This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18685.32 17365.54 12387.79 265.61 11691.14 9983.35 146
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16171.22 4072.40 22588.70 10460.51 17287.70 377.40 3289.13 15185.48 84
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18187.58 573.06 5991.34 9389.01 34
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10651.71 22177.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21087.10 879.75 783.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 140
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9087.03 1067.39 9991.26 9483.50 136
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ZD-MVS83.91 8669.36 6981.09 11458.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 128
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 121
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 122
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40373.86 5286.31 1978.84 1994.03 5384.64 103
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 126
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
No_MVS79.02 5583.14 9567.03 8780.75 11986.24 2277.27 3394.85 2583.78 130
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17086.15 2771.09 7190.94 10584.82 98
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20766.93 6269.11 26488.95 10057.84 20486.12 2976.63 3789.77 13585.28 86
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33777.16 10981.81 9880.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 10886.01 3161.72 14789.79 13483.08 154
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13357.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9253.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 153
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 162
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 146
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11383.49 137
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 148
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 154
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 148
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12672.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 119
RPMNet65.77 22465.08 23867.84 22566.37 32148.24 23770.93 19286.27 2054.66 18461.35 32886.77 13733.29 33985.67 4755.93 19870.17 35369.62 328
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9682.24 9078.21 989.57 992.10 1868.05 9685.59 4866.04 11295.62 994.88 5
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11765.77 7275.55 17786.25 15767.42 10185.42 5070.10 7590.88 11181.81 185
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19377.68 14387.18 12569.98 8085.37 5168.01 9092.72 7485.08 91
HQP4-MVS71.59 23385.31 5283.74 132
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23485.96 16758.09 19785.30 5367.38 10189.16 14783.73 133
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 11865.57 7472.54 22381.76 22370.98 7385.26 5447.88 26990.00 12773.37 289
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8685.26 5466.15 10991.24 9587.61 52
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 17973.34 15784.67 5262.04 11572.19 22970.81 33565.90 12085.24 5658.64 17684.96 21481.95 183
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32077.06 11282.61 8780.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
test1276.51 8682.28 11360.94 14381.64 10173.60 20764.88 13085.19 5990.42 12083.38 144
CANet73.00 12971.84 14976.48 8775.82 20161.28 13674.81 13980.37 13163.17 10862.43 32480.50 23861.10 16785.16 6064.00 12784.34 22483.01 157
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19184.52 18269.87 8284.94 6169.76 7889.59 13886.60 67
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31777.15 11081.28 10879.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 31976.76 11380.46 12878.91 790.32 791.70 2568.49 9184.89 6363.40 13695.12 1895.01 4
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8372.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10263.92 9677.51 14486.56 14868.43 9384.82 6573.83 5391.61 8882.26 179
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PC_three_145246.98 27181.83 9286.28 15466.55 11584.47 7163.31 13890.78 11383.49 137
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12472.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
DP-MVS Recon73.57 11472.69 13776.23 9182.85 10563.39 11774.32 14982.96 8157.75 14870.35 25081.98 21964.34 13584.41 7349.69 24889.95 12980.89 201
Effi-MVS+-dtu75.43 9172.28 14584.91 277.05 17883.58 178.47 9377.70 17957.68 14974.89 18578.13 27764.80 13184.26 7456.46 19285.32 20786.88 62
CLD-MVS72.88 13472.36 14474.43 11077.03 17954.30 19168.77 22383.43 7652.12 21676.79 15874.44 30769.54 8583.91 7555.88 19993.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7854.16 19573.23 21480.75 23462.19 15283.86 7668.02 8990.92 10883.65 134
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18465.11 8576.47 16886.80 13449.47 25283.77 7753.89 22192.72 7488.81 41
iter_conf0567.34 20865.62 22472.50 15269.82 28447.06 25672.19 16676.86 18945.32 28572.86 21782.85 20920.53 39683.73 7861.13 15389.02 15486.70 65
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14675.15 20658.41 14268.74 27688.14 12056.08 21983.69 7959.90 16781.71 25479.43 230
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17570.09 4979.17 12488.02 12153.04 23183.60 8058.05 18193.76 5990.79 19
原ACMM173.90 11885.90 5765.15 10681.67 10050.97 23374.25 19886.16 16061.60 15783.54 8156.75 18791.08 10373.00 293
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6683.53 8267.95 9292.44 7689.60 24
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6483.45 8462.45 14392.40 7778.92 236
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 171
114514_t73.40 11773.33 12673.64 12284.15 8557.11 17478.20 9780.02 13743.76 29772.55 22286.07 16564.00 13683.35 8660.14 16491.03 10480.45 214
iter_conf05_1166.64 21565.20 23070.94 17073.28 23846.89 25766.09 25977.03 18843.44 30263.43 32074.09 31547.19 27083.26 8756.25 19486.01 19882.66 167
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13564.71 9178.11 13688.39 11265.46 12583.14 8977.64 2991.20 9678.94 235
DPM-MVS69.98 16669.22 17872.26 15882.69 10858.82 16570.53 19781.23 11047.79 26564.16 30880.21 24251.32 24283.12 9060.14 16484.95 21574.83 276
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10566.17 7073.30 21383.31 20259.96 17783.10 9158.45 17881.66 25582.87 160
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8059.86 13172.27 22684.00 18964.56 13383.07 9251.48 23487.19 18382.56 172
bld_raw_dy_0_6469.94 16769.64 17270.84 17173.28 23846.85 25875.82 13186.52 1640.43 32881.41 10074.77 30148.70 26283.01 9356.25 19489.59 13882.66 167
PAPR69.20 17968.66 18870.82 17275.15 20847.77 24675.31 13381.11 11249.62 24966.33 29479.27 25961.53 15882.96 9448.12 26681.50 25781.74 187
PAPM61.79 26660.37 27566.05 24376.09 19641.87 29969.30 21276.79 19240.64 32653.80 37279.62 25444.38 28282.92 9529.64 37773.11 33273.36 290
TSAR-MVS + GP.73.08 12471.60 15577.54 7378.99 15770.73 5774.96 13669.38 25860.73 12474.39 19678.44 27157.72 20582.78 9660.16 16389.60 13779.11 233
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8259.02 13885.92 4189.17 9258.56 19182.74 9770.73 7389.14 15091.05 15
