This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
dcpmvs_297.12 12797.99 5494.51 30299.11 9484.00 35897.75 7699.65 997.38 8099.14 3798.42 11395.16 14899.96 295.52 13999.78 5699.58 39
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12099.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4699.93 397.71 5299.91 1999.70 26
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 9899.92 597.88 4299.98 299.85 3
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14699.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4299.92 597.79 4899.93 1199.79 10
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4699.92 597.64 5699.92 1699.75 19
MVSFormer96.14 18296.36 17495.49 25397.68 27187.81 30398.67 1599.02 7596.50 10894.48 30996.15 30086.90 30099.92 598.73 2299.13 21898.74 221
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7596.50 10899.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
K. test v396.44 17196.28 17796.95 17499.41 4291.53 23297.65 8390.31 38398.89 2098.93 5099.36 2184.57 31899.92 597.81 4699.56 11199.39 104
v7n98.73 1198.99 597.95 9899.64 1494.20 15598.67 1599.14 4799.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15599.35 2599.37 1997.38 4199.90 1498.59 2899.91 1999.77 12
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30397.99 4999.15 3699.35 2389.84 26799.90 1498.64 2699.90 2499.82 6
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12199.05 1399.01 4498.65 9195.37 14299.90 1497.57 5799.91 1999.77 12
HyFIR lowres test93.72 28292.65 29996.91 17998.93 11691.81 22991.23 36798.52 18282.69 37696.46 24396.52 28480.38 34199.90 1490.36 30498.79 25799.03 176
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 13999.89 1897.95 4199.91 1999.75 19
SixPastTwentyTwo97.49 10897.57 10097.26 15399.56 2192.33 20898.28 4296.97 29298.30 3899.45 1899.35 2388.43 28499.89 1898.01 3999.76 5899.54 53
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14199.05 6698.67 2498.84 5998.45 11097.58 3699.88 2096.45 9299.86 3199.54 53
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6698.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
patch_mono-296.59 16396.93 13995.55 25098.88 12287.12 31794.47 27399.30 2794.12 21296.65 23498.41 11494.98 15599.87 2295.81 12599.78 5699.66 30
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28496.92 25996.81 8199.87 2296.87 8299.76 5898.51 246
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26397.19 24196.88 7599.86 2497.50 6099.73 6798.41 253
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8297.82 16699.11 4796.75 8399.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21199.02 7598.11 4498.31 11397.69 20394.65 16499.85 2797.02 7799.71 7499.48 76
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21398.87 11197.57 6798.31 11397.83 18894.69 16099.85 2797.02 7799.71 7499.46 81
EPP-MVSNet96.84 14496.58 15997.65 11799.18 8093.78 17098.68 1496.34 30697.91 5197.30 18698.06 16688.46 28399.85 2793.85 22599.40 17199.32 115
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 16996.99 12399.65 996.74 9799.47 1798.93 6496.91 7299.84 3090.11 30699.06 23198.32 265
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10398.49 3199.38 2299.14 4695.44 14199.84 3096.47 9199.80 5199.47 79
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9797.71 6198.85 5799.10 4891.35 24399.83 3298.47 3099.90 2499.64 35
ANet_high98.31 3198.94 696.41 21199.33 5389.64 26197.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10798.73 14997.69 6397.90 15797.96 17695.81 12899.82 3496.13 10499.61 9899.45 85
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26797.01 25396.99 6499.82 3497.66 5599.64 8998.39 256
MM96.87 14396.62 15597.62 11997.72 26893.30 18596.39 15592.61 36197.90 5296.76 22798.64 9290.46 25599.81 3699.16 999.94 899.76 17
tttt051793.31 29592.56 30295.57 24798.71 14287.86 30097.44 9987.17 39695.79 14797.47 18196.84 26364.12 39299.81 3696.20 10199.32 19299.02 179
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24398.99 8795.84 14598.78 6498.08 15996.84 7999.81 3693.98 22199.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32198.69 496.42 15498.09 23895.86 14495.15 29295.54 32294.26 17599.81 3694.06 21698.51 28398.47 250
MVS_030496.62 16296.40 17297.28 15097.91 23492.30 20996.47 15389.74 38897.52 7195.38 28898.63 9392.76 20899.81 3699.28 499.93 1199.75 19
MSP-MVS97.45 11196.92 14199.03 599.26 5997.70 1897.66 8298.89 10395.65 15398.51 8596.46 28692.15 22799.81 3695.14 16898.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19198.35 3599.21 3398.43 3298.89 5498.83 7494.30 17499.81 3697.87 4399.91 1999.77 12
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13698.59 8098.69 8696.94 6799.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Anonymous2024052197.07 12997.51 10695.76 23999.35 5188.18 29197.78 7298.40 19797.11 8798.34 10799.04 5389.58 26999.79 4498.09 3699.93 1199.30 120
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 9898.84 12195.76 14896.93 21797.43 22097.26 4899.79 4496.06 10599.53 12599.45 85
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6695.43 16697.41 18497.50 21697.98 1999.79 4495.58 13899.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3396.29 17695.63 20698.26 7098.50 17396.11 7396.90 12797.09 28796.58 10397.21 19198.19 14784.14 32099.78 4795.89 11996.17 36398.89 201
FIs97.93 6598.07 4597.48 13599.38 4892.95 19498.03 6199.11 5098.04 4898.62 7698.66 8893.75 18899.78 4797.23 6699.84 4099.73 22
MP-MVScopyleft97.64 9697.18 12499.00 999.32 5597.77 1797.49 9798.73 14996.27 11795.59 28297.75 19796.30 10899.78 4793.70 23199.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 11899.06 6295.45 16397.55 17297.94 17997.11 5399.78 4794.77 18999.46 15199.48 76
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19799.04 7297.51 7298.22 12197.81 19294.68 16299.78 4797.14 7299.75 6599.41 99
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 14997.79 5399.42 2097.83 18894.40 17299.78 4795.91 11899.76 5899.46 81
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 7898.78 14196.04 13197.10 20097.73 20096.53 9399.78 4795.16 16599.50 13999.46 81
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9496.11 12696.89 22097.45 21896.85 7899.78 4795.19 16199.63 9199.38 106
PVSNet_Blended_VisFu95.95 19095.80 19996.42 20999.28 5790.62 24995.31 23799.08 5888.40 32896.97 21598.17 15092.11 22999.78 4793.64 23299.21 20798.86 208
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11798.98 9095.75 15097.62 17097.59 20997.61 3599.77 5696.34 9699.44 15599.36 112
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10398.83 12797.32 8298.06 14197.85 18796.65 8699.77 5695.00 17799.11 22299.32 115
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11298.79 13795.96 13697.53 17397.40 22296.93 6999.77 5695.04 17499.35 18299.42 97
thisisatest053092.71 30591.76 31395.56 24998.42 18288.23 28996.03 18587.35 39594.04 21696.56 23895.47 32464.03 39399.77 5694.78 18899.11 22298.68 231
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23098.99 8792.45 26898.11 13398.31 12497.25 4999.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.60 9199.76 6195.49 14099.20 20899.26 132
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8698.84 12196.00 13497.22 18997.62 20796.87 7799.76 6195.48 14399.43 16399.46 81
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 8898.83 12796.05 12997.46 18297.63 20696.77 8299.76 6195.61 13599.46 15199.49 70
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11398.90 10296.58 10398.08 13897.87 18697.02 6299.76 6195.25 15899.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
RPMNet94.68 24994.60 24694.90 28295.44 36788.15 29296.18 17398.86 11497.43 7494.10 31698.49 10579.40 34399.76 6195.69 12895.81 36696.81 356
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9495.75 15097.91 15698.06 16696.89 7399.76 6195.32 15599.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10396.62 9998.62 7698.30 12896.97 6599.75 6795.70 12699.25 20399.21 140
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23199.75 6795.87 12199.51 13599.57 46
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13798.89 10399.75 6795.48 14399.52 13099.53 56
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 34397.63 27196.99 8998.36 10498.54 10187.94 28899.75 6797.07 7699.08 22699.27 131
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9198.92 10097.72 5998.25 11898.13 15397.10 5499.75 6795.44 14799.24 20699.32 115
