This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16774.88 19585.32 18165.54 12987.79 365.61 11991.14 10183.35 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16671.22 4572.40 23488.70 10760.51 17987.70 477.40 3689.13 15285.48 83
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 84
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 33
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11251.71 23177.15 15191.42 3665.49 13087.20 779.44 1787.17 18884.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23384.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_030475.45 9374.66 10577.83 7475.58 20861.53 13678.29 9977.18 19263.15 11469.97 26687.20 13157.54 21387.05 1074.05 5588.96 15584.89 93
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 143
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16880.27 11685.31 18268.56 9587.03 1267.39 10291.26 9683.50 139
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 173
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZD-MVS83.91 9069.36 7381.09 12058.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 130
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 108
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 122
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 198
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 123
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 103
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 41873.86 5586.31 2178.84 2394.03 5684.64 103
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 128
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
No_MVS79.02 5783.14 9967.03 9180.75 12586.24 2477.27 3794.85 2983.78 132
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 69
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 176
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7390.94 10784.82 98
plane_prior585.49 3286.15 2971.09 7390.94 10784.82 98
DTE-MVSNet80.35 5282.89 3972.74 15089.84 837.34 34877.16 11481.81 10480.45 490.92 492.95 874.57 5086.12 3163.65 13694.68 3594.76 6
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 169
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15189.79 13683.08 157
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 156
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 165
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 149
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 184
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 140
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 151
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 157
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 151
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11095.46 1287.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
DVP-MVScopyleft81.15 4183.12 3675.24 10586.16 5260.78 14983.77 4480.58 13272.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 237
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 120
RPMNet65.77 23165.08 24567.84 22966.37 32948.24 24370.93 19986.27 2054.66 19161.35 34086.77 14533.29 34885.67 4955.93 20370.17 36569.62 340
WR-MVS_H80.22 5482.17 4574.39 11389.46 1542.69 30178.24 10182.24 9678.21 1389.57 1092.10 1968.05 10185.59 5066.04 11595.62 1094.88 5
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 93
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12365.77 7675.55 18586.25 16567.42 10685.42 5270.10 7890.88 11381.81 189
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20377.68 14787.18 13269.98 8585.37 5368.01 9392.72 7685.08 90
HQP4-MVS71.59 24285.31 5483.74 134
HQP-MVS75.24 9775.01 10275.94 9582.37 11358.80 16877.32 11184.12 6959.08 14071.58 24385.96 17558.09 20485.30 5567.38 10489.16 14883.73 135
mvsmamba68.87 18967.30 21673.57 12676.58 19353.70 20084.43 3774.25 21645.38 29576.63 16584.55 19135.85 34085.27 5649.54 25978.49 29681.75 191
AdaColmapbinary74.22 11074.56 10673.20 13281.95 12060.97 14579.43 8680.90 12465.57 7872.54 23281.76 23370.98 7885.26 5747.88 27890.00 12973.37 299
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11291.24 9787.61 51
ETV-MVS72.72 14072.16 15374.38 11476.90 18955.95 18273.34 16384.67 5562.04 12072.19 23870.81 34765.90 12685.24 5958.64 18184.96 21981.95 187
PEN-MVS80.46 5082.91 3873.11 13589.83 939.02 33177.06 11782.61 9280.04 590.60 792.85 1074.93 4785.21 6063.15 14395.15 2195.09 2
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 46
test1276.51 8882.28 11660.94 14681.64 10773.60 21764.88 13785.19 6290.42 12283.38 147
CANet73.00 13371.84 15576.48 8975.82 20561.28 13974.81 14480.37 13763.17 11262.43 33680.50 24961.10 17485.16 6364.00 13084.34 22983.01 160
EC-MVSNet77.08 7977.39 8176.14 9476.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19269.87 8784.94 6469.76 8189.59 13986.60 65
PS-CasMVS80.41 5182.86 4073.07 13689.93 739.21 32877.15 11581.28 11479.74 690.87 592.73 1275.03 4684.93 6563.83 13595.19 1995.07 3
CP-MVSNet79.48 5881.65 4972.98 13989.66 1339.06 33076.76 11880.46 13478.91 990.32 891.70 2968.49 9684.89 6663.40 14095.12 2295.01 4
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 178
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10863.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 182
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 168
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9197.05 296.93 1
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 73
PC_three_145246.98 28181.83 9486.28 16266.55 12184.47 7463.31 14290.78 11583.49 140
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13072.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 208
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15482.96 8557.75 15470.35 25981.98 22964.34 14284.41 7649.69 25689.95 13180.89 206
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18457.68 15574.89 19478.13 28964.80 13884.26 7756.46 19985.32 21286.88 61
MVSMamba_PlusPlus76.88 8078.21 7472.88 14680.83 13248.71 23783.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7786.15 19985.99 72
CLD-MVS72.88 13872.36 15074.43 11277.03 18254.30 19468.77 23183.43 7952.12 22676.79 16274.44 32069.54 9083.91 7955.88 20493.25 6985.09 89
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PHI-MVS74.92 10374.36 11076.61 8676.40 19562.32 12980.38 7583.15 8254.16 20573.23 22480.75 24562.19 15983.86 8068.02 9290.92 11083.65 136
EPP-MVSNet73.86 11473.38 12775.31 10378.19 16653.35 20380.45 7377.32 18965.11 8976.47 17586.80 14249.47 26083.77 8153.89 22892.72 7688.81 40
MG-MVS70.47 16771.34 16567.85 22879.26 14940.42 32274.67 15175.15 21058.41 14868.74 28788.14 12456.08 22783.69 8259.90 17181.71 25979.43 236
IS-MVSNet75.10 9975.42 10074.15 11779.23 15048.05 24779.43 8678.04 18070.09 5479.17 12688.02 12553.04 24083.60 8358.05 18693.76 6290.79 18
balanced_conf0373.59 11774.06 11472.17 16377.48 17947.72 25481.43 6582.20 9754.38 19679.19 12587.68 12854.41 23383.57 8463.98 13185.78 20585.22 85
原ACMM173.90 12085.90 6065.15 11081.67 10650.97 24374.25 20786.16 16861.60 16483.54 8556.75 19491.08 10573.00 303