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15473.04 15981.50 10245.34 28479.66 11984.35 18565.15 12882.65 9848.70 25889.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9361.89 11688.77 1293.32 457.15 20882.60 9970.08 7692.80 7189.25 28
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9468.80 5380.92 10788.52 10972.00 6382.39 10174.80 4493.04 6881.14 193
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16274.60 21075.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 191
v124073.06 12673.14 12872.84 14374.74 21547.27 25471.88 17781.11 11251.80 22082.28 8884.21 18656.22 21882.34 10368.82 8287.17 18488.91 38
EIA-MVS68.59 18867.16 20872.90 14175.18 20755.64 18469.39 21181.29 10752.44 21364.53 30470.69 33660.33 17482.30 10454.27 21876.31 30380.75 206
v192192072.96 13272.98 13372.89 14274.67 21647.58 24971.92 17580.69 12151.70 22281.69 9783.89 19156.58 21582.25 10568.34 8587.36 17588.82 40
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16581.73 9952.76 21181.85 9184.56 18157.12 20982.24 10668.58 8387.33 17789.06 33
v14419272.99 13073.06 13172.77 14474.58 22047.48 25071.90 17680.44 12951.57 22381.46 9984.11 18858.04 20182.12 10767.98 9187.47 17388.70 43
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8660.39 12674.15 19983.30 20369.65 8482.07 10869.27 8186.75 19087.36 55
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25480.80 23366.74 11281.96 10961.74 14689.40 14585.69 81
v114473.29 12073.39 12273.01 13474.12 22748.11 23972.01 17081.08 11553.83 20281.77 9384.68 17958.07 20081.91 11068.10 8786.86 18688.99 36
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20081.04 11663.67 10079.54 12086.37 15362.83 14381.82 11157.10 18695.25 1490.94 17
v875.07 9775.64 9573.35 12673.42 23547.46 25175.20 13481.45 10460.05 12885.64 4589.26 8758.08 19981.80 11269.71 8087.97 16790.79 19
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13568.63 7578.18 9881.24 10954.57 18667.09 29280.63 23659.44 18281.74 11446.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
FE-MVS68.29 19366.96 21272.26 15874.16 22654.24 19277.55 10373.42 21657.65 15272.66 22084.91 17832.02 35181.49 11648.43 26281.85 24881.04 195
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 8970.72 4487.54 2192.44 1468.00 9881.34 11772.84 6191.72 8491.69 10
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28365.65 26777.32 18464.32 9375.59 17687.08 12762.45 14881.34 11754.90 20795.63 891.93 8
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20264.10 9587.73 1792.24 1750.45 24781.30 11967.41 9791.46 9186.04 73
EPNet69.10 18167.32 20674.46 10768.33 30261.27 13777.56 10263.57 29760.95 12256.62 35882.75 21051.53 24081.24 12054.36 21790.20 12280.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tttt051769.46 17567.79 20174.46 10775.34 20452.72 20175.05 13563.27 29954.69 18378.87 12784.37 18426.63 37881.15 12163.95 12887.93 16889.51 25
v2v48272.55 14172.58 13972.43 15472.92 25046.72 26071.41 18379.13 15255.27 17481.17 10485.25 17555.41 22081.13 12267.25 10585.46 20289.43 26
TEST985.47 6369.32 7076.42 11878.69 16253.73 20376.97 14986.74 13866.84 10781.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16254.00 19876.97 14986.74 13866.60 11381.10 12372.50 6691.56 8977.15 258
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26869.26 21378.81 15766.66 6781.74 9586.88 13363.26 13981.07 12556.21 19694.98 2091.05 15
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26869.47 21080.14 13665.22 8281.74 9587.08 12761.82 15581.07 12556.21 19694.98 2091.93 8
MCST-MVS73.42 11673.34 12573.63 12381.28 12659.17 16074.80 14183.13 7945.50 28072.84 21883.78 19365.15 12880.99 12764.54 12189.09 15380.73 207
h-mvs3373.08 12471.61 15477.48 7483.89 8872.89 4470.47 19871.12 24654.28 18977.89 13783.41 19649.04 25680.98 12863.62 13390.77 11578.58 239
Effi-MVS+72.10 14572.28 14571.58 16374.21 22550.33 21574.72 14482.73 8462.62 11170.77 24676.83 28769.96 8180.97 12960.20 16178.43 28783.45 142
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30666.16 7184.76 6093.23 549.47 25280.97 12965.66 11586.67 19185.02 93
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18080.99 6176.84 19062.48 11371.24 24277.51 28361.51 15980.96 13252.04 23085.76 20171.22 313
test_885.09 6967.89 7976.26 12378.66 16454.00 19876.89 15386.72 14066.60 11380.89 133
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29670.98 19178.29 17168.67 5683.04 7789.26 8772.99 5880.75 13455.58 20495.47 1091.35 13
MVSFormer69.93 16869.03 18072.63 15074.93 20959.19 15883.98 3675.72 20052.27 21463.53 31876.74 28843.19 28980.56 13572.28 6778.67 28578.14 246
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20052.27 21487.37 2692.25 1668.04 9780.56 13572.28 6791.15 9890.32 22
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8780.55 13772.51 6593.37 6383.48 139
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cascas64.59 23662.77 25770.05 18875.27 20550.02 21961.79 30171.61 23142.46 30963.68 31568.89 35649.33 25480.35 13947.82 27084.05 22779.78 223
eth_miper_zixun_eth69.42 17668.73 18771.50 16667.99 30646.42 26367.58 23778.81 15750.72 23678.13 13580.34 24150.15 24980.34 14060.18 16284.65 21887.74 50
agg_prior84.44 8166.02 9778.62 16576.95 15180.34 140
thisisatest053067.05 21265.16 23272.73 14773.10 24550.55 21271.26 18863.91 29550.22 24274.46 19580.75 23426.81 37780.25 14259.43 17286.50 19387.37 54
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13875.34 1579.80 11894.91 269.79 8380.25 14272.63 6394.46 3688.78 42
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14553.48 20686.29 3692.43 1562.39 14980.25 14267.90 9390.61 11787.77 49
BH-untuned69.39 17769.46 17369.18 20277.96 16956.88 17568.47 22977.53 18156.77 16077.79 14079.63 25360.30 17580.20 14546.04 28380.65 26470.47 319
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17383.39 19766.91 10680.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DELS-MVS68.83 18368.31 19070.38 17870.55 27448.31 23563.78 28882.13 9154.00 19868.96 26875.17 29958.95 18880.06 14758.55 17782.74 24082.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12766.87 6483.64 7486.18 15870.25 7879.90 14861.12 15488.95 15587.56 53
ambc70.10 18777.74 17250.21 21774.28 15177.93 17879.26 12388.29 11554.11 22779.77 14964.43 12291.10 10280.30 216
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25149.47 22772.94 16084.71 5159.49 13280.90 10988.81 10370.07 7979.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-LS73.01 12873.12 13072.66 14873.79 23149.90 22271.63 18078.44 16758.22 14380.51 11286.63 14558.15 19579.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IB-MVS49.67 1859.69 28356.96 29967.90 22368.19 30450.30 21661.42 30365.18 28447.57 26755.83 36267.15 36923.77 39079.60 15243.56 29879.97 27173.79 287
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+68.81 18468.30 19170.35 18074.66 21848.61 23466.06 26078.32 16950.62 23771.48 24075.54 29568.75 8979.59 15350.55 24378.73 28482.86 161
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15362.85 11073.33 21288.41 11162.54 14779.59 15363.94 13082.92 23882.94 158
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)71.27 15171.06 16171.92 16173.96 22852.32 20476.45 11776.12 19559.07 13774.04 20486.18 15852.18 23579.43 15559.75 17081.76 25084.03 124
hse-mvs272.32 14370.66 16677.31 7983.10 10071.77 4769.19 21571.45 23654.28 18977.89 13778.26 27349.04 25679.23 15663.62 13389.13 15180.92 200
