This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
dcpmvs_297.12 13497.99 5994.51 30899.11 9284.00 36797.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 14899.78 5599.58 39
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 216
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3496.23 12799.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5599.36 599.29 2999.06 5697.27 4899.93 497.71 5599.91 1799.70 26
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4499.98 299.85 5
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3596.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5195.83 15499.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5099.22 1099.22 3498.96 6597.35 4499.92 697.79 5099.93 1199.79 11
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4699.33 699.30 2899.00 5997.27 4899.92 697.64 5999.92 1499.75 20
MVSFormer96.14 18996.36 18195.49 26297.68 27587.81 31098.67 1599.02 8196.50 11594.48 32196.15 31286.90 30699.92 698.73 2299.13 22398.74 229
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8196.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23797.65 9190.31 39798.89 2498.93 5399.36 2384.57 32699.92 697.81 4899.56 11599.39 110
MVSMamba_PlusPlus97.43 11897.98 6095.78 24698.88 12689.70 26698.03 6198.85 12699.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12197.73 330
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 4999.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 3995.62 16399.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13099.05 1799.01 4598.65 9795.37 14999.90 1697.57 6099.91 1799.77 13
HyFIR lowres test93.72 29192.65 30896.91 18498.93 12091.81 23491.23 38098.52 19182.69 38996.46 25296.52 29580.38 35199.90 1690.36 31598.79 26299.03 182
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4199.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30198.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
mvs5depth98.06 5298.58 2696.51 20998.97 11489.65 26899.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15299.05 7198.67 2898.84 6198.45 11897.58 3899.88 2196.45 9999.86 2899.54 54
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7198.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
patch_mono-296.59 17096.93 14795.55 25998.88 12687.12 32394.47 28599.30 2994.12 22396.65 24198.41 12394.98 16299.87 2495.81 13499.78 5599.66 30
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29796.92 27096.81 8699.87 2496.87 8799.76 5798.51 254
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3799.67 299.73 499.65 699.15 399.86 2697.22 7099.92 1499.77 13
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27397.19 25296.88 8099.86 2697.50 6399.73 6698.41 261
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4799.36 18299.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22299.02 8198.11 5198.31 11697.69 21494.65 17199.85 2997.02 8299.71 7399.48 81
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22498.87 11997.57 7298.31 11697.83 19894.69 16799.85 2997.02 8299.71 7399.46 86
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31597.91 5797.30 19198.06 17788.46 28999.85 2993.85 23599.40 17699.32 122
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22393.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31799.06 23698.32 273
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11098.49 3599.38 2399.14 4995.44 14799.84 3296.47 9899.80 5099.47 84
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6098.42 3799.03 4398.71 8996.93 7399.83 3497.09 7799.63 9099.56 50
ANet_high98.31 3698.94 696.41 21799.33 5189.64 26997.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6199.98 299.77 13
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8198.29 4498.97 5198.61 10097.27 4899.82 3696.86 8899.61 9899.51 64
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15897.69 6897.90 16197.96 18795.81 13499.82 3696.13 11399.61 9899.45 90
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27797.01 26496.99 6899.82 3697.66 5899.64 8898.39 264
MM96.87 15196.62 16397.62 12297.72 27293.30 19096.39 16492.61 37397.90 5896.76 23398.64 9890.46 26399.81 4099.16 999.94 899.76 18
tttt051793.31 30392.56 31195.57 25698.71 14787.86 30797.44 10787.17 40995.79 15597.47 18696.84 27464.12 40299.81 4096.20 11199.32 19799.02 185
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25598.99 9595.84 15398.78 6698.08 17096.84 8499.81 4093.98 23199.57 11299.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 32998.69 596.42 16398.09 24695.86 15295.15 30495.54 33494.26 18299.81 4094.06 22698.51 28998.47 258
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11095.65 16198.51 8796.46 29792.15 23699.81 4095.14 17898.58 28499.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3598.43 3698.89 5798.83 7894.30 18199.81 4097.87 4599.91 1799.77 13
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5595.96 14398.59 8298.69 9296.94 7199.81 4096.64 9199.58 10999.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Anonymous2024052197.07 13697.51 11195.76 24799.35 4988.18 29897.78 7898.40 20697.11 9498.34 11099.04 5789.58 27699.79 4798.09 3899.93 1199.30 127
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13095.76 15696.93 22297.43 23197.26 5299.79 4796.06 11499.53 12999.45 90
RRT-MVS95.78 20496.25 18594.35 31496.68 33284.47 36197.72 8699.11 5297.23 9197.27 19398.72 8686.39 31099.79 4795.49 14997.67 33198.80 220
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7195.43 17597.41 18997.50 22797.98 1999.79 4795.58 14799.57 11299.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29596.58 11097.21 19798.19 15884.14 32899.78 5195.89 12896.17 37598.89 207
MVS_030495.71 20795.18 22397.33 15194.85 38792.82 20095.36 24290.89 39095.51 16995.61 29397.82 20188.39 29199.78 5198.23 3599.91 1799.40 105
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5298.04 5598.62 7898.66 9493.75 19599.78 5197.23 6999.84 3899.73 22
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15896.27 12495.59 29497.75 20896.30 11399.78 5193.70 24199.48 15099.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6795.45 17297.55 17797.94 19097.11 5799.78 5194.77 19999.46 15599.48 81
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20699.04 7897.51 7698.22 12497.81 20394.68 16999.78 5197.14 7599.75 6499.41 104
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15897.79 5999.42 2197.83 19894.40 17999.78 5195.91 12799.76 5799.46 86
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15096.04 13897.10 20697.73 21196.53 9899.78 5195.16 17599.50 14399.46 86
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10296.11 13396.89 22597.45 22996.85 8399.78 5195.19 17199.63 9099.38 112
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21599.28 5590.62 25595.31 24999.08 6388.40 34196.97 22098.17 16192.11 23899.78 5193.64 24299.21 21298.86 214
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9895.75 15897.62 17597.59 22097.61 3799.77 6196.34 10599.44 15999.36 118
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13697.32 8898.06 14497.85 19796.65 9199.77 6195.00 18799.11 22799.32 122
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14695.96 14397.53 17897.40 23396.93 7399.77 6195.04 18499.35 18799.42 102
thisisatest053092.71 31491.76 32395.56 25898.42 18788.23 29696.03 19487.35 40894.04 22796.56 24795.47 33664.03 40399.77 6194.78 19899.11 22798.68 239
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24198.99 9592.45 27898.11 13698.31 13597.25 5399.77 6196.60 9399.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.60 9699.76 6695.49 14999.20 21399.26 139
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13096.00 14197.22 19597.62 21896.87 8299.76 6695.48 15399.43 16899.46 86
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13696.05 13697.46 18797.63 21796.77 8799.76 6695.61 14499.46 15599.49 75
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 10996.58 11098.08 14197.87 19697.02 6699.76 6695.25 16899.59 10699.40 105
Skip Steuart: Steuart Systems R&D Blog.