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9592.44 7889.60 23
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8774.03 5693.57 6584.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS78.44 7079.29 6475.90 9681.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8862.45 14792.40 7978.92 242
test_prior75.27 10482.15 11859.85 15784.33 6383.39 8982.58 174
114514_t73.40 12173.33 13173.64 12484.15 8957.11 17678.20 10280.02 14243.76 30872.55 23186.07 17364.00 14383.35 9060.14 16891.03 10680.45 219
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9176.01 4193.77 6184.81 100
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14064.71 9578.11 14088.39 11665.46 13183.14 9277.64 3391.20 9878.94 241
DPM-MVS69.98 17369.22 18572.26 16182.69 11158.82 16770.53 20481.23 11647.79 27564.16 32080.21 25351.32 25183.12 9360.14 16884.95 22074.83 285
PAPM_NR73.91 11274.16 11373.16 13381.90 12153.50 20181.28 6681.40 11166.17 7473.30 22383.31 21259.96 18483.10 9458.45 18381.66 26082.87 163
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23584.00 19964.56 14083.07 9551.48 24187.19 18782.56 175
PAPR69.20 18568.66 19570.82 17475.15 21347.77 25275.31 13781.11 11849.62 25966.33 30579.27 27161.53 16582.96 9648.12 27581.50 26281.74 192
PAPM61.79 27460.37 28366.05 24876.09 20041.87 30669.30 22076.79 19640.64 33753.80 38479.62 26544.38 28982.92 9729.64 38973.11 34373.36 300
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26560.73 13074.39 20578.44 28357.72 21182.78 9860.16 16689.60 13879.11 239
v1075.69 8976.20 9174.16 11674.44 22748.69 23875.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 9970.73 7589.14 15191.05 14
PCF-MVS63.80 1372.70 14171.69 15775.72 9878.10 16760.01 15673.04 16581.50 10845.34 29679.66 12084.35 19565.15 13582.65 10048.70 26789.38 14784.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 9961.89 12188.77 1693.32 557.15 21582.60 10170.08 7992.80 7389.25 27
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10264.82 12396.10 587.21 56
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10068.80 5880.92 10888.52 11372.00 6882.39 10374.80 4793.04 7081.14 198
test_040278.17 7279.48 6374.24 11583.50 9459.15 16372.52 16874.60 21475.34 1988.69 1791.81 2775.06 4582.37 10465.10 12088.68 15881.20 196
v124073.06 13073.14 13372.84 14774.74 22047.27 26271.88 18481.11 11851.80 23082.28 9084.21 19656.22 22682.34 10568.82 8587.17 18888.91 37
EIA-MVS68.59 19667.16 21772.90 14475.18 21255.64 18769.39 21881.29 11352.44 22364.53 31670.69 34860.33 18182.30 10654.27 22576.31 31480.75 211
v192192072.96 13672.98 13972.89 14574.67 22147.58 25671.92 18280.69 12751.70 23281.69 9983.89 20156.58 22282.25 10768.34 8887.36 17788.82 39
v119273.40 12173.42 12573.32 13174.65 22448.67 23972.21 17281.73 10552.76 22081.85 9384.56 19057.12 21682.24 10868.58 8687.33 18089.06 32
v14419272.99 13473.06 13772.77 14874.58 22547.48 25771.90 18380.44 13551.57 23381.46 10184.11 19858.04 20882.12 10967.98 9487.47 17588.70 42
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9160.39 13274.15 20883.30 21369.65 8982.07 11069.27 8486.75 19487.36 54
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26380.80 24466.74 11781.96 11161.74 15089.40 14685.69 80
v114473.29 12473.39 12673.01 13774.12 23348.11 24572.01 17781.08 12153.83 21281.77 9584.68 18758.07 20781.91 11268.10 9086.86 19088.99 35
UniMVSNet (Re)75.00 10275.48 9973.56 12783.14 9947.92 24970.41 20781.04 12263.67 10479.54 12186.37 16162.83 15081.82 11357.10 19395.25 1590.94 16
v875.07 10075.64 9773.35 12973.42 24147.46 25875.20 13881.45 11060.05 13485.64 4889.26 9058.08 20681.80 11469.71 8387.97 16990.79 18
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11573.75 5893.78 60
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11554.57 19467.09 30380.63 24759.44 18981.74 11646.91 28584.17 23078.63 243
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11781.53 492.15 8488.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FE-MVS68.29 20166.96 22172.26 16174.16 23254.24 19577.55 10873.42 22157.65 15872.66 22984.91 18632.02 36081.49 11848.43 27181.85 25381.04 200
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9470.72 4987.54 2592.44 1568.00 10381.34 11972.84 6491.72 8691.69 11
NR-MVSNet73.62 11674.05 11572.33 16083.50 9443.71 28965.65 27577.32 18964.32 9775.59 18487.08 13462.45 15581.34 11954.90 21495.63 991.93 9
SixPastTwentyTwo75.77 8776.34 8974.06 11881.69 12454.84 19076.47 12075.49 20664.10 9987.73 2192.24 1850.45 25581.30 12167.41 10091.46 9386.04 71
EPNet69.10 18767.32 21474.46 10968.33 30961.27 14077.56 10763.57 30560.95 12756.62 37082.75 21951.53 24981.24 12254.36 22490.20 12480.88 207
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051769.46 18167.79 20974.46 10975.34 20952.72 20575.05 14063.27 30854.69 19078.87 13084.37 19426.63 38781.15 12363.95 13287.93 17089.51 24
v2v48272.55 14572.58 14572.43 15772.92 25546.72 26571.41 19079.13 15755.27 18181.17 10585.25 18355.41 22881.13 12467.25 10885.46 20789.43 25
TEST985.47 6769.32 7476.42 12378.69 16753.73 21376.97 15386.74 14666.84 11281.10 125
train_agg76.38 8476.55 8875.86 9785.47 6769.32 7476.42 12378.69 16754.00 20876.97 15386.74 14666.60 11881.10 12572.50 6991.56 9177.15 265
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15383.04 10445.79 27369.26 22178.81 16266.66 7181.74 9786.88 14163.26 14681.07 12756.21 20194.98 2491.05 14
DU-MVS74.91 10475.57 9872.93 14383.50 9445.79 27369.47 21780.14 14165.22 8681.74 9787.08 13461.82 16281.07 12756.21 20194.98 2491.93 9
MCST-MVS73.42 12073.34 13073.63 12581.28 12959.17 16274.80 14683.13 8345.50 29172.84 22783.78 20365.15 13580.99 12964.54 12489.09 15480.73 212
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20571.12 25254.28 19977.89 14183.41 20649.04 26480.98 13063.62 13790.77 11778.58 245
Effi-MVS+72.10 15072.28 15171.58 16774.21 23150.33 22074.72 14982.73 8962.62 11670.77 25576.83 30069.96 8680.97 13160.20 16478.43 29783.45 145
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13177.70 3292.32 8280.62 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
K. test v373.67 11573.61 12473.87 12179.78 14155.62 18874.69 15062.04 31566.16 7584.76 6393.23 649.47 26080.97 13165.66 11886.67 19585.02 92
API-MVS70.97 16271.51 16369.37 19875.20 21155.94 18380.99 6776.84 19462.48 11871.24 25177.51 29561.51 16680.96 13452.04 23785.76 20671.22 324
test_885.09 7367.89 8376.26 12878.66 16954.00 20876.89 15786.72 14866.60 11880.89 135
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 16884.61 8142.57 30370.98 19878.29 17668.67 6183.04 7989.26 9072.99 6180.75 13655.58 21095.47 1191.35 12
MVSFormer69.93 17469.03 18772.63 15474.93 21459.19 16083.98 4075.72 20452.27 22463.53 33076.74 30143.19 29680.56 13772.28 7078.67 29478.14 252
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20452.27 22487.37 3092.25 1768.04 10280.56 13772.28 7091.15 10090.32 21
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 13972.51 6893.37 6683.48 142
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14074.27 5495.73 880.98 204