AUN-MVS70.22 16267.88 19977.22 8082.96 10471.61 4869.08 21671.39 23749.17 25371.70 23278.07 27837.62 32579.21 15761.81 14489.15 14980.82 203
QAPM69.18 18069.26 17668.94 20871.61 25952.58 20380.37 7178.79 16049.63 24873.51 20885.14 17653.66 22879.12 15855.11 20675.54 30975.11 275
tt080576.12 8478.43 6869.20 20181.32 12541.37 30276.72 11477.64 18063.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
BH-w/o64.81 23364.29 24166.36 24076.08 19854.71 18865.61 26875.23 20550.10 24471.05 24571.86 32954.33 22579.02 16038.20 33176.14 30465.36 354
FC-MVSNet-test73.32 11974.78 10268.93 20979.21 14936.57 33971.82 17879.54 14757.63 15382.57 8690.38 6459.38 18478.99 16157.91 18294.56 3491.23 14
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 10958.80 16671.48 18173.64 21454.98 17776.55 16481.77 22261.10 16778.94 16254.87 20880.84 26272.74 298
IterMVS-SCA-FT67.68 20166.07 22072.49 15373.34 23758.20 17163.80 28765.55 28148.10 26076.91 15282.64 21345.20 27678.84 16361.20 15177.89 29480.44 215
V4271.06 15370.83 16471.72 16267.25 31447.14 25565.94 26180.35 13251.35 22883.40 7683.23 20659.25 18578.80 16465.91 11380.81 26389.23 29
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9562.47 11479.06 12580.19 24461.83 15478.79 16559.83 16887.35 17679.54 228
lessismore_v072.75 14579.60 14156.83 17757.37 32183.80 7289.01 9747.45 26878.74 16664.39 12386.49 19482.69 166
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16472.24 16471.56 23363.92 9678.59 12871.59 33066.22 11778.60 16767.58 9480.32 26789.00 35
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19351.98 21987.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 16972.02 16971.50 23463.53 10278.58 13071.39 33465.98 11878.53 16867.30 10480.18 26989.23 29
3Dnovator65.95 1171.50 15071.22 16072.34 15673.16 24163.09 12078.37 9478.32 16957.67 15072.22 22884.61 18054.77 22178.47 17060.82 15781.07 25975.45 270
TR-MVS64.59 23663.54 24967.73 22775.75 20350.83 21163.39 29170.29 25349.33 25171.55 23874.55 30550.94 24378.46 17140.43 31675.69 30773.89 286
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19551.33 22987.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7678.43 17355.60 20190.90 10985.81 76
PVSNet_Blended_VisFu70.04 16468.88 18273.53 12582.71 10763.62 11674.81 13981.95 9648.53 25867.16 29179.18 26251.42 24178.38 17554.39 21679.72 27678.60 238
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 10878.37 17674.80 4490.76 11682.40 174
thisisatest051560.48 27757.86 29368.34 21867.25 31446.42 26360.58 31162.14 30240.82 32263.58 31769.12 35126.28 38078.34 17748.83 25682.13 24480.26 217
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20082.35 175
FIs72.56 13973.80 11568.84 21278.74 16037.74 33371.02 19079.83 14056.12 16680.88 11089.45 8458.18 19378.28 17956.63 18893.36 6490.51 21
BH-RMVSNet68.69 18768.20 19570.14 18676.40 19153.90 19664.62 27973.48 21558.01 14573.91 20681.78 22159.09 18678.22 18048.59 25977.96 29378.31 242
PVSNet_BlendedMVS65.38 22664.30 24068.61 21569.81 28549.36 22865.60 26978.96 15445.50 28059.98 33778.61 26951.82 23778.20 18144.30 29284.11 22678.27 243
PVSNet_Blended62.90 25661.64 26266.69 23869.81 28549.36 22861.23 30578.96 15442.04 31059.98 33768.86 35751.82 23778.20 18144.30 29277.77 29572.52 299
ET-MVSNet_ETH3D63.32 25060.69 27371.20 16970.15 28155.66 18365.02 27564.32 29243.28 30768.99 26772.05 32825.46 38478.19 18354.16 22082.80 23979.74 224
c3_l69.82 17069.89 17069.61 19466.24 32443.48 28668.12 23279.61 14451.43 22577.72 14180.18 24554.61 22478.15 18463.62 13387.50 17287.20 58
baseline73.10 12373.96 11370.51 17771.46 26146.39 26572.08 16884.40 5955.95 16976.62 16186.46 15167.20 10278.03 18564.22 12587.27 18087.11 61
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14656.32 16576.35 17183.36 20170.76 7477.96 18663.32 13781.84 24983.18 151
miper_ehance_all_eth68.36 19068.16 19668.98 20665.14 33543.34 28867.07 24778.92 15649.11 25476.21 17277.72 28053.48 22977.92 18761.16 15284.59 22085.68 82
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26246.71 26170.93 19284.26 6255.62 17277.46 14587.10 12667.09 10477.81 18863.95 12886.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MAR-MVS67.72 20066.16 21872.40 15574.45 22164.99 10774.87 13777.50 18248.67 25765.78 29868.58 36057.01 21277.79 18946.68 27981.92 24674.42 282
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19550.51 23889.19 1090.88 4271.45 6777.78 19073.38 5690.60 11890.90 18
miper_enhance_ethall65.86 22365.05 23968.28 22161.62 35342.62 29564.74 27777.97 17642.52 30873.42 21172.79 32349.66 25077.68 19158.12 18084.59 22084.54 110
MVS60.62 27659.97 27762.58 27468.13 30547.28 25368.59 22573.96 21332.19 37059.94 33968.86 35750.48 24677.64 19241.85 30775.74 30662.83 365
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 21963.12 14077.64 19262.95 14088.14 16271.73 308
cl2267.14 20966.51 21569.03 20563.20 34543.46 28766.88 25276.25 19449.22 25274.48 19477.88 27945.49 27577.40 19460.64 15884.59 22086.24 69
MVS_111021_HR72.98 13172.97 13472.99 13580.82 12965.47 10068.81 22072.77 22257.67 15075.76 17482.38 21671.01 7277.17 19561.38 14986.15 19576.32 264
UGNet70.20 16369.05 17973.65 12176.24 19363.64 11575.87 12972.53 22561.48 11860.93 33486.14 16152.37 23477.12 19650.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15174.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 303
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HyFIR lowres test63.01 25460.47 27470.61 17483.04 10154.10 19359.93 31572.24 22933.67 36669.00 26675.63 29438.69 31776.93 19836.60 34475.45 31180.81 205
OpenMVScopyleft62.51 1568.76 18568.75 18568.78 21370.56 27253.91 19578.29 9577.35 18348.85 25670.22 25283.52 19552.65 23376.93 19855.31 20581.99 24575.49 269
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28274.47 14871.70 23072.33 3585.50 5093.65 377.98 2176.88 20054.60 21291.64 8689.08 32
无先验74.82 13870.94 24847.75 26676.85 20154.47 21372.09 305
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27174.73 14380.19 13468.80 5382.95 8092.91 866.26 11676.76 20258.41 17992.77 7289.30 27
v14869.38 17869.39 17469.36 19769.14 29344.56 27768.83 21972.70 22354.79 18178.59 12884.12 18754.69 22276.74 20359.40 17382.20 24386.79 63
WR-MVS71.20 15272.48 14167.36 22984.98 7035.70 34764.43 28268.66 26365.05 8681.49 9886.43 15257.57 20676.48 20450.36 24493.32 6589.90 23
MVP-Stereo61.56 26859.22 28168.58 21679.28 14660.44 15169.20 21471.57 23243.58 30056.42 35978.37 27239.57 31376.46 20534.86 35660.16 38468.86 335
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
EI-MVSNet69.61 17369.01 18171.41 16773.94 22949.90 22271.31 18671.32 23958.22 14375.40 18170.44 33758.16 19475.85 20662.51 14179.81 27388.48 44
MVSTER63.29 25161.60 26468.36 21759.77 36646.21 26660.62 31071.32 23941.83 31175.40 18179.12 26330.25 36675.85 20656.30 19379.81 27383.03 156
VDDNet71.60 14973.13 12967.02 23486.29 4741.11 30469.97 20466.50 27368.72 5574.74 18791.70 2559.90 17875.81 20848.58 26091.72 8484.15 123
Fast-Effi-MVS+-dtu70.00 16568.74 18673.77 12073.47 23464.53 11071.36 18478.14 17455.81 17168.84 27474.71 30465.36 12675.75 20952.00 23179.00 28181.03 196
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8854.55 18783.50 7589.21 8971.51 6575.74 21061.24 15092.34 7988.94 37
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23570.83 25061.23 11974.07 20288.69 10559.86 17975.62 21151.11 23790.28 12184.61 106
