28799.41 30699.16 293
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest051596.98 33596.42 34298.66 32299.42 26897.47 33897.27 38494.30 40297.24 34899.15 28598.86 36585.01 39199.87 20397.10 29399.39 30898.63 359
原ACMM199.37 21999.47 25098.87 25399.27 30296.74 36498.26 35699.32 29797.93 22899.82 27995.96 35399.38 30999.43 234
test22299.51 22899.08 23297.83 36099.29 29895.21 38398.68 33699.31 29997.28 26499.38 30999.43 234
F-COLMAP98.74 24498.45 25899.62 14499.57 20199.47 14798.84 25499.65 15896.31 36998.93 30699.19 32497.68 24599.87 20396.52 32599.37 31199.53 187
DPM-MVS98.28 29097.94 30499.32 23399.36 27999.11 22597.31 38398.78 34496.88 35998.84 31999.11 33497.77 23999.61 37894.03 38799.36 31299.23 276
旧先验199.49 23999.29 19499.26 30599.39 28097.67 24699.36 31299.46 222
dmvs_re98.69 25098.48 25599.31 23699.55 21399.42 16599.54 8498.38 36699.32 15398.72 33298.71 37296.76 28399.21 39896.01 34899.35 31499.31 263
PS-MVSNAJ99.00 21299.08 16998.76 31799.37 27698.10 30898.00 34499.51 24099.47 12999.41 23698.50 38299.28 6699.97 3398.83 15199.34 31598.20 386
testing396.48 34695.63 35799.01 28599.23 31597.81 32798.90 24799.10 32998.72 24197.84 37797.92 39372.44 41099.85 24097.21 28999.33 31699.35 252
xiu_mvs_v2_base99.02 20599.11 15898.77 31699.37 27698.09 30998.13 32899.51 24099.47 12999.42 23098.54 38099.38 5499.97 3398.83 15199.33 31698.24 382
新几何199.52 17699.50 23499.22 21199.26 30595.66 37898.60 34299.28 30597.67 24699.89 17595.95 35499.32 31899.45 223
VDDNet98.97 21698.82 22799.42 20199.71 14398.81 25599.62 6298.68 34899.81 6199.38 24399.80 8394.25 32399.85 24098.79 15799.32 31899.59 159
FA-MVS(test-final)98.52 26798.32 27399.10 27499.48 24498.67 26699.77 1598.60 35597.35 34499.63 15999.80 8393.07 33799.84 25597.92 22299.30 32098.78 354
VNet99.18 17299.06 17599.56 16599.24 31399.36 18299.33 12599.31 29499.67 9499.47 21899.57 22996.48 29099.84 25599.15 11999.30 32099.47 218
PatchMatch-RL98.68 25198.47 25699.30 23999.44 25999.28 19698.14 32799.54 22297.12 35599.11 29199.25 31297.80 23799.70 33796.51 32699.30 32098.93 338
Effi-MVS+-dtu99.07 19598.92 21399.52 17698.89 36399.78 4999.15 18599.66 14899.34 15098.92 30999.24 31797.69 24499.98 2098.11 20999.28 32398.81 351
testdata99.42 20199.51 22898.93 24699.30 29796.20 37098.87 31699.40 27698.33 19599.89 17596.29 33899.28 32399.44 228
OpenMVS_ROBcopyleft97.31 1797.36 32896.84 33898.89 30599.29 30399.45 15698.87 25099.48 24986.54 40299.44 22499.74 11997.34 26299.86 22291.61 39399.28 32397.37 397
NCCC98.82 23798.57 24899.58 15699.21 31899.31 19198.61 27999.25 30898.65 24898.43 35299.26 31097.86 23299.81 29496.55 32399.27 32699.61 148
testgi99.29 13899.26 13499.37 21999.75 12898.81 25598.84 25499.89 4098.38 27799.75 11499.04 34199.36 5999.86 22299.08 13099.25 32799.45 223
PLCcopyleft97.35 1698.36 28497.99 29699.48 18599.32 29699.24 20798.50 30099.51 24095.19 38498.58 34498.96 35696.95 27899.83 27095.63 36299.25 32799.37 246