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas64.59 24362.77 26570.05 19075.27 21050.02 22461.79 30971.61 23642.46 31963.68 32768.89 36849.33 26280.35 14147.82 27984.05 23279.78 229
eth_miper_zixun_eth69.42 18268.73 19471.50 17067.99 31346.42 26867.58 24678.81 16250.72 24678.13 13980.34 25250.15 25780.34 14260.18 16584.65 22387.74 49
agg_prior84.44 8566.02 10178.62 17076.95 15580.34 142
thisisatest053067.05 21965.16 23972.73 15173.10 25050.55 21771.26 19563.91 30350.22 25274.46 20480.75 24526.81 38680.25 14459.43 17686.50 19787.37 53
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14375.34 1979.80 11994.91 269.79 8880.25 14472.63 6694.46 3988.78 41
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15053.48 21586.29 3992.43 1662.39 15680.25 14467.90 9690.61 11987.77 48
BH-untuned69.39 18369.46 18069.18 20477.96 17156.88 17768.47 23877.53 18656.77 16577.79 14479.63 26460.30 18280.20 14746.04 29380.65 27070.47 331
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21768.08 8177.89 10584.04 7255.15 18376.19 18083.39 20766.91 11180.11 14860.04 17090.14 12785.13 88
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DELS-MVS68.83 19068.31 19770.38 18070.55 28048.31 24163.78 29682.13 9854.00 20868.96 27875.17 31358.95 19580.06 14958.55 18282.74 24582.76 166
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13366.87 6883.64 7686.18 16670.25 8379.90 15061.12 15788.95 15687.56 52
ambc70.10 18977.74 17450.21 22274.28 15677.93 18379.26 12488.29 11954.11 23679.77 15164.43 12591.10 10480.30 222
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15572.87 25649.47 23272.94 16684.71 5459.49 13880.90 11088.81 10670.07 8479.71 15267.40 10188.39 16188.40 45
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS73.01 13273.12 13572.66 15273.79 23749.90 22771.63 18778.44 17258.22 14980.51 11386.63 15358.15 20279.62 15362.51 14588.20 16388.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS49.67 1859.69 29156.96 30867.90 22768.19 31150.30 22161.42 31165.18 29247.57 27755.83 37467.15 38123.77 39979.60 15443.56 30879.97 27873.79 297
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+68.81 19168.30 19870.35 18274.66 22348.61 24066.06 26878.32 17450.62 24771.48 24975.54 30868.75 9479.59 15550.55 25178.73 29382.86 164
Vis-MVSNetpermissive74.85 10874.56 10675.72 9881.63 12564.64 11376.35 12579.06 15862.85 11573.33 22288.41 11562.54 15479.59 15563.94 13482.92 24382.94 161
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)71.27 15771.06 16771.92 16573.96 23452.32 20876.45 12276.12 19959.07 14374.04 21386.18 16652.18 24479.43 15759.75 17481.76 25584.03 126
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22371.45 24154.28 19977.89 14178.26 28549.04 26479.23 15863.62 13789.13 15280.92 205
AUN-MVS70.22 16967.88 20777.22 8282.96 10771.61 5269.08 22471.39 24249.17 26371.70 24178.07 29037.62 33379.21 15961.81 14889.15 15080.82 208
QAPM69.18 18669.26 18368.94 21271.61 26552.58 20780.37 7678.79 16549.63 25873.51 21885.14 18453.66 23779.12 16055.11 21275.54 32075.11 284
tt080576.12 8678.43 7269.20 20381.32 12841.37 30976.72 11977.64 18563.78 10382.06 9187.88 12679.78 1179.05 16164.33 12792.40 7987.17 59
BH-w/o64.81 24064.29 24866.36 24576.08 20254.71 19165.61 27675.23 20950.10 25471.05 25471.86 34154.33 23479.02 16238.20 34276.14 31565.36 366
FC-MVSNet-test73.32 12374.78 10468.93 21379.21 15136.57 35071.82 18579.54 15257.63 15982.57 8890.38 6759.38 19178.99 16357.91 18794.56 3791.23 13
EG-PatchMatch MVS70.70 16470.88 16970.16 18782.64 11258.80 16871.48 18873.64 21954.98 18476.55 17081.77 23261.10 17478.94 16454.87 21580.84 26772.74 308
IterMVS-SCA-FT67.68 20966.07 22972.49 15673.34 24358.20 17363.80 29565.55 28948.10 27076.91 15682.64 22245.20 28378.84 16561.20 15577.89 30580.44 220
V4271.06 15970.83 17071.72 16667.25 32147.14 26365.94 26980.35 13851.35 23883.40 7883.23 21659.25 19278.80 16665.91 11680.81 26889.23 28
CSCG74.12 11174.39 10873.33 13079.35 14761.66 13577.45 11081.98 10162.47 11979.06 12880.19 25561.83 16178.79 16759.83 17287.35 17879.54 234
lessismore_v072.75 14979.60 14456.83 17957.37 33083.80 7489.01 10147.45 27578.74 16864.39 12686.49 19882.69 171
RRT-MVS70.33 16870.73 17169.14 20671.93 26345.24 27875.10 13975.08 21160.85 12978.62 13187.36 13049.54 25978.64 16960.16 16677.90 30483.55 138
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10174.77 21959.02 16672.24 17171.56 23863.92 10078.59 13271.59 34266.22 12378.60 17067.58 9780.32 27389.00 34
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19751.98 22987.40 2791.86 2676.09 3678.53 17168.58 8690.20 12486.69 64
EI-MVSNet-UG-set72.63 14271.68 15875.47 10274.67 22158.64 17172.02 17671.50 23963.53 10678.58 13471.39 34665.98 12478.53 17167.30 10780.18 27689.23 28
3Dnovator65.95 1171.50 15671.22 16672.34 15973.16 24663.09 12478.37 9878.32 17457.67 15672.22 23784.61 18954.77 22978.47 17360.82 16081.07 26475.45 279
TR-MVS64.59 24363.54 25667.73 23175.75 20750.83 21663.39 29970.29 26049.33 26171.55 24774.55 31850.94 25278.46 17440.43 32775.69 31873.89 296
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 19951.33 23987.19 3191.51 3373.79 5778.44 17568.27 8990.13 12886.49 66
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17655.60 20790.90 11185.81 75
PVSNet_Blended_VisFu70.04 17168.88 18973.53 12882.71 11063.62 12074.81 14481.95 10248.53 26867.16 30279.18 27451.42 25078.38 17854.39 22379.72 28578.60 244
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 17974.80 4790.76 11882.40 177
thisisatest051560.48 28557.86 30268.34 22267.25 32146.42 26860.58 31962.14 31140.82 33363.58 32969.12 36326.28 38978.34 18048.83 26582.13 24980.26 223
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18174.73 4985.79 20482.35 178
FIs72.56 14373.80 11968.84 21678.74 16237.74 34471.02 19779.83 14556.12 17280.88 11189.45 8758.18 20078.28 18256.63 19593.36 6790.51 20
BH-RMVSNet68.69 19568.20 20270.14 18876.40 19553.90 19964.62 28773.48 22058.01 15173.91 21581.78 23159.09 19378.22 18348.59 26877.96 30378.31 248
PVSNet_BlendedMVS65.38 23364.30 24768.61 21969.81 29249.36 23365.60 27778.96 15945.50 29159.98 34978.61 28151.82 24678.20 18444.30 30284.11 23178.27 249
PVSNet_Blended62.90 26361.64 27066.69 24369.81 29249.36 23361.23 31378.96 15942.04 32059.98 34968.86 36951.82 24678.20 18444.30 30277.77 30672.52 309
ET-MVSNet_ETH3D63.32 25760.69 28171.20 17370.15 28955.66 18665.02 28364.32 30043.28 31768.99 27772.05 34025.46 39378.19 18654.16 22782.80 24479.74 230
c3_l69.82 17669.89 17869.61 19666.24 33243.48 29268.12 24179.61 14951.43 23577.72 14580.18 25654.61 23278.15 18763.62 13787.50 17487.20 57
baseline73.10 12773.96 11770.51 17971.46 26746.39 27072.08 17484.40 6255.95 17576.62 16686.46 15967.20 10778.03 18864.22 12887.27 18487.11 60
GeoE73.14 12673.77 12171.26 17278.09 16852.64 20674.32 15479.56 15156.32 17176.35 17883.36 21170.76 7977.96 18963.32 14181.84 25483.18 154
miper_ehance_all_eth68.36 19868.16 20368.98 21065.14 34443.34 29467.07 25678.92 16149.11 26476.21 17977.72 29253.48 23877.92 19061.16 15684.59 22585.68 81