RPMNet94.68 25894.60 25494.90 28895.44 37688.15 29996.18 18298.86 12297.43 7894.10 32998.49 11379.40 35399.76 6695.69 13795.81 37896.81 368
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10295.75 15897.91 16098.06 17796.89 7899.76 6695.32 16599.57 11299.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS++97.96 5997.90 6598.12 8697.75 26795.40 10599.03 898.89 11096.62 10698.62 7898.30 13996.97 6999.75 7295.70 13599.25 20899.21 147
MSC_two_6792asdad98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
No_MVS98.22 7797.75 26795.34 11298.16 23999.75 7295.87 13099.51 13999.57 46
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14898.89 11099.75 7295.48 15399.52 13499.53 57
IterMVS-SCA-FT95.86 20196.19 18894.85 29197.68 27585.53 34292.42 35597.63 27996.99 9698.36 10698.54 10987.94 29599.75 7297.07 8099.08 23199.27 138
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10797.72 6598.25 12198.13 16497.10 5899.75 7295.44 15799.24 21199.32 122
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9298.40 3899.07 4298.98 6296.89 7899.75 7297.19 7499.79 5299.55 53
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 28898.12 24497.34 8798.20 12597.33 24492.81 21599.75 7294.79 19699.81 4799.54 54
QAPM95.88 20095.57 21696.80 19197.90 24091.84 23398.18 5398.73 15888.41 34096.42 25398.13 16494.73 16599.75 7288.72 33898.94 24598.81 219
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15499.82 195.44 17499.64 1199.52 998.96 499.74 8199.38 399.86 2899.81 9
ZD-MVS98.43 18695.94 8398.56 18990.72 30896.66 23997.07 25895.02 16099.74 8191.08 28898.93 247
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 7995.88 15097.88 16398.22 15698.15 1699.74 8196.50 9799.62 9299.42 102
lessismore_v097.05 17399.36 4892.12 22384.07 41498.77 7098.98 6285.36 32099.74 8197.34 6899.37 17999.30 127
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17298.77 15192.96 26897.44 18897.58 22295.84 12799.74 8191.96 27099.35 18799.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
IterMVS-LS96.92 14697.29 12395.79 24598.51 17588.13 30195.10 25898.66 17596.99 9698.46 9598.68 9392.55 22599.74 8196.91 8599.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8798.53 2999.86 2899.95 2
test111194.53 26694.81 24393.72 32999.06 10081.94 38298.31 3983.87 41596.37 12098.49 9099.17 4581.49 34399.73 8796.64 9199.86 2899.49 75
GBi-Net96.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
test196.99 14096.80 15597.56 12597.96 23593.67 17698.23 4698.66 17595.59 16597.99 15099.19 3889.51 28099.73 8794.60 20599.44 15999.30 127
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17597.41 8399.00 4799.19 3895.47 14599.73 8795.83 13299.76 5799.30 127
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27093.65 18098.49 2898.88 11796.86 10197.11 20598.55 10795.82 13099.73 8795.94 12599.42 17199.13 162
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18299.73 595.05 19199.60 1599.34 2698.68 899.72 9399.21 799.85 3699.76 18
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13696.11 13399.08 4098.24 15197.87 2399.72 9395.44 15799.51 13999.14 160
test_241102_TWO98.83 13696.11 13398.62 7898.24 15196.92 7699.72 9395.44 15799.49 14699.49 75
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5595.32 17997.83 16997.88 19596.44 10699.72 9394.59 20899.39 17799.25 143
ETV-MVS96.13 19095.90 20396.82 19097.76 26593.89 16795.40 23998.95 10495.87 15195.58 29591.00 39896.36 11199.72 9393.36 24798.83 25996.85 364
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 22993.00 26398.16 13198.06 17795.89 12599.72 9395.67 13999.10 22999.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 16998.79 14695.07 19097.88 16398.35 13097.24 5499.72 9396.05 11699.58 10999.45 90
xiu_mvs_v1_base95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4699.37 499.67 899.43 1795.61 14199.72 9398.12 3699.86 2899.73 22
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30298.01 22988.42 29193.99 30798.21 22692.98 26495.91 27994.53 35396.39 10899.72 9395.43 16098.19 30495.64 389
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25897.64 21696.49 10199.72 9395.66 14099.37 17999.45 90
X-MVStestdata92.86 31190.83 34098.94 1999.15 8397.66 2397.77 7998.83 13697.42 7996.32 25836.50 41996.49 10199.72 9395.66 14099.37 17999.45 90
v1097.55 10897.97 6196.31 22298.60 16289.64 26997.44 10799.02 8196.60 10898.72 7599.16 4693.48 20099.72 9398.76 2199.92 1499.58 39
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19799.64 1594.99 19499.43 2099.18 4298.51 1099.71 10799.13 1099.84 3899.67 28
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14898.23 22595.92 14798.40 10098.28 14497.06 6299.71 10795.48 15399.52 13499.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10795.70 13599.62 9299.58 39
CANet95.86 20195.65 21396.49 21196.41 33990.82 25194.36 28798.41 20494.94 19592.62 37396.73 28392.68 21999.71 10795.12 18199.60 10498.94 195
xiu_mvs_v2_base94.22 27494.63 25292.99 35097.32 31284.84 35792.12 36197.84 26291.96 28694.17 32793.43 36596.07 12199.71 10791.27 28497.48 34094.42 399
PS-MVSNAJ94.10 28094.47 26293.00 34997.35 30784.88 35491.86 36697.84 26291.96 28694.17 32792.50 38395.82 13099.71 10791.27 28497.48 34094.40 400
v124096.74 16097.02 14295.91 24198.18 21188.52 29095.39 24098.88 11793.15 25998.46 9598.40 12692.80 21699.71 10798.45 3199.49 14699.49 75
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31098.36 3998.14 13497.98 18688.23 29399.71 10793.10 25699.72 7099.38 112
Fast-Effi-MVS+95.49 21795.07 22896.75 19597.67 27992.82 20094.22 29598.60 18391.61 29393.42 35492.90 37496.73 8999.70 11592.60 26197.89 31897.74 329
v14419296.69 16696.90 15196.03 23398.25 20188.92 28295.49 23298.77 15193.05 26198.09 13998.29 14392.51 23099.70 11598.11 3799.56 11599.47 84
v192192096.72 16396.96 14695.99 23498.21 20588.79 28795.42 23698.79 14693.22 25198.19 12998.26 14992.68 21999.70 11598.34 3499.55 12199.49 75
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13096.05 13697.49 18297.54 22397.07 6199.70 11595.61 14499.46 15599.30 127
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20198.20 22995.51 16995.06 30696.53 29394.10 18599.70 11594.29 21799.15 22099.13 162
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8195.15 18698.34 11098.23 15397.91 2199.70 11594.41 21199.73 6699.50 67
test250689.86 35489.16 35991.97 37298.95 11576.83 40998.54 2361.07 42496.20 12897.07 21299.16 4655.19 41899.69 12296.43 10099.83 4299.38 112
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19798.25 4699.13 3898.66 9496.65 9199.69 12293.92 23399.62 9298.91 203
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31794.39 14795.46 23398.73 15896.03 14094.72 31494.92 34796.28 11699.69 12293.81 23697.98 31298.09 295
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 30992.01 22995.33 24797.65 27597.74 6398.30 11898.14 16295.04 15899.69 12297.55 6199.52 13499.58 39
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15398.73 15898.66 2998.56 8498.41 12396.84 8499.69 12294.82 19499.81 4798.64 240
SSC-MVS95.92 19897.03 14192.58 36199.28 5578.39 39896.68 15595.12 34298.90 2399.11 3998.66 9491.36 25199.68 12795.00 18799.16 21999.67 28
balanced_conf0396.88 15097.29 12395.63 25397.66 28089.47 27397.95 6698.89 11095.94 14597.77 17398.55 10792.23 23499.68 12797.05 8199.61 9897.73 330
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14898.73 15891.61 29398.48 9298.36 12996.53 9899.68 12795.17 17399.54 12599.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12797.75 5399.89 2399.62 36
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30692.08 22795.34 24697.65 27597.74 6398.29 11998.11 16895.05 15799.68 12797.50 6399.50 14399.56 50
v897.60 10498.06 5396.23 22498.71 14789.44 27497.43 10998.82 14497.29 9098.74 7399.10 5293.86 19199.68 12798.61 2699.94 899.56 50
VPNet97.26 12997.49 11496.59 20399.47 3390.58 25696.27 17498.53 19097.77 6098.46 9598.41 12394.59 17299.68 12794.61 20499.29 20399.52 60
mvsmamba94.91 24494.41 26696.40 21897.65 28291.30 24297.92 6995.32 33991.50 29695.54 29698.38 12783.06 33799.68 12792.46 26597.84 31998.23 284
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10597.10 9598.85 6098.88 7595.03 15999.67 13597.39 6799.65 8699.26 139
EIA-MVS96.04 19395.77 20996.85 18797.80 25592.98 19896.12 18899.16 4294.65 20493.77 34091.69 39295.68 13899.67 13594.18 22198.85 25697.91 315
v119296.83 15597.06 13996.15 23098.28 19789.29 27695.36 24298.77 15193.73 23398.11 13698.34 13293.02 21399.67 13598.35 3399.58 10999.50 67
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15192.89 26996.01 27697.13 25492.23 23499.67 13592.24 26799.34 19099.17 154
FMVSNet593.39 30192.35 31296.50 21095.83 36390.81 25397.31 11298.27 22092.74 27296.27 26398.28 14462.23 40499.67 13590.86 29599.36 18299.03 182
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22197.16 31891.96 23097.74 8498.84 13087.26 35194.36 32398.01 18393.95 19099.67 13590.70 30698.75 26697.35 350
ECVR-MVScopyleft94.37 27294.48 26194.05 32498.95 11583.10 37298.31 3982.48 41796.20 12898.23 12399.16 4681.18 34699.66 14195.95 12499.83 4299.38 112
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9596.35 12398.13 13595.95 32395.99 12299.66 14194.36 21699.73 6698.59 246
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 20899.41 2693.36 24599.00 4798.44 12096.46 10599.65 14399.09 1199.76 5799.45 90
v114496.84 15297.08 13796.13 23198.42 18789.28 27795.41 23898.67 17394.21 21897.97 15498.31 13593.06 20899.65 14398.06 4099.62 9299.45 90
jason94.39 27194.04 27895.41 26798.29 19587.85 30992.74 34496.75 30985.38 37495.29 30196.15 31288.21 29499.65 14394.24 21999.34 19098.74 229
jason: jason.
