This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
MCST-MVS91.08 191.46 289.94 497.66 273.37 897.13 295.58 1089.33 185.77 4996.26 2872.84 2699.38 192.64 1795.93 997.08 9
DVP-MVS++90.53 391.09 488.87 1497.31 469.91 3793.96 6894.37 4672.48 17392.07 696.85 1483.82 299.15 291.53 2797.42 497.55 4
OPU-MVS89.97 397.52 373.15 1296.89 597.00 983.82 299.15 295.72 397.63 397.62 2
test_0728_SECOND88.70 1696.45 1270.43 2996.64 994.37 4699.15 291.91 2594.90 2196.51 21
PC_three_145280.91 4594.07 296.83 1683.57 499.12 595.70 597.42 497.55 4
SED-MVS89.94 890.36 988.70 1696.45 1269.38 4796.89 594.44 4071.65 20292.11 497.21 476.79 999.11 692.34 1995.36 1397.62 2
test_241102_TWO94.41 4271.65 20292.07 697.21 474.58 1799.11 692.34 1995.36 1396.59 16
test_241102_ONE96.45 1269.38 4794.44 4071.65 20292.11 497.05 776.79 999.11 6
DPM-MVS90.70 290.52 791.24 189.68 14476.68 297.29 195.35 1282.87 2091.58 1097.22 379.93 599.10 983.12 9097.64 297.94 1
CANet89.61 1189.99 1188.46 2194.39 3969.71 4396.53 1293.78 5986.89 689.68 2595.78 3865.94 5999.10 992.99 1493.91 4096.58 18
DVP-MVScopyleft89.41 1289.73 1388.45 2296.40 1569.99 3396.64 994.52 3671.92 18990.55 1796.93 1073.77 2199.08 1191.91 2594.90 2196.29 30
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD72.48 17390.55 1796.93 1076.24 1199.08 1191.53 2794.99 1796.43 26
MSC_two_6792asdad89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
No_MVS89.60 897.31 473.22 1095.05 2199.07 1392.01 2294.77 2596.51 21
CNVR-MVS90.32 590.89 688.61 1996.76 870.65 2696.47 1394.83 2584.83 1189.07 2996.80 1770.86 3499.06 1592.64 1795.71 1096.12 35
QAPM79.95 15177.39 17787.64 3089.63 14571.41 1793.30 9993.70 6665.34 28067.39 25391.75 14047.83 25798.96 1657.71 28489.81 9392.54 159
MM88.92 1371.10 2297.02 396.04 688.70 291.57 1196.19 3170.12 3698.91 1796.83 195.06 1696.76 12
DELS-MVS90.05 690.09 1089.94 493.14 6673.88 797.01 494.40 4488.32 385.71 5094.91 6674.11 1998.91 1787.26 5795.94 897.03 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS84.66 6682.86 9290.06 290.93 12074.56 687.91 26695.54 1168.55 25472.35 18894.71 7159.78 13398.90 1981.29 10694.69 3196.74 13
API-MVS82.28 10980.53 12787.54 3596.13 2270.59 2793.63 8891.04 18065.72 27775.45 15292.83 12056.11 17598.89 2064.10 24789.75 9693.15 141
MAR-MVS84.18 7683.43 7886.44 6696.25 2165.93 13594.28 5394.27 5074.41 13179.16 11195.61 4353.99 19998.88 2169.62 19493.26 5294.50 98
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PHI-MVS86.83 3486.85 3786.78 5593.47 5765.55 14495.39 3095.10 1871.77 19985.69 5196.52 2162.07 10898.77 2286.06 6895.60 1196.03 38
NCCC89.07 1489.46 1487.91 2596.60 1069.05 5696.38 1594.64 3384.42 1286.74 4196.20 3066.56 5598.76 2389.03 4494.56 3295.92 41
MVS_030490.01 790.50 888.53 2090.14 13570.94 2396.47 1395.72 987.33 489.60 2696.26 2868.44 3898.74 2495.82 294.72 3095.90 42
DeepPCF-MVS81.17 189.72 991.38 384.72 12193.00 6958.16 29396.72 894.41 4286.50 890.25 1997.83 175.46 1498.67 2592.78 1695.49 1297.32 6
HPM-MVS++copyleft89.37 1389.95 1287.64 3095.10 3068.23 7795.24 3394.49 3882.43 2588.90 3096.35 2571.89 3398.63 2688.76 4596.40 696.06 36
CHOSEN 1792x268884.98 6283.45 7789.57 1089.94 13975.14 592.07 14692.32 11781.87 3175.68 14788.27 19260.18 12798.60 2780.46 11190.27 9194.96 77
3Dnovator73.91 682.69 10580.82 12088.31 2389.57 14671.26 1892.60 12694.39 4578.84 7567.89 24592.48 12748.42 25098.52 2868.80 20494.40 3495.15 71
DPE-MVScopyleft88.77 1589.21 1587.45 3796.26 2067.56 9394.17 5594.15 5368.77 25290.74 1597.27 276.09 1298.49 2990.58 3594.91 2096.30 29
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CSCG86.87 3286.26 4088.72 1595.05 3170.79 2593.83 8095.33 1368.48 25677.63 12894.35 8473.04 2498.45 3084.92 7793.71 4596.92 11
DeepC-MVS77.85 385.52 5585.24 5586.37 6988.80 16866.64 11792.15 14093.68 6781.07 4376.91 13893.64 10262.59 10398.44 3185.50 7092.84 5794.03 115
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast79.48 287.95 2088.00 2187.79 2895.86 2768.32 7295.74 2194.11 5483.82 1583.49 7196.19 3164.53 7798.44 3183.42 8994.88 2496.61 15
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft88.14 1688.29 2087.67 2993.21 6368.72 6493.85 7594.03 5574.18 13691.74 996.67 1965.61 6398.42 3389.24 4196.08 795.88 43
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + GP.87.96 1988.37 1986.70 5793.51 5665.32 14895.15 3693.84 5878.17 8385.93 4894.80 6975.80 1398.21 3489.38 3888.78 10196.59 16
DP-MVS Recon82.73 10281.65 10985.98 7797.31 467.06 10695.15 3691.99 13169.08 24976.50 14293.89 9754.48 19498.20 3570.76 18385.66 13192.69 154
MVS_111021_HR86.19 4385.80 5087.37 3893.17 6569.79 4093.99 6793.76 6279.08 7078.88 11693.99 9562.25 10798.15 3685.93 6991.15 8294.15 108
OpenMVScopyleft70.45 1178.54 17875.92 19686.41 6885.93 23371.68 1692.74 11792.51 11466.49 27164.56 27591.96 13643.88 28398.10 3754.61 29390.65 8789.44 216
ZNCC-MVS85.33 5785.08 5886.06 7593.09 6865.65 14093.89 7393.41 8073.75 14779.94 10194.68 7260.61 12498.03 3882.63 9393.72 4494.52 96
test_fmvsm_n_192087.69 2488.50 1785.27 10187.05 21363.55 19893.69 8591.08 17684.18 1390.17 2197.04 867.58 4797.99 3995.72 390.03 9294.26 102
SteuartSystems-ACMMP86.82 3586.90 3586.58 6190.42 12966.38 12396.09 1793.87 5777.73 9084.01 6995.66 4163.39 9397.94 4087.40 5593.55 4895.42 53
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP86.05 4585.80 5086.80 5491.58 10667.53 9591.79 16093.49 7674.93 12784.61 6195.30 5159.42 13797.92 4186.13 6694.92 1994.94 79
EI-MVSNet-Vis-set83.77 8583.67 7184.06 14692.79 7663.56 19791.76 16394.81 2679.65 5877.87 12594.09 9263.35 9597.90 4279.35 11779.36 17790.74 195
PS-MVSNAJ88.14 1687.61 2589.71 692.06 9076.72 195.75 2093.26 8383.86 1489.55 2796.06 3453.55 20497.89 4391.10 2993.31 5194.54 94
9.1487.63 2493.86 4794.41 5294.18 5172.76 16886.21 4496.51 2266.64 5397.88 4490.08 3694.04 37
GST-MVS84.63 6784.29 6785.66 9092.82 7365.27 14993.04 10793.13 9073.20 15678.89 11394.18 9159.41 13897.85 4581.45 10292.48 6193.86 123
fmvsm_s_conf0.5_n86.39 3986.91 3484.82 11487.36 20763.54 19994.74 4790.02 21582.52 2490.14 2296.92 1262.93 10197.84 4695.28 682.26 15293.07 145
SF-MVS87.03 3187.09 3186.84 5192.70 7767.45 9893.64 8793.76 6270.78 22686.25 4396.44 2466.98 5097.79 4788.68 4694.56 3295.28 65
EI-MVSNet-UG-set83.14 9682.96 8883.67 15792.28 8563.19 20691.38 17994.68 3179.22 6576.60 14093.75 9862.64 10297.76 4878.07 13078.01 18890.05 204
fmvsm_s_conf0.1_n85.61 5485.93 4784.68 12482.95 27963.48 20194.03 6689.46 23381.69 3389.86 2396.74 1861.85 11197.75 4994.74 782.01 15692.81 153
xiu_mvs_v2_base87.92 2187.38 2989.55 1191.41 11376.43 395.74 2193.12 9183.53 1789.55 2795.95 3653.45 20897.68 5091.07 3092.62 5894.54 94
fmvsm_s_conf0.5_n_a85.75 5086.09 4484.72 12185.73 23663.58 19693.79 8189.32 23981.42 3990.21 2096.91 1362.41 10597.67 5194.48 880.56 16992.90 151
HFP-MVS84.73 6584.40 6685.72 8893.75 5165.01 15793.50 9493.19 8772.19 18379.22 11094.93 6459.04 14297.67 5181.55 10092.21 6294.49 99
IB-MVS77.80 482.18 11080.46 12987.35 3989.14 16070.28 3195.59 2695.17 1778.85 7470.19 21285.82 22970.66 3597.67 5172.19 17266.52 27594.09 111
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