casdiffmvspermissive73.06 13073.84 11870.72 17571.32 26846.71 26670.93 19984.26 6555.62 17877.46 14987.10 13367.09 10977.81 19163.95 13286.83 19287.64 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MAR-MVS67.72 20866.16 22772.40 15874.45 22664.99 11174.87 14277.50 18748.67 26765.78 30968.58 37257.01 21977.79 19246.68 28881.92 25174.42 292
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 19950.51 24889.19 1190.88 4571.45 7277.78 19373.38 6090.60 12090.90 17
miper_enhance_ethall65.86 23065.05 24668.28 22561.62 36342.62 30264.74 28577.97 18142.52 31873.42 22172.79 33549.66 25877.68 19458.12 18584.59 22584.54 110
MVS60.62 28459.97 28562.58 28068.13 31247.28 26168.59 23473.96 21832.19 38459.94 35168.86 36950.48 25477.64 19541.85 31875.74 31762.83 378
MSLP-MVS++74.48 10975.78 9570.59 17784.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 22963.12 14777.64 19562.95 14488.14 16471.73 318
cl2267.14 21666.51 22469.03 20963.20 35443.46 29366.88 26176.25 19849.22 26274.48 20377.88 29145.49 28277.40 19760.64 16184.59 22586.24 67
MVS_111021_HR72.98 13572.97 14072.99 13880.82 13365.47 10468.81 22872.77 22757.67 15675.76 18282.38 22571.01 7777.17 19861.38 15386.15 19976.32 273
UGNet70.20 17069.05 18673.65 12376.24 19763.64 11975.87 13472.53 23061.48 12360.93 34686.14 16952.37 24377.12 19950.67 24985.21 21380.17 225
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15674.08 2487.16 3291.97 2184.80 276.97 20064.98 12293.61 6372.28 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HyFIR lowres test63.01 26160.47 28270.61 17683.04 10454.10 19659.93 32472.24 23433.67 38069.00 27675.63 30738.69 32576.93 20136.60 35575.45 32280.81 210
OpenMVScopyleft62.51 1568.76 19268.75 19268.78 21770.56 27853.91 19878.29 9977.35 18848.85 26670.22 26183.52 20552.65 24276.93 20155.31 21181.99 25075.49 278
UniMVSNet_ETH3D76.74 8279.02 6569.92 19389.27 2043.81 28874.47 15371.70 23572.33 4085.50 5393.65 477.98 2376.88 20354.60 21991.64 8889.08 31
无先验74.82 14370.94 25447.75 27676.85 20454.47 22072.09 315
Anonymous2023121175.54 9277.19 8370.59 17777.67 17645.70 27674.73 14880.19 13968.80 5882.95 8292.91 966.26 12276.76 20558.41 18492.77 7489.30 26
v14869.38 18469.39 18169.36 19969.14 30044.56 28368.83 22772.70 22854.79 18878.59 13284.12 19754.69 23076.74 20659.40 17782.20 24886.79 62
WR-MVS71.20 15872.48 14767.36 23484.98 7435.70 35864.43 29068.66 27165.05 9081.49 10086.43 16057.57 21276.48 20750.36 25293.32 6889.90 22
MVP-Stereo61.56 27659.22 28968.58 22079.28 14860.44 15369.20 22271.57 23743.58 31156.42 37178.37 28439.57 32076.46 20834.86 36760.16 39768.86 347
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet69.61 17969.01 18871.41 17173.94 23549.90 22771.31 19371.32 24458.22 14975.40 18970.44 34958.16 20175.85 20962.51 14579.81 28288.48 43
MVSTER63.29 25861.60 27268.36 22159.77 37646.21 27160.62 31871.32 24441.83 32275.40 18979.12 27530.25 37575.85 20956.30 20079.81 28283.03 159
VDDNet71.60 15573.13 13467.02 23986.29 4841.11 31169.97 21166.50 28168.72 6074.74 19691.70 2959.90 18575.81 21148.58 26991.72 8684.15 125
Fast-Effi-MVS+-dtu70.00 17268.74 19373.77 12273.47 24064.53 11471.36 19178.14 17955.81 17768.84 28574.71 31765.36 13275.75 21252.00 23879.00 29081.03 201
nrg03074.87 10775.99 9471.52 16974.90 21649.88 23174.10 15882.58 9354.55 19583.50 7789.21 9271.51 7075.74 21361.24 15492.34 8188.94 36
VDD-MVS70.81 16371.44 16468.91 21479.07 15746.51 26767.82 24470.83 25661.23 12474.07 21188.69 10859.86 18675.62 21451.11 24590.28 12384.61 106
cl____68.26 20368.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.42 22448.74 26875.38 21560.92 15989.81 13485.80 79
DIV-MVS_self_test68.27 20268.26 19968.29 22364.98 34543.67 29065.89 27074.67 21250.04 25576.86 15982.43 22348.74 26875.38 21560.94 15889.81 13485.81 75
sasdasda72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
canonicalmvs72.29 14873.38 12769.04 20774.23 22847.37 25973.93 16083.18 8054.36 19776.61 16781.64 23572.03 6575.34 21757.12 19187.28 18284.40 116
MGCFI-Net71.70 15473.10 13667.49 23273.23 24543.08 29772.06 17582.43 9554.58 19375.97 18182.00 22772.42 6375.22 21957.84 18887.34 17984.18 123
LFMVS67.06 21867.89 20664.56 25778.02 16938.25 33970.81 20259.60 32265.18 8771.06 25386.56 15643.85 29275.22 21946.35 29089.63 13780.21 224
GBi-Net68.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
test168.30 19968.79 19066.81 24073.14 24740.68 31871.96 17973.03 22254.81 18574.72 19790.36 7048.63 27075.20 22147.12 28285.37 20884.54 110
FMVSNet171.06 15972.48 14766.81 24077.65 17740.68 31871.96 17973.03 22261.14 12579.45 12390.36 7060.44 18075.20 22150.20 25388.05 16684.54 110
GA-MVS62.91 26261.66 26966.66 24467.09 32344.49 28461.18 31469.36 26651.33 23969.33 27474.47 31936.83 33674.94 22450.60 25074.72 32780.57 218
test_yl65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
DCV-MVSNet65.11 23565.09 24365.18 25370.59 27640.86 31463.22 30372.79 22557.91 15268.88 28379.07 27742.85 29974.89 22545.50 29884.97 21679.81 227
ECVR-MVScopyleft64.82 23965.22 23763.60 26678.80 16031.14 38366.97 25856.47 34154.23 20169.94 26788.68 10937.23 33474.81 22745.28 30189.41 14484.86 96
alignmvs70.54 16671.00 16869.15 20573.50 23948.04 24869.85 21479.62 14753.94 21176.54 17182.00 22759.00 19474.68 22857.32 19087.21 18684.72 101
FMVSNet267.48 21168.21 20165.29 25273.14 24738.94 33268.81 22871.21 25154.81 18576.73 16386.48 15848.63 27074.60 22947.98 27786.11 20282.35 178
MVS_Test69.84 17570.71 17267.24 23567.49 31943.25 29669.87 21381.22 11752.69 22171.57 24686.68 14962.09 16074.51 23066.05 11478.74 29283.96 127
FMVSNet365.00 23865.16 23964.52 25869.47 29737.56 34766.63 26370.38 25951.55 23474.72 19783.27 21437.89 33174.44 23147.12 28285.37 20881.57 194
test250661.23 27860.85 27962.38 28278.80 16027.88 39767.33 25337.42 41354.23 20167.55 29888.68 10917.87 41674.39 23246.33 29189.41 14484.86 96
tpm256.12 31054.64 32760.55 30266.24 33236.01 35468.14 24056.77 33833.60 38158.25 36075.52 31030.25 37574.33 23333.27 37469.76 36971.32 322
test111164.62 24265.19 23862.93 27779.01 15829.91 38965.45 27854.41 35154.09 20671.47 25088.48 11437.02 33574.29 23446.83 28789.94 13284.58 109
Anonymous2024052972.56 14373.79 12068.86 21576.89 19045.21 27968.80 23077.25 19167.16 6676.89 15790.44 5965.95 12574.19 23550.75 24890.00 12987.18 58
EGC-MVSNET64.77 24161.17 27575.60 10086.90 4374.47 3484.04 3968.62 2720.60 4201.13 42291.61 3265.32 13374.15 23664.01 12988.28 16278.17 251
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10669.79 29566.25 9775.90 13379.90 14446.03 28776.48 17485.02 18567.96 10473.97 23774.47 5287.22 18583.90 129
PS-MVSNAJ64.27 25063.73 25465.90 25077.82 17351.42 21163.33 30072.33 23245.09 29961.60 33868.04 37462.39 15673.95 23849.07 26373.87 33872.34 311
xiu_mvs_v2_base64.43 24763.96 25165.85 25177.72 17551.32 21263.63 29772.31 23345.06 30061.70 33769.66 36062.56 15273.93 23949.06 26473.91 33772.31 312
test_fmvsmconf0.1_n73.26 12572.82 14274.56 10869.10 30166.18 9974.65 15279.34 15445.58 29075.54 18683.91 20067.19 10873.88 24073.26 6186.86 19083.63 137