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+-dtu99.20 16599.12 15599.43 19999.25 31199.69 9499.05 21699.82 6799.50 12398.97 30299.05 33998.98 10599.98 2098.20 19999.24 32998.62 360
PMMVS98.49 27298.29 27699.11 27298.96 35798.42 28697.54 37199.32 29097.53 33498.47 35098.15 38997.88 23199.82 27997.46 26799.24 32999.09 310
WB-MVS99.44 9999.32 11699.80 4599.81 8099.61 12399.47 9999.81 7699.82 5899.71 13299.72 13096.60 28699.98 2099.75 3999.23 33199.82 46
EPMVS96.53 34596.32 34397.17 37398.18 39992.97 39699.39 11189.95 41098.21 29698.61 34199.59 21886.69 38999.72 33096.99 29799.23 33198.81 351
alignmvs98.28 29097.96 29999.25 25199.12 33398.93 24699.03 22398.42 36399.64 10298.72 33297.85 39490.86 36299.62 37498.88 14999.13 33399.19 287
FE-MVS97.85 30997.42 32299.15 26599.44 25998.75 26199.77 1598.20 37295.85 37499.33 25199.80 8388.86 37699.88 18996.40 33399.12 33498.81 351
cascas96.99 33496.82 34097.48 36397.57 40695.64 37596.43 39899.56 21091.75 39597.13 39097.61 39995.58 31098.63 40496.68 31599.11 33598.18 387
BH-RMVSNet98.41 28098.14 28899.21 25599.21 31898.47 28198.60 28198.26 37098.35 28498.93 30699.31 29997.20 27099.66 36494.32 38199.10 33699.51 200
UWE-MVS96.21 35495.78 35497.49 36298.53 38893.83 39298.04 33993.94 40498.96 20698.46 35198.17 38879.86 39999.87 20396.99 29799.06 33798.78 354
MAR-MVS98.24 29497.92 30699.19 25898.78 37599.65 10799.17 17799.14 32695.36 38098.04 36898.81 36897.47 25599.72 33095.47 36699.06 33798.21 384
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
GA-MVS97.99 30797.68 31798.93 29599.52 22698.04 31397.19 38799.05 33398.32 29098.81 32298.97 35489.89 37399.41 39698.33 18799.05 33999.34 255
EMVS96.96 33697.28 32595.99 38698.76 37891.03 40595.26 40198.61 35399.34 15098.92 30998.88 36493.79 32899.66 36492.87 39099.05 33997.30 398
E-PMN97.14 33397.43 32196.27 38398.79 37391.62 40295.54 40099.01 33699.44 13598.88 31399.12 33192.78 34099.68 35594.30 38299.03 34197.50 394
tpmrst97.73 31498.07 29296.73 37898.71 38292.00 39999.10 20498.86 33998.52 26398.92 30999.54 24291.90 34799.82 27998.02 21299.03 34198.37 377
PatchT98.45 27798.32 27398.83 31198.94 35898.29 29499.24 15698.82 34299.84 5399.08 29499.76 11191.37 35299.94 7798.82 15399.00 34398.26 381
WB-MVSnew98.34 28998.14 28898.96 28998.14 40297.90 32498.27 31697.26 38998.63 25098.80 32498.00 39297.77 23999.90 15797.37 27398.98 34499.09 310
CL-MVSNet_self_test98.71 24898.56 25199.15 26599.22 31698.66 26997.14 38899.51 24098.09 30399.54 19999.27 30796.87 28099.74 32598.43 18098.96 34599.03 326
test_yl98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
DCV-MVSNet98.25 29297.95 30099.13 27099.17 32698.47 28199.00 23198.67 35098.97 20499.22 27599.02 34791.31 35399.69 34397.26 28298.93 34699.24 273
MGCFI-Net99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