FMVSNet296.72 16396.67 16296.87 18697.96 23591.88 23197.15 12198.06 25295.59 16598.50 8998.62 9989.51 28099.65 14394.99 18999.60 10499.07 177
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21199.32 2793.22 25198.91 5698.49 11396.31 11299.64 14799.07 1299.76 5799.40 105
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18699.57 1795.66 16099.52 1698.71 8997.04 6499.64 14799.21 799.87 2698.69 236
EPNet93.72 29192.62 31097.03 17687.61 42292.25 21696.27 17491.28 38696.74 10487.65 40897.39 23785.00 32299.64 14792.14 26899.48 15099.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 27993.42 29096.23 22498.59 16490.85 25094.24 29398.85 12685.49 37092.97 36294.94 34586.01 31399.64 14791.78 27797.92 31598.20 288
v2v48296.78 15997.06 13995.95 23898.57 16688.77 28895.36 24298.26 22195.18 18597.85 16898.23 15392.58 22399.63 15197.80 4999.69 7799.45 90
lupinMVS93.77 28993.28 29295.24 27097.68 27587.81 31092.12 36196.05 31884.52 38394.48 32195.06 34386.90 30699.63 15193.62 24399.13 22398.27 281
FMVSNet395.26 23094.94 23296.22 22696.53 33690.06 26095.99 19997.66 27394.11 22497.99 15097.91 19480.22 35299.63 15194.60 20599.44 15998.96 192
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 17998.89 11093.71 23497.97 15497.75 20897.44 4099.63 15193.22 25399.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LS3D97.77 9097.50 11398.57 5196.24 34297.58 2898.45 3198.85 12698.58 3297.51 18097.94 19095.74 13799.63 15195.19 17198.97 24198.51 254
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18398.58 3298.78 6699.39 1897.80 2599.62 15694.98 19099.86 2899.52 60
9.1496.69 16098.53 17296.02 19598.98 9893.23 25097.18 20097.46 22896.47 10399.62 15692.99 25799.32 197
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34099.26 998.39 10299.18 4287.85 30099.62 15695.13 18099.09 23099.35 120
V4297.04 13797.16 13396.68 20098.59 16491.05 24696.33 17198.36 21194.60 20697.99 15098.30 13993.32 20299.62 15697.40 6699.53 12999.38 112
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18099.02 8193.92 23098.62 7898.99 6197.69 2999.62 15696.18 11299.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22495.60 9598.04 5998.70 16798.13 5096.93 22298.45 11895.30 15299.62 15695.64 14298.96 24299.24 144
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15598.83 13695.21 18298.36 10698.13 16498.13 1899.62 15696.04 11799.54 12599.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 21998.79 2699.23 3398.86 7795.76 13699.61 16395.49 14999.36 18299.23 145
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6398.31 4199.02 4498.74 8597.68 3099.61 16397.77 5299.85 3699.70 26
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17299.65 1295.59 16599.71 599.01 5897.66 3399.60 16599.44 299.83 4297.90 316
IB-MVS85.98 2088.63 36686.95 37793.68 33195.12 38484.82 35890.85 38690.17 39987.55 35088.48 40591.34 39558.01 40799.59 16687.24 36193.80 39896.63 374
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16697.21 7199.76 5799.40 105
thisisatest051590.43 34689.18 35894.17 32297.07 32285.44 34389.75 40087.58 40788.28 34393.69 34491.72 39165.27 40199.58 16890.59 30898.67 27497.50 345
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33298.59 3198.51 8798.72 8692.54 22799.58 16896.02 11999.49 14699.12 167
EI-MVSNet96.63 16996.93 14795.74 24897.26 31488.13 30195.29 25197.65 27596.99 9697.94 15898.19 15892.55 22599.58 16896.91 8599.56 11599.50 67
DELS-MVS96.17 18896.23 18695.99 23497.55 29290.04 26192.38 35898.52 19194.13 22296.55 24997.06 25994.99 16199.58 16895.62 14399.28 20498.37 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVSTER94.21 27693.93 28395.05 27995.83 36386.46 33295.18 25697.65 27592.41 27997.94 15898.00 18572.39 38899.58 16896.36 10399.56 11599.12 167
IterMVS95.42 22395.83 20694.20 32097.52 29383.78 36992.41 35697.47 28495.49 17198.06 14498.49 11387.94 29599.58 16896.02 11999.02 23899.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CANet_DTU94.65 26094.21 27295.96 23695.90 35889.68 26793.92 31297.83 26493.19 25490.12 39495.64 33188.52 28899.57 17493.27 25299.47 15298.62 243
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22298.58 3298.78 6699.39 1898.21 1499.56 17592.65 26099.86 2899.52 60
Effi-MVS+96.19 18796.01 19596.71 19797.43 30292.19 22296.12 18899.10 5595.45 17293.33 35694.71 35097.23 5599.56 17593.21 25497.54 33798.37 266
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16498.98 9895.05 19198.06 14498.02 18195.86 12699.56 17594.37 21499.64 8899.00 186
Test_1112_low_res93.53 29892.86 30095.54 26098.60 16288.86 28592.75 34298.69 16882.66 39092.65 37096.92 27084.75 32499.56 17590.94 29397.76 32398.19 289
AUN-MVS93.95 28892.69 30797.74 11297.80 25595.38 10795.57 23195.46 33691.26 30292.64 37196.10 31774.67 37799.55 17993.72 24096.97 35098.30 277
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 11998.23 4799.48 1799.27 3198.47 1199.55 17996.52 9699.53 12999.60 37
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23498.86 12298.20 4998.37 10399.24 3394.69 16799.55 17995.98 12399.79 5299.65 33
hse-mvs295.77 20595.09 22797.79 10997.84 24795.51 9995.66 22295.43 33796.58 11097.21 19796.16 31184.14 32899.54 18295.89 12896.92 35198.32 273
VNet96.84 15296.83 15396.88 18598.06 22592.02 22896.35 17097.57 28197.70 6797.88 16397.80 20492.40 23299.54 18294.73 20198.96 24299.08 175
Anonymous20240521196.34 18295.98 19897.43 14398.25 20193.85 16996.74 14894.41 35197.72 6598.37 10398.03 18087.15 30599.53 18494.06 22699.07 23398.92 202
agg_prior97.80 25594.96 12898.36 21193.49 35099.53 184
UGNet96.81 15796.56 16997.58 12496.64 33393.84 17097.75 8297.12 29496.47 11893.62 34598.88 7593.22 20599.53 18495.61 14499.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST997.84 24795.23 11793.62 32198.39 20786.81 35893.78 33895.99 31994.68 16999.52 187
train_agg95.46 22194.66 24897.88 10497.84 24795.23 11793.62 32198.39 20787.04 35493.78 33895.99 31994.58 17399.52 18791.76 27898.90 24998.89 207
test_897.81 25195.07 12693.54 32498.38 20987.04 35493.71 34295.96 32294.58 17399.52 187
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18798.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
new-patchmatchnet95.67 21096.58 16792.94 35297.48 29680.21 39392.96 33798.19 23494.83 19898.82 6398.79 7993.31 20399.51 19195.83 13299.04 23799.12 167
WB-MVS95.50 21696.62 16392.11 37199.21 7377.26 40896.12 18895.40 33898.62 3098.84 6198.26 14991.08 25499.50 19293.37 24698.70 27299.58 39
FE-MVS92.95 31092.22 31595.11 27597.21 31688.33 29598.54 2393.66 35989.91 32196.21 26798.14 16270.33 39599.50 19287.79 34998.24 30397.51 343
EGC-MVSNET83.08 38377.93 38698.53 5499.57 1997.55 3098.33 3898.57 1884.71 42110.38 42298.90 7395.60 14299.50 19295.69 13799.61 9898.55 250
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9297.57 7299.27 3099.22 3598.32 1299.50 19297.09 7799.75 6499.50 67
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20199.18 4097.67 7199.00 4798.48 11797.64 3499.50 19296.96 8499.54 12599.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