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16897.76 7599.00 8498.40 3399.07 4298.98 5896.89 7399.75 6797.19 7199.79 5399.55 52
WR-MVS96.90 14196.81 14697.16 15898.56 16392.20 21694.33 27698.12 23697.34 8198.20 12297.33 23392.81 20699.75 6794.79 18699.81 4899.54 53
QAPM95.88 19395.57 20896.80 18697.90 23691.84 22898.18 5398.73 14988.41 32796.42 24498.13 15394.73 15899.75 6788.72 32698.94 24098.81 212
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14399.82 195.44 16599.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
ZD-MVS98.43 18195.94 7998.56 18090.72 29496.66 23297.07 24795.02 15399.74 7691.08 27998.93 242
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7395.88 14297.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
lessismore_v097.05 16899.36 5092.12 21884.07 40198.77 6898.98 5885.36 31299.74 7697.34 6599.37 17499.30 120
APD-MVScopyleft97.00 13296.53 16598.41 5998.55 16496.31 6696.32 16398.77 14292.96 25797.44 18397.58 21195.84 12199.74 7691.96 26199.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
IterMVS-LS96.92 13997.29 11895.79 23898.51 17088.13 29495.10 24698.66 16696.99 8998.46 9398.68 8792.55 21799.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test111194.53 25794.81 23593.72 32199.06 10181.94 37398.31 3983.87 40296.37 11398.49 8899.17 4281.49 33399.73 8296.64 8499.86 3199.49 70
GBi-Net96.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
test196.99 13396.80 14797.56 12297.96 23093.67 17298.23 4698.66 16695.59 15797.99 14799.19 3689.51 27399.73 8294.60 19599.44 15599.30 120
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17298.23 4698.66 16697.41 7899.00 4699.19 3695.47 13999.73 8295.83 12399.76 5899.30 120
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17698.49 2898.88 10996.86 9497.11 19998.55 10095.82 12499.73 8295.94 11699.42 16699.13 156
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17399.73 395.05 18199.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13498.83 12796.11 12699.08 4098.24 14097.87 2399.72 8795.44 14799.51 13599.14 154
test_241102_TWO98.83 12796.11 12698.62 7698.24 14096.92 7199.72 8795.44 14799.49 14299.49 70
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12099.10 5295.32 16997.83 16597.88 18596.44 10199.72 8794.59 19899.39 17299.25 136
ETV-MVS96.13 18395.90 19596.82 18597.76 26193.89 16495.40 22898.95 9695.87 14395.58 28391.00 38696.36 10699.72 8793.36 23798.83 25496.85 352
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8598.20 22193.00 25298.16 12898.06 16695.89 11999.72 8795.67 13099.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16098.79 13795.07 18097.88 15998.35 12097.24 5099.72 8796.05 10799.58 10599.45 85
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14798.84 1199.15 4499.37 399.67 799.43 1595.61 13599.72 8798.12 3499.86 3199.73 22
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22488.42 28493.99 29598.21 21892.98 25395.91 26994.53 34196.39 10399.72 8795.43 15098.19 29595.64 376
iter_conf0593.65 28693.05 28595.46 25596.13 34687.45 31095.95 19598.22 21792.66 26397.04 20897.89 18463.52 39499.72 8796.19 10299.82 4799.21 140
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24997.64 20596.49 9699.72 8795.66 13199.37 17499.45 85
X-MVStestdata92.86 30290.83 32998.94 1599.15 8597.66 1997.77 7398.83 12797.42 7596.32 24936.50 40496.49 9699.72 8795.66 13199.37 17499.45 85
v1097.55 10497.97 5596.31 21598.60 15789.64 26197.44 9999.02 7596.60 10198.72 7299.16 4393.48 19399.72 8798.76 2199.92 1699.58 39
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 18899.64 1294.99 18499.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13798.23 21695.92 13998.40 9898.28 13397.06 5899.71 10295.48 14399.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9998.40 9898.28 13397.10 5499.71 10295.70 12699.62 9299.58 39
CANet95.86 19495.65 20596.49 20596.41 33290.82 24594.36 27598.41 19594.94 18592.62 36196.73 27292.68 21199.71 10295.12 17199.60 10198.94 189
xiu_mvs_v2_base94.22 26594.63 24492.99 34197.32 30484.84 34992.12 34997.84 25491.96 27594.17 31493.43 35396.07 11699.71 10291.27 27597.48 32994.42 386
PS-MVSNAJ94.10 27194.47 25493.00 34097.35 29984.88 34791.86 35497.84 25491.96 27594.17 31492.50 37195.82 12499.71 10291.27 27597.48 32994.40 387
v124096.74 15297.02 13495.91 23498.18 20688.52 28395.39 22998.88 10993.15 24898.46 9398.40 11792.80 20799.71 10298.45 3199.49 14299.49 70
IS-MVSNet96.93 13896.68 15397.70 11399.25 6294.00 16198.57 2096.74 30198.36 3498.14 13197.98 17588.23 28699.71 10293.10 24699.72 7199.38 106
Fast-Effi-MVS+95.49 20895.07 22096.75 19097.67 27492.82 19594.22 28398.60 17491.61 28193.42 34192.90 36296.73 8499.70 11092.60 25197.89 30997.74 317
v14419296.69 15896.90 14396.03 22698.25 19688.92 27595.49 22198.77 14293.05 25098.09 13698.29 13292.51 22299.70 11098.11 3599.56 11199.47 79
v192192096.72 15596.96 13895.99 22798.21 20088.79 28095.42 22598.79 13793.22 24098.19 12698.26 13892.68 21199.70 11098.34 3399.55 11899.49 70
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 8898.84 12196.05 12997.49 17797.54 21297.07 5799.70 11095.61 13599.46 15199.30 120
HPM-MVS++copyleft96.99 13396.38 17398.81 2798.64 14997.59 2395.97 19198.20 22195.51 16195.06 29496.53 28294.10 17899.70 11094.29 20799.15 21599.13 156
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 11899.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7595.15 17698.34 10798.23 14297.91 2199.70 11094.41 20199.73 6799.50 62
test250689.86 34289.16 34791.97 36298.95 11276.83 39798.54 2361.07 41196.20 12197.07 20699.16 4355.19 40599.69 11796.43 9399.83 4399.38 106
tfpnnormal97.72 9097.97 5596.94 17599.26 5992.23 21297.83 7198.45 18898.25 3999.13 3898.66 8896.65 8699.69 11793.92 22399.62 9298.91 197
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14597.18 30994.39 14595.46 22298.73 14996.03 13394.72 30294.92 33596.28 11199.69 11793.81 22697.98 30398.09 284
EI-MVSNet-UG-set97.32 12297.40 11197.09 16697.34 30192.01 22495.33 23597.65 26797.74 5798.30 11598.14 15195.04 15199.69 11797.55 5899.52 13099.58 39
test_040297.84 7797.97 5597.47 13699.19 7994.07 15896.71 14298.73 14998.66 2598.56 8298.41 11496.84 7999.69 11794.82 18499.81 4898.64 232
SSC-MVS95.92 19197.03 13392.58 35299.28 5778.39 38896.68 14495.12 33198.90 1999.11 3998.66 8891.36 24299.68 12295.00 17799.16 21499.67 28
SMA-MVScopyleft97.48 10997.11 12698.60 4598.83 12696.67 5396.74 13798.73 14991.61 28198.48 9098.36 11996.53 9399.68 12295.17 16399.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16297.36 29892.08 22295.34 23497.65 26797.74 5798.29 11698.11 15795.05 15099.68 12297.50 6099.50 13999.56 50
v897.60 10098.06 4796.23 21798.71 14289.44 26597.43 10198.82 13597.29 8498.74 7099.10 4893.86 18499.68 12298.61 2799.94 899.56 50
VPNet97.26 12497.49 10996.59 19899.47 3590.58 25096.27 16598.53 18197.77 5498.46 9398.41 11494.59 16599.68 12294.61 19499.29 19899.52 58
KD-MVS_self_test97.86 7698.07 4597.25 15499.22 6892.81 19697.55 9198.94 9797.10 8898.85 5798.88 7195.03 15299.67 12897.39 6499.65 8799.26 132
EIA-MVS96.04 18695.77 20196.85 18297.80 25192.98 19396.12 17999.16 4094.65 19493.77 32791.69 38095.68 13299.67 12894.18 21198.85 25197.91 304
v119296.83 14797.06 13196.15 22398.28 19289.29 26795.36 23198.77 14293.73 22298.11 13398.34 12193.02 20499.67 12898.35 3299.58 10599.50 62
CPTT-MVS96.69 15896.08 18598.49 5298.89 12196.64 5597.25 10798.77 14292.89 25896.01 26697.13 24392.23 22699.67 12892.24 25699.34 18599.17 148
FMVSNet593.39 29392.35 30396.50 20495.83 35590.81 24797.31 10498.27 21192.74 26196.27 25398.28 13362.23 39599.67 12890.86 28599.36 17799.03 176
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21497.16 31091.96 22597.74 7898.84 12187.26 33894.36 31198.01 17293.95 18399.67 12890.70 29598.75 26197.35 336
ECVR-MVScopyleft94.37 26394.48 25394.05 31798.95 11283.10 36398.31 3982.48 40496.20 12198.23 12099.16 4381.18 33699.66 13495.95 11599.83 4399.38 106
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10698.99 8796.35 11698.13 13295.95 31195.99 11799.66 13494.36 20699.73 6798.59 238
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15198.92 11892.71 20195.89 19999.41 2493.36 23499.00 4698.44 11296.46 10099.65 13699.09 1199.76 5899.45 85
v114496.84 14497.08 12996.13 22498.42 18289.28 26895.41 22798.67 16494.21 20797.97 15198.31 12493.06 20099.65 13698.06 3899.62 9299.45 85
jason94.39 26294.04 26895.41 25998.29 19087.85 30292.74 33296.75 30085.38 36195.29 28996.15 30088.21 28799.65 13694.24 20999.34 18598.74 221
jason: jason.