canonicalmvs99.02 20599.00 19599.09 27599.10 33998.70 26499.61 6799.66 14899.63 10498.64 33897.65 39799.04 9899.54 38598.79 15798.92 34899.04 324
MDTV_nov1_ep1397.73 31598.70 38390.83 40699.15 18598.02 37498.51 26498.82 32199.61 20590.98 35899.66 36496.89 30498.92 348
PAPM_NR98.36 28498.04 29399.33 22999.48 24498.93 24698.79 26799.28 30197.54 33398.56 34698.57 37797.12 27299.69 34394.09 38598.90 35199.38 243
FPMVS96.32 35095.50 35898.79 31599.60 18298.17 30398.46 30698.80 34397.16 35396.28 39799.63 18982.19 39599.09 40088.45 39998.89 35299.10 306
tpm cat196.78 33996.98 33396.16 38598.85 36690.59 40999.08 21299.32 29092.37 39497.73 38299.46 26591.15 35699.69 34396.07 34698.80 35398.21 384
test-LLR97.15 33196.95 33497.74 35998.18 39995.02 38397.38 37996.10 39298.00 30697.81 37898.58 37590.04 37199.91 13997.69 25498.78 35498.31 378
test-mter96.23 35395.73 35597.74 35998.18 39995.02 38397.38 37996.10 39297.90 31597.81 37898.58 37579.12 40399.91 13997.69 25498.78 35498.31 378
TESTMET0.1,196.24 35295.84 35397.41 36698.24 39793.84 39197.38 37995.84 39698.43 27097.81 37898.56 37879.77 40099.89 17597.77 23798.77 35698.52 367
CR-MVSNet98.35 28798.20 28298.83 31199.05 34798.12 30599.30 13599.67 14497.39 34299.16 28399.79 9391.87 34999.91 13998.78 16198.77 35698.44 375
RPMNet98.60 25698.53 25398.83 31199.05 34798.12 30599.30 13599.62 16999.86 4599.16 28399.74 11992.53 34399.92 11698.75 16398.77 35698.44 375
WTY-MVS98.59 25998.37 26699.26 24899.43 26398.40 28798.74 27199.13 32898.10 30199.21 27799.24 31794.82 31699.90 15797.86 23098.77 35699.49 210
Effi-MVS+99.06 19698.97 20599.34 22699.31 29798.98 23898.31 31499.91 3398.81 22998.79 32698.94 35899.14 8499.84 25598.79 15798.74 36099.20 284
PAPR97.56 32297.07 33099.04 28398.80 37198.11 30797.63 36799.25 30894.56 39198.02 36998.25 38797.43 25799.68 35590.90 39698.74 36099.33 256
Syy-MVS98.17 29897.85 31099.15 26598.50 39098.79 25898.60 28199.21 31897.89 31696.76 39296.37 41195.47 31299.57 38299.10 12898.73 36299.09 310
myMVS_eth3d95.63 36794.73 36998.34 33798.50 39096.36 36498.60 28199.21 31897.89 31696.76 39296.37 41172.10 41199.57 38294.38 38098.73 36299.09 310
tpmvs97.39 32697.69 31696.52 38098.41 39291.76 40099.30 13598.94 33897.74 32497.85 37699.55 24092.40 34699.73 32896.25 34098.73 36298.06 389
dp96.86 33797.07 33096.24 38498.68 38490.30 41099.19 17198.38 36697.35 34498.23 35999.59 21887.23 38199.82 27996.27 33998.73 36298.59 362
XVG-OURS-SEG-HR99.16 17998.99 20199.66 11699.84 6199.64 11098.25 31999.73 11498.39 27699.63 15999.43 27099.70 2499.90 15797.34 27498.64 36699.44 228
thres600view796.60 34496.16 34697.93 35199.63 17596.09 37099.18 17297.57 38398.77 23698.72 33297.32 40187.04 38399.72 33088.57 39898.62 36797.98 390
thres20096.09 35695.68 35697.33 36999.48 24496.22 36798.53 29797.57 38398.06 30598.37 35496.73 40786.84 38799.61 37886.99 40498.57 36896.16 402