test_fmvsmconf_n72.91 13772.40 14974.46 10968.62 30566.12 10074.21 15778.80 16445.64 28974.62 20183.25 21566.80 11673.86 24172.97 6386.66 19683.39 146
ACMH63.62 1477.50 7680.11 5869.68 19579.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24267.58 9794.44 4279.44 235
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG67.47 21367.48 21367.46 23370.70 27454.69 19266.90 26078.17 17760.88 12870.41 25874.76 31561.22 17273.18 24347.38 28176.87 31074.49 290
RPSCF75.76 8874.37 10979.93 4474.81 21877.53 1877.53 10979.30 15559.44 13978.88 12989.80 8271.26 7473.09 24457.45 18980.89 26589.17 30
LCM-MVSNet-Re69.10 18771.57 16261.70 28770.37 28334.30 36861.45 31079.62 14756.81 16489.59 988.16 12368.44 9772.94 24542.30 31387.33 18077.85 258
gm-plane-assit62.51 35633.91 37037.25 36062.71 39272.74 24638.70 336
D2MVS62.58 26861.05 27767.20 23663.85 35047.92 24956.29 34869.58 26439.32 34370.07 26578.19 28734.93 34372.68 24753.44 23383.74 23581.00 203
OpenMVS_ROBcopyleft54.93 1763.23 25963.28 25963.07 27469.81 29245.34 27768.52 23667.14 27743.74 30970.61 25779.22 27247.90 27472.66 24848.75 26673.84 33971.21 325
xiu_mvs_v1_base_debu67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
xiu_mvs_v1_base_debi67.87 20567.07 21870.26 18379.13 15461.90 13267.34 25071.25 24747.98 27167.70 29574.19 32561.31 16772.62 24956.51 19678.26 29976.27 274
TinyColmap67.98 20469.28 18264.08 26167.98 31446.82 26470.04 20975.26 20853.05 21777.36 15086.79 14359.39 19072.59 25245.64 29688.01 16872.83 306
baseline255.57 31652.74 33764.05 26265.26 34044.11 28662.38 30654.43 35039.03 34751.21 39267.35 37933.66 34772.45 25337.14 35064.22 38775.60 277
thres600view761.82 27361.38 27463.12 27371.81 26434.93 36364.64 28656.99 33554.78 18970.33 26079.74 26232.07 35872.42 25438.61 33883.46 24082.02 185
APD_test175.04 10175.38 10174.02 11969.89 29170.15 6676.46 12179.71 14665.50 7982.99 8188.60 11266.94 11072.35 25559.77 17388.54 15979.56 231
TAMVS65.31 23463.75 25369.97 19282.23 11759.76 15866.78 26263.37 30745.20 29769.79 26979.37 27047.42 27672.17 25634.48 36885.15 21577.99 256
thres100view90061.17 27961.09 27661.39 29272.14 26135.01 36265.42 27956.99 33555.23 18270.71 25679.90 26032.07 35872.09 25735.61 36381.73 25677.08 267
tfpn200view960.35 28659.97 28561.51 28970.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25677.08 267
thres40060.77 28359.97 28563.15 27270.78 27235.35 36063.27 30157.47 32853.00 21868.31 29077.09 29832.45 35572.09 25735.61 36381.73 25682.02 185
CostFormer57.35 30656.14 31460.97 29763.76 35238.43 33667.50 24760.22 32037.14 36159.12 35776.34 30332.78 35271.99 26039.12 33469.27 37072.47 310
USDC62.80 26463.10 26261.89 28565.19 34143.30 29567.42 24974.20 21735.80 36872.25 23684.48 19345.67 28071.95 26137.95 34484.97 21670.42 333
CDS-MVSNet64.33 24962.66 26669.35 20080.44 13758.28 17265.26 28065.66 28744.36 30367.30 30175.54 30843.27 29571.77 26237.68 34584.44 22878.01 255
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR72.10 15071.82 15672.95 14079.53 14573.90 4070.45 20666.64 28056.87 16376.81 16181.76 23368.78 9371.76 26361.81 14883.74 23573.18 301
mvs_anonymous65.08 23765.49 23463.83 26463.79 35137.60 34666.52 26569.82 26343.44 31373.46 22086.08 17258.79 19771.75 26451.90 23975.63 31982.15 183
testf175.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
APD_test275.66 9076.57 8672.95 14067.07 32567.62 8576.10 12980.68 12864.95 9186.58 3690.94 4371.20 7571.68 26560.46 16291.13 10279.56 231
thres20057.55 30557.02 30759.17 31067.89 31634.93 36358.91 33257.25 33250.24 25164.01 32271.46 34432.49 35471.39 26731.31 38179.57 28671.19 326
131459.83 29058.86 29362.74 27965.71 33744.78 28268.59 23472.63 22933.54 38261.05 34467.29 38043.62 29471.26 26849.49 26067.84 37972.19 314
diffmvspermissive67.42 21467.50 21267.20 23662.26 35945.21 27964.87 28477.04 19348.21 26971.74 24079.70 26358.40 19971.17 26964.99 12180.27 27485.22 85
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 26663.21 26161.34 29472.19 26031.56 38067.31 25453.87 35353.60 21469.88 26883.37 20940.52 31370.98 27041.40 32186.78 19381.48 195
jason64.47 24662.84 26469.34 20176.91 18759.20 15967.15 25565.67 28635.29 36965.16 31376.74 30144.67 28770.68 27154.74 21779.28 28878.14 252
jason: jason.
lupinMVS63.36 25661.49 27368.97 21174.93 21459.19 16065.80 27364.52 29934.68 37563.53 33074.25 32343.19 29670.62 27253.88 22978.67 29477.10 266
新几何169.99 19188.37 3571.34 5562.08 31343.85 30574.99 19386.11 17152.85 24170.57 27350.99 24783.23 24268.05 351
Anonymous20240521166.02 22966.89 22263.43 27074.22 23038.14 34059.00 32966.13 28363.33 11169.76 27085.95 17651.88 24570.50 27444.23 30487.52 17381.64 193
LF4IMVS67.50 21067.31 21568.08 22658.86 38161.93 13171.43 18975.90 20344.67 30272.42 23380.20 25457.16 21470.44 27558.99 17986.12 20171.88 316
CANet_DTU64.04 25263.83 25264.66 25668.39 30642.97 29973.45 16274.50 21552.05 22854.78 37975.44 31143.99 29170.42 27653.49 23278.41 29880.59 217
TransMVSNet (Re)69.62 17871.63 15963.57 26776.51 19435.93 35665.75 27471.29 24661.05 12675.02 19289.90 8165.88 12770.41 27749.79 25589.48 14284.38 118
MonoMVSNet62.75 26563.42 25760.73 30065.60 33840.77 31672.49 16970.56 25752.49 22275.07 19179.42 26839.52 32169.97 27846.59 28969.06 37171.44 320
VPA-MVSNet68.71 19470.37 17563.72 26576.13 19938.06 34264.10 29271.48 24056.60 17074.10 21088.31 11864.78 13969.72 27947.69 28090.15 12683.37 148
pmmvs671.82 15273.66 12266.31 24675.94 20442.01 30566.99 25772.53 23063.45 10876.43 17692.78 1172.95 6269.69 28051.41 24390.46 12187.22 55
KD-MVS_self_test66.38 22567.51 21162.97 27661.76 36134.39 36758.11 33975.30 20750.84 24577.12 15285.42 18056.84 22069.44 28151.07 24691.16 9985.08 90
patchmatchnet-post68.99 36431.32 36569.38 282
SCA58.57 30058.04 30160.17 30470.17 28741.07 31265.19 28153.38 35943.34 31661.00 34573.48 32945.20 28369.38 28240.34 32870.31 36470.05 334
Baseline_NR-MVSNet70.62 16573.19 13262.92 27876.97 18534.44 36668.84 22670.88 25560.25 13379.50 12290.53 5661.82 16269.11 28454.67 21895.27 1485.22 85
tfpnnormal66.48 22467.93 20562.16 28473.40 24236.65 34963.45 29864.99 29355.97 17472.82 22887.80 12757.06 21869.10 28548.31 27387.54 17280.72 213
fmvsm_l_conf0.5_n67.48 21166.88 22369.28 20267.41 32062.04 13070.69 20369.85 26239.46 34269.59 27181.09 24058.15 20268.73 28667.51 9978.16 30277.07 269
test_fmvsmvis_n_192072.36 14672.49 14671.96 16471.29 26964.06 11772.79 16781.82 10340.23 33981.25 10481.04 24170.62 8068.69 28769.74 8283.60 23983.14 155
pmmvs-eth3d64.41 24863.27 26067.82 23075.81 20660.18 15569.49 21662.05 31438.81 34974.13 20982.23 22643.76 29368.65 28842.53 31280.63 27274.63 287
pmmvs460.78 28259.04 29166.00 24973.06 25257.67 17564.53 28960.22 32036.91 36265.96 30677.27 29639.66 31968.54 28938.87 33574.89 32671.80 317
pm-mvs168.40 19769.85 17964.04 26373.10 25039.94 32564.61 28870.50 25855.52 17973.97 21489.33 8863.91 14468.38 29049.68 25788.02 16783.81 131
fmvsm_l_conf0.5_n_a66.66 22165.97 23168.72 21867.09 32361.38 13870.03 21069.15 26838.59 35068.41 28880.36 25156.56 22368.32 29166.10 11377.45 30776.46 271