FMVSNet296.72 15596.67 15496.87 18197.96 23091.88 22697.15 11398.06 24495.59 15798.50 8798.62 9489.51 27399.65 13694.99 17999.60 10199.07 171
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16298.92 11892.28 21095.83 20299.32 2593.22 24098.91 5398.49 10596.31 10799.64 14099.07 1299.76 5899.40 100
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16396.17 17799.57 1495.66 15299.52 1598.71 8497.04 6099.64 14099.21 799.87 2998.69 228
EPNet93.72 28292.62 30197.03 17187.61 40992.25 21196.27 16591.28 37396.74 9787.65 39597.39 22685.00 31499.64 14092.14 25999.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 27093.42 27996.23 21798.59 15990.85 24494.24 28198.85 11885.49 35792.97 35094.94 33386.01 30699.64 14091.78 26897.92 30698.20 279
v2v48296.78 15197.06 13195.95 23198.57 16188.77 28195.36 23198.26 21295.18 17597.85 16498.23 14292.58 21599.63 14497.80 4799.69 7899.45 85
lupinMVS93.77 27993.28 28295.24 26297.68 27187.81 30392.12 34996.05 30984.52 37094.48 30995.06 33186.90 30099.63 14493.62 23399.13 21898.27 273
FMVSNet395.26 22194.94 22496.22 21996.53 32990.06 25495.99 18997.66 26594.11 21397.99 14797.91 18380.22 34299.63 14494.60 19599.44 15598.96 186
ACMP92.54 1397.47 11097.10 12798.55 4999.04 10696.70 5196.24 17098.89 10393.71 22397.97 15197.75 19797.44 3899.63 14493.22 24399.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D97.77 8697.50 10898.57 4796.24 33597.58 2498.45 3198.85 11898.58 2897.51 17597.94 17995.74 13199.63 14495.19 16198.97 23698.51 246
SDMVSNet97.97 5298.26 3997.11 16299.41 4292.21 21396.92 12698.60 17498.58 2898.78 6499.39 1697.80 2599.62 14994.98 18099.86 3199.52 58
9.1496.69 15298.53 16796.02 18698.98 9093.23 23997.18 19497.46 21796.47 9899.62 14992.99 24799.32 192
VDDNet96.98 13696.84 14497.41 14399.40 4593.26 18897.94 6495.31 32999.26 798.39 10099.18 3987.85 29399.62 14995.13 17099.09 22599.35 114
V4297.04 13097.16 12596.68 19598.59 15991.05 24096.33 16298.36 20294.60 19697.99 14798.30 12893.32 19599.62 14997.40 6399.53 12599.38 106
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17199.02 7593.92 21998.62 7698.99 5797.69 2999.62 14996.18 10399.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 15898.13 4396.93 21798.45 11095.30 14599.62 14995.64 13398.96 23799.24 137
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14498.83 12795.21 17298.36 10498.13 15398.13 1899.62 14996.04 10899.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15397.86 6998.31 21098.79 2299.23 3298.86 7395.76 13099.61 15695.49 14099.36 17799.23 138
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5898.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
test_fmvsmvis_n_192098.08 4598.47 2696.93 17699.03 10793.29 18696.32 16399.65 995.59 15799.71 499.01 5497.66 3299.60 15899.44 299.83 4397.90 305
IB-MVS85.98 2088.63 35486.95 36493.68 32395.12 37484.82 35090.85 37390.17 38587.55 33788.48 39291.34 38358.01 39699.59 15987.24 34993.80 38696.63 362
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4099.59 15997.21 6899.76 5899.40 100
thisisatest051590.43 33489.18 34694.17 31597.07 31485.44 33789.75 38787.58 39488.28 33093.69 33191.72 37965.27 39199.58 16190.59 29798.67 26997.50 331
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12195.61 32298.59 2798.51 8598.72 8292.54 21999.58 16196.02 11099.49 14299.12 161
EI-MVSNet96.63 16196.93 13995.74 24097.26 30688.13 29495.29 23997.65 26796.99 8997.94 15498.19 14792.55 21799.58 16196.91 8099.56 11199.50 62
DELS-MVS96.17 18196.23 17895.99 22797.55 28490.04 25592.38 34698.52 18294.13 21196.55 24097.06 24894.99 15499.58 16195.62 13499.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSTER94.21 26793.93 27295.05 27395.83 35586.46 32695.18 24497.65 26792.41 26997.94 15498.00 17472.39 37899.58 16196.36 9599.56 11199.12 161
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34497.47 27695.49 16298.06 14198.49 10587.94 28899.58 16196.02 11099.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet_DTU94.65 25194.21 26395.96 22995.90 35089.68 26093.92 30097.83 25693.19 24390.12 38295.64 31988.52 28299.57 16793.27 24299.47 14898.62 235
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18197.96 6298.25 21398.58 2898.78 6499.39 1698.21 1499.56 16892.65 25099.86 3199.52 58
iter_conf05_1193.77 27993.29 28195.24 26296.54 32689.14 27291.55 35895.02 33290.16 30593.21 34593.94 35087.37 29799.56 16892.24 25699.56 11197.03 343
Effi-MVS+96.19 18096.01 18796.71 19297.43 29492.19 21796.12 17999.10 5295.45 16393.33 34394.71 33897.23 5199.56 16893.21 24497.54 32698.37 258
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15598.98 9095.05 18198.06 14198.02 17095.86 12099.56 16894.37 20499.64 8999.00 180
Test_1112_low_res93.53 29092.86 29195.54 25198.60 15788.86 27892.75 33098.69 15982.66 37792.65 35896.92 25984.75 31699.56 16890.94 28397.76 31398.19 280
AUN-MVS93.95 27892.69 29897.74 11097.80 25195.38 10595.57 22095.46 32691.26 28892.64 35996.10 30574.67 36799.55 17393.72 23096.97 33998.30 269
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18498.20 5198.87 11198.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18695.44 22398.86 11498.20 4298.37 10199.24 3294.69 16099.55 17395.98 11499.79 5399.65 33
hse-mvs295.77 19795.09 21997.79 10797.84 24395.51 9795.66 21195.43 32796.58 10397.21 19196.16 29984.14 32099.54 17695.89 11996.92 34098.32 265
VNet96.84 14496.83 14596.88 18098.06 22092.02 22396.35 16197.57 27397.70 6297.88 15997.80 19392.40 22499.54 17694.73 19198.96 23799.08 169
Anonymous20240521196.34 17595.98 19097.43 14098.25 19693.85 16696.74 13794.41 33997.72 5998.37 10198.03 16987.15 29999.53 17894.06 21699.07 22898.92 196
agg_prior97.80 25194.96 12698.36 20293.49 33799.53 178
UGNet96.81 14996.56 16197.58 12196.64 32493.84 16797.75 7697.12 28696.47 11193.62 33298.88 7193.22 19899.53 17895.61 13599.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST997.84 24395.23 11593.62 30998.39 19886.81 34593.78 32595.99 30794.68 16299.52 181
train_agg95.46 21294.66 24097.88 10297.84 24395.23 11593.62 30998.39 19887.04 34193.78 32595.99 30794.58 16699.52 18191.76 26998.90 24498.89 201
test_897.81 24795.07 12493.54 31298.38 20087.04 34193.71 32995.96 31094.58 16699.52 181
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet95.67 20196.58 15992.94 34397.48 28880.21 38392.96 32598.19 22694.83 18898.82 6198.79 7593.31 19699.51 18595.83 12399.04 23299.12 161
WB-MVS95.50 20796.62 15592.11 36199.21 7577.26 39696.12 17995.40 32898.62 2698.84 5998.26 13891.08 24699.50 18693.37 23698.70 26799.58 39
FE-MVS92.95 30192.22 30595.11 26997.21 30888.33 28898.54 2393.66 34789.91 30896.21 25798.14 15170.33 38599.50 18687.79 33798.24 29497.51 329