APDe-MVScopyleft87.54 2587.84 2286.65 5896.07 2366.30 12694.84 4593.78 5969.35 24388.39 3196.34 2667.74 4697.66 5490.62 3493.44 4996.01 39
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
3Dnovator+73.60 782.10 11480.60 12686.60 5990.89 12266.80 11495.20 3493.44 7874.05 13867.42 25192.49 12649.46 24097.65 5570.80 18291.68 7295.33 59
SD-MVS87.49 2687.49 2787.50 3693.60 5368.82 6293.90 7292.63 11076.86 10287.90 3395.76 3966.17 5697.63 5689.06 4391.48 7696.05 37
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WTY-MVS86.32 4085.81 4987.85 2692.82 7369.37 4995.20 3495.25 1482.71 2281.91 8294.73 7067.93 4597.63 5679.55 11582.25 15396.54 19
PAPR85.15 5984.47 6487.18 4296.02 2568.29 7391.85 15893.00 9676.59 10979.03 11295.00 6161.59 11497.61 5878.16 12989.00 10095.63 48
test_fmvsmvis_n_192083.80 8483.48 7584.77 11882.51 28163.72 18991.37 18083.99 32881.42 3977.68 12795.74 4058.37 14697.58 5993.38 1286.87 11793.00 148
patch_mono-289.71 1090.99 585.85 8396.04 2463.70 19195.04 4095.19 1586.74 791.53 1295.15 6073.86 2097.58 5993.38 1292.00 6796.28 32
fmvsm_s_conf0.1_n_a84.76 6484.84 6384.53 13080.23 30563.50 20092.79 11588.73 26880.46 4889.84 2496.65 2060.96 12097.57 6193.80 1180.14 17192.53 160
test1287.09 4594.60 3668.86 6092.91 9882.67 7965.44 6497.55 6293.69 4694.84 83
region2R84.36 7084.03 6985.36 9893.54 5564.31 17593.43 9792.95 9772.16 18678.86 11794.84 6856.97 16397.53 6381.38 10492.11 6594.24 103
PAPM_NR82.97 9981.84 10786.37 6994.10 4466.76 11587.66 27192.84 10069.96 23674.07 16693.57 10463.10 9997.50 6470.66 18590.58 8894.85 80
ACMMPR84.37 6984.06 6885.28 10093.56 5464.37 17393.50 9493.15 8972.19 18378.85 11894.86 6756.69 16897.45 6581.55 10092.20 6394.02 116
test_yl84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
DCV-MVSNet84.28 7283.16 8587.64 3094.52 3769.24 5195.78 1895.09 1969.19 24681.09 8992.88 11857.00 16197.44 6681.11 10781.76 15896.23 33
XVS83.87 8283.47 7685.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12294.31 8755.25 18297.41 6879.16 11991.58 7493.95 118
X-MVStestdata76.86 20274.13 22285.05 10693.22 6163.78 18592.92 11292.66 10773.99 13978.18 12210.19 39655.25 18297.41 6879.16 11991.58 7493.95 118
gm-plane-assit88.42 17667.04 10878.62 7991.83 13897.37 7076.57 137
CDPH-MVS85.71 5185.46 5386.46 6594.75 3467.19 10293.89 7392.83 10170.90 22283.09 7495.28 5263.62 8997.36 7180.63 10994.18 3594.84 83
AdaColmapbinary78.94 16777.00 18384.76 11996.34 1765.86 13692.66 12487.97 29062.18 30570.56 20592.37 13043.53 28497.35 7264.50 24582.86 14891.05 193
EPNet87.84 2288.38 1886.23 7393.30 6066.05 13095.26 3294.84 2487.09 588.06 3294.53 7566.79 5297.34 7383.89 8691.68 7295.29 63
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2024052976.84 20574.15 22184.88 11291.02 11864.95 15993.84 7891.09 17453.57 34773.00 17387.42 20935.91 32697.32 7469.14 20072.41 23692.36 163
PGM-MVS83.25 9482.70 9584.92 11092.81 7564.07 18090.44 21192.20 12471.28 21477.23 13494.43 7855.17 18697.31 7579.33 11891.38 7893.37 134
ZD-MVS96.63 965.50 14693.50 7570.74 22785.26 5795.19 5964.92 7197.29 7687.51 5393.01 54
Anonymous20240521177.96 18775.33 20585.87 8193.73 5264.52 16394.85 4485.36 31462.52 30376.11 14390.18 16729.43 35197.29 7668.51 20677.24 20095.81 45
PVSNet_BlendedMVS83.38 9183.43 7883.22 16893.76 4967.53 9594.06 6193.61 6979.13 6881.00 9285.14 23463.19 9797.29 7687.08 5973.91 22384.83 294
PVSNet_Blended86.73 3686.86 3686.31 7293.76 4967.53 9596.33 1693.61 6982.34 2781.00 9293.08 11163.19 9797.29 7687.08 5991.38 7894.13 109
TEST994.18 4167.28 10094.16 5693.51 7371.75 20085.52 5295.33 4968.01 4397.27 80
train_agg87.21 2987.42 2886.60 5994.18 4167.28 10094.16 5693.51 7371.87 19485.52 5295.33 4968.19 4197.27 8089.09 4294.90 2195.25 69
MSP-MVS90.38 491.87 185.88 8092.83 7164.03 18193.06 10594.33 4882.19 2893.65 396.15 3385.89 197.19 8291.02 3197.75 196.43 26
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft85.02 6084.97 6085.17 10592.60 8164.27 17793.24 10092.27 11973.13 15879.63 10594.43 7861.90 10997.17 8385.00 7592.56 5994.06 114
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MTAPA83.91 8183.38 8285.50 9391.89 9965.16 15381.75 31592.23 12075.32 12280.53 9695.21 5856.06 17697.16 8484.86 7892.55 6094.18 105
h-mvs3383.01 9882.56 9884.35 13889.34 15162.02 23192.72 11893.76 6281.45 3682.73 7792.25 13360.11 12897.13 8587.69 5162.96 30293.91 120
VDD-MVS83.06 9781.81 10886.81 5390.86 12367.70 8995.40 2991.50 15775.46 11981.78 8392.34 13140.09 29697.13 8586.85 6282.04 15595.60 49
FA-MVS(test-final)79.12 16377.23 17984.81 11790.54 12763.98 18281.35 32191.71 14771.09 21974.85 15782.94 25852.85 21197.05 8767.97 20981.73 16093.41 133
LFMVS84.34 7182.73 9489.18 1294.76 3373.25 994.99 4291.89 13771.90 19182.16 8193.49 10647.98 25597.05 8782.55 9484.82 13597.25 7
sss82.71 10482.38 10183.73 15489.25 15559.58 27692.24 13794.89 2377.96 8579.86 10292.38 12956.70 16797.05 8777.26 13480.86 16694.55 92
131480.70 13578.95 15285.94 7987.77 19967.56 9387.91 26692.55 11372.17 18567.44 25093.09 11050.27 23397.04 9071.68 17787.64 11093.23 139
无先验92.71 11992.61 11162.03 30797.01 9166.63 22293.97 117
MP-MVS-pluss85.24 5885.13 5785.56 9291.42 11165.59 14291.54 17092.51 11474.56 13080.62 9595.64 4259.15 14197.00 9286.94 6193.80 4194.07 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VNet86.20 4285.65 5287.84 2793.92 4669.99 3395.73 2395.94 778.43 8086.00 4793.07 11258.22 14897.00 9285.22 7284.33 14096.52 20
APD-MVScopyleft85.93 4785.99 4685.76 8795.98 2665.21 15193.59 9092.58 11266.54 27086.17 4595.88 3763.83 8497.00 9286.39 6592.94 5595.06 73
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
mPP-MVS82.96 10082.44 10084.52 13192.83 7162.92 21492.76 11691.85 14171.52 21075.61 15094.24 8953.48 20796.99 9578.97 12290.73 8593.64 129
test_fmvsmconf_n86.58 3787.17 3084.82 11485.28 24262.55 22194.26 5489.78 22183.81 1687.78 3496.33 2765.33 6596.98 9694.40 987.55 11194.95 78
CANet_DTU84.09 7883.52 7285.81 8490.30 13266.82 11291.87 15689.01 25685.27 986.09 4693.74 9947.71 25996.98 9677.90 13189.78 9593.65 128
PVSNet_Blended_VisFu83.97 8083.50 7485.39 9790.02 13766.59 12093.77 8291.73 14577.43 9877.08 13789.81 17463.77 8696.97 9879.67 11488.21 10592.60 157
ACMMPcopyleft81.49 12280.67 12383.93 14991.71 10362.90 21592.13 14192.22 12371.79 19871.68 19693.49 10650.32 23196.96 9978.47 12784.22 14491.93 176
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_894.19 4067.19 10294.15 5993.42 7971.87 19485.38 5595.35 4868.19 4196.95 100
HY-MVS76.49 584.28 7283.36 8387.02 4892.22 8767.74 8884.65 29294.50 3779.15 6782.23 8087.93 20166.88 5196.94 10180.53 11082.20 15496.39 28
MG-MVS87.11 3086.27 3989.62 797.79 176.27 494.96 4394.49 3878.74 7883.87 7092.94 11564.34 7896.94 10175.19 14594.09 3695.66 47
test_fmvsmconf0.1_n85.71 5186.08 4584.62 12880.83 29562.33 22593.84 7888.81 26483.50 1887.00 4096.01 3563.36 9496.93 10394.04 1087.29 11494.61 91
canonicalmvs86.85 3386.25 4188.66 1891.80 10171.92 1493.54 9291.71 14780.26 5087.55 3595.25 5663.59 9196.93 10388.18 4784.34 13997.11 8
alignmvs87.28 2886.97 3388.24 2491.30 11471.14 2195.61 2593.56 7179.30 6387.07 3995.25 5668.43 3996.93 10387.87 4984.33 14096.65 14