thres600view792.03 32891.43 32693.82 32698.19 20884.61 35996.27 17490.39 39496.81 10296.37 25693.11 36773.44 38699.49 19780.32 39897.95 31497.36 348
ab-mvs96.59 17096.59 16696.60 20298.64 15492.21 21898.35 3597.67 27194.45 21296.99 21798.79 7994.96 16399.49 19790.39 31499.07 23398.08 296
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14698.98 2198.74 7398.49 11395.80 13599.49 19795.04 18499.44 15999.11 170
LFMVS95.32 22794.88 23896.62 20198.03 22691.47 23997.65 9190.72 39399.11 1297.89 16298.31 13579.20 35499.48 20093.91 23499.12 22698.93 199
Vis-MVSNet (Re-imp)95.11 23694.85 23995.87 24399.12 9189.17 27897.54 10494.92 34696.50 11596.58 24597.27 24783.64 33399.48 20088.42 34399.67 8398.97 191
CHOSEN 280x42089.98 35189.19 35792.37 36695.60 37381.13 38986.22 40897.09 29581.44 39587.44 40993.15 36673.99 37899.47 20288.69 33999.07 23396.52 376
CDS-MVSNet94.88 24794.12 27697.14 16497.64 28593.57 18193.96 31197.06 29790.05 31996.30 26296.55 29186.10 31299.47 20290.10 31899.31 20098.40 262
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7197.40 8499.37 2499.08 5598.79 699.47 20297.74 5499.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WBMVS91.11 34090.72 34292.26 36895.99 35577.98 40391.47 37295.90 32491.63 29195.90 28296.45 29859.60 40599.46 20589.97 32199.59 10699.33 121
testdata299.46 20587.84 348
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 24898.48 18188.76 28992.84 33997.25 28796.00 14197.59 17697.95 18991.38 25099.46 20593.16 25596.35 37098.99 189
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16198.75 15596.36 12196.16 27096.77 28091.91 24699.46 20592.59 26299.20 21399.28 134
plane_prior598.75 15599.46 20592.59 26299.20 21399.28 134
新几何197.25 15898.29 19594.70 13597.73 26877.98 40794.83 31396.67 28692.08 24099.45 21088.17 34798.65 27897.61 338
NCCC96.52 17495.99 19798.10 8797.81 25195.68 9295.00 26798.20 22995.39 17695.40 30096.36 30493.81 19399.45 21093.55 24498.42 29599.17 154
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4298.34 4098.78 6698.52 11097.32 4599.45 21094.08 22599.67 8399.13 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ET-MVSNet_ETH3D91.12 33989.67 35295.47 26396.41 33989.15 28091.54 37190.23 39889.07 33086.78 41292.84 37669.39 39799.44 21394.16 22296.61 36597.82 322
CDPH-MVS95.45 22294.65 24997.84 10798.28 19794.96 12893.73 31998.33 21585.03 37795.44 29896.60 28995.31 15199.44 21390.01 31999.13 22399.11 170
testing389.72 35688.26 36594.10 32397.66 28084.30 36594.80 27388.25 40694.66 20395.07 30592.51 38241.15 42499.43 21591.81 27698.44 29498.55 250
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28098.17 23590.17 31896.21 26796.10 31795.14 15699.43 21594.13 22498.85 25699.13 162
thres100view90091.76 33391.26 33393.26 33898.21 20584.50 36096.39 16490.39 39496.87 10096.33 25793.08 37173.44 38699.42 21778.85 40397.74 32495.85 385
tfpn200view991.55 33591.00 33593.21 34298.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32495.85 385
patchmatchnet-post96.84 27477.36 36599.42 217
SCA93.38 30293.52 28992.96 35196.24 34281.40 38693.24 33394.00 35491.58 29594.57 31796.97 26587.94 29599.42 21789.47 32897.66 33398.06 302
thres40091.68 33491.00 33593.71 33098.02 22784.35 36395.70 21790.79 39196.26 12595.90 28292.13 38773.62 38399.42 21778.85 40397.74 32497.36 348
test1297.46 14097.61 28794.07 16197.78 26693.57 34893.31 20399.42 21798.78 26398.89 207
CHOSEN 1792x268894.10 28093.41 29196.18 22899.16 8090.04 26192.15 36098.68 17079.90 40196.22 26697.83 19887.92 29999.42 21789.18 33299.65 8699.08 175
TAMVS95.49 21794.94 23297.16 16298.31 19393.41 18895.07 26296.82 30691.09 30497.51 18097.82 20189.96 27299.42 21788.42 34399.44 15998.64 240
PHI-MVS96.96 14496.53 17398.25 7597.48 29696.50 6396.76 14798.85 12693.52 24096.19 26996.85 27395.94 12399.42 21793.79 23799.43 16898.83 216
ADS-MVSNet291.47 33790.51 34694.36 31395.51 37485.63 34095.05 26495.70 32783.46 38792.69 36896.84 27479.15 35599.41 22685.66 37190.52 40598.04 306
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9294.93 19798.58 8398.92 6997.31 4699.41 22694.44 20999.43 16899.59 38
alignmvs96.01 19595.52 21797.50 13497.77 26494.71 13396.07 19196.84 30497.48 7796.78 23294.28 35985.50 31999.40 22896.22 11098.73 27098.40 262
无先验93.20 33497.91 25680.78 39799.40 22887.71 35097.94 314
HY-MVS91.43 1592.58 31591.81 32194.90 28896.49 33788.87 28497.31 11294.62 34885.92 36690.50 38996.84 27485.05 32199.40 22883.77 38795.78 38196.43 378
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3798.21 4899.25 3298.51 11298.21 1499.40 22894.79 19699.72 7099.32 122
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25398.46 19694.58 20998.10 13898.07 17297.09 6099.39 23295.16 17599.44 15999.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14896.58 17296.97 14495.42 26598.63 15887.57 31495.09 25997.90 25795.91 14998.24 12297.96 18793.42 20199.39 23296.04 11799.52 13499.29 133
CR-MVSNet93.29 30592.79 30394.78 29695.44 37688.15 29996.18 18297.20 28984.94 38094.10 32998.57 10477.67 36199.39 23295.17 17395.81 37896.81 368
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18799.09 9591.43 24196.37 16899.11 5294.19 22099.01 4599.25 3296.30 11399.38 23599.00 1499.88 2499.73 22
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19198.79 13691.44 24096.14 18799.06 6794.19 22098.82 6398.98 6296.22 11899.38 23598.98 1699.86 2899.58 39
原ACMM196.58 20498.16 21692.12 22398.15 24185.90 36793.49 35096.43 29992.47 23199.38 23587.66 35298.62 28098.23 284
mvs_anonymous95.36 22496.07 19493.21 34296.29 34181.56 38494.60 28297.66 27393.30 24896.95 22198.91 7293.03 21299.38 23596.60 9397.30 34898.69 236
Patchmtry95.03 24194.59 25696.33 22094.83 38990.82 25196.38 16797.20 28996.59 10997.49 18298.57 10477.67 36199.38 23592.95 25999.62 9298.80 220
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15899.15 4693.68 23798.89 5799.30 2996.42 10799.37 24099.03 1399.83 4299.66 30
casdiffmvspermissive97.50 11197.81 7796.56 20798.51 17591.04 24795.83 21199.09 6097.23 9198.33 11398.30 13997.03 6599.37 24096.58 9599.38 17899.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 28693.22 29496.19 22799.06 10090.97 24995.99 19998.94 10573.88 41493.43 35396.93 26892.38 23399.37 24089.09 33399.28 20498.25 283
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 17899.06 6793.67 23898.64 7699.00 5996.23 11799.36 24398.99 1599.80 5099.53 57
ppachtmachnet_test94.49 26894.84 24093.46 33596.16 34882.10 37990.59 38997.48 28390.53 31297.01 21697.59 22091.01 25599.36 24393.97 23299.18 21798.94 195
baseline97.44 11697.78 8296.43 21498.52 17390.75 25496.84 13899.03 7996.51 11497.86 16798.02 18196.67 9099.36 24397.09 7799.47 15299.19 151
CNVR-MVS96.92 14696.55 17098.03 9598.00 23395.54 9794.87 27198.17 23594.60 20696.38 25597.05 26095.67 13999.36 24395.12 18199.08 23199.19 151
MGCFI-Net97.20 13297.23 12897.08 17197.68 27593.71 17597.79 7799.09 6097.40 8496.59 24493.96 36197.67 3199.35 24796.43 10098.50 29098.17 292