EGC-MVSNET83.08 37077.93 37398.53 5099.57 2097.55 2698.33 3898.57 1794.71 40610.38 40798.90 6995.60 13699.50 18695.69 12899.61 9898.55 242
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8497.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17398.57 16192.10 22195.97 19199.18 3897.67 6699.00 4698.48 10997.64 3399.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres600view792.03 31891.43 31593.82 31998.19 20384.61 35196.27 16590.39 38096.81 9596.37 24793.11 35573.44 37699.49 19180.32 38597.95 30597.36 334
ab-mvs96.59 16396.59 15896.60 19798.64 14992.21 21398.35 3597.67 26394.45 20196.99 21298.79 7594.96 15699.49 19190.39 30399.07 22898.08 285
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11698.79 13798.98 1798.74 7098.49 10595.80 12999.49 19195.04 17499.44 15599.11 164
LFMVS95.32 21894.88 23096.62 19698.03 22191.47 23497.65 8390.72 37999.11 997.89 15898.31 12479.20 34499.48 19493.91 22499.12 22198.93 193
Vis-MVSNet (Re-imp)95.11 22894.85 23195.87 23699.12 9389.17 26997.54 9694.92 33496.50 10896.58 23697.27 23683.64 32499.48 19488.42 33199.67 8498.97 185
CHOSEN 280x42089.98 33989.19 34592.37 35795.60 36481.13 37986.22 39597.09 28781.44 38287.44 39693.15 35473.99 36899.47 19688.69 32799.07 22896.52 364
CDS-MVSNet94.88 23894.12 26697.14 16097.64 27793.57 17793.96 29997.06 28990.05 30696.30 25296.55 28086.10 30599.47 19690.10 30799.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 17898.23 4699.05 6697.40 7999.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
testdata299.46 19987.84 336
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24098.48 17688.76 28292.84 32797.25 27996.00 13497.59 17197.95 17891.38 24199.46 19993.16 24596.35 35898.99 183
HQP_MVS96.66 16096.33 17697.68 11698.70 14494.29 15096.50 15198.75 14696.36 11496.16 26096.77 26991.91 23799.46 19992.59 25299.20 20899.28 127
plane_prior598.75 14699.46 19992.59 25299.20 20899.28 127
新几何197.25 15498.29 19094.70 13397.73 26077.98 39494.83 30196.67 27592.08 23199.45 20388.17 33598.65 27397.61 324
NCCC96.52 16795.99 18998.10 8597.81 24795.68 8995.00 25598.20 22195.39 16795.40 28796.36 29293.81 18699.45 20393.55 23498.42 28799.17 148
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4399.45 20394.08 21599.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ET-MVSNet_ETH3D91.12 32889.67 34095.47 25496.41 33289.15 27191.54 35990.23 38489.07 31786.78 39992.84 36469.39 38799.44 20694.16 21296.61 35397.82 311
CDPH-MVS95.45 21394.65 24197.84 10598.28 19294.96 12693.73 30798.33 20685.03 36495.44 28596.60 27895.31 14499.44 20690.01 30899.13 21899.11 164
testing389.72 34488.26 35394.10 31697.66 27584.30 35694.80 26188.25 39394.66 19395.07 29392.51 37041.15 41199.43 20891.81 26798.44 28698.55 242
MCST-MVS96.24 17895.80 19997.56 12298.75 13694.13 15794.66 26898.17 22790.17 30496.21 25796.10 30595.14 14999.43 20894.13 21498.85 25199.13 156
thres100view90091.76 32291.26 32293.26 33098.21 20084.50 35296.39 15590.39 38096.87 9396.33 24893.08 35973.44 37699.42 21078.85 39097.74 31495.85 372
tfpn200view991.55 32491.00 32493.21 33498.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31495.85 372
patchmatchnet-post96.84 26377.36 35599.42 210
SCA93.38 29493.52 27892.96 34296.24 33581.40 37793.24 32194.00 34291.58 28394.57 30596.97 25487.94 28899.42 21089.47 31697.66 32298.06 291
thres40091.68 32391.00 32493.71 32298.02 22284.35 35495.70 20790.79 37796.26 11895.90 27292.13 37573.62 37399.42 21078.85 39097.74 31497.36 334
test1297.46 13797.61 27994.07 15897.78 25893.57 33593.31 19699.42 21098.78 25898.89 201
CHOSEN 1792x268894.10 27193.41 28096.18 22199.16 8290.04 25592.15 34898.68 16179.90 38896.22 25697.83 18887.92 29299.42 21089.18 32099.65 8799.08 169
TAMVS95.49 20894.94 22497.16 15898.31 18893.41 18395.07 25096.82 29791.09 29097.51 17597.82 19189.96 26499.42 21088.42 33199.44 15598.64 232
PHI-MVS96.96 13796.53 16598.25 7397.48 28896.50 5996.76 13698.85 11893.52 22996.19 25996.85 26295.94 11899.42 21093.79 22799.43 16398.83 210
ADS-MVSNet291.47 32690.51 33494.36 30795.51 36585.63 33495.05 25295.70 31783.46 37492.69 35696.84 26379.15 34599.41 21985.66 35990.52 39298.04 295
XXY-MVS97.54 10597.70 8197.07 16799.46 3692.21 21397.22 11099.00 8494.93 18798.58 8198.92 6597.31 4499.41 21994.44 19999.43 16399.59 38
alignmvs96.01 18895.52 20997.50 13197.77 26094.71 13196.07 18296.84 29597.48 7396.78 22694.28 34885.50 31199.40 22196.22 10098.73 26598.40 254
无先验93.20 32297.91 24880.78 38499.40 22187.71 33897.94 303
HY-MVS91.43 1592.58 30691.81 31194.90 28296.49 33088.87 27797.31 10494.62 33685.92 35390.50 37796.84 26385.05 31399.40 22183.77 37595.78 36996.43 366
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9199.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18699.72 7199.32 115
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24198.46 18794.58 19998.10 13598.07 16197.09 5699.39 22595.16 16599.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14896.58 16596.97 13695.42 25798.63 15387.57 30795.09 24797.90 24995.91 14198.24 11997.96 17693.42 19499.39 22596.04 10899.52 13099.29 126
CR-MVSNet93.29 29692.79 29494.78 29095.44 36788.15 29296.18 17397.20 28184.94 36794.10 31698.57 9777.67 35199.39 22595.17 16395.81 36696.81 356
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18299.09 9791.43 23696.37 15999.11 5094.19 20999.01 4499.25 3196.30 10899.38 22899.00 1499.88 2799.73 22
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18698.79 13191.44 23596.14 17899.06 6294.19 20998.82 6198.98 5896.22 11399.38 22898.98 1699.86 3199.58 39
bld_raw_dy_0_6495.16 22795.16 21695.15 26896.54 32689.06 27496.63 14799.54 1789.68 31198.72 7294.50 34488.64 28199.38 22892.24 25699.93 1197.03 343
原ACMM196.58 19998.16 21192.12 21898.15 23385.90 35493.49 33796.43 28792.47 22399.38 22887.66 34098.62 27598.23 276
mvs_anonymous95.36 21596.07 18693.21 33496.29 33481.56 37594.60 27097.66 26593.30 23796.95 21698.91 6893.03 20399.38 22896.60 8697.30 33798.69 228
Patchmtry95.03 23394.59 24896.33 21394.83 37890.82 24596.38 15897.20 28196.59 10297.49 17798.57 9777.67 35199.38 22892.95 24999.62 9298.80 213
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15799.17 8192.51 20496.57 14899.15 4493.68 22698.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
casdiffmvspermissive97.50 10797.81 7196.56 20298.51 17091.04 24195.83 20299.09 5797.23 8598.33 11098.30 12897.03 6199.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 27693.22 28496.19 22099.06 10190.97 24395.99 18998.94 9773.88 40093.43 34096.93 25792.38 22599.37 23489.09 32199.28 19998.25 275
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16198.80 12992.51 20496.25 16999.06 6293.67 22798.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 56