GG-mvs-BLEND52.24 34660.64 36829.21 39369.73 21542.41 40145.47 40652.33 40920.43 40868.16 29225.52 40565.42 38459.36 391
test_fmvsm_n_192069.63 17768.45 19673.16 13370.56 27865.86 10270.26 20878.35 17337.69 35674.29 20678.89 27961.10 17468.10 29365.87 11779.07 28985.53 82
tpmvs55.84 31155.45 32057.01 32360.33 36933.20 37365.89 27059.29 32447.52 27856.04 37273.60 32831.05 37068.06 29440.64 32664.64 38569.77 338
CMPMVSbinary48.73 2061.54 27760.89 27863.52 26861.08 36551.55 21068.07 24268.00 27533.88 37765.87 30781.25 23837.91 33067.71 29549.32 26282.60 24671.31 323
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet59.21 29458.44 29761.51 28973.94 23547.76 25371.31 19364.56 29826.91 40260.34 34870.44 34936.24 33967.65 29653.57 23168.66 37469.12 345
VPNet65.58 23267.56 21059.65 30779.72 14230.17 38860.27 32162.14 31154.19 20471.24 25186.63 15358.80 19667.62 29744.17 30590.87 11481.18 197
fmvsm_s_conf0.1_n_a67.37 21566.36 22570.37 18170.86 27161.17 14174.00 15957.18 33440.77 33468.83 28680.88 24363.11 14867.61 29866.94 10974.72 32782.33 181
fmvsm_s_conf0.5_n_a67.00 22065.95 23270.17 18669.72 29661.16 14273.34 16356.83 33740.96 33168.36 28980.08 25862.84 14967.57 29966.90 11174.50 33181.78 190
EU-MVSNet60.82 28160.80 28060.86 29968.37 30741.16 31072.27 17068.27 27426.96 40069.08 27575.71 30632.09 35767.44 30055.59 20978.90 29173.97 294
testdata267.30 30148.34 272
dcpmvs_271.02 16172.65 14466.16 24776.06 20350.49 21871.97 17879.36 15350.34 24982.81 8583.63 20464.38 14167.27 30261.54 15283.71 23780.71 214
testing358.28 30158.38 29858.00 31977.45 18026.12 40660.78 31743.00 39956.02 17370.18 26275.76 30513.27 42467.24 30348.02 27680.89 26580.65 215
HY-MVS49.31 1957.96 30357.59 30459.10 31266.85 32836.17 35365.13 28265.39 29139.24 34654.69 38178.14 28844.28 29067.18 30433.75 37370.79 36073.95 295
fmvsm_s_conf0.1_n66.60 22265.54 23369.77 19468.99 30259.15 16372.12 17356.74 33940.72 33668.25 29280.14 25761.18 17366.92 30567.34 10674.40 33283.23 153
fmvsm_s_conf0.5_n66.34 22865.27 23669.57 19768.20 31059.14 16571.66 18656.48 34040.92 33267.78 29479.46 26661.23 17066.90 30667.39 10274.32 33582.66 172
VNet64.01 25365.15 24160.57 30173.28 24435.61 35957.60 34167.08 27854.61 19266.76 30483.37 20956.28 22566.87 30742.19 31585.20 21479.23 238
gg-mvs-nofinetune55.75 31256.75 31052.72 34562.87 35528.04 39668.92 22541.36 40871.09 4650.80 39492.63 1320.74 40766.86 30829.97 38772.41 34763.25 377
ab-mvs64.11 25165.13 24261.05 29671.99 26238.03 34367.59 24568.79 27049.08 26565.32 31286.26 16458.02 20966.85 30939.33 33179.79 28478.27 249
IterMVS63.12 26062.48 26765.02 25566.34 33152.86 20463.81 29462.25 31046.57 28371.51 24880.40 25044.60 28866.82 31051.38 24475.47 32175.38 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA73.44 11973.03 13874.66 10778.27 16575.29 3075.99 13278.49 17165.39 8275.67 18383.22 21861.23 17066.77 31153.70 23085.33 21181.92 188
MS-PatchMatch55.59 31554.89 32557.68 32069.18 29849.05 23661.00 31562.93 30935.98 36658.36 35968.93 36736.71 33766.59 31237.62 34763.30 38957.39 395
CHOSEN 1792x268858.09 30256.30 31363.45 26979.95 14050.93 21554.07 36565.59 28828.56 39661.53 33974.33 32141.09 30966.52 31333.91 37167.69 38072.92 304
PM-MVS64.49 24563.61 25567.14 23876.68 19275.15 3168.49 23742.85 40051.17 24277.85 14380.51 24845.76 27966.31 31452.83 23676.35 31359.96 389
testing9155.74 31355.29 32357.08 32270.63 27530.85 38554.94 36056.31 34450.34 24957.08 36470.10 35624.50 39765.86 31536.98 35376.75 31174.53 289
reproduce_monomvs58.94 29658.14 30061.35 29359.70 37740.98 31360.24 32263.51 30645.85 28868.95 27975.31 31218.27 41465.82 31651.47 24279.97 27877.26 264
testing9955.16 31954.56 32856.98 32470.13 29030.58 38754.55 36354.11 35249.53 26056.76 36870.14 35522.76 40465.79 31736.99 35276.04 31674.57 288
testing1153.13 33352.26 34355.75 33170.44 28231.73 37954.75 36152.40 36444.81 30152.36 38968.40 37321.83 40565.74 31832.64 37772.73 34569.78 337
testing22253.37 33152.50 34155.98 33070.51 28129.68 39056.20 35051.85 36646.19 28556.76 36868.94 36619.18 41265.39 31925.87 40376.98 30972.87 305
Patchmatch-RL test59.95 28959.12 29062.44 28172.46 25854.61 19359.63 32547.51 38441.05 33074.58 20274.30 32231.06 36965.31 32051.61 24079.85 28167.39 353
tpm cat154.02 32752.63 33958.19 31764.85 34739.86 32666.26 26757.28 33132.16 38556.90 36670.39 35132.75 35365.30 32134.29 36958.79 40069.41 342
1112_ss59.48 29258.99 29260.96 29877.84 17242.39 30461.42 31168.45 27337.96 35459.93 35267.46 37745.11 28565.07 32240.89 32571.81 35375.41 280
ANet_high67.08 21769.94 17758.51 31657.55 38727.09 39958.43 33676.80 19563.56 10582.40 8991.93 2359.82 18764.98 32350.10 25488.86 15783.46 144
KD-MVS_2432*160052.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
miper_refine_blended52.05 34351.58 34653.44 34152.11 40831.20 38144.88 39564.83 29641.53 32464.37 31770.03 35715.61 42064.20 32436.25 35774.61 32964.93 371
JIA-IIPM54.03 32651.62 34561.25 29559.14 38055.21 18959.10 32847.72 38250.85 24450.31 39885.81 17820.10 40963.97 32636.16 36055.41 40864.55 374
ppachtmachnet_test60.26 28759.61 28862.20 28367.70 31744.33 28558.18 33860.96 31840.75 33565.80 30872.57 33641.23 30663.92 32746.87 28682.42 24778.33 247
baseline157.82 30458.36 29956.19 32869.17 29930.76 38662.94 30555.21 34646.04 28663.83 32578.47 28241.20 30763.68 32839.44 33068.99 37274.13 293
Test_1112_low_res58.78 29858.69 29459.04 31379.41 14638.13 34157.62 34066.98 27934.74 37359.62 35577.56 29442.92 29863.65 32938.66 33770.73 36175.35 282
CL-MVSNet_self_test62.44 26963.40 25859.55 30872.34 25932.38 37556.39 34764.84 29551.21 24167.46 29981.01 24250.75 25363.51 33038.47 34088.12 16582.75 167
CR-MVSNet58.96 29558.49 29660.36 30366.37 32948.24 24370.93 19956.40 34232.87 38361.35 34086.66 15033.19 34963.22 33148.50 27070.17 36569.62 340
Gipumacopyleft69.55 18072.83 14159.70 30663.63 35353.97 19780.08 8275.93 20264.24 9873.49 21988.93 10457.89 21062.46 33259.75 17491.55 9262.67 380
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EPNet_dtu58.93 29758.52 29560.16 30567.91 31547.70 25569.97 21158.02 32649.73 25747.28 40373.02 33438.14 32762.34 33336.57 35685.99 20370.43 332
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata64.13 26085.87 6263.34 12261.80 31647.83 27476.42 17786.60 15548.83 26762.31 33454.46 22181.26 26366.74 360
SDMVSNet66.36 22667.85 20861.88 28673.04 25346.14 27258.54 33471.36 24351.42 23668.93 28182.72 22065.62 12862.22 33554.41 22284.67 22177.28 261
FPMVS59.43 29360.07 28457.51 32177.62 17871.52 5362.33 30750.92 36957.40 16069.40 27380.00 25939.14 32361.92 33637.47 34866.36 38239.09 412
MDA-MVSNet-bldmvs62.34 27061.73 26864.16 25961.64 36249.90 22748.11 38557.24 33353.31 21680.95 10779.39 26949.00 26661.55 33745.92 29480.05 27781.03 201
旧先验271.17 19645.11 29878.54 13561.28 33859.19 178
UWE-MVS52.94 33552.70 33853.65 33973.56 23827.49 39857.30 34349.57 37638.56 35162.79 33471.42 34519.49 41160.41 33924.33 40977.33 30873.06 302