eth_miper_zixun_eth94.89 24694.93 23494.75 29795.99 35586.12 33791.35 37598.49 19493.40 24397.12 20497.25 24986.87 30899.35 24795.08 18398.82 26098.78 223
F-COLMAP95.30 22894.38 26798.05 9498.64 15496.04 7995.61 22898.66 17589.00 33293.22 35796.40 30292.90 21499.35 24787.45 35897.53 33898.77 226
Anonymous2023120695.27 22995.06 23095.88 24298.72 14489.37 27595.70 21797.85 26088.00 34796.98 21997.62 21891.95 24399.34 25089.21 33199.53 12998.94 195
test_prior97.46 14097.79 26094.26 15798.42 20399.34 25098.79 222
sasdasda97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
test_241102_ONE99.22 6695.35 11098.83 13696.04 13899.08 4098.13 16497.87 2399.33 252
canonicalmvs97.23 13097.21 13097.30 15397.65 28294.39 14797.84 7499.05 7197.42 7996.68 23693.85 36397.63 3599.33 25296.29 10698.47 29198.18 290
baseline289.65 35888.44 36493.25 33995.62 37282.71 37493.82 31585.94 41288.89 33487.35 41092.54 38171.23 39199.33 25286.01 36694.60 39497.72 332
WTY-MVS93.55 29793.00 29895.19 27297.81 25187.86 30793.89 31396.00 32089.02 33194.07 33195.44 33886.27 31199.33 25287.69 35196.82 35798.39 264
DIV-MVS_self_test94.73 25194.64 25095.01 28195.86 36187.00 32591.33 37698.08 24793.34 24697.10 20697.34 24384.02 33199.31 25795.15 17799.55 12198.72 232
thres20091.00 34390.42 34792.77 35797.47 30083.98 36894.01 30691.18 38895.12 18895.44 29891.21 39673.93 37999.31 25777.76 40697.63 33595.01 396
PCF-MVS89.43 1892.12 32490.64 34496.57 20697.80 25593.48 18489.88 39998.45 19774.46 41396.04 27595.68 32990.71 26099.31 25773.73 41199.01 24096.91 361
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl____94.73 25194.64 25095.01 28195.85 36287.00 32591.33 37698.08 24793.34 24697.10 20697.33 24484.01 33299.30 26095.14 17899.56 11598.71 235
tpm91.08 34290.85 33991.75 37495.33 38078.09 40095.03 26691.27 38788.75 33593.53 34997.40 23371.24 39099.30 26091.25 28693.87 39797.87 319
PVSNet_BlendedMVS95.02 24294.93 23495.27 26997.79 26087.40 31894.14 30198.68 17088.94 33394.51 31998.01 18393.04 20999.30 26089.77 32499.49 14699.11 170
PVSNet_Blended93.96 28693.65 28694.91 28697.79 26087.40 31891.43 37398.68 17084.50 38494.51 31994.48 35693.04 20999.30 26089.77 32498.61 28198.02 308
diffmvspermissive96.04 19396.23 18695.46 26497.35 30788.03 30493.42 32799.08 6394.09 22696.66 23996.93 26893.85 19299.29 26496.01 12198.67 27499.06 179
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20398.97 10194.55 21098.82 6398.76 8497.31 4699.29 26497.20 7399.44 15999.38 112
FA-MVS(test-final)94.91 24494.89 23794.99 28397.51 29488.11 30398.27 4495.20 34192.40 28096.68 23698.60 10283.44 33499.28 26693.34 24898.53 28597.59 340
c3_l95.20 23295.32 21894.83 29396.19 34686.43 33491.83 36798.35 21493.47 24297.36 19097.26 24888.69 28699.28 26695.41 16399.36 18298.78 223
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27494.15 15996.02 19598.43 20093.17 25897.30 19197.38 23995.48 14499.28 26693.74 23899.34 19098.88 211
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs594.63 26194.34 26895.50 26197.63 28688.34 29494.02 30597.13 29387.15 35395.22 30397.15 25387.50 30199.27 26993.99 23099.26 20798.88 211
miper_lstm_enhance94.81 25094.80 24494.85 29196.16 34886.45 33391.14 38298.20 22993.49 24197.03 21497.37 24184.97 32399.26 27095.28 16699.56 11598.83 216
MVS_Test96.27 18496.79 15794.73 29896.94 32786.63 33196.18 18298.33 21594.94 19596.07 27398.28 14495.25 15399.26 27097.21 7197.90 31798.30 277
UWE-MVS87.57 37686.72 37890.13 38795.21 38173.56 41791.94 36583.78 41688.73 33793.00 36192.87 37555.22 41799.25 27281.74 39297.96 31397.59 340
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27296.27 10899.69 7798.76 227
OpenMVS_ROBcopyleft91.80 1493.64 29593.05 29595.42 26597.31 31391.21 24595.08 26196.68 31381.56 39396.88 22696.41 30090.44 26599.25 27285.39 37597.67 33195.80 387
PatchT93.75 29093.57 28894.29 31895.05 38587.32 32096.05 19292.98 36697.54 7594.25 32498.72 8675.79 37499.24 27695.92 12695.81 37896.32 379
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6796.19 13098.48 9298.70 9194.72 16699.24 27694.37 21499.33 19599.17 154
HQP4-MVS92.87 36399.23 27899.06 179
HQP-MVS95.17 23594.58 25796.92 18297.85 24292.47 21294.26 28998.43 20093.18 25592.86 36495.08 34190.33 26699.23 27890.51 31198.74 26799.05 181
testing9189.67 35788.55 36293.04 34695.90 35881.80 38392.71 34693.71 35593.71 23490.18 39390.15 40457.11 40999.22 28087.17 36296.32 37198.12 294
miper_ehance_all_eth94.69 25694.70 24794.64 29995.77 36886.22 33691.32 37898.24 22491.67 29097.05 21396.65 28788.39 29199.22 28094.88 19198.34 29898.49 257
PLCcopyleft91.02 1694.05 28392.90 29997.51 13098.00 23395.12 12594.25 29298.25 22286.17 36391.48 38395.25 33991.01 25599.19 28285.02 37996.69 36398.22 286
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test_yl94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
DCV-MVSNet94.40 26994.00 27995.59 25496.95 32589.52 27194.75 27795.55 33496.18 13196.79 22896.14 31481.09 34799.18 28390.75 30197.77 32198.07 298
YYNet194.73 25194.84 24094.41 31297.47 30085.09 35290.29 39295.85 32692.52 27597.53 17897.76 20591.97 24299.18 28393.31 25096.86 35498.95 193
PatchmatchNetpermissive91.98 32991.87 31992.30 36794.60 39279.71 39495.12 25793.59 36189.52 32593.61 34697.02 26277.94 35999.18 28390.84 29694.57 39598.01 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MDA-MVSNet_test_wron94.73 25194.83 24294.42 31197.48 29685.15 35090.28 39395.87 32592.52 27597.48 18497.76 20591.92 24599.17 28793.32 24996.80 35998.94 195
CL-MVSNet_self_test95.04 23994.79 24595.82 24497.51 29489.79 26591.14 38296.82 30693.05 26196.72 23496.40 30290.82 25899.16 28891.95 27198.66 27698.50 256
UnsupCasMVSNet_bld94.72 25594.26 26996.08 23298.62 16090.54 25993.38 32998.05 25390.30 31597.02 21596.80 27989.54 27799.16 28888.44 34296.18 37498.56 248
testing9989.21 36188.04 36792.70 35995.78 36781.00 39092.65 34792.03 37693.20 25389.90 39790.08 40655.25 41699.14 29087.54 35595.95 37797.97 311
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6396.57 11398.07 14398.38 12796.22 11899.14 29094.71 20399.31 20098.52 253
miper_enhance_ethall93.14 30892.78 30594.20 32093.65 40585.29 34789.97 39597.85 26085.05 37696.15 27294.56 35285.74 31599.14 29093.74 23898.34 29898.17 292
D2MVS95.18 23395.17 22495.21 27197.76 26587.76 31294.15 29997.94 25589.77 32396.99 21797.68 21587.45 30299.14 29095.03 18699.81 4798.74 229
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
TestCases98.06 9099.08 9696.16 7499.16 4294.35 21597.78 17198.07 17295.84 12799.12 29491.41 28199.42 17198.91 203
MAR-MVS94.21 27693.03 29697.76 11196.94 32797.44 3796.97 13397.15 29287.89 34992.00 37892.73 37992.14 23799.12 29483.92 38497.51 33996.73 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1188.93 36387.63 37192.80 35695.87 36081.49 38592.48 35191.54 38291.62 29288.27 40690.24 40255.12 41999.11 29787.30 36096.28 37397.81 324