ppachtmachnet_test94.49 25994.84 23293.46 32796.16 34182.10 37090.59 37697.48 27590.53 29897.01 21197.59 20991.01 24799.36 23793.97 22299.18 21298.94 189
baseline97.44 11297.78 7796.43 20898.52 16890.75 24896.84 12999.03 7396.51 10797.86 16398.02 17096.67 8599.36 23797.09 7499.47 14899.19 145
CNVR-MVS96.92 13996.55 16298.03 9398.00 22895.54 9594.87 25998.17 22794.60 19696.38 24697.05 24995.67 13399.36 23795.12 17199.08 22699.19 145
eth_miper_zixun_eth94.89 23794.93 22694.75 29195.99 34886.12 33191.35 36298.49 18593.40 23297.12 19897.25 23886.87 30299.35 24195.08 17398.82 25598.78 215
F-COLMAP95.30 21994.38 25898.05 9298.64 14996.04 7595.61 21798.66 16689.00 31993.22 34496.40 29092.90 20599.35 24187.45 34697.53 32798.77 218
Anonymous2023120695.27 22095.06 22295.88 23598.72 13989.37 26695.70 20797.85 25288.00 33496.98 21497.62 20791.95 23499.34 24389.21 31999.53 12598.94 189
test_prior97.46 13797.79 25694.26 15498.42 19499.34 24398.79 214
test_241102_ONE99.22 6895.35 10898.83 12796.04 13199.08 4098.13 15397.87 2399.33 245
canonicalmvs97.23 12597.21 12397.30 14997.65 27694.39 14597.84 7099.05 6697.42 7596.68 23093.85 35297.63 3499.33 24596.29 9798.47 28498.18 281
baseline289.65 34688.44 35293.25 33195.62 36382.71 36593.82 30385.94 39988.89 32187.35 39792.54 36971.23 38199.33 24586.01 35494.60 38297.72 318
WTY-MVS93.55 28993.00 28995.19 26597.81 24787.86 30093.89 30196.00 31189.02 31894.07 31895.44 32686.27 30499.33 24587.69 33996.82 34698.39 256
DIV-MVS_self_test94.73 24294.64 24295.01 27595.86 35387.00 31991.33 36398.08 23993.34 23597.10 20097.34 23284.02 32299.31 24995.15 16799.55 11898.72 224
thres20091.00 33190.42 33592.77 34897.47 29283.98 35994.01 29491.18 37595.12 17895.44 28591.21 38473.93 36999.31 24977.76 39397.63 32495.01 383
PCF-MVS89.43 1892.12 31590.64 33296.57 20197.80 25193.48 18089.88 38698.45 18874.46 39996.04 26595.68 31790.71 25299.31 24973.73 39899.01 23596.91 349
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl____94.73 24294.64 24295.01 27595.85 35487.00 31991.33 36398.08 23993.34 23597.10 20097.33 23384.01 32399.30 25295.14 16899.56 11198.71 227
tpm91.08 33090.85 32891.75 36495.33 37078.09 38995.03 25491.27 37488.75 32293.53 33697.40 22271.24 38099.30 25291.25 27793.87 38597.87 308
PVSNet_BlendedMVS95.02 23494.93 22695.27 26197.79 25687.40 31294.14 28998.68 16188.94 32094.51 30798.01 17293.04 20199.30 25289.77 31299.49 14299.11 164
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25687.40 31291.43 36098.68 16184.50 37194.51 30794.48 34593.04 20199.30 25289.77 31298.61 27698.02 297
diffmvspermissive96.04 18696.23 17895.46 25597.35 29988.03 29793.42 31599.08 5894.09 21596.66 23296.93 25793.85 18599.29 25696.01 11298.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 17995.96 19398.97 9394.55 20098.82 6198.76 8097.31 4499.29 25697.20 7099.44 15599.38 106
FA-MVS(test-final)94.91 23694.89 22994.99 27797.51 28688.11 29698.27 4495.20 33092.40 27096.68 23098.60 9583.44 32599.28 25893.34 23898.53 28097.59 326
c3_l95.20 22395.32 21094.83 28796.19 33986.43 32891.83 35598.35 20593.47 23197.36 18597.26 23788.69 27999.28 25895.41 15399.36 17798.78 215
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 13997.69 27094.15 15696.02 18698.43 19193.17 24797.30 18697.38 22895.48 13899.28 25893.74 22899.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs594.63 25294.34 25995.50 25297.63 27888.34 28794.02 29397.13 28587.15 34095.22 29197.15 24287.50 29499.27 26193.99 22099.26 20298.88 205
miper_lstm_enhance94.81 24194.80 23694.85 28596.16 34186.45 32791.14 36998.20 22193.49 23097.03 20997.37 23084.97 31599.26 26295.28 15699.56 11198.83 210
MVS_Test96.27 17796.79 14994.73 29296.94 31986.63 32596.18 17398.33 20694.94 18596.07 26398.28 13395.25 14699.26 26297.21 6897.90 30898.30 269
UWE-MVS87.57 36386.72 36590.13 37495.21 37173.56 40491.94 35383.78 40388.73 32493.00 34992.87 36355.22 40499.25 26481.74 38097.96 30497.59 326
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8099.42 2297.69 6398.92 5198.77 7897.80 2599.25 26496.27 9899.69 7898.76 219
OpenMVS_ROBcopyleft91.80 1493.64 28793.05 28595.42 25797.31 30591.21 23995.08 24996.68 30481.56 38096.88 22196.41 28890.44 25799.25 26485.39 36397.67 32195.80 374
PatchT93.75 28193.57 27794.29 31195.05 37587.32 31496.05 18392.98 35497.54 7094.25 31298.72 8275.79 36499.24 26895.92 11795.81 36696.32 367
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9099.06 6296.19 12398.48 9098.70 8594.72 15999.24 26894.37 20499.33 19099.17 148
HQP4-MVS92.87 35199.23 27099.06 173
HQP-MVS95.17 22694.58 24996.92 17797.85 23892.47 20694.26 27798.43 19193.18 24492.86 35295.08 32990.33 25899.23 27090.51 30098.74 26299.05 175
testing9189.67 34588.55 35093.04 33795.90 35081.80 37492.71 33493.71 34393.71 22390.18 38190.15 39257.11 39799.22 27287.17 35096.32 35998.12 283
miper_ehance_all_eth94.69 24794.70 23994.64 29395.77 35986.22 33091.32 36598.24 21591.67 27997.05 20796.65 27688.39 28599.22 27294.88 18198.34 28998.49 249
PLCcopyleft91.02 1694.05 27492.90 29097.51 12798.00 22895.12 12394.25 28098.25 21386.17 35091.48 37195.25 32791.01 24799.19 27485.02 36796.69 35198.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_yl94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
DCV-MVSNet94.40 26094.00 26995.59 24596.95 31789.52 26394.75 26595.55 32496.18 12496.79 22296.14 30281.09 33799.18 27590.75 29097.77 31198.07 287
YYNet194.73 24294.84 23294.41 30697.47 29285.09 34590.29 37995.85 31692.52 26597.53 17397.76 19491.97 23399.18 27593.31 24096.86 34398.95 187
PatchmatchNetpermissive91.98 31991.87 30992.30 35894.60 38179.71 38495.12 24593.59 34989.52 31293.61 33397.02 25177.94 34999.18 27590.84 28694.57 38398.01 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet_test_wron94.73 24294.83 23494.42 30597.48 28885.15 34390.28 38095.87 31592.52 26597.48 17997.76 19491.92 23699.17 27993.32 23996.80 34898.94 189
CL-MVSNet_self_test95.04 23194.79 23795.82 23797.51 28689.79 25991.14 36996.82 29793.05 25096.72 22896.40 29090.82 25099.16 28091.95 26298.66 27198.50 248
UnsupCasMVSNet_bld94.72 24694.26 26096.08 22598.62 15590.54 25393.38 31798.05 24590.30 30197.02 21096.80 26889.54 27099.16 28088.44 33096.18 36298.56 240
testing9989.21 34988.04 35592.70 35095.78 35881.00 38092.65 33592.03 36493.20 24289.90 38590.08 39455.25 40399.14 28287.54 34395.95 36597.97 300
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11199.08 5896.57 10698.07 14098.38 11896.22 11399.14 28294.71 19399.31 19598.52 245
miper_enhance_ethall93.14 29992.78 29694.20 31393.65 39385.29 34089.97 38297.85 25285.05 36396.15 26294.56 34085.74 30899.14 28293.74 22898.34 28998.17 282