131498.00 30697.90 30898.27 34298.90 36097.45 34099.30 13599.06 33294.98 38597.21 38799.12 33198.43 18099.67 36095.58 36498.56 36997.71 393
dmvs_testset97.27 32996.83 33998.59 32599.46 25497.55 33699.25 15596.84 39198.78 23497.24 38697.67 39697.11 27398.97 40286.59 40698.54 37099.27 269
thres100view90096.39 34896.03 34997.47 36499.63 17595.93 37199.18 17297.57 38398.75 24098.70 33597.31 40287.04 38399.67 36087.62 40198.51 37196.81 399
tfpn200view996.30 35195.89 35097.53 36199.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37196.81 399
thres40096.40 34795.89 35097.92 35299.58 19196.11 36899.00 23197.54 38698.43 27098.52 34796.98 40486.85 38599.67 36087.62 40198.51 37197.98 390
MVS95.72 36694.63 37198.99 28698.56 38797.98 32199.30 13598.86 33972.71 40597.30 38499.08 33698.34 19399.74 32589.21 39798.33 37499.26 270
BH-untuned98.22 29698.09 29198.58 32799.38 27497.24 34698.55 29298.98 33797.81 32399.20 28298.76 37097.01 27699.65 37094.83 37598.33 37498.86 347
testing1196.05 35895.41 36097.97 34998.78 37595.27 38098.59 28498.23 37198.86 22296.56 39596.91 40675.20 40699.69 34397.26 28298.29 37698.93 338
test_method91.72 37292.32 37589.91 38993.49 41170.18 41490.28 40299.56 21061.71 40695.39 40399.52 24693.90 32599.94 7798.76 16298.27 37799.62 138
testing9196.00 35995.32 36398.02 34798.76 37895.39 37798.38 30998.65 35298.82 22796.84 39196.71 40875.06 40799.71 33496.46 33198.23 37898.98 333
gg-mvs-nofinetune95.87 36295.17 36797.97 34998.19 39896.95 35399.69 4289.23 41199.89 3596.24 39999.94 1681.19 39699.51 39193.99 38898.20 37997.44 395
HY-MVS98.23 998.21 29797.95 30098.99 28699.03 35098.24 29599.61 6798.72 34696.81 36298.73 33199.51 24894.06 32499.86 22296.91 30298.20 37998.86 347
UnsupCasMVSNet_bld98.55 26398.27 27799.40 21099.56 21299.37 17897.97 34999.68 14097.49 33799.08 29499.35 29395.41 31399.82 27997.70 24898.19 38199.01 331
tpm296.35 34996.22 34596.73 37898.88 36591.75 40199.21 16698.51 35893.27 39397.89 37399.21 32184.83 39299.70 33796.04 34798.18 38298.75 357
testing22295.60 36994.59 37298.61 32398.66 38597.45 34098.54 29597.90 37898.53 26296.54 39696.47 41070.62 41299.81 29495.91 35698.15 38398.56 366
tmp_tt95.75 36595.42 35996.76 37689.90 41294.42 38798.86 25197.87 37978.01 40399.30 26399.69 15197.70 24295.89 40799.29 10098.14 38499.95 11
baseline296.83 33896.28 34498.46 33199.09 34296.91 35598.83 25693.87 40597.23 34996.23 40098.36 38488.12 37899.90 15796.68 31598.14 38498.57 365
ETVMVS96.14 35595.22 36598.89 30598.80 37198.01 31498.66 27798.35 36898.71 24397.18 38896.31 41374.23 40999.75 32296.64 32098.13 38698.90 342
CostFormer96.71 34296.79 34196.46 38298.90 36090.71 40899.41 10898.68 34894.69 39098.14 36599.34 29686.32 39099.80 30297.60 25998.07 38798.88 345
testing9995.86 36395.19 36697.87 35398.76 37895.03 38298.62 27898.44 36298.68 24596.67 39496.66 40974.31 40899.69 34396.51 32698.03 38898.90 342