our_test_394.20 27894.58 25793.07 34596.16 34881.20 38890.42 39196.84 30490.72 30897.14 20297.13 25490.47 26299.11 29794.04 22998.25 30298.91 203
EPNet_dtu91.39 33890.75 34193.31 33790.48 41882.61 37694.80 27392.88 36793.39 24481.74 41694.90 34881.36 34599.11 29788.28 34598.87 25398.21 287
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo95.69 20895.28 21996.92 18298.15 21893.03 19795.64 22798.20 22990.39 31496.63 24297.73 21191.63 24899.10 30091.84 27597.31 34798.63 242
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AdaColmapbinary95.11 23694.62 25396.58 20497.33 31194.45 14694.92 26998.08 24793.15 25993.98 33695.53 33594.34 18099.10 30085.69 37098.61 28196.20 382
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20194.29 15394.77 27698.07 25189.81 32297.97 15498.33 13393.11 20799.08 30295.46 15699.84 3898.89 207
test_post10.87 42276.83 36899.07 303
N_pmnet95.18 23394.23 27098.06 9097.85 24296.55 6292.49 35091.63 38189.34 32698.09 13997.41 23290.33 26699.06 30491.58 28099.31 20098.56 248
reproduce_monomvs92.05 32792.26 31491.43 37795.42 37875.72 41395.68 22097.05 29894.47 21197.95 15798.35 13055.58 41599.05 30596.36 10399.44 15999.51 64
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18198.63 18193.82 23198.54 8598.33 13393.98 18899.05 30595.99 12299.45 15898.61 245
ambc96.56 20798.23 20491.68 23697.88 7298.13 24398.42 9898.56 10694.22 18399.04 30794.05 22899.35 18798.95 193
test_post194.98 26810.37 42376.21 37299.04 30789.47 328
OMC-MVS96.48 17696.00 19697.91 10298.30 19496.01 8294.86 27298.60 18391.88 28897.18 20097.21 25196.11 12099.04 30790.49 31399.34 19098.69 236
MIMVSNet93.42 30092.86 30095.10 27798.17 21488.19 29798.13 5593.69 35692.07 28295.04 30998.21 15780.95 34999.03 31081.42 39498.06 31098.07 298
DPM-MVS93.68 29392.77 30696.42 21597.91 23992.54 20891.17 38197.47 28484.99 37993.08 36094.74 34989.90 27399.00 31187.54 35598.09 30997.72 332
BH-RMVSNet94.56 26494.44 26594.91 28697.57 28987.44 31793.78 31896.26 31693.69 23696.41 25496.50 29692.10 23999.00 31185.96 36797.71 32798.31 275
gm-plane-assit91.79 41571.40 42181.67 39290.11 40598.99 31384.86 380
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32798.36 21194.74 20096.58 24596.76 28296.54 9798.99 31394.87 19299.27 20699.15 157
testdata95.70 25198.16 21690.58 25697.72 26980.38 39995.62 29297.02 26292.06 24198.98 31589.06 33598.52 28697.54 342
DP-MVS Recon95.55 21595.13 22596.80 19198.51 17593.99 16594.60 28298.69 16890.20 31795.78 28796.21 31092.73 21898.98 31590.58 30998.86 25597.42 347
TAPA-MVS93.32 1294.93 24394.23 27097.04 17598.18 21194.51 14395.22 25498.73 15881.22 39696.25 26595.95 32393.80 19498.98 31589.89 32298.87 25397.62 337
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CLD-MVS95.47 22095.07 22896.69 19998.27 19992.53 20991.36 37498.67 17391.22 30395.78 28794.12 36095.65 14098.98 31590.81 29799.72 7098.57 247
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
GA-MVS92.83 31292.15 31794.87 29096.97 32487.27 32190.03 39496.12 31791.83 28994.05 33294.57 35176.01 37398.97 31992.46 26597.34 34698.36 271
BH-untuned94.69 25694.75 24694.52 30797.95 23887.53 31594.07 30497.01 29993.99 22897.10 20695.65 33092.65 22198.95 32087.60 35396.74 36097.09 354
UBG88.29 36987.17 37391.63 37596.08 35378.21 39991.61 36991.50 38389.67 32489.71 39888.97 40859.01 40698.91 32181.28 39596.72 36297.77 327
JIA-IIPM91.79 33290.69 34395.11 27593.80 40490.98 24894.16 29891.78 38096.38 11990.30 39299.30 2972.02 38998.90 32288.28 34590.17 40795.45 393
pmmvs494.82 24994.19 27396.70 19897.42 30392.75 20692.09 36396.76 30886.80 35995.73 29097.22 25089.28 28398.89 32393.28 25199.14 22198.46 260
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27095.23 11794.15 29996.90 30393.26 24998.04 14796.70 28494.41 17898.89 32394.77 19999.14 22198.37 266
CostFormer89.75 35589.25 35391.26 38094.69 39178.00 40295.32 24891.98 37881.50 39490.55 38896.96 26771.06 39298.89 32388.59 34192.63 40196.87 362
sss94.22 27493.72 28595.74 24897.71 27389.95 26393.84 31496.98 30088.38 34293.75 34195.74 32787.94 29598.89 32391.02 29098.10 30898.37 266
tpmvs90.79 34590.87 33890.57 38492.75 41376.30 41095.79 21493.64 36091.04 30591.91 37996.26 30777.19 36798.86 32789.38 33089.85 40896.56 375
tpmrst90.31 34790.61 34589.41 38994.06 40172.37 42095.06 26393.69 35688.01 34692.32 37696.86 27277.45 36398.82 32891.04 28987.01 41297.04 356
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5598.76 2796.79 22899.34 2696.61 9498.82 32896.38 10299.50 14396.98 357
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Patchmatch-RL test94.66 25994.49 26095.19 27298.54 17188.91 28392.57 34898.74 15791.46 29898.32 11497.75 20877.31 36698.81 33096.06 11499.61 9897.85 320
dp88.08 37188.05 36688.16 39692.85 41168.81 42294.17 29792.88 36785.47 37191.38 38496.14 31468.87 39898.81 33086.88 36383.80 41596.87 362
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29697.23 4492.56 34998.60 18392.84 27098.54 8597.40 23396.64 9398.78 33294.40 21399.41 17598.93 199
cl2293.25 30692.84 30294.46 31094.30 39586.00 33891.09 38496.64 31490.74 30795.79 28596.31 30678.24 35898.77 33394.15 22398.34 29898.62 243
MG-MVS94.08 28294.00 27994.32 31697.09 32185.89 33993.19 33595.96 32292.52 27594.93 31297.51 22689.54 27798.77 33387.52 35797.71 32798.31 275
EU-MVSNet94.25 27394.47 26293.60 33298.14 22082.60 37797.24 11792.72 37085.08 37598.48 9298.94 6782.59 34198.76 33597.47 6599.53 12999.44 100
USDC94.56 26494.57 25994.55 30697.78 26386.43 33492.75 34298.65 18085.96 36596.91 22497.93 19290.82 25898.74 33690.71 30599.59 10698.47 258
test_vis1_n_192095.77 20596.41 17993.85 32598.55 16984.86 35695.91 20799.71 692.72 27397.67 17498.90 7387.44 30398.73 33797.96 4298.85 25697.96 312
tpm288.47 36787.69 37090.79 38294.98 38677.34 40695.09 25991.83 37977.51 41089.40 40096.41 30067.83 39998.73 33783.58 38992.60 40296.29 380
MVS_111021_LR96.82 15696.55 17097.62 12298.27 19995.34 11293.81 31798.33 21594.59 20896.56 24796.63 28896.61 9498.73 33794.80 19599.34 19098.78 223
test20.0396.58 17296.61 16596.48 21298.49 17991.72 23595.68 22097.69 27096.81 10298.27 12097.92 19394.18 18498.71 34090.78 29999.66 8599.00 186
testing22287.35 37785.50 38492.93 35395.79 36682.83 37392.40 35790.10 40092.80 27188.87 40389.02 40748.34 42298.70 34175.40 40996.74 36097.27 352
ADS-MVSNet90.95 34490.26 34893.04 34695.51 37482.37 37895.05 26493.41 36283.46 38792.69 36896.84 27479.15 35598.70 34185.66 37190.52 40598.04 306
pmmvs390.00 35088.90 36093.32 33694.20 39985.34 34491.25 37992.56 37478.59 40593.82 33795.17 34067.36 40098.69 34389.08 33498.03 31195.92 383
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21398.48 18191.52 23895.31 24998.45 19795.76 15697.48 18497.54 22389.53 27998.69 34394.43 21094.61 39399.13 162
LF4IMVS96.07 19195.63 21497.36 14998.19 20895.55 9695.44 23498.82 14492.29 28195.70 29196.55 29192.63 22298.69 34391.75 27999.33 19597.85 320
TinyColmap96.00 19696.34 18294.96 28597.90 24087.91 30694.13 30298.49 19494.41 21398.16 13197.76 20596.29 11598.68 34690.52 31099.42 17198.30 277