D2MVS95.18 22495.17 21595.21 26497.76 26187.76 30594.15 28797.94 24789.77 31096.99 21297.68 20487.45 29599.14 28295.03 17699.81 4898.74 221
AllTest97.20 12696.92 14198.06 8899.08 9896.16 7097.14 11599.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20497.78 16798.07 16195.84 12199.12 28691.41 27299.42 16698.91 197
MAR-MVS94.21 26793.03 28797.76 10996.94 31997.44 3396.97 12497.15 28487.89 33692.00 36692.73 36792.14 22899.12 28683.92 37297.51 32896.73 359
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1188.93 35187.63 35992.80 34795.87 35281.49 37692.48 33991.54 37091.62 28088.27 39390.24 39055.12 40699.11 28987.30 34896.28 36197.81 313
our_test_394.20 26994.58 24993.07 33696.16 34181.20 37890.42 37896.84 29590.72 29497.14 19697.13 24390.47 25499.11 28994.04 21998.25 29398.91 197
EPNet_dtu91.39 32790.75 33093.31 32990.48 40682.61 36794.80 26192.88 35593.39 23381.74 40394.90 33681.36 33599.11 28988.28 33398.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo95.69 19995.28 21196.92 17798.15 21393.03 19295.64 21698.20 22190.39 30096.63 23597.73 20091.63 23999.10 29291.84 26697.31 33698.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AdaColmapbinary95.11 22894.62 24596.58 19997.33 30394.45 14494.92 25798.08 23993.15 24893.98 32395.53 32394.34 17399.10 29285.69 35898.61 27696.20 370
pmmvs-eth3d96.49 16896.18 18197.42 14298.25 19694.29 15094.77 26498.07 24389.81 30997.97 15198.33 12293.11 19999.08 29495.46 14699.84 4098.89 201
test_post10.87 40776.83 35899.07 295
N_pmnet95.18 22494.23 26198.06 8897.85 23896.55 5892.49 33891.63 36989.34 31398.09 13697.41 22190.33 25899.06 29691.58 27199.31 19598.56 240
PM-MVS97.36 12097.10 12798.14 8298.91 12096.77 4996.20 17298.63 17293.82 22098.54 8398.33 12293.98 18199.05 29795.99 11399.45 15498.61 237
ambc96.56 20298.23 19991.68 23197.88 6898.13 23598.42 9698.56 9994.22 17699.04 29894.05 21899.35 18298.95 187
test_post194.98 25610.37 40876.21 36299.04 29889.47 316
OMC-MVS96.48 16996.00 18897.91 10098.30 18996.01 7894.86 26098.60 17491.88 27797.18 19497.21 24096.11 11599.04 29890.49 30299.34 18598.69 228
MIMVSNet93.42 29292.86 29195.10 27198.17 20988.19 29098.13 5593.69 34492.07 27295.04 29798.21 14680.95 33999.03 30181.42 38298.06 30198.07 287
DPM-MVS93.68 28492.77 29796.42 20997.91 23492.54 20291.17 36897.47 27684.99 36693.08 34894.74 33789.90 26599.00 30287.54 34398.09 30097.72 318
BH-RMVSNet94.56 25594.44 25794.91 28097.57 28187.44 31193.78 30696.26 30793.69 22596.41 24596.50 28592.10 23099.00 30285.96 35597.71 31798.31 267
gm-plane-assit91.79 40371.40 40881.67 37990.11 39398.99 30484.86 368
MVS_111021_HR96.73 15496.54 16497.27 15198.35 18793.66 17593.42 31598.36 20294.74 19096.58 23696.76 27196.54 9298.99 30494.87 18299.27 20199.15 151
testdata95.70 24398.16 21190.58 25097.72 26180.38 38695.62 28197.02 25192.06 23298.98 30689.06 32398.52 28197.54 328
DP-MVS Recon95.55 20695.13 21796.80 18698.51 17093.99 16294.60 27098.69 15990.20 30395.78 27696.21 29892.73 21098.98 30690.58 29898.86 25097.42 333
TAPA-MVS93.32 1294.93 23594.23 26197.04 17098.18 20694.51 14195.22 24298.73 14981.22 38396.25 25595.95 31193.80 18798.98 30689.89 31098.87 24897.62 323
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS95.47 21195.07 22096.69 19498.27 19492.53 20391.36 36198.67 16491.22 28995.78 27694.12 34995.65 13498.98 30690.81 28799.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS92.83 30392.15 30794.87 28496.97 31687.27 31590.03 38196.12 30891.83 27894.05 31994.57 33976.01 36398.97 31092.46 25597.34 33598.36 263
BH-untuned94.69 24794.75 23894.52 30197.95 23387.53 30894.07 29297.01 29093.99 21797.10 20095.65 31892.65 21398.95 31187.60 34196.74 34997.09 340
JIA-IIPM91.79 32190.69 33195.11 26993.80 39290.98 24294.16 28691.78 36896.38 11290.30 38099.30 2872.02 37998.90 31288.28 33390.17 39495.45 380
pmmvs494.82 24094.19 26496.70 19397.42 29592.75 20092.09 35196.76 29986.80 34695.73 27997.22 23989.28 27698.89 31393.28 24199.14 21698.46 252
TSAR-MVS + GP.96.47 17096.12 18297.49 13497.74 26695.23 11594.15 28796.90 29493.26 23898.04 14496.70 27394.41 17198.89 31394.77 18999.14 21698.37 258
CostFormer89.75 34389.25 34191.26 36794.69 38078.00 39195.32 23691.98 36681.50 38190.55 37696.96 25671.06 38298.89 31388.59 32992.63 38996.87 350
sss94.22 26593.72 27495.74 24097.71 26989.95 25793.84 30296.98 29188.38 32993.75 32895.74 31587.94 28898.89 31391.02 28198.10 29998.37 258
tpmvs90.79 33390.87 32790.57 37192.75 40176.30 39895.79 20493.64 34891.04 29191.91 36796.26 29577.19 35798.86 31789.38 31889.85 39596.56 363
tpmrst90.31 33590.61 33389.41 37694.06 38972.37 40795.06 25193.69 34488.01 33392.32 36496.86 26177.45 35398.82 31891.04 28087.01 39997.04 342
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 8998.82 31896.38 9499.50 13996.98 345
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Patchmatch-RL test94.66 25094.49 25295.19 26598.54 16688.91 27692.57 33698.74 14891.46 28498.32 11197.75 19777.31 35698.81 32096.06 10599.61 9897.85 309
dp88.08 35888.05 35488.16 38392.85 39968.81 40994.17 28592.88 35585.47 35891.38 37296.14 30268.87 38898.81 32086.88 35183.80 40296.87 350
DeepPCF-MVS94.58 596.90 14196.43 17098.31 6797.48 28897.23 4092.56 33798.60 17492.84 25998.54 8397.40 22296.64 8898.78 32294.40 20399.41 17098.93 193
cl2293.25 29792.84 29394.46 30494.30 38486.00 33291.09 37196.64 30590.74 29395.79 27496.31 29478.24 34898.77 32394.15 21398.34 28998.62 235
MG-MVS94.08 27394.00 26994.32 30997.09 31385.89 33393.19 32395.96 31392.52 26594.93 30097.51 21589.54 27098.77 32387.52 34597.71 31798.31 267
EU-MVSNet94.25 26494.47 25493.60 32498.14 21582.60 36897.24 10992.72 35885.08 36298.48 9098.94 6382.59 33198.76 32597.47 6299.53 12599.44 95
USDC94.56 25594.57 25194.55 30097.78 25986.43 32892.75 33098.65 17185.96 35296.91 21997.93 18190.82 25098.74 32690.71 29499.59 10398.47 250
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16484.86 34895.91 19899.71 492.72 26297.67 16998.90 6987.44 29698.73 32797.96 4098.85 25197.96 301
tpm288.47 35587.69 35890.79 36994.98 37677.34 39495.09 24791.83 36777.51 39689.40 38796.41 28867.83 38998.73 32783.58 37792.60 39096.29 368
MVS_111021_LR96.82 14896.55 16297.62 11998.27 19495.34 11093.81 30598.33 20694.59 19896.56 23896.63 27796.61 8998.73 32794.80 18599.34 18598.78 215
test20.0396.58 16596.61 15796.48 20698.49 17491.72 23095.68 21097.69 26296.81 9598.27 11797.92 18294.18 17798.71 33090.78 28999.66 8699.00 180
testing22287.35 36485.50 37192.93 34495.79 35782.83 36492.40 34590.10 38692.80 26088.87 39089.02 39548.34 40998.70 33175.40 39696.74 34997.27 338