test_prior86.42 6794.71 3567.35 9993.10 9296.84 10695.05 74
test_fmvsmconf0.01_n83.70 8883.52 7284.25 14275.26 34761.72 23992.17 13987.24 29782.36 2684.91 5995.41 4655.60 18096.83 10792.85 1585.87 12994.21 104
MSLP-MVS++86.27 4185.91 4887.35 3992.01 9368.97 5995.04 4092.70 10479.04 7281.50 8596.50 2358.98 14396.78 10883.49 8893.93 3996.29 30
agg_prior94.16 4366.97 11093.31 8284.49 6396.75 109
FE-MVS75.97 21973.02 23584.82 11489.78 14165.56 14377.44 34691.07 17764.55 28372.66 17879.85 30546.05 27396.69 11054.97 29280.82 16792.21 172
原ACMM184.42 13493.21 6364.27 17793.40 8165.39 27879.51 10692.50 12458.11 15096.69 11065.27 24193.96 3892.32 165
ab-mvs80.18 14578.31 15985.80 8588.44 17565.49 14783.00 30992.67 10671.82 19777.36 13285.01 23554.50 19196.59 11276.35 13975.63 21095.32 61
PCF-MVS73.15 979.29 16077.63 17084.29 14086.06 22865.96 13487.03 27891.10 17369.86 23869.79 21990.64 15557.54 15596.59 11264.37 24682.29 15190.32 200
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何184.73 12092.32 8464.28 17691.46 15959.56 32579.77 10392.90 11656.95 16496.57 11463.40 25192.91 5693.34 135
VDDNet80.50 13878.26 16087.21 4186.19 22669.79 4094.48 5091.31 16360.42 31879.34 10890.91 15338.48 30596.56 11582.16 9581.05 16495.27 66
dcpmvs_287.37 2787.55 2686.85 5095.04 3268.20 7890.36 21590.66 18879.37 6281.20 8793.67 10174.73 1596.55 11690.88 3292.00 6795.82 44
thisisatest051583.41 9082.49 9986.16 7489.46 15068.26 7593.54 9294.70 3074.31 13475.75 14590.92 15272.62 2896.52 11769.64 19281.50 16193.71 126
cascas78.18 18375.77 19885.41 9687.14 21169.11 5392.96 11091.15 17166.71 26970.47 20686.07 22637.49 31696.48 11870.15 18879.80 17490.65 196
EIA-MVS84.84 6384.88 6184.69 12391.30 11462.36 22493.85 7592.04 12979.45 5979.33 10994.28 8862.42 10496.35 11980.05 11291.25 8195.38 56
casdiffmvs_mvgpermissive85.66 5385.18 5687.09 4588.22 18569.35 5093.74 8491.89 13781.47 3580.10 9991.45 14464.80 7396.35 11987.23 5887.69 10995.58 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline283.68 8983.42 8084.48 13387.37 20666.00 13290.06 22495.93 879.71 5769.08 22490.39 16277.92 696.28 12178.91 12381.38 16291.16 191
HPM-MVScopyleft83.25 9482.95 8984.17 14492.25 8662.88 21690.91 19691.86 13970.30 23277.12 13593.96 9656.75 16696.28 12182.04 9791.34 8093.34 135
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS83.71 8783.40 8184.65 12593.14 6663.84 18394.59 4992.28 11871.03 22077.41 13194.92 6555.21 18596.19 12381.32 10590.70 8693.91 120
UGNet79.87 15278.68 15483.45 16489.96 13861.51 24292.13 14190.79 18376.83 10478.85 11886.33 22338.16 30896.17 12467.93 21187.17 11592.67 155
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
APD-MVS_3200maxsize81.64 12181.32 11282.59 18192.36 8358.74 28891.39 17791.01 18163.35 29379.72 10494.62 7451.82 21896.14 12579.71 11387.93 10792.89 152
BH-RMVSNet79.46 15977.65 16984.89 11191.68 10465.66 13993.55 9188.09 28672.93 16373.37 17191.12 15146.20 27196.12 12656.28 28885.61 13292.91 150
SDMVSNet80.26 14378.88 15384.40 13589.25 15567.63 9285.35 28893.02 9376.77 10670.84 20387.12 21347.95 25696.09 12785.04 7474.55 21489.48 214
testdata296.09 12761.26 267
MVS_Test84.16 7783.20 8487.05 4791.56 10769.82 3989.99 22992.05 12877.77 8982.84 7586.57 21963.93 8396.09 12774.91 15089.18 9995.25 69
baseline85.01 6184.44 6586.71 5688.33 18068.73 6390.24 22091.82 14381.05 4481.18 8892.50 12463.69 8796.08 13084.45 8186.71 12395.32 61
casdiffmvspermissive85.37 5684.87 6286.84 5188.25 18369.07 5593.04 10791.76 14481.27 4180.84 9492.07 13564.23 7996.06 13184.98 7687.43 11395.39 55
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thisisatest053081.15 12680.07 13184.39 13688.26 18265.63 14191.40 17594.62 3471.27 21570.93 20289.18 17972.47 2996.04 13265.62 23676.89 20291.49 180
TSAR-MVS + MP.88.11 1888.64 1686.54 6391.73 10268.04 8190.36 21593.55 7282.89 1991.29 1392.89 11772.27 3096.03 13387.99 4894.77 2595.54 52
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSDG69.54 28265.73 29280.96 22685.11 24763.71 19084.19 29483.28 33456.95 33654.50 33384.03 24731.50 34396.03 13342.87 34269.13 25783.14 313
Effi-MVS+83.82 8382.76 9386.99 4989.56 14769.40 4691.35 18286.12 30872.59 17083.22 7392.81 12159.60 13596.01 13581.76 9987.80 10895.56 51
UA-Net80.02 14979.65 13981.11 22089.33 15357.72 29886.33 28589.00 25977.44 9781.01 9189.15 18059.33 13995.90 13661.01 26884.28 14289.73 210
SR-MVS82.81 10182.58 9783.50 16293.35 5861.16 24892.23 13891.28 16664.48 28481.27 8695.28 5253.71 20395.86 13782.87 9188.77 10293.49 132
lupinMVS87.74 2387.77 2387.63 3489.24 15871.18 1996.57 1192.90 9982.70 2387.13 3795.27 5464.99 6895.80 13889.34 3991.80 7095.93 40
MS-PatchMatch77.90 19076.50 18882.12 19785.99 22969.95 3691.75 16592.70 10473.97 14162.58 29684.44 24441.11 29395.78 13963.76 25092.17 6480.62 340
CLD-MVS82.73 10282.35 10283.86 15087.90 19367.65 9195.45 2892.18 12685.06 1072.58 18192.27 13252.46 21595.78 13984.18 8279.06 18088.16 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test86.14 4487.01 3283.52 15992.63 8059.36 28195.49 2791.92 13480.09 5185.46 5495.53 4561.82 11395.77 14186.77 6393.37 5095.41 54
HPM-MVS_fast80.25 14479.55 14382.33 18791.55 10859.95 27191.32 18489.16 24765.23 28174.71 15993.07 11247.81 25895.74 14274.87 15288.23 10491.31 188
xiu_mvs_v1_base_debu82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
xiu_mvs_v1_base_debi82.16 11181.12 11485.26 10286.42 22168.72 6492.59 12890.44 19573.12 15984.20 6594.36 8038.04 31095.73 14384.12 8386.81 11891.33 184
DP-MVS69.90 27966.48 28680.14 24195.36 2862.93 21289.56 23576.11 35150.27 35757.69 32485.23 23339.68 29795.73 14333.35 36871.05 24581.78 330
114514_t79.17 16277.67 16883.68 15695.32 2965.53 14592.85 11491.60 15363.49 29167.92 24290.63 15746.65 26495.72 14767.01 22083.54 14589.79 208
TR-MVS78.77 17377.37 17882.95 17290.49 12860.88 25293.67 8690.07 21170.08 23574.51 16091.37 14845.69 27495.70 14860.12 27480.32 17092.29 166
ETV-MVS86.01 4686.11 4385.70 8990.21 13467.02 10993.43 9791.92 13481.21 4284.13 6894.07 9460.93 12195.63 14989.28 4089.81 9394.46 100
tttt051779.50 15778.53 15782.41 18687.22 20961.43 24489.75 23494.76 2769.29 24467.91 24388.06 20072.92 2595.63 14962.91 25773.90 22490.16 202
SR-MVS-dyc-post81.06 13080.70 12282.15 19592.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7651.26 22695.61 15178.77 12586.77 12192.28 167
thres20079.66 15478.33 15883.66 15892.54 8265.82 13893.06 10596.31 374.90 12873.30 17288.66 18359.67 13495.61 15147.84 32178.67 18489.56 213
HQP4-MVS74.18 16295.61 15188.63 223
BH-w/o80.49 13979.30 14884.05 14790.83 12464.36 17493.60 8989.42 23674.35 13369.09 22390.15 16955.23 18495.61 15164.61 24486.43 12792.17 173
HQP-MVS81.14 12780.64 12482.64 17987.54 20163.66 19494.06 6191.70 14979.80 5474.18 16290.30 16451.63 22295.61 15177.63 13278.90 18188.63 223
HQP_MVS80.34 14279.75 13882.12 19786.94 21462.42 22293.13 10391.31 16378.81 7672.53 18289.14 18150.66 22995.55 15676.74 13578.53 18688.39 230
plane_prior591.31 16395.55 15676.74 13578.53 18688.39 230
jason86.40 3886.17 4287.11 4486.16 22770.54 2895.71 2492.19 12582.00 3084.58 6294.34 8561.86 11095.53 15887.76 5090.89 8495.27 66
jason: jason.