miper_lstm_enhance61.97 27161.63 27162.98 27560.04 37045.74 27547.53 38770.95 25344.04 30473.06 22578.84 28039.72 31860.33 34055.82 20684.64 22482.88 162
ETVMVS50.32 35349.87 36151.68 34970.30 28626.66 40152.33 37343.93 39543.54 31254.91 37867.95 37520.01 41060.17 34122.47 41173.40 34068.22 348
Patchmtry60.91 28063.01 26354.62 33666.10 33526.27 40567.47 24856.40 34254.05 20772.04 23986.66 15033.19 34960.17 34143.69 30687.45 17677.42 259
MDTV_nov1_ep1354.05 33265.54 33929.30 39259.00 32955.22 34535.96 36752.44 38775.98 30430.77 37259.62 34338.21 34173.33 342
test_post166.63 2632.08 42030.66 37359.33 34440.34 328
PatchMatch-RL58.68 29957.72 30361.57 28876.21 19873.59 4361.83 30849.00 37947.30 27961.08 34268.97 36550.16 25659.01 34536.06 36268.84 37352.10 399
Syy-MVS54.13 32455.45 32050.18 35768.77 30323.59 41055.02 35744.55 39343.80 30658.05 36164.07 38746.22 27858.83 34646.16 29272.36 34868.12 349
myMVS_eth3d50.36 35250.52 35749.88 35868.77 30322.69 41255.02 35744.55 39343.80 30658.05 36164.07 38714.16 42258.83 34633.90 37272.36 34868.12 349
mvs5depth66.35 22767.98 20461.47 29162.43 35751.05 21369.38 21969.24 26756.74 16673.62 21689.06 10046.96 27758.63 34855.87 20588.49 16074.73 286
PatchmatchNetpermissive54.60 32254.27 32955.59 33265.17 34339.08 32966.92 25951.80 36739.89 34058.39 35873.12 33331.69 36358.33 34943.01 31158.38 40369.38 343
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
our_test_356.46 30856.51 31156.30 32767.70 31739.66 32755.36 35652.34 36540.57 33863.85 32469.91 35940.04 31658.22 35043.49 30975.29 32571.03 329
sd_testset63.55 25465.38 23558.07 31873.04 25338.83 33457.41 34265.44 29051.42 23668.93 28182.72 22063.76 14558.11 35141.05 32384.67 22177.28 261
MIMVSNet166.57 22369.23 18458.59 31581.26 13037.73 34564.06 29357.62 32757.02 16278.40 13690.75 4962.65 15158.10 35241.77 31989.58 14079.95 226
SSC-MVS61.79 27466.08 22848.89 36776.91 18710.00 42453.56 36747.37 38568.20 6376.56 16989.21 9254.13 23557.59 35354.75 21674.07 33679.08 240
pmmvs552.49 34052.58 34052.21 34754.99 40032.38 37555.45 35553.84 35432.15 38655.49 37674.81 31438.08 32857.37 35434.02 37074.40 33266.88 357
mmtdpeth68.76 19270.55 17463.40 27167.06 32756.26 18168.73 23371.22 25055.47 18070.09 26488.64 11165.29 13456.89 35558.94 18089.50 14177.04 270
ttmdpeth56.40 30955.45 32059.25 30955.63 39740.69 31758.94 33149.72 37536.22 36465.39 31086.97 13823.16 40256.69 35642.30 31380.74 26980.36 221
WBMVS53.38 33054.14 33051.11 35370.16 28826.66 40150.52 37951.64 36839.32 34363.08 33377.16 29723.53 40055.56 35731.99 37879.88 28071.11 327
MVS-HIRNet45.53 36747.29 36740.24 39262.29 35826.82 40056.02 35237.41 41429.74 39543.69 41381.27 23733.96 34555.48 35824.46 40856.79 40438.43 413
WB-MVS60.04 28864.19 24947.59 37076.09 20010.22 42352.44 37246.74 38765.17 8874.07 21187.48 12953.48 23855.28 35949.36 26172.84 34477.28 261
FMVSNet555.08 32055.54 31953.71 33865.80 33633.50 37256.22 34952.50 36343.72 31061.06 34383.38 20825.46 39354.87 36030.11 38681.64 26172.75 307
test_post1.99 42130.91 37154.76 361
ADS-MVSNet248.76 35947.25 36853.29 34355.90 39540.54 32147.34 38854.99 34831.41 39150.48 39572.06 33831.23 36654.26 36225.93 40155.93 40565.07 369
UBG49.18 35849.35 36248.66 36870.36 28426.56 40350.53 37845.61 39037.43 35853.37 38565.97 38223.03 40354.20 36326.29 39871.54 35565.20 368
PVSNet43.83 2151.56 34651.17 34952.73 34468.34 30838.27 33848.22 38453.56 35736.41 36354.29 38264.94 38634.60 34454.20 36330.34 38469.87 36765.71 364
MVStest155.38 31754.97 32456.58 32643.72 41940.07 32459.13 32747.09 38634.83 37176.53 17284.65 18813.55 42353.30 36555.04 21380.23 27576.38 272
WB-MVSnew53.94 32954.76 32651.49 35171.53 26628.05 39558.22 33750.36 37237.94 35559.16 35670.17 35449.21 26351.94 36624.49 40771.80 35474.47 291
test_fmvs356.78 30755.99 31659.12 31153.96 40648.09 24658.76 33366.22 28227.54 39876.66 16468.69 37125.32 39551.31 36753.42 23473.38 34177.97 257
pmmvs346.71 36445.09 37451.55 35056.76 39148.25 24255.78 35439.53 41224.13 41050.35 39763.40 38915.90 41951.08 36829.29 39170.69 36255.33 398
MIMVSNet54.39 32356.12 31549.20 36372.57 25730.91 38459.98 32348.43 38141.66 32355.94 37383.86 20241.19 30850.42 36926.05 40075.38 32366.27 361
Anonymous2024052163.55 25466.07 22955.99 32966.18 33444.04 28768.77 23168.80 26946.99 28072.57 23085.84 17739.87 31750.22 37053.40 23592.23 8373.71 298
test_fmvs254.80 32154.11 33156.88 32551.76 41049.95 22656.70 34665.80 28526.22 40369.42 27265.25 38531.82 36149.98 37149.63 25870.36 36370.71 330
PatchT53.35 33256.47 31243.99 38664.19 34917.46 41759.15 32643.10 39852.11 22754.74 38086.95 13929.97 37849.98 37143.62 30774.40 33264.53 375
dmvs_testset45.26 36847.51 36638.49 39559.96 37314.71 41958.50 33543.39 39741.30 32651.79 39156.48 40439.44 32249.91 37321.42 41355.35 40950.85 400
patch_mono-262.73 26764.08 25058.68 31470.36 28455.87 18460.84 31664.11 30241.23 32764.04 32178.22 28660.00 18348.80 37454.17 22683.71 23771.37 321
tpmrst50.15 35451.38 34846.45 37656.05 39324.77 40864.40 29149.98 37336.14 36553.32 38669.59 36135.16 34248.69 37539.24 33258.51 40265.89 362
test_fmvs1_n52.70 33752.01 34454.76 33453.83 40750.36 21955.80 35365.90 28424.96 40765.39 31060.64 39927.69 38448.46 37645.88 29567.99 37765.46 365
test_fmvs151.51 34750.86 35453.48 34049.72 41349.35 23554.11 36464.96 29424.64 40963.66 32859.61 40228.33 38348.45 37745.38 30067.30 38162.66 381
new-patchmatchnet52.89 33655.76 31844.26 38559.94 3746.31 42537.36 40950.76 37141.10 32864.28 31979.82 26144.77 28648.43 37836.24 35987.61 17178.03 254
test20.0355.74 31357.51 30550.42 35659.89 37532.09 37750.63 37749.01 37850.11 25365.07 31483.23 21645.61 28148.11 37930.22 38583.82 23471.07 328
test_vis1_n_192052.96 33453.50 33351.32 35259.15 37944.90 28156.13 35164.29 30130.56 39459.87 35360.68 39840.16 31547.47 38048.25 27462.46 39161.58 386
test_vis1_n51.27 34850.41 35853.83 33756.99 38950.01 22556.75 34560.53 31925.68 40559.74 35457.86 40329.40 38047.41 38143.10 31063.66 38864.08 376
UnsupCasMVSNet_bld50.01 35551.03 35246.95 37258.61 38232.64 37448.31 38353.27 36034.27 37660.47 34771.53 34341.40 30547.07 38230.68 38360.78 39661.13 387
EMVS44.61 37344.45 37845.10 38248.91 41443.00 29837.92 40741.10 41046.75 28238.00 41648.43 41326.42 38846.27 38337.11 35175.38 32346.03 406
UnsupCasMVSNet_eth52.26 34153.29 33649.16 36455.08 39933.67 37150.03 38058.79 32537.67 35763.43 33274.75 31641.82 30445.83 38438.59 33959.42 39967.98 352
XXY-MVS55.19 31857.40 30648.56 36964.45 34834.84 36551.54 37553.59 35538.99 34863.79 32679.43 26756.59 22145.57 38536.92 35471.29 35765.25 367
PMMVS44.69 37143.95 37946.92 37350.05 41253.47 20248.08 38642.40 40222.36 41344.01 41253.05 40842.60 30145.49 38631.69 38061.36 39541.79 410
WTY-MVS49.39 35750.31 35946.62 37561.22 36432.00 37846.61 39049.77 37433.87 37854.12 38369.55 36241.96 30345.40 38731.28 38264.42 38662.47 382
E-PMN45.17 36945.36 37244.60 38350.07 41142.75 30038.66 40642.29 40446.39 28439.55 41451.15 41026.00 39045.37 38837.68 34576.41 31245.69 407
PVSNet_036.71 2241.12 37940.78 38242.14 38859.97 37240.13 32340.97 40142.24 40530.81 39344.86 40949.41 41240.70 31245.12 38923.15 41034.96 41541.16 411