cl____68.26 19568.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.42 21548.74 26075.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19468.26 19268.29 21964.98 33643.67 28465.89 26274.67 20850.04 24576.86 15582.43 21448.74 26075.38 21260.94 15589.81 13285.81 76
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18876.61 16281.64 22572.03 6175.34 21457.12 18587.28 17984.40 116
LFMVS67.06 21167.89 19864.56 25278.02 16738.25 32870.81 19559.60 31365.18 8371.06 24486.56 14843.85 28575.22 21546.35 28089.63 13680.21 218
GBi-Net68.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
test168.30 19168.79 18366.81 23573.14 24240.68 30871.96 17273.03 21754.81 17874.72 18890.36 6748.63 26375.20 21647.12 27385.37 20384.54 110
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17273.03 21761.14 12079.45 12290.36 6760.44 17375.20 21650.20 24588.05 16484.54 110
GA-MVS62.91 25561.66 26166.66 23967.09 31644.49 27861.18 30669.36 25951.33 22969.33 26374.47 30636.83 32874.94 21950.60 24274.72 31680.57 213
test_yl65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
DCV-MVSNet65.11 22865.09 23665.18 24870.59 27040.86 30663.22 29572.79 22057.91 14668.88 27279.07 26542.85 29274.89 22045.50 28884.97 21179.81 221
ECVR-MVScopyleft64.82 23265.22 22963.60 26178.80 15831.14 37266.97 24956.47 33254.23 19169.94 25688.68 10637.23 32674.81 22245.28 29189.41 14384.86 96
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24269.85 20779.62 14253.94 20176.54 16582.00 21859.00 18774.68 22357.32 18487.21 18284.72 101
FMVSNet267.48 20368.21 19465.29 24773.14 24238.94 32168.81 22071.21 24554.81 17876.73 15986.48 15048.63 26374.60 22447.98 26886.11 19782.35 175
MVS_Test69.84 16970.71 16567.24 23067.49 31243.25 29069.87 20681.22 11152.69 21271.57 23786.68 14162.09 15374.51 22566.05 11178.74 28383.96 125
FMVSNet365.00 23165.16 23264.52 25369.47 29037.56 33666.63 25470.38 25251.55 22474.72 18883.27 20437.89 32374.44 22647.12 27385.37 20381.57 189
test250661.23 27060.85 27162.38 27678.80 15827.88 38667.33 24437.42 40054.23 19167.55 28788.68 10617.87 40474.39 22746.33 28189.41 14384.86 96
tpm256.12 30054.64 31660.55 29366.24 32436.01 34368.14 23156.77 32933.60 36758.25 34875.52 29730.25 36674.33 22833.27 36369.76 35771.32 311
test111164.62 23565.19 23162.93 27179.01 15629.91 37865.45 27054.41 34254.09 19671.47 24188.48 11037.02 32774.29 22946.83 27889.94 13084.58 109
Anonymous2024052972.56 13973.79 11668.86 21176.89 18745.21 27368.80 22277.25 18667.16 6176.89 15390.44 5665.95 11974.19 23050.75 24090.00 12787.18 59
EGC-MVSNET64.77 23461.17 26775.60 9886.90 4274.47 3084.04 3568.62 2640.60 4051.13 40791.61 2865.32 12774.15 23164.01 12688.28 16078.17 245
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 28866.25 9375.90 12879.90 13946.03 27776.48 16785.02 17767.96 9973.97 23274.47 4987.22 18183.90 127
PS-MVSNAJ64.27 24363.73 24765.90 24577.82 17151.42 20763.33 29272.33 22745.09 28861.60 32668.04 36262.39 14973.95 23349.07 25473.87 32772.34 301
xiu_mvs_v2_base64.43 24063.96 24465.85 24677.72 17351.32 20863.63 28972.31 22845.06 28961.70 32569.66 34862.56 14573.93 23449.06 25573.91 32672.31 302
test_fmvsmconf0.1_n73.26 12172.82 13674.56 10669.10 29466.18 9574.65 14779.34 14945.58 27975.54 17883.91 19067.19 10373.88 23573.26 5786.86 18683.63 135
test_fmvsmconf_n72.91 13372.40 14374.46 10768.62 29866.12 9674.21 15278.80 15945.64 27874.62 19283.25 20566.80 11173.86 23672.97 6086.66 19283.39 143
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23767.58 9494.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG67.47 20567.48 20567.46 22870.70 26854.69 18966.90 25178.17 17260.88 12370.41 24974.76 30261.22 16573.18 23847.38 27276.87 29974.49 280
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15059.44 13378.88 12689.80 7971.26 6973.09 23957.45 18380.89 26089.17 31
LCM-MVSNet-Re69.10 18171.57 15661.70 28170.37 27734.30 35761.45 30279.62 14256.81 15989.59 888.16 11968.44 9272.94 24042.30 30387.33 17777.85 252
gm-plane-assit62.51 34733.91 35937.25 34862.71 37972.74 24138.70 325
D2MVS62.58 26061.05 26967.20 23163.85 34147.92 24356.29 33769.58 25739.32 33370.07 25578.19 27534.93 33472.68 24253.44 22683.74 23081.00 198
OpenMVS_ROBcopyleft54.93 1763.23 25263.28 25163.07 26869.81 28545.34 27268.52 22767.14 26943.74 29870.61 24879.22 26047.90 26772.66 24348.75 25773.84 32871.21 314
xiu_mvs_v1_base_debu67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20970.26 18179.13 15261.90 12867.34 24171.25 24247.98 26167.70 28474.19 31261.31 16072.62 24456.51 18978.26 28976.27 265
TinyColmap67.98 19669.28 17564.08 25667.98 30746.82 25970.04 20275.26 20453.05 20877.36 14686.79 13559.39 18372.59 24745.64 28688.01 16672.83 296
baseline255.57 30652.74 32564.05 25765.26 33144.11 28062.38 29854.43 34139.03 33651.21 37967.35 36733.66 33872.45 24837.14 33964.22 37475.60 268
thres600view761.82 26561.38 26663.12 26771.81 25834.93 35264.64 27856.99 32654.78 18270.33 25179.74 25132.07 34972.42 24938.61 32783.46 23582.02 181
APD_test175.04 9875.38 9974.02 11769.89 28370.15 6276.46 11679.71 14165.50 7582.99 7988.60 10866.94 10572.35 25059.77 16988.54 15879.56 225
TAMVS65.31 22763.75 24669.97 19082.23 11459.76 15666.78 25363.37 29845.20 28669.79 25879.37 25847.42 26972.17 25134.48 35785.15 21077.99 250
thres100view90061.17 27161.09 26861.39 28572.14 25635.01 35165.42 27156.99 32655.23 17570.71 24779.90 24932.07 34972.09 25235.61 35281.73 25177.08 260
tfpn200view960.35 27859.97 27761.51 28370.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25177.08 260
thres40060.77 27559.97 27763.15 26670.78 26635.35 34963.27 29357.47 31953.00 20968.31 27977.09 28532.45 34672.09 25235.61 35281.73 25182.02 181
CostFormer57.35 29756.14 30560.97 28963.76 34338.43 32567.50 23860.22 31137.14 34959.12 34576.34 29032.78 34371.99 25539.12 32369.27 35872.47 300
USDC62.80 25763.10 25461.89 27965.19 33243.30 28967.42 24074.20 21235.80 35572.25 22784.48 18345.67 27371.95 25637.95 33384.97 21170.42 321
CDS-MVSNet64.33 24262.66 25869.35 19880.44 13358.28 17065.26 27265.66 27944.36 29267.30 29075.54 29543.27 28871.77 25737.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVS_111021_LR72.10 14571.82 15072.95 13779.53 14273.90 3670.45 19966.64 27256.87 15876.81 15781.76 22368.78 8871.76 25861.81 14483.74 23073.18 291
mvs_anonymous65.08 23065.49 22663.83 25963.79 34237.60 33566.52 25669.82 25643.44 30273.46 21086.08 16458.79 19071.75 25951.90 23275.63 30882.15 180
testf175.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
APD_test275.66 8876.57 8272.95 13767.07 31867.62 8176.10 12480.68 12264.95 8786.58 3390.94 4071.20 7071.68 26060.46 15991.13 10079.56 225
thres20057.55 29657.02 29859.17 30067.89 30934.93 35258.91 32157.25 32350.24 24164.01 31071.46 33232.49 34571.39 26231.31 36979.57 27771.19 315
131459.83 28258.86 28562.74 27365.71 32944.78 27668.59 22572.63 22433.54 36861.05 33267.29 36843.62 28771.26 26349.49 25167.84 36672.19 304
diffmvspermissive67.42 20667.50 20467.20 23162.26 34945.21 27364.87 27677.04 18748.21 25971.74 23179.70 25258.40 19271.17 26464.99 11880.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNet (Re-imp)62.74 25863.21 25361.34 28672.19 25531.56 36967.31 24553.87 34453.60 20469.88 25783.37 19940.52 30670.98 26541.40 31086.78 18981.48 190
jason64.47 23962.84 25669.34 19976.91 18459.20 15767.15 24665.67 27835.29 35665.16 30176.74 28844.67 28070.68 26654.74 21079.28 27978.14 246
jason: jason.