CS-MVS85.80 4986.65 3883.27 16792.00 9458.92 28695.31 3191.86 13979.97 5284.82 6095.40 4762.26 10695.51 15986.11 6792.08 6695.37 57
EC-MVSNet84.53 6885.04 5983.01 17189.34 15161.37 24594.42 5191.09 17477.91 8783.24 7294.20 9058.37 14695.40 16085.35 7191.41 7792.27 170
BH-untuned78.68 17477.08 18083.48 16389.84 14063.74 18792.70 12088.59 27471.57 20866.83 26088.65 18451.75 22095.39 16159.03 27984.77 13691.32 187
MVS_111021_LR82.02 11581.52 11083.51 16188.42 17662.88 21689.77 23388.93 26076.78 10575.55 15193.10 10950.31 23295.38 16283.82 8787.02 11692.26 171
thres100view90078.37 18077.01 18282.46 18291.89 9963.21 20591.19 19196.33 172.28 18170.45 20887.89 20260.31 12595.32 16345.16 33277.58 19388.83 218
tfpn200view978.79 17277.43 17382.88 17392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19388.83 218
thres40078.68 17477.43 17382.43 18392.21 8864.49 16492.05 14796.28 473.48 15371.75 19488.26 19360.07 13095.32 16345.16 33277.58 19387.48 239
RPMNet70.42 27465.68 29384.63 12783.15 27467.96 8370.25 36090.45 19246.83 36669.97 21665.10 36556.48 17295.30 16635.79 36373.13 22790.64 197
ECVR-MVScopyleft81.29 12580.38 13084.01 14888.39 17861.96 23392.56 13186.79 30177.66 9276.63 13991.42 14546.34 26895.24 16774.36 15489.23 9794.85 80
OPM-MVS79.00 16578.09 16281.73 20583.52 27163.83 18491.64 16990.30 20276.36 11271.97 19189.93 17346.30 27095.17 16875.10 14677.70 19186.19 266
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250683.29 9282.92 9084.37 13788.39 17863.18 20792.01 14991.35 16277.66 9278.49 12191.42 14564.58 7695.09 16973.19 15789.23 9794.85 80
PAPM85.89 4885.46 5387.18 4288.20 18672.42 1392.41 13392.77 10282.11 2980.34 9793.07 11268.27 4095.02 17078.39 12893.59 4794.09 111
sd_testset77.08 20075.37 20382.20 19389.25 15562.11 23082.06 31389.09 25276.77 10670.84 20387.12 21341.43 29295.01 17167.23 21874.55 21489.48 214
PMMVS81.98 11682.04 10481.78 20489.76 14356.17 31391.13 19290.69 18577.96 8580.09 10093.57 10446.33 26994.99 17281.41 10387.46 11294.17 106
CostFormer82.33 10881.15 11385.86 8289.01 16368.46 6982.39 31293.01 9475.59 11780.25 9881.57 27772.03 3294.96 17379.06 12177.48 19694.16 107
EPP-MVSNet81.79 11881.52 11082.61 18088.77 16960.21 26893.02 10993.66 6868.52 25572.90 17690.39 16272.19 3194.96 17374.93 14979.29 17992.67 155
ACMH63.93 1768.62 28964.81 29980.03 24585.22 24363.25 20487.72 26984.66 32060.83 31651.57 34579.43 31027.29 35694.96 17341.76 34564.84 28881.88 328
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
thres600view778.00 18576.66 18782.03 20291.93 9663.69 19291.30 18596.33 172.43 17670.46 20787.89 20260.31 12594.92 17642.64 34476.64 20387.48 239
baseline181.84 11781.03 11884.28 14191.60 10566.62 11891.08 19391.66 15181.87 3174.86 15691.67 14269.98 3794.92 17671.76 17564.75 29091.29 189
XXY-MVS77.94 18876.44 18982.43 18382.60 28064.44 16892.01 14991.83 14273.59 15270.00 21585.82 22954.43 19594.76 17869.63 19368.02 26588.10 234
Vis-MVSNetpermissive80.92 13379.98 13583.74 15288.48 17361.80 23593.44 9688.26 28473.96 14277.73 12691.76 13949.94 23694.76 17865.84 23390.37 9094.65 90
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
nrg03080.93 13279.86 13684.13 14583.69 26868.83 6193.23 10191.20 16775.55 11875.06 15588.22 19663.04 10094.74 18081.88 9866.88 27288.82 221
GA-MVS78.33 18276.23 19284.65 12583.65 26966.30 12691.44 17190.14 20976.01 11470.32 21084.02 24842.50 28894.72 18170.98 18077.00 20192.94 149
EI-MVSNet78.97 16678.22 16181.25 21585.33 24062.73 21989.53 23893.21 8472.39 17872.14 18990.13 17060.99 11894.72 18167.73 21372.49 23486.29 262
MVSTER82.47 10682.05 10383.74 15292.68 7869.01 5791.90 15593.21 8479.83 5372.14 18985.71 23174.72 1694.72 18175.72 14172.49 23487.50 238
test111180.84 13480.02 13283.33 16587.87 19460.76 25692.62 12586.86 30077.86 8875.73 14691.39 14746.35 26794.70 18472.79 16388.68 10394.52 96
test_vis1_n_192081.66 12082.01 10580.64 23182.24 28455.09 32194.76 4686.87 29981.67 3484.40 6494.63 7338.17 30794.67 18591.98 2483.34 14692.16 174
iter_conf_final81.74 11980.93 11984.18 14392.66 7969.10 5492.94 11182.80 33779.01 7374.85 15788.40 18861.83 11294.61 18679.36 11676.52 20588.83 218
iter_conf0583.27 9382.70 9584.98 10993.32 5971.84 1594.16 5681.76 33982.74 2173.83 16988.40 18872.77 2794.61 18682.10 9675.21 21288.48 227
tt080573.07 25070.73 26280.07 24378.37 33057.05 30887.78 26892.18 12661.23 31467.04 25686.49 22031.35 34594.58 18865.06 24267.12 27088.57 225
hse-mvs281.12 12981.11 11781.16 21886.52 22057.48 30389.40 24191.16 16981.45 3682.73 7790.49 16060.11 12894.58 18887.69 5160.41 32991.41 183
AUN-MVS78.37 18077.43 17381.17 21786.60 21957.45 30489.46 24091.16 16974.11 13774.40 16190.49 16055.52 18194.57 19074.73 15360.43 32891.48 181
PLCcopyleft68.80 1475.23 23073.68 22979.86 25192.93 7058.68 28990.64 20888.30 28060.90 31564.43 27990.53 15842.38 28994.57 19056.52 28676.54 20486.33 261
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
GG-mvs-BLEND86.53 6491.91 9869.67 4575.02 35494.75 2878.67 12090.85 15477.91 794.56 19272.25 16993.74 4395.36 58
OMC-MVS78.67 17677.91 16780.95 22785.76 23557.40 30588.49 25788.67 27173.85 14472.43 18692.10 13449.29 24394.55 19372.73 16477.89 18990.91 194
Fast-Effi-MVS+81.14 12780.01 13384.51 13290.24 13365.86 13694.12 6089.15 24873.81 14675.37 15388.26 19357.26 15694.53 19466.97 22184.92 13493.15 141
diffmvspermissive84.28 7283.83 7085.61 9187.40 20568.02 8290.88 19989.24 24280.54 4781.64 8492.52 12359.83 13294.52 19587.32 5685.11 13394.29 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HyFIR lowres test81.03 13179.56 14185.43 9587.81 19768.11 8090.18 22190.01 21670.65 22872.95 17586.06 22763.61 9094.50 19675.01 14879.75 17593.67 127
v2v48277.42 19575.65 20182.73 17680.38 30167.13 10591.85 15890.23 20675.09 12569.37 22083.39 25553.79 20294.44 19771.77 17465.00 28786.63 258
v114476.73 20874.88 20882.27 18980.23 30566.60 11991.68 16790.21 20873.69 14969.06 22581.89 27052.73 21394.40 19869.21 19965.23 28485.80 277
dmvs_re76.93 20175.36 20481.61 20887.78 19860.71 25980.00 33487.99 28879.42 6069.02 22689.47 17746.77 26294.32 19963.38 25274.45 21789.81 207
TAPA-MVS70.22 1274.94 23473.53 23079.17 26490.40 13052.07 33389.19 24689.61 23062.69 30270.07 21392.67 12248.89 24994.32 19938.26 35879.97 17291.12 192
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LPG-MVS_test75.82 22274.58 21379.56 25984.31 26059.37 27990.44 21189.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
LGP-MVS_train79.56 25984.31 26059.37 27989.73 22669.49 24164.86 27088.42 18638.65 30294.30 20172.56 16672.76 23185.01 292
v119275.98 21873.92 22582.15 19579.73 30966.24 12891.22 18889.75 22372.67 16968.49 23681.42 28049.86 23794.27 20367.08 21965.02 28685.95 274
tpmvs72.88 25569.76 27182.22 19290.98 11967.05 10778.22 34388.30 28063.10 29864.35 28074.98 33955.09 18794.27 20343.25 33869.57 25185.34 288
tpm279.80 15377.95 16685.34 9988.28 18168.26 7581.56 31891.42 16070.11 23477.59 13080.50 29567.40 4894.26 20567.34 21677.35 19793.51 131
mvsmamba76.85 20475.71 20080.25 23983.07 27659.16 28391.44 17180.64 34476.84 10367.95 24186.33 22346.17 27294.24 20676.06 14072.92 23087.36 243
PVSNet_068.08 1571.81 26468.32 28182.27 18984.68 25162.31 22788.68 25490.31 20175.84 11557.93 32380.65 29437.85 31394.19 20769.94 19029.05 38690.31 201
MVP-Stereo77.12 19976.23 19279.79 25381.72 28966.34 12589.29 24290.88 18270.56 23062.01 29982.88 25949.34 24194.13 20865.55 23893.80 4178.88 354
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMM69.62 1374.34 23872.73 24179.17 26484.25 26257.87 29690.36 21589.93 21763.17 29765.64 26586.04 22837.79 31494.10 20965.89 23271.52 24185.55 283