旧先验293.35 33077.95 40895.77 28998.67 34790.74 304
PMMVS92.39 31791.08 33496.30 22393.12 40992.81 20290.58 39095.96 32279.17 40491.85 38092.27 38490.29 27098.66 34889.85 32396.68 36497.43 346
ETVMVS87.62 37585.75 38293.22 34196.15 35183.26 37192.94 33890.37 39691.39 29990.37 39088.45 40951.93 42198.64 34973.76 41096.38 36997.75 328
KD-MVS_2432*160088.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
miper_refine_blended88.93 36387.74 36892.49 36288.04 42081.99 38089.63 40195.62 33091.35 30095.06 30693.11 36756.58 41198.63 35085.19 37695.07 38796.85 364
Patchmatch-test93.60 29693.25 29394.63 30096.14 35287.47 31696.04 19394.50 35093.57 23996.47 25196.97 26576.50 36998.61 35290.67 30798.41 29697.81 324
TR-MVS92.54 31692.20 31693.57 33396.49 33786.66 33093.51 32594.73 34789.96 32094.95 31093.87 36290.24 27198.61 35281.18 39694.88 39095.45 393
baseline193.14 30892.64 30994.62 30197.34 30987.20 32296.67 15793.02 36594.71 20296.51 25095.83 32681.64 34298.60 35490.00 32088.06 41198.07 298
test-LLR89.97 35289.90 35090.16 38594.24 39774.98 41489.89 39689.06 40292.02 28489.97 39590.77 40073.92 38098.57 35591.88 27397.36 34496.92 359
test-mter87.92 37387.17 37390.16 38594.24 39774.98 41489.89 39689.06 40286.44 36289.97 39590.77 40054.96 42098.57 35591.88 27397.36 34496.92 359
PatchMatch-RL94.61 26293.81 28497.02 17798.19 20895.72 8993.66 32097.23 28888.17 34594.94 31195.62 33291.43 24998.57 35587.36 35997.68 33096.76 370
DSMNet-mixed92.19 32291.83 32093.25 33996.18 34783.68 37096.27 17493.68 35876.97 41192.54 37499.18 4289.20 28598.55 35883.88 38598.60 28397.51 343
MDTV_nov1_ep1391.28 33094.31 39473.51 41894.80 27393.16 36486.75 36093.45 35297.40 23376.37 37098.55 35888.85 33696.43 367
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19395.63 16297.22 19597.30 24695.52 14398.55 35890.97 29298.90 24998.34 272
OPU-MVS97.64 12198.01 22995.27 11596.79 14597.35 24296.97 6998.51 36191.21 28799.25 20899.14 160
Syy-MVS92.09 32591.80 32292.93 35395.19 38282.65 37592.46 35291.35 38490.67 31091.76 38187.61 41185.64 31898.50 36294.73 20196.84 35597.65 335
myMVS_eth3d87.16 38085.61 38391.82 37395.19 38279.32 39592.46 35291.35 38490.67 31091.76 38187.61 41141.96 42398.50 36282.66 39096.84 35597.65 335
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32898.31 4197.09 21195.45 33797.17 5698.50 36298.67 2597.45 34396.48 377
PVSNet86.72 1991.10 34190.97 33791.49 37697.56 29178.04 40187.17 40694.60 34984.65 38292.34 37592.20 38687.37 30498.47 36585.17 37897.69 32997.96 312
CVMVSNet92.33 32092.79 30390.95 38197.26 31475.84 41295.29 25192.33 37581.86 39196.27 26398.19 15881.44 34498.46 36694.23 22098.29 30198.55 250
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28099.02 8195.20 18398.15 13397.52 22598.83 598.43 36794.87 19296.41 36899.07 177
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31599.05 7195.19 18498.32 11497.70 21395.22 15498.41 36894.27 21898.13 30798.93 199
PAPM87.64 37485.84 38193.04 34696.54 33584.99 35388.42 40595.57 33379.52 40283.82 41393.05 37380.57 35098.41 36862.29 41792.79 40095.71 388
MVS90.02 34989.20 35692.47 36494.71 39086.90 32795.86 20996.74 31064.72 41690.62 38692.77 37792.54 22798.39 37079.30 40195.56 38592.12 408
PAPM_NR94.61 26294.17 27495.96 23698.36 19191.23 24495.93 20597.95 25492.98 26493.42 35494.43 35790.53 26198.38 37187.60 35396.29 37298.27 281
MSDG95.33 22695.13 22595.94 24097.40 30491.85 23291.02 38598.37 21095.30 18096.31 26195.99 31994.51 17698.38 37189.59 32697.65 33497.60 339
API-MVS95.09 23895.01 23195.31 26896.61 33494.02 16396.83 13997.18 29195.60 16495.79 28594.33 35894.54 17598.37 37385.70 36998.52 28693.52 404
CNLPA95.04 23994.47 26296.75 19597.81 25195.25 11694.12 30397.89 25894.41 21394.57 31795.69 32890.30 26998.35 37486.72 36598.76 26596.64 372
PAPR92.22 32191.27 33195.07 27895.73 37188.81 28691.97 36497.87 25985.80 36890.91 38592.73 37991.16 25298.33 37579.48 40095.76 38298.08 296
test_cas_vis1_n_192095.34 22595.67 21194.35 31498.21 20586.83 32995.61 22899.26 3290.45 31398.17 13098.96 6584.43 32798.31 37696.74 9099.17 21897.90 316
tpm cat188.01 37287.33 37290.05 38894.48 39376.28 41194.47 28594.35 35273.84 41589.26 40195.61 33373.64 38298.30 37784.13 38386.20 41395.57 392
WB-MVSnew91.50 33691.29 32992.14 37094.85 38780.32 39293.29 33288.77 40488.57 33994.03 33392.21 38592.56 22498.28 37880.21 39997.08 34997.81 324
BH-w/o92.14 32391.94 31892.73 35897.13 32085.30 34692.46 35295.64 32989.33 32794.21 32592.74 37889.60 27598.24 37981.68 39394.66 39294.66 398
gg-mvs-nofinetune88.28 37086.96 37692.23 36992.84 41284.44 36298.19 5274.60 42099.08 1487.01 41199.47 1356.93 41098.23 38078.91 40295.61 38494.01 402
MS-PatchMatch94.83 24894.91 23694.57 30596.81 33087.10 32494.23 29497.34 28688.74 33697.14 20297.11 25691.94 24498.23 38092.99 25797.92 31598.37 266
MVS-HIRNet88.40 36890.20 34982.99 39897.01 32360.04 42393.11 33685.61 41384.45 38588.72 40499.09 5384.72 32598.23 38082.52 39196.59 36690.69 413
cascas91.89 33091.35 32893.51 33494.27 39685.60 34188.86 40498.61 18279.32 40392.16 37791.44 39489.22 28498.12 38390.80 29897.47 34296.82 367
MSLP-MVS++96.42 18096.71 15995.57 25697.82 25090.56 25895.71 21698.84 13094.72 20196.71 23597.39 23794.91 16498.10 38495.28 16699.02 23898.05 305
EPMVS89.26 36088.55 36291.39 37892.36 41479.11 39795.65 22479.86 41888.60 33893.12 35996.53 29370.73 39498.10 38490.75 30189.32 40996.98 357
test_fmvs397.38 12197.56 10696.84 18998.63 15892.81 20297.60 9499.61 1690.87 30698.76 7199.66 494.03 18797.90 38699.24 699.68 8199.81 9
mvsany_test396.21 18695.93 20297.05 17397.40 30494.33 15295.76 21594.20 35389.10 32999.36 2599.60 893.97 18997.85 38795.40 16498.63 27998.99 189
PMMVS293.66 29494.07 27792.45 36597.57 28980.67 39186.46 40796.00 32093.99 22897.10 20697.38 23989.90 27397.82 38888.76 33799.47 15298.86 214
131492.38 31892.30 31392.64 36095.42 37885.15 35095.86 20996.97 30185.40 37390.62 38693.06 37291.12 25397.80 38986.74 36495.49 38694.97 397
TESTMET0.1,187.20 37986.57 37989.07 39093.62 40672.84 41989.89 39687.01 41085.46 37289.12 40290.20 40356.00 41497.72 39090.91 29496.92 35196.64 372
test_fmvs296.38 18196.45 17796.16 22997.85 24291.30 24296.81 14199.45 2189.24 32898.49 9099.38 2088.68 28797.62 39198.83 1899.32 19799.57 46
testgi96.07 19196.50 17694.80 29499.26 5787.69 31395.96 20398.58 18795.08 18998.02 14996.25 30897.92 2097.60 39288.68 34098.74 26799.11 170
CMPMVSbinary73.10 2392.74 31391.39 32796.77 19493.57 40794.67 13694.21 29697.67 27180.36 40093.61 34696.60 28982.85 33997.35 39384.86 38098.78 26398.29 280
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_vis1_n95.67 21095.89 20495.03 28098.18 21189.89 26496.94 13499.28 3188.25 34498.20 12598.92 6986.69 30997.19 39497.70 5798.82 26098.00 310
test_fmvs1_n95.21 23195.28 21994.99 28398.15 21889.13 28196.81 14199.43 2386.97 35797.21 19798.92 6983.00 33897.13 39598.09 3898.94 24598.72 232