lupinMVS63.36 24961.49 26568.97 20774.93 20959.19 15865.80 26564.52 29134.68 36163.53 31874.25 31043.19 28970.62 26753.88 22278.67 28577.10 259
新几何169.99 18988.37 3471.34 5162.08 30443.85 29474.99 18486.11 16352.85 23270.57 26850.99 23983.23 23768.05 339
Anonymous20240521166.02 22266.89 21363.43 26574.22 22438.14 32959.00 31966.13 27563.33 10769.76 25985.95 16851.88 23670.50 26944.23 29487.52 17181.64 188
LF4IMVS67.50 20267.31 20768.08 22258.86 37061.93 12771.43 18275.90 19944.67 29172.42 22480.20 24357.16 20770.44 27058.99 17586.12 19671.88 306
CANet_DTU64.04 24563.83 24564.66 25168.39 29942.97 29273.45 15674.50 21152.05 21854.78 36775.44 29843.99 28470.42 27153.49 22578.41 28880.59 212
TransMVSNet (Re)69.62 17271.63 15363.57 26276.51 19035.93 34565.75 26671.29 24161.05 12175.02 18389.90 7865.88 12170.41 27249.79 24789.48 14184.38 117
VPA-MVSNet68.71 18670.37 16763.72 26076.13 19538.06 33164.10 28471.48 23556.60 16474.10 20188.31 11464.78 13269.72 27347.69 27190.15 12483.37 145
pmmvs671.82 14773.66 11866.31 24175.94 20042.01 29866.99 24872.53 22563.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 11987.22 56
KD-MVS_self_test66.38 21967.51 20362.97 27061.76 35134.39 35658.11 32875.30 20350.84 23577.12 14885.42 17256.84 21369.44 27551.07 23891.16 9785.08 91
patchmatchnet-post68.99 35231.32 35669.38 276
SCA58.57 29158.04 29260.17 29570.17 28041.07 30565.19 27353.38 35043.34 30661.00 33373.48 31745.20 27669.38 27640.34 31770.31 35270.05 322
Baseline_NR-MVSNet70.62 15973.19 12762.92 27276.97 18234.44 35568.84 21870.88 24960.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
tfpnnormal66.48 21867.93 19762.16 27873.40 23636.65 33863.45 29064.99 28555.97 16872.82 21987.80 12357.06 21169.10 27948.31 26487.54 17080.72 208
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 31362.04 12670.69 19669.85 25539.46 33269.59 26081.09 22958.15 19568.73 28067.51 9678.16 29277.07 262
test_fmvsmvis_n_192072.36 14272.49 14071.96 16071.29 26364.06 11372.79 16181.82 9740.23 32981.25 10381.04 23070.62 7568.69 28169.74 7983.60 23483.14 152
pmmvs-eth3d64.41 24163.27 25267.82 22675.81 20260.18 15369.49 20962.05 30538.81 33874.13 20082.23 21743.76 28668.65 28242.53 30280.63 26674.63 277
pmmvs460.78 27459.04 28366.00 24473.06 24757.67 17364.53 28160.22 31136.91 35065.96 29577.27 28439.66 31268.54 28338.87 32474.89 31571.80 307
pm-mvs168.40 18969.85 17164.04 25873.10 24539.94 31464.61 28070.50 25155.52 17373.97 20589.33 8563.91 13768.38 28449.68 24988.02 16583.81 129
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 31661.38 13470.03 20369.15 26038.59 33968.41 27780.36 24056.56 21668.32 28566.10 11077.45 29676.46 263
GG-mvs-BLEND52.24 33560.64 35829.21 38269.73 20842.41 38845.47 39252.33 39620.43 39768.16 28625.52 39265.42 37159.36 378
test_fmvsm_n_192069.63 17168.45 18973.16 13070.56 27265.86 9870.26 20178.35 16837.69 34574.29 19778.89 26761.10 16768.10 28765.87 11479.07 28085.53 83
tpmvs55.84 30155.45 31157.01 31360.33 35933.20 36265.89 26259.29 31547.52 26856.04 36073.60 31631.05 36168.06 28840.64 31564.64 37269.77 326
CMPMVSbinary48.73 2061.54 26960.89 27063.52 26361.08 35551.55 20668.07 23368.00 26733.88 36365.87 29681.25 22737.91 32267.71 28949.32 25382.60 24171.31 312
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet59.21 28658.44 28961.51 28373.94 22947.76 24771.31 18664.56 29026.91 38860.34 33670.44 33736.24 33167.65 29053.57 22468.66 36169.12 333
VPNet65.58 22567.56 20259.65 29879.72 13930.17 37760.27 31362.14 30254.19 19471.24 24286.63 14558.80 18967.62 29144.17 29590.87 11281.18 192
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26561.17 13874.00 15457.18 32540.77 32368.83 27580.88 23263.11 14167.61 29266.94 10674.72 31682.33 178
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28961.16 13973.34 15756.83 32840.96 32068.36 27880.08 24762.84 14267.57 29366.90 10874.50 32081.78 186
EU-MVSNet60.82 27360.80 27260.86 29168.37 30041.16 30372.27 16368.27 26626.96 38669.08 26575.71 29332.09 34867.44 29455.59 20378.90 28273.97 284
testdata267.30 29548.34 263
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21371.97 17179.36 14850.34 23982.81 8383.63 19464.38 13467.27 29661.54 14883.71 23280.71 209
testing358.28 29258.38 29058.00 30977.45 17726.12 39360.78 30943.00 38656.02 16770.18 25375.76 29213.27 41167.24 29748.02 26780.89 26080.65 210
HY-MVS49.31 1957.96 29457.59 29559.10 30266.85 32036.17 34265.13 27465.39 28339.24 33554.69 36978.14 27644.28 28367.18 29833.75 36270.79 34873.95 285
fmvsm_s_conf0.1_n66.60 21665.54 22569.77 19268.99 29559.15 16172.12 16756.74 33040.72 32568.25 28180.14 24661.18 16666.92 29967.34 10374.40 32183.23 150
fmvsm_s_conf0.5_n66.34 22165.27 22869.57 19568.20 30359.14 16371.66 17956.48 33140.92 32167.78 28379.46 25561.23 16366.90 30067.39 9974.32 32482.66 167
VNet64.01 24665.15 23460.57 29273.28 23835.61 34857.60 33067.08 27054.61 18566.76 29383.37 19956.28 21766.87 30142.19 30485.20 20979.23 232
gg-mvs-nofinetune55.75 30256.75 30152.72 33462.87 34628.04 38568.92 21741.36 39571.09 4150.80 38192.63 1220.74 39566.86 30229.97 37572.41 33663.25 364
ab-mvs64.11 24465.13 23561.05 28871.99 25738.03 33267.59 23668.79 26249.08 25565.32 30086.26 15658.02 20266.85 30339.33 32079.79 27578.27 243
IterMVS63.12 25362.48 25965.02 25066.34 32352.86 20063.81 28662.25 30146.57 27371.51 23980.40 23944.60 28166.82 30451.38 23675.47 31075.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CNLPA73.44 11573.03 13274.66 10578.27 16375.29 2675.99 12778.49 16665.39 7875.67 17583.22 20861.23 16366.77 30553.70 22385.33 20681.92 184