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4276.46 21074.55 21482.19 19479.14 31967.82 8690.26 21989.42 23673.75 14768.63 23481.89 27051.31 22594.09 21071.69 17664.84 28884.66 295
TESTMET0.1,182.41 10781.98 10683.72 15588.08 18763.74 18792.70 12093.77 6179.30 6377.61 12987.57 20758.19 14994.08 21173.91 15686.68 12493.33 137
Anonymous2023121173.08 24970.39 26581.13 21990.62 12663.33 20391.40 17590.06 21351.84 35264.46 27880.67 29336.49 32494.07 21263.83 24964.17 29585.98 273
v875.35 22873.26 23381.61 20880.67 29866.82 11289.54 23789.27 24171.65 20263.30 28880.30 29954.99 18894.06 21367.33 21762.33 30983.94 300
EG-PatchMatch MVS68.55 29065.41 29677.96 27878.69 32662.93 21289.86 23189.17 24660.55 31750.27 35077.73 32022.60 36594.06 21347.18 32472.65 23376.88 362
PVSNet73.49 880.05 14878.63 15584.31 13990.92 12164.97 15892.47 13291.05 17979.18 6672.43 18690.51 15937.05 32294.06 21368.06 20886.00 12893.90 122
GeoE78.90 16877.43 17383.29 16688.95 16462.02 23192.31 13486.23 30670.24 23371.34 20089.27 17854.43 19594.04 21663.31 25380.81 16893.81 125
v1074.77 23572.54 24581.46 21180.33 30366.71 11689.15 24789.08 25370.94 22163.08 29179.86 30452.52 21494.04 21665.70 23562.17 31083.64 302
v14419276.05 21674.03 22382.12 19779.50 31366.55 12191.39 17789.71 22972.30 18068.17 23881.33 28251.75 22094.03 21867.94 21064.19 29485.77 278
tpm cat175.30 22972.21 24884.58 12988.52 17167.77 8778.16 34488.02 28761.88 31068.45 23776.37 33260.65 12294.03 21853.77 29874.11 22091.93 176
gg-mvs-nofinetune77.18 19874.31 21885.80 8591.42 11168.36 7171.78 35794.72 2949.61 35877.12 13545.92 38177.41 893.98 22067.62 21493.16 5395.05 74
PS-MVSNAJss77.26 19776.31 19180.13 24280.64 29959.16 28390.63 21091.06 17872.80 16768.58 23584.57 24253.55 20493.96 22172.97 15971.96 23887.27 247
OpenMVS_ROBcopyleft61.12 1866.39 30562.92 31376.80 29576.51 34257.77 29789.22 24483.41 33255.48 34353.86 33777.84 31926.28 35993.95 22234.90 36568.76 25978.68 356
MDTV_nov1_ep1372.61 24389.06 16168.48 6880.33 32890.11 21071.84 19671.81 19375.92 33653.01 21093.92 22348.04 31873.38 225
v192192075.63 22673.49 23182.06 20179.38 31466.35 12491.07 19589.48 23271.98 18867.99 23981.22 28549.16 24693.90 22466.56 22364.56 29385.92 276
v124075.21 23172.98 23681.88 20379.20 31666.00 13290.75 20489.11 25171.63 20667.41 25281.22 28547.36 26093.87 22565.46 23964.72 29185.77 278
ACMP71.68 1075.58 22774.23 22079.62 25784.97 24959.64 27490.80 20289.07 25470.39 23162.95 29287.30 21138.28 30693.87 22572.89 16071.45 24285.36 287
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v14876.19 21174.47 21681.36 21380.05 30764.44 16891.75 16590.23 20673.68 15067.13 25580.84 29055.92 17893.86 22768.95 20261.73 31785.76 280
LS3D69.17 28466.40 28877.50 28291.92 9756.12 31485.12 28980.37 34546.96 36456.50 32887.51 20837.25 31793.71 22832.52 37479.40 17682.68 321
EPMVS78.49 17975.98 19586.02 7691.21 11669.68 4480.23 33091.20 16775.25 12372.48 18478.11 31754.65 19093.69 22957.66 28583.04 14794.69 86
IS-MVSNet80.14 14679.41 14582.33 18787.91 19260.08 27091.97 15388.27 28272.90 16671.44 19991.73 14161.44 11593.66 23062.47 26186.53 12593.24 138
v7n71.31 26968.65 27679.28 26276.40 34360.77 25586.71 28389.45 23464.17 28658.77 31778.24 31544.59 28193.54 23157.76 28361.75 31683.52 305
VPA-MVSNet79.03 16478.00 16482.11 20085.95 23064.48 16693.22 10294.66 3275.05 12674.04 16784.95 23652.17 21793.52 23274.90 15167.04 27188.32 232
tfpnnormal70.10 27667.36 28478.32 27383.45 27260.97 25188.85 25192.77 10264.85 28260.83 30478.53 31343.52 28593.48 23331.73 37561.70 31880.52 341
旧先验292.00 15259.37 32687.54 3693.47 23475.39 144
1112_ss80.56 13779.83 13782.77 17588.65 17060.78 25492.29 13588.36 27872.58 17172.46 18594.95 6265.09 6793.42 23566.38 22777.71 19094.10 110
testdata81.34 21489.02 16257.72 29889.84 22058.65 32985.32 5694.09 9257.03 15993.28 23669.34 19790.56 8993.03 146
LTVRE_ROB59.60 1966.27 30663.54 30974.45 31084.00 26551.55 33567.08 37083.53 33058.78 32854.94 33280.31 29834.54 33193.23 23740.64 35168.03 26478.58 357
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
VPNet78.82 17077.53 17282.70 17784.52 25566.44 12293.93 7092.23 12080.46 4872.60 18088.38 19049.18 24493.13 23872.47 16863.97 29988.55 226
Test_1112_low_res79.56 15678.60 15682.43 18388.24 18460.39 26592.09 14487.99 28872.10 18771.84 19287.42 20964.62 7593.04 23965.80 23477.30 19893.85 124
PatchMatch-RL72.06 26369.98 26678.28 27489.51 14955.70 31783.49 29983.39 33361.24 31363.72 28482.76 26034.77 33093.03 24053.37 30077.59 19286.12 270
Fast-Effi-MVS+-dtu75.04 23273.37 23280.07 24380.86 29459.52 27791.20 19085.38 31371.90 19165.20 26884.84 23841.46 29192.97 24166.50 22672.96 22987.73 236
cl____76.07 21374.67 20980.28 23785.15 24461.76 23790.12 22288.73 26871.16 21665.43 26681.57 27761.15 11692.95 24266.54 22462.17 31086.13 269
pm-mvs172.89 25471.09 25878.26 27579.10 32057.62 30190.80 20289.30 24067.66 26162.91 29381.78 27249.11 24792.95 24260.29 27358.89 33484.22 298
TAMVS80.37 14179.45 14483.13 17085.14 24563.37 20291.23 18790.76 18474.81 12972.65 17988.49 18560.63 12392.95 24269.41 19681.95 15793.08 144
ACMH+65.35 1667.65 29864.55 30276.96 29384.59 25457.10 30788.08 26180.79 34258.59 33053.00 33981.09 28926.63 35892.95 24246.51 32661.69 31980.82 337
DIV-MVS_self_test76.07 21374.67 20980.28 23785.14 24561.75 23890.12 22288.73 26871.16 21665.42 26781.60 27661.15 11692.94 24666.54 22462.16 31286.14 267
cl2277.94 18876.78 18581.42 21287.57 20064.93 16090.67 20688.86 26372.45 17567.63 24982.68 26264.07 8092.91 24771.79 17365.30 28186.44 260
CDS-MVSNet81.43 12380.74 12183.52 15986.26 22564.45 16792.09 14490.65 18975.83 11673.95 16889.81 17463.97 8292.91 24771.27 17882.82 14993.20 140
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_enhance_ethall78.86 16977.97 16581.54 21088.00 19165.17 15291.41 17389.15 24875.19 12468.79 23183.98 24967.17 4992.82 24972.73 16465.30 28186.62 259
eth_miper_zixun_eth75.96 22074.40 21780.66 23084.66 25263.02 20989.28 24388.27 28271.88 19365.73 26481.65 27459.45 13692.81 25068.13 20760.53 32686.14 267
CPTT-MVS79.59 15579.16 15080.89 22991.54 10959.80 27392.10 14388.54 27660.42 31872.96 17493.28 10848.27 25192.80 25178.89 12486.50 12690.06 203
PatchmatchNetpermissive77.46 19474.63 21185.96 7889.55 14870.35 3079.97 33589.55 23172.23 18270.94 20176.91 32857.03 15992.79 25254.27 29581.17 16394.74 85
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
jajsoiax73.05 25171.51 25677.67 28077.46 33854.83 32288.81 25290.04 21469.13 24862.85 29483.51 25331.16 34692.75 25370.83 18169.80 24885.43 286
mvs_tets72.71 25871.11 25777.52 28177.41 33954.52 32488.45 25889.76 22268.76 25362.70 29583.26 25629.49 35092.71 25470.51 18769.62 25085.34 288
tpmrst80.57 13679.14 15184.84 11390.10 13668.28 7481.70 31689.72 22877.63 9475.96 14479.54 30964.94 7092.71 25475.43 14377.28 19993.55 130
D2MVS73.80 24572.02 25079.15 26679.15 31862.97 21088.58 25690.07 21172.94 16259.22 31278.30 31442.31 29092.70 25665.59 23772.00 23781.79 329
test_post23.01 39156.49 17192.67 257
MVSFormer83.75 8682.88 9186.37 6989.24 15871.18 1989.07 24890.69 18565.80 27587.13 3794.34 8564.99 6892.67 25772.83 16191.80 7095.27 66
test_djsdf73.76 24772.56 24477.39 28577.00 34153.93 32689.07 24890.69 18565.80 27563.92 28182.03 26943.14 28792.67 25772.83 16168.53 26185.57 282
RRT_MVS74.44 23772.97 23778.84 26982.36 28357.66 30089.83 23288.79 26770.61 22964.58 27484.89 23739.24 29892.65 26070.11 18966.34 27686.21 265
miper_ehance_all_eth77.60 19276.44 18981.09 22485.70 23764.41 17190.65 20788.64 27372.31 17967.37 25482.52 26364.77 7492.64 26170.67 18465.30 28186.24 264