ADS-MVSNet90.95 33290.26 33693.04 33795.51 36582.37 36995.05 25293.41 35083.46 37492.69 35696.84 26379.15 34598.70 33185.66 35990.52 39298.04 295
pmmvs390.00 33888.90 34893.32 32894.20 38885.34 33891.25 36692.56 36278.59 39293.82 32495.17 32867.36 39098.69 33389.08 32298.03 30295.92 371
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20798.48 17691.52 23395.31 23798.45 18895.76 14897.48 17997.54 21289.53 27298.69 33394.43 20094.61 38199.13 156
LF4IMVS96.07 18495.63 20697.36 14698.19 20395.55 9495.44 22398.82 13592.29 27195.70 28096.55 28092.63 21498.69 33391.75 27099.33 19097.85 309
TinyColmap96.00 18996.34 17594.96 27997.90 23687.91 29994.13 29098.49 18594.41 20298.16 12897.76 19496.29 11098.68 33690.52 29999.42 16698.30 269
旧先验293.35 31877.95 39595.77 27898.67 33790.74 293
PMMVS92.39 30891.08 32396.30 21693.12 39792.81 19690.58 37795.96 31379.17 39191.85 36892.27 37290.29 26298.66 33889.85 31196.68 35297.43 332
ETVMVS87.62 36285.75 36993.22 33396.15 34483.26 36292.94 32690.37 38291.39 28590.37 37888.45 39651.93 40898.64 33973.76 39796.38 35797.75 316
KD-MVS_2432*160088.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
miper_refine_blended88.93 35187.74 35692.49 35388.04 40781.99 37189.63 38895.62 32091.35 28695.06 29493.11 35556.58 39998.63 34085.19 36495.07 37596.85 352
Patchmatch-test93.60 28893.25 28394.63 29496.14 34587.47 30996.04 18494.50 33893.57 22896.47 24296.97 25476.50 35998.61 34290.67 29698.41 28897.81 313
TR-MVS92.54 30792.20 30693.57 32596.49 33086.66 32493.51 31394.73 33589.96 30794.95 29893.87 35190.24 26398.61 34281.18 38394.88 37895.45 380
baseline193.14 29992.64 30094.62 29597.34 30187.20 31696.67 14693.02 35394.71 19296.51 24195.83 31481.64 33298.60 34490.00 30988.06 39898.07 287
test-LLR89.97 34089.90 33890.16 37294.24 38674.98 40189.89 38389.06 38992.02 27389.97 38390.77 38873.92 37098.57 34591.88 26497.36 33396.92 347
test-mter87.92 36087.17 36190.16 37294.24 38674.98 40189.89 38389.06 38986.44 34989.97 38390.77 38854.96 40798.57 34591.88 26497.36 33396.92 347
PatchMatch-RL94.61 25393.81 27397.02 17298.19 20395.72 8693.66 30897.23 28088.17 33294.94 29995.62 32091.43 24098.57 34587.36 34797.68 32096.76 358
DSMNet-mixed92.19 31391.83 31093.25 33196.18 34083.68 36196.27 16593.68 34676.97 39792.54 36299.18 3989.20 27898.55 34883.88 37398.60 27897.51 329
MDTV_nov1_ep1391.28 31994.31 38373.51 40594.80 26193.16 35286.75 34793.45 33997.40 22276.37 36098.55 34888.85 32496.43 355
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18495.63 15497.22 18997.30 23595.52 13798.55 34890.97 28298.90 24498.34 264
OPU-MVS97.64 11898.01 22495.27 11396.79 13497.35 23196.97 6598.51 35191.21 27899.25 20399.14 154
Syy-MVS92.09 31691.80 31292.93 34495.19 37282.65 36692.46 34091.35 37190.67 29691.76 36987.61 39885.64 31098.50 35294.73 19196.84 34497.65 321
myMVS_eth3d87.16 36785.61 37091.82 36395.19 37279.32 38592.46 34091.35 37190.67 29691.76 36987.61 39841.96 41098.50 35282.66 37896.84 34497.65 321
tt080597.44 11297.56 10197.11 16299.55 2396.36 6398.66 1895.66 31898.31 3697.09 20595.45 32597.17 5298.50 35298.67 2597.45 33296.48 365
PVSNet86.72 1991.10 32990.97 32691.49 36597.56 28378.04 39087.17 39394.60 33784.65 36992.34 36392.20 37487.37 29798.47 35585.17 36697.69 31997.96 301
CVMVSNet92.33 31192.79 29490.95 36897.26 30675.84 40095.29 23992.33 36381.86 37896.27 25398.19 14781.44 33498.46 35694.23 21098.29 29298.55 242
XVG-OURS-SEG-HR97.38 11697.07 13098.30 6899.01 10997.41 3494.66 26899.02 7595.20 17398.15 13097.52 21498.83 598.43 35794.87 18296.41 35699.07 171
XVG-OURS97.12 12796.74 15098.26 7098.99 11097.45 3293.82 30399.05 6695.19 17498.32 11197.70 20295.22 14798.41 35894.27 20898.13 29898.93 193
PAPM87.64 36185.84 36893.04 33796.54 32684.99 34688.42 39295.57 32379.52 38983.82 40093.05 36180.57 34098.41 35862.29 40492.79 38895.71 375
MVS90.02 33789.20 34492.47 35594.71 37986.90 32195.86 20096.74 30164.72 40290.62 37492.77 36592.54 21998.39 36079.30 38895.56 37392.12 395
PAPM_NR94.61 25394.17 26595.96 22998.36 18691.23 23895.93 19697.95 24692.98 25393.42 34194.43 34690.53 25398.38 36187.60 34196.29 36098.27 273
MSDG95.33 21795.13 21795.94 23397.40 29691.85 22791.02 37298.37 20195.30 17096.31 25195.99 30794.51 16998.38 36189.59 31497.65 32397.60 325
API-MVS95.09 23095.01 22395.31 26096.61 32594.02 16096.83 13097.18 28395.60 15695.79 27494.33 34794.54 16898.37 36385.70 35798.52 28193.52 391
CNLPA95.04 23194.47 25496.75 19097.81 24795.25 11494.12 29197.89 25094.41 20294.57 30595.69 31690.30 26198.35 36486.72 35398.76 26096.64 360
PAPR92.22 31291.27 32095.07 27295.73 36288.81 27991.97 35297.87 25185.80 35590.91 37392.73 36791.16 24498.33 36579.48 38795.76 37098.08 285
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20086.83 32395.61 21799.26 3090.45 29998.17 12798.96 6184.43 31998.31 36696.74 8399.17 21397.90 305
tpm cat188.01 35987.33 36090.05 37594.48 38276.28 39994.47 27394.35 34073.84 40189.26 38895.61 32173.64 37298.30 36784.13 37186.20 40095.57 379
WB-MVSnew91.50 32591.29 31892.14 36094.85 37780.32 38293.29 32088.77 39188.57 32694.03 32092.21 37392.56 21698.28 36880.21 38697.08 33897.81 313
BH-w/o92.14 31491.94 30892.73 34997.13 31285.30 33992.46 34095.64 31989.33 31494.21 31392.74 36689.60 26898.24 36981.68 38194.66 38094.66 385
gg-mvs-nofinetune88.28 35786.96 36392.23 35992.84 40084.44 35398.19 5274.60 40799.08 1087.01 39899.47 1156.93 39898.23 37078.91 38995.61 37294.01 389
MS-PatchMatch94.83 23994.91 22894.57 29996.81 32287.10 31894.23 28297.34 27888.74 32397.14 19697.11 24591.94 23598.23 37092.99 24797.92 30698.37 258
MVS-HIRNet88.40 35690.20 33782.99 38597.01 31560.04 41093.11 32485.61 40084.45 37288.72 39199.09 5084.72 31798.23 37082.52 37996.59 35490.69 400
cascas91.89 32091.35 31793.51 32694.27 38585.60 33588.86 39198.61 17379.32 39092.16 36591.44 38289.22 27798.12 37390.80 28897.47 33196.82 355
MSLP-MVS++96.42 17396.71 15195.57 24797.82 24690.56 25295.71 20698.84 12194.72 19196.71 22997.39 22694.91 15798.10 37495.28 15699.02 23398.05 294
EPMVS89.26 34888.55 35091.39 36692.36 40279.11 38795.65 21379.86 40588.60 32593.12 34796.53 28270.73 38498.10 37490.75 29089.32 39696.98 345
test_fmvs397.38 11697.56 10196.84 18498.63 15392.81 19697.60 8699.61 1390.87 29298.76 6999.66 394.03 18097.90 37699.24 699.68 8299.81 8
mvsany_test396.21 17995.93 19497.05 16897.40 29694.33 14995.76 20594.20 34189.10 31699.36 2499.60 693.97 18297.85 37795.40 15498.63 27498.99 183
PMMVS293.66 28594.07 26792.45 35697.57 28180.67 38186.46 39496.00 31193.99 21797.10 20097.38 22889.90 26597.82 37888.76 32599.47 14898.86 208
131492.38 30992.30 30492.64 35195.42 36985.15 34395.86 20096.97 29285.40 36090.62 37493.06 36091.12 24597.80 37986.74 35295.49 37494.97 384