test_cas_vis1_n_192050.90 34950.92 35350.83 35554.12 40547.80 25151.44 37654.61 34926.95 40163.95 32360.85 39737.86 33244.97 39045.53 29762.97 39059.72 390
dp44.09 37444.88 37641.72 39158.53 38423.18 41154.70 36242.38 40334.80 37244.25 41165.61 38424.48 39844.80 39129.77 38849.42 41157.18 396
test-LLR50.43 35150.69 35649.64 36160.76 36641.87 30653.18 36845.48 39143.41 31449.41 39960.47 40029.22 38144.73 39242.09 31672.14 35162.33 384
test-mter48.56 36048.20 36549.64 36160.76 36641.87 30653.18 36845.48 39131.91 38949.41 39960.47 40018.34 41344.73 39242.09 31672.14 35162.33 384
dmvs_re49.91 35650.77 35547.34 37159.98 37138.86 33353.18 36853.58 35639.75 34155.06 37761.58 39636.42 33844.40 39429.15 39468.23 37558.75 392
Anonymous2023120654.13 32455.82 31749.04 36670.89 27035.96 35551.73 37450.87 37034.86 37062.49 33579.22 27242.52 30244.29 39527.95 39681.88 25266.88 357
YYNet152.58 33853.50 33349.85 35954.15 40336.45 35240.53 40246.55 38938.09 35375.52 18773.31 33241.08 31043.88 39641.10 32271.14 35969.21 344
MDA-MVSNet_test_wron52.57 33953.49 33549.81 36054.24 40236.47 35140.48 40346.58 38838.13 35275.47 18873.32 33141.05 31143.85 39740.98 32471.20 35869.10 346
test0.0.03 147.72 36248.31 36445.93 37755.53 39829.39 39146.40 39141.21 40943.41 31455.81 37567.65 37629.22 38143.77 39825.73 40469.87 36764.62 373
testgi54.00 32856.86 30945.45 37958.20 38525.81 40749.05 38149.50 37745.43 29467.84 29381.17 23951.81 24843.20 39929.30 39079.41 28767.34 355
tpm50.60 35052.42 34245.14 38165.18 34226.29 40460.30 32043.50 39637.41 35957.01 36579.09 27630.20 37742.32 40032.77 37666.36 38266.81 359
CHOSEN 280x42041.62 37839.89 38346.80 37461.81 36051.59 20933.56 41235.74 41527.48 39937.64 41753.53 40623.24 40142.09 40127.39 39758.64 40146.72 405
EPMVS45.74 36646.53 36943.39 38754.14 40422.33 41455.02 35735.00 41634.69 37451.09 39370.20 35325.92 39142.04 40237.19 34955.50 40765.78 363
sss47.59 36348.32 36345.40 38056.73 39233.96 36945.17 39348.51 38032.11 38852.37 38865.79 38340.39 31441.91 40331.85 37961.97 39360.35 388
dongtai31.66 38432.98 38727.71 39958.58 38312.61 42145.02 39414.24 42541.90 32147.93 40143.91 41410.65 42541.81 40414.06 41720.53 41828.72 415
TESTMET0.1,145.17 36944.93 37545.89 37856.02 39438.31 33753.18 36841.94 40627.85 39744.86 40956.47 40517.93 41541.50 40538.08 34368.06 37657.85 393
mvsany_test343.76 37641.01 38052.01 34848.09 41557.74 17442.47 39923.85 42223.30 41264.80 31562.17 39427.12 38540.59 40629.17 39348.11 41257.69 394
test_vis1_rt46.70 36545.24 37351.06 35444.58 41851.04 21439.91 40467.56 27621.84 41551.94 39050.79 41133.83 34639.77 40735.25 36661.50 39462.38 383
ADS-MVSNet44.62 37245.58 37141.73 39055.90 39520.83 41547.34 38839.94 41131.41 39150.48 39572.06 33831.23 36639.31 40825.93 40155.93 40565.07 369
DSMNet-mixed43.18 37744.66 37738.75 39454.75 40128.88 39457.06 34427.42 41913.47 41747.27 40477.67 29338.83 32439.29 40925.32 40660.12 39848.08 403
test_vis3_rt51.94 34551.04 35154.65 33546.32 41750.13 22344.34 39778.17 17723.62 41168.95 27962.81 39121.41 40638.52 41041.49 32072.22 35075.30 283
mvsany_test137.88 38035.74 38544.28 38447.28 41649.90 22736.54 41024.37 42119.56 41645.76 40553.46 40732.99 35137.97 41126.17 39935.52 41444.99 409
wuyk23d61.97 27166.25 22649.12 36558.19 38660.77 15166.32 26652.97 36155.93 17690.62 686.91 14073.07 6035.98 41220.63 41591.63 8950.62 401
Patchmatch-test47.93 36149.96 36041.84 38957.42 38824.26 40948.75 38241.49 40739.30 34556.79 36773.48 32930.48 37433.87 41329.29 39172.61 34667.39 353
N_pmnet52.06 34251.11 35054.92 33359.64 37871.03 5737.42 40861.62 31733.68 37957.12 36372.10 33737.94 32931.03 41429.13 39571.35 35662.70 379
test_f43.79 37545.63 37038.24 39642.29 42238.58 33534.76 41147.68 38322.22 41467.34 30063.15 39031.82 36130.60 41539.19 33362.28 39245.53 408
PMMVS237.74 38140.87 38128.36 39842.41 4215.35 42624.61 41327.75 41832.15 38647.85 40270.27 35235.85 34029.51 41619.08 41667.85 37850.22 402
new_pmnet37.55 38239.80 38430.79 39756.83 39016.46 41839.35 40530.65 41725.59 40645.26 40761.60 39524.54 39628.02 41721.60 41252.80 41047.90 404
MVEpermissive27.91 2336.69 38335.64 38639.84 39343.37 42035.85 35719.49 41424.61 42024.68 40839.05 41562.63 39338.67 32627.10 41821.04 41447.25 41356.56 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.26 38619.12 39019.71 4009.09 4251.91 4287.79 41653.44 3581.42 41910.27 42135.80 41517.42 41725.11 41912.44 41824.38 41732.10 414
kuosan22.02 38523.52 38917.54 40141.56 42311.24 42241.99 40013.39 42626.13 40428.87 41830.75 4169.72 42621.94 4204.77 42114.49 41919.43 416
DeepMVS_CXcopyleft11.83 40215.51 42413.86 42011.25 4275.76 41820.85 42026.46 41717.06 4189.22 4219.69 42013.82 42012.42 417
tmp_tt11.98 38814.73 3913.72 4032.28 4264.62 42719.44 41514.50 4240.47 42121.55 4199.58 41925.78 3924.57 42211.61 41927.37 4161.96 418
testmvs4.06 3925.28 3950.41 4040.64 4280.16 43042.54 3980.31 4290.26 4230.50 4241.40 4230.77 4270.17 4230.56 4220.55 4220.90 419
test1234.43 3915.78 3940.39 4050.97 4270.28 42946.33 3920.45 4280.31 4220.62 4231.50 4220.61 4280.11 4240.56 4220.63 4210.77 420
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k17.71 38723.62 3880.00 4060.00 4290.00 4310.00 41770.17 2610.00 4240.00 42574.25 32368.16 1000.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas5.20 3906.93 3930.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42462.39 1560.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re5.62 3897.50 3920.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42567.46 3770.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS22.69 41236.10 361
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
eth-test20.00 429
eth-test0.00 429
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 93
IU-MVS86.12 5460.90 14780.38 13645.49 29381.31 10275.64 4494.39 4484.65 102
save fliter87.00 4067.23 9079.24 8977.94 18256.65 169
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
GSMVS70.05 334
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36470.05 334
sam_mvs31.21 368
MTGPAbinary80.63 130
MTMP84.83 3419.26 423
test9_res72.12 7291.37 9477.40 260
agg_prior270.70 7690.93 10978.55 246
test_prior470.14 6777.57 106
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8092.76 75
新几何271.33 192
旧先验184.55 8260.36 15463.69 30487.05 13754.65 23183.34 24169.66 339
原ACMM274.78 147
test22287.30 3869.15 7767.85 24359.59 32341.06 32973.05 22685.72 17948.03 27380.65 27066.92 356
segment_acmp68.30 99
testdata168.34 23957.24 161
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior489.11 97
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 430
nn0.00 430
door-mid55.02 347
test1182.71 90
door52.91 362
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 243
ACMP_Plane82.37 11377.32 11159.08 14071.58 243
BP-MVS67.38 104
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
MDTV_nov1_ep13_2view18.41 41653.74 36631.57 39044.89 40829.90 37932.93 37571.48 319
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152