c3_l76.83 20675.47 20280.93 22885.02 24864.18 17990.39 21488.11 28571.66 20166.65 26281.64 27563.58 9292.56 26269.31 19862.86 30386.04 271
dp75.01 23372.09 24983.76 15189.28 15466.22 12979.96 33689.75 22371.16 21667.80 24777.19 32551.81 21992.54 26350.39 30671.44 24392.51 161
Effi-MVS+-dtu76.14 21275.28 20678.72 27083.22 27355.17 32089.87 23087.78 29175.42 12067.98 24081.43 27945.08 27992.52 26475.08 14771.63 23988.48 227
F-COLMAP70.66 27168.44 27977.32 28686.37 22455.91 31588.00 26486.32 30356.94 33757.28 32688.07 19933.58 33592.49 26551.02 30468.37 26283.55 303
USDC67.43 30264.51 30376.19 29877.94 33555.29 31978.38 34185.00 31773.17 15748.36 35780.37 29721.23 36792.48 26652.15 30264.02 29880.81 338
pmmvs667.57 29964.76 30076.00 30072.82 35753.37 32888.71 25386.78 30253.19 34857.58 32578.03 31835.33 32992.41 26755.56 29054.88 34682.21 326
test-LLR80.10 14779.56 14181.72 20686.93 21661.17 24692.70 12091.54 15471.51 21175.62 14886.94 21553.83 20092.38 26872.21 17084.76 13791.60 178
test-mter79.96 15079.38 14781.72 20686.93 21661.17 24692.70 12091.54 15473.85 14475.62 14886.94 21549.84 23892.38 26872.21 17084.76 13791.60 178
UniMVSNet (Re)77.58 19376.78 18579.98 24684.11 26360.80 25391.76 16393.17 8876.56 11069.93 21884.78 23963.32 9692.36 27064.89 24362.51 30886.78 254
ET-MVSNet_ETH3D84.01 7983.15 8786.58 6190.78 12570.89 2494.74 4794.62 3481.44 3858.19 31893.64 10273.64 2392.35 27182.66 9278.66 18596.50 24
mvs_anonymous81.36 12479.99 13485.46 9490.39 13168.40 7086.88 28290.61 19074.41 13170.31 21184.67 24063.79 8592.32 27273.13 15885.70 13095.67 46
IterMVS-LS76.49 20975.18 20780.43 23484.49 25662.74 21890.64 20888.80 26572.40 17765.16 26981.72 27360.98 11992.27 27367.74 21264.65 29286.29 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
FMVSNet377.73 19176.04 19482.80 17491.20 11768.99 5891.87 15691.99 13173.35 15567.04 25683.19 25756.62 16992.14 27459.80 27669.34 25287.28 246
UniMVSNet_NR-MVSNet78.15 18477.55 17179.98 24684.46 25760.26 26692.25 13693.20 8677.50 9668.88 22986.61 21866.10 5792.13 27566.38 22762.55 30687.54 237
DU-MVS76.86 20275.84 19779.91 24982.96 27760.26 26691.26 18691.54 15476.46 11168.88 22986.35 22156.16 17392.13 27566.38 22762.55 30687.35 244
tpm78.58 17777.03 18183.22 16885.94 23264.56 16283.21 30691.14 17278.31 8173.67 17079.68 30764.01 8192.09 27766.07 23171.26 24493.03 146
Baseline_NR-MVSNet73.99 24372.83 23877.48 28380.78 29659.29 28291.79 16084.55 32168.85 25068.99 22780.70 29156.16 17392.04 27862.67 25960.98 32381.11 334
FMVSNet276.07 21374.01 22482.26 19188.85 16567.66 9091.33 18391.61 15270.84 22365.98 26382.25 26648.03 25292.00 27958.46 28168.73 26087.10 249
TransMVSNet (Re)70.07 27767.66 28377.31 28780.62 30059.13 28591.78 16284.94 31865.97 27460.08 30880.44 29650.78 22891.87 28048.84 31445.46 36480.94 336
UniMVSNet_ETH3D72.74 25770.53 26479.36 26178.62 32856.64 31185.01 29089.20 24463.77 28964.84 27284.44 24434.05 33391.86 28163.94 24870.89 24689.57 212
NR-MVSNet76.05 21674.59 21280.44 23382.96 27762.18 22990.83 20191.73 14577.12 10060.96 30386.35 22159.28 14091.80 28260.74 26961.34 32187.35 244
FIs79.47 15879.41 14579.67 25585.95 23059.40 27891.68 16793.94 5678.06 8468.96 22888.28 19166.61 5491.77 28366.20 23074.99 21387.82 235
XVG-OURS74.25 24072.46 24679.63 25678.45 32957.59 30280.33 32887.39 29363.86 28868.76 23289.62 17640.50 29591.72 28469.00 20174.25 21989.58 211
test_040264.54 31561.09 32174.92 30784.10 26460.75 25787.95 26579.71 34752.03 35052.41 34177.20 32432.21 34191.64 28523.14 38161.03 32272.36 370
test_cas_vis1_n_192080.45 14080.61 12579.97 24878.25 33157.01 30994.04 6588.33 27979.06 7182.81 7693.70 10038.65 30291.63 28690.82 3379.81 17391.27 190
XVG-OURS-SEG-HR74.70 23673.08 23479.57 25878.25 33157.33 30680.49 32687.32 29463.22 29568.76 23290.12 17244.89 28091.59 28770.55 18674.09 22189.79 208
TranMVSNet+NR-MVSNet75.86 22174.52 21579.89 25082.44 28260.64 26291.37 18091.37 16176.63 10867.65 24886.21 22552.37 21691.55 28861.84 26460.81 32487.48 239
GBi-Net75.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
test175.65 22473.83 22681.10 22188.85 16565.11 15490.01 22690.32 19870.84 22367.04 25680.25 30048.03 25291.54 28959.80 27669.34 25286.64 255
FMVSNet172.71 25869.91 26981.10 22183.60 27065.11 15490.01 22690.32 19863.92 28763.56 28580.25 30036.35 32591.54 28954.46 29466.75 27386.64 255
pmmvs473.92 24471.81 25380.25 23979.17 31765.24 15087.43 27487.26 29667.64 26363.46 28683.91 25048.96 24891.53 29262.94 25665.49 28083.96 299
test_post178.95 33720.70 39453.05 20991.50 29360.43 271
anonymousdsp71.14 27069.37 27476.45 29672.95 35554.71 32384.19 29488.88 26161.92 30962.15 29879.77 30638.14 30991.44 29468.90 20367.45 26983.21 311
XVG-ACMP-BASELINE68.04 29565.53 29575.56 30174.06 35252.37 33178.43 34085.88 31062.03 30758.91 31681.21 28720.38 37091.15 29560.69 27068.18 26383.16 312
CNLPA74.31 23972.30 24780.32 23591.49 11061.66 24090.85 20080.72 34356.67 33963.85 28390.64 15546.75 26390.84 29653.79 29775.99 20988.47 229
ppachtmachnet_test67.72 29763.70 30879.77 25478.92 32166.04 13188.68 25482.90 33660.11 32255.45 33075.96 33539.19 29990.55 29739.53 35352.55 35282.71 319
pmmvs573.35 24871.52 25578.86 26878.64 32760.61 26391.08 19386.90 29867.69 26063.32 28783.64 25144.33 28290.53 29862.04 26366.02 27885.46 285
SixPastTwentyTwo64.92 31361.78 32074.34 31278.74 32549.76 34483.42 30279.51 34862.86 29950.27 35077.35 32130.92 34890.49 29945.89 33047.06 36182.78 315
COLMAP_ROBcopyleft57.96 2062.98 32359.65 32572.98 32181.44 29153.00 33083.75 29775.53 35648.34 36248.81 35681.40 28124.14 36190.30 30032.95 37060.52 32775.65 365
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
patchmatchnet-post67.62 36157.62 15490.25 301
SCA75.82 22272.76 23985.01 10886.63 21870.08 3281.06 32389.19 24571.60 20770.01 21477.09 32645.53 27590.25 30160.43 27173.27 22694.68 87
JIA-IIPM66.06 30762.45 31676.88 29481.42 29254.45 32557.49 38288.67 27149.36 35963.86 28246.86 38056.06 17690.25 30149.53 31168.83 25885.95 274
WR-MVS76.76 20775.74 19979.82 25284.60 25362.27 22892.60 12692.51 11476.06 11367.87 24685.34 23256.76 16590.24 30462.20 26263.69 30186.94 252
FC-MVSNet-test77.99 18678.08 16377.70 27984.89 25055.51 31890.27 21893.75 6576.87 10166.80 26187.59 20665.71 6290.23 30562.89 25873.94 22287.37 242
EPNet_dtu78.80 17179.26 14977.43 28488.06 18849.71 34591.96 15491.95 13377.67 9176.56 14191.28 14958.51 14590.20 30656.37 28780.95 16592.39 162
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CMPMVSbinary48.56 2166.77 30464.41 30573.84 31570.65 36350.31 34277.79 34585.73 31245.54 36844.76 36782.14 26835.40 32890.14 30763.18 25574.54 21681.07 335
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Vis-MVSNet (Re-imp)79.24 16179.57 14078.24 27688.46 17452.29 33290.41 21389.12 25074.24 13569.13 22291.91 13765.77 6190.09 30859.00 28088.09 10692.33 164
lessismore_v073.72 31672.93 35647.83 35461.72 38145.86 36373.76 34228.63 35489.81 30947.75 32331.37 38383.53 304
MVS-HIRNet60.25 33055.55 33774.35 31184.37 25956.57 31271.64 35874.11 35934.44 37945.54 36542.24 38631.11 34789.81 30940.36 35276.10 20876.67 363
our_test_368.29 29364.69 30179.11 26778.92 32164.85 16188.40 25985.06 31660.32 32052.68 34076.12 33440.81 29489.80 31144.25 33755.65 34282.67 322
CR-MVSNet73.79 24670.82 26182.70 17783.15 27467.96 8370.25 36084.00 32673.67 15169.97 21672.41 34657.82 15289.48 31252.99 30173.13 22790.64 197
Patchmtry67.53 30063.93 30778.34 27282.12 28664.38 17268.72 36484.00 32648.23 36359.24 31172.41 34657.82 15289.27 31346.10 32956.68 34181.36 331
ADS-MVSNet68.54 29164.38 30681.03 22588.06 18866.90 11168.01 36784.02 32557.57 33164.48 27669.87 35638.68 30089.21 31440.87 34967.89 26686.97 250