MS-PatchMatch55.59 30554.89 31457.68 31069.18 29149.05 23161.00 30762.93 30035.98 35358.36 34768.93 35536.71 32966.59 30637.62 33663.30 37657.39 382
CHOSEN 1792x268858.09 29356.30 30463.45 26479.95 13750.93 21054.07 35465.59 28028.56 38261.53 32774.33 30841.09 30266.52 30733.91 36067.69 36772.92 294
PM-MVS64.49 23863.61 24867.14 23376.68 18975.15 2768.49 22842.85 38751.17 23277.85 13980.51 23745.76 27266.31 30852.83 22976.35 30259.96 376
testing9155.74 30355.29 31357.08 31270.63 26930.85 37454.94 34956.31 33550.34 23957.08 35270.10 34424.50 38865.86 30936.98 34276.75 30074.53 279
testing9955.16 30854.56 31756.98 31470.13 28230.58 37654.55 35254.11 34349.53 25056.76 35670.14 34322.76 39265.79 31036.99 34176.04 30574.57 278
testing1153.13 32152.26 33155.75 32070.44 27631.73 36854.75 35052.40 35544.81 29052.36 37668.40 36121.83 39365.74 31132.64 36672.73 33469.78 325
testing22253.37 31952.50 32955.98 31970.51 27529.68 37956.20 33951.85 35746.19 27556.76 35668.94 35419.18 40165.39 31225.87 39076.98 29872.87 295
Patchmatch-RL test59.95 28159.12 28262.44 27572.46 25354.61 19059.63 31647.51 37341.05 31974.58 19374.30 30931.06 36065.31 31351.61 23379.85 27267.39 341
tpm cat154.02 31652.63 32758.19 30764.85 33839.86 31566.26 25857.28 32232.16 37156.90 35470.39 33932.75 34465.30 31434.29 35858.79 38769.41 330
1112_ss59.48 28458.99 28460.96 29077.84 17042.39 29761.42 30368.45 26537.96 34359.93 34067.46 36545.11 27865.07 31540.89 31471.81 34275.41 271
ANet_high67.08 21069.94 16958.51 30657.55 37527.09 38858.43 32576.80 19163.56 10182.40 8791.93 2059.82 18064.98 31650.10 24688.86 15683.46 141
KD-MVS_2432*160052.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
miper_refine_blended52.05 33151.58 33453.44 33052.11 39531.20 37044.88 38164.83 28841.53 31364.37 30570.03 34515.61 40864.20 31736.25 34674.61 31864.93 358
JIA-IIPM54.03 31551.62 33361.25 28759.14 36955.21 18659.10 31847.72 37150.85 23450.31 38585.81 17020.10 39863.97 31936.16 34955.41 39564.55 361
ppachtmachnet_test60.26 27959.61 28062.20 27767.70 31044.33 27958.18 32760.96 30940.75 32465.80 29772.57 32441.23 29963.92 32046.87 27782.42 24278.33 241
baseline157.82 29558.36 29156.19 31769.17 29230.76 37562.94 29755.21 33746.04 27663.83 31378.47 27041.20 30063.68 32139.44 31968.99 35974.13 283
Test_1112_low_res58.78 28958.69 28659.04 30379.41 14338.13 33057.62 32966.98 27134.74 35959.62 34377.56 28242.92 29163.65 32238.66 32670.73 34975.35 273
CL-MVSNet_self_test62.44 26163.40 25059.55 29972.34 25432.38 36456.39 33664.84 28751.21 23167.46 28881.01 23150.75 24463.51 32338.47 32988.12 16382.75 164
CR-MVSNet58.96 28758.49 28860.36 29466.37 32148.24 23770.93 19256.40 33332.87 36961.35 32886.66 14233.19 34063.22 32448.50 26170.17 35369.62 328
Gipumacopyleft69.55 17472.83 13559.70 29763.63 34453.97 19480.08 7875.93 19864.24 9473.49 20988.93 10157.89 20362.46 32559.75 17091.55 9062.67 367
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
EPNet_dtu58.93 28858.52 28760.16 29667.91 30847.70 24869.97 20458.02 31749.73 24747.28 38973.02 32238.14 31962.34 32636.57 34585.99 19970.43 320
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testdata64.13 25585.87 5963.34 11861.80 30747.83 26476.42 17086.60 14748.83 25962.31 32754.46 21481.26 25866.74 348
SDMVSNet66.36 22067.85 20061.88 28073.04 24846.14 26758.54 32371.36 23851.42 22668.93 27082.72 21165.62 12262.22 32854.41 21584.67 21677.28 255
FPMVS59.43 28560.07 27657.51 31177.62 17671.52 4962.33 29950.92 35957.40 15569.40 26280.00 24839.14 31561.92 32937.47 33766.36 36939.09 399
MDA-MVSNet-bldmvs62.34 26261.73 26064.16 25461.64 35249.90 22248.11 37257.24 32453.31 20780.95 10679.39 25749.00 25861.55 33045.92 28480.05 27081.03 196
旧先验271.17 18945.11 28778.54 13161.28 33159.19 174
UWE-MVS52.94 32352.70 32653.65 32873.56 23227.49 38757.30 33249.57 36538.56 34062.79 32271.42 33319.49 40060.41 33224.33 39677.33 29773.06 292
miper_lstm_enhance61.97 26361.63 26362.98 26960.04 36045.74 27047.53 37470.95 24744.04 29373.06 21578.84 26839.72 31160.33 33355.82 20084.64 21982.88 159
ETVMVS50.32 34149.87 34951.68 33870.30 27926.66 39052.33 36243.93 38243.54 30154.91 36667.95 36320.01 39960.17 33422.47 39873.40 32968.22 336
Patchmtry60.91 27263.01 25554.62 32566.10 32726.27 39267.47 23956.40 33354.05 19772.04 23086.66 14233.19 34060.17 33443.69 29687.45 17477.42 253
MDTV_nov1_ep1354.05 32065.54 33029.30 38159.00 31955.22 33635.96 35452.44 37475.98 29130.77 36359.62 33638.21 33073.33 331
test_post166.63 2542.08 40530.66 36459.33 33740.34 317
PatchMatch-RL58.68 29057.72 29461.57 28276.21 19473.59 3961.83 30049.00 36847.30 26961.08 33068.97 35350.16 24859.01 33836.06 35168.84 36052.10 386
Syy-MVS54.13 31355.45 31150.18 34568.77 29623.59 39755.02 34644.55 38043.80 29558.05 34964.07 37446.22 27158.83 33946.16 28272.36 33768.12 337
myMVS_eth3d50.36 34050.52 34549.88 34668.77 29622.69 39955.02 34644.55 38043.80 29558.05 34964.07 37414.16 41058.83 33933.90 36172.36 33768.12 337
PatchmatchNetpermissive54.60 31154.27 31855.59 32165.17 33439.08 31866.92 25051.80 35839.89 33058.39 34673.12 32131.69 35458.33 34143.01 30158.38 39069.38 331
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
our_test_356.46 29956.51 30256.30 31667.70 31039.66 31655.36 34552.34 35640.57 32763.85 31269.91 34740.04 30958.22 34243.49 29975.29 31471.03 317
sd_testset63.55 24765.38 22758.07 30873.04 24838.83 32357.41 33165.44 28251.42 22668.93 27082.72 21163.76 13858.11 34341.05 31284.67 21677.28 255
MIMVSNet166.57 21769.23 17758.59 30581.26 12737.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 34441.77 30889.58 14079.95 220