TESTMET0.1,187.20 36686.57 36689.07 37793.62 39472.84 40689.89 38387.01 39785.46 35989.12 38990.20 39156.00 40297.72 38090.91 28496.92 34096.64 360
test_fmvs296.38 17496.45 16996.16 22297.85 23891.30 23796.81 13299.45 1989.24 31598.49 8899.38 1888.68 28097.62 38198.83 1899.32 19299.57 46
testgi96.07 18496.50 16894.80 28899.26 5987.69 30695.96 19398.58 17895.08 17998.02 14696.25 29697.92 2097.60 38288.68 32898.74 26299.11 164
CMPMVSbinary73.10 2392.74 30491.39 31696.77 18993.57 39594.67 13494.21 28497.67 26380.36 38793.61 33396.60 27882.85 32997.35 38384.86 36898.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n95.67 20195.89 19695.03 27498.18 20689.89 25896.94 12599.28 2988.25 33198.20 12298.92 6586.69 30397.19 38497.70 5498.82 25598.00 299
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21389.13 27396.81 13299.43 2186.97 34497.21 19198.92 6583.00 32897.13 38598.09 3698.94 24098.72 224
mvsany_test193.47 29193.03 28794.79 28994.05 39092.12 21890.82 37490.01 38785.02 36597.26 18898.28 13393.57 19197.03 38692.51 25495.75 37195.23 382
EMVS89.06 35089.22 34288.61 37993.00 39877.34 39482.91 39990.92 37694.64 19592.63 36091.81 37876.30 36197.02 38783.83 37496.90 34291.48 398
test_fmvs194.51 25894.60 24694.26 31295.91 34987.92 29895.35 23399.02 7586.56 34896.79 22298.52 10282.64 33097.00 38897.87 4398.71 26697.88 307
PMVScopyleft89.60 1796.71 15796.97 13695.95 23199.51 3097.81 1697.42 10297.49 27497.93 5095.95 26798.58 9696.88 7596.91 38989.59 31499.36 17793.12 394
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN89.52 34789.78 33988.73 37893.14 39677.61 39283.26 39892.02 36594.82 18993.71 32993.11 35575.31 36596.81 39085.81 35696.81 34791.77 397
GG-mvs-BLEND90.60 37091.00 40484.21 35798.23 4672.63 41082.76 40184.11 40256.14 40196.79 39172.20 40092.09 39190.78 399
PC_three_145287.24 33998.37 10197.44 21997.00 6396.78 39292.01 26099.25 20399.21 140
new_pmnet92.34 31091.69 31494.32 30996.23 33789.16 27092.27 34792.88 35584.39 37395.29 28996.35 29385.66 30996.74 39384.53 37097.56 32597.05 341
PVSNet_081.89 2184.49 36983.21 37288.34 38095.76 36074.97 40383.49 39792.70 35978.47 39387.94 39486.90 40183.38 32796.63 39473.44 39966.86 40593.40 392
test_vis3_rt97.04 13096.98 13597.23 15698.44 18095.88 8096.82 13199.67 690.30 30199.27 2999.33 2794.04 17996.03 39597.14 7297.83 31099.78 11
SD-MVS97.37 11897.70 8196.35 21298.14 21595.13 12296.54 15098.92 10095.94 13899.19 3498.08 15997.74 2895.06 39695.24 15999.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_vis1_rt94.03 27593.65 27595.17 26795.76 36093.42 18293.97 29898.33 20684.68 36893.17 34695.89 31392.53 22194.79 39793.50 23594.97 37797.31 337
test_f95.82 19695.88 19795.66 24497.61 27993.21 19095.61 21798.17 22786.98 34398.42 9699.47 1190.46 25594.74 39897.71 5298.45 28599.03 176
test0.0.03 190.11 33689.21 34392.83 34693.89 39186.87 32291.74 35688.74 39292.02 27394.71 30391.14 38573.92 37094.48 39983.75 37692.94 38797.16 339
dmvs_re92.08 31791.27 32094.51 30297.16 31092.79 19995.65 21392.64 36094.11 21392.74 35590.98 38783.41 32694.44 40080.72 38494.07 38496.29 368
dmvs_testset87.30 36586.99 36288.24 38196.71 32377.48 39394.68 26786.81 39892.64 26489.61 38687.01 40085.91 30793.12 40161.04 40588.49 39794.13 388
wuyk23d93.25 29795.20 21387.40 38496.07 34795.38 10597.04 12194.97 33395.33 16899.70 698.11 15798.14 1791.94 40277.76 39399.68 8274.89 402
FPMVS89.92 34188.63 34993.82 31998.37 18596.94 4591.58 35793.34 35188.00 33490.32 37997.10 24670.87 38391.13 40371.91 40196.16 36493.39 393
test_method66.88 37166.13 37469.11 38762.68 41025.73 41349.76 40196.04 31014.32 40564.27 40691.69 38073.45 37588.05 40476.06 39566.94 40493.54 390
MVEpermissive73.61 2286.48 36885.92 36788.18 38296.23 33785.28 34181.78 40075.79 40686.01 35182.53 40291.88 37792.74 20987.47 40571.42 40294.86 37991.78 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft77.17 38690.94 40585.28 34174.08 40952.51 40380.87 40488.03 39775.25 36670.63 40659.23 40684.94 40175.62 401
tmp_tt57.23 37262.50 37541.44 38834.77 41149.21 41283.93 39660.22 41215.31 40471.11 40579.37 40370.09 38644.86 40764.76 40382.93 40330.25 403
testmvs12.33 37515.23 3783.64 3905.77 4132.23 41588.99 3903.62 4132.30 4085.29 40813.09 4054.52 4131.95 4085.16 4088.32 4076.75 405
test12312.59 37415.49 3773.87 3896.07 4122.55 41490.75 3752.59 4142.52 4075.20 40913.02 4064.96 4121.85 4095.20 4079.09 4067.23 404
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
cdsmvs_eth3d_5k24.22 37332.30 3760.00 3910.00 4140.00 4160.00 40298.10 2370.00 4090.00 41095.06 33197.54 370.00 4100.00 4090.00 4080.00 406
pcd_1.5k_mvsjas7.98 37610.65 3790.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40995.82 1240.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
ab-mvs-re7.91 37710.55 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41094.94 3330.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS79.32 38585.41 362
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
test_one_060199.05 10595.50 10098.87 11197.21 8698.03 14598.30 12896.93 69
eth-test20.00 414
eth-test0.00 414
RE-MVS-def97.88 6498.81 12798.05 997.55 9198.86 11497.77 5498.20 12298.07 16196.94 6795.49 14099.20 20899.26 132
IU-MVS99.22 6895.40 10398.14 23485.77 35698.36 10495.23 16099.51 13599.49 70
save fliter98.48 17694.71 13194.53 27298.41 19595.02 183
test072699.24 6395.51 9796.89 12898.89 10395.92 13998.64 7498.31 12497.06 58
GSMVS98.06 291
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35098.06 291
sam_mvs77.38 354
MTGPAbinary98.73 149
MTMP96.55 14974.60 407
test9_res91.29 27498.89 24799.00 180
agg_prior290.34 30598.90 24499.10 168
test_prior495.38 10593.61 311
test_prior293.33 31994.21 20794.02 32196.25 29693.64 19091.90 26398.96 237
新几何293.43 314
旧先验197.80 25193.87 16597.75 25997.04 25093.57 19198.68 26898.72 224
原ACMM292.82 328
test22298.17 20993.24 18992.74 33297.61 27275.17 39894.65 30496.69 27490.96 24998.66 27197.66 320
segment_acmp95.34 143
testdata192.77 32993.78 221
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14791.91 237
plane_prior496.77 269
plane_prior394.51 14195.29 17196.16 260
plane_prior296.50 15196.36 114
plane_prior198.49 174
plane_prior94.29 15095.42 22594.31 20698.93 242
n20.00 415
nn0.00 415
door-mid98.17 227
test1198.08 239
door97.81 257
HQP5-MVS92.47 206
HQP-NCC97.85 23894.26 27793.18 24492.86 352
ACMP_Plane97.85 23894.26 27793.18 24492.86 352
BP-MVS90.51 300
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 258
NP-MVS98.14 21593.72 17195.08 329
MDTV_nov1_ep13_2view57.28 41194.89 25880.59 38594.02 32178.66 34785.50 36197.82 311
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169