Patchmatch-RL test68.17 29464.49 30479.19 26371.22 35953.93 32670.07 36271.54 36869.22 24556.79 32762.89 36856.58 17088.61 31569.53 19552.61 35195.03 76
UnsupCasMVSNet_bld61.60 32657.71 33073.29 31968.73 36851.64 33478.61 33989.05 25557.20 33546.11 36061.96 37128.70 35388.60 31650.08 30938.90 37579.63 348
OurMVSNet-221017-064.68 31462.17 31872.21 32876.08 34647.35 35680.67 32581.02 34156.19 34051.60 34479.66 30827.05 35788.56 31753.60 29953.63 34980.71 339
PatchT69.11 28565.37 29780.32 23582.07 28763.68 19367.96 36987.62 29250.86 35569.37 22065.18 36457.09 15888.53 31841.59 34766.60 27488.74 222
bld_raw_dy_0_6471.59 26769.71 27277.22 28977.82 33758.12 29487.71 27073.66 36068.01 25861.90 30184.29 24633.68 33488.43 31969.91 19170.43 24785.11 291
TinyColmap60.32 32956.42 33672.00 33278.78 32453.18 32978.36 34275.64 35452.30 34941.59 37475.82 33714.76 37988.35 32035.84 36154.71 34774.46 366
LCM-MVSNet-Re72.93 25371.84 25276.18 29988.49 17248.02 35280.07 33370.17 36973.96 14252.25 34280.09 30349.98 23588.24 32167.35 21584.23 14392.28 167
ambc69.61 33861.38 37941.35 37349.07 38785.86 31150.18 35266.40 36210.16 38488.14 32245.73 33144.20 36579.32 351
Patchmatch-test65.86 30860.94 32280.62 23283.75 26758.83 28758.91 38175.26 35744.50 37150.95 34977.09 32658.81 14487.90 32335.13 36464.03 29795.12 72
test_fmvs1_n72.69 26071.92 25174.99 30671.15 36047.08 35987.34 27675.67 35363.48 29278.08 12491.17 15020.16 37187.87 32484.65 7975.57 21190.01 205
MIMVSNet71.64 26568.44 27981.23 21681.97 28864.44 16873.05 35688.80 26569.67 24064.59 27374.79 34032.79 33787.82 32553.99 29676.35 20691.42 182
K. test v363.09 32259.61 32673.53 31776.26 34449.38 34983.27 30377.15 35064.35 28547.77 35972.32 34828.73 35287.79 32649.93 31036.69 37783.41 308
test_fmvs174.07 24173.69 22875.22 30378.91 32347.34 35789.06 25074.69 35863.68 29079.41 10791.59 14324.36 36087.77 32785.22 7276.26 20790.55 199
CL-MVSNet_self_test69.92 27868.09 28275.41 30273.25 35455.90 31690.05 22589.90 21869.96 23661.96 30076.54 32951.05 22787.64 32849.51 31250.59 35682.70 320
KD-MVS_2432*160069.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_refine_blended69.03 28666.37 28977.01 29185.56 23861.06 24981.44 31990.25 20467.27 26558.00 32176.53 33054.49 19287.63 32948.04 31835.77 37882.34 324
miper_lstm_enhance73.05 25171.73 25477.03 29083.80 26658.32 29281.76 31488.88 26169.80 23961.01 30278.23 31657.19 15787.51 33165.34 24059.53 33185.27 290
UnsupCasMVSNet_eth65.79 30963.10 31173.88 31470.71 36250.29 34381.09 32289.88 21972.58 17149.25 35574.77 34132.57 33987.43 33255.96 28941.04 37183.90 301
Anonymous2023120667.53 30065.78 29172.79 32374.95 34847.59 35588.23 26087.32 29461.75 31258.07 32077.29 32337.79 31487.29 33342.91 34063.71 30083.48 306
pmmvs-eth3d65.53 31262.32 31775.19 30469.39 36759.59 27582.80 31083.43 33162.52 30351.30 34772.49 34432.86 33687.16 33455.32 29150.73 35578.83 355
IterMVS72.65 26170.83 25978.09 27782.17 28562.96 21187.64 27286.28 30471.56 20960.44 30578.85 31245.42 27786.66 33563.30 25461.83 31484.65 296
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest61.66 32558.06 32972.46 32579.57 31051.42 33780.17 33168.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
TestCases72.46 32579.57 31051.42 33768.61 37251.25 35345.88 36181.23 28319.86 37286.58 33638.98 35557.01 33979.39 349
MDA-MVSNet-bldmvs61.54 32757.70 33173.05 32079.53 31257.00 31083.08 30781.23 34057.57 33134.91 37972.45 34532.79 33786.26 33835.81 36241.95 36975.89 364
test_vis1_n71.63 26670.73 26274.31 31369.63 36647.29 35886.91 28072.11 36463.21 29675.18 15490.17 16820.40 36985.76 33984.59 8074.42 21889.87 206
Syy-MVS69.65 28169.52 27370.03 33787.87 19443.21 37088.07 26289.01 25672.91 16463.11 28988.10 19745.28 27885.54 34022.07 38369.23 25581.32 332
myMVS_eth3d72.58 26272.74 24072.10 33087.87 19449.45 34788.07 26289.01 25672.91 16463.11 28988.10 19763.63 8885.54 34032.73 37269.23 25581.32 332
Anonymous2024052162.09 32459.08 32771.10 33467.19 37048.72 35183.91 29685.23 31550.38 35647.84 35871.22 35520.74 36885.51 34246.47 32758.75 33579.06 352
FMVSNet568.04 29565.66 29475.18 30584.43 25857.89 29583.54 29886.26 30561.83 31153.64 33873.30 34337.15 32085.08 34348.99 31361.77 31582.56 323
test0.0.03 172.76 25672.71 24272.88 32280.25 30447.99 35391.22 18889.45 23471.51 21162.51 29787.66 20553.83 20085.06 34450.16 30867.84 26885.58 281
testgi64.48 31662.87 31469.31 34071.24 35840.62 37585.49 28779.92 34665.36 27954.18 33583.49 25423.74 36384.55 34541.60 34660.79 32582.77 316
testing370.38 27570.83 25969.03 34185.82 23443.93 36990.72 20590.56 19168.06 25760.24 30686.82 21764.83 7284.12 34626.33 37964.10 29679.04 353
ADS-MVSNet266.90 30363.44 31077.26 28888.06 18860.70 26068.01 36775.56 35557.57 33164.48 27669.87 35638.68 30084.10 34740.87 34967.89 26686.97 250
CVMVSNet74.04 24274.27 21973.33 31885.33 24043.94 36889.53 23888.39 27754.33 34670.37 20990.13 17049.17 24584.05 34861.83 26579.36 17791.99 175
ITE_SJBPF70.43 33674.44 35047.06 36077.32 34960.16 32154.04 33683.53 25223.30 36484.01 34943.07 33961.58 32080.21 346
CHOSEN 280x42077.35 19676.95 18478.55 27187.07 21262.68 22069.71 36382.95 33568.80 25171.48 19887.27 21266.03 5884.00 35076.47 13882.81 15088.95 217
DTE-MVSNet68.46 29267.33 28571.87 33377.94 33549.00 35086.16 28688.58 27566.36 27258.19 31882.21 26746.36 26683.87 35144.97 33555.17 34482.73 317
IterMVS-SCA-FT71.55 26869.97 26776.32 29781.48 29060.67 26187.64 27285.99 30966.17 27359.50 31078.88 31145.53 27583.65 35262.58 26061.93 31384.63 297
PEN-MVS69.46 28368.56 27772.17 32979.27 31549.71 34586.90 28189.24 24267.24 26859.08 31482.51 26447.23 26183.54 35348.42 31657.12 33783.25 310
WR-MVS_H70.59 27269.94 26872.53 32481.03 29351.43 33687.35 27592.03 13067.38 26460.23 30780.70 29155.84 17983.45 35446.33 32858.58 33682.72 318
YYNet163.76 32160.14 32474.62 30978.06 33460.19 26983.46 30183.99 32856.18 34139.25 37571.56 35337.18 31983.34 35542.90 34148.70 35980.32 343
PM-MVS59.40 33256.59 33467.84 34463.63 37441.86 37176.76 34763.22 37959.01 32751.07 34872.27 34911.72 38283.25 35661.34 26650.28 35778.39 358
MDA-MVSNet_test_wron63.78 32060.16 32374.64 30878.15 33360.41 26483.49 29984.03 32456.17 34239.17 37671.59 35237.22 31883.24 35742.87 34248.73 35880.26 344
KD-MVS_self_test60.87 32858.60 32867.68 34666.13 37239.93 37775.63 35384.70 31957.32 33449.57 35368.45 35929.55 34982.87 35848.09 31747.94 36080.25 345
N_pmnet50.55 34049.11 34354.88 36177.17 3404.02 40484.36 2932.00 40248.59 36045.86 36368.82 35832.22 34082.80 35931.58 37651.38 35477.81 360
test20.0363.83 31962.65 31567.38 34870.58 36439.94 37686.57 28484.17 32363.29 29451.86 34377.30 32237.09 32182.47 36038.87 35754.13 34879.73 347
TDRefinement55.28 33851.58 34166.39 35059.53 38146.15 36276.23 35072.80 36244.60 37042.49 37276.28 33315.29 37782.39 36133.20 36943.75 36670.62 372
CP-MVSNet70.50 27369.91 26972.26 32780.71 29751.00 33987.23 27790.30 20267.84 25959.64 30982.69 26150.23 23482.30 36251.28 30359.28 33283.46 307
PS-CasMVS69.86 28069.13 27572.07 33180.35 30250.57 34187.02 27989.75 22367.27 26559.19 31382.28 26546.58 26582.24 36350.69 30559.02 33383.39 309
RPSCF64.24 31761.98 31971.01 33576.10 34545.00 36575.83 35275.94 35246.94 36558.96 31584.59 24131.40 34482.00 36447.76 32260.33 33086.04 271
new-patchmatchnet59.30 33356.48 33567.79 34565.86 37344.19 36682.47 31181.77 33859.94 32343.65 37166.20 36327.67 35581.68 36539.34 35441.40 37077.50 361
MIMVSNet160.16 33157.33 33268.67 34269.71 36544.13 36778.92 33884.21 32255.05 34444.63 36871.85 35023.91 36281.54 36632.63 37355.03 34580.35 342