mvsany_test193.47 29993.03 29694.79 29594.05 40292.12 22390.82 38790.01 40185.02 37897.26 19498.28 14493.57 19897.03 39692.51 26495.75 38395.23 395
EMVS89.06 36289.22 35488.61 39293.00 41077.34 40682.91 41490.92 38994.64 20592.63 37291.81 39076.30 37197.02 39783.83 38696.90 35391.48 411
test_fmvs194.51 26794.60 25494.26 31995.91 35787.92 30595.35 24599.02 8186.56 36196.79 22898.52 11082.64 34097.00 39897.87 4598.71 27197.88 318
PMVScopyleft89.60 1796.71 16596.97 14495.95 23899.51 2897.81 2097.42 11097.49 28297.93 5695.95 27798.58 10396.88 8096.91 39989.59 32699.36 18293.12 407
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN89.52 35989.78 35188.73 39193.14 40877.61 40483.26 41392.02 37794.82 19993.71 34293.11 36775.31 37596.81 40085.81 36896.81 35891.77 410
GG-mvs-BLEND90.60 38391.00 41684.21 36698.23 4672.63 42382.76 41484.11 41556.14 41396.79 40172.20 41392.09 40490.78 412
PC_three_145287.24 35298.37 10397.44 23097.00 6796.78 40292.01 26999.25 20899.21 147
MonoMVSNet93.30 30493.96 28291.33 37994.14 40081.33 38797.68 8996.69 31295.38 17796.32 25898.42 12184.12 33096.76 40390.78 29992.12 40395.89 384
new_pmnet92.34 31991.69 32494.32 31696.23 34489.16 27992.27 35992.88 36784.39 38695.29 30196.35 30585.66 31796.74 40484.53 38297.56 33697.05 355
PVSNet_081.89 2184.49 38283.21 38588.34 39395.76 36974.97 41683.49 41292.70 37178.47 40687.94 40786.90 41483.38 33696.63 40573.44 41266.86 41893.40 405
ttmdpeth94.05 28394.15 27593.75 32895.81 36585.32 34596.00 19794.93 34592.07 28294.19 32699.09 5385.73 31696.41 40690.98 29198.52 28699.53 57
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31599.27 3099.33 2894.04 18696.03 40797.14 7597.83 32099.78 12
MVStest191.89 33091.45 32593.21 34289.01 41984.87 35595.82 21395.05 34391.50 29698.75 7299.19 3857.56 40895.11 40897.78 5198.37 29799.64 35
SD-MVS97.37 12397.70 8696.35 21998.14 22095.13 12496.54 16098.92 10795.94 14599.19 3598.08 17097.74 2895.06 40995.24 16999.54 12598.87 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_vis1_rt94.03 28593.65 28695.17 27495.76 36993.42 18793.97 31098.33 21584.68 38193.17 35895.89 32592.53 22994.79 41093.50 24594.97 38997.31 351
test_f95.82 20395.88 20595.66 25297.61 28793.21 19595.61 22898.17 23586.98 35698.42 9899.47 1390.46 26394.74 41197.71 5598.45 29399.03 182
test0.0.03 190.11 34889.21 35592.83 35593.89 40386.87 32891.74 36888.74 40592.02 28494.71 31591.14 39773.92 38094.48 41283.75 38892.94 39997.16 353
dmvs_re92.08 32691.27 33194.51 30897.16 31892.79 20595.65 22492.64 37294.11 22492.74 36790.98 39983.41 33594.44 41380.72 39794.07 39696.29 380
dmvs_testset87.30 37886.99 37588.24 39496.71 33177.48 40594.68 27986.81 41192.64 27489.61 39987.01 41385.91 31493.12 41461.04 41888.49 41094.13 401
wuyk23d93.25 30695.20 22187.40 39796.07 35495.38 10797.04 12994.97 34495.33 17899.70 798.11 16898.14 1791.94 41577.76 40699.68 8174.89 415
FPMVS89.92 35388.63 36193.82 32698.37 19096.94 4991.58 37093.34 36388.00 34790.32 39197.10 25770.87 39391.13 41671.91 41496.16 37693.39 406
test_method66.88 38466.13 38769.11 40062.68 42525.73 42849.76 41696.04 31914.32 42064.27 42091.69 39273.45 38588.05 41776.06 40866.94 41793.54 403
MVEpermissive73.61 2286.48 38185.92 38088.18 39596.23 34485.28 34881.78 41575.79 41986.01 36482.53 41591.88 38992.74 21787.47 41871.42 41594.86 39191.78 409
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dongtai63.43 38563.37 38863.60 40183.91 42353.17 42585.14 40943.40 42777.91 40980.96 41779.17 41736.36 42577.10 41937.88 42045.63 41960.54 416
DeepMVS_CXcopyleft77.17 39990.94 41785.28 34874.08 42252.51 41880.87 41888.03 41075.25 37670.63 42059.23 41984.94 41475.62 414
kuosan54.81 38754.94 39054.42 40274.43 42450.03 42684.98 41044.27 42661.80 41762.49 42170.43 41835.16 42658.04 42119.30 42141.61 42055.19 417
tmp_tt57.23 38662.50 38941.44 40334.77 42649.21 42783.93 41160.22 42515.31 41971.11 41979.37 41670.09 39644.86 42264.76 41682.93 41630.25 418
testmvs12.33 39015.23 3933.64 4055.77 4282.23 43088.99 4033.62 4282.30 4235.29 42313.09 4204.52 4281.95 4235.16 4238.32 4226.75 420
test12312.59 38915.49 3923.87 4046.07 4272.55 42990.75 3882.59 4292.52 4225.20 42413.02 4214.96 4271.85 4245.20 4229.09 4217.23 419
mmdepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
monomultidepth0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
test_blank0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uanet_test0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
DCPMVS0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
cdsmvs_eth3d_5k24.22 38832.30 3910.00 4060.00 4290.00 4310.00 41798.10 2450.00 4240.00 42595.06 34397.54 390.00 4250.00 4240.00 4230.00 421
pcd_1.5k_mvsjas7.98 39110.65 3940.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 42495.82 1300.00 4250.00 4240.00 4230.00 421
sosnet-low-res0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
sosnet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
uncertanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
Regformer0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
ab-mvs-re7.91 39210.55 3950.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 42594.94 3450.00 4290.00 4250.00 4240.00 4230.00 421
uanet0.00 3930.00 3960.00 4060.00 4290.00 4310.00 4170.00 4300.00 4240.00 4250.00 4240.00 4290.00 4250.00 4240.00 4230.00 421
WAC-MVS79.32 39585.41 374
FOURS199.59 1798.20 899.03 899.25 3398.96 2298.87 59
test_one_060199.05 10595.50 10298.87 11997.21 9398.03 14898.30 13996.93 73
eth-test20.00 429
eth-test0.00 429
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12297.77 6098.20 12598.07 17296.94 7195.49 14999.20 21399.26 139
IU-MVS99.22 6695.40 10598.14 24285.77 36998.36 10695.23 17099.51 13999.49 75
save fliter98.48 18194.71 13394.53 28498.41 20495.02 193
test072699.24 6195.51 9996.89 13798.89 11095.92 14798.64 7698.31 13597.06 62
GSMVS98.06 302
test_part299.03 10796.07 7898.08 141
sam_mvs177.80 36098.06 302
sam_mvs77.38 364
MTGPAbinary98.73 158
MTMP96.55 15974.60 420
test9_res91.29 28398.89 25299.00 186
agg_prior290.34 31698.90 24999.10 174
test_prior495.38 10793.61 323
test_prior293.33 33194.21 21894.02 33496.25 30893.64 19791.90 27298.96 242
新几何293.43 326
旧先验197.80 25593.87 16897.75 26797.04 26193.57 19898.68 27398.72 232
原ACMM292.82 340
test22298.17 21493.24 19492.74 34497.61 28075.17 41294.65 31696.69 28590.96 25798.66 27697.66 334
segment_acmp95.34 150
testdata192.77 34193.78 232
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior496.77 280
plane_prior394.51 14395.29 18196.16 270
plane_prior296.50 16196.36 121
plane_prior198.49 179
plane_prior94.29 15395.42 23694.31 21798.93 247
n20.00 430
nn0.00 430
door-mid98.17 235
test1198.08 247
door97.81 265
HQP5-MVS92.47 212
HQP-NCC97.85 24294.26 28993.18 25592.86 364
ACMP_Plane97.85 24294.26 28993.18 25592.86 364
BP-MVS90.51 311
HQP3-MVS98.43 20098.74 267
HQP2-MVS90.33 266
NP-MVS98.14 22093.72 17495.08 341
MDTV_nov1_ep13_2view57.28 42494.89 27080.59 39894.02 33478.66 35785.50 37397.82 322
ACMMP++_ref99.52 134
ACMMP++99.55 121
Test By Simon94.51 176