SSC-MVS61.79 26666.08 21948.89 35576.91 18410.00 40953.56 35647.37 37468.20 5876.56 16389.21 8954.13 22657.59 34554.75 20974.07 32579.08 234
pmmvs552.49 32852.58 32852.21 33654.99 38732.38 36455.45 34453.84 34532.15 37255.49 36474.81 30038.08 32057.37 34634.02 35974.40 32166.88 345
MVS-HIRNet45.53 35447.29 35440.24 37962.29 34826.82 38956.02 34137.41 40129.74 38143.69 39981.27 22633.96 33655.48 34724.46 39556.79 39138.43 400
WB-MVS60.04 28064.19 24247.59 35776.09 19610.22 40852.44 36146.74 37565.17 8474.07 20287.48 12453.48 22955.28 34849.36 25272.84 33377.28 255
FMVSNet555.08 30955.54 31053.71 32765.80 32833.50 36156.22 33852.50 35443.72 29961.06 33183.38 19825.46 38454.87 34930.11 37481.64 25672.75 297
test_post1.99 40630.91 36254.76 350
ADS-MVSNet248.76 34647.25 35553.29 33255.90 38340.54 31147.34 37554.99 33931.41 37750.48 38272.06 32631.23 35754.26 35125.93 38855.93 39265.07 356
PVSNet43.83 2151.56 33451.17 33752.73 33368.34 30138.27 32748.22 37153.56 34836.41 35154.29 37064.94 37334.60 33554.20 35230.34 37269.87 35565.71 352
WB-MVSnew53.94 31854.76 31551.49 34071.53 26028.05 38458.22 32650.36 36237.94 34459.16 34470.17 34249.21 25551.94 35324.49 39471.80 34374.47 281
test_fmvs356.78 29855.99 30759.12 30153.96 39348.09 24058.76 32266.22 27427.54 38476.66 16068.69 35925.32 38651.31 35453.42 22773.38 33077.97 251
pmmvs346.71 35145.09 36151.55 33956.76 37948.25 23655.78 34339.53 39924.13 39550.35 38463.40 37615.90 40751.08 35529.29 37970.69 35055.33 385
MIMVSNet54.39 31256.12 30649.20 35172.57 25230.91 37359.98 31448.43 37041.66 31255.94 36183.86 19241.19 30150.42 35626.05 38775.38 31266.27 349
Anonymous2024052163.55 24766.07 22055.99 31866.18 32644.04 28168.77 22368.80 26146.99 27072.57 22185.84 16939.87 31050.22 35753.40 22892.23 8173.71 288
test_fmvs254.80 31054.11 31956.88 31551.76 39749.95 22156.70 33565.80 27726.22 38969.42 26165.25 37231.82 35249.98 35849.63 25070.36 35170.71 318
PatchT53.35 32056.47 30343.99 37364.19 34017.46 40459.15 31743.10 38552.11 21754.74 36886.95 13129.97 36949.98 35843.62 29774.40 32164.53 362
dmvs_testset45.26 35547.51 35338.49 38259.96 36314.71 40658.50 32443.39 38441.30 31551.79 37856.48 39139.44 31449.91 36021.42 40055.35 39650.85 387
patch_mono-262.73 25964.08 24358.68 30470.36 27855.87 18160.84 30864.11 29441.23 31664.04 30978.22 27460.00 17648.80 36154.17 21983.71 23271.37 310
tpmrst50.15 34251.38 33646.45 36356.05 38124.77 39564.40 28349.98 36336.14 35253.32 37369.59 34935.16 33348.69 36239.24 32158.51 38965.89 350
test_fmvs1_n52.70 32552.01 33254.76 32353.83 39450.36 21455.80 34265.90 27624.96 39265.39 29960.64 38627.69 37548.46 36345.88 28567.99 36465.46 353
test_fmvs151.51 33550.86 34253.48 32949.72 40049.35 23054.11 35364.96 28624.64 39463.66 31659.61 38928.33 37448.45 36445.38 29067.30 36862.66 368
new-patchmatchnet52.89 32455.76 30944.26 37259.94 3646.31 41037.36 39450.76 36141.10 31764.28 30779.82 25044.77 27948.43 36536.24 34887.61 16978.03 248
test20.0355.74 30357.51 29650.42 34459.89 36532.09 36650.63 36649.01 36750.11 24365.07 30283.23 20645.61 27448.11 36630.22 37383.82 22971.07 316
test_vis1_n_192052.96 32253.50 32151.32 34159.15 36844.90 27556.13 34064.29 29330.56 38059.87 34160.68 38540.16 30847.47 36748.25 26562.46 37861.58 373
test_vis1_n51.27 33650.41 34653.83 32656.99 37750.01 22056.75 33460.53 31025.68 39059.74 34257.86 39029.40 37147.41 36843.10 30063.66 37564.08 363
UnsupCasMVSNet_bld50.01 34351.03 34046.95 35958.61 37132.64 36348.31 37053.27 35134.27 36260.47 33571.53 33141.40 29847.07 36930.68 37160.78 38361.13 374
EMVS44.61 36044.45 36545.10 36948.91 40143.00 29137.92 39241.10 39746.75 27238.00 40248.43 40026.42 37946.27 37037.11 34075.38 31246.03 393
UnsupCasMVSNet_eth52.26 32953.29 32449.16 35255.08 38633.67 36050.03 36758.79 31637.67 34663.43 32074.75 30341.82 29745.83 37138.59 32859.42 38667.98 340
XXY-MVS55.19 30757.40 29748.56 35664.45 33934.84 35451.54 36453.59 34638.99 33763.79 31479.43 25656.59 21445.57 37236.92 34371.29 34565.25 355
PMMVS44.69 35843.95 36646.92 36050.05 39953.47 19848.08 37342.40 38922.36 39844.01 39853.05 39542.60 29445.49 37331.69 36861.36 38241.79 397
WTY-MVS49.39 34550.31 34746.62 36261.22 35432.00 36746.61 37749.77 36433.87 36454.12 37169.55 35041.96 29645.40 37431.28 37064.42 37362.47 369
E-PMN45.17 35645.36 35944.60 37050.07 39842.75 29338.66 39142.29 39146.39 27439.55 40051.15 39726.00 38145.37 37537.68 33476.41 30145.69 394
PVSNet_036.71 2241.12 36640.78 36942.14 37559.97 36240.13 31340.97 38642.24 39230.81 37944.86 39549.41 39940.70 30545.12 37623.15 39734.96 40241.16 398
test_cas_vis1_n_192050.90 33750.92 34150.83 34354.12 39247.80 24551.44 36554.61 34026.95 38763.95 31160.85 38437.86 32444.97 37745.53 28762.97 37759.72 377
dp44.09 36144.88 36341.72 37858.53 37223.18 39854.70 35142.38 39034.80 35844.25 39765.61 37124.48 38944.80 37829.77 37649.42 39857.18 383
test-LLR50.43 33950.69 34449.64 34960.76 35641.87 29953.18 35745.48 37843.41 30449.41 38660.47 38729.22 37244.73 37942.09 30572.14 34062.33 371
test-mter48.56 34748.20 35249.64 34960.76 35641.87 29953.18 35745.48 37831.91 37549.41 38660.47 38718.34 40244.73 37942.09 30572.14 34062.33 371
dmvs_re49.91 34450.77 34347.34 35859.98 36138.86 32253.18 35753.58 34739.75 33155.06 36561.58 38336.42 33044.40 38129.15 38268.23 36258.75 379
Anonymous2023120654.13 31355.82 30849.04 35470.89 26435.96 34451.73 36350.87 36034.86 35762.49 32379.22 26042.52 29544.29 38227.95 38481.88 24766.88 345
YYNet152.58 32653.50 32149.85 34754.15 39036.45 34140.53 38746.55 37738.09 34275.52 17973.31 32041.08 30343.88 38341.10 31171.14 34769.21 332