test_fmvs265.78 31064.84 29868.60 34366.54 37141.71 37283.27 30369.81 37054.38 34567.91 24384.54 24315.35 37681.22 36775.65 14266.16 27782.88 314
dmvs_testset65.55 31166.45 28762.86 35379.87 30822.35 39676.55 34871.74 36677.42 9955.85 32987.77 20451.39 22480.69 36831.51 37865.92 27985.55 283
test_vis1_rt59.09 33457.31 33364.43 35168.44 36946.02 36383.05 30848.63 39151.96 35149.57 35363.86 36716.30 37480.20 36971.21 17962.79 30467.07 376
EU-MVSNet64.01 31863.01 31267.02 34974.40 35138.86 38083.27 30386.19 30745.11 36954.27 33481.15 28836.91 32380.01 37048.79 31557.02 33882.19 327
pmmvs355.51 33751.50 34267.53 34757.90 38250.93 34080.37 32773.66 36040.63 37744.15 37064.75 36616.30 37478.97 37144.77 33640.98 37372.69 368
mvsany_test168.77 28868.56 27769.39 33973.57 35345.88 36480.93 32460.88 38259.65 32471.56 19790.26 16643.22 28675.05 37274.26 15562.70 30587.25 248
DSMNet-mixed56.78 33654.44 33963.79 35263.21 37529.44 39164.43 37364.10 37842.12 37651.32 34671.60 35131.76 34275.04 37336.23 36065.20 28586.87 253
EGC-MVSNET42.35 34738.09 35055.11 36074.57 34946.62 36171.63 35955.77 3830.04 3970.24 39862.70 36914.24 38074.91 37417.59 38646.06 36343.80 383
test_fmvs356.82 33554.86 33862.69 35453.59 38435.47 38275.87 35165.64 37743.91 37255.10 33171.43 3546.91 39074.40 37568.64 20552.63 35078.20 359
WB-MVS46.23 34444.94 34650.11 36562.13 37821.23 39876.48 34955.49 38445.89 36735.78 37761.44 37335.54 32772.83 3769.96 39221.75 38756.27 380
new_pmnet49.31 34146.44 34457.93 35662.84 37640.74 37468.47 36662.96 38036.48 37835.09 37857.81 37514.97 37872.18 37732.86 37146.44 36260.88 378
Gipumacopyleft34.91 35431.44 35745.30 37070.99 36139.64 37919.85 39272.56 36320.10 38816.16 39221.47 3935.08 39371.16 37813.07 39043.70 36725.08 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SSC-MVS44.51 34643.35 34847.99 36961.01 38018.90 40074.12 35554.36 38543.42 37434.10 38060.02 37434.42 33270.39 3799.14 39419.57 38854.68 381
test_vis3_rt40.46 35037.79 35148.47 36844.49 39233.35 38566.56 37132.84 39932.39 38129.65 38139.13 3893.91 39768.65 38050.17 30740.99 37243.40 384
LF4IMVS54.01 33952.12 34059.69 35562.41 37739.91 37868.59 36568.28 37442.96 37544.55 36975.18 33814.09 38168.39 38141.36 34851.68 35370.78 371
PMVScopyleft26.43 2231.84 35728.16 36042.89 37125.87 40027.58 39250.92 38649.78 38921.37 38714.17 39340.81 3882.01 40066.62 3829.61 39338.88 37634.49 389
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test140.50 34937.31 35250.09 36651.88 38535.27 38359.45 38052.59 38721.64 38626.12 38457.80 3764.56 39466.56 38322.64 38239.09 37448.43 382
LCM-MVSNet40.54 34835.79 35354.76 36236.92 39730.81 38851.41 38569.02 37122.07 38524.63 38545.37 3824.56 39465.81 38433.67 36734.50 38167.67 374
test_f46.58 34343.45 34755.96 35845.18 39132.05 38661.18 37649.49 39033.39 38042.05 37362.48 3707.00 38965.56 38547.08 32543.21 36870.27 373
PMMVS237.93 35333.61 35650.92 36446.31 38924.76 39460.55 37950.05 38828.94 38420.93 38647.59 3794.41 39665.13 38625.14 38018.55 39062.87 377
FPMVS45.64 34543.10 34953.23 36351.42 38736.46 38164.97 37271.91 36529.13 38327.53 38361.55 3729.83 38565.01 38716.00 38955.58 34358.22 379
ANet_high40.27 35135.20 35455.47 35934.74 39834.47 38463.84 37471.56 36748.42 36118.80 38841.08 3879.52 38664.45 38820.18 3848.66 39567.49 375
mvsany_test348.86 34246.35 34556.41 35746.00 39031.67 38762.26 37547.25 39243.71 37345.54 36568.15 36010.84 38364.44 38957.95 28235.44 38073.13 367
testf132.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
APD_test232.77 35529.47 35842.67 37241.89 39430.81 38852.07 38343.45 39315.45 38918.52 38944.82 3832.12 39858.38 39016.05 38730.87 38438.83 385
test_method38.59 35235.16 35548.89 36754.33 38321.35 39745.32 38853.71 3867.41 39428.74 38251.62 3788.70 38752.87 39233.73 36632.89 38272.47 369
MVEpermissive24.84 2324.35 35919.77 36538.09 37434.56 39926.92 39326.57 39038.87 39711.73 39311.37 39427.44 3901.37 40150.42 39311.41 39114.60 39136.93 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN24.61 35824.00 36226.45 37643.74 39318.44 40160.86 37739.66 39515.11 3919.53 39522.10 3926.52 39146.94 3948.31 39510.14 39213.98 392
EMVS23.76 36023.20 36425.46 37741.52 39616.90 40260.56 37838.79 39814.62 3928.99 39620.24 3957.35 38845.82 3957.25 3969.46 39313.64 393
DeepMVS_CXcopyleft34.71 37551.45 38624.73 39528.48 40131.46 38217.49 39152.75 3775.80 39242.60 39618.18 38519.42 38936.81 388
tmp_tt22.26 36123.75 36317.80 3785.23 40112.06 40335.26 38939.48 3962.82 39618.94 38744.20 38522.23 36624.64 39736.30 3599.31 39416.69 391
wuyk23d11.30 36310.95 36612.33 37948.05 38819.89 39925.89 3911.92 4033.58 3953.12 3971.37 3970.64 40215.77 3986.23 3977.77 3961.35 394
testmvs7.23 3659.62 3680.06 3810.04 4020.02 40684.98 2910.02 4040.03 3980.18 3991.21 3980.01 4040.02 3990.14 3980.01 3970.13 396
test1236.92 3669.21 3690.08 3800.03 4030.05 40581.65 3170.01 4050.02 3990.14 4000.85 3990.03 4030.02 3990.12 3990.00 3980.16 395
test_blank0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uanet_test0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
DCPMVS0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
cdsmvs_eth3d_5k19.86 36226.47 3610.00 3820.00 4040.00 4070.00 39393.45 770.00 4000.00 40195.27 5449.56 2390.00 4010.00 4000.00 3980.00 397
pcd_1.5k_mvsjas4.46 3675.95 3700.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 40053.55 2040.00 4010.00 4000.00 3980.00 397
sosnet-low-res0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
sosnet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
uncertanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
Regformer0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
ab-mvs-re7.91 36410.55 3670.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 40194.95 620.00 4050.00 4010.00 4000.00 3980.00 397
uanet0.00 3680.00 3710.00 3820.00 4040.00 4070.00 3930.00 4060.00 4000.00 4010.00 4000.00 4050.00 4010.00 4000.00 3980.00 397
WAC-MVS49.45 34731.56 377
FOURS193.95 4561.77 23693.96 6891.92 13462.14 30686.57 42
test_one_060196.32 1869.74 4294.18 5171.42 21390.67 1696.85 1474.45 18
eth-test20.00 404
eth-test0.00 404
RE-MVS-def80.48 12892.02 9158.56 29090.90 19790.45 19262.76 30078.89 11394.46 7649.30 24278.77 12586.77 12192.28 167
IU-MVS96.46 1169.91 3795.18 1680.75 4695.28 192.34 1995.36 1396.47 25
save fliter93.84 4867.89 8595.05 3992.66 10778.19 82
test072696.40 1569.99 3396.76 794.33 4871.92 18991.89 897.11 673.77 21
GSMVS94.68 87
test_part296.29 1968.16 7990.78 14
sam_mvs157.85 15194.68 87
sam_mvs54.91 189
MTGPAbinary92.23 120
MTMP93.77 8232.52 400
test9_res89.41 3794.96 1895.29 63
agg_prior286.41 6494.75 2995.33 59
test_prior467.18 10493.92 71
test_prior295.10 3875.40 12185.25 5895.61 4367.94 4487.47 5494.77 25
新几何291.41 173
旧先验191.94 9560.74 25891.50 15794.36 8065.23 6691.84 6994.55 92
原ACMM292.01 149
test22289.77 14261.60 24189.55 23689.42 23656.83 33877.28 13392.43 12852.76 21291.14 8393.09 143
segment_acmp65.94 59
testdata189.21 24577.55 95
plane_prior786.94 21461.51 242
plane_prior687.23 20862.32 22650.66 229
plane_prior489.14 181
plane_prior361.95 23479.09 6972.53 182
plane_prior293.13 10378.81 76
plane_prior187.15 210
plane_prior62.42 22293.85 7579.38 6178.80 183
n20.00 406
nn0.00 406
door-mid66.01 376
test1193.01 94
door66.57 375
HQP5-MVS63.66 194
HQP-NCC87.54 20194.06 6179.80 5474.18 162
ACMP_Plane87.54 20194.06 6179.80 5474.18 162
BP-MVS77.63 132
HQP3-MVS91.70 14978.90 181
HQP2-MVS51.63 222
NP-MVS87.41 20463.04 20890.30 164
MDTV_nov1_ep13_2view59.90 27280.13 33267.65 26272.79 17754.33 19759.83 27592.58 158
ACMMP++_ref71.63 239
ACMMP++69.72 249
Test By Simon54.21 198