AUN-MVS97.82 31097.38 32399.14 26999.27 30898.53 27898.72 27399.02 33498.10 30197.18 38899.03 34589.26 37599.85 24097.94 22197.91 38999.03 326
DeepMVS_CXcopyleft97.98 34899.69 15596.95 35399.26 30575.51 40495.74 40298.28 38696.47 29199.62 37491.23 39597.89 39097.38 396
hse-mvs298.52 26798.30 27599.16 26399.29 30398.60 27698.77 26999.02 33499.68 9099.32 25499.04 34192.50 34499.85 24099.24 10497.87 39199.03 326
PAPM95.61 36894.71 37098.31 34099.12 33396.63 35996.66 39798.46 36190.77 39896.25 39898.68 37493.01 33899.69 34381.60 40797.86 39298.62 360
JIA-IIPM98.06 30397.92 30698.50 32998.59 38697.02 35298.80 26498.51 35899.88 4097.89 37399.87 4791.89 34899.90 15798.16 20697.68 39398.59 362
ET-MVSNet_ETH3D96.78 33996.07 34898.91 29899.26 31097.92 32397.70 36596.05 39597.96 31392.37 40698.43 38387.06 38299.90 15798.27 19397.56 39498.91 341
TR-MVS97.44 32597.15 32998.32 33898.53 38897.46 33998.47 30297.91 37796.85 36098.21 36098.51 38196.42 29399.51 39192.16 39297.29 39597.98 390
BH-w/o97.20 33097.01 33297.76 35799.08 34395.69 37498.03 34198.52 35795.76 37697.96 37098.02 39095.62 30999.47 39392.82 39197.25 39698.12 388
KD-MVS_2432*160095.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
miper_refine_blended95.89 36095.41 36097.31 37094.96 40893.89 38997.09 38999.22 31597.23 34998.88 31399.04 34179.23 40199.54 38596.24 34196.81 39798.50 371
UnsupCasMVSNet_eth98.83 23698.57 24899.59 15299.68 16399.45 15698.99 23699.67 14499.48 12599.55 19799.36 28894.92 31499.86 22298.95 14696.57 39999.45 223
h-mvs3398.61 25498.34 27099.44 19599.60 18298.67 26699.27 14799.44 26099.68 9099.32 25499.49 25592.50 344100.00 199.24 10496.51 40099.65 112
GG-mvs-BLEND97.36 36797.59 40496.87 35699.70 3588.49 41294.64 40597.26 40380.66 39799.12 39991.50 39496.50 40196.08 403
tpm97.15 33196.95 33497.75 35898.91 35994.24 38899.32 12797.96 37597.71 32698.29 35599.32 29786.72 38899.92 11698.10 21096.24 40299.09 310
test0.0.03 197.37 32796.91 33798.74 31897.72 40397.57 33597.60 36997.36 38898.00 30699.21 27798.02 39090.04 37199.79 30598.37 18395.89 40398.86 347
IB-MVS95.41 2095.30 37094.46 37497.84 35598.76 37895.33 37997.33 38296.07 39496.02 37295.37 40497.41 40076.17 40599.96 5497.54 26295.44 40498.22 383
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline197.73 31497.33 32498.96 28999.30 30197.73 33199.40 10998.42 36399.33 15299.46 22299.21 32191.18 35599.82 27998.35 18591.26 40599.32 259
PVSNet_095.53 1995.85 36495.31 36497.47 36498.78 37593.48 39495.72 39999.40 27396.18 37197.37 38397.73 39595.73 30799.58 38195.49 36581.40 40699.36 249
testmvs28.94 37533.33 37715.79 39126.03 4139.81 41696.77 39515.67 41411.55 40923.87 41050.74 41719.03 4148.53 41023.21 40933.07 40729.03 406
test12329.31 37433.05 37918.08 39025.93 41412.24 41597.53 37310.93 41511.78 40824.21 40950.08 41821.04 4138.60 40923.51 40832.43 40833.39 405