MDA-MVSNet_test_wron52.57 32753.49 32349.81 34854.24 38936.47 34040.48 38846.58 37638.13 34175.47 18073.32 31941.05 30443.85 38440.98 31371.20 34669.10 334
test0.0.03 147.72 34948.31 35145.93 36455.53 38529.39 38046.40 37841.21 39643.41 30455.81 36367.65 36429.22 37243.77 38525.73 39169.87 35564.62 360
testgi54.00 31756.86 30045.45 36658.20 37325.81 39449.05 36849.50 36645.43 28367.84 28281.17 22851.81 23943.20 38629.30 37879.41 27867.34 343
tpm50.60 33852.42 33045.14 36865.18 33326.29 39160.30 31243.50 38337.41 34757.01 35379.09 26430.20 36842.32 38732.77 36566.36 36966.81 347
CHOSEN 280x42041.62 36539.89 37046.80 36161.81 35051.59 20533.56 39735.74 40227.48 38537.64 40353.53 39323.24 39142.09 38827.39 38558.64 38846.72 392
EPMVS45.74 35346.53 35643.39 37454.14 39122.33 40155.02 34635.00 40334.69 36051.09 38070.20 34125.92 38242.04 38937.19 33855.50 39465.78 351
sss47.59 35048.32 35045.40 36756.73 38033.96 35845.17 38048.51 36932.11 37452.37 37565.79 37040.39 30741.91 39031.85 36761.97 38060.35 375
TESTMET0.1,145.17 35644.93 36245.89 36556.02 38238.31 32653.18 35741.94 39327.85 38344.86 39556.47 39217.93 40341.50 39138.08 33268.06 36357.85 380
mvsany_test343.76 36341.01 36752.01 33748.09 40257.74 17242.47 38523.85 40923.30 39764.80 30362.17 38127.12 37640.59 39229.17 38148.11 39957.69 381
test_vis1_rt46.70 35245.24 36051.06 34244.58 40551.04 20939.91 38967.56 26821.84 40051.94 37750.79 39833.83 33739.77 39335.25 35561.50 38162.38 370
ADS-MVSNet44.62 35945.58 35841.73 37755.90 38320.83 40247.34 37539.94 39831.41 37750.48 38272.06 32631.23 35739.31 39425.93 38855.93 39265.07 356
DSMNet-mixed43.18 36444.66 36438.75 38154.75 38828.88 38357.06 33327.42 40613.47 40247.27 39077.67 28138.83 31639.29 39525.32 39360.12 38548.08 390
test_vis3_rt51.94 33351.04 33954.65 32446.32 40450.13 21844.34 38378.17 17223.62 39668.95 26962.81 37821.41 39438.52 39641.49 30972.22 33975.30 274
mvsany_test137.88 36735.74 37244.28 37147.28 40349.90 22236.54 39524.37 40819.56 40145.76 39153.46 39432.99 34237.97 39726.17 38635.52 40144.99 396
wuyk23d61.97 26366.25 21749.12 35358.19 37460.77 14966.32 25752.97 35255.93 17090.62 586.91 13273.07 5735.98 39820.63 40291.63 8750.62 388
Patchmatch-test47.93 34849.96 34841.84 37657.42 37624.26 39648.75 36941.49 39439.30 33456.79 35573.48 31730.48 36533.87 39929.29 37972.61 33567.39 341
N_pmnet52.06 33051.11 33854.92 32259.64 36771.03 5337.42 39361.62 30833.68 36557.12 35172.10 32537.94 32131.03 40029.13 38371.35 34462.70 366
test_f43.79 36245.63 35738.24 38342.29 40838.58 32434.76 39647.68 37222.22 39967.34 28963.15 37731.82 35230.60 40139.19 32262.28 37945.53 395
PMMVS237.74 36840.87 36828.36 38542.41 4075.35 41124.61 39827.75 40532.15 37247.85 38870.27 34035.85 33229.51 40219.08 40367.85 36550.22 389
new_pmnet37.55 36939.80 37130.79 38456.83 37816.46 40539.35 39030.65 40425.59 39145.26 39361.60 38224.54 38728.02 40321.60 39952.80 39747.90 391
MVEpermissive27.91 2336.69 37035.64 37339.84 38043.37 40635.85 34619.49 39924.61 40724.68 39339.05 40162.63 38038.67 31827.10 40421.04 40147.25 40056.56 384
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method19.26 37119.12 37519.71 3869.09 4101.91 4137.79 40153.44 3491.42 40410.27 40635.80 40117.42 40525.11 40512.44 40424.38 40432.10 401
DeepMVS_CXcopyleft11.83 38715.51 40913.86 40711.25 4125.76 40320.85 40526.46 40217.06 4069.22 4069.69 40613.82 40512.42 402
tmp_tt11.98 37314.73 3763.72 3882.28 4114.62 41219.44 40014.50 4110.47 40621.55 4049.58 40425.78 3834.57 40711.61 40527.37 4031.96 403
testmvs4.06 3775.28 3800.41 3890.64 4130.16 41542.54 3840.31 4140.26 4080.50 4091.40 4080.77 4120.17 4080.56 4070.55 4070.90 404
test1234.43 3765.78 3790.39 3900.97 4120.28 41446.33 3790.45 4130.31 4070.62 4081.50 4070.61 4130.11 4090.56 4070.63 4060.77 405
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k17.71 37223.62 3740.00 3910.00 4140.00 4160.00 40270.17 2540.00 4090.00 41074.25 31068.16 950.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas5.20 3756.93 3780.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40962.39 1490.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re5.62 3747.50 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41067.46 3650.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS22.69 39936.10 350
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
eth-test20.00 414
eth-test0.00 414
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
IU-MVS86.12 5360.90 14480.38 13045.49 28281.31 10175.64 4194.39 4184.65 102
save fliter87.00 3967.23 8679.24 8577.94 17756.65 163
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
GSMVS70.05 322
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35570.05 322
sam_mvs31.21 359
MTGPAbinary80.63 124
MTMP84.83 3119.26 410
test9_res72.12 6991.37 9277.40 254
agg_prior270.70 7490.93 10778.55 240
test_prior470.14 6377.57 101
test_prior275.57 13258.92 13976.53 16686.78 13667.83 10069.81 7792.76 73
新几何271.33 185
旧先验184.55 7860.36 15263.69 29687.05 13054.65 22383.34 23669.66 327
原ACMM274.78 142
test22287.30 3769.15 7367.85 23459.59 31441.06 31873.05 21685.72 17148.03 26680.65 26466.92 344
segment_acmp68.30 94
testdata168.34 23057.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 170
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 415
nn0.00 415
door-mid55.02 338
test1182.71 85
door52.91 353
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 234
ACMP_Plane82.37 11077.32 10659.08 13471.58 234
BP-MVS67.38 101
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9463.07 12185.97 166
MDTV_nov1_ep13_2view18.41 40353.74 35531.57 37644.89 39429.90 37032.93 36471.48 309
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145