test_blank8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uanet_test8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
DCPMVS8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
cdsmvs_eth3d_5k24.88 37633.17 3780.00 3920.00 4150.00 4170.00 40399.62 1690.00 4100.00 41199.13 32799.82 130.00 4110.00 4100.00 4090.00 407
pcd_1.5k_mvsjas16.61 37722.14 3800.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 199.28 660.00 4110.00 4100.00 4090.00 407
sosnet-low-res8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
sosnet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
uncertanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
Regformer8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
ab-mvs-re8.26 38611.02 3890.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 41199.16 3250.00 4150.00 4110.00 4100.00 4090.00 407
uanet8.33 37811.11 3810.00 3920.00 4150.00 4170.00 4030.00 4160.00 4100.00 411100.00 10.00 4150.00 4110.00 4100.00 4090.00 407
WAC-MVS96.36 36495.20 371
FOURS199.83 6599.89 1099.74 2499.71 12699.69 8899.63 159
test_one_060199.63 17599.76 6199.55 21699.23 16799.31 25899.61 20598.59 155
eth-test20.00 415
eth-test0.00 415
test_241102_ONE99.69 15599.82 3599.54 22299.12 19299.82 8199.49 25598.91 11399.52 390
save fliter99.53 22199.25 20398.29 31599.38 28099.07 196
test072699.69 15599.80 4499.24 15699.57 20599.16 18399.73 12699.65 17698.35 191
GSMVS99.14 300
test_part299.62 17999.67 9999.55 197
sam_mvs190.81 36399.14 300
sam_mvs90.52 367
MTGPAbinary99.53 231
test_post199.14 18751.63 41689.54 37499.82 27996.86 305
test_post52.41 41590.25 36999.86 222
patchmatchnet-post99.62 19690.58 36599.94 77
MTMP99.09 20998.59 356
gm-plane-assit97.59 40489.02 41293.47 39298.30 38599.84 25596.38 335
TEST999.35 28199.35 18598.11 33199.41 26694.83 38997.92 37198.99 34998.02 22199.85 240
test_899.34 29099.31 19198.08 33599.40 27394.90 38697.87 37598.97 35498.02 22199.84 255
agg_prior99.35 28199.36 18299.39 27697.76 38199.85 240
test_prior499.19 21898.00 344
test_prior99.46 18999.35 28199.22 21199.39 27699.69 34399.48 214
旧先验297.94 35195.33 38198.94 30599.88 18996.75 311
新几何298.04 339
无先验98.01 34299.23 31295.83 37599.85 24095.79 36099.44 228
原ACMM297.92 354
testdata299.89 17595.99 351
segment_acmp98.37 189
testdata197.72 36397.86 321
plane_prior799.58 19199.38 175
plane_prior699.47 25099.26 20097.24 265
plane_prior499.25 312
plane_prior399.31 19198.36 27999.14 287
plane_prior298.80 26498.94 209
plane_prior199.51 228
n20.00 416
nn0.00 416
door-mid99.83 62
test1199.29 298
door99.77 95
HQP5-MVS98.94 243
HQP-NCC99.31 29797.98 34697.45 33898.15 361
ACMP_Plane99.31 29797.98 34697.45 33898.15 361
BP-MVS94.73 376
HQP4-MVS98.15 36199.70 33799.53 187
HQP2-MVS96.67 284
NP-MVS99.40 27099.13 22398.83 366
MDTV_nov1_ep13_2view91.44 40499.14 18797.37 34399.21 27791.78 35196.75 31199.03 326
Test By Simon98.41 183